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A. Holtkamp,11 J. Huston,27 T. Hyodo,73 K. Irwin,74,75 J.D. Jackson,10† K.F. Johnson,76 M. Kado,77,11 M. Karliner,78

U.F. Katz,79 S.R. Klein,80 E. Klempt,81 R.V. Kowalewski,82 F. Krauss,83 M. Kreps,53 B. Krusche,84 Yu.V. Kuyanov,13

Y. Kwon,85 O. Lahav,86 J. Laiho,87 P. Langacker,88 A. Liddle,89 Z. Ligeti,10 C.-J. Lin,10 C. Lippmann,90 T.M. Liss,91

L. Littenberg,92 K.S. Lugovsky,10,13 S.B. Lugovsky,13 A. Lusiani,93 Y. Makida,62 F. Maltoni,94 T. Mannel,95 A.V. Manohar,96

W.J. Marciano,92 A.D. Martin,83 A. Masoni,97 J. Matthews,98 U.-G. Meißner,81,63 D. Milstead,99 R.E. Mitchell,100

P. Molaro,101 K. Mönig,102 F. Moortgat,11 M.J. Mortonson,103,10 H. Murayama,104,105,10 K. Nakamura,104,62 M. Narain,106

P. Nason,107 S. Navas,108 M. Neubert,109 P. Nevski,92 Y. Nir,110 K.A. Olive,54 S. Pagan Griso,10 J. Parsons,18 J.A. Peacock,89

M. Pennington,20 S.T. Petcov,111,104,112 V.A. Petrov,13 A. Piepke,113 A. Pomarol,114 A. Quadt,115 S. Raby,12 J. Rademacker,116

G. Raffelt,117 B.N. Ratcliff,75 P. Richardson,83 A. Ringwald,48 S. Roesler,11 S. Rolli,118 A. Romaniouk,119 L.J. Rosenberg,15

J.L. Rosner,17 G. Rybka,15 R.A. Ryutin,13 C.T. Sachrajda,120 Y. Sakai,62 G.P. Salam,11,121 S. Sarkar,122,123 F. Sauli,11

O. Schneider,124 K. Scholberg,125 A.J. Schwartz,126 D. Scott,127 V. Sharma,96 S.R. Sharpe,15 T. Shutt,75 M. Silari,11
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64. Department of Physics, University of Tokyo, Tokyo 113-0033, Japan

65. Department of Physics, Hillsdale College, Hillsdale, MI 49242, USA

66. Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, D-69120 Heidelberg, Germany

67. Laboratory of Elementary-Particle Physics, Cornell University, Ithaca, NY 14853, USA

68. IFIC — Instituto de F́ısica Corpuscular, Universitat de València — C.S.I.C., E-46071 València, Spain
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108. Dpto. de F́ısica Teórica y del Cosmos & C.A.F.P.E., Universidad de Granada, 18071 Granada, Spain

109. PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, D-55099 Mainz, Germany

110. Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001, Israel

111. SISSA/INFN, via Bonomea, 265, 34136 Trieste TS, Italy

112. INRNE, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

113. Department of Physics and Astronomy, University of Alabama, 206 Gallalee Hall, Tuscaloosa, AL 35487, USA
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131. Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

132. III. Physikalisches Institut, Physikzentrum, RWTH Aachen University, 52056 Aachen, Germany

133. High Energy Physics Laboratory, Tokyo Metropolitan University, Tokyo, 192-0397, Japan



5

134. Department of Physics, University of California, Davis, CA 95616, USA

135. Institut für Kernphysik, Johannes-Gutenberg Universität Mainz, D-55099 Mainz, Germany

136. Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK

137. Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada

138. California Institute of Technology, Kellogg Radiation Laboratory 106-38, Pasadena, CA 91125, USA

139. Division of Theoretical Physics, Department of Mathematical Sciences, The University of Liverpool, Liverpool, L69 3BX, UK

140. Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, Portsmouth PO1 3FX, UK

141. Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, UK

142. Department of Astronomy and CCAPP, The Ohio State University, 140 W. 18th Ave., Columbus, OH 43210, USA

143. Dept. of Physics, Colorado School of Mines, Golden Colorado, 80401 USA

144. Department of Physisc, University of Massachusetts, Amherst, 1126 Lederle Graduate Research Tower, Amherst, MA 01003-4525, USA

145. Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

146. STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK

147. Department of Physics, George Washington University Virginia Campus, Ashburn, VA 20147-2604, USA

148. California Institute of Technology, High Energy Physics, MC 256-48, Pasadena, CA 91125, USA



6 Highlights of the 2016 edition of the Review of Particle Physics

HIGHLIGHTS OF THE 2016 EDITION OF THE REVIEW OF PARTICLE PHYSICS

721 new papers with 3062 new measurements

• Over 332 new papers from LHC experiments

(ATLAS, CMS, and LHCb).

• Extensive up-to-date Higgs boson coverage

from 79 new papers with 172 measurements.

• Supersymmetry: 82 new papers with major

exclusions.

• Top quark: 55 new papers.

• Latest from B-meson physics: 133 papers

with 542 measurements.

• New τ branching fractions fit in collabora-

tion with the HFAG-Tau group.

• New limits on neutrinoless double-β decays.

• Updated and new results in neutrino mixing

on ∆m2 and mixing angle measurements.

• Experimental Tests of Gravitational Theory

review includes LIGO observation of gravita-

tional waves.

• Cosmology reviews updated to include 2015

Planck results.

• Periodic Table 7th row completed; signif-

icantly revised Atomic-Nuclear Properties

website.

See pdgLive.lbl.gov for online access to PDG database.

See pdg.lbl.gov/AtomicNuclearProperties for Atomic Properties of Materials.

117 reviews (most are revised)

• New reviews on:

- Inflation

- Pentaquarks

- Pole Structure of the Λ(1405) Region

• Significant update/revision to reviews on:

- Higgs Boson Physics

- Grand Unified Theories

- Dark Energy, Dark Matter and CMB

- Cosmological Parameters, Astrophysi-

cal Constants and Parameters

- Neutrino Mass, Mixing, and Flavor

Change

- Neutrino Cross Section Measurements

- W ′ and Z ′ bosons searches

- Searches for Quark and Lepton Com-

positeness

- Leptonic Decays of Charged Pseu-

doscalar Mesons

- Particle Detectors for accelerator and

non-accelerator physics, including new

section on Accelerator Neutrino Detec-

tors

- High-Energy Collider Parameters
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J ) 1137
Bottom, strange (Bs, B∗

s , B∗

sJ) 1333
Bottom, charmed (Bc) 1353
cc (ηc, J/ψ(1S), χc, hc, ψ) 1364

bb (ηb, Υ, χb, hb) 1460
Non-qq candidates 1494

Baryons

N 1503
∆ 1554
Λ 1574
Σ 1594
Ξ 1620
Ω 1632
Charmed (Λc, Σc, Ξc, Ωc) 1635
Doubly charmed (Ξcc) 1655
Bottom (Λb, Σb, Σ∗

b , Ξb, Ωb, b-baryon admixture) 1656
Exotic baryons (Pc pentaquarqs) 1667

Miscellaneous searches

Monopoles 1675
Supersymmetry 1682
Technicolor 1743
Compositeness 1756
Extra Dimensions 1765
Searches for WIMPs and Other Particles 1778

INDEX 1793

MAJOR REVIEWS IN THE PARTICLE LISTINGS

Gauge and Higgs bosons

The mass and width of the W boson 614
Extraction of triple gauge couplings (TGCS) (rev.) 618
Anomalous W/Z quartic couplings (rev.) 622
The Z boson (rev.) 624
Anomalous ZZγ, Zγγ, and ZZV couplings 644
W ′-boson searches (rev.) 665
Z ′-boson searches (rev.) 670
Leptoquarks (rev.) 678
Axions and other similar particles (rev.) 686

Leptons

Muon anomalous magnetic moment 719
Muon decay parameters 719
τ branching fractions (rev.) 729
τ -lepton decay parameters 752
Neutrinoless double-β Decay (rev.) 767

Quarks

Quark masses (rev.) 793
The top quark (rev.) 807

Mesons

Form factors for rad. pion & kaon decays (rev.) 850
Note on scalar mesons below 2 GeV (rev.) 861
The pseudoscalar and pseudovector mesons

in the 1400 MeV region (rev.) 915
The ρ(1450) and the ρ(1700) (rev.) 945
Rare kaon decays (rev.) 981
CPT Invariance tests in neutral kaon decay 999
CP -Violation in KS → 3π 1004
Vud, Vus, Cabibbo angle, and CKM unitarity (rev.)1011
CP -Violation in KL decays 1019
Review of multibody charm analyses (rev.) 1048

D0–D
0

Mixing (rev.) 1061
D+

s branching fractions (rev.) 1106
Leptonic dec. of charged pseudoscalar mesons(rev.)1109
Production and decay of b-flavored hadrons (rev.) 1137
Polarization in B decays (rev.) 1252

B0–B
0

mixing (rev.) 1259
Semileptonic B decays, Vcb and Vub (rev.) 1313
Heavy quarkonium spectroscopy (rev.) 1355
Branching ratios of ψ(2S) and χc0,1,2 (rev.) 1390
Non-qq candidates (rev.) 1494

Baryons

Baryon decay parameters 1515
N and ∆ resonances (rev.) 1518
Λ and Σ resonances 1577
Pole structure of the Λ(1405) region (new) 1578
Radiative hyperon decays 1621
Charmed baryons 1635
Pentaquarks (new) 1667

Miscellaneous searches

Magnetic monopoles (rev.) 1675
Supersymmetry (rev.) 1682
Dynamical electroweak symmetry breaking (rev.) 1743
Searches for quark & lepton compositeness (rev.) 1756
Extra dimensions (rev.) 1765

∗The divider sheets give more detailed indices for each main section of the Particle Listings.
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INTRODUCTION

1. Overview

The Review of Particle Physics is a review of the field
of Particle Physics and of related areas in Cosmology. It
consists of “Summary Tables”, “Particle Listings”, and
“Reviews, Tables, and Plots”. The latter covers a wide
variety of theoretical and experimental topics and provides a
quick reference for the practicing particle physicist.

The Summary Tables give our best values and limits
for particle properties such as masses, widths or lifetimes,
and branching fractions, as well as an extensive summary
of searches for hypothetical particles and a summary of
experimental tests of conservation laws.

The Particle Listings are a compilation/evaluation of
data on particle properties. They contain all the data used
to get the values given in the Summary Tables. The Particle
Listings also give information on unconfirmed particles
and on particle searches, as well as reviews on subjects
of particular interest or controversy. In this edition, the
Particle Listings include 3,062 new measurements from 721
papers, in addition to the 35,436 measurements from 9,843
papers that first appeared in previous editions [1]. Because
of the large quantity of data, the Particle Listings are not an
archive of all published data on particle properties. We refer
interested readers to earlier editions for data now considered
to be obsolete.

The book version of the Review is published in even-
numbered years. This edition is an updating through
January 2016 (and, in some areas, well into 2016). The
content of this Review is available on the web and is updated
between printed editions.

We organize the particles into six categories:
Gauge and Higgs bosons
Leptons
Quarks
Mesons
Baryons
Searches for monopoles, supersymmetry,

compositeness, extra dimensions, etc.

The last category only includes searches for particles that
do not belong to the previous groups; searches for heavy
charged leptons and massive neutrinos, by contrast, are with
the leptons.

In Sec. 2 of this Introduction, we list the main areas of
responsibility of the authors of the Particle Listings. Our
many consultants, without whom we would not have been
able to produce this Review, are acknowledged in Sec. 3. In
Sec. 4, we mention briefly the naming scheme for hadrons.
In Sec. 5, we discuss our procedures for choosing among
measurements of particle properties and for obtaining best
values of the properties from the measurements.

The accuracy and usefulness of this Review depend in
large part on interaction between its users and the authors.
We appreciate comments, criticisms, and suggestions
for improvements of any kind. Please send them to the
appropriate author, according to the list of responsibilities
in Sec. 2 below, or to pdg@lbl.gov.

The complete Review is published online in a journal and
on the PDG website (http://pdg.lbl.gov). In addition to
the online publication, the Review is available in different
formats:

• The printed PDG Book contains the Summary Tables
and all review articles. In contrast to previous editions,
the detailed tables from the Particle Listings are no
longer printed.

• The Particle Physics Booklet includes the Summary
Tables and abbreviated versions of some of the review
articles in a pocket format.

• pdgLive (http://pdgLive.lbl.gov) is a web application
for online access to the PDG database.

• Files that can be downloaded from the PDG website
include a table of masses, widths, and PDG Monte Carlo
particle ID numbers; PDF files of the entire PDG Book
and Booklet; individual review articles; all figures; and
an archive file containing the complete PDG website
(except for pdgLive).

Copies of the PDG Book or the Particle Physics

Booklet can be ordered from our website or directly at
http://pdg.lbl.gov/order. For special requests only,
please email pdg@lbl.gov in North and South America,
Australia, and the Far East, and pdg-products@cern.ch in
all other areas.

2. Particle Listings responsibilities

* Asterisk indicates the people to contact with questions or
comments about Particle Listings sections.

Gauge and Higgs bosons

γ C. Grab, D.E. Groom∗

Gluons R.M. Barnett,∗ A.V. Manohar

Graviton D.E. Groom∗

W, Z A. Gurtu,∗ M. Grünewald∗

Higgs bosons K. Hikasa, G. Weiglein∗

Heavy bosons S. Pagan Griso,∗ M. Tanabashi
Axions K.A. Olive, F. Takahashi, G. Raffelt∗

Leptons

Neutrinos M. Goodman, C.-J. Lin,∗ K. Nakamura,
K.A. Olive, A. Piepke, P. Vogel

e, µ C. Grab, C.-J. Lin∗

τ K.G. Hayes, K. Mönig∗

Quarks

Quarks R.M. Barnett,∗ A.V. Manohar

Top quark R.M. Barnett,∗ Y. Sumino
b′, t′ R.M. Barnett,∗ Y. Sumino

Free quark S. Pagan Griso∗

Mesons

π, η D.A. Dwyer,∗ C. Grab
Unstable mesons C. Amsler, M. Doser,∗ S. Eidelman,∗

T. Gutsche, C. Hanhart, B. Heltsley,
J.J. Hernández-Rey, A. Masoni,
R.E. Mitchell, S. Navas, C. Patrignani,
S. Spanier, N.A. Törnqvist,
G. Venanzoni

K (stable) G. D’Ambrosio, C.-J. Lin∗

D (stable, no mix.) J. Rademacker, C.G. Wohl∗

D0 mixing D.M. Asner, W.-M. Yao∗
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Baryons

B (stable) A. Cerri,∗ P. Eerola, M. Kreps,
Y. Kwon, W.-M. Yao∗

Stable baryons C. Grab, C.G. Wohl∗

Unstable baryons V. Burkert, E. Klempt, M. Pennington,
L. Tiator, R.L. Workman∗

Charmed baryons J. Rademacker, C.G. Wohl∗

Bottom baryons A. Cerri,∗ P. Eerola, M. Kreps,
Y. Kwon, W.-M. Yao∗

Miscellaneous searches

Monopole D. Milstead∗

Supersymmetry H.K. Dreiner,∗ A. de Gouvêa,
M. D’Onofrio, F. Moortgat,
K.A. Olive

Technicolor K. Agashe,∗ M. Tanabashi
Compositeness M. Tanabashi, J. Terning∗

Extra Dimensions D.A. Dwyer,∗ T. Gherghetta
WIMPs and Other K. Hikasa∗

3. Consultants

The Particle Data Group benefits greatly from the
assistance of some 700 physicists who are asked to verify
every piece of data entered into this Review. Of special
value is the advice of the PDG Advisory Committee which
meets biennially and thoroughly reviews all aspects of our
operation. The members of the 2016 committee are:

A. Seiden (UCSC)
T. Carli (CERN)
L. Hall (UC Berkeley/LBNL)
J. Olson (Princeton)
A. Slosar (BNL)
J. Tanaka (Tokyo)

We have especially relied on the expertise of the following
people for advice on particular topics:

• E. Accomando (Southampton University)
• D. Akerib (SLAC)
• J. Alcaraz (Madrid)
• A. Ali (DESY)
• B. Allanach (University of Cambridge)
• L. Althaus (La Plata University)
• V. Anisovich (Petersburg Nuclear Physics Institute)
• F. Anulli (INFN, Rome)
• S. Aoki (Kyoto University)
• S. Arceo Diaz (Colima University)
• M. Artuso (Syracuse University)
• S. Arzumanov (Moscow)
• H. Bachacou (IRFU, Saclay)
• H. Band (Yale)
• A. Barabash (ITEP Moscow)
• W. Barletta (MIT)
• R. Battye (Manchester University)
• J. Beatty (Ohio State University)
• C. Beck (Queen Mary University of London)
• R. Beck (University of Bonn)
• Y. Bedfer (CEA, Saclay)
• M. Beneke (Aachen)
• J. Bernauer (MIT)
• M. Bertolami (MPI, Garching)

• V. Bezerra (Paraiba University)
• E. Bloom (SLAC)
• J. Blümlein (DESY)
• D. Boscherini (INFN, Bologna)
• T. Bose (Boston University)
• C. Bozzi(INFN, Ferrara)
• A. Bressan (Triese University)
• R. Briere (Hawaii University)
• P. Brun (DAPNIA, Saclay)
• O. Bruning (CERN)
• D. Bryman (TRIUMF)
• M. Buckley (Rutgers University)
• A. Cabrera (APC, Paris)
• J. Cao (IHEP, Beijing)
• J. Carlstrom (Chicago University)
• M. Casolino (INFN, Tor Vergata)
• D. Cassel (Cornell University)
• F. Cerutti (LBNL)
• J. Chou (Rutgers University, Piscataway)
• W. Chou (Fermilab)
• M. Chrzaszcz (H. Niewodniczanski Inst.; U. Zurich)
• D. Cinabro (Wayne State University)
• G. Colangelo (University of Bern)
• J. Collar (Chicago University)
• J. Conrad (Stockholm University)
• J. Conway (UC Davis)
• N. Craig (UCSB)
• K. Cranmer (NYU)
• O. Cremonesi (INFN, Milan Bicocca)
• M. Crisler (FNAL)
• C. Csaki (Cornell University)
• P. Cushman (Minnesota University)
• G. Cvetic (Santa Maria U., Valparaiso)
• M. Czakon (RWTH Aachen)
• T. Dafni (Zaratoga University)
• S. Davidson (IPN, Lyon)
• C. Davies (University of Glasgow)
• D. Denisov (FNAL)
• A.V. Derbin (INP St. Petersburg)
• S. Derenzo (LBNL)
• G. De Rijk (CERN)
• P. De Simone (Frascati)
• A. Di Canto (CERN)
• S. Dobbs (Northwester University)
• A. Dolgov (INFN, Ferrara)
• J. Donini (Clermont-Ferrand University)
• T. Dorigo (INFN, Padova)
• V.P. Druzhinin (BINP SB RAS, Novosibirsk)
• V.A. Duk (INR RAS, Moscow)
• G. Edda (University of Geneva)
• G. Efstathiou (Cambridge University)
• G. Eigen (University of Bergen)
• D. Ejlli (Gran Sasso)
• C. Enss (University of Heidelberg)
• R. Essig (SUNY)
• W. Fischer (BNL)
• K. Fissum (Lund University)
• B. Franke (MPQ, Munich)
• K. Freese (U. of Michigan; Nordita, Stockholm)
• B. Fujikawa (LBNL)
• G. Gabrielse (Harvard University)
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• P. Gambino (INFN, Torino)
• A. Gando (Tohoku University)
• I. Garcia Irastorza (University of Zaragoza)
• R. Garisto (PRL)
• A. Giammanco (Louvain)
• S. Giovanella (INFN, Frascati)
• T. Girard (Lisbon University)
• T. Golling (Yale University)
• G. González (Louisiana State University)
• M. Gonzalez-Garcia (SUNY)
• E. Goudzovski (Birmingham University)
• P. Grannis (SUNY)
• G. Gratta (Stanford University)
• M. Grazzini (University of Zurich)
• M. Gumberidze (GSI)
• F. Halzen (Wisconsin University)
• D. Harris (FNAL)
• F. Harris (Hawaii University)
• P. Harris (Sussex Univerisity)
• M. Harrison (BNL)
• K. Hayasaka (Niigata University)
• H. Hayashii (Nara Women’s University)
• J. Heitger (Munster University)
• D. Hertzog (University of Washington)
• K. Hicks (Ohia State University)
• J. Hietala (Minnesota University)
• R. Hill (Chicago University)
• A. Hinzmann (University of Zurich)
• A. Hoang (University of Vienna)
• K. Homma (Hiroshima University)
• A. Ianni (Gran Sasso)
• P. Janot (CERN)
• X. Ji (University of Maryland)
• C. Joram (CERN)
• J. Jowett (CERN)
• A. Jung (Purdue)
• J. Kaminski (Universit of Bonn)
• S. Kanemura (Toyama University)
• L. Kardapoltsev (Novosibirsk State University)
• D. Karlen (University of Victoria)
• S.G. Karshenboim (MPQ, Munich; Pulkovo Obs.)
• V. Kekelidze (JINR, Dubna)
• Y. Kharlov (IHEP, Serpukhov)
• J. Kim (Seoul National University)
• Y. Kim (Sejong University)
• E. Klempt (University of Bonn)
• T. Kobayashi (KEK)
• P. Koppenburg (NIKHEF)
• A. Korytov (University of Florida)
• T. Koseki (KEK)
• A. Kronfeld (FNAL)
• A. Kupsc (Uppsala University)
• G. Lambard (CPPM, Marseille)
• G. Landsberg (Brown University)
• R. Lang (Purdue University)
• L.B. Leinson (IZMIRAN, Troitsk)
• O. Leroy (CPPM, Marseille)
• B. Li (IHEP, Beijing)
• J. Libby (Indian Inst. Tech., Madras)
• E. Linder (LBNL)
• C.-Y. Liu (Indiana University)

• J. Liu (Shanghai Jiaotong University)
• P. Lukens (FNAL)
• X.-R. Lyu (UCAS, Beijing)
• L. Malgeri (CERN)
• G. Mandaglio (Messina University)
• G. Marshall (TRIUMF)
• S. Martin (Northern Illinois University)
• R. Martinez (Colombia University)
• P. Massarotti (University of Napoli)
• A. Melchiorri (Rome University)
• H. Merkel (Mainz, University)
• P.D. Meyers (Princeton University)
• C. Milardi (LNF-INFN, Frascati)
• M. Minowa (Tokyo University)
• A. Mirizzi (INFN, Bari)
• K. Miuchi (Kobe University)
• K. Miyabayashi (Nara Univ., Nara)
• S.-O. Moch (DESY)
• R. Mohanta (Hyderabad University)
• P. Mohr (NIST)
• S. Monteil (LPC Clermont)
• D. Morrison (BNL)
• V.M. Mostepanenko (Pulkovo Obs., St.Petersburg)
• B. Murray (University of Warwick)
• T. Nakadaira (KEK)
• M. Nakahata (Kamioka Obs.)
• T. Nakaya (Kyoto University)
• A. Nucciotti (INFN, Milano-Bicocca)
• T. Numao (TRIUMF)
• D. Nygren (UT Arlington)
• V. Obraztsov (IHEP, Serpukhov)
• H. O’Connell (FNAL)
• K. Oide (KEK)
• J. Olsen (Princeton)
• S. Olsen (Seoul National University)
• R. Ong (UCLA)
• Y. Onishi (KEK)
• M. Owen (Glasgow)
• P. Owen (Imperial Coll.)
• G. Pakhlova (Lebedev Inst. RAS, Moscow)
• N. Palanque-Delabrouille (Paris University)
• A. Palladino (Boston University)
• D. Parkinson (Sussex University)
• J. Paul Chou (Rutgers University)
• G. Paz (Wayne State University)
• M. Peloso (University of Minnesota)
• A.A. Penin (Alberta University)
• W. Percival (Portsmouth University)
• A. Pich (IFIC, University of Valencia)
• L. Piilonen (Virginia Tech.)
• M. Pinamonti (INFN, Udine)
• A. Pocar (UMass Amherst)
• A. Poon (LBNL)
• J. Portoles (IFIC, University of Valencia)
• M. Pospelov (Perimeter Inst. Theo. Phys.)
• J. Pradler (OAW, Vienna)
• S. Prakhov (UCLA)
• R. Prieels (Louvain University)
• N. Priel (Weizmann Inst.)
• F. Proebst (MPI, Munich)
• G. Pugliese (INFN, Bari)
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• P. Pugnat (LNCMP, Toulouse)
• M. Raggi (University of Rome)
• A. Read (Universiy of Oslo)
• M. Redi (Stony Brook University)
• R. Reesman (Ohio State University)
• G. Rico (ICREA, Barcelona)
• T. Rizzo (SLAC)
• K. Rolbiecki (IFT Madrid)
• M. Roney (Victoria University)
• G. Rossi (Rome University Tor Vergata)
• L. Roszkowski (Sheffield University)
• D. Rousseau (LAL, Orsay)
• B. Sadoulet (LBNL, University of Berkeley)
• B. Safdi (MIT)
• V.D. Samoylenko (IHEP, Protvino)
• V. Sanz (University of Sussex)
• X. Sarazin (LAL, Orsay)
• M. Schmitt (Northwestern University)
• A. Schukraft (Fermilab)
• D. Schulte (CERN)
• C. Schwanda (HEPHY, Vienna)
• A. Serebrov (INP St. Petersburg)
• K. Seth (Northwestern University)
• Q. Shafi (University of Delaware)
• B. Shwartz (Budker Institute of Nuclear Physics)
• P. Sikivie (University of Florida)
• E. Solodov (BINP, Novosibirsk)
• Y. Stadnik (New South Wales University)
• S. Stapnes (Oslo University)
• I. Strakowsky (George Washington University)
• A. Studenikin (Moscow State University)
• O. Suvorova (INR, Moscow)
• A. Suzuki (Tohoku University)
• A. Svarc (Boskovic Inst., Zagreb)
• A. Takeda (Tokyo University)
• A. Tapper (Imperial College London)
• R. Tenchini (INFN, Pisa)
• R. Tesarek (FNAL)
• J. Thomas (LBNL)
• W. Tornow (TUNL, Durham)
• D. Toussaint (Arizona University)
• K. Trabelsi (KEK)
• T. Trippe (LBNL)
• S. Troitsky (INR Moscow)
• K. Tullney (Mainz University)
• V. Vagnoni (INFN, Bologna)
• J. Valle (IFIC, Valencia)
• C. van Eldik (Erlangen University)
• R. Van Kooten (Indiana University)
• J. van Tilburg (NIKHEF, Amsterdam)
• G. Velev (FNAL)
• K. Vellidis (FNAL)
• L. Verde (ICREA, Barcelona)
• N. Vinyoles Vergés (CSIC, Spain)
• M. Whalley (Durham University)
• G. Wilkinson (Oxford University)
• S. Willocq (University of Massachusetts, Amherst)
• M. Wing (University College London)
• H. T.-K. Wong (Taiwan Inst. Phys.)
• T.T. Yanagida (IPMU)
• Q. Yue (Tsinghua University)

• G. Zavattini (INFN, Ferrara)
• G. Zeller (FNAL)
• D. Zerwas (LAL, Orsay)
• C. Zhang (Inst. High Energy Phys., Beijing)
• Y. Zhang (Caltech)
• K. Zioutas (CERN)
• R. Zwaska (FNAL)

4. Naming scheme for hadrons

We introduced in the 1986 edition [2] a new naming
scheme for the hadrons. Changes from older terminology
affected mainly the heavier mesons made of u, d, and s
quarks. Otherwise, the only important change to known
hadrons was that the F± became the D±

s . None of the
lightest pseudoscalar or vector mesons changed names, nor
did the cc or bb mesons (we do, however, now use χc for the
cc χ states), nor did any of the established baryons. The
Summary Tables give both the new and old names whenever
a change has occurred.

The scheme is described in “Naming Scheme for
Hadrons” (p. 130) of this Review.

We give here our conventions on type-setting style.
Particle symbols are italic (or slanted) characters: e−, p,
Λ, π0, KL, D+

s , b. Charge is indicated by a superscript:
B−, ∆++. Charge is not normally indicated for p, n, or
the quarks, and is optional for neutral isosinglets: η or η0.
Antiparticles and particles are distinguished by charge for
charged leptons and mesons: τ+, K−. Otherwise, distinct

antiparticles are indicated by a bar (overline): νµ, t, p, K
0
,

and Σ
+

(the antiparticle of the Σ−).

5. Procedures

5.1. Selection and treatment of data : The Particle
Listings contain all relevant data known to us that are
published in journals. With very few exceptions, we do not
include results from preprints or conference reports. Nor do
we include data that are of historical importance only (the
Listings are not an archival record). We search every volume
of 20 journals through our cutoff date for relevant data. We
also include later published papers that are sent to us by the
authors (or others).

In the Particle Listings, we clearly separate measure-
ments that are used to calculate or estimate values given
in the Summary Tables from measurements that are not
used. We give explanatory comments in many such cases.
Among the reasons a measurement might be excluded are
the following:

• It is superseded by or included in later results.
• No error is given.
• It involves assumptions we question.
• It has a poor signal-to-noise ratio, low statistical

significance, or is otherwise of poorer quality than other
data available.

• It is clearly inconsistent with other results that appear
to be more reliable. Usually we then state the criterion,
which sometimes is quite subjective, for selecting “more
reliable” data for averaging. See Sec. 5.4.

• It is not independent of other results.
• It is not the best limit (see below).
• It is quoted from a preprint or a conference report.
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In some cases, none of the measurements is entirely
reliable and no average is calculated. For example, the
masses of many of the baryon resonances, obtained from
partial-wave analyses, are quoted as estimated ranges
thought to probably include the true values, rather than as
averages with errors. This is discussed in the Baryon Particle
Listings.

For upper limits, we normally quote in the Summary
Tables the strongest limit. We do not average or combine
upper limits except in a very few cases where they may be
re-expressed as measured numbers with Gaussian errors.

As is customary, we assume that particle and antiparticle
share the same spin, mass, and mean life. The Tests of
Conservation Laws table, following the Summary Tables,
lists tests of CPT as well as other conservation laws.

We use the following indicators in the Particle Listings
to tell how we get values from the tabulated measurements:

• OUR AVERAGE—From a weighted average of selected
data.

• OUR FIT—From a constrained or overdetermined multi-
parameter fit of selected data.

• OUR EVALUATION—Not from a direct measurement, but
evaluated from measurements of related quantities.

• OUR ESTIMATE—Based on the observed range of the
data. Not from a formal statistical procedure.

• OUR LIMIT—For special cases where the limit is evaluated
by us from measured ratios or other data. Not from a
direct measurement.

An experimentalist who sees indications of a particle will
of course want to know what has been seen in that region
in the past. Hence we include in the Particle Listings all
reported states that, in our opinion, have sufficient statistical
merit and that have not been disproved by more reliable
data. However, we promote to the Summary Tables only
those states that we feel are well established. This judgment
is, of course, somewhat subjective and no precise criteria can
be given. For more detailed discussions, see the minireviews
in the Particle Listings.

5.2. Averages and fits : We divide this discussion
on obtaining averages and errors into three sections:
(1) treatment of errors; (2) unconstrained averaging;
(3) constrained fits.

5.2.1. Treatment of errors: In what follows, the “error”
δx means that the range x ± δx is intended to be a 68.3%
confidence interval about the central value x. We treat
this error as if it were Gaussian. Thus when the error is
Gaussian, δx is the usual one standard deviation (1σ). Many
experimenters now give statistical and systematic errors
separately, in which case we usually quote both errors, with
the statistical error first. For averages and fits, we then add
the the two errors in quadrature and use this combined error
for δx.

When experimenters quote asymmetric errors (δx)+

and (δx)− for a measurement x, the error that we use
for that measurement in making an average or a fit with
other measurements is a continuous function of these three
quantities. When the resultant average or fit x is less than
x−(δx)−, we use (δx)−; when it is greater than x+(δx)+, we
use (δx)+. In between, the error we use is a linear function
of x. Since the errors we use are functions of the result, we
iterate to get the final result. Asymmetric output errors are

determined from the input errors assuming a linear relation
between the input and output quantities.

In fitting or averaging, we usually do not include
correlations between different measurements, but we try
to select data in such a way as to reduce correlations.
Correlated errors are, however, treated explicitly when there
are a number of results of the form Ai ± σi ± ∆ that have
identical systematic errors ∆. In this case, one can first
average the Ai±σi and then combine the resulting statistical
error with ∆. One obtains, however, the same result by
averaging Ai ± (σ2

i + ∆2
i )

1/2, where ∆i = σi∆[
∑

(1/σ2
j )]

1/2.
This procedure has the advantage that, with the modified
systematic errors ∆i, each measurement may be treated
as independent and averaged in the usual way with other
data. Therefore, when appropriate, we adopt this procedure.
We tabulate ∆ and invoke an automated procedure that
computes ∆i before averaging and we include a note saying
that there are common systematic errors.

Another common case of correlated errors occurs when
experimenters measure two quantities and then quote the
two and their difference, e.g., m1, m2, and ∆ = m2 − m1.
We cannot enter all of m1, m2 and ∆ into a constrained fit
because they are not independent. In some cases, it is a good
approximation to ignore the quantity with the largest error
and put the other two into the fit. However, in some cases
correlations are such that the errors on m1, m2 and ∆ are
comparable and none of the three values can be ignored. In
this case, we put all three values into the fit and invoke an
automated procedure to increase the errors prior to fitting
such that the three quantities can be treated as independent
measurements in the constrained fit. We include a note
saying that this has been done.

5.2.2. Unconstrained averaging: To average data, we use
a standard weighted least-squares procedure and in some
cases, discussed below, increase the errors with a “scale
factor.” We begin by assuming that measurements of a given
quantity are uncorrelated, and calculate a weighted average
and error as

x ± δx =

∑

iwi xi
∑

i wi
± (

∑

iwi )−1/2 , (1)

where
wi = 1/(δxi)

2 .

Here xi and δxi are the value and error reported by the
ith experiment, and the sums run over the N experiments.
We then calculate χ2 =

∑

wi(x − xi)
2 and compare it

with N − 1, which is the expectation value of χ2 if the
measurements are from a Gaussian distribution.

If χ2/(N − 1) is less than or equal to 1, and there are no
known problems with the data, we accept the results.

If χ2/(N − 1) is very large, we may choose not to use the
average at all. Alternatively, we may quote the calculated
average, but then make an educated guess of the error, a
conservative estimate designed to take into account known
problems with the data.

Finally, if χ2/(N − 1) is greater than 1, but not greatly
so, we still average the data, but then also do the following:

(a) We increase our quoted error, δx in Eq. (1), by a
scale factor S defined as

S =
[

χ2/(N − 1)
]1/2

. (2)
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Our reasoning is as follows. The large value of the χ2 is
likely to be due to underestimation of errors in at least one
of the experiments. Not knowing which of the errors are
underestimated, we assume they are all underestimated by
the same factor S. If we scale up all the input errors by this
factor, the χ2 becomes N − 1, and of course the output error
δx scales up by the same factor. See Ref. 3.

When combining data with widely varying errors, we
modify this procedure slightly. We evaluate S using only the
experiments with smaller errors. Our cutoff or ceiling on δxi

is arbitrarily chosen to be

δ0 = 3N1/2 δx ,

where δx is the unscaled error of the mean of all the
experiments. Our reasoning is that although the low-
precision experiments have little influence on the values x
and δx, they can make significant contributions to the χ2,
and the contribution of the high-precision experiments thus
tends to be obscured. Note that if each experiment has the
same error δxi, then δx is δxi/N

1/2, so each δxi is well
below the cutoff. (More often, however, we simply exclude
measurements with relatively large errors from averages and
fits: new, precise data chase out old, imprecise data.)

Our scaling procedure has the property that if there
are two values with comparable errors separated by much
more than their stated errors (with or without a number of
other values of lower accuracy), the scaled-up error δ x is
approximately half the interval between the two discrepant
values.

We emphasize that our scaling procedure for errors in
no way affects central values. And if you wish to recover the
unscaled error δx, simply divide the quoted error by S.

(b) If the number M of experiments with an error smaller
than δ0 is at least three, and if χ2/(M − 1) is greater than
1.25, we show in the Particle Listings an ideogram of the
data. Figure 1 is an example. Sometimes one or two data
points lie apart from the main body; other times the data
split into two or more groups. We extract no numbers from
these ideograms; they are simply visual aids, which the
reader may use as he or she sees fit.

Each measurement in an ideogram is represented by
a Gaussian with a central value xi, error δxi, and area
proportional to 1/δxi. The choice of 1/δxi for the area is
somewhat arbitrary. With this choice, the center of gravity
of the ideogram corresponds to an average that uses weights
1/δxi rather than the (1/δxi)

2 actually used in the averages.
This may be appropriate when some of the experiments
have seriously underestimated systematic errors. However,
since for this choice of area the height of the Gaussian for
each measurement is proportional to (1/δ xi)

2, the peak
position of the ideogram will often favor the high-precision
measurements at least as much as does the least-squares
average. See our 1986 edition [2] for a detailed discussion of
the use of ideograms.

5.2.3. Constrained fits: In some cases, such as branching
ratios or masses and mass differences, a constrained fit may
be needed to obtain the best values of a set of parameters.
For example, most branching ratios and rate measurements
are analyzed by making a simultaneous least-squares fit to
all the data and extracting the partial decay fractions Pi,
the partial widths Γi, the full width Γ (or mean life), and the
associated error matrix.

Assume, for example, that a state has m partial decay
fractions Pi, where

∑

Pi = 1. These have been measured
in Nr different ratios Rr, where, e.g., R1 = P1/P2, R2

= P1/P3, etc. [We can handle any ratio R of the form
∑

αi Pi/
∑

βi Pi, where αi and βi are constants, usually 1 or

0. The forms R = PiPj and R = (PiPj)
1/2 are also allowed.]

Further assume that each ratio R has been measured by Nk

experiments (we designate each experiment with a subscript
k, e.g., R1k). We then find the best values of the fractions Pi

by minimizing the χ2 as a function of the m− 1 independent
parameters:

χ2 =
Nr
∑

r=1

Nk
∑

k=1

(

Rrk − Rr

δRrk

)2

, (3)

where the Rrk are the measured values and Rr are the fitted
values of the branching ratios.

In addition to the fitted values P i, we calculate an error
matrix 〈δP i δP j〉. We tabulate the diagonal elements of

δ P i = 〈δ P i δ P i〉
1/2 (except that some errors are scaled

as discussed below). In the Particle Listings, we give the
complete correlation matrix; we also calculate the fitted
value of each ratio, for comparison with the input data,
and list it above the relevant input, along with a simple
unconstrained average of the same input.

WEIGHTED AVERAGE
0.006 ± 0.018 (Error scaled by 1.3)

FRANZINI 65 HBC 0.2
BALDO-... 65 HLBC
AUBERT 65 HLBC 0.1
FELDMAN 67B OSPK 0.3
JAMES 68 HBC 0.9
LITTENBERG 69 OSPK 0.3
BENNETT 69 CNTR 1.1
CHO 70 DBC 1.6
WEBBER 71 HBC 7.4
MANN 72 HBC 3.3
GRAHAM 72 OSPK 0.4
BURGUN 72 HBC 0.2
MALLARY 73 OSPK 4.4
HART 73 OSPK 0.3
FACKLER 73 OSPK 0.1
NIEBERGALL 74 ASPK 1.3
SMITH 75B WIRE 0.3

χ2

      22.0
(Confidence Level = 0.107)

−0.4 −0.2 0 0.2 0.4 0.6

Figure 1: A typical ideogram. The arrow at the top
shows the position of the weighted average, while the
width of the shaded pattern shows the error in the
average after scaling by the factor S. The column
on the right gives the χ2 contribution of each of the
experiments. Note that the next-to-last experiment,
denoted by the incomplete error flag (⊥), is not used
in the calculation of S (see the text).
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Three comments on the example above:
(1) There was no connection assumed between mea-

surements of the full width and the branching ratios. But
often we also have information on partial widths Γi as well
as the total width Γ. In this case we must introduce Γ
as a parameter in the fit, along with the Pi, and we give
correlation matrices for the widths in the Particle Listings.

(2) We try to pick those ratios and widths that are as
independent and as close to the original data as possible.
When one experiment measures all the branching fractions
and constrains their sum to be one, we leave one of them
(usually the least well-determined one) out of the fit to make
the set of input data more nearly independent. We now do
allow for correlations between input data.

(3) We calculate scale factors for both the Rr and
Pi when the measurements for any R give a larger-than-
expected contribution to the χ2. According to Eq. (3), the
double sum for χ2 is first summed over experiments k = 1
to Nk, leaving a single sum over ratios χ2 =

∑

χ2
r . One

is tempted to define a scale factor for the ratio r as S2
r =

χ2
r/〈χ

2
r〉. However, since 〈χ2

r〉 is not a fixed quantity (it is
somewhere between Nk and Nk−1), we do not know how to
evaluate this expression. Instead we define

S2
r =

1

Nk

Nk
∑

k=1

(

Rrk − Rr

)2

〈(Rrk − Rr)2〉
. (4)

With this definition the expected value of S2
r is one. We can

show that

〈(Rrk − Rr)
2〉 = 〈(δRrk)

2〉 − (δRr)
2 , (5)

where δRr is the fitted error for ratio r.
The fit is redone using errors for the branching ratios

that are scaled by the larger of Sr and unity, from which new

and often larger errors δP
′

i are obtained. The scale factors

we finally list in such cases are defined by Si = δP
′

i/δP i.
However, in line with our policy of not letting S affect the
central values, we give the values of P i obtained from the
original (unscaled) fit.

There is one special case in which the errors that are
obtained by the preceding procedure may be changed. When
a fitted branching ratio (or rate) P i turns out to be less than

three standard deviations (δP
′

i ) from zero, a new smaller

error (δP
′′

i )− is calculated on the low side by requiring

the area under the Gaussian between P i − (δ P
′′

i )− and P i

to be 68.3% of the area between zero and P i. A similar
correction is made for branching fractions that are within
three standard deviations of one. This keeps the quoted
errors from overlapping the boundary of the physical region.

5.3. Rounding : While the results shown in the Particle
Listings are usually exactly those published by the exper-
iments, the numbers that appear in the Summary Tables
(means, averages and limits) are subject to a set of rounding
rules.

The basic rule states that if the three highest order
digits of the error lie between 100 and 354, we round to
two significant digits. If they lie between 355 and 949, we
round to one significant digit. Finally, if they lie between
950 and 999, we round up to 1000 and keep two significant
digits. In all cases, the central value is given with a precision

that matches that of the error. So, for example, the result
(coming from an average) 0.827 ± 0.119 would appear as
0.83 ± 0.12, while 0.827 ± 0.367 would turn into 0.8 ± 0.4.

Rounding is not performed if a result in a Summary Table
comes from a single measurement, without any averaging.
In that case, the number of digits published in the original
paper is kept, unless we feel it inappropriate. Note that,
even for a single measurement, when we combine statistical
and systematic errors in quadrature, rounding rules apply
to the result of the combination. It should be noted also
that most of the limits in the Summary Tables come from a
single source (the best limit) and, therefore, are not subject
to rounding.

Finally, we should point out that in several instances,
when a group of results come from a single fit to a set of
data, we have chosen to keep two significant digits for all the
results. This happens, for instance, for several properties of
the W and Z bosons and the τ lepton.

5.4. Discussion : The problem of averaging data
containing discrepant values is nicely discussed by Taylor in
Ref. 4. He considers a number of algorithms that attempt
to incorporate inconsistent data into a meaningful average.
However, it is difficult to develop a procedure that handles
simultaneously in a reasonable way two basic types of
situations: (a) data that lie apart from the main body of the
data are incorrect (contain unreported errors); and (b) the
opposite—it is the main body of data that is incorrect.
Unfortunately, as Taylor shows, case (b) is not infrequent.
He concludes that the choice of procedure is less significant
than the initial choice of data to include or exclude.

We place much emphasis on this choice of data. Often we
solicit the help of outside experts (consultants). Sometimes,
however, it is simply impossible to determine which of
a set of discrepant measurements are correct. Our scale-
factor technique is an attempt to address this ignorance by
increasing the error. In effect, we are saying that present
experiments do not allow a precise determination of this
quantity because of unresolvable discrepancies, and one
must await further measurements. The reader is warned of
this situation by the size of the scale factor, and if he or
she desires can go back to the literature (via the Particle
Listings) and redo the average with a different choice of data.

Our situation is less severe than most of the cases Taylor
considers, such as estimates of the fundamental constants
like ~, etc. Most of the errors in his case are dominated by
systematic effects. For our data, statistical errors are often
at least as large as systematic errors, and statistical errors
are usually easier to estimate. A notable exception occurs in
partial-wave analyses, where different techniques applied to
the same data yield different results. In this case, as stated
earlier, we often do not make an average but just quote a
range of values.

A brief history of early Particle Data Group averages
is given in Ref. 3. Figure 2 shows some histories of our
values of a few particle properties. Sometimes large changes
occur. These usually reflect the introduction of significant
new data or the discarding of older data. Older data are
discarded in favor of newer data when it is felt that the newer
data have smaller systematic errors, or have more checks
on systematic errors, or have made corrections unknown
at the time of the older experiments, or simply have much
smaller errors. Sometimes, the scale factor becomes large
near the time at which a large jump takes place, reflecting
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the uncertainty introduced by the new and inconsistent data.
By and large, however, a full scan of our history plots shows
a dull progression toward greater precision at central values
quite consistent with the first data points shown.

We conclude that the reliability of the combination of
experimental data and our averaging procedures is usually
good, but it is important to be aware that fluctuations
outside of the quoted errors can and do occur.
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Figure 2: A historical perspective of values of a few particle properties tabulated in this Review as a function of date of

publication of the Review. A full error bar indicates the quoted error; a thick-lined portion indicates the same but without

the “scale factor.”
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1. Introduction

The collection of online information resources in particle physics and
related areas presented in this chapter is of necessity incomplete. An
expanded and regularly updated online version can be found at:

http://library.web.cern.ch/particle physics

information

Suggestions for additions and updates are very welcome.†

2. Particle Data Group (PDG) resources

• Review of Particle Physics (RPP) A comprehensive report
on the fields of particle physics and related areas of cosmology
and astrophysics, including both review articles and a compila-
tion/evaluation of data on particle properties. The review section
includes articles, tables and plots on a wide variety of theoretical
and experimental topics of interest to particle physicists and
astrophysicists. The particle properties section provides tables of
published measurements as well as the Particle Data Groups best
values and limits for particle properties such as masses, widths,
lifetimes, and branching fractions, and an extensive summary of
searches for hypothetical particles. RPP is published as a 1500-page
book every two years, with partial updates made available once each
year on the web.

All the contents of the book version of RPP are available online:

http://pdg.lbl.gov

The printed book can be ordered:

http://pdg.lbl.gov/2015/html/receive our products.html

Of historical interest is the complete RPP collection which can be
found online:

http://library.web.cern.ch/PDG publications/

review particle physics

• Particle Physics booklet: An abridged version of the Review
of Particle Physics available as a pocket-sized 300-page booklet.
Although produced in print and available online only as a PDF
file, the booklet is included in this guide because it is one of the
most useful summaries of physics data. The booklet contains an

† Please send comments and corrections to
Annette.Holtkamp@cern.ch.

abbreviated set of reviews and the summary tables from the most
recent edition of the Review of Particle Physics.

The PDF file of the booklet can be downloaded:

http://pdg.lbl.gov/current/booklet.pdf

The printed booklet can be ordered:

http://pdg.lbl.gov/2015/html/receive our products.html

• PDGLive: A web application for browsing the contents of the PDG
database that contains the information published in the Review of
Particle Physics. It allows one to navigate to a particle of interest,
see a summary of the information available, and then proceed to the
detailed information published in the Review of Particle Physics.
Data entries are directly linked to the corresponding bibliographic
information in INSPIRE.

http://pdglive.lbl.gov

• Computer-readable files: Data files that can be downloaded
from PDG include tables of particle masses and widths, PDG
Monte Carlo particle numbers, and cross-section data. The files are
updated with each new edition of the Review of Particle Physics.

http://pdg.lbl.gov/current/html/computer read.html

3. Particle Physics Information Platforms

• INSPIRE: The time-honored SPIRES database suite has in
November 2011 been replaced by INSPIRE, which combines the
most successful aspects of SPIRES - like comprehensive content and
high-quality metadata - with the modern technology of Invenio,
the CERN open-source digital-library software, offering major
improvements like increased speed and Google-like free-text search
syntax. INSPIRE serves as one-stop information platform for the
particle physics community, comprising 8 interlinked databases
on literature, conferences, institutions, journals, researchers,
experiments, jobs and data. INSPIRE is jointly developed and
maintained by CERN, DESY, Fermilab, IHEP and SLAC. Close
interaction with the user community and with arXiv, ADS,
HepData, PDG and publishers is the backbone of INSPIRE’s
evolution.

http://inspirehep.net/

INSPIRE is integrated with ORCID (Open Researcher and
Contributor ID), a persistent identifier that enables researchers to
connect services and get credit for their works.

http://orcid.org/

INSPIRE is currently developing a new version of the portal,
maintaining its quality standards and introducing new functionality.
The INSPIRE Labs site is available at:

http://labs.inspirehep.net

blog: http://blog.inspirehep.net/

twitter: @inspirehep

4. Literature Databases

• ADS: The SAO/NASA Astrophysics Data System is a Digital
Library portal offering access to 11 million bibliographic records
in Astronomy and Physics. The ADS’s search engine also indexes
the full-text for approximately four million publications in this
collection and tracks citations, which now amount to over 80 million
links. The system also provides access and links to a wealth of
external resources, including electronic articles hosted by publishers
and arXiv, data catalogs and a variety of data products hosted by
the astronomy archives worldwide. The ADS can be accessed at

http://ads.harvard.edu/

• arXiv.org: A repository of full text papers in physics, mathematics,
computer science, statistics, nonlinear sciences, quantitative finance
and quantitative biology interlinked with ADS and INSPIRE.
Papers are usually submitted by their authors to arXiv in advance
of submission to a journal for publication. Primarily covers 1991
to the present but authors are encouraged to post older papers
retroactively. Permits searching by author, title, and words in
abstract and experimentally also in the fulltext. Allows limiting
by subfield archive or by date. Daily update alerts by subfield are
available by email and RSS.
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http://arXiv.org

• CDS: The CERN Document Server contains records of more
than 1,000,000 CERN and non-CERN articles, preprints, theses.
It includes records for internal and technical notes, official CERN
committee documents, and multimedia objects. CDS is going to
focus on its role as institutional repository covering all CERN
material from the early 50s and reflecting the holdings of the CERN
library. Non-CERN particle and accelerator physics content is in
the process of being exported to INSPIRE.

http://cds.cern.ch

• INSPIRE HEP: The HEP collection, the flagship of the INSPIRE
suite, serves more than 1.1 million bibliographic records with a
growing number of fulltexts attached and metadata including author
affiliations, abstracts, references, experiments, keywords as well as
links to arXiv, ADS, PDG, HepData and publisher platforms. It
provides fast metadata and fulltext searches, plots extracted from
fulltext, author disambiguation, author profile pages and citation
analysis and is expanding its content to, e.g., experimental notes.

http://inspirehep.net

• JACoW: The Joint Accelerator Conference Website publishes the
proceedings of APAC, EPAC, PAC, IPAC, ABDW, BIW, COOL,
CYCLOTRONS, DIPAC, ECRIS, FEL, HIAT, ICALEPCS, IBIC,
ICAP, LINAC, North American PAC, PCaPAC, RuPAC, SRF. A
custom interface allows searching on keywords, titles, authors, and
in the fulltext.

http://www.jacow.org/

• KISS (KEK Information Service System) for preprints:
The KEK Library preprint and technical report database contains
bibliographic records of preprints and technical reports held in
the KEK library with links to the full text images of more than
100,000 papers scanned from their worldwide collection of preprints.
Particularly useful for older scanned preprints. KISS links are
included in INSPIRE HEP.

http://www-lib.kek.jp/KISS/kiss prepri.html

• MathSciNet: This database of almost 3 million items provides
reviews, abstracts and bibliographic information for much of the
mathematical sciences literature. Over 100,000 new items are added
each year, most of them classified according to the Mathematics
Subject Classification. Authors are uniquely identified, enabling a
search for publications by individual author. Over 80,000 reviews on
the current published literature are added each year. Citation data
allows to track the history and influence of research publications.

http://www.ams.org/mathscinet

• OSTI SciTech Connect: A portal to free, publicly available DOE-
sponsored R&D results including technical reports, bibliographic
citations, journal articles, conference papers, books, multimedia
and data information. SciTech Connect is a consolidation of two
core DOE search engines, the Information Bridge and the Energy
Citations Database. SciTech Connect incorporates all of the R&D
information from these two products into one search interface. It
includes over 2.7 million citations, including citations to 1.5 million
journal articles. SciTech Connect also has over 400,000 full-text
DOE sponsored STI reports; most of these are post-1991, but over
140,000 of the reports were published prior to 1990.

http://www.osti.gov/scitech/

5. Particle Physics Journals and Conference
Proceedings Series

• CERN Journals List: This list of journals and conference series
publishing particle physics content provides information on Open
Access, copyright policies and terms of use.

http://library.web.cern.ch/oa/where publish

• INSPIRE Journals: The database covers more than 3,400
journals publishing HEP-related articles.

http://inspirehep.net/collection/journals

6. Conference Databases

• INSPIRE Conferences: The database of more than 20,600 past,
present and future conferences, schools, and meetings of interest
to high-energy physics and related fields is searchable by title,
acronym, series, date, location. Included are information about
published proceedings, links to conference contributions in the
INSPIRE HEP database, and links to the conference Web site when
available. New conferences can be submitted from the entry page.

http://inspirehep.net/conferences

7. Research Institutions

• INSPIRE Institutions: The database of more than 10,800
institutes, laboratories, and university departments in which
research on particle physics and astrophysics is performed covers
six continents and over a hundred countries. Included are address
and Web links where available as well as links to the papers
from each institution in the HEP database, to scientists listed
in HEPNames affiliated to this institution in the past or present
and to experiments performed at this institution. Searches can
be performed by name, acronym, location, etc. The site offers an
alphabetical list by country as well as a list of the top 500 HEP and
astrophysics institutions sorted by country.

http://inspirehep.net/institutions

8. People

• INSPIRE HEPNames: Searchable worldwide database of over
112,000 people associated with particle physics and related fields.
The affiliation history of these researchers, their e-mail addresses,
web pages, experiments they participated in, PhD advisor,
information on their graduate students and links to their papers in
the INSPIRE HEP, arXiv and ADS databases are provided as well
as a user interface to update these informations.

http://inspirehep.net/hepnames

9. Experiments

• INSPIRE Experiments: Contains more than 2,700 past, present,
and future experiments in particle physics. Lists both accelerator
and non-accelerator experiments. Includes official experiment name
and number, location, and collaboration lists. Simple searches by
participant, title, experiment number, institution, date approved,
accelerator, or detector, return a description of the experiment,
including a complete list of authors, title, overview of the
experiment’s goals and methods, and a link to the experiment’s web
page if available. Publication lists distinguish articles in refereed
journals, theses, technical or instrumentation papers and those
which rank among Topcite at 50 or more citations.

http://inspirehep.net/Experiments

• Cosmic ray/Gamma ray/Neutrino and similar experiments:
This extensive collection of experimental web sites is organized by
focus of study and also by location. Additional sections link to
educational materials, organizations, related Web sites, etc. The
site is maintained at the Max Planck Institute for Nuclear Physics,
Heidelberg.

http://www.mpi-hd.mpg.de/hfm/CosmicRay/

CosmicRaySites.html

10. Jobs

• AAS Job Register: The American Astronomical Society publishes
once a month graduate, postgraduate, faculty and other positions
mainly in astronomy and astrophysics.

http://jobregister.aas.org/

• APS Careers: A gateway for physicists, students, and physics
enthusiasts to information about physics jobs and careers. Physics
job listings, career advice, upcoming workshops and meetings, and
career and job related resources provided by the American Physical
Society.

http://www.aps.org/careers/employment
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• brightrecruits.com: A recruitment service run by IOP Publishing
that connects employers from different industry sectors with
jobseekers who have a background in physics and engineering.

http://brightrecruits.com/

• IOP Careers: Careers information and resources primarily aimed
at university students are provided by the UK Institute of Physics.

http://www.iop.org/careers/

• INSPIRE HEPJobs: Lists academic and research jobs in high
energy physics, nuclear physics, accelerator physics and astrophysics
with the option to post a job or to receive email notices of new job
listings. About 500 jobs are currently listed.

http://inspirehep.net/jobs

• Physics Today Jobs: Online recruitment advertising website for
Physics Today magazine, published by the American Institute of
Physics. Physics Today Jobs is the managing partner of the AIP
Career Network, an online job board network for the physical
science, engineering, and computing disciplines. 8,000 resumes are
currently available, and more than 2,500 jobs were posted in 2012.

http://www.physicstoday.org/jobs

11. Software Repositories

Particle Physics

• FastJet: FastJet is a software package for jet finding in pp and
e+e- collisions. It includes fast native implementations of many
sequential recombination clustering algorithms, plugins for access to
a range of cone jet finders and tools for advanced jet manipulation.

http://fastjet.fr/

• FermiTools: Fermilab’s software tools program provides a
repository of Fermilab - developed software packages of value
to the HEP community. Permits searching for packages by title or
subject category.

http://www.fnal.gov/fermitools/

• FreeHEP: A collection of software and information about software
useful in high-energy physics and adjacent disciplines, focusing on
open-source software for data analysis and visualization. Searching
can be done by title, subject, date acquired, date updated, or by
browsing an alphabetical list of all packages.

http://www.freehep.org/

• Geant4: Geant4 is a toolkit for the simulation of the passage
of particles through matter. Its areas of application include high
energy, nuclear and accelerator physics, as well as studies in medical
and space science.

http://geant4.web.cern.ch/geant4/

• GenSer: The Generator Services project collaborates with Monte
Carlo (MC) generators authors and with LHC experiments in
order to prepare validated LCG compliant code for both the
theoretical and experimental communities at the LHC, sharing the
user support duties, providing assistance for the development of the
new object-oriented generators and guaranteeing the maintenance
of the older packages on the LCG supported platforms. The project
consists of the generators repository, validation, HepMC record and
MCDB event databases.

http://ph-dep-sft.web.cern.ch/project/

generator-service-project-genser

• Hepforge: A development environment for high-energy physics
software development projects, in particular housing many event-
generator related projects, that offers a ready-made, easy-to-use
set of Web based tools, including shell account with up to date
development tools, web page hosting, subversion and CVS code
management systems, mailing lists, bug tracker and wiki system.

http://www.hepforge.org/

• QUDA: Library for performing calculations in lattice QCD
on GPUs using NVIDIA’s ”C for CUDA” API. The current

release includes optimized solvers for Wilson, Clover-improved
Wilson,Twisted mass, Improved staggered (asqtad or HISQ),
Domain wall and Mobius fermion actions.

http://lattice.github.com/quda/

• ROOT: This framework for data processing in high-energy physics,
born at CERN, offers applications to store, access, process, analyze
and represent data or perform simulations.

http://root.cern.ch

• tmLQCD: This freely available software suite provides a set
of tools to be used in lattice QCD simulations, mainly a HMC
implementation for Wilson and Wilson twisted mass fermions and
inverter for different versions of the Dirac operator.

https://github.com/etmc/tmLQCD

• USQCD: The software suite enables lattice QCD computations
to be performed with high performance across a variety of
architectures. The page contains links to the project web pages of
the individual software modules, as well as to complete lattice QCD
application packages which use them.

http://usqcd-software.github.io

Astrophysics

• ASCL: The Astrophysics Source Code Library (ASCL) is a free
online registry for source codes of interest to astronomers and
astrophysicists and lists codes that have been used in research that
has appeared in, or been submitted to, peer-reviewed publications.

http://ascl.net

• Astropy: The Astropy Project is a community effort to develop
a single core package for Astronomy in Python and foster
interoperability between Python astronomy packages

http://www.astropy.org

• IRAF: The Image Reduction and Analysis Facility is a general
purpose software system for the reduction and analysis of
astronomical data. IRAF is written and supported by the National
Optical Astronomy Observatories (NOAO) in Tucson, Arizona.

http://iraf.noao.edu/

• Starlink: Starlink was a UK Project supporting astronomical
data processing. It was shut down in 2005 but its open-source
software continued to be developed at the Joint Astronomy Centre
until March 2015. It is currently maintained by the East Asian
Observatory. The open-source software products are a collection of
applications and libraries, usually focused on a specific aspect of
data reduction or analysis.

http://starlink.eao.hawaii.edu/starlink

• Links to a large number of astronomy software archives are listed
at:

http://heasarc.nasa.gov/docs/heasarc/astro-update/

Apps

• arXiv mobile: Android app for browsing and searching arXiv.org,
and for reading, saving and sharing articles.

play.google.com/store/apps/

details?id=com.commonsware.android.arXiv

• arXiv scanner: Scans downloads folder for pdf files from arXiv.
Adds title, authors and summary and makes all this information
easily searchable from inside the application.

https://play.google.com/store/apps/

details?id=com.agio.arxiv.scaner

• aNarXiv: arXiv viewer.

http://github.com/nephoapp/anarxiv

• Collider: This mobile app allows to see data from the ATLAS
experiment at the LHC.

http://collider.physics.ox.ac.uk/
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• LHSee: This smartphone app allows to see collisions from the
Large Hadron Collider.

http://www2.physics.ox.ac.uk/about-us/outreach/

public/lhsee

• The Particles: App for Apple iPad, Windows 8 and Microsoft
Surface. Allows to browse a wealth of real event images and videos,
read popular biographies of each of the particles and explore the A-Z
of particle physics with its details and definitions of key concepts,
laboratories and physicists. Developed by Science Photo Library in
partnership with Prof. Frank Close.

http://www.sciencephoto.com/apps/particles.html

12. Data repositories

Particle Physics

• HepData: The HepData Project, funded by the STFC (UK) and
based at Durham University, has been built up over the past four
decades as a unique repository for scattering data from experimental
particle physics. It currently comprises the data points from plots
and tables related to several thousand publications including those
from the LHC.

http://hepdata.cedar.ac.uk/

The data from HEPData can also be accessed through INSPIRE. A
new enhanced service, rebranded as HEPData, is under development
and will be available at:

http://hepdata.net

• CERN Open Data: The CERN Open Data portal provides data
from real collision events, produced by the experiments at the
LHC; virtual machines to reproduce the analysis environment; and
software to process them. It serves almost 30 TB of data and
encourages use both for educational and research purposes.

http://opendata.cern.ch

• ILDG: The International Lattice Data Grid is an international
organization which provides standards, services, methods and tools
that facilitate the sharing and interchange of lattice QCD gauge
configurations among scientific collaborations, by uniting their
regional data grids. It offers semantic access with local tools to
worldwide distributed data.

http://www.usqcd.org/ildg/

• MCDB - Monte Carlo Database: This central database of
MC events aims to facilitate communication between Monte-Carlo
experts and users of event samples in LHC collaborations. Having
these events stored in a public place along with the corresponding
documentation allows for direct cross checks of the performances on
reference samples.

http://mcdb.cern.ch/

• MCPLOTS: mcplots is a repository of Monte Carlo plots
comparing High Energy Physics event generators to a wide variety
of available experimental data. The site is supported by the LHC
Physics Centre at CERN.

http://mcplots.cern.ch/

Astrophysics

• CfA Dataverse: This astronomy data repository at Harvard is
open to all scientific data from astronomical institutions worldwide.

https://dataverse.harvard.edu/dataverse/cfa

• NASA’s HEASARC: The High Energy Astrophysics Science
Archive Research Center (HEASARC) is the primary archive
for NASA’s (and other space agencies’) missions dealing with
electromagnetic radiation from extremely energetic phenomena
ranging from black holes to the Big Bang.

http://heasarc.gsfc.nasa.gov/

• LAMBDA @ HEASARC: This data center for Cosmic Microwave
Background research, a merger of the High Energy Astrophysics
Science Archive Research Center (HEASARC) and the Legacy
Archive for Microwave Background Data Analysis (LAMBDA),

provides archive data from NASA missions, software tools, and links
to other sites of interest.

http://lambda.gsfc.nasa.gov/

• The NASA archives provide access to raw and processed datasets
from numerous NASA missions.

Mikulski Archive for Space Telescopes (MAST): Hubble telescope,
other missions (UV, optical):

http://archive.stsci.edu/

NASA/IPAC Infrared Science Archive: Spitzer, Herschel, Planck
telescope, other missions:

http://irsa.ipac.caltech.edu/

• NASA/IPAC Extragalactic Database (NED): An astronom-
ical database that collates and cross-correlates information on
extragalactic objects. It contains their positions, basic data, and
names as well as bibliographic references to published papers, and
notes from catalogs and other publications. NED supports searches
for objects and references, and offers browsing capabilities for
abstracts of articles of extragalactic interest.

http://ned.ipac.caltech.edu/

• SIMBAD: The SIMBAD astronomical database provides basic
data, cross-identifications, bibliography and measurements for
astronomical objects outside the solar system. It can be queried by
object name, coordinates and various criteria. Lists of objects and
scripts can be submitted.

http://simbad.u-strasbg.fr/simbad/

• Virtual Observatory: The Virtual Observatory (VO) provides a
suite of resources to query for original data from a large number
of archives. Two main tools are provided. One runs queries across
multiple databases (such as the SDSS database) and combines the
results. The other queries hundreds of archives for all datasets that
fall on a particular piece of sky.

http://www.us-vo.org/

General Physics

• NIST Physical Measurement Laboratory: The National
Institute of Standards and Technology provides access to physical
reference data (physical constants, atomic spectroscopy data, x-ray
and gamma-ray data, radiation dosimetry data, nuclear physics data
and more) and measurements and calibrations data (dimensional
and electromagnetic measurements). The site points to a general
interest page, linking to exhibits of the Physical Measurement
Laboratory in the NIST Virtual Museum.

http://physics.nist.gov/

• Springer Materials - The Landolt-Börnstein Database:
Landolt-Börnstein is a data collection in all areas of physical sciences
and engineering, among others particle physics, electronic structure
and transport, magnetism, superconductivity. International experts
scan the primary literature in more than 8,000 peer-reviewed
journals and evaluate and select the most valid information to be
included in the database. It includes more than 100,000 online
documents, 1,2 million references, and covers 250,000 chemical
substances. The search functionality is freely accessible and the
search results are displayed in their context, whereas the full text is
secured to subscribers.

http://materials.springer.com/

13. Data preservation activities

Particle Physics

• DASPOS: A collective effort to explore the realisation of a viable
data, software and computation preservation architecture in High
Energy Physics

https://daspos.crc.nd.edu

• DPHEP: The efforts to define and coordinate Data Preservation
and Long Term Analysis in HEP are coordinated by a study group
formed to investigate the issues associated with these activities.
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The group, DPHEP, was initiated during 2008-2009 and includes all
HEP major experiments and labs.

Details of the organizational structure, the objectives, workshops
and publications can be found on the website.

The group is endorsed by the International Committee for Future
Accelerators (ICFA).

In July 2014 the DPHEP collaboration was formed as a result
of the signature of the Collaboration Agreement by seven large
funding agencies (others have since joined or are in the process
of acquisition) and in June 2015 the first DPHEP Collaboration
Workshop and Collaboration Board meeting took place.

http://dphep.org

Astrophysics

More formal and advanced data preservation activity is ongoing in the
field of Experimental Astrophysics, including:

• SDSS (Sloan Digital Sky Survey)

http://sdss.org

• Fermi Data

http://fermi.gsfc.nasa.gov/ssc/data

• IVOA (International Virtual Observatory Alliance)

http://www.ivoa.net/

14. Particle Physics Education and Outreach Sites

Science Educators’ Networks:

• IPPOG: The International Particle Physics Outreach Group is a
network of particle physicists, researchers, informal science educators
and science explainers aiming to raise awareness, understanding and
standards of global outreach efforts in particle physics and general
science by providing discussion forums and regular information
exchange for science institutions, proposing and implementing
strategies to share lessons learned and best practices and promoting
current outreach efforts of network members.

http://ippog.web.cern.ch

• Interactions.org: Designed to serve as a central resource for
communicators of particle physics. The daily updated site provides
links to current particle physics news from the world’s press,
high-resolution photos and graphics from the particle physics
laboratories of the world; links to education and outreach programs;
information about science policy and funding; a glossary; and links
to many educational sites.

http://www.interactions.org

• I2U2 (Interactions in Understanding the Universe): The
I2U2 e-Labs use the Internet and distributed computing in high-
school classes and provide an opportunity for students to organise
and conduct authentic research; experience the environment of
scientific collaborations; make real scientific contributions. It is
supported by QuarkNet, NSF and DOE.

http://www.i2u2.org

Master Classes

• CMS physics masterclass: Lectures from active scientists give
insight into methods of basic research, enabling the students to
perform measurements on real data from the CMS experiment
at the LHC. Like in an international research collaboration,
the participants then discuss their results and compare with
expectations.

http://cms.web.cern.ch/content/cms-physics-

masterclass

• International Masterclasses: Each year about 10000 high school
students in 42 countries come to one of about 200 nearby universities
or research centres for one day in order to unravel the mysteries of
particle physics. Lectures from active scientists give insight in topics
and methods of basic research at the fundaments of matter and

forces, enabling the students to perform measurements on real data
from particle physics experiments themselves. At the end of each
day, like in an international research collaboration, the participants
join in a video conference for discussion and combination of their
results.

http://physicsmasterclasses.org/

• MINERVA: MINERVA (Masterclass INvolving Event recognition
visualised with Atlantis) is a masterclass tool for students to learn
more about the ATLAS experiment at CERN, based on a simplified
setup of the ATLAS event display, Atlantis.

http://atlas-minerva.web.cern.ch/atlas-minerva/

General Sites

• Contemporary Physics Education Project (CPEP): Provides
charts, brochures, Web links, and classroom activities. Online
interactive courses include: Fundamental Particles and Interactions;
Plasma Physics and Fusion; History and Fate of the Universe; and
Nuclear Science.

http://www.cpepweb.org/

Particle Physics Lessons & Activities

• Angels and Demons: With the aim of looking at the myth versus
the reality of antimatter and science at CERN this site offers teacher
resources, slide shows and videos of talks given to teachers visiting
CERN.

http://angelsanddemons.web.cern.ch/

• ATLAS @ Home A research project that uses volunteer computing
to run simulations of the ATLAS experiment at CERN.

http://atlasathome.cern.ch

• Big Bang Science: Exploring the origins of matter: This Web
site, produced by the Particle Physics and Astronomy Research
Council of the UK (PPARC), explains what physicists are looking
for with their giant instruments. It focuses on CERN particle
detectors and on United Kingdom scientists’ contribution to the
search for the fundamental building blocks of matter.

http://hepwww.rl.ac.uk/pub/bigbang/part1.html

• Cambridge Relativity and Cosmology:

http://www.damtp.cam.ac.uk/research/gr/public/

index.html

• CAMELIA: CAMELIA (Cross-platform Atlas Multimedia Edu-
cational Lab for Interactive Analysis) is a discovery tool for the
general public, based on computer gaming technology.

http://www.atlas.ch/camelia.html

• CERNland: With a range of games, multimedia applications and
films CERNland is a virtual theme park developed to bring the
excitement of CERN’s research to a young audience aged between 7
and 12. CERNland is designed to show children what is being done
at CERN and inspire them with some physics at the same time.

http://www.cernland.net/

• CollidingParticles: A series of films following a team of physicists
involved in research at the LHC.

http://www.collidingparticles.com/

• Hands-On Universe: This educational program enables students
to investigate the Universe while applying tools and cocncepts from
science, math and technology.

http://handsonuniverse.org/

• Higgs Hunters: A web-based citizen science project to help search
for unknown exotic particles in the LHC data.

http://HiggsHunters.org

• HYPATIA: HYPATIA (Hybrid Pupil’s Analysis Tool for Inter-
actions in Atlas) is a tool for high school students to inspect the
graphic visualizaton of products of particle collisions in the ATLAS
detector at CERN.

http://hypatia.phys.uoa.gr/
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• Imagine the Universe: This NASA site is intended for students
age 14 and up and for anyone interested in learning about the
universe.

http://imagine.gsfc.nasa.gov/home.html

• In particular: Podcast about physics and the process of discovering
physics at the ATLAS experiment.

https://itunes.apple.com/us/podcast/in-particular/

id1001131655?mt=2

• Lancaster Particle Physics: This site, suitable for 16+ students,
offers a number of simulations and explanations of particle physics,
including a section on the LHC.

http://www.lppp.lancs.ac.uk/

• LHC @ home: Volunteer computing platform to help physicists
compare theory with experiment, in the search for new fundamental
particles and answers to questions about the Universe.

http://lhcathome.web.cern.ch

The Test4Theory allows allows volunteers to run simulations of
high-energy particle physics on their home computers. The results
are submitted to a database which is used as a common resource by
both experimental and theoretical scientists working on the Large
Hadron Collider at CERN.

http://lhcathome.web.cern.ch/projects/test4theory

The SIXTRACK project allows users with Internet-connected
computers to participate in advancing Accelerator Physics.

http://lhcathome.web.cern.ch/projects/sixtrack

• Particle Adventure: One of the most popular Web sites for
learning the fundamentals of matter and force. An award-winning
interactive tour of quarks, neutrinos, antimatter, extra dimensions,
dark matter, accelerators and particle detectors from the Particle
Data Group of Lawrence Berkeley National Laboratory. Simple
elegant graphics and translations into 16 languages.

http://particleadventure.org/

• Quarked! - Adventures in the Subatomic Universe: This
project, targeted to kids aged 7-12 (and their families), brings
subatomic physics to life through a multimedia project including an
interactive website, a facilitated program for museums and schools,
and an educational outreach program.

http://www.quarked.org/

• QuarkNet: Brings the excitement of particle physics research to
high school teachers and their students. Teachers join research
groups at about 50 universities and labs across the country. These
research groups are part of particle physics experiments at CERN
or Fermilab. About 100,000 students from 500+ US high schools
learn fundamental physics as they participate in inquiry-oriented
investigations and analyze real data online. QuarkNet is supported
in part by the National Science Foundation and the U.S. Department
of Energy.

https://quarknet.i2u2.org/

• Rewarding Learning videos about CERN: The three videos
based on interviews with scientists and engineers at CERN introduce
pupils to CERN and the type of research and work undertaken
there and are accompanied by teachers’ notes.

http://www.nicurriculum.org.uk/STEMWorks/resources/

cern/index.asp

Lab Education Offices

• Argonne National Laboratory (ANL) Educational Pro-
grams:

http://www.anl.gov/education/

• Brookhaven National Laboratory (BNL) Educational
Programs: The Office of Educational Programs mission is to
design, develop, implement, and facilitate workforce development
and education initiatives that support the scientific mission at
Brookhaven National Laboratory and the Department of Energy.

http://www.bnl.gov/education/

• CERN: The CERN education website offers informations about
teacher programmes and educational resources for schools.

http://education.web.cern.ch/education/

• DESY: Offers courses for pupils and teachers as well as information
for the general public, mostly in German.

http://www.desy.de/information services/education/

• FermiLab Education Office: Provides education resources and
information about activities for educators, physicists, students and
visitors to the Lab. In addition to information on 25 programs,
the site provides online data-based investigations for high school
students, online versions of exhibits in the Lederman Science Center,
links to particle physics discovery resources, web-based instructional
resources, what works for education and outreach, and links to the
Lederman Science Center and the Teacher Resource Center.

http://ed.fnal.gov/

• Science Education at Jefferson Lab:

http://education.jlab.org/

• LBL Workforce Development and Education: This group
carries out Berkeley Labs mission to inspire and prepare the next
generation of scientists, engineers, and technicians.

http://csee.lbl.gov/

Educational Programs of Experiments

• ATLAS Discovery Quest: One of several access points to
ATLAS education and outreach pages. This page gives access to
explanations of physical concepts, blogs, ATLAS facts, news, and
information for students and teachers.

http://www.atlas.ch/physics.html

• ATLAS eTours: Give a description of the Large Hadron Collider,
explain how the ATLAS detector at the LHC works and give an
overview over the experiments and their physics goals.

http://www.atlas.ch/etours.html

• Education and Outreach @ IceCube:

http://icecube.wisc.edu/outreach

• LIGO Science Education Center: The LIGO (Laser Interfer-
ometer Gravitational-wave Observatory) Science Education Center
has over 40 interactive, hands-on exhibits that relate to the science
of LIGO. The site hosts field trips for students, teacher training
programs, and tours for the general public. Visitors can explore
science concepts such as light, gravity, waves, and interference; learn
about LIGO’s search for gravitational waves; and interact with
scientists and engineers.

https://ligo.caltech.edu/page/educational-resources

• Pierre Auger Observatory’s Educational Pages: The site
offers information about cosmic rays and their detection, and
provides material for students and teachers.

https://www.auger.org/index.php/edu-outreach

News

• Asimmetrie: Bimonthly magazine about particle physics published
by INFN, the Istituto Nazionale di Fisica Nucleare

http://www.asimmetrie.it/

• CERN Courier:

http://cerncourier.com/cws/latest/cern

• DESY inForm:

http://www.desy.de/aktuelles/desy inform

• Fermilab Today:

http://www.fnal.gov/pub/today/

• LC Newsline: The newsletter of the Linear Collider community

http://newsline.linearcollider.org/

twitter: @ILCnewsline
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• IOP News:

http://www.iop.org/news/

• JINR News:

http://www1.jinr.ru/News/Jinrnews index.html

• News at Interactions.org: The InterActions site provides news
and press releases on particle physics.

http://www.interactions.org/cms/?pid=1000680

twitter: @particlenews

• Symmetry: This magazine about particle physics and its connec-
tions to other aspects of life and science, from interdisciplinary
collaborations to policy to culture is published 6 times per year by
Fermilab and SLAC.

http://www.symmetrymagazine.org/

twitter: @symmetrymag

Art in Physics

• Arts@CERN: The Collide@CERN residency programme brings
together world-class artists and scientists in a free exchange of ideas.

http://arts.web.cern.ch/collide/ Accelerate@CERN is a
country specific one-month research award for artists who have
never spent tine in a science lab before.

http://arts.web.cern.ch/acceleratecern

• Art of Physics Competition: The Canadian Association of
Physicists organizes this competition, the first was launched in 1992,
with the aim of stimulating interest, especially among non-scientists,
in some of the captivating imagery associated with physics. The
challenge is to capture photographically a beautiful or unusual
physics phenomenon and explain it in less than 200 words in terms
that everyone can understand.

http://www.cap.ca/aop/art.html

Blogs and Twitter

Lists of active blogs and tweets can be found on INSPIRE:

• Scientist blogs:

http://tinyurl.com/nmku27s

• Scientists with twitter accounts:

http://tinyurl.com/nrg5k63

• Experiments with twitter accounts:

http://tinyurl.com/q86kma8

• Institutions with twitter accounts:

http://tinyurl.com/mzcm3nw

List of physicists on Twitter at TrueSciPhi:

http://truesciphi.org/phy.html

Some selected particle physics related blogs:

• ATLAS blog:

http://www.atlas.ch/blog

• Physics arXiv blog: MIT Technology Review blog on new ideas
at arXiv.org.

http://www.technologyreview.com/blog/arxiv/

• Life and Physics: Jon Butterworth’s blog in the Guardian.

http://www.guardian.co.uk/science/life-and-physics

• Not Even Wrong: Peter Woit’s blog on topics in physics and
mathematics.

http://www.math.columbia.edu/ woit/wordpress/

• Preposterous Universe: Theoretical physicist Sean Carroll’s
blog.

http://www.preposterousuniverse.com/

• Quantum diaries: Thoughts on work and life from particle
physicists from around the world.

http://www.quantumdiaries.org/

The US LHC blog gives a vivid account of the daily activity of US
LHC researchers.

http://www.quantumdiaries.org/lab-81/

• Science blogs: Launched in January 2006, ScienceBlogs features
bloggers from a wide array of scientific disciplines, including physics.

http://scienceblogs.com/channel/physical-science/

• AstroBetter: Blog with tips and tricks for professional astronomers

http://www.astrobetter.com/
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GAUGE AND HIGGS BOSONSGAUGE AND HIGGS BOSONSGAUGE AND HIGGS BOSONSGAUGE AND HIGGS BOSONS
γ (photon)γ (photon)γ (photon)γ (photon) I (JPC ) = 0,1(1−−)Mass m < 1× 10−18 eVCharge q < 1× 10−35 eMean life τ = Stableggggor gluonor gluonor gluonor gluon I (JP ) = 0(1−)Mass m = 0 [a℄SU(3) 
olor o
tetgravitongravitongravitongraviton J = 2Mass m < 6× 10−32 eVWWWW J = 1Charge = ±1 eMass m = 80.385 ± 0.015 GeVW/Z mass ratio = 0.88153 ± 0.00017mZ − mW = 10.803 ± 0.015 GeVmW+ − mW− = −0.2 ± 0.6 GeVFull width � = 2.085 ± 0.042 GeV

〈N
π±

〉 = 15.70 ± 0.35
〈NK±

〉 = 2.20 ± 0.19
〈Np〉 = 0.92 ± 0.14
〈N
harged〉 = 19.39 ± 0.08W− modes are 
harge 
onjugates of the modes below. pW+ DECAY MODESW+ DECAY MODESW+ DECAY MODESW+ DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)

ℓ+ν [b℄ (10.86± 0.09) % {e+ν (10.71± 0.16) % 40192
µ+ν (10.63± 0.15) % 40192
τ+ ν (11.38± 0.21) % 40173hadrons (67.41± 0.27) % {
π+ γ < 7 × 10−6 95% 40192D+s γ < 1.3 × 10−3 95% 40168
X (33.3 ± 2.6 ) % {
 s (31 +13

−11 ) % {invisible [
℄ ( 1.4 ± 2.9 ) % {ZZZZ J = 1Charge = 0Mass m = 91.1876 ± 0.0021 GeV [d℄Full width � = 2.4952 ± 0.0023 GeV�(ℓ+ ℓ−
) = 83.984 ± 0.086 MeV [b℄�(invisible) = 499.0 ± 1.5 MeV [e℄�(hadrons) = 1744.4 ± 2.0 MeV�(µ+µ−
)/�(e+ e−) = 1.0009 ± 0.0028�(τ+ τ−
)/�(e+ e−) = 1.0019 ± 0.0032 [f ℄Average 
harged multipli
ityAverage 
harged multipli
ityAverage 
harged multipli
ityAverage 
harged multipli
ity

〈N
harged 〉 = 20.76 ± 0.16 (S = 2.1)Couplings to quarks and leptonsCouplings to quarks and leptonsCouplings to quarks and leptonsCouplings to quarks and leptonsg ℓV = −0.03783 ± 0.00041guV = 0.25+0.07
−0.06gdV = −0.33+0.05

−0.06g ℓA = −0.50123 ± 0.00026guA = 0.50+0.04
−0.06gdA = −0.523+0.050

−0.029gνℓ = 0.5008 ± 0.0008gνe = 0.53 ± 0.09gνµ = 0.502 ± 0.017



30303030Gauge&HiggsBoson SummaryTableAsymmetry parametersAsymmetry parametersAsymmetry parametersAsymmetry parameters [g ℄Ae = 0.1515 ± 0.0019Aµ = 0.142 ± 0.015Aτ = 0.143 ± 0.004As = 0.90 ± 0.09A
 = 0.670 ± 0.027Ab = 0.923 ± 0.020Charge asymmetry (%) at Z poleCharge asymmetry (%) at Z poleCharge asymmetry (%) at Z poleCharge asymmetry (%) at Z poleA(0ℓ)FB = 1.71 ± 0.10A(0u)FB = 4 ± 7A(0s)FB = 9.8 ± 1.1A(0
)FB = 7.07 ± 0.35A(0b)FB = 9.92 ± 0.16 S
ale fa
tor/ pZ DECAY MODESZ DECAY MODESZ DECAY MODESZ DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)e+ e− ( 3.363 ±0.004 ) % 45594
µ+µ− ( 3.366 ±0.007 ) % 45594
τ+ τ− ( 3.370 ±0.008 ) % 45559
ℓ+ ℓ− [b℄ ( 3.3658±0.0023) % {
ℓ+ ℓ− ℓ+ ℓ− [h℄ ( 3.30 ±0.31 )× 10−6 S=1.1 45594invisible (20.00 ±0.06 ) % {hadrons (69.91 ±0.06 ) % {(uu+

 )/2 (11.6 ±0.6 ) % {(dd+ss+bb )/3 (15.6 ±0.4 ) % {

 (12.03 ±0.21 ) % {bb (15.12 ±0.05 ) % {bbbb ( 3.6 ±1.3 )× 10−4 {g g g < 1.1 % CL=95% {
π0 γ < 2.01 × 10−5 CL=95% 45594
ηγ < 5.1 × 10−5 CL=95% 45592
ωγ < 6.5 × 10−4 CL=95% 45590
η′(958)γ < 4.2 × 10−5 CL=95% 45589
γ γ < 1.46 × 10−5 CL=95% 45594
π0π0 < 1.52 × 10−5 CL=95% 45594
γ γ γ < 1.0 × 10−5 CL=95% 45594
π±W∓ [i ℄ < 7 × 10−5 CL=95% 10162
ρ±W∓ [i ℄ < 8.3 × 10−5 CL=95% 10136J/ψ(1S)X ( 3.51 +0.23

−0.25 )× 10−3 S=1.1 {J/ψ(1S)γ < 2.6 × 10−6 CL=95% 45541
ψ(2S)X ( 1.60 ±0.29 )× 10−3 {
χ
1(1P)X ( 2.9 ±0.7 )× 10−3 {
χ
2(1P)X < 3.2 × 10−3 CL=90% {�(1S) X +�(2S) X+�(3S) X ( 1.0 ±0.5 )× 10−4 {�(1S)X < 3.4 × 10−6 CL=95% {�(2S)X < 6.5 × 10−6 CL=95% {�(3S)X < 5.4 × 10−6 CL=95% {(D0 /D0) X (20.7 ±2.0 ) % {D±X (12.2 ±1.7 ) % {D∗(2010)±X [i ℄ (11.4 ±1.3 ) % {Ds1(2536)±X ( 3.6 ±0.8 )× 10−3 {DsJ (2573)±X ( 5.8 ±2.2 )× 10−3 {D∗′(2629)±X sear
hed for {B+X [j℄ ( 6.08 ±0.13 ) % {B0s X [j℄ ( 1.59 ±0.13 ) % {B+
 X sear
hed for {�+
 X ( 1.54 ±0.33 ) % {� 0
 X seen {�bX seen {b -baryon X [j℄ ( 1.38 ±0.22 ) % {anomalous γ+ hadrons [k℄ < 3.2 × 10−3 CL=95% {e+ e− γ [k℄ < 5.2 × 10−4 CL=95% 45594
µ+µ− γ [k℄ < 5.6 × 10−4 CL=95% 45594
τ+ τ− γ [k℄ < 7.3 × 10−4 CL=95% 45559
ℓ+ ℓ−γ γ [l℄ < 6.8 × 10−6 CL=95% {qq γ γ [l℄ < 5.5 × 10−6 CL=95% {
ν ν γ γ [l℄ < 3.1 × 10−6 CL=95% 45594e±µ∓ LF [i ℄ < 7.5 × 10−7 CL=95% 45594e± τ∓ LF [i ℄ < 9.8 × 10−6 CL=95% 45576
µ± τ∓ LF [i ℄ < 1.2 × 10−5 CL=95% 45576pe L,B < 1.8 × 10−6 CL=95% 45589pµ L,B < 1.8 × 10−6 CL=95% 45589

H0H0H0H0 J = 0Mass m = 125.09 ± 0.24 GeVFull width � < 1.7 GeV, CL = 95%H0 Signal Strengths in Di�erent ChannelsH0 Signal Strengths in Di�erent ChannelsH0 Signal Strengths in Di�erent ChannelsH0 Signal Strengths in Di�erent ChannelsSee Listings for the latest unpublished results.Combined Final States = 1.10 ± 0.11WW ∗ = 1.08+0.18
−0.16Z Z∗ = 1.29+0.26

−0.23
γ γ = 1.16 ± 0.18bb = 0.82 ± 0.30 (S = 1.1)
µ+µ− < 7.0, CL = 95%
τ+ τ− = 1.12 ± 0.23Z γ < 9.5, CL = 95%t t H0 Produ
tion = 2.3+0.7

−0.6 pH0 DECAY MODESH0 DECAY MODESH0 DECAY MODESH0 DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)e+ e− < 1.9 × 10−3 95% 62545J/ψγ < 1.5 × 10−3 95% 62507�(1S)γ < 1.3 × 10−3 95% 62187�(2S)γ < 1.9 × 10−3 95% 62143�(3S)γ < 1.3 × 10−3 95% 62116
µτ < 1.51 % 95% 62532invisible <58 % 95% {Neutral Higgs Bosons, Sear
hes forNeutral Higgs Bosons, Sear
hes forNeutral Higgs Bosons, Sear
hes forNeutral Higgs Bosons, Sear
hes forSear
hes for a Higgs Boson with Standard Model CouplingsSear
hes for a Higgs Boson with Standard Model CouplingsSear
hes for a Higgs Boson with Standard Model CouplingsSear
hes for a Higgs Boson with Standard Model CouplingsMass m > 122 and none 128{1000 GeV, CL = 95%The limits for H01 and A0 in supersymmetri
 models refer to the mmax

hben
hmark s
enario for the supersymmetri
 parameters.H01 in Supersymmetri
 Models (mH01 <mH02)H01 in Supersymmetri
 Models (mH01 <mH02)H01 in Supersymmetri
 Models (mH01 <mH02)H01 in Supersymmetri
 Models (mH01 <mH02)Mass m > 92.8 GeV, CL = 95%A0 Pseudos
alar Higgs Boson in Supersymmetri
 ModelsA0 Pseudos
alar Higgs Boson in Supersymmetri
 ModelsA0 Pseudos
alar Higgs Boson in Supersymmetri
 ModelsA0 Pseudos
alar Higgs Boson in Supersymmetri
 Models [n℄Mass m > 93.4 GeV, CL = 95% tanβ >0.4Charged Higgs Bosons (H± and H±±), Sear
hes forCharged Higgs Bosons (H± and H±±), Sear
hes forCharged Higgs Bosons (H± and H±±), Sear
hes forCharged Higgs Bosons (H± and H±±), Sear
hes forH±H±H±H± Mass m > 80 GeV, CL = 95%New Heavy BosonsNew Heavy BosonsNew Heavy BosonsNew Heavy Bosons(W ′, Z ′, leptoquarks, et
.),(W ′, Z ′, leptoquarks, et
.),(W ′, Z ′, leptoquarks, et
.),(W ′, Z ′, leptoquarks, et
.),Sear
hes forSear
hes forSear
hes forSear
hes forAdditional W BosonsAdditional W BosonsAdditional W BosonsAdditional W BosonsW ′ with standard 
ouplingsMass m > 3.710× 103 GeV, CL = 95% (pp dire
t sear
h)WR (Right-handed W Boson)Mass m > 715 GeV, CL = 90% (ele
troweak �t)Additional Z BosonsAdditional Z BosonsAdditional Z BosonsAdditional Z BosonsZ ′SM with standard 
ouplingsMass m > 2.900× 103 GeV, CL = 95% (pp dire
t sear
h)Mass m > 1.500× 103 GeV, CL = 95% (ele
troweak �t)ZLR of SU(2)L×SU(2)R×U(1) (with gL = gR)Mass m > 630 GeV, CL = 95% (pp dire
t sear
h)Mass m > 1162 GeV, CL = 95% (ele
troweak �t)Zχ of SO(10) → SU(5)×U(1)χ (with gχ=e/
osθW )Mass m > 2.620× 103 GeV, CL = 95% (pp dire
t sear
h)Mass m > 1.141× 103 GeV, CL = 95% (ele
troweak �t)Zψ of E6 → SO(10)×U(1)ψ (with gψ=e/
osθW )Mass m > 2.570× 103 GeV, CL = 95% (pp dire
t sear
h)Mass m > 476 GeV, CL = 95% (ele
troweak �t)Zη of E6 → SU(3)×SU(2)×U(1)×U(1)η (with gη=e/
osθW )Mass m > 1.870× 103 GeV, CL = 95% (pp dire
t sear
h)Mass m > 619 GeV, CL = 95% (ele
troweak �t)
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alar LeptoquarksS
alar LeptoquarksS
alar LeptoquarksS
alar LeptoquarksMass m > 1050 GeV, CL = 95% (1st generation, pair prod.)Mass m > 304 GeV, CL = 95% (1st generation, single prod.)Mass m > 1000 GeV, CL = 95% (2nd generation, pair prod.)Mass m > 73 GeV, CL = 95% (2nd generation, single prod.)Mass m > 740 GeV, CL = 95% (3rd generation, pair prod.)(See the Parti
le Listings for assumptions on leptoquark quan-tum numbers and bran
hing fra
tions.)DiquarksDiquarksDiquarksDiquarksMass m > 4700 GeV, CL = 95% (E6 diquark)AxigluonAxigluonAxigluonAxigluonMass m > 3600 GeV, CL = 95%Axions (A0) and OtherAxions (A0) and OtherAxions (A0) and OtherAxions (A0) and OtherVery Light Bosons, Sear
hes forVery Light Bosons, Sear
hes forVery Light Bosons, Sear
hes forVery Light Bosons, Sear
hes forThe standard Pe

ei-Quinn axion is ruled out. Variants with redu
ed
ouplings or mu
h smaller masses are 
onstrained by various data.The Parti
le Listings in the full Review 
ontain a Note dis
ussingaxion sear
hes.The best limit for the half-life of neutrinoless double beta de
ay withMajoron emission is > 7.2× 1024 years (CL = 90%).NOTESIn this Summary Table:When a quantity has \(S = . . .)" to its right, the error on the quantity hasbeen enlarged by the \s
ale fa
tor" S, de�ned as S = √

χ2/(N − 1), whereN is the number of measurements used in 
al
ulating the quantity. We dothis when S > 1, whi
h often indi
ates that the measurements are in
onsis-tent. When S > 1.25, we also show in the Parti
le Listings an ideogram ofthe measurements. For more about S, see the Introdu
tion.A de
ay momentum p is given for ea
h de
ay mode. For a 2-body de
ay, pis the momentum of ea
h de
ay produ
t in the rest frame of the de
ayingparti
le. For a 3-or-more-body de
ay, p is the largest momentum any of theprodu
ts 
an have in this frame.

[a℄ Theoreti
al value. A mass as large as a few MeV may not be pre
luded.[b℄ ℓ indi
ates ea
h type of lepton (e, µ, and τ), not sum over them.[
 ℄ This represents the width for the de
ay of the W boson into a 
hargedparti
le with momentum below dete
tability, p< 200 MeV.[d ℄ The Z -boson mass listed here 
orresponds to a Breit-Wigner resonan
eparameter. It lies approximately 34 MeV above the real part of the posi-tion of the pole (in the energy-squared plane) in the Z -boson propagator.[e℄ This partial width takes into a

ount Z de
ays into ν ν and any otherpossible undete
ted modes.[f ℄ This ratio has not been 
orre
ted for the τ mass.[g ℄ Here A ≡ 2gV gA/(g2V+g2A).[h℄ Here ℓ indi
ates e or µ.[i ℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.[j ℄ This value is updated using the produ
t of (i) the Z → bbfra
tion from this listing and (ii) the b-hadron fra
tion in anunbiased sample of weakly de
aying b-hadrons produ
ed in Z -de
ays provided by the Heavy Flavor Averaging Group (HFAG,http://www.sla
.stanford.edu/xorg/hfag/os
/PDG 2009/#FRACZ).[k ℄ See the Z Parti
le Listings for the γ energy range used in this measure-ment.[l ℄ For mγ γ = (60 ± 5) GeV.[n℄ The limits assume no invisible de
ays.



32323232Lepton SummaryTableLEPTONSLEPTONSLEPTONSLEPTONSeeee J = 12Mass m = (548.579909070 ± 0.000000016)× 10−6 uMass m = 0.5109989461 ± 0.0000000031 MeV
∣

∣me+ − me−∣

∣/m < 8× 10−9, CL = 90%
∣

∣qe+ + qe− ∣

∣

/e < 4× 10−8Magneti
 moment anomaly(g−2)/2 = (1159.65218091 ± 0.00000026)× 10−6(ge+ − ge−) / gaverage = (−0.5 ± 2.1)× 10−12Ele
tri
 dipole moment d < 0.87× 10−28 e 
m, CL = 90%Mean life τ > 6.6× 1028 yr, CL = 90% [a℄
µµµµ J = 12Mass m = 0.1134289257 ± 0.0000000025 uMass m = 105.6583745 ± 0.0000024 MeVMean life τ = (2.1969811 ± 0.0000022)× 10−6 s

τ µ+/τ µ− = 1.00002 ± 0.00008
τ = 658.6384 mMagneti
 moment anomaly (g−2)/2 = (11659209 ± 6)× 10−10(g
µ+ − g

µ−) / gaverage = (−0.11 ± 0.12)× 10−8Ele
tri
 dipole moment d = (−0.1 ± 0.9)× 10−19 e 
mDe
ay parametersDe
ay parametersDe
ay parametersDe
ay parameters [b℄
ρ = 0.74979 ± 0.00026
η = 0.057 ± 0.034
δ = 0.75047 ± 0.00034
ξPµ = 1.0009+0.0016

−0.0007 [
℄
ξPµδ/ρ = 1.0018+0.0016

−0.0007 [
℄
ξ′ = 1.00 ± 0.04
ξ′′ = 0.98 ± 0.04
α/A = (0 ± 4)× 10−3
α′/A = (−10 ± 20)× 10−3
β/A = (4 ± 6)× 10−3
β′/A = (2 ± 7)× 10−3
η = 0.02 ± 0.08

µ+ modes are 
harge 
onjugates of the modes below. p
µ− DECAY MODESµ− DECAY MODESµ− DECAY MODESµ− DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)e−νe νµ ≈ 100% 53e−νe νµ γ [d℄ (1.4±0.4) % 53e−νe νµ e+ e− [e℄ (3.4±0.4)× 10−5 53Lepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modese−νe νµ LF [f ℄ < 1.2 % 90% 53e−γ LF < 5.7 × 10−13 90% 53e− e+ e− LF < 1.0 × 10−12 90% 53e−2γ LF < 7.2 × 10−11 90% 53
ττττ J = 12Mass m = 1776.86 ± 0.12 MeV(mτ+ − mτ−)/maverage < 2.8× 10−4, CL = 90%Mean life τ = (290.3 ± 0.5)× 10−15 s
τ = 87.03 µmMagneti
 moment anomaly > −0.052 and < 0.013, CL = 95%Re(dτ ) = −0.220 to 0.45× 10−16 e 
m, CL = 95%Im(dτ ) = −0.250 to 0.0080× 10−16 e 
m, CL = 95%Weak dipole momentWeak dipole momentWeak dipole momentWeak dipole momentRe(dwτ ) < 0.50× 10−17 e 
m, CL = 95%Im(dwτ ) < 1.1× 10−17 e 
m, CL = 95%Weak anomalous magneti
 dipole momentWeak anomalous magneti
 dipole momentWeak anomalous magneti
 dipole momentWeak anomalous magneti
 dipole momentRe(αw

τ ) < 1.1× 10−3, CL = 95%Im(αw
τ ) < 2.7× 10−3, CL = 95%

τ± → π±K0S ντ (RATE DIFFERENCE) / (RATE SUM) =(−0.36 ± 0.25)%

De
ay parametersDe
ay parametersDe
ay parametersDe
ay parametersSee the τ Parti
le Listings for a note 
on
erning τ -de
ay parameters.
ρ(e or µ) = 0.745 ± 0.008
ρ(e) = 0.747 ± 0.010
ρ(µ) = 0.763 ± 0.020
ξ(e or µ) = 0.985 ± 0.030
ξ(e) = 0.994 ± 0.040
ξ(µ) = 1.030 ± 0.059
η(e or µ) = 0.013 ± 0.020
η(µ) = 0.094 ± 0.073(δξ)(e or µ) = 0.746 ± 0.021(δξ)(e) = 0.734 ± 0.028(δξ)(µ) = 0.778 ± 0.037
ξ(π) = 0.993 ± 0.022
ξ(ρ) = 0.994 ± 0.008
ξ(a1) = 1.001 ± 0.027
ξ(all hadroni
 modes) = 0.995 ± 0.007

τ+ modes are 
harge 
onjugates of the modes below. \h±" stands for
π± or K±. \ℓ" stands for e or µ. \Neutrals" stands for γ's and/or π0's.S
ale fa
tor/ p

τ− DECAY MODESτ− DECAY MODESτ− DECAY MODESτ− DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)Modes with one 
harged parti
leModes with one 
harged parti
leModes with one 
harged parti
leModes with one 
harged parti
leparti
le− ≥ 0 neutrals ≥ 0K 0ντ(\1-prong") (85.24 ± 0.06 ) % {parti
le− ≥ 0 neutrals ≥ 0K 0Lντ (84.58 ± 0.06 ) % {
µ−νµ ντ [g ℄ (17.39 ± 0.04 ) % 885

µ−νµ ντ γ [e℄ ( 3.68 ± 0.10 )× 10−3 885e−νe ντ [g ℄ (17.82 ± 0.04 ) % 888e−νe ντ γ [e℄ ( 1.84 ± 0.05 ) % 888h− ≥ 0K0L ντ (12.03 ± 0.05 ) % 883h−ντ (11.51 ± 0.05 ) % 883
π− ντ [g ℄ (10.82 ± 0.05 ) % 883K−ντ [g ℄ ( 6.96 ± 0.10 )× 10−3 820h− ≥ 1 neutralsντ (37.00 ± 0.09 ) % {h− ≥ 1π0 ντ (ex.K0) (36.51 ± 0.09 ) % {h−π0 ντ (25.93 ± 0.09 ) % 878

π−π0 ντ [g ℄ (25.49 ± 0.09 ) % 878
π−π0 non-ρ(770)ντ ( 3.0 ± 3.2 )× 10−3 878K−π0 ντ [g ℄ ( 4.33 ± 0.15 )× 10−3 814h− ≥ 2π0 ντ (10.81 ± 0.09 ) % {h−2π0 ντ ( 9.48 ± 0.10 ) % 862h−2π0 ντ (ex.K0) ( 9.32 ± 0.10 ) % 862

π− 2π0ντ (ex.K0) [g ℄ ( 9.26 ± 0.10 ) % 862
π− 2π0ντ (ex.K0),s
alar < 9 × 10−3CL=95% 862
π− 2π0ντ (ex.K0),ve
tor < 7 × 10−3CL=95% 862K−2π0ντ (ex.K0) [g ℄ ( 6.5 ± 2.2 )× 10−4 796h− ≥ 3π0 ντ ( 1.34 ± 0.07 ) % {h− ≥ 3π0 ντ (ex. K0) ( 1.25 ± 0.07 ) % {h−3π0 ντ ( 1.18 ± 0.07 ) % 836
π− 3π0ντ (ex.K0) [g ℄ ( 1.04 ± 0.07 ) % 836K−3π0ντ (ex.K0,

η) [g ℄ ( 4.8 ± 2.1 )× 10−4 765h−4π0 ντ (ex.K0) ( 1.6 ± 0.4 )× 10−3 800h−4π0 ντ (ex.K0,η) [g ℄ ( 1.1 ± 0.4 )× 10−3 800a1(1260)ντ → π− γ ντ ( 3.8 ± 1.5 )× 10−4 {K− ≥ 0π0 ≥ 0K0 ≥ 0γ ντ ( 1.552± 0.029) % 820K− ≥ 1 (π0 or K0 or γ) ντ ( 8.59 ± 0.28 )× 10−3 {Modes with K0'sModes with K0'sModes with K0'sModes with K0'sK0S (parti
les)− ντ ( 9.44 ± 0.28 )× 10−3 {h−K0 ντ ( 9.87 ± 0.14 )× 10−3 812
π−K0 ντ [g ℄ ( 8.40 ± 0.14 )× 10−3 812
π−K0(non-K∗(892)−)ντ

( 5.4 ± 2.1 )× 10−4 812K−K0ντ [g ℄ ( 1.48 ± 0.05 )× 10−3 737K−K0 ≥ 0π0 ντ ( 2.98 ± 0.08 )× 10−3 737h−K0π0 ντ ( 5.32 ± 0.13 )× 10−3 794
π−K0π0 ντ [g ℄ ( 3.82 ± 0.13 )× 10−3 794K0ρ− ντ ( 2.2 ± 0.5 )× 10−3 612K−K0π0 ντ [g ℄ ( 1.50 ± 0.07 )× 10−3 685

π−K0 ≥ 1π0 ντ ( 4.08 ± 0.25 )× 10−3 {
π−K0π0π0 ντ (ex.K0) [g ℄ ( 2.6 ± 2.3 )× 10−4 763



33333333Lepton SummaryTableK−K0π0π0 ντ < 1.6 × 10−4CL=95% 619
π−K0K0ντ ( 1.55 ± 0.24 )× 10−3 682

π−K0S K0S ντ [g ℄ ( 2.33 ± 0.07 )× 10−4 682
π−K0S K0Lντ [g ℄ ( 1.08 ± 0.24 )× 10−3 682
π−K0LK0L ντ ( 2.33 ± 0.07 )× 10−4 682

π−K0K0π0 ντ ( 3.6 ± 1.2 )× 10−4 614
π−K0S K0S π0 ντ [g ℄ ( 1.82 ± 0.21 )× 10−5 614K∗−K0π0 ντ →

π−K0S K0S π0 ντ

( 1.08 ± 0.21 )× 10−5 {f1(1285)π−ντ →

π−K0S K0S π0 ντ

( 6.8 ± 1.5 )× 10−6 {f1(1420)π−ντ →

π−K0S K0S π0 ντ

( 2.4 ± 0.8 )× 10−6 {
π−K0S K0Lπ0 ντ [g ℄ ( 3.2 ± 1.2 )× 10−4 614
π−K0LK0Lπ0 ντ ( 1.82 ± 0.21 )× 10−5 614K−K0S K0S ντ < 6.3 × 10−7CL=90% 466K−K0S K0S π0 ντ < 4.0 × 10−7CL=90% 337K0h+ h−h− ≥ 0 neutrals ντ < 1.7 × 10−3CL=95% 760K0h+ h−h−ντ [g ℄ ( 2.5 ± 2.0 )× 10−4 760Modes with three 
harged parti
lesModes with three 
harged parti
lesModes with three 
harged parti
lesModes with three 
harged parti
lesh−h− h+ ≥ 0 neutrals ≥ 0K 0Lντ (15.21 ± 0.06 ) % 861h− h−h+ ≥ 0 neutrals ντ(ex. K0S → π+π−)(\3-prong") (14.55 ± 0.06 ) % 861h−h− h+ντ ( 9.80 ± 0.05 ) % 861h−h− h+ντ (ex.K0) ( 9.46 ± 0.05 ) % 861h−h− h+ντ (ex.K0,ω) ( 9.43 ± 0.05 ) % 861

π−π+π− ντ ( 9.31 ± 0.05 ) % 861
π−π+π− ντ (ex.K0) ( 9.02 ± 0.05 ) % 861
π−π+π− ντ (ex.K0),non-axial ve
tor < 2.4 % CL=95% 861
π−π+π− ντ (ex.K0,ω) [g ℄ ( 8.99 ± 0.05 ) % 861h−h− h+ ≥ 1 neutrals ντ ( 5.29 ± 0.05 ) % {h−h− h+ ≥ 1π0 ντ (ex. K0) ( 5.09 ± 0.05 ) % {h−h− h+π0 ντ ( 4.76 ± 0.05 ) % 834h−h− h+π0 ντ (ex.K0) ( 4.57 ± 0.05 ) % 834h−h− h+π0 ντ (ex. K0, ω) ( 2.79 ± 0.07 ) % 834

π−π+π−π0 ντ ( 4.62 ± 0.05 ) % 834
π−π+π−π0 ντ (ex.K0) ( 4.49 ± 0.05 ) % 834
π−π+π−π0 ντ (ex.K0,ω) [g ℄ ( 2.74 ± 0.07 ) % 834h−h− h+ ≥ 2π0 ντ (ex.K0) ( 5.17 ± 0.31 )× 10−3 {h−h− h+2π0 ντ ( 5.05 ± 0.31 )× 10−3 797h−h− h+2π0 ντ (ex.K0) ( 4.95 ± 0.31 )× 10−3 797h−h− h+2π0 ντ (ex.K0,ω,η) [g ℄ (10 ± 4 )× 10−4 797h−h− h+3π0 ντ ( 2.12 ± 0.30 )× 10−4 7492π−π+ 3π0ντ (ex.K0) ( 1.94 ± 0.30 )× 10−4 7492π−π+ 3π0ντ (ex.K0, η,f1(1285)) ( 1.7 ± 0.4 )× 10−4 {2π−π+ 3π0ντ (ex.K0, η,

ω, f1(1285)) [g ℄ ( 1.4 ± 2.7 )× 10−5 {K−h+h− ≥ 0 neutrals ντ ( 6.29 ± 0.14 )× 10−3 794K−h+π− ντ (ex.K0) ( 4.37 ± 0.07 )× 10−3 794K−h+π−π0 ντ (ex.K0) ( 8.6 ± 1.2 )× 10−4 763K−π+π− ≥ 0 neutrals ντ ( 4.77 ± 0.14 )× 10−3 794K−π+π− ≥0π0 ντ (ex.K0) ( 3.73 ± 0.13 )× 10−3 794K−π+π−ντ ( 3.45 ± 0.07 )× 10−3 794K−π+π−ντ (ex.K0) ( 2.93 ± 0.07 )× 10−3 794K−π+π−ντ (ex.K0,ω) [g ℄ ( 2.93 ± 0.07 )× 10−3 794K−ρ0 ντ →K−π+π−ντ

( 1.4 ± 0.5 )× 10−3 {K−π+π−π0 ντ ( 1.31 ± 0.12 )× 10−3 763K−π+π−π0 ντ (ex.K0) ( 7.9 ± 1.2 )× 10−4 763K−π+π−π0 ντ (ex.K0,η) ( 7.6 ± 1.2 )× 10−4 763K−π+π−π0 ντ (ex.K0,ω) ( 3.7 ± 0.9 )× 10−4 763K−π+π−π0 ντ (ex.K0,ω,η)[g ℄ ( 3.9 ± 1.4 )× 10−4 763K−π+K− ≥ 0 neut. ντ < 9 × 10−4CL=95% 685K−K+π− ≥ 0 neut. ντ ( 1.496± 0.033)× 10−3 685K−K+π− ντ [g ℄ ( 1.435± 0.027)× 10−3 685K−K+π−π0 ντ [g ℄ ( 6.1 ± 1.8 )× 10−5 618K−K+K−ντ ( 2.2 ± 0.8 )× 10−5 S=5.4 472K−K+K−ντ (ex. φ) < 2.5 × 10−6CL=90% {K−K+K−π0 ντ < 4.8 × 10−6CL=90% 345

π−K+π− ≥ 0 neut. ντ < 2.5 × 10−3CL=95% 794e− e− e+νe ντ ( 2.8 ± 1.5 )× 10−5 888
µ− e− e+νµ ντ < 3.6 × 10−5CL=90% 885Modes with �ve 
harged parti
lesModes with �ve 
harged parti
lesModes with �ve 
harged parti
lesModes with �ve 
harged parti
les3h−2h+ ≥ 0 neutrals ντ(ex. K0S → π−π+)(\5-prong") ( 9.9 ± 0.4 )× 10−4 7943h−2h+ντ (ex.K0) ( 8.22 ± 0.32 )× 10−4 7943π−2π+ντ (ex.K0, ω) ( 8.21 ± 0.31 )× 10−4 7943π−2π+ντ (ex.K0, ω,f1(1285)) [g ℄ ( 7.69 ± 0.30 )× 10−4 {K−2π−2π+ντ (ex.K0) [g ℄ ( 6 ±12 )× 10−7 716K+3π−π+ ντ < 5.0 × 10−6CL=90% 716K+K−2π−π+ ντ < 4.5 × 10−7CL=90% 5283h−2h+π0 ντ (ex.K0) ( 1.64 ± 0.11 )× 10−4 7463π−2π+π0 ντ (ex.K0) ( 1.62 ± 0.11 )× 10−4 7463π−2π+π0 ντ (ex.K0, η,f1(1285)) ( 1.11 ± 0.10 )× 10−4 {3π−2π+π0 ντ (ex.K0, η,

ω, f1(1285)) [g ℄ ( 3.8 ± 0.9 )× 10−5 {K−2π−2π+π0 ντ (ex.K0) [g ℄ ( 1.1 ± 0.6 )× 10−6 657K+3π−π+π0 ντ < 8 × 10−7CL=90% 6573h−2h+2π0ντ < 3.4 × 10−6CL=90% 687Mis
ellaneous other allowed modesMis
ellaneous other allowed modesMis
ellaneous other allowed modesMis
ellaneous other allowed modes(5π )− ντ ( 7.8 ± 0.5 )× 10−3 8004h−3h+ ≥ 0 neutrals ντ(\7-prong") < 3.0 × 10−7CL=90% 6824h−3h+ντ < 4.3 × 10−7CL=90% 6824h−3h+π0 ντ < 2.5 × 10−7CL=90% 612X− (S=−1)ντ ( 2.92 ± 0.04 ) % {K∗(892)− ≥ 0 neutrals ≥0K0Lντ

( 1.42 ± 0.18 ) % S=1.4 665K∗(892)−ντ ( 1.20 ± 0.07 ) % S=1.8 665K∗(892)−ντ → π−K0 ντ ( 7.83 ± 0.26 )× 10−3 {K∗(892)0K− ≥ 0 neutrals ντ ( 3.2 ± 1.4 )× 10−3 542K∗(892)0K−ντ ( 2.1 ± 0.4 )× 10−3 542K∗(892)0π− ≥ 0 neutrals ντ ( 3.8 ± 1.7 )× 10−3 655K∗(892)0π− ντ ( 2.2 ± 0.5 )× 10−3 655(K∗(892)π )− ντ →

π−K0π0 ντ

( 1.0 ± 0.4 )× 10−3 {K1(1270)−ντ ( 4.7 ± 1.1 )× 10−3 433K1(1400)−ντ ( 1.7 ± 2.6 )× 10−3 S=1.7 335K∗(1410)−ντ ( 1.5 + 1.4
− 1.0 ) × 10−3 326K∗0(1430)−ντ < 5 × 10−4CL=95% 317K∗2(1430)−ντ < 3 × 10−3CL=95% 317

ηπ− ντ < 9.9 × 10−5CL=95% 797
ηπ−π0 ντ [g ℄ ( 1.39 ± 0.07 )× 10−3 778
ηπ−π0π0 ντ [g ℄ ( 1.9 ± 0.4 )× 10−4 746
ηK−ντ [g ℄ ( 1.55 ± 0.08 )× 10−4 719
ηK∗(892)−ντ ( 1.38 ± 0.15 )× 10−4 511
ηK−π0 ντ [g ℄ ( 4.8 ± 1.2 )× 10−5 665
ηK−π0 (non-K∗(892))ντ < 3.5 × 10−5CL=90% {
ηK0π−ντ [g ℄ ( 9.4 ± 1.5 )× 10−5 661
ηK0π−π0 ντ < 5.0 × 10−5CL=90% 590
ηK−K0 ντ < 9.0 × 10−6CL=90% 430
ηπ+π−π− ≥ 0 neutrals ντ < 3 × 10−3CL=90% 744

ηπ−π+π−ντ (ex.K0) [g ℄ ( 2.19 ± 0.13 )× 10−4 744
ηπ−π+π−ντ (ex.K0,f1(1285)) ( 9.9 ± 1.6 )× 10−5 {

ηa1(1260)− ντ → ηπ− ρ0 ντ < 3.9 × 10−4CL=90% {
ηηπ− ντ < 7.4 × 10−6CL=90% 637
ηηπ−π0 ντ < 2.0 × 10−4CL=95% 559
ηηK− ντ < 3.0 × 10−6CL=90% 382
η′(958)π− ντ < 4.0 × 10−6CL=90% 620
η′(958)π−π0 ντ < 1.2 × 10−5CL=90% 591
η′(958)K−ντ < 2.4 × 10−6CL=90% 495
φπ− ντ ( 3.4 ± 0.6 )× 10−5 585
φK− ντ [g ℄ ( 4.4 ± 1.6 )× 10−5 445f1(1285)π−ντ ( 3.9 ± 0.5 )× 10−4 S=1.9 408f1(1285)π−ντ →

ηπ−π+π−ντ

( 1.18 ± 0.07 )× 10−4 S=1.3 {f1(1285)π−ντ →3π−2π+ντ

[g ℄ ( 5.2 ± 0.4 )× 10−5 {
π(1300)−ντ → (ρπ)− ντ →(3π)− ντ

< 1.0 × 10−4CL=90% {



34343434Lepton SummaryTable
π(1300)−ντ →((ππ)S−wave π)− ντ →(3π)− ντ

< 1.9 × 10−4CL=90% {h−ω ≥ 0 neutrals ντ ( 2.40 ± 0.08 ) % 708h−ωντ ( 1.99 ± 0.06 ) % 708
π−ωντ [g ℄ ( 1.95 ± 0.06 ) % 708K−ωντ [g ℄ ( 4.1 ± 0.9 )× 10−4 610h−ωπ0 ντ [g ℄ ( 4.1 ± 0.4 )× 10−3 684h−ω2π0 ντ ( 1.4 ± 0.5 )× 10−4 644
π−ω2π0ντ [g ℄ ( 7.1 ± 1.6 )× 10−5 644h−2ωντ < 5.4 × 10−7CL=90% 2502h−h+ωντ ( 1.20 ± 0.22 )× 10−4 6412π−π+ωντ (ex.K0) [g ℄ ( 8.4 ± 0.6 )× 10−5 641Lepton Family number (LF ), Lepton number (L),Lepton Family number (LF ), Lepton number (L),Lepton Family number (LF ), Lepton number (L),Lepton Family number (LF ), Lepton number (L),or Baryon number (B) violating modesor Baryon number (B) violating modesor Baryon number (B) violating modesor Baryon number (B) violating modesL means lepton number violation (e.g. τ− → e+π−π−). Following
ommon usage, LF means lepton family violation and not lepton numberviolation (e.g. τ− → e−π+π−). B means baryon number violation.e−γ LF < 3.3 × 10−8CL=90% 888

µ−γ LF < 4.4 × 10−8CL=90% 885e−π0 LF < 8.0 × 10−8CL=90% 883
µ−π0 LF < 1.1 × 10−7CL=90% 880e−K0S LF < 2.6 × 10−8CL=90% 819
µ−K0S LF < 2.3 × 10−8CL=90% 815e−η LF < 9.2 × 10−8CL=90% 804
µ−η LF < 6.5 × 10−8CL=90% 800e−ρ0 LF < 1.8 × 10−8CL=90% 719
µ−ρ0 LF < 1.2 × 10−8CL=90% 715e−ω LF < 4.8 × 10−8CL=90% 716
µ−ω LF < 4.7 × 10−8CL=90% 711e−K∗(892)0 LF < 3.2 × 10−8CL=90% 665
µ−K∗(892)0 LF < 5.9 × 10−8CL=90% 659e−K∗(892)0 LF < 3.4 × 10−8CL=90% 665
µ−K∗(892)0 LF < 7.0 × 10−8CL=90% 659e−η′(958) LF < 1.6 × 10−7CL=90% 630
µ−η′(958) LF < 1.3 × 10−7CL=90% 625e− f0(980) → e−π+π− LF < 3.2 × 10−8CL=90% {
µ− f0(980) → µ−π+π− LF < 3.4 × 10−8CL=90% {e−φ LF < 3.1 × 10−8CL=90% 596
µ−φ LF < 8.4 × 10−8CL=90% 590e− e+ e− LF < 2.7 × 10−8CL=90% 888e−µ+µ− LF < 2.7 × 10−8CL=90% 882e+µ−µ− LF < 1.7 × 10−8CL=90% 882
µ− e+ e− LF < 1.8 × 10−8CL=90% 885
µ+ e− e− LF < 1.5 × 10−8CL=90% 885
µ−µ+µ− LF < 2.1 × 10−8CL=90% 873e−π+π− LF < 2.3 × 10−8CL=90% 877e+π−π− L < 2.0 × 10−8CL=90% 877
µ−π+π− LF < 2.1 × 10−8CL=90% 866
µ+π−π− L < 3.9 × 10−8CL=90% 866e−π+K− LF < 3.7 × 10−8CL=90% 813e−π−K+ LF < 3.1 × 10−8CL=90% 813e+π−K− L < 3.2 × 10−8CL=90% 813e−K0S K0S LF < 7.1 × 10−8CL=90% 736e−K+K− LF < 3.4 × 10−8CL=90% 738e+K−K− L < 3.3 × 10−8CL=90% 738
µ−π+K− LF < 8.6 × 10−8CL=90% 800
µ−π−K+ LF < 4.5 × 10−8CL=90% 800
µ+π−K− L < 4.8 × 10−8CL=90% 800
µ−K0S K0S LF < 8.0 × 10−8CL=90% 696
µ−K+K− LF < 4.4 × 10−8CL=90% 699
µ+K−K− L < 4.7 × 10−8CL=90% 699e−π0π0 LF < 6.5 × 10−6CL=90% 878
µ−π0π0 LF < 1.4 × 10−5CL=90% 867e−ηη LF < 3.5 × 10−5CL=90% 699
µ−ηη LF < 6.0 × 10−5CL=90% 653e−π0 η LF < 2.4 × 10−5CL=90% 798
µ−π0 η LF < 2.2 × 10−5CL=90% 784pµ−µ− L,B < 4.4 × 10−7CL=90% 618pµ+µ− L,B < 3.3 × 10−7CL=90% 618pγ L,B < 3.5 × 10−6CL=90% 641pπ0 L,B < 1.5 × 10−5CL=90% 632p2π0 L,B < 3.3 × 10−5CL=90% 604pη L,B < 8.9 × 10−6CL=90% 475pπ0 η L,B < 2.7 × 10−5CL=90% 360�π− L,B < 7.2 × 10−8CL=90% 525

�π− L,B < 1.4 × 10−7CL=90% 525e− light boson LF < 2.7 × 10−3CL=95% {
µ− light boson LF < 5 × 10−3CL=95% {Heavy Charged Lepton Sear
hesHeavy Charged Lepton Sear
hesHeavy Charged Lepton Sear
hesHeavy Charged Lepton Sear
hesL± { 
harged leptonL± { 
harged leptonL± { 
harged leptonL± { 
harged leptonMass m > 100.8 GeV, CL = 95% [h℄ De
ay to νW .L± { stable 
harged heavy leptonL± { stable 
harged heavy leptonL± { stable 
harged heavy leptonL± { stable 
harged heavy leptonMass m > 102.6 GeV, CL = 95%Neutrino PropertiesNeutrino PropertiesNeutrino PropertiesNeutrino PropertiesSee the note on \Neutrino properties listings" in the Parti
le Listings.Mass m < 2 eV (tritium de
ay)Mean life/mass, τ/m > 300 s/eV, CL = 90% (rea
tor)Mean life/mass, τ/m > 7× 109 s/eV (solar)Mean life/mass, τ/m > 15.4 s/eV, CL = 90% (a

elerator)Magneti
 moment µ < 0.29× 10−10 µB , CL = 90% (rea
tor)Number of Neutrino TypesNumber of Neutrino TypesNumber of Neutrino TypesNumber of Neutrino TypesNumber N = 2.984 ± 0.008 (Standard Model �ts to LEP-SLCdata)Number N = 2.92 ± 0.05 (S = 1.2) (Dire
t measurement ofinvisible Z width)Neutrino MixingNeutrino MixingNeutrino MixingNeutrino MixingThe following values are obtained through data analyses based onthe 3-neutrino mixing s
heme des
ribed in the review \NeutrinoMass, Mixing, and Os
illations" by K. Nakamura and S.T. Pet
ovin this Review.sin2(θ12) = 0.304 ± 0.014�m221 = (7.53 ± 0.18)× 10−5 eV2sin2(θ23) = 0.51 ± 0.05 (normal mass hierar
hy)sin2(θ23) = 0.50 ± 0.05 (inverted mass hierar
hy)�m232 = (2.44 ± 0.06)× 10−3 eV2 [i ℄ (normal mass hierar
hy)�m232 = (2.51± 0.06)×10−3 eV2 [i ℄ (inverted mass hierar
hy)sin2(θ13) = (2.19 ± 0.12)× 10−2Stable Neutral Heavy Lepton Mass LimitsStable Neutral Heavy Lepton Mass LimitsStable Neutral Heavy Lepton Mass LimitsStable Neutral Heavy Lepton Mass LimitsMass m > 45.0 GeV, CL = 95% (Dira
)Mass m > 39.5 GeV, CL = 95% (Majorana)Neutral Heavy Lepton Mass LimitsNeutral Heavy Lepton Mass LimitsNeutral Heavy Lepton Mass LimitsNeutral Heavy Lepton Mass LimitsMass m > 90.3 GeV, CL = 95%(Dira
 νL 
oupling to e, µ, τ ; 
onservative 
ase(τ))Mass m > 80.5 GeV, CL = 95%(Majorana νL 
oupling to e, µ, τ ; 
onservative 
ase(τ))NOTESIn this Summary Table:When a quantity has \(S = . . .)" to its right, the error on the quantity hasbeen enlarged by the \s
ale fa
tor" S, de�ned as S = √

χ2/(N − 1), whereN is the number of measurements used in 
al
ulating the quantity. We dothis when S > 1, whi
h often indi
ates that the measurements are in
onsis-tent. When S > 1.25, we also show in the Parti
le Listings an ideogram ofthe measurements. For more about S, see the Introdu
tion.A de
ay momentum p is given for ea
h de
ay mode. For a 2-body de
ay, pis the momentum of ea
h de
ay produ
t in the rest frame of the de
ayingparti
le. For a 3-or-more-body de
ay, p is the largest momentum any of theprodu
ts 
an have in this frame.



35353535Lepton Summary Table[a℄ This is the best limit for the mode e− → ν γ. The best limit for \ele
trondisappearan
e" is 6.4× 1024 yr.[b℄ See the \Note on Muon De
ay Parameters" in the µ Parti
le Listings forde�nitions and details.[
 ℄ Pµ is the longitudinal polarization of the muon from pion de
ay. Instandard V−A theory, Pµ = 1 and ρ = δ = 3/4.[d ℄ This only in
ludes events with the γ energy > 10 MeV. Sin
e the e−νe νµand e−νe νµ γ modes 
annot be 
learly separated, we regard the lattermode as a subset of the former.
[e℄ See the relevant Parti
le Listings for the energy limits used in this mea-surement.[f ℄ A test of additive vs. multipli
ative lepton family number 
onservation.[g ℄ Basis mode for the τ .[h℄ L± mass limit depends on de
ay assumptions; see the Full Listings.[i ℄ The sign of �m232 is not known at this time. The range quoted is forthe absolute value.



36363636Quark Summary TableQUARKSQUARKSQUARKSQUARKSThe u-, d-, and s-quark masses are estimates of so-
alled \
urrent-quark masses," in a mass-independent subtra
tion s
heme su
h asMS at a s
ale µ ≈ 2 GeV. The 
- and b-quark masses are the\running" masses in the MS s
heme. For the b-quark we alsoquote the 1S mass. These 
an be di�erent from the heavy quarkmasses obtained in potential models.uuuu I (JP ) = 12 (12+)mu = 2.2+0.6
−0.4 MeV Charge = 23 e Iz = +12mu/md = 0.38{0.58dddd I (JP ) = 12 (12+)md = 4.7+0.5
−0.4 MeV Charge = −13 e Iz = −12ms/md = 17{22m = (mu+md )/2 = 3.5+0.7

−0.3 MeVssss I (JP ) = 0(12+)ms = 96+8
−4 MeV Charge = −13 e Strangeness = −1ms / ((mu + md )/2) = 27.3 ± 0.7



 I (JP ) = 0(12+)m
 = 1.27 ± 0.03 GeV Charge = 23 e Charm = +1m
/ms = 11.72 ± 0.25mb/m
 = 4.53 ± 0.05mb−m
 = 3.45 ± 0.05 GeVbbbb I (JP ) = 0(12+)Charge = −13 e Bottom = −1mb(MS) = 4.18+0.04

−0.03 GeVmb(1S) = 4.66+0.04
−0.03 GeVtttt I (JP ) = 0(12+)Charge = 23 e Top = +1Mass (dire
t measurements) m = 173.21 ± 0.51 ± 0.71 GeV [a,b℄Mass (MS from 
ross-se
tion measurements) m = 160+5

−4 GeV [a℄Mass (Pole from 
ross-se
tion measurements) m = 174.2 ± 1.4GeVmt − mt = −0.2 ± 0.5 GeV (S = 1.1)Full width � = 1.41+0.19
−0.15 GeV (S = 1.4)�(W b)/�(W q (q = b, s , d)) = 0.957 ± 0.034 (S = 1.5)t-quark EW Couplingst-quark EW Couplingst-quark EW Couplingst-quark EW CouplingsF0 = 0.690 ± 0.030F− = 0.314 ± 0.025F+ = 0.008 ± 0.016FV +A < 0.29, CL = 95% pt DECAY MODESt DECAY MODESt DECAY MODESt DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)t → W q (q = b, s , d) {t → W b {t → ℓνℓ anything [
,d℄ ( 9.4±2.4) % {t → e νe b (13.3±0.6) % {t → µνµb (13.4±0.6) % {t → qq b (66.5±1.4) % {t → γ q (q=u,
) [e℄ < 5.9 × 10−3 95% {�T = 1 weak neutral 
urrent (T1) modes�T = 1 weak neutral 
urrent (T1) modes�T = 1 weak neutral 
urrent (T1) modes�T = 1 weak neutral 
urrent (T1) modest → Z q (q=u,
) T1 [f ℄ < 5 × 10−4 95% {t → ℓ+qq′ (q=d ,s ,b; q′=u,
) < 1.6 × 10−3 95% {

b′ (4th Generation) Quark, Sear
hes forb′ (4th Generation) Quark, Sear
hes forb′ (4th Generation) Quark, Sear
hes forb′ (4th Generation) Quark, Sear
hes forMass m > 190 GeV, CL = 95% (pp, quasi-stable b′)Mass m > 755 GeV, CL = 95% (pp, neutral-
urrent de
ays)Mass m > 675 GeV, CL = 95% (pp, 
harged-
urrent de
ays)Mass m > 46.0 GeV, CL = 95% (e+ e−, all de
ays)t ′ (4th Generation) Quark, Sear
hes fort ′ (4th Generation) Quark, Sear
hes fort ′ (4th Generation) Quark, Sear
hes fort ′ (4th Generation) Quark, Sear
hes form(t ′(2/3)) > 782 GeV, CL = 95% (neutral-
urrent de
ays)m(t ′(2/3)) > 700 GeV, CL = 95% (
harged-
urrent de
ays)m(t ′(5/3)) > 800 GeV, CL = 95%Free Quark Sear
hesFree Quark Sear
hesFree Quark Sear
hesFree Quark Sear
hesAll sear
hes sin
e 1977 have had negative results.NOTES[a℄ A dis
ussion of the de�nition of the top quark mass in these measure-ments 
an be found in the review \The Top Quark."[b℄ Based on published top mass measurements using data from TevatronRun-I and Run-II and LHC at √s = 7 TeV. In
luding the most re
ent un-published results from Tevatron Run-II, the Tevatron Ele
troweak Work-ing Group reports a top mass of 173.2 ± 0.9 GeV. See the note \TheTop Quark' in the Quark Parti
le Listings of this Review.[
 ℄ ℓ means e or µ de
ay mode, not the sum over them.[d ℄ Assumes lepton universality and W -de
ay a

eptan
e.[e℄ This limit is for �(t → γ q)/�(t → W b).[f ℄ This limit is for �(t → Z q)/�(t → W b).



37373737Meson SummaryTableLIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONS(S = C = B = 0)(S = C = B = 0)(S = C = B = 0)(S = C = B = 0)For I = 1 (π, b, ρ, a): ud , (uu−dd)/√2, du;for I = 0 (η, η′, h, h′, ω, φ, f , f ′): 
1(uu + d d) + 
2(s s)
π±π±π±π± IG (JP ) = 1−(0−)Mass m = 139.57018 ± 0.00035 MeV (S = 1.2)Mean life τ = (2.6033 ± 0.0005)× 10−8 s (S = 1.2)
τ = 7.8045 m

π± → ℓ±ν γ form fa
torsπ± → ℓ±ν γ form fa
torsπ± → ℓ±ν γ form fa
torsπ± → ℓ±ν γ form fa
tors [a℄FV = 0.0254 ± 0.0017FA = 0.0119 ± 0.0001FV slope parameter a = 0.10 ± 0.06R = 0.059+0.009
−0.008

π− modes are 
harge 
onjugates of the modes below.For de
ay limits to parti
les whi
h are not established, see the se
tion onSear
hes for Axions and Other Very Light Bosons. p
π+ DECAY MODESπ+ DECAY MODESπ+ DECAY MODESπ+ DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
µ+νµ [b℄ (99.98770±0.00004) % 30

µ+νµ γ [
℄ ( 2.00 ±0.25 )× 10−4 30e+νe [b℄ ( 1.230 ±0.004 )× 10−4 70e+νe γ [
℄ ( 7.39 ±0.05 )× 10−7 70e+νe π0 ( 1.036 ±0.006 )× 10−8 4e+νe e+ e− ( 3.2 ±0.5 )× 10−9 70e+νe ν ν < 5 × 10−6 90% 70Lepton Family number (LF) or Lepton number (L) violating modesLepton Family number (LF) or Lepton number (L) violating modesLepton Family number (LF) or Lepton number (L) violating modesLepton Family number (LF) or Lepton number (L) violating modes
µ+νe L [d℄ < 1.5 × 10−3 90% 30
µ+νe LF [d℄ < 8.0 × 10−3 90% 30
µ− e+ e+ν LF < 1.6 × 10−6 90% 30
π0π0π0π0 IG (JPC ) = 1−(0−+)Mass m = 134.9766 ± 0.0006 MeV (S = 1.1)mπ± − mπ0 = 4.5936 ± 0.0005 MeVMean life τ = (8.52 ± 0.18)× 10−17 s (S = 1.2)
τ = 25.5 nmFor de
ay limits to parti
les whi
h are not established, see the appropriateSear
h se
tions (A0 (axion) and Other Light Boson (X0) Sear
hes, et
.).S
ale fa
tor/ p

π0 DECAY MODESπ0 DECAY MODESπ0 DECAY MODESπ0 DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)2γ (98.823±0.034) % S=1.5 67e+ e− γ ( 1.174±0.035) % S=1.5 67
γ positronium ( 1.82 ±0.29 )× 10−9 67e+ e+ e− e− ( 3.34 ±0.16 )× 10−5 67e+ e− ( 6.46 ±0.33 )× 10−8 674γ < 2 × 10−8 CL=90% 67

ν ν [e℄ < 2.7 × 10−7 CL=90% 67
νe νe < 1.7 × 10−6 CL=90% 67
νµ νµ < 1.6 × 10−6 CL=90% 67
ντ ντ < 2.1 × 10−6 CL=90% 67
γ ν ν < 6 × 10−4 CL=90% 67Charge 
onjugation (C ) or Lepton Family number (LF ) violating modesCharge 
onjugation (C ) or Lepton Family number (LF ) violating modesCharge 
onjugation (C ) or Lepton Family number (LF ) violating modesCharge 
onjugation (C ) or Lepton Family number (LF ) violating modes3γ C < 3.1 × 10−8 CL=90% 67

µ+ e− LF < 3.8 × 10−10CL=90% 26
µ− e+ LF < 3.4 × 10−9 CL=90% 26
µ+ e− + µ− e+ LF < 3.6 × 10−10CL=90% 26
ηηηη IG (JPC ) = 0+(0−+)Mass m = 547.862 ± 0.017 MeVFull width � = 1.31 ± 0.05 keV

C-non
onserving de
ay parametersC-non
onserving de
ay parametersC-non
onserving de
ay parametersC-non
onserving de
ay parameters
π+π−π0 left-right asymmetry = (0.09+0.11

−0.12)× 10−2
π+π−π0 sextant asymmetry = (0.12+0.10

−0.11)× 10−2
π+π−π0 quadrant asymmetry = (−0.09 ± 0.09)× 10−2
π+π−γ left-right asymmetry = (0.9 ± 0.4)× 10−2
π+π−γ β (D-wave) = −0.02 ± 0.07 (S = 1.3)CP-non
onserving de
ay parametersCP-non
onserving de
ay parametersCP-non
onserving de
ay parametersCP-non
onserving de
ay parameters
π+π− e+ e− de
ay-plane asymmetry Aφ = (−0.6 ± 3.1)× 10−2Dalitz plot parameterDalitz plot parameterDalitz plot parameterDalitz plot parameter
π0π0π0 α = −0.0318 ± 0.0015 S
ale fa
tor/ p

η DECAY MODESη DECAY MODESη DECAY MODESη DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)Neutral modesNeutral modesNeutral modesNeutral modesneutral modes (72.12±0.34) % S=1.2 {2γ (39.41±0.20) % S=1.1 2743π0 (32.68±0.23) % S=1.1 179
π0 2γ ( 2.56±0.22) × 10−4 2572π0 2γ < 1.2 × 10−3 CL=90% 2384γ < 2.8 × 10−4 CL=90% 274invisible < 1.0 × 10−4 CL=90% {Charged modesCharged modesCharged modesCharged modes
harged modes (28.10±0.34) % S=1.2 {
π+π−π0 (22.92±0.28) % S=1.2 174
π+π−γ ( 4.22±0.08) % S=1.1 236e+ e− γ ( 6.9 ±0.4 ) × 10−3 S=1.3 274
µ+µ− γ ( 3.1 ±0.4 ) × 10−4 253e+ e− < 2.3 × 10−6 CL=90% 274
µ+µ− ( 5.8 ±0.8 ) × 10−6 2532e+2e− ( 2.40±0.22) × 10−5 274
π+π− e+ e− (γ) ( 2.68±0.11) × 10−4 235e+ e−µ+µ− < 1.6 × 10−4 CL=90% 2532µ+2µ− < 3.6 × 10−4 CL=90% 161
µ+µ−π+π− < 3.6 × 10−4 CL=90% 113
π+ e−νe+ 
.
. < 1.7 × 10−4 CL=90% 256
π+π−2γ < 2.1 × 10−3 236
π+π−π0 γ < 5 × 10−4 CL=90% 174
π0µ+µ− γ < 3 × 10−6 CL=90% 210Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation × Parity (CP), orCharge 
onjugation × Parity (CP), orCharge 
onjugation × Parity (CP), orCharge 
onjugation × Parity (CP), orLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modes

π0 γ C < 9 × 10−5 CL=90% 257
π+π− P,CP < 1.3 × 10−5 CL=90% 2362π0 P,CP < 3.5 × 10−4 CL=90% 2382π0 γ C < 5 × 10−4 CL=90% 2383π0 γ C < 6 × 10−5 CL=90% 1793γ C < 1.6 × 10−5 CL=90% 2744π0 P,CP < 6.9 × 10−7 CL=90% 40
π0 e+ e− C [f ℄ < 4 × 10−5 CL=90% 257
π0µ+µ− C [f ℄ < 5 × 10−6 CL=90% 210
µ+ e− + µ− e+ LF < 6 × 10−6 CL=90% 264f0(500) or σf0(500) or σf0(500) or σf0(500) or σ

[g ℄was f0(600)was f0(600)was f0(600)was f0(600) IG (JPC ) = 0+(0 + +)Mass m = (400{550) MeVFull width � = (400{700) MeVf0(500) DECAY MODESf0(500) DECAY MODESf0(500) DECAY MODESf0(500) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ππ dominant {
γ γ seen {
ρ(770)ρ(770)ρ(770)ρ(770) [h℄ IG (JPC ) = 1+(1−−)Mass m = 775.26 ± 0.25 MeVFull width � = 149.1 ± 0.8 MeV�ee = 7.04 ± 0.06 keV



38383838Meson SummaryTable S
ale fa
tor/ p
ρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
ππ ∼ 100 % 363

ρ(770)± de
aysρ(770)± de
aysρ(770)± de
aysρ(770)± de
ays
π± γ ( 4.5 ±0.5 )× 10−4 S=2.2 375
π± η < 6 × 10−3 CL=84% 152
π±π+π−π0 < 2.0 × 10−3 CL=84% 254

ρ(770)0 de
aysρ(770)0 de
aysρ(770)0 de
aysρ(770)0 de
ays
π+π−γ ( 9.9 ±1.6 )× 10−3 362
π0 γ ( 6.0 ±0.8 )× 10−4 376
ηγ ( 3.00±0.20 )× 10−4 194
π0π0 γ ( 4.5 ±0.8 )× 10−5 363
µ+µ− [i ℄ ( 4.55±0.28 )× 10−5 373e+ e− [i ℄ ( 4.72±0.05 )× 10−5 388
π+π−π0 ( 1.01+0.54

−0.36±0.34) × 10−4 323
π+π−π+π− ( 1.8 ±0.9 )× 10−5 251
π+π−π0π0 ( 1.6 ±0.8 )× 10−5 257
π0 e+ e− < 1.2 × 10−5 CL=90% 376
ω(782)ω(782)ω(782)ω(782) IG (JPC ) = 0−(1−−)Mass m = 782.65 ± 0.12 MeV (S = 1.9)Full width � = 8.49 ± 0.08 MeV�ee = 0.60 ± 0.02 keV S
ale fa
tor/ p

ω(782) DECAY MODESω(782) DECAY MODESω(782) DECAY MODESω(782) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
π+π−π0 (89.2 ±0.7 ) % 327
π0 γ ( 8.28±0.28) % S=2.1 380
π+π− ( 1.53+0.11

−0.13) % S=1.2 366neutrals (ex
ludingπ0 γ ) ( 8 +8
−5 )× 10−3 S=1.1 {

ηγ ( 4.6 ±0.4 ) × 10−4 S=1.1 200
π0 e+ e− ( 7.7 ±0.6 ) × 10−4 380
π0µ+µ− ( 1.3 ±0.4 ) × 10−4 S=2.1 349e+ e− ( 7.28±0.14) × 10−5 S=1.3 391
π+π−π0π0 < 2 × 10−4 CL=90% 262
π+π−γ < 3.6 × 10−3 CL=95% 366
π+π−π+π− < 1 × 10−3 CL=90% 256
π0π0 γ ( 6.6 ±1.1 ) × 10−5 367
ηπ0 γ < 3.3 × 10−5 CL=90% 162
µ+µ− ( 9.0 ±3.1 ) × 10−5 3773γ < 1.9 × 10−4 CL=95% 391Charge 
onjugation (C ) violating modesCharge 
onjugation (C ) violating modesCharge 
onjugation (C ) violating modesCharge 
onjugation (C ) violating modes
ηπ0 C < 2.1 × 10−4 CL=90% 1622π0 C < 2.1 × 10−4 CL=90% 3673π0 C < 2.3 × 10−4 CL=90% 330
η′(958)η′(958)η′(958)η′(958) IG (JPC ) = 0+(0−+)Mass m = 957.78 ± 0.06 MeVFull width � = 0.197 ± 0.009 MeV p

η′(958) DECAY MODESη′(958) DECAY MODESη′(958) DECAY MODESη′(958) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
π+π−η (42.9 ±0.7 ) % 232
ρ0 γ (in
luding non-resonant

π+ π− γ) (29.1 ±0.5 ) % 165
π0π0 η (22.3 ±0.8 ) % 239
ωγ ( 2.62±0.13) % 159
ω e+ e− ( 2.0 ±0.4 ) × 10−4 159
γ γ ( 2.21±0.08) % 4793π0 ( 2.20±0.20) × 10−3 430
µ+µ− γ ( 1.08±0.27) × 10−4 467
π+π−µ+µ− < 2.9 × 10−5 90% 401
π+π−π0 ( 3.82±0.35) × 10−3 428
π0 ρ0 < 4 % 90% 1112(π+π−) ( 8.5 ±0.9 ) × 10−5 372
π+π−2π0 ( 1.8 ±0.4 ) × 10−4 3762(π+π−) neutrals < 1 % 95% {2(π+π−)π0 < 1.9 × 10−3 90% 2982(π+π−)2π0 < 1 % 95% 197

3(π+π−) < 3.1 × 10−5 90% 189
π+π− e+ e− ( 2.4 +1.3

−1.0 )× 10−3 458
π+ e−νe+ 
.
. < 2.1 × 10−4 90% 469
γ e+ e− ( 4.70±0.30) × 10−4 479
π0 γ γ < 8 × 10−4 90% 4694π0 < 3.2 × 10−4 90% 380e+ e− < 5.6 × 10−9 90% 479invisible < 5 × 10−4 90% {Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Lepton family number (LF ) violating modesLepton family number (LF ) violating modesLepton family number (LF ) violating modesLepton family number (LF ) violating modes
π+π− P,CP < 6 × 10−5 90% 458
π0π0 P,CP < 4 × 10−4 90% 459
π0 e+ e− C [f ℄ < 1.4 × 10−3 90% 469
ηe+ e− C [f ℄ < 2.4 × 10−3 90% 3223γ C < 1.0 × 10−4 90% 479
µ+µ−π0 C [f ℄ < 6.0 × 10−5 90% 445
µ+µ− η C [f ℄ < 1.5 × 10−5 90% 273eµ LF < 4.7 × 10−4 90% 473f0(980)f0(980)f0(980)f0(980) [j℄ IG (JPC ) = 0+(0 + +)Mass m = 990 ± 20 MeVFull width � = 10 to 100 MeVf0(980) DECAY MODESf0(980) DECAY MODESf0(980) DECAY MODESf0(980) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ππ dominant 476K K seen 36
γ γ seen 495a0(980)a0(980)a0(980)a0(980) [j℄ IG (JPC ) = 1−(0 + +)Mass m = 980 ± 20 MeVFull width � = 50 to 100 MeVa0(980) DECAY MODESa0(980) DECAY MODESa0(980) DECAY MODESa0(980) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ηπ dominant 319K K seen †
γ γ seen 490
φ(1020)φ(1020)φ(1020)φ(1020) IG (JPC ) = 0−(1−−)Mass m = 1019.461 ± 0.019 MeV (S = 1.1)Full width � = 4.266 ± 0.031 MeV (S = 1.2)S
ale fa
tor/ p

φ(1020) DECAY MODESφ(1020) DECAY MODESφ(1020) DECAY MODESφ(1020) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)K+K− (48.9 ±0.5 ) % S=1.1 127K0LK0S (34.2 ±0.4 ) % S=1.1 110
ρπ + π+π−π0 (15.32 ±0.32 ) % S=1.1 {
ηγ ( 1.309±0.024) % S=1.2 363
π0 γ ( 1.27 ±0.06 )× 10−3 501
ℓ+ ℓ− | 510e+ e− ( 2.954±0.030)× 10−4 S=1.1 510

µ+µ− ( 2.87 ±0.19 )× 10−4 499
ηe+ e− ( 1.08 ±0.04 )× 10−4 363
π+π− ( 7.4 ±1.3 )× 10−5 490
ωπ0 ( 4.7 ±0.5 )× 10−5 172
ωγ < 5 % CL=84% 209
ργ < 1.2 × 10−5 CL=90% 215
π+π−γ ( 4.1 ±1.3 )× 10−5 490f0(980)γ ( 3.22 ±0.19 )× 10−4 S=1.1 29
π0π0 γ ( 1.13 ±0.06 )× 10−4 492
π+π−π+π− ( 4.0 +2.8

−2.2 )× 10−6 410
π+π+π−π−π0 < 4.6 × 10−6 CL=90% 342
π0 e+ e− ( 1.12 ±0.28 )× 10−5 501
π0 ηγ ( 7.27 ±0.30 )× 10−5 S=1.5 346a0(980)γ ( 7.6 ±0.6 )× 10−5 39K0K0 γ < 1.9 × 10−8 CL=90% 110
η′(958)γ ( 6.25 ±0.21 )× 10−5 60
ηπ0π0 γ < 2 × 10−5 CL=90% 293
µ+µ− γ ( 1.4 ±0.5 )× 10−5 499



39393939Meson SummaryTable
ργ γ < 1.2 × 10−4 CL=90% 215
ηπ+π− < 1.8 × 10−5 CL=90% 288
ηµ+µ− < 9.4 × 10−6 CL=90% 321
ηU → ηe+ e− < 1 × 10−6 CL=90% {Lepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modese±µ∓ LF < 2 × 10−6 CL=90% 504h1(1170)h1(1170)h1(1170)h1(1170) IG (JPC ) = 0−(1 +−)Mass m = 1170 ± 20 MeVFull width � = 360 ± 40 MeVh1(1170) DECAY MODESh1(1170) DECAY MODESh1(1170) DECAY MODESh1(1170) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ρπ seen 308b1(1235)b1(1235)b1(1235)b1(1235) IG (JPC ) = 1+(1 +−)Mass m = 1229.5 ± 3.2 MeV (S = 1.6)Full width � = 142 ± 9 MeV (S = 1.2) pb1(1235) DECAY MODESb1(1235) DECAY MODESb1(1235) DECAY MODESb1(1235) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
ωπ dominant 348[D/S amplitude ratio = 0.277 ± 0.027℄
π± γ ( 1.6±0.4)× 10−3 607
ηρ seen †
π+π+π−π0 < 50 % 84% 535K∗(892)±K∓ seen †(KK)±π0 < 8 % 90% 248K0S K0Lπ± < 6 % 90% 235K0S K0S π± < 2 % 90% 235
φπ < 1.5 % 84% 147a1(1260)a1(1260)a1(1260)a1(1260) [k℄ IG (JPC ) = 1−(1 + +)Mass m = 1230 ± 40 MeV [l℄Full width � = 250 to 600 MeVa1(1260) DECAY MODESa1(1260) DECAY MODESa1(1260) DECAY MODESa1(1260) DECAY MODES Fra
tion (�i /�) p (MeV/
)(ρπ)S−wave seen 353(ρπ)D−wave seen 353(ρ(1450)π )S−wave seen †(ρ(1450)π )D−wave seen †
σπ seen {f0(980)π not seen 179f0(1370)π seen †f2(1270)π seen †K K∗(892)+ 
.
. seen †
πγ seen 608f2(1270)f2(1270)f2(1270)f2(1270) IG (JPC ) = 0+(2 + +)Mass m = 1275.5 ± 0.8 MeVFull width � = 186.7+2.2

−2.5 MeV (S = 1.4) S
ale fa
tor/ pf2(1270) DECAY MODESf2(1270) DECAY MODESf2(1270) DECAY MODESf2(1270) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
ππ (84.2 +2.9

−0.9 ) % S=1.1 623
π+π−2π0 ( 7.7 +1.1

−3.2 ) % S=1.2 563K K ( 4.6 +0.5
−0.4 ) % S=2.7 4042π+2π− ( 2.8 ±0.4 ) % S=1.2 560

ηη ( 4.0 ±0.8 ) × 10−3 S=2.1 3264π0 ( 3.0 ±1.0 ) × 10−3 565
γ γ ( 1.42±0.24) × 10−5 S=1.4 638
ηππ < 8 × 10−3 CL=95% 478K0K−π++ 
.
. < 3.4 × 10−3 CL=95% 293e+ e− < 6 × 10−10 CL=90% 638f1(1285)f1(1285)f1(1285)f1(1285) IG (JPC ) = 0+(1 + +)Mass m = 1282.0 ± 0.5 MeV (S = 1.8)Full width � = 24.1 ± 1.0 MeV (S = 1.3)

S
ale fa
tor/ pf1(1285) DECAY MODESf1(1285) DECAY MODESf1(1285) DECAY MODESf1(1285) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)4π (33.1+ 2.1
− 1.8) % S=1.3 568

π0π0π+π− (22.0+ 1.4
− 1.2) % S=1.3 5662π+2π− (11.0+ 0.7
− 0.6) % S=1.3 563

ρ0π+π− (11.0+ 0.7
− 0.6) % S=1.3 336

ρ0 ρ0 seen †4π0 < 7 × 10−4 CL=90% 568
ηπ+π− (35 ±15 ) % 479
ηππ (52.4+ 1.9

− 2.2) % S=1.2 482a0(980)π [ignoring a0(980) →K K ℄ (36 ± 7 ) % 238
ηππ [ex
luding a0(980)π℄ (16 ± 7 ) % 482K K π ( 9.0± 0.4) % S=1.1 308K K∗(892) not seen †

π+π−π0 ( 3.0± 0.9)× 10−3 603
ρ±π∓ < 3.1 × 10−3 CL=95% 390
γ ρ0 ( 5.5± 1.3) % S=2.8 407
φγ ( 7.4± 2.6)× 10−4 236
η(1295)η(1295)η(1295)η(1295) IG (JPC ) = 0+(0−+)Mass m = 1294 ± 4 MeV (S = 1.6)Full width � = 55 ± 5 MeV

η(1295) DECAY MODESη(1295) DECAY MODESη(1295) DECAY MODESη(1295) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ηπ+π− seen 487a0(980)π seen 248
ηπ0π0 seen 490
η (ππ)S-wave seen {
π(1300)π(1300)π(1300)π(1300) IG (JPC ) = 1−(0−+)Mass m = 1300 ± 100 MeV [l℄Full width � = 200 to 600 MeV

π(1300) DECAY MODESπ(1300) DECAY MODESπ(1300) DECAY MODESπ(1300) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ρπ seen 404
π (ππ)S-wave seen {a2(1320)a2(1320)a2(1320)a2(1320) IG (JPC ) = 1−(2 + +)Mass m = 1318.3+0.5

−0.6 MeV (S = 1.2)Full width � = 107 ± 5 MeV [l℄ S
ale fa
tor/ pa2(1320) DECAY MODESa2(1320) DECAY MODESa2(1320) DECAY MODESa2(1320) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)3π (70.1 ±2.7 ) % S=1.2 624
ηπ (14.5 ±1.2 ) % 535
ωππ (10.6 ±3.2 ) % S=1.3 366K K ( 4.9 ±0.8 ) % 437
η′(958)π ( 5.5 ±0.9 ) × 10−3 288
π± γ ( 2.91±0.27) × 10−3 652
γ γ ( 9.4 ±0.7 ) × 10−6 659e+ e− < 5 × 10−9 CL=90% 659f0(1370)f0(1370)f0(1370)f0(1370) [j℄ IG (JPC ) = 0+(0 + +)Mass m = 1200 to 1500 MeVFull width � = 200 to 500 MeV



40404040Meson SummaryTablef0(1370) DECAY MODESf0(1370) DECAY MODESf0(1370) DECAY MODESf0(1370) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ππ seen 6724π seen 6174π0 seen 6172π+2π− seen 612

π+π−2π0 seen 615
ρρ dominant †2(ππ)S-wave seen {
π(1300)π seen †a1(1260)π seen 35

ηη seen 411K K seen 475K K nπ not seen †6π not seen 508
ωω not seen †

γ γ seen 685e+ e− not seen 685
π1(1400)π1(1400)π1(1400)π1(1400) [n℄ IG (JPC ) = 1−(1−+)Mass m = 1354 ± 25 MeV (S = 1.8)Full width � = 330 ± 35 MeV

π1(1400) DECAY MODESπ1(1400) DECAY MODESπ1(1400) DECAY MODESπ1(1400) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ηπ0 seen 557
ηπ− seen 556
η(1405)η(1405)η(1405)η(1405) [o℄ IG (JPC ) = 0+(0−+)Mass m = 1408.8 ± 1.8 MeV [l℄ (S = 2.1)Full width � = 51.0 ± 2.9 MeV [l℄ (S = 1.8) p

η(1405) DECAY MODESη(1405) DECAY MODESη(1405) DECAY MODESη(1405) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)K K π seen 424
ηππ seen 562a0(980)π seen 345

η (ππ)S-wave seen {f0(980)η seen †4π seen 639
ρρ <58 % 99.85% †

ρ0 γ seen 491K∗(892)K seen 123f1(1420)f1(1420)f1(1420)f1(1420) [p℄ IG (JPC ) = 0+(1 + +)Mass m = 1426.4 ± 0.9 MeV (S = 1.1)Full width � = 54.9 ± 2.6 MeVf1(1420) DECAY MODESf1(1420) DECAY MODESf1(1420) DECAY MODESf1(1420) DECAY MODES Fra
tion (�i /�) p (MeV/
)K K π dominant 438K K∗(892)+ 
.
. dominant 163
ηππ possibly seen 573
φγ seen 349
ω(1420)ω(1420)ω(1420)ω(1420) [q℄ IG (JPC ) = 0−(1−−)Mass m (1400{1450) MeVFull width � (180{250) MeV

ω(1420) DECAY MODESω(1420) DECAY MODESω(1420) DECAY MODESω(1420) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ρπ dominant 486
ωππ seen 444b1(1235)π seen 125e+ e− seen 710a0(1450)a0(1450)a0(1450)a0(1450) [j℄ IG (JPC ) = 1−(0 + +)Mass m = 1474 ± 19 MeVFull width � = 265 ± 13 MeV

a0(1450) DECAY MODESa0(1450) DECAY MODESa0(1450) DECAY MODESa0(1450) DECAY MODES Fra
tion (�i /�) p (MeV/
)
πη seen 627
πη′(958) seen 410K K seen 547
ωππ seen 484a0(980)ππ seen 342
γ γ seen 737
ρ(1450)ρ(1450)ρ(1450)ρ(1450) [r ℄ IG (JPC ) = 1+(1−−)Mass m = 1465 ± 25 MeV [l℄Full width � = 400 ± 60 MeV [l℄

ρ(1450) DECAY MODESρ(1450) DECAY MODESρ(1450) DECAY MODESρ(1450) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ππ seen 7204π seen 669e+ e− seen 732
ηρ seen 311a2(1320)π not seen 54K K not seen 541K K∗(892)+ 
.
. possibly seen 229
ηγ seen 630f0(500)γ not seen {f0(980)γ not seen 398f0(1370)γ not seen 92f2(1270)γ not seen 177
η(1475)η(1475)η(1475)η(1475) [o℄ IG (JPC ) = 0+(0−+)Mass m = 1476 ± 4 MeV (S = 1.3)Full width � = 85 ± 9 MeV (S = 1.5)

η(1475) DECAY MODESη(1475) DECAY MODESη(1475) DECAY MODESη(1475) DECAY MODES Fra
tion (�i /�) p (MeV/
)K K π dominant 477K K∗(892)+ 
.
. seen 245a0(980)π seen 396
γ γ seen 738K0S K0S η possibly seen †f0(1500)f0(1500)f0(1500)f0(1500) [n℄ IG (JPC ) = 0+(0 + +)Mass m = 1504 ± 6 MeV (S = 1.3)Full width � = 109 ± 7 MeV pf0(1500) DECAY MODESf0(1500) DECAY MODESf0(1500) DECAY MODESf0(1500) DECAY MODES Fra
tion (�i /�) S
ale fa
tor (MeV/
)
ππ (34.9±2.3) % 1.2 740

π+π− seen 7392π0 seen 7404π (49.5±3.3) % 1.2 6914π0 seen 6912π+2π− seen 6862(ππ)S-wave seen {
ρρ seen †
π(1300)π seen 143a1(1260)π seen 217

ηη ( 5.1±0.9) % 1.4 515
ηη′(958) ( 1.9±0.8) % 1.7 †K K ( 8.6±1.0) % 1.1 568
γ γ not seen 752f ′2(1525)f ′2(1525)f ′2(1525)f ′2(1525) IG (JPC ) = 0+(2 + +)Mass m = 1525 ± 5 MeV [l℄Full width � = 73+6

−5 MeV [l℄



41414141Meson SummaryTablef ′2(1525) DECAY MODESf ′2(1525) DECAY MODESf ′2(1525) DECAY MODESf ′2(1525) DECAY MODES Fra
tion (�i /�) p (MeV/
)K K (88.7 ±2.2 ) % 581
ηη (10.4 ±2.2 ) % 530
ππ ( 8.2 ±1.5 )× 10−3 750
γ γ ( 1.10±0.14)× 10−6 763
π1(1600)π1(1600)π1(1600)π1(1600) [n℄ IG (JPC ) = 1−(1−+)Mass m = 1662+8

−9 MeVFull width � = 241 ± 40 MeV (S = 1.4)
π1(1600) DECAY MODESπ1(1600) DECAY MODESπ1(1600) DECAY MODESπ1(1600) DECAY MODES Fra
tion (�i /�) p (MeV/
)
πππ not seen 803

ρ0π− not seen 641f2(1270)π− not seen 318b1(1235)π seen 357
η′(958)π− seen 543f1(1285)π seen 314
η2(1645)η2(1645)η2(1645)η2(1645) IG (JPC ) = 0+(2−+)Mass m = 1617 ± 5 MeVFull width � = 181 ± 11 MeV

η2(1645) DECAY MODESη2(1645) DECAY MODESη2(1645) DECAY MODESη2(1645) DECAY MODES Fra
tion (�i /�) p (MeV/
)a2(1320)π seen 242K K π seen 580K∗K seen 404
ηπ+π− seen 685a0(980)π seen 499f2(1270)η not seen †

ω(1650)ω(1650)ω(1650)ω(1650) [s℄ IG (JPC ) = 0−(1−−)Mass m = 1670 ± 30 MeVFull width � = 315 ± 35 MeV
ω(1650) DECAY MODESω(1650) DECAY MODESω(1650) DECAY MODESω(1650) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ρπ seen 647
ωππ seen 617
ωη seen 500e+ e− seen 835
ω3(1670)ω3(1670)ω3(1670)ω3(1670) IG (JPC ) = 0−(3−−)Mass m = 1667 ± 4 MeVFull width � = 168 ± 10 MeV [l℄

ω3(1670) DECAY MODESω3(1670) DECAY MODESω3(1670) DECAY MODESω3(1670) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ρπ seen 645
ωππ seen 615b1(1235)π possibly seen 361
π2(1670)π2(1670)π2(1670)π2(1670) IG (JPC ) = 1−(2−+)Mass m = 1672.2 ± 3.0 MeV [l℄ (S = 1.4)Full width � = 260 ± 9 MeV [l℄ (S = 1.2)

p
π2(1670) DECAY MODESπ2(1670) DECAY MODESπ2(1670) DECAY MODESπ2(1670) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)3π (95.8±1.4) % 809f2(1270)π (56.3±3.2) % 328

ρπ (31 ±4 ) % 648
σπ (10.9±3.4) % {
π (ππ)S-wave ( 8.7±3.4) % {K K∗(892)+ 
.
. ( 4.2±1.4) % 455

ωρ ( 2.7±1.1) % 304
π± γ ( 7.0±1.1)× 10−4 830
γ γ < 2.8 × 10−7 90% 836
ρ(1450)π < 3.6 × 10−3 97.7% 147b1(1235)π < 1.9 × 10−3 97.7% 365f1(1285)π possibly seen 323a2(1320)π not seen 292
φ(1680)φ(1680)φ(1680)φ(1680) IG (JPC ) = 0−(1−−)Mass m = 1680 ± 20 MeV [l℄Full width � = 150 ± 50 MeV [l℄

φ(1680) DECAY MODESφ(1680) DECAY MODESφ(1680) DECAY MODESφ(1680) DECAY MODES Fra
tion (�i /�) p (MeV/
)K K∗(892)+ 
.
. dominant 462K0S K π seen 621K K seen 680e+ e− seen 840
ωππ not seen 623K+K−π+π− seen 544
ηφ seen 290
ηγ seen 751
ρ3(1690)ρ3(1690)ρ3(1690)ρ3(1690) IG (JPC ) = 1+(3−−)Mass m = 1688.8 ± 2.1 MeV [l℄Full width � = 161 ± 10 MeV [l℄ (S = 1.5) p

ρ3(1690) DECAY MODESρ3(1690) DECAY MODESρ3(1690) DECAY MODESρ3(1690) DECAY MODES Fra
tion (�i /�) S
ale fa
tor (MeV/
)4π (71.1 ± 1.9 ) % 790
π±π+π−π0 (67 ±22 ) % 787
ωπ (16 ± 6 ) % 655

ππ (23.6 ± 1.3 ) % 834K K π ( 3.8 ± 1.2 ) % 629K K ( 1.58± 0.26) % 1.2 685
ηπ+π− seen 727
ρ(770)η seen 520
ππρ seen 633Ex
luding 2ρ and a2(1320)π.a2(1320)π seen 307
ρρ seen 335
ρ(1700)ρ(1700)ρ(1700)ρ(1700) [r ℄ IG (JPC ) = 1+(1−−)Mass m = 1720 ± 20 MeV [l℄ (ηρ0 and π+π− modes)Full width � = 250 ± 100 MeV [l℄ (ηρ0 and π+π− modes)

ρ(1700) DECAY MODESρ(1700) DECAY MODESρ(1700) DECAY MODESρ(1700) DECAY MODES Fra
tion (�i /�) p (MeV/
)2(π+π−) large 803
ρππ dominant 653

ρ0π+π− large 651
ρ±π∓π0 large 652a1(1260)π seen 404h1(1170)π seen 447
π(1300)π seen 349
ρρ seen 372

π+π− seen 849
ππ seen 849K K∗(892)+ 
.
. seen 496
ηρ seen 545a2(1320)π not seen 334K K seen 704e+ e− seen 860
π0ω seen 674



42424242Meson SummaryTablef0(1710)f0(1710)f0(1710)f0(1710) [t℄ IG (JPC ) = 0+(0 + +)Mass m = 1723+6
−5 MeV (S = 1.6)Full width � = 139 ± 8 MeV (S = 1.1)f0(1710) DECAY MODESf0(1710) DECAY MODESf0(1710) DECAY MODESf0(1710) DECAY MODES Fra
tion (�i /�) p (MeV/
)K K seen 706

ηη seen 665
ππ seen 851
ωω seen 360
π(1800)π(1800)π(1800)π(1800) IG (JPC ) = 1−(0−+)Mass m = 1812 ± 12 MeV (S = 2.3)Full width � = 208 ± 12 MeV

π(1800) DECAY MODESπ(1800) DECAY MODESπ(1800) DECAY MODESπ(1800) DECAY MODES Fra
tion (�i /�) p (MeV/
)
π+π−π− seen 879f0(500)π− seen {f0(980)π− seen 625f0(1370)π− seen 368f0(1500)π− not seen 250

ρπ− not seen 732
ηηπ− seen 661a0(980)η seen 473a2(1320)η not seen †f2(1270)π not seen 442f0(1370)π− not seen 368f0(1500)π− seen 250
ηη′(958)π− seen 375K∗0(1430)K− seen †K∗(892)K− not seen 570
φ3(1850)φ3(1850)φ3(1850)φ3(1850) IG (JPC ) = 0−(3−−)Mass m = 1854 ± 7 MeVFull width � = 87+28

−23 MeV (S = 1.2)
φ3(1850) DECAY MODESφ3(1850) DECAY MODESφ3(1850) DECAY MODESφ3(1850) DECAY MODES Fra
tion (�i /�) p (MeV/
)K K seen 785K K∗(892)+ 
.
. seen 602
π2(1880)π2(1880)π2(1880)π2(1880) IG (JPC ) = 1−(2−+)Mass m = 1895 ± 16 MeVFull width � = 235 ± 34 MeVf2(1950)f2(1950)f2(1950)f2(1950) IG (JPC ) = 0+(2 + +)Mass m = 1944 ± 12 MeV (S = 1.5)Full width � = 472 ± 18 MeVf2(1950) DECAY MODESf2(1950) DECAY MODESf2(1950) DECAY MODESf2(1950) DECAY MODES Fra
tion (�i /�) p (MeV/
)K∗(892)K∗(892) seen 387
π+π− seen 962
π0π0 seen 9634π seen 925

ηη seen 803K K seen 837
γ γ seen 972pp seen 254f2(2010)f2(2010)f2(2010)f2(2010) IG (JPC ) = 0+(2 + +)Mass m = 2011+60

−80 MeVFull width � = 202 ± 60 MeV

f2(2010) DECAY MODESf2(2010) DECAY MODESf2(2010) DECAY MODESf2(2010) DECAY MODES Fra
tion (�i /�) p (MeV/
)
φφ seen †K K seen 876a4(2040)a4(2040)a4(2040)a4(2040) IG (JPC ) = 1−(4 + +)Mass m = 1995+10

− 8 MeV (S = 1.1)Full width � = 257+25
−23 MeV (S = 1.3)a4(2040) DECAY MODESa4(2040) DECAY MODESa4(2040) DECAY MODESa4(2040) DECAY MODES Fra
tion (�i /�) p (MeV/
)K K seen 867

π+π−π0 seen 973
ρπ seen 841f2(1270)π seen 579

ωπ−π0 seen 818
ωρ seen 623

ηπ seen 917
η′(958)π seen 760f4(2050)f4(2050)f4(2050)f4(2050) IG (JPC ) = 0+(4 + +)Mass m = 2018 ± 11 MeV (S = 2.1)Full width � = 237 ± 18 MeV (S = 1.9)f4(2050) DECAY MODESf4(2050) DECAY MODESf4(2050) DECAY MODESf4(2050) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ωω seen 637
ππ (17.0±1.5) % 1000K K ( 6.8+3.4

−1.8)× 10−3 880
ηη ( 2.1±0.8)× 10−3 8484π0 < 1.2 % 964a2(1320)π seen 567
φ(2170)φ(2170)φ(2170)φ(2170) IG (JPC ) = 0−(1−−)Mass m = 2189 ± 11 MeV (S = 1.8)Full width � = 79 ± 14 MeV

φ(2170) DECAY MODESφ(2170) DECAY MODESφ(2170) DECAY MODESφ(2170) DECAY MODES Fra
tion (�i /�) p (MeV/
)e+ e− seen 1095
φ f0(980) seen 434K+K− f0(980) →K+K−π+π−

seen {K+K− f0(980) → K+K−π0π0 seen {K∗0K±π∓ not seen 780K∗(892)0K∗(892)0 not seen 635f2(2300)f2(2300)f2(2300)f2(2300) IG (JPC ) = 0+(2 + +)Mass m = 2297 ± 28 MeVFull width � = 149 ± 40 MeVf2(2300) DECAY MODESf2(2300) DECAY MODESf2(2300) DECAY MODESf2(2300) DECAY MODES Fra
tion (�i /�) p (MeV/
)
φφ seen 529K K seen 1037
γ γ seen 1149f2(2340)f2(2340)f2(2340)f2(2340) IG (JPC ) = 0+(2 + +)Mass m = 2345+50

−40 MeVFull width � = 322+70
−60 MeVf2(2340) DECAY MODESf2(2340) DECAY MODESf2(2340) DECAY MODESf2(2340) DECAY MODES Fra
tion (�i /�) p (MeV/
)

φφ seen 580
ηη seen 1037



43434343Meson SummaryTableSTRANGEMESONSSTRANGEMESONSSTRANGEMESONSSTRANGEMESONS(S= ±1,C=B=0)(S= ±1,C=B=0)(S= ±1,C=B=0)(S= ±1,C=B=0)K+ = us , K0 = ds , K0 = d s, K− = u s, similarly for K∗'sK±K±K±K± I (JP ) = 12 (0−)Mass m = 493.677 ± 0.016 MeV [u℄ (S = 2.8)Mean life τ = (1.2380 ± 0.0020)× 10−8 s (S = 1.8)
τ = 3.711 mCPT violation parameters (� = rate di�eren
e/sum)CPT violation parameters (� = rate di�eren
e/sum)CPT violation parameters (� = rate di�eren
e/sum)CPT violation parameters (� = rate di�eren
e/sum)�(K± → µ±νµ) = (−0.27 ± 0.21)%�(K± → π±π0) = (0.4 ± 0.6)% [v ℄CP violation parameters (� = rate di�eren
e/sum)CP violation parameters (� = rate di�eren
e/sum)CP violation parameters (� = rate di�eren
e/sum)CP violation parameters (� = rate di�eren
e/sum)�(K± → π± e+ e−) = (−2.2 ± 1.6)× 10−2�(K± → π±µ+µ−) = 0.010 ± 0.023�(K± → π±π0 γ) = (0.0 ± 1.2)× 10−3�(K± → π±π+π−) = (0.04 ± 0.06)%�(K± → π±π0π0) = (−0.02 ± 0.28)%T violation parametersT violation parametersT violation parametersT violation parametersK+ → π0µ+νµ PT = (−1.7 ± 2.5)× 10−3K+ → µ+νµ γ PT = (−0.6 ± 1.9)× 10−2K+ → π0µ+νµ Im(ξ) = −0.006 ± 0.008Slope parameter gSlope parameter gSlope parameter gSlope parameter g [x ℄(See Parti
le Listings for quadrati
 
oeÆ
ients and alternativeparametrization related to ππ s
attering)K± → π±π+π− g = −0.21134 ± 0.00017(g+ − g−) / (g+ + g−) = (−1.5± 2.2)×10−4K± → π±π0π0 g = 0.626 ± 0.007(g+ − g−) / (g+ + g−) = (1.8 ± 1.8)× 10−4K± de
ay form fa
torsK± de
ay form fa
torsK± de
ay form fa
torsK± de
ay form fa
tors [a,y ℄Assuming µ-e universality
λ+(K+

µ3) = λ+(K+e3) = (2.97 ± 0.05)× 10−2
λ0(K+

µ3) = (1.95 ± 0.12)× 10−2Not assuming µ-e universality
λ+(K+e3) = (2.98 ± 0.05)× 10−2
λ+(K+

µ3) = (2.96 ± 0.17)× 10−2
λ0(K+

µ3) = (1.96 ± 0.13)× 10−2Ke3 form fa
tor quadrati
 �t
λ'+ (K±e3) linear 
oe�. = (2.49 ± 0.17)× 10−2
λ′′+(K±e3) quadrati
 
oe�. = (0.19 ± 0.09)× 10−2K+e3 ∣

∣fS/f+∣

∣ = (−0.3+0.8
−0.7)× 10−2K+e3 ∣

∣fT /f+∣

∣ = (−1.2 ± 2.3)× 10−2K+
µ3 ∣

∣fS/f+∣

∣ = (0.2 ± 0.6)× 10−2K+
µ3 ∣

∣fT /f+∣

∣ = (−0.1 ± 0.7)× 10−2K+ → e+νe γ
∣

∣FA + FV ∣

∣ = 0.133 ± 0.008 (S = 1.3)K+ → µ+νµ γ
∣

∣FA + FV ∣

∣ = 0.165 ± 0.013K+ → e+νe γ
∣

∣FA − FV ∣

∣ < 0.49, CL = 90%K+ → µ+νµ γ
∣

∣FA − FV ∣

∣ = −0.24 to 0.04, CL = 90%Charge radiusCharge radiusCharge radiusCharge radius
〈r〉 = 0.560 ± 0.031 fmForward-ba
kward asymmetryForward-ba
kward asymmetryForward-ba
kward asymmetryForward-ba
kward asymmetryAFB(K±

πµµ) = �(cos(θK µ)>0)−�(cos(θK µ)<0)�(cos(θK µ)>0)+�(cos(θK µ)<0) < 2.3× 10−2, CL= 90%

K− modes are 
harge 
onjugates of the modes below. S
ale fa
tor/ pK+ DECAY MODESK+ DECAY MODESK+ DECAY MODESK+ DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)Leptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modese+νe ( 1.582±0.007)× 10−5 247
µ+νµ ( 63.56 ±0.11 ) % S=1.2 236
π0 e+ νe ( 5.07 ±0.04 ) % S=2.1 228Called K+e3.
π0µ+νµ ( 3.352±0.033) % S=1.9 215Called K+

µ3.
π0π0 e+ νe ( 2.55 ±0.04 )× 10−5 S=1.1 206
π+π− e+ νe ( 4.247±0.024)× 10−5 203
π+π−µ+ νµ ( 1.4 ±0.9 )× 10−5 151
π0π0π0 e+ νe < 3.5 × 10−6 CL=90% 135Hadroni
 modesHadroni
 modesHadroni
 modesHadroni
 modes
π+π0 ( 20.67 ±0.08 ) % S=1.2 205
π+π0π0 ( 1.760±0.023) % S=1.1 133
π+π+π− ( 5.583±0.024) % 125Leptoni
 and semileptoni
 modes with photonsLeptoni
 and semileptoni
 modes with photonsLeptoni
 and semileptoni
 modes with photonsLeptoni
 and semileptoni
 modes with photons
µ+νµ γ [z,aa℄ ( 6.2 ±0.8 )× 10−3 236
µ+νµ γ (SD+) [a,bb℄ ( 1.33 ±0.22 )× 10−5 {
µ+νµ γ (SD+INT) [a,bb℄ < 2.7 × 10−5 CL=90% {
µ+νµ γ (SD− + SD−INT) [a,bb℄ < 2.6 × 10−4 CL=90% {e+νe γ ( 9.4 ±0.4 )× 10−6 247
π0 e+ νe γ [z,aa℄ ( 2.56 ±0.16 )× 10−4 228
π0 e+ νe γ (SD) [a,bb℄ < 5.3 × 10−5 CL=90% 228
π0µ+νµ γ [z,aa℄ ( 1.25 ±0.25 )× 10−5 215
π0π0 e+ νe γ < 5 × 10−6 CL=90% 206Hadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairs
π+π0 γ (INT) (− 4.2 ±0.9 )× 10−6 {
π+π0 γ (DE) [z,

℄ ( 6.0 ±0.4 )× 10−6 205
π+π0π0 γ [z,aa℄ ( 7.6 +6.0

−3.0 )× 10−6 133
π+π+π− γ [z,aa℄ ( 1.04 ±0.31 )× 10−4 125
π+ γ γ [z ℄ ( 1.01 ±0.06 )× 10−6 227
π+ 3γ [z ℄ < 1.0 × 10−4 CL=90% 227
π+ e+ e− γ ( 1.19 ±0.13 )× 10−8 227Leptoni
 modes with ℓℓ pairsLeptoni
 modes with ℓℓ pairsLeptoni
 modes with ℓℓ pairsLeptoni
 modes with ℓℓ pairse+νe ν ν < 6 × 10−5 CL=90% 247
µ+νµ ν ν < 6.0 × 10−6 CL=90% 236e+νe e+ e− ( 2.48 ±0.20 )× 10−8 247
µ+νµ e+ e− ( 7.06 ±0.31 )× 10−8 236e+νe µ+µ− ( 1.7 ±0.5 )× 10−8 223
µ+νµ µ+µ− < 4.1 × 10−7 CL=90% 185Lepton family number (LF ), Lepton number (L), �S = �Q (SQ)Lepton family number (LF ), Lepton number (L), �S = �Q (SQ)Lepton family number (LF ), Lepton number (L), �S = �Q (SQ)Lepton family number (LF ), Lepton number (L), �S = �Q (SQ)violating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modes
π+π+ e− νe SQ < 1.3 × 10−8 CL=90% 203
π+π+µ− νµ SQ < 3.0 × 10−6 CL=95% 151
π+ e+ e− S1 ( 3.00 ±0.09 )× 10−7 227
π+µ+µ− S1 ( 9.4 ±0.6 )× 10−8 S=2.6 172
π+ ν ν S1 ( 1.7 ±1.1 )× 10−10 227
π+π0 ν ν S1 < 4.3 × 10−5 CL=90% 205
µ−ν e+ e+ LF < 2.1 × 10−8 CL=90% 236
µ+νe LF [d℄ < 4 × 10−3 CL=90% 236
π+µ+ e− LF < 1.3 × 10−11 CL=90% 214
π+µ− e+ LF < 5.2 × 10−10 CL=90% 214
π−µ+ e+ L < 5.0 × 10−10 CL=90% 214
π− e+ e+ L < 6.4 × 10−10 CL=90% 227
π−µ+µ+ L [d℄ < 1.1 × 10−9 CL=90% 172
µ+νe L [d℄ < 3.3 × 10−3 CL=90% 236
π0 e+ νe L < 3 × 10−3 CL=90% 228
π+ γ [dd℄ < 2.3 × 10−9 CL=90% 227K 0K 0K 0K 0 I (JP ) = 12 (0−)50% KS , 50% KLMass m = 497.611 ± 0.013 MeV (S = 1.2)mK0 − mK± = 3.934 ± 0.020 MeV (S = 1.6)Mean square 
harge radiusMean square 
harge radiusMean square 
harge radiusMean square 
harge radius

〈r2〉 = −0.077 ± 0.010 fm2



44444444Meson SummaryTableT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixing [y ℄Asymmetry AT in K0-K0 mixing = (6.6 ± 1.6)× 10−3CP-violation parametersCP-violation parametersCP-violation parametersCP-violation parametersRe(ǫ) = (1.596 ± 0.013)× 10−3CPT-violation parametersCPT-violation parametersCPT-violation parametersCPT-violation parameters [y ℄Re δ = (2.5 ± 2.3)× 10−4Im δ = (−1.5 ± 1.6)× 10−5Re(y), Ke3 parameter = (0.4 ± 2.5)× 10−3Re(x−), Ke3 parameter = (−2.9 ± 2.0)× 10−3
∣

∣mK0 − mK0∣∣ / maverage < 6× 10−19, CL = 90% [ee℄(�K0 − �K0)/maverage = (8 ± 8)× 10−18Tests of �S = �QTests of �S = �QTests of �S = �QTests of �S = �QRe(x+), Ke3 parameter = (−0.9 ± 3.0)× 10−3K 0SK 0SK 0SK 0S I (JP ) = 12 (0−)Mean life τ = (0.8954± 0.0004)×10−10 s (S = 1.1) Assum-ing CPTMean life τ = (0.89564 ± 0.00033) × 10−10 s Not assumingCPT
τ = 2.6844 
m Assuming CPTCP-violation parametersCP-violation parametersCP-violation parametersCP-violation parameters [� ℄Im(η+−0) = −0.002 ± 0.009Im(η000) = −0.001 ± 0.016
∣

∣η000∣∣ = ∣

∣A(K0S → 3π0)/A(K0L → 3π0)∣∣ < 0.0088, CL =90%CP asymmetry A in π+π− e+ e− = (−0.4 ± 0.8)%S
ale fa
tor/ pK0S DECAY MODESK0S DECAY MODESK0S DECAY MODESK0S DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)Hadroni
 modesHadroni
 modesHadroni
 modesHadroni
 modes
π0π0 (30.69±0.05) % 209
π+π− (69.20±0.05) % 206
π+π−π0 ( 3.5 +1.1

−0.9 )× 10−7 133Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs
π+π−γ [aa,gg ℄ ( 1.79±0.05) × 10−3 206
π+π− e+ e− ( 4.79±0.15) × 10−5 206
π0 γ γ [gg ℄ ( 4.9 ±1.8 ) × 10−8 230
γ γ ( 2.63±0.17) × 10−6 S=3.0 249Semileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modes
π± e∓νe [hh℄ ( 7.04±0.08) × 10−4 229CP violating (CP) and �S = 1 weak neutral 
urrent (S1) modesCP violating (CP) and �S = 1 weak neutral 
urrent (S1) modesCP violating (CP) and �S = 1 weak neutral 
urrent (S1) modesCP violating (CP) and �S = 1 weak neutral 
urrent (S1) modes3π0 CP < 2.6 × 10−8 CL=90% 139
µ+µ− S1 < 9 × 10−9 CL=90% 225e+ e− S1 < 9 × 10−9 CL=90% 249
π0 e+ e− S1 [gg ℄ ( 3.0 +1.5

−1.2 )× 10−9 230
π0µ+µ− S1 ( 2.9 +1.5

−1.2 )× 10−9 177K 0LK 0LK 0LK 0L I (JP ) = 12 (0−)mKL − mKS= (0.5293 ± 0.0009)× 1010 �h s−1 (S = 1.3) Assuming CPT= (3.484 ± 0.006)× 10−12 MeV Assuming CPT= (0.5289 ± 0.0010)× 1010 �h s−1 Not assuming CPTMean life τ = (5.116 ± 0.021)× 10−8 s (S = 1.1)
τ = 15.34 mSlope parametersSlope parametersSlope parametersSlope parameters [x ℄(See Parti
le Listings for other linear and quadrati
 
oeÆ
ients)K0L → π+π−π0: g = 0.678 ± 0.008 (S = 1.5)K0L → π+π−π0: h = 0.076 ± 0.006K0L → π+π−π0: k = 0.0099 ± 0.0015K0L → π0π0π0: h = (0.6 ± 1.2)× 10−3

KL de
ay form fa
torsKL de
ay form fa
torsKL de
ay form fa
torsKL de
ay form fa
tors [y ℄Linear parametrization assuming µ-e universality
λ+(K0

µ3) = λ+(K0e3) = (2.82 ± 0.04)× 10−2 (S = 1.1)
λ0(K0

µ3) = (1.38 ± 0.18)× 10−2 (S = 2.2)Quadrati
 parametrization assuming µ-e universality
λ′+(K0

µ3) = λ′+(K0e3) = (2.40 ± 0.12)× 10−2 (S = 1.2)
λ′′+(K0

µ3) = λ′′+(K0e3) = (0.20± 0.05)×10−2 (S = 1.2)
λ0(K0

µ3) = (1.16 ± 0.09)× 10−2 (S = 1.2)Pole parametrization assuming µ-e universality
Mµ

V (K0
µ3) = M e

V (K0e3) = 878 ± 6 MeV (S = 1.1)
Mµ

S (K0
µ3) = 1252 ± 90 MeV (S = 2.6)Dispersive parametrization assuming µ-e universality�+ = (0.251 ± 0.006)× 10−1 (S = 1.5)ln(C) = (1.75 ± 0.18)× 10−1 (S = 2.0)K0e3 ∣

∣fS/f+∣

∣ = (1.5+1.4
−1.6)× 10−2K0e3 ∣

∣fT /f+∣

∣ = (5+4
−5)× 10−2K0

µ3 ∣

∣fT /f+∣

∣ = (12 ± 12)× 10−2KL → ℓ+ ℓ−γ, KL → ℓ+ ℓ− ℓ′+ ℓ′−: αK∗ = −0.205 ±0.022 (S = 1.8)K0L → ℓ+ ℓ−γ, K0L → ℓ+ ℓ− ℓ′+ ℓ′−: αDIP = −1.69 ±0.08 (S = 1.7)KL → π+π− e+ e−: a1/a2 = −0.737 ± 0.014 GeV2KL → π0 2γ: aV = −0.43 ± 0.06 (S = 1.5)CP-violation parametersCP-violation parametersCP-violation parametersCP-violation parameters [� ℄AL = (0.332 ± 0.006)%
∣

∣η00∣∣ = (2.220 ± 0.011)× 10−3 (S = 1.8)
∣

∣η+−
∣

∣ = (2.232 ± 0.011)× 10−3 (S = 1.8)
∣

∣ǫ
∣

∣ = (2.228 ± 0.011)× 10−3 (S = 1.8)
∣

∣η00/η+−
∣

∣ = 0.9950 ± 0.0007 [ii ℄ (S = 1.6)Re(ǫ′/ǫ) = (1.66 ± 0.23)× 10−3 [ii ℄ (S = 1.6)Assuming CPT
φ+− = (43.51 ± 0.05)◦ (S = 1.2)
φ00 = (43.52 ± 0.05)◦ (S = 1.3)
φǫ=φSW = (43.52 ± 0.05)◦ (S = 1.2)Im(ǫ′/ǫ) = −(φ00 − φ+−)/3 = (−0.002 ± 0.005)◦ (S = 1.7)Not assuming CPT
φ+− = (43.4 ± 0.5)◦ (S = 1.2)
φ00 = (43.7 ± 0.6)◦ (S = 1.2)
φǫ = (43.5 ± 0.5)◦ (S = 1.3)CP asymmetry A in K0L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0L → e+ e− e+ e− = −0.19 ± 0.07
γCP from K0L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)j for K0L → π+π−π0 = 0.0012 ± 0.0008f for K0L → π+π−π0 = 0.004 ± 0.006
∣

∣η+−γ

∣

∣ = (2.35 ± 0.07)× 10−3
φ+−γ = (44 ± 4)◦
∣

∣ǫ
′+−γ

∣

∣/ǫ < 0.3, CL = 90%
∣

∣gE1∣∣ for K0L → π+π−γ < 0.21, CL = 90%T-violation parametersT-violation parametersT-violation parametersT-violation parametersIm(ξ) in K0
µ3 = −0.007 ± 0.026CPT invarian
e testsCPT invarian
e testsCPT invarian
e testsCPT invarian
e tests

φ00 − φ+− = (0.34 ± 0.32)◦Re(23η+− + 13η00)−AL2 = (−3 ± 35)× 10−6�S = −�Q in K0
ℓ3 de
ay�S = −�Q in K0
ℓ3 de
ay�S = −�Q in K0
ℓ3 de
ay�S = −�Q in K0
ℓ3 de
ayRe x = −0.002 ± 0.006Im x = 0.0012 ± 0.0021



45454545Meson SummaryTableS
ale fa
tor/ pK0L DECAY MODESK0L DECAY MODESK0L DECAY MODESK0L DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)Semileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modes
π± e∓νe [hh℄ (40.55 ±0.11 ) % S=1.7 229Called K0e3.
π±µ∓νµ [hh℄ (27.04 ±0.07 ) % S=1.1 216Called K0

µ3.(πµatom)ν ( 1.05 ±0.11 )× 10−7 188
π0π± e∓ν [hh℄ ( 5.20 ±0.11 )× 10−5 207
π± e∓ν e+ e− [hh℄ ( 1.26 ±0.04 )× 10−5 229Hadroni
 modes, in
luding Charge 
onjugation×Parity Violating (CPV) modesHadroni
 modes, in
luding Charge 
onjugation×Parity Violating (CPV) modesHadroni
 modes, in
luding Charge 
onjugation×Parity Violating (CPV) modesHadroni
 modes, in
luding Charge 
onjugation×Parity Violating (CPV) modes3π0 (19.52 ±0.12 ) % S=1.6 139
π+π−π0 (12.54 ±0.05 ) % 133
π+π− CPV [jj℄ ( 1.967±0.010)× 10−3 S=1.5 206
π0π0 CPV ( 8.64 ±0.06 )× 10−4 S=1.8 209Semileptoni
 modes with photonsSemileptoni
 modes with photonsSemileptoni
 modes with photonsSemileptoni
 modes with photons
π± e∓νe γ [aa,hh,kk℄ ( 3.79 ±0.06 )× 10−3 229
π±µ∓νµ γ ( 5.65 ±0.23 )× 10−4 216Hadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairs
π0π0 γ < 2.43 × 10−7 CL=90% 209
π+π−γ [aa,kk℄ ( 4.15 ±0.15 )× 10−5 S=2.8 206
π+π−γ (DE) ( 2.84 ±0.11 )× 10−5 S=2.0 206
π0 2γ [kk℄ ( 1.273±0.033)× 10−6 230
π0 γ e+ e− ( 1.62 ±0.17 )× 10−8 230Other modes with photons or ℓℓ pairsOther modes with photons or ℓℓ pairsOther modes with photons or ℓℓ pairsOther modes with photons or ℓℓ pairs2γ ( 5.47 ±0.04 )× 10−4 S=1.1 2493γ < 7.4 × 10−8 CL=90% 249e+ e− γ ( 9.4 ±0.4 )× 10−6 S=2.0 249
µ+µ− γ ( 3.59 ±0.11 )× 10−7 S=1.3 225e+ e− γ γ [kk℄ ( 5.95 ±0.33 )× 10−7 249
µ+µ− γ γ [kk℄ ( 1.0 +0.8

−0.6 )× 10−8 225Charge 
onjugation × Parity (CP) or Lepton Family number (LF )Charge 
onjugation × Parity (CP) or Lepton Family number (LF )Charge 
onjugation × Parity (CP) or Lepton Family number (LF )Charge 
onjugation × Parity (CP) or Lepton Family number (LF )violating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modes
µ+µ− S1 ( 6.84 ±0.11 )× 10−9 225e+ e− S1 ( 9 +6

−4 )× 10−12 249
π+π− e+ e− S1 [kk℄ ( 3.11 ±0.19 )× 10−7 206
π0π0 e+ e− S1 < 6.6 × 10−9 CL=90% 209
π0π0µ+µ− S1 < 9.2 × 10−11 CL=90% 57
µ+µ− e+ e− S1 ( 2.69 ±0.27 )× 10−9 225e+ e− e+ e− S1 ( 3.56 ±0.21 )× 10−8 249
π0µ+µ− CP,S1 [ll℄ < 3.8 × 10−10 CL=90% 177
π0 e+ e− CP,S1 [ll℄ < 2.8 × 10−10 CL=90% 230
π0 ν ν CP,S1 [nn℄ < 2.6 × 10−8 CL=90% 230
π0π0 ν ν S1 < 8.1 × 10−7 CL=90% 209e±µ∓ LF [hh℄ < 4.7 × 10−12 CL=90% 238e± e±µ∓µ∓ LF [hh℄ < 4.12 × 10−11 CL=90% 225
π0µ± e∓ LF [hh℄ < 7.6 × 10−11 CL=90% 217
π0π0µ± e∓ LF < 1.7 × 10−10 CL=90% 159K ∗(892)K ∗(892)K ∗(892)K ∗(892) I (JP ) = 12 (1−)K∗(892)± hadroprodu
ed mass m = 891.66 ± 0.26 MeVK∗(892)± in τ de
ays mass m = 895.5 ± 0.8 MeVK∗(892)0 mass m = 895.81 ± 0.19 MeV (S = 1.4)K∗(892)± hadroprodu
ed full width � = 50.8 ± 0.9 MeVK∗(892)± in τ de
ays full width � = 46.2 ± 1.3 MeVK∗(892)0 full width � = 47.4 ± 0.6 MeV (S = 2.2) pK∗(892) DECAY MODESK∗(892) DECAY MODESK∗(892) DECAY MODESK∗(892) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)K π ∼ 100 % 289K0γ ( 2.46±0.21)× 10−3 307K±γ ( 9.9 ±0.9 )× 10−4 309K ππ < 7 × 10−4 95% 223K1(1270)K1(1270)K1(1270)K1(1270) I (JP ) = 12 (1+)Mass m = 1272 ± 7 MeV [l℄Full width � = 90 ± 20 MeV [l℄

K1(1270) DECAY MODESK1(1270) DECAY MODESK1(1270) DECAY MODESK1(1270) DECAY MODES Fra
tion (�i /�) p (MeV/
)K ρ (42 ±6 ) % 46K∗0(1430)π (28 ±4 ) % †K∗(892)π (16 ±5 ) % 302K ω (11.0±2.0) % †K f0(1370) ( 3.0±2.0) % †
γK0 seen 539K1(1400)K1(1400)K1(1400)K1(1400) I (JP ) = 12 (1+)Mass m = 1403 ± 7 MeVFull width � = 174 ± 13 MeV (S = 1.6)K1(1400) DECAY MODESK1(1400) DECAY MODESK1(1400) DECAY MODESK1(1400) DECAY MODES Fra
tion (�i /�) p (MeV/
)K∗(892)π (94 ±6 ) % 402K ρ ( 3.0±3.0) % 293K f0(1370) ( 2.0±2.0) % †K ω ( 1.0±1.0) % 284K∗0(1430)π not seen †
γK0 seen 613K ∗(1410)K ∗(1410)K ∗(1410)K ∗(1410) I (JP ) = 12 (1−)Mass m = 1414 ± 15 MeV (S = 1.3)Full width � = 232 ± 21 MeV (S = 1.1) pK∗(1410) DECAY MODESK∗(1410) DECAY MODESK∗(1410) DECAY MODESK∗(1410) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)K∗(892)π > 40 % 95% 410K π ( 6.6±1.3) % 612K ρ < 7 % 95% 305
γK0 seen 619K ∗0(1430)K ∗0(1430)K ∗0(1430)K ∗0(1430) [oo℄ I (JP ) = 12 (0+)Mass m = 1425 ± 50 MeVFull width � = 270 ± 80 MeVK∗0(1430) DECAY MODESK∗0(1430) DECAY MODESK∗0(1430) DECAY MODESK∗0(1430) DECAY MODES Fra
tion (�i /�) p (MeV/
)K π (93 ±10 ) % 619K η ( 8.6+ 2.7

− 3.4) % 486K η′(958) seen †K ∗2(1430)K ∗2(1430)K ∗2(1430)K ∗2(1430) I (JP ) = 12 (2+)K∗2(1430)± mass m = 1425.6 ± 1.5 MeV (S = 1.1)K∗2(1430)0 mass m = 1432.4 ± 1.3 MeVK∗2(1430)± full width � = 98.5 ± 2.7 MeV (S = 1.1)K∗2(1430)0 full width � = 109 ± 5 MeV (S = 1.9)S
ale fa
tor/ pK∗2(1430) DECAY MODESK∗2(1430) DECAY MODESK∗2(1430) DECAY MODESK∗2(1430) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)K π (49.9±1.2) % 619K∗(892)π (24.7±1.5) % 419K∗(892)ππ (13.4±2.2) % 372K ρ ( 8.7±0.8) % S=1.2 318K ω ( 2.9±0.8) % 311K+γ ( 2.4±0.5)× 10−3 S=1.1 627K η ( 1.5+3.4
−1.0)× 10−3 S=1.3 486K ωπ < 7.2 × 10−4 CL=95% 100K0γ < 9 × 10−4 CL=90% 626K ∗(1680)K ∗(1680)K ∗(1680)K ∗(1680) I (JP ) = 12 (1−)Mass m = 1717 ± 27 MeV (S = 1.4)Full width � = 322 ± 110 MeV (S = 4.2)



46464646Meson SummaryTableK∗(1680) DECAY MODESK∗(1680) DECAY MODESK∗(1680) DECAY MODESK∗(1680) DECAY MODES Fra
tion (�i /�) p (MeV/
)K π (38.7±2.5) % 781K ρ (31.4+5.0
−2.1) % 571K∗(892)π (29.9+2.2
−5.0) % 618K2(1770)K2(1770)K2(1770)K2(1770) [pp℄ I (JP ) = 12 (2−)Mass m = 1773 ± 8 MeVFull width � = 186 ± 14 MeVK2(1770) DECAY MODESK2(1770) DECAY MODESK2(1770) DECAY MODESK2(1770) DECAY MODES Fra
tion (�i /�) p (MeV/
)K ππ 794K∗2(1430)π dominant 288K∗(892)π seen 654K f2(1270) seen 52K φ seen 441K ω seen 607K ∗3(1780)K ∗3(1780)K ∗3(1780)K ∗3(1780) I (JP ) = 12 (3−)Mass m = 1776 ± 7 MeV (S = 1.1)Full width � = 159 ± 21 MeV (S = 1.3) pK∗3(1780) DECAY MODESK∗3(1780) DECAY MODESK∗3(1780) DECAY MODESK∗3(1780) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)K ρ (31 ± 9 ) % 613K∗(892)π (20 ± 5 ) % 656K π (18.8± 1.0) % 813K η (30 ±13 ) % 719K∗2(1430)π < 16 % 95% 291K2(1820)K2(1820)K2(1820)K2(1820) [qq℄ I (JP ) = 12 (2−)Mass m = 1816 ± 13 MeVFull width � = 276 ± 35 MeVK2(1820) DECAY MODESK2(1820) DECAY MODESK2(1820) DECAY MODESK2(1820) DECAY MODES Fra
tion (�i /�) p (MeV/
)K∗2(1430)π seen 327K∗(892)π seen 681K f2(1270) seen 185K ω seen 638K ∗4(2045)K ∗4(2045)K ∗4(2045)K ∗4(2045) I (JP ) = 12 (4+)Mass m = 2045 ± 9 MeV (S = 1.1)Full width � = 198 ± 30 MeVK∗4(2045) DECAY MODESK∗4(2045) DECAY MODESK∗4(2045) DECAY MODESK∗4(2045) DECAY MODES Fra
tion (�i /�) p (MeV/
)K π (9.9±1.2) % 958K∗(892)ππ (9 ±5 ) % 802K∗(892)πππ (7 ±5 ) % 768

ρK π (5.7±3.2) % 741
ωK π (5.0±3.0) % 738
φK π (2.8±1.4) % 594
φK∗(892) (1.4±0.7) % 363

CHARMEDMESONSCHARMEDMESONSCHARMEDMESONSCHARMEDMESONS(C= ±1)(C= ±1)(C= ±1)(C= ±1)D+ = 
d , D0 = 
u, D0 = 
 u, D− = 
 d, similarly for D∗'sD±D±D±D± I (JP ) = 12 (0−)Mass m = 1869.58 ± 0.09 MeVMean life τ = (1040 ± 7)× 10−15 s
τ = 311.8 µm
-quark de
ays
-quark de
ays
-quark de
ays
-quark de
ays�(
 → ℓ+anything)/�(
 → anything) = 0.096 ± 0.004 [rr ℄�(
 → D∗(2010)+ anything)/�(
 → anything) = 0.255 ± 0.017CP-violation de
ay-rate asymmetriesCP-violation de
ay-rate asymmetriesCP-violation de
ay-rate asymmetriesCP-violation de
ay-rate asymmetriesACP (µ± ν) = (8 ± 8)%ACP (K0L e±ν) = (−0.6 ± 1.6)%ACP (K0S π±) = (−0.41 ± 0.09)%ACP (K∓2π±) = (−0.18 ± 0.16)%ACP (K∓π±π±π0) = (−0.3 ± 0.7)%ACP (K0S π±π0) = (−0.1 ± 0.7)%ACP (K0S π±π+π−) = (0.0 ± 1.2)%ACP (π±π0) = (2.9 ± 2.9)%ACP (π± η) = (1.0 ± 1.5)% (S = 1.4)ACP (π± η′(958)) = (−0.5 ± 1.2)% (S = 1.1)ACP (K0 /K0K±) = (0.11 ± 0.17)%ACP (K0S K±) = (−0.11 ± 0.25)%ACP (K+K−π±) = (0.37 ± 0.29)%ACP (K±K∗0) = (−0.3 ± 0.4)%ACP (φπ±) = (0.09 ± 0.19)% (S = 1.2)ACP (K±K∗0(1430)0) = (8+7
−6)%ACP (K±K∗2(1430)0) = (43+20
−26)%ACP (K±K∗0(800)) = (−12+18
−13)%ACP (a0(1450)0π±) = (−19+14
−16)%ACP (φ(1680)π±) = (−9 ± 26)%ACP (π+π−π±) = (−2 ± 4)%ACP (K0S K±π+π−) = (−4 ± 7)%ACP (K±π0) = (−4 ± 11)%

χ2 tests of CP-violation (CPV )χ2 tests of CP-violation (CPV )χ2 tests of CP-violation (CPV )χ2 tests of CP-violation (CPV )Lo
al CPV in D± → π+π−π± = 78.1%Lo
al CPV in D± → K+K−π± = 31%CP violating asymmetries of P-odd (T-odd) momentsCP violating asymmetries of P-odd (T-odd) momentsCP violating asymmetries of P-odd (T-odd) momentsCP violating asymmetries of P-odd (T-odd) momentsAT (K0S K±π+π−) = (−12 ± 11)× 10−3 [ss℄D+ form fa
torsD+ form fa
torsD+ form fa
torsD+ form fa
torsf+(0)∣∣Vcs

∣

∣ in K0 ℓ+νℓ = 0.725 ± 0.015 (S = 1.7)r1 ≡ a1/a0 in K0 ℓ+νℓ = −1.8 ± 0.4r2 ≡ a2/a0 in K0 ℓ+νℓ = −3 ± 12 (S = 1.5)f+(0)∣∣Vcd

∣

∣ in π0 ℓ+νℓ = 0.146 ± 0.007r1 ≡ a1/a0 in π0 ℓ+νℓ = −1.4 ± 0.9r2 ≡ a2/a0 in π0 ℓ+νℓ = −4 ± 5f+(0)∣∣Vcd

∣

∣ in D+ → ηe+ νe = 0.086 ± 0.006r1 ≡ a1/a0 in D+ → ηe+ νe = −1.8 ± 2.2rv ≡ V(0)/A1(0) in D+ → ω e+νe = 1.24 ± 0.11r2 ≡ A2(0)/A1(0) in D+ → ω e+ νe = 1.06 ± 0.16rv ≡ V(0)/A1(0) in D+,D0 → ρe+νe = 1.48 ± 0.16r2 ≡ A2(0)/A1(0) in D+,D0 → ρe+ νe = 0.83 ± 0.12rv ≡ V(0)/A1(0) in K∗(892)0 ℓ+νℓ = 1.51 ± 0.07 (S = 2.2)r2 ≡ A2(0)/A1(0) in K∗(892)0 ℓ+νℓ = 0.807 ± 0.025r3 ≡ A3(0)/A1(0) in K∗(892)0 ℓ+νℓ = 0.0 ± 0.4�L/�T in K∗(892)0 ℓ+νℓ = 1.13 ± 0.08�+/�− in K∗(892)0 ℓ+νℓ = 0.22 ± 0.06 (S = 1.6)



47474747Meson SummaryTableMost de
ay modes (other than the semileptoni
 modes) that involve a neu-tral K meson are now given as K0S modes, not as K0 modes. Nearly alwaysit is a K0S that is measured, and interferen
e between Cabibbo-allowedand doubly Cabibbo-suppressed modes 
an invalidate the assumption that2 �(K0S ) = �(K0). S
ale fa
tor/ pD+ DECAY MODESD+ DECAY MODESD+ DECAY MODESD+ DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modese+ semileptoni
 (16.07± 0.30) % {
µ+anything (17.6 ± 3.2 ) % {K− anything (25.7 ± 1.4 ) % {K0anything + K0 anything (61 ± 5 ) % {K+anything ( 5.9 ± 0.8 ) % {K∗(892)− anything ( 6 ± 5 ) % {K∗(892)0 anything (23 ± 5 ) % {K∗(892)0 anything < 6.6 % CL=90% {
η anything ( 6.3 ± 0.7 ) % {
η′ anything ( 1.04± 0.18) % {
φ anything ( 1.03± 0.12) % {Leptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modese+νe < 8.8 × 10−6 CL=90% 935
µ+νµ ( 3.74± 0.17)× 10−4 932
τ+ ντ < 1.2 × 10−3 CL=90% 90K0 e+ νe ( 8.90± 0.15) % 869K0µ+ νµ ( 9.3 ± 0.7 ) % 865K−π+ e+νe ( 3.91± 0.11) % 864K∗(892)0 e+νe , K∗(892)0 →K−π+ ( 3.68± 0.10) % 722(K−π+)S−wave e+νe ( 2.26± 0.11)× 10−3 {K∗(1410)0 e+ νe ,K∗(1410)0 → K−π+ < 6 × 10−3 CL=90% {K∗2(1430)0 e+ νe ,K∗2(1430)0 → K−π+ < 5 × 10−4 CL=90% {K−π+ e+νe nonresonant < 7 × 10−3 CL=90% 864K−π+µ+νµ ( 3.9 ± 0.4 ) % 851K∗(892)0µ+νµ ,K∗(892)0 → K−π+ ( 3.52± 0.10) % 717K−π+µ+νµ nonresonant ( 2.1 ± 0.5 )× 10−3 851K−π+π0µ+νµ < 1.6 × 10−3 CL=90% 825
π0 e+ νe ( 4.05± 0.18)× 10−3 930
ηe+ νe ( 1.14± 0.10)× 10−3 855
ρ0 e+νe ( 2.18+ 0.17

− 0.25)× 10−3 774
ρ0µ+νµ ( 2.4 ± 0.4 )× 10−3 770
ω e+νe ( 1.69± 0.11)× 10−3 771
η′(958)e+νe ( 2.2 ± 0.5 )× 10−4 689
φe+ νe < 1.3 × 10−5 CL=90% 657Fra
tions of some of the following modes with resonan
es have alreadyappeared above as submodes of parti
ular 
harged-parti
le modes.K∗(892)0 e+νe ( 5.52± 0.15) % 722K∗(892)0µ+νµ ( 5.30± 0.15) % 717K∗0(1430)0µ+ νµ < 2.5 × 10−4 CL=90% 380K∗(1680)0µ+ νµ < 1.6 × 10−3 CL=90% 105Hadroni
 modes with a K or K K KHadroni
 modes with a K or K K KHadroni
 modes with a K or K K KHadroni
 modes with a K or K K KK0S π+ ( 1.53± 0.06) % S=2.8 863K0Lπ+ ( 1.46± 0.05) % 863K−2π+ [tt℄ ( 9.46± 0.24) % S=2.0 846(K−π+)S−waveπ+ ( 7.58± 0.22) % 846K∗0(1430)0π+ ,K∗0(1430)0 → K−π+ [uu℄ ( 1.26± 0.07) % 382K∗(892)0π+ ,K∗(892)0 → K−π+ ( 1.05± 0.12) % 714K∗(1410)0π+ , K∗0 →K−π+ not seen 381K∗2(1430)0π+ ,K∗2(1430)0 → K−π+ [uu℄ ( 2.3 ± 0.8 )× 10−4 371K∗(1680)0π+ ,K∗(1680)0 → K−π+ [uu℄ ( 2.2 ± 1.1 )× 10−4 58K− (2π+)I=2 ( 1.47± 0.27) % {K0S π+π0 [tt℄ ( 7.24± 0.17) % 845K0S ρ+ ( 6.04+ 0.60

− 0.34) % 677K0S ρ(1450)+, ρ+ → π+π0 ( 1.5 + 1.2
− 1.4 )× 10−3 {

K∗(892)0π+ ,K∗(892)0 → K0S π0 ( 2.59± 0.31)× 10−3 714K∗0(1430)0π+, K∗00 →K0S π0 ( 2.7 ± 0.9 )× 10−3 {K∗0(1680)0π+, K∗00 →K0S π0 ( 9 + 7
−10 )× 10−4 {

κ0π+, κ0 → K0S π0 ( 6 + 5
− 4 )× 10−3 {K0S π+π0 nonresonant ( 3 ± 4 )× 10−3 845K0S π+π0 nonresonant and

κ0π+ ( 1.35+ 0.21
− 0.40) % {(K0S π0)S−waveπ+ ( 1.25+ 0.27
− 0.33) % 845K−2π+π0 [vv ℄ ( 6.14± 0.16) % 816K0S 2π+π− [vv ℄ ( 3.05± 0.09) % 814K−3π+π− [tt℄ ( 5.8 ± 0.5 )× 10−3 S=1.1 772K∗(892)0 2π+π− ,K∗(892)0 → K−π+ ( 1.2 ± 0.4 )× 10−3 645K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+ ( 2.3 ± 0.4 )× 10−3 239K∗(892)0 a1(1260)+ [xx ℄ ( 9.4 ± 1.9 )× 10−3 †K−ρ0 2π+ ( 1.74± 0.28)× 10−3 524K−3π+π− nonresonant ( 4.1 ± 3.0 )× 10−4 772K+2K0S ( 4.6 ± 2.1 )× 10−3 545K+K−K0S π+ ( 2.3 ± 0.5 )× 10−4 436Pioni
 modesPioni
 modesPioni
 modesPioni
 modes

π+π0 ( 1.24± 0.06)× 10−3 9252π+π− ( 3.29± 0.20)× 10−3 909
ρ0π+ ( 8.4 ± 1.5 )× 10−4 767
π+ (π+π−)S−wave ( 1.85± 0.17)× 10−3 909

σπ+ , σ → π+π− ( 1.39± 0.12)× 10−3 {f0(980)π+ ,f0(980) → π+π−
( 1.58± 0.34)× 10−4 669f0(1370)π+ ,f0(1370) → π+π−
( 8 ± 4 )× 10−5 {f2(1270)π+ ,f2(1270) → π+π−
( 5.1 ± 0.9 )× 10−4 485

ρ(1450)0π+ ,
ρ(1450)0 → π+π−

< 8 × 10−5 CL=95% 338f0(1500)π+ ,f0(1500) → π+π−
( 1.1 ± 0.4 )× 10−4 {f0(1710)π+ ,f0(1710) → π+π−

< 5 × 10−5 CL=95% {f0(1790)π+ ,f0(1790) → π+π−
< 7 × 10−5 CL=95% {(π+π+)S−waveπ− < 1.2 × 10−4 CL=95% 9092π+π− nonresonant < 1.2 × 10−4 CL=95% 909

π+ 2π0 ( 4.7 ± 0.4 )× 10−3 9102π+π−π0 ( 1.17± 0.08) % 883
ηπ+ , η → π+π−π0 ( 8.0 ± 0.5 )× 10−4 848
ωπ+ , ω → π+π−π0 < 3 × 10−4 CL=90% 7633π+2π− ( 1.67± 0.16)× 10−3 845Fra
tions of some of the following modes with resonan
es have alreadyappeared above as submodes of parti
ular 
harged-parti
le modes.

ηπ+ ( 3.66± 0.22)× 10−3 848
ηπ+π0 ( 1.38± 0.35)× 10−3 830
ωπ+ < 3.4 × 10−4 CL=90% 764
η′(958)π+ ( 4.84± 0.31)× 10−3 681
η′(958)π+π0 ( 1.6 ± 0.5 )× 10−3 654Hadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairK+K0S ( 2.95± 0.15)× 10−3 S=2.8 793K+K−π+ [tt℄ ( 9.96± 0.26)× 10−3 S=1.3 744

φπ+ , φ → K+K− ( 2.77+ 0.09
− 0.10)× 10−3 647K+K∗(892)0 ,K∗(892)0 → K−π+ ( 2.56+ 0.09
− 0.15)× 10−3 613K+K∗0(1430)0 ,K∗0(1430)0 → K−π+ ( 1.9 ± 0.4 )× 10−3 {K+K∗2(1430)0, K∗2 →K−π+ ( 1.7 + 1.3
− 0.8 )× 10−4 {K+K∗0(800), K∗0 → K−π+ ( 7.0 + 4.0
− 2.2 )× 10−4 {a0(1450)0π+, a00 →K+K−

( 4.6 + 7.0
− 1.9 )× 10−4 {



48484848Meson SummaryTable
φ(1680)π+, φ → K+K− ( 5.1 + 4.0

− 1.9 )× 10−5 {K+K−π+ nonresonant not seen 744K+K0S π+π− ( 1.71± 0.18)× 10−3 678K0S K−2π+ ( 2.34± 0.17)× 10−3 678K+K−2π+π− ( 2.3 ± 1.2 )× 10−4 600A few poorly measured bran
hing fra
tions:
φπ+π0 ( 2.3 ± 1.0 ) % 619

φρ+ < 1.5 % CL=90% 260K+K−π+π0 non-φ ( 1.5 + 0.7
− 0.6 ) % 682K∗(892)+K0S ( 1.7 ± 0.8 ) % 611Doubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesK+π0 ( 1.89± 0.25)× 10−4 S=1.2 864K+η ( 1.12± 0.18)× 10−4 776K+η′(958) ( 1.83± 0.23)× 10−4 571K+π+π− ( 5.46± 0.25)× 10−4 846K+ρ0 ( 2.1 ± 0.5 )× 10−4 679K∗(892)0π+ , K∗(892)0 →K+π−

( 2.6 ± 0.4 )× 10−4 714K+ f0(980), f0(980) →
π+π−

( 4.9 ± 2.9 )× 10−5 {K∗2(1430)0π+ , K∗2(1430)0 →K+π−
( 4.4 ± 3.0 )× 10−5 {K+π+π−nonresonant not seen 8462K+K− ( 9.0 ± 2.1 )× 10−5 550�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, orLepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modes

π+ e+ e− C1 < 1.1 × 10−6 CL=90% 930
π+φ , φ → e+ e− [yy ℄ ( 1.7 + 1.4

− 0.9 )× 10−6 {
π+µ+µ− C1 < 7.3 × 10−8 CL=90% 918
π+φ, φ → µ+µ− [yy ℄ ( 1.8 ± 0.8 )× 10−6 {
ρ+µ+µ− C1 < 5.6 × 10−4 CL=90% 757K+ e+ e− [zz ℄ < 1.0 × 10−6 CL=90% 870K+µ+µ− [zz ℄ < 4.3 × 10−6 CL=90% 856
π+ e+µ− LF < 2.9 × 10−6 CL=90% 927
π+ e−µ+ LF < 3.6 × 10−6 CL=90% 927K+ e+µ− LF < 1.2 × 10−6 CL=90% 866K+ e−µ+ LF < 2.8 × 10−6 CL=90% 866
π− 2e+ L < 1.1 × 10−6 CL=90% 930
π− 2µ+ L < 2.2 × 10−8 CL=90% 918
π− e+µ+ L < 2.0 × 10−6 CL=90% 927
ρ−2µ+ L < 5.6 × 10−4 CL=90% 757K−2e+ L < 9 × 10−7 CL=90% 870K−2µ+ L < 1.0 × 10−5 CL=90% 856K− e+µ+ L < 1.9 × 10−6 CL=90% 866K∗(892)−2µ+ L < 8.5 × 10−4 CL=90% 703D0D0D0D0 I (JP ) = 12 (0−)Mass m = 1864.83 ± 0.05 MeVmD± − mD0 = 4.75 ± 0.08 MeVMean life τ = (410.1 ± 1.5)× 10−15 s
τ = 122.9 µmMixing and related parametersMixing and related parametersMixing and related parametersMixing and related parameters

∣

∣mD01 − mD02∣∣ = (0.95+0.41
−0.44)× 1010 �h s−1(�D01 { �D02)/� = 2y = (1.29+0.14

−0.18)× 10−2
∣

∣q/p∣∣ = 0.92+0.12
−0.09A� = (−0.125 ± 0.526)× 10−3K+π− relative strong phase: 
os δ = 0.97 ± 0.11K−π+π0 
oheren
e fa
tor RK ππ0 = 0.82 ± 0.07K−π+π0 average relative strong phase δK ππ0 = (164+20

−14)◦K−π− 2π+ 
oheren
e fa
tor RK 3π = 0.32+0.20
−0.28K−π− 2π+ average relative strong phase δK 3π = (225+21

−80)◦K0S K+π− 
oheren
e fa
tor RK0S K π
= 0.73 ± 0.08K0S K+π− average relative strong phase δK0S K π = (8 ± 15)◦K∗K 
oheren
e fa
tor RK∗K = 1.00 ± 0.16K∗K average relative strong phase δK∗K = (26 ± 16)◦

CP-violation de
ay-rate asymmetries (labeled by the D0 de
ay)CP-violation de
ay-rate asymmetries (labeled by the D0 de
ay)CP-violation de
ay-rate asymmetries (labeled by the D0 de
ay)CP-violation de
ay-rate asymmetries (labeled by the D0 de
ay)ACP (K+K−) = (−0.14 ± 0.12)%ACP (2K0S ) = (−5 ± 5)%ACP (π+π−) = (0.01 ± 0.15)%ACP (2π0) = (0.0 ± 0.6)%ACP (π+π−π0) = (0.3 ± 0.4)%ACP (ρ(770)+π− → π+π−π0) = (1.2 ± 0.9)% [aaa℄ACP (ρ(770)0π0 → π+π−π0) = (−3.1 ± 3.0)% [aaa℄ACP (ρ(770)−π+ → π+π−π0) = (−1.0 ± 1.7)% [aaa℄ACP (ρ(1450)+π− → π+π−π0) = (0 ± 70)% [aaa℄ACP (ρ(1450)0π0 → π+π−π0) = (−20 ± 40)% [aaa℄ACP (ρ(1450)−π+ → π+π−π0) = (6 ± 9)% [aaa℄ACP (ρ(1700)+π− → π+π−π0) = (−5 ± 14)% [aaa℄ACP (ρ(1700)0π0 → π+π−π0) = (13 ± 9)% [aaa℄ACP (ρ(1700)−π+ → π+π−π0) = (8 ± 11)% [aaa℄ACP (f0(980)π0 → π+π−π0) = (0 ± 35)% [aaa℄ACP (f0(1370)π0 → π+π−π0) = (25 ± 18)% [aaa℄ACP (f0(1500)π0 → π+π−π0) = (0 ± 18)% [aaa℄ACP (f0(1710)π0 → π+π−π0) = (0 ± 24)% [aaa℄ACP (f2(1270)π0 → π+π−π0) = (−4 ± 6)% [aaa℄ACP (σ(400)π0 → π+π−π0) = (6 ± 8)% [aaa℄ACP (nonresonant π+π−π0) = (−13 ± 23)% [aaa℄ACP (K+K−π0) = (−1.0 ± 1.7)%ACP (K∗(892)+K− → K+K−π0) = (−0.9 ± 1.3)% [aaa℄ACP (K∗(1410)+K− → K+K−π0) = (−21 ± 24)% [aaa℄ACP ((K+π0)S−waveK− → K+K−π0) = (7 ± 15)% [aaa℄ACP (φ(1020)π0 → K+K−π0) = (1.1 ± 2.2)% [aaa℄ACP (f0(980)π0 → K+K−π0) = (−3 ± 19)% [aaa℄ACP (a0(980)0π0 → K+K−π0) = (−5 ± 16)% [aaa℄ACP (f ′2(1525)π0 → K+K−π0) = (0 ± 160)% [aaa℄ACP (K∗(892)−K+ → K+K−π0) = (−5 ± 4)% [aaa℄ACP (K∗(1410)−K+ → K+K−π0) = (−17 ± 29)% [aaa℄ACP ((K−π0 )S−waveK+ → K+K−π0) = (−10 ± 40)% [aaa℄ACP (K0S π0) = (−0.20 ± 0.17)%ACP (K0S η) = (0.5 ± 0.5)%ACP (K0S η′) = (1.0 ± 0.7)%ACP (K0S φ) = (−3 ± 9)%ACP (K−π+) = (0.3 ± 0.7)%ACP (K+π−) = (0.0 ± 1.6)%ACP (DCP (±1) → K∓π±) = (12.7 ± 1.5)%ACP (K−π+π0) = (0.1 ± 0.5)%ACP (K+π−π0) = (0 ± 5)%ACP (K0S π+π−) = (−0.1 ± 0.8)%ACP (K∗(892)−π+ → K0S π+π−) = (0.4 ± 0.5)%ACP (K∗(892)+π− → K0S π+π−) = (1 ± 6)%ACP (K0 ρ0 → K0S π+π−) = (−0.1 ± 0.5)%ACP (K0ω → K0S π+π−) = (−13 ± 7)%ACP (K0 f0(980) → K0S π+π−) = (−0.4 ± 2.7)%ACP (K0 f2(1270) → K0S π+π−) = (−4 ± 5)%ACP (K0 f0(1370) → K0S π+π−) = (−1 ± 9)%ACP (K0 ρ0(1450) → K0S π+π−) = (−4 ± 10)%ACP (K0 f0(600) → K0S π+π−) = (−3 ± 5)%ACP (K∗(1410)−π+ → K0S π+π−) = (−2 ± 9)%ACP (K∗0(1430)−π+ → K0S π+π−) = (4 ± 4)%ACP (K∗0(1430)+π− → K0S π+π−) = (12 ± 15)%ACP (K∗2(1430)−π+ → K0S π+π−) = (3 ± 6)%ACP (K∗2(1430)+π− → K0S π+π−) = (−10 ± 32)%ACP (K−π+π+π−) = (0.2 ± 0.5)%ACP (K+π−π+π−) = (−2 ± 4)%ACP (K+K−π+π−) = (−8 ± 7)%ACP (K∗1(1270)+K− → K∗0π+K−) = (−1 ± 10)%ACP (K∗1(1270)−K+ → K∗0π−K+) = (−10 ± 32)%ACP (K∗1(1270)+K− → ρ0K+K−) = (−7 ± 17)%ACP (K∗1(1270)−K+ → ρ0K−K+) = (10 ± 13)%ACP (K∗(1410)+K− → K∗0π+K−) = (−20 ± 17)%ACP (K∗(1410)−K+ → K∗0π−K+) = (−1 ± 14)%ACP (K∗0K∗0 S-wave) = (10 ± 14)%ACP (φρ0 S-wave) = (−3 ± 5)%ACP (φρ0 D-wave) = (−37 ± 19)%ACP (φ(π+π− )S−wave) = (−9 ± 10)%ACP ((K−π+)P−wave (K+π−)S−wave) = (3 ± 11)%CP-even fra
tion in D0 → π+π−π0 de
ays = (97.3 ± 1.7)%CP-even fra
tion in D0 → K+K−π0 de
ays = (73 ± 6)%CP-even fra
tion in D0 → π+π−π+π− de
ays = (73.7± 2.8)%



49494949Meson SummaryTableCP-violation asymmetry di�eren
eCP-violation asymmetry di�eren
eCP-violation asymmetry di�eren
eCP-violation asymmetry di�eren
e�ACP = ACP (K+K−) − ACP (π+π−) = (−0.32 ±0.22)% (S = 1.9)
χ2 tests of CP-violation (CPV )χ2 tests of CP-violation (CPV )χ2 tests of CP-violation (CPV )χ2 tests of CP-violation (CPV )Lo
al CPV in D0, D0 → π+π−π0 = 4.9%Lo
al CPV in D0, D0 → π+π−π+π− = 41%Lo
al CPV in D0, D0 → K0S π+π− = 96%Lo
al CPV in D0, D0 → K+K−π0 = 16.6%Lo
al CPV in D0, D0 → K+K−π+π− = 9.1%T-violation de
ay-rate asymmetryT-violation de
ay-rate asymmetryT-violation de
ay-rate asymmetryT-violation de
ay-rate asymmetryAT (K+K−π+π−) = (1.7 ± 2.7)× 10−3 [ss℄CPT-violation de
ay-rate asymmetryCPT-violation de
ay-rate asymmetryCPT-violation de
ay-rate asymmetryCPT-violation de
ay-rate asymmetryACPT (K∓π±) = 0.008 ± 0.008Form fa
torsForm fa
torsForm fa
torsForm fa
torsrV ≡ V(0)/A1(0) in D0 → K∗(892)− ℓ+νℓ = 1.7 ± 0.8r2 ≡ A2(0)/A1(0) in D0 → K∗(892)− ℓ+νℓ = 0.9 ± 0.4f+(0) in D0 → K− ℓ+νℓ = 0.736 ± 0.004f+(0)∣∣Vcs

∣

∣ in D0 → K− ℓ+νℓ = 0.719 ± 0.004r1 ≡ a1/a0 in D0 → K− ℓ+νℓ = −2.40 ± 0.16r2 ≡ a2/a0 in D0 → K− ℓ+νℓ = 5 ± 4f+(0) in D0 → π− ℓ+νℓ = 0.637 ± 0.009f+(0)∣∣Vcd

∣

∣ in D0 → π− ℓ+νℓ = 0.1436 ± 0.0026 (S = 1.5)r1 ≡ a1/a0 in D0 → π− ℓ+νℓ = −1.97 ± 0.28 (S = 1.4)r2 ≡ a1/a0 in D0 → π− ℓ+νℓ = −0.2 ± 2.2 (S = 1.7)Most de
ay modes (other than the semileptoni
 modes) that involve a neu-tral K meson are now given as K0S modes, not as K0 modes. Nearly alwaysit is a K0S that is measured, and interferen
e between Cabibbo-allowedand doubly Cabibbo-suppressed modes 
an invalidate the assumption that2 �(K0S ) = �(K0). S
ale fa
tor/ pD0 DECAY MODESD0 DECAY MODESD0 DECAY MODESD0 DECAY MODES Fra
tion (�i /�) Con�den
e level(MeV/
)Topologi
al modesTopologi
al modesTopologi
al modesTopologi
al modes0-prongs [bbb℄ (15 ± 6 ) % {2-prongs (70 ± 6 ) % {4-prongs [


℄ (14.5 ± 0.5 ) % {6-prongs [ddd℄ ( 6.4 ± 1.3 )× 10−4 {In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modese+anything [eee℄ ( 6.49 ± 0.11 ) % {
µ+anything ( 6.7 ± 0.6 ) % {K− anything (54.7 ± 2.8 ) % S=1.3 {K0anything + K0 anything (47 ± 4 ) % {K+anything ( 3.4 ± 0.4 ) % {K∗(892)− anything (15 ± 9 ) % {K∗(892)0 anything ( 9 ± 4 ) % {K∗(892)+anything < 3.6 % CL=90% {K∗(892)0 anything ( 2.8 ± 1.3 ) % {
η anything ( 9.5 ± 0.9 ) % {
η′ anything ( 2.48 ± 0.27 ) % {
φ anything ( 1.05 ± 0.11 ) % {Semileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modesK− e+νe ( 3.538± 0.033) % S=1.3 867K−µ+νµ ( 3.33 ± 0.13 ) % 864K∗(892)− e+ νe ( 2.16 ± 0.16 ) % 719K∗(892)−µ+ νµ ( 1.92 ± 0.25 ) % 714K−π0 e+νe ( 1.6 + 1.3

− 0.5 ) % 861K0π− e+νe ( 2.7 + 0.9
− 0.7 ) % 860K−π+π− e+ νe ( 2.8 + 1.4
− 1.1 ) × 10−4 843K1(1270)− e+ νe ( 7.6 + 4.0
− 3.1 ) × 10−4 498K−π+π−µ+ νµ < 1.2 × 10−3 CL=90% 821(K∗(892)π )−µ+ νµ < 1.4 × 10−3 CL=90% 692

π− e+νe ( 2.91 ± 0.04 )× 10−3 S=1.1 927
π−µ+νµ ( 2.38 ± 0.24 )× 10−3 924
ρ− e+ νe ( 1.77 ± 0.16 )× 10−3 771

Hadroni
 modes with one KHadroni
 modes with one KHadroni
 modes with one KHadroni
 modes with one KK−π+ ( 3.93 ± 0.04 ) % S=1.2 861K+π− ( 1.398± 0.027)× 10−4 861K0S π0 ( 1.20 ± 0.04 ) % 860K0Lπ0 (10.0 ± 0.7 )× 10−3 860K0S π+π− [tt℄ ( 2.85 ± 0.20 ) % S=1.1 842K0S ρ0 ( 6.4 + 0.7
− 0.8 ) × 10−3 674K0S ω , ω → π+π− ( 2.1 ± 0.6 )× 10−4 670K0S (π+π−)S−wave ( 3.4 ± 0.8 )× 10−3 842K0S f0(980),f0(980) → π+π−

( 1.23 + 0.40
− 0.24 ) × 10−3 549K0S f0(1370),f0(1370) → π+π−

( 2.8 + 0.9
− 1.3 ) × 10−3 †K0S f2(1270),f2(1270) → π+π−

( 9 +10
− 6 ) × 10−5 262K∗(892)−π+ ,K∗(892)− → K0S π−

( 1.68 + 0.15
− 0.18 ) % 711K∗0(1430)−π+ ,K∗0(1430)− → K0S π−

( 2.73 + 0.40
− 0.34 ) × 10−3 378K∗2(1430)−π+ ,K∗2(1430)− → K0S π−

( 3.4 + 1.9
− 1.0 ) × 10−4 367K∗(1680)−π+ ,K∗(1680)− → K0S π−

( 4 ± 4 )× 10−4 46K∗(892)+π− ,K∗(892)+ → K0S π+ [�f ℄ ( 1.15 + 0.60
− 0.34 ) × 10−4 711K∗0(1430)+π− ,K∗0(1430)+ → K0S π+ [�f ℄ < 1.4 × 10−5 CL=95% {K∗2(1430)+π− ,K∗2(1430)+ → K0S π+ [�f ℄ < 3.4 × 10−5 CL=95% {K0S π+π− nonresonant ( 2.6 + 6.0
− 1.6 ) × 10−4 842K−π+π0 [tt℄ (14.3 ± 0.8 ) % S=3.1 844K−ρ+ (11.1 ± 0.9 ) % 675K−ρ(1700)+ ,

ρ(1700)+ → π+π0 ( 8.1 ± 1.8 )× 10−3 †K∗(892)−π+ ,K∗(892)− → K−π0 ( 2.28 + 0.40
− 0.23 ) % 711K∗(892)0π0 ,K∗(892)0 → K−π+ ( 1.93 ± 0.26 ) % 711K∗0(1430)−π+ ,K∗0(1430)− → K−π0 ( 4.7 ± 2.2 )× 10−3 378K∗0(1430)0π0 ,K∗0(1430)0 → K−π+ ( 5.8 + 5.0
− 1.6 ) × 10−3 379K∗(1680)−π+ ,K∗(1680)− → K−π0 ( 1.9 ± 0.7 )× 10−3 46K−π+π0 nonresonant ( 1.14 + 0.50
− 0.21 ) % 844K0S 2π0 ( 9.1 ± 1.1 )× 10−3 S=2.2 843K0S (2π0)-S-wave ( 2.6 ± 0.7 )× 10−3 {K∗(892)0π0 ,K∗(892)0 → K0S π0 ( 7.9 ± 0.7 )× 10−3 711K∗(1430)0π0 , K∗0 →K0S π0 ( 4 ±23 )× 10−5 {K∗(1680)0π0 , K∗0 →K0S π0 ( 1.0 ± 0.4 )× 10−3 {K0S f2(1270), f2 → 2π0 ( 2.3 ± 1.1 )× 10−4 {2K0S , one K0S → 2π0 ( 3.2 ± 1.1 )× 10−4 {K−2π+π− [tt℄ ( 8.06 ± 0.23 ) % S=1.5 813K−π+ ρ0 total ( 6.73 ± 0.34 ) % 609K−π+ ρ03-body ( 5.1 ± 2.3 )× 10−3 609K∗(892)0 ρ0 ,K∗(892)0 → K−π+ ( 1.05 ± 0.23 ) % 416K− a1(1260)+ ,a1(1260)+ → 2π+π−

( 3.6 ± 0.6 ) % 327K∗(892)0π+π− total,K∗(892)0 → K−π+ ( 1.6 ± 0.4 ) % 685K∗(892)0π+π−3-body,K∗(892)0 → K−π+ ( 9.9 ± 2.3 )× 10−3 685K1(1270)−π+ ,K1(1270)− → K−π+π−
[ggg ℄ ( 2.9 ± 0.3 )× 10−3 484K−2π+π− nonresonant ( 1.88 ± 0.26 ) % 813K0S π+π−π0 [hhh℄ ( 5.2 ± 0.6 ) % 813



50505050Meson SummaryTableK0S η , η → π+π−π0 ( 1.02 ± 0.09 )× 10−3 772K0S ω , ω → π+π−π0 ( 9.9 ± 0.5 )× 10−3 670K−2π+π−π0 ( 4.2 ± 0.4 ) % 771K∗(892)0π+π−π0 ,K∗(892)0 → K−π+ ( 1.3 ± 0.6 ) % 643K−π+ω , ω → π+π−π0 ( 2.7 ± 0.5 ) % 605K∗(892)0ω ,K∗(892)0 → K−π+,
ω → π+π−π0 ( 6.5 ± 3.0 )× 10−3 410K0S ηπ0 ( 5.5 ± 1.1 )× 10−3 721K0S a0(980), a0(980) → ηπ0 ( 6.6 ± 2.0 )× 10−3 {K∗(892)0 η, K∗(892)0 →K0S π0 ( 1.6 ± 0.5 )× 10−3 {K0S 2π+2π− ( 2.71 ± 0.31 )× 10−3 768K0S ρ0π+π− , noK∗(892)− ( 1.1 ± 0.7 )× 10−3 {K∗(892)−2π+π− ,K∗(892)− → K0S π−,no ρ0 ( 5 ± 8 )× 10−4 642K∗(892)−ρ0π+ ,K∗(892)− → K0S π−

( 1.6 ± 0.6 )× 10−3 230K0S 2π+2π−nonresonant < 1.2 × 10−3 CL=90% 768K−3π+2π− ( 2.2 ± 0.6 )× 10−4 713Fra
tions of many of the following modes with resonan
es have alreadyappeared above as submodes of parti
ular 
harged-parti
le modes. (Modesfor whi
h there are only upper limits and K∗(892)ρ submodes only appearbelow.)K0S η ( 4.85 ± 0.30 )× 10−3 772K0S ω ( 1.11 ± 0.06 ) % 670K0S η′(958) ( 9.5 ± 0.5 )× 10−3 565K− a1(1260)+ ( 7.8 ± 1.1 ) % 327K− a2(1320)+ < 2 × 10−3 CL=90% 198K∗(892)0π+π− total ( 2.4 ± 0.5 ) % 685K∗(892)0π+π−3-body ( 1.48 ± 0.34 ) % 685K∗(892)0 ρ0 ( 1.57 ± 0.35 ) % 417K∗(892)0 ρ0 transverse ( 1.7 ± 0.6 ) % 417K∗(892)0 ρ0S-wave ( 3.0 ± 0.6 ) % 417K∗(892)0 ρ0S-wave long. < 3 × 10−3 CL=90% 417K∗(892)0 ρ0P-wave < 3 × 10−3 CL=90% 417K∗(892)0 ρ0D-wave ( 2.1 ± 0.6 ) % 417K1(1270)−π+ [ggg ℄ ( 1.6 ± 0.8 ) % 484K1(1400)−π+ < 1.2 % CL=90% 386K∗(892)0π+π−π0 ( 1.9 ± 0.9 ) % 643K−π+ω ( 3.1 ± 0.6 ) % 605K∗(892)0ω ( 1.1 ± 0.5 ) % 410K−π+ η′(958) ( 7.5 ± 1.9 )× 10−3 479K∗(892)0 η′(958) < 1.1 × 10−3 CL=90% 119Hadroni
 modes with three K 'sHadroni
 modes with three K 'sHadroni
 modes with three K 'sHadroni
 modes with three K 'sK0S K+K− ( 4.51 ± 0.34 )× 10−3 544K0S a0(980)0 , a00 → K+K− ( 3.0 ± 0.4 )× 10−3 {K− a0(980)+ , a+0 → K+K0S ( 6.0 ± 1.8 )× 10−4 {K+a0(980)− , a−0 → K−K0S < 1.1 × 10−4 CL=95% {K0S f0(980), f0 → K+K− < 9 × 10−5 CL=95% {K0S φ , φ → K+K− ( 2.07 ± 0.16 )× 10−3 520K0S f0(1370), f0 → K+K− ( 1.7 ± 1.1 )× 10−4 {3K0S ( 9.2 ± 1.3 )× 10−4 539K+2K−π+ ( 2.21 ± 0.32 )× 10−4 434K+K−K∗(892)0 ,K∗(892)0 → K−π+ ( 4.4 ± 1.7 )× 10−5 †K−π+φ , φ → K+K− ( 4.0 ± 1.7 )× 10−5 422
φK∗(892)0 ,

φ → K+K−,K∗(892)0 → K−π+ ( 1.06 ± 0.20 )× 10−4 †K+2K−π+ nonresonant ( 3.3 ± 1.5 )× 10−5 4342K0S K±π∓ ( 6.1 ± 1.3 )× 10−4 427Pioni
 modesPioni
 modesPioni
 modesPioni
 modes
π+π− ( 1.420± 0.025)× 10−3 S=1.1 9222π0 ( 8.25 ± 0.25 )× 10−4 923
π+π−π0 ( 1.47 ± 0.09 ) % S=3.0 907

ρ+π− ( 1.00 ± 0.06 ) % 764
ρ0π0 ( 3.82 ± 0.29 )× 10−3 764
ρ−π+ ( 5.09 ± 0.34 )× 10−3 764
ρ(1450)+π− , ρ(1450)+ →

π+π0 ( 1.6 ± 2.0 )× 10−5 {
ρ(1450)0π0 , ρ(1450)0 →

π+π−
( 4.4 ± 1.9 )× 10−5 {

ρ(1450)−π+ , ρ(1450)− →
π−π0 ( 2.6 ± 0.4 )× 10−4 {

ρ(1700)+π− , ρ(1700)+ →
π+π0 ( 6.0 ± 1.5 )× 10−4 {

ρ(1700)0π0 , ρ(1700)0 →
π+π−

( 7.4 ± 1.8 )× 10−4 {
ρ(1700)−π+ , ρ(1700)− →

π−π0 ( 4.7 ± 1.1 )× 10−4 {f0(980)π0 , f0(980) →
π+π−

( 3.7 ± 0.9 )× 10−5 {f0(500)π0 , f0(500) →
π+π−

( 1.21 ± 0.22 )× 10−4 {f0(1370)π0 , f0(1370) →
π+π−

( 5.4 ± 2.1 )× 10−5 {f0(1500)π0 , f0(1500) →
π+π−

( 5.7 ± 1.6 )× 10−5 {f0(1710)π0 , f0(1710) →
π+π−

( 4.6 ± 1.6 )× 10−5 {f2(1270)π0 , f2(1270) →
π+π−

( 1.94 ± 0.22 )× 10−4 {
π+π−π0 nonresonant ( 1.2 ± 0.4 )× 10−4 9073π0 < 3.5 × 10−4 CL=90% 9082π+2π− ( 7.45 ± 0.22 )× 10−3 S=1.2 880a1(1260)+π− , a+1 →2π+π− total ( 4.47 ± 0.32 )× 10−3 {a1(1260)+π− , a+1 →

ρ0π+ S-wave ( 3.23 ± 0.25 )× 10−3 {a1(1260)+π− , a+1 →
ρ0π+ D-wave ( 1.9 ± 0.5 )× 10−4 {a1(1260)+π− , a+1 →
σπ+ ( 6.2 ± 0.7 )× 10−4 {2ρ0 total ( 1.83 ± 0.13 )× 10−3 5182ρ0 , parallel heli
ities ( 8.2 ± 3.2 )× 10−5 {2ρ0 , perpendi
ular heli
i-ties ( 4.8 ± 0.6 )× 10−4 {2ρ0 , longitudinal heli
ities ( 1.25 ± 0.10 )× 10−3 {Resonant (π+π−)π+π−3-body total ( 1.49 ± 0.12 )× 10−3 {

σπ+π− ( 6.1 ± 0.9 )× 10−4 {f0(980)π+π− , f0 →
π+π−

( 1.8 ± 0.5 )× 10−4 {f2(1270)π+π− , f2 →
π+π−

( 3.7 ± 0.6 )× 10−4 {
π+π−2π0 ( 1.01 ± 0.09 ) % 882

ηπ0 [iii ℄ ( 6.9 ± 0.7 )× 10−4 846
ωπ0 [iii ℄ < 2.6 × 10−4 CL=90% 7612π+2π−π0 ( 4.2 ± 0.5 )× 10−3 844
ηπ+π− [iii ℄ ( 1.09 ± 0.16 )× 10−3 827
ωπ+π− [iii ℄ ( 1.6 ± 0.5 )× 10−3 7383π+3π− ( 4.2 ± 1.2 )× 10−4 795

η′(958)π0 ( 9.1 ± 1.4 )× 10−4 678
η′(958)π+π− ( 4.5 ± 1.7 )× 10−4 6502η ( 1.70 ± 0.20 )× 10−3 754
ηη′(958) ( 1.06 ± 0.27 )× 10−3 537Hadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairK+K− ( 4.01 ± 0.07 )× 10−3 S=1.5 7912K0S ( 1.8 ± 0.4 )× 10−4 S=2.5 789K0S K−π+ ( 3.6 ± 0.5 )× 10−3 S=1.2 739K∗(892)0K0S , K∗0 →K−π+ < 5 × 10−4 CL=90% 608K0S K+π− ( 2.2 ± 0.4 )× 10−3 S=1.3 739K∗(892)0K0S , K∗0 →K+π−

< 1.8 × 10−4 CL=90% 608K+K−π0 ( 3.38 ± 0.21 )× 10−3 743K∗(892)+K−, K∗(892)+ →K+π0 ( 1.50 ± 0.10 )× 10−3 {K∗(892)−K+, K∗(892)− →K−π0 ( 5.4 ± 0.5 )× 10−4 {(K+π0)S−waveK− ( 2.40 ± 0.21 )× 10−3 743(K−π0)S−waveK+ ( 1.3 ± 0.5 )× 10−4 743f0(980)π0, f0 → K+K− ( 3.5 ± 0.6 )× 10−4 {
φπ0, φ → K+K− ( 6.6 ± 0.5 )× 10−4 {2K0S π0 < 5.9 × 10−4 740K+K−π+π− ( 2.42 ± 0.12 )× 10−3 677
φ(π+π−)S−wave, φ →K+K−

( 2.50 ± 0.34 )× 10−4 614(φρ0)S−wave, φ → K+K− ( 9.3 ± 1.2 )× 10−4 250(φρ0)D−wave, φ → K+K− ( 8.2 ± 2.3 )× 10−5 {(K∗0K∗0)S−wave, K∗0 →K±π∓
( 1.48 ± 0.30 )× 10−4 {



51515151Meson SummaryTable(K−π+)P−wave,(K+π−)S−wave, ( 2.6 ± 0.5 )× 10−4 {K1(1270)+K−,K1(1270)+ → K∗0π+ ( 1.8 ± 0.5 )× 10−4 {K1(1270)+K−,K1(1270)+ → ρ0K+ ( 1.14 ± 0.26 )× 10−4 {K1(1270)−K+,K1(1270)− → K∗0π−
( 2.2 ± 1.2 )× 10−5 {K1(1270)−K+,K1(1270)− → ρ0K−
( 1.45 ± 0.25 )× 10−4 {K∗(1410)+K−,K∗(1410)+ → K∗0π+ ( 1.02 ± 0.26 )× 10−4 {K∗(1410)−K+,K∗(1410)− → K∗0π−
( 1.14 ± 0.25 )× 10−4 {2K0S π+π− ( 1.24 ± 0.24 )× 10−3 673K0S K−2π+π− < 1.5 × 10−4 CL=90% 595K+K−π+π−π0 ( 3.1 ± 2.0 )× 10−3 600Other K K X modes. They in
lude all de
ay modes of the φ, η, and ω.

φη ( 1.4 ± 0.5 )× 10−4 489
φω < 2.1 × 10−3 CL=90% 238Radiative modesRadiative modesRadiative modesRadiative modes
ρ0 γ < 2.4 × 10−4 CL=90% 771
ωγ < 2.4 × 10−4 CL=90% 768
φγ ( 2.73 ± 0.35 )× 10−5 654K∗(892)0 γ ( 3.31 ± 0.34 )× 10−4 719Doubly Cabibbo suppressed (DC ) modes orDoubly Cabibbo suppressed (DC ) modes orDoubly Cabibbo suppressed (DC ) modes orDoubly Cabibbo suppressed (DC ) modes or�C = 2 forbidden via mixing (C2M) modes�C = 2 forbidden via mixing (C2M) modes�C = 2 forbidden via mixing (C2M) modes�C = 2 forbidden via mixing (C2M) modesK+ ℓ−νℓ via D0 < 2.2 × 10−5 CL=90% {K+or K∗(892)+ e−νe viaD0 < 6 × 10−5 CL=90% {K+π− DC ( 1.49 ± 0.07 )× 10−4 S=2.9 861K+π− via DCS ( 1.33 ± 0.09 )× 10−4 {K+π− via D0 < 1.6 × 10−5 CL=95% 861K0S π+π− in D0 → D0 < 1.8 × 10−4 CL=95% {K∗(892)+π− ,K∗(892)+ → K0S π+ DC ( 1.15 + 0.60

− 0.34 ) × 10−4 711K∗0(1430)+π− ,K∗0(1430)+ → K0S π+ DC < 1.4 × 10−5 {K∗2(1430)+π− ,K∗2(1430)+ → K0S π+ DC < 3.4 × 10−5 {K+π−π0 DC ( 3.13 ± 0.23 )× 10−4 844K+π−π0 via D0 ( 7.5 ± 0.6 )× 10−4 {K+π+ 2π− DC ( 2.62 ± 0.11 )× 10−4 813K+π+ 2π− via D0 < 4 × 10−4 CL=90% 812
µ− anything via D0 < 4 × 10−4 CL=90% {�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,Lepton Family number (LF ) violating modes,Lepton Family number (LF ) violating modes,Lepton Family number (LF ) violating modes,Lepton Family number (LF ) violating modes,Lepton (L) or Baryon (B) number violating modesLepton (L) or Baryon (B) number violating modesLepton (L) or Baryon (B) number violating modesLepton (L) or Baryon (B) number violating modes
γ γ C1 < 2.2 × 10−6 CL=90% 932e+ e− C1 < 7.9 × 10−8 CL=90% 932
µ+µ− C1 < 6.2 × 10−9 CL=90% 926
π0 e+ e− C1 < 4.5 × 10−5 CL=90% 928
π0µ+µ− C1 < 1.8 × 10−4 CL=90% 915
ηe+ e− C1 < 1.1 × 10−4 CL=90% 852
ηµ+µ− C1 < 5.3 × 10−4 CL=90% 838
π+π− e+ e− C1 < 3.73 × 10−4 CL=90% 922
ρ0 e+ e− C1 < 1.0 × 10−4 CL=90% 771
π+π−µ+µ− C1 < 5.5 × 10−7 CL=90% 894
ρ0µ+µ− C1 < 2.2 × 10−5 CL=90% 754
ω e+ e− C1 < 1.8 × 10−4 CL=90% 768
ωµ+µ− C1 < 8.3 × 10−4 CL=90% 751K−K+ e+ e− C1 < 3.15 × 10−4 CL=90% 791
φe+ e− C1 < 5.2 × 10−5 CL=90% 654K−K+µ+µ− C1 < 3.3 × 10−5 CL=90% 710
φµ+µ− C1 < 3.1 × 10−5 CL=90% 631K0 e+ e− [zz ℄ < 1.1 × 10−4 CL=90% 866K0µ+µ− [zz ℄ < 2.6 × 10−4 CL=90% 852K−π+ e+ e− C1 < 3.85 × 10−4 CL=90% 861K∗(892)0 e+ e− [zz ℄ < 4.7 × 10−5 CL=90% 719K−π+µ+µ− C1 < 3.59 × 10−4 CL=90% 829K∗(892)0µ+µ− [zz ℄ < 2.4 × 10−5 CL=90% 700
π+π−π0µ+µ− C1 < 8.1 × 10−4 CL=90% 863
µ± e∓ LF [hh℄ < 2.6 × 10−7 CL=90% 929

π0 e±µ∓ LF [hh℄ < 8.6 × 10−5 CL=90% 924
ηe±µ∓ LF [hh℄ < 1.0 × 10−4 CL=90% 848
π+π− e±µ∓ LF [hh℄ < 1.5 × 10−5 CL=90% 911
ρ0 e±µ∓ LF [hh℄ < 4.9 × 10−5 CL=90% 767
ω e±µ∓ LF [hh℄ < 1.2 × 10−4 CL=90% 764K−K+ e±µ∓ LF [hh℄ < 1.8 × 10−4 CL=90% 754
φe±µ∓ LF [hh℄ < 3.4 × 10−5 CL=90% 648K0 e±µ∓ LF [hh℄ < 1.0 × 10−4 CL=90% 863K−π+ e±µ∓ LF [hh℄ < 5.53 × 10−4 CL=90% 848K∗(892)0 e±µ∓ LF [hh℄ < 8.3 × 10−5 CL=90% 7142π−2e++ 
.
. L < 1.12 × 10−4 CL=90% 9222π−2µ++ 
.
. L < 2.9 × 10−5 CL=90% 894K−π− 2e++ 
.
. L < 2.06 × 10−4 CL=90% 861K−π− 2µ++ 
.
. L < 3.9 × 10−4 CL=90% 8292K−2e++ 
.
. L < 1.52 × 10−4 CL=90% 7912K−2µ++ 
.
. L < 9.4 × 10−5 CL=90% 710
π−π− e+µ++ 
.
. L < 7.9 × 10−5 CL=90% 911K−π− e+µ++ 
.
. L < 2.18 × 10−4 CL=90% 8482K− e+µ++ 
.
. L < 5.7 × 10−5 CL=90% 754pe− L,B [jjj℄ < 1.0 × 10−5 CL=90% 696pe+ L,B [kkk℄ < 1.1 × 10−5 CL=90% 696D∗(2007)0D∗(2007)0D∗(2007)0D∗(2007)0 I (JP ) = 12 (1−)I, J, P need 
on�rmation.Mass m = 2006.85 ± 0.05 MeV (S = 1.1)mD∗0 − mD0 = 142.016 ± 0.030 MeV (S = 1.5)Full width � < 2.1 MeV, CL = 90%D∗(2007)0 modes are 
harge 
onjugates of modes below.D∗(2007)0 DECAY MODESD∗(2007)0 DECAY MODESD∗(2007)0 DECAY MODESD∗(2007)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)D0π0 (64.7±0.9) % 43D0 γ (35.3±0.9) % 137D∗(2010)±D∗(2010)±D∗(2010)±D∗(2010)± I (JP ) = 12 (1−)I, J, P need 
on�rmation.Mass m = 2010.26 ± 0.05 MeVmD∗(2010)+ − mD+ = 140.68 ± 0.08 MeVmD∗(2010)+ − mD0 = 145.4257 ± 0.0017 MeVFull width � = 83.4 ± 1.8 keVD∗(2010)− modes are 
harge 
onjugates of the modes below.D∗(2010)± DECAY MODESD∗(2010)± DECAY MODESD∗(2010)± DECAY MODESD∗(2010)± DECAY MODES Fra
tion (�i /�) p (MeV/
)D0π+ (67.7±0.5) % 39D+π0 (30.7±0.5) % 38D+ γ ( 1.6±0.4) % 136D∗0(2400)0D∗0(2400)0D∗0(2400)0D∗0(2400)0 I (JP ) = 12 (0+)Mass m = 2318 ± 29 MeV (S = 1.7)Full width � = 267 ± 40 MeVD∗0(2400)0 DECAY MODESD∗0(2400)0 DECAY MODESD∗0(2400)0 DECAY MODESD∗0(2400)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)D+π− seen 385D1(2420)0D1(2420)0D1(2420)0D1(2420)0 I (JP ) = 12 (1+)I needs 
on�rmation.Mass m = 2420.8 ± 0.5 MeV (S = 1.3)mD01 − mD∗+ = 410.6 ± 0.5 (S = 1.3)Full width � = 31.7 ± 2.5 MeV (S = 3.5)



52525252Meson SummaryTableD1(2420)0 modes are 
harge 
onjugates of modes below.D1(2420)0 DECAY MODESD1(2420)0 DECAY MODESD1(2420)0 DECAY MODESD1(2420)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)D∗(2010)+π− seen 353D0π+π− seen 425D+π− not seen 472D∗0π+π− not seen 279D∗2(2460)0D∗2(2460)0D∗2(2460)0D∗2(2460)0 I (JP ) = 12 (2+)JP = 2+ assignment strongly favored.Mass m = 2460.57 ± 0.15 MeV (S = 1.1)mD∗02 − mD+ = 590.98 ± 0.18 MeV (S = 1.1)mD∗02 − mD∗+ = 450.31 ± 0.16 MeV (S = 1.1)Full width � = 47.7 ± 1.3 MeV (S = 2.0)D∗2(2460)0 modes are 
harge 
onjugates of modes below.D∗2(2460)0 DECAY MODESD∗2(2460)0 DECAY MODESD∗2(2460)0 DECAY MODESD∗2(2460)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)D+π− seen 505D∗(2010)+π− seen 389D0π+π− not seen 462D∗0π+π− not seen 324D∗2(2460)±D∗2(2460)±D∗2(2460)±D∗2(2460)± I (JP ) = 12 (2+)JP = 2+ assignment strongly favored.Mass m = 2465.4 ± 1.3 MeV (S = 3.1)mD∗2(2460)± − mD∗2(2460)0 = 2.4 ± 1.7 MeVFull width � = 46.7 ± 1.2 MeVD∗2(2460)− modes are 
harge 
onjugates of modes below.D∗2(2460)± DECAY MODESD∗2(2460)± DECAY MODESD∗2(2460)± DECAY MODESD∗2(2460)± DECAY MODES Fra
tion (�i /�) p (MeV/
)D0π+ seen 513D∗0π+ seen 396D+π+π− not seen 462D∗+π+π− not seen 326CHARMED, STRANGE MESONSCHARMED, STRANGE MESONSCHARMED, STRANGE MESONSCHARMED, STRANGE MESONS(C = S = ±1)(C = S = ±1)(C = S = ±1)(C = S = ±1)D+s = 
s , D−s = 
 s, similarly for D∗s 'sD±sD±sD±sD±s I (JP ) = 0(0−)Mass m = 1968.27 ± 0.10 MeVmD±s − mD± = 98.69 ± 0.05 MeVMean life τ = (500 ± 7)× 10−15 s (S = 1.3)
τ = 149.9 µmCP-violating de
ay-rate asymmetriesCP-violating de
ay-rate asymmetriesCP-violating de
ay-rate asymmetriesCP-violating de
ay-rate asymmetriesACP (µ± ν) = (5 ± 6)%ACP (K±K0S ) = (0.08 ± 0.26)%ACP (K+K−π±) = (−0.5 ± 0.9)%ACP (φπ±) = (−0.38 ± 0.27)%ACP (K±K0S π0) = (−2 ± 6)%ACP (2K0S π±) = (3 ± 5)%ACP (K+K−π±π0) = (0.0 ± 3.0)%ACP (K±K0S π+π−) = (−6 ± 5)%ACP (K0S K∓2π±) = (4.1 ± 2.8)%ACP (π+π−π±) = (−0.7 ± 3.1)%ACP (π± η) = (1.1 ± 3.1)%ACP (π± η′) = (−2.2 ± 2.3)%ACP (ηπ±π0) = (−1 ± 4)%ACP (η′π±π0) = (0 ± 8)%ACP (K±π0) = (−27 ± 24)%ACP (K0 /K0π±) = (0.4 ± 0.5)%ACP (K0S π±) = (3.1 ± 2.6)% (S = 1.7)ACP (K±π+π−) = (4 ± 5)%ACP (K±η) = (9 ± 15)%ACP (K±η′(958)) = (6 ± 19)%

CP violating asymmetries of P-odd (T-odd) momentsCP violating asymmetries of P-odd (T-odd) momentsCP violating asymmetries of P-odd (T-odd) momentsCP violating asymmetries of P-odd (T-odd) momentsAT (K0S K±π+π−) = (−14 ± 8)× 10−3 [ss℄D+s → φℓ+ νℓ form fa
torsD+s → φℓ+ νℓ form fa
torsD+s → φℓ+ νℓ form fa
torsD+s → φℓ+ νℓ form fa
torsr2 = 0.84 ± 0.11 (S = 2.4)rv = 1.80 ± 0.08�L/�T = 0.72 ± 0.18Unless otherwise noted, the bran
hing fra
tions for modes with a resonan
ein the �nal state in
lude all the de
ay modes of the resonan
e. D−s modesare 
harge 
onjugates of the modes below. S
ale fa
tor/ pD+s DECAY MODESD+s DECAY MODESD+s DECAY MODESD+s DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modese+ semileptoni
 [lll℄ ( 6.5 ±0.4 ) % {
π+ anything (119.3 ±1.4 ) % {
π− anything ( 43.2 ±0.9 ) % {
π0 anything (123 ±7 ) % {K− anything ( 18.7 ±0.5 ) % {K+anything ( 28.9 ±0.7 ) % {K0S anything ( 19.0 ±1.1 ) % {
η anything [nnn℄ ( 29.9 ±2.8 ) % {
ω anything ( 6.1 ±1.4 ) % {
η′ anything [ooo℄ ( 10.3 ±1.4 ) % S=1.1 {f0(980) anything, f0 → π+π− < 1.3 % CL=90% {
φ anything ( 15.7 ±1.0 ) % {K+K− anything ( 15.8 ±0.7 ) % {K0S K+anything ( 5.8 ±0.5 ) % {K0S K− anything ( 1.9 ±0.4 ) % {2K0S anything ( 1.70±0.32) % {2K+anything < 2.6 × 10−3 CL=90% {2K−anything < 6 × 10−4 CL=90% {Leptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modese+νe < 8.3 × 10−5 CL=90% 984
µ+νµ ( 5.56±0.25)× 10−3 981
τ+ ντ ( 5.55±0.24) % 182K+K− e+νe | 851

φe+ νe [ppp℄ ( 2.39±0.23) % S=1.8 720
ηe+ νe + η′(958)e+ νe [ppp℄ ( 2.96±0.29) % {

ηe+ νe [ppp℄ ( 2.28±0.24) % 908
η′(958)e+νe [ppp℄ ( 6.8 ±1.6 )× 10−3 751

ω e+νe [qqq℄ < 2.0 × 10−3 CL=90% 829K0 e+ νe ( 3.9 ±0.9 )× 10−3 921K∗(892)0 e+νe [ppp℄ ( 1.8 ±0.4 )× 10−3 782Hadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairK+K0S ( 1.50±0.05) % 850K+K0 ( 2.95±0.14) % 850K+K−π+ [tt℄ ( 5.45±0.17) % S=1.2 805
φπ+ [ppp,rrr ℄ ( 4.5 ±0.4 ) % 712
φπ+, φ → K+K− [rrr ℄ ( 2.27±0.08) % 712K+K∗(892)0 , K∗0 →K−π+ ( 2.61±0.09) % 416f0(980)π+ , f0 → K+K− ( 1.15±0.32) % 732f0(1370)π+ , f0 → K+K− ( 7 ±5 )× 10−4 {f0(1710)π+ , f0 → K+K− ( 6.7 ±2.9 )× 10−4 198K+K∗0(1430)0 , K∗0 →K−π+ ( 1.9 ±0.4 )× 10−3 218K+K0S π0 ( 1.52±0.22) % 8052K0S π+ ( 7.7 ±0.6 )× 10−3 802K0K0π+ | 802K∗(892)+K0 [ppp℄ ( 5.4 ±1.2 ) % 683K+K−π+π0 ( 6.3 ±0.6 ) % 748
φρ+ [ppp℄ ( 8.4 +1.9

−2.3 ) % 401K0S K−2π+ ( 1.67±0.10) % 744K∗(892)+K∗(892)0 [ppp℄ ( 7.2 ±2.6 ) % 416K+K0S π+π− ( 1.03±0.10) % 744K+K−2π+π− ( 8.7 ±1.5 )× 10−3 673
φ2π+π− [ppp℄ ( 1.21±0.16) % 640K+K−ρ0π+non-φ < 2.6 × 10−4 CL=90% 249
φρ0π+, φ → K+K− ( 6.5 ±1.3 )× 10−3 181

φa1(1260)+, φ →K+K−, a+1 → ρ0π+ ( 7.5 ±1.2 )× 10−3 †K+K−2π+π− nonresonant ( 9 ±7 )× 10−4 6732K0S 2π+π− ( 9 ±4 )× 10−4 669



53535353Meson Summary TableHadroni
 modes without K 'sHadroni
 modes without K 'sHadroni
 modes without K 'sHadroni
 modes without K 's
π+π0 < 3.5 × 10−4 CL=90% 9752π+π− ( 1.09±0.05) % S=1.1 959

ρ0π+ ( 2.0 ±1.2 )× 10−4 825
π+ (π+π−)S−wave [sss℄ ( 9.1 ±0.4 )× 10−3 959f2(1270)π+ , f2 → π+π− ( 1.10±0.20)× 10−3 559
ρ(1450)0π+ , ρ0 → π+π− ( 3.0 ±2.0 )× 10−4 421

π+ 2π0 ( 6.5 ±1.3 )× 10−3 9602π+π−π0 | 935
ηπ+ [ppp℄ ( 1.70±0.09) % S=1.1 902
ωπ+ [ppp℄ ( 2.4 ±0.6 )× 10−3 8223π+2π− ( 8.0 ±0.8 )× 10−3 8992π+π− 2π0 | 902
ηρ+ [ppp℄ ( 8.9 ±0.8 ) % 724
ηπ+π0 ( 9.2 ±1.2 ) % 885
ωπ+π0 [ppp℄ ( 2.8 ±0.7 ) % 8023π+2π−π0 ( 4.9 ±3.2 ) % 856
ω2π+π− [ppp℄ ( 1.6 ±0.5 ) % 766
η′(958)π+ [ooo,ppp℄ ( 3.94±0.25) % 7433π+2π−2π0 | 803
ωηπ+ [ppp℄ < 2.13 % CL=90% 654
η′(958)ρ+ [ooo,ppp℄ ( 5.8 ±1.5 ) % 465
η′(958)π+π0 ( 5.6 ±0.8 ) % 720

η′(958)π+π0 nonresonant < 5.1 % CL=90% 720Modes with one or three K 'sModes with one or three K 'sModes with one or three K 'sModes with one or three K 'sK+π0 ( 6.3 ±2.1 )× 10−4 917K0S π+ ( 1.22±0.06)× 10−3 916K+η [ppp℄ ( 1.77±0.35)× 10−3 835K+ω [ppp℄ < 2.4 × 10−3 CL=90% 741K+η′(958) [ppp℄ ( 1.8 ±0.6 )× 10−3 646K+π+π− ( 6.6 ±0.4 )× 10−3 900K+ρ0 ( 2.5 ±0.4 )× 10−3 745K+ρ(1450)0 , ρ0 → π+π− ( 7.0 ±2.4 )× 10−4 {K∗(892)0π+ , K∗0 →K+π−
( 1.42±0.24)× 10−3 775K∗(1410)0π+ , K∗0 →K+π−
( 1.24±0.29)× 10−3 {K∗(1430)0π+ , K∗0 →K+π−
( 5.0 ±3.5 )× 10−4 {K+π+π−nonresonant ( 1.04±0.34)× 10−3 900K0π+π0 ( 1.00±0.18) % 899K0S 2π+π− ( 3.0 ±1.1 )× 10−3 870K+ωπ0 [ppp℄ < 8.2 × 10−3 CL=90% 684K+ωπ+π− [ppp℄ < 5.4 × 10−3 CL=90% 603K+ωη [ppp℄ < 7.9 × 10−3 CL=90% 3662K+K− ( 2.18±0.21)× 10−4 627

φK+ , φ → K+K− ( 8.9 ±2.0 )× 10−5 {Doubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modes2K+π− ( 1.27±0.13)× 10−4 805K+K∗(892)0 , K∗0 →K+π−
( 6.0 ±3.4 )× 10−5 {Baryon-antibaryon modeBaryon-antibaryon modeBaryon-antibaryon modeBaryon-antibaryon modepn ( 1.3 ±0.4 )× 10−3 295�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,Lepton family number (LF), orLepton family number (LF), orLepton family number (LF), orLepton family number (LF), orLepton number (L) violating modesLepton number (L) violating modesLepton number (L) violating modesLepton number (L) violating modes

π+ e+ e− [zz ℄ < 1.3 × 10−5 CL=90% 979
π+φ, φ → e+ e− [yy ℄ ( 6 +8

−4 )× 10−6 {
π+µ+µ− [zz ℄ < 4.1 × 10−7 CL=90% 968K+ e+ e− C1 < 3.7 × 10−6 CL=90% 922K+µ+µ− C1 < 2.1 × 10−5 CL=90% 909K∗(892)+µ+µ− C1 < 1.4 × 10−3 CL=90% 765
π+ e+µ− LF < 1.2 × 10−5 CL=90% 976
π+ e−µ+ LF < 2.0 × 10−5 CL=90% 976K+ e+µ− LF < 1.4 × 10−5 CL=90% 919K+ e−µ+ LF < 9.7 × 10−6 CL=90% 919
π− 2e+ L < 4.1 × 10−6 CL=90% 979
π− 2µ+ L < 1.2 × 10−7 CL=90% 968
π− e+µ+ L < 8.4 × 10−6 CL=90% 976K−2e+ L < 5.2 × 10−6 CL=90% 922K−2µ+ L < 1.3 × 10−5 CL=90% 909K− e+µ+ L < 6.1 × 10−6 CL=90% 919K∗(892)−2µ+ L < 1.4 × 10−3 CL=90% 765

D∗±sD∗±sD∗±sD∗±s I (JP ) = 0(??)JP is natural, width and de
ay modes 
onsistent with 1− .Mass m = 2112.1 ± 0.4 MeVmD∗±s − mD±s = 143.8 ± 0.4 MeVFull width � < 1.9 MeV, CL = 90%D∗−s modes are 
harge 
onjugates of the modes below.D∗+s DECAY MODESD∗+s DECAY MODESD∗+s DECAY MODESD∗+s DECAY MODES Fra
tion (�i /�) p (MeV/
)D+s γ (93.5±0.7) % 139D+s π0 ( 5.8±0.7) % 48D+s e+ e− ( 6.7±1.6)× 10−3 139D∗s0(2317)±D∗s0(2317)±D∗s0(2317)±D∗s0(2317)± I (JP ) = 0(0+)J, P need 
on�rmation.JP is natural, low mass 
onsistent with 0+.Mass m = 2317.7 ± 0.6 MeV (S = 1.1)mD∗s0(2317)± − mD±s = 349.4 ± 0.6 MeV (S = 1.1)Full width � < 3.8 MeV, CL = 95%D∗s0(2317)− modes are 
harge 
onjugates of modes below.D∗s0(2317)± DECAY MODESD∗s0(2317)± DECAY MODESD∗s0(2317)± DECAY MODESD∗s0(2317)± DECAY MODES Fra
tion (�i /�) p (MeV/
)D+s π0 seen 298D+s π0π0 not seen 205Ds1(2460)±Ds1(2460)±Ds1(2460)±Ds1(2460)± I (JP ) = 0(1+)Mass m = 2459.5 ± 0.6 MeV (S = 1.1)mDs1(2460)± − mD∗±s = 347.3 ± 0.7 MeV (S = 1.2)mDs1(2460)± − mD±s = 491.2 ± 0.6 MeV (S = 1.1)Full width � < 3.5 MeV, CL = 95%Ds1(2460)− modes are 
harge 
onjugates of the modes below.S
ale fa
tor/ pDs1(2460)+ DECAY MODESDs1(2460)+ DECAY MODESDs1(2460)+ DECAY MODESDs1(2460)+ DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)D∗+s π0 (48 ±11 ) % 297D+s γ (18 ± 4 ) % 442D+s π+π− ( 4.3± 1.3) % S=1.1 363D∗+s γ < 8 % CL=90% 323D∗s0(2317)+ γ ( 3.7+ 5.0
− 2.4) % 138Ds1(2536)±Ds1(2536)±Ds1(2536)±Ds1(2536)± I (JP ) = 0(1+)J, P need 
on�rmation.Mass m = 2535.10 ± 0.06 MeVFull width � = 0.92 ± 0.05 MeVDs1(2536)− modes are 
harge 
onjugates of the modes below. pDs1(2536)+ DECAY MODESDs1(2536)+ DECAY MODESDs1(2536)+ DECAY MODESDs1(2536)+ DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)D∗(2010)+K0 0.85 ±0.12 149(D∗(2010)+K0)S−wave 0.61 ±0.09 149D+π−K+ 0.028±0.005 176D∗(2007)0K+ DEFINED AS 1DEFINED AS 1DEFINED AS 1DEFINED AS 1 167D+K0 <0.34 90% 381D0K+ <0.12 90% 391D∗+s γ possibly seen 388D+s π+π− seen 437D∗s2(2573)D∗s2(2573)D∗s2(2573)D∗s2(2573) I (JP ) = 0(2+)JP is natural, width and de
ay modes 
onsistent with 2+ .Mass m = 2569.1 ± 0.8 MeV (S = 2.4)Full width � = 16.9 ± 0.8 MeV



54545454Meson SummaryTableD∗s2(2573)− modes are 
harge 
onjugates of the modes below.D∗s2(2573)+ DECAY MODESD∗s2(2573)+ DECAY MODESD∗s2(2573)+ DECAY MODESD∗s2(2573)+ DECAY MODES Fra
tion (�i /�) p (MeV/
)D0K+ seen 431D∗(2007)0K+ not seen 238D∗s1(2700)±D∗s1(2700)±D∗s1(2700)±D∗s1(2700)± I (JP ) = 0(1−)Mass m = 2708.3+4.0
−3.4 MeVFull width � = 120 ± 11 MeVBOTTOMMESONSBOTTOMMESONSBOTTOMMESONSBOTTOMMESONS(B= ±1)(B= ±1)(B= ±1)(B= ±1)B+ = ub, B0 = db, B0 = d b, B− = ub, similarly for B∗'sB-parti
le organizationB-parti
le organizationB-parti
le organizationB-parti
le organizationMany measurements of B de
ays involve admixtures of Bhadrons. Previously we arbitrarily in
luded su
h admixturesin the B± se
tion, but be
ause of their importan
e we have
reated two new se
tions: \B±/B0 Admixture" for �(4S)results and \B±/B0/B0s/b-baryon Admixture" for resultsat higher energies. Most in
lusive de
ay bran
hing fra
tionsand χb at high energy are found in the Admixture se
tions.B0-B0 mixing data are found in the B0 se
tion, while B0s -B0s mixing data and B-B mixing data for a B0/B0s admixtureare found in the B0s se
tion. CP-violation data are found inthe B±, B0, and B± B0 Admixture se
tions. b-baryons arefound near the end of the Baryon se
tion.The organization of the B se
tions is now as follows, wherebullets indi
ate parti
le se
tions and bra
kets indi
ate re-views.

• B±mass, mean life, CP violation, bran
hing fra
tions
• B0mass, mean life, B0-B0 mixing, CP violation,bran
hing fra
tions
• B±/B0 AdmixturesCP violation, bran
hing fra
tions
• B±/B0/B0s/b-baryon Admixturesmean life, produ
tion fra
tions, bran
hing fra
tions
• B∗mass
• B1(5721)+mass
• B1(5721)0mass
• B∗2(5747)+mass
• B∗2(5747)0mass
• B∗J (5970)+mass
• B∗J (5970)0mass
• B0smass, mean life, B0s -B0s mixing, CP violation,bran
hing fra
tions
• B∗smass
• Bs1(5830)0

mass
•B∗s2(5840)0mass
•B±
mass, mean life, bran
hing fra
tionsAt the end of Baryon Listings:
• �bmass, mean life, bran
hing fra
tions
• �b(5912)0mass, mean life
• �b(5920)0mass, mean life
•�bmass
•�∗bmass
•� 0b , �−bmass, mean life, bran
hing fra
tions
•� ′b(5935)−mass
•�b(5945)0mass
•� ∗b(5955)−mass
•
−bmass, bran
hing fra
tions
• b-baryon Admixturemean life, bran
hing fra
tionsB±B±B±B± I (JP ) = 12 (0−)I , J , P need 
on�rmation. Quantum numbers shown are quark-modelpredi
tions.Mass mB± = 5279.31 ± 0.15 MeV (S = 1.1)Mean life τB± = (1.638 ± 0.004)× 10−12 s
τ = 491.1 µmCP violationCP violationCP violationCP violationACP (B+ → J/ψ(1S)K+) = 0.003 ± 0.006 (S = 1.8)ACP (B+ → J/ψ(1S)π+) = (0.1 ± 2.8)× 10−2 (S = 1.2)ACP (B+ → J/ψρ+) = −0.11 ± 0.14ACP (B+ → J/ψK∗(892)+) = −0.048 ± 0.033ACP (B+ → η
 K+) = 0.01 ± 0.07 (S = 2.2)ACP (B+ → ψ(2S)π+) = 0.03 ± 0.06ACP (B+ → ψ(2S)K+) = 0.012 ± 0.020 (S = 1.5)ACP (B+ → ψ(2S)K∗(892)+) = 0.08 ± 0.21ACP (B+ → χ
1(1P)π+) = 0.07 ± 0.18ACP (B+ → χ
0K+) = −0.20 ± 0.18 (S = 1.5)ACP (B+ → χ
1K+) = −0.009 ± 0.033ACP (B+ → χ
1K∗(892)+) = 0.5 ± 0.5ACP (B+ → D0π+) = −0.007 ± 0.007ACP (B+ → DCP (+1)π+) = 0.035 ± 0.024ACP (B+ → DCP (−1)π+) = 0.017 ± 0.026ACP ([K∓π±π+π− ℄D π+) = 0.13 ± 0.10ACP (B+ → D0K+) = 0.007 ± 0.025 (S = 1.5)ACP ([K∓π±π+π− ℄DK+) = −0.42 ± 0.22rB(B+ → D0K+) = 0.095 ± 0.008

δB(B+ → D0K+) = (123 ± 10)◦rB(B+ → D0K∗+) = 0.17 ± 0.11 (S = 2.3)
δB(B+ → D0K∗+) = (155 ± 70)◦ (S = 2.0)ACP (B+ → [K−π+ ℄D K+) = −0.58 ± 0.21ACP (B+ → [K−π+π0 ℄DK+) = 0.07 ± 0.30 (S = 1.5)ACP (B+ → [K+K−π0 ℄DK+) = 0.30 ± 0.20ACP (B+ → [π+π−π0 ℄D K+) = 0.05 ± 0.09ACP (B+ → [K−π+ ℄D K∗(892)+) = −0.3 ± 0.5ACP (B+ → [K−π+ ℄D π+) = 0.00 ± 0.09



55555555Meson SummaryTableACP (B+ → [K−π+π0 ℄D π+) = 0.35 ± 0.16ACP (B+ → [K+K−π0 ℄D π+) = −0.03 ± 0.04ACP (B+ → [π+π−π0 ℄D π+) = −0.016 ± 0.020ACP (B+ → [K−π+ ℄(D π)π+) = −0.09 ± 0.27ACP (B+ → [K−π+ ℄(D γ)π+) = −0.7 ± 0.6ACP (B+ → [K−π+ ℄(D π)K+) = 0.8 ± 0.4ACP (B+ → [K−π+ ℄(D γ)K+) = 0.4 ± 1.0ACP (B+ → [π+π−π0 ℄D K+) = −0.02 ± 0.15ACP (B+ → [K0S K+π− ℄DK+) = 0.04 ± 0.09ACP (B+ → [K0S K−π+ ℄DK+) = 0.23 ± 0.13ACP (B+ → [K0S K−π+ ℄D π+) = −0.052 ± 0.034ACP (B+ → [K0S K+π− ℄D π+) = −0.025 ± 0.026ACP (B+ → [K∗(892)−K+ ℄DK+) = 0.03 ± 0.11ACP (B+ → [K∗(892)+K− ℄DK+) = 0.34 ± 0.21ACP (B+ → [K∗(892)+K− ℄D π+) = −0.05 ± 0.05ACP (B+ → [K∗(892)−K+ ℄D π+) = −0.012 ± 0.030ACP (B+ → DCP (+1)K+)ACP (B+ → DCP (+1)K+)ACP (B+ → DCP (+1)K+)ACP (B+ → DCP (+1)K+) = 0.170 ± 0.033 (S = 1.2)AADS(B+ → DK+) = −0.52 ± 0.15AADS(B+ → D π+) = 0.14 ± 0.06AADS(B+ → [K−π+ ℄DK+π−π+) = −0.33 ± 0.35AADS(B+ → [K−π+ ℄D π+π−π+) = −0.01 ± 0.09ACP (B+ → DCP (−1)K+) = −0.10 ± 0.07ACP (B+ → [K+K− ℄DK+π−π+) = −0.04 ± 0.06ACP (B+ → [π+π− ℄DK+π−π+) = −0.05 ± 0.10ACP (B+ → [K−π+ ℄DK+π−π+) = 0.013 ± 0.023ACP (B+ → [K+K− ℄D π+π−π+) = −0.019 ± 0.015ACP (B+ → [π+π− ℄D π+π−π+) = −0.013 ± 0.019ACP (B+ → [K−π+ ℄D π+π−π+) = −0.002 ± 0.011ACP (B+ → D∗0π+) = −0.014 ± 0.015ACP (B+ → (D∗
CP (+1))0π+) = −0.02 ± 0.05ACP (B+ → (D∗
CP (−1))0π+) = −0.09 ± 0.05ACP (B+ → D∗0K+) = −0.07 ± 0.04r∗B(B+ → D∗0K+) = 0.114+0.023

−0.040 (S = 1.2)
δ∗B(B+ → D∗0K+) = (310+22

−28)◦ (S = 1.3)ACP (B+ → D∗0
CP (+1)K+) = −0.12 ± 0.08ACP (B+ → D∗
CP (−1)K+) = 0.07 ± 0.10ACP (B+ → DCP (+1)K∗(892)+) = 0.09 ± 0.14ACP (B+ → DCP (−1)K∗(892)+) = −0.23 ± 0.22ACP (B+ → D+s φ) = 0.0 ± 0.4ACP (B+ → D∗+D∗0) = −0.15 ± 0.11ACP (B+ → D∗+D0) = −0.06 ± 0.13ACP (B+ → D+D∗0) = 0.13 ± 0.18ACP (B+ → D+D0) = −0.03 ± 0.07ACP (B+ → K0S π+) = −0.017 ± 0.016ACP (B+ → K+π0) = 0.037 ± 0.021ACP (B+ → η′K+) = 0.004 ± 0.011ACP (B+ → η′K∗(892)+) = −0.26 ± 0.27ACP (B+ → η′K∗0(1430)+) = 0.06 ± 0.20ACP (B+ → η′K∗2(1430)+) = 0.15 ± 0.13ACP (B+ → ηK+)ACP (B+ → ηK+)ACP (B+ → ηK+)ACP (B+ → ηK+) = −0.37 ± 0.08ACP (B+ → ηK∗(892)+) = 0.02 ± 0.06ACP (B+ → ηK∗0(1430)+) = 0.05 ± 0.13ACP (B+ → ηK∗2(1430)+) = −0.45 ± 0.30ACP (B+ → ωK+) = −0.02 ± 0.04ACP (B+ → ωK∗+) = 0.29 ± 0.35ACP (B+ → ω (Kπ)∗+0 ) = −0.10 ± 0.09ACP (B+ → ωK∗2(1430)+) = 0.14 ± 0.15ACP (B+ → K∗0π+) = −0.04 ± 0.09 (S = 2.1)ACP (B+ → K∗(892)+π0) = −0.06 ± 0.24ACP (B+ → K+π−π+)ACP (B+ → K+π−π+)ACP (B+ → K+π−π+)ACP (B+ → K+π−π+) = 0.027 ± 0.008ACP (B+ → K+K−K+nonresonant) = 0.06 ± 0.05ACP (B+ → f (980)0K+) = −0.08 ± 0.09ACP (B+ → f2(1270)K+)ACP (B+ → f2(1270)K+)ACP (B+ → f2(1270)K+)ACP (B+ → f2(1270)K+) = −0.68+0.19

−0.17ACP (B+ → f0(1500)K+) = 0.28 ± 0.30ACP (B+ → f ′2(1525)0K+) = −0.08+0.05
−0.04ACP (B+ → ρ0K+)ACP (B+ → ρ0K+)ACP (B+ → ρ0K+)ACP (B+ → ρ0K+) = 0.37 ± 0.10ACP (B+ → K∗0(1430)0π+) = 0.055 ± 0.033ACP (B+ → K∗2(1430)0π+) = 0.05+0.29

−0.24ACP (B+ → K+π0π0) = −0.06 ± 0.07ACP (B+ → K0ρ+) = −0.12 ± 0.17

ACP (B+ → K∗+π+π−) = 0.07 ± 0.08ACP (B+ → ρ0K∗(892)+) = 0.31 ± 0.13ACP (B+ → K∗(892)+ f0(980)) = −0.15 ± 0.12ACP (B+ → a+1 K0) = 0.12 ± 0.11ACP (B+ → b+1 K0) = −0.03 ± 0.15ACP (B+ → K∗(892)0ρ+) = −0.01 ± 0.16ACP (B+ → b01K+) = −0.46 ± 0.20ACP (B+ → K0K+) = 0.04 ± 0.14ACP (B+ → K0S K+) = −0.21 ± 0.14ACP (B+ → K+K0S K0S ) = 0.04+0.04
−0.05ACP (B+ → K+K−π+)ACP (B+ → K+K−π+)ACP (B+ → K+K−π+)ACP (B+ → K+K−π+) = −0.118 ± 0.022ACP (B+ → K+K−K+)ACP (B+ → K+K−K+)ACP (B+ → K+K−K+)ACP (B+ → K+K−K+) = −0.033 ± 0.008ACP (B+ → φK+) = 0.024 ± 0.028 (S = 2.3)ACP (B+ → X0(1550)K+) = −0.04 ± 0.07ACP (B+ → K∗+K+K−) = 0.11 ± 0.09ACP (B+ → φK∗(892)+) = −0.01 ± 0.08ACP (B+ → φ(Kπ)∗+0 ) = 0.04 ± 0.16ACP (B+ → φK1(1270)+) = 0.15 ± 0.20ACP (B+ → φK∗2(1430)+) = −0.23 ± 0.20ACP (B+ → K+φφ) = −0.10 ± 0.08ACP (B+ → K+[φφ℄η
 ) = 0.09 ± 0.10ACP (B+ → K∗(892)+γ) = 0.018 ± 0.029ACP (B+ → ηK+γ) = −0.12 ± 0.07ACP (B+ → φK+γ) = −0.13 ± 0.11 (S = 1.1)ACP (B+ → ρ+γ) = −0.11 ± 0.33ACP (B+ → π+π0) = 0.03 ± 0.04ACP (B+ → π+π−π+)ACP (B+ → π+π−π+)ACP (B+ → π+π−π+)ACP (B+ → π+π−π+) = 0.057 ± 0.013ACP (B+ → ρ0π+) = 0.18+0.09

−0.17ACP (B+ → f2(1270)π+) = 0.41 ± 0.30ACP (B+ → ρ0(1450)π+) = −0.1+0.4
−0.5ACP (B+ → f0(1370)π+)ACP (B+ → f0(1370)π+)ACP (B+ → f0(1370)π+)ACP (B+ → f0(1370)π+) = 0.72 ± 0.22ACP (B+ → π+π−π+ nonresonant) = −0.14+0.23

−0.16ACP (B+ → ρ+π0) = 0.02 ± 0.11ACP (B+ → ρ+ρ0) = −0.05 ± 0.05ACP (B+ → ωπ+) = −0.04 ± 0.06ACP (B+ → ωρ+) = −0.20 ± 0.09ACP (B+ → ηπ+) = −0.14 ± 0.07 (S = 1.4)ACP (B+ → ηρ+) = 0.11 ± 0.11ACP (B+ → η′π+) = 0.06 ± 0.16ACP (B+ → η′ρ+) = 0.26 ± 0.17ACP (B+ → b01π+) = 0.05 ± 0.16ACP (B+ → ppπ+) = 0.00 ± 0.04ACP (B+ → ppK+) = 0.00 ± 0.04 (S = 2.2)ACP (B+ → ppK∗(892)+) = 0.21 ± 0.16 (S = 1.4)ACP (B+ → p�γ) = 0.17 ± 0.17ACP (B+ → p�π0) = 0.01 ± 0.17ACP (B+ → K+ ℓ+ ℓ−) = −0.02 ± 0.08ACP (B+ → K+ e+ e−) = 0.14 ± 0.14ACP (B+ → K+µ+µ−) = 0.011 ± 0.017ACP (B+ → π+µ+µ−) = −0.11 ± 0.12ACP (B+ → K∗+ ℓ+ ℓ−) = −0.09 ± 0.14ACP (B+ → K∗ e+ e−) = −0.14 ± 0.23ACP (B+ → K∗µ+µ−) = −0.12 ± 0.24
γ(B+ → D(∗)0K (∗)+)γ(B+ → D(∗)0K (∗)+)γ(B+ → D(∗)0K (∗)+)γ(B+ → D(∗)0K (∗)+) = (70 ± 9)◦
γ(B+ → DK+π−π+, D π+π−π+) = (74 ± 20)◦



56565656Meson SummaryTableB− modes are 
harge 
onjugates of the modes below. Modes whi
h do notidentify the 
harge state of the B are listed in the B±/B0 ADMIXTUREse
tion.The bran
hing fra
tions listed below assume 50% B0B0 and 50% B+B−produ
tion at the �(4S). We have attempted to bring older measurementsup to date by res
aling their assumed �(4S) produ
tion ratio to 50:50and their assumed D, Ds , D∗, and ψ bran
hing ratios to 
urrent valueswhenever this would a�e
t our averages and best limits signi�
antly.Indentation is used to indi
ate a sub
hannel of a previous rea
tion. Allresonant sub
hannels have been 
orre
ted for resonan
e bran
hing fra
-tions to the �nal state so the sum of the sub
hannel bran
hing fra
tions
an ex
eed that of the �nal state.For in
lusive bran
hing fra
tions, e.g., B → D± anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one. S
ale fa
tor/ pB+ DECAY MODESB+ DECAY MODESB+ DECAY MODESB+ DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)Semileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modes
ℓ+νℓ anything [ttt℄ ( 10.99 ± 0.28 ) % {e+νe X
 ( 10.8 ± 0.4 ) % {D ℓ+νℓ anything ( 9.8 ± 0.7 ) % {D0 ℓ+νℓ [ttt℄ ( 2.27 ± 0.11 ) % 2310D0 τ+ ντ ( 7.7 ± 2.5 )× 10−3 1911D∗(2007)0 ℓ+νℓ [ttt℄ ( 5.69 ± 0.19 ) % 2258D∗(2007)0 τ+ ντ ( 1.88 ± 0.20 ) % 1839D−π+ ℓ+νℓ ( 4.2 ± 0.5 )× 10−3 2306D∗0(2420)0 ℓ+νℓ, D∗00 →D−π+ ( 2.5 ± 0.5 )× 10−3 {D∗2(2460)0 ℓ+νℓ, D∗02 →D−π+ ( 1.53 ± 0.16 )× 10−3 2065D(∗) nπℓ+ νℓ (n ≥ 1) ( 1.87 ± 0.26 ) % {D∗−π+ ℓ+νℓ ( 6.1 ± 0.6 )× 10−3 2254D1(2420)0 ℓ+νℓ, D01 →D∗−π+ ( 3.03 ± 0.20 )× 10−3 2084D ′1(2430)0 ℓ+νℓ, D ′01 →D∗−π+ ( 2.7 ± 0.6 )× 10−3 {D∗2(2460)0 ℓ+νℓ,D∗02 → D∗−π+ ( 1.01 ± 0.24 )× 10−3 S=2.0 2065D0π+π− ℓ+νℓ ( 1.6 ± 0.4 )× 10−3 2301D∗0π+π− ℓ+νℓ ( 8 ± 5 )× 10−4 2248D(∗)−s K+ ℓ+νℓ ( 6.1 ± 1.0 )× 10−4 {D−s K+ ℓ+νℓ ( 3.0 + 1.4

− 1.2 )× 10−4 2242D∗−s K+ ℓ+νℓ ( 2.9 ± 1.9 )× 10−4 2185
π0 ℓ+νℓ ( 7.80 ± 0.27 )× 10−5 2638
ηℓ+νℓ ( 3.8 ± 0.6 )× 10−5 2611
η′ ℓ+νℓ ( 2.3 ± 0.8 )× 10−5 2553
ωℓ+νℓ [ttt℄ ( 1.19 ± 0.09 )× 10−4 2582
ρ0 ℓ+νℓ [ttt℄ ( 1.58 ± 0.11 )× 10−4 2583pp ℓ+νℓ ( 5.8 + 2.6

− 2.3 )× 10−6 2467ppµ+νµ < 8.5 × 10−6 CL=90% 2446ppe+νe ( 8.2 + 4.0
− 3.3 )× 10−6 2467e+νe < 9.8 × 10−7 CL=90% 2640

µ+νµ < 1.0 × 10−6 CL=90% 2639
τ+ ντ ( 1.09 ± 0.24 )× 10−4 S=1.2 2341
ℓ+νℓγ < 3.5 × 10−6 CL=90% 2640e+νe γ < 6.1 × 10−6 CL=90% 2640

µ+νµ γ < 3.4 × 10−6 CL=90% 2639In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modesD0X ( 8.6 ± 0.7 ) % {D0X ( 79 ± 4 ) % {D+X ( 2.5 ± 0.5 ) % {D−X ( 9.9 ± 1.2 ) % {D+s X ( 7.9 + 1.4
− 1.3 ) % {D−s X ( 1.10 + 0.40
− 0.32 ) % {�+
 X ( 2.1 + 0.9
− 0.6 ) % {�−
 X ( 2.8 + 1.1
− 0.9 ) % {
 X ( 97 ± 4 ) % {
 X ( 23.4 + 2.2
− 1.8 ) % {
 /
 X (120 ± 6 ) % {

D, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD0π+ ( 4.80 ± 0.15 )× 10−3 2308DCP(+1)π+ [uuu℄ ( 2.19 ± 0.24 )× 10−3 {DCP(−1)π+ [uuu℄ ( 2.1 ± 0.4 )× 10−3 {D0 ρ+ ( 1.34 ± 0.18 ) % 2237D0K+ ( 3.69 ± 0.17 )× 10−4 2281DCP(+1)K+ [uuu℄ ( 1.91 ± 0.14 )× 10−4 {DCP(−1)K+ [uuu℄ ( 1.99 ± 0.19 )× 10−4 {[K−π+ ℄DK+ [vvv ℄ < 2.8 × 10−7 CL=90% {[K+π− ℄DK+ [vvv ℄ < 1.8 × 10−5 CL=90% {[K−π+π0 ℄DK+ seen {[K+π−π0 ℄DK+ seen {[K−π+π+π− ℄DK+ seen {[K+π−π+π− ℄DK+ seen {[K−π+ ℄D π+ [vvv ℄ ( 6.3 ± 1.1 )× 10−7 {[K+π− ℄D π+ ( 1.68 ± 0.31 )× 10−4 {[K−π+π0 ℄D π+ seen {[K+π−π0 ℄D π+ seen {[K−π+π+π− ℄D π+ seen {[K+π−π+π− ℄D π+ seen {[π+π−π0 ℄DK− ( 4.6 ± 0.9 )× 10−6 {[K0S K+π− ℄DK+ seen {[K0S K−π+ ℄DK+ seen {[K∗(892)+K− ℄DK+ seen {[K0S K−π+ ℄D π+ seen {[K∗(892)+K− ℄D π+ seen {[K0S K+π− ℄D π+ seen {[K∗(892)−K+ ℄D π+ seen {D0K∗(892)+ ( 5.3 ± 0.4 )× 10−4 2213DCP (−1)K∗(892)+ [uuu℄ ( 2.7 ± 0.8 )× 10−4 {DCP (+1)K∗(892)+ [uuu℄ ( 5.8 ± 1.1 )× 10−4 {D0K+π+π− ( 5.4 ± 2.2 )× 10−4 2237D0K+K0 ( 5.5 ± 1.6 )× 10−4 2189D0K+K∗(892)0 ( 7.5 ± 1.7 )× 10−4 2072D0π+π+π− ( 5.7 ± 2.2 )× 10−3 S=3.6 2289D0π+π+π− nonresonant ( 5 ± 4 )× 10−3 2289D0π+ ρ0 ( 4.2 ± 3.0 )× 10−3 2208D0 a1(1260)+ ( 4 ± 4 )× 10−3 2123D0ωπ+ ( 4.1 ± 0.9 )× 10−3 2206D∗(2010)−π+π+ ( 1.35 ± 0.22 )× 10−3 2247D1(2420)0π+, D01 →D∗(2010)−π+ ( 5.3 ± 2.3 )× 10−4 2081D−π+π+ ( 1.07 ± 0.05 )× 10−3 2299D−K+π+ ( 7.7 ± 0.5 )× 10−5 2260D∗0(2400)0K+, D∗00 →D−π+ ( 6.1 ± 2.4 )× 10−4 {D∗1(2760)0K+, D∗01 →D−π+ ( 3.6 ± 1.2 )× 10−4 {D∗2(2460)0K+, D∗02 →D−π+ ( 2.32 ± 0.23 )× 10−3 {D+K0 < 2.9 × 10−6 CL=90% 2278D+K∗0 < 1.8 × 10−6 CL=90% 2211D+K∗0 < 1.4 × 10−6 CL=90% 2211D∗(2007)0π+ ( 5.18 ± 0.26 )× 10−3 2256D∗0
CP (+1)π+ [xxx ℄ ( 2.9 ± 0.7 )× 10−3 {D∗0
CP (−1)π+ [xxx ℄ ( 2.6 ± 1.0 )× 10−3 {D∗(2007)0ωπ+ ( 4.5 ± 1.2 )× 10−3 2149D∗(2007)0 ρ+ ( 9.8 ± 1.7 )× 10−3 2181D∗(2007)0K+ ( 4.20 ± 0.34 )× 10−4 2227D∗0
CP (+1)K+ [xxx ℄ ( 2.8 ± 0.4 )× 10−4 {D∗0
CP (−1)K+ [xxx ℄ ( 2.31 ± 0.33 )× 10−4 {D∗(2007)0K∗(892)+ ( 8.1 ± 1.4 )× 10−4 2156D∗(2007)0K+K0 < 1.06 × 10−3 CL=90% 2132D∗(2007)0K+K∗(892)0 ( 1.5 ± 0.4 )× 10−3 2009D∗(2007)0π+π+π− ( 1.03 ± 0.12 ) % 2236D∗(2007)0 a1(1260)+ ( 1.9 ± 0.5 ) % 2063D∗(2007)0π−π+π+π0 ( 1.8 ± 0.4 ) % 2219D∗0 3π+2π− ( 5.7 ± 1.2 )× 10−3 2196D∗(2010)+π0 < 3.6 × 10−6 2255D∗(2010)+K0 < 9.0 × 10−6 CL=90% 2225D∗(2010)−π+π+π0 ( 1.5 ± 0.7 ) % 2235D∗(2010)−π+π+π+π− ( 2.6 ± 0.4 )× 10−3 2217D∗∗0π+ [yyy ℄ ( 5.9 ± 1.3 )× 10−3 {D∗1(2420)0π+ ( 1.5 ± 0.6 )× 10−3 S=1.3 2082



57575757Meson SummaryTableD1(2420)0π+× B(D01 →D0π+π−) ( 2.5 + 1.6
− 1.4 )× 10−4 S=4.0 2082D1(2420)0π+× B(D01 →D0π+π− (nonresonant)) ( 2.3 ± 1.0 )× 10−4 2082D∗2(2462)0π+

× B(D∗2(2462)0 → D−π+) ( 3.5 ± 0.4 )× 10−4 {D∗2(2462)0π+×B(D∗02 →D0π−π+) ( 2.3 ± 1.1 )× 10−4 {D∗2(2462)0π+×B(D∗02 →D0π−π+ (nonresonant)) < 1.7 × 10−4 CL=90% {D∗2(2462)0π+×B(D∗02 →D∗(2010)−π+) ( 2.2 ± 1.1 )× 10−4 {D∗0(2400)0π+
× B(D∗0(2400)0 → D−π+) ( 6.4 ± 1.4 )× 10−4 2128D1(2421)0π+
× B(D1(2421)0 → D∗−π+) ( 6.8 ± 1.5 )× 10−4 {D∗2(2462)0π+
× B(D∗2(2462)0 → D∗−π+) ( 1.8 ± 0.5 )× 10−4 {D ′1(2427)0π+
× B(D ′1(2427)0 → D∗−π+) ( 5.0 ± 1.2 )× 10−4 {D1(2420)0π+×B(D01 →D∗0π+π−) < 6 × 10−6 CL=90% 2082D∗1(2420)0 ρ+ < 1.4 × 10−3 CL=90% 1996D∗2(2460)0π+ < 1.3 × 10−3 CL=90% 2063D∗2(2460)0π+×B(D∗02 →D∗0π+π−) < 2.2 × 10−5 CL=90% 2063D∗2(2460)0 ρ+ < 4.7 × 10−3 CL=90% 1977D0D+s ( 9.0 ± 0.9 )× 10−3 1815D∗s0(2317)+D0, D∗+s0 →D+s π0 ( 7.9 + 1.5

− 1.3 )× 10−4 1605Ds0(2317)+D0×B(Ds0(2317)+ → D∗+s γ) < 7.6 × 10−4 CL=90% 1605Ds0(2317)+D∗(2007)0×B(Ds0(2317)+ → D+s π0) ( 9 ± 7 )× 10−4 1511DsJ (2457)+D0 ( 3.1 + 1.0
− 0.9 )× 10−3 {DsJ (2457)+D0×B(DsJ (2457)+ → D+s γ) ( 4.6 + 1.3
− 1.1 )× 10−4 {DsJ (2457)+D0×B(DsJ (2457)+ →D+s π+π−) < 2.2 × 10−4 CL=90% {DsJ (2457)+D0×B(DsJ (2457)+ → D+s π0) < 2.7 × 10−4 CL=90% {DsJ (2457)+D0×B(DsJ (2457)+ → D∗+s γ) < 9.8 × 10−4 CL=90% {DsJ (2457)+D∗(2007)0 ( 1.20 ± 0.30 ) % {DsJ (2457)+D∗(2007)0×B(DsJ (2457)+ → D+s γ) ( 1.4 + 0.7
− 0.6 )× 10−3 {D0Ds1(2536)+×B(Ds1(2536)+ →D∗(2007)0K+ +D∗(2010)+K0) ( 4.0 ± 1.0 )× 10−4 1447D0Ds1(2536)+×B(Ds1(2536)+ →D∗(2007)0K+) ( 2.2 ± 0.7 )× 10−4 1447D∗(2007)0Ds1(2536)+×B(Ds1(2536)+ →D∗(2007)0K+) ( 5.5 ± 1.6 )× 10−4 1339D0Ds1(2536)+×B(Ds1(2536)+ → D∗+K0) ( 2.3 ± 1.1 )× 10−4 1447D0DsJ (2700)+×B(DsJ (2700)+ → D0K+) ( 5.6 ± 1.8 )× 10−4 S=1.7 {D∗0Ds1(2536)+, D+s1 →D∗+K0 ( 3.9 ± 2.6 )× 10−4 1339D0DsJ (2573)+, D+

sJ →D0K+ ( 8 ±15 )× 10−6 {D∗0DsJ (2573), D+
sJ →D0K+ < 2 × 10−4 CL=90% 1306D∗(2007)0DsJ (2573), D+

sJ →D0K+ < 5 × 10−4 CL=90% 1306D0D∗+s ( 7.6 ± 1.6 )× 10−3 1734D∗(2007)0D+s ( 8.2 ± 1.7 )× 10−3 1737D∗(2007)0D∗+s ( 1.71 ± 0.24 ) % 1651

D(∗)+s D∗∗0 ( 2.7 ± 1.2 ) % {D∗(2007)0D∗(2010)+ ( 8.1 ± 1.7 )× 10−4 1713D0D∗(2010)+ +D∗(2007)0D+ < 1.30 % CL=90% 1792D0D∗(2010)+ ( 3.9 ± 0.5 )× 10−4 1792D0D+ ( 3.8 ± 0.4 )× 10−4 1866D0D+K0 ( 1.55 ± 0.21 )× 10−3 1571D+D∗(2007)0 ( 6.3 ± 1.7 )× 10−4 1791D∗(2007)0D+K0 ( 2.1 ± 0.5 )× 10−3 1475D0D∗(2010)+K0 ( 3.8 ± 0.4 )× 10−3 1476D∗(2007)0D∗(2010)+K0 ( 9.2 ± 1.2 )× 10−3 1362D0D0K+ ( 1.45 ± 0.33 )× 10−3 S=2.6 1577D∗(2007)0D0K+ ( 2.26 ± 0.23 )× 10−3 1481D0D∗(2007)0K+ ( 6.3 ± 0.5 )× 10−3 1481D∗(2007)0D∗(2007)0K+ ( 1.12 ± 0.13 ) % 1368D−D+K+ ( 2.2 ± 0.7 )× 10−4 1571D−D∗(2010)+K+ ( 6.3 ± 1.1 )× 10−4 1475D∗(2010)−D+K+ ( 6.0 ± 1.3 )× 10−4 1475D∗(2010)−D∗(2010)+K+ ( 1.32 ± 0.18 )× 10−3 1363(D+D∗ )(D+D∗ )K ( 4.05 ± 0.30 ) % {D+s π0 ( 1.6 ± 0.5 )× 10−5 2270D∗+s π0 < 2.6 × 10−4 CL=90% 2215D+s η < 4 × 10−4 CL=90% 2235D∗+s η < 6 × 10−4 CL=90% 2178D+s ρ0 < 3.0 × 10−4 CL=90% 2197D∗+s ρ0 < 4 × 10−4 CL=90% 2138D+s ω < 4 × 10−4 CL=90% 2195D∗+s ω < 6 × 10−4 CL=90% 2136D+s a1(1260)0 < 1.8 × 10−3 CL=90% 2079D∗+s a1(1260)0 < 1.3 × 10−3 CL=90% 2015D+s φ ( 1.7 + 1.2
− 0.7 )× 10−6 2141D∗+s φ < 1.2 × 10−5 CL=90% 2079D+s K0 < 8 × 10−4 CL=90% 2242D∗+s K0 < 9 × 10−4 CL=90% 2185D+s K∗(892)0 < 4.4 × 10−6 CL=90% 2172D+s K∗0 < 3.5 × 10−6 CL=90% 2172D∗+s K∗(892)0 < 3.5 × 10−4 CL=90% 2112D−s π+K+ ( 1.80 ± 0.22 )× 10−4 2222D∗−s π+K+ ( 1.45 ± 0.24 )× 10−4 2164D−s π+K∗(892)+ < 5 × 10−3 CL=90% 2138D∗−s π+K∗(892)+ < 7 × 10−3 CL=90% 2076D−s K+K+ ( 9.7 ± 2.1 )× 10−6 2149D∗−s K+K+ < 1.5 × 10−5 CL=90% 2088Charmonium modesCharmonium modesCharmonium modesCharmonium modes

η
 K+ ( 9.6 ± 1.1 )× 10−4 1751
η
 K+, η
 → K0S K∓π± ( 2.7 ± 0.6 )× 10−5 {

η
 K∗(892)+ ( 1.0 + 0.5
− 0.4 )× 10−3 1646

η
 K+π+π− < 3.9 × 10−4 CL=90% 1684
η
 K+ω(782) < 5.3 × 10−4 CL=90% 1476
η
 K+η < 2.2 × 10−4 CL=90% 1588
η
 K+π0 < 6.2 × 10−5 CL=90% 1723
η
 (2S)K+ ( 3.4 ± 1.8 )× 10−4 1319

η
 (2S)K+, η
 → pp < 1.06 × 10−7 CL=95% {
η
 (2S)K+, η
 →K0S K∓π±

( 3.4 + 2.3
− 1.6 )× 10−6 {h
 (1P)K+, h
 → J/ψπ+π− < 3.4 × 10−6 CL=90% 1401X (3730)0K+, X 0 → η
 η < 4.6 × 10−5 CL=90% {X (3730)0K+, X 0 → η
 π0 < 5.7 × 10−6 CL=90% {X (3872)K+ < 3.2 × 10−4 CL=90% 1141X (3872)K+, X → pp < 1.7 × 10−8 CL=95% {X (3872)K+, X →J/ψπ+π−

( 8.6 ± 0.8 )× 10−6 1141X (3872)K+, X → J/ψγ ( 2.1 ± 0.4 )× 10−6 S=1.1 1141X (3872)K+, X → ψ(2S)γ ( 4 ± 4 )× 10−6 S=2.5 1141X (3872)K+, X →J/ψ(1S)η < 7.7 × 10−6 CL=90% 1141X (3872)K+, X → D0D0 < 6.0 × 10−5 CL=90% 1141X (3872)K+, X → D+D− < 4.0 × 10−5 CL=90% 1141X (3872)K+, X →D0D0π0 ( 1.0 ± 0.4 )× 10−4 1141X (3872)K+, X → D∗0D0 ( 8.5 ± 2.6 )× 10−5 S=1.4 1141X (3872)0K+, X 0 →
η
 π+π−

< 3.0 × 10−5 CL=90% {



58585858Meson SummaryTableX (3872)0K+, X 0 →
η
 ω(782) < 6.9 × 10−5 CL=90% {X (3915)0K+, X 0 → η
 η < 3.3 × 10−5 CL=90% {X (3915)0K+, X 0 → η
 π0 < 1.8 × 10−5 CL=90% {X (4014)0K+, X 0 → η
 η < 3.9 × 10−5 CL=90% {X (4014)0K+, X 0 → η
 π0 < 1.2 × 10−5 CL=90% {X (3900)0K+, X 0 →

η
 π+π−
< 4.7 × 10−5 CL=90% {X (4020)0K+, X 0 →

η
 π+π−
< 1.6 × 10−5 CL=90% {X (3872)K∗(892)+, X →J/ψγ
< 4.8 × 10−6 CL=90% 939X (3872)K∗(892)+, X →

ψ(2S)γ < 2.8 × 10−5 CL=90% 939X (3872)+K0, X+ →J/ψ(1S)π+π0 [zzz ℄ < 6.1 × 10−6 CL=90% {X (3872)K0π+, X →J/ψ(1S)π+π−
( 1.06 ± 0.31 )× 10−5 {X (4430)+K0, X+ → J/ψπ+ < 1.5 × 10−5 CL=95% {X (4430)+K0, X+ →

ψ(2S)π+ < 4.7 × 10−5 CL=95% {X (4260)0K+, X 0 →J/ψπ+π−
< 2.9 × 10−5 CL=95% {X (3915)K+, X → J/ψγ < 1.4 × 10−5 CL=90% {X (3930)0K+, X 0 → J/ψγ < 2.5 × 10−6 CL=90% {J/ψ(1S)K+ ( 1.026± 0.031)× 10−3 1684J/ψ(1S)K+π+π− ( 8.1 ± 1.3 )× 10−4 S=2.5 1612J/ψ(1S)K+K−K+ ( 3.37 ± 0.29 )× 10−5 1252X (3915)K+, X → pp < 7.1 × 10−8 CL=95% {J/ψ(1S)K∗(892)+ ( 1.43 ± 0.08 )× 10−3 1571J/ψ(1S)K (1270)+ ( 1.8 ± 0.5 )× 10−3 1390J/ψ(1S)K (1400)+ < 5 × 10−4 CL=90% 1308J/ψ(1S)ηK+ ( 1.24 ± 0.14 )× 10−4 1510X c−odd(3872)K+,X c−odd → J/ψη
< 3.8 × 10−6 CL=90% {

ψ(4160)K+, ψ → J/ψη < 7.4 × 10−6 CL=90% {J/ψ(1S)η′K+ < 8.8 × 10−5 CL=90% 1273J/ψ(1S)φK+ ( 5.0 ± 0.4 )× 10−5 1227X (4140)K+, X →J/ψ(1S)φ ( 10 ± 4 )× 10−6 {X (4274)K+, X →J/ψ(1S)φ < 4 × 10−6 CL=90% {J/ψ(1S)ωK+ ( 3.20 + 0.60
− 0.32 )× 10−4 1388X (3872)K+, X → J/ψω ( 6.0 ± 2.2 )× 10−6 1141X (3915)K+, X → J/ψω ( 3.0 + 0.9
− 0.7 )× 10−5 1103J/ψ(1S)π+ ( 4.1 ± 0.4 )× 10−5 S=2.6 1728J/ψ(1S)ρ+ ( 5.0 ± 0.8 )× 10−5 1611J/ψ(1S)π+π0 nonresonant < 7.3 × 10−6 CL=90% 1717J/ψ(1S)a1(1260)+ < 1.2 × 10−3 CL=90% 1415J/ψppπ+ < 5.0 × 10−7 CL=90% 643J/ψ(1S)p� ( 1.18 ± 0.31 )× 10−5 567J/ψ(1S)�0p < 1.1 × 10−5 CL=90% {J/ψ(1S)D+ < 1.2 × 10−4 CL=90% 871J/ψ(1S)D0π+ < 2.5 × 10−5 CL=90% 665

ψ(2S)π+ ( 2.44 ± 0.30 )× 10−5 1347
ψ(2S)K+ ( 6.26 ± 0.24 )× 10−4 1284
ψ(2S)K∗(892)+ ( 6.7 ± 1.4 )× 10−4 S=1.3 1116
ψ(2S)K+π+π− ( 4.3 ± 0.5 )× 10−4 1179
ψ(3770)K+ ( 4.9 ± 1.3 )× 10−4 1218

ψ(3770)K+,ψ → D0D0 ( 1.5 ± 0.5 )× 10−4 S=1.4 1218
ψ(3770)K+,ψ → D+D− ( 9.4 ± 3.5 )× 10−5 1218

ψ(4040)K+ < 1.3 × 10−4 CL=90% 1003
ψ(4160)K+ ( 5.1 ± 2.7 )× 10−4 868

ψ(4160)K+, ψ → D0D0 ( 8 ± 5 )× 10−5 {
χ
0π+, χ
0 → π+π− < 1 × 10−7 CL=90% 1531
χ
0(1P)K+ ( 1.50 + 0.15

− 0.14 )× 10−4 1478
χ
0K∗(892)+ < 2.1 × 10−4 CL=90% 1341
χ
2π+, χ
2 → π+π− < 1 × 10−7 CL=90% 1437
χ
2K+ ( 1.1 ± 0.4 )× 10−5 1379
χ
2K∗(892)+ < 1.2 × 10−4 CL=90% 1228
χ
1(1P)π+ ( 2.2 ± 0.5 )× 10−5 1468
χ
1(1P)K+ ( 4.79 ± 0.23 )× 10−4 1412
χ
1(1P)K∗(892)+ ( 3.0 ± 0.6 )× 10−4 S=1.1 1265h
 (1P)K+ < 3.8 × 10−5 CL=90% 1401h
 (1P)K+, h
 → pp < 6.4 × 10−8 CL=95% {

K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modesK0π+ ( 2.37 ± 0.08 )× 10−5 2614K+π0 ( 1.29 ± 0.05 )× 10−5 2615
η′K+ ( 7.06 ± 0.25 )× 10−5 2528
η′K∗(892)+ ( 4.8 + 1.8

− 1.6 )× 10−6 2472
η′K∗0(1430)+ ( 5.2 ± 2.1 )× 10−6 {
η′K∗2(1430)+ ( 2.8 ± 0.5 )× 10−5 2346
ηK+ ( 2.4 ± 0.4 )× 10−6 S=1.7 2588
ηK∗(892)+ ( 1.93 ± 0.16 )× 10−5 2534
ηK∗0(1430)+ ( 1.8 ± 0.4 )× 10−5 {
ηK∗2(1430)+ ( 9.1 ± 3.0 )× 10−6 2414
η(1295)K+× B(η(1295) →

ηππ) ( 2.9 + 0.8
− 0.7 )× 10−6 2455

η(1405)K+× B(η(1405) →
ηππ) < 1.3 × 10−6 CL=90% 2425

η(1405)K+× B(η(1405) →K∗K ) < 1.2 × 10−6 CL=90% 2425
η(1475)K+× B(η(1475) →K∗K ) ( 1.38 + 0.21

− 0.18 )× 10−5 2406f1(1285)K+ < 2.0 × 10−6 CL=90% 2458f1(1420)K+× B(f1(1420) →
ηππ) < 2.9 × 10−6 CL=90% 2420f1(1420)K+× B(f1(1420) →K∗K ) < 4.1 × 10−6 CL=90% 2420

φ(1680)K+× B(φ(1680) →K∗K ) < 3.4 × 10−6 CL=90% 2344f0(1500)K+ ( 3.7 ± 2.2 )× 10−6 2398
ωK+ ( 6.5 ± 0.4 )× 10−6 2558
ωK∗(892)+ < 7.4 × 10−6 CL=90% 2503
ω (Kπ)∗+0 ( 2.8 ± 0.4 )× 10−5 {
ωK∗0(1430)+ ( 2.4 ± 0.5 )× 10−5 {
ωK∗2(1430)+ ( 2.1 ± 0.4 )× 10−5 2380a0(980)+K0×B(a0(980)+ →

ηπ+) < 3.9 × 10−6 CL=90% {a0(980)0K+×B(a0(980)0 →
ηπ0) < 2.5 × 10−6 CL=90% {K∗(892)0π+ ( 1.01 ± 0.09 )× 10−5 2562K∗(892)+π0 ( 8.2 ± 1.9 )× 10−6 2563K+π−π+ ( 5.10 ± 0.29 )× 10−5 2609K+π−π+nonresonant ( 1.63 + 0.21

− 0.15 )× 10−5 2609
ω(782)K+ ( 6 ± 9 )× 10−6 2558K+ f0(980)× B(f0(980) →

π+π−) ( 9.4 + 1.0
− 1.2 )× 10−6 2522f2(1270)0K+ ( 1.07 ± 0.27 )× 10−6 {f0(1370)0K+×B(f0(1370)0 → π+π−) < 1.07 × 10−5 CL=90% {

ρ0(1450)K+×B(ρ0(1450) → π+π−) < 1.17 × 10−5 CL=90% {f ′2(1525)K+×B(f ′2(1525) → π+π−) < 3.4 × 10−6 CL=90% 2392K+ρ0 ( 3.7 ± 0.5 )× 10−6 2559K∗0(1430)0π+ ( 4.5 + 0.9
− 0.7 )× 10−5 S=1.5 2445K∗2(1430)0π+ ( 5.6 + 2.2
− 1.5 )× 10−6 2445K∗(1410)0π+ < 4.5 × 10−5 CL=90% 2448K∗(1680)0π+ < 1.2 × 10−5 CL=90% 2358K+π0π0 ( 1.62 ± 0.19 )× 10−5 2610f0(980)K+× B(f0 → π0π0) ( 2.8 ± 0.8 )× 10−6 2522K−π+π+ < 9.5 × 10−7 CL=90% 2609K−π+π+nonresonant < 5.6 × 10−5 CL=90% 2609K1(1270)0π+ < 4.0 × 10−5 CL=90% 2484K1(1400)0π+ < 3.9 × 10−5 CL=90% 2451K0π+π0 < 6.6 × 10−5 CL=90% 2609K0ρ+ ( 8.0 ± 1.5 )× 10−6 2558K∗(892)+π+π− ( 7.5 ± 1.0 )× 10−5 2557K∗(892)+ρ0 ( 4.6 ± 1.1 )× 10−6 2504K∗(892)+ f0(980) ( 4.2 ± 0.7 )× 10−6 2466a+1 K0 ( 3.5 ± 0.7 )× 10−5 {b+1 K0× B(b+1 → ωπ+) ( 9.6 ± 1.9 )× 10−6 {K∗(892)0 ρ+ ( 9.2 ± 1.5 )× 10−6 2504K1(1400)+ρ0 < 7.8 × 10−4 CL=90% 2388K∗2(1430)+ρ0 < 1.5 × 10−3 CL=90% 2381b01K+× B(b01 → ωπ0) ( 9.1 ± 2.0 )× 10−6 {b+1 K∗0× B(b+1 → ωπ+) < 5.9 × 10−6 CL=90% {



59595959Meson SummaryTableb01K∗+× B(b01 → ωπ0) < 6.7 × 10−6 CL=90% {K+K0 ( 1.31 ± 0.17 )× 10−6 S=1.2 2593K0K+π0 < 2.4 × 10−5 CL=90% 2578K+K0S K0S ( 1.08 ± 0.06 )× 10−5 2521f0(980)K+, f0 → K0S K0S ( 1.47 ± 0.33 )× 10−5 {f0(1710)K+, f0 → K0S K0S ( 4.8 + 4.0
− 2.6 )× 10−7 {K+K0S K0S nonresonant ( 2.0 ± 0.4 )× 10−5 2521K0S K0S π+ < 5.1 × 10−7 CL=90% 2577K+K−π+ ( 5.0 ± 0.7 )× 10−6 2578K+K−π+ nonresonant < 7.5 × 10−5 CL=90% 2578K+K∗(892)0 < 1.1 × 10−6 CL=90% 2540K+K∗0(1430)0 < 2.2 × 10−6 CL=90% 2421K+K+π− < 1.6 × 10−7 CL=90% 2578K+K+π− nonresonant < 8.79 × 10−5 CL=90% 2578f ′2(1525)K+ ( 1.8 ± 0.5 )× 10−6 S=1.1 2392K∗+π+K− < 1.18 × 10−5 CL=90% 2524K∗(892)+K∗(892)0 ( 9.1 ± 2.9 )× 10−7 2484K∗+K+π− < 6.1 × 10−6 CL=90% 2524K+K−K+ ( 3.40 ± 0.14 )× 10−5 S=1.4 2523K+φ ( 8.8 + 0.7
− 0.6 )× 10−6 S=1.1 2516f0(980)K+× B(f0(980) →K+K−) ( 9.4 ± 3.2 )× 10−6 2522a2(1320)K+×B(a2(1320) → K+K−) < 1.1 × 10−6 CL=90% 2449X0(1550)K+×B(X0(1550) → K+K−) ( 4.3 ± 0.7 )× 10−6 {

φ(1680)K+× B(φ(1680) →K+K−) < 8 × 10−7 CL=90% 2344f0(1710)K+× B(f0(1710) →K+K−) ( 1.1 ± 0.6 )× 10−6 2330K+K−K+nonresonant ( 2.38 + 0.28
− 0.50 )× 10−5 2523K∗(892)+K+K− ( 3.6 ± 0.5 )× 10−5 2466K∗(892)+φ ( 10.0 ± 2.0 )× 10−6 S=1.7 2460

φ(Kπ)∗+0 ( 8.3 ± 1.6 )× 10−6 {
φK1(1270)+ ( 6.1 ± 1.9 )× 10−6 2375
φK1(1400)+ < 3.2 × 10−6 CL=90% 2339
φK∗(1410)+ < 4.3 × 10−6 CL=90% {
φK∗0(1430)+ ( 7.0 ± 1.6 )× 10−6 {
φK∗2(1430)+ ( 8.4 ± 2.1 )× 10−6 2333
φK∗2(1770)+ < 1.50 × 10−5 CL=90% {
φK∗2(1820)+ < 1.63 × 10−5 CL=90% {a+1 K∗0 < 3.6 × 10−6 CL=90% {K+φφ ( 5.0 ± 1.2 )× 10−6 S=2.3 2306
η′ η′K+ < 2.5 × 10−5 CL=90% 2338
ωφK+ < 1.9 × 10−6 CL=90% 2374X (1812)K+× B(X → ωφ) < 3.2 × 10−7 CL=90% {K∗(892)+γ ( 4.21 ± 0.18 )× 10−5 2564K1(1270)+γ ( 4.3 ± 1.3 )× 10−5 2486
ηK+γ ( 7.9 ± 0.9 )× 10−6 2588
η′K+γ ( 2.9 + 1.0

− 0.9 )× 10−6 2528
φK+ γ ( 2.7 ± 0.4 )× 10−6 S=1.2 2516K+π−π+γ ( 2.76 ± 0.22 )× 10−5 S=1.2 2609K∗(892)0π+ γ ( 2.0 + 0.7

− 0.6 )× 10−5 2562K+ρ0 γ < 2.0 × 10−5 CL=90% 2559K+π−π+γ nonresonant < 9.2 × 10−6 CL=90% 2609K0π+π0 γ ( 4.6 ± 0.5 )× 10−5 2609K1(1400)+γ < 1.5 × 10−5 CL=90% 2453K∗2(1430)+γ ( 1.4 ± 0.4 )× 10−5 2447K∗(1680)+γ < 1.9 × 10−3 CL=90% 2360K∗3(1780)+γ < 3.9 × 10−5 CL=90% 2341K∗4(2045)+γ < 9.9 × 10−3 CL=90% 2244Light un
avored meson modesLight un
avored meson modesLight un
avored meson modesLight un
avored meson modes
ρ+γ ( 9.8 ± 2.5 )× 10−7 2583
π+π0 ( 5.5 ± 0.4 )× 10−6 S=1.2 2636
π+π+π− ( 1.52 ± 0.14 )× 10−5 2630

ρ0π+ ( 8.3 ± 1.2 )× 10−6 2581
π+ f0(980), f0 → π+π− < 1.5 × 10−6 CL=90% 2545
π+ f2(1270) ( 1.6 + 0.7

− 0.4 )× 10−6 2484
ρ(1450)0π+, ρ0 → π+π− ( 1.4 + 0.6

− 0.9 )× 10−6 2434f0(1370)π+, f0 → π+π− < 4.0 × 10−6 CL=90% 2460f0(500)π+, f0 → π+π− < 4.1 × 10−6 CL=90% {

π+π−π+ nonresonant ( 5.3 + 1.5
− 1.1 )× 10−6 2630

π+π0π0 < 8.9 × 10−4 CL=90% 2631
ρ+π0 ( 1.09 ± 0.14 )× 10−5 2581

π+π−π+π0 < 4.0 × 10−3 CL=90% 2622
ρ+ρ0 ( 2.40 ± 0.19 )× 10−5 2523
ρ+ f0(980), f0 → π+π− < 2.0 × 10−6 CL=90% 2486a1(1260)+π0 ( 2.6 ± 0.7 )× 10−5 2494a1(1260)0π+ ( 2.0 ± 0.6 )× 10−5 2494

ωπ+ ( 6.9 ± 0.5 )× 10−6 2580
ωρ+ ( 1.59 ± 0.21 )× 10−5 2522
ηπ+ ( 4.02 ± 0.27 )× 10−6 2609
ηρ+ ( 7.0 ± 2.9 )× 10−6 S=2.8 2553
η′π+ ( 2.7 ± 0.9 )× 10−6 S=1.9 2551
η′ρ+ ( 9.7 ± 2.2 )× 10−6 2492
φπ+ < 1.5 × 10−7 CL=90% 2539
φρ+ < 3.0 × 10−6 CL=90% 2480a0(980)0π+, a00 → ηπ0 < 5.8 × 10−6 CL=90% {a0(980)+π0, a+0 → ηπ+ < 1.4 × 10−6 CL=90% {
π+π+π+π−π− < 8.6 × 10−4 CL=90% 2608

ρ0 a1(1260)+ < 6.2 × 10−4 CL=90% 2433
ρ0 a2(1320)+ < 7.2 × 10−4 CL=90% 2410b01π+, b01 → ωπ0 ( 6.7 ± 2.0 )× 10−6 {b+1 π0, b+1 → ωπ+ < 3.3 × 10−6 CL=90% {

π+π+π+π−π−π0 < 6.3 × 10−3 CL=90% 2592b+1 ρ0, b+1 → ωπ+ < 5.2 × 10−6 CL=90% {a1(1260)+ a1(1260)0 < 1.3 % CL=90% 2336b01 ρ+, b01 → ωπ0 < 3.3 × 10−6 CL=90% {Charged parti
le (h±) modesCharged parti
le (h±) modesCharged parti
le (h±) modesCharged parti
le (h±) modesh± = K± or π±h+π0 ( 1.6 + 0.7
− 0.6 )× 10−5 2636

ωh+ ( 1.38 + 0.27
− 0.24 )× 10−5 2580h+X 0 (Familon) < 4.9 × 10−5 CL=90% {Baryon modesBaryon modesBaryon modesBaryon modesppπ+ ( 1.62 ± 0.20 )× 10−6 2439ppπ+nonresonant < 5.3 × 10−5 CL=90% 2439ppK+ ( 5.9 ± 0.5 )× 10−6 S=1.5 2348�(1710)++ p, �++ →pK+ [aaaa℄ < 9.1 × 10−8 CL=90% {fJ (2220)K+, fJ → pp [aaaa℄ < 4.1 × 10−7 CL=90% 2135p�(1520) ( 3.1 ± 0.6 )× 10−7 2322ppK+nonresonant < 8.9 × 10−5 CL=90% 2348ppK∗(892)+ ( 3.6 + 0.8
− 0.7 )× 10−6 2215fJ (2220)K∗+, fJ → pp < 7.7 × 10−7 CL=90% 2059p� < 3.2 × 10−7 CL=90% 2430p�γ ( 2.4 + 0.5
− 0.4 )× 10−6 2430p�π0 ( 3.0 + 0.7
− 0.6 )× 10−6 2402p� (1385)0 < 4.7 × 10−7 CL=90% 2362�+� < 8.2 × 10−7 CL=90% {p� γ < 4.6 × 10−6 CL=90% 2413p�π+π− ( 5.9 ± 1.1 )× 10−6 2367p�ρ0 ( 4.8 ± 0.9 )× 10−6 2214p�f2(1270) ( 2.0 ± 0.8 )× 10−6 2026��π+ < 9.4 × 10−7 CL=90% 2358��K+ ( 3.4 ± 0.6 )× 10−6 2251��K∗+ ( 2.2 + 1.2
− 0.9 )× 10−6 2098�0 p < 1.38 × 10−6 CL=90% 2403�++p < 1.4 × 10−7 CL=90% 2403D+ pp < 1.5 × 10−5 CL=90% 1860D∗(2010)+ pp < 1.5 × 10−5 CL=90% 1786D0 ppπ+ ( 3.72 ± 0.27 )× 10−4 1789D∗0ppπ+ ( 3.73 ± 0.32 )× 10−4 1709D− ppπ+π− ( 1.66 ± 0.30 )× 10−4 1705D∗−ppπ+π− ( 1.86 ± 0.25 )× 10−4 1621p�0D0 ( 1.43 ± 0.32 )× 10−5 {p�0D∗(2007)0 < 5 × 10−5 CL=90% {�−
 pπ+ ( 2.2 ± 0.4 )× 10−4 S=2.2 1980�−
 �(1232)++ < 1.9 × 10−5 CL=90% 1928�−
 �X (1600)++ ( 4.6 ± 0.9 )× 10−5 {�−
 �X (2420)++ ( 3.7 ± 0.8 )× 10−5 {(�−
 p)sπ+ [bbaa℄ ( 3.1 ± 0.7 )× 10−5 {



60606060Meson SummaryTable� 
 (2520)0 p < 3 × 10−6 CL=90% 1904� 
 (2800)0 p ( 2.6 ± 0.9 )× 10−5 {�−
 pπ+π0 ( 1.8 ± 0.6 )× 10−3 1935�−
 pπ+π+π− ( 2.2 ± 0.7 )× 10−3 1880�−
 pπ+π+π−π0 < 1.34 % CL=90% 1823�+
 �−
 K+ ( 6.9 ± 2.2 )× 10−4 {� 
 (2455)0 p ( 2.9 ± 0.7 )× 10−5 1938� 
 (2455)0 pπ0 ( 3.5 ± 1.1 )× 10−4 1896� 
 (2455)0 pπ−π+ ( 3.5 ± 1.0 )× 10−4 1845� 
 (2455)−−pπ+π+ ( 2.34 ± 0.20 )× 10−4 1845�
 (2593)−/�
 (2625)− pπ+ < 1.9 × 10−4 CL=90% {� 0
 �+
 , � 0
 → �+π− ( 2.4 ± 0.9 )× 10−5 S=1.4 1144� 0
 �+
 , � 0
 → �K+π− ( 2.1 ± 0.9 )× 10−5 S=1.5 1144Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)violating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modes
π+ ℓ+ ℓ− B1 < 4.9 × 10−8 CL=90% 2638

π+ e+ e− B1 < 8.0 × 10−8 CL=90% 2638
π+µ+µ− B1 ( 1.79 ± 0.23 )× 10−8 2634

π+ ν ν B1 < 9.8 × 10−5 CL=90% 2638K+ ℓ+ ℓ− B1 [ttt℄ ( 4.51 ± 0.23 )× 10−7 S=1.1 2617K+ e+ e− B1 ( 5.5 ± 0.7 )× 10−7 2617K+µ+µ− B1 ( 4.43 ± 0.24 )× 10−7 S=1.2 2612K+ν ν B1 < 1.6 × 10−5 CL=90% 2617
ρ+ν ν B1 < 2.13 × 10−4 CL=90% 2583K∗(892)+ ℓ+ ℓ− B1 [ttt℄ ( 1.01 ± 0.11 )× 10−6 S=1.1 2564K∗(892)+ e+ e− B1 ( 1.55 + 0.40

− 0.31 )× 10−6 2564K∗(892)+µ+µ− B1 ( 9.6 ± 1.0 )× 10−7 2560K∗(892)+ν ν B1 < 4.0 × 10−5 CL=90% 2564K+π+π−µ+µ− B1 ( 4.4 ± 0.4 )× 10−7 2593
φK+µ+µ− B1 ( 7.9 + 2.1

− 1.7 )× 10−8 2490
π+ e+µ− LF < 6.4 × 10−3 CL=90% 2637
π+ e−µ+ LF < 6.4 × 10−3 CL=90% 2637
π+ e±µ∓ LF < 1.7 × 10−7 CL=90% 2637
π+ e+ τ− LF < 7.4 × 10−5 CL=90% 2338
π+ e− τ+ LF < 2.0 × 10−5 CL=90% 2338
π+ e± τ∓ LF < 7.5 × 10−5 CL=90% 2338
π+µ+ τ− LF < 6.2 × 10−5 CL=90% 2333
π+µ− τ+ LF < 4.5 × 10−5 CL=90% 2333
π+µ± τ∓ LF < 7.2 × 10−5 CL=90% 2333K+ e+µ− LF < 9.1 × 10−8 CL=90% 2615K+ e−µ+ LF < 1.3 × 10−7 CL=90% 2615K+ e±µ∓ LF < 9.1 × 10−8 CL=90% 2615K+ e+ τ− LF < 4.3 × 10−5 CL=90% 2312K+ e− τ+ LF < 1.5 × 10−5 CL=90% 2312K+ e± τ∓ LF < 3.0 × 10−5 CL=90% 2312K+µ+ τ− LF < 4.5 × 10−5 CL=90% 2298K+µ− τ+ LF < 2.8 × 10−5 CL=90% 2298K+µ± τ∓ LF < 4.8 × 10−5 CL=90% 2298K∗(892)+ e+µ− LF < 1.3 × 10−6 CL=90% 2563K∗(892)+ e−µ+ LF < 9.9 × 10−7 CL=90% 2563K∗(892)+ e±µ∓ LF < 1.4 × 10−6 CL=90% 2563
π− e+ e+ L < 2.3 × 10−8 CL=90% 2638
π−µ+µ+ L < 4.0 × 10−9 CL=95% 2634
π− e+µ+ L < 1.5 × 10−7 CL=90% 2637
ρ− e+ e+ L < 1.7 × 10−7 CL=90% 2583
ρ−µ+µ+ L < 4.2 × 10−7 CL=90% 2578
ρ− e+µ+ L < 4.7 × 10−7 CL=90% 2582K− e+ e+ L < 3.0 × 10−8 CL=90% 2617K−µ+µ+ L < 4.1 × 10−8 CL=90% 2612K− e+µ+ L < 1.6 × 10−7 CL=90% 2615K∗(892)− e+ e+ L < 4.0 × 10−7 CL=90% 2564K∗(892)−µ+µ+ L < 5.9 × 10−7 CL=90% 2560K∗(892)− e+µ+ L < 3.0 × 10−7 CL=90% 2563D− e+ e+ L < 2.6 × 10−6 CL=90% 2309D− e+µ+ L < 1.8 × 10−6 CL=90% 2307D−µ+µ+ L < 6.9 × 10−7 CL=95% 2303D∗−µ+µ+ L < 2.4 × 10−6 CL=95% 2251D−s µ+µ+ L < 5.8 × 10−7 CL=95% 2267D0π−µ+µ+ L < 1.5 × 10−6 CL=95% 2295�0µ+ L,B < 6 × 10−8 CL=90% {�0 e+ L,B < 3.2 × 10−8 CL=90% {�0µ+ L,B < 6 × 10−8 CL=90% {�0 e+ L,B < 8 × 10−8 CL=90% {

B0B0B0B0 I (JP ) = 12 (0−)I , J , P need 
on�rmation. Quantum numbers shown are quark-modelpredi
tions.Mass mB0 = 5279.62 ± 0.15 MeV (S = 1.1)mB0 − mB± = 0.31 ± 0.06 MeVMean life τB0 = (1.520 ± 0.004)× 10−12 s
τ = 455.7 µm
τB+/τB0 = 1.076 ± 0.004 (dire
t measurements)B0-B0 mixing parametersB0-B0 mixing parametersB0-B0 mixing parametersB0-B0 mixing parameters
χd = 0.1875 ± 0.0017�mB0 = mB0H − mB0L = (0.5096 ± 0.0034)× 1012 �h s−1= (3.354 ± 0.022)× 10−10 MeVxd = �mB0/�B0 = 0.775 ± 0.006Re(λCP /

∣

∣λCP

∣

∣

) Re(z) = 0.01 ± 0.05�� Re(z) = −0.007 ± 0.004Re(z) = (2 ± 5)× 10−2Im(z) = (−0.8 ± 0.4)× 10−2CP violation parametersCP violation parametersCP violation parametersCP violation parametersRe(ǫB0)/(1+∣

∣ǫB0∣∣2) = (−0.4 ± 0.4)× 10−3AT/CP = 0.005 ± 0.018ACP (B0 → D∗(2010)+D−) = 0.037 ± 0.034ACP (B0 → [K+K− ℄DK∗(892)0) = −0.20 ± 0.15ACP (B0 → [K+π− ℄DK∗(892)0) = −0.03 ± 0.04R+d = �(B0 → [π+K− ℄DK∗0) / �(B0 → [π−K+ ℄DK∗0) =0.06 ± 0.032R−d = �(B0 → [π−K+ ℄DK∗0) / �(B0 → [π+K− ℄DK∗0) =0.06 ± 0.032ACP (B0 → [π+π− ℄DK∗(892)0) = −0.09 ± 0.22ACP (B0 → K+π−)ACP (B0 → K+π−)ACP (B0 → K+π−)ACP (B0 → K+π−) = −0.082 ± 0.006ACP (B0 → η′K∗(892)0) = −0.07 ± 0.18ACP (B0 → η′K∗0(1430)0) = −0.19 ± 0.17ACP (B0 → η′K∗2(1430)0) = 0.14 ± 0.18ACP (B0 → ηK∗(892)0)ACP (B0 → ηK∗(892)0)ACP (B0 → ηK∗(892)0)ACP (B0 → ηK∗(892)0) = 0.19 ± 0.05ACP (B0 → ηK∗0(1430)0) = 0.06 ± 0.13ACP (B0 → ηK∗2(1430)0) = −0.07 ± 0.19ACP (B0 → b1K+) = −0.07 ± 0.12ACP (B0 → ωK∗0) = 0.45 ± 0.25ACP (B0 → ω (Kπ)∗00 ) = −0.07 ± 0.09ACP (B0 → ωK∗2(1430)0) = −0.37 ± 0.17ACP (B0 → K+π−π0) = (0 ± 6)× 10−2ACP (B0 → ρ−K+) = 0.20 ± 0.11ACP (B0 → ρ(1450)−K+) = −0.10 ± 0.33ACP (B0 → ρ(1700)−K+) = −0.4 ± 0.6ACP (B0 → K+π−π0 nonresonant) = 0.10 ± 0.18ACP (B0 → K0π+π−) = −0.01 ± 0.05ACP (B0 → K∗(892)+π−)ACP (B0 → K∗(892)+π−)ACP (B0 → K∗(892)+π−)ACP (B0 → K∗(892)+π−) = −0.22 ± 0.06ACP (B0 → (Kπ)∗+0 π−) = 0.09 ± 0.07ACP (B0 → (Kπ)∗00 π0) = −0.15 ± 0.11ACP (B0 → K∗0π0) = −0.15 ± 0.13ACP (B0 → K∗(892)0π+π−) = 0.07 ± 0.05ACP (B0 → K∗(892)0 ρ0) = −0.06 ± 0.09ACP (B0 → K∗0 f0(980)) = 0.07 ± 0.10ACP (B0 → K∗+ρ−) = 0.21 ± 0.15ACP (B0 → K∗(892)0K+K−) = 0.01 ± 0.05ACP (B0 → a−1 K+) = −0.16 ± 0.12ACP (B0 → K0K0) = −0.6 ± 0.7ACP (B0 → K∗(892)0φ) = 0.00 ± 0.04ACP (B0 → K∗(892)0K−π+) = 0.2 ± 0.4ACP (B0 → φ(K π)∗00 ) = 0.12 ± 0.08ACP (B0 → φK∗2(1430)0) = −0.11 ± 0.10ACP (B0 → K∗(892)0 γ) = −0.002 ± 0.015ACP (B0 → K∗2(1430)0γ) = −0.08 ± 0.15ACP (B0 → ρ+π−) = 0.13 ± 0.06 (S = 1.1)ACP (B0 → ρ−π+) = −0.08 ± 0.08ACP (B0 → a1(1260)±π∓) = −0.07 ± 0.06ACP (B0 → b−1 π+) = −0.05 ± 0.10ACP (B0 → ppK∗(892)0) = 0.05 ± 0.12ACP (B0 → p�π−) = 0.04 ± 0.07ACP (B0 → K∗0 ℓ+ ℓ−) = −0.05 ± 0.10ACP (B0 → K∗0 e+ e−) = −0.21 ± 0.19



61616161Meson SummaryTableACP (B0 → K∗0µ+µ−) = −0.034 ± 0.024CD∗−D+ (B0 → D∗(2010)−D+) = −0.01 ± 0.11SD∗−D+ (B0 → D∗(2010)−D+)SD∗−D+ (B0 → D∗(2010)−D+)SD∗−D+ (B0 → D∗(2010)−D+)SD∗−D+ (B0 → D∗(2010)−D+) = −0.72 ± 0.15CD∗+D− (B0 → D∗(2010)+D−) = 0.00 ± 0.13 (S = 1.3)SD∗+D− (B0 → D∗(2010)+D−)SD∗+D− (B0 → D∗(2010)+D−)SD∗+D− (B0 → D∗(2010)+D−)SD∗+D− (B0 → D∗(2010)+D−) = −0.73 ± 0.14CD∗+D∗− (B0 → D∗+D∗−) = 0.01 ± 0.09 (S = 1.6)SD∗+D∗− (B0 → D∗+D∗−)SD∗+D∗− (B0 → D∗+D∗−)SD∗+D∗− (B0 → D∗+D∗−)SD∗+D∗− (B0 → D∗+D∗−) = −0.59 ± 0.14 (S = 1.8)C+ (B0 → D∗+D∗−) = 0.00 ± 0.10 (S = 1.6)S+ (B0 → D∗+D∗−)S+ (B0 → D∗+D∗−)S+ (B0 → D∗+D∗−)S+ (B0 → D∗+D∗−) = −0.73 ± 0.09C− (B0 → D∗+D∗−) = 0.19 ± 0.31S− (B0 → D∗+D∗−) = 0.1 ± 1.6 (S = 3.5)C (B0 → D∗(2010)+D∗(2010)−K0S ) = 0.01 ± 0.29S (B0 → D∗(2010)+D∗(2010)−K0S ) = 0.1 ± 0.4CD+D− (B0 → D+D−) = −0.46 ± 0.21 (S = 1.8)SD+D− (B0 → D+D−)SD+D− (B0 → D+D−)SD+D− (B0 → D+D−)SD+D− (B0 → D+D−) = −0.99+0.17
−0.14CJ/ψ(1S)π0 (B0 → J/ψ(1S)π0) = −0.13 ± 0.13SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0) = −0.94 ± 0.29 (S = 1.9)C(B0 → J/ψ(1S)ρ0) = −0.06 ± 0.06S(B0 → J/ψ(1S)ρ0)S(B0 → J/ψ(1S)ρ0)S(B0 → J/ψ(1S)ρ0)S(B0 → J/ψ(1S)ρ0) = −0.66+0.16

−0.12CD(∗)
CP

h0 (B0 → D(∗)
CP h0) = −0.02 ± 0.08SD(∗)

CP
h0 (B0 → D(∗)

CP h0)SD(∗)
CP

h0 (B0 → D(∗)
CP h0)SD(∗)

CP
h0 (B0 → D(∗)

CP h0)SD(∗)
CP

h0 (B0 → D(∗)
CP h0) = −0.66 ± 0.12CK0π0 (B0 → K0π0) = 0.00 ± 0.13 (S = 1.4)SK0π0 (B0 → K0π0)SK0π0 (B0 → K0π0)SK0π0 (B0 → K0π0)SK0π0 (B0 → K0π0) = 0.58 ± 0.17C

η′(958)K0S (B0 → η′(958)K0S ) = −0.04 ± 0.20 (S = 2.5)S
η′(958)K0S (B0 → η′(958)K0S ) = 0.43 ± 0.17 (S = 1.5)Cη′K0 (B0 → η′K0) = −0.06 ± 0.04Sη′K0 (B0 → η′K0)Sη′K0 (B0 → η′K0)Sη′K0 (B0 → η′K0)Sη′K0 (B0 → η′K0) = 0.63 ± 0.06C
ωK0S (B0 → ωK0S ) = 0.0 ± 0.4 (S = 3.0)S
ωK0S (B0 → ωK0S ) = 0.70 ± 0.21C (B0 → K0S π0π0) = 0.2 ± 0.5S (B0 → K0S π0π0) = 0.7 ± 0.7C
ρ0K0S (B0 → ρ0K0S) = −0.04 ± 0.20S
ρ0K0S (B0 → ρ0K0S ) = 0.50+0.17

−0.21Cf0K0S (B0 → f0(980)K0S) = 0.29 ± 0.20Sf0K0S (B0 → f0(980)K0S )Sf0K0S (B0 → f0(980)K0S )Sf0K0S (B0 → f0(980)K0S )Sf0K0S (B0 → f0(980)K0S ) = −0.50 ± 0.16Sf2K0S (B0 → f2(1270)K0S ) = −0.5 ± 0.5Cf2K0S (B0 → f2(1270)K0S ) = 0.3 ± 0.4Sfx K0S (B0 → fx (1300)K0S ) = −0.2 ± 0.5Cfx K0S (B0 → fx (1300)K0S) = 0.13 ± 0.35SK0π+ π− (B0 → K0π+π− nonresonant) = −0.01 ± 0.33CK0π+π− (B0 → K0π+π− nonresonant) = 0.01 ± 0.26CK0S K0S (B0 → K0S K0S ) = 0.0 ± 0.4 (S = 1.4)SK0S K0S (B0 → K0S K0S ) = −0.8 ± 0.5CK+K−K0S (B0 → K+K−K0S nonresonant) = 0.06 ± 0.08SK+K−K0S (B0 → K+K−K0S nonresonant)SK+K−K0S (B0 → K+K−K0S nonresonant)SK+K−K0S (B0 → K+K−K0S nonresonant)SK+K−K0S (B0 → K+K−K0S nonresonant) = −0.66 ± 0.11CK+K−K0S (B0 → K+K−K0S in
lusive) = 0.01 ± 0.09SK+K−K0S (B0 → K+K−K0S in
lusive)SK+K−K0S (B0 → K+K−K0S in
lusive)SK+K−K0S (B0 → K+K−K0S in
lusive)SK+K−K0S (B0 → K+K−K0S in
lusive) = −0.65 ± 0.12C
φK0S (B0 → φK0S ) = 0.01 ± 0.14S
φK0S (B0 → φK0S )S
φK0S (B0 → φK0S )S
φK0S (B0 → φK0S )S
φK0S (B0 → φK0S ) = 0.59 ± 0.14CKS KS KS (B0 → KS KS KS ) = −0.23 ± 0.14SKS KS KS (B0 → KS KS KS ) = −0.5 ± 0.6 (S = 3.0)CK0S π0 γ

(B0 → K0S π0 γ) = 0.36 ± 0.33SK0S π0 γ
(B0 → K0S π0 γ) = −0.8 ± 0.6CK∗0 γ (B0 → K∗(892)0 γ) = −0.04 ± 0.16 (S = 1.2)SK∗0 γ (B0 → K∗(892)0 γ) = −0.15 ± 0.22CηK0 γ (B0 → ηK0 γ) = −0.3 ± 0.4SηK0 γ (B0 → ηK0 γ) = −0.2 ± 0.5CK0φγ (B0 → K0φγ) = −0.3 ± 0.6SK0φγ (B0 → K0φγ) = 0.7+0.7

−1.1C(B0 → K0S ρ0 γ) = −0.05 ± 0.19

S(B0 → K0S ρ0 γ) = 0.11 ± 0.34C (B0 → ρ0γ) = 0.4 ± 0.5S (B0 → ρ0γ) = −0.8 ± 0.7Cππ (B0 → π+π−)Cππ (B0 → π+π−)Cππ (B0 → π+π−)Cππ (B0 → π+π−) = −0.31 ± 0.05Sππ (B0 → π+π−)Sππ (B0 → π+π−)Sππ (B0 → π+π−)Sππ (B0 → π+π−) = −0.67 ± 0.06Cπ0π0(B0 → π0π0) = −0.43 ± 0.24Cρπ (B0 → ρ+π−) = −0.03 ± 0.07 (S = 1.2)Sρπ (B0 → ρ+π−) = 0.05 ± 0.07�Cρπ (B0 → ρ+π−)�Cρπ (B0 → ρ+π−)�Cρπ (B0 → ρ+π−)�Cρπ (B0 → ρ+π−) = 0.27 ± 0.06�Sρπ (B0 → ρ+π−) = 0.01 ± 0.08Cρ0π0 (B0 → ρ0π0) = 0.27 ± 0.24Sρ0π0 (B0 → ρ0π0) = −0.23 ± 0.34Ca1π (B0 → a1(1260)+π−) = −0.05 ± 0.11Sa1π (B0 → a1(1260)+π−) = −0.2 ± 0.4 (S = 3.2)�Ca1π (B0 → a1(1260)+π−)�Ca1π (B0 → a1(1260)+π−)�Ca1π (B0 → a1(1260)+π−)�Ca1π (B0 → a1(1260)+π−) = 0.43 ± 0.14 (S = 1.3)�Sa1π (B0 → a1(1260)+π−) = −0.11 ± 0.12C (B0 → b−1 K+) = −0.22 ± 0.24�C (B0 → b−1 π+)�C (B0 → b−1 π+)�C (B0 → b−1 π+)�C (B0 → b−1 π+) = −1.04 ± 0.24Cρ0ρ0 (B0 → ρ0ρ0) = 0.2 ± 0.9Sρ0ρ0 (B0 → ρ0 ρ0) = 0.3 ± 0.7Cρρ (B0 → ρ+ ρ−) = 0.00 ± 0.09Sρρ (B0 → ρ+ρ−) = −0.14 ± 0.13
∣

∣λ
∣

∣ (B0 → J/ψK∗(892)0) < 0.25, CL = 95%
os 2β (B0 → J/ψK∗(892)0) = 1.7+0.7
−0.9 (S = 1.6)
os 2β (B0 → [K0S π+π− ℄D(∗) h0) = 1.0+0.6

−0.7 (S = 1.8)(S+ + S−)/2 (B0 → D∗−π+) = −0.039 ± 0.011(S− − S+)/2 (B0 → D∗−π+) = −0.009 ± 0.015(S+ + S−)/2 (B0 → D−π+) = −0.046 ± 0.023(S− − S+)/2 (B0 → D−π+) = −0.022 ± 0.021(S+ + S−)/2 (B0 → D− ρ+) = −0.024 ± 0.032(S− − S+)/2 (B0 → D− ρ+) = −0.10 ± 0.06C
η
 K0S (B0 → η
 K0S) = 0.08 ± 0.13S
η
 K0S (B0 → η
 K0S)S
η
 K0S (B0 → η
 K0S)S
η
 K0S (B0 → η
 K0S)S
η
 K0S (B0 → η
 K0S) = 0.93 ± 0.17C
 
 K (∗)0 (B0 → 
 
 K (∗)0) = (0.5 ± 1.7)× 10−2sin(2β)sin(2β)sin(2β)sin(2β) = 0.679 ± 0.020CJ/ψ(nS)K0 (B0 → J/ψ(nS)K0) = (0.5 ± 2.0)× 10−2SJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)SJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)SJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)SJ/ψ(nS)K0 (B0 → J/ψ(nS)K0) = 0.676 ± 0.021CJ/ψK∗0 (B0 → J/ψK∗0) = 0.03 ± 0.10SJ/ψK∗0 (B0 → J/ψK∗0) = 0.60 ± 0.25C
χ
0K0S (B0 → χ
0K0S) = −0.3+0.5

−0.4S
χ
0K0S (B0 → χ
0K0S ) = −0.7 ± 0.5C
χ
1K0S (B0 → χ
1K0S) = 0.06 ± 0.07S
χ
1K0S (B0 → χ
1K0S )S
χ
1K0S (B0 → χ
1K0S )S
χ
1K0S (B0 → χ
1K0S )S
χ
1K0S (B0 → χ
1K0S ) = 0.63 ± 0.10sin(2βe� )(B0 → φK0) = 0.22 ± 0.30sin(2βe� )(B0 → φK∗0 (1430)0) = 0.97+0.03

−0.52sin(2βe� )(B0 → K+K−K0S )sin(2βe� )(B0 → K+K−K0S )sin(2βe� )(B0 → K+K−K0S )sin(2βe� )(B0 → K+K−K0S ) = 0.77+0.13
−0.12sin(2βe� )(B0 → [K0S π+π− ℄D(∗) h0) = 0.45 ± 0.282βe�(B0 → J/ψρ0) = (42+10

−11)◦
∣

∣λ
∣

∣ (B0 → [K0S π+π− ℄D(∗) h0) = 1.01 ± 0.08
∣

∣sin(2β + γ)∣∣ > 0.40, CL = 90%2 β + γ = (83 ± 60)◦
γ(B0 → D0K∗0) = (162 ± 60)◦
α = (93 ± 5)◦



62626262Meson SummaryTableB0 modes are 
harge 
onjugates of the modes below. Rea
tions indi
atethe weak de
ay vertex and do not in
lude mixing. Modes whi
h do notidentify the 
harge state of the B are listed in the B±/B0 ADMIXTUREse
tion.The bran
hing fra
tions listed below assume 50% B0B0 and 50% B+B−produ
tion at the �(4S). We have attempted to bring older measurementsup to date by res
aling their assumed �(4S) produ
tion ratio to 50:50and their assumed D, Ds , D∗, and ψ bran
hing ratios to 
urrent valueswhenever this would a�e
t our averages and best limits signi�
antly.Indentation is used to indi
ate a sub
hannel of a previous rea
tion. Allresonant sub
hannels have been 
orre
ted for resonan
e bran
hing fra
-tions to the �nal state so the sum of the sub
hannel bran
hing fra
tions
an ex
eed that of the �nal state.For in
lusive bran
hing fra
tions, e.g., B → D± anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one. S
ale fa
tor/ pB0 DECAY MODESB0 DECAY MODESB0 DECAY MODESB0 DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
ℓ+νℓ anything [ttt℄ ( 10.33± 0.28) % {e+νe X
 ( 10.1 ± 0.4 ) % {D ℓ+νℓ anything ( 9.2 ± 0.8 ) % {D− ℓ+νℓ [ttt℄ ( 2.19± 0.12) % 2309D− τ+ ντ ( 1.03± 0.22) % 1909D∗(2010)− ℓ+νℓ [ttt℄ ( 4.93± 0.11) % 2257D∗(2010)− τ+ ντ ( 1.78± 0.17) % S=1.1 1837D0π− ℓ+νℓ ( 4.3 ± 0.6 )× 10−3 2308D∗0(2400)− ℓ+νℓ, D∗−0 →D0π−

( 3.0 ± 1.2 )× 10−3 S=1.8 {D∗2(2460)− ℓ+νℓ, D∗−2 →D0π−
( 1.21± 0.33)× 10−3 S=1.8 2065D(∗) nπℓ+ νℓ (n ≥ 1) ( 2.3 ± 0.5 ) % {D∗0π− ℓ+νℓ ( 4.9 ± 0.8 )× 10−3 2256D1(2420)− ℓ+νℓ, D−1 →D∗0π−
( 2.80± 0.28)× 10−3 {D ′1(2430)− ℓ+νℓ, D ′−1 →D∗0π−
( 3.1 ± 0.9 )× 10−3 {D∗2(2460)− ℓ+νℓ, D∗−2 →D∗0π−
( 6.8 ± 1.2 )× 10−4 2065D−π+π− ℓ+νℓ ( 1.3 ± 0.5 )× 10−3 2299D∗−π+π− ℓ+νℓ ( 1.4 ± 0.5 )× 10−3 2247

ρ− ℓ+νℓ [ttt℄ ( 2.94± 0.21)× 10−4 2583
π− ℓ+νℓ [ttt℄ ( 1.45± 0.05)× 10−4 2638
π− τ+ ντ < 2.5 × 10−4 CL=90% 2338In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modesK± anything ( 78 ± 8 ) % {D0X ( 8.1 ± 1.5 ) % {D0X ( 47.4 ± 2.8 ) % {D+X < 3.9 % CL=90% {D−X ( 36.9 ± 3.3 ) % {D+s X ( 10.3 + 2.1

− 1.8 ) % {D−s X < 2.6 % CL=90% {�+
 X < 3.1 % CL=90% {�−
 X ( 5.0 + 2.1
− 1.5 ) % {
 X ( 95 ± 5 ) % {
 X ( 24.6 ± 3.1 ) % {
 
 X (119 ± 6 ) % {D, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD−π+ ( 2.52± 0.13)× 10−3 S=1.1 2306D− ρ+ ( 7.5 ± 1.2 )× 10−3 2235D−K0π+ ( 4.9 ± 0.9 )× 10−4 2259D−K∗(892)+ ( 4.5 ± 0.7 )× 10−4 2211D−ωπ+ ( 2.8 ± 0.6 )× 10−3 2204D−K+ ( 1.86± 0.20)× 10−4 2279D−K+π+π− ( 3.5 ± 0.8 )× 10−4 2236D−K+K0 < 3.1 × 10−4 CL=90% 2188D−K+K∗(892)0 ( 8.8 ± 1.9 )× 10−4 2070D0π+π− ( 8.8 ± 0.5 )× 10−4 2301D∗(2010)−π+ ( 2.74± 0.13)× 10−3 2255D0K+K− ( 4.9 ± 1.2 )× 10−5 2191D−π+π+π− ( 6.0 ± 0.7 )× 10−3 S=1.1 2287(D−π+π+π− ) nonresonant ( 3.9 ± 1.9 )× 10−3 2287D−π+ρ0 ( 1.1 ± 1.0 )× 10−3 2206D− a1(1260)+ ( 6.0 ± 3.3 )× 10−3 2121D∗(2010)−π+π0 ( 1.5 ± 0.5 ) % 2248

D∗(2010)− ρ+ ( 2.2 + 1.8
− 2.7 )× 10−3 S=5.2 2180D∗(2010)−K+ ( 2.12± 0.15)× 10−4 2226D∗(2010)−K0π+ ( 3.0 ± 0.8 )× 10−4 2205D∗(2010)−K∗(892)+ ( 3.3 ± 0.6 )× 10−4 2155D∗(2010)−K+K0 < 4.7 × 10−4 CL=90% 2131D∗(2010)−K+K∗(892)0 ( 1.29± 0.33)× 10−3 2007D∗(2010)−π+π+π− ( 7.0 ± 0.8 )× 10−3 S=1.3 2235(D∗(2010)−π+π+π− ) non-resonant ( 0.0 ± 2.5 )× 10−3 2235D∗(2010)−π+ρ0 ( 5.7 ± 3.2 )× 10−3 2150D∗(2010)− a1(1260)+ ( 1.30± 0.27) % 2061D1(2420)0π−π+, D01 →D∗−π+ ( 1.4 ± 0.4 )× 10−4 {D∗(2010)−K+π−π+ ( 4.5 ± 0.7 )× 10−4 2181D∗(2010)−π+π+π−π0 ( 1.76± 0.27) % 2218D∗− 3π+2π− ( 4.7 ± 0.9 )× 10−3 2195D∗(2010)−ωπ+ ( 2.46± 0.18)× 10−3 S=1.2 2148D1(2430)0ω, D01 →D∗−π+ ( 2.7 + 0.8
− 0.4 )× 10−4 1992D∗− ρ(1450)+ ( 1.07+ 0.40
− 0.34)× 10−3 {D1(2420)0ω ( 7.0 ± 2.2 )× 10−5 1995D∗2(2460)0ω ( 4.0 ± 1.4 )× 10−5 1975D∗−b1(1235)−, b−1 → ωπ− < 7 × 10−5 CL=90% {D∗∗−π+ [yyy ℄ ( 1.9 ± 0.9 )× 10−3 {D1(2420)−π+, D−1 →D−π+π−

( 9.9 + 2.0
− 2.5 )× 10−5 {D1(2420)−π+, D−1 →D∗−π+π−

< 3.3 × 10−5 CL=90% {D∗2(2460)−π+, (D∗2)− →D0π−
( 2.38± 0.16)× 10−4 2062D∗0(2400)−π+, (D∗0)− →D0π−
( 7.6 ± 0.8 )× 10−5 2090

D∗2(2460)−π+, (D∗2)− →D∗−π+π−
< 2.4 × 10−5 CL=90% {D∗2(2460)− ρ+ < 4.9 × 10−3 CL=90% 1974D0D0 ( 1.4 ± 0.7 )× 10−5 1868D∗0D0 < 2.9 × 10−4 CL=90% 1794D−D+ ( 2.11± 0.18)× 10−4 1864D±D∗∓ (CP-averaged) ( 6.1 ± 0.6 )× 10−4 {D−D+s ( 7.2 ± 0.8 )× 10−3 1813D∗(2010)−D+s ( 8.0 ± 1.1 )× 10−3 1735D−D∗+s ( 7.4 ± 1.6 )× 10−3 1732D∗(2010)−D∗+s ( 1.77± 0.14) % 1649Ds0(2317)−K+, D−s0 →D−s π0 ( 4.2 ± 1.4 )× 10−5 2097Ds0(2317)−π+, D−s0 →D−s π0 < 2.5 × 10−5 CL=90% 2128DsJ (2457)−K+, D−

sJ →D−s π0 < 9.4 × 10−6 CL=90% {DsJ (2457)−π+, D−
sJ →D−s π0 < 4.0 × 10−6 CL=90% {D−s D+s < 3.6 × 10−5 CL=90% 1759D∗−s D+s < 1.3 × 10−4 CL=90% 1675D∗−s D∗+s < 2.4 × 10−4 CL=90% 1583D∗s0(2317)+D−, D∗+s0 →D+s π0 ( 1.04± 0.17)× 10−3 S=1.1 1602Ds0(2317)+D−, D+s0 →D∗+s γ

< 9.5 × 10−4 CL=90% {Ds0(2317)+D∗(2010)−,D+s0 → D+s π0 ( 1.5 ± 0.6 )× 10−3 1509DsJ (2457)+D− ( 3.5 ± 1.1 )× 10−3 {DsJ (2457)+D−, D+
sJ →D+s γ

( 6.5 + 1.7
− 1.4 )× 10−4 {DsJ (2457)+D−, D+

sJ →D∗+s γ

< 6.0 × 10−4 CL=90% {DsJ (2457)+D−, D+
sJ →D+s π+π−

< 2.0 × 10−4 CL=90% {DsJ (2457)+D−, D+
sJ →D+s π0 < 3.6 × 10−4 CL=90% {D∗(2010)−DsJ(2457)+ ( 9.3 ± 2.2 )× 10−3 {



63636363Meson SummaryTableDsJ (2457)+D∗(2010), D+
sJ →D+s γ

( 2.3 + 0.9
− 0.7 )× 10−3 {D−Ds1(2536)+, D+s1 →D∗0K+ + D∗+K0 ( 2.8 ± 0.7 )× 10−4 1444D−Ds1(2536)+, D+s1 →D∗0K+ ( 1.7 ± 0.6 )× 10−4 1444D−Ds1(2536)+, D+s1 →D∗+K0 ( 2.6 ± 1.1 )× 10−4 1444D∗(2010)−Ds1(2536)+,D+s1 → D∗0K+ + D∗+K0 ( 5.0 ± 1.4 )× 10−4 1336D∗(2010)−Ds1(2536)+,D+s1 → D∗0K+ ( 3.3 ± 1.1 )× 10−4 1336D∗−Ds1(2536)+, D+s1 →D∗+K0 ( 5.0 ± 1.7 )× 10−4 1336D−DsJ(2573)+, D+

sJ →D0K+ ( 3.4 ± 1.8 )× 10−5 1414D∗(2010)−DsJ(2573)+,D+
sJ → D0K+ < 2 × 10−4 CL=90% 1304D−DsJ(2700)+, D+

sJ →D0K+ ( 7.1 ± 1.2 )× 10−4 {D+π− ( 7.4 ± 1.3 )× 10−7 2306D+s π− ( 2.16± 0.26)× 10−5 2270D∗+s π− ( 2.1 ± 0.4 )× 10−5 S=1.4 2215D+s ρ− < 2.4 × 10−5 CL=90% 2197D∗+s ρ− ( 4.1 ± 1.3 )× 10−5 2138D+s a−0 < 1.9 × 10−5 CL=90% {D∗+s a−0 < 3.6 × 10−5 CL=90% {D+s a1(1260)− < 2.1 × 10−3 CL=90% 2080D∗+s a1(1260)− < 1.7 × 10−3 CL=90% 2015D+s a−2 < 1.9 × 10−4 CL=90% {D∗+s a−2 < 2.0 × 10−4 CL=90% {D−s K+ ( 2.7 ± 0.5 )× 10−5 S=2.7 2242D∗−s K+ ( 2.19± 0.30)× 10−5 2185D−s K∗(892)+ ( 3.5 ± 1.0 )× 10−5 2172D∗−s K∗(892)+ ( 3.2 + 1.5
− 1.3 )× 10−5 2112D−s π+K0 ( 9.7 ± 1.4 )× 10−5 2222D∗−s π+K0 < 1.10 × 10−4 CL=90% 2164D−s K+π+π− ( 1.7 ± 0.5 )× 10−4 2198D−s π+K∗(892)0 < 3.0 × 10−3 CL=90% 2138D∗−s π+K∗(892)0 < 1.6 × 10−3 CL=90% 2076D0K0 ( 5.2 ± 0.7 )× 10−5 2280D0K+π− ( 8.8 ± 1.7 )× 10−5 2261D0K∗(892)0 ( 4.5 ± 0.6 )× 10−5 2213D0K∗(1410)0 < 6.7 × 10−5 CL=90% 2062D0K∗0(1430)0 ( 7 ± 7 )× 10−6 2057D0K∗2(1430)0 ( 2.1 ± 0.9 )× 10−5 2057D∗0(2400)−, D∗−0 → D0π− ( 1.9 ± 0.9 )× 10−5 {D∗2(2460)−K+, D∗−2 →D0π−

( 2.03± 0.35)× 10−5 2029D∗3(2760)−K+, D∗−3 →D0π−
< 1.0 × 10−6 CL=90% {D0K+π− non-resonant < 3.7 × 10−5 CL=90% {[K+K− ℄DK∗(892)0 ( 4.7 ± 0.9 )× 10−5 {[π+π− ℄DK∗(892)0 ( 5.5 ± 1.4 )× 10−5 {D0π0 ( 2.63± 0.14)× 10−4 2308D0 ρ0 ( 3.21± 0.21)× 10−4 2237D0 f2 ( 1.56± 0.21)× 10−4 {D0 η ( 2.36± 0.32)× 10−4 S=2.5 2274D0 η′ ( 1.38± 0.16)× 10−4 S=1.3 2198D0ω ( 2.54± 0.16)× 10−4 2235D0φ < 1.16 × 10−5 CL=90% 2183D0K+π− ( 5.3 ± 3.2 )× 10−6 2261D0K∗(892)0 < 1.1 × 10−5 CL=90% 2213D∗0γ < 2.5 × 10−5 CL=90% 2258D∗(2007)0π0 ( 2.2 ± 0.6 )× 10−4 S=2.6 2256D∗(2007)0 ρ0 < 5.1 × 10−4 CL=90% 2182D∗(2007)0 η ( 2.3 ± 0.6 )× 10−4 S=2.8 2220D∗(2007)0 η′ ( 1.40± 0.22)× 10−4 2141D∗(2007)0π+π− ( 6.2 ± 2.2 )× 10−4 2249D∗(2007)0K0 ( 3.6 ± 1.2 )× 10−5 2227D∗(2007)0K∗(892)0 < 6.9 × 10−5 CL=90% 2157D∗(2007)0K∗(892)0 < 4.0 × 10−5 CL=90% 2157D∗(2007)0π+π+π−π− ( 2.7 ± 0.5 )× 10−3 2219

D∗(2010)+D∗(2010)− ( 8.0 ± 0.6 )× 10−4 1711D∗(2007)0ω ( 3.6 ± 1.1 )× 10−4 S=3.1 2180D∗(2010)+D− ( 6.1 ± 1.5 )× 10−4 S=1.6 1790D∗(2007)0D∗(2007)0 < 9 × 10−5 CL=90% 1715D−D0K+ ( 1.07± 0.11)× 10−3 1574D−D∗(2007)0K+ ( 3.5 ± 0.4 )× 10−3 1478D∗(2010)−D0K+ ( 2.47± 0.21)× 10−3 1479D∗(2010)−D∗(2007)0K+ ( 1.06± 0.09) % 1366D−D+K0 ( 7.5 ± 1.7 )× 10−4 1568D∗(2010)−D+K0 +D−D∗(2010)+K0 ( 6.4 ± 0.5 )× 10−3 1473D∗(2010)−D∗(2010)+K0 ( 8.1 ± 0.7 )× 10−3 1360D∗−Ds1(2536)+, D+s1 →D∗+K0 ( 8.0 ± 2.4 )× 10−4 1336D0D0K0 ( 2.7 ± 1.1 )× 10−4 1574D0D∗(2007)0K0 +D∗(2007)0D0K0 ( 1.1 ± 0.5 )× 10−3 1478D∗(2007)0D∗(2007)0K0 ( 2.4 ± 0.9 )× 10−3 1365(D+D∗ )(D+D∗ )K ( 3.68± 0.26) % {Charmonium modesCharmonium modesCharmonium modesCharmonium modes
η
 K0 ( 8.0 ± 1.2 )× 10−4 1751
η
 K∗(892)0 ( 6.3 ± 0.9 )× 10−4 1646
η
 (2S)K∗0 < 3.9 × 10−4 CL=90% 1157h
 (1P)K∗0 < 4 × 10−4 CL=90% 1253J/ψ(1S)K0 ( 8.73± 0.32)× 10−4 1683J/ψ(1S)K+π− ( 1.15± 0.05)× 10−3 1652J/ψ(1S)K∗(892)0 ( 1.28± 0.05)× 10−3 1571J/ψ(1S)ηK0S ( 5.4 ± 0.9 )× 10−5 1508J/ψ(1S)η′K0S < 2.5 × 10−5 CL=90% 1271J/ψ(1S)φK0 ( 4.9 ± 1.0 )× 10−5 S=1.3 1224J/ψ(1S)ωK0 ( 2.3 ± 0.4 )× 10−4 1386X (3872)K0, X → J/ψω ( 6.0 ± 3.2 )× 10−6 1140X (3915), X → J/ψω ( 2.1 ± 0.9 )× 10−5 1102J/ψ(1S)K (1270)0 ( 1.3 ± 0.5 )× 10−3 1391J/ψ(1S)π0 ( 1.76± 0.16)× 10−5 S=1.1 1728J/ψ(1S)η ( 1.08± 0.24)× 10−5 S=1.5 1673J/ψ(1S)π+π− ( 4.03± 0.18)× 10−5 1716J/ψ(1S)π+π− nonresonant < 1.2 × 10−5 CL=90% 1716J/ψ(1S) f0(500), f0 → ππ ( 8.1 + 1.1

− 0.9 )× 10−6 {J/ψ(1S) f2 ( 3.3 + 0.5
− 0.6 )× 10−6 S=1.6 {J/ψ(1S)ρ0 ( 2.54± 0.14)× 10−5 1612J/ψ(1S) f0(980), f0 →

π+π−
< 1.1 × 10−6 CL=90% {J/ψ(1S)ρ(1450)0, ρ0 →

ππ
( 3.0 + 1.6

− 0.7 )× 10−6 {J/ψρ(1700)0, ρ0 → π+π− ( 2.0 ± 1.3 )× 10−6 {J/ψ(1S)ω ( 1.8 + 0.7
− 0.5 )× 10−5 1609J/ψ(1S)K+K− ( 2.6 ± 0.4 )× 10−6 1533J/ψ(1S)a0(980), a0 →K+K−

( 4.7 ± 3.4 )× 10−7 {J/ψ(1S)φ < 1.9 × 10−7 CL=90% 1520J/ψ(1S)η′(958) ( 7.6 ± 2.4 )× 10−6 1546J/ψ(1S)K0π+π− ( 4.4 ± 0.4 )× 10−4 1611J/ψ(1S)K0K−π++ 
.
. < 2.1 × 10−5 CL=90% 1467J/ψ(1S)K0K+K− ( 2.5 ± 0.7 )× 10−5 S=1.8 1249J/ψ(1S)K0ρ0 ( 5.4 ± 3.0 )× 10−4 1390J/ψ(1S)K∗(892)+π− ( 8 ± 4 )× 10−4 1514J/ψ(1S)π+π−π+π− ( 1.45± 0.13)× 10−5 1670J/ψ(1S) f1(1285) ( 8.4 ± 2.1 )× 10−6 1385J/ψ(1S)K∗(892)0π+π− ( 6.6 ± 2.2 )× 10−4 1447X (3872)−K+ < 5 × 10−4 CL=90% {X (3872)−K+, X (3872)− →J/ψ(1S)π−π0 [zzz ℄ < 4.2 × 10−6 CL=90% {X (3872)K0, X → J/ψπ+π− ( 4.3 ± 1.3 )× 10−6 1140X (3872)K0, X → J/ψγ < 2.4 × 10−6 CL=90% 1140X (3872)K∗(892)0, X →J/ψγ
< 2.8 × 10−6 CL=90% 940X (3872)K0, X → ψ(2S)γ < 6.62 × 10−6 CL=90% 1140X (3872)K∗(892)0, X →

ψ(2S)γ < 4.4 × 10−6 CL=90% 940X (3872)K0, X → D0D0π0 ( 1.7 ± 0.8 )× 10−4 1140X (3872)K0, X → D∗0D0 ( 1.2 ± 0.4 )× 10−4 1140X (3872)K+π−, X →J/ψπ+π−
( 7.9 ± 1.4 )× 10−6 {



64646464Meson SummaryTableX (3872)K∗(982)0, X →J/ψπ+π−
( 4.0 ± 1.5 )× 10−6 {X (4430)±K∓, X± →

ψ(2S)π±
( 6.0 + 3.0

− 2.4 )× 10−5 583X (4430)±K∓, X± → J/ψπ± ( 5.4 + 4.0
− 1.2 )× 10−6 583X (3900)±K∓, X± → J/ψπ± < 9 × 10−7 {X (4200)±K∓, X± → J/ψπ± ( 2.2 + 1.3
− 0.8 )× 10−5 {J/ψ(1S)pp < 5.2 × 10−7 CL=90% 862J/ψ(1S)γ < 1.5 × 10−6 CL=90% 1732J/ψ(1S)D0 < 1.3 × 10−5 CL=90% 877

ψ(2S)π0 ( 1.17± 0.19)× 10−5 1348
ψ(2S)K0 ( 5.8 ± 0.5 )× 10−4 1283
ψ(3770)K0, ψ → D0D0 < 1.23 × 10−4 CL=90% 1217
ψ(3770)K0, ψ → D−D+ < 1.88 × 10−4 CL=90% 1217
ψ(2S)π+π− ( 2.3 ± 0.4 )× 10−5 1331
ψ(2S)K+π− ( 5.8 ± 0.4 )× 10−4 1239

ψ(2S)K∗(892)0 ( 5.9 ± 0.4 )× 10−4 1116
χ
0K0 ( 1.47± 0.27)× 10−4 1477
χ
0K∗(892)0 ( 1.7 ± 0.4 )× 10−4 1342
χ
2K0 < 1.5 × 10−5 CL=90% 1379
χ
2K∗(892)0 ( 4.9 ± 1.2 )× 10−5 S=1.1 1228
χ
1π0 ( 1.12± 0.28)× 10−5 1468
χ
1K0 ( 3.93± 0.27)× 10−4 1411
χ
1K−π+ ( 3.8 ± 0.4 )× 10−4 1371

χ
1K∗(892)0 ( 2.39± 0.19)× 10−4 S=1.2 1265X (4051)+K−, X+ →
χ
1π+ ( 3.0 + 4.0

− 1.8 )× 10−5 {X (4248)+K−, X+ →
χ
1π+ ( 4.0 +20.0

− 1.0 )× 10−5 {K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modesK+π− ( 1.96± 0.05)× 10−5 2615K0π0 ( 9.9 ± 0.5 )× 10−6 2615
η′K0 ( 6.6 ± 0.4 )× 10−5 S=1.4 2528
η′K∗(892)0 ( 2.8 ± 0.6 )× 10−6 2472
η′K∗0(1430)0 ( 6.3 ± 1.6 )× 10−6 2346
η′K∗2(1430)0 ( 1.37± 0.32)× 10−5 2346
ηK0 ( 1.23+ 0.27

− 0.24)× 10−6 2587
ηK∗(892)0 ( 1.59± 0.10)× 10−5 2534
ηK∗0(1430)0 ( 1.10± 0.22)× 10−5 2415
ηK∗2(1430)0 ( 9.6 ± 2.1 )× 10−6 2414
ωK0 ( 4.8 ± 0.4 )× 10−6 2557a0(980)0K0, a00 → ηπ0 < 7.8 × 10−6 CL=90% {b01K0, b01 → ωπ0 < 7.8 × 10−6 CL=90% {a0(980)±K∓, a±0 → ηπ± < 1.9 × 10−6 CL=90% {b−1 K+, b−1 → ωπ− ( 7.4 ± 1.4 )× 10−6 {b01K∗0, b01 → ωπ0 < 8.0 × 10−6 CL=90% {b−1 K∗+, b−1 → ωπ− < 5.0 × 10−6 CL=90% {a0(1450)±K∓, a±0 → ηπ± < 3.1 × 10−6 CL=90% {K0S X 0 (Familon) < 5.3 × 10−5 CL=90% {
ωK∗(892)0 ( 2.0 ± 0.5 )× 10−6 2503
ω (Kπ)∗00 ( 1.84± 0.25)× 10−5 {
ωK∗0(1430)0 ( 1.60± 0.34)× 10−5 2380
ωK∗2(1430)0 ( 1.01± 0.23)× 10−5 2380
ωK+π− nonresonant ( 5.1 ± 1.0 )× 10−6 2542K+π−π0 ( 3.78± 0.32)× 10−5 2609K+ρ− ( 7.0 ± 0.9 )× 10−6 2559K+ρ(1450)− ( 2.4 ± 1.2 )× 10−6 {K+ρ(1700)− ( 6 ± 7 )× 10−7 {(K+π−π0 ) non-resonant ( 2.8 ± 0.6 )× 10−6 {(Kπ)∗+0 π−, (Kπ)∗+0 →K+π0 ( 3.4 ± 0.5 )× 10−5 {(Kπ)∗00 π0, (Kπ)∗00 →K+π−

( 8.6 ± 1.7 )× 10−6 {K∗2(1430)0π0 < 4.0 × 10−6 CL=90% 2445K∗(1680)0π0 < 7.5 × 10−6 CL=90% 2358K∗0x π0 [

aa℄ ( 6.1 ± 1.6 )× 10−6 {K0π+π− ( 5.20± 0.24)× 10−5 S=1.3 2609K0π+π− non-resonant ( 1.47+ 0.40
− 0.26)× 10−5 S=2.1 {K0ρ0 ( 4.7 ± 0.6 )× 10−6 2558K∗(892)+π− ( 8.4 ± 0.8 )× 10−6 2563K∗0(1430)+π− ( 3.3 ± 0.7 )× 10−5 S=2.0 {K∗+x π− [

aa℄ ( 5.1 ± 1.6 )× 10−6 {

K∗(1410)+π−, K∗+ →K0π+ < 3.8 × 10−6 CL=90% {f0(980)K0, f0 → π+π− ( 7.0 ± 0.9 )× 10−6 2522f2(1270)K0 ( 2.7 + 1.3
− 1.2 )× 10−6 2459fx (1300)K0, fx → π+π− ( 1.8 ± 0.7 )× 10−6 {K∗(892)0π0 ( 3.3 ± 0.6 )× 10−6 2563K∗2(1430)+π− < 6 × 10−6 CL=90% 2445K∗(1680)+π− < 1.0 × 10−5 CL=90% 2358K+π−π+π− [ddaa℄ < 2.3 × 10−4 CL=90% 2600

ρ0K+π− ( 2.8 ± 0.7 )× 10−6 2543f0(980)K+π−, f0 → ππ ( 1.4 + 0.5
− 0.6 )× 10−6 2506K+π−π+π− nonresonant < 2.1 × 10−6 CL=90% 2600K∗(892)0π+π− ( 5.5 ± 0.5 )× 10−5 2557K∗(892)0 ρ0 ( 3.9 ± 1.3 )× 10−6 S=1.9 2504K∗(892)0 f0(980), f0 → ππ ( 3.9 + 2.1
− 1.8 )× 10−6 S=3.9 2466K1(1270)+π− < 3.0 × 10−5 CL=90% 2484K1(1400)+π− < 2.7 × 10−5 CL=90% 2451a1(1260)−K+ [ddaa℄ ( 1.6 ± 0.4 )× 10−5 2471K∗(892)+ρ− ( 1.03± 0.26)× 10−5 2504K∗0(1430)+ρ− ( 2.8 ± 1.2 )× 10−5 {K1(1400)0ρ0 < 3.0 × 10−3 CL=90% 2388K∗0(1430)0ρ0 ( 2.7 ± 0.6 )× 10−5 2381K∗0(1430)0 f0(980), f0 → ππ ( 2.7 ± 0.9 )× 10−6 {K∗2(1430)0 f0(980), f0 → ππ ( 8.6 ± 2.0 )× 10−6 {K+K− ( 1.3 ± 0.5 )× 10−7 2593K0K0 ( 1.21± 0.16)× 10−6 2592K0K−π+ ( 6.5 ± 0.8 )× 10−6 2578K∗(892)±K∓ < 4 × 10−7 CL=90% 2540K∗0K0 + K∗0K0 < 9.6 × 10−7 CL=90% {K+K−π0 ( 2.2 ± 0.6 )× 10−6 2579K0S K0S π0 < 9 × 10−7 CL=90% 2578K0S K0S η < 1.0 × 10−6 CL=90% 2515K0S K0S η′ < 2.0 × 10−6 CL=90% 2452K0K+K− ( 2.49± 0.31)× 10−5 S=3.0 2522K0φ ( 7.3 ± 0.7 )× 10−6 2516f0(980)K0, f0 → K+K− ( 7.0 + 3.5
− 3.0 )× 10−6 {f0(1500)K0 ( 1.3 + 0.7
− 0.5 )× 10−5 2398f ′2(1525)0K0 ( 3 + 5
− 4 )× 10−7 {f0(1710)K0, f0 → K+K− ( 4.4 ± 0.9 )× 10−6 {K0K+K−nonresonant ( 3.3 ± 1.0 )× 10−5 2522K0S K0S K0S ( 6.0 ± 0.5 )× 10−6 S=1.1 2521f0(980)K0, f0 → K0S K0S ( 2.7 ± 1.8 )× 10−6 {f0(1710)K0, f0 → K0S K0S ( 5.0 + 5.0
− 2.6 )× 10−7 {f0(2010)K0, f0 → K0S K0S ( 5 ± 6 )× 10−7 {K0S K0S K0S nonresonant ( 1.33± 0.31)× 10−5 2521K0S K0S K0L < 1.6 × 10−5 CL=90% 2521K∗(892)0K+K− ( 2.75± 0.26)× 10−5 2467K∗(892)0φ ( 1.00± 0.05)× 10−5 2460K+K−π+π−nonresonant < 7.17 × 10−5 CL=90% 2559K∗(892)0K−π+ ( 4.5 ± 1.3 )× 10−6 2524K∗(892)0K∗(892)0 ( 8 ± 5 )× 10−7 S=2.2 2485K+K+π−π−nonresonant < 6.0 × 10−6 CL=90% 2559K∗(892)0K+π− < 2.2 × 10−6 CL=90% 2524K∗(892)0K∗(892)0 < 2 × 10−7 CL=90% 2485K∗(892)+K∗(892)− < 2.0 × 10−6 CL=90% 2485K1(1400)0φ < 5.0 × 10−3 CL=90% 2339

φ(K π)∗00 ( 4.3 ± 0.4 )× 10−6 {
φ(K π)∗00 (1.60<mK π <2.15)[eeaa℄ < 1.7 × 10−6 CL=90% {K∗0(1430)0K−π+ < 3.18 × 10−5 CL=90% 2403K∗0(1430)0K∗(892)0 < 3.3 × 10−6 CL=90% 2360K∗0(1430)0K∗0(1430)0 < 8.4 × 10−6 CL=90% 2222K∗0(1430)0φ ( 3.9 ± 0.8 )× 10−6 2333K∗0(1430)0K∗(892)0 < 1.7 × 10−6 CL=90% 2360K∗0(1430)0K∗0(1430)0 < 4.7 × 10−6 CL=90% 2222K∗(1680)0φ < 3.5 × 10−6 CL=90% 2238K∗(1780)0φ < 2.7 × 10−6 CL=90% {K∗(2045)0φ < 1.53 × 10−5 CL=90% {K∗2(1430)0ρ0 < 1.1 × 10−3 CL=90% 2381K∗2(1430)0φ ( 6.8 ± 0.9 )× 10−6 S=1.2 2333K0φφ ( 4.5 ± 0.9 )× 10−6 2305

η′ η′K0 < 3.1 × 10−5 CL=90% 2337
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ηK0 γ ( 7.6 ± 1.8 )× 10−6 2587
η′K0γ < 6.4 × 10−6 CL=90% 2528K0φγ ( 2.7 ± 0.7 )× 10−6 2516K+π− γ ( 4.6 ± 1.4 )× 10−6 2615K∗(892)0 γ ( 4.33± 0.15)× 10−5 2565K∗(1410)γ < 1.3 × 10−4 CL=90% 2451K+π− γ nonresonant < 2.6 × 10−6 CL=90% 2615K∗(892)0X (214), X →

µ+µ−
[�aa℄ < 2.26 × 10−8 CL=90% {K0π+π− γ ( 1.95± 0.22)× 10−5 2609K+π−π0 γ ( 4.1 ± 0.4 )× 10−5 2609K1(1270)0γ < 5.8 × 10−5 CL=90% 2486K1(1400)0γ < 1.2 × 10−5 CL=90% 2454K∗2(1430)0γ ( 1.24± 0.24)× 10−5 2447K∗(1680)0γ < 2.0 × 10−3 CL=90% 2361K∗3(1780)0γ < 8.3 × 10−5 CL=90% 2341K∗4(2045)0γ < 4.3 × 10−3 CL=90% 2244Light un
avored meson modesLight un
avored meson modesLight un
avored meson modesLight un
avored meson modes

ρ0 γ ( 8.6 ± 1.5 )× 10−7 2583
ρ0X (214), X → µ+µ− [�aa℄ < 1.73 × 10−8 CL=90% {
ωγ ( 4.4 + 1.8

− 1.6 )× 10−7 2582
φγ < 8.5 × 10−7 CL=90% 2541
π+π− ( 5.12± 0.19)× 10−6 2636
π0π0 ( 1.91± 0.22)× 10−6 2636
ηπ0 ( 4.1 ± 1.7 )× 10−7 2610
ηη < 1.0 × 10−6 CL=90% 2582
η′π0 ( 1.2 ± 0.6 )× 10−6 S=1.7 2551
η′ η′ < 1.7 × 10−6 CL=90% 2460
η′ η < 1.2 × 10−6 CL=90% 2523
η′ρ0 < 1.3 × 10−6 CL=90% 2492
η′ f0(980), f0 → π+π− < 9 × 10−7 CL=90% 2454
ηρ0 < 1.5 × 10−6 CL=90% 2553
η f0(980), f0 → π+π− < 4 × 10−7 CL=90% 2516
ωη ( 9.4 + 4.0

− 3.1 )× 10−7 2552
ωη′ ( 1.0 + 0.5

− 0.4 )× 10−6 2491
ωρ0 < 1.6 × 10−6 CL=90% 2522
ω f0(980), f0 → π+π− < 1.5 × 10−6 CL=90% 2485
ωω ( 1.2 ± 0.4 )× 10−6 2521
φπ0 < 1.5 × 10−7 CL=90% 2540
φη < 5 × 10−7 CL=90% 2511
φη′ < 5 × 10−7 CL=90% 2448
φρ0 < 3.3 × 10−7 CL=90% 2480
φ f0(980), f0 → π+π− < 3.8 × 10−7 CL=90% 2441
φω < 7 × 10−7 CL=90% 2479
φφ < 2.8 × 10−8 CL=90% 2435a0(980)±π∓, a±0 → ηπ± < 3.1 × 10−6 CL=90% {a0(1450)±π∓, a±0 → ηπ± < 2.3 × 10−6 CL=90% {
π+π−π0 < 7.2 × 10−4 CL=90% 2631

ρ0π0 ( 2.0 ± 0.5 )× 10−6 2581
ρ∓π± [hh℄ ( 2.30± 0.23)× 10−5 2581

π+π−π+π− < 1.12 × 10−5 CL=90% 2621
ρ0π+π− < 8.8 × 10−6 CL=90% 2575
ρ0 ρ0 ( 9.6 ± 1.5 )× 10−7 2523f0(980)π+π−, f0 →

π+π−
< 3.0 × 10−6 CL=90% {

ρ0 f0(980), f0 → π+π− ( 7.8 ± 2.5 )× 10−7 2486f0(980)f0(980), f0 →
π+π−, f0 → π+π−

< 1.9 × 10−7 CL=90% 2447f0(980)f0(980), f0 → π+π−,f0 → K+K−
< 2.3 × 10−7 CL=90% 2447a1(1260)∓π± [hh℄ ( 2.6 ± 0.5 )× 10−5 S=1.9 2494a2(1320)∓π± [hh℄ < 6.3 × 10−6 CL=90% 2473

π+π−π0π0 < 3.1 × 10−3 CL=90% 2622
ρ+ρ− ( 2.77± 0.19)× 10−5 2523a1(1260)0π0 < 1.1 × 10−3 CL=90% 2495
ωπ0 < 5 × 10−7 CL=90% 2580

π+π+π−π−π0 < 9.0 × 10−3 CL=90% 2609a1(1260)+ρ− < 6.1 × 10−5 CL=90% 2433a1(1260)0 ρ0 < 2.4 × 10−3 CL=90% 2433b∓1 π±, b∓1 → ωπ∓ ( 1.09± 0.15)× 10−5 {b01π0, b01 → ωπ0 < 1.9 × 10−6 CL=90% {b−1 ρ+, b−1 → ωπ− < 1.4 × 10−6 CL=90% {b01 ρ0, b01 → ωπ0 < 3.4 × 10−6 CL=90% {

π+π+π+π−π−π− < 3.0 × 10−3 CL=90% 2592a1(1260)+ a1(1260)−, a+1 →2π+π−, a−1 → 2π−π+ ( 1.18± 0.31)× 10−5 2336
π+π+π+π−π−π−π0 < 1.1 % CL=90% 2572Baryon modesBaryon modesBaryon modesBaryon modespp ( 1.5 + 0.7

− 0.5 )× 10−8 2467ppπ+π− < 2.5 × 10−4 CL=90% 2406ppK0 ( 2.66± 0.32)× 10−6 2347�(1540)+ p, �+ → pK0S [ggaa℄ < 5 × 10−8 CL=90% 2318fJ (2220)K0, fJ → pp < 4.5 × 10−7 CL=90% 2135ppK∗(892)0 ( 1.24+ 0.28
− 0.25)× 10−6 2216fJ (2220)K∗0, fJ → pp < 1.5 × 10−7 CL=90% {p�π− ( 3.14± 0.29)× 10−6 2401p�π−γ < 6.5 × 10−7 CL=90% 2401p� (1385)− < 2.6 × 10−7 CL=90% 2363�0� < 9.3 × 10−7 CL=90% 2364p�K− < 8.2 × 10−7 CL=90% 2308p�D− ( 2.5 ± 0.4 )× 10−5 1765p�D∗− ( 3.4 ± 0.8 )× 10−5 1685p�0π− < 3.8 × 10−6 CL=90% 2383�� < 3.2 × 10−7 CL=90% 2392��K0 ( 4.8 + 1.0
− 0.9 )× 10−6 2250��K∗0 ( 2.5 + 0.9
− 0.8 )× 10−6 2098��D0 ( 1.00+ 0.30
− 0.26)× 10−5 1661D0�0�+ 
.
. < 3.1 × 10−5 CL=90% 1611�0�0 < 1.5 × 10−3 CL=90% 2335�++�−− < 1.1 × 10−4 CL=90% 2335D0 pp ( 1.04± 0.07)× 10−4 1863D−s �p ( 2.8 ± 0.9 )× 10−5 1710D∗(2007)0 pp ( 9.9 ± 1.1 )× 10−5 1788D∗(2010)− pn ( 1.4 ± 0.4 )× 10−3 1785D− ppπ+ ( 3.32± 0.31)× 10−4 1786D∗(2010)− ppπ+ ( 4.7 ± 0.5 )× 10−4 S=1.2 1708D0 ppπ+π− ( 3.0 ± 0.5 )× 10−4 1708D∗0ppπ+π− ( 1.9 ± 0.5 )× 10−4 1623�
 pπ+, �
 → D−p < 9 × 10−6 CL=90% {�
 pπ+, �
 → D∗−p < 1.4 × 10−5 CL=90% {�−−
 �++ < 8 × 10−4 CL=90% 1839�−
 pπ+π− ( 1.01± 0.14)× 10−3 S=1.3 1934�−
 p ( 1.52± 0.18)× 10−5 2021�−
 pπ0 ( 1.53± 0.18)× 10−4 1982�
 (2455)− p < 2.4 × 10−5 {�−
 pπ+π−π0 < 5.07 × 10−3 CL=90% 1882�−
 pπ+π−π+π− < 2.74 × 10−3 CL=90% 1821�−
 pπ+π− (nonresonant) ( 5.4 ± 1.0 )× 10−4 S=1.3 1934� 
 (2520)−−pπ+ ( 1.01± 0.18)× 10−4 1860� 
 (2520)0 pπ− < 3.1 × 10−5 CL=90% 1860� 
 (2455)0 pπ− ( 1.07± 0.16)× 10−4 1895� 
 (2455)0N0, N0 →pπ−

( 6.3 ± 1.6 )× 10−5 {� 
 (2455)−−pπ+ ( 1.81± 0.24)× 10−4 1895�−
 pK+π− ( 3.4 ± 0.7 )× 10−5 {� 
 (2455)−−pK+, �−−
 →�−
 π−
( 8.7 ± 2.5 )× 10−6 1754�−
 pK∗(892)0 < 2.42 × 10−5 CL=90% {�−
 pK+K− ( 2.0 ± 0.4 )× 10−5 {�−
 pφ < 9 × 10−6 CL=90% {�−
 ppp < 2.8 × 10−6 {�−
 �K+ ( 4.8 ± 1.1 )× 10−5 1767�−
 �+
 < 1.6 × 10−5 CL=95% 1319�
 (2593)− / �
 (2625)−p < 1.1 × 10−4 CL=90% {�−
 �+
 , �−
 → �+π−π− ( 1.7 ± 1.8 )× 10−5 S=2.2 1147�+
 �−
 K0 ( 4.3 ± 2.2 )× 10−4 {Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)violating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modes

γ γ B1 < 3.2 × 10−7 CL=90% 2640e+ e− B1 < 8.3 × 10−8 CL=90% 2640e+ e− γ B1 < 1.2 × 10−7 CL=90% 2640
µ+µ− B1 ( 3.9 + 1.6

− 1.4 )× 10−10 2638
µ+µ− γ B1 < 1.6 × 10−7 CL=90% 2638
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µ+µ−µ+µ− B1 < 5.3 × 10−9 CL=90% 2629S P , S → µ+µ−,P → µ+µ−

B1 [hhaa℄ < 5.1 × 10−9 CL=90% {
τ+ τ− B1 < 4.1 × 10−3 CL=90% 1952
π0 ℓ+ ℓ− B1 < 5.3 × 10−8 CL=90% 2638

π0 e+ e− B1 < 8.4 × 10−8 CL=90% 2638
π0µ+µ− B1 < 6.9 × 10−8 CL=90% 2634

ηℓ+ ℓ− B1 < 6.4 × 10−8 CL=90% 2611
ηe+ e− B1 < 1.08 × 10−7 CL=90% 2611
ηµ+µ− B1 < 1.12 × 10−7 CL=90% 2607

π0 ν ν B1 < 6.9 × 10−5 CL=90% 2638K0 ℓ+ ℓ− B1 [ttt℄ ( 3.1 + 0.8
− 0.7 )× 10−7 2616K0 e+ e− B1 ( 1.6 + 1.0
− 0.8 )× 10−7 2616K0µ+µ− B1 ( 3.39± 0.34)× 10−7 2612K0ν ν B1 < 4.9 × 10−5 CL=90% 2616

ρ0 ν ν B1 < 2.08 × 10−4 CL=90% 2583K∗(892)0 ℓ+ ℓ− B1 [ttt℄ ( 9.9 + 1.2
− 1.1 )× 10−7 2565K∗(892)0 e+ e− B1 ( 1.03+ 0.19
− 0.17)× 10−6 2565K∗(892)0µ+µ− B1 ( 1.02± 0.09)× 10−6 2560

π+π−µ+µ− ( 2.1 ± 0.5 )× 10−8 2626K∗(892)0 ν ν B1 < 5.5 × 10−5 CL=90% 2565
φν ν B1 < 1.27 × 10−4 CL=90% 2541e±µ∓ LF [hh℄ < 2.8 × 10−9 CL=90% 2639
π0 e±µ∓ LF < 1.4 × 10−7 CL=90% 2637K0 e±µ∓ LF < 2.7 × 10−7 CL=90% 2615K∗(892)0 e+µ− LF < 5.3 × 10−7 CL=90% 2563K∗(892)0 e−µ+ LF < 3.4 × 10−7 CL=90% 2563K∗(892)0 e±µ∓ LF < 5.8 × 10−7 CL=90% 2563e± τ∓ LF [hh℄ < 2.8 × 10−5 CL=90% 2341
µ± τ∓ LF [hh℄ < 2.2 × 10−5 CL=90% 2339invisible B1 < 2.4 × 10−5 CL=90% {
ν ν γ B1 < 1.7 × 10−5 CL=90% 2640�+
 µ− L,B < 1.4 × 10−6 CL=90% 2143�+
 e− L,B < 4 × 10−6 CL=90% 2145B±/B0 ADMIXTUREB±/B0 ADMIXTUREB±/B0 ADMIXTUREB±/B0 ADMIXTURECP violationCP violationCP violationCP violationACP (B → K∗(892)γ) = −0.003 ± 0.017ACP (b → s γ) = 0.015 ± 0.020ACP (b → (s + d)γ) = 0.010 ± 0.031ACP (B → Xs ℓ+ ℓ−) = 0.04 ± 0.11ACP (B → Xs ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4) = −0.06± 0.22ACP (B → Xs ℓ+ ℓ−) (10.1 < q2 < 12.9 or q2 > 14.2 GeV2/
4)= 0.19 ± 0.18ACP (B → K∗ e+ e−) = −0.18 ± 0.15ACP (B → K∗µ+µ−) = −0.03 ± 0.13ACP (B → K∗ ℓ+ ℓ−) = −0.04 ± 0.07ACP (B → ηanything) = −0.13+0.04

−0.05�ACP (Xs γ) = ACP (B± → Xs γ) − ACP (B0 → Xs γ) =0.05 ± 0.04The bran
hing fra
tion measurements are for an admixture of B mesons atthe �(4S). The values quoted assume that B(�(4S) → BB) = 100%.For in
lusive bran
hing fra
tions, e.g., B → D± anything, the treatmentof multiple D's in the �nal state must be de�ned. One possibility wouldbe to 
ount the number of events with one-or-more D's and divide bythe total number of B's. Another possibility would be to 
ount the to-tal number of D's and divide by the total number of B's, whi
h is thede�nition of average multipli
ity. The two de�nitions are identi
al if onlyone D is allowed in the �nal state. Even though the \one-or-more" def-inition seems sensible, for pra
ti
al reasons in
lusive bran
hing fra
tionsare almost always measured using the multipli
ity de�nition. For heavy�nal state parti
les, authors 
all their results in
lusive bran
hing fra
tionswhile for light parti
les some authors 
all their results multipli
ities. In theB se
tions, we list all results as in
lusive bran
hing fra
tions, adopting amultipli
ity de�nition. This means that in
lusive bran
hing fra
tions 
anex
eed 100% and that in
lusive partial widths 
an ex
eed total widths,just as in
lusive 
ross se
tions 
an ex
eed total 
ross se
tion.B modes are 
harge 
onjugates of the modes below. Rea
tions indi
atethe weak de
ay vertex and do not in
lude mixing.

S
ale fa
tor/ pB DECAY MODESB DECAY MODESB DECAY MODESB DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)Semileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modes
ℓ+νℓ anything [ttt,iiaa℄ ( 10.86 ± 0.16 ) % {D− ℓ+νℓ anything [ttt℄ ( 2.8 ± 0.9 ) % {D0 ℓ+νℓ anything [ttt℄ ( 7.3 ± 1.5 ) % {D ℓ+νℓ ( 2.42 ± 0.12 ) % 2310D∗− ℓ+νℓ anything [jjaa℄ ( 6.7 ± 1.3 )× 10−3 {D∗ ℓ+νℓ [kkaa℄ ( 4.95 ± 0.11 ) % 2257D∗∗ ℓ+νℓ [ttt,llaa℄ ( 2.7 ± 0.7 ) % {D1(2420)ℓ+νℓ anything ( 3.8 ± 1.3 )× 10−3 S=2.4 {D πℓ+νℓ anything +D∗πℓ+ νℓ anything ( 2.6 ± 0.5 ) % S=1.5 {D πℓ+νℓ anything ( 1.5 ± 0.6 ) % {D∗πℓ+ νℓ anything ( 1.9 ± 0.4 ) % {D∗2(2460)ℓ+νℓ anything ( 4.4 ± 1.6 )× 10−3 {D∗−π+ ℓ+νℓ anything ( 1.00 ± 0.34 ) % {D π+π− ℓ+νℓ ( 1.62 ± 0.32 )× 10−3 2301D∗π+π− ℓ+νℓ ( 9.4 ± 3.2 )× 10−4 2247D−s ℓ+νℓ anything [ttt℄ < 7 × 10−3 CL=90% {D−s ℓ+νℓK+ anything [ttt℄ < 5 × 10−3 CL=90% {D−s ℓ+νℓK0 anything [ttt℄ < 7 × 10−3 CL=90% {X
 ℓ+νℓ ( 10.65 ± 0.16 ) % {Xu ℓ+νℓ ( 2.14 ± 0.31 )× 10−3 {K+ ℓ+νℓ anything [ttt℄ ( 6.3 ± 0.6 ) % {K− ℓ+νℓ anything [ttt℄ ( 10 ± 4 )× 10−3 {K0/K0 ℓ+νℓ anything [ttt℄ ( 4.6 ± 0.5 ) % {D τ+ ντ ( 9.8 ± 1.3 )× 10−3 1911D∗ τ+ ντ ( 1.58 ± 0.12 ) % 1837D, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD± anything ( 22.9 ± 1.3 ) % {D0 /D0 anything ( 61.8 ± 2.9 ) % S=1.3 {D∗(2010)± anything ( 22.5 ± 1.5 ) % {D∗(2007)0 anything ( 26.0 ± 2.7 ) % {D±s anything [hh℄ ( 8.3 ± 0.8 ) % {D∗±s anything ( 6.3 ± 1.0 ) % {D∗±s D (∗) ( 3.4 ± 0.6 ) % {DDs0(2317) seen 1605DDsJ(2457) seen {D (∗)D (∗)K0 +D (∗)D (∗)K±

[hh,nnaa℄ ( 7.1 + 2.7
− 1.7 ) % {b → 
 
 s ( 22 ± 4 ) % {Ds (∗)D (∗) [hh,nnaa℄ ( 3.9 ± 0.4 ) % {D∗D∗(2010)± [hh℄ < 5.9 × 10−3 CL=90% 1711DD∗(2010)± + D∗D± [hh℄ < 5.5 × 10−3 CL=90% {DD± [hh℄ < 3.1 × 10−3 CL=90% 1866Ds (∗)±D (∗)X (nπ±) [hh,nnaa℄ ( 9 + 5
− 4 ) % {D∗(2010)γ < 1.1 × 10−3 CL=90% 2257D+s π− , D∗+s π− , D+s ρ− ,D∗+s ρ− , D+s π0 , D∗+s π0 ,D+s η , D∗+s η , D+s ρ0 ,D∗+s ρ0 , D+s ω , D∗+s ω

[hh℄ < 4 × 10−4 CL=90% {Ds1(2536)+anything < 9.5 × 10−3 CL=90% {Charmonium modesCharmonium modesCharmonium modesCharmonium modesJ/ψ(1S)anything ( 1.094± 0.032) % S=1.1 {J/ψ(1S)(dire
t) anything ( 7.8 ± 0.4 )× 10−3 S=1.1 {
ψ(2S)anything ( 3.07 ± 0.21 )× 10−3 {
χ
1(1P)anything ( 3.86 ± 0.27 )× 10−3 {

χ
1(1P)(dire
t) anything ( 3.24 ± 0.25 )× 10−3 {
χ
2(1P)anything ( 1.4 ± 0.4 )× 10−3 S=1.9 {

χ
2(1P)(dire
t) anything ( 1.65 ± 0.31 )× 10−3 {
η
 (1S)anything < 9 × 10−3 CL=90% {K X (3872), X → D0D0π0 ( 1.2 ± 0.4 )× 10−4 1141K X (3872), X → D∗0D0 ( 8.0 ± 2.2 )× 10−5 1141K X (3940), X → D∗0D0 < 6.7 × 10−5 CL=90% 1084K X (3915), X → ωJ/ψ [ooaa℄ ( 7.1 ± 3.4 )× 10−5 1103K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modesK± anything [hh℄ ( 78.9 ± 2.5 ) % {K+anything ( 66 ± 5 ) % {K− anything ( 13 ± 4 ) % {K0/K0 anything [hh℄ ( 64 ± 4 ) % {K∗(892)± anything ( 18 ± 6 ) % {



67676767Meson SummaryTableK∗(892)0 /K∗(892)0 anything [hh℄ ( 14.6 ± 2.6 ) % {K∗(892)γ ( 4.2 ± 0.6 )× 10−5 2565
ηK γ ( 8.5 + 1.8

− 1.6 )× 10−6 2588K1(1400)γ < 1.27 × 10−4 CL=90% 2454K∗2(1430)γ ( 1.7 + 0.6
− 0.5 )× 10−5 2447K2(1770)γ < 1.2 × 10−3 CL=90% 2342K∗3(1780)γ < 3.7 × 10−5 CL=90% 2341K∗4(2045)γ < 1.0 × 10−3 CL=90% 2244K η′(958) ( 8.3 ± 1.1 )× 10−5 2528K∗(892)η′(958) ( 4.1 ± 1.1 )× 10−6 2472K η < 5.2 × 10−6 CL=90% 2588K∗(892)η ( 1.8 ± 0.5 )× 10−5 2534K φφ ( 2.3 ± 0.9 )× 10−6 2306b → s γ ( 3.49 ± 0.19 )× 10−4 {b → d γ ( 9.2 ± 3.0 )× 10−6 {b → s gluon < 6.8 % CL=90% {

η anything ( 2.6 + 0.5
− 0.8 )× 10−4 {

η′ anything ( 4.2 ± 0.9 )× 10−4 {K+gluon (
harmless) < 1.87 × 10−4 CL=90% {K0gluon (
harmless) ( 1.9 ± 0.7 )× 10−4 {Light un
avored meson modesLight un
avored meson modesLight un
avored meson modesLight un
avored meson modes
ργ ( 1.39 ± 0.25 )× 10−6 S=1.2 2583
ρ/ωγ ( 1.30 ± 0.23 )× 10−6 S=1.2 {
π± anything [hh,ppaa℄ ( 358 ± 7 ) % {
π0 anything ( 235 ±11 ) % {
η anything ( 17.6 ± 1.6 ) % {
ρ0 anything ( 21 ± 5 ) % {
ω anything < 81 % CL=90% {
φ anything ( 3.43 ± 0.12 ) % {

φK∗(892) < 2.2 × 10−5 CL=90% 2460
π+ gluon (
harmless) ( 3.7 ± 0.8 )× 10−4 {Baryon modesBaryon modesBaryon modesBaryon modes�+
 / �−
 anything ( 3.5 ± 0.4 ) % {�+
 anything < 1.3 % CL=90% {�−
 anything < 7 % CL=90% {�−
 ℓ+anything < 9 × 10−4 CL=90% {�−
 e+ anything < 1.8 × 10−3 CL=90% {�−
 µ+anything < − 1.4 × 10−3 CL=90% {�−
 p anything ( 2.02 ± 0.33 ) % {�−
 pe+νe < 8 × 10−4 CL=90% 2021�−−
 anything ( 3.3 ± 1.7 )× 10−3 {�−
 anything < 8 × 10−3 CL=90% {�0
 anything ( 3.6 ± 1.7 )× 10−3 {�0
 N (N = p or n) < 1.2 × 10−3 CL=90% 1938� 0
 anything, � 0
 → �−π+ ( 1.93 ± 0.30 )× 10−4 S=1.1 {�+
 , �+
 → �−π+π+ ( 4.5 + 1.3

− 1.2 )× 10−4 {p/p anything [hh℄ ( 8.0 ± 0.4 ) % {p/p (dire
t) anything [hh℄ ( 5.5 ± 0.5 ) % {pe+νe anything < 5.9 × 10−4 CL=90% {�/� anything [hh℄ ( 4.0 ± 0.5 ) % {� anything seen {� anything seen {�−/�+ anything [hh℄ ( 2.7 ± 0.6 )× 10−3 {baryons anything ( 6.8 ± 0.6 ) % {pp anything ( 2.47 ± 0.23 ) % {�p/�p anything [hh℄ ( 2.5 ± 0.4 ) % {�� anything < 5 × 10−3 CL=90% {Lepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes or�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modess e+ e− B1 ( 6.7 ± 1.7 )× 10−6 S=2.0 {sµ+µ− B1 ( 4.3 ± 1.0 )× 10−6 {s ℓ+ ℓ− B1 [ttt℄ ( 5.8 ± 1.3 )× 10−6 S=1.8 {
πℓ+ ℓ− B1 < 5.9 × 10−8 CL=90% 2638

πe+ e− B1 < 1.10 × 10−7 CL=90% 2638
πµ+µ− B1 < 5.0 × 10−8 CL=90% 2634K e+ e− B1 ( 4.4 ± 0.6 )× 10−7 2617K∗(892)e+ e− B1 ( 1.19 ± 0.20 )× 10−6 S=1.2 2565K µ+µ− B1 ( 4.4 ± 0.4 )× 10−7 2612K∗(892)µ+µ− B1 ( 1.06 ± 0.09 )× 10−6 2560K ℓ+ ℓ− B1 ( 4.8 ± 0.4 )× 10−7 2617

K∗(892)ℓ+ ℓ− B1 ( 1.05 ± 0.10 )× 10−6 2565K ν ν B1 < 1.7 × 10−5 CL=90% 2617K∗ν ν B1 < 7.6 × 10−5 CL=90% {s e±µ∓ LF [hh℄ < 2.2 × 10−5 CL=90% {
πe±µ∓ LF < 9.2 × 10−8 CL=90% 2637
ρe±µ∓ LF < 3.2 × 10−6 CL=90% 2582K e±µ∓ LF < 3.8 × 10−8 CL=90% 2616K∗(892)e±µ∓ LF < 5.1 × 10−7 CL=90% 2563B±/B0/B0s/b-baryon ADMIXTUREB±/B0/B0s/b-baryon ADMIXTUREB±/B0/B0s/b-baryon ADMIXTUREB±/B0/B0s/b-baryon ADMIXTUREThese measurements are for an admixture of bottom parti
les at highenergy (LHC, LEP, Tevatron, SppS).Mean life τ = (1.566 ± 0.003)× 10−12 sMean life τ = (1.72 ± 0.10) × 10−12 s Charged b-hadronadmixtureMean life τ = (1.58 ± 0.14) × 10−12 s Neutral b-hadron ad-mixture

τ 
harged b−hadron/τ neutral b−hadron = 1.09 ± 0.13
∣

∣�τ b∣∣/τ b,b = −0.001 ± 0.014Re(ǫb) / (1 + ∣

∣ǫb∣∣2) = (1.2 ± 0.4)× 10−3The bran
hing fra
tion measurements are for an admixture of B mesonsand baryons at energies above the �(4S). Only the highest energy results(LHC, LEP, Tevatron, SppS) are used in the bran
hing fra
tion averages.In the following, we assume that the produ
tion fra
tions are the same atthe LHC, LEP, and at the Tevatron.For in
lusive bran
hing fra
tions, e.g., B → D± anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one.The modes below are listed for a b initial state. bmodes are their 
harge
onjugates. Rea
tions indi
ate the weak de
ay vertex and do not in
ludemixing. S
ale fa
tor/ pb DECAY MODESb DECAY MODESb DECAY MODESb DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)PRODUCTION FRACTIONSPRODUCTION FRACTIONSPRODUCTION FRACTIONSPRODUCTION FRACTIONSThe produ
tion fra
tions for weakly de
aying b-hadrons at high energyhave been 
al
ulated from the best values of mean lives, mixing parame-ters, and bran
hing fra
tions in this edition by the Heavy Flavor AveragingGroup (HFAG) as des
ribed in the note \B0-B0 Mixing" in the B0 Parti
leListings. The produ
tion fra
tions in b-hadroni
 Z de
ay or pp 
ollisionsat the Tevatron are also listed at the end of the se
tion. Values assumeB(b → B+) = B(b → B0)B(b → B+) + B(b → B0) +B(b → B0s ) + B(b → b -baryon) = 100%.The 
orrelation 
oeÆ
ients between produ
tion fra
tions are also re-ported:
or(B0s , b-baryon) = −0.240
or(B0s , B±=B0) = −0.161
or(b-baryon, B±=B0) = −0.920.The notation for produ
tion fra
tions varies in the literature (fd , dB0 ,f (b → B0), Br(b → B0)). We use our own bran
hing fra
tion notationhere, B(b → B0).Note these produ
tion fra
tions are b-hadronization fra
tions, not the 
on-ventional bran
hing fra
tions of b-quark to a B-hadron, whi
h may have
onsiderable dependen
e on the initial and �nal state kinemati
 and pro-du
tion environment.B+ ( 40.4 ± 0.6 ) % {B0 ( 40.4 ± 0.6 ) % {B0s ( 10.3 ± 0.5 ) % {b -baryon ( 8.9 ± 1.3 ) % {DECAY MODESDECAY MODESDECAY MODESDECAY MODESSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modes
ν anything ( 23.1 ± 1.5 ) % {

ℓ+νℓ anything [ttt℄ ( 10.69± 0.22) % {e+νe anything ( 10.86± 0.35) % {
µ+νµ anything ( 10.95+ 0.29

− 0.25) % {D− ℓ+νℓ anything [ttt℄ ( 2.2 ± 0.4 ) % S=1.9 {D−π+ ℓ+νℓ anything ( 4.9 ± 1.9 )× 10−3 {D−π− ℓ+νℓ anything ( 2.6 ± 1.6 )× 10−3 {D0 ℓ+νℓ anything [ttt℄ ( 6.81± 0.34) % {D0π− ℓ+νℓ anything ( 1.07± 0.27) % {D0π+ ℓ+νℓ anything ( 2.3 ± 1.6 )× 10−3 {D∗− ℓ+νℓ anything [ttt℄ ( 2.75± 0.19) % {



68686868Meson SummaryTableD∗−π− ℓ+νℓ anything ( 6 ± 7 )× 10−4 {D∗− (pi+lepton)+νℓ anything ( 4.8 ± 1.0 )× 10−3 {D0j ℓ+νℓ anything ×B(D0j → D∗+π−) [ttt,qqaa℄ ( 2.6 ± 0.9 )× 10−3 {D−j ℓ+νℓ anything ×B(D−j → D0π−) [ttt,qqaa℄ ( 7.0 ± 2.3 )× 10−3 {D∗2(2460)0 ℓ+νℓ anything
× B(D∗2(2460)0 →D∗−π+) < 1.4 × 10−3 CL=90% {D∗2(2460)− ℓ+νℓ anything
× B(D∗2(2460)− →D0π−) ( 4.2 + 1.5

− 1.8 )× 10−3 {D∗2(2460)0 ℓ+νℓ anything
× B(D∗2(2460)0 →D−π+) ( 1.6 ± 0.8 )× 10−3 {
harmless ℓνℓ [ttt℄ ( 1.7 ± 0.5 )× 10−3 {

τ+ ντ anything ( 2.41± 0.23) % {D∗− τ ντ anything ( 9 ± 4 )× 10−3 {
 → ℓ−νℓ anything [ttt℄ ( 8.02± 0.19) % {
 → ℓ+ν anything ( 1.6 + 0.4
− 0.5 ) % {Charmed meson and baryon modesCharmed meson and baryon modesCharmed meson and baryon modesCharmed meson and baryon modesD0 anything ( 59.0 ± 2.9 ) % {D0D±s anything [hh℄ ( 9.1 + 4.0
− 2.8 ) % {D∓D±s anything [hh℄ ( 4.0 + 2.3
− 1.8 ) % {D0D0 anything [hh℄ ( 5.1 + 2.0
− 1.8 ) % {D0D± anything [hh℄ ( 2.7 + 1.8
− 1.6 ) % {D±D∓ anything [hh℄ < 9 × 10−3 CL=90% {D− anything ( 22.5 ± 1.7 ) % {D∗(2010)+ anything ( 17.3 ± 2.0 ) % {D1(2420)0 anything ( 5.0 ± 1.5 ) % {D∗(2010)∓D±s anything [hh℄ ( 3.3 + 1.6
− 1.3 ) % {D0D∗(2010)± anything [hh℄ ( 3.0 + 1.1
− 0.9 ) % {D∗(2010)±D∓ anything [hh℄ ( 2.5 + 1.2
− 1.0 ) % {D∗(2010)±D∗(2010)∓ anything [hh℄ ( 1.2 ± 0.4 ) % {DD anything ( 10 +11
−10 ) % {D∗2(2460)0 anything ( 4.7 ± 2.7 ) % {D−s anything ( 14.7 ± 2.1 ) % {D+s anything ( 10.1 ± 3.1 ) % {�+
 anything ( 7.6 ± 1.1 ) % {
 /
 anything [ppaa℄ (116.2 ± 3.2 ) % {Charmonium modesCharmonium modesCharmonium modesCharmonium modesJ/ψ(1S)anything ( 1.16± 0.10) % {

ψ(2S)anything ( 2.83± 0.29)× 10−3 {
χ
1(1P)anything ( 1.4 ± 0.4 ) % {K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modess γ ( 3.1 ± 1.1 )× 10−4 {s ν ν B1 < 6.4 × 10−4 CL=90% {K± anything ( 74 ± 6 ) % {K0S anything ( 29.0 ± 2.9 ) % {Pion modesPion modesPion modesPion modes
π± anything (397 ±21 ) % {
π0 anything [ppaa℄ (278 ±60 ) % {
φanything ( 2.82± 0.23) % {Baryon modesBaryon modesBaryon modesBaryon modesp/panything ( 13.1 ± 1.1 ) % {�/�anything ( 5.9 ± 0.6 ) % {b -baryon anything ( 10.2 ± 2.8 ) % {Other modesOther modesOther modesOther modes
harged anything [ppaa℄ (497 ± 7 ) % {hadron+ hadron− ( 1.7 + 1.0

− 0.7 )× 10−5 {
harmless ( 7 ±21 )× 10−3 {

�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes
µ+µ− anything B1 < 3.2 × 10−4 CL=90% {B∗B∗B∗B∗ I (JP ) = 12 (1−)I , J , P need 
on�rmation. Quantum numbers shown are quark-modelpredi
tions.Mass mB∗ = 5324.65 ± 0.25 MeVmB∗ − mB = 45.18 ± 0.23 MeVmB∗+ − mB+ = 45.34 ± 0.23 MeVB∗ DECAY MODESB∗ DECAY MODESB∗ DECAY MODESB∗ DECAY MODES Fra
tion (�i /�) p (MeV/
)B γ dominant 45B1(5721)+B1(5721)+B1(5721)+B1(5721)+ I (JP ) = 12 (1+)I, J, P need 
on�rmation.Mass m = 5725.9+2.5

−2.7 MeVmB+1 − mB∗0 = 401.2+2.4
−2.7 MeVFull width � = 31 ± 6 MeV (S = 1.1)B1(5721)+ DECAY MODESB1(5721)+ DECAY MODESB1(5721)+ DECAY MODESB1(5721)+ DECAY MODES Fra
tion (�i /�) p (MeV/
)B∗0π+ seen 363B1(5721)0B1(5721)0B1(5721)0B1(5721)0 I (JP ) = 12 (1+)I, J, P need 
on�rmation.B1(5721)0 MASS = 5726.0 ± 1.3 MeV (S = 1.2)mB01 − mB+ = 446.7 ± 1.3 MeV (S = 1.2)mB01 − mB∗+ = 401.4 ± 1.2 MeV (S = 1.2)Full width � = 27.5 ± 3.4 MeV (S = 1.1)B1(5721)0 DECAY MODESB1(5721)0 DECAY MODESB1(5721)0 DECAY MODESB1(5721)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)B∗+π− dominant 363B∗2(5747)+B∗2(5747)+B∗2(5747)+B∗2(5747)+ I (JP ) = 12 (2+)I, J, P need 
on�rmation.Mass m = 5737.2 ± 0.7 MeVmB∗+2 − mB0 = 457.5 ± 0.7 MeVFull width � = 20 ± 5 MeV (S = 2.2)B∗2(5747)+ DECAY MODESB∗2(5747)+ DECAY MODESB∗2(5747)+ DECAY MODESB∗2(5747)+ DECAY MODES Fra
tion (�i /�) p (MeV/
)B0π+ seen 418B∗0π+ seen 374B∗2(5747)0B∗2(5747)0B∗2(5747)0B∗2(5747)0 I (JP ) = 12 (2+)I, J, P need 
on�rmation.B∗2(5747)0 MASS = 5739.5 ± 0.7 MeV (S = 1.4)mB∗02 − mB01 = 13.5 ± 1.4 MeV (S = 1.3)mB∗02 − mB+ = 460.2 ± 0.6 MeV (S = 1.4)Full width � = 24.2 ± 1.7 MeVB∗2(5747)0 DECAY MODESB∗2(5747)0 DECAY MODESB∗2(5747)0 DECAY MODESB∗2(5747)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)B+π− dominant 421B∗+π− dominant 376BJ(5970)+BJ(5970)+BJ(5970)+BJ(5970)+ I (JP ) = 12 (??)I, J, P need 
on�rmation.Mass m = 5964 ± 5 MeVmBJ(5970)+ − mB0 = 685 ± 5 MeVmBJ(5970)+ − mB∗0Full width � = 62 ± 20 MeV



69696969Meson Summary TableBJ (5970)+ DECAY MODESBJ (5970)+ DECAY MODESBJ (5970)+ DECAY MODESBJ (5970)+ DECAY MODES Fra
tion (�i /�) p (MeV/
)B0π+ possibly seen 632B∗0π+ seen 591BJ(5970)0BJ(5970)0BJ(5970)0BJ(5970)0 I (JP ) = 12 (??)I, J, P need 
on�rmation.Mass m = 5971 ± 5 MeVmBJ(5970)0 − mB+ = 691 ± 5 MeVmBJ(5970)0 − mB∗+Full width � = 81 ± 12 MeVBJ (5970)0 DECAY MODESBJ (5970)0 DECAY MODESBJ (5970)0 DECAY MODESBJ (5970)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)B+π− possibly seen 638B∗+π− seen 597BOTTOM, STRANGEMESONSBOTTOM, STRANGEMESONSBOTTOM, STRANGEMESONSBOTTOM, STRANGEMESONS(B= ±1, S=∓1)(B= ±1, S=∓1)(B= ±1, S=∓1)(B= ±1, S=∓1)B0s = sb, B0s = s b, similarly for B∗s 'sB0sB0sB0sB0s I (JP ) = 0(0−)I , J , P need 
on�rmation. Quantum numbers shown are quark-modelpredi
tions.Mass mB0s = 5366.82 ± 0.22 MeVmB0s − mB = 87.35 ± 0.20 MeVMean life τ = (1.510 ± 0.005)× 10−12 s
τ = 452.7 µm��B0s = �B0s L − �B0s H = (0.082 ± 0.007)× 1012 s−1B0s -B0s mixing parametersB0s -B0s mixing parametersB0s -B0s mixing parametersB0s -B0s mixing parameters�mB0s = mB0s H { mB0s L = (17.757 ± 0.021)× 1012 �h s−1= (1.1688 ± 0.0014)× 10−8 MeVxs = �mB0s /�B0s = 26.81 ± 0.10
χs = 0.499308 ± 0.000005CP violation parameters in B0sCP violation parameters in B0sCP violation parameters in B0sCP violation parameters in B0sRe(ǫB0s ) / (1 + ∣

∣ǫB0s ∣∣2) = (−1.9 ± 1.0)× 10−3CK K (B0s → K+K−) = 0.14 ± 0.11SK K (B0s → K+K−) = 0.30 ± 0.13
γ = (65 ± 7)◦
δB(B0s → D±s K∓) = (3 ± 20)◦rB(B0s → D∓s K±) = 0.53 ± 0.17CP Violation phase βs = (0.6 ± 1.9)× 10−2 rad
∣

∣λ
∣

∣ (B0s → J/ψ(1S)φ) = 0.964 ± 0.020
∣

∣λ
∣

∣ = 1.02 ± 0.07A, CP violation parameter = 0.5+0.8
−0.7C, CP violation parameter = −0.3 ± 0.4S, CP violation parameter = −0.1 ± 0.4AL

CP (Bs → J/ψK∗(892)0) = −0.05 ± 0.06A‖
CP (Bs → J/ψK∗(892)0) = 0.17 ± 0.15A⊥
CP (Bs → J/ψK∗(892)0) = −0.05 ± 0.10ACP (Bs → π+K−)ACP (Bs → π+K−)ACP (Bs → π+K−)ACP (Bs → π+K−) = 0.263 ± 0.035ACP (B0s → [K+K− ℄DK∗(892)0) = −0.04 ± 0.07ACP (B0s → [π+K− ℄DK∗(892)0) = −0.01 ± 0.04ACP (B0s → [π+π− ℄DK∗(892)0) = 0.06 ± 0.13�a⊥ < 1.2× 10−12 GeV, CL = 95%

These bran
hing fra
tions all s
ale with B(b → B0s ).The bran
hing fra
tion B(B0s → D−s ℓ+ νℓanything) is not a pure mea-surement sin
e the measured produ
t bran
hing fra
tion B(b → B0s ) ×B(B0s → D−s ℓ+ νℓ anything) was used to determine B(b → B0s ), asdes
ribed in the note on \B0-B0 Mixing"For in
lusive bran
hing fra
tions, e.g., B → D± anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one. S
ale fa
tor/ pB0s DECAY MODESB0s DECAY MODESB0s DECAY MODESB0s DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)D−s anything (93 ±25 ) % {
ℓνℓX ( 9.6 ± 0.8 ) % {e+νX− ( 9.1 ± 0.8 ) % {
µ+νX− (10.2 ± 1.0 ) % {D−s ℓ+νℓ anything [rraa℄ ( 8.1 ± 1.3 ) % {D∗−s ℓ+νℓ anything ( 5.4 ± 1.1 ) % {Ds1(2536)−µ+ νµ,D−s1 → D∗−K0S ( 2.6 ± 0.7 )× 10−3 {Ds1(2536)−X µ+ν,D−s1 → D0K+ ( 4.4 ± 1.3 )× 10−3 {Ds2(2573)−X µ+ν,D−s2 → D0K+ ( 2.7 ± 1.0 )× 10−3 {D−s π+ ( 3.00± 0.23)× 10−3 2320D−s ρ+ ( 6.9 ± 1.4 )× 10−3 2249D−s π+π+π− ( 6.1 ± 1.0 )× 10−3 2301Ds1(2536)−π+,D−s1 → D−s π+π−

( 2.5 ± 0.8 )× 10−5 {D∓s K± ( 2.27± 0.19)× 10−4 2293D−s K+π+π− ( 3.2 ± 0.6 )× 10−4 2249D+s D−s ( 4.4 ± 0.5 )× 10−3 1824D−s D+ ( 2.8 ± 0.5 )× 10−4 1875D+D− ( 2.2 ± 0.6 )× 10−4 1925D0D0 ( 1.9 ± 0.5 )× 10−4 1930D∗−s π+ ( 2.0 ± 0.5 )× 10−3 2265D∗∓s K± ( 1.33± 0.35)× 10−4 {D∗−s ρ+ ( 9.6 ± 2.1 )× 10−3 2191D∗+s D−s + D∗−s D+s ( 1.29± 0.22) % S=1.1 1742D∗+s D∗−s ( 1.86± 0.30) % 1655D(∗)+s D(∗)−s ( 4.5 ± 1.4 ) % {D0K−π+ ( 1.03± 0.13)× 10−3 2312D0K∗(892)0 ( 4.4 ± 0.6 )× 10−4 2264D0K∗(1410) ( 3.9 ± 3.5 )× 10−4 2117D0K∗0(1430) ( 3.0 ± 0.7 )× 10−4 2113D0K∗2(1430) ( 1.1 ± 0.4 )× 10−4 2113D0K∗(1680) < 7.8 × 10−5 CL=90% 1998D0K∗0(1950) < 1.1 × 10−4 CL=90% 1890D0K∗3(1780) < 2.6 × 10−5 CL=90% 1971D0K∗4(2045) < 3.1 × 10−5 CL=90% 1837D0K−π+ (non-resonant) ( 2.1 ± 0.8 )× 10−4 2312D∗s2(2573)−π+,D∗s2 → D0K−
( 2.6 ± 0.4 )× 10−4 {D∗s1(2700)−π+,D∗s1 → D0K−
( 1.6 ± 0.8 )× 10−5 {D∗s1(2860)−π+,D∗s1 → D0K−
( 5 ± 4 )× 10−5 {D∗s3(2860)−π+,D∗s3 → D0K−
( 2.2 ± 0.6 )× 10−5 {D0K+K− ( 4.4 ± 2.0 )× 10−5 2243D0 f0(980) < 3.1 × 10−6 CL=90% 2242D0φ ( 3.0 ± 0.8 )× 10−5 2235D∗∓π± < 6.1 × 10−6 CL=90% {J/ψ(1S)φ ( 1.07± 0.08)× 10−3 1588J/ψ(1S)π0 < 1.2 × 10−3 CL=90% 1786J/ψ(1S)η ( 3.9 ± 0.7 )× 10−4 S=1.4 1733J/ψ(1S)K0S ( 1.89± 0.12)× 10−5 1743J/ψ(1S)K∗(892)0 ( 4.1 ± 0.4 )× 10−5 1637J/ψ(1S)η′ ( 3.3 ± 0.4 )× 10−4 1612J/ψ(1S)π+π− ( 2.13± 0.18)× 10−4 1775J/ψ(1S) f0(500), f0 →

π+π−
< 1.7 × 10−6 CL=90% {



70707070Meson Summary TableJ/ψ(1S)ρ, ρ →
π+π−

< 1.2 × 10−6 CL=90% {J/ψ(1S) f0(980), f0 →
π+π−

( 1.34± 0.15)× 10−4 {J/ψ(1S) f0(980)0,f0 → π+π−
( 5.1 ± 0.9 )× 10−5 {J/ψ(1S) f2(1270)0,f2 → π+π−
( 2.6 ± 0.7 )× 10−7 {J/ψ(1S) f2(1270)‖,f2 → π+π−
( 3.8 ± 1.3 )× 10−7 {J/ψ(1S) f2(1270)⊥,f2 → π+π−
( 4.6 ± 2.7 )× 10−7 {J/ψ(1S) f0(1500),f0 → π+π−
( 7.3 + 1.6

− 1.4 )× 10−6 {J/ψ(1S) f ′2(1525)0,f ′2 → π+π−
( 3.7 ± 1.0 )× 10−7 {J/ψ(1S) f ′2(1525)‖,f ′2 → π+π−
( 4.3 + 9.0

− 3.1 )× 10−8 {J/ψ(1S) f ′2(1525)⊥,f ′2 → π+π−
( 1.9 ± 1.4 )× 10−7 {J/ψ(1S) f0(1790),f0 → π+π−
( 1.7 + 4.0

− 0.4 )× 10−6 {J/ψ(1S)K0π+π− < 4.4 × 10−5 CL=90% 1675J/ψ(1S)K+K− ( 7.9 ± 0.7 )× 10−4 1601J/ψ(1S)K0K−π++ 
.
. ( 9.3 ± 1.3 )× 10−4 1538J/ψ(1S)K0K+K− < 1.2 × 10−5 CL=90% 1333J/ψ(1S) f ′2(1525) ( 2.6 ± 0.6 )× 10−4 1304J/ψ(1S)pp < 4.8 × 10−6 CL=90% 982J/ψ(1S)γ < 7.3 × 10−6 CL=90% 1790J/ψ(1S)π+π−π+π− ( 7.9 ± 0.9 )× 10−5 1731J/ψ(1S) f1(1285) ( 7.1 ± 1.4 )× 10−5 1460
ψ(2S)η ( 3.3 ± 0.9 )× 10−4 1338
ψ(2S)η′ ( 1.29± 0.35)× 10−4 1158
ψ(2S)π+π− ( 7.2 ± 1.2 )× 10−5 1397
ψ(2S)φ ( 5.4 ± 0.5 )× 10−4 1120
ψ(2S)K−π+ ( 3.12± 0.30)× 10−5 1310
ψ(2S)K∗(892)0 ( 3.3 ± 0.5 )× 10−5 1196
χ
1φ ( 2.03± 0.29)× 10−4 1274
π+π− ( 7.7 ± 2.0 )× 10−7 S=1.4 2680
π0π0 < 2.1 × 10−4 CL=90% 2680
ηπ0 < 1.0 × 10−3 CL=90% 2654
ηη < 1.5 × 10−3 CL=90% 2627
ρ0 ρ0 < 3.20 × 10−4 CL=90% 2569
η′ η′ ( 3.3 ± 0.7 )× 10−5 2507
φρ0 < 6.17 × 10−4 CL=90% 2526
φφ ( 1.87± 0.15)× 10−5 2482
π+K− ( 5.6 ± 0.6 )× 10−6 2659K+K− ( 2.52± 0.17)× 10−5 2638K0K0 < 6.6 × 10−5 CL=90% 2637K0π+π− ( 1.5 ± 0.4 )× 10−5 2653K0K±π∓ ( 7.7 ± 1.0 )× 10−5 2622K∗(892)−π+ ( 3.3 ± 1.2 )× 10−6 2607K∗(892)±K∓ ( 1.25± 0.26)× 10−5 2585K0S K∗(892)0+ 
.
. ( 1.6 ± 0.4 )× 10−5 2585K0K+K− < 3.5 × 10−6 CL=90% 2568K∗(892)0 ρ0 < 7.67 × 10−4 CL=90% 2550K∗(892)0K∗(892)0 ( 1.11± 0.27)× 10−5 2531
φK∗(892)0 ( 1.14± 0.30)× 10−6 2507pp ( 2.8 + 2.2

− 1.7 )× 10−8 2514�−
 �π+ ( 3.6 ± 1.6 )× 10−4 {�−
 �+
 < 8.0 × 10−5 CL=95% {
γ γ B1 < 3.1 × 10−6 CL=90% 2683
φγ ( 3.52± 0.34)× 10−5 2587Lepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes or�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes
µ+µ− B1 ( 2.9 + 0.7

− 0.6 )× 10−9 2681e+ e− B1 < 2.8 × 10−7 CL=90% 2683
µ+µ−µ+µ− B1 < 1.2 × 10−8 CL=90% 2673S P , S → µ+µ−,P → µ+µ−

B1 [hhaa℄ < 1.2 × 10−8 CL=90% {
φ(1020)µ+µ− B1 ( 8.2 ± 1.2 )× 10−7 2582

π+π−µ+µ− B1 ( 8.4 ± 1.7 )× 10−8 2670
φν ν B1 < 5.4 × 10−3 CL=90% 2587e±µ∓ LF [hh℄ < 1.1 × 10−8 CL=90% 2682B∗sB∗sB∗sB∗s I (JP ) = 0(1−)I , J , P need 
on�rmation. Quantum numbers shown are quark-modelpredi
tions.Mass m = 5415.4+1.8

−1.5 MeV (S = 3.0)mB∗
s
− mBs = 48.6+1.8

−1.6 MeV (S = 2.8)B∗s DECAY MODESB∗s DECAY MODESB∗s DECAY MODESB∗s DECAY MODES Fra
tion (�i /�) p (MeV/
)Bs γ dominant {Bs1(5830)0Bs1(5830)0Bs1(5830)0Bs1(5830)0 I (JP ) = 0(1+)I, J, P need 
on�rmation.Mass m = 5828.63 ± 0.27 MeVmB0s1 − mB∗+ = 503.98 ± 0.18 MeVFull width � = 0.5 ± 0.4 MeVBs1(5830)0 DECAY MODESBs1(5830)0 DECAY MODESBs1(5830)0 DECAY MODESBs1(5830)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)B∗+K− dominant 97B∗s2(5840)0B∗s2(5840)0B∗s2(5840)0B∗s2(5840)0 I (JP ) = 0(2+)I, J, P need 
on�rmation.Mass m = 5839.84 ± 0.18 MeV (S = 1.1)mB∗0s2 − mB0s1mB∗0s2 − mB+ = 560.53 ± 0.18 MeV (S = 1.1)Full width � = 1.47 ± 0.33 MeVB∗s2(5840)0 DECAY MODESB∗s2(5840)0 DECAY MODESB∗s2(5840)0 DECAY MODESB∗s2(5840)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)B+K− dominant 253BOTTOM, CHARMEDMESONSBOTTOM, CHARMEDMESONSBOTTOM, CHARMEDMESONSBOTTOM, CHARMEDMESONS(B=C=±1)(B=C=±1)(B=C=±1)(B=C=±1)B+
 = 
b, B−
 = 
 b, similarly for B∗
 'sB+
B+
B+
B+
 I (JP ) = 0(0−)I, J, P need 
on�rmation.Quantum numbers shown are quark-model predi
itions.Mass m = 6275.1 ± 1.0 MeVMean life τ = (0.507 ± 0.009)× 10−12 sB−
 modes are 
harge 
onjugates of the modes below. pB+
 DECAY MODES × B(b → B
 )B+
 DECAY MODES × B(b → B
 )B+
 DECAY MODES × B(b → B
 )B+
 DECAY MODES × B(b → B
 ) Fra
tion (�i /�) Con�den
e level (MeV/
)The following quantities are not pure bran
hing ratios; rather the fra
tion�i /� × B(b → B
 ).J/ψ(1S)ℓ+νℓ anything (5.2 +2.4
−2.1 )× 10−5 {J/ψ(1S)π+ seen 2371J/ψ(1S)K+ seen 2341J/ψ(1S)π+π+π− seen 2350J/ψ(1S)a1(1260) < 1.2 × 10−3 90% 2170J/ψ(1S)K+K−π+ seen 2203J/ψ(1S)π+π+π+π−π− seen 2309

ψ(2S)π+ seen 2052J/ψ(1S)D+s seen 1822J/ψ(1S)D∗+s seen 1728J/ψ(1S)ppπ+ seen 1792D∗(2010)+D0 < 6.2 × 10−3 90% 2467D+K∗0 < 0.20 × 10−6 90% 2783



71717171Meson SummaryTableD+K∗0 < 0.16 × 10−6 90% 2783D+s K∗0 < 0.28 × 10−6 90% 2751D+s K∗0 < 0.4 × 10−6 90% 2751D+s φ < 0.32 × 10−6 90% 2727K+K0 < 4.6 × 10−7 90% 3098B0s π+ / B(b → Bs ) (2.37+0.37
−0.35)× 10−3 {

 MESONS

 MESONS

 MESONS

 MESONS

η
(1S)η
(1S)η
(1S)η
(1S) IG (JPC ) = 0+(0−+)Mass m = 2983.4 ± 0.5 MeV (S = 1.2)Full width � = 31.8 ± 0.8 MeV p
η
 (1S) DECAY MODESη
 (1S) DECAY MODESη
 (1S) DECAY MODESη
 (1S) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)De
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
es
η′(958)ππ ( 4.1 ±1.7 ) % 1323
ρρ ( 1.8 ±0.5 ) % 1274K∗(892)0K−π++ 
.
. ( 2.0 ±0.7 ) % 1277K∗(892)K∗(892) ( 7.0 ±1.3 ) × 10−3 1196K∗(892)0K∗(892)0π+π− ( 1.1 ±0.5 ) % 1073
φK+K− ( 2.9 ±1.4 ) × 10−3 1104
φφ ( 1.75±0.20) × 10−3 1089
φ2(π+π−) < 4 × 10−3 90% 1251a0(980)π < 2 % 90% 1327a2(1320)π < 2 % 90% 1196K∗(892)K+ 
.
. < 1.28 % 90% 1309f2(1270)η < 1.1 % 90% 1145
ωω < 3.1 × 10−3 90% 1270
ωφ < 1.7 × 10−3 90% 1185f2(1270)f2(1270) ( 9.8 ±2.5 ) × 10−3 774f2(1270)f ′2(1525) ( 9.7 ±3.2 ) × 10−3 513f0(980)η seen 1264f0(1500)η seen 1026f0(2200)η seen 496a0(980)π seen 1327a0(1320)π seen {a0(1450)π seen 1123a0(1950)π seen 859a2(1950)π not seen {
K∗0 (1430)K seen {
K∗2 (1430)K seen {
K∗0 (1950)K seen {De
ays into stable hadronsDe
ays into stable hadronsDe
ays into stable hadronsDe
ays into stable hadronsK K π ( 7.3 ±0.5 ) % 1381K K η ( 1.35±0.16) % 1265
ηπ+π− ( 1.7 ±0.5 ) % 1427
η2(π+π−) ( 4.4 ±1.3 ) % 1385K+K−π+π− ( 6.9 ±1.1 ) × 10−3 1345K+K−π+π−π0 ( 3.5 ±0.6 ) % 1304K0K−π+π−π++
.
. ( 5.6 ±1.5 ) % {K+K−2(π+π−) ( 7.5 ±2.4 ) × 10−3 12532(K+K−) ( 1.46±0.30) × 10−3 1055
π+π−π0π0 ( 4.7 ±1.0 ) % 14602(π+π−) ( 9.7 ±1.2 ) × 10−3 14592(π+π−π0) (17.4 ±3.3 ) % 14093(π+π−) ( 1.8 ±0.4 ) % 1406pp ( 1.50±0.16) × 10−3 1160ppπ0 ( 3.6 ±1.3 ) × 10−3 1101�� ( 1.09±0.24) × 10−3 990�+�− ( 2.1 ±0.6 ) × 10−3 900�−�+ ( 8.9 ±2.7 ) × 10−4 692
π+π−pp ( 5.3 ±1.8 ) × 10−3 1027Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays
γ γ ( 1.59±0.13) × 10−4 1492Charge 
onjugation (C), Parity (P),Charge 
onjugation (C), Parity (P),Charge 
onjugation (C), Parity (P),Charge 
onjugation (C), Parity (P),Lepton family number (LF) violating modesLepton family number (LF) violating modesLepton family number (LF) violating modesLepton family number (LF) violating modes
π+π− P,CP < 1.1 × 10−4 90% 1485
π0π0 P,CP < 4 × 10−5 90% 1486K+K− P,CP < 6 × 10−4 90% 1408K0S K0S P,CP < 3.1 × 10−4 90% 1406

J/ψ(1S)J/ψ(1S)J/ψ(1S)J/ψ(1S) IG (JPC ) = 0−(1−−)Mass m = 3096.900 ± 0.006 MeVFull width � = 92.9 ± 2.8 keV (S = 1.1)�e e = 5.55 ± 0.14 ± 0.02 keV S
ale fa
tor/ pJ/ψ(1S) DECAY MODESJ/ψ(1S) DECAY MODESJ/ψ(1S) DECAY MODESJ/ψ(1S) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)hadrons (87.7 ±0.5 ) % {virtualγ → hadrons (13.50 ±0.30 ) % {g g g (64.1 ±1.0 ) % {
γ g g ( 8.8 ±1.1 ) % {e+ e− ( 5.971±0.032) % 1548e+ e− γ [ssaa℄ ( 8.8 ±1.4 )× 10−3 1548

µ+µ− ( 5.961±0.033) % 1545De
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
es
ρπ ( 1.69 ±0.15 ) % S=2.4 1448

ρ0π0 ( 5.6 ±0.7 )× 10−3 1448a2(1320)ρ ( 1.09 ±0.22 ) % 1123
ωπ+π+π−π− ( 8.5 ±3.4 )× 10−3 1392
ωπ+π−π0 ( 4.0 ±0.7 )× 10−3 1418
ωπ+π− ( 8.6 ±0.7 )× 10−3 S=1.1 1435

ω f2(1270) ( 4.3 ±0.6 )× 10−3 1142K∗(892)0K∗(892)0 ( 2.3 ±0.7 )× 10−4 1266K∗(892)±K∗(892)∓ ( 1.00 +0.22
−0.40 )× 10−3 1266K∗(892)±K∗(800)∓ ( 1.1 +1.0
−0.6 )× 10−3 {

ηK∗(892)0K∗(892)0 ( 1.15 ±0.26 )× 10−3 1003K∗(892)0K∗2(1430)0+ 
.
. ( 6.0 ±0.6 )× 10−3 1012K∗(892)0K2(1770)0+ 
.
. →K∗(892)0K−π++ 
.
. ( 6.9 ±0.9 )× 10−4 {
ωK∗(892)K+ 
.
. ( 6.1 ±0.9 )× 10−3 1097K+K∗(892)−+ 
.
. ( 5.12 ±0.30 )× 10−3 1373K+K∗(892)−+ 
.
. →K+K−π0 ( 1.97 ±0.20 )× 10−3 {K+K∗(892)−+ 
.
. →K0K±π∓+ 
.
. ( 3.0 ±0.4 )× 10−3 {K0K∗(892)0+ 
.
. ( 4.39 ±0.31 )× 10−3 1373K0K∗(892)0+ 
.
. →K0K±π∓+ 
.
. ( 3.2 ±0.4 )× 10−3 {K1(1400)±K∓ ( 3.8 ±1.4 )× 10−3 1170K∗(892)0K+π−+ 
.
. seen 1343
ωπ0π0 ( 3.4 ±0.8 )× 10−3 1436b1(1235)±π∓ [hh℄ ( 3.0 ±0.5 )× 10−3 1300
ωK±K0S π∓ [hh℄ ( 3.4 ±0.5 )× 10−3 1210b1(1235)0π0 ( 2.3 ±0.6 )× 10−3 1300
ηK±K0S π∓ [hh℄ ( 2.2 ±0.4 )× 10−3 1278
φK∗(892)K+ 
.
. ( 2.18 ±0.23 )× 10−3 969
ωK K ( 1.70 ±0.32 )× 10−3 1268

ω f0(1710) → ωK K ( 4.8 ±1.1 )× 10−4 878
φ2(π+π−) ( 1.66 ±0.23 )× 10−3 1318�(1232)++pπ− ( 1.6 ±0.5 )× 10−3 1030
ωη ( 1.74 ±0.20 )× 10−3 S=1.6 1394
φK K ( 1.83 ±0.24 )× 10−3 S=1.5 1179

φ f0(1710) → φK K ( 3.6 ±0.6 )× 10−4 875
φ f2(1270) ( 7.2 ±1.3 )× 10−4 1036�(1232)++�(1232)−− ( 1.10 ±0.29 )× 10−3 938� (1385)−� (1385)+ (or 
.
.) [hh℄ ( 1.10 ±0.12 )× 10−3 697
φ f ′2(1525) ( 8 ±4 )× 10−4 S=2.7 871
φπ+π− ( 9.4 ±0.9 )× 10−4 S=1.2 1365
φπ0π0 ( 5.6 ±1.6 )× 10−4 1366
φK±K0S π∓ [hh℄ ( 7.2 ±0.8 )× 10−4 1114
ω f1(1420) ( 6.8 ±2.4 )× 10−4 1062
φη ( 7.5 ±0.8 )× 10−4 S=1.5 1320� 0� 0 ( 1.20 ±0.24 )× 10−3 818� (1530)−�+ ( 5.9 ±1.5 )× 10−4 600pK−� (1385)0 ( 5.1 ±3.2 )× 10−4 646
ωπ0 ( 4.5 ±0.5 )× 10−4 S=1.4 1446
φη′(958) ( 4.0 ±0.7 )× 10−4 S=2.1 1192
φ f0(980) ( 3.2 ±0.9 )× 10−4 S=1.9 1178

φ f0(980) → φπ+π− ( 1.8 ±0.4 )× 10−4 {
φ f0(980) → φπ0π0 ( 1.7 ±0.7 )× 10−4 {

φπ0 f0(980) → φπ0π+π− ( 4.5 ±1.0 )× 10−6 {
φπ0 f0(980) → φπ0 p0π0 ( 1.7 ±0.6 )× 10−6 1045
ηφ f0(980) → ηφπ+π− ( 3.2 ±1.0 )× 10−4 {
φa0(980)0 → φηπ0 ( 5 ±4 )× 10−6 {� (1530)0� 0 ( 3.2 ±1.4 )× 10−4 608



72727272Meson SummaryTable� (1385)−�+ (or 
.
.) [hh℄ ( 3.1 ±0.5 )× 10−4 855
φ f1(1285) ( 2.6 ±0.5 )× 10−4 1032

φ f1(1285) →
φπ0 f0(980) →
φπ0π+π−

( 9.4 ±2.8 )× 10−7 952
φ f1(1285) →

φπ0 f0(980) →
φπ0π0π0 ( 2.1 ±2.2 )× 10−7 955

ηπ+π− ( 4.0 ±1.7 )× 10−4 1487
ηρ ( 1.93 ±0.23 )× 10−4 1396

ωη′(958) ( 1.82 ±0.21 )× 10−4 1279
ω f0(980) ( 1.4 ±0.5 )× 10−4 1267
ρη′(958) ( 1.05 ±0.18 )× 10−4 1281a2(1320)±π∓ [hh℄ < 4.3 × 10−3 CL=90% 1263K K∗2(1430)+ 
.
. < 4.0 × 10−3 CL=90% 1159K1(1270)±K∓ < 3.0 × 10−3 CL=90% 1231K∗2(1430)0K∗2(1430)0 < 2.9 × 10−3 CL=90% 604
φπ0 3× 10−6 or 1× 10−7 1377
φη(1405) → φηπ+π− ( 2.0 ±1.0 )× 10−5 946
ω f ′2(1525) < 2.2 × 10−4 CL=90% 1003
ωX (1835) → ωpp < 3.9 × 10−6 CL=95% {
φX (1835) → φηπ+π− < 2.8 × 10−4 CL=90% 578
φX (1870) → φηπ+π− < 6.13 × 10−5 CL=90% {
ηφ(2170) → ηφ f0(980) →

ηφπ+π−
( 1.2 ±0.4 )× 10−4 628

ηφ(2170) →
ηK∗(892)0K∗(892)0 < 2.52 × 10−4 CL=90% {� (1385)0�+ 
.
. < 8.2 × 10−6 CL=90% 912�(1232)+p < 1 × 10−4 CL=90% 1100�(1520)�+ 
.
. → γ�� < 4.1 × 10−6 CL=90% {�(1540)�(1540) →K0S pK−n+ 
.
. < 1.1 × 10−5 CL=90% {�(1540)K−n → K0S pK−n < 2.1 × 10−5 CL=90% {�(1540)K0S p → K0S pK+n < 1.6 × 10−5 CL=90% {�(1540)K+n → K0S pK+n < 5.6 × 10−5 CL=90% {�(1540)K0S p → K0S pK−n < 1.1 × 10−5 CL=90% {�0� < 9 × 10−5 CL=90% 1032De
ays into stable hadronsDe
ays into stable hadronsDe
ays into stable hadronsDe
ays into stable hadrons2(π+π−)π0 ( 4.1 ±0.5 ) % S=2.4 14963(π+π−)π0 ( 2.9 ±0.6 ) % 1433

π+π−π0 ( 2.11 ±0.07 ) % S=1.5 1533
π+π−π0K+K− ( 1.79 ±0.29 ) % S=2.2 13684(π+π−)π0 ( 9.0 ±3.0 )× 10−3 1345
π+π−K+K− ( 6.6 ±0.5 )× 10−3 1407
π+π−K+K−η ( 1.84 ±0.28 )× 10−3 1221
π0π0K+K− ( 2.45 ±0.31 )× 10−3 1410K K π ( 6.1 ±1.0 )× 10−3 14422(π+π−) ( 3.57 ±0.30 )× 10−3 15173(π+π−) ( 4.3 ±0.4 )× 10−3 14662(π+π−π0) ( 1.62 ±0.21 ) % 14682(π+π−)η ( 2.29 ±0.24 )× 10−3 14463(π+π−)η ( 7.2 ±1.5 )× 10−4 1379pp ( 2.120±0.029)× 10−3 1232ppπ0 ( 1.19 ±0.08 )× 10−3 S=1.1 1176ppπ+π− ( 6.0 ±0.5 )× 10−3 S=1.3 1107ppπ+π−π0 [ttaa℄ ( 2.3 ±0.9 )× 10−3 S=1.9 1033ppη ( 2.00 ±0.12 )× 10−3 948ppρ < 3.1 × 10−4 CL=90% 774ppω ( 9.8 ±1.0 )× 10−4 S=1.3 768ppη′(958) ( 2.1 ±0.4 )× 10−4 596ppa0(980) → ppπ0 η ( 6.8 ±1.8 )× 10−5 {ppφ ( 4.5 ±1.5 )× 10−5 527nn ( 2.09 ±0.16 )× 10−3 1231nnπ+π− ( 4 ±4 )× 10−3 1106�+�− ( 1.50 ±0.24 )× 10−3 992�0�0 ( 1.29 ±0.09 )× 10−3 9882(π+π−)K+K− ( 4.7 ±0.7 )× 10−3 S=1.3 1320pnπ− ( 2.12 ±0.09 )× 10−3 1174nN(1440) seen 984nN(1520) seen 928nN(1535) seen 914�−�+ ( 8.6 ±1.1 )× 10−4 S=1.2 807�� ( 1.61 ±0.15 )× 10−3 S=1.9 1074��−π+ (or 
.
.) [hh℄ ( 8.3 ±0.7 )× 10−4 S=1.2 950pK−� ( 8.9 ±1.6 )× 10−4 8762(K+K−) ( 7.6 ±0.9 )× 10−4 1131

pK−�0 ( 2.9 ±0.8 )× 10−4 819K+K− ( 2.86 ±0.21 )× 10−4 1468K0S K0L ( 2.1 ±0.4 )× 10−4 S=3.2 1466��π+π− ( 4.3 ±1.0 )× 10−3 903��η ( 1.62 ±0.17 )× 10−4 672��π0 ( 3.8 ±0.4 )× 10−5 998�nK0S+ 
.
. ( 6.5 ±1.1 )× 10−4 872
π+π− ( 1.47 ±0.14 )× 10−4 1542��+ 
.
. ( 2.83 ±0.23 )× 10−5 1034K0S K0S < 1 × 10−6 CL=95% 1466Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays3γ ( 1.16 ±0.22 )× 10−5 15484γ < 9 × 10−6 CL=90% 15485γ < 1.5 × 10−5 CL=90% 1548
γπ0π0 ( 1.15 ±0.05 )× 10−3 1543
γ η
 (1S) ( 1.7 ±0.4 ) % S=1.5 111

γ η
 (1S) → 3γ ( 3.8 +1.3
−1.0 )× 10−6 S=1.1 {

γπ+π−2π0 ( 8.3 ±3.1 )× 10−3 1518
γ ηππ ( 6.1 ±1.0 )× 10−3 1487

γ η2(1870) → γ ηπ+π− ( 6.2 ±2.4 )× 10−4 {
γ η(1405/1475) → γK K π [o℄ ( 2.8 ±0.6 )× 10−3 S=1.6 1223
γ η(1405/1475) → γ γ ρ0 ( 7.8 ±2.0 )× 10−5 S=1.8 1223
γ η(1405/1475) → γ ηπ+π− ( 3.0 ±0.5 )× 10−4 {
γ η(1405/1475) → γ γφ < 8.2 × 10−5 CL=95% {
γ ρρ ( 4.5 ±0.8 )× 10−3 1340
γ ρω < 5.4 × 10−4 CL=90% 1338
γ ρφ < 8.8 × 10−5 CL=90% 1258
γ η′(958) ( 5.15 ±0.16 )× 10−3 S=1.2 1400
γ 2π+2π− ( 2.8 ±0.5 )× 10−3 S=1.9 1517

γ f2(1270)f2(1270) ( 9.5 ±1.7 )× 10−4 878
γ f2(1270)f2(1270)(non reso-nant) ( 8.2 ±1.9 )× 10−4 {

γK+K−π+π− ( 2.1 ±0.6 )× 10−3 1407
γ f4(2050) ( 2.7 ±0.7 )× 10−3 891
γωω ( 1.61 ±0.33 )× 10−3 1336
γ η(1405/1475) → γ ρ0 ρ0 ( 1.7 ±0.4 )× 10−3 S=1.3 1223
γ f2(1270) ( 1.64 ±0.12 )× 10−3 S=1.3 1286
γ f0(1370) → γK K ( 4.2 ±1.5 )× 10−4 {
γ f0(1710) → γK K ( 1.00 +0.11

−0.09 )× 10−3 S=1.5 1075
γ f0(1710) → γππ ( 3.8 ±0.5 )× 10−4 {
γ f0(1710) → γωω ( 3.1 ±1.0 )× 10−4 {
γ f0(1710) → γ ηη ( 2.4 +1.2

−0.7 )× 10−4 {
γ η ( 1.104±0.034)× 10−3 1500
γ f1(1420) → γK K π ( 7.9 ±1.3 )× 10−4 1220
γ f1(1285) ( 6.1 ±0.8 )× 10−4 1283
γ f1(1510) → γ ηπ+π− ( 4.5 ±1.2 )× 10−4 {
γ f ′2(1525) ( 5.7 +0.8

−0.5 )× 10−4 S=1.5 1173
γ f ′2(1525) → γ ηη ( 3.4 ±1.4 )× 10−5 {
γ f2(1640) → γωω ( 2.8 ±1.8 )× 10−4 {
γ f2(1910) → γωω ( 2.0 ±1.4 )× 10−4 {
γ f0(1800) → γωφ ( 2.5 ±0.6 )× 10−4 {
γ f2(1810) → γ ηη ( 5.4 +3.5

−2.4 )× 10−5 {
γ f2(1950) →

γK∗(892)K∗(892) ( 7.0 ±2.2 )× 10−4 {
γK∗(892)K∗(892) ( 4.0 ±1.3 )× 10−3 1266
γφφ ( 4.0 ±1.2 )× 10−4 S=2.1 1166
γ pp ( 3.8 ±1.0 )× 10−4 1232
γ η(2225) ( 3.3 ±0.5 )× 10−4 749
γ η(1760) → γ ρ0ρ0 ( 1.3 ±0.9 )× 10−4 1048
γ η(1760) → γωω ( 1.98 ±0.33 )× 10−3 {
γX (1835) → γπ+π−η′ ( 2.6 ±0.4 )× 10−4 1006
γX (1835) → γ pp ( 7.7 +1.5

−0.9 )× 10−5 {
γX (1835) → γK0S K0S η ( 3.3 +2.0

−1.3 )× 10−5 {
γX (1840) → γ 3(π+π−) ( 2.4 +0.7

−0.8 )× 10−5 {
γ (K K π) [JPC = 0−+℄ ( 7 ±4 )× 10−4 S=2.1 1442
γπ0 ( 3.49 +0.33

−0.30 )× 10−5 1546
γ ppπ+π− < 7.9 × 10−4 CL=90% 1107
γ�� < 1.3 × 10−4 CL=90% 1074
γ f0(2100) → γ ηη ( 1.13 +0.60

−0.30 )× 10−4 {
γ f0(2100) → γππ ( 6.2 ±1.0 )× 10−4 {



73737373Meson SummaryTable
γ f0(2200) → γK K ( 5.9 ±1.3 )× 10−4 {
γ fJ (2220) → γππ < 3.9 × 10−5 CL=90% {
γ fJ (2220) → γK K < 4.1 × 10−5 CL=90% {
γ fJ (2220) → γ pp ( 1.5 ±0.8 )× 10−5 {
γ f2(2340) → γ ηη ( 5.6 +2.4

−2.2 )× 10−5 {
γ f0(1500) → γππ ( 1.09 ±0.24 )× 10−4 1183
γ f0(1500) → γ ηη ( 1.7 +0.6

−1.4 )× 10−5 {
γA → γ invisible [uuaa℄ < 6.3 × 10−6 CL=90% {
γA0 → γµ+µ− [vvaa℄ < 2.1 × 10−5 CL=90% {Dalitz de
aysDalitz de
aysDalitz de
aysDalitz de
ays
π0 e+ e− ( 7.6 ±1.4 )× 10−7 1546
ηe+ e− ( 1.16 ±0.09 )× 10−5 1500
η′(958)e+ e− ( 5.81 ±0.35 )× 10−5 1400Weak de
aysWeak de
aysWeak de
aysWeak de
aysD− e+νe+ 
.
. < 1.2 × 10−5 CL=90% 984D0 e+ e−+ 
.
. < 1.1 × 10−5 CL=90% 987D−s e+νe+ 
.
. < 1.3 × 10−6 CL=90% 923D∗−s e+νe+ 
.
. < 1.8 × 10−6 CL=90% 828D−π++ 
.
. < 7.5 × 10−5 CL=90% 977D0K0+ 
.
. < 1.7 × 10−4 CL=90% 898D0K∗0+ 
.
. < 2.5 × 10−6 CL=90% 670D−s π++ 
.
. < 1.3 × 10−4 CL=90% 916D−s ρ++ 
.
. < 1.3 × 10−5 CL=90% 663Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Lepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modes
γ γ C < 2.7 × 10−7 CL=90% 1548
γφ C < 1.4 × 10−6 CL=90% 1381e±µ∓ LF < 1.6 × 10−7 CL=90% 1547e± τ∓ LF < 8.3 × 10−6 CL=90% 1039
µ± τ∓ LF < 2.0 × 10−6 CL=90% 1035Other de
aysOther de
aysOther de
aysOther de
aysinvisible < 7 × 10−4 CL=90% {
χ
0(1P)χ
0(1P)χ
0(1P)χ
0(1P) IG (JPC ) = 0+(0 + +)Mass m = 3414.75 ± 0.31 MeVFull width � = 10.5 ± 0.6 MeV S
ale fa
tor/ p

χ
0(1P) DECAY MODESχ
0(1P) DECAY MODESχ
0(1P) DECAY MODESχ
0(1P) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)Hadroni
 de
aysHadroni
 de
aysHadroni
 de
aysHadroni
 de
ays2(π+π−) (2.24±0.18) % 1679
ρ0π+π− (8.7 ±2.8 )× 10−3 1607f0(980)f0(980) (6.5 ±2.1 )× 10−4 1391

π+π−π0π0 (3.3 ±0.4 ) % 1680
ρ+π−π0+ 
.
. (2.8 ±0.4 ) % 16074π0 (3.2 ±0.4 )× 10−3 1681

π+π−K+K− (1.75±0.14) % 1580K∗0(1430)0K∗0(1430)0 →
π+π−K+K−

(9.6 +3.5
−2.8 )× 10−4 {K∗0(1430)0K∗2(1430)0+ 
.
. →

π+π−K+K−
(7.8 +1.9

−2.4 )× 10−4 {K1(1270)+K−+ 
.
. →
π+π−K+K−

(6.1 ±1.9 )× 10−3 {K1(1400)+K−+ 
.
. →
π+π−K+K−

< 2.6 × 10−3 CL=90% {f0(980)f0(980) (1.6 +1.0
−0.9 )× 10−4 1391f0(980)f0(2200) (7.8 +2.0
−2.5 )× 10−4 584f0(1370)f0(1370) < 2.7 × 10−4 CL=90% 1019f0(1370)f0(1500) < 1.7 × 10−4 CL=90% 921f0(1370)f0(1710) (6.6 +3.5
−2.3 )× 10−4 720f0(1500)f0(1370) < 1.3 × 10−4 CL=90% 921f0(1500)f0(1500) < 5 × 10−5 CL=90% 807f0(1500)f0(1710) < 7 × 10−5 CL=90% 557K+K−π+π−π0 (8.6 ±0.9 )× 10−3 1545K0S K±π∓π+π− (4.2 ±0.4 )× 10−3 1544K+K−π0π0 (5.4 ±0.9 )× 10−3 1582K+π−K0π0+ 
.
. (2.44±0.33) % 1581

ρ+K−K0+ 
.
. (1.18±0.21) % 1458K∗(892)−K+π0 →K+π−K0π0+ 
.
. (4.5 ±1.1 )× 10−3 {

K0S K0S π+π− (5.6 ±1.0 )× 10−3 1579K+K−ηπ0 (3.0 ±0.7 )× 10−3 14683(π+π−) (1.20±0.18) % 1633K+K∗(892)0π−+ 
.
. (7.2 ±1.6 )× 10−3 1523K∗(892)0K∗(892)0 (1.7 ±0.6 )× 10−3 1456
ππ (8.33±0.35)× 10−3 1702
π0 η < 1.8 × 10−4 1661
π0 η′ < 1.1 × 10−3 1570
π0 η
 < 1.6 × 10−3 CL=90% 384
ηη (2.95±0.19)× 10−3 1617
ηη′ < 2.3 × 10−4 CL=90% 1521
η′ η′ (1.96±0.21)× 10−3 1413
ωω (9.5 ±1.1 )× 10−4 1517
ωφ (1.16±0.21)× 10−4 1447
ωK+K− (1.94±0.21)× 10−3 1457K+K− (5.91±0.32)× 10−3 1634K0S K0S (3.10±0.18)× 10−3 1633
π+π−η < 1.9 × 10−4 CL=90% 1651
π+π−η′ < 3.5 × 10−4 CL=90% 1560K0K+π−+ 
.
. < 9 × 10−5 CL=90% 1610K+K−π0 < 6 × 10−5 CL=90% 1611K+K−η < 2.2 × 10−4 CL=90% 1512K+K−K0S K0S (1.4 ±0.5 )× 10−3 1331K+K−K+K− (2.75±0.28)× 10−3 1333K+K−φ (9.5 ±2.4 )× 10−4 1381K0K+π−φ+ 
.
. (3.7 ±0.6 )× 10−3 1326K+K−π0φ (1.90±0.35)× 10−3 1329
φπ+π−π0 (1.18±0.15)× 10−3 1525
φφ (7.7 ±0.7 )× 10−4 1370pp (2.25±0.09)× 10−4 1426ppπ0 (6.8 ±0.7 )× 10−4 S=1.3 1379ppη (3.5 ±0.4 )× 10−4 1187ppω (5.1 ±0.6 )× 10−4 1043ppφ (5.9 ±1.4 )× 10−5 876ppπ+π− (2.1 ±0.7 )× 10−3 S=1.4 1320ppπ0π0 (1.02±0.27)× 10−3 1324ppK+K− (non-resonant) (1.19±0.26)× 10−4 890ppK0S K0S < 8.8 × 10−4 CL=90% 884pnπ− (1.24±0.11)× 10−3 1376pnπ+ (1.34±0.12)× 10−3 1376pnπ−π0 (2.29±0.21)× 10−3 1321pnπ+π0 (2.16±0.18)× 10−3 1321�� (3.21±0.25)× 10−4 1292��π+π− (1.15±0.13)× 10−3 1153��π+π− (non-resonant) < 5 × 10−4 CL=90% 1153� (1385)+�π−+ 
.
. < 5 × 10−4 CL=90% 1083� (1385)−�π++ 
.
. < 5 × 10−4 CL=90% 1083K+p�+ 
.
. (1.22±0.12)× 10−3 S=1.3 1132K+p�(1520)+ 
.
. (2.9 ±0.7 )× 10−4 858�(1520)�(1520) (3.1 ±1.2 )× 10−4 779�0�0 (4.4 ±0.4 )× 10−4 1222�+�− (3.9 ±0.7 )× 10−4 S=1.7 1225� (1385)+� (1385)− (1.6 ±0.6 )× 10−4 1001� (1385)−� (1385)+ (2.3 ±0.6 )× 10−4 1001K−��++ 
.
. (1.90±0.34)× 10−4 873� 0� 0 (3.1 ±0.8 )× 10−4 1089�−�+ (4.7 ±0.7 )× 10−4 1081
η
 π+π− < 7 × 10−4 CL=90% 308Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays
γ J/ψ(1S) (1.27±0.06) % 303
γ ρ0 < 9 × 10−6 CL=90% 1619
γω < 8 × 10−6 CL=90% 1618
γφ < 6 × 10−6 CL=90% 1555
γ γ (2.23±0.13)× 10−4 1707
χ
1(1P)χ
1(1P)χ
1(1P)χ
1(1P) IG (JPC ) = 0+(1 + +)Mass m = 3510.66 ± 0.07 MeV (S = 1.5)Full width � = 0.84 ± 0.04 MeV



74747474Meson SummaryTable S
ale fa
tor/ p
χ
1(1P) DECAY MODESχ
1(1P) DECAY MODESχ
1(1P) DECAY MODESχ
1(1P) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)Hadroni
 de
aysHadroni
 de
aysHadroni
 de
aysHadroni
 de
ays3(π+π−) ( 5.8 ±1.4 ) × 10−3 S=1.2 16832(π+π−) ( 7.6 ±2.6 ) × 10−3 1728
π+π−π0π0 ( 1.22±0.16) % 1729

ρ+π−π0+ 
.
. ( 1.48±0.25) % 1658
ρ0π+π− ( 3.9 ±3.5 ) × 10−3 16574π0 ( 5.5 ±0.8 ) × 10−4 1729

π+π−K+K− ( 4.5 ±1.0 ) × 10−3 1632K+K−π0π0 ( 1.14±0.28) × 10−3 1634K+K−π+π−π0 ( 1.15±0.13) % 1598K0S K±π∓π+π− ( 7.5 ±0.8 ) × 10−3 1596K+π−K0π0+ 
.
. ( 8.7 ±1.4 ) × 10−3 1632
ρ−K+K0+ 
.
. ( 5.1 ±1.2 ) × 10−3 1514K∗(892)0K0π0 →K+π−K0π0+ 
.
. ( 2.4 ±0.7 ) × 10−3 {K+K−ηπ0 ( 1.14±0.35) × 10−3 1523

π+π−K0S K0S ( 7.0 ±3.0 ) × 10−4 1630K+K−η ( 3.2 ±1.0 ) × 10−4 1566K0K+π−+ 
.
. ( 7.1 ±0.6 ) × 10−3 1661K∗(892)0K0+ 
.
. ( 1.0 ±0.4 ) × 10−3 1602K∗(892)+K−+ 
.
. ( 1.5 ±0.7 ) × 10−3 1602K∗J(1430)0K0+ 
.
. →K0S K+π−+ 
.
. < 8 × 10−4 CL=90% {K∗J(1430)+K−+ 
.
. →K0S K+π−+ 
.
. < 2.2 × 10−3 CL=90% {K+K−π0 ( 1.85±0.25) × 10−3 1662
ηπ+π− ( 4.9 ±0.5 ) × 10−3 1701a0(980)+π−+ 
.
. → ηπ+π− ( 1.8 ±0.6 ) × 10−3 {f2(1270)η ( 2.7 ±0.8 ) × 10−3 1467
π+π−η′ ( 2.3 ±0.5 ) × 10−3 1612K+K−η′(958) ( 8.8 ±0.9 ) × 10−4 1461K∗0(1430)+K−+ 
.
. ( 6.4 +2.2

−2.8 )× 10−4 {f0(980)η′(958) ( 1.6 +1.4
−0.7 )× 10−4 1460f0(1710)η′(958) ( 7 +7
−5 )× 10−5 1106f ′2(1525)η′(958) ( 9 ±6 ) × 10−5 1225

π0 f0(980) → π0π+π− < 6 × 10−6 CL=90% {K+K∗(892)0π−+ 
.
. ( 3.2 ±2.1 ) × 10−3 1577K∗(892)0K∗(892)0 ( 1.5 ±0.4 ) × 10−3 1512K+K−K0S K0S < 4 × 10−4 CL=90% 1390K+K−K+K− ( 5.5 ±1.1 ) × 10−4 1393K+K−φ ( 4.2 ±1.6 ) × 10−4 1440K0K+π−φ+ 
.
. ( 3.3 ±0.5 ) × 10−3 1387K+K−π0φ ( 1.62±0.30) × 10−3 1390
φπ+π−π0 ( 7.5 ±1.0 ) × 10−4 1578
ωω ( 5.8 ±0.7 ) × 10−4 1571
ωK+K− ( 7.8 ±0.9 ) × 10−4 1513
ωφ ( 2.1 ±0.6 ) × 10−5 1503
φφ ( 4.2 ±0.5 ) × 10−4 1429pp ( 7.72±0.35) × 10−5 1484ppπ0 ( 1.59±0.19) × 10−4 1438ppη ( 1.48±0.25) × 10−4 1254ppω ( 2.16±0.31) × 10−4 1117ppφ < 1.8 × 10−5 CL=90% 962ppπ+π− ( 5.0 ±1.9 ) × 10−4 1381ppK+K− (non-resonant) ( 1.30±0.23) × 10−4 974ppK0S K0S < 4.5 × 10−4 CL=90% 968pnπ− ( 3.9 ±0.5 ) × 10−4 1435pnπ+ ( 4.0 ±0.5 ) × 10−4 1435pnπ−π0 ( 1.05±0.12) × 10−3 1383pnπ+π0 ( 1.03±0.12) × 10−3 1383�� ( 1.16±0.12) × 10−4 1355��π+π− ( 3.0 ±0.5 ) × 10−4 1223��π+π− (non-resonant) ( 2.5 ±0.6 ) × 10−4 1223� (1385)+�π−+ 
.
. < 1.3 × 10−4 CL=90% 1157� (1385)−�π++ 
.
. < 1.3 × 10−4 CL=90% 1157K+p� ( 4.2 ±0.4 ) × 10−4 S=1.1 1203K+p�(1520)+ 
.
. ( 1.7 ±0.5 ) × 10−4 950�(1520)�(1520) < 1.0 × 10−4 CL=90% 879�0�0 < 4 × 10−5 CL=90% 1288�+�− < 6 × 10−5 CL=90% 1291� (1385)+� (1385)− < 1.0 × 10−4 CL=90% 1081� (1385)−� (1385)+ < 5 × 10−5 CL=90% 1081

K−��++ 
.
. ( 1.38±0.25) × 10−4 963� 0� 0 < 6 × 10−5 CL=90% 1163�−�+ ( 8.2 ±2.2 ) × 10−5 1155
π+π− + K+K− < 2.1 × 10−3 {K0S K0S < 6 × 10−5 CL=90% 1683
η
 π+π− < 3.2 × 10−3 CL=90% 413Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays
γ J/ψ(1S) (33.9 ±1.2 ) % 389
γ ρ0 ( 2.20±0.18) × 10−4 1670
γω ( 6.9 ±0.8 ) × 10−5 1668
γφ ( 2.5 ±0.5 ) × 10−5 1607h
(1P)h
(1P)h
(1P)h
(1P) IG (JPC ) = ??(1 +−)Mass m = 3525.38 ± 0.11 MeVFull width � = 0.7 ± 0.4 MeV ph
 (1P) DECAY MODESh
 (1P) DECAY MODESh
 (1P) DECAY MODESh
 (1P) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)J/ψ(1S)ππ not seen 312pp < 1.5 × 10−4 90% 1492
η
 (1S)γ (51 ±6 ) % 500
π+π−π0 < 2.2 × 10−3 17492π+2π−π0 ( 2.2+0.8

−0.7) % 17163π+3π−π0 < 2.9 % 1661
χ
2(1P)χ
2(1P)χ
2(1P)χ
2(1P) IG (JPC ) = 0+(2 + +)Mass m = 3556.20 ± 0.09 MeVFull width � = 1.93 ± 0.11 MeV p

χ
2(1P) DECAY MODESχ
2(1P) DECAY MODESχ
2(1P) DECAY MODESχ
2(1P) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)Hadroni
 de
aysHadroni
 de
aysHadroni
 de
aysHadroni
 de
ays2(π+π−) ( 1.07±0.10) % 1751
π+π−π0π0 ( 1.91±0.25) % 1752

ρ+π−π0+ 
.
. ( 2.3 ±0.4 ) % 16824π0 ( 1.16±0.16) × 10−3 1752K+K−π0π0 ( 2.2 ±0.4 ) × 10−3 1658K+π−K0π0+ 
.
. ( 1.44±0.21) % 1657
ρ−K+K0+ 
.
. ( 4.3 ±1.3 ) × 10−3 1540K∗(892)0K−π+ →K−π+K0π0+ 
.
. ( 3.1 ±0.8 ) × 10−3 {K∗(892)0K0π0 →K+π−K0π0+ 
.
. ( 4.0 ±0.9 ) × 10−3 {K∗(892)−K+π0 →K+π−K0π0+ 
.
. ( 3.9 ±0.9 ) × 10−3 {K∗(892)+K0π− →K+π−K0π0+ 
.
. ( 3.1 ±0.8 ) × 10−3 {K+K−ηπ0 ( 1.3 ±0.5 ) × 10−3 1549K+K−π+π− ( 8.9 ±1.0 ) × 10−3 1656K+K−π+π−π0 ( 1.17±0.13) % 1623K0S K±π∓π+π− ( 7.3 ±0.8 ) × 10−3 1621K+K∗(892)0π−+ 
.
. ( 2.2 ±1.1 ) × 10−3 1602K∗(892)0K∗(892)0 ( 2.4 ±0.5 ) × 10−3 15383(π+π−) ( 8.6 ±1.8 ) × 10−3 1707

φφ ( 1.12±0.10) × 10−3 1457
ωω ( 8.8 ±1.1 ) × 10−4 1597
ωK+K− ( 7.3 ±0.9 ) × 10−4 1540
ππ ( 2.33±0.12) × 10−3 1773
ρ0π+π− ( 3.8 ±1.6 ) × 10−3 1682
π+π−η ( 5.0 ±1.3 ) × 10−4 1724
π+π−η′ ( 5.2 ±1.9 ) × 10−4 1636
ηη ( 5.7 ±0.5 ) × 10−4 1692K+K− ( 1.05±0.07) × 10−3 1708K0S K0S ( 5.5 ±0.4 ) × 10−4 1707K0K+π−+ 
.
. ( 1.34±0.19) × 10−3 1685K+K−π0 ( 3.2 ±0.8 ) × 10−4 1686K+K−η < 3.4 × 10−4 90% 1592K+K−η′(958) ( 1.94±0.34) × 10−4 1488
ηη′ < 6 × 10−5 90% 1600
η′ η′ < 1.0 × 10−4 90% 1498
π+π−K0S K0S ( 2.3 ±0.6 ) × 10−3 1655K+K−K0S K0S < 4 × 10−4 90% 1418K+K−K+K− ( 1.73±0.21) × 10−3 1421



75757575Meson SummaryTableK+K−φ ( 1.48±0.31) × 10−3 1468K0K+π−φ+ 
.
. ( 4.8 ±0.7 ) × 10−3 1416K+K−π0φ ( 2.7 ±0.5 ) × 10−3 1419
φπ+π−π0 ( 9.3 ±1.2 ) × 10−4 1603pp ( 7.5 ±0.4 ) × 10−5 1510ppπ0 ( 4.9 ±0.4 ) × 10−4 1465ppη ( 1.82±0.26) × 10−4 1285ppω ( 3.8 ±0.5 ) × 10−4 1152ppφ ( 2.9 ±0.9 ) × 10−5 1002ppπ+π− ( 1.32±0.34) × 10−3 1410ppπ0π0 ( 8.2 ±2.5 ) × 10−4 1414ppK+K− (non-resonant) ( 2.00±0.34) × 10−4 1013ppK0S K0S < 7.9 × 10−4 90% 1007pnπ− ( 8.9 ±1.0 ) × 10−4 1463pnπ+ ( 9.3 ±0.9 ) × 10−4 1463pnπ−π0 ( 2.27±0.19) × 10−3 1411pnπ+π0 ( 2.21±0.20) × 10−3 1411�� ( 1.92±0.16) × 10−4 1385��π+π− ( 1.31±0.17) × 10−3 1255��π+π− (non-resonant) ( 6.9 ±1.6 ) × 10−4 1255� (1385)+�π−+ 
.
. < 4 × 10−4 90% 1192� (1385)−�π++ 
.
. < 6 × 10−4 90% 1192K+p� + 
.
. ( 8.1 ±0.6 ) × 10−4 1236K+p�(1520)+ 
.
. ( 2.9 ±0.7 ) × 10−4 992�(1520)�(1520) ( 4.8 ±1.5 ) × 10−4 923�0�0 < 6 × 10−5 90% 1319�+�− < 7 × 10−5 90% 1322� (1385)+� (1385)− < 1.6 × 10−4 90% 1118� (1385)−� (1385)+ < 8 × 10−5 90% 1118K−��++ 
.
. ( 1.84±0.34) × 10−4 1004� 0� 0 < 1.1 × 10−4 90% 1197�−�+ ( 1.48±0.33) × 10−4 1189J/ψ(1S)π+π−π0 < 1.5 % 90% 185
π0 η
 < 3.2 × 10−3 90% 512
η
 (1S)π+π− < 5.4 × 10−3 90% 459Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays
γ J/ψ(1S) (19.2 ±0.7 ) % 430
γ ρ0 < 2.0 × 10−5 90% 1694
γω < 6 × 10−6 90% 1692
γφ < 8 × 10−6 90% 1632
γ γ ( 2.74±0.14) × 10−4 1778
η
(2S)η
(2S)η
(2S)η
(2S) IG (JPC ) = 0+(0−+)Quantum numbers are quark model predi
tions.Mass m = 3639.2 ± 1.2 MeVFull width � = 11.3+3.2

−2.9 MeV p
η
 (2S) DECAY MODESη
 (2S) DECAY MODESη
 (2S) DECAY MODESη
 (2S) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)hadrons not seen {K K π ( 1.9±1.2) % 1730K K η ( 5 ±4 )× 10−3 16382π+2π− not seen 1793

ρ0 ρ0 not seen 16463π+3π− not seen 1750K+K−π+π− not seen 1701K∗0K∗0 not seen 1586K+K−π+π−π0 ( 1.4±1.0) % 1668K+K−2π+2π− not seen 1628K0S K−2π+π−+ 
.
. seen 16672K+2K− not seen 1471
φφ not seen 1507pp < 2.0 × 10−3 90% 1559

γ γ ( 1.9±1.3)× 10−4 1820
π+π−η not seen 1767
π+π−η′ not seen 1681
π+π−η
 (1S) < 25 % 90% 539
ψ(2S)ψ(2S)ψ(2S)ψ(2S) IG (JPC ) = 0−(1−−)Mass m = 3686.097 ± 0.025 MeV (S = 2.6)Full width � = 296 ± 8 keV�e e = 2.34 ± 0.04 keV

S
ale fa
tor/ p
ψ(2S) DECAY MODESψ(2S) DECAY MODESψ(2S) DECAY MODESψ(2S) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)hadrons (97.85 ±0.13 ) % {virtualγ → hadrons ( 1.73 ±0.14 ) % S=1.5 {g g g (10.6 ±1.6 ) % {

γ g g ( 1.03 ±0.29 ) % {light hadrons (15.4 ±1.5 ) % {e+ e− ( 7.89 ±0.17 )× 10−3 1843
µ+µ− ( 7.9 ±0.9 )× 10−3 1840
τ+ τ− ( 3.1 ±0.4 )× 10−3 489De
ays into J/ψ(1S) and anythingDe
ays into J/ψ(1S) and anythingDe
ays into J/ψ(1S) and anythingDe
ays into J/ψ(1S) and anythingJ/ψ(1S)anything (61.0 ±0.6 ) % {J/ψ(1S)neutrals (25.14 ±0.33 ) % {J/ψ(1S)π+π− (34.49 ±0.30 ) % 477J/ψ(1S)π0π0 (18.16 ±0.31 ) % 481J/ψ(1S)η ( 3.36 ±0.05 ) % 199J/ψ(1S)π0 ( 1.268±0.032)× 10−3 528Hadroni
 de
aysHadroni
 de
aysHadroni
 de
aysHadroni
 de
ays
π0 h
 (1P) ( 8.6 ±1.3 )× 10−4 853(π+π−)π0 ( 3.5 ±1.6 )× 10−3 17462(π+π−)π0 ( 2.9 ±1.0 )× 10−3 S=4.7 1799

ρa2(1320) ( 2.6 ±0.9 )× 10−4 1500pp ( 2.88 ±0.09 )× 10−4 1586�++�−− ( 1.28 ±0.35 )× 10−4 1371��π0 < 2.9 × 10−6 CL=90% 1412��η ( 2.5 ±0.4 )× 10−5 1197�pK+ ( 1.00 ±0.14 )× 10−4 1327�pK+π+π− ( 1.8 ±0.4 )× 10−4 1167��π+π− ( 2.8 ±0.6 )× 10−4 1346�� ( 3.57 ±0.18 )× 10−4 1467��+π−+ 
.
. ( 1.40 ±0.13 )× 10−4 1376��−π++ 
.
. ( 1.54 ±0.14 )× 10−4 1379�0 pK++ 
.
. ( 1.67 ±0.18 )× 10−5 1291�+�− ( 2.51 ±0.21 )× 10−4 1408�0�0 ( 2.32 ±0.16 )× 10−4 1405� (1385)+� (1385)− ( 1.1 ±0.4 )× 10−4 1218�−�+ ( 2.64 ±0.18 )× 10−4 1284� 0� 0 ( 2.07 ±0.23 )× 10−4 1291� (1530)0� (1530)0 ( 5.2 +3.2
−1.2 )× 10−5 1025K−��++ 
.
. ( 3.9 ±0.4 )× 10−5 1114� (1690)−�+ → K−��++
.
. ( 5.2 ±1.6 )× 10−6 {� (1820)−�+ → K−��++
.
. ( 1.20 ±0.32 )× 10−5 {K−�0�++ 
.
. ( 3.7 ±0.4 )× 10−5 1060
−
+ ( 4.7 ±1.0 )× 10−5 774

π0 pp ( 1.53 ±0.07 )× 10−4 1543N(940)p+ 
.
. → π0 pp ( 6.4 +1.8
−1.3 )× 10−5 {N(1440)p+ 
.
. → π0 pp ( 7.3 +1.7
−1.5 )× 10−5 S=2.5 {N(1520)p+ 
.
. → π0 pp ( 6.4 +2.3
−1.8 )× 10−6 {N(1535)p+ 
.
. → π0 pp ( 2.5 ±1.0 )× 10−5 {N(1650)p+ 
.
. → π0 pp ( 3.8 +1.4
−1.7 )× 10−5 {N(1720)p+ 
.
. → π0 pp ( 1.79 +0.26
−0.70 )× 10−5 {N(2300)p+ 
.
. → π0 pp ( 2.6 +1.2
−0.7 )× 10−5 {N(2570)p+ 
.
. → π0 pp ( 2.13 +0.40
−0.31 )× 10−5 {

π0 f0(2100) → π0 pp ( 1.1 ±0.4 )× 10−5 {
ηpp ( 6.0 ±0.4 )× 10−5 1373

η f0(2100) → ηpp ( 1.2 ±0.4 )× 10−5 {N(1535)p → ηpp ( 4.4 ±0.7 )× 10−5 {
ωpp ( 6.9 ±2.1 )× 10−5 1247
φpp < 2.4 × 10−5 CL=90% 1109
π+π−pp ( 6.0 ±0.4 )× 10−4 1491pnπ− or 
.
. ( 2.48 ±0.17 )× 10−4 {pnπ−π0 ( 3.2 ±0.7 )× 10−4 14922(π+π−π0) ( 4.8 ±1.5 )× 10−3 1776
ηπ+π− < 1.6 × 10−4 CL=90% 1791
ηπ+π−π0 ( 9.5 ±1.7 )× 10−4 17782(π+π−)η ( 1.2 ±0.6 )× 10−3 1758
η′π+π−π0 ( 4.5 ±2.1 )× 10−4 1692
ωπ+π− ( 7.3 ±1.2 )× 10−4 S=2.1 1748b±1 π∓ ( 4.0 ±0.6 )× 10−4 S=1.1 1635



76767676Meson SummaryTableb01π0 ( 2.4 ±0.6 )× 10−4 {
ω f2(1270) ( 2.2 ±0.4 )× 10−4 1515

π+π−K+K− ( 7.5 ±0.9 )× 10−4 S=1.9 1726
ρ0K+K− ( 2.2 ±0.4 )× 10−4 1616K∗(892)0K∗2(1430)0 ( 1.9 ±0.5 )× 10−4 1418K+K−π+π−η ( 1.3 ±0.7 )× 10−3 1574K+K−2(π+π−)π0 ( 1.00 ±0.31 )× 10−3 1611K+K−2(π+π−) ( 1.9 ±0.9 )× 10−3 1654K1(1270)±K∓ ( 1.00 ±0.28 )× 10−3 1581K0S K0S π+π− ( 2.2 ±0.4 )× 10−4 1724
ρ0 pp ( 5.0 ±2.2 )× 10−5 1252K+K∗(892)0π−+ 
.
. ( 6.7 ±2.5 )× 10−4 16742(π+π−) ( 2.4 ±0.6 )× 10−4 S=2.2 1817
ρ0π+π− ( 2.2 ±0.6 )× 10−4 S=1.4 1750K+K−π+π−π0 ( 1.26 ±0.09 )× 10−3 1694
ω f0(1710) → ωK+K− ( 5.9 ±2.2 )× 10−5 {K∗(892)0K−π+π0 + 
.
. ( 8.6 ±2.2 )× 10−4 {K∗(892)+K−π+π− + 
.
. ( 9.6 ±2.8 )× 10−4 {K∗(892)+K−ρ0 + 
.
. ( 7.3 ±2.6 )× 10−4 {K∗(892)0K−ρ+ + 
.
. ( 6.1 ±1.8 )× 10−4 {

ηK+K− , no ηφ ( 3.1 ±0.4 )× 10−5 1664
ωK+K− ( 1.62 ±0.11 )× 10−4 S=1.1 1614
ωK∗(892)+K−+ 
.
. ( 2.07 ±0.26 )× 10−4 1482
ωK∗2(1430)+K−+ 
.
. ( 6.1 ±1.2 )× 10−5 1253
ωK∗(892)0K0 ( 1.68 ±0.30 )× 10−4 1481
ωK∗2(1430)0K0 ( 5.8 ±2.2 )× 10−5 1251
ωX (1440) → ωK0S K−π++
.
. ( 1.6 ±0.4 )× 10−5 {
ωX (1440) → ωK+K−π0 ( 1.09 ±0.26 )× 10−5 {
ω f1(1285) → ωK0S K−π++
.
. ( 3.0 ±1.0 )× 10−6 {
ω f1(1285) → ωK+K−π0 ( 1.2 ±0.7 )× 10−6 {3(π+π−) ( 3.5 ±2.0 )× 10−4 S=2.8 1774ppπ+π−π0 ( 7.3 ±0.7 )× 10−4 1435K+K− ( 7.5 ±0.5 )× 10−5 1776K0S K0L ( 5.34 ±0.33 )× 10−5 1775
π+π−π0 ( 2.01 ±0.17 )× 10−4 S=1.7 1830

ρ(2150)π → π+π−π0 ( 1.9 +1.2
−0.4 )× 10−4 {

ρ(770)π → π+π−π0 ( 3.2 ±1.2 )× 10−5 S=1.8 {
π+π− ( 7.8 ±2.6 )× 10−6 1838K1(1400)±K∓ < 3.1 × 10−4 CL=90% 1532K∗2(1430)±K∓ ( 7.1 +1.3

−0.9 )× 10−5 {K+K−π0 ( 4.07 ±0.31 )× 10−5 1754K+K∗(892)−+ 
.
. ( 2.9 ±0.4 )× 10−5 S=1.2 1698K∗(892)0K0+ 
.
. ( 1.09 ±0.20 )× 10−4 1697
φπ+π− ( 1.17 ±0.29 )× 10−4 S=1.7 1690

φ f0(980) → π+π− ( 6.8 ±2.5 )× 10−5 S=1.2 {2(K+K−) ( 6.0 ±1.4 )× 10−5 1499
φK+K− ( 7.0 ±1.6 )× 10−5 15462(K+K−)π0 ( 1.10 ±0.28 )× 10−4 1440
φη ( 3.10 ±0.31 )× 10−5 1654
φη′ ( 3.1 ±1.6 )× 10−5 1555
ωη′ ( 3.2 +2.5

−2.1 )× 10−5 1623
ωπ0 ( 2.1 ±0.6 )× 10−5 1757
ρη′ ( 1.9 +1.7

−1.2 )× 10−5 1625
ρη ( 2.2 ±0.6 )× 10−5 S=1.1 1717
ωη < 1.1 × 10−5 CL=90% 1715
φπ0 < 4 × 10−7 CL=90% 1699
η
 π+π−π0 < 1.0 × 10−3 CL=90% 513ppK+K− ( 2.7 ±0.7 )× 10−5 1118�nK0S+ 
.
. ( 8.1 ±1.8 )× 10−5 1324
φ f ′2(1525) ( 4.4 ±1.6 )× 10−5 1321�(1540)�(1540) →K0S pK−n+ 
.
. < 8.8 × 10−6 CL=90% {�(1540)K−n → K0S pK−n < 1.0 × 10−5 CL=90% {�(1540)K0S p → K0S pK+n < 7.0 × 10−6 CL=90% {�(1540)K+n → K0S pK+n < 2.6 × 10−5 CL=90% {�(1540)K0S p → K0S pK−n < 6.0 × 10−6 CL=90% {K0S K0S < 4.6 × 10−6 1775Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays
γχ
0(1P) ( 9.99 ±0.27 ) % 261
γχ
1(1P) ( 9.55 ±0.31 ) % 171
γχ
2(1P) ( 9.11 ±0.31 ) % 128
γ η
 (1S) ( 3.4 ±0.5 )× 10−3 S=1.3 636

γ η
 (2S) ( 7 ±5 )× 10−4 47
γπ0 ( 1.6 ±0.4 )× 10−6 1841
γ η′(958) ( 1.23 ±0.06 )× 10−4 1719
γ f2(1270) ( 2.73 +0.29

−0.25 )× 10−4 S=1.8 1622
γ f0(1370) → γK K ( 3.1 ±1.7 )× 10−5 1588
γ f0(1500) ( 9.2 ±1.9 )× 10−5 1536
γ f ′2(1525) ( 3.3 ±0.8 )× 10−5 1528

γ f0(1710) → γππ ( 3.5 ±0.6 )× 10−5 {
γ f0(1710) → γK K ( 6.6 ±0.7 )× 10−5 {

γ f0(2100) → γππ ( 4.8 ±1.0 )× 10−6 1244
γ f0(2200) → γK K ( 3.2 ±1.0 )× 10−6 1193
γ fJ (2220) → γππ < 5.8 × 10−6 CL=90% 1168
γ fJ (2220) → γK K < 9.5 × 10−6 CL=90% 1168
γ γ < 1.5 × 10−4 CL=90% 1843
γ η ( 1.4 ±0.5 )× 10−6 1802
γ ηπ+π− ( 8.7 ±2.1 )× 10−4 1791

γ η(1405) → γK K π < 9 × 10−5 CL=90% 1569
γ η(1405) → ηπ+π− ( 3.6 ±2.5 )× 10−5 {
γ η(1475) → K K π < 1.4 × 10−4 CL=90% {
γ η(1475) → ηπ+π− < 8.8 × 10−5 CL=90% {

γ 2(π+π−) ( 4.0 ±0.6 )× 10−4 1817
γK∗0K+π−+ 
.
. ( 3.7 ±0.9 )× 10−4 1674
γK∗0K∗0 ( 2.4 ±0.7 )× 10−4 1613
γK0S K+π−+ 
.
. ( 2.6 ±0.5 )× 10−4 1753
γK+K−π+π− ( 1.9 ±0.5 )× 10−4 1726
γ pp ( 3.9 ±0.5 )× 10−5 S=2.0 1586

γ f2(1950) → γ pp ( 1.20 ±0.22 )× 10−5 {
γ f2(2150) → γ pp ( 7.2 ±1.8 )× 10−6 {
γX (1835) → γ pp ( 4.6 +1.8

−4.0 )× 10−6 {
γX → γ pp [xxaa℄ < 2 × 10−6 CL=90% {

γπ+π−pp ( 2.8 ±1.4 )× 10−5 1491
γ 2(π+π−)K+K− < 2.2 × 10−4 CL=90% 1654
γ 3(π+π−) < 1.7 × 10−4 CL=90% 1774
γK+K−K+K− < 4 × 10−5 CL=90% 1499
γ γ J/ψ ( 3.1 +1.0

−1.2 )× 10−4 542Other de
aysOther de
aysOther de
aysOther de
aysinvisible < 1.6 % CL=90% {
ψ(3770)ψ(3770)ψ(3770)ψ(3770) IG (JPC ) = 0−(1−−)Mass m = 3773.13 ± 0.35 MeV (S = 1.1)Full width � = 27.2 ± 1.0 MeV�ee = 0.262 ± 0.018 keV (S = 1.4)In addition to the dominant de
ay mode to DD, ψ(3770) was foundto de
ay into the �nal states 
ontaining the J/ψ (BAI 05, ADAM 06).ADAMS 06 and HUANG 06A sear
hed for various de
ay modes with lighthadrons and found a statisti
ally signi�
ant signal for the de
ay to φη only(ADAMS 06). S
ale fa
tor/ p

ψ(3770) DECAY MODESψ(3770) DECAY MODESψ(3770) DECAY MODESψ(3770) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)DD (93 +8
−9 ) % S=2.0 286D0D0 (52 +4
−5 ) % S=2.0 286D+D− (41 ±4 ) % S=2.0 253J/ψπ+π− ( 1.93±0.28) × 10−3 560J/ψπ0π0 ( 8.0 ±3.0 ) × 10−4 564J/ψη ( 9 ±4 ) × 10−4 360J/ψπ0 < 2.8 × 10−4 CL=90% 603e+ e− ( 9.6 ±0.7 ) × 10−6 S=1.3 1887De
ays to light hadronsDe
ays to light hadronsDe
ays to light hadronsDe
ays to light hadronsb1(1235)π < 1.4 × 10−5 CL=90% 1683

φη′ < 7 × 10−4 CL=90% 1607
ωη′ < 4 × 10−4 CL=90% 1672
ρ0 η′ < 6 × 10−4 CL=90% 1674
φη ( 3.1 ±0.7 ) × 10−4 1703
ωη < 1.4 × 10−5 CL=90% 1762
ρ0 η < 5 × 10−4 CL=90% 1764
φπ0 < 3 × 10−5 CL=90% 1746
ωπ0 < 6 × 10−4 CL=90% 1803
π+π−π0 < 5 × 10−6 CL=90% 1874

ρπ < 5 × 10−6 CL=90% 1804K∗(892)+K−+ 
.
. < 1.4 × 10−5 CL=90% 1745K∗(892)0K0+ 
.
. < 1.2 × 10−3 CL=90% 1744



77777777Meson SummaryTableK0S K0L < 1.2 × 10−5 CL=90% 18202(π+π−) < 1.12 × 10−3 CL=90% 18612(π+π−)π0 < 1.06 × 10−3 CL=90% 18432(π+π−π0) < 5.85 % CL=90% 1821
ωπ+π− < 6.0 × 10−4 CL=90% 17943(π+π−) < 9.1 × 10−3 CL=90% 18193(π+π−)π0 < 1.37 % CL=90% 17923(π+π−)2π0 < 11.74 % CL=90% 1760

ηπ+π− < 1.24 × 10−3 CL=90% 1836
π+π−2π0 < 8.9 × 10−3 CL=90% 1862
ρ0π+π− < 6.9 × 10−3 CL=90% 1796
η3π < 1.34 × 10−3 CL=90% 1824
η2(π+π−) < 2.43 % CL=90% 1804

ηρ0π+π− < 1.45 % CL=90% 1708
η′ 3π < 2.44 × 10−3 CL=90% 1740K+K−π+π− < 9.0 × 10−4 CL=90% 1772

φπ+π− < 4.1 × 10−4 CL=90% 1737K+K−2π0 < 4.2 × 10−3 CL=90% 17744(π+π−) < 1.67 % CL=90% 17574(π+π−)π0 < 3.06 % CL=90% 1720
φ f0(980) < 4.5 × 10−4 CL=90% 1597K+K−π+π−π0 < 2.36 × 10−3 CL=90% 1741K+K−ρ0π0 < 8 × 10−4 CL=90% 1624K+K−ρ+π− < 1.46 % CL=90% 1622

ωK+K− < 3.4 × 10−4 CL=90% 1664
φπ+π−π0 < 3.8 × 10−3 CL=90% 1722K∗0K−π+π0+ 
.
. < 1.62 % CL=90% 1693K∗+K−π+π−+ 
.
. < 3.23 % CL=90% 1692K+K−π+π−2π0 < 2.67 % CL=90% 1705K+K−2(π+π−) < 1.03 % CL=90% 1702K+K−2(π+π−)π0 < 3.60 % CL=90% 1660

ηK+K− < 4.1 × 10−4 CL=90% 1712
ηK+K−π+π− < 1.24 % CL=90% 1624
ρ0K+K− < 5.0 × 10−3 CL=90% 16652(K+K−) < 6.0 × 10−4 CL=90% 1552
φK+K− < 7.5 × 10−4 CL=90% 15982(K+K−)π0 < 2.9 × 10−4 CL=90% 14932(K+K−)π+π− < 3.2 × 10−3 CL=90% 1425K0S K−π+ < 3.2 × 10−3 CL=90% 1799K0S K−π+π0 < 1.33 % CL=90% 1773K0S K−ρ+ < 6.6 × 10−3 CL=90% 1664K0S K−2π+π− < 8.7 × 10−3 CL=90% 1739K0S K−π+ ρ0 < 1.6 % CL=90% 1621K0S K−π+ η < 1.3 % CL=90% 1669K0S K−2π+π−π0 < 4.18 % CL=90% 1703K0S K−2π+π− η < 4.8 % CL=90% 1570K0S K−π+ 2(π+π−) < 1.22 % CL=90% 1658K0S K−π+ 2π0 < 2.65 % CL=90% 1742K0S K−K+K−π+ < 4.9 × 10−3 CL=90% 1490K0S K−K+K−π+π0 < 3.0 % CL=90% 1427K0S K−K+K−π+ η < 2.2 % CL=90% 1214K∗0K−π++ 
.
. < 9.7 × 10−3 CL=90% 1722ppπ0 < 4 × 10−5 CL=90% 1595ppπ+π− < 5.8 × 10−4 CL=90% 1544�� < 1.2 × 10−4 CL=90% 1521ppπ+π−π0 < 1.85 × 10−3 CL=90% 1490

ωpp < 2.9 × 10−4 CL=90% 1309��π0 < 7 × 10−5 CL=90% 1468pp2(π+π−) < 2.6 × 10−3 CL=90% 1425
ηpp < 5.4 × 10−4 CL=90% 1430
ηppπ+π− < 3.3 × 10−3 CL=90% 1284
ρ0 pp < 1.7 × 10−3 CL=90% 1313ppK+K− < 3.2 × 10−4 CL=90% 1185
ηppK+K− < 6.9 × 10−3 CL=90% 736
π0 ppK+K− < 1.2 × 10−3 CL=90% 1093
φpp < 1.3 × 10−4 CL=90% 1178��π+π− < 2.5 × 10−4 CL=90% 1404�pK+ < 2.8 × 10−4 CL=90% 1387�pK+π+π− < 6.3 × 10−4 CL=90% 1234��η < 1.9 × 10−4 CL=90% 1262�+�− < 1.0 × 10−4 CL=90% 1464�0�0 < 4 × 10−5 CL=90% 1462�+�− < 1.5 × 10−4 CL=90% 1346� 0� 0 < 1.4 × 10−4 CL=90% 1353

Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays
γχ
2 < 6.4 × 10−4 CL=90% 211
γχ
1 ( 2.48±0.23) × 10−3 253
γχ
0 ( 7.0 ±0.6 ) × 10−3 341
γ η
 < 7 × 10−4 CL=90% 707
γ η
 (2S) < 9 × 10−4 CL=90% 132
γ η′ < 1.8 × 10−4 CL=90% 1765
γ η < 1.5 × 10−4 CL=90% 1847
γπ0 < 2 × 10−4 CL=90% 1884
ψ(3823)ψ(3823)ψ(3823)ψ(3823)was X (3823),was X (3823),was X (3823),was X (3823), IG (JPC ) = ??(2−−)J, P need 
on�rmation.Mass m = 3822.2 ± 1.2 MeVFull width � < 16 MeV, CL = 90%

ψ(3823) DECAY MODESψ(3823) DECAY MODESψ(3823) DECAY MODESψ(3823) DECAY MODES Fra
tion (�i /�) p (MeV/
)
χ
1 γ seen 299
χ
2 γ not seen 257X (3872)X (3872)X (3872)X (3872) IG (JPC ) = 0+(1 + +)Mass m = 3871.69 ± 0.17 MeVmX (3872) − mJ/ψ = 775 ± 4 MeVmX (3872) − mψ(2S)Full width � < 1.2 MeV, CL = 90%X (3872) DECAY MODESX (3872) DECAY MODESX (3872) DECAY MODESX (3872) DECAY MODES Fra
tion (�i /�) p (MeV/
)
π+π− J/ψ(1S) > 2.6 % 650
ωJ/ψ(1S) > 1.9 % †D0D0π0 >32 % 117D∗0D0 >24 % 3
γ J/ψ > 6 × 10−3 697
γψ(2S) > 3.0 % 181
π+π−η
 (1S) not seen 746pp not seen 1693X (3900)X (3900)X (3900)X (3900) IG (JPC ) = 1+(1 +−)Mass m = 3886.6 ± 2.4 MeV (S = 1.6)Full width � = 28.1 ± 2.6 MeVX (3900) DECAY MODESX (3900) DECAY MODESX (3900) DECAY MODESX (3900) DECAY MODES Fra
tion (�i /�) p (MeV/
)J/ψπ seen 699h
 π± not seen 318
η
 π+π− not seen 759(DD∗)± seen {D0D∗−+ 
.
. seen 150D−D∗0+ 
.
. seen 141
ωπ± not seen 1862J/ψη not seen 509D+D∗−+ 
.
 seen {D0D∗0+ 
.
 seen {X (3915)X (3915)X (3915)X (3915)was χ
0(3915)was χ
0(3915)was χ
0(3915)was χ
0(3915) IG (JPC ) = 0+(0 or 2 + +)Mass m = 3918.4 ± 1.9 MeVFull width � = 20 ± 5 MeV (S = 1.1)X (3915) DECAY MODESX (3915) DECAY MODESX (3915) DECAY MODESX (3915) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ωJ/ψ seen 222
π+π−η
 (1S) not seen 785
η
 η not seen 665
η
 π0 not seen 815K K not seen 1896
γ γ seen 1959
χ
2(2P)χ
2(2P)χ
2(2P)χ
2(2P) IG (JPC ) = 0+(2 + +)Mass m = 3927.2 ± 2.6 MeVFull width � = 24 ± 6 MeV



78787878Meson SummaryTable
χ
2(2P) DECAY MODESχ
2(2P) DECAY MODESχ
2(2P) DECAY MODESχ
2(2P) DECAY MODES Fra
tion (�i /�) p (MeV/
)
γ γ seen 1964DD seen 615D+D− seen 600D0D0 seen 615
π+π−η
 (1S) not seen 792K K not seen 1901X (4020)X (4020)X (4020)X (4020) I (JP ) = 1(??)Mass m = 4024.1 ± 1.9 MeVFull width � = 13 ± 5 MeV (S = 1.7)X (4020) DECAY MODESX (4020) DECAY MODESX (4020) DECAY MODESX (4020) DECAY MODES Fra
tion (�i /�) p (MeV/
)h
 (1P)π seen 450D∗D∗ seen 85DD∗+ 
.
. not seen 542
η
 π+π− not seen 872
ψ(4040)ψ(4040)ψ(4040)ψ(4040) [yyaa℄ IG (JPC ) = 0−(1−−)Mass m = 4039 ± 1 MeVFull width � = 80 ± 10 MeV�ee = 0.86 ± 0.07 keV�ee < 2.9 eV, CL = 90%�ee < 4.6 eV, CL = 90%Due to the 
omplexity of the 
 
 threshold region, in this listing, \seen"(\not seen") means that a 
ross se
tion for the mode in question hasbeen measured at e�e
tive √

s near this parti
le's 
entral mass value,more (less) than 2σ above zero, without regard to any peaking behaviorin √
s or absen
e thereof. See mode listing(s) for details and referen
es. p

ψ(4040) DECAY MODESψ(4040) DECAY MODESψ(4040) DECAY MODESψ(4040) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)e+ e− (1.07±0.16)× 10−5 2019DD seen 775D0D0 seen 775D+D− seen 764D∗D+ 
.
. seen 569D∗(2007)0D0+ 
.
. seen 575D∗(2010)+D−+ 
.
. seen 561D∗D∗ seen 193D∗(2007)0D∗(2007)0 seen 226D∗(2010)+D∗(2010)− seen 193D0D−π++
.
. (ex
l.D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.) not seen {DD∗π (ex
l. D∗D∗) not seen {D0D∗−π++
.
. (ex
l.D∗(2010)+D∗(2010)−) seen {D+s D−s seen 452J/ψπ+π− < 4 × 10−3 90% 794J/ψπ0π0 < 2 × 10−3 90% 797J/ψη (5.2 ±0.7 )× 10−3 675J/ψπ0 < 2.8 × 10−4 90% 823J/ψπ+π−π0 < 2 × 10−3 90% 746
χ
1 γ < 3.4 × 10−3 90% 494
χ
2 γ < 5 × 10−3 90% 454
χ
1π+π−π0 < 1.1 % 90% 306
χ
2π+π−π0 < 3.2 % 90% 233h
 (1P)π+π− < 3 × 10−3 90% 403
φπ+π− < 3 × 10−3 90% 1880��π+π− < 2.9 × 10−4 90% 1578��π0 < 9 × 10−5 90% 1636��η < 3.0 × 10−4 90% 1452�+�− < 1.3 × 10−4 90% 1632�0�0 < 7 × 10−5 90% 1630�+�− < 1.6 × 10−4 90% 1527� 0� 0 < 1.8 × 10−4 90% 1533X (4140)X (4140)X (4140)X (4140) IG (JPC ) = 0+(??+)Mass m = 4146.9 ± 3.1 MeV (S = 1.3)Full width � = 15+6

−5 MeV

X (4140) DECAY MODESX (4140) DECAY MODESX (4140) DECAY MODESX (4140) DECAY MODES Fra
tion (�i /�) p (MeV/
)J/ψφ seen 217
γ γ not seen 2073
ψ(4160)ψ(4160)ψ(4160)ψ(4160) [yyaa℄ IG (JPC ) = 0−(1−−)Mass m = 4191 ± 5 MeVFull width � = 70 ± 10 MeV�ee = 0.48 ± 0.22 keV�ee < 2.2 eV, CL = 90%�eeDue to the 
omplexity of the 
 
 threshold region, in this listing, \seen"(\not seen") means that a 
ross se
tion for the mode in question hasbeen measured at e�e
tive √

s near this parti
le's 
entral mass value,more (less) than 2σ above zero, without regard to any peaking behaviorin √
s or absen
e thereof. See mode listing(s) for details and referen
es. p

ψ(4160) DECAY MODESψ(4160) DECAY MODESψ(4160) DECAY MODESψ(4160) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)e+ e− (6.9 ±3.3)× 10−6 2096
µ+µ− seen 2093DD seen 956D0D0 seen 956D+D− seen 947D∗D+ 
.
. seen 798D∗(2007)0D0+ 
.
. seen 802D∗(2010)+D−+ 
.
. seen 792D∗D∗ seen 592D∗(2007)0D∗(2007)0 seen 604D∗(2010)+D∗(2010)− seen 592D0D−π++
.
. (ex
l.D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.) not seen {DD∗π+
.
. (ex
l. D∗D∗) seen {D0D∗−π++
.
. (ex
l.D∗(2010)+D∗(2010)−) not seen {D+s D−s not seen 720D∗+s D−s +
.
. seen 385J/ψπ+π− < 3 × 10−3 90% 919J/ψπ0π0 < 3 × 10−3 90% 922J/ψK+K− < 2 × 10−3 90% 407J/ψη < 8 × 10−3 90% 822J/ψπ0 < 1 × 10−3 90% 944J/ψη′ < 5 × 10−3 90% 457J/ψπ+π−π0 < 1 × 10−3 90% 879
ψ(2S)π+π− < 4 × 10−3 90% 396
χ
1 γ < 5 × 10−3 90% 625
χ
2 γ < 1.3 % 90% 587
χ
1π+π−π0 < 2 × 10−3 90% 496
χ
2π+π−π0 < 8 × 10−3 90% 445h
 (1P)π+π− < 5 × 10−3 90% 556h
 (1P)π0π0 < 2 × 10−3 90% 560h
 (1P)η < 2 × 10−3 90% 348h
 (1P)π0 < 4 × 10−4 90% 600
φπ+π− < 2 × 10−3 90% 1961
γX (3872) → γ J/ψπ+π− < 6.8 × 10−5 90% {
γX (3915) → γ J/ψπ+π− < 1.36 × 10−4 90% {
γX (3930) → γ J/ψπ+π− < 1.18 × 10−4 90% {
γX (3940) → γ J/ψπ+π− < 1.47 × 10−4 90% {
γX (3872) → γ γ J/ψ < 1.05 × 10−4 90% {
γX (3915) → γ γ J/ψ < 1.26 × 10−4 90% {
γX (3930) → γ γ J/ψ < 8.8 × 10−5 90% {
γX (3940) → γ γ J/ψ < 1.79 × 10−4 90% {X (4260)X (4260)X (4260)X (4260) IG (JPC ) = ??(1−−)Mass m = 4251 ± 9 MeV (S = 1.6)Full width � = 120 ± 12 MeV (S = 1.1)



79797979Meson SummaryTableX (4260) DECAY MODESX (4260) DECAY MODESX (4260) DECAY MODESX (4260) DECAY MODES Fra
tion (�i /�) p (MeV/
)J/ψπ+π− seen 967J/ψ f0(980), f0(980) → π+π− seen {X (3900)±π∓, X± → J/ψπ± seen {J/ψπ0π0 seen 969J/ψK+K− seen 512J/ψK0S K0S not seen 501X (3872)γ seen 363J/ψη not seen 876J/ψπ0 not seen 991J/ψη′ not seen 552J/ψπ+π−π0 not seen 930J/ψηπ0 not seen 801J/ψηη not seen 311
ψ(2S)π+π− not seen 459
ψ(2S)η not seen 129
χ
0ω not seen 265
χ
1 γ not seen 676
χ
2 γ not seen 638
χ
1π+π−π0 not seen 560
χ
2π+π−π0 not seen 512h
 (1P)π+π− not seen 613
φπ+π− not seen 1993

φ f0(980) → φπ+π− not seen {DD not seen 1020D0D0 not seen 1020D+D− not seen 1011D∗D+
.
. not seen 887D∗(2007)0D0+
.
. not seen {D∗(2010)+D−+
.
. not seen {D∗D∗ not seen 691D∗(2007)0D∗(2007)0 not seen 701D∗(2010)+D∗(2010)− not seen 691D0D−π++
.
. (ex
l.D∗(2007)0D∗0 +
.
.,D∗(2010)+D− +
.
.) not seen {DD∗π+
.
. (ex
l. D∗D∗) not seen 723D0D∗−π++
.
. (ex
l.D∗(2010)+D∗(2010)−) not seen {D0D∗(2010)−π++
.
. not seen 716D∗D∗π not seen 448D+s D−s not seen 803D∗+s D−s +
.
. not seen 615D∗+s D∗−s not seen 239pp not seen 1907K0S K±π∓ not seen 2048K+K−π0 not seen 2049X (4360)X (4360)X (4360)X (4360) IG (JPC ) = ??(1−−)X (4360) MASS = 4346 ± 6 MeVX (4360) WIDTH = 102 ± 10 MeV�ee�ee < 0.57 eV, CL = 90%�ee < 1.9 eV, CL = 90%X (4360) DECAY MODESX (4360) DECAY MODESX (4360) DECAY MODESX (4360) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ψ(2S)π+π− seen 552
ψ(3823)π+π− possibly seen 416
ψ(4415)ψ(4415)ψ(4415)ψ(4415) [yyaa℄ IG (JPC ) = 0−(1−−)Mass m = 4421 ± 4 MeVFull width � = 62 ± 20 MeV�ee = 0.58 ± 0.07 keV�ee < 3.6 eV, CL = 90%�ee < 0.47 eV, CL = 90%�ee < 2.3 eV, CL = 90%

Due to the 
omplexity of the 
 
 threshold region, in this listing, \seen"(\not seen") means that a 
ross se
tion for the mode in question hasbeen measured at e�e
tive √
s near this parti
le's 
entral mass value,more (less) than 2σ above zero, without regard to any peaking behaviorin √

s or absen
e thereof. See mode listing(s) for details and referen
es. p
ψ(4415) DECAY MODESψ(4415) DECAY MODESψ(4415) DECAY MODESψ(4415) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)DD seen 1187D0D0 seen 1187D+D− seen 1179D∗D+ 
.
. seen 1063D∗(2007)0D0+ 
.
. seen 1067D∗(2010)+D−+ 
.
. seen 1059D∗D∗ seen 919D∗(2007)0D∗(2007)0+ 
.
. seen 927D∗(2010)+D∗(2010)−+ 
.
. seen 919D0D−π+ (ex
l. D∗(2007)0D0+
.
., D∗(2010)+D− +
.
. < 2.3 % 90% {DD∗2(2460) → D0D−π++
.
. (10 ±4 ) % {D0D∗−π++
.
. < 11 % 90% 926D+s D−s not seen 1006
ωχ
2 possibly seen 330D∗+s D−s +
.
. seen {D∗+s D∗−s not seen 652
ψ(3823)π+π− possibly seen 494J/ψη < 6 × 10−3 90% 1022
χ
1 γ < 8 × 10−4 90% 817
χ
2 γ < 4 × 10−3 90% 780e+ e− ( 9.4±3.2)× 10−6 2210X (4430)±X (4430)±X (4430)±X (4430)± I (JP ) = ?(1+)Quantum numbers not established.Mass m = 4478+15

−18 MeVFull width � = 181 ± 31 MeVX (4430)± DECAY MODESX (4430)± DECAY MODESX (4430)± DECAY MODESX (4430)± DECAY MODES Fra
tion (�i /�) p (MeV/
)
π+ψ(2S) seen 711
π+ J/ψ seen 1162X (4660)X (4660)X (4660)X (4660) IG (JPC ) = ??(1−−)X (4660) MASS = 4643 ± 9 MeV (S = 1.2)X (4660) WIDTH = 72 ± 11 MeV�ee�ee < 0.45 eV, CL = 90%�ee < 2.1 eV, CL = 90%X (4660) DECAY MODESX (4660) DECAY MODESX (4660) DECAY MODESX (4660) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ψ(2S)π+π− seen 820bbMESONSbbMESONSbbMESONSbbMESONS
ηb(1S)ηb(1S)ηb(1S)ηb(1S) IG (JPC ) = 0+(0−+)Mass m = 9399.0 ± 2.3 MeV (S = 1.6)Full width � = 10+5

−4 MeV p
ηb(1S) DECAY MODESηb(1S) DECAY MODESηb(1S) DECAY MODESηb(1S) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)hadrons seen {3h+3h− not seen 46732h+2h− not seen 4689
γ γ not seen 4700
µ+µ− <9× 10−3 90% 4698
τ+ τ− <8 % 90% 4351



80808080Meson SummaryTable�(1S)�(1S)�(1S)�(1S) IG (JPC ) = 0−(1−−)Mass m = 9460.30 ± 0.26 MeV (S = 3.3)Full width � = 54.02 ± 1.25 keV�ee = 1.340 ± 0.018 keV p�(1S) DECAY MODES�(1S) DECAY MODES�(1S) DECAY MODES�(1S) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
τ+ τ− ( 2.60 ±0.10 ) % 4384e+ e− ( 2.38 ±0.11 ) % 4730
µ+µ− ( 2.48 ±0.05 ) % 4729Hadroni
 de
aysHadroni
 de
aysHadroni
 de
aysHadroni
 de
aysg g g (81.7 ±0.7 ) % {
γ g g ( 2.2 ±0.6 ) % {
η′(958) anything ( 2.94 ±0.24 ) % {J/ψ(1S) anything ( 6.5 ±0.7 )× 10−4 4223J/ψ(1S)η
 < 2.2 × 10−6 90% 3623J/ψ(1S)χ
0 < 3.4 × 10−6 90% 3429J/ψ(1S)χ
1 ( 3.9 ±1.2 )× 10−6 3382J/ψ(1S)χ
2 < 1.4 × 10−6 90% 3359J/ψ(1S)η
 (2S) < 2.2 × 10−6 90% 3316J/ψ(1S)X (3940) < 5.4 × 10−6 90% 3148J/ψ(1S)X (4160) < 5.4 × 10−6 90% 3018
χ
0 anything < 5 × 10−3 90% {
χ
1 anything ( 2.3 ±0.7 )× 10−4 {
χ
2 anything ( 3.4 ±1.0 )× 10−4 {
ψ(2S) anything ( 2.7 ±0.9 )× 10−4 {

ψ(2S)η
 < 3.6 × 10−6 90% 3345
ψ(2S)χ
0 < 6.5 × 10−6 90% 3124
ψ(2S)χ
1 < 4.5 × 10−6 90% 3070
ψ(2S)χ
2 < 2.1 × 10−6 90% 3043
ψ(2S)η
 (2S) < 3.2 × 10−6 90% 2993
ψ(2S)X (3940) < 2.9 × 10−6 90% 2797
ψ(2S)X (4160) < 2.9 × 10−6 90% 2642

ρπ < 3.68 × 10−6 90% 4697
ωπ0 < 3.90 × 10−6 90% 4697
π+π− < 5 × 10−4 90% 4728K+K− < 5 × 10−4 90% 4704pp < 5 × 10−4 90% 4636
π+π−π0 ( 2.1 ±0.8 )× 10−6 4725
φK+K− ( 2.4 ±0.5 )× 10−6 4622
ωπ+π− ( 4.5 ±1.0 )× 10−6 4694K∗(892)0K−π++ 
.
. ( 4.4 ±0.8 )× 10−6 4667
φ f ′2(1525) < 1.63 × 10−6 90% 4549
ω f2(1270) < 1.79 × 10−6 90% 4611
ρ(770)a2(1320) < 2.24 × 10−6 90% 4605K∗(892)0K∗2(1430)0+ 
.
. ( 3.0 ±0.8 )× 10−6 4579K1(1270)±K∓ < 2.41 × 10−6 90% 4631K1(1400)±K∓ ( 1.0 ±0.4 )× 10−6 4613b1(1235)±π∓ < 1.25 × 10−6 90% 4649
π+π−π0π0 ( 1.28 ±0.30 )× 10−5 4720K0S K+π−+ 
.
. ( 1.6 ±0.4 )× 10−6 4696K∗(892)0K0+ 
.
. ( 2.9 ±0.9 )× 10−6 4675K∗(892)−K++ 
.
. < 1.11 × 10−6 90% 4675D∗(2010)± anything ( 2.52 ±0.20 ) % {2H anything ( 2.85 ±0.25 )× 10−5 {Sum of 100 ex
lusive modes ( 1.200±0.017) % {Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays
γπ+π− ( 6.3 ±1.8 )× 10−5 4728
γπ0π0 ( 1.7 ±0.7 )× 10−5 4728
γπ0 η < 2.4 × 10−6 90% 4713
γK+K− [zzaa℄ ( 1.14 ±0.13 )× 10−5 4704
γ pp [aabb℄ < 6 × 10−6 90% 4636
γ 2h+2h− ( 7.0 ±1.5 )× 10−4 4720
γ 3h+3h− ( 5.4 ±2.0 )× 10−4 4703
γ 4h+4h− ( 7.4 ±3.5 )× 10−4 4679
γπ+π−K+K− ( 2.9 ±0.9 )× 10−4 4686
γ 2π+2π− ( 2.5 ±0.9 )× 10−4 4720
γ 3π+3π− ( 2.5 ±1.2 )× 10−4 4703
γ 2π+2π−K+K− ( 2.4 ±1.2 )× 10−4 4658
γπ+π−pp ( 1.5 ±0.6 )× 10−4 4604
γ 2π+2π−pp ( 4 ±6 )× 10−5 4563
γ 2K+2K− ( 2.0 ±2.0 )× 10−5 4601
γ η′(958) < 1.9 × 10−6 90% 4682
γ η < 1.0 × 10−6 90% 4714
γ f0(980) < 3 × 10−5 90% 4678

γ f ′2(1525) ( 3.8 ±0.9 )× 10−5 4607
γ f2(1270) ( 1.01 ±0.09 )× 10−4 4644
γ η(1405) < 8.2 × 10−5 90% 4625
γ f0(1500) < 1.5 × 10−5 90% 4611
γ f0(1710) < 2.6 × 10−4 90% 4573

γ f0(1710) → γK+K− < 7 × 10−6 90% {
γ f0(1710) → γπ0π0 < 1.4 × 10−6 90% {
γ f0(1710) → γ ηη < 1.8 × 10−6 90% {

γ f4(2050) < 5.3 × 10−5 90% 4515
γ f0(2200) → γK+K− < 2 × 10−4 90% 4475
γ fJ (2220) → γK+K− < 8 × 10−7 90% 4469
γ fJ (2220) → γπ+π− < 6 × 10−7 90% {
γ fJ (2220) → γ pp < 1.1 × 10−6 90% {
γ η(2225) → γφφ < 3 × 10−3 90% 4469
γ η
 (1S) < 5.7 × 10−5 90% 4260
γχ
0 < 6.5 × 10−4 90% 4114
γχ
1 < 2.3 × 10−5 90% 4079
γχ
2 < 7.6 × 10−6 90% 4062
γX (3872) → π+π− J/ψ < 1.6 × 10−6 90% {
γX (3872) → π+π−π0 J/ψ < 2.8 × 10−6 90% {
γX (3915) → ωJ/ψ < 3.0 × 10−6 90% {
γX (4140) → φJ/ψ < 2.2 × 10−6 90% {
γX [bbbb℄ < 4.5 × 10−6 90% {
γX X (mX < 3.1 GeV) [

bb℄ < 1 × 10−3 90% {
γX X (mX < 4.5 GeV) [ddbb℄ < 2.4 × 10−4 90% {
γX → γ+ ≥ 4 prongs [eebb℄ < 1.78 × 10−4 95% {
γ a01 → γµ+µ− [�bb℄ < 9 × 10−6 90% {
γ a01 → γ τ+ τ− [zzaa℄ < 1.30 × 10−4 90% {
γ a01 → γ g g [ggbb℄ < 1 % 90% {
γ a01 → γ s s [ggbb℄ < 1 × 10−3 90% {Lepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modes
µ± τ∓ LF < 6.0 × 10−6 95% 4563Other de
aysOther de
aysOther de
aysOther de
aysinvisible < 3.0 × 10−4 90% {
χb0(1P)χb0(1P)χb0(1P)χb0(1P) [hhbb℄ IG (JPC ) = 0+(0 + +)J needs 
on�rmation.Mass m = 9859.44 ± 0.42 ± 0.31 MeV p

χb0(1P) DECAY MODESχb0(1P) DECAY MODESχb0(1P) DECAY MODESχb0(1P) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
γ�(1S) ( 1.76±0.35) % 391D0X < 10.4 % 90% {
π+π−K+K−π0 < 1.6 × 10−4 90% 48752π+π−K−K0S < 5 × 10−5 90% 48752π+π−K−K0S 2π0 < 5 × 10−4 90% 48462π+2π−2π0 < 2.1 × 10−4 90% 49052π+2π−K+K− ( 1.1 ±0.6 ) × 10−4 48612π+2π−K+K−π0 < 2.7 × 10−4 90% 48462π+2π−K+K−2π0 < 5 × 10−4 90% 48283π+2π−K−K0S π0 < 1.6 × 10−4 90% 48273π+3π− < 8 × 10−5 90% 49043π+3π−2π0 < 6 × 10−4 90% 48813π+3π−K+K− ( 2.4 ±1.2 ) × 10−4 48273π+3π−K+K−π0 < 1.0 × 10−3 90% 48084π+4π− < 8 × 10−5 90% 48804π+4π−2π0 < 2.1 × 10−3 90% 4850J/ψJ/ψ < 7 × 10−5 90% 3836J/ψψ(2S) < 1.2 × 10−4 90% 3571
ψ(2S)ψ(2S) < 3.1 × 10−5 90% 3273
χb1(1P)χb1(1P)χb1(1P)χb1(1P) [hhbb℄ IG (JPC ) = 0+(1 + +)J needs 
on�rmation.Mass m = 9892.78 ± 0.26 ± 0.31 MeV



81818181Meson SummaryTablep
χb1(1P) DECAY MODESχb1(1P) DECAY MODESχb1(1P) DECAY MODESχb1(1P) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
γ�(1S) (33.9±2.2) % 423D0X (12.6±2.2) % {
π+π−K+K−π0 ( 2.0±0.6)× 10−4 48922π+π−K−K0S ( 1.3±0.5)× 10−4 48922π+π−K−K0S 2π0 < 6 × 10−4 90% 48632π+2π−2π0 ( 8.0±2.5)× 10−4 49212π+2π−K+K− ( 1.5±0.5)× 10−4 48782π+2π−K+K−π0 ( 3.5±1.2)× 10−4 48632π+2π−K+K−2π0 ( 8.6±3.2)× 10−4 48453π+2π−K−K0S π0 ( 9.3±3.3)× 10−4 48443π+3π− ( 1.9±0.6)× 10−4 49213π+3π−2π0 ( 1.7±0.5)× 10−3 48983π+3π−K+K− ( 2.6±0.8)× 10−4 48443π+3π−K+K−π0 ( 7.5±2.6)× 10−4 48254π+4π− ( 2.6±0.9)× 10−4 48974π+4π−2π0 ( 1.4±0.6)× 10−3 4867J/ψJ/ψ < 2.7 × 10−5 90% 3857J/ψψ(2S) < 1.7 × 10−5 90% 3594
ψ(2S)ψ(2S) < 6 × 10−5 90% 3298hb(1P)hb(1P)hb(1P)hb(1P) IG (JPC ) = ??(1 +−)Mass m = 9899.3 ± 0.8 MeVhb(1P) DECAY MODEShb(1P) DECAY MODEShb(1P) DECAY MODEShb(1P) DECAY MODES Fra
tion (�i /�) p (MeV/
)
ηb(1S)γ (52+6

−5) % 488
χb2(1P)χb2(1P)χb2(1P)χb2(1P) [hhbb℄ IG (JPC ) = 0+(2 + +)J needs 
on�rmation.Mass m = 9912.21 ± 0.26 ± 0.31 MeV p

χb2(1P) DECAY MODESχb2(1P) DECAY MODESχb2(1P) DECAY MODESχb2(1P) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
γ�(1S) (19.1±1.2) % 442D0X < 7.9 % 90% {
π+π−K+K−π0 ( 8 ±5 )× 10−5 49022π+π−K−K0S < 1.0 × 10−4 90% 49012π+π−K−K0S 2π0 ( 5.3±2.4)× 10−4 48732π+2π−2π0 ( 3.5±1.4)× 10−4 49312π+2π−K+K− ( 1.1±0.4)× 10−4 48882π+2π−K+K−π0 ( 2.1±0.9)× 10−4 48722π+2π−K+K−2π0 ( 3.9±1.8)× 10−4 48553π+2π−K−K0S π0 < 5 × 10−4 90% 48543π+3π− ( 7.0±3.1)× 10−5 49313π+3π−2π0 ( 1.0±0.4)× 10−3 49083π+3π−K+K− < 8 × 10−5 90% 48543π+3π−K+K−π0 ( 3.6±1.5)× 10−4 48354π+4π− ( 8 ±4 )× 10−5 49074π+4π−2π0 ( 1.8±0.7)× 10−3 4877J/ψJ/ψ < 4 × 10−5 90% 3869J/ψψ(2S) < 5 × 10−5 90% 3608
ψ(2S)ψ(2S) < 1.6 × 10−5 90% 3313�(2S)�(2S)�(2S)�(2S) IG (JPC ) = 0−(1−−)Mass m = 10023.26 ± 0.31 MeVm�(3S) − m�(2S) = 331.50 ± 0.13 MeVFull width � = 31.98 ± 2.63 keV�ee = 0.612 ± 0.011 keV

S
ale fa
tor/ p�(2S) DECAY MODES�(2S) DECAY MODES�(2S) DECAY MODES�(2S) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)�(1S)π+π− (17.85± 0.26) % 475�(1S)π0π0 ( 8.6 ± 0.4 ) % 480
τ+ τ− ( 2.00± 0.21) % 4686
µ+µ− ( 1.93± 0.17) % S=2.2 5011e+ e− ( 1.91± 0.16) % 5012�(1S)π0 < 4 × 10−5 CL=90% 531�(1S)η ( 2.9 ± 0.4 )× 10−4 S=2.0 126J/ψ(1S) anything < 6 × 10−3 CL=90% 4533J/ψ(1S)η
 < 5.4 × 10−6 CL=90% 3984J/ψ(1S)χ
0 < 3.4 × 10−6 CL=90% 3808J/ψ(1S)χ
1 < 1.2 × 10−6 CL=90% 3765J/ψ(1S)χ
2 < 2.0 × 10−6 CL=90% 3744J/ψ(1S)η
 (2S) < 2.5 × 10−6 CL=90% 3706J/ψ(1S)X (3940) < 2.0 × 10−6 CL=90% 3555J/ψ(1S)X (4160) < 2.0 × 10−6 CL=90% 3440
ψ(2S)η
 < 5.1 × 10−6 CL=90% 3732
ψ(2S)χ
0 < 4.7 × 10−6 CL=90% 3536
ψ(2S)χ
1 < 2.5 × 10−6 CL=90% 3488
ψ(2S)χ
2 < 1.9 × 10−6 CL=90% 3464
ψ(2S)η
 (2S) < 3.3 × 10−6 CL=90% 3421
ψ(2S)X (3940) < 3.9 × 10−6 CL=90% 3250
ψ(2S)X (4160) < 3.9 × 10−6 CL=90% 31182H anything ( 2.78+ 0.30

− 0.26)× 10−5 S=1.2 {hadrons (94 ±11 ) % {g g g (58.8 ± 1.2 ) % {
γ g g ( 1.87± 0.28) % {

φK+K− ( 1.6 ± 0.4 )× 10−6 4910
ωπ+π− < 2.58 × 10−6 CL=90% 4977K∗(892)0K−π++ 
.
. ( 2.3 ± 0.7 )× 10−6 4952
φ f ′2(1525) < 1.33 × 10−6 CL=90% 4841
ω f2(1270) < 5.7 × 10−7 CL=90% 4899
ρ(770)a2(1320) < 8.8 × 10−7 CL=90% 4894K∗(892)0K∗2(1430)0+ 
.
. ( 1.5 ± 0.6 )× 10−6 4869K1(1270)±K∓ < 3.22 × 10−6 CL=90% 4918K1(1400)±K∓ < 8.3 × 10−7 CL=90% 4901b1(1235)±π∓ < 4.0 × 10−7 CL=90% 4935
ρπ < 1.16 × 10−6 CL=90% 4981
π+π−π0 < 8.0 × 10−7 CL=90% 5007
ωπ0 < 1.63 × 10−6 CL=90% 4980
π+π−π0π0 ( 1.30± 0.28)× 10−5 5002K0S K+π−+ 
.
. ( 1.14± 0.33)× 10−6 4979K∗(892)0K0+ 
.
. < 4.22 × 10−6 CL=90% 4959K∗(892)−K++ 
.
. < 1.45 × 10−6 CL=90% 4960Sum of 100 ex
lusive modes ( 2.90± 0.30)× 10−3 {Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays
γχb1(1P) ( 6.9 ± 0.4 ) % 130
γχb2(1P) ( 7.15± 0.35) % 110
γχb0(1P) ( 3.8 ± 0.4 ) % 162
γ f0(1710) < 5.9 × 10−4 CL=90% 4864
γ f ′2(1525) < 5.3 × 10−4 CL=90% 4896
γ f2(1270) < 2.41 × 10−4 CL=90% 4930
γ η
 (1S) < 2.7 × 10−5 CL=90% 4568
γχ
0 < 1.0 × 10−4 CL=90% 4430
γχ
1 < 3.6 × 10−6 CL=90% 4397
γχ
2 < 1.5 × 10−5 CL=90% 4381
γX (3872) → π+π− J/ψ < 8 × 10−7 CL=90% {
γX (3872) → π+π−π0 J/ψ < 2.4 × 10−6 CL=90% {
γX (3915) → ωJ/ψ < 2.8 × 10−6 CL=90% {
γX (4140) → φJ/ψ < 1.2 × 10−6 CL=90% {
γX (4350) → φJ/ψ < 1.3 × 10−6 CL=90% {
γ ηb(1S) ( 3.9 ± 1.5 )× 10−4 605
γ ηb(1S) → γSum of 26 ex
lu-sive modes < 3.7 × 10−6 CL=90% {
γX b b → γSum of 26 ex
lusivemodes < 4.9 × 10−6 CL=90% {
γX → γ+ ≥ 4 prongs [iibb℄ < 1.95 × 10−4 CL=95% {
γA0 → γ hadrons < 8 × 10−5 CL=90% {
γ a01 → γµ+µ− < 8.3 × 10−6 CL=90% {Lepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modese± τ∓ LF < 3.2 × 10−6 CL=90% 4854
µ± τ∓ LF < 3.3 × 10−6 CL=90% 4854



82828282Meson SummaryTable�(1D)�(1D)�(1D)�(1D) IG (JPC ) = 0−(2−−)Mass m = 10163.7 ± 1.4 MeV (S = 1.7)�(1D) DECAY MODES�(1D) DECAY MODES�(1D) DECAY MODES�(1D) DECAY MODES Fra
tion (�i /�) p (MeV/
)
γ γ�(1S) seen 679

γχbJ (1P) seen 300
η�(1S) not seen 426
π+π−�(1S) (6.6±1.6)× 10−3 623
χb0(2P)χb0(2P)χb0(2P)χb0(2P) [hhbb℄ IG (JPC ) = 0+(0 + +)J needs 
on�rmation.Mass m = 10232.5 ± 0.4 ± 0.5 MeV p

χb0(2P) DECAY MODESχb0(2P) DECAY MODESχb0(2P) DECAY MODESχb0(2P) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
γ�(2S) (4.6±2.1) % 207
γ�(1S) (9 ±6 )× 10−3 743D0X < 8.2 % 90% {
π+π−K+K−π0 < 3.4 × 10−5 90% 50642π+π−K−K0S < 5 × 10−5 90% 50632π+π−K−K0S 2π0 < 2.2 × 10−4 90% 50362π+2π−2π0 < 2.4 × 10−4 90% 50922π+2π−K+K− < 1.5 × 10−4 90% 50502π+2π−K+K−π0 < 2.2 × 10−4 90% 50352π+2π−K+K−2π0 < 1.1 × 10−3 90% 50193π+2π−K−K0S π0 < 7 × 10−4 90% 50183π+3π− < 7 × 10−5 90% 50913π+3π−2π0 < 1.2 × 10−3 90% 50703π+3π−K+K− < 1.5 × 10−4 90% 50173π+3π−K+K−π0 < 7 × 10−4 90% 49994π+4π− < 1.7 × 10−4 90% 50694π+4π−2π0 < 6 × 10−4 90% 5039
χb1(2P)χb1(2P)χb1(2P)χb1(2P) [hhbb℄ IG (JPC ) = 0+(1 + +)J needs 
on�rmation.Mass m = 10255.46 ± 0.22 ± 0.50 MeVmχb1(2P) − mχb0(2P) = 23.5 ± 1.0 MeV p

χb1(2P) DECAY MODESχb1(2P) DECAY MODESχb1(2P) DECAY MODESχb1(2P) DECAY MODES Fra
tion (�i /�) S
ale fa
tor (MeV/
)
ω�(1S) ( 1.63+0.40

−0.34) % 135
γ�(2S) (19.9 ±1.9 ) % 230
γ�(1S) ( 9.2 ±0.8 ) % 1.1 764
ππχb1(1P) ( 9.1 ±1.3 )× 10−3 238D0X ( 8.8 ±1.7 ) % {
π+π−K+K−π0 ( 3.1 ±1.0 )× 10−4 50752π+π−K−K0S ( 1.1 ±0.5 )× 10−4 50752π+π−K−K0S 2π0 ( 7.7 ±3.2 )× 10−4 50472π+2π−2π0 ( 5.9 ±2.0 )× 10−4 51042π+2π−K+K− (10 ±4 )× 10−5 50622π+2π−K+K−π0 ( 5.5 ±1.8 )× 10−4 50472π+2π−K+K−2π0 (10 ±4 )× 10−4 50303π+2π−K−K0S π0 ( 6.7 ±2.6 )× 10−4 50293π+3π− ( 1.2 ±0.4 )× 10−4 51033π+3π−2π0 ( 1.2 ±0.4 )× 10−3 50813π+3π−K+K− ( 2.0 ±0.8 )× 10−4 50293π+3π−K+K−π0 ( 6.1 ±2.2 )× 10−4 50114π+4π− ( 1.7 ±0.6 )× 10−4 50804π+4π−2π0 ( 1.9 ±0.7 )× 10−3 5051
χb2(2P)χb2(2P)χb2(2P)χb2(2P) [hhbb℄ IG (JPC ) = 0+(2 + +)J needs 
on�rmation.Mass m = 10268.65 ± 0.22 ± 0.50 MeVmχb2(2P) − mχb1(2P) = 13.4 ± 0.6 MeV

S
ale fa
tor/ p
χb2(2P) DECAY MODESχb2(2P) DECAY MODESχb2(2P) DECAY MODESχb2(2P) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)
ω�(1S) ( 1.10+0.34

−0.30) % 194
γ�(2S) (10.6 ±2.6 ) % S=2.0 242
γ�(1S) ( 7.0 ±0.7 ) % 777
ππχb2(1P) ( 5.1 ±0.9 ) × 10−3 229D0X < 2.4 % CL=90% {
π+π−K+K−π0 < 1.1 × 10−4 CL=90% 50822π+π−K−K0S < 9 × 10−5 CL=90% 50822π+π−K−K0S 2π0 < 7 × 10−4 CL=90% 50542π+2π−2π0 ( 3.9 ±1.6 ) × 10−4 51102π+2π−K+K− ( 9 ±4 ) × 10−5 50682π+2π−K+K−π0 ( 2.4 ±1.1 ) × 10−4 50542π+2π−K+K−2π0 ( 4.7 ±2.3 ) × 10−4 50373π+2π−K−K0S π0 < 4 × 10−4 CL=90% 50363π+3π− ( 9 ±4 ) × 10−5 51103π+3π−2π0 ( 1.2 ±0.4 ) × 10−3 50883π+3π−K+K− ( 1.4 ±0.7 ) × 10−4 50363π+3π−K+K−π0 ( 4.2 ±1.7 ) × 10−4 50174π+4π− ( 9 ±5 ) × 10−5 50874π+4π−2π0 ( 1.3 ±0.5 ) × 10−3 5058�(3S)�(3S)�(3S)�(3S) IG (JPC ) = 0−(1−−)Mass m = 10355.2 ± 0.5 MeVm�(3S) − m�(2S) = 331.50 ± 0.13 MeVFull width � = 20.32 ± 1.85 keV�ee = 0.443 ± 0.008 keV S
ale fa
tor/ p�(3S) DECAY MODES�(3S) DECAY MODES�(3S) DECAY MODES�(3S) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)�(2S)anything (10.6 ±0.8 ) % 296�(2S)π+π− ( 2.82±0.18) % S=1.6 177�(2S)π0π0 ( 1.85±0.14) % 190�(2S)γ γ ( 5.0 ±0.7 ) % 327�(2S)π0 < 5.1 × 10−4 CL=90% 298�(1S)π+π− ( 4.37±0.08) % 813�(1S)π0π0 ( 2.20±0.13) % 816�(1S)η < 1 × 10−4 CL=90% 677�(1S)π0 < 7 × 10−5 CL=90% 846hb(1P)π0 < 1.2 × 10−3 CL=90% 426hb(1P)π0 → γ ηb(1S)π0 ( 4.3 ±1.4 ) × 10−4 {hb(1P)π+π− < 1.2 × 10−4 CL=90% 353
τ+ τ− ( 2.29±0.30) % 4863
µ+µ− ( 2.18±0.21) % S=2.1 5177e+ e− seen 5178g g g (35.7 ±2.6 ) % {
γ g g ( 9.7 ±1.8 ) × 10−3 {2H anything ( 2.33±0.33) × 10−5 {Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays
γχb2(2P) (13.1 ±1.6 ) % S=3.4 86
γχb1(2P) (12.6 ±1.2 ) % S=2.4 99
γχb0(2P) ( 5.9 ±0.6 ) % S=1.4 122
γχb2(1P) ( 9.9 ±1.3 ) × 10−3 S=2.0 434
γA0 → γ hadrons < 8 × 10−5 CL=90% {
γχb1(1P) ( 9 ±5 ) × 10−4 S=1.9 452
γχb0(1P) ( 2.7 ±0.4 ) × 10−3 484
γ ηb(2S) < 6.2 × 10−4 CL=90% 350
γ ηb(1S) ( 5.1 ±0.7 ) × 10−4 913
γX → γ+ ≥ 4 prongs [jjbb℄ < 2.2 × 10−4 CL=95% {
γ a01 → γµ+µ− < 5.5 × 10−6 CL=90% {
γ a01 → γ τ+ τ− [kkbb℄ < 1.6 × 10−4 CL=90% {Lepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modese± τ∓ LF < 4.2 × 10−6 CL=90% 5025
µ± τ∓ LF < 3.1 × 10−6 CL=90% 5025



83838383Meson Summary Table
χb1(3P)χb1(3P)χb1(3P)χb1(3P) IG (JPC ) = 0+(1 + +)Mass m = 10512.1 ± 2.3 MeV

χb1(3P) DECAY MODESχb1(3P) DECAY MODESχb1(3P) DECAY MODESχb1(3P) DECAY MODES Fra
tion (�i /�) p (MeV/
)�(1S)γ seen 999�(2S)γ seen 477�(3S)γ seen 156�(4S)�(4S)�(4S)�(4S)or �(10580)or �(10580)or �(10580)or �(10580) IG (JPC ) = 0−(1−−)Mass m = 10579.4 ± 1.2 MeVFull width � = 20.5 ± 2.5 MeV�ee = 0.272 ± 0.029 keV (S = 1.5) p�(4S) DECAY MODES�(4S) DECAY MODES�(4S) DECAY MODES�(4S) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)BB > 96 % 95% 326B+B− (51.4 ±0.6 ) % 331D+s anything + 
.
. (17.8 ±2.6 ) % {B0B0 (48.6 ±0.6 ) % 326J/ψK0S + (J/ψ, η
 )K0S < 4 × 10−7 90% {non-BB < 4 % 95% {e+ e− ( 1.57±0.08) × 10−5 5290
ρ+ρ− < 5.7 × 10−6 90% 5233K∗(892)0K0 < 2.0 × 10−6 90% 5240J/ψ(1S) anything < 1.9 × 10−4 95% {D∗+ anything + 
.
. < 7.4 % 90% 5099
φ anything ( 7.1 ±0.6 ) % 5240

φη < 1.8 × 10−6 90% 5226
φη′ < 4.3 × 10−6 90% 5196

ρη < 1.3 × 10−6 90% 5247
ρη′ < 2.5 × 10−6 90% 5217�(1S) anything < 4 × 10−3 90% 1053�(1S)π+π− ( 8.1 ±0.6 ) × 10−5 1026�(1S)η ( 1.96±0.28) × 10−4 924�(2S)π+π− ( 8.6 ±1.3 ) × 10−5 468hb(1P)π+π− not seen 600hb(1P)η ( 2.18±0.21) × 10−3 3902H anything < 1.3 × 10−5 90% {X (10610)±X (10610)±X (10610)±X (10610)± IG (JP ) = 1+(1+)Mass m = 10607.2 ± 2.0 MeVFull width � = 18.4 ± 2.4 MeVX (10610)− de
ay modes are 
harge 
onjugates of the modes below.X (10610)+ DECAY MODESX (10610)+ DECAY MODESX (10610)+ DECAY MODESX (10610)+ DECAY MODES Fra
tion (�i /�) p (MeV/
)�(1S)π+ seen 1077�(2S)π+ seen 551�(3S)π+ seen 207hb(1P)π+ seen 671hb(2P)π+ seen 313X (10610)0X (10610)0X (10610)0X (10610)0 IG (JP ) = 1+(1+)Mass m = 10609 ± 6 MeVX (10610)0 DECAY MODESX (10610)0 DECAY MODESX (10610)0 DECAY MODESX (10610)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)�(1S)π0 not seen 1079�(2S)π0 seen 554�(3S)π0 seen 212�(10860)�(10860)�(10860)�(10860) IG (JPC ) = 0−(1−−)Mass m = 10891 ± 4 MeVFull width � = 54 ± 7 MeV�ee = 0.31 ± 0.07 keV (S = 1.3)

p�(10860) DECAY MODES�(10860) DECAY MODES�(10860) DECAY MODES�(10860) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)BBX ( 76.2 +2.7
−4.0 ) % {BB ( 5.5 ±1.0 ) % 1334BB∗ + 
.
. ( 13.7 ±1.6 ) % {B∗B∗ ( 38.1 ±3.4 ) % 1141BB(∗)π < 19.7 % 90% 1031BB π ( 0.0 ±1.2 ) % 1031B∗B π + BB∗π ( 7.3 ±2.3 ) % {B∗B∗π ( 1.0 ±1.4 ) % 761BB ππ < 8.9 % 90% 580B(∗)s B(∗)s ( 20.1 ±3.1 ) % 923Bs Bs ( 5 ±5 )× 10−3 923Bs B∗s + 
.
. ( 1.35±0.32) % {B∗s B∗s ( 17.6 ±2.7 ) % 572no open-bottom ( 3.8 +5.0
−0.5 ) % {e+ e− ( 5.7 ±1.5 )× 10−6 5446K∗(892)0K0 < 1.0 × 10−5 90% 5398�(1S)π+π− ( 5.3 ±0.6 )× 10−3 1311�(2S)π+π− ( 7.8 ±1.3 )× 10−3 789�(3S)π+π− ( 4.8 +1.9
−1.7 )× 10−3 446�(1S)K+K− ( 6.1 ±1.8 )× 10−4 966hb(1P)π+π− ( 3.5 +1.0
−1.3 )× 10−3 908hb(2P)π+π− ( 6.0 +2.1
−1.8 )× 10−3 550

χb0(1P)π+π−π0 < 6.3 × 10−3 90% 900
χb0(1P)ω < 3.9 × 10−3 90% 640
χb0(1P)(π+π−π0)non−ω < 4.8 × 10−3 90% {

χb1(1P)π+π−π0 ( 1.85±0.33)× 10−3 867
χb1(1P)ω ( 1.57±0.30)× 10−3 591
χb1(1P)(π+π−π0)non−ω ( 5.2 ±1.9 )× 10−4 {

χb2(1P)π+π−π0 ( 1.17±0.30)× 10−3 847
χb2(1P)ω ( 6.0 ±2.7 )× 10−4 561
χb2(1P)(π+π−π0)non−ω ( 6 ±4 )× 10−4 {

γXb → γ�(1S)ω < 3.8 × 10−5 90% {In
lusive De
ays.In
lusive De
ays.In
lusive De
ays.In
lusive De
ays.These de
ay modes are submodes of one or more of the de
ay modesabove.
φ anything ( 13.8 +2.4

−1.7 ) % {D0 anything + 
.
. (108 ±8 ) % {Ds anything + 
.
. ( 46 ±6 ) % {J/ψ anything ( 2.06±0.21) % {B0 anything + 
.
. ( 77 ±8 ) % {B+ anything + 
.
. ( 72 ±6 ) % {�(11020)�(11020)�(11020)�(11020) IG (JPC ) = 0−(1−−)Mass m = 10987.5+11.0
− 3.4 MeVFull width � = 61+ 9

−28 MeV�ee = 0.130 ± 0.030 keV�(11020) DECAY MODES�(11020) DECAY MODES�(11020) DECAY MODES�(11020) DECAY MODES Fra
tion (�i /�) p (MeV/
)e+ e− (2.1+1.1
−0.6)× 10−6 5494



84848484Meson Summary TableNOTESIn this Summary Table:When a quantity has \(S = . . .)" to its right, the error on the quantity hasbeen enlarged by the \s
ale fa
tor" S, de�ned as S = √

χ2/(N − 1), whereN is the number of measurements used in 
al
ulating the quantity. Wedo this when S > 1, whi
h often indi
ates that the measurements are in
on-sistent. When S > 1.25, we also show in the Parti
le Listings an ideogram ofthe measurements. For more about S, see the Introdu
tion.A de
ay momentum p is given for ea
h de
ay mode. For a 2-body de
ay, p isthe momentum of ea
h de
ay produ
t in the rest frame of the de
ayingparti
le. For a 3-or-more-body de
ay, p is the largest momentum any of theprodu
ts 
an have in this frame.[a℄ See the \Note on π± → ℓ±ν γ and K± → ℓ±ν γ Form Fa
tors" in the
π± Parti
le Listings for de�nitions and details.[b℄ Measurements of �(e+νe )/�(µ+ νµ) always in
lude de
ays with γ's, andmeasurements of �(e+ νe γ) and �(µ+ νµ γ) never in
lude low-energy γ's.Therefore, sin
e no 
lean separation is possible, we 
onsider the modeswith γ's to be subrea
tions of the modes without them, and let [�(e+ νe )+ �(µ+ νµ)℄/�total = 100%.[
 ℄ See the π± Parti
le Listings for the energy limits used in this measure-ment; low-energy γ's are not in
luded.[d ℄ Derived from an analysis of neutrino-os
illation experiments.[e℄ Astrophysi
al and 
osmologi
al arguments give limits of order 10−13; seethe π0 Parti
le Listings.[f ℄ C parity forbids this to o

ur as a single-photon pro
ess.[g ℄ See the \Note on s
alar mesons" in the f0(500) Parti
le Listings . Theinterpretation of this entry as a parti
le is 
ontroversial.[h℄ See the \Note on ρ(770)" in the ρ(770) Parti
le Listings .[i ℄ The ωρ interferen
e is then due to ωρ mixing only, and is expe
ted tobe small. If eµ universality holds, �(ρ0 → µ+µ−) = �(ρ0 → e+ e−)
× 0.99785.[j ℄ See the \Note on s
alar mesons" in the f0(500) Parti
le Listings .[k ℄ See the \Note on a1(1260)" in the a1(1260) Parti
le Listings in PDG 06,Journal of Physi
s G33G33G33G33 1 (2006).[l ℄ This is only an edu
ated guess; the error given is larger than the error onthe average of the published values. See the Parti
le Listings for details.[n℄ See the \Note on non-qq mesons" in the Parti
le Listings in PDG 06,Journal of Physi
s G33G33G33G33 1 (2006).[o℄ See the \Note on the η(1405)" in the η(1405) Parti
le Listings.[p℄ See the \Note on the f1(1420)" in the η(1405) Parti
le Listings.[q℄ See also the ω(1650) Parti
le Listings.[r ℄ See the \Note on the ρ(1450) and the ρ(1700)" in the ρ(1700) Parti
leListings.[s℄ See also the ω(1420) Parti
le Listings.[t℄ See the \Note on f0(1710)" in the f0(1710) Parti
le Listings in 2004edition of Review of Parti
le Physi
s.[u℄ See the note in the K± Parti
le Listings.[v ℄ Negle
ting photon 
hannels. See, e.g., A. Pais and S.B. Treiman, Phys.Rev. D12D12D12D12, 2744 (1975).[x ℄ The de�nition of the slope parameters of the K → 3π Dalitz plot is asfollows (see also \Note on Dalitz Plot Parameters for K → 3π De
ays"in the K± Parti
le Listings):

∣

∣M∣

∣

2 = 1 + g (s3 − s0)/m2
π+ + · · · .[y ℄ For more details and de�nitions of parameters see the Parti
le Listings.[z ℄ See the K± Parti
le Listings for the energy limits used in this measure-ment.[aa℄ Most of this radiative mode, the low-momentum γ part, is also in
ludedin the parent mode listed without γ's.[bb℄ Stru
ture-dependent part.[

 ℄ Dire
t-emission bran
hing fra
tion.[dd ℄ Violates angular-momentum 
onservation.[ee℄ Derived from measured values of φ+−, φ00, ∣

∣η
∣

∣, ∣

∣mK0L − mK0S ∣

∣, and
τK0S , as des
ribed in the introdu
tion to \Tests of Conservation Laws."[� ℄ The CP-violation parameters are de�ned as follows (see also \Note onCP Violation in KS → 3π" and \Note on CP Violation in K0L De
ay"in the Parti
le Listings):

η+− = ∣

∣η+−
∣

∣eiφ+− = A(K0L → π+π−)A(K0S → π+π−) = ǫ + ǫ′

η00 = ∣

∣η00∣∣eiφ00 = A(K0L → π0π0)A(K0S → π0π0) = ǫ − 2ǫ′
δ = �(K0L → π− ℓ+ν) − �(K0L → π+ ℓ−ν)�(K0L → π− ℓ+ν) + �(K0L → π+ ℓ−ν) ,Im(η+−0)2 = �(K0S → π+π−π0)CP viol.�(K0L → π+π−π0) ,Im(η000)2 = �(K0S → π0π0π0)�(K0L → π0π0π0) .where for the last two relations CPT is assumed valid, i.e., Re(η+−0) ≃0 and Re(η000) ≃ 0.[gg ℄ See the K0S Parti
le Listings for the energy limits used in this measure-ment.[hh℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.[ii ℄ Re(ǫ′/ǫ) = ǫ′/ǫ to a very good approximation provided the phases satisfyCPT invarian
e.[jj ℄ This mode in
ludes gammas from inner bremsstrahlung but not the dire
temission mode K0L → π+π− γ(DE).[kk ℄ See the K0L Parti
le Listings for the energy limits used in this measure-ment.[ll ℄ Allowed by higher-order ele
troweak intera
tions.[nn℄ Violates CP in leading order. Test of dire
t CP violation sin
e the in-dire
t CP-violating and CP-
onserving 
ontributions are expe
ted to besuppressed.[oo℄ See the \Note on f0(1370)" in the f0(1370) Parti
le Listings and in the1994 edition.[pp℄ See the note in the L(1770) Parti
le Listings in Reviews of ModernPhysi
s 56565656 S1 (1984), p. S200. See also the \Note on K2(1770) and theK2(1820)" in the K2(1770) Parti
le Listings .[qq℄ See the \Note on K2(1770) and the K2(1820)" in the K2(1770) Parti
leListings .[rr ℄ This result applies to Z0 → 
 
 de
ays only. Here ℓ+ is an average (nota sum) of e+ and µ+ de
ays.[ss℄ See the Parti
le Listings for the (
ompli
ated) de�nition of this quantity.[tt℄ The bran
hing fra
tion for this mode may di�er from the sum of thesubmodes that 
ontribute to it, due to interferen
e e�e
ts. See therelevant papers in the Parti
le Listings.[uu℄ These subfra
tions of the K−2π+ mode are un
ertain: see the Parti
leListings.[vv ℄ Submodes of the D+ → K−2π+π0 and K0S 2π+π− modes were studiedby ANJOS 92C and COFFMAN 92B, but with at most 142 events for the�rst mode and 229 for the se
ond { not enough for pre
ise results. Withnothing new for 18 years, we refer to our 2008 edition, Physi
s LettersB667B667B667B667 1 (2008), for those results.[xx ℄ The unseen de
ay modes of the resonan
es are in
luded.[yy ℄ This is not a test for the �C=1 weak neutral 
urrent, but leads to the

π+ ℓ+ ℓ− �nal state.[zz ℄ This mode is not a useful test for a �C=1 weak neutral 
urrent be
auseboth quarks must 
hange 
avor in this de
ay.[aaa℄ In the 2010 Review, the values for these quantities were given using ameasure of the asymmetry that was in
onsistent with the usual de�nition.[bbb℄ This value is obtained by subtra
ting the bran
hing fra
tions for 2-, 4-and 6-prongs from unity.[


 ℄ This is the sum of our K−2π+π−, K−2π+π−π0,K0 2π+2π−, K+2K−π+, 2π+ 2π−, 2π+2π−π0, K+K−π+π−, andK+K−π+π−π0, bran
hing fra
tions.[ddd ℄ This is the sum of our K−3π+2π− and 3π+3π− bran
hing fra
tions.[eee℄ The bran
hing fra
tions for the K− e+ νe , K∗(892)− e+νe , π− e+νe ,and ρ− e+ νe modes add up to 6.19 ± 0.17 %.[�f ℄ This is a doubly Cabibbo-suppressed mode.[ggg ℄ The two experiments measuring this fra
tion are in serious disagreement.See the Parti
le Listings.[hhh℄ Submodes of the D0 → K0S π+π−π0 mode with a K∗ and/or ρ werestudied by COFFMAN 92B, but with only 140 events. With nothing new



85858585Meson Summary Tablefor 18 years, we refer to our 2008 edition, Physi
s Letters B667B667B667B667 1 (2008),for those results.[iii ℄ This bran
hing fra
tion in
ludes all the de
ay modes of the resonan
e inthe �nal state.[jjj ℄ This limit is for either D0 or D0 to pe−.[kkk ℄ This limit is for either D0 or D0 to pe+.[lll ℄ This is the purely e+ semileptoni
 bran
hing fra
tion: the e+ fra
tionfrom τ+ de
ays has been subtra
ted o�. The sum of our (non-τ) e+ex
lusive fra
tions | an e+νe with an η, η′, φ, K0, K∗0, or f0(980) |is 7.0 ± 0.4 %[nnn℄ This fra
tion in
ludes η from η′ de
ays.[ooo℄ Two times (to in
lude µ de
ays) the η′ e+ νe bran
hing fra
tion, plus the
η′π+, η′ρ+, and η′K+ fra
tions, is (18.6 ± 2.3)%, whi
h 
onsiderablyex
eeds the in
lusive η′ fra
tion of (11.7± 1.8)%. Our best guess is thatthe η′ρ+ fra
tion, (12.5 ± 2.2)%, is too large.[ppp℄ This bran
hing fra
tion in
ludes all the de
ay modes of the �nal-stateresonan
e.[qqq℄ A test for uu or dd 
ontent in the D+s . Neither Cabibbo-favored norCabibbo-suppressed de
ays 
an 
ontribute, and ω−φ mixing is an unlikelyexplanation for any fra
tion above about 2× 10−4.[rrr ℄ We de
ouple the D+s → φπ+ bran
hing fra
tion obtained from massproje
tions (and used to get some of the other bran
hing fra
tions) fromthe D+s → φπ+, φ → K+K− bran
hing fra
tion obtained from theDalitz-plot analysis of D+s → K+K−π+. That is, the ratio of these twobran
hing fra
tions is not exa
tly the φ → K+K− bran
hing fra
tion0.491.[sss℄ This is the average of a model-independent and a K-matrix parametriza-tion of the π+π− S-wave and is a sum over several f0 mesons.[ttt℄ An ℓ indi
ates an e or a µ mode, not a sum over these modes.[uuu℄ An CP(±1) indi
ates the CP=+1 and CP=−1 eigenstates of the D0-D0system.[vvv ℄ D denotes D0 or D0.[xxx ℄ D∗0

CP+ de
ays into D0π0 with the D0 re
onstru
ted in CP-even eigen-states K+K− and π+π−.[yyy ℄ D∗∗ represents an ex
ited state with mass 2.2 < M < 2.8 GeV/
2.[zzz ℄ X (3872)+ is a hypotheti
al 
harged partner of the X (3872).[aaaa℄ �(1710)++ is a possible narrow pentaquark state and G (2220) is apossible glueball resonan
e.[bbaa℄ (�−
 p)s denotes a low-mass enhan
ement near 3.35 GeV/
2.[

aa℄ Stands for the possible 
andidates of K∗(1410), K∗0(1430) andK∗2(1430).[ddaa℄ B0 and B0s 
ontributions not separated. Limit is on weighted averageof the two de
ay rates.[eeaa℄ This de
ay refers to the 
oherent sum of resonant and nonresonant JP= 0+ K π 
omponents with 1.60 < mK π < 2.15 GeV/
2.

[�aa℄ X (214) is a hypotheti
al parti
le of mass 214 MeV/
2 reported by theHyperCP experiment, Physi
al Review Letters 94949494 021801 (2005)[ggaa℄ �(1540)+ denotes a possible narrow pentaquark state.[hhaa℄ Here S and P are the hypotheti
al s
alar and pseudos
alar parti
les withmasses of 2.5 GeV/
2 and 214.3 MeV/
2, respe
tively.[iiaa℄ These values are model dependent.[jjaa℄ Here \anything" means at least one parti
le observed.[kkaa℄ This is a B(B0 → D∗− ℓ+νℓ) value.[llaa℄ D∗∗ stands for the sum of the D(1 1P1), D(1 3P0), D(1 3P1), D(1 3P2),D(2 1S0), and D(2 1S1) resonan
es.[nnaa℄ D(∗)D(∗) stands for the sum of D∗D∗, D∗D , DD∗, and DD .[ooaa℄ X (3915) denotes a near-threshold enhan
ement in the ωJ/ψ mass spe
-trum.[ppaa℄ In
lusive bran
hing fra
tions have a multipli
ity de�nition and 
an begreater than 100%.[qqaa℄ Dj represents an unresolved mixture of pseudos
alar and tensor D∗∗(P-wave) states.[rraa℄ Not a pure measurement. See note at head of B0s De
ay Modes.[ssaa℄ For Eγ > 100 MeV.[ttaa℄ In
ludes ppπ+π− γ and ex
ludes ppη, ppω, ppη′.[uuaa℄ For a narrow state A with mass less than 960 MeV.[vvaa℄ For a narrow s
alar or pseudos
alar A0 with mass 0.21{3.0 GeV.[xxaa℄ For a narrow resonan
e in the range 2.2 < M(X ) < 2.8 GeV.[yyaa℄ JPC known by produ
tion in e+ e− via single photon annihilation. IGis not known; interpretation of this state as a single resonan
e is un
learbe
ause of the expe
tation of substantial threshold e�e
ts in this energyregion.[zzaa℄ 2mτ < M(τ+ τ−) < 9.2 GeV[aabb℄ 2 GeV < mK+K− < 3 GeV[bbbb℄X = s
alar with m < 8.0 GeV[

bb℄ X X = ve
tors with m < 3.1 GeV[ddbb℄X and X = zero spin with m < 4.5 GeV[eebb℄ 1.5 GeV < mX < 5.0 GeV[�bb℄ 201 MeV < M(µ+µ−) < 3565 MeV[ggbb℄ 0.5 GeV < mX < 9.0 GeV, where mX is the invariant mass of thehadroni
 �nal state.[hhbb℄ Spe
tros
opi
 labeling for these states is theoreti
al, pending experi-mental information.[iibb℄ 1.5 GeV < mX < 5.0 GeV[jjbb℄ 1.5 GeV < mX < 5.0 GeV[kkbb℄ For mτ+ τ− in the ranges 4.03{9.52 and 9.61{10.10 GeV.



86868686Meson Summary TableSee also the table of suggested qq quark-model assignments in the Quark Model se
tion.
• Indi
ates parti
les that appear in the pre
eding Meson Summary Table. We do not regard the other entries as being established.LIGHT UNFLAVORED(S = C = B = 0)IG (JPC ) IG (JPC )

• π± 1−(0−)
• π0 1−(0−+)
• η 0+(0− +)
• f0(500) 0+(0 + +)
• ρ(770) 1+(1−−)
• ω(782) 0−(1−−)
• η′(958) 0+(0− +)
• f0(980) 0+(0 + +)
• a0(980) 1−(0 + +)
• φ(1020) 0−(1−−)
• h1(1170) 0−(1 +−)
• b1(1235) 1+(1 +−)
• a1(1260) 1−(1 + +)
• f2(1270) 0+(2 + +)
• f1(1285) 0+(1 + +)
• η(1295) 0+(0− +)
• π(1300) 1−(0−+)
• a2(1320) 1−(2 + +)
• f0(1370) 0+(0 + +)h1(1380) ?−(1 +−)
• π1(1400) 1−(1−+)
• η(1405) 0+(0− +)
• f1(1420) 0+(1 + +)
• ω(1420) 0−(1−−)f2(1430) 0+(2 + +)
• a0(1450) 1−(0 + +)
• ρ(1450) 1+(1−−)
• η(1475) 0+(0− +)
• f0(1500) 0+(0 + +)f1(1510) 0+(1 + +)
• f ′2(1525) 0+(2 + +)f2(1565) 0+(2 + +)

ρ(1570) 1+(1−−)h1(1595) 0−(1 +−)
• π1(1600) 1−(1−+)a1(1640) 1−(1 + +)f2(1640) 0+(2 + +)
• η2(1645) 0+(2− +)
• ω(1650) 0−(1−−)
• ω3(1670) 0−(3−−)
• π2(1670) 1−(2−+)
• φ(1680) 0−(1−−)

• ρ3(1690) 1+(3−−)
• ρ(1700) 1+(1−−)a2(1700) 1−(2 + +)
• f0(1710) 0+(0 + +)

η(1760) 0+(0− +)
• π(1800) 1−(0−+)f2(1810) 0+(2 + +)X (1835) ??(0−+)X (1840) ??(???)a1(1420) 1−(1 + +)
• φ3(1850) 0−(3−−)

η2(1870) 0+(2− +)
• π2(1880) 1−(2−+)

ρ(1900) 1+(1−−)f2(1910) 0+(2 + +)a0(1950) 1−(0 + +)
• f2(1950) 0+(2 + +)

ρ3(1990) 1+(3−−)
• f2(2010) 0+(2 + +)f0(2020) 0+(0 + +)
• a4(2040) 1−(4 + +)
• f4(2050) 0+(4 + +)

π2(2100) 1−(2−+)f0(2100) 0+(0 + +)f2(2150) 0+(2 + +)
ρ(2150) 1+(1−−)

• φ(2170) 0−(1−−)f0(2200) 0+(0 + +)fJ(2220) 0+(2 + +or 4 + +)
η(2225) 0+(0− +)
ρ3(2250) 1+(3−−)

• f2(2300) 0+(2 + +)f4(2300) 0+(4 + +)f0(2330) 0+(0 + +)
• f2(2340) 0+(2 + +)

ρ5(2350) 1+(5−−)a6(2450) 1−(6 + +)f6(2510) 0+(6 + +)OTHER LIGHTFurther States

STRANGE(S = ±1, C = B = 0)I(JP)
• K± 1/2(0−)
• K 0 1/2(0−)
• K 0S 1/2(0−)
• K 0L 1/2(0−)K ∗0(800) 1/2(0+)
• K ∗(892) 1/2(1−)
• K1(1270) 1/2(1+)
• K1(1400) 1/2(1+)
• K ∗(1410) 1/2(1−)
• K ∗0(1430) 1/2(0+)
• K ∗2(1430) 1/2(2+)K (1460) 1/2(0−)K2(1580) 1/2(2−)K (1630) 1/2(??)K1(1650) 1/2(1+)
• K ∗(1680) 1/2(1−)
• K2(1770) 1/2(2−)
• K ∗3(1780) 1/2(3−)
• K2(1820) 1/2(2−)K (1830) 1/2(0−)K ∗0(1950) 1/2(0+)K ∗2(1980) 1/2(2+)
• K ∗4(2045) 1/2(4+)K2(2250) 1/2(2−)K3(2320) 1/2(3+)K ∗5(2380) 1/2(5−)K4(2500) 1/2(4−)K (3100) ??(???)CHARMED(C = ±1)
• D± 1/2(0−)
• D0 1/2(0−)
• D∗(2007)0 1/2(1−)
• D∗(2010)± 1/2(1−)
• D∗0(2400)0 1/2(0+)D∗0(2400)± 1/2(0+)
• D1(2420)0 1/2(1+)D1(2420)± 1/2(??)D1(2430)0 1/2(1+)
• D∗2(2460)0 1/2(2+)
• D∗2(2460)± 1/2(2+)D(2550)0 1/2(??)D∗J(2600) 1/2(??)D∗(2640)± 1/2(??)D(2740)0 1/2(??)D(2750) 1/2(3−)D(3000)0 1/2(??)

CHARMED, STRANGE(C = S = ±1)I(JP)
• D±s 0(0−)
• D∗±s 0(??)
• D∗s0(2317)± 0(0+)
• Ds1(2460)± 0(1+)
• Ds1(2536)± 0(1+)
• Ds2(2573) 0(2+)
• D∗s1(2700)± 0(1−)D∗s1(2860)± 0(1−)D∗s1(2860)± 0(3−)DsJ(3040)± 0(??)BOTTOM(B = ±1)
• B± 1/2(0−)
• B0 1/2(0−)
• B±/B0 ADMIXTURE
• B±/B0/B0s/b-baryonADMIXTUREVcb and Vub CKM Ma-trix Elements
• B∗ 1/2(1−)
• B1(5721)+ 1/2(1+)
• B1(5721)0 1/2(1+)B∗J(5732) ?(??)
• B∗2(5747)+ 1/2(2+)
• B∗2(5747)0 1/2(2+)BJ(5840)+ 1/2(??)BJ(5840)0 1/2(??)
• BJ(5970)+ 1/2(??)
• BJ(5970)0 1/2(??)BOTTOM, STRANGE(B = ±1, S = ∓1)
• B0s 0(0−)
• B∗s 0(1−)
• Bs1(5830)0 0(1+)
• B∗s2(5840)0 0(2+)B∗

sJ
(5850) ?(??)BOTTOM, CHARMED(B = C = ±1)

• B+
 0(0−)B
(2S)± 0(0−)



 IG (JPC )
• η
(1S) 0+(0−+)
• J/ψ(1S) 0−(1−−)
• χ
0(1P) 0+(0 + +)
• χ
1(1P) 0+(1 + +)
• h
(1P) ??(1 +−)
• χ
2(1P) 0+(2 + +)
• η
(2S) 0+(0−+)
• ψ(2S) 0−(1−−)
• ψ(3770) 0−(1−−)
• ψ(3823) ??(2−−)
• X (3872) 0+(1 + +)
• X (3900) 1+(1 +−)
• X (3915) 0+(0/2+ +)
• χ
2(2P) 0+(2 + +)X (3940) ??(???)
• X (4020) 1(??)
• ψ(4040) 0−(1−−)X (4050)± ?(??)X (4055)± ?(??)
• X (4140) 0+(??+)
• ψ(4160) 0−(1−−)X (4160) ??(???)X (4200)± ?(1+)X (4230) ??(1−−)X (4240)± ??(0−)X (4250)± ?(??)
• X (4260) ??(1−−)X (4350) 0+(??+)
• X (4360) ??(1−−)
• ψ(4415) 0−(1−−)
• X (4430)± ?(1+)
• X (4660) ??(1−−)bb
• ηb(1S) 0+(0−+)
•�(1S) 0−(1−−)
• χb0(1P) 0+(0 + +)
• χb1(1P) 0+(1 + +)
• hb(1P) ??(1 +−)
• χb2(1P) 0+(2 + +)

ηb(2S) 0+(0−+)
•�(2S) 0−(1−−)
•�(1D) 0−(2−−)
• χb0(2P) 0+(0 + +)
• χb1(2P) 0+(1 + +)hb(2P) ??(1 +−)
• χb2(2P) 0+(2 + +)
•�(3S) 0−(1−−)
• χb1(3P) 0+(1 + +)
•�(4S) 0−(1−−)
• X (10610)± 1+(1+)
• X (10610)0 1+(1+)X (10650)± ?+(1+)
•�(10860) 0−(1−−)
•�(11020) 0−(1−−)



87878787Baryon Summary TableThis short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3- or4-star status are in
luded in the Baryon Summary Table. Due to insuÆ
ient data or un
ertain interpretation, the other entries in the tableare not established baryons. The names with masses are of baryons that de
ay strongly. The spin-parity J
P (when known) is given with ea
hparti
le. For the strongly de
aying parti
les, the J

P values are 
onsidered to be part of the names.p 1/2+ ****n 1/2+ ****N(1440) 1/2+ ****N(1520) 3/2− ****N(1535) 1/2− ****N(1650) 1/2− ****N(1675) 5/2− ****N(1680) 5/2+ ****N(1700) 3/2− ***N(1710) 1/2+ ****N(1720) 3/2+ ****N(1860) 5/2+ **N(1875) 3/2− ***N(1880) 1/2+ **N(1895) 1/2− **N(1900) 3/2+ ***N(1990) 7/2+ **N(2000) 5/2+ **N(2040) 3/2+ *N(2060) 5/2− **N(2100) 1/2+ *N(2120) 3/2− **N(2190) 7/2− ****N(2220) 9/2+ ****N(2250) 9/2− ****N(2300) 1/2+ **N(2570) 5/2− **N(2600) 11/2− ***N(2700) 13/2+ **

�(1232) 3/2+ ****�(1600) 3/2+ ***�(1620) 1/2− ****�(1700) 3/2− ****�(1750) 1/2+ *�(1900) 1/2− **�(1905) 5/2+ ****�(1910) 1/2+ ****�(1920) 3/2+ ***�(1930) 5/2− ***�(1940) 3/2− **�(1950) 7/2+ ****�(2000) 5/2+ **�(2150) 1/2− *�(2200) 7/2− *�(2300) 9/2+ **�(2350) 5/2− *�(2390) 7/2+ *�(2400) 9/2− **�(2420) 11/2+ ****�(2750) 13/2− **�(2950) 15/2+ **� 1/2+ ****�(1405) 1/2− ****�(1520) 3/2− ****�(1600) 1/2+ ***�(1670) 1/2− ****�(1690) 3/2− ****�(1710) 1/2+ *�(1800) 1/2− ***�(1810) 1/2+ ***�(1820) 5/2+ ****�(1830) 5/2− ****�(1890) 3/2+ ****�(2000) *�(2020) 7/2+ *�(2050) 3/2− *�(2100) 7/2− ****�(2110) 5/2+ ***�(2325) 3/2− *�(2350) 9/2+ ***�(2585) **

�+ 1/2+ ****� 0 1/2+ ****�− 1/2+ ****� (1385) 3/2+ ****� (1480) *� (1560) **� (1580) 3/2− *� (1620) 1/2− *� (1660) 1/2+ ***� (1670) 3/2− ****� (1690) **� (1730) 3/2+ *� (1750) 1/2− ***� (1770) 1/2+ *� (1775) 5/2− ****� (1840) 3/2+ *� (1880) 1/2+ **� (1900) 1/2− *� (1915) 5/2+ ****� (1940) 3/2+ *� (1940) 3/2− ***� (2000) 1/2− *� (2030) 7/2+ ****� (2070) 5/2+ *� (2080) 3/2+ **� (2100) 7/2− *� (2250) ***� (2455) **� (2620) **� (3000) *� (3170) *

� 0 1/2+ ****�− 1/2+ ****� (1530) 3/2+ ****� (1620) *� (1690) ***� (1820) 3/2− ***� (1950) ***� (2030) ≥
52? ***� (2120) *� (2250) **� (2370) **� (2500) *
− 3/2+ ****
(2250)− ***
(2380)− **
(2470)− **

�+
 1/2+ ****�
(2595)+ 1/2− ***�
(2625)+ 3/2− ***�
(2765)+ *�
(2880)+ 5/2+ ***�
(2940)+ ***�
 (2455) 1/2+ ****�
 (2520) 3/2+ ***�
 (2800) ***�+
 1/2+ ***� 0
 1/2+ ***� ′+
 1/2+ ***� ′0
 1/2+ ***�
(2645) 3/2+ ***�
(2790) 1/2− ***�
(2815) 3/2− ***�
(2930) *�
(2970) ***�
(3055) ***�
(3080) ***�
(3123) *
0
 1/2+ ***

 (2770)0 3/2+ ***�+
cc

*�0b 1/2+ ***�b(5912)0 1/2− ***�b(5920)0 3/2− ***�b 1/2+ ***� ∗b 3/2+ ***� 0b, �−b 1/2+ ***� ′b(5935)− 1/2+ ***�b(5945)0 3/2+ ***� ∗b(5955)− 3/2+ ***
−b 1/2+ ***P
 (4380)+ *P
 (4450)+ *
**** Existen
e is 
ertain, and properties are at least fairly well explored.*** Existen
e ranges from very likely to 
ertain, but further 
on�rmation is desirable and/orquantum numbers, bran
hing fra
tions, et
. are not well determined.** Eviden
e of existen
e is only fair.* Eviden
e of existen
e is poor.



88888888Baryon SummaryTableN BARYONSN BARYONSN BARYONSN BARYONS(S = 0, I = 1/2)(S = 0, I = 1/2)(S = 0, I = 1/2)(S = 0, I = 1/2)p, N+ = uud; n, N0 = uddpppp I (JP ) = 12 (12+)Mass m = 1.00727646688 ± 0.00000000009 uMass m = 938.272081 ± 0.000006 MeV [a℄
∣

∣mp − mp∣∣/mp < 7× 10−10, CL = 90% [b℄
∣

∣

qpmp ∣

∣/( qpmp ) = 0.99999999991 ± 0.00000000009
∣

∣qp + qp∣∣/e < 7× 10−10, CL = 90% [b℄
∣

∣qp + qe ∣∣/e < 1× 10−21 [
℄Magneti
 moment µ = 2.792847351 ± 0.000000009 µN(µp + µp) /

µp = (0 ± 5)× 10−6Ele
tri
 dipole moment d < 0.54× 10−23 e 
mEle
tri
 polarizability α = (11.2 ± 0.4)× 10−4 fm3Magneti
 polarizability β = (2.5 ± 0.4)× 10−4 fm3 (S = 1.2)Charge radius, µp Lamb shift = 0.84087 ± 0.00039 fm [d℄Charge radius, e p CODATA value = 0.8751 ± 0.0061 fm [d℄Magneti
 radius = 0.78 ± 0.04 fm [e℄Mean life τ > 2.1× 1029 years, CL = 90% [f ℄ (p → invisiblemode)Mean life τ > 1031 to 1033 years [f ℄ (mode dependent)See the \Note on Nu
leon De
ay" in our 1994 edition (Phys. Rev. D50D50D50D50,1173) for a short review.The \partial mean life" limits tabulated here are the limits on τ/Bi , where
τ is the total mean life and Bi is the bran
hing fra
tion for the mode inquestion. For N de
ays, p and n indi
ate proton and neutron partiallifetimes. Partial mean life pp DECAY MODESp DECAY MODESp DECAY MODESp DECAY MODES (1030 years) Con�den
e level (MeV/
)Antilepton + mesonAntilepton + mesonAntilepton + mesonAntilepton + mesonN → e+π > 2000 (n), > 8200 (p) 90% 459N → µ+π > 1000 (n), > 6600 (p) 90% 453N → ν π > 1100 (n), > 390 (p) 90% 459p → e+η > 4200 90% 309p → µ+η > 1300 90% 297n → ν η > 158 90% 310N → e+ρ > 217 (n), > 710 (p) 90% 149N → µ+ρ > 228 (n), > 160 (p) 90% 113N → ν ρ > 19 (n), > 162 (p) 90% 149p → e+ω > 320 90% 143p → µ+ω > 780 90% 105n → ν ω > 108 90% 144N → e+K > 17 (n), > 1000 (p) 90% 339N → µ+K > 26 (n), > 1600 (p) 90% 329N → νK > 86 (n), > 5900 (p) 90% 339n → νK0S > 260 90% 338p → e+K∗(892)0 > 84 90% 45N → νK∗(892) > 78 (n), > 51 (p) 90% 45Antilepton + mesonsAntilepton + mesonsAntilepton + mesonsAntilepton + mesonsp → e+π+π− > 82 90% 448p → e+π0π0 > 147 90% 449n → e+π−π0 > 52 90% 449p → µ+π+π−

> 133 90% 425p → µ+π0π0 > 101 90% 427n → µ+π−π0 > 74 90% 427n → e+K0π− > 18 90% 319Lepton + mesonLepton + mesonLepton + mesonLepton + mesonn → e−π+ > 65 90% 459n → µ−π+ > 49 90% 453n → e−ρ+ > 62 90% 150n → µ−ρ+ > 7 90% 115n → e−K+ > 32 90% 340n → µ−K+ > 57 90% 330Lepton + mesonsLepton + mesonsLepton + mesonsLepton + mesonsp → e−π+π+ > 30 90% 448n → e−π+π0 > 29 90% 449p → µ−π+π+ > 17 90% 425n → µ−π+π0 > 34 90% 427p → e−π+K+ > 75 90% 320p → µ−π+K+ > 245 90% 279

Antilepton + photon(s)Antilepton + photon(s)Antilepton + photon(s)Antilepton + photon(s)p → e+γ > 670 90% 469p → µ+γ > 478 90% 463n → ν γ > 550 90% 470p → e+γ γ > 100 90% 469n → ν γ γ > 219 90% 470Antilepton + single masslessAntilepton + single masslessAntilepton + single masslessAntilepton + single masslessp → e+X > 790 90% {p → µ+X > 410 90% {Three (or more) leptonsThree (or more) leptonsThree (or more) leptonsThree (or more) leptonsp → e+ e+ e− > 793 90% 469p → e+µ+µ−
> 359 90% 457p → e+ν ν > 170 90% 469n → e+ e−ν > 257 90% 470n → µ+ e− ν > 83 90% 464n → µ+µ− ν > 79 90% 458p → µ+ e+ e− > 529 90% 463p → µ+µ+µ− > 675 90% 439p → µ+ν ν > 220 90% 463p → e−µ+µ+ > 6 90% 457n → 3ν > 5× 10−4 90% 470In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modesN → e+anything > 0.6 (n, p) 90% {N → µ+anything > 12 (n, p) 90% {N → e+π0 anything > 0.6 (n, p) 90% {�B = 2 dinu
leon modes�B = 2 dinu
leon modes�B = 2 dinu
leon modes�B = 2 dinu
leon modesThe following are lifetime limits per iron nu
leus.pp → π+π+ > 72.2 90% {pn → π+π0 > 170 90% {nn → π+π− > 0.7 90% {nn → π0π0 > 404 90% {pp → K+K+ > 170 90% {pp → e+ e+ > 5.8 90% {pp → e+µ+ > 3.6 90% {pp → µ+µ+ > 1.7 90% {pn → e+ν > 260 90% {pn → µ+ν > 200 90% {pn → τ+ ντ > 29 90% {nn → νe νe > 1.4 90% {nn → νµ νµ > 1.4 90% {pn → invisible > 2.1× 10−5 90% {pp → invisible > 5× 10−5 90% {p DECAY MODESp DECAY MODESp DECAY MODESp DECAY MODESPartial mean life pp DECAY MODES (years) Con�den
e level (MeV/
)p → e−γ > 7× 105 90% 469p → µ−γ > 5× 104 90% 463p → e−π0 > 4× 105 90% 459p → µ−π0 > 5× 104 90% 453p → e−η > 2× 104 90% 309p → µ−η > 8× 103 90% 297p → e−K0S > 900 90% 337p → µ−K0S > 4× 103 90% 326p → e−K0L > 9× 103 90% 337p → µ−K0L > 7× 103 90% 326p → e−γ γ > 2× 104 90% 469p → µ−γ γ > 2× 104 90% 463p → e−ω > 200 90% 143nnnn I (JP ) = 12 (12+)Mass m = 1.0086649159 ± 0.0000000005 uMass m = 939.565413 ± 0.000006 MeV [a℄(mn − mn )/ mn = (9 ± 6)× 10−5mn − mp = 1.2933321 ± 0.0000005 MeV= 0.00138844919(45) uMean life τ = 880.2 ± 1.0 s (S = 1.9)
τ = 2.6387× 108 kmMagneti
 moment µ = −1.9130427 ± 0.0000005 µNEle
tri
 dipole moment d < 0.30× 10−25 e 
m, CL = 90%Mean-square 
harge radius 〈r2n〉 = −0.1161 ± 0.0022fm2 (S = 1.3)



89898989Baryon Summary TableMagneti
 radius √

〈r2
M

〉 = 0.864+0.009
−0.008 fmEle
tri
 polarizability α = (11.8 ± 1.1)× 10−4 fm3Magneti
 polarizability β = (3.7 ± 1.2)× 10−4 fm3Charge q = (−0.2 ± 0.8)× 10−21 eMean nn-os
illation time > 2.7× 108 s, CL = 90% (free n)Mean nn-os
illation time > 1.3×108 s, CL = 90% [g ℄ (bound n)Mean nn′-os
illation time > 414 s, CL = 90% [h℄pe−νe de
ay parameterspe−νe de
ay parameterspe−νe de
ay parameterspe−νe de
ay parameters [i ℄

λ ≡ gA / gV = −1.2723 ± 0.0023 (S = 2.2)A = −0.1184 ± 0.0010 (S = 2.4)B = 0.9807 ± 0.0030C = −0.2377 ± 0.0026a = −0.103 ± 0.004
φAV = (180.017 ± 0.026)◦ [j℄D = (−1.2 ± 2.0)× 10−4 [k℄R = 0.004 ± 0.013 [k℄ pn DECAY MODESn DECAY MODESn DECAY MODESn DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)pe−νe 100 % 1pe−νe γ [l℄ ( 3.09±0.32)× 10−3 1Charge 
onservation (Q) violating modeCharge 
onservation (Q) violating modeCharge 
onservation (Q) violating modeCharge 
onservation (Q) violating modepνe νe Q < 8 × 10−27 68% 1N(1440) 1/2+N(1440) 1/2+N(1440) 1/2+N(1440) 1/2+ I (JP ) = 12 (12+)Re(pole position)
−2Im(pole position)Breit-Wigner mass = 1410 to 1450 (≈ 1430) MeVBreit-Wigner full width = 250 to 450 (≈ 350) MeVN(1440) DECAY MODESN(1440) DECAY MODESN(1440) DECAY MODESN(1440) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 55{75 % 391N η <1 % †N ππ 25{50 % 338�(1232)π 20{30 % 135�(1232)π , P-wave 13{27 % 135N σ 11{23 % {pγ , heli
ity=1/2 0.035{0.048 % 407nγ , heli
ity=1/2 0.02{0.04 % 406N(1520) 3/2−N(1520) 3/2−N(1520) 3/2−N(1520) 3/2− I (JP ) = 12 (32−)Re(pole position) = 1505 to 1515 (≈ 1510) MeV
−2Im(pole position) = 105 to 120 (≈ 110) MeVBreit-Wigner mass = 1510 to 1520 (≈ 1515) MeVBreit-Wigner full width = 100 to 125 (≈ 115) MeVN(1520) DECAY MODESN(1520) DECAY MODESN(1520) DECAY MODESN(1520) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 55{65 % 453N η < 1 % 142N ππ 25{35 % 410�(1232)π 22{34 % 225�(1232)π , S-wave 15{23 % 225�(1232)π , D-wave 7{11 % 225N σ < 2 % {pγ 0.31{0.52 % 467pγ , heli
ity=1/2 0.01{0.02 % 467pγ , heli
ity=3/2 0.30{0.50 % 467nγ 0.30{0.53 % 466nγ , heli
ity=1/2 0.04{0.10 % 466nγ , heli
ity=3/2 0.25{0.45 % 466N(1535) 1/2−N(1535) 1/2−N(1535) 1/2−N(1535) 1/2− I (JP ) = 12 (12−)Re(pole position) = 1490 to 1530 (≈ 1510) MeV
−2Im(pole position) = 90 to 250 (≈ 170) MeVBreit-Wigner mass = 1525 to 1545 (≈ 1535) MeVBreit-Wigner full width = 125 to 175 (≈ 150) MeV

N(1535) DECAY MODESN(1535) DECAY MODESN(1535) DECAY MODESN(1535) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 35{55 % 468N η 32{52 % 186N ππ 3{14 % 426�(1232)π , D-wave 1{4 % 244N σ 2{10 % {N(1440)π 5{12 % †pγ , heli
ity=1/2 0.15{0.30 % 481nγ , heli
ity=1/2 0.01{0.25 % 480N(1650) 1/2−N(1650) 1/2−N(1650) 1/2−N(1650) 1/2− I (JP ) = 12 (12−)Re(pole position) = 1640 to 1670 (≈ 1655) MeV
−2Im(pole position) = 100 to 170 (≈ 135) MeVBreit-Wigner mass = 1645 to 1670 (≈ 1655) MeVBreit-Wigner full width = 110 to 170 (≈ 140) MeVN(1650) DECAY MODESN(1650) DECAY MODESN(1650) DECAY MODESN(1650) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 50{70 % 551N η 14{22 % 354�K 5{15 % 179N ππ 8{36 % 517�(1232)π , D-wave 6{18 % 349N σ 2{18 % {N(1440)π 6{26 % 168pγ , heli
ity=1/2 0.04{0.20 % 562nγ , heli
ity=1/2 0.003{0.17 % 561N(1675) 5/2−N(1675) 5/2−N(1675) 5/2−N(1675) 5/2− I (JP ) = 12 (52−)Re(pole position) = 1655 to 1665 (≈ 1660) MeV
−2Im(pole position) = 125 to 150 (≈ 135) MeVBreit-Wigner mass = 1670 to 1680 (≈ 1675) MeVBreit-Wigner full width = 130 to 165 (≈ 150) MeVN(1675) DECAY MODESN(1675) DECAY MODESN(1675) DECAY MODESN(1675) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 35{45 % 564N η < 1 % 376N ππ 25{45 % 532�(1232)π , D-wave 23{37 % 366N σ 3{7 % {pγ 0{0.02 % 575pγ , heli
ity=1/2 0{0.01 % 575pγ , heli
ity=3/2 0{0.01 % 575nγ 0{0.15 % 574nγ , heli
ity=1/2 0{0.05 % 574nγ , heli
ity=3/2 0{0.10 % 574N(1680) 5/2+N(1680) 5/2+N(1680) 5/2+N(1680) 5/2+ I (JP ) = 12 (52+)Re(pole position) = 1665 to 1680 (≈ 1675) MeV
−2Im(pole position) = 110 to 135 (≈ 120) MeVBreit-Wigner mass = 1680 to 1690 (≈ 1685) MeVBreit-Wigner full width = 120 to 140 (≈ 130) MeVN(1680) DECAY MODESN(1680) DECAY MODESN(1680) DECAY MODESN(1680) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 65{70 % 571N η <1 % 386N ππ 20{40 % 539�(1232)π 11{23 % 374�(1232)π , P-wave 4{10 % 374�(1232)π , F-wave 7{13 % 374N σ 9{19 % {pγ 0.21{0.32 % 581pγ , heli
ity=1/2 0.001{0.011 % 581pγ , heli
ity=3/2 0.20{0.32 % 581nγ 0.021{0.046 % 581nγ , heli
ity=1/2 0.004{0.029 % 581nγ , heli
ity=3/2 0.01{0.024 % 581



90909090Baryon Summary TableN(1700) 3/2−N(1700) 3/2−N(1700) 3/2−N(1700) 3/2− I (JP ) = 12 (32−)Re(pole position) = 1650 to 1750 (≈ 1700) MeV
−2Im(pole position) = 100 to 300 MeVBreit-Wigner mass = 1650 to 1750 (≈ 1700) MeVBreit-Wigner full width = 100 to 250 (≈ 150) MeVN(1700) DECAY MODESN(1700) DECAY MODESN(1700) DECAY MODESN(1700) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 7{17 % 581N η seen 402N ππ 60{90 % 550�(1232)π 55{85 % 386�(1232)π , S-wave 50{80 % 386�(1232)π , D-wave 4{14 % 386N(1440)π 3{11 % 215N(1520)π <4 % 120N ρ , S=3/2, S-wave seen †N σ 2{14 % {pγ 0.01{0.05 % 591pγ , heli
ity=1/2 0.0{0.024 % 591pγ , heli
ity=3/2 0.002{0.026 % 591nγ 0.01{0.13 % 590nγ , heli
ity=1/2 0.0{0.09 % 590nγ , heli
ity=3/2 0.01{0.05 % 590N(1710) 1/2+N(1710) 1/2+N(1710) 1/2+N(1710) 1/2+ I (JP ) = 12 (12+)Re(pole position) = 1670 to 1770 (≈ 1720) MeV
−2Im(pole position) = 80 to 380 (≈ 230) MeVBreit-Wigner mass = 1680 to 1740 (≈ 1710) MeVBreit-Wigner full width = 50 to 250 (≈ 100) MeVN(1710) DECAY MODESN(1710) DECAY MODESN(1710) DECAY MODESN(1710) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 5{20 % 588N η 10{50 % 412Nω 1{5 % †�K 5{25 % 269� K seen 138N ππ seen 557�(1232)π , P-wave seen 394N(1535)π 9{21 % 106N ρ , S=1/2, P-wave seen †pγ , heli
ity=1/2 0.002{0.08 % 598nγ , heli
ity=1/2 0.0{0.02% 597N(1720) 3/2+N(1720) 3/2+N(1720) 3/2+N(1720) 3/2+ I (JP ) = 12 (32+)Re(pole position) = 1660 to 1690 (≈ 1675) MeV
−2Im(pole position) = 150 to 400 (≈ 250) MeVBreit-Wigner mass = 1700 to 1750 (≈ 1720) MeVBreit-Wigner full width = 150 to 400 (≈ 250) MeVN(1720) DECAY MODESN(1720) DECAY MODESN(1720) DECAY MODESN(1720) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 8{14 % 594N η 1{5 % 422�K 4{5 % 283N ππ 50{90 % 564�(1232)π , P-wave 47{77 % 402�(1232)π , F-wave <12 % 402N ρ 70{85 % 74N ρ , S=1/2, P-wave seen 74N σ 2{14 % {N(1440)π <2 % 235N(1520)π , S-wave 1{5 % 145pγ 0.05{0.25 % 604pγ , heli
ity=1/2 0.05{0.15 % 604pγ , heli
ity=3/2 0.002{0.16 % 604nγ 0.0{0.016 % 603nγ , heli
ity=1/2 0.0{0.01 % 603nγ , heli
ity=3/2 0.0{0.015 % 603

N(1875) 3/2−N(1875) 3/2−N(1875) 3/2−N(1875) 3/2− I (JP ) = 12 (32−)Re(pole position) = 1800 to 1950 MeV
−2Im(pole position) = 150 to 250 MeVBreit-Wigner mass = 1820 to 1920 (≈ 1875) MeVBreit-Wigner full width = 250 ± 70 MeVN(1875) DECAY MODESN(1875) DECAY MODESN(1875) DECAY MODESN(1875) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 2{14 % 695N η <1 % 559Nω 15{25 % 371�K seen 454� K seen 384N ππ 670�(1232)π 10{35 % 520�(1232)π , S-wave 7{21 % 520�(1232)π , D-wave 2{12 % 520N ρ , S=3/2, S-wave seen 379N σ 30{60 % {N(1440)π 2{8 % 373N(1520)π <2 % 301pγ 0.001{0.025 % 703pγ , heli
ity=1/2 0.001{0.021 % 703pγ , heli
ity=3/2 <0.003 % 703nγ <0.040 % 702nγ , heli
ity=1/2 <0.007 % 702nγ , heli
ity=3/2 <0.033 % 702N(1900) 3/2+N(1900) 3/2+N(1900) 3/2+N(1900) 3/2+ I (JP ) = 12 (32+)Re(pole position) = 1900 to 1940 (≈ 1920) MeV
−2Im(pole position) = 130 to 300 MeVBreit-Wigner mass = 1900 ± 30 MeVBreit-Wigner full width = 200 ± 50 MeVN(1900) DECAY MODESN(1900) DECAY MODESN(1900) DECAY MODESN(1900) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π <10 % 710N η 2{14 % 579Nω 7{13 % 401�K 2{20 % 477� K 3{7 % 410N ππ 40{80 % 686�(1232)π 30{70 % 539�(1232)π , P-wave 9{25 % 539�(1232)π , F-wave 21{45 % 539N σ 1{7 % {N(1520)π 7{23 % 324N(1535)π 4{10 % 306pγ 0.001{0.025 % 718pγ , heli
ity=1/2 0.001{0.021 % 718pγ , heli
ity=3/2 <0.003 % 718nγ <0.040 % 718nγ , heli
ity=1/2 <0.007 % 718nγ , heli
ity=3/2 <0.033 % 718N(2190) 7/2−N(2190) 7/2−N(2190) 7/2−N(2190) 7/2− I (JP ) = 12 (72−)Re(pole position) = 2050 to 2100 (≈ 2075) MeV
−2Im(pole position) = 400 to 520 (≈ 450) MeVBreit-Wigner mass = 2100 to 2200 (≈ 2190) MeVBreit-Wigner full width = 300 to 700 (≈ 500) MeV



91919191Baryon Summary TableN(2190) DECAY MODESN(2190) DECAY MODESN(2190) DECAY MODESN(2190) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 10{20 % 888N η seen 791�K 0.2{0.8;% 712N ππ 22{80;% 870�(1232)π , D-wave 19{31 % 740N ρ , S=3/2, D-wave seen 680N σ 3{9 % {pγ 0.014{0.077 % 894pγ , heli
ity=1/2 0.013{0.062;% 894pγ , heli
ity=3/2 0.001{0.014;% 894nγ <0.04 % 893nγ , heli
ity=1/2 <0.01;% 893nγ , heli
ity=3/2 <0.03 % 893N(2220) 9/2+N(2220) 9/2+N(2220) 9/2+N(2220) 9/2+ I (JP ) = 12 (92+)Re(pole position) = 2130 to 2200 (≈ 2170) MeV
−2Im(pole position) = 400 to 560 (≈ 480) MeVBreit-Wigner mass = 2200 to 2300 (≈ 2250) MeVBreit-Wigner full width = 350 to 500 (≈ 400) MeVN(2220) DECAY MODESN(2220) DECAY MODESN(2220) DECAY MODESN(2220) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 15{25 % 924N(2250) 9/2−N(2250) 9/2−N(2250) 9/2−N(2250) 9/2− I (JP ) = 12 (92−)Re(pole position) = 2150 to 2250 (≈ 2200) MeV
−2Im(pole position) = 350 to 550 (≈ 450) MeVBreit-Wigner mass = 2250 to 2320 (≈ 2280) MeVBreit-Wigner full width = 300 to 600 (≈ 500) MeVN(2250) DECAY MODESN(2250) DECAY MODESN(2250) DECAY MODESN(2250) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 5{15 % 941N(2600) 11/2−N(2600) 11/2−N(2600) 11/2−N(2600) 11/2− I (JP ) = 12 (112 −)Breit-Wigner mass = 2550 to 2750 (≈ 2600) MeVBreit-Wigner full width = 500 to 800 (≈ 650) MeVN(2600) DECAY MODESN(2600) DECAY MODESN(2600) DECAY MODESN(2600) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 5{10 % 1126�BARYONS�BARYONS�BARYONS�BARYONS(S= 0, I= 3/2)(S= 0, I= 3/2)(S= 0, I= 3/2)(S= 0, I= 3/2)�++ = uuu, �+ = uud, �0 = udd, �− = ddd�(1232) 3/2+�(1232) 3/2+�(1232) 3/2+�(1232) 3/2+ I (JP ) = 32 (32+)Re(pole position) = 1209 to 1211 (≈ 1210) MeV
−2Im(pole position) = 98 to 102 (≈ 100) MeVBreit-Wigner mass (mixed 
harges) = 1230 to 1234 (≈ 1232)MeVBreit-Wigner full width (mixed 
harges) = 114 to 120 (≈ 117)MeV�(1232) DECAY MODES�(1232) DECAY MODES�(1232) DECAY MODES�(1232) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 99.4 % 229N γ 0.55{0.65 % 259N γ , heli
ity=1/2 0.11{0.13 % 259N γ , heli
ity=3/2 0.44{0.52 % 259�(1600) 3/2+�(1600) 3/2+�(1600) 3/2+�(1600) 3/2+ I (JP ) = 32 (32+)Re(pole position) = 1460 to 1560 (≈ 1510) MeV
−2Im(pole position) = 200 to 350 (≈ 275) MeVBreit-Wigner mass = 1500 to 1700 (≈ 1600) MeVBreit-Wigner full width = 220 to 420 (≈ 320) MeV

�(1600) DECAY MODES�(1600) DECAY MODES�(1600) DECAY MODES�(1600) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 10{25 % 513N ππ 75{90 % 477�(1232)π 73{83 % 303�(1232)π , P-wave 72{82 % 303�(1232)π , F-wave <2 % 303N(1440)π , P-wave seen 98N γ 0.001{0.035 % 525N γ , heli
ity=1/2 0.0{0.02 % 525N γ , heli
ity=3/2 0.001{0.015 % 525�(1620) 1/2−�(1620) 1/2−�(1620) 1/2−�(1620) 1/2− I (JP ) = 32 (12−)Re(pole position) = 1590 to 1610 (≈ 1600) MeV
−2Im(pole position) = 120 to 140 (≈ 130) MeVBreit-Wigner mass = 1600 to 1660 (≈ 1630) MeVBreit-Wigner full width = 130 to 150 (≈ 140) MeV�(1620) DECAY MODES�(1620) DECAY MODES�(1620) DECAY MODES�(1620) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 20{30 % 534N ππ 55{80 % 499�(1232)π , D-wave 52{72 % 328N ρ , S=1/2, S-wave seen †N ρ , S=3/2, D-wave seen †N(1440)π 3{9 % 138N γ , heli
ity=1/2 0.03{0.10 % 545�(1700) 3/2−�(1700) 3/2−�(1700) 3/2−�(1700) 3/2− I (JP ) = 32 (32−)Re(pole position) = 1620 to 1680 (≈ 1650) MeV
−2Im(pole position) = 160 to 300 (≈ 230) MeVBreit-Wigner mass = 1670 to 1750 (≈ 1700) MeVBreit-Wigner full width = 200 to 400 (≈ 300) MeV�(1700) DECAY MODES�(1700) DECAY MODES�(1700) DECAY MODES�(1700) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 10{20 % 581N ππ 10{55 % 550�(1232)π 10{50 % 386�(1232)π , S-wave 5{35 % 386�(1232)π , D-wave 4{16 % 386N ρ , S=3/2, S-wave seen †N(1520)π , P-wave 1{5 % 120N(1535)π 0.5{1.5 % 90�(1232)η 3{7 % †N γ 0.22{0.60 % 591N γ , heli
ity=1/2 0.12{0.30 % 591N γ , heli
ity=3/2 0.10{0.30 % 591�(1905) 5/2+�(1905) 5/2+�(1905) 5/2+�(1905) 5/2+ I (JP ) = 32 (52+)Re(pole position) = 1805 to 1835 (≈ 1820) MeV
−2Im(pole position) = 265 to 300 (≈ 280) MeVBreit-Wigner mass = 1855 to 1910 (≈ 1880) MeVBreit-Wigner full width = 270 to 400 (≈ 330) MeV�(1905) DECAY MODES�(1905) DECAY MODES�(1905) DECAY MODES�(1905) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 9{15 % 698N ππ 673�(1232)π , P-wave 23{43 % 524�(1232)π , F-wave seen 524N ρ , S=3/2, P-wave seen 385N(1535)π < 1 % 288N(1680)π , P-wave 5{15 % 133�(1232)η 2{6 % 282N γ 0.012{0.036 % 706N γ , heli
ity=1/2 0.002{0.006 % 706N γ , heli
ity=3/2 0.01{0.03 % 706�(1910) 1/2+�(1910) 1/2+�(1910) 1/2+�(1910) 1/2+ I (JP ) = 32 (12+)Re(pole position) = 1830 to 1880 (≈ 1855) MeV
−2Im(pole position) = 200 to 500 (≈ 350) MeVBreit-Wigner mass = 1860 to 1910 (≈ 1890) MeVBreit-Wigner full width = 220 to 340 (≈ 280) MeV



92929292Baryon SummaryTable�(1910) DECAY MODES�(1910) DECAY MODES�(1910) DECAY MODES�(1910) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 15{30 % 704� K 4{14 % 400N ππ 680�(1232)π 34{66 % 531N(1440)π 3{9 % 386�(1232)η 5{13 % 296N γ , heli
ity=1/2 0.0{0.02 % 712�(1920) 3/2+�(1920) 3/2+�(1920) 3/2+�(1920) 3/2+ I (JP ) = 32 (32+)Re(pole position) = 1850 to 1950 (≈ 1900) MeV
−2Im(pole position) = 200 to 400 (≈ 300) MeVBreit-Wigner mass = 1900 to 1970 (≈ 1920) MeVBreit-Wigner full width = 180 to 300 (≈ 260) MeV�(1920) DECAY MODES�(1920) DECAY MODES�(1920) DECAY MODES�(1920) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 5{20 % 723� K 2{6 % 431N ππ 699�(1232)π 50{90 % 553�(1232)π , P-wave 8{28 % 553�(1232)π , F-wave 44{72 % 553N(1440)π , P-wave <4 % 411N(1520)π , S-wave <5 % 341N(1535)π <2 % 324N a0(980) seen 41�(1232)η 5{17 % 336�(1930) 5/2−�(1930) 5/2−�(1930) 5/2−�(1930) 5/2− I (JP ) = 32 (52−)Re(pole position) = 1840 to 1960 (≈ 1900) MeV
−2Im(pole position) = 175 to 360 (≈ 270) MeVBreit-Wigner mass = 1900 to 2000 (≈ 1950) MeVBreit-Wigner full width = 220 to 500 (≈ 360) MeV�(1930) DECAY MODES�(1930) DECAY MODES�(1930) DECAY MODES�(1930) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 5{15 % 742N γ 0.0{0.01 % 749N γ , heli
ity=1/2 0.0{0.005 % 749N γ , heli
ity=3/2 0.0{0.004 % 749�(1950) 7/2+�(1950) 7/2+�(1950) 7/2+�(1950) 7/2+ I (JP ) = 32 (72+)Re(pole position) = 1870 to 1890 (≈ 1880) MeV
−2Im(pole position) = 220 to 260 (≈ 240) MeVBreit-Wigner mass = 1915 to 1950 (≈ 1930) MeVBreit-Wigner full width = 235 to 335 (≈ 285) MeV�(1950) DECAY MODES�(1950) DECAY MODES�(1950) DECAY MODES�(1950) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 35{45 % 729� K 0.3{0.5 % 441N ππ 706�(1232)π , F-wave 1{9 % 560N(1680)π , P-wave 3{9 % 191�(1232)η < 1 % 349�(2420) 11/2+�(2420) 11/2+�(2420) 11/2+�(2420) 11/2+ I (JP ) = 32 (112 +)Re(pole position) = 2260 to 2400 (≈ 2330) MeV
−2Im(pole position) = 350 to 750 (≈ 550) MeVBreit-Wigner mass = 2300 to 2500 (≈ 2420) MeVBreit-Wigner full width = 300 to 500 (≈ 400) MeV�(2420) DECAY MODES�(2420) DECAY MODES�(2420) DECAY MODES�(2420) DECAY MODES Fra
tion (�i /�) p (MeV/
)N π 5{15 % 1023

� BARYONS� BARYONS� BARYONS� BARYONS(S = −1, I = 0)(S = −1, I = 0)(S = −1, I = 0)(S = −1, I = 0)�0 = uds���� I (JP ) = 0(12+)Mass m = 1115.683 ± 0.006 MeV(m� − m�) / m� = (−0.1 ± 1.1)× 10−5 (S = 1.6)Mean life τ = (2.632 ± 0.020)× 10−10 s (S = 1.6)(τ � − τ �) / τ � = −0.001 ± 0.009
τ = 7.89 
mMagneti
 moment µ = −0.613 ± 0.004 µNEle
tri
 dipole moment d < 1.5× 10−16 e 
m, CL = 95%De
ay parametersDe
ay parametersDe
ay parametersDe
ay parameterspπ− α− = 0.642 ± 0.013pπ+ α+ = −0.71 ± 0.08pπ− φ− = (−6.5 ± 3.5)◦
" γ− = 0.76 [n℄
" �− = (8 ± 4)◦ [n℄nπ0 α0 = 0.65 ± 0.04pe−νe gA/gV = −0.718 ± 0.015 [i ℄ p� DECAY MODES� DECAY MODES� DECAY MODES� DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)pπ− (63.9 ±0.5 ) % 101nπ0 (35.8 ±0.5 ) % 104nγ ( 1.75±0.15) × 10−3 162pπ−γ [o℄ ( 8.4 ±1.4 ) × 10−4 101pe−νe ( 8.32±0.14) × 10−4 163pµ−νµ ( 1.57±0.35) × 10−4 131Lepton (L) and/or Baryon (B) number violating de
ay modesLepton (L) and/or Baryon (B) number violating de
ay modesLepton (L) and/or Baryon (B) number violating de
ay modesLepton (L) and/or Baryon (B) number violating de
ay modes

π+ e− L,B < 6 × 10−7 90% 549
π+µ− L,B < 6 × 10−7 90% 544
π− e+ L,B < 4 × 10−7 90% 549
π−µ+ L,B < 6 × 10−7 90% 544K+ e− L,B < 2 × 10−6 90% 449K+µ− L,B < 3 × 10−6 90% 441K− e+ L,B < 2 × 10−6 90% 449K−µ+ L,B < 3 × 10−6 90% 441K0S ν L,B < 2 × 10−5 90% 447pπ+ B < 9 × 10−7 90% 101�(1405) 1/2−�(1405) 1/2−�(1405) 1/2−�(1405) 1/2− I (JP ) = 0(12−)Mass m = 1405.1+1.3

−1.0 MeVFull width � = 50.5 ± 2.0 MeVBelow K N threshold�(1405) DECAY MODES�(1405) DECAY MODES�(1405) DECAY MODES�(1405) DECAY MODES Fra
tion (�i /�) p (MeV/
)� π 100 % 155�(1520) 3/2−�(1520) 3/2−�(1520) 3/2−�(1520) 3/2− I (JP ) = 0(32−)Mass m = 1519.5 ± 1.0 MeV [p℄Full width � = 15.6 ± 1.0 MeV [p℄�(1520) DECAY MODES�(1520) DECAY MODES�(1520) DECAY MODES�(1520) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK (45 ±1 ) % 243� π (42 ±1 ) % 268�ππ (10 ±1 ) % 259� ππ ( 0.9 ±0.1 ) % 169�γ ( 0.85±0.15) % 350�(1600) 1/2+�(1600) 1/2+�(1600) 1/2+�(1600) 1/2+ I (JP ) = 0(12+)Mass m = 1560 to 1700 (≈ 1600) MeVFull width � = 50 to 250 (≈ 150) MeV



93939393Baryon SummaryTable�(1600) DECAY MODES�(1600) DECAY MODES�(1600) DECAY MODES�(1600) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 15{30 % 343� π 10{60 % 338�(1670) 1/2−�(1670) 1/2−�(1670) 1/2−�(1670) 1/2− I (JP ) = 0(12−)Mass m = 1660 to 1680 (≈ 1670) MeVFull width � = 25 to 50 (≈ 35) MeV�(1670) DECAY MODES�(1670) DECAY MODES�(1670) DECAY MODES�(1670) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 20{30 % 414� π 25{55 % 394�η 10{25 % 69NK∗(892), S=3/2, D-wave (5±4) % †�(1690) 3/2−�(1690) 3/2−�(1690) 3/2−�(1690) 3/2− I (JP ) = 0(32−)Mass m = 1685 to 1695 (≈ 1690) MeVFull width � = 50 to 70 (≈ 60) MeV�(1690) DECAY MODES�(1690) DECAY MODES�(1690) DECAY MODES�(1690) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 20{30 % 433� π 20{40 % 410�ππ ∼ 25 % 419� ππ ∼ 20 % 358�(1800) 1/2−�(1800) 1/2−�(1800) 1/2−�(1800) 1/2− I (JP ) = 0(12−)Mass m = 1720 to 1850 (≈ 1800) MeVFull width � = 200 to 400 (≈ 300) MeV�(1800) DECAY MODES�(1800) DECAY MODES�(1800) DECAY MODES�(1800) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 25{40 % 528� π seen 494� (1385)π seen 349�η (6±5) % 326NK∗(892) seen †�(1810) 1/2+�(1810) 1/2+�(1810) 1/2+�(1810) 1/2+ I (JP ) = 0(12+)Mass m = 1750 to 1850 (≈ 1810) MeVFull width � = 50 to 250 (≈ 150) MeV�(1810) DECAY MODES�(1810) DECAY MODES�(1810) DECAY MODES�(1810) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 20{50 % 537� π 10{40 % 501� (1385)π seen 357NK∗(892) 30{60 % †�(1820) 5/2+�(1820) 5/2+�(1820) 5/2+�(1820) 5/2+ I (JP ) = 0(52+)Mass m = 1815 to 1825 (≈ 1820) MeVFull width � = 70 to 90 (≈ 80) MeV�(1820) DECAY MODES�(1820) DECAY MODES�(1820) DECAY MODES�(1820) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 55{65 % 545� π 8{14 % 509� (1385)π 5{10 % 366NK∗(892), S=3/2, P-wave (3.0±1.0) % †�(1830) 5/2−�(1830) 5/2−�(1830) 5/2−�(1830) 5/2− I (JP ) = 0(52−)Mass m = 1810 to 1830 (≈ 1830) MeVFull width � = 60 to 110 (≈ 95) MeV

�(1830) DECAY MODES�(1830) DECAY MODES�(1830) DECAY MODES�(1830) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 3{10 % 553� π 35{75 % 516� (1385)π >15 % 374� (1385)π , D-wave (52±6) % 374�(1890) 3/2+�(1890) 3/2+�(1890) 3/2+�(1890) 3/2+ I (JP ) = 0(32+)Mass m = 1850 to 1910 (≈ 1890) MeVFull width � = 60 to 200 (≈ 100) MeV�(1890) DECAY MODES�(1890) DECAY MODES�(1890) DECAY MODES�(1890) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 20{35 % 599� π 3{10 % 560� (1385)π seen 423NK∗(892) seen 236�(2100) 7/2−�(2100) 7/2−�(2100) 7/2−�(2100) 7/2− I (JP ) = 0(72−)Mass m = 2090 to 2110 (≈ 2100) MeVFull width � = 100 to 250 (≈ 200) MeV�(2100) DECAY MODES�(2100) DECAY MODES�(2100) DECAY MODES�(2100) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 25{35 % 751� π ∼ 5 % 705�η <3 % 617� K <3 % 491�ω <8 % 443NK∗(892) 10{20 % 515�(2110) 5/2+�(2110) 5/2+�(2110) 5/2+�(2110) 5/2+ I (JP ) = 0(52+)Mass m = 2090 to 2140 (≈ 2110) MeVFull width � = 150 to 250 (≈ 200) MeV�(2110) DECAY MODES�(2110) DECAY MODES�(2110) DECAY MODES�(2110) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 5{25 % 757� π 10{40 % 711�ω seen 455� (1385)π seen 591NK∗(892) 10{60 % 525�(2350) 9/2+�(2350) 9/2+�(2350) 9/2+�(2350) 9/2+ I (JP ) = 0(92+)Mass m = 2340 to 2370 (≈ 2350) MeVFull width � = 100 to 250 (≈ 150) MeV�(2350) DECAY MODES�(2350) DECAY MODES�(2350) DECAY MODES�(2350) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK ∼ 12 % 915� π ∼ 10 % 867� BARYONS� BARYONS� BARYONS� BARYONS(S=−1, I=1)(S=−1, I=1)(S=−1, I=1)(S=−1, I=1)�+ = uus, �0 = uds, �− = dds�+�+�+�+ I (JP ) = 1(12+)Mass m = 1189.37 ± 0.07 MeV (S = 2.2)Mean life τ = (0.8018 ± 0.0026)× 10−10 s
τ = 2.404 
m(τ�+ − τ�−) / τ�+ = −0.0006 ± 0.0012Magneti
 moment µ = 2.458 ± 0.010 µN (S = 2.1)(µ�+ + µ�−) /

µ�+ = 0.014 ± 0.015�(�+ → nℓ+ν
)/�(�− → nℓ−ν

)

< 0.043



94949494Baryon SummaryTableDe
ay parametersDe
ay parametersDe
ay parametersDe
ay parameterspπ0 α0 = −0.980+0.017
−0.015

" φ0 = (36 ± 34)◦
" γ0 = 0.16 [n℄
" �0 = (187 ± 6)◦ [n℄nπ+ α+ = 0.068 ± 0.013
" φ+ = (167 ± 20)◦ (S = 1.1)
" γ+ = −0.97 [n℄
" �+ = (−73+133

− 10)◦ [n℄pγ αγ = −0.76 ± 0.08 p�+ DECAY MODES�+ DECAY MODES�+ DECAY MODES�+ DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)pπ0 (51.57±0.30) % 189nπ+ (48.31±0.30) % 185pγ ( 1.23±0.05) × 10−3 225nπ+ γ [o℄ ( 4.5 ±0.5 ) × 10−4 185�e+ νe ( 2.0 ±0.5 ) × 10−5 71�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = 1 weak neutral 
urrent (S1) modes�S = 1 weak neutral 
urrent (S1) modes�S = 1 weak neutral 
urrent (S1) modes�S = 1 weak neutral 
urrent (S1) modesne+ νe SQ < 5 × 10−6 90% 224nµ+ νµ SQ < 3.0 × 10−5 90% 202pe+ e− S1 < 7 × 10−6 225pµ+µ− S1 ( 9 +9
−8 )× 10−8 121� 0� 0� 0� 0 I (JP ) = 1(12+)Mass m = 1192.642 ± 0.024 MeVm�− − m�0 = 4.807 ± 0.035 MeV (S = 1.1)m�0 − m� = 76.959 ± 0.023 MeVMean life τ = (7.4 ± 0.7)× 10−20 s
τ = 2.22× 10−11 mTransition magneti
 moment ∣

∣µ� �∣

∣ = 1.61 ± 0.08 µN p�0 DECAY MODES�0 DECAY MODES�0 DECAY MODES�0 DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)�γ 100 % 74�γ γ < 3 % 90% 74�e+ e− [q℄ 5× 10−3 74�−�−�−�− I (JP ) = 1(12+)Mass m = 1197.449 ± 0.030 MeV (S = 1.2)m�− − m�+ = 8.08 ± 0.08 MeV (S = 1.9)m�− − m� = 81.766 ± 0.030 MeV (S = 1.2)Mean life τ = (1.479 ± 0.011)× 10−10 s (S = 1.3)
τ = 4.434 
mMagneti
 moment µ = −1.160 ± 0.025 µN (S = 1.7)�− 
harge radius = 0.78 ± 0.10 fmDe
ay parametersDe
ay parametersDe
ay parametersDe
ay parametersnπ− α− = −0.068 ± 0.008
" φ− = (10 ± 15)◦
" γ− = 0.98 [n℄
" �− = (249+ 12

−120)◦ [n℄ne− νe gA/gV = 0.340 ± 0.017 [i ℄
" f2(0)/f1(0) = 0.97 ± 0.14
" D = 0.11 ± 0.10�e− νe gV /gA = 0.01 ± 0.10 [i ℄ (S = 1.5)
" gWM/gA = 2.4 ± 1.7 [i ℄

�− DECAY MODES�− DECAY MODES�− DECAY MODES�− DECAY MODES Fra
tion (�i /�) p (MeV/
)nπ− (99.848±0.005) % 193nπ− γ [o℄ ( 4.6 ±0.6 ) × 10−4 193ne− νe ( 1.017±0.034) × 10−3 230nµ− νµ ( 4.5 ±0.4 ) × 10−4 210�e− νe ( 5.73 ±0.27 ) × 10−5 79� (1385) 3/2+� (1385) 3/2+� (1385) 3/2+� (1385) 3/2+ I (JP ) = 1(32+)� (1385)+mass m = 1382.80 ± 0.35 MeV (S = 1.9)� (1385)0 mass m = 1383.7 ± 1.0 MeV (S = 1.4)� (1385)−mass m = 1387.2 ± 0.5 MeV (S = 2.2)� (1385)+full width � = 36.0 ± 0.7 MeV� (1385)0 full width � = 36 ± 5 MeV� (1385)−full width � = 39.4 ± 2.1 MeV (S = 1.7)Below K N threshold p�(1385) DECAY MODES�(1385) DECAY MODES�(1385) DECAY MODES�(1385) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)�π (87.0 ±1.5 ) % 208� π (11.7 ±1.5 ) % 129�γ ( 1.25+0.13
−0.12) % 241�+γ ( 7.0 ±1.7 ) × 10−3 180�−γ < 2.4 × 10−4 90% 173� (1660) 1/2+� (1660) 1/2+� (1660) 1/2+� (1660) 1/2+ I (JP ) = 1(12+)Mass m = 1630 to 1690 (≈ 1660) MeVFull width � = 40 to 200 (≈ 100) MeV�(1660) DECAY MODES�(1660) DECAY MODES�(1660) DECAY MODES�(1660) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 10{30 % 405�π seen 440� π seen 387� (1670) 3/2−� (1670) 3/2−� (1670) 3/2−� (1670) 3/2− I (JP ) = 1(32−)Mass m = 1665 to 1685 (≈ 1670) MeVFull width � = 40 to 80 (≈ 60) MeV�(1670) DECAY MODES�(1670) DECAY MODES�(1670) DECAY MODES�(1670) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 7{13 % 414�π 5{15 % 448� π 30{60 % 394� (1750) 1/2−� (1750) 1/2−� (1750) 1/2−� (1750) 1/2− I (JP ) = 1(12−)Mass m = 1730 to 1800 (≈ 1750) MeVFull width � = 60 to 160 (≈ 90) MeV�(1750) DECAY MODES�(1750) DECAY MODES�(1750) DECAY MODES�(1750) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 10{40 % 486�π seen 507� π <8 % 456� η 15{55 % 98NK∗(892), S=1/2 (8±4) % †� (1775) 5/2−� (1775) 5/2−� (1775) 5/2−� (1775) 5/2− I (JP ) = 1(52−)Mass m = 1770 to 1780 (≈ 1775) MeVFull width � = 105 to 135 (≈ 120) MeV



95959595Baryon SummaryTable�(1775) DECAY MODES�(1775) DECAY MODES�(1775) DECAY MODES�(1775) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 37{43% 508�π 14{20% 525� π 2{5% 475� (1385)π 8{12% 327�(1520)π , P-wave 17{23% 201� (1915) 5/2+� (1915) 5/2+� (1915) 5/2+� (1915) 5/2+ I (JP ) = 1(52+)Mass m = 1900 to 1935 (≈ 1915) MeVFull width � = 80 to 160 (≈ 120) MeV�(1915) DECAY MODES�(1915) DECAY MODES�(1915) DECAY MODES�(1915) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 5{15 % 618�π seen 623� π seen 577� (1385)π <5 % 443� (1940) 3/2−� (1940) 3/2−� (1940) 3/2−� (1940) 3/2− I (JP ) = 1(32−)Mass m = 1900 to 1950 (≈ 1940) MeVFull width � = 150 to 300 (≈ 220) MeV�(1940) DECAY MODES�(1940) DECAY MODES�(1940) DECAY MODES�(1940) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK <20 % 637�π seen 640� π seen 595� (1385)π seen 463�(1520)π seen 355�(1232)K seen 410NK∗(892) seen 322� (2030) 7/2+� (2030) 7/2+� (2030) 7/2+� (2030) 7/2+ I (JP ) = 1(72+)Mass m = 2025 to 2040 (≈ 2030) MeVFull width � = 150 to 200 (≈ 180) MeV�(2030) DECAY MODES�(2030) DECAY MODES�(2030) DECAY MODES�(2030) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK 17{23 % 702�π 17{23 % 700� π 5{10 % 657� K <2 % 422� (1385)π 5{15 % 532�(1520)π 10{20 % 430�(1232)K 10{20 % 498NK∗(892) <5 % 439� (2250)� (2250)� (2250)� (2250) I (JP ) = 1(??)Mass m = 2210 to 2280 (≈ 2250) MeVFull width � = 60 to 150 (≈ 100) MeV�(2250) DECAY MODES�(2250) DECAY MODES�(2250) DECAY MODES�(2250) DECAY MODES Fra
tion (�i /�) p (MeV/
)NK <10 % 851�π seen 842� π seen 803

� BARYONS� BARYONS� BARYONS� BARYONS(S=−2, I=1/2)(S=−2, I=1/2)(S=−2, I=1/2)(S=−2, I=1/2)� 0 = uss, �− = dss� 0� 0� 0� 0 I (JP ) = 12 (12+)P is not yet measured; + is the quark model predi
tion.Mass m = 1314.86 ± 0.20 MeVm�− − m�0 = 6.85 ± 0.21 MeVMean life τ = (2.90 ± 0.09)× 10−10 s
τ = 8.71 
mMagneti
 moment µ = −1.250 ± 0.014 µNDe
ay parametersDe
ay parametersDe
ay parametersDe
ay parameters�π0 α = −0.406 ± 0.013
" φ = (21 ± 12)◦
" γ = 0.85 [n℄
" � = (218+12

−19)◦ [n℄�γ α = −0.70 ± 0.07�e+ e− α = −0.8 ± 0.2�0 γ α = −0.69 ± 0.06�+ e− νe g1(0)/f1(0) = 1.22 ± 0.05�+ e− νe f2(0)/f1(0) = 2.0 ± 0.9 p�0 DECAY MODES�0 DECAY MODES�0 DECAY MODES�0 DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)�π0 (99.524±0.012) % 135�γ ( 1.17 ±0.07 )× 10−3 184�e+ e− ( 7.6 ±0.6 )× 10−6 184�0 γ ( 3.33 ±0.10 )× 10−3 117�+ e− νe ( 2.52 ±0.08 )× 10−4 120�+µ− νµ ( 2.33 ±0.35 )× 10−6 64�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�− e+ νe SQ < 9 × 10−4 90% 112�−µ+ νµ SQ < 9 × 10−4 90% 49pπ− S2 < 8 × 10−6 90% 299pe−νe S2 < 1.3 × 10−3 323pµ−νµ S2 < 1.3 × 10−3 309�−�−�−�− I (JP ) = 12 (12+)P is not yet measured; + is the quark model predi
tion.Mass m = 1321.71 ± 0.07 MeV(m�− − m�+) / m�− = (−3 ± 9)× 10−5Mean life τ = (1.639 ± 0.015)× 10−10 s
τ = 4.91 
m(τ�− − τ �+) / τ�− = −0.01 ± 0.07Magneti
 moment µ = −0.6507 ± 0.0025 µN(µ�− + µ�+) / ∣

∣µ�−

∣

∣ = +0.01 ± 0.05De
ay parametersDe
ay parametersDe
ay parametersDe
ay parameters�π− α = −0.458 ± 0.012 (S = 1.8)[α(�−)α−(�) − α(�+)α+(�)℄ / [ sum ℄ = (0 ± 7)× 10−4
" φ = (−2.1 ± 0.8)◦
" γ = 0.89 [n℄
" � = (175.9 ± 1.5)◦ [n℄�e− νe gA/gV = −0.25 ± 0.05 [i ℄



96969696Baryon SummaryTable p�− DECAY MODES�− DECAY MODES�− DECAY MODES�− DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)�π− (99.887±0.035) % 140�−γ ( 1.27 ±0.23 )× 10−4 118�e− νe ( 5.63 ±0.31 )× 10−4 190�µ−νµ ( 3.5 +3.5
−2.2 )× 10−4 163�0 e−νe ( 8.7 ±1.7 )× 10−5 123�0µ−νµ < 8 × 10−4 90% 70� 0 e−νe < 2.3 × 10−3 90% 7�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modesnπ− S2 < 1.9 × 10−5 90% 304ne− νe S2 < 3.2 × 10−3 90% 327nµ− νµ S2 < 1.5 % 90% 314pπ−π− S2 < 4 × 10−4 90% 223pπ− e− νe S2 < 4 × 10−4 90% 305pπ−µ− νµ S2 < 4 × 10−4 90% 251pµ−µ− L < 4 × 10−8 90% 272� (1530) 3/2+� (1530) 3/2+� (1530) 3/2+� (1530) 3/2+ I (JP ) = 12 (32+)� (1530)0 mass m = 1531.80 ± 0.32 MeV (S = 1.3)� (1530)−mass m = 1535.0 ± 0.6 MeV� (1530)0 full width � = 9.1 ± 0.5 MeV� (1530)− full width � = 9.9+1.7

−1.9 MeV p�(1530) DECAY MODES�(1530) DECAY MODES�(1530) DECAY MODES�(1530) DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)� π 100 % 158� γ <4 % 90% 202� (1690)� (1690)� (1690)� (1690) I (JP ) = 12 (??)Mass m = 1690 ± 10 MeV [p℄Full width � < 30 MeV�(1690) DECAY MODES�(1690) DECAY MODES�(1690) DECAY MODES�(1690) DECAY MODES Fra
tion (�i /�) p (MeV/
)�K seen 240� K seen 70� π seen 311�−π+π− possibly seen 213� (1820) 3/2−� (1820) 3/2−� (1820) 3/2−� (1820) 3/2− I (JP ) = 12 (32−)Mass m = 1823 ± 5 MeV [p℄Full width � = 24+15
−10 MeV [p℄�(1820) DECAY MODES�(1820) DECAY MODES�(1820) DECAY MODES�(1820) DECAY MODES Fra
tion (�i /�) p (MeV/
)�K large 402� K small 324� π small 421� (1530)π small 237� (1950)� (1950)� (1950)� (1950) I (JP ) = 12 (??)Mass m = 1950 ± 15 MeV [p℄Full width � = 60 ± 20 MeV [p℄�(1950) DECAY MODES�(1950) DECAY MODES�(1950) DECAY MODES�(1950) DECAY MODES Fra
tion (�i /�) p (MeV/
)�K seen 522� K possibly seen 460� π seen 519� (2030)� (2030)� (2030)� (2030) I (JP ) = 12 ( ≥ 52?)Mass m = 2025 ± 5 MeV [p℄Full width � = 20+15
− 5 MeV [p℄

�(2030) DECAY MODES�(2030) DECAY MODES�(2030) DECAY MODES�(2030) DECAY MODES Fra
tion (�i /�) p (MeV/
)�K ∼ 20 % 585� K ∼ 80 % 529� π small 574� (1530)π small 416�K π small 499� K π small 428
 BARYONS
 BARYONS
 BARYONS
 BARYONS(S=−3, I=0)(S=−3, I=0)(S=−3, I=0)(S=−3, I=0)
− = sss
−
−
−
− I (JP ) = 0(32+)JP = 32+ is the quark-model predi
tion; and J = 3/2 is fairly wellestablished.Mass m = 1672.45 ± 0.29 MeV(m
− − m
+) / m
− = (−1 ± 8)× 10−5Mean life τ = (0.821 ± 0.011)× 10−10 s
τ = 2.461 
m(τ
− − τ
+) / τ
− = 0.00 ± 0.05Magneti
 moment µ = −2.02 ± 0.05 µNDe
ay parametersDe
ay parametersDe
ay parametersDe
ay parameters�K− α = 0.0180 ± 0.0024�K−, �K+ (α + α)/(α − α) = −0.02 ± 0.13� 0π− α = 0.09 ± 0.14�−π0 α = 0.05 ± 0.21 p
− DECAY MODES
− DECAY MODES
− DECAY MODES
− DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)�K− (67.8±0.7) % 211� 0π− (23.6±0.7) % 294�−π0 ( 8.6±0.4) % 289�−π+π− ( 3.7+0.7
−0.6)× 10−4 189� (1530)0π− < 7 × 10−5 90% 17� 0 e−νe ( 5.6±2.8)× 10−3 319�−γ < 4.6 × 10−4 90% 314�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�π− S2 < 2.9 × 10−6 90% 449
(2250)−
(2250)−
(2250)−
(2250)− I (JP ) = 0(??)Mass m = 2252 ± 9 MeVFull width � = 55 ± 18 MeV
(2250)− DECAY MODES
(2250)− DECAY MODES
(2250)− DECAY MODES
(2250)− DECAY MODES Fra
tion (�i /�) p (MeV/
)�−π+K− seen 532� (1530)0K− seen 437CHARMEDBARYONSCHARMEDBARYONSCHARMEDBARYONSCHARMEDBARYONS(C=+1)(C=+1)(C=+1)(C=+1)�+
 = ud 
 , �++
 = uu 
 , �+
 = ud 
 , �0
 = d d 
 ,�+
 = u s 
 , � 0
 = d s 
 , 
0
 = s s 
�+
�+
�+
�+
 I (JP ) = 0(12+)J is not well measured; 12 is the quark-model predi
tion.Mass m = 2286.46 ± 0.14 MeVMean life τ = (200 ± 6)× 10−15 s (S = 1.6)
τ = 59.9 µm



97979797Baryon Summary TableDe
ay asymmetry parametersDe
ay asymmetry parametersDe
ay asymmetry parametersDe
ay asymmetry parameters�π+ α = −0.91 ± 0.15�+π0 α = −0.45 ± 0.32�ℓ+νℓ α = −0.86 ± 0.04(α + α)/(α − α) in �+
 → �π+, �−
 → �π− = −0.07 ± 0.31(α + α)/(α−α) in �+
 → �e+νe , �−
 → �e− νe = 0.00±0.04S
ale fa
tor/ p�+
 DECAY MODES�+
 DECAY MODES�+
 DECAY MODES�+
 DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)Hadroni
 modes with a p: S = −1 �nal statesHadroni
 modes with a p: S = −1 �nal statesHadroni
 modes with a p: S = −1 �nal statesHadroni
 modes with a p: S = −1 �nal statespK0S ( 1.58± 0.08) % S=1.2 873pK−π+ ( 6.35± 0.33) % S=1.4 823pK∗(892)0 [r ℄ ( 1.98± 0.28) % 685�(1232)++K− ( 1.09± 0.25) % 710�(1520)π+ [r ℄ ( 2.2 ± 0.5 ) % 627pK−π+nonresonant ( 3.5 ± 0.4 ) % 823pK0S π0 ( 1.99± 0.13) % S=1.1 823pK0 η ( 1.6 ± 0.4 ) % 568pK0S π+π− ( 1.66± 0.12) % S=1.1 754pK−π+π0 ( 4.9 ± 0.4 ) % S=1.3 759pK∗(892)−π+ [r ℄ ( 1.5 ± 0.5 ) % 580p (K−π+)nonresonant π0 ( 4.6 ± 0.9 ) % 759�(1232)K∗(892) seen 419pK−2π+π− ( 1.4 ± 1.0 )× 10−3 671pK−π+2π0 ( 1.0 ± 0.5 ) % 678Hadroni
 modes with a p: S = 0 �nal statesHadroni
 modes with a p: S = 0 �nal statesHadroni
 modes with a p: S = 0 �nal statesHadroni
 modes with a p: S = 0 �nal statespπ+π− ( 4.4 ± 2.3 )× 10−3 927p f0(980) [r ℄ ( 3.5 ± 2.3 )× 10−3 614p2π+2π− ( 2.3 ± 1.5 )× 10−3 852pK+K− (10 ± 4 )× 10−4 616pφ [r ℄ ( 1.04± 0.21)× 10−3 590pK+K−non-φ ( 4.4 ± 1.8 )× 10−4 616Hadroni
 modes with a hyperon: S = −1 �nal statesHadroni
 modes with a hyperon: S = −1 �nal statesHadroni
 modes with a hyperon: S = −1 �nal statesHadroni
 modes with a hyperon: S = −1 �nal states�π+ ( 1.30± 0.07) % S=1.2 864�π+π0 ( 7.1 ± 0.4 ) % S=1.2 844�ρ+ < 6 % CL=95% 636�π− 2π+ ( 3.7 ± 0.4 ) % S=1.9 807� (1385)+π+π− , �∗+ →�π+ ( 1.0 ± 0.5 ) % 688� (1385)−2π+ , �∗− →�π−
( 7.8 ± 1.6 )× 10−3 688�π+ ρ0 ( 1.5 ± 0.6 ) % 524� (1385)+ρ0 , �∗+ → �π+ ( 5 ± 4 )× 10−3 363�π− 2π+nonresonant < 1.1 % CL=90% 807�π−π0 2π+ total ( 2.3 ± 0.8 ) % 757�π+ η [r ℄ ( 2.3 ± 0.5 ) % 691� (1385)+η [r ℄ ( 1.08± 0.32) % 570�π+ω [r ℄ ( 1.5 ± 0.5 ) % 517�π−π0 2π+ , no η or ω < 8 × 10−3 CL=90% 757�K+K0 ( 5.7 ± 1.1 )× 10−3 S=2.0 443� (1690)0K+ , � ∗0 → �K0 ( 1.6 ± 0.5 )× 10−3 286�0π+ ( 1.29± 0.07) % S=1.1 825�+π0 ( 1.24± 0.10) % 827�+η ( 7.0 ± 2.3 )× 10−3 713�+π+π− ( 4.57± 0.29) % S=1.2 804�+ρ0 < 1.7 % CL=95% 575�−2π+ ( 2.1 ± 0.4 ) % 799�0π+π0 ( 2.3 ± 0.9 ) % 803�0π−2π+ ( 1.13± 0.29) % 763�+π+π−π0 | 767�+ω [r ℄ ( 1.74± 0.21) % 569�+K+K− ( 3.6 ± 0.4 )× 10−3 349�+φ [r ℄ ( 4.0 ± 0.6 )× 10−3 S=1.1 295� (1690)0K+ , � ∗0 →�+K−
( 1.03± 0.26)× 10−3 286�+K+K−nonresonant < 8 × 10−4 CL=90% 349� 0K+ ( 5.0 ± 1.2 )× 10−3 653�−K+π+ ( 6.2 ± 0.6 )× 10−3 S=1.1 565� (1530)0K+ [r ℄ ( 3.3 ± 0.9 )× 10−3 473

Hadroni
 modes with a hyperon: S = 0 �nal statesHadroni
 modes with a hyperon: S = 0 �nal statesHadroni
 modes with a hyperon: S = 0 �nal statesHadroni
 modes with a hyperon: S = 0 �nal states�K+ ( 6.1 ± 1.2 )× 10−4 781�K+π+π− < 5 × 10−4 CL=90% 637�0K+ ( 5.2 ± 0.8 )× 10−4 735�0K+π+π−
< 2.6 × 10−4 CL=90% 574�+K+π− ( 2.1 ± 0.6 )× 10−3 670�+K∗(892)0 [r ℄ ( 3.6 ± 1.0 )× 10−3 470�−K+π+ < 1.2 × 10−3 CL=90% 664Doubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modespK+π− < 2.9 × 10−4 CL=90% 823Semileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modes�e+ νe ( 3.6 ± 0.4 ) % 871In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modese+anything ( 4.5 ± 1.7 ) % {pe+anything ( 1.8 ± 0.9 ) % {p anything (50 ±16 ) % {p anything (no �) (12 ±19 ) % {n anything (50 ±16 ) % {n anything (no �) (29 ±17 ) % {� anything (35 ±11 ) % S=1.4 {�± anything [s℄ (10 ± 5 ) % {3prongs (24 ± 8 ) % {�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, orLepton Family number (LF ), or Lepton number (L), orLepton Family number (LF ), or Lepton number (L), orLepton Family number (LF ), or Lepton number (L), orLepton Family number (LF ), or Lepton number (L), orBaryon number (B) violating modesBaryon number (B) violating modesBaryon number (B) violating modesBaryon number (B) violating modespe+ e− C1 < 5.5 × 10−6 CL=90% 951pµ+µ− C1 < 4.4 × 10−5 CL=90% 937pe+µ− LF < 9.9 × 10−6 CL=90% 947pe−µ+ LF < 1.9 × 10−5 CL=90% 947p2e+ L,B < 2.7 × 10−6 CL=90% 951p2µ+ L,B < 9.4 × 10−6 CL=90% 937pe+µ+ L,B < 1.6 × 10−5 CL=90% 947�−µ+µ+ L < 7.0 × 10−4 CL=90% 812�
(2595)+�
(2595)+�
(2595)+�
(2595)+ I (JP ) = 0(12−)The spin-parity follows from the fa
t that �
 (2455)π de
ays, withlittle available phase spa
e, are dominant. This assumes that JP =1/2+ for the �
 (2455).Mass m = 2592.25 ± 0.28 MeVm − m�+
 = 305.79 ± 0.24 MeVFull width � = 2.6 ± 0.6 MeV�+
 ππ and its submode �
 (2455)π | the latter just barely | are theonly strong de
ays allowed to an ex
ited �+
 having this mass; and thesubmode seems to dominate.�
 (2595)+ DECAY MODES�
 (2595)+ DECAY MODES�
 (2595)+ DECAY MODES�
 (2595)+ DECAY MODES Fra
tion (�i /�) p (MeV/
)�+
 π+π− [t℄ | 117�
 (2455)++π− 24 ± 7 % †�
 (2455)0π+ 24 ± 7 % †�+
 π+π−3-body 18 ± 10 % 117�+
 π0 [u℄ not seen 258�+
 γ not seen 288�
(2625)+�
(2625)+�
(2625)+�
(2625)+ I (JP ) = 0(32−)JP has not been measured; 32− is the quark-model predi
tion.Mass m = 2628.11 ± 0.19 MeV (S = 1.1)m − m�+
 = 341.65 ± 0.13 MeV (S = 1.1)Full width � < 0.97 MeV, CL = 90%�+
 ππ and its submode �(2455)π are the only strong de
ays allowed toan ex
ited �+
 having this mass.



98989898Baryon Summary Table p�
 (2625)+ DECAY MODES�
 (2625)+ DECAY MODES�
 (2625)+ DECAY MODES�
 (2625)+ DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)�+
 π+π− [t℄ ≈ 67% 184�
 (2455)++π− <5 90% 102�
 (2455)0π+ <5 90% 102�+
 π+π−3-body large 184�+
 π0 [u℄ not seen 293�+
 γ not seen 319�
(2880)+�
(2880)+�
(2880)+�
(2880)+ I (JP ) = 0(52+)There is some good eviden
e that indeed JP = 5/2+Mass m = 2881.53 ± 0.35 MeVm − m�+
 = 595.1 ± 0.4 MeVFull width � = 5.8 ± 1.1 MeV�
 (2880)+ DECAY MODES�
 (2880)+ DECAY MODES�
 (2880)+ DECAY MODES�
 (2880)+ DECAY MODES Fra
tion (�i /�) p (MeV/
)�+
 π+π− seen 471�
 (2455)0 ,++π± seen 376�
 (2520)0 ,++π± seen 317pD0 seen 316�
(2940)+�
(2940)+�
(2940)+�
(2940)+ I (JP ) = 0(??)Mass m = 2939.3+1.4
−1.5 MeVFull width � = 17+8
−6 MeV�
 (2940)+ DECAY MODES�
 (2940)+ DECAY MODES�
 (2940)+ DECAY MODES�
 (2940)+ DECAY MODES Fra
tion (�i /�) p (MeV/
)pD0 seen 420�
 (2455)0 ,++π± seen {�
 (2455)�
 (2455)�
 (2455)�
 (2455) I (JP ) = 1(12+)�
 (2455)++mass m = 2453.97 ± 0.14 MeV�
 (2455)+ mass m = 2452.9 ± 0.4 MeV�
 (2455)0 mass m = 2453.75 ± 0.14 MeVm�++
 − m�+
 = 167.510 ± 0.017 MeVm�+
 − m�+
 = 166.4 ± 0.4 MeVm�0
 − m�+
 = 167.290 ± 0.017 MeVm�++
 − m�0
 = 0.220 ± 0.013 MeVm�+
 − m�0
 = −0.9 ± 0.4 MeV�
 (2455)++full width � = 1.89+0.09

−0.18 MeV (S = 1.1)�
 (2455)+ full width � < 4.6 MeV, CL = 90%�
 (2455)0 full width � = 1.83+0.11
−0.19 MeV (S = 1.2)�+
 π is the only strong de
ay allowed to a �
 having this mass.�
 (2455) DECAY MODES�
 (2455) DECAY MODES�
 (2455) DECAY MODES�
 (2455) DECAY MODES Fra
tion (�i /�) p (MeV/
)�+
 π ≈ 100 % 94�
 (2520)�
 (2520)�
 (2520)�
 (2520) I (JP ) = 1(32+)JP has not been measured; 32+ is the quark-model predi
tion.�
 (2520)++mass m = 2518.41+0.21
−0.19 MeV (S = 1.1)�
 (2520)+ mass m = 2517.5 ± 2.3 MeV�
 (2520)0 mass m = 2518.48 ± 0.20 MeV (S = 1.1)m�
(2520)++ − m�+
 = 231.95+0.17
−0.12 MeV (S = 1.3)m�
(2520)+ − m�+
 = 231.0 ± 2.3 MeVm�
(2520)0 − m�+
 = 232.02+0.15

−0.14 MeV (S = 1.3)m�
(2520)++ − m�
(2520)0 = 0.01 ± 0.15 MeV�
 (2520)++ full width � = 14.78+0.30
−0.40 MeV�
 (2520)+ full width � < 17 MeV, CL = 90%�
 (2520)0 full width � = 15.3+0.4

−0.5 MeV�+
 π is the only strong de
ay allowed to a �
 having this mass.

�
 (2520) DECAY MODES�
 (2520) DECAY MODES�
 (2520) DECAY MODES�
 (2520) DECAY MODES Fra
tion (�i /�) p (MeV/
)�+
 π ≈ 100 % 179�
 (2800)�
 (2800)�
 (2800)�
 (2800) I (JP ) = 1(??)�
 (2800)++ mass m = 2801+4
−6 MeV�
 (2800)+ mass m = 2792+14

− 5 MeV�
 (2800)0 mass m = 2806+5
−7 MeV (S = 1.3)m�
(2800)++ − m�+
 = 514+4

−6 MeVm�
(2800)+ − m�+
 = 505+14
− 5 MeVm�
(2800)0 − m�+
 = 519+5
−7 MeV (S = 1.3)�
 (2800)++ full width � = 75+22

−17 MeV�
 (2800)+ full width � = 62+60
−40 MeV�
 (2800)0 full width � = 72+22
−15 MeV�
 (2800) DECAY MODES�
 (2800) DECAY MODES�
 (2800) DECAY MODES�
 (2800) DECAY MODES Fra
tion (�i /�) p (MeV/
)�+
 π seen 443�+
�+
�+
�+
 I (JP ) = 12 (12+)JP has not been measured; 12+ is the quark-model predi
tion.Mass m = 2467.93+0.28

−0.40 MeVMean life τ = (442 ± 26)× 10−15 s (S = 1.3)
τ = 132 µm p�+
 DECAY MODES�+
 DECAY MODES�+
 DECAY MODES�+
 DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.The following are bran
hing ratios relative to �−2π+.The following are bran
hing ratios relative to �−2π+.The following are bran
hing ratios relative to �−2π+.The following are bran
hing ratios relative to �−2π+.Cabibbo-favored (S = −2) de
ays | relative to �−2π+Cabibbo-favored (S = −2) de
ays | relative to �−2π+Cabibbo-favored (S = −2) de
ays | relative to �−2π+Cabibbo-favored (S = −2) de
ays | relative to �−2π+p2K0S 0.087±0.021 767�K0π+ | 852� (1385)+K0 [r ℄ 1.0 ±0.5 746�K−2π+ 0.323±0.033 787�K∗(892)0π+ [r ℄ <0.16 90% 608� (1385)+K−π+ [r ℄ <0.23 90% 678�+K−π+ 0.94 ±0.10 811�+K∗(892)0 [r ℄ 0.81 ±0.15 658�0K−2π+ 0.27 ±0.12 735� 0π+ 0.55 ±0.16 877�−2π+ DEFINED AS 1DEFINED AS 1DEFINED AS 1DEFINED AS 1 851� (1530)0π+ [r ℄ <0.10 90% 750� 0π+π0 2.3 ±0.7 856� 0π−2π+ 1.7 ±0.5 818� 0 e+νe 2.3 +0.7
−0.8 884
−K+π+ 0.07 ±0.04 399Cabibbo-suppressed de
ays | relative to �− 2π+Cabibbo-suppressed de
ays | relative to �− 2π+Cabibbo-suppressed de
ays | relative to �− 2π+Cabibbo-suppressed de
ays | relative to �− 2π+pK−π+ 0.21 ±0.04 944pK∗(892)0 [r ℄ 0.116±0.030 828�+π+π− 0.48 ±0.20 922�−2π+ 0.18 ±0.09 918�+K+K− 0.15 ±0.06 580�+φ [r ℄ <0.11 90% 549� (1690)0K+ , � 0 →�+K−

<0.05 90% 501� 0
� 0
� 0
� 0
 I (JP ) = 12 (12+)JP has not been measured; 12+ is the quark-model predi
tion.Mass m = 2470.85+0.28
−0.40 MeVm�0
 − m�+
 = 2.93 ± 0.24 MeVMean life τ = (112+13
−10)× 10−15 s
τ = 33.6 µm



99999999Baryon SummaryTableDe
ay asymmetry parametersDe
ay asymmetry parametersDe
ay asymmetry parametersDe
ay asymmetry parameters�−π+ α = −0.6 ± 0.4No absolute bran
hing fra
tions have been measured. Several measure-ments of ratios of fra
tions may be found in the Listings that follow.�0
 DECAY MODES�0
 DECAY MODES�0
 DECAY MODES�0
 DECAY MODES Fra
tion (�i /�) p (MeV/
)No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.The following are bran
hing ratios relative to �−π+.The following are bran
hing ratios relative to �−π+.The following are bran
hing ratios relative to �−π+.The following are bran
hing ratios relative to �−π+.Cabibbo-favored (S = −2) de
ays | relative to �−π+Cabibbo-favored (S = −2) de
ays | relative to �−π+Cabibbo-favored (S = −2) de
ays | relative to �−π+Cabibbo-favored (S = −2) de
ays | relative to �−π+pK−K−π+ 0.34 ±0.04 676pK−K∗(892)0 0.21 ±0.05 413pK−K−π+ (no K∗0) 0.21 ±0.04 676�K0S 0.210±0.028 906�K−π+ 1.07 ±0.14 856�K0π+π− seen 787�K−π+π+π− seen 703�−π+ DEFINED AS 1DEFINED AS 1DEFINED AS 1DEFINED AS 1 875�−π+π+π− 3.3 ±1.4 816
−K+ 0.297±0.024 522�− e+ νe 3.1 ±1.1 882�− ℓ+anything 1.0 ±0.5 {Cabibbo-suppressed de
ays | relative to �−π+Cabibbo-suppressed de
ays | relative to �−π+Cabibbo-suppressed de
ays | relative to �−π+Cabibbo-suppressed de
ays | relative to �−π+�−K+ 0.028±0.006 790�K+K− (no φ) 0.029±0.007 648�φ 0.034±0.007 621� ′+
� ′+
� ′+
� ′+
 I (JP ) = 12 (12+)JP has not been measured; 12+ is the quark-model predi
tion.Mass m = 2575.7 ± 3.0 MeVm� ′+
 − m�+
 = 107.8 ± 3.0 MeVThe � ′+
 {�+
 mass di�eren
e is too small for any strong de
ay to o

ur.� ′+
 DECAY MODES� ′+
 DECAY MODES� ′+
 DECAY MODES� ′+
 DECAY MODES Fra
tion (�i /�) p (MeV/
)�+
 γ seen 106� ′0
� ′0
� ′0
� ′0
 I (JP ) = 12 (12+)JP has not been measured; 12+ is the quark-model predi
tion.Mass m = 2577.9 ± 2.9 MeVm� ′0
 − m�0
 = 107.0 ± 2.9 MeVThe � ′0
 − �0
 mass di�eren
e is too small for any strong de
ay to o

ur.� ′0
 DECAY MODES� ′0
 DECAY MODES� ′0
 DECAY MODES� ′0
 DECAY MODES Fra
tion (�i /�) p (MeV/
)� 0
 γ seen 105�
(2645)�
(2645)�
(2645)�
(2645) I (JP ) = 12 (32+)JP has not been measured; 32+ is the quark-model predi
tion.�
 (2645)+ mass m = 2645.9 ± 0.5 MeV (S = 1.1)�
 (2645)0 mass m = 2645.9 ± 0.5 MeVm�
(2645)+ − m�0
 = 175.0 ± 0.6 MeV (S = 1.1)m�
(2645)0 − m�+
 = 178.0 ± 0.6 MeVm�
(2645)+ − m�
(2645)0 = 0.0 ± 0.5 MeV�
 (2645)+ full width � = 2.6 ± 0.4 MeV�
 (2645)0 full width � < 5.5 MeV, CL = 90%�
 π is the only strong de
ay allowed to a �
 resonan
e having this mass.

�
 (2645) DECAY MODES�
 (2645) DECAY MODES�
 (2645) DECAY MODES�
 (2645) DECAY MODES Fra
tion (�i /�) p (MeV/
)� 0
 π+ seen 102�+
 π− seen 107�
(2790)�
(2790)�
(2790)�
(2790) I (JP ) = 12 (12−)JP has not been measured; 12− is the quark-model predi
tion.�
 (2790)+ mass = 2789.1 ± 3.2 MeV�
 (2790)0 mass = 2791.9 ± 3.3 MeVm�
(2790)+ − m�0
 = 318.2 ± 3.2 MeVm�
(2790)0 − m�+
 = 324.0 ± 3.3 MeV�
 (2790)+ width < 15 MeV, CL = 90%�
 (2790)0 width < 12 MeV, CL = 90%�
 (2790) DECAY MODES�
 (2790) DECAY MODES�
 (2790) DECAY MODES�
 (2790) DECAY MODES Fra
tion (�i /�) p (MeV/
)� ′
 π seen 159�
(2815)�
(2815)�
(2815)�
(2815) I (JP ) = 12 (32−)JP has not been measured; 32− is the quark-model predi
tion.�
 (2815)+ mass m = 2816.6 ± 0.9 MeV�
 (2815)0 mass m = 2819.6 ± 1.2 MeVm�
(2815)+ − m�+
 = 348.7 ± 0.9 MeVm�
(2815)0 − m�0
 = 348.8 ± 1.2 MeVm�
(2815)+ − m�
(2815)0 = −3.0 ± 1.3 MeV�
 (2815)+ full width � < 3.5 MeV, CL = 90%�
 (2815)0 full width � < 6.5 MeV, CL = 90%The �
 ππ modes are 
onsistent with being entirely via �
 (2645)π.�
 (2815) DECAY MODES�
 (2815) DECAY MODES�
 (2815) DECAY MODES�
 (2815) DECAY MODES Fra
tion (�i /�) p (MeV/
)�+
 π+π− seen 196� 0
 π+π− seen 191�
(2970)�
(2970)�
(2970)�
(2970)was �
 (2980)was �
 (2980)was �
 (2980)was �
 (2980) I (JP ) = 12 (??)�
 (2970)+ m = 2970.7 ± 2.2 MeV (S = 1.5)�
 (2970)0 m = 2968.0 ± 2.6 MeV (S = 1.2)�
 (2970)+ width � = 17.9 ± 3.5 MeV�
 (2970)0 width � = 20 ± 7 MeV (S = 1.3)�
 (2970) DECAY MODES�
 (2970) DECAY MODES�
 (2970) DECAY MODES�
 (2970) DECAY MODES Fra
tion (�i /�) p (MeV/
)�+
 K π seen 231�
 (2455)K seen 134�+
 K not seen 414�
 2π seen 385�
 (2645)π seen 277�
(3055)�
(3055)�
(3055)�
(3055) I (JP ) = ?(??)Mass m = 3055.1 ± 1.7 MeV (S = 1.5)Full width � = 11 ± 4 MeV�
(3080)�
(3080)�
(3080)�
(3080) I (JP ) = 12 (??)�
 (3080)+ m = 3076.94 ± 0.28 MeV�
 (3080)0 m = 3079.9 ± 1.4 MeV (S = 1.3)�
 (3080)+ width � = 4.3 ± 1.5 MeV (S = 1.3)�
 (3080)0 width � = 5.6 ± 2.2 MeV



100100100100Baryon SummaryTable�
 (3080) DECAY MODES�
 (3080) DECAY MODES�
 (3080) DECAY MODES�
 (3080) DECAY MODES Fra
tion (�i /�) p (MeV/
)�+
 K π seen 415�
 (2455)K seen 342�
 (2455)K + �
 (2520)K seen {�+
 K not seen 536�+
 K π+π− not seen 143
0

0

0

0
 I (JP ) = 0(12+)JP has not been measured; 12+ is the quark-model predi
tion.Mass m = 2695.2 ± 1.7 MeV (S = 1.3)Mean life τ = (69 ± 12)× 10−15 s
τ = 21 µmNo absolute bran
hing fra
tions have been measured.
0
 DECAY MODES
0
 DECAY MODES
0
 DECAY MODES
0
 DECAY MODES Fra
tion (�i /�) p (MeV/
)�+K−K−π+ seen 689� 0K−π+ seen 901�−K−π+π+ seen 830
− e+ νe seen 829
−π+ seen 821
−π+π0 seen 797
−π−π+π+ seen 753

 (2770)0

 (2770)0

 (2770)0

 (2770)0 I (JP ) = 0(32+)JP has not been measured; 32+ is the quark-model predi
tion.Mass m = 2765.9 ± 2.0 MeV (S = 1.2)m

(2770)0 − m
0
 = 70.7+0.8
−0.9 MeVThe 

 (2770)0{
0
 mass di�eren
e is too small for any strong de
ay too

ur.

 (2770)0 DECAY MODES

 (2770)0 DECAY MODES

 (2770)0 DECAY MODES

 (2770)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)
0
 γ presumably 100% 70BOTTOM BARYONSBOTTOM BARYONSBOTTOM BARYONSBOTTOM BARYONS(B = −1)(B = −1)(B = −1)(B = −1)�0b = ud b, � 0b = u s b, �−b = d s b, 
−b = s s b�0b�0b�0b�0b I (JP ) = 0(12+)I (JP ) not yet measured; 0(12+) is the quark model predi
tion.Mass m = 5619.51 ± 0.23 MeVm�0b − mB0 = 339.2 ± 1.4 MeVm�0b − mB+ = 339.72 ± 0.28 MeVMean life τ = (1.466 ± 0.010)× 10−12 s
τ = 439.5 µmACP (�b → pπ−) = 0.06 ± 0.07ACP (�b → pK−) = 0.00 ± 0.19 (S = 2.4)ACP (�b → pK0π−) = 0.22 ± 0.13�ACP (J/ψpπ− /K−) ≡ ACP (J/ψpπ−) − ACP (J/ψpK−)= (5.7 ± 2.7)× 10−2

α de
ay parameter for �b → J/ψ� = 0.18 ± 0.13Aℓ
FB(µµ) in �b → �µ+µ− = −0.05 ± 0.09Ah
FB(pπ) in �b → �(pπ)µ+µ− = −0.29 ± 0.08fL(µµ) longitudinal polarization fra
tion in �b → �µ+µ− =0.61+0.11

−0.14

The bran
hing fra
tions B(b -baryon → �ℓ− νℓ anything) and B(�0b →�+
 ℓ− νℓ anything) are not pure measurements be
ause the underlyingmeasured produ
ts of these with B(b → b -baryon) were used to determineB(b → b -baryon), as des
ribed in the note \Produ
tion and De
ay ofb-Flavored Hadrons."For in
lusive bran
hing fra
tions, e.g., �b → �
 anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one. S
ale fa
tor/ p�0b DECAY MODES�0b DECAY MODES�0b DECAY MODES�0b DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)J/ψ(1S)�× B(b → �0b) ( 5.8 ±0.8 ) × 10−5 1740pD0π− ( 6.4 ±0.7 ) × 10−4 2370pD0K− ( 4.7 ±0.8 ) × 10−5 2269pJ/ψπ− ( 2.6 +0.5
−0.4 )× 10−5 1755pJ/ψK− ( 3.2 +0.6
−0.5 )× 10−4 1589P
 (4380)+K−, P
 →pJ/ψ

[v ℄ ( 2.7 ±1.4 ) × 10−5 {P
 (4450)+K−, P
 →pJ/ψ
[v ℄ ( 1.3 ±0.4 ) × 10−5 {pK0π− ( 1.3 ±0.4 ) × 10−5 2693pK0K− < 3.5 × 10−6 CL=90% 2639�+
 π− ( 4.9 ±0.4 ) × 10−3 S=1.2 2342�+
 K− ( 3.59±0.30) × 10−4 S=1.2 2314�+
 a1(1260)− seen 2153�+
 D− ( 4.6 ±0.6 ) × 10−4 1886�+
 D−s ( 1.10±0.10) % 1833�+
 π+π−π− ( 7.7 ±1.1 ) × 10−3 S=1.1 2323�
 (2595)+π− ,�
 (2595)+ → �+
 π+π−

( 3.4 ±1.5 ) × 10−4 2210�
 (2625)+π− ,�
 (2625)+ → �+
 π+π−

( 3.3 ±1.3 ) × 10−4 2193�
 (2455)0π+π− , �0
 →�+
 π−

( 5.7 ±2.2 ) × 10−4 2265�
 (2455)++π−π− , �++
 →�+
 π+ ( 3.2 ±1.6 ) × 10−4 2265�+
 ℓ−νℓ anything [x ℄ (10.3 ±2.2 ) % {�+
 ℓ−νℓ ( 6.2 +1.4
−1.3 ) % 2345�+
 π+π− ℓ−νℓ ( 5.6 ±3.1 ) % 2335�
 (2595)+ ℓ−νℓ ( 7.9 +4.0
−3.5 )× 10−3 2212�
 (2625)+ ℓ−νℓ ( 1.3 +0.6
−0.5 ) % 2195ph− [y ℄ < 2.3 × 10−5 CL=90% 2730pπ− ( 4.2 ±0.8 ) × 10−6 2730pK− ( 5.1 ±1.0 ) × 10−6 2708pD−s < 4.8 × 10−4 CL=90% 2364pµ−νµ ( 4.1 ±1.0 ) × 10−4 2730�µ+µ− ( 1.08±0.28) × 10−6 2695�γ < 1.3 × 10−3 CL=90% 2699�0η ( 9 +7
−5 )× 10−6 {�0η′(958) < 3.1 × 10−6 CL=90% {�b(5912)0�b(5912)0�b(5912)0�b(5912)0 JP = 12−Mass m = 5912.11 ± 0.26 MeVFull width � < 0.66 MeV, CL = 90%�b(5912)0 DECAY MODES�b(5912)0 DECAY MODES�b(5912)0 DECAY MODES�b(5912)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)�0b π+π− seen 86�b(5920)0�b(5920)0�b(5920)0�b(5920)0 JP = 32−Mass m = 5919.81 ± 0.23 MeVFull width � < 0.63 MeV, CL = 90%�b(5920)0 DECAY MODES�b(5920)0 DECAY MODES�b(5920)0 DECAY MODES�b(5920)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)�0b π+π− seen 108



101101101101Baryon SummaryTable�b�b�b�b I (JP ) = 1(12+)I, J, P need 
on�rmation.Mass m(�+b ) = 5811.3 ± 1.9 MeVMass m(�−b ) = 5815.5 ± 1.8 MeVm�+b − m�−b = −4.2 ± 1.1 MeV�(�+b ) = 9.7+4.0
−3.0 MeV�(�−b ) = 4.9+3.3
−2.4 MeV�b DECAY MODES�b DECAY MODES�b DECAY MODES�b DECAY MODES Fra
tion (�i /�) p (MeV/
)�0b π dominant 134� ∗b� ∗b� ∗b� ∗b I (JP ) = 1(32+)I, J, P need 
on�rmation.Mass m(�∗+b ) = 5832.1 ± 1.9 MeVMass m(�∗−b ) = 5835.1 ± 1.9 MeVm�∗+b − m�∗−b = −3.0+1.0

−0.9 MeV�(�∗+b ) = 11.5 ± 2.8 MeV�(�∗−b ) = 7.5 ± 2.3 MeVm�∗b − m�b = 21.2 ± 2.0 MeV�∗b DECAY MODES�∗b DECAY MODES�∗b DECAY MODES�∗b DECAY MODES Fra
tion (�i /�) p (MeV/
)�0b π dominant 161� 0b, �−b� 0b, �−b� 0b, �−b� 0b, �−b I (JP ) = 12 (12+)I, J, P need 
on�rmation.m(�−b ) = 5794.5 ± 1.4 MeV (S = 4.0)m(� 0b) = 5791.9 ± 0.5 MeVm�−b − m�0b = 177.9 ± 0.9 MeV (S = 2.1)m�0b − m�0b = 172.5 ± 0.4 MeVm�−b − m�0b = 5.9 ± 0.6 MeVMean life τ�−b = (1.560 ± 0.040)× 10−12 sMean life τ�0b = (1.464 ± 0.031)× 10−12 s S
ale fa
tor/ p�b DECAY MODES�b DECAY MODES�b DECAY MODES�b DECAY MODES Fra
tion (�i /�) Con�den
e level (MeV/
)�b → �− ℓ−νℓX × B(b → �b) (3.9 ±1.2 )× 10−4 S=1.4 {�−b → J/ψ�−× B(b → �−b ) (1.02+0.26
−0.21)× 10−5 1782� 0b → pD0K−× B(b → �b) (1.7 ±0.6 )× 10−6 2374� 0b → pK0π−× B(b →�b)/B(b → B0) < 1.6 × 10−6 CL=90% 2783� 0b → pK0K−× B(b →�b)/B(b → B0) < 1.1 × 10−6 CL=90% 2730� 0b → �+
 K−× B(b → �b) (6 ±4 )× 10−7 2416�−b → �0b π−× B(b →�−b )/B(b → �0b) (5.7 ±2.0 )× 10−4 100� ′b(5935)−� ′b(5935)−� ′b(5935)−� ′b(5935)− JP = 12+Mass m = 5935.02 ± 0.05 MeVm� ′b(5935)− − m�0b − m

π− = 3.653 ± 0.019 MeVFull width � < 0.08 MeV, CL = 95%� ′b(5935)− DECAY MODES� ′b(5935)− DECAY MODES� ′b(5935)− DECAY MODES� ′b(5935)− DECAY MODES Fra
tion (�i /�) p (MeV/
)� 0b π−× B(b →� ′b(5935)−)/B(b → � 0b) (11.8±1.8) % 31�b(5945)0�b(5945)0�b(5945)0�b(5945)0 JP = 32+Mass m = 5948.9 ± 1.6 MeVFull width � = 2.1 ± 1.7 MeV

�b(5945)0 DECAY MODES�b(5945)0 DECAY MODES�b(5945)0 DECAY MODES�b(5945)0 DECAY MODES Fra
tion (�i /�) p (MeV/
)�−b π+ seen 71� ∗b(5955)−� ∗b(5955)−� ∗b(5955)−� ∗b(5955)− JP = 32+Mass m = 5955.33 ± 0.13 MeVm�∗b(5955)− − m�0b − m
π− = 23.96 ± 0.13 MeVFull width � = 1.65 ± 0.33 MeV�∗b(5955)− DECAY MODES�∗b(5955)− DECAY MODES�∗b(5955)− DECAY MODES�∗b(5955)− DECAY MODES Fra
tion (�i /�) p (MeV/
)� 0b π−× B(b →� ∗b(5955)−)/B(b → � 0b) (20.7±3.5) % 84
−b
−b
−b
−b I (JP ) = 0(12+)I, J, P need 
on�rmation.Mass m = 6046.4 ± 1.9 MeVm
−b − m�0b = 426.4 ± 2.2 MeVMean life τ = (1.57+0.23

−0.20)× 10−12 s
−b DECAY MODES
−b DECAY MODES
−b DECAY MODES
−b DECAY MODES Fra
tion (�i /�) p (MeV/
)J/ψ
−×B(b → 
b) (2.9+1.1
−0.8)× 10−6 1806b-baryon ADMIXTURE (�b, �b, �b, 
b)b-baryon ADMIXTURE (�b, �b, �b, 
b)b-baryon ADMIXTURE (�b, �b, �b, 
b)b-baryon ADMIXTURE (�b, �b, �b, 
b)Mean life τThese bran
hing fra
tions are a
tually an average over weakly de
aying b-baryons weighted by their produ
tion rates at the LHC, LEP, and Tevatron,bran
hing ratios, and dete
tion eÆ
ien
ies. They s
ale with the b-baryonprodu
tion fra
tion B(b → b -baryon).The bran
hing fra
tions B(b -baryon → �ℓ− νℓ anything) and B(�0b →�+
 ℓ− νℓ anything) are not pure measurements be
ause the underlyingmeasured produ
ts of these with B(b → b -baryon) were used to determineB(b → b -baryon), as des
ribed in the note \Produ
tion and De
ay ofb-Flavored Hadrons."For in
lusive bran
hing fra
tions, e.g., B → D± anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one.b-baryon ADMIXTURE DECAY MODESb-baryon ADMIXTURE DECAY MODESb-baryon ADMIXTURE DECAY MODESb-baryon ADMIXTURE DECAY MODES(�b ,�b,�b ,
b)(�b ,�b,�b ,
b)(�b ,�b,�b ,
b)(�b ,�b,�b ,
b) Fra
tion (�i /�) p (MeV/
)pµ−ν anything ( 5.5+ 2.2
− 1.9) % {p ℓνℓ anything ( 5.3± 1.2) % {panything (66 ±21 ) % {�ℓ−νℓ anything ( 3.6± 0.6) % {�ℓ+νℓ anything ( 3.0± 0.8) % {�anything (37 ± 7 ) % {�− ℓ−νℓ anything ( 6.2± 1.6)× 10−3 {EXOTIC BARYONSEXOTIC BARYONSEXOTIC BARYONSEXOTIC BARYONSP
(4380)+P
(4380)+P
(4380)+P
(4380)+Mass m = 4380 ± 30 MeVFull width � = 205 ± 90 MeVModeMode Fra
tion (�i /�) p (MeV/
)J/ψp seen 741P
(4450)+P
(4450)+P
(4450)+P
(4450)+Mass m = 4449.8 ± 3.0 MeVFull width � = 39 ± 20 MeVModeMode Fra
tion (�i /�) p (MeV/
)J/ψp seen 820



102102102102Baryon Summary TableNOTESThis Summary Table only in
ludes established baryons. The Parti
le Listingsin
lude eviden
e for other baryons. The masses, widths, and bran
hingfra
tions for the resonan
es in this Table are Breit-Wigner parameters, butpole positions are also given for most of the N and � resonan
es.For most of the resonan
es, the parameters 
ome from various partial-waveanalyses of more or less the same sets of data, and it is not appropriate totreat the results of the analyses as independent or to average them together.Furthermore, the systemati
 errors on the results are not well understood.Thus, we usually only give ranges for the parameters. We then also give abest guess for the mass (as part of the name of the resonan
e) and for thewidth. The Note on N and � Resonan
es and the Note on � and �Resonan
es in the Parti
le Listings review the partial-wave analyses.When a quantity has \(S = . . .)" to its right, the error on the quantity hasbeen enlarged by the \s
ale fa
tor" S, de�ned as S = √

χ2/(N − 1), whereN is the number of measurements used in 
al
ulating the quantity. Wedo this when S > 1, whi
h often indi
ates that the measurements are in
on-sistent. When S > 1.25, we also show in the Parti
le Listings an ideogram ofthe measurements. For more about S, see the Introdu
tion.A de
ay momentum p is given for ea
h de
ay mode. For a 2-body de
ay, p isthe momentum of ea
h de
ay produ
t in the rest frame of the de
ayingparti
le. For a 3-or-more-body de
ay, p is the largest momentum any of theprodu
ts 
an have in this frame. For any resonan
e, the nominal mass isused in 
al
ulating p. A dagger (\†") in this 
olumn indi
ates that the modeis forbidden when the nominal masses of resonan
es are used, but is in fa
tallowed due to the nonzero widths of the resonan
es.[a℄ The masses of the p and n are most pre
isely known in u (uni�ed atomi
mass units). The 
onversion fa
tor to MeV, 1 u = 931.494061(21) MeV,is less well known than are the masses in u.[b℄ The ∣

∣mp−mp∣∣/mp and ∣

∣qp + qp∣∣/e are not independent, and both usethe more pre
ise measurement of ∣

∣qp/mp∣∣/(qp/mp).[
 ℄ The limit is from neutrality-of-matter experiments; it assumes qn = qp +qe . See also the 
harge of the neutron.[d ℄ The µp and e p values for the 
harge radius are mu
h too di�erent toaverage them. The disagreement is not yet understood.[e℄ There is a lot of disagreement about the value of the proton magneti

harge radius. See the Listings.[f ℄ The �rst limit is for p → anything or "disappearan
e" modes of a boundproton. The se
ond entry, a rough range of limits, assumes the dominantde
ay modes are among those investigated. For antiprotons the bestlimit, inferred from the observation of 
osmi
 ray p's is τ p > 107yr, the 
osmi
-ray storage time, but this limit depends on a number ofassumptions. The best dire
t observation of stored antiprotons gives
τ p/B(p → e−γ) > 7× 105 yr.

[g ℄ There is some 
ontroversy about whether nu
lear physi
s and modeldependen
e 
ompli
ate the analysis for bound neutrons (from whi
h thebest limit 
omes). The �rst limit here is from rea
tor experiments withfree neutrons.[h℄ Lee and Yang in 1956 proposed the existen
e of a mirror world in anattempt to restore global parity symmetry|thus a sear
h for os
illationsbetween the two worlds. Os
illations between the worlds would be max-imal when the magneti
 �elds B and B ′ were equal. The limit for anyB ′ in the range 0 to 12.5 µT is >12 s (95% CL).[i ℄ The parameters gA, gV , and gWM for semileptoni
 modes are de�ned byB f [γλ(gV + gAγ5) + i(gWM/mBi ) σλν qν ℄Bi , and φAV is de�ned bygA/gV = ∣

∣gA/gV ∣

∣eiφAV . See the \Note on Baryon De
ay Parameters"in the neutron Parti
le Listings.[j ℄ Time-reversal invarian
e requires this to be 0◦ or 180◦.[k ℄ This 
oeÆ
ient is zero if time invarian
e is not violated.[l ℄ This limit is for γ energies between 15 and 340 keV.[n℄ The de
ay parameters γ and � are 
al
ulated from α and φ using
γ = √1−α2 
osφ , tan� = − 1

α

√1−α2 sinφ .See the \Note on Baryon De
ay Parameters" in the neutron Parti
le List-ings.[o℄ See the Listings for the pion momentum range used in this measurement.[p℄ The error given here is only an edu
ated guess. It is larger than the erroron the weighted average of the published values.[q℄ A theoreti
al value using QED.[r ℄ This bran
hing fra
tion in
ludes all the de
ay modes of the �nal-stateresonan
e.[s℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.[t℄ See AALTONEN 11H, Fig. 8, for the 
al
ulated ratio of �+
 π0π0 and�+
 π+π− partial widths as a fun
tion of the �
 (2595)+ − �+
 massdi�eren
e. At our value of the mass di�eren
e, the ratio is about 4.[u℄ A test that the isospin is indeed 0, so that the parti
le is indeed a �+
 .[v ℄ P+
 is a pentaquark-
harmonium state.[x ℄ Not a pure measurement. See note at head of �0b De
ay Modes.[y ℄ Here h− means π− or K−.



103103103103Sear
hes SummaryTableSEARCHES FORSEARCHES FORSEARCHES FORSEARCHES FORMONOPOLES,MONOPOLES,MONOPOLES,MONOPOLES,SUPERSYMMETRY,SUPERSYMMETRY,SUPERSYMMETRY,SUPERSYMMETRY,TECHNICOLOR,TECHNICOLOR,TECHNICOLOR,TECHNICOLOR,COMPOSITENESS,COMPOSITENESS,COMPOSITENESS,COMPOSITENESS,EXTRA DIMENSIONS, et
.EXTRA DIMENSIONS, et
.EXTRA DIMENSIONS, et
.EXTRA DIMENSIONS, et
.Magneti
 Monopole Sear
hesMagneti
 Monopole Sear
hesMagneti
 Monopole Sear
hesMagneti
 Monopole Sear
hesIsolated supermassive monopole 
andidate events have not been 
on-�rmed. The most sensitive experiments obtain negative results.Best 
osmi
-ray supermassive monopole 
ux limit:
< 1.4× 10−16 
m−2sr−1s−1 for 1.1× 10−4 < β < 1Supersymmetri
 Parti
le Sear
hesSupersymmetri
 Parti
le Sear
hesSupersymmetri
 Parti
le Sear
hesSupersymmetri
 Parti
le Sear
hesPresently all supersymmetri
 mass bounds are model dependent.This table 
ontains a sele
tion of bounds indi
ating the range ofpossibilities. For a more extensive set of 
ases 
onsult the detailedlistings.The limits are based on the Minimal Supersymmetri
 Standard Model(MSSM) with additional assumptions as follows:1) χ̃01 is lightest supersymmetri
 parti
le; 2) R-parity is 
onserved;See the Parti
le Listings for a Note giving details of supersymmetry.

χ̃0i | neutralinos (mixtures of γ̃, Z̃0, and H̃0i )Mass m
χ̃01 > 0 GeV, CL = 95%[general MSSM, non-universal gaugino masses℄Mass m
χ̃01 > 46 GeV, CL = 95%[all tanβ, all m0, all mχ̃02 − m

χ̃01 ℄Mass m
χ̃02 > 62.4 GeV, CL = 95%[1<tanβ <40, all m0, all mχ̃02 − m

χ̃01 ℄Mass m
χ̃02 > 345 GeV, CL = 95%[χ̃±1 χ̃02 → W χ̃01Z χ̃01, simpli�ed model, m

χ̃±1 = m
χ̃02 , mχ̃01 =0 GeV℄Mass m

χ̃03 > 99.9 GeV, CL = 95%[1<tanβ <40, all m0, all mχ̃02 − m
χ̃01 ℄Mass m

χ̃04 > 116 GeV, CL = 95%[1<tanβ <40, all m0, all mχ̃02 − m
χ̃01 ℄

χ̃±i | 
harginos (mixtures of W̃± and H̃±i )Mass m
χ̃±1 > 94 GeV, CL = 95%[tanβ < 40, m

χ̃±1 − m
χ̃01 > 3 GeV, all m0℄Mass m

χ̃±1 > 345 GeV, CL = 95%[simpli�ed model, m
χ̃±1 = m

χ̃02 , mχ̃01 = 0 GeV℄
ν̃ | sneutrinoMass m > 94 GeV, CL = 95%[CMSSM, 1 ≤ tanβ ≤ 40, m ẽR−m

χ̃01 >10 GeV℄ẽ | s
alar ele
tron (sele
tron)Mass m(ẽL) > 107 GeV, CL = 95% [all mẽR {mχ̃01 ℄Mass m(ẽR) > 97.5 GeV, CL = 95%[�m > 11 GeV, ∣∣µ
∣∣ >100 GeV, tanβ=1.5℄

µ̃ | s
alar muon (smuon)Mass m > 94 GeV, CL = 95%[CMSSM, 1 ≤ tanβ ≤ 40, mµ̃R{mχ̃01 > 10 GeV℄
τ̃ | s
alar tau (stau)Mass m > 81.9 GeV, CL = 95%[mτ̃R − m

χ̃01 >15 GeV, all θτ , B(τ̃ → τ χ̃01) = 100%℄

q̃ { squarks of the �rst two quark generationsThe �rst of these limits is within CMSSM with 
as
ade de-
ays, evaluated assuming a �xed value of the parameters µand tanβ. The �rst two limits assume two-generations ofmass degenerate squarks (q̃L and q̃R ) and gaugino mass pa-rameters that are 
onstrained by the uni�
ation 
ondition atthe grand uni�
ation s
ale. The third limit assumes a simpli-�ed model with a 100% bran
hing ratio for the prompt de
ayq̃ → q χ̃01.Mass m > 1450 GeV, CL = 95%[CMSSM, tanβ = 30, A0 = −2max(m0, m1/2), µ > 0℄Mass m > 850 GeV, CL = 95%[jets + 6ET , q̃ → q χ̃01 simpli�ed model, m
χ̃01= 0 GeV℄Mass m > 520 GeV, CL = 95%[q̃ → q χ̃01, simpli�ed model, single light squark, m

χ̃01 = 0℄b̃ | s
alar bottom (sbottom)Mass m > 650 GeV, CL = 95% [b̃ → b χ̃01, mχ̃01 = 0℄Mass m > 600 GeV, CL = 95% [b̃ → b χ̃01, mχ̃01 < 250 GeV℄t̃ | s
alar top (stop)Mass m > 730 GeV, CL = 95%[̃t → t χ̃01, mχ̃01 = 100 GeV, m t̃ > mt + m
χ̃01 ℄Mass m > 500 GeV, CL = 95%[ℓ± + jets + 6ET , t̃1 → b χ̃±1 , mχ̃±1 = 2 m

χ̃01 , 100 GeV <m
χ̃01 < 150 GeV℄Mass m > 240 GeV, CL = 95%[̃t1 → 
 χ̃01,m t̃1−mχ̃01 <85 GeV℄g̃ | gluinoThe �rst limit assumes a simpli�ed model with a 100%bran
hing ratio for the prompt 3 body de
ay, independentof the squark mass. The se
ond of these limits is within theCMSSM (for mg̃ & 5 GeV), and in
ludes the e�e
ts of 
as-
ade de
ays, evaluated assuming a �xed value of the param-eters µ and tanβ. The limit assumes GUT relations betweengaugino masses and the gauge 
ouplings. The third limit isbased on a 
ombination of sear
hes.Mass m > 1225 GeV, CL = 95% [g̃ → qq χ̃01, mχ̃01 = 0℄Mass m > 1150 GeV, CL = 95%[CMSSM, tanβ=30, A0=−2max(m0,m1/2), µ >0℄Mass m > 1150 GeV, CL = 95%[general RPC g̃ de
ays, m

χ̃01 < 100 GeV℄Te
hni
olorTe
hni
olorTe
hni
olorTe
hni
olorThe limits for te
hni
olor (and top-
olor) parti
les are quite varieddepending on assumptions. See the Te
hni
olor se
tion of the fullReview (the data listings).Quark and Lepton Compositeness,Quark and Lepton Compositeness,Quark and Lepton Compositeness,Quark and Lepton Compositeness,Sear
hes forSear
hes forSear
hes forSear
hes forS
ale Limits � for Conta
t Intera
tionsS
ale Limits � for Conta
t Intera
tionsS
ale Limits � for Conta
t Intera
tionsS
ale Limits � for Conta
t Intera
tions(the lowest dimensional intera
tions with four fermions)(the lowest dimensional intera
tions with four fermions)(the lowest dimensional intera
tions with four fermions)(the lowest dimensional intera
tions with four fermions)If the Lagrangian has the form
±

g22�2 ψL γµ ψLψL γ µ ψL(with g2/4π set equal to 1), then we de�ne � ≡ �±LL. For thefull de�nitions and for other forms, see the Note in the Listingson Sear
hes for Quark and Lepton Compositeness in the full Re-view and the original literature.�+LL(e e e e) > 8.3 TeV, CL = 95%�−LL(e e e e) > 10.3 TeV, CL = 95%�+LL(e eµµ) > 8.5 TeV, CL = 95%�−LL(e eµµ) > 9.5 TeV, CL = 95%�+LL(e e τ τ) > 7.9 TeV, CL = 95%



104104104104Sear
hes SummaryTable�−LL(e e τ τ) > 7.2 TeV, CL = 95%�+LL(ℓℓℓℓ) > 9.1 TeV, CL = 95%�−LL(ℓℓℓℓ) > 10.3 TeV, CL = 95%�+LL(e e uu) > 23.3 TeV, CL = 95%�−LL(e e uu) > 12.5 TeV, CL = 95%�+LL(e e d d) > 11.1 TeV, CL = 95%�−LL(e e d d) > 26.4 TeV, CL = 95%�+LL(e e 
 
) > 9.4 TeV, CL = 95%�−LL(e e 
 
) > 5.6 TeV, CL = 95%�+LL(e e bb) > 9.4 TeV, CL = 95%�−LL(e e bb) > 10.2 TeV, CL = 95%�+LL(µµqq) > 12.5 TeV, CL = 95%�−LL(µµqq) > 16.7 TeV, CL = 95%�(ℓν ℓν) > 3.10 TeV, CL = 90%�(e ν qq) > 2.81 TeV, CL = 95%�+LL(qqqq) > 9.0 TeV, CL = 95%�−LL(qqqq) > 12.0 TeV, CL = 95%�+LL(ν ν qq) > 5.0 TeV, CL = 95%�−LL(ν ν qq) > 5.4 TeV, CL = 95%Ex
ited LeptonsEx
ited LeptonsEx
ited LeptonsEx
ited LeptonsThe limits from ℓ∗+ ℓ∗− do not depend on λ (where λ is the
ℓℓ∗ transition 
oupling). The λ-dependent limits assume 
hiral
oupling.e∗± | ex
ited ele
tronMass m > 103.2 GeV, CL = 95% (from e∗ e∗)Mass m > 3.000× 103 GeV, CL = 95% (from e e∗)Mass m > 356 GeV, CL = 95% (if λγ = 1)

µ∗± | ex
ited muonMass m > 103.2 GeV, CL = 95% (from µ∗µ∗)Mass m > 3.000× 103 GeV, CL = 95% (from µµ∗)
τ∗± | ex
ited tauMass m > 103.2 GeV, CL = 95% (from τ∗ τ∗)Mass m > 2.500× 103 GeV, CL = 95% (from τ τ∗)
ν∗ | ex
ited neutrinoMass m > 1.600× 103 GeV, CL = 95% (from ν∗ ν∗)Mass m > 213 GeV, CL = 95% (from ν∗X )q∗ | ex
ited quarkMass m > 338 GeV, CL = 95% (from q∗q∗)Mass m > 4.060× 103 GeV, CL = 95% (from q∗X )Color Sextet and O
tet Parti
lesColor Sextet and O
tet Parti
lesColor Sextet and O
tet Parti
lesColor Sextet and O
tet Parti
lesColor Sextet Quarks (q6)Mass m > 84 GeV, CL = 95% (Stable q6)Color O
tet Charged Leptons (ℓ8)Mass m > 86 GeV, CL = 95% (Stable ℓ8)Color O
tet Neutrinos (ν8)Mass m > 110 GeV, CL = 90% (ν8 → ν g )

Extra DimensionsExtra DimensionsExtra DimensionsExtra DimensionsPlease refer to the Extra Dimensions se
tion of the full Review for adis
ussion of the model-dependen
e of these bounds, and further
onstraints.Constraints on the radius of the extra dimensions,Constraints on the radius of the extra dimensions,Constraints on the radius of the extra dimensions,Constraints on the radius of the extra dimensions,for the 
ase of two-
at dimensions of equal radiifor the 
ase of two-
at dimensions of equal radiifor the 
ase of two-
at dimensions of equal radiifor the 
ase of two-
at dimensions of equal radiiR < 30 µm, CL = 95% (dire
t tests of Newton's law)R < 15 µm, CL = 95% (pp → j G )R < 0.16{916 nm (astrophysi
s; limits depend on te
hnique andassumptions)Constraints on the fundamental gravity s
aleConstraints on the fundamental gravity s
aleConstraints on the fundamental gravity s
aleConstraints on the fundamental gravity s
aleMTT > 6.3 TeV, CL = 95% (pp → dijet, angular distribution)Mc > 4.16 TeV, CL = 95% (pp → ℓℓ)Constraints on the Kaluza-Klein graviton in warped extra dimensionsConstraints on the Kaluza-Klein graviton in warped extra dimensionsConstraints on the Kaluza-Klein graviton in warped extra dimensionsConstraints on the Kaluza-Klein graviton in warped extra dimensionsMG > 2.73 TeV, CL = 95% (pp → e+ e−, µ+µ−)Constraints on the Kaluza-Klein gluon in warped extra dimensionsConstraints on the Kaluza-Klein gluon in warped extra dimensionsConstraints on the Kaluza-Klein gluon in warped extra dimensionsConstraints on the Kaluza-Klein gluon in warped extra dimensionsMgKK
> 2.5 TeV, CL = 95% (gKK → t t)
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TESTS OF CONSERVATION LAWS

Updated June 2016 by L. Wolfenstein (Carnegie-Mellon Uni-
versity) and C.-J. Lin (LBNL).

In keeping with the current interest in tests of conservation

laws, we collect together a Table of experimental limits on

all weak and electromagnetic decays, mass differences, and

moments, and on a few reactions, whose observation would

violate conservation laws. The Table is given only in the full

Review of Particle Physics, not in the Particle Physics Booklet.

For the benefit of Booklet readers, we include the best limits

from the Table in the following text. Limits in this text are for

CL=90% unless otherwise specified. The Table is in two parts:

“Discrete Space-Time Symmetries,” i.e., C, P , T , CP , and

CPT ; and “Number Conservation Laws,” i.e., lepton, baryon,

hadronic flavor, and charge conservation. The references for

these data can be found in the the Particle Listings in the

Review. A discussion of these tests follows.

CPT INVARIANCE

General principles of relativistic field theory require invari-

ance under the combined transformation CPT . The simplest

tests of CPT invariance are the equality of the masses and

lifetimes of a particle and its antiparticle. The best test comes

from the limit on the mass difference between K0 and K
0
. Any

such difference contributes to the CP -violating parameter ǫ.

Assuming CPT invariance, φǫ, the phase of ǫ should be very

close to 44◦. (See the review “CP Violation in KL decay” in

this edition.) In contrast, if the entire source of CP violation

in K0 decays were a K0 − K
0

mass difference, φǫ would be

44◦ + 90◦.

Assuming that there is no other source of CPT violation

than this mass difference, it is possible to deduce that [1]

m
K

0 − mK0 ≈
2(mK0

L
− mK0

S
) |η| ( 2

3
φ+− + 1

3
φ00 − φSW)

sin φSW

,

where φSW = (43.51 ± 0.05)◦, the superweak angle. Using our

best values of the CP -violation parameters, we get |(m
K

0 −

mK0)/mK0 | ≤ 0.6 × 10−18 at CL=90%. Limits can also be

placed on specific CPT -violating decay amplitudes. Given the

small value of (1 − |η00/η+−|), the value of φ00 − φ+− provides

a measure of CPT violation in K0
L → 2π decay. Results from

CERN [1] and Fermilab [2] indicate no CPT -violating effect.

CP AND T INVARIANCE

Given CPT invariance, CP violation and T violation

are equivalent. The original evidence for CP violation came

from the measurement of |η+−| = |A(K0
L → π+π−)/A(K0

S

→ π+π−)| = (2.232 ± 0.011) × 10−3. This could be explained

in terms of K0–K
0

mixing, which also leads to the asymmetry

[Γ(K0
L → π−e+ν)−Γ(K0

L → π+e−ν)]/[sum] = (0.334±0.007)%.

Evidence for CP violation in the kaon decay amplitude comes

from the measurement of (1 − |η00/η+−|)/3 = Re(ǫ′/ǫ) =

(1.66 ± 0.23) × 10−3. In the Standard Model much larger CP -

violating effects are expected. The first of these, which is associ-

ated with B–B mixing, is the parameter sin(2β) now measured

quite accurately to be 0.679 ± 0.020. A number of other CP -

violating observables are being measured in B decays; direct

evidence for CP violation in the B decay amplitude comes from

the asymmetry [Γ(B
0
→ K−π+) − Γ(B0 → K+π−)]/[sum] =

−0.082± 0.006. Direct tests of T violation are much more diffi-

cult; a measurement by CPLEAR of the difference between the

oscillation probabilities of K0 to K0 and K0 to K0 is related to

T violation [3]. A nonzero value of the electric dipole moment

of the neutron and electron requires both P and T violation.

The current experimental results are < 3.0 × 10−26 e cm (neu-

tron), and < 8.7 × 10−29 e cm (electron) at the 90% C.L.

The BABAR experiment reported the first direct observation

of T violation in the B system. The measured T -violating

parameters in the time evolution of the neutral B mesons are

∆S+
T = −1.37±0.15 and ∆S−

T = 1.17±0.21, with a significance

of 14σ [4]. This observation of T violation, with exchange of

initial and final states of the neutral B, was made possible in a

B-factory using the Einstein-Podolsky-Rosen Entanglement of

the two B’s produced in the decay of the Υ(4S) and the two

time-ordered decays of the B’s as filtering measurements of the

meson state [5].

CONSERVATION OF LEPTON NUMBERS

Present experimental evidence and the standard electroweak

theory are consistent with the absolute conservation of three

separate lepton numbers: electron number Le, muon number

Lµ, and tau number Lτ , except for the effect of neutrino mixing

associated with neutrino masses. Searches for violations are of

the following types:

a) ∆L = 2 for one type of charged lepton. The best

limit comes from the search for neutrinoless double beta decay

(Z, A) → (Z + 2, A) + e− + e−. The best laboratory limit is

t1/2 > 1.07×1026 yr (CL=90%) for 136Xe from the KamLAND-

Zen experiment [6].

b) Conversion of one charged-lepton type to another.

For purely leptonic processes, the best limits are on µ → eγ

and µ → 3e, measured as Γ(µ → eγ)/Γ(µ →all) < 5.7 × 10−13

and Γ(µ → 3e)/Γ(µ → all) < 1.0 × 10−12. For semileptonic

processes, the best limit comes from the coherent conver-

sion process in a muonic atom, µ−+ (Z, A) → e− + (Z, A),

measured as Γ(µ−Ti → e−Ti)/Γ(µ−Ti → all) < 4.3 × 10−12.

Of special interest is the case in which the hadronic fla-

vor also changes, as in KL → eµ and K+ → π+e−µ+,

measured as Γ(KL → eµ)/Γ(KL → all) < 4.7 × 10−12 and

Γ(K+ → π+e−µ+)/Γ(K+ → all) < 1.3 × 10−11. Limits on

the conversion of τ into e or µ are found in τ decay

and are much less stringent than those for µ → e con-

version, e.g., Γ(τ → µγ)/Γ(τ → all) < 4.4 × 10−8 and

Γ(τ → eγ)/Γ(τ → all) < 3.3 × 10−8.

c) Conversion of one type of charged lepton into

another type of charged antilepton. The case most studied

is µ− + (Z, A) → e+ + (Z − 2, A), the strongest limit being

Γ(µ−Ti → e+Ca)/Γ(µ−Ti → all) < 3.6 × 10−11.
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d) Neutrino oscillations. It is expected even in the stan-

dard electroweak theory that the lepton numbers are not sepa-

rately conserved, as a consequence of lepton mixing analogous

to Cabibbo-Kobayashi-Maskawa quark mixing. However, if the

only source of lepton-number violation is the mixing of low-

mass neutrinos then processes such as µ → eγ are expected to

have extremely small unobservable probabilities. For small neu-

trino masses, the lepton-number violation would be observed

first in neutrino oscillations, which have been the subject of

extensive experimental studies. Compelling evidence for neu-

trino mixing has come from atmospheric, solar, accelerator, and

reactor neutrinos. Recently, the reactor neutrino experiments

have measured the last neutrino mixing angle θ13 and found it

to be relatively large. For a comprehensive review on neutrino

mixing, including the latest results on θ13, see the review “Neu-

trino Mass, Mixing, and Oscillations” by K. Nakamura and

S.T. Petcov in this edition of RPP.

CONSERVATION OF HADRONIC FLAVORS

In strong and electromagnetic interactions, hadronic fla-

vor is conserved, i.e. the conversion of a quark of one flavor

(d, u, s, c, b, t) into a quark of another flavor is forbidden. In

the Standard Model, the weak interactions violate these conser-

vation laws in a manner described by the Cabibbo-Kobayashi-

Maskawa mixing (see the section “Cabibbo-Kobayashi-Maskawa

Mixing Matrix”). The way in which these conservation laws are

violated is tested as follows:

(a) ∆S = ∆Q rule. In the strangeness-changing semilep-

tonic decay of strange particles, the strangeness change equals

the change in charge of the hadrons. Tests come from limits on

decay rates such as Γ(Σ+ → ne+ν)/Γ(Σ+ → all) < 5 × 10−6,

and from a detailed analysis of KL → πeν, which yields the

parameter x, measured to be (Rex, Im x) = (−0.002 ± 0.006,

0.0012 ± 0.0021). Corresponding rules are ∆C = ∆Q and ∆B

= ∆Q.

(b) Change of flavor by two units. In the Stan-

dard Model this occurs only in second-order weak interac-

tions. The classic example is ∆S = 2 via K0 − K
0

mix-

ing, which is directly measured by m(KL) − m(KS) =

(0.5293 ± 0.0009) × 1010 h̄s−1. The ∆B = 2 transitions in

the B0 and B0
s systems via mixing are also well estab-

lished. The measured mass differences between the eigen-

states are (mB0

H

− mB0

L

) = (0.5096 ± 0.0034) × 1012 h̄s−1 and

(mB0

sH
− mB0

sL
) = (17.757 ± 0.021) × 1012 h̄s−1. There is now

strong evidence of ∆C = 2 transition in the charm sector with

the mass difference mD0

H
−mD0

L
= (0.95+0.41

−0.44)× 1010 h̄s−1. All

results are consistent with the second-order calculations in the

Standard Model.

(c) Flavor-changing neutral currents. In the Stan-

dard Model the neutral-current interactions do not change

flavor. The low rate Γ(KL → µ+µ−)/Γ(KL → all) =

(6.84 ± 0.11) × 10−9 puts limits on such interactions; the

nonzero value for this rate is attributed to a combina-

tion of the weak and electromagnetic interactions. The

best test should come from K+ → π+νν, which occurs in

the Standard Model only as a second-order weak process

with a branching fraction of (0.4 to 1.2)×10−10. Combin-

ing results from BNL-E787 and BNL-E949 experiments yield

Γ(K+ → π+νν)/Γ(K+ → all) = (1.7 ± 1.1) × 10−10 [7]. Lim-

its for charm-changing or bottom-changing neutral currents

are less stringent: Γ(D0 → µ+µ−)/Γ(D0 → all) < 6.2 × 10−9

and Γ(B0 → µ+µ−)/Γ(B0 → all) = (3.9+1.6
−1.4) × 10−10. One

cannot isolate flavor-changing neutral current (FCNC) effects

in non leptonic decays. For example, the FCNC transition

s → d + (u + u) is equivalent to the charged-current transi-

tion s → u + (u + d). Tests for FCNC are therefore limited

to hadron decays into lepton pairs. Such decays are expected

only in second-order in the electroweak coupling in the Stan-

dard Model. The LHCb and CMS experiments have recently

observed the FCNC decay of B0
s → µ+µ−. The current world

average value is Γ(B0
s → µ+µ−)/Γ(B0

s → all) = (2.9+0.7
−0.6)×10−9,

which is consistent with the Standard Model expectation.
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108108108108Tests of Conservation LawsACP (D0 → ρ(770)−π+ → π+π−π0) [g ℄ (−1.0 ± 1.7)%ACP (D0 → ρ(1450)+π− → π+π−π0) [g ℄ (0 ± 70)%ACP (D0 → ρ(1450)0π0 → π+π−π0) [g ℄ (−20 ± 40)%ACP (D0 → ρ(1450)−π+ → π+π−π0) [g ℄ (6 ± 9)%ACP (D0 → ρ(1700)+π− → π+π−π0) [g ℄ (−5 ± 14)%ACP (D0 → ρ(1700)0π0 → π+π−π0) [g ℄ (13 ± 9)%ACP (D0 → ρ(1700)−π+ → π+π−π0) [g ℄ (8 ± 11)%ACP (D0 → f0(980)π0 → π+π−π0) [g ℄ (0 ± 35)%ACP (D0 → f0(1370)π0 → π+π−π0) [g ℄ (25 ± 18)%ACP (D0 → f0(1500)π0 → π+π−π0) [g ℄ (0 ± 18)%ACP (D0 → f0(1710)π0 → π+π−π0) [g ℄ (0 ± 24)%ACP (D0 → f2(1270)π0 → π+π−π0) [g ℄ (−4 ± 6)%ACP (D0 → σ(400)π0 → π+π−π0) [g ℄ (6 ± 8)%ACP (nonresonant D0 → π+π−π0) [g ℄ (−13 ± 23)%ACP (D0 → K+K−π0) (−1.0 ± 1.7)%ACP (D0 → K∗(892)+K− →K+K−π0) [g ℄ (−0.9 ± 1.3)%ACP (D0 → K∗(1410)+K− →K+K−π0) [g ℄ (−21 ± 24)%ACP (D0 → (K+π0 )S K− →K+K−π0) [g ℄ (7 ± 15)%ACP (D0 → φ(1020)π0 → K+K−π0) [g ℄ (1.1 ± 2.2)%ACP (D0 → f0(980)π0 → K+K−π0) [g ℄ (−3 ± 19)%ACP (D0 → a0(980)0π0 → K+K−π0) [g ℄ (−5 ± 16)%ACP (D0 → f ′2(1525)π0 → K+K−π0) [g ℄ (0 ± 160)%ACP (D0 → K∗(892)−K+ →K+K−π0) [g ℄ (−5 ± 4)%ACP (D0 → K∗(1410)−K+ →K+K−π0) [g ℄ (−17 ± 29)%ACP (D0 → (K−π0 )S−waveK+ →K+K−π0) [g ℄ (−10 ± 40)%ACP (D0 → K0S π0) (−0.20 ± 0.17)%ACP (D0 → K0S η) (0.5 ± 0.5)%ACP (D0 → K0S η′) (1.0 ± 0.7)%ACP (D0 → K0S φ) (−3 ± 9)%ACP (D0 → K−π+) (0.3 ± 0.7)%ACP (D0 → K+π−) (0.0 ± 1.6)%ACP (D0 → K−π+π0) (0.1 ± 0.5)%ACP (D0 → K+π−π0) (0 ± 5)%ACP (D0 → K0S π+π−) (−0.1 ± 0.8)%ACP (D0 → K∗(892)−π+ → K0S π+π−) (0.4 ± 0.5)%ACP (D0 → K∗(892)+π− → K0S π+π−) (1 ± 6)%ACP (D0 → K0S ρ0 → K0S π+π−) (−0.1 ± 0.5)%ACP (D0 → K0S ω → K0S π+π−) (−13 ± 7)%ACP (D0 → K0S f0(980) → K0S π+π−) (−0.4 ± 2.7)%ACP (D0 → K0S f2(1270) → K0S π+π−) (−4 ± 5)%ACP (D0 → K0S f0(1370) → K0S π+π−) (−1 ± 9)%ACP (D0 → K0 ρ0(1450) → K0S π+π−) (−4 ± 10)%ACP (D0 → K0 f0(600) → K0S π+π−) (−3 ± 5)%ACP (D0 → K∗(1410)−π+ →K0S π+π−) (−2 ± 9)%ACP (D0 → K∗0(1430)−π+ →K0S π+π−) (4 ± 4)%ACP (D0 → K∗0(1430)−π+ →K0S π+π−) (12 ± 15)%ACP (D0 → K∗2(1430)−π+ →K0S π+π−) (3 ± 6)%ACP (D0 → K∗2(1430)+π− →K0S π+π−) (−10 ± 32)%ACP (D0 → K∗(1680)−π+ →K0S π+π−) |ACP (D0 → K−π+π+π−) (0.2 ± 0.5)%ACP (D0 → K+π−π+π−) (−2 ± 4)%ACP (D0 → K+K−π+π−) (−8 ± 7)%ACP (D0 → K∗1(1270)+K− →K∗0π+K−) (−1 ± 10)%ACP (D0 → K∗1(1270)−K+ →K∗0π−K+) (−10 ± 32)%ACP (D0 → K∗1(1270)+K− →

ρ0K+K−) (−7 ± 17)%

ACP (D0 → K∗1(1270)−K+ →

ρ0K−K+) (10 ± 13)%ACP (D0 → K∗(1410)+K− →K∗0π+K−) (−20 ± 17)%ACP (D0 → K∗(1410)−K+ →K∗0π−K+) (−1 ± 14)%ACP (D0 → K∗0K∗0 S-wave) (10 ± 14)%ACP (D0 → φρ0 S-wave) (−3 ± 5)%ACP (D0 → φρ0 D-wave) (−37 ± 19)%ACP (D0 → φ(π+π− )S−wave) (−9 ± 10)%ACP ((K−π+)P−wave (K+π−)S−wave) (3 ± 11)%CP-even fra
tion in D0 → π+π−π0de
ays (97.3 ± 1.7)%CP-even fra
tion in D0 → K+K−π0de
ays (73 ± 6)%CP-even fra
tion in D0 → π+π−π+π−de
ays (73.7 ± 2.8)%�AD0
CP = ACP (K+K−) − ACP (π+π−) (−0.32 ± 0.22)% (S = 1.9)Lo
al CPV in D0, D0 → π+π−π0 4.9%Lo
al CPV in D0, D0 → π+π−π+π− 41%Lo
al CPV in D0, D0 → K0S π+π− 96%Lo
al CPV in D0, D0 → K+K−π0 16.6%Lo
al CPV in D0, D0 → K+K−π+π− 9.1%ACP (D±s → µ± ν) (5 ± 6)%ACP (D±s → K±K0S ) (0.08 ± 0.26)%ACP (D±s → K+K−π±) (−0.5 ± 0.9)%ACP (D±s → φπ±) (−0.38 ± 0.27)%ACP (D±s → K±K0S π0) (−2 ± 6)%ACP (D±s → 2K0S π±) (3 ± 5)%ACP (D±s → K+K−π±π0) (0.0 ± 3.0)%ACP (D±s → K±K0S π+π−) (−6 ± 5)%ACP (D±s → K0S K∓ 2π±) (4.1 ± 2.8)%ACP (D±s → π+π−π±) (−0.7 ± 3.1)%ACP (D±s → π± η) (1.1 ± 3.1)%ACP (D±s → π± η′) (−2.2 ± 2.3)%ACP (D±s → ηπ±π0) (−1 ± 4)%ACP (D±s → η′π±π0) (0 ± 8)%ACP (D±s → K±π0) (−27 ± 24)%ACP (K0 /K0π±) (0.4 ± 0.5)%ACP (D±s → K0S π±) (3.1 ± 2.6)% (S = 1.7)ACP (D±s → K±π+π−) (4 ± 5)%ACP (D±s → K± η) (9 ± 15)%ACP (D±s → K± η′(958)) (6 ± 19)%ACP (B+ → J/ψ(1S)K+) 0.003 ± 0.006 (S = 1.8)ACP (B+ → J/ψ(1S)π+) (0.1 ± 2.8)× 10−2 (S = 1.2)ACP (B+ → J/ψρ+) −0.11 ± 0.14ACP (B+ → J/ψK∗(892)+) −0.048 ± 0.033ACP (B+ → η
 K+) 0.01 ± 0.07 (S = 2.2)ACP (B+ → ψ(2S)π+) 0.03 ± 0.06ACP (B+ → ψ(2S)K+) 0.012 ± 0.020 (S = 1.5)ACP (B+ → ψ(2S)K∗(892)+) 0.08 ± 0.21ACP (B+ → χ
1(1P)π+) 0.07 ± 0.18ACP (B+ → χ
0K+) −0.20 ± 0.18 (S = 1.5)ACP (B+ → χ
1K+) −0.009 ± 0.033ACP (B+ → χ
1K∗(892)+) 0.5 ± 0.5ACP (B+ → D0π+) −0.007 ± 0.007ACP (B+ → DCP (+1)π+) 0.035 ± 0.024ACP (B+ → DCP (−1)π+) 0.017 ± 0.026ACP (B+ → D0K+) 0.007 ± 0.025 (S = 1.5)rB(B+ → D0K+) 0.095 ± 0.008

δB(B+ → D0K+) (123 ± 10)◦rB(B+ → D0K∗+) 0.17 ± 0.11 (S = 2.3)
δB(B+ → D0K∗+) (155 ± 70)◦ (S = 2.0)ACP (B+ → [K−π+℄D K+) −0.58 ± 0.21ACP (B+ → [K−π+π0 ℄DK+) 0.07 ± 0.30 (S = 1.5)ACP (B+ → [K+K−π0 ℄D K+) 0.30 ± 0.20ACP (B+ → [π+π−π0 ℄D K+) 0.05 ± 0.09ACP (B+ → [K−π+℄D K∗(892)+) −0.3 ± 0.5ACP (B+ → [K−π+℄D π+) 0.00 ± 0.09ACP (B+ → [K−π+π0 ℄D π+) 0.35 ± 0.16Unless otherwise stated, limits are given at the 90% 
on�den
e level, while errors are givenas ±1 standard deviation.



109109109109Tests of Conservation LawsACP (B+ → [K+K−π0 ℄D π+) −0.03 ± 0.04ACP (B+ → [π+π−π0 ℄D π+) −0.016 ± 0.020ACP (B+ → [K−π+℄(Dπ) π+) −0.09 ± 0.27ACP (B+ → [K−π+℄(D γ)π+) −0.7 ± 0.6ACP (B+ → [K−π+℄(Dπ)K+) 0.8 ± 0.4ACP (B+ → [K−π+℄(D γ)K+) 0.4 ± 1.0ACP (B+ → [π+π−π0 ℄D K+) −0.02 ± 0.15ACP (B+ → [K0S K+π− ℄DK+) 0.04 ± 0.09ACP (B+ → [K0S K−π+℄DK+) 0.23 ± 0.13ACP (B+ → [K0S K−π+℄D π+) −0.052 ± 0.034ACP (B+ → [K0S K+π− ℄D π+) −0.025 ± 0.026ACP (B+ → [K∗(892)−K+℄DK+) 0.03 ± 0.11ACP (B+ → [K∗(892)+K− ℄DK+) 0.34 ± 0.21ACP (B+ → [K∗(892)+K− ℄D π+) −0.05 ± 0.05ACP (B+ → [K∗(892)−K+℄D π+) −0.012 ± 0.030ACP (B+ → DCP (+1)K+) 0.170 ± 0.033 (S = 1.2)AADS(B+ → DK+) −0.52 ± 0.15AADS(B+ → Dπ+) 0.14 ± 0.06AADS(B+ → [K−π+℄DK+π−π+) −0.33 ± 0.35AADS(B+ → [K−π+℄D π+π−π+) −0.01 ± 0.09ACP (B+ → DCP (−1)K+) −0.10 ± 0.07ACP (B+ → [K+K− ℄DK+π−π+) −0.04 ± 0.06ACP (B+ → [π+π− ℄DK+π−π+) −0.05 ± 0.10ACP (B+ → [K−π+℄DK+π−π+) 0.013 ± 0.023ACP (B+ → [K+K− ℄D π+π−π+) −0.019 ± 0.015ACP (B+ → [π+π− ℄D π+π−π+) −0.013 ± 0.019ACP (B+ → [K−π+℄D π+π−π+) −0.002 ± 0.011ACP (B+ → D∗0π+) −0.014 ± 0.015ACP (B+ → (D∗
CP (+1))0π+) −0.02 ± 0.05ACP (B+ → (D∗
CP (−1))0π+) −0.09 ± 0.05ACP (B+ → D∗0K+) −0.07 ± 0.04r∗B(B+ → D∗0K+) 0.114+0.023

−0.040 (S = 1.2)
δ∗
B
(B+ → D∗0K+) (310+22

−28)◦ (S = 1.3)ACP (B+ → D∗0
CP (+1)K+) −0.12 ± 0.08ACP (B+ → D∗
CP (−1)K+) 0.07 ± 0.10ACP (B+ → DCP (+1)K∗(892)+) 0.09 ± 0.14ACP (B+ → DCP (−1)K∗(892)+) −0.23 ± 0.22ACP (B+ → D+s φ) 0.0 ± 0.4ACP (B+ → D∗+D∗0) −0.15 ± 0.11ACP (B+ → D∗+D0) −0.06 ± 0.13ACP (B+ → D+D∗0) 0.13 ± 0.18ACP (B+ → D+D0) −0.03 ± 0.07ACP (B+ → K0S π+) −0.017 ± 0.016ACP (B+ → K+π0) 0.037 ± 0.021ACP (B+ → η′K+) 0.004 ± 0.011ACP (B+ → η′K∗(892)+) −0.26 ± 0.27ACP (B+ → η′K∗0(1430)+) 0.06 ± 0.20ACP (B+ → η′K∗2(1430)+) 0.15 ± 0.13ACP (B+ → ηK∗(892)+) 0.02 ± 0.06ACP (B+ → ηK∗0(1430)+) 0.05 ± 0.13ACP (B+ → ηK∗2(1430)+) −0.45 ± 0.30ACP (B+ → ωK+) −0.02 ± 0.04ACP (B+ → ωK∗+) 0.29 ± 0.35ACP (B+ → ω (Kπ)∗+0 ) −0.10 ± 0.09ACP (B+ → ωK∗2(1430)+) 0.14 ± 0.15ACP (B+ → K∗0π+) −0.04 ± 0.09 (S = 2.1)ACP (B+ → K∗(892)+π0) −0.06 ± 0.24ACP (B+ → K+π−π+) 0.027 ± 0.008ACP (B+ → K+K−K+nonresonant) 0.06 ± 0.05ACP (B+ → f (980)0K+) −0.08 ± 0.09ACP (B+ → f0(1500)K+) 0.28 ± 0.30ACP (B+ → f ′2(1525)0K+) −0.08+0.05

−0.04ACP (B+ → K∗0(1430)0π+) 0.055 ± 0.033ACP (B+ → K∗2(1430)0π+) 0.05+0.29
−0.24ACP (B+ → K+π0π0) −0.06 ± 0.07ACP (B+ → K0 ρ+) −0.12 ± 0.17ACP (B+ → K∗+π+π−) 0.07 ± 0.08

ACP (B+ → ρ0K∗(892)+) 0.31 ± 0.13ACP (B+ → K∗(892)+ f0(980)) −0.15 ± 0.12ACP (B+ → a+1 K0) 0.12 ± 0.11ACP (B+ → b+1 K0) −0.03 ± 0.15ACP (B+ → K∗(892)0 ρ+) −0.01 ± 0.16ACP (B+ → b01K+) −0.46 ± 0.20ACP (B+ → K0K+) 0.04 ± 0.14ACP (B+ → K+K0S K0S ) 0.04+0.04
−0.05ACP (B+ → K+K−π+) −0.118 ± 0.022ACP (B+ → K+K−K+) −0.033 ± 0.008ACP (B+ → φK+) 0.024 ± 0.028 (S = 2.3)ACP (B+ → X0(1550)K+) −0.04 ± 0.07ACP (B+ → K∗+K+K−) 0.11 ± 0.09ACP (B+ → φK∗(892)+) −0.01 ± 0.08ACP (B+ → φ(Kπ)∗+0 ) 0.04 ± 0.16ACP (B+ → φK1(1270)+) 0.15 ± 0.20ACP (B+ → φK∗2(1430)+) −0.23 ± 0.20ACP (B+ → K+φφ) −0.10 ± 0.08ACP (B+ → K+[φφ℄η
 ) 0.09 ± 0.10ACP (B+ → K∗(892)+ γ) 0.018 ± 0.029ACP (B+ → ηK+ γ) −0.12 ± 0.07ACP (B+ → φK+ γ) −0.13 ± 0.11 (S = 1.1)ACP (B+ → ρ+ γ) −0.11 ± 0.33ACP (B+ → π+π0) 0.03 ± 0.04ACP (B+ → π+π−π+) 0.057 ± 0.013ACP (B+ → ρ0π+) 0.18+0.09
−0.17ACP (B+ → f2(1270)π+) 0.41 ± 0.30ACP (B+ → ρ0(1450)π+) −0.1+0.4
−0.5ACP (B+ → π+π−π+ nonresonant) −0.14+0.23
−0.16ACP (B+ → ρ+π0) 0.02 ± 0.11ACP (B+ → ρ+ ρ0) −0.05 ± 0.05ACP (B+ → ωπ+) −0.04 ± 0.06ACP (B+ → ωρ+) −0.20 ± 0.09ACP (B+ → ηπ+) −0.14 ± 0.07 (S = 1.4)ACP (B+ → ηρ+) 0.11 ± 0.11ACP (B+ → η′π+) 0.06 ± 0.16ACP (B+ → η′ ρ+) 0.26 ± 0.17ACP (B+ → b01π+) 0.05 ± 0.16ACP (B+ → ppπ+) 0.00 ± 0.04ACP (B+ → ppK+) 0.00 ± 0.04 (S = 2.2)ACP (B+ → ppK∗(892)+) 0.21 ± 0.16 (S = 1.4)ACP (B+ → p�γ) 0.17 ± 0.17ACP (B+ → p�π0) 0.01 ± 0.17ACP (B+ → K+ ℓ+ ℓ−) −0.02 ± 0.08ACP (B+ → K+ e+ e−) 0.14 ± 0.14ACP (B+ → K+µ+µ−) 0.011 ± 0.017ACP (B+ → K∗+ ℓ+ ℓ−) −0.09 ± 0.14ACP (B+ → K∗ e+ e−) −0.14 ± 0.23ACP (B+ → K∗µ+µ−) −0.12 ± 0.24Re(ǫB0)/(1+∣

∣ǫB0 ∣

∣

2) (−0.4 ± 0.4)× 10−3AT/CP 0.005 ± 0.018ACP (B0 → D∗(2010)+D−) 0.037 ± 0.034ACP (B0 → [K+K− ℄DK∗(892)0) −0.20 ± 0.15ACP (B0 → [K+π− ℄DK∗(892)0) −0.03 ± 0.04ACP (B0 → [π+π− ℄DK∗(892)0) −0.09 ± 0.22ACP (B0 → η′K∗(892)0) −0.07 ± 0.18ACP (B0 → η′K∗0(1430)0) −0.19 ± 0.17ACP (B0 → η′K∗2(1430)0) 0.14 ± 0.18ACP (B0 → ηK∗0(1430)0) 0.06 ± 0.13ACP (B0 → ηK∗2(1430)0) −0.07 ± 0.19ACP (B0 → b1K+) −0.07 ± 0.12ACP (B0 → ωK∗0) 0.45 ± 0.25ACP (B0 → ω (Kπ)∗00 ) −0.07 ± 0.09ACP (B0 → ωK∗2(1430)0) −0.37 ± 0.17ACP (B0 → K+π−π0) (0 ± 6) × 10−2ACP (B0 → ρ−K+) 0.20 ± 0.11ACP (B0 → ρ(1450)−K+) −0.10 ± 0.33ACP (B0 → ρ(1700)−K+) −0.4 ± 0.6ACP (B0 → K+π−π0 nonresonant) 0.10 ± 0.18Unless otherwise stated, limits are given at the 90% 
on�den
e level, while errors are givenas ±1 standard deviation.



110110110110Tests of Conservation LawsACP (B0 → K0π+π−) −0.01 ± 0.05ACP (B0 → K∗(892)+π−) −0.22 ± 0.06ACP (B0 → (Kπ)∗+0 π−) 0.09 ± 0.07ACP (B0 → (Kπ)∗00 π0) −0.15 ± 0.11ACP (B0 → K∗0π0) −0.15 ± 0.13ACP (B0 → K∗(892)0π+π−) 0.07 ± 0.05ACP (B0 → K∗(892)0 ρ0) −0.06 ± 0.09ACP (B0 → K∗0 f0(980)) 0.07 ± 0.10ACP (B0 → K∗+ρ−) 0.21 ± 0.15ACP (B0 → K∗(892)0K+K−) 0.01 ± 0.05ACP (B0 → a−1 K+) −0.16 ± 0.12ACP (B0 → K0K0) −0.6 ± 0.7ACP (B0 → K∗(892)0φ) 0.00 ± 0.04ACP (B0 → K∗(892)0K−π+) 0.2 ± 0.4ACP (B0 → φ(K π)∗00 ) 0.12 ± 0.08ACP (B0 → φK∗2(1430)0) −0.11 ± 0.10ACP (B0 → K∗(892)0 γ) −0.002 ± 0.015ACP (B0 → K∗2(1430)0 γ) −0.08 ± 0.15ACP (B0 → ρ+π−) 0.13 ± 0.06 (S = 1.1)ACP (B0 → ρ−π+) −0.08 ± 0.08ACP (B0 → a1(1260)±π∓) −0.07 ± 0.06ACP (B0 → b−1 π+) −0.05 ± 0.10ACP (B0 → ppK∗(892)0) 0.05 ± 0.12ACP (B0 → p�π−) 0.04 ± 0.07ACP (B0 → K∗0 ℓ+ ℓ−) −0.05 ± 0.10ACP (B0 → K∗0 e+ e−) −0.21 ± 0.19ACP (B0 → K∗0µ+µ−) −0.034 ± 0.024CD∗(2010)−D+ (B0 → D∗(2010)−D+) −0.01 ± 0.11CD∗(2010)+D− (B0 → D∗(2010)+D−) 0.00 ± 0.13 (S = 1.3)CD∗+D∗− (B0 → D∗+D∗−) 0.01 ± 0.09 (S = 1.6)C+ (B0 → D∗+D∗−) 0.00 ± 0.10 (S = 1.6)C− (B0 → D∗+D∗−) 0.19 ± 0.31S− (B0 → D∗+D∗−) 0.1 ± 1.6 (S = 3.5)C (B0 → D∗(2010)+D∗(2010)−K0S ) 0.01 ± 0.29S (B0 → D∗(2010)+D∗(2010)−K0S ) 0.1 ± 0.4CD+D− (B0 → D+D−) −0.46 ± 0.21 (S = 1.8)CJ/ψ(1S)π0 (B0 → J/ψ(1S)π0) −0.13 ± 0.13C(B0 → J/ψ(1S)ρ0) −0.06 ± 0.06CD(∗)
CP

h0 (B0 → D(∗)
CP

h0) −0.02 ± 0.08SD(∗)
CP

h0 (B0 → D(∗)
CP

h0) −0.66 ± 0.12CK0π0 (B0 → K0π0) 0.00 ± 0.13 (S = 1.4)C
η′(958)K0S (B0 → η′(958)K0S ) −0.04 ± 0.20 (S = 2.5)S
η′(958)K0S (B0 → η′(958)K0S ) 0.43 ± 0.17 (S = 1.5)C
η′K0 (B0 → η′K0) −0.06 ± 0.04C
ωK0S (B0 → ωK0S ) 0.0 ± 0.4 (S = 3.0)S
ωK0S (B0 → ωK0S ) 0.70 ± 0.21C (B0 → K0S π0π0) 0.2 ± 0.5S (B0 → K0S π0π0) 0.7 ± 0.7C
ρ0K0S (B0 → ρ0K0S ) −0.04 ± 0.20S
ρ0K0S (B0 → ρ0K0S ) 0.50+0.17

−0.21Cf0(980)K0S (B0 → f0(980)K0S ) 0.29 ± 0.20Sf0(980)K0S (B0 → f0(980)K0S ) −0.50 ± 0.16Sf2(1270)K0S (B0 → f2(1270)K0S ) −0.5 ± 0.5Cf2(1270)K0S (B0 → f2(1270)K0S ) 0.3 ± 0.4Sfx (1300)K0S (B0 → fx (1300)K0S ) −0.2 ± 0.5Cfx (1300)K0S (B0 → fx (1300)K0S ) 0.13 ± 0.35SK0π+π− (B0 → K0π+π− nonresonant) −0.01 ± 0.33CK0π+π− (B0 → K0π+π− nonresonant) 0.01 ± 0.26CK0S K0S (B0 → K0S K0S ) 0.0 ± 0.4 (S = 1.4)SK0S K0S (B0 → K0S K0S ) −0.8 ± 0.5

CK+K−K0S (B0 → K+K−K0Snonresonant) 0.06 ± 0.08CK+K−K0S (B0 → K+K−K0S in
lusive) 0.01 ± 0.09C
φK0S (B0 → φK0S ) 0.01 ± 0.14S
φK0S (B0 → φK0S ) 0.59 ± 0.14CKS KS KS (B0 → KS KS KS ) −0.23 ± 0.14SKS KS KS (B0 → KS KS KS ) −0.5 ± 0.6 (S = 3.0)CK0S π0 γ

(B0 → K0S π0 γ) 0.36 ± 0.33SK0S π0 γ
(B0 → K0S π0 γ) −0.8 ± 0.6CK∗(892)0γ

(B0 → K∗(892)0 γ) −0.04 ± 0.16 (S = 1.2)SK∗(892)0 γ
(B0 → K∗(892)0 γ) −0.15 ± 0.22C

ηK0 γ
(B0 → ηK0 γ) −0.3 ± 0.4S

ηK0 γ
(B0 → ηK0 γ) −0.2 ± 0.5CK0φγ
(B0 → K0φγ) −0.3 ± 0.6SK0φγ
(B0 → K0φγ) 0.7+0.7

−1.1C(B0 → K0S ρ0 γ) −0.05 ± 0.19S(B0 → K0S ρ0 γ) 0.11 ± 0.34C (B0 → ρ0 γ) 0.4 ± 0.5S (B0 → ρ0 γ) −0.8 ± 0.7Cππ (B0 → π+π−) −0.31 ± 0.05C
π0π0(B0 → π0π0) −0.43 ± 0.24Cρπ (B0 → ρ+π−) −0.03 ± 0.07 (S = 1.2)Sρπ (B0 → ρ+π−) 0.05 ± 0.07�Sρπ (B0 → ρ+π−) 0.01 ± 0.08C
ρ0π0 (B0 → ρ0π0) 0.27 ± 0.24S
ρ0π0 (B0 → ρ0π0) −0.23 ± 0.34Ca1π (B0 → a1(1260)+π−) −0.05 ± 0.11Sa1π (B0 → a1(1260)+π−) −0.2 ± 0.4 (S = 3.2)�Ca1π (B0 → a1(1260)+π−) 0.43 ± 0.14 (S = 1.3)�Sa1π (B0 → a1(1260)+π−) −0.11 ± 0.12C (B0 → b−1 K+) −0.22 ± 0.24�C (B0 → b−1 π+) −1.04 ± 0.24C
ρ0ρ0 (B0 → ρ0 ρ0) 0.2 ± 0.9S
ρ0ρ0 (B0 → ρ0 ρ0) 0.3 ± 0.7Cρρ (B0 → ρ+ ρ−) 0.00 ± 0.09Sρρ (B0 → ρ+ ρ−) −0.14 ± 0.13

∣

∣λ
∣

∣ (B0 → J/ψK∗(892)0) <0.25, CL = 95%
os 2β (B0 → J/ψK∗(892)0) 1.7+0.7
−0.9 (S = 1.6)
os 2β (B0 → [K0S π+π− ℄D(∗) h0) 1.0+0.6
−0.7 (S = 1.8)(S+ + S−)/2 (B0 → D∗−π+) −0.039 ± 0.011(S− − S+)/2 (B0 → D∗−π+) −0.009 ± 0.015(S+ + S−)/2 (B0 → D−π+) −0.046 ± 0.023(S− − S+)/2 (B0 → D−π+) −0.022 ± 0.021(S+ + S−)/2 (B0 → D− ρ+) −0.024 ± 0.032(S− − S+)/2 (B0 → D− ρ+) −0.10 ± 0.06C

η
 K0S (B0 → η
 K0S ) 0.08 ± 0.13C
 
 K (∗)0 (B0 → 
 
 K(∗)0) (0.5 ± 1.7)× 10−2CJ/ψ(nS)K0 (B0 → J/ψ(nS)K0) (0.5 ± 2.0)× 10−2CJ/ψK∗0 (B0 → J/ψK∗0) 0.03 ± 0.10SJ/ψK∗0 (B0 → J/ψK∗0) 0.60 ± 0.25C
χ
0K0S (B0 → χ
0K0S ) −0.3+0.5

−0.4S
χ
0K0S (B0 → χ
0K0S ) −0.7 ± 0.5C
χ
1K0S (B0 → χ
1K0S ) 0.06 ± 0.07sin(2βe� )(B0 → φK0) 0.22 ± 0.30sin(2βe� )(B0 → φK∗0(1430)0) 0.97+0.03

−0.52sin(2βe� )(B0 → [K0S π+π− ℄D(∗) h0) 0.45 ± 0.28
∣

∣λ
∣

∣ (B0 → [K0S π+π− ℄D(∗) h0) 1.01 ± 0.08
∣

∣sin(2β + γ)∣∣ >0.40, CL = 90%2 β + γ (83 ± 60)◦
γ(B0 → D0K∗0) (162 ± 60)◦ACP (B → K∗(892)γ) −0.003 ± 0.017Unless otherwise stated, limits are given at the 90% 
on�den
e level, while errors are givenas ±1 standard deviation.



111111111111Tests of Conservation LawsACP (b → s γ) 0.015 ± 0.020ACP (b → (s + d)γ) 0.010 ± 0.031ACP (B → Xs ℓ+ ℓ−) 0.04 ± 0.11ACP (B → K∗ e+ e−) −0.18 ± 0.15ACP (B → K∗µ+µ−) −0.03 ± 0.13ACP (B → K∗ ℓ+ ℓ−) −0.04 ± 0.07ACP (B → ηanything) −0.13+0.04
−0.05Re(ǫB0s ) / (1 + ∣

∣ǫB0s ∣

∣

2) (−1.9 ± 1.0)× 10−3CP Violation phase βs (0.6 ± 1.9)× 10−2 radACP (Bs → π+K−) 0.263 ± 0.035ACP (B0s → [K+K− ℄DK∗(892)0) −0.04 ± 0.07�(η
 (1S) → π+π−)/�total <1.1× 10−4, CL = 90%�(η
 (1S) → π0π0)/�total <4× 10−5, CL = 90%�(η
 (1S) → K+K−)/�total <6× 10−4, CL = 90%�(η
 (1S) → K0S K0S )/�total <3.1× 10−4, CL = 90%(α + α)/(α − α) in � → pπ−, � → pπ+ 0.006 ± 0.021[α(�−)α−(�)−α(�+)α+(�)℄[α(�−)α−(�)+α(�+)α+(�)℄ (0 ± 7) × 10−4(α + α)/(α − α) in 
− → �K−, 
+ →�K+ −0.02 ± 0.13(α + α)/(α − α) in �+
 → �π+, �−
 →�π−

−0.07 ± 0.31(α + α)/(α − α) in �+
 → �e+ νe , �−
 →�e− νe 0.00 ± 0.04ACP (�b → pπ−) 0.06 ± 0.07ACP (�b → pK−) 0.00 ± 0.19 (S = 2.4)CP VIOLATION OBSERVEDCP VIOLATION OBSERVEDCP VIOLATION OBSERVEDCP VIOLATION OBSERVEDRe(ǫ) (1.596 ± 0.013) × 10−3
harge asymmetry in K0
ℓ3 de
aysAL = weighted average of AL(µ) andAL(e) (0.332 ± 0.006)%AL(µ) = [�(π−µ+ νµ)

− �(π+µ− νµ)℄/sum (0.304 ± 0.025)%AL(e) = [�(π− e+ νe )
− �(π+ e− νe )℄/sum (0.334 ± 0.007)%parameters for K0L → 2π de
ay

∣

∣η00∣

∣ = ∣

∣A(K0L → 2π0) /A(K0S → 2π0)∣∣ (2.220 ± 0.011) × 10−3 (S = 1.8)
∣

∣η+−

∣

∣ = ∣

∣A(K0L → π+π−) /A(K0S → π+π−)∣∣ (2.232 ± 0.011) × 10−3 (S = 1.8)
∣

∣ǫ
∣

∣ = (2∣∣η+−

∣

∣ + ∣

∣η00∣

∣)/3 (2.228 ± 0.011) × 10−3 (S = 1.8)
∣

∣η00/η+−

∣

∣ [h℄ 0.9950 ± 0.0007 (S = 1.6)Re(ǫ′/ǫ) = (1−∣

∣η00/η+−

∣

∣)/3 [h℄ (1.66 ± 0.23) × 10−3 (S = 1.6)Assuming CPT
φ+−, phase of η+− (43.51 ± 0.05)◦ (S = 1.2)
φ00, phase of η00 (43.52 ± 0.05)◦ (S = 1.3)
φǫ = (2φ+− + φ00)/3 (43.52 ± 0.05)◦ (S = 1.2)Not assuming CPT
φ+−, phase of η+− (43.4 ± 0.5)◦ (S = 1.2)
φ00, phase of η00 (43.7 ± 0.6)◦ (S = 1.2)
φǫ = (2φ+− + φ00)/3 (43.5 ± 0.5)◦ (S = 1.3)CP asymmetry A in K0L → π+π− e+ e− (13.7 ± 1.5)%
βCP from K0L → e+ e− e+ e− −0.19 ± 0.07
γCP from K0L → e+ e− e+ e− 0.01 ± 0.11 (S = 1.6)parameters for K0L → π+π− γ de
ay
∣

∣η+−γ
∣

∣ = ∣

∣A(K0L → π+π− γ , CPviolating)/A(K0S → π+π− γ)∣∣ (2.35 ± 0.07) × 10−3
φ+−γ = phase of η+−γ (44 ± 4)◦�(K0L → π+π−)/�total [i ℄ (1.967 ± 0.010) × 10−3 (S = 1.5)�(K0L → π0π0)/�total (8.64 ± 0.06) × 10−4 (S = 1.8)ACP (B+ → DCP (+1)K+) 0.170 ± 0.033 (S = 1.2)AADS(B+ → DK+) −0.52 ± 0.15ACP (B+ → ηK+) −0.37 ± 0.08ACP (B+ → f2(1270)K+) −0.68+0.19

−0.17ACP (B+ → ρ0K+) 0.37 ± 0.10ACP (B+ → f0(1370)π+) 0.72 ± 0.22
γ(B+ → D(∗)0K(∗)+) (70 ± 9)◦

ACP (B0 → K+π−) −0.082 ± 0.006ACP (B0 → ηK∗(892)0) 0.19 ± 0.05SD∗(2010)−D+ (B0 → D∗(2010)−D+) −0.72 ± 0.15SD∗(2010)+D− (B0 → D∗(2010)+D−) −0.73 ± 0.14SD∗+D∗− (B0 → D∗+D∗−) −0.59 ± 0.14 (S = 1.8)S+ (B0 → D∗+D∗−) −0.73 ± 0.09SD+D− (B0 → D+D−) −0.99+0.17
−0.14SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0) −0.94 ± 0.29 (S = 1.9)S(B0 → J/ψ(1S)ρ0) −0.66+0.16
−0.12SK0π0 (B0 → K0π0) 0.58 ± 0.17S

η′K0 (B0 → η′K0) 0.63 ± 0.06SK+K−K0S (B0 → K+K−K0Snonresonant) −0.66 ± 0.11SK+K−K0S (B0 → K+K−K0S in
lusive) −0.65 ± 0.12Sππ (B0 → π+π−) −0.67 ± 0.06�Cρπ (B0 → ρ+π−) 0.27 ± 0.06S
η
 K0S (B0 → η
 K0S ) 0.93 ± 0.17sin(2β) (B0 → J/ψK0S ) 0.679 ± 0.020SJ/ψ(nS)K0 (B0 → J/ψ(nS)K0) 0.676 ± 0.021S
χ
1K0S (B0 → χ
1K0S ) 0.63 ± 0.10sin(2βe� )(B0 → K+K−K0S ) 0.77+0.13

−0.12
α (93 ± 5)◦Re(ǫb) / (1 + ∣

∣ǫb∣

∣

2) (1.2 ± 0.4)× 10−3CPT INVARIANCECPT INVARIANCECPT INVARIANCECPT INVARIANCE(mW+ − mW−) / maverage −0.002 ± 0.007(me+ − me−) / maverage <8× 10−9, CL = 90%
∣

∣qe+ + qe− ∣

∣

/e <4× 10−8(ge+ − ge− ) / gaverage (−0.5 ± 2.1)× 10−12(τ
µ+ − τ

µ−) / τ average (2 ± 8) × 10−5(g
µ+ − g

µ− ) / gaverage (−0.11 ± 0.12) × 10−8(m
τ+ − m

τ−
)/maverage <2.8× 10−4, CL = 90%mt − mt −0.2 ± 0.5 GeV (S = 1.1)(m

π+ − m
π−) / maverage (2 ± 5) × 10−4(τ

π+ − τ
π−) / τ average (6 ± 7) × 10−4(mK+ − mK−) / maverage (−0.6 ± 1.8)× 10−4(τK+ − τK−) / τ average (0.10 ± 0.09)% (S = 1.2)K± → µ± νµ rate di�eren
e/sum (−0.27 ± 0.21)%K± → π±π0 rate di�eren
e/sum [j℄ (0.4 ± 0.6)%

δ in K0 − K0 mixingreal part of δ (2.5 ± 2.3)× 10−4imaginary part of δ (−1.5 ± 1.6)× 10−5Re(y), Ke3 parameter (0.4 ± 2.5)× 10−3Re(x−), Ke3 parameter (−2.9 ± 2.0)× 10−3
∣

∣mK0 − mK0 ∣

∣ / maverage [k℄ <6× 10−19, CL = 90%(�K0 − �K0)/maverage (8 ± 8) × 10−18phase di�eren
e φ00 − φ+− (0.34 ± 0.32)◦Re(23 η+− + 13η00)−AL2 (−3 ± 35) × 10−6ACPT (D0 → K−π+) 0.008 ± 0.008�S+
CPT

(S−
ℓ+,K0S − S+

ℓ+,K0S ) 0.16 ± 0.23�S−
CPT

(S+
ℓ+,K0S − S−

ℓ+,K0S ) −0.03 ± 0.14�C+
CPT

(C−

ℓ+,K0S − C+
ℓ+,K0S ) 0.14 ± 0.17�C−

CPT
(C+

ℓ+,K0S − C−

ℓ+,K0S ) 0.03 ± 0.14
∣

∣mp−mp∣

∣/mp [l℄ <7× 10−10, CL = 90%(∣∣ qpmp ∣

∣{ qpmp )/ qpmp (−9 ± 9)× 10−11
∣

∣qp + qp ∣

∣

/e [l℄ <7× 10−10, CL = 90%(µp + µp) /

µp (0 ± 5) × 10−6(mn − mn )/ mn (9 ± 6) × 10−5(m� − m�) / m� (−0.1 ± 1.1)× 10−5 (S = 1.6)(τ� − τ�) / τ� −0.001 ± 0.009(τ�+ − τ�−) / τ�+ −0.0006 ± 0.0012Unless otherwise stated, limits are given at the 90% 
on�den
e level, while errors are givenas ±1 standard deviation.



112112112112Tests of Conservation Laws(µ�+ + µ�−) /

µ�+ 0.014 ± 0.015(m�− − m�+) / m�− (−3 ± 9)× 10−5(τ�− − τ�+) / τ�− −0.01 ± 0.07(µ�− + µ�+) / ∣

∣µ�−

∣

∣ +0.01 ± 0.05(m
− − m
+) / m
− (−1 ± 8)× 10−5(τ
− − τ
+) / τ
− 0.00 ± 0.05TESTS OF NUMBER CONSERVATION LAWSTESTS OF NUMBER CONSERVATION LAWSTESTS OF NUMBER CONSERVATION LAWSTESTS OF NUMBER CONSERVATION LAWSLEPTON FAMILY NUMBERLEPTON FAMILY NUMBERLEPTON FAMILY NUMBERLEPTON FAMILY NUMBERLepton family number 
onservation means separate 
onservationof ea
h of Le , Lµ, Lτ .�(Z → e±µ∓)/�total [n℄ <7.5× 10−7, CL = 95%�(Z → e± τ∓)/�total [n℄ <9.8× 10−6, CL = 95%�(Z → µ± τ∓)/�total [n℄ <1.2× 10−5, CL = 95%
σ(e+ e− → e± τ∓) / σ(e+ e− →

µ+µ−) <8.9× 10−6, CL = 95%
σ(e+ e− → µ± τ∓) / σ(e+ e− →

µ+µ−) <4.0× 10−6, CL = 95%limit on µ− → e− 
onversion
σ(µ− 32S → e− 32S) /

σ(µ− 32S → νµ
32P∗) <7× 10−11, CL = 90%

σ(µ−Ti → e−Ti) /
σ(µ−Ti → 
apture) <4.3× 10−12, CL = 90%

σ(µ−Pb → e−Pb) /
σ(µ−Pb → 
apture) <4.6× 10−11, CL = 90%limit on muonium → antimuonium
onversion Rg = GC / GF <0.0030, CL = 90%�(µ− → e− νe νµ)/�total [o℄ <1.2× 10−2, CL = 90%�(µ− → e− γ)/�total <5.7× 10−13, CL = 90%�(µ− → e− e+ e−)/�total <1.0× 10−12, CL = 90%�(µ− → e− 2γ)/�total <7.2× 10−11, CL = 90%�(τ− → e− γ)/�total <3.3× 10−8, CL = 90%�(τ− → µ− γ)/�total <4.4× 10−8, CL = 90%�(τ− → e−π0)/�total <8.0× 10−8, CL = 90%�(τ− → µ−π0)/�total <1.1× 10−7, CL = 90%�(τ− → e−K0S )/�total <2.6× 10−8, CL = 90%�(τ− → µ−K0S )/�total <2.3× 10−8, CL = 90%�(τ− → e− η)/�total <9.2× 10−8, CL = 90%�(τ− → µ− η)/�total <6.5× 10−8, CL = 90%�(τ− → e− ρ0)/�total <1.8× 10−8, CL = 90%�(τ− → µ− ρ0)/�total <1.2× 10−8, CL = 90%�(τ− → e−ω)/�total <4.8× 10−8, CL = 90%�(τ− → µ−ω)/�total <4.7× 10−8, CL = 90%�(τ− → e−K∗(892)0)/�total <3.2× 10−8, CL = 90%�(τ− → µ−K∗(892)0)/�total <5.9× 10−8, CL = 90%�(τ− → e−K∗(892)0)/�total <3.4× 10−8, CL = 90%�(τ− → µ−K∗(892)0)/�total <7.0× 10−8, CL = 90%�(τ− → e− η′(958))/�total <1.6× 10−7, CL = 90%�(τ− → µ− η′(958))/�total <1.3× 10−7, CL = 90%�(τ− → e− f0(980) → e−π+π−)/�total <3.2× 10−8, CL = 90%�(τ− → µ− f0(980) → µ−π+π−)/�total <3.4× 10−8, CL = 90%�(τ− → e−φ)/�total <3.1× 10−8, CL = 90%�(τ− → µ−φ)/�total <8.4× 10−8, CL = 90%�(τ− → e− e+ e−)/�total <2.7× 10−8, CL = 90%�(τ− → e−µ+µ−)/�total <2.7× 10−8, CL = 90%�(τ− → e+µ−µ−)/�total <1.7× 10−8, CL = 90%�(τ− → µ− e+ e−)/�total <1.8× 10−8, CL = 90%�(τ− → µ+ e− e−)/�total <1.5× 10−8, CL = 90%�(τ− → µ−µ+µ−)/�total <2.1× 10−8, CL = 90%�(τ− → e−π+π−)/�total <2.3× 10−8, CL = 90%�(τ− → µ−π+π−)/�total <2.1× 10−8, CL = 90%�(τ− → e−π+K−)/�total <3.7× 10−8, CL = 90%�(τ− → e−π−K+)/�total <3.1× 10−8, CL = 90%�(τ− → e−K0S K0S )/�total <7.1× 10−8, CL = 90%�(τ− → e−K+K−)/�total <3.4× 10−8, CL = 90%

�(τ− → µ−π+K−)/�total <8.6× 10−8, CL = 90%�(τ− → µ−π−K+)/�total <4.5× 10−8, CL = 90%�(τ− → µ−K0S K0S )/�total <8.0× 10−8, CL = 90%�(τ− → µ−K+K−)/�total <4.4× 10−8, CL = 90%�(τ− → e−π0π0)/�total <6.5× 10−6, CL = 90%�(τ− → µ−π0π0)/�total <1.4× 10−5, CL = 90%�(τ− → e− ηη)/�total <3.5× 10−5, CL = 90%�(τ− → µ− ηη)/�total <6.0× 10−5, CL = 90%�(τ− → e−π0 η)/�total <2.4× 10−5, CL = 90%�(τ− → µ−π0 η)/�total <2.2× 10−5, CL = 90%�(τ− → e− light boson)/�total <2.7× 10−3, CL = 95%�(τ− → µ− light boson)/�total <5× 10−3, CL = 95%LEPTON FAMILY NUMBER VIOLATION IN NEUTRINOSLEPTON FAMILY NUMBER VIOLATION IN NEUTRINOSLEPTON FAMILY NUMBER VIOLATION IN NEUTRINOSLEPTON FAMILY NUMBER VIOLATION IN NEUTRINOSsin2(θ12) 0.304 ± 0.014�m221 (7.53 ± 0.18) × 10−5 eV2sin2(θ23) (normal mass hierar
hy) 0.51 ± 0.05sin2(θ23) (inverted mass hierar
hy) 0.50 ± 0.05�m232 (normal mass hierar
hy) [p℄ (2.44 ± 0.06) × 10−3 eV2�m232 (inverted mass hierar
hy) [p℄ (2.51 ± 0.06) × 10−3 eV2sin2(θ13) (2.19 ± 0.12) × 10−2�(π+ → µ+ νe )/�total [q℄ <8.0× 10−3, CL = 90%�(π+ → µ− e+ e+ ν)/�total <1.6× 10−6, CL = 90%�(π0 → µ+ e−)/�total <3.8× 10−10, CL = 90%�(π0 → µ− e+)/�total <3.4× 10−9, CL = 90%�(π0 → µ+ e− + µ− e+)/�total <3.6× 10−10, CL = 90%�(η → µ+ e− + µ− e+)/�total <6× 10−6, CL = 90%�(η′(958) → eµ)/�total <4.7× 10−4, CL = 90%�(φ(1020) → e±µ∓)/�total <2× 10−6, CL = 90%�(K+ → µ− ν e+ e+)/�total <2.1× 10−8, CL = 90%�(K+ → µ+ νe )/�total [q℄ <4× 10−3, CL = 90%�(K+ → π+µ+ e−)/�total <1.3× 10−11, CL = 90%�(K+ → π+µ− e+)/�total <5.2× 10−10, CL = 90%�(K0L → e±µ∓)/�total [n℄ <4.7× 10−12, CL = 90%�(K0L → e± e±µ∓µ∓)/�total [n℄ <4.12× 10−11, CL = 90%�(K0L → π0µ± e∓)/�total [n℄ <7.6× 10−11, CL = 90%�(K0L → π0π0µ± e∓)/�total <1.7× 10−10, CL = 90%�(D+ → π+ e+µ−)/�total <2.9× 10−6, CL = 90%�(D+ → π+ e−µ+)/�total <3.6× 10−6, CL = 90%�(D+ → K+ e+µ−)/�total <1.2× 10−6, CL = 90%�(D+ → K+ e−µ+)/�total <2.8× 10−6, CL = 90%�(D0 → µ± e∓)/�total [n℄ <2.6× 10−7, CL = 90%�(D0 → π0 e±µ∓)/�total [n℄ <8.6× 10−5, CL = 90%�(D0 → ηe± µ∓)/�total [n℄ <1.0× 10−4, CL = 90%�(D0 → π+π− e±µ∓)/�total [n℄ <1.5× 10−5, CL = 90%�(D0 → ρ0 e±µ∓)/�total [n℄ <4.9× 10−5, CL = 90%�(D0 → ωe±µ∓)/�total [n℄ <1.2× 10−4, CL = 90%�(D0 → K−K+ e±µ∓)/�total [n℄ <1.8× 10−4, CL = 90%�(D0 → φe±µ∓)/�total [n℄ <3.4× 10−5, CL = 90%�(D0 → K0 e±µ∓)/�total [n℄ <1.0× 10−4, CL = 90%�(D0 → K−π+ e±µ∓)/�total [n℄ <5.53× 10−4, CL = 90%�(D0 → K∗(892)0 e±µ∓)/�total [n℄ <8.3× 10−5, CL = 90%�(D+s → π+ e+µ−)/�total <1.2× 10−5, CL = 90%�(D+s → π+ e−µ+)/�total <2.0× 10−5, CL = 90%�(D+s → K+ e+µ−)/�total <1.4× 10−5, CL = 90%�(D+s → K+ e−µ+)/�total <9.7× 10−6, CL = 90%�(B+ → π+ e+µ−)/�total <6.4× 10−3, CL = 90%�(B+ → π+ e−µ+)/�total <6.4× 10−3, CL = 90%�(B+ → π+ e±µ∓)/�total <1.7× 10−7, CL = 90%�(B+ → π+ e+ τ−)/�total <7.4× 10−5, CL = 90%�(B+ → π+ e− τ+)/�total <2.0× 10−5, CL = 90%�(B+ → π+ e± τ∓)/�total <7.5× 10−5, CL = 90%�(B+ → π+µ+ τ−)/�total <6.2× 10−5, CL = 90%�(B+ → π+µ− τ+)/�total <4.5× 10−5, CL = 90%�(B+ → π+µ± τ∓)/�total <7.2× 10−5, CL = 90%�(B+ → K+ e+µ−)/�total <9.1× 10−8, CL = 90%�(B+ → K+ e−µ+)/�total <1.3× 10−7, CL = 90%�(B+ → K+ e±µ∓)/�total <9.1× 10−8, CL = 90%�(B+ → K+ e+ τ−)/�total <4.3× 10−5, CL = 90%�(B+ → K+ e− τ+)/�total <1.5× 10−5, CL = 90%Unless otherwise stated, limits are given at the 90% 
on�den
e level, while errors are givenas ±1 standard deviation.



113113113113Tests of Conservation Laws�(B+ → K+ e± τ∓)/�total <3.0× 10−5, CL = 90%�(B+ → K+µ+ τ−)/�total <4.5× 10−5, CL = 90%�(B+ → K+µ− τ+)/�total <2.8× 10−5, CL = 90%�(B+ → K+µ± τ∓)/�total <4.8× 10−5, CL = 90%�(B+ → K∗(892)+ e+µ−)/�total <1.3× 10−6, CL = 90%�(B+ → K∗(892)+ e−µ+)/�total <9.9× 10−7, CL = 90%�(B+ → K∗(892)+ e±µ∓)/�total <1.4× 10−6, CL = 90%�(B0 → e±µ∓)/�total [n℄ <2.8× 10−9, CL = 90%�(B0 → π0 e±µ∓)/�total <1.4× 10−7, CL = 90%�(B0 → K0 e±µ∓)/�total <2.7× 10−7, CL = 90%�(B0 → K∗(892)0 e+µ−)/�total <5.3× 10−7, CL = 90%�(B0 → K∗(892)0 e−µ+)/�total <3.4× 10−7, CL = 90%�(B0 → K∗(892)0 e±µ∓)/�total <5.8× 10−7, CL = 90%�(B0 → e± τ∓)/�total [n℄ <2.8× 10−5, CL = 90%�(B0 → µ± τ∓)/�total [n℄ <2.2× 10−5, CL = 90%�(B → s e±µ∓)/�total [n℄ <2.2× 10−5, CL = 90%�(B → πe±µ∓)/�total <9.2× 10−8, CL = 90%�(B → ρe±µ∓)/�total <3.2× 10−6, CL = 90%�(B → K e±µ∓)/�total <3.8× 10−8, CL = 90%�(B → K∗(892)e±µ∓)/�total <5.1× 10−7, CL = 90%�(B0s → e±µ∓)/�total [n℄ <1.1× 10−8, CL = 90%�(J/ψ(1S) → e±µ∓)/�total <1.6× 10−7, CL = 90%�(J/ψ(1S) → e± τ∓)/�total <8.3× 10−6, CL = 90%�(J/ψ(1S) → µ± τ∓)/�total <2.0× 10−6, CL = 90%�(�(1S) → µ± τ∓)/�total <6.0× 10−6, CL = 95%�(�(2S) → e± τ∓)/�total <3.2× 10−6, CL = 90%�(�(2S) → µ± τ∓)/�total <3.3× 10−6, CL = 90%�(�(3S) → e± τ∓)/�total <4.2× 10−6, CL = 90%�(�(3S) → µ± τ∓)/�total <3.1× 10−6, CL = 90%�(�+
 → pe+µ−)/�total <9.9× 10−6, CL = 90%�(�+
 → pe−µ+)/�total <1.9× 10−5, CL = 90%TOTAL LEPTON NUMBERTOTAL LEPTON NUMBERTOTAL LEPTON NUMBERTOTAL LEPTON NUMBERViolation of total lepton number 
onservation also implies violationof lepton family number 
onservation.�(Z → pe)/�total <1.8× 10−6, CL = 95%�(Z → pµ)/�total <1.8× 10−6, CL = 95%limit on µ− → e+ 
onversion
σ(µ− 32S → e+32Si∗) /

σ(µ− 32S → νµ
32P∗) <9× 10−10, CL = 90%

σ(µ− 127I → e+127Sb∗) /
σ(µ− 127I → anything) <3× 10−10, CL = 90%

σ(µ−Ti → e+Ca) /
σ(µ−Ti → 
apture) <3.6× 10−11, CL = 90%�(τ− → e+π−π−)/�total <2.0× 10−8, CL = 90%�(τ− → µ+π−π−)/�total <3.9× 10−8, CL = 90%�(τ− → e+π−K−)/�total <3.2× 10−8, CL = 90%�(τ− → e+K−K−)/�total <3.3× 10−8, CL = 90%�(τ− → µ+π−K−)/�total <4.8× 10−8, CL = 90%�(τ− → µ+K−K−)/�total <4.7× 10−8, CL = 90%�(τ− → pµ−µ−)/�total <4.4× 10−7, CL = 90%�(τ− → pµ+µ−)/�total <3.3× 10−7, CL = 90%�(τ− → p γ)/�total <3.5× 10−6, CL = 90%�(τ− → pπ0)/�total <1.5× 10−5, CL = 90%�(τ− → p 2π0)/�total <3.3× 10−5, CL = 90%�(τ− → p η)/�total <8.9× 10−6, CL = 90%�(τ− → pπ0 η)/�total <2.7× 10−5, CL = 90%�(τ− → �π−)/�total <7.2× 10−8, CL = 90%�(τ− → �π−)/�total <1.4× 10−7, CL = 90%t1/2( 76Ge → 76Se + 2 e− ) >1.9× 1025 yr, CL = 90%�(π+ → µ+ νe )/�total [q℄ <1.5× 10−3, CL = 90%�(K+ → π−µ+ e+)/�total <5.0× 10−10, CL = 90%�(K+ → π− e+ e+)/�total <6.4× 10−10, CL = 90%�(K+ → π−µ+µ+)/�total [q℄ <1.1× 10−9, CL = 90%�(K+ → µ+ νe )/�total [q℄ <3.3× 10−3, CL = 90%�(K+ → π0 e+ νe )/�total <3× 10−3, CL = 90%�(D+ → π− 2e+)/�total <1.1× 10−6, CL = 90%�(D+ → π− 2µ+)/�total <2.2× 10−8, CL = 90%�(D+ → π− e+µ+)/�total <2.0× 10−6, CL = 90%

�(D+ → ρ− 2µ+)/�total <5.6× 10−4, CL = 90%�(D+ → K− 2e+)/�total <9× 10−7, CL = 90%�(D+ → K− 2µ+)/�total <1.0× 10−5, CL = 90%�(D+ → K− e+µ+)/�total <1.9× 10−6, CL = 90%�(D+ → K∗(892)− 2µ+)/�total <8.5× 10−4, CL = 90%�(D0 → 2π− 2e++ 
.
.)/�total <1.12× 10−4, CL = 90%�(D0 → 2π− 2µ++ 
.
.)/�total <2.9× 10−5, CL = 90%�(D0 → K−π− 2e++ 
.
.)/�total <2.06× 10−4, CL = 90%�(D0 → K−π− 2µ++ 
.
.)/�total <3.9× 10−4, CL = 90%�(D0 → 2K− 2e++ 
.
.)/�total <1.52× 10−4, CL = 90%�(D0 → 2K− 2µ++ 
.
.)/�total <9.4× 10−5, CL = 90%�(D0 → π−π− e+µ++ 
.
.)/�total <7.9× 10−5, CL = 90%�(D0 → K−π− e+µ++ 
.
.)/�total <2.18× 10−4, CL = 90%�(D0 → 2K− e+µ++ 
.
.)/�total <5.7× 10−5, CL = 90%�(D0 → pe−)/�total [r ℄ <1.0× 10−5, CL = 90%�(D0 → p e+)/�total [s℄ <1.1× 10−5, CL = 90%�(D+s → π− 2e+)/�total <4.1× 10−6, CL = 90%�(D+s → π− 2µ+)/�total <1.2× 10−7, CL = 90%�(D+s → π− e+µ+)/�total <8.4× 10−6, CL = 90%�(D+s → K− 2e+)/�total <5.2× 10−6, CL = 90%�(D+s → K− 2µ+)/�total <1.3× 10−5, CL = 90%�(D+s → K− e+µ+)/�total <6.1× 10−6, CL = 90%�(D+s → K∗(892)− 2µ+)/�total <1.4× 10−3, CL = 90%�(B+ → π− e+ e+)/�total <2.3× 10−8, CL = 90%�(B+ → π−µ+µ+)/�total <4.0× 10−9, CL = 95%�(B+ → π− e+µ+)/�total <1.5× 10−7, CL = 90%�(B+ → ρ− e+ e+)/�total <1.7× 10−7, CL = 90%�(B+ → ρ−µ+µ+)/�total <4.2× 10−7, CL = 90%�(B+ → ρ− e+µ+)/�total <4.7× 10−7, CL = 90%�(B+ → K− e+ e+)/�total <3.0× 10−8, CL = 90%�(B+ → K−µ+µ+)/�total <4.1× 10−8, CL = 90%�(B+ → K− e+µ+)/�total <1.6× 10−7, CL = 90%�(B+ → K∗(892)− e+ e+)/�total <4.0× 10−7, CL = 90%�(B+ → K∗(892)−µ+µ+)/�total <5.9× 10−7, CL = 90%�(B+ → K∗(892)− e+µ+)/�total <3.0× 10−7, CL = 90%�(B+ → D− e+ e+)/�total <2.6× 10−6, CL = 90%�(B+ → D− e+µ+)/�total <1.8× 10−6, CL = 90%�(B+ → D−µ+µ+)/�total <6.9× 10−7, CL = 95%�(B+ → D∗−µ+µ+)/�total <2.4× 10−6, CL = 95%�(B+ → D−s µ+µ+)/�total <5.8× 10−7, CL = 95%�(B+ → D0π−µ+µ+)/�total <1.5× 10−6, CL = 95%�(B+ → �0µ+)/�total <6× 10−8, CL = 90%�(B+ → �0 e+)/�total <3.2× 10−8, CL = 90%�(B+ → �0µ+)/�total <6× 10−8, CL = 90%�(B+ → �0 e+)/�total <8× 10−8, CL = 90%�(B0 → �+
 µ−)/�total <1.4× 10−6, CL = 90%�(B0 → �+
 e−)/�total <4× 10−6, CL = 90%�(� → π+ e−)/�total <6× 10−7, CL = 90%�(� → π+µ−)/�total <6× 10−7, CL = 90%�(� → π− e+)/�total <4× 10−7, CL = 90%�(� → π−µ+)/�total <6× 10−7, CL = 90%�(� → K+ e−)/�total <2× 10−6, CL = 90%�(� → K+µ−)/�total <3× 10−6, CL = 90%�(� → K− e+)/�total <2× 10−6, CL = 90%�(� → K−µ+)/�total <3× 10−6, CL = 90%�(� → K0S ν)/�total <2× 10−5, CL = 90%�(�− → pµ− µ−)/�total <4× 10−8, CL = 90%�(�+
 → p 2e+)/�total <2.7× 10−6, CL = 90%�(�+
 → p 2µ+)/�total <9.4× 10−6, CL = 90%�(�+
 → p e+µ+)/�total <1.6× 10−5, CL = 90%�(�+
 → �−µ+µ+)/�total <7.0× 10−4, CL = 90%
Unless otherwise stated, limits are given at the 90% 
on�den
e level, while errors are givenas ±1 standard deviation.



114114114114Tests of Conservation LawsBARYON NUMBERBARYON NUMBERBARYON NUMBERBARYON NUMBER�(Z → pe)/�total <1.8× 10−6, CL = 95%�(Z → pµ)/�total <1.8× 10−6, CL = 95%�(τ− → pµ−µ−)/�total <4.4× 10−7, CL = 90%�(τ− → pµ+µ−)/�total <3.3× 10−7, CL = 90%�(τ− → p γ)/�total <3.5× 10−6, CL = 90%�(τ− → pπ0)/�total <1.5× 10−5, CL = 90%�(τ− → p 2π0)/�total <3.3× 10−5, CL = 90%�(τ− → p η)/�total <8.9× 10−6, CL = 90%�(τ− → pπ0 η)/�total <2.7× 10−5, CL = 90%�(τ− → �π−)/�total <7.2× 10−8, CL = 90%�(τ− → �π−)/�total <1.4× 10−7, CL = 90%�(D0 → pe−)/�total [r ℄ <1.0× 10−5, CL = 90%�(D0 → p e+)/�total [s℄ <1.1× 10−5, CL = 90%�(B+ → �0µ+)/�total <6× 10−8, CL = 90%�(B+ → �0 e+)/�total <3.2× 10−8, CL = 90%�(B+ → �0µ+)/�total <6× 10−8, CL = 90%�(B+ → �0 e+)/�total <8× 10−8, CL = 90%�(B0 → �+
 µ−)/�total <1.4× 10−6, CL = 90%�(B0 → �+
 e−)/�total <4× 10−6, CL = 90%p mean life [t℄ >2.1× 1029 years, CL = 90%A few examples of proton or bound neutron de
ay follow. For limits on many other nu
leonde
ay 
hannels, see the Baryon Summary Table.
τ(N → e+π) > 2000 (n), > 8200 (p) × 1030years, CL = 90%
τ(N → µ+π) > 1000 (n), > 6600 (p) × 1030years, CL = 90%
τ(N → e+K) > 17 (n), > 1000 (p) × 1030 years,CL = 90%
τ(N → µ+K) > 26 (n), > 1600 (p) × 1030 years,CL = 90%limit on nn os
illations (free n) >0.86× 108 s, CL = 90%limit on nn os
illations (bound n) [u℄ >1.3× 108 s, CL = 90%�(� → π+ e−)/�total <6× 10−7, CL = 90%�(� → π+µ−)/�total <6× 10−7, CL = 90%�(� → π− e+)/�total <4× 10−7, CL = 90%�(� → π−µ+)/�total <6× 10−7, CL = 90%�(� → K+ e−)/�total <2× 10−6, CL = 90%�(� → K+µ−)/�total <3× 10−6, CL = 90%�(� → K− e+)/�total <2× 10−6, CL = 90%�(� → K−µ+)/�total <3× 10−6, CL = 90%�(� → K0S ν)/�total <2× 10−5, CL = 90%�(� → pπ+)/�total <9× 10−7, CL = 90%�(�+
 → p 2e+)/�total <2.7× 10−6, CL = 90%�(�+
 → p 2µ+)/�total <9.4× 10−6, CL = 90%�(�+
 → p e+µ+)/�total <1.6× 10−5, CL = 90%ELECTRIC CHARGE (Q)ELECTRIC CHARGE (Q)ELECTRIC CHARGE (Q)ELECTRIC CHARGE (Q)e → νe γ and astrophysi
al limits [v ℄ >6.6× 1028 yr, CL = 90%�(n → pνe νe )/�total <8× 10−27, CL = 68%�S = �Q RULE�S = �Q RULE�S = �Q RULE�S = �Q RULEViolations allowed in se
ond-order weak intera
tions.�(K+ → π+π+ e− νe )/�total <1.3× 10−8, CL = 90%�(K+ → π+π+µ− νµ)/�total <3.0× 10−6, CL = 95%Re(x+), Ke3 parameter (−0.9 ± 3.0)× 10−3x = A(K0 → π− ℓ+ ν)/A(K0 → π− ℓ+ ν) = A(�S=−�Q)/A(�S=�Q)real part of x −0.002 ± 0.006imaginary part of x 0.0012 ± 0.0021�(�+ → n ℓ+ ν

)/�(�− → n ℓ− ν
)

<0.043�(�+ → ne+ νe )/�total <5× 10−6, CL = 90%�(�+ → nµ+ νµ)/�total <3.0× 10−5, CL = 90%�(�0 → �− e+ νe )/�total <9× 10−4, CL = 90%�(�0 → �−µ+ νµ)/�total <9× 10−4, CL = 90%

�S = 2 FORBIDDEN�S = 2 FORBIDDEN�S = 2 FORBIDDEN�S = 2 FORBIDDENAllowed in se
ond-order weak intera
tions.�(�0 → pπ−)/�total <8× 10−6, CL = 90%�(�0 → pe− νe )/�total <1.3× 10−3�(�0 → pµ− νµ)/�total <1.3× 10−3�(�− → nπ−)/�total <1.9× 10−5, CL = 90%�(�− → ne− νe )/�total <3.2× 10−3, CL = 90%�(�− → nµ− νµ)/�total <1.5× 10−2, CL = 90%�(�− → pπ−π−)/�total <4× 10−4, CL = 90%�(�− → pπ− e− νe )/�total <4× 10−4, CL = 90%�(�− → pπ−µ− νµ)/�total <4× 10−4, CL = 90%�(
− → �π−)/�total <2.9× 10−6, CL = 90%�S = 2 VIA MIXING�S = 2 VIA MIXING�S = 2 VIA MIXING�S = 2 VIA MIXINGAllowed in se
ond-order weak intera
tions, e.g. mixing.mK0L − mK0S (0.5293 ± 0.0009)× 1010 �h s−1 (S= 1.3)mK0L − mK0S (3.484 ± 0.006) × 10−12 MeV�C = 2 VIA MIXING�C = 2 VIA MIXING�C = 2 VIA MIXING�C = 2 VIA MIXINGAllowed in se
ond-order weak intera
tions, e.g. mixing.
∣

∣mD01 − mD02∣∣ = x� (0.95+0.41
−0.44)× 1010 �h s−1(�D01 { �D02)/� = 2y (1.29+0.14
−0.18)× 10−2�B = 2 VIA MIXING�B = 2 VIA MIXING�B = 2 VIA MIXING�B = 2 VIA MIXINGAllowed in se
ond-order weak intera
tions, e.g. mixing.

χd 0.1875 ± 0.0017�mB0 = mB0H − mB0L (0.5096 ± 0.0034) × 1012 �h s−1xd = �mB0/�B0 0.775 ± 0.006�mB0s = mB0s H { mB0s L (17.757 ± 0.021) × 1012 �h s−1xs = �mB0s /�B0s 26.81 ± 0.10
χs 0.499308 ± 0.000005�S = 1 WEAK NEUTRAL CURRENT FORBIDDEN�S = 1 WEAK NEUTRAL CURRENT FORBIDDEN�S = 1 WEAK NEUTRAL CURRENT FORBIDDEN�S = 1 WEAK NEUTRAL CURRENT FORBIDDENAllowed by higher-order ele
troweak intera
tions.�(K+ → π+ e+ e−)/�total (3.00 ± 0.09) × 10−7�(K+ → π+µ+µ−)/�total (9.4 ± 0.6)× 10−8 (S = 2.6)�(K+ → π+ ν ν)/�total (1.7 ± 1.1)× 10−10�(K+ → π+π0 ν ν)/�total <4.3× 10−5, CL = 90%�(K0S → µ+µ−)/�total <9× 10−9, CL = 90%�(K0S → e+ e−)/�total <9× 10−9, CL = 90%�(K0S → π0 e+ e−)/�total [x ℄ (3.0+1.5

−1.2)× 10−9�(K0S → π0µ+µ−)/�total (2.9+1.5
−1.2)× 10−9�(K0L → µ+µ−)/�total (6.84 ± 0.11) × 10−9�(K0L → e+ e−)/�total (9+6

−4)× 10−12�(K0L → π+π− e+ e−)/�total [y ℄ (3.11 ± 0.19) × 10−7�(K0L → π0π0 e+ e−)/�total <6.6× 10−9, CL = 90%�(K0L → π0π0µ+µ−)/�total <9.2× 10−11, CL = 90%�(K0L → µ+µ− e+ e−)/�total (2.69 ± 0.27) × 10−9�(K0L → e+ e− e+ e−)/�total (3.56 ± 0.21) × 10−8�(K0L → π0µ+µ−)/�total <3.8× 10−10, CL = 90%�(K0L → π0 e+ e−)/�total <2.8× 10−10, CL = 90%�(K0L → π0 ν ν)/�total <2.6× 10−8, CL = 90%�(K0L → π0π0 ν ν)/�total <8.1× 10−7, CL = 90%�(�+ → pe+ e−)/�total <7× 10−6�(�+ → pµ+µ−)/�total (9+9
−8)× 10−8Unless otherwise stated, limits are given at the 90% 
on�den
e level, while errors are givenas ±1 standard deviation.



115115115115Tests of Conservation Laws�C = 1 WEAK NEUTRAL CURRENT FORBIDDEN�C = 1 WEAK NEUTRAL CURRENT FORBIDDEN�C = 1 WEAK NEUTRAL CURRENT FORBIDDEN�C = 1 WEAK NEUTRAL CURRENT FORBIDDENAllowed by higher-order ele
troweak intera
tions.�(D+ → π+ e+ e−)/�total <1.1× 10−6, CL = 90%�(D+ → π+µ+µ−)/�total <7.3× 10−8, CL = 90%�(D+ → ρ+µ+µ−)/�total <5.6× 10−4, CL = 90%�(D0 → γ γ)/�total <2.2× 10−6, CL = 90%�(D0 → e+ e−)/�total <7.9× 10−8, CL = 90%�(D0 → µ+µ−)/�total <6.2× 10−9, CL = 90%�(D0 → π0 e+ e−)/�total <4.5× 10−5, CL = 90%�(D0 → π0µ+µ−)/�total <1.8× 10−4, CL = 90%�(D0 → ηe+ e−)/�total <1.1× 10−4, CL = 90%�(D0 → ηµ+ µ−)/�total <5.3× 10−4, CL = 90%�(D0 → π+π− e+ e−)/�total <3.73× 10−4, CL = 90%�(D0 → ρ0 e+ e−)/�total <1.0× 10−4, CL = 90%�(D0 → π+π−µ+µ−)/�total <5.5× 10−7, CL = 90%�(D0 → ρ0µ+µ−)/�total <2.2× 10−5, CL = 90%�(D0 → ωe+ e−)/�total <1.8× 10−4, CL = 90%�(D0 → ωµ+µ−)/�total <8.3× 10−4, CL = 90%�(D0 → K−K+ e+ e−)/�total <3.15× 10−4, CL = 90%�(D0 → φe+ e−)/�total <5.2× 10−5, CL = 90%�(D0 → K−K+µ+µ−)/�total <3.3× 10−5, CL = 90%�(D0 → φµ+µ−)/�total <3.1× 10−5, CL = 90%�(D0 → K−π+ e+ e−)/�total <3.85× 10−4, CL = 90%�(D0 → K−π+µ+µ−)/�total <3.59× 10−4, CL = 90%�(D0 → π+π−π0µ+µ−)/�total <8.1× 10−4, CL = 90%�(D+s → K+ e+ e−)/�total <3.7× 10−6, CL = 90%�(D+s → K+µ+µ−)/�total <2.1× 10−5, CL = 90%�(D+s → K∗(892)+µ+µ−)/�total <1.4× 10−3, CL = 90%�(�+
 → pe+ e−)/�total <5.5× 10−6, CL = 90%�(�+
 → pµ+µ−)/�total <4.4× 10−5, CL = 90%�B = 1 WEAK NEUTRAL CURRENT FORBIDDEN�B = 1 WEAK NEUTRAL CURRENT FORBIDDEN�B = 1 WEAK NEUTRAL CURRENT FORBIDDEN�B = 1 WEAK NEUTRAL CURRENT FORBIDDENAllowed by higher-order ele
troweak intera
tions.�(B+ → π+ ℓ+ ℓ−)/�total <4.9× 10−8, CL = 90%�(B+ → π+ e+ e−)/�total <8.0× 10−8, CL = 90%�(B+ → π+µ+µ−)/�total (1.79 ± 0.23) × 10−8�(B+ → π+ ν ν)/�total <9.8× 10−5, CL = 90%�(B+ → K+ ℓ+ ℓ−)/�total [z ℄ (4.51 ± 0.23) × 10−7 (S = 1.1)�(B+ → K+ e+ e−)/�total (5.5 ± 0.7)× 10−7�(B+ → K+µ+µ−)/�total (4.43 ± 0.24) × 10−7 (S = 1.2)�(B+ → K+ ν ν)/�total <1.6× 10−5, CL = 90%�(B+ → ρ+ ν ν)/�total <2.13× 10−4, CL = 90%�(B+ → K∗(892)+ ℓ+ ℓ−)/�total [z ℄ (1.01 ± 0.11) × 10−6 (S = 1.1)�(B+ → K∗(892)+ e+ e−)/�total (1.55+0.40
−0.31)× 10−6�(B+ → K∗(892)+µ+µ−)/�total (9.6 ± 1.0)× 10−7�(B+ → K∗(892)+ ν ν)/�total <4.0× 10−5, CL = 90%�(B+ → K+π+π−µ+µ−)/�total (4.4 ± 0.4)× 10−7�(B+ → φK+µ+µ−)/�total (7.9+2.1

−1.7)× 10−8�(B0 → γ γ)/�total <3.2× 10−7, CL = 90%�(B0 → e+ e−)/�total <8.3× 10−8, CL = 90%�(B0 → e+ e− γ)/�total <1.2× 10−7, CL = 90%�(B0 → µ+µ−)/�total (3.9+1.6
−1.4)× 10−10�(B0 → µ+µ− γ)/�total <1.6× 10−7, CL = 90%�(B0 → µ+µ−µ+µ−)/�total <5.3× 10−9, CL = 90%�(B0 → S P, S → µ+µ−, P →

µ+µ−)/�total [aa℄ <5.1× 10−9, CL = 90%�(B0 → τ+ τ−)/�total <4.1× 10−3, CL = 90%�(B0 → π0 ℓ+ ℓ−)/�total <5.3× 10−8, CL = 90%�(B0 → π0 e+ e−)/�total <8.4× 10−8, CL = 90%�(B0 → π0µ+µ−)/�total <6.9× 10−8, CL = 90%�(B0 → ηℓ+ ℓ−)/�total <6.4× 10−8, CL = 90%�(B0 → ηe+ e−)/�total <1.08× 10−7, CL = 90%�(B0 → ηµ+µ−)/�total <1.12× 10−7, CL = 90%�(B0 → π0 ν ν)/�total <6.9× 10−5, CL = 90%�(B0 → K0 ℓ+ ℓ−)/�total [z ℄ (3.1+0.8
−0.7)× 10−7�(B0 → K0 e+ e−)/�total (1.6+1.0
−0.8)× 10−7

�(B0 → K0µ+µ−)/�total (3.39 ± 0.34) × 10−7�(B0 → K0 ν ν)/�total <4.9× 10−5, CL = 90%�(B0 → ρ0 ν ν)/�total <2.08× 10−4, CL = 90%�(B0 → K∗(892)0 ℓ+ ℓ−)/�total [z ℄ (9.9+1.2
−1.1)× 10−7�(B0 → K∗(892)0 e+ e−)/�total (1.03+0.19
−0.17)× 10−6�(B0 → K∗(892)0µ+µ−)/�total (1.02 ± 0.09) × 10−6�(B0 → K∗(892)0 ν ν)/�total <5.5× 10−5, CL = 90%�(B0 → φν ν)/�total <1.27× 10−4, CL = 90%�(B0 → invisible)/�total <2.4× 10−5, CL = 90%�(B0 → ν ν γ)/�total <1.7× 10−5, CL = 90%�(B → s e+ e−)/�total (6.7 ± 1.7)× 10−6 (S = 2.0)�(B → s µ+µ−)/�total (4.3 ± 1.0)× 10−6�(B → s ℓ+ ℓ−)/�total [z ℄ (5.8 ± 1.3)× 10−6 (S = 1.8)�(B → πℓ+ ℓ−)/�total <5.9× 10−8, CL = 90%�(B → πe+ e−)/�total <1.10× 10−7, CL = 90%�(B → πµ+µ−)/�total <5.0× 10−8, CL = 90%�(B → K e+ e−)/�total (4.4 ± 0.6)× 10−7�(B → K∗(892)e+ e−)/�total (1.19 ± 0.20) × 10−6 (S = 1.2)�(B → K µ+µ−)/�total (4.4 ± 0.4)× 10−7�(B → K∗(892)µ+µ−)/�total (1.06 ± 0.09) × 10−6�(B → K ℓ+ ℓ−)/�total (4.8 ± 0.4)× 10−7�(B → K∗(892) ℓ+ ℓ−)/�total (1.05 ± 0.10) × 10−6�(B → K ν ν)/�total <1.7× 10−5, CL = 90%�(B → K∗ ν ν)/�total <7.6× 10−5, CL = 90%�(b → s ν ν)/�total <6.4× 10−4, CL = 90%�(b → e+ e− anything)/�total |�(b → µ+µ− anything)/�total <3.2× 10−4, CL = 90%�(b → ν ν anything)/�total |�(B0s → γ γ)/�total <3.1× 10−6, CL = 90%�(B0s → µ+µ−)/�total (2.9+0.7

−0.6)× 10−9�(B0s → e+ e−)/�total <2.8× 10−7, CL = 90%�(B0s → µ+µ−µ+µ−)/�total <1.2× 10−8, CL = 90%�(B0s → S P, S → µ+µ−, P →

µ+µ−)/�total [aa℄ <1.2× 10−8, CL = 90%�(B0s → φ(1020)µ+µ−)/�total (8.2 ± 1.2)× 10−7�(B0s → π+π−µ+µ−)/�total (8.4 ± 1.7)× 10−8�(B0s → φν ν)/�total <5.4× 10−3, CL = 90%�T = 1 WEAK NEUTRAL CURRENT FORBIDDEN�T = 1 WEAK NEUTRAL CURRENT FORBIDDEN�T = 1 WEAK NEUTRAL CURRENT FORBIDDEN�T = 1 WEAK NEUTRAL CURRENT FORBIDDENAllowed by higher-order ele
troweak intera
tions.�(t → Z q (q=u,
))/�total [bb℄ <5× 10−4, CL = 95%NOTESIn this Summary Table:When a quantity has \(S = . . .)" to its right, the error on the quantity hasbeen enlarged by the \s
ale fa
tor" S, de�ned as S = √

χ2/(N − 1), where Nis the number of measurements used in 
al
ulating the quantity. We do thiswhen S > 1, whi
h often indi
ates that the measurements are in
onsistent.When S > 1.25, we also show in the Parti
le Listings an ideogram of themeasurements. For more about S, see the Introdu
tion.[a℄ C parity forbids this to o

ur as a single-photon pro
ess.[b℄ See the Parti
le Listings for the (
ompli
ated) de�nition of this quantity.[
 ℄ Time-reversal invarian
e requires this to be 0◦ or 180◦.[d ℄ This 
oeÆ
ient is zero if time invarian
e is not violated.[e℄ Allowed by higher-order ele
troweak intera
tions.[f ℄ Violates CP in leading order. Test of dire
t CP violation sin
e the in-dire
t CP-violating and CP-
onserving 
ontributions are expe
ted to besuppressed.[g ℄ In the 2010 Review, the values for these quantities were given using ameasure of the asymmetry that was in
onsistent with the usual de�nition.[h℄ Re(ǫ′/ǫ) = ǫ′/ǫ to a very good approximation provided the phases satisfyCPT invarian
e.[i ℄ This mode in
ludes gammas from inner bremsstrahlung but not the dire
temission mode K0L → π+π− γ(DE).Unless otherwise stated, limits are given at the 90% 
on�den
e level, while errors are givenas ±1 standard deviation.



116116116116Tests of Conservation Laws[j ℄ Negle
ting photon 
hannels. See, e.g., A. Pais and S.B. Treiman, Phys.Rev. D12D12D12D12, 2744 (1975).[k ℄ Derived from measured values of φ+−, φ00, ∣

∣η
∣

∣, ∣

∣mK0L − mK0S ∣

∣, and
τK0S , as des
ribed in the introdu
tion to \Tests of Conservation Laws."[l ℄ The |mp−mp|/mp and |qp + qp |/e are not independent, and both usethe more pre
ise measurement of |qp/mp|/(qp/mp).[n℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.[o℄ A test of additive vs. multipli
ative lepton family number 
onservation.[p℄ The sign of �m232 is not known at this time. The range quoted is forthe absolute value.[q℄ Derived from an analysis of neutrino-os
illation experiments.[r ℄ This limit is for either D0 or D0 to pe−.[s℄ This limit is for either D0 or D0 to pe+.[t℄ The �rst limit is for p → anything or "disappearan
e" modes of a boundproton. The se
ond entry, a rough range of limits, assumes the dominantde
ay modes are among those investigated. For antiprotons the bestlimit, inferred from the observation of 
osmi
 ray p's is τ p > 107yr, the 
osmi
-ray storage time, but this limit depends on a number ofassumptions. The best dire
t observation of stored antiprotons gives
τ p/B(p → e−γ) > 7× 105 yr.

[u℄ There is some 
ontroversy about whether nu
lear physi
s and modeldependen
e 
ompli
ate the analysis for bound neutrons (from whi
h thebest limit 
omes). The �rst limit here is from rea
tor experiments withfree neutrons.[v ℄ This is the best limit for the mode e− → ν γ. The best limit for \ele
trondisappearan
e" is 6.4× 1024 yr.[x ℄ See the K0S Parti
le Listings for the energy limits used in this measure-ment.[y ℄ See the K0L Parti
le Listings for the energy limits used in this measure-ment.[z ℄ An ℓ indi
ates an e or a µ mode, not a sum over these modes.[aa℄ Here S and P are the hypotheti
al s
alar and pseudos
alar parti
les withmasses of 2.5 GeV/
2 and 214.3 MeV/
2, respe
tively.[bb℄ This limit is for �(t → Z q)/�(t → W b).

Unless otherwise stated, limits are given at the 90% 
on�den
e level, while errors are givenas ±1 standard deviation.
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1. PHYSICAL CONSTANTS

Table 1.1. Reviewed 2015 by P.J. Mohr and D.B. Newell (NIST). Mainly from the “CODATA Recommended Values of the Fundamental
Physical Constants: 2014” by P.J. Mohr, D.B. Newell, and B.N. Taylor in arXiv:1507.07956 (2015) and RMP (to be submitted). The last group
of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values
give the 1-standard-deviation uncertainties in the last digits; the corresponding fractional uncertainties in parts per 109 (ppb) are given in the
last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for
Science and Technology). The full 2014 CODATA set of constants may be found at http://physics.nist.gov/constants. See also P.J. Mohr
and D.B. Newell, “Resource Letter FC-1: The Physics of Fundamental Constants,” Am. J. Phys. 78, 338 (2010).

Quantity Symbol, equation Value Uncertainty (ppb)

speed of light in vacuum c 299 792 458 m s−1 exact∗

Planck constant h 6.626 070 040(81)×10−34 J s 12
Planck constant, reduced ~ ≡ h/2π 1.054 571 800(13)×10−34 J s 12

= 6.582 119 514(40)×10−22 MeV s 6.1
electron charge magnitude e 1.602 176 6208(98)×10−19 C = 4.803 204 673(30)×10−10 esu 6.1, 6.1
conversion constant ~c 197.326 9788(12) MeV fm 6.1
conversion constant (~c)2 0.389 379 3656(48) GeV2 mbarn 12

electron mass me 0.510 998 9461(31) MeV/c2 = 9.109 383 56(11)×10−31 kg 6.2, 12
proton mass mp 938.272 0813(58) MeV/c2 = 1.672 621 898(21)×10−27 kg 6.2, 12

= 1.007 276 466 879(91) u = 1836.152 673 89(17) me 0.090, 0.095
deuteron mass md 1875.612 928(12) MeV/c2 6.2
unified atomic mass unit (u) (mass 12C atom)/12 = (1 g)/(NA mol) 931.494 0954(57) MeV/c2 = 1.660 539 040(20)×10−27 kg 6.2, 12

permittivity of free space ǫ0 = 1/µ0c
2 8.854 187 817 . . . ×10−12 F m−1 exact

permeability of free space µ0 4π × 10−7 N A−2 = 12.566 370 614 . . . ×10−7 N A−2 exact

fine-structure constant α = e2/4πǫ0~c 7.297 352 5664(17)×10−3 = 1/137.035 999 139(31)† 0.23, 0.23

classical electron radius re = e2/4πǫ0mec
2 2.817 940 3227(19)×10−15 m 0.68

(e− Compton wavelength)/2π −λe = ~/mec = reα
−1 3.861 592 6764(18)×10−13 m 0.45

Bohr radius (mnucleus = ∞) a∞ = 4πǫ0~
2/mee

2 = reα
−2 0.529 177 210 67(12)×10−10 m 0.23

wavelength of 1 eV/c particle hc/(1 eV) 1.239 841 9739(76)×10−6 m 6.1
Rydberg energy hcR∞ = mee

4/2(4πǫ0)
2
~
2 = mec

2α2/2 13.605 693 009(84) eV 6.1
Thomson cross section σT = 8πr2

e/3 0.665 245 871 58(91) barn 1.4

Bohr magneton µB = e~/2me 5.788 381 8012(26)×10−11 MeV T−1 0.45
nuclear magneton µN = e~/2mp 3.152 451 2550(15)×10−14 MeV T−1 0.46

electron cyclotron freq./field ωe
cycl/B = e/me 1.758 820 024(11)×1011 rad s−1 T−1 6.2

proton cyclotron freq./field ω
p
cycl

/B = e/mp 9.578 833 226(59)×107 rad s−1 T−1 6.2

gravitational constant‡ GN 6.674 08(31)×10−11 m3 kg−1 s−2 4.7 × 104

= 6.708 61(31)×10−39
~c (GeV/c2)−2 4.7 × 104

standard gravitational accel. g
N

9.806 65 m s−2 exact

Avogadro constant NA 6.022 140 857(74)×1023 mol−1 12
Boltzmann constant k 1.380 648 52(79)×10−23 J K−1 570

= 8.617 3303(50)×10−5 eV K−1 570
molar volume, ideal gas at STP NAk(273.15 K)/(101 325 Pa) 22.413 962(13)×10−3 m3 mol−1 570
Wien displacement law constant b = λmaxT 2.897 7729(17)×10−3 m K 570
Stefan-Boltzmann constant σ = π2k4/60~

3c2 5.670 367(13)×10−8 W m−2 K−4 2300

Fermi coupling constant∗∗ GF /(~c)3 1.166 378 7(6)×10−5 GeV−2 500

weak-mixing angle sin2 θ̂(MZ) (MS) 0.231 29(5)†† 2.2 × 105

W± boson mass mW 80.385(15) GeV/c2 1.9 × 105

Z0 boson mass mZ 91.1876(21) GeV/c2 2.3 × 104

strong coupling constant αs(mZ) 0.1182(12) 1.0 × 107

π = 3.141 592 653 589 793 238 e = 2.718 281 828 459 045 235 γ = 0.577 215 664 901 532 861

1 in ≡ 0.0254 m

1 Å ≡ 0.1 nm

1 barn ≡ 10−28 m2

1 G ≡ 10−4 T

1 dyne ≡ 10−5 N

1 erg ≡ 10−7 J

1 eV = 1.602 176 6208(98)× 10−19 J

1 eV/c2 = 1.782 661 907(11)× 10−36 kg

2.997 924 58 × 109 esu = 1 C

kT at 300 K = [38.681 740(22)]−1 eV

0 ◦C ≡ 273.15 K

1 atmosphere ≡ 760 Torr ≡ 101 325 Pa

∗ The meter is the length of the path traveled by light in vacuum during a time interval of 1/299 792 458 of a second.
† At Q2 = 0. At Q2

≈ m2
W the value is ∼ 1/128.

‡ Absolute lab measurements of GN have been made only on scales of about 1 cm to 1 m.
∗∗ See the discussion in Sec. 10, “Electroweak model and constraints on new physics.”
†† The corresponding sin2 θ for the effective angle is 0.23155(5).
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2. ASTROPHYSICAL CONSTANTS AND PARAMETERS

Table 2.1. Revised March 2016 by D.E. Groom (LBNL). The figures in parentheses after some values give the 1-σ uncertainties in the last
digit(s). Physical constants are from Ref. 1. While every effort has been made to obtain the most accurate current values of the listed quantities,
the table does not represent a critical review or adjustment of the constants, and is not intended as a primary reference.

The values and uncertainties for the cosmological parameters depend on the exact data sets, priors, and basis parameters used in the fit.
Many of the derived parameters reported in this table have non-Gaussian likelihoods. Parameters may be highly correlated, so care must be
taken in propagating errors. Unless otherwise specified, cosmological parameters are derived from 6-parameter fits to a flat ΛCDM cosmology
Planck 2015 temperature (TT) + low ℓ polarization data (lowP) + lensing [2]. For more information see Ref. 3 and the original papers.

Quantity Symbol, equation Value Reference, footnote

speed of light c 299 792 458 m s−1 exact[4]
Newtonian constant of gravitation GN 6.674 08(31)× 10−11 m3 kg−1 s−2 [1]
Planck mass

√

~c/GN 1.220 910(29)× 1019 GeV/c2 = 2.176 47(5)× 10−8 kg [1]

Planck length
√

~GN/c3 1.616 229(38)× 10−35 m [1]
standard acceleration of gravity g

N
9.806 65 m s−2 exact[1]

jansky (flux density) Jy 10−26 W m−2 Hz−1 definition

tropical year (equinox to equinox) (2011) yr 31 556 925.2 s ≈ π × 107 s [5]
sidereal year (fixed star to fixed star) (2011) 31 558 149.8 s ≈ π × 107 s [5]
mean sidereal day (2011) (time between vernal equinox transits) 23h 56m 04.s090 53 [5]

astronomical unit au 149 597 870 700 m exact[6]
parsec (1 au/1 arc sec) pc 3.085 677 581 49× 1016 m = 3.262 . . . ly exact[7]
light year (deprecated unit) ly 0.306 6 . . . pc = 0.946 053 . . .× 1016 m
Schwarzschild radius of the Sun 2GNM⊙/c2 2.953 250 24 km [8]
Solar mass M⊙ 1.988 48(9)× 1030 kg [9]
nominal Solar equatorial radius R⊙ 6.957 × 108 m exact[10]
nominal Solar constant S⊙ 1361 W m−2 exact[10,11]
nominal Solar photosphere temperature T⊙ 5772 K exact[10]
nominal Solar luminosity L⊙ 3.828 × 1026 W exact[10,12]
Schwarzschild radius of the Earth 2GNM⊕/c2 8.870 056 580(18)mm [13]
Earth mass M⊕ 5.972 4(3)× 1024 kg [14]
nominal Earth equatorial radius R⊕ 6.3781× 106 m exact[10]

luminosity conversion L 3.0128× 1028 × 10−0.4 Mbol W [15]
(Mbol = absolute bolometric magnitude = bolometric magnitude at 10 pc)

flux conversion F 2.5180× 10−8 × 10−0.4 mbol W m−2 [15]
(mbol = apparent bolometric magnitude)

ABsolute monochromatic magnitude AB −2.5 log10 fν − 56.10 (for fν in Wm−2 Hz−1) [16]
= −2.5 log10 fν + 8.90 (for fν in Jy)

Solar angular velocity around the Galactic center Θ
0
/R0 30.3 ± 0.9 km s−1 kpc−1 [17]

Solar distance from Galactic center R0 8.00 ± 0.25 kpc [17,18]
circular velocity at R0 v

0
or Θ0 254(16) km s−1 [17]

escape velocity from Galaxy v esc 498 km/s < v esc < 608 km/s [19]
local disk density ρ disk 3–12 ×10−24 g cm−3 ≈ 2–7 GeV/c2 cm−3 [20]
local dark matter density ρ χ canonical value 0.3 GeV/c2 cm−3 within factor 2–3 [21]

present day CMB temperature T0 2.7255(6) K [22,24]
present day CMB dipole amplitude 3.3645(20) mK [22,23]
Solar velocity with respect to CMB 369(1) km s−1 towards (ℓ, b)= (263.99(14)◦, 48.26(3)◦)[22,25]
Local Group velocity with respect to CMB v

LG
627(22) km s−1 towards (ℓ, b) = (276(3)◦, 30(3)◦) [22,25]

number density of CMB photons nγ 410.7(T/2.7255)3 cm−3 [26]
density of CMB photons ργ 4.645(4) (T/2.7255)4 × 10−34 g cm−3 ≈ 0.260 eVcm−3 [26]
entropy density/Boltzmann constant s/k 2 891.2 (T/2.7255)3 cm−3 [26]
present day Hubble expansion rate H0 100 h km s−1 Mpc−1 = h × (9.777 752 Gyr)−1 [27]
scale factor for Hubble expansion rate h 0.678(9) [2,3]
Hubble length c/H0 0.925 0629× 1026 h−1 m = 1.374(18)× 1026 m
scale factor for cosmological constant c2/3H2

0 2.85247× 1051 h−2 m2 = 6.20(17)× 1051 m2

critical density of the Universe ρcrit = 3H2
0/8πGN 1.878 40(9)× 10−29 h2 g cm−3

= 1.053 71(5)× 10−5 h2 (GeV/c2) cm−3

= 2.775 37(13)× 1011 h2 M⊙Mpc−3

baryon-to-photon ratio (from BBN) η = nb/nγ 5.8 × 10−10 ≤ η ≤ 6.6 × 10−10 (95% CL) [28]
number density of baryons nb 2.503(26)× 10−7 cm−3 [2,3,29,30]

(2.4 × 10−7 < nb < 2.7 × 10−7) cm−3 (95% CL) η × nγ

CMB radiation density of the Universe Ωγ = ργ/ρcrit 2.473 × 10−5(T/2.7255)4 h−2 = 5.38(15)×10−5 [26]
- - - Planck 2015 6-parameter fit to flat ΛCDM cosmology - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
baryon density of the Universe Ωb = ρb/ρcrit

‡ 0.02226(23)h−2 = † 0.0484(10) [2,3,23]
cold dark matter density of the universe Ω

CDM
= ρ

CDM
/ρcrit

‡ 0.1186(20)h−2 = † 0.258(11) [2,3,23]

100 × approx to r∗/DA 100 × θMC
‡ 1.0410(5) [2,3]

reionization optical depth τ ‡ 0.066(16) [2,3]
scalar spectral index ns

‡ 0.968(6) [2,3]
ln pwr primordial curvature pert. (k0=0.05 Mpc−1) ln(1010∆2

R) ‡ 3.062(29) [2,3]



2. Astrophysical constants 121

Quantity Symbol, equation Value Reference, footnote

dark energy density of the ΛCDM Universe ΩΛ
† 0.692 ± 0.012 [2,3]

pressureless matter density of the Universe Ωm = Ω
CDM

+ Ωb
† 0.308 ± 0.012 [2,3]

fluctuation amplitude at 8 h−1 Mpc scale σ8
† 0.815 ± 0.009 [2,3]

redshift of matter-radiation equality zeq
† 3365± 44 [2]

redshift at which optical depth equals unity z∗
† 1089.9± 0.4 [2]

comoving size of sound horizon at z∗ r∗
† 144.9 ± 0.4 Mpc (Planck CMB) [31]

age when optical depth equals unity t∗ 373 kyr [32]
redshift at half reionization zreion

† 8.8+1.7
−1.4 [2]

redshift when acceleration was zero zq ∼ 0.65 [32]

age of the Universe t0
† 13.80 ± 0.04 Gyr [2]

effective number of neutrinos Neff
♯ 3.1 ± 0.6 [2,33]

sum of neutrino masses
∑

mν
♯ < 0.68 eV (Planck CMB); ≥ 0.05 eV (mixing) [2,34,35]

neutrino density of the Universe Ων = h−2
∑

mνj
/93.04 eV ♯ < 0.016 (Planck CMB; ≥ 0.0012 (mixing) [2,34,35]

curvature ΩK
♯ −0.005+0.016

−0.017 (95%CL) [2]

running spectral index slope, k0 = 0.002 Mpc−1 dns/d ln k ♯ −0.003(15) [2]
tensor-to-scalar field perturbations ratio, k0=0.002 Mpc−1 r

0.002
= T/S ♯ < 0.114 at 95% CL; no running [2,3]

dark energy equation of state parameter w −0.97 ± 0.05 [31,36]
primordial helium fraction Yp 0.245 ± 0.004 [22,37]

‡ Parameter in 6-parameter ΛCDM fit [2].
† Derived parameter in 6-parameter ΛCDM fit [2].
♯ Extended model parameter (TT + lensing) [2].
References:
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3. INTERNATIONAL SYSTEM OF UNITS (SI)

See “The International System of Units (SI),” NIST Special Publication 330, B.N. Taylor, ed. (USGPO, Washington, DC, 1991); and “Guide for
the Use of the International System of Units (SI),” NIST Special Publication 811, 1995 edition, B.N. Taylor (USGPO, Washington, DC, 1995).

Physical

quantity

Name

of unit Symbol

Base units

length meter m

mass kilogram kg

time second s

electric current ampere A

thermodynamic
temperature

kelvin K

amount of substance mole mol

luminous intensity candela cd

Derived units with special names

plane angle radian rad

solid angle steradian sr

frequency hertz Hz

energy joule J

force newton N

pressure pascal Pa

power watt W

electric charge coulomb C

electric potential volt V

electric resistance ohm Ω

electric conductance siemens S

electric capacitance farad F

magnetic flux weber Wb

inductance henry H

magnetic flux density tesla T

luminous flux lumen lm

illuminance lux lx

celsius temperature degree celsius ◦C

activity (of a

radioactive source)∗
becquerel Bq

absorbed dose (of

ionizing radiation)∗
gray Gy

dose equivalent∗ sievert Sv

SI prefixes

1024 yotta (Y)

1021 zetta (Z)

1018 exa (E)

1015 peta (P)

1012 tera (T)

109 giga (G)

106 mega (M)

103 kilo (k)

102 hecto (h)

10 deca (da)

10−1 deci (d)

10−2 centi (c)

10−3 milli (m)

10−6 micro (µ)

10−9 nano (n)

10−12 pico (p)

10−15 femto (f)

10−18 atto (a)

10−21 zepto (z)

10−24 yocto (y)

∗See our section 36, on “Radioactivity and radiation
protection,” p. 494.
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Table 4.1. Revised June 2016 by D.E. Groom (LBNL). The atomic number (top left) is the number of protons in the nucleus. The atomic masses (bottom) of stable
elements are weighted by isotopic abundances in the Earth’s surface. Atomic masses are relative to the mass of 12C, defined to be exactly 12 unified atomic mass units
(u) (approx. g/mole). The exceptions are Th, Pa, and U, which have no stable isotopes but do have characteristic terrestrial compositions. Relative isotopic abundances
often vary considerably, both in natural and commercial samples; this is reflected in the number of significant figures given for the mass. Masses may be found at
http://physics.nist.gov/cgi-bin/Compositions/stand alone.pl . If there is no stable isotope the atomic mass of the most stable isotope is given in parentheses.

IUPAC announced verification of the discoveries of elements 113, 115, 117, and 118 in December 2015. Provisional names were assigned in June 2016. The 7th period
of the periodic table is now complete.

1
IA

18
VIIIA

1 H

hydrogen

1.008

2
IIA

13
IIIA

14
IVA

15
VA

16
VIA

17
VIIA

2 He

helium

4.002602

3 Li

lithium

6.94

4 Be

beryllium

9.012182

PERIODIC TABLE OF THE ELEMENTS
5 B

boron

10.81

6 C

carbon

12.0107

7 N

nitrogen

14.007

8 O

oxygen

15.999

9 F

fluorine

18.998403163

10 Ne

neon

20.1797

11 Na

sodium

22.98976928

12 Mg

magnesium

24.305

3
IIIB

4
IVB

5
VB

6
VIB

7
VIIB

8 9
VIII

10 11
IB

12
IIB

13 Al

aluminum

26.9815385

14 Si

silicon

28.085

15 P

phosphorus

30.973761998

16 S

sulfur

32.06

17 Cl

chlorine

35.45

18 Ar

argon

39.948

19 K

potassium

39.0983

20 Ca

calcium

40.078

21 Sc

scandium

44.955908

22 Ti

titanium

47.867

23 V

vanadium

50.9415

24 Cr

chromium

51.9961

25 Mn

manganese

54.938044

26 Fe

iron

55.845

27 Co

cobalt

58.933195

28 Ni

nickel

58.6934

29 Cu

copper

63.546

30 Zn

zinc

65.38

31 Ga

gallium

69.723

32 Ge

germanium

72.630

33 As

arsenic

74.921595

34 Se

selenium

78.971

35 Br

bromine

79.904

36 Kr

krypton

83.798

37 Rb

rubidium

85.4678

38 Sr

strontium

87.62

39 Y

yttrium

88.90584

40 Zr

zirconium

91.224

41 Nb

niobium

92.90637

42 Mo

molybdenum

95.95

43 Tc

technetium

(97.907212)

44 Ru

ruthenium

101.07

45 Rh

rhodium

102.90550

46 Pd

palladium

106.42

47 Ag

silver

107.8682

48 Cd

cadmium

112.414

49 In

indium

114.818

50 Sn

tin

118.710

51 Sb

antimony

121.760

52 Te

tellurium

127.60

53 I

iodine

126.90447

54 Xe

xenon

131.293

55 Cs

caesium

132.90545196

56 Ba

barium

137.327

57–71

LANTHA-

NIDES

72 Hf

hafnium

178.49

73 Ta

tantalum

180.94788

74 W

tungsten

183.84

75 Re

rhenium

186.207

76 Os

osmium

190.23

77 Ir

iridium

192.217

78 Pt

platinum

195.084

79 Au

gold

196.966569

80 Hg

mercury

200.592

81 Tl

thallium

204.38

82 Pb

lead

207.2

83 Bi

bismuth

208.98040

84 Po

polonium

(208.98243)

85 At

astatine

(209.98715)

86 Rn

radon

(222.01758)

87 Fr

francium

(223.01974)

88 Ra

radium

(226.02541)

89–103

ACTINIDES

104 Rf

rutherford.

(267.12169)

105 Db

dubnium

(268.12567)

106 Sg

seaborgium

(271.13393)

107 Bh

bohrium

(272.13826)

108 Hs

hassium

(270.13429)

109 Mt

meitnerium

(276.15159)

110 Ds

darmstadt.

(281.16451)

111 Rg

roentgen.

(280.16514)

112 Cn

copernicium

(285.17712)

113 Nh

(nihonium)

(284.17873)

114 Fl

flerovium

(289.19042)

115 Mc

(moscovium)

(288.19274)

116 Lv

livermorium

(293.20449)

117 Ts

(tennessine)

(292.20746)

118 Og

(oganesson)

(294.21392)

Lanthanide
series

57 La

lanthanum

138.90547

58 Ce

cerium

140.116

59 Pr

praseodym.

140.90766

60 Nd

neodymium

144.242

61 Pm

promethium

(144.91276)

62 Sm

samarium

150.36

63 Eu

europium

151.964

64 Gd

gadolinum

157.25

65 Tb

terbium

158.92535

66 Dy

dysprosium

162.500

67 Ho

holmium

164.93033

68 Er

erbium

167.259

69 Tm

thulium

168.93422

70 Yb

ytterbium

173.054

71 Lu

lutetium

174.9668

Actinide
series

89 Ac

actinium

(227.02775)

90 Th

thorium

232.0377

91 Pa

protactinium

231.03588

92 U

uranium

238.02891

93 Np

neptunium

(237.04817)

94 Pu

plutonium

(244.06420)

95 Am

americium

(243.06138)

96 Cm

curium

(247.07035)

97 Bk

berkelium

(247.07031)

98 Cf

californium

(251.07959)

99 Es

einsteinium

(252.08298)

100 Fm

fermium

(257.09511)

101 Md

mendelevium

(258.09844)

102 No

nobelium

(259.10103)

103 Lr

lawrencium

(262.10961)
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5. ELECTRONIC STRUCTURE OF THE ELEMENTS

Table 5.1. Reviewed 2011 by J.E. Sansonetti (NIST). The electronic configurations and the ionization energies are from the NIST
database, “Ground Levels and Ionization Energies for the Neutral Atoms,” W.C. Martin, A. Musgrove, S. Kotochigova, and J.E. Sansonetti,
http://www.nist.gov/pml/data/ion energy.cfm. The electron configuration for, say, iron indicates an argon electronic core (see argon) plus
six 3d electrons and two 4s electrons.

Ground Ionization
Electron configuration state energy

Element (3d5 = five 3d electrons, etc.) 2S+1LJ (eV)

1 H Hydrogen 1s 2S1/2 13.5984

2 He Helium 1s2 1S0 24.5874

3 Li Lithium (He)2s 2S1/2 5.3917

4 Be Beryllium (He)2s2 1S0 9.3227

5 B Boron (He)2s2 2p 2P1/2 8.2980

6 C Carbon (He)2s2 2p2 3P0 11.2603

7 N Nitrogen (He)2s2 2p3 4S3/2 14.5341

8 O Oxygen (He)2s2 2p4 3P2 13.6181

9 F Fluorine (He)2s2 2p5 2P3/2 17.4228

10 Ne Neon (He)2s2 2p6 1S0 21.5645

11 Na Sodium (Ne)3s 2S1/2 5.1391

12 Mg Magnesium (Ne)3s2 1S0 7.6462

13 Al Aluminum (Ne)3s2 3p 2P1/2 5.9858

14 Si Silicon (Ne)3s2 3p2 3P0 8.1517

15 P Phosphorus (Ne)3s2 3p3 4S3/2 10.4867

16 S Sulfur (Ne)3s2 3p4 3P2 10.3600

17 Cl Chlorine (Ne)3s2 3p5 2P3/2 12.9676

18 Ar Argon (Ne)3s2 3p6 1S0 15.7596

19 K Potassium (Ar) 4s 2S1/2 4.3407

20 Ca Calcium (Ar) 4s2 1S0 6.1132
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

21 Sc Scandium (Ar)3d 4s2 T
r
a
n
s
i
t
i
o
n

2D3/2 6.5615

22 Ti Titanium (Ar)3d2 4s2

e
l
e
m
e
n
t
s

3F2 6.8281

23 V Vanadium (Ar)3d3 4s2 4F3/2 6.7462

24 Cr Chromium (Ar)3d5 4s 7S3 6.7665

25 Mn Manganese (Ar) 3d5 4s2 6S5/2 7.4340

26 Fe Iron (Ar)3d6 4s2 5D4 7.9024

27 Co Cobalt (Ar) 3d7 4s2 4F9/2 7.8810

28 Ni Nickel (Ar) 3d8 4s2 3F4 7.6399

29 Cu Copper (Ar) 3d104s 2S1/2 7.7264

30 Zn Zinc (Ar) 3d104s2 1S0 9.3942
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

31 Ga Gallium (Ar)3d104s2 4p 2P1/2 5.9993

32 Ge Germanium (Ar)3d104s2 4p2 3P0 7.8994

33 As Arsenic (Ar) 3d104s2 4p3 4S3/2 9.7886

34 Se Selenium (Ar)3d104s2 4p4 3P2 9.7524

35 Br Bromine (Ar) 3d104s2 4p5 2P3/2 11.8138

36 Kr Krypton (Ar)3d104s2 4p6 1S0 13.9996

37 Rb Rubidium (Kr) 5s 2S1/2 4.1771

38 Sr Strontium (Kr) 5s2 1S0 5.6949
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

39 Y Yttrium (Kr)4d 5s2 T
r
a
n
s
i
t
i
o
n

2D3/2 6.2173

40 Zr Zirconium (Kr)4d2 5s2

e
l
e
m
e
n
t
s

3F2 6.6339

41 Nb Niobium (Kr)4d4 5s 6D1/2 6.7589

42 Mo Molybdenum (Kr)4d5 5s 7S3 7.0924

43 Tc Technetium (Kr)4d5 5s2 6S5/2 7.28

44 Ru Ruthenium (Kr)4d7 5s 5F5 7.3605

45 Rh Rhodium (Kr)4d8 5s 4F9/2 7.4589

46 Pd Palladium (Kr)4d10 1S0 8.3369

47 Ag Silver (Kr)4d105s 2S1/2 7.5762

48 Cd Cadmium (Kr)4d105s2 1S0 8.9938
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
49 In Indium (Kr)4d105s2 5p 2P1/2 5.7864

50 Sn Tin (Kr)4d105s2 5p2 3P0 7.3439

51 Sb Antimony (Kr)4d105s2 5p3 4S3/2 8.6084

52 Te Tellurium (Kr)4d105s2 5p4 3P2 9.0096

53 I Iodine (Kr)4d105s2 5p5 2P3/2 10.4513

54 Xe Xenon (Kr)4d105s2 5p6 1S0 12.1298

55 Cs Cesium (Xe) 6s 2S1/2 3.8939

56 Ba Barium (Xe) 6s2 1S0 5.2117
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

57 La Lanthanum (Xe) 5d 6s2 2D3/2 5.5769

58 Ce Cerium (Xe)4f 5d 6s2 1G4 5.5387

59 Pr Praseodymium (Xe)4f3 6s2 L
a
n
t
h
a
n
i
d
e
s

4I9/2 5.473

60 Nd Neodymium (Xe)4f4 6s2 5I4 5.5250

61 Pm Promethium (Xe)4f5 6s2 6H5/2 5.582

62 Sm Samarium (Xe)4f6 6s2 7F0 5.6437

63 Eu Europium (Xe)4f7 6s2 8S7/2 5.6704

64 Gd Gadolinium (Xe)4f7 5d 6s2 9D2 6.1498

65 Tb Terbium (Xe)4f9 6s2 6H15/2 5.8638

66 Dy Dysprosium (Xe)4f10 6s2 5I8 5.9389

67 Ho Holmium (Xe)4f11 6s2 4I15/2 6.0215

68 Er Erbium (Xe)4f12 6s2 3H6 6.1077

69 Tm Thulium (Xe)4f13 6s2 2F7/2 6.1843

70 Yb Ytterbium (Xe)4f14 6s2 1S0 6.2542

71 Lu Lutetium (Xe)4f145d 6s2 2D3/2 5.4259
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

72 Hf Hafnium (Xe)4f145d2 6s2 T
r
a
n
s
i
t
i
o
n

3F2 6.8251

73 Ta Tantalum (Xe)4f145d3 6s2

e
l
e
m
e
n
t
s

4F3/2 7.5496

74 W Tungsten (Xe)4f145d4 6s2 5D0 7.8640

75 Re Rhenium (Xe)4f145d5 6s2 6S5/2 7.8335

76 Os Osmium (Xe)4f145d6 6s2 5D4 8.4382

77 Ir Iridium (Xe)4f145d7 6s2 4F9/2 8.9670

78 Pt Platinum (Xe)4f145d9 6s 3D3 8.9588

79 Au Gold (Xe)4f145d106s 2S1/2 9.2255

80 Hg Mercury (Xe)4f145d106s2 1S0 10.4375
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

81 Tl Thallium (Xe)4f145d106s2 6p 2P1/2 6.1082

82 Pb Lead (Xe)4f145d106s2 6p2 3P0 7.4167

83 Bi Bismuth (Xe)4f145d106s2 6p3 4S3/2 7.2855

84 Po Polonium (Xe)4f145d106s2 6p4 3P2 8.414

85 At Astatine (Xe)4f145d106s2 6p5 2P3/2

86 Rn Radon (Xe)4f145d106s2 6p6 1S0 10.7485

87 Fr Francium (Rn) 7s 2S1/2 4.0727

88 Ra Radium (Rn) 7s2 1S0 5.2784
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

89 Ac Actinium (Rn) 6d 7s2 2D3/2 5.3807

90 Th Thorium (Rn) 6d2 7s2 3F2 6.3067

91 Pa Protactinium (Rn)5f2 6d 7s2 A
c
t
i
n
i
d
e
s

4K11/2
∗ 5.89

92 U Uranium (Rn)5f3 6d 7s2 5L6
∗ 6.1939

93 Np Neptunium (Rn)5f4 6d 7s2 6L11/2
∗ 6.2657

94 Pu Plutonium (Rn)5f6 7s2 7F0 6.0260

95 Am Americium (Rn)5f7 7s2 8S7/2 5.9738

96 Cm Curium (Rn)5f7 6d 7s2 9D2 5.9914

97 Bk Berkelium (Rn)5f9 7s2 6H15/2 6.1979

98 Cf Californium (Rn)5f10 7s2 5I8 6.2817

99 Es Einsteinium (Rn)5f11 7s2 4I15/2 6.3676

100 Fm Fermium (Rn)5f12 7s2 3H6 6.50

101 Md Mendelevium (Rn)5f13 7s2 2F7/2 6.58

102 No Nobelium (Rn)5f14 7s2 1S0 6.65

103 Lr Lawrencium (Rn)5f14 7s2 7p? 2P1/2? 4.9?
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

104 Rf Rutherfordium (Rn)5f146d2 7s2? 3F2? 6.0?

∗ The usual LS coupling scheme does not apply for these three elements. See the introductory
note to the NIST table from which this table is taken.
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6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1 Abridged from pdg.lbl.gov/AtomicNuclearProperties by D.E. Groom (2015). See web pages for more detail about entries in this
table and for several hundred other substances. Parentheses in the dE/dx and density columns indicate gases at 20◦ C and 1 atm. Boiling points
are at 1 atm. Refractive indices n are evaluated at the sodium D line blend (589.2 nm); values ≫1 in brackets indicate (n− 1)× 106 for gases at
0◦ C and 1 atm.

Material Z A 〈Z/A〉 Nucl.coll.

length λT

{g cm−2}

Nucl.inter.

length λI

{g cm−2}

Rad.len.

X0

{g cm−2}

dE/dx|min

{ MeV

g−1cm2}

Density

{g cm−3}

({gℓ−1})

Melting

point

(K)

Boiling

point

(K)

Refract.

index

@ Na D

H2 1 1.008(7) 0.99212 42.8 52.0 63.04 (4.103) 0.071(0.084) 13.81 20.28 1.11[132.]
D2 1 2.01410177803(8) 0.49650 51.3 71.8 125.97 (2.053) 0.169(0.168) 18.7 23.65 1.11[138.]
He 2 4.002602(2) 0.49967 51.8 71.0 94.32 (1.937) 0.125(0.166) 4.220 1.02[35.0]
Li 3 6.94(2) 0.43221 52.2 71.3 82.78 1.639 0.534 453.6 1615.
Be 4 9.0121831(5) 0.44384 55.3 77.8 65.19 1.595 1.848 1560. 2744.
C diamond 6 12.0107(8) 0.49955 59.2 85.8 42.70 1.725 3.520 2.42
C graphite 6 12.0107(8) 0.49955 59.2 85.8 42.70 1.742 2.210
N2 7 14.007(2) 0.49976 61.1 89.7 37.99 (1.825) 0.807(1.165) 63.15 77.29 1.20[298.]
O2 8 15.999(3) 0.50002 61.3 90.2 34.24 (1.801) 1.141(1.332) 54.36 90.20 1.22[271.]
F2 9 18.998403163(6) 0.47372 65.0 97.4 32.93 (1.676) 1.507(1.580) 53.53 85.03 [195.]
Ne 10 20.1797(6) 0.49555 65.7 99.0 28.93 (1.724) 1.204(0.839) 24.56 27.07 1.09[67.1]
Al 13 26.9815385(7) 0.48181 69.7 107.2 24.01 1.615 2.699 933.5 2792.
Si 14 28.0855(3) 0.49848 70.2 108.4 21.82 1.664 2.329 1687. 3538. 3.95
Cl2 17 35.453(2) 0.47951 73.8 115.7 19.28 (1.630) 1.574(2.980) 171.6 239.1 [773.]
Ar 18 39.948(1) 0.45059 75.7 119.7 19.55 (1.519) 1.396(1.662) 83.81 87.26 1.23[281.]
Ti 22 47.867(1) 0.45961 78.8 126.2 16.16 1.477 4.540 1941. 3560.
Fe 26 55.845(2) 0.46557 81.7 132.1 13.84 1.451 7.874 1811. 3134.
Cu 29 63.546(3) 0.45636 84.2 137.3 12.86 1.403 8.960 1358. 2835.
Ge 32 72.630(1) 0.44053 86.9 143.0 12.25 1.370 5.323 1211. 3106.
Sn 50 118.710(7) 0.42119 98.2 166.7 8.82 1.263 7.310 505.1 2875.
Xe 54 131.293(6) 0.41129 100.8 172.1 8.48 (1.255) 2.953(5.483) 161.4 165.1 1.39[701.]
W 74 183.84(1) 0.40252 110.4 191.9 6.76 1.145 19.300 3695. 5828.
Pt 78 195.084(9) 0.39983 112.2 195.7 6.54 1.128 21.450 2042. 4098.
Au 79 196.966569(5) 0.40108 112.5 196.3 6.46 1.134 19.320 1337. 3129.
Pb 82 207.2(1) 0.39575 114.1 199.6 6.37 1.122 11.350 600.6 2022.
U 92 [238.02891(3)] 0.38651 118.6 209.0 6.00 1.081 18.950 1408. 4404.

Air (dry, 1 atm) 0.49919 61.3 90.1 36.62 (1.815) (1.205) 78.80 [289]
Shielding concrete 0.50274 65.1 97.5 26.57 1.711 2.300
Borosilicate glass (Pyrex) 0.49707 64.6 96.5 28.17 1.696 2.230
Lead glass 0.42101 95.9 158.0 7.87 1.255 6.220
Standard rock 0.50000 66.8 101.3 26.54 1.688 2.650

Methane (CH4) 0.62334 54.0 73.8 46.47 (2.417) (0.667) 90.68 111.7 [444.]
Ethane (C2H6) 0.59861 55.0 75.9 45.66 (2.304) (1.263) 90.36 184.5
Propane (C3H8) 0.58962 55.3 76.7 45.37 (2.262) 0.493(1.868) 85.52 231.0
Butane (C4H10) 0.59497 55.5 77.1 45.23 (2.278) (2.489) 134.9 272.6
Octane (C8H18) 0.57778 55.8 77.8 45.00 2.123 0.703 214.4 398.8
Paraffin (CH3(CH2)n≈23CH3) 0.57275 56.0 78.3 44.85 2.088 0.930
Nylon (type 6, 6/6) 0.54790 57.5 81.6 41.92 1.973 1.18
Polycarbonate (Lexan) 0.52697 58.3 83.6 41.50 1.886 1.20
Polyethylene ([CH2CH2]n) 0.57034 56.1 78.5 44.77 2.079 0.89
Polyethylene terephthalate (Mylar) 0.52037 58.9 84.9 39.95 1.848 1.40
Polyimide film (Kapton) 0.51264 59.2 85.5 40.58 1.820 1.42
Polymethylmethacrylate (acrylic) 0.53937 58.1 82.8 40.55 1.929 1.19 1.49
Polypropylene 0.55998 56.1 78.5 44.77 2.041 0.90
Polystyrene ([C6H5CHCH2]n) 0.53768 57.5 81.7 43.79 1.936 1.06 1.59
Polytetrafluoroethylene (Teflon) 0.47992 63.5 94.4 34.84 1.671 2.20
Polyvinyltoluene 0.54141 57.3 81.3 43.90 1.956 1.03 1.58

Aluminum oxide (sapphire) 0.49038 65.5 98.4 27.94 1.647 3.970 2327. 3273. 1.77
Barium flouride (BaF2) 0.42207 90.8 149.0 9.91 1.303 4.893 1641. 2533. 1.47
Bismuth germanate (BGO) 0.42065 96.2 159.1 7.97 1.251 7.130 1317. 2.15
Carbon dioxide gas (CO2) 0.49989 60.7 88.9 36.20 1.819 (1.842) [449.]
Solid carbon dioxide (dry ice) 0.49989 60.7 88.9 36.20 1.787 1.563 Sublimes at 194.7 K
Cesium iodide (CsI) 0.41569 100.6 171.5 8.39 1.243 4.510 894.2 1553. 1.79
Lithium fluoride (LiF) 0.46262 61.0 88.7 39.26 1.614 2.635 1121. 1946. 1.39
Lithium hydride (LiH) 0.50321 50.8 68.1 79.62 1.897 0.820 965.
Lead tungstate (PbWO4) 0.41315 100.6 168.3 7.39 1.229 8.300 1403. 2.20
Silicon dioxide (SiO2, fused quartz) 0.49930 65.2 97.8 27.05 1.699 2.200 1986. 3223. 1.46
Sodium chloride (NaCl) 0.47910 71.2 110.1 21.91 1.847 2.170 1075. 1738. 1.54
Sodium iodide (NaI) 0.42697 93.1 154.6 9.49 1.305 3.667 933.2 1577. 1.77
Water (H2O) 0.55509 58.5 83.3 36.08 1.992 1.000 273.1 373.1 1.33

Silica aerogel 0.50093 65.0 97.3 27.25 1.740 0.200 (0.03 H2O, 0.97 SiO2)
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Material Dielectric

constant (κ = ǫ/ǫ0)

() is (κ–1)×106

for gas

Young’s

modulus

[106 psi]

Coeff. of

thermal

expansion

[10−6cm/cm-◦C]

Specific

heat

[cal/g-◦C]

Electrical

resistivity

[µΩcm(@◦C)]

Thermal

conductivity

[cal/cm-◦C-sec]

H2 (253.9) — — — — —
He (64) — — — — —
Li — — 56 0.86 8.55(0◦) 0.17
Be — 37 12.4 0.436 5.885(0◦) 0.38

C — 0.7 0.6–4.3 0.165 1375(0◦) 0.057
N2 (548.5) — — — — —
O2 (495) — — — — —
Ne (127) — — — — —
Al — 10 23.9 0.215 2.65(20◦) 0.53
Si 11.9 16 2.8–7.3 0.162 — 0.20
Ar (517) — — — — —
Ti — 16.8 8.5 0.126 50(0◦) —

Fe — 28.5 11.7 0.11 9.71(20◦) 0.18
Cu — 16 16.5 0.092 1.67(20◦) 0.94
Ge 16.0 — 5.75 0.073 — 0.14
Sn — 6 20 0.052 11.5(20◦) 0.16
Xe — — — — — —
W — 50 4.4 0.032 5.5(20◦) 0.48
Pt — 21 8.9 0.032 9.83(0◦) 0.17
Pb — 2.6 29.3 0.038 20.65(20◦) 0.083
U — — 36.1 0.028 29(20◦) 0.064
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7. ELECTROMAGNETIC RELATIONS

Revised September 2005 by H.G. Spieler (LBNL).

Quantity Gaussian CGS SI

Conversion factors:

Charge: 2.997 924 58 × 109 esu = 1 C = 1 A s

Potential: (1/299.792 458) statvolt (ergs/esu) = 1 V = 1 J C−1

Magnetic field: 104 gauss = 104 dyne/esu = 1 T = 1 N A−1m−1

F = q (E +
v

c
×B) F = q (E + v×B)

∇.D = 4πρ ∇.D = ρ

∇ ×H− 1

c

∂D

∂t
=

4π

c
J ∇ ×H− ∂D

∂t
= J

∇.B = 0 ∇.B = 0

∇ ×E +
1

c

∂B

∂t
= 0 ∇ ×E +

∂B

∂t
= 0

Constitutive relations: D = E + 4πP, H = B − 4πM D = ǫ0E + P, H = B/µ0 −M

Linear media: D = ǫE, H = B/µ D = ǫE, H = B/µ

1 ǫ0 = 8.854 187 . . .× 10−12 F m−1

1 µ0 = 4π × 10−7 N A−2

E = −∇V − 1

c

∂A

∂t
E = −∇V − ∂A

∂t
B = ∇ ×A B = ∇ ×A

V =
∑

charges

qi

ri
=

∫

ρ (r′)

|r − r′| d3x′ V =
1

4πǫ0

∑

charges

qi

ri
=

1

4πǫ0

∫

ρ (r′)

|r − r′| d3x′

A =
1

c

∮

I dℓ

|r − r′| =
1

c

∫

J(r′)

|r − r′| d3x′ A =
µ0

4π

∮

I dℓ

|r − r′| =
µ0

4π

∫

J(r′)

|r − r′| d3x′

E′
‖ = E‖ E′

‖ = E‖

E′

⊥
= γ(E⊥ +

1

c
v ×B) E′

⊥
= γ(E⊥ + v ×B)

B′
‖ = B‖ B′

‖ = B‖

B′

⊥
= γ(B⊥ − 1

c
v ×E) B′

⊥
= γ(B⊥ − 1

c2
v ×E)

1

4πǫ0
= c2 × 10−7 N A−2 = 8.987 55 . . . × 109 m F−1 ;

µ0

4π
= 10−7 N A−2 ; c =

1√
µ0ǫ0

= 2.997 924 58 × 108 m s−1
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7.1. Impedances (SI units)

ρ = resistivity at room temperature in 10−8 Ω m:
∼ 1.7 for Cu ∼ 5.5 for W
∼ 2.4 for Au ∼ 73 for SS 304
∼ 2.8 for Al ∼ 100 for Nichrome
(Al alloys may have double the Al value.)

For alternating currents, instantaneous current I, voltage V ,
angular frequency ω:

V = V0 ejωt = ZI . (7.1)

Impedance of self-inductance L: Z = jωL .

Impedance of capacitance C: Z = 1/jωC .

Impedance of free space: Z =
√

µ0/ǫ0 = 376.7 Ω .

High-frequency surface impedance of a good conductor:

Z =
(1 + j) ρ

δ
, where δ = skin depth ; (7.2)

δ =

√

ρ

πνµ
≈ 6.6 cm

√

ν (Hz)
for Cu . (7.3)

7.2. Capacitors, inductors, and transmission Lines

The capacitance between two parallel plates of area A spaced by the
distance d and enclosing a medium with the dielectric constant ε is

C = KεA/d , (7.4)

where the correction factor K depends on the extent of the fringing
field. If the dielectric fills the capacitor volume without extending
beyond the electrodes. the correction factor K ≈ 0.8 for capacitors of
typical geometry.

The inductance at high frequencies of a straight wire whose length ℓ
is much greater than the wire diameter d is

L ≈ 2.0

[

nH

cm

]

· ℓ
(

ln

(

4ℓ

d

)

− 1

)

. (7.5)

For very short wires, representative of vias in a printed circuit board,
the inductance is

L(in nH) ≈ ℓ/d . (7.6)

A transmission line is a pair of conductors with inductance L and
capacitance C. The characteristic impedance Z =

√

L/C and the

phase velocity vp = 1/
√

LC = 1/
√

µε, which decreases with the
inverse square root of the dielectric constant of the medium. Typical
coaxial and ribbon cables have a propagation delay of about 5 ns/cm.

The impedance of a coaxial cable with outer diameter D and inner
diameter d is

Z = 60 Ω · 1√
εr

ln
D

d
, (7.7)

where the relative dielectric constant εr = ε/ε0. A pair of parallel
wires of diameter d and spacing a > 2.5 d has the impedance

Z = 120 Ω · 1√
εr

ln
2a

d
. (7.8)

This yields the impedance of a wire at a spacing h above a ground
plane,

Z = 60 Ω · 1√
εr

ln
4h

d
. (7.9)

A common configuration utilizes a thin rectangular conductor above
a ground plane with an intermediate dielectric (microstrip). Detailed
calculations for this and other transmission line configurations are
given by Gunston.*

* M.A.R. Gunston. Microwave Transmission Line Data, Noble Pub-
lishing Corp., Atlanta (1997) ISBN 1-884932-57-6, TK6565.T73G85.

7.3. Synchrotron radiation (CGS units)

For a particle of charge e, velocity v = βc, and energy E = γmc2,
traveling in a circular orbit of radius R, the classical energy loss per
revolution δE is

δE =
4π

3

e2

R
β3 γ4 . (7.10)

For high-energy electrons or positrons (β ≈ 1), this becomes

δE (in MeV) ≈ 0.0885 [E(in GeV)]4/R(in m) . (7.11)

For γ ≫ 1, the energy radiated per revolution into the photon energy
interval d(~ω) is

dI =
8π

9
α γ F (ω/ωc) d(~ω) , (7.12)

where α = e2/~c is the fine-structure constant and

ωc =
3γ3c

2R
(7.13)

is the critical frequency. The normalized function F (y) is

F (y) =
9

8π

√
3 y

∫

∞

y
K5/3 (x) dx , (7.14)

where K5/3 (x) is a modified Bessel function of the third kind. For
electrons or positrons,

~ωc (in keV) ≈ 2.22 [E(in GeV)]3/R(in m) . (7.15)

Fig. 7.1 shows F (y) over the important range of y.
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Figure 7.1: The normalized synchrotron radiation spectrum F (y).

For γ ≫ 1 and ω ≪ ωc ,

dI

d(~ω)
≈ 3.3α (ωR/c)1/3 , (7.16)

whereas for
γ ≫ 1 and ω & 3ωc ,

dI

d(~ω)
≈

√

3π

2
α γ

(

ω

ωc

)1/2

e−ω/ωc

[

1 +
55

72

ωc

ω
+ . . .

]

. (7.17)

The radiation is confined to angles . 1/γ relative to the instantaneous
direction of motion. For γ ≫ 1, where Eq. (7.12) applies, the mean
number of photons emitted per revolution is

Nγ =
5π√

3
αγ , (7.18)

and the mean energy per photon is

〈~ω〉 =
8

15
√

3
~ωc . (7.19)

When 〈~ω〉&O(E), quantum corrections are important.

See J.D. Jackson, Classical Electrodynamics, 3rd edition (John Wiley
& Sons, New York, 1998) for more formulae and details. (Note that
earlier editions had ωc twice as large as Eq. (7.13).
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8. NAMING SCHEME FOR HADRONS

Revised 2004 by M. Roos (University of Finland) and C.G. Wohl
(LBNL).

8.1. Introduction

We introduced in the 1986 edition [1] a new naming scheme for the
hadrons. Changes from older terminology affected mainly the heavier
mesons made of the light (u, d, and s) quarks. Old and new names
were listed alongside until 1994. Names also change from edition to
edition because some characteristic like mass or spin changes. The
Summary Tables give both the new and old names whenever a change
occurred.

8.2. “Neutral-flavor” mesons (S=C =B =T =0)

Table 8.1 shows the names for mesons having the strangeness
and all heavy-flavor quantum numbers equal to zero. The scheme is
designed for all ordinary non-exotic mesons, but it will work for many
exotic types too, if needed.

Table 8.1: Symbols for mesons with the strangeness and all
heavy-flavor quantum numbers equal to zero.

JPC =











0−+ 1+− 1−− 0++

2−+ 3+− 2−− 1++

...
...

...
...

qq content 2S+1LJ = 1(L even)J
1(L odd)J

3(L even)J
3(L odd)J

ud, uu − dd, du (I = 1) π b ρ a

dd + uu

and/or ss

}

(I = 0) η, η′ h, h′ ω, φ f, f ′

cc ηc hc ψ† χc

bb ηb hb Υ χb

tt ηt ht θ χt

†The J/ψ remains the J/ψ.

First, we assign names to those states with quantum numbers
compatible with being qq states. The rows of the Table give the
possible qq content. The columns give the possible parity/charge-
conjugation states,

PC = −+, +−, −−, and ++ ;

these combinations correspond one-to-one with the angular-momentum
state 2S+1LJ of the qq system being

1(L even)J , 1(L odd)J , 3(L even)J , or 3(L odd)J .

Here S, L, and J are the spin, orbital, and total angular momenta of
the qq system. The quantum numbers are related by P = (−1)L+1,
C = (−1)L+S , and G parity = (−1)L+S+I , where of course the C
quantum number is only relevant to neutral mesons.

The entries in the Table give the meson names. The spin J is added
as a subscript except for pseudoscalar and vector mesons, and the
mass is added in parentheses for mesons that decay strongly. However,
for the lightest meson resonances, we omit the mass.

Measurements of the mass, quark content (where relevant), and
quantum numbers I, J , P , and C (or G) of a meson thus fix its
symbol. Conversely, these properties may be inferred unambiguously
from the symbol.

If the main symbol cannot be assigned because the quantum
numbers are unknown, X is used. Sometimes it is not known whether
a meson is mainly the isospin-0 mix of uu and dd or is mainly ss.
A prime (or pair ω, φ) may be used to distinguish two such mixing
states.

We follow custom and use spectroscopic names such as Υ(1S) as the
primary name for most of those ψ, Υ, and χ states whose spectroscopic
identity is known. We use the form Υ(9460) as an alternative, and as
the primary name when the spectroscopic identity is not known.

Names are assigned for tt mesons, although the top quark is
evidently so heavy that it is expected to decay too rapidly for bound
states to form.

Gluonium states or other mesons that are not qq states are, if
the quantum numbers are not exotic, to be named just as are the
qq mesons. Such states will probably be difficult to distinguish from
qq states and will likely mix with them, and we make no attempt to
distinguish those “mostly gluonium” from those “mostly qq.”

An “exotic” meson with JPC quantum numbers that a qq
system cannot have, namely JPC = 0−−, 0+−, 1−+, 2+−, 3−+, · · · ,
would use the same symbol as does an ordinary meson with all
the same quantum numbers as the exotic meson except for the
C parity. But then the J subscript may still distinguish it; for
example, an isospin-0 1−+ meson could be denoted ω1.

8.3. Mesons with nonzero S, C, B, and/or T

Since the strangeness or a heavy flavor of these mesons is nonzero,
none of them are eigenstates of charge conjugation, and in each of
them one of the quarks is heavier than the other. The rules are:

1. The main symbol is an upper-case italic letter indicating the
heavier quark as follows:

s → K c → D b → B t → T .

We use the convention that the flavor and the charge of a quark

have the same sign. Thus the strangeness of the s quark is
negative, the charm of the c quark is positive, and the bottom
of the b quark is negative. In addition, I3 of the u and d
quarks are positive and negative, respectively. The effect of this
convention is as follows: Any flavor carried by a charged meson

has the same sign as its charge. Thus the K+, D+, and B+ have
positive strangeness, charm, and bottom, respectively, and all
have positive I3. The D+

s has positive charm and strangeness.
Furthermore, the ∆(flavor) = ∆Q rule, best known for the kaons,
applies to every flavor.

2. If the lighter quark is not a u or a d quark, its identity is given
by a subscript. The D+

s is an example.

3. If the spin-parity is in the “normal” series, JP = 0+, 1−, 2+, · · ·,
a superscript “∗” is added.

4. The spin is added as a subscript except for pseudoscalar or vector
mesons.

8.4. Ordinary (3-quark) baryons

The symbols N , ∆, Λ, Σ, Ξ, and Ω used for more than 30 years
for the baryons made of light quarks (u, d, and s quarks) tell the
isospin and quark content, and the same information is conveyed by
the symbols used for the baryons containing one or more heavy quarks
(c and b quarks). The rules are:

1. Baryons with three u and/or d quarks are N ’s (isospin 1/2) or
∆’s (isospin 3/2).

2. Baryons with two u and/or d quarks are Λ’s (isospin 0) or Σ’s
(isospin 1). If the third quark is a c, b, or t quark, its identity is
given by a subscript.

3. Baryons with one u or d quark are Ξ’s (isospin 1/2). One or two
subscripts are used if one or both of the remaining quarks are
heavy: thus Ξc, Ξcc, Ξb, etc.∗

4. Baryons with no u or d quarks are Ω’s (isospin 0), and subscripts
indicate any heavy-quark content.

5. A baryon that decays strongly has its mass as part of its name.
Thus p, Σ−, Ω−, Λ+

c , etc., but ∆(1232)0, Σ(1385)−, Ξc(2645)+,
etc.

In short, the number of u plus d quarks together with the isospin
determine the main symbol, and subscripts indicate any content of
heavy quarks. A Σ always has isospin 1, an Ω always has isospin 0,
etc.
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8.5. Exotic baryons

In 2003, several experiments reported finding a strangeness S = +1,
charge Q = +1 baryon, and one experiment reported finding an
S = −2, Q = −2 baryon. Baryons with such quantum numbers cannot
be made from three quarks, and thus they are exotic. The S = +1
baryon, which once would have been called a Z, was quickly dubbed
the Θ(1540)+, and we proposed to name the S = −2 baryon the
Φ(1860). However, these “discoveries” were then completely ruled
out by many experiments with far larger statistics: See our 2008
Review [2].

Footnote and Reference:

∗ Sometimes a prime is necessary to distinguish two Ξc’s in the
same SU(n) multiplet. See the “Note on Charmed Baryons” in
the Charmed Baryon Listings.

1. Particle Data Group: M. Aguilar-Benitez et al., Phys. Lett. 170B

(1986).
2. Particle Data Group: C. Amsler et al., Phys. Lett. B667, 1

(2008).
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9. QUANTUM CHROMODYNAMICS

Revised September 2015 (April 2016 for section on αs) by S. Bethke
(Max-Planck-Institute of Physics, Munich), G. Dissertori (ETH
Zurich), and G.P. Salam (CERN).1

9.1. Basics

Quantum Chromodynamics (QCD), the gauge field theory that
describes the strong interactions of colored quarks and gluons, is
the SU(3) component of the SU(3)×SU(2)×U(1) Standard Model of
Particle Physics.

The Lagrangian of QCD is given by

L =
∑

q

ψ̄q,a(iγµ∂µδab−gsγ
µtCabAC

µ −mqδab)ψq,b−
1

4
FA

µνFA µν , (9.1)

where repeated indices are summed over. The γµ are the Dirac
γ-matrices. The ψq,a are quark-field spinors for a quark of flavor q
and mass mq, with a color-index a that runs from a = 1 to Nc = 3,
i.e. quarks come in three “colors.” Quarks are said to be in the
fundamental representation of the SU(3) color group.

The AC
µ correspond to the gluon fields, with C running from 1

to N2
c − 1 = 8, i.e. there are eight kinds of gluon. Gluons transform

under the adjoint representation of the SU(3) color group. The tCab
correspond to eight 3× 3 matrices and are the generators of the SU(3)
group (cf. the section on “SU(3) isoscalar factors and representation
matrices” in this Review, with tCab ≡ λC

ab/2). They encode the fact
that a gluon’s interaction with a quark rotates the quark’s color in
SU(3) space. The quantity gs is the QCD coupling constant. Finally,
the field tensor FA

µν is given by

FA
µν = ∂µAA

ν −∂νAA
µ −gs fABCAB

µ AC
ν [tA, tB] = ifABCtC , (9.2)

where the fABC are the structure constants of the SU(3) group.

Neither quarks nor gluons are observed as free particles. Hadrons
are color-singlet (i.e. color-neutral) combinations of quarks, anti-
quarks, and gluons.

Ab-initio predictive methods for QCD include lattice gauge theory
and perturbative expansions in the coupling. The Feynman rules of
QCD involve a quark-antiquark-gluon (qq̄g) vertex, a 3-gluon vertex
(both proportional to gs), and a 4-gluon vertex (proportional to g2

s).
A full set of Feynman rules is to be found for example in Ref. 1.

Useful color-algebra relations include: tAabt
A
bc = CF δac, where

CF ≡ (N2
c − 1)/(2Nc) = 4/3 is the color-factor (“Casimir”) associated

with gluon emission from a quark; fACDfBCD = CAδAB where
CA ≡ Nc = 3 is the color-factor associated with gluon emission from a
gluon; tAabt

B
ab = TRδAB, where TR = 1/2 is the color-factor for a gluon

to split to a qq̄ pair.

The fundamental parameters of QCD are the coupling gs (or

αs =
g2
s

4π
) and the quark masses mq.

There is freedom for an additional CP-violating term to be

present in the QCD Lagrangian, θ
αs

8π
FA

µν F̃A µν , where F̃A µν is the

dual of the gluon field tensor,
1

2
ǫµνσρFA σρ, where ǫµνσρ is the

fully antisymmetric Levi-Cevita symbol. Experimental limits on the
neutron electric dipole moment [2] constrain the coefficient of this
contribution to satisfy |θ| . 10−10. Further discussion is to be found
in Ref. 3 and in the Axions section in the Listings of this Review.

This section will concentrate mainly on perturbative aspects of
QCD as they relate to collider physics. Related textbooks and reviews
include Refs. 1,4–7. Aspects specific to Monte Carlo event generators
are reviewed in the dedicated section 41. Lattice QCD is also reviewed
in a section of its own, Sec. 18, with further discussion of perturbative
and non-perturbative aspects to be found in the sections on “Quark
Masses”, “The CKM quark-mixing matrix”, “Structure Functions”,
“Fragmentation Functions”, and “Heavy-Quark and Soft-Collinear
Effective Theory” in this Review. For an overview of some of the
QCD issues and recent results in heavy-ion physics, see for example
Refs. [8–10].

1 On leave from LPTHE, UMR 7589, CNRS, Paris, France

9.1.1. Running coupling :

In the framework of perturbative QCD (pQCD), predictions for
observables are expressed in terms of the renormalized coupling
αs(µ

2
R), a function of an (unphysical) renormalization scale µR. When

one takes µR close to the scale of the momentum transfer Q in a given
process, then αs(µ

2
R ≃ Q2) is indicative of the effective strength of the

strong interaction in that process.

The coupling satisfies the following renormalization group equation
(RGE):

µ2
R

dαs

dµ2
R

= β(αs) = −(b0α
2
s + b1α

3
s + b2α

4
s + · · ·) (9.3)

where b0 = (11CA − 4nfTR)/(12π) = (33 − 2nf )/(12π) is referred
to as the 1-loop β-function coefficient, the 2-loop coefficient is
b1 = (17C2

A − nfTR(10CA + 6CF ))/(24π2) = (153 − 19nf )/(24π2),

and the 3-loop coefficient is b2 = (2857 − 5033
9 nf + 325

27 n2
f )/(128π3)

for the SU(3) values of CA and CF . The 4-loop coefficient, b3, is to
be found in Refs. 11, 12. The coefficients b2 and b3 (and beyond)
are renormalization-scheme-dependent, and given here in the modified
minimal subtraction (MS) scheme [13], by far the most widely used
scheme in QCD.

The minus sign in Eq. (9.3) is the origin of Asymptotic
Freedom [14,15], i.e. the fact that the strong coupling becomes
weak for processes involving large momentum transfers (“hard
processes”). For momentum transfers in the 100 GeV – TeV range,
αs ∼ 0.1, while the theory is strongly interacting for scales around
and below 1 GeV.

The β-function coefficients, the bi, are given for the coupling of
an effective theory in which nf of the quark flavors are considered
light (mq ≪ µR), and in which the remaining heavier quark flavors
decouple from the theory. One may relate the coupling for the theory
with nf + 1 light flavors to that with nf flavors through an equation
of the form

α
(nf+1)
s (µ2

R) = α
(nf )
s (µ2

R)

(

1 +

∞
∑

n=1

n
∑

ℓ=0

cnℓ [α
(nf )
s (µ2

R)]n lnℓ µ2
R

m2
h

)

,

(9.4)
where mh is the mass of the (nf +1)th flavor, and the first few

cnℓ coefficients are c11 = 1
6π , c10 = 0, c22 = c211, c21 = 19

24π2
, and

c20 = − 11
72π2

when mh is the MS mass at scale mh (c20 = 7
24π2

when
mh is the pole mass — mass definitions are discussed below and in the
review on “Quark Masses”). Terms up to c4ℓ are to be found in Refs.
16, 17. Numerically, when one chooses µR = mh, the matching is a
modest effect, owing to the zero value for the c10 coefficient. Relations
between nf and (nf +2) flavors where the two heavy flavors are close
in mass are given to three loops in Ref. 18.

Working in an energy range where the number of flavors is taken
constant, a simple exact analytic solution exists for Eq. (9.3) only if
one neglects all but the b0 term, giving αs(µ

2
R) = (b0 ln(µ2

R/Λ2))−1.
Here Λ is a constant of integration, which corresponds to the scale
where the perturbatively-defined coupling would diverge. Its value
is indicative of the energy range where non-perturbative dynamics
dominates. A convenient approximate analytic solution to the RGE
that includes also the b1, b2, and b3 terms is given by (see for example
Ref. 19),

αs(µ
2
R) ≃ 1

b0t

(

1 − b1

b20

ln t

t
+

b21(ln
2 t − ln t − 1) + b0b2

b40t
2

−
b31(ln

3 t − 5

2
ln2 t − 2 ln t +

1

2
) + 3b0b1b2 ln t − 1

2
b20b3

b60t
3






,

t ≡ ln
µ2

R

Λ2
, (9.5)

again parametrized in terms of a constant Λ. Note that Eq. (9.5) is
one of several possible approximate 4-loop solutions for αs(µ

2
R), and

that a value for Λ only defines αs(µ
2
R) once one knows which particular
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approximation is being used. An alternative to the use of formulas
such as Eq. (9.5) is to solve the RGE exactly, numerically (including
the discontinuities, Eq. (9.4), at flavor thresholds). In such cases the
quantity Λ is not defined at all. For these reasons, in determinations
of the coupling, it has become standard practice to quote the value of
αs at a given scale (typically the mass of the Z boson, MZ) rather
than to quote a value for Λ.

The value of the coupling, as well as the exact forms of the b2,
c10 (and higher-order) coefficients, depend on the renormalization
scheme in which the coupling is defined, i.e. the convention used to
subtract infinities in the context of renormalization. The coefficients
given above hold for a coupling defined in the MS scheme.

A discussion of determinations of the coupling and a graph
illustrating its scale dependence (“running”) are to be found in
Section 9.4. The RunDec package [20,21] is often used to calculate the
evolution of the coupling. For a discussion of electroweak effects in
the evolution of the QCD coupling, see Ref. 22 and references therein.

9.1.2. Quark masses :

Free quarks have never been observed, which is understood as
a result of a long-distance, confining property of the strong QCD
force: up, down, strange, charm, and bottom quarks all hadronize,
i.e. become part of a meson or baryon, on a timescale ∼ 1/Λ;
the top quark instead decays before it has time to hadronize. This
means that the question of what one means by the quark mass is a
complex one, which requires that one adopts a specific prescription.
A perturbatively defined prescription is the pole mass, mq, which
corresponds to the position of the divergence of the propagator. This
is close to one’s physical picture of mass. However, when relating it
to observable quantities, it suffers from substantial non-perturbative
ambiguities (see e.g. Ref. 23). An alternative is the MS mass, mq(µ

2
R),

which depends on the renormalization scale µR.

Results for the masses of heavier quarks are often quoted either as
the pole mass or as the MS mass evaluated at a scale equal to the mass,
mq(m

2
q); light quark masses are often quoted in the MS scheme at a

scale µR ∼ 2 GeV. The pole and MS masses are related by a slowly

converging series that starts mq = mq(m
2
q)(1 +

4αs(m
2
q)

3π
+ O(α2

s)),

while the scale-dependence of MS masses is given by

µ2
R

dmq(µ
2
R)

dµ2
R

=

[

−αs(µ
2
R)

π
+ O(α2

s)

]

mq(µ
2
R) . (9.6)

More detailed discussion is to be found in a dedicated section of the
Review, “Quark Masses.”

In perturbative QCD calculations of scattering processes, it is
common to work in an approximation in which one neglects (i.e. sets
to zero) the masses of all quarks whose mass is significantly smaller
than the momentum transfer in the process.

9.2. Structure of QCD predictions

9.2.1. Fully inclusive cross sections :

The simplest observables in perturbative QCD are those that do not
involve initial-state hadrons and that are fully inclusive with respect
to details of the final state. One example is the total cross section for
e+e− → hadrons at center-of-mass energy Q, for which one can write

σ(e+e− → hadrons, Q)

σ(e+e− → µ+µ−, Q)
≡ R(Q) = REW(Q)(1 + δQCD(Q)) , (9.7)

where REW(Q) is the purely electroweak prediction for the ratio and
δQCD(Q) is the correction due to QCD effects. To keep the discussion
simple, we can restrict our attention to energies Q ≪ MZ , where the
process is dominated by photon exchange (REW = 3

∑

q e2
q , neglecting

finite-quark-mass corrections, where the eq are the electric charges of
the quarks),

δQCD(Q) =

∞
∑

n=1

cn ·
(

αs(Q
2)

π

)n

+ O
(

Λ4

Q4

)

. (9.8)

The first four terms in the αs series expansion are then to be found in
Ref. 24,

c1 = 1 , c2 = 1.9857− 0.1152nf , (9.9a)

c3 = −6.63694− 1.20013nf − 0.00518n2
f − 1.240η , (9.9b)

c4 = −156.61 + 18.775nf − 0.7974n2
f

+ 0.0215n3
f + (17.828− 0.575nf )η , (9.9c)

with η = (
∑

eq)
2/(3

∑

e2
q). For corresponding expressions including

also Z exchange and finite-quark-mass effects, see Refs. [25–27].

A related series holds also for the QCD corrections to the hadronic
decay width of the τ lepton, which essentially involves an integral
of R(Q) over the allowed range of invariant masses of the hadronic
part of the τ decay (see e.g. Ref. 28). The series expansions for
QCD corrections to Higgs-boson hadronic (partial) decay widths are
summarized in Refs. 29, 30.

One characteristic feature of Eqs. (9.8) and (9.9) is that the
coefficients of αn

s increase rapidly order by order: calculations
in perturbative QCD tend to converge more slowly than would be
expected based just on the size of αs

††. Another feature is the existence
of an extra “power-correction” term O(Λ4/Q4) in Eq. (9.8), which
accounts for contributions that are fundamentally non-perturbative.
All high-energy QCD predictions involve such corrections, though
the exact power of Λ/Q depends on the observable. For many
processes and observables, it is possible to introduce an operator
product expansion and associate power suppressed terms with specific
higher-dimension (non-perturbative) operators.

Scale dependence. In Eq. (9.8) the renormalization scale for αs has
been chosen equal to Q. The result can also be expressed in terms of
the coupling at an arbitrary renormalization scale µR,

δQCD(Q) =

∞
∑

n=1

cn

(

µ2
R

Q2

)

·
(

αs(µ
2
R)

π

)n

+ O
(

Λ4

Q4

)

, (9.10)

where c1(µ
2
R/Q2) ≡ c1, c2(µ

2
R/Q2) = c2 + πb0c1 ln(µ2

R/Q2),

c3(µ
2
R/Q2) = c3 + (2b0c2π + b1c1π

2) ln(µ2
R/Q2) + b20c1π

2 ln2(µ2
R/Q2),

etc. Given an infinite number of terms in the αs expansion, the µR
dependence of the cn(µ2

R/Q2) coefficients will exactly cancel that of

αs(µ
2
R), and the final result will be independent of the choice of µR:

physical observables do not depend on unphysical scales.∗∗

With just terms up to some finite n = N , a residual µR dependence
will remain, which implies an uncertainty on the prediction of R(Q)
due to the arbitrariness of the scale choice. This uncertainty will be
O(αN+1

s ), i.e. of the same order as the neglected terms. For this
reason it is customary to use QCD predictions’ scale dependence as an
estimate of the uncertainties due to neglected terms. One usually takes
a central value for µR ∼ Q, in order to avoid the poor convergence
of the perturbative series that results from the large lnn−1(µ2

R/Q2)
terms in the cn coefficients when µR ≪ Q or µR ≫ Q. Uncertainties
are then commonly determined by varying µR by a factor of two up
and down around the central scale choice, as discussed in more detail
below in Section 9.2.4.

†† The situation is significantly worse near thresholds, e.g. the tt̄
production threshold. An overview of some of the methods used in
such cases is to be found for example in Ref. 31.
∗∗ There is an important caveat to this statement: at sufficiently

high orders, perturbative series generally suffer from “renormalon” di-
vergences αn

s n! (reviewed in Ref. 23). This phenomenon is not usually
visible with the limited number of perturbative terms available today.
However it is closely connected with non-perturbative contributions
and sets a limit on the possible precision of perturbative predictions.
The cancellation of scale dependence will also ultimately be affected by
this renormalon-induced breakdown of perturbation theory.
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9.2.2. Processes with initial-state hadrons :

Deep Inelastic Scattering. To illustrate the key features of QCD
cross sections in processes with initial-state hadrons, let us consider
deep-inelastic scattering (DIS), ep → e + X , where an electron e
with four-momentum k emits a highly off-shell photon (momentum q)
that interacts with the proton (momentum p). For photon virtualities
Q2 ≡ −q2 far above the squared proton mass (but far below the Z
mass), the differential cross section in terms of the kinematic variables
Q2, x = Q2/(2p · q) and y = (q · p)/(k · p) is

d2σ

dxdQ2
=

4πα

2xQ4

[

(1 + (1 − y)2)F2(x, Q2) − y2FL(x, Q2)
]

, (9.11)

where α is the electromagnetic coupling and F2(x, Q2) and FL(x, Q2)
are proton structure functions, which encode the interaction between
the photon (in given polarization states) and the proton. In the
presence of parity-violating interactions (e.g. νp scattering) an
additional F3 structure function is present. For an extended review,
including equations for the full electroweak and polarized cases, see
Sec. 19 of this Review.

Structure functions are not calculable in perturbative QCD, nor
is any other cross section that involves initial-state hadrons. To
zeroth order in αs, the structure functions are given directly in terms
of non-perturbative parton (quark or gluon) distribution functions
(PDFs),

F2(x, Q2) = x
∑

q

e2
qfq/p(x) , FL(x, Q2) = 0 , (9.12)

where fq/p(x) is the PDF for quarks of type q inside the proton, i.e.

the number density of quarks of type q inside a fast-moving proton
that carry a fraction x of its longitudinal momentum (the quark flavor
index q, here, is not to be confused with the photon momentum q in
the lines preceding Eq. (9.11)). PDFs are non-perturbative, and only
just starting to be extracted in lattice QCD in a phenomenologically
relevant way [32]. Accordingly, for all practical uses, they are
determined from data (cf. Sec. 19 of this Review and also Ref. 33).

The above result, with PDFs fq/p(x) that are independent of the
scale Q, corresponds to the “quark-parton model” picture in which
the photon interacts with point-like free quarks, or equivalently, one
has incoherent elastic scattering between the electron and individual
constituents of the proton. As a consequence, in this picture also F2

and FL are independent of Q [34]. When including higher orders in
pQCD, Eq. (9.12) becomes

F2(x, Q2) = x

∞
∑

n=0

αn
s (µ2

R)

(2π)n

∑

i=q,g

∫ 1

x

dz

z
C

(n)
2,i (z, Q2, µ2

R, µ2
F ) fi/p

(x

z
, µ2

F

)

+ O
(Λ2

Q2

)

. (9.13)

Just as in Eq. (9.10), we have a series in powers of αs(µ
2
R), each term

involving a coefficient C
(n)
2,i that can be calculated using Feynman

graphs. An important difference is the additional integral over z. The
parton that comes from the proton can emit a gluon before it interacts

with the photon. As a result, the C
(n)
2,i coefficients are functions that

depend on the ratio, z, of the parton’s momentum before and after
the gluon emission, and one must integrate over that ratio. For the
electromagnetic component of DIS with light quarks and gluons, the

zeroth order coefficient functions are C
(0)
2,q = e2

qδ(1 − z) and C
(0)
2,g = 0,

and corrections are known up to O(α3
s) (next-to-next-next-to-leading

order, N3LO) [35]. For weak currents they are known fully to α2
s

(next-to-next-to-leading order, NNLO) [36], with substantial results
known also at N3LO [37]. For heavy quark production they are known
to O(α2

s) [38] (next-to-leading order, NLO, insofar as the series starts
at O(αs)), with ongoing work towards NNLO summarized in Ref. 39.

The majority of the emissions that modify a parton’s momentum
are collinear (parallel) to that parton, and don’t depend on the fact
that the parton is destined to interact with a photon. It is natural
to view these emissions as modifying the proton’s structure rather

than being part of the coefficient function for the parton’s interaction
with the photon. Technically, one uses a procedure known as collinear

factorization to give a well-defined meaning to this distinction, most
commonly through the MS factorization scheme, defined in the context
of dimensional regularization. The MS factorization scheme involves
an arbitrary choice of factorization scale, µF , whose meaning can be
understood roughly as follows: emissions with transverse momenta

above µF are included in the C
(n)
2,q (z, Q2, µ2

R, µ2
F ); emissions with

transverse momenta below µF are accounted for within the PDFs,
fi/p(x, µ2

F ). While collinear factorization is generally believed to be

valid for suitable (sufficiently inclusive) observables in processes with
hard scales, Ref. 40, which reviews the factorization proofs in detail, is
cautious in the statements it makes about their exhaustivity, notably
for the hadron-collider processes that we shall discuss below. Further
discussion is to be found in Refs. 41,42.

The PDFs’ resulting dependence on µF is described by the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [43],
which to leading order (LO) read∗

µ2
F

∂fi/p(x, µ2
F )

∂µ2
F

=
∑

j

αs(µ
2
F )

2π

∫ 1

x

dz

z
P

(1)
i←j(z)fj/p

(x

z
, µ2

F

)

, (9.14)

with, for example, P
(1)
q←g(z) = TR(z2 + (1 − z)2). The other LO

splitting functions are listed in Sec. 19 of this Review, while
results up to NLO, α2

s , and NNLO, α3
s , are given in Refs. 44 and

45 respectively. Beyond LO, the coefficient functions are also µF

dependent, for example C
(1)
2,i (x, Q2, µ2

R, µ2
F ) = C

(1)
2,i (x, Q2, µ2

R, Q2) −

ln
(µ2

F

Q2

)
∑

j

∫ 1
x

dz
z C

(0)
2,j (x

z )P
(1)
j←i(z).

As with the renormalization scale, the choice of factorization
scale is arbitrary, but if one has an infinite number of terms in the
perturbative series, the µF -dependences of the coefficient functions
and PDFs will compensate each other fully. Given only N terms of
the series, a residual O(αN+1

s ) uncertainty is associated with the
ambiguity in the choice of µF . As with µR, varying µF provides
an input in estimating uncertainties on predictions. In inclusive DIS
predictions, the default choice for the scales is usually µR = µF = Q.

As is the case for the running coupling, in DGLAP evolution one
can introduce flavor thresholds near the heavy quark masses: below a
given heavy quark’s mass, that quark is not considered to be part of
the proton’s structure, while above it is considered to be part of the
proton’s structure and evolves with massless DGLAP splitting kernels.
With appropriate parton distribution matching terms at threshold,
such a variable flavor number scheme (VFNS), when used with
massless coefficient functions, gives the full heavy-quark contributions
at high Q2 scales. For scales near the threshold, it is instead necessary
to appropriately adapt the standard massive coefficient functions to
account for the heavy-quark contribution already included in the
PDFs [46,47,48].

Hadron-hadron collisions. The extension to processes with two
initial-state hadrons can be illustrated with the example of the total
(inclusive) cross section for W boson production in collisions of
hadrons h1 and h2, which can be written as

σ(h1h2 → W + X)

=

∞
∑

n=0

αn
s (µ2

R)
∑

i,j

∫

dx1dx2 fi/h1

(

x1, µ
2
F

)

fj/h2

(

x2, µ
2
F

)

× σ̂
(n)
ij→W+X

(

x1x2s, µ
2
R, µ2

F

)

+ O
(

Λ2

M4
W

)

, (9.15)

∗ LO is generally taken to mean the lowest order at which a quantity
is non-zero. This definition is nearly always unambiguous, the one
major exception being for the case of the hadronic branching ratio of
virtual photons, Z, τ , etc., for which two conventions exist: LO can
either mean the lowest order that contributes to the hadronic branching
fraction, i.e. the term “1” in Eq. (9.7); or it can mean the lowest order at
which the hadronic branching ratio becomes sensitive to the coupling,
n = 1 in Eq. (9.8), as is relevant when extracting the value of the
coupling from a measurement of the branching ratio. Because of this
ambiguity, we avoid use of the term “LO” in that context.
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where s is the squared center-of-mass energy of the collision. At LO,

n = 0, the hard (partonic) cross section σ̂
(0)
ij→W+X(x1x2s, µ

2
R, µ2

F ) is

simply proportional to δ(x1x2s−M2
W ), in the narrow W -boson width

approximation (see Sec. 49 of this Review for detailed expressions for
this and other hard scattering cross sections). It is non-zero only for
choices of i, j that can directly give a W , such as i = u, j = d̄. At
higher orders, n ≥ 1, new partonic channels contribute, such as gq,
and there is no restriction x1x2s = M2

W .

Equation (9.15) involves a collinear factorization between the hard
cross section and the PDFs, just like Eq. (9.13). As long as the same
factorization scheme is used in DIS and pp or pp̄ (usually the MS
scheme), then PDFs extracted in DIS can be directly used in pp
and pp̄ predictions [49,40] (with the anti-quark distributions in an
anti-proton being the same as the quark distributions in a proton).

Fully inclusive hard cross sections are known to NNLO, i.e.

corrections up to relative order α2
s , for Drell-Yan (DY) lepton-pair

and vector-boson production [50,51], Higgs-boson production in
association with a vector boson [52], Higgs-boson production via
vector-boson fusion [53] (in an approximation that factorizes the
production of the two vector bosons), Higgs-pair production [54],
top-antitop production [55] and vector-boson pair production [56,57].
† Recently, inclusive Higgs production through gluon fusion was
calculated at N3LO [58]. A discussion of many other inclusive Higgs
results is to be found in Ref. 59.

Photoproduction. γp (and γγ) collisions are similar to pp collisions,
with the subtlety that the photon can behave in two ways: there is
“direct” photoproduction, in which the photon behaves as a point-like
particle and takes part directly in the hard collision, with hard
subprocesses such as γg → qq̄; there is also resolved photoproduction,
in which the photon behaves like a hadron, with non-perturbative
partonic substructure and a corresponding PDF for its quark and
gluon content, fi/γ(x, Q2).

While useful to understand the general structure of γp collisions,
the distinction between direct and resolved photoproduction is not
well defined beyond leading order, as discussed for example in Ref. 60.

The high-energy (BFKL) limit. In situations in which the total
center-of-mass energy

√
s is much larger than all other momentum-

transfer scales in the problem (e.g. Q in DIS, mb for bb̄ production in
pp collisions, etc.), each power of αs beyond LO can be accompanied
by a power of ln(s/Q2) (or ln(s/m2

b), etc.). This is variously referred
to as the high-energy, small-x or Balitsky-Fadin-Kuraev-Lipatov
(BFKL) limit [61–63]. Currently it is possible to account for the
dominant and first subdominant [64,65] power of ln s at each order of
αs, and also to estimate further subdominant contributions that are
numerically large (see Refs. 66–69 and references therein). Progress
towards NNLO is discussed in Refs. 70,71.

Physically, the summation of all orders in αs can be understood
as leading to a growth with s of the gluon density in the proton. At
sufficiently high energies this implies non-linear effects (commonly
referred to as parton saturation), whose treatment has been the
subject of intense study (see for example Refs. 72, 73 and references
thereto). Note that it is not straightforward to relate these results
to the genuinely non-perturbative total, elastic and diffractive cross
sections for hadron-hadron scattering (experimental results for which
are summarized in section 51 of this Review).

9.2.3. Non fully inclusive cross sections :

QCD final states always consist of hadrons, while perturbative
QCD calculations deal with partons. Physically, an energetic parton
fragments (“showers”) into many further partons, which then, on
later timescales, undergo a transition to hadrons (“hadronization”).
Fixed-order perturbation theory captures only a small part of these
dynamics.

This does not matter for the fully inclusive cross sections discussed
above: the showering and hadronization stages are approximately
unitary, i.e. they do not substantially change the overall probability

† Processes with jets or photons in the final state have divergent
cross sections unless one places cut on the jet or photon momentum.
Accordingly they are discussed below in Section 9.2.3.2.

of hard scattering, because they occur long after it has taken place
(they introduce at most a correction proportional to a power of the
ratio of timescales involved, i.e. a power of Λ/Q, where Q is the hard
scattering scale).

Less inclusive measurements, in contrast, may be affected by
the extra dynamics. For those sensitive just to the main directions
of energy flow (jet rates, event shapes, cf. Sec. 9.3.1) fixed order
perturbation theory is often still adequate, because showering and
hadronization don’t substantially change the overall energy flow.
This means that one can make a prediction using just a small
number of partons, which should correspond well to a measurement
of the same observable carried out on hadrons. For observables that
instead depend on distributions of individual hadrons (which, e.g.,
are the inputs to detector simulations), it is mandatory to account
for showering and hadronization. The range of predictive techniques
available for QCD final states reflects this diversity of needs of different
measurements.

While illustrating the different methods, we shall for simplicity
mainly use expressions that hold for e+e− scattering. The extension
to cases with initial-state partons will be mostly straightforward (space
constraints unfortunately prevent us from addressing diffraction and
exclusive hadron-production processes; extensive discussion is to be
found in Refs. 74, 75).

9.2.3.1. Soft and collinear limits:

Before examining specific predictive methods, it is useful to be
aware of a general property of QCD matrix elements in the soft
and collinear limits. Consider a squared tree-level matrix element
|M2

n(p1, . . . , pn)| for the process e+e− → n partons with momenta
p1, . . . , pn, and a corresponding phase-space integration measure dΦn.
If particle n is a gluon, and additionally it becomes collinear (parallel)
to another particle i and its momentum tends to zero (it becomes
“soft”), the matrix element simplifies as follows,

lim
θin→0, En→0

dΦn|M2
n(p1, . . . , pn)|

= dΦn−1|M2
n−1(p1, . . . , pn−1)|

αsCi

π

dθ2
in

θ2
in

dEn

En
, (9.16)

where Ci = CF (CA) if i is a quark (gluon). This formula has
non-integrable divergences both for the inter-parton angle θin → 0 and
for the gluon energy En → 0, which are mirrored also in the structure
of divergences in loop diagrams. These divergences are important for
at least two reasons: firstly, they govern the typical structure of events
(inducing many emissions either with low energy or at small angle
with respect to hard partons); secondly, they will determine which
observables can be calculated within perturbative QCD.

9.2.3.2. Fixed-order predictions:

Let us consider an observable O that is a function On(p1, . . . , pn)
of the four-momenta of the n final-state particles in an event (whether
partons or hadrons). In what follows, we shall consider the cross
section for events weighted with the value of the observable, σO .
As examples, if On ≡ 1 for all n, then σO is just the total cross
section; if On ≡ τ̂ (p1, . . . , pn) where τ̂ is the value of the Thrust for
that event (see Sec. 9.3.1.2), then the average value of the Thrust
is 〈τ〉 = σO/σtot; if On ≡ δ(τ − τ̂ (p1, . . . , pn)) then one gets the
differential cross section as a function of the Thrust, σO ≡ dσ/dτ .

In the expressions below, we shall omit to write the non-
perturbative power correction term, which for most common
observables is proportional to a single power of Λ/Q.

LO. If the observable O is non-zero only for events with at least n
final-state particles, then the LO QCD prediction for the weighted
cross section in e+e− annihilation is

σO,LO = αn−2
s (µ2

R)

∫

dΦn|M2
n(p1, . . . , pn)| On(p1, . . . , pn) , (9.17)

where the squared tree-level matrix element, |M2
n(p1, . . . , pn)|, includes

relevant symmetry factors, has been summed over all subprocesses
(e.g. e+e− → qq̄qq̄, e+e− → qq̄gg) and has had all factors of αs
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extracted in front. In processes other than e+e− collisions, the
center-of-mass energy of the LO process is generally not fixed, and
so the powers of the coupling are often brought inside the integrals,
with the scale µR chosen event by event, as a function of the event
kinematics.

Other than in the simplest cases (see the review on Cross Sections in
this Review), the matrix elements in Eq. (9.17) are usually calculated
automatically with programs such as CompHEP [76], MadGraph [77],
Alpgen [78], Comix/Sherpa [79], and Helac/Phegas [80]. Some
of these (CompHEP, MadGraph) use formulas obtained from direct
evaluations of Feynman diagrams. Others (Alpgen, Helac/Phegas and
Comix/Sherpa) use methods designed to be particularly efficient at
high multiplicities, such as Berends-Giele recursion [81], which builds
up amplitudes for complex processes from simpler ones (see also the
reviews and discussion in Refs. [82–84]).

The phase-space integration is usually carried out by Monte Carlo
sampling, in order to deal with the sometimes complicated cuts
that are used in corresponding experimental measurements. Because
of the divergences in the matrix element, Eq. (9.16), the integral
converges only if the observable vanishes for kinematic configurations
in which one of the n particles is arbitrarily soft or it is collinear to
another particle. As an example, the cross section for producing any
configuration of n partons will lead to an infinite integral, whereas
a finite result will be obtained for the cross section for producing n
deposits of energy (or jets, see Sec. 9.3.1.1), each above some energy
threshold and well separated from each other in angle.

LO calculations can be carried out for 2 → n processes with
n . 6−10. The exact upper limit depends on the process, the method
used to evaluate the matrix elements (recursive methods are more
efficient), and the extent to which the phase-space integration can be
optimized to work around the large variations in the values of the
matrix elements.

NLO. Given an observable that is non-zero starting from n final-state
particles, its prediction at NLO involves supplementing the LO result,
Eq. (9.17), with the 2 → (n + 1)-particle squared tree-level matrix
element (|M2

n+1|), and the interference of an 2 → n tree-level and
2 → n 1-loop amplitude (2Re(MnM∗

n,1−loop)),

σNLO
O =

σLO
O + αn−1

s (µ2
R)

∫

dΦn+1|M2
n+1(p1, . . . , pn+1)| On+1(p1, . . . , pn+1)

+ αn−1
s (µ2

R)

∫

dΦn 2Re [ Mn(p1, . . . , pn)M∗
n,1−loop(p1, . . . , pn) ]

×On(p1, . . . , pn) . (9.18)

Relative to LO calculations, two important issues appear in the NLO
calculations. Firstly, the extra complexity of loop-calculations relative
to tree-level calculations means that their automation has been
achieved only in recent years (see below). Secondly, loop amplitudes
are infinite in 4 dimensions, while tree-level amplitudes are finite,
but their integrals are infinite, due to the divergences of Eq. (9.16).
These two sources of infinities have the same soft and collinear origins
and cancel after the integration only if the observable O satisfies the
property of infrared and collinear safety,

On+1(p1, . . . , ps, . . . , pn) → On(p1, . . . , pn) if ps → 0

On+1(p1, . . . , pa, pb, . . . , pn) → On(p1, . . . , pa + pb, . . . , pn)

if pa || pb . (9.19)

Examples of infrared-safe quantities include event-shape distributions
and jet cross sections (with appropriate jet algorithms, see below).
Unsafe quantities include the distribution of the momentum of
the hardest QCD particle (which is not conserved under collinear
splitting), observables that require the complete absence of radiation
in some region of phase space (e.g. rapidity gaps or 100% isolation
cuts, which are affected by soft emissions), or the particle multiplicity
(affected by both soft and collinear emissions). The non-cancellation of
divergences at NLO due to infrared or collinear unsafety compromises
the usefulness not only of the NLO calculation, but also that of a

LO calculation, since LO is only an acceptable approximation if one
can prove that higher-order terms are smaller. Infrared and collinear
unsafety usually also imply large non-perturbative effects.

As with LO calculations, the phase-space integrals in Eq. (9.18)
are usually carried out by Monte Carlo integration, so as to facilitate
the study of arbitrary observables. Various methods exist to obtain
numerically efficient cancellation among the different infinities. These
include notably dipole [85], FKS [86] and antenna [87] subtraction.

NLO calculations exist for a wide range of processes. Historically,
many calculations have been performed process by process and are
available in dedicated packages, among them NLOJet++ [88] for
e+e−, DIS, and hadron-hadron processes involving just light partons
in the final state, MCFM [89] for hadron-hadron processes with Higgs
or vector bosons and/or heavy quarks in the final state, VBFNLO for
vector-boson fusion, di- and tri-boson processes [90], and the Phox
family [91] for processes with photons in the final state. Many of these
programs are still widely used today.

Recent years have seen very active development of automated
NLO calculational tools, and a number of programs are available
publicly: Madgraph5 aMC@NLO [77] and Helac-NLO [92] provide
full frameworks for NLO calculations; GoSam [93], Njet [94],
OpenLoops [95] calculate just the 1-loop part and are typically
interfaced with an external tool such as Sherpa [96] for combination
with the appropriate tree-level amplitudes. Other tools such as
BlackHat [97] and Recola [98] are not currently available publicly,
though in the case of the former many of its results can be accessed in
the form of ntuples [99] to which a range of cuts, and histogramming
options, as well as PDF and scale-changes, can be applied a posteriori;
an alternative approach for a posteriori PDF and scale change
represents NLO (or NNLO) results, for a given set of cuts and binning,
as an effective coefficient function on a grid in parton momentum
fractions and factorization scales [100–103].

In some cases the above programs (or development versions of
them) can be used to calculate also NLO electroweak or beyond-
standard-model corrections [104–107]. Electroweak corrections are
especially important for transverse momenta significantly above the W
and Z masses, because they are enhanced by two powers of ln pt/MW
for each power of the electroweak coupling.

The above tools rely in part on a wide array of developments
reviewed in Refs. 83,108. Examples of the most complex processes
for which NLO QCD corrections have been obtained so far include
e+e− → 7 jets [109], pp → W + 5 jets [110] and pp → 5 jets [111].

NNLO. Conceptually, NNLO and NLO calculations are similar,
except that one must add a further order in αs, consisting of: the
squared (n + 2)-parton tree-level amplitude, the interference of the
(n + 1)-parton tree-level and 1-loop amplitudes, the interference of the
n-parton tree-level and 2-loop amplitudes, and the squared n-parton
1-loop amplitude.

Each of these elements involves large numbers of soft and collinear
divergences, satisfying relations analogous to Eq. (9.16) that now
involve multiple collinear or soft particles and higher loop orders (see
e.g. Refs. [112–114]). Arranging for the cancellation of the divergences
after numerical Monte Carlo integration has been one of the significant
challenges of NNLO calculations, as has the determination of the
relevant 2-loop amplitudes. For the cancellations of divergences a wide
range of methods has been developed. Some of them [115–119] retain
the approach, inherent in NLO methods, of directly combining the
separate loop and tree-level amplitudes. Others combine a suitably
chosen, partially inclusive 2 → n NNLO calculation with a fully
differential 2 → n + 1 NLO calculation [120–123].

Quite a number of processes have been calculated differentially
at NNLO so far. The state of the art for e+e− collisions is
e+e− → 3 jets [124–126]. For hadron colliders, all 2 → 1 processes
are known, specifically vector boson [127,128] and Higgs boson
production [129,120]. For most of the above calculations there exist
public codes (EERAD3 for e+e−, DYNNLO and FEWZ for W
and Z production, fehipro and HNNLO for Higgs production),
links to which are to be found among the above references.
Substantial progress has been made in the past couple of years
for hadron-collider 2 → 2 processes, with calculations having been
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performed for nearly all relevant processes: HH [54], WH [130] and
ZH [131], ZZ [57] and WW [56], γγ [132], Zγ [133] and Wγ [134],
H+ jet [135,136], W+ jet [121] and Z+ jet [137] (the latter in a leading-
color approximation for the dominant partonic channels), t-channel
single-top [138] (in a so-called “structure-function” approximation)
and tt̄ production [139]. Of notable interest, but still with only
partial NNLO results, is dijet production [140]. One 2 → 3 process
is known at NNLO, Higgs production through vector-boson fusion,
using an approximation in which the two underlying DIS-like q → qV
scatterings are factorised [123].

9.2.3.3. Resummation:

Many experimental measurements place tight constraints on
emissions in the final state. For example, in e+e− events, that (one
minus) the Thrust should be less than some value τ ≪ 1, or in pp → Z
events that the Z-boson transverse momentum should be much smaller
than its mass, pZ

t ≪ MZ . A further example is the production of
heavy particles or jets near threshold (so that little energy is left over
for real emissions) in DIS and pp collisions.

In such cases, the constraint vetoes a significant part of the integral
over the soft and collinear divergence of Eq. (9.16). As a result, there
is only a partial cancellation between real emission terms (subject
to the constraint) and loop (virtual) contributions (not subject to
the constraint), causing each order of αs to be accompanied by a
large coefficient ∼ L2, where e.g. L = ln τ or L = ln(MZ/pZ

t ). One
ends up with a perturbative series whose terms go as ∼ (αsL

2)n.
It is not uncommon that αsL

2 ≫ 1, so that the perturbative series
converges very poorly if at all.∗∗ In such cases one may carry out
a “resummation,” which accounts for the dominant logarithmically
enhanced terms to all orders in αs, by making use of known properties
of matrix elements for multiple soft and collinear emissions, and of
the all-orders properties of the divergent parts of virtual corrections,
following original works such as Refs. 141–150 and also through
soft-collinear effective theory [151,152] (cf. also the section on
“Heavy-Quark and Soft-Collinear Effective Theory” in this Review, as
well as Ref. 153).

For cases with double logarithmic enhancements (two powers of
logarithm per power of αs), there are two classification schemes
for resummation accuracy. Writing the cross section including the
constraint as σ(L) and the unconstrained (total) cross section as σtot,
the series expansion takes the form

σ(L) ≃ σtot

∞
∑

n=0

2n
∑

k=0

Rnkαn
s (µ2

R)Lk, L ≫ 1 (9.20)

and leading log (LL) resummation means that one accounts for all
terms with k = 2n, next-to-leading-log (NLL) includes additionally
all terms with k = 2n − 1, etc. Often σ(L) (or its Fourier or Mellin
transform) exponentiates ‡,

σ(L) ≃ σtot exp

[

∞
∑

n=1

n+1
∑

k=0

Gnkαn
s (µ2

R)Lk

]

, L ≫ 1 , (9.21)

where one notes the different upper limit on k (≤ n + 1) compared
to Eq. (9.20). This is a more powerful form of resummation: the G12

term alone reproduces the full LL series in Eq. (9.20). With the form
Eq. (9.21) one still uses the nomenclature LL, but this now means
that all terms with k = n + 1 are included, and NLL implies all terms
with k = n, etc.

∗∗ To be precise one should be aware of two causes of the divergence of
perturbative series. That which interests us here is associated with the
presence of a new large parameter (e.g. ratio of scales). It is distinct
from the “renormalon” induced factorial divergences of perturbation
theory that were discussed above.

‡ Whether or not this happens depends on the quantity being re-
summed. A classic example involves jet rates in e+e− collisions as a
function of a jet-resolution parameter ycut. The logarithms of 1/ycut

exponentiate for the kt (Durham) jet algorithm [154], but not [155] for
the JADE algorithm [156] (both are discussed below in Sec. 9.3.1.1).

For a large number of observables, NLL resummations are
available in the sense of Eq. (9.21) (see Refs. 157–159 and references
therein). NNLL has been achieved for the DY and Higgs-boson pt

distributions [160–163] (also available in the CuTe [164], HRes [165]
and ResBos [166] families of programs and also differentially in
vector-boson decay products [167]) and related variables [168], for
the pt of vector-boson pairs [169], for the back-to-back energy-energy
correlation in e+e− [170], the jet broadening in e+e− collisions [171],
the jet-veto survival probability in Higgs and Z boson production in
pp collisions [172], an event-shape type observable known as the beam
Thrust [173], hadron-collider jet masses in specific limits [174] (see also
Ref. 175), the production of top anti-top pairs near threshold [176–178]
(and references therein), and high-pt W and Z production [179].
Automation of NNLL jet-veto resummations for different processes
has been achieved in Ref. 180 (cf. also the NLL automation in
Ref. 181), while automation for a certain class of e+e− observables
has been achieved in Ref. 182. The parts believed to be dominant
in the N3LL resummation are available for the Thrust variable,
C-parameter and heavy-jet mass in e+e− annihilations [183–185]
(confirmed for Thrust at NNLL in Ref. 186), and full N3LL has been
achieved for Higgs- and vector-boson production near threshold [187].
An extensive discussion of jet masses for heavy-quark induced jets
has been given in Ref. 188. Recently, there has also been progress
in resummed calculations for jet substructure, whose observables
involve more complicated definitions than is the case for standard
resummations [189–193]. The inputs and methods involved in these
various calculations are somewhat too diverse to discuss in detail
here, so we recommend that the interested reader consult the original
references for further details.

9.2.3.4. Fragmentation functions:

Since the parton-hadron transition is non-perturbative, it is not
possible to perturbatively calculate quantities such as the energy-
spectra of specific hadrons in high-energy collisions. However, one
can factorize perturbative and non-perturbative contributions via the
concept of fragmentation functions. These are the final-state analogue
of the parton distribution functions that are used for initial-state
hadrons. Like parton distribution functions, they depend on a
(fragmentation) factorization scale and satisfy a DGLAP evolution
equation.

It should be added that if one ignores the non-perturbative
difficulties and just calculates the energy and angular spectrum of
partons in perturbative QCD with some low cutoff scale ∼ Λ (using
resummation to sum large logarithms of

√
s/Λ), then this reproduces

many features of the corresponding hadron spectra [194]. This is
often taken to suggest that hadronization is “local”, in the sense
it mainly involves partons that are close both in position and in
momentum.

Section 20 of this Review provides further information (and
references) on these topics, including also the question of heavy-quark
fragmentation.

9.2.3.5. Parton-shower Monte Carlo generators:

Parton-shower Monte Carlo (MC) event generators like PYTHIA
[195–197], HERWIG [198–200] and SHERPA [96] provide fully
exclusive simulations of QCD events.† Because they provide access to
“hadron-level” events, they are a crucial tool for all applications that
involve simulating the response of detectors to QCD events. Here we
give only a brief outline of how they work and refer the reader to
Sec. 41 and Ref. 202 for a full overview.

The MC generation of an event involves several stages. It starts
with the random generation of the kinematics and partonic channels
of whatever hard scattering process the user has requested at some
high scale Q0 (for complex processes, this may be carried out by an
external program). This is followed by a parton shower, usually based
on the successive random generation of gluon emissions (or g → qq̄
splittings). Each is generated at a scale lower than the previous
emission, following a (soft and collinear resummed) perturbative QCD

† The program ARIADNE [201] has also been widely used for sim-
ulating e+e− and DIS collisions.
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distribution that depends on the momenta of all previous emissions.
Common choices of scale for the ordering of emissions are virtuality,
transverse momentum or angle. Parton showering stops at a scale of
order 1 GeV, at which point a hadronization model is used to convert
the resulting partons into hadrons. One widely-used model involves
stretching a color “string” across quarks and gluons, and breaking
it up into hadrons [203,204]. Another breaks each gluon into a qq̄
pair and then groups quarks and anti-quarks into colorless “clusters”,
which then give the hadrons [198]. For pp and γp processes, modeling
is also needed to treat the collision between the two hadron remnants,
which generates an underlying event (UE), usually implemented via
additional 2 → 2 scatterings (“multiple parton interactions”) at a
scale of a few GeV, following Ref. 205.

A deficiency of the soft and collinear approximations that underlie
parton showers is that they may fail to reproduce the full pattern
of hard wide-angle emissions, important, for example, in many new
physics searches. It is therefore common to use LO multi-parton matrix
elements to generate hard high-multiplicity partonic configurations as
additional starting points for the showering, supplemented with some
prescription (CKKW [206], MLM [207]) for consistently merging
samples with different initial multiplicities.

MCs, as described above, generate cross sections for the requested
hard process that are correct at LO. A wide variety of processes are
available in MC implementations that are correct to NLO, using the
MC@NLO [208] or POWHEG [209] prescriptions, notably through the
Madgraph5 aMC@NLO [77], POWHEGBox [210] and Sherpa [79,211]
programs. Techniques have also been developed recently to combine
NLO plus shower accuracy for different multiplicities of final-state
jets [212]. Building in part on some of that work, several groups have
also obtained NNLO plus shower accuracy for Drell-Yan and Higgs
production [213].

9.2.4. Accuracy of predictions :

Estimating the accuracy of perturbative QCD predictions is not
an exact science. It is often said that LO calculations are accurate
to within a factor of two. This is based on experience with NLO
corrections in the cases where these are available. In processes
involving new partonic scattering channels at NLO and/or large ratios
of scales (such as jet observables in processes with vector bosons, or
the production of high-pt jets containing B-hadrons), the ratio of
the NLO to LO predictions, commonly called the “K-factor”, can be
substantially larger than 2.

For calculations beyond LO, a conservative approach to estimate
the perturbative uncertainty is to take it to be the last known
perturbative order; a more widely used method is to estimate it from
the change in the prediction when varying the renormalization and
factorization scales around a central value Q that is taken close to
the physical scale of the process. A conventional range of variation is
Q/2 < µR, µF < 2Q. This should not be assumed to always estimate
the full uncertainty from missing higher orders, but it does indicate
the size of one important known source of higher-order ambiguity.‡‡

There does not seem to be a broad consensus on whether µR
and µF should be kept identical or varied independently. One
common option is to vary them independently with the restriction
1
2µR < µF < 2µR [221]. This limits the risk of misleadingly small
uncertainties due to fortuitous cancellations between the µF and
µR dependence when both are varied together, while avoiding the
appearance of large logarithms of µ2

R/µ2
F when both are varied

completely independently.

Calculations that involve resummations usually have an additional
source of uncertainty associated with the choice of argument of the

logarithms being resummed, e.g. ln(2
pZ
t

MZ
) as opposed to ln(1

2
pZ
t

MZ
).

In addition to varying renormalization and factorization scales, it is

‡‡ A number of prescriptions also exist for setting the scale auto-
matically, e.g. Refs. 214–217, eliminating uncertainties from scale vari-
ation, though not from the truncation of the perturbative series it-
self. Recently, there have also been studies of how to estimate un-
certainties from missing higher orders that go beyond scale variations
[218,219,220].

therefore also advisable to vary the argument of the logarithm by
a suitable factor in either direction with respect to the “natural”
argument.

The accuracy of QCD predictions is limited also by non-
perturbative corrections, which typically scale as a power of Λ/Q.
For measurements that are directly sensitive to the structure of the
hadronic final state, the corrections are usually linear in Λ/Q. The
non-perturbative corrections are further enhanced in processes with a
significant underlying event (i.e. in pp and pp̄ collisions) and in cases
where the perturbative cross sections fall steeply as a function of pt or
some other kinematic variable, for example in inclusive jet spectra or
dijet mass spectra.

Non-perturbative corrections are commonly estimated from the
difference between Monte Carlo events at the parton level and
after hadronization. An issue to be aware of with this procedure is
that “parton level” is not a uniquely defined concept. For example,
in an event generator it depends on a (somewhat arbitrary and
tunable) internal cutoff scale that separates the parton showering
from the hadronization. In contrast no such cutoff scale exists
in a NLO or NNLO partonic calculation. For this reason there
are widespread reservations as to the appropriateness of deriving
hadronization corrections from a Monte Carlo program and then
applying them to NLO or NNLO predictions. There exist alternative
methods for estimating hadronization corrections, which attempt to
analytically deduce non-perturbative effects in one observable based on
measurements of other observables (see the reviews [23,222]). While
they directly address the problem of different possible definitions of
parton level, it should also be said that they are far less flexible than
Monte Carlo programs and not always able to provide equally good
descriptions of the data.

9.3. Experimental studies of QCD

Since we are not able to directly measure partons (quarks or
gluons), but only hadrons and their decay products, a central issue
for every experimental study of perturbative QCD is establishing
a correspondence between observables obtained at the partonic and
the hadronic level. The only theoretically sound correspondence is
achieved by means of infrared and collinear safe quantities, which
allow one to obtain finite predictions at any order of perturbative
QCD.

As stated above, the simplest case of infrared- and collinear-safe
observables are total cross sections. More generally, when measuring
fully inclusive observables, the final state is not analyzed at all
regarding its (topological, kinematical) structure or its composition.
Basically the relevant information consists in the rate of a process
ending up in a partonic or hadronic final state. In e+e− annihilation,
widely used examples are the ratios of partial widths or branching
ratios for the electroweak decay of particles into hadrons or leptons,
such as Z or τ decays, (cf. Sec. 9.2.1). Such ratios are often favored
over absolute cross sections or partial widths because of large
cancellations of experimental and theoretical systematic uncertainties.
The strong suppression of non-perturbative effects, O(Λ4/Q4), is one
of the attractive features of such observables, however, at the same
time the sensitivity to radiative QCD corrections is small, which for
example affects the statistical uncertainty when using them for the
determination of the strong coupling constant. In the case of τ decays
not only the hadronic branching ratio is of interest, but also moments
of the spectral functions of hadronic tau decays, which sample different
parts of the decay spectrum and thus provide additional information.
Other examples of fully inclusive observables are structure functions
(and related sum rules) in DIS. These are extensively discussed in
Sec. 19 of this Review.

On the other hand, often the structure or composition of the
final state are analyzed and cross sections differential in one or more
variables characterizing this structure are of interest. Examples are
jet rates, jet substructure, event shapes or transverse momentum
distributions of jets or vector bosons in hadron collisions. The case of
fragmentation functions, i.e. the measurement of hadron production as
a function of the hadron momentum relative to some hard scattering
scale, is discussed in Sec. 20 of this Review.
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It is worth mentioning that, besides the correspondence between
the parton and hadron level, also a correspondence between the
hadron level and the actually measured quantities in the detector
has to be established. The simplest examples are corrections for
finite experimental acceptance and efficiencies. Whereas acceptance
corrections essentially are of theoretical nature, since they involve
extrapolations from the measurable (partial) to the full phase space,
other corrections such as for efficiency, resolution and response, are
of experimental nature. For example, measurements of differential
cross sections such as jet rates require corrections in order to relate,
e.g. the energy deposits in a calorimeter to the jets at the hadron
level. Typically detector simulations and/or data-driven methods are
used in order to obtain these corrections. Care should be taken here
in order to have a clear separation between the parton-to-hadron
level and hadron-to-detector level corrections. Finally, for the sake
of an easy comparison to the results of other experiments and/or
theoretical calculations, it is suggested to provide, whenever possible,
measurements corrected for detector effects and/or all necessary
information related to the detector response (e.g. the detector
response matrix).

9.3.1. Hadronic final-state observables :

9.3.1.1. Jets:

In hard interactions, final-state partons and hadrons appear
predominantly in collimated bunches, which are generically called jets.
To a first approximation, a jet can be thought of as a hard parton that
has undergone soft and collinear showering and then hadronization.
Jets are used both for testing our understanding and predictions of
high-energy QCD processes, and also for identifying the hard partonic
structure of decays of massive particles like top quarks.

In order to map observed hadrons onto a set of jets, one uses a jet

definition. The mapping involves explicit choices: for example when a
gluon is radiated from a quark, for what range of kinematics should
the gluon be part of the quark jet, or instead form a separate jet?
Good jet definitions are infrared and collinear safe, simple to use in
theoretical and experimental contexts, applicable to any type of inputs
(parton or hadron momenta, charged particle tracks, and/or energy
deposits in the detectors) and lead to jets that are not too sensitive to
non-perturbative effects.

An extensive treatment of the topic of jet definitions is given in
Ref. 223 (for e+e− collisions) and Refs. [224–226]. Here we briefly
review the two main classes: cone algorithms, extensively used at
older hadron colliders, and sequential recombination algorithms, more
widespread in e+e− and ep colliders and at the LHC.

Very generically, most (iterative) cone algorithms start with some
seed particle i, sum the momenta of all particles j within a cone
of opening-angle R, typically defined in terms of (pseudo-)rapidity
and azimuthal angle. They then take the direction of this sum as a
new seed and repeat until the cone is stable, and call the contents of
the resulting stable cone a jet if its transverse momentum is above
some threshold pt,min. The parameters R and pt,min should be chosen
according to the needs of a given analysis.

There are many variants of cone algorithm, and they differ in the
set of seeds they use and the manner in which they ensure a one-to-one
mapping of particles to jets, given that two stable cones may share
particles (“overlap”). The use of seed particles is a problem w.r.t.
infrared and collinear safety, and seeded algorithms are generally not
compatible with higher-order (or sometimes even leading-order) QCD
calculations, especially in multi-jet contexts, as well as potentially
subject to large non-perturbative corrections and instabilities. Seeded
algorithms (JetCLU, MidPoint, and various other experiment-specific
iterative cone algorithms) are therefore to be deprecated. A modern
alternative is to use a seedless variant, SISCone [227].

Sequential recombination algorithms at hadron colliders (and in

DIS) are characterized by a distance dij = min(k
2p
t,i , k

2p
t,j)∆

2
ij/R2

between all pairs of particles i, j, where ∆ij is their separation
in the rapidity-azimuthal plane, kt,i is the transverse momentum

w.r.t. the incoming beams, and R is a free parameter. They also

involve a “beam” distance diB = k
2p
t,i . One identifies the smallest

of all the dij and diB , and if it is a dij , then i and j are merged
into a new pseudo-particle (with some prescription, a recombination
scheme, for the definition of the merged four-momentum). If the
smallest distance is a diB , then i is removed from the list of particles
and called a jet. As with cone algorithms, one usually considers
only jets above some transverse-momentum threshold pt,min. The
parameter p determines the kind of algorithm: p = 1 corresponds
to the (inclusive-)kt algorithm [154,228,229], p = 0 defines the
Cambridge-Aachen algorithm [230,231], while for p = −1 we have the
anti-kt algorithm [232]. All these variants are infrared and collinear
safe to all orders of perturbation theory. Whereas the former two lead
to irregularly shaped jet boundaries, the latter results in cone-like
boundaries. The anti-kt algorithm has become the de-facto standard
for the LHC experiments.

In e+e− annihilations the kt algorithm [154] uses yij =

2 min(E2
i , E2

j )(1 − cos θij)/Q2 as distance measure and repeatedly
merges the pair with smallest yij , until all yij distances are above some
threshold ycut, the jet resolution parameter. The (pseudo)-particles
that remain at this point are called the jets. Here it is ycut (rather
than R and pt,min) that should be chosen according to the needs of the
analysis. As mentioned earlier, the kt algorithm has the property that
logarithms ln(1/ycut) exponentiate in resummation calculations. This
is one reason why it is preferred over the earlier JADE algorithm [156],
which uses the distance measure yij = 2 Ei Ej (1 − cos θij)/Q2. Note
that other variants of sequential recombination algorithms for e+e−

annhilations, using different definitions of the resolution measure yij ,
exhibit much larger sensitivities to fragmentation and hadronization
effects than the kt and JADE algorithms [233].

Efficient implementations of the above algorithms are available
through the FastJet package [234].

9.3.1.2. Event Shapes:

Event-shape variables are functions of the four momenta of the
particles in the final state and characterize the topology of an event’s
energy flow. They are sensitive to QCD radiation (and correspondingly
to the strong coupling) insofar as gluon emission changes the shape of
the energy flow.

The classic example of an event shape is the Thrust [235,236] in
e+e− annihilations, defined as

τ̂ = max
~nτ

∑

i |~pi · ~nτ |
∑

i |~pi|
, (9.22)

where ~pi are the momenta of the particles or the jets in the final-state
and the maximum is obtained for the Thrust axis ~nτ . In the Born
limit of the production of a perfect back-to-back qq̄ pair the limit
τ̂ → 1 is obtained, whereas a perfectly spherical many-particle
configuration leads to τ̂ → 1/2. Further event shapes of similar nature
have been extensively measured at LEP and at HERA, and for
their definitions and reviews we refer to Refs. 1,4,222,237,238. The
energy-energy correlation function [239], namely the energy-weighted
angular distribution of produced hadron pairs, and its associated
asymmetry are further shape variables that have been studied in detail
at e+e− colliders. For hadron colliders the appropriate modification
consists in only taking the transverse momentum component [240].
More recently, the event shape N-jettiness has been proposed [241],
that measures the degree to which the hadrons in the final state are
aligned along N jet axes or the beam direction. It vanishes in the
limit of exactly N infinitely narrow jets.

Phenomenological discussions of event shapes at hadron colliders can
be found in Refs. [241–243]. Measurements of hadronic event-shape
distributions have been published by CDF [244], ATLAS [245–247]
and CMS [248–250].

Event shapes are used for many purposes. These include measuring
the strong coupling, tuning the parameters of Monte Carlo programs,
investigating analytical models of hadronization and distinguishing
QCD events from events that might involve decays of new particles
(giving event-shape values closer to the spherical limit).
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9.3.1.3. Jet substructure, quark vs. gluon jets:

Jet substructure, which can be resolved by finding subjets or by
measuring jet shapes, is sensitive to the details of QCD radiation in
the shower development inside a jet and has been extensively used
to study differences in the properties of quark and gluon induced
jets, strongly related to their different color charges. In general there
is clear experimental evidence that gluon jets have a softer particle
spectrum and are “broader” than (light-) quark jets, when looking
at observables such as the jet shape Ψ(r/R). This is the fractional
transverse momentum contained within a sub-cone of cone-size r for
jets of cone-size R. It is sensitive to the relative fractions of quark and
gluon jets in an inclusive jet sample and receives contributions from
soft-gluon initial-state radiation and the underlying event. Therefore,
it has been widely employed for validation and tuning of Monte Carlo
models. Furthermore, this quantity turns out to be sensitive to the
modification of the gluon radiation pattern in heavy ion collisions (see
e.g. Ref. 251).

The most recent jet shape measurements using proton-proton
collision data have been presented for inclusive jet samples [252,253]
and for top-quark production [254]. Further discussions, references
and recent summaries can be found in Refs. 238, 255, 256 and Sec. 4
of Ref. 257.

The use of jet substructure has also been investigated in order to
distinguish QCD jets from jets that originate from hadronic decays
of boosted massive particles (high-pt electroweak bosons, top quarks
and hypothesized new particles). Recently, a considerable number of
experimental studies have been carried out with Tevatron and LHC
data, in order to investigate on the performance of the proposed
algorithms for resolving jet substructure and to apply them to searches
for new physics. For reviews of this rapidly growing field, see sec. 5.3
of Ref. 224, Ref. 226 and Refs. [257–260].

9.3.2. QCD measurements at colliders :

There exists a wealth of data on QCD-related measurements in
e+e−, ep, pp, and pp̄ collisions, to which a short overview like this
would not be able to do any justice. Extensive reviews of the subject
have been published in Refs. 237, 238 for e+e− colliders and in
Ref. 261 for ep scattering, whereas for hadron colliders comprehensive
overviews are given in, e.g., Refs. 225, 256 and Refs. [262–264].

Below we concentrate our discussion on measurements that are
most sensitive to hard QCD processes, with focus on jet production.

9.3.2.1. e+e− colliders: Analyses of jet production in e+e− collisions
are mostly based on data from the JADE experiment at center-of-mass
energies between 14 and 44 GeV, as well as on LEP collider data at
the Z resonance and up to 209 GeV. They cover the measurements
of (differential or exclusive) jet rates (with multiplicities typically up
to 4, 5 or 6 jets), the study of 3-jet events and particle production
between the jets as a tool for testing hadronization models, as well as
4-jet production and angular correlations in 4-jet events.

Event-shape distributions from e+e− data have been an important
input to the tuning of parton shower MC models, typically matched to
matrix elements for 3-jet production. In general these models provide
good descriptions of the available, highly precise data. Especially for
the large LEP data sample at the Z peak, the statistical uncertainties
are mostly negligible and the experimental systematic uncertainties
are at the percent level or even below. These are usually dominated
by the uncertainties related to the MC model dependence of the
efficiency and acceptance corrections (often referred to as “detector
corrections”).

Observables measured in e+e− collisions have been used for
determinations of the strong coupling constant (cf. Section 9.4
below) and for putting constraints on the QCD color factors (cf.
Sec. 9.1 for their definitions), thus probing the non-abelian nature
of QCD. Typically, cross sections can be expressed as functions of
these color factors, for example σ = f(αsCF , CA/CF , nfTR/CF ).
Angular correlations in 4-jet events give sensitivity at leading order.
Some sensitivity to these color factors, although only at NLO, is
also obtained from event-shape distributions. Scaling violations of
fragmentation functions and the different subjet structure in quark and
gluon induced jets also give access to these color factors. In order to

extract absolute values, e.g. for CF and CA, certain assumptions have
to be made for other parameters, such as TR, nf or αs, since typically
only combinations (ratios, products) of all the relevant parameters
appear in the perturbative predictions. A compilation of results [238]
quotes world average values of CA = 2.89 ± 0.03(stat) ± 0.21(syst)
and CF = 1.30 ± 0.01(stat) ± 0.09(syst), with a correlation coefficient
of 82%. These results are in perfect agreement with the expectations
from SU(3) of CA = 3 and CF = 4/3.

9.3.2.2. DIS and photoproduction: Multi-jet production in ep
collisions at HERA, both in the DIS and photoproduction regime,
allows for tests of QCD factorization (one initial-state proton and
its associated PDF versus the hard scattering which leads to high-pt

jets) and NLO calculations which exist for 2- and 3-jet final states.
Sensitivity is also obtained to the product of the coupling constant
and the gluon PDF. Experimental uncertainties of the order of
5–10% have been achieved, mostly dominated by the jet energy
scale, whereas statistical uncertainties are negligible to a large extent.
For comparison to theoretical predictions, at large jet pt the PDF
uncertainty dominates the theoretical uncertainty (typically of order
5–10%, in some regions of phase space up to 20%), therefore jet
observables become useful inputs for PDF fits.

In general, the data are well described by NLO matrix-element
calculations, combined with DGLAP evolution equations, in particular
at large Q2 and central values of jet pseudo-rapidity. At low values
of Q2 and x, in particular for large jet pseudo-rapidities, certain
features of the data have been interpreted as requiring BFKL-type
evolution, though the predictions for such schemes are still limited.
It is worth noting that there is lack of consensus throughout the
community regarding this need of BFKL-evolution at currently probed
x, Q2 values, and an alternative approach [265] that implements the
merging of LO matrix-element based event generation with a parton
shower (using the SHERPA framework) successfully describes the data
in all kinematical regions, including the low Q2, low x domain. At
moderately small x values, it should perhaps not be surprising that
the BFKL approach and fixed-order matrix-element merging with
parton showers may both provide adequate descriptions of the data,
because some part of the multi-parton phase space that they model is
common to both approaches.

In the case of photoproduction, a wealth of measurements with low
pt jets were performed in order to constrain the photon PDFs. The
uncertainties related to these photon PDFs play a minor role at high
jet pt, which has allowed for precise tests of pQCD calculations.

A few examples of recent measurements can be found in Refs. 266–
274 for DIS and in Refs. 275–279 for photoproduction.

9.3.2.3. Hadron colliders: The spectrum of observables and the
number of measurements performed at hadron colliders is enormous,
probing many regions of phase space and covering a huge range of
cross sections, as illustrated in Fig. 9.1 for the case of the ATLAS
and CMS experiments at the LHC. For the sake of brevity, in the
following only certain classes of those measurements will be discussed,
that allow addressing particular aspects of the various QCD studies
performed. Most of our discussion will focus on recent LHC results,
which are available for center-of-mass energies of 2.76, 7 and 8 TeV
with integrated luminosities of up to 20 fb−1. Generally speaking,
besides representing a general test of the standard model and QCD
in particular, these measurements serve several purposes, such as: (i)
probing pQCD and its various approximations and implementations
in MC models, in order to quantify the order of magnitude of not
yet calculated contributions and to gauge their precision when used
as background predictions, or (ii) extracting/constraining model
parameters such as the strong coupling constant or PDFs.

Among the most important cross sections measured is the inclusive
jet spectrum as a function of the jet transverse energy (Et) or the jet
transverse momentum (pt), for several rapidity regions and for pt up
to 700 GeV at the Tevatron and ∼ 2 TeV at the LHC. It is worth
noting that this upper limit in pt corresponds to a distance scale
of ∼ 10−19 m: no other experiment so far is able to directly probe
smaller distance scales of nature than this measurement. Whereas the
Tevatron measurements (Refs. 282–284) were based on the infrared-



9. Quantum chromodynamics 141

∫
L dt

[fb−1]
Reference

t̄tZ
total

σ = 150.0 + 55.0 − 50.0 ± 21.0 fb (data)
HELAC-NLO (theory) 20.3 ATLAS-CONF-2014-038

t̄tW
total

σ = 300.0 + 120.0 − 100.0 + 70.0 − 40.0 fb (data)
MCFM (theory) 20.3 ATLAS-CONF-2014-038

HVBF
total

σ = 2.43 + 0.6 − 0.55 pb (data)
LHC-HXSWG (theory) 20.3 ATLAS-CONF-2015-007

ZZ
total

σ = 6.7 ± 0.7 + 0.5 − 0.4 pb (data)
MCFM (theory) 4.6 JHEP 03, 128 (2013)

σ = 7.1 + 0.5 − 0.4 ± 0.4 pb (data)
MCFM (theory) 20.3 ATLAS-CONF-2013-020

WZ
total

σ = 19.0 + 1.4 − 1.3 ± 1.0 pb (data)
MCFM (theory) 4.6 EPJC 72, 2173 (2012)

σ = 20.3 + 0.8 − 0.7 + 1.4 − 1.3 pb (data)
MCFM (theory) 13.0 ATLAS-CONF-2013-021

H ggF
total

σ = 23.9 + 3.9 − 3.5 pb (data)
LHC-HXSWG (theory) 20.3 ATLAS-CONF-2015-007

Wt
total

σ = 16.8 ± 2.9 ± 3.9 pb (data)
NLO+NLL (theory) 2.0 PLB 716, 142-159 (2012)

σ = 27.2 ± 2.8 ± 5.4 pb (data)
NLO+NLL (theory) 20.3 ATLAS-CONF-2013-100

WW
total

σ = 51.9 ± 2.0 ± 4.4 pb (data)
MCFM (theory) 4.6 PRD 87, 112001 (2013)

σ = 71.4 ± 1.2 + 5.5 − 4.9 pb (data)
MCFM (theory) 20.3 ATLAS-CONF-2014-033

WW+WZ
total

σ = 68.0 ± 7.0 ± 19.0 pb (data)
MC@NLO (theory) 4.6 JHEP 01, 049 (2015)

tt−chan
total

σ = 68.0 ± 2.0 ± 8.0 pb (data)
NLO+NLL (theory) 4.6 PRD 90, 112006 (2014)

σ = 82.6 ± 1.2 ± 12.0 pb (data)
NLO+NLL (theory) 20.3 ATLAS-CONF-2014-007

t̄t
total

σ = 182.9 ± 3.1 ± 6.4 pb (data)
top++ NNLO+NNLL (theory) 4.6 Eur. Phys. J. C 74: 3109 (2014)

σ = 242.4 ± 1.7 ± 10.2 pb (data)
top++ NNLO+NNLL (theory) 20.3 Eur. Phys. J. C 74: 3109 (2014)

Z
total

σ = 27.94 ± 0.178 ± 1.096 nb (data)
FEWZ+HERAPDF1.5 NNLO (theory) 0.035 PRD 85, 072004 (2012)

W
total

σ = 94.51 ± 0.194 ± 3.726 nb (data)
FEWZ+HERAPDF1.5 NNLO (theory) 0.035 PRD 85, 072004 (2012)

Dijets R=0.4
|y |<3.0, y ∗<3.0

σ = 86.87 ± 0.26 + 7.56 − 7.2 nb (data)
NLOJet++, CT10 (theory) 4.5 JHEP 05, 059 (2014)0.3 < mjj < 5 TeV

Jets R=0.4
|y |<3.0

σ = 563.9 ± 1.5 + 55.4 − 51.4 nb (data)
NLOJet++, CT10 (theory) 4.5 arXiv:1410.8857 [hep-ex]0.1 < pT < 2 TeV

pp
total

σ = 95.35 ± 0.38 ± 1.3 mb (data)
COMPETE RRpl2u 2002 (theory) 8×10−8 Nucl. Phys. B, 486-548 (2014)

σ [pb]
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Figure 9.1: Overview of cross section measurements for a
wide class of processes and observables, as obtained by the
ATLAS [280] and CMS [281] experiments at the LHC, for
centre-of-mass energies of 7 and 8 TeV. Also shown are the
theoretical predictions and their uncertainties.

and collinear-safe kt algorithm in addition to the more widely used
Midpoint and JetCLU algorithms of the past, the LHC experiments
focus on the anti-kt algorithm using various radius parameters. Recent
measurements by ALICE, ATLAS and CMS have been published in
Refs. 285–288. Reviews can be found in, e.g., Refs. 256,289,290 and
a compilation of inclusive jet cross section results is presented in
Fig. 51.1 [291] of this Review.

In general we observe a good description of the data by the NLO
QCD predictions, over about 11 orders of magnitude in cross section.
The experimental systematic uncertainties are dominated by the jet
energy scale uncertainty, quoted to be in the range of a few percent
(see for instance the review in Ref. 292), leading to uncertainties
of ∼ 5 − 30% on the cross section, increasing with pt and rapidity.
The PDF uncertainties dominate the theoretical uncertainty at large
pt and rapidity. In fact, inclusive jet data are important inputs to
global PDF fits (see [293] for a recent review). Constraints on the
PDFs can also be obtained from ratios of inclusive cross sections at
different center-of-mass energies [286]. In general, ratios of jet cross
sections are a means to (at least partially) cancel the jet energy
scale uncertainties and thus provide jet observables with significantly
improved precision.

Dijet events are analyzed in terms of their invariant mass and
angular distributions, which allows for tests of NLO QCD predictions
(see e.g. Refs. [288,294] for recent LHC results), and setting stringent
limits on deviations from the Standard Model, such as quark

compositeness (some examples can be found in Refs. 295–299).
Furthermore, dijet azimuthal correlations between the two leading
jets, normalized to the total dijet cross section, are an extremely
valuable tool for studying the spectrum of gluon radiation in the
event. The azimuthal separation of the two leading jets is sensitive
to multi-jet production, avoiding at the same time large systematic
uncertainties from the jet energy calibration. For example, results
from the Tevatron [300,301] and the LHC [302,303] show that the LO
(non-trivial) prediction for this observable, with at most three partons
in the final state, is not able to describe the data for an azimuthal
separation below 2π/3, where NLO contributions (with 4 partons)
restore the agreement with data. In addition, this observable can be
employed to tune Monte Carlo predictions of soft gluon radiation.

Further examples of dijet observables that probe special corners
of phase space are those which involve forward (large rapidity) jets
and where a large rapidity separation, possibly also a rapidity gap, is
required between the two jets. Reviews of such measurements can be
found in Refs. [256,304], showing that no single prediction is capable
of describing the data in all phase-space regions. In particular, no
conclusive evidence for BFKL effects in these observables has been
established so far.

Beyond dijet final states, measurements of the production of three
or more jets, including cross section ratios, have been performed (see
Refs. [256,305] for recent reviews), as a means of testing perturbative
QCD predictions, determining the strong coupling constant (at NLO
precision so far), and probing/tuning MC models, in particular those
combining multi-parton matrix elements with parton showers.

In terms of precision achieved, measurements of inclusive vector
boson (W, Z) production outperform the jet studies described above
and provide the most precisely determined observables at hadron
colliders so far. This is because the experimental signatures are based
on leptons that are measured much more accurately than jets. At the
LHC [306–310], the dominant uncertainty stems from the luminosity
determination (∼2–4%), while other uncertainties (e.g. statistics,
lepton efficiencies) are controlled at the 1–3% level. The uncertainty
from the acceptance correction of about 1–2% can be reduced by
measuring so-called fiducial cross sections, ie. by applying kinematic
cuts also to the particle level of the theoretical predictions. A further
reduction or even complete elimination of particular uncertainties
(e.g. luminosity) is achieved by measuring cross section ratios (W/Z
or W+/W−) or differential distributions that are normalised to the
inclusive cross section.

On the theory side, as discussed earlier in this review, the
production of these color-singlet states has been calculated up to
NNLO accuracy. Since currently the dominant theoretical uncertainty
(of order 5% and thus similar or larger than the experimental errors)
is related to the choice of PDFs, these data provide useful handles for
PDF determinations.

Further insights are obtained from measurements of differential
vector boson production, as a function of the invariant dilepton mass,
the boson’s rapidity or its transverse momentum. For example, the
dilepton invariant mass distribution has been measured [311–314] for
masses between 15 and 2000 GeV, covering more than 8 orders of
magnitude in cross section. NNLO QCD predictions, together with
modern PDF sets and including higher-order electroweak and QED
final-state radiation corrections, describe the data to within 5–10%
over this large range, whereas NLO predictions show larger deviations,
unless matched to a parton shower.

Similar conclusions can be drawn from the observed rapidity
distribution of the dilepton system or, in the case of W production,
from the observed charged lepton rapidity distribution and its charge
asymmetry. The latter is particularly sensitive to differences among
PDF sets [315], also thanks to the high precision achieved by the
ATLAS and CMS experiments for central rapidity ranges. These
measurements are nicely extended to the very forward region, up to
4.5 in lepton rapidity, by the LHCb experiment.

An overview of recent results can be found in Ref. 256. There one
can also find a discussion of and references to recent LHC results
from studies of the vector boson’s transverse momentum distribution,
pV
t . This observable probes different aspects of higher-order QCD
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effects and is sensitive to jet production in association to the vector
boson, without suffering from the large jet energy scale uncertainties
since there is no explicit jet reconstruction. Whereas in the pV

t region
of several tens to hundreds of GeV the NNLO predictions (that
effectively are of NLO accuracy for this variable) agree with the data
to within about 10%, at transverse momentum below ∼5–10 GeV
the fixed order predictions fail and soft-gluon resummation is needed
to restore the agreement with data. Correspondingly, MC models
implementing parton shower matching to LO or NLO matrix elements
provide good predictions at low and intermediate pV

t , but deviate up
to 40% at high pV

t .

While in principle inclusive and differential photon production
represents a similar tool for studying effects as described above, the
experimental results are less precise than for W and Z production,
related to the greater challenges encountered in photon reconstruction
and purity determination compared to lepton final states.

In terms of complexity, probably the most challenging class of
processes is vector boson (photon, W , Z) production together with
jets. By now the amount of results obtained both at the Tevatron and
at the LHC is so extensive that a comprehensive discussion with a
complete citation list would go much beyond the scope of this Review.
We rather refer to recent summaries such as those in Refs. 256,316
and to previous versions of this Review.

The measurements cover a very large phase space, e.g. with jet
transverse momenta between 30 GeV and ∼ 800 GeV and jet rapidities
up to |y| < 4.4. Jet multiplicities as high as seven jets accompanying
the vector boson have already been probed at the LHC, together with
a substantial number of other kinematical observables, such as angular
correlations among the various jets or among the jets and the vector
boson, or the sum of jet transverse momenta, HT . Whereas the jet pt

and HT distributions are dominated by jet energy scale uncertainties
at levels similar to those discussed above for inclusive jet production,
angular correlations and jet multiplicity ratios have been measured
with a precision of ∼ 10%, see eg. Refs. 317,249.

A general observation is that MC models, which implement a
matching of matrix-element calculations with parton showers, provide
a good description of the data within uncertainties. Also NLO
calculations for up to five jets [110] in addition to the vector boson
are in good agreement with the data over that phase space, where the
calculations are applicable; that is, one can not expect such predictions
to work for, eg., the pt distribution of the n + 1st jet with V + n
jets calculated at NLO. However, with the high statistics available to
and the high precision achieved by the LHC experiments, some more
detailed observations can be made. MC models that implement parton
shower matching to LO matrix elements (LO+PS) tend to overpredict
the data at large jet and/or boson pt, while parton shower matching
to NLO matrix elements gives better agreement. These problems of
LO+PS models are less acute when looking at angular correlations.

Also, electroweak corrections are expected to become more and
more relevant now that the TeV energy range starts to be explored.
For example, such corrections were found [318] to be sizeable (tens of
percent) when studying the ratio (dσγ/dpt)/(dσZ/dpt) in γ (Z)+jet
production, pt being the boson’s transverse momentum, and might
account for (some of) the differences observed in a recent CMS
measurement [319] of this quantity.

The challenges get even more severe in the case of vector boson plus
heavy quark (b, c) production, both because of theoretical issues (an
additional scale is introduced by the heavy quark mass and different
schemes exist for the handling of heavy quarks and their mass effects
in the initial and/or final state) and because of additional experimental
uncertainties related to the heavy-flavour tagging. A recent review of
heavy quark production at the LHC can be found in Ref. 320. There
it is stated that studies of b-jet production with or without associated
W and Z bosons reveal the di-b-jet pt and mass spectra to be well
modelled, within experimental and theoretical uncertainties, by most
generators on the market. However, sizeable differences between data
and predictions are seen in the modelling of events with single b jets,
particularly at large b-jet pt, where gluon splitting processes become
dominant, as also confirmed by studies of b-hadron and b-jet angular
correlations.

A number of interesting developments, in terms of probing higher-
order QCD effects, have recently occurred in the sector of diboson
production, in particular for the WW and γγ cases. Regarding the
former, a disagreement of about 10% between the LHC measurements
and the NLO predictions has led to a number of speculations of
possible new physics effects in this channel. However, the latest CMS
measurement [321], with a relative accuracy of 8%, is in excellent
agreement with a recent NNLO calculation [56], that has an estimated
3% residual uncertainty from missing contributions beyond NNLO.

In the case of diphoton production, ATLAS [322] and CMS [323]
have provided accurate measurements, in particular for phase-space
regions that are sensitive to radiative QCD corrections (multi-jet
production), such as small azimuthal photon separation. While there
are large deviations between data and NLO predictions in this region,
a calculation [132] at NNLO accuracy manages to mostly fill this gap.
This is an interesting example where scale variations can not provide
a reliable estimate of missing contributions beyond NLO, since at
NNLO new channels appear in the initial state (gluon fusion in this
case).

In terms of heaviest particle involved, top-quark production at
the LHC has become an important tool for probing higher-order
QCD calculations, thanks to very impressive achievements both on
the experimental and theoretical side, as extensively summarised in
Ref. 324. Regarding tt̄ production, the most precise inclusive cross
section measurements are achieved using the dilepton (e µ) final state,
with a total uncertainty of 4%. This is of about the same size as the
uncertainty on the most advanced theoretical prediction [55], obtained
at NNLO with additional soft-gluon resummation at NNLL accuracy.
There is excellent agreement between data and QCD prediction.

A large number of differential cross section measurements have
been performed at 7 and 8 TeV centre-of-mass energy, studying
distributions such as the top-quark pt and rapidity, the transverse
momentum and invariant mass of the tt̄ system (probing scales up to
the TeV range), or the number of additional jets. These measurements
have been compared to a wide range of predictions, at fixed order up
to NNLO as well as using LO or NLO matrix elements matched to
parton showers. While in general there is good agreement observed
with data, most MC simulations predict a somewhat harder top-quark
pt distribution than seen in data, an effect that is currently under
investigation.

Thanks to both the precise measurements of and predictions for the
inclusive top-pair cross section, that is sensitive to the strong coupling
constant and the top-quark mass, this observable has been used to
measure the strong coupling constant for the first time at NNLO
accuracy from hadron collider data [325] (cf. Section 9.4 below), as
well as to obtain a measurement of the top-quark’s pole mass without
employing direct reconstruction methods [325,326].

Finally, it is worth mentioning that first steps are being undertaken
towards using the newly found Higgs boson as a new tool for QCD
studies, since Higgs production, dominated by the gluon fusion process,
is subject to very large QCD corrections. First studies of fiducial
and differential cross sections, using the ZZ and γγ decay channels,
have already been performed [327–329], and the current experimental
precision of ∼ 20% or more is expected to be substantially reduced
with the future LHC data.

9.4. Determinations of the strong coupling constant

Beside the quark masses, the only free parameter in the QCD
Lagrangian is the strong coupling constant αs. The coupling constant
in itself is not a physical observable, but rather a quantity defined
in the context of perturbation theory, which enters predictions for
experimentally measurable observables, such as R in Eq. (9.7).

Many experimental observables are used to determine αs.
Considerations in such determinations include:

• The observable’s sensitivity to αs as compared to the experimental
precision. For example, for the e+e− cross section to hadrons
(cf. R in Sec. 9.2.1), QCD effects are only a small correction,
since the perturbative series starts at order α0

s ; 3-jet production
or event shapes in e+e− annihilations are directly sensitive to



9. Quantum chromodynamics 143

αs since they start at order αs; the hadronic decay width of
heavy quarkonia, Γ(Υ → hadrons), is very sensitive to αs since
its leading order term is ∝ α3

s .

• The accuracy of the perturbative prediction, or equivalently of the
relation between αs and the value of the observable. The minimal
requirement is generally considered to be an NLO prediction.
Some observables are predicted to NNLO (many inclusive
observables, 3-jet rates and event shapes in e+e− collisions)
or even N3LO (e+e− hadronic cross section and τ branching
fraction to hadrons). In certain cases, fixed-order predictions
are supplemented with resummation. The precise magnitude of
theory uncertainties is usually estimated as discussed in Sec. 9.2.4.

• The size of non-perturbative effects. Sufficiently inclusive
quantities, like the e+e− cross section to hadrons, have small non-
perturbative contributions ∼ Λ4/Q4. Others, such as event-shape
distributions, have contributions ∼ Λ/Q.

• The scale at which the measurement is performed. An uncertainty
δ on a measurement of αs(Q

2), at a scale Q, translates to an
uncertainty δ′ = (α2

s(M
2
Z)/α2

s(Q
2)) · δ on αs(M

2
Z). For example,

this enhances the already important impact of precise low-Q
measurements, such as from τ decays, in combinations performed
at the MZ scale.

In this review, we update the measurements of αs summarized in
the 2013 edition, and we extract a new world average value of αs(M

2
Z)

from the most significant and complete results available today♯.

We restrict the selection of results from which to determine the
world average value of αs(M

2
Z) to those which are

- published in a peer-reviewed journal,

- based on the most complete perturbative QCD predictions, i.e. to
those using NNLO or higher-order expansions.

This excludes e.g. results from jet production in DIS at HERA
and at hadron colliders, for which calculations are available at NLO
only. These will nevertheless be discussed in this review, as they are
important ingredients for the experimental evidence of the energy
dependence of αs, i.e. for Asymptotic Freedom, one of the key features
of QCD. Note that results which do not include reliable estimates
of experimental, systematic and theoretical uncertainties, which are
based on not commonly accepted procedures like scale optimization,
or which omit discussion or accounting of non-perturbative corrections
and effects, will not be referenced at all in this review.

In order to calculate the world average value of αs(M
2
Z), we apply

an intermediate step of pre-averaging results within certain sub-fields
like e+e− annihilation, DIS and hadronic τ -decays, and calculate
the overall world average from those pre-averages rather than from
individual measurements. This is done because in most sub-fields
one observes that different determinations of the strong coupling
from substantially similar datasets lead to values of αs that are only
marginally compatible with each other, or with the final world average
value, which presumably is a reflection of the challenges of evaluating
and including appropriate systematic uncertainties.

So for each sub-field, the unweighted average of all selected results
is taken as the pre-average value of αs(M

2
Z), and the unweighted

average of the quoted uncertainties is assigned to be the respective
overall error of this pre-average. However, if this error appears to be
smaller than the unweighted standard deviation - i.e. the spread - of
the results, the standard deviation is taken as the overall uncertainty
instead. This is done in order to arrive at an unbiased estimator of
the average value of αs(M

2
Z) from this sub-field, and to avoid that

singular, optimistic estimates of systematic uncertainties dominate the
field if these are not backed up by a broader consensus †.

Assuming that the resulting pre-averages are largely independent
of each other, we determine the final world average value using the
method of ‘χ2 averaging’, as proposed, e.g., in Ref. 333, in order

♯ The time evolution of αs combinations can be followed by consult-
ing Refs. [330–332] as well as earlier editions of this Review.

† In most practical cases, this procedure arrives at similar values as
obtained from the ‘range averaging’ method which we used in previous
Reviews, while it avoids potential shortcomings and biases of the latter.

to treat cases of possible (unknown) correlations as well as possibly
underestimated systematic uncertainties in a meaningful and well
defined manner: the central value is determined as the weighted
average of the different input values. An initial uncertainty of the
central value is determined treating the uncertainties of all individual
measurements as being uncorrelated and of Gaussian nature, and
the overall χ2 to the central value is calculated. If this initial χ2 is
larger than the number of degrees of freedom, then all individual
uncertainties are enlarged by a common factor such that χ2/d.o.f.
equals unity. If the initial value of χ2 is smaller than the number of
degrees of freedom, an overall correlation coefficient is introduced and
determined by requiring that the total χ2/d.o.f. equals unity. In both
cases, the resulting overall uncertainty of αs is larger than the initial
estimate of the uncertainty.

9.4.1. Hadronic τ decays :
Based on complete N3LO predictions [28], analyses of the τ hadronic
decay width and spectral functions have been performed, leading to
precise determinations of αs at the energy scale of M2

τ [28,334–340].
They are based on different approaches to treat perturbative and
non-perturbative contributions, the impacts of which are a matter of
intense discussions, see e.g. [338] and [341].

In particular, there is a significant difference between results
obtained using fixed-order (FOPT) or contour improved perturbation
theory (CIPT), such that analyses based on CIPT generally arrive at
about 7% larger values of αs(M

2
τ ) than those based on FOPT. When

converted to αs(M
2
Z), the difference is about 2%. This uncertainty

is about 5 times larger than the typically achieved experimental
precision. In addition, most recent results show differences of up to
10% in αs(M

2
τ ) (3% at MZ), between different groups using the same

data sets and perturbative calculations, most likely due to different
treatments of the non-perturbative contributions, c.f. Ref. [340] with
Refs. [338,339].

We determine the pre-average value of αs(M
2
Z) for this sub-field from

studies which employ both, FOPT and CIPT expansions, and which
include the difference among these in the quoted overall uncertainty:
αs(M

2
Z) = 0.1202 ± 0.0019 [28], αs(M

2
Z) = 0.1200 ± 0.0015 [338],

αs(M
2
Z) = 0.1199±0.0015 [339], and αs(M

2
Z) = 0.1165±0.0019 [340].

We also include the result from τ decay and lifetime measurements,
obtained in Sec. Electroweak Model and constraints on New Physics

of the 2013 edition of this Review, αs(M
2
Z) = 0.1193 ± 0.0023. All

these are summarised in Fig. 9.2. Determining the unweighted average
of the central values and their overall uncertainties, we arrive at
αs(M

2
Z) = 0.1192 ± 0.0018 which we will use as the first input for

determining the world average value of αs(M
2
Z). This corresponds to

αs(M
2
τ ) = 0.325 ± 0.015 at the scale of the τ -mass.

9.4.2. Lattice QCD :
There are several current results on αs from lattice QCD, see also
Sec. Lattice QCD in this Review. The HPQCD collaboration [342]
computes Wilson loops and similar short-distance quantities with
lattice QCD and analyzes them with NNLO perturbative QCD.
This yields a value for αs, but the lattice scale must be related
to a physical energy/momentum scale. This is achieved with the
Υ′-Υ mass difference, however, many other quantities could be
used as well [343]. HPQCD obtains αs(M

2
Z) = 0.1184 ± 0.0006,

where the uncertainty includes effects from truncating perturbation
theory, finite lattice spacing and extrapolation of lattice data.
An independent perturbative analysis of a subset of the same
lattice-QCD data yields αs(M

2
Z) = 0.1192 ± 0.0011 [344]. Using

another, independent methodology, the current-current correlator
method, HPQCD obtains αs(M

2
Z) = 0.1182 ± 0.0007 [342,345].

The analysis of Ref. 346, which uses the Schroedinger functional
scheme and avoids the staggered fermion treatment of Ref. 342,
finds αs(M

2
Z) = 0.1205 ± 0.0008 ± 0.0005 +0.0000

−0.0017, where the first
uncertainty is statistical and the others are from systematics. Since
this approach uses a different discretization of lattice fermions and
a different general methodology, it provides an independent cross
check of other lattice extractions of αs. A study of the ETM
collaboration [347] used lattice data with u, d, s and c quarks
in the sea and examined the ghost-gluon coupling, obtaining
αs(M

2
Z) = 0.1196 ± 0.0012. Finally, a determination of αs from the
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QCD static potential [348] results in αs(M
2
Z) = 0.1166+0.0012

−0.0008. The
JLQCD collaboration, in an analysis of Adler functions, has recently
corrected their initial result of αs(M

2
Z) = 0.1181+0.0014

−0.0012 downwards,
by more than 5 standard deviations of their assigned uncertainty, to
αs(M

2
Z) = 0.1118+0.0016

−0.0017 [349]. For this and other reasons discussed
in [350], we do not include this result in our determination of the
average lattice result.

A summary of the results discussed above is given in Fig. 9.2. They
average, applying the method of taking the unweighted averages of
the central values and their quoted uncertainties at face value, to
αs(M

2
Z) = 0.1188± 0.0011, which we take as our second result for the

determination of the world average value of αs. This compares well to
a similar compilation and summary provided by the FLAG Working
Group [350], suggesting αs(M

2
Z) = 0.1184 ± 0.0012 as the overall

average of lattice determinations of αs. Both these error estimates are
more conservative than the one (±0.0005) we used in our previous
Review where we applied the χ2 averaging method.

9.4.3. Deep inelastic lepton-nucleon scattering (DIS) :
Studies of DIS final states have led to a number of precise
determinations of αs: a combination [351] of precision measurements
at HERA, based on NLO fits to inclusive jet cross sections in
neutral current DIS at high Q2, provides combined values of αs

at different energy scales Q, as shown in Fig. 9.3, and quotes a
combined result of αs(M

2
Z) = 0.1198 ± 0.0032. A more recent study

of multijet production [352], based on improved reconstruction
and data calibration, confirms the general picture, albeit with a
somewhat smaller value of αs(M

2
Z) = 0.1165 ± 0.0039, still in NLO.

An evaluation of inclusive jet production, including approximate
NNLO contributions [353], reduces the theoretical prediction for jet
production in DIS, improves the description of the final HERA data
in particular at high photon virtuality Q2 and increases the central fit
value of the strong coupling constant.

Another class of studies, analyzing structure functions in NNLO
QCD (and partly beyond), provide results which serve as relevant
inputs for the world average of αs. Most of these studies do not,
however, explicitly include estimates of theoretical uncertainties when
quoting fit results of αs. In such cases we add, in quadrature, half
of the difference between the results obtained in NNLO and NLO
to the quoted errors: A combined analysis of non-singlet structure
functions from DIS [354], based on QCD predictions up to N3LO
in some of its parts, results in αs(M

2
Z) = 0.1141 ± 0.0022 (BBG).

Studies of singlet and non-singlet structure functions, based on NNLO
predictions, result in αs(M

2
Z) = 0.1134 ± 0.0025 [355] (ABM) and

in αs(M
2
Z) = 0.1158 ± 0.0036 [356] (JR). The MSTW group [357],

also including data on jet production at the Tevatron, obtains,
at NNLO♯♯, αs(M

2
Z) = 0.1171 ± 0.0024. A recent update of this

analysis, also including hadron collider data, determined a new
set of parton density functions (MMHT2014) [358], together with
αs(M

2
Z) = 0.1172 ± 0.0013. The NNPDF group [359] presented a

result, αs(M
2
Z) = 0.1173 ± 0.0011, which is in line with the one from

the MMHT group, including rather small experimental and theoretical
uncertainties of only 6 and 9 per-mille, respectively.

We note that criticism has been expressed on some of the above
extractions. Among the issues raised, we mention the neglect of singlet
contributions at x ≥ 0.3 in pure non-singlet fits [360], the impact and
detailed treatment of particular classes of data in the fits [360,361],
possible biases due to insufficiently flexible parametrizations of the
PDFs [362] and the use of a fixed-flavor number scheme [363,364].

Summarizing the results from world data on structure functions,
taking the unweighted average of the central values and errors
of all selected results, leads to a pre-average value of αs(M

2
Z) =

0.1156± 0.0021, see Fig. 9.2.

♯♯ Note that for jet production at a hadron collider, only NLO pre-
dictions are available, while for the structure functions full NNLO was
utilized.

9.4.4. Heavy quarkonia decays :
The most recent extraction of the strong coupling constant from an
analysis of radiative Υ decays [365] resulted in αs(M

2
Z) = 0.119+0.006

−0.005.
This determination is based on QCD at NLO only, so it will not
be considered for the final extraction of the world average value of
αs; it is, however, an important ingredient for the demonstration of
Asymptotic Freedom as given in Fig. 9.3.

9.4.5. Hadronic final states of e
+

e
− annihilations :

Re-analyses of event shapes in e+e− annihilation, measured around
the Z peak and at LEP2 center-of-mass energies up to 209
GeV, using NNLO predictions matched to NLL resummation and
Monte Carlo models to correct for hadronization effects, resulted
in αs(M

2
Z) = 0.1224 ± 0.0039 (ALEPH) [366], with a dominant

theoretical uncertainty of 0.0035, and in αs(M
2
Z) = 0.1189 ± 0.0043

(OPAL) [367]. Similarly, an analysis of JADE data [368] at center-of-
mass energies between 14 and 46 GeV gives αs(M

2
Z) = 0.1172±0.0051,

with contributions from hadronization model and from perturbative
QCD uncertainties of 0.0035 and 0.0030, respectively. Precise
determinations of αs from 3-jet production alone, in NNLO, resulted
in αs(M

2
Z) = 0.1175 ± 0.0025 [369] from ALEPH data and in

αs(M
2
Z) = 0.1199 ± 0.0059 [370] from JADE. These results are

summarized in the upper half of Fig. 9.2(d).

Another class of αs determinations is based on analytic calculations
of non-perturbative and hadronization effects, rather than on Monte
Carlo models [371–374], using methods like power corrections,
factorization of soft-collinear effective field theory, dispersive models
and low scale QCD effective couplings. In these studies, the world data
on Thrust distributions, or - most recently - C-parameter distributions,
are analysed and fitted to perturbative QCD predictions in NNLO
matched with resummation of leading logs up to N3LL accuracy,
see Sec. 9.2.3.3. The results are αs(M

2
Z) = 0.1164+0.0028

−0.0024 [371],

αs(M
2
Z) = 0.1135 ± 0.0011 [372] and αs(M

2
Z) = 0.1137+0.0034

−0.0027 [373]

from Thrust, and αs(M
2
Z) = 0.1123± 0.0015 [374] from C-parameter.

They are also displayed in Fig. 9.2.

Not to be included in the computation of the world average
but worth mentioning are a computation of the NLO corrections
to 5-jet production and comparison to the measured 5-jet rates at
LEP [375], giving αs(M

2
Z) = 0.1156+0.0041

−0.0034, and a computation of
non-perturbative and perturbative QCD contributions to the scale
evolution of quark and gluon jet multiplicities, including resummation,
resulting in αs(M

2
Z) = 0.1199± 0.0026 [376].

We note that there is criticism on both classes of αs extractions
described above: those based on corrections of non-perturbative
hadronization effects using QCD-inspired Monte Carlo generators
(since the parton level of a Monte Carlo simulation is not defined
in a manner equivalent to that of a fixed-order calculation), as well
as studies based on non-perturbative analytic calculations, as their
systematics have not yet been fully verified. In particular, quoting
rather small overall experimental, hadronization and theoretical
uncertainties of only 2, 5 and 9 per-mille, respectively [372,374],
seems unrealistic and has neither been met nor supported by other
authors or groups.

In view of these open questions, the determination of the unweighted

average and uncertainties is supposed to provide the most appropriate
and unbiased estimate of the average value of αs(M

2
Z) for this

sub-field, which results in αs(M
2
Z) = 0.1169± 0.0034.

9.4.6. Hadron collider results :
Significant determinations of αs from data at hadron colliders, i.e. the
Tevatron and the LHC, are obtained, however mostly still limited to
QCD at NLO. At

√
s = 1.96 TeV,

αs(M
2
Z) = 0.1161+0.0041

−0.0048 and

αs(M
2
Z) = 0.1191+0.0048

−0.0071

result from studies of inclusive jet cross sections [377] and from jet
angular correlations [378], respectively. ATLAS data on inclusive jet
production at

√
s = 7 TeV [379] lead to [380]

αs(M
2
Z) = 0.1151+0.0093

−0.0087 .
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Figure 9.2: Summary of determinations of αs(M
2
Z) from the

six sub-fields discussed in the text. The yellow (light shaded)
bands and dashed lines indicate the pre-average values of each
sub-field. The dotted line and grey (dark shaded) band represent
the final world average value of αs(M

2
Z).

Here, experimental systematics, the choice of jet scale and the
use of different PDFs dominate the large overall uncertainties.
Determinations of αs from CMS data on the ratio of inclusive 3-jet to
2-jet cross sections [381], from inclusive jet production [382] and from
the 3-jet differential cross section [383] quoted values of

αs(M
2
Z) = 0.1148± 0.0014(exp.)+0.0053

−0.0023(theo.) ,

αs(M
2
Z) = 0.1185± 0.0019(exp.)+0.0060

−0.0037(theo.) and

αs(M
2
Z) = 0.1171± 0.0013(exp.)+0.0073

−0.0047(theo.) ,

respectively. Most recently, the ATLAS collaboration reported

αs(M
2
Z) = 0.1173± 0.0010(exp.)+0.0065

−0.0026(theo.) and

αs(M
2
Z) = 0.1195± 0.0018(exp.)+0.0062

−0.0022(theo.)

using the transverse energy-energy correlation function (TEEC) and
its associated azimuthal asymmetry (ATEEC), respectively [247]. All
these results are at NLO only, however they provide valuable new
values of αs at energy scales now extending up to 1.4 TeV. Although
not contributing to the overall world average of αs which we determine
below, it may be worth mentioning that the collider results listed
above average to a value of αs(M

2
Z) = 0.1172± 0.0059.

So far, only one analysis is available which involves the deter-
mination of αs from hadron collider data in NNLO of QCD: from
a measurement of the tt cross section at

√
s = 7 TeV, CMS [325]

determined

αs(M
2
Z) = 0.1151+0.0028

−0.0027 ,

whereby the dominating contributions to the overall error are
experimental (+0.0017

−0.0018), from parton density functions (+0.0013
−0.0011) and

the value of the top quark pole mass (±0.0013).

This latter result will enter our determination of the new
world average of αs, and will thereby open a new sub-field of αs

determinations in this Review. We note, however, that so far there
is only this one result in this sub-field. While there are more recent
measurements of tt cross sections from ATLAS and from CMS, at√

s = 7, 8 and at 13 TeV, none quotes further extractions of αs. A
more reliable result will thus be left to the next Review, however we
note that the most recent measurements of tt cross sections imply
larger values of αs(M

2
Z) than the one which we use, at this time, as

result for this sub-field.

9.4.7. Electroweak precision fit :
The N3LO calculation of the hadronic Z decay width [28] was used in
the latest update of the global fit to electroweak precision data [384],
resulting in

αs(M
2
Z) = 0.1196 ± 0.0030 ,

claiming a negligible theoretical uncertainty. We note that results
from electroweak precision data, however, strongly depend on the
strict validity of Standard Model predictions and the existence of
the minimal Higgs mechanism to implement electroweak symmetry
breaking. Any - even small - deviation of nature from this model
could strongly influence this extraction of αs.

9.4.8. Determination of the world average value of αs(M
2
Z) :

Obtaining a world average value for αs(M
2
Z) is a non-trivial exercise.

A certain arbitrariness and subjective component is inevitable because
of the choice of measurements to be included in the average, the
treatment of (non-Gaussian) systematic uncertainties of mostly
theoretical nature, as well as the treatment of correlations among the
various inputs, of theoretical as well as experimental origin.

We have chosen to determine pre-averages for sub-fields of
measurements which are considered to exhibit a maximum of
independence between each other, considering experimental as well as
theoretical issues. The six pre-averages are summarized in Fig. 9.2.
We recall that these are exclusively obtained from extractions which
are based on (at least) full NNLO QCD predictions, and are published
in peer-reviewed journals at the time of completing this Review.
These pre-averages are then combined to the final world average value
of αs(M

2
Z), using the χ2 averaging method and error treatment as

described above. From these, we determine the new world average
value of

αs(M
2
Z) = 0.1181 ± 0.0011 , (9.23)

with an uncertainty of 0.9 %.∗∗∗ This world average value is in
reasonable agreement with that from the 2013 version of this Review,
which was αs(M

2
Z) = 0.1185 ± 0.0006, however at a somewhat

decreased central value and with an overall uncertainty that has
almost doubled. These changes are mainly due to the following
developments:

- the uncertainty of the combined lattice result, now using the
same averaging procedure as applied to the other sub-fields, is
more conservative than that used in our previous Review, leading
to a larger final uncertainty of the new world average, and to a
reduced fixing power towards the central average value;

- the relatively low value of αs from hadron collider results, which
currently consists of only one measurement of the tt cross section
at

√
s = 7 TeV [325] that is likely to be a fluctuation to the low

side.

For convenience, we also provide the values for ΛMS which
correspond to the new world average:

Λ
(6)

MS
= (89 ± 6) MeV, (9.24a)

∗∗∗ The weighted average, treating all inputs as uncorrelated mea-
surements with Gaussian uncertainties, results in αs(M

2
Z) = 0.11810±

0.00078 with χ2/d.o.f. = 3.7/5. Requiring χ2/d.o.f. to reach unity
calls for an overall correlation factor of 0.28, which increases the over-
all uncertainty to ±0.00114.
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Λ
(5)

MS
= (210 ± 14) MeV, (9.24b)

Λ
(4)

MS
= (292 ± 16) MeV, (9.24c)

Λ
(3)

MS
= (332 ± 17) MeV, (9.24d)

for nf = 6, 5, 4 and 3 quark flavors, which are determined using the
4-loop expression for the running of αs according to Eq. (9.5) and
3-loop matching at the charm-, bottom- and top-quark pole masses
of 1.3, 4.2 and 173 GeV/c2, respectively. Note that for scales below a
few GeV, Eq. (9.5) starts to differ significantly from the exact solution
of the renormalization group equation Eq. (9.3) and the latter is then
to be preferred.

In order to further test and verify the sensitivity of the new
average value of αs(M

2
Z) to the different pre-averages and fields of αs

determinations, we give each of the averages obtained when leaving
out one of the six input values, as well as the respective, initial value
of χ2 :

αs(M
2
Z) = 0.1179± 0.0011 (w/o τ results;

χ2
0/d.o.f. = 3.3/4), (9.25a)

αs(M
2
Z) = 0.1174± 0.0016 (w/o lattice results;

χ2
0/d.o.f. = 2.9/4), (9.25b)

αs(M
2
Z) = 0.1185± 0.0013 (w/o DIS results;

χ2
0/d.o.f. = 2.0/4), (9.25c)

αs(M
2
Z) = 0.1182± 0.0010 (w/o e+e− results;

χ2
0/d.o.f. = 3.5/4), (9.25d)

αs(M
2
Z) = 0.1184± 0.0012 (w/o hadron collider;

χ2
0/d.o.f. = 2.4/4) and (9.25e)

αs(M
2
Z) = 0.1180± 0.0010 (w/o e.w. precision fit;

χ2
0/d.o.f. = 3.4/4). (9.25f)

They are well within the uncertainty of the overall world average
quoted above. Note, however, that the average excluding the lattice
result is no longer as close to the value obtained from lattice alone as
was the case in the 2013 Review, but is now smaller by almost one
standard deviation of its assigned uncertainty.

Notwithstanding the many open issues still present within each
of the sub-fields summarised in this Review, the wealth of available
results provides a rather precise and reasonably stable world average
value of αs(M

2
Z), as well as a clear signature and proof of the energy

dependence of αs, in full agreement with the QCD prediction of
Asymptotic Freedom. This is demonstrated in Fig. 9.3, where results
of αs(Q

2) obtained at discrete energy scales Q, now also including
those based just on NLO QCD, are summarized. Thanks to the results
from the Tevatron and from the LHC, the energy scales at which αs is
determined now extend up to more than 1 TeV♦.
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♦ We note, however, that in many such studies, like those based on
exclusive states of jet multiplicities, the relevant energy scale of the
measurement is not uniquely defined. For instance, in studies of the
ratio of 3- to 2-jet cross sections at the LHC, the relevant scale was
taken to be the average of the transverse momenta of the two leading
jets [381], but could alternatively have been chosen to be the transverse
momentum of the 3rd jet.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (NNNLO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 9.3: Summary of measurements of αs as a function of
the energy scale Q. The respective degree of QCD perturbation
theory used in the extraction of αs is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to leading order; res.
NNLO: NNLO matched with resummed next-to-leading logs;
NNNLO (N3LO): next-to-NNLO).
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354. J. Blümlein, H. Bottcher, and A. Guffanti, Nucl. Phys. B774,

182 (2007).
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361. S. Alekhin, J. Blümlein, and S.Moch, Eur. Phys. J. C71, 1723

(2011).
362. R.D. Ball et al., Phys. Lett. B704, 36 (2011).
363. R.D. Ball et al., Phys. Lett. B723, 330 (2013).
364. R.S. Thorne et al., PoS DIS 2013 (2013) 042.
365. N. Brambilla et al., Phys. Rev. D75, 074014 (2007).
366. G. Dissertori et al., JHEP 0908, 036 (2009).
367. G. Abbiendi et al., Eur. Phys. J. C71, 1733 (2011).
368. S. Bethke et al., [JADE Collab.], Eur. Phys. J. C64, 351 (2009).
369. G. Dissertori et al., Phys. Rev. Lett. 104, 072002 (2010).
370. J. Schieck et al., Eur. Phys. J. C73, 2332 (2013).
371. R.A. Davison and B.R. Webber, Eur. Phys. J. C59, 13 (2009).
372. R. Abbate et al., Phys. Rev. D83, 074021 (2011).
373. T. Gehrmann et al., Eur. Phys. J. C73, 2265 (2013).
374. A.H. Hoang et al., Phys. Rev. D91, 094018 (2015).
375. R. Frederix et al., JHEP 1011, 050 (2010).
376. P. Bolzoni, B.A. Kniehl, and A.V. Kotikov, Nucl. Phys. B875,

18 (2013).
377. M. Abazov et al., [D0 Collab.], Phys. Rev. D80, 111107 (2009).
378. M. Abazov et al., [D0 Collab.], Phys. Lett. B718, 56 (2012).
379. G. Aad et al., [ATLAS Collab.], Phys. Rev. D86, 014022 (2012).
380. B. Malaescu and P. Starovoitov, Eur. Phys. J. C72, 2041

(2012).
381. S. Chatrchyan et al., [CMS Collab.], Eur. Phys. J. C73, 2604

(2013).
382. V. Khachatryan et al., [CMS Collab.], Eur. Phys. J. C75, 288

(2015).
383. V. Khachatryan et al., [CMS Collab.], Eur. Phys. J. C75, 186

(2015).
384. M. Baak et al., [Gfitter group], Eur. Phys. J. C74, 304660

(2014).



10. Electroweak model and constraints on new physics 151

10. ELECTROWEAK MODEL AND CONSTRAINTS ON NEW PHYSICS

Revised November 2015 by J. Erler (U. Mexico) and A. Freitas
(Pittsburgh U.).

10.1 Introduction
10.2 Renormalization and radiative corrections
10.3 Low energy electroweak observables
10.4 W and Z boson physics
10.5 Precision flavor physics
10.6 Experimental results
10.7 Constraints on new physics

10.1. Introduction

The standard model of the electroweak interactions (SM) [1] is
based on the gauge group SU(2) × U(1), with gauge bosons W i

µ,
i = 1, 2, 3, and Bµ for the SU(2) and U(1) factors, respectively, and
the corresponding gauge coupling constants g and g′. The left-handed
fermion fields of the ith fermion family transform as doublets

Ψi =

(
νi

ℓ−i

)
and

(
ui
d′i

)
under SU(2), where d′i ≡

∑
j Vij dj , and V is

the Cabibbo-Kobayashi-Maskawa mixing matrix. [Constraints on V
and tests of universality are discussed in Ref. 2 and in the Section on
“The CKM Quark-Mixing Matrix”. The extension of the formalism to
allow an analogous leptonic mixing matrix is discussed in the Section
on “Neutrino Mass, Mixing, and Oscillations”.] The right-handed
fields are SU(2) singlets. From Higgs and electroweak precision data
it is known that there are precisely three sequential fermion families.

A complex scalar Higgs doublet, φ ≡
(

φ+

φ0

)
, is added to the model

for mass generation through spontaneous symmetry breaking with
potential∗ given by,

V (φ) = µ2φ†φ +
λ2

2
(φ†φ)2. (10.1)

For µ2 negative, φ develops a vacuum expectation value, v/
√

2 = µ/λ,
where v ≈ 246 GeV, breaking part of the electroweak (EW) gauge
symmetry, after which only one neutral Higgs scalar, H , remains
in the physical particle spectrum. In non-minimal models there are
additional charged and neutral scalar Higgs particles [3].

After the symmetry breaking the Lagrangian for the fermion fields,
ψi, is

LF =
∑

i

ψi

(
i 6∂ − mi −

miH

v

)
ψi

− g

2
√

2

∑

i

Ψi γµ (1 − γ5)(T+ W+
µ + T− W−

µ )Ψi

− e
∑

i

Qi ψi γµ ψi Aµ

− g

2 cos θW

∑

i

ψi γµ(gi
V − gi

Aγ5)ψi Zµ . (10.2)

Here θW ≡ tan−1(g′/g) is the weak angle; e = g sin θW is the positron
electric charge; and A ≡ B cos θW + W 3 sin θW is the photon field
(γ). W± ≡ (W 1 ∓ iW 2)/

√
2 and Z ≡ −B sin θW + W 3 cos θW are

the charged and neutral weak boson fields, respectively. The Yukawa
coupling of H to ψi in the first term in LF , which is flavor diagonal in
the minimal model, is gmi/2MW . The boson masses in the EW sector
are given (at tree level, i.e., to lowest order in perturbation theory) by,

MH = λ v, (10.3a)

MW =
1

2
g v =

e v

2 sin θW
, (10.3b)

MZ =
1

2

√
g2 + g′2 v =

e v

2 sin θW cos θW
=

MW

cos θW
, (10.3c)

Mγ = 0. (10.3d)

∗ There is no generally accepted convention to write the quartic
term. Our numerical coefficient simplifies Eq. (10.3a) below and the
squared coupling preserves the relation between the number of external
legs and the power counting of couplings at a given loop order. This
structure also naturally emerges from physics beyond the SM, such as
supersymmetry.

The second term in LF represents the charged-current weak
interaction [4–7], where T+ and T− are the weak isospin raising and
lowering operators. For example, the coupling of a W to an electron
and a neutrino is

− e

2
√

2 sin θW

[
W−

µ e γµ(1 − γ5)ν + W+
µ ν γµ (1 − γ5)e

]
. (10.4)

For momenta small compared to MW , this term gives rise to the
effective four-fermion interaction with the Fermi constant given by
GF /

√
2 = 1/2v2 = g2/8M2

W . CP violation is incorporated into the
EW model by a single observable phase in Vij .

The third term in LF describes electromagnetic interactions
(QED) [8,9], and the last is the weak neutral-current interaction [5–7].
The vector and axial-vector couplings are

gi
V ≡t3L(i) − 2Qi sin2 θW , (10.5a)

gi
A ≡t3L(i), (10.5b)

where t3L(i) is the weak isospin of fermion i (+1/2 for ui and νi;
−1/2 for di and ei) and Qi is the charge of ψi in units of e.

The first term in Eq. (10.2) also gives rise to fermion masses, and
in the presence of right-handed neutrinos to Dirac neutrino masses.
The possibility of Majorana masses is discussed in the Section on
“Neutrino Mass, Mixing, and Oscillations”.

10.2. Renormalization and radiative corrections

In addition to the Higgs boson mass, MH , the fermion masses
and mixings, and the strong coupling constant, αs, the SM has three
parameters. The set with the smallest experimental errors contains
the Z mass∗∗, the Fermi constant, and the fine structure constant,
which will be discussed in turn (if not stated otherwise, the numerical
values quoted in Sec. 10.2–10.5 correspond to the main fit result in
Table 10.6):

The Z boson mass, MZ = 91.1876 ± 0.0021 GeV, has been
determined from the Z lineshape scan at LEP 1 [10]. This value of
MZ corresponds to a definition based on a Breit-Wigner shape with
an energy-dependent width (see the Section on “The Z Boson” in the
Gauge and Higgs Boson Particle Listings of this Review).

The Fermi constant, GF = 1.1663787(6)× 10−5 GeV−2, is derived
from the muon lifetime formula∗∗∗,

~

τµ
=

G2
F m5

µ

192π3
F (ρ)

[
1 + H1(ρ)

α̂(mµ)

π
+ H2(ρ)

α̂2(mµ)

π2

]
, (10.6)

where ρ = m2
e/m2

µ, and where

F (ρ) = 1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ = 0.99981295, (10.7a)

H1(ρ) =
25

8
− π2

2
−

(
9 + 4π2 + 12 lnρ

)
ρ

+ 16π2ρ3/2 + O(ρ2) = −1.80793, (10.7b)

H2(ρ) =
156815

5184
− 518

81
π2 − 895

36
ζ(3) +

67

720
π4 +

53

6
π2 ln 2

− (0.042 ± 0.002)had − 5

4
π2√ρ + O(ρ) = 6.64, (10.7c)

α̂(mµ)−1 = α−1 +
1

3π
ln ρ + O(α) = 135.901 (10.7d)

∗∗ We emphasize that in the fits described in Sec. 10.6 and Sec. 10.7
the values of the SM parameters are affected by all observables that
depend on them. This is of no practical consequence for α and GF ,
however, since they are very precisely known.
∗∗∗ In the spirit of the Fermi theory, we incorporated the small prop-
agator correction, 3/5 m2

µ/M2
W , into ∆r (see below). This is also the

convention adopted by the MuLan collaboration [11]. While this
breaks with historical consistency, the numerical difference was negli-
gible in the past.
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H1 and H2 capture the QED corrections within the Fermi model.
The results for ρ = 0 have been obtained in Refs. 12 and 13,
respectively, where the term in parentheses is from the hadronic
vacuum polarization [13]. The mass corrections to H1 have been
known for some time [14], while those to H2 are more recent [15].
Notice the term linear in me whose appearance was unforeseen and can
be traced to the use of the muon pole mass in the prefactor [15]. The
remaining uncertainty in GF is experimental and has recently been
reduced by an order of magnitude by the MuLan collaboration [11] at
the PSI.

The experimental determination of the fine structure constant,
α = 1/137.035999139(31), is currently dominated by the e± anomalous
magnetic moment [16]. In most EW renormalization schemes, it is
convenient to define a running α dependent on the energy scale of
the process, with α−1 ∼ 137 appropriate at very low energy, i.e.

close to the Thomson limit. (The running has also been observed [17]
directly.) For scales above a few hundred MeV this introduces an
uncertainty due to the low energy hadronic contribution to vacuum
polarization. In the modified minimal subtraction (MS) scheme [18]
(used for this Review), and with αs(MZ) = 0.1182 ± 0.0016 we
have α̂(mτ )−1 = 133.471 ± 0.016 and α̂(MZ)−1 = 127.950 ± 0.017.
(In this Section we denote quantities defined in the modified
minimal subtraction (MS) scheme by a caret; the exception is the
strong coupling constant, αs, which will always correspond to the
MS definition and where the caret will be dropped.) The latter
corresponds to a quark sector contribution (without the top) to the

conventional (on-shell) QED coupling, α(MZ) =
α

1 − ∆α(MZ )
, of

∆α
(5)
had(MZ) = 0.02764 ± 0.00013. These values are updated from

Ref. 19 with ∆α
(5)
had(MZ) moved downwards and its uncertainty

reduced (partly due to a more precise charm quark mass). Its
correlation with the µ± anomalous magnetic moment (see Sec. 10.5),
as well as the non-linear αs dependence of α̂(MZ) and the resulting
correlation with the input variable αs, are fully taken into account
in the fits. This is done by using as actual input (fit constraint)

instead of ∆α
(5)
had(MZ) the low energy contribution by the three

light quarks, ∆α
(3)
had(2.0 GeV) = (58.04 ± 1.10) × 10−4 [20], and by

calculating the perturbative and heavy quark contributions to α̂(MZ)
in each call of the fits according to Ref. 19. Part of the uncertainty
(±0.92 × 10−4) is from e+e− annihilation data below 1.8 GeV and
τ decay data (including uncertainties from isospin breaking effects),
but uncalculated higher order perturbative (±0.41 × 10−4) and
non-perturbative (±0.44 × 10−4) QCD corrections and the MS quark

mass values (see below) also contribute. Various evaluations of ∆α
(5)
had

are summarized in Table 10.1 where the relation† between the MS and
on-shell definitions (obtained using Ref. 23) is given by,

∆α̂(MZ) − ∆α(MZ ) =

α

π

[(
100

27
− 1

6
− 7

4
ln

M2
Z

M2
W

)
+

αs(MZ)

π

(
605

108
− 44

9
ζ(3)

)

+
α2

s(MZ)

π2

(
976481

23328
− 253

36
ζ(2) − 781

18
ζ(3) +

275

27
ζ(5)

)]
=

= 0.007127(2), (10.8)

and where the first entry of the lowest order term is from fermions and
the other two are from W± loops, which are usually excluded from
the on-shell definition. The most recent results typically assume the
validity of perturbative QCD (PQCD) at scales of 1.8 GeV or above,
and are in reasonable agreement with each other. In regions where
PQCD is not trusted, one can use e+e− → hadrons cross-section data
and τ decay spectral functions [31], where the latter derive from
OPAL [34], CLEO [35], ALEPH [36], and Belle [37]. The dominant
e+e− → π+π− cross-section was measured with the CMD-2 [38] and

† In practice, α(MZ) is directly evaluated in the MS scheme using
the FORTRAN package GAPP [21], including the QED contributions
of both leptons and quarks. The leptonic three-loop contribution in
the on-shell scheme has been obtained in Ref. 22.

Reference Result Comment

Geshkenbein, Morgunov [24] 0.02780 ± 0.00006 O(αs) resonance model

Swartz [25] 0.02754 ± 0.00046 use of fitting function

Krasnikov, Rodenberg [26] 0.02737 ± 0.00039 PQCD for
√

s > 2.3 GeV

Kühn & Steinhauser [27] 0.02778 ± 0.00016 full O(α2
s)

for sqrts > 1.8 GeV

Erler [19] 0.02779 ± 0.00020 conv. from MS scheme

Groote et al. [28] 0.02787 ± 0.00032 use of QCD sum rules

Martin et al. [29] 0.02741 ± 0.00019 incl. new BES data

de Troconiz, Yndurain [30] 0.02754 ± 0.00010 PQCD for s > 2 GeV2

Davier et al. [31] 0.02762 ± 0.00011 incl. τ decay data

PQCD for
√

s > 1.8 GeV

Burkhardt, Pietrzyk [32] 0.02750 ± 0.00033 incl. BES/BABAR data,

PQCD for
√

s > 12 GeV

Hagiwara et al. [33] 0.02764 ± 0.00014 incl. new e+e− data,

PQCD for
√

s =

= 2.6−3.7, >11.1 GeV

Jegerlehner [20] 0.02766 ± 0.00018 incl. γ-ρ mixing corrected

τ data, PQCD:√
s = 5.2−9.46, >13 GeV

Table 10.1: Evaluations of the on-shell ∆α
(5)
had(MZ) by different

groups (for a more complete list of evaluations see the 2012
edition of this Review). For better comparison we adjusted central
values and errors to correspond to a common and fixed value
of αs(MZ) = 0.120. References quoting results without the top
quark decoupled are converted to the five flavor definition. Ref. [28]
uses ΛQCD = 380 ± 60 MeV; for the conversion we assumed
αs(MZ) = 0.118 ± 0.003.

SND [39] detectors at the VEPP-2M e+e− collider at Novosibirsk. As
an alternative to cross-section scans, one can use the high statistics
radiative return events at e+e− accelerators operating at resonances
such as the Φ or the Υ(4S). The method [40] is systematics limited
but dominates over the Novosibirsk data throughout. The BaBar
collaboration [41] studied multi-hadron events radiatively returned
from the Υ(4S), reconstructing the radiated photon and normalizing to
µ±γ final states. Their result is higher compared to VEPP-2M, while
the shape and smaller overall cross-section from the π+π− radiative
return results from the Φ obtained by the KLOE collaboration [42]
differ significantly from what is observed by BaBar. The discrepancy
originates from the kinematic region

√
s& 0.6 GeV, and is most

pronounced for
√

s & 0.85 GeV. All measurements including older
data [43] and multi-hadron final states (there are also discrepancies in
the e+e− → 2π+2π− channel [31]) are accounted for and corrections
have been applied for missing channels. Further improvement of this
dominant theoretical uncertainty in the interpretation of precision
data will require better measurements of the cross-section for e+e− →
hadrons below the charmonium resonances including multi-pion and
other final states. To improve the precisions in m̂c(m̂c) and m̂b(m̂b) it
would help to remeasure the threshold regions of the heavy quarks as
well as the electronic decay widths of the narrow cc̄ and bb̄ resonances.

Further free parameters entering into Eq. (10.2) are the quark
and lepton masses, where mi is the mass of the ith fermion ψi.
For the light quarks, as described in the note on “Quark Masses”
in the Quark Listings, m̂u = 2.3+0.7

−0.5 MeV, m̂d = 4.8+0.5
−0.3 MeV,

and m̂s = 95 ± 5 MeV. These are running MS masses evaluated
at the scale µ = 2 GeV. For the heavier quarks we use QCD
sum rule [44] constraints [45] and recalculate their masses in each

call of our fits to account for their direct αs dependence. We find¶,

¶ Other authors [46] advocate to evaluate and quote m̂c(µ = 3 GeV)
instead. We use m̂c(µ = m̂c) because in the global analysis it is conve-
nient to nullify any explicitly mc dependent logarithms. Note also that
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m̂c(µ = m̂c) = 1.265+0.030
−0.038 GeV and m̂b(µ = m̂b) = 4.199±0.023 GeV,

with a correlation of 23%.

There are two recent combinations of measurements of the top quark
“pole” mass (the quotation marks are a reminder that the experiments
do not strictly measure the pole mass and that quarks do not form
asymptotic states), all of them utilizing kinematic reconstruction.
The most recent result, which we will use as our default input value,
mt = 173.34±0.37 stat.±0.52 syst. GeV [48], is internal to the Tevatron
and combines 12 individual CDF and DØ measurements including
Run I and other less precise determinations. The other one, mt =
173.34±0.27 stat.±0.71 syst. GeV [49], is a Tevatron/LHC combination
based on a selection of 11 individual results. The above averages
differ slightly from the value, mt = 173.21± 0.51 stat. ± 0.71 syst. GeV,
which appears in the top quark Listings in this Review and which
is based exclusively on published Tevatron results. We are working,
however, with MS masses in all expressions to minimize theoretical
uncertainties. Such a short distance mass definition (unlike the pole
mass) is free from non-perturbative and renormalon [50] uncertainties.
We therefore convert to the top quark MS mass using the three-loop
formula [51]. (Very recently, the four-loop result has been obtained in
Ref. 52.) This introduces an additional uncertainty which we estimate
to 0.5 GeV (the size of the three-loop term) and add in quadrature
to the experimental pole mass error. This is convenient because we
use the pole mass as an external constraint while fitting to the MS

mass. We are assuming that the kinematic mass extracted from the
collider events corresponds within this uncertainty to the pole mass.
In summary, we will use the fit constraint,

mt = 173.34± 0.64 exp. ± 0.5 QCD GeV = 173.34± 0.81 GeV. (10.9)

While there seems to be perfect agreement between all these averages,
we observe a 2.6 σ deviation (or more in case of correlated systematics)
between the two most precise determinations, 174.98 ± 0.76 GeV [53]
(by the DØ Collaboration) and 172.22± 0.73 GeV [54] (by the CMS
Collaboration), both from the lepton + jets channels [55]. For more
details, see the Section on “The Top Quark” and the Quarks Listings
in this Review.

The observables sin2 θW and MW can be calculated from MZ ,
α̂(MZ), and GF , when values for mt and MH are given, or conversely,
MH can be constrained by sin2 θW and MW . The value of sin2 θW
is extracted from neutral-current processes (see Sec. 10.3) and Z pole
observables (see Sec. 10.4) and depends on the renormalization
prescription. There are a number of popular schemes [56–62] leading
to values which differ by small factors depending on mt and MH . The
notation for these schemes is shown in Table 10.2.

Table 10.2: Notations used to indicate the various schemes
discussed in the text. Each definition of sin2 θW leads to values
that differ by small factors depending on mt and MH . Numerical
values and the uncertainties induced by the imperfectly known
SM parameters are also given for illustration.

Scheme Notation Value Parametric uncertainty

On-shell s2
W 0.22336 ±0.00010

MS ŝ2
Z 0.23129 ±0.00005

MS ND ŝ2
ND 0.23148 ±0.00005

MS ŝ2
0 0.23865 ±0.00008

Effective angle s2
ℓ 0.23152 ±0.00005

our uncertainty for mc (and to a lesser degree for mb) is larger than
in Refs. 46 and 47, for example. The reason is that we determine the
continuum contribution for charm pair production using only resonance
data and theoretical consistency across various sum rule moments, and
then use any difference to the experimental continuum data as an ad-
ditional uncertainty. We also include an uncertainty for the condensate
terms which grows rapidly for higher moments in the sum rule analysis.

(i) The on-shell scheme [56] promotes the tree-level formula sin2 θW =
1 − M2

W /M2
Z to a definition of the renormalized sin2 θW to all

orders in perturbation theory, i.e., sin2 θW → s2
W ≡ 1−M2

W /M2
Z :

MW =
A0

sW (1 − ∆r)1/2
, MZ =

MW

cW
, (10.10)

where cW ≡ cos θW , A0 = (πα/
√

2GF )1/2 = 37.28039(1) GeV,
and ∆r includes the radiative corrections relating α, α(MZ),
GF , MW , and MZ . One finds ∆r ∼ ∆r0 − ρt/ tan2 θW , where
∆r0 = 1 − α/α̂(MZ) = 0.06630(13) is due to the running of α,
and ρt = 3GF m2

t /8
√

2π2 = 0.00940 (mt/173.34 GeV)2 represents
the dominant (quadratic) mt dependence. There are additional
contributions to ∆r from bosonic loops, including those which
depend logarithmically on MH and higher-order corrections$$.
One has ∆r = 0.03648 ∓ 0.00028 ± 0.00013, where the first
uncertainty is from mt and the second is from α(MZ). Thus
the value of s2

W extracted from MZ includes an uncertainty
(∓0.00009) from the currently allowed range of mt. This scheme
is simple conceptually. However, the relatively large (∼ 3%)
correction from ρt causes large spurious contributions in higher
orders.

s2
W depends not only on the gauge couplings but also on the

spontaneous-symmetry breaking, and it is awkward in the presence of
any extension of the SM which perturbs the value of MZ (or MW ).
Other definitions are motivated by the tree-level coupling constant
definition θW = tan−1(g′/g):

(ii) In particular, the modified minimal subtraction (MS) scheme
introduces the quantity sin2 θ̂W (µ) ≡ ĝ ′2(µ)/

[
ĝ 2(µ) + ĝ ′2(µ)

]
,

where the couplings ĝ and ĝ′ are defined by modified minimal
subtraction and the scale µ is conveniently chosen to be MZ for
many EW processes. The value of ŝ 2

Z = sin2 θ̂W (MZ) extracted

from MZ is less sensitive than s2
W to mt (by a factor of tan2 θW ),

and is less sensitive to most types of new physics. It is also very
useful for comparing with the predictions of grand unification.
There are actually several variant definitions of sin2 θ̂W (MZ),
differing according to whether or how finite α ln(mt/MZ) terms
are decoupled (subtracted from the couplings). One cannot
entirely decouple the α ln(mt/MZ) terms from all EW quantities
because mt ≫ mb breaks SU(2) symmetry. The scheme that
will be adopted here decouples the α ln(mt/MZ) terms from
the γ–Z mixing [18,57], essentially eliminating any ln(mt/MZ)
dependence in the formulae for asymmetries at the Z pole when
written in terms of ŝ 2

Z . (A similar definition is used for α̂.) The
on-shell and MS definitions are related by

ŝ 2
Z = c (mt, MH)s2

W = (1.0355± 0.0003)s2
W . (10.11)

The quadratic mt dependence is given by c ∼ 1 + ρt/ tan2 θW .
The expressions for MW and MZ in the MS scheme are

MW =
A0

ŝZ(1 − ∆r̂W )1/2
, MZ =

MW

ρ̂ 1/2 ĉZ
, (10.12)

and one predicts ∆r̂W = 0.06952 ± 0.00013. ∆r̂W has no
quadratic mt dependence, because shifts in MW are absorbed
into the observed GF , so that the error in ∆r̂W is almost entirely
due to ∆r0 = 1 − α/α̂(MZ). The quadratic mt dependence has
been shifted into ρ̂ ∼ 1 + ρt, where including bosonic loops,
ρ̂ = 1.01032± 0.00009.

(iii) A variant MS quantity ŝ 2
ND (used in the 1992 edition of this

Review) does not decouple the α ln(mt/MZ) terms [58]. It is
related to ŝ 2

Z by

ŝ 2
Z = ŝ 2

ND/
(
1 +

α̂

π
d
)
, (10.13a)

d =
1

3

(
1

ŝ 2
− 8

3

) [
(1 +

αs

π
) ln

mt

MZ
− 15αs

8π

]
, (10.13b)

$$ All explicit numbers quoted here and below include the two- and
three-loop corrections described near the end of Sec. 10.2.
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Thus, ŝ 2
Z − ŝ 2

ND ≈ −0.0002.

(iv) Some of the low-energy experiments discussed in the next section
are sensitive to the weak mixing angle at almost vanishing
momentum transfer (for a review, see Ref. 59). Thus, Table 10.2
also includes ŝ 2

0 ≡ sin2 θ̂W (0).

(v) Yet another definition, the effective angle [60–62] s2
f = sin θf

eff for

the Z vector coupling to fermion f , is based on Z pole observables
and described in Sec. 10.4.

Experiments are at such level of precision that complete one-
loop, dominant two-loop, and partial three and four-loop radiative
corrections must be applied. For neutral-current and Z pole processes,
these corrections are conveniently divided into two classes:

1. QED diagrams involving the emission of real photons or the
exchange of virtual photons in loops, but not including vacuum
polarization diagrams. These graphs often yield finite and gauge-
invariant contributions to observable processes. However, they
are dependent on energies, experimental cuts, etc., and must be
calculated individually for each experiment.

2. EW corrections, including γγ, γZ, ZZ, and WW vacuum
polarization diagrams, as well as vertex corrections, box graphs,
etc., involving virtual W and Z bosons. The one-loop corrections
are included for all processes, and many two-loop corrections are
also important. In particular, two-loop corrections involving the
top quark modify ρt in ρ̂, ∆r, and elsewhere by

ρt → ρt[1 + R(MH , mt)ρt/3]. (10.14)

R(MH , mt) can be described as an expansion in M2
Z/m2

t , for

which the leading m4
t /M

4
Z [63] and next-to-leading m2

t /M
2
Z [64]

terms are known. The complete two-loop calculation of ∆r
(without further approximation) has been performed in Refs. 65
and 66 for fermionic and purely bosonic diagrams, respectively.
Similarly, the EW two-loop calculation for the relation between
s2
ℓ and s2

W is complete [67,68]. Very recently, Ref. 69 obtained
the MS quantities ∆r̂W and ρ̂ to two-loop accuracy, confirming
the prediction of MW in the on-shell scheme from Refs. 66 and 70
within about 4 MeV.

Mixed QCD-EW contributions to gauge boson self-energies of
order ααsm

2
t [71], αα2

sm2
t [72], and αα3

sm
2
t [73] increase the

predicted value of mt by 6%. This is, however, almost entirely an
artifact of using the pole mass definition for mt. The equivalent
corrections when using the MS definition m̂t(m̂t) increase mt

by less than 0.5%. The subleading ααs corrections [74] are also
included. Further three-loop corrections of order αα2

s [75,76],
α3m6

t , and α2αsm
4
t [77], are rather small. The same is true for

α3M4
H [78] corrections unless MH approaches 1 TeV.

The theoretical uncertainty from unknown higher-order
corrections is estimated to amount to 4 MeV for the prediction of
MW [70] and 4.5 × 10−5 for s2

ℓ [79].

Throughout this Review we utilize EW radiative corrections from
the program GAPP [21], which works entirely in the MS scheme, and
which is independent of the package ZFITTER [62].

10.3. Low energy electroweak observables

In the following we discuss EW precision observables obtained at
low momentum transfers [6], i.e. Q2 ≪ M2

Z . It is convenient to
write the four-fermion interactions relevant to ν-hadron, ν-e, as well
as parity violating e-hadron and e-e neutral-current processes in a
form that is valid in an arbitrary gauge theory (assuming massless

left-handed neutrinos). One has⋆

−L
νe =

GF√
2

νγµ(1 − γ5)ν e γµ(gνe
LV − gνe

LA γ5)e, (10.15)

−L
νh =

GF√
2

ν γµ(1− γ5)ν
∑

q

[gνq
LL q γµ(1− γ5)q + gνq

LR q γµ(1 + γ5)q],

(10.16)

−L
ee = −GF√

2
gee
AV e γµγ5e e γµe, (10.17)

−L
eh = −GF√

2

∑

q

[
geq
AV e γµγ5e q γµq + geq

V A e γµe q γµγ5q
]
,

(10.18)
where one must include the charged-current contribution for νe-e
and νe-e and the parity-conserving QED contribution for electron
scattering.

Table 10.3: SM tree level expressions for the neutral-current
parameters for ν-hadron, ν-e, and e−-scattering processes.
To obtain the SM values in the last column, the tree level
expressions have to be multiplied by the low-energy neutral-
current ρ parameter, ρNC = 1.00066, and further vertex and
box corrections need to be added as detailed in Ref. 80. The
dominant mt dependence is again given by ρNC ∼ 1 + ρt.

Quantity SM tree level SM value

g
νµe
LV − 1

2
+ 2 ŝ2

0 −0.0396

g
νµe
LA − 1

2
−0.5064

g
νµu
LL

1
2
− 2

3
ŝ2
0 0.3457

g
νµd
LL − 1

2
+ 1

3
ŝ2
0 −0.4288

g
νµu
LR − 2

3
ŝ2
0 −0.1553

g
νµd
LR

1
3

ŝ2
0 0.0777

gee
AV

1
2
− 2 ŝ2

0 0.0225

geu
AV − 1

2
+ 4

3
ŝ2
0 −0.1887

ged
AV

1
2
− 2

3
ŝ2
0 0.3419

geu
V A − 1

2
+ 2 ŝ2

0 −0.0351

ged
V A

1
2
− 2 ŝ2

0 0.0247

The SM tree level expressions for the four-Fermi couplings are given
in Table 10.3. Note that they differ from the respective products of
the gauge couplings in Eq. (10.5) in the radiative corrections and in
the presence of possible physics beyond the SM.

10.3.1. Neutrino scattering : For a general review on ν-scattering
we refer to Ref. 81 (nonstandard neutrino scattering interactions are
surveyed in Ref. 82).

The cross-section in the laboratory system for νµe → νµe or
νµe → νµe elastic scattering [83] is (in this subsection we drop the
redundant index L in the effective neutrino couplings)

dσν,ν̄

dy
=

⋆ We use here slightly different definitions (and to avoid confusion
also a different notation) for the coefficients of these four-Fermi oper-
ators than we did in previous editions of this Review. The new cou-
plings [80] are defined in the static limit, Q2 → 0, with specific radiative
corrections included, while others (more experiment specific ones) are
assumed to be removed by the experimentalist. They are convenient in
that their determinations from very different types of processes can be
straightforwardly combined.
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G2
F meEν

2π

[
(gνe

V ± gνe
A )2 + (gνe

V ∓ gνe
A )2(1 − y)2 − (gνe2

V − gνe2
A )

y me

Eν

]
,

(10.19)
where the upper (lower) sign refers to νµ(νµ), and y ≡ Te/Eν (which
runs from 0 to (1 + me/2Eν)−1) is the ratio of the kinetic energy of
the recoil electron to the incident ν or ν energy. For Eν ≫ me this
yields a total cross-section

σ =
G2

F meEν

2π

[
(gνe

V ± gνe
A )2 +

1

3
(gνe

V ∓ gνe
A )2

]
. (10.20)

The most accurate measurements [83–88] of sin2 θW from ν-lepton
scattering (see Sec. 10.6) are from the ratio R ≡ σνµe/σν̄µe, in which
many of the systematic uncertainties cancel. Radiative corrections
(other than mt effects) are small compared to the precision of present
experiments and have negligible effect on the extracted sin2 θW .
The most precise experiment (CHARM II) [86] determined not
only sin2 θW but gνe

V,A as well, which are shown in Fig. 10.1. The

cross-sections for νe-e and νe-e may be obtained from Eq. (10.19) by
replacing gνe

V,A by gνe
V,A + 1, where the 1 is due to the charged-current

contribution.
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Figure 10.1: Allowed contours in gνe
A vs. gνe

V from neutrino-

electron scattering and the SM prediction as a function of ŝ 2
Z .

(The SM best fit value ŝ 2
Z = 0.23129 is also indicated.) The

νee [87] and ν̄ee [88] constraints are at 1 σ, while each of the
four equivalent νµ(ν̄µ)e [83–86] solutions (gV,A → −gV,A and
gV,A → gA,V ) are at the 90% C.L. The global best fit region
(shaded) almost exactly coincides with the corresponding νµ(ν̄µ)e
region. The solution near gA = 0, gV = −0.5 is eliminated by
e+e− → ℓ+ℓ− data under the weak additional assumption that
the neutral current is dominated by the exchange of a single Z
boson.

A precise determination of the on-shell s2
W , which depends only

very weakly on mt and MH , is obtained from deep inelastic scattering
(DIS) of neutrinos from (approximately) isoscalar targets [89]. The
ratio Rν ≡ σNC

νN /σCC
νN of neutral-to-charged-current cross-sections has

been measured to 1% accuracy by CDHS [90] and CHARM [91] at
CERN. CCFR [92] at Fermilab has obtained an even more precise
result, so it is important to obtain theoretical expressions for Rν

and Rν̄ ≡ σNC
ν̄N /σCC

ν̄N to comparable accuracy. Fortunately, many of
the uncertainties from the strong interactions and neutrino spectra
cancel in the ratio. A large theoretical uncertainty is associated with
the c-threshold, which mainly affects σCC . Using the slow rescaling
prescription [93] the central value of sin2 θW from CCFR varies as
0.0111(mc/GeV − 1.31), where mc is the effective mass which is
numerically close to the MS mass m̂c(m̂c), but their exact relation is
unknown at higher orders. For mc = 1.31 ± 0.24 GeV (determined
from ν-induced dimuon production [94]) this contributes ±0.003
to the total uncertainty ∆ sin2 θW ∼ ±0.004. (The experimental

uncertainty is also ±0.003.) This uncertainty largely cancels, however,
in the Paschos-Wolfenstein ratio [95],

R− =
σNC

νN − σNC
ν̄N

σCC
νN − σCC

ν̄N

. (10.21)

It was measured by Fermilab’s NuTeV collaboration [96] for the first
time, and required a high-intensity and high-energy anti-neutrino
beam.

A simple zeroth-order approximation is

Rν = g2
L + g2

Rr, Rν̄ = g2
L +

g2
R

r
, R− = g2

L − g2
R, (10.22)

where

g2
L ≡ (g

νµu
LL )2 + (g

νµd
LL )2 ≈ 1

2
− sin2 θW +

5

9
sin4 θW ,(10.23a)

g2
R ≡ (g

νµu
LR )2 + (g

νµd
LR )2 ≈ 5

9
sin4 θW , (10.23b)

and r ≡ σCC
ν̄N /σCC

νN is the ratio of ν to ν charged-current cross-sections,
which can be measured directly. [In the simple parton model, ignoring
hadron energy cuts, r ≈ ( 1

3
+ ǫ)/(1 + 1

3
ǫ), where ǫ ∼ 0.125 is the

ratio of the fraction of the nucleon’s momentum carried by anti-
quarks to that carried by quarks.] In practice, Eq. (10.22) must be
corrected for quark mixing, quark sea effects, c-quark threshold effects,
non-isoscalarity, W–Z propagator differences, the finite muon mass,
QED and EW radiative corrections. Details of the neutrino spectra,
experimental cuts, x and Q2 dependence of structure functions,
and longitudinal structure functions enter only at the level of these
corrections and therefore lead to very small uncertainties. CCFR
quotes s2

W = 0.2236 ± 0.0041 for (mt, MH) = (175, 150) GeV with
very little sensitivity to (mt, MH).

The NuTeV collaboration found s2
W = 0.2277±0.0016 (for the same

reference values), which was 3.0 σ higher than the SM prediction [96].
The deviation was in g2

L (initially 2.7 σ low) while g2
R was consistent

with the SM. Since then a number of experimental and theoretical
developments changed the interpretation of the measured cross-section
ratios, affecting the extracted g2

L,R (and thus s2
W ) including their

uncertainties and correlation. In the following paragraph we give a
semi-quantitative and preliminary discussion of these effects, but we
stress that the precise impact of them needs to be evaluated carefully
by the collaboration with a new and self-consistent set of PDFs,
including new radiative corrections, while simultaneously allowing
isospin breaking and asymmetric strange seas. Until the time that
such an effort is completed we do not include the νDIS constraints in
our default set of fits.

(i) In the original analysis NuTeV worked with a symmetric
strange quark sea but subsequently measured [97] the difference
between the strange and antistrange momentum distributions,
S− ≡

∫ 1
0 dxx[s(x) − s̄(x)] = 0.00196 ± 0.00143, from dimuon events

utilizing the first complete next-to-leading order QCD description [98]
and parton distribution functions (PDFs) according to Ref. 99. (ii)
The measured branching ratio for Ke3 decays enters crucially in the
determination of the νe(ν̄e) contamination of the νµ(ν̄µ) beam. This
branching ratio has moved from 4.82 ± 0.06% at the time of the
original publication [96] to the current value of 5.07 ± 0.04%, i.e.

a change by more than 4 σ. This moves s2
W about one standard

deviation further away from the SM prediction while reducing the
νe(ν̄e) uncertainty. (iii) PDFs seem to violate isospin symmetry at
levels much stronger than generally expected [100]. A minimum
χ2 set of PDFs [101] allowing charge symmetry violation for both
valence quarks [d

p
V (x) 6= un

V (x)] and sea quarks [d̄p(x) 6= ūn(x)]
shows a reduction in the NuTeV discrepancy by about 1 σ. But
isospin symmetry violating PDFs are currently not well constrained
phenomenologically and within uncertainties the NuTeV anomaly
could be accounted for in full or conversely made larger [101]. Still,
the leading contribution from quark mass differences turns out to
be largely model-independent [102] (at least in sign) and a shift,
δs2

W = −0.0015±0.0003 [103], has been estimated. (iv) QED splitting
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effects also violate isospin symmetry with an effect on s2
W whose sign

(reducing the discrepancy) is model-independent. The corresponding
shift of δs2

W = −0.0011 has been calculated in Ref. 104 but has
a large uncertainty. (v) Nuclear shadowing effects [105] are likely
to affect the interpretation of the NuTeV result at some level, but
the NuTeV collaboration argues that their data are dominated by
values of Q2 at which nuclear shadowing is expected to be relatively
small. However, another nuclear effect, known as the isovector EMC
effect [106], is much larger (because it affects all neutrons in the
nucleus, not just the excess ones) and model-independently works
to reduce the discrepancy. It is estimated to lead to a shift of
δs2

W = −0.0019 ± 0.0006 [103]. It would be important to verify and
quantify this kind of effect experimentally, e.g., in polarized electron
scattering. (vi) The extracted s2

W may also shift at the level of the
quoted uncertainty when analyzed using the most recent QED and
EW radiative corrections [107,108], as well as QCD corrections to the
structure functions [109]. However, these are scheme-dependent and
in order to judge whether they are significant they need to be adapted
to the experimental conditions and kinematics of NuTeV, and have to
be obtained in terms of observable variables and for the differential
cross-sections. In addition, there is the danger of double counting
some of the QED splitting effects. (vii) New physics could also affect
g2
L,R [110] but it is difficult to convincingly explain the entire effect

that way.

10.3.2. Parity violation : For a review on weak polarized electron
scattering we refer to Ref. 111. The SLAC polarized electron-deuteron
DIS (eDIS) experiment [112] measured the right-left asymmetry,

A =
σR − σL

σR + σL
, (10.24)

where σR,L is the cross-section for the deep-inelastic scattering of
a right- or left-handed electron: eR,LN → eX. In the quark parton
model,

A

Q2 = a1 + a2
1 − (1 − y)2

1 + (1 − y)2
, (10.25)

where Q2 > 0 is the momentum transfer and y is the fractional energy
transfer from the electron to the hadrons. For the deuteron or other
isoscalar targets, one has, neglecting the s-quark and anti-quarks,

a1 =
3GF

5
√

2πα

(
geu
AV − 1

2
ged
AV

)
≈ 3GF

5
√

2πα

(
−3

4
+

5

3
ŝ2
0

)
,(10.26a)

a2 =
3GF

5
√

2πα

(
geu
V A − 1

2
ged
V A

)
≈ 9GF

5
√

2πα

(
ŝ2
0 − 1

4

)
. (10.26b)

The Jefferson Lab Hall A Collaboration [113] improved on the
SLAC result by determining A at Q2 = 1.085 GeV and 1.901 GeV,
and determined the weak mixing angle to 2% precision. In another
polarized-electron scattering experiment on deuterons, but in the
quasi-elastic kinematic regime, the SAMPLE experiment [114] at
MIT-Bates extracted the combination geu

V A − ged
V A at Q2 values of

0.1 GeV2 and 0.038 GeV2. What was actually determined were
nucleon form factors from which the quoted results were obtained
by the removal of a multi-quark radiative correction [115]. Other
linear combinations of the effective couplings have been determined
in polarized-lepton scattering at CERN in µ-C DIS, at Mainz in
e-Be (quasi-elastic), and at Bates in e-C (elastic). See the review
articles in Refs. 116 and 117 for more details. Recent polarized
electron scattering experiments, i.e., SAMPLE, the PVA4 experiment
at Mainz, and the HAPPEX and GØ experiments at Jefferson Lab,
have focussed on the strange quark content of the nucleon. These are
reviewed in Refs. 118 and 119.

The parity violating asymmetry, APV , in fixed target polarized
Møller scattering, e−e− → e−e−, is defined as in Eq. (10.24) and
reads [120],

APV

Q2
= −2 gee

AV
GF√
2πα

1 − y

1 + y4 + (1 − y)4
, (10.27)

where y is again the energy transfer. It has been measured at
low Q2 = 0.026 GeV2 in the SLAC E158 experiment [121], with

the result APV = (−1.31 ± 0.14 stat. ± 0.10 syst.) × 10−7. Expressed
in terms of the weak mixing angle in the MS scheme, this yields
ŝ 2(Q2) = 0.2403 ± 0.0013, and established the scale dependence
of the weak mixing angle (see QW (e) in Fig. 10.2) at the level of
6.4 σ. One can also extract the model-independent effective coupling,
gee
AV = 0.0190 ± 0.0027 [80] (the implications are discussed in

Ref. 123).
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Figure 10.2: Scale dependence of the weak mixing angle
defined in the MS scheme [122] (for the scale dependence of the
weak mixing angle defined in a mass-dependent renormalization
scheme, see Ref. 123). The minimum of the curve corresponds
to µ = MW , below which we switch to an effective theory with
the W± bosons integrated out, and where the β-function for the
weak mixing angle changes sign. At the location of the W boson
mass and each fermion mass there are also discontinuities arising
from scheme dependent matching terms which are necessary
to ensure that the various effective field theories within a
given loop order describe the same physics. However, in the
MS scheme these are very small numerically and barely visible
in the figure provided one decouples quarks at µ = m̂q(m̂q).
The width of the curve reflects the theory uncertainty from
strong interaction effects which at low energies is at the level
of ±7 × 10−5 [122]. Following the estimate [124] of the typical
momentum transfer for parity violation experiments in Cs, the
location of the APV data point is given by µ = 2.4 MeV. For
NuTeV we display the updated value from Ref. 125 and chose
µ =

√
20 GeV which is about half-way between the averages of√

Q2 for ν and ν interactions at NuTeV. The Tevatron and LHC
measurements are strongly dominated by invariant masses of the
final state dilepton pair of O(MZ) and can thus be considered
as additional Z pole data points. For clarity we displayed the
Tevatron and LHC points horizontally to the left and to the
right, respectively.

In a similar experiment and at about the same Q2 = 0.025 GeV2,
Qweak at Jefferson Lab [126] will be able to measure the weak charge
of the proton (which is proportional to 2geu

AV + ged
AV ) and sin2 θW

in polarized ep scattering with relative precisions of 4% and 0.3%,
respectively. The result based on the collaborations commissioning
run [127] and about 4% of the data corresponds to the constraint
2geu

AV + ged
AV = 0.064 ± 0.012.

There are precise experiments measuring atomic parity violation
(APV) [128] in cesium [129,130] (at the 0.4% level [129]) ,
thallium [131], lead [132], and bismuth [133]. The EW physics is

contained in the nuclear weak charges Q
Z,N
W , where Z and N are

the numbers of protons and neutrons in the nucleus. In terms of the
nucleon vector couplings,

g ep
AV ≡ 2g eu

AV + g ed
AV ≈ −1

2
+ 2ŝ2

0, (10.28)

g en
AV ≡ g eu

AV + 2g ed
AV ≈ 1

2
, (10.29)
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one has,

QZ,N
W ≡ −2

[
Z(g ep

AV + 0.00005) + N(g en
AV + 0.00006)

](
1 − α

2π

)
,

(10.30)
where the numerically small adjustments are discussed in Ref. 80
and include the result of the γZ-box correction from Ref. 134. E.g.,
QW (133Cs) is extracted by measuring experimentally the ratio of
the parity violating amplitude, EPNC, to the Stark vector transition
polarizability, β, and by calculating theoretically EPNC in terms of
QW . One can then write,

QW = N

(
Im EPNC

β

)

exp.

( |e| aB

Im EPNC

QW

N

)

th.

(
β

a3
B

)

exp.+th.

(
a2
B

|e|

)
,

where aB is the Bohr radius. The uncertainties associated with atomic
wave functions are quite small for cesium [135]. The semi-empirical
value of β used in early analyses added another source of theoretical
uncertainty [136]. However, the ratio of the off-diagonal hyperfine
amplitude to the polarizability was subsequently measured directly
by the Boulder group [137]. Combined with the precisely known
hyperfine amplitude [138] one finds β = (26.991 ± 0.046) a3

B, in
excellent agreement with the earlier results, reducing the overall
theory uncertainty (while slightly increasing the experimental error).
Utilizing the state-of-the-art many-body calculation in Ref. 139
yields Im EPNC = (0.8906 ± 0.0026) × 10−11|e| aB QW /N , while
the two measurements [129,130] combine to give Im EPNC/β =
−1.5924 ± 0.0055 mV/cm, and we would obtain QW (13378Cs) =
−73.20 ± 0.35, or equivalently 55g

ep
AV + 78gen

AV = 36.64 ± 0.18 which
is in excellent agreement with the SM prediction of 36.66. However,
a very recent atomic structure calculation [140] found significant
corrections to two non-dominating terms, changing the result to
Im EPNC = (0.8977 ± 0.0040) × 10−11|e| aB QW /N , and yielding the
constraint, 55g

ep
AV +78gen

AV = 36.35±0.21 [QW (13378Cs) = −72.62±0.43],
i.e. a 1.5 σ SM deviation. Thus, the various theoretical efforts
in [139–141] together with an update of the SM calculation [142]
reduced an earlier 2.3 σ discrepancy from the SM (see the year 2000
edition of this Review), but there still appears to remain a small
deviation. The theoretical uncertainties are 3% for thallium [143]
but larger for the other atoms. The Boulder experiment in cesium
also observed the parity-violating weak corrections to the nuclear
electromagnetic vertex (the anapole moment [144]) .

In the future it could be possible to further reduce the theoretical
wave function uncertainties by taking the ratios of parity violation in
different isotopes [128,145]. There would still be some residual un-
certainties from differences in the neutron charge radii, however [146].
Experiments in hydrogen and deuterium are another possibility for
reducing the atomic theory uncertainties [147], while measurements
of single trapped radium ions are promising [148] because of the much
larger parity violating effect.

10.4. Physics of the massive electroweak bosons

If the CM energy
√

s is large compared to the fermion mass mf ,

the unpolarized Born cross-section for e+e− → f f̄ can be written as

dσ

d cos θ
=

πα2(s)

2s

[
F1(1 + cos2 θ) + 2F2 cos θ

]
+ B, (10.31a)

where

F1 = Q2
eQ

2
f− 2χQeQfge

V gf
V cos δR+χ2(ge2

V +ge2
A )(gf2

V +gf2
A ) (10.31b)

F2 = −2χ QeQfge
Agf

A cos δR + 4χ2ge
V ge

Agf
V gf

A (10.31c)

tan δR =
MZΓZ

M
2
Z − s

, χ =
GF

2
√

2πα(s)

sM
2
Z[

(M
2
Z − s)2 + M

2
ZΓ

2
Z

]1/2
, (10.32)

and B accounts for box graphs involving virtual Z and W bosons,

and gf
V,A are defined in Eq. (10.33) below. MZ and ΓZ correspond

to mass and width definitions based on a Breit-Wigner shape with

an energy-independent width (see the Section on “The Z Boson” in
the Gauge and Higgs Boson Particle Listings of this Review). The
differential cross-section receives important corrections from QED
effects in the initial and final state, and interference between the two
(see e.g. Ref. 149). For qq̄ production, there are additional final-state
QCD corrections, which are relatively large. Note also that the
equations above are written in the CM frame of the incident e+e−

system, which may be boosted due to the initial-state QED radiation.

Some of the leading virtual EW corrections are captured by
the running QED coupling α(s) and the Fermi constant GF . The
remaining corrections to the Zff̄ interaction are absorbed by replacing
the tree-level couplings in Eq. (10.5) with the s-dependent effective

couplings [150],

g
f
V =

√
ρf (t

(f)
3L − 2Qfκf sin2 θW ), g

f
A =

√
ρf t

(f)
3L . (10.33)

In these equations, the effective couplings are to be taken at the scale√
s, but for notational simplicity we do not show this explicitly. At

tree-level ρf = κf = 1, but inclusion of EW radiative corrections leads
to non-zero ρf − 1 and κf − 1, which depend on the fermion f and on
the renormalization scheme. In the on-shell scheme, the quadratic mt

dependence is given by ρf ∼ 1 + ρt, κf ∼ 1 + ρt/ tan2 θW , while in MS,

ρ̂f ∼ κ̂f ∼ 1, for f 6= b (ρ̂b ∼ 1− 4
3ρt, κ̂b ∼ 1 + 2

3ρt). In the MS scheme

the normalization is changed according to GF M2
Z/2

√
2π → α̂/4ŝ 2

Z ĉ 2
Z

in Eq. (10.32).

For the high-precision Z-pole observables discussed below,
additional bosonic and fermionic loops, vertex corrections, and higher
order contributions, etc., must be included [67,68,151,152,153].
For example, in the MS scheme one has ρ̂ℓ = 0.9980, κ̂ℓ = 1.0010,
ρ̂b = 0.9868, and κ̂b = 1.0065.

To connect to measured quantities, it is convenient to define an

effective angle s2
f ≡ sin2 θWf ≡ κ̂f ŝ 2

Z = κfs2
W , in terms of which g

f
V

and g
f
A are given by

√
ρf times their tree-level formulae. One finds

that the κ̂f (f 6= b) are almost independent of (mt, MH), and thus one
can write

s2
ℓ = ŝ2

Z + 0.00023, (10.34)

while the κ’s for the other schemes are mt dependent.

10.4.1. e
+

e
− scattering below the Z pole :

Experiments at PEP, PETRA and TRISTAN have measured
the unpolarized forward-backward asymmetry, AFB, and the total
cross-section relative to pure QED, R, for e+e− → ℓ+ℓ−, ℓ = µ or τ
at CM energies

√
s < MZ . They are defined as

AFB ≡ σF − σB

σF + σB
, R =

σ

Rini4πα2/3s
, (10.35)

where σF (σB) is the cross-section for ℓ− to travel forward (backward)
with respect to the e− direction. Neglecting box graph contribution,
they are given by

AFB =
3

4

F2

F1
, R = F1 . (10.36)

For the available data, it is sufficient to approximate the EW
corrections through the leading running α(s) and quadratic mt

contributions [154,155] as described above. Reviews and formulae for
e+e− → hadrons may be found in Ref. 156.

10.4.2. Z pole physics :

High-precision measurements of various Z pole (
√

s ≈ MZ)
observables have been performed at LEP 1 and SLC [10,157–162], as
summarized in Table 10.5. These include the Z mass and total width,
ΓZ , and partial widths Γ(ff) for Z → ff , where f = e, µ, τ , light
hadrons, b, or c. It is convenient to use the variables MZ , ΓZ , Rℓ ≡
Γ(had)/Γ(ℓ+ℓ−) (ℓ = e, µ, τ), σhad ≡ 12π Γ(e+e−) Γ(had)/M2

Z Γ2
Z
††,

†† Note that σhad receives additional EW corrections that are not
captured in the partial widths [163,153], but they only enter at two-
loop order.



158 10. Electroweak model and constraints on new physics

Rb ≡ Γ(bb)/Γ(had), and Rc ≡ Γ(cc)/Γ(had), most of which are weakly
correlated experimentally. (Γ(had) is the partial width into hadrons.)
The three values for Rℓ are consistent with lepton universality
(although Rτ is somewhat low compared to Re and Rµ), but we
use the general analysis in which the three observables are treated

as independent. Similar remarks apply to A
0,ℓ
FB defined through

Eq. (10.39) with Pe = 0 (A0,τ
FB is somewhat high). O(α3) QED

corrections introduce a large anti-correlation (−30%) between ΓZ and
σhad. The anti-correlation between Rb and Rc is −18% [10]. The
Rℓ are insensitive to mt except for the Z → bb vertex and final state
corrections and the implicit dependence through sin2 θW . Thus, they
are especially useful for constraining αs. The invisible decay width [10],
Γ(inv) = ΓZ − 3 Γ(ℓ+ℓ−) − Γ(had) = 499.0± 1.5 MeV, can be used to
determine the number of neutrino flavors, Nν = Γ(inv)/Γtheory(νν),
much lighter than MZ/2. In practice, we determine Nν by allowing it
as an additional fit parameter and obtain,

Nν = 2.992 ± 0.007 . (10.37)

Additional constraints follow from measurements of various Z-pole
asymmetries. These include the forward-backward asymmetry AFB
and the polarization or left-right asymmetry,

ALR ≡ σL − σR

σL + σR
, (10.38)

where σL(σR) is the cross-section for a left-(right-)handed incident
electron. ALR was measured precisely by the SLD collaboration
at the SLC [159], and has the advantages of being very sensitive
to sin2 θW and that systematic uncertainties largely cancel. After
removing initial state QED corrections and contributions from photon
exchange, γ–Z interference and EW boxes, see Eq. (10.31), one can
use the effective tree-level expressions

ALR = AePe , AFB =
3

4
Af

Ae + Pe

1 + PeAe
, (10.39)

where

Af ≡
2gf

V gf
A

gf2
V + gf2

A

=
1 − 4|Qf |s̄2

f

1 − 4|Qf |s̄2
f + 8(|Qf |s̄2

f )2
. (10.40)

Pe is the initial e− polarization, so that the second equality in
Eq. (10.41) is reproduced for Pe = 1, and the Z pole forward-backward

asymmetries at LEP 1 (Pe = 0) are given by A
(0,f)
FB = 3

4AeAf where

f = e, µ, τ , b, c, s [10], and q, and where A
(0,q)
FB refers to the

hadronic charge asymmetry. Corrections for t-channel exchange and

s/t-channel interference cause A
(0,e)
FB to be strongly anti-correlated

with Re (−37%). The correlation between A
(0,b)
FB and A

(0,c)
FB amounts

to 15%.

In addition, SLD extracted the final-state couplings Ab, Ac [10],
As [160], Aτ , and Aµ [161], from left-right forward-backward
asymmetries, using

AFB
LR (f) =

σ
f
LF − σ

f
LB − σ

f
RF + σ

f
RB

σ
f
LF + σ

f
LB + σ

f
RF + σ

f
RB

=
3

4
Af , (10.41)

where, for example, σ
f
LF is the cross-section for a left-handed incident

electron to produce a fermion f traveling in the forward hemisphere.
Similarly, Aτ and Ae were measured at LEP 1 [10] through the τ
polarization, Pτ , as a function of the scattering angle θ, which can be
written as

Pτ = −Aτ (1 + cos2 θ) + 2Ae cos θ

(1 + cos2 θ) + 2AτAe cos θ
(10.42)

The average polarization, 〈Pτ 〉, obtained by integrating over cos θ in
the numerator and denominator of Eq. (10.42), yields 〈Pτ 〉 = −Aτ ,
while Ae can be extracted from the angular distribution of Pτ .

The initial state coupling, Ae, was also determined through the left-
right charge asymmetry [162] and in polarized Bhabba scattering [161]

at SLC. Because gℓ
V is very small, not only A0

LR = Ae, A
(0,ℓ)
FB , and

Pτ , but also A
(0,b)
FB , A

(0,c)
FB , A

(0,s)
FB , and the hadronic asymmetries are

mainly sensitive to s2
ℓ .

As mentioned in Sec. 10.2, radiative corrections to s̄2
ℓ have been

computed with full two-loop and partial higher-order corrections.
Moreover, fermionic two-loop EW corrections to s̄2

q (q = b, c, s) have
been obtained [79,152], but the purely bosonic contributions of this
order are still missing. Similarly, for the partial widths, Γ(ff), and
the hadronic peak cross-section, σhad, the fermionic two-loop EW
corrections are known [153]. Non-factorizable O(ααs) corrections
to the Z → qq̄ vertex are also available [151]. They add coherently,
resulting in a sizable effect and shift αs(MZ) when extracted from Z
lineshape observables by ≈ +0.0007. As an example of the precision

of the Z-pole observables, the values of ḡ
f
A and ḡ

f
V , f = e, µ, τ, ℓ,

extracted from the LEP and SLC lineshape and asymmetry data, are
shown in Fig. 10.3, which should be compared with Fig. 10.1. (The
two sets of parameters coincide in the SM at tree-level.)
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Figure 10.3: 1 σ (39.35% C.L.) contours for the Z-pole

observables ḡf
A and ḡf

V , f = e, µ, τ obtained at LEP and

SLC [10], compared to the SM expectation as a function of ŝ 2
Z .

(The SM best fit value ŝ 2
Z = 0.23129 is also indicated.) Also

shown is the 90% CL allowed region in ḡℓ
A,V obtained assuming

lepton universality.

As for hadron colliders, the forward-backward asymmetry, AFB,
for e+e− and µ+µ− final states (with invariant masses restricted to or
dominated by values around MZ) in pp̄ collisions has been measured
by the DØ [164] (only e+e−) and CDF [165,166] collaborations,
and the values s2

ℓ = 0.23146 ± 0.00047 and s2
ℓ = 0.23222 ± 0.00046,

were extracted, respectively. Assuming that the smaller systematic
uncertainty (±0.00018 from CDF [166]) is common to both
experiments, these measurements combine to

s2
ℓ = 0.23185± 0.00035 (Tevatron) (10.43)

By varying the invariant mass and the scattering angle (and assuming
the electron couplings), information on the effective Z couplings to

light quarks, gu,d
V,A, could also be obtained [167,168], but with large

uncertainties and mutual correlations and not independently of s2
ℓ

above. Similar analyses have also been reported by the H1 and ZEUS
collaborations at HERA [169] and by the LEP collaborations [10].
This kind of measurement is harder in the pp environment due to the
difficulty to assign the initial quark and antiquark in the underlying
Drell-Yan process to the protons. Nevertheless, measurements of
AFB have been reported by the ATLAS [170], CMS [171] and
LHCb [172] collaborations (the latter two only for the µ+µ− final
state), which obtained s2

ℓ = 0.2308 ± 0.0012, s2
ℓ = 0.2287 ± 0.0032

and s2
ℓ = 0.23142± 0.00106, respectively. Assuming that the smallest
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theoretical uncertainty (±0.00056 from LHCb [172]) is fully correlated
among all three experiments, these measurements combine to

s2
ℓ = 0.23105± 0.00087 (LHC) (10.44)

10.4.3. LEP 2 :

LEP 2 [173,174] ran at several energies above the Z pole up to
∼ 209 GeV. Measurements were made of a number of observables,
including the cross-sections for e+e− → f f̄ for f = q, µ, τ ; the
differential cross-sections for f = e, µ, τ ; Rq for q = b, c; AFB(f) for
f = µ, τ, b, c; W branching ratios; and γγ, WW , WWγ, ZZ, single
W , and single Z cross-sections. They are in good agreement with the
SM predictions, with the exceptions of Rb (2.1 σ low), AFB(b) (1.6 σ
low), and the W → τντ branching fraction (2.6 σ high).

The Z boson properties are extracted assuming the SM expressions
for the γ–Z interference terms. These have also been tested
experimentally by performing more general fits [173,175] to the
LEP 1 and LEP 2 data. Assuming family universality this approach
introduces three additional parameters relative to the standard
fit [10], describing the γ–Z interference contribution to the total
hadronic and leptonic cross-sections, jtot

had and jtot
ℓ , and to the leptonic

forward-backward asymmetry, jfb
ℓ . E.g.,

jtot
had ∼ gℓ

V ghad
V = 0.277± 0.065, (10.45)

which is in agreement with the SM expectation [10] of 0.21 ± 0.01.
These are valuable tests of the SM; but it should be cautioned that new
physics is not expected to be described by this set of parameters, since
(i) they do not account for extra interactions beyond the standard
weak neutral current, and (ii) the photonic amplitude remains fixed to
its SM value.

Strong constraints on anomalous triple and quartic gauge couplings
have been obtained at LEP 2 and the Tevatron as described in the
Gauge & Higgs Bosons Particle Listings.

10.4.4. W and Z decays :

The partial decay widths for gauge bosons to decay into massless
fermions f1f2 (the numerical values include the small EW radiative
corrections and final state mass effects) are given by

Γ(W+ → e+νe) =
GF M3

W

6
√

2π
≈ 226.27± 0.05 MeV , (10.46a)

Γ(W+ → uidj) =
Rq

V GF M3
W

6
√

2π
|Vij |2

≈ 705.1± 0.3 MeV |Vij |2, (10.46b)

Γ(Z → f f̄) =
GF M3

Z

6
√

2π

[
Rf

V ḡ
f2
V + Rf

Aḡ
f2
A

]

≈






167.17± 0.02 MeV (νν),

83.97± 0.01 MeV (e+e−),

299.91± 0.19 MeV (uu),

382.80± 0.14 MeV (dd),

375.69∓ 0.17 MeV (bb).

(10.46c)

Final-state QED and QCD corrections to the vector and axial-vector
form factors are given by

Rf
V,A = NC [1 +

3

4
(Q2

f
α(s)

π
+

N2
C − 1

2NC

αs(s)

π
) + · · ·], (10.47)

where NC = 3 (1) is the color factor for quarks (leptons) and
the dots indicate finite fermion mass effects proportional to m2

f/s

which are different for Rf
V and Rf

A, as well as higher-order QCD

corrections, which are known to O(α4
s) [176–178]. These include

singlet contributions starting from two-loop order which are large,
strongly top quark mass dependent, family universal, and flavor
non-universal [179]. Also the O(α2) self-energy corrections from
Ref. 180 are taken into account.

For the W decay into quarks, Eq. (10.46b), only the universal
massless part (non-singlet and mq = 0) of the final-state QCD
radiator function in RV from Eq. (10.47) is used, and the QED
corrections are modified. Expressing the widths in terms of GF M3

W,Z
incorporates the largest radiative corrections from the running QED
coupling [56,181]. EW corrections to the Z widths are then taken
into account through the effective couplings g i2

V,A. Hence, in the
on-shell scheme the Z widths are proportional to ρi ∼ 1 + ρt. There
is additional (negative) quadratic mt dependence in the Z → bb
vertex corrections [182] which causes Γ(bb) to decrease with mt. The
dominant effect is to multiply Γ(bb) by the vertex correction 1 + δρbb̄,

where δρbb̄ ∼ 10−2(− 1
2
m2

t /M
2
Z + 1

5
). In practice, the corrections are

included in ρb and κb, as discussed in Sec. 10.4.

For three fermion families the total widths are predicted to be

ΓZ ≈ 2.4943± 0.0008 GeV , ΓW ≈ 2.0888± 0.0007 GeV .
(10.48)

The uncertainties in these predictions are almost entirely induced from
the fit error in αs(MZ) = 0.1182± 0.0016. These predictions are to be
compared with the experimental results, ΓZ = 2.4952±0.0023 GeV [10]
and ΓW = 2.085 ± 0.042 GeV (see the Gauge & Higgs Boson Particle
Listings for more details).

10.4.5. H decays :

The ATLAS and CMS collaborations at LHC observed a Higgs
boson [183] with properties appearing well consistent with the SM
Higgs (see the note on “The Higgs Boson H0 ” in the Gauge & Higgs
Boson Particle Listings). A recent combination [184] of ATLAS and
CMS results for the Higgs boson mass from kinematical reconstruction
yields

MH = 125.09± 0.24 GeV. (10.49)

In analogy to the W and Z decays discussed in the previous
subsection, we can include some of the Higgs decay properties into
the global analysis of Sec. 10.6. However, the total Higgs decay width,
which in the SM amounts to

ΓH = 4.15 ± 0.06 MeV, (10.50)

is too small to be resolved at the LHC. However, one can employ
results of Higgs branching ratios into different final states. The most
useful channels are Higgs decays into WW ∗ and ZZ∗ (with at least
one gauge boson off-shell), as well as γγ and ττ . We define

ρXY ≡ ln
BRH→XX

BRH→Y Y
. (10.51)

These quantities are constructed to have a SM expectation of zero,
and their physical range is over all real numbers, which allows one
to straightforwardly use Gaussian error propagation (in view of the
fairly large errors). Moreover, possible effects of new physics on
Higgs production rates would also cancel and one may focus on the
decay side of the processes. From a combination of ALTAS and CMS
results [184], we find

ργW = −0.03 ± 0.20 , ρτZ = −0.27± 0.31 ,

which we take to be uncorrelated as they involve distinct final states.
We evaluate the decay rates with the package HDECAY [185].

10.5. Precision flavor physics

In addition to cross-sections, asymmetries, parity violation, W and
Z decays, there is a large number of experiments and observables
testing the flavor structure of the SM. These are addressed elsewhere
in this Review, and are generally not included in this Section.
However, we identify three precision observables with sensitivity to
similar types of new physics as the other processes discussed here.
The branching fraction of the flavor changing transition b → sγ is of
comparatively low precision, but since it is a loop-level process (in the
SM) its sensitivity to new physics (and SM parameters, such as heavy
quark masses) is enhanced. A discussion can be found in the 2010
edition of this Review. The τ -lepton lifetime and leptonic branching
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ratios are primarily sensitive to αs and not affected significantly by
many types of new physics. However, having an independent and
reliable low energy measurement of αs in a global analysis allows the
comparison with the Z lineshape determination of αs which shifts
easily in the presence of new physics contributions. By far the most
precise observable discussed here is the anomalous magnetic moment
of the muon (the electron magnetic moment is measured to even
greater precision and can be used to determine α, but its new physics
sensitivity is suppressed by an additional factor of m2

e/m2
µ, unless

there is a new light degree of freedom such as a dark Z [186] boson).
Its combined experimental and theoretical uncertainty is comparable
to typical new physics contributions.

The extraction of αs from the τ lifetime [187] is standing out from
other determinations because of a variety of independent reasons:
(i) the τ -scale is low, so that upon extrapolation to the Z scale
(where it can be compared to the theoretically clean Z lineshape
determinations) the αs error shrinks by about an order of magnitude;
(ii) yet, this scale is high enough that perturbation theory and
the operator product expansion (OPE) can be applied; (iii) these
observables are fully inclusive and thus free of fragmentation and
hadronization effects that would have to be modeled or measured; (iv)
duality violation (DV) effects are most problematic near the branch
cut but there they are suppressed by a double zero at s = m2

τ ; (v)
there are data [34,188] to constrain non-perturbative effects both
within and breaking the OPE; (vi) a complete four-loop order QCD
calculation is available [178]; (vii) large effects associated with the
QCD β-function can be re-summed [189] in what has become known as
contour improved perturbation theory (CIPT). However, while there is
no doubt that CIPT shows faster convergence in the lower (calculable)
orders, doubts have been cast on the method by the observation that
at least in a specific model [190], which includes the exactly known
coefficients and theoretical constraints on the large-order behavior,
ordinary fixed order perturbation theory (FOPT) may nevertheless
give a better approximation to the full result. We therefore use the
expressions [45,177,178,191],

ττ = ~
1 − Bs

τ

Γe
τ + Γµ

τ + Γud
τ

= 290.88± 0.35 fs, (10.52)

Γud
τ =

G2
F m5

τ |Vud|2
64π3

S(mτ , MZ)

(
1 +

3

5

m2
τ − m2

µ

M2
W

)
×

[1 +
αs(mτ )

π
+ 5.202

α2
s

π2
+ 26.37

α3
s

π3
+

127.1
α4

s

π4
+

α̂

π
(
85

24
− π2

2
) + δNP], (10.53)

and Γe
τ and Γµ

τ can be taken from Eq. (10.6) with obvious
replacements. The relative fraction of decays with ∆S = −1,
Bs

τ = 0.0287 ± 0.0005, is based on experimental data since the value
for the strange quark mass, m̂s(mτ ), is not well known and the
QCD expansion proportional to m̂2

s converges poorly and cannot be
trusted. S(mτ , MZ) = 1.01907± 0.0003 is a logarithmically enhanced
EW correction factor with higher orders re-summed [192]. δNP
collects non-perturbative and quark-mass suppressed contributions,
including the dimension four, six and eight terms in the OPE, as
well as DV effects. We use the average, δNP = 0.0114 ± 0.0072,
of the slightly conflicting results, δNP = −0.004 ± 0.012 [193] and
δNP = 0.020 ± 0.0009 [194], based on OPAL [34] and ALEPH [188] τ
spectral functions, respectively. The dominant uncertainty arises from
the truncation of the FOPT series and is conservatively taken as the
α4

s term (this is re-calculated in each call of the fits, leading to an
αs-dependent and thus asymmetric error) until a better understanding
of the numerical differences between FOPT and CIPT has been gained.
Our perturbative error covers almost the entire range from using CIPT
to assuming that the nearly geometric series in Eq. (10.53) continues
to higher orders. The experimental uncertainty in Eq. (10.52), is from
the combination of the two leptonic branching ratios with the direct
ττ . Included are also various smaller uncertainties (±0.5 fs) from other
sources which are dominated by the evolution from the Z scale. In
total we obtain a ∼ 1.5% determination of αs(MZ) = 0.1174+0.0019

−0.0017,

which corresponds to αs(mτ ) = 0.314+0.016
−0.013, and updates the result of

Refs. 45 and 195. For more details, see Refs. 193 and 194 where the
τ spectral functions themselves and an estimate of the unknown α5

s
term are used as additional inputs.

The world average of the muon anomalous magnetic moment‡,

aexp
µ =

gµ − 2

2
= (1165920.91± 0.63)× 10−9, (10.54)

is dominated by the final result of the E821 collaboration at
BNL [196]. The QED contribution has been calculated to five
loops [197] (fully analytic to three loops [198,199]). The estimated
SM EW contribution [200–202], aEW

µ = (1.54 ± 0.01) × 10−9, which
includes two-loop [201] and leading three-loop [202] corrections, is at
the level of twice the current uncertainty.

The limiting factor in the interpretation of the result are the
uncertainties from the two- and three-loop hadronic contribution [203].
E.g., Ref. 31 obtained the value ahad

µ = (69.23 ± 0.42) × 10−9 which

combines CMD-2 [38] and SND [39] e+e− → hadrons cross-section
data with radiative return results from BaBar [41] and KLOE [42].
The most recent analysis [20] includes τ decay data corrected
for isospin symmetry violation and γ-ρ mixing effects and yields
ahad
µ = (68.72 ± 0.35) × 10−9. The largest isospin symmetry violating

effect is due to higher-order EW corrections [204] but introduces a
negligible uncertainty [192]. The γ-ρ mixing effect [205] resolves an
earlier discrepancy between the spectral functions obtained from e+e−

and τ decay data. A recent lattice QCD calculation finds agreement
with the results of the dispersive approach discussed above although
within a much larger error [206].

An additional uncertainty is induced by the hadronic three-loop
light-by-light scattering contribution. Several recent independent
model calculations yield compatible results: aLBLS

µ (α3) = (+1.36 ±
0.25)×10−9 [207], aLBLS

µ (α3) = +1.37+0.15
−0.27×10−9 [208], aLBLS

µ (α3) =

(+1.16 ± 0.40) × 10−9 [209], and aLBLS
µ (α3) = (+1.05 ± 0.26) ×

10−9 [210]. The sign of this effect is opposite [211] to the one
quoted in the 2002 edition of this Review, and its magnitude is larger
than previous evaluations [211,212]. There is also an upper bound
aLBLS
µ (α3) < 1.59×10−9 [208] but this requires an ad hoc assumption,

too. Partial results (diagrams with several disconnected quark loops
still need to be considered) from lattice simulations are promising,
with small (about 5%) statistical uncertainty [213]. Various sources
of systematic uncertainties are currently being investigated. For the
fits, we take the result from Ref. 210, shifted by 2 × 10−11 to
account for the more accurate charm quark treatment of Ref. 208,
and with increased error to cover all recent evaluations, resulting in
aLBLS
µ (α3) = (+1.07 ± 0.32) × 10−9.

Other hadronic effects at three-loop order [214] (udated in
Ref. 20) contribute ahad

µ (α3) = (−0.99 ± 0.01) × 10−9. Correlations
with the two-loop hadronic contribution and with ∆α(MZ) (see
Sec. 10.2) were considered in Ref. 199 which also contains analytic
results for the perturbative QCD contribution. Very recently,
hadronic four-loop effects have also been obtained, where the
contributions without hadronic LBLS subgraphs [215] amount to
ahad
µ (α4) = (0.123 ± 0.001) × 10−9 [20]. The contributions with a

hadronic LBLS subgraph have been estimated in Ref. 216, with the
result aLBLS

µ (α4) = (0.03 ± 0.02)× 10−9.

Altogether, the SM prediction is

atheory
µ = (1165917.63± 0.46)× 10−9 , (10.55)

‡ In what follows, we summarize the most important aspects of
gµ − 2, and give some details on the evaluation in our fits. For more
details see the dedicated contribution on “The Muon Anomalous Mag-
netic Moment” in this Review. There are some numerical differences,
which are well understood and arise because internal consistency of the
fits requires the calculation of all observables from analytical expres-
sions and common inputs and fit parameters, so that an independent
evaluation is necessary for this Section. Note, that in the spirit of a
global analysis based on all available information we have chosen here
to use an analysis [20] which considers the τ decay data, as well.
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where the error is from the hadronic uncertainties excluding
parametric ones such as from αs and the heavy quark masses.
Estimating a correlation of about 68% from the data input to the
vacuum polarization integrals, we evaluate the correlation of the
total (experimental plus theoretical) uncertainty in aµ with ∆α(MZ )
as 24%. The overall 4.2 σ discrepancy between the experimental
and theoretical aµ values could be due to fluctuations (the E821
result is statistics dominated) or underestimates of the theoretical
uncertainties. On the other hand, the deviation could also arise from
physics beyond the SM, such as supersymmetric models with large
tanβ and moderately light superparticle masses [217], or a dark Z
boson [186].

10.6. Global fit results

In this section we present the results of global fits to the
experimental data discussed in Sec. 10.3–Sec. 10.5. For earlier
analyses see Refs. [10,117,218]

Table 10.4: Principal non-Z pole observables, compared with
the SM best fit predictions. The first MW and ΓW values
are from the Tevatron [219,220] and the second ones from
LEP 2 [173]. The value of mt differs from the one in the
Particle Listings since it includes recent preliminary results. The
world averages for gνe

V,A are dominated by the CHARM II [86]

results, gνe
V = −0.035 ± 0.017 and gνe

A = −0.503 ± 0.017. The
errors are the total (experimental plus theoretical) uncertainties.
The ττ value is the τ lifetime world average computed by
combining the direct measurements with values derived from
the leptonic branching ratios [45]; in this case, the theory
uncertainty is included in the SM prediction. In all other SM
predictions, the uncertainty is from MZ , MH , mt, mb, mc,
α̂(MZ), and αs, and their correlations have been accounted for.
The column denoted Pull gives the standard deviations.

Quantity Value Standard Model Pull

mt [GeV] 173.34± 0.81 173.76± 0.76 −0.5

MW [GeV] 80.387± 0.016 80.361± 0.006 1.6

80.376± 0.033 0.4

ΓW [GeV] 2.046 ± 0.049 2.089 ± 0.001 −0.9

2.195 ± 0.083 1.3

MH [GeV] 125.09± 0.24 125.11± 0.24 0.0

ργW −0.03 ± 0.20 −0.02 ± 0.02 0.0

ρτZ −0.27 ± 0.31 0.00 ± 0.03 −0.9

gνe
V −0.040± 0.015 −0.0397± 0.0002 0.0

gνe
A −0.507± 0.014 −0.5064 0.0

QW (e) −0.0403± 0.0053 −0.0473± 0.0003 1.3

QW (p) 0.064 ± 0.012 0.0708± 0.0003 −0.6

QW (Cs) −72.62± 0.43 −73.25 ± 0.02 1.5

QW (Tl) −116.4 ± 3.6 −116.91± 0.02 0.1

ŝ2
Z(eDIS) 0.2299± 0.0043 0.23129± 0.00005 −0.3

ττ [fs] 290.88± 0.35 289.85± 2.12 0.4

1
2 (gµ − 2 − α

π ) (4511.18± 0.78)× 10−9 (4507.89± 0.08) × 10−9 4.2

The values for mt [48], MW [173,219], ΓW [173,220], MH and
the ratios of Higgs branching fractions [184] discussed in Sec. 10.4.5,
ν-lepton scattering [83–88], the weak charges of the electron [121], the
proton [126], cesium [129,130] and thallium [131], the weak mixing
angle extracted from eDIS [113], the muon anomalous magnetic
moment [196], and the τ lifetime are listed in Table 10.4. Likewise,
the principal Z pole observables can be found in Table 10.5 where
the LEP 1 averages of the ALEPH, DELPHI, L3 and OPAL results
include common systematic errors and correlations [10]. The heavy
flavor results of LEP 1 and SLD are based on common inputs and
correlated, as well [10]. Note that the values of Γ(ℓ+ℓ−), Γ(had),
and Γ(inv) are not independent of ΓZ , the Rℓ, and σhad and that the
SM errors in those latter are largely dominated by the uncertainty in

Table 10.5: Principal Z pole observables and their SM
predictions (cf. Table 10.4). The first s2

ℓ is the effective weak
mixing angle extracted from the hadronic charge asymmetry,
the second is the combined value from the Tevatron [164–166],
and the third from the LHC [170–172]. The values of Ae are
(i) from ALR for hadronic final states [159]; (ii) from ALR for
leptonic final states and from polarized Bhabba scattering [161];
and (iii) from the angular distribution of the τ polarization at
LEP 1. The Aτ values are from SLD and the total τ polarization,
respectively.

Quantity Value Standard Model Pull

MZ [GeV] 91.1876± 0.0021 91.1880± 0.0020 −0.2

ΓZ [GeV] 2.4952± 0.0023 2.4943± 0.0008 0.4

Γ(had) [GeV] 1.7444± 0.0020 1.7420± 0.0008 —

Γ(inv) [MeV] 499.0 ± 1.5 501.66± 0.05 —

Γ(ℓ+ℓ−) [MeV] 83.984± 0.086 83.995± 0.010 —

σhad[nb] 41.541± 0.037 41.484± 0.008 1.5

Re 20.804± 0.050 20.734± 0.010 1.4

Rµ 20.785± 0.033 20.734± 0.010 1.6

Rτ 20.764± 0.045 20.779± 0.010 −0.3

Rb 0.21629± 0.00066 0.21579± 0.00003 0.8

Rc 0.1721± 0.0030 0.17221± 0.00003 0.0

A
(0,e)
FB 0.0145± 0.0025 0.01622± 0.00009 −0.7

A
(0,µ)
FB 0.0169± 0.0013 0.5

A
(0,τ)
FB 0.0188± 0.0017 1.5

A
(0,b)
FB 0.0992± 0.0016 0.1031± 0.0003 −2.4

A
(0,c)
FB 0.0707± 0.0035 0.0736± 0.0002 −0.8

A
(0,s)
FB 0.0976± 0.0114 0.1032± 0.0003 −0.5

s̄2
ℓ 0.2324± 0.0012 0.23152± 0.00005 0.7

0.23185± 0.00035 0.9

0.23105± 0.00087 −0.5

Ae 0.15138± 0.00216 0.1470± 0.0004 2.0

0.1544± 0.0060 1.2

0.1498± 0.0049 0.6

Aµ 0.142± 0.015 −0.3

Aτ 0.136± 0.015 −0.7

0.1439± 0.0043 −0.7

Ab 0.923± 0.020 0.9347 −0.6

Ac 0.670± 0.027 0.6678± 0.0002 0.1

As 0.895± 0.091 0.9356 − 0.4

αs. Also shown in both tables are the SM predictions for the values

of MZ , MH , αs(MZ), ∆α
(3)
had and the heavy quark masses shown

in Table 10.6. The predictions result from a global least-square (χ2)
fit to all data using the minimization package MINUIT [221] and
the EW library GAPP [21]. In most cases, we treat all input errors
(the uncertainties of the values) as Gaussian. The reason is not that
we assume that theoretical and systematic errors are intrinsically
bell-shaped (which they are not) but because in most cases the input
errors are either dominated by the statistical components or they are
combinations of many different (including statistical) error sources,
which should yield approximately Gaussian combined errors by the
large number theorem. An exception is the theory dominated error
on the τ lifetime, which we recalculate in each χ2-function call since
it depends itself on αs. Sizes and shapes of the output errors (the
uncertainties of the predictions and the SM fit parameters) are fully
determined by the fit, and 1 σ errors are defined to correspond to
∆χ2 = χ2 −χ2

min = 1, and do not necessarily correspond to the 68.3%
probability range or the 39.3% probability contour (for 2 parameters).

The agreement is generally very good. Despite the few discrepancies
discussed in the following, the fit describes the data well, with a
χ2/d.o.f. = 53.6/42. The probability of a larger χ2 is 11%. Only
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Figure 10.4: Fit result and one-standard-deviation (39.35% for
the closed contours and 68% for the others) uncertainties in MH
as a function of mt for various inputs, and the 90% CL region
(∆χ2 = 4.605) allowed by all data. αs(MZ) = 0.1182 is assumed
except for the fits including the Z lineshape. The width of the
horizontal dashed (yellow) band is not visible on the scale of the
plot.

the final result for gµ − 2 from BNL is currently showing a large

(4.2 σ) conflict. In addition, A
(0,b)
FB from LEP 1 and A0

LR (SLD) from

hadronic final states deviate at the 2 σ level. g2
L from NuTeV is

nominally in conflict with the SM, as well, but the precise status is
under investigation (see Sec. 10.3).

Ab can be extracted from A
(0,b)
FB when Ae = 0.1501 ± 0.0016 is

taken from a fit to leptonic asymmetries (using lepton universality).

The result, Ab = 0.881 ± 0.017, is 3.1 σ below the SM prediction§
and also 1.6 σ below Ab = 0.923 ± 0.020 obtained from AFB

LR (b) at
SLD. Thus, it appears that at least some of the problem in Ab is due
to a statistical fluctuation or other experimental effect in one of the

asymmetries. Note, however, that the uncertainty in A
(0,b)
FB is strongly

statistics dominated. The combined value, Ab = 0.899±0.013 deviates
by 2.8 σ.

The left-right asymmetry, A0
LR = 0.15138±0.00216 [159], based on

all hadronic data from 1992–1998 differs 2.0 σ from the SM expectation
of 0.1470 ± 0.0004. The combined value of Aℓ = 0.1513± 0.0021 from
SLD (using lepton-family universality and including correlations) is
also 2.0 σ above the SM prediction; but there is experimental agreement
between this SLD value and the LEP 1 value, Aℓ = 0.1481 ± 0.0027,

obtained from a fit to A
(0,ℓ)
FB , Ae(Pτ ), and Aτ (Pτ ), again assuming

universality.

The observables in Table 10.4 and Table 10.5, as well as some
other less precise observables, are used in the global fits described
below. In all fits, the errors include full statistical, systematic, and
theoretical uncertainties. The correlations on the LEP 1 lineshape
and τ polarization, the LEP/SLD heavy flavor observables, the SLD
lepton asymmetries, and the ν-e scattering observables, are included.

The theoretical correlations between ∆α
(5)
had and gµ − 2, and between

the charm and bottom quark masses, are also accounted for.

The electroweak data allow a simultaneous determination of MZ ,

MH , mt, and the strong coupling αs(MZ). (m̂c, m̂b, and ∆α
(3)
had

are also allowed to float in the fits, subject to the theoretical
constraints [19,45] described in Sec. 10.2. These are correlated
with αs.) αs is determined mainly from Rℓ, ΓZ , σhad, and ττ .
The global fit to all data, including the hadron collider average
mt = 173.34 ± 0.81 GeV, yields the result in Table 10.6 (the MS top
quark mass given there corresponds to mt = 173.76 ± 0.76 GeV). The

§ Alternatively, one can use Aℓ = 0.1481 ± 0.0027, which is from
LEP 1 alone and in excellent agreement with the SM, and obtain Ab =
0.893 ± 0.022 which is 1.9 σ low. This illustrates that some of the
discrepancy is related to the one in ALR.
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Figure 10.5: One-standard-deviation (39.35%) region in MW
as a function of mt for the direct and indirect data, and the 90%
CL region (∆χ2 = 4.605) allowed by all data.

weak mixing angle, see Table 10.2, is determined to

ŝ 2
Z = 0.23129± 0.00005, s2

W = 0.22336± 0.00010,

while the corresponding effective angle is s2
ℓ = 0.23152± 0.00005.

As a cross-check, one can also perform a fit without the direct mass
constraint, MH = 125.09 ± 0.24 GeV, in Eq. (10.49). In this case we
obtain a 2% indirect mass determination,

MH = 126.1± 1.9 GeV , (10.56)

arising predominantly from the quantities in Eq. (10.51), since the
branching ratio for H → ZZ∗ varies very rapidly as a function of MH
for Higgs masses near 125 GeV. Removing also the branching ratio
constraints gives the loop-level determination from the precision data
alone,

MH = 96+22
−19 GeV , (10.57)

which is 1.2 σ below the kinematical constraint, but the latter is inside
the 90% central confidence range,

66 GeV < MH < 134 GeV . (10.58)

This is mostly a reflection of the Tevatron determination of MW ,
which is 1.6 σ higher than the SM best fit value in Table 10.4. This
is illustrated in Fig. 10.4 where one sees that the precision data
together with MH from the LHC prefer that mt is closer to the upper
end of its 1σ allowed range. Conversely, one can remove the direct
MW and ΓW constraints from the fits and use Eq. (10.49) to obtain
MW = 80.357 ± 0.006 GeV. This is 1.7 σ below the Tevatron/LEP 2
average, MW = 80.385± 0.015 GeV.

Finally, one can carry out a fit without including the constraint,
mt = 173.34 ± 0.81 GeV, from the hadron colliders. (The indirect
prediction is for the MS mass, m̂t(m̂t) = 166.8±2.0 GeV, which is in the
end converted to the pole mass.) One obtains mt = 176.7 ± 2.1 GeV,
which is 1.5 σ higher than the direct Tevatron/LHC average. The
situation is summarized in Fig. 10.5 showing the 1 σ contours in the
MW -mt plane from the direct and indirect determinations, as well as
the combined 90% CL region.

As described in the paragraph following Eq. (10.54) in Sec. 10.5,
there is some stress in the experimental e+e− and τ spectral
functions. These are below or above the 2 σ level (depending on
what is actually compared) but not larger than the deviations of
some other quantities entering our analyses. The number and size
or these deviations are not inconsistent with what one would expect
to happen as a result of random fluctuations. It is nevertheless
instructive to study the effect of doubling the uncertainty in

∆α
(3)
had(2 GeV) = (58.04 ± 1.10) × 10−4 (see Sec. 10.2) on the loop-

level determination. The result, MH = 90+23
−19 GeV, deviates even
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slightly more (1.4 σ) than Eq. (10.57), and demonstrates that the
uncertainty in ∆αhad is currently of only secondary importance.

Note also that a shift of ±10−4 in ∆α
(3)
had(2 GeV) corresponds to a

shift of ∓4.5 GeV in MH . The hadronic contribution to α(MZ) is
correlated with gµ − 2 (see Sec. 10.5). The measurement of the latter
is higher than the SM prediction, and its inclusion in the fit favors a
larger α(MZ) and a lower MH from the precision data (currently by
6.4 GeV).

Table 10.6: Principal SM fit result including mutual correlations
(all masses in GeV).

MZ 91.1880± 0.0020 1.00 −0.08 −0.01 −0.02 0.01 0.04 0.00

m̂t(m̂t) 164.08± 0.73 −0.08 1.00 −0.01 −0.08 −0.17 0.07 −0.01

m̂b(m̂b) 4.199± 0.023 −0.01 −0.01 1.00 0.23 −0.04 0.02 0.00

m̂c(m̂c) 1.265+0.030
−0.038 −0.02 −0.08 0.23 1.00 0.10 0.07 0.00

αs(MZ) 0.1182± 0.0016 0.01 −0.17 −0.04 0.10 1.00 −0.04 −0.01

∆α
(3)
had(2 GeV) 0.00590± 0.00011 0.04 0.07 0.02 0.07 −0.04 1.00 0.00

MH 125.11± 0.24 0.00 −0.01 0.00 0.00 −0.01 0.00 1.00

Table 10.7: Values of ŝ 2
Z , s2

W , αs, mt and MH [both in GeV]
for various data sets. The MH constraint refers collectively to
the kinematical and decay information from Sec. 10.4.5. In the
fit to the LHC (Tevatron) data the αs constraint is from the tt̄
production [222] (inclusive jet [223]) cross-section. The mt input
for the LHC is taken from Ref. 224.

Data ŝ 2
Z s2

W αs(MZ) mt MH

All data 0.23129(5) 0.22336(10) 0.1182(16) 173.8± 0.8 125.1 ± 0.2

All data except MH 0.23119(10) 0.22312(22) 0.1184(16) 173.4± 0.8 96+ 22
− 19

All data except MZ 0.23122(7) 0.22332(11) 0.1181(16) 173.4± 0.8 125.1 ± 0.2

All data except MW 0.23132(6) 0.22343(11) 0.1185(16) 173.4± 0.8 125.1 ± 0.2

All data except mt 0.23122(7) 0.22303(24) 0.1185(16) 176.7± 2.1 125.1 ± 0.2

MH , MZ , ΓZ , mt 0.23129(9) 0.22342(16) 0.1202(45) 173.3± 0.8 125.1 ± 0.2

LHC 0.23081(88) 0.22298(88) 0.1151(27) 172.4± 0.8 125.1 ± 0.2

Tevatron + MZ 0.23113(13) 0.22307(30) 0.1161(45) 173.4± 0.8 100+ 32
− 26

LEP 0.23147(17) 0.22346(47) 0.1220(31) 182 ± 12 283+395
−158

SLD + MZ , ΓZ , mt 0.23074(28) 0.22229(55) 0.1174(45) 173.3± 0.8 43+ 33
− 23

A
(b,c)
FB , MZ , ΓZ , mt 0.23200(29) 0.22508(70) 0.1277(51) 173.3± 0.8 380+219

−138

MW,Z , ΓW,Z , mt 0.23106(14) 0.22292(29) 0.1185(43) 173.3± 0.8 83+ 26
− 22

low energy + MH,Z 0.2328(14) 0.2291(55) 0.1175(18) 121 ± 50 125.1 ± 0.2

The weak mixing angle can be determined from Z pole observables,
MW , and from a variety of neutral-current processes spanning a very
wide Q2 range. The results (for the older low energy neutral-current
data see Refs. 117 and 218, as well as earlier editions of this Review)
shown in Table 10.7 are in reasonable agreement with each other,
indicating the quantitative success of the SM. The largest discrepancy
is the value ŝ 2

Z = 0.23200 ± 0.00029 from the forward-backward
asymmetries into bottom and charm quarks, which is 2.4 σ above the
value 0.23129± 0.00005 from the global fit to all data (see Table 10.5).
Similarly, ŝ 2

Z = 0.23074± 0.00028 from the SLD asymmetries (in both
cases when combined with MZ) is 2.0 σ low.

The extracted Z pole value of αs(MZ) is based on a formula with
negligible theoretical uncertainty if one assumes the exact validity

of the SM. One should keep in mind, however, that this value,
αs(MZ) = 0.1203 ± 0.0028, is very sensitive to certain types of new
physics such as non-universal vertex corrections. In contrast, the value
derived from τ decays, αs(MZ) = 0.1174+0.0019

−0.0017, is theory dominated
but less sensitive to new physics. The two values are in reasonable
agreement with each other. They are also in good agreement with the
averages from jet-event shapes in e+e− annihilation (0.1169 ± 0.0034)
and lattice simulations (0.1187± 0.0012), whereas the DIS average

(0.1156 ± 0.0023) is somewhat lower than the Z pole value. For
more details, other determinations, and references, see Section 9 on
“Quantum Chromodynamics” in this Review.

Using α(MZ) and ŝ 2
Z as inputs, one can predict αs(MZ) assuming

grand unification. One finds [225] αs(MZ) = 0.130 ± 0.001 ± 0.01
for the simplest theories based on the minimal supersymmetric
extension of the SM, where the first (second) uncertainty is from
the inputs (thresholds). This is slightly larger, but consistent with
αs(MZ) = 0.1182 ± 0.0016 from our fit, as well as with most other
determinations. Non-supersymmetric unified theories predict the
low value αs(MZ) = 0.073 ± 0.001 ± 0.001. See also the note on
“Supersymmetry” in the Searches Particle Listings.

Most of the parameters relevant to ν-hadron, ν-e, e-hadron,
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and e−e± processes are determined uniquely and precisely from
the data in “model-independent” fits (i.e., fits which allow for an
arbitrary EW gauge theory). The values for the parameters defined
in Eqs. (10.16)–(10.17) are given in Table 10.8 along with the
predictions of the SM. The agreement is very good. (The ν-hadron
results including the original NuTeV data can be found in the 2006
edition of this Review, and fits with modified NuTeV constraints
in the 2008 and 2010 editions.) The off Z pole e+e− results are
difficult to present in a model-independent way because Z propagator
effects are non-negligible at TRISTAN, PETRA, PEP, and LEP 2
energies. However, assuming e-µ-τ universality, the low energy lepton
asymmetries imply [156] 4 (ge

A)2 = 0.99±0.05, in good agreement with
the SM prediction ≃ 1.

Table 10.8: Values of the model-independent neutral-current
parameters, compared with the SM predictions. There is a
second gνe

LV,LA solution, given approximately by gνe
LV ↔ gνe

LA,

which is eliminated by e+e− data under the assumption that
the neutral current is dominated by the exchange of a single
Z boson. The gνq

LL, as well as the gνq
LR, are strongly correlated

and non-Gaussian, so that for implementations we recommend
the parametrization using g2

i and tan θi = gνu
Li /gνd

Li where
i = L, R. In the SM predictions, the parametric uncertainties
from MZ , MH , mt, mb, mc, α̂(MZ), and αs are negligible.

Quantity Experimental Value Standard Model Correlation

gνu
LL 0.328 ± 0.016 0.3457

gνd
LL −0.440± 0.011 −0.4288 non-

gνu
LR −0.179± 0.013 −0.1553 Gaussian

gνd
LR −0.027 +0.077

−0.048 0.0777

g2
L 0.3005± 0.0028 0.3034

g2
R 0.0329± 0.0030 0.0302 small

θL 2.50 ± 0.035 2.4631

θR 4.56 +0.42
−0.27 5.1765

gνe
LV −0.040± 0.015 −0.0396 −0.05

gνe
LA −0.507± 0.014 −0.5064

geu
AV + 2 ged

AV 0.489 ± 0.005 0.4951 −0.94 0.42

2 geu
AV − ged

AV −0.708± 0.016 −0.7192 −0.45

2 geu
V A − ged

V A −0.144± 0.068 −0.0949

gee
V A 0.0190± 0.0027 0.0225

10.7. Constraints on new physics

The masses and decay properties of the electroweak bosons and low
energy data can be used to search for and set limits on deviations
from the SM. We will mainly discuss the effects of exotic particles
(with heavy masses Mnew ≫ MZ in an expansion in MZ/Mnew)
on the gauge boson self-energies. (Brief remarks are made on new
physics which is not of this type.) Most of the effects on precision
measurements can be described by three gauge self-energy parameters
S, T , and U . We will define these, as well as the related parameters
ρ0, ǫi, and ǫ̂i, to arise from new physics only. In other words, they are
equal to zero (ρ0 = 1) exactly in the SM, and do not include any (loop
induced) contributions that depend on mt or MH , which are treated
separately. Our treatment differs from most of the original papers.

The dominant effect of many extensions of the SM can be described
by the ρ0 parameter,

ρ0 ≡ M2
W

M2
Z ĉ 2

Z ρ̂
, (10.59)

which describes new sources of SU(2) breaking that cannot be
accounted for by the SM Higgs doublet or mt effects. ρ̂ is calculated
as in Eq. (10.12) assuming the validity of the SM. In the presence

of ρ0 6= 1, Eq. (10.59) generalizes the second Eq. (10.12) while the
first remains unchanged. Provided that the new physics which yields
ρ0 6= 1 is a small perturbation which does not significantly affect
other radiative corrections, ρ0 can be regarded as a phenomenological
parameter which multiplies GF in Eqs. (10.16)–(10.17), (10.32), and
ΓZ in Eq. (10.46c). There are enough data to determine ρ0, MH , mt,
and αs, simultaneously. From the global fit,

ρ0 = 1.00037± 0.00023 , (10.60)

αs(MZ) = 0.1183± 0.0016, (10.61)

The result in Eq. (10.60) is 1.6 σ above the SM expectation, ρ0 = 1.
It can be used to constrain higher-dimensional Higgs representations
to have vacuum expectation values of less than a few percent of those
of the doublets. Indeed, the relation between MW and MZ is modified
if there are Higgs multiplets with weak isospin > 1/2 with significant
vacuum expectation values. For a general (charge-conserving) Higgs
structure,

ρ0 =

∑
i[t(i)(t(i) + 1) − t3(i)

2]|vi|2
2

∑
i t3(i)2|vi|2

, (10.62)

where vi is the expectation value of the neutral component of a
Higgs multiplet with weak isospin t(i) and third component t3(i). In
order to calculate to higher orders in such theories one must define
a set of four fundamental renormalized parameters which one may
conveniently choose to be α, GF , MZ , and MW , since MW and MZ
are directly measurable. Then ŝ 2

Z and ρ0 can be considered dependent
parameters.

Eq. (10.60) can also be used to constrain other types of new physics.
For example, non-degenerate multiplets of heavy fermions or scalars
break the vector part of weak SU(2) and lead to a decrease in the

value of MZ/MW . Each non-degenerate SU(2) doublet
(f1
f2

)
yields a

positive contribution to ρ0 [226] of

C GF

8
√

2π2
∆m2, (10.63)

where

∆m2 ≡ m2
1 + m2

2 − 4m2
1m

2
2

m2
1 − m2

2

ln
m1

m2
≥ (m1 − m2)

2, (10.64)

and C = 1 (3) for color singlets (triplets). Eq. (10.60) taken together
with Eq. (10.63) implies the following constraint on the mass splitting
at the 95% CL,

∑

i

Ci

3
∆m2

i ≤ (49 GeV)2. (10.65)

where the sum runs over all new-physics doublets, for example

fourth-family quarks or leptons,
(t′

b′
)

or
( ν′

ℓ′−
)
, vector-like fermion

doublets (which contribute to the sum in Eq. (10.65) with an extra

factor of 2), and scalar doublets such as
(t̃
b̃

)
in Supersymmetry (in the

absence of L–R mixing).

Non-degenerate multiplets usually imply ρ0 > 1. Similarly, heavy
Z ′ bosons decrease the prediction for MZ due to mixing and generally
lead to ρ0 > 1 [227]. On the other hand, additional Higgs doublets
which participate in spontaneous symmetry breaking [228] or heavy
lepton doublets involving Majorana neutrinos [229], both of which
have more complicated expressions, as well as the vacuum expectation
values of Higgs triplets or higher-dimensional representations can
contribute to ρ0 with either sign. Allowing for the presence of heavy
degenerate chiral multiplets (the S parameter, to be discussed below)
affects the determination of ρ0 from the data, at present leading to a
larger value.

A number of authors [230–235] have considered the general effects
on neutral-current and Z and W boson observables of various types
of heavy (i.e., Mnew ≫ MZ) physics which contribute to the W and
Z self-energies but which do not have any direct coupling to the
ordinary fermions. In addition to non-degenerate multiplets, which
break the vector part of weak SU(2), these include heavy degenerate
multiplets of chiral fermions which break the axial generators.
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Such effects can be described by just three parameters, S, T , and
U , at the (EW) one-loop level. (Three additional parameters are
needed if the new physics scale is comparable to MZ [236]. Further
generalizations, including effects relevant to LEP 2, are described
in Ref. 237.) T is proportional to the difference between the W
and Z self-energies at Q2 = 0 (i.e., vector SU(2)-breaking), while S
(S+U) is associated with the difference between the Z (W ) self-energy
at Q2 = M2

Z,W and Q2 = 0 (axial SU(2)-breaking). Denoting the

contributions of new physics to the various self-energies by Πnew
ij , we

have

α̂(MZ)T ≡ Πnew
WW (0)

M2
W

− Πnew
ZZ (0)

M2
Z

, (10.66a)

α̂(MZ)

4 ŝ 2
Z ĉ 2

Z

S ≡ Πnew
ZZ (M2

Z) − Πnew
ZZ (0)

M2
Z

−

ĉ 2
Z − ŝ 2

Z

ĉ Z ŝ Z

Πnew
Zγ (M2

Z)

M2
Z

−
Πnew

γγ (M2
Z)

M2
Z

, (10.66b)

α̂(MZ)

4 ŝ 2
Z

(S + U) ≡ Πnew
WW (M2

W ) − Πnew
WW (0)

M2
W

−

ĉ Z

ŝ Z

Πnew
Zγ (M2

Z)

M2
Z

−
Πnew

γγ (M2
Z)

M2
Z

. (10.66c)

S, T , and U are defined with a factor proportional to α̂ removed, so
that they are expected to be of order unity in the presence of new
physics. In the MS scheme as defined in Ref. 57, the last two terms in
Eqs. (10.66b) and (10.66c) can be omitted (as was done in some earlier
editions of this Review). These three parameters are related to other
parameters (Si, hi, ǫ̂i) defined in Refs. [57,231,232] by

T = hV = ǫ̂1/α̂(MZ),

S = hAZ = SZ = 4 ŝ 2
Z ǫ̂3/α̂(MZ),

U = hAW − hAZ = SW − SZ

= −4 ŝ 2
Z ǫ̂2/α̂(MZ). (10.67)

A heavy non-degenerate multiplet of fermions or scalars contributes
positively to T as

ρ0 − 1 =
1

1 − α̂(MZ)T
− 1 ≃ α̂(MZ)T, (10.68)

where ρ0 − 1 is given in Eq. (10.63). The effects of non-standard
Higgs representations cannot be separated from heavy non-degenerate
multiplets unless the new physics has other consequences, such as
vertex corrections. Most of the original papers defined T to include
the effects of loops only. However, we will redefine T to include all
new sources of SU(2) breaking, including non-standard Higgs, so that
T and ρ0 are equivalent by Eq. (10.68).

A multiplet of heavy degenerate chiral fermions yields

S =
C

3π

∑

i

(
t3L(i) − t3R(i)

)2
, (10.69)

where t3L,R(i) is the third component of weak isospin of the left-
(right-)handed component of fermion i and C is the number of colors.
For example, a heavy degenerate ordinary or mirror family would
contribute 2/3π to S. In models with warped extra dimensions,
sizeable correction to the S parameter are generated by mixing
effects between the SM gauge bosons and their Kaluza-Klein (KK)
excitations. One finds S ≈ 30v2/M2

KK , where MKK is the mass of
the KK gauge bosons [238]. Large positive values S > 0 can also be
generated in Technicolor models with QCD-like dynamics, where one
expects [230] S ∼ 0.45 for an iso-doublet of techni-fermions, assuming
NTC = 4 techni-colors, while S ∼ 1.62 for a full techni-generation
with NTC = 4. However, the QCD-like models are excluded on
other grounds (flavor changing neutral currents, too-light quarks and
pseudo-Goldstone bosons [239], and absence of a Higgs-like scalar).

On the other hand, negative values S < 0 are possible, for example,
for models of walking Technicolor [240] or loops involving scalars

or Majorana particles [241]. The simplest origin of S < 0 would
probably be an additional heavy Z ′ boson [227]. Supersymmetric
extensions of the SM generally give very small effects. See Refs. 242
and 243 and the note on “Supersymmetry” in the Searches Particle
Listings for a complete set of references.

Most simple types of new physics yield U = 0, although there
are counter-examples, such as the effects of anomalous triple gauge
vertices [232].

The SM expressions for observables are replaced by

M2
Z = M2

Z0
1 − α̂(MZ)T

1 − GF M2
Z0S/2

√
2π

,

M2
W = M2

W0
1

1 − GF M2
W0(S + U)/2

√
2π

, (10.70)

where MZ0 and MW0 are the SM expressions (as functions of mt and
MH) in the MS scheme. Furthermore,

ΓZ =
M3

ZβZ

1 − α̂(MZ)T
, ΓW = M3

W βW , Ai =
Ai0

1 − α̂(MZ)T
, (10.71)

where βZ and βW are the SM expressions for the reduced widths
ΓZ0/M

3
Z0 and ΓW0/M

3
W0, MZ and MW are the physical masses, and

Ai (Ai0) is a neutral-current amplitude (in the SM).

The data allow a simultaneous determination of ŝ 2
Z (from the

Z pole asymmetries), S (from MZ), U (from MW ), T (mainly from
ΓZ), αs (from Rℓ, σhad, and ττ ), MH and mt (from the hadron
colliders), with little correlation among the SM parameters:

S = 0.05 ± 0.10,

T = 0.08 ± 0.12,

U = 0.02 ± 0.10, (10.72)

ŝ 2
Z = 0.23131 ± 0.00015, and αs(MZ) = 0.1182 ± 0.0017, where the

uncertainties are from the inputs. The parameters in Eqs. (10.72),
which by definition are due to new physics only, are in excellent
agreement with the SM values of zero. Fixing U = 0 (as is also done
in Fig. 10.6) moves S and T slightly upwards,

S = 0.07 ± 0.08,

T = 0.10 ± 0.07, (10.73)

with T showing a 1.5 σ deviation from zero. Using Eq. (10.68), the
value of ρ0 corresponding to T in Eq. (10.72) is 1.0006± 0.0009, while
the one corresponding to Eq. (10.73) is 1.0008± 0.0005.

There is a strong correlation (91%) between the S and T
parameters. The U parameter is −61% (−82%) anti-correlated with
S (T ). The allowed regions in S–T are shown in Fig. 10.6. From
Eqs. (10.72) one obtains S < 0.22 and T < 0.27 at 95% CL, where
the former puts the constraint MKK & 2.9 TeV on the masses of KK
gauge bosons in warped extra dimensions.

The S parameter can also be used to constrain the number
of fermion families, under the assumption that there are no new
contributions to T or U and therefore that any new families are
degenerate; then an extra generation of SM fermions is excluded at the
7 σ level corresponding to NF = 2.83 ± 0.17. This can be compared
to the fit to the number of light neutrinos given in Eq. (10.37),
Nν = 2.992 ± 0.007. However, the S parameter fits are valid even
for a very heavy fourth family neutrino. Allowing T to vary as
well, the constraint on a fourth family is weaker [244]. However, a
heavy fourth family would increase the Higgs production cross-section
through gluon fusion by a factor ∼ 9, which is in considerable tension
with the observed Higgs signal at LHC. Combining the limits from
electroweak precision data with the measured Higgs production rate
and limits from direct searches for heavy quarks [245], a fourth
family of chiral fermions is now excluded by more than five standard
deviations [246]. Similar remarks apply to a heavy mirror family [247]
involving right-handed SU(2) doublets and left-handed singlets. In
contrast, new doublets that receive most of their mass from a different
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Figure 10.6: 1 σ constraints (39.35% for the closed contours
and 68% for the others) on S and T (for U = 0) from various
inputs combined with MZ . S and T represent the contributions
of new physics only. Data sets not involving MW or ΓW are
insensitive to U . With the exception of the fit to all data, we fix
αs = 0.1182. The black dot indicates the Standard Model values
S = T = 0.

source than the Higgs vacuum expectation value, such as vector-like
fermion doublets or scalar doublets in Supersymmetry, give small or
no contribution to S, T , U and the Higgs production cross-section and
thus are still allowed. Partial or complete vector-like fermion families
are predicted in many grand unified theories [248].

As discussed in Sec. 10.6, there is a 4.0% deviation in the asymmetry
parameter Ab. Assuming that this is due to new physics affecting
preferentially the third generation, we can perform a fit allowing
additional Z → bb̄ vertex corrections ρb and κb as in Eq. (10.33) (here
defined to be due to new physics only with the SM contributions
removed), as well as S, T , U , and the SM parameters, with the result,

ρb = 0.056 ± 0.020, κb = 0.182± 0.068, (10.74)

with an almost perfect correlation of 99% (because Rb is much better
determined than Ab). The central values of the oblique parameters
are close to their SM values of zero, and there is little change in the
SM parameters, except that the value of αs(MZ) is lower by 0.0006
compared to the SM fit. Given that almost a ∼ 20% correction to κb
would be necessary, it would be difficult to account for the deviation in
Ab by new physics that enters only at the level of radiative corrections.
Thus, if it is due to new physics, it is most likely of tree-level type
affecting preferentially the third generation. Examples include the
decay of a scalar neutrino resonance [249], mixing of the b quark
with heavy exotics [250], and a heavy Z ′ with family non-universal
couplings [251,252]. It is difficult, however, to simultaneously account
for Rb without tuning, which has been measured on the Z peak and
off-peak [253] at LEP 1. An average of Rb measurements at LEP 2 at
energies between 133 and 207 GeV is 2.1 σ below the SM prediction,

while A
(b)
FB (LEP 2) is 1.6 σ low [174].

There is no simple parametrization to describe the effects of every
type of new physics on every possible observable. The S, T , and U
formalism describes many types of heavy physics which affect only the
gauge self-energies, and it can be applied to all precision observables.
However, new physics which couples directly to ordinary fermions,
such as heavy Z ′ bosons [227], mixing with exotic fermions [254],
or leptoquark exchange [173,255] cannot be fully parametrized in the
S, T , and U framework. It is convenient to treat these types of new
physics by parameterizations that are specialized to that particular
class of theories (e.g., extra Z ′ bosons), or to consider specific models
(which might contain, e.g., Z ′ bosons and exotic fermions with
correlated parameters). Fits to Supersymmetric models are described
in Ref. 243. Models involving strong dynamics (such as composite
Higgs scenarios) for EW breaking are considered in Ref. 256. The

effects of compactified extra spatial dimensions at the TeV scale
are reviewed in Ref. 257, and constraints on Little Higgs models
in Ref. 258. The implications of non-standard Higgs sectors, e.g.,
involving Higgs singlets or triplets, are discussed in Ref. 259, while
additional Higgs doublets are considered in Refs. 228 and 260. Limits
on new four-Fermi operators and on leptoquarks using LEP 2 and lower
energy data are given in Refs. 173 and 261. Constraints on various
types of new physics are reviewed in Refs. [7,117,142,158,262,263],
and implications for the LHC in Ref. 264.

An alternate formalism [265] defines parameters, ǫ1, ǫ2, ǫ3, and

ǫb in terms of the specific observables MW /MZ , Γℓℓ, A
(0,ℓ)
FB , and

Rb. The definitions coincide with those for ǫ̂i in Eqs. (10.66) and
(10.67) for physics which affects gauge self-energies only, but the ǫ’s
now parametrize arbitrary types of new physics. However, the ǫ’s are
not related to other observables unless additional model-dependent
assumptions are made. Another approach [266] parametrizes new
physics in terms of gauge-invariant sets of operators. It is especially
powerful in studying the effects of new physics on non-Abelian
gauge vertices. The most general approach introduces deviation
vectors [262]. Each type of new physics defines a deviation vector,
the components of which are the deviations of each observable from
its SM prediction, normalized to the experimental uncertainty. The
length (direction) of the vector represents the strength (type) of new
physics.

For a particularly well motivated and explored type of physics
beyond the SM, see the note on “The Z ′ Searches” in the Gauge &
Higgs Boson Particle Listings.
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I. Introduction

Understanding the mechanism that breaks the electroweak
symmetry and generates the masses of the known elementary
particles1 has been one of the fundamental endeavors in particle
physics. The discovery in 2012 by the ATLAS [1] and the CMS [2]
Collaborations of a new resonance with a mass of approximately
125GeV and the subsequent studies of its properties with a much

1 In the case of neutrinos, it is possible that the electroweak sym-
metry breaking mechanism plays only a partial role in generating the
observed neutrino masses, with additional contributions at a higher
scale via the so called see-saw mechanism.
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larger data set have provided the first portrait of this mechanism. The
mass of this boson has been precisely measured and its production and
decay rates are found to be consistent, within errors, with the standard
model (SM) predictions. Nevertheless, many theoretical questions
remain unanswered and new conundrums about what lies behind the
Higgs boson have come to fore. Four years since its discovery, the
Higgs boson has turned into a new tool to explore the manifestations
of the SM and to probe the physics landscape beyond it.

In the SM [3] the electroweak interactions are described by a
gauge field theory invariant under the SU(2)L × U(1)Y symmetry
group. The mechanism of electroweak symmetry breaking (EWSB) [4]
provides a general framework to keep untouched the structure of these
gauge interactions at high energies and still generate the observed
masses of the W and Z gauge bosons. The EWSB mechanism posits
a self-interacting complex doublet scalar field, whose CP-even neutral
component acquires a vacuum expectation value (VEV) v ≈ 246GeV,
which sets the scale of electroweak symmetry breaking. Three massless
Goldstone bosons are generated and are absorbed to give masses to
the W and Z gauge bosons. The remaining component of the complex
doublet becomes the Higgs boson – a new fundamental scalar particle.
The masses of all fermions are also a consequence of EWSB since the
Higgs doublet is postulated to couple to the fermions through Yukawa
interactions.

The true structure behind the newly discovered boson – including
the exact dynamics that triggers the Higgs VEV– and the corre-
sponding ultraviolet completion is, however, still unsolved. Even if
the discovered boson has weak couplings to all known SM degrees of
freedom, it is not excluded that it is part of an extended symmetry
structure or that it emerges from a light resonance of a strongly
coupled sector. It needs to be established whether the Higgs boson is
solitary or whether other states populate the EWSB sector.

Without the Higgs boson, the calculability of the SM would have
been spoiled. In particular, perturbative unitarity [5, 6] would be lost
at high energies as the longitudinal W/Z boson scattering amplitude
would grow as the centre-of-mass energy increases. Moreover, the
radiative corrections to the gauge boson self-energies would exhibit
dangerous logarithmic divergences that would be difficult to reconcile
with EW precision data. With the discovery of the Higgs boson, it
has been experimentally established that the SM is based on a gauge
theory that could a priori be consistently extrapolated to the Planck
scale. The Higgs boson must have couplings to W/Z gauge bosons
and fermions precisely as those in the SM to maintain the consistency
of the theory at high energies, hence, formally there is no need for
new physics at the EW scale. However, as the SM Higgs boson is a
scalar particle, and therefore without a symmetry to protect its mass,
at the quantum level it has sensitivity to the physics in the ultraviolet.
Quite generally, the Higgs mass parameter m may be affected by the
presence of heavy particles. Specifically, in presence of fermion and
boson particles with squared masses m2

i + λ2
i φ

2/2, the running of the
mass parameter from the scale µ to the scale Q reads

m2(Q) = m2(µ) + δm2, (11.1)

δm2 =
∑

i

gi(−1)2Si
λ2

i m
2
i

32π2 log(
Q2

µ2 ), (11.2)

where the sum is over all particles and gi and Si correspond to
the number of degrees of freedom and the spin of the particle
i. Therefore, particles that couple to the Higgs and have a large
squared mass parameter m2

i would induce very large corrections to
the Higgs mass parameter, demanding a large fine tuning to explain
why m2 remains small. Hence, in general, light scalars like the Higgs
boson cannot naturally survive in the presence of heavy states at
the grand-unification, string or Planck scales. This is known as the
hierarchy or naturalness problem [7].

There are two broad classes of models addressing the naturalness
problem2: one is based on a new fermion-boson symmetry in nature

2 Another solution to the naturalness problem is to lower the funda-
mental scale of quantum gravity, like for instance in models with large
extra-dimensions, see Ref. [8].

called supersymmetry (SUSY) [9–11]. This is a weakly coupled
approach to EWSB, and in this case, the Higgs boson remains
elementary and the corrections to its mass are screened at the scale
at which SUSY is broken and remain insensitive to the details of the
physics at higher scales. These theories predict at least three neutral
Higgs particles and a pair of charged Higgs particles [12]. One of the
neutral Higgs bosons, most often the lightest CP-even Higgs, has
properties that resemble those of the SM Higgs boson. It is referred
to as a SM-like Higgs boson, meaning that its VEV is predominantly
responsible for EWSB, and hence has SM-like couplings to the W and
Z gauge bosons.

The other approach invokes the existence of strong interactions at a
scale of the order of a TeV or above and induces strong breaking of the
electroweak symmetry [13]. In the original incarnation of this second
approach, dubbed technicolor, the strong interactions themselves
trigger EWSB without the need of a Higgs boson. Another possibility,
more compatible with the ATLAS and CMS discovery, is that the
strong interactions produce four light resonances identified with the
Higgs doublet and EWSB proceeds through vacuum misalignment [14]
(see Refs. [15, 16] for recent reviews).

Both approaches can have important effects on the phenomenology
of the Higgs boson associated with EWSB. Also, in each case the
Higgs role in unitarization is shared by other particles: additional
Higgs bosons in supersymmetry, or new particles in the strong sector.

A third option has also been considered in the literature. It is
also a variation of technicolor or Higgsless models [13, 17]. In light of
the Higgs boson discovery these models are ruled out. Nevertheless,
there still exists the possibility that the Higgs boson discovered at
the LHC is in fact the Goldstone boson of the spontaneous breaking
of scale invariance at a scale f [18, 19]. However, given the good
agreement of the coupling measurements with the SM predictions, this
dilaton/radion scenario now requires involved model-building.

The naturalness problem has been the prime argument for new
physics at the TeV scale, and sizable effects on the Higgs boson
properties were expected. But the apparent agreement of the Higgs
couplings with the SM predictions, together with the strong bounds
inherited from precision electroweak and flavor data leaves open the
possibility that the Higgs boson may very well be elementary, weakly
coupled and solitary up to the Planck scale. However, absence of
evidence is not evidence of absence. It is possible that new states
present at the TeV scale to stabilize the Higgs mass might simply
be elusive at the LHC because they do not carry a color charge.
Twin Higgs [20] models were the first incarnation of this neutral
naturalness idea [21]. A more extreme recent proposal [22] relies on
the cosmological evolution of the Universe to drive the Higgs boson
mass to a value much smaller than the cutoff of the theory and
alleviates the hierarchy problem without the need for TeV scale new
physics.

Extensions of the SM Higgs sector without low-energy supersym-
metry will also be discussed in this review. These type of models
do not address the naturalness problem in a specific manner, but
provide grounds to explore new Higgs boson signals in a more
model-independent way, with different types of coupling structure
to fermions and gauge bosons. Extended Higgs sectors are usually
quite restricted by experimental constraints from precision electroweak
measurements as well as constraints from flavor-changing neutral- and
charged-current effects.

Section II is a review of the Higgs boson of the SM, discussing
its properties and the production mechanisms and decay rates. In
Section III, the SM Higgs boson analysis channels are described.
In Section IV, the combination of the main analysis channels is
discussed. In Section V, measurements of the main quantum numbers
and the total width of the Higgs boson are given. In Section VI, a
general theoretical framework to describe the deviations of the Higgs
couplings from the SM predictions is introduced and the experimental
measurements of these Higgs couplings is reviewed together with
the analysis establishing the spin and CP-properties of the Higgs
boson. Section VII presents, in detail, some of the most interesting
models proposed for Higgs extensions of the SM and considers their
experimental signatures. Section VIII provides a brief outlook.
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II. The standard model and the mechanism of electroweak

symmetry breaking

In the SM [3], electroweak symmetry breaking [4] is responsible for
generating mass for the W and Z gauge bosons rendering the weak
interactions short range. The SM scalar potential reads:

V (Φ) = m2Φ†Φ + λ(Φ†Φ)2 (11.3)

with the Higgs field Φ being a self-interacting SU(2) complex doublet
(four real degrees of freedom) with weak hypercharge Y =1 (the
hypercharge is normalized such that Q = T3L + Y/2):

Φ =
1√
2

( √
2φ+

φ0 + ia0

)

, (11.4)

where φ0 and a0 are the CP-even and CP-odd neutral components,
and φ+ is the complex charged component of the Higgs doublet,
respectively. V (Φ) is the most general renormalizable scalar potential
and if the quadratic term is negative the neutral component of the
scalar doublet acquires a non-zero vacuum expectation value (VEV)

〈Φ〉 =
1√
2

(

0
v

)

, (11.5)

with φ0 = H + 〈φ0〉 and 〈φ0〉 ≡ v, inducing the spontaneous
breaking of the SM gauge symmetry SU(3)C × SU(2)L × U(1)Y into
SU(3)C × U(1)em. The global minimum of the theory defines the
ground state, and spontaneous symmetry breaking implies that there
is a symmetry of the system (Lagrangian) that is not respected
by the ground state. The Higgs field permeates the entire universe
and through its self-interactions can cause spontaneous electroweak
symmetry breaking (EWSB) in the vacuum. From the four generators
of the SU(2)L × U(1)Y gauge group, three are spontaneously broken,
implying that they lead to non-trivial transformations of the ground
state and indicate the existence of three massless Goldstone bosons
identified with three of the four Higgs field degrees of freedom. The
Higgs field couples to the Wµ and Bµ gauge fields associated with
the SU(2)L × U(1)Y local symmetry through the covariant derivative
appearing in the kinetic term of the Higgs Lagrangian,

LHiggs = (DµΦ)†(DµΦ) − V (Φ) , (11.6)

where DµΦ = (∂µ + igσaW a
µ/2 + ig′Y Bµ/2)Φ, g and g′ are the

SU(2) and U(1) gauge couplings, respectively, and σa, a = 1, 2, 3
are the usual Pauli matrices. As a result, the neutral and the two
charged massless Goldstone degrees of freedom mix with the gauge
fields corresponding to the broken generators of SU(2)L × U(1)Y and
become the longitudinal components of the Z and W physical gauge
bosons, respectively. The Z and W gauge bosons acquire masses,

M2
W =

g2v2

4
, M2

Z =
(g′2 + g2)v2

4
. (11.7)

The fourth generator remains unbroken since it is the one associated
to the conserved U(1)em gauge symmetry, and its corresponding gauge
field, the photon, remains massless. Similarly the eight color gauge
bosons, the gluons, corresponding to the conserved SU(3)C gauge
symmetry with 8 unbroken generators, also remain massless. Hence,
from the initial four degrees of freedom of the Higgs field, two are
absorbed by the W± gauge bosons, one by the Z gauge boson, and
there is one remaining degree of freedom, H , that is the physical Higgs
boson — a new scalar particle. The Higgs boson is neutral under the
electromagnetic interactions and transforms as a singlet under SU(3)C
and hence does not couple at tree level to the massless photons and
gluons.

The fermions of the SM acquire mass through new renormalizable
interactions between the Higgs field and the fermions: the Yukawa
interactions,

LYukawa = −ĥdij
q̄Li

Φ dRj
−ĥuij

q̄Li
Φ̃uRj

−ĥlij l̄Li
Φ eRj

+h.c., (11.8)

which respect the symmetries of the SM but generate fermion masses
once EWSB occurs. In the above, Φ̃ = iσ2Φ

∗ and qL (lL) and uR, dR
(eR) are the quark (lepton) SU(2)L doublets and singlets, respectively,
while each term is parametrized by a 3 × 3 matrix in family space.
The mass term for neutrinos is omitted, but could be added in an
analogous manner to the up-type quarks when right-handed neutrinos
are supplementing the SM particle content. Once the Higgs acquires a
VEV, and after rotation to the fermion mass eigenstate basis that also
diagonalizes the Higgs-fermion interactions, ĥfij

→ hfi
δij , all fermions

acquire a mass given by mfi
= hfi

v/
√

2. The indices i, j = 1, 2, 3 refer
to the three families in the up-quark, down-quark or charged lepton
sectors. It should be noted that the EWSB mechanism provides no
additional insight on possible underlying reasons for the large variety
of masses of the fermions, often referred to as the flavor hierarchy. The
fermion masses, accounting for a large number of the free parameters
of the SM, are simply translated into Yukawa couplings hf .

II.1. The SM Higgs boson mass, couplings and quantum
numbers

The SM Higgs boson is a CP-even scalar of spin 0. Its mass is given
by mH =

√
2λ v, where λ is the Higgs self-coupling parameter in V (Φ).

The expectation value of the Higgs field, v = (
√

2GF )−1/2 ≈ 246GeV,
is fixed by the Fermi coupling GF , which is determined with a
precision of 0.6 ppm from muon decay measurements [23]. The quartic
coupling λ is a free parameter in the SM, and hence, there is no a
priori prediction for the Higgs mass. Moreover the sign of the mass
parameter m2 = −λv2 is crucial for the EW symmetry breaking to
take place, but it is not specified in the SM. The experimentally
measured Higgs mass, mH ≃125GeV, implies that λ ≃ 0.13 and
|m| ≃ 88.8GeV. It is interesting to observe that in the SM one needs
to assume that the mass term in the potential is negative in order
to trigger EWSB. In other theories beyond the SM (BSM), such as
supersymmetry, the analogue of the Higgs mass parameter can be
made negative dynamically.

The Higgs boson couplings to the fundamental particles are set by
their masses. This is a new type of interaction; very weak for light
particles, such as up and down quarks, and electrons, but strong for
heavy particles such as the W and Z bosons and the top quark. More
precisely, the SM Higgs couplings to fundamental fermions are linearly
proportional to the fermion masses, whereas the couplings to bosons
are proportional to the square of the boson masses. The SM Higgs
boson couplings to gauge bosons and fermions, as well as the Higgs
boson self coupling, are summarized in the following Lagrangian:

L = − gHff f̄ fH +
gHHH

6
H3 +

gHHHH

24
H4

+ δV VµV µ
(

gHV V H +
gHHV V

2
H2

) (11.9)

with

gHff̄ =
mf

v
, gHV V =

2m2
V

v
, gHHV V =

2m2
V

v2 , (11.10)

gHHH =
3m2

H

v
, gHHHH =

3m2
H

v2
, (11.11)

where V = W± or Z and δW = 1, δZ = 1/2. As a result, the dominant
mechanisms for Higgs boson production and decay involve the coupling
of H to W , Z and/or the third generation quarks and leptons. The
Higgs boson coupling to gluons [24, 25] is induced at leading order by a
one-loop process in which H couples to a virtual tt pair. Likewise, the
Higgs boson coupling to photons is also generated via loops, although
in this case the one-loop graph with a virtual W+W− pair provides
the dominant contribution [12] and the one involving a virtual tt pair
is subdominant.

II.2. The SM custodial symmetry

The SM Higgs Lagrangian, LHiggs + LYukawa of Eq. (11.6) and
Eq. (11.8), is, by construction, SU(2)L × U(1)Y gauge invariant, but
it also has an approximate global symmetry. In the limit g′ → 0 and
hf → 0, the Higgs sector has a global SU(2)R symmetry, and hence in
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such a limit it is invariant under a global SU(2)L × SU(2)R symmetry,
with SU(2)L just being the global variant of the SM chiral gauge
symmetry. This symmetry is preserved for non-vanishing Yukawa
couplings, provided hu = hd. Once the Higgs acquires a VEV, both
the SU(2)L and SU(2)R symmetry groups are broken but the subgroup
SU(2)L+R remains unbroken and is the subgroup that defines the
custodial symmetry of the SM [26].

In the limit g′ → 0, the W and Z gauge bosons have equal mass
and form a triplet of the SU(2)L+R unbroken global symmetry. Using
the expressions for the W and Z gauge boson masses in term of the
gauge couplings, one obtains

M2
W

M2
Z

=
g2

g′2 + g2
= cos2 θW or ρ ≡ M2

W

M2
Z cos2 θW

= 1 (11.12)

at tree level. The custodial symmetry protects the above relation
between the W and Z masses under radiative corrections. All
corrections to the ρ parameter are therefore proportional to terms
that break the custodial symmetry. For instance, radiative corrections
involving the Higgs are proportional to g′2. Since mt 6= mb, there are
also relevant radiative corrections generated by massive fermions. They
are proportional to m2

t + m2
b − 2(m2

t m
2
b) log(m2

t /m2
b)/(m2

t − m2
b) [27].

One can conceive of BSM theories in which the Higgs is a pseudo
Nambu–Goldstone boson of a strongly interacting sector [28], and/or
where there are additional degrees of freedom that may contribute
to the W and Z mass via virtual loops, but in as much as the
electroweak sector has a manifest custodial symmetry, the theory is
protected from large radiative corrections. Precision measurements
of electroweak observables are powerful in constraining such large
radiative corrections. The custodial isospin symmetry is also a
powerful probe of BSM physics. For a pedagogical discussion, see
Ref. [29].

II.3. Stability of the Higgs potential

The discovery of a scalar particle with mass mH ≈125GeV has far
reaching consequences within the SM framework. In particular, the
precise value of mH determines the value of the quartic coupling λ
at the electroweak scale and makes it possible to study its behavior
up to high energy scales. A larger value of mH would have implied
that the Higgs self-coupling would become non-perturbative at some
scale Λ that could be well below the Planck scale. Specifically, from
the measured values of the Higgs mass, the top-quark mass, the W
and Z boson masses, and the strong gauge coupling, all within their
experimental uncertainties, it follows that, as with the SM gauge and
Yukawa couplings, the Higgs quartic coupling remains perturbative
all the way up to MP lanck [5, 6, 30], thereby rendering the SM a
consistent, calculable theory.

The recently measured Higgs mass, however, generates an EW
Higgs potential in which the vacuum state is at the edge between being
stable and metastable. Indeed, allowing all relevant SM observables
to fluctuate within their experimental and theoretical uncertainties,
the metastability condition seems to be favored [31]. The high

energy evolution of λ shows that it becomes negative at energies
Λ = O(1010 − 1012)GeV, with a broader range if the top quark
mass exceeds its current measured value by 3σ. When this occurs,
the SM Higgs potential develops an instability and the long term
existence of the EW vacuum is challenged. This behavior may call for
new physics at an intermediate scale before the instability develops,
i.e., below MP lanck or, otherwise, the electroweak vacuum remains
metastable [32]. Reference [33] studied how new physics at MP lanck
could influence the stability of the EW vacuum and possibly modify
this conclusion. The consequences of the instability of the EW vacuum
on high-scale inflation have been discussed in Refs. [34].

Within the SM framework, the relevant question is related to the
lifetime of the EW metastable vacuum that is determined by the
rate of quantum tunneling from this vacuum into the true vacuum
of the theory. The running of the Higgs self coupling slows down at
high energies with a cancellation of its β-function at energies just
one to two orders of magnitude below the Planck scale [31, 35]. This
slow evolution of the quartic coupling is responsible for saving the
EW vacuum from premature collapse, allowing it to survive much
longer times than those relevant from astrophysical considerations. It
might help the Higgs boson to play the role of an inflaton [36] (see,
however, Ref. [37] and references therein for potential issues with this
Higgs-as-inflaton idea).

II.4. Higgs production and decay mechanisms

Reviews of the SM Higgs boson’s properties and phenomenology,
with an emphasis on the impact of loop corrections to the Higgs boson
decay rates and cross sections, can be found in Refs. [38–45]. The
state-of-the-art of the theoretical calculations in the main different
production channels is summarized in Table 11.1.

Table 11.1: State-of-the-art of the theoretical calculations in the main different Higgs
production channels in the SM, and main MC tools used in the simulations

ggF VBF VH tt̄H

Fixed order: Fixed order: Fixed order: Fixed order:

NNLO QCD + NLO EW NNLO QCD NLO QCD+EW NLO QCD

(HIGLU, iHixs, FeHiPro, HNNLO) (VBF@NNLO) (V2HV and HAWK) (Powheg)

Resummed: Fixed order: Fixed order: (MG5 aMC@NLO)

NNLO + NNLL QCD NLO QCD + NLO EW NNLO QCD

(HRes) (HAWK) (VH@NNLO)

Higgs pT :

NNLO+NNLL

(HqT, HRes)

Jet Veto:

N3LO+NNLL

II.4.1. Production mechanisms at hadron colliders

The main production mechanisms at the Tevatron collider and the
LHC are gluon fusion, weak-boson fusion, associated production with
a gauge boson and associated production with a pair of top/antitop
quarks. Figure 11.1 depicts representative diagrams for these dominant
Higgs production processes.

The cross sections for the production of a SM Higgs boson as a
function of

√
s, the center of mass energy, for pp collisions, including

bands indicating the theoretical uncertainties, are summarized
in Fig. 11.2(left) [46]. A detailed discussion, including uncertainties
in the theoretical calculations due to missing higher-order effects and
experimental uncertainties on the determination of SM parameters
involved in the calculations can be found in Refs. [42–45]. These
references also contain state-of-the-art discussions on the impact of
PDF’s uncertainties, QCD scale uncertainties and uncertainties due to
different matching procedures when including higher-order corrections
matched to parton shower simulations as well as uncertainties due to
hadronization and parton-shower events.



176 11. Status of Higgs boson physics

g

g

t

tW, Z

W,Z

q

q

g

g

q

q

q

q
(a) (b)

(c) (d)

H

HH

H

Figure 11.1: Generic Feynman diagrams contributing to the
Higgs production in (a) gluon fusion, (b) weak-boson fusion, (c)
Higgs-strahlung (or associated production with a gauge boson)
and (d) associated production with top quarks.
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Figure 11.2: (Left) The SM Higgs boson production cross
sections as a function of the center of mass energy,

√
s, for

pp collisions. The theoretical uncertainties [46] are indicated
as bands. (Right) The branching ratios for the main decays
of the SM Higgs boson near mH = 125GeV. The theoretical
uncertainties [44, 45] are indicated as bands.

Table 11.2: The SM Higgs boson production cross sections for
mH = 125GeV in pp collisions (pp̄ collisions at

√
s = 1.96TeV

for the Tevatron), as a function of the center of mass energy,
√

s.
The predictions for the LHC energies are taken from Refs. [42–
45], the ones for the Tevatron energy are from Ref. [47]. The
predictions for the ggF channel do not include the latest N3LO
results which significantly reduce the theoretical uncertainties.

√
s (TeV) Production cross section (in pb) for mH = 125GeV

ggF VBF WH ZH tt̄H total

1.96 0.95+17%
−17%

0.065+8%
−7%

0.13+8%
−8%

0.079+8%
−8%

0.004+10%
−10%

1.23

7 15.3+10%
−10%

1.24+2%
−2%

0.58+3%
−3%

0.34+4%
−4%

0.09+8%
−14%

17.5

8 19.5+10%
−11%

1.60+2%
−2%

0.70+3%
−3%

0.42+5%
−5%

0.13+8%
−13%

22.3

13 44.1+11%
−11%

3.78+2%
−2%

1.37+2%
−2%

0.88+5%
−5%

0.51+9%
−13%

50.6

14 49.7+11%
−11%

4.28+2%
−2%

1.51+2%
−2%

0.99+5%
−5%

0.61+9%
−13%

57.1

Table 11.2, from Refs. [42–45], summarizes the Higgs boson
production cross sections and relative uncertainties for a Higgs mass of
125GeV, for

√
s = 7, 8, 13 and 14TeV. The Higgs boson production

cross sections in pp̄ collisions at
√

s = 1.96TeV for the Tevatron are
obtained from Ref. [47].

(i) Gluon fusion production mechanism

At high-energy hadron colliders, the Higgs boson production
mechanism with the largest cross section is the gluon-fusion process,
gg → H + X , mediated by the exchange of a virtual, heavy top
quark [48]. Contributions from lighter quarks propagating in the loop
are suppressed proportional to m2

q . QCD radiative corrections to the
gluon-fusion process are very important and have been studied in
detail. Including the full dependence on the (top, bottom, charm)
quark and Higgs boson masses, the cross section has been calculated

at the next-to-leading order (NLO) in αs [49, 50]. To a very good
approximation, the leading top-quark contribution can be evaluated
in the limit mt → ∞ by matching the SM to an effective theory.
The gluon-fusion amplitude is then evaluated from an effective
Lagrangian containing a local HGa

µνGa µν operator [24, 25]. In this
approximation the cross section is known at NLO [51], at next-to-
next-to-leading order (NNLO) [52], and recently the computation at
next-to-next-to-next-to-leading order (N3LO) has been completed [53].
The validity of the large top-quark mass approximation in NNLO
calculations has been established at the percent level by means of
approximate calculations of the mt dependence based on asymptotic
expansions [54]. Moreover, the validity of the effective theory with
infinite mt is greatly enhanced by rescaling the result by the exact LO
result: σ = (σLO

mt
/σLO

mt=∞) × σmt=∞ [45].

The NLO QCD corrections increase the leading-order prediction for
the cross section by about 80%, the NNLO corrections further enhance
the cross section by approximately 30% (at µf = µr = mH/2).
Electroweak radiative corrections have been computed at NLO and
increase the cross section by about 5% for mH ≃ 125GeV [55].
Mixed QCD-electroweak corrections of O(ααs) have been calculated
in Ref. [56].

The NLO and NNLO fixed-order QCD predictions for the gluon-
fusion cross section have been improved by resumming the soft,
virtual and collinear gluon contributions to the cross section at
next-to-next-to-leading logarithmic (NNLL) and partial NNNLL
accuracy [57]. Precise predictions for the gluon-fusion cross section
for different Higgs boson masses and LHC energies, and including
detailed error estimates, have been obtained by combining the NNLO
fixed-order QCD results with soft-gluon resummation at NNLL or
NNNLL accuracy and two-loop electroweak corrections, and using the
most recent sets of parton distribution functions [56, 58].

The perturbative QCD computation has been recently extended
to N3LO. At this order the perturbation series is rather stable with
a mere enhancement of 3% only, with a central value completely
insensitive to threshold resummation effects with the scale choice
mentioned above [53, 59, 45]. At the LHC with a center-of-mass energy
of 13TeV, the most up-to-date value for the production cross section
of a 125GeV Higgs boson amounts to [45]

σN3LO
ggF = 48.6 pb

+2.2pb(+4.6%)
−3.3pb(−6.7%)

(theory) ± 1.6 pb(3.2%)(PDF + αs).

The difference between this result and the value quoted in Table 11.2
is due to several effects that include: the choice of optimal renormal-
ization and factorization scales, the effect of the N3LO corrections,
the different sets of parton distribution functions and value of αs, as
well as smaller differences due to the treatment of finite quark-mass
effects [53].

Besides considering the inclusive Higgs boson production cross
section at the LHC, it is important to study differential distributions
in order to probe the properties of the Higgs boson in a detailed way.
A more exclusive account of Higgs production is also required because
experimental analyses often impose cuts on the final states in order
to improve the signal-to-background ratio. To this end, it is useful
to define benchmark cuts and compare the differential distributions
obtained at various levels of theoretical accuracy (i.e., at NLO or
NNLO) with Monte Carlo generators. Many search modes for the
Higgs boson are carried out by separating the events according to the
number of jets or the transverse momentum and rapidity of the Higgs
boson. For pT < 30GeV, predictions for the transverse-momentum
distribution can only be trusted after large logarithms of the form
αn

s ln2n−1(mH/pT ) have been resummed to all orders in perturbation
theory [60]. This has been accomplished with NNLL accuracy [61],
and the results have been matched onto the fixed-order prediction at
NNLO [62]. Electroweak corrections have been studied in Ref. [63].
The effect of the non-zero quark mass on the pT spectrum has been
considered in Refs. [64, 65], while the effect of the finite top mass on
other differential observables has been studied in Refs. [66, 67]. There
has been much activity in computing Higgs plus jet(s) production
processes at NLO (see e.g. Refs. [68] and [69] for associated production
with one and two jets, respectively), and even at NNLO [70]. In
addition, efforts to improve the calculation of the Higgs production
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cross section with a jet veto (the “0-jet bin”) by resumming large
logarithms of the form αn

s ln2n−1(mH/pveto
T ) at NNLL order and

beyond [71] have been made. Recently, reference results for the
resummed cross section at NNLL have been combined with the N3LO
result for the inclusive cross section to obtain accurate predictions
for the jet-veto efficiency and zero-jet cross section [72]. Accurate
predictions for the jet-veto cross section are required, e.g., to suppress
the tt̄ background in the H → WW channel [73].

(ii) Vector boson fusion production mechanism

The SM Higgs production mode with the second-largest cross
section at the LHC is vector boson fusion (VBF). At the Tevatron
collider, VBF also occurred, but for mH = 125GeV had a smaller cross
section than Higgs production in association with a W or Z boson.
Higgs production via VBF, qq → qqH , proceeds by the scattering of
two (anti-)quarks, mediated by t- or u-channel exchange of a W or Z
boson, with the Higgs boson radiated off the weak-boson propagator.
The scattered quarks give rise to two hard jets in the forward
and backward regions of the detector. Because of the color-singlet
nature of the weak-gauge boson exchange, gluon radiation from the
central-rapidity regions is strongly suppressed. These characteristic
features of VBF processes can be exploited to distinguish them
from overwhelming QCD backgrounds, including gluon-fusion induced
Higgs + 2 jet production, and from s-channel WH or ZH production
with a hadronically decaying weak gauge boson. After the application
of specific selection cuts, the VBF channel provides a particularly
clean environment, not only for Higgs searches but also for the
determination of Higgs boson couplings at the LHC [74].

Computations for total cross sections and differential distributions
to Higgs production via VBF including NLO QCD and EW corrections
have been presented in Refs. [39, 75] and are available in the form
of flexible parton-level Monte-Carlo generators. Parton-shower effects
have been considered in Ref. [76]. The NNLO QCD corrections to the
total rate have been presented in Refs. [77]. They reduce the residual
scale uncertainties on the inclusive cross section to approximately 2%.
The uncertainties due to parton distributions are estimated to be
at the same level. Fully differential predictions at NNLO have been
computed recently [78], suggesting that the cross section under VBF
cuts receives NNLO corrections that are larger than in the inclusive
case and may reach O(5-6%).

(iii) WH and ZH associated production mechanism

The next most relevant Higgs boson production mechanisms after
gluon fusion and VBF at the LHC, and the most relevant ones after
gluon fusion at the Tevatron collider, are associated production with W
and Z gauge bosons. The cross sections for the associated production
processes, pp → V H + X , with V = W±, Z receive contributions
at NLO given by NLO QCD corrections to the Drell–Yan cross
section [79–81] and from NLO EW corrections. The latter, unlike
the QCD corrections, do not respect the factorization into Drell–Yan
production since there are irreducible box contributions already at one
loop [82]. At NNLO, the Drell-Yan-like corrections to WH production
also give the bulk of the corrections to ZH production [83]. For ZH
production there are, however, gluon-gluon induced contributions that
do not involve a virtual Z gauge boson but are such that the Z
gauge boson and H boson couple to gluons via top-quark loops [84].
In addition, WH and ZH production receive non Drell–Yan-like
corrections in the qq̄′ and qq initiated channels, respectively, at the
NNLO level, where the Higgs is radiated off top-quark loops [85]. The
full QCD corrections up to NNLO order, the NLO EW corrections
and the NLO corrections to the gluon-gluon channel are available in
VH@NNLO [86].

As neither the Higgs boson nor the weak gauge bosons are
stable particles, their decays also have to be taken into account.
Providing full kinematical information for the decay products can
furthermore help in the suppression of large QCD backgrounds.
Differential distributions for the processes pp → WH → νℓℓH and
pp → ZH → ℓ+ℓ−H/νℓν̄ℓH , including NLO QCD and EW corrections,
have been presented in Ref. [87]. The NNLO QCD corrections to
differential observables for WH production at the LHC, including the
leptonic decays of the W boson and the decay of the Higgs boson

into a bb̄ pair, are presented in Ref. [88]. Calculations at the same
level, including also the ZH process have been performed [89, 90]. The
WH production mode has also been matched to a parton shower at
NNLO accuracy [91]. The WH and ZH production modes, together
with Higgs production in association with a top-quark pair, provide a
relatively clean environment for studying the decay of the Higgs boson
into bottom quarks.

(iv) Higgs production in association with tt

Higgs radiation off top quarks, pp → tt̄H , can provide important
information on the the top-Higgs Yukawa coupling and gives access
to the Higgs decay into bottom quarks. The LO cross section for
this production process was computed in Ref. [92]. Later, the NLO
QCD corrections [93] were evaluated yielding a moderate increase in
the total cross section of at most 20%, but reducing significantly the
scale dependence of the inclusive cross section. The total theoretical
errors, estimated by combining the uncertainties from factorization
and renormalization scales, strong gauge coupling, and parton
distributions, amount to 10–15% of the corresponding inclusive cross
section. Interfaces between NLO QCD calculations for tt̄H production
with parton-shower Monte Carlo programs have been provided in
Ref. [94]. These programs provide the most flexible tools to date for
the computation of differential distributions, including experimental
selection cuts and vetoes on the final-state particles and their decay
products.

(v) Other single Higgs production mechanisms at the LHC

The Higgs production in association with a single top quark, though
subdominant, can bring valuable information, in particular regarding
the sign of the top Yukawa coupling. This is due to an almost totally
destructive interference between two large contributions, one where
the Higgs couples to a space-like W boson and the other where it
couples to the top quark. This process has been computed at NLO in
a five-flavor scheme [95] and amounts to about 90 fb at

√
s = 14TeV

(with the opposite sign of the top Yukawa coupling, the cross section
increases by one order of magnitude).

The Higgs boson production in association with bottom quarks
is known at NNLO in the case of five quark flavors [96–98]. The
coupling of the Higgs boson to a b quark is suppressed in the SM
by the bottom-quark mass over the Higgs VEV, mb/v, implying that
associated production of a SM Higgs boson with b quarks is small at
the LHC. Yet, at high energy, large logarithms are present and need to
be resummed, leading to an enhancement of the inclusive cross section.
At

√
s = 14TeV the bbH cross section can be as large as 600 fb, still

two orders of magnitude below the ggF production cross section. In a
two Higgs doublet model or a supersymmetric model, which will be
discussed in Section VII, this coupling is proportional to the ratio of
neutral Higgs boson vacuum expectation values, tanβ, and can be
significantly enhanced for large values of this ratio. Consequently, the
bbH mode can even become the dominant production process for the
Higgs boson.

The Higgs production in association with charm quarks is also
known at NNLO and is of the order of 85 fb at

√
s = 13TeV.

(vi) Double Higgs production at the LHC

The main interest in the double Higgs production is that it provides
invaluable information on the Higgs potential. In particular, it gives
access to the Higgs cubic self-interaction. The dominant production
is via gluon fusion gg → HH . The NLO [99] and NNLO [100] fixed
order corrections to gg → HH are known in the infinite top mass
limit and, recently, the complete NLO corrections with all top quark
mass effects also became available [101]. The QCD corrections are
large, typically doubling the cross section from LO to NLO and
further enhancing it by 20% from NLO to NNLO. At the differential
level, the destructive interference between the box and the triangle
contributions complicates the predictions made in the infinite top
mass limit for both the HH invariant mass and the leading Higgs
pT distributions. With an inclusive cross section of about 40 fb at√

s = 13TeV and a difficult signal vs. background discrimination, the
double Higgs production remains a challenging channel to probe and
will greatly benefit from the high-luminosity run of the LHC.
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II.4.2. Production mechanisms at e+e− colliders

The main Higgs boson production cross sections at an e+e− collider
are the Higgs-strahlung process e+e− → ZH [6, 24, 102], and the WW
fusion process [103] e+e− → ν̄eνeW

∗W ∗ → ν̄eνeH . The cross-section
for the Higgs-strahlung process scales as s−1 and is dominant at low
energies, while the cross-section for the WW fusion process scales
as ln(s/m2

H) and dominates at high energies [104–106]. The ZZ
fusion mechanism, e+e− → e+e−Z∗Z∗ → e+e−H , also contributes
to Higgs boson production, with a cross-section suppressed by an
order of magnitude with respect to that of WW fusion. The process
e+e− → tt̄H [107, 108] becomes important for

√
s ≥ 500GeV. For

a more detailed discussion of Higgs production properties at lepton
colliders see, for example, Refs. [40, 41, 109, 110] and references therein.

II.4.3. SM Higgs branching ratios and total width

For the understanding and interpretation of the experimental
results, the computation of all relevant Higgs decay widths is essential,
including an estimate of their uncertainties and, when appropriate, the
effects of Higgs decays into off-shell particles with successive decays
into lighter SM ones. A Higgs mass of about 125GeV provides an
excellent opportunity to explore the Higgs couplings to many SM
particles. In particular the dominant decay modes are H → bb̄ and
H → WW ∗, followed by H → gg, H → τ+τ−, H → cc̄ and H → ZZ∗.
With much smaller rates follow the Higgs decays into H → γγ,
H → γZ and H → µ+µ−. Since the decays into gluons, diphotons
and Zγ are loop induced, they provide indirect information on the
Higgs couplings to WW , ZZ and tt̄ in different combinations. The
uncertainties in the branching ratios include the missing higher-order
corrections in the theoretical calculations as well as the errors in
the SM input parameters, in particular fermion masses and the
QCD gauge coupling, involved in the decay. In the following the
state-of-the-art of the theoretical calculations will be discussed and
the reader is referred to Refs. [42, 43, 111] for detail.

The evaluation of the radiative corrections to the fermionic decays
of the SM Higgs are implemented in HDECAY [112] at different
levels of accuracy. The computations of the H → bb̄ and H → cc̄
decays include the complete massless QCD corrections up to N4LO,
with a corresponding scale dependence of about 0.1% [113]. Both the
electroweak corrections to H → bb̄, cc̄ as well as H → τ+τ− are
known at NLO [114] providing predictions with an overall accuracy of
about 1-2% for mH ≃ 125GeV.

The loop induced decays of the SM Higgs are known at NLO
and partially beyond that approximation. For H → gg, the QCD
corrections are known up to N3LO in the limit of heavy top
quarks [115, 50] and the uncertainty from the scale dependence is
about 3%. For the H → γγ, the full NLO QCD corrections are
available [50, 116] and the three-loop QCD corrections have also been
evaluated [117]. The NLO electroweak corrections to H → gg and
H → γγ have been computed in Ref. [118]. All these corrections
are implemented in HDECAY [112]. For mH = 125GeV, the overall
impact of known QCD and EW radiative effects turns out to be well
below 1%. In addition, the contribution of the H → γe+e− decay
via virtual photon conversion has been computed in Ref. [119]. The
partial decay width H → Zγ is only implemented at LO in HDECAY,
including the virtual W , top-, bottom-, and τ -loop contributions.
The QCD corrections have been calculated and are at the percent
level [120], The theoretical uncertainty due to unknown electroweak
corrections is estimated to be less than 5%, an accuracy that will be
hard to achieve in measurements of this processes at the LHC.

The decays H → WW/ZZ → 4f can be simulated with the
Prophecy4f Monte-Carlo generator [121] that includes complete
NLO QCD and EW corrections for Higgs decays into any possible
four-fermion final state. All calculations are consistently performed
with off-shell gauge bosons, without any on-shell approximation. For
the SM Higgs boson the missing higher-order corrections are estimated
to be roughly 0.5%. Such uncertainties will have to be combined
with the parametric uncertainties, in particular those associated to
the bottom-quark mass and the strong gauge coupling, to arrive at
the full theory uncertainties. A detailed treatment of the differential
distributions for a Higgs decay into four charged leptons in the final
state is discussed in Refs. [44, 122].

The total width of a 125GeV SM Higgs boson is ΓH =

4.07 × 10−3 GeV, with a relative uncertainty of +4.0%
−3.9%

. The branching
ratios for the most relevant decay modes of the SM Higgs boson as a
function of mH , including the most recent theoretical uncertainties, are
shown in Fig. 11.2(right) and listed for mH = 125GeV in Table 11.3.
Further details of these calculations can be found in Refs. [111, 123]
and in the reviews [39–45].

Table 11.3: The branching ratios and the relative uncer-
tainty [44, 45] for a SM Higgs boson with mH = 125GeV.

Decay channel Branching ratio Rel. uncertainty

H → γγ 2.27 × 10−3 +5.0%
−4.9%

H → ZZ 2.62 × 10−2 +4.3%
−4.1%

H → W+W− 2.14 × 10−1 +4.3%
−4.2%

H → τ+τ− 6.27 ×10−2 +5.7%
−5.7%

H → bb̄ 5.84 × 10−1 +3.2%
−3.3%

H → Zγ 1.53 × 10−3 +9.0%
−8.9%

H → µ+µ− 2.18 × 10−4 +6.0%
−5.9%

III. The experimental profile of the Higgs boson

An indirect experimental bound on the SM Higgs boson can be
obtained by comparing precision electroweak data with SM predictions,
that have a weak, logarithmic dependence on MH . A global fit to
electroweak data suggests mH = 96+22

−19 GeV, or mH < 134GeV at
90% confidence level [124].

The announcement on July 4, 2012 of the observation [1, 2] at the
LHC of a narrow resonance with a mass of about 125GeV was an
important landmark in the decades-long direct search [125, 126] for the
SM Higgs boson. Even as this discovery was being announced, ATLAS
and CMS continued to accumulate pp collision data at

√
s = 8TeV

recording a total of about 20 fb−1 each at this energy. This data set
together with about 5 fb−1 recorded at

√
s = 7TeV comprised the

LHC Run 1 pp collision data set. In the remainder of this section the
focus will be on the final results on the measurements of Higgs boson
properties with the LHC Run 1 data.

III.1. The principal discovery channels

For a given mH , the sensitivity of a search channel depends
on the production cross section of the Higgs boson, its decay
branching fraction, reconstructed mass resolution, selection efficiency
and the level of background in the final state. For a low-mass
Higgs boson (110 < mH(GeV) < 150) where the natural width is
only a few MeV, the five decay channels that play an important
role at the LHC are listed in Table 11.4. In the H → γγ and
H → ZZ → 4ℓ channels, all final state particles can be very
precisely measured and the reconstructed mH resolution is excellent.
While the H → W+W− → ℓ+νℓℓ

′−ν̄ℓ′ channel has relatively large
branching fraction, the mH resolution is poor due to the presence
of neutrinos. The H → bb̄ and the H → τ+τ− channels suffer from
large backgrounds and a poor mass resolution. For mH > 150GeV,
the sensitive search channels are H → WW and H → ZZ where the
W or Z boson decays into a variety of leptonic and hadronic final
states. These decay channels of the Higgs boson are searched for in
the five Higgs boson production processes (ggF, VBF, WH, ZH and
ttH) described in Section II.4.1.

The candidate events in each Higgs boson decay channel are split
into several mutually exclusive categories (or event tags) based on
the specific topological, kinematic or other features present in the
candidate event. The categorization of events increases the sensitivity
of the overall analysis and allows a separation of different Higgs
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Table 11.4: The five principal decay channels for low mass SM
Higgs boson searches at the LHC. The numbers reported are for
mH = 125GeV.

Decay channel Mass resolution

H → γγ 1–2%

H → ZZ → ℓ+ℓ−ℓ′+ℓ′− 1–2%

H → W+W− → ℓ+νℓℓ
′−ν̄ℓ′ 20%

H → bb̄ 10%

H → τ+τ− 15%

boson production processes. Most categories are dominated by signal
from one Higgs decay mode but contain an admixture of various
Higgs production processes. For example, a typical VBF category
contains Higgs boson candidates accompanied by two energetic jets
(≥ 30GeV) with a large dijet mass (≥ 400GeV) and separated by a
large pseudorapidity (∆ηjj ≥ 3.5). While such a category is enriched
in Higgs bosons produced via VBF, the contamination from the gluon
fusion production mechanism can be significant. Hence a measurement
of the signal rate in the VBF category does not imply a measurement
of VBF production cross-section. Simulations are used to determine
the relative contributions of the various Higgs production modes in a
particular category.

III.1.1. H → γγ
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Figure 11.3: (Left) The invariant mass distribution of
diphoton candidates, with each event weighted by the ratio
of signal-to-background in each event category, observed by
ATLAS [127]. The residuals of the data with respect to the
fitted background are displayed in the lower panel. (Right) The
combined m4ℓ distribution from CMS [128] Run 1 data.

In the H → γγ channel a search is performed for a narrow
peak over a smoothly falling background in the invariant mass
distribution of two high pT photons. The background in this channel
is conspicuous and stems from prompt γγ, γ+jet and dijet processes.
In order to optimize search sensitivity and also to separate the
various Higgs production modes, ATLAS and CMS experiments split
events into several mutually exclusive categories. Diphoton events
containing a high pT muon or electron, or missing energy (Emiss

T )
consistent with the decay of a W or Z boson are tagged in the VH
production category. Diphoton events containing energetic dijets with
a large mass and pseudorapidity difference are assigned to the VBF
production category, and the remaining events are considered either in
the VH category when the two jets are compatible with the hadronic
decay of a W or a Z, or in the gluon fusion production category. While
the leptonic VH category is relatively pure, the VBF category has
significant contamination from the gluon fusion process. A summary
of all categories used in this channel is given in Section IV.1 and in
Table 11.9. Events which are not picked by any of the above selections
are further categorized according to their expected mγγ resolution and
signal-to-background ratio. Categories with good mH resolution and
larger signal-to-background ratio contribute most to the sensitivity of
the search.

Both ATLAS and CMS have studied in detail the calibration
of the energy response of photons, in particular using Z → e+e−,
Z → µ+µ−γ and the response of muons in the calorimeter (for
ATLAS) from Z → µ+µ− events. This information is used to
correct the fully simulated signal mass lineshapes. In each category,
parametric signal models are adjusted to these lineshape to provide a
functional form for the signal. Simple monotonic functional forms of
the backgrounds are determined by a fit to the full mγγ distribution
in each category. All categories are fitted simultaneously to determine
the signal yield at a particular mass. In the full dataset, the mγγ

distribution after combining all categories is shown for the ATLAS
experiment in Fig. 11.3. ATLAS observes [127] an excess over
background at mH = 125.4GeV with a local significance of 5.2σ
compared with 4.6σ expected for SM Higgs boson at that mass. CMS
observes [129] its largest excess at mH = 124.7GeV with a local
significance of 5.7σ compared with 5.2σ expected for a SM Higgs
boson of that mass.

The signal strength µ = (σ · BR)obs/(σ · BR)SM, which is the
observed product of the Higgs boson production cross section (σ) and
its branching ratio (BR) in units of the corresponding SM values, is
1.17 ± 0.27 for ATLAS and 0.78+0.26

−0.23 for CMS at mH = 125.4 and
124.7GeV, respectively.

III.1.2. H → ZZ∗
→ ℓ+ℓ−ℓ′+ℓ′−

In the H → ZZ∗ → ℓ+ℓ−ℓ′+ℓ′− channel a search is performed for
a narrow mass peak over a small continuous background dominated
by non-resonant ZZ∗ production from qq annihilation and gg fusion
processes. The contribution and the shape of this background is taken
from simulation. The subdominant and reducible backgrounds stem
from Z + bb̄, tt and Z + jets events. Their contribution is suppressed
by requirements on lepton isolation and lepton impact parameter and
their yield is estimated from control samples in data.

To help distinguish the Higgs signal from the dominant non-resonant
ZZ∗ background, both ATLAS [130] and CMS [128] use a matrix
element likelihood approach to construct a kinematic discriminant
built for each 4ℓ event based on the ratio of complete leading-order
matrix elements |Msig

2/Mbkg
2| for the signal (gg → H → 4ℓ) and

background(qq → ZZ → 4ℓ) hypotheses. The signal matrix element
Msig is computed assuming mH = m4ℓ. To further enhance the
sensitivity to a signal, the ATLAS experiment uses the matrix element
as an input variable to a Boosted Decision Tree, along with the
transverse momentum and rapidity of the four-leptons system [130].

To enhance the sensitivity to VBF and VH production processes,
the ATLAS and CMS experiments divide 4ℓ events into mutually
exclusive categories. Events containing dijets with a large mass and
pseudorapidity difference populate the VBF category. ATLAS requires
the presence of an additional lepton in the VH category. In events
with less than two jets, CMS uses the p4ℓ

T to distinguish between
production via the gluon fusion and the VH/VBF processes.

Since the m4ℓ resolutions and the reducible background levels
are different in the 4µ, 4e and 2e2µ subchannels, they are analyzed
separately and the results are then combined.

As shown in Fig. 11.3, the CMS experiment observes [128] its
largest excess at mH = 125.6GeV with an observed local significance
of 6.8σ to be compared with an expected significance of 6.7σ at that
mass. In their combined m4ℓ distribution, ATLAS observes [130] an
excess at mH = 125.36GeV with a local significance of 8.1σ. The
expected local significance for the SM Higgs boson at that mass is
6.2σ. Both experiments also observe a clear peak at m4ℓ = 91GeV
from Z/γ∗ production at the expected SM rate [131].

The signal strength µ for the inclusive H → 4ℓ production measured
by the ATLAS and CMS experiments is 1.44+0.40

−0.33 at mH = 125.36GeV

and 0.93+0.29
−0.25 at mH = 125.6GeV, respectively.

III.2. Measurement of the Higgs boson mass

To measure the mass of the Higgs boson, ATLAS and CMS
experiments rely on the two high mass resolution and sensitive
channels, γγ and ZZ. The approaches are very similar in these
two analyses for both experiments, with subtle differences on
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the use of categories, additional discriminating variables and per-
event errors. These two channels are chosen for this precision
measurement because they produce a narrow peak in mass with
a resolution ranging from 1.4GeV to 2GeV for ATLAS and from
1.0GeV to 2.8GeV for CMS, where the best mass resolution
is obtained for both experiments in the diphoton channel for
central diphoton pairs (typically for events where both photons are
not converted). For a model-independent mass measurement, the
signal strengths in the γγ and ZZ channels are assumed to be
independent and not constrained to the expected rate (µ = 1) for
the SM Higgs boson. The combined mass measured by ATLAS [132]
and CMS [133] are 125.36 ± 0.37(stat.) ± 0.18(syst.)GeV and
125.02+0.26

−0.27(stat.)+0.14
−0.15(syst.)GeV, respectively. In both experiments

the measurements are dominated by the data statistics, however the
systematic uncertainty is not negligible and is dominated by the
precision in the knowledge of the photon energy or momentum scale.
The ATLAS and CMS experiments have performed a combination of
their mass measurements [134].

 [GeV]
H
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Figure 11.4: A compilation of the CMS and ATLAS mass
measurements in the γγ and ZZ channels, the combined result
from each experiment and their combination. From Ref. [134]

Figure 11.4 summarizes these measurements and their combina-
tion [134]. The significance of the difference between the measurements
of the masses in the γγ and ZZ channels by the ATLAS experiment
is 1.97σ [132]. The ATLAS and CMS combined mass measurement:

mH = 125.09± 0.21(stat.) ± 0.11(syst.)GeV

reaches a precision of 0.2% and is dominated by statistical uncertain-
ties.

In the diphoton channel, as is discussed in Section V.3.2 a mass
shift is expected to be induced by the deformation of the mass
lineshape of the signal in presence of background, from the interference
between the Higgs boson production and the continuum irreducible
background. It is a small but non negligible effect of approximately
35MeV for a Higgs boson width close to that of the SM, but this
effect could be larger if the width of the discovered particle were to
be completely different. This effect estimated by ATLAS with a full
simulation is still relatively small with respect to the total uncertainty
on the mass and is therefore neglected.

III.3. H → W+W−
→ ℓ+νℓ−ν

While the production rate in the H → W+W− → ℓ+νℓ−ν̄ channel
is large, due to the presence of two neutrinos in the decay, the mH
resolution is quite poor (≈ 20% mH) so the search requires fitting in
several characteristic kinematic variables.

Experiments search for an excess of events with two leptons
of opposite charge accompanied by missing energy and up to two
jets. Events are divided into several categories depending on the
lepton flavor combination (e+e−, µ+µ−and e±µ∓) and the number
of accompanying jets (Njet = 0, 1,≥ 2). The Njet ≥ 2 category is
optimized for the VBF production process by selecting two leading

jets with a large pseudorapidity difference and with a large mass
(mjj > 500GeV).

Backgrounds contributing to this channel are numerous and
depend on the category of selected events. Reducing them and
accurately estimating the remainder is a major challenge in this
analysis. For events with opposite-flavor lepton and no accompanying
high pT jets, the dominant background stems from non-resonant
WW production. Events with same-flavor leptons suffer from large
Drell–Yan contamination. The tt , Wt and W + jets (with the
jet misidentified as a lepton) events contaminate all categories.
Non-resonant WZ, ZZ and Wγ processes also contribute to the
background at a sub-leading level.
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Figure 11.5: (a) The mT distribution for selected events
summed over all lepton flavors and with ≤ 1 associated jets. (b)
The residual of the data over the estimated SM background and
the expectation from a SM Higgs boson with mH = 125GeV
indicating a clear excess with an event yield consistent with
that from a SM Higgs boson [135]. The (c) mT and (d) mjj

versus mT distributions for the Njet ≥ 2 VBF-enriched category
for the 8TeV data analysis. For each region in (d), the ratio
NVBF/Nrest is given (Nrest includes all production processes
other than the VBF).

A requirement of large missing transverse energy (Emiss
T ) is used

to reduce the Drell–Yan and multijet backgrounds. In the e+e− and
µ+µ− categories, events with mℓℓ consistent with the Z mass are
vetoed. The tt background is suppressed by a veto against identified
b-jets or low pT muons (assumed to be coming from semileptonic
b-hadron decays within jets) and tight isolation requirements diminish
the W+jets background. The scalar nature of the Higgs boson and
the V − A nature of the W boson decay implies that the two charged
leptons in the final state are preferentially emitted at small angles
with respect to each other. Therefore the dilepton invariant mass
(mℓℓ) and the azimuthal angle difference between the leptons (∆φℓℓ)
are used to discriminate between the signal and non-resonant WW
events. The transverse mass, constructed from the dilepton pT (pℓℓ

T ),

Emiss
T and the azimuthal angle between Emiss

T and pℓℓ
T , is defined

as mT =
√

2pℓℓ
T Emiss

T (1 − cos∆φ
Emiss

T
ℓℓ

) and serves as an effective

discriminant against backgrounds. The transverse mass variable also
tracks the Higgs boson mass but with a poor mass resolution. All
residual background rates except for the small contributions from
non-resonant WZ, ZZ and Wγ are evaluated from control samples
devised from data.

The mT distributions of the selected events in Run 1 data are
shown in Fig. 11.5 for the ATLAS experiment. The 0-jet category is
dominated by non-resonant WW background while tt dominates the
1 and 2 jet categories. A clear excess over background expectation in
the 0 and 1 jet categories is observed. An excess is also observed in the
VBF-enrighed 2-jets category. The observed event yield is consistent
with the expectation from a 125GeV SM Higgs boson.

ATLAS fits the mT distributions and observes [135] an excess at
mH = 125.36GeV with a local significance of 6.1σ similar to that
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expected from a 125GeV SM Higgs boson. The measured inclusive
signal strength is µ = 1.09+0.23

−0.21. In the VBF category an excess with a

significance of 3.2σ corresponding to a signal strength of µ = 1.27+0.53
−0.45

is observed [135]. The CMS analysis of 0 and 1 jet categories, using
all lepton flavor combinations, shows [136] an excess with an observed
significance of 4.3σ, lower than the expected sensitivity of 5.8σ for a
125.6GeV SM Higgs boson. CMS observes [136] no significant excess
in the VBF production mode and sets a 95%CL limit on the signal
strength of µVBF < 1.7 for mH = 125.6GeV.

The ATLAS and CMS experiments have also searched for the
associated Higgs boson production (VH) in this channel. The signal
consists of up to three (WH) or four (ZH) high pT isolated leptons
with missing transverse energy and low hadronic activity. The major
backgrounds stem from triboson and diboson production where
each boson decays leptonically. ATLAS observes [137] an excess at
mH = 125.36GeV with a local significance of 2.5σ corresponding to a
µV H = 3.0+1.6

−1.0. CMS instead sets [136] a 95%CL limit of µV H < 4.7.
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Figure 11.6: (Left) The observed and predicted mττ distributions for all H → τ+τ− subchannels combined by the CMS
experiment. The inset shows the difference between the observed data and the expected SM background contributions, together
with the expected signal distribution for a SM Higgs boson with mH = 125GeV [138]. (Center) The mbb distribution for the

pp → V (H → bb) channels with all backgrounds except dibosons subtracted. The solid histograms for the backgrounds and
the signal are summed cumulatively [140]. (Right) The combination of all pp → V (H → bb) channels into a single multivariate
distribution. The two bottom panels show the ratio of the data to the background-only prediction (above) and to the predicted
sum of background and SM Higgs boson signal with a mass of 125GeV (below).

III.4. Decays to fermions

At hadron colliders, the most promising channel for probing the
coupling of the Higgs field to the quarks and leptons are H → bb and
H → τ+τ−, respectively. For a Higgs boson with mH ≈ 125GeV,
the branching fraction to bb is about 57% and to τ+τ− is about
6%. Nevertheless, the presence of very large backgrounds makes the
isolation of a Higgs boson signal in these channels quite challenging.

III.4.1. H → τ+τ−

In the H → ττ search, τ leptons decaying to electrons (τe), muons
(τµ) and hadrons (τhad) are considered. The τ+τ− invariant mass
(mττ ) is reconstructed from a kinematic fit of the visible products
from the two τ leptons and the missing energy observed in the event.
Due to the presence of missing neutrinos, the mτ+τ− resolution
is poor (≈ 15%). As a result, a broad excess over the expected
background in the mττ distribution is searched for. The major sources
of background stem from Drell–Yan Z → τ+τ− and Z → e+e−,
W+jets, tt and multijet production. Events in all subchannels are
divided into categories based on the number and kinematic properties
of additional energetic jets in the event. The sensitivity of the search
is generally higher for categories with one or more additional jets.
The VBF category, consisting of a τ pair with two energetic jets
separated by a large pseudorapidity, has the best signal-to-background
ratio and search sensitivity, followed by the τ+τ−+1 jet category.
The signal to background discrimination relies in part on the mττ

resolution, which improves with the boost of the Higgs boson. The
non-VBF categories are further subdivided according to the observed
boost of the τ+τ− system. The 0-jet category which has the poorest
signal/background ratio is used to constrain the background yields,
the reconstruction efficiencies, and the energy scales. CMS primarily
uses the reconstructed mττ as the final discriminating variable [138]
while the ATLAS experiment combines various kinematic properties
of each event categories with multivariate techniques to build the final
discriminant [139].

Searches for H → τ+τ− decays in the VH production mode
are performed in final states where the W or Z boson decays into
leptons or jets. The irreducible background in this search arises
from non-resonant WZ and ZZ diboson production. The reducible
backgrounds originate from W , Z, and tt events that contain at least
one fake lepton in the final state due to a misidentified jet. The shape
and yield of the major backgrounds in each category is estimated from
control samples in data. Contributions from non-resonant WZ

and ZZ diboson production are estimated from simulations but
corrected for reconstruction efficiency using control samples formed
from observed data.

Figure 11.6 shows the CMS [138] mττ distributions combining
all categories, weighing the distributions in each category of each
subchannel by the ratio between the expected signal and background
yields for that category. The inset plot shows the difference between
the observed and expected background distributions, together
with the expected distribution for a SM Higgs boson signal
with mH = 125GeV. The significance of the observed excess at
mH = 125GeV is 3.4 standard deviations, close to the expected
sensitivity, and corresponds to a signal strength of µ = 0.86 ± 0.29.
At mH = 125.36GeV, the observed (expected) deviation from
the background-only hypothesis in ATLAS corresponds to a local
significance of 4.5 (3.4) standard deviations and the best fit value of
the signal strength is µ = 1.43+0.43

−0.37 [139].

When the ATLAS and CMS H → ττ measurements are com-
bined [141], the significance of the observed excess corresponding to
mH = 125.09GeV is 5.5 standard deviations and the combined signal
strength is µ = 1.11+0.24

−0.22.

III.4.2. H → bb

The production mode gg → H with H → bb̄ is overwhelmed by
the background from the inclusive production of pp̄ → bb̄ + X via
the strong interaction. The associated production modes WH and
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ZH (collectively termed VH modes) allow use of the leptonic W and
Z decays for triggering, and to purify the signal and reject QCD
backgrounds. The W bosons are reconstructed via their leptonic decay
W → ℓν̄ℓ where ℓ = e, µ or τ . The Z bosons are reconstructed via
their decay into e+e−, µ+µ−or νν̄. The Higgs boson candidate mass
is reconstructed from two b-tagged jets in the event. Backgrounds
arise from production of W and Z bosons in association with gluon,
light and heavy-flavored jets (V+jets), tt, diboson (ZZ and WZ with
Z → bb) and QCD multijet processes. Due to the limited mbb mass
resolution, a SM Higgs boson signal is expected to appear as a broad
enhancement in the reconstructed dijet mass distribution. The crucial
elements in this search are b-jet tagging with high efficiency and
low fake rate, accurate estimate of b-jet momentum and estimate of
backgrounds from various signal depleted control samples constructed
from data.

At the Tevatron, the H → bb̄ channel contributes the majority of
the Higgs boson search sensitivity below mH = 130GeV. The CDF
and D0 experiments use multivariate analysis (MVA) techniques
that combine several discriminating variables into a single final
discriminant used to separate signal from background. Each channel
is divided into exclusive subchannels according to various lepton, jet
multiplicity, and b-tagging characteristics in order to group events
with similar signal-to-background ratio and thus optimize the overall
search sensitivity. The combined CDF and D0 data show [142, 126]
an excess of events with respect to the predicted background in the
115–140GeV mass range in the most sensitive bins of the discriminant
distributions suggesting the presence of a signal. At mH = 125GeV
the local significance of the excess is 3.0 standard deviations. At that
mass, the observed signal strength µ = 1.59+0.69

−0.72.

To reduce the dominant V +jets background, following Ref. [143],
the LHC experiments select a region in VH production phase space
where the vector boson is significantly boosted and recoils from
the H → bb candidate with a large azimuthal angle ∆φV H . For
each channel, events are categorized into different pT (V ) regions
with varying signal/background ratios. Events with higher pT (V )
have smaller backgrounds and better mbb resolution. CMS uses [140]
MVA classifiers based on kinematic, topological and quality of b-jet
tagging and trained on different values of mH to separate Higgs boson
signal in each category from backgrounds. The MVA outputs for all
categories are then fit simultaneously. Figure 11.6(right) shows the
combined MVA output of all categories where events are gathered
in bins of similar expected signal-to-background ratios as predicted
by the MVA discriminants. The excess of events observed in bins
with the largest signal-to-background ratios is consistent with the
production of a 125GeV SM Higgs boson with a significance of
2.1 standard deviations. The observed signal strength at 125GeV
is µ = 1.0 ± 0.5. Figure 11.6(center) shows the mbb distribution for
all categories combined, weighted by the signal-to-background ratio
in each category, with all backgrounds except dibosons subtracted.
The data show the clear presence of a diboson (W/Z + Z → bb)
signal, with a rate consistent with the SM expectation, together
with an excess that agrees with that expected from the production
of a 125GeV SM Higgs boson. The nominal results from ATLAS
are also based on a combination [144] of (i) a multivariate analysis
of their 8 TeV data, incorporating various kinematic variables in
addition to mbb and b-tagging information and (ii) a statistical
analysis of their 7TeV data centered on mbb as the main discriminant.
In both cases customized control samples devised from data are
used to constrain the contributions of the dominant background
processes. The net observed(expected) deviation from background-
only hypothesis corresponds to a significance of 1.4(2.6) standard
deviations and a signal strength of µ = 0.5 ± 0.4.

In their 8TeV data, CMS has also searched for H → bb in the
VBF production mode [145]. The event topology consists of two
“VBF-tagging” energetic light-quark jets in the forward and backward
direction relative to the beam direction and two b-tagged jets in the
central region of the detector. Due to the electroweak nature of the
process, for the signal events, no energetic jet activity is expected in
the rapidity gap between the two “VBF-tagging” jets. The dominant
background in this search stems from QCD production of multijet
events and the hadronic decays of vector bosons accompanied by

additional jets. A contribution of Higgs boson events produced in the
ggF process but with two or more associated jets is expected in the
signal sample. The signal is expected as a broad enhancement in the
mbb distribution over the smoothly falling contribution from the SM
background processes. The observed (expected) excess corresponding
to mH = 125GeV was 2.2 (0.8) standard deviations corresponding
to a signal strength of µ = 2.8+1.6

−1.4. Combining with the result of the
CMS VH analysis yields a signal strength signal µ = 1.0 ± 0.4 and the
local significance of the excess improves marginally to 2.6 standard
deviations.

III.5. First results on the main production and decay channels
at 13TeV

After a period of long shutdown between 2013 and 2015 devoted to
the consolidation of the machine, in Spring 2015 the LHC delivered
pp collisions at an unprecedented centre-of-mass energy of 13TeV.
During this period the ATLAS and CMS experiments have collected
datasets corresponding to integrated luminosities of 2.3 to 3.2 fb−1 for
CMS and ATLAS, respectively. The first preliminary measurements
of Higgs boson production at this increased centre-of-mass energy are
arriving while this review is being finalized. Only a concise section
and an update in the associated production with a top-quark pair are
therefore devoted to these results.

The two high-resolution channels H → γγ and H → ZZ∗ →
ℓ+ℓ−ℓ′+ℓ′− have been measured both by the ATLAS and CMS
experiments. With the increase in production cross sections, a fair
sensitivity is expected in these two channels even with this limited
amount of data. For the H → γγ channel ATLAS has produced a
fully inclusive analysis in order to measure a fiducial cross section
with a sensitivity of 1.9σ and an observed excess of 1.8σ [146].
The measurement of the total cross section, as extrapolated from
the fiducial region is shown in Fig. 11.7(left). CMS has produced
an analysis with event classification that has reached a sensitivity
of 2.7σ and has observed an overall excess of 1.7σ [147]. For the
H → ZZ∗ channel, ATLAS has also produced a fully inclusive analysis
with a sensitivity of 2.8σ and no significant excess with respect to
the background has been observed [148]. This outcome is however
compatible with the presence of a signal at the 1.4σ level. The
corresponding measurement of the total cross section is illustrated
in Fig. 11.7(left). The CMS analysis in this channel is also inclusive
and uses additional kinematic discriminants to reach a sensitivity of
3.4σ [149]. CMS observes an excess with a significance of 2.5σ. In
this channel, CMS also measures a fiducial cross section as shown
in Fig. 11.7(right). The ATLAS experiment has also performed a
combination of the total cross sections in these two channel at 7, 8
and 13TeV [150]. The results of these combinations are shown in
Fig. 11.7(left).
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Figure 11.7: (Left) Total cross sections measured by ATLAS
at 7, 8 and 13TeV in the H → γγ and H → ZZ∗ channels and
their combinations. (Right) The fiducial cross section measured
in the H → ZZ∗ channel by CMS at 7, 8 and 13TeV.

The CMS experiment has investigated two additional channels.
The first is the H → WW ∗ → ℓνℓν in categories of up to one jet, with
a sensitivity of 2σ [151] and has observed only a very mild excess of
0.7σ. The second is the H → bb decay mode in the VBF production
sensitive only to approximately twice the SM production rate. The
observation in this channel is compatible both with the background
and the background in presence of a SM signal [152].
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III.6. Higgs production in association with top quarks or in
top decays

III.6.1. The associated production with top quark pairs

As discussed in Section II, the coupling of the Higgs particle to
top quarks plays a special role in the electroweak breaking mechanism
and in its possible extensions. Substantial indirect evidence of this
coupling is provided by the compatibility of observed rates of the
Higgs boson in the principal discovery channels, given that the main
production process – the gluon fusion – is dominated by a top quark
loop. Direct evidence of this coupling at the LHC and the future
e+e− colliders will be mainly available through the ttH final state
and will permit a clean measurement of the top quark-Higgs boson
Yukawa coupling. The ttH production cross section at the LHC is
tiny in comparison with the ggF or even V H production modes. The
production cross section for a 125GeV Higgs boson in pp collisions at√

s = 8 TeV of about 130 fb makes it challenging to measure the ttH
process with the LHC Run 1 dataset. It is thus imperative to target
every accessible experimental signature. The analyses channels for
such complex final states can be separated in four classes according
to the decays of the Higgs boson. In each of these classes, most of
the decay final states of the top quarks are considered. The topologies
related to the decays of the top quarks are denoted 0L, 1L and 2L, for
the fully hadronic, semi-leptonic and dilepton decay final states of the
tt, respectively.

The first analysis in this set is the search for ttH production in the
H → γγ channel. This analysis relies on the search for a narrow mass
peak in the mγγ distribution. The background is estimated from the
mγγ sidebands. The sensitivity in this channel is mostly limited by the
available statistics. The second is the search in the H → bb channel.
This search is extremely intricate due to the large backgrounds, both
physical and combinatorial in resolving the bb system related to the
Higgs particle, in events with six jets and four b-tagged jets which
are very hard to simulate. With the current dataset, the sensitivity
of this analysis is severely impacted by the systematic uncertainties
on the background predictions. The third channel is a specific search
for τ+τ− where the two tau leptons decay to hadrons. Finally, the
W+W− , τ+τ− and ZZ final states can be searched for inclusively
in multilepton event topologies. The corresponding ttH modes can be
decomposed in terms of the decays of the Higgs boson and those of
the top quarks as having two b-quarks and four W bosons (or two W
and two taus, or two W and two Z) in the final state.

CMS combines these four sets of measurements [153] and reports
a 95%CL upper limit on the signal strength value of µttH < 4.5.
ATLAS reports [155–157] 95%CL upper limits on the signal strengths
of 6.7, 6.4 and 4.7 for H → γγ, H → bb and H → multilepton decay
final states, respectively. The CMS experiment has also updated the
ttH(→ bb) analysis using the matrix element method, aiming at an
optimal separation between the signal and the dominant tt production
in association with heavy flavor quarks in the final state [154].

III.6.2. The associated production with a single top quark

An additional production mode of the Higgs boson in association
with a top quark is the single top associated production mode. There
is an interesting similarity between this production mode and the
H → γγ decay mode. Both processes proceed through either the top
Yukawa coupling or the interaction of the Higgs boson with the W-
boson, with a negative interference between the two. Representative
Feynman diagrams for this production process are shown in Fig. 11.8.
Contrary to the diphoton decay channel, in this production mode
the interference occurs at the tree level. This process can be used to
further discriminate a negative relative sign between the couplings of
the Higgs boson to fermions and its couplings to gauge bosons.

The ATLAS experiment has re-interpreted its Run 1 search of
the diphoton decay channel in the ttH production in terms of tH
production [155] and has produced 95%CL upper limits on the Higgs
boson production cross section with respect to the rates expected for
a given sign of the top Yukawa coupling. The result is not strong
enough to exclude, at 95%CL, a negative top Yukawa coupling with
an absolute strength equal to that of the SM. The excluded range in

Table 11.5: Summary of the results of searches for a Higgs
boson in association with a top quark pair by the ATLAS
and CMS collaborations. The results are given in terms of
measured signal strength. The results of subchannels including
hadronically decaying taus, which are less sensitive, are not
reported in this table but can be found in the corresponding
references.

ATLAS CMS CMS

(7 and 8TeV) (7 and 8 TeV) (13 TeV)

tt(H → γγ) 1.3 +2.6
−1.7

+2.5
−1.7 1.2 +2.5

−1.7
+2.6
−1.8 —

tt(H → bb)-0L 1.6 ± 0.8 ± 2.5 —

tt(H → bb)-1L 1.2 ± 0.8 ± 0.8 1.7 +2.0
−1.8 −0.4 +2.1

−2.1

tt(H → bb)-2L 2.8;±1.4 ± 2.0 1.0 +3.3
−3.0 −4.7 +3.7

−3.8

tt(H → bb) 1.4 ± 1.0 ± 0.6 1.6 +1.6
−1.5 −2.0 ± 1.8

tt(H → 4ℓ) 2.8 +2.0
−1.7

+0.9
−0.6 −4.7 +5.0

−1.3 —

tt(H → 3ℓ) 2.8 +2.0
−1.7

+0.9
−0.6 3.1 +2.4

−2.0 5.8 +3.3
−2.7

tt(H → SS2ℓ) 2.8 +1.5
−1.4

+1.5
−1.3 5.3 +2.1

−1.8 −0.5 +1.0
−0.7

tt(H → WW/ττ/ZZ) 1.4 ± 0.6 ± 1.0 — 0.6 +1.4
−1.1

Combination 1.7 ± 0.5 ± 0.8 2.8 +1.0
−0.9 —

the ratio of the Higgs-top Yukawa coupling to that of the SM one, κt,
at the 95%CL, is ] −∞,−1.3] ∪ [8,∞[.

The CMS experiment has produced a search with the Run 1 data
exploiting a variety of Higgs boson decay modes resulting in final
states with photons, bottom quarks, and multiple charged leptons,
including tau leptons. The analysis is optimized for the opposite sign
of the top Yukawa coupling with respect to that in the SM, and
corresponding to a large enhancement of the signal cross section. The
expected sensitivity of this analysis in terms of exclusion of the ratio
of the cross section to the expected SM cross section is 2 for κt = −1,
while the observed exclusion limit is 2.8.
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Figure 11.8: Feynman diagrams contributing to the Higgs
production in association with a single top-quark through the
top Yukawa coupling (left) and through the Higgs coupling to
the W gauge boson (right).

III.6.3. Flavor changing neutral current decays of the top
quark

The discovery of the Higgs boson at a mass smaller than the top
quark mass opened a new decay channel for the top quark. The
decays of the top quark to a Higgs boson and a charm or an up
quark proceed through a Flavor Changing Neutral Current (FCNC)
which are forbidden at the tree level and suppressed at higher orders
through the Glashow–Iliopoulos–Maiani (GIM) mechanism [3]. The
SM prediction for these branching fractions is BR(t → Hc) = 10−15

and two orders of magnitude less for the Hu final state. These decay
channels of the top quark are, however, very interesting to probe
possible FCNC interactions in the Higgs Yukawa couplings to the
quark sector.

The ATLAS experiment has searched for FCNC top decays
specifically in channels involving a Higgs boson with subsequent
decays to two photons [158] and a pair of b-quarks [159]. It has
also reinterpreted a search for the ttH production in the multilepton
final state (discussed in Section III.6.1) [157]. The latter channel
covers Higgs boson decays to a pair of W -bosons and a pair of
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taus. No significant excess was observed in any of the specific
channels (as discussed in Section III.6.1, a slight excess is observed
in the ttH multilepton channel) and 95%CL upper limits are set
on BR(t → Hc) < 0.46% with an expected sensitivity of 0.25% and
BR(t → Hu) < 0.45% with an expected sensitivity of 0.29%. The
CMS experiment has performed a search for these FCNC top decays
in the diphoton and multilepton channels [160], yielding a 95% CL
upper limit on BR(t → Hc) < 0.56% with an expected sensitivity of
0.65%.

From these limits on branching fractions, constraints on non
flavor-diagonal Yukawa couplings of a FCNC sector Lagrangian of the
form:

LFCNC = λtcH tHc + λtuH tHu + h.c.

can be derived. The 95%CL observed (expected) upper limits from
ATLAS on the |λtcH | and |λtuH | couplings are 0.13 (0.10) and 0.13
(0.10), respectively.

III.7. Searches for other rare production modes

III.7.1. Searches for Higgs boson pair production

Higgs boson pair production in the SM is rare. It is however a very
interesting final state to search in two specific modes: (i) the search
for non-resonant production of the Higgs boson pair and (ii) the search
for resonant production of two Higgs bosons in the decay of a heavier
particle.

Non-resonant Higgs pair production is an interesting milestone in
the study of prospects for constraining Higgs self-couplings. In the SM
the main non-resonant production mode of two Higgs bosons in the
final state proceeds through a loop (mainly of top quarks) (Fig. 11.9a).
Another production mode is via the trilinear coupling of the Higgs
boson (Fig. 11.9b), whose amplitude is not negligible compared to
the former. These diagrams interfere negatively making the overall
production rate smaller than what would be expected in the absence
of a trilinear coupling. The sensitivity to the trilinear coupling will be
discussed in Section III.7.1.ii.
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Figure 11.9: Feynman diagrams contributing to Higgs boson
pair production through (a) a top- and b-quark loop and (b)
through the self couplings of the Higgs boson.

(i) Searches for Higgs boson pair production

The searches for Higgs boson pair production both resonant and
non-resonant are very interesting probes for a variety of theories
beyond the SM, and can be done in a large number of Higgs
boson decay channels. The ATLAS collaboration has searched both
for resonant and non resonant Higgs boson pair production in the
following channels: (i) HH → bbγγ [161]; (ii) HH → bbτ+τ− [162];
(iii) HH → bbbb [163]; and (iv) HH → WW ∗γγ [162]. The CMS
collaboration has only performed searches for resonant Higgs boson
pair production in a large variety of decay modes: (i) in final
states containing multiple leptons (electrons or muons) covering the
WW ∗WW ∗, WW ∗ZZ∗, ZZ∗ZZ∗, ZZ∗τ+τ−, WW ∗τ+τ−, ZZ∗bb,
τ+τ−τ+τ− channels [164]; (ii) in final states with a di-photon pair
compatible with being produced in the decay of the Higgs boson and
one lepton covering the γγWW ∗, γγZZ∗, γγτ+τ− channels [164];
(iii) in the bbτ+τ− channel [165]; and (iv) in the bbbb channel [166].
A summary of the channels searched for at the LHC is given in
Table 11.6. The results and interpretation of the search for resonant
Higgs boson pair production are discussed in Section VII.8.i.d.

Table 11.6: Summary of the final states investigated in the
search for Higgs boson pair production by ATLAS (A) and CMS
(C).

bb τ+τ− 4ℓ ℓ+νℓ−ν γγ

bb A [163],C [166] A [162],C [165] C [164] C [164] A [161]

τ+τ− – C [164] C [164] C [164] C [164]

4ℓ – – C [164] C [164] C [164]

ℓ+νℓ−ν – – – C [164] A [162],C [164]

(ii) Measuring Higgs self couplings

The Higgs boson self coupling is an extremely important direct
probe of the Higgs potential. The measurement of the quartic coupling
in HHH final states is essentially deemed to be impossible at the
HL-LHC. The possibility of measuring the trilinear coupling of the
Higgs boson at the LHC in HH final states is studied in detail.

In the SM the Higgs boson pair production through the trilinear
Higgs has an on-shell component and a large off-shell component.
The on-shell H → H∗H∗ is strongly disfavored, requiring two off-shell
Higgs bosons in the final state. The sensitivity region to the trilinear
coupling production as in Fig. 11.9-b, is mainly in the kinematic region
where the two Higgs boson in the final state are on-shell and the Higgs
boson acts as a propagator (off-shell). As discussed in the introduction
to this section, this process interferes negatively with the background
Higgs boson pair production (Fig. 11.9a). In the SM hypothesis
sensitivity to the trilinear coupling requires the measurement of a
deficit in the Higgs boson pair production, in a similar way as the
off-shell couplings measurement as explained in Section V.2. Given
the current sensitivity of Higgs boson pair production measurements
discussed in the previous Section III.7.1.i, only projections for the
high Luminosity LHC are considered with an integrated luminosity of
3 ab−1 and therefore in high pile-up conditions. Three channels have
been investigated: (i) the HH → bbγγ; (ii) the HH → bbτ+τ−; and
(iii) the HH → bbW+W−. The prospects in channel (i) have been
studied by both the ATLAS [167] and the CMS [168] collaborations,
yielding a sensitivity of 1.3σ and 1.6σ respectively to overall Higgs
boson pair production. The ATLAS and CMS collaborations have
studied the channel (ii) yielding a sensitivity of 0.6σ [169] and
0.9σ [168] to Higgs boson pair production respectively. Only the
CMS collaboration has studied the channel (iii) showing its low
sensitivity [168]. It should be noted that there is a large uncertainty
on these projections related both to the modeling of signal and the
backgrounds, the very difficult high pile-up environment (both for
reconstruction and trigger) and the design of the upgraded detectors.
As discussed in Section III.7.1.i, more channels are possible and
deserve to be studied in detail.

The measurements of the trilinear coupling requires to separate
the contributions to the overall Higgs boson pair production and in
particular measure the deficit expected in the case of SM couplings.
The ATLAS collaboration has estimated the sensitivity to the
trilinear λHHH coupling to exclusion regions of λHHH/λSM

HHH at

95%CL of ] − ∞,−1.3] ∪ [8.6,∞[ with the bbγγ channel [167] and
] − ∞,−1.4] ∪ [12.0,∞[ with the bbτ+τ− channel [169]. Measuring
the Higgs boson trilinear coupling will be very difficult at the High
Luminosity LHC.

III.8. Searches for rare decays of the Higgs boson

III.8.1. H → Zγ

The search for H → Zγ is performed in the final states where the
Z boson decays into opposite sign and same flavor leptons (ℓ+ℓ−),
ℓ here refers to e or µ. While the branching fraction for H → Zγ
is comparable to H → γγ (about 10−3) at mH = 125GeV, the
observable signal yield is brought down by the small branching ratio of
Z → (e+e− + µ+µ−) = 6.7 × 10−2. In these channels, the mℓℓγ mass
resolution is excellent (1-3%) so the analyses search for a narrow mass
peak over a continuous background. The major backgrounds arise
from the Z + γ final state radiation in Drell–Yan decays and Z + jets
processes where a jet is misidentified as a photon. The ratio of signal
over background in this channel is typically of the order of 0.5%. In
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a narrow window of a few GeV around125 GeV, several hundreds of
events are expected.

Events are divided into mutually exclusive categories on the
basis of the expected mZγ resolution and the signal-to-background
ratio. A VBF category is formed for H → Zγ candidates which are
accompanied by two energetic jets separated by a large pseudorapidity.
While this category contains only about 2% of the total event count,
the signal-to-noise is about an order of magnitude higher. The search
for a Higgs boson is conducted independently in each category and the
results from all categories are then combined.

No excess of events is observed in either ATLAS or CMS
experiments. The CMS expected and observed 95%CL upper limits
for mH = 125GeV [170] on the signal strength µ are 10 and 9.5
respectively. The ATLAS expected and observed upper limits [171]
on the signal strength µ are 9 and 11 respectively for a SM
mH = 125.5GeV.

III.8.2. H → µ+µ−

H → µ+µ− is the only channel where the Higgs coupling to second
generation fermions can be measured at the LHC. The branching
fraction in this channel for a 125GeV SM Higgs boson is 2.2 × 10−4,
about ten times smaller than that for H → γγ. The dominant and
irreducible background arises from the Z/γ∗ → µ+µ− process which
has a rate several orders of magnitude larger than that from the SM
Higgs boson signal. Due to the precise muon momentum measurement
achieved by ATLAS and CMS, the mµ+µ− mass resolution is excellent

(≈ 2 − 3%). A search is performed for a narrow peak over a large
but smoothly falling background. For optimal search sensitivity,
events are divided into several categories. To take advantage of
the superior muon momentum measurement in the central region,
the two experiments subdivide events by the pseudorapidity of the
muons. To suppress the Drell–Yan background, ATLAS requires

pµ+µ−

T > 15GeV while CMS separates them into two pµ+µ−

T based
categories. CMS further categorizes events by the number and the
topology of additional energetic jets in the event.

No excess in the mµ+µ− spectrum is observed near 125GeV.

From an analysis of their Run 1 data, ATLAS sets [172] an observed
(expected) 95%CL upper limit on the signal strength µ < 7.0 (7.2).
The CMS analysis [173] of their 7 and 8TeV data sets an observed
(expected) limit of µ < 7.4 (6.5).

III.8.3. H → e+e−

A search similar to the H → µ+µ−, is performed by CMS in the
di-electron channel [173]. In this search channel there the contribution
from the peaking background from Higgs boson decays to diphoton
mis-identified as di-electrons (when mostly converted photons are
faking electrons) needs to be assessed. The sensitivity to the SM
Higgs decays is negligible given the extremely small branching fraction
to e+e−, approximately 40,000 times smaller than the branching
fraction to dimuons. It is nevertheless interesting to probe this decay
channel to search for potential large anomalous couplings. Assuming
a SM Higgs boson production cross section, the observed limit on
the branching fraction at the 95%CL is 0.0019 [173], five orders of
magnitude larger than the expected SM prediction.

III.8.4. Lepton flavor violating (LFV) Higgs boson decays

Given the Yukawa suppression of the couplings of the Higgs boson
to quarks and leptons of the first two generations and the small total
width of the Higgs boson, new physics contributions could easily
have sizable branching fractions. One very interesting possibility is
the Lepton Flavor Violating (LFV) decays of the Higgs boson, in
particular in the τµ and τe modes. These decays are suppressed in
the SM but could be enhanced in theories such as two-Higgs-doublet
models (discussed in Section VII).

There are already fairly strong constraints on LFV Yukawa
couplings |Yτµ| from channels such as the τ → 3µ or τ → µγ, or a
re-interpretation of the search for Higgs decays to τ+τ−. A direct
search at the LHC however complements these indirect limits. The
search for LFV decays in the τµ channel have been done with the Run
1 dataset in several channels according to the subsequent decay of the

ATLAS τhadµ ATLAS τlepµ ATLAS τµ CMS τµ

BR(H → τµ) (0.77 ± 0.62)% (0.03+0.88
−0.86)% (0.53 ± 0.51)% (0.84+0.39

−0.37)%

95% CL Expected 1.24% 1.73% 1.01% 0.75%

95% CL Observed 1.85% 1.79% 1.43% 1.51%

Table 11.7: Summary of the results of searches for lepton flavor
violating decays of the Higgs boson in the τµ channel from
ATLAS and CMS.

τ . The results from CMS [174] and for ATLAS for the hadronic [175],
the leptonic [176] decays of the tau, and their combination [176] are
reported in Table 11.7. It is interesting to note that the analysis
strategies for the di-lepton τlepµ channel are very different between
the ATLAS [176] and CMS [174].

As shown in Table 11.7 a small excess in this channel is observed by
CMS with a significance of 2.5σ, while in ATLAS the excess is smaller
and of the order of 1σ.

The ATLAS collaboration has also reported results on the search
for the LFV Higgs boson decays in the τe channel [176], yielding an
observed (expected) limit of 1.04% (1.21%).

III.8.5. Probing charm- and light-quark Yukawa couplings

Probing the Yukawa couplings to quarks of the second or even
the first generation is extremely challenging given the overwhelming
background and the much smaller signal rates. The possibility of
probing the Yukawa coupling to the charm has been discussed in [177]
where indirect bounds on the charm Yukawa coupling are estimated
from a combined fit to the Higgs data. The direct impact of Higgs
decays to a pair of charm quarks on the direct search for H → bb is
also investigated.

Another possibility to access the Higgs Yukawa coupling has been
discussed in [178], through the decays of the Higgs boson to a
final state with charmonium: H → J/ψγ. Higgs decays in this final
state have been searched for by the ATLAS collaboration [179]. The
sensitivity of this analysis is however several orders of magnitude
above the branching fraction estimated for the SM coupling BR(H →
J/ψγ) = (2.8 ± 0.2) × 10−6 [178]. The ATLAS collaboration [179]
has also searched for Higgs decays to Υ(nS)γ where (n = 1, 2, 3), a
channel with much lower sensitivity than the H → bb to the Yukawa
coupling to b-quarks.

More recently the ATLAS collaboration has searched for another
quarkonia final state where the Higgs boson decays to φγ [180] at the
LHC Run 2 and a center-of-mass energy of 13TeV, with a specific
trigger. This channel could probe deviations from the strange-quark
Yukawa coupling of the Higgs boson. Its sensitivity is several orders
of magnitude above the expectation from the SM Higgs boson. Other
quarkonia final states, such as the ργ, which could potentially probe
the Yukawa coupling to light quarks, can also be searched for.

III.8.6. Rare decays outlook

Rare decays such as those described in the above sections have a
clearly limited sensitivity. They however already deliver interesting
messages. For example, if the coupling of the Higgs boson was
as strong in the dimuon channel as it is for the top quark, this
mode would have been observed already with large significance. The
observed Higgs boson couplings are manifestly non-universal. Further
developing these rare decay modes is an important component of the
high luminosity program of the LHC to directly probe the couplings
of the Higgs boson, and to potentially measure the Yukawa coupling
of the Higgs boson to fermions of the second generation, in particular
to muons.

III.9. Searches for non-standard model decay channels

The main decay and production properties of the observed Higgs
boson are consistent with predictions of the SM. It may however have
other decay channels beyond those anticipated in the SM. Among
these and of great interest are the invisible decays into stable particles
that interact very weakly with the detector, and that are undetected,
such as Dark Matter particle candidates. Other non standard decay
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Table 11.8: Summary of the channels searched for and the
corresponding 95%CL limits from ATLAS and CMS on the
branching fraction for the Higgs boson decay to invisible particles
assuming a SM Higgs boson production cross section. The results
in parentheses are the expected exclusions. [*] indicates analyses
based only on 8TeV data. When combining Run 1 results and
the results from the ≈ 2 fb−1 of 13TeV data acquired in 2015,
the CMS observed (expected) limit improves to < 32 (26) % at
95%CL.

ATLAS CMS CMS

(Run 1) (Run 1) (13 TeV, 2015)

ggF (monojet); H → inv. – 67 (71) % [*] -

VBF; H → inv. 28 (31) % 57 (40) % [*] 69 (62) %

Z → ℓ+ℓ−; H → inv. 75 (62)% 75 (91) % 125 (125)%

Z → bb; H → inv. – 182 (189) % [*] -

Z → jj; H → inv. 78 (86)% – -

Combination of all 25 (27)% 36 (30) % -

direct searches

channels that have been investigated are the decays of the Higgs
particle to hidden valley or dark particles.

III.9.1. Invisible decays of the Higgs boson

The discovery of the Higgs boson immediately raised the question
of its couplings to dark matter and how it could be used to reveal its
existence at colliders, using the Higgs boson as a portal to dark matter
(see Ref. [181] and references therein). If kinematically accessible and
with a sufficiently large coupling to the Higgs boson, dark matter
particles, such as, e.g., neutralinos in SUSY models, graviscalars in
models with extra dimensions or heavy neutrinos in the context of
four-generation fermion models, would manifest themselves as invisible
decays of the Higgs boson, thus strongly motivating searches for the
invisible decays of the Higgs boson.

To identify an invisibly decaying Higgs boson at the LHC, it must
be produced in association with other particles. Searches for invisible
decays of the Higgs particle at the LHC have been carried out in three
associated production modes of the Higgs boson with the highest SM
cross sections and target events with large missing energy.

The ggF production mode has the largest SM cross section but
it usually results in the Higgs boson being created alone and hence
leaving no characteristic signature in the detector of its invisible decay.
One way to search for invisible decays in ggF production mode is to
look for events with the “monojet” topology arising from initial state
gluon radiation and containing missing energy. The major irreducible
background in such searches stems from Z + jets events where the
Z boson decays into a pair of neutrinos. The analysis with the best
sensitivity targets the VBF production topology but suffers from
large backgrounds arising from events with two jets and large missing
energy. The VH mode has much smaller cross section but the presence
of a W or Z boson allows a variety of final states that can be tagged
with relatively low background.

ATLAS [182–185], and CMS [186–189] have searched for such
final states but have observed no significant excess over predicted
backgrounds. Table 11.8 summarizes the 95%CL limits on the invisible
decays of the Higgs boson assuming SM Higgs boson production cross
section and corresponding detector acceptances.

III.9.2. Exotic Higgs boson decays

The 125GeV Higgs boson not only serves as a probe for potential
dark matter candidates, but also to search for other exotic particles
arising from fields associated with a low-mass hidden sector. Such
hidden sectors are composed of fields that are singlets under the SM
group SU(3) × SU(2) × U(1). These models are referred to as hidden
valley models [190, 191]. Since a light Higgs boson is a particle with
a narrow width, even modest couplings to new states can give rise
to a significant modification of Higgs phenomenology through exotic
decays. Simple hidden valley models exist in which the Higgs boson
decays to an invisible fundamental particle, which has a long lifetime
to decay back to SM particles through small mixings with the SM

Higgs boson; Ref. [191] describes an example. The Higgs boson may
also decay to a pair of hidden valley “v-quarks,” which subsequently
hadronize in the hidden sector, forming “v-mesons.” These mesons
often prefer to decay to the heaviest state kinematically available,
so that a possible signature is H → 4b. Some of the v-mesons may
be stable, implying a mixed missing energy plus heavy flavor final
state. In other cases, the v-mesons may decay to leptons, implying
the presence of low mass lepton resonances in high- HT events [192].
Other scenarios have been studied [193] in which Higgs bosons decay
predominantly into light hidden sector particles, either directly, or
through light SUSY states, and with subsequent cascades that increase
the multiplicity of hidden sector particles. In such scenarios, the high
multiplicity hidden sector particles, after decaying back into the SM,
appear in the detector as clusters of collimated leptons known as
lepton jets.

A variety of models have been investigated searching for final
states involving dark photons and hidden valley scalars. The resulting
topologies searched for are prompt electron jets in the WH production
process [194], displaced muonic jets [195], four muons final state, and
long lived weakly interacting particles [196]. The latter occur not only
in hidden valley scenarios, but also in gauge-mediated extensions of
the minimal supersymmetric standard model (MSSM), the MSSM
with R-parity violation, and inelastic dark matter [197]. Finally the
CMS collaboration has performed a search for pair production of light
bosons [198]. Such a scenario can occur in supersymmetric models
with additional hidden (or dark) valleys.

IV. Combining the main channels

As described in Section II, there are five main production modes
of a SM Higgs boson at the LHC. In the LHC Run 1 dataset the
predicted numbers of SM Higgs bosons produced per experiment are
approximately 0.5 million, 40,000, 20,000 and 3,000 in the gluon
fusion, vector boson fusion, the associated VH and ttH production
modes respectively3. There are also five main decay channels: the
γγ, ZZ, WW , τ+τ− and bb. Analyses using exclusive categories
according to production modes have been designed to maximize the
sensitivity of the analyses to the presence of a signal using known
characteristic features of these modes. These categories can also be
used to further separate production modes for each decay channel.
The typical number of events selected eventually in each decay channel
ranges from a fraction of an event to O(100) events per experiment.

The analysis strategy used by the LHC and Tevatron experiments
to perform the searches for the Higgs boson has been based on the
Higgs decay modes. It is a natural choice given that it focusses on the
decay products of the object searched for. However, for each channel,
exclusive subchannels have been defined according to the Higgs
production processes and in the results presented these subchannels
have been combined. The natural extension of this approach in order
to probe further the production and decay modes of the Higgs boson
is to combine the analysis channels together. Such a combination is
also used in Section VI to further measure the coupling properties of
the Higgs boson.

At the LHC or the Tevatron, the total cross section cannot be
measured in any of the production modes. As a consequence, neither
the absolute branching fractions nor the total natural width of
the Higgs boson can be directly measured. However, a combined
measurement of the large variety of categories described in Section III,
with different sensitivities to various production and decay modes
permits a wide variety of measurements of the production, decay or in
general coupling properties. These measurements require, in general,
a limited but nevertheless restrictive number of assumptions.

In this section, results will be given combining not only different
channels, but also the ATLAS and CMS results together [141]. These

3 Similarly at the Tevatron where the CDF and D0 experiments have
gathered approximately 10 fb−1 of data at 1.96TeV, the predicted num-
bers of SM Higgs boson events produced per experiment are approxi-
mately 10,000 and 2,000 events in the gluon fusion and VH associated
production, respectively.
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Table 11.9: Summary of the main production categories used
in the analysis channels involved in the combined measurement
of the coupling properties of the Higgs boson. (A) and (C)
indicate respectively when ATLAS and CMS include the specific
exclusive category in the combination. For the ttH channel, note
that the number of leptons (ℓ) indicates typically the type of
decay of the two top quarks.

γγ ZZ (4ℓ) WW (ℓνℓν) τ+τ− bb

ggF (high pH
T ) A A — A —

ggF (incl. or low pH
T ) A -C A - C A -C — —

ggF 1-jet — C A -C C —

VBF A -C A - C A -C A -C C

WH (1-ℓ) A -C A A -C C A -C

WH (two jets) A -C A - C A -C — —

ZH (0-ℓ) A -C A — — A-C

ZH (2-ℓ) A -C A A -C C A -C

ZH (two jets) A -C A - C A -C — —

ttH (1-ℓ) A -C — A -C A -C A -C

ttH (2-ℓ) — — A -C A -C A -C

ttH (hadronic) A -C — — — A

results were derived by the two collaborations, taking rigorously into
account all correlations in the systematic uncertainties and in the large
number of channels and their categories. This combination has led
the two collaborations to a more precise experimental portrait of the
Higgs boson. This work also concludes and synthesizes the analyses
of the main production and decay channels of the Higgs boson at the
Run 1 of the LHC.

In this section, only the results on the main Higgs boson production
and decay modes will be discussed. The combination framework
described herein will also be used in Section VI, to discuss the
measurements of the coupling properties of the Higgs boson.

IV.1. Principles of the combination

The combination of the Higgs boson analysis channels in each
experiment and for the two experiments together is done using a
fit of a signal and background model to the data. As described
above the data is made of a large number of categories, aiming
at reconstructing exclusive production and decay modes. In the
combination of ATLAS and CMS [141] there are approximately
600 categories. The combination is a simultaneous fit to all these
categories, using a reduced number of parameters of interest and a
Higgs boson mass fixed at its measured value (see Section III.2).
A synoptic view of the main production categories is illustrated in
Table 11.9. The much larger number of categories present in the
ATLAS and CMS combination [141], is due to additional separation
in terms of finer exclusive production regions, decay channels of the
Z and the W bosons, and taus, control regions where little-to-no
signal is present, and different center-of-mass energies. It should be
noted that the individual combination performed by ATLAS [199]
included two additional decay channels: the µ+µ− and Zγ, for the
sake of simplicity these channels were omitted in the ATLAS-CMS
combination. In addition, a H → bb analysis performed by CMS [133]
and included in its own combination, has been omitted from the
ATLAS-CMS combination.

The key to understanding how the combination of channels works
relies on the combination master formula, which expresses for each
category, indexed by c, of a given channel (typically a category covers
mostly one decay mode, but possibly various production modes), the
measured number of signal events nc

s as a function of a limited number

of parameters as follows:

nc
s = (

∑

i,f

µi σSM
i × Ac

if × εc
if × µf BRSM

f ) ×Lc (11.13)

The production index is defined as i ∈ {ggH, V BF, V H, ttH} and
the decay index is defined as f ∈ {γγ, WW, ZZ, bb, ττ} while σSM

i

and BRSM
f are the corresponding production cross sections and decay

branching fractions, estimated as described in Section II, assuming
that the Higgs boson is that of the SM. Ac

if and εc
if are the signal

acceptance and the reconstruction efficiency for given production
and decay modes in the category c. Lc is the integrated luminosity
used for that specific category. For the purpose of this review, these
parameters can be considered as fixed4.

The parameters of interest in the master formula are the signal
strength parameters µi and µf . It is important to note that the
formula relies on the factorization of the production cross section
and decay branching fraction, which assumes the narrow width
approximation. The width of the Higgs boson will be discussed in
Section V, however for the precision needed here, the fact that the
Higgs boson has been observed in decay channels with high mass
resolution as a resonance is sufficient to validate this hypothesis. It is
also manifest in the above equation that the ten parameters for the
production modes (µi) and decay modes (µf ) cannot be determined
simultaneously. This illustrates that total cross sections or branching
fractions cannot be measured without further assumptions in this fit.

The master formula also illustrates an important caveat to
the measurement of signal strength parameters. In case these are
interpreted as scale factors of the production cross sections or
branching fractions, then all the other quantities such as the
acceptances and efficiencies, Ac

if and εc
if , need to be assumed as

independent and fixed to their estimated values for the SM Higgs
boson. An additional important caveat to note concerning these
combined results is that only the normalizations are varied, while the
discriminating variables for the signal are not modified and are still
used in the fit. These caveats are of particular importance in the use
of the combination to measure the coupling properties of the Higgs
boson as discussed in Section VI. For relatively small perturbations of
the couplings of the Higgs boson from the SM values, this hypothesis
is valid.

However the 25 products, µi × µf , can be considered as free
parameters and in principle measurable (if there is sufficient sensitivity
from specific categories). Measuring the products of signal strengths
can be viewed as the measurements of the cross sections times the
branching fraction, σ · BR. The results are reported in Table 11.10
for the combination of ATLAS and CMS and they are illustrated in
Fig. 11.10.

0.5− 0 0.5 1 1.5

ggF

0.5− 0 0.5 1 1.5

VBF

4− 2− 0 2 4 6 8

WH

4− 2− 0 2 4 6 8

ZH

4− 2− 0 2 4 6 8

ttH

bb

ττ

WW

ZZ

γγ

σ1±Observed 

Th. uncert. Run 1LHC
CMS and ATLAS

 B norm. to SM prediction⋅ σ

Figure 11.10: Combined measurements of the products σ ·BR
for the five main production and five main decay modes.

4 In the combination performed by the ATLAS and CMS experi-
ments the systematic uncertainties on these parameters are taken into
account by allowing these parameters to vary in the fit.
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It is remarkable that of the 25 possible combinations of production
and decay modes in the main channels, the fit to ATLAS and CMS
data allows the measurement of 20. A coherent picture emerges with
an excellent consistency between the observation in each channel and
the expectation for a SM Higgs boson.

This 20 parameter fit quantifies, with very little theoretical input,
the current experimental knowledge of the main production and
decays modes. It is also a very useful tool to further understand
the influential channels in the measurements of the Higgs couplings.
Without a loss of independence of the theoretical predictions, a less
general fit allowing for further interpretations concerning production
cross sections and branching fractions is possible. In this fit a
reference process, measured with high precision and significance, is
used to parametrize all the other processes. In the ATLAS-CMS
combination [141] the gluon fusion production mechanism in the
H → ZZ decay mode is chosen. Then, the master formula applies
with the following parameters for all i and f indices except when both
i = ggF and f = ZZ

µi =
σi

σggF σSM
i

× µgg→H→ZZ

µf =
BRi

BRZZBRSM
i

µgg→H→ZZ = µggF × µZZ × σSM
i × BRSM

f

(11.14)

The result of the combination with these 9 parameters is illustrated
in Fig. 11.11. It allows interesting conclusions on the production
and decay properties of the Higgs boson. It shows that the ratio of
the decay rates to Z and W bosons is as expected from the SM, a
direct illustration of the custodial symmetry, and also quantifies the
relative precision at which the ttH coupling is currently measured.
It also shows that with the improved precision stemming from the
combination, no significant deviations from the SM is observed.

Parameter value norm. to SM prediction
1− 0 1 2 3 4 5 6

ZZ/BbbB

ZZ/BττB

ZZ/B
γγ

B

ZZ/BWWB

ggF
σ/

ttH
σ

ggF
σ/

ZH
σ

ggF
σ/

WH
σ

ggF
σ/

VBF
σ

ZZ)→H→(ggσ

 Run 1LHC
CMS and ATLAS ATLAS+CMS

ATLAS
CMS

σ1±
σ2±

Th. uncert.

Figure 11.11: Measurement of the σ(gg → H → ZZ) cross
section and of the ratios of cross sections and branching fractions
from the combination of the ATLAS and CMS measurements.
The results from each experiment are also shown. The results
are normalised to the SM predictions for the various parameters.
The shaded bands indicate the theoretical uncertainties in these
predictions.

Finally, the most constrained fit in this combination, and
historically the first made, allows for only one single parameter to vary
i.e. ∀(i, f), µi =µf =µ. This global signal strength model provides the
most precise and simple probe of the compatibility of the signal with
the SM Higgs boson. This model is sensitive to any deviation from
the SM Higgs boson couplings provided that these deviations do not
cancel overall. The combined global signal strength is

µ = 1.09 ± 0.07 (stat) ± 0.04 (expt) ± 0.03 (th. bkg) ± 0.07 (th. sig)

This overall signal strength is fully compatible with the SM
expectation of 1, with a precision of 10%. It is interesting to note
that the major uncertainties in this first measurement arises from
the limited precision in the theoretical predictions for the signal
production processes.

IV.2. Characterization of the main decay modes and observa-
tion of Higgs decays to taus

Despite the large number of decay channels, since the cross sections
cannot be independently measured, from the measurements described
in this section it is impossible to measure decay branching fractions
without a loss of generality. The simplest assumption that can be
made is that the production cross sections are those of the SM Higgs
boson, which is equivalent to assuming that for all i indices µi = 1. All
branching fractions µf can then be measured in a simple 5 parameter
fit. The result of this fit is illustrated in Fig. 11.12, and the measured
signal strengths are reported in Table 11.11.

Parameter value
1− 0.5− 0 0.5 1 1.5 2 2.5 3 3.5 4

bbµ

ττµ

WWµ

ZZµ

γγµ

 Run 1LHC
CMS and ATLAS ATLAS+CMS

ATLAS

CMS

σ1±
σ2±

Figure 11.12: The signal strengths µ measured by the ATLAS
and CMS experiments [141] for the five principal Higgs boson
decay channels assuming that the production cross sections are
those of the SM.

Table 11.11 also reports the results of a similar combination by each
experiment from their data. For the main discovery modes γγ, ZZ
and WW , the combined significance is not computed as these decay
modes have been firmly established by each experiment independently.
However for the τ+τ− and bb decay modes these results shed new
combined light on the observation significance in these channels.

For the τ+τ− channel, ATLAS and CMS are both sensitive and
have observed excesses in their data. The individual results are not
sufficiently significant to claim an observation, but combined they are.
This conclusion can be made also in a more generic manner using the
ratio of branching fractions model described above. It should be noted
that in the search for H → ττ decay, the most sensitive production
mode is the VBF process, the experimental evidence for which is
discussed in Section IV.3.
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Table 11.11: Summary of the significances of the excesses
observed for the main decay processes. The γγ, ZZ, and
W+W− decay modes have been established at more than 5σ
by both the ATLAS and CMS experiments individually, the
combined observation significance therefore exceeds 5σ and is
not reported here.

Expected Z Observed Z

γγ 4.6σ (ATLAS) 5.3σ (CMS) 5.2σ (ATLAS) 4.6σ (CMS)

ZZ 6.2σ (ATLAS) 6.3σ (CMS) 8.1σ (ATLAS) 6.5σ (CMS)

WW 5.9σ (ATLAS) 5.4σ (CMS) 6.5σ (ATLAS) 4.7σ (CMS)

τ+τ− 3.4σ (ATLAS) 3.9σ (CMS) 4.5σ (ATLAS) 3.8σ (CMS)

bb 2.6σ (ATLAS) 2.5σ (CMS) 1.4σ (ATLAS) 2.1σ (CMS)

τ+τ− (Comb.) 5.0σ 5.5σ

bb (Combined) 3.7σ 2.6σ

Table 11.12: Summary of the combined significance of
observation for the main production processes. The ggF process
has been established at more than 5σ by both the ATLAS
and CMS experiments individually, the combined observation
significance far exceeds 5σ and is not reported here.

Expected Z Observed Z

ggF Ind. Obs. Ind. Obs.

VBF 4.6σ 5.4σ

WH 2.7σ 2.4σ

ZH 2.9σ 2.3σ

VH 4.2σ 3.5σ

ttH 2.0σ 4.4σ

As illustrated in Table 11.11, ATLAS and CMS are both much less
sensitive to the H → bb̄ decay mode. The available sensitivity comes
mostly from the VH process, as discussed earlier in this section. The
combined significance of 3.7σ is sufficient to suggest evidence, however
ATLAS and CMS observations are both low with respect to the rate
expected for the SM Higgs boson. With the increased production cross
sections at 13TeV and the much larger dataset expected, this channel
will undoubtedly be followed with great attention at the Run 2 of the
LHC.

IV.3. Characterization of the main production modes and
evidence for VBF production

As discussed earlier, most analysis channels are divided into several
exclusive categories allowing for an increased overall sensitivity and to
measure the various Higgs production modes. The cross sections of the
main production modes can be measured assuming that the branching
fractions are those of the SM Higgs boson, i.e. for all f indices µf = 1.
These assumptions lead to a 5 parameter combination. The result is
illustrated in Fig. 11.13 for the ATLAS-CMS combination [141]. The
significance of observation of the production modes are reported in
Table 11.12.

The gluon fusion production process is the dominant production
mode. Although no numerical estimate of combined significance of
observation for this process has been given by the experiments, it is
considered as established due to the overwhelming evidence from the
three main discovery channels. None of the other production modes
have been firmly established by the experiments individually. These
show that for the VBF mode, the combination has a large sensitivity
and produced a combined observation of 5.4σ, establishing this process
with a rate compatible with that expected from the SM Higgs boson.
A similar conclusion can be reached but with assumptions from the fit
to the ratio σV BF /σggF discussed earlier in this section.

It is interesting to note that despite the low sensitivity to
the ttH production mode, the excesses observed in several ttH

channels (discussed in Section III.6.1), lead to a significance of direct
observation for ttH production in excess of 4σ. The compatibility of
this observation with the SM production rate is at the 2.3σ level.
Given the increased sensitivity expected at the higher center-of-mass
energy of 13TeV, a great attention will undoubtedly be devoted to
this channel.

Parameter value
1− 0.5− 0 0.5 1 1.5 2 2.5 3 3.5 4
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ttH
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ZH
µ

WH
µ
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µ

ggF
µ

 Run 1LHC
CMS and ATLAS ATLAS+CMS

ATLAS
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σ1±
σ2±

Figure 11.13: The signal strengths µ measured by the ATLAS
and CMS experiments [141] in the five principal production
modes and their combination, assuming that the decay branching
fractions are those of the SM Higgs boson.

One can further reduce the number of parameters of interest by
grouping the ggF and ttH production modes together, as they both
originate in the SM from the Yukawa coupling to the top quark and
the VH and VBF processes together as they both originate from
the coupling of the Higgs boson to massive vector bosons. Grouping
here means that the two production cross sections are scaled by a
single parameter of interest, which is equivalent to fixing their ratio to
the expected ratio for a SM Higgs boson. The 2-dimensional profile
of the likelihood for each main decay channel individually is shown
in Fig. 11.14, illustrating the relative constraint that each decay
channel is imposing on the production process and the correlation
between the grouped processes. This correlation stems from the cross
contamination of the exclusive categories with processes from the two
groups. Concerning the VBF production mode, these results show its
manifest predominance in the τ+τ− channel and the importance of
the γγ and WW channels in constraining it. While in most cases the
ggF + ttH group is mostly constrained by the indirect gluon fusion
process, in the case of the bb channel, the bulk of the constraint comes
from the ttH process.

V. Main quantum numbers and width of the Higgs boson

V.1. Main quantum numbers JPC

Probing the Higgs boson quantum numbers is essential to further
unveiling its coupling properties. The measurements of the signal
event yields of the observed new state in all the channels discussed in
Sections III and IV and their compatibility with the SM Higgs boson
predictions, give a qualitative, but nonetheless compelling indication
of its nature. This qualitative picture is further complemented by the
implications of the observation of the particle in the diphoton channel.
According to the Landau–Yang theorem [200], the observation made
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Figure 11.14: Two dimensional likelihood contours for
individual production signal strengths for the V BF + V H versus
ggF + ttH processes for various Higgs boson decay modes for the
ATLAS and CMS experiment combination.

in the diphoton channel excludes the spin-1 hypothesis and restricts
possibilities for the spin of the observed particle to 0 or 2.

The Landau–Yang theorem does not apply if the observed state is
not decaying to a pair of photons but to a pair of scalars subsequently
decaying to two very collimated pairs of photons (as for example in
the case of H → a1a1 → 4γ). This possibility has not been rigorously
excluded but is not experimentally favored since tight selection criteria
are applied on the electromagnetic shower shapes of the reconstructed
photons. A more systematic analysis of shower shapes and the
fraction of conversions could be performed to further discriminate
between the single prompt photon and the two overlapping photons
hypotheses. There are also potential theoretical loopholes concerning
the applicability of the Landau–Yang theorem [200], such as off-shell
vector boson decays. However, for the observed particle not to be of
spin 0 and +1 parity would require an improbable conspiracy of effects.
It is nevertheless important that this hypothesis be independently
tested, in particular since the measurements of coupling properties of
the Higgs boson assume that the observed state is CP-even.

V.1.1. Charge conjugation

The charge conjugation quantum number is multiplicative,
therefore given that the Higgs-like particle is observed in the H → γγ
channel, and given that photons are C-odd eigenstates, assuming C
conservation, the observed neutral particle should be C-even.

V.1.2. Spin and parity

To probe the spin and parity quantum numbers of the discovered
particle, a systematic analysis of its production and decay processes
is performed in several analyses, designed to be independent of
the event yields measured and relying instead on the production
and the decay angles, and on the threshold distributions as long
as a significant signal is observed (i.e. an excess over the expected
background that can be used to further discriminate between signal
hypotheses) of the produced particle. These analyses are based on
probing various alternative models of spin and parity. These models
can be expressed in terms of an effective Lagrangian [201] or in terms
of helicity amplitudes [202, 203]. The two approaches are equivalent.
In the following, the effective Lagrangian formalism is chosen to
describe the models considered and a restricted number of models
are discussed [201]. In the analysis performed by CMS [202] a larger
number of models have been investigated, however the main channels
studied by both experiments are essentially the same and the main
conclusions are similar and fully consistent.

(i) Spin-0 model

The interaction Lagrangian relevant for the analysis of spin-0
particle interaction with a pair of W- or Z-boson with either fixed or
mixed SM and BSM CP-even couplings or CP-odd couplings, is the
following:

LW,Z
0 ⊃

{

cos(α)κSM [
1

2
gHZZZµZµ + gHWW W+

µ W−µ]

− 1

4Λ
[cos(α)κHZZZµνZµν + sin(α)κAZZZµνZ̃µν ]

− 1

2Λ
[cos(α)κHWW W+

µνW−µν + sin(α)κAWW W+
µνW̃−µν ]

}

H0

(11.15)

Where V µ = Zµ, W+µ are the vector boson fields, V ±µν are the
reduced field tensors and Ṽ ±µν = 1/2 εµνρσVρσ are the dual tensor
fields. Here, Λ defines an effective theory energy scale. The factors
κSM , κHZZ , κHWW , κAZZ , κAWW denote the coupling constants
corresponding of the coupling of the SM, BSM CP-even and CP-odd
components of the Higgs field H0 to the W and Z fields. The
mixing angle α allows for the production of CP-mixed state and the
CP-symmetry is broken when α 6= 0, π.

This formalism can be used to probe both CP-mixing for a spin-0
state or specific alternative hypotheses such as a pure CP-odd state
(JP = 0−) corresponding to α = π/2, κSM = κHV V = 0 and
κAV V = 1. A BSM CP-even state JP = 0+

h corresponds to α = 0,
κSM = κAV V = 0 and κHV V = 1. These hypotheses are compared
to the SM Higgs boson hypothesis corresponding to α = 0 and
κHV V = κAV V = 0 and κSM = 1.

(ii) Spin-2 model

The graviton inspired interaction Lagrangian for a spin-2 boson
Xµν for a color, weak and electromagnetic singlet spin-2 resonance
uniquely interacting with the energy momentum tensor T V,f of vector
bosons V or fermions f , can be written as follows [204]:

L2 ⊃ 1

Λ





∑

V

ξV T V
µνXµν +

∑

f

ξfT f
µνXµν





Where the strength of the interaction is determined by the couplings
ξV and ξf . The simplest scenario, referred to as the universal couplings
(UC), corresponds to ξV = ξf . These models predict a large branching
ratio to photons (of approximately 5%) and negligible couplings
to massive gauge bosons (W and Z). Such scenarios are therefore
disfavored and other models are investigated where the couplings of
the W , Z and γ are assumed to be independent. Universality of the
couplings refers to ξg = ξq . Two other scenarios are considered with
low light-quark fraction where ξq = 0 and the low gluon-fraction where
ξq = 2ξg. In these scenarios a large enhancement of the tail of the
transverse momentum of the spin-2 state is expected and requires a
further selection requirement in order to probe the models within the
range of validity of the effective field theory. Two requirements are
considered, pX

T < 300GeV and pX
T < 125GeV [201].

V.1.3. Probing fixed JP scenarios

At the LHC, the determination of the spin and CP properties of the
Higgs boson is done independently from the total rates measurement,
it uses a global angular helicity analysis and, when applicable,
the study of threshold effects. The channels used for this analysis,
H → γγ, H → W (∗)W (∗) → ℓνℓν and H → Z(∗)Z(∗) → 4ℓ, are those
where the observation of a signal is unambiguous.

At the Tevatron, an analysis using the threshold distribution of the
production of the discovered state [205] in the associated production
mode V H with subsequent decay to a pair of b-quarks was performed
by the D0 collaboration.

(i) The V H production at D0

The mass of the V H system is a powerful discriminant to distinguish
a JP = 0+

m, with a threshold behavior in dσ/dM2 ∼ β from 0− or 2+

with threshold behaviors respectively in ∼ β3 and ∼ β5 (for a graviton
like spin 2) [205]. The V H mass observable, not only discriminates
signal hypotheses, but also has an increased separation between the
0− and 2+ hypotheses with respect to the backgrounds, thus allowing,
with a small and not yet significant signal yield, to exclude that the
observed state is 0− at 98%CL [206] and 2+ at the 99.9%CL [207].
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(ii) The γγ channel at the LHC

In the H → γγ channel, the analysis is performed inclusively using
the production angle cos θ∗CS and the transverse momentum of the
diphoton pair [201]. The definition chosen for the polar angle in the
rest frame is the Collins–Soper frame, which is defined as the bisector
axis of the momenta of the incoming protons in the diphoton rest
frame. The SM Higgs signal distribution is expected to be uniform
with a cutoff due to the selection requirements on the photons
transverse momentum. The H → γγ channel is mostly sensitive to
the gluon-initiated spin-2 production scenarios, which yield a cos θ∗CS
distribution peaking at values close to 1. The limits are derived from a
fit of the signal in bins of cos θ∗CS and diphoton transverse momentum
and are summarized in Fig. 11.15 for ATLAS, only combined results
are shown. The data shows a good compatibility with the SM 0+

hypothesis and contributes strongly to the exclusion of several Spin-2
scenarios. The conclusions are the same from CMS results [202].

(iii) The H → W (∗)W (∗)
→ ℓνℓν channel at the LHC

In the H → W (∗)W (∗) → ℓνℓν channel, the production and decay
angles cannot be easily reconstructed due to the presence of neutrinos
in the final state, however sensitivity arises from the V-A structure
of the decay of the W bosons. A scalar state thus yields a clear spin
correlation pattern that implies that the charged leptons e or µ from
the decays of the W bosons are produced close to one another in
the transverse plane. This feature, which impacts observables such as
the azimuthal angle between the two leptons ∆Φℓℓ or their invariant
mass Mℓℓ in addition of the threshold behavior of the decay which
is used in kinematic variables such as the transverse mass defined in
Section III, can be used to discriminate between various spin and parity
hypotheses. The approach adopted by ATLAS uses a multivariate
discriminant, whereas CMS uses a 2D-fit of the dilepton mass and the
transverse mass. The results of the H → W (∗)W (∗) → ℓνℓν analyses
alone are summarized in Fig. 11.15 for ATLAS and in combination
with other channels. Spin-1 hypotheses (1+ and 1−) have also been
tested with this channel by ATLAS and CMS. ATLAS and CMS
exclude the 1+ and 1− hypotheses at more than 95% CL.

(iv) The H → Z(∗)Z(∗)
→ 4ℓ channel at the LHC

The H → Z(∗)Z(∗) → 4ℓ coupling analysis, as described in
Section III, also uses a discriminant based on the 0+ nature of the
Higgs boson to further discriminate the signal from the background.
In this analysis this feature is used to discriminate between signal
hypotheses. The observables sensitive to the spin and parity are [208]
the masses of the two Z bosons (due to the threshold dependence
of the mass of the off-shell Z boson), two production angle θ∗ and
φ1, and three decay angles, φ, θ1 and θ2. The production and decay
angles defined as:

– θ1 and θ2, the angles between the negative final state lepton and
the direction of flight of Z1 and Z2 in the rest frame.

– φ, the angle between the decay planes of the four final state
leptons expressed in the four lepton rest frame.

– φ1, the angle defined between the decay plane of the leading
lepton pair and a plane defined by the vector of the Z1 in the four
lepton rest frame and the positive direction of the proton axis.

– θ∗, the production angle of the Z1 defined in the four lepton rest
frame with respect to the proton axis.

These angles are illustrated in Fig. 11.15. There are two approaches
to this analysis. The first, used by CMS, is a matrix element likelihood
approach where a kinematic discriminant is defined based on the ratio
of the signal and background probabilities. These probabilities are
defined using the leading-order matrix elements. A similar approach
is also performed by ATLAS as a cross check of their main result.
The main approach adopted by ATLAS is the combination of sensitive
observables with a Boosted Decision Tree. These analyses are sensitive
to various JP hypotheses and in particular discriminate the 0+

hypothesis from the 0−. In all scenarios investigated and for both
the ATLAS and CMS experiments, the data are compatible with the
0+ hypothesis. ATLAS [203] and CMS [202] exclude a pseudoscalar
nature of the observed boson at CLS levels of 98% and 99.8%.
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Figure 11.15: (Left) Definition of the production and decay

angles defined for the H → Z(∗)Z(∗) → 4ℓ final state [202].
Expected distributions of the test statistic for the SM hypothesis
(in blue) and several alternative spin and parity hypotheses (in
red).

V.1.4. Probing anomalous HVV couplings

The careful study of the kinematic properties of the events
observed in the H → Z(∗)Z(∗) → 4ℓ and H → W (∗)W (∗) → ℓνℓν
channel, and in particular the angular distributions described above,
allows one to further probe the HVV coupling beyond testing fixed
hypotheses. Assuming that the observed particle is a spin-0 state, and
using several discriminating observables in the H → Z(∗)Z(∗) → 4ℓ
and H → W (∗)W (∗) → ℓνℓν channels, the anomalous terms in the
formalism of Eq. (11.15) can be probed. In the approach of helicity
amplitudes used by CMS [202], all terms are essentially equivalent,
except for one additional phase which is neglected in Eq. (11.15).

Results are derived in terms of the parameters κ̃HV V = v/Λ κHV V
and κ̃AV V = v/Λ κAV V , and more precisely as measurements
of κ̃HV V /κSM and tanα . κ̃AV V /κSM as shown in Fig. 11.16.
These parameters can be interpreted as mixing parameters of a
tensor anomalous CP-even coupling and a CP-odd component.
The measurements are made in the H → Z(∗)Z(∗) → 4ℓ and
H → W (∗)W (∗) → ℓνℓν channels independently and then combined
assuming that the κ̃HV V /κSM and tanα . κ̃AV V /κSM are the same
for the W and Z vector bosons. Only the combination of the WW
and ZZ channels is shown in Fig. 11.16. The asymmetric shape of
the likelihood as a function of κ̃HWW,HZZ/κSM is mainly due to the
interference between the BSM and the SM contributions that give
a maximal deviation from the SM predictions for negative relative
values of the BSM couplings. In Fig. 11.16 the expected likelihood
profiles for a SM Higgs boson are also displayed. While no significant
deviation from the SM Higgs boson expectation is observed, the
precision of the measurements of the mixing parameters is fairly low.
The results from the CMS measurements [202] are very similar and
the conclusions the same.
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V.2. Off-shell couplings of the Higgs boson

In the dominant gluon fusion production mode, the production
cross section of a off-shell Higgs boson is known to be sizable. This
follows as a consequence of the enhanced couplings of the Higgs boson
to the longitudinal polarizations of the massive vector bosons at high
energy.

The off-shell to on-shell cross section ratio is approximately 8%
in the SM. Still the Higgs contribution to V V production at large
invariant mass remains small compared to the background. It is
nevertheless interesting to probe Higgs production in this regime as it
is sensitive to new physics beyond the SM.

The difficulty in the off-shell V V analysis, beyond the small
signal-to-background ratio, is due to a large negative interference
between the signal and the gg → V V background. boson signal in the
far off-shell domain results in a deficit of events with respect to the
expectation from background only events. It is only when the off-shell
couplings of the Higgs boson are larger than expected in the SM that
the presence of a signal appears as an excess over the background
expectation. One additional intricacy arises from the precision in the
prediction of the rate for gg → V V , a loop process at lowest order, and
its interference with the signal. At the time of the publications of the
results from the ATLAS [209] and CMS [210] a full NLO prediction
had not been computed.

It is interesting to note that in this regime the Higgs boson is
studied as a propagator and not as a particle. The measurement of
its off-shell couplings is therefore absolute and does not rely on the
knowledge of the total Higgs boson width. The off-shell couplings
constraints can then be used to indirectly constrain the natural
width of the Higgs boson, under specific assumptions detailed in
Section V.3.3.

This measurement has been carried out in the H → ZZ → 4ℓ,
H → ZZ → ℓℓνν and H → WW → ℓνℓν channels. To enhance the
sensitivity of the analysis the knowledge of the full kinematics of the
events is important. In particular the signal and the background can
be further distinguished by the invariant mass of the V V system,
which is more accurately accessible in the H → ZZ → 4ℓ channel.
Angular distributions also play an important role in this analysis. For
these reasons the H → Z(∗)Z(∗) → 4ℓ channel is significantly more
sensitive than H → W (∗)W (∗) → ℓνℓν. The CMS results in Refs. [210]
and [211] include the VBF and VH processes through the selection of
two additional jets in the final state. The ATLAS results do not have
a specific selection for the VBF or VH production processes, but their
contributions are taken into account.

Limits on the off-shell rates have been reported for the two channels
by ATLAS [209] and CMS [211]. The combined results assuming that
the off-shell rates in the ZZ and WW channels scale equally, are
given for two different hypotheses on the VBF production rate: fixing
it to its SM value or scaling it as the gluon fusion rate. The observed
(expected) limits on the off-shell rate fraction with respect to its SM
expectation is 6.7 (9.1) for ATLAS [209] with the VBF rate fixed to
its SM value and 2.4 (6.2) for CMS [211] where no assumption is made
on the relative production rates of gluon-fusion and VBF. In both
cases the custodial symmetry is assumed and the ratio of the rates in
the ZZ and WW decays are fixed to those of the Standard Model.
Results without this assumption have also been reported in Ref.[211].

V.3. The Higgs boson width

In the SM, the Higgs boson width is very precisely predicted once
the Higgs boson mass is known. For a mass of 125.1GeV, the Higgs
boson has a very narrow width of 4.2MeV. It is dominated by the
fermionic decays partial width at approximately 75%, while the vector
boson modes are suppressed and contribute 25% only.

At the LHC or the Tevatron, in all production modes, only the cross
sections times branching fractions can be measured. As a consequence,
the total natural width of the Higgs boson cannot be inferred from
measurements of Higgs boson rates. Direct constraints on the Higgs
boson width are much larger than the expected natural width of the
SM Higgs boson.

Table 11.13: The observed (expected) direct 95%CL con-
straints on the natural width of the 125GeV resonance from fits
to the γγ and ZZ mass spectra and to the 4ℓ vertex lifetime.

Mγγ mass spectrum M4ℓ spectrum 4ℓ vertex lifetime

ATLAS < 5.0(6.2)GeV < 2.6(6.2)GeV —

CMS < 2.4(3.1)GeV < 3.4(2.8)GeV > 3.5 × 10−12 GeV

V.3.1. Direct constraints

Analysis of the reconstructed mass lineshape in the two channels
with a good mass resolution, the H → γγ and H → Z(∗)Z(∗) → 4ℓ,
allow for a direct measurement of the width of the SM Higgs boson.
The intrinsic mass resolution in these channels is about 1-2 GeV,
much larger than the expected width of the SM Higgs boson. As a
result only upper limits on the Higgs boson width have been measured
by ATLAS [132] and CMS [133]. The two main challenges of direct
constraints on the width through the measurement of the lineshape
are: (i) the modeling of resolution uncertainties and (ii) the modeling
of the interference between the signal and the continuum background
which can be sizable for large widths, in particular in the range where
direct constraints are set. Given that these interference effects are
small with respect to the individual channels sensitivity, they are
neglected in deriving constraints on the total width. The combined
constraints however, being more precise could be affected by the
interference. ATLAS [132] has therefore not combined the constraints
on the width from the two channels. The results are reported in
Table 11.13. These constraints are still three orders of magnitude
larger than the expected SM width and are fully compatible with the
SM hypothesis.

Another direct constraint on the Higgs boson width can be obtained
in the H → Z(∗)Z(∗) → 4ℓ channel, from the measurement of the
average lifetime of the Higgs boson calculated from the displacement
of the four-lepton vertex from the beam spot. This analysis has been
carried out by CMS [210], using the measured decay length. The
measured cτH is 2+25

−2 µm, yielding an observed (and expected) limit
at the 95%CL of cτH < 57(56)µm. From this upper limit on the
lifetime of the Higgs boson. The 95% CL lower limit on its natural
width is ΓH > 3.5 × 10−12 GeV.

V.3.2. Indirect constraints from mass shift in the diphoton
channel

In the diphoton channel, it was noticed in [212], that the effect
of the interference between the main signal gg → H → γγ and the
continuum irreducible background gg → γγ, taking into account
detector resolution effects, is responsible for a non negligible mass
shift. The size of the mass shift depends on the total width of the
Higgs boson and it was suggested that measuring this mass shift
could provide a constraint on the width [212]. Comparing the mass
measured in the diphoton channel with the mass measured in the
four-leptons channel is subject to non negligible detector calibration
systematic uncertainties, however it was further noticed that the mass
shift has a dependence also on the diphoton transverse momentum.
The total width of the Higgs boson could therefore be constrained
using the diphoton channel alone.

Further studies were performed by the ATLAS collaboration to
estimate the size of the expected mass shift [213]. The expected shift
in mass in the diphoton channel is 35±9MeV for the SM Higgs boson.
Very preliminary studies of the sensitivity of this method to estimate
the width of the Higgs boson in the high-luminosity regime have been
made by ATLAS [214] and yield an expected 95% CL upper limit
on the total width of approximately 200MeV from 3 ab−1 of 14 TeV
data.

V.3.3. Indirect constraints from off-shell couplings

Using simultaneously on-shell and off-shell measurements in the
V V channels, it was noticed [215] that the total width of the Higgs
could be constrained. This can be illustrated from the parametrization
of the signal strength measurements both on-shell (µon−shell) and
off-shell (µoff−shell) as a function of the couplings modifiers κg and κV
parameterizing the main process gg → H → V V . The on-shell signal
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strength can be written as:

µon−shell =
κ2

g, on−shell κ
2
V, on−shell

ΓH/ΓSM

while in the case of the off-shell signal strength where the Higgs boson
is a propagator:

µon−shell = κ2
g, off−shell κ

2
V, off−shell

Then, with the following assumption

κ2
g, on−shell κ

2
V, on−shell ≤ κ2

g, off−shell κ
2
V, off−shell ,

from the on-shell and off-shell constraints. This assumes that no new
physics alters the Higgs boson couplings in the off-shell regime, i.e.
that the running of its couplings is negligible in the off-shell regime.
Both ATLAS [209] and CMS [210, 211] have used their off-shell
production limits to constrain the width of the Higgs boson.

Both ATLAS and CMS analyses use the kinematic event
characteristics to further gain in sensitivity to discriminate between
the signal and background. The ATLAS analysis assumes that there
are no anomalous couplings of the Higgs boson to vector bosons, and
obtains 95% CL observed (expected) upper limit on the total width
of 5.7×ΓSM (9.0×ΓSM) [209]. In the CMS approach, results are also
derived allowing for anomalous couplings of the Higgs boson, therefore
reducing the discriminating power of the kinematic variables used
in the analysis but reducing the model dependence. When standard
couplings are assumed for the Higgs boson, the observed (expected)
limit on the total width is 6.2×ΓSM (9.8×ΓSM ) for the ZZ channel
only [210]. Without assumptions on the anomalous couplings of the
Higgs boson, the observed (expected) limit on the total width is
10.9×ΓSM (17.4×ΓSM) [210].

The CMS experiment has also combined the ZZ and W+W−

channels while keeping the gluon-fusion and VBF production processes
separate. For the gluon fusion mode the observed (expected) combined
upper limit at the 95% CL on the total width of the Higgs boson is
2.4×ΓSM (6.2×ΓSM) [211], while for the VBF production mode the
exclusion limits are 19.3×ΓSM (34.4×ΓSM) [211].

ATLAS has also performed a study of the prospects for measuring
the Higgs width in the four lepton channel alone, in the high luminosity
phase of the LHC for and projects that for a LHC luminosity of
3 ab−1, the width of the Higgs boson could be measured with the
following precision [216]:

ΓH = 4.2+1.5
−2.1 MeV

VI. Probing the coupling properties of the Higgs boson

As discussed in Section II, within the SM, all the Higgs couplings
are fixed unambiguously once all the particle masses are known. Any
deviation in the measurement of the couplings of the Higgs boson
could therefore signal physics beyond the SM.

Measuring the Higgs couplings without relying on the SM
assumption requires a general framework treating deviations from the
SM coherently at the quantum level in order to provide theoretical
predictions for relevant observables to be confronted with experimental
data. The first attempt in that direction was the development of the
so-called κ-formalism where the SM Higgs couplings are rescaled by
factors κf , keeping the same Lorentz structure of the interactions.
This formalism allows for simple interpretation of the signal strengths
µ measured in the various Higgs channels and it has been used to test
various physics scenarios, like the existence of additional new particles
contributing to the radiative Higgs production and decays, or to
probe various symmetries of the SM itself, in particular the custodial
symmetry. But the κ-formalism has obvious limitations and certainly
does not capture the most general deformations of the SM, even under
the assumptions of heavy and decoupling new physics. A particularly
acute shortcoming at the time Higgs physics is entering a precision era

is the lack of proficiency of the κ’s to assert the richness of kinematical
distributions beyond simple signal strength measurements. Several
extensions and alternative approaches are being developed as part of
the activities of the Higgs cross-section working group.

The Higgs Pseudo-Observable (HPO) approach [217] is providing
a particularly elegant formalism to report the data in terms of a
finite set of on-shell form factors parametrizing amplitudes of physical
processes subject to constraints from Lorentz invariance and other
general requirements like analyticity, unitarity, and crossing symmetry.
These form factors are expanded in powers of kinematical invariants
of the process around the known poles of SM particles, assuming that
poles from BSM particles are absent in the relevant energy regime. A
set of HPOs have been proposed to characterize both the Higgs decays
and the EW Higgs production channels, thus exploring different
kinematical regimes. Prospective studies concluded that these HPOs
can be measured/bounded at the percent level at the HL-LHC and
could therefore be used to constrain some explicit models of New
Physics.

Another promising approach to characterize the possible Higgs
coupling deviations induced by physics beyond the SM is the use of
Effective Field Theories (EFT). This approach assumes again that the
new physics degrees of freedom are sufficiently heavy to be integrated
out and they simply give rise to effective interactions among the
light SM particles. By construction the effective Lagrangians cannot
account for deviations in Higgs physics induced by light degrees of
freedom, unless they are added themselves as extra fields in the
effective Lagrangians. In Section VII, several examples of models with
light degrees of freedom affecting Higgs production and decay rates
will be presented. The main advantage of EFTs is their prowess to
relate different observables in different sectors and at different energies
to constrain a finite set of effective interactions among the SM degrees
of freedom. In an EFT, the SM Lagrangian is extended by a set of
higher-dimensional operators, and it reproduces the low-energy limit
of a more fundamental UV description. It will be assumed that the
Higgs boson is part of a CP-even EW doublet. This is motivated by
the apparent relation between the Higgs couplings and the masses of
the various particles which naturally follows under this assumption
of a linear realization of the SU(2)L × U(1)Y symmetry of the SM.
There have been some recent attempts to write the most general EFT
bypassing this assumption, see for instance [218].

VI.1. Effective Lagrangian framework

The EFT has the same field content and the same linearly-realized
SU(3)C × SU(2)L × U(1)Y local symmetry as the SM. The difference
is the presence of operators with canonical dimension D larger than
4. These are organized in a systematic expansion in D, where each
consecutive term is suppressed by a larger power of a high mass scale.
Assuming baryon and lepton number conservation, the most general
Lagrangian takes the form

Leff = LSM +
∑

i

c
(6)
i O(6)

i +
∑

j

c
(8)
j O(8)

j + · · · . (11.16)

The list of dimension-6 operators was first classified in a systematic
way in Ref. [219] after the works of Ref. [220]. Subsequent analyses
pointed out the presence of redundant operators, and a minimal and
complete list of operators was finally provided in Ref. [221]5. For a
single family of fermions, there are 76 real ways to deform the SM
generated by 59 independent operators (with the 3 families of fermions
of the SM, flavor indices can be added to these 59 operators, and
furthermore, new operator structures, that have been dismissed by
means of Fierz transformations in the single family case, have to be
considered, for a total of 2499 real deformations [223]). Of particular
interest are the 17 CP-invariant operators, in addition to 8 dipole
operators, that affect, at tree-level, the Higgs production and decay
rates [224–226]. A convenient list of these operators can be found in

5 Complete classifications of D=8 operators have recently appeared
in the literature, see Ref. [222]. Still, in this review, the EFT La-
grangians will be truncated at the level of dimension-6 operators.
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Table 11.14: List of 17 CP-even operators affecting, at tree-
level, only Higgs production and decay rates (left) as well as EW
observables (right). See text for notations.

Operators affecting

Higgs physics only

Or = |Φ|2 |DµΦ|2

O6 = λ|Φ|6

OBB = g′2

4 |Φ|2 BµνBµν

OWW = g2

4 |Φ|2 W i
µνW i µν

OGG =
g2
S
4 |Φ|2 GA

µνGAµν

Oyu = yu |Φ|2 q̄LΦ̃uR

Oyd = yd |Φ|2 q̄LΦdR

Oye = ye |Φ|2 L̄LΦeR

Operators affecting

Higgs and EW physics

OW = ig
2

(

Φ†σi
↔
DµΦ

)

(DνWµν)i

OB = ig′

2

(

Φ†
↔
DµΦ

)

(∂νBµν)

OT = 1
2

(

Φ†
↔
DµΦ

)2

OHB = ig′ (DµΦ)†(DνΦ)Bµν

OHu = i (ūRγµuR)
(

Φ†
↔
DµΦ

)

OHd = i
(

d̄RγµdR

) (

Φ†
↔
DµΦ

)

OHe = i
(

l̄RγµlR
) (

Φ†
↔
DµΦ

)

OHq = i (q̄LγµqL)
(

Φ†
↔
DµΦ

)

O(3)
Hq = i

(

q̄LγµσiqL

) (

Φ†σi
↔
DµΦ

)

Table 11.15: List of 8 dipoles operators. See text for notations.

Dipoles operators

OuB = g′ (q̄LΦ̃σµνuR)Bµν

OuW = g (q̄LσiΦ̃σµνuR)W i
µν

OuG = gS (q̄LΦ̃σµνtAuR)GA
µνR

OdB = g′ (q̄LΦσµνdR)Bµν

OdW = g (q̄LσiΦσµνdR)W i
µν

OdG = gS (q̄LΦσµνtAdR)GA
µν

OlB = g′ (L̄LΦσµν lR)Bµν

OlW = g (L̄LσiΦσµν lR)W i
µν

Table 11.14, and Table 11.15. The other operators completing the
basis of dimension-6 operators can be found in Ref. [226].

The SM gauge couplings are denoted by g′, g, gS while yu,d,e
are the SM Yukawa couplings (in the mass eigenstate basis that
diagonalizes the general Yukawa coupling matrices Yu,d,l) and λ is

the SM Higgs quartic coupling. We denote by iΦ†
↔
DµΦ the Hermitian

derivative iΦ†(DµΦ) − i(DµΦ)†Φ, σµν ≡ i[γµ, γν ]/2 and Φ̃ is the
Higgs charge-conjugate doublet: Φ̃ = iσ2Φ∗. Each operator Oyu,yd,ye
is further assumed to be flavor-aligned with the corresponding fermion
mass term, as required in order to avoid large Flavor-Changing Neutral
Currents (FCNC) mediated by the tree-level exchange of the Higgs
boson. This implies one coefficient for the up-type quarks (cyu), one
for down-type quarks (cyd), and one for the charged leptons (cye), i.e.
the cyu,ud,ye matrices should be proportional to the identity matrix in
flavor space.

The choice of the basis of operators is not unique and using
the equations of motion, i.e., performing field redefinitions, different
dimension-6 operators can be obtained as linear combinations of the
operators in the previous tables and of four-fermion operators. Some
relations between common bases of operators can be found for instance
in Refs. [225, 223]. Different bases have different advantages. For
instance the so-called SILH basis [224] better captures the low-energy
effects of universal theories in which new physics couples to SM bosons
only. The Warsaw basis [221] on the other hand mostly includes
vertex corrections and easily connects operators to observables [226].
The basis defined in Table 11.14, and Table 11.15 is particularly well
suited for an analysis of the Higgs data. The reason is that the eight
operators of the left-hand side of Table 11.14, in the vacuum with
|Φ|2 = v2/2, merely redefine the SM input parameters and therefore
were left unconstrained at tree-level before Higgs data are considered.
These eight operators modify the physical Higgs vertices and can be
probed via the decay processes H → γγ, Zγ, b̄b, τ̄ τ and the production
channels gg → H, V V → H, pp → t̄tH and gg → HH . Section VI.2
illustrates how the Higgs data accumulated at the LHC can (partially)
constrain these eight operators, following the initial phenomenological
study of Ref. [226]. The other nine operators of Table 11.14 are

tightly constrained by the LEP EW precision measurements (the
measurements of the Z-boson couplings to quarks and leptons on the
Z-pole) and by diboson production.6

The minimal flavor violation assumption imposes Yukawa de-
pendences in the eight dipole operators. For the light generations
of fermions, this dependence lowers the induced deviations in the
Higgs rates below the experimental sensitivity reachable in any
foreseeable future. The corresponding operators in the top sector are
not suppressed but they are already constrained by the limit of the
top dipole operators imposed by the bounds on the neutron electric
dipole moment, on the b → sγ and b → sℓ+ℓ− rates and on the tt̄
cross section [229, 225].

Automatic tools [225, 204] are being developed to analyze the
experimental data within an EFT framework.

VI.2. Probing coupling properties

As described in Section III a framework was developed by the
ATLAS and CMS collaboration [141], individually and together,
to combine the very large number of exclusive categories aimed at
reconstructing the five main decay modes and the five main production
modes of the Higgs boson. The general conclusions of this combination
in terms of production cross sections and decay modes, illustrating
the compatibility of the observation with the expectation from the
SM Higgs boson is given in Section III. The same framework with its
master formula Eq. (11.13) can be used to further measure coupling
properties of the Higgs boson under specific additional assumptions.

VI.2.1. Combined measurements of the coupling properties of
H

(i) From effective Lagrangians to Higgs observables

All 8 operators of the effective Lagrangian that were unconstrained
before the Higgs data induce, at tree-level, deviations in the Higgs
couplings that either respect the Lorentz structure of the SM
interactions, or generate simple new interactions of the Higgs boson
to the W and Z field strengths, or induce some contact interactions
of the Higgs boson to photons (and to a photon and a Z boson) and
gluons that take the form of the ones that are generated by integrating
out the top quark. In other words, the Higgs couplings are described,
in the unitary gauge, by the following effective Lagrangian [230, 44]

L = κ3
m2

H

2v
H3 + κZ

m2
Z

v
ZµZµH + κW

2m2
W

v
W+

µ W−µH

+ κg
αs

12πv
Ga

µνGaµνH + κγ
α

2πv
AµνAµνH + κZγ

α

πv
AµνZµνH

+ κV V
α

2πv

(

cos2 θW ZµνZµν + 2 W+
µνW−µν

)

H

−



κt

∑

f=u,c,t

mf

v
ff + κb

∑

f=d,s,b

mf

v
ff + κτ

∑

f=e,µ,τ

mf

v
ff



H.

(11.17)

The correspondence between the effective coefficients of the
dimension-6 operators and the κ’s can be found for instance in
Ref. [45]. In the SM, the Higgs boson does not couple to massless
gauge bosons at tree level, hence κg = κγ = κZγ = 0. Nonetheless,
the contact operators are generated radiatively by SM particles loops.
In particular, the top quark gives a contribution to the 3 coefficients
κg, κγ , κZγ that does not decouple in the infinite top mass limit. For
instance, in that limit κγ = κg = 1 [24, 25, 231].

The coefficient for the contact interactions of the Higgs boson to
the W and Z field strengths is not independent but obeys the relation

(1 − cos4 θW )κV V = sin 2θW κZγ + sin2 θW κγγ . (11.18)

This relation is a general consequence of the custodial symmetry [225],
which also imposes κZ = κW at leading order (κZ/κW −1 is a measure

6 There remains an accidental flat direction [227] in the fit of anoma-
lous gauge boson couplings using LEP2 data on diboson production
alone. This flat direction can be lifted when LHC Higgs data are con-
sidered [228].
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of custodial symmetry breaking and as such is already constrained
by electroweak precision data and the bounds on anomalous gauge
couplings). When the Higgs boson is part of an SU(2)L doublet, the

custodial symmetry could only be broken by the OT = 1
2

(

Φ†
↔
D µΦ

)2

operator at the level of dimension-6 operators and it is accidentally
realized among the interactions with four derivatives, like the contact
interactions considered.

The coefficient κ3 can be accessed directly only through double
Higgs production processes, hence it will remain largely unconstrained
at the LHC. The LHC will also have a limited sensitivity on the
coefficient κτ since the lepton contribution to the Higgs production
cross section remains subdominant and the only way to access the
Higgs coupling is via the H → τ+τ− and possibly H → µ+µ−

channels. Until the associated production of a Higgs with a pair of
top quarks is observed, the Higgs coupling to the top quark is only
probed indirectly via the one-loop gluon fusion production or the
radiative decay into two photons. However, these two processes are
only sensitive to the combinations of couplings (κt + κg) and (κt + κγ)
and not to the individual couplings. Therefore a deviation in the Higgs
coupling to the top quark can in principle always be masked by new
contact interactions to photons and gluons (and this is precisely what
is happening in minimal incarnations of composite Higgs models).
The current limited sensitivity in the tt̄H channel leaves elongated
ellipses in the direction κg = κγ = 1 − κt.

The operators already bounded by EW precision data and the limits
on anomalous gauge couplings modify in general the Lorentz structure
of the Higgs couplings and hence induce some modifications of the
kinematical differential distributions [232, [233]. A promising way to
have a direct access to the effective coefficients of these operators in
Higgs physics is to study the V H associated production with a W or
a Z at large invariant mass of the V H system [232, 234]. It has not
been estimated yet whether the sensitivity on the determination of
the effective coefficients in these measurements can compete with the
one derived for the study of anomalous gauge couplings. In any case,
these differential distributions could also be a way to directly test
the hypothesis that the Higgs boson belongs to an SU(2)L doublet
together with the longitudinal components of the massive electroweak
gauge bosons.

(ii) Interpretations of the experimental data

The measurements of the coupling properties of the Higgs boson
are entirely based on the formalism of the effective Lagrangian
described in Section V.6.2.i. Measurements of coupling properties in
this framework means measurements of the parameters of the model
Eq. (11.17) or combinations of these parameters with different sets of
assumptions.

These measurements are carried out with the combination
framework described in Section IV where the µi and µf signal strength
parameters are further interpreted in terms of modifiers of the SM
couplings κk where k ∈ {Z, W, f, g, γ, Zγ} as in Eq. (11.17). These
coupling modifiers κ are fully motivated as leading order coupling
scale factors defined such that the cross sections σj and the partial
decay widths Γj associated with the SM particle j scale with the

factor κ2
j when compared to the corresponding SM prediction. The

number of signal events per category for the various production modes
are typically estimated at higher orders in the analyses but are scaled
by these single LO-inspired factors, thus not taking into account
possible intricacies and correlations of these parameters through the
higher order corrections. This approximation is valid within the level
of precision of current results and their compatibility with the SM
expectation.

In this formalism further assumptions are explicitly made: (i) the
signals observed in the different search channels originate from a
single narrow resonance with a mass of 125GeV; (ii) similarly to the
combination described in Section IV the narrow width approximation
is assumed (to allow the decomposition of signal yields); (iii) the
tensor structure of the couplings is assumed to be the same as that of
a SM Higgs boson. This means in particular that the observed state
is assumed to be a CP-even scalar as in the SM.

Loop-level couplings such as the gg → H , H → γγ and H → Zγ

can either be treated effectively, with The κg, κγ and κZγ as free
parameters in the fit or these parameters can be expressed in terms
of the know SM field content and as a function of the SM coupling
modifiers, in the following way:

κ2
g(κt, κb) = 1.06 κ2

t − 0.07 κtκb + 0.01 κ2
b

κ2
γ(κF , κV ) = 1.59 κ2

V − 0.66 κV κF + 0.07 κ2
F

κ2
Zγ(κF , κV ) = 1.12 κ2

V − 0.15 κV κF + 0.03 κ2
F

(11.19)

The κZγ parametrization is used only in the ATLAS combined
measurements of the coupling properties of the Higgs boson [199].
Neither the Zγ nor the µ+µ− channels are included in the CMS [133]
and the ATLAS-CMS combinations [141], which therefore do not use
the κZγ or κµ parameters explicitly. The parametrizations are given
for a Higgs boson mass hypothesis of 125.09GeV (and in the last two
expressions, all the Higgs-fermion couplings are assumed to be rescaled
by an universal multiplicative factor κF ). It can be noted from the
expression of κγ that the coupling of the Higgs boson to photons is
dominated by the loop of W bosons, and it is affected by the top quark
loop mostly through its interference with the W loop. The sensitivity
of the current measurements to the relative sign of the fermion and
vector boson couplings to the Higgs boson is due to this large negative
interference term. The κg parameter is expressed in terms of the
scaling of production cross sections and therefore also depends on
the pp collisions centre-of-mass energy. The parametrizations of κγ

and κZγ are obtained from the scaling of partial widths and are
only dependent on the Higgs boson mass hypothesis. Experiments
use a more complete parametrization with the contributions from the
b-quarks, τ -leptons in the loop [230, 44].

The global fit is then performed expressing the µi and µf
parameters in terms of a limited number of κk parameters or their
ratios, under various assumptions. The parametrization for the main
production modes are: µggF = κ2

g for the gluon fusion and an effective

coupling of the Higgs boson to the gluons; µV BF,V H = κ2
V for the

VBF and VH processes when the W and Z couplings are assumed
to scale equally, and the following expression for the VBF production
mode is used:

µ2
V BF (κW , κZ) =

κ2
W σWWH + κ2

ZσZZH

σWWH + σZZH
(11.20)

when the couplings to the W and Z bosons are varied independently
(σWWH and σZZH denote the VBF cross sections via the fusion
of a W and a Z boson respectively, the small interference term is
neglected); µttH = κ2

t for the ttH production mode. Numerically
the production modes signal strengths as a function of the coupling
modifiers to the SM fields are:

µggF = 1.06κ2
t + 0.01κ2

b − 0.07κtκb

µV BFF = 0.74κ2
W + 0.26κ2

Z

The decay mode signal strengths are parametrized as µk = κ2
k/κ2

H
where k ∈ {Z, W, f, g, γ, Zγ} denotes the decay mode and κH the
overall modifier of the total width. Similarly to the combinations
reported in Section IV, when parametrizing signal yields per categories
using the combination master formula, it is again manifest that
parametrizations as a function of coupling modifiers (κ) cannot be
obtained is κH is considered effective, since it is a common factor
to all signal yields. However, κH can also be treated as an effective
parameter or expressed in terms of the coupling modifiers to the SM
field content. Its general expression as a function of the Standard
Model field content is:

κ2
H =0.57κ2

b + 0.06κ2
τ + 0.03κ2

c

+ 0.22κ2
W + 0.03κ2

Z + 0.09κ2
g + 0.0023κ2

γ

(11.21)

The general expression of the total width of the Higgs boson can be
written as follows:

ΓH =
κ2

HΓSM
H

1 − BRBSM
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where ΓSM
H is the total width of the SM Higgs boson and BRBSM is

the branching fraction of the Higgs boson to new particles beyond the
SM.

Specific parametrizations will be made in order to address the
following aspects of the coupling properties of the Higgs boson under
different assumptions: (i) the relative couplings of the Higgs boson
to fermions and bosons; (ii) the potential impact of the presence of
new particles beyond the SM either in the loops or both in the loops
and the decay of the H ; and (iii) also, more general models either of
coupling modifiers or their ratios, under different assumptions.

(iii) Relative couplings to bosons and fermions

As will be discussed in Section VII.6.3, it is interesting to probe
a model where no additional field content is considered in the decay
width of the Higgs boson and where the relative couplings of the
Higgs boson to W - and Z-bosons is fixed to its SM value and where
all Yukawa couplings scale with one coupling modifier. In this model
only SM particles are assumed to contribute to the gluon fusion and
the diphoton loops, all fermion couplings modifiers are required to
scale simultaneously with a unique factor κF and all vector boson
couplings modifiers must scale simultaneously with a unique factor
κV . This parametrization assumes that no new particles affect the
direct decays or the loops. It is a two parameters fit with κV and κF
as parameters of interest. The ATLAS-CMS combined results for each
channel independently, the combinations of all channels for the two
experiments separately and the results and the overall combination
are shown in Fig. 11.17.
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Figure 11.17: Likelihood contours in the (κF , κV ) plane for
the ATLAS-CMS combination for the main decay channels
separately (left) and for the individual combination of all
channels for ATLAS and CMS separately and the complete
combined contour (right) [141].

The global fit is only sensitive to the relative sign of κV and κF . By
convention negative values of κF can be considered. Such values are
not excluded a priori, but would imply the existence of new physics
at a light scale and would also raise questions about the stability
of such a vacuum [235]. Among the five low mass Higgs channels,
only the γγ is sensitive to the sign of κF through the interference of
the W and t loops as shown in Eq. (11.19). The current global fit
disfavors a negative value of κF at more than five standard deviations.
A specific analysis for the Higgs boson production in association with
a single top quark has been proposed [236, 237] in order to more
directly probe the sign of κF . All available experimental data show
a fair agreement of the SM prediction of the couplings of the Higgs
boson to fermions and gauge bosons. The results shown in Fig. 11.17
assume that κF ≥ 0, however in Ref. [141], a similar combination
is done without this assumption. The combined sensitivity to the
exclusion of a negative relative sign, is approximately 5σ in this model.
It is interesting to note that although none of the channels have a
significant sensitivity to resolve the sign ambiguity, the combination
can, mainly through the W − t interference in the H → γγ channel and
the H → W+W− channel. The observed exclusion is fully compatible
with the expectation [141]. The combined measurements of these

parameters:
κV = 1.04 ± 0.05

κF = 0.98+0.11
−0.10

Is already at the 5% level for the κV parameter with the Run 1
dataset.

(iv) Coupling measurements and probing new physics beyond
the SM in loops and in the decay
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Figure 11.18: ATLAS-CMS combined measurements of
coupling modifiers.

In the model described above in Section VI.2.1.iii the assumption is
that no new fields distort in a perceptible way the loop contributions in
the couplings of the H to gluons and photons and the total width, its
couplings to known SM particles are then probed. In a first approach
to simultaneously probe new physics beyond the SM in the loops and
not in the decay and the couplings of the Higgs boson to SM particles,
only one assumption is needed i.e. that BRBSM = 0. In this model
the coupling of the H to photons and gluons is effective and κZ , κW ,
κt, |κτ |, and |κb| are measured simultaneously. The absolute value of
certain coupling modifiers only indicates the complete degeneracy of
combined likelihood for the two signs. It can be noted that when the
coupling to gluons is not considered effective, there is some sensitivity
to the sign of κb through the interference between the top and bottom
quarks loops in the gluon fusion process. In this model it is interesting
to note that the constraints on the top quark Yukawa coupling comes
from the ttH direct search channels. The expected precision on κt is
approximately 40%. As discussed in Section III the excesses observed
in the ttH channel yield a large value of κt = 1.40+0.24

−0.21. The complete
set of results from this model is given in Fig. 11.18.

This model, which assumes that no new particles enter the decay
of the Higgs boson, also yields very interesting constraints on new
physics in the loops through the effective coupling modifiers κg and
κγ . The measured values of these parameters:

κg = 0.78+0.13
−0.10

κγ = 0.87+0.14
−0.09

are fully compatible with the expectation for the SM Higgs boson.

A more constrained model fully focussing on BSM scenarios with
new heavy particles contributing to the loops (and not directly in
the decays i.e. BRBSM = 0) and where all couplings to the SM
particles are assumed to be the same as in the Standard Model
(κW = κZ = κt = κb = κτ = 1) is also used to constrain the κg

and κγ parameters only. The contours of the combined likelihood in
the (κγ , κg) plane for the ATLAS and CMS experiments and their
combination are shown in Fig. 11.19.

This general model requires the strong assumption that the the
Higgs boson decays only to SM particles. This assumption is necessary
due to the degeneracy of solutions given that κH is a common factor
to all measured signals. The degeneracy can however be resolved
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using a constraint on the width of the Higgs boson as the one from
the Off-Shell couplings measurements. This approach was used by the
ATLAS experiment [199], thus yielding a absolute measurement of the
couplings of the Higgs boson.

Another well motivated constraint to resolve the aforementioned
degeneracy is unitarity. Simply requiring that κV ≤ 1 allows to free
the BRBSM parameter and further probe new physics in the decay of
the Higgs boson. An intuitive understanding of how this constraint
works can be given by a simple example e.g. VBF H → W+W−

production where the number of signal events will be parametrized by
(1 − BRBSM)κ4

W /κ2
H , where for a number of signal events observed

close to the SM expectation, large values of BRBSM cannot be
compensated by a large value of κW and is thus limited. Or in other
terms, if κW ∼ 1 is preferred from other channels, a low signal in the
VBF H → W+W− channel would be a sign of the presence of new
physics beyond the SM in the Higgs decays. From this general model
all the above parameters can be measured in addition to BRBSM. The
results of this combination are shown in Fig. 11.18. The results for all
parameters do not change significantly with respect to the previous
model. A limit can however be set on the beyond the SM branching
fraction of the Higgs boson at the 95%CL:

BRBSM < 34%

Figure 11.19: Likelihood contours of the global in the (κg, κγ)
plane for the ATLAS-CMS combination for the individual
combination of all channels for ATLAS and CMS separately and
the complete combined contour [141].

In the second approach, new physics is considered also in the decay
thus affecting the total width of the H through decays to particles
which are either “invisible” and escape detection in the experiments,
or “undetected” which are not distinctive enough to be seen in the
current analyses. This approach is complementary to the direct search
for invisible decays of the Higgs boson described in Section III.
The two approaches can be combined assuming that the undetected
branching fraction is negligible. this combination was performed by
the ATLAS experiment [238] and yields a limit on the invisible decays
of the Higgs boson of BRinv < 25% at the 95%CL.

This constraint can then be further used to probe Higgs portal
models to Dark Matter [239], where an additional weakly interacting
particle χ with mass typically lower than mH/2 is introduced as Dark
Matter candidate and where the Higgs boson is considered as the
only mediator between the SM particles and Dark Matter. In this
model it is interesting to express the limit on the invisible branching
fraction in terms of strength of interaction of Dark Matter with
standard matter, i.e. in terms of it interaction cross section with
nucleons σχ−N . In this model the couplings of the Higgs boson to SM
particles are assumed to be those of the SM and the interaction of the
Higgs boson with the nucleon is parametrized in Higgs-Nucleon form
factor estimated using lattice QCD calculations [239]. The exclusion
limits from the constraints on invisible Higgs decays, both direct
and indirect from the measurement of the coupling properties of the
Higgs boson can be compared to direct detection experiments. For

comparison the limit at 90%CL on the invisible branching fraction of
BRinv < 22% [238] is used and converted into limits on σχ−N under
several hypotheses on the nature of Dark Matter particles depending
mainly on their spin (scalar-, vector- or fermion-like). These results
are shown in Fig. 11.20.
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Figure 11.20: 90%CL upper limits on the WIMP-nucleon
scattering cross section as a function of the Dark Matter particle
mass. Spin-independent results excluded and favored regions
from direct detection experiments are also shown.

(v) Generic measurement of the H couplings to fermions and
gauge bosons

Measuring the couplings of the Higgs boson with requires additional
input on constraints on its natural width, or further assumptions. A
more generic approach to avoid the degeneracy in the measurement
of the coupling modifiers is to probe the coupling properties of the
Higgs boson through ratio of couplings. This model, is inspired by the
generic model of ratios of cross sections and branching ratios discussed
in Section III, where the cross section times branching fraction of
the gg → H → ZZ process is parametrized as a function of a single
coupling modifier:

κgZ = κg × κZ

κH

Then all combination signals can be parametrized with the following
ratios of coupling modifiers: (i) the λZg = κZ/κg ratio which is
mainly probed by the measurements of the VBF and ZH production;
(ii) the λtg = κt/κg ratio constrained by the ttH production process;
(iii) the λWZ = κW /κZ ratio mainly probed by the WW and ZZ
decay modes; (iv) the λτZ = κτ/κZ ratio constrained by the τ+τ−

channel; (v) the λbZ = κb/κZ ratio probed mainly by the V H(bb)
channels; and (vi) the λγZ = κγ/κZ ratio constrained by the diphoton
channel. In this parametrization the ZZ channels plays an important
normalization role. This model is very general, as it makes neither
assumptions on the total width of the Higgs boson or the content of
the loops. The results of the combination for this general model are
illustrated in Fig. 11.21.

This general model summarizes the status of a flurry of measure-
ments of the Higgs boson that have been carried out at Run 1, in five
main production and five main decay modes. Reaching unprecedented
level of complexity in a combination with approximately 600 categories
and several thousands of parameters for systematic uncertainties. It
summarizes the legacy of the measurements of Run 1 and their main
conclusions on the coupling properties of the Higgs boson, which
can be summarized as follows: (i) the κgZ parameters shows that
the Higgs boson has been firmly observed in a direct ZZ decay
mode; (ii) the λWZ parameter illustrates the firm observation of the
Higgs boson direct decays to the W -boson and measures directly
the ratio of the coupling to the W - and Z-bosons a direct probe
of the custodial symmetry, already very accurately measured with
electroweak precision data; (iii) the λγZ parameters shows that the
coupling of the Higgs boson to photons is compatible with the SM
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Figure 11.21: ATLAS-CMS combined measurements of ratios
of coupling modifiers.

expectation, thus providing a probe of new physics in the decay loop
of the Higgs boson to two photons; (iv) the λτZ parameters indicates
the evidence in the direct decay of the Higgs boson to a pair of
taus of the Yukawa coupling of the Higgs boson to fermions (and in
particular to taus); (v) the λbZ parameter indicates that more data is
needed to further establish the Yukawa coupling of the Higgs boson
to b-quarks; and (vi) the λtZ similarly indicates that the more data
is needed to further directly constrain the Yukawa coupling of the
Higgs boson to top quarks. Each measurement is consistent with the
prediction within less than 2σ, except for λbZ and λtZ which show
similar disagreements to those discussed in Section IV. However the
probability of the overall compatibility of these measurements with
the SM expectation is estimated to be 13%.

VI.2.2. Differential cross sections

To further characterize the production and decay properties of H ,
first measurements of fiducial and differential cross sections have been
carried out by the ATLAS collaboration [240], with the 8 TeV dataset
of pp collision at LHC, corresponding to an integrated luminosity of
20.3 fb−1, in the diphoton channel. The selection criteria to define
the fiducial volume are the following: the two highest transverse
momentum (ET ), isolated final state photons, within |η| < 2.37 and
with 105GeV < Mγγ < 160GeV are selected (the transition region
between the barrel and endcap calorimeters is not removed); after the
pair is selected, the same cut on ET /Mγγ as in the event selection
i.e. in excess of 0.35 (0.25) for the two photons is applied. Several
observables have been studied: the transverse momentum rapidity
of the diphoton system, the production angle in the Collins–Soper
frame, the jet multiplicity, the jet veto fractions for a given jet
multiplicity, and the transverse momentum distribution of the leading
jet. The following additional observables: the difference in azimuthal
angle between the leading and the subleading jets, and the transverse
component of the vector sum of the momenta of the Higgs boson and
dijet system, have also been measured in two jet events. To minimize
the model dependence the differential cross sections are given within
a specific fiducial region of the two photons. The observables were
chosen to probe the production properties and the spin and parity of
the H . The differential cross section in H transverse momentum is
given in Fig. 11.22.

VI.2.3. Constraints on non-SM Higgs boson interactions in
an effective Lagrangian

An example of the possible use of differential cross sections in
constraining non-SM Higgs boson couplings in an EFT is given by the
ATLAS collaboration [241]. In this analysis, differential cross section
measured in the diphoton channel are used to constrain an effective
Lagrangian where the SM is supplemented by dimension six CP-even
operators of the Strongly Interacting Light Higgs (SILH) formulation
and corresponding CP-odd operators. The diphoton differential cross
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Figure 11.22: Observed differential cross sections in transverse
momentum of the H in the diphoton channel, compared to the
prediction of the ggF process [240].

sections are mainly sensitive to the operators that affect the Higgs
boson interactions with gauge bosons and the relevant terms in the
effective Lagrangian can be parameterized as:

Leff =cγOγ + cgOg + cHWOHW + cHBOHB+

c̃γÕγ + c̃gÕg + c̃HW ÕHW + c̃HBÕHB

(11.22)

Where ci and c̃i are the effective coefficients corresponding to the
CP-even and CP-odd interactions, respectively.

The differential distributions used in this combination are: (i)
the transverse momentum of the Higgs boson, (ii) the number of
reconstructed jets produced in association with the diphoton pair, (iii)
the invariant mass of the diphoton system and (iv) the difference in
azimuthal angle of the leading and sub-leading jets in events with two
or more jets.

This analysis shows how differential information significantly
improves the sensitivity to operators that modify the Higgs boson
interaction to photons, gluons and vector bosons both from the main
gluon fusion and the vector boson fusion production modes.

VII. New physics models of EWSB in the light of the Higgs

boson discovery

A main theoretical motivation to add a Higgs boson to the SM
is that, without it, the longitudinal components of the massive EW
gauge bosons would form a strongly coupled system as their scattering
amplitude would have grown with their energy, destroying all the
predictive power of the model above 4πv ∼ 3TeV. The discovery of
a light scalar with couplings to gauge bosons and fermions that are
apparently consistent with SM predictions and the slow running of
the Higgs self-coupling at high energies allows one to consider the
SM as a valid perturbative description of nature all the way to the
Planck scale. This picture is admittedly very attractive, but it posits
that the Higgs boson is an elementary scalar field, which comes with
an intrinsic instability of its mass under radiative corrections. This
Higgs naturalness problem calls for new physics around the TeV scale.
Supersymmetric models are the most elegant solution to maintain
the perturbativity of the SM while alleviating the instability issue.
Another possibility is that the Higgs boson itself has a finite size and
is composite and thus never feels the UV degrees of freedom that
would drag its mass to much higher scales. Both classes of models
predict specific modifications from the SM Higgs properties.

The realization of supersymmetry at low energies has many good
qualities that render it attractive as a model of new physics. First of
all since for every fermion there is a boson of equal mass and effective
coupling to the SM-like Higgs, in the case of exact supersymmetry it
yields an automatic cancellation of loop corrections to the Higgs mass
parameter: (analogous to Eq. (11.2)) δm2 = 0 [9, 11]. In practice, it is
known that SUSY must be broken in nature since no superpartners
of the SM particles have been observed so far. The mass difference
between the boson and fermion degrees of freedom is governed by the
soft supersymmetry breaking parameters, generically called MSUSY .
Therefore, independently of the precise value of any of the particle
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masses and that of its corresponding superpartner, all corrections
are proportional to M2

SUSY times the logarithmic dependence of
the ratio of energy scales as in Eq. (11.2). Hence, provided that
MSUSY ≃ O(<few)TeV, the fine-tuning problem is solved, in the
sense that the low energy mass parameters of the Higgs sector become
insensitive to physics at the GUT or Planck scale. Another interesting
feature of SUSY theories is related to the dynamical generation of
EWSB [242]. In the SM a negative Higgs mass parameter, m2, needs
to be inserted by hand to induce EWSB. In SUSY, instead, even
if the relevant Higgs mass parameter is positive in the ultraviolet,
it may become negative and induce electroweak symmetry breaking
radiatively through the strong effect of the top quark-Higgs boson
coupling in its renormalization group evolution.

In the following, the Higgs sector will be explored in specific SUSY
models. In all of them there is one neutral Higgs boson with properties
that resemble those of the SM Higgs boson, whereas additional neutral
and charged Higgs bosons are also predicted and are intensively being
sought for at the LHC (see Section VII.8). In the simplest SUSY
model the lightest Higgs boson mass, that usually plays the role of the
SM-like Higgs, is predicted to be less than 135GeV for stops in the
TeV to few TeV range [243] whereas, larger values of the SM-like Higgs
boson mass – up to about 250GeV – can be obtained in non-minimal
SUSY extensions of the SM [243]. In general, accommodating a
SM-like Higgs boson with mass of 125GeV results in constraints on
the supersymmetric parameter space of specific SUSY models. While
naturalness dictates relatively light stops and gluinos, the first and
second generation of squarks and sleptons couple weakly to the Higgs
sector and may be heavy. Moreover, small values of the µ parameter
and therefore light Higgsinos would be a signature of a natural
realization of electroweak symmetry breaking. Such SUSY spectra,
consisting of light stops and light Higgsinos, have been under intense
scrutiny by the experimental collaborations [244] in order to derive
model-independent bounds on the stop masses and to understand if
such natural SUSY scenarios endure [243] and can explain why the
Higgs boson remains light.

In the context of weakly coupled models of EWSB one can also
consider multiple Higgs SU(2)L doublets as well as additional Higgs
singlets, triplets or even more complicated multiplet structures,
with or without low energy supersymmetry. In general for such
models one needs to take into account experimental constraints from
precision measurements and flavor changing neutral currents. The
LHC signatures of such extended Higgs sectors are largely shaped by
the role of the exotic scalar fields in EWSB.

The idea that the Higgs boson itself could be a composite bound
state emerging from a new strongly-coupled sector has regained some
interest. The composite Higgs idea is an interesting incarnation of
EWSB via strong dynamics that smoothly interpolates between the
standard Technicolor approach and the true SM limit. To avoid the
usual conflict with EW data, it is sufficient if not necessary that a
mass gap separates the Higgs resonance from the other resonances
of the strong sector. Such a mass gap can naturally follow from
dynamics if the strongly-interacting sector exhibits a global symmetry,
G, broken dynamically to a subgroup H at the scale f , such that,
in addition to the three Nambu–Goldstone bosons of SO(4)/SO(3)
that describe the longitudinal components of the massive W and Z,
the coset G/H contains a fourth Nambu–Goldstone boson that can
be identified with the physical Higgs boson. Simple examples of such
a coset are SU(3)/SU(2) or SO(5)/SO(4), the latter being favored
since it is invariant under the custodial symmetry (it is also possible
to have non-minimal custodial cosets with extra Goldstone bosons,
see for instance Ref. [245]). Attempts to construct composite Higgs
models in 4D have been made by Georgi and Kaplan (see for instance
Ref. [246]) and modern incarnations have been recently investigated in
the framework of 5D warped models where, according to the principles
of the AdS/CFT correspondence, the holographic composite Higgs
boson then originates from a component of a gauge field along the 5th
dimension with appropriate boundary conditions.

A last crucial ingredient in the construction of viable composite
Higgs models is the concept of partial compositeness [247], i.e., the
idea that there are only linear mass mixings between elementary fields

and composite states7. After diagonalization of the mass matrices,
the SM particles, fermions and gauge bosons, are admixtures of
elementary and composite states and thus they interact with the
strong sector, and in particular with the Higgs boson, through their
composite component. This setup has important consequences on
the flavor properties, chiefly the suppression of large flavor changing
neutral currents involving light fermions. It also plays an important
role in dynamically generating a potential for the would-be Goldstone
bosons. Partial compositeness also links the properties of the Higgs
boson to the spectrum of the fermionic resonances, i.e. the partners
of the top quark. As in the MSSM, these top partners are really
the agents that trigger the EWSB and also generate the mass of the
Higgs boson that otherwise would remain an exact Goldstone boson
and hence massless. The bounds from the direct searches for the top
partners in addition to the usual constraints from EW precision data
force the minimal composite Higgs models into some rather unnatural
corners of their parameter spaces [15, 249].

VII.1. Higgs bosons in the minimal supersymmetric standard
model (MSSM)

The particle masses and interactions in a supersymmetric theory
are uniquely defined as a function of the superpotential and the
Kähler potential [250]. A fundamental theory of supersymmetry
breaking, however, is unknown at this time. Nevertheless, one
can parameterize the low-energy theory in terms of the most
general set of soft supersymmetry-breaking operators [243]. The
simplest realistic model of low-energy supersymmetry is the minimal
supersymmetric extension of the SM (MSSM) [11, 250], that associates
a supersymmetric partner to each gauge boson and chiral fermion
of the SM, and provides a realistic model of physics at the weak
scale. However, even in this minimal model with the most general
set of soft supersymmetry-breaking terms more than 100 new
parameters are introduced [243]. Fortunately, only a subset of
these parameters impact the Higgs phenomenology either directly at
tree-level or through quantum effects. Reviews of the properties and
phenomenology of the Higgs bosons of the MSSM can be found for
example in Refs. [40, 250, 251].

The MSSM contains the particle spectrum of a two-Higgs-
doublet model (2HDM) extension of the SM and the corresponding
supersymmetric partners. Two Higgs doublets,

Φ1 =
1√
2

(

φ0
1 + ia0

1√
2φ−

1

)

, Φ2 =
1√
2

(
√

2φ+
2

φ0
2 + ia0

2

)

, (11.23)

with hypercharge Y = −1 and Y = 1, respectively, are required to
ensure an anomaly-free SUSY extension of the SM and to generate
mass for both up-type and down-type quarks and charged leptons [12].
In our notation Φ1(2) gives mass to the down(up) type fermions. The
Higgs potential reads
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(11.24)
where m2

i = µ2 + m2
Hi

, with µ being the supersymmetric Higgsino

mass parameter and mHi
(for i = 1, 2) the soft supersymmetric

breaking mass parameters of the two Higgs doublets; m2
3 ≡ Bµ is

associated to the B-term soft SUSY breaking parameter; and λi, for
i = 1 to 7, are all the Higgs quartic couplings. After the spontaneous
breaking of the electroweak symmetry, five physical Higgs particles are
left in the spectrum: one charged Higgs pair, H±, one CP-odd neutral

7 For a pedagogical introduction to models of partial compositeness,
see Ref. [248].
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scalar, A, and two CP-even neutral states, H and h.

H± = sin βφ±
1 + cosβφ±

2 ,

A = sin β Imφ0
1 + cosβ Imφ0

2 ,

H = cosα(Reφ0
1 − v1) + sinα(Reφ0

2 − v2),

h = − sinα(Reφ0
1 − v1) + cosα(Reφ0

2 − v2),

(11.25)

where vi = 〈φ0
i 〉 for i=1,2 and v2 = v2

1 + v2
2 ≈ (246GeV)2. The angle

α diagonalizes the CP-even Higgs squared-mass matrix and is given in
terms of the quartic couplings, while β diagonalizes both the CP-odd
and charged Higgs sectors with tanβ = v2/v1. The h and H denote
the lightest and heaviest CP-even Higgs bosons, respectively.8

The supersymmetric structure of the theory imposes constraints
on the Higgs sector of the model. In particular, at tree level, the
parameters of the Higgs self-interaction, λ1,...,4, are defined in terms
of the electroweak gauge coupling constants, and λ5,6,7 = 0. As a
result, the Higgs sector at tree level depends on the electroweak
gauge coupling constants and the vacuum expectation value v – or
equivalently the Z gauge boson mass – and is determined by only
two free parameters: tan β and one Higgs boson mass, conventionally
chosen to be the CP-odd Higgs boson mass, mA. The other tree-level
Higgs boson masses are then given in terms of these parameters. In
the large mA ≫ MZ limit, also called the decoupling limit [252 [253,
sin α → − cosβ, cosα → sin β, hence, cos(β − α) → 0 and this
implies that the lightest CP-even Higgs h behaves as the SM Higgs.
When mA ≥ MZ , the condition cos(β − α) → 0 is also called the
alignment limit [253–254]. As will be discussed below, in the MSSM
the alignment limit can only occur once quantum corrections to the
quartic couplings have been included. The tree level value of mh
is maximized not only for mA ≫ MZ but also for tanβ ≫ 1. For
mA ≫ MZ it acquires a maximum value mh = MZ cos 2β.

Radiative corrections have a significant impact on the values of
Higgs boson masses and couplings in the MSSM. The dominant
radiative effects to the SM-like Higgs mass arise from the incomplete
cancellation between top and scalar-top (stop) loops and at large
tanβ also from sbottom and stau loops. The loop contributions to
the tree level quartic couplings depend on the SUSY spectrum, and
render λ5,6,7 non zero. The stop, sbottom and stau masses and mixing
angles depend on the supersymmetric Higgsino mass parameter µ
and on the soft-supersymmetry-breaking parameters [11, 250]: MQ,
MU , MD, ML, ME , and At, Ab Aτ . The first three of these are
the left-chiral and the right-chiral top and bottom scalar quark
mass parameters. The next two are the left-chiral stau/sneutrino
and the right-chiral stau mass parameters, and the last three are
the trilinear parameters that enter in the off-diagonal squark/slepton
mixing elements: Xt ≡ At − µ cotβ and Xb,τ ≡ Ab,τ − µ tanβ. At the
two-loop level, the masses of the gluino and the electroweak gaugino
also enter in the calculations.

Radiative corrections to the Higgs boson masses have been computed
using a number of techniques, with a variety of approximations; see
references in Ref. [243]. For large tanβ, the stau/sbottom mixing
parameters and masses are also relevant. In the large mA (decoupling)
limit and for tanβ ≫ 1, the mh value can be maximized at loop level
for a specific value of Xt/MSUSY For fixed Xt, the value of mh can
change by several GeV by varying MSUSY within a few TeV or by
varying mt within its experimental uncertainty, as well as by varying
SUSY particle parameters that enter only beyond the one-loop order.
Moreover, in the large tanβ regime light staus and/or sbottoms with
sizable mixing, governed by the µ parameter, yield negative radiative
corrections to the mass of the lightest Higgs boson, and can lower
it by several GeV [255]. Allowing for experimental and theoretical
uncertainties, one finds that for MSUSY . 2TeV, large mA, tanβ ≫ 1
and for Xt ≃

√
6MSUSY, the maximal value for the lightest Higgs

mass is mmax
h = 135GeV [256–257].

8 Observe that in the SM sections of this review, H denotes the SM
Higgs, whereas in the sections about SUSY, or extensions of the SM
with two Higgs doublets, H is used for the heaviest CP-even Higgs
boson, since this is the standard notation in the literature, and the
125GeV SM-like light Higgs boson will be denoted by h.

The newly discovered SM-like Higgs boson, if interpreted as
the lightest MSSM Higgs with a mass of about 125GeV, provides
information on the possible MSSM parameter space. In particular a
sizable mixing in the stop sector is required (|Xt/MSUSY| ≥ 1.5) for
values of MSUSY ≃ MQ ≃ MU ≃ MD ≃ 1 to a few TeV [255–269].
See for example Fig. 11.23. On the other hand, considering the third
generation soft SUSY breaking parameters as independent inputs,
MQ 6= MU 6= MD, it follows that mh ≃125GeV can be obtained
for one stop that is as light as can be experimentally allowed [244]
and the other one with a mass of the order of the stop mixing
parameter. Considering both stops significantly above a few TeV, by
varying/lowering the values of Xt and tanβ, the impact of higher loops
in the computation of the Higgs mass becomes relevant [270–272]. For
a given CP-odd Higgs mass mA, the masses of the other two Higgs
bosons, H and H±, also receive radiative corrections. For a more
detailed discussion of the effect of radiative corrections on the heavy
Higgs masses see for example Refs. [40] and [251].
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Figure 11.23: Values of the SUSY mass scale MSUSY = MS
versus the stop mixing parameter normalized by the SUSY
mass scale Xt/MSUSY, for fixed tanβ = 20, µ = 200GeV
and MA = At = Ab = Aτ = MSUSY. The solid black line
corresponds to Mh = 125GeV while in the grey band Mh varies
by ±1GeV . The red dotted lines are iso-values of the stop mass.
This figure is based on Ref. [268].

The phenomenology of the Higgs sector depends on the couplings
of the Higgs bosons to gauge bosons and fermions. The couplings of
the two CP-even Higgs bosons to W and Z bosons are given in terms
of the angles α and β

ghV V = gV mV sin(β − α), gHV V = gV mV cos(β − α), (11.26)

where gV ≡ 2mV /v, for V = W± or Z (gV mV is the SM hV V
coupling). There are no tree-level couplings of A or H± to V V . The
couplings of the Z boson to two neutral Higgs bosons, which must
have opposite CP-quantum numbers, are given by gφAZ(pφ − pA),
where φ = H or h, the momenta pφ and pA point into the vertex, and

ghAZ = gZ cos(β − α)/2, gHAZ = −gZ sin(β − α)/2 . (11.27)

Charged Higgs-W boson couplings to neutral Higgs bosons and
four-point couplings of vector bosons and Higgs bosons can be found
in Ref. [12].
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The tree-level Higgs couplings to fermions obey the following
property: the neutral components of one Higgs doublet, Φ1, couple
exclusively to down-type fermion pairs while the neutral components
of the other doublet, Φ2, couple exclusively to up-type fermion
pairs [12]. This Higgs-fermion coupling structure defines the Type-II
2HDM [273]. In the MSSM, fermion masses are generated when both
neutral Higgs components acquire vacuum expectation values, and
the relations between Yukawa couplings and fermion masses are (in
third-generation notation)

hb,τ =
√

2mb,τ/(v cosβ), ht =
√

2mt/(v sinβ) . (11.28)

The couplings of the neutral Higgs bosons to f f̄ relative to the SM
value, gmf/2MW , are given by

hbb̄ : − sin α/ cosβ htt̄ : cosα/ sinβ ,

Hbb̄ : cosα/ cosβ Htt̄ : sin α/ sin β ,

Abb̄ : γ5 tanβ Att̄ : γ5 cotβ .

(11.29)

In each relation above, the factor listed for bb also pertains to τ+τ−.
The charged Higgs boson couplings to fermion pairs are given by

gH−tb̄ =
g√

2MW

[

mt cotβ
1 + γ5

2
+ mb tanβ

1 − γ5

2

]

,

gH−τ+ν =
g√

2MW

[

mτ tanβ
1 − γ5

2

]

.

(11.30)

The non-standard neutral Higgs bosons have significantly enhanced
couplings to down-type fermions at sizeable tanβ. In the alignment
limit, the lightest Higgs boson behaves like the SM one and H , A
have tanβ enhanced couplings to down type fermions, and analogous
enhanced couplings are in place for the charged Higgs.

Radiative corrections can modify significantly the values of the
Higgs boson couplings to fermion pairs and to vector boson pairs.
In a first approximation, when radiative corrections to the quartic
couplings are computed, the diagonalizing angle α is shifted from its
tree-level value, and hence one may compute a “radiatively-corrected”
value for cos(β − α) [255, 274]. Additional contributions from the
one-loop vertex corrections to tree-level Higgs couplings [276–283]
alter significantly the Higgs-fermion Yukawa couplings at large tan β,
both in the neutral and charged Higgs sector.

VII.1.1. MSSM Higgs boson phenomenology

In the MSSM, the mass, CP properties, decay and production
properties of one of the neutral Higgs bosons should agree with the
LHC Higgs data. Given that present data allows only for moderate
departures from the SM predictions, it implies that some degree
of alignment is necessary. For sufficiently heavy non-SM-like Higgs
bosons, the alignment results from decoupling. If mA is below a
few hundred GeV, radiative corrections to the angle α can result in
alignment for sizable values of the Higgs mass parameter µ > MSUSY.
Such radiative corrections, being proportional to ratios of mass
parameters associated to the SUSY particles, do not decouple for
heavy SUSY spectra.

The SM-like branching ratios of h can be modified if decays into
supersymmetric particles are kinematically allowed, and, in particular,
decays into a pair of the lightest supersymmetric particles - i.e. the
lightest neutralinos, χ̃0

1 - can become dominant and would be invisible
if R-parity is conserved [284–286]. Moreover, if light superpartners
exist that couple to photons and/or gluons, the h loop-induced
coupling to gg and γγ could deviate sizably from the corresponding
SM predictions [255, 287–294]

Given that some degree of alignment is necessary to agree with
data, for the heavier Higgs states there are two possibilities to be
considered: i) Alignment triggered by decoupling, hence mA ≥ several
hundred GeV: The HWW and HZZ couplings are very small. The
dominant H, A decay branching ratios strongly depend on tanβ. After
incorporating the leading radiative corrections to Higgs couplings,
the following decay features are relevant in the MSSM: The decay
modes H, A → bb, τ+τ− dominate when tanβ is large (this holds even

away from decoupling). For small tanβ, the tt decay mode dominates
above its kinematic threshold. For the charged Higgs boson, H+ → tb̄
dominates. ii) Some degree of alignment without decoupling, hence
mA ≤ a few hundred GeV. The main difference with the previous case
is that in the low tanβ regime (tan β ≤ 5) additional decay channels
may be allowed which involve decays into the lightest SM-like Higgs
boson. For A and H , besides the H, A → bb, τ+τ− decay modes, also
A → Zh, H → hh as well as H → WW/ZZ decay modes are available
(they are suppressed in the strict alignment limit). For the charged
Higgs boson, H+ → τ+ντ dominates below the tb̄ threshold, and also
H± → W±h may be searched for. Both in i) and ii), the heavier Higgs
states, H , A and H±, are roughly mass degenerate (with masses ±
20GeV or less apart). In cases i) and ii) the heavy Higgs boson decays
into charginos, neutralinos and third-generation squarks and sleptons
can be important if they are kinematically allowed [284].

The main production mechanisms for the neutral MSSM Higgs
bosons at e+e− colliders are Higgs-strahlung (e+e− → Zh, ZH),
vector boson fusion (e+e− → νν̄h, νν̄H) – with W+W− fusion about
an order of magnitude larger than ZZ fusion – and s-channel Z
boson exchange (e+e− → Ah, AH). For the Higgs-strahlung process
it is possible to reconstruct the mass and momentum of the Higgs
boson recoiling against the particles from the Z boson decay, and
hence sensitive searches for Higgs bosons decaying to invisible
final states are possible. The main charged Higgs boson production
process at e+e− colliders is via s-channel γ or Z boson exchange
(e+e− → H+H−). Charged Higgs bosons can also be produced in
top quark decays via t → b + H+ if m±

H < mt − mb or via the

one-loop process e+e− → W±H∓, which allows the production of a
charged Higgs boson with m±

H >
√

s/2, even when H+H− production
is kinematically forbidden. Other single charged Higgs production
mechanisms include tb̄H−/ t̄bH+ production, τ+νH−/ τ−ν̄H+

production, and a variety of processes in which H± is produced in
association with one or two other gauge and/or Higgs bosons. For
representative references on production mechanisms for the MSSM
Higgs bosons at e+e− see [243].

At hadron colliders, the dominant neutral Higgs production
mechanism at moderate values of tan β is gluon fusion, mediated by
loops containing heavy top and bottom quarks and the corresponding
supersymmetric partners [243]. The effect of light stops that may
contribute to the gluon fusion production can be partially cancelled
by mixing effects. Higgs boson radiation off bottom quarks becomes
important for large tanβ, where at least two of the three neutral Higgs
bosons have enhanced couplings to bottom-type fermions [295, 296].
In the search for non-standard neutral Higgs bosons, A and H , the
production can be via either of the above channels in the final inclusive
ditau mode and via radiation off bottom quarks in the 4b’s final mode.
The total production rates of bottom quarks and τ pairs mediated by
the production of a CP-odd Higgs boson in the large tanβ regime are
approximately given by

σbbA × BR(A → bb) ≃ σSM
bbA

tan2 β

(1 + ∆b)
2

9

(1 + ∆b)
2 + 9

,

σgg→A,bbA × BR(A → τ+τ−) ≃ σSM
gg→A,bbA

tan2 β

(1 + ∆b)
2 + 9

,

(11.31)

where σSM
bbA

and σSM
gg→A,bbA

denote the values of the corresponding SM

Higgs boson cross sections for a SM Higgs boson mass equal to mA.
For high tanβ, the function ∆b includes the dominant effects of the
SUSY radiative corrections affecting the relation between the bottom
quark mass and the bottom Yukawa coupling [259, 274, 275, 280–282],
and it depends strongly on tanβ and on the SUSY mass parameters.
The production and decay rates of H , for mA larger mmax

h , are
governed by formulas similar to the ones presented above, and given
that A and H are nearly degenerate in mass, the total signal cross
section is increased by roughly a factor of two. Detailed discussions of
the impact of radiative corrections in these search modes are presented
in Refs. [259, 297].

The vector boson fusion and Higgs-strahlung production of the
CP-even Higgs bosons as well as the associated production of neutral
Higgs bosons with top quark pairs have lower production cross sections
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by at least an order of magnitude with respect to the dominant ones,
depending on the precise region of MSSM parameter space [42]. Higgs
pair production of non-standard MSSM Higgs bosons has been studied
in Ref. [298].

Charged Higgs bosons can be produced in several different modes
at hadron colliders. If mH± < mt − mb, the charged Higgs boson can
be produced in decays of the top quark via the decay t → bH+, which
would compete with the SM process t → bW+. Relevant radiative
corrections to BR(t → H+b) have been computed in Refs. [299–
302]. For values of mH± near mt, width effects are important. If
mH± > mt −mb, then charged Higgs boson production occurs mainly
through radiation from a third generation quark. Charged Higgs
bosons may also be produced singly in association with a top quark via
the 2 → 3 partonic processes pp → H+t̄b+X and pp → H−tb̄+X ; via
associated production with W± bosons through bb annihilation and
gg fusion [303]; and in pairs via qq annihilation [304]. The inclusive
H+H− cross section is less than the cross section for single charged
Higgs associated production [304, 305]. For a more extensive discussion
of charged Higgs boson production at LHC see Refs. [11 42, 306].

The additional Higgs bosons are sought for mainly via the channels

pp → A/H → τ+τ− (inclusive),

bb̄A/H, A/H → τ+τ− (with b−tag),

bb̄A/H, A/H → bb̄ (with b−tag),

pp → tt̄ → H±W∓ bb̄, H± → τντ ,

gb → H−t or gb̄ → H+t̄, H± → τντ .

(11.32)

After the Higgs boson discovery, updated MSSM benchmarks
scenarios have been defined, that highlight interesting conditions
for MSSM Higgs searches [44, 258]. They include: i) a moderate
mixing scenario in which the light CP-even Higgs boson can be
interpreted as the newly discovered state in most of the mA − tanβ
plane; ii) a light stop scenario with stop masses in the few to several
hundred GeV range that can affect gluon fusion Higgs production;
and iii) a tau-phobic scenario that exhibits variations of BR(h → bb̄)
and BR(h → τ+τ−) with respect to their SM values. In the above
benchmarks it is also possible to have decays of H → hh in regions
of moderate mA and moderate tanβ as far as one is away from
precise alignment. Also for the previous benchmarks, the LHC reach
in the traditional A/H → τ+τ− search channel varies depending
on the values of µ and M2, that may enable the A/H decays into
electroweakinos. Lastly, varying the parameter µ in both sign and
magnitude induces relevant variations in the possible discovery reach
through the 4b’s channel, and to a lesser extent through the inclusive
ditau channel.

An alternative approach to reduce the large number of parameters
relevant to the Higgs sector is to consider that, in the Higgs basis,
the only important radiative corrections are those affecting the Higgs
mass [307]. This approximation is called hMSSM and works well in
large regions of parameter space but it breaks down for sizable values
of µ and At, and moderate values of tanβ, for which the radiative
corrections to the mixing between the two CP even eigenstates
become relevant. The effect of such radiative corrections is to allow
for alignment for small to intermediate values of tanβ, independent of
the specific value of mA [308]. In addition, the hMSSM assumption
that the right value of the Higgs mass may be obtained for all values
of mA and tanβ is in conflict with the MSSM predictions for the
Higgs mass for small values of mA and tanβ ≃ O(1).

Future precision measurements of the Higgs boson couplings to
fermions and gauge bosons together with information on heavy Higgs
searches will provide powerful information on the SUSY parameter
space [309, 308–311]. If no other new states beyond the current Higgs
candidate are discovered at the LHC, it becomes mandatory to
understand what would be the required precision of the Higgs rate
measurements to distinguish the MSSM from the SM.

Improvements in our understanding of B-physics observables
put indirect constraints on additional Higgs bosons in mass ranges
that would be accessible in direct LHC searches. In particular,
BR(Bs → µ+µ−), BR(b → sγ), and BR(Bu → τν) play an important

Table 11.16: Symmetries associated to various models with
singlet extensions, the corresponding terms in the superpotential
that only involve Higgs and singlet fields, and the number of
neutral states in the Higgs sector for the case of CP conservation.

Model MSSM NMSSM nMSSM UMSSM

Symmetry - Z3 ZR
5 , ZR

7 U(1)′

Superpotential µΦ2 · Φ1 λSSΦ2 · Φ1 +
κ

3
S3 λSSΦ2 · Φ1 + tF S λSSΦ2 · Φ1

H0
i 2 3 3 3

A0
i 1 2 2 1

role within minimal flavor-violating (MFV) models [312], in which
flavor effects proportional to the CKM matrix elements are induced, as
in the SM. For example, see references in [243]. The supersymmetric
contributions to these observables come both at the tree and loop
level, and have a different parametric dependence, but share the
property that they become significant for large values of tanβ, which
is also the regime in which searches for non-standard MSSM Higgs
bosons at hadron colliders are the most powerful.

VII.2. Higgs bosons in singlet extensions of the MSSM

In the MSSM, the Higgs mass parameter µ is a supersymmetric
parameter, and as such, it should naturally be of order MGUT or
MP lanck. The fact that phenomenologically it is required that µ
be at the electroweak/TeV scale is known as the µ problem [313].
Supersymmetric models with additional singlets can provide a solution
to the µ problem, by promoting the µ parameter to a dynamical
singlet superfield S that only interacts with the MSSM Higgs doublets
through a coupling λS at the level of the superpotential. An effective
µ is generated when the real scalar component of S acquires a vacuum
expectation value 〈S〉

µeff = λS 〈S〉. (11.33)

After the minimization of the Higgs potential the vacuum state relates
the vacuum expectation values of the three CP-even neutral scalars,
φ0

1, φ0
2 and S, to their soft supersymmetry breaking masses, hence, one

expects that these VEVs should all be of order MSUSY and therefore
the µ problem is solved.

The solution of the µ problem through the addition of a singlet
superfield to the MSSM comes along with the existence of an
extra global U(1) symmetry, known as the Peccei–Quinn (PQ)
symmetry [314]. This PQ symmetry is broken explicitly in realistic
models. For that purpose one can consider a discrete Z3 symmetry that
allows the existence of a PQ odd S3 term in the superpotential. This
model extension has been called the next-to-minimal supersymmetric
SM (NMSSM) (the NMSSM was first introduced in Ref. [315], see
the 2014 edition of this review for an extensive list of subsequent
references). It is known however that discrete symmetries may come
along with the existence of domain wall structures that imply that
our universe would consist of disconnected domains with different
ground states, creating unacceptably large anisotropies in the cosmic
microwave background [316]. To avoid the problem of domain walls one
can consider the existence of non-renormalizable operators that would
lead to the preferred vacuum state. However, the same operators in
turn may generate quadratically divergent tadpole contributions [243]
that could shift the VEV of S to be much larger, order MGUT , and
ruin the singlet solution to the µ problem. To cure the problem of
destabilizing tadpoles, discrete R-symmetries have been proposed that
ensure that tadpoles would only appear at very high order loops
and be safely suppressed. Depending on the symmetries imposed on
the theory, different models with singlet extensions of the MSSM
(xMSSM) have been proposed. In Table 11.16 we show the most
studied examples: the NMSSM, the Nearly-Minimal Supersymmetric
SM (nMSSM) [317], and the U(1)′-extended MSSM (UMSSM) [318],
specifying the new parameters appearing in the superpotential
and the respective symmetries. A Secluded U(1)′-extended MSSM
(sMSSM) [319] contains three singlets in addition to the standard
UMSSM Higgs singlet; this model is equivalent to the nMSSM in the
limit that the additional singlet VEV’s are large, and the trilinear
singlet coupling, λS , is small [320].
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Based on the extended models defined in Table 11.16, we write the
most generic supersymmetric and soft supersymmetry breaking scalar
potentials for the three scalar fields: Φ1, Φ2 and S:

VxMSSM =
∣

∣

∣λSΦ2 · Φ1 + tF + κS2
∣

∣

∣

2
+ |λSS|2

(

|Φ1|2 + |Φ2|2
)

+
g′2 + g2

8

(

|Φ1|2 − |Φ2|2
)2

+
g2

2

(

|Φ1|2 |Φ2|2 − |Φ2 · Φ1|2
)

+
g′1

2

2

(

QΦ1
|Φ1|2 + QΦ2

|Φ2|2 + QS |S|2
)2

(11.34)

Vsoft = m2
H1

|Φ1|2 + m2
H2

|Φ2|2 + m2
s |S|2

+
(

AsλSSHu · Hd +
κ

3
AκS3 + tSS + h.c.

)

.
(11.35)

where Φ2 ·Φ1 = ǫijΦ
i
2Φ

j
1 and the couplings g′, g, and g′1 are associated

to the U(1)Y , SU(2)L, and U(1)′ gauge symmetries, respectively.
tF and tS are supersymmetric and SUSY breaking tadpole terms,
respectively, ms is a SUSY breaking mass term for the scalar
component of the field S, and As and Aκ are the trilinear soft SUSY
breaking mass parameters associated with the new terms λSSΦ2 · Φ1

and κS3/3 in the superpotential, with the B-term of the MSSM
expressed as Bµ ≡ Asµeff . In particular, κ and Aκ are the parameters
for the NMSSM model, while tF and tS are those of the nMSSM.
The UMSSM depends on the new coupling g′1 as well as on the U(1)′

charges of the Higgs fields, QΦ1
, QΦ2

and QS , that are free parameters
with the restriction that they have to add to zero for the superpotential
λ3SΦ2Φ1 to be gauge invariant. In a given U(1)′ construction the
charges are specified. The addition of the singlet scalar field(s) imply
that additional CP-even and CP-odd Higgs bosons will appear in the
spectra, whereas the charged Higgs sector remains the same as in the
MSSM given that the number of Higgs doublets remains unchanged.
The mixing with the extra scalar S alters the masses and properties of
the physical Higgs bosons, that in general can differ significantly from
the SM or the MSSM. A detailed discussion of typical mass spectra
and decay properties in these models can be found for example in
Refs. [321, 320]. Moreover, these models have extra neutralinos and in
some cases extra neutral gauge bosons, Z ′. The extra gauge boson
sector is constrained by experimental data through direct Z ′ searches
as well as the Z − Z ′ mixing angle αZZ′ constrained to be less that
O(10−3) by precision electroweak data .

In singlet extensions of the MSSM the lightest CP-even Higgs mass
at tree level, mtree

H1
receives a contribution from the singlet scalar that

renders it larger than the MSSM value, in particular for small values
of tanβ. The tree level upper bound reads9

mtree
H1

≤ M2
Z cos2 2β +

1

2
λ2

Sv2 sin2 2β . (11.36)

At the one-loop level, the top and stop loops (as well as sbottom
and stau loops for large tanβ) are the dominant contributions,
that are common to the MSSM and to all the singlet extensions.
Gauge couplings in the UMSSM are small compared to the top
quark Yukawa coupling, hence the one-loop gauge contributions are
negligible. Corrections exclusive to the NMSSM and the nMSSM
enter only at the two loop level. Therefore, there are no significant
model-dependent contributions at one loop order, and as a result, for
large tanβ the lightest CP-even Higgs mass does not differ in any
significant way from the MSSM one. In the decoupling limit, a value
of the lightest SM Higgs mass of about 125GeV is achievable in all
these MSSM extensions, and this remains the case even after higher
order corrections are implemented.

A singlet extended supersymmetric Higgs sector opens new avenues
for discovery. Since the singlet pseudoscalar particle may be identified
as the pseudo-Goldstone boson of a spontaneously broken Peccei–
Quinn symmetry, it may become naturally light [322, 323]. Generally,
there is mixing of the singlet sector with the MSSM Higgs sector, and
for a sufficiently light, singlet dominated scalar or pseudoscalar, hS or

9 Additional gauge interactions in the UMSSM contribute to this
increase with a term of O(g′21 v2(Q2

φ2
cos2 β + Q2

φ1
sin2 β)).
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Figure 11.24: Values of the stop mixing parameter normalized
to the SUSY mass scale Xt/MSUSY, as a function of tanβ, for
MSUSY ≡ MS = 1000GeV, λS = 0.65, and contours of constant
values of the Higgs mass mh = 125 ± 3 GeV shaded in red [327].

AS , respectively, the SM-like Higgs boson h may decay to pairs of hS
or AS . The light scalar and/or pseudoscalar may subsequently decay
to ττ or bb̄ pairs. Such cascade decays are more difficult to detect than
standard searches due to the potentially soft decay products. There
is also a rich phenomenology for the decays of the heavy CP-even
and CP-odd doublets, A and H into two lighter Higgs bosons such
as H → hhS , hh, hShS or A → AShS , ASh as well as into a
light Higgs boson and a gauge boson: H → ASZ; A → hSZ, hZ.
If kinematically allowed the heavy Higgs bosons decay into tt̄. If the
singlet dominated scalar or pseudoscalar are somewhat heavier, the
decays hS → WW or AS → hSZ will be allowed.

In addition, the light singlet scenario in the NMSSM or nMSSM is
typically associated with a light singlino-dominated neutralino. The
recently discovered SM-like Higgs boson can then decay to pairs of
this neutralino [324, 320], opening an invisible decay mode that is
not excluded by present data. All of the Higgs bosons can decay into
electroweakinos depending on kinematics and the singlino or higgsino
composition of the electroweakinos.

In models with extended singlets, at low tanβ it is possible to trade
the requirement of a large stop mixing by a sizeable trilinear Higgs-
singlet Higgs coupling λS , rendering more freedom on the requirements
for gluon fusion production. As in the MSSM, mixing in the Higgs
sector -additionally triggered by the extra new parameter λS - can
produce variations in the Higgs–bb̄ and Higgs–τ−τ+ couplings that
can alter the Higgs to ZZ/WW and diphoton rates. Light charginos
at low tanβ can independently contribute to enhance the di-photon
rate, without altering any other of the Higgs decay rates [290, 325].

There is much activity in exploring the NMSSM phenomenology
in the light of the 125GeV Higgs boson [326], as well as in defining
benchmark scenarios with new topologies including Higgs decay
chains [291]. An analytic understanding of the alignment condition
in the NMSSM is presented in Ref. [292]. The NMSSM with a Higgs
boson of mass 125GeV can be compatible with stop masses of order
of the electroweak scale, thereby reducing the degree of fine tuning
necessary to achieve electroweak symmetry breaking (see Fig. 11.24).
The alignment conditions point toward a more natural region of
parameter space for electroweak symmetry breaking, while allowing
for perturbativity of the theory up to the Planck scale and yielding a
rich and interesting Higgs boson phenomenology at the LHC.
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VII.3. Supersymmetry with extended gauge sectors

In the MSSM, the tree-level value of the lightest CP-even Higgs
mass originates from the D-term dependence of the scalar potential
that comes from the supersymmetric kinetic terms in the Kähler
potential. The D-terms lead to tree-level quartic couplings which
are governed by the squares of the gauge couplings of the weak
interactions, under which the Higgs has non-trivial charges and hence
the lightest Higgs mass is bounded to be smaller than MZ . If new
gauge interactions were present at the TeV scale, and the Higgs
bosons would have non-trivial charges under them, there would be
new D-term contributions that would lead to an enhancement of the
tree-level Higgs mass value. Since the low energy gauge interactions
reduce to the known SU(3)c × SU(2)L × U(1)Y ones, in order for this
mechanism to work, the extended gauge and Higgs sectors should be
integrated out in a non-supersymmetric way. This means that there
must be supersymmetry breaking terms that are of the order of,
or larger than, the new gauge boson masses. The tree-level quartic
couplings would then be enhanced through their dependence on the
square of the gauge couplings of the extended Higgs sector. This effect
will be suppressed when the heavy gauge boson masses are larger than
the supersymmetry breaking scale and will acquire its full potential
only for large values of this scale.

One of the simplest possibilities is to extend the weak interactions
to a SU(2)1 × SU(2)2 sector, such that the known weak interactions
are obtained after the spontaneous breaking of these groups to
SU(2)L [328]. This may be achieved by introducing a bi-doublet
Σ under the two SU(2) gauge groups, which acquires a non-trivial
vacuum expectation value u in the diagonal direction. The heavy
gauge boson masses are therefore given by M2

W ′ = (g2
1 + g2

2)u2/2, and

the weak coupling g2 = g2
1g2

2/(g2
1 + g2

2). To obtain a new tree-level
contribution to the Higgs potential, the Higgs bosons must be charged
under the new gauge interactions. One possibility is to assume that the
third generation quarks and leptons as well as the Higgs doublets have
charges under the SU(2)1 group, while the second and first generations
have charges under SU(2)2. This provides a natural explanation of
the largeness of the third generation couplings compared to the first
and second generation ones.

Under the above conditions, the D-term contributions to the neutral
Higgs effective potential are given by

VD =
g2∆ + g′2

8

(

|H0
2 |2 − |H0

1 |2
)2

(11.37)

with

∆ =

(

1 +
4m2

Σ

g2
2u2

)(

1 +
4m2

Σ

(g2
1 + g2

2)u2

)−1

, (11.38)

where mΣ is the supersymmetry breaking term associated with the
bi-doublet Σ. It is easy to see that while the MSSM D-term is
recovered when mΣ → 0, it is replaced by the SU(2)1 ×U(1)Y D-term
when mΣ becomes much larger than MW ′ . The tree-level mass now
reads

m2
h|tree =

g2∆ + g′2

4
v2 cos2 2β, (11.39)

and reduces to the MSSM value, M2
Z cos2 2β, for ∆ = 1.

Assuming g1 ≃ g2, values of g1,2 of order one are necessary to
obtain the proper value of the weak gauge coupling. In addition, if
values of mΣ of order MW ′ are assumed, enhancements of order 50
percent of the MSSM D-term contribution to the Higgs mass may be
obtained. Such enhancements are sufficient to obtain the measured
Higgs mass value without the need for very heavy stops or large stop
mixing parameters.

The gauge extension described above leads to new, heavy gauge and
Higgs bosons, as well as new neutralinos and charginos. Constraints
from precision measurements put bounds of the order of a few TeV on
the mass of these gauge bosons, which may be probed at the higher
energy run of the LHC collider. If the new gaugino supersymmetry
breaking masses are smaller than the gauge boson masses, the new
electroweakinos will have masses of the order of a few TeV and
therefore the weak scale phenomenology reduces to the MSSM one.

Similar gauge extensions, including also new abelian gauge groups
have been considered, for instance, in Ref. [329].

Gauge extensions of the MSSM can also lead to an enhancement
of the Higgs mass value by modifying the renormalization group
evolution of the Higgs quartic coupling to low energies. In the MSSM,
the evolution of the quartic coupling is governed by the top-quark
Yukawa interactions and depends on the fourth power of the top-quark
Yukawa coupling. The neutralino and chargino contributions, which
depend on the fourth power of the weak gauge couplings, are small due
to the smallness of these couplings. Depending on the values of the
soft supersymmetry breaking parameters in the gaugino and Higgsino
sectors, the SU(2)1 gauginos may become light, with masses of the
order of the weak scale. Since the SU(2)1 coupling may be significantly
larger than the SU(2)L one, for small values of the Higgsino mass
parameter µ, the associated charginos and neutralinos may modify
the evolution of the quartic coupling in a significant way [330]. This
may lead to a significant increase of the lightest CP-even Higgs mass,
even for small values of tanβ ≃ 1 for which the D-term contributions
become small. In addition, under these conditions, light charginos
may lead to a significant modification of the Higgs diphoton decay
rate, which may be as large as 50% of the SM [330–334].

VII.4. Effects of CP violation

SUSY scenarios with CP-violation (CPV) phases are theoretically
appealing, since additional CPV beyond that observed in the K, D,
and B meson systems is required to explain the observed cosmic
matter-antimatter asymmetry. In the MSSM, CP-violation effects
in the Higgs sector appear at the quantum level, while in singlet
extensions of the MSSM CP-violation effects can already be effective
at tree level. In general, CP-violation effects in the Higgs sector have
significant constraints from electric dipole moments data [243].

In the MSSM, the gaugino mass parameters (M1,2,3), the Higgsino

mass parameter, µ, the bilinear Higgs squared-mass parameter, m2
12,

and the trilinear couplings of the squark and slepton fields to the
Higgs fields, Af , may carry non-trivial phases. The two parameter

combinations arg[µAf (m2
12)

∗] and arg[µMi(m
2
12)

∗] are invariant
under phase redefinitions of the MSSM fields [335, 261]. Therefore,
if one of these quantities is non-zero, there would be new sources
of CP-violation, which affects the Higgs sector through radiative
corrections [260, 261, 336–340]. The mixing of the neutral CP-odd and
CP-even Higgs boson states is no longer forbidden. Hence, mA is no
longer a physical parameter. However, the charged Higgs boson mass
mH± is still physical and can be used as an input for the computation
of the neutral Higgs spectrum of the theory. For large values of
mH± , corresponding to the decoupling limit, the properties of the
lightest neutral Higgs boson state approach those of the SM Higgs
boson. In particular, the upper bound on the lightest neutral Higgs
boson mass, takes the same value as in the CP-conserving case [261].
Nevertheless, there still can be significant mixing between the two
heavier neutral mass eigenstates. For a detailed study of the Higgs
boson mass spectrum and parametric dependence of the associated
radiative corrections, see Refs. [336, 339].

Major variations to the MSSM Higgs phenomenology occur in the
presence of explicit CPV phases. In the CPV case, vector boson
pairs couple to all three neutral Higgs boson mass eigenstates, Hi

(i = 1, 2, 3), with couplings

gHiV V = cosβO1i + sinβO2i , (11.40)

gHiHjZ =O3i
(

cosβO2j − sin βO1j
)

−O3j (cosβO2i − sin βO1i) ,

(11.41)
where the gHiV V couplings are normalized to the analogous SM

coupling and the gHiHjZ have been normalized to gSM
Z /2. The

orthogonal matrix Oij is relating the weak eigenstates to the mass
eigenstates. It has non-zero off-diagonal entries mixing the CP-even
and CP-odd components of the weak eigenstates. The above couplings
obey the relations

3
∑

i=1

g2
HiZZ = 1 and gHkZZ = εijk gHiHjZ , (11.42)
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where εijk is the Levi-Civita symbol. Moreover, CPV phases imply
that all neutral Higgs bosons can couple to both scalar and
pseudoscalar fermion bilinear densities. The couplings of the mass
eigenstates Hi to fermions depend on the loop-corrected fermion
Yukawa couplings (similarly to the CPC case), on tanβ and on the
Oji [336, 341].

The production processes of neutral MSSM Higgs bosons in the
CPV scenario are similar to those in the CPC scenario. Regarding
the decay properties, the lightest mass eigenstate, H1, predominantly
decays to bb if kinematically allowed, with a smaller fraction decaying
to τ+τ−, similar to the CPC case. If kinematically allowed, a SM-like
neutral Higgs boson, H2 or H3 can decay predominantly to H1H1

leading to many new interesting signals both at lepton and hadron
colliders; otherwise it will decay preferentially to bb.

The discovery of a 125GeV Higgs boson has put strong constraints
on the realization of the CPV scenario within the MSSM. This is
partly due to the fact that the observed Higgs rates are close to the
SM values, and a large CP-violating component would necessarily
induce a large variation in the rate of the SM-like Higgs decay into the
weak gauge bosons W± and Z. The measured Higgs mass imposes
additional constraints on the realization of this scenario. Once all
effects are considered, the CP-odd Higgs A component of the lightest
Higgs tends to be smaller than about 10%. This restriction can be
alleviated in the NMSSM or more general two Higgs doublet models.
CP-violating effects can still be significant in the heavy Higgs sector.
For instance, the Higgs bosons H2 and H3 may be admixtures of
CP-even and CP-odd scalars, and therefore both may be able to
decay into pairs of weak gauge bosons. The observation of such
decays would be a clear signal of CP-violation. In the MSSM the
proximity of the masses of H2 and H3 makes the measurement of such
effect quite challenging, but in generic two Higgs doublet models, the
mass splitting between the two heavy mass eigenstates may become
larger, facilitating the detection of CP-violating effects at collider
experiments. For a recent studies see for example [342].

VII.5. Non-supersymmetric extensions of the Higgs sector

There are many ways to extend the minimal Higgs sector of the
SM. In the preceding sections the phenomenology of SUSY Higgs
sectors is considered, which at tree level implies a constrained type-II
2HDM (with restrictions on the Higgs boson masses and couplings).
In the following discussion, more generic 2HDM’s [12, 273, 343, 344] are
presented. These models are theoretically less compelling since they
do not provide an explanation for the SM Higgs naturalness problem,
but can lead to different patterns of Higgs-fermion couplings, hence,
to different phenomenology. It is also possible to consider models with
a SM Higgs boson and one or more additional scalar SU(2) doublets
that acquire no VEV and hence play no role in the EWSB mechanism.
These models are dubbed Inert Higgs Doublet Models (IHD) [345].
Without a VEV associated to it, a Higgs boson from an inert doublet
has no tree-level coupling to gauge bosons and hence cannot decay
into a pair of them. And imposing a Z2 symmetry that prevents them
from coupling to the fermions, it follows that, if the lightest inert
Higgs boson is neutral, it becomes a good dark matter candidate with
interesting associated collider signals. Recent studies of IHD models
in the light of a 125GeV Higgs have been performed [346], showing
that there can be non-negligible enhancement or suppression of Higgs
to diphotons or Higgs to Zγ. This may be due to the presence of a
light charged Higgs, as light as 100GeV, that is not in conflict with
collider or flavor constraints, because it has no couplings to fermions.
It is interesting to study the interplay between collider and direct dark
matter detection signals in these models.

Other extensions of the Higgs sector can include [321, 347] multiple
copies of SU(2)L doublets, additional Higgs singlets [348], triplets or
more complicated combinations of Higgs multiplets. It is also possible
to enlarge the gauge symmetry beyond SU(2)L×U(1)Y along with the
necessary Higgs structure to generate gauge boson and fermion masses.
There are two main experimental constraints on these extensions:
(i) precision measurements which constrain ρ = m2

W /(m2
Z cos2θW ) to

be very close to 1 and (ii) flavor changing neutral current (FCNC)
effects. In electroweak models based on the SM gauge group, the

tree-level value of ρ is determined by the Higgs multiplet structure.
By suitable choices for the hypercharges, and in some cases the
mass splitting between the charged and neutral Higgs sector or
the vacuum expectation values of the Higgs fields, it is possible to
obtain a richer combination of singlets, doublets, triplets and higher
multiplets compatible with precision measurements [349]. Concerning
the constraints coming from FCNC effects, the Glashow–Weinberg
(GW) criterion [350] states that, in the presence of multiple Higgs
doublets the tree-level FCNC’s mediated by neutral Higgs bosons will
be absent if all fermions of a given electric charge couple to no more
than one Higgs doublet. An alternative way of suppressing FCNC in
a two Higgs doublet model has been considered in Ref. [351], where it
is shown that it is possible to have tree level FCNC completely fixed
by the CKM matrix, as a result of an abelian symmetry.

VII.5.1. Two-Higgs-doublet models

Supersymmetry demands the existence of two Higgs doublets such
that one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons. This Higgs-fermion coupling structure is
the one identified as type-II 2HDM [273] and assures that masses for
both up and down-type quarks can be generated in a supersymmetric
and gauge invariant way. Two Higgs doublet models [343], however,
can have a more diverse Higgs-fermion coupling structure and can be
viewed as a simple extension of the SM to realize the spontaneous
breakdown of SU(2)L × U(1)Y to U(1)em. Quite generally, if the two
Higgs doublets contain opposite hypercharges, the scalar potential
will contain mixing mass parameters of the kind m2

12Φ
T
1 iσ2Φ2 + h.c..

In the presence of such terms, both Higgs doublets will acquire
vacuum expectation values, v1/

√
2 and v2/

√
2, respectively, and the

gauge boson masses will keep their SM expressions with the Higgs

vacuum expectation value v replaced by v =
√

v2
1 + v2

2. Apart from

the mass terms, the most generic renormalizable and gauge invariant
scalar potential contains seven quartic couplings, which are defined in
Eq. (11.24).

Considering two doublets with hypercharges, with YΦ1
= −1 and

YΦ2
= 1 as in Eq. (11.23), and the most general, renormalizable Higgs

potential will be given by Eq. (11.24). Just as in the MSSM case, after
electroweak symmetry breaking and in the absence of CP-violation,
the physical spectrum contains a pair of charged Higgs bosons H±, a
CP-odd Higgs boson A and two neutral CP-even Higgs bosons, h and
H. The angles α and β diagonalize the CP-even, and the CP-odd and
Charged Higgs sectors, respectively.

The complete 2HDM is defined only after considering the
interactions of the Higgs fields to fermions. Yukawa couplings of the
generic form

−ha
ijΨ̄

i
LHaΨj

R + h.c. (11.43)

may be added to the renormalizable Lagrangian of the theory.
Contrary to the SM, the two Higgs doublet structure does not ensure
the alignment of the fermion mass terms mij = ha

ijva/
√

2 with the
Yukawa couplings ha

ij . This implies that quite generally, the neutral
Higgs boson will mediate flavor changing interactions between the
different mass eigenstates of the fermion fields. Such flavor changing
interactions should be suppressed in order to describe properly the
Kaon, D and B meson phenomenology. Based on the Glashow–
Weinberg criterion, it is clear that the simplest way of avoiding such
transitions is to assume the existence of a symmetry that ensures the
couplings of the fermions of each given quantum number (up-type and
down-type quarks, charged and neutral leptons) to only one of the two
Higgs doublets. Different models may be defined depending on which
of these fermion fields couple to a given Higgs boson, see Table 11.17.
Models of type-I [344] are those in which all SM fermions couple to
a single Higgs field. In type-II models [273] down-type quarks and
charged leptons couple to a common Higgs field, while the up-type
quarks and neutral leptons couple to the other. In models of type-III
(lepton-specific) quarks couple to one of the Higgs bosons, while
leptons couple to the other. Finally, in models of type-IV (flipped),
up-type quarks and charged leptons couple to one of the Higgs fields
while down-quarks and neutral leptons couple to the other.

The two Higgs doublet model phenomenology depends strongly on
the size of the mixing angle α and therefore on the quartic couplings.
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Table 11.17: Higgs boson couplings to up, down and charged
lepton-type SU(2)L singlet fermions in the four discrete types
of 2HDM models that satisfy the Glashow–Weinberg criterion,
from Ref. [352].

Model 2HDM I 2HDM II 2HDM III 2HDM IV

u Φ2 Φ2 Φ2 Φ2

d Φ2 Φ1 Φ2 Φ1

e Φ2 Φ1 Φ1 Φ2

For large values of mA, sinα → − cosβ, cosα → sinβ, cos(β−α) → 0,
and the lightest CP-even Higgs h behaves as the SM Higgs. The
same behavior is obtained if the quartic couplings are such that
M2

12 sin β = −(M2
11 − m2

h) cosβ. The latter condition represents a
situation in which the coupling of h to fermions and weak gauge
bosons become the same as in the SM, without decoupling the rest of
the non-standard scalars and it is of particular interest due to the fact
that the recently discovered Higgs boson has SM-like properties. This
situation will be referred to as alignment, as in the MSSM case.

In type-II Higgs doublet models, at large values of tanβ and
moderate values of mA, the non-standard Higgs bosons H, A and H±

couple strongly to bottom quarks and τ leptons. Hence the decay
modes of the non-standard Higgs bosons tend to be dominated by
b-quark and tau-lepton modes, including top quarks or neutrinos in
the case of the charged Higgs. However, for large and negative values
of λ4, the charged Higgs boson mass may be sufficiently heavy to
allow on-shell decays

H± → W± + (H, A),

gH±W∓H,A ≃ MW

v
sin(β − α)(pH+ − pH,A) ,

(11.44)

where pH+ and pH,A are the charged and neutral scalar Higgs
momenta pointing into the vertex. On the other hand, for large and
positive values of λ5, the above charged Higgs decay into a W± and
the CP-odd Higgs boson may be allowed, but the heavy Higgs H
may be sufficiently heavy to decay into a CP-odd Higgs boson and an
on-shell Z.

H → Z + A, gHZA ≃ MZ

v
sin(β − α)(pH − pA). (11.45)

The decay H± → W± + H , on the other hand may be allowed only
if λ4 < −λ5. The couplings controlling all the above decay modes are
proportional to sin(β − α) and therefore they are unsuppressed in the
alignment limit. Moreover, these could still be the dominant decay
modes at moderate values of tan β, offering a way to evade the current
bounds obtained assuming a dominant decay into bottom quarks or τ
leptons.

The quartic couplings are restricted by the condition of stability
of the effective potential as well as by the restriction of obtaining
the proper value of the lightest CP-even Higgs mass. Close to
the alignment limit, the lightest CP-even Higgs mass becomes
approximately independent of mA and is given by

m2
h ≃v2(λ1 cos4 β + λ2 sin4 β + 2λ̃3v

2 cos2 β sin2 β)

+ v2(4λ6 cos3 β sin β + 4λ7 sin3 β cosβ) ,
(11.46)

where λ̃3 = λ3 + λ4 + λ5.

The stability conditions imply the positiveness of all masses, as well
as the avoidance of run-away solutions to large negative values of the
fields in the scalar potential. These conditions imply

λ1 ≥ 0, λ2 ≥ 0, λ3 + λ4 − |λ5| ≥ −
√

λ1λ2,

λ3 ≥ −
√

λ1λ2, 2|λ6 + λ7| <
λ1 + λ2

2
+ λ̃3,

(11.47)

where the first four are necessary and sufficient conditions in the case
of λ6 = λ7 = 0, while the last one is a necessary condition in the
case all couplings are non-zero. Therefore, to obtain the conditions
that allow the decays H± → W±H, A and H → ZA, λ3 should take

large positive values in order to compensate for the effects of λ4 and
λ5. For recent detailed discussions about 2HDM phenomenology see
Refs [309, 254, 347, 353–356,357].

VII.5.2. Higgs triplets

Electroweak triplet scalars are the simplest non-doublet extension
of the SM that can participate in the spontaneous breakdown of
SU(2)L × U(1)Y to U(1)em. Two types of model have been developed
in enough detail to make a meaningful comparison to LHC data:
the Higgs triplet model (HTM) [358, 359] and the Georgi–Machacek
model [360–362].

The Higgs triplet model extends the SM by the addition of a
complex SU(2)L triplet scalar field ∆ with hypercharge Y = 2, and a
general gauge-invariant renormalizable potential V (Φ, ∆) for ∆ and
the SM Higgs doublet Φ. The components of the triplet field can be
parameterized as

∆ =
1√
2

(

∆+
√

2∆++

v∆ + δ + iξ −∆+

)

. (11.48)

where ∆+ is a singly-charged field, ∆++ is a doubly-charged field, δ
is a neutral CP-even scalar, ξ is a neutral CP-odd scalar, and v∆ is
the triplet VEV. The general scalar potential mixes the doublet and
triplet components. After electroweak symmetry breaking there are
seven physical mass eigenstates, denoted H±±, H±, A, H , and h.

A distinguishing feature of the HTM is that it violates the custodial
symmetry of the SM; thus the ρ parameter deviates from 1 even at
tree level. Letting x denote the ratio of triplet and doublet VEVs, the
tree level expression [363] is:

ρ =
1 + 2x2

1 + 4x2
. (11.49)

The measured value of the ρ parameter then limits [364] the triplet
VEV to be quite small, x. 0.03, or v∆ < 8GeV. This constraint
severely limits the role of the triplet scalar in the EWSB mechanism.

The small VEV of the Higgs triplet in the HTM is a virtue from
the point of view of generating neutrino masses without the necessity
for introducing right-handed neutrino fields. The gauge invariant
dimension four interaction

hνij
ℓT
i C−1iσ2 ∆ ℓj , (11.50)

where ℓi are the lepton doublets, C is the charge conjugation matrix,
and hνij

is a complex symmetric coupling matrix, generates a
Majorana mass matrix for the neutrinos:

mνij
=

√
2hνij

v∆ . (11.51)

This can be combined with the usual neutrino seesaw to produce what
is known as the type-II seesaw [365].

The HTM suggests the exciting possibility of measuring parameters
of the neutrino mass matrix at the LHC. If the doubly-charged
Higgs is light enough and/or its couplings to W+W+ are sufficiently
suppressed, then its primary decay is into same-sign lepton pairs:
H++ → ℓ+i ℓ+j ; from Eq. (11.50) and Eq. (11.51) it is apparent that
these decays are in general lepton-flavor violating with branchings
proportional to elements of the neutrino mass matrix [366].

Precision electroweak data constrain the mass spectrum as well as
the triplet VEV of the HTM [363, 367, 368]. As described in Ref. [368],
these constraints favor a spectrum where H++ is the lightest of the
exotic bosons, and where the mass difference between H+ and H++

is a few hundred GeV. The favored triplet VEV is a few GeV, which
also favors H++ decays into W+W+ over same-sign dileptons.

The Georgi–Machacek model addresses the ρ parameter constraint
directly by building in custodial symmetry. Writing the complex scalar
doublet of the SM as a (2, 2) under SU(2)L × SU(2)R, it is obvious
that the next simplest construction respecting custodial symmetry is
a scalar transforming like a (3, 3) [369]. These nine real degrees of
freedom correspond to a complex electroweak triplet combined with a
real triplet, with the scalar potential required to be invariant under
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SU(2)R. Under the custodial SU(2)L+R, they transform as 1 ⊕ 3 ⊕ 5,
with a CP-even neutral scalar as the custodial singlet (thus matching
the SM Higgs boson), a CP-odd neutral scalar in the custodial triplet,
and another CP-even neutral scalar in the custodial 5-plet.

The scalar components can be decomposed as [370]

Ξ =





χ∗
3 ξ1 χ1

−χ∗
2 ξ2 χ2

χ∗
1 −ξ∗1 χ3



 , (11.52)

where ξ2 is a real scalar and the others are complex scalars. Linear
combinations of these account for the neutral custodial singlet, a
neutral and singly-charged field making up the custodial triplet, and
neutral, singly-charged, and doubly-charged fields making up the
custodial 5-plet.

When combined with the usual SM doublet field Φ, the electroweak
scale v is now related to the doublet and triplet VEVs by

v2 = v2
Φ + 8v2

Ξ . (11.53)

Note that the GM triplets by themselves are sufficient to explain
electroweak symmetry breaking and the existence of a 125GeV
neutral boson along with a custodial triplet of Goldstone bosons;
the complex doublet field in the GM model is required to generate
fermion masses via the usual dimension four Yukawa couplings. This
raises the question of whether one can rule out the possibility that the
125GeV boson is the neutral member of a custodial 5-plet rather than
a custodial singlet, without invoking decays to fermions. A conclusive
answer is given by observing that the ratio of the branching fractions
to W versus Z bosons is completely determined by the custodial
symmetry properties of the boson. For a custodial 5-plet, the ratio of
the signal strength to WW over that to ZZ is predicted to be 1/4
that of a SM Higgs boson [369, 371], and thus already ruled out by the
experimental results presented in Section VI.

Another interesting general feature of Higgs triplet models is that,
after mixing, the SM-like neutral boson can have stronger couplings to
WW and ZZ than predicted by the SM [362, 372]; this is in contrast
to mixing with additional doublets and singlet, which can only reduce
the WW and ZZ couplings versus the SM. This emphasizes that LHC
Higgs data cannot extract model independent coupling strengths for
the Higgs boson [230, 373].

Because of the built-in custodial symmetry, the triplet VEV in the
GM model can be large compared to the doublet VEV. The custodial
singlet neutral boson from the triplets mixes with the neutral boson
from the doublet. Two interesting special cases are (i) the triplet
VEV is small and the 125GeV boson is SM-like except for small
deviations, and (ii) the 125GeV boson is mostly the custodial singlet
neutral boson from the electroweak triplets. The phenomenology
of the doubly-charged and singly-charged bosons is similar to that
of the HTM. The constraints on the GM model from precision
electroweak data, LEP data, and current LHC data are described in
Refs. [370, 374–377].

VII.6. Composite Higgs models

Within the SM, EWSB is posited but has no dynamical origin.
Furthermore, the Higgs boson appears to be unnaturally light. A
scenario that remedies these two catches is to consider the Higgs
boson as a bound state of new dynamics becoming strong around
the weak scale. The Higgs boson can be made significantly lighter
than the other resonances of the strong sector if it appears as a
pseudo-Nambu–Goldstone boson, see Refs. [15, 16, 378] for recent
reviews.

VII.6.1. Little Higgs models

The idea behind the Little Higgs models [379, 380] is to identify the
Higgs doublet as a (pseudo) Nambu–Goldstone boson while keeping
some sizable non-derivative interactions, in particular a largish Higgs
quartic interaction. By analogy with QCD where the pions π±,0

appear as Nambu–Goldstone bosons associated to the breaking of
the chiral symmetry SU(2)L × SU(2)R/SU(2), switching on some

interactions that break explicitly the global symmetry will generate
masses for the would-be massless Nambu–Goldstone bosons of the
order of gΛG/H/(4π), where g is the coupling of the symmetry
breaking interaction and ΛG/H = 4πfG/H is the dynamical scale of

the global symmetry breaking G/H . In the case of the Higgs boson,
the top Yukawa interaction or the gauge interactions themselves will
certainly break explicitly (part of) the global symmetry since they act
non-linearly on the Higgs boson. Therefore, obtaining a Higgs mass
around 100GeV would demand a dynamical scale ΛG/H of the order
of 1 TeV, which is known to lead to too large oblique corrections.
Raising the strong dynamical scale by at least one order of magnitude
requires an additional selection rule to ensure that a Higgs mass is
generated at the 2-loop level only

m2
H =

g2

16π2
Λ2

G/H → m2
H =

g2
1g2

2

(16π2)2
Λ2

G/H (11.54)

The way to enforce this selection rule is through a “collective breaking”
of the global symmetry:

L = LG/H + g1L1 + g2L2. (11.55)

Each interaction L1 or L2 individually preserves a subset of the global
symmetry such that the Higgs remains an exact Nambu–Goldstone
boson whenever either g1 or g2 is vanishing. A mass term for the Higgs
boson can be generated only by diagrams involving simultaneously
both interactions. At one-loop, such diagram are not quadratically
divergent, so the Higgs mass is not UV sensitive. Explicitly, the
cancellation of the SM quadratic divergences is achieved by a set
of new particles around the Fermi scale: gauge bosons, vector-like
quarks, and extra massive scalars, which are related, by the original
global symmetry, to the SM particles with the same spin. Contrary
to supersymmetry, the cancellation of the quadratic divergences is
achieved by same-spin particles. These new particles, with definite
couplings to SM particles as dictated by the global symmetries of the
theory, are perfect goals for the LHC.

The simplest incarnation of the collective breaking idea, the
so-called littlest Higgs model, is based on a non-linear σ-model
describing the spontaneous breaking SU(5) down to SO(5). A
subgroup SU(2)1 × U(1)1 × SU(2)2 × U(1)2 is weakly gauged. This
model contains a weak doublet, that is identified with the Higgs
doublet, and a complex weak triplet whose mass is not protected
by collective breaking. Other popular little Higgs models are based
on different coset spaces: minimal moose (SU(3)2/SU(3)) [381],
the simplest little Higgs (SU(3)2/SU(2)2) [382], the bestest little
Higgs (SO(6)2/SO(6)) [383] etc. For comprehensive reviews, see
Refs. [384, 385].

Generically, oblique corrections in Little Higgs models are reduced
either by increasing the coupling of one of the gauge groups (in the
case of product group models) or by increasing the masses of the W
and Z partners, leading ultimately to a fine-tuning of the order of
a few percents (see for instance Ref. [386] and references therein).
The compatibility of Little Higgs models with experimental data is
significantly improved when the global symmetry involves a custodial
symmetry as well as a T -parity [387] under which, in analogy with
R-parity in SUSY models, the SM particles are even and their partners
are odd. Such Little Higgs models would therefore appear in colliders
as jet(s) with missing transverse energy [388] and the ATLAS and
CMS searches for squarks and gluinos [389] can be recast to obtain
limits on the masses of the heavy vector-like quarks. The T-even
top partner, with an expected mass below 1TeV to cancel the top
loop quadratic divergence without too much fine-tuning, would decay
dominantly into a t + Z pair or into a b + W pair or even into t + H .
The latest CMS and ATLAS direct searches [390] for vector-like top
partners put a lower bound around 700GeV on their mass, excluding
the most natural region of the parameter space of these models, i.e.,
there is still fine-tuning at the per cent level.

The motivation for Little Higgs models is to solve the little
hierarchy problem, i.e., to push the need for new physics (responsible
for the stability of the weak scale) up to around 10TeV. Per se, Little
Higgs models are effective theories valid up to their cutoff scale ΛG/H .
Their UV completions could either be weakly or strongly coupled.
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Table 11.18: Global symmetry breaking patterns and the
corresponding Goldstone boson contents of the SM, the minimal
composite Higgs model, the next to minimal composite Higgs
model, and the minimal composite two Higgs doublet model.
Note that the SU(3) model does not have a custodial invariance.
a denotes a CP-odd scalar while h and H are CP-even scalars.

Model Symmetry Pattern Goldstone’s

SM SO(4)/SO(3) WL, ZL

– SU(3)/SU(2)×U(1) WL, ZL, H

MCHM SO(5)/SO(4) WL, ZL, H

NMCHM SO(6)/SO(5) WL, ZL, H, a

MC2HM SO(6)/SO(4)×SO(2) WL, ZL, h, H, H±, a

VII.6.2. Models of partial compositeness

The Higgs boson is a special object. Even in composite models,
it cannot appear as a regular resonance of the strong sector without
endangering the viability of the setup when confronted to data. The
way out is that the Higgs appears as a pseudo Nambu–Goldstone
boson: the new strongly coupled sector is supposed to be invariant
under a global symmetry G spontaneously broken to a subgroup H
at the scale f . To avoid conflict with EW precision measurements, it
is better if the strong interactions themselves do not break the EW
symmetry, hence the SM gauge symmetry itself should be contained
in H . See Table 11.18 for a few examples of coset spaces.

The SM (light) fermions and gauge bosons cannot be part of the
strong sector itself since LEP data have already put stringent bounds
on the compositeness scale of these particles far above the TeV scale.
The gauge bosons couple to the strong sector by a weak gauging
of an SU(2)×U(1) subgroup of the global symmetry G. Inspiration
for the construction of such models comes from the AdS/CFT
correspondence: the components of a gauge field along extra warped
space dimension can be interpreted as the Goldstone boson resulting
from the breaking of global symmetry of the strong sector. The
couplings of the SM fermions to the strong sector could a priori
take two different forms: (i) a bilinear coupling of two SM fermions
to a composite scalar operator, O, of the form L = y q̄LuRO + hc
in simple analogy with the SM Yukawa interactions. This is the
way fermion masses were introduced in Technicolor theories and it
generically comes with severe flavor problems and calls for extended
model building gymnastics [391] to circumvent them; (ii) a linear mass
mixing with fermionic vector-like operators: L = λL q̄LQR +λR ŪLuR.
Q and U are two fermionic composite operators of mass MQ and MU .
Being part of the composite sector, they can have a direct coupling
of generic order Y∗ to the Higgs boson. In analogy with the photon-ρ
mixing in QCD, once the linear mixings are diagonalized, the physical
states are a linear combination of elementary and composite fields.
Effective Yukawa couplings are generated and read for instance for the
up-type quark

y = Y∗ sin θL sin θR (11.56)

where sin θi = λi/
√

M2
U + λ2

i , i = L, R, measure the amount of

compositeness of the SM left- and right-handed up-type quark. If the
strong sector is flavor-anarchic, i.e., if the couplings of the Higgs to the
composite fermions does not exhibit any particular flavor structure,
the relation Eq. (11.56) implies that the light fermions are mostly
elementary states (sin θi ≪ 1), while the third generation quarks need
to have a sizable degree of compositeness. The partial compositeness
paradigm offers an appealing dynamical explanation of the hierarchies
in the fermion masses. In fact, assuming the strong sector to be
almost conformal above the confinement scale, the low-energy values
of the mass-mixing parameters λL,R are determined by the (constant)
anomalous dimension of the composite operator they mix with. If the
UV scale at which the linear mixings are generated is large, then
O(1) differences in the anomalous dimensions can generate naturally
large hierarchies in the fermion masses via renormalization group
running [392]. While the introduction of partial compositeness greatly
ameliorated the flavor problem of the original composite Higgs models,
nevertheless it did not solve the issue completely, at least in the case
where the strong sector is assumed to be flavor-anarchic [393]. While

the partial compositeness set-up naturally emerges in models built
in space-times with extra dimensions, no fully realistic microscopic
realization of partial compositeness has been proposed in the literature.

Another nice aspect of the partial compositeness structure is
the dynamical generation of the Higgs potential. The Higgs being
a pseudo-Nambu–Goldstone boson, its mass does not receive any
contribution from the strong sector itself but it is generated at the
one-loop level via the couplings of the SM particles to the strong
sector since these interactions are breaking the global symmetries
under which the Higgs doublet transforms non-linearly. The leading
contribution to the potential arises from top loops and it takes the
form

V (H) =m4
ρ
sin θtL sin θtR

16π2
(α cos(H/f)+ β sin2(H/f)

+ γ sin4(H/f)
)

,
(11.57)

where α, β, γ are numbers of order 1 subject to selection rules
following the transformation properties of the top quark under the
global symmetries of the strong sector10, and mρ ≈ gρf is the typical
mass scale of the strong sector resonances. The gauge contribution to
the potential takes the form (g denotes the SU(2) gauge coupling)

m4
ρ

g2/g2
ρ

16π2
sin2(H/f), (11.58)

which is parametrically suppressed with respect to the top contribution
by g2/(gρyt). The gauge term is always positive, and cannot trigger
EWSB by itself. When α = 0, the minimization condition of the
potential simply reads

sin2 〈H〉
f

= − β

2γ
, (11.59)

which implies that the natural expectation is that the scale f is
generically of the order of the weak scale. Obtaining v ≪ f , as
required phenomenologically, requires some degree of tuning, which
scales like ξ ≡ v2/f2. A mild tuning of the order of 10% (ξ ≈ 0.1)
is typically enough to comply with electroweak precision constraints.
This is an important point: in partial compositeness models, the entire
Higgs potential is generated at one loop, therefore the separation
between v and f can only be obtained at a price of a tuning. This
marks a difference with respect to the Little Higgs models, which
realize a parametric hierarchy between the quartic and mass terms
through the collective symmetry breaking mechanism. In fact in Little
Higgs models, the quartic coupling is a tree-level effect, leading to a
potential

V (H) ≈ g2
SM

16π2m2
ρH2 + g2

SMH4, (11.60)

where gSM generically denotes the SM couplings. The minimization
condition now reads v2/f2 ∼ g2

ρ/(16π2), therefore v is formally loop
suppressed with respect to f . This is the major achievement of the
Little Higgs constructions, which however comes at the price of the
presence of sub-TeV vectors carrying EW quantum numbers and
therefore giving rise generically to large oblique corrections to the
propagators of the W and the Z gauge bosons.

After minimization, the potential Eq. (11.57) leads to an estimate
of the Higgs mass as

m2
H ≈ g3

ρ yt2π2v2. (11.61)

It follows that the limit f → ∞, i.e. ξ → 0, is a true decoupling
limit: all the resonances of the strong sector become heavy but
the Higgs whose mass is protected by the symmetries of the coset
G/H . When compared to the experimentally measured Higgs mass,
this estimate puts an upper bound on the strength of the strong

10 For instance in the SO(5)/SO(4) composite models, when the top
quark is embedded into a spinorial representation of SO(5), then γ = 0
and when it is part of a 5, 10 or 14 representation, α = 0 as it can be
inferred by looking at the structure of the H-dependent invariants built
out of these representations [394]. The coefficient γ also generically
comes with an extra power of the top compositeness fractions.
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interactions: gρ <∼ 2. In this limit of not so large coupling, the
Higgs potential receives additional contributions. In particular, the
fermionic resonances in the top sector which follow from the global
symmetry structure of the new physics sector can help raising the
Higgs mass. For instance in the minimal SO(5)/SO(4) model, using
some dispersion relation techniques, one obtains [395]

m2
H ≈ 6

π2

m2
t

f2

m2
Q4

m2
Q1

m2
Q1

− m2
Q4

log

(

mQ1

mQ4

)

(11.62)

where Q4 and Q1 are fermionic color resonances transforming as a
weak bi-doublet of hypercharge Y = 1/6 and Y = 7/6 and a weak
singlet with hypercharge Y = −1/3. Therefore a 125GeV mass can
be obtained if at least one of the fermionic resonances is lighter than
∼ 1.4 f . As in supersymmetric scenarios, the top sector is playing
a crucial role in the dynamics of EWSB and can provide the first
direct signs of new physics. The direct searches for these top partners,
in particular the ones with exotic electric charges 5/3, are already
exploring the natural parameter spaces of these models [390, 396, 397].

The main physics properties of a pseudo Nambu–Goldstone Higgs
boson can be captured in a model-independent way by a few number
of higher-dimensional operators. Indeed, the strong dynamics at the
origin of the composite Higgs singles out a few operators among the
complete list presented earlier in Section VI: these are the operators
that involve extra powers of the Higgs doublets and they are therefore
generically suppressed by a factor 1/f2 as opposed to the operators
that involve extra derivatives or gauge bosons and are suppressed
by a factor 1/(g2

ρf2). The relevant effective Lagrangian describing a
strongly interacting light Higgs is:

LSILH =
cH

2f2

(

∂µ

(

Φ†Φ
))2

+
cT

2f2

(

Φ†
↔
DµΦ

)2

− c6λ

f2

(

Φ†Φ
)3

+





∑

f

cf yf

f2
Φ†Φf̄LΦfR + h.c.



 .

(11.63)
Typically, these new interactions induce deviations in the Higgs
couplings that scale like O(v2/f2), hence the measurements of the
Higgs couplings can be translated into some constraints on the
compositeness scale, 4πf , of the Higgs boson. The peculiarity of
these composite models is that, due to the Goldstone nature of the
Higgs boson, the direct couplings to photons and gluons are further
suppressed and generically the coupling modifiers defined in Section VI
scale like

κW,Z,f ∼ 1 + O
(

v2

f2

)

,

κZγ ∼ O
(

v2

f2

)

,

κγ,g ∼ O
(

v2

f2 × y2
t

g2
ρ

)

,

(11.64)

where gρ denotes the typical coupling strength among the states of
the strongly coupled sector and yt is the top Yukawa coupling, the
largest interaction that breaks the Goldstone symmetry. The κZγ,γ,g
coupling modifiers are not generated by the strong coupling operators
of Eq. (11.63) but some subleading form-factor operator generated by
loops of heavy resonances of the strong sector. The coupling modifiers
also receive additional contributions from the other resonances of the
strong sector, in particular the fermionic resonances of the top sector
that are required to be light to generate a 125GeV Higgs mass. Some
indirect information on the resonance spectrum could thus be inferred
by a precise measurement of the Higgs coupling deviations. However,
it was realized [398] that the task is actually complicated by the fact
that, in the minimal models, these top partners give a contribution to
both κt (resulting from a modification of the top Yukawa coupling)
and κγ and κg (resulting from new heavy particles running into the
loops) and the structure of interactions are such that the net effect
vanishes for inclusive quantities like σ(gg → H) or Γ(H → γγ) as
a consequence of the Higgs low energy theorem [24, 25, 231]. So one
would need to rely on differential distribution, like the Higgs pT

distribution [399], to see the top partner effects in Higgs data [400].
The off-shell channel gg → h∗ → 4ℓ [401] and the double Higgs
production gg → hh [402] can also help to resolve the gluon loop and
separate the top and top-partner contributions.

VII.6.3. Minimal composite Higgs models

The minimal composite Higgs models (MCHM) are concrete
examples of the partial compositeness paradigm. The Higgs doublet
is described by the coset space SO(5)/SO(4) where a subgroup
SU(2)L× U(1)Y is weakly gauged under which the four Goldstone
bosons transform as a doublet of hypercharge 1. There is some
freedom on how the global symmetry is acting on the SM fermions:
in MCHM4 [394] the quarks and leptons are embedded into spinorial
representations of SO(5), while in MHCM5 [403] they are part of
fundamental representations (it might also be interesting phenomeno-
logically to consider larger representations like MCHM14 [404] with
the SM fermions inside a representation of dimension 14). The
non-linearly realized symmetry acting on the Goldstone bosons leads
to general predictions of the coupling of the Higgs boson to the EW
gauge bosons. For instance, it can be shown that the quadratic terms
in the W and Z bosons read

m2
W (H)

(

WµWµ +
1

2 cos2 θW
ZµZµ

)

with mW (H) =
gf

2
sin

H

f
. Expanding around the EW vacuum, the

expression of the weak scale is:

v = f sin(〈H〉/f), (11.65)

and the values of the modified Higgs couplings to the W and Z:

gHV V =
2m2

V

v

√

1 − v2/f2 , gHHV V =
2m2

V

v2 (1 − 2v2/f2) . (11.66)

Note that the Higgs couplings to gauge bosons is always suppressed
compared to the SM prediction. This is a general result [405] that
holds as long as the coset space is compact.

The Higgs couplings to the fermions depend on the representation
which the SM fermions are embedded into. For the most commonly
used embeddings, they take the following forms

MCHM4 : gHff =
mf

v

√

1 − v2/f2 ,

MCHM5 : gHff =
mf

v

1 − 2v2/f2

√

1 − v2/f2
,

MCHM14 : gHff =
mf

v

(

1 + A(M1,4,9)
v2

f2
+ O(v4/f4)

)

,

with A(M1,4,9) =
3M1M4 − 11M1M9 + 8M4M9

2M9(M1 − M4)
.

(11.67)
While, in MHCM4 and MCHM5, the modifications of the couplings
depend only on the Higgs compositeness scale, in MCHM14 the
leading corrections depend also on the mass spectrum of the
resonances parametrized by M1, M4 and M9 [404]. This is due to the
fact that more than one SO(5) invariant gives rise to SM fermion
masses. The (κV , κf ) experimental fit of the Higgs couplings can
be used to derive a lower bound on the Higgs compositeness scale
4πf >∼ 9TeV, which is less stringent than the indirect bound obtained
from EW precision data, 4πf >∼ 15TeV [406] but more robust and less
subject on assumptions [407].

VII.6.4. Twin Higgs models

In all composite models presented above, the particles responsible
for canceling the quadratic divergences in the Higgs mass are
charged under the SM gauge symmetries. In particular, the top
partner carries color charge, implying a reasonably large minimal
production cross section at the LHC. An alternative scenario, which
is experimentally quite challenging and might explain the null result
in various new physics searches, is the case nowadays referred to
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as “neutral naturalness” [20, 21], where the particles canceling the
1-loop quadratic divergences are neutral under the SM. The canonical
example for such theories is the Twin Higgs model of [20]. This
is an example of a pseudo-Goldstone boson Higgs theory, with an
approximate global SU(4) symmetry broken to SU(3). The Twin
Higgs model is obtained by gauging the SU(2)A × SU(2)B subgroup
of SU(4), where SU(2)A is identified with the SM SU(2)L, while
SU(2)B is the twin SU(2) group. Gauging this subgroup breaks the
SU(4) symmetry explicitly, but quadratically divergent corrections
given do not involve the Higgs boson when the gauge couplings of
the two SU(2) subgroups are equal, gA = gB . The SU(4) → SU(3)
breaking will also result in the breaking of the twin SU(2)B group
and as a result three of the seven Goldstone bosons will be eaten,
leaving 4 Goldstone bosons corresponding to the SM Higgs doublet
h. In fact imposing the Z2 symmetry on the full model will ensure
the cancellation of all 1-loop quadratic divergences to the Higgs mass.
Logarithmically divergent terms can however arise for example from
gauge loops, leading to a Higgs mass of order g2f/4π, which is of
the order of the physical Higgs mass for f ∼ 1 TeV. The quadratic
divergences from the top sector can be eliminated if the Z2 protecting
the Higgs mass remains unbroken by the couplings that result in
the top Yukawa coupling. This can be achieved by introducing top
partners charged under a twin SU(3)c. In this case the quadratic
divergences are cancelled by top partners that are neutral under the
SM gauge symmetries.

Twin Higgs models are low-energy effective theories valid up to
a cutoff scale of order Λ ∼ 4πf ∼ 5–10TeV, beyond which a UV
completion has to be specified. The simplest such possibility is to also
make the Higgs composite, and UV complete the twin-Higgs model via
gauge and top partners at masses of the order of a few TeV. A concrete
implementation is the holographic twin Higgs model [408], which also
incorporates a custodial symmetry to protect the T -parameter from
large corrections. It is based on a warped extra dimensional theory
with a bulk SO(8) gauge group, which incorporates the SU(4) global
symmetry discussed above enlarged to contain the SU(2)L×SU(2)R
custodial symmetry. In addition the bulk contains either a full SU(7)
group or an SU(3) × SU(3) × U(1) × U(1) × Z2 subgroup of it to
incorporate QCD, its twin, and hypercharge. The breaking on the
UV brane is to the SM and the twin SM symmetries, while on the
IR brane SO(8) → SO(7), giving rise to the 7 Goldstone bosons,
three of which will be again eaten by the twin W, Z. The main
difference compared to ordinary composite Higgs models is that in
composite twin Higgs models the cancellation of the one-loop quadratic
divergences is achieved by the twin partners of order 700GeV– 1 TeV,
which are uncharged under the SM gauge group. This allows the IR
scale of the warped extra dimension to be raised to the multi-TeV
range without reintroducing the hierarchy problem. The role of the
composite partners is to UV complete the theory, rather than the
cancellation of the one-loop quadratic divergences. For more details
about the composite twin Higgs models, see Refs. [409].

VII.7. The Higgs boson as a dilaton

The possibility that the new particle H0 discovered at the LHC is
in fact the Goldstone boson associated to the spontaneous breaking of
scale invariance at a scale f attracted some attention [18, 19] but is
now challenged by the fact that all its properties are in good agreement
with those predicted for the SM Higgs. And this scenario now requires
rather involved model-building engineering. The first issue is the fact
that the observed scalar couplings are close to their SM values. In
a generic theory of spontaneously broken scale invariance, order one
shifts are possible, and indeed expected in most models. Also, the
apparent hierarchy between the light scalar and the cutoff of the
dilaton effective theory is not reconcilable with the general walking
technicolor (or Higgsless) type scenario unless a tuning is imposed.

The general couplings of a wide class of dilaton models are given

(at leading order in a low-energy theorem limit for dilatons) by
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where Γij is a matrix that depends upon anomalous dimensions of
operators in the conformal theory that give rise to fermion masses,
and the terms ∆β are the differences in the beta functions of
electromagnetism or QCD at scales above and below the scale at which
conformal symmetry is spontaneously broken. The SM low energy
theorem limit for the SM Higgs is obtained from this expression by
taking

f = v, Γij = I3×3, ∆βem = βem
top + βem

W , ∆βQCD = β
QCD
top .

(11.69)
It is unclear why these relations should be approximately realized in
a generic conformal field theory, as must be the case to be consistent
with current data and allow for a scalar with mass of about 125GeV.
For example, in warped models of electroweak symmetry breaking
(AdS/CFT duals to theories with spontaneously approximate broken
conformal invariance), the ratio v/f is a function of the geometry,
and is suppressed when the 5D theory is perturbative, contrary to the
experimental result that the v/f ratio should be close to 1, implying
that the underlying CFT may not be a large N CFT.

An additional complication is that the mass of the dilaton is
expected to be, along with many other resonances, around the cutoff
scale of the strongly interacting theory responsible for breaking
the scale invariance spontaneously. Suppression of the dilation mass
either requires a tuning of order v2/Λ2 ∼ percent, or a very special
conformal dynamics where the beta function of the interaction leading
to the scale invariance breaking remains small over a large region of
couplings [410].

VII.8. Searches for signatures of extended Higgs sectors

The measurements described in Section III have established the
existence of one state of the electroweak symmetry breaking sector,
compatible with a SM Higgs boson, but not that it is the only one.

Various classes of models beyond the SM discussed above require
extended Higgs sectors. These models, and in particular the MSSM
and the NMSSM serve as guiding principle of the experimental
searches for additional scalar states beyond the SM. However these
searches are made as model-independent as possible and can be
summarized in the following classes: (i) the search for an additional
CP-even state mostly in the high mass domain decaying to vector
bosons, which would correspond to the heavy CP-even state in a
generic 2HDM where the light state would be the discovered H or
a generic additional singlet; (ii) the search for a state in the high
mass domain decaying to pairs of fermions, which would correspond a
CP-odd A and the heavy CP-even state H in a generic 2HDM; (iii)
the search for charged Higgs bosons, which also appear in generic
2HDMs; (iv) the search for a CP-odd state a in the low mass region
which appears in the NMSSM; and (v) doubly charged Higgs which
are motivated in extensions of the Higgs sector with triplets.

(i) Searches for an additional CP-even state

(a) Exclusion limits from LEP

The LEP searches for the SM Higgs boson put a lower limit of
114GeV on its mass, but also have relevance for non-SM Higgs bosons.
These searches were also interpreted as 95% CL upper bounds on
the ratio of the coupling gHZZ to its SM prediction as a function of
the Higgs boson mass [125]. Among the MSSM new benchmarks, the
low-mH is one example which is disfavored by these searches at low
mass, and nearly ruled out by current direct constraints and charged
Higgs limits from LHC. Another example is the light CP-even Higgs
boson of the NMSSM which is constrained to project predominantly
onto the EW singlet component. An additional motivation for these
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Table 11.19: Summary of references to searches for additional
states from extended Higgs sectors, where (BBr) denotes the
BaBar experiment, (TeV) the Tevatron experiments.

ATLAS CMS Other

experiments

CP-even H

H → γγ — [415] —

H → Zγ [171] [170] —

H → ZZ → 4ℓ [470] [471] —

H → ZZ → ℓℓνν [472] [473] —

H → ZZ → ℓℓqq [474, 475] [476] —

H → WW → ℓνℓν [477] [471] —

H → WW → ℓνℓν (2HDM) [414] [471] —

H → WW → ℓνqq′ [478] [479, 480] —

H → hh → bbττ, bbγγ, 4b, γγWW ∗ [412] [413, 411] —

CP-odd A (and/or CP-even H)

H, A → τ+τ− [429] [430] [427, 428]-TeV

[481]-LHCb

H, A → µ+µ− [429] — —

H, A → tt [435] —

H, A → bb — [431] [425, 426]-TeV

A → hZ → bbℓℓ, ℓℓττ, ννbb [438] [411] —

Charged H±

H±
→ τ±ν [447] [449] —

H±
→ cs [451] [452] —

H±
→ tb [450] [449] —

H±
→ W±Z [453] [449] —

CP-odd NMSSM a

a → µ+µ− [464] [465] —

h → aa → 4µ, 4τ, 2µ2τ, 4γ [482, 466] [467, 468] [456]-TeV,

[469]-LEP

Υ1s,3s → aγ — — [461, 462]-BBr

Doubly Charged H± [483] [484] —

scenarios is given by the slight excess observed at LEP [125] at a Higgs
boson mass hypothesis of approximately 98GeV. The light CP-even
Higgs boson h was also searched for in association with the CP-odd
A, these searches are described in Section III.

(b) Searches at the LHC

The searches for the SM Higgs boson before the discovery covered
a wide range of mass hypotheses. Until recently the range of
investigation at LHC was from 100GeV to 600GeV. It has been
extended to masses of up to 1TeV. At the Tevatron this mass range
was limited to up to 200GeV. Since the discovery, the SM Higgs boson
searches are reappraised to search for a heavy CP-even state. This
state could be the heavy CP-even Higgs boson of a 2HDM, or a generic
additional singlet. In both cases the natural width of the additional
H state can be very different from that of the SM Higgs boson. To
preserve unitarity of the longitudinal vector boson scattering and the
longitudinal vector boson scattering into fermion pairs, the couplings
of the additional CP-even Higgs boson to gauge bosons and fermions
should not be too large and should constrain the natural width to be
smaller than that of a unique Higgs boson at high mass with couplings
to fermions and gauge bosons as predicted by the SM (and provided
that trilinear and quartic couplings are not too large and that no new
state affects the heavy state total width). It is therefore reasonable
to consider total widths for the high mass CP-even state smaller than
the equivalent SM width. For the sake of generality these searches
should be done as a function of Higgs boson mass and total width.
Until recently only two cases have been investigated: (i) the SM width
using the complex pole scheme (CPS), and (ii) the narrow width
approximation.

Searches for the Higgs boson in the H → γγ, H → Zγ,
H → W (∗)W (∗) in the ℓνℓν and ℓνqq channels, and the H → Z(∗)Z(∗)

searches in the 4ℓ, ℓℓqq and ℓℓνν channels have also been done, but in
most cases are simple reinterpretations of the SM Higgs search in the
CPS scheme. Recent references are summarized in Table 11.19.

(d) Searches for an additional resonance decaying to a pair of h

In addition to the rare and expected Higgs pair production mode,
high mass CP-even Higgs bosons can be searched for in the resonant
double Higgs mode. Searches for such processes, where the Higgs
boson is used as a tool for searches for new phenomena beyond
the SM, have been carried out in four distinct modes depending on
the subsequent decays of each Higgs boson. The ATLAS and CMS
Collaborations have searched for the H → hh → bbττ [411, 412]
and bbγγ [413, 412] final states. The ATLAS Collaboration has also
searched for the H → hh → 4b and γγWW ∗ final states [412]. For
masses hypotheses of an additional Higgs boson below 500 GeV, the
two dominant search channels are the bbγγ and the bbττ . For masses
above 500 GeV, the most powerful search channel is the 4b final state.
The ATLAS Collaboration has also performed a combination of these
search results assuming that the Higgs boson has standard decay
rates [412].

(d) Searches for an additional state with the presence of h

In the post-discovery era, analyses in general need to take into
account the presence of the newly discovered state. For searches with
sufficiently high resolution of additional states non degenerate in mass,
the strength of the observed state and limits on the signal strength of a
potential additional state can be set independently, as discussed in the
next section. However in some cases, such as when a channel does not
have a sufficiently fine mass resolution or when the states are nearly
degenerate in mass, specific analyses need to be designed. There are
two examples of such analyses: (i) the search for an additional state

in the H → W (∗)W (∗) → ℓνℓν channel in ATLAS and (ii) the search
for nearly degenerate states in the H → γγ channel with the CMS
detector.

The search in the H → W (∗)W (∗) → ℓνℓν channel, for an
additional state is done using a boosted decision tree combining
several discriminating kinematic characteristics to separate the signal
from the background and a high mass signal H from the lower mass
state h [414]. A simultaneous fit of the two states h and H is then
made to test the presence of an additional state. In this case, the
usual null hypothesis of background includes including the SM signal.

The CMS search for nearly degenerate mass states decaying to a
pair of photons [415] is more generic and could for instance apply to
CP-odd Higgs bosons as well. It consists of a fit to the diphoton mass
spectrum using two nearly degenerate mass templates.

(e) Type I 2HDM and fermiophobia

The measurements of coupling properties of H indirectly exclude
that the discovered state is fermiophobic. However, the presence of
an additional fermiophobic state, as predicted by Type I 2HDMs,
is not excluded. Prior to the discovery, ATLAS and CMS have
performed searches for a fermiophobic Higgs boson, i.e. produced
through couplings with vector bosons only (VBF and VH) and
decaying in hf → γγ, optimized for fermiophobic signatures in the
diphoton channel [416, 417]. CMS has further combined these results
with searches for hf → W+W− and hf → ZZ assuming fermiophobic
production and decay [418]. CMS excludes a fermiophobic Higgs
boson in the range 110GeV < mH < 188GeV at the 95% C.L.

(f) Interpretation benchmarks in the light of the discovered Higgs
boson

Two specific benchmark scenarios driven by unitarity relations are
proposed in Ref. [44], assuming the existence of an additional state
h′ with coupling scale factors, i.e., deviations from the couplings
predicted for the SM Higgs at the same mass, denoted κ′V and κ′F for
the couplings of h′ to vector bosons and fermions respectively. The
gauge boson scattering unitarity then yields the following sum rule

κ2
V + κ′2V = 1 (11.70)
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and the unitarization of the gauge boson scattering to fermions yields

κV · κF + κ′V · κ′F = 1 (11.71)

The two benchmark scenarios are then defined as follows: (i) a
single coupling scale factor is assumed for the gauge bosons and the
fermions, with an additional parameter to take into account decays
to new states; (ii) two parameters are used to describe independently
the couplings to fermions and the couplings to vector bosons. A direct
application of the latter can be done in the CP-even sector of the
type-I 2HDM.

(ii) Searches for additional neutral states (φ ≡ h, H, A)
decaying to fermions

(a) Exclusion limits from LEP

In e+e− collisions at LEP centre-of-mass energies, the main
production mechanisms of the neutral MSSM Higgs bosons were the
Higgs-strahlung processes e+e− → hZ, HZ and the pair production
processes e+e− → hA, HA, while the vector boson fusion processes
played a marginal role. Higgs boson decays to bb̄ and τ+τ− were used
in these searches.

The searches and limits from the four LEP experiments are
described in Refs. [419, 420]. The combined LEP data did not contain
any excess of events which would imply the production of a Higgs
boson, and combined limits were derived [421]. For mA ≫ MZ the
limit on mh is nearly that of the SM searches, as sin2(β − α) ≈ 1.
For high values of tanβ and low mA (mA ≤ mmax

h ), the e+e− → hA
searches become the most important, and the lightest Higgs h is non
SM-like. In this region, the 95% CL mass bounds are mh > 92.8GeV
and mA > 93.4GeV. In the mh-max. scenario, values of tanβ from
0.7 to 2.0 are excluded taking mt = 174.3GeV, while a much larger
tanβ region is excluded for other benchmark scenarios such as the
no-mixing one.

A flavor-independent limit for Higgs bosons in the Higgs-strahlung
process at LEP has also been set at 112GeV [422].

Neutral Higgs bosons may also be produced by Yukawa processes
e+e− → ffφ, where the Higgs particle φ ≡ h, H , A, is radiated off
a massive fermion (f ≡ b or τ±). These processes can be dominant
at low masses, and whenever the e+e− → hZ and hA processes are
suppressed. The corresponding ratios of the ffh and ffA couplings
to the SM coupling are sinα/ cosβ and tanβ, respectively. The LEP
data have been used to search for bb bb, bbτ+τ−, and τ+τ− τ+τ− final
states [423, 424]. Regions of low mass and high enhancement factors
are excluded by these searches.

The searches for the Higgs boson at LEP also included the case
where it does not predominantly decay to a pair of b quarks. All
four collaborations conducted dedicated searches for the Higgs boson
with reduced model dependence, assuming it is produced via the
Higgs-strahlung process, and not addressing its flavor of decay, a lower
limit on the Higgs mass of 112.9GeV is set by combining the data of
all four experiments [422].

Using an effective Lagrangian approach and combining results
sensitive to the hγγ, hZγ and hZZ couplings, an interpretation of
several searches for the Higgs boson was made and set a lower limit of
106.7GeV on the mass of a Higgs boson that can couple anomalously
to photons [422].

(b) Searches at the Tevatron and LHC

The best sensitivity is in the regime with low to moderate mA and
with large tanβ which enhances the couplings of the Higgs bosons
to down-type fermions. The corresponding limits on the Higgs boson
production cross section times the branching ratio of the Higgs boson
into down-type fermions can be interpreted in MSSM benchmark
scenarios [259]. If φ = A, H for mA > mmax

h , and φ = A, h for
mA < mmax

h , the most promising channels at the Tevatron are the
inclusive pp → φ → τ+τ− process, with contributions from both
gg → φ and bbφ production, and bbφ, φ → τ+τ− or φ → bb, with bττ
or three tagged b-jets in the final state, respectively. Although Higgs

boson production via gluon fusion has a higher cross section in general
than via associated production, it cannot be used to study the φ → bb
decay mode since the signal is overwhelmed by the QCD background.

The CDF and D0 collaborations have searched for neutral Higgs
bosons produced in association with bottom quarks and which decay
into bb [425, 426], or into τ+τ− [427,428]. The most recent searches in
the bbφ channel with φ → bb analyze approximately 2.6 fb−1 of data
(CDF) and 5.2 fb−1 (D0), seeking events with at least three b-tagged
jets. The cross section is defined such that at least one b quark not
from φ decay is required to have pT > 20GeV and |η| < 5. The
invariant mass of the two leading jets as well as b-tagging variables
are used to discriminate the signal from the backgrounds. The QCD
background rates and shapes are inferred from data control samples,
in particular, the sample with two b-tagged jets and a third, untagged
jet. Separate-signal hypotheses are tested and limits are placed on
σ(pp → bbφ) × BR(φ → bb̄). A local excess of approximately 2.5σ
significance has been observed in the mass range of 130–160GeV, but
D0’s search is more sensitive and sets stronger limits. The D0 result
had an O(2σ) local upward fluctuation in the 110 to 125GeV mass
range. These results have been superseded by the LHC searches
and the excess seen in the D0 experiment has not been confirmed
elsewhere.

ATLAS and CMS also search for φ → τ+τ− in pp collisions at√
s = 7TeV. ATLAS seeks tau pairs in 4.7–4.8 fb−1 of data [429],

and the search by CMS uses the full 4.9 fb−1 of 7TeV data 4.9 fb−1

of 8 TeV data [430] and bb [431]. The searches are performed in
categories of the decays of the two tau leptons: eτhad, µτhad, eµ,
and µµ, where τhad denotes a tau lepton which decays to one or
more hadrons plus a tau neutrino, e denotes τ → eνν, and µ denotes
τ → µνν. The dominant background comes from Z → τ+τ− decays,
although tt, W+jets and Z+jets events contribute as well. Separating
events into categories based on the number of b-tagged jets improves
the sensitivity in the MSSM. The bb̄ annihilation process and radiation
of a Higgs boson from a b quark gives rise to events in which the
Higgs boson is accompanied by a bb̄ pair in the final state. Requiring
the presence of one or more b jets reduces the background from
Z+jets. Data control samples are used to constrain background rates.
The rates for jets to be identified as a hadronically decaying tau
lepton are measured in dijet samples, and W+jets samples provide
a measurement of the rate of events that, with a fake hadronic tau,
can pass the signal selection requirements. Lepton fake rates are
measured using samples of isolated lepton candidates and same-sign
lepton candidates. Constraints from the CMS searches for h → τ+τ−

and h → bb are shown in Fig. 11.25 in the mh-mod+ scenario defined
in [258] and in the hMSSM approximation defined in [307] . The
neutral Higgs boson searches consider the contributions of both the
CP-odd and CP-even neutral Higgs bosons with enhanced couplings
to bottom quarks, similarly as it was done for the Tevatron results. In
Fig. 11.25, decays of the charged Higgs into τν and of the heavy Higgs
H decaying into a pair of SM-like Higgs bosons or gauge bosons, or
of A decaying into hZ are also being constrained. In addition, decays
of the neutral Higgs bosons into muon pairs are also being explored.
Observe that in the mhmod+ scenario the region of tanβ lower than
5 does not allow for a Higgs mass mh close to 125GeV, as shown in
the figure. For the hMSSM scenario, instead, the SM-like Higgs mass
is fixed as an input and hence the requirement that it is close to
125GeV is always fulfilled, although this may imply other limitations
as discussed in section VII.1.1.

A search for φ → µ+µ− has also been performed by the ATLAS
collaboration [429]. The exclusion limits obtained are given in terms
of cross section times branching fraction and combined with those of
φ → τ+τ− [429].

A search for pseudoscalar Higgs bosons at intermediate to low
masses, below the Z mass (in the 25 GeV to 80 GeV mass range) has
been performed by the CMS collaboration [433]. A light pseudoscalar
in this mass range is excluded by current direct constraints in the
MSSM but not in general 2HDMs [434]. This search is done in the
decay channel where the pseudoscalar Higgs boson decays to a pair of
taus and is produced in association with a pair of b-quarks.

Finally searches for a resonance decaying to a top quark pair
were already done by ATLAS [435] and CMS [436]. These searches
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Figure 11.25: The 95% CL exclusion contours in the
(MA, tanβ) parameter space for the hMSSM scenario (right
panel) and for the mh-mod+ scenario (left panel), for several
search channels [432].

were interpreted as searches for scalar resonances by ATLAS [435],
however an important missing component of these searches is an
accurate treatment of the interference effects between the signal and
the continuum background, that may have a non-conventional pure
dip structure and can be non-negligible for a high mass state decaying
to top quarks[357,437].

The LHC has the potential to explore a broad range of SUSY
parameter space through the search for non-SM-like Higgs bosons.
Nevertheless, Fig. 11.25 shows a broad region with intermediate tanβ
and large values of mA that is not tested by present neutral or charged
Higgs boson searches, and which cannot be covered completely via
these searches, even with much larger data sets. In this region of
parameter space it is possible that only the SM-like Higgs boson can
be within the LHC’s reach. If no other state of the EWSB sector than
H is discovered, it may be challenging to determine only from the
Higgs sector whether there is a supersymmetric extension of the SM
in nature.

(iii) Searches for a CP-odd state decaying to hZ

Similarly to the search for a CP-even high mass Higgs boson
decaying to a pair of Higgs bosons, the search for a CP-odd states
decaying hZ was carried out at the LHC by the ATLAS and CMS
experiments. The ATLAS Collaboration has performed the search
in three main final states corresponding to the following subsequent
decays of the Higgs and Z bosons [438]: (Z → ℓℓ)(h → bb), (Z →
νν)(h → bb) and (Z → ℓℓ)(h → ττ); and their combination assuming
SM Higgs decay branching fractions. The CMS Collaboration has
performed a search in the (Z → ℓℓ)(h → ττ) final state [411]. These
searches have been used to constrain the parameter space of 2HDMs.
In the MSSM these searches place limits on small values of tanβ for
masses of A comprised between 220 GeV and 360 GeV as illustrated
in Fig. 11.25.

(iv) Searches for charged Higgs bosons H±

At e+e− colliders charged Higgs bosons can be pair produced in
the s-channel via γ or Z boson exchange. This process is dominant in
the LEP centre-of-mass energies range i.e. up to 209GeV. At higher
centre-of-mass energies, other processes can play an important role such
as the production in top quark decays via t → b+H+ if m±

H < mt−mb

or via the one-loop process e+e− → W±H∓ [439, 440], which allows
the production of a charged Higgs boson with m±

H >
√

s/2, even when

H+H− production is kinematically forbidden. Other single charged
Higgs production mechanisms include tb̄H−/ t̄bH+ production [107],
τ+νH−/ τ−ν̄H+ production [441], and a variety of processes in which
H± is produced in association with a one or two other gauge and/or
Higgs bosons [442].

At hadron colliders, Charged Higgs bosons can be produced in
several different modes. If mH± < mt − mb, the charged Higgs boson
can be produced in decays of the top quark via the decay t → bH±.
Relevant QCD and SUSY-QCD corrections to BR(t → H±b) have
been computed [299–302]. For values of mH± near mt, width effects

are important. In addition, the full 2 → 3 processes pp/pp̄ → H+t̄b+X
and pp/pp̄ → H−tb̄ + X must be considered. If mH± > mt − mb,
then charged Higgs boson production occurs mainly through radiation
from a third generation quark. Charged Higgs bosons may also be
produced singly in association with a top quark via the 2 → 3 partonic
processes gg, qq̄ → tb̄H−. For charged Higgs boson production cross
section predictions for the Tevatron and the LHC, see Refs. [11, 44, 43].
Charged Higgs bosons can also be produced via associated production
with W± bosons through bb annihilation and gg-fusion [303] and in
pairs via qq annihilation [304].

(a) Exclusion limits from LEP

Charged Higgs bosons have been searched for at LEP, where the
combined data of the four experiments, ALEPH, DELPHI, L3, and
OPAL, were sensitive to masses of up to about 90GeV [421] in two
decay channels, the τν and cs. The exclusion limit independent of
the admixture of the two above mentioned branching fractions was
78.6GeV.

(b) Exclusion limits from Tevatron

Compared to the mass domain covered by LEP searches, the
Tevatron covered a complementary range of charged Higgs masses.
The CDF and D0 collaborations have also searched for charged Higgs
bosons in top quark decays with subsequent decays to τν or to cs̄ [443–
445]. For the H+ → cs̄ channel, the limits on BR(t → H+b) from
CDF and D0 are ≈ 20% in the mass range 90GeV < mH+ < 160GeV
and assuming a branching fraction of 100% in this specific final state.
H+ → τ+ντ channel, D0’s limits on BR(t → H+b) are also ≈ 20% in
the same mass range and assuming a branching fraction of 100% in
this final state. These limits are valid in general 2HDMs, and they
have also been interpreted in terms of the MSSM [443–445].

(c) Exclusion limits from LHC

Similarly to the Tevatron, at the LHC light charged Higgs bosons
can be searched for in the decays of top quarks. The main initial
production mode for light charged Higgs bosons (mH± < mt − mb)
is top pair production. The subsequent decay modes of the charged
Higgs boson for these searches are τν and cs. More recently ATLAS
and CMS have also searched for higher mass charged Higgs bosons
(mH± > mt + mb) in H+ → tb. The main production modes are the
associated production of a charged Higgs boson in association with a
top and a bottom quark or in association with a top quark only.

ATLAS has searched for the decay H+ → τ+ντ in three final state
topologies [446]: (i) lepton+jets: with tt → bWH+ → bb(qq̄′)(τlepν),
i.e., the W boson decays hadronically and the tau decays into
an electron or a muon, with two neutrinos; (ii) τ +lepton: with
tt → bWH+ → bb(lν)(τhadν) i.e., the W boson decays leptonically
(with ℓ = e, µ) and the tau decays hadronically; (iii) τ+jets:
tt → bWH+ → bb(qq̄′)(τhadν), i.e., both the W boson and the τ decay
hadronically [447]. Assuming BR(H+ → τ+ντ ) = 100%, ATLAS sets
upper limits on BR(t → H+b) between 0.24% and 2.1% for charged
Higgs boson masses between 90GeV to 160GeV. When interpreted in
the context of the mmax

h scenario of the MSSM, these bounds exclude
a large fraction of the (mH± ,tanβ) plane.

The CMS collaboration has searched for the charged Higgs boson
in the decay products of top quark pairs: tt → H±W∓bb and
tt → H+H−bb [448, 449] as well. Three types of final states with
large missing transverse energy and jets originating from b-quark
hadronization have been analyzed: the fully-hadronic channel with
a hadronically decaying tau in association with jets, the dilepton
channel with a hadronically decaying tau in association with an
electron or muon and the dilepton channel with an electron-muon
pair. Combining the results of these three analyses and assuming
BR(H± → τν)=1, the upper limits on BR(t → H+b) are less than
2% to 3% depending on the charged Higgs boson mass in the interval
80GeV < mH+ <160GeV.

Both the ATLAS [450] and CMS [449] experiments have also
searched for high mass charged Higgs bosons decaying to a top and
bottom quarks. The main production mode for this search is the
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associated production with one top quark (5-flavour scheme) or a top
quark and and bottom quark (4-flavour scheme) in the final state. The
s-channel production mode where the charged Higgs boson is produced
alone in the final state at tree level is also considered. This search is
particularly intricate and it is sensitive to the modeling of the top
pair production background produced in association with additional
partons and in particular b-quarks. No excess was found and the
results are expressed in terms of exclusion limits of cross section times
branching fractions. The CMS collaboration has combined the results
of this search with the H+ → τ+ντ search in the framework of an
updated mhmax MSSM scenario [449].

ATLAS and CMS have also searched for charged Higgs bosons in
top quark decays assuming BR(H+ → cs̄) = 100% [451, 452], and sets
limits of ≈ 20% on BR(t → H+b) in the 90GeV < mH+ < 160GeV
mass range.

In two Higgs doublet models the decay of the Charged Higgs boson
to a W - and a Z-boson is allowed only at loop level and is therefore
suppressed. However the H± → W±Z decay channel is allowed in
Higgs triplet models. The ATLAS experiment [453] has searched
for such decays, requiring that the Charged Higgs boson is produced
through the fusion of vector bosons. No excess with respect to the
SM backgrounds has been observed in this channel, and the results
are interpreted in the Georgi–Machacek model [360–362] discussed in
Section VII.5.2.

At the LHC various other channels still remain to be explored, in
particular searches involving additional neutral scalars in particular in
WH , WA where A is the pseudo scalar MSSM Higgs boson, and Wa
where a is the light CP-odd scalars of the NMSSM.

(v) Searches for a light CP-odd Higgs boson a

A light pseudoscalar boson a is present in any two Higgs doublet
mode enhanced with an additional singlet field. A prominent example
is the NMSSM. The theoretical motivations for singlet extensions of
the MSSM are discussed in Section VII.2. In the NMSSM, the searches
now focus on the low mass pseudo-scalar boson a region for several
reasons: (i) in the NMSSM, the light pseudo-scalar a boson can, as
a pseudo-Goldstone boson, be a natural candidate for an axion; (ii)
scenarios where ma > 2mb and a CP-even state h decaying to a pair
of a (mh > 2ma) are excluded by direct searches at LEP in the four b
channel [421, 455, 456]; (iii) in the pre-discovery era, LEP limits on a
CP-even Higgs boson resulted in fine tuning MSSM constraints [457]
which could be evaded through non standard decays of the Higgs
to aa; (iv) an NMSSM CP-odd a boson with a mass in the range
9.2–12GeV can also account for the difference observed between the
measured anomalous muon magnetic moment and its prediction [458].
A scenario that has drawn particular attention was motivated by a
small excess of events 2.3σ in the SM Higgs search at LEP at Higgs
boson mass of around 98GeV. Speculative interpretations of this
excess as a signal of a Higgs boson with reduced couplings to b-quarks
were given [457]. Complete reviews of the NMSSM phenomenology
can be found in Refs. [459, 456].

The potential benchmark scenarios have changed in the light of
the H discovery. The discovered state could be the lightest or the
next-to-lightest of the three CP-even states of the NMSSM. Light
pseudoscalar scenarios are still very interesting in particular for
the potential axion candidate. There are three main types of direct
searches for the light a boson: (i) for masses below the Υ resonance,
the search is for radiative decays Υ → aγ at B-factories; (ii) the
inclusive search for in high energy pp collisions at the LHC; (iii) the
search for decays of a CP-even Higgs h boson to a pair of a bosons.

Radiative decays Υ → aγ, have been searched for in various
colliders, the most recent results are searches for radiative decays of
the Υ(1s) to aγ with a subsequent decay of the a boson to a pair of
taus at CLEO [460] and the radiative decays of the Υ(1s, 2s, 3s) to
aγ with subsequent decays to a pair of muons or taus by the BaBar
collaboration [461, 462].

Direct inclusive searches for the light pseudo scalar a boson
were performed in the a → µµ channel at the Tevatron by the
D0 experiment [463] and by the ATLAS [464] and CMS [465]
collaborations at the LHC.

Finally searches for the decays of the Higgs boson to a pair of a
bosons where performed with subsequent decays to four photons by
the ATLAS experiment [466], in the four muons final state by the
CMS and D0 experiments [456, 467], in the two muons and two taus
final state by the ATLAS [466] and D0 [456] collaborations, and in
the four taus final state by the CMS [468] ALEPH collaboration at
LEP [469].

No significant excess in the searches for a light CP-odd a boson
were found and limits on the production times branching fractions of
the a boson have been set.

(vi) Searches for doubly charged Higgs bosons H±±

As discussed in Section VII.5, the generation of small neutrino
masses via the standard EWSB mechanism described in Section II
requires unnaturally small Yukawa couplings, provided that neutrinos
are Dirac-type fermions. A Majorana mass term with a see-saw
mechanism for neutrinos, would allow for naturally small masses
and yield a framework for the appealing scenario of leptogenesis.
However within the SM Majorana mass terms correspond to (non-
renomalizable) dimension-5 operators. Such effective interactions can
be generated via renormalizable interactions with an electroweak
triplet of complex scalar fields (corresponding to a type-II see-saw
mechanism). Other models such as the Zee–Babu model, with the
introduction of two SU(2)L singlets, also generate Majorana mass
terms. The signature of such models would be the presence of doubly
charged Higgs bosons H±±.

The main production mechanisms of H±± bosons at hadron
colliders are the pair production in the s-channel through the exchange
of a Z boson or a photon and the associated production with a
Charged Higgs boson through the exchange of a W boson.

VII.8.1. Searches for non-standard production processes of
the Higgs boson

The discovery of the Higgs boson has also allowed for searches
of BSM (beyond the SM) processes involving standard decays of
the Higgs boson. One example directly pertaining to the search for
additional states of the EWSB sector is the search for Higgs bosons
in the cascade decay of a heavy CP-even Higgs boson decaying to
charged Higgs boson and a W boson, and the charged Higgs boson
subsequently decaying to H and another W boson. This search has
been performed by the ATLAS collaboration in bb decays of the H
particle [485].

Another example of searches for non standard processes through
the presence of the H particle is the search for large flavor changing
neutral current decays of the top quark to H and a charm quark.
This search has been performed with the ATLAS experiment in the
H → γγ channel [486].

VII.8.2. Outlook of searches for additional states

The LHC program of searches for additional states covers a large
variety of decay and production channels. Since the last review on
the Status of Higgs boson physics [243] many new channels have been
explored at the LHC, e.g. the searches for additional states decaying
into hh or Zh. The search for charged Higgs bosons has been extended
to include the WZ and the very difficult tb decay channel. There are
however more channels to cover, e.g. the search for charged Higgs
bosons in the HW and AW channels.

VIII. Summary and outlook

Summary– The discovery of the Higgs boson is an important
milestone in the history of particle physics as well as an extraordinary
success of the LHC machine and the ATLAS and CMS experiments.
Since its discovery, substantial progress in the field of Higgs
boson physics has been accomplished and a significant number of
measurements probing its nature have been made. They are revealing
an increasingly precise profile of the Higgs boson. All experimental
measurements are consistent with the EWSB mechanism of the
Standard Model (SM).

Since the last review [487], the ATLAS and CMS experiments
have made a combined measurement of the mass of the Higgs boson



11. Status of Higgs boson physics 215

in the diphoton and the four-lepton channels at per mille precision,
mH = 125.09 ± 0.24GeV. The quantum numbers of the Higgs boson
have been probed in greater detail and show an excellent consistency
with the JPC = 0++ hypothesis. Anomalous CP-even and CP-odd
couplings have also been probed, mostly using angular distributions
in diboson events. Higgs boson production and decay mechanisms
have been further characterized through the measurement of various
differential and fiducial cross sections.

The ATLAS and CMS collaborations have produced a detailed
combined measurement of the properties of the Higgs boson. This
combination establishes the direct observation of the VBF production
process with a significance of 5.4σ and the observation of the
H → τ+τ− with a significance of 5.5σ. This combination also
provides the most precise probes of the coupling structure of the Higgs
boson, with a 10%-20% accuracy. This precision could not have been
reached without the rapid and profound theoretical developments on
many fronts: higher order calculations, Monte Carlo simulations, and
new ideas on how to extract further informations on the nature of
the Higgs boson. A particularly important breakthrough has been the
recent calculation at the next-to-next-to-next-to-leading order of the
Higgs production by gluon fusion, the dominant production channel
at the LHC. All measurements are consistent with the SM predictions
and provide stringent constraints on a large number of scenarios of
new physics predicting sizeable deviations in the couplings of the
Higgs boson.

Without assumptions on or a measurement of the Higgs boson
width, the measurements at the LHC do not provide constraints
on the absolute couplings of the Higgs boson. In the SM, the total
Higgs width is approximately 4.2MeV. The direct experimental
measurements using the Higgs boson mass lineshape yield an upper
bound still three orders of magnitude above its SM value. However,
new ideas have emerged through the study of the Higgs couplings
away from its mass shell. Under the specific assumption that the
running of the Higgs couplings to vector bosons and gluons is small,
the total width of the Higgs boson is constrained to be smaller than
25MeV at 95%CL. Another interesting new idea, in the diphoton
channel, is the observation that the interference between the signal
and the continuum background induces shifts in the mass. Constraints
on the width of the Higgs boson can then be inferred from precise
measurements of its mass.

Further useful information on the components of the width of the
Higgs boson can also be obtained from searches for rare and exotic
decay modes, including invisible decays. Insights on the couplings
of the Higgs boson are also obtained from the searches for rare
production modes. No significant deviation from the SM Higgs boson
expectations has been found in the channels analyzed so far.

Finally, all extensions of the SM at higher energies call for an
enlargement of the EWSB sector. Therefore invaluable insights can
also be acquired from searches for new additional scalar states. Since
the last review [487], an ample number of new searches for CP-even
and CP-Odd neutral Higgs bosons, and charged Higgs bosons have
been carried out. No significant deviations from the minimal SM
Higgs sector has been found in the ranges of mass and couplings of
the additional states that have been explored so far.

Outlook– The unitarization of the vector boson scattering (VBS)
amplitudes, dominated at high energies by their longitudinal
polarizations, has been the basis of the no lose theorem at the LHC
and was one of the main motivations to build the accelerator and
the detectors. It motivated the existence of a Higgs boson or the
observability of manifestations of strong dynamics at TeV scale. Now
that a Higgs boson has been found and that its couplings to gauge
bosons comply with the SM predictions, perturbative unitarity is
preserved to a large amount with the sole exchange of the Higgs
boson and without the need for any additional states. It is, however,
still an important channel to investigate further in order to better
understand the nature of the Higgs sector and the possible completion
of the SM at the TeV scale. In association with the double Higgs
boson production channel by vector boson fusion, VBS could, for
instance, confirm that the Higgs boson is part of a weak doublet and
also establish whether it is an elementary object or a composite state
that could emerge as a pseudo-Nambu–Goldstone boson from a new

underlying broken symmetry.

The Higgs boson couplings are not dictated by any local gauge
symmetry. Thus, in addition to a new particle, the LHC has also
discovered a new force, different in nature from the other fundamental
interactions since it is non-universal and distinguishes between the
three families of quarks and leptons. The existence of the Higgs
boson embodies the problem of an unnatural cancellation among
the quantum corrections to its mass, if new physics is present at
scale significantly higher than the EW scale. The non-observation of
additional states which could stabilize the Higgs mass is a challenge
for natural scenarios like supersymmetry or models with a new strong
interaction in which the Higgs boson is not a fundamental particle.
This increasingly pressing paradox starts questioning the principle
of naturalness which underlies the hypothesis that phenomena at
different scales do not influence each other.

The search for the Higgs boson has occupied the Particle physics
community for the last 50 years. Its discovery has shaped and
sharpened the physics programs of the LHC and of future accelerators.
The experimental data together with the progress in theory mark the
beginning of a new era of precision Higgs boson measurements.
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12. THE CKM QUARK-MIXING MATRIX

Revised January 2016 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and
Y. Sakai (KEK).

12.1. Introduction

The masses and mixings of quarks have a common origin in the
Standard Model (SM). They arise from the Yukawa interactions with
the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ǫ φ∗uI

Rj + h.c., (12.1)

where Y u,d are 3 × 3 complex matrices, φ is the Higgs field, i, j
are generation labels, and ǫ is the 2 × 2 antisymmetric tensor. QI

L

are left-handed quark doublets, and dI
R and uI

R are right-handed
down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, 〈φ〉 = (0, v/

√
2),

Eq. (12.1) yields mass terms for the quarks. The physical states are

obtained by diagonalizing Y u,d by four unitary matrices, V
u,d
L,R, as

M
f
diag = V

f
L Y f V

f†
R (v/

√
2), f = u, d. As a result, the charged-current

W± interactions couple to the physical uLj and dLk quarks with
couplings given by

−g√
2
(uL, cL, tL)γµ W+

µ VCKM




dL
sL
bL



 + h.c.,

VCKM ≡ V u
L V d

L
† =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



. (12.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3
unitary matrix. It can be parameterized by three mixing angles and
the CP -violating KM phase [2]. Of the many possible conventions, a
standard choice has become [3]

VCKM =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





=




c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13



 ,

(12.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all
CP -violating phenomena in flavor-changing processes in the SM. The
angles θij can be chosen to lie in the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1, and
it is convenient to exhibit this hierarchy using the Wolfenstein
parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3(ρ + iη) =
Aλ3(ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2[1 − A2λ4(ρ̄ + iη̄)]

.(12.4)

These relations ensure that ρ̄ + iη̄ = −(VudV ∗
ub)/(VcdV

∗
cb) is phase

convention independent, and the CKM matrix written in terms of
λ, A, ρ̄, and η̄ is unitary to all orders in λ. The definitions of ρ̄, η̄
reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1 − λ2/2 + . . .) and one can write VCKM to O(λ4) either in
terms of ρ̄, η̄ or, traditionally,

Figure 12.1: Sketch of the unitarity triangle.

VCKM =




1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



 + O(λ4) .

(12.5)

The CKM matrix elements are fundamental parameters of the
SM, so their precise determination is important. The unitarity of
the CKM matrix imposes

∑
i VijV

∗
ik = δjk and

∑
j VijV

∗
kj = δik.

The six vanishing combinations can be represented as triangles in a
complex plane, of which those obtained by taking scalar products of
neighboring rows or columns are nearly degenerate. The areas of all
triangles are the same, half of the Jarlskog invariant, J [7], which is
a phase-convention-independent measure of CP violation, defined by
Im

[
VijVklV

∗
il V

∗
kj

]
= J

∑
m,n εikmεjln.

The most commonly used unitarity triangle arises from

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0 , (12.6)

by dividing each side by the best-known one, VcdV
∗
cb (see Fig. 1).

Its vertices are exactly (0, 0), (1, 0), and, due to the definition
in Eq. (12.4), (ρ̄, η̄). An important goal of flavor physics is to
overconstrain the CKM elements, and many measurements can be
conveniently displayed and compared in the ρ̄, η̄ plane. While the
Lagrangian in Eq. (12.1) is renormalized, and the CKM matrix has a
well known scale dependence above the weak scale [8], below µ = mW
the CKM elements can be treated as constants, with all µ-dependence
contained in the running of quark masses and higher-dimension
operators.

Unless explicitly stated otherwise, we describe all measurements
assuming the SM, to extract magnitudes and phases of CKM elements
in Sec. 12.2 and 12.3. Processes dominated by loop-level contributions
in the SM are particularly sensitive to new physics. We give the
global fit results for the CKM elements in Sec. 12.4, and discuss some
implications for beyond standard model physics in Sec. 12.5.

12.2. Magnitudes of CKM elements

12.2.1. |Vud| :

The most precise determination of |Vud| comes from the study
of superallowed 0+ → 0+ nuclear beta decays, which are pure
vector transitions. Taking the average of the fourteen most precise
determinations [9] yields

|Vud| = 0.97417± 0.00021. (12.7)

The error is dominated by theoretical uncertainties stemming
from nuclear Coulomb distortions and radiative corrections. A precise
determination of |Vud| is also obtained from the measurement of the
neutron lifetime. The theoretical uncertainties are very small, but
the determination is limited by the knowledge of the ratio of the
axial-vector and vector couplings, gA = GA/GV [10]. The PIBETA
experiment [11] has improved the measurement of the π+ → π0e+ν
branching ratio to 0.6%, and quotes |Vud| = 0.9728 ± 0.0030, in
agreement with the more precise result listed above. The interest in
this measurement is that the determination of |Vud| is very clean
theoretically, because it is a pure vector transition and is free from
nuclear-structure uncertainties.



12. CKM quark-mixing matrix 225

12.2.2. |Vus| :

The product of |Vus| and the form factor at q2 = 0, |Vus| f+(0),
has been extracted traditionally from K0

L → πeν decays in order

to avoid isospin-breaking corrections (π0 − η mixing) that affect
K± semileptonic decay, and the complications induced by a second
(scalar) form factor present in the muonic decays. The last round of
measurements has lead to enough experimental constraints to justify
the comparison between different decay modes. Systematic errors
related to the experimental quantities, e.g., the lifetime of neutral or
charged kaons, and the form factor determinations for electron and
muonic decays, differ among decay modes, and the consistency between
different determinations enhances the confidence in the final result.
For this reason, we follow the prescription [12] to average K0

L → πeν,

K0
L → πµν, K± → π0e±ν, K± → π0µ±ν and K0

S → πeν. The
average of these five decay modes yields |Vus| f+(0) = 0.2165± 0.0004.
Results obtained from each decay mode, and exhaustive references to
the experimental data, are listed for instance in Ref. [10]. The form
factor average f+(0) = 0.9677 ± 0.0037 [13] from three-flavor lattice
QCD calculations gives |Vus| = 0.2237 ± 0.0009 [10].1 The broadly
used classic calculation of f+(0) [16] is in good agreement with this
value, while other calculations [17] differ by as much as 2%.

The calculation of the ratio of the kaon and pion decay constants
enables one to extract |Vus/Vud| from K → µν(γ) and π → µν(γ),
where (γ) indicates that radiative decays are included [18]. The
KLOE measurement of the K → µν(γ) branching ratio [19], combined
with the lattice QCD result, fK/fπ = 1.1928 ± 0.0026 [13], leads
to |Vus| = 0.2254 ± 0.0008, where the accuracy is limited by the
knowledge of the ratio of the decay constants. The average of these
two determinations is quoted as [10]

|Vus| = 0.2248± 0.0006. (12.8)

The latest determination from hyperon decays can be found in
Ref. [20]. The authors focus on the analysis of the vector form
factor, protected from first order SU(3) breaking effects by the
Ademollo-Gatto theorem [21], and treat the ratio between the axial
and vector form factors g1/f1 as experimental input, thus avoiding
first order SU(3) breaking effects in the axial-vector contribution.
They find |Vus| = 0.2250 ± 0.0027, although this does not include
an estimate of the theoretical uncertainty due to second-order SU(3)
breaking, contrary to Eq. (12.8). Concerning hadronic τ decays to
strange particles, averaging both inclusive and exclusive τ → hν
(h = π, K) decay measurements yield |Vus| = 0.2204± 0.0014 [22,23].

12.2.3. |Vcd| :

The magnitude of Vcd can be extracted from semileptonic charm
decays, using theoretical knowledge of the form factors. In semileptonic
D decays, lattice QCD calculations have predicted the normalization of
the D → πℓν and D → Kℓν form factors [14]. The dependence on the
invariant mass of the lepton pair, q2, is determined from lattice QCD
and theoretical constraints from analyticity [15]. Using three-flavor
lattice QCD calculations for D → πℓν, fDπ

+ (0) = 0.666 ± 0.029 [14],
and the average [22,24] of measurements of recent BaBar [25] and
BESIII [26] as well as CLEO-c [27] and Belle [28] of D → πℓν decays,
one obtains |Vcd| = 0.214 ± 0.003 ± 0.009, where the first uncertainty
is experimental, and the second is from the theoretical uncertainty of
the form factor.

The determination of |Vcd| is also possible from leptonic decay
D+ → µ+ν. Its precision has been improved by a recent BESIII
measurement [29]. Averaged with earlier CLEO measurment [30] and
fD = 209.2 ± 3.3 MeV [14], one obtains |Vcd| = 0.219 ± 0.005± 0.003.

Earlier determinations of |Vcd| came from neutrino scattering data.
The difference of the ratio of double-muon to single-muon production
by neutrino and antineutrino beams is proportional to the charm cross
section off valence d quarks, and therefore to |Vcd|2 times the average

1 For lattice QCD inputs, we use the averages from Ref. [14] whenever

possible, unless the minireviews [10,15] choose other values. We only use

unquenched lattice QCD results. Hereafter, the first error is statistical and

the second is systematic, unless mentioned otherwise.

semileptonic branching ratio of charm mesons, Bµ. The method was
used first by CDHS [31] and then by CCFR [32,33] and CHARM II [34].
Averaging these results is complicated, because it requires assumptions
about the scale of the QCD corrections, and because Bµ is an effective
quantity, which depends on the specific neutrino beam characteristics.
Given that no recent experimental input is available, we quote the
average from a past review, Bµ|Vcd|2 = (0.463 ± 0.034) × 10−2 [35].
Analysis cuts make these experiments insensitive to neutrino energies
smaller than 30GeV. Thus, Bµ should be computed using only
neutrino interactions with visible energy larger than 30GeV. An
appraisal [36] based on charm-production fractions measured in
neutrino interactions [37,38] gives Bµ = 0.088 ± 0.006. Data from
the CHORUS experiment [39] are sufficiently precise to extract Bµ

directly, by comparing the number of charm decays with a muon to
the total number of charmed hadrons found in the nuclear emulsions.
Requiring the visible energy to be larger than 30GeV, CHORUS
finds Bµ = 0.085 ± 0.009 ± 0.006. We use the average of these two
determinations, Bµ = 0.087 ± 0.005, and obtain |Vcd| = 0.230 ± 0.011.
Averaging the three determinations above, we find

|Vcd| = 0.220± 0.005. (12.9)

12.2.4. |Vcs| :

The direct determination of |Vcs| is possible from semileptonic
D or leptonic Ds decays, using lattice QCD calculations of the
semileptonic D form factor or the Ds decay constant. For muonic
decays, the average of Belle [40], CLEO-c [41] and BABAR [42] is
B(D+

s → µ+ν) = (5.56 ± 0.24) × 10−3 [43]. For decays to τ leptons,
the average of CLEO-c [41,44,45], BABAR [42] and Belle [40] gives
B(D+

s → τ+ν) = (5.56± 0.22)× 10−2 [43]. From each of these values,
determinations of |Vcs| can be obtained using the PDG values for
the mass and lifetime of the Ds, the masses of the leptons, and
fDs = (248.6 ± 2.7)MeV [14]. The average of these determinations
gives |Vcs| = 1.008 ± 0.021, where the error is dominated by the
lattice QCD determination of fDs . In semileptonic D decays, lattice
QCD calculations of the D → Kℓν form factor are available [14].
Using fDK

+ (0) = 0.747 ± 0.019 and the average of CLEO-c [27],
Belle [28], BABAR [46] and recent BESIII [26] measurements of
D → Kℓν decays, one obtains |Vcs| = 0.975 ± 0.007 ± 0.025, where
the first error is experimental and the second, which is dominant,
is from the theoretical uncertainty of the form factor. Averaging the
determinations from leptonic and semileptonic decays, we find

|Vcs| = 0.995± 0.016. (12.10)

Measurements of on-shell W± decays sensitive to |Vcs| were
made by LEP-2. The W branching ratios depend on the six CKM
elements involving quarks lighter than mW . The W branching ratio
to each lepton flavor is 1/B(W → ℓν̄ℓ) = 3

[
1 +

∑
u,c,d,s,b |Vij |2 (1 +

αs(mW )/π) + . . .
]
. Assuming lepton universality, the measurement

B(W → ℓν̄ℓ) = (10.83 ± 0.07 ± 0.07)% [47] implies
∑

u,c,d,s,b |Vij |2 =
2.002 ± 0.027. This is a precise test of unitarity; however, only
flavor-tagged W -decays determine |Vcs| directly, such as DELPHI’s
tagged W+ → cs̄ analysis, yielding |Vcs| = 0.94+0.32

−0.26 ± 0.13 [48].

12.2.5. |Vcb| :

This matrix element can be determined from exclusive and
inclusive semileptonic decays of B mesons to charm. The inclusive
determinations use the semileptonic decay rate measurement, together
with (certain moments of) the leptonic energy and the hadronic
invariant-mass spectra. The theoretical basis is the operator product
expansion [49,50], which allows calculation of the decay rate and
various spectra as expansions in αs and inverse powers of the
heavy-quark mass. The dependence on mb, mc, and the parameters
that occur at subleading order is different for different moments, and a
large number of measured moments overconstrains all the parameters,
and tests the consistency of the determination. The precise extraction
of |Vcb| requires using a “threshold” quark mass definition [51,52].
Inclusive measurements have been performed using B mesons from Z0

decays at LEP, and at e+e− machines operated at the Υ(4S). At LEP,
the large boost of B mesons from the Z0 allows the determination of
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the moments throughout phase space, which is not possible otherwise,
but the large statistics available at the B factories lead to more precise
determinations. An average of the measurements and a compilation of
the references are provided by Ref. [15]: |Vcb| = (42.2 ± 0.8) × 10−3.

Exclusive determinations are based on semileptonic B decays to
D and D∗. In the mb,c ≫ ΛQCD limit, all form factors are given by
a single Isgur-Wise function [53], which depends on the product of

the four-velocities of the B and D(∗) mesons, w = v · v′. Heavy-quark
symmetry determines the rate at w = 1, the maximum momentum
transfer to the leptons, and |Vcb| is obtained from an extrapolation to
w = 1. The exclusive determination, |Vcb| = (39.2 ± 0.7) × 10−3 [15],
has a comparable precision to the inclusive one, and the main
theoretical uncertainty in the form factor and the experimental
uncertainty in the rate near w = 1 are to a large extent independent of
the inclusive determination. The Vcb and Vub minireview [15] quotes a

combination with the error scaled by
√

χ2 = 2.9,

|Vcb| = (40.5 ± 1.5)× 10−3. (12.11)

Less precise measurements of |Vcb|, not included in this average, can

be obtained from B(B → D(∗)τ ν̄). The most precise data involving

τ modes are the |Vcb|-independent ratios, B(B → D(∗)τ ν̄)/B(B →
D(∗)ℓν̄) [54]. If the currently nearly 4 σ hint of lepton non-universality
is confirmed, the determination of |Vcb| becomes more complicated.

12.2.6. |Vub| :

The determination of |Vub| from inclusive B → Xuℓν̄ decay is
complicated due to large B → Xcℓν̄ backgrounds. In most regions of
phase space where the charm background is kinematically forbidden,
the hadronic physics enters via unknown nonperturbative functions,
so-called shape functions. (In contrast, the nonperturbative physics
for |Vcb| is encoded in a few parameters.) At leading order in
ΛQCD/mb, there is only one shape function, which can be extracted
from the photon energy spectrum in B → Xsγ [55,56], and applied
to several spectra in B → Xuℓν̄. The subleading shape functions are
modeled in the current determinations. Phase space cuts for which
the rate has only subleading dependence on the shape function are
also possible [57]. The measurements of both the hadronic and the
leptonic systems are important for an optimal choice of phase space.
A different approach is to make the measurements more inclusive by
extending them deeper into the B → Xcℓν̄ region, and thus reduce
the theoretical uncertainties. Analyses of the electron-energy endpoint
from CLEO [58], BABAR [59], and Belle [60] quote B → Xueν̄ partial
rates for |~pe| ≥ 2.0GeV and 1.9GeV, which are well below the charm
endpoint. The large and pure BB samples at the B factories permit
the selection of B → Xuℓν̄ decays in events where the other B is
fully reconstructed [61]. With this full-reconstruction tag method, the
four-momenta of both the leptonic and the hadronic final states can
be measured. It also gives access to a wider kinematic region, because
of improved signal purity. Ref. [15] quotes the inclusive average,
|Vub| = (4.49 ± 0.16 +0.16

−0.18) × 10−3.

To extract |Vub| from exclusive decays, the form factors have to
be known. Experimentally, better signal-to-background ratios are
offset by smaller yields. The B → πℓν̄ branching ratio is now known
to 5%. Lattice QCD calculations of the B → πℓν̄ form factor are
available [62,63] for the high q2 region (q2 > 16 or 18 GeV2). A fit
to the experimental partial rates and lattice results versus q2 yields
|Vub| = (3.72 ± 0.16) × 10−3 [63]. Light-cone QCD sum rules are
supposed to be applicable for q2 < 12 GeV2 [64]. The minireview [15]
quotes a combination, |Vub| = (3.72 ± 0.19)× 10−3.

The uncertainties in extracting |Vub| from inclusive and exclusive
decays are different to a large extent. A combination of the
determinations is quoted [15] with the error scaled by

√
χ2 = 2.6,

|Vub| = (4.09 ± 0.39)× 10−3. (12.12)

A determination of |Vub| not included in this average can be
obtained from B(B → τ ν̄) = (1.06 ± 0.20) × 10−4 [43]. Using
fB = (190.5 ± 4.2)MeV [14] and τB± = (1.638 ± 0.004) ps [65], we
find |Vub| = (4.04± 0.38)× 10−3. This decay is sensitive, for example,

to tree-level charged Higgs contributions, and the measured rate is
consistent with the SM expectation. The recent LHCb measurement
|Vub/Vcb| = 0.083 ± 0.006 [66] from the ratio of Λb → p+µ−ν̄ and
Λb → Λ+

c µ−ν̄ in different regions of q2, will hopefully be averaged
with the above, using more than one lattice QCD inputs, by the next
edition.

12.2.7. |Vtd| and |Vts| :

The CKM elements |Vtd| and |Vts| are not likely to be precisely
measurable in tree-level processes involving top quarks, so one has
to rely on determinations from B–B oscillations mediated by box
diagrams with top quarks, or loop-mediated rare K and B decays.
Theoretical uncertainties in hadronic effects limit the accuracy of
the current determinations. These can be reduced by taking ratios
of processes that are equal in the flavor SU(3) limit to determine
|Vtd/Vts|.

The mixing of the two B0 mesons was discovered by ARGUS [67],
and the mass difference is precisely measured by now, ∆md =
(0.5064±0.0019)ps−1 [68]. In the B0

s system, ∆ms was first measured
significantly by CDF [69] and the world average, dominated by a
recent LHCb measurement [70], is ∆ms = (17.757 ± 0.021) ps−1 [68].
Neglecting corrections suppressed by |Vtb| − 1, and using the

lattice QCD results fBd

√
B̂Bd

= (216 ± 15)MeV and fBs

√
B̂Bs =

(266 ± 18)MeV [14],

|Vtd| = (8.2 ± 0.6) × 10−3, |Vts| = (40.0 ± 2.7) × 10−3. (12.13)

The uncertainties are dominated by lattice QCD. Several un-
certainties are reduced in the calculation of the ratio ξ =
(
fBs

√
B̂Bs

)
/
(
fBd

√
B̂Bd

)
= 1.268 ± 0.063 [14] and therefore the

constraint on |Vtd/Vts| from ∆md/∆ms is more reliable theoreti-
cally. These provide a theoretically clean and significantly improved
constraint ∣∣Vtd/Vts

∣∣ = 0.215± 0.001 ± 0.011. (12.14)

The inclusive branching ratio B(B → Xsγ) = (3.43 ± 0.22) × 10−4

extrapolated to Eγ > E0 = 1.6 GeV [71] is also sensitive to |VtbVts|.
In addition to t-quark penguins, a substantial part of the rate
comes from charm contributions proportional to VcbV

∗
cs via the

application of 3 × 3 CKM unitarity (which is used here). With
the NNLO calculation of B(B → Xsγ)Eγ>E0

/B(B → Xceν̄) [72],

we obtain |Vts/Vcb| = 0.99 ± 0.05. The Bs → µ+µ− rate is also
proportional to |VtbVts|2 in the SM, and the observed signal
B(Bs → µ+µ−) = (2.8+0.7

−0.6) × 10−9 [73] is consistent with the SM,
with sizable uncertainties.

A complementary determination of |Vtd/Vts| is possible from
the ratio of B → ργ and K∗γ rates. The ratio of the neutral
modes is theoretically cleaner than that of the charged ones,
because the poorly known spectator-interaction contribution is
expected to be smaller (W -exchange vs. weak annihilation). For now,
because of low statistics, we average the charged and neutral rates
assuming the isospin symmetry and heavy-quark limit motivated
relation, |Vtd/Vts|2/ξ2

γ = [Γ(B+ → ρ+γ) + 2Γ(B0 → ρ0γ)]/[Γ(B+ →
K∗+γ) + Γ(B0 → K∗0γ)] = (3.19 ± 0.46)% [71]. Here ξγ contains
the poorly known hadronic physics. Using ξγ = 1.2 ± 0.2 [74], and
combining the experimental and theoretical errors in quadrature, gives
|Vtd/Vts| = 0.214 ± 0.016 ± 0.036.

A theoretically clean determination of |VtdV ∗
ts| is possible from

K+ → π+νν̄ decay [75]. Experimentally, only seven events have
been observed [76] and the rate is consistent with the SM with
large uncertainties. Much more data are needed for a precision
measurement.

12.2.8. |Vtb| :

The determination of |Vtb| from top decays uses the ratio of branch-
ing fractions R = B(t → Wb)/B(t → Wq) = |Vtb|2/(

∑
q |Vtq |2) =

|Vtb|2, where q = b, s, d. The CDF and DØ measurements performed
on data collected during Run II of the Tevatron give |Vtb| > 0.78 [77]
and 0.99 > |Vtb| > 0.90 [78], respectively, at 95% CL. CMS measured
the same quantity at 7TeV and gives |Vtb| > 0.92 [79] at 95% CL.
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The direct determination of |Vtb|, without assuming unitarity,
is possible from the single top-quark-production cross section.
The (3.30+0.52

−0.40) pb combined cross section [80] of DØ and CDF

measurements implies |Vtb| = 1.02+0.06
−0.05. The LHC experiments,

ATLAS and CMS, have measured single-top production cross sections
(and extracted |Vtb|) in t-channel, Wt-channel, and s-channel at 7
TeV, 8 TeV, and 13 TeV [81]. The average of these |Vtb| values is
calculated to be |Vtb| = 1.005 ± 0.036, where all systematic errors and
theoretical errors are treated to be fully correlated. The average of
Tevatron and LHC values gives

|Vtb| = 1.009 ± 0.031 . (12.15)

The experimental systematic uncertainties dominate, and a dedicated
combination would be welcome.

A weak constraint on |Vtb| can be obtained from precision
electroweak data, where top quarks enter in loops. The sensitivity is
best in Γ(Z → bb̄) and yields |Vtb| = 0.77+0.18

−0.24 [82].

12.3. Phases of CKM elements

As can be seen from Fig. 12.1, the angles of the unitarity triangle
are

β = φ1 = arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
,

α = φ2 = arg

(
− VtdV ∗

tb

VudV
∗
ub

)
,

γ = φ3 = arg

(
−VudV

∗
ub

VcdV
∗
cb

)
. (12.16)

Since CP violation involves phases of CKM elements, many
measurements of CP -violating observables can be used to constrain
these angles and the ρ̄, η̄ parameters.

12.3.1. ǫ and ǫ′ :

The measurement of CP violation in K0–K0 mixing, |ǫ| =
(2.233± 0.015)× 10−3 [83], provides important information about the
CKM matrix. The phase of ǫ is determined by long-distance physics,
ǫ = 1

2 eiφǫ sinφǫ arg(−M12/Γ12), where φǫ = arctan |2∆mK/∆ΓK | ≃
43.5◦. The SM prediction can be written as

ǫ = κǫ eiφǫ
G2

F m2
W mK

12
√

2 π2∆mK
f2
KB̂K

{
ηttS(xt) Im[(VtsV

∗
td)2]

+ 2ηctS(xc, xt) Im(VcsV
∗
cdVtsV

∗
td) + ηcc xc Im[(VcsV

∗
cd)2]

}
,

(12.17)

where κǫ ≃ 0.94 ± 0.02 [84] includes the effects of ∆s = 1 operators
and φǫ 6= π/4 (see also Ref. [85]). The displayed terms are the
short-distance ∆s = 2 contribution to ImM12 in the usual phase
convention, S is an Inami-Lim function [86], xq = m2

q/m2
W , and ηij are

perturbative QCD corrections. The constraint from ǫ in the ρ̄, η̄ plane
is bounded by approximate hyperbolas. Lattice QCD determined the
bag parameter B̂K = 0.766 ± 0.010 [14], and the main uncertainties
now come from (VtsV

∗
td)2, which is approximately σ(|Vcb|4) ∼ σ(A4),

the ηij coefficients, and estimates of κǫ.

The measurement of 6 Re(ǫ′/ǫ) = 1 − |η00/η+−|2, where each ηij =

〈πiπj |H|KL〉 / 〈πiπj |H|KS〉 violates CP , provides a qualitative test
of the CKM mechanism, and strong constraints on many new physics
scenarios. Its nonzero value, Re(ǫ′/ǫ) = (1.67 ± 0.23) × 10−3 [83],
demonstrated the existence of direct CP violation, a prediction
of the KM ansatz. While Re(ǫ′/ǫ) ∝ Im(VtdV ∗

ts), this quantity
cannot easily be used to extract CKM parameters, because the
electromagnetic penguin contributions tend to cancel the gluonic
penguins for large mt [87], thus enhancing hadronic uncertainties.
Most SM estimates [88–91] agree with the observed value, indicating
that η̄ is positive. Progress in lattice QCD [92] may eventually yield a
precise SM prediction.

12.3.2. β / φ1 :

12.3.2.1. Charmonium modes:

CP -violation measurements in B-meson decays provide direct
information on the angles of the unitarity triangle, shown in
Fig. 12.1. These overconstraining measurements serve to improve
the determination of the CKM elements, or to reveal effects beyond
the SM.

The time-dependent CP asymmetry of neutral B decays to a final
state f common to B0 and B0 is given by [93,94]

Af =
Γ(B0(t) → f) − Γ(B0(t) → f)

Γ(B0(t) → f) + Γ(B0(t) → f)
= Sf sin(∆md t)−Cf cos(∆md t),

(12.18)
where

Sf =
2 Imλf

1 + |λf |2
, Cf =

1 − |λf |2
1 + |λf |2

, λf =
q

p

Āf

Af
. (12.19)

Here, q/p describes B0–B0 mixing and, to a good approximation

in the SM, q/p = V ∗
tbVtd/VtbV

∗
td = e−2iβ+O(λ4) in the usual phase

convention. Af (Āf ) is the amplitude of the B0 → f (B0 → f) decay.
If f is a CP eigenstate, and amplitudes with one CKM phase dominate
the decay, then |Af | = |Āf |, Cf = 0, and Sf = sin(arg λf ) = ηf sin 2φ,
where ηf is the CP eigenvalue of f and 2φ is the phase difference

between the B0 → f and B0 → B0 → f decay paths. A contribution
of another amplitude to the decay with a different CKM phase makes
the value of Sf sensitive to relative strong-interaction phases between
the decay amplitudes (it also makes Cf 6= 0 possible).

The b → cc̄s decays to CP eigenstates (B0 → charmonium K0
S,L)

are the theoretically cleanest examples, measuring Sf = −ηf sin 2β.
The b → sqq̄ penguin amplitudes have dominantly the same weak
phase as the b → cc̄s tree amplitude. Since only λ2-suppressed penguin
amplitudes introduce a new CP -violating phase, amplitudes with a
single weak phase dominate, and we expect

∣∣|ĀψK/AψK | − 1
∣∣ < 0.01.

The e+e− asymmetric-energy B-factory experiments, BABAR [95] and
Belle [96], provide precise measurements. The world average including
LHCb [97] and other measurements is [98]

sin 2β = 0.691 ± 0.017 . (12.20)

This measurement has a four-fold ambiguity in β, which can be
resolved by a global fit as mentioned in Sec. 12.4. Experimentally, the
two-fold ambiguity β → π/2 − β (but not β → π + β) can be resolved
by a time-dependent angular analysis of B0 → J/ψK∗0 [99,100], or
a time-dependent Dalitz plot analysis of B0 → D0h0 (h0 = π0, η, ω)
with D0 → K0

Sπ+π− [101,102]. These results indicate that negative
cos 2β solutions are very unlikely, in agreement with the global CKM
fit result.

The b → cc̄d mediated transitions, such as B0 → J/ψπ0 and

B0 → D(∗)+D(∗)−, also measure approximately sin 2β. However,
the dominant component of the b → d penguin amplitude has a
different CKM phase (V ∗

tbVtd) than the tree amplitude (V ∗
cbVcd), and

its magnitudes are of the same order in λ. Therefore, the effect of
penguins could be large, resulting in Sf 6= −ηf sin 2β and Cf 6= 0.
These decay modes have also been measured by BABAR and Belle.
The world averages [98], SJ/ψπ0 = −0.93±0.15, SJ/ψρ0 = −0.66+0.16

−0.12,

SD+D− = −0.98 ± 0.17, and SD∗+D∗− = −0.71 ± 0.09 (ηf = +1

for these modes), are consistent with sin 2β obtained from B0 →
charmonium K0 decays, and the Cf ’s are consistent with zero,
although the uncertainties are sizable.

The b → cūd decays, B0 → D0h0 with D0 → CP eigenstates,
have no penguin contributions and provide theoretically clean
sin 2β measurements. The joint analysis of BABAR and Belle gives
S

D(∗)h0 = −0.66± 0.12 [103].
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12.3.2.2. Penguin-dominated modes:

The b → sq̄q penguin-dominated decays have the same CKM phase
as the b → cc̄s tree level decays, up to corrections suppressed by
λ2, since V ∗

tbVts = −V ∗
cbVcs[1 + O(λ2)]. Therefore, decays such as

B0 → φK0 and η′K0 provide sin 2β measurements in the SM. Any
new physics contribution to the amplitude with a different weak phase
would give rise to Sf 6= −ηf sin 2β, and possibly Cf 6= 0. Therefore,
the main interest in these modes is not simply to measure sin 2β, but
to search for new physics. Measurements of many other decay modes
in this category, such as B → π0K0

S , K0
SK0

SK0
S , etc., have also been

performed by BABAR and Belle. The results and their uncertainties
are summarized in Fig. 12.3 and Table 12.1 of Ref. [94].

12.3.3. α / φ2 :

Since α is the phase between V ∗
tbVtd and V ∗

ubVud, only time-
dependent CP asymmetries in b → uūd decay dominated modes
can directly measure sin 2α, in contrast to sin 2β, where several
different transitions can be used. Since b → d penguin amplitudes
have a different CKM phase than b → uūd tree amplitudes, and their
magnitudes are of the same order in λ, the penguin contribution can
be sizable, which makes the determination of α complicated. To date,
α has been measured in B → ππ, ρπ and ρρ decay modes.

12.3.3.1. B → ππ:

It is now experimentally well established that there is a sizable
contribution of b → d penguin amplitudes in B → ππ decays. Thus,
Sπ+π− in the time-dependent B0 → π+π− analysis does not measure
sin 2α, but

Sπ+π− =
√

1 − C2
π+π− sin(2α + 2∆α), (12.21)

where 2∆α is the phase difference between e2iγĀπ+π− and Aπ+π− .
The value of ∆α, hence α, can be extracted using the isospin relation
among the amplitudes of B0 → π+π−, B0 → π0π0, and B+ → π+π0

decays [104],
1√
2

Aπ+π− + Aπ0π0 − Aπ+π0 = 0 , (12.22)

and a similar expression for the Āππ ’s. This method utilizes the fact
that a pair of pions from B → ππ decay must be in a zero angular
momentum state, and, because of Bose statistics, they must have
even isospin. Consequently, π0π± is in a pure isospin-2 state, while
the penguin amplitudes only contribute to the isospin-0 final state.
The latter does not hold for the electroweak penguin amplitudes,
but their effect is expected to be small. The isospin analysis uses
the world averages of BABAR, Belle and LHCb measurements [98]
Sπ+π− = −0.66±0.06, Cπ+π− = −0.31±0.05, the branching fractions

of all three modes, and the direct CP asymmetry Cπ0π0 = −0.43+0.25
−0.24.

This analysis leads to 16 mirror solutions for 0 ≤ α < 2π. Because
of this, and the sizable experimental error of the B0 → π0π0 rate
and CP asymmetry, only a loose constraint on α can be obtained at
present [105], 0◦ < α < 3.8◦, 86.2◦ < α < 102.9◦, 122.1◦ < α < 147.9◦,
and 167.1◦ < α < 180◦ at 68% CL.

12.3.3.2. B → ρρ:

The decay B0 → ρ+ρ− contains two vector mesons in the final state,
which in general is a mixture of CP -even and CP -odd components.
Therefore, it was thought that extracting α from this mode would be
complicated.

However, the longitudinal polarization fractions (fL) in B+ → ρ+ρ0

and B0 → ρ+ρ− decays were measured to be close to unity [106],
which implies that the final states are almost purely CP -even.
Furthermore, B(B0 → ρ0ρ0) = (0.97 ± 0.24) × 10−6 is much smaller
than B(B0 → ρ+ρ−) = (24.2+3.1

−3.2) × 10−6 and B(B+ → ρ+ρ0) =

(24.0+1.9
−2.0) × 10−6 [22], which implies that the effect of the penguin

diagrams is small. The isospin analysis using the world averages,
Sρ+ρ− = −0.14 ± 0.13 and Cρ+ρ− = −0.00 ± 0.09 [22], together
with the time-dependent CP asymmetry, Sρ0ρ0 = −0.3 ± 0.7 and

Cρ0ρ0 = −0.2±0.9 [107], and the above mentioned branching fractions,

gives 0◦ < α < 5.6◦, 84.4◦ < α < 95.3◦ and 174.7◦ < α < 180◦ at 68%
CL [105], with mirror solutions at 3π/2−α. A possible small violation
of Eq. (12.22) due to the finite width of the ρ [108] is neglected.

12.3.3.3. B → ρπ:

The final state in B0 → ρ+π− decay is not a CP eigenstate,
but this decay proceeds via the same quark-level diagrams as
B0 → π+π−, and both B0 and B0 can decay to ρ+π−. Consequently,
mixing-induced CP violations can occur in four decay amplitudes,
B0 → ρ±π∓ and B0 → ρ±π∓. The time-dependent Dalitz plot
analysis of B0 → π+π−π0 decays permits the extraction of α with a
single discrete ambiguity, α → α + π, since one knows the variation
of the strong phases in the interference regions of the ρ+π−, ρ−π+,
and ρ0π0 amplitudes in the Dalitz plot [109]. The combination of
Belle [110] and BABAR [111] measurements gives α = (54.1+7.7

−10.3)
◦ and

(141.8+4.7
−5.4)

◦ [105]. This constraint is still moderate.

Combining the B → ππ, ρπ, and ρρ decay modes [105], α is
constrained as

α = (87.6+3.5
−3.3)

◦. (12.23)

A different statistical approach [112] gives similar constraint from
the combination of these measurements.

12.3.4. γ / φ3 :

By virtue of Eq. (12.16), γ does not depend on CKM elements
involving the top quark, so it can be measured in tree-level B decays.
This is an important distinction from the measurements of α and β,
and implies that the measurements of γ are unlikely to be affected by
physics beyond the SM.

12.3.4.1. B± → DK±:

The interference of B− → D0K− (b → cūs) and B− → D0K−

(b → uc̄s) transitions can be studied in final states accessible in both
D0 and D0 decays [93]. In principle, it is possible to extract the B
and D decay amplitudes, the relative strong phases, and the weak
phase γ from the data.

A practical complication is that the precision depends sensitively
on the ratio of the interfering amplitudes

rB =
∣∣∣A(B− → D0K−)

/
A(B− → D0K−)

∣∣∣ , (12.24)

which is around 0.1−0.2. The original GLW method [113,114] considers

D decays to CP eigenstates, such as B± → D
(∗)
CP (→ π+π−)K±(∗).

To alleviate the smallness of rB and make the interfering amplitudes
(which are products of the B and D decay amplitudes) comparable
in magnitude, the ADS method [115] considers final states where
Cabibbo-allowed D0 and doubly-Cabibbo-suppressed D0 decays
interfere. Extensive measurements [98] have been made by the B
factories, CDF and LHCb using both methods.

It was realized that both D0 and D0 have large branching
fractions to certain three-body final states, such as KSπ+π−, and
the analysis can be optimized by studying the Dalitz plot dependence
of the interferences [116,117]. The best present determination of
γ comes from this method. Belle [118] and BABAR [119] obtained
γ = (78+11

−12±4±9)◦ and γ = (68±14±4±3)◦, respectively, where the
last uncertainty is due to the D-decay modeling. LHCb also measured
γ = (62+15

−14)
◦ with the Dalitz model independent manner [120].) The

error is sensitive to the central value of the amplitude ratio rB (and
r∗B for the D∗K mode), for which Belle found somewhat larger central

values than BABAR and LHCb. The same values of r
(∗)
B enter the

ADS analyses, and the data can be combined to fit for r
(∗)
B and γ.

The D0–D0 mixing has been neglected in all measurements, but its
effect on γ is far below the present experimental accuracy [121], unless
D0–D0 mixing is due to CP -violating new physics, in which case it
can be included in the analysis [122].

Combining the GLW, ADS, and Dalitz analyses [105], γ is
constrained as

γ = (73.2+6.3
−7.0)

◦. (12.25)

Similar results are found in Ref. [112].
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12.3.4.2. B0 → D(∗)±π∓:

The interference of b → u and b → c transitions can be studied in
B0 → D(∗)+π− (b → cūd) and B0 → B0 → D(∗)+π− (b̄ → ūcd̄) decays

and their CP conjugates, since both B0 and B0 decay to D(∗)±π∓ (or
D±ρ∓, etc.). Since there are only tree and no penguin contributions
to these decays, in principle, it is possible to extract from the four
time-dependent rates the magnitudes of the two hadronic amplitudes,
their relative strong phase, and the weak phase between the two decay
paths, which is 2β + γ.

A complication is that the ratio of the interfering amplitudes
is very small, rDπ = A(B0 → D+π−)/A(B0 → D+π−) = O(0.01)
(and similarly for rD∗π and rDρ), and therefore it has not
been possible to measure it. To obtain 2β + γ, SU(3) flavor
symmetry and dynamical assumptions have been used to relate
A(B0 → D−π+) to A(B0 → D−

s π+), so this measurement is not
model independent at present. Combining the D±π∓, D∗±π∓ and
D±ρ∓ measurements [123] gives sin(2β + γ) > 0.68 at 68% CL [105],
consistent with the previously discussed results for β and γ. The
amplitude ratio is much larger in the analogous B0

s → D±
s K∓ decays,

which allows a model-independent extraction of γ − 2βs [124] (here
βs = arg(−VtsV

∗
tb/VcsV

∗
cb) is related to the phase of Bs mixing).

Recent measurement by LHCb [125] gives (115+28
−43)

◦ using a constraint
on 2βs (Sec. 12.5).

12.4. Global fit in the Standard Model

Using the independently measured CKM elements mentioned
in the previous sections, the unitarity of the CKM matrix can be
checked. We obtain |Vud|2+ |Vus|2+ |Vub|2 = 0.9996±0.0005 (1st row),
|Vcd|2+|Vcs|2+|Vcb|2 = 1.040±0.032 (2nd row), |Vud|2+|Vcd|2+|Vtd|2 =
0.9975±0.0022 (1st column), and |Vus|2+|Vcs|2+|Vts|2 = 1.042±0.032
(2nd column), respectively. The uncertainties in the second row and
column are dominated by that of |Vcs|. For the second row,
a slightly better check is obtained from the measurement of∑

u,c,d,s,b |Vij |2 in Sec. 12.2.4 minus the sum in the first row above:

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1.002 ± 0.027. These provide strong tests of
the unitarity of the CKM matrix. With the significantly improved
direct determination of |Vtb|, the unitarity checks for the third row
and column have also become fairly precise, leaving decreasing room
for mixing with other states. The sum of the three angles of the
unitarity triangle, α + β + γ = (183+7

−8)
◦, is also consistent with the

SM expectation.

The CKM matrix elements can be most precisely determined
using a global fit to all available measurements and imposing
the SM constraints (i.e., three generation unitarity). The fit must
also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches
to combining the experimental data. CKMfitter [6,105] and Ref. [126]
(which develops [127,128] further) use frequentist statistics, while
UTfit [112,129] uses a Bayesian approach. These approaches provide
similar results.

The constraints implied by the unitarity of the three generation
CKM matrix significantly reduce the allowed range of some of the
CKM elements. The fit for the Wolfenstein parameters defined in
Eq. (12.4) gives

λ = 0.22506± 0.00050 , A = 0.811 ± 0.026 ,

ρ̄ = 0.124+0.019
−0.018 , η̄ = 0.356 ± 0.011 . (12.26)

These values are obtained using the method of Refs. [6,105]. Using
the prescription of Refs. [112,129] gives λ = 0.22496 ± 0.00048,
A = 0.823± 0.013, ρ̄ = 0.141± 0.019, η̄ = 0.349± 0.012 [130]. The fit
results for the magnitudes of all nine CKM elements are

VCKM =




0.97434+0.00011

−0.00012 0.22506± 0.00050 0.00357± 0.00015
0.22492± 0.00050 0.97351± 0.00013 0.0411± 0.0013
0.00875+0.00032

−0.00033 0.0403± 0.0013 0.99915± 0.00005



 ,

(12.27)
and the Jarlskog invariant is J = (3.04+0.21

−0.20) × 10−5.

Figure 12.2 illustrates the constraints on the ρ̄, η̄ plane from various
measurements and the global fit result. The shaded 95% CL regions
all overlap consistently around the global fit region.
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Figure 12.2: Constraints on the ρ̄, η̄ plane. The shaded areas
have 95% CL.

12.5. Implications beyond the SM

The effects in B, Bs, K, and D decays and mixings due to
high-scale physics (W , Z, t, H in the SM, and unknown heavier
particles) can be parameterized by operators composed of SM fields,
obeying the SU(3) × SU(2) × U(1) gauge symmetry. Flavor-changing
neutral currents, suppressed in the SM, are especially sensitive to
beyond SM (BSM) contributions. Processes studied in great detail,
both experimentally and theoretically, include neutral meson mixings,
B(s) → Xγ, Xℓ+ℓ−, ℓ+ℓ−, K → πνν̄, etc. The BSM contributions to
these operators are suppressed by powers of the scale of new physics.
Already at lowest order, there are many dimension-6 operators,
and the observable effects of BSM interactions are encoded in their
coefficients. In the SM, these coefficients are determined by just
the four CKM parameters, and the W , Z, and quark masses. For
example, ∆md, Γ(B → ργ), Γ(B → πℓ+ℓ−), and Γ(B → ℓ+ℓ−)
are all proportional to |VtdVtb|2 in the SM, however, they may
receive unrelated contributions from new physics. The new physics
contributions may or may not obey the SM relations. (For example,
the flavor sector of the MSSM contains 69 CP -conserving parameters
and 41 CP -violating phases, i.e., 40 new ones [131]). Thus, similar
to the measurements of sin 2β in tree- and loop-dominated decay
modes, overconstraining measurements of the magnitudes and phases
of flavor-changing neutral-current amplitudes give good sensitivity to
new physics.

To illustrate the level of suppression required for BSM contributions,
consider a class of models in which the unitarity of the CKM matrix
is maintained, and the dominant effect of new physics is to modify
the neutral meson mixing amplitudes [132] by (zij/Λ2)(qiγ

µPLqj)
2

(for recent reviews, see [133,134]). It is only known since the
measurements of γ and α that the SM gives the leading contribution
to B0 – B0 mixing [6,135]. Nevertheless, new physics with a generic
weak phase may still contribute to neutral meson mixings at a
significant fraction of the SM [136,137,129]. The existing data imply

that Λ/|zij|1/2 has to exceed about 104 TeV for K0 –K0 mixing,

103 TeV for D0 – D0 mixing, 500TeV for B0 –B0 mixing, and 100TeV
for B0

s – B0
s mixing [129,134]. (Some other operators are even better

constrained [129].) The constraints are the strongest in the kaon
sector, because the CKM suppression is the most severe. Thus, if
there is new physics at the TeV scale, |zij | ≪ 1 is required. Even if

|zij | are suppressed by a loop factor and |V ∗
tiVtj |2 (in the down quark

sector), similar to the SM, one expects percent-level effects, which may
be observable in forthcoming flavor physics experiments. To constrain
such extensions of the SM, many measurements irrelevant for the
SM-CKM fit, such as the CP asymmetry in semileptonic B0

d,s decays,
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A
d,s
SL , are important [138]. A DØ measurement sensitive to certain

linear combinations of Ad
SL and As

SL shows a 3.6σ hint of a deviation
from the SM [139].

Many key measurements which are sensitive to BSM flavor physics
are not useful to think about in terms of constraining the unitarity
triangle in Fig. 12.1. For example, besides the angles in Eq. (12.16),
a key quantity in the Bs system is βs = arg(−VtsV

∗
tb/VcsV

∗
cb),

which is the small, λ2-suppressed, angle of a “squashed” unitarity
triangle, obtained by taking the scalar product of the second and
third columns. This angle can be measured via time-dependent CP
violation in B0

s → J/ψ φ, similar to β in B0 → J/ψK0. Since the
J/ψ φ final state is not a CP eigenstate, an angular analysis of
the decay products is needed to separate the CP -even and CP -odd
components, which give opposite asymmetries. In the SM, the
asymmetry for the CP -even part is 2βs (sometimes the notation
φs = −2βs plus a possible BSM contribution to the Bs mixing
phase is used). Testing if the data agree with the SM prediction,
2βs = 0.0363 ± 0.0018 [105], is another sensitive test of the SM.
After the first Tevatron CP -asymmetry measurements of B0

s → J/ψφ
hinted at a possible tension with the SM, the current world average,
dominated by LHCb [140] including Bs → J/ψ K+K− and J/ψ π+π−

measurements, is 2βs = 0.034 ± 0.033 [22]. This uncertainty is about
20 times the SM uncertainty; thus a lot will be learned from
higher-precision measurements in the future.

In the kaon sector, the two measured CP -violating observables
ǫ and ǫ′ are tiny, so models in which all sources of CP violation
are small were viable before the B-factory measurements. Since the
measurement of sin 2β, we know that CP violation can be an O(1)
effect, and only flavor mixing is suppressed between the three quark
generations. Thus, many models with spontaneous CP violation
are excluded. In the kaon sector, a very clean test of the SM will
come from measurements of K+ → π+νν̄ and K0

L → π0νν̄. These
loop-induced rare decays are sensitive to new physics, and will
allow a determination of β, independent of its value measured in B
decays [141].

The CKM elements are fundamental parameters, so they should be
measured as precisely as possible. The overconstraining measurements
of CP asymmetries, mixing, semileptonic, and rare decays severely
constrain the magnitudes and phases of possible new physics
contributions to flavor-changing interactions. If new particles are
observed at the LHC, it will be important to explore their flavor
parameters as precisely as possible to understand the underlying
physics.
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The CP transformation combines charge conjugation C with
parity P . Under C, particles and antiparticles are interchanged,
by conjugating all internal quantum numbers, e.g., Q → −Q for
electromagnetic charge. Under P , the handedness of space is reversed,
~x → −~x. Thus, for example, a left-handed electron e−L is transformed

under CP into a right-handed positron, e+
R.

If CP were an exact symmetry, the laws of Nature would be the
same for matter and for antimatter. We observe that most phenomena
are C- and P -symmetric, and therefore, also CP -symmetric. In
particular, these symmetries are respected by the gravitational,
electromagnetic, and strong interactions. The weak interactions, on
the other hand, violate C and P in the strongest possible way. For
example, the charged W bosons couple to left-handed electrons, e−L ,

and to their CP -conjugate right-handed positrons, e+
R, but to neither

their C-conjugate left-handed positrons, e+
L , nor their P -conjugate

right-handed electrons, e−R. While weak interactions violate C and P
separately, CP is still preserved in most weak interaction processes.
The CP symmetry is, however, violated in certain rare processes, as
discovered in neutral K decays in 1964 [1], and observed in recent
years in B decays. A KL meson decays more often to π−e+νe than to
π+e−νe, thus allowing electrons and positrons to be unambiguously
distinguished, but the decay-rate asymmetry is only at the 0.003 level.
The CP -violating effects observed in the B system are larger: the
parameter describing the CP asymmetry in the decay time distribution
of B0/B0 meson transitions to CP eigenstates like J/ψKS is about
0.7 [2,3]. These effects are related to K0–K0 and B0–B0 mixing,
but CP violation arising solely from decay amplitudes has also been
observed, first in K → ππ decays [4–6], and more recently in B0 [7,8],
B+ [9–11], and B0

s [12] decays. Similar effects could also occur, but
have not yet been observed, in decays of b baryons. CP violation is not
yet experimentally established in the D system, where the Standard
Model effects are expected to be O(10−3). Moreover, CP violation
has not yet been observed in processes involving the top quark, nor in
flavor-conserving processes such as electric dipole moments, nor in the
lepton sector; for all of these any significant observation would be a
clear indication of physics beyond the Standard Model.

In addition to parity and to continuous Lorentz transformations,
there is one other spacetime operation that could be a symmetry of the
interactions: time reversal T , t → −t. Violations of T symmetry have
been observed in neutral K decays [13]. More recently, exploiting the
fact that for neutral B mesons both flavor tagging and CP tagging
can be used [14], T violation has been observed between states that
are not CP -conjugate [15]. Moreover, T violation is expected as a
corollary of CP violation if the combined CPT transformation is a
fundamental symmetry of Nature [16]. All observations indicate that
CPT is indeed a symmetry of Nature. Furthermore, one cannot build
a locally Lorentz-invariant quantum field theory with a Hermitian
Hamiltonian that violates CPT . (At several points in our discussion,
we avoid assumptions about CPT , in order to identify cases where
evidence for CP violation relies on assumptions about CPT .)

Within the Standard Model, CP symmetry is broken by complex
phases in the Yukawa couplings (that is, the couplings of the Higgs
scalar to quarks). When all manipulations to remove unphysical
phases in this model are exhausted, one finds that there is a single
CP -violating parameter [17]. In the basis of mass eigenstates, this
single phase appears in the 3 × 3 unitary matrix that gives the
W -boson couplings to an up-type antiquark and a down-type quark.
(If the Standard Model is supplemented with Majorana mass terms
for the neutrinos, the analogous mixing matrix for leptons has three
CP -violating phases.) The beautifully consistent and economical
Standard-Model description of CP violation in terms of Yukawa
couplings, known as the Kobayashi-Maskawa (KM) mechanism [17],
agrees with all measurements to date. (Some measurements are in
tension with the predictions, and are discussed in more detail below.
Pending verification, the results are not considered to change the
overall picture of agreement with the Standard Model.) Furthermore,
one can fit the data allowing new physics contributions to loop
processes to compete with, or even dominate over, the Standard Model

amplitudes [18,19]. Such an analysis provides model-independent
proof that the KM phase is different from zero, and that the matrix of
three-generation quark mixing is the dominant source of CP violation
in meson decays.

The current level of experimental accuracy and the theoretical
uncertainties involved in the interpretation of the various observations
leave room, however, for additional subdominant sources of CP
violation from new physics. Indeed, almost all extensions of the
Standard Model imply that there are such additional sources.
Moreover, CP violation is a necessary condition for baryogenesis, the
process of dynamically generating the matter-antimatter asymmetry
of the Universe [20]. Despite the phenomenological success of the KM
mechanism, it fails (by several orders of magnitude) to accommodate
the observed asymmetry [21]. This discrepancy strongly suggests
that Nature provides additional sources of CP violation beyond
the KM mechanism. The evidence for neutrino masses implies
that CP can be violated also in the lepton sector. This situation
makes leptogenesis [22,23], a scenario where CP -violating phases
in the Yukawa couplings of the neutrinos play a crucial role in the
generation of the baryon asymmetry, a very attractive possibility. The
expectation of new sources motivates the large ongoing experimental
effort to find deviations from the predictions of the KM mechanism.

CP violation can be experimentally searched for in a variety of
processes, such as hadron decays, electric dipole moments of neutrons,
electrons and nuclei, and neutrino oscillations. Hadron decays via
the weak interaction probe flavor-changing CP violation. The search
for electric dipole moments may find (or constrain) sources of CP
violation that, unlike the KM phase, are not related to flavor-changing
couplings. Following the discovery of the Higgs boson [24,25], searches
for CP violation in the Higgs sector are becoming feasible. Future
searches for CP violation in neutrino oscillations might provide further
input on leptogenesis.

The present measurements of CP asymmetries provide some of
the strongest constraints on the weak couplings of quarks. Future
measurements of CP violation in K, D, B, and B0

s meson decays
will provide additional constraints on the flavor parameters of the
Standard Model, and can probe new physics. In this review, we give
the formalism and basic physics that are relevant to present and near
future measurements of CP violation in the quark sector.

Before going into details, we list here the observables where CP
violation has been observed at a level above 5σ [26–28]:

• Indirect CP violation in K → ππ and K → πℓν decays, and in
the KL → π+π−e+e− decay, is given by

|ǫ| = (2.228 ± 0.011)× 10−3 . (13.1)

• Direct CP violation in K → ππ decays is given by

Re(ǫ′/ǫ) = (1.65 ± 0.26)× 10−3 . (13.2)

• CP violation in the interference of mixing and decay in the
tree-dominated b → cc̄s transitions, such as B0 → ψK0, is given
by (we use K0 throughout to denote results that combine KS and
KL modes, but use the sign appropriate to KS):

SψK0 = +0.691± 0.017 . (13.3)

• CP violation in the interference of mixing and decay in modes
governed by the tree-dominated b → cūd transitions is given by

S
D

(∗)
CP

h0
= +0.63 ± 0.11 , (13.4)

• CP violation in the interference of mixing and decay in various
modes related to b → cc̄d transitions is given by

Sψπ0 = − 0.93 ± 0.15 , (13.5)

SD+D− = − 0.98 ± 0.17 . (13.6)

SD∗+D∗− = − 0.71 ± 0.09 . (13.7)
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• CP violation in the interference of mixing and decay in various
modes related to b → qq̄s (penguin) transitions is given by

SφK0 = + 0.74 +0.11
−0.13 , (13.8)

Sη′K0 = + 0.63 ± 0.06 , (13.9)

Sf0K0 = + 0.69 +0.10
−0.12 , (13.10)

SK+K−KS
= + 0.68 +0.09

−0.10 , (13.11)

• CP violation in the interference of mixing and decay in the
B0 → π+π− mode is given by

Sπ+π− = −0.66 ± 0.06 . (13.12)

• Direct CP violation in the B0 → π+π− mode is given by

Cπ+π− = −0.31± 0.05 . (13.13)

• Direct CP violation in the B0 → K−π+ mode is given by

AB0→K−π+ = −0.082± 0.006 . (13.14)

• Direct CP violation in B+ → D+K+ decays (D+ is the CP -even
neutral D state) is given by

AB+→D+K+ = +0.195± 0.027 . (13.15)

• Direct CP violation in the B0
s → K+π− mode is given by

AB0
s→K+π− = +0.26± 0.04 . (13.16)

• Direct CP violation in B+ → K+K−π+ decays is given by

AB+→K+K−π+ = −0.118± 0.022 . (13.17)

In addition, large CP violation effects have recently been observed in
certain regions of the phase space of B+ → K+K−K+, π+π−K+,
π+π−π+ and K+K−π+ decays.

13.1. Formalism

The phenomenology of CP violation for neutral flavored mesons
is particularly interesting, since many of the observables can be
cleanly interpreted. Although the phenomenology is superficially
different for K0, D0, B0, and B0

s decays, this is primarily because
each of these systems is governed by a different balance between
decay rates, oscillations, and lifetime splitting. However, the general
considerations presented in this section are identical for all flavored
neutral pseudoscalar mesons. The phenomenology of CP violation for
neutral mesons that do not carry flavor quantum numbers (such as

the η(′) state) is quite different: such states are their own antiparticles
and have definite CP eigenvalues, so the signature of CP violation is
simply the decay to a final state with the opposite CP . Such decays
are mediated by the electromagnetic or (OZI-suppressed) strong
interaction, where CP violation is not expected and has not yet been
observed. In the remainder of this review, we restrict ourselves to
considerations of weakly decaying hadrons.

In this section, we present a general formalism for, and classification
of, CP violation in the decay of a weakly decaying hadron, denoted
M . We pay particular attention to the case that M is a K0, D0,
B0, or B0

s meson. Subsequent sections describe the CP -violating
phenomenology, approximations, and alternative formalisms that are
specific to each system.

13.1.1. Charged- and neutral-hadron decays :

We define decay amplitudes of M (which could be charged or
neutral) and its CP conjugate M to a multi-particle final state f and
its CP conjugate f as

Af = 〈f |H|M〉 , Af = 〈f |H|M〉 ,

Af = 〈f |H|M〉 , Af = 〈f |H|M〉 , (13.18)

where H is the Hamiltonian governing weak interactions. The action
of CP on these states introduces phases ξM and ξf that depend on
their flavor content, according to

CP |M〉 = e+iξM |M〉 , CP |f〉 = e+iξf |f〉 , (13.19)

with
CP |M〉 = e−iξM |M〉 , CP |f〉 = e−iξf |f〉 (13.20)

so that (CP )2 = 1. The phases ξM and ξf are arbitrary and
unobservable because of the flavor symmetry of the strong interaction.
If CP is conserved by the dynamics, [CP,H] = 0, then Af and Af
have the same magnitude and an arbitrary unphysical relative phase

Af = ei(ξf−ξM ) Af . (13.21)

13.1.2. Neutral-meson mixing :

A state that is initially a superposition of M0 and M0, say

|ψ(0)〉 = a(0)|M0〉 + b(0)|M0〉 , (13.22)

will evolve in time acquiring components that describe all possible
decay final states {f1, f2, . . .}, that is,

|ψ(t)〉 = a(t)|M0〉 + b(t)|M0〉 + c1(t)|f1〉 + c2(t)|f2〉 + · · · . (13.23)

If we are interested in computing only the values of a(t) and b(t)
(and not the values of all ci(t)), and if the times t in which we are
interested are much larger than the typical strong interaction scale,
then we can use a much simplified formalism [29]. The simplified
time evolution is determined by a 2 × 2 effective Hamiltonian H that
is not Hermitian, since otherwise the mesons would only oscillate and
not decay. Any complex matrix, such as H, can be written in terms
of Hermitian matrices M and Γ as

H = M − i

2
Γ . (13.24)

M and Γ are associated with (M0, M0) ↔ (M0, M0) transitions via
off-shell (dispersive), and on-shell (absorptive) intermediate states,
respectively. Diagonal elements of M and Γ are associated with
the flavor-conserving transitions M0 → M0 and M0 → M0, while
off-diagonal elements are associated with flavor-changing transitions
M0 ↔ M0.

The eigenvectors of H have well-defined masses and decay widths.
To specify the components of the strong interaction eigenstates, M0

and M0, in the light (ML) and heavy (MH) mass eigenstates, we
introduce three complex parameters: p, q, and, for the case that both
CP and CPT are violated in mixing, z:

|ML〉 ∝ p
√

1 − z |M0〉 + q
√

1 + z |M0〉
|MH〉 ∝ p

√
1 + z |M0〉 − q

√
1 − z |M0〉 , (13.25)

with the normalization |q|2 + |p|2 = 1 when z = 0. (Another possible
choice, which is in standard usage for K mesons, defines the mass
eigenstates according to their lifetimes: KS for the short-lived and
KL for the long-lived state. The KL is experimentally found to be the
heavier state. Yet another choice is often used for the D mesons [30]:
the eigenstates are labelled according to their dominant CP content.)

The real and imaginary parts of the eigenvalues ωL,H corresponding
to |ML,H〉 represent their masses and decay widths, respectively. The
mass and width splittings are

∆m ≡ mH − mL = Re(ωH − ωL) ,

∆Γ ≡ ΓH − ΓL = −2 Im(ωH − ωL) . (13.26)
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Note that here ∆m is positive by definition, while the sign of ∆Γ
must be experimentally determined. The sign of ∆Γ has not yet been
established for B0 mesons, while ∆Γ < 0 is established for K and B0

s
mesons. The Standard Model predicts ∆Γ < 0 also for B0

(s) mesons

(for this reason, ∆Γ = ΓL − ΓH , which is still a signed quantity, is
often used in the B0 and B0

s literature and is the convention used in
the PDG experimental summaries).

Solving the eigenvalue problem for H yields

(

q

p

)2

=
M∗

12 − (i/2)Γ∗
12

M12 − (i/2)Γ12
(13.27)

and

z ≡ δm − (i/2)δΓ

∆m − (i/2)∆Γ
, (13.28)

where
δm ≡ M11 −M22 , δΓ ≡ Γ11 − Γ22 (13.29)

are the differences in effective mass and decay-rate expectation values
for the strong interaction states M0 and M0.

If either CP or CPT is a symmetry of H (independently of whether
T is conserved or violated), then the values of δm and δΓ are both
zero, and hence z = 0. We also find that

ωH − ωL = 2

√

(

M12 − i

2
Γ12

) (

M∗
12 − i

2
Γ∗

12

)

. (13.30)

If either CP or T is a symmetry of H (independently of whether CPT
is conserved or violated), then Γ12/M12 is real, leading to

(

q

p

)2

= e2iξM ⇒
∣

∣

∣

∣

q

p

∣

∣

∣

∣

= 1 , (13.31)

where ξM is the arbitrary unphysical phase introduced in Eq. (13.20).
If, and only if, CP is a symmetry of H (independently of CPT and
T ), then both of the above conditions hold, with the result that the
mass eigenstates are orthogonal

〈MH |ML〉 = |p|2 − |q|2 = 0 . (13.32)

13.1.3. CP -violating observables :

All CP -violating observables in M and M decays to final states
f and f can be expressed in terms of phase-convention-independent
combinations of Af , Af , Af , and Af , together with, for neutral

meson decays only, q/p. CP violation in charged meson and all
baryon decays depends only on the combination |Af/Af |, while

CP violation in flavored neutral meson decays is complicated by
M0 ↔ M0 oscillations, and depends, additionally, on |q/p| and on
λf ≡ (q/p)(Af/Af ).

The decay rates of the two neutral kaon mass eigenstates, KS
and KL, are different enough (ΓS/ΓL ∼ 500) that one can, in most
cases, actually study their decays independently. For D0, B0, and
B0

s mesons, however, values of ∆Γ/Γ (where Γ ≡ (ΓH + ΓL)/2) are
relatively small, and so both mass eigenstates must be considered
in their evolution. We denote the state of an initially pure |M0〉 or
|M0〉 after an elapsed proper time t as |M0

phys(t)〉 or |M0
phys(t)〉,

respectively. Using the effective Hamiltonian approximation, but not
assuming CPT is a good symmetry, we obtain

|M0
phys(t)〉 = (g+(t) + z g−(t)) |M0〉 −

√

1 − z
2 q

p
g−(t)|M0〉 ,

|M0
phys(t)〉 = (g+(t) − z g−(t)) |M0〉 −

√

1 − z
2 p

q
g−(t)|M0〉 ,

(13.33)

where

g±(t) ≡ 1

2



e
−imH t−

1

2
ΓH t

± e
−imLt−

1

2
ΓLt



 (13.34)

and z = 0 if either CPT or CP is conserved.

Defining x ≡ ∆m/Γ and y ≡ ∆Γ/(2Γ), and assuming z = 0, one
obtains the following time-dependent decay rates:

dΓ
[

M0
phys(t) → f

]

/dt

e−ΓtNf
=

(

|Af |2 + |(q/p)Af |2
)

cosh(yΓt) +
(

|Af |2 − |(q/p)Af |2
)

cos(xΓt)

+ 2Re((q/p)A∗
fAf ) sinh(yΓt) − 2 Im((q/p)A∗

fAf ) sin(xΓt) ,

(13.35)

dΓ
[

M0
phys(t) → f

]

/dt

e−ΓtNf
=

(

|(p/q)Af |2 + |Af |2
)

cosh(yΓt) −
(

|(p/q)Af |2 − |Af |2
)

cos(xΓt)

+ 2Re((p/q)AfA
∗
f ) sinh(yΓt) − 2 Im((p/q)AfA

∗
f ) sin(xΓt) ,

(13.36)

where Nf is a common, time-independent, normalization factor
that can be determined bearing in mind that the range of t is
0 < t < ∞. Decay rates to the CP -conjugate final state f are
obtained analogously, with Nf = Nf and the substitutions Af → Af

and Af → Af in Eqs. (13.35, 13.36). Terms proportional to |Af |2
or |Af |2 are associated with decays that occur without any net

M0 ↔ M0 oscillation, while terms proportional to |(q/p)Af |2 or

|(p/q)Af |2 are associated with decays following a net oscillation. The
sinh(yΓt) and sin(xΓt) terms of Eqs. (13.35, 13.36) are associated with
the interference between these two cases. Note that, in multi-body
decays, amplitudes are functions of phase-space variables. Interference
may be present in some regions but not others, and is strongly
influenced by resonant substructure.

When neutral pseudoscalar mesons are produced coherently in pairs
from the decay of a vector resonance, V → M0M0 (for example,
Υ(4S) → B0B0 or φ → K0K0), the time-dependence of their
subsequent decays to final states f1 and f2 has a similar form to
Eqs. (13.35, 13.36):

dΓ
[

Vphys(t1, t2) → f1f2
]

/d(∆t)

e−Γ|∆t|Nf1f2

=

(

|a+|2 + |a−|2
)

cosh(yΓ∆t) +
(

|a+|2 − |a−|2
)

cos(xΓ∆t)

− 2Re(a∗+a−) sinh(yΓ∆t) + 2 Im(a∗+a−) sin(xΓ∆t) ,

(13.37)

where ∆t ≡ t2 − t1 is the difference in the production times, t1 and t2,
of f1 and f2, respectively, and the dependence on the average decay
time and on decay angles has been integrated out. The normalisation
factor Nf1f2

can be evaluated, noting that the range of ∆t is
−∞ < ∆t < ∞. The coefficients in Eq. (13.37) are determined by the
amplitudes for no net oscillation from t1 → t2, Af1

Af2
, and Af1

Af2
,

and for a net oscillation, (q/p)Af1
Af2

and (p/q)Af1
Af2

, via

a+ ≡ Af1
Af2

− Af1
Af2

, (13.38)

a− ≡ −
√

1 − z
2

(

q

p
Af1

Af2
− p

q
Af1

Af2

)

+ z

(

Af1
Af2

+ Af1
Af2

)

.

Assuming CPT conservation, z = 0, and identifying ∆t → t
and f2 → f , we find that Eqs. (13.37, 13.38) reduce essentially
to Eq. (13.35) with Af1

= 0, Af1
= 1, or to Eq. (13.36) with

Af1
= 0, Af1

= 1. Indeed, such a situation plays an important role in

experiments that exploit the coherence of V → M0M0 (for example
ψ(3770) → D0D0 or Υ(4S) → B0B0) production. Final states f1

with Af1
= 0 or Af1

= 0 are called tagging states, because they

identify the decaying pseudoscalar meson as, respectively, M0 or M0.
Before one of M0 or M0 decays, they evolve in phase, so that there
is always one M0 and one M0 present. A tagging decay of one meson
sets the clock for the time evolution of the other: it starts at t1 as
purely M0 or M0, with time evolution that depends only on t2 − t1.
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When f1 is a state that both M0 and M0 can decay into, then
Eq. (13.37) contains interference terms proportional to Af1

Af1
6= 0

that are not present in Eqs. (13.35, 13.36). Even when f1 is dominantly
produced by M0 decays rather than M0 decays, or vice versa, Af1

Af1
can be non-zero owing to doubly-CKM-suppressed decays (with
amplitudes suppressed by at least two powers of λ relative to the
dominant amplitude, in the language of Section 13.3), and these terms
should be considered for precision studies of CP violation in coherent
V → M0M0 decays [31]. The correlations in V → M0M0 decays
can also be exploited to determine strong phase differences between
favored and suppressed decay amplitudes [32].

13.1.4. Classification of CP -violating effects :

We distinguish three types of CP -violating effects that can occur in
the quark sector:

I. CP violation in decay is defined by

|Af/Af | 6= 1 . (13.39)

In charged meson (and all baryon) decays, where mixing
effects are absent, this is the only possible source of CP
asymmetries:

Af± ≡ Γ(M− → f−) − Γ(M+ → f+)

Γ(M− → f−) + Γ(M+ → f+)
=

|Af−/Af+ |2 − 1

|Af−/Af+ |2 + 1
. (13.40)

Note that the usual sign convention for CP asymmetries of
hadrons is for the difference between the rate involving the
particle that contains a heavy quark and that which contains
an antiquark. Hence Eq. (13.40) corresponds to the definition
for B± mesons, but the opposite sign is used for D±

(s)
decays.

II. CP (and T ) violation in mixing is defined by

|q/p| 6= 1 . (13.41)

In charged-current semileptonic neutral meson decays
M, M → ℓ±X (taking |Aℓ+X | = |Aℓ−X | and Aℓ−X =
Aℓ+X = 0, as is the case in the Standard Model, to lowest
order in GF , and in most of its reasonable extensions), this is
the only source of CP violation, and can be measured via the
asymmetry of “wrong-sign” decays induced by oscillations:

ASL(t) ≡
dΓ/dt

[

M0
phys(t) → ℓ+X

]

− dΓ/dt
[

M0
phys(t) → ℓ−X

]

dΓ/dt
[

M0
phys(t) → ℓ+X

]

+ dΓ/dt
[

M0
phys(t) → ℓ−X

]

=
1 − |q/p|4
1 + |q/p|4 . (13.42)

Note that this asymmetry of time-dependent decay rates is
actually time-independent.

III. CP violation in interference between a decay without mixing,
M0 → f , and a decay with mixing, M0 → M0 → f (such an
effect occurs only in decays to final states that are common to
M0 and M0, including all CP eigenstates), is defined by

arg(λf ) + arg(λf̄ ) 6= 0 , (13.43)

with

λf ≡ q

p

Af

Af
. (13.44)

For final CP eigenstates, fCP , the condition Eq. (13.43)
simplifies to

Im(λfCP
) 6= 0 , (13.45)

This form of CP violation can be observed, for example, using
the asymmetry of neutral meson decays into CP eigenstates

AfCP
(t) ≡

dΓ/dt
[

M0
phys(t) → fCP

]

− dΓ/dt
[

M0
phys(t) → fCP

]

dΓ/dt
[

M0
phys(t) → fCP

]

+ dΓ/dt
[

M0
phys(t) → fCP

] .

(13.46)
If ∆Γ = 0, as expected to a good approximation for B0

mesons, but not for K0 and B0
s mesons, and |q/p| = 1, then

AfCP
has a particularly simple form (see Eq. (13.91), below).

If, in addition, the decay amplitudes fulfill |AfCP
| = |AfCP

|,
the interference between decays with and without mixing
is the only source of the asymmetry and AfCP

(t) =
Im(λfCP

) sin(xΓt).

Examples of these three types of CP violation will be given in
Sections 13.4, 13.5, and 13.6.

13.2. Theoretical Interpretation: General Consider-

ations

Consider the M → f decay amplitude Af , and the CP conjugate

process, M → f , with decay amplitude Af . There are two types

of phases that may appear in these decay amplitudes. Complex
parameters in any Lagrangian term that contributes to the amplitude
will appear in complex conjugate form in the CP -conjugate amplitude.
Thus, their phases appear in Af and Af with opposite signs. In

the Standard Model, these phases occur only in the couplings of
the W± bosons, and hence, are often called “weak phases.” The
weak phase of any single term is convention-dependent. However,
the difference between the weak phases in two different terms in Af
is convention-independent. A second type of phase can appear in
scattering or decay amplitudes, even when the Lagrangian is real.
This phase originates from the possible contribution from intermediate
on-shell states in the decay process. Since such phases are generated
by CP -invariant interactions, they are the same in Af and Af .

Usually the dominant rescattering is due to strong interactions; hence
the designation “strong phases” for the phase shifts so induced.
Again, only the relative strong phases between different terms in the
amplitude are physically meaningful.

The “weak” and “strong” phases discussed here appear in addition
to the spurious CP -transformation phases of Eq. (13.21). Those
spurious phases are due to an arbitrary choice of phase convention,
and do not originate from any dynamics or induce any CP violation.
For simplicity, we set them to zero from here on.

It is useful to write each contribution ai to Af in three parts: its
magnitude |ai|, its weak phase φi, and its strong phase δi. If, for
example, there are two such contributions, Af = a1 + a2, we have

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2),

Af = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2). (13.47)

Similarly, for neutral mesons, it is useful to write

M12 = |M12|eiφM , Γ12 = |Γ12|eiφΓ . (13.48)

Each of the phases appearing in Eqs. (13.47, 13.48) is convention-
dependent, but combinations such as δ1 − δ2, φ1 − φ2, φM − φΓ, and
φM + φ1 − φ1 (where φ1 is a weak phase contributing to Af ) are
physical.

It is now straightforward to evaluate the various asymmetries in
terms of the theoretical parameters introduced here. We will do so
with approximations that are often relevant to the most interesting
measured asymmetries.

1. The CP asymmetry in charged meson and all baryon decays
[Eq. (13.40)] is given by

Af = − 2|a1a2| sin(δ2 − δ1) sin(φ2 − φ1)

|a1|2 + |a2|2 + 2|a1a2| cos(δ2 − δ1) cos(φ2 − φ1)
. (13.49)

The quantity of most interest to theory is the weak phase difference
φ2 − φ1. Its extraction from the asymmetry requires, however, that
the amplitude ratio |a2/a1| and the strong phase difference δ2 − δ1

are known. Both quantities depend on non-perturbative hadronic
parameters that are difficult to calculate, but in some cases can be
obtained from experiment.

2. In the approximation that |Γ12/M12| ≪ 1 (valid for B0 and B0
s

mesons), the CP asymmetry in semileptonic neutral-meson decays
[Eq. (13.42)] is given by

ASL = −
∣

∣

∣

∣

Γ12

M12

∣

∣

∣

∣

sin(φM − φΓ) . (13.50)

The quantity of most interest to theory is the weak phase φM − φΓ.
Its extraction from the asymmetry requires, however, that |Γ12/M12|
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is known. This quantity depends on long-distance physics that is
difficult to calculate.

3. In the approximations that only a single weak phase contributes

to decay, Af = |af |ei(δf+φf ), and that |Γ12/M12| = 0, we obtain
|λf | = 1, and the CP asymmetries in decays to a final CP eigenstate
f [Eq. (13.46)] with eigenvalue ηf = ±1 are given by

AfCP
(t) = Im(λf ) sin(∆mt) with Im(λf ) = ηf sin(φM + 2φf ) .

(13.51)
Note that the phase measured is purely a weak phase, and no hadronic
parameters are involved in the extraction of its value from Im(λf ) .

The discussion above allows us to introduce another classification
of CP -violating effects:

1. Indirect CP violation is consistent with taking φM 6= 0 and
setting all other CP violating phases to zero. CP violation in
mixing (type II) belongs to this class.

2. Direct CP violation cannot be accounted for by just φM 6= 0. CP
violation in decay (type I) belongs to this class.

The historical significance of this classification is related to theory. In
superweak models [33], CP violation appears only in diagrams that
contribute to M12, hence they predict that there is no direct CP
violation. In most models and, in particular, in the Standard Model,
CP violation is both direct and indirect. As concerns type III CP
violation, a single observation of such an effect would be consistent
with indirect CP violation, but observing ηf1

Im(λf1
) 6= ηf2

Im(λf2
)

(for the same decaying meson and two different final CP eigenstates
f1 and f2) would establish direct CP violation. The experimental
observation of ǫ′ 6= 0, which was achieved by establishing that
Im(λπ+π−) 6= Im(λπ0π0) (see Section 13.4), excluded the superweak
scenario.

13.3. Theoretical Interpretation: The KM Mecha-

nism

Of all the Standard Model quark parameters, only the Kobayashi-
Maskawa (KM) phase is CP -violating. Having a single source of CP
violation, the Standard Model is very predictive for CP asymmetries:
some vanish, and those that do not are correlated.

To be precise, CP could be violated also by strong interactions.
The experimental upper bound on the electric-dipole moment of the
neutron implies, however, that θQCD, the non-perturbative parameter
that determines the strength of this type of CP violation, is tiny,
if not zero. (The smallness of θQCD constitutes a theoretical puzzle,
known as “the strong CP problem.”) In particular, it is irrelevant to
our discussion of hadron decays.

The charged current interactions (that is, the W± interactions) for
quarks are given by

−LW± =
g√
2

uLi γµ (VCKM)ij dLj W+
µ + h.c. (13.52)

Here i, j = 1, 2, 3 are generation numbers. The Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix for quarks is a 3×3 unitary matrix [34].
Ordering the quarks by their masses, i.e., (u1, u2, u3) → (u, c, t) and
(d1, d2, d3) → (d, s, b), the elements of VCKM are written as follows:

VCKM =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (13.53)

While a general 3 × 3 unitary matrix depends on three real angles
and six phases, the freedom to redefine the phases of the quark mass
eigenstates can be used to remove five of the phases, leaving a single
physical phase, the Kobayashi-Maskawa phase, that is responsible for
all CP violation in the Standard Model.

The fact that one can parametrize VCKM by three real and only
one imaginary physical parameters can be made manifest by choosing
an explicit parametrization. The Wolfenstein parametrization [35,36]
is particularly useful:

VCKM =










1 −

1

2
λ2

−

1

8
λ4 λ Aλ3(ρ − iη)

−λ +
1

2
A2λ5[1 − 2(ρ + iη)] 1 −

1

2
λ2

−

1

8
λ4(1 + 4A2) Aλ2

Aλ3[1 − (1 −

1

2
λ2)(ρ + iη)] −Aλ2 +

1

2
Aλ4[1 − 2(ρ + iη)] 1 −

1

2
A2λ4











.

(13.54)

Here λ ≈ 0.23 (not to be confused with λf ), the sine of the Cabibbo
angle, plays the role of an expansion parameter, and η represents the
CP -violating phase. Terms of O(λ6) have been neglected.

The unitarity of the CKM matrix, (V V †)ij = (V †V )ij = δij , leads
to twelve distinct complex relations among the matrix elements. The
six relations with i 6= j can be represented geometrically as triangles
in the complex plane. Two of these,

VudV ∗
ub + VcdV

∗
cb + VtdV ∗

tb = 0

VtdV ∗
ud + VtsV

∗
us + VtbV

∗
ub = 0 ,

have terms of equal order, O(Aλ3), and so have corresponding
triangles whose interior angles are all O(1) physical quantities that
can be independently measured. The angles of the first triangle (see
Fig. 13.1) are given by

α ≡ ϕ2 ≡ arg

(

− VtdV ∗
tb

VudV
∗
ub

)

≃ arg

(

−1 − ρ − iη

ρ + iη

)

,

β ≡ ϕ1 ≡ arg

(

−VcdV
∗
cb

VtdV ∗
tb

)

≃ arg

(

1

1 − ρ − iη

)

,

γ ≡ ϕ3 ≡ arg

(

−VudV
∗
ub

VcdV
∗
cb

)

≃ arg (ρ + iη) . (13.55)

The angles of the second triangle are equal to (α, β, γ) up to corrections
of O(λ2). The notations (α, β, γ) and (ϕ1, ϕ2, ϕ3) are both in common
usage but, for convenience, we only use the first convention in the
following.

VtdVtb*

VcdVcb*

α=ϕ2 β=ϕ1

γ=ϕ3

VudVub*

Figure 13.1: Graphical representation of the unitarity con-
straint VudV ∗

ub + VcdV
∗
cb + VtdV ∗

tb = 0 as a triangle in the complex
plane.

Another relation that can be represented as a triangle,

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 , (13.56)

and, in particular, its small angle, of O(λ2),

βs ≡ arg

(

− VtsV
∗
tb

VcsV
∗
cb

)

, (13.57)

is convenient for analyzing CP violation in the B0
s sector.

All unitarity triangles have the same area, commonly denoted
by J/2 [37]. If CP is violated, J is different from zero and can
be taken as the single CP -violating parameter. In the Wolfenstein
parametrization of Eq. (13.54), J ≃ λ6A2η.
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13.4. Kaons

CP violation was discovered in K → ππ decays in 1964 [1]. The
same mode provided the first observation of direct CP violation [4–6].

The decay amplitudes actually measured in neutral K decays refer
to the mass eigenstates KL and KS , rather than to the K and K
states referred to in Eq. (13.18). The final π+π− and π0π0 states are
CP -even. In the CP conservation limit, KS (KL) would be CP -even
(odd), and therefore would (would not) decay to two pions. We define
CP -violating amplitude ratios for two-pion final states,

η00 ≡ 〈π0π0|H|KL〉
〈π0π0|H|KS〉

, η+− ≡ 〈π+π−|H|KL〉
〈π+π−|H|KS〉

. (13.58)

Another important observable is the asymmetry of time-integrated
semileptonic decay rates:

δL ≡ Γ(KL → ℓ+νℓπ
−) − Γ(KL → ℓ−νℓπ

+)

Γ(KL → ℓ+νℓπ
−) + Γ(KL → ℓ−νℓπ

+)
. (13.59)

CP violation has been observed as an appearance of KL decays to
two-pion final states [26],

|η00| = (2.220 ± 0.011)× 10−3 |η+−| = (2.232 ± 0.011)× 10−3

(13.60)
|η00/η+−| = 0.9950± 0.0007 , (13.61)

where the phase φij of the amplitude ratio ηij has been determined
both assuming CPT invariance:

φ00 = (43.52 ± 0.05)◦ , φ+− = (43.51± 0.05)◦ , (13.62)

and without assuming CPT invariance:

φ00 = (43.7 ± 0.6)◦ , φ+− = (43.4 ± 0.5)◦ . (13.63)

CP violation has also been observed in semileptonic KL decays [26]

δL = (3.32 ± 0.06)× 10−3 , (13.64)

where δL is a weighted average of muon and electron measurements, as
well as in KL decays to π+π−γ and π+π−e+e− [26]. CP violation
in K → 3π decays has not yet been observed [26,38].

Historically, CP violation in neutral K decays has been described in
terms of the complex parameters ǫ and ǫ′. The observables η00, η+−,
and δL are related to these parameters, and to those of Section 13.1,
by

η00 =
1 − λπ0π0

1 + λπ0π0
= ǫ − 2ǫ′ ,

η+− =
1 − λπ+π−

1 + λπ+π−

= ǫ + ǫ′ ,

δL =
1 − |q/p|2

1 + |q/p|2
=

2Re(ǫ)

1 + |ǫ|2
, (13.65)

where, in the last line, we have assumed that
∣

∣

∣Aℓ+νℓπ
−

∣

∣

∣ =
∣

∣

∣Aℓ−νℓπ
+

∣

∣

∣ and
∣

∣

∣Aℓ−νℓπ
+

∣

∣

∣ =
∣

∣

∣Aℓ+νℓπ
−

∣

∣

∣ = 0. (The convention-

dependent parameter ǫ̃ ≡ (1 − q/p)/(1 + q/p), sometimes used in the
literature, is, in general, different from ǫ but yields a similar expression,
δL = 2Re(ǫ̃)/(1 + |ǫ̃|2).) A fit to the K → ππ data yields [26]

|ǫ| = (2.228 ± 0.011)× 10−3 ,

Re(ǫ′/ǫ) = (1.66 ± 0.23) × 10−3 . (13.66)

In discussing two-pion final states, it is useful to express the
amplitudes Aπ0π0 and Aπ+π− in terms of their isospin components
via

Aπ0π0 =

√

1

3
|A0| ei(δ0+φ0) −

√

2

3
|A2| ei(δ2+φ2),

Aπ+π− =

√

2

3
|A0| ei(δ0+φ0) +

√

1

3
|A2| ei(δ2+φ2) , (13.67)

where we parameterize the amplitude AI(AI) for K0(K0) decay into
two pions with total isospin I = 0 or 2 as

AI ≡ 〈(ππ)I |H|K0〉 = |AI | ei(δI+φI ) ,

AI ≡ 〈(ππ)I |H|K0〉 = |AI | ei(δI−φI ) . (13.68)

The smallness of |η00| and |η+−| allows us to approximate

ǫ ≃ 1

2
(1 − λ(ππ)I=0

) , ǫ′ ≃ 1

6

(

λπ0π0 − λπ+π−

)

. (13.69)

The parameter ǫ represents indirect CP violation, while ǫ′ parame-
terizes direct CP violation: Re(ǫ′) measures CP violation in decay
(type I), Re(ǫ) measures CP violation in mixing (type II), and Im(ǫ)
and Im(ǫ′) measure the interference between decays with and without
mixing (type III).

The following expressions for ǫ and ǫ′ are useful for theoretical
evaluations:

ǫ ≃ eiπ/4

√
2

Im(M12)

∆m
, ǫ′ =

i√
2

∣

∣

∣

∣

A2

A0

∣

∣

∣

∣

ei(δ2−δ0) sin(φ2 − φ0) .

(13.70)
The expression for ǫ is only valid in a phase convention where φ2 = 0,
corresponding to a real VudV

∗
us, and in the approximation that also

φ0 = 0. The phase of ǫ, arg(ǫ) ≈ arctan(−2∆m/∆Γ), is independent
of the electroweak model and is experimentally determined to be about
π/4. The calculation of ǫ benefits from the fact that Im(M12) is
dominated by short distance physics. Consequently, the main sources
of uncertainty in theoretical interpretations of ǫ are the values of
matrix elements, such as 〈K0 |(sd)V −A(sd)V −A|K0〉. The expression
for ǫ′ is valid to first order in |A2/A0| ∼ 1/20. The phase of ǫ′ is
experimentally determined, π/2 + δ2 − δ0 ≈ π/4, and is independent
of the electroweak model. Note that, accidentally, ǫ′/ǫ is real to a
good approximation. Determination of weak phase information from
the measurement of Re(ǫ′/ǫ) given in Eq. (13.66) has until now been
precluded by uncertainties in the hadronic parameters, but recent
advances in lattice QCD calculations [39,40] suggest that it may
become possible [41].

A future measurement of much interest is that of CP violation
in the rare K → πνν decays. The signal for CP violation is simply
observing the KL → π0νν decay. The effect here is that of interference
between decays with and without mixing (type III) [42]:

Γ(KL → π0νν)

Γ(K+ → π+νν)
=

1

2

[

1 + |λπνν |2 − 2Re(λπνν)
]

≃ 1 −Re(λπνν),

(13.71)
where in the last equation we neglect CP violation in decay and in
mixing (expected, model-independently, to be of order 10−5 and 10−3,
respectively). Such a measurement is experimentally very challenging
but would be theoretically very rewarding [43]. Similar to the CP
asymmetry in B0 → J/ψKS , the CP violation in K → πνν decay is
predicted to be large (that is, the ratio in Eq. (13.71) is neither CKM-
nor loop-suppressed) and can be very cleanly interpreted.

Within the Standard Model, the KL → π0νν decay is dominated
by an intermediate top quark contribution and, consequently, can be
interpreted in terms of CKM parameters [44]. (For the charged mode,
K+ → π+νν, the contribution from an intermediate charm quark
is not negligible, and constitutes a source of hadronic uncertainty.)
In particular, B(KL → π0νν) provides a theoretically clean way to
determine the Wolfenstein parameter η [45]:

B(KL → π0νν) = κL[X(m2
t /m2

W )]2A4η2 , (13.72)

where the hadronic parameter κL ∼ 2 × 10−10 incorporates the
value of the four-fermion matrix element which is deduced, using
isospin relations, from B(K+ → π0e+νe), and X(m2

t /m2
W ) is a

known function of the top mass. An explicit calculation gives
B(KL → π0νν) = (2.4 ± 0.4) × 10−11 [46]. The currently tightest
experimental limit is B(KL → π0νν) < 2.6 × 10−8 [47], which does
not yet reach the bound B(KL → π0νν) < 4.4 × B(K+ → π+νν) [42].
Significant further progress is anticipated from experiments searching
for K → πνν decays in the next few years [48,49].
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13.5. Charm

The existence of D0–D0 mixing has been established in recent
years [50–53]. The experimental constraints read [28,54] x ≡ ∆m/Γ =
(0.37 ± 0.16) × 10−2 and y ≡ ∆Γ/(2Γ) = (0.66 +0.07

−0.10) × 10−2. Thus,
the data clearly show that y 6= 0, but improved measurements are
needed to be sure of the size of x. Long-distance contributions make
it difficult to calculate Standard Model predictions for the D0–D0

mixing parameters. Therefore, the goal of the search for D0–D0

mixing is not to constrain the CKM parameters, but rather to probe
new physics. Here CP violation plays an important role. Within
the Standard Model, the CP -violating effects are predicted to be
small, since the mixing and the relevant decays are described, to an
excellent approximation, by the physics of the first two generations
only. The expectation is that the Standard Model size of CP violation
in D decays is O(10−3) or less, but theoretical work is ongoing
to understand whether QCD effects can significantly enhance it.
At present, the most sensitive searches involve the D0 → K+K−,
D0 → π+π− and D0 → K±π∓ modes.

The neutral D mesons decay via a singly-Cabibbo-suppressed
transition to the CP eigenstates K+K− and π+π−. These decays are
dominated by Standard-Model tree diagrams. Thus, we can write, for
f = K+K− or π+π−,

Af = AT
f e

+iφT
f

[

1 + rf ei(δf+φf )
]

,

Āf = AT
f e

−iφT
f

[

1 + rf ei(δf−φf )
]

, (13.73)

where AT
f e

±iφT
f is the Standard Model tree-level contribution, φT

f and

φf are weak, CP violating phases, δf is a strong phase difference,
and rf is the ratio between a subleading (rf ≪ 1) contribution with

a weak phase different from φT
f and the Standard Model tree-level

contribution. Neglecting rf , λf is universal, and we can define an
observable phase φD via

λf ≡ −|q/p|eiφD . (13.74)

(In the limit of CP conservation, choosing φD = 0 is equivalent
to defining the mass eigenstates by their CP eigenvalue: |D∓〉 =

p|D0〉 ± q|D0〉, with D− (D+) being the CP -odd (CP -even) state;
that is, the state that does not (does) decay into K+K−.)

We define the time integrated CP asymmetry for a final CP
eigenstate f as follows:

af ≡
∫ ∞
0 Γ(D0

phys(t) → f)dt −
∫ ∞
0 Γ(D0

phys(t) → f)dt
∫ ∞
0 Γ(D0

phys(t) → f)dt +
∫ ∞
0 Γ(D0

phys(t) → f)dt
. (13.75)

(This expression corresponds to the D meson being tagged at
production, hence the integration goes from 0 to +∞; measurements
are also possible with ψ(3770) → D0D0, in which case the integration
goes from −∞ to +∞ giving slightly different results; see the discussion
in Section 13.1.3.) We take x, y, rf ≪ 1 and expand to leading order
in these parameters. We can then separate the contribution to af into
three parts [55],

af = ad
f + am

f + ai
f , (13.76)

with the following underlying mechanisms:

1. ad
f signals CP violation in decay (similar to Eq. (13.40)):

ad
f = 2rf sin φf sin δf . (13.77)

2. am
f signals CP violation in mixing (similar to Eq. (13.50)). With

our approximations, it is universal:

am = −y

2

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

−
∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

cosφD . (13.78)

3. ai
f signals CP violation in the interference of mixing and decay

(similar to Eq. (13.51)). With our approximations, it is universal:

ai =
x

2

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

sinφD . (13.79)

One can isolate the effects of direct CP violation by taking the
difference between the CP asymmetries in the K+K− and π+π−

modes:

∆aCP ≡ aK+K− − aπ+π− = ad
K+K− − ad

π+π− , (13.80)

where we neglected a residual, experiment-dependent, contribution
from indirect CP violation due to the fact that there may be a
decay time-dependent acceptance function that can be different for
the K+K− and π+π− channels. Recent evidence for such direct CP
violation [56] has become less significant when including more data,
with the current average giving [28]:

ad
K+K− − ad

π+π− = (2.6 ± 1.0) × 10−3 . (13.81)

One can also isolate the effects of indirect CP violation in
the following way. Consider the time-dependent decay rates in
Eq. (13.35) and Eq. (13.36). The mixing processes modify the time
dependence from a pure exponential. However, given the small
values of x and y, the time dependences can be recast, to a good
approximation, into purely exponential form, but with modified
decay-rate parameters [57,58] (given here for the K+K− final state):

ΓD0→K+K− = Γ × [1 + |q/p| (y cosφD − x sin φD)] ,

ΓD0→K+K− = Γ × [1 + |p/q| (y cosφD + x sin φD)] . (13.82)

One can define CP -conserving and CP -violating combinations of these
two observables (normalized to the true width Γ):

yCP ≡ ΓD0→K+K− + ΓD0→K+K−

2Γ
− 1

= (y/2) (|q/p| + |p/q|) cosφD − (x/2) (|q/p| − |p/q|) sin φD ,

AΓ ≡ ΓD0→K+K− − ΓD0→K+K−

2Γ

= − (am + ai) . (13.83)

In the limit of CP conservation (and, in particular, within the
Standard Model), yCP = (Γ+ − Γ−)/2Γ = y (where Γ+(Γ−) is the
decay width of the CP -even (-odd) mass eigenstate) and AΓ = 0.
Indeed, present measurements imply that CP violation is small [28],

yCP = (+0.84 ± 0.16) × 10−2 ,

AΓ = (−0.06 ± 0.04) × 10−2 .

The K±π∓ states are not CP eigenstates, but they are still
common final states for D0 and D0 decays. Since D0(D0) → K−π+

is a Cabibbo-favored (doubly-Cabibbo-suppressed) process, these
processes are particularly sensitive to x and/or y = O(λ2). Taking

into account that
∣

∣λK−π+

∣

∣ ,
∣

∣

∣λ−1
K+π−

∣

∣

∣ ≪ 1 and x, y ≪ 1, assuming that

there is no direct CP violation (these are Standard Model tree-level
decays dominated by a single weak phase, and there is no contribution
from penguin-like and chromomagnetic operators), and expanding the
time-dependent rates for xt, yt ∼< Γ−1, one obtains

Γ[D0
phys(t) → K+π−] = e−Γt|AK−π+ |2

×
[

r2
d + rd

∣

∣

∣

∣

q

p

∣

∣

∣

∣

(y′ cosφD − x′ sin φD)Γt +

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2 y2 + x2

4
(Γt)2

]

,

Γ[D0
phys(t) → K−π+] = e−Γt|AK−π+ |2

×
[

r2
d + rd

∣

∣

∣

∣

p

q

∣

∣

∣

∣

(y′ cosφD + x′ sin φD)Γt +

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2 y2 + x2

4
(Γt)2

]

,(13.84)

where
y′ ≡ y cos δ − x sin δ ,

x′ ≡ x cos δ + y sin δ . (13.85)

The weak phase φD is the same as that of Eq. (13.74) (a consequence
of neglecting direct CP violation) and rd = O(tan2 θc) is the
amplitude ratio, rd =

∣

∣AK−π+/AK−π+

∣

∣ =
∣

∣AK+π−/AK+π−

∣

∣, that
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is, λK−π+ = rd|q/p|e−i(δ−φD) and λ−1
K+π− = rd|p/q|e−i(δ+φD).

The parameter δ is a strong-phase difference for these processes,
that can be obtained from measurements of quantum correlated
ψ(3770) → D0D0 decays [59,60]. By fitting to the six coefficients of
the various time-dependences, one can determine rd, |q/p|, (x2 + y2),
y′ cosφD, and x′ sin φD . In particular, finding CP violation (|q/p| 6= 1
and/or sinφD 6= 0) at a level much higher than 10−3 would constitute
evidence for new physics. The most stringent constraints to date
on CP violation in charm mixing have been obtained with this
method [61].

A fit to all data [28], including also results from time-dependent
analyses of D0 → KSπ+π− decays, from which x, y, |q/p| and φD can
be determined directly, yields no evidence for indirect CP violation:

1 − |q/p| = + 0.09 +0.08
−0.12 ,

φD =
(

−9 +12
−10

)◦
.

With the additional assumption of no direct CP violation in
doubly-Cabibbo-suppressed D decays [62–64], tighter constraints are
obtained:

1 − |q/p| = − 0.002± 0.014 ,

φD = (−0.1 ± 0.6)◦ .

More details on various theoretical and experimental aspects of
D0 − D0 mixing can be found in Ref. [30].

Searches for CP violation in charged D(s) decays have been
performed in many modes. Searches in decays mediated by Cabibbo-
suppressed amplitudes are particularly interesting, since in other
channels effects are likely to be too small to be observable in
current experiments. Examples of relevant two-body modes are
D+ → π+π0, KSK+, φπ+ and D+

s → K+π0, KSπ+, φK+. The
most precise results are AD+→KSK+ = −0.0003 ± 0.0017 and

A
D+

s →KSπ+ = +0.0063± 0.0047 [28]. The precision of experiments

is now sufficient that the effect from CP violation in the neutral kaon
system can be seen in D+ → KSπ+ decays [65,66].

Three-body final states provide additional possibilities to search
for CP violation, since effects may vary over the phase-space. A
number of methods have been proposed to exploit this feature and
search for CP violation in ways that do not require modelling of the
decay distribution [67–69]. Such methods are useful for analysis of
charm decays since they are less sensitive to biases from production
asymmetries, and are well suited to address the issue of whether or
not CP violation effects are present. The results of all searches to
date have been null – no significant CP violation effect has yet been
observed in D+

(s)
decays.

13.6. Beauty

13.6.1. CP violation in mixing of B
0 and B

0

s mesons :

The upper bound on the CP asymmetry in semileptonic B
decays [27] implies that CP violation in B0 − B0 mixing is a small
effect (we use ASL/2 ≈ 1 − |q/p|, see Eq. (13.42)):

Ad
SL = (−1.5 ± 1.7) × 10−3 =⇒ |q/p| = 1.0007± 0.0009 . (13.86)

The Standard Model prediction is

Ad
SL = O

[

(m2
c/m2

t ) sin β
]

∼< 0.001 . (13.87)

An explicit calculation gives (−4.1 ± 0.6) × 10−4 [70].

The experimental constraint on CP violation in B0
s − B0

s mixing is
somewhat weaker than that in the B0 − B0 system [27]

As
SL = (−7.5 ± 4.1) × 10−3 =⇒ |q/p| = 1.0038± 0.0021 . (13.88)

The Standard Model prediction is As
SL = O

[

(m2
c/m2

t ) sinβs
]

∼< 10−4,

with an explicit calculation giving (1.9±0.3)×10−5 [70]. The tension
between the measurement and the prediction originates from a result

from D0 for the inclusive same-sign dimuon asymmetry that deviates
from the Standard Model prediction by 3.6σ [71]. As yet, this has
not been confirmed by independent studies.

In models where Γ12/M12 is approximately real, such as the
Standard Model, an upper bound on ∆Γ/∆m ≈ Re(Γ12/M12)
provides yet another upper bound on the deviation of |q/p| from one.
This constraint does not hold if Γ12/M12 is approximately imaginary.
(An alternative parameterization uses q/p = (1− ǫ̃B)/(1+ ǫ̃B), leading
to ASL ≃ 4Re(ǫ̃B).)

13.6.2. CP violation in interference of B
0 decays with and

without mixing :

The small deviation (less than one percent) of |q/p| from 1 implies
that, at the present level of experimental precision, CP violation in
B0 mixing is a negligible effect. Thus, for the purpose of analyzing
CP asymmetries in hadronic B0 decays, we can use

λf = e
−iφ

M(B0)(Af/Af ) , (13.89)

where φM(B0) refers to the phase of M12 appearing in Eq. (13.48)

that is appropriate for B0 − B0 oscillations. Within the Standard
Model, the corresponding phase factor is given by

e
−iφ

M(B0) = (V ∗
tbVtd)/(VtbV

∗
td) . (13.90)

The class of CP violation effects in interference between mixing
and decay is studied with final states that are common to B0 and B0

decays [72,73]. It is convenient to rewrite Eq. (13.46) for B0 decays
as [74–76]

Af (t) = Sf sin(∆mt) − Cf cos(∆mt) ,

Sf ≡ 2 Im(λf )

1 +
∣

∣λf

∣

∣

2 , Cf ≡ 1 −
∣

∣λf

∣

∣

2

1 +
∣

∣λf

∣

∣

2 , (13.91)

where we assume that ∆Γ = 0 and |q/p| = 1. An alternative notation
in use is Af ≡ −Cf – this Af should not be confused with the Af of
Eq. (13.18), but in the limit that |q/p| = 1 is equivalent with the Af
of Eq. (13.40).

A large class of interesting processes proceed via quark transitions
of the form b → qqq′ with q′ = s or d. For q = c or u, there are
contributions from both tree (t) and penguin (pqu , where qu = u, c, t
is the quark in the loop) diagrams (see Fig. 13.2) which carry different
weak phases:

Af =
(

V ∗
qbVqq′

)

tf +
∑

qu=u,c,t

(

V ∗
qubVquq′

)

p
qu
f . (13.92)

(The distinction between tree and penguin contributions is a heuristic
one; the separation by the operator that enters is more precise. A
detailed discussion of the more complete operator product approach,
which also includes higher order QCD corrections, can be found in
Ref. [77] for example.) Using CKM unitarity, these decay amplitudes
can always be written in terms of just two CKM combinations. For
example, for f = ππ, which proceeds via a b → uud transition, we can
write

Aππ = (V ∗
ubVud)Tππ + (V ∗

tbVtd)P t
ππ , (13.93)

where Tππ = tππ + pu
ππ − pc

ππ and P t
ππ = pt

ππ − pc
ππ . CP -violating

phases in Eq. (13.93) appear only in the CKM elements, so that

Aππ

Aππ
=

(

VubV
∗
ud

)

Tππ +
(

VtbV
∗
td

)

P t
ππ

(

V ∗
ubVud

)

Tππ +
(

V ∗
tbVtd

)

P t
ππ

. (13.94)

For f = J/ψK, which proceeds via a b → ccs transition, we can write

AψK = (V ∗
cbVcs)TψK + (V ∗

ubVus)Pu
ψK , (13.95)

where TψK = tψK + pc
ψK − pt

ψK and Pu
ψK = pu

ψK − pt
ψK . A subtlety

arises in this decay that is related to the fact that B0 decays into
a final J/ψK0 state while B0 decays into a final J/ψK0 state. A
common final state, e.g., J/ψKS , is reached only via K0 −K0 mixing.
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Consequently, the phase factor (defined in Eq. (13.48)) corresponding

to neutral K mixing, e
−iφM(K) = (V ∗

cdVcs)/(VcdV
∗
cs), plays a role:

AψKS

AψKS

= −
(

VcbV
∗
cs

)

TψK +
(

VubV
∗
us

)

Pu
ψK

(

V ∗
cbVcs

)

TψK +
(

V ∗
ubVus

)

Pu
ψK

× V ∗
cdVcs

VcdV
∗
cs

. (13.96)

For q = s or d, there are only penguin contributions to Af , that

is, tf = 0 in Eq. (13.92). (The tree b → uuq′ transition followed by
uu → qq rescattering is included below in the Pu terms.) Again, CKM
unitarity allows us to write Af in terms of two CKM combinations.

For example, for f = φKS , which proceeds via a b → sss transition,
we can write

AφKS

AφKS

= −
(

VcbV
∗
cs

)

P c
φK +

(

VubV
∗
us

)

Pu
φK

(

V ∗
cbVcs

)

P c
φK +

(

V ∗
ubVus

)

Pu
φK

× V ∗
cdVcs

VcdV ∗
cs

, (13.97)

where P c
φK = pc

φK − pt
φK and Pu

φK = pu
φK − pt

φK .

d or s

b q

q′

q

V
∗

qb

Vqq′

B0

or

Bs f

(a) tf

d or s

b q′

q

q

V∗
qub Vquq′

qu

B0

or

Bs f

(b) pf
qu

Figure 13.2: Feynman diagrams for (a) tree and (b) penguin
amplitudes contributing to B0 → f or B0

s → f via a b → qqq′

quark-level process.

Since in general the amplitude Af involves two different weak
phases, the corresponding decays can exhibit both CP violation in
the interference of decays with and without mixing, Sf 6= 0, and
CP violation in decay, Cf 6= 0. (At the present level of experimental
precision, the contribution to Cf from CP violation in mixing
is negligible, see Eq. (13.86).) If the contribution from a second
weak phase is suppressed, then the interpretation of Sf in terms of
Lagrangian CP -violating parameters is clean, while Cf is small. If
such a second contribution is not suppressed, Sf depends on hadronic
parameters and, if the relevant strong phase difference is large, Cf is
large.

A summary of b → qqq′ modes with q′ = s or d is given in
Table 13.1. The b → ddq transitions lead to final states that are
similar to those from b → uuq transitions and have similar phase
dependence. Final states that consist of two vector mesons (ψφ and
φφ) are not CP eigenstates, and angular analysis is needed to separate
the CP -even from the CP -odd contributions.

Table 13.1: Summary of b → qqq′ modes with q′ = s or d.
The second and third columns give examples of hadronic final
states (usually those which are experimentally most convenient
to study). The fourth column gives the CKM dependence of the
amplitude Af , using the notation of Eqs. (13.93, 13.95, 13.97),
with the dominant term first and the subdominant second.
The suppression factor of the second term compared to the
first is given in the last column. “Loop” refers to a penguin
versus tree-suppression factor (it is mode-dependent and roughly
O(0.2 − 0.3)) and λ ≃ 0.23 is the expansion parameter of
Eq. (13.54).

b → qqq′ B0 → f B0
s → f CKM dependence of Af Suppression

b̄ → c̄cs̄ ψKS ψφ (V ∗
cbVcs)T + (V ∗

ubVus)P
u loop × λ2

b̄ → s̄ss̄ φKS φφ (V ∗
cbVcs)P

c + (V ∗
ubVus)P

u λ2

b̄ → ūus̄ π0KS K+K− (V ∗
cbVcs)P

c + (V ∗
ubVus)T λ2/loop

b̄ → c̄cd̄ D+D− ψKS (V ∗
cbVcd)T + (V ∗

tbVtd)P t loop

b̄ → s̄sd̄ KSKS φKS (V ∗
tbVtd)P t + (V ∗

cbVcd)P c ∼< 1

b̄ → ūud̄ π+π− ρ0KS (V ∗
ubVud)T + (V ∗

tbVtd)P t loop

b̄ → c̄ud̄ DCP π0 DCP KS (V ∗
cbVud)T + (V ∗

ubVcd)T
′ λ2

b̄ → c̄us̄ DCP KS DCP φ (V ∗
cbVus)T + (V ∗

ubVcs)T
′ ∼< 1

The cleanliness of the theoretical interpretation of Sf can be
assessed from the information in the last column of Table 13.1. In case
of small uncertainties, the expression for Sf in terms of CKM phases
can be deduced from the fourth column of Table 13.1 in combination
with Eq. (13.90) (and, for b → qqs decays, the example in Eq. (13.96)).
Here we consider several interesting examples.

For B0 → J/ψKS and other b → ccs processes, we can neglect the
Pu contribution to Af , in the Standard Model, to an approximation
that is better than one percent, giving:

λψKS
= −e−2iβ ⇒ SψKS

= sin 2β , CψKS
= 0 . (13.98)

It is important to verify experimentally the level of suppression of the
penguin contribution. Methods based on flavor symmetries [78–81]
allow limits to be obtained. All are currently consistent with the Pu

term being negligible.

In the presence of new physics, Af is still likely to be dominated
by the T term, but the mixing amplitude might be modified.
We learn that, model-independently, Cf ≈ 0 while Sf cleanly
determines the mixing phase (φM − 2 arg(VcbV

∗
cd)). The experimental

measurement [28], SψK = +0.691 ± 0.017, gave the first precision
test of the Kobayashi-Maskawa mechanism, and its consistency with
the predictions for sin 2β makes it very likely that this mechanism is
indeed the dominant source of CP violation in the quark sector.

For B0 → φKS and other b → sss processes (as well as some
b → uus processes), we can neglect the subdominant contributions, in
the Standard Model, to an approximation that is good to the order of
a few percent:

λφKS
= −e−2iβ ⇒ SφKS

= sin 2β , CφKS
= 0 . (13.99)

A review of explicit calculations of the effects of subleading amplitudes
can be found in Ref. [82]. In the presence of new physics, both Af
and M12 can have contributions that are comparable in size to those
of the Standard Model and carry new weak phases. Such a situation
gives several interesting consequences for penguin-dominated b → qqs
decays (q = u, d, s) to a final state f :

1. The value of −ηfSf may be different from SψKS
by more than a

few percent, where ηf is the CP eigenvalue of the final state.

2. The values of ηfSf for different final states f may be different
from each other by more than a few percent (for example,
SφKS

6= Sη′KS
).

3. The value of Cf may be different from zero by more than a few
percent.
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While a clear interpretation of such signals in terms of Lagrangian
parameters will be difficult because, under these circumstances,
hadronic parameters play a role, any of the above three options
will clearly signal new physics. Fig. 13.3 summarizes the present
experimental results: none of the possible signatures listed above is
unambiguously established, but there is definitely still room for new
physics.

sin(2βeff) ≡ sin(2φe
1
ff)  vs  CCP ≡ -ACP

Contours give -2∆(ln L) = ∆χ2 = 1, corresponding to 60.7% CL for 2 dof
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Figure 13.3: Summary of the results [28] of time-dependent
analyses of b → qqs decays, which are potentially sensitive to
new physics.

For the b → uud process B → ππ and other related channels,
the penguin-to-tree ratio can be estimated using SU(3) relations and
experimental data on related B → Kπ decays. The result (for ππ)
is that the suppression is at the level of 0.2 − 0.3 and so cannot
be neglected. The expressions for Sππ and Cππ to leading order in
RPT ≡ (|VtbVtd|P t

ππ)/(|VubVud|Tππ) are:

λππ = e2iα
[

(1 − RPT e−iα)/(1 − RPT e+iα)
]

⇒

Sππ ≈ sin 2α + 2Re(RPT ) cos 2α sin α , Cππ ≈ 2 Im(RPT ) sin α .
(13.100)

Note that RPT is mode-dependent and, in particular, could be
different for π+π− and π0π0. If strong phases can be neglected, then
RPT is real, resulting in Cππ = 0. The size of Cππ is an indicator
of how large the strong phase is. The present experimental average
is Cπ+π− = −0.31 ± 0.05 [28]. As concerns Sππ , it is clear from
Eq. (13.100) that the relative size or strong phase of the penguin
contribution must be known to extract α. This is the problem of
penguin pollution.

The cleanest solution involves isospin relations among the B → ππ
amplitudes [83]:

1√
2
Aπ+π− + Aπ0π0 = Aπ+π0 . (13.101)

The method exploits the fact that the penguin contribution to P t
ππ is

pure ∆I = 1/2 (this is not true for the electroweak penguins which,
however, are expected to be small), while the tree contribution to
Tππ contains pieces that are both ∆I = 1/2 and ∆I = 3/2. A simple
geometric construction then allows one to find RPT and extract α
cleanly from Sπ+π− . The key experimental difficulty is that one must
measure accurately the separate rates for B0 and B0 → π0π0.

CP asymmetries in B → ρπ and B → ρρ can also be used to
determine α. In particular, the B → ρρ measurements are presently
very significant in constraining α. The extraction proceeds via isospin
analysis similar to that of B → ππ. There are, however, several
important differences. First, due to the finite width of the ρ mesons, a
final (ρρ)I=1 state is possible [84]. The effect is, however, of the order
of (Γρ/mρ)

2 ∼ 0.04. Second, due to the presence of three helicity
states for the two vector mesons, angular analysis is needed to separate
the CP -even and CP -odd components. The theoretical expectation
is that the CP -odd component is small, which is supported by
experiments which find that the ρ+ρ− and ρ±ρ0 modes are dominantly
longitudinally polarized. Third, an important advantage of the ρρ
modes is that the penguin contribution is expected to be small due
to different hadronic dynamics. This expectation is confirmed by the
smallness of B(B0 → ρ0ρ0) = (0.96 ± 0.15) × 10−6 [28,85] compared
to B(B0 → ρ+ρ−) = (24.2 ± 3.1) × 10−6 [28]. Thus, Sρ+ρ− is not
far from sin 2α. Finally, both Sρ0ρ0 and Cρ0ρ0 are experimentally
accessible, which may allow a precision determination of α. However,
a full isospin analysis should allow that the fractions of longitudinal
polarisation in B and B decays may differ, which has not yet been
done by the experiments.

Detailed discussion of the determination of α with these methods,
and the latest world average, can be found in Ref. [34]. The
consistency between the range of α determined by the B → ππ,
ρπ and ρρ measurements and the range allowed by CKM fits
(excluding these direct determinations) provides further support to
the Kobayashi-Maskawa mechanism.

All modes discussed in this Section so far have possible contributions
from penguin amplitudes. As shown in Table 13.1, CP violation can
also be studied with final states, typically containing charmed mesons,
where no such contribution is possible. The neutral charmed meson
must be reconstructed in a final state, such as a CP eigenstate,
common to D0 and D0 so that the amplitudes for the B and B meson
decays interfere. Although there is a second tree amplitude with
a different weak phase, the contributions of the different diagrams
can in many cases be separated experimentally (for example by
exploiting different decays of the D0 mesons) making these channels
very clean theoretically. The first determination of sin(2β), with
significance of CP violation over 5σ, with this method has recently
been reported [86]. Moreover, the interference between the two tree
diagrams gives sensitivity to γ, as will be discussed in Section 13.6.4.

13.6.3. CP violation in interference of B
0

s decays with and

without mixing :

As discussed in Section 13.6.1, the world average for |q/p| in the
B0

s system currently deviates from the Standard Model expectation
due to an anomalous value of the dimuon asymmetry. Attributing
the dimuon asymmetry result to a fluctuation, we again neglect the
deviation of |q/p| from 1, and use

λf = e−iφM (B0
s )(Af/Af ) . (13.102)

Within the Standard Model,

e
−iφ

M(B0
s ) = (V ∗

tbVts)/(VtbV
∗
ts) . (13.103)

Note that ∆Γ/Γ = 0.122±0.009 [28] and therefore y should not be put
to zero in Eqs. (13.35, 13.36). However, |q/p| = 1 is expected to hold
to an even better approximation than for B0 mesons. One therefore
obtains

Af (t) =
Sf sin(∆mt) − Cf cos(∆mt)

cosh (∆Γt/2) − A∆Γ
f sinh (∆Γt/2)

,

A∆Γ
f ≡ −2Re(λf )

1 +
∣

∣λf

∣

∣

2 . (13.104)

The presence of the A∆Γ
f term implies that information on λf can be

obtained from analyses that do not use tagging of the initial flavor,
through so-called effective lifetime measurements [87].

The B0
s → J/ψφ decay proceeds via the b → ccs transition. The

CP asymmetry in this mode thus determines (with angular analysis to
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disentangle the CP -even and CP -odd components of the final state)
sin 2βs, where βs is defined in Eq. (13.57) [88]. The B0

s → J/ψπ+π−

decay, which has a large contributions from J/ψf0(980) and is assumed
to also proceed dominantly via the b → ccs transition, has also been
used to determine βs. In this case no angular analysis is necessary,
since the final state has been shown to be dominated by the CP -even
component [89]. A first determination of βs with B0

s → D+
s D−

s
decays has also been made [90]. The combination of measurements
yields [28]

−2βs = 0.015 ± 0.035 , (13.105)

consistent with the Standard Model prediction, βs = 0.0188 ±
0.0004 [18].

The experimental investigation of CP violation in the B0
s sector is

still at a relatively early stage, and far fewer modes have been studied
than in the B0 system. First results on the b → qqs decays B0

s → φφ
and K+K− have been reported. More channels are expected to be
studied in the near future.

13.6.4. Direct CP violation in the B system :

An interesting class of decay modes is that of the tree-level decays
B± → D(∗)K±. These decays provide golden methods for a clean
determination of the angle γ [91–95]. The method uses the decays
B+ → D0K+, which proceeds via the quark transition b → ucs, and
B+ → D0K+, which proceeds via the quark transition b → cus, with
the D0 and D0 decaying into a common final state. The decays into
common final states, such (π0KS)DK+, involve interference effects
between the two amplitudes, with sensitivity to the relative phase,
δ + γ (δ is the relevant strong phase). The CP -conjugate processes
are sensitive to δ − γ. Measurements of branching ratios and CP
asymmetries allow the determination of γ and δ from amplitude
triangle relations. The method suffers from discrete ambiguities but,
since all hadronic parameters can be determined from the data, has
negligible theoretical uncertainty [96].

Unfortunately, the smallness of the CKM-suppressed b → u transi-
tions makes it difficult at present to use the simplest methods [91–93]
to determine γ. These difficulties are overcome (and the discrete
ambiguities are removed) by performing a Dalitz plot analysis for
multi-body D decays [94,95].

Constraints on γ from combinations of results on various
B → D(∗)K(∗) processes have been obtained by experiments [97–99],
with world averages in Refs. [18,19]. Detailed discussion of the
determination of γ with these methods, and the latest world average,
can be found in Ref. [34]. The consistency between the range
of γ determined by the B → DK measurements and the range
allowed by CKM fits (excluding these direct determinations) provides
further support to the Kobayashi-Maskawa mechanism. As more data
becomes available, determinations of γ from B0

s → D∓
s K± [100,101]

and B0 → DK∗0 [102–105] are expected to also give competitive
measurements.

Decays to the final state K∓π± provided the first observations of
direct CP violation in both B0 and B0

s systems. The asymmetry arises
due to interference between tree and penguin diagrams [106], similar
to the effect discussed in Section 13.6.2. In principle, measurements
of AB0→K−π+ and AB0

s→K+π− could be used to determine the weak

phase difference γ, but lack of knowledge of the relative magnitude
and strong phase of the contributing amplitudes limits the achievable
precision. The uncertainties on these hadronic parameters can be
reduced by exploiting flavor symmetries, which predict a number of
relations between asymmetries in different modes. One such relation
is that the partial rate differences for B0 and B0

s decays to K∓π±

are expected to be approximately equal and opposite [107], which
is consistent with current data. It is also expected that the partial
rate asymmetries for B0 → K−π+ and B− → K−π0 should be
approximately equal; however, the experimental results currently show
a significant discrepancy [28]:

AB0→K−π+ = −0.082± 0.006 , AB−→K−π0 = 0.040 ± 0.021 .

It is therefore of great interest to understand whether this originates
from Standard Model QCD corrections, or whether it is a signature of

new dynamics. Improved tests of a more precise relation between the
partial rate differences of all four Kπ final states [108–111], currently
limited by knowledge of the CP asymmetry in B0 → KSπ0 decays,
may help to resolve the situation.

It is also of interest to investigate whether similar patterns appear
among the CP violating asymmetries in B meson decays to final
states containing one pseudoscalar and one vector meson. Since the
vector resonance decays to two particles, such channels can be studied
through Dalitz plot analysis of the three-body final state. Model-
independent analyses of B+ → K+K−K+, π+π−K+, π+π−π+ and
K+K−π+ decays have revealed large CP violation effects in certain
regions of phase space [112]. It remains to be seen whether these are
associated to particular resonances or to interference effects, which
will be necessary to understand the underlying dynamics.

13.7. Summary and Outlook

CP violation has been experimentally established in K and B
meson decays. A full list of CP asymmetries that have been measured
at a level higher than 5σ is given in the introduction to this review.
In Section 13.1.4 we introduced three types of CP -violating effects.
Examples of these three types include the following:

1. All three types of CP violation have been observed in K → ππ
decays:

Re(ǫ′) =
1

6

(∣

∣

∣

∣

∣

Aπ0π0

Aπ0π0

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

Aπ+π−

Aπ+π−

∣

∣

∣

∣

∣

)

= (2.5 ± 0.4) × 10−6 (I)

Re(ǫ) =
1

2

(

1 −
∣

∣

∣

∣

q

p

∣

∣

∣

∣

)

= (1.66 ± 0.02) × 10−3 (II)

Im(ǫ) = − 1

2
Im(λ(ππ)I=0

) = (1.57 ± 0.02)× 10−3 . (III)

(13.106)

2. CP violation in decay has been observed in, for example,
B0 → K+π− transitions, while CP violation in interference
of decays with and without mixing has been observed in, for
example, the B0 → J/ψKS channel:

AK+π− =
|AK−π+/AK+π− |2 − 1

|AK−π+/AK+π− |2 + 1
= −0.082± 0.006 (I)

SψK = Im(λψK) = +0.691± 0.017 . (III)

(13.107)

Based on Standard Model predictions, further observations of CP
violation in B0, B+ and B0

s decays seem likely in the near future,
at both LHCb and its upgrade [113,114] as well as the Belle II
experiment [115]. The first observation of CP violation in b baryons
is also likely to be within reach of LHCb. The same experiments
have great potential to improve the sensitivity to CP violation effects
in the charm sector, though uncertainty in the Standard Model
predictions makes it difficult to forecast whether or not discoveries will
be forthcoming. A number of upcoming experiments have potential
to make significant progress on rare kaon decays. Observables that
are subject to clean theoretical interpretation, such as β from SψKS

,

βs from B0
s → J/ψφ, B(KL → π0νν) and γ from CP violation in

B → DK decays, are of particular value for constraining the values
of the CKM parameters and probing the flavor sector of extensions
to the Standard Model. Progress in lattice QCD calculations is also
needed to complement the anticipated experimental results. Other
probes of CP violation now being pursued experimentally include the
electric dipole moments of the neutron and electron, and the decays of
tau leptons. Additional processes that are likely to play an important
role in future CP studies include top-quark production and decay,
Higgs boson decays and neutrino oscillations.

All measurements of CP violation to date are consistent with the
predictions of the Kobayashi-Maskawa mechanism of the Standard
Model. In fact, it is now established that the KM mechanism plays
a major role in the CP violation measured in the quark sector.
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However, a dynamically-generated matter-antimatter asymmetry of
the universe requires additional sources of CP violation, and such
sources are naturally generated by extensions to the Standard Model.
New sources might eventually reveal themselves as small deviations
from the predictions of the KM mechanism, or else might not be
observable in the quark sector at all, but observable with future
probes such as neutrino oscillations or electric dipole moments. The
fundamental nature of CP violation demands a vigorous search.

A number of excellent reviews of CP violation are avail-
able [116–122], where the interested reader may find a detailed
discussion of the various topics that are briefly reviewed here.

We thank David Kirkby for significant contributions to earlier
version of this review.

References:

1. J.H. Christenson et al., Phys. Rev. Lett. 13, 138 (1964).
2. B. Aubert et al. [BABAR Collab.], Phys. Rev. Lett. 87, 091801

(2001).
3. K. Abe et al. [Belle Collab.], Phys. Rev. Lett. 87, 091802 (2001).
4. H. Burkhardt et al. [NA31 Collab.], Phys. Lett. B206, 169

(1988).
5. V. Fanti et al. [NA48 Collab.], Phys. Lett. B465, 335 (1999).
6. A. Alavi-Harati et al. [KTeV Collab.], Phys. Rev. Lett. 83, 22

(1999).
7. B. Aubert et al. [BABAR Collab.], Phys. Rev. Lett. 93, 131801

(2004).
8. Y. Chao et al. [Belle Collab.], Phys. Rev. Lett. 93, 191802

(2004).
9. A. Poluektov et al. [Belle Collab.], Phys. Rev. D81, 112002

(2010).
10. P. del Amo Sanchez et al. [BABAR Collab.], Phys. Rev. D82,

072004 (2010).
11. R. Aaij et al. [LHCb Collab.], Phys. Lett. B712, 203 (2012).
12. R. Aaij et al. [LHCb Collab.], Phys. Rev. Lett. 110, 221601

(2013).
13. See results on the “Time reversal invariance,” within the review

on “Tests of Conservation Laws,” in this Review.
14. J. Bernabeu, F. Martinez-Vidal, and P. Villanueva-Perez, JHEP

08, 064 (2012).
15. J.P. Lees et al. [BABAR Collab.], Phys. Rev. Lett. 109, 211801

(2012).
16. See, for example, R. F. Streater and A. S. Wightman, CPT ,

Spin and Statistics, and All That, reprinted by Addison-Wesley,
New York (1989).

17. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652
(1973).

18. J. Charles et al. [CKMfitter Group], Eur. Phys. J. C41, 1
(2005); updated results and plots available at:
http://ckmfitter.in2p3.fr.

19. M. Bona et al. [UTfit Collab.], JHEP 10, 081 (2006); updated
results and plots available at: http://www.utfit.org/UTfit.

20. A.D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [Sov.
Phys. JETP Lett. 5, 24 (1967)].

21. For a review, see e.g., A. Riotto, “Theories of baryogenesis,”
hep-ph/9807454.

22. M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).
23. For a review, see e.g., S. Davidson, E. Nardi and Y. Nir, Phys.

Reports 466, 105 (2008).
24. G. Aad et al. [ATLAS Collab.], Phys. Lett. B716, 1 (2012).
25. S. Chatrchyan et al. [CMS Collab.], Phys. Lett. B716, 30

(2012).
26. See the K-meson Listings in this Review.
27. See the B-meson Listings in this Review.
28. Y. Amhis et al. [HFAG Collab.], arXiv:1412.7515 [hep-ex],

and online update at
http://www.slac.stanford.edu/xorg/hfag.

29. V. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930); Z. Phys.
65, 18 (1930) [See also Appendix A of P.K. Kabir, The CP
Puzzle: Strange Decays of the Neutral Kaon, Academic Press
(1968)].

30. See the review on “D0 − D0 Mixing” in this Review.

31. O. Long et al., Phys. Rev. D68, 034010 (2003).
32. M. Gronau, Y. Grossman, and J.L. Rosner, Phys. Lett. B508,

37 (2001).
33. L. Wolfenstein, Phys. Rev. Lett. 13, 562 (1964).
34. See the review on “Cabibbo-Kobayashi-Maskawa Mixing

Matrix,” in this Review.
35. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
36. A.J. Buras, M.E. Lautenbacher, and G. Ostermaier, Phys. Rev.

D50, 3433 (1994).
37. C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
38. See the review on “CP violation in KS → 3π,” in this Review.
39. T. Blum et al., Phys. Rev. D91, 074502 (2015).
40. Z. Bai et al., arXiv:1505.07863 [hep-lat].
41. A.J. Buras et al., JHEP 1511, 202 (2015).
42. Y. Grossman and Y. Nir, Phys. Lett. B398, 163 (1997).
43. L.S. Littenberg, Phys. Rev. D39, 3322 (1989).
44. A.J. Buras, Phys. Lett. B333, 476 (1994).
45. G. Buchalla and A.J. Buras, Nucl. Phys. B400, 225 (1993).
46. J. Brod, M. Gorbahn, and E. Stamou, Phys. Rev. D83, 034030

(2011).
47. J.K. Ahn et al. [E391a Collab.], Phys. Rev. D81, 072004 (2010).
48. T. Yamanaka [KOTO Collab.], Prog. Theor. Exp. Phys. 2012,

02B006 (2012).
49. M. Mirra [NA62 Collab.], Nuovo Cimento C038, 13 (2015).
50. B. Aubert et al. [BABAR Collab.], Phys. Rev. Lett. 98, 211802

(2007).
51. M. Staric et al. [Belle Collab.], Phys. Rev. Lett. 98, 211803

(2007).
52. T. Aaltonen et al. [CDF Collab.], Phys. Rev. Lett. 100, 121802

(2008).
53. R. Aaij et al. [LHCb Collab.], Phys. Rev. Lett. 110, 101802

(2013).
54. See the D-meson Listings in this Review.
55. Y. Grossman, A. L. Kagan, and Y. Nir, Phys. Rev. D75, 036008

(2007).
56. R. Aaij et al. [LHCb Collab.], Phys. Rev. Lett. 108, 111602

(2012).
57. S. Bergmann et al., Phys. Lett. B486, 418 (2000).
58. M. Gersabeck et al., J. Phys. G39, 045005 (2012).
59. D.M. Asner et al. [CLEO Collab.], Phys. Rev. D78, 012001

(2008).
60. M. Ablikim et al. [BESIII Collab.], Phys. Lett. B734, 227

(2014).
61. R. Aaij et al. [LHCb Collab.], Phys. Rev. Lett. 111, 251801

(2013).
62. M. Ciuchini et al., Phys. Lett. B655, 162 (2007).
63. Y. Grossman, Y. Nir, and G. Perez, Phys. Rev. Lett. 103,

071602 (2009).
64. A.L. Kagan and M.D. Sokoloff, Phys. Rev. D80, 076008 (2009).
65. Y. Grossman and Y. Nir, JHEP 04, 002 (2012).
66. B.R. Ko et al. [Belle Collab.], Phys. Rev. Lett. 109, 021601

(2012); Erratum-ibid. 109, 119903 (2012).
67. B. Aubert et al. [BABAR Collab.], Phys. Rev. D78, 051102

(2008).
68. I. Bediaga et al., Phys. Rev. D80, 096006 (2009); Phys. Rev.

D86, 036005 (2012).
69. M. Williams, Phys. Rev. D84, 054015 (2011).
70. A. Lenz and U. Nierste, arXiv:1102.4274 [hep-ph].
71. V.M. Abazov et al. [D0 Collab.], Phys. Rev. D82, 032001

(2010); Phys. Rev. D84, 052007 (2011); Phys. Rev. D89,
012002 (2014).

72. A.B. Carter and A.I. Sanda, Phys. Rev. Lett. 45, 952 (1980);
Phys. Rev. D23, 1567 (1981).

73. I.I. Bigi and A.I. Sanda, Nucl. Phys. B193, 85 (1981).
74. I. Dunietz and J.L. Rosner, Phys. Rev. D34, 1404 (1986).
75. Ya.I. Azimov, N.G. Uraltsev, and V.A. Khoze, Sov. J. Nucl.

Phys. 45, 878 (1987) [Yad. Fiz. 45, 1412 (1987)].
76. I.I. Bigi and A.I. Sanda, Nucl. Phys. B281, 41 (1987).
77. G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev. Mod.

Phys. 68, 1125 (1996).
78. R. Fleischer, Eur. Phys. J. C10, 299 (1999).



13. CP violation in the quark sector 245

79. M. Ciuchini, M. Pierini, and L. Silvestrini, Phys. Rev. Lett. 95,
221804 (2005).

80. S. Faller et al., Phys. Rev. D79, 014030 (2009).
81. M. Jung, Phys. Rev. D86, 053008 (2012).
82. L. Silvestrini, Ann. Rev. Nucl. and Part. Sci. 57, 405 (2007).
83. M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
84. A.F. Falk et al., Phys. Rev. D69, 011502 (2004).
85. R. Aaij et al. [LHCb Collab.], Phys. Lett. B747, 468 (2015).
86. A. Abdesselam et al. [BABAR and Belle Collabs.], Phys. Rev.

Lett. 115, 121604 (2015).
87. R. Fleischer and R. Knegjens, Eur. Phys. J. C71, 1789 (2011).
88. A.S. Dighe, I. Dunietz, and R. Fleischer, Eur. Phys. J. C6, 647

(1999).
89. R. Aaij et al. [LHCb Collab.], Phys. Rev. D89, 092006 (2014).
90. R. Aaij et al. [LHCb Collab.], Phys. Rev. Lett. 113, 211801

(2014).
91. M. Gronau and D. London, Phys. Lett. B253, 483 (1991).
92. M. Gronau and D. Wyler, Phys. Lett. B265, 172 (1991).
93. D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. 78, 3257

(1997).
94. D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. D63, 036005

(2001).
95. A. Giri et al., Phys. Rev. D68, 054018 (2003).
96. J. Brod and J. Zupan, JHEP 01, 051 (2014).
97. J. P. Lees et al.[BaBar Collab.], Phys. Rev. D87, 052015 (2013).
98. K. Trabelsi [Belle Collab.], arXiv:1301.2033 [hep-ex].
99. R. Aaij et al.[LHCb Collab.], Phys. Lett. B726, 151 (2013),

LHCb-CONF-2014-004.
100. R. Aleksan, I. Dunietz, and B. Kayser, Z. Phys. C54, 653

(1992).
101. R. Fleischer, Nucl. Phys. B671, 459 (2003).

102. I. Dunietz, Phys. Lett. B270, 75 (1991).
103. M. Gronau, Phys. Lett. B557, 198 (2003).
104. T. Gershon, Phys. Rev. D79, 051301 (2009).
105. T. Gershon and M. Williams, Phys. Rev. D80, 092002 (2009).
106. M. Bander, D. Silverman, and A. Soni, Phys. Rev. Lett. 43, 242

(1979).
107. X.-G. He, Eur. Phys. J. C9, 443 (1999).
108. D. Atwood and A. Soni, Phys. Rev. D58, 036005 (1998).
109. M. Gronau and J. L. Rosner, Phys. Rev. D59, 113002 (1999).
110. H.J. Lipkin, Phys. Lett. B445, 403 (1999).
111. M. Gronau, Phys. Lett. B627, 82 (2005).
112. R. Aaij et al. [LHCb Collab.], Phys. Rev. Lett. 111, 101801

(2013); Phys. Rev. Lett. 112, 011801 (2014); Phys. Rev. D90,
112004 (2014).

113. A.A. Alves et al. [LHCb Collab.], JINST 3 S08005 (2008).
114. I. Bediaga et al. [LHCb Collab.], CERN-LHCC-2012-007,

LHCb-TDR-12.
115. T. Aushev et al., arXiv:1002.5012 [hep-ex] , KEK Report

2009-12.
116. G.C. Branco, L. Lavoura, and J.P. Silva, CP Violation, Oxford

University Press, Oxford (1999).
117. I.I.Y. Bigi and A.I. Sanda, CP Violation, Cambridge Monogr.,

Part. Phys. Nucl. Phys. Cosmol. 9, 1 (2000).
118. A.J. Bevan et al. [BABAR and Belle Collabs.], Eur. Phys. J.

C74, 3026 (2014).
119. H.R. Quinn and Y. Nir, “The Mystery of the Missing

Antimatter,” Princeton University Press, Princeton (2008).
120. T.E. Browder et al., Rev. Mod. Phys. 81, 1887 (2009).
121. M. Ciuchini and A. Stocchi, Ann. Rev. Nucl. and Part. Sci. 61,

491 (2011).
122. R. Aaij et al. [LHCb Collab.] and A. Bharucha et al., Eur.

Phys. J. C73, 2373 (2013).



246 14. Neutrino mixing

14. NEUTRINO MASS, MIXING, AND OSCILLATIONS

Updated June 2016 by K. Nakamura (Kavli IPMU (WPI), U. Tokyo,
KEK), and S.T. Petcov (SISSA/INFN Trieste, Kavli IPMU (WPI), U.
Tokyo, Bulgarian Academy of Sciences).

The experiments with solar, atmospheric, reactor and accelerator
neutrinos have provided compelling evidences for oscillations of
neutrinos caused by nonzero neutrino masses and neutrino mixing.
The data imply the existence of 3-neutrino mixing in vacuum. We
review the theory of neutrino oscillations, the phenomenology of
neutrino mixing, the problem of the nature - Dirac or Majorana, of
massive neutrinos, the issue of CP violation in the lepton sector, and
the current data on the neutrino masses and mixing parameters. The
open questions and the main goals of future research in the field of
neutrino mixing and oscillations are outlined.

14.1. Introduction: Massive neutrinos and neutrino

mixing

It is a well-established experimental fact that the neutrinos and
antineutrinos which take part in the standard charged current (CC)
and neutral current (NC) weak interaction are of three varieties (types)
or flavours: electron, νe and ν̄e, muon, νµ and ν̄µ, and tauon, ντ and
ν̄τ . The notion of neutrino type or flavour is dynamical: νe is the
neutrino which is produced with e+, or produces an e−, in CC weak
interaction processes; νµ is the neutrino which is produced with µ+, or
produces µ−, etc. The flavour of a given neutrino is Lorentz invariant.
Among the three different flavour neutrinos and antineutrinos, no
two are identical. Correspondingly, the states which describe different
flavour neutrinos must be orthogonal (within the precision of the
current data): 〈νl′ |νl〉 = δl′l, 〈ν̄l′ |ν̄l〉 = δl′l, 〈ν̄l′ |νl〉 = 0.

It is also well-known from the existing data (all neutrino experiments
were done so far with relativistic neutrinos or antineutrinos), that the
flavour neutrinos νl (antineutrinos ν̄l), are always produced in weak
interaction processes in a state that is predominantly left-handed
(LH) (right-handed (RH)). To account for this fact, νl and ν̄l are
described in the Standard Model (SM) by a chiral LH flavour neutrino
field νlL(x), l = e, µ, τ . For massless νl, the state of νl (ν̄l) which
the field νlL(x) annihilates (creates) is with helicity (-1/2) (helicity
+1/2). If νl has a non-zero mass m(νl), the state of νl (ν̄l) is a linear
superposition of the helicity (-1/2) and (+1/2) states, but the helicity
+1/2 state (helicity (-1/2) state) enters into the superposition with
a coefficient ∝ m(νl)/E, E being the neutrino energy, and thus is
strongly suppressed. Together with the LH charged lepton field lL(x),
νlL(x) forms an SU(2)L doublet. In the absence of neutrino mixing
and zero neutrino masses, νlL(x) and lL(x) can be assigned one unit
of the additive lepton charge Ll and the three charges Ll, l = e, µ, τ ,
are conserved by the weak interaction.

At present there is no compelling evidence for the existence of states
of relativistic neutrinos (antineutrinos), which are predominantly right-
handed, νR (left-handed, ν̄L). If RH neutrinos and LH antineutrinos
exist, their interaction with matter should be much weaker than
the weak interaction of the flavour LH neutrinos νl and RH
antineutrinos ν̄l, i.e., νR (ν̄L) should be “sterile” or “inert” neutrinos
(antineutrinos) [1]. In the formalism of the Standard Model, the
sterile νR and ν̄L can be described by SU(2)L singlet RH neutrino
fields νR(x). In this case, νR and ν̄L will have no gauge interactions,
i.e., will not couple to the weak W± and Z0 bosons. If present in
an extension of the Standard Model, the RH neutrinos can play a
crucial role i) in the generation of neutrino masses and mixing, ii)
in understanding the remarkable disparity between the magnitudes
of neutrino masses and the masses of the charged leptons and
quarks, and iii) in the generation of the observed matter-antimatter
asymmetry of the Universe (via the leptogenesis mechanism [2]) . In
this scenario which is based on the see-saw theory [3], there is a link
between the generation of neutrino masses and the generation of the
baryon asymmetry of the Universe. The simplest hypothesis (based
on symmetry considerations) is that to each LH flavour neutrino
field νlL(x) there corresponds a RH neutrino field νlR(x), l = e, µ, τ ,
although schemes with less (more) than three RH neutrinos are also
being considered.

The experiments with solar, atmospheric, reactor and accelerator
neutrinos have provided compelling evidences for the existence of
neutrino oscillations [4,5], transitions in flight between the different
flavour neutrinos νe, νµ, ντ (antineutrinos ν̄e, ν̄µ, ν̄τ ), caused by
nonzero neutrino masses and neutrino mixing. The existence of flavour
neutrino oscillations implies that if a neutrino of a given flavour, say
νµ, with energy E is produced in some weak interaction process,
at a sufficiently large distance L from the νµ source the probability
to find a neutrino of a different flavour, say ντ , P (νµ → ντ ; E, L),
is different from zero. P (νµ → ντ ; E, L) is called the νµ → ντ

oscillation or transition probability. If P (νµ → ντ ; E, L) 6= 0, the
probability that νµ will not change into a neutrino of a different
flavour, i.e., the “νµ survival probability” P (νµ → νµ; E, L), will
be smaller than one. If only muon neutrinos νµ are detected in
a given experiment and they take part in oscillations, one would
observe a “disappearance” of muon neutrinos on the way from the
νµ source to the detector. Disappearance of the solar νe, reactor
ν̄e and of atmospheric νµ and ν̄µ due to the oscillations have been
observed respectively, in the solar neutrino [6–14], KamLAND [15,16]
and Super-Kamiokande [17,18] experiments. Strong evidences for νµ

disappearance due to oscillations were obtained also in the long-
baseline accelerator neutrino experiments K2K [19]. Subsequently, the
MINOS [20,21] and T2K [22,23] long baseline experiments reported
compelling evidence for νµ disappearance due to oscillations, while
evidences for ντ appearance due to νµ → ντ oscillations were published
by the Super-Kamiokande [24] and OPERA [25] collaborations. As
a consequence of the results of the experiments quoted above the
existence of oscillations or transitions of the solar νe, atmospheric νµ

and ν̄µ, accelerator νµ (at L ∼ 250 km, L ∼ 295 km and L ∼ 730
km) and reactor ν̄e (at L ∼ 180 km), driven by nonzero neutrino
masses and neutrino mixing, was firmly established. There are strong
indications that the solar νe transitions are affected by the solar
matter [26,27].

Further important developments took place in the period starting
from June 2011. First, the T2K Collaboration reported [28] indica-
tions for νµ → νe oscillations, i.e., of “appearance” of νe in a beam
of νµ, which had a statistical significance of 2.5σ. The MINOS [29]
Collaboration also obtained data consistent with νµ → νe oscilla-
tions. Subsequently, the Double Chooz Collaboration reported [30]
indications for disappearance of reactor ν̄e at L ∼ 1.1 km. Strong
evidences for reactor ν̄e disappearance at L ∼ 1.65 km and L ∼ 1.38
km and (with statistical significance of 5.2σ and 4.9σ) were obtained
respectively in the Daya Bay [31] and RENO [32] experiments. Further
evidences for reactor ν̄e disappearance (at 2.9σ) and for νµ → νe

oscillations (at 3.1σ) were reported by the Double Chooz [33] and
T2K [34] experiments, while the Daya Bay and RENO Collaborations
presented updated, more precise results on reactor ν̄e disappearance
[35,36,37]( for the latest results of the Daya Bay [38], RENO [39],
Double Chooz [40], MINOS [41] and T2K experiments [42], see
Section 14.12).

Oscillations of neutrinos are a consequence of the presence of flavour
neutrino mixing, or lepton mixing, in vacuum. In the formalism of
local quantum field theory, used to construct the Standard Model,
this means that the LH flavour neutrino fields νlL(x), which enter
into the expression for the lepton current in the CC weak interaction
Lagrangian, are linear combinations of the fields of three (or more)
neutrinos νj , having masses mj 6= 0:

νlL(x) =
∑

j

Ulj νjL(x), l = e, µ, τ, (14.1)

where νjL(x) is the LH component of the field of νj possessing a mass
mj and U is a unitary matrix - the neutrino mixing matrix [1,4,5].
The matrix U is often called the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) or Maki-Nakagawa-Sakata (MNS) mixing matrix. Obviously,
Eq. (14.1) implies that the individual lepton charges Ll, l = e, µ, τ ,
are not conserved.

All compelling neutrino oscillation data can be described assuming
3-flavour neutrino mixing in vacuum. The data on the invisible
decay width of the Z-boson is compatible with only 3 light flavour
neutrinos coupled to Z [43]. The number of massive neutrinos νj ,
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n, can, in general, be bigger than 3, n > 3, if, for instance, there
exist sterile neutrinos and they mix with the flavour neutrinos. It
is firmly established on the basis of the current data that at least
3 of the neutrinos νj , say ν1, ν2, ν3, must be light, m1,2,3 . 1 eV
(Section 14.12), and must have different masses, m1 6= m2 6= m3. At
present there are several experimental hints for existence of one or
two light sterile neutrinos at the eV scale, which mix with the flavour
neutrinos, implying the presence in the neutrino mixing of additional
one or two neutrinos, ν4 or ν4,5, with masses m4 (m4,5) ∼ 1 eV.
These hints will be briefly discussed in Section 14.13 of the present
review.

Being electrically neutral, the neutrinos with definite mass νj can
be Dirac fermions or Majorana particles [44,45]. The first possibility
is realized when there exists a lepton charge carried by the neutrinos
νj , which is conserved by the particle interactions. This could be, e.g.,
the total lepton charge L = Le + Lµ + Lτ : L(νj) = 1, j = 1, 2, 3. In
this case the neutrino νj has a distinctive antiparticle ν̄j : ν̄j differs
from νj by the value of the lepton charge L it carries, L(ν̄j) = − 1.
The massive neutrinos νj can be Majorana particles if no lepton
charge is conserved (see, e.g., Refs. [46,47]) . A massive Majorana
particle χj is identical with its antiparticle χ̄j : χj ≡ χ̄j . On the basis
of the existing neutrino data it is impossible to determine whether the
massive neutrinos are Dirac or Majorana fermions.

In the case of n neutrino flavours and n massive neutrinos, the n×n
unitary neutrino mixing matrix U can be parametrized by n(n − 1)/2
Euler angles and n(n + 1)/2 phases. If the massive neutrinos νj are
Dirac particles, only (n − 1)(n − 2)/2 phases are physical and can be
responsible for CP violation in the lepton sector. In this respect the
neutrino (lepton) mixing with Dirac massive neutrinos is similar to
the quark mixing. For n = 3 there is just one CP violating phase in U ,
which is usually called “the Dirac CP violating phase.” CP invariance
holds if (in a certain standard convention) U is real, U∗ = U .

If, however, the massive neutrinos are Majorana fermions, νj ≡ χj ,
the neutrino mixing matrix U contains n(n − 1)/2 CP violation
phases [48,49], i.e., by (n− 1) phases more than in the Dirac neutrino
case: in contrast to Dirac fields, the massive Majorana neutrino fields
cannot “absorb” phases. In this case U can be cast in the form [48]

U = V P (14.2)

where the matrix V contains the (n − 1)(n − 2)/2 Dirac CP violation
phases, while P is a diagonal matrix with the additional (n − 1)
Majorana CP violation phases α21, α31,..., αn1,

P = diag
(

1, ei
α21
2 , ei

α31
2 , ..., ei

αn1
2

)

. (14.3)

The Majorana phases will conserve CP if [50] αj1 = πqj , qj = 0, 1, 2,
j = 2, 3, ..., n. In this case exp[i(αj1−αk1)] = ±1 has a simple physical
interpretation: this is the relative CP-parity of Majorana neutrinos
χj and χk. The condition of CP invariance of the leptonic CC weak
interaction in the case of mixing and massive Majorana neutrinos
reads [46]:

U∗
lj = Ulj ρj , ρj =

1

i
ηCP (χj) = ±1 , (14.4)

where ηCP (χj) = iρj = ±i is the CP parity of the Majorana neutrino
χj [50]. Thus, if CP invariance holds, the elements of U are either
real or purely imaginary.

In the case of n = 3 there are altogether 3 CP violation phases
- one Dirac and two Majorana. Even in the mixing involving only
2 massive Majorana neutrinos there is one physical CP violation
Majorana phase. In contrast, the CC weak interaction is automatically
CP-invariant in the case of mixing of two massive Dirac neutrinos or
of two quarks.

14.2. The three neutrino mixing

All existing compelling data on neutrino oscillations can be
described assuming 3-flavour neutrino mixing in vacuum. This is the
minimal neutrino mixing scheme which can account for the currently
available data on the oscillations of the solar (νe), atmospheric (νµ

and ν̄µ), reactor (ν̄e) and accelerator (νµ and ν̄µ) neutrinos. The
(left-handed) fields of the flavour neutrinos νe, νµ and ντ in the
expression for the weak charged lepton current in the CC weak
interaction Lagrangian, are linear combinations of the LH components
of the fields of three massive neutrinos νj :

LCC = − g√
2

∑

l=e,µ,τ

lL(x) γα νlL(x)Wα†(x) + h.c. ,

νlL(x) =

3
∑

j=1

Ulj νjL(x), (14.5)

where U is the 3 × 3 unitary neutrino mixing matrix [4,5]. As we
have discussed in the preceding Section, the mixing matrix U can be
parameterized by 3 angles, and, depending on whether the massive
neutrinos νj are Dirac or Majorana particles, by 1 or 3 CP violation
phases [48,49]:

U =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13





× diag(1, ei
α21
2 , ei

α31
2 ) . (14.6)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π]
is the Dirac CP violation phase and α21, α31 are two Majorana CP
violation (CPV) phases. Thus, in the case of massive Dirac neutrinos,
the neutrino mixing matrix U is similar, in what concerns the number
of mixing angles and CPV phases, to the CKM quark mixing matrix.
The presence of two additional physical CPV phases in U if νj are
Majorana particles is a consequence of the special properties of the
latter (see, e.g., Refs. [46,48]) .

As we see, the fundamental parameters characterizing the 3-
neutrino mixing are: i) the 3 angles θ12, θ23, θ13, ii) depending on
the nature of massive neutrinos νj - 1 Dirac (δ), or 1 Dirac + 2
Majorana (δ, α21, α31), CPV phases, and iii) the 3 neutrino masses,
m1, m2, m3. Thus, depending on whether the massive neutrinos are
Dirac or Majorana particles, this makes 7 or 9 additional parameters
in the minimally extended Standard Model of particle interactions
with massive neutrinos.

The angles θ12, θ23 and θ13 can be defined via the elements of the
neutrino mixing matrix:

c212 ≡ cos2 θ12 =
|Ue1|2

1 − |Ue3|2
, s2

12 ≡ sin2 θ12 =
|Ue2|2

1 − |Ue3|2
, (14.7)

s2
13 ≡ sin2 θ13 = |Ue3|2, s2

23 ≡ sin2 θ23 =
|Uµ3|2

1 − |Ue3|2
,

c223 ≡ cos2 θ23 =
|Uτ3|2

1 − |Ue3|2
. (14.8)

The neutrino oscillation probabilities depend (Section 14.7), in
general, on the neutrino energy, E, the source-detector distance
L, on the elements of U and, for relativistic neutrinos used in all
neutrino experiments performed so far, on ∆m2

ij ≡ (m2
i − m2

j ), i 6= j.
In the case of 3-neutrino mixing there are only two independent
neutrino mass squared differences, say ∆m2

21 6= 0 and ∆m2
31 6= 0. The

numbering of massive neutrinos νj is arbitrary. It proves convenient
from the point of view of relating the mixing angles θ12, θ23 and
θ13 to observables, to identify |∆m2

21| with the smaller of the two
neutrino mass squared differences, which, as it follows from the data,
is responsible for the solar νe and, the observed by KamLAND, reactor
ν̄e oscillations. We will number (just for convenience) the massive
neutrinos in such a way that m1 < m2, so that ∆m2

21 > 0. With
these choices made, there are two possibilities: either m1 < m2 < m3,
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or m3 < m1 < m2. Then the larger neutrino mass square difference
|∆m2

31| or |∆m2
32|, can be associated with the experimentally observed

oscillations of the atmospheric and accelerator νµ and ν̄µ, as well as
of the reactor ν̄e at L ∼ 1 km. The effects of ∆m2

31 or ∆m2
32 in the

oscillations of solar νe, and of ∆m2
21 in the oscillations of atmospheric

and accelerator νµ and ν̄µ or of the reactor ν̄e at L ∼ 1 km, are
relatively small and subdominant as a consequence of the facts that i)
L, E and L/E in the experiments with solar νe and with atmospheric
and accelerator νµ and ν̄µ, or with reactor ν̄e and baseline L ∼ 1 km,
are very different, ii) the conditions of production and propagation
(on the way to the detector) of the solar νe and of the atmospheric
or accelerator νµ and ν̄µ and of the reactor ν̄e, are very different,
and iii) |∆m2

21| and |∆m2
31| (|∆m2

32|) in the case of m1 < m2 < m3

(m3 < m1 < m2), as it follows from the data, differ by approximately
a factor of 30, |∆m2

21| ≪ |∆m2
31(32)|, |∆m2

21|/|∆m2
31(32)| ∼= 0.03. This

implies that in both cases of m1 < m2 < m3 and m3 < m1 < m2

we have ∆m2
32

∼= ∆m2
31 with |∆m2

31 − ∆m2
32| = |∆m2

21| ≪ |∆m2
31,32|.

Obviously, in the case of m1 < m2 < m3 (m3 < m1 < m2) we have
∆m2

31(32) > 0 (∆m2
31(32) < 0).

It followed from the results of the Chooz experiment [51] with reactor
ν̄e and from the more recent data of the Daya Bay, RENO, Double
Chooz and T2K experiments (which will be discussed in Section14.12),
that, in the convention we use, in which 0 < ∆m2

21 < |∆m2
31(32)|, the

element |Ue3|=sin θ13 of the neutrino mixing matrix U is relatively
small. This makes it possible to identify the angles θ12 and θ23 as the
neutrino mixing angles associated with the solar νe and the dominant
atmospheric νµ (and ν̄µ) oscillations, respectively. The angles θ12 and
θ23 are sometimes called “solar” and “atmospheric” neutrino mixing
angles, and are sometimes denoted as θ12 = θ⊙ and θ23 = θA (or
θatm), while ∆m2

21 and ∆m2
31 are often referred to as the “solar”

and “atmospheric” neutrino mass squared differences and are often
denoted as ∆m2

21 ≡ ∆m2
⊙, ∆m2

31 ≡ ∆m2
A (or ∆m2

atm).

The solar neutrino data tell us that ∆m2
21 cos 2θ12 > 0. In the

convention employed by us we have ∆m2
21 > 0. Correspondingly, in

this convention one must have cos 2θ12 > 0.

Global analyses of the neutrino oscillation data [52,53,54] available
by the second half of 2014 allowed us to determine the 3-neutrino
oscillation parameters ∆m2

21, θ12, |∆m2
31| (|∆m2

32|), θ23 and θ13 with
a relatively high precision.

The authors of the three independent analyses [52,53,54] report
practically the same (within 1σ) results on ∆m2

21, sin2 θ12, |∆m2
31| and

sin2 θ13. The results obtained in Ref. 52 on sin2 θ23 show, in particular,
that for ∆m2

31(32) > 0 (∆m2
31(32) < 0), i.e., for m1 < m2 < m3 (

m3 < m1 < m2), the best fit value of sin2 θ23 = 0.437 (0.455). At the
same time, the best fit values of sin2 θ23 reported for ∆m2

31(32) > 0

(∆m2
31(32) < 0) in Ref. 53 and in Ref. 54 read, respectively:

sin2 θ23 = 0.452 (0.579) and sin2 θ23 = 0.567 (0.573). It should be
added, however, that the global minima of the corresponding χ2

functions in all three cases of the analyses [52,53,54] are accompanied
by local minima which are less than 1σ away in the value of the
χ2 function from the corresponding global minima. Taking into
account the global and the local minima of the χ2 function found
in [52,53,54] makes the results on sin2 θ23 (including the 3σ allowed
ranges) obtained in Refs. [52], [53] and [54] compatible. This, in
particular, reflects the fact that the value of sin2 θ23 is still determined
experimentally with a relatively large uncertainty.

In all three analyses [52,53,54] the authors find that the best fit
value of the Dirac CPV phases δ ∼= 3π/2. According to Ref. 52, the
CP conserving values δ = 0 (2π) and π (δ = 0 (2π)) are disfavored at
1.6σ to 2.0σ (at 2.0σ) for ∆m2

31(32) > 0 (∆m2
31(32) < 0). In the case

of ∆m2
31(32) < 0, the value δ = π is statistically 1σ away from the best

fit value δ ∼= 3π/2. Similar results are obtained in [53,54].

In August 2015 the first results of the NOνA neutrino oscillation
experiment were announced [55,56]. These results together with
the latest neutrino and the first antineutrino data from the T2K
experiment [57,58] (see also Ref. 59) were included, in particular, in
the latest analysis of the global neutrino oscillation data performed
in Ref. 60. Thus, in Ref. 60 the authors updated the results

obtained earlier in [52,53,54]. We present in Table 14.1 the
best fit values and the 99.73% CL allowed ranges of the neutrino
oscillation parameters found in Ref. 60 using, in particular, the more
“conservative” LID NOνA data from Ref. 56. The best fit value of
sin2 θ23 found for ∆m2

31(32) > 0 (∆m2
31(32) < 0) in Ref. 60 reads:

sin2 θ23 = 0.437 (0.569). The authors of Ref. 60 also find that the
hint for δ ∼= 3π/2 is strengthened by the NOνA νµ → νe and T2K
ν̄µ → ν̄e oscillation data. The values of δ = π/2 and δ = 0 (2π) are
disfavored at 3σ CL and 2σ CL, respectively, while δ = π is allowed at
approximately 1.6σ CL (1.2σ CL) for ∆m2

31(32) > 0 (∆m2
31(32) < 0).

Table 14.1: The best-fit values and 3σ allowed ranges of the
3-neutrino oscillation parameters, derived from a global fit of
the current neutrino oscillation data (from [60]) . For the Dirac
phase δ we give the best fit value and the 2σ allowed ranges;
at 3σ no physical values of δ are disfavored. The values (values
in brackets) correspond to m1 < m2 < m3 (m3 < m1 < m2).
The definition of ∆m2 used is: ∆m2 = m2

3 − (m2
2 + m2

1)/2.
Thus, ∆m2 = ∆m2

31 − ∆m2
21/2 > 0, if m1 < m2 < m3, and

∆m2 = ∆m2
32 + ∆m2

21/2 < 0 for m3 < m1 < m2.

Parameter best-fit 3σ

∆m2
21 [10−5 eV 2] 7.37 6.93 − 7.97

|∆m2| [10−3 eV 2] 2.50 (2.46) 2.37 − 2.63 (2.33 − 2.60)

sin2 θ12 0.297 0.250 − 0.354

sin2 θ23, ∆m2 > 0 0.437 0.379 − 0.616

sin2 θ23, ∆m2 < 0 0.569 0.383 − 0.637

sin2 θ13, ∆m2 > 0 0.0214 0.0185 − 0.0246

sin2 θ13, ∆m2 < 0 0.0218 0.0186 − 0.0248

δ/π 1.35 (1.32) (0.92 − 1.99)

((0.83 − 1.99))

It follows from the results given in Table 14.1 that θ23 is close to,
but can be different from, π/4, θ12

∼= π/5.4 and that θ13
∼= π/20.

Correspondingly, the pattern of neutrino mixing is drastically different
from the pattern of quark mixing.

Note also that ∆m2
21, sin2 θ12, |∆m2

31(32)|, sin2 θ23 and sin2 θ13

are determined from the data with a 1σ uncertainty (= 1/6 of
the 3σ range) of approximately 2.3%, 5.8%, 1.7%, 9.0% and 4.8%.
respectively.

The existing SK atmospheric neutrino, K2K, MINOS, T2K and
NOνA data do not allow to determine the sign of ∆m2

31(32). Maximal

solar neutrino mixing, i.e., θ12 = π/4, is ruled out at more than 6σ by
the data. Correspondingly, one has cos 2θ12 ≥ 0.29 (at 99.73% CL).

Apart from the hint that the Dirac phase δ ∼= 3π/2, no other
experimental information on the Dirac and Majorana CPV phases in
the neutrino mixing matrix is available at present. Thus, the status
of CP symmetry in the lepton sector is essentially unknown. With
θ13

∼= 0.15 6= 0, the Dirac phase δ can generate CP violating effects
in neutrino oscillations [48,61,62], i.e., a difference between the
probabilities of the νl → νl′ and ν̄l → ν̄l′ oscillations, l 6= l′ = e, µ, τ .
The magnitude of CP violation in νl → νl′ and ν̄l → ν̄l′ oscillations,
l 6= l′ = e, µ, τ , is determined by [63] the rephasing invariant JCP ,
associated with the Dirac CPV phase in U :

JCP = Im
(

Uµ3 U∗
e3 Ue2 U∗

µ2

)

. (14.9)

It is analogous to the rephasing invariant associated with the Dirac
CPV phase in the CKM quark mixing matrix [64]. In the “standard”
parametrization of the neutrino mixing matrix (Eq. (14.6)), JCP has
the form:

JCP ≡ Im (Uµ3 U∗
e3 Ue2 U∗

µ2)

=
1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ . (14.10)
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Thus, given the fact that sin 2θ12, sin 2θ23 and sin 2θ13 have been
determined experimentally with a relatively good precision, the size of
CP violation effects in neutrino oscillations depends essentially only on
the magnitude of the currently not well determined value of the Dirac
phase δ. The current data implies JCP . 0.035 sin δ, where we have
used the 3σ ranges of sin2 θ12, sin2 θ23 and sin2 θ13 given in Table 14.1.
For the best fit values of sin2 θ12, sin2 θ23, sin2 θ13 and δ we find in the
case of ∆m2

31(2) > 0 (∆m2
31(2) < 0): JCP

∼= 0.0327 sinδ ∼= − 0.0291

(JCP
∼= 0.0327 sinδ ∼= − 0.0276). Thus, if the indication that δ ∼= 3π/2

is confirmed by future more precise data, the CP violation effects in
neutrino oscillations would be relatively large.

If the neutrinos with definite masses νi, i = 1, 2, 3, are Majorana
particles, the 3-neutrino mixing matrix contains two additional
Majorana CPV phases [48]. However, the flavour neutrino oscillation
probabilities P (νl → νl′) and P (ν̄l → ν̄l′), l, l′ = e, µ, τ , do not depend
on the Majorana phases [48,65]. The Majorana phases can play
important role, e.g., in |∆L| = 2 processes like neutrinoless double
beta ((ββ)0ν -) decay (A, Z) → (A, Z + 2) + e− + e−, L being the total
lepton charge, in which the Majorana nature of massive neutrinos νi

manifests itself (see, e.g., Refs. [46,66]) . Our interest in the CPV
phases present in the neutrino mixing matrix is stimulated also by
the intriguing possibility that the Dirac phase and/or the Majorana
phases in UPMNS can provide the CP violation necessary for the
generation of the observed baryon asymmetry of the Universe [67,68].

As we have indicated, the existing data do not allow one to
determine the sign of ∆m2

31(2). In the case of 3-neutrino mixing, the

two possible signs of ∆m2
31(2) correspond to two types of neutrino

mass spectrum. In the widely used conventions of numbering the
neutrinos with definite mass in the two cases, the two spectra read:

– i) spectrum with normal ordering (NO):

m1 < m2 < m3, ∆m2
31 = ∆m2

A > 0,

∆m2
21 ≡ ∆m2

⊙ > 0, m2(3) = (m2
1 + ∆m2

21(31))
1
2 . (14.11)

– ii) spectrum with inverted ordering (IO):

m3 < m1 < m2, ∆m2
32 = ∆m2

A < 0, ∆m2
21 ≡ ∆m2

⊙ > 0,

m2 = (m2
3 + ∆m2

23)
1
2 , m1 = (m2

3 + ∆m2
23 − ∆m2

21)
1
2 . (14.12)

Depending on the values of the lightest neutrino mass [69], min(mj),
the neutrino mass spectrum can also be:

– Normal Hierarchical (NH):

m1 ≪ m2 < m3, m2
∼= (∆m2

21)
1
2 ∼= 0.0086 eV,

m3
∼= |∆m2

31|
1
2 ∼= 0.0504 eV; or (14.13)

– Inverted Hierarchical (IH):

m3 ≪ m1 < m2, m1,2
∼= |∆m2

32|
1
2 ∼= 0.0500 eV; or (14.14)

– Quasi-Degenerate (QD):

m1
∼= m2

∼= m3
∼= m0, m2

j ≫ |∆m2
31(32)|, m0 & 0.10 eV. (14.15)

Sometimes the determination of the neutrino mass spectrum is referred
to in the literature on the subject as determination of “neutrino mass
hierarchy”. However, as we have seen, the neutrino mass spectrum
might not be hierarchical. Therefore, determination of “neutrino mass
ordering” is a more precise expression and we are going to use this
expression in the present review article.

Eq. (14.11) and Eq. (14.12) suggest that, for consistency, the data
on the larger neutrino mass squared difference, obtained in 3-neutrino
oscillation analyses, should be presented i) either on the value of
∆m2

32 in the case of NO spectrum and on ∆m2
31 for IO spectrum, or

ii) on the value of ∆m2
31 for the NO spectrum and on ∆m2

32 for IO
spectrum. It would be preferable that all experimental groups which
provide data on the larger neutrino mass squared difference, choose
one of the indicated two possibilities to present their data - this

will make straightforward the comparison of the results obtained in
different experiments.

All types of neutrino mass spectrum, discussed above, are
compatible with the existing constraints on the absolute scale of
neutrino masses mj . Information about the latter can be obtained,

e.g., by measuring the spectrum of electrons near the end point in 3H
β-decay experiments [70–74] and from cosmological and astrophysical
data. The most stringent upper bounds on the ν̄e mass were obtained
in the Troitzk [74,71] experiment:

mν̄e < 2.05 eV at 95% CL. (14.16)

Similar result was obtained in the Mainz experiment [72]: mν̄e <
2.3 eV at 95% CL. We have mν̄e

∼= m1,2,3 in the case of QD spectrum.
The KATRIN experiment [73] is planned to reach sensitivity of
mν̄e ∼ 0.20 eV, i.e., it will probe the region of the QD spectrum.

The Cosmic Microwave Background (CMB) data of the WMAP
experiment, combined with supernovae data and data on galaxy
clustering can be used to obtain an upper limit on the sum of
neutrinos masses (see review on Cosmological Parameters [75] and,
e.g., Ref. 76). Depending on the model complexity and the input data
used one obtains [76]:

∑

j mj . (0.3 − 1.3) eV, 95% CL.

In March of 2013 the Planck Collaboration published their
first constraints on

∑

j mj [77]. These constraints were updated

in 2015 in [78]. Assuming the existence of three light massive
neutrinos and the validity of the Λ CDM (Cold Dark Matter) model,
and using their data on the CMB temperature power spectrum
anisotropies, polarization, on gravitational lensing effects and the low
l CMB polarization spectrum data (the “low P” data), the Planck
Collaboration reported the following updated upper limit on the sum
of the neutrino masses [78]:

∑

j mj < 0.57 eV, 95% CL. Adding

supernovae (light-curve) data and data on the Baryon Acoustic
Oscillations (BAO) lowers the limit to [78]:

∑

j

mj < 0.23 eV, 95% CL.

It follows from these data that neutrino masses are much smaller
than the masses of charged leptons and quarks. If we take as
an indicative upper limit mj . 0.5 eV, we have mj/ml,q . 10−6,
l = e, µ, τ , q = d, s, b, u, c, t. It is natural to suppose that the
remarkable smallness of neutrino masses is related to the existence of
a new fundamental mass scale in particle physics, and thus to new
physics beyond that predicted by the Standard Model.

14.3. Future progress

After the spectacular experimental progress made in the studies of
neutrino oscillations, further understanding of the pattern of neutrino
masses and neutrino mixing, of their origins and of the status of CP
symmetry in the lepton sector requires an extensive and challenging
program of research. The main goals of such a research program
include:

• Determining the nature - Dirac or Majorana, of massive neutrinos
νj . This is of fundamental importance for making progress in
our understanding of the origin of neutrino masses and mixing
and of the symmetries governing the lepton sector of particle
interactions.

• Determination of the sign of ∆m2
31 (or ∆m2

32), i.e., the “neutrino
mass ordering”, or of the type of spectrum neutrino masses obey.

• Determining, or obtaining significant constraints on, the absolute
scale of neutrino masses. This, in particular, would help
obtain information about the detailed structure (hierarchical,
quasidegenerate, etc.) of the neutrino mass spectrum.

• Determining the status of CP symmetry in the lepton sector.

• High precision measurement of θ13, ∆m2
21, θ12, |∆m2

31| and θ23.

• Understanding at a fundamental level the mechanism giving rise
to neutrino masses and mixing and to Ll−non-conservation. This
includes understanding the origin of the patterns of ν-mixing
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and ν-masses suggested by the data. Are the observed patterns
of ν-mixing and of ∆m2

21,31 related to the existence of a new
fundamental symmetry of particle interactions? Is there any
relation between quark mixing and neutrino mixing, e.g., does
the relation θ12 + θc=π/4, where θc is the Cabibbo angle, hold?
What is the physical origin of CP violation phases in the neutrino
mixing matrix U? Is there any relation (correlation) between
the (values of) CP violation phases and mixing angles in U?
Progress in the theory of neutrino mixing might also lead to a
better understanding of the mechanism of generation of baryon
asymmetry of the Universe.

The high precision measurement of the value of sin2 2θ13 from the
Daya Bay experiment and the subsequent results on θ13 obtained by
the RENO, Double Chooz and T2K collaborations (see Section 1.11),
have far reaching implications. The measured relatively large value of
θ13 opened up the possibilities, in particular,

i) for searching for CP violation effects in neutrino oscillation
experiments with high intensity accelerator neutrino beams, like
T2K, NOνA, etc. The sensitivities of T2K and NOνA on CP
violation in neutrino oscillations are discussed in, e.g., Refs. [79,80].
ii) for determining the sign of ∆m2

32, and thus the type of
neutrino mass spectrum (“neutrino mass ordering”) in the long
baseline neutrino oscillation experiments at accelerators (NOνA,
etc.), in the experiments studying the oscillations of atmospheric
neutrinos (PINGU, ORCA), as well as in experiments with reactor
antineutrinos [81] (for a review see, e.g., Ref. 82).

There are also long term plans extending beyond 2025 for searches
for CP violation and neutrino mass spectrum (ordering) determination
in long baseline neutrino oscillation experiments with accelerator
neutrino beams (see, e.g., Refs. [80,83,84,85]) . The successful
realization of this research program would be a formidable task and
would require many years of extraordinary experimental efforts aided
by intensive theoretical investigations and remarkable investments.

Before reviewing in detail i) the different neutrino sources and the
specific characteristics of the corresponding neutrino fluxes, which have
been and are being used in neutrino oscillation experiments (Section
14.6), ii) the theory and phenomenology of neutrino oscillations
(Sections 14.7 and 14.8), and iii) the compelling experimental
evidences of neutrino oscillations and, more generally, the results
obtained in the neutrino oscillation experiments (Sections 14.9 and
14.13), we would like to discuss briefly the problem of determination
of the nature - Dirac or Majorana - of massive neutrinos as well as the
(type I) seesaw mechanism of neutrino mass generation.

14.4. The nature of massive neutrinos

The experiments studying flavour neutrino oscillations cannot
provide information on the nature - Dirac or Majorana, of massive
neutrinos [48,65]. Establishing whether the neutrinos with definite
mass νj are Dirac fermions possessing distinct antiparticles, or
Majorana fermions, i.e., spin 1/2 particles that are identical with
their antiparticles, is of fundamental importance for understanding
the origin of ν-masses and mixing and the underlying symmetries
of particle interactions (see, e.g., Ref. 86). The neutrinos with
definite mass νj will be Dirac fermions if the particle interactions
conserve some additive lepton number, e.g., the total lepton charge
L = Le + Lµ + Lτ . If no lepton charge is conserved, νj will be
Majorana fermions (see, e.g., Ref. 46). The massive neutrinos are
predicted to be of Majorana nature by the see-saw mechanism of
neutrino mass generation [3]. The observed patterns of neutrino
mixing and of neutrino mass squared differences can be related to
Majorana massive neutrinos and the existence of an approximate
flavour symmetry in the lepton sector (see, e.g., Ref. 87). Determining
the nature of massive neutrinos νj is one of the fundamental and most
challenging problems in the future studies of neutrino mixing.

The Majorana nature of massive neutrinos νj manifests itself in the
existence of processes in which the total lepton charge L changes by
two units: K+ → π− + µ+ + µ+, µ− + (A, Z) → µ+ + (A, Z − 2), etc.
Extensive studies have shown that the only feasible experiments having
the potential of establishing that the massive neutrinos are Majorana
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Figure 14.1: The effective Majorana mass |<m>| (including a
2σ uncertainty), as a function of min(mj). The figure is obtained
using the best fit values and the 2σ ranges of allowed values
of ∆m2

21, sin2 θ12, and |∆m2
31| ∼= |∆m2

32| from Ref. 60. The
phases α21,31 are varied in the interval [0,π]. The predictions
for the NH, IH and QD spectra are indicated. The red regions
correspond to at least one of the phases α21,31 and (α31 − α21)
having a CP violating value, while the blue and green areas
correspond to α21,31 possessing CP conserving values. (Update
by S. Pascoli of a figure from the one before the last article
quoted in Ref. 91.)

particles are at present the experiments searching for (ββ)0ν -decay:
(A, Z) → (A, Z + 2) + e− + e− (see, e.g., Ref. 88). The observation of
(ββ)0ν -decay and the measurement of the corresponding half-life with
sufficient accuracy, would not only be a proof that the total lepton
charge is not conserved, but might also provide unique information on
the i) type of neutrino mass spectrum (see, e.g., Ref. 89), ii) Majorana
phases in U [66,90] and iii) the absolute scale of neutrino masses (for
details see Ref. 88 to Ref. 91 and references quoted therein).

Under the assumptions of 3-ν mixing, of massive neutrinos νj

being Majorana particles, and of (ββ)0ν -decay generated only by
the (V-A) charged current weak interaction via the exchange of the
three Majorana neutrinos νj having masses mj . few MeV, the
(ββ)0ν -decay amplitude has the form (see, e.g., Ref. 46 and Ref. 88):
A(ββ)0ν

∼= <m> M , where M is the corresponding nuclear matrix
element which does not depend on the neutrino mixing parameters,
and

|<m>| =
∣

∣

∣
m1U

2
e1 + m2U

2
e2 + m3U

2
e3

∣

∣

∣

=
∣

∣

∣

(

m1c
2
12 + m2s

2
12e

iα21
)

c213 + m3s
2
13e

i(α31−2δ)
∣

∣

∣
, (14.17)

is the effective Majorana mass in (ββ)0ν -decay. In the case of CP-
invariance one has [50], η21 ≡ eiα21=±1, η31 ≡ eiα31=±1, e−i2δ=1.
The three neutrino masses m1,2,3 can be expressed in terms of the

two measured ∆m2
jk and, e.g., min(mj). Thus, given the neutrino

oscillation parameters ∆m2
21, sin2 θ12, ∆m2

31 and sin2 θ13, |<m>| is
a function of the lightest neutrino mass min(mj), the Majorana (and
Dirac) CP violation phases in U and of the type of neutrino mass
spectrum. In the case of NH, IH and QD spectrum we have (see, e.g.,
Ref. 66 and Ref. 91):

|<m>| ∼=
∣

∣

∣

∣

√

∆m2
21s

2
12c

2
13 +

√

∆m2
31s

2
13e

i(α31−α21−2δ)

∣

∣

∣

∣

, NH ,

(14.18)

|<m>| ∼= m̃
(

1 − sin2 2θ12 sin2 α21

2

)
1
2

, IH (IO) and QD , (14.19)

where m̃ ≡
√

∆m2
23 + m2

3 and m̃ ≡ m0 for IH (IO) and QD

spectrum, respectively. In Eq. (14.19) we have exploited the fact that
sin2 θ13 ≪ cos 2θ12. The CP conserving values of the Majorana phase
α21 and the Majorana-Dirac phase difference (α31−α21−2δ) determine
the intervals of possible values of |<m>|, corresponding to the different
types of neutrino mass spectrum. Using the 3σ ranges of the allowed
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values of the neutrino oscillation parameters from Table 14.1 one
finds that: i) 0.81 × 10−3 eV . |<m>|. 4.43 × 10−3 eV in the case

of NH spectrum; ii)
√

∆m2
23 cos 2θ12 c213 . |<m>|.

√

∆m2
23 c213, or

1.3 × 10−2 eV . |<m>|. 5.0 × 10−2 eV in the case of IH spectrum;
1.3 × 10−2 eV . |<m>|. 5.0 × 10−2 eV in the case of IH spectrum;
iii) m0 cos 2θ12 . |<m>|.m0, or 2.9 × 10−2 eV . |<m>|.m0 eV,
m0 & 0.10 eV, in the case of QD spectrum. The difference in the
ranges of |<m>| in the cases of NH, IH and QD spectrum opens
up the possibility to get information about the type of neutrino
mass spectrum from a measurement of |<m>| [89]. The predicted
(ββ)0ν -decay effective Majorana mass |<m>| as a function of the
lightest neutrino mass min(mj) is shown in Fig. 14.1.

The (ββ)0ν -decay can be generated, in principle, by a ∆L = 2
mechanism other than the light Majorana neutrino exchange
considered here, or by a combination of mechanisms one of which is
the light Majorana neutrino exchange (for a discussion of different
mechanisms which can trigger (ββ)0ν -decay, see, e.g., Refs. [92,93]
and the articles quoted therein). If the (ββ)0ν -decay will be observed,
it will be of fundamental importance to determine which mechanism
(or mechanisms) is (are) inducing the decay. The discussion of the
problem of determining the mechanisms which possibly are operative
in (ββ)0ν -decay, including the case when more than one mechanism
is involved, is out of the scope of the present article. This problem
has been investigated in detail in, e.g., Refs. [93,94] and we refer the
reader to these articles and the articles quoted therein.

14.5. The see-saw mechanism and the baryon

asymmetry of the Universe

A natural explanation of the smallness of neutrino masses is
provided by the (type I) see-saw mechanism of neutrino mass
generation [3]. An integral part of this rather simple mechanism
[95] are the RH neutrinos νlR (RH neutrino fields νlR(x)). The latter
are assumed to possess a Majorana mass term as well as Yukawa
type coupling LY(x) with the Standard Model lepton and Higgs
doublets, ψlL(x) and Φ(x), respectively, (ψlL(x))T = (νT

lL(x) lTL(x)),

l = e, µ, τ , (Φ(x))T = (Φ(0)(x) Φ(−)(x)). In the basis in which the
Majorana mass matrix of RH neutrinos is diagonal, we have:

LY,M(x) =
(

λil NiR(x)Φ†(x)ψlL(x) + h.c.
)

− 1

2
Mi Ni(x)Ni(x) ,

(14.20)

where λil is the matrix of neutrino Yukawa couplings and Ni

(Ni(x)) is the heavy RH Majorana neutrino (field) possessing a mass
Mi > 0. When the electroweak symmetry is broken spontaneously,
the neutrino Yukawa coupling generates a Dirac mass term:
mD

il NiR(x) νlL(x)+h.c., with mD = vλ, v = 174 GeV being the Higgs

doublet v.e.v. In the case when the elements of mD are much smaller
than Mk, |mD

il | ≪ Mk, i, k = 1, 2, 3, l = e, µ, τ , the interplay between
the Dirac mass term and the mass term of the heavy (RH) Majorana
neutrinos Ni generates an effective Majorana mass (term) for the LH
flavour neutrinos [3]:

mLL
l′l

∼= −(mD)Tl′jM
−1
j mD

jl = −v2(λ)Tl′jM
−1
j λjl . (14.21)

In grand unified theories, mD is typically of the order of the charged
fermion masses. In SO(10) theories, for instance, mD coincides
with the up-quark mass matrix. Taking indicatively mLL ∼ 0.1
eV, mD ∼ 100 GeV, one finds M ∼ 1014 GeV, which is close to
the scale of unification of the electroweak and strong interactions,
MGUT

∼= 2 × 1016 GeV. In GUT theories with RH neutrinos one
finds that indeed the heavy Majorana neutrinos Nj naturally obtain
masses which are by few to several orders of magnitude smaller
than MGUT . Thus, the enormous disparity between the neutrino and
charged fermion masses is explained in this approach by the huge
difference between effectively the electroweak symmetry breaking scale
and MGUT .

An additional attractive feature of the see-saw scenario is that
the generation and smallness of neutrino masses is related via
the leptogenesis mechanism [2] to the generation of the baryon

asymmetry of the Universe. The Yukawa coupling in Eq. (14.20),
in general, is not CP conserving. Due to this CP-nonconserving
coupling the heavy Majorana neutrinos undergo, e.g., the decays
Nj → l+ + Φ(−), Nj → l− + Φ(+), which have different rates:

Γ(Nj → l+ + Φ(−)) 6= Γ(Nj → l− + Φ(+)). When these decays occur
in the Early Universe at temperatures somewhat below the mass of,
say, N1, so that the latter are out of equilibrium with the rest of
the particles present at that epoch, CP violating asymmetries in the
individual lepton charges Ll, and in the total lepton charge L, of the
Universe are generated. These lepton asymmetries are converted into
a baryon asymmetry by (B − L) conserving, but (B + L) violating,
sphaleron processes, which exist in the Standard Model and are
effective at temperatures T ∼ (100−1012) GeV. If the heavy neutrinos
Nj have hierarchical spectrum, M1 ≪ M2 ≪ M3, the observed baryon
asymmetry can be reproduced provided the mass of the lightest one
satisfies M1 & 109 GeV [96]. Thus, in this scenario, the neutrino
masses and mixing and the baryon asymmetry have the same origin
- the neutrino Yukawa couplings and the existence of (at least two)
heavy Majorana neutrinos. Moreover, quantitative studies [67] based
on advances in leptogenesis theory [97] have shown that the CP
violation, necessary in leptogenesis for the generation of the observed
baryon asymmetry of the Universe, can be provided exclusively by
the Dirac and/or Majorana phases in the neutrino mixing matrix U .
This implies, in particular, that if the CP symmetry is established
not to hold in the lepton sector due to U , at least some fraction (if
not all) of the observed baryon asymmetry might be due to the Dirac
and/or Majorana CP violation present in the neutrino mixing. More
specifically, the necessary condition that the requisite CP violation for
a successful leptogenesis with heirarchical in mass heavy Majorana
neutrinos is due entirely to the Dirac CPV phase in U reads [68]:
| sin θ13 sin δ|& 0.09. This condition is comfortably compatible with
the measured value of sin θ13

∼= 0.15 and the hint that δ ∼= 3π/2, found
in the global analyses of the neutrino oscillation data.

14.6. Neutrino sources

In the experimental part of this review (Sections 14.9 - 14.13),
we mainly discuss neutrino oscillation experiments using neutrinos
or antineutrinos produced by the Sun, cosmic-ray interactions in
the air, proton accelerators, and nuclear reactors. We call neutrinos
from these sources as solar neutrinos, atmospheric neutrinos,
accelerator neutrinos, and reactor (anti)neutrinos. Neutrinos (and/or
antineutrinos) from each of these sources have very different
properties, e.g., energy spectra, flavour components, and directional
distributions, at production. In the literature, neutrino flavour
conversion of neutrinos from gravitationally collapsed supernova
explosions (supernova neutrinos) is also discussed, but this topic is
out of the scope of the present review.

Solar neutrinos and atmospheric neutrinos are naturally produced
neutrinos; their fluxes as well as the distance between the (point or
distributed) neutrino source and the detector cannot be controlled
artificially. While the atmospheric neutrino flux involves νµ, ν̄µ, νe,
and ν̄e components at production, solar neutrinos are produced as
pure electron neutrinos due to thermo-nuclear fusion reactions of four
protons, producing a helium nucleus. For atmospheric neutrinos with
energy & 1 GeV, which undergo charged-current interactions in the
detector, directional correlation of the charged lepton with the parent
neutrino gives the way to know, within the resolution, the distance
traveled by the neutrino between the production and detection.

Accelerator neutrinos and reactor (anti)neutrinos are man-made
neutrinos. In principle, it is possible to choose the distance between
the neutrino source and the detector arbitrarily. Accelerator neutrinos
used for neutrino oscillation experiments so far have been produced
by the decay of secondary mesons (pions and kaons) produced by the
collision of a primary proton beam with a nuclear target. A dominant
component of the accelerator neutrino flux is νµ or ν̄µ, depending on
the secondary meson’s sign selection, but a wrong-sign muon neutrino
component as well as νe and ν̄e components are also present. The
fluxes of the accelerator neutrinos depend on a number of factors,
e.g., energy and intensity of the primary proton beam, material and
geometry of the target, selection of the momentum and charge of
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the secondary mesons that are focused, and production angle of the
secondary mesons with respect to the primary beam. In other words,
it is possible to control the peak energy, energy spread, and dominant
neutrino flavour, of the neutrino beam.

From the nuclear reactor, almost pure electron antineutrinos are
produced by β-decays of fission products of the nuclear fuel. However,
experimental groups cannot control the normalization and spectrum
of the ν̄e flux from commercial nuclear reactors. They are dependent
on the initial fuel composition and history of the nuclear fuel burnup.
These data are provided by the power plant companies.

For neutrino oscillation experiments, knowledge of the flux of
each neutrino and antineutrino flavour at production is needed for
planning and designing the experiment, analyzing the data, and
estimating systematic errors. Basically, for all neutrino sources, flux
models are constructed and validation is made by comparing various
experimentally observed quantities with the model predictions. Many
of the modern accelerator long baseline and reactor neutrino oscillation
experiments employ a two- or multi-detector configuration. In the
accelerator long baseline experiment, a “near” detector measures
non-oscillated neutrino flux. In the two- or multi-baseline reactor
experiments, even a near detector measures the neutrino flux with
oscillations developed to some extent. However, comparing the
quantities measured with different baselines, it is possible to validate
the reactor flux model and measure the oscillation parameters at the
same time, or to make an analysis with minimal dependence on flux
models.

14.6.1. Standard solar model predictions of the solar neu-

trino fluxes :

Observation of solar neutrinos directly addresses the theory of
stellar structure and evolution, which is the basis of the standard
solar model (SSM). The Sun, as a well-defined neutrino source, also
provides an important opportunities to investigate neutrino oscillations
including matter effects, because of the wide range of matter density
and the great distance from the Sun to the Earth.

The solar neutrinos are produced by some of the fusion reactions in
the pp chain or CNO cycle. The combined effect of these reactions is
written as

4p → 4He + 2e+ + 2νe. (14.22)

Table 14.2: Neutrino-producing reactions in the Sun (first
column) and their abbreviations (second column). The neutrino
fluxes predicted by the BPS08(GS) model [100] are listed in the
third column.

Reaction Abbr. Flux (cm−2 s−1)

pp → d e+ ν pp 5.97(1 ± 0.006)× 1010

pe−p → d ν pep 1.41(1 ± 0.011)× 108

3He p → 4He e+ν hep 7.90(1 ± 0.15)× 103

7Be e− → 7Li ν + (γ) 7Be 5.07(1 ± 0.06)× 109

8B → 8Be∗ e+ν 8B 5.94(1 ± 0.11)× 106

13N → 13C e+ν 13N 2.88(1 ± 0.15)× 108

15O → 15N e+ν 15O 2.15(1+0.17
−0.16) × 108

17F → 17O e+ν 17F 5.82(1+0.19
−0.17) × 106

Positrons annihilate with electrons. Therefore, when considering the
solar thermal energy generation, a relevant expression is

4p + 2e− → 4He + 2νe + 26.73 MeV − Eν , (14.23)

where Eν represents the energy taken away by neutrinos, the average
value being 〈Eν〉 ∼ 0.6 MeV. There have been efforts to calculate solar
neutrino fluxes from these reactions on the basis of SSM. A variety
of input information is needed in the evolutionary calculations. The
most elaborate SSM calculations have been developed by Bahcall and
his collaborators, who define their SSM as the solar model which is

Figure 14.2: The solar neutrino spectrum predicted by the
BPS08(GS) standard solar model [100]. The neutrino fluxes
are given in units of cm−2s−1MeV−1 for continuous spectra
and cm−2s−1 for line spectra. The numbers associated with
the neutrino sources show theoretical errors of the fluxes. This
figure is taken from Aldo Serenelli’s web site, http://www.mpa-
garching.mpg.de/~aldos/.

constructed with the best available physics and input data. Therefore,
their SSM calculations have been rather frequently updated. SSM’s
labelled as BS05(OP) [98], BSB06(GS) and BSB06(AGS) [99], and
BPS08(GS) and BPS08(AGS) [100] represent some of the relatively
recent model calculations. Here, “OP” means that newly calculated
radiative opacities from the “Opacity Project” are used. The later
models are also calculated with OP opacities. “GS” and “AGS” refer
to old and new determinations of solar abundances of heavy elements.
There are significant differences between the old, higher heavy element
abundances (GS) and the new, lower heavy element abundances
(AGS). The models with GS are consistent with helioseismological
data, but the models with AGS are not.

The prediction of the BPS08(GS) model for the fluxes from
neutrino-producing reactions is given in Table 14.2. Fig. 14.2 shows
the solar-neutrino spectra calculated with the BPS08(GS) model.
Here we note that in Ref. 101 the authors point out that electron
capture on 13N, 15O, and 17F produces line spectra of neutrinos,
which have not been considered in the SSM calculations quoted above.

In 2011, a new SSM calculations [102] have been presented by A.M.
Serenelli, W.C. Haxton, and C. Peña-Garay, by adopting the newly
analyzed nuclear fusion cross sections. Their high metalicity SSM is
labelled as SHP11(GS). For the same solar abundances as used in
Ref. 98 and Ref. 99, the most significant change is a decrease of 8B
flux by ∼ 5%.

14.6.2. Atmospheric neutrino fluxes :

Atmospheric neutrinos are produced by the decay of π and K
mesons produced in the nuclear interactions of the primary component
of cosmic rays in the atmosphere ((A) in Table 14.3). The primary
cosmic ray components above 2 GeV/nucleon are protons (∼ 95%),
helium nuclei (∼ 4.5%), and heavier nuclei. For neutrino producing
hadronic interactions, a nucleus can be simply regarded as a sum of
individual nucleons at high energies. Pions are dominantly produced in
these interactions, and they predominantly decay according to (B1) in
Table 14.3, followed by muon decay (E) in Table 14.3. The interactions
in massive underground detectors of atmospheric neutrinos provide
a means of studying neutrino oscillations because of the large range
of distances traveled by these neutrinos (∼10 to 1.27 × 104 km) to
reach a detector on Earth and relatively well-understood atmospheric
neutrino fluxes.

Calculation of the atmospheric neutrino fluxes requires knowledge
of the primary cosmic-ray fluxes and composition, and the hadronic
interactions. Atmospheric neutrinos with energy of ∼a few GeV are
mostly produced by primary cosmic rays with energy of ∼100 GeV.
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Table 14.3: Reactions and decays relevant to atmospheric
neutrino and accelerator neutrino production. The first column
shows the index of the reaction or decay, and the second column
shows the reaction or decay channel. The third column shows
the branching ratio [103]. (For KL decay, sum of the branching
ratios to charge conjugate modes is shown).

Reaction/Decay Branching ratio (%)

(A) p (n) + A → π±X, K±X, KLX

(B1) π± → µ± + νµ (ν̄µ) 99.9877

(B2) → e± + νe (ν̄e) 0.0123

(C1) K± → µ± + νµ (ν̄µ) 63.55

(C2) → π0 + µ± + νµ (ν̄µ) 3.353

(C3) → π0 + e± + νe (ν̄e) 5.07

(D1) KL → π± + µ∓ + ν̄µ (νµ) 27.04

(D2) → π± + e∓ + ν̄e (νe) 40.55

(E) µ± → e± + ν̄µ(νµ) + νe (ν̄e) 100

For primary cosmic-rays in this energy range, a flux modulation due
to the solar activity and the effects of Earth’s geomagnetic fields
should be taken into account. In particular, the atmospheric neutrino
fluxes in the low-energy region depend on the location on the Earth.
Detailed calculations of the atmospheric neutrino fluxes are performed
by Honda et al. [104,105], Barr et al. [106], and Battistoni et al. [107],
with a typical uncertainty of 10 ∼ 20%.
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Figure 14.3: Neutrino flavour ratios calculated with the all-
direction and one-year averaged atmospheric neutrino fluxes at
Kamioka. This figure is provided by M. Honda, and is a part of
Fig. 5 in Ref. [105], where similar plots at the INO site, the
South Pole, and the Pyhäsalmi mine are also shown.

From the dominant production mechanism of the atmospheric
neutrinos, we can readily understand some relations that exist between
the atmospheric νµ, ν̄µ, νe, and ν̄e fluxes without detailed calculations.
For the ratio of the fluxes of (νµ + ν̄µ) and (νe + ν̄e) at low energies

(. 1 GeV), where almost all produced muons decay before reaching
the ground, we have approximately (νµ + ν̄µ)/(νe + ν̄e) ≈ 2. As the
neutrino energy increases, this ratio increases because an increasing
fraction of muons do not decay before reaching the ground and being
absorbed. We also have νµ/ν̄µ ≈ 1 at low energies. Hoever, as the
νe/ν̄e ratio reflects the parent π+/π− ratio, it is expected to be slightly
greater than 1 because the dominance of protons in the primary
component of the cosmic rays means a π+ excess in the secondary
component. Fig. 14.3 shows these ratios at the Super-Kamiokande
site, averaged over all directions and over a year, as a function of
neutrino energy.

Another important feature of the atmospheric neutrino fluxes is
that the zenith angle distribution for each neutrino type is up-down
symmetric above ∼ 1 GeV, if there are no neutrino oscillations. As
the neutrino energy becomes lower than ∼ 1 GeV, however, zenith
angle distributions start to show deviations from up-down symmetric
shapes due to the geomagnetic effects on primary cosmic rays.

14.6.3. Accelerator neutrino beams :

Conventional method to produce neutrino beams at a high-energy
proton accelerator facility is to guide an intense proton beam onto
a nuclear target of 1 ∼ 2 interaction lengths. For a comprehensive
description of the accelerator neutrino beams, see Ref. 108. From the
pA collisions, mesons are produced and their decays then produce
neutrinos (see Table 14.3). In the high-energy collisions, pions are
dominantly produced, with kaons produced at an order of 10% of
the pion production rate. Therefore, the dominant component of the
accelerator neutrinos is the muon neutrino or muon antineutrino.
Mesons decay in the free space called a decay pipe or decay tunnel.
This free space is evacuated or filled with helium gas.

To increase the neutrino flux, it is necessary to focus the secondary
pions. Modern neutrino oscillation experiments at high-energy
accelerators exploit two or three magnetic horns as an approximately
point-to-parallel focusing system for this purpose. A magnetic horn is
a high-current pulse magnet with toroidal magnetic fields. Therefore,
the use of horns also means sign selection of the secondary hadrons
that are focused, which in turn means muon neutrino sign selection.
Even so, a fraction of wrong sign muon neutrinos contaminate the
beam. Also, there is a small νe and ν̄e contamination from kaon,
pion, and muon decay ((C3), (B2), and (E) in Table 14.3). Precise
knowledge of νe and ν̄e components in the neutrino flux is important
for the νµ → νe (ν̄µ → ν̄e) appearance measurement.

With a given neutrino beam line configuration, the expected
neutrino fluxes are calculated by using a simulation program tuned
to that configuration. Re-interactions of the primary protons in the
target and interactions of the secondary particles in the target and
in the material outside the target have to be taken into account. An
important input is hadron production cross sections from pA collisions
for relevant target materials over wide energy and angular regions.
For this purpose, some dedicated experiments such as SPY [109],
HARP [110], MIPP [111], and NA61/SHINE [112] have been
conducted. The data are fit to specific hadron production models to
determine the model parameters.

The predicted neutrino fluxes have to be validated in some way.
Modern long baseline neutrino oscillation experiments often have
a two-detector configuration, with a near detector to measure an
unoscillated neutrino flux immediately after the production. In the
single detector experiment, the muon-neutrino flux model is calibrated
by using a muon monitor which is located behind the beam dump.
Since low-energy muons are absorbed in the beam dump, it is not
possible to calibrate the low-energy part of the neutrino spectrum.
Even in the two-detector experiments, it should be noted that the
near detector does not see the same neutrino flux as the far detector
sees, because the neutrino source looks like a line source for the near
detector, while it looks as a point source for the far detector.

The energy Eν of the neutrino emitted at an angle θ with respect
to the parent pion direction is given by

Eν =
m2

π − m2
µ

2(Eπ − pπcosθ)
, (14.24)
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where Eπ and pπ are the energy and momentum of the parent pion,
mπ is the charged pion mass, mµ is the muon mass. Suppose an ideal
case that the pions are completely focused in parallel. Then, for θ = 0,
it can be seen from the above equation that Eν is proportional to Eπ

for Eπ ≫ mπ. As the secondary pions have a wide energy spectrum,
a 0 degree neutrino beam also has a wide spectrum and is called a
“wide-band beam”.

For a given angle θ, differentiating the above expression with
respect to Eπ, it can be shown that Eν takes a maximum value
Emax

ν = (m2
π − m2

µ)/(2E◦
πsin2θ) at E◦

π = mπ/sinθ. Numerical
calculations show that a wide range of Eπ, in particular that of
Eπ ≥ E◦

π, contributes to a narrow range of Eν ≤ Emax
ν [113]. It

is expected, therefore, that a narrow neutrino spectrum peaked at
around Emax

ν can be obtained by the off-axis beam. Fig. 14.4 shows
an example of the simulated muon neutrino fluxes at θ = 0 degree
and 2.0◦ and 2.5◦ off-axis configurations corresponding to the T2K
experiment [114]. As expected, an off-axis beam has a narrower
spectrum than the 0 degree wide-band beam. Therefore, an off-axis
beam is called a “narrow-band beam”. This idea of an off-axis beam
was proposed for BNL E889 experiment [113]. It has been employed
for the T2K experiment for the first time. Currently, it is also used
in the NOνA experiment [115]. For the off-axis beam, obviously the
effect of a line neutrino source, namely the difference between the
neutrino fluxes measured at the near and far detectors, is enhanced,
and it has to be properly taken into account.

Figure 14.4: Muon neutrino survival probability at 295 km and
neutrino fluxes for different off-axis angles. This figure is taken
from Ref. 114.

14.6.4. Reactor neutrino fluxes :

In nuclear reactors, power is generated mainly by nuclear fission
of four heavy isotopes, 235U, 238U, 239Pu, and 241Pu. These isotopes
account for more than 99% of fissions in the reactor core. β-decays
of fission products produce almost pure ν̄e flux. The rate of νe

production is less than 10−5 of the rate of ν̄e production [116].
The thermal power outputs of nuclear power reactors are usually
quoted in thermal GW, GWth. On the average, ∼ 200 MeV and 6
electron antineutrinos are emitted per fission. With 1 GWth output,
∼ 2×1020 electron antineutrinos are produced per second and emitted
isotropically. Typical power plant light-water reactors have thermal
power outputs of order 3 GWth.

The total ν̄e flux S(Eν) emitted from a reactor is given as a sum of
contributions from the four fissioning isotopes, S(Eν) =

∑

j fjSj(Eν),

where fj is the fission rate and Sj(Eν) is the ν̄e flux per fission, of
each contributing isotope. The fission rates, and therefore S(Eν), are

dependent on the thermal power output Wth from the reactor as a
function of time. Using Wth and the total fission rate F =

∑

j fj ,

S(Eν) is rewritten as [117]

S(Eν) =
Wth

∑

j(fj/F )Ej

∑

j

(fj/F )Sj(Eν), (14.25)

where Ej is the energy release per fission by each isotope [118]. The
thermal power output and fission fractions fj/F are provided by the
power plant companies.
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Figure 14.5: Assuming a 12-ton fiducial mass detector located
0.8 km from 12-GWth power reactor, ν̄e interaction spectrum in
the detector (curve (a)) and reactor ν̄e flux at the detector (curve
(b)) are shown as a function of energy. Inverse β-decay cross
section (curve (c)) is also shown. This figure is from Ref. 129.

For Sj(Eν), a “standard” method used by most of the reactor
neutrino oscillation experiments is the one called the “conversion”
method [51,119,120], which uses the measured cumulative β− spectra
at ILL for 235U, 239Pu, and 241Pu [121,122,123]. To estimate
the ν̄e spectrum for each isotope, the corresponding β− spectrum
is approximated by the superposition of a set of hypothetical
allowed branches. For 238U, theoretical calculations [124] have been
used. Recently, however, the cumulative β− spectrum for 238U
has been measured at the scientific neutron source FRM II in
Garching, Germany, and the converted ν̄e spectrum is given for
2.875 < Eν < 7.625 MeV [125]. It is used in the recent neutrino
oscillation analysis of the Double Chooz experiment [40].

While the conversion of the β spectrum to the ν̄e spectrum is trivial
for a single β-decay branch, fission of the four main fuel isotopes
involve > 1000 daughter isotopes and > 6000 individual β-decay
branches (approximately six thousands), thus causing rather large
uncertainties in both the normalization and shape of the reactor ν̄e

flux. Recent detailed reactor ν̄e calculations [119,120] show a few
% larger fluxes with respect to the fluxes calculated in Ref. 122.
The antineutrino fluxes measured by previous short baseline reactor
neutrino oscillation experiments are generally in agreement with the
latter calculation. The recent reactor antineutrino flux measurement
at Daya Bay [126] is also consistent with these previous measurements.
This discrepancy is called the “reactor neutrino anomaly” and hints
to possible oscillations involving sterile neutrinos (see Section 14.13).
For the shape of the reactor ν̄e flux, all the current reactor neutrino
oscillation experiments, Daya Bay [126], RENO [39,127], and Double
Chooz [40], observe an excess of ν̄e flux in the energy region from 4 to
6 MeV, relative to current predictions. The excess rate is observed to
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be time independent and correlated with the reactor power. Because
of this, an unknown background is unlikely for its explanation. There
are certain suggestions on the possible origins of this excess, but this
problem is not completely solved yet [128].

Electron antineutrinos from reactors are detected via the inverse
β-decay ν̄e + p → e+ + n. This reaction has a threshold of 1.8 MeV,
so that the ν̄e flux above this threshold is detected. The event rate
as a function of ν̄e energy Eν is proportional to σ(Eν)S(Eν), where
σ(Eν) is the cross section of the inverse β-decay. Fig. 14.5 shows
σ(Eν). This figure also shows the flux and event rate for a particular
detector configuration (see caption to this figure) in a reactor neutrino
oscillation experiment.

14.7. Neutrino oscillations in vacuum

Neutrino oscillations are a quantum mechanical consequence of the
existence of nonzero neutrino masses and neutrino (lepton) mixing,
Eq. (14.1), and of the relatively small splitting between the neutrino
masses. The neutrino mixing and oscillation phenomena are analogous
to the K0 − K̄0 and B0 − B̄0 mixing and oscillations.

In what follows we will present a simplified version of the derivation
of the expressions for the neutrino and antineutrino oscillation
probabilities. The complete derivation would require the use of the
wave packet formalism for the evolution of the massive neutrino states,
or, alternatively, of the field-theoretical approach, in which one takes
into account the processes of production, propagation and detection of
neutrinos [130].

Suppose the flavour neutrino νl is produced in a CC weak
interaction process and after a time T it is observed by a neutrino
detector, located at a distance L from the neutrino source and capable
of detecting also neutrinos νl′ , l′ 6= l. We will consider the evolution
of the neutrino state |νl〉 in the frame in which the detector is at rest
(laboratory frame). The oscillation probability, as we will see, is a
Lorentz invariant quantity. If lepton mixing, Eq. (14.1), takes place
and the masses mj of all neutrinos νj are sufficiently small, the state
of the neutrino νl, |νl〉, will be a coherent superposition of the states
|νj〉 of neutrinos νj :

|νl〉 =
∑

j

U∗
lj |νj ; p̃j〉, l = e, µ, τ , (14.26)

where U is the neutrino mixing matrix and p̃j is the 4-momentum of
νj [131].

We will consider the case of relativistic neutrinos νj , which
corresponds to the conditions in both past and currently planned
future neutrino oscillation experiments [133]. In this case the state
|νj ; p̃j〉 practically coincides with the helicity (-1) state |νj , L; p̃j〉 of
the neutrino νj , the admixture of the helicity (+1) state |νj , R; p̃j〉
in |νj ; p̃j〉 being suppressed due to the factor ∼ mj/Ej , where Ej is
the energy of νj . If νj are Majorana particles, νj ≡ χj , due to the
presence of the helicity (+1) state |χj , R; p̃j〉 in |χj ; p̃j〉, the neutrino
νl can produce an l+ (instead of l−) when it interacts, e.g., with
nucleons. The cross section of such a |∆Ll| = 2 process is suppressed
by the factor (mj/Ej)

2, which renders the process unobservable at
present.

If the number n of massive neutrinos νj is bigger than 3 due to
a mixing between the active flavour and sterile neutrinos, one will
have additional relations similar to that in Eq. (14.26) for the state
vectors of the (predominantly LH) sterile antineutrinos. In the case of
just one RH sterile neutrino field νsR(x), for instance, we will have in
addition to Eq. (14.26):

|ν̄sL〉 =

4
∑

j=1

U∗
sj |νj ; p̃j〉 ∼=

4
∑

j=1

U∗
sj |νj , L; p̃j〉 , (14.27)

where the neutrino mixing matrix U is now a 4 × 4 unitary matrix.

For the state vector of RH flavour antineutrino ν̄l, produced in a
CC weak interaction process we similarly get:

|ν̄l〉 =
∑

j

Ulj |ν̄j ; p̃j〉 ∼=
∑

j=1

Ulj |ν̄j , R; p̃j〉, l = e, µ, τ , (14.28)

where |ν̄j , R; p̃j〉 is the helicity (+1) state of the antineutrino ν̄j if νj are
Dirac fermions, or the helicity (+1) state of the neutrino νj ≡ ν̄j ≡ χj

if the massive neutrinos are Majorana particles. Thus, in the latter
case we have in Eq. (14.28): |ν̄j ; p̃j〉 ∼= |νj , R; p̃j〉 ≡ |χj , R; p̃j〉. The
presence of the matrix U in Eq. (14.28) (and not of U∗) follows
directly from Eq. (14.1).

We will assume in what follows that the spectrum of masses of
neutrinos is not degenerate: mj 6= mk, j 6= k. Then the states |νj ; p̃j〉
in the linear superposition in the r.h.s. of Eq. (14.26) will have, in
general, different energies and different momenta, independently of
whether they are produced in a decay or interaction process: p̃j 6= p̃k,

or Ej 6= Ek, pj 6= pk, j 6= k, where Ej =
√

p2
j + m2

j , pj ≡ |pj |.
The deviations of Ej and pj from the values for a massless neutrino

E and p = E are proportional to m2
j/E0, E0 being a characteristic

energy of the process, and are extremely small. In the case of π+ →
µ+ + νµ decay at rest, for instance, we have: Ej = E + m2

j/(2mπ),

pj = E − ξm2
j/(2E), where E = (mπ/2)(1 − m2

µ/m2
π) ∼= 30 MeV,

ξ = (1 + m2
µ/m2

π)/2 ∼= 0.8, and mµ and mπ are the µ+ and π+

masses. Taking mj = 1 eV we find: Ej
∼= E (1 + 1.2 × 10−16) and

pj
∼= E (1 − 4.4 × 10−16).

Given the uncorrelated uncertainties δE and δp in the knowledge
of the neutrino energy E and momentum p, the quantum mechanical
condition that neutrinos with definite mass ν1, ν2, ..., whose states are
part of the linear superposition of states corresponding, for example,
to |νl〉 in Eq. (14.26), are emitted coherently when |νl is produced in
some weak interaction process, has the form [134]:

δm2 =
√

(2EδE)2 + (2pδp)2 > max(|m2
i − m2

j |), i, j = 1, 2, ..., n,

(14.29)
where δm2 is the uncertainty in the square of the neutrino mass due
to the uncertainties in the energy and momentum of the neutrino.
Equation Eq. (14.29) follows from the well known relativistic relation
E2 = p2 + m2. In the context under discussion, δE and δp should be
understood as the intrinsic quantum mechanical uncertainties in the
neutrino energy and momentum for the given neutrino production and
detection processes, i.e., δE and δp are the minimal uncertainties with
which E and p can be determined in the considered production and
detection processes. Then δm2 is the quantum mechanical uncertainty
of the inferred squared neutrino mass.

Suppose that the neutrinos are observed via a CC weak interaction
process and that in the detector’s rest frame they are detected after
time T after emission, after traveling a distance L. Then the amplitude
of the probability that neutrino νl′ will be observed if neutrino νl was
produced by the neutrino source can be written as [130,132,135]:

A(νl → νl′) =
∑

j

Ul′j Dj U
†
jl , l, l′ = e, µ, τ , (14.30)

where Dj = Dj(pj ; L, T ) describes the propagation of νj between the

source and the detector, U†
jl and Ul′j are the amplitudes to find νj in

the initial and in the final flavour neutrino state, respectively. It follows
from relativistic Quantum Mechanics considerations that [130,132]

Dj ≡ Dj(p̃j ; L, T ) = e−ip̃j (xf−x0) = e−i(EjT−pjL) ,

pj ≡ |pj | , (14.31)

where [136] x0 and xf are the space-time coordinates of the points of
neutrino production and detection, T = (tf − t0) and L = k(xf − x0),
k being the unit vector in the direction of neutrino momentum,
pj = kpj. What is relevant for the calculation of the probability

P (νl → νl′) = |A(νl → νl′)|2 is the interference factor DjD
∗
k which

depends on the phase

δϕjk = (Ej − Ek)T − (pj − pk)L = (Ej − Ek)

[

T − Ej + Ek

pj + pk
L

]

+
m2

j − m2
k

pj + pk
L . (14.32)
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Some authors [137] have suggested that the distance traveled
by the neutrinos L and the time interval T are related by T =
(Ej +Ek)L/(pj +pk) = L/v̄, v̄ = (Ej/(Ej +Ek))vj +(Ek/(Ej +Ek))vk
being the “average” velocity of νj and νk, where vj,k = pj,k/Ej,k.
In this case the first term in the r.h.s. of Eq. (14.32) vanishes. The
indicated relation has not emerged so far from any dynamical wave
packet calculations. We arrive at the same conclusion concerning
the term under discussion in Eq. (14.32) if one assumes [138] that
Ej = Ek = E0. Finally, it was proposed in Ref. 135 and Ref. 139 that
the states of νj and ν̄j in Eq. (14.26) and Eq. (14.28) have the same
3-momentum, pj = pk = p. Under this condition the first term in the
r.h.s. of Eq. (14.32) is negligible, being suppressed by the additional
factor (m2

j + m2
k)/p2 since for relativistic neutrinos L = T up to terms

∼ m2
j,k/p2. We arrive at the same conclusion if Ej 6= Ek, pj 6= pk,

j 6= k, and we take into account that neutrinos are relativistic and
therefore, up to corrections ∼ m2

j,k/E2
j,k, we have L ∼= T (see, e.g., C.

Giunti quoted in Ref. 130).

Although the cases considered above are physically quite different,
they lead to the same result for the phase difference δϕjk. Thus, we
have:

δϕjk
∼=

m2
j − m2

k

2p
L = 2π

L

Lv
jk

sgn(m2
j − m2

k) , (14.33)

where p = (pj + pk)/2 and

Lv
jk = 4π

p

|∆m2
jk|

∼= 2.48 m
p[MeV ]

|∆m2
jk|[eV 2]

(14.34)

is the neutrino oscillation length associated with ∆m2
jk. We can safely

neglect the dependence of pj and pk on the masses mj and mk and
consider p to be the zero neutrino mass momentum, p = E. The phase
difference δϕjk, Eq. (14.33), is Lorentz-invariant.

Eq. (14.31) corresponds to a plane-wave description of the
propagation of neutrinos νj . It accounts only for the movement of
the center of the wave packet describing νj . In the wave packet
treatment of the problem, the interference between the states of νj

and νk is subject to a number of conditions [130], the localization
condition and the condition of overlapping of the wave packets of
νj and νk at the detection point being the most important. For
relativistic neutrinos, the localisation condition in space, for instance,
reads: σxP , σxD < Lv

jk/(2π), σxP (D) being the spatial width of the

production (detection) wave packet. Thus, the interference will not
be suppressed if the spatial width of the neutrino wave packets
determined by the neutrino production and detection processes is
smaller than the corresponding oscillation length in vacuum. In order
for the interference to be nonzero, the wave packets describing νj and
νk should also overlap in the point of neutrino detection. This requires
that the spatial separation between the two wave packets at the point
of neutrinos detection, caused by the two wave packets having different
group velocities vj 6= vk, satisfies |(vj − vk)T | ≪ max(σxP , σxD). If
the interval of time T is not measured, T in the preceding condition
must be replaced by the distance L between the neutrino source and
the detector (for further discussion see, e.g., Refs. [130,132,135]) .

For the νl → νl′ and ν̄l → ν̄l′ oscillation probabilities we get from
Eq. (14.30), Eq. (14.31), and Eq. (14.33):

P (νl → νl′) =
∑

j

|Ul′j |2 |Ulj |2 + 2
∑

j>k

|Ul′j U∗
lj Ulk U∗

l′k|

cos(
∆m2

jk

2p
L − φl′l;jk) , (14.35)

P (ν̄l → ν̄l′) =
∑

j

|Ul′j |2 |Ulj |2 + 2
∑

j>k

|Ul′j U∗
lj Ulk U∗

l′k|

cos(
∆m2

jk

2p
L + φl′l;jk) , (14.36)

where l, l′ = e, µ, τ and φl′l;jk = arg
(

Ul′j U∗
lj Ulk U∗

l′k

)

. It follows

from Eq. (14.30) - Eq. (14.32) that in order for neutrino oscillations

to occur, at least two neutrinos νj should not be degenerate in mass
and lepton mixing should take place, U 6= 1. The neutrino oscillations
effects can be large if we have

|∆m2
jk|

2p
L = 2π

L

Lv
jk

& 1 , j 6= k . (14.37)

at least for one ∆m2
jk. This condition has a simple physical

interpretation: the neutrino oscillation length Lv
jk should be of the

order of, or smaller, than source-detector distance L, otherwise the
oscillations will not have time to develop before neutrinos reach the
detector.

We see from Eq. (14.35) and Eq. (14.36) that P (νl → νl′) =
P (ν̄l′ → ν̄l), l, l′ = e, µ, τ . This is a consequence of CPT invariance.
The conditions of CP and T invariance read [48,61,62]: P (νl →
νl′) = P (ν̄l → ν̄l′), l, l′ = e, µ, τ (CP), P (νl → νl′) = P (νl′ → νl),
P (ν̄l → ν̄l′) = P (ν̄l′ → ν̄l), l, l′ = e, µ, τ (T). In the case of CPT
invariance, which we will assume to hold throughout this article,
we get for the survival probabilities: P (νl → νl) = P (ν̄l → ν̄l),
l, l′ = e, µ, τ . Thus, the study of the “disappearance” of νl and ν̄l,
caused by oscillations in vacuum, cannot be used to test whether
CP invariance holds in the lepton sector. It follows from Eq. (14.35)
and Eq. (14.36) that we can have CP violation effects in neutrino
oscillations only if φl′l;jk 6= πq, q = 0, 1, 2, i.e., if Ul′j U∗

lj Ulk U∗
l′k

, and

therefore U itself, is not real. As a measure of CP and T violation in
neutrino oscillations we can consider the asymmetries:

A
(l′l)
CP ≡ P (νl → νl′)−P (ν̄l → ν̄l′) , A

(l′l)
T ≡ P (νl → νl′)−P (νl′ → νl) .

(14.38)

CPT invariance implies: A
(l′l)
CP = −A

(ll′)
CP , A

(l′l)
T = P (ν̄l′ → ν̄l)−P (ν̄l →

ν̄l′) = A
(l′l)
CP . It follows further directly from Eq. (14.35) and

Eq. (14.36) that

A
(l′l)
CP = 4

∑

j>k

Im
(

Ul′j U∗
lj Ulk U∗

l′k

)

sin
∆m2

jk

2p
L , l, l′ = e, µ, τ .

(14.39)

Eq. (14.2) and Eq. (14.35) - Eq. (14.36) imply that P (νl → νl′) and
P (ν̄l → ν̄l′) do not depend on the Majorana CP violation phases in the
neutrino mixing matrix U [48]. Thus, the experiments investigating
the νl → νl′ and ν̄l → ν̄l′ oscillations, l, l′ = e, µ, τ , cannot provide
information on the nature - Dirac or Majorana, of massive neutrinos.
The same conclusions hold also when the νl → νl′ and ν̄l → ν̄l′

oscillations take place in matter [65]. In the case of νl ↔ νl′ and
ν̄l ↔ ν̄l′ oscillations in vacuum, only the Dirac phase(s) in U can cause
CP violating effects leading to P (νl → νl′) 6= P (ν̄l → ν̄l′), l 6= l′.

In the case of 3-neutrino mixing all different Im(Ul′jU
∗
ljUlkU∗

l′k
) 6= 0,

l′ 6= l = e, µ, τ , j 6= k = 1, 2, 3, coincide up to a sign as a consequence
of the unitarity of U . Therefore one has [63]:

A
(µe)
CP = −A

(τe)
CP = A

(τµ)
CP =

4 JCP

(

sin
∆m2

32

2p
L + sin

∆m2
21

2p
L + sin

∆m2
13

2p
L

)

,(14.40)

where
JCP = Im

(

Uµ3 U∗
e3 Ue2 U∗

µ2

)

, (14.41)

is the “rephasing invariant” associated with the Dirac CP violation
phase in U . It is analogous to the rephasing invariant associated with
the Dirac CP violating phase in the CKM quark mixing matrix [64].
It is clear from Eq. (14.40) that JCP controls the magnitude of CP
violation effects in neutrino oscillations in the case of 3-neutrino
mixing. If sin(∆m2

ij/(2p)L) ∼= 0 for (ij) = (32), or (21), or (13),

we get A
(l′l)
CP

∼= 0. Thus, if as a consequence of the production,
propagation and/or detection of neutrinos, effectively oscillations due
only to one non-zero neutrino mass squared difference take place, the
CP violating effects will be strongly suppressed. In particular, we get

A
(l′l)
CP = 0, unless all three ∆m2

ij 6= 0, (ij) = (32), (21), (13).
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If the number of massive neutrinos n is equal to the number
of neutrino flavours, n = 3, one has as a consequence of the
unitarity of the neutrino mixing matrix:

∑

l′=e,µ,τ P (νl → νl′) = 1,

l = e, µ, τ ,
∑

l=e,µ,τ P (νl → νl′) = 1, l′ = e, µ, τ . Similar “probability

conservation” equations hold for P (ν̄l → ν̄l′). If, however, the number
of light massive neutrinos is bigger than the number of flavour
neutrinos as a consequence, e.g., of a flavour neutrino - sterile neutrino
mixing, we would have

∑

l′=e,µ,τ P (νl → νl′) = 1 − P (νl → ν̄sL),
l = e, µ, τ , where we have assumed the existence of just one
sterile neutrino. Obviously, in this case

∑

l′=e,µ,τ P (νl → νl′) < 1 if

P (νl → ν̄sL) 6= 0. The former inequality is used in the searches for
oscillations between active and sterile neutrinos.

Consider next neutrino oscillations in the case of one neutrino mass
squared difference “dominance”: suppose that |∆m2

j1| ≪ |∆m2
n1|,

j = 2, ..., (n − 1), |∆m2
n1|L/(2p)&1 and |∆m2

j1|L/(2p) ≪ 1, so that

exp[i(∆m2
j1 L/(2p)] ∼= 1, j = 2, ..., (n − 1). Under these conditions we

obtain from Eq. (14.35) and Eq. (14.36), keeping only the oscillating
terms involving ∆m2

n1:

P (νl(l′) → νl′(l))
∼= P (ν̄l(l′) → ν̄l′(l))

∼= δll′ − 2|Uln|2
[

δll′ − |Ul′n|2
]

(1 − cos
∆m2

n1

2p
L) . (14.42)

It follows from the neutrino oscillation data discussed in Section
14.2 that in the case of 3-neutrino mixing, one of the two independent
neutrino mass squared differences, ∆m2

21 > 0, is much smaller than
the absolute value of the second one, |∆m2

31|: ∆m2
21 ≪ |∆m2

31|. The
data, as we have seen, imply:

∆m2
21

∼= 7.4 × 10−5 eV2 ,

|∆m2
31| ∼= 2.5 × 10−3 eV2 ,

∆m2
21/|∆m2

31| ∼= 0.03 . (14.43)

Neglecting the effects due to ∆m2
21 we get from Eq. (14.42) by setting

n = 3 and choosing, e.g., i) l = l′ = e and ii) l = e(µ), l′ = µ(e) [140]:

P (νe → νe) = P (ν̄e → ν̄e) ∼= 1−2|Ue3|2
(

1 − |Ue3|2
)

(

1 − cos
∆m2

31

2p
L

)

,

(14.44)

P (νµ(e) → νe(µ))
∼= 2 |Uµ3|2 |Ue3|2

(

1 − cos
∆m2

31

2p
L

)

=
|Uµ3|2

1 − |Ue3|2
P 2ν

(

|Ue3|2, m2
31

)

, (14.45)

and P (ν̄µ(e) → ν̄e(µ)) = P (νµ(e) → νe(µ)). Here P 2ν
(

|Ue3|2, m2
31

)

is

the probability of the 2-neutrino transition νe → (s23νµ + c23ντ ) due
to ∆m2

31 and a mixing with angle θ13, where

sin2 θ13 = |Ue3|2, s2
23 ≡ sin2 θ23 =

|Uµ3|2
1 − |Ue3|2

,

c223 ≡ cos2 θ23 =
|Uτ3|2

1 − |Ue3|2
, (14.46)

i.e., θ13 and θ23 are the angles of the standard parametrization of the
neutrino mixing matrix. Eq. (14.44) describes with a relatively high
precision the oscillations of reactor ν̄e on a distance L ∼ 1 km in the
case of 3-neutrino mixing. It was used in the analysis of the data of
the Chooz [51], Double Chooz [30], Daya Bay [31] and RENO [32]
experiments. Eq. (14.42) with n = 3 and l = l′ = µ describes with
a relatively good precision the effects of “disappearance” due to
oscillations of the accelerator νµ, seen in the K2K [19] MINOS [20,21]
and T2K [22,23] experiments. The νµ → ντ transitions due to the
oscillations, which the OPERA experiment [141,142] is observing, can
be described by Eq. (14.42) with n = 3 and l = µ, l′ = τ . Finally, the
probability Eq. (14.45) describes with a good precision the νµ → νe

and ν̄µ → ν̄e oscillations under the conditions of the K2K experiment.

In certain cases the dimensions of the neutrino source, ∆L, are
not negligible in comparison with the oscillation length. Similarly,

when analyzing neutrino oscillation data one has to include the
energy resolution of the detector, ∆E, etc. in the analysis. As can
be shown [46], if 2π∆L/Lv

jk ≫ 1, and/or 2π(L/Lv
jk)(∆E/E) ≫ 1,

the oscillating terms in the neutrino oscillation probabilities will be
strongly suppressed. In this case (as well as in the case of sufficiently
large separation of the νj and νk wave packets at the detection point)
the interference terms in P (νl → νl′) and P (ν̄l′ → ν̄l) will be negligibly
small and the neutrino flavour conversion will be determined by the
average probabilities:

P̄ (νl → νl′) = P̄ (ν̄l → ν̄l′)
∼=

∑

j

|Ul′j |2 |Ulj |2 . (14.47)

Suppose next that in the case of 3-neutrino mixing, |∆m2
21|L/(2p) ∼ 1,

while at the same time |∆m2
31(32)|L/(2p) ≫ 1, and the oscillations

due to ∆m2
31 and ∆m2

32 are strongly suppressed (averaged out) due
to integration over the region of neutrino production, the energy
resolution function, etc. In this case we get for the νe and ν̄e survival
probabilities:

P (νe → νe) = P (ν̄e → ν̄e) ∼= |Ue3|4 +
(

1 − |Ue3|2
)2

P 2ν(νe → νe) ,

(14.48)

P 2ν(νe → νe) = P 2ν(ν̄e → ν̄e) ≡ P 2ν
ee (θ12, ∆m2

21)

= 1 − 1

2
sin2 2θ12

(

1 − cos
∆m2

21

2p
L

)

= 1 − sin2 2θ12 sin2
(

∆m2
21

4E
L

)

(14.49)

being the νe and ν̄e survival probability in the case of 2-neutrino
oscillations “driven” by the angle θ12 and ∆m2

21, with θ12 given by

cos2 θ12 =
|Ue1|2

1 − |Ue3|2
, sin2 θ12 =

|Ue2|2
1 − |Ue3|2

. (14.50)

Eq. (14.48) with P 2ν(ν̄e → ν̄e) given by Eq. (14.49) describes the
effects of neutrino oscillations of reactor ν̄e observed by the KamLAND
experiment.

E
ν
 in MeV

P
ee

 = 1 - sin22θ sin2 (∆m2L/4E
ν
)

baseline = 180 Km

P
e
e

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

Figure 14.6: The νe (ν̄e) survival probability P (νe → νe) =
P (ν̄e → ν̄e), Eq. (14.52), as a function of the neutrino energy for
L = 180 km, ∆m2 = 7.0 × 10−5 eV2 and sin2 2θ = 0.84 (from
Ref. 143).

The data of ν-oscillations experiments were often analyzed in the
past, and in certain cases new data are still analyzed at present,
assuming 2-neutrino mixing:

|νl〉 = |ν1〉 cos θ + |ν2〉 sin θ , |νx〉 = −|ν1〉 sin θ + |ν2〉 cos θ ,
(14.51)
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where θ is the neutrino mixing angle in vacuum and νx is another
flavour neutrino or sterile (anti-) neutrino, x = l′ 6= l or νx ≡ ν̄sL. In
this case we have [139]:

P 2ν(νl → νl) = 1 − 1

2
sin2 2θ

(

1 − cos 2π
L

Lv

)

= 1 − sin2 2θ

(

sin2 ∆m2

4E
L

)

,

P 2ν(νl → νx) = 1 − P 2ν(νl → νl) , (14.52)

where Lv = 4π E/∆m2 (p = E), ∆m2 = m2
2 − m2

1 > 0. Combining
the CPT invariance constraints with the probability conservation one
obtains: P (νl → νx) = P (ν̄l → ν̄x) = P (νx → νl) = P (ν̄x → ν̄l).
These equalities and Eq. (14.52) with l = µ and x = τ were used, for
instance, in the analysis of the Super-K atmospheric neutrino data [17],
in which the first compelling evidence for oscillations of neutrinos was
obtained. The probability P 2ν(νl → νx), Eq. (14.52), depends on two
factors: on (1 − cos 2πL/Lv), which exhibits oscillatory dependence
on the distance L and on the neutrino energy p = E (hence the
name “neutrino oscillations”), and on sin2 2θ, which determines the
amplitude of the oscillations. In order to have P 2ν(νl → νx) ∼= 1,
two conditions have to be fulfilled: one should have sin2 2θ ∼= 1 and
Lv . 2πL with cos 2πL/Lv ∼= −1. If Lv ≫ 2πL, the oscillations do
not have enough time to develop on the way to the neutrino detector
and P (νl → νx) ∼= 0, while P (νl → νl) ∼= 1. The preceding comments
are illustrated in Fig. 14.6 showing the dependence of the probability
P 2ν(νe → νe) = P 2ν(ν̄e → ν̄e) on the neutrino energy.

Table 14.4: Sensitivity of different oscillation experiments.

Source Type of ν E[MeV] L[km] min(∆m2)[eV2]

Reactor νe ∼ 1 1 ∼ 10−3

Reactor νe ∼ 1 100 ∼ 10−5

Accelerator νµ, νµ ∼ 103 1 ∼ 1

Accelerator νµ, νµ ∼ 103 1000 ∼ 10−3

Atmospheric ν’s νµ,e, νµ,e ∼ 103 104 ∼ 10−4

Sun νe ∼ 1 1.5 × 108 ∼ 10−11

A given experiment searching for neutrino oscillations is specified,
in particular, by the average energy of the neutrinos being studied, Ē,
and by the source-detector distance L. The requirement Lv

jk . 2πL

determines the minimal value of a generic neutrino mass squared
difference ∆m2 > 0, to which the experiment is sensitive (figure
of merit of the experiment): min(∆m2) ∼ 2Ē/L. Because of the
interference nature of neutrino oscillations, experiments can probe,
in general, rather small values of ∆m2 (see, e.g., Ref. 135). Values
of min(∆m2), characterizing qualitatively the sensitivity of different
experiments are given in Table 14.4. They correspond to the reactor
experiments Chooz, Daya Bay, RENO, Double Chooz (L ∼ 1
km) and KamLAND (L ∼ 100 km), to accelerator experiments
- past (L ∼ 1 km), and current (K2K, MINOS, OPERA, T2K,
NOνA [115]) , L ∼ (300 ÷ 1000) km), to the Super-Kamiokande,
MINOS and IceCube-DeepCore experiments studying atmospheric
neutrino oscillations, and to the solar neutrino experiments.

14.8. Matter effects in neutrino oscillations

The presence of matter can change drastically the pattern
of neutrino oscillations: neutrinos can interact with the particles
forming the matter. Accordingly, the Hamiltonian of the neutrino
system in matter Hm, differs from the Hamiltonian in vacuum H0,
Hm = H0 + Hint, where Hint describes the interaction of neutrinos
with the particles of matter. When, for instance, νe and νµ propagate
in matter, they can scatter (due to Hint) on the electrons (e−), protons
(p) and neutrons (n) present in matter. The incoherent elastic and
the quasi-elastic scattering, in which the states of the initial particles
change in the process (destroying the coherence between the neutrino
states), are not of interest - they have a negligible effect on the solar

neutrino propagation in the Sun and on the solar, atmospheric and
reactor neutrino propagation in the Earth [144]: even in the center
of the Sun, where the matter density is relatively high (∼ 150 g/cm3),
a νe with energy of 1 MeV has a mean free path with respect to the
indicated scattering processes ∼ 1010 km. We recall that the solar
radius is much smaller: R⊙ = 6.96 × 105 km. The oscillating νe and
νµ can scatter also elastically in the forward direction on the e−, p and
n, with the momenta and the spin states of the particles remaining
unchanged. In such a process the coherence of the neutrino states is
preserved.

The νe and νµ coherent elastic scattering on the particles of
matter generates nontrivial indices of refraction of the νe and νµ

in matter [26]: κ(νe) 6= 1, κ(νµ) 6= 1. Most importantly, we have
κ(νe) 6= κ(νµ). The difference κ(νe) − κ(νµ) is determined essentially
by the difference of the real parts of the forward νe − e− and νµ − e−

elastic scattering amplitudes [26] Re [Fνe−e−(0)] − Re [Fνµ−e−(0)]:

due to the flavour symmetry of the neutrino – quark (neutrino
– nucleon) neutral current interaction, the forward νe − p, n and
νµ − p, n elastic scattering amplitudes are equal and therefore do
not contribute to the difference of interest [145]. The imaginary
parts of the forward scattering amplitudes (responsible, in particular,
for decoherence effects) are proportional to the corresponding total
scattering cross-sections and in the case of interest are negligible in
comparison with the real parts. The real parts of the amplitudes
Fνe−e−(0) and Fνµ−e−(0) can be calculated in the Standard Model.

To leading order in the Fermi constant GF , only the term in
Fνe−e−(0) due to the diagram with exchange of a virtual W±-boson
contributes to Fνe−e−(0) − Fνµ−e−(0). One finds the following result

for κ(νe) − κ(νµ) in the rest frame of the scatters [26,146,147]:

κ(νe) − κ(νµ) =
2π

p2

(

Re [Fνe−e−(0)] − Re [Fνµ−e−(0)]
)

= − 1

p

√
2GF Ne , (14.53)

where Ne is the electron number density in matter. Given κ(νe) −
κ(νµ), the system of evolution equations describing the νe ↔ νµ

oscillations in matter reads [26]:

i
d

dt

(

Ae(t, t0)
Aµ(t, t0)

)

=

(

−ǫ(t) ǫ′

ǫ′ ǫ(t)

) (

Ae(t, t0)
Aµ(t, t0)

)

(14.54)

where Ae(t, t0) (Aµ(t, t0)) is the amplitude of the probability to find
νe (νµ) at time t of the evolution of the system if at time t0 ≤ t the
neutrino νe or νµ has been produced and

ǫ(t) =
1

2
[

∆m2

2E
cos 2θ −

√
2GF Ne(t)], ǫ′ =

∆m2

4E
sin 2θ. (14.55)

The term
√

2GF Ne(t) in ǫ(t) accounts for the effects of matter on
neutrino oscillations. The system of evolution equations describing
the oscillations of antineutrinos ν̄e ↔ ν̄µ in matter has exactly the
same form except for the matter term in ǫ(t) which changes sign. The
effect of matter in neutrino oscillations is usually called the Mikheyev,
Smirnov, Wolfenstein (or MSW) effect.

Consider first the case of νe ↔ νµ oscillations in matter with
constant density: Ne(t) = Ne = const. Due to the interaction term
Hint in Hm, the eigenstates of the Hamiltonian of the neutrino system
in vacuum, |ν1,2〉 are not eigenstates of Hm. For the eigenstates |νm

1,2〉
of Hm, which diagonalize the evolution matrix in the r.h.s. of the
system Eq. (14.54) we have:

|νe〉 = |νm
1 〉 cos θm+|νm

2 〉 sin θm , |νµ〉 = −|νm
1 〉 sin θm +|νm

2 〉 cos θm .
(14.56)

Here θm is the neutrino mixing angle in matter [26],

sin 2θm =
tan 2θ

√

(1 − Ne
Nres

e
)2 + tan2 2θ

, cos 2θm =
1 − Ne/N

res
e

√

(1 − Ne
Nres

e
)2 + tan2 2θ

,

(14.57)
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where the quantity

Nres
e =

∆m2 cos 2θ

2E
√

2GF

∼= 6.56 × 106 ∆m2[eV2]

E[MeV]
cos 2θ cm−3 NA ,

(14.58)
is called (for ∆m2 cos 2θ > 0) “resonance density” [27,146], NA being
Avogadro’s number. The “adiabatic” states |νm

1,2〉 have energies Em
1,2

whose difference is given by

Em
2 − Em

1 =
∆m2

2E

(

(1 − Ne

Nres
e

)2 cos2 2θ + sin2 2θ

)
1
2
≡ ∆M2

2E
.

(14.59)
The probability of νµ(e) → νe(µ) transition in matter with Ne = const.

has the form [26,146]

P 2ν
m (νµ(e) → νe(µ)) = |Ae(µ)(t)|2 =

1

2
sin2 2θm [1 − cos 2π

L

Lm
]

Lm = 2π/(Em
2 − Em

1 ) , (14.60)

where Lm is the oscillation length in matter. As Eq. (14.57) indicates,
the dependence of sin2 2θm on Ne has a resonance character [27].
Indeed, if ∆m2 cos 2θ > 0, for any sin2 2θ 6= 0 there exists a
value of Ne given by Nres

e , such that when Ne = Nres
e we have

sin2 2θm = 1 independently of the value of sin2 2θ < 1. This implies
that the presence of matter can lead to a strong enhancement of the
oscillation probability P 2ν

m (νµ(e) → νe(µ)) even when the νµ(e) → νe(µ)

oscillations in vacuum are suppressed due to a small value of sin2 2θ.
For obvious reasons

Ne = Nres
e ≡ ∆m2 cos 2θ

2E
√

2GF
, (14.61)

is called the “resonance condition” [27,146], while the energy at
which Eq. (14.61) holds for given Ne and ∆m2 cos 2θ, is referred to as
the “resonance energy”, Eres. The oscillation length at resonance is
given by [27] Lres

m = Lv/ sin 2θ, while the width in Ne of the resonance
at half height reads ∆Nres

e = 2Nres
e tan 2θ. Thus, if the mixing angle

in vacuum is small, the resonance is narrow, ∆Nres
e ≪ Nres

e , and
Lres

m ≫ Lv. The energy difference Em
2 − Em

1 has a minimum at the
resonance: (Em

2 − Em
1 )res = min (Em

2 − Em
1 ) = (∆m2/(2E)) sin 2θ.

It is instructive to consider two limiting cases. If Ne ≪ Nres
e ,

we have from Eq. (14.57) and Eq. (14.59), θm
∼= θ, Lm

∼= Lv

and neutrinos oscillate practically as in vacuum. In the limit
Ne ≫ Nres

e , Nres
e tan2 2θ, one finds θm

∼= π/2 ( cos 2θm
∼= −1) and

the presence of matter suppres the νµ ↔ νe oscillations. In this case
|νe〉 ∼= |νm

2 〉, |νµ〉 = −|νm
1 〉, i.e., νe practically coincides with the

heavier matter-eigenstate, while νµ coincides with the lighter one.

Since the neutral current weak interaction of neutrinos in the
Standard Model is flavour symmetric, the formulae and results we
have obtained are valid for the case of νe − ντ mixing and νe ↔ ντ

oscillations in matter as well. The case of νµ − ντ mixing, however, is
different: to a relatively good precision we have [148] κ(νµ) ∼= κ(ντ )
and the νµ ↔ ντ oscillations in the matter of the Earth and the Sun
proceed practically as in vacuum [149].

The analogs of Eq. (14.57) to Eq. (14.60) for oscillations of
antineutrinos, ν̄µ ↔ ν̄e, in matter can formally be obtained by
replacing Ne with (−Ne) in the indicated equations. It should be
clear that depending on the sign of ∆m2 cos 2θ, the presence of matter
can lead to resonance enhancement either of the νµ ↔ νe or of the
ν̄µ ↔ ν̄e oscillations, but not of both types of oscillations [146].
For ∆m2 cos 2θ < 0, for instance, the matter can only suppress the
νµ(e) → νe(µ) oscillations, while it can enhance the ν̄µ(e) → ν̄e(µ)
transitions. The dependence of the effects of matter in νµ → νe

and ν̄µ → ν̄e oscillations on sgn(∆m2 cos 2θ) is at basis of the
plans to determine the sign of ∆m2

31(32), and thus the type of

spectrum neutrino masses obey - with normal or inverted ordering
- in long baseline neutrino oscillation experiments (NOνA, DUNE)
and in atmospheric neutrino experiments with large volume detectors
(PINGU, ORCA, INO, Hyper-Kamiokande, DUNE).

The discussed disparity between the behavior of neutrinos and that
of antineutrinos is a consequence of the fact that the matter in the

Sun or in the Earth we are interested in is not charge-symmetric
(it contains e−, p and n, but does not contain their antiparticles)
and therefore the oscillations in matter are neither CP- nor CPT-
invariant [65]. Thus, even in the case of 2-neutrino mixing and
oscillations we have, e.g., P 2ν

m (νµ → νe) 6= P 2ν
m (ν̄µ → ν̄e) and

P 2ν
m (νe → νµ(τ)) 6= P 2ν

m (ν̄e → ν̄µ(τ)).

The νµ ↔ νe (ν̄µ ↔ ν̄e) and νe ↔ νµ(τ) (ν̄e ↔ ν̄µ(τ)) oscillations in
matter will be invariant with respect to the operation of time reversal
if the Ne distribution along the neutrino path is symmetric with
respect to this operation [63,150]. The latter condition is fulfilled
(to a good approximation) for the Ne distribution along a path of a
neutrino crossing the Earth [151].

14.8.1. Effects of Earth matter on oscillations of neutrinos.

Analytic expressions for oscillation probabilities :

The formalism we have developed can be applied, e.g., to
the study of matter effects in the νe ↔ νµ(τ) (νµ(τ) ↔ νe) and

ν̄e ↔ ν̄µ(τ) (ν̄µ(τ) ↔ ν̄e) oscillations of neutrinos which traverse the

Earth [152]. Indeed, the Earth density distribution in the existing
Earth models [151] is assumed to be spherically symmetric and there
are two major density structures - the core and the mantle, and a
certain number of substructures (shells or layers). The Earth radius is
R⊕ = 6371 km; the Earth core has a radius of Rc = 3486 km, so the
Earth mantle depth is 2885 km. For a spherically symmetric Earth
density distribution, the neutrino trajectory in the Earth is specified
by the value of the nadir angle θn of the trajectory. For θn ≤ 33.17o,
or path lengths L ≥ 10660 km, neutrinos cross the Earth core. The
path length for neutrinos which cross only the Earth mantle is given by
L = 2R⊕ cos θn. If neutrinos cross the Earth core, the lengths of the
paths in the mantle, 2Lman, and in the core, Lcore, are determined by:

Lman = R⊕ cos θn − (R2
c −R2

⊕ sin2 θn)
1
2 , Lcore = 2(R2

c −R2
⊕ sin2 θn)

1
2 .

The mean electron number densities in the mantle and in the core
according to the PREM model read [151]: N̄man

e
∼= 2.2 cm−3 NA,

N̄ c
e
∼= 5.4 cm−3 NA. Thus, we have N̄ c

e
∼= 2.5 N̄man

e . The change
of Ne from the mantle to the core can well be approximated by
a step function [151]. The electron number density Ne changes
relatively little around the indicated mean values along the trajectories
of neutrinos which cross a substantial part of the Earth mantle,
or the mantle and the core, and the two-layer constant density
approximation, Nman

e = const. = Ñman
e , N c

e = const. = Ñ c
e , Ñman

e
and Ñ c

e being the mean densities along the given neutrino path in the
Earth, was shown to be sufficiently accurate in what concerns the
calculation of neutrino oscillation probabilities [63,154,155] (and
references quoted in [154,155]) in a large number of specific cases.
This is related to the fact that the relatively small changes of density
along the path of the neutrinos in the mantle (or in the core) take
place over path lengths which are typically considerably smaller than
the corresponding oscillation length in matter.

In the case of 3-neutrino mixing and for neutrino energies of
E & 2 GeV, the effects due to ∆m2

21 (|∆m2
21| ≪ |∆m2

31(23)|, see

Eq. (14.43)) in the neutrino oscillation probabilities are sub-dominant
and to leading order can be neglected: the corresponding resonance
density |Nres

e21 |. 0.25 cm−3 NA ≪ N̄
man,c
e and the Earth matter

strongly suppresses the oscillations due to ∆m2
21. For oscillations

in vacuum this approximation is valid in the case of NO (IO)
neutrino mass spectrum (see Section 2) as long as the leading order
contribution due to ∆m2

31(23) in the relevant probabilities is bigger

than approximately 10−3. In this case the 3-neutrino νe → νµ(τ)

(ν̄e → ν̄µ(τ)) and νµ(τ) → νe (ν̄µ(τ) → ν̄e) transition probabilities
for neutrinos traversing the Earth, reduce effectively to a 2-neutrino
transition probability (see, e.g., Refs. [155–157]) , with ∆m2

31(23) and

θ13 playing the role of the relevant 2-neutrino vacuum oscillation
parameters. We note that in the approximation of negligible ∆m2

21
we have ∆m2

31 = ∆m2
32. Therefore in what follows in this part of

the article we will use, whenever relevant, only ∆m2
31 in the analytic

expressions.

As we have discussed in Sections 14.2 and will be discussed
in greater detail in Section 14.12, the value of sin2 2θ13 has been
determined with a rather high precision in the Daya Bay [38]
and RENO [39] experiments. The best fit values found in the two
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experiments read, respectively, sin2 2θ13 = 0.084 [38] and 0.087 [39].
The 3-neutrino oscillation probabilities of the atmospheric and
accelerator νe,µ having energy E & 2 GeV and crossing the Earth
along a trajectory characterized by a nadir angle θn, for instance, have
the following form in the approximation of negligible ∆m2

21:

P 3ν
m (νe → νe) ∼= 1 − P 2ν

m , (14.62)

P 3ν
m (νe → νµ) ∼= P 3ν

m (νµ → νe) ∼= s2
23 P 2ν

m ,

P 3ν
m (νe → ντ ) ∼= c223 P 2ν

m , (14.63)

P 3ν
m (νµ → νµ) ∼= 1−s4

23 P 2ν
m −2c2

23s
2
23

[

1 − Re (e−iκA2ν
m (ν′ → ν′))

]

,

(14.64)
P 3ν

m (νµ → ντ ) = 1 − P 3ν
m (νµ → νµ) − P 3ν

m (νµ → νe). (14.65)

Here P 2ν
m ≡ P 2ν

m (∆m2
31, θ13; E, θn) is the probability of the 2-neutrino

νe → ν′ ≡ (s23νµ + c23ντ ) oscillations in the Earth, and κ and
A2ν

m (ν′ → ν′) ≡ A2ν
m are known phase and 2-neutrino transition

probability amplitude (see, e.g., Refs. [155,156]) . We note that
Eq. (14.62) to Eq. (14.64) are based only on the assumptions that
|Nres

e21 | is much smaller than the densities in the Earth mantle and
core and that |∆m2

21| ≪ |∆m2
31(23)|, and does not rely on the

constant density approximation. Similar results are valid for the
corresponding antineutrino oscillation probabilities: one has just to
replace P 2ν

m , κ and A2ν
m in the expressions given above with the

corresponding quantities for antineutrinos (the latter are obtained
from those for neutrinos by changing the sign in front of Ne).
Obviously, we have: P (νe(µ) → νµ(e)), P (ν̄e(µ) → ν̄µ(e)) ≤ sin2 θ23,

and P (νe → ντ ), P (ν̄e → ν̄τ ) ≤ cos2 θ23. The one ∆m2 dominance
approximation and correspondingly Eq. (14.62) to Eq. (14.65) were
used by the Super-Kamiokande Collaboration in their 2006 neutrino
oscillation analysis of the multi-GeV atmospheric neutrino data [158].

In the case of neutrinos crossing only the Earth mantle and in
the constant density approximation, P 2ν

m is given by the r.h.s. of
Eq. (14.60) with θ, ∆m2 and Ne replaced respectively by θ13, ∆m2

31

and Ñman
e (corresponding to the given θn) in the relevant expressions

Eq. (14.57), Eq. (14.58) and Eq. (14.59) for sin 2θm, Nres
e and

(Em
2 − Em

1 ), while for κ and A2ν
m we have (see, e.g., Ref. 155):

κ ∼= 1

2
[
∆m2

31

2E
L +

√
2GF N̄man

e L − ∆M2
31L

2E
],

A2ν
m = 1 + (e−i

∆M2
31L

2E − 1) cos2 θm
13 , (14.66)

where ∆M2
31 and θm

13 can be obtained from Eq. (14.59) and
Eq. (14.57) by setting θ = θ13, ∆m2 = ∆m2

31 > 0, Nres
e = Nres

e31 =

∆m2
31 cos 2θ13/(2E

√
2GF ) and Ne = Ñman

e (θn). Clearly, θm
13 is the

mixing angle in the mantle which coincides in vacuum with θ13. In
the expressions for P 2ν

m ≡ P 2ν
m (∆m2

31, θ13; E, θn, N̄man
e ), κ and A2ν

m in
the case of oscillations in the mantle, L = 2R⊕ cos θn is the distance
the neutrino travels in the mantle. The corresponding expressions for
antineutrino oscillations, as we have noticed earlier, can be obtained
from those derived above by making the change N̄man

e → − N̄man
e .

The analytic results for P 2ν
m (∆m2

31, θ13; E, θn, N̄man
e ), κ and

A2ν
m , described above and obtained in the constant mantle density

approximation, as we have already remarked, provide a relatively
precise description of the νµ(e) → νe(µ), νe → νe(τ), etc. oscillation
probabilities in the Earth mantle if for each given trajectory of the
neutrinos in the mantle, specified by the nadir angle θn, in the
calculations one uses for N̄man

e the mean value of the electron number
density along that specific trajectory: N̄man

e = Ñman
e (θn), where

Ñman
e (θn) should be calculated using the density distribution given

by the existing Earth models [151].

It follows from Eq. (14.62) and Eq. (14.63) that for ∆m2
31 cos 2θ13 >

0, the oscillation effects of interest, e.g., in the νe(µ) → νµ(e) and

νe → ντ transitions will be maximal if P 2ν
m

∼= 1, i.e., if Eq. (14.61)
leading to sin2 2θm

∼= 1 is fulfilled, and ii) cos(∆M2L/(2E)) ∼= −1.
Given the value of N̄man

e , the first condition determines the neutrino’s
energy, while the second determines the path length L, for which one

can have P 2ν
m

∼= 1. For ∆m2
31

∼= 2.5 × 10−3 eV2, sin2 2θ13
∼= 0.090

and N̄man
e

∼= 2.2 NAcm−3, one finds that Eres
∼= 7.1 GeV and

L ∼= 3522/ sin2θ13 km ∼= 11740 km. Since for neutrinos crossing only
the mantle L . 10660 km, the second condition can be satisfied only
if sin2 2θ13 & 0.11, which falls marginally in the 3σ range of the
experimentally allowed values of sin2 2θ13. We still get a significant
amplification of the probability P 2ν

m , and therefore of P (νe(µ) → νµ(e))

and P (νe → ντ ), even when cos(∆M2L/(2E)) = −0.5(−0.2):
in this case P 2ν

m
∼= 0.75 (0.60). For sin2 2θ13

∼= 0.090 we have
cos(∆M2L/(2E)) = −0.5(−0.2) if L ∼= 7826 (6622) km. Thus, for
∆m2

31 > 0, the Earth matter effects can amplify P 2ν
m , and therefore

P (νe(µ) → νµ(e)) and P (νe → ντ ), significantly when the neutrinos
cross only the mantle, for E ∼ 7 GeV and sufficiently large path
lengths L.

If ∆m2
31 < 0 the same considerations apply for the corresponding

antineutrino oscillation probabilities P̄ 2ν
m = P̄ 2ν

m (ν̄e → (s23ν̄µ + c23ν̄τ ))
and correspondingly for P (ν̄e(µ) → ν̄µ(e)) and P (ν̄e → ν̄τ ). For

∆m2
31 > 0, the ν̄e(µ) → ν̄µ(e) and ν̄e → ν̄τ oscillations are suppressed

by the Earth matter, while if ∆m2
31 < 0, the same conclusion holds

for the νe(µ) → νµ(e) and νe → ντ , oscillations. The dependence on

sgn(∆m2
31) of the effects of Earth matter - enhancement or suppression

- on the νe(µ) → νµ(e) and ν̄e(µ) → ν̄µ(e) oscillations taking place
when the neutrinos traverse the Earth mantle, will be exploited in the
current and planed long baseline and atmospheric neutrino oscillation
experiments aiming, in particular, to determine the neutrino mass
ordering (NOνA, DUNE, PINGU, ORCA, INO, Hyper-Kamiokande).

The discussed features of the Earth matter effects in the
νµ(e) → νe(µ) and ν̄µ(e) → ν̄e(µ) oscillation probabilities for neutrinos

with a path length in the Earth mantle of 7330 km and for ∆m2
31 > 0,

sin2 2θ13 = 0.10 and sin2 2θ23 = 1 are illustrated in Fig. 14.7 (taken
from Ref. [159]) . The amplification of the νµ(e) → νe(µ) oscillation
probability due to the Earth matter effect in the region of the
resonance value of E/∆m2

31 and the suppression of the ν̄µ(e) → ν̄e(µ)
oscillation probability in the same region are clearly seen in the figure.
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Figure 14.7: The νe(µ) → νµ(e) and ν̄e(µ) → ν̄µ(e) oscillation

probabilities given in Eq. (14.63), P (νe → νµ) = P (νµ → νe)
(black solid line) and P (ν̄e → ν̄µ) = P (ν̄µ → ν̄e) (blue
solid line), as functions of E/∆m2 for ∆m2 ≡ ∆m2

31 > 0,
sin2 2θ13 = 0.10 and sin2 2θ23 = 1. The figure is obtained
for neutrinos crossing the Earth mantle along a path with
length of L = 7330 km. The corresponding vacuum oscillation
probability P vac(νe(µ) → νµ(e)) = P vac(ν̄e(µ) → ν̄µ(e)) is also

shown (red dashed line). For ∆m2 ≡ ∆m2
31 < 0, the black and

blue solid lines will correspond respectively to the probabilities
P (ν̄e(µ) → ν̄µ(e)) and P (νe(µ) → νµ(e)) (from Ref. 159).
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In the case of neutrinos crossing the Earth core, new resonance-like
effects become possible in the νµ → νe and νe → νµ(τ) (or ν̄µ → ν̄e

and ν̄e → ν̄µ(τ)) transitions [154–156,160–162]. For ∆m2
31 > 0 and

certain values of sin2 θ13 . 0.05 we can have [161] P 2ν
m (∆m2

31, θ13) ∼= 1,
and correspondingly maximal P 3ν

m (νe → νµ) = P 3ν
m (νµ → νe) ∼= s2

23,
only due to the effect of maximal constructive interference between
the amplitudes of the νe → ν′ transitions in the Earth mantle and
in the Earth core. The effect differs from the MSW one and the
enhancement happens in the case of interest at a value of the energy
between the MSW resonance energies corresponding to the density in
the mantle and that of the core, or at a value of the resonance density
Nres

e which lies between the values of Ne in the mantle and in the
core [154]. In Refs. [154,155] the enhancement was called “neutrino
oscillation length resonance (NOLR)”, while in Refs. [156,160] the
term “parametric resonance” for the same effect was used [163]. The
mantle-core enhancement effect (or NOLR) is caused by the existence
(for a given neutrino trajectory through the Earth core) of points
of resonance-like maximal neutrino conversion, P 2ν

m (∆m2
31, θ13) = 1,

in the corresponding space of neutrino oscillation parameters [161].
For ∆m2

31 < 0 the mantle-core enhancement can take place for the
antineutrino transitions, ν̄µ → ν̄e and ν̄e → ν̄µ(τ). For neutrinos

crossing the Earth core, analytic expressions for P 2ν
m (∆m2

31, θ13) and
κ, A2ν

m were derived in the two-layer constant density approximation
for the Earth density distribution in [154] and [155], respectively.

A rather complete set of values of ∆m2
31/E > 0 and sin2 2θ13 for

which P 2ν
m (∆m2

31, θ13) = 1 was found in Ref. 161. In the two-layer
constant density approximation, the values of ∆m2

31/E > 0 and
sin2 2θ13 at which P 2ν

m (∆m2
31, θ13) = 1 can be derived as solutions of

the following system of equations [161]:

tan
φman

2
= ±

√

− cos 2θcore
13

cos(2θcore
13 − 4θman

13 )
, (14.67)

tan
φcore

2
= ±

√

cos 2θman
13

− cos(2θcore
13 ) cos(2θcore

13 − 4θman
13 )

, (14.68)

where the signs in the two equations are correlated, φman =
(Em

3 − Em
1 )man2Lman, φcore = (Em

3 − Em
1 )coreLcore, 2Lman and

Lcore are the neutrino path lengths in the Earth mantle and
the core, and θman

13 and θcore
13 are the values of the angle θ13 in

the mantle and in the core. The expressions for (Em
3 − Em

1 )man

((Em
3 − Em

1 )core) and θman
13 (θcore

13 ) can be obtained respectively
from Eq. (14.59) and Eq. (14.57) by setting θ = θ13, ∆m2 = ∆m2

31,

Nres
e = Nres

e31 = ∆m2
31 cos 2θ13/(2E

√
2GF ) and Ne = Ñman

e (θn)

(Ne = Ñ core
e (θn)).

The location of the points where P 2ν
m (∆m2

31, θ13) = 1 in the
∆m2

31/E − sin2 2θ13 plane determines the regions in the plane where
P 2ν

m (∆m2
31, θ13) is large, P 2ν

m (∆m2
31, θ13)& 0.5. These regions vary

slowly with the nadir angle, being remarkably wide in the nadir angle
and rather wide in the neutrino energy [161], so that the transitions of
interest can produce noticeable effects in the measured observables. For
sin2 θ13 . 0.05, there are two sets of values of (∆m2

31/E, sin2 θ13) for
which P 2ν

m (∆m2
31, θ13) = 1, and thus two regions in ∆m2

31/E−sin2 2θ13

plane where P 2ν
m (∆m2

31, θ13)& 0.5. For ∆m2
31 = 2.5 × 10−3 eV2 and

nadir angle, e.g., θn=0 (Earth center crossing neutrinos), we have
P 2ν

m (∆m2
31, θ13) = 1 at (E, sin2 2θ13) =(3.4 GeV,0.034) and (5.2

GeV,0.15). At the same time for E =3.4 GeV (5.2 Gev), the
probability P 2ν

m (∆m2
31, θ13)& 0.5 for the values of sin2 2θ13 from

the interval 0.02 . sin2 2θ13 . 0.10 (0.04 . sin2 2θ13 . 0.26). Similar
results hold for neutrinos crossing the Earth core along the trajectories
with θn 6= 0 (for further details see the last article in Ref. 161; see also
the last article in Ref. 162).

The mantle-core enhancement of P 2ν
m (or P̄ 2ν

m ) is relevant, in
particular, for the searches of sub-dominant νe(µ) → νµ(e) (or

ν̄e(µ) → ν̄µ(e)) oscillations of atmospheric neutrinos having energies
E & 2 GeV and crossing the Earth core on the way to the detector
(see Ref. 154 to Ref. 162 and the references quoted therein).

The effects of Earth matter on the oscillations of atmospheric and
accelerator neutrinos have not been observed so far. At present there

are no compelling evidences for oscillations of the atmospheric νe

and/or ν̄e.

In the case of oscillations of atmospheric neutrinos in the Earth
one has to take into account also the following considerations. The
fluxes of atmospheric νe,µ of energy E, which reach the detector after
crossing the Earth along a given trajectory specified by the value of
θn, Φνe,µ(E, θn), are given by the following expressions in the case of
the 3-neutrino oscillations under discussion [155,156]:

Φνe(E, θn) ∼= Φ0
νe

(

1 + [s2
23r − 1] P 2ν

m

)

, (14.69)

Φνµ(E, θn) ∼= Φ0
νµ

(

1 + s4
23[(s

2
23 r)−1 − 1]P 2ν

m

−2c2
23s

2
23

[

1 − Re (e−iκA2ν
m (ντ → ντ ))

])

, (14.70)

where Φ0
νe(µ)

= Φ0
νe(µ)

(E, θn) is the νe(µ) flux in the absence of

neutrino oscillations and

r ≡ r(E, θn) ≡
Φ0

νµ
(E, θn)

Φ0
νe

(E, θn)
. (14.71)

It follows from the global analyses of the neutrino oscillation data
that the neutrino mixing parameter s2

23 lies (at 3σ CL) in the interval
(0.38 - 0.64). For NO (IO) neutrino mass spectrum, the three groups
which performed recent global analyses, obtained the following best fit
values of s2

23 (see Section 14.2): 0.452 (0.455) [52], 0.452 (0.579) [53]
and 0.567 (0.573) [54], while in the latest analysis [60] the
authors find 0.437 (0.569). For the predicted ratio r(E, θn) of the
atmospheric νµ and νe fluxes for i) the Earth core crossing and
ii) only mantle crossing neutrinos, having trajectories for which
0.3 . cos θn ≤ 1.0, one has [164] r(E, θn) ∼= (2.6 ÷ 4.5) for neutrinos
giving the main contribution to the multi-GeV samples, E ∼= (2 ÷ 10)
GeV. Thus, for s2

23 = 0.5 (0.64) one finds for the multi-GeV
neutrinos: s4

23[1 − (s2
23 r(E, θz))−1] ∼= 0.06 − 0.14 (0.16 − 0.27) and

(s2
23 r(E, θz) − 1) ∼= 0.3 − 1.3 (0.66 − 1.9). Thus, the impact of the

possible enhancement of P 2ν
m

∼= 1 would be largest for the flux of
multi-GeV νe, Φνe(E, θn), traversing the Earth. As the preceding
discussion suggests and detailed calculations show (see the first two
articles quoted in Ref. 162), the sensitivity of the atmospheric neutrino
experiments to the neutrino mass ordering depends strongly on the
chosen value of sin2 θ23 from its 3σ allowed range: it is maximal
(minimal) for the maximal (minimal) allowed value of sin2 θ23. In the
case of the planned Hyper-Kamiokande detector and neutrino mass
spectrum with normal ordering, for instance, it is estimated [165] that
for sin2 θ23 = 0.60 it will take approximately (2-3) years to establish
at 3σ CL that the spectrum is of the NO type, and approximately 10
years if sin2 θ23 = 0.40.

For water Cerenkov detectors, the charged current (CC) νl − N
interaction cross section for multi-GeV neutrinos is approximately by
a factor of 2 bigger than the ν̄l − N CC interaction cross section.
Since these detectors do not distinguish between the neutrino and
anti-neutrino induced CC events, determining that the neutrino mass
spectrum is with inverted ordering would require roughly by a factor
of 2 longer period of data acquisition than if the spectrum were with
normal ordering.

The effects under discussion are larger, in general, for the multi-
GeV neutrinos than for the sub-GeV neutrinos having energies
E ∼= (0.1 − 1.0) GeV. Indeed, for the sub-GeV νe flux one finds in the
limit of negligible θ13 [166]: Φνe(E, θn) ∼= Φ0

νe
(1 + [c223r − 1]P̄ 2ν

m ),

where P̄ 2ν
m ≡ P̄ 2ν

m (∆m2
21, θ12; E, θn) is the probability of the 2-neutrino

oscillations in the Earth due to ∆m2
21 and 2-neutrino mixing with

angle θ12. For the neutrinos giving contribution to the sub-GeV
samples of Super-Kamiokande events one has [164] r(E, θz) ∼= 2.0. If
s2
23 = 0.5 and r(E, θz) ∼= 2.0, we get (c223 r(E, θz) − 1) ∼= 0, and the

possible effects of the νµ → νe and νe → νµ(τ) transitions on the νe

flux, and correspondingly in the sub-GeV e−like samples of events,
would be rather strongly suppressed independently of the values of
the corresponding transition probabilities.

The same conclusions are valid for the effects of oscillations on the
fluxes of, and event rates due to, atmospheric antineutrinos ν̄e and ν̄µ.



262 14. Neutrino mixing

The formulae for anti-neutrino fluxes and oscillation probabilities are
analogous to those for neutrinos (see, e.g., Refs. [155,156,162,166]) .

The expression for the probability of the νµ → νe oscillations
taking place in the Earth mantle in the case of 3-neutrino mixing,
in which both neutrino mass squared differences ∆m2

21 and ∆m2
31

contribute and the CP violation effects due to the Dirac phase in
the neutrino mixing matrix are taken into account, has the following
form in the constant density approximation and keeping terms up to
second order in the two small parameters |α| ≡ |∆m2

21|/|∆m2
31| ≪ 1

and sin2 θ13 ≪ 1 [167]:

P 3ν man
m (νµ → νe) ∼= P0 + Psin δ + Pcos δ + P3 . (14.72)

Here

P0 = sin2 θ23
sin2 2θ13

(A − 1)2
sin2[(A − 1)∆]

P3 = α2 cos2 θ23
sin2 2θ12

A2 sin2(A∆) , (14.73)

Psin δ = −α
8 JCP

A(1 − A)
(sin ∆) (sin A∆) (sin[(1 − A)∆]) , (14.74)

Pcos δ = α
8 JCP cot δ

A(1 − A)
(cos∆) (sin A∆) (sin[(1 − A)∆]) , (14.75)

where

α =
∆m2

21

∆m2
31

, ∆ =
∆m2

31 L

4E
, A =

√
2GFNman

e
2E

∆m2
31

, (14.76)

cot δ = J−1
CP Re(Uµ3U

∗
e3Ue2U

∗
µ2) ∝ cos δ, and we recall that JCP =

Im(Uµ3U
∗
e3Ue2U

∗
µ2). The analytic expression for P 3ν man

m (νµ → νe)

given above is valid for [167] neutrino path lengths in the mantle (L ≤
10660 km) satisfying L . 10560 km E[GeV] (7.6 × 10−5 eV2/∆m2

21),
and energies E & 0.34 GeV(∆m2

21/7.6×10−5 eV2) (1.4 cm−3NA/Nman
e ).

The expression for the ν̄µ → ν̄e oscillation probability can be obtained
formally from that for P 3ν man

m (νµ → νe) by making the changes
A → −A and JCP → −JCP , with JCP cot δ ≡ Re(Uµ3U

∗
e3Ue2U

∗
µ2)

remaining unchanged. The term Psin δ in P 3ν man
m (νµ → νe) would

be equal to zero if the Dirac phase in the neutrino mixing matrix U
possesses a CP-conserving value. Even in this case, however, we have

A
(eµ) man
CP ≡ (P 3ν man

m (νµ → νe) − P 3ν man
m (ν̄µ → ν̄e)) 6= 0 due to

the effects of the Earth matter. It will be important to experimentally

disentangle the effects of the Earth matter and of JCP in A
(eµ) man
CP :

this will allow to get information about the Dirac CP violation
phase in U . This can be done, in principle, by studying the energy
dependence of P 3ν man

m (νµ → νe) and P 3ν man
m (ν̄µ → ν̄e). Since the

sign of ∆m2
31(32) determines for given L whether the probability

P 3ν man
m (νµ → νe) or P 3ν man

m (ν̄µ → ν̄e), as a function of energy,
can be resonantly enhanced or suppressed by the matter effects, the
study of the energy dependence of P 3ν man

m (νµ → νe) and/or of
P 3ν man

m (ν̄µ → ν̄e) can provide also information on sgn(∆m2
31(32)). In

the vacuum limit of Nman
e = 0 (A = 0) we have A

(eµ) man
CP = A

(eµ)
CP

(see Eq. (14.40)) and only the term Psin δ contributes to the asymmetry

A
(eµ)
CP .

The preceding remarks apply also to the probabilities P 3ν man
m (νe →

νµ) and P 3ν man
m (ν̄e → ν̄µ)). The probability P 3ν man

m (νe → νµ),
for example, can formally be obtained from the expression for the
probability P 3ν man

m (νµ → νe) by changing the sign of the term Psin δ.

The expression for the probability P 3ν man
m (νµ → νe) given in

Eq. (14.72) and the corresponding expression for P 3ν man
m (ν̄µ → ν̄e)

can be used for the interpretation of the data of the current and
the future planned long baseline oscillation experiments T2K, NOνA,
MINOS+, DUNE [84] and T2HK [85].

14.8.2. Oscillations of solar neutrinos :

14.8.2.1. Qualitative analysis:

Consider next the oscillations of solar νe while they propagate from
the central part of the Sun, where they are produced, to the surface
of the Sun [27,153] (see also Ref. 26 and, e.g., Ref. 168). Details
concerning the production, spectrum, magnitude and particularities
of the solar neutrino flux were discussed in Section 14.6, while the
methods of detection of solar neutrinos, description of solar neutrino
experiments and of the data they provided will be discussed in the
next section (see also Ref. 169). The electron number density Ne

changes considerably along the neutrino path in the Sun: it decreases
monotonically from the value of ∼ 100 cm−3 NA in the center of the
Sun to 0 at the surface of the Sun. According to the contemporary
solar models (see, e.g., Ref. [169,99]) , Ne decreases approximately
exponentially in the radial direction towards the surface of the Sun:

Ne(t) = Ne(t0) exp

{

− t − t0
r0

}

, (14.77)

where (t − t0) ∼= d is the distance traveled by the neutrino in the Sun,
Ne(t0) is the electron number density at the point of νe production
in the Sun, r0 is the scale-height of the change of Ne(t) and one
has [169,99] r0 ∼ 0.1R⊙.

Consider the case of 2-neutrino mixing, Eq. (14.56). Obviously,
if Ne changes with t (or equivalently with the distance) along
the neutrino trajectory, the matter-eigenstates, their energies, the
mixing angle and the oscillation length in matter, become, through
their dependence on Ne, also functions of t: |νm

1,2〉 = |νm
1,2(t)〉,

Em
1,2 = Em

1,2(t), θm = θm(t) and Lm = Lm(t). It is not difficult to
understand qualitatively the possible behavior of the neutrino system
when solar neutrinos propagate from the center to the surface of the
Sun if one realizes that one is dealing effectively with a two-level
system whose Hamiltonian depends on time and admits “jumps”
from one level to the other (see Eq. (14.54)). Consider the case of
∆m2 cos 2θ > 0. Let us assume first for simplicity that the electron
number density at the point of a solar νe production in the Sun is
much bigger than the resonance density, Ne(t0) ≫ Nres

e . Actually,
this is one of the cases relevant to the solar neutrinos. In this case we
have θm(t0) ∼= π/2 and the state of the electron neutrino in the initial
moment of the evolution of the system practically coincides with the
heavier of the two matter-eigenstates:

|νe〉 ∼= |νm
2 (t0)〉 . (14.78)

Thus, at t0 the neutrino system is in a state corresponding to the
“level” with energy Em

2 (t0). When neutrinos propagate to the surface
of the Sun they cross a layer of matter in which Ne = Nres

e : in
this layer the difference between the energies of the two “levels”
(Em

2 (t) − Em
1 (t)) has a minimal value on the neutrino trajectory

(Eq. (14.59) and Eq. (14.61)). Correspondingly, the evolution of the
neutrino system can proceed basically in two ways. First, the system
can stay on the “level” with energy Em

2 (t), i.e., can continue to be
in the state |νm

2 (t)〉 up to the final moment ts, when the neutrino
reaches the surface of the Sun. At the surface of the Sun Ne(ts) = 0
and therefore θm(ts) = θ, |νm

1,2(ts)〉 ≡ |ν1,2〉 and Em
1,2(ts) = E1,2.

Thus, in this case the state describing the neutrino system at t0 will
evolve continuously into the state |ν2〉 at the surface of the Sun. Using
Eq. (14.51) with l = e and x = µ, it is easy to obtain the probabilities
to find νe and νµ at the surface of the Sun:

P (νe → νe; ts, t0) ∼= |〈νe|ν2〉|2 = sin2 θ

P (νe → νµ; ts, t0) ∼= |〈νµ|ν2〉|2 = cos2 θ . (14.79)

It is clear that under the assumption made and if sin2 θ ≪ 1,
practically a total νe → νµ conversion is possible. This type of
evolution of the neutrino system and the νe → νµ transitions taking
place during the evolution, are called [27] “adiabatic.” They are
characterized by the fact that the probability of the “jump” from the
upper “level” (having energy Em

2 (t)) to the lower “level” (with energy
Em

1 (t)), P ′, or equivalently the probability of the νm
2 (t0) → νm

1 (ts)
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transition, P ′ ≡ P ′(νm
2 (t0) → νm

1 (ts)), on the whole neutrino
trajectory is negligible:

P ′ ≡ P ′(νm
2 (t0) → νm

1 (ts)) ∼= 0 : adiabatic transitions . (14.80)

The second possibility is realized if in the resonance region, where
the two “levels” approach each other most, the system “jumps” from
the upper “level” to the lower “level” and after that continues to be
in the state |νm

1 (t)〉 until the neutrino reaches the surface of the Sun.
Evidently, now we have P ′ ≡ P ′(νm

2 (t0) → νm
1 (ts)) ∼ 1. In this case

the neutrino system ends up in the state |νm
1 (ts)〉 ≡ |ν1〉 at the surface

of the Sun and

P (νe → νe; ts, t0) ∼= |〈νe|ν1〉|2 = cos2 θ

P (νe → νµ; ts, t0) ∼= |〈νµ|ν1〉|2 = sin2 θ . (14.81)

Obviously, if sin2 θ ≪ 1, practically no transitions of the solar νe into
νµ will occur. The considered regime of evolution of the neutrino
system and the corresponding νe → νµ transitions are usually referred
to as “extremely nonadiabatic.”

Clearly, the value of the “jump” probability P ′ plays a crucial
role in the the νe → νµ transitions: it fixes the type of the
transition and determines to a large extent the νe → νµ transition
probability [153,170,171]. We have considered above two limiting
cases. Obviously, there exists a whole spectrum of possibilities since
P ′ can have any value from 0 to cos2 θ [172,173]. In general, the
transitions are called “nonadiabatic” if P ′ is non-negligible.

Numerical studies have shown [27] that solar neutrinos can undergo
both adiabatic and nonadiabatic νe → νµ transitions in the Sun and
the matter effects can be substantial in the solar neutrino oscillations
for 10−8 eV2 .∆m2 . 10−4 eV2, 10−4 . sin2 2θ < 1.0.

The condition of adiabaticity of the solar νe transitions in Sun can
be written as [153,170]

γ(t) ≡
√

2GF
(Nres

e )2

|Ṅe(t)|
tan2 2θ

(

1 + tan−2 2θm(t)
)

3
2 ≫ 1

adiabatic transitions , (14.82)

while if γ(t). 1 the transitions are nonadiabatic (see also Ref. 173),
where Ṅe(t) ≡ d

dtNe(t). Condition in Eq. (14.82) implies that the
νe → νµ(τ) transitions in the Sun will be adiabatic if Ne(t) changes
sufficiently slowly along the neutrino path. In order for the transitions
to be adiabatic, condition in Eq. (14.82) has to be fulfilled at any
point of the neutrino’s path in the Sun.

14.8.2.2. The solar νe survival probability:

The system of evolution equations Eq. (14.54) can be solved exactly
for Ne changing exponentially, Eq. (14.77), along the neutrino path
in the Sun [172,174]. More specifically, the system in Eq. (14.54) is
equivalent to one second order differential equation (with appropriate
initial conditions). The latter can be shown [175] to coincide in
form, in the case of Ne given by Eq. (14.77), with the Schroedinger
equation for the radial part of the nonrelativistic wave function of
the Hydrogen atom [176]. On the basis of the exact solution, which
is expressed in terms of confluent hypergeometric functions, it was
possible to derive a complete, simple and very accurate analytic
description of the matter-enhanced transitions of solar neutrinos in
the Sun for any values of ∆m2 and θ [26,172,173,177,178] (see also
Refs. [27,153,171,179,180]) .

The probability that a νe, produced at time t0 in the central part
of the Sun, will not transform into νµ(τ) on its way to the surface of

the Sun (reached at time ts) is given by

P 2ν
⊙ (νe → νe; ts, t0) = P̄ 2ν

⊙ (νe → νe; ts, t0) + Oscillating terms.
(14.83)

Here

P̄ 2ν
⊙ (νe → νe; ts, t0) ≡ P̄⊙ =

1

2
+

(

1

2
− P

′

)

cos 2θm(t0) cos 2θ ,

(14.84)

is the average survival probability for νe having energy E ∼= p [171],
where

P
′

=
exp

[

−2πr0
∆m2

2E sin2 θ
]

− exp
[

−2πr0
∆m2

2E

]

1 − exp
[

−2πr0
∆m2

2E

] , (14.85)

is [172] the “jump” probability for exponentially varying Ne, and
θm(t0) is the mixing angle in matter at the point of νe production [179].
The expression for P̄ 2ν

⊙ (νe → νe; ts, t0) with P ′ given by Eq. (14.85) is

valid for ∆m2 > 0, but for both signs of cos 2θ 6= 0 [172,180]; it is
valid for any given value of the distance along the neutrino trajectory
and does not take into account the finite dimensions of the region of
νe production in the Sun. This can be done by integrating over the
different neutrino paths, i.e., over the region of νe production.

The oscillating terms in the probability P 2ν
⊙ (νe → νe; ts, t0)

[177,175] were shown [178] to be strongly suppressed for ∆m2 & 10−7 eV2

by the various averagings one has to perform when analyzing the
solar neutrino data. The current solar neutrino and KamLAND
data suggest that ∆m2 ∼= 7.4 × 10−5 eV2. For ∆m2 & 10−7 eV2,
the averaging over the region of neutrino production in the Sun
etc. renders negligible all interference terms which appear in the
probability of νe survival due to the νe ↔ νµ(τ) oscillations in vacuum
taking place on the way of the neutrinos from the surface of the Sun
to the surface of the Earth. Thus, the probability that νe will remain
νe while it travels from the central part of the Sun to the surface of
the Earth is effectively equal to the probability of survival of the νe

while it propagates from the central part to the surface of the Sun and
is given by the average probability P̄⊙(νe → νe; ts, t0) (determined by
Eq. (14.84) and Eq. (14.85)).

If the solar νe transitions are adiabatic (P ′ ∼= 0) and cos 2θm(t0) ∼=
−1 (i.e., Ne(t0)/|Nres

e | ≫ 1, | tan 2θ|, the νe are born “above” (in Ne)
the resonance region), one has [27]

P̄ 2ν(νe → νe; ts, t0) ∼=
1

2
− 1

2
cos 2θ. (14.86)

The regime under discussion is realized for sin2 2θ ∼= 0.8 (suggested
by the data, Sections 14.2 and 14.9.1), if E/∆m2 lies approximately
in the range (2 × 104 − 3 × 107) MeV/eV2 (see Ref. 173). This result
is relevant for the interpretation of the Super-Kamiokande and SNO
solar neutrino data. We see that depending on the sign of cos 2θ 6= 0,
P̄ 2ν(νe → νe) is either bigger or smaller than 1/2. It follows from
the solar neutrino data that in the range of validity (in E/∆m2) of
Eq. (14.86) we have P̄ 2ν(νe → νe) ∼= 0.3. Thus, the possibility of
cos 2θ ≤ 0 is ruled out by the data. Given the choice ∆m2 > 0 we
made, the data imply that ∆m2 cos 2θ > 0.

If E/∆m2 is sufficiently small so that Ne(t0)/|Nres
e | ≪ 1, we have

P ′ ∼= 0, θm(t0) ∼= θ and the oscillations take place in the Sun as in
vacuum [27]:

P̄ 2ν(νe → νe; ts, t0) ∼= 1 − 1

2
sin2 2θ , (14.87)

which is the average two-neutrino vacuum oscillation probability. This
expression describes with good precision the transitions of the solar pp
neutrinos (Section 14.9.1). The extremely nonadiabatic νe transitions
in the Sun, characterized by γ(t) ≪ 1, are also described by the average
vacuum oscillation probability (Eq. (14.87)) (for ∆m2 cos 2θ > 0 in
this case we have (see e.g., Refs. [172,173]) cos 2θm(t0) ∼= −1 and
P ′ ∼= cos2 θ).

The probability of νe survival in the case 3-neutrino mixing takes
a simple form for |∆m2

31| ∼= 2.5 × 10−3 eV2 ≫ |∆m2
21|. Indeed, for

the energies of solar neutrinos E . 10 MeV, Nres corresponding to
|∆m2

31| satisfies Nres
e31 & 103 cm−3 NA and is by a factor of 10 bigger

than Ne in the center of the Sun. As a consequence, the oscillations
due to ∆m2

31 proceed as in vacuum. The oscillation length associated
with |∆m2

31| satisfies Lv
31 . 10 km ≪ ∆R, ∆R being the dimension

of the region of νe production in the Sun. We have for the different
components of the solar νe flux [169] ∆R ∼= (0.04−0.20)R⊙. Therefore
the averaging over ∆R strongly suppresses the oscillations due to
∆m2

31 and we get [157,181]:
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P 3ν
⊙

∼= sin4 θ13 + cos4 θ13 P 2ν
⊙ (∆m2

21, θ12; Ne cos2 θ13) , (14.88)

where P 2ν
⊙ (∆m2

21, θ12; Ne cos2 θ13) is given by Eq. (14.83) to

Eq. (14.85) in which ∆m2 = ∆m2
21, θ = θ12 and the solar e−

number density Ne is replaced by Ne cos2 θ13. Thus, the solar νe

transitions observed by the Super-Kamiokande and SNO experiments
are described approximately by:

P 3ν
⊙

∼= sin4 θ13 + cos4 θ13 sin2 θ12 . (14.89)

The data show that P 3ν
⊙

∼= 0.3, which is a strong evidence for matter
effects in the solar νe transitions [182] since in the case of oscillations
in vacuum P 3ν

⊙
∼= sin4 θ13 + (1 − 0.5 sin2 2θ12) cos4 θ13 & 0.53, where

we have used sin2 θ13 . 0.0246 and sin2 2θ12 . 0.915 (see Section 14.2).

The analytic expression for the solar νe survival probability,
Eq. (14.88), with P 2ν

⊙ (∆m2
21, θ12; Ne cos2 θ13) given by Eq. (14.83)

to Eq. (14.85) and the prescriptions described above, provides
a particularly precise description of the solar νe survival (and
transitions) in the Sun - the results differ by a few percent from
those obtained by solving numerically the relevant system of evolution
equations using the electron number density distribution in the
Sun provided by the standard solar models - if one uses as input
in the calculations a “running” value of the scale-height r0 [173],
i.e., if for each given values of E/∆m2

21 and θ12 one finds the
resonance density Nres = Nres(E/∆m2

21, θ12), calculates the scale-
height parameter r0 = Ne(r)/(dNe(r)/dr) at the point in the Sun
where Ne cos2 θ13 = Nres(E/∆m2

21, θ12) employing the solar electron
number density distribution Ne = Ne(r) given by the standard solar
models [169], r being the distance from the center of the Sun.

14.8.2.3. The day-night asymmetry:

When the solar neutrinos reaching a detector travel through the
Earth at night, a partial regeneration of the flux of the solar νe is
possible due to the inverse Earth matter-enhanced process [183,184]
νµ(τ) → νe. This can lead to a difference between the solar
neutrino induced charged current day and night event rates in the
detector, RD and RN , i.e., to a non-zero day-night asymmetry
AD−N = 2(RD − RN )/(RD + RN ). An observation of AD−N 6= 0
will be an unambiguous proof of the presence of Earth matter effects
in the transitions of solar neutrinos taking place when the neutrinos
traverse the Earth: in the absence of the effects of the Earth matter
we have AD−N = 0.

In the case of two-neutrino mixing, i.e., neglecting the effects of the
non-zero sin θ13, the probability that an electron neutrino produced
in the Sun will not be converted into νµ(τ) when it propagates in the
Sun and traverses the Earth on the way to the detector is given by the
following simple expression [183]:

P 2ν
SE(νe → νe) = P̄ 2ν

⊙ (νe → νe) + (1 − 2 P̄ 2ν
⊙ (νe → νe))

Pe2 − sin2 θ12

cos 2θ12
,

(14.90)
where P̄ 2ν

⊙ (νe → νe) is the average probability of solar νe survival
in the Sun given in Eq. (14.84) and Eq. (14.85) (with θ = θ12 and
∆m2 = ∆m2

21 > 0) and Pe2 = |A(ν2 → νe)|2 is the probability of
the ν2 → νe transition after the νe have left the Sun, i.e., of the
ν2 → νe transition in the Earth. For solar neutrinos crossing only the
Earth mantle along a trajectory with nadir angle θn, the amplitude
A(ν2 → νe) in the constant density approximation, has the form:

A(ν2 → νe) = sin θ12+(e−iϕman−1) cos(θ12−θman
12 ) sin θman

12 , (14.91)

where ϕman = (Em
2 − Em

1 )man2Lman, (Em
2 − Em

1 )man being the
relevant difference of the energies of the two matter-eigenstate
neutrinos in the Earth mantle and θman

12 is the mixing angle in
the mantle which coincides in vacuum with θ12. The quantities
(Em

2 − Em
1 )man and θman

12 can be obtained from Eq. (14.59) and
Eq. (14.57) by setting θ = θ12, ∆m2 = ∆m2

21, Nres
e = Nres

e21 =

∆m2
21 cos 2θ12/(2E

√
2GF ) and Ne = Ñman

e (θn). The two layer
constnat density approximation expressions for A(ν2 → νe) and Pe2

for solar neutrinos crossing the Earth core at night were derived and
can be found in Ref. 154.

During the day, when the neutrinos do not cross the Earth,
Pe2 = sin2 θ12 and we have P 2ν

SE(νe → νe) = P̄ 2ν
⊙ (νe → νe). For Earth

crossing neutrinos at night Pe2 6= sin2 θ12 due to the Earth matter
effect and P 2ν

SE(νe → νe) 6= P̄ 2ν
⊙ (νe → νe).

Detailed calculations of the day-night asymmetry AD−N 6= 0 for the
solar neutrino detectors Super-Kamiokande, SNO and BOREXINO
have been performed, e.g., in Refs. [185]. In Refs. [186] the effects
of a θ13 6= 0 on the predictions for the asymmetry AD−N were
taken into account. The results of these calculations showed that
for the experimentally determined current values of ∆m2

21 and
θ12, the predicted values of the asymmetry AD−N for the SNO
and BOREXINO experiments are below the sensitivity of these
experiments. For the Super-Kamiokande detector an asymmetry
AD−N ∼ −3% was predicted.

14.9. Neutrino oscillation experiments

14.9.1. Solar neutrino experiments :

So far, solar neutrinos have been observed by chlorine (Homes-
take) [6] and gallium (SAGE [8], GALLEX [9,10], and GNO [11])
radiochemical detectors, water Cherenkov detectors using light water
(Kamiokande [187,7] and Super-Kamiokande [188–191]) and heavy
water (SNO [13,14,192,193]) , and liquid scintillation detectors
(Borexino [194–198] and KamLAND [199,200]) .

A pioneering solar neutrino experiment by R. Davis, Jr. and
collaborators at Homestake using the 37Cl - 37Ar method proposed
by B. Pontecorvo [201] started in the late 1960s. This experiment
exploited νe absorption on 37Cl nuclei followed by the produced 37Ar
decay through orbital e− capture,

νe +37 Cl → 37Ar + e− (threshold 814 keV). (14.92)

Note that νe absorption reactions on nuclei are CC reactions. The
detector contained 615 tons of tetrachloroethylene, C2Cl4. The 37Ar
atoms produced are radioactive, with a half life (τ1/2) of 34.8 days.
After an exposure of the detector for two to three times τ1/2, the
reaction products were chemically extracted and introduced into a
low-background proportional counter, where they were counted for
a sufficiently long period to determine the exponentially decaying
signal and a constant background. Solar-model calculations predict
that the dominant contribution in the chlorine experiment came
from 8B neutrinos, the second to the dominant from 7Be neutrinos,
with pep, 13N, and 15O neutrinos also giving additional subdominant
contributions.

Gallium experiments (GALLEX and GNO at Gran Sasso in Italy
and SAGE at Baksan in Russia) utilized the reaction

νe +71 Ga → 71Ge + e− (threshold 233 keV), (14.93)

which is sensitive to the most abundant pp solar neutrinos. The
solar-model calculations predict that more than 80% of the capture
rate in gallium is due to low energy pp and 7Be solar neutrinos
with the pp rate being about twice the 7Be rate. The 71Ge atoms
decay through electron capture with a half life (τ1/2) of 11.43 days.
SAGE used approximately 50 tons of liquid gallium metal as a a
target. GALLEX used 101 tons of GaCl3, containing 30.3 tons of
gallium. Both experiments used natural gallium, containing 39.9%
of 71Ga isotope. SAGE started measurement from December, 1989.
GALLEX experiment had been conducted between 1991 and 1997.
Since April, 1998, a newly defined collaboration, GNO (Gallium
Neutrino Observatory) continued the gallium experiment at Gran
Sasso until April 2003.

Both GALLEX [202] and SAGE [203] tested their detectors using
intense 51Cr radioactive sources with known activities. Low energy
neutrinos relevant to test the gallium experiments (∼ 750 keV and
∼ 320 keV neutrinos) are emitted from decays of 51Cr.

In 1987, the Kamiokande experiment at Kamioka in Japan
succeeded in real-time solar neutrino observation, utilizing νe
scattering,

νx + e− → νx + e− , (14.94)
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in a 3,000-ton water-Cherenkov detector. This experiment took
advantage of the directional correlation between the incoming neutrino
and the recoil electron. This feature greatly helps the clear separation
of the solar-neutrino signal from the background. The Kamiokande
result gave the first direct evidence that neutrinos come from the
direction of the Sun [187]. In 1996, the high-statistics Super-
Kamiokande experiment [188–191] with a 50-kton water Cherenkov
detector replaced the Kamiokande experiment. Due to the high
thresholds (recoil-electron total energy of 7 MeV in Kamiokande and
4 MeV at present in Super-Kamiokande) the experiments observe pure
8B solar neutrinos. It should be noted that the reaction (Eq. (14.94))
is sensitive to all active neutrinos, x = e, µ, and τ . However, the
sensitivity to νµ and ντ is smaller than the sensitivity to νe since
σ(νµ,τ e) ≈ 0.16 σ(νee).

In 1999, a new real time solar-neutrino experiment, SNO
(Sudbury Neutrino Observatory), in Canada started observation. This
experiment used 1000 tons of ultra-pure heavy water (D2O) contained
in a spherical acrylic vessel, surrounded by an ultra-pure H2O shield.
SNO measured 8B solar neutrinos via the CC and NC reactions

νe + d → e− + p + p (CC) , (14.95)

and
νx + d → νx + p + n (NC) , (14.96)

as well as νe scattering, (Eq. (14.94)). The CC reaction, (Eq. (14.95)),
is sensitive only to νe, while the NC reaction, (Eq. (14.96)), is
sensitive to all active neutrinos. This is a key feature to solve the
solar neutrino problem. If it is caused by flavour transitions such as
neutrino oscillations, the solar neutrino fluxes measured by CC and
NC reactions would show a significant difference.

The Q-value of the CC reaction is −1.4 MeV and the e− energy is
strongly correlated with the νe energy. Thus, the CC reaction provides
an accurate measure of the shape of the 8B neutrino spectrum.
The contributions from the CC reaction and νe scattering can be
distinguished by using different cos θ distributions, where θ is the
angle of the e− momentum with respect to the Sun-Earth axis. While
the νe scattering events have a strong forward peak, CC events have
an approximate angular distribution of (1 − 1/3 cosθ).

The neutrino energy threshold of the NC reaction is 2.2 MeV. In
the pure D2O [13,14], the signal of the NC reaction was neutron
capture in deuterium, producing a 6.25-MeV γ-ray. In this case, the
capture efficiency was low and the deposited energy was close to the
detection threshold of 5 MeV. In order to enhance both the capture
efficiency and the total γ-ray energy (8.6 MeV), 2 tons of NaCl was
added to the heavy water in the second phase of the experiment [192].
Subsequently NaCl was removed and an array of 3He neutron counters
were installed for the third phase measurement [193]. These neutron
counters provided independent NC measurement with different
systematics from that of the second phase, and thus strengthened the
reliability of the NC measurement. The SNO experiment completed
data acquisition in 2006.

Another real time solar neutrino experiment, Borexino at Gran
Sasso, started solar neutrino observation in 2007. This experiment
measures solar neutrinos via νe scattering in 300 tons of ultra-pure
liquid scintillator. With a detection threshold as low as 250 keV,
the flux of monochromatic 0.862 MeV 7Be solar neutrinos has been
directly observed for the first time [194]. Further, Borexino measured
the fluxes of monochromatic 1.44 MeV pep solar neutrinos [195] and
pp solar neutrinos [196], both for the first time. Measurements of
these low energy solar neutrinos are important not only to test the
SSM further, but also to study the MSW effect over the energy region
spanning from sub-MeV to 10 MeV.

KamLAND is a 1-kton ultra-pure liquid scintillator detector located
at the old Kamiokande’s site. Recently this experiment also measured
the 7Be solar neutrino flux [199]. As KamLAND is a multi-purpose
experiment with one of the primary goals to be a long-baseline neutrino
oscillation studies using electron antineutrinos emitted from nuclear
power reactors, further description of the KamLAND experiment is
given later in Section 14.9.4.

14.9.2. Atmospheric neutrino oscillation experiments :

Almost all large underground detectors can observe atmospheric
neutrinos. In the early history of neutrino oscillation studies using
atmospheric neutrinos, water Cherenkov detectors for Kamio-
kande [204,205] and IMB [206] (experiment in the US) and iron
tracking calorimeters for the Frejus experiment [207] in France and the
Soudan 2 experiment [208] at the Soudan mine in the US, measured
atmospheric neutrinos, in particular, the Φ(νµ + ν̄µ)/Φ(νe + ν̄e) ratio.
The main purpose of all these experiments was search for nucleon
decay, and atmospheric neutrinos were backgrounds for the main
purpose. Following these initial experiments, Super-Kamiokande dis-
covered the atmospheric neutrino oscillation [17], and a multi-purpose
detector MACRO [209] at Gran Sasso obtained results consistent
with neutrino oscillation. Later, the far detector of the MINOS long
baseline neutrino oscillation experiment also measured atmospheric
neutrinos [210], and obtained results consistent with atmospheric
neutrino oscillation. This detector is a 5.4 kton iron-scintillator
tracking calorimeter with toroidal magnetic field.

Atmospheric neutrino oscillations have also been observed by
the neutrino telescopes for high-energy neutrino astronomy (TeV ∼
PeV) using Cherenkov technique, ANTARES and IceCube-DeepCore,
based on the measurement of νµ charged-current events having an
upward-going muon track to avoid contamination from atmospheric
muon background. ANTARES [211] is an open water detector
deployed deep under the Mediterranean Sea (depth ∼ 2500 m) 40
km off-shore from Toulon, France, while IceCube [212] is a detector
deployed in the ice at the South Pole at the depth from 1450 m
to 2450 m. Though both experiments are optimized to high-energy
neutrino interactions in the TeV range, they need to measure muon
neutrinos with energies as low as ∼ 20 GeV in order to be sensitive
to atmospheric neutrino oscillations. ANTARES could reconstruct
upward-going muons from νµ interactions down to 20 GeV [213],
while IceCube used the low-energy sub-detector DeepCore, a region of
denser IceCube instrumentation, to lower the muon neutrino energy
threshold down to 10 GeV [214] (also see Ref. 215 with 20 GeV
threshold).

All these detectors, with the exception of the MINOS far detector,
cannot measure the charge of the final-state leptons, and, therefore,
neutrino and antineutrino induced events cannot be discriminated; the
MINOS far detector can measure the charge of the muon track, and,
therefore, identify νµ and ν̄µ charged-current events. However, all
these detectors can identify the final-state leptons to be µ-like or e-like.
Taking Super-Kamiokande as an example, neutrino events having
their vertex in the 22.5 kton fiducial volume are classified into fully
contained (FC) events and partially contained (PC) events. The FC
events are required to have no activity in the anti-counter. Single-ring
events have only one charged lepton which radiates Cherenkov light
in the final state, and particle identification is particularly clean for
single-ring FC events. A ring produced by an e-like (e±, γ) particle
exhibits a more diffuse pattern than that produced by a µ-like (µ±,
π±) particle, since an e-like particle produces an electromagnetic
shower and low-energy electrons suffer considerable multiple Coulomb
scattering in water. All the PC events are assumed to be µ-like since
the PC events comprise a 98% pure charged-current νµ sample.

In the near future, Super-Kamiokande and the MINOS (now
MINOS+ [216]) far detector will continue atmospheric neutrino
measurements. In addition, currently several large underground
detectors are proposed for construction (liquid argon detectors
with a total mass of 10 - 40 kton as the far detector of the
DUNE experiment [84] in the US, and a 1 Mton water Cherenkov
detector, Hyper-Kamiokande [165], as the far detector of the
T2HK experiment [85] in Japan) or approved (a 50 kton magnetized
iron tracking calorimeter, ICAL at the INO (India-based Neutrino
Observatory) [219] in the southern Indian state of Tamil Nadu).

As high-statistics atmospheric neutrino observations in the energy
region of a few to ∼ 10 GeV are considered to be promising for
the determination of the neutrino mass ordering, see Section 14.8,
there are two proposed densely-instrumented neutrino telescopes
PINGU (Precision IceCube Next-Generation Upgrade) [220] and
ORCA (Oscillation Research with Cosmics in the Abyss) [221], both
having a multi-megaton total mass. PINGU will be deployed inside
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the DeepCore, and will be sensitive to > 1 GeV. ORCA is proposed
as part of the second phase of the KM3NeT [222], a network of
neutrino telescopes deep under the Mediterranean Sea. ORCA will
have sensitivity down to a few GeV, its site being Toulon, France.

14.9.3. Accelerator neutrino oscillation experiments :

For earlier accelerator neutrino oscillation experiments before the
discovery of the atmospheric neutrino oscillation, see, e.g., Ref. 223.
The ∆m2 ≥ 2× 10−3 eV2 region can be explored by accelerator-based
long-baseline experiments with typically E ∼ 1 GeV and L ∼
several hundred km. With a fixed baseline distance and a narrower,
well understood neutrino energy spectrum, the value of |∆m2

31(32)|
and, with higher statistics, also the relevant neutrino mixing angle,
are potentially better constrained in accelerator experiments than
from atmospheric neutrino observations. With νµ → νe appearance
measurements, accelerator long-baseline experiments can measure θ13

within an uncertainty related, in particular, to the CP-violating phase
δ. Using precise results on θ13 from reactor experiments, they can
potentially determine or constrain δ and the neutrino mass ordering,
depending on the experimental conditions such as baseline distance.
K2K [19], MINOS [20,21] and MINOS+ [216], OPERA [141,142],
ICARUS [224], T2K [23,22], and NOνA [55,56] are completed or
currently running experiments, and DUNE [84] and T2HK [85] are
proposed future experiments.

The K2K (KEK-to-Kamioka) long-baseline neutrino oscillation
experiment [19] is the first accelerator-based experiment with
a neutrino path length extending hundreds of kilometers. A horn-
focused wide-band muon neutrino beam having an average L/Eν ∼ 200
(L = 250 km, 〈Eν〉 ∼ 1.3 GeV), was produced by 12-GeV protons
from the KEK-PS and directed to the Super-Kamiokande detector. A
near detector was located 300 m downstream of the production target.
K2K experiment started data-taking in 1999 and was completed in
2004.

MINOS [20,21] is the second long-baseline neutrino oscillation
experiment with near and far detectors. Neutrinos are produced by
the NuMI (Neutrinos at the Main Injector) facility using 120 GeV
protons from the Fermilab Main Injector. The far detector is a 5.4
kton (total mass) iron-scintillator tracking calorimeter with toroidal
magnetic field, located underground in the Soudan mine. The baseline
distance is 735 km. The near detector, located 1.04 km downstream of
the production target, is also an iron-scintillator tracking calorimeter
with toroidal magnetic field, with a total mass of 0.98 kton. The
NuMI neutrino beam is a horn-focused wide-band beam. Its energy
spectrum can be varied by moving the target position relative to
the first horn and changing the horn current. MINOS started the
neutrino-beam run in 2005 and was completed in 2012. Almost all
the MINOS data were taken with the low-energy beam spectrum
which peaked at 3 GeV. Part of the MINOS data were taken with
the ν̄µ-enhanced beam by inverting the current in magnetic horns.
In September, 2013, the MINOS+ experiment [216] started with the
same near and far detectors as the MINOS experiment, but with the
medium-energy beam spectrum which peaks at 7 GeV. At zero degree,
the NuMI medium-energy beam has much higher intensity than the
NuMI low-energy beam.

The T2K experiment [22,23] is the first off-axis long-baseline
neutrino oscillation experiment. The baseline distance is 295 km
between the J-PARC in Tokai, Japan and Super-Kamiokande. A
narrow-band νµ beam with a peak energy of 0.6 GeV, produced by
30 GeV protons from the J-PARC Main Ring, is directed 2.5◦ off-axis
to SK. With this configuration, the νµ beam is tuned to the first
oscillation minimum of the νµ survival probability. T2K started the
first physics run in 2010.

The NOνA experiment [55,56] is an off-axis long-baseline neutrino
oscillation experiment using the the NuMI medium-energy beam. Its
detectors are positioned 14 mrad off-axis. With this configuration, the
neutrino beam has a narrow spectrum which peaks at 2 GeV. The 14
kton far detector is located on the surface at Ash River, Minnesota,
810 km from the production target. The 0.3 kton near detector is
located underground at Fermilab, approximately 1km from the target.
Both detectors are fine-grained tracking calorimeters consisting of

arrays of PVC cells filled with liquid scintillator. NOνA started full
operation in October, 2014.

Although the atmospheric neutrino oscillations and accelerator
long-baseline νµ disappearance data are fully consistent with the
dominance of νµ → ντ oscillations for νµ at GeV energies, ντ

appearance in the muon neutrino beam has to be demonstrated. As
the τ production threshold is Eν ∼ 3.5 GeV, a high-energy neutrino
beam is needed for this purpose. The only experiment of this kind
is OPERA [141,142] with a muon neutrino source at CERN and a
detector at Gran Sasso with the baseline distance of 730 km. OPERA
does not have a near detector. The CNGS (CERN Neutrinos to
Gran Sasso) neutrino beam with 〈Eν〉 = 17 GeV is produced by
high-energy protons from the CERN SPS. OPERA received the CNGS
neutrino beam between 2008 and 2012. The detector is a combination
of the “Emulsion Cloud Chamber” and magnetized spectrometer,
having a target mass of 1,290 tons. At Gran Sasso, another neutrino
experiment, ICARUS [224], with a 600-ton liquid argon detector, was
located and received the CNGS neutrino beam from 2010 to 2012.
The ICARUS detector will be transported to Fermilab by 2017, and
will be used in a short baseline experiment.

DUNE (Deep Underground Neutrino Experiment) [84] is a projected
future experiment with a 1,300 km baseline. A 10 ∼ 34 kton liquid-
argon far detector will be located deep underground at the Sanford Lab
in South Dakota, the U.S. A fine-grained near neutrino detector will
be installed at Fermilab. Based on the existing NuMI beamline and a
MW class proton source, a wide-band, high-intensity νµ beam with a
peak flux at 2.5 GeV is considered for this experiment. T2HK [85] is
another future long baseline experiment from J-PARC to the 1 Mton
water Cherenkov detector, Hyper-Kamiokande [165], which is at the
proposal stage, at Kamioka. An upgrade of the J-PARC Main Ring to
achieve a MW-class beam power is also proposed.

In the context of possible hints for the existence of sterile neutrinos
at the eV scale, short-baseline accelerator neutrino oscillation
experiments have been drawing attention. LSND [225], Karmen 2
(and Karmen 1) [226], and MiniBooNE [227,228] are completed
experiments. New short-baseline experiments, MicroBooNE, SBND,
and ICARUS are in preparation at Fermilab [229]. The detectors of
all these new experiments use liquid-argon TPC technology.

The LSND (Liquid Scintillation Neutrino Detector) experiment [225]
used the LANSE (Los Alamos Neutron Science Center, formerly known
as the LAMPF) 800 MeV proton linac as a neutrino source. At this
energy, kaon production is negligible. Most of the produced positive
pions stop in the massive target and decay at rest, with decay muons
also stop in the target and decay. Most of the produced negative
pions also stop in the target and are absorbed by the target nuclei.
Therefore, this neutrino source emits νµ, ν̄µ, and νe, with very small
contamination of ν̄e which comes from π− decay in flight followed
by the µ− decay at rest. Because of this small ν̄e component in the
neutrino flux, LSND made a sensitive search for ν̄µ → ν̄e appearance
with 167 tons of diluted liquid scintillator in a tank located about 30
m from the neutrino source, using the reaction ν̄e + p → e+ + n. Also,
LSND studied νµ → νe appearance above the Michel electron endpoint
energy using the reaction νe + C → e− + N , as the νe flux from µ+

decay in flight is suppressed due to the long muon lifetime and that
from π+ decay in flight is suppressed by the small π+ → e+ + νe

branching ratio. The Karmen 2 experiment [226] used the 800 MeV
proton synchrotron at the neutron spallation facility of the Rutherford
Appleton Laboratory, also to produce low-energy ν̄µ flux from µ+

decay at rest. The Karmen 2 detector is a segmented liquid scintillator
calorimeter located at a distance of 17.7 m from the neutrino source.
MiniBooNE used a conventional horn-focused neutrino beam produced
by 8 GeV protons from the Fermilab booster synchrotron. MiniBooNE
investigated both νe [227] and ν̄e [228] appearance in νµ and ν̄µ

beams, respectively, with a detector containing 806 tons of mineral oil
and located 541 m downstream of the production target.
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14.9.4. Reactor neutrino oscillation experiments :

As the relevant energy range of the events detected in the reactor
experiment is < 10 MeV, detection of a prompt positron signal and
delayed neutron signal in coincidence is important to identify the
inverse β-decay, rejecting natural backgrounds. For detecting neutrons
effectively, gadolinium-loaded liquid scintillator is widely used. While
neutron capture on a hydrogen produces a 2.2 MeV γ, neutron capture
on Gd produces multiple γ, each having average energy of ∼ 2 MeV,
giving a ∼ 8 MeV signal in total.

For short baseline reactor ν̄e neutrino oscillation experiments in
1980s or earlier, see, e.g., Refs. [230,46]. Reactor ν̄e disappearance
experiments with L ∼ 1 km, 〈E〉 ∼ 3 MeV are sensitive to
E/L ∼ 3 × 10−3 eV2 ∼ |∆m2

31(32)|. At this baseline distance, the

reactor ν̄e oscillations driven by ∆m2
21 are negligible. Therefore, as

can be seen from Eq. (14.44) and Eq. (14.46), θ13 can be directly
measured. An experiment at the Chooz Nuclear Power Station in
France [51] was the first experiment of this kind. The detector was
located in an underground laboratory with 300 mwe (meter water
equivalent) rock overburden, at about 1 km from the neutrino source.
It consisted of a central 5-ton target filled with 0.09% Gd-loaded liquid
scintillator, surrounded by an intermediate 17-ton and outer 90-ton
regions filled with Gd-free liquid scintillator. Another experiment at
the Palo Verde Nuclear Generating Station in Arizona, United States,
also searched for ν̄e disappearance using 11.34 tons of Gd-loaded liquid
scintillator located at a shallow (32 mwe) underground site, about 800
m from the neutrino source [231].

Although these two experiments in the late 1990s had found no
evidence for ν̄e disappearance, after establishment of atmospheric
and solar neutrino oscillations the importance of the reactor neutrino
oscillation experiment to measure θ13 was widely recognized, and this
led to the realization of the three new reactor experiments, Double
Chooz in France, RENO in Korea, and Daya Bay in China. The
Double Chooz experiment [30,33] measures electron antineutrinos from
two 4.25 GWth reactors with a far detector at an average distance of
1050 m from the two reactor cores. The Daya Bay experiment [31,35]
measures ν̄es from the Daya Bay nuclear power complex (six 2.9
GWth reactors), initially with six functionally identical detectors
deployed in two near (470 m and 576 m of flux-weighted baselines) and
one far (1648 m) underground halls. The first Daya Bay result [31]
was obtained with this detector configuration. Later, two detectors
were further installed, one in one of the near detector hall and the
other in the far detetor hall. The RENO experiment [32] measures
electron antineutrinos from four 2.8 GWth and two 2.66 GWth
reactors at Yonggwang Nuclear Power Plant with two identical
detectors located at 294 m and 1383 m from the reactor array
center (or flux-weighted baseline distance of 408.56 m and 1443.99 m,
respectively). Antineutrino detectors of these experiments have similar
structures. They consist of three layers and an optically independent
outer veto detector. The innermost layer of the antineutrino detector
is filled with Gd-loaded liquid scintillator, which is surrounded by a
“γ-catcher” layer filled with Gd-free liquid scintillator, and outside
the γ-catcher is a buffer layer filled with mineral oil. An outer veto
detector is filled with purified water (Daya Bay and RENO) or liquid
scintillator (Double Chooz). In addition, the Double Chooz near
detector tank is shielded by a 1 m thick water buffer. RENO and
Daya Bay started measurements with both the near and far detectors
from the beginning. However, the Double Chooz near detector has
been completed at the end of 2014. All these experiments published
their first results on reactor ν̄e disappearance in 2012.

For longer baseline distance of L ∼ a few hundred km, a reactor
neutrino oscillation experiment is sensitive to ∆m2 down to ∼ 10−5

eV2. Therefore, such an experiment can test the LMA (Large
Mixing Angle) solution of the solar neutrino problem, assuming CPT
invariance. However, a higher ν̄e flux and a larger target mass are
needed compared to short-baseline reactor experiments to obtain
statistically significant event rate. So far, KamLAND is the only
experiment of this kind. It is located at the old Kamiokande’s site
in Japan. Its neutrino target is 1-kton ultra-pure liquid scintillator
contained in a transparent balloon, which is hold inside a spherical
tank with buffer oil filled between the baloon and the tank. The tank

is surrounded by an outer water Cherenkov detector. Before the Great
East Japan Earthquake in March 2011, many nuclear reactors were
operating in Japan, and more than 79% of the ν̄e flux at KamLAND
was coming from 26 reactors between 138 - 214 km away, with a
flux-weighted average distance of ∼ 180 km.

In future, medium baseline (∼ 50 km) reactor neutrino oscillation
experiments with neutrino target mass of ∼ 20 kton and with a
very good energy resolution of 3%/

√

Eν(MeV), not reached in any
previous experiment with liquid scintillator, are aiming, in particular,
to determine the type of spectrum the neutrino masses obey, i.e., the
neutrino mass ordering (see Section 14.2). These experiments have
additional rich physics program. The Jiangmen Underground Neutrino
Observatory (JUNO) [232] at Kaiping, Jiangmen in Southern China
will be located at 53 km from both of the planned Yangjiang and
Taishan nuclear power plants. The neutrino target of this experiment
will be 20 kton liquid scintillator. JUNO is a funded project, and
its construction started in January, 2015. A similar experiment,
RENO50 [127], is also proposed in Korea.

14.10. Results of solar neutrino experiments and

KamLAND

In 1967, analyzing the possible effects of neutrino oscillations on
the solar neutrino flux measurements, B. Pontecorvo predicted the
solar neutrino “deficit” in experiments detecting solar neutrinos via a
CC reaction [1] before the first solar neutrino data were available. The
solar-neutrino problem, i.e., the problem of understanding the origin
of the observed deficit of solar neutrinos, remained unsolved for more
than 30 years since the late 1960s, but solar neutrino experiments
have achieved remarkable progress since the beginning of the new
century, and the solar-neutrino problem has been understood as due
to neutrino flavour conversion.

14.10.1. Measurements of ∆m2

21
and θ12 :

From the very beginning of the solar-neutrino observation by
the Homestake chlorine experiment [233] in the late 1960s, it was
recognized that the observed flux was significantly smaller than
the SSM prediction. The subsequent radiochemical solar neutrino
experiments using 71Ga, SAGE [234] and GALLEX [9] also reported
smaller solar neutrino fluxes than the SSM predictions in the early
1990s. final results of these experiments [235] are compared with the
SSM predictions in Table 14.5. Experiments with water Cherenkov
detectors, Kamiokande and Super-Kamiokande, observed almost pure
8B solar neutrinos through νe elastic scattering, and they also reported
a clear deficit of 8B solar neutrino flux.

Table 14.5: Results from radiochemical solar-neutrino experi-
ments. The predictions of the standard solar model BPS08(GS)
are also shown. The first and the second errors in the experimen-
tal results are the statistical and systematic errors, respectively.
SNU (Solar Neutrino Unit) is defined as 10−36 neutrino captures
per atom per second.

37Cl→37Ar (SNU) 71Ga→71Ge (SNU)

Homestake [6] 2.56 ± 0.16 ± 0.16 –

GALLEX [10] – 77.5 ± 6.2+4.3
−4.7

GNO [11] – 62.9+5.5
−5.3 ± 2.5

GNO+GALLEX [11] – 69.3 ± 4.1 ± 3.6

SAGE [8] – 65.4+3.1+2.6
−3.0−2.8

SSM [BPS08(GS)] [100] 8.46+0.87
−0.88 127.9+8.1

−8.2

In 2001, the initial SNO CC result combined with the Super-
Kamiokande’s high-statistics νe elastic scattering result [236] provided
direct evidence for flavour conversion of solar neutrinos [13].
Later, SNO’s NC measurements further strengthened this conclu-
sion [14,192,193]. From the salt-phase measurement [192], the fluxes
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measured with CC, ES, and NC events were obtained as

φCC
SNO = (1.68 ± 0.06+0.08

−0.09) × 106cm−2s−1 , (14.97)

φES
SNO = (2.35 ± 0.22 ± 0.15)× 106cm−2s−1 , (14.98)

φNC
SNO = (4.94 ± 0.21+0.38

−0.34) × 106cm−2s−1 , (14.99)

where the first errors are statistical and the second errors are
systematic. In the case of νe → νµ,τ transitions, Eq. (14.99) is a
mixing-independent result and therefore tests solar models. It shows
good agreement with the 8B solar-neutrino flux predicted by the solar
model [98]. Fig. 14.8 shows the salt phase result on the νµ + ντ

flux φ(νµ,τ ) versus the flux of electron neutrinos φ(νe) with the 68%,
95%, and 99% joint probability contours. The flux of non-νe active
neutrinos, φ(νµ,τ ), can be deduced from these results. It is

φ(νµ,τ ) =
(

3.26 ± 0.25+0.40
−0.35

)

× 106cm−2s−1. (14.100)

The non-zero φ(νµ,τ ) is strong evidence for neutrino flavor conversion.
These results are consistent with those expected from the LMA (large
mixing angle) solution of solar neutrino oscillation in matter [26,27]
with ∆m2

21 ∼ 7.5 × 10−5 eV2 and tan2θ12 ∼ 0.45. However, with the
SNO data alone, the possibility of other solutions of solar neutrino
oscillation in matter cannot be excluded with sufficient statistical
significance.

The KamLAND experiment solved this problem and finally
identified the LMA solution as the true solution of the solar neutrino
problem. With the reactor ν̄e’s energy spectrum (< 8 MeV) and a
prompt-energy analysis threshold of 2.6 MeV, this experiment has a
sensitive ∆m2 range down to ∼ 10−5 eV2. Therefore, if the LMA
solution is the real solution of the solar neutrino problem, KamLAND
should observe reactor ν̄e disappearance, assuming CPT invariance.
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Figure 14.8: Fluxes of 8B solar neutrinos, φ(νe), and φ(νµ,τ ),
deduced from the SNO’s CC, ES, and NC results of the salt phase
measurement [192]. The Super-Kamiokande ES flux is from
Ref. 237. The BS05(OP) standard solar model prediction [98]
is also shown. The bands represent the 1σ error. The contours
show the 68%, 95%, and 99% joint probability for φ(νe) and
φ(νµ,τ ). The figure is from Ref. 192.

The first KamLAND results [15] with 162 ton·yr exposure were
reported in December 2002. The ratio of observed to expected
(assuming no ν̄e oscillations) number of events was

Nobs − NBG

NNoOsc
= 0.611± 0.085 ± 0.041 (14.101)

with obvious notation. This result showed clear evidence of an event
deficit expected from neutrino oscillations. The 95% CL allowed
regions are obtained from the oscillation analysis with the observed

event rates and positron spectrum shape. A combined global solar
+ KamLAND analysis showed that the LMA is a unique solution
to the solar neutrino problem with > 5σ CL [238]. With increased
statistics [16,239,240], KamLAND observed not only the distortion of
the ν̄e spectrum, but also for the first time the periodic dependence
on the neutrino energy of the ν̄e survival probability expected from
neutrino oscillations (see Fig. 14.9).
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Figure 14.9: The ratio of the background and geoneutrino-
subtracted ν̄e spectrum, observed in the KamLAND experiment,
to the predicted one without oscillations (survival probability)
as a function of L0/E, where L0=180km. The histograms show
the expected distributions based on the best-fit parameter values
from the two- and three-flavor neutrino oscillation analyses. The
figure is from Ref. 240.

It should be noted that with accumulation of precise solar neutrino
data, analyses using only solar neutrino data [241,242,198] have
attained sufficiently high statistical significance (> 99.73% or > 3σ
CL) to show the LMA solution to be the real solution to the solar
neutrino problem without resorting to the KamLAND data, namely,
without assuming CPT invariance, though the allowed ∆m2

21 range is
better determined by the KamLAND data.

The values of ∆m2
21 and θ12 have been frequently updated by

experimental groups or by phenomenological analysis groups, using
the global solar neutrino data, or the KamLAND data alone, or the
global solar + KamLAND data, or the global neutrino oscillation
data. The latest global analysis results found in Ref. 60 are shown in
Table 14.1.

Regarding the consistency between the KamLAND and solar
neutrino experiments on the values of ∆m2

21 and θ12, it has been
noted that there is a ∼ 2σ level tension between the best-fit value of
∆m2

21 determined by the KamLAND collaboration and that obtained
from analyses using global solar neutrino data [53]. The solar data
prefer lower ∆m2

21 value. The KamLAND and global solar best-fit
values of θ12 are consistent.

14.10.2. Solar neutrino flux measurements and indications

of matter effects :

So far, the pp, pep, 7Be, 8B solar neutrino fluxes have been
measured, and upper limits have been set for the hep and CNO
solar neutrino fluxes, with various techniques. Chlorine (Homestake)
and gallium (SAGE, GALLEX, and GNO) radiochemical experiments
measured capture rates of solar neutrinos above threshold (see
Table 14.5). Light-water Cherenkov detectors, Kamiokande [7] and
Super-Kamiokande [189,191], measured the 8B neutrino flux and
set an upper limit for the hep neutrino flux using νe elastic
scattering [189]. A heavy-water Cherenkov detector, SNO [242], also
measured the 8B neutrino flux, but with three different reactions, NC,
CC, and νe elastic scattering. Liquid scintillator detectors, Borexino
and KamLAND, measured low-energy solar neutrinos using νe elastic
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scattering. In particular, Borexino [198] successfully measured the
pp [196], pep [195], and 7Be [194] solar neutrino fluxes and set
an upper limit for the CNO solar neutrino flux [195]. KamLAND
also measured the 7Be solar neutrino flux [199]. In addition, both
Borexino [197] and KamLAND [200] measured the 8B neutrino flux.
The measured fluxes or upper limits from all these experiments are
listed in the Particle Listings of this RPP edition.
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Figure 14.10: Electron neutrino survival probability as a
function of neutrino energy according to the MSW-LMA model.
The low-energy region (< 1 MeV) of the curve is calculated
for pp and 7Be neutrinos, and the high-energy region for 8B
neutrinos, using the parameter values given in Ref. 52. The
width of the curve reflects ±1σ uncertainties, determined by a
Monte Carlo method sampling errors on parameters [52]. The
points represent the Borexino pp, 7Be, pep, and 8B data and the
SNO+SK 8B data. This figure is provided by A. Ianni in the
name of the BOREXINO Collaboration.

Fig. 14.10 plots the survival probability of solar νe as a function of
neutrino energy. The data points are from the Borexino results except
the SNO+SK 8B data. As explained in Section 14.8.2.2, matter effects
on solar neutrino oscillation is expected to be given by the average
two-neutrino vacuum oscillation probability, 1− 1

2 sin22θ12 for survival

of pp neutrinos. It is ∼ 0.58 for sin2θ12 = 0.297. For 8B neutrinos,
transitions are adiabatic and the survival probability is given by
sin4θ13 + cos4θ13 sin2θ12 ∼ 0.28 for sin2θ13 = 0.0214 (for normal
mass ordering) and sin2θ12 = 0.297. All the data shown in this plot
are consistent with the theoretically calculated curve. This indicates
that these solar neutrino results are consistent with the MSW-LMA
solution of the solar neutrino problem.

In the nighttime, solar neutrino experiments observe neutrinos
propagated through the Earth. Therefore, a non-zero day-night
flux (or interaction rate) asymmetry implies the Earth matter
effects on flavour oscillations of solar neutrinos. In particular, if
the nighttime flux is higher than the daytime flux, it implies a
νe regeneration by the Earth matter effects (see Section 14.8.2.3).
Previously, SNO [242] and Borexino [243] searched for day-night
flux asymmetries of 8B and 7Be neutrinos, respectively, but
they observed no statistically significant asymmetries. Recently,
the Super-Kamiokande experiment has reported [244] a 2.7 σ
indication of non-zero day-night asymmetry of 8B solar neutrinos,
ADN = 2(RD −RN )/(RD + RN ) = −0.032± 0.011± 0.005, where RD
and RN are the average day and average night νe elastic-scattering
rates of 8B solar neutrinos. This result is consistent with the ∆m2

21
and θ12 values in the LMA region.

14.11. Measurements of |∆m2
31(32)| and θ23, and

related topics

The first compelling evidence for the neutrino oscillation was νµ

disappearance observed by the Super-Kamiokande Collaboration in
1998 [17] in the measurement of atmospheric neutrinos produced
by cosmic-ray interactions in the atmosphere. A striking feature of
atmospheric neutrino oscillations was a surprisingly large mixing
angle θ23. Whether mixing is maximal, i.e., θ23 = π/4, or, if not, in
which octant θ23 lies, is one of the questions drawing much interest
in neutrino physics because the measurement of certain fundamental
physical observables depends on the value of sin2 θ23 (see, e.g.,
Sections 14.2 and 14.8.1). The high precision measurement of sin2 θ23

will provide also a test of a large class of theories of neutrino masses
and mixing, based, in particular, on discrete symmetries (see, e.g., the
first two articles quoted in Ref. 87 and Ref. 245).

14.11.1. νµ disappearance :

Prior to the Super-Kamiokande’s discovery of atmospheric neutrino
oscillations, a deficit of atmospheric νµ + ν̄µ flux was indicated by the
Kamiokande experiment [204]. Actually, Kamiokande reported the
double ratio R(νµ/νe) = (Measured νµ/νe)/(Expected νµ/νe)< 1 to
reduce systematic effects due to rather large flux uncertainties. The
IMB [206] and Soudan 2 [208] experiments also observed R < 1, but
the Frejus experiment [207] did not see such a tendency. Kamiokande
further observed zenith-dependence of νµ + ν̄µ flux deficit [205].
However, all these results from early experiments did not have
conclusive statistical significance.

In 1998, the Super-Kamiokande Collaboration reported a significant
zenith-angle (Θ) dependent deficit of µ-like events compared to
the no-oscillation expectation [17]. For multi-GeV (visible energy
> 1.33 GeV) FC+PC muons, the asymmetry A, defined as
A = (U −D)/(U + D), where U is the number of upward-going events
(−1 < cosΘ < −0.2) and D is the number of downward-going events
(0.2 < cosΘ < 1), was observed to be A = −0.296 ± 0.048 ± 0.01
which deviates from 0 by more than 6σ. This asymmetry is expected
to be ∼ 0 independent of the atmospheric neutrino flux model for
neutrino energy > 1 GeV. On the other hand, the zenith-angle
distribution of the e-like events was consistent with the expectation
in the absence of oscillations. Fig. 14.11 shows the recent compilation
of zenith-angle distributions of e-like and µ-like events from the
Super-Kamiokande atmospheric observation. Events included in these
plots are single-ring FC events subdivided into sub-GeV (visible
energy < 1.33 GeV) events and multi-GeV events. The zenith-angle
distribution of the multi-GeV µ-like events is shown combined with
that of the PC events. The final-state leptons in these events have
good directional correlation with the parent neutrinos. The dotted
histograms show the Monte Carlo expectation for neutrino events. If
the produced flux of atmospheric neutrinos of a given flavour remains
unchanged at the detector, the data should have similar distributions
to the expectation. However, the zenith-angle distribution of the
µ-like events shows a strong deviation from the expectation. On
the other hand, the zenith-angle distribution of the e-like events
is consistent with the expectation. This characteristic feature is
interpreted that muon neutrinos coming from the opposite side of the
Earth’s atmosphere, having travelled ∼ 10, 000 km, oscillate into other
neutrinos and disappeared, while oscillations still do not take place
for muon neutrinos coming from above the detector, having travelled
from a few to a few tens km. These results are in good agreement
with νµ ↔ ντ two-flavour neutrino oscillations, because there is no
indication of electron neutrino appearance. The atmospheric neutrinos
corresponding to the events shown in Fig. 14.11 have E = 1 ∼ 10 GeV.
With L = 10000 km, neutrino oscillations suggests ∆m2 ∼ 10−3−10−4

eV2. A significant deficit of µ-like events suggests a large mixing angle.
Super-Kamiokande’s initial results on the oscillation parameters for
νµ ↔ ντ were 5 × 10−4 < ∆m2 < 6 × 10−3 eV2 and sin22θ > 0.82 at
90% CL [17].

Although the Super-Kamiokande’s atmospheric neutrino data are
consistent with νµ ↔ ντ oscillations, this interpretation will be
strengthened if ντ appearance and characteristic sinusoidal behavior of
the νµ survival probability as a function of L/E were observed. In fact,
other exotic explanations such as neutrino decay [246] and quantum
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decoherence [247] cannot be completely ruled out from the zenith-angle
distributions alone. By selecting events with high L/E resolution,
evidence for the dip in the L/E distribution was observed at the right
place expected from the interpretation of the Super-Kamiokande’s
data in terms of νµ ↔ ντ oscillations [18], see Fig. 14.12. This
dip cannot be explained by alternative hypotheses of neutrino decay
and neutrino decoherence, and they are excluded at more than 3σ
in comparison with the neutrino oscillation interpretation. For ντ

appearance, see Section 14.11.4.

The muon neutrino disappearance discovered by Super-Kamiokande
has been confirmed subsequently by atmospheric neutrino experiments,
MACRO [209] and Soudan 2 [248], long baseline accelerator
experiments, K2K [19], MINOS [20,21], T2K [22,23], and NOνA [55],
and neutrino telescope experiments, ANTARES [211] and IceCube-
DeepCore [212]. Fig. 14.13 shows 90% CL allowed regions in the
sin22θ23 - ∆m2

32(31) plane, for the case of normal mass ordering,

reported by the T2K [249], MINOS [250], Super-Kamiokande [251],
and IceCube-DeepCore [212] experiments. All these regions are
derived from three-neutrino oscillation analyses.

14.11.2. Octant of θ23 :

The two-flavour νµ survival probability in vacuum is degenerate
with respect to the interchange θ23 ↔ π/2 − θ23. In other words, the
νµ disappearance is not sensitive to the octant of θ23 in the leading
order. To determine the octant of θ23, it is necessary to perform, e.g.,
precise measurements of νµ disappearance and analyses in terms of
three-neutrino oscillations, or combined analysis of νµ disappearance
and νµ → νe appearance.

MINOS [252] has made a combined analysis of the νµ disappear-
ance [250] and νµ → νe appearance [41] data using the complete set of
accelerator and atmospheric neutrino data. The results obtained are

|∆m2
32| = (2.28 − 2.46) × 10−3 eV2 (68% CL) and sin2 θ23 =

0.35 − 0.65 (90% CL) for normal mass ordering and |∆m2
32| =

(2.32 − 2.53) × 10−3 eV2 (68% CL) and sin2 θ23 = 0.34 − 0.67 (90%
CL) for inverted mass ordering. From this analysis, the best-fit value
of sin2 θ23 < 0.5 (θ23 < π/4) is obtained for inverted ordering.

T2K [249] has estimated these parameters in two methods. In an
analysis of νµ disappearance alone [249], the 1D 68% CL intervals

obtained are sin2 θ23 = 0.514+0.055
−0.056 and ∆m2

32 = (2.51 ± 0.10) × 10−3

eV2 for normal mass ordering and sin2 θ23 = 0.511 ± 0.055 and
∆m2

13 = (2.48 ± 0.10) × 10−3 eV2 for inverted mass ordering. These
results are derived by fitting the reconstructed neutrino energy
spectrum of 120 1-ring µ-like events. In an analysis of combined
measurements of νµ disappearance and νµ → νe appearance with
inclusion of reactor data, normal mass ordering is weakly favored,
and 1D 68% CL intervals obtained are sin2 θ23 = 0.528+0.055

−0.038 and

∆m2
32 = (2.51 ± 0.11) × 10−3 eV2. The T2K results for sin2 θ23 are

consistent with maximal mixing, θ23 = π/4.

14.11.3. ν̄µ disappearance :

The CPT symmetry requires neutrinos and antineutrinos to have
the same masses and mixing parameters. In vacuum, this means
the same survival probabilities for a neutrino and an antineutrino
which have the same energy and which traveled the same distance. In
matter, νµ and ν̄µ survival probabilities are different, but with the
experimental conditions of MINOS and T2K, the differences are small.

MINOS first observed muon antineutrino disappearance [253] with
the NUMI beam line optimized for ν̄µ production. Actually, MINOS
produced a “νµ-dominated” or “ν̄µ-enhanced” beam by selectively
focusing positive or negative pions and kaons. In Ref. 250, MINOS
reported the results of the neutrino oscillation analysis based on the
data obtained with 10.71 × 1020 POT of the νµ-dominated beam and
3.36× 1020 POT of the ν̄µ-enhanced beam. In addition, they used the
atmospheric neutrino data based on the MINOS far detector exposure
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Figure 14.12: Results of the L/E analysis of SK1-SK4
atmospheric neutrino data. The points show the ratio of the
data to the Monte Carlo prediction without oscillations, as
a function of the reconstructed L/E. The error bars are
statistical only. The solid line shows the best fit with 2-
flavour νµ ↔ ντ oscillations. The dashed and dotted lines
show the best fit expectations for neutrino decay and neutrino
decoherence hypotheses, respectively. (This figure is provided by
the Super-Kamiokande Collab.)

Figure 14.13: Comparison of the 90% confidence contours
on the atmospheric oscillation parameters derived from the
T2K [249], MINOS [250], Super-Kamiokande [251], and
Icecube [214] experiments. The Icecube’s log-likelihood profiles
for individual oscillation parameters are also shown (right and
top). A normal mass ordering is assumed. This figure is taken
from arXiv:1410.7227v2.

of 37.88 kt·yr [210]. Because the MINOS detector has a capability
to separate neutrinos and antineutrinos on an event-by-event basis,
it can use both νµ and ν̄µ contained events from the νµ-dominated
beam. From the ν̄µ-enhanced beam, ν̄µ contained events are used.
For the complete data sets used, refer to Ref. 250. Assuming the
identical oscillation parameters for neutrinos and antineutrinos, the
results of the fit within the two-neutrino oscillation framework using
the full MINOS data sample yielded ∆m2 = (2.41+0.09

−0.10) × 10−3

eV2 and sin2 2θ = 0.950+0.035
−0.036, or sin2 2θ > 0.890 at 90% CL.

Allowing independent oscillations for neutrinos and antineutrinos,
characterised respectively by ∆m2, θ and ∆m̄2, θ̄, the results of the
fit are ∆m̄2 = (2.50+0.23

−0.25) × 10−3 eV2 and sin2 2θ̄ = 0.97+0.03
−0.08, or

sin2 2θ̄ > 0.83 at 90% CL, and ∆m2 - ∆m̄2 = (0.12+0.24
−0.26)× 10−3 eV2.

This result shows that the neutrino and antineutrino mass splittings

are in agreement, which is compatible with CPT invariance.

T2K also observed ν̄µ disappearance [59] using an off-axis quasi-
monochromatic ν̄µ beam peaked at ∼ 0.6 GeV with the polarity of the
horn current set to focus negative pions. With 4.01 × 1020 POT, 34
fully contained µ-like events were observed at the Super-Kamiokande.
Oscillation parameters sin2 θ̄23 and ∆m̄2

32 are estimated in the three-
neutrino oscillation framework assuming the normal mass ordering,
and all other parameters fixed to the values taken from the previous
T2K fits [57] and Review of Particle Properties [103]. The best-fit
parameters obtained are ∆m̄2

32 = 2.51×10−3 eV2 and sin2 θ̄23 = 0.45,
with 68% confidence intervals of (2.26 − 2.80) × 10−3 eV2 for ∆m̄2

32
and 0.38 - 0.64 for sin2 θ̄23. These results are consistent with the
MINOS ν̄µ disappearance results [253] as well as the νµ disappearance
parameters measured by T2K [57].

14.11.4. ντ appearance :

Super-Kamiokande Collaboration searched for the appearance of τ
leptons from the CC interactions of oscillation-generated ντ in the
detector using the atmospheric neutrino data [254,24]. An excess
of τ -like events is expected in the upward-going direction. Though
the Super-Kamiokande detector cannot identify a CC ντ interaction
on an event by event basis, the Super-Kamiokande Collaboration
excluded the no-tau-appearance hypothesis at the 3.8σ level through a
neural network analysis on the zenith-angle distribution of multi-GeV
contained events [24].

For the purpose of demonstrating the appearance of tau neutrinos
on an event-by-event basis, a promising method is an accelerator
long-baseline experiment using emulsion technique to identify short-
lived τ leptons produced in the ντ CC interactions. OPERA adopted
this strategy and searched for the appearance of ντ in the CNGS
muon neutrino beam during 2008 and 2012, corresponding to a live
exposure of 17.97 × 1019 POT in total. In 2010, OPERA reported
observation of the first ντ candidate [141]. As of July 2015, OPERA
has reported observation of the fifth ντ candidate [255]. The observed
candidate events are classified into the four decay channels, τ → 1h
(hadronic 1-prong), τ → 1h (hadronic 3-prong), τ → µ, and τ → e,
and expected signal and background events are calculated for each
decay channel. The expected total signal and background events are,
respectively, 2.64 ± 0.53 and 0.25 ± 0.05. With 5 events observed, the
OPERA Collaboration concludes the discovery of ντ appearance with
a significance larger than 5σ.

14.12. Measurements of θ13

In 2012, the last neutrino mixing angle θ13 was established to
be non-zero by reactor experiments. The measured value of θ13 was
sufficiently large to widen the opportunities to measure the unknown
CP-violating phase δ in the PMNS matrix and the neutrino mass
ordering.

14.12.1. Overview :

Reactor ν̄e disappearance experiments with L ∼ 1 km, 〈E〉 ∼ 3 MeV
are sensitive to ∼ E/L ∼ 3 × 10−3 eV2 ∼ |∆m2

31(32)|. At this baseline

distance, the reactor ν̄e oscillations driven by ∆m2
21 are negligible.

Therefore, as can be seen from Eq. (14.44) and Eq. (14.46), θ13 can be
directly measured. The first reactor neutrino oscillation experiment
of this kind, Chooz [51] found no evidence for ν̄e disappearance and
set a 90% CL excluded region on the sin22θ - ∆m2 plane. Another
reactor experiment Palo Verde reported somewhat less restrictive
results [231].

In the accelerator neutrino oscillation experiments with conventional
neutrino beams, θ13 can be measured using νµ → νe appearance.
In 2011, experimental indications of νµ → νe oscillations and a
non-zero θ13 was reported by the T2K experiment. T2K observed,
with 1.43 × 1020 POT, six νe candidate events, while the expectation
for θ13 = 0 was 1.5 ± 0.3 events. This result implied a non-zero θ13

with statistical significance of 2.5σ [28]. The MINOS Collaboration
also searched for the νµ → νe appearance signal, and obtained the
results that disfavored the θ13 = 0 hypothesis at the 89% CL [29].

In 2012, the three reactor neutrino experiments Double Chooz [30],
Daya Bay [31], and RENO [32], published their first results on ν̄e
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disappearance. With measurements by a far detector, Double Chooz
ruled out the no-oscillation hypothesis at the 94.6% C.L. [30]. Then,
Daya Bay reported 5.2σ evidence for non-zero θ13 from live-time
exposure in 55 days [31]. Also, RENO reported non-zero θ13 with
a significance of 4.9σ from 229 days of exposure [32]. Both Daya
Bay and RENO results were obtained from rate-only analyses of the
ν̄e disappearance measurements with near and far detectors. These
three experiments have been accumulating statistics and improved
results have been frequently reported. For their latest results, see
Section 14.12.2.

In 2014, T2K announced [42] the observation of 28 νe appearance
events with 4.92± 0.55 predicted background events. For sin22θ23 = 1
and δ = 0, this result means that θ13 = 0 is excluded with a
significance of 7.3σ. For more details of the T2K results [42] as well as
the 2013 MINOS results [41], see Section 14.12.3.

14.12.2. Latest reactor results :

The latest Daya Bay results [38] are obtained from a total exposure
of 6.9 × 105 GWth · ton · days over 404 days from October 2012
to November 2013. The Daya Bay collaboration has adopted the
three-flavour oscillation scheme and analyzed the relative antineutrino
rates and energy spectra between detectors using a method to
predict the signal in the far hall based on measurements obtained in
the near halls. With this method, they have minimized the model
dependence on reactor antineutrino emission. Also, improvements
in energy calibration (0.2% between detectors) and background
estimation helped reduce systematic errors. Their reported new result,
sin22θ13 = 0.084 ± 0.005 is the most precise measurement of θ13 to
date. To obtain this result, they used sin22θ12 = 0.857 ± 0.024 and
∆m2

21 = (7.50 ± 0.20) × 10−5 eV2, but the dependence on these
parameters is weak. They also found for the effective mass-squared
difference |∆m2

ee| = (2.42± 0.11)× 10−3 eV2, where ∆m2
ee is obtained

by replacing cos2 θ12 sin2 ∆m2
31L/(4E) + sin2 θ12 sin2 ∆m2

32L/(4E)
with sin2 ∆m2

eeL/(4E). From the measured value of |∆m2
ee|, they

deduce ∆m2
32 = (2.37±0.11)×10−3 eV2 for the normal mass ordering

and ∆m2
32 = −(2.47±0.11)×10−3 eV2 for the inverted mass ordering.

These results on ∆m2
32 are consistent with the T2K and MINOS

results.

The latest RENO results are reported in 2016 [39] based on 500 live
days of data. From the measured far-to-near ratio of prompt spectra,
sin22θ13 = 0.082± 0.009± 0.006 and |∆m2

ee| = (2.62+0.21+0.12
−0.23−0.13)× 10−3

eV2 have been obtained.

The latest results from Double Chooz using the data collected
by the far detector in 467.90 live days have been published in
Ref. 40. From a fit to the observed spectrum (“Rate + Shape
analysis”) in the two-flavour oscillation scheme, Double Chooz
obtained sin22θ13 = 0.090+0.032

−0.029 for the normal mass ordering using

∆m2
31 = (2.44+0.09

−0.10) × 10−3 eV2 from MINOS [252]. For the

inverted mass ordering, they obtained sin22θ13 = 0.092+0.033
−0.029, using

|∆m2
31| = (2.38+0.09

−0.10) × 10−3 eV2 [252].

14.12.3. νµ → νe appearance and constraints on δ :

By examining the expression for the probability of νµ → νe

oscillations in matter (given by Eq. (14.72)) it is understood that
subleading terms could have rather large effects and the unknown CP-
violating phase δ, in particular, causes uncertainties in determining the
value of θ13. Actually, from the measurement of νµ → νe appearance,
θ13 is given as a function of δ for a given sign and value of ∆m2

31,
and values of θ23, ∆m2

21 and θ12. Therefore, a single experiment with
a neutrino beam cannot determine the value of θ13, although it is
possible to establish a non-zero θ13. On the other hand, a combination
of the νµ → νe appearance results and the precise measurements of
θ13 from the reactor experiments can yield constraints on the possible
value of δ.

In Ref. 42, with the observation of 28 νe appearance events with
4.92 ± 0.55 predicted background events, for δ = 0, sin2 θ23 = 0.5 and
|∆m2

31(32)| = 2.4×10−3eV2, the T2K collaborations finds in the case of

∆m2
31(32) > 0 (∆m2

31(32) < 0): sin2 2θ13 = 0.140+0.038
−0.032 (0.170+0.045

−0.037).

The significance of nonzero θ13 is 7.3σ for these fixed values of θ23

and δ. Changing the values of θ23 and δ within uncertainties, the
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significance remains above 7σ. The best fit value of sin2 2θ13 thus
found in the T2K experiment is approximately by a factor of 1.6
(1.9) bigger than that found in the Daya Bay experiment [36]. This
implies that the compatibility of the results of the two experiments on
sin2 2θ13 requires, in particular, that δ 6= 0 and/or sin2 θ23 6= 0.5. As
we have seen in Section 14.2, the indicated results lead to a certain
indication about the possible value of δ in the global analyses of
the neutrino oscillation data. T2K has also calculated the 68% and
90% CL allowed regions for sin22θ13, as a function of δ. The results
are shown in Fig. 14.14 where the 1σ range of the sin22θ13 value
from reactor experiments is also shown. T2K has further calculated
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constraints on δ by combining the νµ → νe appearance results with
the θ13 value from reactor experiments into a likelihood function L.
Fig. 14.15 shows the −2∆ lnL value as a function of δ. From this
figure, it is seen that the combined T2K and reactor measurements
prefer δ = −π/2 or 3π/2 for both the normal and inverted mass
ordering, and some δ regions are excluded at 90% CL.

In Ref. 41, MINOS has extended the analysis using 10.6 × 1020

POT ν-beam mode and 3.3 × 1020 POT ν̄-beam mode appearance
data. Assuming ∆m2

31(32) > 0 (∆m2
31(32) < 0), δ = 0, and θ23 < π/4,

the results of this analysis imply that 0.01 (0.03) < 2 sin2θ23

sin22θ13 < 0.12 (0.18) at the 90% CL, with the best fit value 2
sin2θ23 sin22θ13 = 0.051+0.038

−0.030 (0.093+0.054
−0.049). MINOS has also placed

constraints on the value of δ by combining the full MINOS appearance
data and the reactor measurements of θ13.

In 2016, NOνA reported its first result of νe appearance
measurement [56]. The data were taken between February 2014
and May 2015. During this period, the effective fiducial mass of the
NOνA far detector varied from 2.3 kt for 4.0 kt of total mass to 10
kt for the full 14 kt. The exposure corresponding to these data is
equivalent to 2.74 × 1020 POT collected in the full 14 kt far detector,
and 6 νe-like events were observed compared to 0.99 ± 0.11 (syst.)
expected background events: a 3.3σ excess over the background
prediction. NOνA also quote the result of a secondary event selection
method. With this analysis, 11 events were observed over the expected
background of 1.07 ± 0.14 (syst.) events.

14.13. Search for Oscillations Involving Light

Sterile Neutrinos

Although the mixing of the 3 flavour neutrino states has been
experimentally well established, implying the existence of 3 light
neutrinos νj having masses mj not exceeding approximately 1 eV,
there have been possible hints for the presence in the mixing of one or
more additional neutrino states with masses at the eV scale. If these
states exist, they must be related to the existence of one or more
sterile neutrinos (sterile neutrino fields) which mix with the active
flavour neutrinos (active flavour neutrino fields). The hints under
discussion have been obtained: i) in the LSND ν̄µ → ν̄e appearance
experiment [225], in which a significant excess of events over the
background is claimed to have been observed, ii) from the analysis
of the ν̄µ → ν̄e [228] and νµ → νe [227] appearance data of the
MiniBooNE experiment, iii) from the re-analyses of the short baseline
(SBL) reactor neutrino oscillation data using newly calculated fluxes
of reactor ν̄e [257,119], which show a possible “disappearance” of the
reactor ν̄e (“reactor neutrino anomaly”), and iv) from the data of the
radioactive source calibrations of the GALLEX [202] and SAGE [203]
solar neutrino experiments.

The short baseline neutrino oscillation experiment MiniBooNE at
Fermilab investigated νe [227] and ν̄e [228] appearance in νµ and ν̄µ

beams, respectively, with a detector containing 800 tons of mineral oil
and located 541 m downstream of the production target. With the
antineutrino running mode [228], a 2.8σ excess of events over the
background was observed in the energy range of 200 < Eν < 1250
MeV in the charged-current quasielastic data. Excess events were
observed, in particular, in the interval of energies 200 < Eν < 475
MeV, which corresponds to L/E range outside of that probed in
the LSND experiment. The origin of this excess is not understood.
Employing a simple 2-neutrino oscillation hypothesis and using the
data from the entire neutrino energy interval 200 < Eν < 1250 MeV
used in the data analysis, this result, interpreted in terms of νµ → νe

oscillations, corresponds to an allowed region in the sin2 2θ − ∆m2

plane, which overlaps with the allowed region obtained from the
interpretation of the LSND data in terms of ν̄µ → ν̄e oscillations. The
overlap region at the 90% CL extends over ∆m2 ∼ a few ×10−2 eV2

at sin22θ = 1 to 1 eV2 at sin22θ = a few ×10−3. The MiniBooNE
Collaboration studied also the CP conjugate oscillation channel [227],
νµ → νe, and observed a 3.4 σ excess of events in the same energy
range. Most of the excess events lie in the interval 200 < Eν < 475
MeV and are incompatible with the ν̄µ → ν̄e oscillation interpretation
of the LSND data. The energy spectra of the excess events observed

in the νµ [227] and ν̄µ [228] runs are only marginally compatible with
each other and thus with the simple 2-neutrino oscillation hypothesis.

The reactor neutrino anomaly [257] is related to the results of
a new and very detailed calculation of the reactor ν̄e fluxes [119]
which were found to be by approximately 3.5% larger than the fluxes
calculated in Ref. 122 and widely used in the past in the interpretation
of the data of the SBL reactor ν̄e oscillation experiments. These data
show indications for reactor ν̄e “disappearance” when analyzed using
the fluxes from [119]. It should be added that there are a number
of uncertainties in the calculation of the fluxes under discussion
(associated, e.g., with the weak magnetism term contribution to the
corresponding β-decay rates [120], the contribution of a relatively
large number of “forbidden” β-decays [258], etc.) which can be of the
order of the difference between the “old” and “new” fluxes.

Radioactive source calibrations of the GALLEX [202] and
SAGE [203] experiments also showed a deficit of the measured fluxes
compared to the expected fluxes (“Gallium anomaly”), and therefore
might be interpreted as hints for νe disappearance.

Significant constraints on the parameters characterizing the
oscillations involving sterile neutrinos follow from the negative results
of the searches for νµ → νe and/or ν̄µ → ν̄e oscillations in the
Karmen [226], NOMAD [259], ICARUS [224], and OPERA [260]
experiments, and from the nonobservation of effects of oscillations into
sterile neutrinos in the solar neutrino experiments and in the studies
of νµ and/or ν̄µ disappearance in the CDHSW [261], MINOS and
SuperKamiokande experiments.

Two possible “minimal” phenomenological models (or schemes)
with light sterile neutrinos are widely used in order to explain the
data discussed in this section in terms of neutrino oscillations: the
so-called “3 + 1” and “3 + 2” models. They contain respectively one
and two sterile neutrinos (right-handed sterile neutrino fields). Thus,
the “3 + 1” and “3 + 2” models have altogether 4 and 5 light massive
neutrinos νj , which in the minimal versions of these models are
Majorana particles. The additional neutrinos ν4 and ν4, ν5 should
have masses m4 and m4, m5 at the eV scale (see below). It follows
from the data that if ν4 or ν4, ν5 exist, they couple to the electron and
muon in the weak charged lepton current with couplings Uek and Uµk,
k = 4; 4, 5, which are approximately |Uek| ∼ 0.1 and |Uµk| ∼ 0.1.

Global analysis of all the data (positive evidences and negative
results) relevant for the test of the sterile neutrino hypothesis were
performed in Ref. 262 and in Ref. 263. Analyzing the data within
the 3 + 1 scheme, the authors of Ref. 262 find for the best fit values
of the parameters |Ue4|2, |Uµ4|2 and ∆m2

SBL ≡ m2
4 − m2

min, where
mmin = min(mj), j = 1, 2, 3, characterizing the active-sterile neutrino
(antineutrino) oscillations:

|Ue4|2 = 0.0225 , |Uµ4|2 = 0.0289 , ∆m2
SBL = 0.93 eV2 . (14.102)

In contrast to Ref. 262, the authors of Ref. 263 reported also results
within the 3 + 1 scheme without including in the data set used in
their global analysis the MiniBooNE data at Eν ≤ 0.475 GeV. As
we have already mentioned, these data show an excess of events over
the estimated background [227,228] whose nature is presently not well
understood. For the best fit values of |Ue4|2, |Uµ4|2 and ∆m2

SBL in
this case the authors of Ref. 263 find:

|Ue4|2 = 0.03 , |Uµ4|2 = 0.013 , ∆m2
SBL = 1.60 eV2 . (14.103)

In the context of the “3+1” model, the Daya Bay Collaboration
recently searched for relative spectral distortion in their reactor
antineutrino data, due to possible mixing of a light sterile neutrino in
the |∆m2

41| < 0.3 eV2 region [264]. The result is consistent with no
sterile neutrino mixing, leading to the most stringent limits on sin2θ14

in the 10−3 eV2 < |∆m2
41| < 0.1 eV2 region.

The existence of light sterile neutrinos has cosmological implications
the discussion of which lies outside the scope of the present article (for
a discussion of the cosmological constraints on light sterile neutrinos
see, e.g., [265,75]) .

The hypothesis of existence of light sterile neutrinos with eV scale
masses and charged current couplings to the electron and muon quoted
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above will be tested in a number of experiments with reactor and
accelerator neutrinos, and neutrinos from artificial sources, some of
which are under preparation and planned to start taking data already
this year (see, e.g., [266] for a detailed list and discussion of the
planned experiments).

14.14. Outlook

The currently available data on neutrino oscillations are summarised
in Fig. 14.16.

The program of experimental research in neutrino physics extends
beyond 2030 (see, e.g., Refs. [80,83,84,85,219]) . In the coming years
we expect a wealth of new data that, it is hoped, will shed light on
the fundamental aspects of neutrino mixing: the nature - Dirac or
Majorana - of massive neutrinos, the type of spectrum the neutrino
masses obey, the status of CP symmetry in the lepton sector, the
absolute neutrino mass scale, the origin of the observed patterns of
the neutrino masses and mixing, and, eventually, on the mechanism of
neutrino mass generation. We are looking forward to these exciting
developments in neutrino physics.
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Basel).

15.1. Quantum numbers of the quarks

Quantum chromodynamics (QCD) is the theory of the strong
interactions. QCD is a quantum field theory and its constituents are
a set of fermions, the quarks, and gauge bosons, the gluons. Strongly
interacting particles, the hadrons, are bound states of quark and gluon
fields. As gluons carry no intrinsic quantum numbers beyond color
charge, and because color is believed to be permanently confined, most
of the quantum numbers of strongly interacting particles are given
by the quantum numbers of their constituent quarks and antiquarks.
The description of hadronic properties which strongly emphasizes the
role of the minimum-quark-content part of the wave function of a
hadron is generically called the quark model. It exists on many levels:
from the simple, almost dynamics-free picture of strongly interacting
particles as bound states of quarks and antiquarks, to more detailed
descriptions of dynamics, either through models or directly from
QCD itself. The different sections of this review survey the many
approaches to the spectroscopy of strongly interacting particles which
fall under the umbrella of the quark model.

Table 15.1: Additive quantum numbers of the quarks.

d u s c b t

Q – electric charge − 1

3
+ 2

3
− 1

3
+ 2

3
− 1

3
+ 2

3

I – isospin 1

2

1

2
0 0 0 0

Iz – isospin z-component − 1

2
+ 1

2
0 0 0 0

S – strangeness 0 0 −1 0 0 0

C – charm 0 0 0 +1 0 0

B – bottomness 0 0 0 0 −1 0

T – topness 0 0 0 0 0 +1

Quarks are strongly interacting fermions with spin 1/2 and, by
convention, positive parity. Antiquarks have negative parity. Quarks
have the additive baryon number 1/3, antiquarks -1/3. Table 15.1
gives the other additive quantum numbers (flavors) for the three
generations of quarks. They are related to the charge Q (in units of
the elementary charge e) through the generalized Gell-Mann-Nishijima
formula

Q = Iz +
B + S + C + B + T

2
, (15.1)

where B is the baryon number. The convention is that the flavor of a
quark (Iz , S, C, B, or T) has the same sign as its charge Q. With this
convention, any flavor carried by a charged meson has the same sign
as its charge, e.g., the strangeness of the K+ is +1, the bottomness of
the B+ is +1, and the charm and strangeness of the D−

s are each −1.
Antiquarks have the opposite flavor signs. The hypercharge is defined
as

Y = B + S − C − B + T

3
.

Thus Y is equal to 1

3
for the u and d quarks, – 2

3
for the s quark, and

0 for all other quarks.

15.2. Mesons

Mesons have baryon number B = 0. In the quark model, they are
qq ′ bound states of quarks q and antiquarks q ′ (the flavors of q and q′

may be different). If the orbital angular momentum of the qq ′ state
is ℓ, then the parity P is (−1)ℓ+1. The meson spin J is given by the
usual relation |ℓ − s| ≤ J ≤ |ℓ + s|, where s is 0 (antiparallel quark
spins) or 1 (parallel quark spins). The charge conjugation, or C-parity
C = (−1)ℓ+s, is defined only for the qq̄ states made of quarks and
their own antiquarks. The C-parity can be generalized to the G-parity
G = (−1)I+ℓ+s for mesons made of quarks and their own antiquarks
(isospin Iz = 0), and for the charged ud̄ and dū states (isospin I = 1).

The mesons are classified in JPC multiplets. The ℓ = 0 states
are the pseudoscalars (0−+) and the vectors (1−−). The orbital
excitations ℓ = 1 are the scalars (0++), the axial vectors (1++) and
(1+−), and the tensors (2++). Assignments for many of the known
mesons are given in Tables 15.2 and 15.3. Radial excitations are
denoted by the principal quantum number n. The very short lifetime
of the t quark makes it likely that bound-state hadrons containing t
quarks and/or antiquarks do not exist.

States in the natural spin-parity series P = (−1)J must, according
to the above, have s = 1 and hence, CP = +1. Thus, mesons with
natural spin-parity and CP = −1 (0+−, 1−+, 2+−, 3−+, etc.) are
forbidden in the qq̄ ′ model. The JPC = 0−− state is forbidden as
well. Mesons with such exotic quantum numbers may exist, but would
lie outside the qq̄ ′ model (see section below on exotic mesons).

Following SU(3), the nine possible qq̄ ′ combinations containing the
light u, d, and s quarks are grouped into an octet and a singlet of
light quark mesons:

3 ⊗ 3 = 8⊕ 1 . (15.2)

A fourth quark such as charm c can be included by extending SU(3)
to SU(4). However, SU(4) is badly broken owing to the much heavier
c quark. Nevertheless, in an SU(4) classification, the sixteen mesons
are grouped into a 15-plet and a singlet:

4 ⊗ 4 = 15⊕ 1 . (15.3)

The weight diagrams for the ground-state pseudoscalar (0−+) and
vector (1−−) mesons are depicted in Fig. 15.1. The light quark mesons
are members of nonets building the middle plane in Fig. 15.1(a) and
(b).

Isoscalar states with the same JPC will mix, but mixing between the
two light quark isoscalar mesons, and the much heavier charmonium
or bottomonium states, are generally assumed to be negligible. In the
following, we shall use the generic names a for the I = 1, K for the
I = 1/2, and f and f ′ for the I = 0 members of the light quark nonets.
Thus, the physical isoscalars are mixtures of the SU(3) wave function
ψ8 and ψ1:

f ′ = ψ8 cos θ − ψ1 sin θ , (15.4)

f = ψ8 sin θ + ψ1 cos θ , (15.5)

where θ is the nonet mixing angle and

ψ8 =
1√
6
(uū + dd̄ − 2ss̄) , (15.6)

ψ1 =
1√
3
(uū + dd̄ + ss̄) . (15.7)

These mixing relations are often rewritten to exhibit the uū + dd̄
and ss̄ components which decouple for the “ideal” mixing angle θi,
such that tan θi = 1/

√
2 (or θi = 35.3◦). Defining α = θ + 54.7◦, one

obtains the physical isoscalar in the flavor basis

f ′ =
1√
2
(uū + dd̄) cosα − ss̄ sin α , (15.8)
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Table 15.2: Suggested qq quark-model assignments for some of the observed light mesons. Mesons in bold face are included in the
Meson Summary Table. The wave functions f and f ′ are given in the text. The singlet-octet mixing angles from the quadratic and linear
mass formulae are also given for the well established nonets. The classification of the 0++ mesons is tentative: the light scalars a0(980),
f0(980), f0(500) and K∗

0 (800) are often considered to be meson-meson resonances or four-quark states, and are omitted from the table. The
isoscalar 0++ mesons are expected to mix. In particular, the f0(1710) mixes with the f0(1500) and the f0(1370). The a0(1450) is not firmly
established. See the “Note on Non-qq̄ mesons” and the “Note on Scalar Mesons” in the Meson Listings for details and alternative schemes.
In the 1++ nonet the isoscalar slot is disputed by the f1(1510). The isoscalar assignments in the 21S0 (0++) nonet are also tentative. See
the “Note on The Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region” in the Meson Listings.

n 2s+1ℓJ JPC I = 1 I = 1

2
I = 0 I = 0 θquad θlin

ud, ud, 1√
2
(dd − uu) us, ds; ds, −us f ′ f [◦] [◦]

1 1S0 0−+ π K η η′(958) −11.4 −24.5

1 3S1 1−− ρ(770) K∗(892) φ(1020) ω(782) 39.1 36.4

1 1P1 1+− b1(1235) K1B
† h1(1380) h1(1170)

1 3P0 0++ a0(1450) K∗
0
(1430) f0(1710) f0(1370)

1 3P1 1++ a1(1260) K1A
† f1(1420) f1(1285)

1 3P2 2++ a2(1320) K∗
2
(1430) f ′

2
(1525) f2(1270) 32.1 30.5

1 1D2 2−+ π2(1670) K2(1770)† η2(1870) η2(1645)

1 3D1 1−− ρ(1700) K∗(1680) ω(1650)

1 3D2 2−− K2(1820)

1 3D3 3−− ρ3(1690) K∗
3
(1780) φ3(1850) ω3(1670) 31.8 30.8

1 3F4 4++ a4(2040) K∗
4
(2045) f4(2050)

1 3G5 5−− ρ5(2350) K∗
5(2380)

1 3H6 6++ a6(2450) f6(2510)

2 1S0 0−+ π(1300) K(1460) η(1475) η(1295)

2 3S1 1−− ρ(1450) K∗(1410) φ(1680) ω(1420)

† The 1+± and 2−± isospin 1

2
states mix. In particular, the K1A and K1B are nearly equal (45◦) mixtures of the K1(1270) and K1(1400).

The physical vector mesons listed under 13D1 and 23S1 may be mixtures of 13D1 and 23S1.

Table 15.3: qq quark-model assignments for the observed heavy mesons with established JPC . Mesons in bold face are included in the
Meson Summary Table.

n 2s+1ℓJ JPC I = 0 I = 0 I = 1

2
I = 0 I = 1

2
I = 0 I = 0

cc bb cu, cd; cu, cd cs; cs bu, bd; bu, bd bs; bs bc; bc

1 1S0 0−+ ηc(1S) ηb(1S) D D±
s B B0

s B±
c

1 3S1 1−− J/ψ(1S) Υ(1S) D∗ D∗±
s B∗ B∗

s

1 1P1 1+− hc(1P ) hb(1P ) D1(2420) Ds1(2536)± B1(5721) Bs1(5830)0

1 3P0 0++ χc0(1P ) χb0(1P ) D∗
0
(2400) D∗

s0(2317)±†

1 3P1 1++ χc1(1P ) χb1(1P ) D1(2430) Ds1(2460)±†

1 3P2 2++ χc2(1P ) χb2(1P ) D∗
2
(2460) D∗

s2(2573)± B∗
2
(5747) B∗

s2(5840)0

1 3D1 1−− ψ(3770) D∗
s1(2860)±‡

1 3D3 3−− D∗
s3(2860)±

2 1S0 0−+ ηc(2S) ηb(2S) D(2550)

2 3S1 1−− ψ(2S) Υ(2S) D∗
s1(2700)±‡

2 1P1 1+− hb(2P )

2 3P0,1,2 0++, 1++, 2++ χc0,2(2P ) χb0,1,2(2P )

3 3P0,1,2 0++, 1++, 2++ χb(3P )

† The masses of these states are considerably smaller than most theoretical predictions. They have also been considered as four-quark states.
‡ These states are mixtures of the 1 3D1 and 2 3S1 states.

The open flavor states in the 1+− and 1++ rows are mixtures of the 1+± states.
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Z

Figure 15.1: SU(4) weight diagram showing the 16-plets for
the pseudoscalar (a) and vector mesons (b) made of the u,
d, s, and c quarks as a function of isospin Iz, charm C, and

hypercharge Y = B + S −C
3
. The nonets of light mesons occupy

the central planes to which the cc̄ states have been added.

and its orthogonal partner f (replace α by α –90◦). Thus for ideal
mixing (αi = 90◦), the f ′ becomes pure ss̄ and the f pure uū + dd̄.
The mixing angle θ can be derived by diagonalizing the mass matrix

(

m8 m81

m18 m1

)

The mass eigenvalues are mf ′ and mf . The mixing angle is given by

tan θ =
m8 − mf ′

m81
.

Calculating m8 and m81 from the wave functions Eq. (15.6) and
Eq. (15.7), and expressing the quark masses as a function of the
I = 1/2 and I = 1 meson masses, one obtains

tan θ =
4mK − ma − 3mf ′

2
√

2(ma − mK)
, (15.9)

which also determines the sign of θ. Alternatively, one can express
the mixing angle as a function of all nonet masses. The octet mass is
given by

m8 = mf ′ cos2 θ + mf sin2 θ

whence

tan2 θ =
4mK − ma − 3mf ′

−4mK + ma + 3mf
. (15.10)

Eliminating θ from Eq. (15.9) and Eq. (15.10) leads to the sum rule [1]

(mf +mf ′)(4mK −ma)− 3mfmf ′ = 8m2
K − 8mKma +3m2

a. (15.11)

This relation is verified for the ground-state vector mesons. We
identify the φ(1020) with the f ′ and the ω(783) with the f . Thus

φ(1020) = ψ8 cos θV − ψ1 sin θV , (15.12)

ω(782) = ψ8 sin θV + ψ1 cos θV , (15.13)

with the vector mixing angle θV = 36.4◦ from Eq. (15.10), very close
to ideal mixing. Thus φ(1020) is nearly pure ss̄. For ideal mixing,
Eq. (15.9) and Eq. (15.10) lead to the relations

mK =
mf + mf ′

2
, ma = mf , (15.14)

which are satisfied for the vector mesons.

The situation for the pseudoscalar and scalar mesons is not so clear
cut, either theoretically or experimentally. For the pseudoscalars,
the mixing angle is small. This can be understood qualitatively via
gluon-line counting of the mixing process. The size of the mixing
process between the nonstrange and strange mass bases scales as
α2

s , not α3
s , because of two rather than three gluon exchange as it

does for the vector mesons. It may also be that the lightest isoscalar
pseudoscalars mix more strongly with excited states or with states of
substantial non-q̄q content, as will be discussed below.

A variety of analysis methods lead to similar results: First, for these
states, Eq. (15.11) is satisfied only approximately. Then Eq. (15.9)
and Eq. (15.10) lead to somewhat different values for the mixing angle.
Identifying the η with the f ′ one gets

η = ψ8 cos θP − ψ1 sin θP , (15.15)

η′ = ψ8 sin θP + ψ1 cos θP . (15.16)

Following chiral perturbation theory, the meson masses in the mass
formulae (Eq. (15.9) and Eq. (15.10)) might be replaced by their
squares. Table 15.2 lists the mixing angle θlin from Eq. (15.10) (using
the neutral members of the nonets) and the corresponding θquad

obtained by replacing the meson masses by their squares throughout.

The pseudoscalar mixing angle θP can also be measured by
comparing the partial widths for radiative J/ψ decay into a vector and
a pseudoscalar [2], radiative φ(1020) decay into η and η′ [3], or p̄p
annihilation at rest into a pair of vector and pseudoscalar or into two
pseudoscalars [4,5]. One obtains a mixing angle between –10◦ and
–20◦. More recently, a lattice QCD simulation, Ref. 6, has successfully
reproduced the masses of the η and η′, and as a byproduct find a
mixing angle θlin = −14.1(2.8)◦. We return to this point in Sec. 15.6.

The nonet mixing angles can be measured in γγ collisions, e.g., for
the 0−+, 0++, and 2++ nonets. In the quark model, the amplitude
for the coupling of neutral mesons to two photons is proportional to
∑

i Q2
i , where Qi is the charge of the i-th quark. The 2γ partial width

of an isoscalar meson with mass m is then given in terms of the mixing
angle α by

Γ2γ = C(5 cosα −
√

2 sin α)2m3 , (15.17)

for f ′ and f (α → α – 90◦). The coupling C may depend on the
meson mass. It is often assumed to be a constant in the nonet. For
the isovector a, one then finds Γ2γ = 9 C m3. Thus the members of
an ideally mixed nonet couple to 2γ with partial widths in the ratios f
: f ′ : a = 25 : 2 : 9. For tensor mesons, one finds from the ratios of
the measured 2γ partial widths for the f2(1270) and f ′

2(1525) mesons
a mixing angle αT of (81± 1)◦, or θT = (27 ± 1)◦, in accord with the
linear mass formula. For the pseudoscalars, one finds from the ratios
of partial widths Γ(η′ → 2γ)/Γ(η → 2γ) a mixing angle θP = (–18 ±
2)◦, while the ratio Γ(η′ → 2γ)/Γ(π0 → 2γ) leads to ∼ –24 ◦. SU(3)
breaking effects for pseudoscalars are discussed in Ref. 7.

The partial width for the decay of a scalar or a tensor meson into a
pair of pseudoscalar mesons is model-dependent. Following Ref. 8,

Γ = C × γ2 × |F (q)|2 × q . (15.18)

C is a nonet constant, q the momentum of the decay products, F (q)
a form factor, and γ2 the SU(3) coupling. The model-dependent form
factor may be written as

|F (q)|2 = q2ℓ × exp(− q2

8β2
), (15.19)

where ℓ is the relative angular momentum between the decay products.
The decay of a qq̄ meson into a pair of mesons involves the creation
of a qq̄ pair from the vacuum, and SU(3) symmetry assumes that the
matrix elements for the creation of ss̄, uū, and dd̄ pairs are equal.
The couplings γ2 are given in Table 15.4, and their dependence upon
the mixing angle α is shown in Fig. 15.2 for isoscalar decays. The
generalization to unequal ss̄, uū, and dd̄ couplings is given in Ref. 8.
An excellent fit to the tensor meson decay widths is obtained assuming
SU(3) symmetry, with β ≃ 0.5 GeV/c, θV ≃ 26 ◦ and θP ≃ –17 ◦ [8].
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Table 15.4: SU(3) couplings γ2 for quarkonium decays as a
function of nonet mixing angle α, up to a common multiplicative
factor C (φ ≡ 54.7◦ + θP ).

Isospin Decay channel γ2

0 ππ 3 cos2 α

KK (cosα −
√

2 sinα)2

ηη (cosα cos2 φ −
√

2 sin α sin2 φ)2

ηη′
1

2
sin2 2φ (cos α +

√
2 sin α)2

1 ηπ 2 cos2 φ

η′π 2 sin2 φ

KK 1

1

2
Kπ

3

2

Kη (sin φ − cosφ√
2

)2

Kη′ (cosφ +
sin φ√

2
)2

0 30 60 90 120 150 180
0.0

0.5

1.0
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2.0
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3.0 ππ
KK

ηη
ηη '

γ 2

α [ο]
Figure 15.2: SU(3) couplings as a function of mixing angle α
for isoscalar decays, up to a common multiplicative factor C and
for θP = −17.3◦.

15.3. Exotic mesons

The existence of a light nonet composed of four quarks with
masses below 1 GeV was suggested a long time ago [9]. Coupling
two triplets of light quarks u, d, and s, one obtains nine states, of
which the six symmetric (uu, dd, ss, ud + du, us + su, ds + sd) form
the six dimensional representation 6, while the three antisymmetric
(ud− du, us− su, ds− sd) form the three dimensional representation
3 of SU(3):

3 ⊗ 3 = 6⊕ 3̄ . (15.20)

Combining with spin and color and requiring antisymmetry, one finds
that the most deeply bound diquark (and hence the lightest) is the
one in the 3 and spin singlet state. The combination of the diquark
with an antidiquark in the 3 representation then gives a light nonet
of four-quark scalar states. Letting the number of strange quarks
determine the mass splitting, one obtains a mass inverted spectrum
with a light isosinglet (udūd̄), a medium heavy isodoublet (e.g., uds̄d̄)
and a heavy isotriplet (e.g., dsūs̄) + isosinglet (e.g., usūs̄). It is
then tempting to identify the lightest state with the f0(500), and the

heaviest states with the a0(980), and f0(980). Then the meson with
strangeness K∗

0 (800) would lie in-between.

QCD predicts the existence of extra isoscalar mesons. In the pure
gauge theory they contain only gluons, and are called the glueballs.
The ground state glueball is predicted by lattice gauge theories to
be 0++, the first excited state 2++. Errors on the mass predictions
are large. From Ref. 10 one obtains 1750 (50) (80) MeV for the mass
of the lightest 0++ glueball from quenched QCD. As an example
for the glueball mass spectrum, we show in Fig. 15.3 a calculation
from Ref. 11. A mass of 1710 MeV is predicted for the ground state,
also with an error of about 100 MeV. Earlier work by other groups
produced masses at 1650 MeV [12] and 1550 MeV [13] (see also [14]).
The first excited state has a mass of about 2.4 GeV, and the lightest
glueball with exotic quantum numbers (2+−) has a mass of about 4
GeV.
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Figure 15.3: Predicted glueball mass spectrum from the
lattice in quenched approximation (from Ref. 11).

These calculations are made in the so-called “quenched approxi-
mation” which neglects qq̄ loops. However, both glue and qq̄ states
will couple to singlet scalar mesons. Therefore glueballs will mix
with nearby qq̄ states of the same quantum numbers. For example,
the two isoscalar 0++ mesons around 1500 MeV will mix with the
pure ground state glueball to generate the observed physical states
f0(1370), f0(1500), and f0(1710) [8,15]. The first results from lattice
calculations, which include these effects, indicate that the mass shifts
are small. We return to a discussion of this point in Sec. 15.6.

The existence of three singlet scalar mesons around 1.5 GeV
suggests additional degrees of freedom such as glue, since only two
mesons are predicted in this mass range. The f0(1500) [8,15] or,
alternatively, the f0(1710) [12], have been proposed as candidates for
the scalar glueball, both states having considerable mixing also with
the f0(1370). Other mixing schemes, in particular with the f0(500)
and the f0(980), have also been proposed [16]. Details can be found
in the “Note on Non-qq̄ Mesons” in the Meson Listings and in Ref. 17.
See also the “Note on Scalar Mesons below 2 GeV”.

Mesons made of qq̄ pairs bound by excited gluons g, the hybrid
states qq̄g, are also predicted. They should lie in the 1.9 GeV mass
region, according to gluon flux tube models [18]. Lattice QCD also
predicts the lightest hybrid, an exotic 1−+, at a mass of 1.8 to 1.9
GeV [19]. However, the bag model predicts four nonets, among them
an exotic 1−+ around or above 1.4 GeV [20,21]. There are so far two
candidates for exotic states with quantum numbers 1−+, the π1(1400)
and π1(1600), which could be hybrids or four-quark states (see the
“Note on Non-qq̄ Mesons” in the Meson Listings and in Ref. 17).



15. Quark model 283

15.4. Baryons: qqq states

Baryons are fermions with baryon number B = 1, i.e., in the most
general case, they are composed of three quarks plus any number of
quark - antiquark pairs. So far all established baryons are 3-quark
(qqq) configurations (the LHCb collaboration has very recently
announced observation of two charmed ‘pentaquark’ states of minimal
quark content cc̄uud at invariant masses close to 4.4 GeV [23]). The
color part of their state functions is an SU(3) singlet, a completely
antisymmetric state of the three colors. Since the quarks are fermions,
the state function must be antisymmetric under interchange of any
two equal-mass quarks (up and down quarks in the limit of isospin
symmetry). Thus it can be written as

| qqq 〉A = | color 〉A × | space, spin, flavor 〉S , (15.21)

where the subscripts S and A indicate symmetry or antisymmetry
under interchange of any two equal-mass quarks. Note the contrast
with the state function for the three nucleons in 3H or 3He:

|NNN 〉A = | space, spin, isospin 〉A . (15.22)

This difference has major implications for internal structure, magnetic
moments, etc. (For a nice discussion, see Ref. 24.)

Figure 15.4: SU(4) multiplets of baryons made of u, d, s, and
c quarks. (a) The 20-plet with an SU(3) octet. (b) The 20-plet
with an SU(3) decuplet.

The “ordinary” baryons are made up of u, d, and s quarks. The
three flavors imply an approximate flavor SU(3), which requires that
baryons made of these quarks belong to the multiplets on the right
side of

3⊗ 3 ⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A (15.23)

(see Sec. 46, on “SU(n) Multiplets and Young Diagrams”). Here the
subscripts indicate symmetric, mixed-symmetry, or antisymmetric
states under interchange of any two quarks. The 1 is a uds state (Λ1),

and the octet contains a similar state (Λ8). If these have the same
spin and parity, they can mix. The mechanism is the same as for the
mesons (see above). In the ground state multiplet, the SU(3) flavor
singlet Λ1 is forbidden by Fermi statistics. Section 45, on “SU(3)
Isoscalar Factors and Representation Matrices,” shows how relative
decay rates in, say, 10 → 8 ⊗ 8 decays may be calculated.

The addition of the c quark to the light quarks extends the flavor
symmetry to SU(4). However, due to the large mass of the c quark,
this symmetry is much more strongly broken than the SU(3) of the
three light quarks. Figures 15.4(a) and 15.4(b) show the SU(4) baryon
multiplets that have as their bottom levels an SU(3) octet, such
as the octet that includes the nucleon, or an SU(3) decuplet, such
as the decuplet that includes the ∆(1232). All particles in a given
SU(4) multiplet have the same spin and parity. The charmed baryons
are discussed in more detail in the “Note on Charmed Baryons” in
the Particle Listings. The same multiplets as shown in 15.4 can be
constructed when the c quark is replaced by the b quark, or they can
be embedded in a larger SU(5) group that accounts for all baryons
that can be constructed from the five quark flavors. The existence
of baryons with t-quarks is very unlikely due to the short lifetime
of the t-quark. The heavy quark baryons have recently gained a
lot of interest. Their relatively narrow widths allow to isolate the
states much easier than the light quark baryon resonances which
require intricate partial wave analyses. The only problem on the
experimental side are the small production cross sections, but the
recent measurements at the e+e− colliding B factories, at the pp̄
Tevatron collider, and at LHCb at CERN have boosted this field. A
recent summary is given in Ref. 25. A possible candidate for a doubly
charmed baryon had been reported by the SELEX experiment [26,27]
but could so far not be confirmed by other experiments, and quark
model predictions for baryons with two heavy quarks are given in
Ref. 28.

For the “ordinary” baryons (no c or b quark), flavor and spin may
be combined in an approximate flavor-spin SU(6), in which the six
basic states are d ↑, d ↓, · · ·, s ↓ (↑, ↓ = spin up, down). Then the
baryons belong to the multiplets on the right side of

6 ⊗ 6⊗ 6 = 56S ⊕ 70M ⊕ 70M ⊕ 20A . (15.24)

These SU(6) multiplets decompose into flavor SU(3) multiplets as
follows:

56 = 410⊕ 28 (15.25a)

70 = 210⊕ 48 ⊕ 28⊕ 21 (15.25b)

20 = 28 ⊕ 41 , (15.25c)

where the superscript (2S + 1) gives the net spin S of the quarks for
each particle in the SU(3) multiplet. The JP = 1/2+ octet containing
the nucleon and the JP = 3/2+ decuplet containing the ∆(1232)
together make up the “ground-state” 56-plet, in which the orbital
angular momenta between the quark pairs are zero (so that the spatial
part of the state function is trivially symmetric). The 70 and 20
require some excitation of the spatial part of the state function in order
to make the overall state function symmetric. States with nonzero
orbital angular momenta are classified in SU(6)⊗O(3) supermultiplets.

It is useful to classify the baryons into bands that have the same
number N of quanta of excitation. Each band consists of a number of
supermultiplets, specified by (D, LP

N ), where D is the dimensionality
of the SU(6) representation, L is the total quark orbital angular
momentum, and P is the total parity. Supermultiplets contained
in bands up to N = 12 are given in Ref. 29. The N = 0 band,
which contains the nucleon and ∆(1232), consists only of the (56,0+

0 )

supermultiplet. The N = 1 band consists only of the (70,1−1 ) multiplet
and contains the negative-parity baryons with masses below about 1.9
GeV. The N = 2 band contains five supermultiplets: (56,0+

2 ), (70,0+
2 ),

(56,2+
2 ), (70,2+

2 ), and (20,1+
2 ).

The wave functions of the non-strange baryons in the harmonic
oscillator basis are often labeled by |X2S+1LπJP 〉, where S, L, J, P
are as above, X = N or ∆, and π = S, M or A denotes the
symmetry of the spatial wave function. The possible model states for
the bands with N=0,1,2 are given in Table 15.5. The assignment of
experimentally observed states is only complete and well established
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Table 15.5: N and ∆ states in the N=0,1,2 harmonic oscillator
bands. LP denotes angular momentum and parity, S the three-
quark spin and ‘sym’=A,S,M the symmetry of the spatial wave
function. Only dominant components indicated. Assignments in
the N=2 band are partly tentative.

N sym LP S N(I = 1/2) ∆(I = 3/2)

2 A 1+ 1/2 1/2+ 3/2+

2 M 2+ 3/2 1/2+ 3/2+ 5/2+ 7/2+

2 M 2+ 1/2 3/2+ 5/2+ 3/2+ 5/2+

2 M 0+ 3/2 3/2+

2 M 0+ 1/2 1/2+ 1/2+

N(1710) ∆(1750)

2 S 2+ 3/2 1/2+ 3/2+ 5/2+ 7/2+

∆(1910) ∆(1920) ∆(1905) ∆(1950)

2 S 2+ 1/2 3/2+ 5/2+

N(1720) N(1680)

2 S 0+ 3/2 3/2+

∆(1600)

2 S 0+ 1/2 1/2+

N(1440)

1 M 1− 3/2 1/2− 3/2− 5/2−

N(1650) N(1700) N(1675)

1 M 1− 1/2 1/2− 3/2− 1/2− 3/2−

N(1535) N(1520) ∆(1620) ∆(1700)

0 S 0+ 3/2 3/2+

∆(1232)

0 S 0+ 1/2 1/2+

N(938)

up to the N=1 band. Some more tentative assignments for higher
multiplets are suggested in Ref. 30.

In Table 15.6, quark-model assignments are given for many of the
established baryons whose SU(6)⊗O(3) compositions are relatively
unmixed. One must, however, keep in mind that apart from the
mixing of the Λ singlet and octet states, states with same JP but
different L, S combinations can also mix. In the quark model with
one-gluon exchange motivated interactions, the size of the mixing is
determined by the relative strength of the tensor term with respect
to the contact term (see below). The mixing is more important for
the decay patterns of the states than for their positions. An example
are the lowest lying (70, 1−1 ) states with JP =1/2− and 3/2−. The
physical states are:

|N(1535)1/2−〉 = cos(ΘS)|N2PM1/2−〉 − sin(ΘS)|N4PM1/2−〉
(15.26)

|N(1520)3/2−〉 = cos(ΘD)|N2PM3/2−〉 − sin(Θ)D|N4PM3/2−〉
(15.27)

and the orthogonal combinations for N(1650)1/2− and N(1700)3/2−.
The mixing is large for the JP =1/2− states (ΘS ≈ -32o), but small
for the JP =3/2− states (ΘD ≈ +6o) [31,32].

All baryons of the ground state multiplets are known. Many of their
properties, in particular their masses, are in good agreement even with
the most basic versions of the quark model, including harmonic (or
linear) confinement and a spin-spin interaction, which is responsible
for the octet - decuplet mass shifts. A consistent description of
the ground-state electroweak properties, however, requires refined
relativistic constituent quark models.

The situation for the excited states is much less clear. The
assignment of some experimentally observed states with strange
quarks to model configurations is only tentative and in many cases
candidates are completely missing. Recently, Melde, Plessas and
Sengl [33] have calculated baryon properties in relativistic constituent
quark models, using one-gluon exchange and Goldstone-boson

exchange for the modeling of the hyperfine interactions (see Sec. 15.5
on Dynamics). Both types of models give qualitatively comparable
results, and underestimate in general experimentally observed decay
widths. Nevertheless, in particular on the basis of the observed
decay patterns, the authors have assigned some additional states
with strangeness to the SU(3) multiplets and suggest re-assignments
for a few others. Among the new assignments are states with weak
experimental evidence (two or three star ratings) and partly without
firm spin/parity assignments, so that further experimental efforts are
necessary before final conclusions can be drawn. We have added their
suggestions in Table 15.6.

In the non-strange sector there are two main problems which are
illustrated in Fig. 15.5, where the experimentally observed excitation
spectrum of the nucleon (N and ∆ resonances) is compared to
the results of a typical quark model calculation [34]. The lowest
states from the N=2 band, the N(1440)1/2+, and the ∆(1600)3/2+,
appear lower than the negative parity states from the N=1 band
(see Table 15.5) and much lower than predicted by most models.
Also negative parity ∆ states from the N=3 band (∆(1900)1/2−,
∆(1940)3/2−, and ∆(1930)5/2−) are too low in energy. Part of the
problem could be experimental. Among the negative parity ∆ states,
only the ∆(1930)5/2− has three stars and the uncertainty in the
position of the ∆(1600)3/2+ is large (1550 - 1700 MeV).

Furthermore, many more states are predicted than observed.
This has been known for a long time as the ‘missing resonance’
problem [31]. Up to an excitation energy of 2.4 GeV, about 45 N
states are predicted, but only 14 are established (four- or three-star;
see Note on N and ∆ Resonances for the rating of the status of
resonances) and 10 are tentative (two- or one-star). Even for the
N=2 band, up to now only half of the predicted states have been
observed. The most recent partial wave analysis of elastic pion
scattering and charge exchange data by Arndt and collaborators [35]
has made the situation even worse. They found no evidence for almost
half of the states listed in this review (and included in Fig. 15.5).
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Such analyses are of course biased against resonances which couple
only weakly to the Nπ channel. Quark model predictions for the
couplings to other hadronic channels and to photons are given in
Ref. 34. A large experimental effort is ongoing at several electron
accelerators to study the baryon resonance spectrum with real and
virtual photon-induced meson production reactions. This includes the
search for as-yet-unobserved states, as well as detailed studies of the
properties of the low lying states (decay patterns, electromagnetic
couplings, magnetic moments, etc.) (see Ref. 36 for recent reviews).
This experimental effort has currently entered its final phase with
the measurement of single and double polarization observables for
many different meson production channels, so that a much better
understanding of the experimental spectrum can be expected for the
near future.
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Figure 15.5: Excitation spectrum of the nucleon. Compared
are the positions of the excited states identified in experiment,
to those predicted by a relativized quark model calculation. Left
hand side: isospin I = 1/2 N -states, right hand side: isospin
I = 3/2 ∆-states. Experimental: (columns labeled ’exp’), three-
and four-star states are indicated by full lines (two-star dashed
lines, one-star dotted lines). At the very left and right of the
figure, the spectroscopic notation of these states is given. Quark
model [34]: (columns labeled ’QM’), all states for the N=1,2
bands, low-lying states for the N=3,4,5 bands. Full lines: at
least tentative assignment to observed states, dashed lines: so
far no observed counterparts. Many of the assignments between
predicted and observed states are highly tentative.

In quark models, the number of excited states is determined by the
effective degrees of freedom, while their ordering and decay properties
are related to the residual quark - quark interaction. An overview
of quark models for baryons is given in Ref. 32, recent discussions
of baryon spectroscopy are given in Refs. 30 and 25. The effective
degrees of freedom in the standard nonrelativistic quark model are
three equivalent valence quarks with one-gluon exchange-motivated,
flavor-independent color-magnetic interactions. The QCD aspect of
gluon-gluon interactions is emphasized by the hypercentral quark
model [37], [38], which includes in a natural way three-body forces
between the quarks. A different class of models uses interactions which
give rise to a quark - diquark clustering of the baryons: for a review
see Ref. 39. If there is a tightly bound diquark, only two degrees
of freedom are available at low energies, and thus fewer states are
predicted. Furthermore, selection rules in the decay pattern may arise
from the quantum numbers of the diquark. More states are predicted
by collective models of the baryon like the algebraic approach in
Ref. 40. In this approach, the quantum numbers of the valence
quarks are distributed over a Y-shaped string-like configuration,
and additional states arise e.g., from vibrations of the strings. More

states are also predicted in the framework of flux-tube models, see
Ref. 41, which are motivated by lattice QCD. In addition to the quark

degrees of freedom, flux-tubes responsible for the confinement of the
quarks are considered as degrees of freedom. These models include
hybrid baryons containing explicit excitations of the gluon fields.
However, since all half integral JP quantum numbers are possible
for ordinary baryons, such ‘exotics’ will be very hard to identify, and
probably always mix with ordinary states. So far, the experimentally
observed number of states is still far lower even than predicted by the
quark–diquark models.

Table 15.6: Quark-model assignments for some of the known
baryons in terms of a flavor-spin SU(6) basis. Only the dominant
representation is listed. Assignments for several states, especially
for the Λ(1810), Λ(2350), Ξ(1820), and Ξ(2030), are merely

educated guesses. † recent suggestions for assignments and
re-assignments from Ref. 33. For assignments of the charmed
baryons, see the “Note on Charmed Baryons” in the Particle
Listings.

JP (D, LP
N )S Octet members Singlets

1/2+ (56,0+
0 ) 1/2N(939) Λ(1116) Σ(1193) Ξ(1318)

1/2+ (56,0+
2 ) 1/2N(1440)Λ(1600) Σ(1660) Ξ(1690)†

1/2− (70,1−1 ) 1/2N(1535)Λ(1670) Σ(1620) Ξ(?) Λ(1405)

Σ(1560)†
3/2− (70,1−1 ) 1/2N(1520)Λ(1690) Σ(1670) Ξ(1820) Λ(1520)

1/2− (70,1−1 ) 3/2N(1650)Λ(1800) Σ(1750) Ξ(?)

Σ(1620)†
3/2− (70,1−1 ) 3/2N(1700)Λ(?) Σ(1940)† Ξ(?)

5/2− (70,1−1 ) 3/2N(1675)Λ(1830) Σ(1775) Ξ(1950)†
1/2+ (70,0+

2 ) 1/2N(1710)Λ(1810) Σ(1880) Ξ(?) Λ(1810)†
3/2+ (56,2+

2 ) 1/2N(1720)Λ(1890) Σ(?) Ξ(?)

5/2+ (56,2+
2 ) 1/2N(1680)Λ(1820) Σ(1915) Ξ(2030)

7/2− (70,3−3 ) 1/2N(2190)Λ(?) Σ(?) Ξ(?) Λ(2100)

9/2− (70,3−3 ) 3/2N(2250)Λ(?) Σ(?) Ξ(?)

9/2+ (56,4+
4 ) 1/2N(2220)Λ(2350) Σ(?) Ξ(?)

Decuplet members

3/2+ (56,0+
0 ) 3/2∆(1232) Σ(1385) Ξ(1530) Ω(1672)

3/2+ (56,0+
2 ) 3/2∆(1600) Σ(1690)†Ξ(?) Ω(?)

1/2− (70,1−1 ) 1/2∆(1620) Σ(1750)†Ξ(?) Ω(?)

3/2− (70,1−1 ) 1/2∆(1700) Σ(?) Ξ(?) Ω(?)

5/2+ (56,2+
2 ) 3/2∆(1905) Σ(?) Ξ(?) Ω(?)

7/2+ (56,2+
2 ) 3/2∆(1950) Σ(2030) Ξ(?) Ω(?)

11/2+ (56,4+
4 ) 3/2∆(2420) Σ(?) Ξ(?) Ω(?)

Recently, the influence of chiral symmetry on the excitation
spectrum of the nucleon has been hotly debated from a somewhat new
perspective. Chiral symmetry, the fundamental symmetry of QCD,
is strongly broken for the low lying states, resulting in large mass
differences of parity partners like the JP =1/2+ N(938)1/2+ ground
state and the JP =1/2− N(1535)1/2− excitation. However, at higher
excitation energies there is some evidence for parity doublets and
even some very tentative suggestions for full chiral multiplets of N∗

and ∆ resonances. An effective restoration of chiral symmetry at high
excitation energies due to a decoupling from the quark condensate
of the vacuum has been discussed (see Ref. 42 for recent reviews)
as a possible cause. In this case, the mass generating mechanisms
for low and high lying states would be essentially different. As a
further consequence, the parity doublets would decouple from pions,
so that experimental bias would be worse. However, parity doublets
might also arise from the spin-orbital dynamics of the 3-quark system.
Presently, the status of data does not allow final conclusions.

The most recent developments on the theory side are the first
unquenched lattice calculations for the excitation spectrum discussed
in Sec. 15.6. The results are basically consistent with the level
counting of SU(6)⊗O(3) in the standard non-relativistic quark
model and show no indication for quark-diquark structures or parity
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doubling. Consequently, there is as yet no indication from lattice
that the mis-match between the excitation spectrum predicted by
the standard quark model and experimental observations is due to
inappropriate degrees of freedom in the quark model.

15.5. Dynamics

Quantum chromodynamics (QCD) is well-established as the theory
for the strong interactions. As such, one of the goals of QCD is to
predict the spectrum of strongly-interacting particles. To date, the
only first-principles calculations of spectroscopy from QCD use lattice
methods. These are the subject of Sec. 15.6. These calculations are
difficult and unwieldy, and many interesting questions do not have
a good lattice-based method of solution. Therefore, it is natural to
build models, whose ingredients are abstracted from QCD, or from
the low-energy limit of QCD (such as chiral Lagrangians) or from
the data itself. The words “quark model” are a shorthand for such
phenomenological models. Many specific quark models exist, but most
contain a similar basic set of dynamical ingredients. These include:

i) A confining interaction, which is generally spin-independent (e.g.,
harmonic oscillator or linear confinement);

ii) Different types of spin-dependent interactions:

a) commonly used is a color-magnetic flavor-independent
interaction modeled after the effects of gluon exchange in QCD
(see e.g., Ref. 43). For example, in the S-wave states, there is a
spin-spin hyperfine interaction of the form

HHF = −αSM
∑

i>j

(−→σ λa)i(
−→σ λa)j , (15.28)

where M is a constant with units of energy, λa (a = 1, · · · , 8, )
is the set of SU(3) unitary spin matrices, defined in Sec. 45,
on “SU(3) Isoscalar Factors and Representation Matrices,” and
the sum runs over constituent quarks or antiquarks. Spin-orbit
interactions, although allowed, seem to be small in general, but a
tensor term is responsible for the mixing of states with the same
JP but different L, S combinations.

b) other approaches include flavor-dependent short-range quark
forces from instanton effects (see e.g., Ref. 44). This interaction
acts only on scalar, isoscalar pairs of quarks in a relative S-wave
state:

〈q2; S, L, T |W |q2; S, L, T 〉 = −4gδS,0δL,0δI,0W (15.29)

where W is the radial matrix element of the contact interaction.

c) a rather different and controversially discussed approach is
based on flavor-dependent spin-spin forces arising from one-boson
exchange. The interaction term is of the form:

HHF ∝
∑

i<j

V (−→r ij)λ
F
i · λF

j
−→σ i · −→σ j (15.30)

where the λF
i are in flavor space (see e.g., Ref. 45).

iii) A strange quark mass somewhat larger than the up and down
quark masses, in order to split the SU(3) multiplets;

iv) In the case of spin-spin interactions (iia,c), a flavor-symmetric
interaction for mixing qq configurations of different flavors (e.g.,
uu ↔ dd ↔ ss), in isoscalar channels, so as to reproduce e.g., the
η - η′ and ω - φ mesons.

These ingredients provide the basic mechanisms that determine the
hadron spectrum in the standard quark model.

15.6. Lattice Calculations of Hadronic Spectroscopy

Lattice calculations are a major source of information about QCD
masses and matrix elements. The necessary theoretical background
is given in Sec. 18 of this Review. Here we confine ourselves to
some general comments and illustrations of lattice calculations for
spectroscopy.

In general, the cleanest lattice results come from computations
of processes in which there is only one particle in the simulation

volume. These quantities include masses of hadrons, simple decay
constants, like pseudoscalar meson decay constants, and semileptonic
form factors (such as the ones appropriate to B → Dlν, Klν, πlν).
The cleanest predictions for masses are for states which have narrow
decay widths and are far below any thresholds to open channels, since
the effects of final state interactions are not yet under complete control
on the lattice. As a simple corollary, the lightest state in a channel is
easier to study than the heavier ones. “Difficult” states for the quark
model (such as exotics) are also difficult for the lattice because of the
lack of simple operators which couple well to them.

Good-quality modern lattice calculations will present multi-part
error budgets with their predictions. A small part of the uncertainty
is statistical, from sample size. Typically, the quoted statistical
uncertainty includes uncertainty from a fit: it is rare that a simulation
computes one global quantity which is the desired observable.
Simulations which include virtual quark-antiquark pairs (also known
as “dynamical quarks” or “sea quarks”) are often done at up and down
quark mass values heavier than the experimental ones, and it is then
necessary to extrapolate in these quark masses. Simulations can work
at the physical values of the heavier quarks’ masses. They are always
done at nonzero lattice spacing, and so it is necessary to extrapolate
to zero lattice spacing. Some theoretical input is needed to do this.
Much of the uncertainty in these extrapolations is systematic, from the
choice of fitting function. Other systematics include the effect of finite
simulation volume, the number of flavors of dynamical quarks actually
simulated, and technical issues with how these dynamical quarks are
included. The particular choice of a fiducial mass (to normalize other
predictions) is not standardized; there are many possible choices, each
with its own set of strengths and weaknesses, and determining it
usually requires a second lattice simulation from that used to calculate
the quantity under consideration.

A systematic error of major historical interest is the “quenched
approximation,” in which dynamical quarks are simply left out of the
simulation. This was done because the addition of these virtual pairs
presented an expensive computational problem. No generally-accepted
methodology has ever allowed one to correct for quenching effects,
short of redoing all calculations with dynamical quarks. Recent
advances in algorithms and computer hardware have rendered it
obsolete.

With these brief remarks, we turn to examples. The field of
lattice QCD simulations is vast, and so it is not possible to give
a comprehensive review of them in a small space. The history of
lattice QCD simulations is a story of thirty years of incremental
improvements in physical understanding, algorithm development, and
ever faster computers, which have combined to bring the field to
a present state where it is possible to carry out very high quality
calculations. We present a few representative illustrations, to show
the current state of the art.

By far, the major part of all lattice spectroscopy is concerned with
that of the light hadrons, and so we illustrate results in Fig. 15.6, a
comprehensive summary provided by A. Kronfeld [46].

Flavor singlet mesons are at the frontier of lattice QCD calculations,
because one must include the effects of “annihilation graphs,” for
the valence q and q̄. Recently, several groups, Refs. 6, 53–56, have
reported calculations of the η and η′ mesons. The numbers of Ref. 6
are typical, finding masses of 573(6) and 947(142) MeV for the η and
η′. The singlet-octet mixing angle (in the conventions of Table 15.2)
is θlin = −14.1(2.8)◦.

The spectroscopy of mesons containing heavy quarks has become a
truly high-precision endeavor. These simulations use Non-Relativistic
QCD (NRQCD) or Heavy Quark Effective Theory (HQET), systematic
expansions of the QCD Lagrangian in powers of the heavy quark
velocity, or the heavy quark mass. Terms in the Lagrangian have
obvious quark model analogs, but are derived directly from QCD.
For example, the heavy quark potential is a derived quantity,
extracted from simulations. Fig. 15.7 shows the mass spectrum for
mesons containing at least one heavy (b or c) quark from Ref. 59. It
also contains results from Refs. 61 and 62. The calculations uses a
discretization of nonrelativistic QCD for bottom quarks with charm
and lighter quarks being handled with an improved relativistic action.
Four flavors (u, d, s, c) of dynamical quarks are included.
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Figure 15.6: Hadron spectrum from lattice QCD. Compre-
hensive results for mesons and baryons are from MILC [47,48],
PACS-CS [49], BMW [50], QCDSF [51], and ETM [68].
Results for η and η′ are from RBC & UKQCD [6], Hadron
Spectrum [54]( also the only ω mass), UKQCD [53], and
Michael, Ottnad, and Urbach [55]. Results for heavy-light
hadrons from Fermilab-MILC [57], HPQCD [58,59], and Mohler
and Woloshyn [60]. Circles, squares, diamonds, and triangles
stand for staggered, Wilson, twisted-mass Wilson, and chiral
sea quarks, respectively. Asterisks represent anisotropic lattices.
Open symbols denote the masses used to fix parameters. Filled
symbols (and asterisks) denote results. Red, orange, yellow,
green, and blue stand for increasing numbers of ensembles
(i.e., lattice spacing and sea quark mass). Black symbols stand
for results with 2+1+1 flavors of sea quarks. Horizontal bars
(gray boxes) denote experimentally measured masses (widths).
b-flavored meson masses are offset by −4000 MeV.

Figure 15.7: Spectroscopy for mesonic systems containing one
or more heavy quarks (adapted from Ref. 59). Particles whose
masses are used to fix lattice parameters are shown with crosses;
the authors distinguish between “predictions” and “postdictions”
of their calculation. Lines represent experiment.

Fig. 15.8 shows a compilation of recent lattice results for doubly
and triply charmed baryons, from Ref. 63.

There are a number of reported states near the charmonium-D− D̄
threshold, including the X(3872), D∗

s0(2317), Z±
c (3900) and X(4140),

whose quark composition is obscure (see the “Note on Non-qq̄ mesons
in the Meson Listings.” The current status of lattice studies of these
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Figure 15.8: Comparison of lattice QCD results for the doubly
and triply charmed baryon masses. Labels are Liu, et al., [64];
Briceno, et al., [65]; Namekawa, et al., [66]; Padmanath,
et al., [67]; Alexandrou, et al., [68]; and Brown, et al.,
citequarkmod:Brown:2014ena. Only calculations with dynamical
light quarks are included; for the doubly charmed baryons, only
calculations were performed at or extrapolated to the physical
pion mass are shown. Results without estimates of systematic
uncertainties are labeled “stat. only”. The lattice spacing values
used in the calculations are also given; a = 0 indicates that
the results have been extrapolated to the continuum limit.
In the plot of the doubly charmed baryons, the unconfirmed
experimental result for the Ξ+

cc mass from SELEX [26,27] is
shown with a dashed line.

states is reviewed in Ref. 69.

Recall that lattice calculations take operators which are inter-
polating fields with quantum numbers appropriate to the desired
states, compute correlation functions of these operators, and fit the
correlation functions to functional forms parametrized by a set of
masses and matrix elements. As we move away from hadrons which
can be created by the simplest quark model operators (appropriate
to the lightest meson and baryon multiplets) we encounter a host
of new problems: either no good interpolating fields, or too many
possible interpolating fields, and many states with the same quantum
numbers. Techniques for dealing with these interrelated problems vary
from collaboration to collaboration, but all share common features:
typically, correlation functions from many different interpolating fields
are used, and the signal is extracted in what amounts to a variational
calculation using the chosen operator basis. In addition to mass
spectra, wave function information can be garnered from the form
of the best variational wave function. Of course, the same problems
which are present in the spectroscopy of the lightest hadrons (the need
to extrapolate to infinite volume, physical values of the light quark
masses, and zero lattice spacing) are also present. We briefly touch on
three different kinds of hadrons: excited states of mesons (including
hybrids), excited states of baryons, and glueballs. The quality of
the data is not as good as for the ground states, and so the results
continue to evolve.

Modern calculations use a large bases of trial states, which allow
them to probe many quantum number channels simultaneously. This
is vital for studying “difficult sectors” of QCD, such as the isoscalar
mesons. A recent example of meson spectroscopy where this is done,
by Ref. 56, is shown in Fig. 15.9. The quark masses are still heavier
than their physical values, so the pion is at 391 MeV. The authors
can assign a relative composition of nonstrange and strange quark
content to their states, observing, for example, a nonstrange ω and a
strange φ. Some states also have a substantial component of gluonic
excitation. Note especially the three exotic channels JPC = 1−+,
0+−, and 2+−, with states around 2 GeV. These calculations will
continue to improve as the quark masses are carried lower.

The interesting physics questions of excited baryon spectroscopy to
be addressed are precisely those enumerated in the last section. An
example of a recent calculation, due to Ref. 70 is shown in Fig. 15.10.
Notice that the pion is not yet at its physical value. The lightest
positive parity state is the nucleon, and the Roper resonance has not
yet appeared as a light state.

In Fig. 15.3 we showed a figure from Ref. 11 presenting a lattice
prediction for the glueball mass spectrum in quenched approximation.
A true QCD prediction of the glueball spectrum requires dynamical



288 15. Quark model

500

1000

1500

2000

2500

3000

Figure 15.9: Isoscalar (green and black) and isovector (blue)
spectrum from Ref. 56. States are labeled JPC . The quark
mass is heavier than its physical value; mπ = 391 MeV. The
vertical height of each box indicates the statistical uncertainty
in the mass. Black and green indicate relative nonstrange and
strange composition. Orange outlines show states with a large
chromomagnetic component to their wave function, which the
authors of Ref. 56 argue are hybrid states. Note the exotic states
in the three rightmost columns.

Figure 15.10: Spin-identified spectrum of nucleons and deltas,
from lattices where mπ = 396 MeV, in units of the calculated Ω
mass, from Ref. 70. The colors just correspond to the different
J assignments: grey for J = 1/2, red for J = 3/2, green for 5/2,
blue for J = 7/2.

light quarks and (because glueball operators are intrinsically noisy)
high statistics. Only recently have the first useful such calculations
appeared. Fig. 15.11 shows results from Ref. 71, done with dynamical
u, d and s quarks at two lattice spacings, 0.123 and 0.092 fm, along
with comparisons to the quenched lattice calculation of Ref. 10 and
to experimental isosinglet mesons. The dynamical simulation is, of
course, not the last word on this subject, but it shows that the effects
of quenching seem to be small.

Several other features of hadronic spectroscopy are also being
studied on the lattice.

Electromagnetic mass splittings (such as the neutron - proton
mass difference) are interesting but difficult. These calculations are
important for determining the values of the quark masses (for a
discussion see the review in the PDG). Knowing that the neutron
is heavier than the proton tells us that these splittings have a
complicated origin. One part of the shift is because the up and down
quarks have slightly different masses. The second is that the quarks
have (different) charges. In pre-lattice days, phenomenologists would
combine Coulomb forces and spin-dependent electromagnetic hyperfine
interactions to model their charge effects. These days, in order to
compute hadronic mass differences on the lattice, electromagnetic
interactions must be included in the simulations. This creates a
host of technical issues. An important one is that electromagnetic
interactions are long range, but lattice simulations are done in finite
volumes. A recent calculation, Ref. 72, has presented the first results
for electromagnetic mass splittings in the baryon octet. The situation
is summarized in the review Ref. 73.
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Figure 15.11: Lattice QCD predictions for glueball masses.
The open and closed circles are the larger and smaller lattice
spacing data of the full QCD calculation of glueball masses of
Ref. 71. Squares are the quenched data for glueball masses of
Ref. 10. The bursts labeled by particle names are experimental
states with the appropriate quantum numbers.

Most hadrons are resonances, and their widths are the last target
of lattice simulations we will mention. The actual calculation is of
the combined mass of two (or more) hadrons in a box of finite size.
The combined mass is shifted from being the sum of the individual
masses because the finite box forces the hadrons to interact with each
other. The volume-dependent mass shift yields the phase shift for the
continuum scattering amplitude, which in turn can be used to extract
the resonance mass and width, with some degree of modeling. So
far only two-body resonances, the rho meson and a few others, have
been well studied. This is an active research topic. A recent review,
Ref. 74, summarizes the situation, and an example of a calculation of
the rho meson’s decay width is Ref. 75.

References:
1. J. Schwinger, Phys. Rev. 135, B116 (1964).
2. A. Bramon et al., Phys. Lett. B403, 339 (1997).
3. A. Aloisio et al., Phys. Lett. B541, 45 (2002).
4. C. Amsler et al., Phys. Lett. B294, 451 (1992).
5. C. Amsler, Rev. Mod. Phys. 70, 1293 (1998).
6. N.H. Christ et al., Phys. Rev. Lett. 105, 241601 (2010).
7. T. Feldmann, Int. J. Mod. Phys. A915, 159 (2000).
8. C. Amsler and F.E. Close, Phys. Rev. D53, 295 (1996).
9. R.L. Jaffe, Phys. Rev. D15, 267 (1977);

R.L. Jaffe, Phys. Rev. D15, 281 (1977).
10. C. Morningstar and M. Peardon, Phys. Rev. D60, 034509 (1999).
11. Y. Chen et al., Phys. Rev. D73, 014516 (2006).
12. W.J. Lee and D. Weingarten, Phys. Rev. D61, 014015 (2000).
13. G.S. Bali et al., Phys. Lett. B309, 378 (1993).
14. C. Michael, AIP Conf. Proc. 432, 657 (1998).
15. F.E. Close and A. Kirk, Eur. Phys. J. C21, 531 (2001).
16. W. Ochs, J. Phys. G40, 043001 (2013).
17. C. Amsler and N.A. Törnqvist, Phys. Reports 389, 61 (2004).
18. N. Isgur and J. Paton, Phys. Rev. D31, 2910 (1985).
19. P. Lacock et al., Phys. Lett. B401, 308 (1997);

C. Bernard et al., Phys. Rev. D56, 7039 (1997);
C. Bernard et al., Phys. Rev. D68, 074505 (2003).

20. M. Chanowitz and S. Sharpe, Nucl. Phys. B222, 211 (1983).
21. T. Barnes et al., Nucl. Phys. B224, 241 (1983).
22. W.-M Yao et al., J. Phys. G33, 1 (2006).
23. R. Aaij et al., Phys. Rev. Lett. 115, 072001 (2015).
24. F.E. Close, in Quarks and Nuclear Forces (Springer-Verlag,

1982), p. 56.
25. V. Crede and W. Roberts, Rept. on Prog. in Phys. 76, 076301

(2013).
26. M. Mattson et al., Phys. Rev. Lett. 89, 112001 (2002).



15. Quark model 289

27. A. Ocherashvili et al., Phys. Lett. B628, 18 (2005).
28. M. Karliner and J.L. Rosner, Phys. Rev. D90, 094007 (2014).
29. R.H. Dalitz and L.J. Reinders, in “Hadron Structure as Known

from Electromagnetic and Strong Interactions,” Proceedings of

the Hadron ’77 Conference (Veda, 1979), p. 11.
30. E. Klempt and J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010).
31. N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978); ibid., D19,

2653 (1979); ibid., D20, 1191 (1979).
32. S. Capstick and W. Roberts, Prog. in Part. Nucl. Phys. 45, 241

(2000).
33. T. Melde, W. Plessas, and B. Sengl, Phys. Rev. D77, 114002

(2008).
34. S. Capstick and W. Roberts, Phys. Rev. D49, 4570 (1994); ibid.,

D57, 4301 (1998); ibid., D58, 074011 (1998);
S. Capstick, Phys. Rev. D46, 2864 (1992).

35. R.A. Arndt et al., Phys. Rev. C74, 045205 (2006).
36. B. Krusche and S. Schadmand, Prog. in Part. Nucl. Phys. 51,

399 (2003);
V.D. Burkert and T.-S.H. Lee, Int. J. Mod. Phys. E13, 1035
(2004);
see also A.J.G. Hey and R.L. Kelly, Phys. Reports 96, 71 (1983).

37. M. Ferraris et al., Phys. Lett. B364, 231 (1995).
38. M.M. Giannini and E. Santopinto, Chin. J. Phys. 53, 020301-1

(2015).
39. M. Anselmino et al., Rev. Mod. Phys. 65, 1199 (1993).
40. R. Bijker et al., Ann. Phys. 236, 69 (1994).
41. N. Isgur and J. Paton, Phys. Rev. D31, 2910 (1985);

S. Capstick and P.R. Page, Phys. Rev. C66, 065204 (2002).
42. R.L. Jaffe, D. Pirjol, and A. Scardicchio, Phys. Rev. 435, 157

(2006);
L. Ya. Glozman, Phys. Rev. 444, 1 (2007).

43. A. De Rujula et al., Phys. Rev. D12, 147 (1975).
44. W.H. Blask et al., Z. Phys. A337, 327 (1990);
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16. GRAND UNIFIED THEORIES

Revised January 2016 by A. Hebecker (U. Heidelberg) and J. Hisano
(Nagoya U.)

16.1. The Standard Model

The Standard Model (SM) may be defined as the renormalizable
field theory with gauge group GSM = SU(3)C × SU(2)L × U(1)Y ,
with 3 generations of fermions in the representation

(3,2)1/3 + (3̄,1)−4/3 + (3̄,1)2/3 + (1,2)−1 + (1,1)2 , (16.1)

and a scalar Higgs doublet H transforming as (1,2)1. Here and below
we use boldface numbers to specify the dimension of representations
of non-Abelian groups (in this case fundamental and antifundamental)
and lower indices for U(1) fficharges. The fields of Eq. (16.1) should
also be familiar as [Q, uc, dc, L, ec], with Q = (u, d) and L = (ν, e)
being the quark and lepton SU(2)-doublets and uc, dc, ec charge
conjugate SU(2)-singlets.† Especially after the recent discovery of the
Higgs, this model is remarkably complete and consistent with almost
all experimental data.

A notable exception are neutrino masses, which are known to be
non-zero but are absent in the SM even after the Higgs acquires its
vacuum expectation value (VEV). The minimalist attitude is to allow
for the dimension-five operator (HL)2, which induces (Majorana)
neutrino masses. In the seesaw mechanism [1,2,3] this operator is
generated by integrating out heavy singlet fermions (r.h. neutrinos).
Alternatively, neutrinos can have Dirac masses if light singlet neutrinos
are added to the SM spectrum.

Conceptual problems of the SM include the absence of a Dark
Matter candidate, of a mechanism for generating the baryon
asymmetry of the universe, and of any reason for the observed
smallness of the θ parameter of QCD (θQCD). In addition, the
apparently rather complex group-theoretic data of Eq. (16.1) remains
unexplained. Together with the abundance of seemingly arbitrary
coupling constants, this disfavors the SM as a candidate fundamental
theory, even before quantum gravity problems arise at energies near
MP .

To be precise, there are 19 SM parameters which have to be
fitted to data: Three gauge couplings* g3, g2 and g1, 13 parameters
associated with the Yukawa couplings (9 charged fermion masses,
three mixing angles and one CP phase in the CKM matrix.), the
Higgs mass and quartic coupling, and θQCD. In addition, Majorana
neutrinos introduce 3 more masses and 6 mixing angles and phases.

As we will see, the paradigm of grand unification addresses mainly
the group theoretic data of Eq. (16.1) and the values of the three
gauge couplings. In many concrete realizations, it then impacts also
the other mentioned issues of the SM, such as e.g. the family structure
and fermion mass hierarchy.

More specifically, after precision measurements of the Weinberg
angle θW in the LEP experiments, supersymmetric GUTs (SUSY
GUTs) have become the leading candidates in the search for ‘Physics
beyond the SM’. Supersymmetry (SUSY) is a symmetry between
bosons and fermions which requires the addition of superpartners to
the SM spectrum, thereby leading to the noted prediction of θW [4].
The measured Higgs mass (∼ 125 GeV) is in principle consistent with
this picture, assuming superpartners in the region of roughly 10 TeV.
Such heavy superpartners then induce radiative corrections raising the
Higgs mass above the Z boson mass mZ [5,6]. However, if SUSY
is motivated as a solution to the gauge hierarchy problem (i.e. to the
naturalness problem of the Higgs mass) [7], its minimal incarnation
in terms of the MSSM is becoming questionable. Indeed, compared
to expectations based on the minimal SUSY SM (MSSM) with
superpartner masses below about 1 TeV, the Higgs mass is somewhat
too high [8]. Independently, the LHC has disfavored light colored
superpartners. These facts represent new hints for future work on
SUSY GUTs or on GUTs without TeV-scale supersymmetry.

† In our convention the electric charge is Q = T3 + Y/2 and all our
spinor fields are left-handed.

* Equivalently, the SU(2)L and U(1)Y couplings are denoted as
g = g2 and g′ =

√
3/5 g1. One also uses αs = α3 = (g2

3/4π), αEM =
(e2/4π) with e = g sin θW and sin2 θW = (g′)2/(g2 + (g′)2).

16.2. Basic Group Theory and Charge Quantization

Historically, the first attempt at unification was the Pati-Salam
model with gauge group GPS = SU(4)C × SU(2)L × SU(2)R [9]. It
unifies SM fermions in the sense that one generation (plus an extra SM
singlet) now comes from the (4,2,1) + (4,1,2) of GPS . This is easy
to verify from the breaking pattern SU(4)C → SU(3)C × U(1)B−L
together with the identification of SM hypercharge as a linear
combination between B − L (baryon minus lepton number) with the
T3 generator of SU(2)R. This model explains charge quantization,
that is, why all electric charges are integer multiples of some smallest
charge in the SM. However, GPS is not simple (containing three simple
factors), and thus it does not predict gauge coupling unification.

Since GSM has rank four (two for SU(3)C and one for SU(2)L
and U(1)Y , respectively), the rank-four group SU(5) is the minimal
choice for unification in a simple group [10]. The three SM gauge
coupling constants derive from a universal coupling αG at the GUT
scale MG. Explicitly embedding GSM in SU(5) is straightforward,
with SU(3)C and SU(2)L corresponding e.g. to the upper-left 3×3
and lower-right 2×2 blocks, respectively, in traceless 5×5 matrices
for SU(5) generators of the fundamental representation. The U(1)Y
corresponds to matrices generated by diag(−2/3,−2/3,−2/3, 1, 1),
which hence commute with SU(3)C × SU(2)L ⊂ SU(5). It is then
easy to derive how one SM generation precisely comes from the 10+ 5

of SU(5) (where 10 is the antisymmetric rank-2 tensor):

10 :




0 uc
b −uc

g ur dr

−uc
b 0 uc

1 ug dg

uc
g −uc

r 0 ub db
−ur −ug −ub 0 ec

−dr −dg −db −ec 0


 and 5 :




dc
r

dc
g

dc
b
e

−νe




(16.2)

Since SU(5) has 24 generators, SU(5) GUTs have 12 new gauge
bosons known as X bosons (or X/Y bosons) in addition to the SM. X
bosons form an SU(3)C -triplet and SU(2)L-doublet. Their interaction
connects quarks and leptons such that baryon and lepton numbers are
not conserved and nucleon decay is predicted. Furthermore, U(1)Y
hypercharge is automatically quantized since it is embedded in SU(5).

In order to break the electroweak symmetry at the weak scale and
give mass to quarks and leptons, Higgs doublets are needed. In the
minimal SU(5) model, they can sit in either a 5H or 5̄H. The three
additional states are referred to as color-triplet Higgs scalars. Their
couplings also violate baryon and lepton numbers, inducing nucleon
decay. In order not to violently disagree with the non-observation of
nucleon decay, the triplet mass must be greater than ∼ 1011 GeV [11].
Moreover, in SUSY GUTs [12], in order to cancel anomalies as well
as give mass to both up and down quarks, both Higgs multiplets 5H,
and 5̄H are required. As we shall discuss later, nucleon decay now
constrains the Higgs triplets to have mass significantly greater than
MG in the minimal SUSY SU(5) GUT since integrating out the Higgs
triplets generates dimension-five baryon-number-violating operators
[13]. The mass splitting between doublet and triplet in the 5H (and
5H) comes from their interaction with the SU(5) breaking sector.

While SU(5) allows for the minimal GUT models, unification is not
complete: Two independent representations, 10 and 5̄, are required
for one SM generation.

A further representation, an SU(5) singlet, has to be added to
serve as r.h. neutrino in the seesaw mechanism. In this case, the r.h.
neutrino masses are not necessarily related to the GUT scale.

By contrast, a single 16-dimensional spinor representation of
SO(10) accommodates a full SM generation together with an extra
singlet, potentially providing a r.h. neutrino [14]. This is most easily
understood from the breaking pattern SO(10) → SU(5) × U(1)X and
the associated branching rule* 16 = 10−5 + 5̄3 +1−1. Here the indices
refer to charges under the U(1)X subgroup, which is orthogonal to
SU(5) and reflects the fact that SO(10) has rank five. From the above,
it is easy to see that U(1)X charges can be given as 2Y − 5(B − L).

* Useful references on group theory in the present context include
[15] and refs. therein.
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Intriguingly, all representations of SO(10) are anomaly free in four
dimensions (4d). Thus, the absence of anomalies in an SU(5)-GUT or
a SM generation can be viewed as deriving from this feature.

Table 16.1 presents the states of one family of quarks and leptons, as
they appear in the 16. To understand this, recall that the Γ-matrices of
the 10d Clifford algebra give rise to five independent, anticommuting
‘creation-annihilation’ operators Γa± = (Γ2a−1 ± iΓ2a)/2 with
a = 1, ..., 5. These correspond to five fermionic harmonic oscillators
or “spin” 1/2 systems. The 32-dimensional tensor product of those
is reducible since the 10d rotation generators Mmn = −i[Γm, Γn]/4
(m, n = 1, ..., 10) always flip an even number of “spins”. This gives
rise to the 16 as displayed in Table 16.1.

Next, one also recalls that the natural embedding of SU(5) in
SO(10) relies on ‘pairing up’ real dimensions, R10 ≡ C5, similarly to
the paring up of Γms used above. This makes it clear how to associate
one |±> system to each complex dimension of SU(5), which explains
the labeling of the “spin” columns in Table 16.1: The first three
and last two “spins” correspond to SU(3)C and SU(2)L respectively.
In fact, an SU(3)C rotation just raises one color index and lowers
another, changing colors {r, b, y}, or changes relative phases between
the three spin states. Similarly, an SU(2)L rotation raises one weak
index and lowers another, thereby flipping the weak isospin from up
to down or vice versa, or changes the relative phase between the two
spin states. In this representation U(1)Y hypercharge is simply given
by Y = −2/3(

∑
color spins) + (

∑
weak spins). SU(5) rotations

corresponding to X bosons then raise (or lower) a color index, while
at the same time lowering (or raising) a weak index. It is easy to
see that such rotations can mix the states {Q, uc, ec} and {dc, L}
among themselves and νc is a singlet. Since SO(10) has 45 generators,
additional 21 gauge bosons are introduced including the U(1)X above.
The 20 new SO(10) rotations not in SU(5) are then given by either
raising any two spins or lowering them. With these rotations, 1 and
5 are connected with 10. The last SO(10) rotation changes phases
of states with weight 2(

∑
color spins) + 2(

∑
weak spins), which

corresponds to U(1)X .

Table 16.1: Quantum numbers of 16-dimensional representation
of SO(10).

state Y Color Weak SU(5) SO(10)

νc 0 −−− −− 1

ec 2 −−− ++

ur 1/3 + −− −+
dr 1/3 + −− +−

ub 1/3 − + − −+
db 1/3 − + − +− 10

uy 1/3 −− + −+
uy 1/3 −− + +− 16

uc
r −4/3 − + + −−

uc
b −4/3 + − + −−

uc
y −4/3 + + − −−

dc
r 2/3 − + + ++

dc
b 2/3 + − + ++

dc
y 2/3 + + − ++ 5̄

ν −1 + + + −+
e −1 + + + +−

SO(10) has two inequivalent maximal subgroups and hence
breaking patterns, SO(10) → SU(5) × U(1)X and SO(10) →
SU(4)C × SU(2)L × SU(2)R. In the first case, one can carry on
breaking to GSM ⊂ SU(5) precisely as in the minimal SU(5) case
above. Alternatively, one can identify U(1)Y as an appropriate linear

combination of U(1)X and the U(1) factor from SU(5), leading to
the so-called flipped SU(5) [16] as an intermediate step in breaking
SO(10) to GSM . In the second case, we have an intermediate Pati-
Salam model thanks to the branching rule 16 = (4,2,1) + (4,1,2).
Finally, SO(10) can break directly to the SM at MG. Gauge coupling
unification remains intact in the case of this ‘direct’ breaking and for
the breaking pattern SO(10) → SU(5) → GSM (with SU(5) broken
at MG). In the case of intermediate-scale Pati-Salam or flipped SU(5)
models, gauge coupling predictions are modified. The Higgs multiplets
in minimal SO(10) come from the fundamental representation,
10H = 5H + 5̄H. Note, only in SO(10) does the representation type
distinguish SM matter from Higgs fields.

Finally, larger symmetry groups can be considered. For example,
the exceptional group E6 has maximal subgroup SO(10) × U(1) [17].
Its fundamental representation branches as 27 = 161 + 10−2 + 14.
Another maximal subgroup is SU(3)C × SU(3)L × SU(3)R ⊂E6 with
branching rule 27 = (3,3,1) + (3̄,1, 3̄) + (1, 3̄,3). Independently of
any underlying E6, the group [SU(3)]3 with additional permutation
symmetry Z3 interchanging the three factors can be considered. This
is known as “trinification” [18]. The E6 → [SU(3)]3 breaking pattern
has been used in phenomenological analyses of the heterotic string
[19]. However, in larger symmetry groups, such as E6, SU(6), etc.,
there are now many more states which have not been observed and
must be removed from the effective low-energy theory.

Intriguingly, the logic by which GSM is a maximal subgroup
of SU(5), which together with U(1)X is a maximal subgroup of
SO(10), continues in a very elegant and systematic way up to
the largest exceptional group. The resulting famous breaking chain
E8 →E7 →E6 → SO(10) → SU(5) → GSM together with the special
role played by E8 in group and in string theory is a tantalizing hint at
deeper structures. However, since all representations of E8 and E7 are
real and can not lead to 4d chiral fermions, this is necessarily outside
the 4d GUT framework.

16.3. GUT breaking and doublet-triplet splitting

In the standard, 4d field-theoretic approach to GUTs, the unified
gauge group is broken spontaneously by an appropriate GUT Higgs
sector. Scalar potentials (or superpotentials in SUSY GUTs) exist
whose vacua spontaneously break SU(5) or SO(10). While these
potentials are ad hoc (just like the Higgs potential in the SM), the
most naive expectation is that all their dimensionful parameters
are O(MG). In the simplest case of SU(5), the 24 (adjoint)
GUT Higgs develops a VEV along the GSM -singlet direction as
〈Φ〉 ∝ diag(−2/3,−2/3,−2/3, 1, 1). In order for SO(10) to break to
SU(5), the 16 or 126, which have a GSM -singlet with non-zero U(1)X
charge, get a VEV.

The masses of doublet and triplet in the 5H (and 5H) generically
split due to their coupling to the GUT Higgs. In addition, both the
doublet and the triplet mass also get an equal contribution from an
SU(5)-invariant GUT-scale mass term. Without any further structure,
an extreme fine-tuning between two large effects is then necessary
to keep the doublet mass at the electroweak scale. Supersymmetry
plays an important role in forbidding large radiative correction to the
doublet mass due to the non-renormalization theorem [7]. However,
even in this case we have to fine tune parameters at tree level. This
is the doublet-triplet splitting problem which, in the SUSY context, is
clearly related the µ-term problem of the MSSM (the smallness of the
coefficient of µHu Hd).

Several mechanisms for natural doublet-triplet splitting have been
suggested under the assumption of supersymmetry, such as the
sliding singlet [20], missing partner [21] or missing VEV [22],
and pseudo-Nambu-Goldstone boson mechanisms [23]. Particular
examples of the missing partner mechanism for SU(5) [24], the
missing VEV mechanism for SO(10) [25,26] and the pseudo-Nambu-
Goldstone boson mechanism for SU(6) [23,27] have been shown to be
consistent with gauge coupling unification and nucleon decay. From
the GUT-scale perspective, one is satisfied if the triplets are naturally
heavy and the doublets are massless (µ ≃ 0). There are also several
mechanisms for resolving the subsequent issue of why µ is of order
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the SUSY breaking scale [28]. * For a review of the µ problem
and some suggested solutions in SUSY GUTs and string theory, see
[29,30,31,32] and references therein.

In general, GUT-breaking sectors successfully resolving the doublet-
triplet splitting problem, dynamically stabilizing all GUT-scale VEVs
and allowing for realistic neutrino masses and Yukawa couplings
(including the GUT-symmetry violation in the latter) require a
number ingredients. However, for validity of the effective theory,
introduction of higher or many representations is limited, otherwise
a Landau pole may appear below the Planck scale. In addition,
GUTs are only effective theories below the Planck scale in the 4d
field-theoretic approach. Since MG is close to this scale, the effects of
higher-dimension operators are not obviously negligible. In particular,
operators including the GUT-breaking Higgs may affect low-energy
predictions, such as quark and lepton masses.

Thus, especially in the context of GUT breaking and doublet-triplet
splitting, models beyond 4d field theory appear attractive. While this
is mainly the subject of the next section, some advantages can already
be noted: In models with extra dimensions, in particular string
constructions, GUT breaking may occur due to boundary conditions
in the compactified dimensions [33,34,35,36]. No complicated GUT
breaking sector is then required. Moreover, boundary conditions can
give mass only to the triplet, leaving the doublet massless. This is
similar to the ‘missing partner mechanism’ since the effective mass
term does not ‘pair up’ the triplets from 5H and 5H but rather each
of them with further fields which are automatically present in the
higher-dimensional theory. This can eliminate dimension-five nucleon
decay (cf. Sec. 16.6).

16.4. String-theoretic and Higher-dimensional

Unified Models

As noted earlier, the GUT scale is dangerously close to the scale of
quantum gravity. It may hence be necessary to discuss unified models
of particle physics in the latter, more ambitious context. Among the
models of quantum gravity, superstring or M-theory stands out as
the best-studied and technically most developed proposal, possessing
in particular a high level internal, mathematical consistency. For our
purposes, it is sufficient to know that five 10d and one 11d low-energy
effective supergravity theories arise in this setting (cf. [37] and refs.
therein).

Grand unification is realized most naturally in the context of
the two ‘heterotic’ theories with gauge groups E8×E8 and SO(32)
respectively [35]( see [38] for some of the more recent results).
Justified in part by the intriguing breaking path E8 → · · · → GSM
mentioned above, the focus has historically largely been on E8×E8.
To describe particle physics, solutions of the 10d theory with geometry
R1,3×M6 are considered, where M6 is a Calabi-Yau (CY) 3-fold (with
6 real dimensions). The background solution involves expectation
values of higher-dimensional components of the E8×E8 gauge fields.
This includes both Wilson lines [33] and non-vanishing field-strength
and leads, in general, to a reduced gauge symmetry and to chirality
in the resulting 4d effective theory. The 4d fermions arise from 10d
gauginos.

Given an appropriate embedding of GSM in E8×E8, gauge coupling
unification is automatic at leading order. Corrections arise mainly
through (string)-loop effects and are similar to the familiar field-theory
thresholds of 4d GUTs [39]. Thus, one may say that coupling
unification is a generic prediction in spite of the complete absence* of
a 4d GUT at any energy scale. This absence is both an advantage
and a weakness. On the up side, GUT breaking and doublet-triplet
splitting [41] are more naturally realized and dimension-five nucleon
decay is relatively easy to avoid. On the down side, there is no reason

* The solution of [28] relies on the absence of the fundamental su-
perpotential term µHu Hd (or µ5H5H). This is ensured by a U(1)R.
The latter clashes with typical superpotentials for the GUT breaking
sector. However, higher-dimensional or stringy GUTs, where the triplet
Higgs is simply projected out, can be consistent with the U(1)R sym-
metry.

* See however [40].

to expect full GUT representations in the matter sector and flavor
model building is much less tied to the GUT structure than in 4d.

One technical problem of heterotic constructions is the dependence
on the numerous size and shape parameters of M6 (the so-called
moduli), the stabilization of which is poorly understood (see [42] for
recent developments). Another is the sheer mathematical complexity
of the analysis, involving in particular the study of (non-Abelian)
gauge-bundles on CY spaces [43]( see however [44]) .

An interesting sub-chapter of heterotic string constructions is
represented by orbifold models [34]. Here the internal space is
given by a six-torus, modded out by a discrete symmetry group
(e.g. T 6/Zn). More recent progress is reported in [45], including
in particular the systematic exploration of the phenomenological
advantages of so-called ‘non-prime’ (referring to n) orbifolds. The
symmetry breaking to GSM as well as the survival of Higgs doublets
without triplet partners is ensured by the appropriate embedding of
the discrete orbifold group in E8×E8.

String theory on such spaces, which are locally flat but include
singularities, is much more calculable than in the CY case. The
orbifold geometries can be viewed as singular limits of CYs.

An even simpler approach to unified models, which includes many
of the advantages of full-fledged string constructions, is provided by
Orbifold GUTs [36]. These are (mostly) 5d or 6d SUSY field theories
with unified gauge group (e.g. SU(5) or SO(10)), broken in the
process of compactifying to 4d. To give a particularly simple example,
consider SU(5) on R1,3×S1/(Z2 × Z ′

2). Here the compact space is
an interval and the embedding of Z ′

2 in the hypercharge direction of
SU(5) realizes the breaking to GSM . Concretely, 5d X bosons are
given Neumann BCs at one endpoint of the interval and thus have no
Kaluza-Klein (KK) zero mode. Their lightest modes have mass ∼ 1/R,
making the KK-scale the effective GUT scale. As an implication, the
boundary theory has no SU(5) invariance. Nevertheless, since the
SU(5)-symmetric 5d bulk dominates 4d gauge couplings, unification
remains a prediction. Many other features but also problems of 4d
GUTs can be circumvented, especially doublet-triplet splitting is easily
realized.

With the advent of the string-theory ‘flux landscape’ [46], which is
best understood in 10d type-IIB supergravity, the focus in string model
building has shifted to this framework. While type II string theories
have no gauge group in 10d, brane-stacks support gauge dynamics.
A particularly appealing setting (see e.g. [47]) is provided by type
IIB models with D7 branes (defining 8d submanifolds). However,
in the SO(10) context the 16 is not available and, for SU(5), the
top-Yukawa coupling vanishes at leading order [48]. As a crucial
insight, this can be overcome on the non-perturbative branch of type
IIB, also known as F-theory [49,50]. This setting allows for more
general branes, thus avoiding constraints of the Dp-brane framework.
GUT breaking can be realized using hypercharge flux (the VEV of
the U(1)Y field strength), an option not available in heterotic models.
The whole framework combines the advantages of the heterotic or
higher-dimensional unification approach with the more recent progress
in understanding moduli stabilization. It thus represents at this
moment the most active and promising branch of theory-driven GUT
model building (see e.g. [51] and refs. therein).

As a result of the flux-breaking, a characteristic ‘type IIB’ or
‘F-theoretic’ tree-level correction to gauge unification arises [52].
The fact that this correction can be rather significant numerically is
occasionally held against the framework of F-theory GUTs. However,
at a parametric level, this correction nevertheless behaves like a 4d
threshold, i.e., it provides O(1) additive contributions to the inverse
4d gauge coupling α−1

i (MGUT).

A final important issue in string GUTs is the so-called string-
scale/GUT-scale problem [53]. It arises since, in heterotic com-
pactifications, the Planck scale and the high-scale value of the gauge
coupling unambiguously fix the string-scale to about 1018 GeV. As the
compactification radius R is raised above the string length, the GUT
scale (identified with 1/R) goes down and the string coupling goes up.
Within the domain of perturbative string theory, a gap of about a
factor ∼ 20 remains between the lowest GUT scale achievable in this
way and the phenomenological goal of 2 × 1016 GeV. The situation
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can be improved by venturing into the non-perturbative regime [53]
or by considering ‘anisotropic’ geometries with hierarchically different
radii R [53,54].

In F-theory GUTs, the situation is dramatically improved since the
gauge theory lives only in four out of the six compact dimensions.
This allows for models with a ‘decoupling limit’, where the GUT
scale is parametrically below the Planck scale [50]. However, moduli
stabilization may not be without problems in such constructions, in
part due to a tension between the required large volume and the
desirable low SUSY breaking scale.

16.5. Gauge Coupling Unification

The quantitative unification of the three SM gauge couplings at the
energy scale MG is one of the cornerstones of the GUT paradigm.
It is obviously of direct phenomenological relevance. Gauge coupling
unification is best understood in the framework of effective field
theory (EFT) [55]. In the simplest case, the relevant EFT at
energies µ ≫ MG has a unified gauge symmetry (say SU(5) for
definiteness) and a single running gauge coupling αG(µ). At energies
µ ≪ MG, states with mass ∼ MG (such as X bosons, GUT Higgs,
color-triplet Higgs) have to be integrated out. The EFT now has three
independent couplings and SM (or MSSM) matter content. One-loop
renormalization group equations readily allow for an extrapolation to
the weak scale,

α−1
i (mZ) = α−1

G (MG) +
bi

2π
log

(
MG

mZ

)
+ δi . (16.3)

Here we defined δi to absorb all sub-leading effects, including threshold
corrections at or near the weak scale (e.g. from superpartners and the
additional Higgs bosons in the case of SUSY). We will discuss them
momentarily.

It is apparent from Eq. (16.3) that the three low-scale couplings
can be very different. This is due to the large energy range
mZ ≪ µ ≪ MG and the non-universal β-function coefficients
(bSM

i = {41/10,−19/6,−7} or bMSSM
i = {33/5, 1,−3}). Incomplete

GUT multiplets, such as gauge and Higgs bosons in the SM and also
their superpartners and the additional Higgs bosons in the MSSM,
contribute to the differences between the β functions. Inverting the
argument, one expects that extrapolating the measured couplings to
the high scale, we find quantitative unification at µ ∼ MG. While this
fails in the SM, it works intriguingly well in the MSSM (cf. Fig. 1).

The three equations contained in (Eq. (16.3)) can be used to
determine the three ‘unknowns’ α3(mZ), αG(MG) and MG, assuming
that all other parameters entering the equations are given. Focusing
on the SUSY case and using the MS coupling constants α−1

EM(mZ) and

sin2 θW (mZ) from [56],

α−1
EM(mZ) = 127.940± 0.014 , (16.4)

sin2 θW (mZ) = 0.23126± 0.00005 , (16.5)

as input, one determines α−1
1,2(mZ), which then gives

α−1
G (MG) ≃ 24.3 and MG ≃ 2 × 1016 GeV . (16.6)

Here we have set δi = 0 for simplicity. Crucially, one in addition
obtains a prediction for the low-energy observable α3,

α−1
3 (mZ) = −5

7
α−1

1 (mZ) +
12

7
α−1

2 (mZ) + ∆3 , (16.7)

where

∆3 =
5

7
δ1 − 12

7
δ2 + δ3 . (16.8)

Here we followed the elegant formulation in Ref. [57] of the classical
analyses of [4]. Of course, it is a matter of convention which of the
three low-energy gauge coupling parameters one ‘predicts’ and indeed,
early work on the subject discusses the prediction of sin2 θW in terms
of αEM and α3 [58,59].
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Figure 16.1: Running couplings in SM and MSSM using
two-loop RG evolution. The SUSY threshold at 2 TeV is clearly
visible on the r.h. side. (We thank Ben Allanach for providing
the plots created using SOFTSUSY [61].)

Remarkably, the leading order result (i.e. Eq. (16.7) with δi = 0) is
in excellent agreement with experiments [56]:

αLO
3 (mZ) = 0.117 vs. αEXP

3 (mZ) = 0.1185± 0.0006 . (16.9)

However, this near perfection is to some extent accidental. To see this,
we now discuss the various contributions to the δi (and hence to ∆3).

The two-loop running correction from the gauge sector ∆
(2)
3 and

the low-scale threshold correction ∆
(l)
3 from superpartners can be

summarized as [57]

∆
(2)
3 ≃ −0.82 and ∆

(l)
3 ≃ 19

28π
log

(
mSUSY

mZ

)
. (16.10)

The relevant scale mSUSY can be estimated as [60]

mSUSY → m
3/19
H m

12/19

H̃
m

4/19

W̃
×

(
m

W̃

mg̃

)28/19 (
m

l̃

mq̃

)3/19

,

(16.11)
where mH stands for the masses of non-SM Higgs states and
superpartner masses are given in self-evident notation. Detailed
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analyses including the above effects are best done using appropriate
software packages, such as SOFTSUSY [61]( or alternatively SuSpect
or SPheno [62]) . See also [61] for references to the underlying
theoretical two-loop analyses.

To get a very rough feeling for these effects, let us assume
that all superpartners are degenerate at mSUSY = 1 TeV, except

for heavier gluinos: m
W̃

/mg̃ ≃ 1/3. This gives ∆
(l)
3 ≃ −0.35 +

0.22 ln(mSUSY/mZ) ≃ 0.18. The resulting prediction of α3(mZ) ≃
0.126 significantly upsets the perfect one-loop agreement found earlier.
Before discussing this issue further, it is useful to introduce yet another
important type of correction, the high- or GUT-scale thresholds.

To discuss high-scale thresholds, let us set all other corrections
to zero for the moment and write down a version of Eq. (16.3) that
captures the running near and above the GUT scale more correctly.
The threshold correction at one-loop level can be evaluated accurately
by the simple step-function approximation for the β functions in the
DR scheme* [66],

α−1
i (mZ) =

α−1
G (µ) +

1

2π

[
bi ln

µ

mZ
+ bC

i ln
µ

MC
+ bX

i ln
µ

MX
+ bΦi ln

µ

MΦ

]
.

(16.12)
Here we started the running at some scale µ ≫ MG, including the
contribution of the minimal set of states relevant for the transition
from the high-scale SU(5) model to the MSSM. These are the color-
triplet Higgs multiplets with mass MC , massive vector multiplets of
X-bosons with mass MX (including GUT Higgs degrees of freedom),
and the remaining GUT-Higgs fields and superpartners with mass

MΦ. The coefficients b
C,X,Φ
i can be found in Ref. [67]. Crucially,

the bi in Eq. (16.12) conspire to make the running GUT-universal at
high scales, such that the resulting prediction for α3 does not depend
on the value of µ.

To relate this to our previous discussion, we can, for example,
define MG ≡ MX and then choose µ = MG in Eq. (16.12). This gives
the high-scale threshold corrections

δ
(h)
i =

1

2π

[
bC
i ln

MG

MC
+ bΦi ln

MG

MΦ

]
, (16.13)

and a corresponding correction ∆
(h)
3 . To get some intuition for the

magnitude, one can furthermore assume mΦ = MG, finding (with
bC
i = {2/5, 0, 1})

∆
(h)
3 =

9

14π
ln

(
MG

MC

)
. (16.14)

To obtain the desired effect of +0.64, the triplet Higgs would have
to be by about a factor 20 lighter than the GUT scale. While this
is ruled out by nucleon decay in the minimal model [68] as will be
discussed Sec. 16.6, it is also clear that threshold corrections of this
order of magnitude can, in general, be realized with a certain amount
of GUT-scale model building, e.g. in specific SU(5) [24] or SO(10)
[25,26] constructions. It is, however, a significant constraint on the 4d
GUT sector of the theory.

The above analysis implicitly assumes universal soft SUSY breaking
masses at the GUT scale, which directly affect the spectrum of SUSY
particles at the weak scale. In the simplest case we have a universal
gaugino mass M1/2, a universal mass for squarks and sleptons m16

and a universal Higgs mass m10, as motivated by SO(10). In some
cases, threshold corrections to gauge coupling unification can be
exchanged for threshold corrections to soft SUSY parameters (see [69]
and refs. therein). For example, if gaugino masses were not unified
at MG and, in particular, gluinos were lighter than winos at the
weak scale (cf. Eq. (16.11))), then it is possible that, due to weak
scale threshold corrections, a much smaller or even slightly positive

* The DR scheme is frequently used in a supersymmetric regulariza-
tion [63]. The renormalization transformation of the gauge coupling
constants from MS to DR scheme is given in Ref. [64]. For an
alternative treatment using holomorphic gauge couplings and NSVZ
β-functions see e.g. [65].

threshold correction at the GUT scale would be consistent with gauge
coupling unification [70].

It is also noteworthy that perfect unification can be realized
without significant GUT-scale corrections, simply by slightly raising
the (universal) SUSY breaking scale. In this case the dark matter
abundance produced by thermal processes in the early universe (if the
lightest neutralino is the dark matter particle) is too high. However,
even if the gaugino mass in the MSSM is about 1 TeV, if the Higgsino
and the non-SM Higgs boson masses are about 10-100 TeV, the
effective SUSY scale can be raised [71]. This setup is realized in
split SUSY [72] or the pure gravity mediation model [73] based on
anomaly mediation [74]. Since the squarks and sleptons are much
heavier than the gaugino masses in those setups, a gauge hierarchy
problem is reintroduced. The facts that no superpartners have so far
been seen at the LHC and that the observed Higgs mass favors heavier
stop masses than about 1 TeV force one to accept a certain amount of
fine-tuning anyway.

For non-SUSY GUTs or GUTs with a very high SUSY breaking
scale to fit the data, new light states in incomplete GUT multiplets or
multiple GUT breaking scales are required. For example, non-SUSY
models SO(10) → SU(4)C ×SU(2)L ×SU(2)R →SM, with the second
breaking scale of order an intermediate scale, determined by light
neutrino masses using the see-saw mechanism, can fit the low-energy
data for gauge couplings [75] and at the same time survive nucleon
decay bounds [76]. Alternatively, one can appeal to string-theoretic
corrections discussed in Sec. 16.4 to compensate for a high SUSY
breaking scale. This has, for example, been concretely analyzed in the
context of F-theory GUTs in [77].

In 5d or 6d orbifold GUTs, certain “GUT scale” threshold correc-
tions come from the Kaluza-Klein modes between the compactification
scale, Mc, and the effective cutoff scale M∗. In string theory, this
cutoff scale is the string scale. Gauge coupling unification at two loops
then constrains the values of Mc and M∗.* Typically, one finds Mc

to be lower than the 4d GUT scale. Since the X-bosons, responsible
for nucleon decay, get mass at the compactification scale, this has
significant consequences for nucleon decay.

Finally, it has been shown that non-supersymmetric GUTs in
warped 5d orbifolds can be consistent with gauge coupling unification.
This assumes (in 4d language) that the r.h. top quark and the Higgs
doublets are composite-like objects with a compositeness scale in the
TeV range [79].

16.6. Nucleon Decay

Quarks and leptons are indistinguishable in any 4d GUT, and both
the baryon (B) and lepton number (L) are not conserved. This leads to
baryon-number-violating nucleon decay. In addition to baryon-number
violation, lepton-number violation is also required for nucleon decay
since, in the SM, leptons are the only free fermions which are lighter
than nucleons. The lowest-dimension operators relevant for nucleon
decay are (B+L) violating dimension-six four-fermion-terms since all
baryon-violating operators with dimension less than seven preserve
(B−L) [80]. In SU(5) GUTs, they are induced by X boson exchange.
These operators are suppressed by (1/M2

G), and the nucleon lifetime

is given by τN ∝ M4
G/(α2

G m5
p) (mp is proton mass). The dominant

decay mode of the proton (and the baryon-violating decay mode of
the neutron), via X boson exchange, is p → e+ π0 (n → e+ π−). In
any simple gauge symmetry, with one universal GUT coupling αG
and scale MG, the nucleon lifetime from gauge boson exchange is
calculable. Hence, the GUT scale may be directly observed via the
extremely rare decay of the nucleon. Experimental searches for nucleon
decay began with the Kolar Gold Mine, Homestake, Soudan, NUSEX,
Frejus, HPW, and IMB detectors [58]. The present experimental
bounds come from Super-Kamiokande and Soudan II. We discuss
these results shortly. While non-SUSY GUTs are constrained by the
non-observation of nucleon decay, a precise and general statement is
hard to make. The reason is that gauge couplings do not unify with

* It is interesting to note that a ratio M∗/Mc ∼ 100, needed for
gauge coupling unification to work in orbifold GUTs, is typically the
maximum value for this ratio consistent with perturbativity [78].
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just the SM particle content. Once extra states or large thresholds are
included to ensure precision unification, a certain range of unification
scales is allowed. By contrast, in SUSY GUTs one generically has
MG ∼ 2 × 1016 GeV. Hence dimension-six baryon-number-violating
operators are predicted to induce a lifetime of about τp ∼ 1036 years.

However, in SUSY GUTs there are additional sources for baryon
and/or lepton-number violation – dimension-four and five operators
[13]. These arise since, in the SUSY SM, quarks and leptons have
scalar partners (squarks and sleptons). Although our notation does not
change, when discussing SUSY models our fields are chiral superfields
and both fermionic and bosonic matter is implicitly represented
by those. In this language, baryon- and/or lepton-number-violating
dimension-four and five operators are given as so-called F terms of
products of chiral superfields, which contain two fermionic components
and the rest scalars or products of scalars. Within the context of
SU(5) the dimension-four and five operators have the form

(10 5̄ 5̄) ⊃ (uc dc dc) + (Q L dc) + (ec L L),

(10 10 10 5̄) ⊃ (Q Q Q L) + (uc uc dc ec)

+B- and L-conserving terms,

respectively. The dimension-four operators are renormalizable, with
dimensionless couplings similar to Yukawa couplings. By contrast,
the dimension-five operators have a dimensionful coupling of order
(1/MG). They are generated by integrating out the color-triplet Higgs
with GUT-scale mass. Note that both triplet Higgsinos (due to their
fermionic nature) and Higgs scalars (due to their mass-enhanced
trilinear coupling with matter) contribute to the operators.

The dimension-four operators violate either baryon number or
lepton number. The nucleon lifetime is extremely short if both
types of dimension-four operators are present in the SUSY SM since
squark or slepton exchange induces the dangerous dimension-six SM
operators. Even in the case that they violate baryon number or
lepton number only but not both, they are constrained by various
phenomena [81]. For example, the primordial baryon number in the
universe is washed out unless the dimensionless coupling constants
are less than 10−7. Both types of operators can be eliminated by
requiring R parity, which distinguishes Higgs from ordinary matter
multiplets. R parity [82] or its cousin, matter parity [12,83], act
as F → −F, H → H with F = {10, 5̄}, H = {5̄H, 5H} in SU(5).
This forbids the dimension-four operator (10 5̄ 5̄), but allows the
Yukawa couplings for quark and lepton masses of the form (10 5̄ 5̄H)
and (10 10 5H). It also forbids the dimension-three, lepton-number-
violating operator (5̄ 5H) ⊃ (L Hu) as well as the dimension-five,
baryon-number-violating operator (10 10 10 5̄H) ⊃ (Q Q Q Hd)+ · · ·.
In SU(5), the Higgs multiplet 5̄H and the matter multiplets 5̄ have
identical gauge quantum numbers. In E6, Higgs and matter multiplets
could be unified within the fundamental 27 representation. Only in
SO(10) are Higgs and matter multiplets distinguished by their gauge
quantum numbers. Moreover the Z4 center of SO(10) distinguishes
10s from 16s and can be associated with R parity [84].

The dimension-five baryon-number-violating operators may also
be forbidden at tree level by certain symmetries consistent with
SU(5) [13]. However, these symmetries are typically broken by the
VEVs responsible for the color-triplet Higgs masses. Consequently
the dimension-five operators are generically generated via the triplet
Higgs exchange in SUSY SU(5) GUTs, as mentioned above. Hence,
the triplet partners of Higgs doublets must necessarily obtain mass
of order the GUT scale. In addition, it is also important to note
that Planck or string scale physics may independently generate the
dimension-five operators, even without a GUT. These contributions
must be suppressed by some underlying symmetry; for example,
the same flavor symmetry which may be responsible for hierarchical
fermion Yukawa matrices.

As a general remark, appealing to global symmetries to suppress
specific interactions may not always be as straightforward as it naively
seems. Indeed, there are two possibilities: On the one hand, the
relevant symmetry might be gauged at a higher scale. Effects of the
VEVs responsible for the spontaneous breaking are then in principle
dangerous and need to be quantified.

On the other hand, the symmetry might be truly only global. This
must e.g. be the case for anomalous symmetries, which are then also
violated by field-theoretic non-perturbative effects. The latter can in
principle be exponentially small. It is, however, widely believed that
global symmetries are always broken in quantum gravity (see e.g. [85])
. One then needs to understand which power or functional form the
Planck scale suppression of the relevant interaction has. For example,
dimension-five baryon number violating operators suppressed by just
one unit of the Planck or string scale are completely excluded.

In view of the above, it is also useful to recall that in string
models 4d global symmetries generally originate in higher-dimensional
gauge symmetries. Here ‘global’ implies that the gauge boson has
acquired a Stückelberg-mass. This is a necessity in the anomalous case
(Green-Schwarz mechanism) but can also happen to non-anomalous
symmetries. One expects no symmetry violation beyond the well-
understood non-perturbative effects. Discrete symmetries arise as
subgroups of continuous gauge symmetries, such as ZN ⊂ U(1). In
particular, non-anomalous subgroups of Stückelberg-massive U(1)s
represent unbroken discrete gauge symmetries and as such are
non-perturbatively exact (see e.g. [86]) . Of course, such discrete
gauge symmetries may also arise as remnants of continuous gauge
symmetries after conventional 4d spontaneous breaking.

Dimension-five operators include squarks and/or sleptons. To
allow for nucleon decay, these must be converted to light quarks
or leptons by exchange of a gaugino or Higgsino in the SUSY
SM. The nucleon lifetime is proportional to M2

G m2
SUSY/m5

p, where
mSUSY is the SUSY breaking scale. Thus, dimension-five operators
may predict a shorter nucleon lifetime than dimension-six operators.
Unless accidental cancellations are present, the dominant decay
modes from dimension-five operators include a K meson, such as
p → K+ ν̄ (n → K0 ν̄). This is due to a simple symmetry argument:
The operators are given as (Qi Qj Qk Ll) and (uc

i uc
j dc

k ec
l ), where

i, j, k, l (= 1–3) are family indices and color and weak indices are
implicit. They must be invariant under SU(3)C and SU(2)L so that
their color and weak doublet indices must be anti-symmetrized. Since
these operators are given by bosonic superfields, they must be totally
symmetric under interchange of all indices. Thus the first operator
vanishes for i = j = k and the second vanishes for i = j. Hence a
second or third generation member exists in the dominant modes of
nucleon decay unless these modes are accidentally suppressed [83].

Recent Super-Kamiokande bounds on the proton lifetime severely
constrain the dimension-six and five operators. With 306 kton-
years of data they find τp/Br(p → e+π0) > 1.67 × 1034 years and
τp/Br(p → K+ν̄) > 6.6 × 1033 years at 90% CL [87]. The hadronic
matrix elements for baryon-number-violating operators are evaluated
with lattice QCD simulations [88]. The lower bound on the X
boson mass from null results in nucleon decay searches is approaching
1016 GeV in SUSY SU(5) GUTs [89]. In the minimal SUSY SU(5),
τp/Br(p → K+ν̄) is smaller than about 1031 years if the triplet Higgs
mass is 1016 GeV and mSUSY = 1 TeV [90]. The triplet Higgs mass
bound from nucleon decay is then in conflict with gauge coupling
unification so that this model is considered to be ruled out [68].

Since nucleon decay induced by the triplet Higgs is a severe
problem in SUSY GUTs, various proposals for its suppression have
been made. First, some accidental symmetry or accidental structure
in non-minimal Higgs sectors in SU(5) or SO(10) theories may
suppress the dimension-five operators [25,26,21,91]. As mentioned
above, the triplet Higgs mass term violates symmetries which forbid
the dimension-five operators. In other words, the nucleon decay is
suppressed if the Higgs triplets in 5̄H and 5H do not have a common
mass term but, instead, their mass terms involve partners from other
SU(5) multiplets. Second, the SUSY breaking scale may be around
O(10–100) TeV in order to explain the observed Higgs boson mass
at the LHC. In this case, nucleon decay is automatically suppressed
[72,92,93]. Third, accidental cancellations among diagrams due to
a fine-tuned structure of squark and slepton flavor mixing might
suppress nucleon decay [94]. Last, we have also implicitly assumed
a hierarchical structure for Yukawa matrices in the analysis. It is
however possible to fine-tune a hierarchical structure for quarks and
leptons which baffles the family structure so that the nucleon decay is
suppressed [95]. The upper bound on the proton lifetime from some
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of these theories is approximately a factor of 10 above the experimental
bounds. Future experiments with larger neutrino detectors, such as
JUNO [96], Hyper-Kamiokande [97] and DUNE [98], are planned
and will have higher sensitivities to nucleon decay.

Are there ways to avoid the stringent predictions for proton decay
discussed above? Orbifold GUTs and string theories, see Sec. 16.4,
contain grand unified symmetries realized in higher dimensions. In the
process of compactification and GUT symmetry breaking, the triplet
Higgs states may be removed (projected out of the massless sector
of the theory). In such models, the nucleon decay due to dimension-
five operators can be severely suppressed or eliminated completely.
However, nucleon decay due to dimension-six operators may be
enhanced, since the gauge-bosons mediating proton decay obtain mass
at the compactification scale, Mc, which is typically less than the
4d GUT scale (cf. Sec. 16.5). Alternatively, the same projections
which eliminate the triplet Higgs may rearrange the quark and lepton
states such that the massless states of one family come from different
higher-dimensional GUT multiplets. This can suppress or completely
eliminate even dimension-six proton decay. Thus, enhancement or
suppression of dimension-six proton decay is model-dependent. In
some complete 5-d orbifold GUT models [99,57] the lifetime for the
decay τp/Br(p → e+π0) can be near the bound of 1× 1034 years with,
however, large model-dependence and/or theoretical uncertainties. In
other cases, the modes p → K+ν̄ and p → K0µ+ may be dominant
[57]. Thus, interestingly, the observation of nucleon decay may
distinguish string or higher-dimensional GUTs from 4d ones.

In orbifold GUTs or string theory, new discrete symmetries
consistent with SUSY GUTs can forbid all dimension-three and four
baryon- and lepton-number-violating operators. Even the µ term and
dimension-five baryon- and lepton-number-violating operators can be
forbidden to all orders in perturbation theory [32]. The µ term and
dimension-five baryon- and lepton-number-violating operators may
then be generated, albeit sufficiently suppressed, via non-perturbative
effects. The simplest example of this is a ZR

4 symmetry which is
the unique discrete R symmetry consistent with SO(10) [32]. In
this case, nucleon decay is completely dominated by dimension-six
operators.

16.7. Yukawa Coupling Unification

In the SM, masses and mixings for quarks and leptons come
from the Yukawa couplings with the Higgs doublet, but the values
of these couplings remain a mystery. GUTs provide at least a
partial understanding since each generation is embedded in unified
multiplet(s). Specifically, since quarks and leptons are two sides of
the same coin, the GUT symmetry relates the Yukawa couplings (and
hence the masses) of quarks and leptons.

In SU(5), there are two types of independent renormalizable
Yukawa interactions given by λij (10i 10j 5H) + λ′ij (10i 5̄j 5̄H).

These contain the SM interactions λij (Qi uc
j Hu) + λ′ij (Qi dc

j Hd +

ec
i Lj Hd). Here i, j (= 1–3) are, as before, family indices. Hence,

at the GUT scale we have tree-level relations between Yukawa
coupling constants for charged lepton and down quark masses, such as
λb = λτ in which λb/τ are the bottom quark /τ lepton Yukawa coupling

constants [100,101]. In SO(10), there is only one type of independent
renormalizable Yukawa interaction given by λij (16i 16j 10H), leading
to relations among all Yukawa coupling constants and quark and
lepton masses within one generation [102,103]( such as λt = λb = λτ ,
with λt the top quark Yukawa coupling constant).

16.7.1. The third generation, b–τ or t–b–τ unification :

Third generation Yukawa couplings are larger than those of the
first two generations. Hence, the fermion mass relations predicted
from renormalizable GUT interactions which we introduced above are
expected to be more reliable. In order to compare them with data, we
have to include the radiative correction to these relations from the RG
evolution between GUT and fermion mass scale, from integrating out
heavy particles at the GUT scale, and from weak scale thresholds.

Since testing Yukawa coupling unification is only possible in models
with successful gauge coupling unification, we here focus on SUSY
GUTs. In the MSSM, top and bottom quark and τ lepton masses are

related to the Yukawa coupling constants at the scale mZ as

mt(mZ) = λt(mZ) vu(1 + δmt/mt),

mb/τ (mZ) = λb/τ (mZ) vd(1 + δmb/τ /mb/τ ),

where 〈H0
u〉 ≡ vu = sinβ v/

√
2, 〈H0

d 〉 ≡ vd = cosβ v/
√

2, vu/vd ≡
tanβ and v ∼ 246 GeV is fixed by the Fermi constant, Gµ.
Here, δmf/mf (f = t, b, τ) represents the threshold correction due to
integrating out SUSY partners. For the bottom quark mass, it is found
[104] that the dominant corrections come from the gluino-sbottom and
from the Higgsino-stop loops,

(
δmb

mb

)

g3

∼ g2
3

6π2

mg̃µ

m2
SUSY

tanβ

and (
δmb

mb

)

λt

∼ λ2
t

16π2

Atµ

m2
SUSY

tanβ , (16.15)

where mg̃, µ, and At stand for gluino and Higgsino masses and trilinear
stop coupling, respectively. Note that Eq. (16.15) only illustrates
the structure of the corrections – non-trivial functional dependences
on several soft parameters ∼ mSUSY have been suppressed. For the
full one-loop correction to the bottom quark mass see, for example,
Ref. [105].

Note also that the corrections do not go to zero as SUSY particles
become much heavier than mZ . They may change the bottom quark
mass at the 10% level for tan β = O(10). The total effect is sensitive
to the relative phase between gluino and Higgsino masses since
At ∼ −mg̃ due to the infrared fixed point nature of the RG equation
for At [106] in settings where SUSY breaking terms come from Planck
scale dynamics, such as gravity mediation. The τ lepton mass also
receives a similar correction, though only at the few % level. The top
quark mass correction, not being proportional to tanβ, is at most 10%
[107].

Including one loop threshold corrections at mZ and additional
RG running, one finds the top, bottom and τ pole masses. In SUSY
GUTs, b–τ unification has two possible solutions with tanβ ∼ 1 or
O(10). The small tanβ solution may be realized in the MSSM if
superpartner masses are O(10) TeV, as suggested by the observed
Higgs mass [92]. The large tan β limit such as tanβ ∼ 40–50
overlaps the SO(10) symmetry relation. When tanβ is large, there
are significant threshold correction to down quark mass as mentioned
above, and Yukawa unification is only consistent with low-energy
data in a restricted region of SUSY parameter space, with important
consequences for SUSY searches [107,108]. More recent analyses of
Yukawa unification after LHC Run-I are found in Ref. [109].

Gauge coupling unification is also successful in the scenario of split
supersymmetry [72], in which squarks and sleptons have mass at a
scale m̃ ≫ mZ , while gauginos and Higgsinos have masses of order
the weak scale. Unification of b–τ Yukawa couplings requires tanβ to
be fine-tuned close to 1 [92]. If by contrast, tanβ & 1.5, b–τ Yukawa
unification only works for m̃. 104 GeV. This is because the effective
theory between the gaugino mass scale and m̃ includes only one Higgs
doublet, as in the standard model. As a result, the large top quark
Yukawa coupling tends to increase the ratio λb/λτ due to the vertex
correction, which is absent in supersymmetric theories, as one runs
down in energy below m̃. This is opposite to what happens in the
MSSM where the large top quark Yukawa coupling lowers the ratio
λb/λτ [101].

16.7.2. Beyond leading order: three-family models :

Simple Yukawa unification is not possible for the first two
generations. Indeed, SU(5) implies λs = λµ, λd = λe and hence
λs/λd = λµ/λe. This is an RG-invariant relation which extrapolates
to ms/md = mµ/me at the weak scale, in serious disagreement with
data (ms/md ∼ 20 and mµ/me ∼ 200). An elegant solution to this
problem was given by Georgi and Jarlskog [110]( for a recent analysis
in the SUSY context see [111]) .

More generally, we have to recall that in all of the previous discussion
of Yukawa couplings, we assumed renormalizable interactions as well
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as the minimal matter and Higgs content. Since the GUT scale is
close to the Planck scale, higher-dimension operators involving the
GUT-breaking Higgs may modify the predictions, especially for lower
generations. An example is provided by the operators 10 5̄ 5̄H 24H

with 24H the GUT-breaking Higgs of SU(5). We can fit parameters
to the observed fermion masses with these operators, though some
fine-tuning is introduced in doing so. The SM Higgs doublet may come
in part from higher representations of the GUT group. For example,
the 45 of SU(5) includes an SU(2)L doublet with appropriate U(1)Y
charge [110]. This 45 can, in turn, come from the 120 or 126 of
SO(10) after its breaking to SU(5) [112]. These fields may also
have renormalizable couplings with quarks and leptons. The relations
among the Yukawa coupling constants in the SM are modified if the
SM Higgs doublet is a linear combination of several such doublets
from different SU(5) multiplets. Finally, the SM fermions may not
be embedded in GUT multiplets in the minimal way. Indeed, if all
quarks and leptons are embedded in 16s of SO(10), the renormalizable
interactions with 10H cannot explain the observed CKM mixing
angles. This situation improves when extra matter multiplets, such as
10, are introduced: After U(1)X , which distinguishes the 5s coming
from the 16 and the 10 of SO(10), is broken (e.g. by a VEV of 16H

or 126H), the r.h. down quarks and l.h. leptons in the SM can be
linear combinations of components in 16s and 10s. As a result, λ 6= λ′

in SU(5) [113].

To construct realistic three-family models, some or all of the
above effects can be used. Even so, to achieve significant predictions
for fermion masses and mixing angles grand unification alone is
not sufficient. Other ingredients, for example additional global
family symmetries are needed (in particular, non-abelian symmetries
can strongly reduce the number of free parameters). These family
symmetries constrain the set of effective higher-dimensional fermion
mass operators discussed above. In addition, sequential breaking
of the family symmetry can be correlated with the hierarchy of
fermion masses. One simple, widely known idea in this context is
to ensure that each 10i enters Yukawa interactions together with
a suppression factor ǫ3−i (ǫ being a small parameter). This way
one automatically generates a stronger hierarchy in up-type quark
Yukawas as compared to down-type quark and lepton Yukawas and
no hierarchy for neutrinos, which agrees with observations at the
O(1)-level. Three-family models exist which fit all the data, including
neutrino masses and mixing [26,114].

Finally, a particularly ambitious variant of unification is to
require that the fermions of all three generations come from a single
representation of a large gauge group. A somewhat weaker assumption
is that the flavor group (e.g. SU(3)) unifies with the SM gauge group
in a simple gauge group at some energy scale M ≥ MG. Early work
on such ‘flavor-unified GUTs’, see e.g. [115], has been reviewed
in [116,117]. For a selection of more recent papers see [118]. In
such settings, Yukawa couplings are generally determined by gauge
couplings together with symmetry breaking VEVs. This is reminiscent
of heterotic string GUTs, where all couplings come from the 10d
gauge coupling. However, while the E8 → SU(3)×E6 branching rule
248 = (8,1) + (1,78) + (3,27) + (3,27) looks very suggestive in this
context, the way in which most modern heterotic models arrive at
three generations is actually more complicated.

16.7.3. Flavor violation : Yukawa interactions of GUT-scale
particles with quarks and leptons may leave imprints on the
flavor violation induced by SUSY breaking parameters [119]. To
understand this, focus first on the MSSM with universal Planck-scale
boundary conditions (as e.g. in gravity mediation). Working in a
basis where up-quark and lepton Yukawas are diagonal, one finds
that the large top-quark Yukawa coupling reduces the l.h. squark
mass squareds in the third generation radiatively. It turns out that
only the l.h. down-type squark mass matrix has sizable off-diagonal
terms in the flavor basis after CKM-rotation. However, in GUTs
the color-triplet Higgs has flavor violating interactions from the
Yukawa coupling λij (10i 10j 5H), such that flavor-violating r.h.
slepton mass terms are radiatively generated in addition [120]. If
r.h. neutrinos are introduced as SU(5) singlets with interactions
λ′′ij (1i 5̄j 5H), the doublet and color-triplet Higgses acquire another
type of Yukawa coupling, respectively. They then radiatively generate

flavor-violating l.h. slepton [121] and r.h. down squark masses [122].
These flavor-violating SUSY breaking terms induce new contributions
to FCNC processes in quark and lepton sectors, such as µ → eγ
and K0–K̄0 and B0–B̄0 mixing. EDMs are also induced when both
l.h. and r.h. squarks/sleptons have flavor-violating mass terms with
relative phases, as discussed for SO(10) in [123] or for SU(5) with
r.h. neutrinos in [124]. Thus, such low-energy observables constrain
GUT-scale interactions.

16.8. Neutrino Masses

We see from atmospheric and solar neutrino oscillation observations,
along with long baseline accelerator and reactor experiments, that
neutrinos have finite masses. By adding three “sterile” neutrinos νc

i
with Yukawa couplings λν,ij (νc

i Lj Hu) (i, j = 1–3), one easily obtains
three massive Dirac neutrinos with mass mν = λν vu, analogously to
quark and charged lepton masses. However, in order to obtain a τ
neutrino with mass of order 0.1 eV, one requires the exceedingly small
coupling ratio λντ

/λτ . 10−10. By contrast, the seesaw mechanism
naturally explains such tiny neutrino masses as follows [1,2,3]: The
sterile neutrinos have no SM gauge quantum numbers so that there
is no symmetry other than global lepton number which forbids the

Majorana mass term
1

2
Mij νc

i νc
j . Note also that sterile neutrinos can

be identified with the r.h. neutrinos necessarily contained in complete
families of SO(10) or Pati-Salam models. Since the Majorana mass
term violates U(1)X in SO(10), one might expect Mij ∼ MG. The
heavy sterile neutrinos can be integrated out, defining an effective
low-energy theory with only three light active Majorana neutrinos
with the effective dimension-five operator

−Leff =
1

2
cij (Li Hu) (Lj Hu) , (16.16)

where c = λT
ν M−1 λν . This then leads to a 3 × 3 Majorana neutrino

mass matrix m = mT
ν M−1 mν .

Atmospheric neutrino oscillations require neutrino masses with
∆m2

ν ∼ 2.5 × 10−3 eV2 with maximal mixing, in the simplest two
neutrino scenario. With hierarchical neutrino masses this implies
mντ

=
√

∆m2
ν ∼ 0.05 eV. Next, we can try to relate the neutrino

Yukawa coupling to the top quark Yukawa coupling, λντ
= λt at the

GUT scale, as in SO(10) or SU(4) × SU(2)L × SU(2)R models. This
gives M ∼ 1014 GeV, which is remarkably close to the GUT scale.

Neutrinos pose a special problem for SUSY GUTs. The question is
why are the quark mixing angles in the CKM matrix small, while there
are two large lepton mixing angles in the PMNS matrix (cf. however
the comment at the end of Sec. 16.7). Discussions of neutrino masses
and mixing angles can, for example, be found in Refs. [125] and
[126]. For SUSY GUT models which fit quark and lepton masses,
see Ref. [25]. Finally, for a compilation of the range of SUSY GUT
predictions for neutrino mixing, see [127].

The seesaw mechanism implemented by r.h. neutrinos is sometimes
called the type-I seesaw model. There are variant models in which
the dimension-five operator for neutrino masses is induced in different
ways: In the type-II model, an SU(2)L triplet Higgs boson Σ is
introduced to have couplings ΣL2 and also ΣH2

u [128]. In the
type-III model, an SU(2)L triplet of fermions Σ̃ with a Yukawa
coupling Σ̃LHu is introduced [129]. In these models, the dimension-
five operator is induced by integrating out the triplet Higgs boson
or fermions. Such models can also be implemented in GUTs by
introducing Higgs bosons in the 15 or fermions in the 24 in SU(5)
GUTs or the 126 in SO(10) GUTs. Notice that the gauge non-singlet
fields in the type-II and III models have masses at the intermediate
scale. Thus, gauge coupling unification is not automatic if they are
implemented in SUSY GUTs.
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16.9. Selected Topics

16.9.1. Magnetic Monopoles :

In the broken phase of a GUT there are typically localized classical
solutions carrying magnetic charge under an unbroken U(1) symmetry
[130]. These magnetic monopoles with mass of order MG/αG can
be produced during a possible GUT phase transition in the early
universe. The flux of magnetic monopoles is experimentally found to
be less than ∼ 10−16 cm−2 s−1 sr−1 [131]. Many more are however
predicted, hence the GUT monopole problem. In fact, one of the
original motivations for inflation was to solve the monopole problem
by exponential expansion after the GUT phase transition [132] and
hence dilution of the monopole density. Other possible solutions to
the monopole problem include: sweeping them away by domain walls
[133], U(1) electromagnetic symmetry breaking at high temperature
[134] or GUT symmetry non-restoration [135]. Parenthetically, it
was also shown that GUT monopoles can catalyze nucleon decay
[136]. A significantly lower bound on the monopole flux can then
be obtained by considering X-ray emission from radio pulsars due to
monopole capture and the subsequent nucleon decay catalysis [137].

Note that the present upper bound on the inflationary vacuum

energy density is very close to the GUT scale, V
1/4
inf .MG [138].

This almost guarantees that reheating does not lead to temperatures
above MG and hence the monopole problem is solved by inflation.

16.9.2. Anomaly constraints vs. GUT paradigm :

As emphasized at the very beginning, the fact that the SM fermions
of one generation fill out the 10 + 5 of SU(5) appears to provide
overwhelming evidence for some form of GUT embedding. However,
one should be aware that a counterargument can be made which is
related to the issue of ‘charge quantization by anomaly cancellation’
(see [139,140] for some early papers and [141] for a more detailed
reference list): Imagine we only knew that the low-energy gauge group
were GSM and the matter content included the (3,2)Y , i.e. a ‘quark
doublet’ with U(1)-charge Y . One can then ask which possibilities
exist of adding further matter to ensure the cancellation of all triangle
anomalies. It turns out that this problem has only three different,
minimal* solutions [140]. One of those is precisely a single SM
generation, with the apparent ‘SU(5)-ness’ emerging accidentally.
Thus, if one randomly picks models from the set of consistent gauge
theories, preconditioning on GSM and (3,2)Y , one may easily end up
with ‘10 + 5’ of an SU(5) that is in no way dynamically present. This
is precisely what happens in the context of non-GUT string model
building [142].

16.9.3. GUT Baryogenesis and Leptogenesis :

Baryon-number-violating operators in SU(5) or SO(10) preserve
the global symmetry (B − L). Hence the value of the cosmological
(B − L) density is an initial condition of the theory and is typically
assumed to be zero. On the other hand, anomalies of the electroweak
symmetry violate (B+L) while also preserving (B−L). Hence thermal
fluctuations in the early universe, via so-called sphaleron processes,
can drive (B + L) to zero, washing out any net baryon number
generated in the early universe at GUT temperatures. In particular,
this affects the old idea of GUT baryogenesis [143,144], where a
(B + L) asymmetry is generated by the out-of-equilibrium decay of
the color-triplet Higgs. A possible way out [145] uses lepton-number
violating interaction of neutrinos to create a (B − L) asymmetry from
the (B + L) symmetry, before sphaleron processes become sufficiently
fast at T < 1012 GeV. This (B − L) asymmetry can then survive
the subsequent sphaleron dominated phase. Note that this does not
work in the minimal SUSY GUT setting, with the triplet Higgs above
the GUT scale. The reason is that a correspondingly high reheating
temperature would be required, leading to monopole overproduction.

However, the most widely accepted simple way out of the dilemma
is to directly generate a net (B − L) asymmetry dynamically in the
early universe, also using r.h. neutrinos. Indeed, we have seen that

* Adding extra vector-like sets of fields, e.g. two fermions which
only transform under U(1) and have charges Y and −Y , is considered
to violate minimality.

neutrino oscillations suggest a new scale of physics of order 1014 GeV.
This scale is associated with heavy Majorana neutrinos in the seesaw
mechanism. If in the early universe, the decay of the heavy neutrinos
is out of equilibrium and violates both lepton number and CP, then a
net lepton number may be generated. This lepton number will then
be partially converted into baryon number via electroweak processes
[146]. This mechanism is called leptogenesis.

If the three heavy Majorana neutrino masses are hierarchical,
the net lepton number is produced by decay of the lightest one,
and it is proportional to the CP asymmetry in the decay, ǫ1. The
CP asymmetry is bounded from above, and the lightest neutrino
mass is required to be larger than 109 GeV in order to explain the
observed baryon asymmetry [147]. This implies that the reheating
temperature after inflation should be larger than 109 GeV so that the
heavy neutrinos are thermally produced. In supersymmetric models,
there is a tension between leptogenesis and Big Bang Nucleosynthesis
(BBN) if gravitinos decay in the BBN era. The gravitino problem
gives a constraint on the reheating temperature . 106−10 GeV though
the precise value depends on the SUSY breaking parameters [148].
Recent reviews of leptogenesis can be found in Ref. [149].

16.10. Conclusion

Most conservatively, grand unification means that (some of)
the SM gauge interactions of U(1)Y , SU(2)L and SU(3)C become
part of a larger, unifying gauge symmetry at a high energy scale.
In most models, especially in the simplest and most appealing
variants of SU(5) and SO(10) unification, the statement is much
stronger: One expects the three gauge couplings to unify (up to small
threshold corrections) at a unique scale, MG, and the proton to be
unstable due to exchange of gauge bosons of the larger symmetry
group. Supersymmetric grand unified theories provide, by far, the
most predictive and economical framework allowing for perturbative
unification. For a selection of reviews, with many more details than
could be discussed in the present article, see [116,150].

Thus, the three classical pillars of GUTs are gauge coupling
unification at MG ∼ 2 × 1016 GeV, low-energy supersymmetry (with
a large SUSY desert), and nucleon decay. The first of these may be
viewed as predicting the value of the strong coupling – a prediction
which has already been verified (see Fig. 16.1). While this remains
true even if SUSY partner masses are somewhat above the weak scale,
the possible complete absence of SUSY in the LHC energy range is
nevertheless problematic for the GUT paradigm: If the independent,
gauge-hierarchy-based motivation for SUSY is completely abandoned,
the SUSY scale and hence α3 become simply free parameters and
the first two pillars crumble. It is the more important to keep
pushing bounds on proton decay which, although again not completely
universal in all GUT constructions, is arguably a more generic part of
the GUT paradigm than low-energy SUSY.

Whether or not Yukawa couplings unify is more model dependent.
However, irrespective of possible (partial) Yukawa unification, there
certainly exists a very interesting and potentially fruitful interplay
between flavor model building and grand unification. Especially in
the neutrino sector this is strongly influenced by the developing
experimental situation.

It is probably fair to say that, due to limitations of the 4d
approach, including especially remaining ambiguities (free parameters
or ad hoc assumptions) in models of flavor and GUT breaking, the
string theoretic approach has become more important in GUT model
building. In this framework, challenges include learning how to deal
with the many vacua of the ‘landscape’ as well as, for each vacuum,
developing the tools for reliably calculating detailed, phenomenological
observables. Finally, due to limitations of space, the present article has
barely touched on the interesting cosmological implications of GUTs.
They may become more important in the future, especially in the case
that a high inflationary energy scale is established observationally.
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17. HEAVY-QUARK AND SOFT-COLLINEAR EFFECTIVE THEORY

Updated September 2015 by C.W. Bauer (LBNL) and M. Neubert
(U. Mainz).

17.1. Effective Field Theories

Quantum field theories provide the most precise computational
tools for describing physics at the highest energies. One of their
characteristic features is that they almost inevitably involve multiple
length scales. When trying to determine the value of an observable,
quantum field theory demands that all possible virtual states and
hence all particles be included in the calculation. Since these particles
have widely different masses, the final prediction is sensitive to many
scales. This fact represents a formidable challenge from a practical
point of view. No realistic quantum field theories can be solved
exactly, so that one needs to resort to approximation schemes; these,
however, are typically most straightforward when only a single scale is
involved at a time.

Effective field theories (EFTs) provide a general theoretical
framework to deal with the multi-scale problems of realistic quantum
field theories. This framework aims at reducing such problems
to a combination of separate and simpler single-scale problems;
simultaneously, however, it provides an organization scheme whereby
the other scales are not omitted but allowed to play their role
in a separate step of the computation. The philosophy and basic
principles of this approach are very generic, and correspondingly EFTs
represent a widely used method in many different areas of high-energy
physics, from the low-energy scales of atomic and nuclear physics to
the high-energy scales of (partly yet unknown) elementary-particle
physics, see [1–3] for some early references. EFTs can play a role
both within analytic perturbative computations and in the context
of non-perturbative numerical simulations; One of the simplest
applications of EFTs to particle physics concerns the description of an
underlying theory that is only probed at energy scales E < Λ. Any
particle with mass m > Λ cannot be produced as a real state and
therefore only leads to short-distance virtual effects. Thus, one can
construct an effective theory in which the quantum fluctuations of such
heavy particles are “integrated out” from the generating functional
for Green functions. This results in a simpler theory containing only
those degrees of freedom that are relevant to the energy scales under
consideration. In fact, the standard model of particle physics itself is
widely viewed as an EFT of some yet unknown, more fundamental
theory.

The development of any effective theory starts by identifying the
degrees of freedom that are relevant to describe the physics at a given
energy (or length) scale and constructing the Lagrangian describing the
interactions among these fields. Short-distance quantum fluctuations
associated with much smaller length scales are absorbed into the
coefficients of the various operators in the effective theory. These
coefficients are determined in a matching procedure, by requiring that
the EFT reproduces the matrix elements of the full theory up to power
corrections. In many cases the effective Lagrangian exhibits enhanced
symmetries compared with the fundamental theory, allowing for simple
and sometimes striking predictions relating different observables.

17.2. Heavy-Quark Effective Theory

Heavy-quark systems provide prime examples for applications
of the EFT technology, because the hierarchy mQ ≫ ΛQCD (with
Q = b, c) provides a natural separation of scales. Physics at the scale
mQ is of a short-distance nature and can be treated perturbatively,
while for heavy-quark systems there is always also some hadronic
physics governed by the confinement scale ΛQCD of the strong
interaction. Being able to separate the short-distance and long-
distance effects associated with these two scales is crucial for any
quantitative description. For instance, if the long-distance hadronic
matrix elements are obtained from lattice QCD, then it is necessary
to analytically compute the effects of short-wavelength modes that
do not fit on the lattice. In many other instances, the long-distance
physics can be encoded in a small number of hadronic parameters.

17.2.1. General idea and derivation of the effective

Lagrangian : The simplest effective theory for heavy-quark systems
is the heavy-quark effective theory (HQET) [4–7] (see [8,9] for
detailed discussions). It provides a simplified description of the soft
interactions of a single heavy quark with light partons. This includes
the interactions that bind the heavy quark with other light partons
inside heavy mesons and baryons.

A softly interacting heavy quark is nearly on-shell. Its momentum
may be decomposed as pQ = mQv + k, where v is the 4-velocity of
the hadron containing the heavy quark. The “residual momentum”
k results from the soft interactions of the heavy quark with its
environment and satisfies v · k ∼ ΛQCD and k2 ∼ Λ2

QCD, which in the

rest frame of the heavy hadron reduces to kµ ∼ ΛQCD. In the limit
mQ ≫ ΛQCD, the soft interactions do not change the 4-velocity of the
heavy quark, which is therefore a conserved quantum number that
is often used as a label on the effective heavy-quark fields. A nearly
on-shell Dirac spinor has two large and two small components. We
define

Q(x) = e−imQv·x [hv(x) + Hv(x)] , (17.1)
where

hv(x) = eimQv·x 1 + /v

2
Q(x) , Hv(x) = eimQv·x 1 − /v

2
Q(x) (17.2)

are the large (“upper”) and small (“lower”) components of the
spinor field, respectively. The extraction of the phase factor in
Eq. (17.1) implies that the fields hv and Hv carry the residual
momentum k. The field Hv is 1/mQ suppressed relative to hv and
describes quantum fluctuations far off the mass shell. Integrating it
out using its equations of motion yields the HQET Lagrangian

LHQET = h̄v iv · Ds hv +
1

2mQ
[

h̄v(iDs)
2hv + Cmag(µ)

g

2
h̄v σµν Gµν

s hv

]

+ . . . . (17.3)

The covariant derivative iDµ
s = i∂µ+gAµ

s and the field strength Gµν
s

contain only the soft gluon field. Hard gluons have been integrated
out, and their effects are contained in the Wilson coefficients of the
operators in the effective Lagrangian. From the leading operator one
derives the Feynman rules of HQET. The new operators entering at
subleading order are referred to as the “kinetic energy” and “chromo-
magnetic interaction”. The kinetic-energy operator corresponds to
the first correction term in the Taylor expansion of the relativistic
energy E = mQ + ~p 2/2mQ + . . .. Lorentz invariance, which is encoded
as a reparametrization invariance of the effective Lagrangian [10],
ensures that its Wilson coefficient is not renormalized (Ckin ≡ 1). The
coefficient Cmag of the chromo-magnetic operator receives corrections
starting at one-loop order.

17.2.2. Spin-flavor symmetry : The leading term in the HQET
Lagrangian exhibits a global spin-flavor symmetry. Its physical
meaning is that, in the infinite mass limit, the properties of hadronic
systems containing a single heavy quark are insensitive to the spin and
flavor of the heavy quark [11,12]. The spin symmetry results from
the fact that there are no Dirac matrices in the leading term of the
effective Lagrangian in Eq. (17.3), implying that the interactions of
the heavy quark with soft gluons leave its spin unchanged. The flavor
symmetry arises since the mass of the heavy quark does not appear at
leading order. For nQ heavy quarks moving at the same velocity, one
can simply extend Eq. (17.3) by summing over nQ identical terms for

heavy-quark fields hi
v. The result is invariant under rotations in flavor

space. When combined with the spin symmetry, the symmetry group
becomes promoted to SU(2nQ). These symmetries are broken by the
operators at subleading power in the 1/mQ expansion.

The spin-flavor symmetry leads to many interesting relations
between the properties of hadrons containing a heavy quark. The
most direct consequences concern the spectroscopy of such states [13].
In the heavy-quark limit, the spin of the heavy quark and the
total angular momentum j of the light degrees of freedom are
separately conserved by the strong interactions. Because of heavy-
quark symmetry, the dynamics is independent of the spin and mass
of the heavy quark. Hadronic states can thus be classified by the
quantum numbers (flavor, spin, parity, etc.) of the light degrees of
freedom. The spin symmetry predicts that, for fixed j 6= 0, there is a
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doublet of degenerate states with total spin J = j ± 1/2. The flavor
symmetry relates the properties of states with different heavy-quark
flavor.

17.2.3. Weak decay form factors : Of particular interest are the
relations between the weak decay form factors of heavy mesons,
which parametrize hadronic matrix elements of currents between two
mesons containing a heavy quark. These relations have been derived
by Isgur and Wise [12], generalizing ideas developed by Nussinov
and Wetzel [14] and Voloshin and Shifman [15]. For the purpose
of this discussion, it is convenient to work with a mass-independent
normalization of meson states and use velocity rather than momentum
variables.

Consider the elastic scattering of a pseudoscalar meson, P (v) →
P (v′), induced by an external vector current coupled to the heavy
quark contained in P , which acts as a color source moving with
the meson’s velocity v. The action of the current is to replace
instantaneously the color source by one moving at velocity v′. Soft
gluons need to be exchanged in order to rearrange the light degrees
of freedom and build up the final state meson moving at velocity v′.
This rearrangement leads to a form-factor suppression. The important
observation is that, in the mQ → ∞ limit, the form factor can only
depend on the Lorentz boost γ = v · v′ connecting the rest frames
of the initial and final-state mesons (as long as γ = O(1)). In the
effective theory the hadronic matrix element describing the scattering
process can therefore be written as

〈P (v′)| h̄v′γ
µhv |P (v)〉 = ξ(v · v′)(v + v′)µ, (17.4)

with a form factor ξ(v · v′) that is real and independent of mQ. By
flavor symmetry, the form factor remains identical when one replaces
the heavy quark Q in one of the meson states by a heavy quark
Q′ of a different flavor, thereby turning P into another pseudoscalar
meson P ′. At the same time, the current becomes a flavor-changing
vector current. This universal form factor is called the Isgur-Wise
function [12]. For equal velocities the vector current Jµ = h̄vγ

µhv

is conserved in the effective theory, irrespective of the flavor of the
heavy quarks. The corresponding conserved charges are the generators
of the flavor symmetry. It follows that the Isgur-Wise function is
normalized at the point of equal velocities: ξ(1) = 1. Since the recoil
energy of the daughter meson P ′ in the rest frame of the parent
meson P is Erecoil = mP ′ (v · v′ − 1), the point v · v′ = 1 is referred
to as the zero-recoil limit. The heavy-quark spin symmetry leads to
additional relations among weak decay form factors. It can be used
to relate matrix elements involving vector mesons to those involving
pseudoscalar mesons, which once again can be described completely in
terms of the universal Isgur-Wise function.

The form factor relations imposed by heavy-quark symmetry
describe the semileptonic decay processes B̄ → D ℓ ν̄ and B̄ → D∗ℓ ν̄ in
the limit of infinite heavy-quark masses. They are model-independent
consequences of QCD. The known normalization of the Isgur-Wise
function at zero recoil can be used to obtain a model-independent
measurement of the element |Vcb| of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. The semileptonic decay B̄ → D∗ℓ ν̄ is particularly
well suited for this purpose [16]. Experimentally this is a very clean
mode, since the reconstruction of the D∗ meson mass provides a
powerful rejection against background. From the theoretical point of
view, it is ideal since the decay rate at zero recoil is protected by
Luke’s theorem against first-order power corrections in 1/mQ [17].
This is described in more detail in Section 12. Corrections to the
heavy-quark symmetry relations for the B̄ → D(∗) form factors near
zero recoil can also be constrained using sum rules derived in the
small-velocity limit [18,19].

17.2.4. Decoupling transformation : At leading order in 1/mQ,
the couplings of soft gluons to heavy quarks in the effective
Lagrangian Eq. (17.3) can be removed by the field redefinition

hv(x) = Yv(x)h
(0)
v (x), where Yv(x) is a soft Wilson line along the

direction of v, extending from minus infinity to the point x. In
terms of the new fields the leading-order HQET Lagrangian becomes

LHQET = h̄
(0)
v iv · ∂ h

(0)
v . It describes a free theory as far as the strong

interactions of heavy quarks are concerned. However, the theory is

nevertheless non-trivial in the presence of external sources. Consider,
e.g., the case of a weak-interaction heavy-quark current

h̄v′γ
µ(1 − γ5)hv = h̄

(0)
v′

γµ(1 − γ5)Y
†
v′

Yv h
(0)
v , (17.5)

where v and v′ are the velocities of the heavy mesons containing the
heavy quarks. Unless the two velocities are equal, corresponding to

the zero-recoil limit discussed above, the object Y
†
v′

Yv is non-trivial,
and hence the soft gluons do not decouple from the heavy quarks

inside the current operator. One may interpret Y
†
v′

Yv as a Wilson
loop with a cusp at the point x, where the two paths parallel to the
different velocity vectors intersect. The presence of the cusp leads to
non-trivial ultra-violet behavior (for v 6= v′), which is described by a
cusp anomalous dimension Γc(v · v′) that was calculated at two-loop
order in [20]. It coincides with the velocity-dependent anomalous
dimension of heavy-quark currents, which was introduced in the
context of HQET in [21]. The interpretation of heavy quarks as
Wilson lines is a useful tool, which was put forward in one of the very
first papers on the subject [4]. This technology will be useful in the
study of the interactions of heavy quarks with collinear degrees of
freedom discussed later in this review.

17.2.5. Heavy-quark expansion for inclusive decays : The
theoretical description of inclusive decays of hadrons containing a
heavy quark exploits two observations [22–26]: bound-state effects
related to the initial state can be calculated using the heavy-quark
expansion, and the fact that the final state consists of a sum over
many hadronic channels eliminates the sensitivity to the properties
of individual final-state hadrons. The second feature rests on the
hypothesis of quark-hadron duality, i.e. the assumption that decay
rates are calculable in QCD after a smearing procedure has been
applied [27]. In semileptonic decays, the integration over the lepton
spectrum provides a smearing over the invariant hadronic mass of the
final state (global duality). For nonleptonic decays, where the total
hadronic mass is fixed, the summation over many hadronic final states
provides an averaging (local duality). Since global duality is a much
weaker assumption, the theoretical control of inclusive semileptonic
decays is on firmer footing.

Using the optical theorem, the inclusive decay width of a hadron
Hb containing a b quark can be written in the form

Γ(Hb) =
1

MHb

Im 〈Hb| i

∫

d4xT {Heff (x),Heff (0)} |Hb〉 . (17.6)

The effective weak Hamiltonian for b-quark decays consists of
dimension-6 four-fermion operators and dipole operators [28].
Because of the large mass of the b quark, it follows that the separation
of fields in the time-ordered product in Eq. (17.6) is small, of order
x ∼ 1/mb. It is thus possible to construct an operator-product
expansion (OPE) for the time-ordered product, in which it is
represented as a series of local operators in HQET. The leading
operator h̄vhv has a trivial matrix element. The next contributions
arise at O(1/m2

b) and give rise to two parameters µ2
π(Hb) and

µ2
G(Hb), which are defined as the matrix elements of the heavy-quark

kinetic energy and chromo-magnetic interaction inside the hadron Hb,
respectively [29]. For the ground-state heavy mesons and baryons,
one has µ2

G(B) = 3(m2
B∗ − m2

B)/4 ≃ 0.36GeV2 and µ2
G(Λb) = 0.

Thus, the total inclusive decay rate of a hadron Hb can be written
as [23,24]

Γ(Hb) =
G2

F m5
b |Vcb|

2

192π3
[c1 + c2

µ2
π(Hb)

2m2
b

+ c3
µ2

G(Hb)

2m2
b

+ O(
1

m3
b

) + . . .],

(17.7)
where the prefactor arises from the loop integrations and is
proportional to the fifth power of the b-quark mass. The coefficient
functions ci are calculable order by order in perturbation theory.

From the fully inclusive width in Eq. (17.7) one can obtain
the lifetime of a heavy hadron via τ(Hb) = 1/Γ(Hb). Due to the
universality of the leading term in the heavy-quark expansion, lifetime
ratios such as τ(B−)/τ(B̄0), τ(B̄0

s )/τ(B̄0) and τ(Λb)/τ(B̄0) are
particularly sensitive to the hadronic parameters determining the
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power corrections in the expansion. In order to understand these ratios
theoretically, it is necessary to include phase-space enhanced power
corrections of order (ΛQCD/mb)

3 [30,31] as well as short-distance
perturbative effects [32] in the calculation.

A formula analogous to Eq. (17.7) can be derived for differential
distributions in specific inclusive decay processes, assuming that these
distributions are integrated over a sufficiently large region of phase
space to ensure quark-hadron duality. Important examples are the
distributions in the lepton energy and the lepton invariant mass, as
well as moments of the invariant hadronic mass distribution in the
semileptonic processes B̄ → Xu ℓ ν̄ and B̄ → Xc ℓ ν̄. A global fit of
semileptonic decay distributions can be used to determine the CKM
matrix elements |Vub| and |Vcb| along with heavy-quark parameters
such as the masses mb, mc and the hadronic parameters µ2

π(B),
µ2

G(B). These determinations provide some of the most accurate
values for these parameters [33].

17.2.6. Shape functions and non-local power corrections : In
certain regions of phase space, in which the hadronic final state
in an inclusive heavy-hadron decay is made up of light energetic
partons, the local OPE for inclusive decays must be replaced by a
more complicated expansion involving hadronic matrix elements of
non-local light-ray operators [34,35]. Prominent examples are the
radiative decay B̄ → Xsγ for large photon energy Eγ near mB/2, and
the semileptonic decay B̄ → Xu ℓ ν̄ at large lepton energy or small
hadronic invariant mass. In these cases, the differential decay rates
at leading order in the heavy-quark expansion can be written in the
factorized form dΓ = H J ⊗S [36], where the hard function H and the
jet function J are calculable in perturbation theory. The characteristic
scales for these functions are set by mb and (mbΛQCD)1/2, respectively.
The soft function

S(ω) =

∫

dt

4π
e−iωt 〈B̄(v)| h̄v(tn)Yn(tn)Y †

n (0)hv(0)|B̄(v)〉 (17.8)

is a genuinely non-perturbative object called the shape function [34,35].
Here Yn are soft Wilson lines along a light-like direction n aligned
with the momentum of the hadronic final-state jet. The jet function
and the shape function share a common variable ω ∼ ΛQCD, and the
symbol ⊗ denotes a convolution in this variable.

While the hard functions are different for the decays B̄ → Xsγ and
B̄ → Xu ℓν̄, the jet and soft functions are identical at leading order
in ΛQCD/mQ. This is particularly important for the shape function,
which introduces non-perturbative physics into the theoretical
predictions for the decay rates in the regions of experimental interest.
The fact that both processes depend on the same non-perturbative
function makes it possible to use the measured shape of the B̄ → Xsγ
photon spectrum to reduce the theoretical uncertainties in the
determination of the CKM element |Vub| from semileptonic decays.
In higher orders of the heavy-quark expansion, an increasing number
of subleading jet and soft functions are required to describe the
decay distributions [37]. These have been analyzed in detail at order
1/mb [38–40]. In the case of B̄ → Xsγ, some of these non-local effects
survive in the total decay rate and give rise to irreducible hadronic
uncertainties [41]. The technology for deriving the corresponding
factorization theorems relies on the soft-collinear effective theory, to
which we now turn.

17.3. Soft-Collinear Effective Theory

As discussed in the previous section, soft gluons that bind a heavy
quark inside a heavy meson cannot change the virtuality of that
heavy quark by a significant amount. The ratio ΛQCD/mQ provides
the expansion parameter in HQET, which is a small parameter since
mQ ≫ ΛQCD. This obviously does not work when considering light
quarks. However, if the energy Q of the quarks is large, the ratio
ΛQCD/Q provides a small parameter, which can be used to construct
an effective theory. One major difference to HQET is that light
energetic quarks cannot only emit soft gluons, but they can also
emit collinear gluons (an energetic gluon in the same direction as
the original quark), without parametrically changing their virtuality.
Thus, to fully reproduce the long-distance physics of energetic quarks

requires that one includes their interactions with both soft and
collinear particles. The resulting effective theory is therefore called
soft-collinear effective theory (SCET) [42–44].

A single energetic particle can always be boosted to a frame where
all momentum components have similar size, in which case there is no
small expansion parameter. Thus the presence of energetic particles
must refer to a reference frame defined by external kinematics. SCET
has a wide range of applications; some examples are the production
of energetic, light states in the decay of a heavy particle in its rest
frame, the production of energetic jets in collider environments, and
the scattering of energetic particles off a target at rest. In this brief
review we will outline the main features of this effective theory and
mention a few selected applications.

17.3.1. General idea of the expansion : Consider a quark
with virtuality much less than its energy Q, moving along the
direction ~n. It is convenient to parameterize the momentum pn

of this particle in terms of its light-cone components, defined by
(p−n , p+

n , p⊥n ) = (n̄ · pn, n · pn, p⊥n ), where nµ = (1, ~n) and n̄µ = (1,−~n)
are light-like vectors, and n · p⊥n = n̄ · p⊥n = 0. The subscript n on the
momentum indicates the direction of the collinear particle. In terms of
these light-cone components, the virtuality satisfies p2

n = p+
n p−n + p⊥2

n .
The individual components of the momentum obey

(p−n , p+
n , p⊥n ) ∼ Q(1, λ2, λ), (17.9)

where λ2 = p2/Q2 is the expansion parameter of SCET. The virtuality
of such an energetic particle remains parametrically unchanged if it
interacts with energetic particles in the same direction n, or with soft
particles with momentum scaling as

(p−s , p+
s , p⊥s ) ∼ Q(λ2, λ2, λ2). (17.10)

SCET is constructed in such a way as to reproduce the long-distance
dynamics arising from the interactions of collinear and soft degrees of
freedom.

In the above power counting the transverse momenta of soft
degrees of freedom scale as p⊥s ∼ Qλ2, which is much smaller than
the transverse momenta p⊥c ∼ Qλ of collinear fields. This theory is
usually called SCETI. If the external kinematics require that the
transverse momenta of both soft and collinear fields are of the same
size, p⊥c ∼ p⊥s , then the appropriate degrees of freedom have the
scaling pc ∼ Q(1, λ2, λ) and ps ∼ Q(λ, λ, λ). This theory is usually
called SCETII and is required, e.g., for exclusive hadronic decays
such as B̄ → Dπ, where the virtuality of both collinear and soft
degrees of freedom are set by ΛQCD, or for the description of
transverse-momentum distributions at colliders.

17.3.2. Leading-order Lagrangian : The derivation of the SCET
Lagrangian follows similar steps as described for HQET in Sec-
tion 17.2.1. One begins by deriving the Lagrangian for a theory
containing only a single collinear sector. Similar to HQET, one sepa-
rates the full QCD field into two components, qn(x) = ψn(x) + Ξn(x),
where (with n · n̄ = 2)

ψn(x) =
n/n̄/

4
qn(x) , Ξn(x) =

n̄/n/

4
qn(x). (17.11)

The degrees of freedom described by the field Ξn are far off shell and
can therefore be eliminated using its equation of motion. This gives

Ln = ψ̄n(x)

[

in · D + iD/⊥ 1

in̄ · D
iD/⊥

]

n̄/

2
ψn(x). (17.12)

As a next step, one separates the large and residual momentum
components by decomposing the collinear momentum into a “label”
and a residual momentum, pµ = Pµ + kµ with n · P = 0. One
then performs a phase redefinition on the collinear fields, such that
ψn(x) = eiP ·x ξn(x). Derivatives acting on the fields ξn(x) now only
pick out the residual momentum. Since unlike in HQET the label
momentum in SCET is not conserved, one defines a label operator
Pµ acting as Pµξn(x) = Pµξn(x) [43], as well as a corresponding
covariant label operator iD

µ
n = Pµ + gA

µ
n(x). Note that at leading
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order in power counting iDµ
n does not contain the soft gluon field.

This leads to the final SCET Lagrangian [43–46]

Ln = ξ̄n(x)

[

in · Dn + gn · As + iD/⊥
n

1

in̄ · Dn
iD/⊥

n

]

n̄/

2
ξn(x) + . . . ,

(17.13)
where we have split in ·D into a collinear piece in ·Dn = in ·∂ +gn ·An

and a soft piece gn · As. This latter term gives rise to the only
interaction between a collinear quark and soft gluons at leading power
in λ. The ellipses represent higher-order interactions between soft and
collinear particles.

The Lagrangian describing collinear fields in different light-like
directions is simply given by the sum of the Lagrangians for each
direction n, i.e. L =

∑

n Ln. The soft gluons are the same in
each individual Lagrangian. An alternative way to understand the
separation between large and small momentum components is to
derive the Lagrangian of SCET in position space [46]. In this case
no label operators are required, and the dependence on short-distance
effects is contained in non-localities at short distances. An important
difference between SCET and HQET is that the SCET Lagrangian is
not corrected by short distance fluctuations. The physical reason is
that in the construction described above no high-momentum modes
have been integrated out [46]. Such hard modes arise when different
collinear sectors are coupled via some external current (e.g. in jet
production at e+e− or hadron colliders), or when collinear particles
are produced in the rest frame of a decaying heavy object (such as in
B decays). Short-distance effects are then incorporated in the Wilson
coefficients of the external source operators.

17.3.3. Collinear gauge invariance and Wilson lines : An
important aspect of SCET is the implementation of local gauge
invariance. Because the effective field operators describe modes with
certain momentum scalings, the effective Lagrangian respects only
residual gauge symmetries. One of them satisfies the collinear scaling

(n̄ · ∂, n · ∂, ∂⊥)Un(x) ∼ Q(1, λ2, λ)Un(x), (17.14)

and one the soft scaling

(n̄ · ∂, n · ∂, ∂⊥)Us(x) ∼ Q(λ2, λ2, λ2)Us(x). (17.15)

The fact that collinear fields in different directions do not transform
under the same gauge transformations implies that each collinear
sector, containing particles with large momenta along a certain
direction, has to be separately gauge invariant. This requires the
introduction of collinear Wilson lines [43]

Wn(x) = P exp

[

−ig

∫ 0

−∞
ds n̄ · An(sn̄ + x)

]

, (17.16)

which transform under collinear gauge transformations according to

Wn → UnWn. Thus, the combination χn ≡ W
†
n ψn is gauge invariant.

In a similar manner, one can define the gauge-invariant gluon field

Bµ
n = g−1W †

n iDµ
nWn [47,48]. Collinear operators in SCET are

typically constructed from such gauge-invariant building blocks.

17.3.4. Derivation of factorization theorems : One of the
important applications of SCET is to understand how to factorize cross
sections involving energetic particles moving in different directions
into simpler pieces that can either be calculated perturbatively or
determined from data. Factorization theorems have been around for
much longer than SCET; see [49] for a review. However, the effective
theory allows for a conceptually simpler understanding of certain
classes of factorization theorems [47], since most simplifications
happen already at the level of the Lagrangian. The discussion in this
section is valid to leading order in the power counting of the effective
theory.

As discussed in the previous section, the Lagrangian of SCET
does not involve any couplings between collinear particles moving
in different directions. Soft gluons couple to collinear quarks only
through the term ξ̄n g n ·As(n̄//2) ξn in the effective Lagrangian in
Eq. (17.13). This coupling is similar to the coupling of soft gluons
to heavy quarks in HQET, see Section 17.2.4. It can be removed by
means of the field redefinition [44]

ψn(x) = Yn(x)ψ
(0)
n (x) , Aa

n(x) = Y ab
n (x)A

b(0)
n (x), (17.17)

where Yn and Y ab
n live in the fundamental and adjoint representa-

tions of SU(3), respectively. This fact greatly facilitates proofs of
factorization theorems in SCET. A QCD operator O(x) describing
the interactions of collinear partons moving in different directions can
thus be written as (omitting color indices for simplicity)

〈O(x)〉 = CO(µ) 〈C
(0)
na (x)C

(0)
nb

(x)C
(0)
n1

(x) . . . C
(0)
nN

(x)

[YnaYnb
Yn1

. . .YnN
](x)

〉

µ. (17.18)

Here C
(0)
ni

(x) denotes a gauge-invariant combination of collinear fields
(either quark or gluon fields) in the direction ni. The hard matching
coefficient CO accounts for short-distance effects at the scale Q.
The soft Wilson lines can either be in a color triplet or color octet
representation, and are collectively denoted by Yni

. Both the matrix
elements and the coefficient CO depend on the renormalization scale
µ.

Having defined the operator mediating a given process, one can
calculate the cross section by squaring the operator, taking the forward
matrix element and integrating over the phase space of all final-state
particles. The absence of interactions between collinear degrees of
freedom moving along different directions or soft degrees of freedom
implies that the forward matrix element can be factorized as

〈

in
∣

∣O(x)O†(0)
∣

∣in
〉

= |C0(µ)|2

×
〈

ina
∣

∣Cna(x)C†na
(0)

∣

∣ina
〉

µ

〈

inb

∣

∣Cnb
(x)C†nb

(0)
∣

∣inb

〉

µ

×
〈

0
∣

∣Cn1
(x)C†n1

(0)
∣

∣0
〉

µ
· · ·

〈

0
∣

∣CnN
(x)C†nN

(0)
∣

∣0
〉

µ

×
〈

0
∣

∣[Yna . . .YnN
](x)[Yna . . .YnN

]†(0)
∣

∣0
〉

µ.

(17.19)
Thus, the matrix element can be written as a product of simpler
structures, each of which can be evaluated separately.

The vacuum matrix elements of the outgoing collinear fields are
determined by jet functions Ji(µ). As long as the relevant scale
(for example the jet mass) is sufficiently large, these functions can
be calculated perturbatively. The matrix elements of the incoming
collinear fields are non-perturbative objects Bp/N (µ) called beam

functions for parton p in nucleon N [50]. For many applications they
can be related perturbatively to the well-known parton distribution
functions. Finally, the vacuum matrix element of the soft Wilson lines
defines a so-called soft function Sab...N (µ). The shared dependence on
x in the above equation implies that in momentum space the various
components of the factorization theorem are convoluted with one
another. Deriving this convolution requires a careful treatment of the
phase-space integration, in particular treating the large and residual
components of each momentum appropriately.

Putting all information together, the differential cross section for a
proton-proton collision with N jet-like objects can schematically be
written as

dσ ∼
∑

ab

Hab(µ)[Ba/P (µ)Bb/P (µ)] ⊗ [J1(µ) . . . JN (µ)] ⊗ Sab...N (µ).

(17.20)
The hard function is equal to the square of the matching coefficient,
Hab(µ) = |CO(µ)|2. It should be mentioned that the most difficult
part of traditional factorization proofs involves showing that so-called
Glauber gluons do not spoil the above factorization theorem [51].
This question has not yet been fully addressed in the context of SCET.

17.3.5. Resummation of large logarithms : SCET can be used
to sum the large logarithms arising in perturbative calculations to all
orders in the strong coupling constant αs. In general, perturbation
theory will generate a logarithmic dependence on any ratio of scales
r in a problem. For processes that involve initial or final states with
energy much in excess of their mass, there are two powers of logarithms
for every power of αs. These are referred to as Sudakov logarithms.
For widely separated scales these large logarithms can spoil the
convergence of fixed-order perturbation theory. One thus needs to
reorganize the expansion in such a way that αsL = O(1) is kept fixed,
with L = ln r. More precisely, a proper resummation requires summing
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logarithms of the form αn
s Lm with m ≤ n + 1 in the logarithm of a

cross section, by writing lnσ ∼ Lg0(αsL)+ g1(αsL)+αsg2(αsL)+ . . .,
with functions gn(x) that need to be determined.

The important ingredient in achieving this resummation is the fact
that SCET factorizes a given cross section into simpler pieces, each of
which depends on a single physical scale. The only dependence on that
scale can arise through logarithms of its ratio with the renormalization
scale µ. Thus, for each of the components in the factorization
theorem one can choose a renormalization scale µ for which the large
logarithmic terms are absent. Of course, the factorization formula
requires a common renormalization scale µ in all its components, and
one therefore has to use the renormalization group (RG) to evolve the
various component functions from their preferred scale to the common
scale µ. A novel feature of RG equations in SCET, as opposed to
other EFTs, is that the anomalous dimensions entering the evolution
equations of the hard, beam, jet and soft functions in a factorization
formula such as Eq. (17.20) contain a single power of the logarithm of
the relevant energy scale. For example, the anomalous dimension γH
of the hard function has the form

γH(µ) = cH Γcusp(αs) ln
Q2

µ2 + γ(αs), (17.21)

where cH is a process-dependent coefficient and Γcusp denotes the
so-called cusp anomalous dimension [20,52]. The non-cusp part γ
of the anomalous dimension is process dependent. The presence of
a logarithm in the anomalous dimension is characteristic of Sudakov
problems and arises since the perturbative series contains double
logarithms of scale ratios.

The anomalous dimension γH is known at two-loop order for
arbitrary n-parton amplitudes containing massless or massive external
partons [53–56]. Solving the RG equations one can systematically
resum all large logarithms of scale ratios in the factorized cross section
and express the functions gn(αsL) introduced above in terms of ratios
of running coupling constants. In order to compute the first two terms
Lg0(αsL) + g1(αsL) in lnσ, corresponding to the next-to-leading
logarithmic (NLL) approximation, one needs two-loop expressions for
the cusp anomalous dimension and β function, one-loop expressions
for the non-cusp pieces in the anomalous dimensions, and tree-level
matching conditions for all component functions at their characteristic
scales. To calculate the next term αsg2(αsL) in the expansion,
corresponding to NNLL order, one needs to go one order higher in the
loop expansion, and so on.

17.3.6. Factorization and resummation in SCETII : The
effective theory SCETII contains collinear and soft particles with
momenta scaling as (p−n , p+

n , p⊥n ) ∼ Q(1, λ2, λ) and (p−s , p+
s , p⊥s ) ∼

Q(λ, λ, λ). They have the same small virtuality (p2
n ∼ p2

s ∼ Q2λ2)
but differ in their rapidities. An important class of observables, for
which this scaling is relevant, contains cross sections for processes in
which the transverse momenta of particles are constrained by external
kinematics. The prime example are the transverse-momentum
distributions of electroweak gauge bosons or Higgs bosons produced
at hadron colliders. The parton transverse momenta are constrained
by the fact that their vector sum must be equal and opposite to
the transverse momentum qT of the boson. Standard RG evolution
in the effective theory controls the logarithms arising from the fact
that the virtualities of the collinear and soft modes are much smaller
than the hard scale Q in the process (the boson mass). However,
additional large logarithms arise since the rapidities of collinear and
soft modes are parametrically different, such that e|yc−ys| ∼ 1/λ.
These logarithms need to be factorized in the cross section and
resummed by other means.

Two equivalent approaches exist for how to deal with the additional
rapidity logarithms. In the first approach, they are interpreted as a
consequence of a “collinear anomaly” of the effective theory SCETII,
resulting from the fact that a classical rescaling symmetry of the
effective Lagrangian is broken by quantum effects [57]. The extra
large logarithms can be resummed by means of simple differential
equations, which typically state that (in an appropriate space) the
logarithm of the cross section contains only a single logarithm of
λ ∼ qT /Q, to all orders in perturbation theory. An alternative
approach to resum the rapidity logarithms uses the “rapidity

renormalization group”, in which the relevant differential equations
are obtained by considering a new type of scale variation in a
parameter ν, which separates the phase space for collinear and soft
particles along a hyperbola in the (p−, p+) plane [58]. In contrast
to the standard RG, there is no running coupling involved in the ν
evolution, since the different contributions live at the same virtuality.

SCETII also plays an important role in the study of factorization
for a variety of exclusive B meson decays, such as B̄ → πℓν, B̄ → K∗γ
and B̄ → ππ, for which the virtualities of energetic (collinear)
final-state particles are of order ΛQCD, which is also the scale for the
soft light degrees of freedom contained in the initial-state B meson.

17.3.7. Applications : Most of the applications of SCET are either
in flavor physics, where the decay of a heavy B meson can give rise
to energetic light partons, or in collider physics, where the presence
of jets naturally leads to collimated sets of energetic particles. For
many of these applications alternative approaches existed before the
invention of SCET, but the effective theory has opened up alternative
ways to understand the physics of these processes. For several
examples, however, SCET has allowed new insights. The investigation
of heavy-to-light form factors has been instrumental for understanding
factorization in exclusive semileptonic B decays [59]. SCET has also
provided a field-theoretic basis for the QCD factorization approach
to exclusive, non-leptonic decays of B mesons [60]. Using SCET
methods, proofs of factorization were derived for the color-allowed
decay B̄0 → D+π− [61], the color-suppressed decay B̄0 → D0π0 [62],
and the radiative decay B̄ → K∗γ [63]. Further examples are
factorization theorems and the resummation of endpoint logarithms
for quarkonia production [64], the resummation of large logarithmic
terms for the thrust [65] and jet broadening [66] distributions in e+e−

annihilation beyond NLL order, the development of new factorizable
observables to veto extra jets [67], all-orders factorization theorems
for processes containing electroweak Sudakov logarithms [68], and the
resummation of threshold (soft gluon) logarithms for several important
processes at hadron colliders [69–71]. Recently, there has been a
lot of activity describing pT -based resummation at hadron colliders.
Examples are the transverse-momentum distributions of electroweak
bosons [57] and jets [72]. We now describe three applications in more
detail.

Event-shape distributions, in particular the thrust distribution,
have been measured to high accuracy at LEP [73]. They can be used
for a determination of the strong coupling constant αs. SCET has
increased the theoretical accuracy in the calculations of the thrust
and C-parameter distributions significantly. First, it has allowed
to increase the perturbative accuracy of the thrust spectrum. The
resummation of logarithms of τ , which become important for τ ≪ 1,
has been performed to N3LL [65], two orders beyond what was
previously available. Combining this resummation with the known
two-loop spectrum [74,75] gives precise perturbative predictions both
at small and large values of τ . Second, the factorization of the cross
section in SCET has made it possible to include non-perturbative
physics through a shape function, in analogy with the B-physics case
discussed in Section 17.2.6. Comparing the theoretical predictions to
the measured thrust and C-parameter distributions yields a precise
value of the strong coupling constant αs(mZ), which however is lower
than the average value cited in Chap. 9 [76] by several standard
deviations [77,78].

The Higgs-boson production cross section in gluon fusion at the
LHC, defined with a jet veto stating that no jet in the final state has
transverse momentum above a threshold pveto

T , can be factorized in
the form [79,80] (see [81] for a corresponding calculation outside the
SCET framework)

σ(pveto
T ) = H(mH , µ)(

νB

νS
)−2Fgg(R,pveto

T
,µ)Sgg(R, pveto

T , µ,
νS

pveto
T

)

×

∫ 1

τ

dz

z
Bg/P (z, R, pveto

T , µ,
νB

mH
)Bg/P (

τ

z
, R, pveto

T , µ,
νB

mH
),

(17.22)
where τ = m2

H/s, and µ ∼ pveto
T is a common factorization scale. The

beam functions Bg/P , the soft function Sgg and the exponent Fgg all
depend on the jet radius R as well as the jet clustering algorithm.
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The scale dependence of the hard function H is controlled by standard
RG evolution in SCET. The beam functions can be factorized further
into calculable collinear kernels convoluted with parton distribution
functions. In addition to the renormalization scale µ, the beam and
soft functions depend on two rapidity scales νB ∼ mH and νS ∼ pveto

T ,
respectively. In [79] the default values νB = mH and νS = pveto

T
are used for these scales, and the soft function Sgg is absorbed into
the beam functions. In [80] the exponent Fgg is called −γg

ν/2. The
second factor on the right-hand side of the factorization formula
Eq. (17.22), which resums large rapidity logarithms, implies that the
logarithm of the jet-veto cross section contains a single large logarithm
lnσ = −2Fgg(R, pveto

T , µ) ln(mH/pveto
T )+ . . . not contained in the hard

function. Its coefficient can be calculated in fixed-order perturbation
theory.

Obtaining more precise fixed-order calculations has been an
important goal for many years. A major difficulty in these calculations
is the proper handling of the infrared singularities that arise in both
virtual and real contributions. Recently, a proposal has been made to
use a so-called N -jettiness (TN ) subtraction/slicing method to obtain
the NNLO result from a much easier NLO calculation, combined with
information about the singular dependence of the cross section on the
TN resolution variable [82,83]. While the NLO calculations can be
performed using well established techniques, the singular dependence
on TN can be calculated using SCET at NNLO.

17.4. Open issues and perspectives

HQET has successfully passed many experimental tests, and there
are not many open questions that still need to be addressed. One
concept that has not been derived from first principles is the notion
of quark-hadron duality, which underlies the application of HQET
to the description of inclusive decays of B mesons. The validity
of global duality (at energies even lower than those relevant in B
decays) has been tested experimentally using high-precision data on
semileptonic B decays and on hadronic τ decays, and good agreement
between theory and data was found. However, assigning a theoretical
uncertainty due to possible duality violations remains a difficult task.
Another known issue is the that the measured values of the CKM
elements |Vcb| and |Vub| extracted from exclusive or inclusive decays
of B mesons differ from each other by several standard deviations
(see Ref. 84). Both measurements rely on the heavy-quark limit, and
the uncertainties quoted include theoretical estimates of the effects of
power corrections arising from the finite b-quark mass. It remains an
open question whether the discrepancies are due to underestimated
theoretical or experimental uncertainties, or whether they may hint to
the existence of new physics.

SCET, on the other hand, is still an active field of research, and
new results are being obtained regularly. An active area of research is
the understanding of non-global logarithms arising in hadron-collider
processes with jets [85,86]. SCET-based fixed-order calculations have
helped to shed some light on the nature of these logarithms [87–89].
Another active field concerns the study of Glauber gluons in
SCET [90] and their relation to the BFKL equation familiar from
small-x physics [91]. A solid understanding of these issues will
be necessary to make factorization proofs in SCET more rigorous.
Glauber gluons also play an important role in SCET-based analysis
of jet propagation in dense QCD media [92–95], which gives rise to
the jet-quenching phenomenon in heavy-ion collisions. An important
open questions facing some applications of SCET concerns factorized
expressions containing endpoint-divergent convolution integrals. This
problem arises, for example, in the description of heavy-to-light form
factors such as FB̄→π(q2) at large recoil [96].

We close this short review by mentioning a particularly nice
application combining the methods of heavy-particle EFTs such
as HQET and non-relativistic QCD with SCET in the context of
describing the interactions of heavy dark matter (with mass M ≫ v)
with SM particles. In [97] is was realized that the interactions of heavy,
weakly interacting massive particles (WIMPs) with nuclear targets
can be described in a model-independent way using heavy-particle
EFTs. The WIMPs are charged under SU(2)L and can interact with
electroweak gauge bosons and the Higgs boson. The WIMP EFT

was later extended by describing the produced, highly energetic
electroweak gauge bosons in terms of soft or collinear fields in
SCET [98–100]. This allows one to systematically separate all relevant
mass scales, resum electroweak Sudakov logarithms and disentangle
the so-called Sommerfeld enhancement from the short-distance hard
annihilation process.
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18. LATTICE QUANTUM CHROMODYNAMICS

Updated September 2015 by S. Hashimoto (KEK), J. Laiho (Syracuse
University) and S.R. Sharpe (University of Washington).

Many physical processes considered in the Review of Particle
Properties (RPP) involve hadrons. The properties of hadrons—which
are composed of quarks and gluons—are governed primarily by
Quantum Chromodynamics (QCD) (with small corrections from
Quantum Electrodynamics [QED]). Theoretical calculations of these
properties require non-perturbative methods, and Lattice Quantum
Chromodynamics (LQCD) is a tool to carry out such calculations.
It has been successfully applied to many properties of hadrons.
Most important for the RPP are the calculation of electroweak form
factors, which are needed to extract Cabbibo-Kobayashi-Maskawa
(CKM) matrix elements when combined with the corresponding
experimental measurements. LQCD has also been used to determine
other fundamental parameters of the standard model, in particular
the strong coupling constant and quark masses.

This review describes the theoretical foundations of LQCD and
sketches the methods used to calculate the quantities relevant for
the RPP. It also describes the various sources of error that must be
controlled in a LQCD calculation. Results for hadronic quantities are
given in the corresponding dedicated reviews.

18.1. Lattice regularization of QCD

Gauge theories form the building blocks of the Standard Model.
While the SU(2) and U(1) parts have weak couplings and can be
studied accurately with perturbative methods, the SU(3) component—
QCD—is only amenable to a perturbative treatment at high energies.
The growth of the coupling constant in the infrared—the flip-side of
asymptotic freedom—requires the use of non-perturbative methods to
determine the low energy properties of QCD. Lattice gauge theory,
proposed by K. Wilson in 1974 [1], provides such a method, for it gives
a non-perturbative definition of vector-like gauge field theories like
QCD. In lattice regularized QCD—commonly called lattice QCD or
LQCD—Euclidean space-time is discretized, usually on a hypercubic
lattice with lattice spacing a, with quark fields placed on sites and
gauge fields on the links between sites. The lattice spacing plays the
role of the ultraviolet regulator, rendering the quantum field theory
finite. The continuum theory is recovered by taking the limit of
vanishing lattice spacing, which can be reached by tuning the bare
coupling constant to zero according to the renormalization group.

Unlike dimensional regularization, which is commonly used in
continuum QCD calculations, the definition of LQCD does not rely on
the perturbative expansion. Indeed, LQCD allows non-perturbative
calculations by numerical evaluation of the path integral that defines
the theory.

Practical LQCD calculations are limited by the availability of
computational resources and the efficiency of algorithms. Because of
this, LQCD results come with both statistical and systematic errors,
the former arising from the use of Monte-Carlo integration, the latter,
for example, from the use of non-zero values of a. There are also
different ways in which the QCD action can be discretized, and all
must give consistent results in the continuum limit, a → 0. It is
the purpose of this review to provide an outline of the methods of
LQCD, with particular focus on applications to particle physics, and
an overview of the various sources of error. This should allow the
reader to better understand the LQCD results that are presented
in other reviews, primarily those on “Quark Masses”, “Quantum
Chromodynamics”, “CKM quark-mixing matrix”, “Vud, Vus, Cabibbo
angle and CKM Unitarity” and “Semileptonic B-meson decays and
the determination of Vcb and Vub”. For more extensive explanations
the reader should consult the available textbooks or lecture notes, the
most up-to-date of which are Refs. 2–4.

18.1.1. Gauge invariance, gluon fields and the gluon action :

A key feature of the lattice formulation of QCD is that it preserves
gauge invariance. This is in contrast to perturbative calculations,
where gauge fixing is an essential step. The preservation of gauge
invariance leads to considerable simplifications, e.g. restricting the
form of operators that can mix under renormalization.

Figure 18.1: Sketch of a two-dimensional slice through the
µ − ν plane of a lattice, showing gluon fields lying on links and
forming either the plaquette product appearing in the gauge
action or a component of the covariant derivative connecting
quark and antiquark fields.

The gauge transformations of lattice quark fields are just as in
the continuum: q(x) −→ V (x)q(x) and q̄(x) −→ q̄(x)V †(x), with
V (x) an arbitrary element of SU(3). The only difference is that the
Euclidean space-time positions x are restricted to lie on the sites of
the lattice, i.e. x = a(n1, n2, n3, n4) for a hypercubic lattice, with the
nj being integers. Quark bilinears involving different lattice points
can be made gauge invariant by introducing the gluon field Uµ(x).
For example, for adjacent points the bilinear is q̄(x)Uµ(x)q(x+aµ̂),
with µ̂ the unit vector in the µ’th direction. (This form is used
in the construction of the lattice covariant derivative.) This is
illustrated in Fig. 18.1. The gluon field (or “gauge link”) is an
element of the group, SU(3), in contrast to the continuum field Aµ

which takes values in the Lie algebra. The bilinear is invariant if
Uµ transforms as Uµ(x) → V (x)Uµ(x)V †(x+aµ̂). The lattice gluon
field is naturally associated with the link joining x and x+aµ̂, and
corresponds in the continuum to a Wilson line connecting these two

points, P exp(i
∫ x+aµ̂
x dxµAcont

µ (x)) (where P indicates a path-ordered
integral, and the superscript on Aµ indicates that it is a continuum
field). The trace of a product of the Uµ(x) around any closed loop is
easily seen to be gauge invariant and is the lattice version of a Wilson
loop.

The simplest possible gauge action, usually called the Wilson gauge
action, is given by the product of gauge links around elementary
plaquettes:

Sg = β
∑

x,µ,ν

[1 − 1

3
ReTr[Uµ(x)Uν(x+aµ̂)U†

µ(x+aν̂)U†
ν (x)]] . (18.1)

This is illustrated in Fig. 18.1. For small a, assuming that the fields
are slowly varying, one can expand the action in powers of a using
Uµ(x) = exp(iaAµ(x)). Keeping only the leading non-vanishing term,
and replacing the sum with an integral, one finds the continuum form,

Sg −→
∫

d4x
1

4g2
lat

Tr[F 2
µν(x)] , (Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ])

(18.2)

as long as one chooses β = 6/g2
lat for the lattice coupling. In

this expression, glat is the bare coupling constant in the lattice
scheme, which can be related (by combining continuum and lattice
perturbation theory) to a more conventional coupling constant such as
that in the MS scheme (see Sec. 18.3.4 below).

In practice, the lattice spacing a is non-zero, leading to discretization
errors. In particular, the lattice breaks Euclidean rotational invariance
(which is the Euclidean version of Lorentz invariance) down to a
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discrete hypercubic subgroup. One wants to reduce discretization
errors as much as possible. A very useful tool for understanding and
then reducing discretization errors is the Symanzik effective action:
the interactions of quarks and gluons with momenta low compared
to the lattice cutoff (|p| ≪ 1/a) are described by a continuum action
consisting of the standard continuum terms (e.g. the gauge action
given in Eq. (18.2)) augmented by higher dimensional operators
suppressed by powers of a [5]. For the Wilson lattice gauge action,
the leading corrections come in at O(a2). They take the form
∑

j a2cjO
(j)
6 , with the sum running over all dimension-six operators

O
(j)
6 allowed by the lattice symmetries, and cj unknown coefficients.

Some of these operators violate Euclidean rotational invariance, and
all of them lead to discretization errors of the form a2Λ2, where
Λ is a typical momentum scale for the quantity being calculated.
These errors can, however, be reduced by adding corresponding
operators to the lattice action and tuning their coefficients to
eliminate the dimension-six operators in the effective action to a
given order in perturbation theory or even non-perturbatively. This
is the idea of the Symanzik improvement program [5]. In the case
of the gauge action, one adds Wilson loops involving six gauge
links (as opposed to the four links needed for the original plaquette
action, Eq. (18.1)) to define the O(a2) improved (or “Symanzik”)
action [6]. In practical implementations, the improvement is either
at tree-level (so that residual errors are proportional to αsa

2, where
the coupling is evaluated at a scale ∼ 1/a), or at one loop order
(errors proportional to α2

sa
2). Another popular choice is motivated by

studies of renormalization group (RG) flow. It has the same terms as
the O(a2) improved action but with different coefficients, and is called
the RG-improved or “Iwasaki” action [7].

18.1.2. Lattice fermions :

Discretizing the fermion action turns out to involve subtle issues, and
the range of actions being used is more extensive than for gauge fields.
Recall that the continuum fermion action is Sf =

∫

d4xq̄[iDµγµ+mq]q,
where Dµ = ∂µ + iAµ is the gauge-covariant derivative. The simplest
discretization replaces the derivative with a symmetric difference:

Dµq(x) −→ 1

2a
[Uµ(x)q(x + aµ̂) − Uµ(x − aµ̂)†q(x − aµ̂)] . (18.3)

The factors of Uµ ensure that Dµq(x) transforms under gauge
transformations in the same way as q(x), so that the discretized
version of q̄(x)Dµγµq(x) is gauge invariant. The choice in Eq. (18.3)
leads to the so-called naive fermion action. This, however, suffers
from the fermion doubling problem—in d dimensions it describes
2d equivalent fermion fields in the continuum limit. The appearance
of the extra “doubler” fermions is related to the deeper theoretical
problem of formulating chirally symmetric fermions on the lattice.
This is encapsulated by the Nielsen-Ninomiya theorem [8]: one
cannot define lattice fermions having exact, continuum-like chiral
symmetry without producing doublers. Naive lattice fermions do have
chiral symmetry but at the cost of introducing 15 unwanted doublers
(for d = 4).

There are a number of different strategies for dealing with the
doubling problem, each with their own theoretical and computational
advantages and disadvantages. Wilson fermions [1] add a term
proportional to aq̄∆q to the fermion action (the “Wilson term”—in
which ∆ is a covariant lattice Laplacian). This gives a mass of
O(1/a) to the doublers, so that they decouple in the continuum
limit. The Wilson term, however, violates chiral symmetry, and also
introduces discretization errors linear in a. A commonly used variant
that eliminates the O(a) discretization error is the O(a)-improved
Wilson (or “clover”) fermion [9]. In this application of Symanzik
improvement, methods have been developed to remove O(a) terms
non-perturbatively using auxiliary simulations to tune parameters [10].
Such “non-perturbative improvement” is of great practical importance
as it brings the discretization error from the fermion action down to
the same level as that from the gauge action. It is used by essentially
all simulations using clover fermions.

The advantages of Wilson fermions are their theoretical simplicity
and relatively low computational cost. Their main disadvantage is the
lack of chiral symmetry, which makes them difficult to use in cases
where mixing with wrong chirality operators can occur, particularly
if this involves divergences proportional to powers of 1/a. A related
problem is the presence of potential numerical instabilities due to
spurious near-zero modes of the lattice Dirac operator. Ongoing work
has, however, been successful at ameliorating these problems and
increasing the range of quantities for which Wilson fermions can be
used (see, e.g., Refs. 11–13).

Twisted-mass fermions [14] are a variant of Wilson fermions in
which two flavors are treated together with an isospin-breaking mass
term (the “twisted mass” term). The main advantage of this approach
is that all errors linear in a are automatically removed (without the
need for tuning of parameters) by a clever choice of twisted mass and
operators [15]. A disadvantage is the presence of isospin breaking
effects (such as a splitting between charged and neutral pion masses
even when up and down quarks are degenerate), which, however,
vanish as a2Λ2 in the continuum limit. Strange and charm quarks can
be added as a second pair, with a term added to split their masses.

Staggered fermions are a reduced version of naive fermions in which
there is only a single fermion Dirac component on each lattice site,
with the full Dirac structure built up from neighboring sites [16].
They have the advantages of being somewhat faster to simulate than
Wilson-like fermions, of preserving some chiral symmetry, and of
having discretization errors of O(a2). Their disadvantage is that they
retain some of the doublers (3 for d = 4). The action thus describes
four degenerate fermions in the continuum limit. These are usually
called “tastes”, to distinguish them from physical flavors, and the
corresponding SU(4) symmetry is referred to as the “taste symmetry”.
The preserved chiral symmetry in this formulation has non-singlet
taste. Practical applications usually introduce one staggered fermion
for each physical flavor, and remove contributions from the unwanted
tastes by taking the fourth-root of the fermion determinant appearing
in the path integral. The validity of this “rooting” procedure is not
obvious because taste symmetry is violated for non-zero lattice spacing.
Theoretical arguments, supported by numerical evidence, suggest that
the procedure is valid as long as one takes the continuum limit before
approaching the light quark mass region [17]. Additional issues arise
for the valence quarks (those appearing in quark propagators, as
described in Sec. 18.2 below), where rooting is not possible, and one
must remove the extra tastes by hand [18].

Just as for Wilson fermions, the staggered action can be improved,
so as to reduce discretization errors. The Asqtad (a-squared tadpole
improved) action [19] was used until recently in many large scale
simulations [20]. Most recent calculations use the HISQ (highly
improved staggered quark) action, introduced in Ref. 21. This
removes tree-level O(a2) errors, and leads to a substantial reduction in
the breaking of taste symmetry, as well as a general reduction in the
size of other discretization errors. It is tuned to reduce discretization
errors for both light and heavier quarks, and is being used to directly
simulate charm quarks.

There is an important class of lattice fermions, “Ginsparg-Wilsons
fermions”, that possess a continuum-like chiral symmetry without
introducing unwanted doublers. The lattice Dirac operator D for
these fermions satisfies the Ginsparg-Wilson relation Dγ5 + γ5D =
aDγ5D [22]. In the continuum, the right-hand-side vanishes, leading
to chiral symmetry. On the lattice, it is non-vanishing, but with a
particular form (with two factors of D) that restricts the violations of
chiral symmetry in Ward-Takahashi identities to short-distance terms
that do not contribute to physical matrix elements [23]. In fact, one
can define a modified chiral transformation on the lattice (by including
dependence on the gauge fields) such that Ginsparg-Wilson fermions
have an exact chiral symmetry for on-shell quantities [24]. The net
result is that such fermions essentially have the same properties under
chiral transformations as do continuum fermions, including the index
theorem [23]. Their leading discretization errors are of O(a2).

Two types of Ginsparg-Wilson fermions are currently being used in
large-scale numerical simulations. The first is Domain-wall fermions
(DWF). These are defined on a five-dimensional space, in which the
fifth dimension is fictitious [25]. The action is chosen so that the
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low-lying modes are chiral, with left- and right-handed modes localized
on opposite four-dimensional surfaces. For an infinite fifth dimension,
these fermions satisfy the Ginsparg-Wilson relation. In practice, the
fifth dimension is kept finite, and there remains a small, controllable
violation of chiral symmetry. The second type is Overlap fermions.
These appeared from a completely different context and have an
explicit form that exactly satisfies the Ginsparg-Wilson relation [26].
Their numerical implementation requires an approximation of the
matrix sign function of a Wilson-like fermion operator, and various
approaches are being used. In fact, it is possible to rewrite these
approximations in terms of a five-dimensional formulation, showing
that the DWF and Overlap approaches are essentially equivalent [27].
Numerically, the five-dimensional approach appears to be more
computationally efficient.

The various lattice fermion formulations are often combined with
the technique of link smearing. Here one couples the fermions to a
smoother gauge link, defined by averaging with adjacent links in a
gauge invariant manner. Several closely related implementations are
being used. All reduce the coupling of fermions to the short-distance
fluctuations in the gauge field, leading to an improvement in the
numerical stability and speed of algorithms. One cannot perform this
smearing too agressively, however, since the smearing may distort
short distance physics and enhance discretization errors.

As noted above, each fermion formulation has its own advantages
and disadvantages. For instance, domain-wall and overlap fermions are
theoretically preferred as they have chiral symmetry without doublers,
but their computational cost is greater than for other choices. If the
physics application of interest and the target precision do not require
near-exact chiral symmetry, there is no strong motivation to use
these expensive formulations. On the other hand, there is a class of
applications (including the calculation of the ∆I = 1/2 amplitude for
K → ππ decays and the S-parameter [28]) where chiral symmetry
plays an essential role and for which the use of Ginsparg-Wilson
fermions is strongly favored.

18.1.3. Heavy quarks on the lattice :

The fermion formulations described in the previous subsection can
be used straightforwardly only for quarks whose masses are small
compared to the lattice cutoff, mq . 1/a. This is because there are
discretization errors proportional to powers of amq, and if amq & 1
these errors are large and uncontrolled. Present LQCD simulations
typically have cutoffs in the range of 1/a = 2 − 4 GeV (corresponding
to a ≈ 0.1 − 0.05 fm). Thus, while for the up, down and strange
quarks one has amq ≪ 1, for bottom quarks (with mb ≈ 4.5 GeV)
one must use alternative approaches. Charm quarks (mc ≈ 1.5 GeV)
are an intermediate case, allowing simulations using both direct and
alternative approaches.

For the charm quark, the straightforward approach is to simulta-
neously reduce the lattice spacing and to improve the fermion action
so as to reduce the size of errors proportional to powers of amc.
This approach has, for example, been followed successfully using the
HISQ and twisted-mass actions [21,29,30]. It is important to note,
however, that reducing a increases the computational cost because an
increased number of lattice points are needed for the same physical
volume. One cannot reduce the spatial size below 2 − 3 fm without
introducing finite volume errors. Present lattices have typical sizes of
∼ 643 × 128 (with the long direction being Euclidean time), and thus
allow a lattice cutoff up to 1/a ∼ 4 GeV.

Alternative approaches for discretizing heavy quarks are motivated
by effective field theories. For a bottom quark in heavy-light hadrons,
one can use Heavy Quark Effective Theory (HQET) to expand about
the infinite quark-mass limit. In this limit, the bottom quark is a static
color source, and one can straightforwardly write the corresponding
lattice action [31]. Corrections, proportional to powers of 1/mb, can
be introduced as operator insertions, with coefficients that can be
determined non-perturbatively using existing techniques [32]. This
method allows the continuum limit to be taken controlling all 1/mb

corrections.

Another way of introducing the 1/mb corrections is to include the
relevant terms in the effective action. This leads to a non-relativistic
QCD (NRQCD) action, in which the heavy quark is described by a

two-component spinor [33]. This approach has the advantage over
HQET that it can also be used for heavy-heavy systems, such as
the Upsilon states. A disadvantage is that some of the parameters
in this effective theory are determined perturbatively (originally at
tree-level, but more recently at one-loop), which limits the precision
of the final results. Although discretization effects can be controlled
with good numerical precision for a range of lattice spacings, at
fine enough lattice spacing the NRQCD effective theory no longer
applies since power divergent terms become important, and taking the
continuum limit would require fine-tuning a large number of couplings
non-perturbatively.

This problem can be avoided if one uses HQET power counting to
analyze and reduce discretization effects for heavy quarks while using
conventional fermion actions [34]. For instance, one can tune the
parameters of an improved Wilson quark action so that the leading
HQET corrections to the static quark limit are correctly accounted
for. As the lattice spacing becomes finer, the action smoothly goes
over to that of a light Wilson quark action, where the continuum limit
can be taken as usual. In principle, one can improve the action in
the heavy quark regime up to arbitrarily high orders using HQET,
but so far large-scale simulations have typically used clover improved
Wilson quarks, where tuning the parameters of the action corresponds
to including all corrections through next-to-leading order in HQET.
Three different methods for tuning the parameters of the clover action
are being used: the Fermilab [34], Tsukuba [35] and Columbia [36]
approaches. An advantage of this HQET approach is that the c and
b quarks can be treated on the same footing. Parameter tuning has
typically been done perturbatively, as in NRQCD, but recent work
using the Columbia approach has used non-perturbative tuning of
some of the parameters [37,38].

Another approach is the “ratio method” introduced in [39]. Here
one uses quarks with masses lying at, or slightly above, the charm mass
mc, which can be simulated with a relativistic action, and extrapolates
to mb incorporating the behavior predicted by HQET. The particular
implementation relies on the use of ratios. As an example, consider
the B meson decay constant fB . According to HQET, this scales
as 1/

√
mB for mB ≫ ΛQCD, up to a logarithmic dependence that

is calculable in perturbative QCD (but will be suppressed in the
following). Here mB is the B meson mass, which differs from mb by
∼ ΛQCD. One considers the ratio y(λ, mb′) ≡ fB′′

√
mB′′/fB′

√
mB′

for fictitious B mesons containing b quarks with unphysical masses mb′

and mb′′ = λmb′ . HQET implies that y(λ, mb′) approaches unity for
large mb′ and any fixed λ > 1. The ratios are evaluated on the lattice
for the sequence of masses mb′ = mc, λmc, λ2mc, all well below the
physical mb, and for each the continuum limit is taken. The form of
the ratio for larger values of mb′ is obtained by fitting, incorporating
the constraints implied by HQET. The result for fB

√
mB is then

obtained as a product of y’s with fD
√

mD.

18.1.4. QED on the lattice :

Quarks in nature are electrically charged, and the resultant
coupling to photons leads to shifts in the properties of hadrons that
are generically of O(αEM). Thus, for example, the proton mass is
increased by ∼ 1 MeV relative to that of the neutron due to its
overall charge although this effect is more than compensated for by
the ∼ 2.5 MeV relative decrease due to the up quark being lighter
than the down quark [40]. This example shows that once pure QCD,
isospin-symmetric lattice calculations reach percent level accuracy,
further improvement requires the inclusion of effects due to both
electromagnetism and the up-down mass difference. This level of
accuracy has in fact been obtained for various quantities, e.g. light
hadron masses and decay constants (see Ref. 41), and simulations
including QED in addition to QCD are now beginning.

The extension of lattice methods to include QED is straightforward,
although some new subtleties arise. The essential change is that the
quark must now propagate through a background field containing both
gluons and photons. The gauge field Uµ that appears in covariant
derivative Eq. (18.3) is extended from an SU(3) matrix to one living

in U(3): Uµ → UµeiaqeAEM
µ . Here AEM

µ is the photon field, e the
electromagnetic coupling, and q the charge of the quark, e.g. q = 2/3
for up and −1/3 for down and strange quarks. The lattice action
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for the photon that is typically used is a discretized version of the
continuum action Eq. (18.2), rather than the form used for the gluons,
Eq. (18.1). This “non-compact” action has the advantage that it is
quadratic in AEM

µ , which simplifies the QED part of the generation of
configurations.

One subtlety that arises is that Gauss’ law forbids a charged particle
in a box with periodic boundary conditions. This finite volume effect
can be overcome by including a uniform background charge, and
this can be shown to be equivalent to removing the zero-momentum
mode from the photon field. This is an example of the enhanced
finite-volume effects that arise in the presence of the massless photon.

Simulations including QED have progressed over the last few years,
and now a full inclusion of QED has been achieved with almost
physical quark masses [40]. Alternative approaches have also been
considered: reweighting the QCD fields a posteriori [42,43], and
keeping only the linear term in an expansion in αEM about the
QCD only case [44]. In addition, some calculations have included
QED effects for the valence quarks but not the sea quarks (the
“electroquenched approximation”).

18.1.5. Basic inputs for lattice calculations :

Since LQCD is nothing but a regularization of QCD, the
renormalizability of QCD implies that the number of input parameters
in LQCD is the same as for continuum QCD—the strong coupling
constant αs = g2/(4π), the quark masses for each flavor, and the CP
violating phase θ. The θ parameter is usually assumed to be zero,
while the other parameters must be determined using experimental
inputs.

18.1.5.1. Lattice spacing: In QCD, the coupling constant is a
function of scale. With lattice regularization, this scale is the inverse
lattice spacing 1/a, and choosing the bare coupling constant is
equivalent to fixing the lattice spacing.

In principle, a can be determined using any dimensionful quantity
measured by experiments. For example, using the mass of hadron
H one has a = (amH)lat/mexp

H . (Of course, one must first tune
the quark masses to their physical values, as discussed below.) In
practice, one chooses quantities that can be calculated accurately on
the lattice, and that are only weakly dependent on the light quark
masses. The latter property minimizes errors from extrapolating or
interpolating to the physical light quark masses or from mistuning of
these masses. Commonly used choices are the spin-averaged 1S-1P or
1S-2S splittings in the Upsilon system, the mass of the Ω− baryon,
and the pion decay constant fπ. Ultimately, all choices must give
consistent results for a, and that this is the case provides a highly
non-trivial check of both the calculational method and of QCD.

18.1.5.2. Light quark masses:

In LQCD simulations, the up, down and strange quarks are usually
referred to as the light quarks, in the sense that mq < ΛQCD.
(The standard definition of ΛQCD is given in the “Quantum
Chromodynamics” review; in this review we are using it only to
indicate the approximate non-perturbative scale of QCD.) This
condition is stronger than that used above to distinguish quarks with
small discretization errors, mq < 1/a. Loop effects from light quarks
must be included in the simulations to accurately represent QCD.
At present, most simulations are done in the isospin symmetric limit
mu = md ≡ mℓ < ms, and are often referred to as “Nf = 2 + 1”
simulations. Increasingly, simulations also include loops of charm
quarks (denoted Nf = 2 + 1 + 1 simulations), although the effect of
charmed sea quarks on low-energy physics is generically expected to
be at the sub-percent level [45]. Precision is now reaching the point
where isospin breaking effects must be included. To do so without
approximation requires simulating with nondegenerate up and down
quarks (leading to Nf = 1 + 1 + 1 or 1 + 1 + 1 + 1 simulations) as well
as including electromagnetism (as described above). This has been
done in Ref. 40. Alternatively, one can use a perturbative approach,
expanding about the isospin symmetric theory and working to linear
order in αEM and mu − md [44].

We now describe the tuning of mℓ, ms and mc to their physical
values. (For brevity, we ignore isospin violation in the following

discussion.) The most commonly used quantities for these tunings are,
respectively, mπ, mK and mDs . If the scale is being set by mΩ, then
one adjusts the lattice quark masses until the ratios mπ/mΩ, mK/mΩ
and mDs/mΩ take their physical values. In the past, most calculations
needed to extrapolate to the physical value of mℓ (typically using
forms based on chiral perturbation theory [ChPT]), while simulating
directly at or near to the physical values of ms and mc. Present
calculations are increasingly done with physical or near physical values
of mℓ, requiring at most only a short extrapolation.

18.1.5.3. Heavy quark masses:

The b quark is usually treated only as a valence quark, with no loop
effects included. The errors introduced by this approximation can be
estimated to be ∼ αs(mb)Λ

2
QCD/m2

b and are likely to be very small.
In the past, the same approximation has been made for the c quark,
leading to errors ∼ αs(mc)Λ

2
QCD/m2

c . (See [45] for a quantitative
estimate of the effects of including the charm quark on some low
energy physical quantities.) For high precision, however, dynamical
charm quarks are necessary, and some of the most recent simulations
now include them.

The b quark mass can be tuned by setting heavy-heavy (Υ)
or heavy-light (B) meson masses to their experimental values.
Consistency between these two determinations provides an important
check that the determination of parameters in the heavy quark lattice
formulations is being done correctly (see, e.g. Ref. 46).

18.1.6. Sources of systematic error :

Lattice results have statistical and systematic errors that must
be quantified for any calculation in order for the result to be a
useful input to phenomenology. The statistical error is due to the use
of Monte Carlo importance sampling to evaluate the path integral
(a method discussed below). There are, in addition, a number of
systematic errors that are always present to some degree in lattice
calculations, although the size of any given error depends on the
particular quantity under consideration and the parameters of the
ensembles being used. The most common lattice errors are reviewed
below.

Although not strictly a systematic error, it is important to note
that the presence of long autocorrelations in the sequence of lattice
configurations generated by the Monte Carlo method can lead to
underestimates of statistical errors [47]. It is known that the global
topological charge of the gauge fields decorrelates very slowly with
certain algorithms [48]. The effect of poorly sampling topological
charge is expected to be most significant for the pion mass and related
quantities [49,50]. This issue becomes more relevant as the precision
of the final results increases.

18.1.6.1. Continuum limit: Physical results are obtained in the
limit that the lattice spacing a goes to zero. The Symanzik effective
theory determines the scaling of lattice artefacts with a. Most
lattice calculations use improved actions with leading discretizations
errors of O(a2Λ2), O(αsa

2Λ2), or O(αsaΛ), where Λ is a typical
momentum scale in the system. Knowledge of the scaling of the
leading discretization errors allows controlled extrapolation to a = 0
when multiple lattice spacings are available, as in current state-of-the-
art calculations. Residual errors arise from the exclusion of subleading
a dependence from the fits.

For many quantities the typical momentum scale in the system is
∼ ΛQCD ≈ 300 MeV. Discretization errors are expected to be larger
for quantities involving larger scales, for example form factors or
decays involving particles with momenta larger than ΛQCD.

18.1.6.2. Infinite volume limit: LQCD calculations are necessarily
carried out in finite space-time boxes, leading to departures of physical
quantities (masses, decay constants, etc.) from their measured, infinite
volume values. These finite-volume shifts are an important systematic
that must be estimated and minimized.

Typical lattices are asymmetric, with Ns points in the three spatial
directions and Nt in the (Euclidean) temporal direction. The spatial
and temporal sizes in physical units are thus Ls = aNs and Lt = aNt,
respectively. (Anisotropic lattice spacings are also sometimes used, as
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discussed below in Sec. 1.3.1.) Typically, Lt ≥ 2Ls, a longer temporal
direction being used to allow excited-state contributions to correlators
to decay. This means that the dominant impact of using finite volume
is from the presence of a finite spatial box.

High-precision LQCD calculations are of quantities involving no
more than a single particle in initial and final states (with the
exception of the K → ππ decay amplitudes). For such quantities, once
the volume exceeds about 2 fm (so that the particle is not “squeezed”),
the dominant finite-volume effect comes from virtual pions wrapping
around the lattice in the spatial directions. This effect is exponentially
suppressed as the volume becomes large, roughly as ∼ exp(−mπLs),
and has been estimated using ChPT [51] or other methods [52]. The
estimates suggest that finite volume shifts are sub-percent effects when
mπLs & 4, and most large-scale simulations use lattices satisfying this
condition. This becomes challenging as one approaches the physical
pion mass, for which Ls & 5 fm is required. At present, this can only
be achieved by using relatively coarse lattices, a & 0.07 fm.

Finite volume errors are usually determined by repeating the
simulations on two or more different volumes (with other parameters
fixed). If different volumes are not available, the ChPT estimate
can be used, often inflated to account for the fact that the ChPT
calculation is truncated at some order.

In the future, LQCD calculations involving more than a single
hadron will become increasingly precise. Examples include the
calculation of resonance parameters and the above-mentioned K → ππ
amplitudes. Finite volume effects are much larger in these cases, with
power-law terms (e.g. 1/L3

s) in addition to exponential dependence.
Indeed, as will be discussed in Sec. 1.2.4., one can use the volume
dependence to indirectly extract infinite-volume quantities such
as scattering lengths. Doing so, however, requires a set of lattice
volumes satisfying mπLs & 4 and is thus more challenging than for
single-particle quantities.

18.1.6.3. Chiral extrapolation:

Until recently, an important source of systematic error in LQCD
calculations was the need to extrapolate in mu and md (or,
equivalently, in mπ). This extrapolation was usually done using
functional forms based on ChPT, or with analytic functions, with the
difference between different fits used as an estimate of the systematic
error, which was often substantial. Increasingly, however, calculations
work directly at, or very close to, the physical quark masses. This
either removes entirely, or greatly reduces, the uncertainties in the
extrapolation, such that this error is subdominant.

18.1.6.4. Operator matching:

Many of the quantities that LQCD can precisely calculate
involve hadronic matrix elements of operators from the electroweak
Hamiltonian. Examples include the pion and kaon decay constants,
semileptonic form factors and the kaon mixing parameter BK (the
latter defined in Eq. (18.13)). The operators in the lattice matrix
elements are defined in the lattice regularization scheme. To be used
in tests of the Standard Model, however, they must be matched
to the continuum regularization scheme in which the corresponding
Wilson coefficients have been calculated. The only case in which such
matching is not needed is if the operator is a conserved or partially
conserved current. Similar matching is also needed for the conversion
of lattice bare quark masses to those in the continuum MS scheme.

Three methods are used to calculate the matching factors:
perturbation theory (usually to one- or two-loop order), non-
perturbative renormalization (NPR) using Landau-gauge quark and
gluon propagators [53], and NPR using gauge-invariant methods
based on the Schrödinger functional [54]. The NPR methods replace
truncation errors (which can only be approximately estimated) by
statistical and systematic errors which can be determined reliably and
systematically reduced.

A common issue that arises in many such calculations (e.g. for
quark masses and BK) is that, using NPR, one ends up with
operators regularized in a MOM-like (or Schrödinger functional)
scheme, rather than the MS scheme mostly used for calculating the
Wilson coefficients. To make contact with this scheme requires a
purely continuum perturbative matching calculation. The resultant

truncation error can, however, be minimized by pushing up the
momentum scale at which the matching is done using step-scaling
techniques as part of the NPR calculation [55]. It should also be
noted that this final step in the conversion to the MS scheme could be
avoided if continuum calculations used a MOM-like scheme.

18.2. Methods and status

Once the lattice action is chosen, it is straightforward to define
the quantum theory using the path integral formulation. The
Euclidean-space partition function is

Z =

∫

[dU ]
∏

f

[dqf ][dq̄f ]e−Sg[U ]−
∑

f q̄f (D[U ]+mf )qf , (18.4)

where link variables are integrated over the SU(3) manifold, qf and q̄f

are Grassmann (anticommuting) quark and antiquark fields of flavor
f , and D[U ] is the chosen lattice Dirac operator with mf the quark
mass in lattice units. Integrating out the quark and antiquark fields,
one arrives at a form suitable for simulation:

Z =

∫

[dU ]e−Sg [U ]
∏

f

det(D[U ] + mf ) . (18.5)

The building blocks for calculations are expectation values of
multi-local gauge-invariant operators, also known as “correlation
functions”,

〈O(U, q, q̄)〉 =

(1/Z)

∫

[dU ]
∏

f

[dqf ][dq̄f ]O(U, q, q̄)e−Sg[U ]−
∑

f q̄f (D[U ]+mf )qf .

(18.6)
If the operators depend on the (anti-)quark fields qf and q̄f , then
integrating these fields out leads not only to the fermion determinant
but also, through Wick’s theorem, to a series of quark “propagators”,
(D[U ] + mf )−1, connecting the positions of the fields.

This set-up allows one to choose, by hand, the masses of the
quarks in the determinant (the sea quarks) differently from those in
the propagators (valence quarks). This is called “partial quenching”,
and is used by some calculations as a way of obtaining more data
points from which to extrapolate both sea and valence quarks to their
physical values.

18.2.1. Monte-Carlo method :

Since the number of integration variables U is huge (N3
s ×Nt×4×9),

direct numerical integration is impractical and one has to use
Monte-Carlo techniques. In this method, one generates a Markov
chain of gauge configurations (a “configuration” being the set
of U ’s on all links) distributed according to the probability

measure [dU ]e−Sg[U ] ∏

f det(D[U ] + mf ). Once the configurations are

generated, expectation values 〈O(U, q, q̄)〉 are calculated by averaging
over those configurations. In this way the configurations can be used
repeatedly for many different calculations, and there are several large
collections of ensembles of configurations (with a range of values of
a, lattice sizes and quark masses) that are publicly available through
the International Lattice Data Grid (ILDG). As the number of the
configurations, N , is increased, the error decreases as 1/

√
N .

The most challenging part of the generation of gauge configurations
is the need to include the fermion determinant. Direct evaluation
of the determinant is not feasible, as it requires O((N3

s × Nt)
3)

computations. Instead, one rewrites it in terms of “pseudofermion”
fields φ (auxiliary fermion fields with bosonic statistics). For example,
for two degenerate quarks one has

det(D[U ] + mf )2 =

∫

[dφ]e−φ†(D[U ]+mf )−2φ . (18.7)

By treating the pseudofermions as additional integration variables in
the path integral, one obtains a totally bosonic representation. The
price one pays is that the pseudofermion effective action is highly
non-local since it includes the inverse Dirac operator (D[U ] + mf )−1.
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Thus, the large sparse matrix (D[U ] + m) has to be inverted every
time one needs an evaluation of the effective action.

Present simulations generate gauge configurations using the Hybrid
Monte Carlo (HMC) algorithm [56], or variants thereof. This
algorithm combines molecular dynamics (MD) evolution in a fictitious
time (which is also discretized) with a Metropolis “accept-reject”
step. It makes a global update of the configuration, and is made
exact by the Metropolis step. In its original form it can be used only
for two degenerate flavors, but extensions (particularly the rational
HMC [57]) are available for single flavors. Considerable speed-up of
the algorithms has been achieved over the last two decades using a
variety of techniques.

All these algorithms spend the bulk of their computational time
on the repeated inversion of (D[U ] + m) acting on a source (which is
required at every step of the MD evolution). Inversions are done using
a variety of iterative algorithms, e.g. the conjugate gradient algorithm.
In this class of algorithms, computational cost is proportional to the
condition number of the matrix, which is the ratio of maximum and
minimum eigenvalues. For (D[U ] + m) the smallest eigenvalue is ≈ m,
so the condition number and cost are inversely proportional to the
quark mass. This is a major reason why simulations at the physical
quark mass are challenging. Recent algorithmic studies are making
progress in significantly reducing this problem.

A practical concern is the inevitable presence of correlations
between configurations in the Markov chain. These are characterized
by an autocorrelation length in the fictitious MD time. One aims
to use configurations separated in MD time by greater than this
autocorrelation length. In practice, it is difficult to measure this
length accurately, and this leads to some uncertainty in the resulting
statistical errors, as well as the possibility of insufficient equilibration.

For most of the applications of LQCD discussed in this review, the
cost of generating gauge configurations is larger than or similar to
that of performing the “measurements” on those configurations. The
computational cost of gauge generation grows with the lattice volume,
Vlat = N3

s Nt, as V 1+δ
lat . Here δ = 1/4 for the HMC algorithm [58]

and can be reduced slightly using modern variants. Such growth with
Vlat provides a (time-dependent) limit on the largest lattice volumes
that can be simulated. At present, the largest lattices being used have
Ns = 144 and Nt = 288. Typically one aims to create an ensemble
of ∼ 103 statistically independent configurations at each choice of
parameters (a, mq and Vlat). For most physical quantities of interest,
this is sufficient to make the resulting statistical errors smaller than or
comparable to the systematic errors.

18.2.2. Two-point functions :

One can extract properties of stable hadrons using two-point

correlation functions, 〈OX (x)O†
Y (0)〉. Here OX,Y (x) are operators

that have non-zero overlaps with the hadronic state of interest |H〉,
i.e. 〈0|OX,Y (x)|H〉 6= 0. One usually Fourier-transforms in the spatial
directions and considers correlators as a function of Euclidean time:

CXY (t; ~p) =
∑

~x

〈OX (t, ~x)O
†
Y (0)〉e−i~p·~x. (18.8)

(Here and throughout this section all quantities are expressed in
dimensionless lattice units, so that, for example, ~p = a~pphys.) By
inserting a complete set of states having spatial momentum ~p, the
two-point function can be written as

CXY (t; ~p) =

∞
∑

i=0

1

2Ei(~p)
〈0|OX(0)|Hi(~p)〉〈Hi(~p)|O†

Y (0)|0〉e−Ei(~p)t,

(18.9)
where the energy of the i-th state Ei(~p) appears as an eigenvalue of
the time evolution operator e−Ht in the Euclidean time direction.
The factor of 1/[2Ei(~p)] is due to the relativistic normalization used
for the states. For large enough t, the dominant contribution is that
of the lowest energy state |H0(~p)〉:

CXY (t)
t→∞−→ 1

2E0(~p)
〈0|OX (0)|H0(~p)〉〈H0(~p)|O†

Y (0)|0〉e−E0(~p)t .

(18.10)

One can thus obtain the energy E0(~p), which equals the hadron
mass mH when ~p = 0, and the product of matrix elements

〈0|OX (0)|Hi(~p)〉〈Hi(~p)|O†
Y (0)|0〉.

This method can be used to determine the masses of all the stable
mesons and baryons by making appropriate choices of operators. For
example, if one uses the axial current, OX = OY = Aµ = d̄γµγ5u, then
one can determine mπ+ from the rate of exponential fall-off, and in
addition the decay constant fπ from the coefficient of the exponential.
A complication arises for states with high spins (j ≥ 4 for bosons)
because the spatial rotation group on the lattice is a discrete subgroup
of the continuum group SO(3). This implies that lattice operators,
even when chosen to lie in irreducible representations of the lattice
rotation group, have overlap with states that have a number of values
of j in the continuum limit [59]. For example j = 0 operators can
also create mesons with j = 4. A method to overcome this problem
has recently been introduced [60,61].

The expression given above for the correlator CXY (t; ~p) shows how,
in principle, one can determine the energies of the excited hadron
states having the same quantum numbers as the operators OX,Y , by
fitting the correlation function to a sum of exponentials. In practice,
this usually requires using a large basis of operators and adopting
the variational approach such as that of Ref. 62. One can also use
an anisotropic lattice in which at, the lattice spacing in the time
direction, is smaller than its spatial counterpart as. This allows better
separation of the different exponentials. Using a combination of these
and other technical improvements extensive excited-state spectra have
recently been obtained [61,63,64].

18.2.3. Three-point functions :

Hadronic matrix elements needed to calculate semileptonic form
factors and neutral meson mixing amplitudes can be computed from
three-point correlation functions. We discuss here, as a representative
example, the D → K amplitude. As in the case of two-point
correlation functions one constructs operators OD and OK having
overlap, respectively, with the D and K mesons. We are interested in
calculating the matrix element 〈K|Vµ|D〉, with Vµ = c̄γµs the vector
current. To obtain this, we use the three-point correlator

CKVµD(tx, ty; ~p) =
∑

~x,~y

〈OK(tx, ~x)Vµ(0)O
†
D(ty , ~y)〉e−i~p·~x , (18.11)

and focus on the limit tx → ∞, ty → −∞. In this example we
set the D-meson at rest while the kaon carries three-momentum ~p.
Momentum conservation then implies that the weak operator Vµ

inserts three-momentum −~p. Inserting a pair of complete sets of states
between each pair of operators, we find

CKVµD(tx, ty; ~p) =
∑

i,j

1

2mDi
2EKj

(~p)
e
−mDi

tx−EKj
(~p)|ty | ×

× 〈0|OK(tx, ~x)|Ki(~p)〉〈Ki(~p)|Vµ(0)|Dj(~0)〉〈Dj(~0)|O†
D

(0)|0〉.
(18.12)

The matrix element 〈Ki(~p)|Vµ(0)|Dj(~0)〉 can then be extracted, since
all other quantities in this expression can be obtained from two-point
correlation functions. Typically one is interested in the weak matrix
elements of ground states, such as the lightest pseudoscalar mesons. In
the limit of large separation between the three operators in Euclidean
time, the three-point correlation function yields the weak matrix
element of the transition between ground states.

18.2.4. Scattering amplitudes and resonances :

The methods described thus far yield matrix elements involving
single, stable particles (where by stable here we mean absolutely
stable to strong interaction decays). Most of the particles listed in
the Review of Particle Properties are, however, unstable—they are
resonances decaying into final states consisting of multiple strongly
interacting particles. LQCD simulations cannot directly calculate
resonance properties, but methods have been developed to do so
indirectly for resonances coupled to two-particle final states in the
elastic regime [65].

The difficulty faced by LQCD calculations is that, to obtain
resonance properties, or, more generally, scattering phase-shifts, one
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must calculate multiparticle scattering amplitudes in momentum space
and put the external particles on their mass-shells. This requires
analytically continuing from Euclidean to Minkowski momenta.
Although it is straightforward in LQCD to generalize the methods
described above to calculate four- and higher-point correlation
functions, one necessarily obtains them at a discrete and finite set of
Euclidean momenta. Analytic continuation to p2

E = −m2 is then an
ill-posed and numerically unstable problem. The same problem arises
for single-particle states, but can be largely overcome by picking out
the exponential fall-off of the Euclidean correlator, as described above.
With a multi-particle state, however, there is no corresponding trick,
except for two particles at threshold [66].

What LQCD can calculate are the energies of the eigenstates
of the QCD Hamiltonian in a finite box. The energies of states
containing two stable particles, e.g. two pions, clearly depend on
the interactions between the particles. It is possible to invert this
dependence and, with plausible assumptions, determine the scattering
phase-shifts at a discrete set of momenta from a calculation of the
two-particle energy levels for a variety of spatial volumes [65]. This
is a challenging calculation, but it has recently been carried through
in several channels with quark masses approaching physical values.
Channels studied include ππ (for I = 2, 1 and 0), Kπ, KD and DD∗.
For recent reviews see Ref. 67. Extensions to nucleon interactions are
also being actively studied [68]. The generalization of the formalism
to the case of three particles is under active consideration [69].

It is also possible to extend the methodology to calculate electroweak
decay amplitudes to two particles below the inelastic threshold, e.g.
Γ(K → ππ) [70]. Results for both the ∆I = 3/2 and 1/2 amplitudes
with physical quark masses have been obtained [71], the former
now including a controlled continuum limit [72]. Partial extensions
of the formalism above the elastic threshold have been worked out,
in particular for the case of multiple two-particle channels [73]. An
extension to decays with many multiparticle channels, e.g. hadronic
B decays, has, however, yet to be formulated.

18.2.5. Recent advances : In some physics applications, one is

interested in the two-point correlation function 〈OX (x)O†
Y (0)〉 for

all values of the separation x, not just its asymptotic form for
large separations (which is used to determine the hadron spectrum
as sketched above). A topical example is the hadronic vacuum
polarization function Πµν(x) = 〈Vµ(x)Vν (0)〉 and its Fourier transform
Πµν(q2). Since the lattice is in Euclidean space-time, only space-like
momenta, q2 = −Q2 < 0, are accessible. Nevertheless, this quantity is
of significant interest. It is related by a dispersion relation to the cross
section for e+ + e− → hadrons, and is needed for a first-principles
calculation of the “hadronic vacuum polarization” contribution to the
muon anomalous magnetic moment aµ. This is the contribution with
the largest theoretical uncertainty at present. There are a number of
lattice calculations of this contribution (see, e.g., [74–77] following the
pioneering work of Ref. 78).

Exploratory calculations of the light-by-light scattering contribution
to aµ are also underway. These involve the evaluation of a four-point
correlation function (see, e.g., Ref. 79). Another process under
consideration is the long-distance contribution to the neutral kaon
mass splitting, ∆MK . This also requires the evaluation of a four-point
function, constructed from the two-point functions described above by
the insertion of two electroweak Hamiltonians [80].

18.2.6. Status of LQCD simulations :

Until the 1990s, most large-scale lattice simulations were limited to
the “quenched” approximation, wherein the fermion determinant is
omitted from the path integral. While much of the basic methodology
was developed in this era, the results obtained had uncontrolled
systematic errors and were not suitable for use in placing precision
constraints on the Standard Model. During the 1990s, more extensive
simulations including the fermion determinant (also known as
simulations with “dynamical” fermions) were begun, but with
unphysically heavy quark masses (mℓ ∼ 50 − 100 MeV), such that
the extrapolation to the physical light quark masses was a source
of large systematic errors [81]. During the 2000s, advances in both
algorithms and computers allowed simulations to reach much smaller

quark masses (mℓ ∼ 10 − 20 MeV) such that LQCD calculations
of selected quantities with all sources of error controlled and small
became available. Their results played an important role in constraints
on the CKM matrix and other phenomenological analyses. In the last
few years, simulations directly at the physical isospin-symmetric light
quark masses have become standard, removing the need for a chiral
extrapolation and thus significantly reducing the overall error. The
present frontier, as noted above, is the inclusion of isospin breaking.
This will be needed to push the accuracy of calculations below the
percent level.

On a more qualitative level, analytic and numerical results from
LQCD have demonstrated that QCD confines color and spontaneously
breaks chiral symmetry. Confinement can be seen as a linearly rising
potential between heavy quark and anti-quark in the absence of
quark loops. Analytically, this can be shown in the strong coupling
limit glat → ∞ [1]. At weaker couplings there are precise numerical
calculations of the potential that clearly show that this behavior
persists in the continuum limit [82,83,84].

Chiral symmetry breaking was also demonstrated in the strong
coupling limit on the lattice [16,85], and there have been a number of
numerical studies showing that this holds also in the continuum limit.
The accumulation of low-lying modes of the Dirac operator, which is
the analog of Cooper pair condensation in superconductors, has been
observed, yielding a determination of the chiral condensate [86–90].
Many relations among physical quantities that can be derived under
the assumption of broken chiral symmetry have been confirmed by a
number of lattice groups [41].

18.3. Physics applications

In this section we describe the main applications of LQCD that are
both computationally mature and relevant for the determination of
particle properties.

A general feature to keep in mind is that, since there are
many different choices for lattice actions, all of which lead to the
same continuum theory, a crucial test is that results for any given
quantity are consistent. In many cases, different lattice calculations
are completely independent and often have very different systematic
errors. Thus final agreement, if found, is a highly non-trivial check,
just as it is for different experimental measurements.

The number, variety and precision of the calculations has progressed
to the point that an international “Flavour Lattice Averaging Group”
(FLAG) has been formed. The main aims of FLAG include collecting
all lattice results of relevance for a variety of phenomenologically
interesting quantities and providing averages of those results which
pass appropriate quality criteria. The averages attempt to account for
possible correlations between results (which can arise, for example,
if they use common gauge configurations). The quantities considered
are those we discuss in this section, with the exception of the hadron
spectrum. The most recent FLAG review is from 2013 [41]( with an
update due in 2015-16). The interested reader can consult the FLAG
review for very extensive discussions of the details of the calculations
and of the sources of systematic errors.

We stress that the results we quote below are those obtained using
the physical complement of light quarks (i.e. Nf = 2 + 1 or 2 + 1 + 1
simulations).

18.3.1. Spectrum :

The most basic prediction of LQCD is of the hadron spectrum.
Once the input parameters are fixed as described in Sec. 18.1.5, the
masses or resonance parameters of all other states can be predicted.
This includes hadrons composed of light (u, d and s) quarks,
as well as heavy-light and heavy-heavy hadrons. It also includes
quark-model exotics (e.g. JPC = 1−+ mesons) and glueballs. Thus,
in principle, LQCD calculations should be able to reproduce many of
the experimental results compiled in the Review of Particle Properties.
Doing so would test both that the error budgets of LQCD calculations
are accurate and that QCD indeed describes the strong interactions in
the low-energy domain. The importance of the latter test can hardly
be overstated.
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What is the status of this fundamental test? As discussed in Sec.
1.2, LQCD calculations are most straightforward for stable, low-lying
hadrons. Calculations of the properties of resonances which can decay
into only two particles are more challenging, though substantial
progress has been made. First theoretical work on decays to more
than two particles has begun, but the methodology is not yet practical.
It is also more technically challenging to calculate masses of flavor
singlet states (which can annihilate into purely gluonic intermediate
states) than those of flavor non-singlets, although again algorithmic
and computational advances have begun to make such calculations
accessible, although not yet for physical quark masses. The present
status for light hadrons is that fully controlled results are available
for the masses of the octet light baryons, while results with less than
complete control are available for the decuplet baryon resonances,
the vector meson resonances and the η and η′. In addition, it has
been possible to calculate the isospin splitting in light mesons and
baryons (due to the up-down mass difference and the incorporation of
QED) [40]. There are also extensive results for heavy-light (D and B
systems) and heavy-heavy (J/ψ and Υ systems). All present results,
which are discussed in the “Quark Model” review, are consistent with
experimental values, and several predictions have been made. For a
recent extensive review of lattice results see also Ref. 91.

18.3.2. Decay constants and bag parameters :

The pseudoscalar decay constants can be determined from two-point
correlation functions involving the axial-vector current, as discussed
in Sec. 18.2.2. The decay constant fP of a meson P is extracted
from the weak matrix element involving the axial-vector current using
the relation 〈0|Aµ(x)|P (~p)〉 = fP pµ exp(−ip · x), where pµ is the
momentum of P and Aµ(x) is the axial-vector current. Since they are
among the simplest quantities to calculate, decay constants provide
good benchmarks for lattice methods, in addition to being important
inputs for flavor physics phenomenology in their own right. Results
from many lattice groups for the pion and kaon decay constants now
have errors at the percent level or better. The decay constants in the
charm and bottom sectors, fD, fDs , fB, and fBs , have also been
calculated to high precision. Lattice results for all of these decay
constants are discussed in detail in the review “Leptonic Decays of
Charged Pseudoscalar Mesons.”

Another important lattice quantity is the kaon bag parameter BK ,
which is needed to turn the precise measurement of CP-violation in
kaon mixing into a constraint on the Standard Model. It is defined by

8

3
m2

Kf2
KBK(µ) = 〈K0|Q∆S=2(µ)|K0〉, (18.13)

where mK is the kaon mass, fK is the kaon decay constant,
Q∆S=2 = sγµ(1−γ5)dsγµ(1−γ5)d is the four-quark operator of
the effective electroweak Hamiltonian and µ is the renormalization
scale. The short distance contribution to the electroweak Hamiltonian
can be calculated perturbatively, but the hadronic matrix element
parameterized by BK must be computed using non-perturbative
methods. In order to be of use to phenomenology, the renormalization
factor of the four-quark operator must be matched to a continuum
renormalization scheme, e.g. to MS, as described in Sec. 18.1.6.4.
Determinations with percent-level precision using different fermion
actions and Nf = 2 + 1 light sea quarks are now available using
DWF [92], staggered fermions [93], DWF valence on staggered sea
quarks [94], and Wilson fermions [12]. The results are all consistent.
Based on results available in 2013, FLAG quoted an average of
B̂K = 0.766(10) [41]. The updates of Refs. 92 and 93 are consistent
with this result.

The bag parameters for B and Bs meson mixing are defined
analogously to that for kaon mixing. The B and Bs mesons contain a
valence b-quark so that calculations of these quantities must use one
of the methods for heavy quarks described above. Calculations with
Nf = 2 + 1 light fermions have been done using NRQCD [95], the
Fermilab formalism [96], and static heavy quarks [97]. All results
are consistent. The FLAG averages from 2013 for the quantities
relevant for Bs and B mixing are fBs

√

BBs = 266(18) MeV and
fB

√
BB = 216(15) MeV, with their ratio (which is somewhat better

determined) being ξ = 1.268(63) [41]. Note that the errors for

quantities involving b quarks are larger than those for quantities
involving only light quarks.

The results for mixing matrix elements are used in the reviews
“The CKM Quark-Mixing Matrix,” and “B0 − B̄0 Mixing.”

18.3.3. Form factors (K → πℓν, D → Kℓν, B → πℓν,

B → D
(∗)

ℓν) :

Semileptonic decay rates can be used to extract CKM matrix
elements once the semileptonic form factors are known from lattice
calculations. For example, the matrix element of a pseudoscalar meson
P undergoing semileptonic decay to another pseudoscalar meson D is
mediated by the vector current, and can be written in terms of form
factors as

〈D(pD)|Vµ|P (pP )〉 = f+(q2)(pD + pP − ∆)µ + f0(q
2)∆µ , (18.14)

where q = pD −pP , ∆µ = (m2
D −m2

P )qµ/q2 and Vµ is the quark vector
current. The shape of the form factor is typically well determined by
experiment, and the value of f+(q2) at some reference value of q2 is
needed from the lattice in order to extract CKM matrix elements.
Typically f+(q2) dominates the decay rate, since the contribution
from f0(q

2) is suppressed when the final state lepton is light.

The form factor f+(0) for K → πℓν decays is highly constrained
by the Ademollo-Gatto theorem [98] and chiral symmetry. Old
estimates using chiral perturbation theory combined with quark
models quote sub-percent precision [99], though they suffer from
some model dependence. Utilizing the constraint from the vector
current conservation that f+(0) is normalized to unity in the limit
of degenerate up and strange quark masses, the lattice calculation
can be made very precise and has now matched the precision of the
phenomenological estimates [100–106]. The FLAG average from its
2013 edition is f+(0) = 0.967(4) [41].

Charm meson semileptonic decays have been calculated by different
groups using methods similar to those used for charm decay constants,
and results are steadily improving in precision [107,108]. For
semileptonic decays involving a bottom quark, one uses HQET or
NRQCD to control the discretization errors of the bottom quark. The
form factors for the semileptonic decay B → πℓν have been calculated
in unquenched lattice QCD by a number of groups [109–111]. These
B semileptonic form factors are difficult to calculate at low q2,
i.e. when the mass of the B-meson must be balanced by a large
pion momentum, in order to transfer a small momentum to the
lepton pair. The low q2 region has large discretization errors and
very large statistical errors, while the high q2 region is much more
accessible to the lattice. For experiment, the opposite is true. To
combine lattice and experimental results it has proved helpful to
use the z-parameter expansion [112]. This provides a theoretically
constrained parameterization of the entire q2 range, and allows one to
obtain |Vub| without model dependence [113,114].

The semileptonic decays B → Dℓν and B → D∗ℓν can be used
to extract |Vcb| once the corresponding form factors are known. At
present only one unquenched calculation exists for the B → D∗ℓν
form factor, where the Fermilab formulation of the heavy quark was
adopted [115,116]. This calculation is done at zero-recoil because
that is where the lattice systematic errors are smallest. Calculations
at non-zero recoil in unquenched lattice QCD have recently been done
for the first time for the form factors needed to extract |Vcb| from
B → Dℓν decays [117].

The results discussed in this section are used in the reviews “The
CKM Quark-Mixing Matrix,” “Vud, Vus, the Cabibbo Angle and CKM
Unitarity,” and “Vcb and Vub CKM Matrix Elements.”

18.3.4. Strong coupling constant :

As explained in Sec. 18.1.5.1, for a given lattice action, the choice
of bare lattice coupling constant, glat, determines the lattice spacing
a. If one then calculates a as described in Sec. 18.1.5.1, one knows the
strong coupling constant in the bare lattice scheme at the scale 1/a,
αlat = g2

lat/(4π). This is not, however, useful for comparing to results
for αs obtained from other inputs, such as deep inelastic scattering or
jet shape variables. This is because the latter results give αs in the MS
scheme, which is commonly used in such analyses, and the conversion
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factor between these two schemes is known to converge extremely
poorly in perturbation theory. Instead one must use a method which
directly determines αs on the lattice in a scheme closer to MS.

Several such methods have been used, all following a similar strategy.
One calculates a short-distance quantity K both perturbatively (KPT)
and non-perturbatively (KNP) on the lattice, and requires equality:
KNP = KPT =

∑n
i=0 ciα

i
s. Solving this equation one obtains αs at a

scale related to the quantity being used. Often, αs thus obtained is
not defined in the conventional MS scheme, and one has to convert
among the different schemes using perturbation theory. Unlike for the
bare lattice scheme, the required conversion factors are reasonably
convergent. As a final step, one uses the renormalization group to run
the resulting coupling to a canonical scale (such as MZ).

In the work of the HPQCD collaboration [118], the short-distance
quantities are Wilson loops of several sizes and their ratios. These
quantities are perturbatively calculated to O(α3

s) using the V -scheme
defined through the heavy quark potential. The coefficients of even
higher orders are estimated using the data at various values of a.

Another choice of short-distance quantities is to use current-current
correlators. Appropriate moments of these correlators are ultraviolet
finite, and by matching lattice results to the continuum perturbative
predictions, one can directly extract the MS coupling. The JLQCD
collaboration [119] uses this approach with light overlap fermions,
while the HPQCD collaboration uses charm-quark correlators and
HISQ fermions [120–122]. Yet another choice of short-distance
quantity is the static-quark potential, where the lattice result for
the potential is compared to perturbative calculations; this method
was used to compute αs within 2+1 flavor QCD [123]. The ETM
Collaboration obtains αs by a comparison of lattice data for the
ghost-gluon coupling with that of perturbation theory [124], providing
the first determination of αs with 2+1+1 flavors of dynamical quarks.

With a definition of αs given using the Schrödinger functional,
one can non-perturbatively control the evolution of αs to high-energy
scales, such as 100 GeV, where the perturbative expansion converges
very well. This method developed by the ALPHA collaboration [55]
has been applied to 2+1-flavor QCD in Refs. 125,126.

The various lattice methods for calculating αs have significantly
different sources of systematic error. Thus the good agreement
between the approaches (which can be seen in the “Quantum
Chromodynamics” review) provides a strong check on the final result.

18.3.5. Quark masses :

Once the quark mass parameters are tuned in the lattice action,
the remaining task is to convert them to those of the conventional
definition. Since the quarks do not appear as asymptotic states due to
confinement, the pole mass of the quark propagator is not a physical
quantity. Instead, one defines the quark mass after subtracting the
ultra-violet divergences in some particular way. The conventional
choice is again the MS scheme at a canonical scale such as 2 or 3 GeV.
Ratios such as mc/ms and mb/mc are also useful as they are free from
multiplicative renormalization (in a mass-independent scheme).

As discussed in Sec. 18.1.6.4, one must convert the lattice bare
quark mass to that in the MS scheme. Older calculations did so
directly using perturbation theory; most recent calculations use an
intermediate NPR method (e.g. RI/MOM or RI/SMOM) which is
then converted to the MS scheme using perturbation theory.

Alternatively, one can use a definition based on the Schrödinger
functional, which allows one to evolve the quark mass to a high scale
non-perturbatively [127]. In practice, one can reach scales as high
as ∼100 GeV, at which matching to the MS scheme can be reliably
calculated in perturbation theory.

Another approach available for heavy quarks is to match current-
current correlators at short distances calculated on the lattice
to those obtained in continuum perturbation theory in the MS
scheme [120,121]. This has allowed an accurate determination of mc

and is also beginning to be used for mb [121,122].

The ratio method for heavy quarks (discussed earlier) can also be
used to determine mb [128].

Results are summarized in the review of “Quark Masses”.

18.3.6. Other applications :

In this review we have concentrated on applications of LQCD that
are relevant to the quantities discussed in the Review of Particle
Properties. We have not discussed at all several other applications
which are being actively pursued by simulations. Here we list the
major such applications. The reader can consult the texts [2–4]
for further details, as well as the proceedings of recent lattice
conferences [129].

LQCD can be used, in principle, to simulate QCD at non-zero
temperature and density, and in particular to study how confinement
and chiral-symmetry breaking are lost as T and µ (the chemical
potential) are increased. This is of relevance to heavy-ion collisions,
the early Universe and neutron-star structure. In practice, finite
temperature simulations are computationally tractable and relatively
mature, while simulations at finite µ suffer from a “sign problem” and
are at a rudimentary stage.

Another topic under active investigation is nucleon structure and
inter-nucleon interactions. The simplest nucleon matrix elements are
calculable with reasonable precision. Of particular interest are those
of the axial current (leading to gA) and of the scalar density (with
〈N |s̄s|N〉 needed for dark matter searches).

Finally, we note that there is much recent interest in studying QCD-
like theories with more fermions, possibly in other representations
of the gauge group. The main interest is to find nearly conformal
theories which might be candidates for “walking technicolor” models.

18.4. Outlook

While LQCD calculations have made major strides in the last
decade, and are now playing an important role in constraining the
Standard Model, there are many calculations that could be done in
principle but are not yet mature due to limitations in computational
resources. As we move to exascale resources (e.g. 1018 floating point
operations per second), the list of mature calculations will grow.
Examples that we expect to mature in the next few years are
results for excited hadrons, including quark-model exotics, at close
to physical light-quark masses; results for moments of structure
functions; K → ππ amplitudes (allowing a prediction of ǫ′/ǫ from
the Standard Model); K̄ ↔ K and B̄ ↔ B mixing amplitudes from
operators arising in models of new physics (allowing one to constrain
these models in a manner complementary to the direct searches at the
LHC); hadronic vacuum polarization contributions to muon g − 2, the
running of αEM and αs; π → γγ and related amplitudes; long-distance
contribution to K ↔ K mixing and the light-by-light contribution to
muon g − 2. There will also be steady improvement in the precision
attained for the mature quantities discussed above. As already noted,
this will ultimately require simulations with mu 6= md and including
electromagnetic effects.
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19. STRUCTURE FUNCTIONS

Updated September 2015 by B. Foster (University of Hamburg/DESY),
A.D. Martin (University of Durham), R.S. Thorne (University College
London) and M.G. Vincter (Carleton University).

19.1. Deep inelastic scattering

High-energy lepton-nucleon scattering (deep inelastic scattering)
plays a key role in determining the partonic structure of the proton.
The process ℓN → ℓ′X is illustrated in Fig. 19.1. The filled circle in
this figure represents the internal structure of the proton which can be
expressed in terms of structure functions.

k

k

q

P, M W

Figure 19.1: Kinematic quantities for the description of
deep inelastic scattering. The quantities k and k′ are the
four-momenta of the incoming and outgoing leptons, P is the
four-momentum of a nucleon with mass M , and W is the mass
of the recoiling system X . The exchanged particle is a γ, W±,
or Z; it transfers four-momentum q = k − k′ to the nucleon.

Invariant quantities:

ν =
q · P
M

= E − E′ is the lepton’s energy loss in the nucleon rest
frame (in earlier literature sometimes ν = q · P ). Here,
E and E′ are the initial and final lepton energies in the
nucleon rest frame.

Q2 = −q2 = 2(EE′ −−→
k · −→k ′)−m2

ℓ −m2
ℓ′

where mℓ(mℓ′) is the initial

(final) lepton mass. If EE′ sin2(θ/2) ≫ m2
ℓ , m2

ℓ′
, then

≈ 4EE′ sin2(θ/2), where θ is the lepton’s scattering angle with
respect to the lepton beam direction.

x =
Q2

2Mν
where, in the parton model, x is the fraction of the nucleon’s

momentum carried by the struck quark.

y =
q · P
k · P =

ν

E
is the fraction of the lepton’s energy lost in the nucleon

rest frame.

W 2 = (P + q)2 = M2 + 2Mν − Q2 is the mass squared of the system
X recoiling against the scattered lepton.

s = (k + P )2 =
Q2

xy
+ M2 + m2

ℓ is the center-of-mass energy squared

of the lepton-nucleon system.

The process in Fig. 19.1 is called deep (Q2 ≫ M2) inelastic
(W 2 ≫ M2) scattering (DIS). In what follows, the masses of the
initial and scattered leptons, mℓ and mℓ′ , are neglected.

19.1.1. DIS cross sections :

The double-differential cross section for deep inelastic scattering
can be expressed in terms of kinematic variables in several ways.

d2σ

dx dy
= x (s − M2)

d2σ

dx dQ2
=

2π Mν

E′

d2σ

dΩNrest dE′
. (19.1)

In lowest-order perturbation theory, the cross section for the scattering
of polarized leptons on polarized nucleons can be expressed in terms
of the products of leptonic and hadronic tensors associated with the
coupling of the exchanged bosons at the upper and lower vertices
in Fig. 19.1 (see Refs. 1–4)

d2σ

dxdy
=

2πyα2

Q4

∑

j

ηj L
µν
j W j

µν . (19.2)

For neutral-current processes, the summation is over j = γ, Z and
γZ representing photon and Z exchange and the interference between
them, whereas for charged-current interactions there is only W
exchange, j = W . (For transverse nucleon polarization, there is a
dependence on the azimuthal angle of the scattered lepton.) The
lepton tensor Lµν is associated with the coupling of the exchange
boson to the leptons. For incoming leptons of charge e = ±1 and
helicity λ = ±1,

Lγ
µν = 2

(

kµk′ν + k′µkν − (k · k′ − m2
ℓ )gµν − iλεµναβkαk′β

)

,

LγZ
µν =(ge

V + eλge
A) Lγ

µν , LZ
µν = (ge

V + eλge
A)2 Lγ

µν ,

LW
µν =(1 + eλ)2 Lγ

µν , (19.3)

where ge
V = − 1

2
+ 2 sin2 θW , ge

A = − 1

2
.

Although here the helicity formalism is adopted, an alternative
approach is to express the tensors in Eq. (19.3) in terms of the
polarization of the lepton.

The factors ηj in Eq. (19.2) denote the ratios of the corresponding
propagators and couplings to the photon propagator and coupling
squared

ηγ = 1 ; ηγZ =

(

GF M2
Z

2
√

2πα

) (

Q2

Q2 + M2
Z

)

;

ηZ = η2
γZ ; ηW = 1

2

(

GF M2
W

4πα

Q2

Q2 + M2
W

)2

. (19.4)

The hadronic tensor, which describes the interaction of the appropriate
electroweak currents with the target nucleon, is given by

Wµν =
1

4π

∫

d4z eiq·z
〈

P, S
∣

∣

∣

[

J†
µ(z), Jν(0)

]∣

∣

∣
P, S

〉

, (19.5)

where S denotes the nucleon-spin 4-vector, with S2 = −M2 and
S · P = 0.

19.2. Structure functions of the proton

The structure functions are defined in terms of the hadronic tensor
(see Refs. 1–3)

Wµν =

(

−gµν +
qµqν

q2

)

F1(x, Q2) +
P̂µP̂ν

P · q F2(x, Q2)

− iεµναβ
qαPβ

2P · q F3(x, Q2)

+ iεµναβ
qα

P · q

[

Sβg1(x, Q2) +

(

Sβ − S · q
P · q Pβ

)

g2(x, Q2)

]

+
1

P · q

[

1

2

(

P̂µŜν + ŜµP̂ν

)

− S · q
P · q P̂µP̂ν

]

g3(x, Q2)

+
S · q
P · q

[

P̂µP̂ν

P · q g4(x, Q2) +

(

−gµν +
qµqν

q2

)

g5(x, Q2)

]

(19.6)

where

P̂µ = Pµ − P · q
q2

qµ, Ŝµ = Sµ − S · q
q2

qµ . (19.7)

In Ref. 2, the definition of Wµν with µ ↔ ν is adopted, which
changes the sign of the εµναβ terms in Eq. (19.6), although the
formulae given below are unchanged. Ref. 1 tabulates the relation
between the structure functions defined in Eq. (19.6) and other choices
available in the literature.

The cross sections for neutral- and charged-current deep inelastic
scattering on unpolarized nucleons can be written in terms of the
structure functions in the generic form

d2σi

dxdy
=

4πα2

xyQ2
ηi

{(

1 − y − x2y2M2

Q2

)

F i
2

+ y2xF i
1 ∓

(

y − y2

2

)

xF i
3

}

, (19.8)
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where i = NC, CC corresponds to neutral-current (eN → eX) or
charged-current (eN → νX or νN → eX) processes, respectively.
For incoming neutrinos, LW

µν of Eq. (19.3) is still true, but with e, λ
corresponding to the outgoing charged lepton. In the last term of
Eq. (19.8), the − sign is taken for an incoming e+ or ν and the +
sign for an incoming e− or ν. The factor ηNC = 1 for unpolarized e±

beams, whereas∗

ηCC = (1 ± λ)2ηW (19.9)

with ± for ℓ±; and where λ is the helicity of the incoming lepton and
ηW is defined in Eq. (19.4); for incoming neutrinos ηCC = 4ηW . The
CC structure functions, which derive exclusively from W exchange,
are

FCC
1 = FW

1 , FCC
2 = FW

2 , xFCC
3 = xFW

3 . (19.10)

The NC structure functions F
γ
2

, F
γZ
2

, FZ
2 are, for e±N → e±X , given

by Ref. 5,

FNC
2 = F γ

2
− (ge

V ± λge
A)ηγZF γZ

2
+ (ge 2

V + ge 2
A ± 2λge

V ge
A) ηZFZ

2

(19.11)
and similarly for FNC

1 , whereas

xFNC
3 = −(ge

A ± λge
V )ηγZxF

γZ
3

+ [2ge
V ge

A ± λ(ge 2
V + ge 2

A )]ηZxFZ
3 .

(19.12)

The polarized cross-section difference

∆σ = σ(λn = −1, λℓ) − σ(λn = 1, λℓ) , (19.13)

where λℓ, λn are the helicities (±1) of the incoming lepton and
nucleon, respectively, may be expressed in terms of the five structure
functions g1,...5(x, Q2) of Eq. (19.6). Thus,

d2∆σi

dxdy
=

8πα2

xyQ2
ηi

{

−λℓy

(

2 − y − 2x2y2 M2

Q2

)

xgi
1 + λℓ4x3y2 M2

Q2
gi
2

+ 2x2y
M2

Q2

(

1 − y − x2y2 M2

Q2

)

gi
3

−
(

1 + 2x2y
M2

Q2

) [(

1 − y − x2y2 M2

Q2

)

gi
4 + xy2gi

5

]}

(19.14)

with i = NC or CC as before. The Eq. (19.13) corresponds to
the difference of antiparallel minus parallel spins of the incoming
particles for e− or ν initiated reactions, but the difference of parallel
minus antiparallel for e+ or ν initiated processes. For longitudinal
nucleon polarization, the contributions of g2 and g3 are suppressed
by powers of M2/Q2. These structure functions give an unsuppressed
contribution to the cross section for transverse polarization [1], but in
this case the cross-section difference vanishes as M/Q → 0.

Because the same tensor structure occurs in the spin-dependent
and spin-independent parts of the hadronic tensor of Eq. (19.6)
in the M2/Q2 → 0 limit, the differential cross-section difference
of Eq. (19.14) may be obtained from the differential cross section
Eq. (19.8) by replacing

F1 → −g5 , F2 → −g4 , F3 → 2g1 , (19.15)

and multiplying by two, since the total cross section is the average over
the initial-state polarizations. In this limit, Eq. (19.8) and Eq. (19.14)
may be written in the form

d2σi

dxdy
=

2πα2

xyQ2
ηi

[

Y+F i
2 ∓ Y−xF i

3 − y2F i
L

]

,

d2∆σi

dxdy
=

4πα2

xyQ2
ηi

[

−Y+gi
4 ∓ Y−2xgi

1 + y2gi
L

]

, (19.16)

with i = NC or CC, where Y± = 1 ± (1 − y)2 and

F i
L = F i

2 − 2xF i
1 , gi

L = gi
4 − 2xgi

5 . (19.17)

In the naive quark-parton model, the analogy with the Callan-Gross
relations [6] F i

L = 0, are the Dicus relations [7] gi
L = 0. Therefore,

there are only two independent polarized structure functions: g1

(parity conserving) and g5 (parity violating), in analogy with the
unpolarized structure functions F1 and F3.

19.2.1. Structure functions in the quark-parton model :

In the quark-parton model [8,9], contributions to the structure
functions F i and gi can be expressed in terms of the quark distribution
functions q(x, Q2) of the proton, where q = u, u, d, d etc. The quantity
q(x, Q2)dx is the number of quarks (or antiquarks) of designated flavor
that carry a momentum fraction between x and x + dx of the proton’s
momentum in a frame in which the proton momentum is large.

For the neutral-current processes ep → eX ,

[

F γ
2

, F γZ
2

, FZ
2

]

= x
∑

q

[

e2
q , 2eqg

q
V , gq 2

V + gq 2

A

]

(q + q) ,

[

F
γ
3

, F
γZ
3

, FZ
3

]

=
∑

q

[

0, 2eqg
q
A, 2g

q
V g

q
A

]

(q − q) ,

[

gγ
1
, gγZ

1
, gZ

1

]

= 1

2

∑

q

[

e2
q , 2eqg

q
V , gq 2

V + gq 2

A

]

(∆q + ∆q) ,

[

gγ
5
, gγZ

5
, gZ

5

]

=
∑

q

[

0, eqg
q
A, gq

V gq
A

]

(∆q − ∆q) , (19.18)

where g
q
V = ± 1

2
− 2eq sin2 θW and g

q
A = ± 1

2
, with ± according to

whether q is a u− or d−type quark respectively. The quantity ∆q is
the difference q↑ −q↓ of the distributions with the quark spin parallel
and antiparallel to the proton spin.

For the charged-current processes e−p → νX and νp → e+X , the
structure functions are:

FW−

2 = 2x(u + d + s + c . . .) ,

FW−

3 = 2(u − d − s + c . . .) ,

gW−

1 = (∆u + ∆d + ∆s + ∆c . . .) ,

gW−

5 = (−∆u + ∆d + ∆s − ∆c . . .) , (19.19)

where only the active flavors have been kept and where CKM
mixing has been neglected. For e+p → νX and νp → e−X , the

structure functions FW+
, gW+

are obtained by the flavor interchanges

d ↔ u, s ↔ c in the expressions for FW−

, gW−

. The structure
functions for scattering on a neutron are obtained from those of
the proton by the interchange u ↔ d. For both the neutral- and
charged-current processes, the quark-parton model predicts 2xF i

1 = F i
2

and gi
4 = 2xgi

5.

Neglecting masses, the structure functions g2 and g3 contribute
only to scattering from transversely polarized nucleons (for which
S · q = 0), and have no simple interpretation in terms of the
quark-parton model. They arise from off-diagonal matrix elements

〈P, λ′|[J†
µ(z), Jν(0)]|P, λ〉, where the proton helicities satisfy λ′ 6= λ.

In fact, the leading-twist contributions to both g2 and g3 are both
twist-2 and twist-3, which contribute at the same order of Q2. The
Wandzura-Wilczek relation [10] expresses the twist-2 part of g2 in
terms of g1 as

gi
2(x) = −gi

1(x) +

∫ 1

x

dy

y
gi
1(y) . (19.20)

However, the twist-3 component of g2 is unknown. Similarly, there is
a relation expressing the twist-2 part of g3 in terms of g4. A complete
set of relations, including M2/Q2 effects, can be found in Ref. 11.

19.2.2. Structure functions and QCD :

One of the most striking predictions of the quark-parton model is
that the structure functions Fi, gi scale, i.e., Fi(x, Q2) → Fi(x) in the
Bjorken limit that Q2 and ν → ∞ with x fixed [12]. This property
is related to the assumption that the transverse momentum of the
partons in the infinite-momentum frame of the proton is small. In
QCD, however, the radiation of hard gluons from the quarks violates
this assumption, leading to logarithmic scaling violations, which are
particularly large at small x, see Fig. 19.2. The radiation of gluons
produces the evolution of the structure functions. As Q2 increases,
more and more gluons are radiated, which in turn split into qq pairs.
This process leads both to the softening of the initial quark momentum
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distributions and to the growth of the gluon density and the qq sea as
x decreases. For spin-dependent structure functions, data exists for a
more restricted range of Q2 and has lower precision, so that the scaling
violations are not seen so clearly. However, spin-dependent parton
distributions have been extracted by comparison to data; Fig. 19.3
shows several versions (discussed in more detail in Sec. 19.3 below) at
a scale of 2.5 GeV2 compared to the data from semi-inclusive DIS.

x

F
2(

x,
Q

2 )

H1+ZEUS
BCDMS (0.98)
NMC (1.00)
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E665 (1.00)
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Figure 19.2: The proton structure function F p
2

given at two

Q2 values (6.5 GeV2 and 90 GeV2), which exhibit scaling at
the ‘pivot’ point x ∼ 0.14. See the captions in Fig. 19.8 and
Fig. 19.10 for the references of the data. The various data sets
have been renormalized by the factors shown in brackets in the
key to the plot, which were globally determined in a previous
HERAPDF analysis [13]. The curves were obtained using the
PDFs from the HERAPDF analysis [14]. In practice, data for
the reduced cross section, F2(x, Q2) − (y2/Y+)FL(x, Q2), are
fitted, rather than F2 and FL separately.

In QCD, the above processes are described in terms of scale-
dependent parton distributions fa(x, µ2), where a = g or q and,
typically, µ is the scale of the probe Q. For Q2 ≫ M2, the structure
functions are of the form

Fi =
∑

a

Ca
i ⊗ fa, (19.21)

where ⊗ denotes the convolution integral

C ⊗ f =

∫ 1

x

dy

y
C(y) f

(

x

y

)

, (19.22)

and where the coefficient functions Ca
i are given as a power series

in αs. The parton distribution fa corresponds, at a given x, to the
density of parton a in the proton integrated over transverse momentum
kt up to µ. Its evolution in µ is described in QCD by a DGLAP
equation (see Refs. 24–27) which has the schematic form

∂fa

∂ lnµ2
∼ αs(µ

2)

2π

∑

b

(Pab ⊗ fb) , (19.23)

where the Pab, which describe the parton splitting b → a, are also
given as a power series in αs. Although perturbative QCD can predict,
via Eq. (19.23), the evolution of the parton distribution functions
from a particular scale, µ0, these DGLAP equations cannot predict
them a priori at any particular µ0. Thus they must be measured at a
starting point µ0 before the predictions of QCD can be compared to
the data at other scales, µ. In general, all observables involving a hard
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Figure 19.3: Distributions of x times the polarized par-
ton distributions ∆q(x) (where q = u, d, u, d, s) using the
NNPDF2014 [15], AAC2008 [16], DSSV2008 [17], and
LSS2010 [18] parameterizations at a scale µ2 = 2.5 GeV2,
showing the blue-shaded error corridor of the NNPDF2014 set.
The points represent data from semi-inclusive positron (HER-
MES [19,20]) and muon (SMC [21] and COMPASS [22,23]) deep
inelastic scattering given at Q2 = 2.5 GeV2. The SMC results
are extracted under the assumption that ∆u(x) = ∆d(x).

hadronic interaction (such as structure functions) can be expressed
as a convolution of calculable, process-dependent coefficient functions
and these universal parton distributions, e.g. Eq. (19.21).

It is often convenient to write the evolution equations in terms of
the gluon, non-singlet (qNS) and singlet (qS) quark distributions, such
that

qNS = qi − qi (or qi − qj), qS =
∑

i

(qi + qi) . (19.24)

The non-singlet distributions have non-zero values of flavor quantum
numbers, such as isospin and baryon number. The DGLAP evolution
equations then take the form

∂qNS

∂ lnµ2
=

αs(µ
2)

2π
Pqq ⊗ qNS ,

∂

∂ lnµ2

(

qS

g

)

=
αs(µ

2)

2π

(

Pqq 2nf Pqg

Pgq Pgg

)

⊗
(

qS

g

)

, (19.25)

where P are splitting functions that describe the probability of a
given parton splitting into two others, and nf is the number of
(active) quark flavors. The leading-order Altarelli-Parisi [26] splitting
functions are

Pqq = 4

3

[

1 + x2

(1 − x)

]

+

= 4

3

[

1 + x2

(1 − x)+

]

+ 2δ(1 − x) , (19.26)

Pqg = 1

2

[

x2 + (1 − x)2
]

, (19.27)

Pgq = 4

3

[

1 + (1 − x)2

x

]

, (19.28)
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Pgg = 6

[

1 − x

x
+ x(1 − x) +

x

(1 − x)+

]

+

[

11

2
−

nf

3

]

δ(1 − x), (19.29)

where the notation [F (x)]+ defines a distribution such that for any
sufficiently regular test function, f(x),

∫ 1

0

dxf(x)[F (x)]+ =

∫ 1

0

dx (f(x) − f(1))F (x) . (19.30)

In general, the splitting functions can be expressed as a power
series in αs. The series contains both terms proportional to lnµ2 and
to ln(1/x) and ln(1 − x). The leading-order DGLAP evolution sums
up the (αs lnµ2)n contributions, while at next-to-leading order (NLO)
the sum over the αs(αs lnµ2)n−1 terms is included [28,29]. The
NNLO contributions to the splitting functions and the DIS coefficient
functions are also all known [30–32].

In the kinematic region of very small x, one may also sum leading
terms in ln(1/x), independent of the value of lnµ2. At leading
order, LLx, this is done by the BFKL equation for the unintegrated
distributions (see Refs. [33,34]). The leading-order (αs ln(1/x))n

terms result in a power-like growth, x−ω with ω = (12αsln2)/π,
at asymptotic values of ln 1/x. The next-to-leading ln 1/x (NLLx)
contributions are also available [35,36]. They are so large (and
negative) that the results initially appeared to be perturbatively
unstable. Methods, based on a combination of collinear and small-x
resummations, have been developed which reorganize the perturbative
series into a more stable hierarchy [37–40]. There are some limited
indications that small-x resummations become necessary for sufficient
precision for x . 10−3 at low scales. There is not yet any very
convincing indication for a ‘non-linear’ regime, for Q2 & 2 GeV2,
in which the gluon density would be so high that gluon-gluon
recombination effects would become significant.

Table 19.1: The main processes relevant to global PDF
analyses, ordered in three groups: fixed-target experiments,
HERA and the pp̄ Tevatron / pp LHC. For each process we
give an indication of their dominant partonic subprocesses, the
primary partons which are probed and the approximate range of
x constrained by the data.

Process Subprocess Partons x range

ℓ± {p, n} → ℓ± X γ∗q → q q, q̄, g x & 0.01

ℓ± n/p → ℓ± X γ∗ d/u → d/u d/u x & 0.01

pp → µ+µ− X uū, dd̄ → γ∗ q̄ 0.015 . x . 0.35

pn/pp → µ+µ− X (ud̄)/(uū) → γ∗ d̄/ū 0.015 . x . 0.35

ν(ν̄)N → µ−(µ+)X W ∗q → q′ q, q̄ 0.01 . x . 0.5

ν N → µ−µ+ X W ∗s → c s 0.01 . x . 0.2

ν̄ N → µ+µ− X W ∗s̄ → c̄ s̄ 0.01 . x . 0.2

e± p → e± X γ∗q → q g, q, q̄ 10−4 . x . 0.1

e+ p → ν̄ X W+ {d, s} → {u, c} d, s x & 0.01

e±p → e± cc̄X, e± bb̄X γ∗c → c, γ∗g → cc̄ c, b, g 10−4 . x . 0.01

e±p → jet+X γ∗g → qq̄ g 0.01 . x . 0.1

pp̄, pp → jet+X gg, qg, qq → 2j g, q 0.00005 . x . 0.5

pp̄ → (W± → ℓ±ν)X ud → W+, ūd̄ → W− u, d, ū, d̄ x & 0.05

pp → (W± → ℓ±ν)X ud̄ → W+, dū → W− u, d, ū, d̄, g x & 0.001

pp̄(pp) → (Z → ℓ+ℓ−)X uu, dd, ..(uū, ..) → Z u, d, ..(g) x & 0.001

pp → W−c, W+c̄ gs → W−c s, s̄ x ∼ 0.01

pp → (γ∗ → ℓ+ℓ−)X uū, dd̄, .. → γ∗ q̄, g x & 10−5

pp → bb̄X, tt̄X gg → bb̄, tt̄ g x & 10−5, 10−2

pp → exclusive J/ψ, Υ γ∗(gg) → J/ψ, Υ g x & 10−5, 10−4

pp → γ X gq → γq, gq̄ → γq̄ g x & 0.005

The precision of the experimental data demands that at least NLO,
and preferably NNLO, DGLAP evolution be used in comparisons
between QCD theory and experiment. Beyond the leading order, it is
necessary to specify, and to use consistently, both a renormalization
and a factorization scheme. The renormalization scheme used almost
universally is the modified minimal subtraction (MS) scheme [41,42].
The most popular choices for the factorization scheme is also MS [43].
However, sometimes the DIS [44] scheme is adopted, in which there
are no higher-order corrections to the F2 structure function. The two
schemes differ in how the non-divergent pieces are assimilated in the
parton distribution functions.

The discussion above relates to the Q2 behavior of leading-twist
(twist-2) contributions to the structure functions. Higher-twist terms,
which involve their own non-perturbative input, exist. These die off
as powers of Q; specifically twist-n terms are damped by 1/Qn−2.
Provided a cut, say W 2 > 15 GeV2 is imposed, the higher-twist terms
appear to be numerically unimportant for Q2 above a few GeV2,
except for x close to 1 [45–47], though it is important to note that
they are likely to be larger in xF3(x, Q2) than in F2(x, Q2) (see
e.g. [48]) .

19.3. Determination of parton distributions

The parton distribution functions (PDFs) can be determined from
an analysis of data for deep inelastic lepton-nucleon scattering and
for related hard-scattering processes initiated by nucleons; see [49–53]
for reviews. Table 19.1 highlights some of the processes, where LHC
data are playing an increasing role [54], and their primary sensitivity
to PDFs. Fixed-target and collider experiments have complementary
kinematic reach (as is shown in Fig. 19.4), which enables the
determination of PDFs over a wide range in x and Q2. As more
precise LHC data for W±, Z, γ, jet, bb̄, tt̄ and J/ψ production
become available, tighter constraints on the PDFs are expected in a
wider kinematic range.

Recent determinations and releases of the unpolarized PDFs up to
NNLO have been made by six groups: MMHT [55], NNPDF [56],
CT(EQ) [57], HERAPDF [14], ABM [58] and JR [59]. JR
generate ‘dynamical’ PDFs from a valence-like input at a very low

Figure 19.4: Kinematic domains in x and Q2 probed by
fixed-target and collider experiments. Some of the final states
accessible at the LHC are indicated in the appropriate
regions, where y is the rapidity. The incoming partons have
x1,2 = (M/14 TeV)e±y with Q = M where M is the mass of the
state shown in blue in the figure. For example, exclusive J/ψ
and Υ production at high |y| at the LHC may probe the gluon
PDF down to x ∼ 10−5.
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starting scale, Q2
0 = 0.5 GeV2, whereas other groups start evolution

at Q2
0 = 1−4 GeV2. Most groups use input PDFs of the form

xf = xa(...)(1 − x)b with 14-28 free parameters in total. In these
cases the PDF uncertainties are made available using the “Hessian”
formulation. The free parameters are expanded around their best
fit values, and orthogonal eigenvector sets of PDFs depending on
linear combinations of the parameter variations are obtained. The
uncertainty is then the quadratic sum of the uncertainties arising
from each eigenvector. The NNPDF group combines a Monte Carlo
representation of the probability measure in the space of PDFs
with the use of neural networks. Fits are performed to a number of
“replica” data sets obtained by allowing individual data points to
fluctuate randomly by amounts determined by the size of the data
uncertainties. This results in a set of replicas of unbiased PDF sets.
In this case the best prediction is the average obtained using all PDF
replicas and the uncertainty is the standard deviation over all replicas.
It is now possible to convert the eigenvectors of Hessian-based PDFs
to Monte Carlo replicas [60] and vice versa [61]. PDFs are made
available in a common format at LHAPDF [62].

In these analyses the u, d and s quarks are taken to be massless,
but the treatment of the heavy c and b quark masses, mQ, differs,
and has a long history, which may be traced from Refs. [63–74]. The
MSTW, CT, NNPDF and HERAPDF analyses use different variants
of the General-Mass Variable-Flavour-Number Scheme (GM-VFNS).
This combines fixed-order contributions to the coefficient functions
(or partonic cross sections) calculated with the full mQ dependence,
with the all-order resummation of contributions via DGLAP evolution
in which the heavy quarks are treated as massless after starting
evolution at some transition point. Transition matrix elements are
computed, following [66], which provide the boundary conditions
between nf and nf + 1 PDFs. The ABM and JR analyses use a
FFNS where only the three light (massless) quarks enter the evolution,
while the heavy quarks enter the partonic cross sections with their
full mQ dependence. The GM-VFNS and FFNS approaches yield

different results: in particular αs(M
2
Z) and the large-x gluon PDF

at large Q2 are both significantly smaller in the FFNS. It has been
argued [46,47,73] that the difference is due to the slow convergence of
the lnn(Q2/m2

Q) terms in certain regions in a FFNS.

The most recent determinations of the groups fitting a variety
of data and using a GM-VFNS (MMHT, NNPDF and CT) have
converged, so that now a good agreement has been achieved between
the resulting PDFs. Indeed, the CT [57], MMHT [55], and
NNPDF [56] PDF sets have been combined [75] using the Monte Carlo
approach [60] mentioned above. The single combined set of PDFs is
discussed in detail in Ref. [75].

For illustration, we show in Fig. 19.5 the PDFs obtained in the
NNLO NNPDF analysis [56] at scales µ2 = 10 and 104 GeV2. The
values of αs found by MMHT [76] may be taken as representative of
those resulting from the GM-VFNS analyses

NLO : αs(M
2
Z) = 0.1201± 0.0015,

NNLO : αs(M
2
Z) = 0.1172± 0.0012,

where the error (at 68% C.L.) corresponds to the uncertainties
resulting from the data fitted (the uncertainty that might be
expected from the neglect of higher orders is at least as large),
see also [77]. The ABM analysis [58], which uses a FFNS, finds
αs(M

2
Z) = 0.1132± 0.0011 at NNLO.

Spin-dependent (or polarized) PDFs have been obtained through
NLO global analyses which include measurements of the g1 structure
function in inclusive polarized DIS, ‘flavour-tagged’ semi-inclusive
DIS data, open–charm production in DIS and results from polarized
pp scattering at RHIC. There are some very recent results on
DIS from JLAB [78] and CLAS [79]. NLO analyses are given in
Refs. [16–18] and [80,81]. Improved parton-to-hadron fragmentation
functions, needed to describe the semi-inclusive DIS data, can be
found in [82–84]. A recent determination [85], using the NNPDF
methodology, concentrates just on the inclusive polarized DIS
data, and finds the errors on the polarized gluon PDF have been
underestimated in the earlier analyses. An update to this [15], where

jet and W± data from pp collisions and open–charm DIS data have
been included via reweighting reduces the uncertainty a little and
suggests a positive polarized gluon PDF. The PDFs obtained in the
NLO NNPDF analysis [15] at scales of µ2 = 10 and 104 GeV2 are
shown in Fig. 19.5.
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Figure 19.5: The bands are x times the unpolarized (a,b) parton
distributions f(x) (where f = uv, dv, u, d, s ≃ s̄, c = c̄, b = b̄, g)
obtained in NNLO NNPDF3.0 global analysis [56] at scales
µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right), with
αs(M

2
Z) = 0.118. The analogous results obtained in the NNLO

MMHT analysis can be found in Fig. 1 of Ref [55]. The
corresponding polarized parton distributions are shown (c,d),
obtained in NLO with NNPDFpol1.1 [15].

Comprehensive sets of PDFs are available as program-callable
functions from the HepData website [86], which includes comparison
graphics of PDFs, and from the LHAPDF library [62], which can be
linked directly into a user’s programme to provide access to recent
PDFs in a standard format.

19.4. The hadronic structure of the photon

Besides the direct interactions of the photon, it is possible for it to
fluctuate into a hadronic state via the process γ → qq. While in this
state, the partonic content of the photon may be resolved, for example,
through the process e+e− → e+e−γ∗γ → e+e−X , where the virtual
photon emitted by the DIS lepton probes the hadronic structure of
the quasi-real photon emitted by the other lepton. The perturbative
LO contributions, γ → qq followed by γ∗q → q, are subject to QCD
corrections due to the coupling of quarks to gluons.

Often the equivalent-photon approximation is used to express the
differential cross section for deep inelastic electron–photon scattering
in terms of the structure functions of the transverse quasi-real photon
times a flux factor NT

γ (for these incoming quasi-real photons of
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transverse polarization)

d2σ

dxdQ2
= NT

γ
2πα2

xQ4

[(

1 + (1 − y)2
)

F
γ
2

(x, Q2) − y2F
γ
L(x, Q2)

]

,

where we have used F
γ
2

= 2xF
γ
T + F

γ
L , not to be confused with

F γ
2

of Sec. 19.2. Complete formulae are given, for example, in the
comprehensive review of Ref. 88.

The hadronic photon structure function, F
γ
2

, evolves with increasing

Q2 from the ‘hadron-like’ behavior, calculable via the vector-meson-
dominance model, to the dominating ‘point-like’ behaviour, calculable
in perturbative QCD. Due to the point-like coupling, the logarithmic
evolution of F γ

2
with Q2 has a positive slope for all values of x, see

Fig. 19.15. The ‘loss’ of quarks at large x due to gluon radiation
is over-compensated by the ‘creation’ of quarks via the point-like
γ → qq̄ coupling. The logarithmic evolution was first predicted in the
quark–parton model (γ∗γ → qq̄) [89,90], and then in QCD in the limit
of large Q2 [91]. The evolution is now known to NLO [92–94]. The
NLO data analyses to determine the parton densities of the photon
can be found in [95–97].

19.5. Diffractive DIS (DDIS)

Some 10% of DIS events are diffractive, γ∗p → X + p, in which
the slightly deflected proton and the cluster X of outgoing hadrons
are well-separated in rapidity. Besides x and Q2, two extra variables
are needed to describe a DDIS event: the fraction xIP of the proton’s
momentum transferred across the rapidity gap and t, the square of
the 4-momentum transfer of the proton. The DDIS data [98,99] are
usually analyzed using two levels of factorization. First, the diffractive
structure function FD

2 satisfies collinear factorization, and can be
expressed as the convolution [100]

FD
2 =

∑

a=q,g

Ca
2 ⊗ fD

a/p, (19.31)

with the same coefficient functions as in DIS (see Eq. (19.21)), and
where the diffractive parton distributions fD

a/p (a = q, g) satisfy

DGLAP evolution. Second, Regge factorization is assumed [101],

fD
a/p(xIP , t, z, µ2) = fIP/p(xIP , t) fa/IP (z, µ2), (19.32)

where fa/IP are the parton densities of the Pomeron, which itself

is treated like a hadron, and z ∈ [x/xIP , 1] is the fraction of the
Pomeron’s momentum carried by the parton entering the hard
subprocess. The Pomeron flux factor fIP/p(xIP , t) is taken from Regge
phenomenology. There are also secondary Reggeon contributions to
Eq. (19.32). A sample of the t-integrated diffractive parton densities,
obtained in this way, is shown in Fig. 19.6.

Although collinear factorization holds as µ2 → ∞, there are
non-negligible corrections for finite µ2 and small xIP . Besides the
resolved interactions of the Pomeron, the perturbative QCD Pomeron
may also interact directly with the hard subprocess, giving rise to an
inhomogeneous evolution equation for the diffractive parton densities
analogous to the photon case. The results of the MRW analysis [104],
which includes these contributions, are also shown in Fig. 19.6.
Unlike the inclusive case, the diffractive parton densities cannot be
directly used to calculate diffractive hadron-hadron cross sections,
since account must first be taken of “soft” rescattering effects.

19.6. Generalized parton distributions

The parton distributions of the proton of Sec. 19.3 are given by
the diagonal matrix elements 〈P, λ|Ô|P, λ〉, where P and λ are the
4-momentum and helicity of the proton, and Ô is a twist-2 quark or
gluon operator. However, there is new information in the so-called
generalised parton distributions (GPDs) defined in terms of the
off-diagonal matrix elements 〈P ′, λ′|Ô|P, λ〉; see [106–110] for reviews.
Unlike the diagonal PDFs, the GPDs cannot be regarded as parton
densities, but are to be interpreted as probability amplitudes.

The physical significance of GPDs is best seen using light-cone
coordinates, z± = (z0 ± z3)/

√
2, and in the light-cone gauge, A+ = 0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
z

x IP
 z

 f(
z)

Figure 19.6: Diffractive parton distributions, xIP zfD
a/p,

obtained from fitting to the ZEUS data with Q2 > 5 GeV2 [102],
H1 data with Q2 > 8.5 GeV2 assuming Regge factorization [103],
and from MRW2006 [104] using a more perturbative QCD
approach [104]. Only the Pomeron contributions are shown and
not the secondary Reggeon contributions, which are negligible
at the value of xIP = 0.003 chosen here. The H1 2007 Jets
distribution [105] is similar to H1 2006 Fit B.

It is conventional to define the generalised quark distributions in terms
of quark operators at light-like separation

Fq(x, ξ, t) =

1

2

∫

dz−

2π
eixP̄+z− 〈P ′|ψ̄(−z/2)γ+ψ(z/2)|P 〉

∣

∣

∣

∣

z+=z1=z2=0

(19.33)

=
1

2P̄+

(

Hq(x, ξ, t) ū(P ′)γ+u(P ) + Eq(x, ξ, t) ū(P ′)
iσ+α∆α

2m
u(P )

)

(19.34)
with P̄ = (P + P ′)/2 and ∆ = P ′ − P , and where we have suppressed
the helicity labels of the protons and spinors. We now have two extra
kinematic variables:

t = ∆2, ξ = −∆+/(P + P ′)+. (19.35)

We see that −1 ≤ ξ ≤ 1. Similarly, we may define GPDs H̃q and Ẽq

with an additional γ5 between the quark operators in Eq. (19.33); and
also an analogous set of gluon GPDs, Hg, Eg , H̃g and Ẽg. After a
Fourier transform with respect to the transverse components of ∆, we
are able to describe the spatial distribution of partons in the impact
parameter plane in terms of GPDs [111,112].

For P ′ = P, λ′ = λ the matrix elements reduce to the ordinary
PDFs of Sec. 19.2.1

Hq(x, 0, 0) = q(x), Hq(−x, 0, 0) = −q̄(x), Hg(x, 0, 0) = xg(x),
(19.36)

H̃q(x, 0, 0) = ∆q(x), H̃q(−x, 0, 0) = ∆q̄(x), H̃g(x, 0, 0) = x∆g(x),
(19.37)

where ∆q = q ↑ −q ↓ as in Eq. (19.18). No corresponding relations
exist for E, Ẽ as they decouple in the forward limit, ∆ = 0.

The functions Hg, Eg are even in x, and H̃g, Ẽg are odd functions
of x. We can introduce valence and ‘singlet’ quark distributions which
are even and odd functions of x respectively. For example

HV
q (x, ξ, t) ≡ Hq(x, ξ, t) + Hq(−x, ξ, t) = HV

q (−x, ξ, t), (19.38)

HS
q (x, ξ, t) ≡ Hq(x, ξ, t) − Hq(−x, ξ, t) = −HS

q (−x, ξ, t). (19.39)

All the GPDs satisfy relations of the form

H(x,−ξ, t) = H(x, ξ, t) and H(x,−ξ, t)∗ = H(x, ξ, t),
(19.40)



19. Structure functions 327

and so are real-valued functions. Moreover, the moments of GPDs,
that is the x integrals of xnHq etc., are polynomials in ξ of order n+1.
Another important property of GPDs are Ji’s sum rules [106]

1

2

∫ 1

−1

dx x
(

Hq(x, ξ, t) + Eq(x, ξ, t)
)

= Jq(t), (19.41)

where Jq(0) is the total angular momentum carried by quarks and
antiquarks of flavour q, with a similar relation for gluons.

Figure 19.7: Schematic diagrams of the three distinct kinematic
regions of the imaginary part of Hq. The proton and quark
momentum fractions refer to P̄+, and x covers the interval
(-1,1). In the ERBL domain the GPDs are generalisations
of distribution amplitudes which occur in processes such as
pp̄ → J/ψ.

To visualize the physical content of Hq, we Fourier expand ψ
and ψ̄ in terms of quark, antiquark creation (b, d) and annihilation
(b†, d†) operators, and sketch the result in Fig. 19.7. There are
two types of domain: (i) the time-like or ‘annihilation’ domain,
with |x| < |ξ|, where the GPDs describe the wave functions of
a t-channel qq̄ (or gluon) pair and evolve according to modified
ERBL equations [113,114]; (ii) the space-like or ‘scattering’ domain,
with |x| > |ξ|, where the GPDs generalise the familiar q̄, q (and
gluon) PDFs and describe processes such as ‘deeply virtual Compton
scattering’ (γ∗p → γp), γp → J/ψp, etc., and evolve according to
modified DGLAP equations. The splitting functions for the evolution
of GPDs are known to NLO [115].

GPDs describe new aspects of proton structure and must be
determined from experiment. We can parametrise them in terms of
‘double distributions’ [116,117], which reduce to diagonal PDFs as
ξ → 0. With an additional physically reasonable ‘Regge’ assumption
of no extra singularity at ξ = 0, GPDs at low ξ are uniquely given in
terms of diagonal PDFs to O(ξ), and have been used [118] to describe
γp → J/ψp data. Alternatively, flexible SO(3)-based parametrisations
have been used to determine GPDs from DVCS data [119]; a more
recent summary may be found in [120].

∗ The value of ηCC deduced from Ref. 1 is found to be a factor of
two too small; ηCC of Eq. (19.9) agrees with Refs. [2,3].
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NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA.

THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD’S RELIABLE DATA.
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Figure 19.8: The proton structure function F
p
2

measured in electromagnetic scattering of electrons and positrons on protons (collider

experiments H1 and ZEUS for Q2 ≥ 2 GeV2), in the kinematic domain of the HERA data (see Fig. 19.10 for data at smaller x and Q2),
and for electrons (SLAC) and muons (BCDMS, E665, NMC) on a fixed target. Statistical and systematic errors added in quadrature are
shown. The H1+ZEUS combined values are obtained from the measured reduced cross section and converted to F

p
2

with a HERAPDF
NLO fit, for all measured points where the predicted ratio of F

p
2

to reduced cross-section was within 10% of unity. The data are plotted as

a function of Q2 in bins of fixed x. Some points have been slightly offset in Q2 for clarity. The H1+ZEUS combined binning in x is used in
this plot; all other data are rebinned to the x values of these data. For the purpose of plotting, F

p
2

has been multiplied by 2ix , where ix is
the number of the x bin, ranging from ix = 1 (x = 0.85) to ix = 24 (x = 0.00005). References: H1 and ZEUS—H. Abramowicz et al.,
Eur. Phys. J. C75, 580 (2015) (for both data and HERAPDF parameterization); BCDMS—A.C. Benvenuti et al., Phys. Lett. B223,
485 (1989) (as given in [86]) ; E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys. B483, 3
(1997); SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).
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Figure 19.9: The deuteron structure function F d
2

measured in electromagnetic scattering of electrons (SLAC) and muons (BCDMS,
E665, NMC) on a fixed target, shown as a function of Q2 for bins of fixed x. Statistical and systematic errors added in quadrature are
shown. For the purpose of plotting, F d

2
has been multiplied by 2ix , where ix is the number of the x bin, ranging from 1 (x = 0.85) to 29

(x = 0.0009). References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC—same references as
Fig. 19.8.
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Figure 19.10: a) The deuteron structure function F2 measured in deep inelastic scattering of muons on a fixed target (NMC) is compared
to the structure function F2 from neutrino-iron scattering (CCFR and NuTeV) using F

µ
2

= (5/18)F ν
2
− x(s + s)/6, where heavy-target

effects have been taken into account. The data are shown versus Q2, for bins of fixed x. The NMC data have been rebinned to CCFR and
NuTeV x values. For the purpose of plotting, a constant c(x) = 0.05ix is added to F2, where ix is the number of the x bin, ranging from
0 (x = 0.75) to 7 (x = 0.175). For ix = 8 (x = 0.125) to 11 (x = 0.015), 2c(x) has been added. References: NMC—M. Arneodo et al.,
Nucl. Phys. B483, 3 (1997); CCFR/NuTeV—U.K. Yang et al., Phys. Rev. Lett. 86, 2741 (2001); NuTeV—M. Tzanov et al., Phys.
Rev. D74, 012008 (2006).

b) The proton structure function F
p
2

mostly at small x and Q2, measured in electromagnetic scattering of electrons and positrons (H1,
ZEUS), electrons (SLAC), and muons (BCDMS, NMC) on protons. Lines are ZEUS Regge and HERAPDF parameterizations for lower
and higher Q2, respectively. The width of the bins can be up to 10% of the stated Q2. Some points have been slightly offset in x for
clarity. The H1+ZEUS combined values for Q2 ≥ 3.5 GeV2 are obtained from the measured reduced cross section and converted to F

p
2

with a HERAPDF NLO fit, for all measured points where the predicted ratio of F p
2

to reduced cross-section was within 10% of unity. A

turn-over is visible in the low-x points at medium Q2 (3.5 GeV2 and 6 GeV2) for the H1+ZEUS combined values. In order to obtain F
p
2

from the measured reduced cross-section, FL must be estimated; for the points shown, this estimate is obtained from HERAPDF2.0. No
FL value consistent with the HERA data can eliminate the turn-over. This may indicate that at low x and Q2 there are contributions to
the structure functions that cannot be described in standard DGLAP evolution.

References: H1 and ZEUS—F.D. Aaron et al., JHEP 1001, 109 (2010) (data for Q2 < 3.5 GeV2), H. Abramowicz et al., Eur. Phys.
J. C75, 580 (2015) (data for Q2 ≥ 3.5 GeV2 and HERAPDF parameterization); ZEUS—J. Breitweg et al., Phys. Lett. B487, 53 (2000)
(ZEUS Regge parameterization); BCDMS, NMC, SLAC—same references as Fig. 19.8.

Statistical and systematic errors added in quadrature are shown for both plots.
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Figure 19.11: a) The charm-quark structure function F cc
2

(x), i.e. that part of the inclusive structure function F p
2

arising from the
production of charm quarks, measured in electromagnetic scattering of positrons on protons (H1, ZEUS) and muons on iron (EMC). For the
purpose of plotting, a constant c(Q) = 0.07iQ

1.7 is added to F cc
2

where iQ is the number of the Q2 bin, ranging from 1 (Q2 = 2.5 GeV2) to

12 (Q2 = 2000 GeV2). References: H1 and ZEUS run I combination—H. Abramowicz et al., Eur. Phys. J. C73, 2311 (2013); ZEUS
run II—H. Abramowicz et al., JHEP 05, 023 (2013); H. Abramowicz et al., JHEP 05, 097 (2013); H. Abramowicz et al., JHEP 09, 127
(2014); EMC—J.J. Aubert et al., Nucl. Phys. B213, 31 (1983).

b) The bottom-quark structure function F bb
2

(x). For the purpose of plotting, a constant c(Q) = 0.01i1.6
Q is added to F bb

2
where iQ

is the number of the Q2 bin, ranging from 1 (Q2 = 5 GeV2) to 12 (Q2 = 2000 GeV2). References: ZEUS—S. Chekanov et al., Eur.
Phys. J. C65, 65 (2010); H. Abramowicz et al., Eur. Phys. J. C69, 347 (2010); H. Abramowicz et al., Eur. Phys. J. C71, 1573 (2011);
H. Abramowicz et al., JHEP 09, 127 (2014); H1—F.D. Aaron et al., Eur. Phys. J. C65, 89 (2010).

For both plots, statistical and systematic errors added in quadrature are shown. The data are given as a function of x in bins of Q2.
Points may have been slightly offset in x for clarity. Some data have been rebinned to common Q2 values. Also shown is the MMHT2014
parameterization given at several Q2 values (L. A. Harland-Lang et al., Eur. Phys. J. C75, 204 (2015)).
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Figure 19.12: The structure function xF
γZ
3

measured in electroweak scattering of a) electrons on protons (H1 and ZEUS) and b) muons
on carbon (BCDMS). The line in a) is the HERAPDF parameterization. References: H1 and ZEUS—H. Abramowicz et al., Eur. Phys.
J. C75, 580 (2015) (for both data and HERAPDF parameterization); BCDMS—A. Argento et al., Phys. Lett. B140, 142 (1984).
c) The structure function xF3 of the nucleon measured in ν-Fe scattering. The data are plotted as a function of Q2 in bins of fixed x. For
the purpose of plotting, a constant c(x) = 0.5(ix − 1) is added to xF3, where ix is the number of the x bin as shown in the plot. The
NuTeV and CHORUS points have been shifted to the nearest corresponding x bin as given in the plot and slightly offset in Q2 for clarity.
References: CCFR—W.G. Seligman et al., Phys. Rev. Lett. 79, 1213 (1997); NuTeV—M. Tzanov et al., Phys. Rev. D74, 012008 (2006);
CHORUS—G. Önengüt et al., Phys. Lett. B632, 65 (2006).

Statistical and systematic errors added in quadrature are shown for all plots.



334 19. Structure functions

0

1

0

1

10
-4

10
-2

1 10
-4

10
-2

1 10
-4

10
-2

1 10
-4

10
-2

1 10
-4

10
-2

1 10
-4

10
-2

1

0

1

10
-3

10
-2

0

1

10
-3

10
-2

10
-3

10
-2

10
-3

10
-2

10
-3

10
-2

10
-3

10
-2

F
L
 (

x,
Q

2 )

x

F
L
 (

x,
Q

2 )

x

x

BCDMS

NMC

SLAC

H1

ZEUS

Q2 (GeV2)

F
L
 (

Q
2 )

H1
ZEUS

0

0.5

1 10 10
2

Figure 19.13: Top panels: The longitudinal structure function FL as a function of x in bins of fixed Q2 measured on the proton (except
for the SLAC data which also contain deuterium data). BCDMS, NMC, and SLAC results are from measurements of R (the ratio of
longitudinal to transverse photon absorption cross sections) which are converted to FL by using the BDCMS parameterization of F2

(A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989)). It is assumed that the Q2 dependence of the fixed-target data is small within a
given Q2 bin. Some of the other data may have been rebinned to common Q2 values. Some points have been slightly offset in x for clarity.
Also shown is the MSTW2008 parameterization given at three Q2 values (A.D. Martin et al., Eur. Phys. J. C63, 189 (2009)). References:
H1—V. Andreev et al., Eur. Phys. J. C74, 2814 (2014); ZEUS—S. Chekanov et al., Phys. Lett. B682, 8 (2009); H. Abramowicz et al.,
Phys. Rev. D90, 072002 (2014); BCDMS—A. Benvenuti et al., Phys. Lett. B223, 485 (1989); NMC—M. Arneodo et al., Nucl. Phys.
B483, 3 (1997); SLAC—L.W. Whitlow et al., Phys. Lett. B250, 193 (1990) and numerical values from the thesis of L.W. Whitlow
(SLAC-357).

Bottom panel: The longitudinal structure function FL as a function of Q2. Some points have been slightly offset in Q2 for clarity.
References: H1—V. Andreev et al., Eur. Phys. J. C74, 2814 (2014); ZEUS—H. Abramowicz et al., Phys. Rev. D90, 072002 (2014).

The results shown in the bottom plot require the assumption of the validity of the QCD form for the F2 structure function in order to
extract FL. Statistical and systematic errors added in quadrature are shown for both plots.
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Figure 19.14: The spin-dependent structure function xg1(x) of the proton, deuteron, and neutron (from 3He target) measured in deep
inelastic scattering of polarized electrons/positrons: E142 (Q2 ∼ 0.3 − 10 GeV2), E143 (Q2 ∼ 0.3 − 10 GeV2), E154 (Q2 ∼ 1 − 17 GeV2),
E155 (Q2 ∼ 1 − 40 GeV2), JLab E99-117 (Q2 ∼ 2.71 − 4.83 GeV2), HERMES (Q2 ∼ 0.18 − 20 GeV2), CLAS (Q2 ∼ 1 − 5 GeV2) and
muons: EMC (Q2 ∼ 1.5 − 100 GeV2), SMC (Q2 ∼ 0.01 − 100 GeV2), COMPASS (Q2 ∼ 0.001 − 100 GeV2), shown at the measured Q2

(except for EMC data given at Q2 = 10.7 GeV2 and E155 data given at Q2 = 5 GeV2). Note that gn
1 (x) may also be extracted by taking

the difference between gd
1
(x) and gp

1
(x), but these values have been omitted in the bottom plot for clarity. Statistical and systematic errors

added in quadrature are shown. References: EMC—J. Ashman et al., Nucl. Phys. B328, 1 (1989); E142—P.L. Anthony et al., Phys.
Rev. D54, 6620 (1996); E143—K. Abe et al., Phys. Rev. D58, 112003 (1998); SMC—B. Adeva et al., Phys. Rev. D58, 112001 (1998),
B. Adeva et al., Phys. Rev. D60, 072004 (1999) and Erratum-Phys. Rev. D62, 079902 (2000); HERMES—A. Airapetian et al., Phys.
Rev. D75, 012007 (2007) and K. Ackerstaff et al., Phys. Lett. B404, 383 (1997); E154—K. Abe et al., Phys. Rev. Lett. 79, 26 (1997);
E155—P.L. Anthony et al., Phys. Lett. B463, 339 (1999) and P.L. Anthony et al., Phys. Lett. B493, 19 (2000); Jlab-E99-117—X. Zheng
et al., Phys. Rev. C70, 065207 (2004); COMPASS—V.Yu. Alexakhin et al., Phys. Lett. B647, 8 (2007), E.S. Ageev et al., Phys. Lett.
B647, 330 (2007), and M.G. Alekseev et al., Phys. Lett. B690, 466 (2010); CLAS—K.V. Dharmawardane et al., Phys. Lett. B641, 11
(2006) (which also includes resonance region data not shown on this plot).
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Figure 19.15: The hadronic structure function of the photon F γ
2

divided by the fine structure constant α measured in e+e− scattering,

shown as a function of Q2 for bins of x. Data points have been shifted to the nearest corresponding x bin as given in the plot. Some
points have been offset in Q2 for clarity. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting,
a constant c(x) = 1.5ix is added to F γ

2
/α where ix is the number of the x bin, ranging from 1 (x = 0.0055) to 8 (x = 0.9). References:

ALEPH–R. Barate et al., Phys. Lett. B458, 152 (1999); A. Heister et al., Eur. Phys. J. C30, 145 (2003);DELPHI–P. Abreu et al.,
Z. Phys. C69, 223 (1995); L3–M. Acciarri et al., Phys. Lett. B436, 403 (1998); M. Acciarri et al., Phys. Lett. B447, 147 (1999);
M. Acciarri et al., Phys. Lett. B483, 373 (2000); OPAL–A. Ackerstaff et al., Phys. Lett. B411, 387 (1997); A. Ackerstaff et al., Z. Phys.
C74, 33 (1997); G. Abbiendi et al., Eur. Phys. J. C18, 15 (2000); G. Abbiendi et al., Phys. Lett. B533, 207 (2002) (note that there is
overlap of the data samples in these last two papers); AMY–S.K. Sahu et al., Phys. Lett. B346, 208 (1995); T. Kojima et al., Phys. Lett.
B400, 395 (1997); JADE–W. Bartel et al., Z. Phys. C24, 231 (1984); PLUTO–C. Berger et al., Phys. Lett. 142B, 111 (1984); C. Berger
et al., Nucl. Phys. B281, 365 (1987); TASSO–M. Althoff et al., Z. Phys. C31, 527 (1986); TOPAZ–K. Muramatsu et al., Phys. Lett.
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20.1. Introduction to fragmentation

The term ‘fragmentation functions’ is widely used for two conceptually
different (albeit related) sets of functions describing final-state
single particle energy distributions in hard scattering processes (see
Refs. [1,2] for introductory reviews, and Refs. [3,4] for summaries of
experimental and theoretical research in this field).

The first are cross-section observables such as the functions
FT,L,A(x, s) in semi-inclusive e+e− annihilation at center-of-mass

(CM) energy
√

s via an intermediate photon or Z-boson, e+e− →
γ/Z → h +X , given by

1

σ0

d 2σh

dx d cos θ
=

3

8
(1 + cos2 θ)Fh

T (x, s) +
3

4
sin2 θ Fh

L(x, s) +
3

4
cos θ Fh

A (x, s) . (20.1)

Here x = 2Eh/
√

s ≤ 1 is the scaled energy of the hadron h (in practice
the approximation x ≃ xp = 2ph/

√
s or x ≃ p/pmax is often used), and

θ is its angle relative to the electron beam in the CM frame. Eq. (20.1)
is the most general form for unpolarized inclusive single-particle
production via vector bosons [5]. The transverse and longitudinal
fragmentation functions FT and FL represent the contributions from
γ/Z polarizations transverse or longitudinal with respect to the
direction of motion of the hadron. The parity-violating term with the
asymmetric fragmentation function FA arises from the interference
between vector and axial-vector contributions. Normalization factors
σ0 used in the literature range from the total cross section σtot for
e+e− → hadrons, including all weak and QCD contributions, to
σ0 = 4πα2Nc/3s with Nc = 3, the lowest-order QED cross section for
e+e− → µ+µ− times the number of colors Nc . LEP1 measurements
of all three fragmentation functions are shown in Fig. 20.1.

Integration of Eq. (20.1) over θ yields the total fragmentation
function Fh = Fh

T + Fh
L ,

1

σ0

dσh

dx
= Fh(x, s) =

∑

i

∫ 1

x

dz

z
Ci(z, αs(µ),

s

µ2
)Dh

i (
x

z
, µ2) + O(

1√
s
) (20.2)

with i = u, ū, d, d̄, . . . , g. Here the second set of functions mentioned
in the first paragraph has been introduced, the parton fragmentation
functions (or fragmentation densities) Dh

i . These functions are the
final-state analogue of the initial-state parton distribution functions
(pdf) addressed in Section 19 of this Review. Due to the different sign
of the squared four-momentum q2 of the intermediate gauge boson
these two sets of fragmentation distributions are also referred to as
the timelike (e+e− annihilation, q2 > 0) and spacelike (deep-inelastic
scattering (DIS), q2 < 0) parton distribution functions. The function
Dh

i (z, µ2) describes the probability that the parton i fragments into
a hadron h carrying a probability that the parton i fragments into a
hadron h carrying a fraction z of the parton’s momentum. Beyond
the leading order (LO) of perturbative QCD these universal functions
are factorization-scheme dependent, with ‘reasonable’ scheme choices
retaining certain quark-parton-model [6] (QPM) constraints such as
the momentum sum rule

∑

h

∫ 1

0
dz z Dh

i (z, µ2) = 1 . (20.3)

The dependence of the functions Dh
i on the factorization scale µ2 is

discussed in Section 20.2. Like in Eq. (20.2) and below, this scale is
often taken to be equal to the factorization or renomalization scale,
but this equivalence is not required in the theory.
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Figure 20.1: LEP1 measurements of total transverse
(FT ), longitudinal (FL), and asymmetric (FA) fragmentation
functions [7–9]. Data points with relative errors greater than
100% are omitted.

The second ingredient in Eq. (20.2), and analogous expressions
for the functions FT,L,A , are the observable-dependent coefficient
functions Ci. At the zeroth order in the strong coupling αs the
coefficient functions Cg for gluons are zero, while for (anti-) quarks
Ci = gi(s) δ(1 − z) except for FL, where gi(s) is the appropriate
electroweak coupling. In particular, gi(s) is proportional to the
squared charge of the quark i at s ≪ M 2

Z , when weak effects can
be neglected. The full electroweak prefactors gi(s) can be found in
Ref. [5]. The power corrections in Eq. (20.2) arise from quark and
hadron mass terms and from non-perturbative effects.

Measurements of fragmentation in lepton-hadron and hadron-
hadron scattering are complementary to those in e+e− annihilation.
The former are affected by contributions, in summary called the
hadron remnant, arising from the partons of the initial-state
hadron which are collaterally involved in the hard lepton-parton
or parton-parton collision. The latter provides a clean environment
(no initial-state hadron remnant) and stringent constraints on the
combinations Dh

qi
+ Dh

q̄i
. However e+e− annihilation is far less

sensitive to Dh
g and insensitive to the charge asymmetries Dh

qi
− Dh

q̄i
.

These quantities are best constrained in proton–(anti-)proton and
electron-proton scattering, respectively. Especially the latter provides
a more complicated environment with which it is possible to study
the influence on the fragmentation process from initial-state QCD
radiation, the partonic and spin structure of the hadron target, and
the target remnant system (see Ref. [10] for a comprehensive review
of the measurements and models of fragmentation in lepton-hadron
scattering).

Moreover, unlike e+e− annihilation where q2 = s is fixed by the
collider energy, lepton-hadron scattering has two independent scales,
Q2 = −q2 and the invariant mass W 2 of the hadronic final state,
which both can vary by several orders of magnitudes for a given
CM energy, thus allowing the study of fragmentation in different
environments by a single experiment. E.g., in photoproduction the
exchanged photon is quasi-real (Q2 ≈ 0) leading to processes akin to
hadron-hadron scattering. In DIS (Q2 ≫ 1 GeV2), using the QPM,
the hadronic fragments of the struck quark can be directly compared



338 20. Fragmentation functions in e
+

e
−, ep and pp collisions

with quark fragmentation in e+e− in a suitable frame. Results from
lepton-hadron experiments quoted in this report primarily concern
fragmentation in the DIS regime. Studies performed by lepton-hadron
experiments of fragmentation with photoproduction data containing
high transverse momentum jets or particles are also reported, when
these are directly comparable to DIS and e+e− results.

Fragmentation studies in lepton-hadron collisions are usually
performed in one of two frames in which the target hadron and the
exchanged boson are collinear. The hadronic center-of-mass frame
(HCMS) is defined as the rest system of the exchanged boson and
incoming hadron, with the z∗-axis defined along the direction of
the exchanged boson. The positive z∗ direction defines the so-called
current region. Fragmentation measurements performed in the HCMS
often use the Feynman-x variable xF = 2p∗z/W , where p∗z is the
longitudinal momentum of the particle in this frame. As W is the
invariant mass of the hadronic final state, xF ranges between −1 and
1.

The Breit system [11] is connected to the HCMS by a longitudinal
boost such that the time component of q vanishes, i.e, q = (0, 0, 0,−Q).
In the QPM, the struck parton then has the longitudinal momentum
Q/2 which becomes −Q/2 after the collision. As compared with
the HCMS, the current region of the Breit frame is more closely
matched to the partonic scattering process, and is thus appropriate for
direct comparisons of fragmentation functions in DIS with those from
e+e− annihilation. The variable xp = 2p∗/Q is used at HERA for
measurements in the Breit frame, ensuring rather directly comparable
DIS and e+e− results, where p∗ is the particle’s momentum in the
current region of the Breit frame.

20.2. Scaling violation

The simplest parton-model approach would predict scale-independent
x-distributions (‘scaling’) for both the fragmentation function Fh and
the parton fragmentation functions Dh

i . Perturbative QCD corrections
lead, after factorization of the final-state collinear singularities for light
partons, to logarithmic scaling violations via the evolution equations
[12]

∂

∂ lnµ2
Di(x, µ2) =

∑

j

∫ 1

x

dz

z
Pji(z, αs(µ

2))Dj(
x

z
, µ2) , (20.4)

where the splitting functions Pij(z, αs(µ
2)) describe in leading order

the probability to find parton i with a longitudinal momentum fraction
z in parton j. Usually this system of equations is decomposed into a
2×2 flavour-singlet sector comprising gluon and the sum of all quark
and antiquark fragmentation functions, and scalar (‘non-singlet’)
equations for quark-antiquark and flavour differences. The singlet
splitting-function matrix is now Pji , rather than Pij as for the initial-
state parton distributions, since Dj represents the fragmentation of
the final parton.

The splitting functions in Eq. (20.4) have perturbative expansion of
the form

Pji(z, αs) =
αs

2π
P

(0)
ji (z)+

(αs

2π

)2
P

(1)
ji (z)+

(αs

2π

)3
P

(2)
ji (z)+. . . (20.5)

where the leading-order (LO) functions P (0)(z) [12,13] are the same
as those for the initial-state parton distributions. The next-to-leading
order (NLO) corrections P (1)(z) have been calculated in Refs. [14–18]
(there are well-known misprints in the journal version of Ref. [15]).
Ref. [18] also includes the spin-dependent case. These functions are
different from, but related to their space-like counterparts, see also
Ref. [19]. These relations have facilitated recent calculations of the

next-to-next-to-leading order (NNLO) quantities P
(2)
qq (z) and P

(2)
gg (z)

in Eq. (20.5) [20,21]. The corresponding off-diagonal quantities

P
(2)
qg and P

(2)
gq were recently obtained in Ref. [22] by using similar

relations supplemented with constrains from the momentum sum rule
Eq. (20.3) [21] and from the limit of CA = CF = nf for which QCD

becomes supersymmetric. An uncertainty, which does not affect the
logarithmic behaviour at small and large momentum fractions, still

remains on the P
(2)
qg kernel. All these results refer to the standard MS

scheme, with the exception of Refs. [17], with a fixed number nf of

light flavours. Fragmentation functions change when in the course of
energy evolution the threshold for the production of a heavier quark
flavour is crossed. The NLO treatment of these flavour thresholds in
the evolution has been addressed in Ref. [23].

The QCD parts of the coefficient functions for FT,L,A(x, s) in

Eq. (20.1) and the total fragmentation function Fh
2 ≡ Fh in Eq. (20.2)

are given by

Ca,i(z, αs) = (1− δaL) δiq +
αs

2π
c
(1)
a,i (z)+

(αs

2π

)2
c
(2)
a,i (z)+ . . . . (20.6)

The first-order corrections have been calculated in Refs. [24], and the
second-order terms in Ref. 25. The latter results have been verified
(and some typos corrected) in Refs. [20,26]. The coefficient functions
are known to NNLO except for FL where the leading contribution is
of order αs.

The effect of the evolution is similar in the timelike and spacelike
cases: as the scale increases, one observes a scaling violation in which
the x-distribution is shifted towards lower values. This can be seen
from Fig. 20.2 where a large amount of measurements of the total
fragmentation function in e+e− annihilation are summarized. QCD
analyses of these data are discussed in Section 20.5 below.
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Figure 20.2: The e+e− fragmentation function for all
charged particles is shown [9,27–44] (a) for different CM energies√

s versus x and (b) for various ranges of x versus
√

s. For
the purpose of plotting (a), the distributions were scaled by
c(
√

s) = 10i with i ranging from i = 0 (
√

s = 12 GeV) to i = 13
(
√

s = 202 GeV).

Unlike the splitting functions in Eq. (20.5), see Refs. [19–21],
the coefficient functions for F2,T,A in Eq. (20.6) show a threshold

enhancement with terms up to αn
s (1−z)−1 ln 2n−1(1−z). Such

logarithms can be resummed to all orders in αs using standard
soft-gluon techniques [45–47]. Recently this resummation has been
extended to the subleading (and for FL leading) class αn

s ln k(1−z) of
large-x logarithms [48,49].

In Refs. [24] the NLO coefficient functions have been calculated
also for single hadron production in lepton-proton scattering,
ep → e + h + X . More recently corresponding results have been
obtained for the case that a non-vanishing transverse momentum is
required in the HCMS frame [50].

Scaling violations in DIS are shown in Fig. 20.3 for both HCMS and
Breit frame. In Fig. 1.3(a) the distribution in terms of xF = 2p∗z/W
shows a steeper slope in ep data than for the lower-energy µp data
for xF > 0.15, indicating the scaling violations. At smaller values of
xF in the current jet region, the multiplicity of particles substantially
increases with W owing to the increased phase space available for
the fragmentation process. The EMC data access both the current
region and the region of the fragmenting target remnant system. At
higher values of |xF |, due to the extended nature of the remnant, the
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multiplicity in the target region far exceeds that in the current region.
For acceptance reasons the remnant hemisphere of the HCMS is only
accessible by the lower-energy fixed-target experiments.
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Figure 20.3: (a) The distribution 1/N · dN/dxF for all
charged particles in DIS lepton-hadron experiments at different
values of W , and measured in the HCMS [51–54]. (b) Scaling
violations of the fragmentation function for all charged particles
in the current region of the Breit frame of DIS [55,60] and in
e+e− interactions [37,61]. The data are shown as a function of√

s for e+e− results, and as a function of Q for the DIS results,
each within the same indicated intervals of the scaled momentum
xp. The data for the four lowest intervals of xp are multiplied by
factors 50, 10, 5, and 3, respectively for clarity.

Using hadrons from the current hemisphere in the Breit frame,
measurements of fragmentation functions and the production
properties of particles in ep scattering have been made by Refs. [55–60].
Fig. 20.3(b) compares results from ep scattering and e+e− experiments,
the latter results are halved as they cover both event hemispheres. The
agreement between the DIS and e+e− results is fairly good. However,
processes in DIS which are not present in e+e− annihilation, such as
boson-gluon fusion and initial-state QCD radiation, can depopulate
the current region. These effects become most prominent at low values
of Q and xp. Hence, when compared with e+e− annihilation data at√

s = 5.2, 6.5 GeV [62] not shown here, the DIS particle rates tend
to lie below those from e+e− annihilation. A ZEUS study [63] finds
that the direct comparability of the ep data to e+e− results at low
scales is improved if twice the energy in the current hemisphere of
the Breit frame, 2E cr

B , is used instead of Q/2 as the fragmentation
scale. Choosing 2 ·E cr

B for the fragmentation scale approximates QCD
radiation effects relevant at low scales as detailed in Ref. [64].

20.3. Fragmentation functions for small particle

momenta

The higher-order timelike splitting functions in Eq. (20.5) are
very singular at small x. They show a double-logarithmic (LL)
enhancement with leading terms of the form αn

s ln2n−2x corresponding
to poles αn

s (N − 1)1−2n for the Mellin moments

P (n)(N) =

∫ 1

0
dx xN−1 P (n)(x) . (20.7)

Despite large cancellations between leading and non-leading logarithms
at non-asymptotic value of x, the resulting small-x rise in the timelike
splitting functions dwarfs that of their spacelike counterparts for the
evolution of the parton distributions in Section 19 of this Review,
see Fig. 1 of Ref. [21]. Consequently the fixed-order approximation
to the evolution breaks down orders of magnitude in x earlier in
fragmentation than in DIS.

The pattern of the known coefficients and other considerations
suggest that the LL terms sum to all-order expressions without any
pole at N = 1 such as [65,66]

PLL
gg (N) = −1

4
(N − 1 −

√

(N − 1)2 · 24 αs/π ) . (20.8)

Keeping the first three terms in the resulting expansion of Eq. (20.4)
around N = 1 yields a Gaussian in the variable ξ = ln(1/x) for the
small-x fragmentation functions,

xD(x, s) ∝ exp

[

− 1

2σ2
(ξ − ξp)

2
]

, (20.9)

with the peak position and width varying with the energy as [67] (see
also Ref. [2])

ξp ≃ 1

4
ln

( s

Λ2

)

, σ ∝
[

ln
( s

Λ2

)]3/4
. (20.10)

Next-to-leading logarithmic corrections to the above predictions have
been calculated [68]. In the method of Ref. [69], see also Refs. [70,71],
the corrections are included in an analytical form known as the
‘modified leading logarithmic approximation’ (MLLA). Alternatively
they can be used to compute higher-moment corrections to the shape
in Eq. (20.9) [72]. The small-x resummation of the coefficient functions
for semi-inclusive e+e− annihilation and the timelike spitting functions
in the standard MS scheme was recently extended in Refs. [73,74]
and has reached fully analytic next-to-next-to-leading logarithmic
accuracy. First applications of these results to gluon and quark jet
multiplicities have been presented in Refs. [75].

Fig. 20.4 shows the ξ distribution for charged particles produced in
the current region of the Breit frame in DIS and in e+e− annihilation.
Consistent with Eq. (20.9) (the ‘hump backed plateau’) and Eq. (20.10)
the distributions have a Gaussian shape with the peak position and
area increasing with the CM energy (e+e−) and Q2 (DIS).
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Figure 20.4: Distribution of ξ = ln(1/xp) at several CM
energies (e+e−) [28–29,34–37,76–79] and intervals of Q2

(DIS) [58,59]. At each energy only one representative mea-
surement is displayed. For clarity some measurements at
intermediate CM energies (e+e−) or Q2 ranges (DIS) are not
shown. The DIS measurements (∗) have been scaled by a factor
of 2 for direct comparability with the e+e− results. Fits of
simple Gaussian functions are overlaid for illustration.

The predicted energy dependence Eq. (20.10) of the peak in the ξ
distribution is explained by soft gluon coherence (angular ordering),
i.e., the destructive interference of the color wavefunction of low
energy gluon radiation, which correctly predicts the suppression of
hadron production at small x. Of course, a decrease at very small x
is expected on purely kinematical grounds, but this would occur at
particle energies proportional to their masses, i.e., at x ∝ m/

√
s and

hence ξ ∼ 1
2 ln s. Thus, if the suppression were purely kinematic, the

peak position ξp would vary twice as rapidly with the energy, which is
ruled out by the data in Fig. 20.5. The e+e− and DIS data agree well
with each other, demonstrating the universality of hadronization, and
the MLLA prediction. Measurements of the higher moments of the ξ
distribution in e+e− [37,79–81] and DIS [59] have also been performed
and show consistency with each other.
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The average charged particle multiplicity is another observable
sensitive to fragmentation functions for small particle momenta.
Perturbative predictions using both NLO [90] and MLLA [91,93] have
been obtained from solving Eq. (20.4) yielding

〈

nG(Q2)
〉

∝ αb
S(Q2) · exp

[

c

4πb0
√

αS(Q2)
·
(

1 + 6a2
αS(Q2)

π

)

]

(20.11)

where b =
1

4
+

10

27

nf

4πb0
, c =

√
96π, with b0 = (33 − 2nf )/(12π), cp.

Section 9 of this Review, for nf contributing quark flavours. Higher
order corrections to Eq. (20.11) are known up to next-to-next-to-
next-to-leading order (3NLO), for details and references see [94].
The term proportional to a2 ≈ −0.502 + 0.0421 nf − 0.00036 n2

f in

Eq. (20.11) is the contribution due to NNLO corrections [95]. The
quantity 〈nG(Q2)〉 strictly refers to the average number of gluons,
while for quarks a correction factor r = 〈nG〉/〈nq〉 weakly depending
on Q2 is required due to the different color factors in quark and gluon
couplings, respectively. Higher order corrections up to 3NLO on the
asymptotic value r = CA/CF = 9/4 [96] are quoted in [94].

Employing the hypothesis of ‘Local Parton-Hadron Duality’
(LPHD) [91], i.e., that the color charge of partons is balanced locally
in phase space and, hence, their hadronization occurs locally such that
(Mellin transformed) parton and hadron inclusive distributions directly
correspond, Eq. (20.11) can be applied to describe average charged
particle multiplicities obtained in e+e− annihilation. The equation can
also be applied to e±p scattering if the current fragmentation region
of the Breit frame is considered for measuring the average charged
particle multiplicity. Fig. 20.6 shows corresponding data and fits of
Eq. (20.11) where apart from a LPHD normalization factor a constant
offset has been allowed for, that is 〈nch(Q)〉 = KLHPD ·〈nG(Q)〉/r+n0.

In hadron-hadron collisions beam remnants, e.g. from single-
diffractive (SD) scattering where one colliding proton is negligibly
deflected while hadrons are related with the other colliding proton are
well-separated in rapidity from the former proton, contribute to the
measurement of the hadron multiplicity from a hard parton-parton
scattering, making interpretation of the data more model dependent.
Experimental results are usually given for inelastic processes or
for non-single diffractive processes (NSD). Due to the large beam
particle momenta at Tevatron and LHC, not all final state particles
can be detected within the limited detector acceptance. Therefore,
experiments at Tevatron and LHC quote particle multiplicities for
limited ranges of pseudo-rapidity η = − ln tan(ϑ/2) or at central
rapidity, i.e. η = 0, shown in Fig. 20.6.

An universality of the average particle multiplicities in e+e− and
p(p) processes has been reported in Ref. [122] when considering an

effective collision energy Qeff =
√

s/k in p(p) reduced by a factor
of k ≈ 3 plus a constant offset of n0 ≈ 2. A more detailed review
is available in Ref. [123]. According to investigations presented
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in Ref. [124] the universality of the energy dependence of average
particle multiplicities also applies to hadron-hadron and nucleus-
nucleus collisions for both full and central rapidity multiplicities.
Evidence for this universality is given by the good agreement for the
energy dependence of Eq. (20.11) when fit to the p(p) data as shown
in Fig. 20.6.

20.4. Fragmentation models

Although the scaling violation can be calculated perturbatively, the
actual form of the parton fragmentation functions is non-perturbative.
Perturbative evolution gives rise to a shower of quarks and gluons
(partons). Multi-parton final states from leading and higher order
matrix element calculations are linked to these parton showers using
factorization prescriptions, also called matching schemes, see Ref. [125]
for an overview. Phenomenological schemes are then used to model the
carry-over of parton momenta and flavor to the hadrons. Implemented
in Monte Carlo event generators (see Section 41 of this Review),
these schemes have been tuned using e+e− data and provide good
description of hadron collisions as well, thus providing evidence of the
universality of the fragmentation functions.

20.5. Quark and gluon fragmentation functions

The fragmentation functions are solutions to the evolution equations
Eq. (20.4), but need to be parametrized at some initial scale µ2

0
(usually around 1 GeV2 for light quarks and gluons and m2

Q for heavy

quarks). A usual parametrization for light hadrons is [134–141]

Dh
i (x, µ2

0) = Nxα(1 − x)β
(

1 + γ(1 − x)δ
)

, (20.12)
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where the normalization N , and the parameters α, β, γ and δ in
general depend on the energy scale µ2

0, and also on the type of the
parton, i, and the hadron, h. Frequently the term involving γ and δ
is left out [136–139]. Heavy flavor fragmentation into heavy mesons is
discussed in Sec. 20.9. The parameters of Eq. (20.12) (see [134–139])
are obtained by performing global fits to data on various hadron
types for different combinations of partons and hadrons in e+e−,
lepton-hadron and hadron-hadron collisions.

Sets of fragmentation functions are available for pions, kaons,
protons, neutrons, etas, Lambdas and charged hadrons [134–141].

Data from e+e− annihilation present the cleanest experimental
source for the measurement of fragmentation functions, but can
not contribute to disentangle quark from antiquark distributions.
Since the bulk of the e+e− annihilation data is obtained at the
mass of the Z-boson, where the electroweak couplings are roughly
the same for the different partons, it provides the most precise
determination of the flavor-singlet quark fragmentation. Flavor tagged
results [142], distinguishing between the light quark, charm and bottom
contributions are of particular value for flavor decomposition, even
though those measurements can not be unambiguously interpreted in
perturbative QCD.

The most relevant source for quark-antiquark (and also flavor)
separation is provided by data from semi-inclusive DIS (SIDIS).
Semi-inclusive measurements are usually performed at much lower
scales than for e+e− annihilation. The inclusion of SIDIS data
in global fits allows for a wider coverage in the evolution of the
fragmentation functions, resulting at the same time in a stringent test
of the universality of these distributions. Charged-hadron production
data in hadronic collisions also presents a sensitivity on (anti-)quark
fragmentation functions.

The gluon fragmentation function Dg(x) can be extracted, in
principle, from the longitudinal fragmentation function FL in
Eq. (20.2), as the coefficient functions CL,i for quarks and gluons are

comparable at order αs. However at NLO, i.e., including the O(α2
s )

coefficient functions C
(2)
L,i [25], quark fragmentation is dominant in

FL over a large part of the kinematic range, reducing the sensitivity
on Dg. This distribution could be determined also analyzing the
evolution of the fragmentation functions. This possibility is limited
by the lack of sufficiently precise data at energy scales away from the
Z-resonance and the dominance of the quark contributions and at
medium and large values of x.

Dg can also be deduced from the fragmentation of three-jet events
in which the gluon jet is identified, for example, by tagging the other
two jets with heavy quark decays. To leading order, the measured
distributions of x = Ehad/Ejet for particles in gluon jets can be
identified directly with the gluon fragmentation function Dg(x).
At higher orders the theoretical interpretation of this observable is
ambiguous.

A comparison of recent fits of NLO fragmentation functions for
π+ + π− obtained by DSS14 [141], AKK08 [135] and HKNS07 [139] is
shown in Fig. 20.7. Differences between the sets are large especially
for the gluon fragmentation function over the full range of x
and for the quark distribution at large momentum fractions. The
differences are even larger for other species of hadrons like kaons and
protons [134,135,139]. Recent analyses [139,141,143] estimate the
uncertainties involved in the extraction of fragmentation functions.

A direct constraint on Dg is provided by pp, pp̄ → hX data.
At variance with e+e− annihilation and SIDIS, for this process
gluon fragmentation starts to contribute at the lowest order in
the coupling constant, introducing a strong sensitivity on Dg. At
large x & 0.5, where information from e+e− is sparse, data from
hadronic colliders facilitate significantly improved extractions of
Dg [134,135,141]. Recent LHC data has been included in the latest
update for pion-fragmentation functions in [141], see Sec.(17.7) for
more details.

Photonic fragmentation functions play a relevant role in the
theoretical understanding of inclusive photon production in (leptonic
and hadronic) high energy processes. Similar to the analogy of parton
fragmentation functions and parton distributions in deep inelastic
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Figure 20.7: Comparison of up, strange, charm and gluon
NLO fragmentation functions for π+ + π− at the mass of the Z.
The different lines correspond to the result of the most recent
analyses performed in Refs. [135,139,141].

scattering, also photonic fragmentation functions are analogous to
the photon structure function F γ

2 (see review on structure fuctions in
Section 19 of this Review). Since photons have a pointlike coupling
to quarks [144], the corresponding fragmentation functions obey
inhomogeneous evolution equations and are generally decomposed
into a perturbative and a non-perturbative component [138,145,146].
The hadronic part, sometimes approximated by the Vector Meson
Dominance Model, can be obtained by performing global analysis to
the available prompt photon data [7,30,33,37–39,86,147,179].

20.6. Identified particles in e
+

e
− and semi-inclusive

DIS

A great wealth of measurements of e+e− fragmentation into
identified particles exists. A collection of references for data on
fragmentation into identified particles is given on Table 51.1 of this
Review. Representative of this body of data is Fig. 20.8 which shows
fragmentation functions as the scaled momentum spectra of charged
particles at several CM energies.

Quantitative results of studies of scaling violation in e+e−

fragmentation have been reported in [7,39,149,150]. The values of αs

obtained are consistent with the world average (see review on QCD in
Section 9 of this Review).

Many studies have been made of identified particles produced in
lepton-hadron scattering, although fewer particle species have been
measured than in e+e− collisions. References [151–158] and [159–165]
are representative of the data from fixed target and ep collider
experiments, respectively.

QCD calculations performed at NLO provide an overall good
description of the HERA data [54,55,59,165–167] for both SIDIS [168]
and the hadron transverse momentum distribution [50] in the
kinematic regions in which the calculations are predictive.

Fig. 20.9(a) compares lower-energy fixed-target and HERA data
on strangeness production, showing that the HERA spectra have
substantially increased multiplicities, albeit with insufficient statistical
precision to study scaling violations. The fixed-target data show that
the Λ rate substantially exceeds the Λ rate in the remnant region,
owing to the conserved baryon number from the baryon target.
Fig. 20.9(b) shows neutral and charged pion fragmentation functions
1/N · dn/dz, where z is defined as the ratio of the pion energy to
that of the exchanged boson, both measured in the laboratory frame.
Results are shown from HERMES and the EMC experiments, where
HERMES data have been evolved with NLO QCD to 〈Q2〉 = 25 GeV2

in order to be consistent with the EMC. Each of the experiments uses
various kinematic cuts to ensure that the measured particles lie in
the region which is expected to be associated with the struck quark.
In the DIS kinematic regime accessed at these experiments, and over
the range in z shown in Fig. 20.9, the z and xF variables have similar
values [51]. The precision data on identified particles can be used in
the study of the quark flavor content of the proton [169].

Data on identified particle production can aid the investigation of
the universality of jet fragmentation in e+e− and DIS. The strangeness
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Figure 20.8: Scaled momentum spectra of (a) π±, (b) K±,
and (c) p/p at

√
s = 10, 29, and 91 GeV [42–44,86,147,148].

suppression factor γs, as derived principally from tuning the Lund
string model [127] within JETSET [128], is typically found to be
around 0.3 in e+e− experiments [76], although values closer to 0.2 [170]
have also been obtained. A number of measurements of so-called
V 0-particles (K0, Λ0) and the relative rates of V 0’s and inclusively
produced charged particles have been performed at HERA [159–161]
and fixed target experiments [151]. These typically favour a stronger
suppression (γs ≈ 0.2) than usually obtained from e+e− data although
values close to 0.3 have also been obtained [171,172].

However, when comparing the description of QCD-based models
for lepton-hadron interactions and e+e− collisions, it is important to
note that the overall description by event generators of inclusively
produced hadronic final states is more accurate in e+e− collisions
than lepton-hadron interactions [173]. Predictions of particle rates
in lepton-hadron scattering are affected by uncertainties in the
modelling of the parton composition of the proton and photon,
the extended target remnant, and initial and final-state QCD
radiation. Furthermore, the tuning of event generators for e+e−

collisions is typically based on a larger set of parameters and uses
more observables [76] than are used when optimizing models for
lepton-hadron data [174].

20.7. Fragmentation in hadron-hadron collisions

An extensive set on high-transverse momentum (pT ) single-inclusive
hadron data has been collected in h1h2 → hX scattering processes,
both at high energy colliders and fixed-target experiments [175–194].
Only the transverse momentum pT is considered in hadron-
hadron collisions because of lack of knowledge of the longitudinal
momentum of the hard subprocess. Fig. 20.10 shows the cross
section (which is proportional to the particle number) density
d3σ

dp3
=

d3σ

dpxdpydpz
=

E

πm2

d2σ

dyd(p2
T )

for a compilation of neutral pion

and charged hadron production data for energies in the range
√

s ≈ 23
- 7000 GeV. More data for different hadron species has been recently
obtained at high energy colliders [195–199].

The differential cross-section for high-transverse momentum
distributions has been computed to next-to-leading order accuracy in
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perturbative QCD [200]. The factorization, µf , and renomalization,

µ, scales of these calculations typical range from p2
T /4 ≤ µ2

f , µ2 ≤ 4p2
T .

NLO calculations significantly under-predict the cross-section for
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several fixed-target energy data sets [201,202]. Different strategies
have been developed to ameliorate the theoretical description
at fixed-target energies. A possible phenomenological approach
involves the introduction of a non-perturbative intrinsic partonic
transverse momentum [194,203,204]. From the perturbative side,
the resummation of the dominant higher order corrections at
threshold produces an enhancement of the theoretical calculation that
significantly improves the description of the data [205,206].

Data collected at high energy colliders are either included in global
fit analyses or used as a test for the universality of fragmentation
functions. Certain tension has been observed between data sets from
lower-energy (RHIC) and higher-energy (LHC) collisions [207]. The
tension can be largely resolved by excluding from the analysis data
with transverse momentum smaller than ≈ 5 − 10 GeV, where fixed
order pQCD calculations are not expected to provide an accurate
description of the process. Still, after removing the smallish pT values
where the data sets appear to be mutually exclusive in the global fit,
lower-energy collisions data show a preference towards harder gluon
fragmentation at large z than LHC data [141].

Measurements of hadron production in longitudinally polarized pp
collisions are used mainly in the determination of the polarized gluon
distribution in the proton [208,209].

Hadron production provides a critical observable for probing
the high energy-density matter produced in heavy-ion collisions.
Measurements at colliders show a suppression of inclusive hadron
yields at high transverse momentum for AA collisions compared to
pp scattering, indicating the formation of a dense medium opaque to
quark and gluons, see e.g. [210].

20.8. Spin-dependent fragmentation

Measurements of charged-hadron production in unpolarized lepton-
hadron scattering provide a unique tool to perform a flavor-separation
determination of polarized parton densities from DIS interactions with
longitudinally polarized targets [211–215].

Polarized scattering presents the possibility to measure the spin
transfer from the struck quark to the final hadron, and thus
develop spin-dependent fragmentation functions [216,217]. Early
measurements of the longitudinal spin transfer to Lambda hyperons
have been presented in [218,219]. This process is also useful in the
study of the quark transversity distribution [220], which describes
the probability of finding a transversely polarized quark with its
spin aligned or anti-aligned with the spin of a transversely polarized
nucleon. The transversity function is chiral-odd, and therefore not
accessible through measurements of inclusive lepton-hadron scattering.
Semi-inclusive DIS, in which another chiral-odd observable may be
involved, provides a valuable tool to probe transversity. The Collins
fragmentation function [221] relates the transverse polarization of the
quark to that of the final hadron. It is chiral-odd and naive T-odd,
leading to a characteristic single spin asymmetry in the azimuthal
angular distribution of the produced hadron in the hadron scattering
plane. Azimuthal angular distributions in semi-inclusive DIS can also
be produced by other processes requiring non-polarized fragmentation
functions, like the Sivers mechanism [222].

A number of experiments have measured these asymme-
tries [223–233]. Collins and Sivers asymmetries have been shown
experimentally to be non zero by the HERMES measurements on
transversely polarized proton targets [224–226]. Independent infor-
mation on the Collins function has been provided by the BELLE
Collaboration [227–228]. Measurements performed by the COMPASS
collaboration on deuteron targets show results compatible with zero
for both asymmetries [229–231].

20.9. Heavy quark fragmentation

It was recognized very early [234] that a heavy flavored meson
should retain a large fraction of the momentum of the primordial
heavy quark, and therefore its fragmentation function should be much
harder than that of a light hadron. In the limit of a very heavy quark,
one expects the fragmentation function for a heavy quark to go into
any heavy hadron to be peaked near x = 1.

When the heavy quark is produced at a momentum much larger
than its mass, one expects important perturbative effects, enhanced by
powers of the logarithm of the transverse momentum over the heavy
quark mass, to intervene and modify the shape of the fragmentation
function. In leading logarithmic order (i.e., including all powers
of αs log mQ/pT ), the total (i.e., summed over all hadron types)
perturbative fragmentation function is simply obtained by solving the
leading evolution equation for fragmentation functions, Eq. (20.4),
with the initial condition due to the finite mass of the heavy quark
given by DQ(z, µ2)

∣

∣

µ2=m2
Q

= δ(1 − z) and Di(z, µ2)
∣

∣

µ2=m2
Q

= 0 for

i 6= Q (here Di(z, µ2), stands for the probability to produce a heavy
quark Q from parton i with a fraction z of the parton momentum).

Several extensions of the leading logarithmic result have appeared
in the literature. Next-to-leading-log (NLL) order results for the
perturbative heavy quark fragmentation function have been obtained
in [235]. The resummation of the dominant logarithmic contributions
at large z was performed in [45] to next-to-leading-log accuracy.
Fixed-order calculations of the fragmentation function at order α2

s in
e+e− annihilation have appeared in [236] while the initial condition
for the perturbative heavy quark fragmentation function has been
extended to NNLO in [237].

Inclusion of non-perturbative effects in the calculation of the heavy-
quark fragmentation function is done by convoluting the perturbative
result with a phenomenological non-perturbative form. This form
follows from the simple kinematical consideration that the formation
of a hadron by attaching light quarks/anti-quarks to the heavy quark
will slightly decelerate the heavy quark. Thus its shape will show a
peak which becomes increasingly centered next to z = 1 the higher the
quark mass. Among the most popular parametrizations we have the
following:

Peterson et al. [238] : Dnp(z) ∝1

z

(

1 − 1

z
− ǫ

1 − z

)−2

,(20.13)

Kartvelishvili et al. [239] : Dnp(z) ∝zα(1 − z) , (20.14)

Collins&Spiller [240] : Dnp(z) ∝
(

1 − z

z
+

(2 − z)ǫC
1 − z

)

×

(1 + z2)

(

1 − 1

z
− ǫC

1 − z

)−2

(20.15)

Colangelo&Nason [241] : Dnp(z) ∝(1 − z)αzβ (20.16)

Bowler [242] : Dnp(z) ∝z
−(1+bm2

h,⊥
)

(1 − z)a exp

(

−
bm2

h,⊥

z

)

(20.17)

Braaten et al. [243] : (see Eq. (31), (32) in [243]) (20.18)

where ǫ, ǫC , a, bm2
h,⊥, α, and β are non-perturbative parameters,

depending upon the heavy hadron considered. The parameters
entering the non-perturbative forms are fitted together with some
model of hard radiation, which can be either a shower Monte Carlo, a
leading-log or NLL calculation (which may or may not include Sudakov
resummation), or a fixed order calculation. In [236], for example, the
Peterson et al. [238] ǫ parameter for charm and bottom production
is fitted from the measured distributions of refs. [244,257] for charm,
and of [262] for bottom. If the leading-logarithmic approximation
(LLA) is used for the perturbative part, one finds ǫc ≈ 0.05 and
ǫb ≈ 0.006; if a second order calculation is used one finds ǫc ≈ 0.035
and ǫb ≈ 0.0033; if a NLL improved fixed order O(α2

S) calculation
is used instead of NLO O(αS) one finds ǫc ≈ 0.022 and ǫb ≈ 0.0023.
The larger values found in the LL approximation are consistent with
what is obtained in the context of parton shower models [246], as
expected. The ǫ parameter for charm and bottom scales roughly with
the inverse square of the heavy flavour mass. This behaviour can be
justified by several arguments [234,247,248]. It can be used to relate
the non-perturbative parts of the fragmentation functions of charm
and bottom quarks [236,241,249].

A more conventional approach [250] involves the introduction of a
unique set of heavy quark fragmentation functions of non-perturbative
nature that obey the usual massless evolution equations in Eq. (20.4).
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Finite mass terms of the form (mQ/pT )n are kept in the corresponding
short distance coefficient function for each scattering process. Within
this approach, the initial condition for the perturbative fragmentation
function provides the term needed to define the correct subtraction
scheme to match the massless limit for the coefficient function (see
e.g. [251]) . Such implementation is in line with the variable flavor
number scheme introduced for parton distributions functions, as
described in Section 19 of this Review.

High statistics data for charmed mesons production near the
Υ resonance (excluding decay products of B mesons) have been
published [252,253]. They include results for D and D∗, Ds (see
also [254,255]) and Λc. Shown in Fig. 20.11(a) are the CLEO and
BELLE inclusive cross-sections times branching ratio B, s · Bdσ/dxp,
for the production of D0 and D∗+. The variable xp approximates the
light-cone momentum fraction z, but is not identical to it. The two
measurements are consistent with each other.
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Figure 20.11: (a) Efficiency-corrected inclusive cross-
section measurements for the production of D0 and D∗+ in
e+e− measurements at

√
s ≈ 10.6 GeV, excluding B decay

products [252,253]. (b) Measured e+e− fragmentation function
of b quarks into B hadrons at

√
s ≈ 91 GeV [263].

The branching ratio B represents D0 → K−π+ for the D0 results
and for the D∗+ the product branching fraction: D∗+ → D0π+,
D0 → K−π+. Given the high precision of CLEO’s and BELLE’s data,
a superposition of different parametric forms for the non-perturbative
contribution is needed to obtain a good fit [23]. Older studies are
reported in Refs. [256–258]. Charmed meson spectra on the Z peak
have been published by OPAL and ALEPH [133,259].

Charm quark production has also been extensively studied at
HERA by the H1 and ZEUS collaborations. Measurements have been

made of D∗±, D±, and D±
s mesons and the Λc baryon. See, for

example, Refs. [260,261].

Experimental studies of the fragmentation function for b quarks,
shown in Fig. 20.11(b), have been performed at LEP and
SLD [262–264]. Commonly used methods identify the B meson
through its semileptonic decay or based upon tracks emerging from the
B secondary vertex. Heavy flavour contributions from gluon splitting
are usually explicitly removed before fitting for the fragmentation
functions. The studies in [263] fit the B spectrum using a Monte Carlo
shower model supplemented with non-perturbative fragmentation
functions yielding consistent results.

The experiments measure primarily the spectrum of B mesons.
This defines a fragmentation function which includes the effect of
the decay of higher mass excitations, like the B∗ and B∗∗. In the
literature (cf. details in Ref. [266]) , there is sometimes ambiguity
in what is defined to be the bottom fragmentation function. Instead
of using what is directly measured (i.e., the B meson spectrum)
corrections are applied to account for B∗ or B∗∗ production in some
cases.

Heavy-flavor production in e+e− collisions is the primary source
of information for the role of fragmentation effects in heavy-flavor
production in hadron-hadron and lepton-hadron collisions. The QCD
calculations tend to underestimate the data in certain regions of phase
space. Some experimental results from LHC summarized in [267] show
such deviations e.g. at high transverse jet momentum and also at
low di-jet separation angles, see [268] for details, and were already
theoretically investigated in [269].

Both bottomed- and charmed-mesons spectra have been measured
at the Tevatron with unprecedented accuracy [270]. The measured
spectra are in good agreement with QCD calculations (including
non-perturbative fragmentation effects inferred from e+e− data [271]).

The HERA collaborations have produced a number of measurements
of beauty production; see, for example, Refs. [260,272–275]. As for the
Tevatron data, the HERA results are described well by QCD-based
calculations using fragmentation models optimised with e+e− data.

Besides degrading the fragmentation function by gluon radiation,
QCD evolution can also generate soft heavy quarks, increasing in the
small x region as

√
s increases. Several theoretical studies are available

on the issue of how often bb̄ or cc̄ pairs are produced indirectly, via
a gluon splitting mechanism [276–278]. Experimental results from
studies on charm and bottom production via gluon splitting, given
in [259,279–283], yield weighted averages of ng→cc = 3.05± 0.45% and
ng→bb = 0.277± 0.072%, respectively.
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125. S. Höche et al., hep-ph/0602031 (2006);
J. Alwall et al., Eur. Phys. J. C53, 473 (2008);
S. Mrenna and P.Richardson, JHEP 0405, 040 (2004).

126. X. Artru and G. Mennessier, Nucl. Phys. B70, 93 (1974).
127. B. Andersson et al., Phys. Reports 97, 31 (1983).
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21. EXPERIMENTAL TESTS OF GRAVITATIONAL THEORY

Revised November 2015, with an additional February 2016 comment
on the observation of the first gravitational-wave event, by T. Damour
(IHES, Bures-sur-Yvette, France).

Einstein’s General Relativity, the current “standard” theory of
gravitation, describes gravity as a universal deformation of the
Minkowski metric:

gµν(xλ) = ηµν +hµν(xλ) , where ηµν = diag(−1, +1, +1, +1) . (21.1)

General Relativity is classically defined by two postulates. One
postulate states that the Lagrangian density describing the propagation
and self-interaction of the gravitational field is

LEin[gαβ ] =
c4

16πGN

√
ggµνRµν(gαβ) , (21.2)

where GN is Newton’s constant, g = − det(gµν), gµν is the matrix
inverse of gµν , and where the Ricci tensor Rµν ≡ Rα

µαν is the only
independent trace of the curvature tensor

Rα
µβν = ∂βΓα

µν − ∂νΓα
µβ + Γα

σβΓσ
µν − Γα

σνΓσ
µβ , (21.3)

Γλ
µν = 1

2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν) , (21.4)

A second postulate states that gµν couples universally, and
minimally, to all the fields of the Standard Model by replacing
everywhere the Minkowski metric ηµν . Schematically (suppressing
matrix indices and labels for the various gauge fields and fermions and
for the Higgs doublet),

LSM[ψ, Aµ, H, gµν ] = − 1
4

∑√
ggµαgνβF a

µνF a
αβ −

∑√
g ψ γµDµψ

− 1
2

√
ggµνDµHDνH −√

g V (H) −
∑

λ
√

g ψ Hψ , (21.5)

where γµγν + γνγµ = 2gµν , and where the covariant derivative
Dµ contains, besides the usual gauge field terms, a spin-dependent
gravitational contribution. From the total action follow Einstein’s
field equations,

Rµν − 1
2
Rgµν =

8πGN

c4
Tµν . (21.6)

Here R = gµνRµν , Tµν = gµαgνβT αβ , and T µν = (2/
√

g)δLSM/δgµν

is the (symmetric) energy-momentum tensor of the Standard
Model matter. The theory is invariant under arbitrary coordinate
transformations: x′µ = fµ(xν). To solve the field equations Eq. (21.6),
one needs to fix this coordinate gauge freedom. E.g., the “harmonic
gauge” (which is the analogue of the Lorenz gauge, ∂µAµ = 0, in
electromagnetism) corresponds to imposing the condition ∂ν(

√
ggµν) =

0.

In this Review, we only consider the classical limit of gravitation
(i.e. classical matter and classical gravity). Quantum gravitational
effects are expected (when considered at low energy) to correct the
classical action Eq. (21.3) by additional terms involving quadratic and
higher powers of the curvature tensor. This suggests that the validity
of classical gravity extends (at most) down to length scales of order the

Planck length LP =
√

~GN/c3 ≃ 1.62 × 10−33 cm, i.e. up to energy

scales of order the Planck energy EP =
√

~c5/GN ≃ 1.22× 1019 GeV.
Considering quantum matter in a classical gravitational background
also poses interesting challenges, notably the possibility that the
zero-point fluctuations of the matter fields generate a nonvanishing
vacuum energy density ρvac, corresponding to a term −√

g ρvac in
LSM [1]. This is equivalent to adding a “cosmological constant”
term +Λ gµν on the left-hand side of Einstein’s equations Eq. (21.6),
with Λ = 8πGN ρvac/c4. Recent cosmological observations (see the
following Reviews) suggest a positive value of Λ corresponding to
ρvac ≈ (2.3 × 10−3eV)4. Such a small value has a negligible effect on
the non cosmological tests discussed below.

21.1. Experimental tests of the coupling between
matter and gravity

The universality of the coupling between gµν and the Standard
Model matter postulated in Eq. (21.5) (“Equivalence Principle”)
has many observable consequences [2]. First, it predicts that the
outcome of a local non-gravitational experiment, referred to local
standards, does not depend on where, when, and in which locally
inertial frame, the experiment is performed. This means, for
instance, that local experiments should neither feel the cosmological
evolution of the universe (constancy of the “constants”), nor exhibit
preferred directions in spacetime (isotropy of space, local Lorentz
invariance). These predictions are consistent with many experiments
and observations. Stringent limits on a possible time variation of the
basic coupling constants have been obtained by analyzing a natural
fission reactor phenomenon which took place at Oklo, Gabon, two
billion years ago [3,4]. These limits are at the 1 × 10−7 level for the
fractional variation of the fine-structure constant αem [4], and at
the 4 × 10−9 level for the fractional variation of the ratio mq/ΛQCD
between the light quark masses and ΛQCD [5]. The determination
of the lifetime of Rhenium 187 from isotopic measurements of some
meteorites dating back to the formation of the solar system (about
4.6 Gyr ago) yields comparably strong limits [6]. Measurements of
absorption lines in astronomical spectra also give stringent limits on
the variability of both αem and µ = mp/me at cosmological redshifts.
E.g.

∆αem/αem = (1.3 ± 2.4stat ± 1.0sys) × 10−6 (21.7)

at a redshift z = 1.6919 [7], and

|∆µ/µ| < 4 × 10−7(95% C.L.) , (21.8)

at a redshift z = 0.88582 [8]. There are also strong limits (at the
10−5 level) on the variation of αem and µ = mp/me at very large
redshifts, such as z = 4.22 [9] and z = 5.2 [10]. Direct laboratory
limits (based on monitoring the frequency ratio of several different
atomic clocks) on the present time variation of αem, µ = mp/me, and
mq/ΛQCD have reached the levels [11]:

d ln(αem)/dt = (−2.5 ± 2.6) × 10−17yr−1,

d ln(µ)/dt = (−1.5 ± 3.0) × 10−16yr−1,

d ln(mq/ΛQCD)/dt = (7.1 ± 4.4) × 10−15yr−1. (21.9)

There are also experimental limits on a possible dependence of
coupling constants on the gravitational potential [11,12]. See Ref. 13
for a review of the issue of “variable constants.”

The highest precision tests of the isotropy of space have been
performed by looking for possible quadrupolar shifts of nuclear energy
levels [14]. The (null) results can be interpreted as testing the fact
that the various pieces in the matter Lagrangian Eq. (21.5) are indeed
coupled to one and the same external metric gµν to the 10−29 level.
For astrophysical constraints on possible Planck-scale violations of
Lorentz invariance, see Ref. 15.

The universal coupling to gµν postulated in Eq. (21.5) implies that
two (electrically neutral) test bodies dropped at the same location
and with the same velocity in an external gravitational field fall in
the same way, independently of their masses and compositions. The
universality of the acceleration of free fall has been verified at the
10−13 level for laboratory bodies, notably Beryllium-Titanium, and
Beryllium-Aluminum test bodies [16,17],

(∆a/a)BeTi = (0.3 ± 1.8) × 10−13 ,

(∆a/a)BeAl = (−0.7 ± 1.3)× 10−13 . (21.10)

The universality of free fall has also been verified when comparing the
fall of classical and quantum objects (6 × 10−9 level [18]) , or of two
quantum objects (5× 10−7 level [19]) . The gravitational accelerations
of the Earth and the Moon toward the Sun have also been verified to
agree [20],

(∆a/a)EarthMoon = (−0.8 ± 1.3) × 10−13 . (21.11)
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The latter result constrains not only how gµν couples to matter, but
also how it couples to itself [21]( “strong equivalence principle”).See
also Ref. 22 for a review of torsion balance experiments.

Finally, Eq. (21.5) also implies that two identically constructed
clocks located at two different positions in a static external Newtonian
potential U(x) =

∑
GNm/r exhibit, when intercompared by means

of electromagnetic signals, the (apparent) difference in clock rate,
τ1/τ2 = ν2/ν1 = 1 + [U(x1) − U(x2)]/c2 + O(1/c4), independently of
their nature and constitution. This universal gravitational redshift
of clock rates has been verified at the 10−4 level by comparing a
hydrogen-maser clock flying on a rocket up to an altitude ∼ 10, 000
km to a similar clock on the ground [23]. The redshift due to a height
change of only 33 cm has been detected by comparing two optical
clocks based on 27Al+ ions [24].

21.2. Tests of the dynamics of the gravitational field
in the weak field regime

The effect on matter of one-graviton exchange, i.e., the interaction
Lagrangian obtained when solving Einstein’s field equations Eq. (21.6)
written in, say, the harmonic gauge at first order in hµν ,

hµν = −16πGN

c4
(Tµν − 1

2
Tηµν) + O(h2) + O(hT ) , (21.12)

reads −(8πGN/c4)T µν −1(Tµν − 1
2
Tηµν). For a system of N moving

point masses, with free Lagrangian L(1) =

N∑

A=1

− mAc2
√

1 − v
2
A/c2,

this interaction, expanded to order v2/c2, reads (with rAB ≡ |xA−xB |,
nAB ≡ (xA − xB)/rAB)

L(2) = 1
2

∑

A 6=B

GN mA mB

rAB

[
1 +

3

2c2
(v2

A + v
2
B) − 7

2c2
(vA · vB)

− 1

2c2
(nAB · vA)(nAB · vB) + O

(
1

c4

) ]
. (21.13)

The two-body interactions, Eq. (21.13), exhibit v2/c2 corrections
to Newton’s 1/r potential induced by spin-2 exchange (“gravito-
magnetism”). Consistency at the “post-Newtonian” level v2/c2 ∼
GN m/rc2 requires that one also considers the three-body interactions
induced by some of the three-graviton vertices and other nonlinearities
(terms O(h2) and O(hT ) in Eq. (21.12)),

L(3) = −1

2

∑

B 6=A 6=C

G2
N mA mB mC

rAB rAC c2
+ O

(
1

c4

)
. (21.14)

All currently performed gravitational experiments in the solar
system, including perihelion advances of planetary orbits, the bending
and delay of electromagnetic signals passing near the Sun, and very
accurate ranging data to the Moon obtained by laser echoes, are
compatible with the post-Newtonian results Eqs. (21.12)–(21.14).
The “gravito-magnetic” interactions ∝ vAvB contained in Eq. (21.13)
are involved in many of these experimental tests. They have been
particularly tested in lunar laser ranging data [20], in the LAGEOS
satellite observations [25,26], and in the dedicated Gravity Probe
B mission [27]. The recently launched LARES satellite promises to
improve the accuracy of such tests [26].

Similar to what is done in discussions of precision electroweak
experiments, it is useful to quantify the significance of precision
gravitational experiments by parameterizing plausible deviations from
General Relativity. Here, we shall focus on the simplest, and most
conservative deviations from Einstein’s pure spin-2 theory defined by
adding new, bosonic light or massless, macroscopically coupled fields.
[For discussions of less conservative deviations from Einstein’s theory
(modified newtonian dynamics, massive gravity, higher-order gravity,
f(R)-gravity, Lorentz-violating theories,...) and their confrontation
with experiment, see [28,29,30]. ] The possibility of new gravitational-
strength couplings leading (on small, and possibly large, scales) to

deviations from Einsteinian (and Newtonian) gravity is suggested by
String Theory [31], and by Brane World ideas [32]. For reviews of
experimental constraints on Yukawa-type additional interactions, see
Refs. [22,33,17]. Experiments have set limits on non-Newtonian forces
down to 0.056 mm [34].

Here, we shall focus on the parametrization of long-range deviations
from relativistic gravity obtained by adding a strictly massless (i.e.
without self-interaction V (ϕ) = 0) scalar field ϕ coupled to the trace
of the energy-momentum tensor T = gµνT µν [35]. The most general
such theory contains an arbitrary function a(ϕ) of the scalar field, and
can be defined by the Lagrangian

Ltot[gµν , ϕ, ψ, Aµ, H ] =
c4

16πG

√
g(R(gµν) − 2gµν∂µϕ∂νϕ)

+LSM[ψ, Aµ, H, g̃µν ] , (21.15)

where G is a “bare” Newton constant, and where the Standard
Model matter is coupled not to the “Einstein” (pure spin-2) metric
gµν , but to the conformally related (“Jordan-Fierz”) metric g̃µν =
exp(2a(ϕ))gµν . The scalar field equation gϕ = −(4πG/c4)α(ϕ)T
displays α(ϕ) ≡ ∂a(ϕ)/∂ϕ as the basic (field-dependent) coupling
between ϕ and matter [36]. The one-parameter (ω) Jordan-Fierz-
Brans-Dicke theory [35] is the special case a(ϕ) = α0ϕ leading to
a field-independent coupling α(ϕ) = α0 (with α0

2 = 1/(2ω + 3)).
The addition of a self-interaction term V (ϕ) in Eq. (21.15)
introduces new phenomenological possibilities; notably the “chameleon
mechanism” [37].

In the weak-field slow-motion limit appropriate to describing
gravitational experiments in the solar system, the addition of ϕ
modifies Einstein’s predictions only through the appearance of two
“post-Einstein” dimensionless parameters: γ = −2α2

0/(1+α2
0) and β =

+ 1
2
β0α

2
0/(1+ α2

0)
2, where α0 ≡ α(ϕ0), β0 ≡ ∂α(ϕ0)/∂ϕ0, ϕ0 denoting

the vacuum expectation value of ϕ. These parameters show up also
naturally (in the form γPPN = 1+γ, βPPN = 1+β) in phenomenological
discussions of possible deviations from General Relativity [2]. The
parameter γ measures the admixture of spin 0 to Einstein’s graviton,
and contributes an extra term + γ(vA−vB)2/c2 in the square brackets
of the two-body Lagrangian Eq. (21.13). The parameter β modifies
the three-body interaction Eq. (21.14) by an overall multiplicative
factor 1 + 2β. Moreover, the combination η ≡ 4β − γ parameterizes
the lowest order effect of the self-gravity of orbiting masses by
modifying the Newtonian interaction energy terms in Eq. (21.13) into
GABmAmB/rAB , with a body-dependent gravitational “constant”
GAB = GN [1 + η(E

grav
A /mAc2 + E

grav
B /mBc2) + O(1/c4)], where

GN = G exp[2a(ϕ0)](1+α2
0) and where Egrav

A denotes the gravitational
binding energy of body A.

The best current limits on the post-Einstein parameters γ and β
are (at the 68% confidence level):

γ = (2.1 ± 2.3) × 10−5 , (21.16)

deduced from the additional Doppler shift experienced by radio-wave
beams connecting the Earth to the Cassini spacecraft when they
passed near the Sun [38], and

|β| < 7 × 10−5 , (21.17)

from a study of the global sensitivity of planetary ephemerides
to post-Einstein parameters [39]. More stringent limits on γ are
obtained in models (e.g., string-inspired ones [31]) where scalar
couplings violate the Equivalence Principle.

21.3. Tests of the dynamics of the gravitational field
in the radiative and/or strong field regimes

The discovery of pulsars (i.e., rotating neutron stars emitting a
beam of radio noise) in gravitationally bound orbits [40,41] has opened
up an entirely new testing ground for relativistic gravity, giving us
an experimental handle on the regime of radiative and/or strong
gravitational fields. In these systems, the finite velocity of propagation
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of the gravitational interaction between the pulsar and its companion
generates damping-like terms at order (v/c)5 in the equations of
motion [43]. These damping forces are the local counterparts of the
gravitational radiation emitted at infinity by the system (“gravitational
radiation reaction”). They cause the binary orbit to shrink and its
orbital period Pb to decrease. The remarkable stability of pulsar
clocks has allowed one to measure the corresponding very small orbital
period decay Ṗb ≡ dPb/dt ∼ −(v/c)5 ∼ −10−12 in several binary
systems, thereby giving us a direct experimental confirmation of the
propagation properties of the gravitational field, and, in particular, an
experimental confirmation that the speed of propagation of gravity cg

is equal to the velocity of light c to better than a part in a thousand.
[See, also, [42] for tight constraints on the difference c − cg, when it is
assumed positive.] In addition, the surface gravitational potential of
a neutron star h00(RNS) ≃ 2Gm/c2RNS ≃ 0.4 being a factor ∼ 108

higher than the surface potential of the Earth, and a mere factor 2.5
below the black hole limit (h00(RBH) = 1), pulsar data have allowed
one to obtain several accurate tests of the strong-gravitational-field
regime, as we discuss next.

Binary pulsar timing data record the times of arrival of successive
electromagnetic pulses emitted by a pulsar orbiting around the
center of mass of a binary system. After correcting for the Earth
motion around the Sun and for the dispersion due to propagation
in the interstellar plasma, the time of arrival of the Nth pulse tN
can be described by a generic, parameterized “timing formula” [44]
whose functional form is common to the whole class of tensor-scalar
gravitation theories:

tN − t0 = F [TN (νp, ν̇p, ν̈p) ; {pK} ; {pPK}] . (21.18)

Here, TN is the pulsar proper time corresponding to the Nth turn
given by N/2π = νpTN + 1

2
ν̇pT

2
N + 1

6
ν̈pT

3
N (with νp ≡ 1/Pp the spin

frequency of the pulsar, etc.), {pK} = {Pb, T0, e, ω0, x} is the set of
“Keplerian” parameters (notably, orbital period Pb, eccentricity e,
periastron longitude ω0 and projected semi-major axis x = a sin i/c),
and {pPK} = {k, γtiming, Ṗb, r, s, δθ, ė, ẋ} denotes the set of (separately
measurable) “post-Keplerian” parameters. Most important among
these are: the fractional periastron advance per orbit k ≡ ω̇Pb/2π,
a dimensionful time-dilation parameter γtiming, the orbital period

derivative Ṗb, and the “range” and “shape” parameters of the
gravitational time delay caused by the companion, r and s.

Without assuming any specific theory of gravity, one can
phenomenologically analyze the data from any binary pulsar by
least-squares fitting the observed sequence of pulse arrival times to
the timing formula Eq. (21.18). This fit yields the “measured” values
of the parameters {νp, ν̇p, ν̈p}, {pK}, {pPK}. Now, each specific

relativistic theory of gravity predicts that, for instance, k, γtiming, Ṗb,
r and s (to quote parameters that have been successfully measured
from some binary pulsar data) are some theory-dependent functions
of the Keplerian parameters and of the (unknown) masses m1, m2 of
the pulsar and its companion. For instance, in General Relativity, one
finds (with M ≡ m1 + m2, n ≡ 2π/Pb)

kGR(m1, m2) =3(1 − e2)−1(GNMn/c3)2/3 ,

γGR
timing(m1, m2) =en−1(GNMn/c3)2/3m2(m1 + 2m2)/M

2 ,

ṖGR
b (m1, m2) = − (192π/5)(1− e2)−7/2

(
1 + 73

24
e2 + 37

96
e4

)

× (GNMn/c3)5/3m1m2/M
2 ,

r(m1, m2) =GNm2/c3 ,

s(m1, m2) =nx(GNMn/c3)−1/3M/m2 . (21.19)

In tensor-scalar theories, each of the functions ktheory(m1, m2),

γtheory
timing(m1, m2), Ṗ theory

b (m1, m2), etc., is modified by quasi-static

strong field effects (associated with the self-gravities of the pulsar

and its companion), while the particular function Ṗ theory
b (m1, m2)

is further modified by radiative effects (associated with the spin 0
propagator) [36,45,46].

Let us give some highlights of the current experimental situation.
In the first discovered binary pulsar PSR 1913+16 [40,41], it has been

possible to measure with accuracy three post-Keplerian parameters:
k, γtiming and Ṗb. The three equations kmeasured = ktheory(m1, m2),

γmeasured
timing = γtheory

timing(m1, m2), Ṗmeasured
b = Ṗ theory

b (m1, m2) determine,

for each given theory, three curves in the two-dimensional mass
plane. This yields one (combined radiative/strong-field) test of the
specified theory, according to whether the three curves meet at
one point, as they should. After subtracting a small (∼ 10−14 level
in Ṗ obs

b = (−2.423 ± 0.001) × 10−12), but significant, “galactic”
perturbing effect (linked to galactic accelerations and to the pulsar
proper motion) [47], one finds that General Relativity passes this
(k − γtiming − Ṗb)1913+16 test with complete success at the 10−3

level [41,48,49]

[
Ṗ obs

b − Ṗ
gal
b

ṖGR
b [kobs, γobs

timing]

]

1913+16

= 0.997 ± 0.002 . (21.20)

Here ṖGR
b [kobs, γobs

timing] is the result of inserting in ṖGR
b (m1, m2)

the values of the masses predicted by the two equations kobs =
kGR(m1, m2), γobs

timing = γGR
timing(m1, m2). This yields experimental

evidence for the reality of gravitational radiation damping forces at
the (−3 ± 2) × 10−3 level.

The discovery of the binary pulsar PSR 1534+12 [50] has allowed
one to measure five post-Keplerian parameters: k, γtiming, r, s, and

(with less accuracy)Ṗb [51,52]. This allows one to obtain three (five
observables minus two masses) tests of relativistic gravity. Two among
these tests probe strong field gravity, without mixing of radiative
effects [51]. General Relativity passes all these tests within the
measurement accuracy. The most precise of the new, pure strong-field
tests is the one obtained by combining the measurements of k, γtiming,
and s. Using the most recent data [52], one finds agreement at the
(2 ± 2) × 10−3 level:

[
sobs

sGR[kobs, γobs
timing]

]

1534+12

= 1.002 ± 0.002 . (21.21)

The discovery of the binary pulsar PSR J1141−6545 [53](
whose companion is probably a white dwarf) has allowed one to
measure four observable parameters: k, γtiming, Ṗb [54,55], and the
parameter s [56,55]. The latter parameter (which is equal to the
sine of the inclination angle, s = sin i) was consistently measured
in two ways: from a scintillation analysis [56], and from timing
measurements [55]. General Relativity passes all the corresponding
tests within measurement accuracy. See Fig. 21.1 which uses the
(more precise) scintillation measurement of s = sin i.

The discovery of the remarkable double binary pulsar PSR
J0737−3039 A and B [57,58] has led to the measurement of seven

independent parameters [59,60,61]: five of them are the post-
Keplerian parameters k, γtiming, r, s and Ṗb entering the relativistic
timing formula of the fast-spinning pulsar PSR J0737−3039 A, a sixth
is the ratio R = xB/xA between the projected semi-major axis of
the more slowly spinning companion pulsar PSR J0737−3039 B, and
that of PSR J0737−3039 A. [The theoretical prediction for the ratio
R = xB/xA, considered as a function of the (inertial) masses m1 = mA
and m2 = mB, is Rtheory = m1/m2 + O((v/c)4) [44], independently
of the gravitational theory considered.] Finally, the seventh parameter
ΩSO,B is the angular rate of (spin-orbit) precession of PSR
J0737−3039 B around the total angular momentum [60,61]. These
seven measurements give us five tests of relativistic gravity [59,62,63].
General Relativity passes all those tests with flying colors (see
Fig. 21.1). Let us highlight here two of them (from [63]) .

One test is a new confirmation of the reality of gravitational
radiation at the 10−3 level

[
Ṗ obs

b

ṖGR
b [kobs, Robs]

]

0737−3039

= 1.000 ± 0.001 . (21.22)

Another one is a new, 5 × 10−4 level, strong-field confirmation of
General Relativity:



352 21. Experimental tests of gravitational theory

s

r

PSR B1534+12

P
.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5 .

m2

m1

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

sscint

P
.

.

m2

m1

.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

s ≤ 1

P
.

PSR B1913+16

.

m2

m1

s

P
.

r

SO

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5 .

m2

m1

xB/xA

Figure 21.1: Illustration of the eleven tests of relativistic gravity
obtained in the four different binary pulsar systems PSR1913+16
(one test), PSR1534+12 (3 tests), PSR J1141−6545 (2 tests),
and PSR J0737−3039 A,B (5 tests). Each curve (or strip)
in the mass plane corresponds to the interpretation, within
General Relativity, of some observable parameter among: Ṗb,
k ≡ ω̇Pb/2π, γtiming, r, s = sin i, ΩSO,B and R. (Figure updated
from [75]; courtesy of G. Esposito-Farèse.)

[
sobs

sGR[kobs, Robs]

]

0737−3039

= 1.0000± 0.0005 . (21.23)

Fig. 21.1 illustrates all the tests of strong-field and radiative gravity
derived from the above-mentioned binary pulsars: (3 − 2 =) one test
from PSR1913+16, (5 − 2 =) 3 tests from PSR1534+12, (4 − 2 =)
2 tests from PSR J1141−6545, and (7 − 2 =) 5 tests from PSR
J0737−3039. [See, also, [64] for additional, less accurate, and partially
discrepant, tests of relativistic gravity.]

Data from several nearly circular binary systems (made of a neutron
star and a white dwarf) have also led to strong-field confirmations (at
the 4.6× 10−3 level) of the ‘strong equivalence principle,’ i.e., the fact
that neutron stars and white dwarfs fall with the same acceleration in
the gravitational field of the Galaxy [65,66,67]. The measurements of
Ṗb in some pulsar-white dwarf systems lead to strong constraints on
the variation of Newton’s GN , and on the existence of gravitational
dipole radiation [68,69,70,71,72]. In addition, arrays of millisecond
pulsars are sensitive detectors of ultra low frequency gravitational
waves (f ∼ 10−9 − 10−8 Hz) [73]. Such waves might be generated
by supermassive black-hole binary systems, by cosmic strings and/or
during the inflationary era. The sensitivity of pulsar timing arrays
is comparable to predicted gravitational wave signal levels and has
recently obtained the most stringent current limit on the energy
density of a stochastic relic background of gravitational waves, namely
(using standard notation, as in the following Review on Big-Bang
Cosmology) Ωgw(f)h2 < 4.2 × 10−10 [74].

The constraints on tensor-scalar theories provided by the various
binary-pulsar “experiments” have been analyzed in [51,46,75,76,70]
and shown to exclude a large portion of the parameter space allowed
by solar-system tests. The most stringent tests follow from the
measurement of the orbital period decay Ṗb of the low-eccentricity

8.5-hour pulsar-white dwarf system PSR J1738+0333 with [70]

[
Ṗ obs

b − Ṗ gal
b − ṖGR

b

]

1738+0333
= (2.0 ± 3.7) × 10−15. (21.24)

Asymmetric binary systems are strong emitters of dipolar
gravitational radiation in tensor-scalar theories, with Ṗb scaling
(modulo matter-scalar couplings) like m1m2/(m1 + m2)

2(v/c)3

(∼ 10−9 for PSR J1738+0333), instead of the smaller quadrupolar
radiation Ṗb ∼ (v/c)5 [2,36]. Thereby, the result Eq. (21.24)
constrains the basic matter-scalar coupling α2

0 more strongly, over
most of the parameter space, than the best current solar-system
limits Eq. (21.16), Eq. (21.17) (namely below the 10−5 level) [70].
In the particular case of the Jordan-Fierz-Brans-Dicke theory, the
pulsar bound on α2

0 is (when choosing an equation of state of medium
stiffness) α2

0 < 2 × 10−5, which is within a factor two of the Cassini
bound Eq. (21.16) (where γ = −2α2

0/(1 + α2
0)).

Measurements over several years of the pulse profiles of various
pulsars have detected secular profile changes compatible with the
prediction [77] that the general relativistic spin-orbit coupling
should cause a secular change in the orientation of the pulsar
beam with respect to the line of sight (“geodetic precession”). Such
confirmations of general-relativistic spin-orbit effects were obtained
in PSR 1913+16 [78], PSR B1534+12 [52], PSR J1141−6545 [79],
PSR J0737−3039 [60,61] and PSR J1906+0746 [80]. In some cases
(notably PSR 1913+16 and PSR J1906+0746) the secular change
in the orientation of the pulsar beam is expected to lead to the
disappearance of the beam (as seen on the Earth) on a human time
scale (the second pulsar in the double system PSR J0737−3039 has
already disappeared in March 2008 and is expected to reappear around
2035 [61]) .

The first observation on September 14, 2015, by the two detectors
of the Laser Interferometer Gravitational-wave Observatory (LIGO),
of a gravitational-wave signal, and its subsequent analysis by the
LIGO/Virgo collaboration [81], has opened up a novel testing ground
for relativistic gravity. This transient signal is most readily interpreted
as the gravitational-wave signal emitted (∼ 400 Mpc away) by the
last ∼ 3 inspiralling orbits and the merger of a binary black hole.
Thanks to the rather high signal-to-noise ratio (∼ 24) of the LIGO
observations, one could test consistency with General Relativity in
several ways, notably via the good global agreement between the full
observed signal and the signal predicted by both analytical [82] and
numerical [83] calculations of the gravitational waveform emitted by
coalescing black holes. At this early stage, this agreement does not
lead to quantitatively accurate tests of relativistic gravity competing
with those discussed above. However, this observation has already
brought new, deep qualitative confirmations of General Relativity,
namely: (i) the first observation, in the wave zone, of gravitational
waves; and (ii) the first direct evidence of the existence of black
holes via the observation of their merger, followed by an abrupt
shut-off of the gravitational-wave signal. Future gravitational-wave
observations are expected to be able to probe more deeply relativistic
gravity, notably in testing the specific, Einsteinian transverse-traceless
quadrupolar nature of gravitational waves, as well as the emission,
just after the merger of two black holes, of the characteristic ringing
modes of the final, perturbed black hole [84].

The tests considered above have examined the gravitational
interaction on scales between a fraction of a millimeter and a few
astronomical units. The general relativistic action on light and
matter of an external gravitational field have been verified on much
larger scales in many gravitational lensing systems [85]. Some
tests on cosmological scales are also available [86]. Beyond the
various quantitative limits on various parametrized theoretical models
discussed in the latter reference, one should remember the massive
(strong-field-type) qualitative verification of General Relativity
embodied in the fact that relativistic cosmological models give an
accurate picture of the Universe over a period during which the spatial
metric has been blown up by a gigantic factor, say (1 + z)2 ∼ 1019

between Big Bang nucleosynthesis and now.
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21.4. Conclusions

All present experimental tests are compatible with the predictions
of the current “standard” theory of gravitation: Einstein’s General
Relativity. The universality of the coupling between matter and
gravity (Equivalence Principle) has been verified around the 10−13

level. Solar system experiments have tested the weak-field predictions
of Einstein’s theory at the few 10−5 level. The propagation properties
(in the near zone) of relativistic gravity, as well as several of its strong-
field aspects, have been verified at the 10−3 level (or better) in several
binary pulsar experiments. The existence of gravitational waves (in
the wave zone), and a direct observational proof of the existence of
coalescing black holes, have been obtained by interferometric detectors
of gravitational radiation. Recent laboratory experiments have set
strong constraints on sub-millimeter modifications of Newtonian
gravity. Quantitative confirmations of General Relativity have also
been obtained on astrophysical and cosmological scales (though a
skeptic might wish to keep in mind the two “dark clouds” of current
cosmology, namely the need to assume dark matter and a cosmological
constant).
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22. BIG-BANG COSMOLOGY

Revised September 2015 by K.A. Olive (University of Minnesota) and
J.A. Peacock (University of Edinburgh).

22.1. Introduction to Standard Big-Bang Model

The observed expansion of the Universe [1–3] is a natural (almost
inevitable) result of any homogeneous and isotropic cosmological
model based on general relativity. However, by itself, the Hubble
expansion does not provide sufficient evidence for what we generally
refer to as the Big-Bang model of cosmology. While general relativity
is in principle capable of describing the cosmology of any given
distribution of matter, it is extremely fortunate that our Universe
appears to be homogeneous and isotropic on large scales. Together,
homogeneity and isotropy allow us to extend the Copernican Principle
to the Cosmological Principle, stating that all spatial positions in the
Universe are essentially equivalent.

The formulation of the Big-Bang model began in the 1940s with the
work of George Gamow and his collaborators, Alpher and Herman.
In order to account for the possibility that the abundances of the
elements had a cosmological origin, they proposed that the early
Universe which was once very hot and dense (enough so as to allow
for the nucleosynthetic processing of hydrogen), and has expanded
and cooled to its present state [4,5]. In 1948, Alpher and Herman
predicted that a direct consequence of this model is the presence
of a relic background radiation with a temperature of order a few
K [6,7]. Of course this radiation was observed 16 years later as the
microwave background radiation [8]. Indeed, it was the observation
of the 3 K background radiation that singled out the Big-Bang model
as the prime candidate to describe our Universe. Subsequent work on
Big-Bang nucleosynthesis further confirmed the necessity of our hot
and dense past. (See Sec. 22.3.7 for a brief discussion of BBN and
the review on BBN—Sec. 24 of this Review for a detailed discussion
of BBN.) These relativistic cosmological models face severe problems
with their initial conditions, to which the best modern solution is
inflationary cosmology, discussed in Sec. 22.3.5. (See the upcoming
review on inflation of this Review for a detailed discussion of inflation.)
If correct, these ideas would strictly render the term ‘Big Bang’
redundant, since it was first coined by Hoyle to represent a criticism
of the lack of understanding of the initial conditions.

22.1.1. The Robertson-Walker Universe :

The observed homogeneity and isotropy enable us to describe
the overall geometry and evolution of the Universe in terms of two
cosmological parameters accounting for the spatial curvature and
the overall expansion (or contraction) of the Universe. These two
quantities appear in the most general expression for a space-time
metric which has a (3D) maximally symmetric subspace of a 4D
space-time, known as the Robertson-Walker metric:

ds2 = dt2 − R2(t)

[

dr2

1 − kr2 + r2 (dθ2 + sin2 θ dφ2)

]

. (22.1)

Note that we adopt c = 1 throughout. By rescaling the radial
coordinate, we can choose the curvature constant k to take only the
discrete values +1, −1, or 0 corresponding to closed, open, or spatially
flat geometries. In this case, it is often more convenient to re-express
the metric as

ds2 = dt2 − R2(t)
[

dχ2 + S2
k(χ) (dθ2 + sin2 θ dφ2)

]

, (22.2)

where the function Sk(χ) is (sin χ, χ, sinhχ) for k = (+1, 0,−1). The
coordinate r [in Eq. (22.1)] and the ‘angle’ χ (in Eq. (22.2)) are
both dimensionless; the dimensions are carried by R(t), which is
the cosmological scale factor which determines proper distances in
terms of the comoving coordinates. A common alternative is to define
a dimensionless scale factor, a(t) = R(t)/R0, where R0 ≡ R(t0) is
R at the present epoch. It is also sometimes convenient to define
a dimensionless or conformal time coordinate, η, by dη = dt/R(t).
Along constant spatial sections, the proper time is defined by the time
coordinate, t. Similarly, for dt = dθ = dφ = 0, the proper distance is
given by R(t)χ. For standard texts on cosmological models see e.g.,
Refs. [9–16].

22.1.2. The redshift :

The cosmological redshift is a direct consequence of the Hubble
expansion, determined by R(t). A local observer detecting light from a
distant emitter sees a redshift in frequency. We can define the redshift
as

z ≡ ν1 − ν2

ν2
≃ v12 , (22.3)

where ν1 is the frequency of the emitted light, ν2 is the observed
frequency and v12 is the relative velocity between the emitter and the
observer. While the definition, z = (ν1 − ν2)/ν2 is valid on all distance
scales, relating the redshift to the relative velocity in this simple way
is only true on small scales (i.e., less than cosmological scales) such
that the expansion velocity is non-relativistic. For light signals, we
can use the metric given by Eq. (22.1) and ds2 = 0 to write

v12 = Ṙ δr =
Ṙ

R
δt =

δR

R
=

R2 − R1

R1
, (22.4)

where δr(δt) is the radial coordinate (temporal) separation between
the emitter and observer. Noting that physical distance, D, is Rδr or
δt, Eq. (22.4) gives us Hubble’s law, v = HD. In addition, we obtain
the simple relation between the redshift and the scale factor

1 + z =
ν1

ν2
=

R2

R1
. (22.5)

This result does not depend on the non-relativistic approximation.

22.1.3. The Friedmann equations of motion :

The cosmological equations of motion are derived from Einstein’s
equations

Rµν − 1
2gµνR = 8πGNTµν + Λgµν . (22.6)

Gliner [17] and Zeldovich [18] have pioneered the modern view, in
which the Λ term is set on the rhs and interpreted as an effective
energy–momentum tensor Tµν for the vacuum of Λgµν/8πGN. It is
common to assume that the matter content of the Universe is a perfect
fluid, for which

Tµν = −pgµν + (p + ρ)uµuν , (22.7)

where gµν is the space-time metric described by Eq. (22.1), p is the
isotropic pressure, ρ is the energy density and u = (1, 0, 0, 0) is the
velocity vector for the isotropic fluid in co-moving coordinates. With
the perfect fluid source, Einstein’s equations lead to the Friedmann
equations

H2 ≡
(

Ṙ

R

)2

=
8π GN ρ

3
− k

R2
+

Λ

3
, (22.8)

and
R̈

R
=

Λ

3
− 4πGN

3
(ρ + 3p) , (22.9)

where H(t) is the Hubble parameter and Λ is the cosmological
constant. The first of these is sometimes called the Friedmann
equation. Energy conservation via T µν

;µ = 0, leads to a third useful

equation [which can also be derived from Eq. (22.8) and Eq. (22.9)]

ρ̇ = −3H (ρ + p) . (22.10)

Eq. (22.10) can also be simply derived as a consequence of the first
law of thermodynamics.

Eq. (22.8) has a simple classical mechanical analog if we neglect
(for the moment) the cosmological term Λ. By interpreting −k/R2

Newtonianly as a ‘total energy’, then we see that the evolution of the
Universe is governed by a competition between the potential energy,
8πGNρ/3, and the kinetic term (Ṙ/R)2. For Λ = 0, it is clear that
the Universe must be expanding or contracting (except at the turning
point prior to collapse in a closed Universe). The ultimate fate of
the Universe is determined by the curvature constant k. For k = +1,
the Universe will recollapse in a finite time, whereas for k = 0,−1,
the Universe will expand indefinitely. These simple conclusions can
be altered when Λ 6= 0 or more generally with some component with
(ρ + 3p) < 0.
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22.1.4. Definition of cosmological parameters :

In addition to the Hubble parameter, it is useful to define several
other measurable cosmological parameters. The Friedmann equation
can be used to define a critical density such that k = 0 when Λ = 0,

ρc ≡ 3H2

8π GN

= 1.88 × 10−26 h2 kg m−3

= 1.05 × 10−5 h2 GeV cm−3 ,

(22.11)

where the scaled Hubble parameter, h, is defined by

H ≡ 100 h km s−1 Mpc−1

⇒ H−1 = 9.78 h−1 Gyr

= 2998 h−1 Mpc .

(22.12)

The cosmological density parameter Ωtot is defined as the energy
density relative to the critical density,

Ωtot = ρ/ρc . (22.13)

Note that one can now rewrite the Friedmann equation as

k/R2 = H2(Ωtot − 1) . (22.14)

From Eq. (22.14), one can see that when Ωtot > 1, k = +1 and the
Universe is closed, when Ωtot < 1, k = −1 and the Universe is open,
and when Ωtot = 1, k = 0, and the Universe is spatially flat.

It is often necessary to distinguish different contributions to
the density. It is therefore convenient to define present-day density
parameters for pressureless matter (Ωm) and relativistic particles (Ωr),
plus the quantity ΩΛ = Λ/3H2. In more general models, we may wish
to drop the assumption that the vacuum energy density is constant,
and we therefore denote the present-day density parameter of the
vacuum by Ωv. The Friedmann equation then becomes

k/R2
0 = H2

0 (Ωm + Ωr + Ωv − 1) , (22.15)

where the subscript 0 indicates present-day values. Thus, it is the
sum of the densities in matter, relativistic particles, and vacuum that
determines the overall sign of the curvature. Note that the quantity
−k/R2

0H
2
0 is sometimes referred to as Ωk. This usage is unfortunate:

it encourages one to think of curvature as a contribution to the energy
density of the Universe, which is not correct.

22.1.5. Standard Model solutions :

Much of the history of the Universe in the standard Big-Bang model
can be easily described by assuming that either matter or radiation
dominates the total energy density. During inflation and again today
the expansion rate for the Universe is accelerating, and domination by
a cosmological constant or some other form of dark energy should be
considered. In the following, we shall delineate the solutions to the
Friedmann equation when a single component dominates the energy
density. Each component is distinguished by an equation of state
parameter w = p/ρ.

22.1.5.1. Solutions for a general equation of state:

Let us first assume a general equation of state parameter for a
single component, w which is constant. In this case, Eq. (22.10) can
be written as ρ̇ = −3(1 + w)ρṘ/R and is easily integrated to yield

ρ ∝ R−3(1+w) . (22.16)

Note that at early times when R is small, the less singular curvature
term k/R2 in the Friedmann equation can be neglected so long as
w > −1/3. Curvature domination occurs at rather late times (if a
cosmological constant term does not dominate sooner). For w 6= −1,
one can insert this result into the Friedmann equation Eq. (22.8), and
if one neglects the curvature and cosmological constant terms, it is
easy to integrate the equation to obtain,

R(t) ∝ t2/[3(1+w)] . (22.17)

22.1.5.2. A Radiation-dominated Universe:

In the early hot and dense Universe, it is appropriate to assume an
equation of state corresponding to a gas of radiation (or relativistic
particles) for which w = 1/3. In this case, Eq. (22.16) becomes
ρ ∝ R−4. The ‘extra’ factor of 1/R is due to the cosmological redshift;
not only is the number density of particles in the radiation background
decreasing as R−3 since volume scales as R3, but in addition, each
particle’s energy is decreasing as E ∝ ν ∝ R−1. Similarly, one can
substitute w = 1/3 into Eq. (22.17) to obtain

R(t) ∝ t1/2 ; H = 1/2t . (22.18)

22.1.5.3. A Matter-dominated Universe:

At relatively late times, non-relativistic matter eventually dominates
the energy density over radiation (see Sec. 22.3.8). A pressureless gas
(w = 0) leads to the expected dependence ρ ∝ R−3 from Eq. (22.16)
and, if k = 0, we get

R(t) ∝ t2/3 ; H = 2/3t . (22.19)

22.1.5.4. A Universe dominated by vacuum energy:

If there is a dominant source of vacuum energy, V0, it would
act as a cosmological constant with Λ = 8πGNV0 and equation of
state w = −1. In this case, the solution to the Friedmann equation
is particularly simple and leads to an exponential expansion of the
Universe:

R(t) ∝ e
√

Λ/3t . (22.20)

A key parameter is the equation of state of the vacuum,
w ≡ p/ρ: this need not be the w = −1 of Λ, and may not even be
constant [19–21]. There is now much interest in the more general
possibility of a dynamically evolving vacuum energy, for which
the name ‘dark energy’ has become commonly used. A variety of
techniques exist whereby the vacuum density as a function of time
may be measured, usually expressed as the value of w as a function
of epoch [22,23]. The best current measurement for the equation
of state (assumed constant, but without assuming zero curvature) is
w = −0.97 ± 0.05 [24]. Unless stated otherwise, we will assume that
the vacuum energy is a cosmological constant with w = −1 exactly.

The presence of vacuum energy can dramatically alter the fate of
the Universe. For example, if Λ < 0, the Universe will eventually
recollapse independent of the sign of k. For large values of Λ > 0
(larger than the Einstein static value needed to halt any cosmological
expansion or contraction), even a closed Universe will expand forever.
One way to quantify this is the deceleration parameter, q0, defined as

q0 = − RR̈

Ṙ2

∣

∣

∣

∣

∣

0

=
1

2
Ωm + Ωr +

(1 + 3w)

2
Ωv . (22.21)

This equation shows us that w < −1/3 for the vacuum may
lead to an accelerating expansion. To the continuing astonishment
of cosmologists, such an effect has been observed; one piece of
direct evidence is the Supernova Hubble diagram [25–30] (see
Fig. 22.1 below); current data indicate that vacuum energy is indeed
the largest contributor to the cosmological density budget, with
Ωv = 0.692 ± 0.012 and Ωm = 0.308 ± 0.012 if k = 0 is assumed
(Planck) [31].

The existence of this constituent is without doubt the greatest
puzzle raised by the current cosmological model; the final section of
this review discusses some of the ways in which the vacuum-energy
problem is being addressed. For more details, see the review on Dark
Energy—Sec. 27
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22.2. Introduction to Observational Cosmology

22.2.1. Fluxes, luminosities, and distances :

The key quantities for observational cosmology can be deduced
quite directly from the metric.

(1) The proper transverse size of an object seen by us to subtend
an angle dψ is its comoving size dψ Sk(χ) times the scale factor at the
time of emission:

dℓ = dψ R0Sk(χ)/(1 + z) . (22.22)

(2) The apparent flux density of an object is deduced by allowing
its photons to flow through a sphere of current radius R0Sk(χ); but
photon energies and arrival rates are redshifted, and the bandwidth
dν is reduced. The observed photons at frequency ν0 were emitted
at frequency ν0(1 + z), so the flux density is the luminosity at this
frequency, divided by the total area, divided by 1 + z:

Sν(ν0) =
Lν([1 + z]ν0)

4πR2
0S

2
k(χ)(1 + z)

. (22.23)

These relations lead to the following common definitions:

angular-diameter distance: DA = (1 + z)−1R0Sk(χ)

luminosity distance: DL = (1 + z) R0Sk(χ) .
(22.24)

These distance-redshift relations are expressed in terms of
observables by using the equation of a null radial geodesic (R(t)dχ =
dt) plus the Friedmann equation:

R0dχ =
1

H(z)
dz =

1

H0

[

(1 − Ωm − Ωv − Ωr)(1 + z)2

+ Ωv(1 + z)3+3w + Ωm(1 + z)3 + Ωr(1 + z)4
]−1/2

dz .

(22.25)

The main scale for the distance here is the Hubble length, 1/H0.

The flux density is the product of the specific intensity Iν and
the solid angle dΩ subtended by the source: Sν = Iν dΩ. Combining
the angular size and flux-density relations thus gives the relativistic
version of surface-brightness conservation:

Iν(ν0) =
Bν([1 + z]ν0)

(1 + z)3
, (22.26)

where Bν is surface brightness (luminosity emitted into unit solid
angle per unit area of source). We can integrate over ν0 to obtain the
corresponding total or bolometric formula:

Itot =
Btot

(1 + z)4
. (22.27)

This cosmology-independent form expresses Liouville’s Theorem:
photon phase-space density is conserved along rays.

22.2.2. Distance data and geometrical tests of cosmology :

In order to confront these theoretical predictions with data, we have
to bridge the divide between two extremes. Nearby objects may have
their distances measured quite easily, but their radial velocities are
dominated by deviations from the ideal Hubble flow, which typically
have a magnitude of several hundred km s−1. On the other hand,
objects at redshifts z >∼ 0.01 will have observed recessional velocities
that differ from their ideal values by <∼ 10%, but absolute distances are
much harder to supply in this case. The traditional solution to this
problem is the construction of the distance ladder: an interlocking set
of methods for obtaining relative distances between various classes of
object, which begins with absolute distances at the 10 to 100 pc level,
and terminates with galaxies at significant redshifts. This is reviewed
in the review on Cosmological Parameters—Sec. 25 of this Review.

By far the most exciting development in this area has been the use
of type Ia Supernovae (SNe), which now allow measurement of relative
distances with 5% precision. In combination with Cepheid data from
the HST and a direct geometrical distance to the maser galaxy

Figure 22.1: The type Ia supernova Hubble diagram, based
on over 1200 publicly available supernova distance estimates
[28–30]. The first panel shows that for z ≪ 1 the large-scale
Hubble flow is indeed linear and uniform; the second panel shows
an expanded scale, with the linear trend divided out, and with
the redshift range extended to show how the Hubble law becomes
nonlinear. (Ωr = 0 is assumed.) Larger points with errors show
median values in redshift bins. Comparison with the prediction
of Friedmann models appears to favor a vacuum-dominated
Universe.

NGC4258, SNe results extend the distance ladder to the point where
deviations from uniform expansion are negligible, leading to the best
existing direct value for H0: 72.0 ± 3.0 km s−1Mpc−1 [32]. Better
still, the analysis of high-z SNe has allowed a simple and direct test
of cosmological geometry to be carried out: as shown in Fig. 22.1 and
Fig. 22.2, supernova data and measurements of microwave-background
anisotropies strongly favor a k = 0 model dominated by vacuum
energy. (See the review on Cosmological Parameters—Sec. 25 of
this Review for a more comprehensive review of Hubble parameter
determinations.)

22.2.3. Age of the Universe :

The most striking conclusion of relativistic cosmology is that the
Universe has not existed forever. The dynamical result for the age of
the Universe may be written as

H0t0 =

∫ ∞

0

dz

(1 + z)H(z)

=

∫ ∞

0

dz

(1 + z) [(1 + z)2(1 + Ωmz) − z(2 + z)Ωv]1/2
, (22.28)

where we have neglected Ωr and chosen w = −1. Over the range
of interest (0.1 <∼ Ωm <∼ 1, |Ωv| <∼ 1), this exact answer may be
approximated to a few % accuracy by

H0t0 ≃ 2
3 (0.7Ωm + 0.3 − 0.3Ωv)−0.3 . (22.29)

For the special case that Ωm + Ωv = 1, the integral in Eq. (22.28) can
be expressed analytically as

H0t0 =
2

3
√

Ωv
ln

1 +
√

Ωv√
1 − Ωv

(Ωm < 1) . (22.30)
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The most accurate means of obtaining ages for astronomical objects
is based on the natural clocks provided by radioactive decay. The use
of these clocks is complicated by a lack of knowledge of the initial
conditions of the decay. In the Solar System, chemical fractionation
of different elements helps pin down a precise age for the pre-Solar
nebula of 4.6 Gyr, but for stars it is necessary to attempt an a
priori calculation of the relative abundances of nuclei that result from
supernova explosions. In this way, a lower limit for the age of stars in
the local part of the Milky Way of about 11 Gyr is obtained [34,35].

The other major means of obtaining cosmological age estimates
is based on the theory of stellar evolution. In principle, the
main-sequence turnoff point in the color-magnitude diagram of a
globular cluster should yield a reliable age. However, these have been
controversial owing to theoretical uncertainties in the evolution model,
as well as observational uncertainties in the distance, dust extinction,
and metallicity of clusters. The present consensus favors ages for the
oldest clusters of about 12 Gyr [36,37].

These methods are all consistent with the age deduced from
studies of structure formation, using the microwave background and
large-scale structure: t0 = 13.80 ± 0.04 Gyr [31], where the extra
accuracy comes at the price of assuming the Cold Dark Matter model
to be true.

Figure 22.2: Likelihood-based probability densities on the
plane ΩΛ (i.e., Ωv assuming w = −1) vs Ωm. The colored
locus derives from Planck [31] and shows that the CMB alone
requires a flat universe Ωv + Ωm ≃ 1 if the Hubble constant is
not too high. The SNe Ia results [33] very nearly constrain the
orthogonal combination Ωv − Ωm, and the intersection of these
constraints directly favors a flat model with Ωm ≃ 0.3, as does
the measurement of the Baryon Acoustic Oscillation lengthscale
(for which a joint constraint is shown on this plot). The CMB
alone is capable of breaking the degeneracy with H0 by using
the measurements of gravitational lensing that can be made with
modern high-resolution CMB data.

22.2.4. Horizon, isotropy, flatness problems :

For photons, the radial equation of motion is just c dt = R dχ. How
far can a photon get in a given time? The answer is clearly

∆χ =

∫ t2

t1

dt

R(t)
≡ ∆η , (22.31)

i.e., just the interval of conformal time. We can replace dt by dR/Ṙ,
which the Friedmann equation says is ∝ dR/

√

ρR2 at early times.
Thus, this integral converges if ρR2 → ∞ as t1 → 0, otherwise it
diverges. Provided the equation of state is such that ρ changes faster
than R−2, light signals can only propagate a finite distance between
the Big Bang and the present; there is then said to be a particle
horizon. Such a horizon therefore exists in conventional Big-Bang
models, which are dominated by radiation (ρ ∝ R−4) at early times.

At late times, the integral for the horizon is largely determined by

the matter-dominated phase, for which

DH = R0 χ
H
≡ R0

∫ t(z)

0

dt

R(t)
≃ 6000√

Ωmz
h−1 Mpc (z ≫ 1) .

(22.32)
The horizon at the time of formation of the microwave background
(‘last scattering’: z ≃ 1100) was thus of order 100 Mpc in size,
subtending an angle of about 1◦. Why then are the large number
of causally disconnected regions we see on the microwave sky all at
the same temperature? The Universe is very nearly isotropic and
homogeneous, even though the initial conditions appear not to permit
such a state to be constructed.

A related problem is that the Ω = 1 Universe is unstable:

Ω(a) − 1 =
Ω − 1

1 − Ω + Ωva2 + Ωma−1 + Ωra−2
, (22.33)

where Ω with no subscript is the total density parameter, and
a(t) = R(t)/R0. This requires Ω(t) to be unity to arbitrary precision
as the initial time tends to zero; a universe of non-zero curvature
today requires very finely tuned initial conditions.

22.3. The Hot Thermal Universe

22.3.1. Thermodynamics of the early Universe :

As alluded to above, we expect that much of the early Universe can
be described by a radiation-dominated equation of state. In addition,
through much of the radiation-dominated period, thermal equilibrium
is established by the rapid rate of particle interactions relative to the
expansion rate of the Universe (see Sec. 22.3.3 below). In equilibrium,
it is straightforward to compute the thermodynamic quantities, ρ, p,
and the entropy density, s. In general, the energy density for a given
particle type i can be written as

ρi =

∫

Ei dnqi
, (22.34)

with the density of states given by

dnqi
=

gi

2π2

(

exp[(Eqi
− µi)/Ti] ± 1

)−1
q2
i dqi , (22.35)

where gi counts the number of degrees of freedom for particle type i,
E2

qi
= m2

i + q2
i , µi is the chemical potential, and the ± corresponds to

either Fermi or Bose statistics. Similarly, we can define the pressure
of a perfect gas as

pi =
1

3

∫

q2
i

Ei
dnqi

. (22.36)

The number density of species i is simply

ni =

∫

dnqi
, (22.37)

and the entropy density is

si =
ρi + pi − µini

Ti
. (22.38)

In the Standard Model, a chemical potential is often associated
with baryon number, and since the net baryon density relative to
the photon density is known to be very small (of order 10−10),
we can neglect any such chemical potential when computing total
thermodynamic quantities.

For photons, we can compute all of the thermodynamic quantities
rather easily. Taking gi = 2 for the 2 photon polarization states, we
have (in units where ~ = kB = 1)

ργ =
π2

15
T 4 ; pγ =

1

3
ργ ; sγ =

4ργ

3T
; nγ =

2ζ(3)

π2
T 3 , (22.39)

with 2ζ(3)/π2 ≃ 0.2436. Note that Eq. (22.10) can be converted
into an equation for entropy conservation. Recognizing that ṗ = sṪ ,
Eq. (22.10) becomes

d(sR3)/dt = 0 . (22.40)

For radiation, this corresponds to the relationship between expansion
and cooling, T ∝ R−1 in an adiabatically expanding universe. Note
also that both s and nγ scale as T 3.



22. Big-Bang cosmology 359

0

20

40

60

80

100

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

N(T)

Log10(T/MeV)
Figure 22.3: The effective numbers of relativistic degrees
of freedom as a function of temperature. The sharp drop
corresponds to the quark-hadron transition. The solid curve
assume a QCD scale of 150 MeV, while the dashed curve assumes
450 MeV.

22.3.2. Radiation content of the Early Universe :

At the very high temperatures associated with the early Universe,
massive particles are pair produced, and are part of the thermal
bath. If for a given particle species i we have T ≫ mi, then we can
neglect the mass in Eq. (22.34) to Eq. (22.38), and the thermodynamic
quantities are easily computed as in Eq. (22.39). In general, we can
approximate the energy density (at high temperatures) by including
only those particles with mi ≪ T . In this case, we have

ρ =

(

∑

B

gB +
7

8

∑

F

gF

)

π2

30
T 4 ≡ π2

30
N(T )T 4 , (22.41)

where gB(F) is the number of degrees of freedom of each boson

(fermion) and the sum runs over all boson and fermion states with
m ≪ T . The factor of 7/8 is due to the difference between the Fermi
and Bose integrals. Eq. (22.41) defines the effective number of degrees
of freedom, N(T ), by taking into account new particle degrees of
freedom as the temperature is raised. This quantity is plotted in
Fig. 22.3 [38]. For a more recent examination of N(T ) near the
QCD transition, see [39].

The value of N(T ) at any given temperature depends on the
particle physics model. In the standard SU(3) × SU(2) × U(1) model,
we can specify N(T ) up to temperatures of O(100) GeV. The change
in N (ignoring mass effects) can be seen in the table below.

Temperature New Particles 4N(T )

T < me γ’s + ν’s 29
me < T < mµ e± 43
mµ < T < mπ µ± 57

mπ < T < T
†

c π’s 69
Tc < T < mstrange π’s + u, ū, d, d̄ + gluons 205
ms < T < mcharm s, s̄ 247
mc < T < mτ c, c̄ 289
mτ < T < mbottom τ± 303
mb < T < mW,Z b, b̄ 345

mW,Z < T < mHiggs W±, Z 381

mH < T < mtop H0 385
mt < T t, t̄ 427

†Tc corresponds to the confinement-deconfinement transition between
quarks and hadrons.

At higher temperatures, N(T ) will be model-dependent. For
example, in the minimal SU(5) model, one needs to add 24 states to
N(T ) for the X and Y gauge bosons, another 24 from the adjoint
Higgs, and another 6 (in addition to the 4 already counted in W±, Z,
and H) from the 5 of Higgs. Hence for T > mX in minimal SU(5),
N(T ) = 160.75. In a supersymmetric model this would at least
double, with some changes possibly necessary in the table if the
lightest supersymmetric particle has a mass below mt.

In the radiation-dominated epoch, Eq. (22.10) can be integrated
(neglecting the T -dependence of N) giving us a relationship between
the age of the Universe and its temperature

t =

(

90

32π3GNN(T )

)1/2

T−2 . (22.42)

Put into a more convenient form

t T 2
MeV = 2.4[N(T )]−1/2 , (22.43)

where t is measured in seconds and TMeV in units of MeV.

22.3.3. Neutrinos and equilibrium : Due to the expansion of
the Universe, certain rates may be too slow to either establish or
maintain equilibrium. Quantitatively, for each particle i, as a minimal
condition for equilibrium, we will require that some rate Γi involving
that type be larger than the expansion rate of the Universe or

Γi > H . (22.44)

Recalling that the age of the Universe is determined by H−1, this
condition is equivalent to requiring that on average, at least one
interaction has occurred over the lifetime of the Universe.

A good example for a process which goes in and out of equilibrium
is the weak interactions of neutrinos. On dimensional grounds, one
can estimate the thermally averaged scattering cross section:

〈σv〉 ∼ O(10−2)T 2/m4
W (22.45)

for T <∼ mW. Recalling that the number density of leptons is n ∝ T 3,
we can compare the weak interaction rate, Γwk ∼ n〈σv〉, with the
expansion rate,

H =

(

8πGNρ

3

)1/2

=

(

8π3

90
N(T )

)1/2

T 2/MP

∼ 1.66N(T )1/2T 2/MP,

(22.46)

where the Planck mass MP = G
−1/2
N

= 1.22 × 1019 GeV.

Neutrinos will be in equilibrium when Γwk > H or

T > (500 m4
W/MP)1/3 ∼ 1 MeV . (22.47)

However, this condition assumes T ≪ mW; for higher temperatures,
we should write 〈σv〉 ∼ O(10−2)/T 2, so that Γ ∼ 10−2T . Thus, in the
very early stages of expansion, at temperatures T >∼ 10−2MP/

√
N ,

equilibrium will not have been established.

Having attained a quasi-equilibrium stage, the Universe then cools
further to the point where the interaction and expansion timescales
match once again. The temperature at which these rates are equal
is commonly referred to as the neutrino decoupling or freeze-out
temperature and is defined by Γwk(Td) = H(Td). For T < Td,
neutrinos drop out of equilibrium. The Universe becomes transparent
to neutrinos and their momenta simply redshift with the cosmic
expansion. The effective neutrino temperature will simply fall with
T ∼ 1/R.

Soon after decoupling, e± pairs in the thermal background begin to
annihilate (when T <∼ me). Because the neutrinos are decoupled, the
energy released due to annihilation heats up the photon background
relative to the neutrinos. The change in the photon temperature can
be easily computed from entropy conservation. The neutrino entropy
must be conserved separately from the entropy of interacting particles.
A straightforward computation yields

Tν = (4/11)1/3 Tγ ≃ 1.9 K . (22.48)

The total entropy density is therefore given by the contribution from
photons and 3 flavors of neutrinos

s =
4

3

π2

30

(

2 +
21

4
(Tν/Tγ)3

)

T 3
γ =

4

3

π2

30

(

2 +
21

11

)

T 3
γ = 7.04 nγ .

(22.49)
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Similarly, the total relativistic energy density is given by

ρr =
π2

30

[

2 +
21

4
(Tν/Tγ)4

]

T 4
γ ≃ 1.68ργ . (22.50)

In practice, a small correction is needed to this, since neutrinos
are not totally decoupled at e± annihilation: the effective number of
massless neutrino species is 3.046, rather than 3 [40].

This expression ignores neutrino rest masses, but current oscillation
data require at least one neutrino eigenstate to have a mass exceeding
0.05 eV. In this minimal case, Ωνh2 = 5 × 10−4, so the neutrino
contribution to the matter budget would be negligibly small (which
is our normal assumption). However, a nearly degenerate pattern
of mass eigenstates could allow larger densities, since oscillation
experiments only measure differences in m2 values. Note that a
0.05-eV neutrino has kTν = mν at z ≃ 297, so the above expression
for the total present relativistic density is really only an extrapolation.
However, neutrinos are almost certainly relativistic at all epochs where
the radiation content of the Universe is dynamically significant.

22.3.4. Field Theory and Phase transitions :

It is very likely that the Universe has undergone one or more phase
transitions during the course of its evolution [41–44]. Our current
vacuum state is described by SU(3)c× U(1)em, which in the Standard
Model is a remnant of an unbroken SU(3)c× SU(2)L× U(1)Y gauge
symmetry. Symmetry breaking occurs when a non-singlet gauge field
(the Higgs field in the Standard Model) picks up a non-vanishing
vacuum expectation value, determined by a scalar potential. For
example, a simple (non-gauged) potential describing symmetry
breaking is V (φ) = 1

4λφ4 − 1
2µ2φ2 + V (0). The resulting expectation

value is simply 〈φ〉 = µ/
√

λ.

In the early Universe, finite temperature radiative corrections
typically add terms to the potential of the form φ2T 2. Thus, at very
high temperatures, the symmetry is restored and 〈φ〉 = 0. As the
Universe cools, depending on the details of the potential, symmetry
breaking will occur via a first order phase transition in which the field
tunnels through a potential barrier, or via a second order transition in
which the field evolves smoothly from one state to another (as would
be the case for the above example potential).

The evolution of scalar fields can have a profound impact on the
early Universe. The equation of motion for a scalar field φ can be
derived from the energy-momentum tensor

Tµν = ∂µφ∂νφ − 1

2
gµν∂ρφ∂ρφ − gµνV (φ) . (22.51)

By associating ρ = T00 and p = R−2(t)Tii we have

ρ =
1

2
φ̇2 +

1

2
R−2(t)(∇φ)2 + V (φ)

p =
1

2
φ̇2 − 1

6
R−2(t)(∇φ)2 − V (φ) ,

(22.52)

and from Eq. (22.10) we can write the equation of motion (by
considering a homogeneous region, we can ignore the gradient terms)

φ̈ + 3Hφ̇ = −∂V/∂φ . (22.53)

22.3.5. Inflation :

In Sec. 22.2.4, we discussed some of the problems associated with
the standard Big-Bang model. However, during a phase transition,
our assumptions of an adiabatically expanding universe are generally
not valid. If, for example, a phase transition occurred in the early
Universe such that the field evolved slowly from the symmetric state
to the global minimum, the Universe may have been dominated by
the vacuum energy density associated with the potential near φ ≈ 0.
During this period of slow evolution, the energy density due to
radiation will fall below the vacuum energy density, ρ ≪ V (0). When
this happens, the expansion rate will be dominated by the constant
V(0), and we obtain the exponentially expanding solution given in
Eq. (22.20). When the field evolves towards the global minimum it will

begin to oscillate about the minimum, energy will be released during
its decay, and a hot thermal universe will be restored. If released fast
enough, it will produce radiation at a temperature NTR

4 <∼ V (0). In
this reheating process, entropy has been created and the final value of
R T is greater than the initial value of R T . Thus, we see that, during
a phase transition, the relation R T ∼ constant need not hold true.
This is the basis of the inflationary Universe scenario [45–47].

If, during the phase transition, the value of R T changed by a
factor of O(1029), the cosmological problems discussed above would
be solved. The observed isotropy would be generated by the immense
expansion; one small causal region could get blown up, and thus our
entire visible Universe would have been in thermal contact some time
in the past. In addition, the density parameter Ω would have been
driven to 1 (with exponential precision). Density perturbations will
be stretched by the expansion, λ ∼ R(t). Thus it will appear that
λ ≫ H−1 or that the perturbations have left the horizon, where in fact
the size of the causally connected region is now no longer simply H−1.
However, not only does inflation offer an explanation for large scale
perturbations, it also offers a source for the perturbations themselves
through quantum fluctuations.

Problems with early models of inflation which were based on a
either first order [48] or second order [49,50] phase transition of a
Grand Unified Theory led models invoking a completely new scalar
field: the inflaton, φ. The potential of this field, V (φ), needs to have
a very low gradient and curvature in order to match observed metric
fluctuations. For a more thorough discussion of the problems of early
models and a host of current models being studying see the upcoming
review on inflation of this Review. In most current inflation models,
reheated bubbles typically do not percolate, so inflation is ‘eternal’ and
continues with exponential expansion in the region outside bubbles.
These causally disconnected bubble universes constitute a ‘multiverse’,
where low-energy physics can vary between different bubbles. This
has led to a controversial ‘anthropic’ approach to cosmology [51–53],
where observer selection within the multiverse can be introduced as a
means of understanding e.g. why the observed level of vacuum energy
is so low (because larger values suppress growth of structure).

22.3.6. Baryogenesis :

The Universe appears to be populated exclusively with matter
rather than antimatter. Indeed antimatter is only detected in
accelerators or in cosmic rays. However, the presence of antimatter
in the latter is understood to be the result of collisions of primary
particles in the interstellar medium. There is in fact strong evidence
against primary forms of antimatter in the Universe. Furthermore, the
density of baryons compared to the density of photons is extremely
small, η ∼ 10−10.

The production of a net baryon asymmetry requires baryon number
violating interactions, C and CP violation and a departure from
thermal equilibrium [54]. The first two of these ingredients are
expected to be contained in grand unified theories as well as in the
non-perturbative sector of the Standard Model, the third can be
realized in an expanding universe where as we have seen interactions
come in and out of equilibrium.

There are several interesting and viable mechanisms for the
production of the baryon asymmetry. While, we can not review any of
them here in any detail, we mention some of the important scenarios.
In all cases, all three ingredients listed above are incorporated.
One of the first mechanisms was based on the out of equilibrium
decay of a massive particle such as a superheavy GUT gauge of
Higgs boson [55,56]. A novel mechanism involving the decay of flat
directions in supersymmetric models is known as the Affleck-Dine
scenario [57]. There is also the possibility of generating the baryon
asymmetry at the electro-weak scale using the non-perturbative
interactions of sphalerons [58]. Because these interactions conserve
the sum of baryon and lepton number, B + L, it is possible to first
generate a lepton asymmetry (e.g., by the out-of-equilibrium decay of
a superheavy right-handed neutrino), which is converted to a baryon
asymmetry at the electro-weak scale [59]. This mechanism is known
as lepto-baryogenesis.
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22.3.7. Nucleosynthesis :

An essential element of the standard cosmological model is Big-Bang
nucleosynthesis (BBN), the theory which predicts the abundances of
the light element isotopes D, 3He, 4He, and 7Li. Nucleosynthesis takes
place at a temperature scale of order 1 MeV. The nuclear processes
lead primarily to 4He, with a primordial mass fraction of about 25%.
Lesser amounts of the other light elements are produced: about 10−5

of D and 3He and about 10−10 of 7Li by number relative to H.
The abundances of the light elements depend almost solely on one
key parameter, the baryon-to-photon ratio, η. The nucleosynthesis
predictions can be compared with observational determinations of the
abundances of the light elements. Consistency between theory and
observations driven primarily by recent D/H measurements [60] leads
to a range of

5.8 × 10−10 < η < 6.6 × 10−10 . (22.54)

η is related to the fraction of Ω contained in baryons, Ωb

Ωb = 3.66 × 107η h−2 , (22.55)

or 1010η = 274Ωbh2. The Planck result [31] for Ωbh2 of 0.0223
± 0.0002 translates into a value of η = 6.09 ± 0.06. This result can
be used to ‘predict’ the light element abundance which can in turn
be compared with observation [61]. The resulting D/H abundance is
in excellent agreement with that found in quasar absorption systems.
It is in reasonable agreement with the helium abundance observed in
extra-galactic HII regions (once systematic uncertainties are accounted
for), but is in poor agreement with the Li abundance observed
in the atmospheres of halo dwarf stars [62]. (See the review on
BBN—Sec. 24 of this Review for a detailed discussion of BBN or
references [63,64,65].)

22.3.8. The transition to a matter-dominated Universe :

In the Standard Model, the temperature (or redshift) at which
the Universe undergoes a transition from a radiation dominated to
a matter dominated Universe is determined by the amount of dark
matter. Assuming three nearly massless neutrinos, the energy density
in radiation at temperatures T ≪ 1 MeV, is given by

ρr =
π2

30

[

2 +
21

4

(

4

11

)4/3
]

T 4 . (22.56)

In the absence of non-baryonic dark matter, the matter density can
be written as

ρm = mNη nγ , (22.57)

where mN is the nucleon mass. Recalling that nγ ∝ T 3 [cf.
Eq. (22.39)], we can solve for the temperature or redshift at the
matter-radiation equality when ρr = ρm,

Teq = 0.22 mN η or (1 + zeq) = 0.22 η
mN

T0
, (22.58)

where T0 is the present temperature of the microwave background.
For η = 6.1 × 10−10, this corresponds to a temperature Teq ≃ 0.13
eV or (1 + zeq) ≃ 550. A transition this late is very problematic for
structure formation (see Sec. 22.4.5).

The redshift of matter domination can be pushed back significantly
if non-baryonic dark matter is present. If instead of Eq. (22.57), we
write

ρm = Ωmρc

(

T

T0

)3

, (22.59)

we find that

Teq = 0.9
Ωmρc

T 3
0

or (1 + zeq) = 2.4 × 104Ωmh2 . (22.60)

22.4. The Universe at late times

22.4.1. The CMB :

One form of the infamous Olbers’ paradox says that, in Euclidean
space, surface brightness is independent of distance. Every line of
sight will terminate on matter that is hot enough to be ionized and so
scatter photons: T >∼ 103 K; the sky should therefore shine as brightly
as the surface of the Sun. The reason the night sky is dark is entirely
due to the expansion, which cools the radiation temperature to 2.73 K.
This gives a Planck function peaking at around 1 mm to produce the
microwave background (CMB).

The CMB spectrum is a very accurate match to a Planck
function [66]. (See the review on CBR–Sec. 28 of this Review.) The
COBE estimate of the temperature is [67]

T = 2.7255± 0.0006 K . (22.61)

The lack of any distortion of the Planck spectrum is a strong physical
constraint. It is very difficult to account for in any expanding universe
other than one that passes through a hot stage. Alternative schemes
for generating the radiation, such as thermalization of starlight by dust
grains, inevitably generate a superposition of temperatures. What is
required in addition to thermal equilibrium is that T ∝ 1/R, so that
radiation from different parts of space appears identical.

Although it is common to speak of the CMB as originating
at ‘recombination’, a more accurate terminology is the era of
‘last scattering’. In practice, this takes place at z ≃ 1100, almost
independently of the main cosmological parameters, at which time the
fractional ionization is very small. This occurred when the age of the
Universe was about 400,000 years. (See the review on CBR–Sec. 28 of
this Review for a full discussion of the CMB.)

22.4.2. Matter in the Universe :

One of the main tasks of cosmology is to measure the density of the
Universe, and how this is divided between dark matter and baryons.
The baryons consist partly of stars, with 0.002 <∼ Ω∗

<∼ 0.003 [68] but
mainly inhabit the intergalactic medium (IGM). One powerful way in
which this can be studied is via the absorption of light from distant
luminous objects such as quasars. Even very small amounts of neutral
hydrogen can absorb rest-frame UV photons (the Gunn-Peterson
effect), and should suppress the continuum by a factor exp(−τ), where

τ ≃ 104.62h−1
[

nHI(z)/m−3

(1 + z)
√

1 + Ωmz

]

, (22.62)

and this expression applies while the Universe is matter dominated
(z >∼ 1 in the Ωm = 0.3 Ωv = 0.7 model). It is possible that this
general absorption has now been seen at z = 6.2 − 6.4 [69]. At lower
redshifts, the dominant effect on the spectrum is a ‘forest’ of narrow
absorption lines, which produce a mean τ = 1 in the Lyα forest at
about z = 3, and so we have ΩHI ≃ 10−6.7h−1. This is such a small
number that clearly the IGM is very highly ionized at these redshifts.

The Lyα forest is of great importance in pinning down the
abundance of deuterium. Because electrons in deuterium differ in
reduced mass by about 1 part in 4000 compared to hydrogen, each
absorption system in the Lyα forest is accompanied by an offset
deuterium line. By careful selection of systems with an optimal HI
column density, a measurement of the D/H ratio can be made.
This has now been done with high accuracy in 5 quasars, with
consistent results [60]. Combining these determinations with the
theory of primordial nucleosynthesis yields a baryon density of
Ωbh2 = 0.021−0.023 (95% confidence) in excellent agreement with the
Planck result. (See also the review on BBN—Sec. 24 of this Review.)

Ionized IGM can also be detected in emission when it is
densely clumped, via bremsstrahlung radiation. This generates the
spectacular X-ray emission from rich clusters of galaxies. Studies
of this phenomenon allow us to achieve an accounting of the total
baryonic material in clusters. Within the central ≃ 1 Mpc, the masses
in stars, X-ray emitting gas and total dark matter can be determined
with reasonable accuracy (perhaps 20% rms), and this allows a
minimum baryon fraction to be determined [70,71]:

Mbaryons

Mtotal

>∼ 0.009 + (0.066 ± 0.003)h−3/2 . (22.63)
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Because clusters are the largest collapsed structures, it is reasonable to
take this as applying to the Universe as a whole. This equation implies
a minimum baryon fraction of perhaps 12% (for reasonable h), which
is too high for Ωm = 1 if we take Ωbh2 ≃ 0.02 from nucleosynthesis.
This is therefore one of the more robust arguments in favor of
Ωm ≃ 0.3. (See the review on Cosmological Parameters—Sec. 25 of
this Review.) This argument is also consistent with the inference on
Ωm that can be made from Fig. 22.2.

This method is much more robust than the older classical technique
for weighing the Universe: ‘L × M/L’. The overall light density of
the Universe is reasonably well determined from redshift surveys of
galaxies, so that a good determination of mass M and luminosity L
for a single object suffices to determine Ωm if the mass-to-light ratio
is universal.

22.4.3. Gravitational lensing :

A robust method for determining masses in cosmology is to
use gravitational light deflection. Most systems can be treated as
a geometrically thin gravitational lens, where the light bending is
assumed to take place only at a single distance. Simple geometry then
determines a mapping between the coordinates in the intrinsic source
plane and the observed image plane:

α(DLθI) =
DS

DLS

(θI − θS) , (22.64)

where the angles θI, θS and α are in general two-dimensional vectors
on the sky. The distances DLS etc. are given by an extension of the
usual distance-redshift formula:

DLS =
R0Sk(χS − χL)

1 + zS

. (22.65)

This is the angular-diameter distance for objects on the source plane
as perceived by an observer on the lens.

Solutions of this equation divide into weak lensing, where the
mapping between source plane and image plane is one-to-one, and
strong lensing, in which multiple imaging is possible. For circularly-
symmetric lenses, an on-axis source is multiply imaged into a ‘caustic’
ring, whose radius is the Einstein radius:

θE =

(

4GM
DLS

DLDS

)1/2

=

(

M

1011.09M⊙

)1/2 (

DLDS/DLS

Gpc

)−1/2

arcsec .

(22.66)

The observation of ‘arcs’ (segments of near-perfect Einstein rings)
in rich clusters of galaxies has thus given very accurate masses
for the central parts of clusters—generally in good agreement with
other indicators, such as analysis of X-ray emission from the cluster
IGM [72].

Gravitational lensing has also developed into a particularly
promising probe of cosmological structure on 10 to 100 Mpc scales.
Weak image distortions manifest themselves as an additional ellipticity
of galaxy images (‘shear’), which can be observed by averaging many
images together (the corresponding flux amplification is less readily
detected). The result is a ‘cosmic shear’ field of order 1% ellipticity,
coherent over scales of around 30 arcmin, which is directly related to
the cosmic mass field, without any astrophysical uncertainties. For
this reason, weak lensing is seen as potentially the cleanest probe of
matter fluctuations, next to the CMB. Already, impressive results
have been obtained in measuring cosmological parameters, based on
survey data from only ∼ 150 deg2 [73]. A particular strength of
lensing is its ability to measure the amplitude of mass fluctuations;
this can be deduced from the amplitude of CMB fluctuations, but
only with low precision on account of the poorly-known optical depth
due to Compton scattering after reionization. However, the effect of
weak lensing on the CMB map itself can be detected via the induced
non-Gaussian signal, and this gives the CMB greater internal power
[74].

22.4.4. Density Fluctuations :

The overall properties of the Universe are very close to being
homogeneous; and yet telescopes reveal a wealth of detail on scales
varying from single galaxies to large-scale structures of size exceeding
100 Mpc. The existence of these structures must be telling us
something important about the initial conditions of the Big Bang, and
about the physical processes that have operated subsequently. This
motivates the study of the density perturbation field, defined as

δ(x) ≡ ρ(x) − 〈ρ〉
〈ρ〉 . (22.67)

A critical feature of the δ field is that it inhabits a universe that
is isotropic and homogeneous in its large-scale properties. This
suggests that the statistical properties of δ should also be statistically
homogeneous—i.e., it is a stationary random process.

It is often convenient to describe δ as a Fourier superposition:

δ(x) =
∑

δke−ik·x . (22.68)

We avoid difficulties with an infinite universe by applying periodic
boundary conditions in a cube of some large volume V . The cross-
terms vanish when we compute the variance in the field, which is just
a sum over modes of the power spectrum

〈δ2〉 =
∑

|δk|2 ≡
∑

P (k) . (22.69)

Note that the statistical nature of the fluctuations must be isotropic,
so we write P (k) rather than P (k). The 〈. . .〉 average here is a volume
average. Cosmological density fields are an example of an ergodic
process, in which the average over a large volume tends to the same
answer as the average over a statistical ensemble.

The statistical properties of discrete objects sampled from the
density field are often described in terms of N -point correlation
functions, which represent the excess probability over random for
finding one particle in each of N boxes in a given configuration. For the
2-point case, the correlation function is readily shown to be identical
to the autocorrelation function of the δ field: ξ(r) = 〈δ(x)δ(x + r)〉.

The power spectrum and correlation function are Fourier conjugates,
and thus are equivalent descriptions of the density field (similarly,
k-space equivalents exist for the higher-order correlations). It is
convenient to take the limit V → ∞ and use k-space integrals, defining
a dimensionless power spectrum, which measures the contribution to
the fractional variance in density per unit logarithmic range of scale,
as ∆2(k) = d〈δ2〉/d lnk = V k3P (k)/2π2:

ξ(r) =

∫

∆2(k)
sinkr

kr
d ln k; ∆2(k) =

2

π
k3

∫ ∞

0
ξ(r)

sinkr

kr
r2 dr .

(22.70)

For many years, an adequate approximation to observational data
on galaxies was ξ = (r/r0)−γ , with γ ≃ 1.8 and r0 ≃ 5 h−1 Mpc.
Modern surveys are now able to probe into the large-scale linear regime
where unaltered traces of the curved post-recombination spectrum can
be detected [75–77].

22.4.5. Formation of cosmological structure :

The simplest model for the generation of cosmological structure
is gravitational instability acting on some small initial fluctuations
(for the origin of which a theory such as inflation is required). If the
perturbations are adiabatic (i.e., fractionally perturb number densities
of photons and matter equally), the linear growth law for matter
perturbations is simple:

δ ∝
{

a2(t) (radiation domination; Ωr = 1)
a(t) (matter domination; Ωm = 1) .

(22.71)

For low-density universes, the growth is slower:

d ln δ/d lna ≃ Ωγ
m(a), (22.72)

where the parameter γ is close to 0.55 independent of the vacuum
density [78].
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The alternative perturbation mode is isocurvature: only the
equation of state changes, and the total density is initially unperturbed.
These modes perturb the total entropy density, and thus induce
additional large-scale CMB anisotropies [79]. Although the character
of perturbations in the simplest inflationary theories are purely
adiabatic, correlated adiabatic and isocurvature modes are predicted
in many models; the simplest example is the curvaton, which is a
scalar field that decays to yield a perturbed radiation density. If the
matter content already exists at this time, the overall perturbation
field will have a significant isocurvature component. Such a prediction
is inconsistent with current CMB data [80], and most analyses of
CMB and large scale structure (LSS) data assume the adiabatic case
to hold exactly.

Linear evolution preserves the shape of the power spectrum.
However, a variety of processes mean that growth actually depends on
the matter content:

(1) Pressure opposes gravity effectively for wavelengths below the
horizon length while the Universe is radiation dominated. The
comoving horizon size at zeq is therefore an important scale:

DH(zeq) =
2(
√

2 − 1)

(Ωmzeq)1/2H0
=

16.0

Ωmh2
Mpc . (22.73)

(2) At early times, dark matter particles will undergo free streaming
at the speed of light, and so erase all scales up to the horizon—a
process that only ceases when the particles go nonrelativistic. For
light massive neutrinos, this happens at zeq; all structure up to the
horizon-scale power-spectrum break is in fact erased. Hot(cold)
dark matter models are thus sometimes dubbed large(small)-scale
damping models.

(3) A further important scale arises where photon diffusion can erase
perturbations in the matter–radiation fluid; this process is named
Silk damping.

Figure 22.4: A plot of transfer functions for various models.
For adiabatic models, Tk → 1 at small k, whereas the opposite
is true for isocurvature models. For dark-matter models, the
characteristic wavenumber scales proportional to Ωmh2. The
scaling for baryonic models does not obey this exactly; the
plotted cases correspond to Ωm = 1, h = 0.5.

The overall effect is encapsulated in the transfer function, which
gives the ratio of the late-time amplitude of a mode to its initial value
(see Fig. 22.4). The overall power spectrum is thus the primordial
scalar-mode power law, times the square of the transfer function:

P (k) ∝ kns T 2
k . (22.74)

The most generic power-law index is ns = 1: the ‘Zeldovich’ or
‘scale-invariant’ spectrum. Inflationary models tend to predict a small
‘tilt:’ |ns − 1| <∼ 0.03 [12,13]. On the assumption that the dark
matter is cold, the power spectrum then depends on 5 parameters:
ns, h, Ωb, Ωc (≡ Ωm − Ωb) and an overall amplitude. The latter is

often specified as σ8, the linear-theory fractional rms in density when
a spherical filter of radius 8 h−1 Mpc is applied in linear theory. This
scale can be probed directly via weak gravitational lensing, and also
via its effect on the abundance of rich galaxy clusters. The favored
value from the latter is approximately [81]

σ8 ≃ [0.813 ± 0.013 (stat) ± 0.024 (sys)] (Ωm/0.25)−0.47, (22.75)

which is consistent with the Planck values of (σ8, Ωm) = (0.815 ±
0.009, 0.308± 0.012).

A direct measure of mass inhomogeneity is valuable, since the
galaxies inevitably are biased with respect to the mass. This means
that the fractional fluctuations in galaxy number, δn/n, may differ
from the mass fluctuations, δρ/ρ. It is commonly assumed that the two
fields obey some proportionality on large scales where the fluctuations
are small, δn/n = bδρ/ρ, but even this is not guaranteed [82].

The main shape of the transfer function is a break around the
horizon scale at zeq, which depends just on Ωmh when wavenumbers
are measured in observable units (h Mpc−1). For reasonable baryon
content, weak oscillations in the transfer function are also expected,
and these BAOs (Baryon Acoustic Oscillations) have been clearly
detected [83,84]. As well as directly measuring the baryon fraction,
the scale of the oscillations directly measures the acoustic horizon
at decoupling; this can be used as an additional standard ruler for
cosmological tests, and the BAO signature has become one of the
most important applications of large galaxy surveys. Overall, current
power-spectrum data [75–77] favor Ωmh ≃ 0.20 and a baryon fraction
of about 0.15 for ns = 1 (see Fig. 22.5).

In principle, accurate data over a wide range of k could determine
both Ωmh and n, but in practice there is a strong degeneracy between
these. In order to constrain ns itself, it is necessary to examine data
on anisotropies in the CMB.

Figure 22.5: The galaxy power spectrum from the SDSS BOSS
survey [77]. The solid points with error bars show the power
estimate. The solid line shows a standard ΛCDM model with
Ωbh2 ≃ 0.02 and Ωmh ≃ 0.2. The inset amplifies the region
where BAO features are visible. The fact that these perturb the
power by ∼ 20% rather than order unity is direct evidence that
the matter content of the universe is dominated by collisionless
dark matter.

22.4.6. CMB anisotropies :

The CMB has a clear dipole anisotropy, of magnitude 1.23 × 10−3.
This is interpreted as being due to the Earth’s motion, which is
equivalent to a peculiar velocity for the Milky Way of

vMW ≃ 600 km s−1 towards (ℓ, b) ≃ (270◦, 30◦) . (22.76)

All higher-order multipole moments of the CMB are however much
smaller (of order 10−5), and interpreted as signatures of density
fluctuations at last scattering (≃ 1100). To analyze these, the sky
is expanded in spherical harmonics as explained in the review on
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CBR–Sec. 28 of this Review. The dimensionless power per ln k or
‘bandpower’ for the CMB is defined as

T 2(ℓ) =
ℓ(ℓ + 1)

2π
Cℓ . (22.77)

This function encodes information from the three distinct mechanisms
that cause CMB anisotropies:

(1) Gravitational (Sachs–Wolfe) perturbations. Photons from high-
density regions at last scattering have to climb out of potential
wells, and are thus redshifted.

(2) Intrinsic (adiabatic) perturbations. In high-density regions, the
coupling of matter and radiation can compress the radiation also,
giving a higher temperature.

(3) Velocity (Doppler) perturbations. The plasma has a non-zero
velocity at recombination, which leads to Doppler shifts in
frequency and hence shifts in brightness temperature.

Because the potential fluctuations obey Poisson’s equation, ∇2Φ =
4πGρδ, and the velocity field satisfies the continuity equation
∇ · u = −δ̇, the resulting different powers of k ensure that the
Sachs-Wolfe effect dominates on large scales and adiabatic effects on
small scales.

The relation between angle and comoving distance on the last-
scattering sphere requires the comoving angular-diameter distance
to the last-scattering sphere; because of its high redshift, this is
effectively identical to the horizon size at the present epoch, DH:

DH =
2

ΩmH0
(Ωv = 0)

DH ≃ 2

Ω0.4
m H0

(flat : Ωm + Ωv = 1) .
(22.78)

These relations show how the CMB is strongly sensitive to curvature:
the horizon length at last scattering is ∝ 1/

√
Ωm, so that this

subtends an angle that is virtually independent of Ωm for a flat model.
Observations of a peak in the CMB power spectrum at relatively
large scales (ℓ ≃ 225) are thus strongly inconsistent with zero-Λ
models with low density: current CMB + BAO + lensing data require
Ωm +Ωv = 1.000±0.005 (95%) [31]. (See e.g., Fig. 22.2). This result
is unchanged when SN data and the prior on H0 are included.

In addition to curvature, the CMB encodes information about
several other key cosmological parameters. Within the compass of
simple adiabatic CDM models, there are 9 of these:

ωc, ωb, Ωtot, h, τ, ns, nt, r, Q . (22.79)

The symbol ω denotes the physical density, Ωh2: the transfer
function depends only on the densities of CDM (ωc) and baryons
(ωb). Transcribing the power spectrum at last scattering into an
angular power spectrum brings in the total density parameter
(Ωtot ≡ Ωm +Ωv = Ωc +Ωb +Ωv) and h: there is an exact geometrical
degeneracy [85] between these that keeps the angular-diameter
distance to last scattering invariant, so that models with substantial
spatial curvature and large vacuum energy cannot be ruled out
without prior knowledge of the Hubble parameter. Alternatively, the
CMB alone cannot measure the Hubble parameter.

A further possible degeneracy involves the tensor contribution
to the CMB anisotropies. These are important at large scales (up
to the horizon scales); for smaller scales, only scalar fluctuations
(density perturbations) are important. Each of these components is
characterized by a spectral index, n, and a ratio between the power
spectra of tensors and scalars (r). See the review on Cosmological
Parameters—Sec. 25 of this Review for a technical definition of
the r parameter. Finally, the overall amplitude of the spectrum
must be specified (Q), together with the optical depth to Compton
scattering owing to recent reionization (τ). Adding a large tensor
contribution reduces the contrast between low ℓ and the peak at
ℓ ≃ 225 (because the tensor spectrum has no acoustic component).
The previous relative height of the peak can be recovered by increasing
ns to increase the small-scale power in the scalar component; this
in turn over-predicts the power at ℓ ∼ 1000, but this effect can be

counteracted by raising the baryon density [86]. This approximate
3-way degeneracy is broken as we increase the range of multipoles
sampled.

The reason the tensor component is introduced, and why it is so
important, is that it is the only non-generic prediction of inflation.
Slow-roll models of inflation involve two dimensionless parameters:

ǫ ≡ M2
P

16π

(

V ′

V

)2

η ≡ M2
P

8π

(

V ′′

V

)

, (22.80)

where V is the inflaton potential, and dashes denote derivatives with
respect to the inflation field. In terms of these, the tensor-to-scalar
ratio is r ≃ 16ǫ, and the spectral indices are ns = 1 − 6ǫ + 2η
and nt = −2ǫ. The natural expectation of inflation is that the
quasi-exponential phase ends once the slow-roll parameters become
significantly non-zero, so that both ns 6= 1 and a significant tensor
component are expected. These prediction can be avoided in some
models, but it is undeniable that observation of such features would
be a great triumph for inflation. Cosmology therefore stands at a
fascinating point given that the most recent CMB data appear to reject
the zero-tensor ns = 1 model at almost 6σ: ns = 0.968 ± 0.006 [31].
This rejection is strong enough that it is also able to break the tensor
degeneracy, so that no model with ns = 1 is acceptable, whatever the
value of r.

The current limit on r is < 0.11 at 95% confidence [87]. In
conjunction with the measured value of ns, this upper limit sits
close to the prediction of a linear potential (i.e. |η| ≪ |ǫ|). Any
further reduction in the limit on r will force η to be negative – i.e.
a convex potential at the point where LSS scales were generated
(sometimes called a ‘hilltop’), in contrast to simple early models such
as V (φ) = m2φ2 or λφ4. Examples of models which are currently
in excellent agreement with the Planck results are the Starobinsky
model of R+R2 gravity [88], or the Higgs-inflation model where the
Higgs field is non-minimally coupled [89]. Assuming 55 e-foldings of
inflation, these models predict ns = 0.965 and r = 0.0035. Assuming
that no systematic error in the CMB data can be identified, cosmology
has passed a critical hurdle in rejecting scale-invariant fluctuations.
The years ahead will be devoted to the task of searching for the tensor
fluctuations – for which the main tool will be the polarization of the
CMB [14].

22.4.6.1. CMB foregrounds:

As the quality of CMB data improves, there is a growing interest
in effects that arise along the line of sight. The CMB temperature is
perturbed by dark-matter structures and by Compton scattering from
ionized gas. In the former case, we have the Integrated Sachs-Wolfe
effect, which is sensitive to the time derivative of the gravitational
potential. In the linear regime, this is damped when the universe
becomes Λ-dominated, and this is an independent way of detecting
Λ [90]. The potential also causes gravitational lensing of the
CMB: structures at z ∼ 1 − 2 displace features on the CMB sky by
about 2 arcmin over coherent degree-scale patches. Detection of these
distortions allows a map to be made of overdensity projected from
z = 0 to 1100 [74]. This is a very powerful calibration for direct
studies of gravitational lensing using galaxies. Finally, Comptonization
affects the CMB in two ways: the thermal Sunyaev-Zeldovich effect
measures the blurring of photon energies by hot gas; the kinetic
Sunyaev-Zeldovich effect is sensitive to the bulk velocity of the
gas. Both these effects start to dominate over the intrinsic CMB
fluctuations at multipoles ℓ >∼ 2000 [91].

22.4.7. Probing dark energy and the nature of gravity :

The most radical element of our current cosmological model is the
dark energy that accelerates the expansion. The energy density of
this component is approximately (2.2 meV)4 (for w = −1, Ωv = 0.68,
h = 0.67), or roughly 10−123M4

P
, and such an un-naturally small

number is hard to understand. Various quantum effects (most simply
zero-point energy) should make contributions to the vacuum energy
density: these may be truncated by new physics at high energy, but
this presumably occurs at > 1 TeV scales, not meV; thus the apparent
energy scale of the vacuum is at least 1015 times smaller than its
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natural value. This situation is well analysed in [51], which lists
extreme escape routes – especially the multiverse viewpoint, according
to which low values of Λ are rare, but high values suppress the
formation of structure and observers. It is certainly impressive that
Weinberg used such reasoning to predict the value of Λ before any
data strongly indicated a non-zero value.

But it may be that the phenomenon of dark energy is entirely
illusory. The necessity for this constituent arises from using the
Friedmann equation to describe the evolution of the cosmic expansion;
if this equation is incorrect, it would require the replacement of
Einstein’s relativistic theory of gravity with some new alternative.
A frontier of current cosmological research is to distinguish these
possibilities [92,93]. We also note that it has been suggested that
dark energy might be an illusion even within general relativity, owing
to an incorrect treatment of averaging in an inhomogeneous Universe
[94,95]. Many would argue that a standard Newtonian treatment of
such issues should be adequate inside the cosmological horizon, but
debate on this issue continues.

Dark Energy can differ from a classical cosmological constant in
being a dynamical phenomenon [96,97], e.g., a rolling scalar field
(sometimes dubbed ‘quintessence’). Empirically, this means that it is
endowed with two thermodynamic properties that astronomers can
try to measure: the bulk equation of state and the sound speed. If the
sound speed is close to the speed of light, the effect of this property
is confined to very large scales, and mainly manifests itself in the
large-angle multipoles of the CMB anisotropies [98]. The equation
of state parameter governs the rate of change of the vacuum density:
d ln ρv/d lna = −3(1 + w), so it can be accessed via the evolving
expansion rate, H(a). This can be measured most cleanly by using
the inbuilt natural ruler of large-scale structure: the Baryon Acoustic
Oscillation horizon scale [99]:

DBAO ≃ 147 (Ωmh2/0.13)−0.25(Ωbh2/0.023)−0.08 Mpc . (22.81)

H(a) is measured by radial clustering, since dr/dz = c/H ; clustering
in the plane of the sky measures the integral of this. The expansion
rate is also measured by the growth of density fluctuations, where
the pressure-free growth equation for the density perturbation is
δ̈ + 2H(a)δ̇ = 4πGρ0 δ. Thus, both the scale and amplitude of density
fluctuations are sensitive to w(a) – but only weakly. These observables
change by only typically 0.2% for a 1% change in w. Current
constraints [31] place a constant w to within 5-10% of −1, depending
on the data combination chosen. A substantial improvement in this
precision will require us to limit systematics in data to a few parts in
1000.

Testing whether theories of gravity require revision can also be
done using data on cosmological inhomogeneities. Two separate issues
arise, concerning the metric perturbation potentials Ψ and Φ, which
affect respectively the time and space parts of the metric. In Einstein
gravity, these potentials are both equal to the Newtonian gravitational
potential, which satisfies Poisson’s equation: ∇2Φ/a2 = 4πGρ̄δ.
Empirically, modifications of gravity require us to explore a change
with scale and with time of the ‘slip’ (Ψ/Φ) and the effective G
on the rhs of the Poisson equation. The former aspect can only be
probed via gravitational lensing, whereas the latter can be addressed
on 10-100 Mpc scales via the growth of clustering. Various schemes
for parameterising modified gravity exist, but a practical approach is
to assume that the growth rate can be tied to the density parameter:
d ln δ/d ln a = Ωγ

m(a) [78]. The parameter γ is close to 0.55 for
standard relativistic gravity, but can differ by around 0.1 from this
value in many non-standard models. Clearly this parameterization
is incomplete, since it explicitly rejects the possibility of early dark
energy (Ωm(a) → 1 as a → 0), but it is a convenient way of capturing
the power of various experiments. Current data are consistent with
standard ΛCDM [100], and exclude variations in slip or effective G of
larger than a few times 10%.

Current planning envisages a set of satellite probes that, a decade
hence, will pursue these fundamental tests via gravitational lensing
measurements over thousands of square degrees, > 108 redshifts, and
photometry of > 1000 supernovae (WFIRST in the USA, Euclid
in Europe) [22,23]. These experiments will measure both w and

the perturbation growth rate to an accuracy of around 1%. The
outcome will be either a validation of the standard relativistic
vacuum-dominated big bang cosmology at a level of precision far
beyond anything attempted to date, or the opening of entirely new
directions in cosmological models. For a more complete discussion of
dark energy and future probes see the review on Dark Energy—Sec. 27
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23. INFLATION

Written May 2016 by J. Ellis (King’s College London; CERN) and D.
Wands (U. of Portsmouth).

23.1. Motivation and Introduction

The standard Big-Bang model of cosmology provides a successful
framework in which to understand the thermal history of our Universe
and the growth of cosmic structure, but it is essentially incomplete.
As described in Sec. 22.2.4 in “Big Bang Cosmology” review, Big-Bang
cosmology requires very specific initial conditions. It postulates
a uniform cosmological background, described by a spatially-flat,
homogeneous and isotropic Robertson-Walker (RW) metric (Eq. (22.1)
in “Big Bang Cosmology” review), with scale factor R(t). Within this
setting, it also requires an initial almost scale-invariant distribution of
primordial density perturbations as seen, for example, in the cosmic
microwave background (CMB) radiation (described in Chap. 28,
“Cosmic Microwave Background” review), on scales far larger than
the causal horizon at the time the CMB photons last scattered.

The Hubble expansion rate, H ≡ Ṙ/R, in a Robertson-Walker
cosmology is given by the Friedmann constraint equation (Eq. (22.8)
in “Big Bang Cosmology” review)

H2 =
8πρ

3M2
P

+
Λ

3
− k

R2 , (23.1)

where k/R2 is the intrinsic spatial curvature. We use natural units
such that the speed of light c = 1 and hence we have the Planck

mass MP = G
−1/2
N ≃ 1019 GeV. A cosmological constant, Λ, of the

magnitude required to accelerate the Universe today (see Chap. 27,
“Dark Energy” review) would have been completely negligible in the
early Universe where the energy density ρ ≫ M2

P Λ ∼ 10−12(eV)4.
The standard early Universe cosmology, described in Sec. 22.1.5 in
“Big Bang Cosmology” review, is thus dominated by non-relativistic
matter (pm = 0) or radiation (pr = ρr/3 for an isotropic distribution).
This leads to a decelerating expansion with R̈ < 0.

The hypothesis of inflation [1,2] postulates a period of accelerated
expansion, R̈ > 0, in the very early Universe, preceding the standard
radiation-dominated era, which offers a physical model for the origin
of these initial conditions, as reviewed in [3,4,5,6,7]. Such a period
of accelerated expansion (i) drives a curved RW spacetime (with
spherical or hyperbolic spatial geometry) towards spatial flatness, and
(ii) it also expands the causal horizon beyond the present Hubble
length, so as to encompass all the scales relevant to describe the
large-scale structure observed in our Universe today, via the following
two mechanisms.

(i) A spatially-flat universe with vanishing spatial curvature, k = 0,
has the dimensionless density parameter Ωtot = 1, where we define
(Eq. (22.13) in “Big Bang Cosmology” review; see Chap. 25,
“Cosmological Parameters” review for more complete definitions)

Ωtot ≡
8πρtot

3M2
P H2

, (23.2)

with ρtot ≡ ρ+ΛM2
P /8π. If we re-write the Friedmann constraint

(Eq. (23.1)) in terms of Ωtot we have

1 − Ωtot = − k

Ṙ2
. (23.3)

Observations require |1 − Ωtot,0| < 0.005 today [8], where
the subscript 0 denotes the present-day value. Taking the time
derivative of Eq. (23.3) we obtain

d

dt
(1 − Ωtot) = −2

R̈

Ṙ
(1 − Ωtot) . (23.4)

Thus in a decelerating expansion, Ṙ > 0 and R̈ < 0, any small
initial deviation from spatial flatness grows, (d/dt)|1 − Ωtot| > 0.
A small value such as |1 − Ωtot,0| < 0.005 today requires an

even smaller value at earlier times, e.g., |1 − Ωtot| < 10−5 at the
last scattering of the CMB, which appears unlikely, unless for

some reason space is exactly flat. However, an extended period of
accelerated expansion in the very early Universe, with Ṙ > 0 and
R̈ > 0 and hence (d/dt)|1 − Ωtot| < 0, can drive Ωtot sufficiently
close to unity, so that |1 − Ωtot,0| remains unobservably small
today, even after the radiation- and matter-dominated eras, for a
wide range of initial values of Ωtot.

(ii) The comoving distance (the present-day proper distance) traversed
by light between cosmic time t1 and t2 in an expanding universe
can be written, (see Eq. (22.31) in “Big Bang Cosmology” review),
as

D0(t1, t2) = R0

∫ t2

t1

dt

R(t)
= R0

∫ lnR2

lnR1

d(ln R)

Ṙ
. (23.5)

In standard decelerated (radiation- or matter-dominated)
cosmology the integrand, 1/Ṙ, decreases towards the past, and
there is a finite comoving distance traversed by light (a particle
horizon) since the Big Bang (R1 → 0). For example, the comoving
size of the particle horizon at the CMB last-scattering surface
(R2 = Rlss) corresponds to D0 ∼ 100Mpc, or approximately 1◦

on the CMB sky today (see Sec. 22.2.4 in “Big Bang Cosmology”
review).

However, during a period of inflation, 1/Ṙ increases towards the
past, and hence the integral (Eq. (23.5)) diverges as R1 → 0, allowing
an arbitrarily large causal horizon, dependent only upon the duration
of the accelerated expansion. Assuming that the Universe inflates
with a finite Hubble rate H∗ at t1 = t∗, ending with Hend < H∗ at
t2 = tend, we have

D0(t∗, tend) >

(

R0

Rend

)

H−1
∗

(

eN∗ − 1
)

, (23.6)

where N∗ ≡ ln(Rend/R∗) describes the duration of inflation, measured
in terms of the logarithmic expansion (or “e-folds”) from t1 = t∗ up
to the end of inflation at t2 = tend, and R0/Rend is the subsequent
expansion from the end of inflation to the present day. If inflation
occurs above the TeV scale, the comoving Hubble scale at the
end of inflation, (R0/Rend)H−1

end, is less than one astronomical unit

(∼ 1011 m), and a causally-connected patch can encompass our entire
observable Universe today, which has a size D0 > 30 Gpc, if there
were more than 40 e-folds of inflation (N∗ > 40). If inflation occurs at
the GUT scale (1015 GeV) then we require more than 60 e-folds.

Producing an accelerated expansion in general relativity requires
an energy-momentum tensor with negative pressure, p < −ρ/3 (see
Eq. (22.9) in “Big Bang Cosmology” review and Chap. 27, “Dark
Energy” review), quite different from the hot dense plasma of
relativistic particles in the hot Big Bang. However a positive vacuum
energy V > 0 does exert a negative pressure, pV = −ρV . The work
done by the cosmological expansion must be negative in this case
so that the local vacuum energy density remains constant in an
expanding universe, ρ̇V = −3H(ρV + pV ) = 0. Therefore, a false
vacuum state can drive an exponential expansion, corresponding to a
de Sitter spacetime with a constant Hubble rate H2 = 8πρV /3M2

P on
spatially-flat hypersurfaces.

A constant vacuum energy V , equivalent to a cosmological constant
Λ in the Friedmann equation, cannot provide a complete description
of inflation in the early Universe, since inflation must necessarily
have come to an end in order for the standard Big-Bang cosmology
to follow. A phase transition to the present true vacuum is required
to release the false vacuum energy into the energetic plasma of the
hot Big Bang and produce the large total entropy of our observed
Universe today. Thus we must necessarily study dynamical models
of inflation, where the time-invariance of the false vacuum state is
broken by a time-dependent field. A first-order phase transition would
produce a very inhomogeneous Universe [9] unless a time-dependent
scalar field leads to a rapidly changing percolation rate [10,11,12].
However, a second-order phase transition [13,14], controlled by a
slowly-rolling scalar field, can lead to a smooth classical exit from the
vacuum-dominated phase.

As a spectacular bonus, quantum fluctuations in that scalar
field could provide a source of almost scale-invariant density
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fluctuations [15,16], as detected in the CMB (see section Cos-
micMicrowaveBackground), which are thought to be the origin of the
structures seen in the Universe today.

Accelerated expansion and primordial perturbations can also be
produced in some modified gravity theories (e.g., [1,17]) , which
introduce additional non-minimally coupled degrees of freedom. Such
inflation models can often be conveniently studied by transforming
variables to an ‘Einstein frame’ in which Einstein’s equations apply
with minimally coupled scalar fields [18,19,20].

In the following we will review scalar field cosmology in general
relativity and the spectra of primordial fluctuations produced during
inflation, before studying selected inflation models.

23.2. Scalar Field Cosmology

The energy-momentum tensor for a canonical scalar field φ with
self-interaction potential V (φ) is given in Eq. (22.51) in “Big Bang
Cosmology” review. In a homogeneous background this corresponds
to a perfect fluid with density

ρ =
1

2
φ̇2 + V (φ) , (23.7)

and isotropic pressure

p =
1

2
φ̇2 − V (φ) , (23.8)

while the 4-velocity is proportional to the gradient of the field,
uµ ∝ ∇µφ.

A field with vanishing potential energy acts like a stiff fluid with
p = ρ = ϕ̇2/2, whereas if the time-dependence vanishes we have
p = −ρ = −V and the scalar field is uniform in time and space. Thus
a classical, potential-dominated scalar-field cosmology, with p ≃ −ρ,
can naturally drive a quasi-de Sitter expansion; the slow time-evolution
of the energy density weakly breaks the exact O(1, 3) symmetry of
four-dimensional de Sitter spacetime down to a Robertson-Walker
(RW) spacetime, where the scalar field plays the role of the cosmic
time coordinate.

In a scalar-field RW cosmology the Friedmann constraint equation
(Eq. (23.1)) reduces to

H2 =
8π

3M2
P

(

1

2
φ̇2 + V

)

− k

R2
, (23.9)

while energy conservation (Eq. (22.10) in “Big Bang Cosmology”
review) for a homogeneous scalar field reduces to the Klein-Gordon
equation of motion (Eq. (22.53) in “Big Bang Cosmology” review)

φ̈ = −3Hφ̇ − V ′(φ) . (23.10)

The evolution of the scalar field is thus driven by the potential
gradient V ′ = dV/dφ, subject to damping by the Hubble expansion
Hφ̇.

If we define the Hubble slow-roll parameter

ǫH ≡ − Ḣ

H2 , (23.11)

then we see that inflation (R̈ > 0 and hence Ḣ > −H2) requires
ǫH < 1. In this case the spatial curvature decreases relative to the
scalar field energy density as the Universe expands. Hence in the
following we drop the spatial curvature and consider a spatially-flat
RW cosmology, assuming that inflation has lasted sufficiently long
that our observable universe is very close to spatially flatness.
However, we note that bubble nucleation, leading to a first-order phase
transition during inflation, can lead to homogeneous hypersurfaces
with a hyperbolic (‘open’) geometry, effectively resetting the spatial
curvature inside the bubble [21]. This is the basis of so-called open
inflation models [22,23,24], where inflation inside the bubble has a
finite duration, leaving a finite negative spatial curvature.

In a scalar field-dominated cosmology (Eq. (23.11)) gives

ǫH =
3φ̇2

2V + φ̇2
, (23.12)

in which case we see that inflation requires a potential-dominated
expansion, φ̇2 < V .

23.2.1. Slow-Roll Inflation :

It is commonly assumed that the field acceleration term, φ̈, in
(Eq. (23.10)) can be neglected, in which case one can give an
approximate solution for the inflationary attractor [25]. This slow-
roll approximation reduces the second-order Klein-Gordon equation
(Eq. (23.10)) to a first-order system, which is over-damped, with
the potential gradient being approximately balanced against to the
Hubble damping:

3Hφ̇ ≃ −V ′ , (23.13)

and at the same time that the Hubble expansion (Eq. (23.9)) is
dominated by the potential energy

H2 ≃ 8π

3M2
P

V (φ) , (23.14)

corresponding to ǫH ≪ 1.

A necessary condition for the validity of the slow-roll approximation
is that the potential slow-roll parameters

ǫ ≡ M2
P

16π

(

V ′

V

)2

, η ≡ M2
P

8π

(

V ′′

V

)

, (23.15)

are small, i.e., ǫ ≪ 1 and |η| ≪ 1, requiring the potential to be
correspondingly flat. If we identify V ′′ with the effective mass of
the field, we see that the slow-roll approximation requires that the
mass of the scalar field must be small compared with the Hubble
scale. We note that the Hubble slow-roll parameter coincides with the
potential slow-roll parameter, ǫH ≃ ǫ, to leading order in the slow-roll
approximation.

The slow-roll approximation allows one to determine the Hubble
expansion rate as a function of the scalar field value, and vice versa.
In particular, we can express, in terms of the scalar field value during
inflation, the total logarithmic expansion, or number of “e-folds”:

N∗ ≡ ln

(

Rend

R∗

)

=

∫ tend

t∗

Hdt ≃ −
∫ φend

φ∗

√

4π

ǫ

dφ

MP
for V ′ > 0 .

(23.16)
Given that the slow-roll parameters are approximately constant during
slow-roll inflation, dǫ/dN ≃ 2ǫ(η − 2ǫ) = O(ǫ2), we have

N∗ ≃ 4√
ǫ

∆φ

MP
. (23.17)

Since we require N > 40 to solve the flatness, horizon and entropy
problems of the standard Big Bang cosmology, we require either very
slow roll, ǫ < 0.01, or a large change in the value of the scalar field
relative to the Planck scale, ∆φ > MP .

23.2.2. Reheating :

Slow-roll inflation can lead to an exponentially large universe, close
to spatial flatness and homogeneity, but the energy density is locked
in the potential energy of the scalar field, and needs to be converted
to particles and thermalised to recover a hot Big Bang cosmology at
the end of inflation [26,27]. This process is usually referred to as
reheating, although there was not necessarily any preceding thermal
era. Reheating can occur when the scalar field evolves towards the
minimum of its potential, converting the potential energy first to
kinetic energy. This can occur either through the breakdown of the
slow-roll condition in single-field models, or due to an instability
triggered by the inflaton reaching a critical value, in multi-field models
known as hybrid inflation models [28].

Close to a simple minimum, the scalar field potential can be
described by a quadratic function, V = m2φ2/2, where m is the mass
of the field. We can obtain slow-roll inflation in such a potential at
large field values, φ ≫ MP . However, for φ ≪ MP the field approaches
an oscillatory solution:

φ(t) ≃ MP√
3π

sin(mt)

mt
. (23.18)

For |φ| < MP the Hubble rate drops below the inflaton mass, H < m,
and the field oscillates many times over a Hubble time. Averaging
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over several oscillations, ∆t ≫ m−1, we find 〈φ̇2/2〉∆t ≃ 〈m2φ2/2〉∆t
and hence

〈ρ〉∆t ≃
M2

P

6πt2
, 〈p〉∆t ≃ 0 . (23.19)

This coherent oscillating field corresponds to a condensate of non-
relativistic massive inflaton particles, driving a matter-dominated era
at the end of inflation, with scale factor R ∝ t2/3.

The inflaton condensate can lose energy through perturbative
decays due to terms in the interaction Lagrangian, such as

Lint ⊂ −λiσφχ2
i − λjφψ̄jψj (23.20)

that couple the inflation to scalar fields χi or fermions ψj , where σ
has dimensions of mass and the λi are dimensionless couplings. When
the mass of the inflaton is much larger than the decay products, the
decay rate is given by [29]

Γi =
λ2

i σ
2

8πm
, Γj =

λ2
jm

8π
. (23.21)

These decay products must in turn thermalise with Standard Model
particles before we recover conventional hot Big Bang cosmology.
An upper limit on the reheating temperature after inflation is given
by [27]

Trh = 0.2

(

100

g∗

)1/4
√

MP Γtot , (23.22)

where g∗ is the effective number of degrees of freedom and Γtot is the
total decay rate for the inflaton, which is required to be less than m
for perturbative decay.

The baryon asymmetry of the Universe must be generated after
the main release of entropy during inflation, which is an important
constraint on possible models. Also, the fact that the inflaton mass
is much larger than the mass scale of the Standard Model opens up
the possibility that it may decay into massive stable or metastable
particles that could be connected with dark matter, constraining
possible models. For example, in the context of supergravity models
the reheat temperature is constrained by the requirement that
gravitinos are not overproduced, potentially destroying the successes
of Big Bang nucleosynthesis. For a range of gravitino masses one must
require Trh < 109 GeV [30,31].

The process of inflaton decay and reheating can be significantly
altered by interactions leading to space-time dependences in the
effective masses of the fields. In particular, parametric resonance can
lead to explosive, non-perturbative decay of the inflaton in some cases,
a process often referred to as preheating [32,26]. For example, an
interaction term of the form

Lint ⊂ −λ2φ2χ2 , (23.23)

leads to a time-dependent effective mass for the χ field as the inflaton
φ oscillates. This can lead to non-adiabatic particle production if
the bare mass of the χ field is small for large couplings or for rapid
changes of the inflaton field. The process of preheating is highly
model-dependent, but it highlights the possible role of non-thermal
particle production after and even during inflation.

23.3. Primordial Perturbations from Inflation

Although inflation was originally discussed as a solution to the
problem of initial conditions required for homogeneous and isotropic
hot Big Bang cosmology, it was soon realised that inflation also
offered a mechanism to generate the inhomogeneous initial conditions
required for the formation of large-scale structure [15,16,17,33].

23.3.1. Metric Perturbations :

In a homogeneous classical inflationary cosmology driven by a scalar
field, the inflaton field is uniform on constant-time hypersurfaces,
φ = φ0(t). However, quantum fluctuations inevitably break the spatial
symmetry leading to an inhomogeneous field:

φ(t, xi) = φ0(t) + δφ(t, xi) . (23.24)

At the same time, one should consider inhomogeneous perturbations
of the RW spacetime metric (see, e.g., [34,35,36]) :

ds2 = (1+2A)dt2−2RBidtdxi−R2 [

(1 + 2C)δij + ∂i∂jE + hij
]

dxidxj ,
(23.25)

where A, B, E and C are scalar perturbations while hij represents
transverse and tracefree, tensor metric perturbations. Vector metric
perturbations can be eliminated using Einstein constraint equations in
a scalar field cosmology.

The tensor perturbations remain invariant under a temporal gauge
transformation t → t + δt(t, xi), but both the scalar field and the
scalar metric perturbations transform. For example, we have

δφ → δφ − φ̇0δt , C → C − Hδt . (23.26)

However, there are gauge invariant combinations, such as [37]

Q = δφ − φ̇0

H
C , (23.27)

which describes the scalar field perturbations on spatially-flat
hypersurfaces. This is simply related to the curvature perturbation on
uniform-field hypersurfaces:

R = C − H

φ̇0
δφ = −H

φ̇0
Q , (23.28)

which coincides in slow-roll inflation, ρ ≃ ρ(φ), with the curvature
perturbation on uniform-density hypersurfaces [16]

ζ = C − H

ρ̇0
δρ . (23.29)

Thus scalar field and scalar metric perturbations are coupled by the
evolution of the inflaton field.

23.3.2. Gravitational waves from inflation :

The tensor metric perturbation, hij in Eq. (Eq. (23.25)), is gauge-
invariant and decoupled from the scalar perturbations at first order.
This represents the free excitations of the spacetime, i.e., gravitational
waves, which are the simplest metric perturbations to study at linear
order.

Each tensor mode, with wavevector ~k, has two linearly-independent
transverse and trace-free polarisation states:

hij(~k) = h~k
qij + h̄~k

q̄ij . (23.30)

The linearised Einstein equations then yield the same evolution
equation for the amplitude as that for a massless field in RW
spacetime:

ḧ~k
+ 3Hḣ~k

+
k2

R2 h~k
= 0 , (23.31)

(and similarly for h̄~k
). This can be re-written in terms of the conformal

time, η =
∫

dt/R, and the conformally rescaled field:

u~k
=

MP Rh~k√
32π

. (23.32)

This conformal field then obeys the wave equation for a canonical
scalar field in Minkowski spacetime with a time-dependent mass:

u′′~k
+

(

k2 − R′′

R

)

u~k
= 0 . (23.33)

During slow-roll
R′′

R
≃ (2 − ǫ)R2H2 . (23.34)

This makes it possible on sub-Hubble scales, k2/R2 ≫ H2, where the
background expansion can be neglected, to quantise the linearised
metric fluctuations, u~k

→ û~k
.

Crucially, in an inflationary expansion, where R̈ > 0, the comoving
Hubble length H−1/R = 1/Ṙ decreases with time. Thus all modes
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start inside the Hubble horizon and it is possible to take the initial
field fluctuations to be in a vacuum state at early times or on small
scales:

〈u~k1
u~k2

〉 =
i

2
(2π)3δ(3)

(

~k1 + ~k2

)

. (23.35)

In terms of the amplitude of the tensor metric perturbations, this
corresponds to

〈h~k1
h~k2

〉 =
1

2

PT (k1)

4πk3
1

(2π)3δ(3)
(

~k1 + ~k2

)

, (23.36)

where the factor 1/2 appears due to the two polarisation states that
contribute to the total tensor power spectrum:

Pt(k) =
64π

M2
P

(

k

2πR

)2

. (23.37)

On super-Hubble scales, k2/R2 ≪ H2, we have the growing mode
solution, u~k

∝ R, corresponding to h~k
→ constant, i.e., tensor modes

are frozen-in on super-Hubble scales, both during and after inflation.
Thus, connecting the initial vacuum fluctuations on sub-Hubble scales
to the late-time power spectrum for tensor modes at Hubble exit
during inflation, k = R∗H∗, we obtain

Pt(k) ≃ 64π

M2
P

(

H∗

2π

)2

. (23.38)

In the de Sitter limit, ǫ → 0, the Hubble rate becomes time-
independent and the tensor spectrum on super-Hubble scales becomes
scale-invariant [38]. However slow-roll evolution leads to weak time
dependence of H∗ and thus a scale-dependent spectrum on large
scales, with a spectral tilt

nt ≡
d lnPT

d ln k
≃ −2ǫ∗ . (23.39)

23.3.3. Density Perturbations from Inflation :

The scalar field fluctuations on spatially-flat hypersurfaces are
coupled to scalar metric perturbations at first order, but these can
be eliminated using the Einstein constraint equations to yield an
evolution equation

Q̈~k
+ 3HQ̇~k

+

[

k2

R2
+ V ′′ − 8π

3M2
P

d

dt

(

R3φ̇2

H

)]

Q~k
= 0 . (23.40)

Terms proportional to M−2
P represent the effect on the field

fluctuations of gravity at first order. As can be seen, this vanishes in
the limit of a constant background field, and hence is suppressed in
the slow-roll limit, but it is of the same order as the effective mass,
V ′′ = 3ηH2, so must be included if we wish to model deviations from
exact de Sitter symmetry.

This wave equation can also be written in the canonical form for a
free field in Minkowski spacetime if we define [37]

v~k
≡ RQ~k

, (23.41)

to yield

v′′~k
+

(

k2 − z′′

z

)

v~k
= 0 , (23.42)

where we define

z ≡ Rφ̇

H
,

z′′

z
≃ (2 + 5ǫ− 3η)R2H2 , (23.43)

where the last approximate equality holds to leading order in the
slow-roll approximation.

As previously done for gravitational waves, we quantise the
linearised field fluctuations v~k

→ v̂~k
on sub-Hubble scales, k2/R2 ≫

H2, where the background expansion can be neglected. Thus we
impose

〈v~k1
v~k2

〉 =
i

2
(2π)3δ(3)

(

~k1 + ~k2

)

. (23.44)

In terms of the field perturbations, this corresponds to

〈Q~k1
Q~k2

〉 =
PQ(k1)

4πk3
1

(2π)3δ(3)
(

~k1 + ~k2

)

, (23.45)

where the power spectrum for vacuum field fluctuations on sub-Hubble
scales, k2/R2 ≫ H2, is simply

PQ(k) =

(

k

2πR

)2

, (23.46)

yielding the classic result for the vacuum fluctuations for a massless
field in de Sitter at Hubble exit, k = R∗H∗:

PQ(k) ≃
(

H

2π

)2

∗

. (23.47)

In practice there are slow-roll corrections due to the small but finite
mass (η) and field evolution (ǫ) [39].

Slow-roll corrections to the field fluctuations are small on sub-
Hubble scales, but can become significant as the field and its
perturbations evolve over time on super-Hubble scales. Thus it is
helpful to work instead with the curvature perturbation, ζ defined
in equation (Eq. (23.29)), which remains constant on super-Hubble
scales for adiabatic density perturbations both during and after
inflation [16,40]. Thus we have an expression for the primordial
curvature perturbation on super-Hubble scales produced by single-field
inflation:

Pζ(k) =

[

(

H

φ̇

)2

PQ(k)

]

∗

≃ 4π

M2
P

[

1

ǫ

(

H

2π

)2
]

∗

. (23.48)

Comparing this with the primordial gravitational wave power
spectrum (Eq. (23.38)) we obtain the tensor-to-scalar ratio for
single-field slow-roll inflation

r ≡ Pζ

Pt
≃ 16ǫ∗ . (23.49)

Note that the scalar amplitude is boosted by a factor 1/ǫ∗ during
slow-roll inflation, because small scalar field fluctuations can lead
to relatively large curvature perturbations on hypersurfaces defined
with respect to the density if the potential energy is only weakly
dependent on the scalar field, as in slow-roll. Indeed, the de Sitter
limit is singular, since the potential energy becomes independent of
the scalar field at first order, ǫ → 0, and the curvature perturbation
on uniform-density hypersurfaces becomes ill-defined.

We note that in single-field inflation the tensor-to-scalar ratio and
the tensor tilt (Eq. (23.39)) at the same scale are both determined
by the first slow-roll parameter at Hubble exit, ǫ∗, giving rise to an
important consistency test for single-field inflation:

nt = − r

8
. (23.50)

This may be hard to verify if r is small, making any tensor tilt nt

difficult to measure. On the other hand, it does offer a way to rule
out single-field slow-roll inflation if either r or nt is large.

Given the relatively large scalar power spectrum, it has proved
easier to measure the scalar tilt, conventionally defined as ns − 1.
Slow-roll corrections lead to slow time-dependence of both H∗ and ǫ∗,
giving a weak scale-dependence of the scalar power spectrum:

ns − 1 ≡ d lnPζ

d ln k
≃ −6ǫ∗ + 2η∗ , (23.51)

and a running of this tilt at second-order in slow-roll:

dns

d ln k
≃ −8ǫ∗(3ǫ∗ − 2η∗) − 2ξ2

∗ , (23.52)

where the running introduces a new slow-roll parameter at second-
order:

ξ2 =
M4

P

64π2

V ′V ′′′

V 2
. (23.53)

Any relation between the tensor-to-scalar ratio and the scalar tilt
must impose some model-dependent relation between the slow-roll
parameters. For example, for power-law inflation or chaotic inflation
driven by a massive field (see later) we have η ≃ ǫ and hence

ns − 1 ≃ − r

8
. (23.54)

Violating this condition would rule out these specific classes of
single-field models.
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23.3.4. Observational Bounds :

The observed scale-dependence of the power spectrum makes it
necessary to specify the comoving scale, k, at which quantities are
constrained and hence the Hubble-exit time, k = a∗H∗, when the
corresponding theoretical quantities are calculated during inflation.
This is usually expressed in terms of the number of e-folds from the
end of inflation [41]:

N∗(k) ≃ 67−ln

(

k

a0H0

)

+
1

4
ln

(

V 2
∗

M4
P ρend

)

+
1

12
ln

(

ρrh

ρend

)

− 1

12
ln(g∗),

(23.55)
where H−1

0 /a0 is the present comoving Hubble length. Different
models of reheating and and thus different reheat temperatures and
densities, ρrh in Eq. (23.55), lead to a range of possible values for N∗

corresponding to a fixed physical scale, and hence we have a range
of observational predictions for a given inflation model, as seen in
Fig. 23.1.

The Planck 2015 temperature and polarisation data (see Chap. 28,
“Cosmic Microwave Background” review) are consistent with a smooth
featureless power spectrum over a range of comoving wavenumbers,
0.008 h−1 Mpc−1 ≤ k ≤ 0.1 h Mpc−1. In the absence of running, the
data measure the the spectral index

ns = 0.968 ± 0.006 , (23.56)

corresponding to a deviation from scale-invariance exceeding the 5σ
level. If running of the spectral tilt is included in the model, this is
constrained to be

dns

d ln k
= −0.003± 0.007 . (23.57)

A recent analysis of the BICEP2/Keck Array, Planck and other data
places an upper bound on the tensor-to-scalar ratio [42]

r < 0.07 (23.58)

at the 95% CL.

Figure 23.1: The marginalized joint 68 and 95% CL regions
for the tilt in the scalar perturbation spectrum, ns, and the
relative magnitude of the tensor perturbations, r, obtained from
the Planck 2015 data and their combinations with BICEP2/Keck
Array and/or BAO data, confronted with the predictions of some
of the inflationary models discussed in this review. This figure is
taken from [44].

These observational bounds can be converted into bounds on the
slow-roll parameters and hence the potential during slow-roll inflation.
Setting higher-order slow-roll parameters (beyond second-order in
horizon-flow parameters [43]) to zero the Planck collaboration obtain
the following bounds [44]

ǫ < 0.012 , (23.59)

η = −0.0080+0.0088
−0.0146 , (23.60)

ξ2 = 0.0070+0.0045
−0.0069 , (23.61)

which can be used to constrain models, as discussed in the next
Section.

Fig. 23.1, which is taken from [44], compares observational CMB
constraints on the tilt, ns, in the spectrum of scalar perturbations
and the ratio, r, between the magnitudes of tensor and scalar
perturbations. Important rôles are played by data from the Planck
satellite, the BICEP2/Keck Array (BKP) and measurements of
baryon acoustic oscillations (BAO). The reader is referred to [44]
for technical details. These experimental constraints are compared
with the predictions of some of the inflationary models discussed
in this review. Generally speaking, models with a concave potential
are favoured over those with a convex potential, and models with
power-law inflation, as opposed to de Sitter-like (quasi-)exponential
expansion, are now excluded.

23.4. Models

23.4.1. Pioneering Models :

The paradigm of the inflationary Universe was proposed in [2],
where it was pointed out that an early period of (near-)exponential
expansion, in addition to resolving the horizon and flatness problems
of conventional Big-Bang cosmology as discussed above (the possibility
of a de Sitter phase in the early history of the Universe was also
proposed in the non-minimal gravity model of [1], with the
motivation of avoiding an initial singularity), would also dilute the
prior abundance of any unseen heavy, (meta-)stable particles, as
exemplified by monopoles in grand unified theories (GUTs; see
Chap. 16, “Grand Unified Theories” review). The original proposal
was that this inflationary expansion took place while the Universe
was in a metastable state (a similar suggestion was made in [45,46],
where in [45] it was also pointed out that such a mechanism could
address the horizon problem) and was terminated by a first-order
transition due to tunnelling though a potential barrier. However, it
was recognized already in [2] that this ‘old inflation’ scenario would
need modification if the transition to the post-inflationary universe
were to be completed smoothly without generating unacceptable
inhomogeneities.

This ‘graceful exit’ problem was addressed in the ‘new inflation’
model of [13]( see also [14] and footnote [39] of [2]) , which studied
models based on an SU(5) GUT with an effective potential of the
Coleman-Weinberg type (i.e., dominated by radiative corrections),
in which inflation could occur during the roll-down from the local
maximum of the potential towards a global minimum. However, it
was realized that the Universe would evolve to a different minimum
from the Standard Model [47], and it was also recognized that density
fluctuations would necessarily be too large [15], since they were
related to the GUT coupling strength.

These early models of inflation assumed initial conditions
enforced by thermal equilibrium in the early Universe. However,
this assumption was questionable: indeed, it was not made in the
model of [1], in which a higher-order gravitational curvature term
was assumed to arise from quantum corrections, and the assumption of
initial thermal equilibrium was jettisoned in the ‘chaotic’ inflationary
model of [48]. These are the inspirations for much recent inflationary
model building, so we now discuss them in more detail, before
reviewing contemporary models.

In this section we will work in natural units where we set the
reduced Planck mass to unity, i.e., 8π/M2

P = 1. All masses are thus
relative to the reduced Planck scale.

23.4.2. R
2 Inflation :

The first-order Einstein-Hilbert action, (1/2)
∫

d4x
√−gR, where R

is the Ricci scalar curvature, is the minimal possible theory consistent
with general coordinate invariance. However, it is possible that there
might be non-minimal corrections to this action, and the unique
second-order possibility is

S =
1

2

∫

d4x
√−g

(

R +
R2

6M2

)

. (23.62)

It was pointed out in [1] that an R2 term could be generated by
quantum effects, and that (Eq. (23.62)) could lead to de Sitter-like
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expansion of the Universe. Scalar density perturbations in this model
were calculated in [17]. Because the initial phase was (almost) de
Sitter, these perturbations were (approximately) scale-invariant, with
magnitude ∝ M . It was pointed out in [17] that requiring the scalar
density perturbations to lie in the range 10−3 to 10−5, consistent with
upper limits at that time, would require M ∼ 10−3 to 10−5 in Planck
units, and it was further suggested in that these perturbations could
lead to the observed large-scale structure of the Universe, including
the formation of galaxies.

Although the action (Eq. (23.62)) does not contain an explicit scalar
field, [17] reduced the calculation of density perturbations to that of
fluctuations in the scalar curvature R, which could be identified (up
to a factor) with a scalar field of mass M . The formal equivalence of
R2 gravity (Eq. (23.62)) to a theory of gravity with a massive scalar φ
had been shown in [18], see also [19]. The effective scalar potential
for what we would nowadays call the ‘inflaton’ [49] takes the form

S =
1

2

∫

d4x
√−g

[

R + (∂µφ)2 − 3

2
M2(1 − e−

√
2/3φ)2

]

(23.63)

when the action is written in the Einstein frame, and the potential is
shown as the solid black line in Fig. 23.2. Using (Eq. (23.48)), one
finds that the amplitude of the scalar density perturbations in this
model is given by

∆R =
3M2

8π2 sinh4
(

φ√
6

)

, (23.64)

The measured magnitude of the density fluctuations in the CMB
requires M ≃ 1.3 × 10−5 in Planck units (assuming N∗ ≃ 55), so one
of the open questions in this model is why M is so small. Obtaining
N∗ ≃ 55 also requires an initial value of φ ≃ 5.5, i.e., a super-Planckian
initial condition, and another issue for this and many other models is
how the form of the effective potential is protected and remains valid
at such large field values. Using Eq. (23.51) one finds that ns ≃ 0.965
for N∗ ≃ 55 and using (Eq. (23.49)) one finds that r ≃ 0.0035. These
predictions are consistent with the present data from Planck and other
experiments, as seen in Fig. 23.1.

Figure 23.2: The inflationary potential V in the R2 model
(solid black line) compared with its form in various no-scale
models discussed in detail in [50]( dashed coloured lines).

23.4.3. Chaotic Models with Power-Law Potentials :

As has already been mentioned, a key innovation in inflationary
model-building was the suggestion to abandon the questionable
assumption of a thermal initial state, and consider ‘chaotic’ initial
conditions with very general forms of potential [48]. (Indeed, the
R2 model discussed above can be regarded as a prototype of this
approach.) The chaotic approach was first proposed in the context of
a simple power-law potential of the form µ4−αφα, and the specific
example of λφ4 was studied in [48]. Such models make the following
predictions for the slow-roll parameters ǫ and η:

ǫ =
1

2

(

α

φ

)2

, η =
α(α − 1)

φ2
, (23.65)

leading to the predictions

r ≈ 4α

N∗

, ns − 1 ≈ −α + 2

2N∗

, (23.66)

which are shown in Fig. 23.1 for some illustrative values of α. We
note that the prediction of the original φ4 model lies out of the frame,
with values of r that are too large and values of ns that are too small.
The φ3 model has similar problems, and would in any case require
modification in order to have a well-defined minimum. The simplest
possibility is φ2, but this is now also disfavoured by the data, at the
95% CL if only the Planck data are considered, and more strongly
if other data are included, as seen in Fig. 23.1. (For non-minimal
models of quadratic inflation that avoid this problem, see, e.g., [51]. )

Indeed, as can be seen in Fig. 23.1, all models with a convex
potential (i.e., one curving upwards) are disfavoured compared to

models with a concave potential. Thus, a model with a φ2/3 potential
may just be compatible with the data at the 68% CL, whereas linear
and φ4/3 potentials are allowed only at about the 95% CL.

23.4.4. Hilltop Models :

This preference for a concave potential motivates interest in ‘hilltop’
models [52], whose starting-point is a potential of the form

V (φ) = Λ4
[

1 −
(

φ

µ

)p

+ . . .

]

, (23.67)

where the . . . represent extra terms that yield a positive semi-definite
potential. To first order in the slow-roll parameters, when x ≡ φ/µ is
small, one has

ns ≃ 1 − p(p − 1)µ−2 xp−2

(1 − xp)
− 3

8
r , r ≃ 8p2µ−2 x2p−2

(1 − xp)2
.

(23.68)
As seen in Fig. 23.1, a hilltop model with p = 4 can be compatible
with the Planck and other measurements, if µ ≫ MP .

23.4.5. D-Brane Inflation :

Many scenarios for inflation involving extra dimensions have been
proposed, e.g., the possibility that observable physics resides on a
three-dimensional brane, and that there is an inflationary potential
that depends on the distance between our brane and an antibrane,
with a potential of the form [53]

V (φ) = Λ4
[

1 −
(

µ

φ

)p

+ . . .

]

. (23.69)

In this scenario the effective potential vanishes in the limit φ → ∞,
corresponding to complete separation between our brane and the
antibrane. The predictions for ns and r in this model can be obtained
from (Eq. (23.68)) by exchanging p ↔ −p, and are also consistent
with the Planck and other data.

23.4.6. Natural Inflation :

Also seen in Fig. 23.1 are the predictions of ‘natural inflation’ [54],
in which one postulates a non-perturbative shift symmetry that
suppresses quantum corrections, so that a hierarchically small scale
of inflation, H ≪ MP , is technically natural. In the simplest models,
there is a periodic potential of the form

V (φ) = Λ4
[

1 + cos

(

φ

f

)]

, (23.70)

where f is a dimensional parameter reminiscent of an axion decay
constant (see the next subsection) [55], which must have a value
> MP . Natural inflation can yield predictions similar to quadratic
inflation (which are no longer favoured, as already discussed), but can
also yield an effective convex potential. Thus, it may lead to values of
r that are acceptably small, but for values of ns that are in tension
with the data, as seen in Fig. 23.1.
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23.4.7. Axion Monodromy Models :

The effective potentials in stringy models [56,57] motivated by
axion monodromy may be of the form

V (φ) = µ4−αφα + Λ4e
−C

(

φ

φ0

)pΛ

cos

[

γ +
φ

f

(

φ

φ0

)pf+1
]

, (23.71)

where µ, Λ, f and φ0 are parameters with the dimension of mass,
and C, p, pΛ, pf and γ are dimensionless constants, generalizing the
potential ( [54]) in the simplest models of natural inflation. The
oscillations in (Eq. (23.71)) are associated with the axion field,
and powers pΛ, pf 6= 0 may arise from φ-dependent evolutions of
string moduli. Since the exponential prefactor in (Eq. (23.71)) is
due to non-perturbative effects that may be strongly suppressed, the
oscillations may be unobservably small. Specific string models having
φα with α = 4/3, 1 or 2/3 have been constructed in [56,57], providing
some motivation for the low-power models mentioned above.

As seen in Fig. 23.1, the simplest axion monodromy models with
these values of the power α are compatible with all the available data
at the 95% CL, though not at the 68% CL. The Planck Collaboration
has also searched for characteristic effects associated with the second
term in (Eq. (23.71)), such as a possible drift in the modulation
amplitude (setting pΛ = C = 0), and a possible drifting frequency
generated by pf 6= 0, without finding any compelling evidence [44].

23.4.8. Higgs Inflation :

Since the energy scale during inflation is commonly expected to
lie between the Planck and TeV scales, it may serve as a useful
bridge with contacts both to string theory or some other quantum
theory of gravity, on the one side, and particle physics on the other
side. However, as the above discussion shows, much of the activity
in building models of inflation has been largely independent of
specific connections with these subjects, though some examples of
string-motivated models of inflation were mentioned above.

The most economical scenario for inflation might be to use as
inflaton the only established scalar field, namely the Higgs field (see
Chap. 11, “Status of Higgs boson physics” review). A specific model
assuming a non-minimal coupling of the Higgs field h to gravity was
constructed in [58]. Its starting-point is the action

S =

∫

d4x
√−g

[

M2 + ξh2

2
R +

1

2
∂µh∂µh − λ

4
(h2 − v2)2

]

, (23.72)

where v is the Higgs vacuum expectation value. The model requires
ξ ≫ 1, in which case it can be rewritten in the Einstein frame as

S =

∫

d4x
√−g

[

1

2
R +

1

2
∂µχ∂µχ − U(χ)

]

, (23.73)

where the effective potential for the canonically-normalized inflaton
field χ has the form

U(χ) =
λ

4ξ2

[

1 + exp

(

− 2χ√
6MP

)]−2

, (23.74)

which is similar to the effective potential of the R2 model at
large field values. As such, the model inflates successfully if
ξ ≃ 5 × 104 mh/(

√
2v), with predictions for ns and r that are

indistinguishable from the predictions of the R2 model shown in
Fig. 23.1.

This model is very appealing, but must confront several issues.
One is to understand the value of ξ, and another is the possibility
of unitarity violation. However, a more fundamental issue is whether
the effective quartic Higgs coupling is positive at the scale of the
Higgs field during inflation. Extrapolations of the effective potential
in the Standard Model using the measured values of the masses of the
Higgs boson and the top quark indicate that probably λ < 0 at this
scale [59], though there are still significant uncertainties associated
with the appropriate input value of the top mass and the extrapolation
to high renormalization scales.

23.4.9. Supersymmetric Models of Inflation :

Supersymmetry [60] is widely considered to be a well-motivated
possible extension of the Standard Model that might become apparent
at the TeV scale. It is therefore natural to consider supersymmetric
models of inflation. These were originally proposed because of the
problems of the the new inflationary theory [13,14] based on the
one-loop (Coleman-Weinberg) potential for breaking SU(5). Several of
these problems are related to the magnitude of the effective potential
parameters: in any model of inflation based on an elementary scalar
field, some parameter in the effective potential must be small in natural
units, e.g., the quartic coupling λ in a chaotic model with a quartic
potential, or the mass parameter µ in a model of chaotic quadratic
inflation. These parameters are renormalized multiplicatively in a
supersymmetric theory, so that the quantum corrections to small
values would be under control. Hence it was suggested that inflation
cries out for supersymmetry [61], though non-supersymmetric
resolutions of the problems of Coleman-Weinberg inflation are also
possible: see, e.g., Ref. [62].

In the Standard Model there is only one scalar field that could be a
candidate for the inflaton, namely the Higgs field discussed above, but
even the minimal supersymmetric extension of the Standard Model
(MSSM) contains many scalar fields. However, none of these is a
promising candidate for the inflaton. The minimal extension of the
MSSM that may contain a suitable candidate is the supersymmetric
version of the minimal seesaw model of neutrino masses, which
contains the three supersymmetric partners of the heavy singlet (right-
handed) neutrinos. One of these singlet sneutrinos ν̃ could be the
inflaton [63]: it would have a quadratic potential, the mass coefficient
required would be ∼ 1013 GeV, very much in the expected ball-park
for singlet (right-handed) neutrino masses, and sneutrino inflaton
decays also could give rise to the cosmological baryon asymmetry via
leptogenesis. However, as seen in Fig. 23.1 and already discussed, a
purely quadratic inflationary potential is no longer favoured by the
data. This difficulty could in principle be resolved in models with
multiple sneutrinos [64], or by postulating a trilinear sneutrino
coupling and hence a superpotential of Wess-Zumino type [65], which
can yield successful inflation with predictions intermediate between
those of natural inflation and hilltop inflation in Fig. 23.1.

Finally, we note that it is also possible to obtain inflation via
supersymmetry breaking, as in the model [66] whose predictions are
illustrated in Fig. 23.1.

23.4.10. Supergravity Models :

Any model of early-Universe cosmology, and specifically inflation,
must necessarily incorporate gravity. In the context of supersymmetry
this requires an embedding in some supergravity theory [67,68]. An
N = 1 supergravity theory is specified by three functions: a Hermitian
function of the matter scalar fields φi, called the Kähler potential K,
that describes its geometry, a holomorphic function of the superfields,
called the superpotential W , which describes their interactions, and
another holomorphic function fαβ , which describes their couplings to
gauge fields Vα [69].

The simplest possibility is that the Kähler metric is flat:

K = φiφ∗
i , (23.75)

where the sum is over all scalar fields in the theory, and the simplest
inflationary model in minimal supergravity had the superpotential [70]

W = m2(1 − φ)2 , (23.76)

Where φ is the inflaton. However, this model predicts a tilted
scalar perturbation spectrum, ns = 0.933, which is now in serious
disagreement with the data from Planck and other experiments shown
in Fig. 23.1.

Moreover, there is a general problem that arises in any supergravity
theory coupled to matter, namely that, since its effective scalar
potential contains a factor of eK , scalars typically receive squared
masses ∝ H2 ∼ V , where H is the Hubble parameter [71], an issue
called the ‘η problem’. The theory given by (Eq. (23.76)) avoids this
η problem, but a generic supergravity inflationary model encounters
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this problem of a large inflaton mass. Moreover, there are additional
challenges for supergravity inflation associated with the spontaneous
breaking of local supersymmetry [72,73,74].

Various approaches to the η problem in supergravity have been
proposed, including the possibility of a shift symmetry [75], and one
possibility that has attracted renewed attention recently is no-scale
supergravity [76,77]. This is a form of supergravity with a Kähler
potential that can be written in the form [78]

K = −3 ln

(

T + T ∗ −
∑

i |φi|2
3

)

, (23.77)

which has the special property that it naturally has a flat potential, at
the classical level and before specifying a non-trivial superpotential.
As such, no-scale supergravity is well-suited for constructing models of
inflation. Adding to its attraction is the feature that compactifications
of string theory to supersymmetric four-dimensional models yield
effective supergravity theories of the no-scale type [79]. There are
many examples of superpotentials that yield effective inflationary
potentials for either the T field (which is akin to a modulus field in
some string compactification) or a φ field (generically representing
matter) that are of the same form as the effective potential of the
R2 model (Eq. (23.63)) when the magnitude of the inflaton field
≫ 1 in Planck units, as required to obtain sufficiently many e-folds
of inflation, N∗ [80,81]. This framework also offers the possibility
of using a suitable superpotential to construct models with effective
potentials that are similar, but not identical, to the R2 model, as
shown by the dashed coloured lines in Fig. 23.2.

23.4.11. Other Exponential Potential Models :

This framework also offers the possibility [80] of constructing
models in which the asymptotic constant value of the potential at
large inflaton field values is approached via a different exponentially-
suppressed term:

V (φ) = A
[

1 − δe−Bφ + O(e−2Bφ)
]

, (23.78)

where the magnitude of the scalar density perturbations fixes A, but
δ and B are regarded as free parameters. In the case of R2 inflation
δ = 2 and B =

√

2/3. In a model such as (Eq. (23.78)), one finds at

leading order in the small quantity e−Bφ that

ns = 1 − 2B2δe−Bφ ,

r = 8B2δ2e−2Bφ ,

N∗ =
1

B2δ
e+Bφ . (23.79)

yielding the relations

ns = 1 − 2

N∗

, r =
8

B2N2
∗

. (23.80)

This model leads to the class of predictions labelled by ‘α attrac-
tors’ [82] in Fig. 23.1. There are generalizations of the simplest
no-scale model (Eq. (23.77)) with prefactors before the ln(. . .) that
are 1 or 2, leading to larger values of B =

√
2 or 1, respectively, and

hence smaller values of r than in the R2 model.

23.5. Model Comparison

Given a particular inflationary model, one can obtain constraints
on the model parameters, informed by the likelihood, corresponding to
the probability of the data given a particular choice of parameters (see
Chap. 39, “Statistics” review). In the light of the detailed constraints
on the statistical distribution of primordial perturbations now inferred
from high-precision observations of the cosmic microwave background,
it is also possible to make quantitative comparison of the statistical
evidence for or against different inflationary models. This can be done
either by comparing the logarithm of the maximum likelihood that
can be obtained for the data using each model, i.e., the minimum
χ2 (with some correction for the number of free parameters in each

model), or by a Bayesian model comparison [83]( see also Sec. 39.3.3
in “Statistics” review).

In such a Bayesian model comparison one computes [7] the
evidence, E(D|MA) for a model, MA, given the data D. This
corresponds to the likelihood, L(θAj) = p(D|θAj ,MA), integrated
over the assumed prior distribution, π(θAj |MA), for all the model
parameters θAj :

E(D|MA) =

∫

L(θAj)π(θAj |MA)dθAj . (23.81)

The posterior probability of the model given the data follows from
Bayes’ theorem

p(MA|D) =
E(D|MA)π(MA)

p(D)
, (23.82)

where the prior probability of the model is given by π(MA). Assuming
that all models are equally likely a priori, π(MA) = π(MB), the
relative probability of model A relative to a reference model, in the
light of the data, is thus given by the Bayes factor

BA,ref =
E(D|MA)

E(D|Mref )
. (23.83)

Computation of the multi-dimensional integral (Eq. (23.81)) is a
challenging numerical task. Even using an efficient sampling algorithm
requires hundreds of thousands of likelihood computations for each
model, though slow-roll approximations can be used to calculate
rapidly the primordial power spectrum using the APSIC numerical
library [7] for a large number of single-field, slow-roll inflation models.

The change in χ2 for selected slow-roll models relative to a baseline
ΛCDM model is given in Table 1 (taken from [44]) . All the inflation
models require some amplitude of tensors and so have an increased
χ2 with respect to the baseline ΛCDM model with a scalar tilt
but no tensors. Table Table 23.1 also shows the Bayesian evidence
for (ln BA,ref > 0) or against (lnBA,ref < 0) a selection of inflation

models using the Planck analysis priors [44]. The Starobinsky R2

inflationary model may be chosen as a reference [44] that provides
a good fit to current data. Higgs inflation [58] is indistinguishable
using current data, making the model comparison “inconclusive” on
the Jeffery’s scale (| lnBA,ref | < 1). (Recall, though, that this model
is disfavoured by the measured values of the Higgs and top quark
masses [59]. ) On the other hand, there is now moderate evidence
(| lnBA,ref | > 2.5) against large-field models such as chaotic inflation
with a quadratic potential and strong evidence (| ln BA,ref | > 5)
against chaotic inflation with a quartic potential. Indeed, over 30%
of the slow-roll inflation models considered in Ref. [7] are strongly
disfavoured by the Planck data.

Table 23.1: Observational evidence for and against selected
inflation models: ∆χ2 is determined relative to a baseline
ΛCDM model, and the Bayes factors are calculated rela-
tive to Starobinsky R2 inflation. Results from Planck 2015
analysis [44].

Model ∆χ2 lnBA,ref

R2 inflation +0.8 0

Power-law potential φ2/3 +6.5 −2.4

Power-law potential φ2 +8.6 −4.7

Power-law potential φ4 +43.3 −23.3
Natural inflation +7.2 −2.4
SUSY α-attractor +0.7 −1.8

The Bayes factors for a wide selection of slow-roll inflationary
models are displayed in Fig. 23.3, which is adapted from Fig. 3 in [84],
where more complete descriptions of the models and the calculations
of the Bayes factors are given. Models discussed in this review are
highlighted in yellow, and numbered as follows: (1) R2 inflation
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(Sec. 23.4) and models with similar predictions, such as Higgs inflation
(Sec. 23.4) and no-scale supergravity inflation (Sec. 23.4); chaotic
inflation models (2) with a φ2 potential; (3) with a φ4 potential; (4)

with a φ2/3 potential, and (5) with a φp potential marginalising over
p ∈ [0.2, 6] (Sec. 23.4); hilltop inflation models (6) with p = 2; (7)
with p = 4 and (8) marginalising over p (Secinflation:models:hilltop);
(9) brane inflation (Secinflation:models:brane); (10) natural inflation
(Sec. 23.4); (11) exponential potential models such as α-attractors
(Sec. 23.4). As seen in Fig. 23.3 and discussed in the next Section,
constraints on reheating are starting to provide additional information
about models of inflation.

Figure 23.3: The Bayes factors calculated in [84] for a large
sample of inflationary models. Those highlighted in yellow are
featured in the this review, according tothe numbers listed in the
text.

23.6. Constraints on Reheating

One connection between inflation and particle physics is provided
by inflaton decay, whose products are expected to have thermalized
subsequently. As seen in (Eq. (23.55)), the number of e-folds required
during inflation depends on details of this reheating process, including
the matter density upon reheating, denoted by ρth, which depends
in turn on the inflaton decay rate Γφ. We see in Fig. 23.1 that,
within any specific inflationary model, both ns and particularly r are
sensitive to the value of N∗. In particular, the one-σ uncertainty in
the experimental measurement of ns is comparable to the variation in
many model predictions for N∗ ∈ [50, 60]. This implies that the data
start to constrain scenarios for inflaton decay in many models. For
example, it is clear from Fig. 23.1 that N∗ = 60 would be preferred
over N∗ = 50 in a chaotic inflationary model with a quadratic
potential.

As a specific example, let us consider R2 models and related models
such as Higgs and no-scale inflation models that predict small values of
r [85]. As seen in Fig. 23.1, within these models the combination of
Planck, BICEP2/Keck Array and BAO data would require a limited
range of ns, corresponding to a limited range of N∗, as seen by
comparing the left and right vertical axes in Fig. 23.4:

N∗ & 52 (68% CL), N∗ & 44 (95% CL) . (23.84)

Within any specific model for inflaton decay, these bounds can
be translated into constraints on the effective decay coupling. For
example, if one postulates a two-body inflaton decay coupling y, the
bounds (Eq. (23.84)) can be translated into bounds on y. This is
illustrated in Fig. 23.4, where any value of N∗ (on the left vertical

axis), projected onto the diagonal line representing the correlation
predicted in R2-like models, corresponds to a specific value of the
inflaton decay rate Γφ/m (lower horizontal axis) and hence y (upper
horizontal axis):

y & 10−5 (68% CL), y & 10−15 (95% CL) . (23.85)

These bounds are not very constraining – although the 68% CL lower
bound on y is already comparable with the electron Yukawa coupling
– but can be expected to improve significantly in the coming years and
thereby provide significant information on the connections between
inflation and particle physics.

Figure 23.4: The values of N∗ (left axis) and ns (right axis) in
R2 inflation and related models for a wide range of decay rates,
Γφ/m, (bottom axis) and corresponding two-body couplings, y
(top axis). The diagonal red line segment shows full numerical
results over a restricted range of Γφ/m (which are shown in more
detail in the insert), while the diagonal blue strip represents
an analytical approximation described in [85]. The difference
between these results is indistinguishable in the main plot, but is
visible in the insert. The horizontal yellow and blue lines show
the 68 and 95% CL lower limits from the Planck 2015 data [44],
and the vertical coloured lines correspond to specific models of
inflaton decay. Figure taken from [85].

23.7. Beyond Single-Field Slow-Roll Inflation

There are numerous possible scenarios beyond the simplest single-
field models of slow-roll inflation. These include theories in which
non-canonical fields are considered, such as k-inflation [86] or DBI
inflation [87], and multiple-field models, such as the curvaton
scenario [88]. As well as altering the single-field predictions for
the primordial curvature power spectrum (Eq. (23.48)) and the
tensor-scalar ratio (Eq. (23.49)), they may introduce new quantities
that vanish in single-field slow-roll models, such as isocurvature
matter perturbations, corresponding to entropy fluctuations in the
photon-to-matter ratio, at first order:

Sm =
δnm

nm
− δnγ

nγ
=

δρm

ρm
− 3

4

δργ

ργ
. (23.86)

Another possibility is non-Gaussianity in the distribution of the
primordial curvature perturbation (see Chap. 28, “Cosmic Microwave
Background” review), encoded in higher-order correlators such as the
primordial bispectrum [89]

〈ζ(k)ζ(k′)ζ(k′′)〉 ≡ (2π)3δ(k + k′ + k′′)Bζ(k, k′, k′′) , (23.87)
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which is often expressed in terms of a dimensionless non-linearity
parameter fNL ∝ Bζ(k, k′, k′′)/Pζ(k)Pζ(k

′). The three-point function
(Eq. (23.87)) can be thought of as defined on a triangle whose sides are
k,k′,k′′, of which only two are independent, since they sum to zero.
Further assuming statistical isotropy ensures that the bispectrum
depends only on the magnitudes of the three vectors, k, k′ and
k′′. The search for fNL and other non-Gaussian effects was a prime
objective of the Planck data analysis [90].

23.7.1. Effective Field Theory of Inflation :

Since slow-roll inflation is a phase of accelerated expansion with
an almost constant Hubble parameter, one may think of inflation in
terms of an effective theory where the de Sitter spacetime symmetry is
spontaneously broken down to RW symmetry by the time-evolution of
the Hubble rate, Ḣ 6= 0. There is then a Goldstone boson, π, associated
with the spontaneous breaking of time-translation invariance, which
can be used to study model-independent properties of inflation. The
Goldstone boson describes a spacetime-dependent shift of the time
coordinate, corresponding to an adiabatic perturbation of the matter
fields:

δφi(t, ~x) = φi(t + π(t, ~x)) − φi(t) . (23.88)

Thus adiabatic field fluctuations can be absorbed into the spatial
metric perturbation, R in Eq. (23.28) at first order, in the comoving
gauge:

R = −Hπ , (23.89)

where we define π on spatially-flat hypersurfaces. In terms of inflaton
field fluctuations, we can identify π ≡ δφ/φ̇, but in principle this
analysis is not restricted to inflation driven by scalar fields.

The low-energy effective action for π can be obtained by writing
down the most general Lorentz-invariant action and expanding in
terms of π. The second-order effective action for the free-field wave
modes, πk, to leading order in slow roll is then

S
(2)
π = −

∫

d4x
√−g

M2
P Ḣ

c2s

[

π̇2
k − c2s

R2
(∇π)2

]

, (23.90)

where ǫH is the Hubble slow-roll parameter (Eq. (23.11)). We identify
c2s with an effective sound speed, generalising canonical slow-roll
inflation, which is recovered in the limit c2s → 1.

The scalar power spectrum on super-Hubble scales (Eq. (23.48)) is
enhanced for a reduced sound speed, leading to a reduced tensor-scalar
ratio (Eq. (23.49))

Pζ(k) ≃ 4π

M2
P

1

c2sǫ

(

H

2π

)2

∗

, r ≃ 16(c2sǫ)∗ . (23.91)

At third perturbative order and to lowest order in derivatives, one
obtains [91]

S
(3)
π =

∫

d4x
√−g

M2
P (1 − c2

s)Ḣ

c2s

[

π̇(∇π)2

R2 −
(

1 +
2

3

c̃3
c2s

)

π̇3
]

.

(23.92)
Note that this expression vanishes for canonical fields with c2s = 1.
For c2s 6= 1 the cubic action is determined by the sound speed and
an additional parameter c̃3. Both terms in the cubic action give rise
to primordial bispectra that are well approximated by equilateral
bispectra. However, the shapes are not identical, so one can find a
linear combination for which the equilateral bispectra of each term
cancel, giving rise to a distinctive orthogonal-type bispectrum [91].

Analysis based on Planck 2015 temperature and polarisation data
has placed bounds on several bispectrum shapes including equilateral
and orthogonal shapes [90]:

f
equil
NL = −4 ± 43 , f

orthog
NL = −26 ± 21 (68% CL) . (23.93)

For the simplest case of a constant sound speed, and marginalising
over c̃3, this provides a bound on the inflaton sound speed [90]

cs ≥ 0.024 (95% CL) . (23.94)

For a specific model such as DBI inflation [87], corresponding to
c̃3 = 3(1 − c2

s)/2, one obtains a tighter bound [90]:

cDBI
s ≥ 0.087 (95% CL) . (23.95)

The Planck team have analysed a wide range of non-Gaussian
templates from different inflation models, including tests for deviations
from an initial Bunch-Davies vacuum state, direction-dependent
non-Gaussianity, and feature models with oscillatory bispectra [90].
No individual feature or resonance is above the three-σ significance
level after accounting for the look-elsewhere effect. These results are
consistent with the simplest canonical, slow-roll inflation models, but
do not rule out most alternative models; rather, bounds on primordial
non-Gaussianity place important constraints on the parameter space
for non-canonical models.

23.7.2. Multi-Field Fluctuations :

There is a very large literature on two- and multi-field models of
inflation, most of which lies beyond the scope of this review [92].
However, two important general topics merit being mentioned here,
namely residual isocurvature perturbations and the possibility of
non-Gaussian effects in the primordial perturbations.

One might expect that other scalar fields besides the inflaton might
have non-negligible values that evolve and fluctuate in parallel with
the inflaton, without necessarily making the dominant contribution to
the energy density during the inflationary epoch. However, the energy
density in such a field might persist beyond the end of inflation before
decaying, at which point it might come to dominate (or at least make a
non-negligible contribution to) the total energy density. In such a case,
its perturbations could end up generating the density perturbations
detected in the CMB. This could occur due to a late-decaying scalar
field [88] or a field fluctuation that modulates the end of inflation [93]
or the inflaton decay [94].

23.7.2.1. Isocurvature Perturbations:

Primordial perturbations arising in single-field slow-roll inflation
are necessarily adiabatic, i.e., they affect the overall density
without changing the ratios of different contributions, such as the
photon-matter ratio, δ(nγ/nm)/(nγ/nm). This is because inflaton
perturbations represent a local shift of the time, as described in
section Sec. 23.7:

π =
δnγ

ṅγ
=

δnm

ṅm
. (23.96)

However, any light scalar field (i.e., one with effective mass less
than the Hubble scale) acquires a spectrum of nearly scale-invariant
perturbations during inflation. Fluctuations orthogonal to the inflaton
in field space are decoupled from the inflaton at Hubble-exit, but
can affect the subsequent evolution of the density perturbation. In
particular, they can give rise to local variations in the equation
of state (non-adabatic pressure perturbations) that can alter the
primordial curvature perturbation ζ on super-Hubble scales. Since
these fluctuations are statistically independent of the inflaton
perturbations at leading order in slow-roll [95], non-adiabatic
field fluctuations can only increase the scalar power spectrum with
respect to adiabatic perturbations at Hubble exit, while leaving
the tensor modes unaffected at first perturbative order. Thus the
single-field result for the tensor-scalar ratio (Eq. (23.49)) becomes an
inequality [96]

r ≥ 16ǫ∗ . (23.97)

Hence an observational upper bound on the tensor-scalar ratio does
not bound the slow-roll parameter ǫ in multi-field models.

If all the scalar fields present during inflation eventually decay
completely into fully thermalized radiation, these field fluctuations
are converted fully into adiabatic perturbations in the primordial
plasma [97]. On the other hand, non-adiabatic field fluctuations can
also leave behind primordial isocurvature perturbations (Eq. (23.86))
after inflation. In multi-field inflation models it is thus possible
for non-adiabatic field fluctuations to generate both curvature
and isocurvature perturbations leading to correlated primordial
perturbations [98].
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The amplitudes of any primordial isocurvature perturbations
(Eq. (23.86)) are strongly constrained by the current CMB data,
especially on large angular scales. Using temperature and low-ℓ
polarisation data yields the following bound on the amplitude of cold
dark matter isocurvature perturbations at scale k = 0.002h−1Mpc−1

(marginalising over the correlation angle and in the absence of
primordial tensor perturbations) [44]:

PSm

Pζ + PSm

< 0.020 at 95% CL . (23.98)

For fully (anti-)correlated isocurvature perturbations, corresponding to
a single isocurvature field providing a source for both the curvature and
residual isocurvature perturbations, the bounds become significantly
tighter [44]:

PSm

Pζ + PSm

< 0.0013 at 95% CL, correlated , (23.99)

PSm

Pζ + PSm

< 0.0008 at 95% CL, anti − correlated . (23.100)

23.7.2.2. Local-Type Non-Gaussianity:

Since non-adiabatic field fluctuations in multi-field inflation may
lead the to evolution of the primordial curvature perturbation at all
orders, it becomes possible to generate significant non-Gaussianity in
the primordial curvature perturbation. Non-linear evolution on super-
Hubble scales leads to local-type non-Gaussianity, where the local
integrated expansion is a non-linear function of the local field values
during inflation, N(φi). While the field fluctuations at Hubble exit,
δφi∗, are Gaussian in the slow-roll limit, the curvature perturbation,
ζ = δN , becomes a non-Gaussian distribution [99]:

ζ =
∑

i

∂N

∂φi
δφi +

1

2

∑

i,j

∂2N

∂φi∂φj
δφiδφj + . . . (23.101)

with non-vanishing bispectrum in the squeezed limit (k1 ≈ k2 ≫ k3):

Bζ(k1, k2, k3) ≈
12

5
f local
NL

Pζ(k1)

4πk3
1

Pζ(k3)

4πk3
3

, (23.102)

where

6

5
f local
NL =

∑

i,j
∂2N

∂φi∂φj
(

∑

i
∂N
∂φi

)2 . (23.103)

Both equilateral and orthogonal bispectra, discussed above in the
context of generalised single field inflation, vanish in the squeezed
limit, enabling the three types of non-Gaussianity to be distinguished
by observations, in principle.

Non-Gaussianity during multi-field inflation is highly model
dependent, though f local

NL can often be smaller than unity in multi-field
slow-roll inflation [100]. Scenarios where a second light field plays a
role during or after inflation can make distinctive predictions for f local

NL ,

such as f local
NL = −5/4 in some curvaton scenarios [99,101] or f local

NL = 5
in simple modulated reheating scenarios [94,102]. By contrast the
constancy of ζ on super-Hubble scales in single-field slow-roll inflation
leads to a very small non-Gaussianity [103,104], and in the squeezed
limit we have the simple result f local

NL = 5(1 − nS)/12 [105,106].

A combined analysis of the Planck temperature and polarization
data yields the following range for f local

NL defined in (Eq. (23.103)):

f local
NL = 0.8 ± 5.0 (95% CL) . (23.104)

This sensitivity is sufficient to rule out parameter regimes giving
rise to relatively large non-Gaussianity, but insufficient to probe
f local
NL = O(ǫ), as expected in single-field models, or the range

f local
NL = O(1) found in the simplest two-field models.

Local-type primordial non-Gaussianity can also give rise to a
striking scale-dependent bias in the distribution of collapsed dark
matter halos and thus the galaxy distribution [107,108]. However,
bounds from high-redshift galaxy surveys are not yet competitive with
the best CMB constraints.

23.8. Pre-Inflation and Anomalies in the CMB

Most work on inflation is done in the context of RW cosmology,
which already assumes a high degree of symmetry, or small
inhomogeneous perturbations (usually first order) about an RW
cosmology. The isotropic RW spacetime is an attractor for many
homogeneous, but anisotropic cosmologies in the presence of a
false vacuum energy density [109] or a scalar field with suitable
self-interaction potential energy [110,111]. However it is much harder
to establish the range of highly inhomogeneous initial conditions that
yield a successful RW Universe, with only limited studies to date (see,
e.g., [112,113,114]) .

One of the open questions in inflation is the nature of the
pre-inflationary state that should have provided suitable initial
conditions for inflation. This would need to have satisfied non-trivial
homogeneity and isotropy conditions, and one may ask how these
could have arisen and whether there may be some observable signature
of the pre-inflationary state. In general, one would expect any such
effects to appear at large angular scales, i.e., low multipoles ℓ.

Indeed, various anomalies have been noted in the large-scale CMB
anisotropies, also discussed in Chap. 28, “Cosmic Microwave Back-
ground” review, including a possible suppression of the quadrupole
and other very large-scale anisotropies, an apparent feature in the
range ℓ ≈ 20 to 30, and a possible hemispheric asymmetry. None
of these are highly statistically significant in view of the limitations
due to cosmic variance [44], and they cannot yet be regarded as
signatures of some pre-inflationary dynamics such as string theory or
the multiverse. However, is a hot topic for present and future analysis.

23.9. Prospects for Future Probes of Inflation

When inflation was first proposed [1,2] there was no evidence
for the existence of scalar fields or the accelerated expansion of
the universe. The situation has changed dramatically in recent
years with the observational evidence that the cosmic expansion is
currently accelerating and with the discovery of a scalar particle,
namely the Higgs boson (see Chap. 11, “Status of Higgs boson
physics” review). These discoveries encourage interest in the idea
of primordial accelerated expansion driven by a scalar field, i.e.,
cosmological inflation. In parallel, successive CMB experiments have
been consistent with generic predictions of inflationary models,
although without yet providing irrefutable evidence.

Prospective future CMB experiments, both ground- and space-based
are reviewed in the separate PDG “Cosmic Microwave Background”
review, Chap. 28. The main emphasis in CMB experiments in the
coming years will be on ground-based experiments providing improved
measurements of B-mode polarization and greater sensitivity to the
tensor-to-scalar ratio r, and more precise measurements at higher
ℓ that will constrain ns better. As is apparent from Fig. 23.1 and
the discussion of models such as R2 inflation, there is a strong
incentive to reach a 5-σ sensitivity to r ∼ 3 to 4 × 10−3. This
could be achieved with a moderately-sized space mission with large
sky coverage [115], improvements in de-lensing and foreground
measurements. The discussion in Sec. 23.3 (see also Fig. 23.4), also
brought out the importance of reducing the uncertainty in ns, as
a way to constrain post-inflationary reheating and the connection
to particle physics. CMB temperature anisotropies probe primordial
density perturbations down to comoving scales of order 50 Mpc,
beyond which scale secondary sources of anisotropy dominate. CMB
spectral distortions could potentially constrain the amplitude and
shape of primordial density perturbations on comoving scales from
Mpc to kpc due to distortions caused by the Silk damping of pressure
waves in the radiation dominated era, before the last scattering of the
CMB photons but after the plasma can be fully thermalised [116].

Improved sensitivity to non-Gaussianities is also a priority. In
addition to CMB measurements, future large-scale structure surveys
will also have roles to play as probes into models of inflation, for
which there are excellent prospects. High-redshift galaxy surveys are
sensitive to local-type non-Gaussianity due to the scale-dependent
bias induced on large scales. Current surveys such as eBOSS, probing
out to redshift z ∼ 2, can reach a precision ∆fNL ∼ 15, from
measurements of the galaxy power spectrum, or possibly ∆fNL ∼ 10,
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if the galaxy bias can be determined independently [117]. Upcoming
surveys such as DESI may reach ∆fNL ∼ 4 [118] comparable with
the Planck sensitivity. In the future, radio surveys such as SKA will
measure large-scale structure out to redshift z ∼ 3 [119], initially
through mapping the intensity of the neutral hydrogen 21-cm line, and
eventually through radio galaxy surveys which will probe local-type
non-Gaussianity to fNL ∼ 1.

Galaxy clustering using DESI and Euclid satellite data could also
constrain the running of the scalar tilt to a precision of ∆αs ≈ 0.0028,
a factor of 2 improvement on Planck constraints, or a precision of
0.0016 using LSST data [118].

The proposed SPHEREx satellite mission [120] will use measure-
ments of the galaxy power spectrum to target a measurement of the
running of the scalar spectral index with a sensitivity ∆αs ∼ 10−3 and
local-type primordial non-Gaussianity, ∆fNL ∼ 1. Including informa-
tion from the galaxy bispectrum one might reduce the measurement
error on non-Gaussianity to ∆fNL ∼ 0.2, making it possible to
distinguish between single-field slow-roll models and alternatives such
as the curvaton scenario for the origin of structure, which generate
fNL ∼ 1.
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Big-Bang nucleosynthesis (BBN) offers the deepest reliable probe
of the early Universe, being based on well-understood Standard Model
physics [1]. Predictions of the abundances of the light elements, D,
3He, 4He, and 7Li, synthesized at the end of the ‘first three minutes’,
are in good overall agreement with the primordial abundances inferred
from observational data, thus validating the standard hot Big-Bang
cosmology (see [2–5] for reviews). This is particularly impressive
given that these abundances span nine orders of magnitude – from
4He/H ∼ 0.08 down to 7Li/H ∼ 10−10 (ratios by number). Thus BBN
provides powerful constraints on possible deviations from the standard
cosmology, and on new physics beyond the Standard Model [6–9].

24.1. Theory

The synthesis of the light elements is sensitive to physical conditions
in the early radiation-dominated era at a temperature T ∼ 1 MeV,
corresponding to an age t ∼ 1 s. At higher temperatures, weak
interactions were in thermal equilibrium, thus fixing the ratio of
the neutron and proton number densities to be n/p = e−Q/T ,
where Q = 1.293 MeV is the neutron-proton mass difference. As
the temperature dropped, the neutron-proton inter-conversion rate
per nucleon, Γn↔p ∼ G2

FT 5, fell faster than the Hubble expansion

rate, H ∼ √
g∗GN T 2, where g∗ counts the number of relativistic

particle species determining the energy density in radiation (see ‘Big
Bang Cosmology’ review). This resulted in departure from chemical

equilibrium (‘freeze-out’) at Tfr ∼ (g∗GN/G4
F)1/6 ≃ 1 MeV. The

neutron fraction at this time, n/p = e−Q/Tfr ≃ 1/6, is thus sensitive
to every known physical interaction, since Q is determined by both
strong and electromagnetic interactions while Tfr depends on the
weak as well as gravitational interactions. Moreover, the sensitivity
to the Hubble expansion rate affords a probe of, e.g., the number
of relativistic neutrino species [10]. After freeze-out, the neutrons
were free to β-decay, so the neutron fraction dropped to n/p ≃ 1/7
by the time nuclear reactions began. A simplified analytic model of
freeze-out yields the n/p ratio to an accuracy of ∼ 1% [11,12].

The rates of these reactions depend on the density of baryons
(strictly speaking, nucleons), which is usually expressed normalized to
the relic blackbody photon density as η ≡ nb/nγ . As we shall see, all
the light-element abundances can be explained with η10 ≡ η × 1010

in the range 5.8–6.6 (95% CL). With nγ fixed by the present CMB
temperature 2.7255 K (see ‘Cosmic Microwave Background’ review),
this can be stated as the allowed range for the baryon mass density
today, ρb = (3.9–4.6) × 10−31 g cm−3, or as the baryonic fraction of
the critical density, Ωb = ρb/ρcrit ≃ η10h

−2/274 = (0.021–0.024)h−2,
where h ≡ H0/100 km s−1 Mpc−1 is the present Hubble parameter
(see Cosmological Parameters review).

The nucleosynthesis chain begins with the formation of deuterium
in the process p(n, γ)D. However, photo-dissociation by the high
number density of photons delays production of deuterium (and other
complex nuclei) until well after T drops below the binding energy

of deuterium, ∆D = 2.23 MeV. The quantity η−1e−∆D/T , i.e., the
number of photons per baryon above the deuterium photo-dissociation
threshold, falls below unity at T ≃ 0.1 MeV; nuclei can then begin to
form without being immediately photo-dissociated again. Only 2-body
reactions, such as D(p, γ)3He, 3He(D, p)4He, are important because
the density by this time has become rather low – comparable to that
of air!

Nearly all neutrons end up bound in the most stable light element
4He. Heavier nuclei do not form in any significant quantity both
because of the absence of stable nuclei with mass number 5 or 8
(which impedes nucleosynthesis via n4He, p4He or 4He4He reactions),
and the large Coulomb barriers for reactions such as 3He(4He, γ)7Li
and 3He(4He, γ)7Be. Hence the primordial mass fraction of 4He,
Yp ≡ ρ(4He)/ρb, can be estimated by the simple counting argument

Yp =
2(n/p)

1 + n/p
≃ 0.25 . (24.1)

There is little sensitivity here to the actual nuclear reaction rates,
which are, however, important in determining the other ‘left-over’
abundances: D and 3He at the level of a few times 10−5 by
number relative to H, and 7Li/H at the level of about 10−10

(when η10 is in the range 1–10). These values can be understood in
terms of approximate analytic arguments [12,13]. The experimental
parameter most important in determining Yp is the neutron lifetime,
τn, which normalizes (the inverse of) Γn↔p. Its value has recently been
significantly revised downwards to τn = 880.3 ± 1.1 s (see N Baryons
Listing).

The elemental abundances shown in Fig. 24.1 as a function of η10

were calculated [14] using an updated version [15] of the Wagoner
code [1]; other versions [16–18] are publicly available. The 4He
curve includes small corrections due to radiative processes at zero
and finite temperatures [19], non-equilibrium neutrino heating during
e± annihilation [20], and finite nucleon mass effects [21]; the
range reflects primarily the 2σ uncertainty in the neutron lifetime.
The spread in the curves for D, 3He, and 7Li corresponds to the
2σ uncertainties in nuclear cross sections, as estimated by Monte
Carlo methods [15,22–24]. The input nuclear data have been carefully
reassessed [14, 24–28], leading to improved precision in the abundance
predictions. In particular, the uncertainty in 7Li/H at interesting
values of η has been reduced recently by a factor ∼ 2, a consequence of
a similar reduction in the error budget [29] for the dominant mass-7
production channel 3He(4He, γ)7Be. Polynomial fits to the predicted
abundances and the error correlation matrix have been given [23,30].
The boxes in Fig. 24.1 show the observationally inferred primordial
abundances with their associated uncertainties, as discussed below.

Figure 24.1: The primordial abundances of 4He, D, 3He,
and 7Li as predicted by the standard model of Big-Bang
nucleosynthesis—the bands show the 95% CL range [5]. Boxes
indicate the observed light element abundances. The narrow
vertical band indicates the CMB measure of the cosmic baryon
density, while the wider band indicates the BBN concordance
range (both at 95% CL).

The nuclear reaction cross sections important for BBN have all
been measured at the relevant energies. We will see, however, that
recently there have been substantial advances in the precision of light
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element observations (e.g., D/H) and in cosmological parameters (e.g.,
from Planck). This motivates corresponding improvement in BBN
precision and thus in the key reaction cross sections. For example,
it has been suggested [31] that d(p, γ)3He measurements may suffer
from systematic errors and be inferior to ab initio theory; if so, this
could alter D/H abundances at a level that is now significant.

24.2. Light Element Abundances

BBN theory predicts the universal abundances of D, 3He, 4He,
and 7Li, which are essentially fixed by t ∼ 180 s. Abundances are,
however, observed at much later epochs, after stellar nucleosynthesis
has commenced. This produces heavy elements such as C, N, O, and
Fe (‘metals’), while the ejected remains of this stellar processing alters
the light element abundances from their primordial values. Thus,
one seeks astrophysical sites with low metal abundances, in order to
measure light element abundances that are closer to primordial. For
all of the light elements, systematic errors are the dominant limitation
to the precision with which primordial abundances can be inferred.

BBN is the only significant source of deuterium, which is
entirely destroyed when it is cycled into stars [32]. Thus, any
detection provides a lower limit to primordial D/H, and an
upper limit on η10; for example, the local interstellar value of
D/H = (1.56 ± 0.40) × 10−5 [33] requires η10 ≤ 9. The best proxy to
the primordial value of D is its measure in distant and chemically
unprocessed matter where stellar processing (astration) is minimal
[32]. This has become possible with the advent of large telescopes,
but after two decades of observational efforts we have only about a
dozen determinations [34–43]. High-resolution spectra reveal the
presence of D in high-redshift, low-metallicity quasar absorption
systems via its isotope-shifted Lyman-α absorption features; these
are, unfortunately, usually obscured by the Lyman-α forest. The
available D measurements are performed in systems with metallicities
from 0.1 to 0.001 Solar where no significant astration is expected
[35]. In the best-measured systems, D/H shows no hint of correlation
with metallicity, redshift or the hydrogen column density N(H) (=∫
los nH ds) integrated over the line-of-sight through the absorber.

This is consistent with the measured D/H being representative of the
primordial value.

The first measurements in ‘damped’ Lyman-α systems (DLAs:
N(H) > 1020 cm−2) [34,36] showed that D/H can be measured in this
class of absorbers where the Lorentzian damping wings of Lyman-α
and Lyman-β (if relatively uncontaminated by Lyman-α clouds)
provide a precise H column density. Subsequently DLA systems have
been found that also show resolved higher members of the Lyman
series. Systems with a particularly simple kinematic structure are
desirable to avoid uncertainties with complex, only partially resolved
components. Recently a DLA showing 13 resolved D I absorption
lines has been analyzed together with 4 other suitable systems. This
provides a strikingly improved precision over earlier work, with a
weighted mean of log(D/H) = −4.597± 0.006, corresponding to [37]

D/H|p = (2.53 ± 0.04)× 10−5. (24.2)

D/H values in the Galaxy show an unexpected scatter of a factor
of ∼ 2 [44], with a bimodal distribution as well as an anti-correlation
with metal abundances. This suggests that interstellar D not only
suffers stellar astration but also partly resides in dust particles that
evade gas-phase observations. This is supported by a measurement in
the lower halo [45], which indicates that the Galactic D abundance
has decreased by a factor of only 1.1 ± 0.13 since its formation.
However in the DLA the dust content is apparently quite small; this is
implied by the abundances of refractory elements such as Fe, Cr and
Si, which are in nearly Solar proportions. Thus, the value derived in
Eq. (24.2) appears safe against D depletion into dust grains.

The primordial 4He abundance is best determined through
recombination emission lines of He and H in the most metal-poor
extragalactic H II (ionized) regions, viz. blue compact galaxies. There
is now a large body of data on 4He and CNO in these galaxies,
with over 1000 such systems in the Sloan Digital Sky Survey alone
[46,53]. These data confirm that the small stellar contribution to the

helium abundance is positively correlated with metal production, so
extrapolation to zero metallicity gives the primordial 4He abundance
Yp. However, H II regions are complex systems and several physical
parameters enter in the He/H determination, notably the electron
density and temperature, as well as reddening. Thus systematic effects
dominate the uncertainties in the abundance determination [46,47]. A
major step forward has been the inclusion of the He λ10830 infrared
emission line which shows a strong dependence on the electron density
and is thus useful to break the degeneracy with the temperature,
allowing for a more robust helium abundance determination. In recent
work that has accounted for the underlying 4He stellar absorption,
and/or the newly derived values of the HeI-recombination and H-
excitation-collisional coefficients, the 4He abundances have increased
significantly. Two recent results are Yp = 0.2449 ± 0.0040 [51] and
Yp = 0.2551 ± 0.0022 [52]( see Ref. [53] and references therein for
previous determinations). Our recommended 4He abundance is

Yp = 0.245± 0.004, (24.3)

but the matter is far from settled given the two measurements are
only marginally consistent.

As we will see in more detail below, the primordial abundance
of 7Li now plays a central role in BBN, and possibly points to new
physics. The systems best suited for Li observations are metal-poor
(Pop II) stars in the spheroid of the Galaxy, which have metallicities
going down to perhaps 10−5 of the solar value [56]. Observations
have long shown [57–60] that Li does not vary significantly in Pop
II stars with metallicities <∼ 1/30 of Solar — the ‘Spite plateau’ [57].
However there are systematic uncertainties due to different techniques
used to determine the physical parameters (e.g., the temperature)
of the stellar atmosphere in which the Li absorption line is formed.
Different analyses and in some cases different stars and stellar
systems (globular clusters), yield Li/H|p = (1.7 ± 0.3) × 10−10 [60],
Li/H|p = (2.19±0.28)×10−10 [61], and Li/H|p = (1.86±0.23)×10−10

[62].

Recent observations find a puzzling drop in Li/H in metal-poor stars
with [Fe/H] ≡ log10[(Fe/H)/(Fe/H)⊙] < −3.0 [63,64,65] particularly at
the very low metallicity end. Li is not detected at all, or is well below
than the Spite Plateau, in all the 5 extremely metal poor dwarfs with
metallicities [Fe/H] <∼ −4.5, where it ought to be present. The reason
is not known and the same effect(s) may also produce the ‘melting’ of
the Li plateau at metallicities [Fe/H ≈ -3.0 [64,65] thus making quite
uncertain any primordial Li value extracted by extrapolating to zero
metallicity. To estimate the primordial value it is therefore safer to
consider stars with −2.8 < [Fe/H] < −1.5 [65], which yields

Li/H|p = (1.6 ± 0.3) × 10−10. (24.4)

However, the evidence that something is depleting Li at the low
metallicity end suggests that its abundance may also be modified in
halo stars with moderate metallicity so the observed abundance should
be considered a lower bound rather than a measure of the primordial
Li. In fact Li in Pop II stars may have been partially destroyed due
to mixing of the outer layers with the hotter interior [68]. Such
processes can be constrained by the absence of significant scatter in Li
versus Fe [59] but Li depletion by a factor as large as ∼ 1.8 has been
suggested [69]. A new model [70] predicts Li significantly destroyed
in the pre-MS phase by overshoot mixing, and then partially restored
by late accretion of fresh non-Li depleted material has been proposed.
They show that it is also possible to recover the Spite plateau while
starting from an initial Li/H|p = 5.3×10−10 suggested by both Planck
and Deuterium baryonic density estimation [67,70].

Stellar determination of Li abundances typically sum over both
stable isotopes 6Li and 7Li. Recent high-precision measurements are
sensitive to the tiny isotopic shift in Li absorption (which manifests
itself in the shape of the blended, thermally broadened line) and
indicate 6Li/7Li ≤ 0.05 [71,72], thus confirming that 7Li is dominant.
A claim of a 6Li plateau (analogous to the 7Li plateau) has been made
[71], suggesting a significant primordial 6Li abundance. This has,
however, been challenged by new observations and analyses [73,74,72],
which show that stellar convective motions can generate asymmetries
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in the line shape that mimic the presence of 6Li. Hence the deduced
abundance ratio 6Li/7Li < 0.05 in the best studied stars presently
provides a robust upper limit on the 6Li abundance [72].

Turning to 3He, the only data available are from the Solar system
and (high-metallicity) H II regions in our Galaxy [75]. This makes
inferring the primordial abundance difficult, a problem compounded
by the fact that stellar nucleosynthesis models for 3He are in conflict
with observations [76]. Consequently, it is no longer appropriate to
use 3He as a cosmological probe; instead, one might hope to turn the
problem around and constrain stellar astrophysics using the predicted
primordial 3He abundance [77].

24.3. Concordance, Dark Matter, and the CMB

We now use the observed light element abundances to test the
theory. We first consider standard BBN, which is based on Standard
Model physics alone, so Nν = 3 and the only free parameter is
the baryon-to-photon ratio η. (The implications of BBN for physics
beyond the Standard Model will be considered below, Section 24.5).
Thus, any abundance measurement determines η, and additional
measurements overconstrain the theory and thereby provide a
consistency check.

While the η ranges spanned by the boxes in Fig. 24.1 do not
all overlap, they are all within a factor ∼ 2 of each other. In
particular, the lithium abundance corresponds to η values that are
inconsistent with that of the (now very precise) D/H abundance as
well as the less-constraining 4He abundance. This discrepancy marks
the “lithium problem”. The problem could simply reflect difficulty
in determining the primordial lithium abundance; or could hint at
a more fundamental omission in the theory. The possibility that
lithium reveals new physics is addressed in detail in the next section.
If however we exclude the lithium constraint because its inferred
abundance may suffer from systematic uncertainties, then D/H and
4He are in agreement. The concordant η range is essentially that
implied by D/H, namely

5.8 ≤ η10 ≤ 6.6 (95% CL). (24.5)

Despite the lithium problem, the overall concordance remains re-
markable: using only well-established microphysics we can extrapolate
back to t ∼ 1 s to predict light element abundances spanning 9 orders
of magnitude, in approximate agreement with observation. This is a
major success for the standard cosmology, and inspires confidence in
extrapolation back to still earlier times.

This concordance provides a measure of the baryon content:

0.021 ≤ Ωbh2 ≤ 0.024 (95% CL), (24.6)

a result that plays a key role in our understanding of the matter
budget of the Universe. First we note that Ωb ≪ 1, i.e., baryons
cannot close the Universe [78]. Furthermore, the cosmic density
of (optically) luminous matter is Ωlum ≃ 0.0024h−1 [79], so that
Ωb ≫ Ωlum: most baryons are optically dark, probably in the form
of a diffuse intergalactic medium [80]. Finally, given that Ωm ∼ 0.3
(see Dark Matter and Cosmological Parameters reviews), we infer that
most matter in the Universe is not only dark, but also takes some
non-baryonic (more precisely, non-nucleonic) form.

The BBN prediction for the cosmic baryon density can be tested
through precision observations of CMB temperature fluctuations (see
Cosmic Microwave Background review). One can determine η from
the amplitudes of the acoustic peaks in the CMB angular power
spectrum [81], making it possible to compare two measures of η using
very different physics, at two widely separated epochs. In the standard
cosmology, there is no change in η between BBN and CMB decoupling,
thus, a comparison of ηBBN and ηCMB is a key test. Agreement would
endorse the standard picture, while disagreement could point to new
physics during/between the BBN and CMB epochs.

The analysis described in the Cosmic Microwave Background
review, based on Planck 2015 data, yields Ωbh2 = 0.0223 ± 0.0002
which corresponds to η10 = 6.09 ± 0.06 [55]. This result depends
weakly on the primordial helium abundance, and the fiducial Planck

analysis uses BBN theory to fix Yp(η). As shown in Fig. 24.1,
this CMB estimate of the baryon density (narrow vertical band)
is remarkably consistent with the BBN range quoted in Eq. (24.6)
and thus in very good agreement with the value inferred from
recent high-redshift D/H measurements [37] and 4He determinations;
together these observations span diverse environments from redshifts
z = 1000 to the present [82].

The CMB damping tail is sensitive to the primordial 4He abundance,
and is independent from both BBN and local 4He measurements.
[54]. The Planck 2015 analysis using TT+lowP but not lensing yields
Yp = 0.253+0.041

−0.042 [55], i.e., consistent with the H II region helium
abundance determination. Moreover, this value is consistent with the
Standard (Nν = 3) BBN precition for Yp at the Planck-determined
baryon density. This concordance represents a successful CMB-only
test of BBN.

The precision determinations of the baryon density using the CMB
motivates the use of this value as an input to BBN calculations.
Within the context of the Standard Model, BBN then becomes
a zero-parameter theory, and the light element abundances are
completely determined to within the uncertainties in ηCMB and the
BBN theoretical errors. Comparison with the observed abundances
then can be used to test the astrophysics of post-BBN light element
evolution [83]. Alternatively, one can consider possible physics
beyond the Standard Model (e.g., which might change the expansion
rate during BBN) and then use all of the abundances to test such
models; this is discussed in Section 24.5.

24.4. The Lithium Problem

As Fig. 24.1 shows, stellar Li/H measurements are inconsistent
with the CMB (and D/H), given the error budgets we have quoted.
Recent updates in nuclear cross sections and stellar abundance
systematics increase the discrepancy to over 5σ, depending on the
stellar abundance analysis adopted [14].

The question then becomes pressing as to whether this mismatch
comes from systematic errors in the observed abundances, and/or
uncertainties in stellar astrophysics or nuclear inputs, or whether
there might be new physics at work [9]. Nuclear inputs (cross
sections) for BBN reactions are constrained by extensive laboratory
measurements; to increase 7Be destruction requires enhancement of
otherwise subdominant processes that can be attained by missed
resonances in a few reactions such as 7Be(d, p)2α if the compound
nuclear state properties are particularly favorable [84]. However,
experimental searches have now closed off these cases [85], making a
“nuclear fix” increasingly unlikely.

Another conventional means to solve the lithium problem is by in

situ destruction over the long lifetimes of the host halo stars. Stellar
depletion mechanisms include diffusion, rotationally induced mixing,
or pre-main-sequence depletion. These effects certainly occur, but to
reduce lithium to the required levels generally requires some ad hoc

mechanism and fine tuning of the initial stellar parameters [70,67,86].
A putative signature of diffusion has been reported for the globular
clusters NGC 6397 and NGC 6752, where the ‘turnoff’ stars exhibit
slightly lower (by ∼ 0.1 dex) abundances of Fe II, Ti II, Sc II, Ca I and
Mg I, than in more evolved stars [69,87]. General features of diffusive
models are a dispersion in the Li abundances and a pronounced
downturn in the Li abundances at the hot end of the Li plateau.
Some extra turbulence needs to be invoked to limit diffusion in the
hotter stars and to restore uniform Li abundance along the Spite
plateau [86]. In the framework of these models (and also assuming
identical initial stellar rotation) depletion by at most a factor ∼ 1.8 is
conceivable [69,87].

As nuclear and astrophysical solutions to the lithium problem
become increasingly constrained (even if difficult to rule out
definitively), the possibility of new physics arises. Nucleosynthesis
models in which the baryon-to-photon ratio is inhomogeneous can alter
abundances for a given ηBBN, but will overproduce 7Li [88]. Entropy
generation by some non-standard process could have decreased η
between the BBN era and CMB decoupling, however the lack of
spectral distortions in the CMB rules out any significant energy
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injection upto a redshift z ∼ 107 [89]. The most intriguing resolution
of the lithium problem thus involves new physics during BBN [7–9].

We summarize the general features of such solutions here, and later
consider examples in the context of specific particle physics models.
Many proposed solutions introduce perturbations to light-element
formation during BBN; while all element abundances may suffer
perturbations, the interplay of 7Li and D is often the most important
i.e. observations of D often provide the strongest constraints on the
allowed perturbations to 7Li. In this connection it is important to note
that the new, very precise determination of D/H [37] will significantly
constrain the ability of such models to ameliorate or solve the lithium
problem.

A well studied class of models invokes the injection of suprathermal
hadronic or electromagnetic particles due to decays of dark matter
particles. The effects are complex and depend on the nature of the
decaying particles and their branchings and spectra. However, the
models that most successfully solve the lithium problem generally
feature non-thermal nucleons, which dissociate all light elements.
Dissociation of even a small fraction of 4He introduces a large
abundance of free neutrons, which quickly thermalize. The thermal
neutrons drive the 7Be(n, p)7Li conversion of 7Be. The resulting 7Li
has a lower Coulomb barrier relative to 7Be and is readily destroyed
via 7Li(p, α)4He [90,91]. But 4He dissociation also produces D directly
and via nonthermal neutron n(p, γ)d reactions; this introduces a
tension between Li/H reduction and D/H enhancement.

Another important class of models retains the standard cosmic
particle content, but changes their interactions via time variations
in the fundamental constants [92]. Here too, the details are
model-dependent, but scenarios that solve or alleviate the lithium
problem often feature perturbations to the deuteron binding energy.
A weaker D binding leads to the D bottleneck being overcome later,
so that element formation commences at a lower temperature and
lower density. This leads in turn to slower nuclear rates that freeze
out earlier. The net result is a higher final D/H, due to less efficient
processing into 4He, but also lower Li, due to suppressed production
via 3He(α, γ)7Be.

The lithium problem remains an unresolved issue in BBN.
Nevertheless, the remarkable concordance between the CMB and the
D (as well as 4He) abundance, remains a non-trivial success, and
provides constraints on the early Universe and particle physics.

24.5. Beyond the Standard Model

Given the simple physics underlying BBN, it is remarkable that
it still provides the most effective test for the cosmological viability
of ideas concerning physics beyond the Standard Model. Although
baryogenesis and inflation must have occurred at higher temperatures
in the early Universe, we do not as yet have ‘standard models’ for
these, so BBN still marks the boundary between the established and
the speculative in Big Bang cosmology. It might appear possible to
push the boundary back to the quark-hadron transition at T ∼ ΛQCD,
or electroweak symmetry breaking at T ∼ 1/

√
GF; however, so far

no observable relics of these epochs have been identified, either
theoretically or observationally. Thus, although the Standard Model
provides a precise description of physics up to the Fermi scale,
cosmology cannot be traced in detail before the BBN era.

Limits on new physics come mainly from the observational bounds
on the 4He abundance. This is proportional to the n/p ratio when
the weak-interaction rate falls behind the Hubble expansion rate
at Tfr ∼ 1 MeV. The presence of additional neutrino flavors (or of
any other relativistic species) at this time increases g∗, hence the
expansion rate, leading to a larger value of Tfr, n/p, and therefore
Yp [10,93]. In the Standard Model at T = 1 MeV, g∗ = 5.5 + 7

4Nν ,
where Nν is the effective number of (nearly) massless neutrino flavors
(see Big Bang Cosmology review). The helium curves in Fig. 24.1
were computed taking Nν = 3; small corrections for non-equilibrium
neutrino heating [20] are included in the thermal evolution and
lead to an effective Nν = 3.04 compared to assuming instantaneous
neutrino freezeout (see Big Bang Cosmology review). The computed
4He abundance scales as ∆ Yp ≃ 0.013∆Nν [11]. Clearly the central
value for Nν from BBN will depend on η, which is independently

determined (with weaker sensitivity to Nν) by the adopted D or 7Li
abundance. For example, if the best value for the observed primordial
4He abundance is 0.249, then, for η10 ∼ 6, the central value for Nν is
very close to 3. A maximum likelihood analysis on η and Nν based
on the above 4He and D abundances finds the (correlated) 95% CL
ranges to be 5.6 < η10 < 6.6 and 2.3 < Nν < 3.4 [5]. Identical results
are obtained using a simpler method to extract such bounds based on
χ2 statistics, given a set of input abundances [94].

The CMB power spectrum in the damping tail is independently
sensitive to Nν (e.g. [95]) . The CMB value NCMB

ν probes the cosmic
radiation content at (re)combination, so a discrepancy would imply
new physics or astrophysics. Indeed, observations by the South Pole
Telescope implied NCMB

ν = 3.85 ± 0.62 [96], prompting discussion
of “dark radiation” such as sterile neutrinos [97]. However, Planck

2015 results give NCMB
ν = 3.13 ± 0.31 when using the BBN Yp(η),

a result quite consistent with the Standard Model neutrinos [55]. If
we assume that η did not change between BBN and (re)combination,
the constraint can be improved by including the recent D/H and
astrophysical Yp measurements, which yields Nν = 2.88 ± 0.16 [5].

Just as one can use the measured helium abundance to place
limits on g∗ [93], any changes in the strong, weak, electromagnetic,
or gravitational coupling constants, arising e.g., from the dynamics
of new dimensions, can be similarly constrained [98], as can be
any speed-up of the expansion rate in, e.g., scalar-tensor theories of
gravity [99].

The limits on Nν can be translated into limits on other types
of particles or particle masses that would affect the expansion
rate of the Universe during nucleosynthesis. For example, consider
‘sterile’ neutrinos with only right-handed interactions of strength
GR < GF. Such particles would decouple at higher temperature than
(left-handed) neutrinos, so their number density (∝ T 3) relative to
neutrinos would be reduced by any subsequent entropy release, e.g.,
due to annihilations of massive particles that become non-relativistic
between the two decoupling temperatures. Thus (relativistic) particles
with less than full strength weak interactions contribute less to
the energy density than particles that remain in equilibrium up
to the time of nucleosynthesis [100]. If we impose Nν < 4 as an
illustrative constraint, then the three right-handed neutrinos must
have a temperature 3(TνR

/TνL
)4 < 1. Since the temperature of the

decoupled νR is determined by entropy conservation (see Big Bang

Cosmology review), TνR
/TνL

= [(43/4)/g∗(Td)]1/3 < 0.76, where Td

is the decoupling temperature of the νR. This requires g∗(Td) > 24,
so decoupling must have occurred at Td > 140 MeV. The decoupling
temperature is related to GR through (GR/GF)2 ∼ (Td/3 MeV)−3,
where 3 MeV is the decoupling temperature for νLs. This yields a limit
GR

<∼ 10−2GF. The above argument sets lower limits on the masses
of new Z ′ gauge bosons to which right-handed neutrinos would be
coupled in models of superstrings [101], or extended technicolor [102].
Similarly a Dirac magnetic moment for neutrinos, which would allow
the right-handed states to be produced through scattering and thus
increase g∗, can be significantly constrained [103], as can any new
interactions for neutrinos that have a similar effect [104]. Right-
handed states can be populated directly by helicity-flip scattering if
the neutrino mass is large enough, and this property has been used
to infer a bound of mντ

<∼ 1 MeV taking Nν < 4 [105]. If there is
mixing between active and sterile neutrinos then the effect on BBN is
more complicated [106].

BBN limits on the cosmic expansion rate constrain supersymmetric
scenarios in which the neutralino or gravitino are very light, so
that they contribute to g∗ [107]. A gravitino in the mass range
∼ 10−4 − 10 eV will affect the expansion rate of the Universe similarly
to a light neutralino (which is however now probably ruled out by
collider data, especially the decays of the Higgs-like boson). The net
contribution to Nν then ranges between 0.74 and 1.69, depending on
the gravitino and slepton masses [108].

The limit on the expansion rate during BBN can also be translated
into bounds on the mass/lifetime of non-relativistic particles that
decay during BBN. This results in an even faster speed-up rate,
and typically also changes the entropy [109]. If the decays include
Standard Model particles, the resulting electromagnetic [110–111]
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and/or hadronic [112] cascades can strongly perturb the light elements,
which leads to even stronger constraints. Such arguments had been
applied to rule out an MeV mass for ντ , which decays during
nucleosynthesis [113].

Decaying-particle arguments have proved very effective in probing
supersymmetry. Light-element abundances generally are complemen-
tary to accelerator data in constraining SUSY parameter space, with
BBN reaching to values kinematically inaccessible to the LHC. Much
recent interest has focused on the case in which the next-to-lightest
supersymmetric particle is metastable and decays during or after
BBN. The constraints on unstable particles discussed above imply
stringent bounds on the allowed abundance of such particles [112]; if
the metastable particle is charged (e.g., the stau), then it is possible
for it to form atom-like electromagnetic bound states with nuclei, and
the resulting impact on light elements can be quite complex [114].
Moreover, SUSY decays can destroy 7Li and/or produce 6Li, leading
to a possible supersymmetric solution to the lithium problems noted
above [115]( see [7] for a review).

These arguments impose powerful constraints on supersymmetric
inflationary cosmology [111–112], particularly thermal leptogene-
sis [116]. These can be evaded only if the gravitino is massive enough
to decay before BBN, i.e., m3/2

>∼ 50 TeV [117]( which would be

unnatural), or if it is in fact the lightest supersymmetric particle and
thus stable [111,118]. Similar constraints apply to moduli – very
weakly coupled fields in string theory that obtain an electroweak-scale
mass from supersymmetry breaking [119].

Finally, we mention that BBN places powerful constraints on the
possibility that there are new large dimensions in nature, perhaps
enabling the scale of quantum gravity to be as low as the electroweak
scale [120]. Thus, Standard Model fields may be localized on a
‘brane,’ while gravity alone propagates in the ‘bulk.’ It has been
further noted that the new dimensions may be non-compact, even
infinite [121], and the cosmology of such models has attracted
considerable attention. The expansion rate in the early Universe can
be significantly modified, so BBN is able to set interesting constraints
on such possibilities [122].
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J.A. Grifols and E. Massó, Mod. Phys. Lett. A2, 205 (1987);
K.S. Babu et al., Phys. Rev. Lett. 67, 545 (1991).

105. A.D. Dolgov et al., Nucl. Phys. B524, 621 (1998).
106. K. Enqvist et al., Nucl. Phys. B373, 498 (1992);

A.D. Dolgov, Phys. Reports 370, 333 (2002).

107. J.A. Grifols et al., Phys. Lett. B400, 124 (1997).
108. H. Dreiner et al., Phys. Rev. D85, 065027 (2012).
109. K. Sato and M. Kobayashi, Prog. Theor. Phys. 58, 1775 (1977);

D.A. Dicus et al., Phys. Rev. D17, 1529 (1978);
R.J. Scherrer and M.S. Turner, Astrophys. J. 331, 19 (1988).

110. D. Lindley, MNRAS 188, 15 (1979); Astrophys. J. 294, 1
(1985).

111. J. Ellis et al., Nucl. Phys. B259, 175 (1985);
J. Ellis et al., Nucl. Phys. B373, 399 (1992);
R.H. Cyburt et al., Phys. Rev. D67, 103521 (2003).

112. M.H. Reno and D. Seckel, Phys. Rev. D37, 3441 (1988);
S. Dimopoulos et al., Nucl. Phys. B311, 699 (1989);
K. Kohri et al., Phys. Rev. D71, 083502 (2005).

113. S. Sarkar and A.M. Cooper, Phys. Lett. B148, 347 (1984).
114. M. Pospelov et al., Phys. Rev. Lett. 98, 231301 (2007);

M. Kawasaki et al., Phys. Lett. B649, 436 (2007);
R.H. Cyburt et al., JCAP 05, 014 (2013).

115. K. Jedamzik et al., JCAP 07, 007 (2006).
116. S. Davidson et al., Phys. Rev. 466, 105 (2008).
117. S. Weinberg, Phys. Rev. Lett. 48, 1303 (1979).
118. M. Bolz et al., Nucl. Phys. B606, 518 (2001).
119. G. Coughlan et al., Phys. Lett. B131, 59 (1983).
120. N. Arkani-Hamed et al., Phys. Rev. D59, 086004 (1999).
121. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).
122. J.M. Cline et al., Phys. Rev. Lett. 83, 4245 (1999);

P. Binetruy et al., Phys. Lett. B477, 285 (2000).



386 25. The Cosmological Parameters

25. THE COSMOLOGICAL PARAMETERS

Updated November 2015, by O. Lahav (University College London)
and A.R. Liddle (University of Edinburgh).

25.1. Parametrizing the Universe

Rapid advances in observational cosmology have led to the
establishment of a precision cosmological model, with many of the
key cosmological parameters determined to one or two significant
figure accuracy. Particularly prominent are measurements of cosmic
microwave background (CMB) anisotropies, with the highest precision
observations being those of the Planck Satellite [1,2] which supersede
the iconic WMAP results [3,4]. However the most accurate model of
the Universe requires consideration of a range of observations, with
complementary probes providing consistency checks, lifting parameter
degeneracies, and enabling the strongest constraints to be placed.

The term ‘cosmological parameters’ is forever increasing in its
scope, and nowadays often includes the parameterization of some
functions, as well as simple numbers describing properties of the
Universe. The original usage referred to the parameters describing
the global dynamics of the Universe, such as its expansion rate and
curvature. Also now of great interest is how the matter budget of
the Universe is built up from its constituents: baryons, photons,
neutrinos, dark matter, and dark energy. We need to describe the
nature of perturbations in the Universe, through global statistical
descriptors such as the matter and radiation power spectra. There
may also be parameters describing the physical state of the Universe,
such as the ionization fraction as a function of time during the era
since recombination. Typical comparisons of cosmological models with
observational data now feature between five and ten parameters.

25.1.1. The global description of the Universe :

Ordinarily, the Universe is taken to be a perturbed Robertson–
Walker space-time with dynamics governed by Einstein’s equations.
This is described in detail in the Big-Bang Cosmology chapter in
this volume. Using the density parameters Ωi for the various matter
species and ΩΛ for the cosmological constant, the Friedmann equation
can be written

∑

i

Ωi + ΩΛ − 1 =
k

R2H2
, (25.1)

where the sum is over all the different species of material in the
Universe. This equation applies at any epoch, but later in this article
we will use the symbols Ωi and ΩΛ to refer to the present-epoch
values.

The complete present-epoch state of the homogeneous Universe
can be described by giving the current-epoch values of all the
density parameters and the Hubble constant h (the present-day
Hubble parameter being written H0 = 100h kms−1 Mpc−1). A typical
collection would be baryons Ωb, photons Ωγ , neutrinos Ων , and
cold dark matter Ωc (given charge neutrality, the electron density is
guaranteed to be too small to be worth considering separately and is
effectively included with the baryons). The spatial curvature can then
be determined from the other parameters using Eq. (25.1). The total
present matter density Ωm = Ωc + Ωb is sometimes used in place of
the cold dark matter density Ωc.

These parameters also allow us to track the history of the Universe,
at least back until an epoch where interactions allow interchanges
between the densities of the different species; this is believed to
have last happened at neutrino decoupling, shortly before Big Bang
Nucleosynthesis (BBN). To probe further back into the Universe’s
history requires assumptions about particle interactions, and perhaps
about the nature of physical laws themselves.

The standard neutrino sector has three flavors. For neutrinos of
mass in the range 5 × 10−4 eV to 1 MeV, the density parameter in
neutrinos is predicted to be

Ωνh2 =

∑

mν

93 eV
, (25.2)

where the sum is over all families with mass in that range (higher
masses need a more sophisticated calculation). We use units with c = 1
throughout. Results on atmospheric and Solar neutrino oscillations [5]
imply non-zero mass-squared differences between the three neutrino

flavors. These oscillation experiments cannot tell us the absolute
neutrino masses, but within the simple assumption of a mass hierarchy
suggest a lower limit of approximately 0.06 eV for the sum of the
neutrino masses (see the Neutrino section).

Even a mass this small has a potentially observable effect on the
formation of structure, as neutrino free-streaming damps the growth
of perturbations. Analyses commonly now either assume a neutrino
mass sum fixed at this lower limit, or allow the neutrino mass sum
as a variable parameter. To date there is no decisive evidence of
any effects from either neutrino masses or an otherwise non-standard
neutrino sector, and observations impose quite stringent limits, which
we summarize in Section 25.3.4. However, we note that the inclusion
of the neutrino mass sum as a free parameter can affect the derived
values of other cosmological parameters.

25.1.2. Inflation and perturbations :

A complete model of the Universe should include a description of
deviations from homogeneity, at least in a statistical way. Indeed,
some of the most powerful probes of the parameters described above
come from the evolution of perturbations, so their study is naturally
intertwined with the determination of cosmological parameters.

There are many different notations used to describe the perturba-
tions, both in terms of the quantity used to describe the perturbations
and the definition of the statistical measure. We use the dimensionless
power spectrum ∆2 as defined in the Big Bang Cosmology chapter
(also denoted P in some of the literature). If the perturbations
obey Gaussian statistics, the power spectrum provides a complete
description of their properties.

From a theoretical perspective, a useful quantity to describe the
perturbations is the curvature perturbation R, which measures the
spatial curvature of a comoving slicing of the space-time. A simple
case is the Harrison–Zeldovich spectrum, which corresponds to a
constant ∆2

R. More generally, one can approximate the spectrum by
a power-law, writing

∆2
R(k) = ∆2

R(k∗)

[

k

k∗

]ns−1

, (25.3)

where ns is known as the spectral index, always defined so that
ns = 1 for the Harrison–Zeldovich spectrum, and k∗ is an arbitrarily
chosen scale. The initial spectrum, defined at some early epoch of the
Universe’s history, is usually taken to have a simple form such as this
power law, and we will see that observations require ns close to one.
Subsequent evolution will modify the spectrum from its initial form.

The simplest mechanism for generating the observed perturbations
is the inflationary cosmology, which posits a period of accelerated
expansion in the Universe’s early stages [6,7]. It is a useful
working hypothesis that this is the sole mechanism for generating
perturbations, and it may further be assumed to be the simplest class
of inflationary model, where the dynamics are equivalent to that of a
single scalar field φ with canonical kinetic energy slowly rolling on a
potential V (φ). One may seek to verify that this simple picture can
match observations and to determine the properties of V (φ) from the
observational data. Alternatively, more complicated models, perhaps
motivated by contemporary fundamental physics ideas, may be tested
on a model-by-model basis (see more in the Inflation chapter in this
volume).

Inflation generates perturbations through the amplification of
quantum fluctuations, which are stretched to astrophysical scales by
the rapid expansion. The simplest models generate two types, density
perturbations that come from fluctuations in the scalar field and its
corresponding scalar metric perturbation, and gravitational waves that
are tensor metric fluctuations. The former experience gravitational
instability and lead to structure formation, while the latter can
influence the CMB anisotropies. Defining slow-roll parameters, with
primes indicating derivatives with respect to the scalar field, as

ǫ =
m2

Pl

16π

(

V ′

V

)2

, η =
m2

Pl

8π

V ′′

V
, (25.4)

which should satisfy ǫ, |η| ≪ 1, the spectra can be computed using the
slow-roll approximation as

∆2
R(k) ≃

8

3m4
Pl

V

ǫ

∣

∣

∣

∣

∣

k=aH

, ∆2
t (k) ≃

128

3m4
Pl

V

∣

∣

∣

∣

∣

k=aH

. (25.5)
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In each case, the expressions on the right-hand side are to be evaluated
when the scale k is equal to the Hubble radius during inflation. The
symbol ‘≃’ here indicates use of the slow-roll approximation, which is
expected to be accurate to a few percent or better.

From these expressions, we can compute the spectral indices [8]:

ns ≃ 1 − 6ǫ + 2η ; nt ≃ −2ǫ . (25.6)

Another useful quantity is the ratio of the two spectra, defined by

r ≡
∆2

t (k∗)

∆2
R(k∗)

. (25.7)

We have
r ≃ 16ǫ ≃ −8nt , (25.8)

which is known as the consistency equation.

One could consider corrections to the power-law approximation,
which we discuss later. However, for now we make the working
assumption that the spectra can be approximated by such power laws.
The consistency equation shows that r and nt are not independent
parameters, and so the simplest inflation models give initial conditions
described by three parameters, usually taken as ∆2

R, ns, and r, all
to be evaluated at some scale k∗, usually the ‘statistical center’ of
the range explored by the data. Alternatively, one could use the
parametrization V , ǫ, and η, all evaluated at a point on the putative
inflationary potential.

After the perturbations are created in the early Universe, they
undergo a complex evolution up until the time they are observed in
the present Universe. When the perturbations are small, this can
be accurately followed using a linear theory numerical code such as
CAMB or CLASS [9]. This works right up to the present for the CMB,
but for density perturbations on small scales non-linear evolution is
important and can be addressed by a variety of semi-analytical and
numerical techniques. However the analysis is made, the outcome of
the evolution is in principle determined by the cosmological model and
by the parameters describing the initial perturbations, and hence can
be used to determine them.

Of particular interest are CMB anisotropies. Both the total
intensity and two independent polarization modes are predicted to
have anisotropies. These can be described by the radiation angular
power spectra Cℓ as defined in the CMB article in this volume, and
again provide a complete description if the density perturbations are
Gaussian.

25.1.3. The standard cosmological model :

We now have most of the ingredients in place to describe the
cosmological model. Beyond those of the previous subsections, we
need a measure of the ionization state of the Universe. The Universe is
known to be highly ionized at low redshifts (otherwise radiation from
distant quasars would be heavily absorbed in the ultra-violet), and the
ionized electrons can scatter microwave photons, altering the pattern
of observed anisotropies. The most convenient parameter to describe
this is the optical depth to scattering τ (i.e., the probability that a
given photon scatters once); in the approximation of instantaneous
and complete reionization, this could equivalently be described by the
redshift of reionization zion.

As described in Sec. 25.4, models based on these parameters are
able to give a good fit to the complete set of high-quality data available
at present, and indeed some simplification is possible. Observations
are consistent with spatial flatness, and the inflation models so far
described automatically generate negligible spatial curvature, so we
can set k = 0; the density parameters then must sum to unity, and so
one of them can be eliminated. The neutrino energy density is often
not taken as an independent parameter. Provided that the neutrino
sector has the standard interactions, the neutrino energy density,
while relativistic, can be related to the photon density using thermal
physics arguments, and a minimal assumption takes the neutrino mass
sum to be that of the lowest mass solution to the neutrino oscillation
constraints, namely 0.06 eV. In addition, there is no observational
evidence for the existence of tensor perturbations (though the upper
limits are fairly weak), and so r could be set to zero. This leaves seven

parameters, which is the smallest set that can usefully be compared
to the present cosmological data set. This model is referred to by
various names, including ΛCDM, the concordance cosmology, and the
standard cosmological model.

Of these parameters, only Ωγ is accurately measured directly. The
radiation density is dominated by the energy in the CMB, and the
COBE satellite FIRAS experiment determined its temperature to be
T = 2.7255 ± 0.0006 K [10], ‡ corresponding to Ωγ = 2.47 × 10−5h−2.
It typically need not be varied in fitting other data. Hence the
minimum number of cosmological parameters varied in fits to data
is six, though as described below there may additionally be many
‘nuisance’ parameters necessary to describe astrophysical processes
influencing the data.

In addition to this minimal set, there is a range of other parameters
that might prove important in future as the data-sets further improve,
but for which there is so far no direct evidence, allowing them to be
set to a specific value for now. We discuss various speculative options
in the next section. For completeness at this point, we mention one
other interesting parameter, the helium fraction, which is a non-zero
parameter that can affect the CMB anisotropies at a subtle level.
It is usually fixed in microwave anisotropy studies, but the data
are approaching a level where allowing its variation may become
mandatory.

Most attention to date has been on parameter estimation, where a
set of parameters is chosen by hand and the aim is to constrain them.
Interest has been growing towards the higher-level inference problem
of model selection, which compares different choices of parameter sets.
Bayesian inference offers an attractive framework for cosmological
model selection, setting a tension between model predictiveness and
ability to fit the data [11].

25.1.4. Derived parameters :

The parameter list of the previous subsection is sufficient to
give a complete description of cosmological models that agree with
observational data. However, it is not a unique parameterization,
and one could instead use parameters derived from that basic set.
Parameters that can be obtained from the set given above include the
age of the Universe, the present horizon distance, the present neutrino
background temperature, the epoch of matter–radiation equality, the
epochs of recombination and decoupling, the epoch of transition to
an accelerating Universe, the baryon-to-photon ratio, and the baryon
to dark matter density ratio. In addition, the physical densities of
the matter components, Ωih

2, are often more useful than the density
parameters. The density perturbation amplitude can be specified in
many different ways other than the large-scale primordial amplitude,
for instance, in terms of its effect on the CMB, or by specifying a
short-scale quantity, a common choice being the present linear-theory
mass dispersion on a scale of 8 h−1Mpc, known as σ8.

Different types of observation are sensitive to different subsets of
the full cosmological parameter set, and some are more naturally
interpreted in terms of some of the derived parameters of this
subsection than on the original base parameter set. In particular,
most types of observation feature degeneracies whereby they are
unable to separate the effects of simultaneously varying specific
combinations of several of the base parameters.

25.2. Extensions to the standard model

At present, there is no positive evidence in favor of extensions of
the standard model. These are becoming increasingly constrained by
the data, though there always remains the possibility of trace effects
at a level below present observational capability.

‡ Unless stated otherwise, all quoted uncertainties in this article are
one-sigma/68% confidence and all upper limits are 95% confidence.
Cosmological parameters sometimes have significantly non-Gaussian
uncertainties. Throughout we have rounded central values, and espe-
cially uncertainties, from original sources, in cases where they appear
to be given to excessive precision.
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25.2.1. More general perturbations :

The standard cosmology assumes adiabatic, Gaussian perturbations.
Adiabaticity means that all types of material in the Universe share a
common perturbation, so that if the space-time is foliated by constant-
density hypersurfaces, then all fluids and fields are homogeneous
on those slices, with the perturbations completely described by the
variation of the spatial curvature of the slices. Gaussianity means
that the initial perturbations obey Gaussian statistics, with the
amplitudes of waves of different wavenumbers being randomly drawn
from a Gaussian distribution of width given by the power spectrum.
Note that gravitational instability generates non-Gaussianity; in this
context, Gaussianity refers to a property of the initial perturbations,
before they evolve.

The simplest inflation models, based on one dynamical field, predict
adiabatic perturbations and a level of non-Gaussianity that is too
small to be detected by any experiment so far conceived. For present
data, the primordial spectra are usually assumed to be power laws.

25.2.1.1. Non-power-law spectra:

For typical inflation models, it is an approximation to take the
spectra as power laws, albeit usually a good one. As data quality
improves, one might expect this approximation to come under
pressure, requiring a more accurate description of the initial spectra,
particularly for the density perturbations. In general, one can expand
ln ∆2

R as

ln ∆2
R(k) = ln ∆2

R(k∗)+(ns,∗−1) ln
k

k∗
+

1

2

dns

d ln k

∣

∣

∣

∣

∗

ln2 k

k∗
+· · · , (25.9)

where the coefficients are all evaluated at some scale k∗. The term
dns/d ln k|∗ is often called the running of the spectral index [12].
Once non-power-law spectra are allowed, it is necessary to specify the
scale k∗ at which the spectral index is defined.

25.2.1.2. Isocurvature perturbations:

An isocurvature perturbation is one that leaves the total density
unperturbed, while perturbing the relative amounts of different
materials. If the Universe contains N fluids, there is one growing
adiabatic mode and N − 1 growing isocurvature modes (for reviews
see Ref. 7 and Ref. 13 ). These can be excited, for example, in
inflationary models where there are two or more fields that acquire
dynamically-important perturbations. If one field decays to form
normal matter, while the second survives to become the dark matter,
this will generate a cold dark matter isocurvature perturbation.

In general, there are also correlations between the different modes,
and so the full set of perturbations is described by a matrix giving the
spectra and their correlations. Constraining such a general construct
is challenging, though constraints on individual modes are beginning
to become meaningful, with no evidence that any other than the
adiabatic mode must be non-zero.

25.2.1.3. Seeded perturbations:

An alternative to laying down perturbations at very early epochs
is that they are seeded throughout cosmic history, for instance
by topological defects such as cosmic strings. It has long been
excluded that these are the sole original of structure, but they
could contribute part of the perturbation signal, current limits being
just a few percent [14]. In particular, cosmic defects formed in a
phase transition ending inflation is a plausible scenario for such a
contribution.

25.2.1.4. Non-Gaussianity:

Multi-field inflation models can also generate primordial non-
Gaussianity (reviewed, e.g., in Ref. 7). The extra fields can either
be in the same sector of the underlying theory as the inflaton, or
completely separate, an interesting example of the latter being the
curvaton model [15]. Current upper limits on non-Gaussianity are
becoming stringent, but there remains strong motivation to push down
those limits and perhaps reveal trace non-Gaussianity in the data.
If non-Gaussianity is observed, its nature may favor an inflationary
origin, or a different one such as topological defects.

25.2.2. Dark matter properties :

Dark matter properties are discussed in the Dark Matter chapter
in this volume. The simplest assumption concerning the dark matter
is that it has no significant interactions with other matter, and that
its particles have a negligible velocity as far as structure formation
is concerned. Such dark matter is described as ‘cold,’ and candidates
include the lightest supersymmetric particle, the axion, and primordial
black holes. As far as astrophysicists are concerned, a complete
specification of the relevant cold dark matter properties is given by
the density parameter Ωc, though those seeking to detect it directly
are as interested in its interaction properties.

Cold dark matter is the standard assumption and gives an excellent
fit to observations, except possibly on the shortest scales where
there remains some controversy concerning the structure of dwarf
galaxies and possible substructure in galaxy halos. It has long been
excluded for all the dark matter to have a large velocity dispersion,
so-called ‘hot’ dark matter, as it does not permit galaxies to form;
for thermal relics the mass must be above about 1 keV to satisfy this
constraint, though relics produced non-thermally, such as the axion,
need not obey this limit. However, in future further parameters might
need to be introduced to describe dark matter properties relevant to
astrophysical observations. Suggestions that have been made include
a modest velocity dispersion (warm dark matter) and dark matter
self-interactions. There remains the possibility that the dark matter is
comprized of two separate components, e.g., a cold one and a hot one,
an example being if massive neutrinos have a non-negligible effect.

25.2.3. Relativistic species :

The number of relativistic species in the young Universe (omitting
photons) is denoted Neff . In the standard cosmological model only the
three neutrino species contribute, and its baseline value is assumed
fixed at 3.046 (the small shift from 3 is because of a slight predicted
deviation from a thermal distribution [16]) . However other species
could contribute, for example an extra neutrino, possibly of sterile
type, or massless Goldstone bosons or other scalars. It is hence
interesting to study the effect of allowing this parameter to vary,
and indeed although 3.046 is consistent with the data, most analyses
currently suggest a somewhat higher value (e.g., Ref. 17).

25.2.4. Dark energy :

While the standard cosmological model given above features a
cosmological constant, in order to explain observations indicating that
the Universe is presently accelerating, further possibilities exist under
the general headings of ‘dark energy’ and ‘modified gravity’. These
topics are described in detail in the Dark Energy chapter in this
volume. This article focuses on the case of the cosmological constant,
as this simple model is a good match to existing data. We note that
more general treatments of dark energy/modified gravity will lead to
weaker constraints on other parameters.

25.2.5. Complex ionization history :

The full ionization history of the Universe is given by the ionization
fraction as a function of redshift z. The simplest scenario takes the
ionization to have the small residual value left after recombination
up to some redshift zion, at which point the Universe instantaneously
reionizes completely. Then there is a one-to-one correspondence
between τ and zion (that relation, however, also depending on other
cosmological parameters). An accurate treatment of this process will
track separate histories for hydrogen and helium. While currently
rapid ionization appears to be a good approximation, as data improve
a more complex ionization history may need to be considered.

25.2.6. Varying ‘constants’ :

Variation of the fundamental constants of Nature over cosmological
times is another possible enhancement of the standard cosmology.
There is a long history of study of variation of the gravitational
constant GN, and more recently attention has been drawn to the
possibility of small fractional variations in the fine-structure constant.
There is presently no observational evidence for the former, which is
tightly constrained by a variety of measurements. Evidence for the
latter has been claimed from studies of spectral line shifts in quasar
spectra at redshift z ≈ 2 [18], but this is presently controversial and
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in need of further observational study. See constraints from the CMB
in the Planck 2015 papers.

25.2.7. Cosmic topology :

The usual hypothesis is that the Universe has the simplest topology
consistent with its geometry, for example that a flat Universe extends
forever. Observations cannot tell us whether that is true, but they can
test the possibility of a non-trivial topology on scales up to roughly the
present Hubble scale. Extra parameters would be needed to specify
both the type and scale of the topology, for example, a cuboidal
topology would need specification of the three principal axis lengths.
At present, there is no evidence for non-trivial cosmic topology [19].

25.3. Probes

The goal of the observational cosmologist is to utilize astronomical
information to derive cosmological parameters. The transformation
from the observables to the parameters usually involves many
assumptions about the nature of the objects, as well as of the dark
sector. Below we outline the physical processes involved in each of the
major probes, and the main recent results. The first two subsections
concern probes of the homogeneous Universe, while the remainder
consider constraints from perturbations.

In addition to statistical uncertainties we note three sources
of systematic uncertainties that will apply to the cosmological
parameters of interest: (i) due to the assumptions on the cosmological
model and its priors (i.e., the number of assumed cosmological
parameters and their allowed range); (ii) due to the uncertainty in
the astrophysics of the objects (e.g., light curve fitting for supernovae
or the mass–temperature relation of galaxy clusters); and (iii) due to
instrumental and observational limitations (e.g., the effect of ‘seeing’
on weak gravitational lensing measurements, or beam shape on CMB
anisotropy measurements).

These systematics, the last two of which appear as ‘nuisance
parameters’, pose a challenging problem to the statistical analysis. We
attempt to fit the whole Universe with 6 to 12 parameters, but we might
need to include hundreds of nuisance parameters, some of them highly
correlated with the cosmological parameters of interest (for example
time-dependent galaxy biasing could mimic the growth of mass
fluctuations). Fortunately, there is some astrophysical prior knowledge
on these effects, and a small number of physically-motivated free
parameters would ideally be preferred in the cosmological parameter
analysis.

25.3.1. Direct measures of the Hubble constant :

In 1929, Edwin Hubble discovered the law of expansion of the
Universe by measuring distances to nearby galaxies. The slope of the
relation between the distance and recession velocity is defined to be
the Hubble constant, H0. Astronomers argued for decades about the
systematic uncertainties in various methods and derived values over
the wide range 40 kms−1 Mpc−1 <

∼ H0
<
∼ 100 kms−1 Mpc−1.

One of the most reliable results on the Hubble constant comes
from the Hubble Space Telescope Key Project [20]. This study used
the empirical period–luminosity relation for Cepheid variable stars,
and calibrated a number of secondary distance indicators—Type Ia
Supernovae (SNe Ia), the Tully–Fisher relation, surface-brightness
fluctuations, and Type II Supernovae.

The most recent derivation based on this approach utilizes the
maser-based distance to NGC4258 to re-calibrate its Cepheid distace
scale [21] to obtain H0 = 72.0 ± 3.0 km s−1 Mpc−1 [22]. The major
sources of uncertainty in this result are due to the heavy element
abundance of the Cepheids and the distance to the fiducial nearby
galaxy, the Large Magellanic Cloud, relative to which all Cepheid
distances are measured.

The indirect determination of H0 by the Planck Collaboration [2]
found a lower value, H0 = 67.8 ± 0.9 km s−1 Mpc−1. As discussed in
that paper, there is strong degeneracy of H0 with other parameters,
e.g., Ωm and the neutrino mass. The tension between the H0 from
Planck and the traditional cosmic distance-ladder methods is under
investigation.

25.3.2. Supernovae as cosmological probes :

Empirically, the peak luminosity of SNe Ia can be used as an
efficient distance indicator (e.g., Ref. 23), thus allowing cosmology
to be constrained via the distance–redshift relation. The favorite
theoretical explanation for SNe Ia is the thermonuclear disruption of
carbon–oxygen white dwarfs. Although not perfect ‘standard candles’,
it has been demonstrated that by correcting for a relation between the
light-curve shape, color, and luminosity at maximum brightness, the
dispersion of the measured luminosities can be greatly reduced. There
are several possible systematic effects that may affect the accuracy of
the use of SNe Ia as distance indicators, e.g., evolution with redshift
and interstellar extinction in the host galaxy and in the Milky Way.

Two major studies, the Supernova Cosmology Project and the
High-z Supernova Search Team, found evidence for an accelerating
Universe [24], interpreted as due to a cosmological constant or
a dark energy component. When combined with the CMB data
(which indicate flatness, i.e., Ωm + ΩΛ = 1), the best-fit values were
Ωm ≈ 0.3 and ΩΛ ≈ 0.7. Most results in the literature are consistent
with the w = −1 cosmological constant case. A recent study [28]
deduced, from a sample of 740 spectroscopically-confirmed SNe Ia,
that Ωm = 0.295 ± 0.034 (stat+sym) for an assumed flat ΛCDM
model. This is consistent with the latest CMB measurements. Future
experiments will aim to set constraints on the cosmic equation of state
w(z).

25.3.3. Cosmic microwave background :

The physics of the CMB is described in detail in the CMB chapter
in this volume. Before recombination, the baryons and photons are
tightly coupled, and the perturbations oscillate in the potential
wells generated primarily by the dark matter perturbations. After
decoupling, the baryons are free to collapse into those potential
wells. The CMB carries a record of conditions at the time of last
scattering, often called primary anisotropies. In addition, it is affected
by various processes as it propagates towards us, including the effect
of a time-varying gravitational potential (the integrated Sachs–Wolfe
effect), gravitational lensing, and scattering from ionized gas at low
redshift.

The primary anisotropies, the integrated Sachs–Wolfe effect, and
the scattering from a homogeneous distribution of ionized gas, can all
be calculated using linear perturbation theory. Available codes include
CAMB and CLASS [9], the former widely used embedded within
the analysis package CosmoMC [29]. Gravitational lensing is also
calculated in these codes. Secondary effects such as inhomogeneities in
the reionization process, and scattering from gravitationally-collapsed
gas (the Sunyaev–Zeldovich (SZ) effect), require more complicated,
and more uncertain, calculations.

The upshot is that the detailed pattern of anisotropies depends
on all of the cosmological parameters. In a typical cosmology, the
anisotropy power spectrum [usually plotted as ℓ(ℓ + 1)Cℓ] features
a flat plateau at large angular scales (small ℓ), followed by a series
of oscillatory features at higher angular scales, the first and most
prominent being at around one degree (ℓ ≃ 200). These features,
known as acoustic peaks, represent the oscillations of the photon–
baryon fluid around the time of decoupling. Some features can be
closely related to specific parameters—for instance, the location in
multipole space of the set of peaks probes the spatial geometry, while
the relative heights of the peaks probe the baryon density—but many
other parameters combine to determine the overall shape.

The 2015 data release from the Planck satellite [1] gives the
most powerful results to date on the spectrum of CMB temperature
anisotropies, with a precision determination of the temperature power
spectrum to beyond ℓ = 2000. The Atacama Cosmology Telescope
(ACT) and South Pole Telescope (SPT) experiments extend these
results to higher angular resolution, though without full-sky coverage.
Planck and the WMAP satellite final (9-year) data release [3] give
the state of the art in measuring the spectrum of E-polarization
anisotropies and the correlation spectrum between temperature and
polarization (those spectra having first been detected by DASI [30])
.These are consistent with models based on the parameters we
have described, and provide accurate determinations of many of
those parameters [2]. Primordial B-mode polarization has not been
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detected (although the gravitational lensing effect on B-mode has
been measured).

The data provide an exquisite measurement of the location of the
set of acoustic peaks, determining the angular-diameter distance of the
last-scattering surface. In combination with other data this strongly
constrains the spatial geometry, in a manner consistent with spatial
flatness and excluding significantly-curved Universes. CMB data give
a precision measurement of the age of the Universe. The CMB also
gives a baryon density consistent with, and at higher precision than,
that coming from BBN. It affirms the need for both dark matter and
dark energy. It shows no evidence for dynamics of the dark energy,
being consistent with a pure cosmological constant (w = −1). The
density perturbations are consistent with a power-law primordial
spectrum, and there is no indication yet of tensor perturbations. The
current best-fit for the reionization optical depth from CMB data,
τ = 0.066, is in line with models of how early structure formation
induces reionization.

Planck has also made the first all-sky map of the CMB lensing field,
which probes the entire matter distribution in the Universe and adds
some additional constraining power to the CMB-only data-sets. ACT
previously announced the first detection of gravitational lensing of the
CMB from the four-point correlation of temperature variations [31].
These measurements agree with the expected effect in the standard
cosmology.

25.3.4. Galaxy clustering :

The power spectrum of density perturbations depends on the
nature of the dark matter. Within the ΛCDM model, the power
spectrum shape depends primarily on the primordial power spectrum
and on the combination Ωmh, which determines the horizon scale at
matter–radiation equality, with a subdominant dependence on the
baryon density. The matter distribution is most easily probed by
observing the galaxy distribution, but this must be done with care
since the galaxies do not perfectly trace the dark matter distribution.
Rather, they are a ‘biased’ tracer of the dark matter. The need to
allow for such bias is emphasized by the observation that different
types of galaxies show bias with respect to each other. In particular,
scale-dependent and stochastic biasing may introduce a systematic
effect on the determination of cosmological parameters from redshift
surveys. Prior knowledge from simulations of galaxy formation or from
gravitational lensing data could help to quantify biasing. Furthermore,
the observed 3D galaxy distribution is in redshift space, i.e., the
observed redshift is the sum of the Hubble expansion and the line-
of-sight peculiar velocity, leading to linear and non-linear dynamical
effects that also depend on the cosmological parameters. On the
largest length scales, the galaxies are expected to trace the location
of the dark matter, except for a constant multiplier b to the power
spectrum, known as the linear bias parameter. On scales smaller than
20 h−1 Mpc or so, the clustering pattern is ‘squashed’ in the radial
direction due to coherent infall, which depends approximately on the
parameter β ≡ Ω0.6

m /b (on these shorter scales, more complicated
forms of biasing are not excluded by the data). On scales of a few
h−1 Mpc, there is an effect of elongation along the line of sight
(colloquially known as the ‘finger of God’ effect) that depends on the
galaxy velocity dispersion.

25.3.4.1. Baryonic acoustic oscillations:

The power spectra of the 2-degree Field (2dF) Galaxy Redshift
Survey and the Sloan Digital Sky Survey (SDSS) are well fit by a
ΛCDM model and both surveys showed evidence for baryon acoustic
oscillations (BAOs) [32,33]. The Baryon Oscillation Spectroscopic
Survey (BOSS) of Luminous Red Galaxies (LRGs) in the SDSS found
consistency with the dark energy equation of state w = −1 [35].
Similar results for w were obtained by the WiggleZ survey [36].

25.3.4.2. Redshift distortion:

There is renewed interest in the ‘redshift distortion’ effect.
This distortion depends on cosmological parameters [38] via the
perturbation growth rate in linear theory f(z) = d ln δ/d ln a ≈ Ωγ(z),
where γ ≃ 0.55 for the ΛCDM model and may be different for modified
gravity models. Recent observational results show that by measuring
f(z) it is feasible to constrain γ and rule out certain modified gravity

models [39,40]. We note the degeneracy of the redshift-distortion
pattern and the geometric distortion (the so-called Alcock–Paczynski
effect [41]) , e.g., as illustrated by the WiggleZ survey [42].

25.3.4.3. Limits on neutrino mass from galaxy surveys and other

probes:

Large-scale structure data place constraints on Ων due to the
neutrino free-streaming effect [47]. Presently there is no clear
detection, and upper limits on neutrino mass are commonly estimated
by comparing the observed galaxy power spectrum with a four-
component model of baryons, cold dark matter, a cosmological
constant, and massive neutrinos. Such analyses also assume that the
primordial power spectrum is adiabatic, scale-invariant, and Gaussian.
Potential systematic effects include biasing of the galaxy distribution
and non-linearities of the power spectrum. An upper limit can also
be derived from CMB anisotropies alone, while combination with
additional cosmological data-sets can improve the results.

Results using a photometric redshift sample of LRGs combined
with WMAP, BAO, Hubble constant and SNe Ia data gave a 95%
confidence upper limit on the total neutrino mass of 0.28 eV [48].
Recent spectroscopic redshift surveys, with more accurate redshifts
but fewer galaxies, yield similar upper limits for assumed flat ΛCDM
model and additional data-sets: 0.34 eV from BOSS [49] and 0.29 eV
from WiggleZ [50].

The Planck collaboration [2] derived from only TT+lensing data
(see their Table 5), without external data sets, a neutrino mass upper
limit of 0.675 eV (95% CL) and Neff = 3.13 ± 0.31 (68% CL), in
good agreement with the standard value Neff = 3.046. When adding
external data the upper limit on the neutrino mass is reduced to
0.234 eV, consistent with the above-mentioned pre-Planck results.
The Planck result for Neff changes little when adding external data.

While the latest cosmological data do not yet constrain the sum of
neutrino masses to below 0.2 eV, because the lower limit on neutrino
mass from terrestrial experiments is 0.06 eV it appears promising that
future cosmological surveys will detect effects from the neutrino mass.

25.3.5. Clustering in the inter-galactic medium :

It is commonly assumed, based on hydrodynamic simulations, that
the neutral hydrogen in the inter-galactic medium (IGM) can be
related to the underlying mass distribution. It is then possible to
estimate the matter power spectrum on scales of a few megaparsecs
from the absorption observed in quasar spectra, the so-called Lyman-α
forest. The usual procedure is to measure the power spectrum of
the transmitted flux, and then to infer the mass power spectrum.
Photo-ionization heating by the ultraviolet background radiation and
adiabatic cooling by the expansion of the Universe combine to give a
simple power-law relation between the gas temperature and the baryon
density. It also follows that there is a power-law relation between the
optical depth τ and ρb. Therefore, the observed flux F = exp(−τ) is
strongly correlated with ρb, which itself traces the mass density. The
matter and flux power spectra can be related by a biasing function
that is calibrated from simulations. The BOSS survey has been
used to detect and measure the BAO feature in the Lyman-α forest
fluctuation at redshift z = 2.4, with a result impressively consistent
with the standard ΛCDM model [52]. The Lyman-α flux power
spectrum has also been used to constrain the nature of dark matter,
for example constraining the amount of warm dark matter [53].

25.3.6. Gravitational lensing :

Images of background galaxies are distorted by the gravitational
effect of mass variations along the line of sight. Deep gravitational
potential wells such as galaxy clusters generate ‘strong lensing’,
leading to arcs, arclets and multiple images, while more moderate
perturbations give rise to ‘weak lensing’. Weak lensing is now widely
used to measure the mass power spectrum in selected regions of
the sky (see Ref. 54 for reviews). As the signal is weak, the image
of deformed galaxy shapes (the ‘shear map’) must be analyzed
statistically to measure the power spectrum, higher moments, and
cosmological parameters. There are various systematic effects in the
interpretation of weak lensing, e.g., due to atmospheric distortions
during observations, the redshift distribution of the background
galaxies, the intrinsic correlation of galaxy shapes, and non-linear
modeling uncertainties.



25. The Cosmological Parameters 391

The shear measurements are mainly sensitive to a combination
of Ωm and the amplitude σ8. For example, the weak-lensing signal
detected by the CFHTLens Survey (over 154 sq deg in 5 optical
bands) yields, for a flat ΛCDM model, σ8(Ωm/0.30)0.5 = 0.71 ± 0.04
[55]. The results from the Dark Energy Survey science verification
area (over 139 sq deg) give [56] σ8(Ωm/0.30)0.5 = 0.81 ± 0.06 (after
marginalizing over 3 other cosmological parameters and 7 systematic
parameters). See the Dark Energy chapter in this volume for other
results for σ8 from other probes.

25.3.7. Other probes :

Other probes that have been used to constrain cosmological
parameters, but that are not presently competitive in terms of
accuracy, are the integrated Sachs–Wolfe effect ( [43], [46]) number
density or composition of galaxy clusters [51], and galaxy peculiar
velocities, which probe the mass fluctuations in the local universe
[57].

25.4. Bringing observations together

Although it contains two ingredients—dark matter and dark
energy—which have not yet been verified by laboratory experiments,
the ΛCDM model is almost universally accepted by cosmologists as
the best description of the present data. The approximate values of
some of the key parameters are Ωb ≈ 0.05, Ωc ≈ 0.25, ΩΛ ≈ 0.70,
and a Hubble constant h ≈ 0.70. The spatial geometry is very close
to flat (and usually assumed to be precisely flat), and the initial
perturbations Gaussian, adiabatic, and nearly scale-invariant.

The most powerful data source is the CMB, which on its own
supports all these main tenets. Values for some parameters, as given in
Ref. 2, are reproduced in Table 25.1. These particular results presume
a flat Universe. The constraints are somewhat strengthened by adding
additional data-sets such as BAO and supernovae, as shown in the
Table, though most of the constraining power resides in the CMB
data. Similar constraints were previously obtained by the WMAP

collaboration; the additional precision of Planck data versus WMAP

is only really apparent when considering larger parameter sets.

If the assumption of spatial flatness is lifted, it turns out that the
CMB on its own only weakly constrains the spatial curvature, due to
a parameter degeneracy in the angular-diameter distance. However,
inclusion of other data readily removes this. For example, adding the
usual non-CMB data-sets, plus the assumption that the dark energy
is a cosmological constant, yields a 68% confidence constraint on
Ωtot ≡

∑

Ωi + ΩΛ = 1.0002 ± 0.0026 [2]. Results of this type are
normally taken as justifying the restriction to flat cosmologies.

One derived parameter that is very robust is the age of the
Universe, since there is a useful coincidence that for a flat Universe
the position of the first peak is strongly correlated with the age.
The CMB data give 13.80 ± 0.04 Gyr (assuming flatness). This is in
good agreement with the ages of the oldest globular clusters and with
radioactive dating.

The baryon density Ωb is now measured with high accuracy from
CMB data alone, and is consistent with and much more precise than
the determination from BBN. The value quoted in the Big Bang
Nucleosynthesis chapter in this volume is 0.021 ≤ Ωbh2 ≤ 0.024 (95%
confidence).

While ΩΛ is measured to be non-zero with very high confidence,
there is no evidence of evolution of the dark energy density. As
shown in the Dark Energy chapter in this volume, from a compilation
of CMB, SN and BAO measurements, assuming a flat universe,
w = −0.97 ± 0.05, consistent with the cosmological constant case
w = −1. Allowing more complicated forms of dark energy weakens
the limits.

The data provide strong support for the main predictions of the
simplest inflation models: spatial flatness and adiabatic, Gaussian,
nearly scale-invariant density perturbations. But it is disappointing
that there is no sign of primordial gravitational waves, with an
upper limit r < 0.11 at 95% confidence [58] (weakening if running is
allowed). The spectral index is clearly required to be less than one by
current data, though the strength of that conclusion can weaken if
additional parameters are included in the model fits.

Table 25.1: Parameter constraints reproduced from Ref. 2
(Table 4), with some additional rounding. Both columns assume
the ΛCDM cosmology with a power-law initial spectrum, no
tensors, spatial flatness, a cosmological constant as dark energy,
and the sum of neutrino masses fixed to 0.06eV. Above the
line are the six parameter combinations actually fit to the data
(θMC is a measure of the sound horizon at last scattering);
those below the line are derived from these. The first column
uses Planck primary CMB data, restricting polarization data
to low multipoles as currently recommended by the Planck
collaboration, plus the Planck measurement of CMB lensing.
This column gives our present recommended values. The second
column adds additional data and is included to show that the
effect of its inclusion is modest; the extra data are the Hubble
parameter, BAO measurements from the SDSS, BOSS, and 6dF
surveys, and supernova constraints from the JLA analysis. The
perturbation amplitude ∆2

R (denoted As in the original paper)

is specified at the scale 0.05 Mpc−1. Uncertainties are shown at
68% confidence.

Planck TT+lowP+lensing Planck TT+lowP+lensing+ext

Ωbh2 0.02226± 0.00023 0.02227± 0.00020

Ωch
2 0.1186± 0.0020 0.1184± 0.0012

100 θMC 1.0410± 0.0005 1.0411± 0.0004

ns 0.968± 0.006 0.968± 0.004

τ 0.066± 0.016 0.067± 0.013

ln(1010∆2
R) 3.062± 0.029 3.064± 0.024

h 0.678± 0.009 0.679± 0.006

σ8 0.815± 0.009 0.815± 0.009

Ωm 0.308± 0.012 0.306± 0.007

ΩΛ 0.692± 0.012 0.694± 0.007

Tests have been made for various types of non-Gaussianity, a
particular example being a parameter fNL that measures a quadratic
contribution to the perturbations. Various non-Gaussian shapes
are possible (see Ref. 59 for details), and current constraints on
the popular ‘local’, ‘equilateral’, and ‘orthogonal’ types combining

temperature and polarization data are f local
NL = 1±5, f

equil
NL = −4±43,

and fortho
NL = −26 ± 21 respectively (these look weak, but prominent

non-Gaussianity requires the product fNL∆R to be large, and ∆R is
of order 10−5). Clearly none of these give any indication of primordial
non-gaussianity.

25.5. Outlook for the future

The concordance model is now well established, and there seems
little room left for any dramatic revision of this paradigm. A measure
of the strength of that statement is how difficult it has proven to
formulate convincing alternatives.

Should there indeed be no major revision of the current paradigm,
we can expect future developments to take one of two directions.
Either the existing parameter set will continue to prove sufficient
to explain the data, with the parameters subject to ever-tightening
constraints, or it will become necessary to deploy new parameters.
The latter outcome would be very much the more interesting, offering
a route towards understanding new physical processes relevant to
the cosmological evolution. There are many possibilities on offer for
striking discoveries, for example:

• the cosmological effects of a neutrino mass may be unambiguously
detected, shedding light on fundamental neutrino properties;

• detection of primordial non-Gaussianities would indicate that
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non-linear processes influence the perturbation generation
mechanism;

• detection of variation in the dark-energy density (i.e., w 6= −1)
would provide much-needed experimental input into its nature.

These provide more than enough motivation for continued efforts
to test the cosmological model and improve its accuracy. Over the
coming years, there are a wide range of new observations that will
bring further precision to cosmological studies. Indeed, there are far
too many for us to be able to mention them all here, and so we will
just highlight a few areas.

The CMB observations will improve in several directions. A current
frontier is the study of polarization, for which power spectrum
measurements have now been made by several experiments. Detection
of primordial B-mode anisotropies is the next major goal and a variety
of projects are targeting this, though theory gives little guidance as to
the likely signal level.

An impressive array of comology surveys are already operational,
under construction, or proposed, including the ground-based Dark
Energy Survey (DES), Hyper Suprime Camera (HSC) and Large
Synoptic Survey Telescope (LSST), imaging surveys, spectroscopic
surveys such as the Dark Energy Spectroscopic Instrument (DESI),
and space missions Euclid and the Wide-Field Infrared Survey
(WFIRST).

An exciting area for the future is radio surveys of the redshifted
21-cm line of hydrogen. Because of the intrinsic narrowness of this
line, by tuning the bandpass the emission from narrow redshift slices
of the Universe will be measured to extremely high redshift, probing
the details of the reionization process at redshifts up to perhaps 20, as
well as measuring large scale features such as the BAOs. LOFAR is
the first instrument able to do this and has begun its operations. In
the longer term, the Square Kilometre Array (SKA) will take these
studies to a precision level.

The development of the first precision cosmological model is a
major achievement. However, it is important not to lose sight of
the motivation for developing such a model, which is to understand
the underlying physical processes at work governing the Universe’s
evolution. On that angle, progress has been much less dramatic. For
instance, there are many proposals for the nature of the dark matter,
but no consensus as to which is correct. The nature of the dark energy
remains a mystery. Even the baryon density, now measured to an
accuracy of a percent, lacks an underlying theory able to predict it
within orders of magnitude. Precision cosmology may have arrived,
but at present many key questions remain to motivate and challenge
the cosmology community.
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26. DARK MATTER

Revised September 2015 by M. Drees (Bonn University) and G.
Gerbier (Queen’s University, Canada).

26.1. Theory

26.1.1. Evidence for Dark Matter :

The existence of Dark (i.e., non-luminous and non-absorbing)
Matter (DM) is by now well established [1,2]. The earliest, and
perhaps still most convincing, evidence for DM came from the
observation that various luminous objects (stars, gas clouds, globular
clusters, or entire galaxies) move faster than one would expect if
they only felt the gravitational attraction of other visible objects. An
important example is the measurement of galactic rotation curves.
The rotational velocity v of an object on a stable Keplerian orbit with
radius r around a galaxy scales like v(r) ∝

√

M(r)/r, where M(r)
is the mass inside the orbit. If r lies outside the visible part of the
galaxy and mass tracks light, one would expect v(r) ∝ 1/

√
r. Instead,

in most galaxies one finds that v becomes approximately constant out
to the largest values of r where the rotation curve can be measured;
in our own galaxy, v ≃ 240 km/s at the location of our solar system,
with little change out to the largest observable radius. This implies
the existence of a dark halo, with mass density ρ(r) ∝ 1/r2, i.e.,
M(r) ∝ r; at some point ρ will have to fall off faster (in order to
keep the total mass of the galaxy finite), but we do not know at what
radius this will happen. This leads to a lower bound on the DM mass
density, ΩDM

>∼ 0.1, where ΩX ≡ ρX/ρcrit, ρcrit being the critical
mass density (i.e., Ωtot = 1 corresponds to a flat Universe).

The observation of clusters of galaxies tends to give somewhat
larger values, ΩDM ≃ 0.2. These observations include measurements
of the peculiar velocities of galaxies in the cluster, which are a measure
of their potential energy if the cluster is virialized; measurements of
the X-ray temperature of hot gas in the cluster, which again correlates
with the gravitational potential felt by the gas; and—most directly—
studies of (weak) gravitational lensing of background galaxies on the
cluster.

A particularly compelling example involves the bullet cluster
(1E0657-558) which recently (on cosmological time scales) passed
through another cluster. As a result, the hot gas forming most of
the clusters’ baryonic mass was shocked and decelerated, whereas
the galaxies in the clusters proceeded on ballistic trajectories.
Gravitational lensing shows that most of the total mass also moved
ballistically, indicating that DM self-interactions are indeed weak [1].

Many cosmologists consider the existence of old galaxies (detected
at redshift z ∼ 10) to be the strongest argument for the existence of
DM. Observations of the cosmic microwave background (CMB) show
that density perturbations at z ≃ 1, 300 were very small, δρ/ρ < 10−4.
Since (sub–horizon sized) density perturbations grow only in the
matter–dominated epoch, and matter domination starts earlier in the
presence of DM, density perturbations start to grow earlier when
DM is present, therefore allowing an earlier formation of the first
galaxies [3].

All these arguments rely on Einsteinian, or Newtonian, gravity.
One might thus ask whether the necessity to postulate the existence
of DM, sometimes perceived to be ad hoc, could be avoided by
modifying the theory of gravity. Indeed, the so–called Modified
Newtonian Dynamics (MOND) allows to reproduce many observations
on galactic scales, in particular galactic rotation curves, without
introducing DM [4]. However, MOND is a purely non–relativistic
theory. Attempts to embed it into a relativistic field theory require the
existence of additional fields (e.g. a vector field or a second metric),
and introduce considerably arbitrariness [4]. Moreover, the correct
description of large–scale structure formation seems to require some
sort of DM even in these theories [5]. In contrast, successful models
of particle DM (see below) can be described in the well established
language of quantum field theory, and do not need any modification
of General Relativity, which has passed a large number of tests with
flying colors [6].

The currently most accurate, if somewhat indirect, determination
of ΩDM comes from global fits of cosmological parameters to a variety

of observations; see the Section on Cosmological Parameters for
details. For example, using measurements of the anisotropy of the
cosmic microwave background (CMB) and of the spatial distribution
of galaxies, Ref. 7 finds a density of cold, non-baryonic matter

Ωnbmh2 = 0.1186± 0.0020 , (26.1)

where h is the Hubble constant in units of 100 km/(s·Mpc). Some
part of the baryonic matter density [7],

Ωbh2 = 0.02226± 0.00023 , (26.2)

may well contribute to (baryonic) DM, e.g., MACHOs [8] or cold
molecular gas clouds [9].

The DM density in the “neighborhood” of our solar system is also
of considerable interest. This was first estimated as early as 1922 by
J.H. Jeans, who analyzed the motion of nearby stars transverse to the
galactic plane [2]. He concluded that in our galactic neighborhood,
the average density of DM must be roughly equal to that of luminous
matter (stars, gas, dust). Remarkably enough, a recent estimate finds
a quite similar result for the smooth component of the local Dark
Matter density [10]:

ρlocal
DM = (0.39 ± 0.03) · (1.2 ± 0.2) · (1 ± δtriax)

GeV

cm3
. (26.3)

The first term on the right-hand side of Eq. (26.3) gives the average
Dark Matter density at a point one solar distance from the center of
our galaxy. The second factor accounts for the fact that the baryons
in the galactic disk, in which the solar system is located, also increase
the local DM density [11]. The third factor in Eq. (26.3) corrects
for possible deviations from a purely spherical halo; according to [12],
δtriax ≤ 0.2. Small substructures (minihaloes, streams) are not likely
to change the local DM density significantly [1]. Note that the first
factor in Eq. (26.3) has been derived by fitting a complete model of
our galaxy to a host of data, including the galactic rotation curve. A
“purely local” analysis, only using the motion of nearby stars, gives a
consistent result, with an error three times as large [13].

26.1.2. Candidates for Dark Matter :

Analyses of structure formation in the Universe indicate that most
DM should be “cold” or “cool”, i.e., should have been non-relativistic
at the onset of galaxy formation (when there was a galactic mass inside
the causal horizon) [1]. This agrees well with the upper bound [7] on
the contribution of light neutrinos to Eq. (26.1),

Ωνh2 ≤ 0.0062 95% CL . (26.4)

Candidates for non-baryonic DM in Eq. (26.1) must satisfy several
conditions: they must be stable on cosmological time scales (otherwise
they would have decayed by now), they must interact very weakly
with electromagnetic radiation (otherwise they wouldn’t qualify as
dark matter), and they must have the right relic density. Candidates
include primordial black holes, axions, sterile neutrinos, and weakly
interacting massive particles (WIMPs).

Primordial black holes must have formed before the era of Big-Bang
nucleosynthesis, since otherwise they would have been counted in
Eq. (26.2) rather than Eq. (26.1). Such an early creation of a large
number of black holes is possible only in certain somewhat contrived
cosmological models [14].

The existence of axions [15] was first postulated to solve the strong
CP problem of QCD; they also occur naturally in superstring theories.
They are pseudo Nambu-Goldstone bosons associated with the
(mostly) spontaneous breaking of a new global “Peccei-Quinn” (PQ)
U(1) symmetry at scale fa; see the Section on Axions in this Review

for further details. Although very light, axions would constitute cold
DM, since they were produced non-thermally. At temperatures well
above the QCD phase transition, the axion is massless, and the axion
field can take any value, parameterized by the “misalignment angle”
θi. At T <∼ 1 GeV, the axion develops a mass ma ∼ fπmπ/fa due
to instanton effects. Unless the axion field happens to find itself at
the minimum of its potential (θi = 0), it will begin to oscillate once
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ma becomes comparable to the Hubble parameter H . These coherent
oscillations transform the energy originally stored in the axion field
into physical axion quanta. The contribution of this mechanism to the
present axion relic density is [1]

Ωah2 = κa

(

fa/1012 GeV
)1.175

θ2
i , (26.5)

where the numerical factor κa lies roughly between 0.5 and a few.
If θi ∼ O(1), Eq. (26.5) will saturate Eq. (26.1) for fa ∼ 1011 GeV,
comfortably above laboratory and astrophysical constraints [15]; this
would correspond to an axion mass around 0.1 meV. However, if
the post-inflationary reheat temperature TR > fa, cosmic strings will
form during the PQ phase transition at T ≃ fa. Their decay will give
an additional contribution to Ωa, which is often bigger than that in
Eq. (26.5) [1], leading to a smaller preferred value of fa, i.e., larger
ma. On the other hand, values of fa near the Planck scale become
possible if θi is for some reason very small.

“Sterile” SU(2) × U(1)Y singlet neutrinos with keV masses [16]
could alleviate the “cusp/core problem” [1] of cold DM models. If
they were produced non-thermally through mixing with standard
neutrinos, they would eventually decay into a standard neutrino and a
photon or into three neutrinos.

Weakly interacting massive particles (WIMPs) χ are particles with
mass roughly between 10 GeV and a few TeV, and with cross sections
of approximately weak strength. Within standard cosmology, their
present relic density can be calculated reliably if the WIMPs were in
thermal and chemical equilibrium with the hot “soup” of Standard
Model (SM) particles after inflation. In this case, their density would
become exponentially (Boltzmann) suppressed at T < mχ. The
WIMPs therefore drop out of thermal equilibrium (“freeze out”) once
the rate of reactions that change SM particles into WIMPs or vice
versa, which is proportional to the product of the WIMP number
density and the WIMP pair annihilation cross section into SM particles
σA times velocity, becomes smaller than the Hubble expansion rate of
the Universe. After freeze out, the co-moving WIMP density remains
essentially constant; if the Universe evolved adiabatically after WIMP
decoupling, this implies a constant WIMP number to entropy density
ratio. Their present relic density is then approximately given by
(ignoring logarithmic corrections) [3]

Ωχh2 ≃ const. · T 3
0

M3
Pl
〈σAv〉 ≃ 0.1 pb · c

〈σAv〉 . (26.6)

Here T0 is the current CMB temperature, MPl is the Planck mass, c is
the speed of light, σA is the total annihilation cross section of a pair
of WIMPs into SM particles, v is the relative velocity between the
two WIMPs in their cms system, and 〈. . .〉 denotes thermal averaging.
Freeze out happens at temperature TF ≃ mχ/20 almost independently
of the properties of the WIMP. This means that WIMPs are already
non-relativistic when they decouple from the thermal plasma; it also
implies that Eq. (26.6) is applicable if TR > TF . Notice that the 0.1
pb in Eq. (26.6) contains factors of T0 and MPl; it is, therefore, quite
intriguing that it “happens” to come out near the typical size of weak
interaction cross sections.

The seemingly most obvious WIMP candidate is a heavy neutrino.
However, an SU(2) doublet neutrino will have too small a relic density
if its mass exceeds MZ/2, as required by LEP data. One can suppress
the annihilation cross section, and hence increase the relic density, by
postulating mixing between a heavy SU(2) doublet and some sterile
neutrino. However, one also has to require the neutrino to be stable; it
is not obvious why a massive neutrino should not be allowed to decay.

The currently best motivated WIMP candidate is, therefore, the
lightest superparticle (LSP) in supersymmetric models [17] with exact
R-parity (which guarantees the stability of the LSP). Searches for
exotic isotopes [18] imply that a stable LSP has to be neutral. This
leaves basically two candidates among the superpartners of ordinary
particles, a sneutrino, and a neutralino. The negative outcome of
various WIMP searches (see below) rules out “ordinary” sneutrinos
as primary component of the DM halo of our galaxy. The most
widely studied WIMP is therefore the lightest neutralino. Detailed

calculations [1] show that the lightest neutralino will have the desired
thermal relic density Eq. (26.1) in at least four distinct regions
of parameter space. χ could be (mostly) a bino or photino (the
superpartner of the U(1)Y gauge boson and photon, respectively), if
both χ and some sleptons have mass below ∼ 150 GeV, or if mχ is
close to the mass of some sfermion (so that its relic density is reduced
through co-annihilation with this sfermion), or if 2mχ is close to the
mass of the CP-odd Higgs boson present in supersymmetric models.
Finally, Eq. (26.1) can also be satisfied if χ has a large higgsino or
wino component.

Many non-supersymmetric extensions of the Standard Model also
contain viable WIMP candidates [1]. Examples are the lightest
T−odd particle in “Little Higgs” models with conserved T−parity, or
“techni-baryons” in scenarios with an additional, strongly interacting
(“technicolor” or similar) gauge group.

Although thermally produced WIMPs are attractive DM candidates
because their relic density naturally has at least the right order of
magnitude, non-thermal production mechanisms have also been
suggested, e.g., LSP production from the decay of some moduli
fields [19], from the decay of the inflaton [20], or from the
decay of “Q−balls” (non-topological solitons) formed in the wake of
Affleck-Dine baryogenesis [21]. Although LSPs from these sources
are typically highly relativistic when produced, they quickly achieve
kinetic (but not chemical) equilibrium if TR exceeds a few MeV [22](
but stays below mχ/20). They therefore also contribute to cold DM.
Finally, if the WIMPs aren’t their own antiparticles, an asymmetry
between WIMPs and antiWIMPs might have been created in the early
Universe, possibly by the same (unknown) mechanism that created the
baryon antibaryon asymmetry. In such “asymmetric DM” models [23]
the WIMP antiWIMP annihilation cross section 〈σAv〉 should be
significantly larger than 0.1 pb · c, cf Eq. (26.6).

The absence of signals at the LHC for physics beyond the Standard
Model, as well as the discovery of an SM-like Higgs boson with mass
near 125 GeV, constrains many well-motivated WIMP models. For
example, in constrained versions of the minimal supersymmetrized
Standard Model (MSSM) both the absence of supersymmetric signals
and the relatively large mass of the Higgs boson favor larger WIMP
masses and lower scattering cross sections on nucleons. However,
constraints from “new physics” searches apply most directly to
strongly interacting particles. Many WIMP models therefore can
still accommodate a viable WIMP for a wide range of masses. For
example, in supersymmetric models where the bino mass is not related
to the other gaugino masses a bino with mass as small as 15 GeV
can still have the correct thermal relic density [24]. Even lighter
supersymmetric WIMPs can be realized in models with extended
Higgs sector [25].

The lack of signals at the LHC may have weakened the argument
for WIMPs being embedded in a larger theory that addresses the
hierarchy problem. This, and the increasingly stronger limits from
direct and indirect WIMP searches (see below), has spawned a
plethora of new models of particle DM. For example, particles with
masses in the MeV to GeV range still naturally form cold DM, but
are difficult to detect with current methods. These models typically
require rather light “mediator” particles in order to achieve the correct
thermal relic density. Light bosons coupling to (possibly quite heavy)
DM particles have also been invoked in order to greatly increase the
annihilation cross section of the latter at small velocities, through the
so-called Sommerfeld enhancement [26]. Several collider and fixed
target experiments have searched for such light mediators, but no
signal has been found [27].

Another mechanism to achieve the correct thermal relic density
is based on 2 ↔ 3 reactions purely within the dark sector. This
requires quite large self interactions between the DM particles, which
have therefore been dubbed SIMPs (strongly interacting massive
particles) [28]. The SIMP-SIMP elastic scattering cross section σ
might even be large enough to affect cosmological structure formation,
which roughly requires σ/mχ > 0.1 b/GeV, where mχ is the mass of
the SIMP; this is considerably larger than the elastic scattering cross
section of protons. Scalar SIMPs could interact with ordinary matter
via Higgs exchange.
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Primary black holes (as MACHOs), axions, sterile neutrinos, and
WIMPs are all (in principle) detectable with present or near-future
technology (see below). There are also particle physics DM candidates
which currently seem almost impossible to detect, unless they decay;
the present lower limit on their lifetime is of order 1025 to 1026

s for 100 GeV particles. These include the gravitino (the spin-3/2
superpartner of the graviton), states from the “hidden sector” thought
responsible for supersymmetry breaking, and the axino (the spin-1/2
superpartner of the axion) [1].

26.2. Experimental detection of Dark Matter

26.2.1. The case of baryonic matter in our galaxy :

The search for hidden galactic baryonic matter in the form of
MAssive Compact Halo Objects (MACHOs) has been initiated
following the suggestion that they may represent a large part of the
galactic DM and could be detected through the microlensing effect [8].
The MACHO, EROS, and OGLE collaborations have performed a
program of observation of such objects by monitoring the luminosity of
millions of stars in the Large and Small Magellanic Clouds for several
years. EROS concluded that MACHOs cannot contribute more than
8% to the mass of the galactic halo [29], while MACHO observed
a signal at 0.4 solar mass and put an upper limit of 40%. Overall,
this strengthens the need for non-baryonic DM, also supported by the
arguments developed above.

26.2.2. Axion searches :

Axions can be detected by looking for a → γ conversion in a
strong magnetic field [1]. Such a conversion proceeds through the
loop-induced aγγ coupling, whose strength gaγγ is an important
parameter of axion models. There is currently only one experiment
searching for axionic DM: the ADMX experiment [30], originally
situated at the LLNL in California but now running at the University
of Washington, started taking data in the first half of 1996. It employs
a high quality cavity, whose “Q factor” enhances the conversion rate
on resonance, i.e., for ma(c2 + v2

a/2) = ~ωres. One then needs to
scan the resonance frequency in order to cover a significant range
in ma or, equivalently, fa. ADMX now uses SQUIDs as first-stage
amplifiers; their extremely low noise temperature (1.2 K) enhances
the conversion signal. Published results [31], combining data taken
with conventional amplifiers and SQUIDs, exclude axions with mass
between 1.9 and 3.53 µeV, corresponding to fa ≃ 4 · 1013 GeV, for
an assumed local DM density of 0.45 GeV/cm3, if gaγγ is near the
upper end of the theoretically expected range. About five times better
limits on gaγγ were achieved [32] for 1.98 µeV ≤ ma ≤ 2.18 µeV as
well as for 3.3 µeV ≤ ma ≤ 3.65 µeV, if a large fraction of the local
DM density is due to a single flow of axions with very low velocity
dispersion. The ADMX experiment is being upgraded by reducing the
cavity and SQUID temperature from the current 1.2 K to about 0.1 K.
This should increase the frequency scanning speed for given sensitivity
by more than two orders of magnitude, or increase the sensitivity for
fixed observation time.

26.2.3. Searches for keV Neutrinos :

Relic keV neutrinos νs can only be detected if they mix with the
ordinary neutrinos. This mixing leads to radiative νs → νγ decays,
with lifetime τνs

≃ 1.8 · 1021 s · (sin θ)−2 · (1 keV/mνs
)5, where θ is

the mixing angle [16]. This gives rise to a flux of mono-energetic
photons with Eγ = mνs

/2, which might be observable by X-ray

satellites. In the simplest case the relic νs are produced only by
oscillations of standard neutrinos. Assuming that all lepton-antilepton
asymmetries are well below 10−3, the νs relic density can then be
computed uniquely in terms of the mixing angle θ and the mass mνs

.
The combination of lower bounds on mνs

from analyses of structure
formation (in particular, the Lyα “forest”) and upper bounds on
X-ray fluxes from various (clusters of) galaxies exclude this scenario
if νs forms all of DM. This conclusion can be evaded if νs forms
only part of DM, and/or if there is a lepton asymmetry ≥ 10−3 (i.e.
some 7 orders of magnitude above the observed baryon-antibaryon
asymmetry), and/or if there is an additional source of νs production
in the early Universe, e.g. from the decay of heavier particles [16].

Recently some evidence for a weak X-ray line at ∼ 3.5 keV has
been found in data released by the XMM-Newton satellite. Although
this has been interpreted in terms of decaying keV DM particles, e.g.
sterile neutrinos with mass mνs

≃ 7 keV, it might also be due to
certain inner-shell transitions of highly ionized K atoms [33].

26.2.4. Basics of direct WIMP search :

As stated above, WIMPs should be gravitationally trapped inside
galaxies and should have the adequate density profile to account for
the observed rotational curves. These two constraints determine the
main features of experimental detection of WIMPs, which have been
detailed in the reviews in [1].

Their mean velocity inside our galaxy relative to its center is
expected to be similar to that of stars, i.e., a few hundred kilometers
per second at the location of our solar system. For these velocities,
WIMPs interact with ordinary matter through elastic scattering on
nuclei. With expected WIMP masses in the range 10 GeV to 10 TeV,
typical nuclear recoil energies are of order of 1 to 100 keV.

The shape of the nuclear recoil spectrum results from a convolution
of the WIMP velocity distribution, usually taken as a Maxwellian
distribution in the galactic rest frame, shifted into the Earth rest
frame, with the angular scattering distribution, which is isotropic
to first approximation but forward-peaked for high nuclear mass
(typically higher than Ge mass) due to the nuclear form factor.
Overall, this results in a roughly exponential spectrum. The higher
the WIMP mass, the higher the mean value of the exponential. This
points to the need for low nuclear recoil energy threshold detectors.

On the other hand, expected interaction rates depend on the
product of the local WIMP flux and the interaction cross section.
The first term is fixed by the local density of dark matter, taken as
0.39 GeV/cm3 [see Eq. (26.3)], the mean WIMP velocity, typically
220 km/s, the galactic escape velocity, typically 544 km/s [34] and
the mass of the WIMP. The expected interaction rate then mainly
depends on two unknowns, the mass and cross section of the WIMP
(with some uncertainty [10] due to the halo model). This is why the
experimental observable, which is basically the scattering rate as a
function of energy, is usually expressed as a contour in the WIMP
mass–cross section plane.

The cross section depends on the nature of the couplings. For
non-relativistic WIMPs, one in general has to distinguish spin-
independent and spin-dependent couplings. The former can involve
scalar and vector WIMP and nucleon currents (vector currents are
absent for Majorana WIMPs, e.g., the neutralino), while the latter
involve axial vector currents (and obviously only exist if χ carries
spin). Due to coherence effects, the spin-independent cross section
scales approximately as the square of the mass of the nucleus, so
higher mass nuclei, from Ge to Xe, are preferred for this search. For
spin-dependent coupling, the cross section depends on the nuclear spin
factor; used target nuclei include 19F, 23Na, 73Ge, 127I, 129Xe, 131Xe,
and 133Cs.

Cross sections calculated in MSSM models [35] induce rates of
at most 1 evt day−1 kg−1 of detector, much lower than the usual
radioactive backgrounds. This indicates the need for underground
laboratories to protect against cosmic ray induced backgrounds, and
for the selection of extremely radio-pure materials.

The typical shape of exclusion contours can be anticipated from this
discussion: at low WIMP mass, the sensitivity drops because of the
detector energy threshold, whereas at high masses, the sensitivity also
decreases because, for a fixed mass density, the WIMP flux decreases
∝ 1/mχ. The sensitivity is best for WIMP masses near the mass of
the recoiling nucleus.

Two important points are to be kept in mind when comparing
exclusion curves from various experiments between them or with
positive indications of a signal.

For an experiment with a fixed nuclear recoil energy threshold,
the lower is the considered WIMP mass, the lower is the fraction of
the spectrum to which the experiment is sensitive. This fraction may
be extremely small in some cases. For instance CoGeNT [36], using
a Germanium detector with an energy threshold of around 2 keV,
is sensitive to about 10 % of the total recoil spectrum of a 7 GeV
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WIMP, while for XENON100 [37], using a liquid Xenon detector
with a threshold of 8.4 keV, this fraction is only 0.05 % (that is the
extreme tail of the distribution), for the same WIMP mass. The two
experiments are then sensitive to very different parts of the WIMP
velocity distribution.

A second important point to consider is the energy resolution
of the detector. Again at low WIMP mass, the expected roughly
exponential spectrum is very steep and when the characteristic energy
of the exponential becomes of the same order as the energy resolution,
the energy smearing becomes important. In particular, a significant
fraction of the expected spectrum below effective threshold is smeared
above threshold, increasing artificially the sensitivity. For instance,
a Xenon detector with a threshold of 8 keV and infinitely good
resolution is actually insensitive to a 7 GeV mass WIMP, because the
expected energy distribution has a cut-off at roughly 5 keV. When
folding in the experimental resolution of XENON100 (corresponding
to a photostatistics of 0.5 photoelectron per keV), then around 1 % of
the signal is smeared above 5 keV and 0.05 % above 8 keV. Setting
reliable cross section limits in this mass range thus requires a complete
understanding of the response of the detector at energies well below
the nominal threshold.

In order to homogenize the reliability of the presented exclusion
curves, and save the reader the trouble of performing tedious
calculations, we propose to set cross section limits only for WIMP
mass above a “WIMP safe” minimal mass value defined as the
maximum of 1) the mass where the increase of sensitivity from infinite
resolution to actual experimental resolution is not more than a factor
two, and 2) the mass where the experiment is sensitive to at least 1
% of the total WIMP signal recoil spectrum. These recommendations
are irrespective of the content of the experimental data obtained by
the experiments.

Two experimental signatures are predicted for WIMP signals. One
is a strong daily forward/backward asymmetry of the nuclear recoil
direction, due to the alternate sweeping of the WIMP cloud by the
rotating Earth. Detection of this effect requires gaseous detectors
or anisotropic response scintillators (stilbene). The second is a few
percent annual modulation of the recoil rate due to the Earth speed
adding to or subtracting from the speed of the Sun. This tiny effect
can only be detected with large masses; nuclear recoil identification
should also be performed, as the otherwise much larger background
may also be subject to seasonal modulation.

26.2.5. Status and prospects of direct WIMP searches :

Given the intense activity of the field, readers interested in more
details than the ones given below may refer to [1], to presentations at
recent conferences [30] and to the previous versions of this review.

The first searches have been performed with ultra-pure semicon-
ductors installed in pure lead and copper shields in underground
environments. Combining a priori excellent energy resolutions and
very pure detector material, they produced the first limits on WIMP
searches (Heidelberg-Moscow, IGEX, COSME-II, HDMS) [1]. Planned
experiments using several tens of kg to a ton of Germanium run at
liquid nitrogen temperature (designed for double-beta decay search) –
GERDA, MAJORANA – are based in addition on passive reduction
of the external and internal electromagnetic and neutron background
by using Point Contact detectors (discussed below), minimal detector
housing, close electronics, pulse shape discrimination and large liquid
nitrogen or argon shields. Their sensitivity to WIMP interactions will
depend on their ability to lower the energy threshold sufficiently, while
keeping the background rate small.

Development of so called Point Contact Germanium detectors, with
a very small capacitance allowed one to reach sub-keV thresholds,
though performance seems to stall now at around 400 eV. The
CoGeNT collaboration was first operating a single 440 g Germanium
detector with an effective threshold of 400 eV in the Soudan
Underground Laboratory for 56 days [36]. The originally quite large
“not understood” excess at low energy claimed a couple of years
ago has been reduced by a more careful treatment of surface events.
Given the still substantial systematic uncertainties attached to this
background, the remaining excess, if any, is not significant.

The annual modulation compatible with a dark matter signal
claimed by CoGeNT also fell short. Two unpublished papers [38] on
data taken over a period of 3.4 years were written by different CoGeNT
authors. The more frequently cited one states a modest 2.2 sigma
excess, with the comment “However, its phase is compatible with that
predicted by halo simulations, and observed by DAMA/LIBRA”, thus
still not giving up a Dark Matter interpretation. The other concludes
that “the Null (no-WIMP) hypothesis is only excluded at less than 2
sigma”, so does not claim any signal. Finally, an independent analysis
by J. Davis et al. [39] concludes that “the CoGeNT data show a
preference for light dark matter recoils at less than 1 sigma”.

The CDEX collaboration has operated also a single Point Contact
detector in the Jinping underground laboratory, with a 475 eV
threshold and a background rate too high to lead to a competitive
limit. Their next step is CDEX-10, an array with a total mass of 10
kg, planned to be immersed in a ton-scale liquid argon chamber as
active shield.

In order to make progress in the reliability of any claimed signal,
active background rejection and signal identification questions have to
be addressed. Active background rejection in detectors relies on the
relatively small ionization in nuclear recoils due to their low velocity.
This induces a reduction (“quenching”) of the ionization/scintillation
signal for nuclear recoil signal events relative to e or γ induced
backgrounds of the same energy. Energies calibrated with gamma
sources are then called “electron equivalent energies” (keVee unit
used below). This effect has been both calculated and measured [1].
It is exploited in cryogenic detectors described later. In scintillation
detectors, it induces in addition a difference in decay times of pulses
induced by e/γ events vs nuclear recoils. In most cases, due to the
limited resolution and discrimination power of this technique at low
energies, this effect allows only a statistical background rejection. It
has been used in NaI(Tl) (DAMA, LIBRA, NAIAD, Saclay NaI), in
CsI(Tl) (KIMS), and Xe (ZEPLIN-I) [1,30]. In liquid argon, pulse
shape discrimination applied to the pulse of primary scintillation light
is particularly efficient and allows an event by event discrimination,
however, at some high energy, roughly above 40 keVee (see the
DarkSide50 result later in this review).

The DAMA collaboration has reported results from a total of 7
years exposure with the LIBRA phase involving 250 kg of detectors,
plus the earlier 6 years exposure of the original DAMA/NaI experiment
with 100 kg of detectors [40], for a cumulated exposure of 1.33 t·y.
They observe an annual modulation of the signal in the 2 to 6 keVee
bin, with the expected period (1 year) and phase (maximum around
June 2), at 9.3 σ level. If interpreted within the standard halo model
described above, two possible solutions have been proposed: a WIMP
with mχ ≃ 50 GeV and σχp ≃ 7 · 10−6 pb (central values) or at low
mass, in the 6 to 10 GeV range with σχp ∼ 10−3 pb; the cross section
could be somewhat lower if there is a significant channeling effect [1].

Interpreting these observations as positive WIMP signal raises
several issues of internal consistency. First, the proposed WIMP
solutions would induce a sizeable fraction of nuclear recoils in the
total measured rate in the 2 to 6 keVee bin. No pulse shape analysis
has been reported by the authors to check whether the unmodulated
signal was detectable this way. Secondly, the residual e/γ-induced
background, inferred by subtracting the signal predicted by the WIMP
interpretation from the data, has an unexpected shape [41], starting
near zero at threshold and quickly rising to reach its maximum
near 3 to 3.5 keVee; from general arguments one would expect the
background (e.g. due to electronic noise) to increase towards the
threshold. Finally, the amplitude of the annual modulation shows a
somewhat troublesome tendency to decrease with time. The original
DAMA data, taken 1995 to 2001, gave an amplitude of the modulation
of 20.0 ± 3.2 in units of 10−3 counts/(kg·day·keVee), in the 2-6 keVee
bin. During the first phase of DAMA/LIBRA, covering data taken
between 2003 and 2007, this amplitude became 10.7 ± 1.9, and in the
second phase of DAMA/LIBRA, covering data taken between 2007
and 2009, it further decreased to 8.5 ± 2.2. The ratio of amplitudes
inferred from the DAMA/LIBRA phase 2 and original DAMA data
is 0.43 ± 0.13, differing from the expected value of 1 by more than
4 standard deviations. The results for the DAMA/LIBRA phase 2
have been calculated by us using published results for the earlier data
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alone [42] as well as for the grand total [43]. Similar conclusions can
be drawn from analyses of the 2-4 and 2-5 keVee bins.

The two last years have seen a growing number of projects using
NaI(Tl) scintillator (ANAIS, KIMS, SABRE, DM-ICE), some of
them likely to reach the maturity to test the DAMA/LIBRA claim.
Two of them (ANAIS, KIMS) profit of new crystals delivered by
a supplier independent of DAMA, showing a light yield around
two times higher than the ones previously used. This opens the
possibility of a significant nuclear recoil-electron recoil discrimination
at energies down to 2 keV. The KIMS team states that, under the
hypothesis that the DAMA signal originates from nuclear recoils, an
equivalent sensitivity to the DAMA/LIBRA solutions could be tested
by operating 100 kg of detectors during one year [44].

DM-ICE runs detectors within the IceCube neutrino telescope.
They found an unexpected phosphorescence with a decay time of
about five seconds after the primary scintillation light induced by
cosmic ray muons [45]. Their conclusion is this effect of long tail of
single photoelectrons cannot mimic the DAMA effect.

SABRE also contemplates the possibility to run detectors in the
Southern hemisphere (in ANDES, a project for an underground
laboratory in a road tunnel connecting Argentina and Chile, or
STAWELL in Australia, in a gold mine 240 km west of Melbourne), in
order to test for a possible shift of the phase of the annual modulation.
Such a shift would be expected if the modulation is somehow related
to the seasons on Earth, whereas a WIMP induced annual modulation
should have the same phase in both hemispheres.

As is shown below in the figure summarizing all recent results, under
standard assumptions by now many experiments exclude both the high
and low mass DAMA/LIBRA solutions. In case of spin independent
interactions, these assumptions include a common cross section for
WIMPs scattering on protons and neutrons, allowing the direct
comparison of results from experiments using detectors with different
neutron to proton ratios in their target nuclei. Given that both
Germanium and Xenon detectors now exclude the DAMA/LIBRA
signal by a large margin under standard assumptions, even allowing
independent matrix elements for WIMP interactions with protons
and neutrons (“isospin violating” WIMPs) cannot reconcile all
experimental results [46]. The large WIMP mass interpretation of
the DAMA/LIBRA signal is excluded most directly by results from
the KIMS experiment. They operated 12 crystals of CsI(Tl) with a
total mass of 104.4 kg in the Yang Yang (renamed CUNP) laboratory
in Korea, and gave an upper limit on nuclear recoils present in a
24 t·d exposure [47]. This translates into an upper limit on the
cross section roughly two orders of magnitude below that required to
explain the DAMA signal by a 60 GeV WIMP, induced by the Iodine
nucleus. Here, the direct comparison of experiments is possible as
they use the same nucleus. A more recent analysis which extends to
low threshold [48] under standard assumptions also excludes most of
the low mass solution. On the other hand, no convincing non-WIMP
explanation of the annual modulation of the DAMA/LIBRA signal has
yet been put forward. For example, it is well known that the cosmic
ray muon flux varies with the season, yet this source of background
is much too small to explain the effect [49]. After 14 years, the
DAMA/LIBRA result therefore continues to inspire (increasingly
baroque) theoretical speculations [50].

At mK temperature, the simultaneous measurement of the phonon
and ionization signals in semiconductor detectors permits event by
event discrimination between nuclear and electronic recoils down to
few keV recoil energy. This feature is being used by the CDMS [30]
and EDELWEISS [30] collaborations. Surface interactions, exhibiting
incomplete charge collection, are an important residual background.
Both experiments now use an interleaved ionization read out electrodes
scheme in order to control this background.

The total CDMS exposure of 612 kg·d (around 300 kg·d fiducial)
from 2011 data using 19 Germanium cryogenic detectors at the Soudan
mine has recently been reanalysed with an improved charge-pulse
fitting algorithm [51]. It provides a new spin-independent WIMP
nucleon cross sections limit at 1.8 × 10−8 pb, at 90% CL for a 60
GeV WIMP and 1.8 × 10−5 pb for a 8.6 GeV WIMP, a factor of two
improvement over their previous analysis (see the 2013 version of this

review).

Since March 2012, CDMS has operated 15 IZIP (using interleaved
electrode scheme) detectors. A subset of these data, obtained from
the detectors giving the lowest threshold, has been analyzed in view
of improving the reach at low WIMP mass. A blind multivariate
analysis [52] on 577 kg·d found 11 events, out of which 3 events
originated from an unanticipatedly malfunctioning detector. With
6 events expected from background, no hint of a WIMP signal is
claimed. Improved limits were set in the 4 to 15 GeV region, excluding
scenarios favored by positive claims from CoGENT, CRESST, as well
as the CMDS Silicon result.

Two results were reported by CDMS from a single detector running
in a particular mode allowing an equivalent electron energy threshold
of 170 eV for the first result and then recently of 50-70eV [53]. This
is obtained by applying a high voltage (70 V) across the electrodes
measuring the ionization. The phonons generated by the ionization
electrons traveling inside the crystal – the so-called Neganov Luke
effect – give a stronger signal than the normal phonon pulse induced
by the initial interaction. This amplifies the ionization pulse, but no
discrimination between electron and nuclear recoils is possible in this
mode. The sensitivity is then fixed by the counting rate at threshold.
A significant improvement is obtained at around 3 GeV, around 1 to 2
order of magnitude in sensitivity relative to previous best results. The
limit obtained by this detector is better than that of [52] described
above for WIMP masses below 6 GeV.

The EDELWEISS collaboration [30] now operates 30 kg of
cryogenic Germanium detectors (so-called FID800 detectors, featuring
a complete coverage of the crystal with annular electrodes, and
better rejection of non-recoil events) in the Laboratoire Souterrain
de Modane. Using a subset of currently acquired data from a single
detector with an especially low threshold, corresponding to the rather
modest exposure of 37 kg·d, a limit close to the one from CDMS with
larger exposure was obtained for WIMP masses around 20 GeV [54].
More data are to come and EDELWEISS also plans to operate HV
assisted Neganov Luke detectors.

The combined analysis of CDMS and EDELWEISS data [55] still
gives the best limit for cryogenic detectors on the SI cross sections for
WIMPS masses above 80 GeV.

The cryogenic experiment CRESST [30] in the Gran Sasso
laboratory uses the scintillation of CaWO4 crystals as second variable
for background discrimination. Like many other experiments in the
last few years, CRESST puts focus on lowering the energy threshold to
access low mass WIMPs. They use a new generation of detectors with
improved vetoing of low energy surface events induced by external
alpha particles. Results from two single detectors showing good energy
resolution, have been published recently [56]. The last one shows an
impressively low threshold of 0.3 keVNR, allowing one to set a limit
on WIMP–proton cross section for spin independent couplings of 10−2

pb at a WIMP mass of 1 GeV, thanks to the presence of Oxygen
nuclei in the target. Interestingly, the obtained limit excludes the
signals reported by the same collaboration two years before, which are
now believed to have been caused by an inadequate description of the
background from external alpha particles.

The next stages of solid state detectors are SuperCDMS and
EURECA (a combination of EDELWEISS and CRESST). The
SuperCDMS project at SNOLAB has been approved by the US
funding agencies with the aim of addressing low mass WIMPs. Given
that the current limits on cross sections below WIMP mass of 10 GeV
are rather high, the mass required to get significant improvements does
not need to be large. A target mass of 50 to 200 kg is even sufficient
to reach sensitivity somewhat below 10−8 pb for the WIMP–proton
cross section after about 5 years of running. In order to achieve
this goal lower thresholds and the rejection or very low radioactive
backgrounds are mandatory. Improving the sensitivity below this level
is very difficult for light WIMPs, due to the irreducible background
from the elastic scattering of (mostly solar) neutrinos off the target
nuclei (the “neutrino floor”) [57]. The SuperCDMS and EURECA
collaborations are working on the common operation of all types of
detectors in the same cryogenic set-up at SNOLAB, foreseen to be
ready to operate around 2019. Calculated sensitivities down to a
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WIMP mass of 1 GeV [58] rely on the extrapolation of knowledge
of the radioactive background down to 10 eVee and of the quenching
factor down to 50 eVNR.

Noble gas detectors are being actively developed. Due to their
relatively easy scalability they are likely the first to be able to perform
high sensitivity searches for “high mass” WIMPs (with masses above
∼ 15 GeV). Dual (liquid and gas) phase detectors allow to measure
both the primary scintillation S1 and the ionization electrons drifted
through the liquid, amplified in the gas and giving rise to a second
scintillation pulse S2. S1 and S2 are used to perform discrimination
and 3D position reconstruction within the detector. In the single phase
mode (DEAP, XMASS), only S1 is measured and the discrimination
is ensured by the pulse shape analysis in the case of Argon and by the
self shielding in the case of Xenon.

The suite of XENON-n detectors [30] are operated at the Gran Sasso
laboratory. After XENON10, XENON 100 set the first significant sign
of supremacy of liquid noble gas detectors for high mass WIMPs [37]
search in 2012. With a fiducial mass of 34 kg and 225 days of operating
time, they set the best limit on the cross section for spin-independent
interactions at 2.0× 10−9 pb for a WIMP mass of 55 GeV. It was then
surpassed by LUX, a 370 kg double phase Xenon detector installed in a
large water shield, operated in the new SURF (previously Homestake)
laboratory in the US. LUX is currently leading the field for masses
above 20 GeV, thanks to a run of 85 days with a fiducial mass of 118
kg, setting a limit of 7.6× 10−10 pb for a WIMP mass of 33 GeV [59].
This data set provides also the best limit for spin dependent WIMPs
with pure neutron couplings at all masses [60]. A 300 days run is in
progress, allowing an expected factor 5 of improvement in sensitivity.

XENON1t, the successor of XENON100, being installed at the Gran
Sasso lab, is going to take data soon. It is expected to overtake LUX
in the coming year, if the backgrounds are kept within specifications.

Another liquid Xenon based project, PandaX-I, a double phase
detector with pancake geometry, is been operated in the Jinping lab.
The latest result obtained with a fiducial mass of 54 kg and a running
time of 80 days [61] is competitive with other Xenon experiments
only for WIMP masses below 5.5 GeV. PandaX-II, an upgrade of the
detector to a mass of 500 kg, is in preparation.

XMASS [30], a single-phase 800 kg Xenon detector (100 kg
fiducial mass, allowing a strong self shielding) operated in Japan
at the SuperKamiokande site, has seen its detector repaired.
Initial commissioning revealed strong radioactive contamination of
aluminum pieces close to the photomultipliers. First data taking after
refurbishment show a reduction of the differential background rate
by a factor 10. Data are being taken. The next step of XMASS is
XMASS-1.5 with a 1.5 ton fiducial mass.

The ArDM-1t detector [30], an Argon detector with a total mass
of 1.1 t installed at the Canfranc laboratory, has begun operations in
the single phase mode. Plans are under way to upgrade the detector
with a TPC field cage, allowing to operate it in double phase mode.

DarkSide50, installed in LNGS, is a two phase liquid argon TPC
with fiducial mass of 46 kg. The detector is immersed in a spherical
vessel containing 30 t of liquid scintillator, which in turn is immersed
in a tank containing a kt of pure water. First results from a run of
around 30 days [62] have been obtained with natural Argon. After a
series of cuts no event was found, leading to the currently best Argon
based limit of 6.1 × 10−8 pb for a WIMP mass of 100 GeV. In future
they plan is to use Argon from underground sources, which is depleted
in the radioactive isotope 39Ar, reducing the background from this
source by a factor of at least 150. If nearly all events recorded in the
current run are due to 39Ar decays, this should allow them to increase
the exposure by a similar amount without any background events
passing the cuts, so that the sensitivity would scale like the inverse of
the exposure. Alternatively they could relax some of the cuts, thereby
increasing sensitivity at small WIMP masses.

DEAP-3600 and MiniCLEAN [30], both designed to operate in
single phase mode in spherical geometries, are being assembled at
SNOLab and will operate 500 kg of Ar/Ne and 3600 kg of Ar,
respectively [1]. DEAP-3600 is foreseen to start operation by the end
of 2015. The current status of MiniCLEAN, which was expected to
undertake liquefication of argon in the summer of 2014, is unclear.

Candidates for the next generation of multiton Ar and Xe detectors
are LZ, XENONnT, DARWIN, DEAP-50T, and DarkSide-20k.
Among them, the 15t LZ project has been officially accepted in the
US.

The low pressure Time Projection Chamber technique is currently
the only convincing way to measure the direction of nuclear recoils
and prove the galactic origin of a possible signal [1]. The DRIFT
collaboration [30] has operated a 1 m3 volume detector filled with CS2
in the UK Boulby mine. Results from a 43 days run with a target
mass of 32 g of Fluorine did not show any candidate event but could
not probe WIMP models not already excluded by other experiments.
The MIMAC collaboration [30] operates a 2.5 l 1000 channel prototype
in the Fréjus laboratory, and found first detection of tracks of radon
progeny recoils. Other groups developing similar techniques, though
with lower sensitivity, are DMTPC in the US and NewAge in Japan.

The two following experiments aim at search for very low mass
WIMPs, with mass down to 0.1 GeV. DAMIC [30], using CCDs at
SNOLAB, obtained a threshold of around 100 eV. As yet unpublished
results from a run with a sensitive mass of 10 g of Silicon provide the
best limit in the 1.5-3 GeV mass range. There are plans to increase
the sensitive mass to 100 g. The NEWS collaboration [30] exploits
an unconventional gas detector, based on a spherical geometry, able
to achieve a very low energy threshold, down to a single ionization
electron. A 60 cm diameter prototype, SEDINE, is being operated
in the Fréjus laboratory. Results from a run using Neon gas should
be available soon. A more ambitious project, NEWS-SNO, involving
a 1.4 m diameter spherical detector proposed at SNOLAB, hopes to
reach sensitivity to WIMP masses down to 0.1 GeV using Hydrogen
as target.

Detectors based on metastable liquids or gels have the advantage of
being insensitive to electromagnetic interactions and the drawback of
being threshold yes/no detectors. PICO, the merging of the Picasso
and COUPP collaborations, has operated PICO2L, a bubble chamber
type detector filled with 2.9 kg of C3F8 at SNOLAB; a 212 kg·d
exposure [63], consisting of runs at different temperatures and hence
different thresholds, provided 12 candidates, identified as originating
from instrumental imperfection. This led to a limit on the spin
dependent proton cross section of 1 × 10−3 pb for a WIMP mass of
30 GeV. This experiment has the best sensitivity worldwide for direct
WIMP searches at all masses, but under standard assumptions their
limit is weaker than that derived from the bound on WIMP-induced
muon neutrinos from the Sun (see below). The PICO60 detector,
housing 37 kg of CF3I, has been run for more than 12 months but
exhibited a large number of anomalous nuclear recoil like events. The
collaboration plans to improve the quality of the fluid and to run with
C3F8. The final goal is to build PICO-250L, a ton scale detector.

SIMPLE [30], an experiment using superheated liquid C2ClF5
droplet detectors run at Laboratoire Souterrain de Rustrel, has
completed its ”phase II”, without bringing better limits than the
experiments cited above. The collaboration intends to switch to the
bubble chamber technology.

Figures 26.1 and 26.2 illustrate the limits and positive claims
for WIMP scattering cross sections, normalized to scattering on a
single nucleon, for spin independent and spin dependent couplings,
respectively, as functions of WIMP mass. Only the two or three
currently best limits are presented. Also shown are constraints from
indirect observations (see the next section) and a typical region of a
SUSY model after the LHC run-1 results. These figures have been
made with the dmtools web page [64].

Table 25.1 summarizes the best experimental performances in
terms of the upper limit on cross sections for spin independent and
spin dependent couplings, at the optimized WIMP mass of each
experiment. Also included are some new significant results (using
Argon for example).

In summary, the confused situation at low WIMP mass has been
cleared up. Many new projects focus on the very low mass range of
0.1-10 GeV. Sensitivities down to σχp of 10−13 pb, as needed to probe
nearly all of the MSSM parameter space [35] at WIMP masses above
10 GeV and to saturate the limit of the irreducible neutrino-induced
background [57], will be reached with Ar and/or Xe detectors of
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Figure 26.1: WIMP cross sections (normalized to a single
nucleon) for spin-independent coupling versus mass. The
DAMA/LIBRA [65], CDMS-Si, and CoGeNT enclosed areas
are regions of interest from possible signal events. References
to the experimental results are given in the text. For context,
the blue shaded region shows a scan of the parameter space of
the pMSSM, a version of the MSSM with 19 parameters, by the
ATLAS collaboration [66], which integrates constraints set by
LUX and ATLAS Run 1; the favored region is around 10−10 pb
and 500 GeV.

multi ton masses, assuming nearly perfect background discrimination
capabilities. For WIMP masses below 10 GeV, this cross section limit
is set by the solar neutrinos, inducing an irreducible background at an
equivalent cross section around 10−9 pb, which is accessible with less
massive low threshold detectors [30].

26.2.6. Status and prospects of indirect WIMP searches :

WIMPs can annihilate and their annihilation products can be
detected; these include neutrinos, gamma rays, positrons, antiprotons,
and antinuclei [1]. These methods are complementary to direct
detection and might be able to explore higher masses and different
coupling scenarios. “Smoking gun” signals for indirect detection are
GeV neutrinos coming from the center of the Sun or Earth, and
monoenergetic photons from WIMP annihilation in space.

WIMPs can be slowed down, captured, and trapped in celestial
objects like the Earth or the Sun, thus enhancing their density and
their probability of annihilation. This is a source of muon neutrinos
which can interact in the Earth. Upward going muons can then be
detected in large neutrino telescopes such as MACRO, BAKSAN,
SuperKamiokande, Baikal, AMANDA, ANTARES, NESTOR, and the
large sensitive area IceCube [1]. For standard halo velocity profiles,
only the limits from the Sun, which mostly probe spin-dependent
couplings, are competitive with direct WIMP search limits.

The best upper limit for WIMP masses up to 200 GeV comes
from SuperKamiokande [30]. By including events where the muon
is produced inside the detector, in addition to the upgoing events
used in earlier analyses, they have been able to extend the sensitivity
to the few GeV regime. For example, for WIMPs annihilating into
bb̄ pairs, the resulting upper limit on the spin-dependent scattering
cross section on protons is about 1.5 (2.3) fb for mχ = 10 (50) GeV;
for WIMPs annihilating exclusively into τ+τ− pairs the bounds are
about one order of magnitude stronger [67]. These upper bounds are
more than two orders of magnitude below the cross sections required
to explain the DAMA signal through spin-dependent scattering on
protons.

For heavier WIMPs, giving rise to more energetic muons, the best
bounds have been derived from a combination of AMANDA and
IceCube40 data (i.e. data using 40 strings of the IceCube detector).
For example, for a 1 TeV WIMP annihilating into W+W− the upper
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Figure 26.2: WIMP cross sections for spin dependent coupling
versus mass. (a) interactions with the neutron; (b) interactions
with the proton. References to the experimental results are given
in the text. Indirect detection results are from SuperKamiokande
(annihilation into bb̄ and τ+τ− channels) together with IceCube
(annihilation into W+W−); for details see the indirect WIMP
searches section below.

bound on the spin-dependent scattering cross section on protons is
about 0.25 fb; for WIMPs exclusively annihilating into bb̄ the bound
is about 30 times worse [68]. In the future, data including the
DeepCore array, which has become part of the completed IceCube
detector, will likely dominate this field, possibly except at the very
lowest muon energies. However, published bounds from DeepCore in
combination with IceCube79 [69] are still weaker than those from
SuperKamiokande for relatively soft muons, and are weaker than the
combined AMANDA / IceCube40 bound for very energetic muons.
These bounds have not changed in the last two years.

WIMP annihilation in the halo can give a continuous spectrum
of gamma rays and (at one-loop level) also monoenergetic photon
contributions from the γγ and γZ channels. These channels also
allow to search for WIMPs for which direct detection experiments
have little sensitivity, e.g., almost pure higgsinos. The size of this
signal depends strongly on the halo model, but is expected to be
most prominent near the galactic center. The central region of our
galaxy hosts a strong TeV point source discovered [70] by the H.E.S.S.
Cherenkov telescope [30]. Moreover, Fermi-LAT [30] data revealed a
new extended source of GeV photons near the galactic center above
and below the galactic plane, the so-called Fermi bubbles [71], as well
as several dozen point sources of GeV photons in the inner kpc of our
galaxy [72]. These sources are very likely of (mostly) astrophysical
origin. The presence of these unexpected backgrounds makes it more
difficult to discover WIMPs in this channel.
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Table 26.1: Summary of performances of the best direct
detection experiments, for spin independent and spin dependent
couplings. For the “low mass” section, in most cases, there is
no minimum in the exclusion curve and a best “typical” WIMP
mass cross section point has been chosen.

Target Fiducial Cross WIMP Ref.
Mass [kg] section [pb] mass [GeV]

Spin independent low mass (>10GeV)

LUX Xe 118 7.6 × 10−10 30 [59]
Xenon100 Xe 34 2.0 × 10−9 55 [37]
CDMS/EDW Ge 12 2.0 × 10−8 100 [55]
DarkSide Ar 46 6.1 × 10−8 100 [62]
CRESST CaWO4 -W 4 1 × 10−6 50 [56]

Spin independent low mass (<10GeV)

LUX Xe 118 1 × 10−8 10 [59]
SuperCDMS Ge LE ≈ 4.2 5 × 10−7 10 [52]
SuperCDMS Ge LE ≈ 4.2 3 × 10−5 5 [52]
SuperCDMS Ge HV 0.6 3 × 10−4 3.3 [53]
CRESST CaWO4 -O 0.25 2 × 10−3 2.3 [56]
DAMIC Si 0.01 1 × 10−2 1.5 [30]

Spin dependent p

PICO F 2.9 1 × 10−3 30 [63]

Spin dependent n

LUX Xe 118 3 × 10−4 40 [60]

Nevertheless in 2012 a feature was found [73] in public Fermi-LAT
data using a predetermined search region around the galactic center,
where known point sources had been removed. Within the resolution
of the detector this feature could be due to monoenergetic photons
with energy ∼ 130 GeV. The “local” (in energy and search region)
significance of this excess was estimated as 4.6 standard deviations [73],
which may have been an over-estimate. In the most recent analysis,
based on 5.8 years of data analyzed using the “Pass 8” criteria this
feature is no longer visible [74].

Similarly, analyses of publicly available Fermi-LAT data claimed
an excess of events in the few GeV range from an extended region
around the center of our galaxy, consistent with several WIMP
interpretations [75]. A recent, still unpublished, analysis by the
Fermi-LAT collaboration [72] indeed found evidence for emission of
GeV photons from this region not accounted for by their modelling
of astrophysical sources. However, not all of this residual emission
can be described by adding a component which is symmetric around
the galactic center, as expected for photons from WIMP annihilation
or decay. Moreover, the size and spectrum of the fitted “excess”
depends strongly on the details of the fits; note that most photons
detected from directions around the galactic center actually originate
from astrophysical foregrounds, not from the central region, and this
foreground is not well understood. Since no error on the estimated
total flux from astrophysical sources is given, the statistical evidence
for the “excess” cannot be estimated. The collaboration concludes
that “a precise physical interpretation of its origin is premature”.

Due to the large astrophysical background near the galactic
center, the best bound on WIMPs annihilating into photons in today’s
universe comes from a combination of Fermi-LAT observations of dwarf
galaxies [76]. It excludes WIMPs annihilating either hadronically or
into τ+τ− pairs with the standard cross section needed for thermal
relics, if the WIMP mass is below ∼ 100 GeV; the main assumption
is annihilation from an S−wave initial state. Only slightly weaker
limits can be derived from detailed analyses of the CMB by the
Planck satellite [77]. The CMB bound assumes otherwise standard
cosmology, but also holds if WIMPs dominantly annihilate into light
charged leptons.

Antiparticles arise as additional WIMP annihilation products in the
halo. To date the best measurements of the antiproton flux come from
the PAMELA satellite and the BESS Polar balloon mission [30], and
covers kinetic energies between 60 MeV and 180 GeV [78]. The result
is in good agreement with secondary production and propagation
models. These data exclude WIMP models that attempt to explain
the “e± excesses” (see below) via annihilation into W± or Z0 boson
pairs; however, largely due to systematic uncertainties they do not
significantly constrain conventional WIMP models.

The best measurements of the positron (and electron) flux at
energies of tens to hundreds GeV come from AMS02 [79] and
PAMELA [80], showing a rather marked rise of the positron fraction
between 10 and 200 GeV; the AMS02 data are compatible with a
flattening of the positron fraction at the highest energies. While the
observed positron spectrum falls within the one order of magnitude
span (largely due to differences in the propagation model used) of
fluxes predicted by secondary production models [81], the increase
of the positron fraction is difficult to reconcile with the rather hard
electron spectrum measured by PAMELA [82], if all positrons were
due to secondary interactions of cosmic ray particles. Measurements
of the total electron+positron energy spectrum by ATIC [83], Fermi-
LAT [84] and H.E.S.S. [85] between 100 and 1000 GeV also exceed the
predicted purely secondary spectrum, but with very large dispersion of
the magnitude of these excesses. These observations can in principle
be explained through WIMP annihilation. However, this requires cross
sections well above that indicated by Eq. (26.6) for a thermal WIMP.
This tension can be resolved only in somewhat baroque WIMP models.
Most of these models have by now been excluded by the stringent
bounds from Fermi-LAT and from analyses of the CMB on the flux
of high energy photons due to WIMP annihilation. This is true also
for models trying to explain the leptonic excesses through the decay
of WIMPs with lifetime of the order of 1026 s. In contrast, viable
astrophysical explanations of these excesses introducing new primary
sources of electrons and positrons, e.g. pulsars [86] or a nearby
supernova that exploded about two million years ago [87], have been
suggested. On the other hand, the high quality of the AMS02 data
on the positron fraction, which does not show any marked features,
allows one to impose stringent bounds on WIMPs with mass below
300 GeV annihilating directly into leptons [88].

Last but not least, an antideuteron signal [1], as potentially
observable by AMS02 or PAMELA, could constitute a signal for
WIMP annihilation in the halo.

An interesting comparison of respective sensitivities to MSSM
parameter space of future direct and various indirect searches has
been performed with the DARKSUSY tool [89]. A web-based
up-to-date collection of results from direct WIMP searches, theoretical
predictions, and sensitivities of future experiments can be found
in [64]. Also, the web page [90] allows to make predictions for WIMP
signals in various experiments, within a variety of SUSY models and to
extract limits from simply parametrised data. Integrated analysis of
all data from direct and indirect WIMP detection, and also from LHC
experiments should converge to a comprehensive approach, required
to fully unravel the mysteries of dark matter.
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27. DARK ENERGY

Revised November 2015 by D. H. Weinberg (OSU) and M. White
(UCB, LBL); written November 2013 by M. J. Mortonson (UCB,
LBL), D. H. Weinberg (OSU), and M. White (UCB, LBL).

27.1. Repulsive Gravity and Cosmic Acceleration

In the first modern cosmological model, Einstein [1] modified
his field equation of General Relativity (GR), introducing a
“cosmological term” that enabled a solution with time-independent,
spatially homogeneous matter density ρm and constant positive
space curvature. Although Einstein did not frame it this way, one
can view the “cosmological constant” Λ as representing a constant
energy density of the vacuum [2], whose repulsive gravitational effect
balances the attractive gravity of matter and thereby allows a static
solution. After the development of dynamic cosmological models [3,4]
and the discovery of cosmic expansion [5], the cosmological term
appeared unnecessary, and Einstein and de Sitter [6] advocated
adopting an expanding, homogeneous and isotropic, spatially flat,
matter-dominated universe as the default cosmology until observations
dictated otherwise. Such a model has matter density equal to the
critical density, Ωm ≡ ρm/ρc = 1, and negligible contribution from
other energy components [7].

By the mid-1990s, the Einstein-de Sitter model was showing
numerous cracks, under the combined onslaught of data from the
cosmic microwave background (CMB), large-scale galaxy clustering,
and direct estimates of the matter density, the expansion rate (H0),
and the age of the Universe. As noted in a number of papers from this
time, introducing a cosmological constant offered a potential resolution
of many of these tensions, yielding the most empirically successful
version of the inflationary cold dark matter scenario. In the late 1990s,
supernova surveys by two independent teams provided direct evidence
for accelerating cosmic expansion [8,9], establishing the cosmological
constant model (with Ωm ≈ 0.3, ΩΛ ≈ 0.7) as the preferred alternative
to the Ωm = 1 scenario. Shortly thereafter, CMB evidence for a
spatially flat universe [10,11], and thus for Ωtot ≈ 1, cemented the
case for cosmic acceleration by firmly eliminating the free-expansion
alternative with Ωm ≪ 1 and ΩΛ = 0. Today, the accelerating universe
is well established by multiple lines of independent evidence from a
tight web of precise cosmological measurements.

As discussed in the Big Bang Cosmology article of this Review
(Sec. 22), the scale factor R(t) of a homogeneous and isotropic universe
governed by GR grows at an accelerating rate if the pressure p < −1

3ρ
(in c = 1 units). A cosmological constant has ρΛ = constant and
pressure pΛ = −ρΛ (see Eq. 22.10), so it will drive acceleration if it
dominates the total energy density. However, acceleration could arise
from a more general form of “dark energy” that has negative pressure,
typically specified in terms of the equation-of-state-parameter w = p/ρ
(= −1 for a cosmological constant). Furthermore, the conclusion that
acceleration requires a new energy component beyond matter and
radiation relies on the assumption that GR is the correct description
of gravity on cosmological scales. The title of this article follows the
common but inexact usage of “dark energy” as a catch-all term for
the origin of cosmic acceleration, regardless of whether it arises from a
new form of energy or a modification of GR. Our account here draws
on the much longer review of cosmic acceleration by Ref. [12], which
provides background explanation and extensive literature references
for most of the points in this article, but is less up to date in its
description of current empirical constraints.

Below we will use the abbreviation ΛCDM to refer to a model
with cold dark matter, a cosmological constant, inflationary initial
conditions, standard radiation and neutrino content, and a flat
universe with Ωtot = 1 (though we will sometimes describe this model
as “flat ΛCDM” to emphasize this last restriction). We will use
wCDM to denote a model with the same assumptions but a free,
constant value of w. Models with the prefix “o” (e.g., owCDM) allow
non-zero space curvature.

27.2. Theories of Cosmic Acceleration

27.2.1. Dark Energy or Modified Gravity? :

A cosmological constant is the mathematically simplest, and
perhaps the physically simplest, theoretical explanation for the
accelerating universe. The problem is explaining its unnaturally small
magnitude, as discussed in Sec. 22.4.7 of this Review. An alternative
(which still requires finding a way to make the cosmological constant
zero or at least negligibly small) is that the accelerating cosmic
expansion is driven by a new form of energy such as a scalar field [13]
with potential V (φ). The energy density and pressure of the field
φ(x) take the same forms as for inflationary scalar fields, given in
Eq. (22.52) of the Big Bang Cosmology article. In the limit that
1
2 φ̇2 ≪ |V (φ)|, the scalar field acts like a cosmological constant, with
pφ ≈ −ρφ. In this scenario, today’s cosmic acceleration is closely
akin to the epoch of inflation, but with radically different energy and
timescale.

More generally, the value of w = pφ/ρφ in scalar field models
evolves with time in a way that depends on V (φ) and on the initial
conditions (φi, φ̇i); some forms of V (φ) have attractor solutions in
which the late-time behavior is insensitive to initial values. Many
forms of time evolution are possible, including ones where w is
approximately constant and broad classes where w “freezes” towards
or “thaws” away from w = −1, with the transition occurring when
the field comes to dominate the total energy budget. If ρφ is even
approximately constant, then it becomes dynamically insignificant at
high redshift, because the matter density scales as ρm ∝ (1 + z)3.
“Early dark energy” models are ones in which ρφ is a small but not
negligible fraction (e.g., a few percent) of the total energy throughout
the matter- and radiation-dominated eras, tracking the dominant
component before itself coming to dominate at low redshift.

Instead of introducing a new energy component, one can attempt
to modify gravity in a way that leads to accelerated expansion [14].
One option is to replace the Ricci scalar R with a function R + f(R)
in the gravitational action [15]. Other changes can be more radical,
such as introducing extra dimensions and allowing gravitons to
“leak” off the brane that represents the observable universe (the
“DGP” model [16]) . The DGP example has inspired a more general
class of “galileon” and massive gravity models. Constructing viable
modified gravity models is challenging, in part because it is easy
to introduce theoretical inconsistencies (such as “ghost” fields with
negative kinetic energy), but above all because GR is a theory with
many high-precision empirical successes on solar system scales [17].
Modified gravity models typically invoke screening mechanisms that
force model predictions to approach those of GR in regions of high
density or strong gravitational potential. Screening offers potentially
distinctive signatures, as the strength of gravity (i.e., the effective
value of GN) can vary by order unity in environments with different
gravitational potentials.

More generally, one can search for signatures of modified gravity
by comparing the history of cosmic structure growth to the history of
cosmic expansion. Within GR, these two are linked by a consistency
relation, as described below (Eq. (27.2)). Modifying gravity can change
the predicted rate of structure growth, and it can make the growth
rate dependent on scale or environment. In some circumstances,
modifying gravity alters the combinations of potentials responsible for
gravitational lensing and the dynamics of non-relativistic tracers (such
as galaxies or stars) in different ways (see Sec. 22.4.7 in this Review),
leading to order unity mismatches between the masses of objects
inferred from lensing and those inferred from dynamics in unscreened
environments.

At present there are no fully realized and empirically viable modified
gravity theories that explain the observed level of cosmic acceleration.
The constraints on f(R) models now force them so close to GR
that they cannot produce acceleration without introducing a separate
dark energy component [18]. The DGP model is empirically ruled
out by several tests, including the expansion history, the integrated
Sachs-Wolfe effect, and redshift-space distortion measurements of the
structure growth rate [19]. The elimination of these models should
be considered an important success of the program to empirically test
theories of cosmic acceleration. However, it is worth recalling that
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there was no fully realized gravitational explanation for the precession
of Mercury’s orbit prior to the completion of GR in 1915, and the fact
that no complete and viable modified gravity theory exists today does
not mean that one will not arise in the future. In the meantime, we
can continue empirical investigations that can tighten restrictions on
such theories or perhaps point towards the gravitational sector as the
origin of accelerating expansion.

27.2.2. Expansion History and Growth of Structure :

The main line of empirical attack on dark energy is to measure
the history of cosmic expansion and the history of matter clustering
with the greatest achievable precision over a wide range of redshift.
Within GR, the expansion rate H(z) is governed by the Friedmann
equation (see the articles on Big Bang Cosmology and Cosmological
Parameters—Secs. 22 and 25 in this Review). For dark energy with an
equation of state w(z), the cosmological constant contribution to the
expansion, ΩΛ, is replaced by a redshift-dependent contribution. The
evolution of the dark energy density follows from Eq. (22.10),

Ωde
ρde(z)

ρde(z = 0)
= Ωde exp

[

3

∫ z

0
[1 + w(z′)]

dz′

1 + z′

]

= Ωde(1+ z)3(1+w),

(27.1)
where the second equality holds for constant w. If Ωm, Ωr, and the
present value of Ωtot are known, then measuring H(z) pins down
w(z). (Note that Ωde is the same quantity denoted Ωv in Sec. 22, but
we have adopted the de subscript to avoid implying that dark energy
is necessarily a vacuum effect.)

While some observations can probe H(z) directly, others measure
the distance-redshift relation. The basic relations between angular
diameter distance or luminosity distance and H(z) are given in
Ch. 22 —and these are generally unaltered in time-dependent
dark energy or modified gravity models. For convenience, in later
sections, we will sometimes refer to the comoving angular distance,
DA,c(z) = (1 + z)DA(z).

In GR-based linear perturbation theory, the density contrast
δ(x, t) ≡ ρ(x, t)/ρ̄(t) − 1 of pressureless matter grows in proportion
to the linear growth function G(t) (not to be confused with the
gravitational constant GN), which follows the differential equation

G̈ + 2H(z)Ġ −
3

2
ΩmH2

0 (1 + z)3G = 0 . (27.2)

To a good approximation, the logarithmic derivative of G(z) is

f(z) ≡ −
d ln G

d ln(1 + z)
≈

[

Ωm(1 + z)3
H2

0

H2(z)

]γ

, (27.3)

where γ ≈ 0.55 for relevant values of cosmological parameters [20].
In an Ωm = 1 universe, G(z) ∝ (1 + z)−1, but growth slows when
Ωm drops significantly below unity. One can integrate Eq. (27.3)
to get an approximate integral relation between G(z) and H(z),
but the full (numerical) solution to Eq. (27.2) should be used for
precision calculations. Even in the non-linear regime, the amplitude of
clustering is determined mainly by G(z), so observations of non-linear
structure can be used to infer the linear G(z), provided one has good
theoretical modeling to relate the two.

In modified gravity models the growth rate of gravitational
clustering may differ from the GR prediction. A general strategy to
test modified gravity, therefore, is to measure both the expansion
history and the growth history to see whether they yield consistent
results for H(z) or w(z).

27.2.3. Parameters :

Constraining a general history of w(z) is nearly impossible, because
the dark energy density, which affects H(z), is given by an integral
over w(z), and distances and the growth factor involve a further
integration over functions of H(z). Oscillations in w(z) over a range
∆z/(1 + z) ≪ 1 are therefore extremely difficult to constrain. It has
become conventional to phrase constraints or projected constraints on
w(z) in terms of a linear evolution model,

w(a) = w0 + wa(1 − a) = wp + wa(ap − a), (27.4)

where a ≡ (1 + z)−1, w0 is the value of w at z = 0, and wp is
the value of w at a “pivot” redshift zp ≡ a−1

p − 1, where it is
best constrained by a given set of experiments. For typical data
combinations, zp ≈ 0.5. This simple parameterization can provide a
good approximation to the predictions of many physically motivated
models for observables measured with percent-level precision. A widely
used “Figure of Merit” (FoM) for dark energy experiments [21] is the
projected combination of errors [σ(wp)σ(wa)]−1. Ambitious future
experiments with 0.1–0.3% precision on observables can constrain
richer descriptions of w(z), which can be characterized by principal
components.

There has been less convergence on a standard parameterization
for describing modified gravity theories. Deviations from the GR-
predicted growth rate can be described by a deviation ∆γ in the index
of Eq. (27.3), together with an overall multiplicative offset relative to
the G(z) expected from extrapolating the CMB-measured fluctuation
amplitude to low redshift. However, these two parameters may not
accurately capture the growth predictions of all physically interesting
models. Another important parameter to constrain is the ratio of the
gravitational potentials governing space curvature and the acceleration
of non-relativistic test particles. The possible phenomenology of
modified gravity models is rich, which enables many consistency tests
but complicates the task of constructing parameterized descriptions.

The more general set of cosmological parameters is discussed
elsewhere in this Review (Sec. 25), but here we highlight a few that
are particularly important to the dark energy discussion:

• The dimensionless Hubble parameter h ≡ H0/100 kms−1 Mpc−1

determines the present day value of the critical density and the
overall scaling of distances inferred from redshifts.

• Ωm and Ωtot affect the expansion history and the distance-redshift
relation.

• The sound horizon rs =
∫ trec
0 cs(t)dt/a(t), the comoving distance

that pressure waves can propagate between t = 0 and recombina-
tion, determines the physical scale of the acoustic peaks in the
CMB and the baryon acoustic oscillation (BAO) feature in low
redshift matter clustering [22].

• The amplitude of matter fluctuations, conventionally represented
by the quantity σ8(z), scales the overall amplitude of growth
measures such as weak lensing or redshift-space distortions
(discussed in the next section).

Specifically, σ8(z) refers to the rms fluctuation of the matter
overdensity ρ/ρ̄ in spheres of radius 8 h−1Mpc, computed from the
linear theory matter power spectrum at redshift z, and σ8 on its own
refers to the value at z = 0 (just like our convention for Ωm).

While discussions of dark energy are frequently phrased in terms of
values and errors on quantities like wp, wa, ∆γ, and Ωtot, parameter
precision is the means to an end, not an end in itself. The underlying
goal of empirical studies of cosmic acceleration is to address two
physically profound questions:

1. Does acceleration arise from a breakdown of GR on cosmological
scales or from a new energy component that exerts repulsive
gravity within GR?

2. If acceleration is caused by a new energy component, is its
energy density constant in space and time, as expected for a
fundamental vacuum energy, or does it show variations that
indicate a dynamical field?

Substantial progress towards answering these questions, in particular
any definitive rejection of the cosmological constant “null hypothesis,”
would be a major breakthrough in cosmology and fundamental
physics.

27.3. Observational Probes

We briefly summarize the observational probes that play the
greatest role in current constraints on dark energy. Further discussion
can be found in other articles of this Review, in particular
Secs. 25 (Cosmological Parameters) and 28 (The Cosmic Microwave
Background), and in Ref. [12], which provides extensive references
to background literature. Recent observational results from these
methods are discussed in 27.4.
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27.3.1. Methods, Sensitivity, Systematics :

Cosmic Microwave Background Anisotropies: Although CMB
anisotropies provide limited information about dark energy on
their own, CMB constraints on the geometry, matter content, and
radiation content of the Universe play a critical role in dark energy
studies when combined with low redshift probes. In particular, CMB
data supply measurements of θs = rs/DA,c(zrec), the angular size
of the sound horizon at recombination, from the angular location
of the acoustic peaks, measurements of Ωmh2 and Ωbh2 from the
heights of the peaks, and normalization of the amplitude of matter
fluctuations at zrec from the amplitude of the CMB fluctuations
themselves. Planck data yield a 0.4% determination of rs, which
scales as (Ωmh2)−0.25 for cosmologies with standard matter and
radiation content. The uncertainty in the matter fluctuation ampli-
tude is 1 − 2%. Improvements in the measurement of the electron
scattering optical depth τ , with future analyses of Planck polarization
maps, would reduce this uncertainty further. Secondary anisotropies,
including the Integrated Sachs-Wolfe effect and the Sunyaev-Zeldovich
(SZ, [23]) effect, provide additional information about dark energy by
constraining low-redshift structure growth.

Type Ia Supernovae: Type Ia supernovae, produced by the ther-
monuclear explosions of white dwarfs, exhibit 10 − 15% scatter in
peak luminosity after correction for light curve duration (the time
to rise and fall) and color (which is a diagnostic of dust extinction).
Since the peak luminosity is not known a priori, supernova surveys
constrain ratios of luminosity distances at different redshifts. If one
is comparing a high redshift sample to a local calibrator sample
measured with much higher precision (and distances inferred from
Hubble’s law), then one essentially measures the luminosity distance
in h−1Mpc, constraining the combination hDL(z). With distance
uncertainties of 5–8% per well observed supernova, a sample of around
100 SNe is sufficient to achieve sub-percent statistical precision. The
1–2% systematic uncertainties in current samples are dominated
by uncertainties associated with photometric calibration and dust
extinction corrections plus the observed dependence of luminosity
on host galaxy properties. Another potential systematic is redshift
evolution of the supernova population itself, which can be tested by
analyzing subsamples grouped by spectral properties or host galaxy
properties to confirm that they yield consistent results.

Baryon Acoustic Oscillations (BAO): Pressure waves that propagate
in the pre-recombination photon-baryon fluid imprint a characteristic
scale in the clustering of matter and galaxies, which appears
in the galaxy correlation function as a localized peak at the
sound horizon scale rs, or in the power spectrum as a series of
oscillations. Since observed galaxy coordinates consist of angles
and redshifts, measuring this “standard ruler” scale in a galaxy
redshift survey determines the angular diameter distance DA(z) and
the expansion rate H(z), which convert coordinate separations to
comoving distances. Errors on the two quantities are correlated,
and in existing galaxy surveys the best determined combination is
approximately DV(z) = [czD2

A,c(z)/H(z)]1/3. As an approximate rule
of thumb, a survey that fully samples structures at redshift z over
a comoving volume V , and is therefore limited by cosmic variance
rather than shot noise, measures DA,c(z) with a fractional error of

0.005(V/10 Gpc3)−1/2 and H(z) with a fractional error 1.6− 1.8 times
higher. The most precise BAO measurements to date come from large
galaxy redshift surveys probing z < 0.8, and these will be extended
to higher redshifts by future projects. At redshifts z > 2, BAO can
also be measured in the Lyman-α forest of intergalactic hydrogen
absorption towards background quasars, where the fluctuating
absorption pattern provides tens or hundreds of samples of the
density field along each quasar sightline. For Lyman-α forest BAO,
the best measured parameter combination is more heavily weighted
towards H(z) because of strong redshift-space distortions that enhance
clustering in the line-of-sight direction. Radio intensity mapping,
which maps large scale structure in redshifted 21cm hydrogen emission
without resolving individual galaxies, offers a potentially promising
route to measuring BAO over large volumes at relatively low cost,
but the technique is still under development. Photometric redshifts in
optical imaging surveys can be used to measure BAO in the angular

direction, though the typical distance precision is a factor of 3 − 4
lower compared to a well sampled spectroscopic survey of the same
area, and angular BAO measurements do not directly constrain H(z).
BAO distance measurements complement SN distance measurements
by providing absolute rather than relative distances (with precise
calibration of rs from the CMB) and by having greater achievable
precision at high redshift thanks to the increasing comoving volume
available. Theoretical modeling suggests that BAO measurements
from even the largest feasible redshift surveys will be limited by
statistical rather than systematic uncertainties.

Weak Gravitational Lensing: Gravitational light bending by a
clustered distribution of matter shears the shapes of higher redshift
background galaxies in a spatially coherent manner, producing a
correlated pattern of apparent ellipticities. By studying the weak
lensing signal for source galaxies binned by photometric redshift
(estimated from broad-band colors), one can probe the history of
structure growth. For a specified expansion history, the predicted
signal scales approximately as σ8Ω

α
m, with α ≈ 0.3–0.5. The predicted

signal also depends on the distance-redshift relation, so weak lensing
becomes more powerful in concert with SN or BAO measurements
that can pin this relation down independently. The most challenging
systematics are shape measurement biases, biases in the distribution of
photometric redshifts, and intrinsic alignments of galaxy orientations
that could contaminate the lensing-induced signal. Predicting the
large-scale weak lensing signal is straightforward in principle, but
the number of independent modes on large scales is small, and the
inferences are therefore dominated by sample variance. Exploiting
small-scale measurements, for tighter constraints, requires modeling
the effects of complex physical processes such as star formation and
feedback on the matter power spectrum. Strong gravitational lensing
can also provide constraints on dark energy, either through time delay
measurements that probe the absolute distance scale, or through
measurements of multiple-redshift lenses that constrain distance ratios.
The primary uncertainty for strong lensing constraints is modeling the
mass distribution of the lens systems.

Clusters of Galaxies: Like weak lensing, the abundance of massive dark
matter halos probes structure growth by constraining σ8Ω

α
m, where

α ≈ 0.3–0.5. These halos can be identified as dense concentrations of
galaxies or through the signatures of hot (107–108 K) gas in X-ray
emission or SZ distortion of the CMB. The critical challenge in
cluster cosmology is calibrating the relation P (Mhalo|O) between the
halo mass as predicted from theory and the observable O used for
cluster identification. Measuring the stacked weak lensing signal from
clusters has emerged as a promising approach to achieve percent-level
accuracy in calibration of the mean relation, which is required for
clusters to remain competitive with other growth probes. This method
requires accurate modeling of completeness and contamination of
cluster catalogs, projection effects on cluster selection and weak
lensing measurements, and possible baryonic physics effects on the
mass distribution within clusters.

Redshift-Space Distortions (RSD) and the Alcock-Paczynksi (AP)
Effect: Redshift-space distortions of galaxy clustering, induced
by peculiar motions, probe structure growth by constraining the
parameter combination f(z)σ8(z), where f(z) is the growth rate
defined by Eq. (27.3). Uncertainties in theoretical modeling of
non-linear gravitational evolution and the non-linear bias between
the galaxy and matter distributions currently limit application of
the method to large scales (comoving separations r >

∼ 10 h−1Mpc or
wavenumbers k <

∼ 0.2h Mpc−1). A second source of anisotropy arises
if one adopts the wrong cosmological metric to convert angles and
redshifts into comoving separations, a phenomenon known as the
Alcock-Paczynksi effect [24]. Demanding isotropy of clustering at
redshift z constrains the parameter combination H(z)DA(z). The
main challenge for the AP method is correcting for the anisotropy
induced by peculiar velocity RSD.

Direct Determination of H0: The value of H0 sets the current
value of the critical density ρc = 3H2

0/8πGN, and combination with
CMB measurements provides a long lever arm for constraining the
evolution of dark energy. The challenge in direct H0 measurements
is establishing distances to galaxies that are “in the Hubble flow,”
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Table 27.2: A selection of major dark energy experiments,
based on Ref. [25]. Abbreviations in the “Data” column refer to
optical (Opt) or near-infrared (NIR) imaging (I) or spectroscopy
(S). For spectroscopic experiments, the “Spec-z” column lists
the primary redshift range for galaxies (gals), quasars (QSOs),
or the Lyman-α forest (LyαF). Abbreviations in the “Methods”
column are weak lensing (WL), clusters (CL), supernovae
(SN), baryon acoustic oscillations (BAO), and redshift-space
distortions (RSD).

Project Dates Area/deg2 Data Spec-z Range Methods

BOSS 2008-2014 10,000 Opt-S 0.3 − 0.7 (gals) BAO/RSD

2 − 3.5 (LyαF)

DES 2013-2018 5000 Opt-I —— WL/CL

SN/BAO

eBOSS 2014-2020 7500 Opt-S 0.6 − 2.0 (gal/QSO) BAO/RSD

2 − 3.5 (LyαF)

SuMIRE 2014-2024 1500 Opt-I WL/CL

Opt/NIR-S 0.8 − 2.4 (gals) BAO/RSD

HETDEX 2014-2019 300 Opt-S 1.9 < z < 3.5 (gals) BAO/RSD

DESI 2019-2024 14,000 Opt-S 0 − 1.7 (gals) BAO/RSD

2 − 3.5 (LyαF)

LSST 2020-2030 20,000 Opt-I —— WL/CL

SN/BAO

Euclid 2020-2026 15,000 Opt-I WL/CL

NIR-S 0.7 − 2.2 (gals) BAO/RSD

WFIRST 2024-2030 2200 NIR-I WL/CL/SN

NIR-S 1.0 − 3.0 (gals) BAO/RSD

i.e., far enough away that their peculiar velocities are small compared
to the expansion velocity v = H0d. This can be done by building a
ladder of distance indicators tied to stellar parallax on its lowest rung,
or by using gravitational lens time delays or geometrical measurements
of maser data to circumvent this ladder.

27.3.2. Dark Energy Experiments :

Most observational applications of these methods now take place in
the context of large cosmological surveys, for which constraining dark
energy and modified gravity theories is a central objective. Table 27.2
lists a selection of current and planned dark energy experiments, taken
from the Snowmass 2013 Dark Energy Facilities review [25], which
focused on projects in which the U.S. has either a leading role or
significant participation. References and links to further information
about these projects can be found in Ref. [25].

Beginning our discussion with imaging surveys, the Dark Energy
Survey (DES) will cover 1/8 of the sky to a depth roughly 2
magnitudes deeper than the Sloan Digital Sky Survey (SDSS),
enabling weak lensing measurements with unprecedented statistical
precision, cluster measurements calibrated by weak lensing, and
angular BAO measurements based on photometric redshifts. With
repeat imaging over a smaller area, DES will identify thousands of
Type Ia SNe, which together with spectroscopic follow-up data will
enable significant improvements on the current state-of-the-art for
supernova (SN) cosmology. The Hyper-Suprime Camera (HSC) on
the Subaru 8.2-meter telescope will carry out a similar type of optical
imaging survey, probing a smaller area than DES but to greater depth.
This survey is one component of the Subaru Measurement of Images
and Redshifts (SuMIRE) project. Beginning in the early 2020s, the
dedicated Large Synoptic Survey Telescope (LSST) will scan the
southern sky to SDSS-like depth every four nights. LSST imaging
co-added over its decade-long primary survey will reach extraordinary
depth, enabling weak lensing, cluster, and photometric BAO studies
from billions of galaxies. LSST time-domain monitoring will identify
and measure light curves for thousands of Type Ia SNe per year.

Turning to spectroscopic surveys, the Baryon Oscillation Spectro-
scopic Survey (BOSS) and its successor eBOSS use fiber-fed optical
spectrographs to map the redshift-space distributions of millions of
galaxies and quasars. These 3-dimensional maps enable BAO and
RSD measurements, and Lyman-α forest spectra of high-redshift
quasars extend these measurements to redshifts z > 2. The Hobby-
Eberly Telescope Dark Energy Experiment (HETDEX) uses integral
field spectrographs to detect Lyman-α emission-line galaxies at
z ≈ 1.9 − 3.5, probing a small sky area but a substantial comoving
volume. The Dark Energy Spectroscopic Instument (DESI) follows
a strategy similar to BOSS/eBOSS but on a much grander scale,
using a larger telescope (4-meter vs. 2.5-meter) and a much higher
fiber multiplex (5000 vs. 1000) to survey an order-of-magnitude more
galaxies. A new Prime Focus Spectrograph (PFS) for the Subaru
telescope will enable the spectroscopic component of SuMIRE, with
the large telescope aperture and wavelength sensitivity that extends to
the near-infrared (NIR) allowing it to probe a higher redshift galaxy
population than DESI, over a smaller area of sky.

Compared to ground-based observations, space observations afford
higher angular resolution and a far lower NIR sky background. The
Euclid and WFIRST (Wide Field Infrared Survey Telescope) missions
will exploit these advantages, conducting large area imaging surveys
for weak lensing and cluster studies and slitless spectroscopic surveys
of emission-line galaxies for BAO and RSD studies. WFIRST also
incorporates an imaging and spectrophotometric supernova (SN)
survey, extending to redshift z ≈ 1.7. Survey details are likely to
evolve prior to launch, but in the current designs one can roughly
characterize the difference between the Euclid and WFIRST dark
energy experiments as “wide vs. deep,” with planned survey areas
of 15,000 deg2 and 2200 deg2, respectively. For weak lensing shape
measurements, Euclid uses a single wide optical filter, while WFIRST
uses three NIR filters. The Euclid galaxy redshift survey covers a large
volume at relatively low space density, while the WFIRST survey
provides denser sampling of structure in a smaller volume. There
are numerous synergies among the LSST, Euclid, and WFIRST dark
energy programs, as discussed in Ref. [26].
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27.4. Current Constraints on Expansion, Growth,

and Dark Energy

The last decade has seen dramatic progress in measurements
of the cosmic expansion history and structure growth, leading to
much tighter constraints on the parameters of dark energy models.
CMB data from the WMAP and Planck satellites and from higher
resolution ground-based experiments have provided an exquisitely
detailed picture of structure at the recombination epoch and the first
CMB-based measures of low redshift structure through lensing and
SZ cluster counts. Cosmological supernova samples have increased
in size from tens to many hundreds, with continuous coverage from
z = 0 to z ≈ 1.4, alongside major improvements in data quality,
analysis methods, and detailed understanding of local populations.
BAO measurements have advanced from the first detections to 1− 2%
precision at multiple redshifts, with increasingly sophisticated methods
for testing systematics, fitting models, and evaluating statistical errors.
Constraints on low redshift structure from galaxy clusters have become
more robust, with improved X-ray and SZ data and weak lensing mass
calibrations, and they have been joined by the first precise structure
constraints from cosmic shear weak lensing, galaxy-galaxy lensing, and
redshift-space distortions. The precision of direct H0 measurements
has sharpened from the roughly 10% error of the HST Key Project
[27] to 3–4% in some recent analyses.

Our summary of current constraints here relies heavily on the
analysis of Ref. [28], who combine BAO measurements, SN
measurements, and Planck CMB data to examine a variety of dark
energy models. While Ref. [28] uses the 2013 Planck data [29] rather
than the 2015 data [30], we expect that changing to the 2015
data would make negligible difference to best-fit parameter values
and only small changes to the statistical uncertainties on combined
CMB+BAO+SN constraints. An analysis of dark energy and modified
gravity models by the Planck team, using the 2015 Planck data
and a somewhat different selection of low redshift data and model
parameterizations, can be found in Ref. [31].

As an illustration of current measurements of the cosmic expansion
history, Fig. 27.1 compares distance-redshift measurements from SN
and BAO data to the predictions for a flat universe with a cosmological
constant. SN cosmology relies on compilation analyses that try to
bring data from different surveys probing distinct redshift ranges to
a common scale. Here we use the “joint light curve analysis” (JLA)
sample of Ref. [33], who carried out a careful intercalibration of
the 3-year Supernova Legacy Survey (SNLS3, [34]) and the full
SDSS-II Supernova Survey [35] data in combination with several local
supernova samples and high-redshift supernovae from HST. Results
from the Union2.1 sample [36], which partly overlaps JLA but
has different analysis procedures, would be similar. For illustration
purposes, we have binned the JLA data in redshift and plotted the
diagonal elements of the covariance matrix as error bars, and we
have converted the SN luminosity distances to an equivalent comoving
angular diameter distance. Because the peak luminosity of a fiducial
SN Ia is an unknown free parameter, the SN distance measurements
could all be shifted up and down by a constant multiplicative factor;
cosmological information resides in the relative distances as a function
of redshift. For BAO data points we use the compilation of Ref. [28],
taken from BAO analyses of the 6dFGS survey [37], the SDSS-II Main
Galaxy Sample [38], and the LOWZ and CMASS galaxy samples of
BOSS [39]. For the first three data points, values of DV have been
converted to DA,c, while the CMASS data point uses the angular
diameter distance measured directly from anisotropic BAO analysis.
The BAO measurements are converted to absolute distances using
the sound horizon scale rs = 147.49 Mpc from Planck 2013 CMB
data, whose 0.4% uncertainty is small compared to the current BAO
measurement errors.

The plotted cosmological model has Ωm = 0.308 and h = 0.678, the
best-fit values from Planck (TT+lowP+lensing) assuming w = −1 and
Ωtot = 1 [32]. The SN, BAO, and CMB data sets, probing a wide
range of redshifts with radically different techniques, are mutually
consistent with the predictions of a flat ΛCDM cosmology. Other
curves in the lower panel of Fig. 27.1 show the effect of changing
w by ±0.1 with all other parameters held fixed. However, such a

Figure 27.1: The distance-redshift relation measured from
Type Ia SNe and BAO compared to the predictions (black curve)
of a flat ΛCDM model with Ωm = 0.308 and h = 0.678, the
best-fit parameters inferred from Planck CMB data [32]. Circles
show binned luminosity distances from the JLA SN sample [33],
multiplied by (1 + z)−1 to convert to comoving angular diameter
distance. Squares show BAO distance measurements, converted
to DA,c(z) for the Planck cosmology and sound horizon, taken
from Ref. [28]. The lower panel plots residuals from the ΛCDM
prediction, with dashed and dotted curves that show the effect
of changing w by ±0.1 while all other parameters are held fixed.
Note that the SN data points can be shifted up or down by a
constant factor to account for freedom in the peak luminosity,
while the BAO points are calibrated to 0.4% precision by the
sound horizon scale computed from Planck data. In the upper
panel, error bars are plotted only at z > 0.7 to avoid visual
confusion.

single-parameter comparison does not capture the impact of parameter
degeneracies or the ability of complementary data sets to break them,
and if one instead forced a match to CMB data by changing h and
Ωm when changing w then the predicted BAO distances would diverge
at z = 0 rather than converging there.

Figure 27.2, taken directly from [28], shows cosmological parameter
constraints in a series of models with increasingly flexible assumptions
(from top left to bottom right) about dark energy and space curvature.
These constraints use the BAO distance measurements shown in
Fig.27.1, with the separate DA,c(z) and H(z) constraints from
the BOSS CMASS sample at z = 0.57. They also include BAO
constraints on DA,c(z) and H(z) at z = 2.34 from the BOSS Lyman-α
forest as reported by Ref. [40]. They adopt the JLA SN data set
plotted in Fig. 27.1, taking into account the full error covariance
matrix reported by Ref. [33], which includes a detailed estimate of
systematic uncertainties. The Planck CMB data are compressed into
constraints on the baryon density Ωbh2, the sum of baryon and CDM
densities Ωmh2, and the ratio DA,c(1090)/rs of the comoving angular
diameter distance to redshift z = 1090 divided by the sound horizon.
Best-fit values and the 3 × 3 covariance matrix of these quantities are
determined from the public Planck likelihood chains. For the data
combinations and models shown here, this compressed description
captures the information content of the full CMB power spectrum
almost perfectly; this would no longer be true when considering
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Figure 27.2: Constraints on cosmological parameter combina-
tions in a variety of dark energy models, taken from Ref. [28].
In each panel: red curves show 68%, 95%, and 99.7% confidence
contours from BAO measurements with Planck CMB constraints;
blue contours show the combination of SN measurements with
Planck CMB; and green contours show the combination of all
three, with the white zone interior to the dark green annulus
marking the 68% confidence region. The upper left panel shows
(Ωm, h) constraints assuming a flat universe with a cosmological
constant. The upper right panel shows (Ωm, ΩK) constraints
assuming a cosmological constant but allowing non-zero space
curvature. The middle row shows constraints with the dark
energy equation-of-state w0 as a (constant) free parameter,
assuming a flat universe on the left and allowing non-zero
curvature on the right. The bottom row shows the corresponding
constraints for models with an evolving equation-of-state param-
eter w(a) = w0 + wa(1 − a). In the bottom panels the x-axis
quantity is the value of w at z = 0.266, the redshift at which it is
best constrained by the full data combination in the flat universe
model.

models with non-minimal neutrino mass or data sets that constrain
the amplitude of matter clustering. Constraints from the full data
combination on selected cosmological parameters for three dark energy
models are listed in Table 27.3; this is a small subset of the models
and data combinations reported in table IV of Ref. [28].

There are numerous points to take away from Fig. 27.2 and
Table 27.3. For the flat ΛCDM model, the combination of CMB and
BAO data provides tight constraints on parameters, as discussed at
greater length in Sec. 25 of this Review. Assuming a cosmological
constant, the CMB+BAO combination yields a tight constraint
on space curvature consistent with a flat universe, implying
Ωtot = 1.002 ± 0.003. The addition of SN data does not tighten
the constraints in cosmological constant models (top row), but it
significantly tightens constraints in models that allow an evolving
dark energy density. In all of the more flexible models, the parameter
values of flat ΛCDM (w = −1, wa = 0, ΩK = 0) lie within the 68%
confidence region of the full CMB+BAO+SN combination. Even with
the flexibility of an evolving equation of state governed by Eq. (27.4),
curvature is tightly constrained by the full data combination. For a
constant equation of state, the error on w is ≈ 0.05, and even in
the w0 − wa model the value of w at the pivot redshift zp = 0.266
is constrained to ±0.05. However, the full CMB+BAO+SN data
combination still provides only weak constraints on evolution of the

Table 27.3: Constraints on parameters (68% confidence limits)
from the combination of BAO, SN, and CMB data as reported
by Ref. [28], for three choices of model assumptions: constant
w with a flat universe, constant w with free space curvature,
and evolving w with a flat universe. In the third model, the
constraint on w is reported at z = 0.266, where it is best
constrained.

Model

Parameter wCDM (flat) owCDM w0waCDM (flat)

w −0.97 ± 0.05 −0.98± 0.06 −0.97 ± 0.05

wa 0 (assumed) 0 (assumed) −0.2 ± 0.4

Ωm 0.305 ± 0.010 0.303± 0.010 0.307± 0.011

Ωtot 1.0 (assumed) 1.002± 0.003 1.0 (assumed)

h 0.676 ± 0.011 0.676± 0.011 0.676± 0.011

σ8(Ωm/0.30)0.4 0.811 ± 0.021 0.805± 0.022 0.821± 0.030

equation of state, allowing wa = −0.2± 0.4 even when assuming a flat
universe.

As discussed by [28], the flat ΛCDM model provides a statistically
good fit to the CMB+BAO+SN data combination presented here.
However, the Lyman-α forest BAO measurements at z ≈ 2.3 disagree
with the model predictions at the ≈ 2.5σ level [40]. None of the
more flexible models illustrated in Fig. 27.2 significantly reduces
this tension, and Ref. [28] considers a variety of more elaborate
models (decaying dark matter, early dark energy, massive neutrinos,
additional relativistic species) that also fail to remove it. The lack of
a plausible alternative model, and the acceptable total χ2 when all
data points are considered equally, suggests that the discrepancy with
Lyman-α forest BAO is either a statistical fluke or an unrecognized
systematic bias in the measurement. This remains an interesting area
for future investigation, as a tightening of error bars without a change
in central value would imply a breakdown of this entire class of dark
energy models at z ≈ 2 − 3, or an unanticipated astrophysical effect
on the imprint of BAO in the Lyman-α forest.

The 2014 edition of this review highlighted two areas of tension
between predictions of the flat ΛCDM model and low-redshift
observations: distance-ladder measurements of H0 and weak lensing or
cluster estimates of matter fluctuations. A ΛCDM fit to Planck data
alone predicts H0 = 67.8 ± 0.9 kms−1 Mpc−1 (see Chapter 28 of this
Review). This is lower than most recent determinations of H0 that use
HST observations of Cepheid variables in external galaxies to calibrate
secondary distance indicators, particularly Type Ia SNe, which
can in turn measure distances to galaxies in the Hubble flow. For
example, Ref. [41] finds H0 = 73.8 ± 2.4 kms−1 Mpc−1 and Ref. [42]
finds H0 = 74.3 ± 2.1 kms−1 Mpc−1, with both groups including an
estimate of systematic uncertainties in their error budgets. However,
Ref. [43], reanalyzing the data set of Ref. [41] with a different
treatment of outliers, argues for a lower central value and larger
error bars, which together reduce the tension with Planck+ΛCDM
below 2σ significance. More recently, Ref. [44] have argued that
correcting the Ref. [41] value for an offset of SNIa luminosities
between star-forming and passive environments lowers the inferred H0

to 70.6 ± 2.6 kms−1 Mpc−1, consistent with the CMB at the 1σ level.

Another recent development is the “inverse distance ladder”
determination of H0 by Ref. [28], who combine the BAO and
SN data shown in Fig. 27.1 with the Planck-calibrated value of
the sound horizon scale, rs = 147.49 ± 0.59 Mpc. The CMB-only
prediction of H0 depends critically on the assumptions of a flat
universe and a cosmological constant, and loosening either assumption
allows a much wider range of H0. The method of Ref. [28], by
contrast, is insensitive to assumptions about flatness or dark energy,
because BAO provide precise absolute distance measurements at
z = 0.3 − 0.6, and the high-precision relative distance scale from
SNe transfers this absolute measurement to z = 0, using empirical
data instead of an adopted cosmological model. Even allowing
a very flexible dark energy parameterization and non-zero space
curvature, Ref. [28] obtains 1.7% precision on H0, with a value
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H0 = 67.3 ± 1.1 kms−1 Mpc−1 in essentially perfect agreement
with the Planck+ΛCDM prediction. These measurements could still
be reconciled with H0 ≥ 70 kms−1 Mpc−1 by altering the pre-
recombination physics of the standard model in a way that shrinks
the BAO standard ruler, for instance by adding extra relativistic
degrees of freedom. However, it seems increasingly unlikely that the
Cepheid-based measurements of H0 are telling us something surprising
about the late time behavior of dark energy, and more likely that they
simply overestimate the true value.

Figure 27.3: Comparison of observational estimates of matter
clustering (red points) to the amplitude predicted for a variety of
dark energy models constrained by CMB+BAO+SN data (black
points) at z ≈ 0 (left), z = 0.57 (middle), and z = 2.5 (right),
taken from Ref. [28]. Black points with error bars correspond to
the 68% confidence range of predictions for the model indicated
on the left axis. (Models beginning “o” allow non-zero curvature,
while other models assume a flat universe.) Fractional errors
for the red points are taken from the observational references
given in Ref. [28], and the vertical placement of these points
is arbitrary. The observational estimates of σ8Ω

0.4
m in the left

panel come from a variety of weak lensing and cluster studies;
the estimates of σ8(z)f(z) in the middle panel come from RSD
analyses of the BOSS CMASS galaxy sample; and the estimate
of σ8(z = 2.5) comes from the 1-dimensional power spectrum of
the BOSS Lyman-α forest.

The amplitude of CMB anisotropies is proportional to the amplitude
of density fluctuations present at recombination, and by assuming
GR and a specified dark energy model one can extrapolate the
growth of structure forward to the present day to predict σ8. As
discussed in Sec. 27.3, probes of low redshift structure typically
constrain the combination σ8Ω

α
m with α ≈ 0.3–0.5. Figure 27.3,

taken from Ref. [28], compares predictions of low redshift clustering
(black points) from models constrained by CMB+BAO+SN to a
variety of observational estimates (red points). The model assumed
for each prediction is indicated on the left axis. In the left panel,
estimates of σ8(Ωm/0.30)0.4 at z ≈ 0 come from cosmic shear
(points labeled Hey13, Jee13 in Fig. 27.3), from galaxy-galaxy lensing
(Man13), and from clusters (Vik09, Roz10, Pla13, Man14; see
Ref. [28] for the observational references). In the middle panel, the
values of σ8(z = 0.57)f(z = 0.57) come from three RSD analyses
of the BOSS galaxy survey; these analyses use different modeling
methods but examine largely the same data. In the right panel
the estimate of σ8(z = 2.5) comes from modeling the 1-dimensional
power spectrum of the BOSS Lyman-α forest. In the left panel,
many but not all of the estimates lie below the model predictions. A
straight unweighted average of the observational data points yields
σ8(Ωm/0.3)0.4 = 0.766 ± 0.012, while the flat ΛCDM prediction is
0.821± 0.018. This difference is ≈ 2σ, but the key question is whether
some of the estimates are systematically biased, and if so which ones.
In the middle panel, the RSD growth estimates again lie below the
model predictions, but the observational uncertainties are too large to
draw an interesting conclusion. At z = 2.5, on the other hand, the
fluctuation amplitude inferred from the Lyman-α forest is (slightly)
above the model prediction.

Relative to our 2014 Review (which compared ΛCDM to the

constraints labeled here as Hey13, Vik09, Roz10, and Pla13), the
addition of new data has made the case for a conflict in matter
clustering weaker, or at least more confused. The 2015 Planck data
add two further ingredients to this discussion. First, they confirm
the high normalization of (σ8, Ωm) relative to earlier values from
WMAP, indicating that the high model predictions are not a statistical
fluctuation in early Planck data or a systematic error in the 2013
analysis. (The 2015 Planck analysis does change in some significant
ways, but the net impact on σ8 and Ωm is small.) Second, CMB
lensing in Planck 2015 yields a roughly 3% measurement of the matter
clustering amplitude over an effective redshift range z ≈ 2−5, and this
measurement is in excellent agreement with the flat ΛCDM prediction.
The CMB lensing and Lyman-α forest measurements imply that
deviation from GR-predicted structure growth, if it occurs, must
set in mainly at z < 2. A low redshift onset would not necessarily
be surprising, however, as it would coincide with the era of cosmic
acceleration.

27.5. Summary and Outlook

Figure 27.2 and Table 27.3 focus on model parameter constraints,
but as a description of the observational situation it is most
useful to characterize the precision, redshift range, and systematic
uncertainties of the basic expansion and growth measurements. At
present, supernova surveys constrain distance ratios at the 1–2%
level in redshift bins of width ∆z = 0.1 over the range 0 < z < 0.6,
with larger but still interesting error bars out to z ≈ 1.2. These
measurements are currently limited by systematics tied to photometric
calibration, extinction, and reddening, host galaxy correlations,
and possible evolution of the SN population. BAO surveys have
measured the absolute distance scale (calibrated to the sound horizon
rs) to 4% at z = 0.15, 2% at z = 0.32 1% at z = 0.57, and
2% at z = 2.3. Multiple studies have used clusters of galaxies or
weak lensing cosmic shear or galaxy-galaxy lensing to measure a
parameter combination σ8Ω

α
m with α ≈ 0.3–0.5. The estimated errors

of these studies, including both statistical contributions and identified
systematic uncertainties, are about 5%. RSD measurements constrain
the combination f(z)σ8(z), with recent determinations spanning the
redshift range 0 < z < 0.9 with typical estimated errors of about
10%. These errors are dominated by statistics, but shrinking them
further will require improvements in modeling non-linear effects
on small scales. Direct distance-ladder estimates of H0 now span
a small range (using overlapping data but distinct treatments of
key steps), with individual studies quoting uncertainties of 3–5%,
with similar statistical and systematic contributions. Planck data
and higher resolution ground-based experiments now measure CMB
anisotropy with exquisite precision; for example, CMB measurements
now constrain the physical size of the BAO sound horizon to 0.3% and
the angular scale of the sound horizon to 0.01%.

A flat ΛCDM model with standard radiation and neutrino content
can fit the CMB data and the BAO and SN distance measurements
to within their estimated uncertainties, excepting a moderately
significant discrepancy for Lyman-α forest BAO at z = 2.3. However
the CMB+BAO parameters for this model are in approximately 2σ
tension with some of the direct H0 measurements and many but not
all of the cluster and weak lensing analyses, disagreeing by about
10% in each case. Agreement of the “inverse distance ladder” value
of H0 with the Planck+ΛCDM value suggests that the current direct
measurements are systematically high. Alternatively, a change to
pre-recombination physics (such as extra relativistic energy density)
could shrink the BAO standard ruler and raise the inferred H0, but
changes large enough to allow H0 ≥ 70 kms−1 Mpc−1 might run afoul
of the CMB power spectrum shape. CMB lensing and Lyman-α forest
measurements show good agreement with ΛCDM-predicted structure
growth at z ≈ 2 − 4, so if the discrepancies with lower redshift
measurements are real then the deviations in growth must set in
at late times. At present, none of the tensions in the data provide
compelling evidence for new physics. Moving forward, the community
will have to balance the requirement of strong evidence for interesting
claims (such as w 6= −1 or deviations from GR) against the danger
of confirmation bias, i.e., discounting observations or error estimates
when they do not overlap simple theoretical expectations.
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There are many ongoing projects that should lead to improvement
in observational constraints in the near-term and over the next 15
years, as summarized above in Table 27.2. Final analyses of Planck
temperature, polarization, and CMB lensing maps will improve
estimates of the electron scattering optical depth and tighten other
parameter constraints, thus sharpening tests based on structure
growth. Preliminary results suggest a small reduction in the inferred
σ8, which goes in the direction of reducing tensions. Final analyses
of BOSS will slightly reduce BAO errors at z < 0.6 and shed light
on the significance of the Lyman-α forest tension at z = 2.3. Its
successor eBOSS will yield the first BAO measurements in the
redshift range 1 < z < 2 and improved precision at lower and higher
redshifts. The HETDEX project will measure BAO with Lyman-α
emission line galaxies at z = 2–3, providing an independent check on
Lyman-α forest results with completely different structure tracers.
The same galaxy surveys carried out for BAO also provide data
for RSD measurements of structure growth and AP measurements
of cosmic geometry. With improved theoretical modeling there is
potential for substantial precision gains over current constraints from
these methods. DES, which started operations in August 2013 and
will run through 2018, will provide a sample of several thousand
Type Ia SNe, enabling smaller statistical errors and division of the
sample into subsets for cross-checking evolutionary effects and other
systematics. DES imaging will be similar in depth but 50 times larger
in area than CFHTLens, providing a much more powerful weak lensing
data set and weak lensing mass calibration of enormous samples of
galaxy clusters (tens of thousands). Weak lensing surveys from HSC
on the Subaru telescope will be smaller in area but deeper, with a
comparable number of lensed galaxies. These new weak lensing data
sets hold the promise of providing structure growth constraints at the
same (roughly 1%) level of precision as the best current expansion
history constraints, allowing a much more comprehensive test of
cosmic acceleration models. Controlling measurement and modeling
systematics at the level demanded by these surveys’ statistical power
will be a major challenge, but the payoff in improved precision is
large. Uncertainties in direct determinations of H0 should be reduced
by further observations with HST and, in the longer run, by Cepheid
parallaxes from the GAIA mission, by the ability of the James Webb
Space Telescope to discover Cepheids in more distant SN Ia calibrator
galaxies, and by independent estimates from larger samples of maser
galaxies and gravitational lensing time delays.

A still more ambitious period begins late in this decade and
continues through the 2020s, with experiments that include DESI,
Subaru PFS, LSST, and the space missions Euclid and WFIRST.
DESI and PFS both aim for major improvements in the precision
of BAO, RSD, and other measurements of galaxy clustering in the
redshift range 0.8 < z < 2, where large comoving volume allows
much smaller cosmic variance errors than low redshift surveys like
BOSS. LSST will be the ultimate ground-based optical weak lensing
experiment, measuring several billion galaxy shapes over 20,000 deg2

of the southern hemisphere sky, and it will detect and monitor
many thousands of SNe per year. Euclid and WFIRST also have
weak lensing as a primary science goal, taking advantage of the high
angular resolution and extremely stable image quality achievable from
space. Both missions plan large spectroscopic galaxy surveys, which
will provide better sampling at high redshifts than DESI or PFS
because of the lower infrared sky background above the atmosphere.
WFIRST is also designed to carry out what should be the ultimate
supernova cosmology experiment, with deep, high resolution, near-IR
observations and the stable calibration achievable with a space
platform.

Performance forecasts necessarily become more uncertain the
further ahead we look, but collectively these experiments are likely
to achieve 1–2 order of magnitude improvements over the precision
of current expansion and growth measurements, while simultaneously
extending their redshift range, improving control of systematics, and
enabling much tighter cross-checks of results from entirely independent
methods. The critical clue to the origin of cosmic acceleration could
also come from a surprising direction, such as laboratory or solar
system tests that challenge GR, time variation of fundamental
“constants,” or anomalous behavior of gravity in some astronomical

environments. Experimental advances along these multiple axes
could confirm today’s relatively simple, but frustratingly incomplete,
“standard model” of cosmology, or they could force yet another radical
revision in our understanding of energy, or gravity, or the spacetime
structure of the Universe.
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28. COSMIC MICROWAVE BACKGROUND

Revised September 2015 by D. Scott (University of British Columbia)
and G.F. Smoot (UCB/LBNL).

28.1. Introduction

The energy content in radiation from beyond our Galaxy is
dominated by the cosmic microwave background (CMB), discovered in
1965 [1]. The spectrum of the CMB is well described by a blackbody
function with T = 2.7255 K. This spectral form is a main supporting
pillar of the hot Big Bang model for the Universe. The lack of any
observed deviations from a blackbody spectrum constrains physical
processes over cosmic history at redshifts z ∼< 107 (see earlier versions
of this review).

Currently the key CMB observable is the angular variation in
temperature (or intensity) correlations, and now to some extent
polarization [2]. Since the first detection of these anisotropies by the
Cosmic Background Explorer (COBE) satellite [3] , there has been
intense activity to map the sky at increasing levels of sensitivity and
angular resolution by ground-based and balloon-borne measurements.
These were joined in 2003 by the first results from NASA’s Wilkinson
Microwave Anisotropy Probe (WMAP) [4], which were improved
upon by analyses of the 3-year, 5-year, 7-year, and 9-year WMAP

data [5,6,7,8]. In 2013 we had the first results [9] from the third
generation CMB satellite, ESA’s Planck mission [10,11], now enhanced
by results from the the 2015 Planck data release [12,13]. Additionally,
CMB anisotropies have been extended to smaller angular scales by
ground-based experiments, particularly the Atacama Cosmology
Telescope (ACT) [14] and the South Pole Telescope (SPT) [15] .
Together these observations have led to a stunning confirmation
of the ‘Standard Model of Cosmology.’ In combination with other
astrophysical data, the CMB anisotropy measurements place quite
precise constraints on a number of cosmological parameters, and have
launched us into an era of precision cosmology. As the CMB turns
50 and the program to map temperature anisotropies is wrapping up,
attention is increasingly focussing on polarization measurements as
the future arena in which to test fundamental physics.

28.2. CMB Spectrum

It is well known that the spectrum of the microwave background
is very precisely that of blackbody radiation, whose temperature
evolves with redshift as T (z) = T0(1 + z) in an expanding universe.
As a direct test of its cosmological origin, this relationship is being
tested by measuring the strengths of emission and absorption lines in
high-redshift systems [16].

Measurements of the spectrum are consistent with a blackbody
distribution over more than three decades in frequency (there is
a claim by ARCADE [17] of a possible unexpected extragalactic
emission signal at low frequency, but the interpretation is debated [18]
). All viable cosmological models predict a very nearly Planckian
spectrum to within the current observational limits. Because of this,
measurements of deviations from a blackbody spectrum have received
little attention in recent years, with only a few exceptions. However,
that situation may be about to change, since proposed experiments
(such as PIXIE [19]) have the potential to dramatically improve the
constraints on energy release in the early Universe. It now seems
feasible to probe spectral distortion mechanisms that are required in
the standard picture, such as those arising from the damping and
dissipation of relatively small primordial perturbations, or the average
effect of inverse Compton scattering. A more ambitious goal would
be to reach the precision needed to detect the residual lines from the
cosmological recombination of hydrogen and helium and hence test
whether conditions at z ∼> 1000 accurately follow those in the standard
picture [20].

28.3. Description of CMB Anisotropies

Observations show that the CMB contains temperature anisotropies
at the 10−5 level and polarization anisotropies at the 10−6 (and
lower) level, over a wide range of angular scales. These anisotropies
are usually expressed by using a spherical harmonic expansion of the
CMB sky:

T (θ, φ) =
∑

ℓm

aℓmYℓm(θ, φ)

(with the linear polarization pattern written in a similar way using the
so-called spin-2 spherical harmonics). Increasing angular resolution
requires that the expansion goes to higher and higher multipoles.
Because there are only very weak phase correlations seen in the CMB
sky and since we notice no preferred direction, the vast majority of
the cosmological information is contained in the temperature 2-point
function, i.e., the variance as a function only of angular separation.
Equivalently, the power per unit ln ℓ is ℓ

∑

m |aℓm|2 /4π.

28.3.1. The Monopole :

The CMB has a mean temperature of Tγ = 2.7255 ± 0.0006 K
(1σ) [21] , which can be considered as the monopole component of
CMB maps, a00. Since all mapping experiments involve difference
measurements, they are insensitive to this average level; monopole
measurements can only be made with absolute temperature devices,
such as the FIRAS instrument on the COBE satellite [22] . The
measured kTγ is equivalent to 0.234 meV or 4.60 × 10−10 mec

2.
A blackbody of the measured temperature has a number density
nγ = (2ζ(3)/π2)T 3

γ ≃ 411 cm−3, energy density ργ = (π2/15)T 4
γ ≃

4.64 × 10−34 g cm−3 ≃ 0.260 eV cm−3, and a fraction of the critical
density Ωγ ≃ 5.38 × 10−5.

28.3.2. The Dipole :

The largest anisotropy is in the ℓ = 1 (dipole) first spherical
harmonic, with amplitude 3.3645 ± 0.0020 mK [12] . The dipole is
interpreted to be the result of the Doppler boosting of the monopole
caused by the solar system motion relative to the nearly isotropic
blackbody field, as broadly confirmed by measurements of the radial
velocities of local galaxies (e.g., Ref. [23]). The motion of an observer
with velocity β ≡ v/c relative to an isotropic Planckian radiation field
of temperature T0 produces a Lorentz-boosted temperature pattern

T (θ) = T0(1 − β2)1/2/(1 − β cos θ)

≃ T0

[

1 + β cos θ +
(

β2/2
)

cos 2θ + O
(

β3
)]

.

At every point in the sky, one observes a blackbody spectrum, with
temperature T (θ). The spectrum of the dipole has been confirmed to
be the differential of a blackbody spectrum [24]. At higher order there
are additional effects arising from aberration and from modulation of
the anisotropy pattern, which have also been observed [25].

The implied velocity for the solar system barycenter is v =
370.09 ± 0.22 kms−1, assuming a value T0 = Tγ , towards (l, b) =
(264.00◦ ± 0.03◦, 48.24◦ ± 0.02◦) [12] . Such a solar system motion
implies a velocity for the Galaxy and the Local Group of galaxies
relative to the CMB. The derived value is vLG = 627 ± 22 kms−1

towards (l, b) = (276◦ ± 3◦, 30◦ ± 3◦) [26], where most of the error
comes from uncertainty in the velocity of the solar system relative to
the Local Group.

The dipole is a frame-dependent quantity, and one can thus
determine the ‘absolute rest frame’ as that in which the CMB dipole
would be zero. Our velocity relative to the Local Group, as well as
the velocity of the Earth around the Sun, and any velocity of the
receiver relative to the Earth, is normally removed for the purposes of
CMB anisotropy study. The dipole is now routinely used as a primary
calibrator for mapping experiments, either via the time-varying orbital
motion of the Earth, or through the cosmological dipole measured by
satellite experiments.

28.3.3. Higher-Order Multipoles :

The variations in the CMB temperature maps at higher multipoles
(ℓ ≥ 2) are interpreted as being mostly the result of perturbations
in the density of the early Universe, manifesting themselves at the
epoch of the last scattering of the CMB photons. In the hot Big
Bang picture, the expansion of the Universe cools the plasma so that
by a redshift z ≃ 1100 (with little dependence on the details of the
model), the hydrogen and helium nuclei can bind electrons into neutral
atoms, a process usually referred to as recombination [27]. Before this
epoch, the CMB photons were tightly coupled to the baryons, while
afterwards they could freely stream towards us. By measuring the
aℓms we are thus learning directly about physical conditions in the
early Universe.

A statistically isotropic sky means that all ms are equivalent, i.e.,
there is no preferred axis, so that the temperature correlation function
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between two positions on the sky depends only on angular separation
and not orientation. Together with the assumption of Gaussian
statistics (i.e., no correlations between the modes), the variance of the
temperature field (or equivalently the power spectrum in ℓ) then fully
characterizes the anisotropies. The power summed over all ms at each
ℓ is (2ℓ + 1)Cℓ/(4π), where Cℓ ≡

〈

|aℓm|2
〉

. Thus averages of aℓms over
m can be used as estimators of the Cℓs to constrain their expectation
values, which are the quantities predicted by a theoretical model. For
an idealized full-sky observation, the variance of each measured Cℓ
(i.e., the variance of the variance) is [2/(2ℓ + 1)]C2

ℓ . This sampling
uncertainty (known as ‘cosmic variance’) comes about because each Cℓ
is χ2 distributed with (2ℓ + 1) degrees of freedom for our observable
volume of the Universe. For fractional sky coverage, fsky, this variance
is increased by 1/fsky and the modes become partially correlated.

It is important to understand that theories predict the expectation
value of the power spectrum, whereas our sky is a single realization.
Hence the cosmic variance is an unavoidable source of uncertainty
when constraining models; it dominates the scatter at lower ℓs, while
the effects of instrumental noise and resolution dominate at higher
ℓs [28].

Theoretical models generally predict that the aℓm modes are
Gaussian random fields to high precision, matching the empirical
tests, e.g., standard slow-roll inflation’s non-Gaussian contribution
is expected to be at least an order of magnitude below current
observational limits [29]. Although non-Gaussianity of various forms
is possible in early Universe models, tests show that Gaussianity is
an extremely good simplifying approximation [30]. The only current
indications of any non-Gaussianity or statistical anisotropy are some
relatively weak signatures at large scales, seen in both WMAP [31]
and Planck data [32], but not of high enough significance to reject the
simplifying assumption. Nevertheless, models that deviate from the
inflationary slow-roll conditions can have measurable non-Gaussian
signatures. So while the current observational limits make the power
spectrum the dominant probe of cosmology, it is worth noting that
higher-order correlations are beginning to be a tool for constraining
otherwise viable theories.

28.3.4. Angular Resolution and Binning :

There is no one-to-one conversion between multipole ℓ and the
angle subtended by a particular spatial scale projected onto the sky.
However, a single spherical harmonic Yℓm corresponds to angular
variations of θ ∼ π/ℓ. CMB maps contain anisotropy information from
the size of the map (or in practice some fraction of that size) down
to the beam-size of the instrument, σ (the standard deviation of the
beam, in radians). One can think of the effect of a Gaussian beam as

rolling off the power spectrum with the function e−ℓ(ℓ+1)σ2

.

For less than full sky coverage, the ℓ modes become correlated.
Hence, experimental results are usually quoted as a series of ‘band
powers,’ defined as estimators of ℓ(ℓ + 1)Cℓ/2π over different ranges
of ℓ. Because of the strong foreground signals in the Galactic Plane,
even ‘all-sky’ surveys, such as WMAP and Planck involve a cut sky.
The amount of binning required to obtain uncorrelated estimates of
power also depends on the map size.

28.4. Cosmological Parameters

The current ‘Standard Model’ of cosmology contains around 10
free parameters (see The Cosmological Parameters—Sec. 25 of this
Review). The basic framework is the Friedmann-Robertson-Walker
(FRW) metric (i.e., a universe that is approximately homogeneous and
isotropic on large scales), with density perturbations laid down at early
times and evolving into today’s structures (see Big-Bang cosmology—
Sec. 22 of this Review). The most general possible set of density
variations is a linear combination of an adiabatic density perturbation
and some isocurvature perturbations. Adiabatic means that there is
no change to the entropy per particle for each species, i.e., δρ/ρ
for matter is (3/4)δρ/ρ for radiation. Isocurvature means that the
set of individual density perturbations adds to zero, for example,
matter perturbations compensate radiation perturbations so that the
total energy density remains unperturbed, i.e., δρ for matter is −δρ
for radiation. These different modes give rise to distinct (temporal)
phases during growth, with those of the adiabatic scenario looking
exactly like the data. Models that generate mainly isocurvature type

perturbations (such as most topological defect scenarios) are no longer
considered to be viable. However, an admixture of the adiabatic mode
with up to about 4% isocurvature contribution (depending on details
of the mode) is still allowed [33,34].

28.4.1. Initial Condition Parameters :

Within the adiabatic family of models, there is, in principle, a free
function describing the variation of comoving curvature perturbations,
R(x, t). The great virtue of R is that it is constant in time for a
purely adiabatic perturbation. There are physical reasons to anticipate
that the variance of these perturbations will be described well by
a power law in scale, i.e., in Fourier space

〈

|R|2k
〉

∝ kns−4, where
k is wavenumber and ns is the usual definition of spectral index.
So-called ‘scale-invariant’ initial conditions (meaning gravitational
potential fluctuations that are independent of k) correspond to
ns = 1. In inflationary models [35] (see upcoming review on inflation
), perturbations are generated by quantum fluctuations, which
are set by the energy scale of inflation, together with the slope
and higher derivatives of the inflationary potential. One generally
expects that the Taylor series expansion of lnRk(ln k) has terms of
steadily decreasing size. For the simplest models, there are thus two
parameters describing the initial conditions for density perturbations,
namely the amplitude and slope of the power spectrum. These can be
explicitly defined, for example, through:

∆2
R

≡ (k3/2π2)
〈

|R|2k
〉

≃ As (k/k0)
ns−1 ,

with As ≡ ∆2
R

(k0) and k0 = 0.05 Mpc−1, say. There are many
other equally valid definitions of the amplitude parameter (see also
Secs. 22, 25, and upcoming review on inflation of this Review),
and we caution that the relationships between some of them can
be cosmology-dependent. In ‘slow roll’ inflationary models, this
normalization is proportional to the combination V 3/(V ′)2, for the
inflationary potential V (φ). The slope ns also involves V ′′, and so the
combination of As and ns can constrain potentials.

Inflation generates tensor (gravitational wave) modes, as well as
scalar (density perturbation) modes. This fact introduces another
parameter, measuring the amplitude of a possible tensor component, or
equivalently the ratio of the tensor to scalar contributions. The tensor
amplitude is At ∝ V , and thus one expects a larger gravitational wave
contribution in models where inflation happens at higher energies.
The tensor power spectrum also has a slope, often denoted nt, but
since this seems unlikely to be measured in the near future, it is
sufficient for now to focus only on the amplitude of the gravitational
wave component. It is most common to define the tensor contribution
through r, the ratio of tensor to scalar perturbation spectra at some
small value of k (although sometimes it is defined in terms of the ratio
of contributions at ℓ = 2). Different inflationary potentials will lead
to different predictions, e.g., for 50 e-folds λφ4 inflation gives r = 0.32
and m2φ2 inflation gives r = 0.16 (both now disfavored by the data),
while other models can have arbitrarily small values of r. In any case,
whatever the specific definition, and whether they come from inflation
or something else, the ‘initial conditions’ give rise to a minimum of
three parameters, As, ns, and r.

28.4.2. Background Cosmology Parameters :

The FRW cosmology requires an expansion parameter (the Hubble
Constant, H0, often represented through H0 = 100 h kms−1Mpc−1)
and several parameters to describe the matter and energy content of
the Universe. These are usually given in terms of the critical density,
i.e., for species ‘x,’ Ωx ≡ ρx/ρcrit, where ρcrit ≡ 3H2

0/8πG. Since

physical densities ρx ∝ Ωxh2 ≡ ωx are what govern the physics of the
CMB anisotropies, it is these ωs that are best constrained by CMB
data. In particular CMB, observations constrain Ωbh2 for baryons
and Ωch

2 for cold dark matter (with ρm = ρc + ρb for the sum).

The contribution of a cosmological constant Λ (or other form
of dark energy, see Dark Energy—Sec. 27) is usually included via
a parameter that quantifies the curvature, ΩK ≡ 1 − Ωtot, where
Ωtot = Ωm + ΩΛ. The radiation content, while in principle a free
parameter, is precisely enough determined by the measurement of Tγ ,

and makes a < 10−4 contribution to Ωtot today.
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Astrophysical processes at relatively low redshift can also affect the
Cℓs, with a particularly significant effect coming through reionization.
The Universe became reionized at some redshift zi, long after
recombination, affecting the CMB through the integrated Thomson
scattering optical depth:

τ =

∫ zi

0
σTne(z)

dt

dz
dz,

where σT is the Thomson cross-section, ne(z) is the number density
of free electrons (which depends on astrophysics), and dt/dz is fixed
by the background cosmology. In principle, τ can be determined from
the small-scale matter power spectrum, together with the physics of
structure formation and radiative feedback processes; however, this
is a sufficiently intricate calculation that in practice τ needs to be
considered as a free parameter.

Thus, we have eight basic cosmological parameters: As, ns, r,
h, Ωbh2, Ωch

2, Ωtot, and τ . One can add additional parameters
to this list, particularly when using the CMB in combination with
other data sets. The next most relevant ones might be: Ωνh2, the
massive neutrino contribution; w (≡ p/ρ), the equation of state
parameter for the dark energy; and dns/d ln k, measuring deviations
from a constant spectral index. To these 11 one could of course add
further parameters describing additional physics, such as details of
the reionization process, features in the initial power spectrum, a
sub-dominant contribution of isocurvature modes, etc.

As well as these underlying parameters, there are other (dependent)
quantities that can be obtained from them. Such derived parameters
include the actual Ωs of the various components (e.g., Ωm), the
variance of density perturbations at particular scales (e.g., σ8), the
angular scale of the sound horizon (θ∗), the age of the Universe today
(t0), the age of the Universe at recombination, reionization, etc. (see
The Cosmological Parameters—Sec. 25).

28.5. Physics of Anisotropies

The cosmological parameters affect the anisotropies through the
well understood physics of the evolution of linear perturbations within
a background FRW cosmology. There are very effective, fast, and
publicly available software codes for computing the CMB anisotropy,
polarization, and matter power spectra, e.g., CMBFAST [36] and
CAMB [37]. These have been tested over a wide range of cosmological
parameters and are considered to be accurate to much better than
the 1% level [38], so that numerical errors are less than 10% of the
parameter uncertainties for Planck [9].

For pedagogical purposes, it is easiest to focus on the temperature
anisotropies, before moving to the polarization power spectra. A
description of the physics underlying the CTT

ℓ s can be separated into
four main regions (the first two combined below), as shown in the top
left part of Fig. 28.1.

28.5.1. The ISW Rise, ℓ
∼

< 10, and Sachs-Wolfe Plateau,

10
∼

< ℓ
∼

< 100 :

The horizon scale (or more precisely, the angle subtended by
the Hubble radius) at last scattering corresponds to ℓ ≃ 100.
Anisotropies at larger scales have not evolved significantly, and hence
directly reflect the ‘initial conditions.’ Temperature variations are
δT/T = −(1/5)R(xLSS) ≃ (1/3)δφ/c2, where δφ is the perturbation
to the gravitational potential, evaluated on the last scattering surface
(LSS). This is a result of the combination of gravitational redshift and
intrinsic temperature fluctuations, and is usually referred to as the
Sachs-Wolfe effect [39].

Assuming that a nearly scale-invariant spectrum of curvature
and corresponding density perturbations was laid down at early
times (i.e., ns ≃ 1, meaning equal power per decade in k), then
ℓ(ℓ + 1)Cℓ ≃ constant at low ℓs. This effect is hard to see unless the
multipole axis is plotted logarithmically (as in Fig. 28.1, and part of
Fig. 28.2).

Time variation of the potentials (i.e., time-dependent metric
perturbations) leads to an upturn in the Cℓs in the lowest several
multipoles; any deviation from a total equation of state w = 0
has such an effect. So the dominance of the dark energy at low
redshift (see Dark Energy—Sec. 27) makes the lowest ℓs rise above
the plateau. This is sometimes called the integrated Sachs-Wolfe

Figure 28.1: Theoretical CMB anisotropy power spectra, using
the best-fitting ΛCDM model from Planck, calculated using
CAMB. The panel on the left shows the theoretical expectation
for scalar perturbations, while the panel on the right is for
tensor perturbations with an amplitude set to r = 0.1. Note
that the x-axis is logarithmic here. For the well-measured scalar
TT spectrum, the regions, each covering roughly a decade in ℓ,
are labeled as in the text: the ISW rise; Sachs-Wolfe plateau;
acoustic peaks; and damping tail. The TE cross-correlation
power spectra change sign, and that has been indicated by
plotting the absolute value, but switching color for the negative
parts.

effect (or ISW rise), since it comes from the line integral of φ̇; it
has been confirmed through correlations between the large-angle
anisotropies and large-scale structure [40]. Specific models can also
give additional contributions at low ℓ (e.g., perturbations in the dark
energy component itself [41]), but typically these are buried in the
cosmic variance.

In principle, the mechanism that produces primordial perturbations
could generate scalar, vector, and tensor modes. However, the vector
(vorticity) modes decay with the expansion of the Universe. The
tensors (transverse trace-free perturbations to the metric) generate
temperature anisotropies through the integrated effect of the locally
anisotropic expansion of space. Since the tensor modes also redshift
away after they enter the horizon, they contribute only to angular
scales above about 1◦ (see Fig. 28.1). Hence some fraction of the low-ℓ
signal could be due to a gravitational wave contribution, although
small amounts of tensors are essentially impossible to discriminate from
other effects that might raise the level of the plateau. Nevertheless,
the tensors can be distinguished using polarization information (see
Sec. 28.7).

28.5.2. The Acoustic Peaks, 100
∼

< ℓ
∼

< 1000 :

On sub-degree scales, the rich structure in the anisotropy spectrum
is the consequence of gravity-driven acoustic oscillations occurring
before the atoms in the Universe became neutral. Perturbations
inside the horizon at last scattering have been able to evolve causally
and produce anisotropy at the last scattering epoch, which reflects
this evolution. The frozen-in phases of these sound waves imprint
a dependence on the cosmological parameters, which gives CMB
anisotropies their great constraining power.

The underlying physics can be understood as follows. Before the
Universe became neutral, the proton-electron plasma was tightly
coupled to the photons, and these components behaved as a single
‘photon-baryon fluid.’ Perturbations in the gravitational potential,
dominated by the dark matter component, were steadily evolving.
They drove oscillations in the photon-baryon fluid, with photon
pressure providing most of the restoring force and baryons giving some
additional inertia. The perturbations were quite small in amplitude,
O(10−5), and so evolved linearly. That means each Fourier mode
developed independently, and hence can be described by a driven
harmonic oscillator, with frequency determined by the sound speed in
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the fluid. Thus the fluid density underwent oscillations, giving time
variations in temperature. These combine with a velocity effect, which
is π/2 out of phase and has its amplitude reduced by the sound speed.

After the Universe recombined, the radiation decoupled from
the baryons and could travel freely towards us. At that point, the
(temporal) phases of the oscillations were frozen-in, and became
projected on the sky as a harmonic series of peaks. The main peak
is the mode that went through 1/4 of a period, reaching maximal
compression. The even peaks are maximal under -densities, which
are generally of smaller amplitude because the rebound has to fight
against the baryon inertia. The troughs, which do not extend to zero
power, are partially filled by the Doppler effect because they are at
the velocity maxima.

The physical length scale associated with the peaks is the sound
horizon at last scattering, which can be straightforwardly calculated.
This length is projected onto the sky, leading to an angular scale
that depends on the geometry of space, as well as the distance to
last scattering. Hence the angular position of the peaks is a sensitive
probe of a particular combination of cosmological parameters. In fact,
the angular scale, θ∗, is the most precisely measured observable, and
hence is often treated as an element of the cosmological parameter set.

One additional effect arises from reionization at redshift zi. A
fraction of photons (τ) will be isotropically scattered at z < zi,
partially erasing the anisotropies at angular scales smaller than those
subtended by the Hubble radius at zi. This corresponds typically to
ℓs above a few 10s, depending on the specific reionization model. The
acoustic peaks are therefore reduced by a factor e−2τ relative to the
plateau.

These peaks were a clear theoretical prediction going back to about
1970 [42]. One can think of them as a snapshot of stochastic standing
waves. Since the physics governing them is simple and their structure
rich, then one can see how they encode extractable information about
the cosmological parameters. Their empirical existence started to
become clear around 1994 [43], and the emergence, over the following
decade, of a coherent series of acoustic peaks and troughs is a triumph
of modern cosmology. This picture has received further confirmation
with the detection in the power spectrum of galaxies (at redshifts
close to zero) of the imprint of these same acoustic oscillations in the
baryon component [44], as well as through detection of the expected
oscillations in CMB polarization power spectra (see Sec. 28.7).

28.5.3. The Damping Tail, ℓ
∼

> 1000 :

The recombination process is not instantaneous, which imparts a
thickness to the last scattering surface. This leads to a damping of
the anisotropies at the highest ℓs, corresponding to scales smaller
than that subtended by this thickness. One can also think of the
photon-baryon fluid as having imperfect coupling, so that there is
diffusion between the two components, and hence the amplitudes of
the oscillations decrease with time. These effects lead to a damping
of the Cℓs, sometimes called Silk damping [45] , which cuts off
the anisotropies at multipoles above about 2000. So, although in
principle it is possible to measure to ever smaller scales, this becomes
increasingly difficult in practice.

28.5.4. Gravitational Lensing Effects :

An extra effect at high ℓs comes from gravitational lensing, caused
mainly by non-linear structures at low redshift. The Cℓs are convolved
with a smoothing function in a calculable way, partially flattening
the peaks and troughs, generating a power-law tail at the highest
multipoles, and complicating the polarization signal [46]. The effects
of lensing on the CMB have now been definitively detected through
the 4-point function, which correlates temperature gradients and
small-scale anisotropies (enabling a map of the lensing potential to be
constructed [47,48]), as well as through the smoothing effect on the
shape of the Cℓs. Lensing is important because it gives an independent
estimate of As, breaking the parameter combination Ase

−2τ that is
largely degenerate in the anisotropy power spectra.

Lensing is an example of a ‘secondary effect,’ i.e., the processing
of anisotropies due to relatively nearby structures (see Sec. 28.8.2).
Galaxies and clusters of galaxies give several such effects; all are
expected to be of low amplitude, but are increasingly important at
the highest ℓs. Such effects carry additional cosmological information
(about evolving gravitational potentials in the low-redshift Universe)

and are increasing in importance as experiments push to higher
sensitivity and angular resolution. Measurements of the lensing power
spectrum at high ℓ are a particularly sensitive probe of the sum of the
neutrino masses [49].

28.6. Current Temperature Anisotropy Data

There has been a steady improvement in the quality of CMB
data that has led to the development of the present-day cosmological
model. The most robust constraints currently available come from
Planck satellite [50,51] data combined with smaller scale results from
the ACT [52] and SPT [53] experiments (together with constraints
from non-CMB cosmological data-sets). We plot power spectrum
estimates from these experiments in Fig. 28.2, along with WMAP

data [8] to show the consistency (see previous versions of this review
for data from earlier experiments). Comparisons among data-sets
show very good agreement, both in maps and in derived power spectra
(up to systematic uncertainties in the overall calibration for some
experiments). This makes it clear that systematic effects are largely
under control.

Figure 28.2: CMB temperature anisotropy band-power esti-
mates from the Planck, WMAP, ACT, and SPT experiments.
Note that the widths of the ℓ-bands vary between experiments
and have not been plotted. This figure represents only a selection
of the most recent available experimental results, and some
points with large error bars have been omitted. At the higher
multipoles these band-powers involve subtraction of particular
foreground models, while proper analysis requires simultaneous
fitting of CMB and foregrounds over multiple frequencies. The
x-axis here is logarithmic for the lowest multipoles, to show the
Sachs-Wolfe plateau, and linear for the other multipoles. The
acoustic peaks and damping region are very clearly observed,
with no need for a theoretical curve to guide the eye; however,
the curve plotted is the best-fit Planck model.

The band-powers shown in Fig. 28.2 are in very good agreement
with a ‘ΛCDM’ model. As described earlier, several (at least eight)
of the peaks and troughs are quite apparent. For details of how
these estimates were arrived at, the strength of correlations between
band-powers and other information required to properly interpret
them, the original papers should be consulted.

28.7. CMB Polarization

Since Thomson scattering of an anisotropic radiation field also
generates linear polarization, the CMB is predicted to be polarized
at the level of roughly 5% of the temperature anisotropies [54] .
Polarization is a spin-2 field on the sky, and the algebra of the modes
in ℓ-space is strongly analogous to spin-orbit coupling in quantum
mechanics [55]. The linear polarization pattern can be decomposed
in a number of ways, with two quantities required for each pixel in
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a map, often given as the Q and U Stokes parameters. However,
the most intuitive and physical decomposition is a geometrical one,
splitting the polarization pattern into a part that comes from a
divergence (often referred to as the ‘E-mode’) and a part with a curl
(called the ‘B-mode’) [56]. More explicitly, the modes are defined in
terms of second derivatives of the polarization amplitude, with the
Hessian for the E-modes having principle axes in the same sense as
the polarization, while the B-mode pattern can be thought of as a 45◦

rotation of the E-mode pattern. Globally one sees that the E-modes
have (−1)ℓ parity (like the spherical harmonics), while the B-modes

have (−1)ℓ+1 parity.

The existence of this linear polarization allows for six different
cross power spectra to be determined from data that measure the
full temperature and polarization anisotropy information. Parity
considerations make two of these zero, and we are left with four
potential observables, CTT

ℓ , CTE
ℓ , CEE

ℓ , and CBB
ℓ (see Fig. 28.1).

Because scalar perturbations have no handedness, the B-mode power
spectrum can only be sourced by vectors or tensors. Moreover, since
inflationary scalar perturbations give only E-modes, while tensors
generate roughly equal amounts of E- and B-modes, then the
determination of a non-zero B-mode signal is a way to measure the
gravitational wave contribution (and thus potentially derive the energy
scale of inflation). However, since the signal is expected to be rather
weak, one must first eliminate the foreground contributions and other
systematic effects down to very low levels.

The polarization Cℓs also exhibit a series of acoustic peaks
generated by the oscillating photon-baryon fluid. The main ‘EE’
power spectrum has peaks that are out of phase with those in the
‘TT ’ spectrum, because the polarization anisotropies are sourced by
the fluid velocity. The ‘TE’ part of the polarization and temperature
patterns comes from correlations between density and velocity
perturbations on the last scattering surface, which can be both
positive and negative, and is of larger amplitude than the EE signal.
There is no polarization Sachs-Wolfe effect, and hence no large-angle
plateau. However, scattering during a recent period of reionization
can create a polarization ‘bump’ at large angular scales.

Figure 28.3: Cross-power spectrum band-powers of the
temperature anisotropies and E-mode polarization signal from
Planck (the low multipole data have been binned here), WMAP,
BICEP2/Keck, ACT, and SPT. The curve is the prediction from
the best fit to the Planck temperature band-powers (as well as
the ℓ < 30 polarization and CMB lensing results) and is not a fit
to these data; however, these TE measurements follow the curve
very closely, showing the expected oscillatory structure. Note
that each band-power is an average over a range of multipoles,
and hence to compare in detail with a model one has to average
the theoretical curve through the band.

Because the polarization anisotropies have only a fraction of the
amplitude of the temperature anisotropies, they took longer to detect.
The first measurement of a polarization signal came in 2002 from

the DASI experiment [57] , which provided a convincing detection,
confirming the general paradigm, but of low enough significance that
it lent little constraint to models. Despite dramatic progress since
then, it is still the case that polarization data mainly support the basic
paradigm, without dramatically reducing error bars on parameters.
However, there are exceptions to this, specifically in the reionization
optical depth, and the potential to constrain primordial gravitational
waves.

28.7.1. T–E Power Spectrum :

Since the T and E skies are correlated, one has to measure the
TE power spectrum, as well as TT and EE, in order to extract all
the cosmological information. This TE signal has now been mapped
out extremely accurately by Planck [51], and these band-powers
are shown in Fig. 28.3, along with those from WMAP [58] and
BICEP2/Keck [59], with ACT [60] and SPT [61] extending to smaller
angular scales. The anti-correlation at ℓ ≃ 150 and the peak at ℓ ≃ 300
were the first features to become distinct, but now a whole series
of oscillations is clearly seen in this power spectrum. The measured
shape of the cross-correlation power spectrum provides supporting
evidence for the general cosmological picture, as well as directly
constraining the thickness of the last scattering surface. Since the
polarization anisotropies are generated in this scattering surface, the
existence of correlations at angles above about a degree demonstrates
that there were super-Hubble fluctuations at the recombination epoch.
The sign of this correlation also confirms the adiabatic paradigm.

The overall picture of the source of CMB polarization and its
oscillations has also been confirmed through tests that average the
maps around both temperature hot spots and cold spots [62,11] .
One sees precisely the expected patterns of radial and tangential
polarization configurations, as well as the phase shift between
polarization and temperature. This leaves no doubt that the
oscillation picture is the correct one and that the polarization is
coming from Thomson scattering at z ≃ 1100.

Figure 28.4: Power spectrum of E-mode polarization from
Planck, together with WMAP, BICEP2/Keck, QUAD, ACT,
and SPT. Note that some band-powers with larger uncertainties
have been omitted and that the unbinned Planck low-ℓ data
have been binned here. Also plotted is the best-fit theoretical
model from Planck TT data (plus polarization at ℓ < 30 and
CMB lensing).

28.7.2. E–E Power Spectrum :

Experimental band-powers for CEE
ℓ from Planck, WMAP ,

BICEP2/Keck Array [59] , QUAD [63] , ACT [60], and SPT [61]
are shown in Fig. 28.4. Without the benefit of correlating with the
temperature anisotropies (i.e., measuring CTE

ℓ ), the polarization
anisotropies are very weak and challenging to measure. Nevertheless,
the oscillatory pattern is becoming well established and the data
closely match the TT -derived theoretical prediction. In Fig. 28.4 one
can clearly see the ‘shoulder’ expected at ℓ ≃ 140, the first main peak



416 28. Cosmic microwave background

at ℓ ≃ 400 (corresponding to the first trough in CTT
ℓ ), and the series

of oscillations that is out of phase with the temperature anisotropy
power spectrum.

Perhaps the most distinctive result from the polarization mea-
surements is at the largest angular scales (ℓ < 10) in CTE

ℓ and

CEE
ℓ , where there is evidence for an excess signal (not visible in

Fig. 28.4) compared to that expected from the temperature power
spectrum alone. This is precisely the signal anticipated from an early
period of reionization, arising from Doppler shifts during the partial
scattering at z < zi. The amplitude of the signal indicates that the
first stars, presumably the source of the ionizing radiation, formed
around z ≃ 10 (although the uncertainty is still quite large). Since
this corresponds to scattering optical depth τ ≃ 0.1, then roughly
10% of CMB photons were re-scattered at the reionization epoch,
with the other 90% last scattering at z ≃ 1100. However, estimates
of the amplitude of this reionization excess have come down since the
first measurements by WMAP (indicating that this is an extremely
difficult measurement to make) and the latest determination from

Planck gives zi = 8.8+1.7
−1.4 [13].

28.7.3. B–B Power Spectrum :

The expected amplitude of CBB
ℓ is very small, and so measurements

of this polarization curl-mode are very challenging. The first indication
of the existence of the BB signal has come from the detection of
the expected conversion of E-modes to B-modes by gravitational
lensing, through a correlation technique using the lensing potential
and polarization measurements from SPT [64] . However, the real
promise of B-modes lies in the detection of primordial gravitational
waves at larger scales. This tensor signature could be seen either in
the ‘recombination bump’ at around ℓ = 100 (caused by an ISW effect
as gravitational waves redshift away at the last-scattering epoch) or
the ‘reionization bump’ (from additional scattering at low redshifts).

Results from the BICEP-2 experiment [65] in 2014 suggested a
detection of the primordial B-mode signature around the recombina-
tion peak. BICEP-2 mapped a small part of the CMB sky with the
the lowest sensitivity level yet reached (below 100 nK), but at a single
frequency. Higher frequency data from Planck indicated that much of
the BICEP2 signal was due to dust within out Galaxy, and a combined
analysis by the BICEP-2, Keck Array, and Planck teams [66] indicated
that the data are consistent with no primordial B-modes, with an
upper limit of r < 0.12.

Several experiments are continuing to push down the sensitivity
of B-mode measurements, motivated by the enormous importance
of a future detection of this telltale signature of inflation (or other
physics at the highest energies). A compilation of experimental
results for CBB

ℓ is shown in Fig. 28.5, coming from a combination
of direct estimates of the B-modes (BICEP2/Keck Array [59],
POLARBEAR [67], and SPTpol [68]) and indirect determinations
of the lensing B-modes based on estimating the effect of measured
lensing on measured E-modes (Planck [48], SPT [64], and ACT [69])
. Additional band-power estimates are expected from these and other
experiments in the near future.

28.8. Complications

There are a number of issues that complicate the interpretation
of CMB anisotropy data (and are considered to be signal by many
astrophysicists), some of which we sketch out below.

28.8.1. Foregrounds :

The microwave sky contains significant emission from our Galaxy
and from extra-galactic sources [70] . Fortunately, the frequency
dependence of these various sources is in general substantially different
from that of the CMB anisotropy signals. The combination of Galactic
synchrotron, bremsstrahlung, and dust emission reaches a minimum
at a frequency of roughly 100 GHz (or wavelength of about 3 mm).
As one moves to greater angular resolution, the minimum moves to
slightly higher frequencies, but becomes more sensitive to unresolved
(point-like) sources.

At frequencies around 100 GHz, and for portions of the sky
away from the Galactic Plane, the foregrounds are typically 1 to
10% of the CMB anisotropies. By making observations at multiple
frequencies, it is relatively straightforward to separate the various
components and determine the CMB signal to the few per cent level.

Figure 28.5: Power spectrum of B-mode polarization, including
results from the BICEP2/Keck Array/Planck combined analysis
(B/K/P), Planck, POLARBEAR, SPT, and ACT. Note that
some of the measurements are direct estimates of B-modes on the
sky, while others are only sensitive to the lensing signal and come
from combining E-mode and lensing potential measurements.
Several experiments have previous reported upper limits, which
are all off the top of this plot. A logarithmic x-axis is adopted
here and the y-axis has been divided by a factor of

√
ℓ in

order to show all three theoretically expected contributions: the
low-ℓ reionization bump; the ℓ ∼ 100 recombination peak; and
the high-ℓ lensing signature. The dotted line is for a tensor
(primordial gravitational wave) fraction r = 0.1, simply as an
example, with all other cosmological parameters set at the best
Planck-derived values, for which model the expected lensing
B-modes have also been shown with a dashed line.

For greater sensitivity, it is necessary to use the spatial information
and statistical properties of the foregrounds to separate them from
the CMB. Furthermore, at higher ℓs it is essential to carefully model
extragalactic foregrounds, particularly the clustering of infrared-
emitting galaxies, which dominate the measured power spectrum as
we move into the damping tail.

The foregrounds for CMB polarization follow a similar pattern to
those for temperature, but are less well studied, and are intrinsically
brighter relative to CMB anisotropies. WMAP showed that the
polarized foregrounds dominate at large angular scales, and that
they must be well characterized in order to be discriminated [71] .
Planck has shown that it is possible to characterize the foreground
polarization signals, with synchrotron dominating at low frequencies
and dust at high frequencies [72]. Whether the foregrounds become
more complicated as we push down in sensitivity at high multipoles is
not known. However, although they make analysis more difficult, for
the time being, foreground contamination is not a fundamental limit
for CMB experiments.

28.8.2. Secondary Anisotropies :

With increasingly precise measurements of the primary anisotropies,
there is growing theoretical and experimental interest in ‘secondary
anisotropies,’ pushing experiments to higher angular resolution and
sensitivity. These secondary effects arise from the processing of
the CMB due to ionization history and the evolution of structure,
including gravitational lensing (which was already discussed) and
patchy reionization effects [73] . Additional information can thus
be extracted about the Universe at z ≪ 1000. This tends to be
most effectively done through correlating CMB maps with other
cosmological probes of structure. Secondary signals are also typically
non-Gaussian, unlike the primary CMB anisotropies.

A secondary signal of great current interest is the Sunyaev-Zeldovich
(SZ) effect [74] , which is Compton scattering (γe → γ′e′) of the
CMB photons by hot electron gas. This creates spectral distortions
by transferring energy from the electrons to the photons. It is
particularly important for clusters of galaxies, through which one
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observes a partially Comptonized spectrum, resulting in a decrement
at radio wavelengths and an increment in the submillimeter.

The imprint on the CMB sky is of the form ∆T/T = y f(x), with
the y-parameter being the integral of Thomson optical depth times
kTe/mec

2 through the cluster, and f(x) describing the frequency
dependence. This is simply x coth(x/2) − 4 for a non-relativistic gas
(the electron temperature in a cluster is typically a few keV), where
the dimensionless frequency x ≡ hν/kTγ. As well as this ‘thermal’ SZ
effect, there is also a smaller ‘kinetic’ effect due to the bulk motion of
the cluster gas, giving ∆T/T ∼ τ(v/c), with either sign, but having
the same spectrum as the primary CMB anisotropies.

A significant advantage in finding galaxy clusters this way is that
the SZ effect is largely independent of redshift, so in principle clusters
can be found to arbitrarily large distances. The SZ effect can be used
to find and study individual clusters, and to obtain estimates of the
Hubble constant. There is also the potential to constrain cosmological
parameters, such as the clustering amplitude σ8 and the equation
of state of the dark energy, through counts of detected clusters as
a function of redshift. The promise of the method has been realized
through detections of clusters purely through the SZ effect by SPT [75]
, ACT [76], and Planck [77]. Results from Planck clusters [78] suggest
a somewhat lower value of σ8 than inferred from CMB anisotropies,
but there are still systematic uncertainties that might encompass
the difference. Further analysis of scaling relations among cluster
properties should enable more robust cosmological constraints to be
placed in future, so that we can understand whether this ‘tension’
might be a sign of new physics.

28.8.3. Higher-order Statistics :

Although most of the CMB anisotropy information is contained in
the power spectra, there will also be weak signals present in higher-
order statistics. These can measure any primordial non-Gaussianity
in the perturbations, as well as non-linear growth of the fluctuations
on small scales and other secondary effects (plus residual foreground
contamination of course). Although there are an infinite variety of
ways in which the CMB could be non-Gaussian [29] , there is a
generic form to consider for the initial conditions, where a quadratic
contribution to the curvature perturbations is parameterized through
a dimensionless number fNL. This weakly non-linear component can
be constrained in several ways, the most popular being through
measurements of the bispectrum.

The constraints depend on the shape of the triangles in harmonic
space, and it has become common to distinguish the ‘local’ or
‘squeezed’ configuration (in which one side is much smaller than the
other two) from the ‘equilateral’ configuration. Other configurations
are also relevant for specific theories, such as ‘orthogonal’ non-
Gaussianity, which has positive correlations for k1 ≃ 2k2 ≃ 2k3,
and negative correlations for the equilateral configuration. The
results from the Planck team [79]( including polarization here) are

f local
NL = 1 ± 5, f equil

NL = 0 ± 40, and fortho
NL = −26 ± 21.

These results are consistent with zero, but are at a level that
is now interesting for model predictions. The amplitude of fNL
expected is small, so that a detection of fNL ≫ 1 would rule out
all single-field, slow-roll inflationary models. It is still possible to
improve upon these Planck results, and it certainly seems feasible
that a measurement of primordial non-Gaussianity may yet be within
reach. Non-primordial detections of non-Gaussianity from expected
signatures have already been made. For example, the bispectrum and
trispectrum contain evidence of gravitational lensing, the ISW effect,
and Doppler boosting. For now the primordial signal is elusive, but
should it be detected, then detailed measurements of non-Gaussianity
will become a unique probe of inflationary-era physics. Because of
that, much effort continues to be devoted to honing predictions and
measurement techniques, with the expectation that we will need to go
beyond the CMB to dramatically improve the constraints.

28.8.4. Anomalies :

Several features seen in the Planck data [32] confirm those found
earlier with WMAP [31] , showing mild deviations from a simple
description of the data; these are often referred to as ‘anomalies.’
One such feature is the apparent lack of power in the multipole
range ℓ ≃ 20–30 [9,51]. The other examples involve the breaking of
statistical anisotropy, caused by alignment of the lowest multipoles,

or a somewhat excessive cold spot, or a power asymmetry between
hemispheres. No such feature is significant at more than the roughly
3σ level, and the importance of ‘a posteriori’ statistics here has been
emphasized by many authors. Since these effects are at large angular
scales, where cosmic variance dominates, the results will not increase
in significance with more data, although there is the potential for
polarization data to provide independent tests.

28.9. Constraints on Cosmological Parameters

The most striking outcome of the newer experimental results is that
the standard cosmological paradigm is in very good shape. A large
amount of high precision data on the power spectrum is adequately
fit with fewer than 10 free parameters (and only six need non-trivial
values). The framework is that of FRW models, which have nearly flat
geometry, containing dark matter and dark energy, and with adiabatic
perturbations having close to scale-invariant initial conditions.

Within this basic picture, the values of the cosmological parameters
can be constrained. Of course, much more stringent bounds can
be placed on models that cover a restricted parameter space,
e.g., assuming that Ωtot = 1 or r = 0. More generally, the constraints
depend upon the adopted prior probability distributions, even if they
are implicit, for example by restricting the parameter freedom or their
ranges (particularly where likelihoods peak near the boundaries), or
by using different choices of other data in combination with the CMB.
As the data become even more precise, these considerations will be
less important, but for now we caution that restrictions on model
space and choice of non-CMB data-sets and priors need to be kept in
mind when adopting specific parameter values and uncertainties.

There are some combinations of parameters that fit the CMB
anisotropies almost equivalently. For example, there is a nearly exact
geometric degeneracy, where any combination of Ωm and ΩΛ that gives
the same angular diameter distance to last scattering will give nearly
identical Cℓs. There are also other less exact degeneracies among the
parameters. Such degeneracies can be broken when using the CMB
results in combination with other cosmological data-sets. Particularly
useful are complementary constraints from baryon acoustic oscillations,
galaxy clustering, the abundance of galaxy clusters, weak gravitational
lensing measurements, and Type Ia supernova distances. For an
overview of some of these other cosmological constraints, see The
Cosmological Parameters—Sec. 25 of this Review.

Within the context of a six parameter family of models (which
fixes Ωtot = 1, dns/d ln k = 0, r = 0, and w = −1) the Planck results
for TT , together with low-ℓ polarization and CMB lensing, and the
use of high-ℓ data from ACT and SPT to constrain foregrounds,
yields [13]: ln(1010As) = 3.062 ± 0.029; ns = 0.968 ± 0.006; Ωbh2 =
0.02226 ± 0.00023; Ωch

2 = 0.1186 ± 0.0020; 100θ∗ = 1.0410 ± 0.0005;
and τ = 0.066 ± 0.016. Other parameters can be derived from this
basic set, including h = 0.678± 0.009, ΩΛ = 0.692± 0.012 (= 1 −Ωm)
and σ8 = 0.815 ± 0.009. Somewhat different (although consistent)
values are obtained using other data combinations, such as including
BAO, supernova, H0, or weak lensing constraints (see Sec. 25 of this
Review). However, the results quoted above are currently the best
available from CMB anisotropies alone. The uncertainties decrease
by around 25% when adding Planck polarization data, although the
recommendation for now is not to include these 2015 polarization
data in fits, since there are still some unmodeltaed systematic effects
present [51].

The standard cosmological model continues to fit the data well,
with the error bars on the parameters continuing to shrink. Improved
measurement of higher acoustic peaks has dramatically reduced the
uncertainty in the θ∗ parameter, which is now detected at > 2000σ.
The evidence for ns < 1 remains above the 5σ level. The value of
the reionization optical depth has decreased compared with earlier
estimates; it is convincingly detected, but still not of very high
significance.

Constraints can also be placed on parameters beyond the basic six,
particularly when including other astrophysical data-sets. Relaxing
the flatness assumption, the constraint on Ωtot is 1.005 ± 0.008.
Note that for h, the CMB data alone provide only a very weak
constraint if spatial flatness is not assumed. However, with the
addition of other data (particularly powerful in this context being
a compilation of BAO measurements [80] ), the constraints on the
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Hubble constant and curvature improve considerably, leading to
Ωtot = 1.0002± 0.0026 [13].

For Ωbh2 the CMB-derived value is generally consistent with
completely independent constraints from Big Bang nucleosynthesis (see
Sec. 24 of this Review). Related are constraints on additional neutrino-
like relativistic degrees of freedom, which lead to Neff = 3.15 ± 0.23
(including BAO), i.e., no evidence for extra neutrino species.

The 95% confidence upper limit on r (measured at k = 0.002 Mpc−1)
from the effect of tensors solely on CTT

ℓ (see Fig. 28.1) is 0.11. This
limit depends on how the slope n is restricted and whether
dns/d ln k 6= 0 is allowed. The joint constraints on ns and r allows
specific inflationary models to be tested [33,34] . The limit on r is
even tighter when combined with the BICEP/Keck/Planck results for
CBB

ℓ , yielding r < 0.08 at 95% confidence [34]. Looking at the (ns, r)

plane, this means that m2φ2 (mass-term quadratic) inflation is now
disfavored by the data, as well as λφ4 (self-coupled) inflation.

The addition of the dark energy equation of state w adds the partial
degeneracy of being able to fit a ridge in (w, h) space, extending
to low values of both parameters. This degeneracy is broken when
the CMB is used in combination with other data-sets, e.g., adding
a compilation of BAO data gives w = −1.01 ± 0.05. Constraints can
also be placed on more general dark energy and modified gravity
models [81]. However, one needs to be careful not to over-interpret
some tensions between data-sets as evidence for new physics.

For the optical depth τ , the best-fit corresponds to a reionization
redshift centered on 9 in the best-fit cosmology, and assuming
instantaneous reionization. This redshift is only slightly higher that
that suggested from studies of absorption lines in high-z quasar
spectra [82] and Ly α-emitting galaxies [83], perhaps hinting
that the process of reionization was not as complex as previously
suspected. The important constraint provided by CMB polarization,
in combination with astrophysical measurements, thus allows us to
investigate how the first stars formed and brought about the end of
the cosmic dark ages.

28.10. Particle Physics Constraints

CMB data place limits on parameters that are directly relevant
for particle physics models. For example, there is a limit on the sum
of the masses of the neutrinos,

∑

mν < 0.21 eV (95%) [9] coming
from Planck together with BAO measurements (although limits are
weaker when considering both Neff and

∑

mν as free parameters).
This assumes the usual number density of fermions, which decoupled
when they were relativistic. The limit is tantalizingly only a factor of
a few higher than the minimum value coming from neutrino mixing
experiments (see Neutrino Mixings—Sec. 14). As well as being an
indirect probe of the neutrino background, Planck data also require
that the neutrino background has perturbations, i.e. that it possesses
a sound speed c2s ≃ 1/3, as expected [13].

The current suite of data suggests that ns < 1, with a best-fitting
value about 0.03 below unity. This is already quite constraining
for inflationary models, particularly along with r limits. There
is no current evidence for running of the spectral index, with
dns/d ln k = −0.003 ± 0.008 from Planck alone [13] , although this
is less of a constraint on inflationary models. Similarly, primordial
non-Gaussianity is being probed to interesting levels, although tests of
simple inflationary models will only come with significant reductions
in uncertainty.

The large-angle anomalies, such as the hemispheric modulation of
power and the dip in power at ℓ ≃ 20–30, have the potential to be
hints of new physics. Such effects might be expected in a universe
that has a large-scale power cut-off, or anisotropy in the initial power
spectrum, or is topologically non-trivial. However, cosmic variance
and a posteriori statistics limit the significance of these anomalies,
absent the existence of a model that naturally yields some of these
features (and hopefully also predicting other phenomena that can be
tested).

It is possible to place limits on additional areas of physics [84]
, for example annihilating dark matter, [13], primordial magnetic
fields [85], and time variation of the fine-structure constant [86], as
well as parity violation, the neutrino chemical potential, a contribution
of warm dark matter, topological defects, or physics beyond general

relativity. Further particle physics constraints will follow as the
anisotropy measurements increase in precision.

The CMB anisotropy measurements precisely pin down physics
at the time of last-scattering, and so any change of physics can be
constrained if it affects the relevant energies or timescales. Future,
higher sensitivity measurements of the CMB frequency spectrum will
push the constraints back to cover energy injection at much earlier
times (∼ 1 year). Comparison of CMB and BBN observables extend
these constraints to timescales of order seconds, and energies in the
MeV range. And to the extent that inflation provides an effective
description of the generation of perturbations, the inflationary
observables will constrain physics at GUT-type energy scales.

More generally, careful measurement of the CMB power spectra
and non-Gaussianity can in principle put constraints on physics at the
highest energies, including ideas of string theory, extra dimensions,
colliding branes, etc. At the moment any calculation of predictions
appears to be far from definitive. However, there is a great deal of
activity on implications of string theory for the early Universe, and
hence a very real chance that there might be observational implications
for specific scenarios.

28.11. Fundamental Lessons

More important than the precise values of parameters is what we
have learned about the general features that describe our observable
Universe. Beyond the basic hot Big Bang picture, the CMB has
taught us that:

• The Universe recombined at z ≃ 1100 and started to become
ionized again at z ≃ 10.

• The geometry of the Universe is close to flat.

• Both dark matter and dark energy are required.

• Gravitational instability is sufficient to grow all of the observed
large structures in the Universe.

• Topological defects were not important for structure formation.

• There are ‘synchronized’ super-Hubble modes generated in the
early Universe.

• The initial perturbations were predominantly adiabatic in nature.

• The perturbation spectrum has a slightly red tilt.

• The perturbations had close to Gaussian (i.e., maximally random)
initial conditions.

These features form the basis of the cosmological standard model,
ΛCDM, for which it is tempting to make an analogy with the Standard
Model of particle physics (see earlier Sections of this Review). The
cosmological model is much further from any underlying ‘fundamental
theory,’ which may ultimately provide the values of the parameters
from first principles. Nevertheless, any genuinely complete ‘theory
of everything’ must include an explanation for the values of these
cosmological parameters as well as the parameters of the Standard
Model of particle physics.

28.12. Future Directions

Given the significant progress in measuring the CMB sky, which has
been instrumental in tying down the cosmological model, what can we
anticipate for the future? There will be a steady improvement in the
precision and confidence with which we can determine the appropriate
cosmological parameters. Ground-based experiments operating at
smaller angular scales will continue to place tighter constraints on the
damping tail. New polarization experiments at small scales will probe
further into the damping tail, without the limitation of extragalactic
foregrounds. And polarization experiments at large angular scales will
push down the limits on primordial B-modes.

Planck, the third generation CMB satellite mission, was launched
in May 2009, and has produced a large number of papers, including a
set of cosmological studies based on the first two full surveys of the
sky (accompanied by a public release of data products) in 2013 and a
further series based on analysis of the full mission data release in 2015
(eight surveys for the Low Frequency Instrument and five surveys for
the High Frequency Instrument). In 2016 results are expected from a
final analysis, including a comprehensive investigation of polarization.

A set of cosmological parameters is now known to percent level
accuracy, and that may seem sufficient for many people. However,
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we should certainly demand more of measurements that describe the

entire observable Universe! Hence a lot of activity in the coming
years will continue to focus on determining those parameters with
increasing precision. This necessarily includes testing for consistency
among different predictions of the cosmological Standard Model, and
searching for signals that might require additional physics.

A second area of focus will be the smaller scale anisotropies
and ‘secondary effects.’ There is a great deal of information about
structure formation at z ≪ 1000 encoded in the CMB sky. This
may involve higher-order statistics and cross-correlations with other
large-scale structure tracers, as well as spectral signatures, with
many experiments targeting the galaxy cluster SZ effect. The current
status of CMB lensing is similar (in terms of total signal-to-noise)
to the quality of the first CMB anisotropy measurements by COBE,
and thus we can expect that experimental probes of lensing will
improve dramatically in the coming years. All of these investigations
can provide constraints on the dark energy equation of state, for
example, which is a major area of focus for several future cosmological
surveys at optical wavelengths. CMB lensing also promises to yield a
measurement of the sum of the neutrino masses.

A third direction is increasingly sensitive searches for specific
signatures of physics at the highest energies. The most promising of
these may be the primordial gravitational wave signals in CBB

ℓ , which

could be a probe of the ∼ 1016 GeV energy range. There are several
ground- and balloon-based experiments underway that are designed
to search for the polarization B-modes. Additionally, non-Gaussianity
holds the promise of constraining models beyond single-field slow-roll
inflation.

Anisotropies in the CMB have proven to be the premier probe of
cosmology and the early Universe. Theoretically the CMB involves
well understood physics in the linear regime, and is under very good
calculational control. A substantial and improving set of observational
data now exists. Systematics appear to be under control and not
a limiting factor. And so for the next few years we can expect an
increasing amount of cosmological information to be gleaned from
CMB anisotropies, with the prospect also of some genuine surprises.
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29. COSMIC RAYS

Revised August 2015 by J.J. Beatty (Ohio State Univ.), J. Matthews
(Louisiana State Univ.), and S.P. Wakely (Univ. of Chicago).

29.1. Primary spectra

The cosmic radiation incident at the top of the terrestrial
atmosphere includes all stable charged particles and nuclei with
lifetimes of order 106 years or longer. Technically, “primary” cosmic
rays are those particles accelerated at astrophysical sources and
“secondaries” are those particles produced in interaction of the
primaries with interstellar gas. Thus electrons, protons and helium, as
well as carbon, oxygen, iron, and other nuclei synthesized in stars, are
primaries. Nuclei such as lithium, beryllium, and boron (which are
not abundant end-products of stellar nucleosynthesis) are secondaries.
Antiprotons and positrons are also in large part secondary. Whether
a small fraction of these particles may be primary is a question of
current interest.

Apart from particles associated with solar flares, the cosmic
radiation comes from outside the solar system. The incoming charged
particles are “modulated” by the solar wind, the expanding magnetized
plasma generated by the Sun, which decelerates and partially excludes
the lower energy galactic cosmic rays from the inner solar system.
There is a significant anticorrelation between solar activity (which
has an alternating eleven-year cycle) and the intensity of the cosmic
rays with energies below about 10 GeV. In addition, the lower-energy
cosmic rays are affected by the geomagnetic field, which they must
penetrate to reach the top of the atmosphere. Thus the intensity of
any component of the cosmic radiation in the GeV range depends
both on the location and time.

There are four different ways to describe the spectra of the
components of the cosmic radiation: (1) By particles per unit rigidity.
Propagation (and probably also acceleration) through cosmic magnetic
fields depends on gyroradius or magnetic rigidity, R, which is
gyroradius multiplied by the magnetic field strength:

R =
p c

Z e
= r

L
B . (29.1)

(2) By particles per energy-per-nucleon. Fragmentation of nuclei
propagating through the interstellar gas depends on energy per
nucleon, since that quantity is approximately conserved when a
nucleus breaks up on interaction with the gas. (3) By nucleons
per energy-per-nucleon. Production of secondary cosmic rays in
the atmosphere depends on the intensity of nucleons per energy-
per-nucleon, approximately independently of whether the incident
nucleons are free protons or bound in nuclei. (4) By particles per
energy-per-nucleus. Air shower experiments that use the atmosphere
as a calorimeter generally measure a quantity that is related to total
energy per particle.

The units of differential intensity I are [m−2 s−1sr−1E−1], where E

represents the units of one of the four variables listed above.

The intensity of primary nucleons in the energy range from several
GeV to somewhat beyond 100 TeV is given approximately by

IN (E) ≈ 1.8 × 104 (E/1 GeV)−α nucleons

m2 s sr GeV
, (29.2)

where E is the energy-per-nucleon (including rest mass energy) and
α (≡ γ + 1) = 2.7 is the differential spectral index of the cosmic-ray
flux and γ is the integral spectral index. About 79% of the primary
nucleons are free protons and about 70% of the rest are nucleons
bound in helium nuclei. The fractions of the primary nuclei are nearly
constant over this energy range (possibly with small but interesting
variations). Fractions of both primary and secondary incident nuclei
are listed in Table 29.1. Figure 29.1 shows the major components
for energies greater than 2 GeV/nucleon. A useful compendium of
experimental data for cosmic-ray nuclei and electrons is described in
[1].

Figure 29.1: Fluxes of nuclei of the primary cosmic radiation
in particles per energy-per-nucleus are plotted vs energy-per-
nucleus using data from Refs. [2–13]. The figure was created by
P. Boyle and D. Muller.

The composition and energy spectra of nuclei are typically
interpreted in the context of propagation models, in which the sources
of the primary cosmic radiation are located within the Galaxy [14].
The ratio of secondary to primary nuclei is observed to decrease with
increasing energy, a fact interpreted to mean that the lifetime of
cosmic rays in the galaxy decreases with energy. Measurements of
radioactive “clock” isotopes in the low energy cosmic radiation are
consistent with a lifetime in the galaxy of about 15 Myr [15].

Table 29.1: Relative abundances F of cosmic-ray nuclei at
10.6 GeV/nucleon normalized to oxygen (≡ 1) [7]. The oxygen
flux at kinetic energy of 10.6 GeV/nucleon is 3.29 × 10−2

(m2 s sr GeV/nucleon)−1. Abundances of hydrogen and helium
are from Refs. [3,4]. Note that one can not use these values to
extend the cosmic-ray flux to high energy because the power law
indicies for each element may differ slightly.

Z Element F

1 H 540

2 He 26

3–5 Li-B 0.40

6–8 C-O 2.20

9–10 F-Ne 0.30

11–12 Na-Mg 0.22

Z Element F

13–14 Al-Si 0.19

15–16 P-S 0.03

17–18 Cl-Ar 0.01

19–20 K-Ca 0.02

21–25 Sc-Mn 0.05

26–28 Fe-Ni 0.12

Cosmic rays are nearly isotropic at most energies due to diffusive
propagation in the galactic magnetic field. Milagro [16], IceCube [17],
and the Tibet-III air shower array [18] have observed anisotropy at
the level of about 10−3 for cosmic rays with energy of a few TeV,
possibly due to nearby sources.

The spectrum of electrons and positrons incident at the top of
the atmosphere is expected to steepen by one power of E at an
energy of ∼5 GeV because of strong radiative energy loss effects in
the galaxy. The ATIC experiment [19] measured a sharp excess of
electrons over propagation model expectations, at energies of ∼300-800
GeV. The Fermi/LAT γ-ray observatory measured a not-entirely flat
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spectrum [20] without confirming the peak of the ATIC excess at ∼600
GeV. Measurements in the same energy range by AMS-02 also show
no sharp features and are compatible with a single power law above
30.2 GeV [21]. The HESS imaging atmospheric Cherenkov array also
measured the electron flux above ∼400 GeV, finding indications of a
cutoff above ∼1 TeV [22], but no evidence for a pronounced peak
below this.

The PAMELA [26] and AMS-02 [27,24] satellite experiments
measured the positron to electron ratio to increase above 10 GeV
instead of the expected decrease [28] at higher energy, confirming
earlier hints seen by the HEAT balloon-borne experiment [30]. The
structure in the electron spectrum, as well as the increase in the
positron fraction, may be related to contributions from individual
nearby sources (supernova remnants or pulsars) emerging above a
background suppressed at high energy by synchrotron losses [31].
Other explanations have invoked propagation effects [32] or dark
matter decay/annihilation processes (see, e.g., [29]) . The significant
disagreement in the ratio below ∼10 GeV is attributable to differences
in charge-sign dependent solar modulation effects present near earth
at the times of measurement.
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Figure 29.2: Differential spectrum of electrons plus positrons
(except PAMELA data, which are electrons only) multiplied by
E3 [19–23,33,34]. The line shows the proton spectrum [25]
multiplied by 0.01.
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Figure 29.3: The positron fraction (ratio of the flux of e+ to
the total flux of e+ and e−) [26,24,30]. The heavy black line
is a model of pure secondary production [28] and the three thin
lines show three representative attempts to model the positron
excess with different phenomena: green: dark matter decay [29];
blue: propagation physics [32]; red: production in pulsars [40].
The ratio below 10 GeV is dependent on the polarity of the solar
magnetic field.

The ratio of antiprotons to protons is ∼ 2× 10−4 [35] at around 10–
20 GeV, and there is clear evidence [36] for the kinematic suppression
at lower energy that is the signature of secondary antiprotons. The
p/p ratio also shows a strong dependence on the phase and polarity
of the solar cycle [37] in the opposite sense to that of the positron
fraction. There is at this time no evidence for a significant primary
component of antiprotons. No antihelium or antideuteron has been
found in the cosmic radiation. The best measured upper limit on the
ratio antihelium/helium is currently approximately 1 × 10−7 [38] The
upper limit on the flux of antideuterons around 1 GeV/nucleon is
approximately 2 × 10−4 (m2 s sr GeV/nucleon)−1 [39].

29.2. Cosmic rays in the atmosphere

Figure 29.4 shows the vertical fluxes of the major cosmic-ray
components in the atmosphere in the energy region where the particles
are most numerous (except for electrons, which are most numerous
near their critical energy, which is about 81 MeV in air). Except for
protons and electrons near the top of the atmosphere, all particles are
produced in interactions of the primary cosmic rays in the air. Muons
and neutrinos are products of the decay chain of charged mesons,
while electrons and photons originate in decays of neutral mesons.

Most measurements are made at ground level or near the top of the
atmosphere, but there are also measurements of muons and electrons
from airplanes and balloons. Fig. 29.4 includes recent measurements
of negative muons [41–45]. Since µ+(µ−) are produced in association
with νµ(νµ), the measurement of muons near the maximum of the
intensity curve for the parent pions serves to calibrate the atmospheric
νµ beam [46]. Because muons typically lose almost 2 GeV in passing
through the atmosphere, the comparison near the production altitude
is important for the sub-GeV range of νµ(νµ) energies.

The flux of cosmic rays through the atmosphere is described by
a set of coupled cascade equations with boundary conditions at the
top of the atmosphere to match the primary spectrum. Numerical or
Monte Carlo calculations are needed to account accurately for decay
and energy-loss processes, and for the energy-dependences of the cross
sections and of the primary spectral index γ. Approximate analytic
solutions are, however, useful in limited regions of energy [47,48].
For example, the vertical intensity of charged pions with energy
Eπ ≪ ǫπ = 115 GeV is

Iπ(Eπ, X) ≈
ZNπ

λN
IN (Eπ, 0) e−X/Λ X Eπ

ǫπ
, (29.3)

where Λ is the characteristic length for exponential attenuation of
the parent nucleon flux in the atmosphere. This expression has a
maximum at X = Λ ≈121±4 g cm−2 [49], which corresponds to an
altitude of 15 kilometers. The quantity ZNπ is the spectrum-weighted
moment of the inclusive distribution of charged pions in interactions
of nucleons with nuclei of the atmosphere. The intensity of low-energy
pions is much less than that of nucleons because ZNπ ≈ 0.079 is small
and because most pions with energy much less than the critical energy
ǫπ decay rather than interact.

29.3. Cosmic rays at the surface

29.3.1. Muons : Muons are the most numerous charged particles
at sea level (see Fig. 29.4). Most muons are produced high in the
atmosphere (typically 15 km) and lose about 2 GeV to ionization
before reaching the ground. Their energy and angular distribution
reflect a convolution of the production spectrum, energy loss in the
atmosphere, and decay. For example, 2.4 GeV muons have a decay
length of 15 km, which is reduced to 8.7 km by energy loss. The mean
energy of muons at the ground is ≈ 4 GeV. The energy spectrum is
almost flat below 1 GeV, steepens gradually to reflect the primary
spectrum in the 10–100 GeV range, and steepens further at higher
energies because pions with Eπ > ǫπ tend to interact in the atmosphere
before they decay. Asymptotically (Eµ ≫ 1 TeV), the energy spectrum
of atmospheric muons is one power steeper than the primary spectrum.
The integral intensity of vertical muons above 1 GeV/c at sea level is
≈ 70 m−2s−1sr−1 [50,51], with recent measurements [52–54] favoring
a lower normalization by 10-15%. Experimentalists are familiar with
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this number in the form I ≈ 1 cm−2 min−1 for horizontal detectors.
The overall angular distribution of muons at the ground is ∝ cos2 θ,
which is characteristic of muons with Eµ ∼ 3 GeV. At lower energy
the angular distribution becomes increasingly steep, while at higher
energy it flattens, approaching a sec θ distribution for Eµ ≫ ǫπ and
θ < 70◦.
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Figure 29.4: Vertical fluxes of cosmic rays in the atmosphere
with E > 1 GeV estimated from the nucleon flux of Eq. (29.2).
The points show measurements of negative muons with
Eµ > 1 GeV [41–45].

Figure 29.5 shows the muon energy spectrum at sea level for
two angles. At large angles low energy muons decay before reaching
the surface and high energy pions decay before they interact, thus
the average muon energy increases. An approximate extrapolation
formula valid when muon decay is negligible (Eµ > 100/ cosθ GeV)
and the curvature of the Earth can be neglected (θ < 70◦) is

dNµ

dEµdΩ
≈

0.14 E−2.7
µ

cm2 s sr GeV

×











1

1 +
1.1Eµ cos θ

115 GeV

+
0.054

1 +
1.1Eµ cos θ

850 GeV











, (29.4)

where the two terms give the contribution of pions and charged kaons.
Eq. (29.4) neglects a small contribution from charm and heavier flavors
which is negligible except at very high energy [55].

The muon charge ratio reflects the excess of π+ over π− and
K+ over K− in the forward fragmentation region of proton initiated
interactions together with the fact that there are more protons than
neutrons in the primary spectrum. The increase with energy of µ+/µ−

shown in Fig. 29.6 reflects the increasing importance of kaons in the
TeV range [60] and indicates a significant contribution of associated
production by cosmic-ray protons (p → Λ + K+). The same process
is even more important for atmospheric neutrinos at high energy.
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. The line plots the result from Eq. (29.4) for vertical showers.
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momentum from Refs. [53,54,60,65,66].

29.3.2. Electromagnetic component : At the ground, this
component consists of electrons, positrons, and photons primarily
from cascades initiated by decay of neutral and charged mesons.
Muon decay is the dominant source of low-energy electrons at sea
level. Decay of neutral pions is more important at high altitude
or when the energy threshold is high. Knock-on electrons also
make a small contribution at low energy [61]. The integral vertical
intensity of electrons plus positrons is very approximately 30, 6, and
0.2 m−2s−1sr−1 above 10, 100, and 1000 MeV respectively [51,62],
but the exact numbers depend sensitively on altitude, and the angular
dependence is complex because of the different altitude dependence
of the different sources of electrons [61–63]. The ratio of photons to
electrons plus positrons is approximately 1.3 above 1 GeV and 1.7
below the critical energy [63].
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29.3.3. Protons : Nucleons above 1 GeV/c at ground level are
degraded remnants of the primary cosmic radiation. The intensity is
approximately IN (E, 0) × exp(−X/ cos θΛ) for θ < 70◦. At sea level,
about 1/3 of the nucleons in the vertical direction are neutrons (up
from ≈ 10% at the top of the atmosphere as the n/p ratio approaches
equilibrium). The integral intensity of vertical protons above 1 GeV/c
at sea level is ≈ 0.9 m−2s−1sr−1 [51,64].

29.4. Cosmic rays underground

Only muons and neutrinos penetrate to significant depths
underground. The muons produce tertiary fluxes of photons, electrons,
and hadrons.

29.4.1. Muons : As discussed in Section 33.6 of this Review, muons
lose energy by ionization and by radiative processes: bremsstrahlung,
direct production of e+e− pairs, and photonuclear interactions. The
total muon energy loss may be expressed as a function of the amount
of matter traversed as

−
dEµ

dX
= a + b Eµ , (29.5)

where a is the ionization loss and b is the fractional energy loss by the
three radiation processes. Both are slowly varying functions of energy.
The quantity ǫ ≡ a/b (≈ 500 GeV in standard rock) defines a critical
energy below which continuous ionization loss is more important than
radiative losses. Table 29.2 shows a and b values for standard rock,
and b for ice, as a function of muon energy. The second column of
Table 29.2 shows the muon range in standard rock (A = 22, Z = 11,
ρ = 2.65 g cm−3). These parameters are quite sensitive to the
chemical composition of the rock, which must be evaluated for each
location.

Table 29.2: Average muon range R and energy loss parameters
a and b calculated for standard rock [67] and the total energy
loss parameter b for ice. Range is given in km-water-equivalent,

or 105 g cm−2.

Eµ R a bbrems bpair bnucl
∑

bi
∑

b(ice)

GeV km.w.e. MeVg−1 cm2 10−6 g−1 cm2

10 0.05 2.17 0.70 0.70 0.50 1.90 1.66

100 0.41 2.44 1.10 1.53 0.41 3.04 2.51

1000 2.45 2.68 1.44 2.07 0.41 3.92 3.17

10000 6.09 2.93 1.62 2.27 0.46 4.35 3.78

The intensity of muons underground can be estimated from the
muon intensity in the atmosphere and their rate of energy loss. To the
extent that the mild energy dependence of a and b can be neglected,
Eq. (29.5) can be integrated to provide the following relation between
the energy Eµ,0 of a muon at production in the atmosphere and its
average energy Eµ after traversing a thickness X of rock (or ice or
water):

Eµ,0 = (Eµ + ǫ) ebX
− ǫ . (29.6)

Especially at high energy, however, fluctuations are important and an
accurate calculation requires a simulation that accounts for stochastic
energy-loss processes [68].

There are two depth regimes for which Eq. (29.6) can be simplified.
For X ≪ b−1 ≈ 2.5 km water equivalent, Eµ,0 ≈ Eµ(X) + aX , while

for X ≫ b−1 Eµ,0 ≈ (ǫ + Eµ(X)) exp(bX). Thus at shallow depths
the differential muon energy spectrum is approximately constant for
Eµ < aX and steepens to reflect the surface muon spectrum for
Eµ > aX , whereas for X > 2.5 km.w.e. the differential spectrum
underground is again constant for small muon energies but steepens
to reflect the surface muon spectrum for Eµ > ǫ ≈ 0.5 TeV. In the
deep regime the shape is independent of depth although the intensity
decreases exponentially with depth. In general the muon spectrum at
slant depth X is

dNµ(X)

dEµ
=

dNµ

dEµ,0

dEµ,0

dEµ
=

dNµ

dEµ,0
ebX , (29.7)

where Eµ,0 is the solution of Eq. (29.6) in the approximation neglecting
fluctuations.

Fig. 29.7 shows the vertical muon intensity versus depth. In
constructing this “depth-intensity curve,” each group has taken
account of the angular distribution of the muons in the atmosphere,
the map of the overburden at each detector, and the properties
of the local medium in connecting measurements at various slant
depths and zenith angles to the vertical intensity. Use of data from
a range of angles allows a fixed detector to cover a wide range of
depths. The flat portion of the curve is due to muons produced locally
by charged-current interactions of νµ. The inset shows the vertical
intensity curve for water and ice published in Refs. [70–73]. It is not
as steep as the one for rock because of the lower muon energy loss in
water.

1 10 100

1 102 5

Figure 29.7: Vertical muon intensity vs depth (1 km.w.e. =
105 g cm−2of standard rock). The experimental data are from:
♦: the compilations of Crouch [69], ¤: Baksan [74], ◦: LVD [75],
•: MACRO [76], ¥: Frejus [77], and △: SNO [78]. The shaded
area at large depths represents neutrino-induced muons of energy
above 2 GeV. The upper line is for horizontal neutrino-induced
muons, the lower one for vertically upward muons. Darker
shading shows the muon flux measured by the SuperKamiokande
experiment. The inset shows the vertical intensity curve for
water and ice published in Refs. [70–73].

29.4.2. Neutrinos :

Because neutrinos have small interaction cross sections, measure-
ments of atmospheric neutrinos require a deep detector to avoid
backgrounds. There are two types of measurements: contained (or
semi-contained) events, in which the vertex is determined to originate
inside the detector, and neutrino-induced muons. The latter are
muons that enter the detector from zenith angles so large (e.g.,
nearly horizontal or upward) that they cannot be muons produced
in the atmosphere. In neither case is the neutrino flux measured
directly. What is measured is a convolution of the neutrino flux and
cross section with the properties of the detector (which includes the
surrounding medium in the case of entering muons).

Contained and semi-contained events reflect neutrinos in the
sub-GeV to multi-GeV region where the product of increasing cross
section and decreasing flux is maximum. In the GeV region the
neutrino flux and its angular distribution depend on the geomagnetic
location of the detector and, to a lesser extent, on the phase of the
solar cycle. Naively, we expect νµ/νe = 2 from counting neutrinos
of the two flavors coming from the chain of pion and muon decay.
Contrary to expectation, however, the numbers of the two classes of
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Table 29.3: Measured fluxes (10−9 m−2 s−1 sr−1) of neutrino-induced
muons as a function of the effective minimum muon energy Eµ.

Eµ > 1 GeV 1 GeV 1 GeV 2 GeV 3 GeV 3 GeV

Ref. CWI [82] Baksan [83] MACRO [84] IMB [85] Kam [86] SuperK [87]

Fµ 2.17±0.21 2.77±0.17 2.29 ± 0.15 2.26±0.11 1.94±0.12 1.74±0.07

events are similar rather than different by a factor of two. This is now
understood to be a consequence of neutrino flavor oscillations [81].
(See the article on neutrino properties in this Review.)

Two well-understood properties of atmospheric cosmic rays provide
a standard for comparison of the measurements of atmospheric
neutrinos to expectation. These are the “sec θ effect” and the “east-
west effect” [80]. The former refers originally to the enhancement
of the flux of > 10 GeV muons (and neutrinos) at large zenith
angles because the parent pions propagate more in the low density
upper atmosphere where decay is enhanced relative to interaction.
For neutrinos from muon decay, the enhancement near the horizontal
becomes important for Eν > 1 GeV and arises mainly from the
increased pathlength through the atmosphere for muon decay in flight.
Fig. 14.11 from Ref. 79 shows a comparison between measurement and
expectation for the zenith angle dependence of multi-GeV electron-like
(mostly νe) and muon-like (mostly νµ) events separately. The νe show
an enhancement near the horizontal and approximate equality for
nearly upward (cos θ ≈ −1) and nearly downward (cos θ ≈ 1) events.
There is, however, a very significant deficit of upward (cos θ < 0) νµ

events, which have long pathlengths comparable to the radius of the
Earth. This feature is the principal signature for atmosperic neutrino
oscillations [81].

Muons that enter the detector from outside after production in
charged-current interactions of neutrinos naturally reflect a higher
energy portion of the neutrino spectrum than contained events because
the muon range increases with energy as well as the cross section.
The relevant energy range is ∼ 10 < Eν < 1000 GeV, depending
somewhat on angle. Neutrinos in this energy range show a sec θ effect
similar to muons (see Eq. (29.4)). This causes the flux of horizontal
neutrino-induced muons to be approximately a factor two higher
than the vertically upward flux. The upper and lower edges of the
horizontal shaded region in Fig. 29.7 correspond to horizontal and
vertical intensities of neutrino-induced muons. Table 29.3 gives the
measured fluxes of upward-moving neutrino-induced muons averaged
over the lower hemisphere. Generally the definition of minimum
muon energy depends on where it passes through the detector. The
tabulated effective minimum energy estimates the average over various
accepted trajectories.

29.5. Air showers

So far we have discussed inclusive or uncorrelated fluxes of various
components of the cosmic radiation. An air shower is caused by a
single cosmic ray with energy high enough for its cascade to be
detectable at the ground. The shower has a hadronic core, which
acts as a collimated source of electromagnetic subshowers, generated
mostly from π0 → γ γ decays. The resulting electrons and positrons
are the most numerous charged particles in the shower. The number
of muons, produced by decays of charged mesons, is an order of
magnitude lower. Air showers spread over a large area on the ground,
and arrays of detectors operated for long times are useful for studying
cosmic rays with primary energy E0 > 100 TeV, where the low flux
makes measurements with small detectors in balloons and satellites
difficult.

Greisen [88] gives the following approximate expressions for the
numbers and lateral distributions of particles in showers at ground
level. The total number of muons Nµ with energies above 1 GeV is

Nµ(> 1 GeV) ≈ 0.95 × 105
(

Ne/106
)3/4

, (29.8)

where Ne is the total number of charged particles in the shower (not
just e±). The number of muons per square meter, ρµ, as a function of
the lateral distance r (in meters) from the center of the shower is

ρµ =
1.25 Nµ

2π Γ(1.25)

(

1

320

)1.25

r−0.75
(

1 +
r

320

)−2.5
, (29.9)

where Γ is the gamma function. The number density of charged
particles is

ρe = C1(s, d, C2)x(s−2)(1 + x)(s−4.5)(1 + C2x
d) . (29.10)

Here s, d, and C2 are parameters in terms of which the overall
normalization constant C1(s, d, C2) is given by

C1(s, d, C2) =
Ne

2πr2
1

[ B(s, 4.5 − 2s)

+ C2 B(s + d, 4.5 − d − 2s)]−1 , (29.11)

where B(m, n) is the beta function. The values of the parameters
depend on shower size (Ne), depth in the atmosphere, identity of the
primary nucleus, etc. For showers with Ne ≈ 106 at sea level, Greisen
uses s = 1.25, d = 1, and C2 = 0.088. Finally, x is r/r1, where r1 is
the Molière radius, which depends on the density of the atmosphere
and hence on the altitude at which showers are detected. At sea level
r1 ≈ 78 m. It increases with altitude as the air density decreases. (See
the section on electromagnetic cascades in the article on the passage
of particles through matter in this Review).

The lateral spread of a shower is determined largely by Coulomb
scattering of the many low-energy electrons and is characterized by
the Mol̀iere radius. The lateral spread of the muons (ρµ) is larger and
depends on the transverse momenta of the muons at production as
well as multiple scattering.

There are large fluctuations in development from shower to shower,
even for showers of the same energy and primary mass—especially
for small showers, which are usually well past maximum development
when observed at the ground. Thus the shower size Ne and primary
energy E0 are only related in an average sense, and even this relation
depends on depth in the atmosphere. One estimate of the relation
is [95]

E0 ∼ 3.9 × 106 GeV (Ne/106)0.9 (29.12)

for vertical showers with 1014 < E < 1017 eV at 920 g cm−2 (965 m
above sea level). As E0 increases the shower maximum (on average)
moves down into the atmosphere and the relation between Ne and E0

changes. Moreover, because of fluctuations, Ne as a function of E0 is
not correctly obtained by inverting Eq. (29.12). At the maximum of
shower development, there are approximately 2/3 particles per GeV of
primary energy.

There are three common types of air shower detectors: shower
arrays that study the shower size Ne and the lateral distribution on
the ground, Cherenkov detectors that detect the Cherenkov radiation
emitted by the charged particles of the shower, and fluorescence
detectors that study the nitrogen fluorescence excited by the charged
particles in the shower. The fluorescence light is emitted isotropically
so the showers can be observed from the side. Detailed simulations and
cross-calibrations between different types of detectors are necessary to
establish the primary energy spectrum from air-shower experiments.

Figure 29.8 shows the “all-particle” spectrum. The differential
energy spectrum has been multiplied by E2.6 in order to display the
features of the steep spectrum that are otherwise difficult to discern.
The steepening that occurs between 1015 and 1016 eV is known as the
knee of the spectrum. The feature around 1018.5 eV is called the ankle

of the spectrum.
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Figure 29.8: The all-particle spectrum as a function of E
(energy-per-nucleus) from air shower measurements [90–105].

Measurements of flux with small air shower experiments in the
knee region differ by as much as a factor of two, indicative of
systematic uncertainties in interpretation of the data. (For a review
see Ref. 89.) In establishing the spectrum shown in Fig. 29.8, efforts
have been made to minimize the dependence of the analysis on the
primary composition. Ref. 98 uses an unfolding procedure to obtain
the spectra of the individual components, giving a result for the
all-particle spectrum between 1015 and 1017 eV that lies toward the
upper range of the data shown in Fig. 29.8. In the energy range
above 1017 eV, the fluorescence technique [106] is particularly useful
because it can establish the primary energy in a model-independent
way by observing most of the longitudinal development of each shower,
from which E0 is obtained by integrating the energy deposition in
the atmosphere. The result, however, depends strongly on the light
absorption in the atmosphere and the calculation of the detector’s
aperture.

Assuming the cosmic-ray spectrum below 1018 eV is of galactic
origin, the knee could reflect the fact that most cosmic accelerators
in the galaxy have reached their maximum energy. Some types of
expanding supernova remnants, for example, are estimated not to be
able to accelerate protons above energies in the range of 1015 eV.
Effects of propagation and confinement in the galaxy [109] also need
to be considered. The Kascade-Grande experiment [100] has reported
observation of a second steepening of the spectrum near 8 × 1016 eV,
with evidence that this structure is accompanied a transition to heavy
primaries.

Concerning the ankle, one possibility is that it is the result of
a higher energy population of particles overtaking a lower energy
population, for example an extragalactic flux beginning to dominate
over the galactic flux (e.g. Ref. 106). Another possibility is that the
dip structure in the region of the ankle is due to pγ → e+ + e−

energy losses of extragalactic protons on the 2.7 K cosmic microwave
radiation (CMB) [111]. This dip structure has been cited as a robust
signature of both the protonic and extragalactic nature of the highest
energy cosmic rays [110]. If this interpretation is correct, then the
galactic cosmic rays do not contribute significantly to the flux above
1018 eV, consistent with the maximum expected range of acceleration
by supernova remnants.

The energy-dependence of the composition from the knee through
the ankle is useful in discriminating between these two viewpoints,
since a heavy composition above 1018 eV is inconsistent with the
formation of the ankle by pair production losses on the CMB.
The HiRes and Auger experiments, however, present very different
interpretations of data on the depth of shower maximum Xmax, a
quantity that correlates strongly with the interaction cross section of
the primary particle. If these results are interpreted using standard
extrapolations of measured proton and nuclear cross sections, then the
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Figure 29.9: Expanded view of the highest energy portion of
the cosmic-ray spectrum from data of the Telescope Array [104],
and the Auger Observatory [105].

HiRes data [112] is consistent with the ultrahigh-energy cosmic-ray
(UHECR) composition getting lighter and containing only protons
and helium above 1019 eV, while Auger [113,114] sees a composition
getting lighter up to 2 × 1018 eV and becoming heavier after that,
intermediate between protons and iron at 3 × 1019 eV. This may
mean that the extragalactic cosmic rays have a mixed composition at
acceleration similar to the GeV galactic cosmic rays. It is important
to note that the measurements of Xmax may be interpreted with equal
validity in terms of a changing proton-air cross-section and no change
in composition.

If the cosmic-ray flux at the highest energies is cosmological in
origin, there should be a rapid steepening of the spectrum (called
the GZK feature) around 5 × 1019 eV, resulting from the onset of
inelastic interactions of UHE cosmic rays with the cosmic microwave
background [115,116]. Photo-dissociation of heavy nuclei in the
mixed composition model [117] would have a similar effect. UHECR
experiments have detected events of energy above 1020 eV [106–107].
The HiRes fluorescence experiment [102,125] detected evidence of
the GZK suppression, and the Auger observatory [103–105] has
also presented spectra showing this suppression based on surface
detector measurements calibrated against fluorescence detectors using
events detected in hybrid mode, i.e. with both the surface and
the fluorescence detectors. The Telescope Array (TA) [104] has also
presented a spectrum showing this suppression. The differential energy
spectra measured by the TA and by Auger agree within systematic
errors below 1019 eV (Fig. 29.9). At higher energies, TA observes
more events than would be expected if the spectral shape were the
same as that seen by Auger. TA has also reported a ‘hot spot’ in the
Northern Hemisphere at energies above 5.5 × 1019 eV of radius ∼ 20◦

with a post-trials statistical significance of this excess with respect to
an isotropic distribution of 3.4σ [108].

One half of the energy that UHECR protons lose in photoproduction
interactions that cause the GZK effects ends up in neutrinos [118].
Measuring this cosmogenic neutrino flux above 1018 eV would help
resolve the UHECR uncertainties mentioned above. The magnitude of
this flux depends strongly on the cosmic-ray spectrum at acceleration,
the cosmic-ray composition, and the cosmological evolution of the
cosmic-ray sources. In the case that UHECR have mixed composition
only the proton fraction would produce cosmogenic neutrinos. Heavy
nuclei propagation produces mostly ν̄e at lower energy from neutron
decay.

The expected rate of cosmogenic neutrinos is lower than current
limits obtained by IceCube [119], the Auger observatory [120],
RICE [121], and ANITA-2 [122], which are shown in Fig. 29.10
together with a model for cosmogenic neutrino production [123] and the
Waxman-Bahcall benchmark flux of neutrinos produced in cosmic ray
sources [124]. At production, the dominant component of neutrinos
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comes from π± decays and has flavor content νe : νµ : ντ = 1 : 2 : 0.
After oscillations, the arriving cosmogenic neutrinos are expected
to be an equal mixture of all three flavors. The sensitivity of each
experiment depends on neutrino flavor. IceCube, RICE, and ANITA
are sensitive to all three flavors, and the sensitivity to different flavors
is energy dependent. The limit of Auger is only for ντ and ν̄τ which
should be about 1/3 of the total neutrino flux after oscillations, so this
limit is plotted multiplied by a factor of three for comparison with the
other limits and with the theoretical estimates.

IceCube has reported a population of neutrino events extending
from 30 TeV up to 2 PeV that exceeds expected atmospheric
backgrounds and is thus most likely of astrophysical origin [126,127].
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30.1. Luminosity

This article provides background for the High-Energy Collider
Parameter Tables that follow. The number of events, Nexp, is the
product of the cross section of interest, σexp, and the time integral
over the instantaneous luminosity, L :

Nexp = σexp ×
∫

L (t)dt. (30.1)

Today’s colliders all employ bunched beams. If two bunches containing
n1 and n2 particles collide head-on with frequency fcoll, a basic
expression for the luminosity is

L = fcoll

n1n2

4πσxσy
(30.2)

where σx and σy characterize the rms transverse beam sizes in the
horizontal (bend) and vertical directions. In this form it is assumed
that the bunches are identical in transverse profile, that the profiles
are Gaussian and independent of position along the bunch, and the
particle distributions are not altered during bunch crossing. Nonzero
beam crossing angles and long bunches will reduce the luminosity
from this value.

Whatever the distribution at the source, by the time the beam reaches
high energy, the normal form is a useful approximation as suggested
by the σ-notation. In the case of an electron storage ring, synchrotron
radiation leads to a Gaussian distribution in equilibrium, but even in
the absence of radiation the central limit theorem of probability and
the diminished importance of space charge effects produce a similar
result.

The luminosity may be obtained directly by measurement of the
beam properties in Eq. (30.2). For continuous measurements, an
expression similar to Eq. (30.1) with Nref from a known reference
cross section, σref , may be used to determine σexp according to
σexp = (Nexp/Nref )σref .

In the Tables, luminosity is stated in units of cm−2s−1. Integrated
luminosity, on the other hand is usually quoted as the inverse of the
standard measures of cross section such as femtobarns and, recently,
attobarns. Subsequent sections in this report briefly expand on the
dynamics behind collider design, comment on the realization of collider
performance in a selection of today’s facilities, and end with some
remarks on future possibilities.

30.2. Beam Dynamics

The first concern of beam dynamics is stability. While a reference
particle proceeds along the design, or reference, trajectory other
particles in the bunch are to remain close by. Assume that the
reference particle carries a right-handed Cartesian coordinate system,
with the z-coordinate pointed in the direction of motion along the
reference trajectory. The independent variable is the distance s of
the reference particle along this trajectory rather than time, and for
simplicity this path is taken to be planar. The transverse coordinates
are x and y, where {x, z} defines the plane of the reference trajectory.

Several time scales are involved, and the approximations used in
writing the equations of motion reflect that circumstance. All of
today’s high energy colliders are alternating-gradient synchrotrons
or, respectively, storage rings [1,2], and the shortest time scale is
that associated with transverse motion, that is described in terms
of betatron oscillations, so called because of their analysis for the
betatron accelerator species years ago. The linearized equations of
motion of a particle displaced from the reference particle are

x′′ + Kxx = 0, Kx ≡ q

p

∂B

∂x
+

1

ρ2

y′′ + Kyy = 0, Ky ≡ − q

p

∂B

∂x

z′ = −x/ρ

(30.3)

where the magnetic field B(s) along the design trajectory is only
in the y direction, contains only dipole and quadrupole terms, and
is treated as static here. The radius of curvature due to the field
on the reference orbit is ρ; z represents the longitudinal distance
from the reference particle; p and q are the particle’s momentum
and charge, respectively. The prime denotes d/ds. The pair (x, x′)
describes approximately-canonical variables. For more general cases
(e.g. acceleration) one should use (x, px) instead, where px denotes
the transverse momentum in the x-direction.

The equations for x and y are those of harmonic oscillators but with
a restoring force periodic in s; that is, they are instances of Hill’s
equation. The solution may be written in the form

x(s) = Ax

√

βx cosψx

x′(s) = − Ax√
βx

[αx cosψx + sin ψx]
(30.4)

where Ax is a constant of integration, αx ≡ −(1/2)dβx(s)/ds, and the
envelope of the motion is modulated by the amplitude function, βx. A
solution of the same form describes the motion in y. The subscripts
will be suppressed in the following discussion.

The amplitude function satisfies

2ββ′′ − β′2 + 4β2K = 4, (30.5)

and in a region free of magnetic field it should be noted that the
solution of Eq. (30.5) is a parabola. Expressing A in terms of x, x′

yields
A2 = γx2 + 2αxx′ + βx′2

=
1

β

[

x2 + (αx + βx′)2
] (30.6)

with γ ≡ (1 + α2)/β. In a single pass system such as a linac, the
Courant-Snyder parameters α, β, γ may be selected to match the x, x′

distribution of the input beam; in a recursive system, the parameters
are usually defined by the structure rather than by the beam.

The relationships between the parameters and the structure may be
seen by treatment of a simple lattice consisting of equally-spaced
thin-lens quadrupoles whose magnetic-field gradients are equal in
magnitude but alternating in sign. For this discussion, the weak
focusing effects of the bending magnets may be neglected. The
propagation of X ≡ {x, x′} through a repetition period may be
written X2 = MX1, with the matrix M = FODO composed of the
matrices

F =

(

1 0
−1/f 1

)

, D =

(

1 0
1/f 1

)

, O =

(

1 L
0 1

)

,

where f is the magnitude of the focal length and L the lens spacing.
Then

M =









1 +
L

f
2L +

L2

f

− L

f2
1 − L

f
− L2

f2









. (30.7)

The matrix for y is identical in form differing only by a change in sign
of the terms linear in 1/f . An eigenvector-eigenvalue analysis of the
matrix M shows that the motion is stable provided f > L/2. While
that criterion is easily met, in practice instability may be caused by
many other factors, including the beam-beam interaction itself.

Standard focus-drift-defocus-drift, or FODO, cells such as character-
ized in simple form by Eq. (30.7) occupy most of the layout of a
large collider ring and may be used to set the scale of the amplitude
function and related phase advance. Conversion of Eq. (30.4) to a
matrix form equivalent to Eq. (30.7) (but more generally valid, i.e. for
any stable periodic linear motion) gives

M =

(

C + αS βS
−γS C − αS

)

(30.8)

where C ≡ cos∆ψ, S ≡ sin ∆ψ, and the relation between structure
and amplitude function is specified by setting the values of the
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latter to be the same at both ends of the cell. By comparison of
Eq. (30.7) and Eq. (30.8) one finds C = 1 − L2/(2f2), so that the
choice f = L/

√
2 would give a phase advance ∆ψ of 90 degrees for

the standard cell. The amplitude function would have a maximum
at the focusing quadrupole of magnitude β̂ = 2.7L, illustrating the
relationship of alternating gradient focusing amplitudes to relatively
local aspects of the design. Other functionalities such as injection,
extraction, and HEP experiments are included by lattice sections
matched to the standard cell parameters (β, α) at the insertion points.

The phase advances according to dψ/ds = 1/β; that is, β also plays
the role of a local λ/2π, and the tune, ν, is the number of such
oscillations per turn about the closed path. In the neighborhood of an
interaction point (IP), the beam optics of the ring is configured so as
to produce a narrow focus; the value of the amplitude function at this
point is designated β∗.

The motion as it develops with s describes an ellipse in {x, x′ ≡ dx/ds}
phase space, the area of which is πA2, where A is the constant in
Eq. (30.4). If the interior of that ellipse is populated by an ensemble
of non-interacting particles, that area, given the name emittance and
denoted by ε, would change only with energy. More precisely, for
a beam with a Gaussian distribution in x, x′, the area containing
one standard deviation σx, divided by π, is used as the definition of
emittance in the Tables:

εx ≡ σ2
x

βx
, (30.9)

with a corresponding expression in the other transverse direction, y.
This definition includes 39% of the beam. For most of the entries in
the Tables the standard deviation is used as the beam radius.

To complete the coordinates used to describe the motion, we take as
the variable conjugate to z the fractional momentum deviation δp/p
from that of the reference particle. Radiofrequency electric fields in
the s direction provide a means for longitudinal oscillations, and the
frequency determines the bunch length. The frequency of this system
appears in the Tables as does the rms value of δp/p characterized as
“energy spread” of the beam.

For HEP bunch length is a significant quantity for a variety of reasons,
but in the present context if the bunch length becomes larger than
β∗ the luminosity is adversely affected. This is because β grows
parabolically as one proceeds away from the interaction point and
so the beam size increases thus lowering the contribution to the
luminosity from such locations. This is often called the “hourglass”
effect.

The other major external electromagnetic field interaction in the single
particle context is the production of synchrotron radiation due to
centripetal acceleration, given by the Larmor formula multiplied by a
relativistic magnification factor of γ4 [3]. In the case of electron rings
this process determines the equilibrium emittance through a balance
between radiation damping and excitation of oscillations, and further
serves as a barrier to future higher energy versions in this variety of
collider. A related phenomenon is beamstrahlung, i.e. the synchrotron
radiation emitted during the collision in the field of the opposing
beam, which is relevant for both linear colliders (where it degrades
the luminosity spectrum) and future highest-energy circular colliders
(where it limits the beam lifetime). For both types of colliders the
beamstrahlung is mitigated by making the colliding beams as flat as
possible (σ∗

x ≫ σ∗
y).

A more comprehensive discussion of betatron oscillations, longitudinal
motion, and synchrotron radiation is available in the 2008 version of
the PDG review [4].

30.3. Road to High Luminosity

Eq. (30.2) can be recast in terms of emittances and amplitude
functions as

L = f
n1n2

4π
√

ǫx β∗
x ǫy β∗

y

. (30.10)

So to achieve high luminosity, all one has to do is make high population
bunches of low emittance collide at high frequency at locations where

the beam optics provides as low values of the amplitude functions as
possible.

Such expressions as Eq. (30.10) of the luminosity are special cases of
the more general forms available elsewhere [5], wherein the reduction
due to crossing angle and other effects can be found. But while
there are no fundamental limits to the process, there are certainly
challenges. Here we have space to mention only a few of these. The
beam-beam tune shift appears in the Tables. A bunch in beam 1
presents a (nonlinear) lens to a particle in beam 2 resulting in changes
to the particle’s transverse tune with a range characterized by the
parameter [5]

ξy,2 =
µ0

8π2

q1q2n1β
∗
y,2

mA,2γ2σy,1(σx,1 + σy,1)
(30.11)

where q1 (q2) denotes the particle charge of beam 1 (2) in units of
the elementary charge, mA,2 the mass of beam-2 particles, and µ0 the
vacuum permeability. The transverse oscillations are susceptible to
resonant perturbations from a variety of sources such as imperfections
in the magnetic guide field, so that certain values of the tune must
be avoided. Accordingly, the tune spread arising from ξ is limited,
but limited to a value difficult to predict. But a glance at the Tables
shows that electrons are more forgiving than protons thanks to the
damping effects of synchrotron radiation; the ξ-values for the former
are about an order of magnitude larger than those for protons.

A subject of present intense interest is the electron-cloud effect [6,7];
actually a variety of related processes come under this heading.
They typically involve a buildup of electron density in the vacuum
chamber due to emission from the chamber walls stimulated by
electrons or photons originating from the beam itself. For instance,
there is a process closely resembling the multipacting effects familiar
from radiofrequency system commissioning. Low energy electrons
are ejected from the walls by photons from positron or proton
beam-produced synchrotron radiation. These electrons are accelerated
toward a beam bunch, but by the time they reach the center of
the vacuum chamber the bunch has gone and so the now-energetic
electrons strike the opposite wall to produce more secondaries. These
secondaries are now accelerated by a subsequent bunch, and so
on. Among the disturbances that this electron accumulation can
produce is an enhancement of the tune spread within the bunch; the
near-cancellation of bunch-induced electric and magnetic fields is no
longer in effect.

If the luminosity of Eq. (30.10) is rewritten in terms of the beam-beam
parameter, Eq. (30.11)), the emittance itself disappears. However, the
emittance must be sufficiently small to realize a desired magnitude of
beam-beam parameter, but once ξy reaches this limit, further lowering
the emittance does not lead to higher luminosity.

For electron synchrotrons and storage rings, radiation damping
provides an automatic route to achieve a small emittance. In fact,
synchrotron radiation is of key importance in the design and
optimization of e+e− colliders. While vacuum stability and electron
clouds can be of concern in the positron rings, synchrotron radiation
along with the restoration of longitudinal momentum by the RF
system has the positive effect of generating very small transverse
beam sizes and small momentum spread. Further reduction of beam
size at the interaction points using standard beam optics techniques
and successfully contending with high beam currents has led to record
luminosities in these rings, exceeding those of hadron colliders. To
maximize integrated luminosity the beam can be “topped off” by
injecting new particles without removing existing ones – a feature
difficult to imitate in hadron colliders.

For hadrons, particularly antiprotons, two inventions have played a
prominent role. Stochastic cooling [8] was employed first to prepare
beams for the Sp̄pS and subsequently in the Tevatron and in
RHIC [9,10]. Electron cooling [11] was also used in the Tevatron
complex to great advantage. Further innovations are underway driven
by the needs of potential future projects; these are noted in the final
section.
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30.4. Recent High Energy Colliders

Collider accelerator physics of course goes far beyond the elements of
the preceding sections. In this and the following section elaboration
is made on various issues associated with some of the recently
operating colliders, particularly factors which impact integrated
luminosity. The various colliders utilizing hadrons each have unique
characteristics and are, therefore, discussed separately. As space
is limited, general references are provided where much further
information can be obtained. A more complete list of recent colliders
and their parameters can be found in the High-Energy Collider
Parameters tables.

30.4.1. Tevatron : [12] The first synchrotron in history using
superconducting magnets, the Tevatron, was the highest energy
collider for 25 years. Operation was terminated in September 2011,
after delivering more than 10 fb−1 to the p-p collider experiments
CDF and D0. The route to high integrated luminosity in the Tevatron
was governed by the antiproton production rate, the turn-around
time to produce another store, and the resulting optimization of store
time. The proton and antiproton beams in the Tevatron circulated
in a single vacuum pipe and thus were placed on separated orbits
which wrapped around each other in a helical pattern outside of the
interaction regions. Hence, long-range encounters played an important
role here as well, with the 70 long-range encounters distributed about
the synchrotron, and mitigation was limited by the available aperture.
The Tevatron ultimately achieved luminosities a factor of 400 over its
original design specification.

30.4.2. HERA : [13] HERA, operated between 1992 and 2007,
delivered nearly 1 fb−1 of integrated luminosity to the electron-
proton collider experiments H1 and ZEUS. HERA was the first
high-energy lepton-hadron collider, and also the first facility to employ
both applications of superconductivity: magnets and accelerating
structures. The proton beams of HERA had a maximum energy of
920 GeV. The lepton beams (positrons or electrons) were provided
by the existing DESY complex, and were accelerated to 27.5
GeV using conventional magnets. At collision a 4-times higher
frequency RF system, compared with the injection RF, was used to
generate shorter bunches, thus helping alleviate the hourglass effect
at the collision points. The lepton beam naturally would become
transversely polarized (within about 40 minutes) and “spin rotators”
were implemented on either side of an IP to produce longitudinal
polarization at the experiment.

30.4.3. LEP : [14] Installed in a tunnel of 27 km circumference, LEP
was the largest circular e+e− collider built so far. It was operated
from 1989 to 2000 with beam energies ranging from 45.6 to 104.5 GeV
and a maximum luminosity of 1032 cm−2s−1, at 98 GeV, surpassing
all relevant design parameters.

30.4.4. SLC : [15] Based on an existing 3-km long S-band linac, the
SLC was the first and only linear collider. It was operated from 1987
to 1998 with a constant beam energy of 45.6 GeV, up to about 80%
electron-beam polarization, quasi-flat beams, and, in its last year, a
typical peak luminosity of 2 × 1030 cm−2s−1, a third of the design
value.

30.5. Present Collider Facilities

30.5.1. LHC : [16] The superconducting Large Hadron Collider
is the world’s highest energy collider. In 2012 operation for HEP
has been at 4 TeV per proton [17]. The beam energy increased
to 6.5 TeV in 2015. The current status is best checked at the Web
site [18]. To meet its luminosity goals the LHC will have to contend
with a high beam current of 0.5 A, leading to stored energies of several
hundred MJ per beam. Component protection, beam collimation,
and controlled energy deposition are given very high priorities.
Additionally, at energies of 5-7 TeV per particle, synchrotron radiation

will move from being a curiosity to a challenge in a hadron accelerator
for the first time. At design beam current the cryogenic system must
remove roughly 7 kW due to synchrotron radiation, intercepted at a
temperature of 4.5-20 K. As the photons are emitted their interactions
with the vacuum chamber wall can generate free electrons, with
consequent “electron cloud” development. Much care was taken to
design a special beam screen for the chamber to mitigate this issue.

The two proton beams are contained in separate pipes throughout
most of the circumference, and are brought together into a single
pipe at the interaction points. The large number of bunches, and
subsequent short bunch spacing, would lead to approximately 30
head-on collisions through 120 m of common beam pipe at each IP.
Thus, a small crossing angle is employed, which reduces the luminosity
by about 15%. Still, the bunches moving in one direction will have
long-range encounters with the counter-rotating bunches and the
resulting perturbations of the particle motion constitute a continued
course of study. The luminosity scale is absolutely calibrated by the
“van der Meer method” as was invented for the ISR [19], and followed
by multiple, redundant luminosity monitors (see for example [20] and
references therein). The Tables also show the performance anticipated
for Pb-Pb collisions. The ALICE [21] experiment is designed to
concentrate on these high energy-density phenomena, which are
studied as well by ATLAS and CMS. The LHC can also provide Pb-p
collisions as it did in early 2013.

In the coming years, an ambitious upgrade program, HL-LHC [22],
has as its target an order-of-magnitude increase in luminosity through
the utilization of Nb3Sn superconducting magnets, superconducting
compact “crab” cavities and luminosity leveling as key ingredients.

30.5.2. e+e− Rings : Asymmetric energies of the two beams have
allowed for the enhancement of B-physics research and for interesting
interaction region designs. As the bunch spacing can be quite short,
the lepton beams sometimes pass through each other at an angle
and hence have reduced luminosity. Recently, however, the use of
high frequency “crab crossing” schemes has produced full restoration
of the luminous region. KEK-B attained over 1 fb−1 of integrated
luminosity in a single day, and its upgrade, SuperKEKB, is aiming for
luminosities of 8× 1035 cm−2s−1 [23]. A different collision approach,
called “crab waist”, which relies on special sextupoles together
with a large crossing angle, has been successfully implemented at
DAΦNE [24]. Other e+e− ring colliders in operation are BEPC-II,
VEPP-2000 and VEPP-4M [23].

30.5.3. RHIC : [25] The Relativistic Heavy Ion Collider employs
superconducting magnets, and collides combinations of fully-stripped
ions such as H-H (p-p), U-U, Au-Au, Cu-Au, Cu-Cu, and d-Au. The
high charge per particle (+79 for gold, for instance) makes intra-beam
scattering of particles within the bunch a special concern, even for
seemingly moderate bunch intensities. In 2012, 3-D stochastic cooling
was successfully implemented in RHIC, reducing the transverse
emittances of heavy ion beams by a factor of 5 [10]. Another
special feature of accelerating heavy ions in RHIC is that the beams
experience a “transition energy” during acceleration – a point where
the derivative with respect to momentum of the revolution period
is zero. This is more typical of low-energy accelerators, where the
necessary phase jump required of the RF system is implemented
rapidly and little time is spent near this condition. In the case of
RHIC with heavy ions, the superconducting magnets do not ramp very
quickly and the period of time spent crossing transition is long and
must be dealt with carefully. For p-p operation the beams are always
above their transition energy and so this condition is completely
avoided.

RHIC is also distinctive in its ability to accelerate and collide polarized
proton beams. As proton beam polarization must be maintained from
its low-energy source, successful acceleration through the myriad of
depolarizing resonance conditions in high energy circular accelerators
has taken years to accomplish. An energy of 255 GeV per proton with
> 50% final polarization per beam has been realized. As part of a
scheme to compensate the head-on beam-beam effect, electron lenses
operated routinely during the polarized proton operation in 2015.
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Table 30.1: Tentative parameters of selected future high-energy colliders. Parameters of HL-LHC, ILC and CLIC can be
found in the High-Energy Collider Parameters tables.

LHeC FCC-ee CEPC FCC-hh SPPC µ collider

Species ep e+e− e+e− pp pp µ+µ−

Beam Energy (TeV) 0.06(e), 7 (p) 0.046 0.120 0.175 0.120 50 35 0.063

Circumference (km) 9(e), 27 (p) 100 54 100 54 0.3

Interaction regions 1 2 2 2 (4) 2 1

Estimated integrated luminosity
per exp. (ab−1/year)

0.1 10 1.0 0.2 0.25 0.2–1.0 0.5 0.001

Peak luminosity (1034 cm−2 s−1) 1 100 9 2 2 5–29 12 0.008

Time between collisions (µs) 0.025 0.005 0.6 6.0 3.6 0.025 0.025 1

Energy spread (rms, 10−3) 0.03 (e), 0.1(p) 1.3 1.7 2.5 1.6 0.1 0.2 0.04

Bunch length (rms, mm) 0.06 (e), 75.5(p) 3.3 2.6 2.8 2.7 80 75.5 63

IP beam size (µm) 4.1 (round) 8(H),

0.03(V)

22(H),

0.03(V)

31(H),

0.05(V)

70(H),

0.15(V)

6.8 (inj.) 9.0 (inj.) 75

Injection energy (GeV) 1(e), 450(p) on energy on energy ∼3000 2100 on energy

(topping off) (topping off) (topping off)

Transverse emittance (rms, nm) 0.43(e),

0.34(p)

0.13(H),

0.001(V)

1.0(H),

0.001(V)

2.0(H),

0.002(V)

6.1(H),

0.02(V)

0.04 (inj.) 0.11 335

β∗, amplitude function at interac-
tion point (cm)

4.7(e),

5.0(p)

50(H),

0.1(V)

50(H),

0.1(V)

50(H),

0.1(V)

80(H),

0.12(V)

110–30 75 1.7

Beam-beam tune shift per cross-
ing (10−3)

−(e), 0.4(p) 140 100 90 118 5–15 6 20

RF frequency (MHz) 800(e), 400(p) 400 650 400 400/200 805

Particles per bunch (1010) 0.25(e), 22(p) 50 10 20 38 10 20 400

Bunches per beam −(e), 2808 60000 625 60 50 10600 5798 1

Average beam current (mA) 16(e), 883(p) 1450 30 6.6 16.6 500 1000 640

Length of standard cell (m) 52.4(e arc), 107(p) 50 50 50 47 213 148 N/A

Phase advance per cell (deg) 310(eH), 90(eV),

90(p)

90(H), 60(V) 60 90 90 N/A

Peak magnetic field (T) 0.264(e), 8.33(p) 0.01 0.03 0.05 0.07 16 20 10

Polarization (%) 90(e), 0(p) ≥10 0 0 0 0 0 0

SR power loss/beam (MW) 30(e), 0.01(p) 50 52 2.4 2.1 3 × 10−5

Novel technology high-energy ERL — — 16 T Nb3Sn
magnets

20 T HTS
magnets

ioniz. cool.
high-p. target

30.6. Future High Energy Colliders and Prospects

Recent accomplishments of particle physics have been obtained
through high-energy and high-intensity experiments using hadron-
hadron, lepton-lepton, and lepton-proton colliders. Following the
discovery of the Higgs particle at the LHC and in view of ongoing
searches for “new physics” and rare phenomena, various options are
under discussions and development to pursue future particle-physics
research at higher energy and with appropriate luminosity. This is the
basis for various new projects, ideas, and R&D activities, which can
only briefly be summarized here. Specifically, the following projects
are noted: two approaches to an electron-positron linear collider, a
larger 100-km circular tunnel supporting e+e− collisions up to 350 or
500 GeV in the centre of mass along with a 100-TeV proton-proton
collider, a muon ring collider, and potential use of plasma acceleration
and other advanced schemes. Complementary studies are ongoing of
a high-energy lepton-hadron collider bringing into collision a 60-GeV
electron beam from an energy-recovery linac with the 7-TeV protons
circulating in the LHC (LHeC) [26,27], and of γγ collider Higgs
factories based on recirculating electron linacs (e.g. SAPPHiRE at
CERN [28], HFiTT at FNAL [29]) . Tentative parameters of some of
the colliders discussed, or mentioned, in this section are summarized
in Table 30.1.
30.6.1. Electron-Positron Linear Colliders : For three decades
efforts have been devoted to develop high-gradient technology e+e−

colliders in order to overcome the synchrotron radiation limitations of
circular e+e− machines in the TeV energy range.

The primary challenge confronting a high energy, high luminosity
single pass collider design is the power requirement, so that measures

must be taken to keep the demand within bounds as illustrated in a
transformed Eq. (30.2) [30]:

L ≈ 137

8πre

Pwall

Ecm

η

σ∗
y

Nγ HD . (30.12)

Here, Pwall is the total wall-plug power of the collider, η ≡ Pb/Pwall

the efficiency of converting wall-plug power into beam power
Pb = fcollnEcm, Ecm the cms energy, n (= n1 = n2) the bunch
population, and σ∗

y the vertical rms beam size at the collision point.

In formulating Eq. (30.12) the number of beamstrahlung photons
emitted per e±, was approximated as Nγ ≈ 2αren/σ∗

x, where α
denotes the fine-structure constant. The management of Pwall leads
to an upward push on the bunch population n with an attendant rise
in the energy radiated due to the electromagnetic field of one bunch
acting on the particles of the other. Keeping a significant fraction of
the luminosity close to the nominal energy represents a design goal,
which is met if Nγ does not exceed a value of about 1. A consequence
is the use of flat beams, where Nγ is managed by the beam width, and
luminosity adjusted by the beam height, thus the explicit appearance
of the vertical beam size σ∗

y . The final factor in Eq. (30.12), HD,
represents the enhancement of luminosity due to the pinch effect
during bunch crossing (the effect of which has been neglected in the
expression for Nγ).

The approach designated by the International Linear Collider (ILC)
is presented in the Tables, and the contrast with the collision-point
parameters of the circular colliders is striking, though reminiscent in
direction of those of the SLAC Linear Collider. The ILC Technical

Design Report [31] has a baseline cms energy of 500 GeV with upgrade
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provision for 1 TeV, and luminosity comparable to the LHC. The ILC
is based on superconducting accelerating structures of the 1.3 GHz
TESLA variety.

At CERN, a design effort is underway on the Compact Linear Collider
(CLIC), each linac of which is itself a two-beam accelerator, in that
a high energy, low current beam is fed by a low energy, high current
driver [32]. The CLIC design employs normal conducting 12 GHz
accelerating structures at a gradient of 100 MeV/m, some three times
the current capability of the superconducting ILC cavities. The design
cms energy is 3 TeV.

30.6.2. Future Circular Colliders : The discovery, in 2012, of
the Higgs boson at the LHC has stimulated interest in constructing
a large circular tunnel which could host a variety of energy-frontier
machines, including high-energy electron-positron, proton-proton, and
lepton-hadron colliders. Such projects are under study by a global
collaboration hosted at CERN (FCC) [33] and another one centered
in China (CEPC/SPPC) [34], following earlier proposals for a Very
Large Hadron Collider (VLHC) [35] and a Very Large Lepton Collider
(VLLC) in the US, which would have been housed in the same 230-km
long tunnel.

The maximum beam energy of a hadron collider is directly proportional
to the magnetic field and to the ring circumference. The LHC magnets,
based on Nb-Ti superconductor, achieve a maximum operational field
of 8.33 T. The HL-LHC project develops the technology of higher
field Nb3Sn magnets as well as cables made from high-temperature
superconductor (HTS). Nb3Sn dipoles could ultimately reach an
operational field around 15 T, and HTS inserts, requiring new
engineering materials and substantial dedicated R&D, could boost this
further. A cost-effective hybrid magnet design incorporating Nb-Ti,
two types of Nb3Sn, and an inner layer of HTS could provide a field
of 20 T [36]. If installed in the LHC tunnel, such dipoles would
increase the beam energy by a factor 2.5 compared with the LHC. The
vacuum system for such a machine has not yet been designed. Warm
photon absorbers installed in the magnet interconnections are one
of the proposed approaches, requiring experimental tests for design
validation.

Further substantial increases in collision energy are possible only with
a larger tunnel. The FCC hadron collider (FCC-hh) [37], formerly
called VHE-LHC [38], is based on a new tunnel of about 100 km
circumference, which would allow exploring energies up to 100 TeV in
the centre of mass with proton-proton collisions, using 16 T magnets.
This new tunnel could also accommodate a high-luminosity circular
e+e− Higgs factory (FCC-ee) as well as a lepton-hadron collider
(FCC-he).

In order to serve as a Higgs factory a new circular e+e− collider
needs to achieve a cms energy of at least 240 GeV. FCC-ee (formerly
TLEP [39]) , installed in the ∼100 km tunnel of the FCC-hh, could
reach even higher energies, e.g. 350 GeV cms for tt̄ production, or up to
500 GeV for ZHH and Htt̄ physics. At these energies, the luminosity,
limited by the synchrotron radiation power, would still be close to
1034 cm−2s−1 at each of four collision points. At lower energies (Z
pole and WW threshold) FCC-ee could deliver up to three orders
of magnitude higher luminosities, and also profit from radiative self
polarization for precise energy calibration. The short beam lifetime
at the high target luminosity, due to radiative Bhabha scattering,
requires FCC-ee to be constructed as a double ring, where the collider
ring operating at constant energy is complemented by a second
injector ring installed in the same tunnel to “top off” the collider
current. Beamstrahlung, i.e. synchrotron radiation emitted during the
collision in the field of the opposing beam, introduces an additional
beam lifetime limitation depending on momentum acceptance (so that
achieving sufficient off-momentum dynamic aperture becomes one of
the design challenges), as well as some bunch lengthening.

30.6.3. Muon Collider : The muon to electron mass ratio of 210
implies less concern about synchrotron radiation by a factor of about
2 × 109 and its 2.2 µs lifetime means that it will last for some 150B
turns in a ring about half of which is occupied by bend magnets with
average field B (Tesla). Design effort became serious in the mid 1990s
and a collider outline emerged quickly.

Removal of the synchrotron radiation barrier reduces the scale of a
muon collider facility to a level compatible with on-site placement at
existing accelerator laboratories. The Higgs production cross section
in the s-channel is enhanced by a factor of (mµ/me)

2 compared to
that in e+e− collisions. And a neutrino factory could potentially be
realized in the course of construction [40].

The challenges to luminosity achievement are clear and amenable to
immediate study: targeting, collection, and emittance reduction are
paramount, as well as the bunch manipulation required to produce
> 1012 muons per bunch without emittance degradation. The proton
source needs to deliver a beam power of several MW, collection would
be aided by magnetic fields common on neutron stars (though scaled
back for application on earth), and the emittance requirements have
inspired fascinating investigations into phase space manipulations that
are finding applications in other facilities. The status was summarized
in a White Paper submitted to “Snowmass 2013” [41].

30.6.4. Plasma Acceleration and Other Advanced Concepts

: At the 1956 CERN Symposium, a paper by Veksler, in which he
suggested acceleration of protons to the TeV scale using a bunch
of electrons, anticipated current interest in plasma acceleration [42].
A half-century later this is more than a suggestion, with the
demonstration, as a striking example, of electron energy doubling from
42 to 84 GeV over 85 cm at SLAC [43].

Whether plasma acceleration will find application in an HEP facility
is not yet clear, given the necessity of staging and phase-locking
acceleration in multiple plasma chambers. Maintaining beam quality
and beam position as well as the acceleration of high-repetition bunch
trains are also primary feasibility issues, addressed by active R&D.
For recent discussions of parameters for a laser-plasma based electron
positron collider, see, for example, relevant papers in an Advanced
Accelerator Concepts Workshop [44] and the ICFA-ICUIL White
Paper from 2011 [45].

Additional approaches aiming at accelerating gradients higher, or
much higher, than those achievable with conventional metal cavities
include the use of dielectric materials and, for the long-term future,
crystals. Combining several innovative ideas, even a linear crystal
muon collider driven by X-ray lasers has been proposed [46].

Not only the achievable accelerating gradient, but also the overall
power efficiency, e.g. the attainable luminosity as a function of
electrical input power, will determine the suitability of any novel
technology for use in future high-energy accelerators.
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HIGH-ENERGY COLLIDER PARAMETERS: e
+

e
− Colliders (I)

Updated in January 2016 with numbers received from representatives of the colliders (contact S. Pagan Griso, LBNL). The table shows the
parameter values achieved. Quantities are, where appropriate, r.m.s.; unless noted otherwise, energies refer to beam energy; H and V indicate
horizontal and vertical directions; s.c. stands for superconducting. Parameters for the defunct SPEAR, DORIS, PETRA, PEP, TRISTAN, and
VEPP-2M colliders may be found in our 1996 edition (Phys. Rev. D54, 1 July 1996, Part I).

VEPP-2000
(Novosibirsk)

VEPP-4M
(Novosibirsk)

BEPC
(China)

BEPC-II
(China)

DAΦNE
(Frascati)

Physics start date 2010 1994 1989 2008 1999

Physics end date — — 2005 — —

Maximum beam energy (GeV) 1.0 6 2.5 1.89 (2.3 max) 0.510

Delivered integrated lumi-
nosity per exp. (fb−1)

0.030 0.027 0.11 10.3 ≈ 4.7 in 2001-2007
≈ 2.7 w/crab-waist
≈ 1.8 since Nov 2014

Luminosity (1030 cm−2s−1) 100 20 12.6 at 1.843 GeV
5 at 1.55 GeV

853 453

Time between collisions (µs) 0.04 0.6 0.8 0.008 0.0027

Full crossing angle (µ rad) 0 0 0 2.2 × 104 5 × 104

Energy spread (units 10−3) 0.64 1 0.58 at 2.2 GeV 0.52 0.40

Bunch length (cm) 4 5 ≈ 5 ≈ 1.5 low current: 1
at 15mA: 2

Beam radius (10−6 m) 125 (round) H : 1000
V : 30

H : 890
V : 37

H : 358
V : 4.8

H : 260
V : 4.8

Free space at interaction
point (m)

±1 ±2 ±2.15 ±0.63 ±0.295

Luminosity lifetime (hr) continuous 2 7–12 1.5 0.2

Turn-around time (min) continuous 18 32 15 2 (topping up)

Injection energy (GeV) 0.2–1.0 1.8 1.55 1.89 on energy

Transverse emittance
(10−9 m)

H : 250
V : 250

H : 200
V : 20

H : 660
V : 28

H : 128
V : 1.73

H : 260
V : 2.6

β∗, amplitude function at
interaction point (m)

H : 0.06 − 0.11
V : 0.06 − 0.10

H : 0.75
V : 0.05

H : 1.2
V : 0.05

H : 1.0
V : 0.0135

H : 0.26
V : 0.009

Beam-beam tune shift
per crossing (units 10−4)

H : 750
V : 750

500 350 390 440
(crab-waist test)

RF frequency (MHz) 172 180 199.53 499.8 356

Particles per bunch
(units 1010)

16 15 20 at 2 GeV
11 at 1.55 GeV

3.8 e−: 3.2
e+: 2.1

Bunches per ring
per species

1 2 1 92 100 to 105
(120 buckets)

Average beam current
per species (mA)

150 80 40 at 2 GeV
22 at 1.55 GeV

701 e−: 1250
e+: 800

Circumference or length (km) 0.024 0.366 0.2404 0.23753 0.098

Interaction regions 2 1 2 1 1

Magnetic length of dipole (m) 1.2 2 1.6 outer ring: 1.6
inner ring: 1.41

outer ring: 1.2
inner ring: 1

Length of standard cell (m) 12 7.2 6.6 outer ring: 6.6
inner ring: 6.2

n/a

Phase advance per cell (deg) H : 738
V : 378

65 ≈ 60 60–90
non-standard cells

—

Dipoles in ring 8 78 40 + 4 weak 84 + 8 weak 8

Quadrupoles in ring 20 150 68 134+2 s.c. 48

Peak magnetic field (T) 2.4 0.6 0.903
at 2.8 GeV

outer ring: 0.677
inner ring: 0.766

1.2
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HIGH-ENERGY COLLIDER PARAMETERS: e
+

e
− Colliders (II)

Updated in January 2016 with numbers received from representatives of the colliders (contact S. Pagan Griso, LBNL). The table shows the
parameter values achieved. For future colliders, design values are quoted. Quantities are, where appropriate, r.m.s.; unless noted otherwise,
energies refer to beam energy; H and V indicate horizontal and vertical directions; s.c. stands for superconducting.

CESR
(Cornell)

CESR-C
(Cornell)

LEP
(CERN)

SLC
(SLAC)

ILC
(TBD)

CLIC
(TBD)

Physics start date 1979 2002 1989 1989 TBD TBD

Physics end date 2002 2008 2000 1998 — —

Maximum beam energy (GeV)
6 6 100 - 104.6 50 250

(upgradeable to 500)
1500

(first phase: 190)

Delivered integrated luminosity
per experiment (fb−1)

41.5 2.0 0.221 at Z peak
0.501 at 65 − 100 GeV

0.022 — —

0.275 at >100 GeV

Luminosity (1030 cm−2s−1) 1280 at
5.3 GeV

76 at
2.08 GeV

24 at Z peak
100 at > 90 GeV

2.5 1.5 × 104‡ 6 × 104

Time between collisions (µs) 0.014 to 0.22 0.014 to 0.22 22 8300 0.55† 0.0005†

Full crossing angle (µ rad) ±2000 ±3300 0 0 14000 20000

Energy spread (units 10−3) 0.6 at
5.3 GeV

0.82 at
2.08 GeV

0.7→1.5 1.2 1 3.4

Bunch length (cm) 1.8 1.2 1.0 0.1 0.03 0.0044

Beam radius (µm) H : 460
V : 4

H : 340
V : 6.5

H : 200 → 300
V : 2.5 → 8

H : 1.5
V : 0.5

H : 0.474
V : 0.0059

H : 0.045
V : 0.0009

∗

Free space at interaction
point (m)

±2.2 (±0.6

to REC quads)

±2.2 (±0.3

to PM quads)
±3.5 ±2.8 ±3.5 ±3.5

Luminosity lifetime (hr) 2–3 2–3 20 at Z peak
10 at > 90 GeV

— n/a n/a

Turn-around time (min) 5 (topping up) 1.5 (topping up) 50 120 Hz (pulsed) n/a n/a

Injection energy (GeV) 1.8–6 1.5–6 22 45.64 n/a n/a

Transverse emittance
(10−9 m)

H : 210
V : 1

H : 120
V : 3.5

H : 20–45
V : 0.25 → 1

H : 0.5
V : 0.05

H : 0.02
V : 7 × 10−5

H : 2.2 × 10−4

V : 6.8 × 10−6

β∗, amplitude function at
interaction point (m)

H : 1.0
V : 0.018

H : 0.94
V : 0.012

H : 1.5
V : 0.05

H : 0.0025
V : 0.0015

H : 0.01
V : 5 × 10−4

H : 0.0069
V : 6.8 × 10−5

Beam-beam tune shift per
crossing (10−4) or disruption

H : 250
V : 620

e−: 420 (H), 280 (V )

e+: 410 (H), 270 (V )
830 0.75 (H)

2.0 (V )
n/a 7.7

RF frequency (MHz) 500 500 352.2 2856 1300 11994

Particles per bunch
(units 1010)

1.15 4.7 45 in collision
60 in single beam

4.0 2 0.37

Bunches per ring
per species

9 trains
of 5 bunches

8 trains
of 3 bunches

4 trains of 1 or 2 1 1312 312 (in train)

Average beam current
per species (mA)

340 72 4 at Z peak
4→6 at > 90 GeV

0.0008 6
(in pulse)

1205 (in train)

Beam polarization (%) — — 55 at 45 GeV
5 at 61 GeV

e−: 80 e−: > 80%
e+: < 60%

e−: 70% at IP

Circumference or length (km) 0.768 0.768 26.66 1.45 +1.47 31 50

Interaction regions 1 1 4 1 1 1

Magnetic length of dipole (m) 1.6–6.6 1.6–6.6 11.66/pair 2.5 n/a n/a

Length of standard cell (m) 16 16 79 5.2 n/a n/a

Phase advance per cell (deg) 45–90 (no

standard cell)

45–90 (no

standard cell)
102/90 108 n/a n/a

Dipoles in ring 86 84 3280 + 24 inj. + 64 weak
460+440

n/a n/a

Quadrupoles in ring 101 + 4 s.c. 101 + 4 s.c. 520 + 288 + 8 s.c. — n/a n/a

Peak magnetic field (T) 0.3 / 0.8
at 8 GeV

0.3 / 0.8 at 8 GeV,
2.1 wigglers at 1.9 GeV

0.135 0.597 n/a n/a

†Time between bunch trains: 200ms (ILC) and 20ms (CLIC).
‡Geometrical luminosity. The actual value may vary by ≈ 20% depending on assumptions.
∗Effective beam size including non-linear and chromatic effects.
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HIGH-ENERGY COLLIDER PARAMETERS: e
+

e
− Colliders (III)

Updated in January 2016 with numbers received from representatives of the colliders (contact S. Pagan Griso, LBNL). The table shows the
parameter values achieved. For future colliders, design values are quoted. Quantities are, where appropriate, r.m.s.; unless noted otherwise,
energies refer to beam energy; H and V indicate horizontal and vertical directions; s.c. stands for superconducting.

KEKB
(KEK)

PEP-II
(SLAC)

SuperKEKB
(KEK)

Physics start date 1999 1999 2017

Physics end date 2010 2008 —

Maximum beam energy (GeV) e−: 8.33 (8.0 nominal)

e+: 3.64 (3.5 nominal)

e−: 7–12 (9.0 nominal)

e+: 2.5–4 (3.1 nominal)

e−: 7
e+: 4

Delivered integrated lumi-
nosity per exp. (fb−1)

1040 557 —

Luminosity (1030 cm−2s−1) 21083 12069
(design: 3000)

8 × 105

Time between collisions (µs) 0.00590 or 0.00786 0.0042 0.004

Full crossing angle (µ rad) ±11000† 0 ±41500

Energy spread (units 10−3) 0.7 e−/e+: 0.61/0.77 e−/e+: 0.64/0.81

Bunch length (cm) 0.65 e−/e+: 1.1/1.0 e−/e+: 0.5/0.6

Beam radius (µm) H: 124 (e−), 117 (e+)
V: 1.9

H : 157
V : 4.7

e−: 11 (H), 0.062 (V )

e+: 10 (H), 0.048 (V )

Free space at interaction
point (m)

+0.75/−0.58

(+300/−500) mrad cone
±0.2,

±300 mrad cone
e− : +1.20/− 1.28, e+ : +0.78/− 0.73

(+300/−500) mrad cone

Luminosity lifetime (hr) continuous continuous continuous

Turn-around time (min) continuous continuous continuous

Injection energy (GeV) e−/e+ : 8.0/3.5 (nominal) e−/e+ : 9.0/3.1 (nominal) e−/e+ : 7/4

Transverse emittance
(10−9 m)

e−: 24 (57∗) (H), 0.61 (V )

e+: 18 (55∗) (H), 0.56 (V )

e−: 48 (H), 1.8 (V )

e+: 24 (H), 1.8 (V )

e−: 4.6 (H), 0.013 (V )

e+: 3.2 (H), 0.0086 (V )

β∗, amplitude function at
interaction point (m)

e−: 1.2 (0.27∗) (H), 0.0059 (V )

e+: 1.2 (0.23∗) (H), 0.0059 (V )

e−: 0.50 (H), 0.012 (V )

e+: 0.50 (H), 0.012 (V )

e−: 0.025 (H), 3 × 10−4 (V )

e+: 0.032 (H), 2.7 × 10−4 (V )

Beam-beam tune shift
per crossing (units 10−4)

e−: 1020 (H), 900 (V )

e+: 1270 (H), 1290 (V )

e−: 703 (H), 498 (V )

e+: 510 (H), 727 (V )

e−: 12 (H), 807 (V )

e+: 28 (H), 881 (V )

RF frequency (MHz) 508.887 476 508.887

Particles per bunch
(units 1010)

e−/e+: 4.7/6.4 e−/e+: 5.2/8.0 e−/e+: 6.53/9.04

Bunches per ring
per species

1585 1732 2500

Average beam current
per species (mA)

e−/e+: 1188/1637 e−/e+: 1960/3026 e−/e+: 2600/3600

Beam polarization (%) — — —

Circumference or length (km) 3.016 2.2 3.016

Interaction regions 1 1 1

Magnetic length of dipole (m) e−/e+ : 5.86/0.915 e−/e+: 5.4/0.45 e−/e+ : 5.9/4.0

Length of standard cell (m) e−/e+ : 75.7/76.1 15.2 e−/e+ : 75.7/76.1

Phase advance per cell (deg) 450 e−/e+: 60/90 450

Dipoles in ring e−/e+ : 116/112 e−/e+: 192/192 e−/e+ : 116/112

Quadrupoles in ring e−/e+ : 452/452 e−/e+: 290/326 e−/e+ : 466/460

Peak magnetic field (T) e−/e+ : 0.25/0.72 e−/e+: 0.18/0.75 e−/e+ : 0.22/0.19

†KEKB was operated with crab crossing from 2007 to 2010.
∗With dynamic beam-beam effect.
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HIGH-ENERGY COLLIDER PARAMETERS: ep, pp, pp Colliders

Updated in January 2016 with numbers received from representatives of the colliders (contact S. Pagan Griso, LBNL). The table shows the
parameter values achieved. For LHC, the parameters expected at the ATLAS and CMS experiments for a high-luminosity upgrade (HL-LHC)
are also given. Parameters for the defunct SppS collider may be found in our 2002 edition (Phys. Rev. D66, 010001 (2002)). Quantities are,
where appropriate, r.m.s.; unless noted otherwise, energies refer to beam energy; H and V indicate horizontal and vertical directions; s.c. stands
for superconducting.

HERA
(DESY)

TEVATRON∗

(Fermilab)
RHIC

(Brookhaven)
LHC

(CERN)

Physics start date 1992 1987 2001 2009 2015 2024 (HL-LHC)

Physics end date 2007 2011 — —

Particles collided ep pp pp (polarized) pp

Maximum beam
energy (TeV)

e: 0.030
p: 0.92

0.980 0.255
53% polarization

4.0 6.5 7.0

Maximum delivered integrated
luminosity per exp. (fb−1)

0.8 12 0.38 at 100 GeV
0.75 at 250/255 GeV

23.3 at 4.0 TeV
6.1 at 3.5 TeV

4.2 250/y

Luminosity
(1030 cm−2s−1)

75 431 245 (pk)

160 (avg)
7.7 × 103 5 × 103 5.0 × 104

(leveled)

Time between
collisions (ns)

96 396 107 49.90 24.95 24.95

Full crossing angle (µ rad) 0 0 0 290 290 590

Energy spread (units 10−3) e: 0.91
p: 0.2

0.14 0.15 0.1445 0.105 0.123

Bunch length (cm) e: 0.83
p: 8.5

p: 50
p̄: 45

60 9.4 9 9

Beam radius
(10−6 m)

e: 110(H), 30(V )

p: 111(H), 30(V )
p: 28
p̄: 16

85 18.8 21 7

Free space at
interaction point (m)

±2 ±6.5 16 38 38 38

Initial luminosity decay
time, −L/(dL/dt) (hr)

10 6 (avg) 7.5 ≈ 6 ≈ 30 ≈ 6 (leveled)

Turn-around time (min) e: 75, p: 135 90 25 180 134 180

Injection energy (TeV) e: 0.012
p: 0.040

0.15 0.023 0.450 0.450 0.450

Transverse emittance
(10−9 m)

e: 20(H), 3.5(V )

p: 5(H), 5(V )
p: 3
p̄: 1

13 0.59 0.5 0.34

β∗, ampl. function at
interaction point (m)

e: 0.6(H), 0.26(V )

p: 2.45(H), 0.18(V )
0.28 0.65 0.6 0.8 0.15

Beam-beam tune shift
per crossing (units 10−4)

e: 190(H), 450(V )

p: 12(H), 9(V )
p: 120
p̄: 120

73 72 37 110

RF frequency (MHz) e: 499.7
p: 208.2/52.05

53 accel: 9
store: 28

400.8 400.8 400.8

Particles per bunch
(units 1010)

e: 3
p: 7

p: 26
p̄: 9

18.5 16 12 22

Bunches per ring
per species

e: 189
p: 180

36 111 1380 2244
2232 (i.r. 1/5†)

2748
2736 (i.r. 1/5†)

Average beam current
per species (mA)

e: 40
p: 90

p: 70
p̄: 24

257 400 467 1200

Circumference (km) 6.336 6.28 3.834 26.659

Interaction regions 2 colliding beams 2 high L 6 total, 2 high L 4 total, 2 high L
1 fixed target (e beam)

Magnetic length
of dipole (m)

e: 9.185
p: 8.82

6.12 9.45 14.3

Length of standard cell (m) e: 23.5
p: 47

59.5 29.7 106.90

Phase advance per cell (deg) e: 60
p: 90

67.8 84 90

Dipoles in ring e: 396
p: 416

774 192 per ring
+ 12 common

1232
main dipoles

Quadrupoles in ring e: 580
p: 280

216 246 per ring 482 2-in-1
24 1-in-1

Magnet types e: C-shaped
p: s.c., collared, warm iron

s.c., cos θ
warm iron

s.c., cos θ
cold iron

s.c., 2 in 1
cold iron

Peak magnetic field (T) e: 0.274, p: 5 4.4 3.5 8.3‡

∗Additional TEVATRON parameters: p source accum. rate: 25×1010 hr−1; max. no. of p stored: 3.4×1012 (Accumulator),
6.1×1012 (Recycler).
†Number of bunches colliding at the interaction regions (i.r.) 1 (ATLAS) and 5 (CMS).
‡Value for design beam energy of 7 TeV.
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HIGH-ENERGY COLLIDER PARAMETERS: Heavy Ion Colliders

Updated in January 2016 with numbers received from representatives of the colliders (contact S. Pagan Griso, LBNL). The table shows the
parameter values achieved. For LHC, the parameters expected at the ATLAS experiment for running in 2016 and the design values for a
high-luminosity upgrade are also given. Quantities are, where appropriate, r.m.s.; unless noted otherwise, energies refer to beam energy; s.c.
stands for superconducting. pk and avg denote peak and average values.

RHIC
(Brookhaven)

LHC
(CERN)

Physics start date 2000 2012 / 2012 / 2004 / 2014

2002 / 2015 / 2015
2010 2012 2016

(expected)

≥ 2021

(high lum.)‡

Physics end date — —

Particles collided Au Au U U / Cu Au / Cu Cu / h Au

d Au / p Au / p Al
Pb Pb p Pb p Pb Pb Pb

Maximum beam
energy (TeV/n)

0.1 0.1 2.51 p: 4
Pb: 1.58

p: 6.5
Pb: 2.56

2.76

√
sNN (TeV) 0.2 0.2 5.02 5.0 8.16 5.5

Max. delivered int. nucleon-
pair lumin. per exp. (pb−1)

1484
(at 100 GeV/n)

21 / 167 / 65 / 43

103 / 125 / 64 (all at 100 GeV/n)
30.3 6.6 ≈ 10/y ≈ 75 − 90/y

Luminosity
(1027 cm−2s−1)

pk: 8.4
avg: 8.0

pk: 0.9 / 12 / 20 / 170

270 / 880 / 7150
avg: 0.6 / 10 / 0.8 / 100

140 / 450 / 4000

3.6 100 (leveled)

116 (ATLAS/CMS)
≈ 500 6 (leveled)

Time between
collisions (ns)

107 107 / 107 / 321 / 107

107 / 107 / 107
99.8 / 149.7 199.6 / 224.6 99.8 / 149.7 49.9

Full crossing angle (µ rad) 0 0 290 120 290 > 200

Energy spread (units 10−3) 0.75 0.75 0.11 0.11 0.11 0.11

Bunch length (cm) 30 30 8.0 p / Pb: 9 / 11.5 p / Pb: 9 / 11.5 7.9

Beam radius
(10−6 m)

55 50 / 160 / 145 / 135

145 / 145 / 145
55 p: 19

Pb: 27
17 16

Free space at
interaction point (m)

16 16 38 38 38 38

Initial luminosity decay
time, −L/(dL/dt) (hr)

1 -0.35†/ ∞†/ 1.8 / 0.6

1.5 / 0.5 / 0.25
2.6 ≈ 6 ≈ 2 ≈ 2

Turn-around time (min) 30 60 / 160 / 90 / 45

90 / 60 / 50
≈ 180 ≈ 240 ≈ 180 ≈ 180

Injection energy (TeV/n) 0.011 0.011 0.177 p / Pb: 0.45 / 0.177 p / Pb: 0.45 / 0.177 0.177

Transverse emittance
(10−9 m)

6 4 / 11 / 23 / 18

25 / 25 / 23
1.5 p: 0.5

Pb: 0.9
0.29 0.5

β∗, ampl. function at
interaction point (m)

0.5 0.7 / 0.7 / 0.9 / 1.0

0.85 / 0.8 / 0.8
0.8 0.8 0.5 0.5

Beam-beam tune shift
per crossing (units 10−4)

25
7 / 14 (Cu), 14 (Au) / 30

42 (h), 22 (Au) / 21 (d), 17 (Au)
53 (p), 41 (Au) / 73 (p) 57 (Au)

9 p: 9
Pb: 10

10
10

RF frequency (MHz) accel: 28
store: 197

accel: 28
store: 197

400.8 400.8 400.8 400.8

Particles per bunch
(units 1010)

0.16
0.03 / 0.4 (Cu), 0.13 (Au) / 0.45

4.5 (h), 0.13 (Au) / 10 (d), 0.1 (Au)
22.5 (p), 0.16 (Au) / 24 (p), 1.1 (Al)

0.019
(r.m.s.)

p: 1.6
Pb: 0.014

p: 1.8
Pb: 0.019

0.017

Bunches per ring
per species

111 111 / 111 / 37 / 111

95 / 111 / 111
518 338 518

≈ 1100

Average beam current
per species (mA)

176
38 / 159 (Cu), 138 (Au) / 60

125 (h), 143 (Au) / 119 (d), 94 (Au)
312 (p), 176 (Au) / 333 (p), 199 (Al)

14.9 p: 9.7
Pb: 7

p: 17
Pb: 15

28

Circumference (km) 3.834 26.659

Interaction regions 6 total, 2 high L 3 high L + 1

Magnetic length of dipole (m) 9.45 14.3

Length of standard cell (m) 29.7 106.90

Phase advance
per cell (deg)

93
84 / 84 / 84 / 93

84 (d), 93 (Au) / 84 (p), 93 (Au)
84 (p), 93 (Al)

90

Dipoles in ring 192 per ring, + 12 common 1232, main dipoles

Quadrupoles in ring 246 per ring 482 2-in-1, 24 1-in-1

Magnet Type s.c. cos θ, cold iron s.c., 2 in 1, cold iron

Peak magnetic field (T) 3.5 8.3

†Negative or infinite decay time is effect of cooling.
‡High luminosity upgrade expected >= 2021; will extend throughout HL-LHC running. Very preliminary, conservative estimates.
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32. NEUTRINO BEAM LINES AT HIGH-ENERGY PROTON SYNCHROTRONS

Revised January 2016 with numbers verified by representatives of the synchrotrons (contact C.-J. Lin, LBNL). For existing (future) neutrino
beam lines the latest achieved (design) values are given.

The main source of neutrinos at proton synchrotrons is from the decay of pions and kaons produced by protons striking a nuclear target.
There are different schemes to focus the secondary particles to enhance neutrino flux and/or tune the neutrino energy profile. In wide-band
beams (WBB), the neutrino parent mesons are focused over a wide momentum range to obtain maximum neutrino intensity. In narrow-band
beams (NBB), the secondary particles are first momentum-selected to produce a monochromatic parent beam. Another approach to generate
a narrow-band neutrino spectrum is to select neutrinos that are emitted off-axis relative to the momentum of the parent mesons. For a
comprehensive review of the topic, including other historical neutrino beam lines, see the article by S. E. Kopp, “Accelerator-based neutrino
beams,” Phys. Rept. 439, 101 (2007).

PS
(CERN)

SPS
(CERN)

PS
(KEK)

Main Ring
(JPARC)

Date 1963 1969 1972 1983 1977 1977 1995 2006 1999 2009

Proton Kinetic
Energy (GeV)

20.6 20.6 26 19 350 350 450 400 12 30
(50)

Protons per
Cycle (1012)

0.7 0.6 5 5 10 10 36 48 6 200
(330)

Cycle Time
(s)

3 2.3 - - - - 14.4 6 2.2 2.48
(3.5)

Beam Power
(kW)

0.8 0.9 - - - - 180 510 5 390
(750)

Target - - - - - - Be Graphite Al Graphite

Target Length
(cm)

- - - - - - 290 1000 66 91

Secondary
Focussing

1-horn
WBB

3-horn
WBB

2-horn
WBB

bare
target

dichromatic
NBB

2-horn
WBB

2-horn
WBB

2-horn
WBB

2-horn
WBB

3-horn
off-axis

Decay Pipe
Length (m)

- - - - - - 110 130 200 96

〈Eν〉 (GeV) 1.5 1.5 1.5 1 50,150† 20 24.3 17 1.3 0.6

Experiments HLBC,
Spark Ch.

HLBC,
Spark Ch.

GGM,
Aachen-

CDHS,
CHARM

CDHS,
CHARM,

GGM,CDHS,
CHARM,

NOMAD,
CHORUS

OPERA,
ICARUS K2K T2K

Padova BEBC BEBC

Main Ring
(Fermilab)

Booster
(Fermilab)

Main Injector
(Fermilab)

Date 1975 1975 1974 1979 1976 1991 1998 2002 2005 2016

Proton Kinetic
Energy (GeV)

300,400 300,400 300 400 350 800 800 8 120 120

Protons per
Cycle (1012)

10 10 10 10 13 10 12 4.5 37 43
(49)

Cycle Time
(s)

- - - - - 60 60 0.2 2 1.333

Beam Power
(kW)

- - - - - 20 25 29 350 580
(700)

Target - - - - - - BeO Be Graphite Graphite

Target Length
(cm)

- - - - - - 31 71 95 120

Secondary
Focussing

bare
target

quad trip.,
SSBT

dichromatic
NBB

2-horn
WBB

1-horn
WBB

quad
trip.

SSQT
WBB

1-horn
WBB

2-horn
WBB

2-horn
off-axis

Decay Pipe
Length (m)

350 350 400 400 400 400 400 50 675 675

〈Eν〉 (GeV) 40 50,180† 50,180† 25 100 90,260 70,180 1 3-20‡ 2

Experiments

HPWF
CITF,
HPWF

CITF,
HPWF, 15’ BC

HPWF
15’ BC

15’ BC,
CCFRR NuTeV

MiniBooNE,
SciBooNE,

MINOS,
MINERνA

NOνA,
MINERνA,

15’ BC MicroBooNE MINOS+

†Pion and kaon peaks in the momentum-selected channel. ‡Tunable WBB energy spectrum.
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This review covers the interactions of photons and electrically
charged particles in matter, concentrating on energies of interest
for high-energy physics and astrophysics and processes of interest
for particle detectors (ionization, Cherenkov radiation, transition
radiation). Much of the focus is on particles heavier than electrons
(π±, p, etc.). Although the charge number z of the projectile is
included in the equations, only z = 1 is discussed in detail. Muon
radiative losses are discussed, as are photon/electron interactions at
high to ultrahigh energies. Neutrons are not discussed.

33.1. Notation

The notation and important numerical values are shown in
Table 33.1.

Table 33.1: Summary of variables used in this section.
The kinematic variables β and γ have their usual relativistic
meanings.

Symbol Definition Value or (usual) units

mec
2 electron mass × c2 0.510 998 928(11) MeV

re classical electron radius

e2/4πǫ0mec
2 2.817 940 3267(27) fm

α fine structure constant

e2/4πǫ0~c 1/137.035 999 074(44)

NA Avogadro’s number 6.022 141 29(27)× 1023 mol−1

ρ density g cm−3

x mass per unit area g cm−2

M incident particle mass MeV/c2

E incident part. energy γMc2 MeV

T kinetic energy, (γ − 1)Mc2 MeV

W energy transfer to an electron MeV

in a single collision

k bremsstrahlung photon energy MeV

z charge number of incident particle

Z atomic number of absorber

A atomic mass of absorber g mol−1

K 4πNAr2
emec

2 0.307 075 MeV mol−1 cm2

I mean excitation energy eV (Nota bene!)

δ(βγ) density effect correction to ionization energy loss

~ωp plasma energy
√

ρ 〈Z/A〉 × 28.816 eV
√

4πNer3
e mec

2/α |−→ ρ in g cm−3

Ne electron density (units of re)
−3

wj weight fraction of the jth element in a compound or mixture

nj ∝ number of jth kind of atoms in a compound or mixture

X0 radiation length g cm−2

Ec critical energy for electrons MeV

Eµc critical energy for muons GeV

Es scale energy
√

4π/α mec
2 21.2052 MeV

RM Molière radius g cm−2

33.2. Electronic energy loss by heavy particles [1–33]

33.2.1. Moments and cross sections :

The electronic interactions of fast charged particles with speed
v = βc occur in single collisions with energy losses W [1], leading to
ionization, atomic, or collective excitation. Most frequently the energy
losses are small (for 90% of all collisions the energy losses are less than
100 eV). In thin absorbers few collisions will take place and the total
energy loss will show a large variance [1]; also see Sec. 33.2.9 below.
For particles with charge ze more massive than electrons (“heavy”
particles), scattering from free electrons is adequately described by
the Rutherford differential cross section [2],

dσR(W ; β)

dW
=

2πr2
emec

2z2

β2

(1 − β2W/Wmax)

W 2
, (33.1)
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where Wmax is the maximum energy transfer possible in a single
collision. But in matter electrons are not free. W must be finite and
depends on atomic and bulk structure. For electrons bound in atoms
Bethe [3] used “Born Theorie” to obtain the differential cross section

dσB(W ; β)

dW
=

dσR(W, β)

dW
B(W ) . (33.2)

Electronic binding is accounted for by the correction factor B(W ).
Examples of B(W ) and dσB/dW can be seen in Figs. 5 and 6 of
Ref. 1.

Bethe’s theory extends only to some energy above which atomic
effects are not important. The free-electron cross section (Eq. (33.1))
can be used to extend the cross section to Wmax. At high energies σB
is further modified by polarization of the medium, and this “density
effect,” discussed in Sec. 33.2.5, must also be included. Less important
corrections are discussed below.

The mean number of collisions with energy loss between W and
W + dW occurring in a distance δx is Neδx (dσ/dW )dW , where
dσ(W ; β)/dW contains all contributions. It is convenient to define the
moments

Mj(β) = Ne δx

∫

W j dσ(W ; β)

dW
dW , (33.3)

so that M0 is the mean number of collisions in δx, M1 is the mean
energy loss in δx, (M2 − M1)

2 is the variance, etc. The number of
collisions is Poisson-distributed with mean M0. Ne is either measured
in electrons/g (Ne = NAZ/A) or electrons/cm3 (Ne = NA ρZ/A).
The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no
density dependence.
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Figure 33.1: Mass stopping power (= 〈−dE/dx〉) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of
magnitude in kinetic energy). Solid curves indicate the total stopping power. Data below
the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies are from
Ref. 5. Vertical bands indicate boundaries between different approximations discussed in
the text. The short dotted lines labeled “µ− ” illustrate the “Barkas effect,” the dependence
of stopping power on projectile charge at very low energies [6]. dE/dx in the radiative
region is not simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax =
2mec

2 β2γ2, valid for 2γme ≪ M , is often implicit. For a pion in
copper, the error thus introduced into dE/dx is greater than 6% at
100 GeV. For 2γme ≫ M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer
to the electron can exceed 1 GeV/c, where hadronic structure

effects significantly modify the cross sections. This problem has been
investigated by J.D. Jackson [9], who concluded that for hadrons (but
not for large nuclei) corrections to dE/dx are negligible below energies
where radiative effects dominate. While the cross section for rare hard
collisions is modified, the average stopping power, dominated by many
softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged
heavy particles, M1/δx, is well-described by the “Bethe equation,”

〈

−dE

dx

〉

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]

.

(33.5)
It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000
for intermediate-Z materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and
values given in Table 33.1, the units are MeV g−1cm2. As can be seen
from Fig. 33.2, 〈−dE/dx〉 defined in this way is about the same for
most materials, decreasing slowly with Z. The linear stopping power,
in MeV/cm, is 〈−dE/dx〉 ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projec-
tile velocity becomes comparable to atomic electron “velocities”
(Sec. 33.2.6), and at the upper limit radiative effects begin to
be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax,
but for all practical purposes 〈dE/dx〉 in a given material is a function
of β alone.

Few concepts in high-energy physics are as misused as 〈dE/dx〉.
The main problem is that the mean is weighted by very rare events
with large single-collision energy deposits. Even with samples of
hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most
probable energy loss, discussed in Sec. 33.2.9. The most probable
energy loss in a detector is considerably below the mean given by the
Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples with
the smallest signals is often used as an estimator.

Although it must be used with cautions and caveats, 〈dE/dx〉
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Figure 33.2: Mean energy loss rate in liquid (bubble chamber)
hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead.
Radiative effects, relevant for muons and pions, are not included.
These become significant for muons in iron for βγ >∼ 1000, and at
lower momenta for muons in higher-Z absorbers. See Fig. 33.23.

as described in Eq. (33.5) still forms the basis of much of our
understanding of energy loss by charged particles. Extensive tables
are available[4,5, pdg.lbl.gov/AtomicNuclearProperties/].

For heavy projectiles, like ions, additional terms are required to
account for higher-order photon coupling to the target, and to account
for the finite size of the target radius. These can change dE/dx by
a factor of two or more for the heaviest nuclei in certain kinematic
regimes [7].
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Figure 33.3: Mass stopping power at minimum ionization for
the chemical elements. The straight line is fitted for Z > 6. A
simple functional dependence on Z is not to be expected, since
〈−dE/dx〉 also depends on other variables.

The function as computed for muons on copper is shown as the
“Bethe” region of Fig. 33.1. Mean energy loss behavior below this
region is discussed in Sec. 33.2.6, and the radiative effects at high
energy are discussed in Sec. 33.6. Only in the Bethe region is it
a function of β alone; the mass dependence is more complicated
elsewhere. The stopping power in several other materials is shown in
Fig. 33.2. Except in hydrogen, particles with the same velocity have
similar rates of energy loss in different materials, although there is
a slow decrease in the rate of energy loss with increasing Z. The
qualitative behavior difference at high energies between a gas (He in
the figure) and the other materials shown in the figure is due to the
density-effect correction, δ(βγ), discussed in Sec. 33.2.5. The stopping
power functions are characterized by broad minima whose position

drops from βγ = 3.5 to 3.0 as Z goes from 7 to 100. The values of
minimum ionization as a function of atomic number are shown in
Fig. 33.3.

In practical cases, most relativistic particles (e.g., cosmic-ray
muons) have mean energy loss rates close to the minimum; they are
“minimum-ionizing particles,” or mip’s.
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Figure 33.4: Range of heavy charged particles in liquid (bubble
chamber) hydrogen, helium gas, carbon, iron, and lead. For
example: For a K+ whose momentum is 700 MeV/c, βγ = 1.42.
For lead we read R/M ≈ 396, and so the range is 195 g cm−2

(17 cm).

Eq. (33.5) may be integrated to find the total (or partial)
“continuous slowing-down approximation” (CSDA) range R for a
particle which loses energy only through ionization and atomic
excitation. Since dE/dx depends only on β, R/M is a function
of E/M or pc/M . In practice, range is a useful concept only for
low-energy hadrons (R <∼ λI , where λI is the nuclear interaction
length), and for muons below a few hundred GeV (above which
radiative effects dominate). R/M as a function of βγ = p/Mc is
shown for a variety of materials in Fig. 33.4.

The mass scaling of dE/dx and range is valid for the electronic
losses described by the Bethe equation, but not for radiative losses,
relevant only for muons and pions.

33.2.4. Mean excitation energy :

“The determination of the mean excitation energy is the principal
non-trivial task in the evaluation of the Bethe stopping-power
formula” [10]. Recommended values have varied substantially with
time. Estimates based on experimental stopping-power measurements
for protons, deuterons, and alpha particles and on oscillator-
strength distributions and dielectric-response functions were given
in ICRU 49 [4]. See also ICRU 37 [11]. These values, shown in
Fig. 33.5, have since been widely used. Machine-readable versions can
also be found [12].

33.2.5. Density effect :

As the particle energy increases, its electric field flattens and
extends, so that the distant-collision contribution to Eq. (33.5)
increases as ln βγ. However, real media become polarized, limiting the
field extension and effectively truncating this part of the logarithmic
rise [2–8,15–16]. At very high energies,

δ/2 → ln(~ωp/I) + lnβγ − 1/2 , (33.6)
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Figure 33.5: Mean excitation energies (divided by Z) as
adopted by the ICRU [11]. Those based on experimental
measurements are shown by symbols with error flags; the
interpolated values are simply joined. The grey point is for
liquid H2; the black point at 19.2 eV is for H2 gas. The open
circles show more recent determinations by Bichsel [13]. The
dash-dotted curve is from the approximate formula of Barkas [14]
used in early editions of this Review.

where δ(βγ)/2 is the density effect correction introduced in Eq. (33.5)
and ~ωp is the plasma energy defined in Table 33.1. A comparison
with Eq. (33.5) shows that |dE/dx| then grows as ln βγ rather than
lnβ2γ2, and that the mean excitation energy I is replaced by the
plasma energy ~ωp. The ionization stopping power as calculated with
and without the density effect correction is shown in Fig. 33.1. Since
the plasma frequency scales as the square root of the electron density,
the correction is much larger for a liquid or solid than for a gas, as is
illustrated by the examples in Fig. 33.2.

The density effect correction is usually computed using Stern-
heimer’s parameterization [15]:

δ(βγ) =















2(ln 10)x − C if x ≥ x1;
2(ln 10)x − C + a(x1 − x)k if x0 ≤ x < x1;
0 if x < x0 (nonconductors);

δ0102(x−x0) if x < x0 (conductors)
(33.7)

Here x = log10 η = log10(p/Mc). C (the negative of the C used in
Ref. 15) is obtained by equating the high-energy case of Eq. (33.7) with
the limit given in Eq. (33.6). The other parameters are adjusted to
give a best fit to the results of detailed calculations for momenta below
Mc exp(x1). Parameters for elements and nearly 200 compounds and
mixtures of interest are published in a variety of places, notably in
Ref. 16. A recipe for finding the coefficients for nontabulated materials
is given by Sternheimer and Peierls [17], and is summarized in Ref. 5.

The remaining relativistic rise comes from the β2γ growth of Wmax,
which in turn is due to (rare) large energy transfers to a few electrons.
When these events are excluded, the energy deposit in an absorbing
layer approaches a constant value, the Fermi plateau (see Sec. 33.2.8
below). At even higher energies (e.g., > 332 GeV for muons in iron,
and at a considerably higher energy for protons in iron), radiative
effects are more important than ionization losses. These are especially
relevant for high-energy muons, as discussed in Sec. 33.6.

33.2.6. Energy loss at low energies :

Shell corrections C/Z must be included in the square brackets of
of Eq. (33.5) [4,11,13,14] to correct for atomic binding having been
neglected in calculating some of the contributions to Eq. (33.5). The
Barkas form [14] was used in generating Fig. 33.1. For copper it
contributes about 1% at βγ = 0.3 (kinetic energy 6 MeV for a pion),
and the correction decreases very rapidly with increasing energy.

Equation 33.2, and therefore Eq. (33.5), are based on a first-order
Born approximation. Higher-order corrections, again important only
at lower energies, are normally included by adding the “Bloch
correction” z2L2(β) inside the square brackets (Eq.(2.5) in [4]) .

An additional “Barkas correction” zL1(β) reduces the stopping
power for a negative particle below that for a positive particle with
the same mass and velocity. In a 1956 paper, Barkas et al. noted that

negative pions had a longer range than positive pions [6]. The effect
has been measured for a number of negative/positive particle pairs,
including a detailed study with antiprotons [18].

A detailed discussion of low-energy corrections to the Bethe formula
is given in ICRU 49 [4]. When the corrections are properly included,
the Bethe treatment is accurate to about 1% down to β ≈ 0.05, or
about 1 MeV for protons.

For 0.01 < β < 0.05, there is no satisfactory theory. For protons,
one usually relies on the phenomenological fitting formulae developed
by Andersen and Ziegler [4,19]. As tabulated in ICRU 49 [4],
the nuclear plus electronic proton stopping power in copper is
113 MeV cm2 g−1 at T = 10 keV (βγ = 0.005), rises to a maximum
of 210 MeV cm2 g−1 at T ≈ 120 keV (βγ = 0.016), then falls to
118 MeV cm2 g−1 at T = 1 MeV (βγ = 0.046). Above 0.5–1.0 MeV
the corrected Bethe theory is adequate.

For particles moving more slowly than ≈ 0.01c (more or less
the velocity of the outer atomic electrons), Lindhard has been
quite successful in describing electronic stopping power, which is
proportional to β [20]. Finally, we note that at even lower energies,
e.g., for protons of less than several hundred eV, non-ionizing nuclear
recoil energy loss dominates the total energy loss [4,20,21].

33.2.7. Energetic knock-on electrons (δ rays) :

The distribution of secondary electrons with kinetic energies T ≫ I
is [2]

d2N

dTdx
=

1

2
Kz2Z

A

1

β2

F (T )

T 2 (33.8)

for I ≪ T ≤ Wmax, where Wmax is given by Eq. (33.4). Here
β is the velocity of the primary particle. The factor F is spin-
dependent, but is about unity for T ≪ Wmax. For spin-0 particles
F (T ) = (1 − β2T/Wmax); forms for spins 1/2 and 1 are also given by
Rossi [2]( Sec. 2.3, Eqns. 7 and 8). Additional formulae are given in
Ref. 22. Equation (33.8) is inaccurate for T close to I [23].

δ rays of even modest energy are rare. For a β ≈ 1 particle, for
example, on average only one collision with Te > 10 keV will occur
along a path length of 90 cm of Ar gas [1].

A δ ray with kinetic energy Te and corresponding momentum pe is
produced at an angle θ given by

cos θ = (Te/pe)(pmax/Wmax) , (33.9)

where pmax is the momentum of an electron with the maximum
possible energy transfer Wmax.

33.2.8. Restricted energy loss rates for relativistic ionizing

particles :
Further insight can be obtained by examining the mean energy

deposit by an ionizing particle when energy transfers are restricted to
T ≤ Wcut ≤ Wmax. The restricted energy loss rate is

−dE

dx

∣

∣

∣

∣

T<Wcut

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wcut

I2

−β2

2

(

1 +
Wcut

Wmax

)

− δ

2

]

. (33.10)

This form approaches the normal Bethe function (Eq. (33.5)) as
Wcut → Wmax. It can be verified that the difference between
Eq. (33.5) and Eq. (33.10) is equal to

∫ Wmax

Wcut
T (d2N/dTdx)dT , where

d2N/dTdx is given by Eq. (33.8).
Since Wcut replaces Wmax in the argument of the logarithmic

term of Eq. (33.5), the βγ term producing the relativistic rise in
the close-collision part of dE/dx is replaced by a constant, and
|dE/dx|T<Wcut

approaches the constant “Fermi plateau.” (The
density effect correction δ eliminates the explicit βγ dependence
produced by the distant-collision contribution.) This behavior is
illustrated in Fig. 33.6, where restricted loss rates for two examples
of Wcut are shown in comparison with the full Bethe dE/dx and
the Landau-Vavilov most probable energy loss (to be discussed in
Sec. 33.2.9 below).

“Restricted energy loss” is cut at the total mean energy, not the
single-collision energy above Wcut It is of limited use. The most
probable energy loss, discussed in the next Section, is far more useful
in situations where single-particle energy loss is observed.
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Figure 33.6: Bethe dE/dx, two examples of restricted energy
loss, and the Landau most probable energy per unit thickness
in silicon. The change of ∆p/x with thickness x illustrates
its a lnx + b dependence. Minimum ionization (dE/dx|min) is
1.664 MeV g−1 cm2. Radiative losses are excluded. The incident
particles are muons.

33.2.9. Fluctuations in energy loss :

For detectors of moderate thickness x (e.g. scintillators or
LAr cells),* the energy loss probability distribution f(∆; βγ, x) is
adequately described by the highly-skewed Landau (or Landau-
Vavilov) distribution [24,25]. The most probable energy loss is [26]
†

∆p = ξ

[

ln
2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]

, (33.11)

where ξ = (K/2) 〈Z/A〉 z2(x/β2) MeV for a detector with a thickness
x in g cm−2, and j = 0.200 [26]. ‡ While dE/dx is independent of
thickness, ∆p/x scales as a lnx + b. The density correction δ(βγ) was
not included in Landau’s or Vavilov’s work, but it was later included
by Bichsel [26]. The high-energy behavior of δ(βγ) (Eq. (33.6)) is
such that

∆p −→
βγ>∼100

ξ

[

ln
2mc2ξ

(~ωp)2
+ j

]

. (33.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted
energy loss, reaches a Fermi plateau. The Bethe dE/dx and Landau-
Vavilov-Bichsel ∆p/x in silicon are shown as a function of muon
energy in Fig. 33.6. The energy deposit in the 1600 µm case is roughly
the same as in a 3 mm thick plastic scintillator.

The distribution function for the energy deposit by a 10 GeV
muon going through a detector of about this thickness is shown in
Fig. 33.7. In this case the most probable energy loss is 62% of the
mean (M1(〈∆〉)/M1(∞)). Folding in experimental resolution displaces
the peak of the distribution, usually toward a higher value. 90% of
the collisions (M1(〈∆〉)/M1(∞)) contribute to energy deposits below
the mean. It is the very rare high-energy-transfer collisions, extending
to Wmax at several GeV, that drives the mean into the tail of the
distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events
subject to large fluctuations and sensitive to cuts. The mean of the
energy loss given by the Bethe equation, Eq. (33.5), is thus ill-defined
experimentally and is not useful for describing energy loss by single
particles.♮ It rises as ln γ because Wmax increases as γ at high energies.

* G <∼ 0.05–0.1, where G is given by Rossi [Ref. 2, Eq. 2.7(10)]. It is
Vavilov’s κ [25]. It is proportional to the absorber’s thickness, and as
such parameterizes the constants describing the Landau distribution.
These are fairly insensitive to thickness for G <∼ 0.1, the case for most
detectors.

† Practical calculations can be expedited by using the tables of δ and
β from the text versions of the muon energy loss tables to be found at
pdg.lbl.gov/AtomicNuclearProperties.

‡ Rossi [2], Talman [27], and others give somewhat different values
for j. The most probable loss is not sensitive to its value.

♮ It does find application in dosimetry, where only bulk deposit is
relevant.
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Figure 33.7: Electronic energy deposit distribution for a
10 GeV muon traversing 1.7 mm of silicon, the stopping power
equivalent of about 0.3 cm of PVC scintillator [1,13,28]. The
Landau-Vavilov function (dot-dashed) uses a Rutherford cross
section without atomic binding corrections but with a kinetic
energy transfer limit of Wmax. The solid curve was calculated
using Bethe-Fano theory. M0(∆) and M1(∆) are the cumulative
0th moment (mean number of collisions) and 1st moment (mean
energy loss) in crossing the silicon. (See Sec. 33.2.1. The fwhm
of the Landau-Vavilov function is about 4ξ for detectors of
moderate thickness. ∆p is the most probable energy loss, and
〈∆〉 divided by the thickness is the Bethe 〈dE/dx〉.
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The most probable energy loss should be used.
A practical example: For muons traversing 0.25 inches of PVT

plastic scintillator, the ratio of the most probable E loss rate to the
mean loss rate via the Bethe equation is [0.69, 0.57, 0.49, 0.42, 0.38] for
Tµ = [0.01, 0.1, 1, 10, 100] GeV. Radiative losses add less than 0.5% to
the total mean energy deposit at 10 GeV, but add 7% at 100 GeV.
The most probable E loss rate rises slightly beyond the minimum
ionization energy, then is essentially constant.

The Landau distribution fails to describe energy loss in thin
absorbers such as gas TPC cells [1] and Si detectors [26], as
shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC cell. Also
see Talman [27]. While ∆p/x may be calculated adequately with
Eq. (33.11), the distributions are significantly wider than the Landau
width w = 4ξ [Ref. 26, Fig. 15]. Examples for 500 MeV pions incident
on thin silicon detectors are shown in Fig. 33.8. For very thick
absorbers the distribution is less skewed but never approaches a
Gaussian.

The most probable energy loss, scaled to the mean loss at minimum
ionization, is shown in Fig. 33.9 for several silicon detector thicknesses.
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33.2.10. Energy loss in mixtures and compounds :

A mixture or compound can be thought of as made up of thin
layers of pure elements in the right proportion (Bragg additivity). In
this case,

〈

dE

dx

〉

=
∑

wj

〈

dE

dx

〉

j
, (33.13)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (33.5) can be inserted into Eq. (33.13) to
find expressions for 〈Z/A〉, 〈I 〉, and 〈δ〉; for example, 〈Z/A〉 =
∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, 〈I 〉 as defined this way is
an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and 〈δ〉 as calculated this way has little
relevance, because it is the electron density that matters. If possible,
one uses the tables given in Refs. 16 and 29, that include effective exci-
tation energies and interpolation coefficients for calculating the density
effect correction for the chemical elements and nearly 200 mixtures and
compounds. Otherwise, use the recipe for δ given in Ref. 5 and 17, and
calculate 〈I〉 following the discussion in Ref. 10. (Note the “13%” rule!)

33.2.11. Ionization yields : Physicists frequently

relate total energy loss to the number of ion pairs produced near
the particle’s track. This relation becomes complicated for relativistic
particles due to the wandering of energetic knock-on electrons whose
ranges exceed the dimensions of the fiducial volume. For a qualitative
appraisal of the nonlocality of energy deposition in various media
by such modestly energetic knock-on electrons, see Ref. 30. The
mean local energy dissipation per local ion pair produced, W , while
essentially constant for relativistic particles, increases at slow particle
speeds [31]. For gases, W can be surprisingly sensitive to trace
amounts of various contaminants [31]. Furthermore, ionization yields
in practical cases may be greatly influenced by such factors as
subsequent recombination [32].

33.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many small-
angle scatters. Most of this deflection is due to Coulomb scattering
from nuclei as described by the Rutherford cross section. (However,
for hadronic projectiles, the strong interactions also contribute to
multiple scattering.) For many small-angle scatters the net scattering
and displacement distributions are Gaussian via the central limit
theorem. Less frequent “hard” scatters produce non-Gaussian tails.
These Coulomb scattering distributions are well-represented by the
theory of Molière [34]. Accessible discussions are given by Rossi [2]
and Jackson [33], and exhaustive reviews have been published
by Scott [35] and Motz et al. [36]. Experimental measurements
have been published by Bichsel [37]( low energy protons) and by
Shen et al. [38]( relativistic pions, kaons, and protons).*

* Shen et al.’s measurements show that Bethe’s simpler methods of
including atomic electron effects agrees better with experiment than
does Scott’s treatment.

If we define

θ0 = θ rms
plane =

1√
2

θrms
space , (33.14)

then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
an rms width given by [39,40]

θ0 =
13.6 MeV

βcp
z

√

x/X0

[

1 + 0.038 ln(x/X0)
]

. (33.15)

Here p, βc, and z are the momentum, velocity, and charge number
of the incident particle, and x/X0 is the thickness of the scattering
medium in radiation lengths (defined below). This value of θ0 is from
a fit to Molière distribution for singly charged particles with β = 1 for
all Z, and is accurate to 11% or better for 10−3 < x/X0 < 100.

Eq. (33.15) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Molière
distribution, it is incorrect to add the individual θ0 contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (33.15) once, after finding x and X0 for the
combined scatterer.

x

splane
yplane

Ψplane

θplane

x/2

Figure 33.10: Quantities used to describe multiple Coulomb
scattering. The particle is incident in the plane of the figure.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [34]

1

2π θ2
0

exp











−
θ2
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2θ2
0











dΩ , (33.16)

1√
2π θ0

exp













−
θ2
plane

2θ2
0













dθplane , (33.17)

where θ is the deflection angle. In this approximation, θ2
space ≈

(θ2
plane,x + θ2

plane,y), where the x and y axes are orthogonal to the

direction of motion, and dΩ ≈ dθplane,x dθplane,y. Deflections into
θplane,x and θplane,y are independent and identically distributed.

Fig. 33.10 shows these and other quantities sometimes used to
describe multiple Coulomb scattering. They are

ψ rms
plane =

1√
3

θ rms
plane =

1√
3

θ0 , (33.18)

y rms
plane =

1√
3

x θ rms
plane =

1√
3

x θ0 , (33.19)

s rms
plane =

1

4
√

3
x θ rms

plane =
1

4
√

3
x θ0 . (33.20)

All the quantitative estimates in this section apply only in the limit
of small θ rms

plane and in the absence of large-angle scatters. The random

variables s, ψ, y, and θ in a given plane are correlated. Obviously,
y ≈ xψ. In addition, y and θ have the correlation coefficient ρyθ =√

3/2 ≈ 0.87. For Monte Carlo generation of a joint (y plane, θplane)
distribution, or for other calculations, it may be most convenient to
work with independent Gaussian random variables (z1, z2) with mean
zero and variance one, and then set

yplane =z1 x θ0(1 − ρ2
yθ)

1/2/
√

3 + z2 ρyθx θ0/
√

3 (33.21)

=z1 x θ0/
√

12 + z2 x θ0/2 ; (33.22)

θplane =z2 θ0 . (33.23)

Note that the second term for y plane equals x θplane/2 and represents
the displacement that would have occurred had the deflection θplane
all occurred at the single point x/2.
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For heavy ions the multiple Coulomb scattering has been measured
and compared with various theoretical distributions [41].

33.4. Photon and electron interactions in matter

At low energies electrons and positrons primarily lose energy
by ionization, although other processes (Møller scattering, Bhabha
scattering, e+ annihilation) contribute, as shown in Fig. 33.11. While
ionization loss rates rise logarithmically with energy, bremsstrahlung
losses rise nearly linearly (fractional loss is nearly independent of
energy), and dominates above the critical energy (Sec. 33.4.4 below),
a few tens of MeV in most materials

33.4.1. Collision energy losses by e± :

Stopping power differs somewhat for electrons and positrons, and
both differ from stopping power for heavy particles because of the
kinematics, spin, charge, and the identity of the incident electron with
the electrons that it ionizes. Complete discussions and tables can be
found in Refs. 10, 11, and 29.

For electrons, large energy transfers to atomic electrons (taken as
free) are described by the Møller cross section. From Eq. (33.4), the
maximum energy transfer in a single collision should be the entire
kinetic energy, Wmax = mec

2(γ − 1), but because the particles are
identical, the maximum is half this, Wmax/2. (The results are the
same if the transferred energy is ǫ or if the transferred energy is
Wmax − ǫ. The stopping power is by convention calculated for the
faster of the two emerging electrons.) The first moment of the Møller
cross section [22]( divided by dx) is the stopping power:

〈

−dE

dx

〉

=
1

2
K

Z

A

1

β2

[

ln
mec

2β2γ2{mec
2(γ − 1)/2}

I2

+(1 − β2) − 2γ − 1

γ2
ln 2 +

1

8

(

γ − 1

γ

)2

− δ

]

(33.24)

The logarithmic term can be compared with the logarithmic term in
the Bethe equation (Eq. (33.2)) by substituting Wmax = mec

2(γ−1)/2.
The two forms differ by ln 2.

Electron-positron scattering is described by the fairly complicated
Bhabha cross section [22]. There is no identical particle problem, so
Wmax = mec

2(γ−1). The first moment of the Bhabha equation yields
〈

−dE

dx

〉

=
1

2
K

Z

A

1

β2

[

ln
mec

2β2γ2{mec
2(γ − 1)}

2I2 (33.25)

+2 ln 2 − β2

12

(

23 +
14

γ + 1
+

10

(γ + 1)2
+

4

(γ + 1)3

)

− δ

]

.

Following ICRU 37 [11], the density effect correction δ has been
added to Uehling’s equations [22] in both cases.

For heavy particles, shell corrections were developed assuming
that the projectile is equivalent to a perturbing potential whose
center moves with constant velocity. This assumption has no sound
theoretical basis for electrons. The authors of ICRU 37 [11] estimated
the possible error in omitting it by assuming the correction was twice
as great as for a proton of the same velocity. At T = 10 keV, the error
was estimated to be ≈2% for water, ≈9% for Cu, and ≈21% for Au.

As shown in Fig. 33.11, stopping powers for e−, e+, and heavy
particles are not dramatically different. In silicon, the minimum
value for electrons is 1.50 MeV cm2/g (at γ = 3.3); for positrons,
1.46 MeV cm2/g (at γ = 3.7), and for muons, 1.66 MeV cm2/g (at
γ = 3.58).

33.4.2. Radiation length :

High-energy electrons predominantly lose energy in matter by
bremsstrahlung, and high-energy photons by e+e− pair production.
The characteristic amount of matter traversed for these related
interactions is called the radiation length X0, usually measured in
g cm−2. It is both (a) the mean distance over which a high-energy
electron loses all but 1/e of its energy by bremsstrahlung, and (b) 7

9 of
the mean free path for pair production by a high-energy photon [42].
It is also the appropriate scale length for describing high-energy
electromagnetic cascades. X0 has been calculated and tabulated by
Y.S. Tsai [43]:

1

X0
= 4αr2

e
NA

A

{

Z2[Lrad − f(Z)
]

+ Z L′
rad

}

. (33.26)

For A = 1 g mol−1, 4αr2
eNA/A = (716.408 g cm−2)−1. Lrad and

L′
rad are given in Table 33.2. The function f(Z) is an infinite sum, but

for elements up to uranium can be represented to 4-place accuracy by

f(Z) =a2
[

(1 + a2)−1 + 0.20206

− 0.0369 a2 + 0.0083 a4 − 0.002 a6
]

,

(33.27)

where a = αZ [44].

Table 33.2: Tsai’s Lrad and L′
rad, for use in calculating the

radiation length in an element using Eq. (33.26).

Element Z Lrad L′
rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15 Z−1/3) ln(1194 Z−2/3)

The radiation length in a mixture or compound may be approxi-
mated by

1/X0 =
∑

wj/Xj , (33.28)

where wj and Xj are the fraction by weight and the radiation length
for the jth element.

Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [43]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,
(33.29)

where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)
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This cross section (times k) is shown by the top curve in Fig. 33.12.

0

0.4

0.8

1.2

0 0.25 0.5 0.75 1

y = k/E

Bremsstrahlung

(X
0

N
A

/
A

) 
y

d
σ L

P
M

/
d

y

10 GeV

1 TeV

10 TeV

100 TeV

1 PeV

10 PeV

100 GeV

Figure 33.12: The normalized bremsstrahlung cross section
k dσLPM/dk in lead versus the fractional photon energy y = k/E.
The vertical axis has units of photons per radiation length.

This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [45,46] and dielectric
suppression [47,48]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [49].
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Figure 33.13: Two definitions of the critical energy Ec.

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin
and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

− 4(kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

.

(33.31)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [50]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.

The accuracy of approximate forms for Ec has been limited by the
failure to distinguish between gases and solid or liquids, where there
is a substantial difference in ionization at the relevant energy because
of the density effect. We distinguish these two cases in Fig. 33.14.
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Figure 33.14: Electron critical energy for the chemical elements,
using Rossi’s definition [2]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

Fits were also made with functions of the form a/(Z + b)α, but α
was found to be essentially unity. Since Ec also depends on A, I, and
other factors, such forms are at best approximate.

Values of Ec for both electrons and positrons in more than 300
materials can be found at pdg.lbl.gov/AtomicNuclearProperties.

33.4.5. Energy loss by photons :

Contributions to the photon cross section in a light element
(carbon) and a heavy element (lead) are shown in Fig. 33.15. At low
energies it is seen that the photoelectric effect dominates, although
Compton scattering, Rayleigh scattering, and photonuclear absorption
also contribute. The photoelectric cross section is characterized by
discontinuities (absorption edges) as thresholds for photoionization
of various atomic levels are reached. Photon attenuation lengths
for a variety of elements are shown in Fig. 33.18, and data for
30 eV< k <100 GeV for all elements are available from the web pages
given in the caption. Here k is the photon energy.

The increasing domination of pair production as the energy
increases is shown in Fig. 33.16. Using approximations similar to
those used to obtain Eq. (33.30), Tsai’s formula for the differential
cross section [43] reduces to

dσ

dx
=

A

X0NA

[

1 − 4
3x(1 − x)

]

(33.32)

in the complete-screening limit valid at high energies. Here x = E/k
is the fractional energy transfer to the pair-produced electron (or
positron), and k is the incident photon energy. The cross section is
very closely related to that for bremsstrahlung, since the Feynman
diagrams are variants of one another. The cross section is of necessity
symmetric between x and 1 − x, as can be seen by the solid curve in
Fig. 33.17. See the review by Motz, Olsen, & Koch for a more detailed
treatment [53].

Eq. (33.32) may be integrated to find the high-energy limit for the
total e+e− pair-production cross section:

σ = 7
9 (A/X0NA) . (33.33)

Equation (33.33) is accurate to within a few percent down to energies
as low as 1 GeV, particularly for high-Z materials.

33.4.6. Bremsstrahlung and pair production at very high en-
ergies :

At ultrahigh energies, Eqns. 33.29–33.33 will fail because of
quantum mechanical interference between amplitudes from different
scattering centers. Since the longitudinal momentum transfer to a
given center is small (∝ k/E(E − k), in the case of bremsstrahlung),
the interaction is spread over a comparatively long distance called
the formation length (∝ E(E − k)/k) via the uncertainty principle.
In alternate language, the formation length is the distance over
which the highly relativistic electron and the photon “split apart.”
The interference is usually destructive. Calculations of the “Landau-
Pomeranchuk-Migdal” (LPM) effect may be made semi-classically
based on the average multiple scattering, or more rigorously using a
quantum transport approach [45,46].
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Figure 33.15: Photon total cross sections as a function of
energy in carbon and lead, showing the contributions of different
processes [51]:

σp.e. = Atomic photoelectric effect (electron ejection,
photon absorption)

σRayleigh = Rayleigh (coherent) scattering–atom neither
ionized nor excited

σCompton = Incoherent scattering (Compton scattering off an
electron)

κnuc = Pair production, nuclear field
κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant
Dipole Resonance [52]. In these interactions, the
target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell
(NIST).

In amorphous media, bremsstrahlung is suppressed if the photon
energy k is less than E2/(E + ELPM ) [46], where*

ELPM =
(mec

2)2αX0

4π~cρ
= (7.7 TeV/cm) × X0

ρ
. (33.34)

Since physical distances are involved, X0/ρ, in cm, appears. The
energy-weighted bremsstrahlung spectrum for lead, k dσLPM/dk,

* This definition differs from that of Ref. 54 by a factor of two.
ELPM scales as the 4th power of the mass of the incident particle, so
that ELPM = (1.4 × 1010 TeV/cm) × X0/ρ for a muon.

is shown in Fig. 33.12. With appropriate scaling by X0/ρ, other
materials behave similarly.

Figure 33.16: Probability P that a photon interaction will
result in conversion to an e+e− pair. Except for a few-percent
contribution from photonuclear absorption around 10 or 20
MeV, essentially all other interactions in this energy range result
in Compton scattering off an atomic electron. For a photon
attenuation length λ (Fig. 33.18), the probability that a given
photon will produce an electron pair (without first Compton
scattering) in thickness t of absorber is P [1 − exp(−t/λ)].
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For photons, pair production is reduced for E(k − E) > k ELPM .
The pair-production cross sections for different photon energies are
shown in Fig. 33.17.
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Figure 33.18: The photon mass attenuation length (or mean free path) λ = 1/(µ/ρ) for various elemental absorbers as a function
of photon energy. The mass attenuation coefficient is µ/ρ, where ρ is the density. The intensity I remaining after traversal of
thickness t (in mass/unit area) is given by I = I0 exp(−t/λ). The accuracy is a few percent. For a chemical compound or mixture,
1/λeff ≈

∑

elements wZ/λZ , where wZ is the proportion by weight of the element with atomic number Z. The processes responsible for
attenuation are given in Fig. 33.11. Since coherent processes are included, not all these processes result in energy deposition. The data for
30 eV < E < 1 keV are obtained from http://www-cxro.lbl.gov/optical constants (courtesy of Eric M. Gullikson, LBNL). The data
for 1 keV < E < 100 GeV are from http://physics.nist.gov/PhysRefData, through the courtesy of John H. Hubbell (NIST).

If k ≪ E, several additional mechanisms can also produce
suppression. When the formation length is long, even weak factors
can perturb the interaction. For example, the emitted photon can
coherently forward scatter off of the electrons in the media. Because
of this, for k < ωpE/me ∼ 10−4, bremsstrahlung is suppressed
by a factor (kme/ωpE)2 [48]. Magnetic fields can also suppress
bremsstrahlung.
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Figure 33.20: An EGS4 simulation of a 30 GeV electron-
induced cascade in iron. The histogram shows fractional energy
deposition per radiation length, and the curve is a gamma-
function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes
at X0/2 intervals (scale on right) and the squares the number of
photons with E ≥ 1.5 MeV crossing the planes (scaled down to
have same area as the electron distribution).

In crystalline media, the situation is more complicated, with
coherent enhancement or suppression possible. The cross section
depends on the electron and photon energies and the angles between
the particle direction and the crystalline axes [55].

33.4.7. Photonuclear and electronuclear interactions at still
higher energies :

At still higher photon and electron energies, where the bremsstrah-
lung and pair production cross-sections are heavily suppressed by the
LPM effect, photonuclear and electronuclear interactions predominate
over electromagnetic interactions.

At photon energies above about 1020 eV, for example, photons
usually interact hadronically. The exact cross-over energy depends
on the model used for the photonuclear interactions. These processes
are illustrated in Fig. 33.19. At still higher energies (>∼ 1023 eV),
photonuclear interactions can become coherent, with the photon
interaction spread over multiple nuclei. Essentially, the photon
coherently converts to a ρ0, in a process that is somewhat similar to
kaon regeneration [56].

Similar processes occur for electrons. As electron energies increase
and the LPM effect suppresses bremsstrahlung, electronuclear
interactions become more important. At energies above 1021eV, these
electronuclear interactions dominate electron energy loss [56].

33.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick
absorber, it initiates an electromagnetic cascade as pair production
and bremsstrahlung generate more electrons and photons with lower
energy. The longitudinal development is governed by the high-energy
part of the cascade, and therefore scales as the radiation length in the
material. Electron energies eventually fall below the critical energy,
and then dissipate their energy by ionization and excitation rather
than by the generation of more shower particles. In describing shower
behavior, it is therefore convenient to introduce the scale variables

t = x/X0 , y = E/Ec , (33.35)

so that distance is measured in units of radiation length and energy
in units of critical energy. Longitudinal profiles from an EGS4 [57]
simulation of a 30 GeV electron-induced cascade in iron are shown
in Fig. 33.20. The number of particles crossing a plane (very close to
Rossi’s Π function [2]) is sensitive to the cutoff energy, here chosen as
a total energy of 1.5 MeV for both electrons and photons. The electron
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number falls off more quickly than energy deposition. This is because,
with increasing depth, a larger fraction of the cascade energy is carried
by photons. Exactly what a calorimeter measures depends on the
device, but it is not likely to be exactly any of the profiles shown.
In gas counters it may be very close to the electron number, but in
glass Cherenkov detectors and other devices with “thick” sensitive
regions it is closer to the energy deposition (total track length). In
such detectors the signal is proportional to the “detectable” track
length Td, which is in general less than the total track length T .
Practical devices are sensitive to electrons with energy above some
detection threshold Ed, and Td = T F (Ed/Ec). An analytic form for
F (Ed/Ec) obtained by Rossi [2] is given by Fabjan in Ref. 58; see
also Amaldi [59].

The mean longitudinal profile of the energy deposition in an
electromagnetic cascade is reasonably well described by a gamma
distribution [60]:

dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
(33.36)

The maximum tmax occurs at (a − 1)/b. We have made fits to shower
profiles in elements ranging from carbon to uranium, at energies from
1 GeV to 100 GeV. The energy deposition profiles are well described
by Eq. (33.36) with

tmax = (a − 1)/b = 1.0 × (ln y + Cj) , j = e, γ , (33.37)

where Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for
photon-induced cascades. To use Eq. (33.36), one finds (a − 1)/b from
Eq. (33.37) and Eq. (33.35), then finds a either by assuming b ≈ 0.5
or by finding a more accurate value from Fig. 33.21. The results
are very similar for the electron number profiles, but there is some
dependence on the atomic number of the medium. A similar form for
the electron number maximum was obtained by Rossi in the context
of his “Approximation B,” [2] (see Fabjan’s review in Ref. 58), but
with Ce = −1.0 and Cγ = −0.5; we regard this as superseded by the
EGS4 result.
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Figure 33.21: Fitted values of the scale factor b for energy
deposition profiles obtained with EGS4 for a variety of elements
for incident electrons with 1 ≤ E0 ≤ 100 GeV. Values obtained
for incident photons are essentially the same.

The “shower length” Xs = X0/b is less conveniently parameterized,
since b depends upon both Z and incident energy, as shown in
Fig. 33.21. As a corollary of this Z dependence, the number of elec-
trons crossing a plane near shower maximum is underestimated using
Rossi’s approximation for carbon and seriously overestimated for ura-
nium. Essentially the same b values are obtained for incident electrons
and photons. For many purposes it is sufficient to take b ≈ 0.5.

The length of showers initiated by ultra-high energy photons and
electrons is somewhat greater than at lower energies since the first
or first few interaction lengths are increased via the mechanisms
discussed above.

The gamma function distribution is very flat near the origin, while
the EGS4 cascade (or a real cascade) increases more rapidly. As a
result Eq. (33.36) fails badly for about the first two radiation lengths;
it was necessary to exclude this region in making fits.

Because fluctuations are important, Eq. (33.36) should be used only
in applications where average behavior is adequate. Grindhammer
et al. have developed fast simulation algorithms in which the variance
and correlation of a and b are obtained by fitting Eq. (33.36) to
individually simulated cascades, then generating profiles for cascades
using a and b chosen from the correlated distributions [61].

The transverse development of electromagnetic showers in different
materials scales fairly accurately with the Molière radius RM , given
by [62,63]

RM = X0 Es/Ec , (33.38)

where Es ≈ 21 MeV (Table 33.1), and the Rossi definition of Ec is
used.

In a material containing a weight fraction wj of the element with
critical energy Ecj and radiation length Xj , the Molière radius is
given by

1

RM
=

1

Es

∑ wj Ecj

Xj
. (33.39)

Measurements of the lateral distribution in electromagnetic
cascades are shown in Refs. 62 and 63. On the average, only 10%
of the energy lies outside the cylinder with radius RM . About
99% is contained inside of 3.5RM , but at this radius and beyond
composition effects become important and the scaling with RM fails.
The distributions are characterized by a narrow core, and broaden as
the shower develops. They are often represented as the sum of two
Gaussians, and Grindhammer [61] describes them with the function

f(r) =
2r R2

(r2 + R2)2
, (33.40)

where R is a phenomenological function of x/X0 and lnE.
At high enough energies, the LPM effect (Sec. 33.4.6) reduces the

cross sections for bremsstrahlung and pair production, and hence can
cause significant elongation of electromagnetic cascades [46].

33.6. Muon energy loss at high energy

At sufficiently high energies, radiative processes become more
important than ionization for all charged particles. For muons and
pions in materials such as iron, this “critical energy” occurs at several
hundred GeV. (There is no simple scaling with particle mass, but
for protons the “critical energy” is much, much higher.) Radiative
effects dominate the energy loss of energetic muons found in cosmic
rays or produced at the newest accelerators. These processes are
characterized by small cross sections, hard spectra, large energy
fluctuations, and the associated generation of electromagnetic and (in
the case of photonuclear interactions) hadronic showers [64–72]. As
a consequence, at these energies the treatment of energy loss as a
uniform and continuous process is for many purposes inadequate.

It is convenient to write the average rate of muon energy loss
as [73]

−dE/dx = a(E) + b(E)E . (33.41)

Here a(E) is the ionization energy loss given by Eq. (33.5), and
b(E) is the sum of e+e− pair production, bremsstrahlung, and
photonuclear contributions. To the approximation that these slowly-
varying functions are constant, the mean range x0 of a muon with
initial energy E0 is given by

x0 ≈ (1/b) ln(1 + E0/Eµc) , (33.42)

where Eµc = a/b. Fig. 33.22 shows contributions to b(E) for iron.
Since a(E) ≈ 0.002 GeV g−1 cm2, b(E)E dominates the energy loss
above several hundred GeV, where b(E) is nearly constant. The rates
of energy loss for muons in hydrogen, uranium, and iron are shown in
Fig. 33.23 [5].

The “muon critical energy” Eµc can be defined more exactly as the
energy at which radiative and ionization losses are equal, and can be
found by solving Eµc = a(Eµc)/b(Eµc). This definition corresponds
to the solid-line intersection in Fig. 33.13, and is different from the
Rossi definition we used for electrons. It serves the same function:
below Eµc ionization losses dominate, and above Eµc radiative effects
dominate. The dependence of Eµc on atomic number Z is shown in
Fig. 33.24.
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Figure 33.22: Contributions to the fractional energy loss by
muons in iron due to e+e− pair production, bremsstrahlung,
and photonuclear interactions, as obtained from Groom et al. [5]
except for post-Born corrections to the cross section for direct
pair production from atomic electrons.

Figure 33.23: The average energy loss of a muon in hydrogen,
iron, and uranium as a function of muon energy. Contributions
to dE/dx in iron from ionization and the processes shown in
Fig. 33.22 are also shown.
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Figure 33.24: Muon critical energy for the chemical elements,
defined as the energy at which radiative and ionization energy
loss rates are equal [5]. The equality comes at a higher energy
for gases than for solids or liquids with the same atomic number
because of a smaller density effect reduction of the ionization
losses. The fits shown in the figure exclude hydrogen. Alkali
metals fall 3–4% above the fitted function, while most other
solids are within 2% of the function. Among the gases the worst
fit is for radon (2.7% high).

The radiative cross sections are expressed as functions of the
fractional energy loss ν. The bremsstrahlung cross section goes
roughly as 1/ν over most of the range, while for the pair production
case the distribution goes as ν−3 to ν−2 [74]. “Hard” losses are

therefore more probable in bremsstrahlung, and in fact energy losses
due to pair production may very nearly be treated as continuous.
The simulated [72] momentum distribution of an incident 1 TeV/c
muon beam after it crosses 3 m of iron is shown in Fig. 33.25. The
most probable loss is 8 GeV, or 3.4 MeV g−1cm2. The full width
at half maximum is 9 GeV/c, or 0.9%. The radiative tail is almost
entirely due to bremsstrahlung, although most of the events in which
more than 10% of the incident energy lost experienced relatively
hard photonuclear interactions. The latter can exceed detector
resolution [75], necessitating the reconstruction of lost energy. Tables
in Ref. 5 list the stopping power as 9.82 MeV g−1cm2 for a 1 TeV
muon, so that the mean loss should be 23 GeV (≈ 23 GeV/c), for a
final momentum of 977 GeV/c, far below the peak. This agrees with
the indicated mean calculated from the simulation. Electromagnetic
and hadronic cascades in detector materials can obscure muon tracks
in detector planes and reduce tracking efficiency [76].
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Figure 33.25: The momentum distribution of 1 TeV/c muons
after traversing 3 m of iron as calculated with the MARS15
Monte Carlo code [72] by S.I. Striganov [5].

33.7. Cherenkov and transition radiation [33,77,78]

A charged particle radiates if its velocity is greater than the
local phase velocity of light (Cherenkov radiation) or if it crosses
suddenly from one medium to another with different optical properties
(transition radiation). Neither process is important for energy loss,
but both are used in high-energy and cosmic-ray physics detectors.
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 vg

Figure 33.26: Cherenkov light emission and wavefront angles.
In a dispersive medium, θc + η 6= 900.

33.7.1. Optical Cherenkov radiation :

The angle θc of Cherenkov radiation, relative to the particle’s
direction, for a particle with velocity βc in a medium with index of
refraction n is

cos θc = (1/nβ)

or tan θc =
√

β2n2 − 1

≈
√

2(1 − 1/nβ) for small θc, e.g. in gases.(33.43)

The threshold velocity βt is 1/n, and γt = 1/(1 − β2
t )1/2. Therefore,

βtγt = 1/(2δ + δ2)1/2, where δ = n − 1. Values of δ for various
commonly used gases are given as a function of pressure and
wavelength in Ref. 79. For values at atmospheric pressure, see
Table 6.1. Data for other commonly used materials are given in
Ref. 80.
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Practical Cherenkov radiator materials are dispersive. Let ω be the
photon’s frequency, and let k = 2π/λ be its wavenumber. The photons
propage at the group velocity vg = dω/dk = c/[n(ω) + ω(dn/dω)]. In
a non-dispersive medium, this simplies to vg = c/n.

In his classical paper, Tamm [81] showed that for dispersive media
the radiation is concentrated in a thin conical shell whose vertex is at
the moving charge, and whose opening half-angle η is given by

cot η =

[

d

dω
(ω tan θc)

]

ω0

=

[

tan θc + β2ω n(ω)
dn

dω
cot θc

]

ω0

, (33.44)

where ω0 is the central value of the small frequency range under
consideration. (See Fig. 33.26.) This cone has a opening half-angle η,
and, unless the medium is non-dispersive (dn/dω = 0), θc + η 6= 900.
The Cherenkov wavefront ‘sideslips’ along with the particle [82]. This
effect has timing implications for ring imaging Cherenkov counters [83],
but it is probably unimportant for most applications.

The number of photons produced per unit path length of a particle
with charge ze and per unit energy interval of the photons is

d2N

dEdx
=

αz2

~c
sin2 θc =

α2z2

re mec2

(

1 − 1

β2n2(E)

)

≈ 370 sin2 θc(E) eV−1cm−1 (z = 1) , (33.45)

or, equivalently,

d2N

dxdλ
=

2παz2

λ2

(

1 − 1

β2n2(λ)

)

. (33.46)

The index of refraction n is a function of photon energy E = ~ω,
as is the sensitivity of the transducer used to detect the light. For
practical use, Eq. (33.45) must be multiplied by the the transducer
response function and integrated over the region for which β n(ω) > 1.
Further details are given in the discussion of Cherenkov detectors in
the Particle Detectors section (Sec. 34 of this Review).

When two particles are close together (lateral separation <∼ 1
wavelength), the electromagnetic fields from the particles may
add coherently, affecting the Cherenkov radiation. Because of their
opposite charges, the radiation from an e+e− pair at close separation
is suppressed compared to two independent leptons [84].

33.7.2. Coherent radio Cherenkov radiation :

Coherent Cherenkov radiation is produced by many charged
particles with a non-zero net charge moving through matter on an
approximately common “wavefront”—for example, the electrons and
positrons in a high-energy electromagnetic cascade. The signals can
be visible above backgrounds for shower energies as low as 1017 eV; see
Sec. 35.3.3 for more details. The phenomenon is called the Askaryan
effect [85]. Near the end of a shower, when typical particle energies
are below Ec (but still relativistic), a charge imbalance develops.
Photons can Compton-scatter atomic electrons, and positrons can
annihilate with atomic electrons to contribute even more photons
which can in turn Compton scatter. These processes result in a
roughly 20% excess of electrons over positrons in a shower. The net
negative charge leads to coherent radio Cherenkov emission. The
radiation includes a component from the decelerating charges (as
in bremsstrahlung). Because the emission is coherent, the electric
field strength is proportional to the shower energy, and the signal
power increases as its square. The electric field strength also increases
linearly with frequency, up to a maximum frequency determined by
the lateral spread of the shower. This cutoff occurs at about 1 GHz in
ice, and scales inversely with the Moliere radius. At low frequencies,
the radiation is roughly isotropic, but, as the frequency rises toward
the cutoff frequency, the radiation becomes increasingly peaked
around the Cherenkov angle. The radiation is linearly polarized in
the plane containing the shower axis and the photon direction. A
measurement of the signal polarization can be used to help determine
the shower direction. The characteristics of this radiation have been
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Figure 33.27: X-ray photon energy spectra for a radiator
consisting of 200 25µm thick foils of Mylar with 1.5 mm spacing
in air (solid lines) and for a single surface (dashed line). Curves
are shown with and without absorption. Adapted from Ref. 88.

nicely demonstrated in a series of experiments at SLAC [86]. A
detailed discussion of the radiation can be found in Ref. 87.

33.7.3. Transition radiation :

The energy radiated when a particle with charge ze crosses the
boundary between vacuum and a medium with plasma frequency ωp is

I = αz2γ~ωp/3 , (33.47)

where

~ωp =
√

4πNer3
e mec

2/α =

√

ρ (in g/cm3) 〈Z/A〉 × 28.81 eV .

(33.48)
For styrene and similar materials, ~ωp ≈ 20 eV; for air it is 0.7 eV.
The number spectrum dNγ/d(~ω diverges logarithmically at low

energies and decreases rapidly for ~ω/γ~ωp > 1. About half the energy
is emitted in the range 0.1 ≤ ~ω/γ~ωp ≤ 1. Inevitable absorption in a
practical detector removes the divergence. For a particle with γ = 103,
the radiated photons are in the soft x-ray range 2 to 40 keV. The γ
dependence of the emitted energy thus comes from the hardening of
the spectrum rather than from an increased quantum yield.

The number of photons with energy ~ω > ~ω0 is given by the
answer to problem 13.15 in Ref. 33,

Nγ(~ω > ~ω0) =
αz2

π

[

(

ln
γ~ωp

~ω0
− 1

)2

+
π2

12

]

, (33.49)

within corrections of order (~ω0/γ~ωp)
2. The number of photons

above a fixed energy ~ω0 ≪ γ~ωp thus grows as (ln γ)2, but the number
above a fixed fraction of γ~ωp (as in the example above) is constant.
For example, for ~ω > γ~ωp/10, Nγ = 2.519 αz2/π = 0.59%× z2.

The particle stays “in phase” with the x ray over a distance called
the formation length, d(ω) = (2c/ω)(1/γ2 + θ2 + ω2

p/ω2)−1. Most of
the radiation is produced in this distance. Here θ is the x-ray emission
angle, characteristically 1/γ. For θ = 1/γ the formation length has a
maximum at d(γωp/

√
2) = γc/

√
2 ωp. In practical situations it is tens

of µm.
Since the useful x-ray yield from a single interface is low, in practical

detectors it is enhanced by using a stack of N foil radiators—foils L
thick, where L is typically several formation lengths—separated by
gas-filled gaps. The amplitudes at successive interfaces interfere to
cause oscillations about the single-interface spectrum. At increasing
frequencies above the position of the last interference maximum
(L/d(w) = π/2), the formation zones, which have opposite phase,
overlap more and more and the spectrum saturates, dI/dω approaching
zero as L/d(ω) → 0. This is illustrated in Fig. 33.27 for a realistic
detector configuration.
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For regular spacing of the layers fairly complicated analytic
solutions for the intensity have been obtained [88,89]. Although one
might expect the intensity of coherent radiation from the stack of foils
to be proportional to N2, the angular dependence of the formation
length conspires to make the intensity ∝ N .

References:

1. H. Bichsel, Nucl. Instrum. Methods A562, 154 (2006).

2. B. Rossi, High Energy Particles, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1952.

3. H.A. Bethe, Zur Theorie des Durchgangs schneller Korpusku-
larstrahlen durch Materie, H. Bethe, Ann. Phys. 5, 325 (1930).

4. “Stopping Powers and Ranges for Protons and Alpha Particles,”
ICRU Report No. 49 (1993); tables and graphs of these data are
available at
http://physics.nist.gov/PhysRefData/.

5. D.E. Groom, N.V. Mokhov, and S.I. Striganov, “Muon stopping-
power and range tables: 10 MeV–100 TeV,” Atomic Data and
Nuclear Data Tables 78, 183–356 (2001). Since submission of
this paper it has become likely that post-Born corrections to
the direct pair production cross section should be made. Code
used to make Figs. 33.22–33.24 included these corrections [D.Yu.
Ivanov et al., Phys. Lett. B442, 453 (1998)]. The effect is
negligible except at high Z. (It is less than 1% for iron.);
More extensive printable and machine-readable tables are given
at
http://pdg.lbl.gov/AtomicNuclearProperties/.

6. W.H. Barkas, W. Birnbaum, and F.M. Smith, Phys. Rev. 101,
778 (1956).

7. J. Lindhard and A. H. Sørensen, Phys. Rev. A53, 2443 (1996).

8. U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).

9. J.D. Jackson, Phys. Rev. D59, 017301 (1999).

10. S.M. Seltzer and M.J. Berger, Int. J. of Applied Rad. 33, 1189
(1982).

11. “Stopping Powers for Electrons and Positrons,” ICRU Report
No. 37 (1984).

12. http://physics.nist.gov/PhysRefData/XrayMassCoef/tab1.html.

13. H. Bichsel, Phys. Rev. A46, 5761 (1992).

14. W.H. Barkas and M.J. Berger, Tables of Energy Losses and
Ranges of Heavy Charged Particles, NASA-SP-3013 (1964).

15. R.M. Sternheimer, Phys. Rev. 88, 851 (1952).

16. R.M. Sternheimer, S.M. Seltzer, and M.J. Berger, “The Density
Effect for the Ionization Loss of Charged Particles in Various
Substances,” Atomic Data and Nuclear Data Tables 30,
261 (1984). Minor errors are corrected in Ref. 5. Chemical
composition for the tabulated materials is given in Ref. 10.

17. R.M. Sternheimer and R.F. Peierls, Phys. Rev. B3, 3681 (1971).

18. S.P. Møller et al., Phys. Rev. A56, 2930 (1997).

19. H.H. Andersen and J.F. Ziegler, Hydrogen: Stopping Powers and
Ranges in All Elements. Vol. 3 of The Stopping and Ranges of
Ions in Matter (Pergamon Press 1977).

20. J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 28,
No. 8 (1954);
J. Lindhard, M. Scharff, and H.E. Schiøtt, Kgl. Danske
Videnskab. Selskab, Mat.-Fys. Medd. 33, No. 14 (1963).

21. J.F. Ziegler, J.F. Biersac, and U. Littmark, The Stopping and
Range of Ions in Solids, Pergamon Press 1985.

22. E.A. Uehling, Ann. Rev. Nucl. Sci. 4, 315 (1954) (For heavy
particles with unit charge, but e± cross sections and stopping
powers are also given).

23. N.F. Mott and H.S.W. Massey, The Theory of Atomic Collisions,
Oxford Press, London, 1965.

24. L.D. Landau, J. Exp. Phys. (USSR) 8, 201 (1944).

25. P.V. Vavilov, Sov. Phys. JETP 5, 749 (1957).

26. H. Bichsel, Rev. Mod. Phys. 60, 663 (1988).

27. R. Talman, Nucl. Instrum. Methods 159, 189 (1979).

28. H. Bichsel, Ch. 87 in the Atomic, Molecular and Optical
Physics Handbook, G.W.F. Drake, editor (Am. Inst. Phys. Press,
Woodbury NY, 1996).

29. S.M. Seltzer and M.J. Berger, Int. J. of Applied Rad. 35, 665
(1984). This paper corrects and extends the results of Ref. 10.

30. L.V. Spencer “Energy Dissipation by Fast Electrons,” Nat’l
Bureau of Standards Monograph No. 1 (1959).

31. “Average Energy Required to Produce an Ion Pair,” ICRU
Report No. 31 (1979).

32. N. Hadley et al., “List of Poisoning Times for Materials,”
Lawrence Berkeley Lab Report TPC-LBL-79-8 (1981).

33. J.D. Jackson, Classical Electrodynamics, 3rd edition, (John Wiley
and Sons, New York, 1998).

34. H.A. Bethe, Phys. Rev. 89, 1256 (1953).

35. W.T. Scott, Rev. Mod. Phys. 35, 231 (1963).

36. J.W. Motz, H. Olsen, and H.W. Koch, Rev. Mod. Phys. 36, 881
(1964).

37. H. Bichsel, Phys. Rev. 112, 182 (1958).

38. G. Shen et al., (Phys. Rev. D20, 1584 (1979)).

39. V.L. Highland, Nucl. Instrum. Methods 129, 497 (1975); Nucl.
Instrum. Methods 161, 171 (1979).

40. G.R. Lynch and O.I Dahl, Nucl. Instrum. Methods B58, 6
(1991). Eq. (33.15) is Eq. 12 from this paper.

41. M. Wong et al., Med. Phys. 17, 163 (1990).
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34.1. Introduction

This review summarizes the detector technologies employed at
accelerator particle physics experiments. Several of these detectors
are also used in a non-accelerator context and examples of such
applications will be provided. The detector techniques which are
specific to non-accelerator particle physics experiments are the
subject of Chap. 35. More detailed discussions of detectors and
their underlying physics can be found in books by Ferbel [1],
Kleinknecht [2], Knoll [3], Green [4], Leroy & Rancoita [5], and
Grupen [6].

In Table 34.1 are given typical resolutions and deadtimes of common
charged particle detectors. The quoted numbers are usually based on
typical devices, and should be regarded only as rough approximations
for new designs. The spatial resolution refers to the intrinsic detector
resolution, i.e. without multiple scattering. We note that analog
detector readout can provide better spatial resolution than digital
readout by measuring the deposited charge in neighboring channels.
Quoted ranges attempt to be representative of both possibilities.
The time resolution is defined by how accurately the time at which
a particle crossed the detector can be determined. The deadtime
is the minimum separation in time between two resolved hits on
the same channel. Typical performance of calorimetry and particle
identification are provided in the relevant sections below.

Table 34.1: Typical resolutions and deadtimes of common
charged particle detectors. Revised November 2011.

Intrinsinc Spatial Time Dead

Detector Type Resolution (rms) Resolution Time

Resistive plate chamber . 10 mm 1 ns (50 psa) —

Streamer chamber 300 µmb 2 µs 100 ms

Liquid argon drift [7] ∼175–450 µm ∼ 200 ns ∼ 2 µs

Scintillation tracker ∼100 µm 100 ps/nc 10 ns

Bubble chamber 10–150 µm 1 ms 50 msd

Proportional chamber 50–100 µme 2 ns 20-200 ns

Drift chamber 50–100 µm 2 nsf 20-100 ns

Micro-pattern gas detectors 30–40 µm < 10 ns 10-100 ns

Silicon strip pitch/(3 to 7)g few nsh . 50 nsh

Silicon pixel . 10 µm few nsh . 50 nsh

Emulsion 1 µm — —

a For multiple-gap RPCs.
b 300 µm is for 1 mm pitch (wirespacing/

√
12).

c n = index of refraction.
d Multiple pulsing time.
e Delay line cathode readout can give ±150 µm parallel to anode

wire.
f For two chambers.
g The highest resolution (“7”) is obtained for small-pitch detectors

(. 25 µm) with pulse-height-weighted center finding.
h Limited by the readout electronics [8].
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34.2. Photon detectors

Updated August 2011 by D. Chakraborty (Northern Illinois U) and
T. Sumiyoshi (Tokyo Metro U).

Most detectors in high-energy, nuclear, and astrophysics rely
on the detection of photons in or near the visible range,
100nm . λ . 1000nm, or E ≈ a few eV. This range covers
scintillation and Cherenkov radiation as well as the light detected in
many astronomical observations.

Generally, photodetection involves generating a detectable electrical
signal proportional to the (usually very small) number of incident
photons. The process involves three distinct steps:

1. generation of a primary photoelectron or electron-hole (e-h) pair by
an incident photon by the photoelectric or photoconductive effect,

2. amplification of the p.e. signal to detectable levels by one or more
multiplicative bombardment steps and/or an avalanche process
(usually), and,

3. collection of the secondary electrons to form the electrical signal.

The important characteristics of a photodetector include the
following in statistical averages:

1. quantum efficiency (QE or ǫQ): the number of primary photo-
electrons generated per incident photon (0 ≤ ǫQ ≤ 1; in silicon
more than one e-h pair per incident photon can be generated for
λ <∼ 165 nm),

2. collection efficiency (CE or ǫC): the overall acceptance factor other
than the generation of photoelectrons (0 ≤ ǫC ≤ 1),

3. gain (G): the number of electrons collected for each photoelectron
generated,

4. dark current or dark noise: the electrical signal when there is no
photon,

5. energy resolution: electronic noise (ENC or Ne) and statistical
fluctuations in the amplification process compound the Poisson
distribution of nγ photons from a given source:

σ(E)

〈E〉 =

√

fN

nγǫQǫC
+

(

Ne

GnγǫQǫC

)2
, (34.1)

where fN , or the excess noise factor (ENF), is the contribution to
the energy distribution variance due to amplification statistics [9],

6. dynamic range: the maximum signal available from the detector
(this is usually expressed in units of the response to noise-equivalent
power, or NEP, which is the optical input power that produces a
signal-to-noise ratio of 1),

7. time dependence of the response: this includes the transit time,
which is the time between the arrival of the photon and the
electrical pulse, and the transit time spread, which contributes to
the pulse rise time and width, and

8. rate capability: inversely proportional to the time needed, after the
arrival of one photon, to get ready to receive the next.

Table 34.2: Representative characteristics of some photodetectors
commonly used in particle physics. The time resolution of the devices
listed here vary in the 10–2000 ps range.

Type λ ǫQ ǫC Gain Risetime Area 1-p.e noise HV Price

(nm) (ns) (mm2) (Hz) (V) (USD)

PMT∗ 115–1700 0.15–0.25 103–107 0.7–10 102–105 10–104 500–3000 100–5000

MCP∗ 100–650 0.01–0.10 103–107 0.15–0.3 102–104 0.1–200 500–3500 10–6000

HPD∗ 115–850 0.1–0.3 103–104 7 102–105 10–103 ∼2 × 104 ∼600

GPM∗ 115–500 0.15–0.3 103–106 O(0.1) O(10) 10–103 300–2000 O(10)

APD 300–1700 ∼0.7 10–108 O(1) 10–103 1–103 400–1400 O(100)

PPD 320–900 0.15–0.3 105–106 ∼ 1 1–10 O(106) 30–60 O(100)

VLPC 500–600 ∼0.9 ∼5 × 104 ∼ 10 1 O(104) ∼7 ∼1

∗These devices often come in multi-anode configurations. In such
cases, area, noise, and price are to be considered on a “per
readout-channel” basis.

The QE is a strong function of the photon wavelength (λ), and is
usually quoted at maximum, together with a range of λ where the
QE is comparable to its maximum. Spatial uniformity and linearity
with respect to the number of photons are highly desirable in a
photodetector’s response.

Optimization of these factors involves many trade-offs and vary
widely between applications. For example, while a large gain is
desirable, attempts to increase the gain for a given device also
increases the ENF and after-pulsing (“echos” of the main pulse). In
solid-state devices, a higher QE often requires a compromise in the
timing properties. In other types, coverage of large areas by focusing
increases the transit time spread.

Other important considerations also are highly application-specific.
These include the photon flux and wavelength range, the total
area to be covered and the efficiency required, the volume available
to accommodate the detectors, characteristics of the environment
such as chemical composition, temperature, magnetic field, ambient
background, as well as ambient radiation of different types and,
mode of operation (continuous or triggered), bias (high-voltage)
requirements, power consumption, calibration needs, aging, cost, and
so on. Several technologies employing different phenomena for the
three steps described above, and many variants within each, offer a
wide range of solutions to choose from. The salient features of the
main technologies and the common variants are described below.
Some key characteristics are summarized in Table 34.2.

34.2.1. Vacuum photodetectors : Vacuum photodetectors can
be broadly subdivided into three types: photomultiplier tubes,
microchannel plates, and hybrid photodetectors.

34.2.1.1. Photomultiplier tubes: A versatile class of photon detectors,
vacuum photomultiplier tubes (PMT) has been employed by a vast
majority of all particle physics experiments to date [9]. Both
“transmission-” and “reflection-type” PMT’s are widely used. In the
former, the photocathode material is deposited on the inside of a
transparent window through which the photons enter, while in the
latter, the photocathode material rests on a separate surface that
the incident photons strike. The cathode material has a low work
function, chosen for the wavelength band of interest. When a photon
hits the cathode and liberates an electron (the photoelectric effect),
the latter is accelerated and guided by electric fields to impinge on
a secondary-emission electrode, or dynode, which then emits a few
(∼ 5) secondary electrons. The multiplication process is repeated
typically 10 times in series to generate a sufficient number of electrons,
which are collected at the anode for delivery to the external circuit.
The total gain of a PMT depends on the applied high voltage V as
G = AV kn, where k ≈ 0.7–0.8 (depending on the dynode material),
n is the number of dynodes in the chain, and A a constant (which
also depends on n). Typically, G is in the range of 105–106. Pulse
risetimes are usually in the few nanosecond range. With e.g. two-level
discrimination the effective time resolution can be much better.
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A large variety of PMT’s, including many just recently developed,
covers a wide span of wavelength ranges from infrared (IR) to extreme
ultraviolet (XUV) [10]. They are categorized by the window materials,
photocathode materials, dynode structures, anode configurations, etc.
Common window materials are borosilicate glass for IR to near-UV,
fused quartz and sapphire (Al2O3) for UV, and MgF2 or LiF for XUV.
The choice of photocathode materials include a variety of mostly Cs-
and/or Sb-based compounds such as CsI, CsTe, bi-alkali (SbRbCs,
SbKCs), multi-alkali (SbNa2KCs), GaAs(Cs), GaAsP, etc. Sensitive
wavelengths and peak quantum efficiencies for these materials are
summarized in Table 34.3. Typical dynode structures used in PMT’s
are circular cage, line focusing, box and grid, venetian blind, and
fine mesh. In some cases, limited spatial resolution can be obtained
by using a mosaic of multiple anodes. Fast PMT’s with very large
windows—measuring up to 508 mm across—have been developed
in recent years for detection of Cherenkov radiation in neutrino
experiments such as Super-Kamiokande and KamLAND among many
others. Specially prepared low-radioactivity glass is used to make
these PMT’s, and they are also able to withstand the high pressure of
the surrounding liquid.

PMT’s are vulnerable to magnetic fields—sometimes even the
geomagnetic field causes large orientation-dependent gain changes. A
high-permeability metal shield is often necessary. However, proximity-
focused PMT’s, e.g. the fine-mesh types, can be used even in a
high magnetic field (≥ 1 T) if the electron drift direction is parallel
to the field. CMS uses custom-made vacuum phototriodes (VPT)
mounted on the back face of projective lead tungstate crystals to
detect scintillation light in the endcap sections of its electromagnetic
calorimeters, which are inside a 3.8 T superconducting solenoid. A
VPT employs a single dynode (thus, G ≈ 10) placed close to the
photocathode, and a mesh anode plane between the two, to help it
cope with the strong magnetic field, which is not too unfavorably
oriented with respect to the photodetector axis in the endcaps
(within 25◦), but where the radiation level is too high for Avalanche
Photodiodes (APD’s) like those used in the barrel section.

34.2.1.2. Microchannel plates: A typical Microchannel plate (MCP)
photodetector consists of one or more ∼2 mm thick glass plates with
densely packed O(10 µm)-diameter cylindrical holes, or “channels”,
sitting between the transmission-type photocathode and anode planes,
separated by O(1 mm) gaps. Instead of discrete dynodes, the inner
surface of each cylindrical tube serves as a continuous dynode for
the entire cascade of multiplicative bombardments initiated by a
photoelectron. Gain fluctuations can be minimized by operating in
a saturation mode, whence each channel is only capable of a binary
output, but the sum of all channel outputs remains proportional to the
number of photons received so long as the photon flux is low enough
to ensure that the probability of a single channel receiving more than
one photon during a single time gate is negligible. MCP’s are thin,
offer good spatial resolution, have excellent time resolution (∼20 ps),
and can tolerate random magnetic fields up to 0.1 T and axial fields
up to ∼ 1 T. However, they suffer from relatively long recovery
time per channel and short lifetime. MCP’s are widely employed as
image-intensifiers, although not so much in HEP or astrophysics.

34.2.1.3. Hybrid photon detectors: Hybrid photon detectors (HPD)
combine the sensitivity of a vacuum PMT with the excellent spatial
and energy resolutions of a Si sensor [11]. A single photoelectron
ejected from the photocathode is accelerated through a potential
difference of ∼20 kV before it impinges on the silicon sensor/anode.
The gain nearly equals the maximum number of e-h pairs that could
be created from the entire kinetic energy of the accelerated electron:
G ≈ eV/w, where e is the electronic charge, V is the applied potential
difference, and w ≈ 3.7 eV is the mean energy required to create an
e-h pair in Si at room temperature. Since the gain is achieved in a
single step, one might expect to have the excellent resolution of a
simple Poisson statistic with large mean, but in fact it is even better,
thanks to the Fano effect discussed in Sec. 34.7.

Low-noise electronics must be used to read out HPD’s if one
intends to take advantage of the low fluctuations in gain, e.g. when
counting small numbers of photons. HPD’s can have the same ǫQ ǫC
and window geometries as PMT’s and can be segmented down to ∼50

µm. However, they require rather high biases and will not function in
a magnetic field. The exception is proximity-focused devices (⇒ no
(de)magnification) in an axial field. With time resolutions of ∼10 ps
and superior rate capability, proximity-focused HPD’s can be an
alternative to MCP’s. Current applications of HPD’s include the CMS
hadronic calorimeter and the RICH detector in LHCb. Large-size
HPD’s with sophisticated focusing may be suitable for future water
Cherenkov experiments.

Hybrid APD’s (HAPD’s) add an avalanche multiplication step
following the electron bombardment to boost the gain by a factor of
∼50. This affords a higher gain and/or lower electrical bias, but also
degrades the signal definition.

Table 34.3: Properties of photocathode and window materials
commonly used in vacuum photodetectors [10].

Photocathode λ Window Peak ǫQ (λ/nm)

material (nm) material

CsI 115–200 MgF2 0.11 (140)

CsTe 115–320 MgF2 0.14 (240)

Bi-alkali 300–650 Borosilicate 0.27 (390)

160-650 Synthetic Silica 0.27 (390)

“Ultra Bi-alkali” 300–650 Borosilicate 0.43 (350)

160-650 Synthetic Silica 0.43 (350)

Multi-alkali 300–850 Borosilicate 0.20 (360)

160-850 Synthetic Silica 0.20 (360)

GaAs(Cs)∗ 160–930 Synthetic Silica 0.23 (280)

GaAsP(Cs) 300-750 Borosilicate 0.50 (500)

InP/InGaAsP† 350-1700 Borosilicate 0.01 (1100)

∗Reflection type photocathode is used. †Requires cooling to
∼ −80◦C.

34.2.2. Gaseous photon detectors : In gaseous photomultipliers
(GPM) a photoelectron in a suitable gas mixture initiates an avalanche
in a high-field region, producing a large number of secondary impact-
ionization electrons. In principle the charge multiplication and
collection processes are identical to those employed in gaseous tracking
detectors such as multiwire proportional chambers, micromesh gaseous
detectors (Micromegas), or gas electron multipliers (GEM). These are
discussed in Sec. 34.6.4.

The devices can be divided into two types depending on the
photocathode material. One type uses solid photocathode materials
much in the same way as PMT’s. Since it is resistant to gas mixtures
typically used in tracking chambers, CsI is a common choice. In the
other type, photoionization occurs on suitable molecules vaporized
and mixed in the drift volume. Most gases have photoionization
work functions in excess of 10 eV, which would limit their sensitivity
to wavelengths far too short. However, vapors of TMAE (tetrakis
dimethyl-amine ethylene) or TEA (tri-ethyl-amine), which have
smaller work functions (5.3 eV for TMAE and 7.5 eV for TEA), are
suited for XUV photon detection [12]. Since devices like GEM’s offer
sub-mm spatial resolution, GPM’s are often used as position-sensitive
photon detectors. They can be made into flat panels to cover large
areas (O(1 m2)), can operate in high magnetic fields, and are relatively
inexpensive. Many of the ring imaging Cherenkov (RICH) detectors
to date have used GPM’s for the detection of Cherenkov light [13].
Special care must be taken to suppress the photon-feedback process
in GPM’s. It is also important to maintain high purity of the gas as
minute traces of O2 can significantly degrade the detection efficiency.
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34.2.3. Solid-state photon detectors : In a phase of rapid
development, solid-state photodetectors are competing with vacuum-
or gas-based devices for many existing applications and making
way for a multitude of new ones. Compared to traditional vacuum-
and gaseous photodetectors, solid-state devices are more compact,
lightweight, rugged, tolerant to magnetic fields, and often cheaper.
They also allow fine pixelization, are easy to integrate into large
systems, and can operate at low electric potentials, while matching or
exceeding most performance criteria. They are particularly well suited
for detection of γ- and X-rays. Except for applications where coverage
of very large areas or dynamic range is required, solid-state detectors
are proving to be the better choice. Some hybrid devices attempt to
combine the best features of different technologies while applications
of nanotechnology are opening up exciting new possibilities.

Silicon photodiodes (PD) are widely used in high-energy physics
as particle detectors and in a great number of applications (including
solar cells!) as light detectors. The structure is discussed in some
detail in Sec. 34.7. In its simplest form, the PD is a reverse-biased
p-n junction. Photons with energies above the indirect bandgap
energy (wavelengths shorter than about 1050 nm, depending on the
temperature) can create e-h pairs (the photoconductive effect), which
are collected on the p and n sides, respectively. Often, as in the PD’s
used for crystal scintillator readout in CLEO, L3, Belle, BaBar, and
GLAST, intrinsic silicon is doped to create a p-i-n structure. The
reverse bias increases the thickness of the depleted region; in the case
of these particular detectors, to full depletion at a depth of about
100 µm. Increasing the depletion depth decreases the capacitance
(and hence electronic noise) and extends the red response. Quantum
efficiency can exceed 90%, but falls toward the red because of the
increasing absorption length of light in silicon. The absorption length
reaches 100 µm at 985 nm. However, since G = 1, amplification is
necessary. Optimal low-noise amplifiers are slow, but, even so, noise
limits the minimum detectable signal in room-temperature devices to
several hundred photons.

Very large arrays containing O(107) of O(10 µm2)-sized photodiodes
pixelizing a plane are widely used to photograph all sorts of things
from everyday subjects at visible wavelengths to crystal structures
with X-rays and astronomical objects from infrared to UV. To limit
the number of readout channels, these are made into charge-coupled
devices (CCD), where pixel-to-pixel signal transfer takes place over
thousands of synchronous cycles with sequential output through shift
registers [14]. Thus, high spatial resolution is achieved at the expense
of speed and timing precision. Custom-made CCD’s have virtually
replaced photographic plates and other imagers for astronomy and
in spacecraft. Typical QE’s exceed 90% over much of the visible
spectrum, and “thick” CCD’s have useful QE up to λ = 1 µm. Active
Pixel Sensor (APS) arrays with a preamplifier on each pixel and
CMOS processing afford higher speeds, but are challenged at longer
wavelengths. Much R&D is underway to overcome the limitations of
both CCD and CMOS imagers.

In APD’s, an exponential cascade of impact ionizations initiated
by the original photogenerated e-h pair under a large reverse-bias
voltage leads to an avalanche breakdown [15]. As a result, detectable
electrical response can be obtained from low-intensity optical signals
down to single photons. Excellent junction uniformity is critical, and
a guard ring is generally used as a protection against edge breakdown.
Well-designed APD’s, such as those used in CMS’ crystal-based
electromagnetic calorimeter, have achieved ǫQ ǫC ≈ 0.7 with sub-ns
response time. The sensitive wavelength window and gain depend on
the semiconductor used. The gain is typically 10–200 in linear and up
to 108 in Geiger mode of operation. Stability and close monitoring of
the operating temperature are important for linear-mode operation,
and substantial cooling is often necessary. Position-sensitive APD’s
use time information at multiple anodes to calculate the hit position.

One of the most promising recent developments in the field is that of
devices consisting of large arrays (O(103)) of tiny APD’s packed over
a small area (O(1 mm2)) and operated in a limited Geiger mode [16].
Among different names used for this class of photodetectors, “PPD”
(for “Pixelized Photon Detector”) is most widely accepted (formerly
“SiPM”). Although each cell only offers a binary output, linearity
with respect to the number of photons is achieved by summing the

cell outputs in the same way as with a MCP in saturation mode
(see above). PPD’s are being adopted as the preferred solution for
various purposes including medical imaging, e.g. positron emission
tomography (PET). These compact, rugged, and economical devices
allow auto-calibration through decent separation of photoelectron
peaks and offer gains of O(106) at a moderate bias voltage (∼50 V).
However, the single-photoelectron noise of a PPD, being the logical
“or” of O(103) Geiger APD’s, is rather large: O(1 MHz/mm2) at
room temperature. PPD’s are particularly well-suited for applications
where triggered pulses of several photons are expected over a small
area, e.g. fiber-guided scintillation light. Intense R&D is expected
to lower the noise level and improve radiation hardness, resulting in
coverage of larger areas and wider applications. Attempts are being
made to combine the fabrication of the sensors and the front-end
electronics (ASIC) in the same process with the goal of making PPD’s
and other finely pixelized solid-state photodetectors extremely easy to
use.

Of late, much R&D has been directed to p-i-n diode arrays based
on thin polycrystalline diamond films formed by chemical vapor
deposition (CVD) on a hot substrate (∼1000 K) from a hydrocarbon-
containing gas mixture under low pressure (∼100 mbar). These
devices have maximum sensitivity in the extreme- to moderate-UV
region [17]. Many desirable characteristics, including high tolerance
to radiation and temperature fluctuations, low dark noise, blindness
to most of the solar radiation spectrum, and relatively low cost make
them ideal for space-based UV/XUV astronomy, measurement of
synchrotron radiation, and luminosity monitoring at (future) lepton
collider(s).

Visible-light photon counters (VLPC) utilize the formation of an
impurity band only 50 meV below the conduction band in As-doped Si
to generate strong (G ≈ 5 × 104) yet sharp response to single photons
with ǫQ ≈ 0.9 [18]. The smallness of the band gap considerably
reduces the gain dispersion. Only a very small bias (∼7 V) is
needed, but high sensitivity to infrared photons requires cooling below
10 K. The dark noise increases sharply and exponentially with both
temperature and bias. The Run 2 DØ detector used 86000 VLPC’s
to read the optical signal from its scintillating-fiber tracker and
scintillator-strip preshower detectors.

34.3. Organic scintillators

Revised August 2011 by Kurtis F. Johnson (FSU).

Organic scintillators are broadly classed into three types, crystalline,
liquid, and plastic, all of which utilize the ionization produced by
charged particles (see Sec. 33.2 of this Review) to generate optical
photons, usually in the blue to green wavelength regions [19]. Plastic
scintillators are by far the most widely used, liquid organic scintillator
is finding increased use, and crystal organic scintillators are practically
unused in high-energy physics. Plastic scintillator densities range from
1.03 to 1.20 g cm−3. Typical photon yields are about 1 photon per
100 eV of energy deposit [20]. A one-cm-thick scintillator traversed
by a minimum-ionizing particle will therefore yield ≈ 2× 104 photons.
The resulting photoelectron signal will depend on the collection and
transport efficiency of the optical package and the quantum efficiency
of the photodetector.

Organic scintillator does not respond linearly to the ionization
density. Very dense ionization columns emit less light than expected
on the basis of dE/dx for minimum-ionizing particles. A widely
used semi-empirical model by Birks posits that recombination and
quenching effects between the excited molecules reduce the light
yield [21]. These effects are more pronounced the greater the density
of the excited molecules. Birks’ formula is

dL

dx
= L0

dE/dx

1 + kB dE/dx
, (34.2)

where L is the luminescence, L0 is the luminescence at low
specific ionization density, and kB is Birks’ constant, which must be
determined for each scintillator by measurement. Decay times are in
the ns range; rise times are much faster. The high light yield and fast
response time allow the possibility of sub-ns timing resolution [22].
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The fraction of light emitted during the decay “tail” can depend
on the exciting particle. This allows pulse shape discrimination as a
technique to carry out particle identification. Because of the hydrogen
content (carbon to hydrogen ratio ≈ 1) plastic scintillator is sensitive
to proton recoils from neutrons. Ease of fabrication into desired
shapes and low cost has made plastic scintillator a common detector
element. In the form of scintillating fiber it has found widespread use
in tracking and calorimetry [23].

Demand for large volume detectors has lead to increased use of
liquid organic scintillator, which has the same scintillation mechanism
as plastic scintillator, due to its cost advantage. The containment
vessel defines the detector shape; photodetectors or waveshifters may
be immersed in the liquid.

34.3.1. Scintillation mechanism :

A charged particle traversing matter leaves behind it a wake
of excited molecules. Certain types of molecules, however, will
release a small fraction (≈ 3%) of this energy as optical photons.
This process, scintillation, is especially marked in those organic
substances which contain aromatic rings, such as polystyrene (PS)
and polyvinyltoluene (PVT). Liquids which scintillate include toluene,
xylene and pseudocumene.

In fluorescence, the initial excitation takes place via the absorption
of a photon, and de-excitation by emission of a longer wavelength
photon. Fluors are used as “waveshifters” to shift scintillation light to
a more convenient wavelength. Occurring in complex molecules, the
absorption and emission are spread out over a wide band of photon
energies, and have some overlap, that is, there is some fraction of the
emitted light which can be re-absorbed [24]. This “self-absorption”
is undesirable for detector applications because it causes a shortened
attenuation length. The wavelength difference between the major
absorption and emission peaks is called the Stokes’ shift. It is usually
the case that the greater the Stokes’ shift, the smaller the self
absorption thus, a large Stokes’ shift is a desirable property for a fluor.

Ionization excitation of base plastic

Forster energy transfer

γ

γ

base plastic

primary fluor

(~1% wt/wt ) 

secondary fluor

(~0.05% wt/wt )

photodetector
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Figure 34.1: Cartoon of scintillation “ladder” depicting the
operating mechanism of organic scintillator. Approximate fluor
concentrations and energy transfer distances for the separate
sub-processes are shown.

The plastic scintillators used in high-energy physics are binary
or ternary solutions of selected fluors in a plastic base containing
aromatic rings. (See the appendix in Ref. 25 for a comprehensive list
of components.) Virtually all plastic scintillators contain as a base
either PVT or PS. PVT-based scintillator can be up to 50% brighter.

Ionization in the plastic base produces UV photons with short
attenuation length (several mm). Longer attenuation lengths are
obtained by dissolving a “primary” fluor in high concentration (1%
by weight) into the base, which is selected to efficiently re-radiate
absorbed energy at wavelengths where the base is more transparent
(see Fig. 34.1).

The primary fluor has a second important function. The decay time
of the scintillator base material can be quite long – in pure polystyrene
it is 16 ns, for example. The addition of the primary fluor in high
concentration can shorten the decay time by an order of magnitude
and increase the total light yield. At the concentrations used (1% and

greater), the average distance between a fluor molecule and an excited
base unit is around 100 Å, much less than a wavelength of light. At
these distances the predominant mode of energy transfer from base to
fluor is not the radiation of a photon, but a resonant dipole-dipole
interaction, first described by Foerster, which strongly couples the
base and fluor [26]. The strong coupling sharply increases the speed
and the light yield of the plastic scintillators.

Unfortunately, a fluor which fulfills other requirements is usually
not completely adequate with respect to emission wavelength or
attenuation length, so it is necessary to add yet another waveshifter
(the “secondary” fluor), at fractional percent levels, and occasionally
a third (not shown in Fig. 34.1).

External wavelength shifters are widely used to aid light collection
in complex geometries. Scintillation light is captured by a lightpipe
comprising a wave-shifting fluor dissolved in a nonscintillating base.
The wavelength shifter must be insensitive to ionizing radiation and
Cherenkov light. A typical wavelength shifter uses an acrylic base
because of its good optical qualities, a single fluor to shift the light
emerging from the plastic scintillator to the blue-green, and contains
ultra-violet absorbing additives to deaden response to Cherenkov light.

34.3.2. Caveats and cautions :

Plastic scintillators are reliable, robust, and convenient. However,
they possess quirks to which the experimenter must be alert. Exposure
to solvent vapors, high temperatures, mechanical flexing, irradiation,
or rough handling will aggravate the process. A particularly fragile
region is the surface which can “craze” develop microcracks which
degrade its transmission of light by total internal reflection. Crazing is
particularly likely where oils, solvents, or fingerprints have contacted
the surface.

They have a long-lived luminescence which does not follow a
simple exponential decay. Intensities at the 10−4 level of the initial
fluorescence can persist for hundreds of ns [19,27].

They will decrease their light yield with increasing partial pressure
of oxygen. This can be a 10% effect in an artificial atmosphere [28].
It is not excluded that other gases may have similar quenching effects.

Their light yield may be changed by a magnetic field. The effect
is very nonlinear and apparently not all types of plastic scintillators
are so affected. Increases of ≈ 3% at 0.45 T have been reported [29].
Data are sketchy and mechanisms are not understood.

Irradiation of plastic scintillators creates color centers which absorb
light more strongly in the UV and blue than at longer wavelengths.
This poorly understood effect appears as a reduction both of light yield
and attenuation length. Radiation damage depends not only on the
integrated dose, but on the dose rate, atmosphere, and temperature,
before, during and after irradiation, as well as the materials properties
of the base such as glass transition temperature, polymer chain length,
etc. Annealing also occurs, accelerated by the diffusion of atmospheric
oxygen and elevated temperatures. The phenomena are complex,
unpredictable, and not well understood [30]. Since color centers are
less disruptive at longer wavelengths, the most reliable method of
mitigating radiation damage is to shift emissions at every step to the
longest practical wavelengths, e.g., utilize fluors with large Stokes’
shifts (aka the “Better red than dead” strategy).

34.3.3. Scintillating and wavelength-shifting fibers :

The clad optical fiber comprising scintillator and wavelength shifter
(WLS) is particularly useful [31]. Since the initial demonstration
of the scintillating fiber (SCIFI) calorimeter [32], SCIFI techniques
have become mainstream [33]. SCIFI calorimeters are fast, dense,
radiation hard, and can have leadglass-like resolution. SCIFI trackers
can handle high rates and are radiation tolerant, but the low photon
yield at the end of a long fiber (see below) forces the use of sensitive
photodetectors. WLS scintillator readout of a calorimeter allows a
very high level of hermeticity since the solid angle blocked by the fiber
on its way to the photodetector is very small. The sensitive region
of scintillating fibers can be controlled by splicing them onto clear
(non-scintillating/non-WLS) fibers.

A typical configuration would be fibers with a core of polystyrene-
based scintillator or WLS (index of refraction n = 1.59), surrounded
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by a cladding of PMMA (n = 1.49) a few microns thick, or, for
added light capture, with another cladding of fluorinated PMMA with
n = 1.42, for an overall diameter of 0.5 to 1 mm. The fiber is drawn
from a boule and great care is taken during production to ensure that
the intersurface between the core and the cladding has the highest
possible uniformity and quality, so that the signal transmission via
total internal reflection has a low loss. The fraction of generated light
which is transported down the optical pipe is denoted the capture
fraction and is about 6% for the single-clad fiber and 10% for the
double-clad fiber. The number of photons from the fiber available at
the photodetector is always smaller than desired, and increasing the
light yield has proven difficult. A minimum-ionizing particle traversing
a high-quality 1 mm diameter fiber perpendicular to its axis will
produce fewer than 2000 photons, of which about 200 are captured.
Attenuation may eliminate 95% of these photons in a large collider
tracker.

A scintillating or WLS fiber is often characterized by its attenuation
length, over which the signal is attenuated to 1/e of its original
value. Many factors determine the attenuation length, including the
importance of re-absorption of emitted photons by the polymer base
or dissolved fluors, the level of crystallinity of the base polymer, and
the quality of the total internal reflection boundary [34]. Attenuation
lengths of several meters are obtained by high quality fibers. However,
it should be understood that the attenuation length is not the sole
measure of fiber quality. Among other things, it is not constant with
distance from the excitation source and it is wavelength dependent.

34.4. Inorganic scintillators

Revised November 2015 by R.-Y. Zhu (California Institute of
Technology) and C.L. Woody (BNL).

Inorganic crystals form a class of scintillating materials with much
higher densities than organic plastic scintillators (typically ∼ 4–8
g/cm3) with a variety of different properties for use as scintillation
detectors. Due to their high density and high effective atomic number,
they can be used in applications where high stopping power or a
high conversion efficiency for electrons or photons is required. These
include total absorption electromagnetic calorimeters (see Sec. 34.9.1),
which consist of a totally active absorber (as opposed to a sampling
calorimeter), as well as serving as gamma ray detectors over a wide
range of energies. Many of these crystals also have very high light
output, and can therefore provide excellent energy resolution down to
very low energies (∼ few hundred keV).

Some crystals are intrinsic scintillators in which the luminescence is
produced by a part of the crystal lattice itself. However, other crystals
require the addition of a dopant, typically fluorescent ions such as
thallium (Tl) or cerium (Ce) which is responsible for producing the
scintillation light. However, in both cases, the scintillation mechanism
is the same. Energy is deposited in the crystal by ionization, either
directly by charged particles, or by the conversion of photons into
electrons or positrons which subsequently produce ionization. This
energy is transferred to the luminescent centers which then radiate
scintillation photons. The light yield L in terms of the number of
scintillation photons produced per MeV of energy deposit in the
crystal can be expressed as [35]

L = 106 S · Q/(β · Eg), (34.3)

where β · Eg is is the energy required to create an e-h pair expressed
as a multiple of the band gap energy Eg (eV), S is the efficiency
of energy transfer to the luminescent center and Q is the quantum
efficiency of the luminescent center. The values of β, S and Q are
crystal dependent and are the main factors in determining the intrinsic
light yield of the scintillator. The decay time of the scintillator is
mainly dominated by the decay time of the luminescent center.

Table 34.4 lists the basic properties of some commonly used
inorganic crystals. NaI(Tl) is one of the most common and widely
used scintillators, with an emission that is well matched to a bialkali
photomultiplier tube, but it is highly hygroscopic and difficult to work
with, and has a rather low density. CsI(Tl) and CsI(Na) have high
light yield, low cost, and are mechanically robust (high plasticity and

resistance to cracking). However, they need careful surface treatment
and are slightly and highly hygroscopic respectively. Pure CsI has
identical mechanical properties as CsI(Tl), but faster emission at
shorter wavelength and a much lower light output. BaF2 has a fast
component with a sub-nanosecond decay time, and is the fastest
known scintillator. However, it also has a slow component with a
much longer decay time (∼ 630 ns). Bismuth gemanate (Bi4Ge3O12

or BGO) has a high density, and consequently a short radiation length
X0 and Molière radius RM . Similar to CsI(Tl), BGO’s emission is
well-matched to the spectral sensitivity of photodiodes, and it is easy
to handle and not hygroscopic. Lead tungstate (PbWO4 or PWO) has
a very high density, with a very short X0 and RM , but its intrinsic
light yield is rather low.

Cerium doped lutetium oxyorthosilicate (Lu2SiO5:Ce, or
LSO:Ce) [36] and cerium doped lutetium-yttrium oxyorthosili-
cate (Lu2(1−x)Y2xSiO5, LYSO:Ce) [37] are dense crystal scintillators
which have a high light yield and a fast decay time. Only the
properties of LSO:Ce are listed in Table 34.4 since the properties
of LYSO:Ce are similar to that of LSO:Ce except a slightly lower
density than LSO:Ce depending on the yttrium fraction in LYSO:Ce.
This material is also featured with excellent radiation hardness [38],
so is expected to be used where extraordinary radiation hardness is
required.

Also listed in Table 34.4 are other fluoride crystals such as PbF2 as
a Cherenkov material and CeF3, which have been shown to provide
excellent energy resolution in calorimeter applications. Table 34.4
also includes cerium doped lanthanum tri-halides, such as LaBr3 [39]
and CeBr3 [40], which are brighter and faster than LSO:Ce, but
they are highly hygroscopic and have a lower density. The FWHM
energy resolution measured for these materials coupled to a PMT with
bi-alkali photocathode for 0.662 MeV γ-rays from a 137Cs source is
about 3%, and has recently been improved to 2% by co-doping with
cerium and strontium [41], which is the best among all inorganic
crystal scintillators. For this reason, LaBr3 and CeBr3 are expected to
be used in applications where a good energy resolution for low energy
photons are required, such as homeland security.

Beside the crystals listed in Table 34.4, a number of new crystals are
being developed that may have potential applications in high energy
or nuclear physics. Of particular interest is the family of yttrium
and lutetium perovskites and garnet, which include YAP (YAlO3:Ce),
LuAP (LuAlO3:Ce), YAG (Y3Al5O12:Ce) and LuAG (Lu3Al5O12:Ce)
and their mixed compositions. These have been shown to be linear
over a large energy range [42], and have the potential for providing
good intrinsic energy resolution.

Aiming at the best jet-mass resolution inorganic scintillators are
being investigated for HEP calorimeters with dual readout for both
Cherenkov and scintillation light to be used at future linear colliders.
These materials may be used for an electromagnetic calorimeter [43]
or a homogeneous hadronic calorimetry (HHCAL) detector concept,
including both electromagnetic and hadronic parts [44]. Because of
the unprecedented volume (70 to 100 m3) foreseen for the HHCAL
detector concept the materials must be (1) dense (to minimize the
leakage) and (2) cost-effective. It should also be UV transparent
(for effective collection of the Cherenkov light) and allow for a clear
discrimination between the Cherenkov and scintillation light. The
preferred scintillation light is thus at a longer wavelength, and not
necessarily bright or fast. Dense crystals, scintillating glasses and
ceramics offer a very attractive implementation for this detector
concept [45].

The fast scintillation light provides timing information about
electromagnetic interactions and showers, which may be used to
mitigate pile-up effects and/or for particle identification since the
time development of electromagnetic and hadronic showers, as well
as minimum ionizing particles, are different. The timing information
is primarily determined by the scintillator rise time and decay time,
and the number of photons produced. For fast timing, it is important
to have a large number of photons emitted in the initial part of the
scintillation pulse, e.g. in the first ns, since one is often measuring
the arrival time of the particle in the crystal using the leading edge
of the light pulse. A good example of this is BaF2, which has ∼ 10%
of its light in its fast component with a decay time of < 1 ns. The
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light propagation can spread out the arrival time of the scintillation
photons at the photodetector due to time dispersion [46]. The time
response of the photodetector also plays a major role in achieving
good time resolution with fast scintillating crystals.

Table 34.4 gives the light output of other crystals relative to NaI(Tl)
and their dependence to the temperature variations measured for 1.5
X0 cube crystal samples with a Tyvek paper wrapping and a full end
face coupled to a photodetector [47]. The quantum efficiencies of the
photodetector is taken out to facilitate a direct comparison of crystal’s
light output. However, the useful signal produced by a scintillator
is usually quoted in terms of the number of photoelectrons per
MeV produced by a given photodetector. The relationship between
the number of photons/MeV produced (L) and photoelectrons/MeV
detected (Np.e./MeV) involves the factors for the light collection
efficiency (LC) and the quantum efficiency (QE) of the photodetector:

Np.e./MeV = L · LC · QE. (34.4)

LC depends on the size and shape of the crystal, and includes
effects such as the transmission of scintillation light within the crystal
(i.e., the bulk attenuation length of the material), scattering from
within the crystal, reflections and scattering from the crystal surfaces,
and re-bouncing back into the crystal by wrapping materials. These
factors can vary considerably depending on the sample, but can be in
the range of ∼10–60%. The internal light transmission depends on the
intrinsic properties of the material, e.g. the density and type of the
scattering centers and defects that can produce internal absorption
within the crystal, and can be highly affected by factors such as
radiation damage, as discussed below.

The quantum efficiency depends on the type of photodetector
used to detect the scintillation light, which is typically ∼15–30% for
photomultiplier tubes and ∼70% for silicon photodiodes for visible
wavelengths. The quantum efficiency of the detector is usually highly
wavelength dependent and should be matched to the particular crystal
of interest to give the highest quantum yield at the wavelength

Table 34.4: Properties of several inorganic crystals. Most of the
notation is defined in Sec. 6 of this Review.

Parameter: ρ MP X∗
0 R∗

M dE∗/dx λ∗
I τdecay λmax n♮ Relative Hygro- d(LY)/dT

output† scopic?
Units: g/cm3 ◦C cm cm MeV/cm cm ns nm %/◦C‡

NaI(Tl) 3.67 651 2.59 4.13 4.8 42.9 245 410 1.85 100 yes −0.2

BGO 7.13 1050 1.12 2.23 9.0 22.8 300 480 2.15 21 no −0.9

BaF2 4.89 1280 2.03 3.10 6.5 30.7 650s 300s 1.50 36s no −1.9s

0.9f 220f 4.1f 0.1f

CsI(Tl) 4.51 621 1.86 3.57 5.6 39.3 1220 550 1.79 165 slight 0.4

CsI(Na) 4.51 621 1.86 3.57 5.6 39.3 690 420 1.84 88 yes 0.4

CsI(pure) 4.51 621 1.86 3.57 5.6 39.3 30s 310 1.95 3.6s slight −1.4

6f 1.1f

PbWO4 8.30 1123 0.89 2.00 10.1 20.7 30s 425s 2.20 0.3s no −2.5

10f 420f 0.077f

LSO(Ce) 7.40 2050 1.14 2.07 9.6 20.9 40 402 1.82 85 no −0.2

PbF2 7.77 824 0.93 2.21 9.4 21.0 - - - Cherenkov no -

CeF3 6.16 1460 1.70 2.41 8.42 23.2 30 340 1.62 7.3 no 0

LaBr3(Ce) 5.29 783 1.88 2.85 6.90 30.4 20 356 1.9 180 yes 0.2

CeBr3 5.23 722 1.96 2.97 6.65 31.5 17 371 1.9 165 yes −0.1

∗ Numerical values calculated using formulae in this review.
♮ Refractive index at the wavelength of the emission maximum.
† Relative light output measured for samples of 1.5 X0 cube with a
Tyvek paper wrapping and a full end face coupled to a photodetector.
The quantum efficiencies of the photodetector are taken out.
‡ Variation of light yield with temperature evaluated at the room
temperature.
f = fast component, s = slow component

corresponding to the peak of the scintillation emission. Fig. 34.2 shows
the quantum efficiencies of two photodetectors, a Hamamatsu R2059
PMT with bi-alkali cathode and quartz window and a Hamamatsu
S8664 avalanche photodiode (APD) as a function of wavelength. Also
shown in the figure are emission spectra of three crystal scintillators,
BGO, LSO:Ce/LYSO:Ce and CsI(Tl), and the numerical values
of the emission weighted quantum efficiency. The area under each
emission spectrum is proportional to crystal’s light yield, as shown
in Table 34.4, where the quantum efficiencies of the photodetector
has been taken out. Results with different photodetectors can be
significantly different. For example, the response of CsI(Tl) relative
to NaI(Tl) with a standard photomultiplier tube with a bi-alkali
photo-cathode, e.g. Hamamatsu R2059, would be 45 rather than 165
because of the photomultiplier’s low quantum efficiency at longer
wavelengths. For scintillators which emit in the UV, a detector with a
quartz window should be used.

For very low energy applications (typically below 1 MeV), non-
proportionality of the scintillation light yield may be important. It
has been known for a long time that the conversion factor between
the energy deposited in a crystal scintillator and the number of
photons produced is not constant. It is also known that the energy
resolution measured by all crystal scintillators for low energy γ-rays is
significantly worse than the contribution from photo-electron statistics
alone, indicating an intrinsic contribution from the scintillator itself.
Precision measurement using low energy electron beam shows that
this non-proportionality is crystal dependent [48]. Recent study on
this issue also shows that this effect is also sample dependent even
for the same crystal [49]. Further work is therefore needed to fully
understand this subject.

One important issue related to the application of a crystal
scintillator is its radiation hardness. Stability of its light output, or
the ability to track and monitor the variation of its light output in a
radiation environment, is required for high resolution and precision
calibration [50]. All known crystal scintillators suffer from ionization
dose induced radiation damage [51], where a common damage
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phenomenon is the appearance of radiation induced absorption caused
by the formation of color centers originated from the impurities
or point defects in the crystal. This radiation induced absorption
reduces the light attenuation length in the crystal, and hence its
light output. For crystals with high defect density, a severe reduction
of light attenuation length may cause a distortion of the light
response uniformity, leading to a degradation of the energy resolution.
Additional radiation damage effects may include a reduced intrinsic
scintillation light yield (damage to the luminescent centers) and an
increased phosphorescence (afterglow). For crystals to be used in a
high precision calorimeter in a radiation environment, its scintillation
mechanism must not be damaged and its light attenuation length in
the expected radiation environment must be long enough so that its
light response uniformity, and thus its energy resolution, does not
change.

7

Figure 34.2: The quantum efficiencies of two photodetectors,
a Hamamatsu R2059 PMT with bi-alkali cathode and a
Hamamatsu S8664 avalanche photodiode (APD), are shown
as a function of wavelength. Also shown in the figure are
emission spectra of three crystal scintillators, BGO, LSO and
CsI(Tl), and the numerical values of the emission weighted
quantum efficiencies. The area under each emission spectrum is
proportional to crystal’s light yield.

While radiation damage induced by ionization dose is well
understood [52], investigation is on-going to understand radiation
damage caused by hadrons, including both charged hadrons and
neutrons. Two additional fundamental processes may cause defects by
hadrons: displacement damage and nuclear breakup. While charged
hadrons can produce all three types of damage (and it’s often difficult
to separate them), neutrons can produce only the last two, and
electrons and photons only produce ionization damage. Studies on
hadron induced radiation damage to lead tungstate [53] show a
proton-specific damage component caused by fragments from fission
induced in lead and tungsten by particles in the hadronic shower. The
fragments cause a severe, local damage to the crystalline lattice due to
their extremely high energy loss over a short distance [53]. Studies
on neutron-specific damage in lead tungstate [54] up to 4×1019 n/cm2

show no neutron-specific damage in PWO [55].

Most of the crystals listed in Table 34.4 have been used in high
energy or nuclear physics experiments when the ultimate energy
resolution for electrons and photons is desired. Examples are the
Crystal Ball NaI(Tl) calorimeter at SPEAR, the L3 BGO calorimeter
at LEP, the CLEO CsI(Tl) calorimeter at CESR, the KTeV CsI
calorimeter at the Tevatron, the BaBar, BELLE and BES II CsI(Tl)
calorimeters at PEP-II, KEK and BEPC III. Because of their high
density and relative low cost, PWO calorimeters are used by CMS and
ALICE at LHC, by CLAS and PrimEx at CEBAF and by PANDA at
GSI, and PbF2 calorimeters are used by the A4 experiment at MAINZ

and by the g-2 experiment at Fermilab. A LYSO:Ce calorimeter is
being constructed by the COMET experiment at J-PARC.

34.5. Cherenkov detectors

Revised August 2015 by B.N. Ratcliff (SLAC).

Although devices using Cherenkov radiation are often thought of as
only particle identification (PID) detectors, in practice they are used
over a much broader range of applications including; (1) fast particle
counters; (2) hadronic PID; and (3) tracking detectors performing
complete event reconstruction. Examples of applications from each
category include; (1) the Quartic fast timing counter designed to
measure small angle scatters at the LHC [56]; (2) the hadronic
PID detectors at the B factory detectors—DIRC in BaBar [57] and
the aerogel threshold Cherenkov in Belle [58]; and (3) large water
Cherenkov counters such as Super-Kamiokande [59]. Cherenkov
counters contain two main elements; (1) a radiator through which
the charged particle passes, and (2) a photodetector. As Cherenkov
radiation is a weak source of photons, light collection and detection
must be as efficient as possible. The refractive index n and the
particle’s path length through the radiator L appear in the Cherenkov
relations allowing the tuning of these quantities for particular
applications.

Cherenkov detectors utilize one or more of the properties of
Cherenkov radiation discussed in the Passages of Particles through
Matter section (Sec. 33 of this Review): the prompt emission of a
light pulse; the existence of a velocity threshold for radiation; and
the dependence of the Cherenkov cone half-angle θc and the number
of emitted photons on the velocity of the particle and the refractive
index of the medium.

The number of photoelectrons (Np.e.) detected in a given device is

Np.e. = L
α2z2

re mec2

∫

ǫ(E) sin2 θc(E)dE , (34.5)

where ǫ(E) is the efficiency for collecting the Cherenkov light and
transducing it into photoelectrons, and α2/(re mec

2) = 370 cm−1eV−1.

The quantities ǫ and θc are functions of the photon energy E. As
the typical energy dependent variation of the index of refraction is
modest, a quantity called the Cherenkov detector quality factor N0 can
be defined as

N0 =
α2z2

re mec2

∫

ǫ dE , (34.6)

so that, taking z = 1 (the usual case in high-energy physics),

Np.e. ≈ LN0〈sin2 θc〉 . (34.7)

This definition of the quality factor N0 is not universal, nor,
indeed, very useful for those common situations where ǫ factorizes as
ǫ = ǫcollǫdet with the geometrical photon collection efficiency (ǫcoll)
varying substantially for different tracks while the photon detector
efficiency (ǫdet) remains nearly track independent. In this case, it
can be useful to explicitly remove (ǫcoll) from the definition of N0.
A typical value of N0 for a photomultiplier (PMT) detection system
working in the visible and near UV, and collecting most of the
Cherenkov light, is about 100 cm−1. Practical counters, utilizing
a variety of different photodetectors, have values ranging between
about 30 and 180 cm−1. Radiators can be chosen from a variety
of transparent materials (Sec. 33 of this Review and Table 6.1). In
addition to refractive index, the choice requires consideration of factors
such as material density, radiation length and radiation hardness,
transmission bandwidth, absorption length, chromatic dispersion,
optical workability (for solids), availability, and cost. When the
momenta of particles to be identified is high, the refractive index must
be set close to one, so that the photon yield per unit length is low
and a long particle path in the radiator is required. Recently, the gap
in refractive index that has traditionally existed between gases and
liquid or solid materials has been partially closed with transparent
silica aerogels with indices that range between about 1.007 and 1.13.

Cherenkov counters may be classified as either imaging or threshold
types, depending on whether they do or do not make use of Cherenkov
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angle (θc) information. Imaging counters may be used to track
particles as well as identify them. The recent development of very fast
photodetectors such as micro-channel plate PMTs (MCP PMT) (see
Sec. 34.2 of this Review) also potentially allows very fast Cherenkov
based time of flight (TOF) detectors of either class [60]. The track
timing resolution of imaging detectors can be extremely good as it
scales approximately as 1√

Np.e.
.

Threshold Cherenkov detectors [61], in their simplest form, make
a yes/no decision based on whether the particle is above or
below the Cherenkov threshold velocity βt = 1/n. A straightforward
enhancement of such detectors uses the number of observed
photoelectrons (or a calibrated pulse height) to discriminate between
species or to set probabilities for each particle species [62]. This
strategy can increase the momentum range of particle separation by
a modest amount (to a momentum some 20% above the threshold
momentum of the heavier particle in a typical case).

Careful designs give 〈ǫcoll〉& 90%. For a photomultiplier with a
typical bialkali cathode,

∫

ǫdetdE ≈ 0.27 eV, so that

Np.e./L ≈ 90 cm−1 〈sin2 θc〉 (i.e., N0 = 90 cm−1) . (34.8)

Suppose, for example, that n is chosen so that the threshold for species
a is pt; that is, at this momentum species a has velocity βa = 1/n. A
second, lighter, species b with the same momentum has velocity βb, so
cos θc = βa/βb, and

Np.e./L ≈ 90 cm−1 m2
a − m2

b

p2
t + m2

a
. (34.9)

For K/π separation at p = pt = 1(5) GeV/c, Np.e./L ≈ 16(0.8) cm−1

for π’s and (by design) 0 for K’s.

For limited path lengths Np.e. will usually be small. The overall
efficiency of the device is controlled by Poisson fluctuations, which
can be especially critical for separation of species where one particle
type is dominant. Moreover, the effective number of photoelectrons is
often less than the average number calculated above due to additional
equivalent noise from the photodetector (see the discussion of the
excess noise factor in Sec. 34.2 of this Review). It is common to
design for at least 10 photoelectrons for the high velocity particle
in order to obtain a robust counter. As rejection of the particle
that is below threshold depends on not seeing a signal, electronic
and other background noise, especially overlapping tracks, can be
important. Physics sources of light production for the below threshold
particle, such as decay to an above threshold particle, scintillation
light, or the production of delta rays in the radiator, often limit
the separation attainable, and need to be carefully considered. Well
designed, modern multi-channel counters, such as the ACC at Belle
[58], can attain adequate particle separation performance over a
substantial momentum range.

Imaging counters make the most powerful use of the information
available by measuring the ring-correlated angles of emission of the
individual Cherenkov photons. They typically provide positive ID
information both for the “wanted” and the “unwanted” particles, thus
reducing mis-identification substantially. Since low-energy photon
detectors can measure only the position (and, perhaps, a precise
detection time) of the individual Cherenkov photons (not the angles
directly), the photons must be “imaged” onto a detector so that their
angles can be derived [63]. Typically the optics map the Cherenkov
cone onto (a portion of) a distorted “circle” at the photodetector.
Though the imaging process is directly analogous to familiar imaging
techniques used in telescopes and other optical instruments, there is
a somewhat bewildering variety of methods used in a wide variety
of counter types with different names. Some of the imaging methods
used include (1) focusing by a lens or mirror; (2) proximity focusing
(i.e., focusing by limiting the emission region of the radiation); and
(3) focusing through an aperture (a pinhole). In addition, the prompt
Cherenkov emission coupled with the speed of some modern photon
detectors allows the use of (4) time imaging, a method which is
little used in conventional imaging technology, and may allow some
separation with particle TOF. Finally, (5) correlated tracking (and

event reconstruction) can be performed in large water counters by
combining the individual space position and time of each photon
together with the constraint that Cherenkov photons are emitted from
each track at the same polar angle (Sec. 35.3.1 of this Review).

In a simple model of an imaging PID counter, the fractional error
on the particle velocity (δβ) is given by

δβ =
σβ

β
= tan θcσ(θc) , (34.10)

where

σ(θc) =
〈σ(θi)〉
√

Np.e.
⊕ C , (34.11)

and 〈σ(θi)〉 is the average single photoelectron resolution, as defined
by the optics, detector resolution and the intrinsic chromaticity
spread of the radiator index of refraction averaged over the photon
detection bandwidth. C combines a number of other contributions to
resolution including, (1) correlated terms such as tracking, alignment,
and multiple scattering, (2) hit ambiguities, (3) background hits from
random sources, and (4) hits coming from other tracks. The actual
separation performance is also limited by physics effects such as decays
in flight and particle interactions in the material of the detector. In
many practical cases, the performance is limited by these effects.

For a β ≈ 1 particle of momentum (p) well above threshold entering
a radiator with index of refraction (n), the number of σ separation
(Nσ) between particles of mass m1 and m2 is approximately

Nσ ≈ |m2
1 − m2

2|
2p2σ(θc)

√
n2 − 1

. (34.12)

In practical counters, the angular resolution term σ(θc) varies
between about 0.1 and 5 mrad depending on the size, radiator, and
photodetector type of the particular counter. The range of momenta
over which a particular counter can separate particle species extends
from the point at which the number of photons emitted becomes
sufficient for the counter to operate efficiently as a threshold device
(∼20% above the threshold for the lighter species) to the value in
the imaging region given by the equation above. For example, for
σ(θc) = 2mrad, a fused silica radiator(n = 1.474), or a fluorocarbon
gas radiator (C5F12, n = 1.0017), would separate π/K’s from the
threshold region starting around 0.15(3) GeV/c through the imaging
region up to about 4.2(18) GeV/c at better than 3σ.

Many different imaging counters have been built during the last sev-
eral decades [60]. Among the earliest examples of this class of counters
are the very limited acceptance Differential Cherenkov detectors,
designed for particle selection in high momentum beam lines. These
devices use optical focusing and/or geometrical masking to select
particles having velocities in a specified region. With careful design, a
velocity resolution of σβ/β ≈ 10−4–10−5 can be obtained [61].

Practical multi-track Ring-Imaging Cherenkov detectors (generi-
cally called RICH counters) are a more recent development. RICH
counters are sometimes further classified by ‘generations’ that differ
based on historical timing, performance, design, and photodetection
techniques.

Prototypical examples of first generation RICH counters are those
used in the DELPHI and SLD detectors at the LEP and SLC Z factory
e+e− colliders [60]. They have both liquid (C6F14, n = 1.276)
and gas (C5F12, n = 1.0017) radiators, the former being proximity
imaged with the latter using mirrors. The phototransducers are a
TPC/wire-chamber combination. They are made sensitive to photons
by doping the TPC gas (usually, ethane/methane) with ∼ 0.05%
TMAE (tetrakis(dimethylamino)ethylene). Great attention to detail
is required, (1) to avoid absorbing the UV photons to which TMAE
is sensitive, (2) to avoid absorbing the single photoelectrons as they
drift in the long TPC, and (3) to keep the chemically active TMAE
vapor from interacting with materials in the system. In spite of their
unforgiving operational characteristics, these counters attained good
e/π/K/p separation over wide momentum ranges (from about 0.25
to 20 GeV/c) during several years of operation at LEP and SLC.
Related but smaller acceptance devices include the OMEGA RICH
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at the CERN SPS, and the RICH in the balloon-borne CAPRICE
detector [60].

Later generation counters [60] generally operate at much higher
rates, with more detection channels, than the first generation detectors
just described. They also utilize faster, more forgiving photon
detectors, covering different photon detection bandwidths. Radiator
choices have broadened to include materials such as lithium fluoride,
fused silica, and aerogel. Vacuum based photodetection systems (e.g.,
single or multi anode PMTs, MCP PMTs, or hybrid photodiodes
(HPD)) have become increasingly common (see Sec. 34.2 of this
Review). They handle high rates, and can be used with a wide choice
of radiators. Examples include (1) the SELEX RICH at Fermilab,
which mirror focuses the Cherenkov photons from a neon radiator
onto a camera array made of ∼ 2000 PMTs to separate hadrons over a
wide momentum range (to well above 200 GeV/c for heavy hadrons);
(2) the HERMES RICH at HERA, which mirror focuses photons from
C4F10(n = 1.00137) and aerogel(n = 1.0304) radiators within the
same volume onto a PMT camera array to separate hadrons in the
momentum range from 2 to 15 GeV/c; and (3) the LHCb detector
now running at the LHC. It uses two separate counters readout by
hybrid PMTs. One volume, like HERMES, contains two radiators
(aerogel and C4F10) while the second volume contains CF4. Photons
are mirror focused onto detector arrays of HPDs to cover a π/K
separation momentum range between 1 and 150 GeV/c. This device
will be upgraded to deal with the higher luminosities provided by
LHC after 2018 by modifying the optics and removing the aerogel
radiator of the upstream RICH and replacing the Hybrid PMTs with
multi-anode PMTs (MaPMTs).

Other fast detection systems that use solid cesium iodide (CsI)
photocathodes or triethylamine (TEA) doping in proportional
chambers are useful with certain radiator types and geometries.
Examples include (1) the CLEO-III RICH at CESR that uses a LiF
radiator with TEA doped proportional chambers; (2) the ALICE
detector at the LHC that uses proximity focused liquid (C6F14

radiators and solid CSI photocathodes (similar photodectors have
been used for several years by the HADES and COMPASS detectors),
and the hadron blind detector (HBD) in the PHENIX detector at
RHIC that couples a low index CF4 radiator to a photodetector
based on electron multiplier (GEM) chambers with reflective CSI
photocathodes [60].

A DIRC (Detection [of] Internally Reflected Cherenkov [light])
is a distinctive, compact RICH subtype first used in the BaBar
detector [57,60]. A DIRC “inverts” the usual RICH principle for
use of light from the radiator by collecting and imaging the total
internally reflected light rather than the transmitted light. It utilizes
the optical material of the radiator in two ways, simultaneously;
first as a Cherenkov radiator, and second, as a light pipe. The
magnitudes of the photon angles are preserved during transport by
the flat, rectangular cross section radiators, allowing the photons to
be efficiently transported to a detector outside the path of the particle
where they may be imaged in up to three independent dimensions (the
usual two in space and, due to the long photon paths lengths, one in
time). Because the index of refraction in the radiator is large (∼ 1.48
for fused silica), light collection efficiency is good, but the momentum
range with good π/K separation is rather low. The BaBar DIRC
range extends up to ∼ 4 GeV/c. It is plausible, but challenging,
to extend it up to about 10 GeV/c with an improved design. New
DIRC detectors are being developed that take advantage of the new,
very fast, pixelated photodetectors becoming available, such as flat
panel MaPMTs and MCP PMTs. They typically utilize either time
imaging or mirror focused optics, or both, leading not only to a
precision measurement of the Cherenkov angle, but in some cases,
to a precise measurement of the particle TOF, and/or to correction
of the chromatic dispersion in the radiator. Examples [60] include
(1) the time of propagation (TOP) counter being fabricated for the
BELLE-II upgrade at KEKB emphasizing precision timing for both
Cherenkov imaging and TOF, which is scheduled for installation in
2016; (2) the full scale 3-dimensional imaging FDIRC prototype using
the BaBar DIRC radiators which was designed for the SuperB detector
at the Italian SuperB collider and uses precision timing not only for
improving the angle reconstruction and TOF precision, but also to

correct the chromatic dispersion; (3) the DIRCs being developed for
the PANDA detector at FAIR that use elegant focusing optics and
fast timing; and (4) the TORCH proposal being developed for an
LHCb upgrade after 2019 which uses DIRC imaging with fast photon
detectors to provide particle separation via particle TOF over a path
length of 9.5m.

34.6. Gaseous detectors

34.6.1. Energy loss and charge transport in gases : Revised
March 2010 by F. Sauli (CERN) and M. Titov (CEA Saclay).

Gas-filled detectors localize the ionization produced by charged
particles, generally after charge multiplication. The statistics of
ionization processes having asymmetries in the ionization trails, affect
the coordinate determination deduced from the measurement of drift
time, or of the center of gravity of the collected charge. For thin gas
layers, the width of the energy loss distribution can be larger than
its average, requiring multiple sample or truncated mean analysis to
achieve good particle identification. In the truncated mean method
for calculating 〈dE/dx〉, the ionization measurements along the track
length are broken into many samples and then a fixed fraction of
high-side (and sometimes also low-side) values are rejected [64].

The energy loss of charged particles and photons in matter is
discussed in Sec. 33. Table 34.5 provides values of relevant parameters
in some commonly used gases at NTP (normal temperature, 20◦ C,
and pressure, 1 atm) for unit-charge minimum-ionizing particles
(MIPs) [65–71]. Values often differ, depending on the source, so
those in the table should be taken only as approximate. For different
conditions and for mixtures, and neglecting internal energy transfer
processes (e.g., Penning effect), one can scale the density, NP , and NT
with temperature and pressure assuming a perfect gas law.

Table 34.5: Properties of noble and molecular gases at normal
temperature and pressure (NTP: 20◦ C, one atm). EX , EI : first
excitation, ionization energy; WI : average energy per ion pair;
dE/dx|min, NP , NT : differential energy loss, primary and total
number of electron-ion pairs per cm, for unit charge minimum
ionizing particles.

Gas Density, Ex EI WI dE/dx|min NP NT

mg cm−3 eV eV eV keVcm−1 cm−1 cm−1

He 0.179 19.8 24.6 41.3 0.32 3.5 8

Ne 0.839 16.7 21.6 37 1.45 13 40

Ar 1.66 11.6 15.7 26 2.53 25 97

Xe 5.495 8.4 12.1 22 6.87 41 312

CH4 0.667 8.8 12.6 30 1.61 28 54

C2H6 1.26 8.2 11.5 26 2.91 48 112

iC4H10 2.49 6.5 10.6 26 5.67 90 220

CO2 1.84 7.0 13.8 34 3.35 35 100

CF4 3.78 10.0 16.0 54 6.38 63 120

When an ionizing particle passes through the gas it creates
electron-ion pairs, but often the ejected electrons have sufficient
energy to further ionize the medium. As shown in Table 34.5, the
total number of electron-ion pairs (NT ) is usually a few times larger
than the number of primaries (NP ).

The probability for a released electron to have an energy E or larger
follows an approximate 1/E2 dependence (Rutherford law), shown in
Fig. 34.3 for Ar/CH4 at NTP (dotted line, left scale). More detailed
estimates taking into account the electronic structure of the medium
are shown in the figure, for three values of the particle velocity
factor βγ [66]. The dot-dashed line provides, on the right scale, the
practical range of electrons (including scattering) of energy E. As an
example, about 0.6% of released electrons have 1 keV or more energy,
substantially increasing the ionization loss rate. The practical range
of 1 keV electrons in argon (dot-dashed line, right scale) is 70 µm and
this can contribute to the error in the coordinate determination.
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Figure 34.3: Probability of single collisions in which released
electrons have an energy E or larger (left scale) and practical
range of electrons in Ar/CH4 (P10) at NTP (dot-dashed curve,
right scale) [66].

The number of electron-ion pairs per primary ionization, or cluster
size, has an exponentially decreasing probability; for argon, there is
about 1% probability for primary clusters to contain ten or more
electron-ion pairs [67].

Once released in the gas, and under the influence of an applied
electric field, electrons and ions drift in opposite directions and diffuse
towards the electrodes. The scattering cross section is determined
by the details of atomic and molecular structure. Therefore, the
drift velocity and diffusion of electrons depend very strongly on the
nature of the gas, specifically on the inelastic cross-section involving
the rotational and vibrational levels of molecules. In noble gases,
the inelastic cross section is zero below excitation and ionization
thresholds. Large drift velocities are achieved by adding polyatomic
gases (usually CH4, CO2, or CF4) having large inelastic cross sections
at moderate energies, which results in “cooling” electrons into the
energy range of the Ramsauer-Townsend minimum (at ∼ 0.5 eV)
of the elastic cross-section of argon. The reduction in both the
total electron scattering cross-section and the electron energy results
in a large increase of electron drift velocity (for a compilation of
electron-molecule cross sections see Ref. 68). Another principal role
of the polyatomic gas is to absorb the ultraviolet photons emitted
by the excited noble gas atoms. Extensive collections of experimental
data [69] and theoretical calculations based on transport theory [70]
permit estimates of drift and diffusion properties in pure gases and
their mixtures. In a simple approximation, gas kinetic theory provides
the drift velocity v as a function of the mean collision time τ and
the electric field E: v = eEτ/me (Townsend’s expression). Values of
drift velocity and diffusion for some commonly used gases at NTP are
given in Fig. 34.4 and Fig. 34.5. These have been computed with the
MAGBOLTZ program [71]. For different conditions, the horizontal
axis must be scaled inversely with the gas density. Standard deviations
for longitudinal (σL) and transverse diffusion (σT ) are given for one
cm of drift, and scale with the the square root of the drift distance.
Since the collection time is inversely proportional to the drift velocity,
diffusion is less in gases such as CF4 that have high drift velocities. In
the presence of an external magnetic field, the Lorentz force acting on
electrons between collisions deflects the drifting electrons and modifies
the drift properties. The electron trajectories, velocities and diffusion
parameters can be computed with MAGBOLTZ. A simple theory, the
friction force model, provides an expression for the vector drift velocity
v as a function of electric and magnetic field vectors E and B, of the
Larmor frequency ω = eB/me, and of the mean collision time τ :

v =
e

me

τ

1 + ω2τ2

(

E +
ωτ

B
(E ×B) +

ω2τ2

B2
(E · B)B

)

(34.13)

To a good approximation, and for moderate fields, one can assume
that the energy of the electrons is not affected by B, and use for τ

the values deduced from the drift velocity at B = 0 (the Townsend
expression). For E perpendicular to B, the drift angle to the relative to
the electric field vector is tan θB = ωτ and v = (E/B)(ωτ/

√
1 + ω2τ2).

For parallel electric and magnetic fields, drift velocity and longitudinal
diffusion are not affected, while the transverse diffusion can be
strongly reduced: σT (B) = σT (B = 0)/

√
1 + ω2τ2. The dotted line in

Fig. 34.5 represents σT for the classic Ar/CH4 (90:10) mixture at 4 T.
Large values of ωτ ∼ 20 at 5T are consistent with the measurement
of diffusion coefficient in Ar/CF4/iC4H10 (95:3:2). This reduction is
exploited in time projection chambers (Sec. 34.6.5) to improve spatial
resolution.

Figure 34.4: Computed electron drift velocity as a function of
electric field in several gases at NTP and B = 0 [71].

In mixtures containing electronegative molecules, such as O2 or
H2O, electrons can be captured to form negative ions. Capture cross-
sections are strongly energy-dependent, and therefore the capture
probability is a function of applied field. For example, the electron
is attached to the oxygen molecule at energies below 1 eV. The
three-body electron attachment coefficients may differ greatly for the
same additive in different mixtures. As an example, at moderate
fields (up to 1 kV/cm) the addition of 0.1% of oxygen to an Ar/CO2

mixture results in an electron capture probability about twenty times
larger than the same addition to Ar/CH4.

Carbon tetrafluoride is not electronegative at low and moderate
fields, making its use attractive as drift gas due to its very low
diffusion. However, CF4 has a large electron capture cross section at
fields above ∼ 8 kV/cm, before reaching avalanche field strengths.
Depending on detector geometry, some signal reduction and resolution
loss can be expected using this gas.

If the electric field is increased sufficiently, electrons gain enough
energy between collisions to ionize molecules. Above a gas-dependent
threshold, the mean free path for ionization, λi, decreases exponentially
with the field; its inverse, α = 1/λi, is the first Townsend coefficient.
In wire chambers, most of the increase of avalanche particle density
occurs very close to the anode wires, and a simple electrostatic
consideration shows that the largest fraction of the detected signal
is due to the motion of positive ions receding from the wires. The
electron component, although very fast, contributes very little to the
signal. This determines the characteristic shape of the detected signals
in the proportional mode: a fast rise followed by a gradual increase.
The slow component, the so-called “ion tail” that limits the time
resolution of the detector, is usually removed by differentiation of the
signal. In uniform fields, N0 initial electrons multiply over a length x
forming an electron avalanche of size N = N0 eαx; N/N0 is the gain
of the detector. Fig. 34.6 shows examples of Townsend coefficients for
several gas mixtures, computed with MAGBOLTZ [71].

Positive ions released by the primary ionization or produced in
the avalanches drift and diffuse under the influence of the electric
field. Negative ions may also be produced by electron attachment to
gas molecules. The drift velocity of ions in the fields encountered in
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Figure 34.5: Electron longitudinal diffusion (σL) (dashed lines)
and transverse diffusion (σT ) (full lines) for 1 cm of drift at NTP
and B = 0. The dotted line shows σT for the P10 mixture at
4T [71].

Figure 34.6: Computed first Townsend coefficient α as a
function of electric field in several gases at NTP [71].

gaseous detectors (up to few kV/cm) is typically about three orders
of magnitude less than for electrons. The ion mobility µ, the ratio of
drift velocity to electric field, is constant for a given ion type up to
very high fields. Values of mobility at NTP for ions in their own and
other gases are given in Table 34.6 [72]. For different temperatures
and pressures, the mobility can be scaled inversely with the density
assuming an ideal gas law. For mixtures, due to a very effective charge
transfer mechanism, only ions with the lowest ionization potential
survive after a short path in the gas. Both the lateral and transverse
diffusion of ions are proportional to the square root of the drift time,
with a coefficient that depends on temperature but not on the ion
mass. Accumulation of ions in the gas drift volume may induce field
distortions (see Sec. 34.6.5).

Table 34.6: Mobility of ions in gases at NTP [72].

Gas Ion Mobility µ

(cm2 V−1 s−1)

He He+ 10.4

Ne Ne+ 4.7

Ar Ar+ 1.54

Ar/CH4 CH+
4 1.87

Ar/CO2 CO+
2 1.72

CH4 CH+
4 2.26

CO2 CO+
2 1.09

34.6.2. Multi-Wire Proportional and Drift Chambers : Re-
vised March 2010 by Fabio Sauli (CERN) and Maxim Titov (CEA
Saclay).

Single-wire counters that detect the ionization produced in a
gas by a charged particle, followed by charge multiplication and
collection around a thin wire have been used for decades. Good energy
resolution is obtained in the proportional amplification mode, while
very large saturated pulses can be detected in the streamer and Geiger
modes [3].

Multiwire proportional chambers (MWPCs) [73,74], introduced in
the late ’60’s, detect, localize and measure energy deposit by charged
particles over large areas. A mesh of parallel anode wires at a suitable
potential, inserted between two cathodes, acts almost as a set of
independent proportional counters (see Fig. 34.7a). Electrons released
in the gas volume drift towards the anodes and produce avalanches in
the increasing field. Analytic expressions for the electric field can be
found in many textbooks. The fields close to the wires E(r), in the
drift region ED, and the capacitance C per unit length of anode wire
are approximately given by

E(r) =
CV0

2πǫ0

1

r
ED =

CV0

2ǫ0s
C =

2πǫ0
π(ℓ/s) − ln(2πa/s)

, (34.14)

where r is the distance from the center of the anode, s the wire
spacing, ℓ and V0 the distance and potential difference between anode
and cathode, and a the anode wire radius.

Because of electrostatic forces, anode wires are in equilibrium only
for a perfect geometry. Small deviations result in forces displacing the
wires alternatively below and above the symmetry plane, sometimes
with catastrophic results. These displacement forces are countered by
the mechanical tension of the wire, up to a maximum unsupported
stable length, LM [64], above which the wire deforms:

LM =
s

CV0

√

4πǫ0TM (34.15)

The maximum tension TM depends on the wire diameter and modulus
of elasticity. Table 34.7 gives approximate values for tungsten and
the corresponding maximum stable wire length under reasonable
assumptions for the operating voltage (V0 = 5 kV) [75]. Internal
supports and spacers can be used in the construction of longer detectors
to overcome limits on the wire length imposed by Eq. (34.15).

Table 34.7: Maximum tension TM and stable unsupported
length LM for tungsten wires with spacing s, operated at
V0 = 5 kV. No safety factor is included.

Wire diameter (µm) TM (newton) s (mm) LM (cm)

10 0.16 1 25

20 0.65 2 85

Detection of charge on the wires over a predefined threshold
provides the transverse coordinate to the wire with an accuracy
comparable to that of the wire spacing. The coordinate along each
wire can be obtained by measuring the ratio of collected charge at
the two ends of resistive wires. Making use of the charge profile
induced on segmented cathodes, the so-called center-of gravity (COG)
method, permits localization of tracks to sub-mm accuracy. Due to
the statistics of energy loss and asymmetric ionization clusters, the
position accuracy is ∼ 50 µm rms for tracks perpendicular to the
wire plane, but degrades to ∼ 250µmat 30◦ to the normal [76]. The
intrinsic bi-dimensional characteristic of the COG readout has found
numerous applications in medical imaging.

Drift chambers, developed in the early ’70’s, can be used to estimate
the longitudinal position of a track by exploiting the arrival time of
electrons at the anodes if the time of interaction is known [77]. The
distance between anode wires is usually several cm, allowing coverage
of large areas at reduced cost. In the original design, a thicker wire
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(a) Multiwire proportional chamber
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Figure 34.7: Electric field lines and equipotentials in (a) a
multiwire proportional chamber and (b) a drift chamber.

(the field wire) at the proper voltage, placed between the anode
wires, reduces the field at the mid-point between anodes and improves
charge collection (Fig. 34.7b). In some drift chamber designs, and
with the help of suitable voltages applied to field-shaping electrodes,
the electric field structure is adjusted to improve the linearity of
space-to-drift-time relation, resulting in better spatial resolution [78].

Drift chambers can reach a longitudinal spatial resolution from
timing measurement of order 100 µm (rms) or better for minimum
ionizing particles, depending on the geometry and operating conditions.
However, a degradation of resolution is observed [79] due to primary
ionization statistics for tracks close to the anode wires, caused by the
spread in arrival time of the nearest ionization clusters. The effect can
be reduced by operating the detector at higher pressures. Sampling
the drift time on rows of anodes led to the concept of multiple arrays
such as the multi-drift module [80] and the JET chamber [81]. A
measurement of drift time, together with the recording of charge
sharing from the two ends of the anode wires provides the coordinates
of segments of tracks. The total charge gives information on the
differential energy loss and is exploited for particle identification. The
time projection chamber (TPC) [82] combines a measurement of drift
time and charge induction on cathodes, to obtain excellent tracking
for high multiplicity topologies occurring at moderate rates (see
Sec. 34.6.5). In all cases, a good knowledge of electron drift velocity
and diffusion properties is required. This has to be combined with
the knowledge of the electric fields in the structures, computed with
commercial or custom-developed software [71,83]. For an overview
of detectors exploiting the drift time for coordinate measurement see
Refs. 6 and 64.

Multiwire and drift chambers have been operated with a variety
of gas fillings and operating modes, depending on experimental
requirements. The so-called “Magic Gas,” a mixture of argon,
isobutane and Freon [74], permits very high and saturated gains
(∼ 106). This gas mixture was used in early wire chambers, but was
found to be susceptible to severe aging processes. With present-day
electronics, proportional gains around 104 are sufficient for detection
of minimum ionizing particles, and noble gases with moderate amounts
of polyatomic gases, such as methane or carbon dioxide, are used.

Although very powerful in terms of performance, multi-wire
structures have reliability problems when used in harsh or hard-to-
access environments, since a single broken wire can disable the entire
detector. Introduced in the ’80’s, straw and drift tube systems make
use of large arrays of wire counters encased in individual enclosures,
each acting as an independent wire counter [84]. Techniques for
low-cost mass production of these detectors have been developed for
large experiments, such as the Transition Radiation Tracker and the
Drift Tubes arrays for CERN’s LHC experiments [85].

34.6.3. High Rate Effects : Revised March 2010 by Fabio Sauli
(CERN) and Maxim Titov (CEA Saclay).

The production of positive ions in the avalanches and their slow
drift before neutralization result in a rate-dependent accumulation of
positive charge in the detector. This may result in significant field
distortion, gain reduction and degradation of spatial resolution. As
shown in Fig. 34.8 [86], the proportional gain drops above a charge
production rate around 109 electrons per second and mm of wire,
independently of the avalanche size. For a proportional gain of 104

and 100 electrons per track, this corresponds to a particle flux of
103 s−1mm−1 (1 kHz/mm2 for 1 mm wire spacing).

Figure 34.8: Charge rate dependence of normalized gas gain
G/G0 (relative to zero counting rate) in proportional thin-wire
detectors [86]. Q is the total charge in single avalanche; N is
the particle rate per wire length.

At high radiation fluxes, a fast degradation of detectors due to the
formation of polymers deposits (aging) is often observed. The process
has been extensively investigated, often with conflicting results.
Several causes have been identified, including organic pollutants and
silicone oils. Addition of small amounts of water in many (but not
all) cases has been shown to extend the lifetime of the detectors.
Addition of fluorinated gases (e.g., CF4) or oxygen may result in an
etching action that can overcome polymer formation, or even eliminate
already existing deposits. However, the issue of long-term survival of
gas detectors with these gases is controversial [87]. Under optimum
operating conditions, a total collected charge of a few coulombs per cm
of wire can usually be reached before noticeable degradation occurs.
This corresponds, for one mm spacing and at a gain of 104, to a total
particle flux of ∼ 1014 MIPs/cm2.

34.6.4. Micro-Pattern Gas Detectors : Revised March 2010 by
Fabio Sauli (CERN) and Maxim Titov (CEA Saclay)

Despite various improvements, position-sensitive detectors based
on wire structures are limited by basic diffusion processes and
space charge effects to localization accuracies of 50–100µm [88].
Modern photolithographic technology led to the development of novel
Micro-Pattern Gas Detector (MPGD) concepts [89], revolutionizing
cell size limitations for many gas detector applications. By using pitch
size of a few hundred µm, an order of magnitude improvement in
granularity over wire chambers, these detectors offer intrinsic high rate
capability (> 106 Hz/mm2), excellent spatial resolution (∼ 30 µm),
multi-particle resolution (∼ 500 µm), and single photo-electron time
resolution in the ns range.

The Micro-Strip Gas Chamber (MSGC), invented in 1988, was
the first of the micro-structure gas chambers [90]. It consists of
a set of tiny parallel metal strips laid on a thin resistive support,
alternatively connected as anodes and cathodes. Owing to the small
anode-to-cathode distance (∼ 100 µm), the fast collection of positive
ions reduces space charge build-up, and provides a greatly increased
rate capability. Unfortunately, the fragile electrode structure of the
MSGC turned out to be easily destroyed by discharges induced by
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heavily ionizing particles [91]. Nevertheless, detailed studies of their
properties, and in particular, on the radiation-induced processes
leading to discharge breakdown, led to the development of the
more powerful devices: GEM and Micromegas. These have improved
reliability and radiation hardness. The absence of space-charge effects
in GEM detectors at the highest rates reached so far and the fine
granularity of MPGDs improve the maximum rate capability by more
than two orders of magnitude (Fig. 34.9) [78,92]. Even larger rate
capability has been reported for Micromegas [93].

Figure 34.9: Normalized gas gain as a function of particle rate
for MWPC [78] and GEM [92].

140 µm

50 µm

Figure 34.10: Schematic view and typical dimensions of the
hole structure in the GEM amplification cell. Electric field lines
(solid) and equipotentials (dashed) are shown.

The Gas Electron Multiplier (GEM) detector consists of a
thin-foil copper-insulator-copper sandwich chemically perforated to
obtain a high density of holes in which avalanches occur [94]. The
hole diameter is typically between 25 µm and 150 µm, while the
corresponding distance between holes varies between 50 µm and
200 µm. The central insulator is usually (in the original design)
the polymer Kapton, with a thickness of 50 µm. Application of a
potential difference between the two sides of the GEM generates the
electric fields indicated in Fig. 34.10. Each hole acts as an independent
proportional counter. Electrons released by the primary ionization
particle in the upper conversion region (above the GEM foil) drift
into the holes, where charge multiplication occurs in the high electric
field (50–70 kV/cm). Most of avalanche electrons are transferred
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Figure 34.11: Schematic drawing of the Micromegas detector.

into the gap below the GEM. Several GEM foils can be cascaded,
allowing the multi-layer GEM detectors to operate at overall gas gain
above 104 in the presence of highly ionizing particles, while strongly
reducing the risk of discharges. This is a major advantage of the GEM
technology [95]. Localization can then be performed by collecting
the charge on a patterned one- or two-dimensional readout board of
arbitrary pattern, placed below the last GEM.

The micro-mesh gaseous structure (Micromegas) is a thin parallel-
plate avalanche counter, as shown in Fig. 34.11 [96]. It consists of
a drift region and a narrow multiplication gap (25–150 µm) between
a thin metal grid (micromesh) and the readout electrode (strips or
pads of conductor printed on an insulator board). Electrons from
the primary ionization drift through the holes of the mesh into the
narrow multiplication gap, where they are amplified. The electric
field is homogeneous both in the drift (electric field ∼ 1 kV/cm)
and amplification (50–70 kV/cm) gaps. In the narrow multiplication
region, gain variations due to small variations of the amplification
gap are approximately compensated by an inverse variation of the
amplification coefficient, resulting in a more uniform gain. The small
amplification gap produces a narrow avalanche, giving rise to excellent
spatial resolution: 12 µm accuracy, limited by the micro-mesh pitch,
has been achieved for MIPs, as well as very good time resolution and
energy resolution (∼ 12% FWHM with 6 keV x rays) [97].

The performance and robustness of GEM and Micromegas have
encouraged their use in high-energy and nuclear physics, UV and
visible photon detection, astroparticle and neutrino physics, neutron
detection and medical physics. Most structures were originally
optimized for high-rate particle tracking in nuclear and high-energy
physics experiments. COMPASS, a high-luminosity experiment at
CERN, pioneered the use of large-area (∼ 40 × 40 cm2) GEM and
Micromegas detectors close to the beam line with particle rates of
25 kHz/mm2. Both technologies achieved a tracking efficiency of close
to 100% at gas gains of about 104, a spatial resolution of 70–100 µm
and a time resolution of ∼ 10 ns. GEM detectors are also used for
triggering in the LHCb Muon System and for tracking in the TOTEM
Telescopes. Both GEM and Micromegas devices are foreseen for the
upgrade of the LHC experiments and for one of the readout options
for the Time Projection Chamber (TPC) at the International Linear
Collider (ILC). The development of new fabrication techniques—
“bulk” Micromegas technology [98] and single-mask GEMs [99] —is a
big step toward industrial production of large-size MPGDs. In some
applications requiring very large-area coverage with moderate spatial
resolution, coarse macro-patterned detectors, such as Thick GEMs
(THGEM) [100] or patterned resistive-plate devices [101] might offer
economically interesting solutions.

Sensitive and low-noise electronics enlarge the range of the MPGD
applications. Recently, the GEM and Micromegas detectors were
read out by high-granularity (∼ 50 µm pitch) CMOS chips assembled
directly below the GEM or Micromegas amplification structures [102].
These detectors use the bump-bonding pads of a pixel chip as an
integrated charge collecting anode. With this arrangement signals are
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induced at the input gate of a charge-sensitive preamplifier (top metal
layer of the CMOS chip). Every pixel is then directly connected to the
amplification and digitization circuits, integrated in the underlying
active layers of the CMOS technology, yielding timing and charge
measurements as well as precise spatial information in 3D.

The operation of a MPGD with a Timepix CMOS chip has
demonstrated the possibility of reconstructing 3D-space points of
individual primary electron clusters with ∼ 30µm spatial resolution
and event-time resolution with nanosecond precision. This has
become indispensable for tracking and triggering and also for
discriminating between ionizing tracks and photon conversions. The
GEM, in conjunction with a CMOS ASIC,* can directly view the
absorption process of a few keV x-ray quanta and simultaneously
reconstruct the direction of emission, which is sensitive to the x-ray
polarization. Thanks to these developments, a micro-pattern device
with finely segmented CMOS readout can serve as a high-precision
“electronic bubble chamber.” This may open new opportunities for
x-ray polarimeters, detection of weakly interacting massive particles
(WIMPs) and axions, Compton telescopes, and 3D imaging of nuclear
recoils.

An elegant solution for the construction of the Micromegas with
pixel readout is the integration of the amplification grid and CMOS
chip by means of an advanced “wafer post-processing” technology [103].
This novel concept is called “Ingrid” (see Fig. 34.12). With this
technique, the structure of a thin (1 µm) aluminum grid is fabricated
on top of an array of insulating pillars. which stands ∼ 50µm above
the CMOS chip. The sub-µm precision of the grid dimensions and
avalanche gap size results in a uniform gas gain. The grid hole size,
pitch and pattern can be easily adapted to match the geometry of any
pixel readout chip.

Figure 34.12: Photo of the Micromegas “Ingrid” detector.
The grid holes can be accurately aligned with readout pixels of
CMOS chip. The insulating pillars are centered between the grid
holes, thus avoiding dead regions.

Recent developments in radiation hardness research with state-of-
the-art MPGDs are reviewed in Ref. 104. Earlier aging studies of
GEM and Micromegas concepts revealed that they might be even
less vulnerable to radiation-induced performance degradation than
standard silicon microstrip detectors.

The RD51 collaboration was established in 2008 to further advance
technological developments of micro-pattern detectors and associated
electronic-readout systems for applications in basic and applied
research [105].
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Figure 34.14: One of the 3 TPC modules for the near detector
of the T2K experiment [107]. The size is 2 × 2 × 0.8m3.
Micromegas devices are used for gas amplification and readout.

34.6.5. Time-projection chambers : Written August 2015 by
C. Lippmann (GSI Helmholtzzentrum für Schwerionenforschung,
Darmstadt, Germany)

The Time Projection Chamber (TPC) concept was invented by
David Nygren in the late 1970’s [82]. It consists of a cylindrical
or square field cage filled with a detection medium that is usually
a gas or a liquid. Charged particles produce tracks of ionization
electrons that drift in a uniform electric field towards a position-
sensitive amplification stage which provides a 2D projection of the
particle trajectories. The third coordinate can be calculated from the
arrival times of the drifted electrons. The start for this drift time
measurement is usually derived from an external detector, e.g. a fast
interaction trigger detector.

This section focuses on the gas-filled TPCs that are typically used
in particle or nuclear physics experiments at accelerators due to their
low material budget. For neutrino physics (Sec. 34.10) or for detecting
rare events (Sec. 35.4), on the contrary, usually high density and large
active mass are required, and a liquid detection medium is favored.

The TPC enables full 3D measurements of charged particle tracks,
which gives it a distinct advantage over other tracking detector designs
which record information only in two-dimensional detector planes
and have less overall segmentation. This advantage is often exploited
for pattern recognition in events with large numbers of particles,
e.g. heavy-ion collisions. Two examples of modern large-volume
gaseous TPCs are shown in Fig. 34.13 and Fig. 34.14.

Figure 34.13: Schematic view of the ALICE TPC [106]. The
drift volume with 5 m diameter is divided into two halves, each
providing 2.5m drift length.
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Identification of the charged particles crossing the TPC is possible
by simultaneously measuring their momentum and specific energy
deposit through ionisation (dE/dx). The momentum, as well as the
charge sign, are calculated from a helix fit to the particle trajectory
in the presence of a magnetic field (typically parallel to the drift
field). For this application, precise spatial measurements in the plane
transverse to the magnetic field are most important. The specific
energy deposit is estimated from many charge measurements along the
particle trajectory (e.g. one measurement per anode wire or per row of
readout pads). As the charge collected per readout segment depends
on the track angle and on the ambient conditions, the measured
values are corrected for the effective length of the track segments
and for variations of the gas temperature and pressure. The most
probable value of the corrected signal amplitudes provides the best
estimator for the specific energy deposit (see Sec. 33.2.3); it is usually
approximated by the truncated mean, i.e. the average of the 50%-70%
smallest values. The resulting particle identification performance is
illustrated in Fig. 34.15, for the ALICE TPC.
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Figure 34.15: Energy deposit versus momentum measured in
the ALICE TPC [108].

The dependence of the achievable energy resolution on the number
of measurements N , on the thickness of the sampling layers t, and on
the gas pressure P can be estimated using an empirical formula [109]:

σdE/dx = 0.41 N−0.43(t P )−0.32. (34.16)

Typical values at nominal pressure are σdE/dx = 4.5 to 7.5%, with
t = 0.4 to 1.5 cm and N = 40 up to more than 300. Due to the high
gas pressure of 8.5 bar, the resolution achieved with the PEP-4/9 TPC
was an unprecedented 3% [110].

The greatest challenges for a large TPC are due to the length of
the drift of up to several meters. In particular, it can make the device
sensitive to small distortions in the electric field. Such distortions
can arise from a number of sources, e.g. imperfections in the field
cage construction or the presence of ions in the drift volume. The
electron drift in a TPC in the presence of a magnetic field is defined
by Eq. (34.13). The E ×B term of Eq. (34.13) vanishes for perfectly
aligned electric and magnetic fields, which can however be difficult to
achieve in practice. Furthermore, the electron drift depends on the ωτ
factor, which is defined by the chosen gas mixture and magnetic field
strength. The electrons will tend to follow the magnetic field lines
for ωτ > 1 or the electric field lines for ωτ < 1. The former mode
of operation makes the TPC less sensitive to non-uniformities of the
electric field, which is usually desirable.

The drift of the ionization electrons is superposed with a random
diffusion motion which degrades their position information. The
ultimate resolution of a single position measurement is limited to
around

σx =
σD

√
L√

n
, (34.17)

where σD is the transverse diffusion coefficient for 1 cm drift, L is the
drift length in cm and n is the effective number of electrons collected.

Without a magnetic field, σD,B=0

√
L is typically a few mm after a

drift of L = 100 cm. However, in a strong magnetic field parallel to
the drift field, a large value of ωτ can significantly reduce diffusion:

σD,B>0

σD,B=0
=

1√
1 + ω2τ2

. (34.18)

This factor can reach values of up to 10. In practice, the final
resolution limit due to diffusion will typically be around σx = 100 µm.

The drift and diffusion of electrons depend strongly on the nature
of the gas that is used. The optimal gas mixture varies according
to the environment in which the TPC will operate. In all cases, the
oxygen concentration must be kept very low (few ten parts per million
in a large TPC) in order to avoid electron loss through attachment.
Ideally, the drift velocity should depend only weakly on the electric
field at the nominal operating condition. The classic Ar/CH4 (90:10)
mixture, known as P10, has a drift velocity maximum of 5 cm/µs
at an electric field of only 125V/cm (Fig. 34.4). In this regime,
the electron arrival time is not affected by small variations in the
ambient conditions. Moreover, low electric fields simplify the design
and operation of the field cage. The mixture has a large transverse
diffusion at B = 0, but this can be reduced significantly in a strong
magnetic field due to the relatively large value of ωτ .

For certain applications, organic gases like CH4 are not desirable,
since they may cause aging. An alternative is to replace CH4 with
CO2. An Ar/CO2 (90:10) mixture features a low transverse diffusion
at all magnetic field strengths, but does not provide a saturated drift
velocity for the typical electric fields used in TPCs (up to a few
100V/cm), so it is quite sensitive to the ambient conditions. Freon
admixtures like CF4 can be an attractive option for a TPC as well,
since the resulting gas mixtures provide high drift velocities at low
electric fields. However, the use of CF4 always needs to be thoroughly
validated for compatibility with all materials of the detector and the
gas system.

Historically, the amplification stages used in gaseous TPCs have
been planes of anode wires operated in proportional mode. The
performance is limited by effects related to the feature size of a few
mm (wire spacing). Since near the wires the electric and magnetic
fields are not parallel, the incoming ionisation electrons are displaced
in the direction of the wires (“wire E ×B effect”), which degrades the
resolution. The smaller feature sizes of Micro-Pattern Gas Detectors
(MPGDs) like GEMs and Micromegas lead to many advantages as
compared to wire planes (see Sec. 34.6.4). In particular, E ×B effects
in the amplification stage are much smaller. Moreover, the signal
induction process in MPGDs leads to a very narrow pad response,
allowing for a much finer segmentation and improving the separation
of two nearby tracks. Combinations of MPGDs with silicon sensors
have resulted in the highest granularity readout systems so far (see
Sec. 34.6.4). These devices make it possible to count the number
of ionization clusters along the length of a track, which can, in
principle, improve the particle identification capability. However, the
big challenge for such a system is the huge number of read-out
channels for a TPC of a typical size.

The accumulation of the positive ions created by the ionization
from the particle tracks can lead to time-dependent distortions of
the drift field. Due to their small drift velocity, ions from many
events may coexist in the drift volume. To reduce the effect of such
a build-up of space charge, Argon can be replaced by Neon as the
main component of the gas mixture. Neon features a lower number
of ionisation electrons per unit of track length (see Table 34.5) and a
higher ion mobility (see Table 34.6).

Of much greater concern are the ions produced in the gas
amplification stage. In order to prevent them from entering the drift
volume, large TPCs built until now usually have a gating grid. The
gating grid can be switched to transparent mode (usually in the
presence of an interaction trigger) to allow the ionization electrons
to pass into the amplification region. After all electrons have reached
the amplification region, it is usually closed such that it is rendered
opaque to electrons and ions.

Alternatively, new readout schemes are being developed using
MPGDs. These can be optimized in a way that they release many
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fewer positive ions than wire planes operating at the same effective
gain. This is an exciting possibility for future TPCs.

34.6.6. Transition radiation detectors (TRD’s) : Revised Au-
gust 2013 by P. Nevski (BNL) and A. Romaniouk (Moscow Eng. &
Phys. Inst.)

Transition radiation (TR) x-rays are produced when a highly
relativistic particle (γ >∼ 103) crosses a refractive index interface, as
discussed in Sec. 33.7. The x-rays, ranging from a few keV to a few
dozen keV or more, are emitted at a characteristic angle 1/γ from
the particle trajectory. Since the TR yield is about 1% per boundary
crossing, radiation from multiple surface crossings is used in practical
detectors. In the simplest concept, a detector module might consist
of low-Z foils followed by a high-Z active layer made of proportional
counters filled with a Xe-rich gas mixture. The atomic number
considerations follow from the dominant photoelectric absorption cross
section per atom going roughly as Z n/E3

x, where n varies between 4
and 5 over the region of interest, and the x-ray energy is Ex.* To
minimize self-absorption, materials such as polypropylene, Mylar,
carbon, and (rarely) lithium are used as radiators. The TR signal in
the active regions is in most cases superimposed upon the particle
ionization losses, which are proportional to Z.

The TR intensity for a single boundary crossing always increases
with γ, but, for multiple boundary crossings, interference leads
to saturation above a Lorentz factor γ sat = 0.6 ω1

√
ℓ1ℓ2/c [111],

where ω1 is the radiator material plasma frequency, ℓ1 is its
thickness, and ℓ2 the spacing. In most of the detectors used in
particle physics the radiator parameters are chosen to provide
γ sat ≈ 2000. Those detectors normally work as threshold devices,
ensuring the best electron/pion separation in the momentum range
1 GeV/c <∼ p <∼ 150 GeV/c.

One can distinguish two design concepts—“thick” and “thin”
detectors:

1. The radiator, optimized for a minimum total radiation length
at maximum TR yield and total TR absorption, consists of few
hundred foils (for instance 300 20 µm thick polypropylene foils).
Most of the TR photons are absorbed in the radiator itself. To
maximise the number of TR photons reaching the detector, part
of the radiator far from the active layers is often made of thicker
foils, which shifts the x-ray spectrum to higher energies. The
detector thickness, about 2-4 cm for Xe-filled gas chambers, is
optimized to absorb the incoming x-ray spectrum. A classical
detector is composed of several similar modules which respond
nearly independently. Such detectors were used in the UA2, NA34
and other experiments [112], and are being used in the ALICE
experiment [113], [114].

2. In other TRD concepts a fine granular radiator/detector structure
exploits the soft part of the TR spectrum more efficiently and
thereby may act also as an integral part of the tracking detector.
This can be achieved, for instance, by distributing small-diameter
straw-tube detectors uniformly or in thin layers throughout the
radiator material (foils or fibers). Even with a relatively thin
radiator stack, radiation below 5 keV is mostly lost in the radiators
themselves. However for photon energies above this value, the
absorption is reduced and the radiation can be registered by several
consecutive detector layers, thus creating a strong TR build-up
effect. This approach allows to realise TRD as an integral part of
the tracking detector. Descriptions of detectors using this approach
can be found in both accelerator and space experiments [113,114].
For example, in the ATLAS TR tracker (TRT), charged particles
cross about 35 effective straw tube layers embedded in the radiator
material [113]. The effective thickness of the Xe gas per straw is
about 2.2 mm and the average number of foils per straw is about
40 with an effective foil thickness of about 18 µm.

Both TR photon absorption and the TR build-up significantly affect
the detector performance. Although the values mentioned above are

* Photon absorption coefficients for the elements (via a NIST link),
and dE/dx|min and plasma energies for many materials are given in
pdg.lbl.gov/AtomicNuclearProperties.

typical for most of the plastic radiators used with Xe-based detectors,
they vary significantly depending on the detector parameters: radiator
material, thickness and spacing, the geometry and position of the
sensitive chambers, etc. Thus careful simulations are usually needed
to build a detector optimized for a particular application. For TRD
simulation stand-alone codes based on GEANT3 program were
usually used (P.Nevski in [113]) . TR simulation is now available in
GEANT4 [118]. The most recent version of it (starting from release
9.5) shows a reasonable agreement with data (S. Furletov in [114]
and [115]) .
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Figure 34.16: Pion efficiency measured (or predicted) for
different TRDs as a function of the detector length for a fixed
electron efficiency of 90%. The plot is taken from [112]. Results
from more recent detectors are added from [113] and [114].

The discrimination between electrons and pions can be based on
the charge deposition measured in each detection module, on the
number of clusters – energy depositions observed above an optimal
threshold (usually it is 5–7 keV ), or on more sophisticated methods
such as analyzing the pulse shape as a function of time. The total
energy measurement technique is more suitable for thick gas volumes,
which absorb most of the TR radiation and where the ionization
loss fluctuations are small. The cluster-counting method works
better for detectors with thin gas layers, where the fluctuations of the
ionization losses are big. Cluster-counting replaces the Landau-Vavilov
distribution of background ionization energy losses with the Poisson
statistics of δ-electrons, responsible for the distribution tails. The
latter distribution is narrower than the Landau-Vavilov distribution.
In practice, most of the experiments use a likelihood method, which
exploits detailed knowledge of the detector response for different
particles and gives the best separation. The more parameters that
are considered, the better separation power. The recent results of
the TRD in the AMS experiment is a good example. In the real
experiment the rejection power is better by almost one order of
magnitude than that obtained in the beam test if stringent criteria
for track selection are applied (see T. Kirn et al. in [114]) . Another
example is a neural network method used by the ALICE TRD (ALICE
point in Fig. 34.16) which gives another factor of 2–3 in rejecton power
with respect to the likelihood method [116]) .

The major factor in the performance of any TRD is its overall
length. This is illustrated in Fig. 34.16, which shows, for a variety of
detectors, the pion efficiency at a fixed electron efficiency of 90% as
a function of the overall detector length. TRD performance depends
on particle energy and in this figure the experimental data, covering a
range of particle energies from 1 GeV to 40 GeV, are rescaled to an
energy of 10 GeV when possible. Phenomenologically, the rejection
power against pions increases as 5 · 10L/38, where the range of validity
is L ≈ 20–100 cm. Apart from the beam energy variations, the
observed scattering of the points in the plot reflects how effectively
the detector space is used and how well the exact response to different
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particles is taken into account in the analysis. For instance, the
ATLAS TRT was built as a compromise between TR and tracking
requirements; that is why the test-beam prototype result (lower
point) is better than the real TRT performance at the LHC shown
in Fig. 34.16 for different regions in the detector (in agreement with
MC).

In most cases, recent TRDs combine particle identification with
charged-track measurement in the same detector [113,114,117]. This
is particularly important for collider experiments, where the available
space for the inner detector is very limited. For a modest increase
of the radiation length due to the radiator (∼4% X0), a significant
enhancement of the electron identification was obtained in the case
of the ATLAS TRT. The combination of the two detector functions
provides a powerful tool for electron identification even at very high
particle densities.

In addition to the enhancement of the electron identification, one
of the most important roles of the TRDs in the collider experiments
is their participation in different trigger and data analysis algorithms.
The ALICE experiment [114] is a good example of the use of the
TRD in a First Level Trigger. In the ATLAS experiment, the TRT
information is used in the High Level Trigger (HLT) algorithms.
With continuous increase of instantaneous luminosity, the electron
trigger output rate becomes so high, that a significant increase of the
calorimeter energy threshold is required to keep it at an acceptable
level. For luminosities above 2 · 1034cm−2s−1 at the LHC this will
affect the trigger efficiency of very important physics channels (e.g.
W → eν inclusive decay). Even a very soft TR cut at HLT level,
which preserves high electron efficiency (98%), allows to maintain
a high trigger efficiency and its purity for physics events with a
single electron in a final state. TRT also plays a crucial role in the
studies where an electron suppression is required (e.g. hadronic mode
of τ–decays). TR information is a completely independent tool for
electron identification and allows to study systematic uncertainties of
other electron reconstruction methods.

Electron identification is not the only TRD application. Recent
TRDs for particle astrophysics are designed to directly measure the
Lorentz factor of high-energy nuclei by using the quadratic dependence
of the TR yield on nuclear charge; see Cherry and Müller papers
in [113]. The radiator configuration (ℓ1, ℓ2) is tuned to extend the
TR yield rise up to γ <∼ 105 using the more energetic part of the TR
spectrum (up to 100 keV). Large density radiator materials (such as
Al) are the best for this purpose. Direct absorption of the TR-photons
of these energies with thin detectors becomes problematic and TR
detection methods based on Compton scattering have been proposed
to use (M. Cherry in [113], [114]) .

In all cases to-date, the radiator properties have been the main
limiting factor for the TRDs, and for future progress in this field, it
is highly important to develop effective and compact radiators. By
now, all traditional materials have been studied extensively, so new
technologies must be invented. The properties of all radiators are
defined by one basic parameter which is the plasma frequency of the
radiator material – ω1 ∼ 1/me (see Eq. (33.48)). In semiconductor
materials, a quantum mechanical treatment of the electron binding to
the lattice leads to a small effective electron mass and correspondingly
to large values of ω1. All semiconductor materials have large Z and
may not be good candidates as TR radiators, but new materials,
such as graphene, may offer similar features at much lower Z (M.
Cherry in [114]) . It might even be possible to produce graphene-based
radiators with the required ω1 value. One should take into account
that TR cutoff energy – Ec ∼ ω1γ and 95% of TR energy belongs
to an interval of 0.1Ec to Ec. For large ω1 the detector must have a
larger thickness to absorb x-rays in this range. It would be important
to control ω1 during radiator production and use it as a free parameter
in the detector optimization process.

Si-microstrip tracking detectors operating in a magnetic field can
also be used for TR detection, even though the dE/dx losses in Si
are much larger than the absorbed TR energy. The excellent spatial
resolution of the Si detectors provides separation of the TR photons
and dE/dx losses at relatively modest distances between radiator and
detector. Simulations made on the basis of the beam-test data results
has shown that in a magnetic field of 2 T and for the geometry of

the ATLAS Si-tracker proposed for sLHC, a rejection factor of > 30
can be obtained for an electron efficiency above 90% over a particle
momentum range 2-30 GeV/c (Brigida et al. in [113] and [114]) . New
detector techniques for TRDs are also under development and among
them one should mention GasPixel detectors which allow to obtain
a space point accuracy of < 30 µm and exploit all details of the
particle tracks to highlight individual TR clusters in the gas (F. Harjes
et al. in [114]) . Thin films of heavy scintillators (V.V Berdnikovet al.
in [114]) might be very attractive in a combination with new radiators
mentioned above.

34.6.7. Resistive-plate chambers : Written July 2015 by G.
Aielli (U. Roma Tor Vergata).

The resistive-plate chamber (RPC) is a gaseous detector developed
by R. Santonico and R. Cardarelli in the early 1980’s [119] *.
Although its first purpose was to provide a competitive alternative
to large scintillator counters, it was quickly recognized that it had
relevant potential as a timing tracker due to the high space-time
localization of the discharge. The RPC, as sketched in Fig. 34.17, is a
large planar capacitor with two parallel high bulk resistivity electrode
plates (109–1013 Ω·cm) separated by a set of insulating spacers. The
spacers define a gap in the range from a few millimeters down to
0.1 mm with a precision of a few ∼ µm. The gap is filled with a
suitable atmospheric-pressure gas mixture which serves as a target
for ionizing radiation. Primary ionization for sub-millimeter gas gaps
can be insufficient, thus multiple gaps can be combined to ensure an
acceptable detection efficiency [121].
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Figure 34.17: Schematic cross section of a generic single gap
RPC.

The electrodes are most commonly made of high pressure phenolic-
melaminic laminate (HPL), improperly referred to as ”bakelite”,
or glass. A moderate electrode resistivity (∼ 105 Ω/¤) establishes
a uniform electric field of several kV/mm across the gap, which
initiates an electron avalanche following primary ionization. The
above resistivity is low enough to ensure uniformity of the electric
field, yet still transparent to fast signal transients from avalanches.
This field configuration allows an excellent space-time localization
of the signal. Due to the high electrode resistivity in RPCs, the
electrode time constant is much longer than discharge processes.
Therefore only the locally-stored electrostatic energy contributes to
the discharge, which prevents the formation of sparks and leaves the
rest of the detector field unaffected. The gas-facing surface of HPL
electrodes are commonly coated with a resistive varnish (e.g. ∼ µm
layer of polymerized linseed oil) to achieve the necessary resistivity
as well as to protect the electrode from discharge damage. As with
other gaseous detectors, the gas mixture is optimized for each specific
application. In general it needs to contain a component to quench
UV photons, thus avoiding discharge propagation. An electronegative
component controls the avalanche growth in case of very high
electric fields [122,123]. To first order, each primary ionization in
an RPC is exponentially amplified according to its distance from the
anode. Therefore RPC signals span a large dynamic range, unlike
gaseous detectors where ionization and amplification occur in separate
regions (e.g. wire chambers or MPGDs). For increasingly stronger
fields, the avalanche exponential growth progressively saturates to
linear [124], and finally reaches a strongly-saturated ”streamer”
transition which exhausts all the locally-available energy [125]. The
signal induced by the fast movement of the avalanche electrons is

* The RPC was based on earlier work on a spark counter with one
metallic and one high-resistivity plate [120].
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isotropically distributed with respect to the field direction and present
with equal but opposite amplitude on the two electrodes. A set
of metallic readout electrodes (e.g. pads or strips) placed behind
the resistive electrodes detect the charge pulse. This feature allows
for 2D localization of the signal with uniform spatial resolution.
Sensitivity to high-frequency electron avalanche signals over large
RPC areas requires a correspondingly adequate Faraday cage and
readout structure design. In particular, the front end electronics must
be time-sensitive with a fast response and low noise, although these
requirements are usually in competition [126].

34.6.7.1. RPC types and applications: RPCs are generally classified
in two categories depending on the gas gap structure: single gap
RPCs (described above) and multiple gap RPCs (typically referred
as mRPCs or timing RPCs). While they are both based on the same
principle they have different construction techniques, performance and
limitations, making them suitable for different applications. Due to its
simplicity and robustness, the single gap RPC is ideal for covering very
large surfaces. Typical detector systems can have sensitive surface
areas up to ∼104 m2, with single module areas of a few m2, and a
space-time resolution down to ∼0.4 ns × 100 µm [127,128]. Typical
applications are in muon systems (e.g. the muon trigger systems of
the LHC experiments) or ground and underground based cosmic rays
and neutrino arrays [129]. Moreover, single gap RPCs have recently
found an application in tracking calorimetry [130]. The mRPC allows
for smaller gas gap thicknesses while still maintaining a sufficient
gaseous target. Th most common version [131] consists of a stack
of floating glass electrodes separated by monofilament (i.e. fishing)
line, sandwiched between two external electrodes which provide the
high-voltage bias. The floating glass electrodes assume a potential
determined by the avalanche processes occurring between them.
mRPCs have been largely used in TOF systems and in applications
such as timing PET.

34.6.7.2. Time and space resolution: The RPC field configuration
generates an avalanche which is strongly correlated in space and time
to the original ionizing event. Space-time uncertainties generally arise
from the statistical fluctuations of the ionization and multiplication
processes, and from the characteristics of the readout and front-end
electronics. The intrinsic signal latency is commonly in the ns range,
making the RPC suitable for applications where a low latency is
essential. A higher time resolution and shorter signal duration is
correlated with a thinner gas gap, although a higher electric field
is required for sufficient avalanche development [131,132]. Typical
timing performances are from around 1 ns with a 2 mm gas gap, down
to 20 ps for a stack of several 0.1 mm gaps [133]. The mechanical
delicacy of sub-mm gap structures currently limit this technique to
small detector areas. Digital strip readouts are commonly used, with
spatial resolution determined by the strip pitch and the cluster size
(∼0.5 cm). Recent developments toward higher spatial resolutions
are mostly based on charge centroid techniques, benefiting from
the availability of low-cost high-performance readout electronics.
The present state of the art detectors have a combined space-time
resolution of ∼50 ps × 40 µm [134].

34.6.7.3. Rate capability and ageing: RPC rate capability is limited
by the voltage drop on resistive electrodes, ∆V = Va−Vgas = I ·R [135].
Here Va is the applied voltage, Vgas is the effective voltage on the
gas, R = ρ · d/S is the total electrode resistance and I is the working
current. Expressing I as the particle flux Φ times an average charge
per avalanche 〈Q〉 gives ∆V/Φ = ρ · d · 〈Q〉. A large I not only
limits the rate capability but also affects the long term performance
of the detector. Discharges deplete the conductive properties of
HPL electrodes [136]. In the presence of fluorocarbons and water,
discharges generate hydrofluoric acid (HF) which damages internal
detector surfaces, particularly glass electrodes [137]. HF damage
can be mitigated by preventing water vapor contamination and by
sufficient flushing of the gas gap. Operating in the streamer regime
puts low requirements on the front end electronics sensitivity, but
generally limits the counting rate capability to ∼100 Hz/cm2 and
requires stability over a large gain range. Higher rate operation can
be achieved by reducing gas gain in favor of electronic amplification.
Increasing electronegative gases, such as C2H2F4 and SF6 [123], shifts

the streamer transition to higher gains. With these techniques, stable
performance at high rates (e.g. 10 kHz/cm2) has been achieved for
large area single gap RPCs [126]. Additional techniques rely on the
natural redundancy and small gain of multiple gap structures [138]
and electrodes made with lower resistivity materials [139].

34.7. Semiconductor detectors

Updated November 2013 by H. Spieler.

Semiconductor detectors provide a unique combination of energy
and position resolution. In collider detectors they are most widely
used as position sensing devices and photodetectors (Sec. 34.2).
Integrated circuit technology allows the formation of high-density
micron-scale electrodes on large (15–20 cm diameter) wafers, providing
excellent position resolution. Furthermore, the density of silicon and
its small ionization energy yield adequate signals with active layers
only 100–300 µm thick, so the signals are also fast (typically tens
of ns). The high energy resolution is a key parameter in x-ray,
gamma, and charged particle spectroscopy, e.g., in neutrinoless double
beta decay searches. Silicon and germanium are the most commonly
used materials, but gallium-arsenide, CdTe, CdZnTe, and other
materials are also useful. CdZnTe provides a higher stopping power
and the ratio of Cd to Zn concentrations changes the bandgap. Ge
detectors are commonly operated at liquid nitrogen temperature to
reduce the bias current, which depends exponentially on temperature.
Semiconductor detectors depend crucially on low-noise electronics (see
Sec. 34.8), so the detection sensitivity is determined by signal charge
and capacitance. For a comprehensive discussion of semiconductor
detectors and electronics see Ref. 140 or the tutorial website
http://www-physics.lbl.gov/ spieler.

34.7.1. Materials Requirements :

Semiconductor detectors are essentially solid state ionization
chambers. Absorbed energy forms electron-hole pairs, i.e., negative
and positive charge carriers, which under an applied electric field
move towards their respective collection electrodes, where they induce
a signal current. The energy required to form an electron-hole pair
is proportional to the bandgap. In tracking detectors the energy loss
in the detector should be minimal, whereas for energy spectroscopy
the stopping power should be maximized, so for gamma rays high-Z
materials are desirable.

Measurements on silicon photodiodes [141] show that for photon
energies below 4 eV one electron-hole (e-h) pair is formed per incident
photon. The mean energy Ei required to produce an e-h pair peaks at
4.4 eV for a photon energy around 6 eV. Above ∼1.5 keV it assumes
a constant value, 3.67 eV at room temperature. It is larger than the
bandgap energy because momentum conservation requires excitation
of lattice vibrations (phonons). For minimum-ionizing particles, the
most probable charge deposition in a 300 µm thick silicon detector is
about 3.5 fC (22000 electrons). Other typical ionization energies are
2.96 eV in Ge, 4.2 eV in GaAs, and 4.43 eV in CdTe.

Since both electronic and lattice excitations are involved, the
variance in the number of charge carriers N = E/Ei produced by
an absorbed energy E is reduced by the Fano factor F (about
0.1 in Si and Ge). Thus, σN =

√
FN and the energy resolution

σE/E =
√

FEi/E. However, the measured signal fluctuations are
usually dominated by electronic noise or energy loss fluctuations in
the detector. The electronic noise contributions depend on the pulse
shaping in the signal processing electronics, so the choice of the
shaping time is critical (see Sec. 34.8).

A smaller bandgap would produce a larger signal and improve
energy resolution, but the intrinsic resistance of the material is critical.
Thermal excitation, given by the Fermi-Dirac distribution, promotes
electrons into the conduction band, so the thermally excited carrier
concentration increases exponentially with decreasing bandgaps. In
pure Si the carrier concentration is ∼1010cm−3 at 300K, corresponding
to a resistivity ρ ≈ 400 kΩ cm. In reality, crystal imperfections and
minute impurity concentrations limit Si carrier concentrations to
∼ 1011 cm−3 at 300K, corresponding to a resistivity ρ ≈ 40 kΩ cm.
In practice, resistivities up to 20 kΩ cm are available, with mass
production ranging from 5 to 10 kΩ cm. Signal currents at keV scale
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energies are of order µA. However, for a resistivity of 104 Ωcm a
300 µm thick sensor with 1 cm2 area would have a resistance of
300 Ω , so 30 V would lead to a current flow of 100 mA and a power
dissipation of 3 W. On the other hand, high-quality single crystals
of Si and Ge can be grown economically with suitably large volumes,
so to mitigate the effect of resistivity one resorts to reverse-biased
diode structures. Although this reduces the bias current relative to a
resistive material, the thermally excited leakage current can still be
excessive at room temperature, so Ge diodes are typically operated at
liquid nitrogen temperature (77K).

A major effort is to find high-Z materials with a bandgap that
is sufficiently high to allow room-temperature operation while still
providing good energy resolution. Compound semiconductors, e.g.,
CdZnTe, can allow this, but typically suffer from charge collection
problems, characterized by the product µτ of mobility and carrier
lifetime. In Si and Ge µτ > 1 cm2 V−1 for both electrons and holes,
whereas in compound semiconductors it is in the range 10−3–10−8.
Since for holes µτ is typically an order of magnitude smaller than
for electrons, detector configurations where the electron contribution
to the charge signal dominates—e.g., strip or pixel structures—can
provide better performance.

34.7.2. Detector Configurations :

A p-n junction operated at reverse bias forms a sensitive region
depleted of mobile charge and sets up an electric field that sweeps
charge liberated by radiation to the electrodes. Detectors typically use
an asymmetric structure, e.g., a highly doped p electrode and a lightly
doped n region, so that the depletion region extends predominantly
into the lightly doped volume.

In a planar device the thickness of the depleted region is

W =
√

2ǫ (V + Vbi)/Ne =
√

2ρµǫ(V + Vbi) , (34.19)

where V = external bias voltage

Vbi = “built-in” voltage (≈ 0.5 V for resistivities typically used
in Si detectors)

N = doping concentration

e = electronic charge

ǫ = dielectric constant = 11.9 ǫ0 ≈ 1 pF/cm in Si

ρ = resistivity (typically 1–10 kΩ cm in Si)

µ = charge carrier mobility

= 1350 cm2 V−1 s−1 for electrons in Si

= 450 cm2 V−1 s−1 for holes in Si

In Si

W = 0.5 [µm/
√

Ω-cm · V] ×
√

ρ(V + Vbi) for n-type Si, and

W = 0.3 [µm/
√

Ω-cm · V] ×
√

ρ(V + Vbi) for p-type Si.

The conductive p and n regions together with the depleted volume
form a capacitor with the capacitance per unit area

C = ǫ/W ≈ 1 [pF/cm] /W in Si. (34.20)

In strip and pixel detectors the capacitance is dominated by the
fringing capacitance to neighboring electrodes. For example, the
strip-to-strip Si fringing capacitance is ∼ 1–1.5 pF cm−1 of strip
length at a strip pitch of 25–50 µm.

Large volume (∼ 102–103 cm3) Ge detectors are commonly
configured as coaxial detectors, e.g., a cylindrical n-type crystal with
5–10 cm diameter and 10 cm length with an inner 5–10mm diameter
n+ electrode and an outer p+ layer forming the diode junction. Ge
can be grown with very low impurity levels, 109–1010 cm−3 (HPGe),
so these large volumes can be depleted with several kV.

34.7.3. Signal Formation :

The signal pulse shape depends on the instantaneous carrier
velocity v(x) = µE(x) and the electrode geometry, which determines
the distribution of induced charge (e.g., see Ref. 140, pp. 71–83).
Charge collection time decreases with increasing bias voltage, and can
be reduced further by operating the detector with “overbias,” i.e., a
bias voltage exceeding the value required to fully deplete the device.
Note that in partial depletion the electric field goes to zero, whereas
going beyond full depletion adds a constantly distributed field. The
collection time is limited by velocity saturation at high fields (in
Si approaching 107 cm/s at E > 104 V/cm); at an average field of
104 V/cm the collection time is about 15 ps/µm for electrons and
30 ps/µm for holes. In typical fully-depleted detectors 300 µm thick,
electrons are collected within about 10 ns, and holes within about
25 ns.

Position resolution is limited by transverse diffusion during charge
collection (typically 5 µm for 300 µm thickness) and by knock-on
electrons. Resolutions of 2–4 µm (rms) have been obtained in beam
tests. In magnetic fields, the Lorentz drift deflects the electron and
hole trajectories and the detector must be tilted to reduce spatial
spreading (see “Hall effect” in semiconductor textbooks).

Electrodes can be in the form of cm-scale pads, strips, or µm-scale
pixels. Various readout structures have been developed for pixels, e.g.,
CCDs, DEPFETs, monolithic pixel devices that integrate sensor and
electronics (MAPS), and hybrid pixel devices that utilize separate
sensors and readout ICs connected by two-dimensional arrays of solder
bumps. For an overview and further discussion see Ref. 140.

In gamma ray spectroscopy (Eγ >102 keV) Compton scattering
dominates, so for a significant fraction of events the incident gamma
energy is not completely absorbed, i.e., the Compton scattered
photon escapes from the detector and the energy deposited by the
Compton electron is only a fraction of the total. Distinguishing
multi-interaction events, e.g., multiple Compton scatters with a
final photoelectric absorption, from single Compton scatters allows
background suppression. Since the individual interactions take place
in different parts of the detector volume, these events can be
distinguished by segmenting the outer electrode of a coaxial detector
and analyzing the current pulse shapes. The different collection times
can be made more distinguishable by using “point” electrodes, where
most of the signal is induced when charges are close to the electrode,
similarly to strip or pixel detectors. Charge clusters arriving from
different positions in the detector will arrive at different times and
produce current pulses whose major components are separated in time.
Point electrodes also reduce the electrode capacitance, which reduces
electronic noise, but careful design is necessary to avoid low-field
regions in the detector volume.

34.7.4. Radiation Damage : Radiation damage occurs through
two basic mechanisms:

1. Bulk damage due to displacement of atoms from their lattice
sites. This leads to increased leakage current, carrier trapping,
and build-up of space charge that changes the required operating
voltage. Displacement damage depends on the nonionizing energy
loss and the energy imparted to the recoil atoms, which can
initiate a chain of subsequent displacements, i.e., damage clusters.
Hence, it is critical to consider both particle type and energy.

2. Surface damage due to charge build-up in surface layers, which
leads to increased surface leakage currents. In strip detectors the
inter-strip isolation is affected. The effects of charge build-up are
strongly dependent on the device structure and on fabrication
details. Since the damage is proportional to the absorbed energy
(when ionization dominates), the dose can be specified in rad (or
Gray) independent of particle type.

The increase in reverse bias current due to bulk damage is
∆Ir = αΦ per unit volume, where Φ is the particle fluence and α the
damage coefficient (α ≈ 3×10−17 A/cm for minimum ionizing protons
and pions after long-term annealing; α ≈ 2 × 10−17 A/cm for 1 MeV
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neutrons). The reverse bias current depends strongly on temperature

IR(T2)

IR(T1)
=

(

T2

T1

)2

exp

[

− E

2k

(

T1 − T2

T1T2

)]

, (34.21)

where E = 1.2 eV, so rather modest cooling can reduce the current
substantially (∼ 6-fold current reduction in cooling from room
temperature to 0◦C).

Displacement damage forms acceptor-like states. These trap
electrons, building up a negative space charge, which in turn requires
an increase in the applied voltage to sweep signal charge through the
detector thickness. This has the same effect as a change in resistivity,
i.e., the required voltage drops initially with fluence, until the positive
and negative space charge balance and very little voltage is required to
collect all signal charge. At larger fluences the negative space charge
dominates, and the required operating voltage increases (V ∝ N).
The safe limit on operating voltage ultimately limits the detector
lifetime. Strip detectors specifically designed for high voltages have
been extensively operated at bias voltages >500V. Since the effect
of radiation damage depends on the electronic activity of defects,
various techniques have been applied to neutralize the damage sites.
For example, additional doping with oxygen can increase the allowable
charged hadron fluence roughly three-fold [142]. Detectors with
columnar electrodes normal to the surface can also extend operational
lifetime [143]. The increase in leakage current with fluence, on the
other hand, appears to be unaffected by resistivity and whether the
material is n or p-type. At fluences beyond 1015 cm−2 decreased
carrier lifetime becomes critical [144,145].

Strip and pixel detectors have remained functional at fluences
beyond 1015 cm−2 for minimum ionizing protons. At this damage
level, charge loss due to recombination and trapping becomes
significant and the high signal-to-noise ratio obtainable with low-
capacitance pixel structures extends detector lifetime. The higher
mobility of electrons makes them less sensitive to carrier lifetime
than holes, so detector configurations that emphasize the electron
contribution to the charge signal are advantageous, e.g., n+ strips
or pixels on a p- or n-substrate. The occupancy of the defect charge
states is strongly temperature dependent; competing processes can
increase or decrease the required operating voltage. It is critical to
choose the operating temperature judiciously (−10 to 0◦C in typical
collider detectors) and limit warm-up periods during maintenance.
For a more detailed summary see Ref. 146 and and the web-sites of the
ROSE and RD50 collaborations at http://RD48.web.cern.ch/rd48

and http://RD50.web.cern.ch/rd50. Materials engineering, e.g.,
introducing oxygen interstitials, can improve certain aspects and is
under investigation. At high fluences diamond is an alternative, but
operates as an insulator rather than a reverse-biased diode.

Currently, the lifetime of detector systems is still limited by
the detectors; in the electronics use of standard “deep submicron”
CMOS fabrication processes with appropriately designed circuitry has
increased the radiation resistance to fluences > 1015 cm−2 of minimum
ionizing protons or pions. For a comprehensive discussion of radiation
effects see Ref. 147.

34.8. Low-noise electronics

Revised November 2013 by H. Spieler.

Many detectors rely critically on low-noise electronics, either to
improve energy resolution or to allow a low detection threshold. A
typical detector front-end is shown in Fig. 34.18.

The detector is represented by a capacitance Cd, a relevant model
for most detectors. Bias voltage is applied through resistor Rb and the
signal is coupled to the preamplifier through a blocking capacitor Cc.
The series resistance Rs represents the sum of all resistances present
in the input signal path, e.g. the electrode resistance, any input
protection networks, and parasitic resistances in the input transistor.
The preamplifier provides gain and feeds a pulse shaper, which tailors
the overall frequency response to optimize signal-to-noise ratio while
limiting the duration of the signal pulse to accommodate the signal
pulse rate. Even if not explicitly stated, all amplifiers provide some
form of pulse shaping due to their limited frequency response.

OUTPUT
DETECTOR

BIAS
RESISTOR

Rb

Cc Rs

Cb

Cd

DETECTOR BIAS

PULSE SHAPERPREAMPLIFIER

Figure 34.18: Typical detector front-end circuit.

The equivalent circuit for the noise analysis (Fig. 34.19) includes
both current and voltage noise sources. The leakage current of a
semiconductor detector, for example, fluctuates due to continuous
electron emission statistics. The statistical fluctuations in the charge
measurement will scale with the square root of the total number of
recorded charges, so this noise contribution increases with the width
of the shaped output pulse. This “shot noise” ind is represented by a
current noise generator in parallel with the detector. Resistors exhibit
noise due to thermal velocity fluctuations of the charge carriers. This
yields a constant noise power density vs. frequency, so increasing the
bandwidth of the shaped output pulse, i.e. reducing the shaping time,
will increase the noise. This noise source can be modeled either as a
voltage or current generator. Generally, resistors shunting the input
act as noise current sources and resistors in series with the input act
as noise voltage sources (which is why some in the detector community
refer to current and voltage noise as “parallel” and “series” noise).
Since the bias resistor effectively shunts the input, as the capacitor Cb
passes current fluctuations to ground, it acts as a current generator
inb and its noise current has the same effect as the shot noise current
from the detector. Any other shunt resistances can be incorporated
in the same way. Conversely, the series resistor Rs acts as a voltage
generator. The electronic noise of the amplifier is described fully by a
combination of voltage and current sources at its input, shown as ena

and ina.
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Figure 34.19: Equivalent circuit for noise analysis.

Shot noise and thermal noise have a “white” frequency distribution,
i.e. the spectral power densities dPn/df ∝ di2n/df ∝ de2

n/df are
constant with the magnitudes

i2nd = 2eId ,

i2nb =
4kT

Rb
,

e2
ns = 4kTRs , (34.22)

where e is the electronic charge, Id the detector bias current, k the
Boltzmann constant and T the temperature. Typical amplifier noise
parameters ena and ina are of order nV/

√
Hz and pA/

√
Hz. Trapping

and detrapping processes in resistors, dielectrics and semiconductors
can introduce additional fluctuations whose noise power frequently
exhibits a 1/f spectrum. The spectral density of the 1/f noise voltage
is

e2
nf =

Af

f
, (34.23)

where the noise coefficient Af is device specific and of order

10−10–10−12 V2.
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A fraction of the noise current flows through the detector
capacitance, resulting in a frequency-dependent noise voltage
in/(ωCd), which is added to the noise voltage in the input circuit.
Thus, the current noise contribution increases with lowering frequency,
so its contribution increases with shaping pulse width. Since the
individual noise contributions are random and uncorrelated, they
add in quadrature. The total noise at the output of the pulse
shaper is obtained by integrating over the full bandwidth of
the system. Superimposed on repetitive detector signal pulses of
constant magnitude, purely random noise produces a Gaussian signal
distribution.

Since radiation detectors typically convert the deposited energy
into charge, the system’s noise level is conveniently expressed as an
equivalent noise charge Qn, which is equal to the detector signal
that yields a signal-to-noise ratio of one. The equivalent noise charge
is commonly expressed in Coulombs, the corresponding number of
electrons, or the equivalent deposited energy (eV). For a capacitive
sensor

Q2
n = i2nFiTS + e2

nFv
C2

TS
+ Fvf AfC2 , (34.24)

where C is the sum of all capacitances shunting the input, Fi, Fv,
and Fvf depend on the shape of the pulse determined by the shaper
and Ts is a characteristic time, for example, the peaking time of a
semi-gaussian pulse or the sampling interval in a correlated double
sampler. The form factors Fi, Fv are easily calculated

Fi =
1

2TS

∫ ∞

−∞
[W (t)]2 dt , Fv =

TS

2

∫ ∞

−∞

[

dW (t)

dt

]2

dt , (34.25)

where for time-invariant pulse-shaping W (t) is simply the system’s
impulse response (the output signal seen on an oscilloscope) for a
short input pulse with the peak output signal normalized to unity.
For more details see Refs. 148 and 149.

A pulse shaper formed by a single differentiator and integrator with
equal time constants has Fi = Fv = 0.9 and Fvf = 4, independent
of the shaping time constant. The overall noise bandwidth, however,
depends on the time constant, i.e. the characteristic time Ts. The
contribution from noise currents increases with shaping time, i.e., pulse
duration, whereas the voltage noise decreases with increasing shaping
time, i.e. reduced bandwidth. Noise with a 1/f spectrum depends
only on the ratio of upper to lower cutoff frequencies (integrator
to differentiator time constants), so for a given shaper topology
the 1/f contribution to Qn is independent of Ts. Furthermore, the
contribution of noise voltage sources to Qn increases with detector
capacitance. Pulse shapers can be designed to reduce the effect
of current noise, e.g., mitigate radiation damage. Increasing pulse
symmetry tends to decrease Fi and increase Fv (e.g., to 0.45 and 1.0
for a shaper with one CR differentiator and four cascaded integrators).
For the circuit shown in Fig. 34.19,

Q2
n =

(

2eId + 4kT/Rb + i2na

)

FiTS

+
(

4kTRs + e2
na

)

FvC2
d/TS + FvfAfC2

d .
(34.26)

As the characteristic time TS is changed, the total noise goes
through a minimum, where the current and voltage contributions are
equal. Fig. 34.20 shows a typical example. At short shaping times the
voltage noise dominates, whereas at long shaping times the current
noise takes over. The noise minimum is flattened by the presence
of 1/f noise. Increasing the detector capacitance will increase the
voltage noise and shift the noise minimum to longer shaping times.

For quick estimates, one can use the following equation, which
assumes an FET amplifier (negligible ina) and a simple CR–RC
shaper with time constants τ (equal to the peaking time):

(Qn/e)2 = 12

[

1

nA · ns

]

Idτ + 6 × 105
[

kΩ

ns

]

τ

Rb

+ 3.6 × 104

[

ns

(pF)2(nV)2/Hz

]

e2
n

C2

τ
.

(34.27)
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Figure 34.20: Equivalent noise charge vs shaping time.
Changing the voltage or current noise contribution shifts the
noise minimum. Increased voltage noise is shown as an example.

Noise is improved by reducing the detector capacitance and
leakage current, judiciously selecting all resistances in the input
circuit, and choosing the optimum shaping time constant. Another
noise contribution to consider is that noise cross-couples from the
neighboring front-ends in strip and pixel detectors through the
inter-electrode capacitance.

The noise parameters of the amplifier depend primarily on the
input device. In field effect transistors, the noise current contribution
is very small, so reducing the detector leakage current and increasing
the bias resistance will allow long shaping times with correspondingly
lower noise. In bipolar transistors, the base current sets a lower bound
on the noise current, so these devices are best at short shaping times.
In special cases where the noise of a transistor scales with geometry,
i.e., decreasing noise voltage with increasing input capacitance, the
lowest noise is obtained when the input capacitance of the transistor
is equal to the detector capacitance, albeit at the expense of power
dissipation. Capacitive matching is useful with field-effect transistors,
but not bipolar transistors. In bipolar transistors, the minimum
obtainable noise is independent of shaping time, but only at the
optimum collector current IC , which does depend on shaping time.

Q2
n,min = 4kT

C√
βDC

√

FiFv at Ic =
kT

e
C

√

βDC

√

Fv

Fi

1

TS
, (34.28)

where βDC is the DC current gain. For a CR–RC shaper and
βDC = 100,

Qn,min/e ≈ 250
√

C/pF . (34.29)

Practical noise levels range from ∼ 1e for CCD’s at long shaping
times to ∼ 104 e in high-capacitance liquid argon calorimeters. Silicon
strip detectors typically operate at ∼ 103 electrons, whereas pixel
detectors with fast readout provide noise of several hundred electrons.

In timing measurements, the slope-to-noise ratio must be optimized,
rather than the signal-to-noise ratio alone, so the rise time tr of the
pulse is important. The “jitter” σt of the timing distribution is

σt =
σn

(dS/dt)ST

≈ tr
S/N

, (34.30)

where σn is the rms noise and the derivative of the signal dS/dt is
evaluated at the trigger level ST . To increase dS/dt without incurring
excessive noise, the amplifier bandwidth should match the rise-time
of the detector signal. The 10 to 90% rise time of an amplifier with
bandwidth fU is 0.35/fU . For example, an oscilloscope with 350 MHz
bandwidth has a 1 ns rise time. When amplifiers are cascaded, which
is invariably necessary, the individual rise times add in quadrature.

tr ≈
√

t2r1 + t2r2 + ... + t2rn . (34.31)
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Increasing signal-to-noise ratio also improves time resolution, so
minimizing the total capacitance at the input is also important.
At high signal-to-noise ratios, the time jitter can be much smaller
than the rise time. The timing distribution may shift with signal
level (“walk”), but this can be corrected by various means, either in
hardware or software [8].

The basic principles discussed above apply to both analog and
digital signal processing. In digital signal processing the pulse shaper
shown in Fig. 34.18 is replaced by an analog to digital converter
(ADC) followed by a digital processor that determines the pulse shape.
Digital signal processing allows great flexibility in implementing
filtering functions. The software can be changed readily to adapt to a
wide variety of operating conditions and it is possible to implement
filters that are impractical or even impossible using analog circuitry.
However, this comes at the expense of increased circuit complexity
and increased demands on the ADC compared to analog shaping.

If the sampling rate of the ADC is too low, high frequency
components will be transferred to lower frequencies (“aliasing”).
The sampling rate of the ADC must be high enough to capture
the maximum frequency component of the input signal. Apart
from missing information on the fast components of the pulse,
undersampling introduces spurious artifacts. If the frequency range of
the input signal is much greater, the noise at the higher frequencies
will be transferred to lower frequencies and increase the noise level in
the frequency range of pulses formed in the subsequent digital shaper.
The Nyquist criterion states that the sampling frequency must be at
least twice the maximum relevant input frequency. This requires that
the bandwith of the circuitry preceding the ADC must be limited.
The most reliable technique is to insert a low-pass filter.

The digitization process also introduces inherent noise, since
the voltage range ∆V corresponding to a minimum bit introduces
quasi-random fluctuations relative to the exact amplitude

σn =
∆V√

12
. (34.32)

When the Nyquist condition is fulfilled the noise bandwidth ∆fn is
spread nearly uniformly and extends to 1/2 the sampling frequency
fS , so the spectral noise density

en =
σn√
∆fn

=
∆V√

12
· 1
√

fS/2
=

∆V√
6fS

. (34.33)

Sampling at a higher frequency spreads the total noise over a
larger frequency range, so oversampling can be used to increase the
effective resolution. In practice, this quantization noise is increased
by differential nonlinearity. Furthermore, the equivalent input noise of
ADCs is often rather high, so the overall gain of the stages preceding
the ADC must be sufficiently large for the preamplifier input noise to
override.

When implemented properly, digital signal processing provides
significant advantages in systems where the shape of detector signal
pulses changes greatly, for example in large semiconductor detectors
for gamma rays or in gaseous detectors (e.g. TPCs) where the
duration of the current pulse varies with drift time, which can range
over orders of magnitude. Where is analog signal processing best
(most efficient)? In systems that require fast time response the high
power requirements of high-speed ADCs are prohibitive. Systems that
are not sensitive to pulse shape can use fixed shaper constants and
rather simple filters, which can be either continuous or sampled. In
high density systems that require small circuit area and low power
(e.g. strip and pixel detectors), analog filtering often yields the
required response and tends to be most efficient.

It is important to consider that additional noise is often introduced
by external electronics, e.g. power supplies and digital systems.
External noise can couple to the input. Often the “common
grounding” allows additional noise current to couple to the current
loop connecting the detector to the preamp. Recognizing additional
noise sources and minimizing cross-coupling to the detector current
loop is often important. Understanding basic physics and its practical
effects is important in forming a broad view of the detector system

and recognizing potential problems (e.g. modified data), rather than
merely following standard recipes.

For a more detailed introduction to detector signal processing
and electronics see Ref. 140 or the tutorial website http://www-

physics.lbl.gov/ spieler.

34.9. Calorimeters

A calorimeter is designed to measure a particle’s (or jet’s) energy
and direction for an (ideally) contained electromagnetic (EM) or
hadronic shower. The characteristic interaction distance for an
electromagnetic interaction is the radiation length X0, which ranges
from 13.8 g cm−2 in iron to 6.0 g cm−2 in uranium.* Similarly, the
characteristic nuclear interaction length λI varies from 132.1 g cm−2

(Fe) to 209 g cm−2 (U).† In either case, a calorimeter must be many
interaction lengths deep, where “many” is determined by physical size,
cost, and other factors. EM calorimeters tend to be 15–30 X0 deep,
while hadronic calorimeters are usually compromised at 5–8 λI . In
real experiments there is likely to be an EM calorimeter in front of the
hadronic section, which in turn has less sampling density in the back,
so the hadronic cascade occurs in a succession of different structures.
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Figure 34.21: Nuclear interaction length λI/ρ (circles) and
radiation length X0/ρ (+’s) in cm for the chemical elements
with Z > 20 and λI < 50 cm.

In all cases there is a premium on small λI/ρ and X0/ρ (both
with units of length). These quantities are shown for Z > 20 for
the chemical elements in Fig. 34.21. For the hadronic case, metallic
absorbers in the W–Au region are best, followed by U. The Ru–Pd
region elements are rare and expensive. Lead is a bad choice. Given
cost considerations, Fe and Cu might be appropriate choices. For EM
calorimeters high Z is preferred, and lead is not a bad choice.

These considerations are for sampling calorimeters consisting of
metallic absorber sandwiched or (threaded) with an active material
which generates signal. The active medium may be a scintillator, an
ionizing noble liquid, a gas chamber, a semiconductor, or a Cherenkov
radiator. The average interaction length is thus greater than that of
the absorber alone, sometimes substantially so.

There are also homogeneous calorimeters, in which the entire
volume is sensitive, i.e., contributes signal. Homogeneous calorimeters
(so far usually electromagnetic) may be built with inorganic heavy
(high density, high 〈Z〉) scintillating crystals, or non-scintillating
Cherenkov radiators such as lead glass and lead fluoride. Scintillation
light and/or ionization in noble liquids can be detected. Nuclear
interaction lengths in inorganic crystals range from 17.8 cm (LuAlO3)
to 42.2 cm (NaI). Popular choices have been BGO with λI = 22.3 cm
and X0 = 1.12 cm, and PbWO4 (20.3 cm and 0.89 cm). Properties of
these and other commonly used inorganic crystal scintillators can be
found in Table 34.4.

* X0 = 120 g cm−2 Z−2/3 to better than 5% for Z > 23.
† λI = 37.8 g cm−2 A0.312 to within 0.8% for Z > 15.

See pdg.lbl.gov/AtomicNuclearProperties for actual values.
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34.9.1. Electromagnetic calorimeters :

Revised September 2015 by R.-Y. Zhu (California Institute of
Technology).

The development of electromagnetic showers is discussed in the
section on “Passage of Particles Through Matter” (Sec. 33 of this
Review). Formulae are given which approximately describe average
showers, but since the physics of electromagnetic showers is well
understood, detailed and reliable Monte Carlo simulation is possible.
EGS4 [150] and GEANT [151] have emerged as the standards.

There are homogeneous and sampling electromagnetic calorimeters.
In a homogeneous calorimeter the entire volume is sensitive, i.e.,
contributes signal. Homogeneous electromagnetic calorimeters may
be built with inorganic heavy (high-Z) scintillating crystals such as
BaF2, BGO, CsI, LYSO, NaI and PWO, non-scintillating Cherenkov
radiators such as lead glass and lead fluoride (PbF2), or ionizing noble
liquids. Properties of commonly used inorganic crystal scintillators
can be found in Table 34.4. A sampling calorimeter consists of an
active medium which generates signal and a passive medium which
functions as an absorber. The active medium may be a scintillator, an
ionizing noble liquid, a semiconductor, or a gas chamber. The passive
medium is usually a material of high density, such as lead, tungsten,
iron, copper, or depleted uranium.

The energy resolution σE/E of a calorimeter can be parameterized
as a/

√
E⊕b⊕c/E, where ⊕ represents addition in quadrature and E is

in GeV. The stochastic term a represents statistics-related fluctuations
such as intrinsic shower fluctuations, photoelectron statistics, dead
material at the front of the calorimeter, and sampling fluctuations.
For a fixed number of radiation lengths, the stochastic term a for a
sampling calorimeter is expected to be proportional to

√

t/f , where t
is plate thickness and f is sampling fraction [152,153]. While a is at
a few percent level for a homogeneous calorimeter, it is typically 10%
for sampling calorimeters.

The main contributions to the systematic, or constant, term b
are detector non-uniformity and calibration uncertainty. In the case
of the hadronic cascades discussed below, non-compensation also
contributes to the constant term. One additional contribution to
the constant term for calorimeters built for modern high-energy
physics experiments, operated in a high-beam intensity environment,
is radiation damage of the active medium. This can be mitigated
by developing radiation-hard active media [51], by reducing the
signal path length [52] and by frequent in situ calibration and
monitoring [50,153]. With effort, the constant term b can be reduced
to below one percent. The term c is due to electronic noise summed
over readout channels within a few Molière radii. The best energy
resolution for electromagnetic shower measurement is obtained in total
absorption homogeneous calorimeters, e.g. calorimeters built with
heavy crystal scintillators. These are used when ultimate performance
is pursued.

The position resolution depends on the effective Molière radius
and the transverse granularity of the calorimeter. Like the energy
resolution, it can be factored as a/

√
E ⊕ b, where a is a few to 20 mm

and b can be as small as a fraction of mm for a dense calorimeter
with fine granularity. Electromagnetic calorimeters may also provide
direction measurement for electrons and photons. This is important
for photon-related physics when there are uncertainties in event origin,
since photons do not leave information in the particle tracking system.
Typical photon angular resolution is about 45 mrad/

√
E, which can

be provided by implementing longitudinal segmentation [154] for a
sampling calorimeter or by adding a preshower detector [155] for a
homogeneous calorimeter without longitudinal segmentation.

Novel technologies have been developed for electromagnetic
calorimetry. New heavy crystal scintillators, such as PWO and
LYSO:Ce (see Sec. 34.4), have attracted much attention. In some
cases, such as PWO, it has received broad applications in high-energy
and nuclear physics experiments. The “spaghetti” structure has been
developed for sampling calorimetry with scintillating fibers as the
sensitive medium. The “shashlik” structure has been developed for
sampling calorimetry with wavelength shifting fibers functioning as
both the converter and transporter for light generated in the sensitive
medium. The “accordion” structure has been developed for sampling

calorimetry with ionizing noble liquid as the sensitive medium.

Table 34.8 provides a brief description of typical electromagnetic
calorimeters built recently for high-energy physics experiments. Also
listed in this table are calorimeter depths in radiation lengths (X0) and
the achieved energy resolution. Whenever possible, the performance of
calorimeters in situ is quoted, which is usually in good agreement with
prototype test beam results as well as EGS or GEANT simulations,
provided that all systematic effects are properly included. Detailed
references on detector design and performance can be found in
Appendix C of reference [153] and Proceedings of the International
Conference series on Calorimetry in High Energy Physics.

Table 34.8: Resolution of typical electromagnetic calorimeters.
E is in GeV.

Technology (Experiment) Depth Energy resolution Date

NaI(Tl) (Crystal Ball) 20X0 2.7%/E1/4 1983

Bi4Ge3O12 (BGO) (L3) 22X0 2%/
√

E ⊕ 0.7% 1993

CsI (KTeV) 27X0 2%/
√

E ⊕ 0.45% 1996

CsI(Tl) (BaBar) 16–18X0 2.3%/E1/4 ⊕ 1.4% 1999

CsI(Tl) (BELLE) 16X0 1.7% for Eγ > 3.5 GeV 1998

PbWO4 (PWO) (CMS) 25X0 3%/
√

E ⊕ 0.5% ⊕ 0.2/E 1997

Lead glass (OPAL) 20.5X0 5%/
√

E 1990

Liquid Kr (NA48) 27X0 3.2%/
√

E⊕ 0.42% ⊕ 0.09/E 1998

Scintillator/depleted U 20–30X0 18%/
√

E 1988

(ZEUS)

Scintillator/Pb (CDF) 18X0 13.5%/
√

E 1988

Scintillator fiber/Pb 15X0 5.7%/
√

E ⊕ 0.6% 1995

spaghetti (KLOE)

Liquid Ar/Pb (NA31) 27X0 7.5%/
√

E ⊕ 0.5%⊕ 0.1/E 1988

Liquid Ar/Pb (SLD) 21X0 8%/
√

E 1993

Liquid Ar/Pb (H1) 20–30X0 12%/
√

E ⊕ 1% 1998

Liquid Ar/depl. U (DØ) 20.5X0 16%/
√

E ⊕ 0.3% ⊕ 0.3/E 1993

Liquid Ar/Pb accordion 25X0 10%/
√

E ⊕ 0.4% ⊕ 0.3/E 1996

(ATLAS)

34.9.2. Hadronic calorimeters : [1–5,153]

Revised September 2013 by D. E. Groom (LBNL).

Hadronic calorimetry is considerably more difficult than EM
calorimetry. For the same cascade containment fraction discussed in
the previous section, the calorimeter would need to be ∼30 times
deeper. Electromagnetic energy deposit from the decay of a small
number of π0’s are usually detected with greater efficiency than
are the hadronic parts of the cascade, themselves subject to large
fluctuations in neutron production, undetectable energy loss to nuclear
disassociation, and other effects.

Most large hadron calorimeters are parts of large 4π detectors at
colliding beam facilities. At present these are sampling calorimeters:
plates of absorber (Fe, Pb, Cu, or occasionally U or W) alternating
with plastic scintillators (plates, tiles, bars), liquid argon (LAr), or
gaseous detectors. The ionization is measured directly, as in LAr
calorimeters, or via scintillation light observed by photodetectors
(usually PMT’s or silicon photodiodes). Wavelength-shifting fibers are
often used to solve difficult problems of geometry and light collection
uniformity. Silicon sensors are being studied for ILC detectors; in
this case e-h pairs are collected. There are as many variants of these
schemes as there are calorimeters, including variations in geometry
of the absorber and sensors, e.g., scintillating fibers threading an
absorber [156], and the “accordion” LAr detector [157]. The
latter has zig-zag absorber plates to minimize channeling effects; the
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calorimeter is hermitic (no cracks), and plates are oriented so that
cascades cross the same plate repeatedly. Another departure from
the traditional sandwich structure is the LAr-tube design shown in
Fig. 34.22(a) [158].

(a) (b)

W (Cu) absorber

LAr filled
tubes

Hadrons 
z

rφ

scintillator
tile

waveshifter 
fiber

PMT

Hadrons 

Figure 34.22: (a) ATLAS forward hadronic calorimeter struc-
ture (FCal2, 3) [158]. Tubes containing LAr are embedded in a
mainly tungsten matrix. (b) ATLAS central calorimeter wedge;
iron with plastic scintillator tile with wavelength-shifting fiber
readout [159].

A relatively new variant in hadron calorimetry is the detection
of Cerenkov light. Such a calorimeter is sensitive to relativistic e±’s
in the EM showers plus a few relativistic pions. An example is the
radiation-hard forward calorimeter in CMS, with iron absorber and
quartz fiber readout by PMT’s [160].

Ideally the calorimeter is segmented in φ and θ (or η =
− ln tan(θ/2)). Fine segmentation, while desirable, is limited by cost,
readout complexity, practical geometry, and the transverse size of
the cascades—but see Ref. 161. An example, a wedge of the ATLAS
central barrel calorimeter, is shown in Fig. 34.22(b) [159].

Much of the following discussion assumes an idealized calorimeter,
with the same structure throughout and without leakage. “Real”
calorimeters usually have an EM detector in front and a coarse
“catcher” in the back. Complete containment is generally impractical.

In an inelastic hadronic collision a significant fraction fem of the
energy is removed from further hadronic interaction by the production
of secondary π0’s and η’s, whose decay photons generate high-energy
electromagnetic (EM) showers. Charged secondaries (π±, p, . . . )
deposit energy via ionization and excitation, but also interact with
nuclei, producing spallation protons and neutrons, evaporation
neutrons, and spallation products. The charged collision products
produce detectable ionization, as do the showering γ-rays from the
prompt de-excitation of highly excited nuclei. The recoiling nuclei
generate little or no detectable signal. The neutrons lose kinetic
energy in elastic collisions, thermalize on a time scale of several µs,
and are captured, with the production of more γ-rays—usually outside
the acceptance gate of the electronics. Between endothermic spallation
losses, nuclear recoils, and late neutron capture, a significant fraction
of the hadronic energy (20%–40%, depending on the absorber and
energy of the incident particle) is used to overcome nuclear binding
energies and is therefore lost or “invisible.”

In contrast to EM showers, hadronic cascade processes are
characterized by the production of relatively few high-energy particles.
The lost energy and fem are highly variable from event to event. Until
there is event-by-event knowledge of both the EM fraction and the
invisible energy loss, the energy resolution of a hadron calorimeter will
remain significantly worse than that of its EM counterpart.

The efficiency e with which EM deposit is detected varies from
event to event, but because of the large multiplicity in EM showers
the variation is small. In contrast, because a variable fraction of
the hadronic energy deposit is detectable, the efficiency h with
which hadronic energy is detected is subject to considerably larger
fluctuations. It thus makes sense to consider the ratio h/e as a
stochastic variable.

Most energy deposit is by very low-energy electrons and charged
hadrons. Because so many generations are involved in a high-energy
cascade, the hadron spectra in a given material are essentially
independent of energy except for overall normalization [163]. For this
reason 〈h/e〉 is a robust concept, independently of hadron energy and
species.

If the detection efficiency for the EM sector is e and that for the
hadronic sector is h, then the ratio of the mean response to a pion
relative to that for an electron is

〈π/e〉 = 〈fem〉 + 〈fh〉〈h/e〉∗ = 1 − (1 − 〈h/e〉)〈fh〉 (34.34)

It has been shown by a simple induction argument and verified by
experiment, that the decrease in the average value of the hadronic
energy fraction 〈fh〉 = 1 − 〈fem〉 as the projectile energy E increases
is fairly well described by the power law [162,163]

〈fh〉 ≈ (E/E0)
m−1 (for E > E0) , (34.35)

at least up to a few hundred GeV. The exponent m depends
logarithmically on the mean multiplicity and the mean fractional loss
to π0 production in a single interaction. It is in the range 0.80–0.87.
E0, roughly the energy for the onset of inelastic collisions, is 1 GeV or
a little less for incident pions [162]. Both m and E0 must be obtained
experimentally for a given calorimeter configuration.

Only the product (1 − 〈h/e〉)E1−m
0 can be obtained by measuring

〈π/e〉 as a function of energy. Since 1 − m is small and E0 ≈ 1 GeV
for pion-induced cascades, this fact is usually ignored and 〈h/e〉 is
reported.

In a hadron-nucleus collision a large fraction of the incident energy
is carried by a “leading particle” with the same quark content
as the incident hadron. If the projectile is a charged pion, the
leading particle is usually a pion, which can be neutral and hence
contributes to the EM sector. This is not true for incident protons.
The result is an increased mean hadronic fraction for incident protons:
E0 ≈ 2.6 GeV [162–165].

By definition, 0 ≤ fem ≤ 1. Its variance σ2
fem

changes only

slowly with energy, but perforce 〈fem〉 → 1 as the projectile energy
increases. An empirical power law (unrelated to Eq. (34.34)) of
the form σfem = (E/E1)

1−ℓ (where ℓ < 1) describes the energy
dependence of the variance adequately and has the right asymptotic
properties [153]. For 〈h/e〉 6= 1 (noncompensation), fluctuations in
fem significantly contribute to or even dominate the resolution. Since
the fem distribution has a high-energy tail, the calorimeter response is
non-Gaussian with a high-energy tail if 〈h/e〉 < 1. Noncompensation
thus seriously degrades resolution and produces a nonlinear response.

It is clearly desirable to compensate the response, i.e., to design the
calorimeter such that 〈h/e〉 = 1. This is possible only with a sampling
calorimeter, where several variables can be chosen or tuned:

1. Decrease the EM sensitivity. EM cross sections increase with
Z,† and most of the energy in an EM shower is deposited by
low-energy electrons. A disproportionate fraction of the EM energy
is thus deposited in the higher-Z absorber. Lower-Z cladding, such
as the steel cladding on ZEUS U plates, preferentially absorbs
low-energy γ’s in EM showers and thus also lowers the electronic
response. G10 signal boards in the DØ calorimeters and G10 next
to slicon readout detectors has the same effect. The degree of
EM signal suppression can be somewhat controlled by tuning the
sensor/absorber thickness ratio.

2. Increase the hadronic sensitivity. The abundant neutrons produced
in the cascade have large n-p elastic scattering cross sections, so
that low-energy scattered protons are produced in hydrogenous
sampling materials such as butane-filled proportional counters
or plastic scintillator. (The maximal fractional energy loss when
a neutron scatters from a nucleus with mass number A is

∗ Technically, we should write 〈fh(h/e)〉, but we approximate it as
〈fh〉〈h/e〉 to facilitate the rest of the discussion.

† The asymptotic pair-production cross section scales roughly as Z0.75,
and |dE/dx| slowly decreases with increasing Z.
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4A/(1 + A)2.) The down side in the scintillator case is that the
signal from a highly-ionizing stopping proton can be reduced by as
much as 90% by recombination and quenching parameterized by
Birks’ Law (Eq. (34.2)).

3. Fabjan and Willis proposed that the additional signal generated in
the aftermath of fission in 238U absorber plates should compensate
nuclear fluctuations [166]. The production of fission fragments
due to fast n capture was later observed [167]. However, while
a very large amount of energy is released, it is mostly carried
by low-velocity, very highly ionizing fission fragments which
produce very little observable signal because of recombination and
quenching. But in fact much of the compensation observed with
the ZEUS 238U/scintillator calorimeter was mainly the result of
methods 1 and 2 above.

Motivated very much by the work of Brau, Gabriel, Brückmann,
and Wigmans [168], several groups built calorimeters which were very
nearly compensating. The degree of compensation was sensitive to
the acceptance gate width, and so could be somewhat further tuned.
These included

a) HELIOS with 2.5 mm thick scintillator plates sandwiched between
2 mm thick 238U plates (one of several structures); σ/E = 0.34/

√
E

was obtained,

b) ZEUS, 2.6 cm thick scintillator plates between 3.3 mm 238U plates;
σ/E = 0.35/

√
E,

c) a ZEUS prototype with 10 mm Pb plates and 2.5 mm scintillator
sheets; σ/E = 0.44/

√
E, and

d) DØ, where the sandwich cell consists of a 4–6 mm thick 238U plate,
2.3 mm LAr, a G-10 signal board, and another 2.3 mm LAr gap;
σ/E ≈ 0.45/

√
E.

Given geometrical and cost constraints, the calorimeters used in
modern collider detectors are not compensating: 〈h/e〉 ≈ 0.7, for the
ATLAS central barrel calorimeter, is typical.
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Figure 34.23: Dotplot of Monte Carlo C (Cherenkov) vs S
(scintillator) signals for individual events in a dual readout
calorimeter. Hadronic (π−) induced events are shown in blue,
and scatter about the indicated event locus. Electromagnetic
events cluster about (C,S) = (0,0). In this case worse resolution
(fewer p.e.’s) was assumed for the Cherenkov events, leading to
the “elliptical” distribution.

A more versatile approach to compensation is provided by a
dual-readout calorimeter, in which the signal is sensed by two readout
systems with highly contrasting 〈h/e〉. Although the concept is more
than two decades old [169], it was only recently been implemented by
the DREAM collaboration [170]. The test beam calorimeter consisted
of copper tubes, each filled with scintillator and quartz fibers. If the
two signals C and S (quartz and scintillator) are both normalized to
electron response, then for each event Eq. (34.34) takes the form

C = E[fem + 〈h/e〉|C(1 − fem)]

S = E[fem + 〈h/e〉|S(1 − fem)] (34.36)

for the Cherenkov and scintillator responses. On a dotplot of C/E vs
S/E, events scatter about a line-segment locus described in Fig. 34.23.
With increasing energy the distribution moves upward along the locus
and becomes tighter. Equations 34.36 are linear in 1/E and fem,
and are easily solved to obtain estimators of the corrected energy
and fem for each event. Both are subject to resolution effects, but
contributions due to fluctuations in fem are eliminated. The solution
for the corrected energy is given by [163]:

E =
ξS − C

ξ − 1
, where ξ =

1 − 〈h/e〉|C
1 − 〈h/e〉|S

(34.37)

ξ is the energy-independent slope of the event locus on a plot of C
vs S. It can be found either from the fitted slope or by measuring
π/e as a function of E. Because we have no knowledge of h/e on an
event-by-event basis, it has been replaced by 〈h/e〉 in Eq. (34.37).
ξ must be as far from unity as possible to optimize resolution,
which means in practical terms that the scintillator readout of the
calorimeter must be as compensating as possible.

Although the usually-dominant contribution of the fem distribution
to the resolution can be minimized by compensation or the use of dual
calorimetry, there remain significant contributions to the resolution:

1. Incomplete corrections for leakage, differences in light collection
efficiency, and electronics calibration.

2. Readout transducer shot noise (usually photoelectron statistics),
plus electronic noise.

3. Sampling fluctuations. Only a small part of the energy deposit
takes place in the scintillator or other sensor, and that fraction
is subject to large fluctuations. This can be as high as 40%/

√
E

(lead/scintillator). It is even greater in the Fe/scint case because
of the very small sampling fraction (if the calorimeter is to be
compensating), and substantially lower in a U/scint calorimeter. It
is obviously zero for a homogeneous calorimeter.

4. Intrinisic fluctuations. The many ways ionization can be produced
in a hadronic shower have different detection efficiencies and
are subject to stochastic fluctuations. In particular, a very large
fraction of the hadronic energy (∼20% for Fe/scint, ∼40% for
U/scint) is “invisible,” going into nuclear dissociation, thermalized
neutrons, etc. The lost fraction depends on readout—it will be
greater for a Cherenkov readout, less for an organic scintillator
readout.

Except in a sampling calorimeter especially designed for the
purpose, sampling and intrinsic resolution contributions cannot be
separated. This may have been best studied by Drews et al. [171],
who used a calorimeter in which even- and odd-numbered scintillators
were separately read out. Sums and differences of the variances were
used to separate sampling and intrinsic contributions.

The fractional energy resolution can be represented by

σ

E
=

a1(E)√
E

⊕
∣

∣

∣

∣
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〈

h

e
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∣

∣

∣

(

E

E1

)1−ℓ

(34.38)

The coefficient a1 is expected to have mild energy dependence for
a number of reasons. For example, the sampling variance is (π/e)E
rather than E. The term (E/E1)

1−ℓ is the parametrization of σfem

discussed above. Usually a plot of (σ/E)2 vs 1/E ia well-described by
a straight line (constant a1) with a finite intercept—the square of the
right term in Eq. (34.38), is called “the constant term.” Precise data
show the slight downturn [156].

After the first interaction of the incident hadron, the average
longitudinal distribution rises to a smooth peak. The peak position
increases slowly with energy. The distribution becomes nearly
exponential after several interaction lengths. Examples from the
CDHS magnetized iron-scintillator sandwich calorimeter test beam
calibration runs [172] are shown in Fig. 34.24. Proton-induced
cascades are somewhat shorter and broader than pion-induced
cascades [165]. A gamma distribution fairly well describes the
longitudinal development of an EM shower, as discussed in Sec. 33.5.
Following this logic, Bock et al. suggested that the profile of a hadronic
cascade could be fitted by the sum of two Γ distributions, one with
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a characteristic length X0 and the other with length λI [173]. Fits
to this 4-parameter function are commonly used, e.g., by the ATLAS
Tilecal collaboration [165]. If the interaction point is not known (the
usual case), the distribution must be convoluted with an exponential
in the interaction length of the incident particle. Adragna et al. give
an analytic form for the convoluted function [165].
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Figure 34.24: Mean profiles of π+ (mostly) induced cascades
in the CDHS neutrino detector [172]. Corresponding results for
the ATLAS tile calorimeter can be found in Ref. 165.

The transverse energy deposit is characterized by a central core
dominated by EM cascades, together with a wide “skirt” produced by
wide-angle hadronic interactions [174].

The CALICE collaboration has tested a “tracking” calorimeter
(AHCAL) with highly granular scintillator readout [161]. Since the
position of the first interaction is observed, the average longitudinal
and radial shower distributions are obtained.

While the average distributions might be useful in designing a
calorimeter, they have little meaning for individual events, whose
distributions are extremely variable because of the small number of
particles involved early in the cascade.

Particle identification, primarily e-π discrimination, is accomplished
in most calorimeters by depth development. An EM shower is mostly
contained in 15X0 while a hadronic shower takes about 4λI . In
high-A absorbers such as Pb, X0/λI ∼ 0.03. In a fiber calorimeter,
such as the RD52 dual-readout calorimeter [175], e-π discrimination
is achieved by differences in the Cerenkov and scintillation signals,
lateral spread, and timing differences, ultimately achieving about
500:1 discrimination.

34.9.3. Free electron drift velocities in liquid ionization cham-
bers :

Written August 2009 by W. Walkowiak (U. Siegen)

Drift velocities of free electrons in LAr [176] are given as a function
of electric field strength for different temperatures of the medium in
Fig. 34.25. The drift velocites in LAr have been measured using a
double-gridded drift chamber with electrons produced by a laser pulse
on a gold-plated cathode. The average temperature gradient of the
drift velocity of the free electrons in LAr is described [176] by

∆vd

∆T vd
= (−1.72 ± 0.08) %/K.

Earlier measurements [177–180] used different techniques and show
systematic deviations of the drift velocities for free electrons which
cannot be explained by the temperature dependence mentioned above.

Drift velocities of free electrons in LXe [178] as a function of
electric field strength are also displayed in Fig. 34.25. The drift
velocity saturates for |E | > 3 kV/cm, and decreases with increasing
temperature for LXe as well as measured e.g. by [181].
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Figure 34.25: Drift velocity of free electrons as a function of
electric field strength for LAr [176], LAr + 0.5% CH4 [178]
and LXe [177]. The average temperatures of the liquids are
indicated. Results of a fit to an empirical function [182] are
superimposed. In case of LAr at 91 K the error band for the
global fit [176] including statistical and systematic errors as well
as correlations of the data points is given. Only statistical errors
are shown for the individual LAr data points.

The addition of small concentrations of other molecules like N2, H2

and CH4 in solution to the liquid typically increases the drift velocities
of free electrons above the saturation value [178,179], see example for
CH4 admixture to LAr in Fig. 34.25. Therefore, actual drift velocities
are critically dependent on even small additions or contaminations.

34.10. Accelerator Neutrino Detectors

Written August 2015 by M.O. Wascko (Imperial College London).

34.10.1. Introduction :

Accelerator neutrino experiments span many orders of magnitude
in neutrino energy, from a few MeV to hundreds of GeV. This wide
range of neutrino energy is driven by the many physics applications
of accelerator neutrino beams. Foremost among them is neutrino
oscillation, which varies as the ratio L/Eν , where L is the neutrino
baseline (distance travelled), and Eν is the neutrino energy. But
accelerator neutrino beams have also been used to study the nature
of the weak interaction, to probe nucleon form factors and structure
functions, and to study nuclear structure.

The first accelerator neutrino experiment used neutrinos from the
decays of high energy pions in flight to show that the neutrinos
emitted from pion decay are different from the neutrinos emitted by
beta decay [183]. The field of accelerator neutrino experiments did
not expand beyond this until Simon van der Meer’s invention of the
magnetic focusing horn [184], which significantly increased the flux of
neutrinos aimed toward the detector. In this mini-review, we focus on
experiments employing decay-in-flight beams—pions, kaons, charmed
mesons, and taus—producing fluxes of neutrinos and antineutrinos
from ∼ 10 MeV to ∼ 100 GeV.

Neutrino interactions with matter proceed only through the weak
interaction, making the cross section extremely small and requiring
high fluxes of neutrinos and large detector masses in order to
achieve satisfactory event rates. Therefore, neutrino detector design
is a balancing act taking into account sufficient numbers of nuclear
targets (often achieved with inactive detector materials), adequate
sampling/segmentation to ensure accurate reconstruction of the tracks
and showers produced by neutrino-interaction secondary particles, and
practical readout systems to allow timely analysis of data.
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34.10.2. Signals and Backgrounds :

The neutrino interaction processes available increase with increasing
neutrino energy as interaction thresholds are crossed; in general
neutrino-interaction cross sections grow with energy; for a detailed
discussion of neutrino interactions see [185]. The multiplicity of
secondary particles from each interaction process grows in complexity
with neutrino energy, while the forward-boost due to increasing Eν

compresses the occupied phase space in the lab frame, impacting
detector designs. Because decay-in-fight beams produce neutrinos at
well-defined times, leading to very small duty factors, the predominant
backgrounds stem from unwanted beam-induced neutrino interactions,
i.e. neutrinos interacting via other processes than the one being
studied. This becomes increasingly true at high energies because the
secondary particles produced by neutrino interactions yield detector
signals that resemble cosmic backgrounds less and less.

Below, we describe a few of the dominant neutrino interaction
processes, with a focus on the final state particle content and
topologies.

34.10.2.1. Charged-Current Quasi-Elastic Scattering and Pions:

Below ∼ 2 GeV neutrino energy, the dominant neutrino-nucleus
interaction process is quasi-elastic (QE) scattering. In the charged
current (CC) mode, the CCQE base neutrino reaction is νℓ n → ℓ− p,
where ℓ = e, µ, τ , and similarly for antineutrinos, νℓ p → ℓ+ n. The
final state particles are a charged lepton, and perhaps a recoiling
nucleon if it is given enough energy to escape the nucleus. Detectors
designed to observe this process should have good single-particle track
resolution for muon neutrino interactions, but should have good µ/e
separation for electron neutrino interactions. Because the interaction
cross section falls sharply with Q2, the lepton typically carries away
more of the neutrino’s kinetic energy than the recoiling nucleon. The
fraction of backward-scattered leptons is large, however, so detectors
with 4π coverage are desirable. The dominant backgrounds in this
channel tend to come from single pion production events in which the
pion is not detected.

Near 1 GeV, the quasi-elastic cross section is eclipsed by pion
production processes. A typical single pion production (CC1π)
reaction is νℓ n → ℓ− π+ n, but many more final state particle
combinations are possible. Single pion production proceeds through
the coherent channel and many incoherent processes, dominated by
resonance production. With increasing neutrino energy, higher-order
resonances can be excited, leading to multiple pions in the final state.
Separating these processes from quasi-elastic scattering, and indeed
from each other, requires tagging, and ideally reconstructing, the pions.
Since these processes can produce neutral pions, electromagnetic (EM)
shower reconstruction is more important here than it is for the quasi-
elastic channel. The predominant backgrounds for pion production
change with increasing neutrino energy. Detection of pion processes
is also complicated because near threshold the quasi-elastic channel
creates pion backgrounds through final state interactions of the
recoiling nucleon, and at higher energies backgrounds come from
migration of multiple pion events in which one or more pions is not
detected.

34.10.2.2. Deep Inelastic Scattering:

Beyond a few GeV, the neutrino has enough energy to probe
the nucleon at the parton scale, leading to deep inelastic scattering
(DIS). In the charged-current channel, the DIS neutrino reaction is
νℓ N → ℓ− X , where N is a nucleon and X encompasses the entire
recoiling hadronic system. The final state particle reconstruction
revolves around accurate reconstruction of the lepton momentum
and containment and reconstruction of the hadronic shower energy.
Because of the high neutrino energies involved, DIS events are very
forward boosted, and can have extremely long particle tracks. For this
reason, detectors measuring DIS interactions must be large to contain
the hadronic showers in the detector volume.

34.10.2.3. Neutral Currents:

Neutrino interactions proceeding through the neutral current (NC)
channel are identified by the lack of a charged lepton in the final state.
For example, the NC elastic reaction is νl N → νl N , and the NC
DIS reaction is νl N → νl X . NC interactions are suppressed relative
to CC interactions by a factor involving the weak mixing angle; the
primary backgrounds for NC interactions come from CC interactions
in which the charged lepton is misidentified.

34.10.3. Instances of Neutrino Detector Technology :

Below we describe many of the actual detectors that have been
built and operated for use in accelerator neutrino beams.

34.10.3.1. Spark Chambers:

In the first accelerator neutrino beam experiment, Lederman,
Schwartz, and Steinberger [183] used an internally-triggered spark
chamber detector, filled with 10 tons of Al planes and surrounded
by external scintillator veto planes, to distinguish muon tracks from
electron showers, and hence muon neutrinos from electron neutrinos.
The inactive Al planes served as the neutrino interaction target and
as radiators for EM shower development. The detector successfully
showed the presence of muon tracks from neutrino interactions. It was
also sensitive to the hadronic showers induced by NC interactions,
which were unknown at the time. More than a decade later, the
Aachen-Padova [186] experiment at CERN also employed an Al spark
chamber to detect ∼ 2 GeV neutrinos.

34.10.3.2. Bubble Chambers:

Several large bubble chamber detectors were employed as accelerator
neutrino detectors in the 1970s and 80s, performing many of the first
studies of the properties of the weak interaction. Bubble chambers
provide exquisite granularity in the reconstruction of secondary
particles, allowing very accurate separation of interaction processes.
However, the extremely slow and labor-intensive acquisition and
analysis of the data from photographic film led to them being phased
out in favor of electronically read out detectors.

The Gargamelle [187] detector at CERN used Freon and propane
gas targets to make the first observation of neutrino-induced NC
interactions and more. The BEBC [188] detector at CERN was a
bubble chamber that was alternately filled with liquid hydrogen,
deuterium, and a neon-hydrogen mixture; BEBC was also outfitted
with a track-sensitive detector to improve event tagging, and
sometimes used with a small emulsion chamber. The SKAT [192]
heavy freon bubble chamber was exposed to wideband neutrino and
antineutrino beams at the Serpukhov laboratory in the former Soviet
Union. A series of American bubble chambers in the 1970’s and 1980’s
made measurements on free nucleons that are still crucial inputs for
neutrino-nucleus scattering predictions. The 12-foot bubble chamber
at ANL [189] in the USA used both deuterium and hydrogen targets,
as did the 7-foot bubble chamber at BNL [190]. Fermilab’s 15 foot
bubble chamber [191] used deuterium and heavy neon targets.

34.10.3.3. Iron Tracking Calorimeters:

Because of the forward boost of high energy interactions, long
detectors made of magnetized iron interspersed with active detector
layers have been very successfully employed. The long magnetized
detectors allow measurements of the momentum of penetrating muons.
The iron planes also act as shower-inducing layers, allowing separation
of EM and hadronic showers; the large number of iron planes
provide enough mass for high statistics and/or shower containment.
Magnetized iron spectrometers have been used for studies of the weak
interaction, measurements of structure functions, and searches for
neutrino oscillation. Non-magnetized iron detectors have also been
successfully employed as neutrino monitors for oscillation experiments
and also for neutrino-nucleus interaction studies.

The CDHS [201] detector used layers of magnetized iron modules
interspersed with wire drift chambers, with a total (fiducial) mass of
1250 t (750 t), to detector neutrinos in the range 30–300 GeV. Within
each iron module, 5 cm (or 15 cm) iron plates were interspersed
with scintillation counters. The FNAL Lab-E neutrino detector
was used by the CCFR [202] and NuTeV [203] collaborations to
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perform a series of experiments in the Fermilab high energy neutrino
beam (50 GeV< Eν < 300 GeV). The detector was comprised of
six iron target calorimeter modules, with 690 t total target mass,
followed by three muon spectrometer modules, followed by two drift
chambers. Each iron target calorimeter module comprised 5.2 cm
thick steel plates interspersed with liquid scintillation counters and
drift chambers. The muon spectrometer was comprised of toroidal iron
magnets interleaved with drift chambers. The MINOS [204] detectors,
a near detector of 980 t at FNAL and a far detector of 5400 t in the
Soudan mine, are functionally identical magnetized iron calorimeters,
comprised of iron plates interleaved with layers of 4 cm wide plastic
scintillator strips in alternating orientations. The T2K [222] on-axis
detector, INGRID, consists of 16 non-magnetized iron scintillator
sandwich detectors, each with nine 6.5 cm iron plane (7.1 t total)
interspersed between layers of 5 cm wide plastic scintillator strips
readout out by multi-pixel photon counters (MPPCs) coupled to WLS
fibers. Fourteen of the INGRID modules are arranged in a cross-hair
configuration centered on the neutrino beam axis.

34.10.3.4. Cherenkov Detectors:

Open volume water Cherenkov detectors were originally built to
search for proton decay. Large volumes of ultra-pure water were
lined with photomultipliers to collect Cherenkov light emitted by the
passage of relativistic charged particles. See Sec. 35.3.1 for a detailed
discussion of deep liquid detectors for rare processes.

When used to detect ∼ GeV neutrinos, the detector medium acts as
a natural filter for final state particles below the Cherenkov threshold;
this feature has been exploited successfully by the K2K, MiniBooNE
(using mineral oil instead of water), and T2K neutrino oscillation
experiments. However, at higher energies Cherenkov detectors become
less accurate because the overlapping rings from many final state
particles become increasingly difficult to resolve.

The second-generation Cherenkov detector in Japan, Super-
Kamiokande [193]( Super-K), comprises 50 kt (22.5 kt fiducial) of
water viewed by 11,146 50 cm photomultiplier tubes, giving 40%
photocathode coverage; it is surrounded by an outer detector region
viewed by 1,885 20 cm photomultipliers. Super-K is the far detector
for K2K and T2K, and is described in greater detail elsewhere
in this review. The K2K experiment also employed a 1 kt water
Cherenkov detector in the suite of near detectors [194], with 690
photomultipliers (40% photocathode coverage) viewing the detector
volume. The MiniBooNE detector at FNAL was a 0.8 kt [195] mineral
oil Cherenkov detector, with 1,520 20 cm photomultipliers (10%
photocathode coverage) surrounded by a veto detector with 240 20 cm
photomultipliers.

34.10.3.5. Scintillation Detectors:

Liquid and solid scintillator detectors also employ fully (or nearly
fully) active detector media. Typically organic scintillators, which emit
into the ultraviolet range, are dissolved in mineral oil or plastic and
read out by photomultipliers coupled to wavelength shifters (WLS).
Open volume scintillation detectors lined with photomultipliers
are conceptually similar to Cherenkov detectors, although energy
reconstruction is calorimetric in nature as opposed to kinematic (see
also Sec. 35.3.1). For higher energies and higher particle multiplicities,
it becomes beneficial to use segmented detectors to help distinguish
particle tracks and showers from each other.

The LSND [197] detector at LANL was an open volume liquid
scintillator detector (of mass 167 t) employed to detect relatively
low energy (<300 MeV) neutrinos. The NOνA [200] detectors use
segmented volumes of liquid scintillator in which the scintillation
light is collected by WLS fibers in the segments that are coupled to
avalanche photodiodes (APDs) at the ends of the volumes. The NOνA
far detector, located in Ash River, MN, is comprised of 896 layers of
15.6 m long extruded PVC scintillator cells for a total mass of 14 kt;
the NOνA near detector is comprised of 214 layers of 4.1 m scintillator
volumes for a total mass of of 300 t. Both are placed in the NuMI
beamline at 0.8◦ off-axis. The SciBar (Scintillation Bar) detector
was originally built for K2K at KEK in Japan and then re-used for
SciBooNE [198] at FNAL. SciBar used plastic scintillator strips with
1.5 cm×2.5 cm rectangular cross section, read out by multianode

photomultipliers (MAPMTs) coupled to WLS fibers, arranged in
alternating horizontal and vertical layers, with a total mass of 15 t.
Both SciBooNE and K2K employed an EM calorimeter downstream
of SciBar and a muon range detector (MRD) downstream of that.
The MINERvA [199] detector, in the NuMI beam at FNAL, utilizes
a central tracker comprising 8.3 t of plastic scintillator strips with
triangular cross section, and is also read out by MAPMTs coupled
to WLS fibers. MINERvA employs several more subsystems and is
described more fully below.

34.10.3.6. Liquid Argon Time Projection Chambers:

Liquid argon time projection chambers (LAr-TPCs) were conceived
in the 1970s as a way to achieve a fully active detector with sub-
centimeter track reconstruction [205]. A massive volume of purified
liquid argon is put under a strong electric field (hundreds of V/cm),
so that the liberated electrons from the paths of ionizing particles
can be drifted to the edge of the volume and read out, directly by
collecting charge from wire planes or non-destructively through charge
induction in the wire planes. A dual-phase readout method is also
being developed, in which the charge is drifted vertically and then
passed through an amplification region inside a gas volume above the
liquid volume; the bottom of the liquid volume is equipped with a
PMT array for detecting scintillation photons form the liquid argon.
The first large scale LAr-TPC was the ICARUS T-600 module [206],
comprising 760 t of liquid argon with a charge drift length of 1.5 m
read out by wires with 3 mm pitch, which operated in LNGS, both
standalone and also exposed to the CNGS high energy neutrino beam.
The ArgoNeuT [207] detector at FNAL, with fiducial mass 25 kg of
argon read out with 4 mm pitch wires, was exposed to the NuMI
neutrino and antineutrino beams. The MicroBooNE [208] detector
at FNAL comprises 170 t of liquid Ar, read out with 3 mm wire
pitch, which began collecting data in the Booster Neutrino Beam Oct
2015. A LAr-TPC has also been chosen as the detector design for the
future DUNE neutrino oscillation experiment, from FNAL to Sanford
Underground Research Facility; both single and dual phase modules
are planned.

34.10.3.7. Emulsion Detectors:

Photographic film emulsions have been employed in particle physics
experiments since the 1940s [209]. Thanks to advances in scanning
technology and automation [213], they have been successfully
employed as neutrino detectors. Emulsions are used for experiments
observing CC tau neutrino interactions, where the short lifetime of
the tau, ττ = 2.90 × 10−13s, leading to the short mean path length,
c × τ = 87µm, requires extremely precise track resolution. They
are employed in hybrid detectors in which the emulsion bricks are
embedded inside fine-grained tracker detectors. In the data analysis,
the tracker data are used to select events with characteristics typical of
a tau decay in the final state, such as missing energy and unbalanced
transverse momentum. The reconstructed tracks are projected back
into an emulsion brick and used as the search seed for a neutrino
interaction vertex.

E531 [210] at Fermilab tested many of the emulsion-tracker hybrid
techniques employed by later neutrino experiments, in a detector with
approximately 9 kg of emulsion target. The CHORUS [211] experiment
at CERN used 1,600 kg of emulsion, in a hybrid detector with a
fiber tracker, high resolution calorimeter, and muon spectrometer,
to search for νµ → ντ oscillation. The DONuT [212] experiment
at FNAL used a hybrid detector, with 260 kg of emulsion bricks
interspersed with fiber trackers, followed by a magnetic spectrometer,
and calorimeter, to make the first direct observation of tau neutrino
CC interactions. More recently, the OPERA [214,215,216] experiment
used an automated hybrid emulsion detector, with 1,300 t of emulsion,
to make the first direct observation of the appearance of ντ in a νµ

beam.
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34.10.3.8. Hybrid Detectors:

The CHARM detector [217] at CERN was built to study neutral-
current interactions and search for muon neutrino oscillation. It
was a fine-grained ionization calorimeter tracker with approximately
150 t of marble as neutrino target, surrounded by a magnetized iron
muon system for tagging high angle muons, and followed downstream
by a muon spectrometer. The CHARM II detector [218] at CERN
comprised a target calorimeter followed by a downstream muon
spectrometer. Each target calorimeter module consists of a 4.8 cm
thick glass plate followed by a layer of plastic streamer tubes, with
spacing 1 cm, instrumented with 2 cm wide pickup strips. Every fifth
module is followed by a 3 cm thick scintillator layer. The total mass
of the target calorimeter was 692 t.

The Brookhaven E-734 [219] detector was a tracking calorimeter
made up of 172 t liquid scintillator modules interspersed with
proportional drift tubes, followed by a dense EM calorimeter and a
muon spectrometer downstream of that. The detector was exposed to
a wideband horn-focused beam with peak neutrino energy near 1 GeV.
The Brookhaven E-776 [220] experiment comprised a finely segmented
EM calorimeter, with 2.54 cm concrete absorbers interspersed with
planes of drift tubes and acrylic scintillation counters, with total mass
240 t, followed by a muon spectrometer.

The NOMAD [221] detector at CERN consisted of central tracker
detector inside a 0.4 T dipole magnet (the magnet was originally used
by the UA1 experiment at CERN) followed by a hadronic calorimeter
and muon detectors downstream of the magnet. The main neutrino
target is 3 t of drift chambers followed downstream by transition
radiation detectors which are followed by an EM calorimeter. NOMAD
was exposed to the same wideband neutrino beam as was CHORUS.

MINERvA, introduced above, is, in its entirety, a hybrid detector,
based around a central plastic scintillator tracker. The scintillator
tracker is surrounded by electromagnetic and hadronic calorimetry,
which is achieved by interleaving thin lead (steel) layers between
the scintillator layers for the ECAL (HCAL). MINERvA is situated
upstream of the MINOS near detector which acts as a muon
spectrometer. Upstream of the scintillator tracker is a nuclear target
region containing inactive layers of C (graphite), Pb, Fe (steel),
and O (water). MINERvA’s physics goals span a wide range of
neutrino-nucleus interaction studies, from form factors to nuclear
effects.

T2K [222] in Japan employs two near detectors at 280 m from the
neutrino beam target, one centered on the axis of the horn-focused
J-PARC neutrino beam and one placed 2.5◦ off-axis. The on-axis
detector, INGRID, is described above. The 2.5◦ off-axis detector,
ND280, employs the UA1 magnet (at 0.2 T) previously used by
NOMAD. Inside the magnet volume are three separate detector
systems: the trackers, the Pi0 Detector (P0D), and several ECal
modules. The tracker detectors comprise two fine-grained scintillator
detectors (FGDs), read out by MPPCs coupled to WLS fibers,
interleaved between three gas TPCs read out by micromegas planes.
The downstream FGD contains inactive water layers in addition to
the scintillators. Upstream of the tracker is the P0D, a sampling
tracker calorimeter with active detector materials comprising plastic
scintillator read out by MPPCs and WLS fibers, and inactive sheets of
brass radiators and refillable water modules. Surrounding the tracker
and P0D, but still inside the magnet, are lead-scintillator EM sampling
calorimeters.

34.11. Superconducting magnets for collider

detectors

Revised September 2015 by Y. Makida (KEK)

34.11.1. Solenoid Magnets : In all cases SI unit are assumed, so
that the magnetic field, B, is in Tesla, the stored energy, E, is in
joules, the dimensions are in meters, and µ0 = 4π × 10−7.

The magnetic field (B) in an ideal solenoid with a flux return iron
yoke, in which the magnetic field is < 2 T, is given by

B =
µ0 n I

L
(34.39)

where n is the number of turns, I is the current and L is the coil
length. In an air-core solenoid, the central field is given by

B(0, 0) = µ0 n I
L√

L2 + 4R2
, (34.40)

where R is the coil radius.

In most cases, momentum analysis is made by measuring the
circular trajectory of the passing particles according to p = mv = qrB,
where p is the momentum, m the mass, q the charge, r the bending
radius. The sagitta, s, of the trajectory is given by

s = q B ℓ2/8p , (34.41)

where ℓ is the path length in the magnetic field. In a practical
momentum measurement in colliding beam detectors, it is more
effective to increase the magnetic volume than the field strength, since

dp/p ∝ p/B ℓ2 , (34.42)

where ℓ corresponds to the solenoid coil radius R. The energy stored
in the magnetic field of any magnet is calculated by integrating B2

over all space:

E =
1

2µ0

∫

B2dV (34.43)

If the coil thin and inside an iron return yoke , (which is the case if it
is to superconducting coil), then

E ≈ (B2/2µ0)πR2L . (34.44)

For a detector in which the calorimetry is outside the aperture of the
solenoid, the coil must be thin in terms of radiation and absorption
lengths. This usually means that the coil is superconducting and
that the vacuum vessel encasing it is of minimum real thickness and
fabricated of a material with long radiation length. There are two
major contributors to the thickness of a thin solenoid:

1) The conductor consisting of the current-carrying superconducting
material (usually Nb-Ti/Cu) and the quench protecting stabilizer
(usually aluminum) are wound on the inside of a structural support
cylinder (usually aluminum also). The coil thickness scales as B2R,
so the thickness in radiation lengths (X0) is

tcoil/X0 = (R/σhX0)(B
2/2µ0) , (34.45)

where tcoil is the physical thickness of the coil, X0 the average
radiation length of the coil/stabilizer material, and σh is the
hoop stress in the coil [225]. B2/2µ0 is the magnetic pressure.
In large detector solenoids, the aluminum stabilizer and support
cylinders dominate the thickness; the superconductor (Nb-TI/Cu)
contributes a smaller fraction. The main coil and support cylinder
components typically contribute about 2/3 of the total thickness in
radiation lengths.

2) Another contribution to the material comes from the outer
cylindrical shell of the vacuum vessel. Since this shell is susceptible
to buckling collapse, its thickness is determined by the diameter,
length and the modulus of the material of which it is fabricated.
The outer vacuum shell represents about 1/3 of the total thickness
in radiation length.
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Table 34.9: Progress of superconducting magnets for particle physics
detectors.

Experiment Laboratory B Radius Length Energy X/X0 E/M
[T] [m] [m] [MJ] [kJ/kg]

TOPAZ* KEK 1.2 1.45 5.4 20 0.70 4.3
CDF* Tsukuba/Fermi 1.5 1.5 5.07 30 0.84 5.4
VENUS* KEK 0.75 1.75 5.64 12 0.52 2.8
AMY* KEK 3 1.29 3 40 †
CLEO-II* Cornell 1.5 1.55 3.8 25 2.5 3.7
ALEPH* Saclay/CERN 1.5 2.75 7.0 130 2.0 5.5
DELPHI* RAL/CERN 1.2 2.8 7.4 109 1.7 4.2
ZEUS* INFN/DESY 1.8 1.5 2.85 11 0.9 5.5
H1* RAL/DESY 1.2 2.8 5.75 120 1.8 4.8
BaBar* INFN/SLAC 1.5 1.5 3.46 27 † 3.6
D0* Fermi 2.0 0.6 2.73 5.6 0.9 3.7
BELLE* KEK 1.5 1.8 4 42 † 5.3
BES-III IHEP 1.0 1.475 3.5 9.5 † 2.6
ATLAS-CS ATLAS/CERN 2.0 1.25 5.3 38 0.66 7.0
ATLAS-BT ATLAS/CERN 1 4.7–9.75 26 1080 (Toroid)†

ATLAS-ET ATLAS/CERN 1 0.825–5.35 5 2 × 250 (Toroid)†

CMS CMS/CERN 4 6 12.5 2600 † 12
SiD** ILC 5 2.9 5.6 1560 † 12
ILD** ILC 4 3.8 7.5 2300 † 13
SiD** CLIC 5 2.8 6.2 2300 † 14
ILD** CLIC 4 3.8 7.9 2300 †
FCC** 6 6 23 54000 † 12

∗ No longer in service

∗∗Conceptual design in future
† EM calorimeter is inside solenoid, so small X/X0 is not a goal

34.11.2. Properties of collider detector magnets :

The physical dimensions, central field stored energy and thickness
in radiation lengths normal to the beam line of the supercon-
ducting solenoids associated with the major collider are given in
Table 34.9 [224]. Fig. 34.26 shows thickness in radiation lengths as a
function of B2R in various collider detector solenoids.
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function of B2R for various detector solenoids. Gray entries are
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The ratio of stored energy to cold mass (E/M) is a useful
performance measure. It can also be expressed as the ratio of the
stress, σh, to twice the equivalent density, ρ, in the coil [225]:

E

M
=

E

ρ 2πtcoilRL
≈ σh

2ρ
(34.46)
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The E/M ratio in the coil is approximately equivalent to H*, the
enthalpy of the coil, and it determines the average coil temperature
rise after energy absorption in a quench:

E/M = H(T2) − H(T1) ≈ H(T2) (34.47)

where T2 is the average coil temperature after the full energy
absorption in a quench, and T1 is the initial temperature. E/M
ratios of 5, 10, and 20 kJ/kg correspond to ∼65, ∼80, and ∼100 K,
respectively. The E/M ratios of various detector magnets are shown
in Fig. 34.27 as a function of total stored energy. One would like
the cold mass to be as small as possible to minimize the thickness,

* The enthalpy, or heat content, is called H in the thermodynam-
ics literature. It is not to be confused with the magnetic field inten-
sity B/µ.
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but temperature rise during a quench must also be minimized. An
E/M ratio as large as 12 kJ/kg is designed into the CMS solenoid,
with the possibility that about half of the stored energy can go to an
external dump resistor. Thus the coil temperature can be kept below
80 K if the energy extraction system works well. The limit is set by
the maximum temperature that the coil design can tolerate during a
quench. This maximum local temperature should be <130 K (50 K +
80 K), so that thermal expansion effects, which are remarkable beyond
80 K, in the coil are manageable less than 50 K.

34.11.3. Toroidal magnets :

Toroidal coils uniquely provide a closed magnetic field without the
necessity of an iron flux-return yoke. Because no field exists at the
collision point and along the beam line, there is, in principle, no
effect on the beam. On the other hand, the field profile generally
has 1/r dependence. The particle momentum may be determined by
measurements of the deflection angle combined with the sagitta. The
deflection (bending) power BL is

BL ≈
∫ R0

Ri

BiRi dR

R sin θ
=

Bi Ri

sin θ
ln(R0/Ri) , (34.48)

where Ri is the inner coil radius, R0 is the outer coil radius, and θ is
the angle between the particle trajectory and the beam line axis . The
momentum resolution given by the deflection may be expressed as

∆p

p
∝ p

BL
≈ p sin θ

BiRi ln(R0/Ri)
. (34.49)

The momentum resolution is better in the forward/backward (smaller
θ) direction. The geometry has been found to be optimal when
R0/Ri ≈ 3–4. In practical designs, the coil is divided into 6–12
lumped coils in order to have reasonable acceptance and accessibility.
This causes the coil design to be much more complex. The mechanical
structure needs to sustain the decentering force between adjacent
coils, and the peak field in the coil is 3–5 times higher than the useful
magnetic field for the momentum analysis [223].

34.12. Measurement of particle momenta in a

uniform magnetic field [226,227]

The trajectory of a particle with momentum p (in GeV/c) and
charge ze in a constant magnetic field

−→
B is a helix, with radius

of curvature R and pitch angle λ. The radius of curvature and
momentum component perpendicular to

−→
B are related by

p cosλ = 0.3 z B R , (34.50)

where B is in tesla and R is in meters.

The distribution of measurements of the curvature k ≡ 1/R is
approximately Gaussian. The curvature error for a large number of
uniformly spaced measurements on the trajectory of a charged particle
in a uniform magnetic field can be approximated by

(δk)2 = (δkres)
2 + (δkms)

2 , (34.51)

where δk = curvature error

δkres = curvature error due to finite measurement resolution

δkms = curvature error due to multiple scattering.

If many (≥ 10) uniformly spaced position measurements are made
along a trajectory in a uniform medium,

δkres =
ǫ

L′ 2

√

720

N + 4
, (34.52)

where N = number of points measured along track

L′ = the projected length of the track onto the bending plane

ǫ = measurement error for each point, perpendicular to the
trajectory.

If a vertex constraint is applied at the origin of the track, the
coefficient under the radical becomes 320.

For arbitrary spacing of coordinates si measured along the projected
trajectory and with variable measurement errors ǫi the curvature error
δkres is calculated from:

(δkres)
2 =

4

w

Vss

VssVs2s2 − (Vss2)2
, (34.53)

where V are covariances defined as Vsmsn = 〈smsn〉 − 〈sm〉〈sn〉 with
〈sm〉 = w−1 ∑

(si
m/ǫi

2) and w =
∑

ǫi
−2.

The contribution due to multiple Coulomb scattering is approxi-
mately

δkms ≈
(0.016)(GeV/c)z

Lpβ cos2 λ

√

L

X0
, (34.54)

where p = momentum (GeV/c)

z = charge of incident particle in units of e

L = the total track length

X0 = radiation length of the scattering medium (in units of
length; the X0 defined elsewhere must be multiplied by
density)

β = the kinematic variable v/c.

More accurate approximations for multiple scattering may be found
in the section on Passage of Particles Through Matter (Sec. 33
of this Review). The contribution to the curvature error is given
approximately by δkms ≈ 8srms

plane/L2, where srms
plane is defined there.
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35.1. Introduction

Non-accelerator experiments have become increasingly important
in particle physics. These include classical cosmic ray experiments,
neutrino oscillation measurements, and searches for double-beta decay,
dark matter candidates, and magnetic monopoles. The experimental
methods are sometimes those familiar at accelerators (plastic scintil-
lators, drift chambers, TRD’s, etc.) but there is also instrumentation
either not found at accelerators or applied in a radically different way.
Examples are atmospheric scintillation detectors (Fly’s Eye), massive
Cherenkov detectors (Super-Kamiokande, IceCube), ultracold solid
state detectors (CDMS). And, except for the cosmic ray detectors,
radiologically ultra-pure materials are required.

In this section, some more important detectors special to terrestrial
non-accelerator experiments are discussed. Techniques used in both
accelerator and non-accelerator experiments are described in Sec. 28,
Particle Detectors at Accelerators, some of which have been modified
to accommodate the non-accelerator nuances.

Space-based detectors also use some unique instrumentation, but
these are beyond the present scope of RPP.

35.2. High-energy cosmic-ray hadron and gamma-

ray detectors

35.2.1. Atmospheric fluorescence detectors :

Revised August 2015 by L.R. Wiencke (Colorado School of Mines).

Cosmic-ray fluorescence detectors (FDs) use the atmosphere as a
giant calorimeter to measure isotropic scintillation light that traces
the development profiles of extensive air showers. An extensive air
shower (EAS) is produced by the interactions of ultra high-energy
(E > 1017 eV) subatomic particles in the stratosphere and upper
troposphere. These are the highest energy particles known to exist.
The amount of scintillation light generated is proportional to energy
deposited in the atmosphere and nearly independent of the primary
species. Experiments with FDs include the pioneering Fly’s Eye [1],
HiRes [2], the Telescope Array [3], and the Pierre Auger Observatory
(Auger) [4]. The Auger FD also measures the time development
of a class of atmospheric transient luminous events called ”Elves”
that are created in the ionosphere above some thunderstorms [5].
The proposed space based FD instrument [6] by the JEM-EUSO
collaboration would look down on the earth’s atmosphere from space
to view a much larger area than ground based instruments.

The fluorescence light is emitted primarily between 290 and 430 nm
(Fig. 35.1), when relativistic charged particles, primarily electrons and
positrons, excite nitrogen molecules in air, resulting in transitions of
the 1P and 2P systems. Reviews and references for the pioneering and
recent laboratory measurements of fluorescence yield, Y (λ, P, T, u),
including dependence on wavelength (λ), temperature (T ), pressure
(p), and humidity (u) may be found in Refs. 7–9. The results of
various experiments have been combined (Fig. 35.2) to obtain an
absolute average and uncertainty for Y(337 nm, 800 hPa, 293 K, dry
air) of 7.04 ± 0.24 ph/MeV after corrections for different electron
beam energies and other factors. The units of ph/MeV correspond
to the number of fluorescence photons produced per MeV of energy
deposited in the atmosphere by the electromagnetic component of an
EAS.
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Figure 35.1: Measured fluorescence spectrum excited by 3 MeV
electrons in dry air at 800 hPa and 293 K [11].

An FD element (telescope) consists of a non-tracking spherical
mirror (3.5–13 m2 and less than astronomical quality), a close-
packed “camera” of photomultiplier tubes (PMTs) (for example,
Hamamatsu R9508 or Photonis XP3062) near the focal plane, and
a flash ADC readout system with a pulse and track-finding trigger
scheme [10]. Simple reflector optics (12◦ × 16◦ degree field of view
(FOV) on 256 PMTs) and Schmidt optics (30◦ × 30◦ FOV on 440
PMTs), including a correcting element, have been used. Segmented
mirrors have been fabricated from slumped or slumped/polished
glass with an anodized aluminium coating and from chemically
anodized AlMgSiO5 affixed to shaped aluminum. A broadband UV
filter (custom fabricated or Schott MUG-6) reduces background light
such as starlight, airglow, man-made light pollution, and airplane
strobelights.
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Figure 35.2: Fluoresence yield values and associated uncer-
tainties at 337 nm (Y337) in dry air at 800 hPa and 293 K
(Figure from [12]) . The methodology and corrections that were
applied to obtain the average and the uncertainty are discussed
extensively in this reference. The vertical axis denotes different
laboratory experiments that measured FY. The gray bars show
three of the original measurements to illustrate the scale of the
corrections applied.

At 1020 eV, where the flux drops below 1 EAS/km2century, the
aperture for an eye of adjacent FD telescopes that span the horizon
can reach 104 km2 sr. FD operation requires (nearly) moonless nights
and clear atmospheric conditions, which imposes a duty cycle of about
10%. Arrangements of LEDs, calibrated diffuse sources [13], pulsed
UV lasers [14], LIDARs* and cloud monitors are used for photometric
calibration, atmospheric calibration [15], and determination of
exposure [16].

The EAS generates a track consistent with a light source moving at
v = c across the FOV. The number of photons (Nγ) as a function of
atmospheric depth (X) can be expressed as [8]

dNγ

dX
=

dEtot
dep

dX

∫

Y (λ, P, T, u) · τatm(λ, X) · εFD(λ)dλ , (35.1)

where τatm(λ, X) is the atmospheric transmission, including wave-
length (λ) dependence, and εFD(λ) is the FD efficiency. εFD(λ)
includes geometric factors and collection efficiency of the optics,
quantum efficiency of the PMTs, and other throughput factors. The
typical systematic uncertainties, τatm (10%) and εFD (photometric
calibration 10%), currently dominate the total reconstructed EAS
energy uncertainty. ∆E/E of 20% is possible, provided the geometric
fit of the EAS axis is constrained typically by multi-eye stereo
projection, or by timing from a colocated sparse array of surface
detectors.

Analysis methods to reconstruct the EAS profile and deconvolute
the contributions of re-scattered scintillation light, and direct and
scattered Cherenkov light are described in [1] and more recently
in [17]. The EAS energy is typically obtained by integrating over the
Gaisser-Hillas function [18]

Ecal =

∫ ∞

0
wmax

(

X − X0

Xmax − X0

)(Xmax−X0)/λ

e(Xmax−X)/λdX ,

(35.2)
where Xmax is the depth at which the shower reaches its maximum
energy deposit wmax. X0 and λ are two shape parameters.

* ”LIDAR stands for ”Light Detection and Ranging” and refers here
to systems that measure atmospheric properties from the light scattered
backwards from laser pulses directed into the sky.

35.2.2. Atmospheric Cherenkov telescopes for high-energy

γ-ray astronomy :

Revised November 2015 by J. Holder (Dept. of Physics and Astronomy
& Bartol Research Inst., Univ. of Delaware).

A wide variety of astrophysical objects are now known to produce
high-energy γ-ray photons. Leptonic or hadronic particles, accelerated
to relativistic energies in the source, produce γ-rays typically through
inverse Compton boosting of ambient photons or through the decay
of neutral pions produced in hadronic interactions. At energies below
∼30 GeV, γ-ray emission can be efficiently detected using satellite or
balloon-borne instrumentation, with an effective area approximately
equal to the size of the detector (typically < 1 m2). At higher energies,
a technique with much larger effective collection area is required to
measure astrophysical γ-ray fluxes, which decrease rapidly with
increasing energy. Atmospheric Cherenkov detectors achieve effective
collection areas of >105 m2 by employing the Earth’s atmosphere as
an intrinsic part of the detection technique.

As described in Chapter 29, a hadronic cosmic ray or high energy
γ-ray incident on the Earth’s atmosphere triggers a particle cascade,
or air shower. Relativistic charged particles in the cascade generate
Cherenkov radiation, which is emitted along the shower direction,
resulting in a light pool on the ground with a radius of ∼130 m.
Cherenkov light is produced throughout the cascade development,
with the maximum emission occurring when the number of particles
in the cascade is largest, at an altitude of ∼10 km for primary
energies of 100GeV–1TeV. Following absorption and scattering in
the atmosphere, the Cherenkov light at ground level peaks at a
wavelength, λ ≈ 300–350 nm. The photon density is typically ∼100
photons/m2 for a 1 TeV primary, arriving in a brief flash of a few
nanoseconds duration. This Cherenkov pulse can be detected from
any point within the light pool radius by using large reflecting surfaces
to focus the Cherenkov light on to fast photon detectors (Fig. 35.3).

10 km

130 m

Camera plane

Figure 35.3: A schematic illustration of an imaging atmospheric
Cherenkov telescope array. The primary particle initiates an air
shower, resulting in a cone of Cherenkov radiation. Telescopes
within the Cherenkov light pool record elliptical images; the
intersection of the long axes of these images indicates the arrival
direction of the primary, and hence the location of a γ-ray source
in the sky.

Modern atmospheric Cherenkov telescopes, such as those built
and operated by the VERITAS [19], H.E.S.S. [20] and MAGIC [21]
collaborations, consist of large (> 100m2) segmented mirrors on
steerable altitude-azimuth mounts. A camera made from an array of
photosensors is placed at the focus of each mirror and used to record
a Cherenkov image of each air shower. In these imaging atmospheric
Cherenkov telescopes, single-anode photomultipliers tubes (PMTs)
have traditionally been used (2048, in the case of H.E.S.S. II), but
multi-anode PMTs and silicon devices now feature in more modern
designs. The telescope cameras typically cover a field-of-view of 3− 5◦
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in diameter. Images are recorded at kHz rates, the vast majority
of which are due to showers with hadronic cosmic-ray primaries.
The shape and orientation of the Cherenkov images are used to
discriminate γ-ray photon events from this cosmic-ray background,
and to reconstruct the photon energy and arrival direction. γ-ray
images result from purely electromagnetic cascades and appear as
narrow, elongated ellipses in the camera plane. The long axis of the
ellipse corresponds to the vertical extension of the air shower, and it
points back towards the source position in the field-of-view. If multiple
telescopes are used to view the same shower (“stereoscopy”), the
source position is simply the intersection point of the various image
axes. Cosmic-ray primaries produce secondaries with large transverse
momenta, which initiate sub-showers. Their images are consequently
wider and less regular than those with γ-ray primaries and, since the
original charged particle has been deflected by Galactic magnetic fields
before reaching the Earth, the images have no preferred orientation.

The measurable differences in Cherenkov image orientation and
morphology provide the background discrimination which makes
ground-based γ-ray astronomy possible. For point-like sources, such
as distant active galactic nuclei, modern instruments can reject over
99.999% of the triggered cosmic-ray events, while retaining up to 50%
of the γ-ray population. In the case of spatially extended sources,
such as Galactic supernova remnants, the background rejection is less
efficient, but the technique can be used to produce γ-ray maps of
the emission from the source. The angular resolution depends upon
the number of telescopes which view the image and the energy of
the primary γ-ray, but is typically less than 0.1◦ per event (68%
containment radius) at energies above a few hundred GeV.

The total Cherenkov yield from the air shower is proportional to
the energy of the primary particle. The image intensity, combined
with the reconstructed distance of the shower core from each telescope,
can therefore be used to estimate the primary energy. The energy
resolution of this technique, also energy-dependent, is typically
15–20% at energies above a few hundred GeV. Energy spectra of
γ-ray sources can be measured over a wide range, depending upon
the instrument characteristics, source properties (flux, spectral slope,
elevation angle, etc.), and exposure time: the H.E.S.S. measurement
of the hard spectrum supernova remnant RX J1713.7-3946 extends
to 100 TeV [22], for example, while pulsed emission from the Crab
Pulsar has been detected at 25 GeV [23]. In general, peak sensitivity
lies in the range from 100 GeV to a few TeV.

The first astrophysical source to be convincingly detected using the
imaging atmospheric Cherenkov technique was the Crab Nebula [24],
with an integral flux of 2.1×10−11 photons cm−2 s−1 above 1 TeV [25].
Modern imaging atmospheric Cherenkov telescopes have sensitivity
sufficient to detect sources with less than 1% of the Crab Nebula
flux in a few tens of hours. The TeV source catalog now consists of
more than 160 sources (see e.g. Ref. 26). The majority of these were
detected by scanning the Galactic plane from the southern hemisphere
with the H.E.S.S. telescope array [27].

Major upgrades of the existing telescope arrays have recently been
completed, including the addition of a 28 m diameter central telescope
to H.E.S.S. (H.E.S.S. II). Development is also underway for the next
generation instrument, the Cherenkov Telescope Array (CTA), which
will consist of a northern and a southern hemisphere observatory, with
a combined total of more than 100 telescopes [28]. Telescopes of three
different sizes are planned, spread over an area of > 1 km2, providing
wider energy coverage, improved angular and energy resolutions, and
an order of magnitude improvement in sensitivity relative to existing
imaging atmospheric Cherenkov telescopes. Baseline telescope designs
are similar to existing devices, but exploit technological developments
such as dual mirror optics and silicon photo-detectors.

35.3. Large neutrino detectors

35.3.1. Deep liquid detectors for rare processes :

Revised August 2015 by K. Scholberg & C.W. Walter (Duke
University)

Deep, large detectors for rare processes tend to be multi-purpose
with physics reach that includes not only solar, reactor, supernova
and atmospheric neutrinos, but also searches for baryon number
violation, searches for exotic particles such as magnetic monopoles,
and neutrino and cosmic-ray astrophysics in different energy regimes.
The detectors may also serve as targets for long-baseline neutrino
beams for neutrino oscillation physics studies. In general, detector
design considerations can be divided into high-and low-energy regimes,
for which background and event reconstruction issues differ. The
high-energy regime, from about 100 MeV to a few hundred GeV,
is relevant for proton decay searches, atmospheric neutrinos and
high-energy astrophysical neutrinos. The low-energy regime (a few
tens of MeV or less) is relevant for supernova, solar, reactor and
geological neutrinos.

Large water Cherenkov and scintillator detectors (see Table 35.1)
usually consist of a volume of transparent liquid viewed by
photomultiplier tubes (PMTs) (see Sec. 34.2); the liquid serves as
active target. PMT hit charges and times are recorded and digitized,
and triggering is usually based on coincidence of PMT hits within
a time window comparable to the detector’s light-crossing time.
Because photosensors lining an inner surface represent a driving
cost that scales as surface area, very large volumes can be used for
comparatively reasonable cost. Some detectors are segmented into
subvolumes individually viewed by PMTs, and may include other
detector elements (e.g., tracking detectors). Devices to increase light
collection, e.g., reflectors or waveshifter plates, may be employed. A
common configuration is to have at least one concentric outer layer
of liquid material separated from the inner part of the detector to
serve as shielding against ambient background. If optically separated
and instrumented with PMTs, an outer layer may also serve as an
active veto against entering cosmic rays and other background events.
The PMTs for large detectors typically range in size from 20 cm to
50 cm diameter, and typical quantum efficiencies are in the 20–25%
range for scintillation and water-Cherenkov photons. PMTs with
higher quantum efficiencies, 35% or higher, have recently become
available. The active liquid volume requires purification and there
may be continuous recirculation of liquid. For large homogeneous
detectors, the event interaction vertex is determined using relative
timing of PMT hits, and energy deposition is determined from the
number of recorded photoelectrons. A “fiducial volume” is usually
defined within the full detector volume, some distance away from the
PMT array. Inside the fiducial volume, enough PMTs are illuminated
per event that reconstruction is considered reliable, and furthermore,
entering background from the enclosing walls is suppressed by a
buffer of self-shielding. PMT and detector optical parameters are
calibrated using laser, LED, or other light sources. Quality of event
reconstruction typically depends on photoelectron yield, pixelization
and timing.

Because in most cases one is searching for rare events, large
detectors are usually sited underground to reduce cosmic-ray-related
background (see Chapter 29). The minimum depth required varies
according to the physics goals [29].

35.3.1.1. Liquid scintillator detectors:

Past and current large underground detectors based on hydrocarbon
scintillators include LVD, MACRO, Baksan, Borexino, KamLAND
and SNO+. Experiments at nuclear reactors include CHOOZ, Double
CHOOZ, Daya Bay, and RENO. Organic liquid scintillators (see
Sec. 34.3.0) for large detectors are chosen for high light yield
and attenuation length, good stability, compatibility with other
detector materials, high flash point, low toxicity, appropriate
density for mechanical stability, and low cost. They may be
doped with waveshifters and stabilizing agents. Popular choices are
pseudocumene (1,2,4-trimethylbenzene) with a few g/L of the PPO
(2,5-diphenyloxazole) fluor, and linear alkylbenzene (LAB). In a
typical detector configuration there will be active or passive regions of
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undoped scintillator, non-scintillating mineral oil or water surrounding
the inner neutrino target volume. A thin vessel or balloon made of
nylon, acrylic or other material transparent to scintillation light may
contain the inner target; if the scintillator is buoyant with respect
to its buffer, ropes may hold the balloon in place. For phototube
surface coverages in the 20–40% range, yields in the few hundreds
of photoelectrons per MeV of energy deposition can be obtained.
Typical energy resolution is about 7%/

√

E(MeV), and typical position
reconstruction resolution is a few tens of cm at ∼ 1 MeV, scaling as
∼ N−1/2, where N is the number of photoelectrons detected.

Table 35.1: Properties of large detectors for rare processes. If total target mass is divided
into large submodules, the number of subdetectors is indicated in parentheses.

Detector Mass, kton PMTs ξ p.e./MeV Dates

(modules) (diameter, cm)

Baksan 0.33, scint (3150) 1/module (15) segmented 40 1980–

MACRO 0.56, scint (476) 2-4/module (20) segmented 18 1989–2000

LVD 1, scint. (840) 3/module (15) segmented 15 1992–

KamLAND 0.41f , scint 1325(43)+554(51)* 34% 460 2002–

Borexino 0.1f , scint 2212 (20) 30% 500 2007–

SNO+ 0.78, scint 9438 (20) 54% 400–900 2016 (exp.)

CHOOZ 0.005, scint (Gd) 192 (20) 15% 130 1997–1998

Double Chooz 0.017, scint (Gd)(2) 534/module (20) 13% 180 2011–

Daya Bay 0.160, scint (Gd)(8) 192/module (20) 5.6%† 100 2011–

RENO 0.032, scint (Gd)(2) 342/module (25) 12.6% 100 2011–

IMB-1 3.3f , H2O 2048 (12.5) 1% 0.25 1982–1985

IMB-2 3.3f , H2O 2048 (20) 4.5% 1.1 1987–1990

Kam I 0.88/0.78f , H2O 1000/948 (50) 20% 3.4 1983–1985

Kam II 1.04f , H2O 948 (50) 20% 3.4 1986–1990

Kam III 1.04f , H2O 948 (50) 20%‡ 4.3 1990–1995

SK I 22.5f , H2O 11146 (50) 39% 6 1996–2001

SK II 22.5f , H2O 5182 (50) 19% 3 2002–2005

SK III+ 22.5f , H2O 11129 (50) 39% 6 2006–

SNO 1, D2O/1.7, H2O 9438 (20) 31% § 9 1999–2006

f indicates typical fiducial mass used for data analysis; this may vary by physics topic.

* Measurements made before 2003 only considered data from the 43 cm PMTs.

† The effective Daya Bay coverage is 12% with top and bottom reflectors.

‡ The effective Kamiokande III coverage was 25% with light collectors.

§ The effective SNO coverage was 54% with light collectors.

Shallow detectors for reactor neutrino oscillation experiments
require excellent muon veto capabilities. For ν̄e detection via inverse
beta decay on free protons, ν̄e + p → n + e+, the neutron is captured
by a proton on a ∼180 µs timescale, resulting in a 2.2 MeV γ ray,
observable by Compton scattering and which can be used as a tag in
coincidence with the positron signal. The positron annihilation γ rays
may also contribute. Inverse beta decay tagging may be improved
by addition of Gd at ∼0.1% by mass, which for natural isotope
abundance has a ∼49,000 barn cross-section for neutron capture (in
contrast to the 0.3 barn cross-section for capture on free protons). Gd
capture takes ∼30 µs, and is followed by a cascade of γ rays adding up
to about 8 MeV. Gadolinium doping of scintillator requires specialized
formulation to ensure adequate attenuation length and stability.

Scintillation detectors have an advantage over water Cherenkov
detectors in the lack of Cherenkov threshold and the high light
yield. However, scintillation light emission is nearly isotropic,
and therefore directional capabilities are relatively weak. Liquid
scintillator is especially suitable for detection of low-energy events.
Radioactive backgrounds are a serious issue, and include long-lived
cosmogenics. To go below a few MeV, very careful selection of
materials and purification of the scintillator is required (see Sec. 35.6).

Fiducialization and tagging can reduce background. One can also
dissolve neutrinoless double beta decay (0νββ) isotopes in scintillator.
This has been realized by KamLAND-Zen, which deployed a 1.5 m-
radius balloon containing enriched Xe dissolved in scintillator inside
KamLAND, and 130Te is planned for SNO+. Although for this
approach, energy resolution is poor compared to other 0νββ search
experiments, the quantity of isotope can be so large that the kinematic
signature of 0νββ would be visible as a clear feature in the spectrum.

35.3.1.2. Water Cherenkov detectors:

Very large imaging water detectors reconstruct ten-meter-scale
Cherenkov rings produced by charged particles (see Sec. 34.5.0).
The first such large detectors were IMB and Kamiokande. The only
currently existing instance of this class of detector, with fiducial
volume of 22.5 kton and total mass of 50 kton, is Super-Kamiokande
(Super-K). For volumes of this scale, absorption and scattering of
Cherenkov light are non-negligible, and a wavelength-dependent factor
exp(−d/L(λ)) (where d is the distance from emission to the sensor
and L(λ) is the attenuation length of the medium) must be included
in the integral of Eq. (34.5) for the photoelectron yield. Attenuation
lengths on the order of 100 meters have been achieved.

Cherenkov detectors are excellent electromagnetic calorimeters,
and the number of Cherenkov photons produced by an e/γ is nearly
proportional to its kinetic energy. For massive particles, the number
of photons produced is also related to the energy, but not linearly.
For any type of particle, the visible energy Evis is defined as the
energy of an electron which would produce the same number of
Cherenkov photons. The number of collected photoelectrons depends
on the scattering and attenuation in the water along with the photo-
cathode coverage, quantum efficiency and the optical parameters
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of any external light collection systems or protective material
surrounding them. Event-by-event corrections are made for geometry
and attenuation. For a typical case, in water Np.e. ∼ 15 ξ Evis(MeV),
where ξ is the effective fractional photosensor coverage. Cherenkov
photoelectron yield per MeV of energy is relatively small compared
to that for scintillator, e.g., ∼ 6 pe/MeV for Super-K with a PMT
surface coverage of ∼ 40%. In spite of light yield and Cherenkov
threshold issues, the intrinsic directionality of Cherenkov light allows
individual particle tracks to be reconstructed. Vertex and direction
fits are performed using PMT hit charges and times, requiring that
the hit pattern be consistent with a Cherenkov ring.

High-energy (∼100 MeV or more) neutrinos from the atmosphere
or beams interact with nucleons; for the nucleons bound inside the
16O nucleus, nuclear effects must be considered both at the interaction
and as the particles leave the nucleus. Various event topologies can
be distinguished by their timing and fit patterns, and by presence
or absence of light in a veto. “Fully-contained” events are those for
which the neutrino interaction final state particles do not leave the
inner part of the detector; these have their energies relatively well
measured. Neutrino interactions for which the lepton is not contained
in the inner detector sample have higher-energy parent neutrino
energy distributions. For example, in “partially-contained” events, the
neutrino interacts inside the inner part of the detector but the lepton
(almost always a muon, since only muons are penetrating) exits.
“Upward-going muons” can arise from neutrinos which interact in the
rock below the detector and create muons which enter the detector
and either stop, or go all the way through (entering downward-going
muons cannot be distinguished from cosmic rays). At high energies,
multi-photoelectron hits are likely and the charge collected by each
PMT (rather than the number of PMTs firing) must be used; this
degrades the energy resolution to approximately 2%/

√

ξ Evis(GeV).
The absolute energy scale in this regime can be known to ∼2–3%
using cosmic-ray muon energy deposition, Michel electrons and π0

from atmospheric neutrino interactions. Typical vertex resolutions
for GeV energies are a few tens of cm [30]. Angular resolution for
determination of the direction of a charged particle track is a few
degrees. For a neutrino interaction, because some final-state particles
are usually below Cherenkov threshold, knowledge of direction of the
incoming neutrino direction itself is generally worse than that of the
lepton direction, and dependent on neutrino energy.

Multiple particles in an interaction (so long as they are above
Cherenkov threshold) may be reconstructed, allowing for the exclusive
reconstruction of final states. In searches for proton decay, multiple
particles can be kinematically reconstructed to form a decaying
nucleon. High-quality particle identification is also possible: γ rays
and electrons shower, and electrons scatter, which results in fuzzy
rings, whereas muons, pions and protons make sharp rings. These
patterns can be quantitatively separated with high reliability
using maximum likelihood methods [31]. A e/µ misidentification
probability of ∼ 0.4%/ξ in the sub-GeV range is consistent with the
performance of several experiments for 4% < ξ < 40%. Sources of
background for high energy interactions include misidentified cosmic
muons and anomalous light patterns when the PMTs sometimes
“flash” and emit photons themselves. The latter class of events can
be removed using its distinctive PMT signal patterns, which may be
repeated. More information about high energy event selection and
reconstruction may be found in reference [32].

In spite of the fairly low light yield, large water Cherenkov
detectors may be employed for reconstructing low-energy events,
down to e.g. ∼ 4-5 MeV for Super-K [33]. Low-energy neutrino
interactions of solar neutrinos in water are predominantly elastic
scattering off atomic electrons; single electron events are then
reconstructed. At solar neutrino energies, the visible energy resolution
(∼ 30%/

√

ξ Evis(MeV)) is about 20% worse than photoelectron
counting statistics would imply. Using an electron LINAC and/or
nuclear sources, approximately 0.5% determination of the absolute
energy scale has been achieved at solar neutrino energies. Angular
resolution is limited by multiple scattering in this energy regime
(25–30◦). At these energies, radioactive backgrounds become a
dominant issue. These backgrounds include radon in the water itself
or emanated from detector materials, and γ rays from the rock and

detector materials. In the few to few tens of MeV range, radioactive
products of cosmic-ray-muon-induced spallation are troublesome, and
are removed by proximity in time and space to preceding muons, at
some cost in dead time. Gadolinium doping using 0.2% Gd2(SO4)3 is
planned for Super-K to improve selection of low-energy ν̄e and other
events with accompanying neutrons [34].

The Sudbury Neutrino Observatory (SNO) detector [35] is the
only instance of a large heavy water detector and deserves mention
here. In addition to an outer 1.7 kton of light water, SNO contained
1 kton of D2O, giving it unique sensitivity to neutrino neutral current
(νx + d → νx + p + n), and charged current (νe + d → p + p + e−)
deuteron breakup reactions. The neutrons were detected in three
ways: In the first phase, via the reaction n + d → t + γ + 6.25 MeV;
Cherenkov radiation from electrons Compton-scattered by the γ rays
was observed. In the second phase, NaCl was dissolved in the water.
35Cl captures neutrons, n + 35Cl → 36Cl + γ + 8.6 MeV. The γ rays
were observed via Compton scattering. In a final phase, specialized
low-background 3He counters (“neutral current detectors” or NCDs)
were deployed in the detector. These counters detected neutrons via
n + 3He → p + t + 0.76 MeV; ionization charge from energy loss of the
products was recorded in proportional counters.

35.3.2. Neutrino telescopes :

Revised Nov. 2015 by Ch. Spiering (DESY/Zeuthen) and U.F. Katz
(Univ. Erlangen)

The primary goal of neutrino telescopes (NTs) is the detection of
astrophysical neutrinos, in particularly those which are expected to
accompany the production of high-energy cosmic rays in astrophysical
accelerators. NTs in addition address a variety of other fundamental
physics issues like indirect search for dark matter, study of neutrino
oscillations, search for exotic particles like magnetic monopoles or
study of cosmic rays and their interactions [36,37,38].

NTs are large-volume arrays of “optical modules” (OMs) installed
in open transparent media like water or ice, at depths that completely
block the daylight. The OMs record the Cherenkov light induced
by charged secondary particles produced in reactions of high-energy
neutrinos in or around the instrumented volume. The neutrino
energy, Eν , and direction can be reconstructed from the hit pattern
recorded. NTs typically target an energy range Eν & 100 GeV;
sensitivity to lower energies is achieved in dedicated setups with denser
instrumentation.

In detecting cosmic neutrinos, three sources of backgrounds have to
be considered: (i) atmospheric neutrinos from cosmic-ray interactions
in the atmosphere, which can be separated from cosmic neutrinos
only on a statistical basis; (ii) down-going punch-through atmospheric
muons from cosmic-ray interactions, which are suppressed by several
orders of magnitude with respect to the ground level due to the
large detector depths. They can be further reduced by selecting
upward-going or high-energy muons or by self-veto methods sensitive
to the muon entering the detector; (iii) random backgrounds due to
photomultiplier (PMT) dark counts, 40K decays (mainly in sea water)
or bioluminescence (only water), which impact adversely on event
recognition and reconstruction. Note that atmospheric neutrinos and
muons allow for investigating neutrino oscillations and cosmic ray
anisotropies, respectively.

Recently, it has become obvious that a precise measurement of
the energy-zenith-distribution of atmospheric neutrinos may allow for
determining the neutrino mass hierarchy by exploiting matter-induced
oscillation effects in the Earth.

Neutrinos can interact with target nucleons N through charged
current (֒ ֓νℓN → ℓ∓X , CC) or neutral current (֒ ֓νℓN → ֒ ֓νℓX , NC)
processes. A CC reaction of a ֒ ֓νµ produces a muon track and a
hadronic particle cascade, whereas all NC reactions and CC reactions
of ֒ ֓νe produce particle cascades only. CC interactions of ֒ ֓ντ can have
either signature, depending on the τ decay mode. In most astrophysical
models, neutrinos are produced through the π/K → µ → e decay
chain, i.e., with a flavour ratio νe : νµ : ντ ≈ 1 : 2 : 0. For sources
outside the solar system, neutrino oscillations turn this ratio to
νe : νµ : ντ ≈ 1 : 1 : 1 upon arrival on Earth.

The total neutrino-nucleon cross section is about 10−35 cm2 at
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Eν = 1 TeV and rises roughly linearly with Eν below this energy and
as E0.3–0.5

ν above, flattening out towards high energies. The CC:NC
cross-section ratio is about 2:1. At energies above some TeV, neutrino
absorption in the Earth becomes noticeable; for vertically upward-
moving neutrinos (zenith angle θ = 180◦), the survival probability is
74 (27, < 2)% for 10 (100, 1000)TeV. On average, between 50% (65%)
and 75% of Eν is transfered to the final-state lepton in neutrino
(antineutrino) reactions between 100 GeV and 10 PeV.

Table 35.2: Past, present and planned neutrino telescope projects
and their main parameters. The milestone years give the times of
project start, of first data taking with partial configurations, of
detector completion, and of project termination. Projects with first
data expected past 2020 are indicated in italics. The size refers to the
largest instrumented volume reached during the project development.
See [38] for references to the different projects where unspecified.

Experiment, Medium, Size Remarks

Milestones Location [km3]

DUMAND, Pacific/Hawaii Terminated due to

1978/–/–/1995 technical/funding problems

NT-200 Lake Baikal 10−4 First proof of principle

1980/1993/1998/–

GVD [39] Lake Baikal 0.5–1.5 High-energy ν astronomy,

2012/2015/–/– first cluster installed

NESTOR Med. Sea 2004 data taking with prototype

1991/–/–/–

NEMO Med. Sea R&D project, prototype tests

1998/–/–/–

AMANDA Ice/South Pole 0.015 First deep-ice neutrino telescope

1990/1996/2000/2009

ANTARES Med. Sea 0.010 First deep-sea neutrino telescope

1997/2006/2008/2016

IceCube Ice/South Pole 1.0 First km3-sized detector

2001/2005/2010/–

PINGU [40] Ice/South Pole 0.003 Planned low-energy extension

2014/–/–/– of IceCube

IceCube-Gen2 [41] Ice/South Pole 5–10 Planned high-energy extension

2014/–/–/–

KM3NeT/ARCA Med. Sea 1–2 First construction phase started

2013/(2017)/–/–

KM3NeT/ORCA Med. Sea 0.003 Low-energy configuration for

2014/(2017)/–/– neutrino mass hierarchy

KM3NeT Phase 3 Med. Sea 3–6 6 building blocks + ORCA

2013/–/–/–

The final-state lepton follows the initial neutrino direction with a
RMS mismatch angle 〈φνℓ〉 ≈ 1.5◦/

√

Eν [TeV], indicating the intrinsic
kinematic limit to the angular resolution of NTs. For CC ֒ ֓νµ reactions
at energies above about 10TeV, the angular resolution is dominated
by the muon reconstruction accuracy of a few times 0.1◦ at most.
For muon energies Eµ & 1 TeV, the increasing light emission due to
radiative processes allows for reconstructing Eµ from the measured
dEµ/dx with an accuracy of σ(log Eµ) ≈ 0.3; at lower energies, Eµ can
be estimated from the length of the muon track if it is contained in the
detector. These properties make CC ֒ ֓νµ reactions the prime channel
for the identification of individual astrophysical neutrino sources.

Hadronic and electromagnetic particle cascades at the relevant
energies are 5–20m long, i.e., short compared to typical distances
between OMs. The total amount of Cherenkov light provides a
direct measurement of the cascade energy with an accuracy of about
20% at energies above 10TeV and 10% beyond 100TeV for events
contained in the instrumented volume. Neutrino flavour and reaction
mechanism can, however, hardly be determined and neutrinos from

NC reactions or τ decays may carry away significant “invisible”
energy. Above 100TeV, the directional reconstruction accuracy of
cascades is 10–15degrees in polar ice and about 2 degrees in water,
the difference being due to the inhomogeneity of the ice and the
stronger light scattering in ice. These features, together with the small
background of atmospheric ֒ ֓νe and ֒ ֓ντ events, makes the cascade
channel particularly interesting for searches for a diffuse, high-energy
excess of extraterrestrial over atmospheric neutrinos. In water,

cascade events can also be used for the search for point sources of
cosmic neutrinos. The inferior angular accuracy compared to muon
tracks, however, leads to a higher number of background events per
source from atmospheric neutrinos.

The detection efficiency of a NT is quantified by its effective area,
e.g., the fictitious area for which the full incoming neutrino flux
would be recorded (see Fig. 35.4). The increase with Eν is due to
the rise of neutrino cross section and muon range, while neutrino
absorption in the Earth causes the decrease at large θ. Identification
of downward-going neutrinos requires strong cuts against atmospheric
muons, hence the cut-off towards low Eν . Due to the small cross
section, the effective area is many orders of magnitude smaller than
the geometrical dimension of the detector; a ֒ ֓νµ with 1TeV can, e.g.,
be detected with a probability of the order 10−6 if the telescope is on
its path.

Detection of upward going muons makes the effective volume of
the detector much larger than its geometrical volume. The method,
however, is only sensitive to CC ֒ ֓νµ interactions and cannot be
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Figure 35.4: Effective ֒ ֓νµ area for IceCube as an example of a
cubic-kilometre NT, as a function of neutrino energy for three
intervals of the zenith angle θ. The effective areas shown here
correspond to a specific event selection for point source searches.

extended much more than 5–10degrees above the geometric horizon,
where the background of atmospheric muons becomes prohibitive.
Alternatively, one can select events that start inside the instrumented
volume. In contrast to neutrinos, incoming muons generate early hits
in the outer layers of the detector. Such a veto-based event selection
is sensitive to neutrinos of all flavours from all directions, albeit with
a reduced effective volume since a part of the instrumented volume
is sacrificed for the veto. The muon veto also rejects down-going
atmospheric neutrinos that typically are accompanied by muons
in the same air shower and thus reduces the atmospheric-neutrino
background. Actually, the breakthrough in detecting high-energy
cosmic neutrinos has been achieved with this technique.

Note that the fields of view of NTs at the South Pole and in the
Northern hemisphere are complementary for each reaction channel
and neutrino energy.

35.3.2.1. Properties of media:

The efficiency and quality of event reconstruction depend strongly
on the optical properties (absorption and scattering length, intrinsic
optical activity) of the medium in the spectral range of bialkali
photocathodes (300–550nm). Large absorption lengths result in a
better light collection, large scattering lengths in superior angular
resolution. Deep-sea sites typically have effective scattering lengths of
> 100 m and, at their peak transparency around 450 nm, absorption
lengths of 50–65m. The absorption length for Lake Baikal is 22–24m.
The properties of South Polar ice vary strongly with depth; at the
peak transparency wave length (400 nm), the scattering length is
between 5 and 75m and the absorption length between 15 and 250m,
with the best values in the depth region 2200–2450m and the worst
ones in the layer 1950–2100m.

Noise rates measured by 25 cm PMTs in deep polar ice are about
0.5 kHz per PMT and almost entirely due to radioactivity in the
OM components. The corresponding rates in sea water are typically
60 kHz, mostly due to 40K decays. Bioluminescence activity can locally
cause rates on the MHz scale for seconds; the frequence and intensity
of such “bursts” depends strongly on the sea current, the season,
the geographic location, and the detector geometry. Experience from
ANTARES shows that these backgrounds are manageable without a
major loss of efficiency or experimental resolution.

35.3.2.2. Technical realisation:

Optical modules (OMs) and PMTs: An OM is a pressure-tight glass
sphere housing one or several PMTs with a time resolution in the
nanosecond range, and in most cases also electronics for control, HV
generation, operation of calibration LEDs, time synchronisation and
signal digitisation.

Hybrid PMTs with 37 cm diameter have been used for NT-200,
conventional hemispheric PMTs for AMANDA (20 cm) and for
ANTARES, IceCube and Baikal-GVD (25 cm). A novel concept has
been chosen for KM3NeT. The OMs (43 cm) are equipped with 31

PMTs (7.5 cm), plus control, calibration and digitisation electronics.
The main advantages are that (i) the overall photocathode area
exceeds that of a 25 cm PMT by more than a factor of 3; (ii) the
individual readout of the PMTs results in a very good separation
between one- and two-photoelectron signals which is essential for
online data filtering and random background suppression; (iii) the hit
pattern on an OM provides directional information; (iv) no mu-metal
shielding against the Earth magnetic field is required. Figure 35.5
shows the OM designs of IceCube and KM3NeT.

Figure 35.5: Schematic views of the digital OMs of IceCube
(left) and KM3NeT (right).

Readout and data filtering: In current NTs the PMT data are
digitised in situ, for ANTARES and Baikal-GVD in special electronics
containers close to the OMs, for IceCube and KM3NeT inside the
OMs. For IceCube, data are transmitted via electrical cables of up to
3.3 km length, depending on the location of the strings and the depth
of the OMs; for ANTARES, KM3NeT and Baikal-GVD optical fibre
connections have been chosen (several 10 km for the first two and 4 km
for GVD).

The full digitised waveforms of the IceCube OMs are transmitted
to the surface for pulses appearing in local coincidences on a string;
for other pulses, only time and charge information is provided. For
ANTARES (time and charge) and KM3NeT (time over threshold), all
PMT signals above an adjustable noise threshold are sent to shore.

The raw data are subsequently processed on online computer
farms, where multiplicity and topology-driven filter algorithms are
applied to select event candidates. The filter output data rate is
about 10GByte/day for ANTARES and of the order 1 TByte/day for
IceCube (100GByte/day transfered via satellite) and KM3NeT.

Calibration: For efficient event recognition and reconstruction, the
OM timing must be synchronised at the few-nanosecond level and
the OM positions and orientations must be known to a few 10 cm
and a few degrees, respectively. Time calibration is achieved by
sending synchronisation signals to the OM electronics and also by
light calibration signals emitted by LED or laser flashers emitted
in situ at known times (ANTARES, KM3NeT). Precise position
calibration is achieved by measuring the travel time of light calibration
signals sent from OM to OM (IceCube) or acoustic signals sent
from transducers at the sea floor to receivers on the detector strings
(ANTARES, KM3NeT, Baikal-GVD). Absolute pointing and angular
resolution can be determined by measuring the “shadow of the moon”
(i.e., the directional depletion of muons generated in cosmic-ray
interactions). IceCube has shown that both are below 1◦, confirming
MC calculations which indicate a precision of ≈ 0.5◦ for energies
above 10TeV. For KM3NeT, simulations indicate that sub-degree
precision in the absolute pointing can be reached within a few weeks
of operation.

Detector configurations: IceCube (see Fig. 35.6) consists of 5160
Digital OMs (DOMs) installed on 86 strings at depths of 1450
to 2450m in the Antarctic ice; except for the DeepCore region,
string distances are 125m and vertical distances between OMs 17m.
324 further DOMs are installed in IceTop, an array of detector stations
on the ice surface above the strings. DeepCore is a high-density
sub-array at large depths (i.e., in the best ice layer) at the centre of
IceCube.
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Figure 35.6: Schematic view of the IceCube neutrino obser-
vatory comprising the deep-ice detector including its nested
dense part DeepCore, and the surface air shower array IceTop.
The IceCube Lab houses data acquisition electronics and the
computer farm for online processing. Operation of AMANDA
was terminated in 2009.

The NT200 detector in Lake Baikal at a depth of 1100m consists
of 8 strings attached to an umbrella-like frame, with 12 pairs of OMs
per string. The diameter of the instrumented volume is 42m, its
height 70m. The Baikal collaboration has installed the first cluster
of a future cubic-kilometre array. A first phase, covering a volume of
about 0.4 km3, will consist of 12 clusters, each with 192–288 OMs at
8 strings; its completion is scheduled for 2020. A next stage could
comprise 27 clusters and cover up to 1.5 km3.

ANTARES comprises 12 strings with lateral separations of 60–70m,
each carrying 25 triplets of OMs at vertical distances of 14.5m.
The OMs are located at depths 2.1–2.4 km, starting 100m above
the sea floor. A further string carries devices for calibration and
environmental monitoring. A system to investigate the feasibility of
acoustic neutrino detection is also implemented.

KM3NeT will consist of building blocks of 115 strings each, with
18 OMs per string. Prototype operations have successfully verified
the KM3NeT technology [42]. Phase 2.0 of KM3NeT aims to
demonstrate two separate detector arrangements, ARCA and ORCA.
ARCA (Astroparticle Research with Cosmics in the Abyss) will search
for high-energy astrophysical neutrinos using a sparce arrangement
of OMs, with vertical separations of 36m and a lateral separation
between strings of 90m. ORCA (Oscillation Research with Cosmics
in the Abyss) intends to measure the neutrino mass hierarchy using
a densely-packed arrangement, with 6–12m vertical and 20m lateral
separations.

A first installation phase of ARCA near Capo Passero, East of
Sicily and of ORCA near Toulon has started in 2014 and comprises
24 (7) ARCA(ORCA) strings to be deployed by the end of 2016.
Completion of the full three blocks is expected for 2020.

35.3.2.3. Results:

Atmospheric neutrino fluxes have been precisely measured with
AMANDA and ANTARES (֒ ֓νµ) and with IceCube (֒ ֓νµ, ֒ ֓νe); the
results are in agreement with predicted spectra. No astrophysical
point sources have been identified yet, and no indications of neutrino
fluxes from dark matter annihilations or of exotic phenomena have
been found (see [38] and references therein). IceCube has furthermore
reported an energy-dependent anisotropy of cosmic-ray induced
muons.

In 2013, an excess of track and cascade events between 30TeV
and 1PeV above background expectations was reported by IceCube;
this analysis used the data taken in 2010 and 2011 and for the
first time employed containment conditions and an atmospheric
muon veto for suppression of down-going atmospheric neutrinos
(High-Energy Starting Event analysis, HESE). A display of one
of the selected events is shown in Fig. 35.7. The observed excess
reached a significance of 5.7σ in a subsequent analysis of 3 years

of data [43] and cannot be explained by atmospheric neutrinos and
misidentified atmospheric muons alone. Some clustering of the HESE
events close to the Galactic Centre was observed (see Fig. 35.8). The
hypothesis that this low-significance excess could be due to a point
source with a spectral index of ≥ 2 was constrained by an analysis of
ANTARES data looking at lower energies and with superior pointing
to the same sky region [44]. Meanwhile the energy range of the
IceCube HESE analysis has been extended down to 1TeV and the
high-energy excess confirmed; also, events with through-going muons
showed a corresponding excess of cosmic origin. In [45], the various
analyses have been combined. Assuming the cosmic neutrino flux to
be isotropic, flavour-symmetric and ν-ν-symmetric at Earth, the all-
flavour spectrum is well described by a power law with normalization
6.7+1.1

−1.2 × 10−18 GeV−1s−1sr−1cm−2 at 100TeV and a spectral index
−2.50 ± 0.09 for energies between 25TeV and 2.8PeV. A spectral
index of −2, an often quoted benchmark value, is disfavoured with a
significance of 3.8σ.

Figure 35.7: Event display of one of the starting-track events
(event no. 5 in Fig. 35.8) from [43]. The deposited energy is
70TeV, the colour code indicates the signal timing (red: early;
green: late).

Figure 35.8: Arrival directions of 37 candidate events for
cosmic neutrinos in equatorial coordinates (from [43]) . Shower-
like events (median angular resolution 15 degrees) are marked
with + and those containing muon tracks degree) with ×.
Approximately 40% of the events are expected to originate from
atmospheric backgrounds. The grey curve denotes the galactic
plane and the grey dot the galactic centre. Colours show the test
statistic for a point source clustering test at each location, with
no significant clustering observed.

At lower energies, down to 10GeV, IceCube/DeepCore and
ANTARES have identified clear signals of oscillations of atmospheric
neutrinos. The closely spaced OMs of DeepCore allow selecting a
very pure sample of low-energy ֒ ֓νµ (6–56GeV) that produce upward
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moving muons inside the detector. The neutrino energy is determined
from the energy of the hadronic shower at the vertex and the muon
range. Fits to the energy/zenith-dependent deficit of muon neutrinos
provide constraints on the oscillation parameters sin2 θ23 and ∆m2

23
(see the update of fig. 14.6 in the 2014 PDG).

See [46] and [47] for summaries of recent results of IceCube and
ANTARES, respectively.

35.3.2.4. Plans beyond 2020:

It is planned to extend the sensitivity of IceCube towards both
lower and higher energies. A substantially denser instrumentation
of a sub-volume of DeepCore would lead to an Eν threshold for
neutrino detection of a few GeV. This project (Phased IceCube Next
Generation Upgrade, PINGU) [40] primarily aims at measuring the
neutrino mass hierarchy. For higher energies, a large-volume extension
called IceCube-Gen2, combined with a powerful surface veto, is
discussed [41]. More information on the future extensions of GVD
and KM3NeT are given above and in Table 35.2.

35.3.3. Coherent radio Cherenkov radiation detectors :

Revised August 2015 by S.R. Klein (LBNL/UC Berkeley)

Radio-frequency detectors are an attractive way to search for
coherent Cherenkov radiation from showers produced from interations
of ultra-high energy cosmic neutrinos. These neutrinos are produced
when protons with energy E > 4 × 1019 eV interact with cosmic
microwave background radation (CMB) photons and are excited to
a ∆+ resonance. The subsequent ∆+ → nπ+ decay leads to the
production of neutrinos with energies above 1018 eV [48]. Neutrinos
are the only long-range probe of the ultra-high energy cosmos, because
protons, heavier nuclei and photons with energies above 5 × 1019 eV
are limited to ranges of less than 100 Mpc by interactions with CMB
photons and early starlight.

To detect this cosmic neutrino signal (of at least a few events
per year, assuming that ultra-high energy cosmic-rays are protons)
requires a detector of about 100 km3 in volume, made out of a
non-conducting solid (or potentially liquid) medium, with a long
absorption length for radio waves. The huge target volumes require
that this be a commonly available natural material. A dense medium
would be ideal to reduce the detector volume, but, unfortunately,
the available natural media are of only moderate density. Optical
Cherenkov and acoustical detectors are limited by a short (∼300 m)
attenutuation length [49] so would require a prohibitive number of
sensors. Radio-detection is the only current approach that can scale
to this volume. The two commonly used media are Antarctic (or
Greenland) ice and the lunar regolith [50]. Table 35.3 compares the
characteristics of these different media, including several possible ice
locations.

Table 35.3: Characteristics of different detection media
for radio-Cherenkov signals. The attenuation length is at a
frequency of 300 MHz; the Greenland figure is extrapolated
upward from the 75 MHz measurements. The Moon and ice
have similar Cherenkov angles because they have similar indices
of refraction.

Medium Density Cherenkov Ang. Cutoff Freq. Atten. Length

Lunar Regolith 2.5 g/cm3 560 3.0 GHz 9m/f(GHz) [50]
Antarctic Ice (South Pole) 0.92 g/cm3 560 1.15 GHz 900 m [54]
Ross Ice Shelf 0.92 g/cm3 560 1.15 GHz 406 m [55]
Greenland 0.92 g/cm3 560 1.15 GHz 1022 m [56]

Electromagnetic and hadronic showers produce radio pulses via the
Askaryan effect [51], as discussed in Sec. 33. The shower contains
more electrons than positrons, leading to coherent emission.

High-frequency radiation is concentrated around the Cherenkov
angle. On the cone, the electric field strength at a frequency f from
an electromagnetic shower from a νe may be roughly parameterized

as [52]

ECh(V/MHz) = 2.53 × 10−7 Eν

1TeV

f

fc

[

1

1 + (f/fc)1.44

]

. (35.3)

The electric field strength increases linearly with frequency, up to
a cut-off fc, which is set by the transverse size of the shower [53];
the maximum wavelength is roughly the Moliere radius divided by
cos(θC ) where θC is the Cherenkov angle. Some examples are given in
Table 35.3.

Near fc, radiation is narrowly concentrated around the Cherenov
angle [53]. At lower frequencies, the limited length of the emitting
region leads to a diffractive broadening in emission angle with respect
to the Cherenkov cone. The electric field from Eq. (35.3) is reduced
by [52],

E

ECh
= exp

(

−1

2

(θ − θC)2

(2.20 × [1GHz/f ])2

)

, (35.4)

At very low frequencies, the distribution is nearly isotropic.

Along the Cherenkov cone, the initial pulse width is ≈ 1 nsec, but
it may be broadened by dispersion as it propagates, particularly for
signals traversing the ionosphere. As long as the dispersion can be
compensated for, a large bandwidth detector is the most sensitive.
Spectral information can be used to reject background, and to help
reconstruct the neutrino direction, because the cutoff frequency
depends on the observation angle (with respect to the Cherenkov
cone).

The detection threshold is determined by the distance to the
antenna and the noise characteristics of the detector. Since the signal
is a radio wave, its amplitude decreases as 1/R, plus absorption in
the intervening medium. Once anthropogenic noise is eliminated (not
always easy), the main noise source is thermal noise. This can be
reduced with careful design; locating a detector in cold ice also helps.
Other potential backgrounds include cosmic-ray air showers, charge
generated by blowing snow, and lightning.

The field is linearly proportional to the neutrino energy, so the
power (field strength squared) is proportional to the square of the
neutrino energy. For an antenna located in the detection medium, the
typical threshold is around 1017 eV; for stand-off (remote sensing)
detectors, the threshold rises roughly linearly with the distance.
These thresholds can be reduced significantly by using directional
antennas and/or combining the signals from multiple antennas using
beam-forming techniques. Experiments have used both approaches
to reduce trigger-level noise, or to reject background at the analysis
level. Optimally, the threshold will drop linearly with the square
root of number of antennas, since the signal adds linearly while the
background is added with random phases.

The signal is linearly polarized in the plane perpendicular to the
neutrino direction. This polarization is an important check that any
observed signal is indeed coherent Cherenkov radiation. Polarization
measurements can be used to help reconstruct the neutrino direction.

At energies above 1020 eV, the Landau-Pomeranchuk-Migdal effect
significant spreads out electromagnetic showers, producing what are
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effectively subshowers with significant separation. In this regime, the
radio emission becomes even more concentrated around the Cherenkov
cone, and then, at higher energies the emission begins to vary
event-by-event. Because of this, many of the experiments that study
higher energy neutrinos focus on the hadronic shower from the struck
nucleus. This contains on average only about 20% of the energy, but
with large fluctuations. It is of interest for very high energy searches
(far above 1020 eV) because it is much less subject to the LPM effects.

Radio detectors have observed cosmic-ray air showers in the
atmosphere. The physics of radio-wave generation in air showers is
more complex because there is a large contribution due to charge
separation as electrons and positrons are bent in different directions
as they propagate, leading to a growing charge dipole (transverse
current) [57]. This time-varying transverse current emits radiation,
spread over the transverse size of the shower. Since the radiating
particles are moving relativistically downward, a ground-based
observer sees a Lorentz contracted pulse which can have frequency
components reaching the GHz range, limited by the thickness of the
particle shower. There is also a contribution from geosynchrotron
radiation, as e± are bent in the same field [57]. The Askaryan effect
is relatively small compared to these other sources. Experiments
optimized for ν detection can also detect air showers [58], which
presents a potential background. Magnetic monopoles would also emit
radio waves, and neutrino experiments have also set monpole flux
limits [59].

35.3.4. The Moon as a target :

Because of its large size and non-conducting regolith, and the
availability of large radio-telescopes, the Moon is an attractive
target [60]; some of the lunar experiments are listed in Table 35.4.
Conventional radio-telescopes are reasonably well suited to lunar
neutrino searches, with natural beam widths not too dissimilar
from the size of the Moon. Still, there are experimental challenges.
The composition of the lunar regolith is not well known, and the
attenuation length for radio waves must be estimated. The big
limitation of lunar experiments is that the 240,000 km target-antenna
separation leads to neutrino energy thresholds above 1020 eV.

Table 35.4: Experiments that have set limits on neutrino
interactions in the Moon; current limits are shown in Fig. 1 of
[50], with Lunaska (2015) from [68].

Experiment Year Dish Size Frequency Bandwidth Obs. Time

Parkes 1995 64 m 1425 MHz 500 MHz 10 hrs
Glue 1999+ 70 m, 34 m 2200 MHz 40-150 MHz 120 hrs
NuMoon 2008 11×25 m 115–180 MHz — 50 hrs
Lunaska 2008 3× 22 m 1200–1800 MHz — 6 nights
Lunaska 2015 64 1200-1500 MHz 300 MHz 127 hours
Resun 2008 4× 25 m 1450 MHz 50 MHz 45 hours

The effective volume probed by experiments depends on the
geometry, which itself depends on the frequency range used. At low
frequencies, radiation is relatively isotropic, so signals can be detected
from most of the Moon’s surface, for most angles of incidence. Also,
radio signals penetrate more deeply at low frequencies, so the volume
is larger than at shorter wavelengths. At higher frequencies, the
electric field strength is higher, but radiation is concentrated near the
Cherenkov angle. So, high-frequency experiments are only sensitive
for a narrow range of geometries where the neutrino interacts near
the Moon’s limb with the Cherenkov cone pointed toward the Earth.
Because of the stronger electric fields at high frequencies, these
experiments are sensitive to lower energy neutrinos, albeit with a
smaller effective volume, which gives them a lower flux sensitivity.

With modern technology, it is increasingly viable to search over
very broad frequency ranges [61]. One technical challenge is due
to dispersion (frequency dependent time delays) in the atmosphere.
Dispersion can be largely removed with a de-dispersion filter, using
either analog circuitry or post-collection digital processing.

Anthropogenic backgrounds are a major concern for ultra-
high energy neutrino experiments. Lunar experiments use different
techniques to reduce this background. Some experiments use multiple
antennas, separated by at least hundreds of meters; by requiring a
coincidence within a small time window, anthropogenic noise can be
rejected. If the timing is good enough, beam-forming techniques can
be used to further reduce the background. An alternative approach
is to use beam forming with multiple feed antennas viewing a single
reflector, to ensure that the signal points back to the moon.

These efforts have considerable scope for expansion. In the near
future, several large radio detector arrays should reach significantly
lower limits. The LOFAR array is beginning to take data with 36
detector clusters spread over Northwest Europe. In the longer term,
the Square Kilometer Array (SKA) with 1 km2 effective area will push
thresholds down to near 1020 eV.

35.3.5. Ice-based detectors :

Lower energy thresholds require a smaller antenna-target separation.
Natural ice is an attractive medium for this, with attenuation lengths
over 300 m. The attenuation length varies with the frequency and ice
temperature, with higher attenuation in warmer ice. Table 35.3 lists
some measurements of radio attenuation.

Although the ice is mostly uniform, the top ≈ 100 m of Antarctic
ice, the ’firn,’ contains a gradual transition from packed snow at the
surface (typical surface density 0.35 g/cm3) to solid ice (density 0.92
g/cm3) below [62]. The index of refraction depends linearly on the
density, so radio waves curve downward in the firn. This bending
reduces the effectiveness of surface or aerial antennas. The thickness
of the firn varies with location; it is thicker in central Antarctica
than in the coastal ice sheets. For above-ice observations, it is also
necessary to consider the surface roughness of the ice, which can affect
signals as they transition from the ice to the atmosphere.

There are two types of Antarctic neutrino experiments. In one
class, antennas mounted on scientific balloons observe the ice from
above. The ANITA experiment is one example. It made two flights
around Antarctica, floating at an altitude around 35 km [63]. Its
40 (32 in the first flight) dual-polarization horn antennas scanned
the surrounding ice, out to the horizon (650 km away). Because of
the small angle of incidence, ANITA could make use of polarization
information; ν signals should be vertically polarized, while most
background from cosmic-ray air showers is expected to be horizontally
polarized.

Because of the significant source-detector separation, ANITA is
most sensitive at energies above 1019 eV, above the peak of the GZK
neutrino spectrum. As with the lunar experiments, ANITA had to
contend with anthropogenic backgrounds. The ANITA collaboration
uses their multiple antennas as a phased array to achieve good pointing
accuracy, and used that to remove all apparent signals that pointed
toward known or suspected areas of human habitation. By using the
several-meter separation between antennas, they achieved a pointing
accuracy of 0.2-0.40 in elevation, and 0.5-1.10 in azimuth. ANITA has
set the most stringent limits on GZK neutrinos to date.

The proposed EVA experiment will use a portion of a fixed-shape
balloon as a large parabolic radio antenna. Because of the large
antenna surface, they hope to achieve threshold around 1017 eV.

Other ice based experiments use antennas located within the active
volume, allowing them to reach thresholds around 1017 eV. This
approach was pioneered by the RICE experiment, which buried 18
half-wave dipole antennas in holes drilled for AMANDA [64] at the
South Pole, at depths from 100 to 300 m. The hardware was sensitive
from 200 MHz to 1 GHz. Each antenna fed an in-situ preamplifier
which transmitted the signals to surface digitizing electronics.

Three groups are prototyping detectors, with the goal of a detector
with a ∼100 km3 active volume. For all three concepts, the hardware
is modular, so the detector volume scales roughly linearly with the
available funding. The Askaryan Radio Array (ARA) is located at the
South Pole [65], while the Antarctic Ross Iceshelf Antenna Neutrino
Array (ARIANNA) is on the Ross Ice Shelf [66]. The Greenland
Neutrino Observatory (GNO) collaboration is proposing a detector
near the U.S. Summit Station in Greenland [67].
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All of the in-ice experiments use multiple antennas, with varying
degrees of connection. ARIANNA and ARA use the timing between
multiple antennas in a single station to determine the arrival direction.
At larger distance scales, such as between ARA and ARIANNA
stations, the relative timing uncertainty is larger, and the antennas
are treated as effectively independent, with independent triggers, and
the data is only combined in offline analyses.

One big difference between the experiments is the depth of
their antennas. ARA buries their antennas up to 200 m deep in
the ice, to avoid the firn. Because of the refraction, a surface
antenna cannot ‘see’ a signal from a near-surface interaction some
distance away. However, drilling holes has costs, and the limited hole
diameter (15 cm in ARA) requires compromises between antenna
design (particularly for horizontally polarized waves), mechanical
support, power and communications. In contrast, ARIANNA places
their antennas in shallow, near-surface holes. This greatly simplifies
deployment and avoids limitations on antenna design, but at a cost of
reduced sensitivity to neutrino interactions near the surface. Because
ARIANNA is at a green-field site, anthropogenic noise is much less of
a problem.

The current ARA proposal, ARA-37 [65], calls for an array of
37 stations, each consisting of 16 embedded antennas. ARA will
detect signals from 150 to 850 MHz for vertical polarization, and
250 MHz to 850 MHz for horizontal polarization. ARA plans to use
bicone antennas for vertical polarization, and quad-slotted cylinders
for horizontal polarization. The collaboration uses notch filters and
surface veto antennas to eliminate most anthropogenic noise, and
vetos events when aircraft are in the area, or weather balloons are
being launched.

ARIANNA is in Moore’s Bay, on the Ross Ice Shelf, where ≈ 575
m of ice sits atop the Ross Sea [69]. The site was chosen because
the ice-seawater interface is smooth there, so the interface acts as
a mirror for radio waves. The major advantage of this approach
is that ARIANNA is sensitive to downward going neutrinos, and
should be able to see more of the Cherenkov cone for horizontal
neutrinos. One disadvantage of the site is that the ice is warmer, so
the radio attenuation length will be shorter. Each ARIANNA station
will use six or eight log-periodic dipole antennas, pointing downward;
two upward-pointing antennas will be used to veto cosmic-ray air
showers and other backgrounds [66]. The multiple antennas allow
for single-station directional and polarization measurements. The
ARIANNA site is about 110 km from McMurdo station, and is
shielded by Minna Bluff.

All three experiments share some significant challenges. Solar
cells provide power during the 6-month summer, but the winter is
a challenge. To date, wind power has not worked well, due to a
combination of the low temperatures, harsh environment, and limited
wind speed. ARA and GNO can run through the winter, at a cost of
stringing long cables between stations and the base, but ARIANNA
will likely only take data for 7 months/year. Also, because of it’s
latitude, GNO could run for a large fraction of the year using solar
power.

35.4. Large time-projection chambers for rare event

detection

Written Nov. 2015 by T. Shutt (SLAC).

Rare event searches require detectors that combine large target
masses and low levels of radioactivity, and that are located deep
underground to eliminate cosmic-ray related backgrounds. Past and
present efforts include searches for the scattering of particle dark
matter, neutrinoless double beta decay, and the measurement of solar
neutrinos, while next generation experiments will also probe coherent
scattering of solar, atmospheric and diffuse supernova background
neutrinos. Large time project chambers (TPCs), adapted from particle
collider experiments, have emerged as a leading technology for these
efforts. Events are measured in a central region confined by a field
cage and usually filled with a liquid noble element target. Ionized
electrons are drifted (in the z direction) to an anode region by use
of electrode grids and field shaping rings, where their magnitude and

x − y location is measured. In low background TPCs, scintillation
generated at the initial event site is also measured, and the time
difference between this prompt signal and the later-arriving charge
signal gives the event location in z for a known electron drift speed.
Thus, 3D imaging is a achieved in a monolithic central volume. Noble
elements have relatively high light yields (comparable to or exceeding
the best inorganic scintillators), and the charge signal can be amplified
by multiplication or electroluminescence. Radioactive backgrounds are
distinguished by event imaging, the separate measurements of charge
and light, and scintillation pulse shape. For recent reviews of noble
element detectors, see [70,71].

Methods for achieving very low radioactive backgrounds are
discussed in general in section 34.6. The basic architecture of large
TPCs is very favorable for this application because gas or liquid targets
can be relatively easily purified, while the generally more radioactive
readout and support materials are confined to the periphery. The 3D
imaging of the TPC then allows self shielding in the target material,
which is quite powerful when the target is large compared to mean
scattering lengths of ∼ MeV neutrons and gammas from radioactivity
(∼ 10 cm in LXe, for example). The use of higher density targets
(i.e., liquid instead of gas and/or higher mass elements) maximizes
the ratio of target to surrounding material mass. The TPC geometry
allows highly hermetic external shielding, with recent experiments
using large water shields, in some cases enhanced with an active liquid
scintillator layer.

In noble element targets, all non-noble impurities are readily
removed (e.g., by chemical reaction in a commercial getter) so that
only radioactive noble isotopes are a significant background concern.
Xe, Ne and He have have no long lived radioactive isotopes (apart
from the 136Xe, discussed below). Kr has ∼ 1 MBq/kg of the beta
emitter 85Kr created by nuclear fuel reprocessing, making it unusable
as a target, while the 1 Bq/kg level of the beta emitter 39Ar is a
nuisance for Ar-based experiments. Both of these can be backgrounds
in other target materials, as can Rn emanating from detector
components. Relatively low background materials are available for
most of the structures surrounding the central target, with the
exception of radioactive glasses and ceramics usually present in PMTs,
feedthroughs and electrical components. Very low background PMTs
with synthetic quartz windows, developed over the last decade, have
been a key enabling technology for dark matter searches. These
are not yet low enough in background for some double beta decay
searches, which use radio-clean Si-based photon detectors.

An important technical challenge in liquid detectors is achieving
the high voltages needed for electron drift and measurement. Quench
gases which stabilize charge gain and speed electron transport in wire
chambers cannot be used, since these absorb scintillation light (and
also suppress charge extraction in dual-phase detectors, discussed
below). At low energies (e.g., in a dark matter search) it is also
important to suppress low-level emission of electrons and associated
photons. Drift of electrons over meter scales with minimal loss from
attachment on trace levels of dissolved impurities (e.g., O2) has so
far required continuous circulating purification. The relatively slow
readout due to ∼ msec/m drift speeds is not a major pile-up concern
in low background experiments.

35.4.1. Dark matter and other low energy signals :

A major goal of low background experiments is detection of WIMP
(Weakly Interacting Massive Particle) dark matter through scattering
on nuclei in a terrestrial detector (for a recent review, see [72]) .
Energy transfers are generally small, a few tens of keV at most. Liquid
noble TPCs distinguish nuclear recoils (NR) from dark matter from
the usually dominant background of electron recoils (ER) from gamma
rays and beta decays by requiring single scatters and based on their
charge to light ratio or scintillation pulse shape, as described below.
Neutrons are a NR background, but can be recognized in a large
imaging TPC if they multiply scatter. To detect small charge signals,
a dual phase technique is used wherein electrons from interactions in
the liquid target are drifted to the liquid surface and extracted with
high field (∼ 5 kV/cm) into the gas phase leading to an amplified
electroluminescence signal measured by an array of PMTs located
just above. (Both charge multiplication and electroluminescence are
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possible in liquid, but have seen little use because the signals have very
broad dispersion). This technique readily measures single electrons
with ∼ cm x − y resolution. The sides of the chamber are lined
with highly (diffusively) reflective PTFE, and a second PMT array
is located below the active volume to maximize the sensitivity to the
initial scintillation signal.

The microscopic processes leading to signals in liquid nobles are
complex. Energy deposited by an event generates pairs of free electron
and ions, and also atoms in their lowest excited state. These rapidly
form excimers which de-excite by emitting light. Excimers arise in
both triplet and singlet states which have the same energy but different
decay times. In an event track, some fraction of electrons recombine
with ions, while the rest escape and are measured. Recombination
leads to further excimer formation and hence more scintillation
photons. Finally, some part of the energy is lost as heat - a small
fraction for ER but a dominant and energy dependent fraction for NR.
This complexity distinguishes ER and NR: for the same visible energy,
the slower nuclear recoils form a denser track with less charge and
more light than recoiling electrons, and they generate fewer long-lived
triplet state scintillation photons than singlet-state photons. Charge
and light yields depend on drift field, energy, and the initial particle
(ER or NR), requiring extensive calibrations. The existing data has
been incorporated into the NEST Monte Carlo framework. Typical
yields are several tens of electrons and photons per keV of deposited
energy (with up to 10-15% efficiency for these photons being detected).

The scattering rates of WIMPs are model dependent, but are
usually highest for spin-independent scattering which has an A2

dependence, so that experiments to date have used LXe and LAr
targets. LXe experiments have had the best WIMP sensitivity for most
WIMP masses for the last decade, including the current world-leading
sensitivity from the 300 kg LUX experiment. Other Xe experiments
include XENON10 and XENON100, ZEPLIN III, and PandaX. Next
generation experiments under construction include XENON1T with 1
ton fiducial mass, and LZ with 5.6 tons fiducial mass. If a dark matter
signal is seen, its spin dependence could be probed with Xe targets
isotopically separated into spin-rich and spin-poor targets.

The reach of LXe TPCs depends critically on the level of ER
background rejection provided by the ratio of charge to light. Reported
values (at 50% NR acceptance) range from 99.6% in LUX to 99.99% in
ZEPLIN III, which had a very high (4 kV/cm) drift field. While there
is a basic framework [73] for how this improves with light collection
and varies with electric field, a fully predictive understanding is not
yet in hand. Pulse shape discrimination is present, but weak at low
energy. The ∼ 178 nm scintillation light of Xe is just long enough to
be transmitted through high purity synthetic quartz PMTs windows.
Kr suppression to the ∼ ppt or better level is needed, and has been
accomplished via distillation or chromatography.

Two experiments to date have produced dark matter limits using
dual phase Ar TPCs: WARP and DarkSide-50, while ArDM is under
development. A primary attraction of Ar compared to Xe is much
lower raw material costs. However beta decays from 39Ar, produced
by cosmic-ray interactions in the atmosphere, give a low energy
ER background roughly 108 times higher than the fundamental ER
background from p-p solar neutrinos. Remarkably, however, pulse
shape discrimination (PSD) of ER backgrounds is very powerful in
LAr for sufficiently high energy, based on the favorably different ratio
of populations of the singlet (6 ns lifetime) and triplet (∼ 1.5 µs
lifetime) states. DarkSide has shown roughly 108 discrimination with
≥ 50% WIMP acceptance above 47 keV. They have also extracted
“aged” Ar with the 32.9 yr half-life 39 Ar reduced by a factor of 1400,
via processing of underground (cosmic ray shielded) gas deposits. This
lowers the energy threshold and allows ton-scale experiments without
significant pile-up. Charge and light discrimination has also been
demonstrated at high energy, but it is less well characterized than in
LXe. While the strong PSD in LAr allows relaxed requirements for
ER backgrounds, U and Th contamination must still be kept very
low because their decay chains create neutrons via (α, n) reactions,
particularly in low Z elements such as PMT glass and PTFE.
Waveshifter is used (typically TPB) because PMTs are blind to the
128 nm scintillation light.

With sufficient control of dissolved Kr and Rn, the ER background

in the next LXe experiments will be the as-yet unmeasured low energy
spectrum of solar neutrinos from the main p-p burning reaction. LZ’s
sensitivity is about a decade above the“floor” of coherent electron
scattering of astrophysical neutrinos, which, absent a directional
measurement (see below), are essentially indistinguishable from
WIMPs. A 30-50 ton LXe TPC would approach the practical limit set
by this floor for WIMP masses above ∼ 5 GeV if a ∼ 99.98% rejection
(at 30% NR acceptance) of p-p solar ν ER backgrounds [74] is achieved,
while a ∼ 200 ton LAr detector would achieve similar sensitivity for
WIMPs above ∼ 50 GeV. Sensitivity to lower WIMP mass could be
obtained by adding Ne to a LXe TPC, or, more speculatively,with a
superfluid He TPC [75] read out with superconducting sensors (similar
to the proposed HERON solar neutrino experiment).

Measurement of NR recoil track direction would provide proof of
the galactic origin of a dark matter signal since the prevailing WIMP
direction varies on a daily basis as the earth spins. This cannot be
achieved for the sub-micron tracks in any existing solid or liquid
technology, but the mm-scale tracks in a low pressure gas (typically,
P ∼ 50 Torr) could be imaged with sufficiently dense instrumentation.
Directionality can be established with O(102) events by measuring
just the track direction, while, with finer resolution that distinguishes
the diffuse (dense) tail and dense (diffuse) head of NR (ER) tracks,
only O(10) events are required. Such imaging requires a high energy
threshold, decreasing WIMP sensitivity, but also powerfully rejecting
less dense ER background tracks.

A variety of TPC configurations are being pursued to accomplish
this, most with a CF4 target. The longest established effort, DRIFT,
avoids diffusion washing out tracks for electron drift distances
greater than ∼ 20 cm by attaching electrons to CS2, which drifts
with vastly reduced diffusion. Other efforts drift electrons directly
and use a variety of techniques for their measurement: DMTPC
(electroluminescence + CCDs), MIMAC (MicroMegas), NEWAGE
(GEMs), and D3 (Si pixels). WIMP limits have been obtained
by DRIFT, NEWAGE, and DMTPC. A related suggestion is that
the amount of recombination in a high pressure Xe gas with an
electron-cooling additive could be sensitive to the angle between the
track and electric field [76], eliminating the need for track imaging.
Directional measurements appear to be the only possibility to push
beyond the floor of coherent neutrino scatters [77], though this would
require very large target mass.

35.4.2. 0νββ Decay :

Another major class of rare event search is neutrinoless double
beta decay (0νββ). A limited set of nuclei are unstable against
simultaneous beta decay of two neutrons. Observation of the lepton-
number violating neutrinoless version of this decay would establish
that neutrinos are Majorana particles and provide a direct measure
of neutrino mass. For a recent review, see [78]. The signal in 0νββ
decay is distinctive: the full Q-value energy of the nuclear decay
appears as equal energy back-to-back recoil electrons. A large TPC
is advantageous for observing this low rate decay for all the reasons
described above. The first detector to observe the standard model
process 2 neutrino double beta decay was a gaseous TPC which
imaged the two electrons tracks from 82Se embedded in a foil. Modern
detectors use Xe as the detector medium because it includes the ββ
isotope 136Xe (Q-value 2458 keV), which, as an inert gas, can also be
more readily enriched from its natural 8.9% abundance than any other
ββ isotope. EXO-200, which currently has one of the best search
limits [79], is a large single-phase LXe TPC with roughly 110 active
kg of Xe enriched to 80.7% 136Xe, and a multi-ton successor nEXO
has been proposed which would fully cover the inverted neutrino mass
hierarchy. These detectors are similar to dark matter TPCs, but, not
needing charge gain, use single phase with charge measured directly
on crossed wire grids. Light readout is done with LAAPDs (EXO-200)
and SiPMs (nEXO).

The dominant background is gamma rays originating outside the
active volume. Most of these undergo multiple Compton-scatters
which are efficiently recognized and rejected through sub-cm position
resolution, though the few percent of gammas at this energy that
photoabsorb are not. Self shielding of gamma rays is less powerful
than in dark matter, since in the former case there is some small
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probability of penetrating to some depth followed by the modestly
small probability of photo-absorption. The latter case consists of
three small probability processes: penetration to some depth, a
very low-energy scatter, and the gamma exiting without a second
interaction. Because of this and the fact that background and the
signal are both electron recoils, the requirements on radioactivity in all
the materials of a ββ TPC are much more stringent than an otherwise
similar dark matter detector, unless other background rejection
tools are available. Percent-level energy resolution is crucial to avoid
background from 2νββ decays and gammas including the prominent
2615 MeV line from 208Tl in the Th chain. Here the combined charge
and light measurement eliminates the otherwise dominant fluctuations
in recombination which lead to anti-correlated fluctuations in charge
and light. EXO-200 has achieved σ ≈ 1.5% (at 2458 keV), and values
below 1% appear possible.

The NEXT collaboration uses a high pressure gas phase Xe
TPC with electroluminescent readout of the charge to achieve mm
spatial resolution so that the two-electron topology of 0νββ events
can be distinguished from single electrons from photoabsorption of
background gammas. In addition, the low recombination fraction
in the gas phase suppresses recombination fluctuations, in principle
allowing σ below 0.2% via the charge channel alone. Finally, a
definitive identification of a 0νββ signal would be provided by
extraction and tagging of the ionized Ba daughter via atomic physics
techniques [80], either in gas or liquid phases.

35.5. Sub-Kelvin detectors

Written September 2015 by K. Irwin (Stanford and SLAC).

Many particle physics experiments utilize detectors operated at
temperatures below 1 K. These include WIMP searches, beta-decay
experiments to measure the absolute mass of the electron neutrino,
and searches for neutrinoless-double-beta decay (0νββ) to probe the
properties of Majorana neutrinos. Sub-Kelvin detectors also provide
important cosmological constraints on particle physics through
sensitive measurement of the cosmic microwave background (CMB).
CMB measurements probe the physics of inflation at ∼ 1016 GeV, and
the absolute mass, hierarchy, and number of neutrino species.

Detectors that operate below 1 K benefit from reduced thermal
noise and lower material specific heat and thermal conductivity.
At these temperatures, superconducting materials, sensors with
high responsivity, and cryogenic preamplifiers and multiplexers are
available. We provide a simple overview of the techniques and the
experiments using sub-K detectors. A useful review of the broad
application of low-temperature detectors is provided in [81], and
the proceedings of the International Workshop on Low Temperature
Detectors [82] provide an overview of the field.

Sub-Kelvin detectors can be categorized as equilibrium thermal
detectors or non-equilibrium detectors. Equilibrium detectors measure
a temperature rise in a material when energy is deposited. Non-
equilibrium detectors are based on the measurement of prompt,
non-equilibrated signals and on the excitation of materials with an
energy gap.

35.5.1. Equilibrium thermal detectors :

An equilibrium thermal detector consists of a thermometer
and absorber with combined heat capacity C coupled to a heat
bath through a weak thermal conductance G. The rise time of a
thermal detector is limited by the internal equilibration time of the
thermometer-absorber system and the electrical time constant of the
thermometer. The thermal relaxation time over which heat escapes to
the heat bath is τ = C/G. Thermal detectors are often designed so
that an energy input to the absorber is thermalized and equilibrated
through the absorber and thermometer on timescales shorter than
τ , making the operation particularly simple. An equilibrium thermal
detector can be operated as either a calorimeter, which measures an
incident energy deposition E, or as a bolometer, which measures an
incident power P .

In a calorimeter, an energy E deposited by a particle interaction
causes a transient change in the temperature ∆T = E/C, where the
heat capacity C can be dominated by the phonons in a lattice, the

quasiparticle excitations in a superconductor, or the electronic heat
capacity of a metal. The thermodynamic energy fluctuations in the
absorber and thermometer have variance

∆E2
rms = kBT 2C (35.5)

when operated near equilibrium, where ∆Erms is the root-mean-
square energy fluctuation, kB is the Boltzmann constant and T is the
equilibrium temperature. When a sufficiently sensitive thermometer is
used, and the energy is thermalized at frequencies large compared to
the thermal response frequency (fth = 1/2πτ), the signal-to-noise ratio
is nonzero at frequencies higher than fth. In this case, detector energy
resolution can be somewhat better than ∆Erms [83]. Deviations
from the ideal calorimeter model can cause excess noise and position
and energy dependence in the signal shape, leading to degradation in
achieved energy resolution.

In a bolometer, a power P deposited by a stream of particles
causes a change in the equilibrium temperature ∆T = P/G. The weak
thermal conductance G to the heat bath is usually limited by the flow
of heat through a phonon or electron system. The thermodynamic
power fluctuations in the absorber and thermometer have power
spectral density

SP = NEP 2 = 4kBT 2G (35.6)

when operated near equilibrium, where the units of NEP (noise
equivalent power) are W/

√
Hz.

The minimization of thermodynamic energy and power fluctuations
is a primary motivation for the use of sub-Kelvin thermal detectors.
These low temperatures also enable the use of materials and structures
with extremely low C and G, and the use of superconducting materials
and amplifiers.

When very large absorbers are required (e.g. WIMP dark matter
searches), dielectric crystals with extremely low specific heat are
often used. These materials are operated well below the Debye
temperature TD of a crystal, where the specific heat scales as T 3. In
this low-temperature limit, the dimensionless phononic heat capacity
at fixed volume reduces to

CV

N kB
=

12 π4

5

(

T

TD

)3

, (35.7)

where N is the number of atoms in the crystal. Normal metals have
higher low-temperature specific heat than dielectric crystals, but they
also have superior thermalization properties, making them attractive
for some applications in which extreme precision and high energy
resolution are required (e.g. beta endpoint experiments to measure
neutrino mass using 163Ho). At low temperature, the heat capacity of
normal metals is dominated by electrons, and is linear in temperature,
with convenient form

C =
ρ

A
γV T, (35.8)

where V is the sample volume, γ is the molar specific heat of
the material, ρ is the mass density, and A is the atomic weight.
Superconducting absorbers are also used. Superconductors combine
some of the thermalization advantages of normal metals with the lower
specific heats associated with insulators when operated well below
Tc, where the electronic heat capacity freezes out, and the material
is dominated by phononic heat capacity. At higher temperatures,
superconducting materials have more complicated heat capacities,
but at their transition temperature Tc, BCS theory predicts that the
electronic heat capacity of a superconductor is ∼2.43 times the normal
metal value.

When very low thermal conductances are required for power
measurement (e.g. the measurement of the cosmic microwave
background), the weak thermal link is sometimes provided by
thin membranes of non-stoichiometric silicon nitride. The thermal
conductance of these membranes is:

G = 4σAT 3ξ, (35.9)

where σ has a value of 15.7 mW/cm2K4, A is the cross-sectional area
perpendicular to the heat flow, and ξ is a numerical factor with a
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Table 35.5: Some selected experiments using sub-Kelvin equilibrium bolometers to
measure the CMB. These experiments constrain the physics of inflation and the absolute
mass, hierarchy, and number of neutrino species. The experiment location determines the
part of the sky that is observed. The size of the aperture determines the angular resolution.
The table also indicates the type of sensor used, the number of sensors, the frequency
range, and the number of frequency bands. The number of sensors and frequency range
and bands for ongoing upgrades are provided for some experiments in parentheses.

Sub-K CMB Location Aperture Sensor # Sensors Frequency Bands

Experiment type (planned) (planned) (planned)

Ground-based

Atacama Cosmology Chile 6 m TES 1,800 90–150 GHz 2
Telescope (2007–) (5,334) (28–220 GHz) (5)

BICEP/Keck (2006–) South Pole 26/68 cm TES 3,200 95–220 GHz 3

CLASS Chile 60 cm TES 36 40 GHz 1
(2015–) (5,108) (40–220 GHz) (4)

POLARBEAR / Chile 3.5 m TES 1,274 150 GHz 1
Simons (2012–) (22,764) (90–220 GHz) (3)

South Pole South 10 m TES 1,536 95–150 GHz 2
Telescope (2007–) Pole (16,260) (95–220 GHz) (3)

Balloon

EBEX (2013–) McMurdo 1.5 m TES ∼1,000 150–410 GHz 3

PIPER (2016–) New Mexico 2 m TES 5,120 200–600 GHz 4

SPIDER (2014–) McMurdo 30 cm TES 1,959 90–280 GHz 3

Satellite

Planck HFI (2003–) L2 1.5 m NTD 52 100-857 GHz 9

value of one in the case of specular surface scattering but less than
one for diffuse surface scattering. The thermal impedance between the
electron and phonon systems can also limit the thermal conductance.

The most commonly used sub-Kelvin thermometer is the super-
conducting transition-edge sensor (TES) [84]. The TES consists of a
superconductor biased at the transition temperature Tc, in the region
between the superconducting and normal state, where its resistance
is a strong function of temperature. The TES is voltage biased.
The Joule power provides strong negative electrothermal feedback,
which improves linearity, speeds up response to faster than τ = C/G,
and provides tolerance for Tc variation between multiple TESs in
a large array. The current flowing through a TES is read out by
a superconducting quantum interference device (SQUID) amplifier.
These amplifiers can be cryogenically multiplexed, allowing a large
number of TES devices to be read out with a small number of wires
to room temperature.

Neutron-transmutation-doped (NTD) germanium and implanted
silicon semiconductors read out by cryogenic FET amplifiers
are also used as thermometers [83]. Their electrical resistance is
exponentially dependent on 1/T , and is determined by phonon-assisted
hopping conduction between impurity sites. Finally, the temperature
dependence of the permeability of a paramagnetic material is used as
a thermometer. Detectors using these thermometers are referred to as
metallic magnetic calorimeters (MMC) [85]. These detectors operate
without dissipation and are inductively readout by SQUIDs.

Equilibrium thermal detectors are simple, and they have important
advantages in precision measurements because of their insensitivity
to statistical variations in energy down-conversion pathways, as
long as the incident energy equilibrates into an equilibrium thermal
distribution that can be measured by a thermometer.

35.5.2. Nonequilibrium Detectors :

Nonequilibrium detectors use many of the same principles and
techniques as equilibrium detectors, but are also sensitive to details
of the energy down-conversion before thermalization. Sub-Kelvin
nonequilibrium detectors measure athermal phonon signals in a
dielectric crystal, electron-hole pairs in a semiconductor crystal,
athermal quasiparticle excitations in a superconductor, photon
emission from a scintillator, or a combination of two of the above
to better discriminate recoils from nuclei or electrons. Because the
phonons are athermal, sub-Kelvin nonequilibrium detectors can use
absorbers with larger heat capacity, and they use information about
the details of energy down-conversion pathways in order to better
discriminate signal from background.

In WIMP and neutrino experiments using sub-Kelvin dielectric
semiconductors, the recoil energy is typically & 0.1 keV. The majority
of the energy is deposited in phonons and a minority in ionization and,
in some cases, scintillation. The semiconductor bandgap is typically
∼ eV, and kBT < 10 µeV at T < 1 K. Thus, high-energy charge
pairs and athermal phonons are initially produced. The charge pairs
cascade quickly to the gap edge. The high-energy phonons experience
isotopic scattering and anharmonic decay, which downshifts the
phonon spectrum until the phonon mean free path approaches the
characteristic dimension of the absorber. If the crystal is sufficiently
pure, these phonons propagate ballistically, preserving information
about the interaction location. They are not thermalized, and thus
not affected by an increase in the crystal heat capacity, allowing
the use of larger absorbers. Sensors similar to those used in sub-K
equilibrium thermal detectors measure the athermal phonons at the
crystal surface.

Superconductors can also be used as absorbers in sub-Kelvin
detectors when T ≪ Tc. The superconducting gap is typically
∼ meV. Energy absorption breaks Cooper pairs and produces
quasiparticles. These particles cascade to the superconducting gap
edge, and then recombine after a material-dependent lifetime. During
the quasiparticle lifetime, they diffuse through the material. In
superconductors with large mean free path, the diffusion length can
be more than 1 mm, allowing diffusion to a detector.

In some experiments (e.g. SuperCDMS and CRESST), athermal
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Table 35.6: Selected experiments using sub-Kelvin calorimeters. The table shows only
currently operated experiments, and is not exhaustive. WIMP experiments search
for dark matter, and beta-decay and neutrinoless double beta decay (0νββ) exper-
iments constrain neutrino mass, hierarchy, and Majorana nature. The experiment
location determines the characteristics of the radioactive background. The dates of
current program phase, detection mode (equilibrium or nonequilibrium phonon mea-
surements, and measurement of ionization or scintillation signals), the absorber and
total mass, the sensor type, and the number of sensors and crystals (if different)
are given. Many sub-K calorimeter experiments are also in planning and construction
phases, including EURECA (dark matter), HOLMES and NuMECs (beta decay),
and CUPID-0 (0νββ decay). Many of the existing experiments are being upgraded
to larger mass absorbers, different absorber materials, or lower energy threshhold.

Sub-K Location Detection Absorber Sensor # Sensor

Calorimeter mode Total mass type # Crystal

WIMP

CRESST II Gran Sasso Noneq. phon. CaWO4 TES 18
(2003–) Italy and scint. 5.4 kg

EDELWEISS III LSM Modane Eq. thermal Ge NTD Ge 36
(2015–) France and ion. 22 kg +HEMT

SuperCDMS Soudan, USA Noneq. phon. Ge TES 120
(2012–) SNOLAB, Canada and ion. 9 kg +JFET 15

Beta decay

ECHo Heidelberg Eq. thermal Au:163Ho MMC 16
(2012–) Germany 0.2µg

0νββ decay

CUORE Gran Sasso Eq. thermal TeO2 NTD Ge 988
(2015–) Italy 741 kg

AMoRe Pilot Yang Yang Noneq. phon. CaMoO4 MMC 5
(2015–) S. Korea and scint. 1.5 kg

LUCIFER Gran Sasso Eq. thermal ZnSe NTD Ge 1
(2010–) Italy and scint. 431 g

phonons and quasiparticle diffusion are combined to increase achievable
absorber mass. Athermal phonons in a three-dimensional dielectric
crystal break Cooper pairs in a two-dimensional superconducting film
on the detector surface. The resulting quasiparticles diffuse to thermal
sensors (typically a TES) where they are absorbed and detected.
While thin superconducting films have diffusion lengths shorter than
the diffusion lengths in single crystal superconductors, segmenting the
films into small sections and coupling them to multiple TES sensors
allows the instrumentation of large absorber volume. The TES sensors
can be wired in parallel to combine their output signal.

The combined measurement of the phonon signal and a secondary
signal (ionization or scintillation) can provide a powerful discrimination
of signal from background events. Nuclear-recoil events in WIMP
searches produce proportionally smaller ionization or scintillation
signal than electron-scattering events. Since many of the background
events are electron recoils, this discrimination provides a powerful
veto. Similarly, beta-decay events produce proportionally smaller
scintillation signal than alpha-particle events, allowing rejection of
alpha backgrounds in neutrino experiments.

Combined phonon and ionization measurement has been imple-
mented in experiments including CDMS I/II, SuperCDMS, and
EDELWEISS I/II/III. These experiments use semiconductor crystal
absorbers, in which dark-matter scattering events would produce
recoiling particles and generate electron-hole pairs and phonons. The
electron-hole pairs are separated and drifted to the surface of the
crystal by applying an electric field, where they are measured by a
JFET or HEMT using similar techniques to those used in 77 K Ge
x-ray spectrometers. However, the field strength must be much lower
in sub-K detectors to limit the generation of phonon signals by the
Neganov-Luke effect, which can confuse the background discrimina-
tion. For detectors with very low threshhold, the Neganov-Luke effect
can also be used to detect generated charge through the induced
phonon signal.

Combined phonon and scintillation measurement has been
implemented in CRESST II, ROSEBUD, AMoRE and LUCIFER. For
example, the CRESST-II experiment uses CaWO4 crystal absorbers,
and measures both the phonon signal and the scintillation signal with
TES calorimeters. A wide variety of scintillating crystals are under
consideration, including different tungstates and molybdates, BaF2,
ZnSe, and bismuth germanate (BGO).

35.6. Low-radioactivity background techniques

Revised August 2015 by A. Piepke (University of Alabama).

The physics reach of low-energy rare-event searches e.g. for dark
matter, neutrino oscillations, or double beta decay is often limited
by background caused by radioactivity. Depending on the chosen
detector design, the separation of the physics signal from this
unwanted interference can be achieved on an event-by-event basis
by active event tagging, utilizing some unique event features, or
by reducing the flux of the background radiation by appropriate
shielding and material selection. In both cases, the background rate is
proportional to the flux of the interfering radiation. Its reduction is
thus essential for realizing the full physics potential of the experiment.
In this context, “low energy” may be defined as the regime of natural,
anthropogenic, or cosmogenic radioactivity, all at energies up to about
10 MeV. See [86,87] for in-depth reviews of this subject. Following the
classification of [86], sources of background may be categorized into
the following classes:

1. environmental radioactivity,

2. radio-impurities in detector or shielding components,

3. radon and its progeny,

4. cosmic rays,

5. neutrons from natural fission, (α, n) reactions and from cosmic-ray
muon spallation and capture.
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35.6.1. Defining the problem : The application defines the
requirements. Background goals can be as demanding as a few
low-energy events per year in a ton-size detector. The strength of
the physics signal of interest can often be estimated theoretically or
from limits derived by earlier experiments. The experiments are then
designed for the desired signal-to-background ratio. This requires
finding the right balance between “clarity of measurement”, ease of
construction, and budget. In a practical sense, it is important to
formulate background goals that are sufficient for the task at hand
but achievable, in a finite time. It is standard practice to use detector
simulations to translate the background requirements into limits for
the radioactivity content of various detector components, requirements
for radiation shielding, and allowable cosmic-ray fluxes. This strategy
allows the identification of the most critical components early and
facilitates the allocation of analysis and development resources in
a rational way. The CERN code GEANT4 [88] is a widely used
tool for this purpose. It has incorporated sufficient nuclear physics
to allow accurate background estimations. Custom-written event
generators, modeling e.g., particle correlations in complex decay
schemes, deviations from allowed beta spectra or γ − γ-angular
correlations, are used as well.

35.6.2. Environmental radioactivity : The long-lived natural
radio-nuclides 40K, 232Th, and 238U have average abundances of
1.6, 11.1 and 2.7 ppm (corresponding to 412, 45 and 33 Bq/kg,
respectively) in the earth’s crust, with large local variations. In
most applications, γ radiation emitted due to the decay of natural
radioactivity and its unstable daughters constitutes the dominant
contribution to the local radiation field. Typical low-background
applications require levels of natural radioactivity on the order of ppb
or ppt in the detector components. Passive or active shielding is used
to suppress external γ radiation down to an equivalent level. Fig. 35.9
shows the energy-dependent attenuation length λ(Eγ) as a function of
γ-ray energy Eγ for three common shielding materials (water, copper,
lead). The thickness ℓ required to reduce the external flux by a factor
f > 1 is estimated, assuming exponential damping:

ℓ = λ(Eγ) · ln f . (35.10)

At 100 keV, a typical energy scale for dark matter searches (or
2.615 MeV, for a typical double-beta decay experiment), attenuation
by a factor f = 105 requires 67(269) cm of H2O, 2.8(34) cm of Cu,
or 0.18(23) cm of Pb. Such estimates allow for an order-of-magnitude
determination of the experiment dimensions.
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Figure 35.9: γ-ray attenuation lengths in some common
shielding materials. The mass attenuation data has been
taken from the NIST data base XCOM; see “Atomic Nuclear
Properties” at pdg.lbl.gov.

A precise estimation of the the magnitude of the external gamma-
ray background, including scattering and the effect of analysis-energy
cuts, requires Monte Carlo simulations based on the the knowledge

of the radioactivity present in the laboratory. Detailed modeling of
the γ-ray flux in a large laboratory, or inside the hermetic shielding,
needs to cope with a very small probability of generating any signal
in the detector. It is often advantageous to calculate solid angle of
the detector to the background sources and mass attenuation of the
radiation shield separately, or to employ importance sampling. The
former method can lead to loss of energy-direction correlations while
in the latter has to balance CPU-time consumption against the loss
of statistical independence. These approaches reduce the computation
time required for a statistically meaningful number of detector hits to
manageable levels.

Water is commonly used as shielding medium for large detectors,
as it can be obtained cheaply and purified effectively in large quantity.
Water purification technology is commercially available. Ultra-pure
water, instrumented with photomultiplier tubes, can serve as active
cosmic-ray veto counter. Water is also an effective neutron moderator
and shield. In more recent underground experiments that involve
detectors operating at cryogenic temperature, liquefied gases (e.g.
argon) are being used for shielding as well.

35.6.3. Radioactive impurities in detector and shielding com-

ponents : After suppressing the effect of external radioactivity,
radioactive impurities, contained in the detector components or
attached to their surfaces, become important. Every material contains
radioactivity at some level. The activity can be natural, cosmogenic,
man-made, or a combination of them. The determination of the
activity content of a specific material or component requires case-
by-case analyses, and is rarely obtainable from the manufacturer.
However, there are some general rules that can be used to guide
the pre-selection. For detectors designed to look for electrons (for
example in double-beta decay searches or neutrino detection via
inverse beta decay or elastic scattering), intrinsic radioactivity is often
the principal source of background. For devices detecting nuclear
recoils (for example in dark matter searches), this is often of secondary
importance as ionization signals can be actively discriminated on
an event-by-event basis. Decay induced nuclear reactions become a
concern.

For natural radioactivity, a rule of thumb is that synthetic
substances are cleaner than natural materials. Typically, more highly
processed materials have lower activity content than raw substances.
Substances with high electro-negativity tend to be cleaner as the
refining process preferentially removes K, Th, and U. For example, Al
is often found to contain considerable amounts of Th and U, while
electrolytic Cu is very low in primordial activities. Plastics or liquid
hydrocarbons, having been refined by distillation, are often quite
radiopure. Tabulated radioassay results for a wide range of materials
can be found in Refs. [89] and [90]. Radioassay results from previous
underground physics experiments are being archived at an online
database [91].

The long-lived 238U daughter 210Pb (T1/2=22.3 y) is found in all
shielding lead, and is a background concern at low energies. This is
due to the relatively high endpoint energy (Qβ=1.162 MeV) of its

beta-unstable daughter 210Bi. Lead refined from selected low-U ores
have specific activities of about 5–30 Bq/kg. For applications that
require lower specific activity, ancient lead (for example from Roman
ships) is sometimes used. Because the ore processing and lead refining
removed most of the 238U, the 210Pb decayed during the long waiting
time to the level supported by the U-content of the refined lead.
Lining the lead with copper to range out the low-energy radiation is
another remedy. However, intermediate-Z materials carry additional
cosmogenic-activation risks when handled above ground, as will be
discussed below. 210Pb is also found in solders.

Man-made radioactivity, released during above-ground nuclear
testing and nuclear power production, is a source of background.
The fission product 137Cs can often be found attached to the surface
of materials. The radioactive noble gas 85Kr, released into the
atmosphere by nuclear reactors and nuclear fuel re-processing, is
sometimes a background concern, especially due to its high solubility
in organic materials. Post-World War II steel typically contains a few
tens of mBq/kg of 60Co.

Surface activity is not a material property per se but is added
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during manufacturing and handling. Surface contamination can often
be effectively removed by clean machining, etching, or a combination
of both. The assembly of low-background detectors is often performed
in controlled enclosures (e.g. clean rooms or glove boxes) to avoid
contaminating surfaces with environmental substances, such as dust,
containing radioactivity at much higher concentrations than the
detector components. Surfaces are cleaned with high purity chemicals
and de-ionized water. When not being processed components are
best stored in sealed bags to limit dust deposition on the surface,
even inside clean rooms. Surface contamination can be quantified
by means of wipe-testing with acid or alcohol wetted Whatman 41
filters. Pre-soaking of the filters in clean acid reduces the amount of
Th and U contained in the paper and boosts analysis sensitivity. The
paper filters are ashed after wiping and the residue is digested in
acid. Subsequent analysis by means of mass spectroscopy or neutron
activation analysis is capable of detecting less than 1 pg/cm2 of Th
and U.

The most demanding low-rate experiments require screening of all
components, which can be a time consuming task. The requirements
for activity characterization depend on the experiment and the location
and amount of a particular component. Monte Carlo simulations are
used to quantify these requirements. Sensitivities of the order
µBq/kg or less are sometimes required for the most critical detector
components. At such a level of sensitivity, the characterization
becomes a challenging problem in itself. Low-background α, β, and
γ-ray counting, mass spectroscopy, and neutron activation analysis are
the commonly used diagnostic techniques.

35.6.4. Radon and its progeny : The noble gas 222Rn, a pure
α-emitter, is a 238U decay product. Due to its relatively long half-life
of 3.8 d it is released by surface soil and is found in the atmosphere
everywhere. 220Rn (232Th decay product) is mostly unimportant for
most low-background experiments because of its short half-life. The
222Rn activity in air ranges from 10 to 100 mBq/L outdoors and 100
to thousands of mBq/L indoors. The natural radon concentration
depends on the weather and shows daily and seasonal variations.
Radon levels are lowest above the oceans. For electron detectors, it
is not the Rn itself that creates background, but its progeny 214Pb,
214Bi, 210Bi, which emit energetic beta and γ radiation. Thus, not
only the detector itself has to be separated from contact with air, but
also internal voids in the shield which contain air can be a background
concern. Radon is quite soluble in water and even more so in organic
solvents. For large liquid scintillation detectors, radon mobility due
to convection and diffusion is a concern. To define a scale: typical
double-beta-decay searches are are restricted to < µBq/kgdetector
(or 1 decay per kgdetector and per 11.6 days) activities of 222Rn in
the active medium. This corresponds to a steady-state population of
0.5 atoms/kgdetector or 50 µL/kgdetector of air (assuming 20 mBq/L
of radon in the air). The demand on leak tightness can thus be quite
demanding. The decay of Rn itself is a concern for some recoil type
detectors, as nuclear recoil energies in α decays are substantial (76
keV in the case of 222Rn).

Low-background detectors are often kept sealed from the air and
continuously flushed with boil-off nitrogen, which contains only small
amounts of Rn. For the most demanding applications, the nitrogen is
purified by multiple distillations, or by using pressure swing adsorption
chromatography. Then only the Rn outgassing of the piping (due to
its intrinsic U content) determines the radon concentration. Radon
diffuses readily through thin plastic barriers. If the detector is to be
isolated from its environment by means of a membrane, the choice of
material is important [92].

Prolonged exposure of detector components or raw materials to
air leads to the accumulation of the long-lived radon daughter 210Pb
on surfaces. Due to its low Q-value of 63.5 keV, 210Pb itself is
only a problem when extreme low energy response is important.
However, because of its higher Q-value, the lead daughter 210Bi, is a
concern up to the MeV scale. The alpha unstable Bi-daughter 210Po
(Eα = 5304 keV) contributes not only to the alpha background but
can also induce the emission of energetic neutrons via (α,n) reactions
on low-Z materials (such as F, C, Si...etc). The neutrons, in turn, may
capture on other detector components, creating energetic background.

The (α,n) reaction yield induced by the α decay of 210Po is typically
small (6 · 10−6 n/α in Teflon, for example). Some data is available on
the deposition of radon daughters from air onto materials, see e.g. [94].
This data indicates effective radon daughter collection distances of a
a few cm in air. These considerations limit the allowable air exposure
time. In case raw materials (e.g. in the form of granules) were
exposed to air at the production site, the bulk of the finished detector
components may be loaded with 210Pb and its daughters. These are
difficult to detect as no energetic gamma radiation is emitted in their
decays. Careful air-exposure management is the only way to reduce
this source of background. This can be achieved by storing the parts
under a protective low-radon cover gas or keeping them sealed from
radon.

State-of-the-art detectors can detect radon even at the level of
few atoms. Solid state, scintillation, or gas detectors utilize alpha
spectroscopy or are exploiting the fast β − α decay sequences of 214Bi
and 214Po. The efficiency of these devices is sometimes boosted by
electrostatic collection of charged radon from a large gas volume into
a small detector.

35.6.5. Cosmic rays : Cosmic radiation, discussed in detail in
Chapter 29, is a source of background for just about any non-
accelerator experiment. Primary cosmic rays are about 90% protons,
9% alpha particles, and the rest heavier nuclei (Fig. 29.1). They are
totally attenuated within the first the first few hg/cm2 of atmospheric
thickness. At sea level secondary particles (π± : p : e± : n : µ±) are
observed with relative intensities 1 : 13 : 340 : 480 : 1420 (Ref. 95; also
see Fig. 29.4).

All but the muon and the neutron components are readily absorbed
by overburden such as building ceilings and passive shielding. Only if
there is very little overburden (<∼10 g/cm2 or so [86]) do pions and
protons need to be considered when estimating the production rate of
cosmogenic radioactivity.

Sensitive experiments are thus operated deep underground where
essentially only muons can penetrate. As shown in Fig. 29.7, the
muon intensity falls off rapidly with depth. Active detection systems,
capable of tagging events correlated in time with cosmic-ray activity,
are needed, depending on the overburden.

The muonic background is related to low-radioactivity techniques
insofar as photo-nuclear interactions with atomic nuclei can produce
long-lived radioactivity directly or indirectly via the creation of
neutrons. This happens at any overburden, however, at strongly depth
dependent rates. Muon bremsstrahlung, created in high-Z shielding
materials, contributes to the low energy background too. Active muon
detection systems are effective in reducing this background, but only
for activities with sufficiently short half-lives, allowing vetoing with
reasonable detector dead time.

Cosmogenic activation of detector components at the surface can
be an issue for low-background experiments. Proper management
of parts and materials above ground during manufacturing and
detector assembly minimizes the accumulation of long-lived activity.
Cosmogenic activation is most important for intermediate-Z materials
such as Cu and Fe. For the most demanding applications, metals are
stored and transported under sufficient shielding to stop the hadronic
component of the cosmic rays. Parts can be stored underground
for long periods before being used. Underground machine shops are
sometimes used to limit the duration of exposure at the surface. Some
experiments are even electro-forming copper underground.

35.6.6. Neutrons : Neutrons contribute to the background of low-
energy experiments in different ways: directly through nuclear recoil
in the detector medium, and indirectly, through the production of
radio-nuclides, capture γs and inelastic scattering inside the detector
and its components. The indirect mechanisms allow even remote
materials to contribute to the background by means of penetrating
γ radiation. Neutrons are thus an important source of low-energy
background. They are produced in different ways:

1. At the earth’s surface the flux of cosmic-ray secondary neutrons
is exceeded only by that of muons;

2. Energetic tertiary neutrons are produced by cosmic-ray muons by
nuclear spallation in the detector and laboratory walls;
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3. In high-Z materials, often used in radiation shields, nuclear
capture of negative muons results in the emission of neutrons;

4. Natural radioactivity has a neutron component through sponta-
neous fission and (α, n)-reactions.

A calculation with the hadronic simulation code FLUKA [93], using
the known energy distribution of secondary neutrons at the earth’s
surface [96], yields a mass attenuation of 1.5 hg/cm2 in concrete
for secondary neutrons. In case energy-dependent neutron-capture
cross sections are known, such calculations can be used to obtain the
production rate of particular radio-nuclides.

At an overburden of only few meters water equivalent, neutron
production by muons becomes the dominant mechanism. Neutron
production rates are high in high-Z shielding materials. A high-Z
radiation shield, discussed earlier as being effective in reducing
background due to external radioactivity, thus acts as a source
for cosmogenic tertiary high-energy neutrons. Depending on the
overburden and the radioactivity content of the laboratory, there is
an optimal shielding thickness. Water shields, although bulky, are an
attractive alternative due to their low neutron production yield and
self-shielding.

Shields made from plastic or water are commonly used to reduce
the neutron flux. The shield is sometimes doped with a substance
having a high thermal neutron capture cross section (such as boron)
to absorb thermal neutrons more quickly. The hydrogen, contained in
these shields, serves as a target for elastic scattering, and is effective
in reducing the neutron energy. Neutrons from natural radioactivity
have relatively low energies and can be effectively suppressed by a
neutron shield. Ideally, such a neutron shield should be inside the lead
to be effective for tertiary neutrons. However, this is rarely done as it
increases the neutron production target (in form of the passive shield),
and the costs increase as the cube of the linear dimensions. An active
cosmic-ray veto is an effective solution, correlating a neutron with its
parent muon. This solution works best if the veto system is as far away
from the detector as feasible (outside the radiation shield) in order
to correlate as many background-producing muons with neutrons as
possible. The vetoed time after a muon hit needs to be sufficiently long
to assure muon bremsstrahlung and neutron-induced backgrounds are
sufficiently suppressed. An upper limit to the allowable veto period
is given by the veto-induced deadtime, which is related to the muon
hit rate on the veto detector. This consideration also constitutes the
limiting factor for the physical size of the veto system (besides the
cost). The background caused by neutron-induced radioactivity with
live-times exceeding the veto time cannot be addressed in this way.
Moving the detector deep underground, and thus reducing the muon
flux, is the only technique that addresses all sources of cosmogenic the
neutron background.

References:

1. R.M. Baltrusaitis et al., Nucl. Instrum. Methods A20, 410
(1985).

2. T. Abu-Zayyad et al., Nucl. Instrum. Methods A450, 253 (2000).
3. H. Tokuno et al., Nucl. Instrum. Methods A676, 54 (2012).
4. J. Abraham et al. [Pierre Auger Collab.], Nucl. Instrum. Methods

A620, 227 (2010).
5. J. Abraham et al. [Pierre Auger Collab.], Eur. Phys. J. Plus

127, 94 (2012).
6. A. Huangs, G. Medina-Tanco and A. Santangelo, Experimental

Astronomy 40, 1 (2015).
7. F. Arqueros, J. Hrandel, and B. Keilhauer, Nucl. Instrum.

Methods A597, 23 (2008).
8. F. Arqueros, J. Hrandel, and B. Keilhauer, Nucl. Instrum.

Methods A597, 1 (2008).
9. J. Rosado, F. Blanco, and F. Arqueros, Astropart. Phys. 34, 164

(2010).
10. J. Boyer et al., Nucl. Instrum. Methods A482, 457 (2002);

J.Abraham et al. [Pierre Auger Collab.], Nucl. Instrum. Methods
A620, 227 (2010).

11. M. Ave et al. [AIRFLY Collab.], Astropart. Phys. 28, 41 (2007).
12. J. Rosado, F. Blanci, and F. Arqueros, Astropart. Phys. 55, 51

(2014).
13. J.T. Brack et al., Astropart. Phys. 20, 653, (2004).

14. B. Fick et al., JINST 1, 11003 (2006).
15. J. Abraham et al. [Pierre Auger Collab.], Astropart. Phys. 33,

108 (2010).
16. J. Abraham et al. [Pierre Auger Collab.], Astropart. Phys. 34,

368 (2011).
17. M. Unger et al., Nucl. Instrum. Methods A588, 433 (2008).
18. T.K. Gaisser and A.M. Hillas, Proc. 15th Int. Cosmic Ray Conf.

Bulgarska Akademiia na Naukite, Conf. Papers 8, 353 (1978).
19. J. Holder et al., AIP Conf. Proc. 1085, 657 (2008).
20. F. Aharonian et al., Astron. & Astrophys. 457, 899 (2006).
21. J. Albert et al., Astrophys. J. 674, 1037 (2008).
22. F. Aharonian et al., Astron. & Astrophys. 464, 235 (2007).
23. E. Aliu et al., Science 322, 1221 (2008).
24. T.C. Weekes et al., Astrophys. J. 342, 379 (1989).
25. A.M. Hillas et al., Astrophys. J. 503, 744 (1998).
26. http://tevcat.uchicago.edu/.
27. F.A. Aharonian et al., Astrophys. J. 636, 777 (2006).
28. B.S. Acharya et al., Astropart. Phys. 43, 3 (2013).
29. L.A. Bernstein et al., arXiv:0907.4183 (2009).
30. Y. Ashie et al., Phys. Rev. D71, 112005 (2005).
31. S. Kasuga et al., Phys. Lett. B374, 238 (1996).
32. M. Shiozawa, Nucl. Instrum. Methods A433, 240 (1999).
33. K. Abe et al., Phys. Rev. D83, 052010 (2011).
34. J. Beacom and M. Vagins, Phys. Rev. Lett. 93, 171101 (2004).
35. J. Boger et al., Nucl. Instrum. Methods A449, 172 (2000).
36. T.K. Gaisser, F. Halzen, and T. Stanev, Phys. Reports 258, 173

(1995);
T.K. Gaisser, F. Halzen, and T. Stanev, Phys. Reports 271, 355
(1995).

37. J.G. Learned and K. Mannheim, Ann. Rev. Nucl. and Part. Sci.
50, 679 (2000).

38. U.F. Katz and C. Spiering, Prog. in Part. Nucl. Phys. 67, 651
(2012).

39. A. Avronin et al. [Baikal Collab.], Phys. Part. Nucl. 46, 211
(2015).

40. M.G. Aartsen et al. [IceCube-PINGU Collab.], arXiv:1401.2046
(2014).

41. M.G. Aartsen et al. [IceCube-Gen2 Collab.], arXiv:1412.5106
(2014).

42. S. Adrián-Mart́ınez et al. [KM3NeT Collab.], Eur. Phys. J. C74,
3056 (2014);
S. Adrián-Mart́ınez et al. [KM3NeT Collab.], Eur. Phys. J. C76,
54 (2016).

43. M.G. Aartsen et al. [IceCube Collab.], Phys. Rev. Lett. 113,
101101 (2014).

44. S. Adrián-Mart́ınez et al. [ANTARES Collab.], Astrophys. J.
786, L5 (2014).

45. M.G. Aartsen et al. [IceCube Collab.], Phys. Rev. D91, 072004
(2015).

46. M.G. Aartsen et al. [IceCube Collab.], arXiv:1510.05222-

05223,
arXiv:1510.05225-05227 (2015).

47. C.W. James, PoS(ICRC2015)024 (2015).
48. K. Griesen, Phys. Rev. Lett. 16, 748 (1966);

G.T. Zatsepin and V.A. Kuzmin, JETP Lett. 4, 78 (1966).
49. R. Abbasi et al. [IceCube Collab.], Astropart. Phys. 34, 382

(2011).
50. S.R. Klein, arXiv:1012.1407 (2010).
51. G.A. Askaryan, Sov. Phys. JETP 14, 441 (1962);

G.A. Askaryan, Sov. Phys. JETP 21, 658 (1965).
52. J. Alvarez-Muniz et al., Phys. Rev. D62, 063001 (2000).
53. D. Saltzberg et al., Phys. Rev. Lett. 86, 2802 (2001);

O. Scholten et al., J. Phys. Conf. Ser. 81, 012004 (2007).
54. P. Allison et al. [ARA Collab.], Astropart. Phys. 70, 62 (2015).
55. J.C. Hanson et al. [ARIANNA Collab.], J. Glaciology 61, 438

(2015).
56. J. Avva et al., arXiv:1409.5413 (2014).
57. T. Huege, Braz. J. Phys. 44, 520 (2014).
58. S. Hoover et al., Phys. Rev. Lett. 105, 151101 (2010).
59. M. Detrixhe et al. [ANITA-II Collab.], Phys. Rev. D83, 023513

(2011).



35. Detectors for non-accelerator physics 509

60. R.D. Dagkesamanskii and I.M. Zheleznykh, Sov. Phys. JETP
Lett. 50, 233 (1989).

61. J.D. Bray et al., arXiv:1509.05256 (2015).
62. J.A. Dowdeswell and S. Evans, Rept. on Prog. in Phys. 67, 1821

(2004).
63. P. Gorham et al. [ANITA Collab.], Phys. Rev. Lett. 103, 051103

(2009). The published limit is corrected in an erratum, P.
Gorham et al., arXiv:1011.5004 (2010).

64. I. Kravchenko et al., Phys. Rev. D73, 082002 (2006);
I. Kravchenko et al., Astropart. Phys. 19, 15 (2003).

65. P. Allison et al. [ARA Collab.], arXiv:1507.08991 (2015);
P. Allison et al. [ARA Collab.], Astropart. Phys. 70, 62 (2015).

66. S.W. Barwick et al. [ARIANNA Collab.], arXiv:1410.7369

(2014).
67. S.A. Wissel et al., PoS(ICRC2015)1150 (2015).
68. J.D. Bray et al., Phys. Rev. D91, 063002 (2015).
69. S.W. Barwick et al. [ARIANNA Collab.], Astropart. Phys. 70,

12 (2015).
70. E. Aprile and T. Doke, Rev. Mod. Phys. 82, 2053 (2010).
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36. RADIOACTIVITY AND RADIATION PROTECTION

Revised August 2013 by S. Roesler and M. Silari (CERN).

36.1. Definitions [1,2]

It would be desirable if legal protection limits could be expressed in
directly measurable physical quantities. However, this does not allow
to quantify biological effects of the exposure of the human body to
ionizing radiation.

For this reason, protection limits are expressed in terms of so-called
protection quantities which, although calculable, are not measurable.
Protection quantities quantify the extent of exposure of the human
body to ionizing radiation from both whole and partial body external
irradiation and from intakes of radionuclides.

In order to demonstrate compliance with dose limits, so-called
operational quantities are typically used which aim at providing
conservative estimates of protection quantities. Often radiation
protection detectors used for individual and area monitoring are
calibrated in terms of operational quantities and, thus, these
quantities become “measurable”.

36.1.1. Physical quantities :

• Fluence, Φ (unit: 1/m2): The fluence is the quotient of dN by
da, where dN is the number of particles incident upon a small sphere
of cross-sectional area da

Φ = dN/da . (36.1)

In dosimetric calculations, fluence is frequently expressed in terms
of the lengths of the particle trajectories. It can be shown that the
fluence, Φ, is given by

Φ = dl/dV,

where dl is the sum of the particle trajectory lengths in the volume
dV .

• Absorbed dose, D (unit: gray, 1 Gy=1 J/kg=100 rad): The
absorbed dose is the energy imparted by ionizing radiation in a volume
element of a specified material divided by the mass of this volume
element.

• Kerma, K (unit: gray): Kerma is the sum of the initial kinetic
energies of all charged particles liberated by indirectly ionizing
radiation in a volume element of the specified material divided by the
mass of this volume element.

• Linear energy transfer, L or LET (unit: J/m, often given in
keV/µm, 1 keV/µm≈ 1.602 × 10−10 J/m): The linear energy transfer
is the mean energy, dE, lost by a charged particle owing to collisions
with electrons in traversing a distance dl in matter. Low-LET
radiation: X rays and gamma rays (accompanied by charged particles
due to interactions with the surrounding medium) or light charged
particles such as electrons that produce sparse ionizing events far
apart at a molecular scale (L < 10 keV/µm). High-LET radiation:

neutrons and heavy charged particles that produce ionizing events
densely spaced at a molecular scale (L > 10 keV/µm).

• Activity, A (unit: becquerel, 1 Bq=1/s=27 pCi): Activity is the
expectation value of the number of nuclear decays occurring in a given
quantity of material per unit time.

36.1.2. Protection quantities :

• Organ absorbed dose, DT (unit: gray): The mean absorbed
dose in an organ or tissue T of mass mT is defined as

DT =
1

mT

∫
mT

Ddm .

• Equivalent dose, HT (unit: sievert, 1 Sv=100 rem): The
equivalent dose HT in an organ or tissue T is equal to the sum
of the absorbed doses DT,R in the organ or tissue caused by
different radiation types R weighted with so-called radiation weighting
factors wR:

HT =
∑
R

wR × DT,R . (36.2)

Table 36.1: Radiation weighting factors, wR.

Radiation type wR

Photons, electrons and muons 1

Neutrons, En < 1 MeV 2.5 + 18.2 × exp[−(lnEn)2/6]

1 MeV ≤ En ≤ 50 MeV 5.0 + 17.0 × exp[−(ln(2En))2/6]

En > 50 MeV 2.5 + 3.25 × exp[−(ln(0.04En))2/6]

Protons and charged pions 2

Alpha particles, fission

fragments, heavy ions 20

It expresses long-term risks (primarily cancer and leukemia) from
low-level chronic exposure. The values for wR recommended by
ICRP [2] are given in Table 36.1.

• Effective dose, E (unit: sievert): The sum of the equivalent
doses, weighted by the tissue weighting factors wT (

∑
T wT = 1) of

several organs and tissues T of the body that are considered to be
most sensitive [2], is called “effective dose”:

E =
∑
T

wT × HT . (36.3)

36.1.3. Operational quantities :

• Ambient dose equivalent, H∗(10) (unit: sievert): The dose
equivalent at a point in a radiation field that would be produced by
the corresponding expanded and aligned field in a 30 cm diameter
sphere of unit density tissue (ICRU sphere) at a depth of 10 mm on
the radius vector opposing the direction of the aligned field. Ambient
dose equivalent is the operational quantity for area monitoring.

• Personal dose equivalent, Hp(d) (unit: sievert): The dose
equivalent in ICRU tissue at an appropriate depth, d, below a specified
point on the human body. The specified point is normally taken to
be where the individual dosimeter is worn. For the assessment of
effective dose, Hp(10) with a depth d = 10 mm is chosen, and for
the assessment of the dose to the skin and to the hands and feet the
personal dose equivalent, Hp(0.07), with a depth d = 0.07 mm, is used.
Personal dose equivalent is the operational quantity for individual

monitoring.

36.1.4. Dose conversion coefficients :

Dose conversion coefficients allow direct calculation of protection
or operational quantities from particle fluence and are functions of
particle type, energy and irradiation configuration. The most common
coefficients are those for effective dose and ambient dose equivalent.
The former are based on simulations in which the dose to organs
of anthropomorphic phantoms is calculated for approximate actual
conditions of exposure, such as irradiation of the front of the body
(antero-posterior irradiation) or isotropic irradiation.

Conversion coefficients from fluence to effective dose are given for
anterior-posterior irradiation and various particles in Fig. 36.1 [3].
For example, the effective dose from an anterior-posterior irradiation
in a field of 1-MeV neutrons with a fluence of 1 neutron per cm2

is about 290 pSv. In Monte Carlo simulations such coefficients allow
multiplication with fluence at scoring time such that effective dose to
a human body at the considered location is directly obtained.

36.2. Radiation levels [4]

• Natural background radiation: On a worldwide average, the
annual whole-body dose equivalent due to all sources of natural
background radiation ranges from 1.0 to 13 mSv (0.1–1.3 rem) with
an annual average of 2.4 mSv [5]. In certain areas values up to
50 mSv (5 rem) have been measured. A large fraction (typically more
than 50%) originates from inhaled natural radioactivity, mostly radon
and radon daughters. The latter can vary by more than one order of
magnitude: it is 0.1–0.2 mSv in open areas, 2 mSv on average in a
house and more than 20 mSv in poorly ventilated mines.
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Figure 36.1: Fluence to effective dose conversion coefficients
for anterior-posterior irradiation and various particles [3].

• Cosmic ray background radiation: At sea level, the whole-
body dose equivalent due to cosmic ray background radiation is
dominated by muons; at higher altitudes also nucleons contribute.
Dose equivalent rates range from less than 0.1 µSv/h at sea level to a
few µSv/h at aircraft altitudes. Details on cosmic ray fluence levels
are given in the Cosmic Rays section (Sec. 29 of this Review).

• Fluence to deposit one Gy: Charged particles: The flu-
ence necessary to deposit a dose of one Gy (in units of
cm−2) is about 6.24 × 109/(dE/dx), where dE/dx (in units of
MeV g−1 cm2) is the mean energy loss rate that may be obtained
from Figs. 33.2 and 33.4 in Sec. 33 of this Review, and from
http://pdg.lbl.gov/AtomicNuclearProperties. For example, it is
approximately 3.5 × 109 cm−2 for minimum-ionizing singly-charged
particles in carbon. Photons: This fluence is about 6.24× 109/(Ef/ℓ)
for photons of energy E (in MeV), an attenuation length ℓ (in
g cm−2), and a fraction f . 1, expressing the fraction of the photon
energy deposited in a small volume of thickness ≪ ℓ but large enough
to contain the secondary electrons. For example, it is approximately
2 × 1011 cm−2 for 1 MeV photons on carbon (f ≈ 1/2).

36.3. Health effects of ionizing radiation

Radiation can cause two types of health effects, deterministic and
stochastic:

• Deterministic effects are tissue reactions which cause injury to a
population of cells if a given threshold of absorbed dose is exceeded.
The severity of the reaction increases with dose. The quantity in use
for tissue reactions is the absorbed dose, D. When particles other than
photons and electrons (low-LET radiation) are involved, a Relative
Biological Effectiveness (RBE)-weighted dose may be used. The RBE
of a given radiation is the reciprocal of the ratio of the absorbed dose
of that radiation to the absorbed dose of a reference radiation (usually
X rays) required to produce the same degree of biological effect. It is
a complex quantity that depends on many factors such as cell type,
dose rate, fractionation, etc.

• Stochastic effects are malignant diseases and heritable effects for
which the probability of an effect occurring, but not its severity, is a
function of dose without threshold.

• Lethal dose: The whole-body dose from penetrating ionizing
radiation resulting in 50% mortality in 30 days (assuming no medical
treatment) is 2.5–4.5 Gy (250–450 rad)†, as measured internally on the
body longitudinal center line. The surface dose varies due to variable
body attenuation and may be a strong function of energy.

• Cancer induction: The cancer induction probability is about 5%
per Sv on average for the entire population [2].

• Recommended effective dose limits: The International
Commission on Radiological Protection (ICRP) recommends a limit
for radiation workers of 20 mSv effective dose per year averaged over

† RBE-weighted when necessary

5 years, with the provision that the dose should not exceed 50 mSv in
any single year [2]. The limit in the EU-countries and Switzerland is
20 mSv per year, in the U.S. it is 50 mSv per year (5 rem per year).
Many physics laboratories in the U.S. and elsewhere set lower limits.
The effective dose limit for general public is typically 1 mSv per year.

36.4. Prompt neutrons at accelerators

Neutrons dominate the particle environment outside thick shielding
(e.g., > 1 m of concrete) for high energy (> a few hundred MeV)
electron and hadron accelerators. In addition, for accelerators with
energies above about 10 GeV, muons contribute significantly at
small angles with regard to the beam, even behind several meters of
shielding. Another special case are synchrotron light sources where
particular care has to be taken to shield the very intense low-energy
photons extracted from the electron synchrotron into the experimental
areas. Due to its importance at high energy accelerators this section
focuses on prompt neutrons.

36.4.1. Electron accelerators :

At electron accelerators, neutrons are generated via photonuclear
reactions from bremsstrahlung photons. Neutron production takes
place above a threshold value which varies from 10 to 19 MeV for light
nuclei (with important exceptions, such as 2.23 MeV for deuterium
and 1.67 MeV for beryllium) and from 4 to 6 MeV for heavy nuclei.
It is commonly described by different mechanisms depending on the
photon energy: the giant dipole resonance interactions (from threshold
up to about 30 MeV, often the dominant process), the quasi-deuteron
effect (between 30 MeV and a few hundred MeV), the delta resonance
mechanism (between 200 MeV and a few GeV) and the vector meson
dominance model at higher energies.

The giant dipole resonance reaction consists in a collective
excitation of the nucleus, in which neutrons and protons oscillate in
the direction of the photon electric field. The oscillation is damped
by friction in a few cycles, with the photon energy being transferred
to the nucleus in a process similar to evaporation. Nucleons emitted
in the dipolar interaction have an anisotropic angular distribution,
with a maximum at 90

◦

, while those leaving the nucleus as a result
of evaporation are emitted isotropically with a Maxwellian energy
distribution described as [6]:

dN

dEn
=

En

T 2
e−En/T , (36.4)

where T is a nuclear ‘temperature’ (in units of MeV) characteristic
of the particular target nucleus and its excitation energy. For heavy
nuclei the ‘temperature’ generally lies in the range of T = 0.5–1.0
MeV. Neutron yields from semi-infinite targets per kW of electron
beam power are plotted in Fig. 36.2 as a function of the electron beam
energy [6].

Typical neutron energy spectra outside of concrete (80 cm thick,
2.35 g/cm3) and iron (40 cm thick) shields are shown in Fig. 36.3.
In order to compare these spectra to those caused by proton beams
(see below) the spectra are scaled by a factor of 100, which roughly
corresponds to the difference in the high energy hadronic cross sections
for photons and hadrons (e.g., the fine structure constant). The shape
of these spectra are generally characterized by a low-energy peak at
around 1 MeV (evaporation neutrons) and a high-energy shoulder at
around 70–80 MeV. In case of concrete shielding, the spectrum also
shows a pronounced peak at thermal neutron energies.

36.4.2. Proton accelerators :

At proton accelerators, neutron yields emitted per incident proton
by different target materials are roughly independent of proton energy
between 20 MeV and 1 GeV, and are given by the ratio C : Al : Cu-Fe
: Sn : Ta-Pb = 0.3 : 0.6 : 1.0 : 1.5 : 1.7 [9]. Above about 1 GeV, the
neutron yield is proportional to Em, where 0.80 ≤ m ≤ 0.85 [10].

Typical neutron energy spectra outside of concrete and iron
shielding are shown in Fig. 36.3. Here, the radiation fields are caused
by a 25 GeV proton beam interacting with a thick copper target.
The comparison of these spectra with those for an electron beam of
the same energy reflects the difference in the hadronic cross sections
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Figure 36.2: Neutron yields from semi-infinite targets per kW
of electron beam power, as a function of the electron beam
energy, disregarding target self-shielding [6].
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Figure 36.3: Neutron energy spectra calculated with the
FLUKA code [7,8] from 25 GeV proton and electron beams
on a thick copper target. Spectra are evaluated at 90◦ to the
beam direction behind 80 cm of concrete or 40 cm of iron. All
spectra are normalized per beam particle. In addition, spectra
for electron beam are multiplied by a factor of 100.

between photons and hadrons above a few 100 MeV. Differences
are increasing towards lower energies because of different interaction
mechanisms. Furthermore, the slight shift in energy above about
100 MeV follows from the fact that the energies of the interacting
photons are lower than 25 GeV. Apart from this the shapes of the two
spectra are similar.

The neutron-attenuation length is shown in Fig. 36.4 for concrete
and mono-energetic broad-beam conditions. As can be seen in the
figure it reaches a value of about 117 g/cm2 above 200 MeV. As the
cascade through thick shielding is carried by high-energy particles
this value is equal to the equilibrium attenuation length for particles
emitted at 90 degrees in concrete.
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Figure 36.4: The variation of the attenuation length for
mono-energetic neutrons in concrete as a function of neutron
energy [9].

36.5. Photon sources

The dose equivalent rate in tissue (in mSv/h) from a gamma point
source emitting one photon of energy E (in MeV) per second at a
distance of 1 m is 4.6× 10−9 µen/ρ E, where µen/ρ is the mass energy
absorption coefficient. The latter has a value of 0.029 ± 0.004 cm2/g
for photons in tissue over an energy range between 60 keV and 2 MeV
(see Ref. 11 for tabulated values).

Similarly, the dose equivalent rate in tissue (in mSv/h) at
the surface of a semi-infinite slab of uniformly activated material
containing 1 Bq/g of a gamma emitter of energy E (in MeV) is
2.9 × 10−4 Rµ E, where Rµ is the ratio of the mass energy absorption
coefficients of the photons in tissue and in the material.
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copper sample [12].
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36.6. Accelerator-induced radioactivity

Typical medium- and long-lived activation products in metallic
components of accelerators are 22Na, 46Sc, 48V, 51Cr, 54Mn, 55Fe,
59Fe, 56Co, 57Co, 58Co, 60Co, 63Ni and 65Zn. Gamma-emitting
nuclides dominate doses by external irradiation at longer decay times
(more than one day) while at short decay times β+ emitters are also
important (through photons produced by β+ annihilation). Due to
their short range, β− emitters are relevant, for example, only for
dose to the skin and eyes or for doses due to inhalation or ingestion.
Fig. 36.5 and Fig. 36.6 show the contributions of gamma and β+

emitters to the total dose rate at 12.4 cm distance to a copper
sample [12]. The sample was activated by the stray radiation field
created by a 120 GeV mixed hadron beam dumped in a copper
target during about 8 hours at intensities between 107 − 108 hadrons
per second. Typically, dose rates at a certain decay time are mainly
determined by radionuclides having a half-life of the order of the
decay time. Extended irradiation periods might be an exception to
this general rule as in this case the activity of long-lived nuclides can
build up sufficiently so that it dominates that one of short-lived even
at short cooling times.

Activation in concrete is dominated by 24Na (short decay times)
and 22Na (long decay times). Both nuclides can be produced either by
low-energy neutron reactions on the sodium-component in the concrete
or by spallation reactions on silicon, calcium and other consituents
such as aluminum. At long decay times nuclides of radiological interest
in activated concrete can also be 60Co, 152Eu, 154Eu and 134Cs, all
of which produced by (n,γ)-reactions with traces of natural cobalt,
europium and cesium, Thus, such trace elements might be important
even if their content in concrete is only a few parts per million or less
by weight.

The explicit simulation of radionuclide production with general-
purpose Monte Carlo codes has become the most commonly applied
method to calculate induced radioactivity and its radiological
consequences. Nevertheless, other more approximative approaches,
such as “ω-factors” [9], can still be useful for fast order-of-magnitude
estimates. These ω-factors give the dose rate per unit star density
(inelastic reactions above a certain energy threshold, e.g. 50 MeV)
on contact to an extended, uniformly activated object after a 30-
day irradiation and 1-day decay. For steel or iron, ω ≃ 3 × 10−12

(Sv cm3/star). This does not include possible contributions from
thermal-neutron activation.

36.7. Radiation protection instrumentation

The capacity to distinguish and measure the high-LET (mostly
neutrons) and the low-LET components (photons, electrons, muons)
of the radiation field at workplaces is of primary importance
to evaluate the exposure of personnel. At proton machines the
prompt dose equivalent outside a shield is mainly due to neutrons,
with some contribution from photons and, to a minor extent,
charged particles. At high-energy electron accelerators the dominant
stray radiation during operation consists of high-energy neutrons,
because the shielding is normally thick enough to absorb most of the
bremsstrahlung photons. Most of the personnel exposure at accelerator
facilities is often received during maintenance interventions, and is
due to gamma/beta radiation coming from residual radioactivity in
accelerator components.

Radiation detectors used both for radiation surveys and area
monitoring are normally calibrated in ambient dose equivalent H∗(10).

36.7.1. Neutron detectors :

• Rem counters: A rem counter is a portable detector consisting of
a thermal neutron counter embedded in a polyethylene moderator,
with a response function that approximately follows the curve of
the conversion coefficients from neutron fluence to H∗(10) over a
wide energy range. Conventional rem counters provide a response
to neutrons up to approximately 10-15 MeV, extended-range units
are heavier as they include a high-Z converter but correctly measure
H∗(10) up to several hundred MeV.

• Bonner Sphere Spectrometer (BSS): A BSS is made up of
a thermal neutron detector at the centre of moderating spheres of
different diameters made of polyethylene (PE) or a combination of PE
and a high-Z material. Each sphere has a different response function
versus neutron energy, and the neutron energy, at which the sensitivity
peaks, increases with sphere diameter. The energy resolution of the
system is rather low but satisfactory for radiation protection purposes.
The neutron spectrum is obtained by unfolding the experimental
counts of the BSS with its response matrix by a computer code that is
often based on an iterative algorithm. BSS exist in active (using 3He
or BF3 proportional counters or 6LiI scintillators) and passive versions
(using CR-39 track detectors or LiF), for use e.g. in strongly pulsed
fields. With 3He counters the discrimination with respect to gamma
rays and noise is excellent.

• Bubble detectors: A bubble detector is a dosimeter based on
a super-heated emulsion (super-heated droplets suspended in a gel)
contained in a vial and acting as a continuously sensitive, miniature
bubble chamber. The total number of bubbles evolved from the
radiation-induced nucleation of drops gives an integrated measure of
the total neutron exposure. Various techniques exist to record and
count the bubbles, e.g., visual inspection, automated reading with
video cameras or acoustic counting. Bubble detectors are insensitive
to low-LET radiation. Super-heated emulsions are used as personal,
area and environmental dosimeters, as well as neutron spectrometers.

• Track etched detectors: Track etched detectors (TEDs) are based
on the preferential dissolution of suitable, mostly insulator, materials
along the damage trails of charged particles of sufficiently high-energy
deposition density. The detectors are effectively not sensitive to
radiation which deposits the energy through the interactions of
particles with low LET. These dosimeters are generally able to
determine neutron ambient dose equivalent down to around 100 µSv.
They are used both as personal dosimeters and for area monitoring,
e.g., in BSS.

36.7.2. Photon detectors :

• GM counters: Geiger Müller (GM) counters are low cost devices
and simple to operate. They work in pulse mode and since they only
count radiation-induced events, any spectrometric information is lost.
In general they are calibrated in terms of air kerma, for instance in
a 60Co field. The response of GM counters to photons is constant
within 15% for energies up to 2 MeV and shows considerable energy
dependence above.

• Ionization chambers: Ionization chambers are gas-filled detectors
used both as hand-held instruments (e.g., for radiation surveys)
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and environmental monitors. They are normally operated in current
mode although pulse-mode operation is also possible. They possess a
relatively flat response to a wide range of X- and gamma ray energies
(typically from 10 keV to several MeV), can measure radiation over
a wide intensity range and are capable of discriminating between the
beta and gamma components of a radiation field (by use of, e.g., a
beta window). Pressurized ion chambers (filled, e.g., with Ar or H
gas to several tens of bars) are used for environmental monitoring
applications. They have good sensitivity to neutrons and charged
hadrons in addition to low LET radiation (gammas and muons), with
the response function to the former being strongly non-linear with
energy.

• Scintillators: Scintillation-based detectors are used in radiation
protection as hand-held probes and in fixed installations, e.g., portal
monitors. A scintillation detector or counter is obtained coupling a
scintillator to an electronic light sensor such as a photomultiplier tube
(PMT), a photodiode or a silicon photomultiplier (SiPM). There is a
wide range of scintillating materials, inorganic (such as CsI and BGO),
organic or plastic; they find application in both photon dosimetry and
spectrometry.

36.7.3. Personal dosimeters :

Personal dosimeters, calibrated in Hp(10), are worn by persons
exposed to ionizing radiation for professional reasons to record the dose
received. They are typically passive detectors, either film, track etched
detectors, 6Li/7Li-based dosimeters (e.g. LiF), optically stimulated
luminescense (OSL) or radiophotoluminescence detectors (RPL) but
semi-active dosimeters using miniaturized ion-chambers also exist.

Electronic personal dosimeters are small active units for on-line
monitoring of individual exposure, designed to be worn on the body.
They can give an alarm on both the integral dose received or dose rate
once a pre-set threshold is exceeded.

36.8. Monte Carlo codes for radiation protection

studies

The use of general-purpose particle interaction and transport Monte
Carlo codes is often the most accurate and efficient choice for assessing
radiation protection quantities at accelerators. Due to the vast spread
of such codes to all areas of particle physics and the associated
extensive benchmarking with experimental data, the modeling has
reached an unprecedented accuracy. Furthermore, most codes allow
the user to simulate all aspects of a high energy particle cascade in
one and the same run: from the first interaction of a TeV nucleus
over the transport and re-interactions (hadronic and electromagnetic)
of the produced secondaries, to detailed nuclear fragmentation, the
calculation of radioactive decays and even of the electromagnetic
shower caused by the radiation from such decays. A brief account of
the codes most widely used for radiation protection studies at high
energy accelerators is given in the following.

• FLUKA [7,8]: FLUKA is a general-purpose particle interaction
and transport code. It comprises all features needed for radiation
protection, such as detailed hadronic and nuclear interaction models
up to 10 PeV, full coupling between hadronic and electromagnetic
processes and numerous variance reduction options. The latter include
weight windows, region importance biasing, and leading particle,
interaction, and decay length biasing (among others). The capabilities
of FLUKA are unique for studies of induced radioactivity, especially
with regard to nuclide production, decay, and transport of residual
radiation. In particular, particle cascades by prompt and residual
radiation are simulated in parallel based on the microscopic models
for nuclide production and a solution of the Bateman equations for
activity build-up and decay.

• GEANT4 [13,14]: GEANT4 is an object-oriented toolkit con-
sisting of a kernel that provides the framework for particle transport,
including tracking, geometry description, material specifications,
management of events and interfaces to external graphics systems.
The kernel also provides interfaces to physics processes. It allows the
user to freely select the physics models that best serve the particular
application needs. Implementations of interaction models exist over
an extended range of energies, from optical photons and thermal

neutrons to high-energy interactions required for the simulation of
accelerator and cosmic ray experiments. To facilitate the use of vari-
ance reduction techniques, general-purpose biasing methods such as
importance biasing, weight windows, and a weight cut-off method have
been introduced directly into the toolkit. Other variance reduction
methods, such as leading particle biasing for hadronic processes, come
with the respective physics packages.

• MARS15 [15,16]: The MARS15 code system is a set of Monte
Carlo programs for the simulation of hadronic and electromagnetic
cascades. It covers a wide energy range: 1 keV to 100 TeV for muons,
charged hadrons, heavy ions and electromagnetic showers; and 0.00215
eV to 100 TeV for neutrons. Hadronic interactions above 5 GeV can
be simulated with either an inclusive or an exclusive event generator.
MARS15 is coupled to the MCNP4C code that handles all interactions
of neutrons with energies below 14 MeV. Different variance reduction
techniques, such as inclusive particle production, weight windows,
particle splitting, and Russian roulette, are available in MARS15.
A tagging module allows one to tag the origin of a given signal
for source term or sensitivity analyses. Further features of MARS15
include a MAD-MARS Beam-Line Builder for a convenient creation of
accelerator models.

• MCNPX [17,18]: MCNPX originates from the Monte Carlo
N-Particle transport (MCNP) family of neutron interaction and
transport codes and, therefore, features one of the most comprehensive
and detailed descriptions of the related physical processes. Later it was
extended to other particle types, including ions and electromagnetic
particles. The neutron interaction and transport modules use standard
evaluated data libraries mixed with physics models where such libraries
are not available. The transport is continuous in energy. MCNPX
contains one of the most powerful implementations of variance
reduction techniques. Spherical mesh weight windows can be created
by a generator in order to focus the simulation time on certain
spatial regions of interest. In addition, a more generalized phase space
biasing is also possible through energy- and time-dependent weight
windows. Other biasing options include pulse-height tallies with
variance reduction and criticality source convergence acceleration.

• PHITS [19,20]: The Particle and Heavy-Ion Transport code System
PHITS was among the first general-purpose codes to simulate the
transport and interactions of heavy ions in a wide energy range, from
10 MeV/nucleon to 100 GeV/nucleon. It is based on the high-energy
hadron transport code NMTC/JAM that was extended to heavy ions.
The transport of low-energy neutrons employs cross sections from
evaluated nuclear data libraries such as ENDF and JENDL below 20
MeV and LA150 up to 150 MeV. Electromagnetic interactions are
simulated based on the ITS code in the energy range between 1 keV
and 1 GeV. Several variance reduction techniques, including weight
windows and region importance biasing, are available in PHITS.
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37. COMMONLY USED RADIOACTIVE SOURCES

Table 37.1. Revised November 1993 by E. Browne (LBNL).

Particle Photon

Type of Energy Emission Energy Emission
Nuclide Half-life decay (MeV) prob. (MeV) prob.
22
11

Na 2.603 y β+, EC 0.545 90% 0.511 Annih.
1.275 100%

54
25Mn 0.855 y EC 0.835 100%

Cr K x rays 26%
55
26

Fe 2.73 y EC Mn K x rays:
0.00590 24.4%
0.00649 2.86%

57
27

Co 0.744 y EC 0.014 9%
0.122 86%
0.136 11%
Fe K x rays 58%

60
27

Co 5.271 y β− 0.316 100% 1.173 100%
1.333 100%

68
32

Ge 0.742 y EC Ga K x rays 44%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

→ 68
31

Ga β+, EC 1.899 90% 0.511 Annih.
1.077 3%

90
38

Sr 28.5 y β− 0.546 100%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

→ 90
39

Y β− 2.283 100%

106
44

Ru 1.020 y β− 0.039 100%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

→ 106
45

Rh β− 3.541 79% 0.512 21%
0.622 10%

109
48

Cd 1.267 y EC 0.063 e− 41% 0.088 3.6%
0.084 e− 45% Ag K x rays 100%
0.087 e− 9%

113
50

Sn 0.315 y EC 0.364 e− 29% 0.392 65%
0.388 e− 6% In K x rays 97%

137
55

Cs 30.2 y β− 0.514 94% 0.662 85%
1.176 6%

133
56

Ba 10.54 y EC 0.045 e− 50% 0.081 34%
0.075 e− 6% 0.356 62%

Cs K x rays 121%
207
83

Bi 31.8 y EC 0.481 e− 2% 0.569 98%
0.975 e− 7% 1.063 75%
1.047 e− 2% 1.770 7%

Pb K x rays 78%
228
90

Th 1.912 y 6α: 5.341 to 8.785 0.239 44%
3β−: 0.334 to 2.246 0.583 31%

2.614 36%
(→224

88
Ra → 220

86
Rn → 216

84
Po → 212

82
Pb → 212

83
Bi → 212

84
Po)

241
95

Am 432.7 y α 5.443 13% 0.060 36%
5.486 85% Np L x rays 38%

241
95

Am/Be 432.2 y 6 × 10−5 neutrons (4–8 MeV) and
4 × 10−5γ’s (4.43 MeV) per Am decay

244
96

Cm 18.11 y α 5.763 24% Pu L x rays ∼ 9%
5.805 76%

252
98

Cf 2.645 y α (97%) 6.076 15%
6.118 82%

Fission (3.1%)
≈ 20 γ’s/fission; 80% < 1 MeV
≈ 4 neutrons/fission; 〈En〉 = 2.14 MeV

“Emission probability” is the probability per decay of a given emission;
because of cascades these may total more than 100%. Only principal
emissions are listed. EC means electron capture, and e− means
monoenergetic internal conversion (Auger) electron. The intensity of
0.511 MeV e+e− annihilation photons depends upon the number of
stopped positrons. Endpoint β± energies are listed. In some cases
when energies are closely spaced, the γ-ray values are approximate
weighted averages. Radiation from short-lived daughter isotopes is
included where relevant.

Half-lives, energies, and intensities are from E. Browne and
R.B. Firestone, Table of Radioactive Isotopes (John Wiley & Sons,
New York, 1986), recent Nuclear Data Sheets, and X-ray and

Gamma-ray Standards for Detector Calibration, IAEA-TECDOC-619
(1991).

Neutron data are from Neutron Sources for Basic Physics and

Applications (Pergamon Press, 1983).
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38. PROBABILITY

Revised September 2015 by G. Cowan (RHUL).

38.1. General [1–8]

An abstract definition of probability can be given by considering
a set S, called the sample space, and possible subsets A, B, . . . , the
interpretation of which is left open. The probability P is a real-valued
function defined by the following axioms due to Kolmogorov [9]:

1. For every subset A in S, P (A) ≥ 0;

2. For disjoint subsets (i.e., A ∩ B = ∅), P (A ∪ B) = P (A) + P (B);

3. P (S) = 1.

In addition, one defines the conditional probability P (A|B) (read as P
of A given B) as

P (A|B) =
P (A ∩ B)

P (B)
. (38.1)

From this definition and using the fact that A ∩ B and B ∩ A are the
same, one obtains Bayes’ theorem,

P (A|B) =
P (B|A)P (A)

P (B)
. (38.2)

From the three axioms of probability and the definition of conditional
probability, one obtains the law of total probability,

P (B) =
∑

i

P (B|Ai)P (Ai) , (38.3)

for any subset B and for disjoint Ai with ∪iAi = S. This can be
combined with Bayes’ theorem (Eq. (38.2)) to give

P (A|B) =
P (B|A)P (A)

∑

i P (B|Ai)P (Ai)
, (38.4)

where the subset A could, for example, be one of the Ai.

The most commonly used interpretation of the elements of
the sample space are outcomes of a repeatable experiment. The
probability P (A) is assigned a value equal to the limiting frequency
of occurrence of A. This interpretation forms the basis of frequentist

statistics.

The elements of the sample space might also be interpreted as
hypotheses, i.e., statements that are either true or false, such as ‘The
mass of the W boson lies between 80.3 and 80.5 GeV.’ Upon repetition
of a measurement, however, such statements are either always true
or always false, i.e., the corresponding probabilities in the frequentist
interpretation are either 0 or 1. Using subjective probability, however,
P (A) is interpreted as the degree of belief that the hypothesis A
is true. Subjective probability is used in Bayesian (as opposed to
frequentist) statistics. Bayes’ theorem can be written

P (theory|data) ∝ P (data|theory)P (theory) , (38.5)

where ‘theory’ represents some hypothesis and ‘data’ is the outcome of
the experiment. Here P (theory) is the prior probability for the theory,
which reflects the experimenter’s degree of belief before carrying out
the measurement, and P (data|theory) is the probability to have gotten
the data actually obtained, given the theory, which is also called the
likelihood.

Bayesian statistics provides no fundamental rule for obtaining
the prior probability, which may depend on previous measurements,
theoretical prejudices, etc. Once this has been specified, however,
Eq. (38.5) tells how the probability for the theory must be modified
in the light of the new data to give the posterior probability,
P (theory|data). As Eq. (38.5) is stated as a proportionality, the
probability must be normalized by summing (or integrating) over all
possible hypotheses.

38.2. Random variables

A random variable is a numerical characteristic assigned to an
element of the sample space. In the frequency interpretation of
probability, it corresponds to an outcome of a repeatable experiment.
Let x be a possible outcome of an observation. If x can take on any
value from a continuous range, we write f(x; θ)dx as the probability
that the measurement’s outcome lies between x and x + dx. The
function f(x; θ) is called the probability density function (p.d.f.), which
may depend on one or more parameters θ. If x can take on only
discrete values (e.g., the non-negative integers), then we use f(x; θ)
to denote the probability to find the value x. In the following the
term p.d.f. is often taken to cover both the continuous and discrete
cases, although technically the term density should only be used in
the continuous case.

The p.d.f. is always normalized to unity. Both x and θ may have
multiple components and are then often written as vectors. If θ is
unknown, we may wish to estimate its value from a given set of
measurements of x; this is a central topic of statistics (see Sec. 39).

The cumulative distribution function F (a) is the probability that
x ≤ a:

F (a) =

∫ a

−∞

f(x) dx . (38.6)

Here and below, if x is discrete-valued, the integral is replaced by a
sum. The endpoint a is expressly included in the integral or sum. Then
0 ≤ F (x) ≤ 1, F (x) is nondecreasing, and P (a < x ≤ b) = F (b)−F (a).
If x is discrete, F (x) is flat except at allowed values of x, where it has
discontinuous jumps equal to f(x).

Any function of random variables is itself a random variable, with
(in general) a different p.d.f. The expectation value of any function
u(x) is

E[u(x)] =

∫

∞

−∞

u(x) f(x) dx , (38.7)

assuming the integral is finite. The expectation value is linear,
i.e., for any two functions u and v of x and constants c1 and c2,
E[c1u + c2v] = c1E[u] + c2E[v].

The nth moment of a random variable x is

αn ≡ E[xn] =

∫

∞

−∞

xnf(x) dx , (38.8a)

and the nth central moment of x (or moment about the mean, α1) is

mn ≡ E[(x − α1)
n] =

∫

∞

−∞

(x − α1)
nf(x) dx . (38.8b)

The most commonly used moments are the mean µ and variance σ2:

µ ≡ α1 , (38.9a)

σ2 ≡ V [x] ≡ m2 = α2 − µ2 . (38.9b)

The mean is the location of the “center of mass” of the p.d.f., and
the variance is a measure of the square of its width. Note that
V [cx+k] = c2V [x]. It is often convenient to use the standard deviation

of x, σ, defined as the square root of the variance.

Any odd moment about the mean is a measure of the skewness
of the p.d.f. The simplest of these is the dimensionless coefficient of
skewness γ1 = m3/σ3.

The fourth central moment m4 provides a convenient measure of the
tails of a distribution. For the Gaussian distribution (see Sec. 38.4),
one has m4 = 3σ4. The kurtosis is defined as γ2 = m4/σ4 − 3, i.e.,
it is zero for a Gaussian, positive for a leptokurtic distribution with
longer tails, and negative for a platykurtic distribution with tails that
die off more quickly than those of a Gaussian.

The quantile xα is the value of the random variable x at which
the cumulative distribution is equal to α. That is, the quantile is the
inverse of the cumulative distribution function, i.e., xα = F−1(α). An
important special case is the median, xmed, defined by F (xmed) = 1/2,
i.e., half the probability lies above and half lies below xmed.
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(More rigorously, xmed is a median if P (x ≥ xmed) ≥ 1/2 and
P (x ≤ xmed) ≥ 1/2. If only one value exists, it is called ‘the median.’)

Under a monotonic change of variable x → y(x), the quantiles
of a distribution (and hence also the median) obey yα = y(xα). In
general the expectation value and mode (most probable value) of a
distribution do not, however, transform in this way.

Let x and y be two random variables with a joint p.d.f. f(x, y).
The marginal p.d.f. of x (the distribution of x with y unobserved) is

f1(x) =

∫

∞

−∞

f(x, y) dy , (38.10)

and similarly for the marginal p.d.f. f2(y). The conditional p.d.f. of y
given fixed x (with f1(x) 6= 0) is defined by f3(y|x) = f(x, y)/f1(x),
and similarly f4(x|y) = f(x, y)/f2(y). From these, we immediately
obtain Bayes’ theorem (see Eqs. (38.2) and (38.4)),

f4(x|y) =
f3(y|x)f1(x)

f2(y)
=

f3(y|x)f1(x)
∫

f3(y|x′)f1(x′) dx′
. (38.11)

The mean of x is

µx =

∫

∞

−∞

∫

∞

−∞

x f(x, y) dx dy =

∫

∞

−∞

x f1(x) dx , (38.12)

and similarly for y. The covariance of x and y is

cov[x, y] = E[(x − µx)(y − µy)] = E[xy] − µxµy . (38.13)

A dimensionless measure of the covariance of x and y is given by the
correlation coefficient,

ρxy = cov[x, y]/σxσy , (38.14)

where σx and σy are the standard deviations of x and y. It can be
shown that −1 ≤ ρxy ≤ 1.

Two random variables x and y are independent if and only if

f(x, y) = f1(x)f2(y) . (38.15)

If x and y are independent, then ρxy = 0; the converse is not necessarily
true. If x and y are independent, E[u(x)v(y)] = E[u(x)]E[v(y)], and
V [x + y] = V [x] + V [y]; otherwise, V [x + y] = V [x] + V [y] + 2cov[x, y],
and E[uv] does not necessarily factorize.

Consider a set of n continuous random variables x = (x1, . . . , xn)
with joint p.d.f. f(x), and a set of n new variables y = (y1, . . . , yn),
related to x by means of a function y(x) that is one-to-one, i.e., the
inverse x(y) exists. The joint p.d.f. for y is given by

g(y) = f(x(y))|J | , (38.16)

where |J | is the absolute value of the determinant of the square matrix
Jij = ∂xi/∂yj (the Jacobian determinant). If the transformation from
x to y is not one-to-one, the x-space must be broken into regions
where the function y(x) can be inverted, and the contributions to
g(y) from each region summed.

Given a set of functions y = (y1, . . . , ym) with m < n, one can
construct n−m additional independent functions, apply the procedure
above, then integrate the resulting g(y) over the unwanted yi to find
the marginal distribution of those of interest.

For a one-to-one transformation of discrete random variables,
the probability is obtained by simple substitution; no Jacobian is
necessary because in this case f is a probability rather than a
probability density. If the transformation is not one-to-one, then one
must sum the probabilities for all values of the original variable that
contribute to a given value of the transformed variable. If f depends
on a set of parameters θ, a change to a different parameter set η(θ) is
made by simple substitution; no Jacobian is used.

38.3. Characteristic functions

The characteristic function φ(u) associated with the p.d.f. f(x) is
essentially its Fourier transform, or the expectation value of eiux:

φ(u) = E
[

eiux
]

=

∫

∞

−∞

eiuxf(x) dx . (38.17)

Once φ(u) is specified, the p.d.f. f(x) is uniquely determined and vice
versa; knowing one is equivalent to the other. Characteristic functions
are useful in deriving a number of important results about moments
and sums of random variables.

It follows from Eqs. (38.8a) and (38.17) that the nth moment of a
random variable x that follows f(x) is given by

i−n dnφ

dun

∣

∣

∣

∣

u=0
=

∫

∞

−∞

xnf(x) dx = αn . (38.18)

Thus it is often easy to calculate all the moments of a distribution
defined by φ(u), even when f(x) cannot be written down explicitly.

If the p.d.f.s f1(x) and f2(y) for independent random variables
x and y have characteristic functions φ1(u) and φ2(u), then the
characteristic function of the weighted sum ax + by is φ1(au)φ2(bu).
The rules of addition for several important distributions (e.g., that
the sum of two Gaussian distributed variables also follows a Gaussian
distribution) easily follow from this observation.

Let the (partial) characteristic function corresponding to the
conditional p.d.f. f2(x|z) be φ2(u|z), and the p.d.f. of z be f1(z). The
characteristic function after integration over the conditional value is

φ(u) =

∫

φ2(u|z)f1(z) dz . (38.19)

Suppose we can write φ2 in the form

φ2(u|z) = A(u)eig(u)z . (38.20)

Then
φ(u) = A(u)φ1(g(u)) . (38.21)

The cumulants (semi-invariants) κn of a distribution with
characteristic function φ(u) are defined by the relation

φ(u) = exp

[

∞
∑

n=1

κn

n!
(iu)n

]

= exp
(

iκ1u − 1

2
κ2u

2 + . . .
)

. (38.22)

The values κn are related to the moments αn and mn. The first few
relations are

κ1 = α1 (= µ, the mean)

κ2 = m2 = α2 − α2
1 (= σ2, the variance)

κ3 = m3 = α3 − 3α1α2 + 2α3
1 . (38.23)

38.4. Commonly used probability distributions

Table 38.1 gives a number of common probability density functions
and corresponding characteristic functions, means, and variances.
Further information may be found in Refs. [1– 8], [10], and [11],
which has particularly detailed tables. Monte Carlo techniques for
generating each of them may be found in our Sec. 40.4 and in Ref. [10].
We comment below on all except the trivial uniform distribution.

38.4.1. Binomial and multinomial distributions :

A random process with exactly two possible outcomes which occur
with fixed probabilities is called a Bernoulli process. If the probability
of obtaining a certain outcome (a “success”) in an individual trial is p,
then the probability of obtaining exactly r successes (r = 0, 1, 2, . . . , N)
in N independent trials, without regard to the order of the successes
and failures, is given by the binomial distribution f(r; N, p) in
Table 38.1. If r and s are binomially distributed with parameters
(Nr, p) and (Ns, p), then t = r + s follows a binomial distribution with
parameters (Nr + Ns, p).

If there are are m possible outcomes for each trial having
probabilities p1, p2, . . . , pm, then the joint probability to find
r1, r2, . . . , rm of each outcome after a total of N independent trials
is given by the multinomial distribution as shown in Table 38.1. We
can regard outcome i as “success” and all the rest as “failure”, so
individually, any of the ri follow a binomial distribution for N trials
and a success probability pi.
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38.4.2. Poisson distribution :

The Poisson distribution f(n; ν) gives the probability of finding
exactly n events in a given interval of x (e.g., space or time) when
the events occur independently of one another and of x at an average
rate of ν per the given interval. The variance σ2 equals ν. It is the
limiting case p → 0, N → ∞, Np = ν of the binomial distribution.
The Poisson distribution approaches the Gaussian distribution for
large ν.

For example, a large number of radioactive nuclei of a given type
will result in a certain number of decays in a fixed time interval. If this
interval is small compared to the mean lifetime, then the probability
for a given nucleus to decay is small, and thus the number of decays
in the time interval is well modeled as a Poisson variable.

Table 38.1. Some common probability density functions, with corresponding characteristic functions and
means and variances. In the Table, Γ(k) is the gamma function, equal to (k − 1)! when k is an integer;

1F1 is the confluent hypergeometric function of the 1st kind [11].

Probability density function Characteristic
Distribution f (variable; parameters) function φ(u) Mean Variance

Uniform f(x; a, b) =

{

1/(b − a) a ≤ x ≤ b

0 otherwise

eibu − eiau

(b − a)iu

a + b

2

(b − a)2

12

Binomial f(r; N, p) =
N !

r!(N − r)!
prqN−r (q + peiu)N Np Npq

r = 0, 1, 2, . . . , N ; 0 ≤ p ≤ 1 ; q = 1 − p

Multinomial f(r1, . . . , rm; N, p1, . . . , pm) =
N !

r1! · · · rm!
p
r1
1 · · · prm

m

(
∑m

k=1 pkeiuk

)N E[ri] =

Npi

cov[ri, rj ] =

Npi(δij − pj)
rk = 0, 1, 2, . . . , N ; 0 ≤ pk ≤ 1 ;

∑m
k=1 rk = N

Poisson f(n; ν) =
νne−ν

n!
; n = 0, 1, 2, . . . ; ν > 0 exp[ν(eiu − 1)] ν ν

Normal
(Gaussian)

f(x; µ, σ2) =
1

σ
√

2π
exp(−(x − µ)2/2σ2) exp(iµu − 1

2σ2u2) µ σ2

−∞ < x < ∞ ; −∞ < µ < ∞ ; σ > 0

Multivariate
Gaussian

f(x; µ, V ) =
1

(2π)n/2
√

|V |
exp

[

iµ · u − 1
2uT V u

]

µ Vjk

× exp
[

−1
2 (x − µ)T V −1(x − µ)

]

−∞ < xj < ∞; − ∞ < µj < ∞; |V | > 0

Log-normal f(x; µ, σ2) =
1

σ
√

2π

1

x
exp(−(ln x − µ)2/2σ2) —

exp(µ + σ2/2) exp(2µ + σ2)

×[exp(σ2) − 1]
0 < x < ∞ ; −∞ < µ < ∞ ; σ > 0

χ2 f(z; n) =
zn/2−1e−z/2

2n/2Γ(n/2)
; z ≥ 0 (1 − 2iu)−n/2 n 2n

Student’s t f(t; n) =
1√
nπ

Γ[(n + 1)/2]

Γ(n/2)

(

1 +
t2

n

)−(n+1)/2

—
0

for n > 1

n/(n − 2)

for n > 2
−∞ < t < ∞ ; n not required to be integer

Gamma f(x; λ, k) =
xk−1λke−λx

Γ(k)
; 0 ≤ x < ∞ ; (1 − iu/λ)−k k/λ k/λ2

k not required to be integer

Beta f(x; α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1

1F1(α; α + β; iu)
α

α + β

αβ

(α + β)2(α + β + 1)
0 ≤ x ≤ 1

38.4.3. Normal or Gaussian distribution :

The normal (or Gaussian) probability density function f(x; µ, σ2)
given in Table 38.1 has mean E[x] = µ and variance V [x] = σ2.
Comparison of the characteristic function φ(u) given in Table 38.1
with Eq. (38.22) shows that all cumulants κn beyond κ2 vanish; this is
a unique property of the Gaussian distribution. Some other properties
are:

P (x in range µ ± σ) = 0.6827,

P (x in range µ ± 0.6745σ) = 0.5,

E[|x − µ|] =
√

2/πσ = 0.7979σ,

half-width at half maximum =
√

2 ln 2σ = 1.177σ.
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For a Gaussian with µ = 0 and σ2 = 1 (the standard normal) the
cumulative distribution, often written Φ(x), is related to the error
function erf by

F (x; 0, 1) ≡ Φ(x) = 1
2

[

1 + erf(x/
√

2)
]

. (38.24)

The error function and standard Gaussian are tabulated in many
references (e.g., Ref. [11,12]) and are available in software packages
such as ROOT [13]. For a mean µ and variance σ2, replace x by
(x − µ)/σ. The probability of x in a given range can be calculated
with Eq. (39.65).

For x and y independent and normally distributed, z = ax + by
follows a normal p.d.f. f(z; aµx + bµy, a2σ2

x + b2σ2
y); that is, the

weighted means and variances add.

The Gaussian derives its importance in large part from the central

limit theorem:

If independent random variables x1, . . . , xn are distributed according
to any p.d.f. with finite mean and variance, then the sum y =

∑n
i=1 xi

will have a p.d.f. that approaches a Gaussian for large n. If the p.d.f.s
of the xi are not identical, the theorem still holds under somewhat
more restrictive conditions. The mean and variance are given by the
sums of corresponding terms from the individual xi. Therefore, the
sum of a large number of fluctuations xi will be distributed as a
Gaussian, even if the xi themselves are not.

For a set of n Gaussian random variables x with means µ and
covariances Vij = cov[xi, xj ], the p.d.f. for the one-dimensional
Gaussian is generalized to

f(x; µ, V ) =
1

(2π)n/2
√

|V |
exp

[

− 1

2
(x − µ)T V −1(x − µ)

]

, (38.25)

where the determinant |V | must be greater than 0. For diagonal V
(independent variables), f(x; µ, V ) is the product of the p.d.f.s of n
Gaussian distributions.

For n = 2, f(x; µ, V ) is

f(x1, x2; µ1, µ2, σ1, σ2, ρ) =
1

2πσ1σ2

√

1 − ρ2

× exp

{ −1

2(1 − ρ2)

[

(x1 − µ1)
2

σ2
1

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

]}

.

(38.26)
The characteristic function for the multivariate Gaussian is

φ(u; µ, V ) = exp
[

iµ · u − 1

2
uT V u

]

. (38.27)

If the components of x are independent, then Eq. (38.27) is the
product of the characteristic functions of n Gaussians.

For an n-dimensional Gaussian distribution for x with mean µ and
covariance matrix V , the marginal distribution for any single xi is
is a one-dimensional Gaussian with mean µi and variance Vii. The
equation (x − a)T V −1(x − a) = C, where C is any positive number,
defines an n-dimensional ellipse centered about a. If a is equal to
the mean µ, then C is a random variable obeying the χ2 distribution
for n degrees of freedom, which is discussed in the following section.
The probability that x lies outside the ellipsoid for a given value
of C is given by 1 − Fχ2(C; n), where Fχ2 is the cumulative χ2

distribution. This may be read from Fig. 39.1. For example, the “s-
standard-deviation ellipsoid” occurs at C = s2. For the two-variable
case (n = 2), the point x lies outside the one-standard-deviation
ellipsoid with 61% probability. The use of these ellipsoids as indicators
of probable error is described in Sec. 39.4.2.2; the validity of those
indicators assumes that µ and V are correct.

38.4.4. Log-normal distribution :

If a random variable y follows a Gaussian distribution with mean
µ and variance σ2, then x = ey follows a log-normal distribution, as
given in Table 38.1. As a consequence of the central limit theorem
described in Sec. 38.4.3, the distribution of the product of a large
number of positive random variables approaches a log-normal. It is
bounded below by zero and is thus well suited for modeling quantities
that are intrinsically non-negative such as an efficiency. One can
implement a log-normal model for a random variable x by defining
y = lnx so that y follows a Gaussian distribution.

38.4.5. χ2 distribution :

If x1, . . . , xn are independent Gaussian random variables, the sum
z =

∑n
i=1(xi − µi)

2/σ2
i follows the χ2 p.d.f. with n degrees of freedom,

which we denote by χ2(n). More generally, for n correlated Gaussian
variables as components of a vector X with covariance matrix V ,
z = XT V −1X follows χ2(n) as in the previous section. For a set of
zi, each of which follows χ2(ni),

∑

zi follows χ2(
∑

ni). For large n,
the χ2 p.d.f. approaches a Gaussian with a mean and variance given
by µ = n and σ2 = 2n, respectively (here the formulae for µ and σ2

are valid for all n).

The χ2 p.d.f. is often used in evaluating the level of compatibility
between observed data and a hypothesis for the p.d.f. that the data
might follow. This is discussed further in Sec. 39.3.2 on significance
tests.

38.4.6. Student’s t distribution :

Suppose that y and x1, . . . , xn are independent and Gaussian
distributed with mean 0 and variance 1. We then define

z =

n
∑

i=1

x2
i and t =

y
√

z/n
. (38.28)

The variable z thus follows a χ2(n) distribution. Then t is distributed
according to Student’s t distribution with n degrees of freedom,
f(t; n), given in Table 38.1.

If defined through gamma functions as in Table 38.1, the parameter
n is not required to be an integer. As n → ∞, the distribution
approaches a Gaussian, and for n = 1 it is a Cauchy or Breit–Wigner

distribution.

As an example, consider the sample mean x =
∑

xi/n and the
sample variance s2 =

∑

(xi − x)2/(n − 1) for normally distributed
xi with unknown mean µ and variance σ2. The sample mean
has a Gaussian distribution with a variance σ2/n, so the variable

(x − µ)/
√

σ2/n is normal with mean 0 and variance 1. The quantity
(n − 1)s2/σ2 is independent of this and follows χ2(n − 1). The ratio

t =
(x − µ)/

√

σ2/n
√

(n − 1)s2/σ2(n − 1)
=

x − µ
√

s2/n
(38.29)

is distributed as f(t; n − 1). The unknown variance σ2 cancels, and
t can be used to test the hypothesis that the true mean is some
particular value µ.

38.4.7. Gamma distribution :

For a process that generates events as a function of x (e.g.,
space or time) according to a Poisson distribution, the distance in
x from an arbitrary starting point (which may be some particular
event) to the kth event follows a gamma distribution, f(x; λ, k). The
Poisson parameter µ is λ per unit x. The special case k = 1 (i.e.,
f(x; λ, 1) = λe−λx) is called the exponential distribution. A sum of k′

exponential random variables xi is distributed as f(
∑

xi; λ, k′).

The parameter k is not required to be an integer. For λ = 1/2 and
k = n/2, the gamma distribution reduces to the χ2(n) distribution.
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38.4.8. Beta distribution :

The beta distribution describes a continuous random variable
x in the interval [0, 1]. By scaling and translation one can easily
generalize it to have arbitrary endpoints. In Bayesian inference about
the parameter p of a binomial process, if the prior p.d.f. is a beta
distribution f(p; α, β) then the observation of r successes out of N
trials gives a posterior beta distribution f(p; r+α, N−r+β) (Bayesian
methods are discussed further in Sec. 39). The uniform distribution is
a beta distribution with α = β = 1.
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39. STATISTICS

Revised September 2015 by G. Cowan (RHUL).

This chapter gives an overview of statistical methods used in
high-energy physics. In statistics, we are interested in using a given
sample of data to make inferences about a probabilistic model, e.g., to
assess the model’s validity or to determine the values of its parameters.
There are two main approaches to statistical inference, which we may
call frequentist and Bayesian.

In frequentist statistics, probability is interpreted as the frequency
of the outcome of a repeatable experiment. The most important tools
in this framework are parameter estimation, covered in Section 39.2,
statistical tests, discussed in Section 39.3, and confidence intervals,
which are constructed so as to cover the true value of a parameter with
a specified probability, as described in Section 39.4.2. Note that in
frequentist statistics one does not define a probability for a hypothesis
or for the value of a parameter.

In Bayesian statistics, the interpretation of probability is more
general and includes degree of belief (called subjective probability).
One can then speak of a probability density function (p.d.f.) for a
parameter, which expresses one’s state of knowledge about where its
true value lies. Bayesian methods provide a natural means to include
additional information, which in general may be subjective; in fact
they require prior probabilities for the hypotheses (or parameters)
in question, i.e., the degree of belief about the parameters’
values before carrying out the measurement. Using Bayes’ theorem
(Eq. (38.4)), the prior degree of belief is updated by the data from the
experiment. Bayesian methods for interval estimation are discussed in
Sections 39.4.1 and 39.4.2.4.

For many inference problems, the frequentist and Bayesian ap-
proaches give similar numerical values, even though they answer
different questions and are based on fundamentally different inter-
pretations of probability. In some important cases, however, the
two approaches may yield very different results. For a discussion
of Bayesian vs. non-Bayesian methods, see references written by a
statistician [1], by a physicist [2], or the detailed comparison in
Ref. 3.

Following common usage in physics, the word “error” is often
used in this chapter to mean “uncertainty.” More specifically it can
indicate the size of an interval as in “the standard error” or “error
propagation,” where the term refers to the standard deviation of an
estimator.

39.1. Fundamental concepts

Consider an experiment whose outcome is characterized by one or
more data values, which we can write as a vector x. A hypothesis H is
a statement about the probability for the data, often written P (x|H).
(We will usually use a capital letter for a probability and lower case for
a probability density. Often the term p.d.f. is used loosely to refer to
either a probability or a probability density.) This could, for example,
define completely the p.d.f. for the data (a simple hypothesis), or it
could specify only the functional form of the p.d.f., with the values of
one or more parameters not determined (a composite hypothesis).

If the probability P (x|H) for data x is regarded as a function
of the hypothesis H , then it is called the likelihood of H , usually
written L(H). Often the hypothesis is characterized by one or more
parameters θ, in which case L(θ) = P (x|θ) is called the likelihood
function.

In some cases one can obtain at least approximate frequentist
results using the likelihood evaluated only with the data obtained. In
general, however, the frequentist approach requires a full specification
of the probability model P (x|H) both as a function of the data x and
hypothesis H .

In the Bayesian approach, inference is based on the posterior
probability for H given the data x, which represents one’s degree of

belief that H is true given the data. This is obtained from Bayes’
theorem (38.4), which can be written

P (H |x) =
P (x|H)π(H)∫

P (x|H ′)π(H ′) dH ′
. (39.1)

Here P (x|H) is the likelihood for H , which depends only on the data
actually obtained. The quantity π(H) is the prior probability for H ,
which represents one’s degree of belief for H before carrying out the
measurement. The integral in the denominator (or sum, for discrete
hypotheses) serves as a normalization factor. If H is characterized by
a continuous parameter θ then the posterior probability is a p.d.f.
p(θ|x). Note that the likelihood function itself is not a p.d.f. for θ.

39.2. Parameter estimation

Here we review point estimation of parameters, first with an overview
of the frequentist approach and its two most important methods,
maximum likelihood and least squares, treated in Sections 39.2.2 and
39.2.3. The Bayesian approach is outlined in Sec. 39.2.4.

An estimator θ̂ (written with a hat) is a function of the data used to
estimate the value of the parameter θ. Sometimes the word ‘estimate’
is used to denote the value of the estimator when evaluated with
given data. There is no fundamental rule dictating how an estimator
must be constructed. One tries, therefore, to choose that estimator
which has the best properties. The most important of these are (a)
consistency, (b) bias, (c) efficiency, and (d) robustness.

(a) An estimator is said to be consistent if the estimate θ̂ converges
in probability (see Ref. 3) to the true value θ as the amount of data
increases. This property is so important that it is possessed by all
commonly used estimators.

(b) The bias, b = E[ θ̂ ] − θ, is the difference between the expectation
value of the estimator and the true value of the parameter.
The expectation value is taken over a hypothetical set of similar
experiments in which θ̂ is constructed in the same way. When b = 0,
the estimator is said to be unbiased. The bias depends on the chosen
metric, i.e., if θ̂ is an unbiased estimator of θ, then θ̂ 2 is not in general
an unbiased estimator for θ2.

(c) Efficiency is the ratio of the minimum possible variance for any

estimator of θ to the variance V [ θ̂ ] of the estimator θ̂. For the case
of a single parameter, under rather general conditions the minimum
variance is given by the Rao-Cramér-Fréchet bound,

σ2
min =

(
1 +

∂b

∂θ

)2

/I(θ) , (39.2)

where

I(θ) = E

[(
∂ lnL

∂θ

)2
]

= −E

[
∂2 lnL

∂θ2

]
(39.3)

is the Fisher information, L is the likelihood, and the expectation
value in (39.3) is carried out with respect to the data. For the final
equality to hold, the range of allowed data values must not depend on
θ.

The mean-squared error,

MSE = E[(θ̂ − θ)2] = V [θ̂] + b2 , (39.4)

is a measure of an estimator’s quality which combines bias and
variance.

(d) Robustness is the property of being insensitive to departures
from assumptions in the p.d.f., e.g., owing to uncertainties in the
distribution’s tails.

It is not in general possible to optimize simultaneously for all the
measures of estimator quality described above. For example, there is
in general a trade-off between bias and variance. For some common
estimators, the properties above are known exactly. More generally,
it is possible to evaluate them by Monte Carlo simulation. Note that
they will in general depend on the unknown θ.
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39.2.1. Estimators for mean, variance, and median :

Suppose we have a set of n independent measurements, x1, . . . , xn,
each assumed to follow a p.d.f. with unknown mean µ and unknown
variance σ2 (the measurements do not necessarily have to follow a
Gaussian distribution). Then

µ̂ =
1

n

n∑

i=1

xi (39.5)

σ̂2 =
1

n − 1

n∑

i=1

(xi − µ̂)2 (39.6)

are unbiased estimators of µ and σ2. The variance of µ̂ is σ2/n and

the variance of σ̂2 is

V
[
σ̂2

]
=

1

n

(
m4 − n − 3

n − 1
σ4

)
, (39.7)

where m4 is the 4th central moment of x (see Eq. (38.8b)). For
Gaussian distributed xi, this becomes 2σ4/(n − 1) for any n ≥ 2,
and for large n the standard deviation of σ̂ (the “error of the error”)
is σ/

√
2n. For any n and Gaussian xi, µ̂ is an efficient estimator

for µ, and the estimators µ̂ and σ̂2 are uncorrelated. Otherwise the
arithmetic mean (39.5) is not necessarily the most efficient estimator;
this is discussed further in Sec. 8.7 of Ref. 4.

If σ2 is known, it does not improve the estimate µ̂, as can be seen
from Eq. (39.5); however, if µ is known, one can substitute it for µ̂ in
Eq. (39.6) and replace n − 1 by n to obtain an estimator of σ2 still
with zero bias but smaller variance. If the xi have different, known
variances σ2

i , then the weighted average

µ̂ =
1

w

n∑

i=1

wixi , (39.8)

where wi = 1/σ2
i and w =

∑
i wi, is an unbiased estimator for µ with a

smaller variance than an unweighted average. The standard deviation
of µ̂ is 1/

√
w.

As an estimator for the median xmed, one can use the value x̂med
such that half the xi are below and half above (the sample median).
If there are an even number of observations and the sample median
lies between two observed values, the estimator is set by convention
to their arithmetic average. If the p.d.f. of x has the form f(x − µ)
and µ is both mean and median, then for large n the variance of the
sample median approaches 1/[4nf2(0)], provided f(0) > 0. Although
estimating the median can often be more difficult computationally
than the mean, the resulting estimator is generally more robust, as it
is insensitive to the exact shape of the tails of a distribution.

39.2.2. The method of maximum likelihood :

Suppose we have a set of measured quantities x and the likelihood
L(θ) = P (x|θ) for a set of parameters θ = (θ1, . . . , θN ). The
maximum likelihood (ML) estimators for θ are defined as the values
that give the maximum of L. Because of the properties of the
logarithm, it is usually easier to work with lnL, and since both are
maximized for the same parameter values θ, the ML estimators can
be found by solving the likelihood equations,

∂ lnL

∂θi
= 0 , i = 1, . . . , N . (39.9)

Often the solution must be found numerically. Maximum likelihood
estimators are important because they are unbiased and efficient
asymptotically (i.e., for large data samples), under quite general
conditions, and the method has a wide range of applicability.

In general the likelihood function is obtained from the probability
of the data under assumption of the parameters. An important special
case is when the data consist of i.i.d. (independent and identically
distributed) values. Here one has a set of n statistically independent
quantities x = (x1, . . . , xn), where each component follows the same

p.d.f. f(x; θ). In this case the joint p.d.f. of the data sample factorizes
and the likelihood function is

L(θ) =

n∏

i=1

f(xi; θ) . (39.10)

In this case the number of events n is regarded as fixed. If however
the probability to observe n events itself depends on the parameters
θ, then this dependence should be included in the likelihood. For
example, if n follows a Poisson distribution with mean µ and the
independent x values all follow f(x; θ), then the likelihood becomes

L(θ) =
µn

n!
e−µ

n∏

i=1

f(xi; θ) . (39.11)

Equation (39.11) is often called the extended likelihood (see, e.g.,
Refs. [6–8]). If µ is given as a function of θ, then including the
probability for n given θ in the likelihood provides additional
information about the parameters. This therefore leads to a reduction
in their statistical uncertainties and in general changes their estimated
values.

In evaluating the likelihood function, it is important that any
normalization factors in the p.d.f. that involve θ be included. However,
we will only be interested in the maximum of L and in ratios of L
at different values of the parameters; hence any multiplicative factors
that do not involve the parameters that we want to estimate may be
dropped, including factors that depend on the data but not on θ.

Under a one-to-one change of parameters from θ to η, the
ML estimators θ̂ transform to η(θ̂). That is, the ML solution is
invariant under change of parameter. However, other properties of
ML estimators, in particular the bias, are not invariant under change
of parameter.

The inverse V −1 of the covariance matrix Vij = cov[θ̂i, θ̂j ] for a set
of ML estimators can be estimated by using

(V̂ −1)ij = − ∂2 lnL

∂θi∂θj

∣∣∣∣
θ̂

; (39.12)

for finite samples, however, Eq. (39.12) can result in a misestimate
of the variances. In the large sample limit (or in a linear model with
Gaussian errors), L has a Gaussian form and lnL is (hyper)parabolic.
In this case, it can be seen that a numerically equivalent way of
determining s-standard-deviation errors is from the hypersurface
defined by the θ such that

lnL(θ) = lnLmax − s2/2 , (39.13)

where ln Lmax is the value of lnL at the solution point (compare
with Eq. (39.68)). The minimum and maximum values of θi on the
hypersurface then give an approximate s-standard deviation confidence
interval for θi (see Section 39.4.2.2).

39.2.2.1. ML with binned data:

If the total number of data values xi, i = 1, . . . , ntot, is small, the
unbinned maximum likelihood method, i.e., use of Equation (39.10)
(or (39.11) for extended ML), is preferred since binning can only
result in a loss of information, and hence larger statistical errors for
the parameter estimates. If the sample is large, it can be convenient
to bin the values in a histogram with N bins, so that one obtains a
vector of data n = (n1, . . . , nN ) with expectation values µ = E[n] and
probabilities f(n; µ). Suppose the mean values µ can be determined
as a function of a set of parameters θ. Then one may maximize the
likelihood function based on the contents of the bins.

As mentioned in Sec. 39.2.2, the total number of events ntot =
∑

i ni

can be regarded either as fixed or as a random variable. If it is fixed,
the histogram follows a multinomial distribution,

fM(n; θ) =
ntot!

n1! · · ·nN !
p
n1
1 · · · pnN

N , (39.14)

where we assume the probabilities pi are given functions of the
parameters θ. The distribution can be written equivalently in terms
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of the expected number of events in each bin, µi = ntotpi. If the ni

are regarded as independent and Poisson distributed, then the data
are instead described by a product of Poisson probabilities,

fP(n; θ) =

N∏

i=1

µ
ni
i

ni!
e−µi , (39.15)

where the mean values µi are given functions of θ. The total
number of events ntot thus follows a Poisson distribution with mean
µtot =

∑
i µi.

When using maximum likelihood with binned data, one can find
the ML estimators and at the same time obtain a statistic usable for
a test of goodness-of-fit (see Sec. 39.3.2). Maximizing the likelihood
L(θ) = fM/P(n; θ) is equivalent to maximizing the likelihood ratio

λ(θ) = fM/P(n; θ)/f(n; µ̂), where in the denominator f(n; µ) is a

model with an adjustable parameter for each bin, µ = (µ1, . . . , µN ),
and the corresponding estimators are µ̂ = (n1, . . . , nN ). Equivalently
one often minimizes the quantity −2 lnλ(θ). For independent Poisson
distributed ni this is [9]

−2 lnλ(θ) = 2

N∑

i=1

[
µi(θ) − ni + ni ln

ni

µi(θ)

]
, (39.16)

where for bins with ni = 0, the last term in (39.16) is zero. The
expression (39.16) without the terms µi − ni also gives −2 lnλ(θ) for
multinomially distributed ni, i.e., when the total number of entries is
regarded as fixed. In the limit of zero bin width, minimizing (39.16)
is equivalent to maximizing the unbinned extended likelihood function
(39.11) or in the multinomial case without the µi − ni terms one
obtains Eq. (39.10).

A smaller value of −2 lnλ(θ̂) corresponds to better agreement
between the data and the hypothesized form of µ(θ). The value of

−2 lnλ(θ̂) can thus be translated into a p-value as a measure of
goodness-of-fit, as described in Sec. 39.3.2. Assuming the model is
correct, then according to Wilks’ theorem [10], for sufficiently large
µi and provided certain regularity conditions are met, the minimum
of −2 lnλ as defined by Eq. (39.16) follows a χ2 distribution (see,
e.g., Ref. 9). If there are N bins and m fitted parameters, then the
number of degrees of freedom for the χ2 distribution is N − m if the
data are treated as Poisson-distributed, and N − m − 1 if the ni are
multinomially distributed.

Suppose the ni are Poisson-distributed and the overall normalization
µtot =

∑
i µi is taken as an adjustable parameter, so that µi =

µtotpi(θ), where the probability to be in the ith bin, pi(θ), does not
depend on µtot. Then by minimizing Eq. (39.16), one obtains that the
area under the fitted function is equal to the sum of the histogram
contents, i.e.,

∑
i µ̂i =

∑
i ni. This is a property not possessed by the

estimators from the method of least squares (see, e.g., Sec. 39.2.3 and
Ref. 8).

39.2.2.2. Frequentist treatment of nuisance parameters:

Suppose we want to determine the values of parameters θ using a
set of measurements x described by a probability model Px(x|θ). In
general the model is not perfect, which is to say it can not provide
an accurate description of the data even at the most optimal point of
its parameter space. As a result, the estimated parameters can have a
systematic bias.

One can improve the model by including in it additional parameters.
That is, Px(x|θ) is replaced by a more general model Px(x|θ, ν),
which depends on parameters of interest θ and nuisance parameters
ν. The additional parameters are not of intrinsic interest but must be
included for the model to be accurate for some point in the enlarged
parameter space.

Although including additional parameters may eliminate or at least
reduce the effect of systematic uncertainties, their presence will result
in increased statistical uncertainties for the parameters of interest.
This occurs because the estimators for the nuisance parameters and
those of interest will in general be correlated, which results in an
enlargement of the contour defined by Eq. (39.13).

To reduce the impact of the nuisance parameters one often
tries to constrain their values by means of control or calibration
measurements, say, having data y. For example, some components of
y could represent estimates of the nuisance parameters, often from
separate experiments. Suppose the measurements y are statistically
independent from x and are described by a model Py(y|ν). The joint
model for both x and y is in this case therefore the product of the
probabilities for x and y, and thus the likelihood function for the full
set of parameters is

L(θ, ν) = Px(x|θ, ν)Py(y|ν) . (39.17)

Note that in this case if one wants to simulate the experiment by
means of Monte Carlo, both the primary and control measurements,
x and y, must be generated for each repetition under assumption of
fixed values for the parameters θ and ν.

Using all of the parameters (θ, ν) in Eq. (39.13) to find the
statistical errors in the parameters of interest θ is equivalent to using
the profile likelihood, which depends only on θ. It is defined as

Lp(θ) = L(θ, ̂̂ν(θ)), (39.18)

where the double-hat notation indicates the profiled values of the
parameters ν, defined as the values that maximize L for the specified
θ. The profile likelihood is discussed further in Section 39.3.2.1 in
connection with hypothesis tests.

39.2.3. The method of least squares :

The method of least squares (LS) coincides with the method of
maximum likelihood in the following special case. Consider a set of N
independent measurements yi at known points xi. The measurement
yi is assumed to be Gaussian distributed with mean µ(xi; θ) and
known variance σ2

i . The goal is to construct estimators for the
unknown parameters θ. The log-likelihood function contains the sum
of squares

χ2(θ) = −2 lnL(θ) + constant =
N∑

i=1

(yi − µ(xi; θ))2

σ2
i

. (39.19)

The parameter values that maximize L are the same as those which
minimize χ2.

The minimum of the chi-square function in Equation (39.19) defines

the least-squares estimators θ̂ for the more general case where the
yi are not Gaussian distributed as long as they are independent.
If they are not independent but rather have a covariance matrix
Vij = cov[yi, yj ], then the LS estimators are determined by the
minimum of

χ2(θ) = (y − µ(θ))T V −1(y − µ(θ)) , (39.20)

where y = (y1, . . . , yN ) is the (column) vector of measurements, µ(θ)
is the corresponding vector of predicted values, and the superscript T
denotes the transpose. If the yi are not Gaussian distributed, then the
LS and ML estimators will not in general coincide.

Often one further restricts the problem to the case where µ(xi; θ)
is a linear function of the parameters, i.e.,

µ(xi; θ) =

m∑

j=1

θjhj(xi) . (39.21)

Here the hj(x) are m linearly independent functions, e.g.,

1, x, x2, . . . , xm−1 or Legendre polynomials. We require m < N
and at least m of the xi must be distinct.

Minimizing χ2 in this case with m parameters reduces to solving a
system of m linear equations. Defining Hij = hj(xi) and minimizing

χ2 by setting its derivatives with respect to the θi equal to zero gives
the LS estimators,

θ̂ = (HT V −1H)−1HT V −1y ≡ Dy . (39.22)
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The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DV DT = (HT V −1H)−1 , (39.23)

or equivalently, its inverse U−1 can be found from

(U−1)ij =
1

2

∂2χ2

∂θi∂θj

∣∣∣∣
θ=θ̂

=

N∑

k,l=1

hi(xk)(V −1)klhj(xl) . (39.24)

The LS estimators can also be found from the expression

θ̂ = Ug , (39.25)

where the vector g is defined by

gi =

N∑

j,k=1

yjhi(xk)(V −1)jk . (39.26)

For the case of uncorrelated yi, for example, one can use (39.25) with

(U−1)ij =

N∑

k=1

hi(xk)hj(xk)

σ2
k

, (39.27)

gi =
N∑

k=1

ykhi(xk)

σ2
k

. (39.28)

Expanding χ2(θ) about θ̂, one finds that the contour in parameter
space defined by

χ2(θ) = χ2(θ̂) + 1 = χ2
min + 1 (39.29)

has tangent planes located at approximately plus-or-minus-one
standard deviation σ

θ̂
from the LS estimates θ̂.

In constructing the quantity χ2(θ) one requires the variances or,
in the case of correlated measurements, the covariance matrix. Often
these quantities are not known a priori and must be estimated from
the data; an important example is where the measured value yi

represents the event count in a histogram bin. If, for example, yi

represents a Poisson variable, for which the variance is equal to the
mean, then one can either estimate the variance from the predicted
value, µ(xi; θ), or from the observed number itself, yi. In the first
option, the variances become functions of the parameters, and as a
result the estimators may need to be found numerically. The second
option can be undefined if yi is zero, and for small yi, the variance
will be poorly estimated. In either case, one should constrain the
normalization of the fitted curve to the correct value, i.e., one should
determine the area under the fitted curve directly from the number
of entries in the histogram (see Ref. 8, Section 7.4). As noted in
Sec. 39.2.2.1, this issue is avoided when using the method of extended
maximum likelihood with binned data by minimizing Eq. (39.16). In
that case if the expected number of events µtot does not depend on
the other fitted parameters θ, then its extended ML estimator is equal
to the observed total number of events.

As the minimum value of the χ2 represents the level of agreement
between the measurements and the fitted function, it can be used for
assessing the goodness-of-fit; this is discussed further in Section 39.3.2.

39.2.4. The Bayesian approach :

In the frequentist methods discussed above, probability is associated
only with data, not with the value of a parameter. This is no longer
the case in Bayesian statistics, however, which we introduce in this
section. For general introductions to Bayesian statistics see, e.g.,
Refs. [24–27].

Suppose the outcome of an experiment is characterized by a vector
of data x, whose probability distribution depends on an unknown
parameter (or parameters) θ that we wish to determine. In Bayesian
statistics, all knowledge about θ is summarized by the posterior p.d.f.
p(θ|x), whose integral over any given region gives the degree of belief

for θ to take on values in that region, given the data x. It is obtained
by using Bayes’ theorem,

p(θ|x) =
P (x|θ)π(θ)∫

P (x|θ′)π(θ′) dθ′
, (39.30)

where P (x|θ) is the likelihood function, i.e., the joint p.d.f. for the
data viewed as a function of θ, evaluated with the data actually
obtained in the experiment, and π(θ) is the prior p.d.f. for θ. Note
that the denominator in Eq. (39.30) serves to normalize the posterior
p.d.f. to unity.

As it can be difficult to report the full posterior p.d.f. p(θ|x),
one would usually summarize it with statistics such as the mean (or
median) value, and covariance matrix. In addition one may construct
intervals with a given probability content, as is discussed in Sec. 39.4.1
on Bayesian interval estimation.

39.2.4.1. Priors:

Bayesian statistics supplies no unique rule for determining the prior
π(θ); this reflects the analyst’s subjective degree of belief (or state
of knowledge) about θ before the measurement was carried out. For
the result to be of value to the broader community, whose members
may not share these beliefs, it is important to carry out a sensitivity
analysis, that is, to show how the result changes under a reasonable
variation of the prior probabilities.

One might like to construct π(θ) to represent complete ignorance
about the parameters by setting it equal to a constant. A problem
here is that if the prior p.d.f. is flat in θ, then it is not flat for a
nonlinear function of θ, and so a different parametrization of the
problem would lead in general to a non-equivalent posterior p.d.f.

For the special case of a constant prior, one can see from Bayes’
theorem (39.30) that the posterior is proportional to the likelihood,
and therefore the mode (peak position) of the posterior is equal to the
ML estimator. The posterior mode, however, will change in general
upon a transformation of parameter. One may use as the Bayesian
estimator a summary statistic other than the mode, such as the
median, which is invariant under parameter transformation. But this
will not in general coincide with the ML estimator.

The difficult and subjective nature of encoding personal knowledge
into priors has led to what is called objective Bayesian statistics,
where prior probabilities are based not on an actual degree of belief
but rather derived from formal rules. These give, for example, priors
which are invariant under a transformation of parameters, or ones
which result in a maximum gain in information for a given set of
measurements. For an extensive review see, e.g., Ref. 28.

Objective priors do not in general reflect degree of belief, but they
could in some cases be taken as possible, although perhaps extreme,
subjective priors. The posterior probabilities as well therefore do
not necessarily reflect a degree of belief. However one may regard
investigating a variety of objective priors to be an important part
of the sensitivity analysis. Furthermore, use of objective priors with
Bayes’ theorem can be viewed as a recipe for producing estimators or
intervals which have desirable frequentist properties.

An important procedure for deriving objective priors is due to
Jeffreys. According to Jeffreys’ rule one takes the prior as

π(θ) ∝
√

det(I(θ)) , (39.31)

where

Iij(θ) = −E

[
∂2 lnP (x|θ)

∂θi∂θj

]
(39.32)

is the Fisher information matrix. One can show that the Jeffreys
prior leads to inference that is invariant under a transformation
of parameters. One should note that the Jeffreys prior does not
in general correspond to one’s degree of belief about the value of
a parameter. As examples, the Jeffreys prior for the mean µ of a
Gaussian distribution is a constant, and for the mean of a Poisson
distribution one finds π(µ) ∝ 1/

√
µ.

Neither the constant nor 1/
√

µ priors can be normalized to unit
area and are therefore said to be improper. This can be allowed
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because the prior always appears multiplied by the likelihood function,
and if the likelihood falls to zero sufficiently quickly then one may
have a normalizable posterior density.

An important type of objective prior is the reference prior due to
Bernardo and Berger [29]. To find the reference prior for a given
problem one considers the Kullback-Leibler divergence Dn[π, p] of the
posterior p(θ|x) relative to a prior π(θ), obtained from a set of i.i.d.
data x = (x1, . . . , xn):

Dn[π, p] =

∫
p(θ|x) ln

p(θ|x)

π(θ)
dθ . (39.33)

This is effectively a measure of the gain in information provided by
the data. The reference prior is chosen so that the expectation value
of this information gain is maximized for the limiting case of n → ∞,
where the expectation is computed with respect to the marginal
distribution of the data,

p(x) =

∫
p(x|θ)π(θ) dθ . (39.34)

For a single, continuous parameter the reference prior is usually
identical to the Jeffreys prior. In the multiparameter case an iterative
algorithm exists, which requires sorting the parameters by order of
inferential importance. Often the result does not depend on this order,
but when it does, this can be part of a sensitivity analysis. Further
discussion and applications to particle physics problems can be found
in Ref. 30.

39.2.4.2. Bayesian treatment of nuisance parameters:

As discussed in Sec. 39.2.2, a model may depend on parameters of
interest θ as well as on nuisance parameters ν, which must be included
for an accurate description of the data. Knowledge about the values
of ν may be supplied by control measurements, theoretical insights,
physical constraints, etc. Suppose, for example, one has data y from a
control measurement which is characterized by a probability Py(y|ν).
Suppose further that before carrying out the control measurement
one’s state of knowledge about ν is described by an initial prior π0(ν),
which in practice is often taken to be a constant or in any case very
broad. By using Bayes’ theorem (39.1) one obtains the updated prior
π(ν) (i.e., now π(ν) = π(ν|y), the probability for ν given y),

π(ν|y) ∝ P (y|ν)π0(ν) . (39.35)

In the absence of a model for P (y|ν) one may make some reasonable
but ad hoc choices. For a single nuisance parameter ν, for example,
one might characterize the uncertainty by a p.d.f. π(ν) centered
about its nominal value with a certain standard deviation σν . Often
a Gaussian p.d.f. provides a reasonable model for one’s degree of
belief about a nuisance parameter; in other cases, more complicated
shapes may be appropriate. If, for example, the parameter represents
a non-negative quantity then a log-normal or gamma p.d.f. can be a
more natural choice than a Gaussian truncated at zero. Note also that
truncation of the prior of a nuisance parameter ν at zero will in general
make π(ν) nonzero at ν = 0, which can lead to an unnormalizable
posterior for a parameter of interest that appears multiplied by ν.

The likelihood function, prior, and posterior p.d.f.s all depend on
both θ and ν, and are related by Bayes’ theorem, as usual. Note that
the likelihood here only refers to the primary measurement x. Once
any control measurements y are used to find the updated prior π(ν)
for the nuisance parameters, this information is fully encapsulated in
π(ν) and the control measurements do not appear further.

One can obtain the posterior p.d.f. for θ alone by integrating over
the nuisance parameters, i.e.,

p(θ|x) =

∫
p(θ, ν|x) dν . (39.36)

Such integrals can often not be carried out in closed form, and if the
number of nuisance parameters is large, then they can be difficult to
compute with standard Monte Carlo methods. Markov Chain Monte
Carlo (MCMC) techniques are often used for computing integrals of
this type (see Sec. 40.5).

39.2.5. Propagation of errors :

Consider a set of n quantities θ = (θ1, . . . , θn) and a set of m
functions η(θ) = (η1(θ), . . . , ηm(θ)). Suppose we have estimated

θ̂ = (θ̂1, . . . , θ̂n), using, say, maximum-likelihood or least-squares, and

we also know or have estimated the covariance matrix Vij = cov[θ̂i, θ̂j ].
The goal of error propagation is to determine the covariance matrix
for the functions, Uij = cov[η̂i, η̂j ], where η̂ = η(θ̂ ). In particular, the
diagonal elements Uii = V [η̂i] give the variances. The new covariance
matrix can be found by expanding the functions η(θ) about the

estimates θ̂ to first order in a Taylor series. Using this one finds

Uij ≈
∑

k,l

∂ηi

∂θk

∂ηj

∂θl

∣∣∣∣
θ̂

Vkl . (39.37)

This can be written in matrix notation as U ≈ AV AT where the
matrix of derivatives A is

Aij =
∂ηi

∂θj

∣∣∣∣
θ̂

, (39.38)

and AT is its transpose. The approximation is exact if η(θ) is linear
(it holds, for example, in Equation (39.23)). If this is not the case, the
approximation can break down if, for example, η(θ) is significantly

nonlinear close to θ̂ in a region of a size comparable to the standard
deviations of θ̂.

39.3. Statistical tests

In addition to estimating parameters, one often wants to assess
the validity of certain statements concerning the data’s underlying
distribution. Frequentist hypothesis tests, described in Sec. 39.3.1,
provide a rule for accepting or rejecting hypotheses depending on the
outcome of a measurement. In significance tests, covered in Sec. 39.3.2,
one gives the probability to obtain a level of incompatibility with a
certain hypothesis that is greater than or equal to the level observed
with the actual data. In the Bayesian approach, the corresponding
procedure is based fundamentally on the posterior probabilities of the
competing hypotheses. In Sec. 39.3.3 we describe a related construct
called the Bayes factor, which can be used to quantify the degree to
which the data prefer one or another hypothesis.

39.3.1. Hypothesis tests :

A frequentist test of a hypothesis (often called the null hypothesis,
H0) is a rule that states for which data values x the hypothesis is
rejected. A region of x-space called the critical region, w, is specified
such that there is no more than a given probability under H0, α,
called the size or significance level of the test, to find x ∈ w. If the
data are discrete, it may not be possible to find a critical region with
exact probability content α, and thus we require P (x ∈ w|H0) ≤ α. If
the data are observed in the critical region, H0 is rejected.

The critical region is not unique. Its choice should take into
account the probabilities for the data predicted by some alternative
hypothesis (or set of alternatives) H1. Rejecting H0 if it is true is
called a type-I error, and occurs by construction with probability no
greater than α. Not rejecting H0 if an alternative H1 is true is called
a type-II error, and for a given test this will have a certain probability
β = P (x /∈ w|H1). The quantity 1 − β is called the power of the test
of H0 with respect to the alternative H1. A strategy for defining the
critical region can therefore be to maximize the power with respect to
some alternative (or alternatives) given a fixed size α.

In high-energy physics, the components of x might represent the
measured properties of candidate events, and the critical region is
defined by the cuts that one imposes in order to reject background
and thus accept events likely to be of a certain desired type. Here
H0 could represent the background hypothesis and the alternative
H1 could represent the sought after signal. In other cases, H0 could
be the hypothesis that an entire event sample consists of background
events only, and the alternative H1 may represent the hypothesis of a
mixture of background and signal.

Often rather than using the full set of quantities x, it is convenient
to define a scalar function of x called a test statistic, t(x). The critical



39. Statistics 527

region in x-space is bounded by a surface of constant t(x). Once the
function t(x) is fixed, a given hypothesis for the distribution of x will
determine a distribution for t.

To maximize the power of a test of H0 with respect to the
alternative H1, the Neyman–Pearson lemma states that the critical
region w should be chosen such that for all data values x inside w, the
ratio

λ(x) =
f(x|H1)

f(x|H0)
, (39.39)

is greater than a given constant, the value of which is determined by
the size of the test α. Here H0 and H1 must be simple hypotheses,
i.e., they should not contain undetermined parameters.

The lemma is equivalent to the statement that (39.39) represents
the optimal test statistic where the critical region is defined by a
single cut on λ. This test will lead to the maximum power for a given
probability α to reject H0 if H0 is in fact true. It can be difficult in
practice, however, to determine λ(x), since this requires knowledge
of the joint p.d.f.s f(x|H0) and f(x|H1). Often one does not have
explicit formulae for these, but rather Monte Carlo models that allow
one to generate instances of x (events) that follow the p.d.f.s.

In the case where the likelihood ratio (39.39) cannot be used
explicitly, there exist a variety of other multivariate classifiers
that effectively separate different types of events. These are based
on machine-learning algorithms that use samples of training data
corresponding to the hypotheses in question, often generated from
Monte Carlo models. Methods often used in HEP include Fisher
discriminants and neural networks, probability density estimation
(PDE) techniques, kernel-based PDE (KDE or Parzen window),
support vector machines, and decision trees. Techniques such as
“boosting” and “bagging” can be applied to combine a number of
classifiers into a stronger one with greater stability with respect
to fluctuations in the training data. Descriptions of these methods
can be found in Refs. [11–14], and Proceedings of the PHYSTAT
conference series [15]. Software for HEP includes the TMVA [16],
StatPatternRecognition [17] and scikit-learn [18] packages.

39.3.2. Tests of significance (goodness-of-fit) :

Often one wants to quantify the level of agreement between the data
and a hypothesis without explicit reference to alternative hypotheses.
This can be done by defining a statistic t that is a function of the
data whose value reflects in some way the level of agreement between
the data and the hypothesis. The analyst must decide what values of
the statistic correspond to better or worse levels of agreement with
the hypothesis in question; the choice will in general depend on the
relevant alternative hypotheses.

The hypothesis in question, H0, will determine the p.d.f. f(t|H0)
for the statistic. The significance of a discrepancy between the data
and what one expects under the assumption of H0 is quantified by
giving the p-value, defined as the probability to find t in the region of
equal or lesser compatibility with H0 than the level of compatibility
observed with the actual data. For example, if t is defined such that
large values correspond to poor agreement with the hypothesis, then
the p-value would be

p =

∫
∞

tobs

f(t|H0) dt , (39.40)

where tobs is the value of the statistic obtained in the actual
experiment.

The p-value should not be confused with the size (significance
level) of a test, or the confidence level of a confidence interval
(Section 39.4), both of which are pre-specified constants. We may
formulate a hypothesis test, however, by defining the critical region to
correspond to the data outcomes that give the lowest p-values, so that
finding p ≤ α implies that the data outcome was in the critical region.
When constructing a p-value, one generally chooses the region of data
space deemed to have lower compatibility with the model being tested
as one having higher compatibility with a given alternative, such that
the corresponding test will have a high power with respect to this
alternative.

The p-value is a function of the data, and is therefore itself a
random variable. If the hypothesis used to compute the p-value is
true, then for continuous data p will be uniformly distributed between
zero and one. Note that the p-value is not the probability for the
hypothesis; in frequentist statistics, this is not defined.

When searching for a new phenomenon, one tries to reject the
hypothesis H0 that the data are consistent with known (e.g., Standard
Model) processes. If the p-value of H0 is sufficiently low, then one
is willing to accept that some alternative hypothesis is true. Often
one converts the p-value into an equivalent significance Z, defined so
that a Z standard deviation upward fluctuation of a Gaussian random
variable would have an upper tail area equal to p, i.e.,

Z = Φ−1(1 − p) . (39.41)

Here Φ is the cumulative distribution of the standard Gaussian, and
Φ−1 is its inverse (quantile) function. Often in HEP the level of
significance where an effect is said to qualify as a discovery is Z = 5,
i.e., a 5σ effect, corresponding to a p-value of 2.87 × 10−7. One’s
actual degree of belief that a new process is present, however, will
depend in general on other factors as well, such as the plausibility of
the new signal hypothesis and the degree to which it can describe the
data, one’s confidence in the model that led to the observed p-value,
and possible corrections for multiple observations out of which one
focuses on the smallest p-value obtained (the “look-elsewhere effect”,
discussed in Section 39.3.2.2).

39.3.2.1. Treatment of nuisance parameters for frequentist tests:

Suppose one wants to test hypothetical values of parameters θ, but
the model also contains nuisance parameters ν. To find a p-value for
θ we can construct a test statistic qθ such that larger values constitute
increasing incompatibility between the data and the hypothesis. Then
for an observed value of the statistic qθ,obs, the p-value of θ is

pθ(ν) =

∫
∞

qθ,obs

f(qθ|θ, ν) dqθ , (39.42)

which depends in general on the nuisance parameters ν. In the strict
frequentist approach, θ is rejected only if the p-value is less than α for
all possible values of the nuisance parameters.

The difficulty described above is effectively solved if we can define
the test statistic qθ in such a way that its distribution f(qθ|θ) is
independent of the nuisance parameters. Although exact independence
is only found in special cases, it can be achieved approximately by use
of the profile likelihood ratio. This is given by the profile likelihood
from Eq.(39.18) divided by the value of the likelihood at its maximum,

i.e., when evaluated with the ML estimators θ̂ and ν̂:

λp(θ) =
L(θ, ̂̂ν(θ))

L(θ̂, ν̂)
. (39.43)

Wilks’ theorem [10] states that, providing certain general conditions
are satisfied, the distribution of −2 lnλp(θ), under assumption of
θ, approaches a χ2 distribution in the limit where the data sample
is very large, independent of the values of the nuisance parameters
ν. Here the number of degrees of freedom is equal to the number
of components of θ. More details on use of the profile likelihood
are given in Refs. [38–39] and in contributions to the PHYSTAT
conferences [15]; explicit formulae for special cases can be found
in Ref. 40. Further discussion on how to incorporate systematic
uncertainties into p-values can be found in Ref. 19.

Even with use of the profile likelihood ratio, for a finite data sample
the p-value of hypothesized parameters θ will retain in general some
dependence on the nuisance parameters ν. Ideally one would find the
the maximum of pθ(ν) from Eq. (39.42) explicitly, but that is often
impractical. An approximate and computationally feasible technique

is to use pθ(
̂̂ν(θ)), where ̂̂ν(θ) are the profiled values of the nuisance

parameters as defined in Section 39.2.2.2. The resulting p-value is
correct if the true values of the nuisance parameters are equal to the
profiled values used; otherwise it could be either too high or too low.
This is discussed further in Section 39.4.2 on confidence intervals.
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One may also treat model uncertainties in a Bayesian manner
but then use the resulting model in a frequentist test. Suppose the
uncertainty in a set of nuisance parameters ν is characterized by a
Bayesian prior p.d.f. π(ν). This can be used to construct the marginal
(also called the prior predictive) model for the data x and parameters
of interest θ,

Pm(x|θ) =

∫
P (x|θ, ν)π(ν) dν . (39.44)

The marginal model does not represent the probability of data that
would be generated if one were really to repeat the experiment, as
in that case one would assume that the nuisance parameters do not
vary. Rather, the marginal model represents a situation in which
every repetition of the experiment is carried out with new values of ν,
randomly sampled from π(ν). It is in effect an average of models each
with a given ν, where the average is carried out with respect to the
prior p.d.f. π(ν).

The marginal model for the data x can be used to determine the
distribution of a test statistic Q, which can be written

Pm(Q|θ) =

∫
P (Q|θ, ν)π(ν) dν . (39.45)

In a search for a new signal process, the test statistic can be based on
the ratio of likelihoods corresponding to the experiments where signal
and background events are both present, Ls+b, to that of background
only, Lb. Often the likelihoods are evaluated with the profiled values
of the nuisance parameters, which may give improved performance. It
is important to note, however, that it is through use of the marginal
model for the distribution of Q that the uncertainties related to
the nuisance parameters are incorporated into the result of the test.
Different choices for the test statistic itself only result in variations of
the power of the test with respect to different alternatives.

39.3.2.2. The look-elsewhere effect:

The “look-elsewhere effect” relates to multiple measurements used
to test a single hypothesis. The classic example is when one searches
in a distribution for a peak whose position is not predicted in advance.
Here the no-peak hypothesis is tested using data in a given range of
the distribution. In the frequentist approach the correct p-value of the
no-peak hypothesis is the probability, assuming background only, to
find a signal as significant as the one found or more so anywhere in the
search region. This can be substantially higher than the probability
to find a peak of equal or greater significance in the particular place
where it appeared. There is in general some ambiguity as to what
constitutes the relevant search region or even the broader set of
relevant measurements. Although the desired p-value is well defined
once the search region has been fixed, an exact treatment can require
extensive computation.

The “brute-force” solution to this problem by Monte Carlo involves
generating data under the background-only hypothesis and for each
data set, fitting a peak of unknown position and recording a measure
of its significance. To establish a discovery one often requires a
p-value less than 2.87 × 10−7, corresponding to a 5σ or larger effect.
Determining this with Monte Carlo thus requires generating and
fitting a very large number of experiments, perhaps several times 107.
In contrast, if the position of the peak is fixed, then the fit to the
distribution is much easier, and furthermore one can in many cases
use formulae valid for sufficiently large samples that bypass completely
the need for Monte Carlo (see, e.g., [40]) . However, this fixed-position
or “local” p-value would not be correct in general, as it assumes the
position of the peak was known in advance.

A method that allows one to modify the local p-value computed
under assumption of a fixed position to obtain an approximation
to the correct “global” value using a relatively simple calculation is
described in Ref. 20. Suppose a test statistic q0, defined so that larger
values indicate increasing disagreement with the data, is observed to
have a value u. Furthermore suppose the model contains a nuisance
parameter θ (such as the peak position) which is only defined under
the signal model (there is no peak in the background-only model). An
approximation for the global p-value is found to be

pglobal ≈ plocal + 〈Nu〉 , (39.46)

where 〈Nu〉 is the mean number of “upcrossings” of the statistic q0

above the level u in the range of the nuisance parameter considered
(e.g., the mass range).

The value of 〈Nu〉 can be estimated from the number of upcrossings
〈Nu0

〉 above some much lower value, u0, by using a relation due to
Davis [21],

〈Nu〉 ≈ 〈Nu0
〉e−(u−u0)/2 . (39.47)

By choosing u0 sufficiently low, the value of 〈Nu〉 can be estimated by
simulating only a very small number of experiments, or even from the
observed data, rather than the 107 needed if one is dealing with a 5σ
effect.

39.3.2.3. Goodness-of-fit with the method of Least Squares:

When estimating parameters using the method of least squares,
one obtains the minimum value of the quantity χ2 (39.19). This
statistic can be used to test the goodness-of-fit, i.e., the test provides a
measure of the significance of a discrepancy between the data and the
hypothesized functional form used in the fit. It may also happen that
no parameters are estimated from the data, but that one simply wants
to compare a histogram, e.g., a vector of Poisson distributed numbers
n = (n1, . . . , nN ), with a hypothesis for their expectation values
µi = E[ni]. As the distribution is Poisson with variances σ2

i = µi, the

χ2 (39.19) becomes Pearson’s χ2 statistic,

χ2 =

N∑

i=1

(ni − µi)
2

µi
. (39.48)

If the hypothesis µ = (µ1, . . . , µN ) is correct, and if the expected
values µi in (39.48) are sufficiently large (or equivalently, if the
measurements ni can be treated as following a Gaussian distribution),
then the χ2 statistic will follow the χ2 p.d.f. with the number of
degrees of freedom equal to the number of measurements N minus the
number of fitted parameters.

Alternatively, one may fit parameters and evaluate goodness-
of-fit by minimizing −2 lnλ from Eq. (39.16). One finds that the
distribution of this statistic approaches the asymptotic limit faster
than does Pearson’s χ2, and thus computing the p-value with the
χ2 p.d.f. will in general be better justified (see Ref. 9 and references
therein).

Assuming the goodness-of-fit statistic follows a χ2 p.d.f., the p-value
for the hypothesis is then

p =

∫
∞

χ2
f(z; nd) dz , (39.49)

where f(z; nd) is the χ2 p.d.f. and nd is the appropriate number of
degrees of freedom. Values are shown in Fig. 39.1 or obtained from
the ROOT function TMath::Prob. If the conditions for using the χ2

p.d.f. do not hold, the statistic can still be defined as before, but
its p.d.f. must be determined by other means in order to obtain the
p-value, e.g., using a Monte Carlo calculation.

Since the mean of the χ2 distribution is equal to nd, one expects
in a “reasonable” experiment to obtain χ2 ≈ nd. Hence the quantity
χ2/nd is sometimes reported. Since the p.d.f. of χ2/nd depends on
nd, however, one must report nd as well if one wishes to determine
the p-value. The p-values obtained for different values of χ2/nd are
shown in Fig. 39.2.

If one finds a χ2 value much greater than nd, and a correspondingly
small p-value, one may be tempted to expect a high degree of
uncertainty for any fitted parameters. Poor goodness-of-fit, however,
does not mean that one will have large statistical errors for parameter
estimates. If, for example, the error bars (or covariance matrix)
used in constructing the χ2 are underestimated, then this will lead
to underestimated statistical errors for the fitted parameters. The
standard deviations of estimators that one finds from, say, Eq. (39.13)
reflect how widely the estimates would be distributed if one were to
repeat the measurement many times, assuming that the hypothesis
and measurement errors used in the χ2 are also correct. They do
not include the systematic error which may result from an incorrect
hypothesis or incorrectly estimated measurement errors in the χ2.
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Figure 39.1: One minus the χ2 cumulative distribution,
1 − F (χ2; n), for n degrees of freedom. This gives the p-value
for the χ2 goodness-of-fit test as well as one minus the coverage
probability for confidence regions (see Sec. 39.4.2.2).
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Figure 39.2: The ‘reduced’ χ2, equal to χ2/n, for n degrees
of freedom. The curves show as a function of n the χ2/n that
corresponds to a given p-value.

39.3.3. Bayes factors :

In Bayesian statistics, all of one’s knowledge about a model is
contained in its posterior probability, which one obtains using Bayes’
theorem (Eq. (39.30)). Thus one could reject a hypothesis H if its
posterior probability P (H |x) is sufficiently small. The difficulty here is
that P (H |x) is proportional to the prior probability P (H), and there
will not be a consensus about the prior probabilities for the existence
of new phenomena. Nevertheless one can construct a quantity called
the Bayes factor (described below), which can be used to quantify the
degree to which the data prefer one hypothesis over another, and is
independent of their prior probabilities.

Consider two models (hypotheses), Hi and Hj , described by vectors
of parameters θi and θj , respectively. Some of the components will
be common to both models and others may be distinct. The full prior
probability for each model can be written in the form

π(Hi, θi) = P (Hi)π(θi|Hi) . (39.50)

Here P (Hi) is the overall prior probability for Hi, and π(θi|Hi) is
the normalized p.d.f. of its parameters. For each model, the posterior
probability is found using Bayes’ theorem,

P (Hi|x) =

∫
P (x|θi, Hi)P (Hi)π(θi|Hi) dθi

P (x)
, (39.51)

where the integration is carried out over the internal parameters θi

of the model. The ratio of posterior probabilities for the models is
therefore

P (Hi|x)

P (Hj |x)
=

∫
P (x|θi, Hi)π(θi|Hi) dθi∫
P (x|θj , Hj)π(θj |Hj) dθj

P (Hi)

P (Hj)
. (39.52)

The Bayes factor is defined as

Bij =

∫
P (x|θi, Hi)π(θi|Hi) dθi∫
P (x|θj , Hj)π(θj |Hj) dθj

. (39.53)

This gives what the ratio of posterior probabilities for models i and
j would be if the overall prior probabilities for the two models were
equal. If the models have no nuisance parameters, i.e., no internal
parameters described by priors, then the Bayes factor is simply the
likelihood ratio. The Bayes factor therefore shows by how much the
probability ratio of model i to model j changes in the light of the data,
and thus can be viewed as a numerical measure of evidence supplied
by the data in favour of one hypothesis over the other.

Although the Bayes factor is by construction independent of the
overall prior probabilities P (Hi) and P (Hj), it does require priors
for all internal parameters of a model, i.e., one needs the functions
π(θi|Hi) and π(θj |Hj). In a Bayesian analysis where one is only
interested in the posterior p.d.f. of a parameter, it may be acceptable
to take an unnormalizable function for the prior (an improper prior)
as long as the product of likelihood and prior can be normalized. But
improper priors are only defined up to an arbitrary multiplicative
constant, and so the Bayes factor would depend on this constant.
Furthermore, although the range of a constant normalized prior is
unimportant for parameter determination (provided it is wider than
the likelihood), this is not so for the Bayes factor when such a prior
is used for only one of the hypotheses. So to compute a Bayes factor,
all internal parameters must be described by normalized priors that
represent meaningful probabilities over the entire range where they
are defined.

An exception to this rule may be considered when the identical
parameter appears in the models for both numerator and denominator
of the Bayes factor. In this case one can argue that the arbitrary
constants would cancel. One must exercise some caution, however, as
parameters with the same name and physical meaning may still play
different roles in the two models.

Both integrals in Equation (39.53) are of the form

m =

∫
P (x|θ)π(θ) dθ , (39.54)

which is the marginal likelihood seen previously in Eq. (39.44) (in
some fields this quantity is called the evidence). A review of Bayes
factors can be found in Ref. 32. Computing marginal likelihoods can
be difficult; in many cases it can be done with the nested sampling
algorithm [33] as implemented, e.g., in the program MultiNest [34].

39.4. Intervals and limits

When the goal of an experiment is to determine a parameter θ,
the result is usually expressed by quoting, in addition to the point
estimate, some sort of interval which reflects the statistical precision
of the measurement. In the simplest case, this can be given by the
parameter’s estimated value θ̂ plus or minus an estimate of the
standard deviation of θ̂, σ̂

θ̂
. If, however, the p.d.f. of the estimator

is not Gaussian or if there are physical boundaries on the possible
values of the parameter, then one usually quotes instead an interval
according to one of the procedures described below.

In reporting an interval or limit, the experimenter may wish to

• communicate as objectively as possible the result of the
experiment;

• provide an interval that is constructed to cover the true value of
the parameter with a specified probability;

• provide the information needed by the consumer of the result to
draw conclusions about the parameter or to make a particular
decision;

• draw conclusions about the parameter that incorporate stated
prior beliefs.
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With a sufficiently large data sample, the point estimate and
standard deviation (or for the multiparameter case, the parameter
estimates and covariance matrix) satisfy essentially all of these goals.
For finite data samples, no single method for quoting an interval will
achieve all of them.

In addition to the goals listed above, the choice of method may
be influenced by practical considerations such as ease of producing
an interval from the results of several measurements. Of course the
experimenter is not restricted to quoting a single interval or limit;
one may choose, for example, first to communicate the result with a
confidence interval having certain frequentist properties, and then in
addition to draw conclusions about a parameter using a judiciously
chosen subjective Bayesian prior. It is recommended, however, that
there be a clear separation between these two aspects of reporting a
result. In the remainder of this section, we assess the extent to which
various types of intervals achieve the goals stated here.

39.4.1. Bayesian intervals :

As described in Sec. 39.2.4, a Bayesian posterior probability may
be used to determine regions that will have a given probability of
containing the true value of a parameter. In the single parameter
case, for example, an interval (called a Bayesian or credible interval)
[θlo, θup] can be determined which contains a given fraction 1 − α of
the posterior probability, i.e.,

1 − α =

∫ θup

θlo

p(θ|x) dθ . (39.55)

Sometimes an upper or lower limit is desired, i.e., θlo or θup can be
set to a physical boundary or to plus or minus infinity. In other cases,
one might be interested in the set of θ values for which p(θ|x) is higher
than for any θ not belonging to the set, which may constitute a single
interval or a set of disjoint regions; these are called highest posterior
density (HPD) intervals. Note that HPD intervals are not invariant
under a nonlinear transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior
p.d.f. can simply be set to zero for negative values. An important
example is the case of a Poisson variable n, which counts signal events
with unknown mean s, as well as background with mean b, assumed
known. For the signal mean s, one often uses the prior

π(s) =

{
0 s < 0
1 s ≥ 0

. (39.56)

This prior is regarded as providing an interval whose frequentist
properties can be studied, rather than as representing a degree of
belief. For example, to obtain an upper limit on s, one may proceed
as follows. The likelihood for s is given by the Poisson distribution for
n with mean s + b,

P (n|s) =
(s + b)n

n!
e−(s+b) , (39.57)

along with the prior (39.56) in (39.30) gives the posterior density for
s. An upper limit sup at confidence level (or here, rather, credibility
level) 1 − α can be obtained by requiring

1 − α =

∫ sup

−∞

p(s|n)ds =

∫ sup

−∞
P (n|s)π(s) ds∫

∞

−∞
P (n|s)π(s) ds

, (39.58)

where the lower limit of integration is effectively zero because of the
cut-off in π(s). By relating the integrals in Eq. (39.58) to incomplete
gamma functions, the solution for the upper limit is found to be

sup = 1
2F−1

χ2 [p, 2(n + 1)] − b , (39.59)

where F−1
χ2 is the quantile of the χ2 distribution (inverse of the

cumulative distribution). Here the quantity p is

p = 1 − α
(
1 − Fχ2 [2b, 2(n + 1)]

)
, (39.60)

where Fχ2 is the cumulative χ2 distribution. For both Fχ2 and F−1
χ2

above, the argument 2(n + 1) gives the number of degrees of freedom.
For the special case of b = 0, the limit reduces to

sup = 1
2F−1

χ2 (1 − α; 2(n + 1)) . (39.61)

It happens that for the case of b = 0, the upper limit from Eq. (39.61)
coincides numerically with the frequentist upper limit discussed in
Section 39.4.2.3. Values for 1 − α = 0.9 and 0.95 are given by the
values µup in Table 39.3. The frequentist properties of confidence
intervals for the Poisson mean found in this way are discussed in
Refs. [2] and [23].

As in any Bayesian analysis, it is important to show how the result
changes under assumption of different prior probabilities. For example,
one could consider the Jeffreys prior as described in Sec. 39.2.4. For
this problem one finds the Jeffreys prior π(s) ∝ 1/

√
s + b for s ≥ 0 and

zero otherwise. As with the constant prior, one would not regard this
as representing one’s prior beliefs about s, both because it is improper
and also as it depends on b. Rather it is used with Bayes’ theorem to
produce an interval whose frequentist properties can be studied.

If the model contains nuisance parameters then these are eliminated
by marginalizing, as in Eq. (39.36), to obtain the p.d.f. for the
parameters of interest. For example, if the parameter b in the Poisson
counting problem above were to be characterized by a prior p.d.f.
π(b), then one would first use Bayes’ theorem to find p(s, b|n). This is
then marginalized to find p(s|n) =

∫
p(s, b|n)π(b) db, from which one

may determine an interval for s. One may not be certain whether to
extend a model by including more nuisance parameters. In this case, a
Bayes factor may be used to determine to what extent the data prefer
a model with additional parameters, as described in Section 39.3.3.

39.4.2. Frequentist confidence intervals :

The unqualified phrase “confidence intervals” refers to frequentist
intervals obtained with a procedure due to Neyman [31], described
below. These are intervals (or in the multiparameter case, regions)
constructed so as to include the true value of the parameter with
a probability greater than or equal to a specified level, called the
coverage probability. It is important to note that in the frequentist
approach, such coverage is not meaningful for a fixed interval. A
confidence interval, however, depends on the data and thus would
fluctuate if one were to repeat the experiment many times. The
coverage probability refers to the fraction of intervals in such a set that
contain the true parameter value. In this section we discuss several
techniques for producing intervals that have, at least approximately,
this property.

39.4.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(x; θ) where x represents the outcome of the
experiment and θ is the unknown parameter for which we want
to construct a confidence interval. The variable x could (and often
does) represent an estimator for θ. Using f(x; θ), we can find for a
pre-specified probability 1−α, and for every value of θ, a set of values
x1(θ, α) and x2(θ, α) such that

P (x1 < x < x2; θ) =

∫ x2

x1

f(x; θ) dx ≥ 1 − α . (39.62)

If x is discrete, the integral is replaced by the corresponding sum.
In that case there may not exist a range of x values whose summed
probability is exactly equal to a given value of 1− α, and one requires
by convention P (x1 < x < x2; θ) ≥ 1 − α.

This is illustrated for continuous x in Fig. 39.3: a horizontal line
segment [x1(θ, α), x2(θ, α)] is drawn for representative values of θ.
The union of such intervals for all values of θ, designated in the figure
as D(α), is known as the confidence belt. Typically the curves x1(θ, α)
and x2(θ, α) are monotonic functions of θ, which we assume for this
discussion.

Upon performing an experiment to measure x and obtaining a value
x0, one draws a vertical line through x0. The confidence interval for θ
is the set of all values of θ for which the corresponding line segment
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Figure 39.3: Construction of the confidence belt (see text).

[x1(θ, α), x2(θ, α)] is intercepted by this vertical line. Such confidence
intervals are said to have a confidence level (CL) equal to 1 − α.

Now suppose that the true value of θ is θ0, indicated in the figure.
We see from the figure that θ0 lies between θ1(x) and θ2(x) if and
only if x lies between x1(θ0) and x2(θ0). The two events thus have
the same probability, and since this is true for any value θ0, we can
drop the subscript 0 and obtain

1 − α = P (x1(θ) < x < x2(θ)) = P (θ2(x) < θ < θ1(x)) . (39.63)

In this probability statement, θ1(x) and θ2(x), i.e., the endpoints of
the interval, are the random variables and θ is an unknown constant.
If the experiment were to be repeated a large number of times, the
interval [θ1, θ2] would vary, covering the fixed value θ in a fraction
1 − α of the experiments.

The condition of coverage in Eq. (39.62) does not determine x1 and
x2 uniquely, and additional criteria are needed. One possibility is to
choose central intervals such that the probabilities to find x below x1

and above x2 are each α/2. In other cases, one may want to report
only an upper or lower limit, in which case one of P (x ≤ x1) or
P (x ≥ x2) can be set to α and the other to zero. Another principle
based on likelihood ratio ordering for determining which values of x
should be included in the confidence belt is discussed below.

When the observed random variable x is continuous, the coverage
probability obtained with the Neyman construction is 1−α, regardless
of the true value of the parameter. Because of the requirement
P (x1 < x < x2) ≥ 1 − α when x is discrete, one obtains in that case
confidence intervals that include the true parameter with a probability
greater than or equal to 1 − α.

An equivalent method of constructing confidence intervals is to
consider a test (see Sec. 39.3) of the hypothesis that the parameter’s
true value is θ (assume one constructs a test for all physical values of
θ). One then excludes all values of θ where the hypothesis would be
rejected in a test of size α or less. The remaining values constitute
the confidence interval at confidence level 1 − α. If the critical region
of the test is characterized by having a p-value pθ ≤ α, then the
endpoints of the confidence interval are found in practice by solving
pθ = α for θ.

In the procedure outlined above, one is still free to choose the test to
be used; this corresponds to the freedom in the Neyman construction
as to which values of the data are included in the confidence belt. One
possibility is to use a test statistic based on the likelihood ratio,

λ(θ) =
f(x; θ)

f(x; θ̂ )
, (39.64)

where θ̂ is the value of the parameter which, out of all allowed values,
maximizes f(x; θ). This results in the intervals described in Ref. 35 by
Feldman and Cousins. The same intervals can be obtained from the
Neyman construction described above by including in the confidence
belt those values of x which give the greatest values of λ(θ).

If the model contains nuisance parameters ν, then these can be
incorporated into the test (or the p-values) used to determine the limit
by profiling as discussed in Section 39.3.2.1. As mentioned there, the
strict frequentist approach is to regard the parameter of interest θ as
excluded only if it is rejected for all possible values of ν. The resulting
interval for θ will then cover the true value with a probability greater
than or equal to the nominal confidence level for all points in ν-space.

If the p-value is based on the profiled values of the nuisance

parameters, i.e., with ν = ̂̂ν(θ) used in Eq. (39.42), then the resulting
interval for the parameter of interest will have the correct coverage if
the true values of ν are equal to the profiled values. Otherwise the
coverage probability may be too high or too low. This procedure has
been called profile construction in HEP [22] (see also [19]) .

39.4.2.2. Gaussian distributed measurements:

An important example of constructing a confidence interval is when
the data consists of a single random variable x that follows a Gaussian
distribution; this is often the case when x represents an estimator for
a parameter and one has a sufficiently large data sample. If there is
more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known σ, the probability that
the measured value x will fall within ±δ of the true value µ is

1 − α =
1√
2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2

dx = erf

(
δ√
2 σ

)
= 2Φ

(
δ

σ

)
− 1 ,

(39.65)
where erf is the Gaussian error function, which is rewritten in the
final equality using Φ, the Gaussian cumulative distribution. Fig. 39.4
shows a δ = 1.64σ confidence interval unshaded. The choice δ = σ
gives an interval called the standard error which has 1 − α = 68.27%
if σ is known. Values of α for other frequently used choices of δ are
given in Table 39.1.

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Figure 39.4: Illustration of a symmetric 90% confidence interval
(unshaded) for a measurement of a single quantity with Gaussian
errors. Integrated probabilities, defined by α = 0.1, are as shown.

Table 39.1: Area of the tails α outside ±δ from the mean of a
Gaussian distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

We can set a one-sided (upper or lower) limit by excluding above
x + δ (or below x − δ). The values of α for such limits are half the
values in Table 39.1.

The relation (39.65) can be re-expressed using the cumulative
distribution function for the χ2 distribution as

α = 1 − F (χ2; n) , (39.66)
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for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be seen as
the n = 1 curve in Fig. 39.1 or obtained by using the ROOT function
TMath::Prob.

For multivariate measurements of, say, n parameter estimates
θ̂ = (θ̂1, . . . , θ̂n), one requires the full covariance matrix Vij =

cov[θ̂i, θ̂j ], which can be estimated as described in Sections 39.2.2
and 39.2.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the
estimators will be distributed according to a multivariate Gaussian
centered about the true (unknown) values θ, and furthermore, the
likelihood function itself takes on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 39.5,

corresponding to a contour χ2 = χ2
min + 1 or lnL = lnLmax − 1/2.

The ellipse is centered about the estimated values θ̂, and the tangents
to the ellipse give the standard deviations of the estimators, σi and
σj . The angle of the major axis of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2
j − σ2

i

, (39.67)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the
distance σi from the ellipse’s horizontal center-line at which the ellipse
becomes tangent to vertical, i.e., at the distance ρijσi below the
center-line as shown. As ρij goes to +1 or −1, the ellipse thins to a
diagonal line.

It could happen that one of the parameters, say, θj , is known from
previous measurements to a precision much better than σj , so that
the current measurement contributes almost nothing to the knowledge
of θj . However, the current measurement of θi and its dependence
on θj may still be important. In this case, instead of quoting both
parameter estimates and their correlation, one sometimes reports the
value of θi, which minimizes χ2 at a fixed value of θj , such as the PDG
best value. This θi value lies along the dotted line between the points
where the ellipse becomes tangent to vertical, and has statistical
error σinner as shown on the figure, where σinner = (1 − ρ2

ij)
1/2σi.

Instead of the correlation ρij , one reports the dependency dθ̂i/dθj ,
which is the slope of the dotted line. This slope is related to the
correlation coefficient by dθ̂i/dθj = ρij × σi

σj
.

θ i

φ

θ i

jσ
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iσ
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Figure 39.5: Standard error ellipse for the estimators θ̂i and
θ̂j . In the case shown the correlation is negative.

As in the single-variable case, because of the symmetry of the
Gaussian function between θ and θ̂, one finds that contours of constant
lnL or χ2 cover the true values with a certain, fixed probability. That
is, the confidence region is determined by

lnL(θ) ≥ lnLmax − ∆ ln L , (39.68)

or where a χ2 has been defined for use with the method of
least-squares,

χ2(θ) ≤ χ2
min + ∆χ2 . (39.69)

Values of ∆χ2 or 2∆ lnL are given in Table 39.2 for several
values of the coverage probability 1 − α and number of fitted
parameters m. For Gaussian distributed data, these are related by
∆χ2 = 2∆ lnL = F−1

χ2
m

(1 − α), where F−1
χ2

m
is the chi-square quantile

(inverse of the cumulative distribution) for m degrees of freedom.

Table 39.2: Values of ∆χ2 or 2∆ lnL corresponding to a
coverage probability 1 − α in the large data sample limit, for
joint estimation of m parameters.

(1 − α) (%) m = 1 m = 2 m = 3

68.27 1.00 2.30 3.53

90. 2.71 4.61 6.25

95. 3.84 5.99 7.82

95.45 4.00 6.18 8.03

99. 6.63 9.21 11.34

99.73 9.00 11.83 14.16

For non-Gaussian data samples, the probability for the regions
determined by Equations (39.68) or (39.69) to cover the true value
of θ becomes independent of θ only in the large-sample limit. So
for a finite data sample these are not exact confidence regions
according to our previous definition. Nevertheless, they can still have
a coverage probability only weakly dependent on the true parameter,
and approximately as given in Table 39.2. In any case, the coverage
probability of the intervals or regions obtained according to this
procedure can in principle be determined as a function of the true
parameter(s), for example, using a Monte Carlo calculation.

One of the practical advantages of intervals that can be constructed
from the log-likelihood function or χ2 is that it is relatively simple to
produce the interval for the combination of several experiments. If N
independent measurements result in log-likelihood functions lnLi(θ),
then the combined log-likelihood function is simply the sum,

lnL(θ) =

N∑

i=1

lnLi(θ) . (39.70)

This can then be used to determine an approximate confidence interval
or region with Eq. (39.68), just as with a single experiment.

39.4.2.3. Poisson or binomial data:

Another important class of measurements consists of counting a
certain number of events, n. In this section, we will assume these
are all events of the desired type, i.e., there is no background. If n
represents the number of events produced in a reaction with cross
section σ, say, in a fixed integrated luminosity L, then it follows a
Poisson distribution with mean µ = σL. If, on the other hand, one
has selected a larger sample of N events and found n of them to have
a particular property, then n follows a binomial distribution where the
parameter p gives the probability for the event to possess the property
in question. This is appropriate, e.g., for estimates of branching ratios
or selection efficiencies based on a given total number of events.

For the case of Poisson distributed n, limits on the mean value µ can
be found from the Neyman procedure as discussed in Section 39.4.2.1
with n used directly as the statistic x . The upper and lower limits
are found to be

µlo = 1
2
F−1

χ2 (αlo; 2n) , (39.71a)

µup = 1
2
F−1

χ2 (1 − αup; 2(n + 1)) , (39.71b)

where confidence levels of 1 − αlo and 1 − αup, refer separately to

the corresponding intervals µ ≥ µlo and µ ≤ µup, and F−1
χ2 is the

quantile of the χ2 distribution (inverse of the cumulative distribution).
The quantiles F−1

χ2 can be obtained from standard tables or from the

ROOT routine TMath::ChisquareQuantile. For central confidence
intervals at confidence level 1 − α, set αlo = αup = α/2.

It happens that the upper limit from Eq. (39.71b) coincides
numerically with the Bayesian upper limit for a Poisson parameter,
using a uniform prior p.d.f. for µ. Values for confidence levels of
90% and 95% are shown in Table 39.3. For the case of binomially
distributed n successes out of N trials with probability of success p,
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Table 39.3: Lower and upper (one-sided) limits for the mean
µ of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1 − α =90% 1 − α =95%

n µlo µup µlo µup

0 – 2.30 – 3.00

1 0.105 3.89 0.051 4.74

2 0.532 5.32 0.355 6.30

3 1.10 6.68 0.818 7.75

4 1.74 7.99 1.37 9.15

5 2.43 9.27 1.97 10.51

6 3.15 10.53 2.61 11.84

7 3.89 11.77 3.29 13.15

8 4.66 12.99 3.98 14.43

9 5.43 14.21 4.70 15.71

10 6.22 15.41 5.43 16.96

the upper and lower limits on p are found to be

plo =
nF−1

F [αlo; 2n, 2(N − n + 1)]

N − n + 1 + nF−1
F [αlo; 2n, 2(N − n + 1)]

, (39.72a)

pup =
(n + 1)F−1

F [1 − αup; 2(n + 1), 2(N − n)]

(N − n) + (n + 1)F−1
F [1 − αup; 2(n + 1), 2(N − n)]

. (39.72b)

Here F−1
F is the quantile of the F distribution (also called the

Fisher–Snedecor distribution; see Ref. 4).

39.4.2.4. Parameter exclusion in cases of low sensitivity:

An important example of a statistical test arises in the search for
a new signal process. Suppose the parameter µ is defined such that
it is proportional to the signal cross section. A statistical test may
be carried out for hypothesized values of µ, which may be done by
computing a p-value, pµ, for all µ. Those values not rejected in a
test of size α, i.e., for which one does not find pµ ≤ α, constitute a
confidence interval with confidence level 1 − α.

In general one will find that for some regions in the parameter
space of the signal model, the predictions for data are almost
indistinguishable from those of the background-only model. This
corresponds to the case where µ is very small, as would occur, e.g., in
a search for a new particle with a mass so high that its production
rate in a given experiment is negligible. That is, one has essentially
no experimental sensitivity to such a model.

One would prefer that if the sensitivity to a model (or a point in a
model’s parameter space) is very low, then it should not be excluded.
Even if the outcomes predicted with or without signal are identical,
however, the probability to reject the signal model will equal α, the
type-I error rate. As one often takes α to be 5%, this would mean
that in a large number of searches covering a broad range of a signal
model’s parameter space, there would inevitably be excluded regions
in which the experimental sensitivity is very small, and thus one may
question whether it is justified to regard such parameter values as
disfavored.

Exclusion of models to which one has little or no sensitivity occurs,
for example, if the data fluctuate very low relative to the expectation
of the background-only hypothesis. In this case the resulting upper
limit on µ may be anomalously low. As a means of controlling this
effect one often determines the mean or median limit under assumption
of the background-only hypothesis, as discussed in Sec. 39.5.

One way to mitigate the problem of excluding models to which
one is not sensitive is the CLs method, where the measure used to
test a parameter is increased for decreasing sensitivity [36,37]. The

procedure is based on a statistic called CLs, which is defined as

CLs =
pµ

1 − pb
, (39.73)

where pb is the p-value of the background-only hypothesis. In the
usual formulation of the method, both pµ and pb are defined using
a single test statistic, and the definition of CLs above assumes this
statistic is continuous; more details can be found in Refs. [36–37].

A point in a model’s parameter space is regarded as excluded
if one finds CLs ≤ α. As the denominator in Eq. (39.73) is always
less than or equal to unity, the exclusion criterion based on CLs

is more stringent than the usual requirement pµ ≤ α. In this sense
the CLs procedure is conservative, and the coverage probability of
the corresponding intervals will exceed the nominal confidence level
1− α. If the experimental sensitivity to a given value of µ is very low,
then one finds that as pµ decreases, so does the denominator 1 − pb,
and thus the condition CLs ≤ α is effectively prevented from being
satisfied. In this way the exclusion of parameters in the case of low
sensitivity is suppressed.

The CLs procedure has the attractive feature that the resulting
intervals coincide with those obtained from the Bayesian method
in two important cases: the mean value of a Poisson or Gaussian
distributed measurement with a constant prior. The CLs intervals
overcover for all values of the parameter µ, however, by an amount
that depends on µ.

The problem of excluding parameter values to which one has little
sensitivity is particularly acute when one wants to set a one-sided
limit, e.g., an upper limit on a cross section. Here one tests a value
of a rate parameter µ against the alternative of a lower rate, and
therefore the critical region of the test is taken to correspond to data
outcomes with a low event yield. If the number of events found in
the search region fluctuates low enough, however, it can happen that
all physically meaningful signal parameter values, including those to
which one has very little sensitivity, are rejected by the test.

Another solution to this problem, therefore, is to replace the
one-sided test by one based on the likelihood ratio, where the critical
region is not restricted to low rates. This is the approach followed
in the Feldman-Cousins procedure described in Section 39.4.2.1. The
critical region for the test of a given value of µ contains data values
characteristic of both higher and lower rates. As a result, for a given
observed rate one can in general obtain a two-sided interval. If,
however, the parameter estimate µ̂ is sufficiently close to the lower
limit of zero, then only high values of µ are rejected, and the lower
edge of the confidence interval is at zero. Note, however, that the
coverage property of 1 − α pertains to the entire interval, not to the
probability for the upper edge µup to be greater than the true value
µ. For parameter estimates increasingly far away from the boundary,
i.e., for increasing signal significance, the point µ = 0 is excluded and
the interval has nonzero upper and lower edges.

An additional difficulty arises when a parameter estimate is not
significantly far away from the boundary, in which case it is natural
to report a one-sided confidence interval (often an upper limit). It is
straightforward to force the Neyman prescription to produce only an
upper limit by setting x2 = ∞ in Eq. (39.62). Then x1 is uniquely
determined and the upper limit can be obtained. If, however, the
data come out such that the parameter estimate is not so close to the
boundary, one might wish to report a central confidence interval (i.e.,
an interval based on a two-sided test with equal upper and lower tail
areas). As pointed out by Feldman and Cousins [35], if the decision
to report an upper limit or two-sided interval is made by looking at
the data (“flip-flopping”), then in general there will be parameter
values for which the resulting intervals have a coverage probability
less than 1 − α. With the confidence intervals suggested in [35], the
prescription determines whether the interval is one- or two-sided in a
way which preserves the coverage probability (and are thus said to be
unified).

The intervals according to this method for the mean of Poisson
variable in the absence of background are given in Table 39.4. (Note
that α in Ref. 35 is defined following Neyman [31] as the coverage
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probability; this is opposite the modern convention used here in which
the coverage probability is 1−α.) The values of 1−α given here refer
to the coverage of the true parameter by the whole interval [µ1, µ2].
In Table 39.3 for the one-sided upper limit, however, 1 − α refers to
the probability to have µup ≥ µ (or µlo ≤ µ for lower limits).

Table 39.4: Unified confidence intervals [µ1, µ2] for a the mean
of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1 − α =90% 1 − α =95%

n µ1 µ2 µ1 µ2

0 0.00 2.44 0.00 3.09

1 0.11 4.36 0.05 5.14

2 0.53 5.91 0.36 6.72

3 1.10 7.42 0.82 8.25

4 1.47 8.60 1.37 9.76

5 1.84 9.99 1.84 11.26

6 2.21 11.47 2.21 12.75

7 3.56 12.53 2.58 13.81

8 3.96 13.99 2.94 15.29

9 4.36 15.30 4.36 16.77

10 5.50 16.50 4.75 17.82

A potential difficulty with unified intervals arises if, for example,
one constructs such an interval for a Poisson parameter s of some
yet to be discovered signal process with, say, 1 − α = 0.9. If the true
signal parameter is zero, or in any case much less than the expected
background, one will usually obtain a one-sided upper limit on s. In a
certain fraction of the experiments, however, a two-sided interval for
s will result. Since, however, one typically chooses 1 − α to be only
0.9 or 0.95 when setting limits, the value s = 0 may be found below
the lower edge of the interval before the existence of the effect is well
established. It must then be communicated carefully that in excluding
s = 0 at, say, 90% or 95% confidence level from the interval, one is not
necessarily claiming to have discovered the effect, for which one would
usually require a higher level of significance (e.g., 5 σ).

Another possibility is to construct a Bayesian interval as described
in Section 39.4.1. The presence of the boundary can be incorporated
simply by setting the prior density to zero in the unphysical region.
More specifically, the prior may be chosen using formal rules such as
the reference prior or Jeffreys prior mentioned in Sec. 39.2.4.

In HEP a widely used prior for the mean µ of a Poisson distributed
measurement has been uniform for µ ≥ 0. This prior does not follow
from any fundamental rule nor can it be regarded as reflecting a
reasonable degree of belief, since the prior probability for µ to lie
between any two finite values is zero. The procedure above can be
more appropriately regarded as a way for obtaining intervals with
frequentist properties that can be investigated. The resulting upper
limits have a coverage probability that depends on the true value
of the Poisson parameter, and is nowhere smaller than the stated
probability content. Lower limits and two-sided intervals for the
Poisson mean based on flat priors undercover, however, for some
values of the parameter, although to an extent that in practical
cases may not be too severe [2,23]. Intervals constructed in this way
have the advantage of being easy to derive; if several independent
measurements are to be combined then one simply multiplies the
likelihood functions (cf. Eq. (39.70)).

In any case, it is important to always report sufficient information
so that the result can be combined with other measurements. Often
this means giving an unbiased estimator and its standard deviation,
even if the estimated value is in the unphysical region.

It can also be useful with a frequentist interval to calculate its
subjective probability content using the posterior p.d.f. based on one
or several reasonable guesses for the prior p.d.f. If it turns out to

be significantly less than the stated confidence level, this warns that
it would be particularly misleading to draw conclusions about the
parameter’s value from the interval alone.

39.5. Experimental sensitivity

In this section we describe methods for characterizing the sensitivity
of a search for a new physics signal. As discussed in Sec. 39.3, an
experimental analysis can often be formulated as a test of hypothetical
model parameters. Therefore we may quantify the sensitivity by
giving the results that we expect from such a test under specific
assumptions about the signal process.

Here to be concrete we will consider a parameter µ proportional to
the rate of a signal process, although the concepts described in this
section may be easily generalized to other parameters. One may wish
to establish discovery of the signal process by testing and rejecting
the hypothesis that µ = 0, and in addition one often wants to test
nonzero values of µ to construct a confidence interval (e.g., limits)
as described in Sec. 39.4. In the frequentist framework, the result of
each tested value of µ is the p-value pµ or equivalently the significance
Zµ = Φ−1(1 − pµ), where as usual Φ is the standard Gaussian
cumulative distribution and its inverse Φ−1 is the standard Gaussian
quantile.

Prior to carrying out the experiment, one generally wants to
quantify what significance Zµ is expected under given assumptions
for the presence or absence of the signal process. Specifically, for the
significance of a test of µ = 0 (the discovery significance) one usually
quotes the Z0 one would expect if the signal is present at a given
nominal rate, which we can define in general to correspond to µ = 1.
For limits, one often gives the expected limit under assumption of the
background-only (µ = 0) model. These quantities are used to optimize
the analysis and to quantify the experimental sensitivity, that is, to
characterize how likely it is to make a discovery if the signal is present,
and to say what values of µ one may be able to exclude if the signal is
in fact absent.

First we clarify the notion of expected significance. Because the
significance Zµ is a function of the data, it is itself a random quantity
characterized by a certain sampling distribution. This distribution
depends on the assumed value of µ, which is not necessarily the same
as the hypothesized value of µ being tested. We may therefore consider
the distribution f(Zµ|µ′), i.e., the distribution of Zµ that would be
obtained by considering data samples generated under assumption of
µ′. In a similar way one can talk about the sampling distribution of
an upper limit for µ, f(µup|µ′).

One can identify the expected significance or limit with either
the mean or median of these distributions, but the median may be
preferred since it is invariant under monotonic transformations. For
example, the monotonic relation between p-value and significance,
p = 1−Φ(Z), then gives med[pµ|µ′] = 1−Φ(med[Zµ|µ′]), whereas the
corresponding relation does not hold in general for the mean.

In some cases one may be able to write down approximate formulae
for the distributions of Zµ and for limits, but more generally they
must be determined from Monte Carlo calculations. In many cases of
interest, the significance Zµ and the limits on µ will have approximate
Gaussian distributions.

As an example, consider a Poisson counting experiment, where
the result consists of an observed number n of events, modeled as a
Poisson distributed variable with a mean of µs + b. Here s and b, the
expected numbers of events from signal and background processes,
are taken to be known. If we are interested in discovering the signal
process we test and try to reject the hypothesis µ = 0. To characterize
the experimental sensitivity, we want to give the discovery significance
expected under the assumption of µ = 1.

In the limit where its mean value is large, the Poisson variable n
can be approximated as an almost continuous Gaussian variable with
mean µs + b and standard deviation σ =

√
µs + b. In the usual case

where a physical signal model corresponds to µ > 0, the p-value of
µ = 0 is the probability to find n greater than or equal to the value
observed,

p0 = Φ

(
n − b√

b

)
, (39.74)
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and the corresponding significance is Z0 = Φ−1(1 − p0) = (n − b)/
√

b.
The median (here equal to the mean) of n assuming µ = 1 is s + b,
and therefore the median discovery significance is

med[Z0|µ = 1] =
s√
b

. (39.75)

The figure of merit “s/
√

b” has been widely used in HEP as a measure
of expected discovery significance. A better approximation for the
Poisson counting experiment, however, may be obtained by testing
µ = 0 using the likelihood ratio (39.43) λ(0) = L(0)/L(µ̂), where

L(µ) =
(µs + b)

n!
e−(µs+b) (39.76)

is the likelihood function, µ̂ = (n − b)/s is the ML estimator. In this
example there are no nuisance parameters, as s and b are taken to
be known. For the case where the relevant signal models correspond
to positive µ, one may test the µ = 0 hypothesis with the statistic
q0 = −2 lnλ(0) when µ̂ > 0, i.e., an excess is observed, and q0 = 0
otherwise. One can show (see, e.g., [40]) that in the large-sample
limit, the discovery significance is then Z0 =

√
q0, for which one finds

Z0 =

√
2

(
n ln

n

b
+ b − n

)
(39.77)

for n > b and Z0 = 0 otherwise. To approximate the expected
discovery significance assuming µ = 1, one may simply replace n with
the expected value E[n|µ = 1] = s + b (the so-called “Asimov data
set”), giving

med[Z0|µ = 1] =

√
2

(
(s + b) ln

(
1 +

s

b

)
− s

)
. (39.78)

This has been shown in Ref. 40 to provide a good approximation to
the median discovery significance for values of s of several and for b
well below unity. The right-hand side of Eq. (39.78) reduces to s/

√
b

in the limit s ≪ b.

Beyond the simple Poisson counting experiment, in general one
may test values of a parameter µ with more complicated functions
of the measured data to obtain a p-value pµ, and from this one can
quote the equivalent significance Zµ or find, e.g., an upper limit µup.
In this case as well one may quantify the experimental sensitivity by
giving the significance Zµ expected if the data are generated with a
different value of the parameter µ′. In some problems, finding the
sampling distribution of the significance or limits may be possible
using large-sample formulae as described, e.g., in Ref. 40. In other
cases a Monte Carlo study may be needed. Using whatever means
available, one usually quotes the expected (mean or, preferably,
median) significance or limit as the primary measures of experimental
sensitivity.

Even if the true signal is present at its nominal rate, the actual
discovery significance Z0 obtained from the real data is subject to
statistical fluctuations and will not in general be equal to its expected
value. In an analogous way, the observed limit will differ from the
expected limit even if the signal is absent. Upon observing such
a difference one would like to know how large this is compared
to expected statistical fluctuations. Therefore, in addition to the
observed significance and limits it is useful to communicate not
only their expected values but also a measure of the width of their
distributions.

As the distributions of significance and limits are often well
approximated by a Gaussian, one may indicate the intervals
corresponding to plus-or-minus one and/or two standard deviations.
If the distributions are significantly non-Gaussian, one may use
instead the quantiles that give the same probability content, i.e.,
[0.1587, 0.8413] for ±1σ, [0.02275, 0.97725] for ±2σ. An upper limit
found significantly below the background-only expectation may
indicate a strong downward fluctuation of the data, or perhaps as well
an incorrect estimate of the background rate.

The procedures described above pertain to frequentist hypothesis
tests and limits. Bayesian limits, just like those found from a

frequentist procedure, are functions of the data and one may
therefore find, usually with approximations or Monte Carlo studies,
their sampling distribution and corresponding mean (or, preferably,
median) and standard deviation.

When trying to establish discovery of a signal process, the Bayesian
approach may employ a Bayes factor as described in Sec. 39.3.3. In
the case of the Poisson counting experiment with the likelihood from
Eq. (39.76), the log of the Bayes factor that compares µ = 1 to µ = 0
is ln B10 = ln(L(1)/L(0)) = n ln(1 + s/b)− s. That is, the expectation
value, assuming µ = 1, of lnB10 for this problem is

E[lnB10|µ = 1] = (s + b) ln
(
1 +

s

b

)
− s . (39.79)

Comparing this to Eq. (39.78), one finds med[Z0|1] =
√

2E[lnB10|1].
Thus for this particular problem the frequentist median discovery
significance can be related to the corresonding Bayes factor in a simple
way.

In some analyses, the goal may not be to establish discovery of
a signal process but rather to measure, as accurately as possible,
the signal rate. If we consider again the Poisson counting experiment
described by the likelihood function of Eq. (39.76), the ML estimator
µ̂ = (n − b)/s has a variance, assuming µ = 1, of

V [µ̂] = V

[
n − b

s

]
=

1

s2 V [n] =
s + b

s2 , (39.80)

so that the standard deviation of µ̂ is σµ̂ =
√

s + b/s. One may

therefore use s/
√

s + b as a figure of merit to be maximized in order
to obtain the best measurement accuracy of a rate parameter. The
quantity s/

√
s + b is also the expected significance with which one

rejects s assuming the signal is absent, and thus can be used to
optimize the expected upper limit on s.
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40. MONTE CARLO TECHNIQUES

Revised September 2011 by G. Cowan (RHUL).

Monte Carlo techniques are often the only practical way to
evaluate difficult integrals or to sample random variables governed
by complicated probability density functions. Here we describe an
assortment of methods for sampling some commonly occurring
probability density functions.

40.1. Sampling the uniform distribution

Most Monte Carlo sampling or integration techniques assume a
“random number generator,” which generates uniform statistically
independent values on the half open interval [0, 1); for reviews see,
e.g., [1,2].

Uniform random number generators are available in software
libraries such as CERNLIB [3], CLHEP [4], and ROOT [5]. For
example, in addition to a basic congruential generator TRandom (see
below), ROOT provides three more sophisticated routines: TRandom1

implements the RANLUX generator [6] based on the method by
Lüscher, and allows the user to select different quality levels,
trading off quality with speed; TRandom2 is based on the maximally
equidistributed combined Tausworthe generator by L’Ecuyer [7];
the TRandom3 generator implements the Mersenne twister algorithm
of Matsumoto and Nishimura [8]. All of the algorithms produce a
periodic sequence of numbers, and to obtain effectively random values,
one must not use more than a small subset of a single period. The
Mersenne twister algorithm has an extremely long period of 219937 −1.

The performance of the generators can be investigated with tests
such as DIEHARD [9] or TestU01 [10]. Many commonly available
congruential generators fail these tests and often have sequences
(typically with periods less than 232), which can be easily exhausted
on modern computers. A short period is a problem for the TRandom

generator in ROOT, which, however, has the advantage that its
state is stored in a single 32-bit word. The generators TRandom1,
TRandom2, or TRandom3 have much longer periods, with TRandom3

being recommended by the ROOT authors as providing the best
combination of speed and good random properties. For further
information see, e.g., Ref. 11.

40.2. Inverse transform method

If the desired probability density function is f(x) on the range
−∞ < x < ∞, its cumulative distribution function (expressing the
probability that x ≤ a) is given by Eq. (38.6). If a is chosen with
probability density f(a), then the integrated probability up to point
a, F (a), is itself a random variable which will occur with uniform
probability density on [0, 1]. Suppose u is generated according to
a uniformly distributed in (0, 1). If x can take on any value, and
ignoring the endpoints, we can then find a unique x chosen from the
p.d.f. f(x) for a given u if we set

u = F (x) , (40.1)

provided we can find an inverse of F , defined by

x = F−1(u) . (40.2)

This method is shown in Fig. 40.1a. It is most convenient when one
can calculate by hand the inverse function of the indefinite integral of
f . This is the case for some common functions f(x) such as exp(x),
(1 − x)n, and 1/(1 + x2) (Cauchy or Breit-Wigner), although it
does not necessarily produce the fastest generator. Standard libraries
contain software to implement this method numerically, working
from functions or histograms in one or more dimensions, e.g., the
UNU.RAN package [12], available in ROOT.

For a discrete distribution, F (x) will have a discontinuous jump of
size f(xk) at each allowed xk, k = 1, 2, · · ·. Choose u from a uniform
distribution on (0,1) as before. Find xk such that

F (xk−1) < u ≤ F (xk) ≡ Prob (x ≤ xk) =

k
∑

i=1

f(xi) ; (40.3)

then xk is the value we seek (note: F (x0) ≡ 0). This algorithm is
illustrated in Fig. 40.1b.
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x
x = F−1(u)

Continuous


distribution

Discrete
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u

(a)

(b)

Figure 40.1: Use of a random number u chosen from a uniform
distribution (0,1) to find a random number x from a distribution
with cumulative distribution function F (x).

40.3. Acceptance-rejection method (Von Neumann)

Very commonly an analytic form for F (x) is unknown or too
complex to work with, so that obtaining an inverse as in Eq. (40.2) is
impractical. We suppose that for any given value of x, the probability
density function f(x) can be computed, and further that enough is
known about f(x) that we can enclose it entirely inside a shape which
is C times an easily generated distribution h(x), as illustrated in
Fig. 40.2. That is, Ch(x) ≥ f(x) must hold for all x.

C h(x)

C h(x)

f (x)

x

f (x)

(a)

(b)

Figure 40.2: Illustration of the acceptance-rejection method.
Random points are chosen inside the upper bounding figure, and
rejected if the ordinate exceeds f(x). The lower figure illustrates
a method to increase the efficiency (see text).

Frequently h(x) is uniform or is a normalized sum of uniform
distributions. Note that both f(x) and h(x) must be normalized
to unit area, and therefore, the proportionality constant C > 1.
To generate f(x), first generate a candidate x according to h(x).
Calculate f(x) and the height of the envelope C h(x); generate u and
test if uC h(x) ≤ f(x). If so, accept x; if not reject x and try again. If
we regard x and uC h(x) as the abscissa and ordinate of a point in a
two-dimensional plot, these points will populate the entire area C h(x)
in a smooth manner; then we accept those which fall under f(x). The
efficiency is the ratio of areas, which must equal 1/C; therefore we
must keep C as close as possible to 1.0. Therefore, we try to choose
C h(x) to be as close to f(x) as convenience dictates, as in the lower
part of Fig. 40.2.
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40.4. Algorithms

Algorithms for generating random numbers belonging to many
different distributions are given for example by Press [13], Ahrens
and Dieter [14], Rubinstein [15], Devroye [16], Walck [17] and Gentle
[18]. For many distributions, alternative algorithms exist, varying in
complexity, speed, and accuracy. For time-critical applications, these
algorithms may be coded in-line to remove the significant overhead
often encountered in making function calls.

In the examples given below, we use the notation for the variables
and parameters given in Table 38.1. Variables named “u” are assumed
to be independent and uniform on [0,1). Denominators must be
verified to be non-zero where relevant.

40.4.1. Exponential decay :

This is a common application of the inverse transform method, and
uses the fact that if u is uniformly distributed in [0, 1], then (1 − u) is
as well. Consider an exponential p.d.f. f(t) = (1/τ) exp(−t/τ) that is
truncated so as to lie between two values, a and b, and renormalized
to unit area. To generate decay times t according to this p.d.f., first
let α = exp(−a/τ) and β = exp(−b/τ); then generate u and let

t = −τ ln(β + u(α − β)). (40.4)

For (a, b) = (0,∞), we have simply t = −τ ln u. (See also Sec. 40.4.6.)

40.4.2. Isotropic direction in 3D :

Isotropy means the density is proportional to solid angle, the
differential element of which is dΩ = d(cos θ)dφ. Hence cos θ is
uniform (2u1 − 1) and φ is uniform (2πu2). For alternative generation
of sinφ and cosφ, see the next subsection.

40.4.3. Sine and cosine of random angle in 2D :

Generate u1 and u2. Then v1 = 2u1 − 1 is uniform on (−1,1), and
v2 = u2 is uniform on (0,1). Calculate r2 = v2

1
+ v2

2
. If r2 > 1, start

over. Otherwise, the sine (S) and cosine (C) of a random angle (i.e.,
uniformly distributed between zero and 2π) are given by

S = 2v1v2/r2 and C = (v2
1 − v2

2)/r2 . (40.5)

40.4.4. Gaussian distribution :

If u1 and u2 are uniform on (0,1), then

z1 = sin(2πu1)
√

−2 lnu2 and z2 = cos(2πu1)
√

−2 lnu2 (40.6)

are independent and Gaussian distributed with mean 0 and σ = 1.

There are many variants of this basic algorithm, which may be
faster. For example, construct v1 = 2u1 − 1 and v2 = 2u2 − 1, which
are uniform on (−1,1). Calculate r2 = v2

1
+ v2

2
, and if r2 > 1 start

over. If r2 < 1, it is uniform on (0,1). Then

z1 = v1

√

−2 ln r2

r2
and z2 = v2

√

−2 ln r2

r2
(40.7)

are independent numbers chosen from a normal distribution with
mean 0 and variance 1. z′i = µ + σzi distributes with mean µ and

variance σ2.

For a multivariate Gaussian with an n×n covariance matrix V , one
can start by generating n independent Gaussian variables, {ηj}, with
mean 0 and variance 1 as above. Then the new set {xi} is obtained
as xi = µi +

∑

j Lijηj , where µi is the mean of xi, and Lij are
the components of L, the unique lower triangular matrix that fulfils
V = LLT . The matrix L can be easily computed by the following
recursive relation (Cholesky’s method):

Ljj =



Vjj −
j−1
∑

k=1

L2

jk





1/2

, (40.8a)

Lij =
Vij −

∑j−1

k=1
LikLjk

Ljj
, j = 1, ..., n ; i = j + 1, ..., n, (40.8b)

where Vij = ρijσiσj are the components of V . For n = 2 one has

L =

(

σ1 0
ρσ2

√

1 − ρ2 σ2

)

, (40.9)

and therefore the correlated Gaussian variables are generated as
x1 = µ1 + σ1η1, x2 = µ2 + ρσ2η1 +

√

1 − ρ2 σ2η2.

40.4.5. χ2(n) distribution :

To generate a variable following the χ2 distribution for n degrees of
freedom, use the Gamma distribution with k = n/2 and λ = 1/2 using
the method of Sec. 40.4.6.

40.4.6. Gamma distribution :

All of the following algorithms are given for λ = 1. For λ 6= 1,
divide the resulting random number x by λ.

• If k = 1 (the exponential distribution), accept x = − lnu. (See
also Sec. 40.4.1.)

• If 0 < k < 1, initialize with v1 = (e + k)/e (with e = 2.71828...
being the natural log base). Generate u1, u2. Define v2 = v1u1.

Case 1: v2 ≤ 1. Define x = v
1/k
2

. If u2 ≤ e−x, accept x and
stop, else restart by generating new u1, u2.
Case 2: v2 > 1. Define x = −ln([v1 − v2]/k). If u2 ≤ xk−1,
accept x and stop, else restart by generating new u1, u2.
Note that, for k < 1, the probability density has a pole at
x = 0, so that return values of zero due to underflow must be
accepted or otherwise dealt with.

• Otherwise, if k > 1, initialize with c = 3k − 0.75. Generate
u1 and compute v1 = u1(1 − u1) and v2 = (u1 − 0.5)

√

c/v1. If
x = k + v2 − 1 ≤ 0, go back and generate new u1; otherwise
generate u2 and compute v3 = 64v3

1
u2

2
. If v3 ≤ 1 − 2v2

2
/x or if

ln v3 ≤ 2{[k − 1] ln[x/(k − 1)] − v2}, accept x and stop; otherwise
go back and generate new u1.

40.4.7. Binomial distribution :

Begin with k = 0 and generate u uniform in [0, 1). Compute
Pk = (1 − p)n and store Pk into B. If u ≤ B accept rk = k and
stop. Otherwise, increment k by one; compute the next Pk as
Pk · (p/(1 − p)) · (n − k)/(k + 1); add this to B. Again, if u ≤ B,
accept rk = k and stop, otherwise iterate until a value is accepted. If
p > 1/2, it will be more efficient to generate r from f(r; n, q), i.e.,
with p and q interchanged, and then set rk = n − r.

40.4.8. Poisson distribution :

Iterate until a successful choice is made: Begin with k = 1 and set
A = 1 to start. Generate u. Replace A with uA; if now A < exp(−µ),
where µ is the Poisson parameter, accept nk = k − 1 and stop.
Otherwise increment k by 1, generate a new u and repeat, always
starting with the value of A left from the previous try.

Note that the Poisson generator used in ROOT’s TRandom

classes before version 5.12 (including the derived classes TRandom1,

TRandom2, TRandom3) as well as the routine RNPSSN from CERNLIB,
use a Gaussian approximation when µ exceeds a given threshold. This
may be satisfactory (and much faster) for some applications. To do
this, generate z from a Gaussian with zero mean and unit standard
deviation; then use x = max(0, [µ + z

√
µ + 0.5]) where [ ] signifies

the greatest integer ≤ the expression. The routines from Numerical
Recipes [13] and CLHEP’s routine RandPoisson do not make this
approximation (see, e.g., Ref. 11).

40.4.9. Student’s t distribution :

Generate u1 and u2 uniform in (0, 1); then t = sin(2πu1)[n(u
−2/n
2

−
1)]1/2 follows the Student’s t distribution for n > 0 degrees of freedom
(n not necessarily an integer).

Alternatively, generate x from a Gaussian with mean 0 and σ2 = 1
according to the method of 40.4.4. Next generate y, an independent
gamma random variate, according to 40.4.6 with λ = 1/2 and k = n/2.
Then z = x/

√

y/n is distributed as a t with n degrees of freedom.

For the special case n = 1, the Breit-Wigner distribution, generate
u1 and u2; set v1 = 2u1 − 1 and v2 = 2u2 − 1. If v2

1
+ v2

2
≤ 1 accept

z = v1/v2 as a Breit-Wigner distribution with unit area, center at 0.0,
and FWHM 2.0. Otherwise start over. For center M0 and FWHM Γ,
use W = zΓ/2 + M0.
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40.4.10. Beta distribution :

The choice of an appropriate algorithm for generation of beta
distributed random numbers depends on the values of the parameters
α and β. For, e.g., α = 1, one can use the transformation method to
find x = 1 − u1/β , and similarly if β = 1 one has x = u1/α. For more
general cases see, e.g., Refs. [17,18] and references therein.

40.5. Markov Chain Monte Carlo

In applications involving generation of random numbers following
a multivariate distribution with a high number of dimensions, the
transformation method may not be possible and the acceptance-
rejection technique may have too low of an efficiency to be practical.
If it is not required to have independent random values, but only that
they follow a certain distribution, then Markov Chain Monte Carlo
(MCMC) methods can be used. In depth treatments of MCMC can
be found, e.g., in the texts by Robert and Casella [19], Liu [20], and
the review by Neal [21].

MCMC is particularly useful in connection with Bayesian statistics,
where a p.d.f. p(θ) for an n-dimensional vector of parameters
θ = (θ1, . . . , θn) is obtained, and one needs the marginal distribution
of a subset of the components. Here one samples θ from p(θ) and
simply records the marginal distribution for the components of
interest.

A simple and broadly applicable MCMC method is the Metropolis-
Hastings algorithm, which allows one to generate multidimensional
points θ distributed according to a target p.d.f. that is proportional
to a given function p(θ). It is not necessary to have p(θ) normalized
to unit area, which is useful in Bayesian statistics, as posterior
probability densities are often determined only up to an unknown
normalization constant.

To generate points that follow p(θ), one first needs a proposal p.d.f.
q(θ; θ0), which can be (almost) any p.d.f. from which independent
random values θ can be generated, and which contains as a parameter
another point in the same space θ0. For example, a multivariate
Gaussian centered about θ0 can be used. Beginning at an arbitrary
starting point θ0, the Hastings algorithm iterates the following steps:

1. Generate a value θ using the proposal density q(θ; θ0);

2. Form the Hastings test ratio, α = min

[

1,
p(θ)q(θ0; θ)

p(θ0)q(θ; θ0)

]

;

3. Generate a value u uniformly distributed in [0, 1];

4. If u ≤ α, take θ1 = θ. Otherwise, repeat the old point, i.e.,
θ1 = θ0.

5. Set θ0 = θ1 and return to step 1.

If one takes the proposal density to be symmetric in θ and θ0, then
this is the Metropolis -Hastings algorithm, and the test ratio becomes
α = min[1, p(θ)/p(θ0)]. That is, if the proposed θ is at a value of
probability higher than θ0, the step is taken. If the proposed step is
rejected, the old point is repeated.

Methods for assessing and optimizing the performance of the
algorithm are discussed in, e.g., Refs. [19–21]. One can, for example,
examine the autocorrelation as a function of the lag k, i.e., the
correlation of a sampled point with that k steps removed. This should
decrease as quickly as possible for increasing k.

Generally one chooses the proposal density so as to optimize some
quality measure such as the autocorrelation. For certain problems
it has been shown that one achieves optimal performance when the
acceptance fraction, that is, the fraction of points with u ≤ α, is
around 40%. This can be adjusted by varying the width of the
proposal density. For example, one can use for the proposal p.d.f. a
multivariate Gaussian with the same covariance matrix as that of the
target p.d.f., but scaled by a constant.
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41. MONTE CARLO EVENT GENERATORS

Revised September 2013 by P. Nason (INFN, Milan) and P.Z. Skands
(Monash University).

General-purpose Monte Carlo (GPMC) generators like HERWIG [1],
HERWIG++ [2], PYTHIA 6 [3], PYTHIA 8 [4], and SHERPA [5], provide
fully exclusive simulations of high-energy collisions. They play an
essential role in QCD modeling (in particular for aspects beyond
fixed-order perturbative QCD), in data analysis, where they are used
together with detector simulation to provide a realistic estimate of
the detector response to collision events, and in the planning of new
experiments, where they are used to estimate signals and backgrounds
in high-energy processes. They are built from several components,
that describe the physics starting from very short distance scales,
up to the typical scale of hadron formation and decay. Since QCD
is weakly interacting at short distances (below a femtometer), the
components of the GPMC dealing with short-distance physics are
based upon perturbation theory. At larger distances, all soft hadronic
phenomena, like hadronization and the formation of the underlying
event, cannot be computed from first principles, and one must rely
upon QCD-inspired models.

The purpose of this review is to illustrate the main components of
these generators. It is divided into four sections. The first one deals
with short-distance, perturbative phenomena. The basic concepts
leading to the simulations of the dominant QCD processes are
illustrated here. In the second section, hadronization phenomena are
treated. The two most popular hadronization models for the formation
of primary hadrons, the string and cluster models, are illustrated. The
basics of the implementation of primary-hadron decays into stable
ones is also illustrated here. In the third section, models for soft
hadron physics are discussed. These include models for the underlying
event, and for minimum-bias interactions. Issues of Bose-Einstein and
color-reconnection effects are also discussed here. The fourth section
briefly introduces the problem of MC tuning.

We use natural units throughout, such that c = 1 and ℏ = 1,
with energy, momenta and masses measured in GeV, and time and
distances measured in GeV−1.

41.1. Short-distance physics in GPMC generators

The short-distance components of a GPMC generator deal with the
computation of the primary process at hand, with decays of short-lived
particles, and with the generation of QCD and QED radiation, on
time scales below 1/Λ, with Λ denoting a typical hadronic scale of a
few hundred MeV, corresponding roughly to an inverse femtometer.
In e+e− annihilation, for example, the short-distance physics describes
the evolution of the system from the instant when the e+e− pair
annihilates up to a time when the size of the produced system is just
below a femtometer.

In the present discussion we take the momentum scale of the
primary process to be Q ≫ Λ, so that the corresponding time
and distance scale 1/Q is small. Soft- and collinear-safe inclusive
observables, such as total decay widths or inclusive cross sections, can
then be reliably computed in QCD perturbation theory (pQCD), with
the perturbative expansion truncated at any fixed order n, and the
remainder suppressed by αS(Q)n+1.

Less inclusive observables, however, can receive large enhancements
that destroy the convergence of the fixed-order expansion. This
is due to the presence of collinear and infrared singularities in
QCD. Thus, for example, a correction in which a parton from the
primary interaction splits collinearly into two partons of comparable
energy, is of order αS(Q) ln(Q/Λ), where the logarithm arises from
an integral over a singularity regulated by the hadronic scale Λ.
Since αS(Q) ∝ 1/ ln(Q/Λ), the corresponding cross section receives
a correction of order unity. Two subsequent collinear splittings yield
α2

S(Q) ln2(Q/Λ), and so on. Thus, corrections of order unity arise
at all orders in perturbation theory. The dominant region of phase
space is the one where radiation is strongly ordered in a measure of
hardness. This means that, from a typical final-state configuration, by
clustering together final-state parton pairs with the smallest hardness
recursively, we can reconstruct a branching tree, that may be viewed
as the splitting history of the event. This history necessarily has some
dependence on how we define hardness. For example, we can define it

as the energy of the incoming parton times the splitting angle, or as
its virtuality, or as the transverse momentum of the splitting partons
with respect to the incoming one. These definitions, however, are all
equivalent in the collinear region. In fact, in the small-angle limit, the
virtuality of a parton of energy E, splitting into two on-shell partons,
is given by

p2 = E2z(1 − z)(1 − cos θ) ≈
z(1 − z)

2
E2θ2 , (41.1)

where z and 1 − z are the energy fractions carried by the produced
partons, and θ is their relative angle. The transverse momentum of
the final partons relative to the direction of the incoming one is given
by

p2
T ≈ z2(1 − z)2E2θ2. (41.2)

Thus, significant differences between these measures only arise in
regions with very small z or 1 − z values. In QCD, because of soft
divergences, these regions are in fact important, and the choice of the
appropriate ordering variable is very relevant (see Sec. 41.3).

The so called KLN theorem [6,7] guarantees that large logarithmi-
cally divergent corrections, arising from final-state collinear splitting
and from soft emissions, cancel against the virtual corrections in the
total cross section, order by order in perturbation theory. Further-
more, the factorization theorem guarantees that initial-state collinear
singularities can be factorized into the parton density functions
(PDFs). Therefore, the cross section for the basic process remains
accurate up to corrections of higher orders in αS(Q), provided it is
interpreted as an inclusive cross section, rather than as a bare partonic
cross section. Thus, for example, the leading order (LO) cross section
for e+e− → qq̄ is a good LO estimate of the e+e− cross section for the
production of a pair of quarks accompanied by an arbitrary number
of collinear and soft gluons, but is not a good estimate of the cross
section for the production of a qq̄ pair with no extra radiation.

Shower algorithms are used to compute the cross section for generic
hard processes including all leading-logarithmic (LL) corrections.
These algorithms begin with the generation of the kinematics of the
basic process, performed with a probability proportional to its LO
partonic cross section, which is interpreted physically as the inclusive
cross section for the basic process, followed by an arbitrary sequence
of shower splittings. A probability is then assigned to each splitting
sequence. Thus, the initial LO cross section is partitioned into the
cross sections for a multitude of final states of arbitrary multiplicity.
The sum of all these partial cross sections equals that of the primary
process. This property of the GPMCs reflects the KLN cancellation
mentioned earlier, and it is often called “unitarity of the shower
process”, a name that reminds us that the KLN cancellation itself
is a consequence of unitarity. The fact that a quantum mechanical
process can be described in terms of composition of probabilities,
rather than amplitudes, follows from the LL approximation. In
fact, in the dominant, strongly ordered region, subsequent splittings
are separated by increasingly large times and distances, and this
suppresses interference effects.

We now illustrate the basic parton-shower algorithm, as first
introduced in Ref. 8. The purpose of this illustration is to give a
schematic representation of how shower algorithms work, to introduce
some concepts that will be referred to in the following, and to show
the relationship between shower algorithms and Feynman-diagram
results. For simplicity, we consider the example of e+e− annihilation
into qq̄ pairs. With each dominant (i.e. strongly ordered) final-state
configuration one can associate an ordered tree diagram, by recursively
clustering together final-state parton pairs with the smallest hardness,
and ending up with the hard production vertex (i.e. the γ∗ → qq̄).
The momenta of all intermediate lines of the tree diagram are then
uniquely determined from the final-state momenta. Hardnesses in the
graph are also strongly ordered. One assigns to each splitting vertex
the hardness t, the energy fractions z and 1 − z of the two generated
partons, and the azimuth φ of the splitting process with respect to
the momentum of the incoming parton. For definiteness, we assume
that z and φ are defined in the center-of-mass (CM) frame of the
e+e− collision, although other definitions are possible that differ only
beyond the LL approximation. The differential cross section for a
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given final state is given by the product of the differential cross section
for the initial e+e− → qq̄ process, multiplied by a factor

∆i(t, t
′)

αS(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
(41.3)

for each intermediate line ending in a splitting vertex. We have
denoted with t′ the maximal hardness that is allowed for the line, with
t its hardness, and z and φ refer to the splitting process. ∆(t, t′) is
the so-called Sudakov form factor

∆i(t, t
′) = exp



−

∫ t′

t

dq2

q2

αS(q2)

2π

∑

jk

Pi,jk(z)dz
dφ

2π



 . (41.4)

The suffixes i and jk represent the parton species of the incoming
and final partons, respectively, and Pi,jk(z) are the Altarelli-Parisi [9]
splitting kernels. Final-state lines that do not undergo any further
splitting are associated with a factor

∆i(t0, t
′) , (41.5)

where t0 is an infrared cutoff defined by the shower hadronization
scale (at which the charges are screened by hadronization) or, for an
unstable particle, its width (a source cannot emit radiation with a
period exceeding its lifetime).

Notice that the definition of the Sudakov form factor is such that

∆i(t2, t1) +

∫ t1

t2

dt

t
dz

dφ

2π

∑

jk

∆i(t, t1)
αS(t)

2π
Pi,jk(z) = 1 . (41.6)

This implies that the cross section for developing the shower up to a
given stage does not depend on what happens next, since subsequent
factors for further splitting or not splitting add up to one.

The shower cross section can then be formulated in a probabilistic
way. The Sudakov form factor ∆i(t2, t1) is interpreted as the
probability for a splitting not to occur, for a parton of type i, starting
from a branching vertex at the scale t1, down to a scale t2. Notice
that 0 < ∆i(t2, t1) ≤ 1, where the upper extreme is reached for
t2 = t1, and the lower extreme is approached for t2 = t0. From
Eq. (41.4), it seems that the Sudakov form factor should vanish if
t2 = 0. However, because of the presence of the running coupling in
the integrand, t2 cannot be taken smaller than some cutoff scale of
the order of Λ, so that at its lower extreme the Sudakov form factor is
small, but not zero. Event generation then proceeds as follows. One
gets a uniform random number 0 ≤ r ≤ 1, and seeks a solution of the
equation r = ∆i(t2, t1) as a function of t2. If r is too small and no
solution exists, no splitting is generated, and the line is interpreted
as a final parton. If a solution t2 exists, a branching is generated at
the scale t2. Its z value and the final parton species jk are generated
with a probability proportional to Pi,jk(z). The azimuth is generated
uniformly. This procedure is started with each of the primary process
partons, and is applied recursively to all generated partons. It may
generate an arbitrary number of partons, and it stops when no
final-state partons undergo further splitting.

The four-momenta of the final-state partons are reconstructed from
the momenta of the initiating ones, and from the whole sequence
of splitting variables, subject to overall momentum conservation.
Different algorithms employ different strategies to treat recoil effects
due to momentum conservation, which may be applied either locally
for each parton or dipole splitting, or globally for the entire set
of partons (a procedure called momentum reshuffling.) This has a
subleading effect with respect to the collinear approximation.

We emphasize that the shower cross section described above can be
derived from perturbative QCD by keeping only the collinear-dominant
real and virtual contributions to the cross section. In particular, up to
terms that vanish after azimuthal averaging, the product of the cross
section for the basic process, times the factors

αS

2π

dt

t
dz

dφ

2π
Pi,jk(z) (41.7)

at each branching vertex, gives the leading collinear contribution to
the tree-level cross section for the same process. The dominant virtual
corrections in the same approximation are provided by the running
coupling at each vertex and by the Sudakov form factors in the
intermediate lines.

41.1.1. Angular correlations :
In gluon splitting processes (g → qq̄, g → gg) in the collinear
approximation, the distribution of the split pair is not uniform in
azimuth, and the Altarelli-Parisi splitting functions are recovered only
after azimuthal averaging. This dependence is due to the interference
of positive and negative helicity states for the gluon that undergoes
splitting. Spin correlations propagate through the splitting process,
and determine acausal correlations of the EPR kind [10]. A method
to partially account for these effects was introduced in Ref. 11, in
which the azimuthal correlation between two successive splittings is
computed by averaging over polarizations. This can then be applied
at each branching step. Acausal correlations are argued to be small,
and are discarded with this method, that is still used in the PYTHIA

code [3]. A method that fully includes spin correlation effects was
later proposed by Collins [12], and has been implemented in the
fortran HERWIG code [13].

41.1.2. Initial-state radiation :
Initial-state radiation (ISR) arises because incoming charged particles
can radiate before entering the hard-scattering process. In doing
so, they acquire a non-vanishing transverse momentum, and their
virtuality becomes negative (spacelike). The dominant logarithmic
region is the collinear one, where virtualities become larger and
larger in absolute value with each emission, up to a limit given by
the hardness of the basic process itself. A shower that starts by
considering the highest virtualities first would thus have to work
backward in time for ISR. A corresponding backwards-evolution
algorithm was formulated by Sjöstrand [14], and was basically
adopted in all shower models.

The key point in backwards evolution is that the evolution
probability depends on the amount of partons that could have given
rise to the one being evolved. This is reflected by introducing the
ratio of the PDF after the branching to the PDF before the branching
in the definition of the backward-evolution Sudakov form factor,

∆ISR
i (t, t′) = exp



−

∫ t

t′

dt′′

t′′
αS(t′′)

2π

∫ 1

x

dz

z

∑

jk

Pj,ik(z)
fj(t

′′, x/z)

fi(t′′, x)



 .

(41.8)

Notice that there are two uses of the PDFs: they are used to
compute the cross section for the basic hard process, and they control
ISR via backward evolution. Since the evolution is generated with
leading-logarithmic accuracy, it is acceptable to use two different PDF
sets for these two tasks, provided they agree at the LO level.

In the context of GPMC evolution, each ISR emission generates
a finite amount of transverse momentum. Details on how the recoils
generated by these transverse “kicks” are distributed among other
partons in the event, in particular the ones involved in the hard
process, constitute one of the main areas of difference between existing
algorithms, see Ref. 15. An additional O(1 GeV) of “primordial
kT ” is typically added, to represent the sum of unresolved and/or
non-perturbative motion below the shower cutoff scale.

41.1.3. Soft emissions and QCD coherence :
In massless field theories like QCD, there are two sources of large
logarithms of infrared origin. One has to do with collinear singularities,
which arise when two final-state particles become collinear, or when a
final-state particle becomes collinear to an initial-state one. The other
has to do with the emission of soft gluons at arbitrary angles. Because
of that, it turns out that in QCD perturbation theory two powers
of large logarithms can arise for each power of αS. The expansion
in leading soft and collinear logarithms is often referred to as the
double-logarithmic expansion.

Within the conventional parton-shower formalism, based on
collinear factorization, it was shown in a sequel of publications
(see Ref. 16 and references therein) that the double-logarithmic
region can be correctly described by using the angle of the emissions
as the ordering variable, rather than the virtuality, and that the
argument of αS at the splitting vertex should be the relative parton
transverse momentum after the splitting. Physically, the ordering in
angle approximates the coherent interference arising from large-angle
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soft emission from a bunch of collinear partons. Without this effect,
the particle multiplicity would grow too rapidly with energy, in
conflict with e+e− data. For this reason, angular ordering is used
as the evolution variable in both the HERWIG [16] and HERWIG++ [17]
programs, and an angular veto is imposed on the virtuality-ordered
evolution in PYTHIA 6 [18].

A radical alternative formulation of QCD cascades first proposed in
Ref. 19 focuses upon soft emission, rather than collinear emission, as
the basic splitting mechanism. It then becomes natural to consider a
branching process where it is a parton pair (i.e. a dipole) rather than
a single parton, that emits a soft parton. Adding a suitable correction
for non-soft, collinear partons, one can achieve in this framework the
correct logarithmic structure for both soft and collinear emissions in
the limit of large number of colors Nc, without any explicit angular-
ordering requirement. The ARIADNE [20] and VINCIA [21] programs
are based on this approach. In SHERPA, the default shower [22] is also
of a dipole type [23], while the p⊥-ordered showers in PYTHIA 6 and
8 represent a hybrid, combining collinear splitting kernels with dipole
kinematics [24].

41.1.4. Massive quarks :
Quark masses act as cut-off on collinear singularities. If the mass of a
quark is below, or of the order of Λ, its effect in the shower is small.
For larger quark masses, like in c, b, or t production, it is the mass,
rather than the typical hadronic scale, that cuts off collinear radiation.
For a quark with energy E and mass mQ, the divergent behavior dθ/θ
of the collinear splitting process is regulated for θ ≤ θ0 = mQ/E. We
thus expect less collinear activity for heavy quarks than for light ones,
which in turn is the reason why heavy quarks carry a larger fraction
of the momentum acquired in the hard production process.

This feature can be implemented with different levels of sophis-
tication. Using the fact that soft emission exhibits a zero at zero
emission angle, older parton shower algorithms simply limited the
shower emission to be not smaller than the angle θ0. More modern
approaches are used in both PYTHIA, where mass effects are included
using a kind of matrix-element correction method [25], and in
HERWIG++ and SHERPA, where a generalization of the Altarelli-Parisi
splitting kernel is used for massive quarks [26].

41.1.5. Color information :
Shower MC generators track large-Nc color information during the
development of the shower. In the large-Nc limit, quarks or antiquarks
are represented by a color line, i.e. a line with an arrow indicating the
direction of color flow. Gluons are represented by a pair of color lines
with opposite arrows. The rules for color propagation are:

(41.9)
During the shower development, partons are connected by color

lines. We can have a quark directly connected by a color line to an
antiquark, or via an arbitrary number of intermediate gluons, as
shown in Fig. 41.1.

Figure 41.1: Color development of a shower in e+e− annihi-
lation. Systems of color-connected partons are indicated by the
dashed lines.

It is also possible for a set of gluons to be connected cyclically in
color, as e.g. in the decay Υ → ggg.

The color information is used in angular-ordered showers, where the
angle of color-connected partons determines the initial angle for the
shower development, and in dipole showers, where dipoles are always
color-connected partons. It is also used in hadronization models,
where the initial strings or clusters used for hadronization are formed
by systems of color-connected partons.

41.1.6. Electromagnetic corrections :
The physics of photon emission from light charged particles can also
be treated with a shower MC algorithm. High-energy electrons and
quarks, for example, are accompanied by bremsstrahlung photons.
Also here, similarly to the QCD case, electromagnetic corrections
are of order αem ln(Q/m), where m is the mass of the radiating
particle, or even of order αem ln(Q/m) ln(Eγ/E) in the region where
soft photon emission is important, so that, especially for the case
of electrons, their inclusion in the simulation process is mandatory.
This is done in most of the GPMC’s (for a recent comparative study
see [27]) . The specialized generator PHOTOS [28] is sometimes used
as an afterburner for an improved treatment of QED radiation in
non-hadronic resonace decays.

In case of photons emitted by leptons the shower can be continued
down to virtualities arbitrarily close to the lepton mass shell (unlike
the case in QCD). In practice, photon radiation must be cut off below
a certain energy, in order for the shower algorithm to terminate.
Therefore, there is always a minimum energy for emitted photons that
depends upon the implementations [27]( and so does the MC truth for
a charged lepton). In the case of electrons, this energy is typically of
the order of its mass. Electromagnetic radiation below this scale is
not enhanced by collinear singularities, and is thus bound to be soft,
so that the electron momentum is not affected by it.

For photons emitted from quarks, we have instead the obvious
limitation that the photon wavelength cannot exceed the typical
hadronic size. Longer-wavelength photons are in fact emitted
by hadrons, rather than quarks. This last effect is in practice
never modeled by existing shower MC implementations. Thus,
electromagnetic radiation from quarks is cut off at a typical hadronic
scale. Finally, hadron (and τ) decays involving charged particles can
produce additional soft bremsstrahlung. This is implemented in a
general way in HERWIG++ [29] and SHERPA [30].

41.1.7. Beyond-the-Standard-Model Physics :
The inclusion of processes for physics beyond the Standard Model
(BSM) in event generators is to some extent only a matter of
implementing the relevant hard processes and (chains of) decays, with
the level of difficulty depending on the complexity of the model and
the degree of automation [31,32]. Notable exceptions are long-lived
colored particles [33], particles in exotic color representations, and
particles showering under new gauge symmetries, with a growing set
of implementations documented in the individual GPMC manuals.
Further complications that may be relevant are finite-width effects
(discussed in Sec. 41.1.8) and the assumed threshold behavior.

In addition to code-specific implementations [15], there are a
few commonly adopted standards that are useful for transferring
information and events between codes. Currently, the most important
of these is the Les Houches Event File (LHEF) standard [34],
normally used to transfer parton-level events from a hard-process
generator to a shower generator. Another important standard is the
Supersymmetry Les Houches Accord (SLHA) format [35], originally
used to transfer information on supersymmetric particle spectra and
couplings, but by now extended to apply also to more general BSM
frameworks and incorporated within the LHEF standard [36].

41.1.8. Decay Chains and Particle Widths :
In most BSM processes and some SM ones, an important aspect of
the event simulation is how decays of short-lived particles, such as
top quarks, EW and Higgs bosons, and new BSM resonances, are
handled. We here briefly summarize the spectrum of possibilities,
but emphasize that there is no universal standard. Users are advised
to check whether the treatment of a given code is adequate for the
physics study at hand.

The appearance of an unstable resonance as a physical particle
at some intermediate stage of the event generation implies that its
production and decay processes are treated as being factorized. This
is valid up to corrections of order Γ/m0, with Γ the width and m0

the pole mass. States whose widths are a substantial fraction of their
mass should not be treated as “physical particles,” but rather as
intrinsically off-shell internal propagator lines.

For states treated as physical particles, two aspects are relevant: the
mass distribution of the decaying particle itself and the distributions
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of its decay products. For the former, matrix-element generators often
use a simple δ function at m0. The next level up, typically used in
GPMCs, is to use a Breit-Wigner distribution (relativistic or non-
relativistic), which formally resums higher-order virtual corrections to
the mass distribution. Note, however, that this still only generates an
improved picture for moderate fluctuations away from m0. Similarly
to above, particles that are significantly off-shell (in units of Γ) should
not be treated as resonant, but rather as internal off-shell propagator
lines. In most GPMCs, further refinements are included, for instance
by letting Γ be a function of m (“running widths”) and by limiting
the magnitude of the allowed fluctuations away from m0.

For the distributions of the decay products, the simplest treatment
is again to assign them their respective m0 values, with a uniform
phase-space distribution. A more sophisticated treatment distributes
the decay products according to the differential decay matrix elements,
capturing at least the internal dynamics and helicity structure of the
decay process, including EPR-like correlations. Further refinements
include polarizations of the external states [37] and assigning the
decay products their own Breit-Wigner distributions, the latter of
which opens the possibility to include also intrinsically off-shell decay
channels, like H → WW ∗.

During subsequent showering of the decay products, most parton-
shower models will preserve their total invariant mass, so as not to
skew the original resonance shape.

When computing partial widths and/or modifying decay tables,
one should be aware of the danger of double-counting intermediate
on-shell particles, see Sec. 41.2.3.

41.1.9. Matching with Matrix Elements :
Shower algorithms are based upon a combination of the collinear
(small-angle) and soft (small-energy) approximations and are thus
normally inaccurate for hard, wide-angle emissions (i.e., additional
well-resolved jets). They also contain only the leading singular pieces
of next-to-leading order (NLO) and higher corrections to the basic
process.

Traditional GPMCs, like HERWIG and PYTHIA, have included for
a long time the so called Matrix Element Corrections (MEC), first
formulated in Ref. 38 with later developments summarized in Ref. 15.
They are typically available for 2 → 1 or 1 → 2 processes, like DIS,
vector boson and Higgs production and decays, and top decays. The
MEC corrects the emission of the hardest jet at large angles, so that
it becomes exact at LO. A generalization of the method to multiple
emissions was formulated recently [39].

Aside from MECs implemented directly in the GPMCs, the
improvements on the parton-shower description of hard collisions have
been made in two main directions: the so called Matrix Elements and
Parton Shower matching (ME+PS from now on), and the matching
of NLO calculations and Parton Showers (NLO+PS). We now discuss
each of these, and then briefly summarise techniques becoming
available for combining them.

The ME+PS method allows one to use tree-level matrix elements
for hard, large-angle emissions. It was first formulated in the so-called
CKKW paper [40], and several variants have appeared, including
the CKKW-L, MLM, and pseudoshower methods, see Refs. 41, 15
for summaries. Truncated showers are required [42] to maintain
color coherence when interfacing to angular-ordered parton showers,
and care must be taken to use consistent αS choices for the real
(ME-driven) and virtual (PS-driven) corrections [43].

In the ME+PS method one typically starts by generating LO
matrix elements for the production of the basic process plus a certain
number ≤ n of other partons. A minimum separation is imposed
on the produced partons, requiring, for example, that the relative
transverse momentum in any pair of partons is above a given cut
Qcut. One then reweights these amplitudes in such a way that, in the
strongly ordered region, the virtual effects that are included in the
shower algorithm (i.e. running couplings and Sudakov form factors)
are also accounted for. At this stage, before parton showers are added,
the generated configurations are tree-level accurate at large angle,
and at small angle they match the results of the shower algorithm,
except that there are no emissions below the scale Qcut, and no final

states with more than n partons. These kinematic configurations are
thus fed into a GPMC, that must generate all splittings with relative
transverse momentum below the scale Qcut, for initial events with
less than n partons, or below the scale of the smallest pair transverse
momentum, for events with n partons. The matching parameter Qcut

must be chosen to be large enough for fixed-order perturbation theory
to hold, but small enough so that the shower is accurate for emissions
below it. Notice that the accuracy achieved with MEC is equivalent
to that of ME+PS with n = 1, where MEC has the advantage of not
having a matching parameter Qcut.

The popularity of the ME+PS method is due to the fact that
processes with many jets appear often as backgrounds to new-physics
searches. These jets are typically required to be well separated, and to
have large transverse momenta. These kinematical configurations are
exactly those for which pure shower algorithms are unreliable, hence
it is mandatory to describe them using at least LO matrix elements.

Several ME+PS implementations use existing LO generators, like
ALPGEN [52], MADGRAPH [53], and others summarized in Ref. 41, for
the calculation of the matrix elements, and feed the partonic events
to a GPMC like PYTHIA or HERWIG using the Les Houches Interface
for User Processes (LHI/LHEF) [54,34]. SHERPA and HERWIG++ also
include their own matrix-element generators.

The NLO+PS methods promote the accuracy of the generation of
the basic process from LO to NLO in QCD. They must thus include
the radiation of one extra parton with tree-level accuracy, since this
radiation constitutes a NLO correction to the basic process. They
must also include NLO virtual corrections. They can be viewed as
an extension of the MEC methods with the inclusion of NLO virtual
corrections. They are however more general, since they are applicable
to processes of arbitrary complexity. Two of these methods are now
widely used: MC@NLO [44] and POWHEG [42,45], with several alternative
methods now also being pursued, see Ref. 15 and references therein.

NLO+PS generators produce NLO accurate distributions for
inclusive quantities, and generate the hardest jet with tree-level
accuracy. It should be recalled, though, that in 2 → 1 processes like
Z/W production, GPMCs including MEC and weighted by a constant
K factor may perform nearly as well, and, if suitably tuned, may even
yield a better description of data. In this context, note also that the
optimal tuning of an NLO+PS generator may well be different from
that of the pure PS.

Several NLO+PS processes are implemented in the MC@NLO

program [44], together with the new AMC@NLO development [55],
and in the POWHEG BOX framework [45]. HERWIG++ also includes its
own POWHEG implementation, suitably adapted with the inclusion of
vetoed and truncated showers, for several processes. SHERPA instead
implements a variant of the MC@NLO method.

For applications that require an accurate description of more
than one hard, large-angle jet associated with the primary process,
ME+PS schemes are still superior to NLO+PS ones. Ideally, one
would like to improve NLO generators in such a way that also the
production of associated jets achieves NLO accuracy. The FXFX [47],
UNLOPS [48], MiNLO [49] and MEPS@NLO [50] methods address this
problem. In turn, its solution is a prerequisite for the construction
of NNLO+PS generators, that in fact have already appeared for the
gg → H and Drell-Yan processes (see ref. [51] and references therein).

41.2. Hadronization Models

In the context of GPMCs, hadronization denotes the process by which
a set of colored partons (after showering) is transformed into a set
of color-singlet primary hadrons, which may then subsequently decay
further (to secondary hadrons). This non-perturbative transition takes
place at the hadronization scale Qhad, which by construction is
identical to the infrared cutoff of the parton shower. In the absence
of a first-principles solution to the relevant dynamics, GPMCs use
QCD-inspired phenomenological models to describe this transition.

A key difference between MC hadronization models and the
fragmentation-function (FF) formalism used to describe inclusive
hadron spectra in perturbative QCD (see Chap. 9 and Chap. 20 of
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PDG book) is that the former is always defined at the hadronization
scale, while the latter can be defined at an arbitrary perturbative
scale Q. They can therefore only be compared directly if the
perturbative evolution between Q and Qhad is taken into account.
FFs are calculable in pQCD, given a non-perturbative initial condition
obtained by fits to hadron spectra. In the MC context, one can
prove that the correct QCD evolution of the FFs arises from the
shower formalism, with the hadronization model providing an explicit
parametrization of the non-perturbative component. However, the MC
modeling of shower and hadronization includes much more information
on the final state since it is fully exclusive (i.e., it addresses all
particles in the final state explicitly), while FFs only describe inclusive
spectra. This exclusivity also enables MC models to make use of the
color-flow information coming from the perturbative shower evolution
(see Sec. 41.1.5) to determine between which partons the confining
potentials should arise. This is the non-perturbative analog of QCD
coherence [56].

Given an exact hadronization model, its dependence on the
hadronization scale Qhad should in principle be compensated by
the corresponding scale dependence of the shower algorithm, which
stops generating branchings at the scale Qhad. However, due to their
complicated and fully exclusive nature, it is generally not possible to
enforce this compensation automatically in MC models. One must
therefore be aware that the model must be “retuned” by hand if
changes are made to the perturbative evolution, in particular if the
infrared cutoff is modified. Tuning is discussed briefly in Sec. 41.4.

An important result in “quenched” lattice QCD (see Chap. 18 of
PDG book) is that the potential of the color-dipole field between a
charge and an anticharge appears to grow linearly with the separation
of the charges, at distances greater than about a femtometer.
This is known as “linear confinement”, and it forms the starting
point for the string model of hadronization, discussed below in
Sec. 41.2.1. Alternatively, a property of perturbative QCD called
“preconfinement” is the basis of the cluster model of hadronization,
discussed in Sec. 41.2.2.

Finally, it should be emphasized that the so-called “parton level”
that can be obtained by switching off hadronization in a GPMC, is
not a universal concept, since each model defines the hadronization
scale differently (e.g. by a cutoff in p⊥, invariant mass, etc., with
different tunes using different values for the cutoff). Comparisons to
distributions at this level may therefore be used to provide an idea of
the overall impact of hadronization corrections within a given model,
but should be avoided in the context of physical observables.

41.2.1. The String Model :
Starting from early concepts [57], several hadronization models based
on strings have been proposed [15]. Of these, the most widely
used today is the so-called Lund model [58,59], implemented in
PYTHIA [3,4]. We concentrate on that particular model here, though
many of the overall concepts would be shared by any string-inspired
method.

Consider a color-connected quark-antiquark pair with no interme-
diate gluons emerging from the parton shower (like the q̄q pair in the
center of Fig. 41.1), e.g. a red q and an antired q̄. As the charges move
apart, linear confinement implies that a potential V (r) = κ r is reached
for large distances r. (At short distances, there is a Coulomb term
∝ 1/r as well, but this is neglected in the Lund string.) This potential
describes a string with tension κ ∼ 1 GeV/fm ∼ 0.2 GeV2. The
physical picture is that of a color flux tube being stretched between
the q and the q̄.
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Figure 41.2: Illustration of string breaking by quark pair-
creation in the string field.

As the string grows, the non-perturbative creation of quark-
antiquark pairs can break the string, via the process (qq̄) →
(qq̄′) + (q′q̄), illustrated in Fig. 41.2. More complicated color-
connected quark-antiquark configurations involving intermediate
gluons (like the q̄gggq and q̄gq systems on the left and right part of
Fig. 41.1) are treated by representing gluons as transverse “kinks.”
Thus soft gluons effectively build up a transverse structure in the
originally one-dimensional object, with infinitely soft ones smoothly
absorbed into the string. For strings with finite-energy kinks, the
space-time evolution is slightly more involved [59], but the main
point is that there are no separate free parameters for gluon jets.
Differences with respect to quark fragmentation arise simply because
quarks are only connected to a single string piece, while gluons have
one on either side, increasing their relative energy loss (per unit
invariant time) by a factor of 2, similar to the ratio of color Casimirs
CA/CF = 2.25.

Since the string breaks are causally disconnected (as can be realized
from space-time diagrams [59]) , they do not have to be considered
in any specific time-ordered sequence. In the Lund model, the string
breaks are generated starting with the leading (“outermost”) hadrons,
containing the endpoint quarks, and iterating inwards towards the
center of the string, alternating randomly between the left and right
sides. One can thereby split off a single on-shell hadron in each step,
making it straightforward to ensure that only states consistent with
known hadron states are produced.

For each breakup vertex, quantum mechanical tunneling is assumed
to control the masses and p⊥ kicks that can be produced, leading to a
Gaussian suppression

Prob(m2
q , p

2
⊥q) ∝ exp

(

−πm2
q

κ

)

exp

(

−πp2
⊥q

κ

)

, (41.10)

where mq is the mass of the produced quark flavor and p⊥ is the
non-perturbative transverse momentum imparted to it by the breakup
process (the antiquark has the same mass and opposite p⊥), with a

universal average value of
〈

p2
⊥q

〉

= κ/π ∼ (250 MeV)2. The charm

and bottom masses are sufficiently heavy that they are not produced
at all in the soft fragmentation. The transverse direction is defined
with respect to the string axis, so the p⊥ in a frame where the string
is moving will be modified by a Lorentz boost. Note that the effective
amount of “non-perturbative” p⊥, in a Monte Carlo model with a fixed
shower cutoff Qhad, may be larger than the purely non-perturbative
κ/π above, to account for effects of additional unresolved soft-gluon
radiation below Qhad. In principle, the magnitude of this additional
component should scale with the cutoff, but in practice it is up to the
user to enforce this by retuning the relevant parameter when changing
the hadronization scale.

Since quark masses are difficult to define for light quarks, the
value of the strangeness suppression is determined from experimental
observables, such as the K/π and K∗/ρ ratios. Note that the
parton-shower evolution generates a small amount of strangeness as
well, through perturbative g → ss̄ splittings.

Baryon production can also be incorporated, by allowing string
breaks to produce pairs of diquarks, loosely bound states of two quarks
in an overall 3̄ representation. Again, since diquark masses are difficult
to define, the relative rate of diquark to quark production is extracted,
e.g. from the p/π ratio. Since the perturbative shower splittings do
not produce diquarks, the optimal value for this parameter is mildly
correlated with the amount of g → qq̄ splittings produced by the
shower. More advanced scenarios for baryon production have also been
proposed, see Ref. 59. Within the PYTHIA framework, a fragmentation
model including baryon string junctions [60] is also available.

The next step of the algorithm is the assignment of the produced
quarks within hadron multiplets. Using a nonrelativistic classification
of spin states, the fragmenting q may combine with the q̄′ from a
newly created breakup to produce a meson — or baryon, if diquarks
are involved — of a given spin S and angular momentum L. The
lowest-lying pseudoscalar and vector meson multiplets, and spin-1/2
and -3/2 baryons, are assumed to dominate in a string framework1,

1 The PYTHIA implementation includes the lightest pseudoscalar and
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but individual rates are not predicted by the model. This is therefore
the sector that contains the largest amount of free parameters.

From spin counting, the ratio V/P of vectors to pseudoscalars is
expected to be 3, but in practice this is only approximately true for B
mesons. For lighter flavors, the difference in phase space caused by the
V –P mass splittings implies a suppression of vector production. When
extracting the corresponding parameters from data, it is advisable
to begin with the heaviest states, since so-called feed-down from the
decays of higher-lying hadron states complicates the extraction for
lighter particles, see Sec. 41.2.3. For baryons, separate parameters
control the relative rates of spin-1 diquarks vs. spin-0 ones and,
likewise, have to be extracted from data.

With p2
⊥

and m2 now fixed, the final step is to select the fraction,
z, of the fragmenting endpoint quark’s longitudinal momentum that
is carried by the created hadron, an aspect for which the string
model is highly predictive. The requirement that the fragmentation
be independent of the sequence in which breakups are considered
(causality) imposes a “left-right symmetry” on the possible form of
the fragmentation function, f(z), with the solution

f(z) ∝
1

z
(1 − z)a exp

(

−
b (m2

h + p2
⊥h)

z

)

, (41.11)

which is known as the Lund symmetric fragmentation function
(normalized to unit integral). The dimensionless parameter a
dampens the hard tail of the fragmentation function, towards z → 1,
and may in principle be flavor-dependent, while b, with dimension
GeV−2, is a universal constant related to the string tension [59] which
determines the behavior in the soft limit, z → 0. Note that the explicit
mass dependence in f(z) implies a harder fragmentation function for
heavier hadrons (in the rest frame of the string).

As a by-product, the probability distribution in invariant time τ of
q′q̄ breakup vertices, or equivalently Γ = (κτ)2, is also obtained, with
dP/dΓ ∝ Γa exp(−bΓ) implying an area law for the color flux, and the
average breakup time lying along a hyperbola of constant invariant
time τ0 ∼ 10−23s [59].

For massive endpoints (e.g. c and b quarks, or hypothetical
hadronizing new-physics particles), which do not move along straight
lightcone sections, the exponential suppression with string area leads

to modifications of the form f(z) → f(z)/z
bm2

Q , with mQ the mass of
the heavy quark [61]. Although different forms can also be used to
describe inclusive heavy-meson spectra (see Sec 20.9 of PDG book),
such choices are not consistent with causality in the string framework
and hence are theoretically disfavored in this context, one well-known
example being the Peterson formula [62],

f(z) ∝
1

z

(

1 −
1

z
−

ǫQ
1 − z

)−2

, (41.12)

with ǫQ a free parameter expected to scale ∝ 1/m2
Q.

41.2.2. The Cluster Model :
The cluster hadronization model is based on preconfinement, i.e., on
the observation [63,64] that the color structure of a perturbative QCD
shower evolution at any scale Q0 is such that color-singlet subsystems
of partons (labeled “clusters”) occur with a universal invariant mass
distribution that only depends on Q0 and on ΛQCD, not on the
starting scale Q, for Q ≫ Q0 ≫ ΛQCD. Further, this mass distribution
is power-suppressed at large masses.

Following early models based on this universality [8,65], the
cluster model developed by Webber [66] has for many years been a
hallmark of the HERWIG and HERWIG++ generators, with an alternative
implementation [67] now available in the SHERPA generator. The key
idea, in addition to preconfinement, is to force “by hand” all gluons

vector mesons, with the four L = 1 multiplets (scalar, tensor, and 2
pseudovectors) available but disabled by default, largely because sev-
eral states are poorly known and thus may result in a worse overall
description when included. For baryons, the lightest spin-1/2 and -3/2
multiplets are included.

to split into quark-antiquark pairs at the end of the parton shower.
Compared with the string description, this effectively amounts to
viewing gluons as “seeds” for string breaks, rather than as kinks
in a continuous object. After the splittings, a new set of low-mass
color-singlet clusters is obtained, formed only by quark-antiquark
pairs. These can be decayed to on-shell hadrons in a simple manner.

The algorithm starts by generating the forced g → qq̄ breakups,
and by assigning flavors and momenta to the produced quark pairs.
For a typical shower cutoff corresponding to a gluon virtuality
of Qhad ∼ 1 GeV, the p⊥ generated by the splittings can be
neglected. The constituent light-quark masses, mu,d ∼ 300 MeV and
ms ∼ 450 MeV, imply a suppression (typically even an absence)
of strangeness production. In principle, the model also allows for
diquarks to be produced at this stage, but due to the larger constituent
masses this would only become relevant for shower cutoffs larger than
1 GeV.

If a cluster formed in this way has an invariant mass above some
cutoff value, typically 3–4 GeV, it is forced to undergo sequential
1 → 2 cluster breakups, along an axis defined by the constituent
partons of the original cluster, until all sub-cluster masses fall below
the cutoff value. Due to the preservation of the original axis in these
breakups, this treatment has some resemblance to the string-like
picture, though the non-perturbative p⊥ kicks generated in this way
are generally larger, up to half the allowed cluster mass.

Next, on the low-mass side of the spectrum, some clusters are
allowed to decay directly to a single hadron, with nearby clusters
absorbing any excess momentum. This improves the description of
the high-z part of the fragmentation spectrum — where the hadron
carries almost all the momentum of its parent jet — at the cost of
introducing one additional parameter, controlling the probability for
single-hadron cluster decay.

Having obtained a final distribution of small-mass clusters, now
with a strict cutoff at 3–4 GeV and with the component destined to
decay to single hadrons already removed, the remaining clusters are
interpreted as a smoothed-out spectrum of excited mesons, each of
which decays isotropically to two hadrons, with relative probabilities
proportional to the available phase space for each possible two-hadron
combination that is consistent with the cluster’s internal flavors,
including spin degeneracy. It is important that all the light members
(containing only uds) of each hadron multiplet be included, as the
absence of members can lead to unphysical isospin or SU(3) flavor
violation. Typically, the lightest pseudoscalar, vector, scalar, even and
odd charge conjugation pseudovector, and tensor multiplets of light
mesons are included. In addition, some excited vector multiplets of
light mesons may be available. For baryons, usually only the lightest
flavor-octet, -decuplet and -singlet baryons are present, although both
the HERWIG++ and SHERPA implementations now include some heavier
baryon multiplets as well.

Differently from the string model, the mechanism of phase-space
suppression employed here leads to a natural enhancement of the
lighter pseudoscalars, and no parameters beyond the spectrum of
hadron masses need to be introduced at this point. The phase space
also limits the transverse momenta of the produced hadrons relative
to the jet axis.

Note that, since the masses and decays of excited heavy-flavor
hadrons in particular are not well known, there is some freedom in
the model to adjust these, which in turn will affect their relative
phase-space populations.

41.2.3. Hadron and τ Decays :
Of the so-called primary hadrons, originating directly from string
breaks and/or cluster decays (see above), many are unstable and
so decay further, until a set of particles is obtained that can be
considered stable on time scales relevant to the given measurement2.
The decay modeling can therefore have a significant impact on final
particle yields and spectra, especially for the lowest-lying hadronic

2 E.g., a typical hadron-collider definition of a “stable particle” is
cτ ≥ 10 mm, which includes the weakly-decaying strange hadrons (K,
Λ, Σ±, Σ̄±, Ξ, Ω).
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states, which receive the largest relative contributions from decays
(feed-down). Note that the interplay between primary production
and feed-down implies that the hadronization parameters should be
retuned if significant changes to the decay treatment are made.

Particle summary tables, such as those given elsewhere in
this Review, represent a condensed summary of the available
experimental measurements and hence may be incomplete and/or
exhibit inconsistencies within the experimental precision. In an
MC decay package, on the other hand, all information must be
quantified and consistent, with all branching ratios summing to unity.
When adapting particle summary information for use in a decay
package, a number of choices must therefore be made. The amount of
ambiguity increases as more excited hadron multiplets are added to
the simulation, about which less and less is known from experiment,
with each GPMC making its own choices.

A related choice is how to distribute the decay products
differentially in phase space, in particular which matrix elements to
use. Historically, MC generators contained matrix elements only for
selected (generator-specific) classes of hadron and τ decays, coupled
with a Breit-Wigner smearing of the masses, truncated at the edges
of the physical decay phase space (the treatment of decay thresholds
can be important for certain modes [15]) . A more sophisticated
treatment can then be obtained by reweighting the generated events
using the obtained particle four-momenta and/or by using specialized
external packages such as EVTGEN [68] for hadron decays and TAUOLA

[69] for τ decays.

More recently, HERWIG++ and SHERPA include helicity-dependence
in τ decays [70,71], with a more limited treatment available in
PYTHIA 8 [4]. The HERWIG++ and SHERPA generators have also
included significantly improved internal simulations of hadronic
decays, which include spin correlations between those decays for
which matrix elements are used. Photon-bremsstrahlung effects are
discussed in Sec. 41.1.6.

HERWIG++ and PYTHIA include the probability for B mesons to
oscillate into B̄ ones before decay. SHERPA and EVTGEN also include
CP-violating effects and, for common decay modes of the neutral
meson and its antiparticle, the interference between the direct decay
and oscillation followed by decay.

We end on a note of warning on double counting. This may occur
if a particle can decay via an intermediate on-shell resonance. An
example is a1 → πππ which may proceed via a1 → ρπ, ρ → ππ. If
these decay channels of the a1 are both included, each with their full
partial width, a double counting of the on-shell a1 → ρπ contribution
would result. Such cases are normally dealt with consistently in the
default MC generator packages, so this warning is mostly for users
that wish to edit decay tables on their own.

41.3. Models for Soft Hadron-Hadron Physics

41.3.1. Minimum-Bias and Diffraction :
The term “minimum bias” (MB) originates from the experimental
requirement of a minimal number of tracks (or hits) in a given
instrumented region. In order to make MC predictions for such
observables, all possible contributions to the relevant phase-space
region must be accounted for. There are essentially four types of
physics processes, which together make up the total hadron-hadron
(hh) cross section: 1) elastic scattering3: hh → hh, 2) single diffractive
dissociation: hh → h + gap + X , with X denoting anything that is
not the original beam particle, and “gap” denoting a rapidity
region devoid of observed activity; 3) double diffractive dissociation:
hh → X + gap + X , and 4) inelastic non-diffractive scattering:
everything else. A fifth class may also be defined, called central
diffraction (hh → h + gap + X + gap + h). Some differences exist
between theoretical and experimental terminology [72]. In the
experimental setting, diffraction is defined by an observable gap, of
some minimal size in rapidity. In the MC context, each diffractive
physics process typically produces a whole spectrum of gaps, with
small ones suppressed but not excluded.

3 The QED elastic-scattering cross section diverges and is normally
a non-default option in MC models.

The inelastic non-diffractive part of the cross section is typically
modeled either by smoothly regulating and extending the perturbative
QCD scattering cross sections all the way to zero p⊥ [73] (PYTHIA 6,
PYTHIA 8, and SHERPA), or by regulating the QCD cross sections with
a sharp cutoff [74]( HERWIG+JIMMY) and adding a separate class of
intrinsically soft scatterings below that scale [75]( HERWIG++). See also
Sec. 41.3.2. In all cases, the three most important ingredients are:
1) the IR regularization of the perturbative scattering cross sections,
including their PDF dependence, 2) the assumed matter distribution of
the colliding hadrons, possibly including multi-parton correlations [60]
and/or x dependence [76], and 3) additional soft-QCD effects such
as color reconnections and/or other collective effects, discussed in
Sec. 41.3.3.

Currently, there are essentially three methods for simulating
diffraction in the main MC models: 1) in PYTHIA 6, one picks
a diffractive mass according to parametrized cross sections ∝
dM2/M2 [77]. This mass is represented as a string, which is
fragmented as described in Sec. 41.2.1, though differences in the
effective scale of the hadronization may necessitate a (re)tuning of
the fragmentation parameters for diffraction; 2) in PYTHIA 8, the
high-mass tail beyond M ∼ 10 GeV is augmented by a partonic
description in terms of pomeron PDFs [78], allowing diffractive
jet production including showers and underlying event [79]; 3) the
PHOJET and DPMJET programs also include central diffraction and
rely directly on a formulation in terms of pomerons (color-singlet
multi-gluon states) [80–82]. Cut pomerons correspond to exchanges
of soft gluons while uncut ones give elastic and diffractive topologies
as well as virtual corrections that help preserve unitarity. So-called
“hard pomerons” provide a transition to the perturbative regime.
Fragmentation is still handled using the Lund string model, so there
is some overlap with the above models at the hadronization stage.
In addition, a pomeron-based package exists for HERWIG [83], and
an effort is underway to construct an MC implementation of the
“KMR” model [84] within the SHERPA generator. Color reconnections
(Sec. 41.3.3) may also play a role in creating rapidity gaps and the
underlying event (Sec. 41.3.2) in destroying them.

41.3.2. Underlying Event and Jet Pedestals :
In the GPMC context, “underlying event” (UE) denotes any
additional activity beyond the basic process and its associated ISR
and FSR activity. The dominant contribution is believed to come
from additional color exchanges between the beam particles, which in
models are represented either as multiple parton-parton interactions
(MPI) or as so-called cut pomerons (Sec. 41.3.1). The experimentally
observed fact that the UE is more active than average (MB) events at
the same CM energy is called the “jet pedestal” effect.

The most clearly identifiable consequence of MPI is arguably the
possibility of observing several hard parton-parton interactions in
one and the same hadron-hadron event. In the most likely case that
they are all QCD 2 → 2 interactions, this produces two or more
back-to-back jet pairs, with each pair having a small value of sum(~p⊥).
The fraction of MPI that give rise to additional reconstructible jets
is, however, small. Soft interactions, that exchange color and a small
amount of momentum without giving rise to observable jets, are much
more plentiful, and can give significant corrections to the color flow
and total scattered energy of the event. This affects the final-state
activity in a more global way, increasing hadron-multiplicity and
summed ET distributions, and contributing to the break-up of the
beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was
proposed in Ref. 73, and with some variation this still forms the basis
for most modern implementations. Some useful additional references
can be found in Ref. 15. The first crucial observation is that the
t-channel propagators appearing in perturbative QCD 2 → 2 scattering
almost go on shell at low p⊥, causing the differential cross sections to
behave roughly as

dσ2→2 ∝
dt

t2
∼

dp2
⊥

p4
⊥

. (41.13)

This cross section represents the inclusive scattering of partons
against partons in perturbative QCD, summed over all partons.
Thus, if a single hadron-hadron scattering contains two parton-parton
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interactions, that event will contribute twice to the parton-parton
cross section σ2→2 but only once to the hadron-hadron one σtot,
and so on. In the limit that all the parton-parton interactions are
independent and equivalent, one has

σ2→2 = 〈n〉 σtot , (41.14)

with 〈n〉 the average number of parton-parton interactions, typically
defined with some minimal p⊥ > p⊥min to render the parton-parton
cross section finite. The probability for having n parton-parton
scatterings in a single hadron-hadron collision then follows a Poisson
distribution,

Pn = 〈n〉n
exp (−〈n〉)

n!
. (41.15)

This simple argument expresses unitarity; instead of the total hadron-
hadron interaction cross section diverging as the parton-parton p⊥ → 0
(which would violate unitarity), we have restated the problem so that
it is now the number of parton-parton interactions per hadron-hadron

collision that diverges, with the total hadron-hadron cross section
remaining finite. At LHC energies, the parton-parton scattering cross
sections computed using the LO QCD cross section folded with
modern PDFs become larger than the total pp one for p⊥min values of
order 4–5 GeV (see e.g. [85,86]) . One therefore expects the average
number of perturbative MPI to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining
divergence. Firstly, the interactions cannot use up more momentum
than is available in the parent hadron. This suppresses the large-n
tail of the estimate above. In PYTHIA-based models, the MPI are
ordered in p⊥, and the parton densities for each successive interaction
are explicitly constructed so that the sum of x fractions can never
be greater than unity. In the HERWIG models, the Poisson estimate
of 〈n〉 above is used as an initial guess, but the generation of actual
MPI is stopped once the energy-momentum conservation limit is
reached. Both of these approaches generate momentum (conservation)
correlations among the MPI.

The second ingredient invoked to suppress the number of
interactions, at low p⊥ and x, is color screening; if the wavelength ∼
1/p⊥ of an exchanged colored parton becomes larger than a typical
color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⊥ → 0, hence leading to suppressed
interactions. This provides an infrared cutoff for MPI similar to
that provided by the hadronization scale for parton showers. A
first estimate of the color-screening cutoff would be the proton size,
p⊥min ≈ ~/rp ≈ 0.3 GeV ≈ ΛQCD, but empirically this appears to be
far too low. In current models, one replaces the proton radius rp in the
above formula by a “typical color screening distance,” i.e., an average
size of a region within which the net compensation of a given color
charge occurs. This number is not known from first principles [84] and
is perceived of simply as an effective cutoff parameter. The simplest
choice is to introduce a step function Θ(p⊥ − p⊥min). Alternatively,
one may note that the jet cross section is divergent like α2

S(p
2
⊥

)/p4
⊥

,
cf. Eq. (41.13), and that therefore a factor

α2
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would smoothly regulate the divergences, now with p⊥0 as the free
parameter. Regardless of whether it is imposed as a smooth (PYTHIA
and SHERPA) or steep (HERWIG++) function, this is effectively the main
“tuning” parameter in such models.

Note that the numerical value obtained for the cross section
depends upon the PDF set used, and therefore the optimal value
to use for the cutoff will also depend on this choice. Note also that
the cutoff does not have to be energy-independent. Higher energies
imply that parton densities can be probed at smaller x values, where
the number of partons rapidly increases. Partons then become closer
packed and the color screening distance d decreases. The uncertainty
on the energy and/or x scaling of the cutoff is a major concern when
extrapolating between different collider energies [87].

We now turn to the origin of the observational fact that hard
jets appear to sit on top of a higher “pedestal” of underlying

activity than events with no hard jets. This is interpreted as a
consequence of impact-parameter-dependence: in peripheral collisions,
only a small fraction of events contain any high-p⊥ activity, whereas
central collisions are more likely to contain at least one hard
scattering; a high-p⊥ triggered sample will therefore be biased
towards small impact parameters, b. The ability of a model to
describe the shape of the pedestal (e.g. to describe both MB and UE
distributions simultaneously) therefore depends upon its modeling of
the b-dependence, and correspondingly the impact-parameter shape
constitutes another main tuning parameter.

For each impact parameter b, the number of interactions ñ(b) can
still be assumed to be distributed according to Eq. (41.15), again
modulo momentum conservation, but now with the mean value of
the Poisson distribution depending on impact parameter, 〈ñ(b)〉. This
causes the final n-distribution (integrated over b) to be wider than a
Poissonian.

Finally, there are two perturbative modeling aspects which go
beyond the introduction of MPI themselves: 1) parton showers off
the MPI, and 2) perturbative parton-rescattering effects. Without
showers, MPI models would generate very sharp peaks for back-
to-back MPI jets, caused by unshowered partons passed directly to
the hadronization model. However, with the exception of the oldest
PYTHIA6 model, all GPMC models do include such showers [15],
and hence should exhibit more realistic (i.e., broader and more
decorrelated) MPI jets. On the initial-state side, the main questions
are whether and how correlated multi-parton densities are taken into
account and, as discussed previously, how the showers are regulated
at low p⊥ and/or low x. Although none of the MC models currently
impose a rigorous correlated multi-parton evolution, all of them include
some elementary aspects. The most significant for parton-level results
is arguably momentum conservation, which is enforced explicitly in
all the models. The so-called “interleaved” models [24] attempt to
go a step further, generating an explicitly correlated multi-parton
evolution in which flavor sum rules are imposed to conserve, e.g. the
total numbers of valence and sea quarks [60].

Perturbative rescattering in the final state can occur if partons
are allowed to undergo several distinct interactions, with showering
activity possibly taking place in-between. This has so far not been
studied extensively, but a first exploratory model is available [88]. In
the initial state, parton rescattering/recombination effects have so far
not been included in any of the GPMC models.

41.3.3. Bose-Einstein and Color-Reconnection Effects :
In the context of e+e− collisions, Bose-Einstein (BE) correlations have
mostly been discussed as a source of uncertainty on high-precision W
mass determinations at LEP [89]. In hadron-hadron (and nucleus-
nucleus) collisions, however, BE correlations are used extensively to
study the space-time structure of hadronizing matter (“femtoscopy”).

In MC models of hadronization, each string break or particle/cluster
decay is normally factorized from all other ones. This reduces the
number of variables that must be considered simultaneously, but also
makes the introduction of correlations among particles from different
breaks/decays intrinsically difficult to address. In the context of
GPMCs, a few semi-classical models are available within the PYTHIA 6
and 8 generators [90], in which the BE effect is mimicked by an
attractive interaction between pairs of identical particles in the final
state, with no higher correlations included. This “force” acts after
the decays of very short-lived particles, like ρ, but before decays of
longer-lived ones, like π0. The main differences between the variants
of this model is the assumed shape of the correlation function and how
overall momentum conservation is handled.

As discussed in Sec. 41.2, leading-color (“planar”) color flows are
used to set up the hadronizing systems (clusters or strings) at the
hadronization stage. If the systems do not overlap significantly in
space and time, subleading-color ambiguities and/or non-perturbative
reconnections are expected to be small. However, if the density of
displaced color charges is sufficiently high that several systems can
overlap significantly, full-color and/or reconnection effects should
become progressively larger.

In the specific context of MPI, a crucial question is how color is
neutralized between different MPI systems, including the remnants.
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The large rapidity differences involved imply large invariant masses
(though normally low p⊥), and hence large amounts of (soft) particle
production. Indeed, in the context of soft-inclusive physics, it is these
“inter-system” strings/clusters that furnish the dominant particle-
production mechanism, and hence their modeling is an essential
part of the soft-physics description, affecting topics such as MB/UE
multiplicity and p⊥ distributions, rapidity gaps, and precision mass
measurements. More comprehensive reviews of color-reconnection
effects can be found in Refs. 15,91.

41.4. Parameters and Tuning

The accuracy that can be achieved by a GPMC model depends on
the sophistication of theory models it incorporates, on the inclusiveness
of the observable(s) under study, and on the available constraints
on its free parameters. Using existing data (or more precise theory
calculations) to constrain the model parameters is referred to as
generator tuning.

Typically, the most inclusive event properties are determined by
only a few, very important parameters, such as the value of αS,
for perturbative corrections, and the shape of the fragmentation
functions, for non-perturbative ones. More parameters may then
be introduced to describe successively more exclusive aspects, but
these should have progressively less impact on the overall modelling.
One may therefore take a factorized approach, first constraining
the perturbative parameters and thereafter the non-perturbative
ones, in order of decreasing significance to the overall modeling.
Furthermore, by identifying which measurements are most sensitive to
each parameter, this ordering can be reflected in the way that data is
selected and applied to constrain the models. Thus, the most inclusive
measurements should be used first, to constrain the most inclusive
parameters, and so on for progressively more exclusive aspects.

At LO×LL, perturbation theory is doing well if it agrees with
an IR safe measurement within 10%. It would therefore not make
much sense to tune a GPMC beyond roughly 5% (it might even be
dangerous, due to overfitting). The advent of NLO Monte Carlos may
reduce this number slightly, but only for quantities for which one
expects NLO precision. For LO Monte Carlos, distributions should
be normalized to unity, since the NLO normalization is not tunable.
For quantities governed by non-perturbative physics, uncertainties
are larger. For some quantities, e.g. ones for which the underlying
modeling is known to be poor, an order-of-magnitude agreement or
worse may have to be accepted.

In the context of LO×LL GPMC tuning, subleading aspects of
coupling-constant and PDF choices are relevant. In particular, one
should be aware that the choice of QCD Λ parameter ΛMC = 1.569Λ

MS
(for 5 active flavors) improves the predictions of coherent shower
algorithms at the NLL level [92], and hence this scheme is typically
considered the baseline for shower tuning. The question of LO vs.
NLO PDFs is more involved [15], but it should be emphasized that
the low-x gluon in particular is important for determining the level
of the underlying event in MPI models (Sec. 41.3.2), and hence the
MB/UE tuning (and energy scaling [87]) is linked to the choice of
PDF in such models. Further issues and an example of a specific
recipe that could be followed in a realistic set-up can be found in
Ref. 93. A useful online resource can be found at the mcplots.cern.ch
web site [94], based on the RIVET tool [95].

Recent years have seen the emergence of automated tools to reduce
the amount of both computer and manpower required for tuning [96].
Automating the human expert input is more difficult. In the tools
currently on the market, this is addressed by a combination of input
solicited from the GPMC authors (e.g., which parameters and ranges
to consider, which observables constitute a complete set, etc) and a
set of weights determining the relative priority given to each bin in
each distribution. Studies of sensitivities and correlations also play an
important role. Overall, the quality of the resulting tunes is by now
competitive. The field is still burgeoning, with future sophistications
to be expected.
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42. MONTE CARLO NEUTRINO EVENT GENERATORS

Updated September 2015 by H. Gallagher (Tufts U.) and Y. Hayato
(Tokyo U.)

Monte Carlo neutrino generators are programs or libraries which
simulate neutrino interactions with electrons, nucleons and nuclei.
In this capacity their usual task is to take an input neutrino and
nucleus and produce a set of 4-vectors for particles emerging from the
interaction, which are then input to full detector simulations. Since
these generators have to simulate not only the initial interaction of
neutrinos with target particles, but re-interactions of the generated
particles in the nucleus, they contain a wide range of elementary
particle and nuclear physics. Viewed more broadly, they are the
access point for neutrino experimentalists to the theory inputs needed
for analysis. Examples include cross section libraries for event rate
calculations and parameter uncertainties and reweighting tools for
systematic error evaluation.

Neutrino experiments typically operate in neutrino beams that
are neither completely pure nor mono-energetic. Generators are
a crucial component in the convolution of beam flux, neutrino
interaction physics, and detector response that is necessary to make
predictions about observable quantities. Similarly they are used to
relate reconstructed quantities back to true quantities. In these various
capacities they are used from the detector design stage through the
extraction of physics measurements from reconstructed observables.
Monte Carlo neutrino generators play unique and important roles in
the experimental study of neutrino interactions and oscillations.

There are several neutrino event generators available, such as
ANIS [1], GENIE [2], GiBUU [3], NEGN [4], NEUT [5],
NUANCE [6], the FLUKA routines NUNDIS/NUNRES [7], and
NuWRO [8]. Historically, experiments would develop their own
generators. This was often because they were focused on a particular
measurement, energy range, or target, and wanted to ensure that
the best physics was included for it. These ‘home-grown’ generators
were often tuned primarily or exclusively to the neutrino data most
similar to the data that the experiment would be collecting. A major
advance in the field was the introduction of conference series devoted
to the topic of neutrino interaction physics, NuINT and NuFACT in
particular. Event generator comparisons have been a regular staple
of the NuINT conference series from its inception, and a great deal
of information on this topic can be found in the Proceedings of
these meetings. These meetings have facilitated experiment-theory
discussions leading to the first generator developed by a theory group
(NuWRO) [8], the extension of established nuclear interaction codes
(FLUKA and GiBUU) to include neutrino-nuclear processes [3,7], and
inclusion of theorists in existing generator development teams.

These activites have led to more careful scrutiny of the crucial
nuclear theory inputs to these generators, which is evaluated in
particular through comparisons to electron-scattering data. At this
point in time all simulation codes face challenges in describing the
full extent of the lepton scattering data, and the tension between
incorporating the best available theory versus obtaining the best
agreement with the data plays out in a variety of ways within the field.
For the field to make progress, inclusion of state of the art theory
needs to be coupled to global analyses that correctly incorporate
correlations between measurements. Given the rapid pace of new data
and the complexity of analyses, this is a significant challenge for the
field in the coming years.

There are many neutrino experiments which use various sources
of neutrinos, from reactors, accelerators, the atmosphere, and
astrophysical sources, thereby covering a range of energies from MeV
to TeV. Much of the emphasis has been on the few-GeV region in
the generators, as this is the relevant energy range for long-baseline
neutrino oscillation experiments. These generators use the impulse
approximation for most of the primary neutrino interactions and
simulate the interactions of secondary particles in the nucleus in
semi-classical ways in order to simulate a variety of nuclei in a single
model, and for practical considerations as these approaches are fast.
However, there are several challenges facing these simulations coming
mainly from the complexity of the nuclear physics, and avoiding double
counting in combining perturbative and non-perturbative models for
the neutrino-nucleon scattering processes. While generators share

many common ingredients, differences in implementation, parameter
values, and approaches to avoid double counting can yield dramatically
different predictions [9]. In the following sections, interaction models
and their implementations including the interactions of generated
particles in the nuclei are described.

In order to assure its reproducibility, neutrino event generators are
tuned and validated against a wide variety of data, including data from
photon, charged lepton, neutrino, and hadron probes. The results from
these external data tuning exercises are important for experiments
as they quantify the uncertainty on model paramaters, needed by
experiments in the evaluation of generator-related systematic errors.
Electron scattering data plays an important role in determining the
vector contribution to the form-factors and structure functions, as
well as in evaluating specific aspects of the nuclear model. Hadron
scattering data is used in validating the nuclear model, in particular
the modeling of final state interactions. Tuning of neutrino-nucleon
scattering and hadronization models relies heavily on the previous
generation of high energy neutrino scattering and hydrogen and
deuterium bubble chamber experiments, and more recent data
from the K2K, MiniBooNE, NOMAD, SciBooNE, MINOS, T2K,
ArgoNEUT, and MINERvA experiments either has been, or will be,
used for this purpose.

42.1. Neutrino-Nucleon Scattering

Event generators typically begin with free-nucleon cross sections
which are then embedded into a nuclear physics model. The most
important processes are quasi-elastic (elastic for NC) scattering,
resonance production, and non-resonant inelastic scattering, which
make comparable contributions for few-GeV interactions. The
neutrino cross sections in this energy range can be seen in Figures 50.1
through 50.4 of this Review.

42.1.1. Quasi-Elastic Scattering : The cross section for the
neutrino nucleon charged current quasi-elastic scattering is described
in terms of the leptonic and hadronic weak currents, where dominant
contributions to the hadronic current come from the vector and
axial-vector form factors. There also exists the pseudo-scalar term
(the pseudo-scalar form factor) in the hadronic current but this term
is rather small for electron and muon neutrinos and usually related
to the axial form factor assuming partially conserved axial current
(PCAC). The vector form factors are measured by the recent precise
electron scattering experiments and known to have some deviation
from the simple dipole form [10]. Therefore, most of the generators
use parametrizations of this form factor taken directly from the data.
For the axial form factor there is no such precise experiment, and most
of the generators use a dipole form. Generally, the value of axial form
factor at q2 = 0 is extracted from the polarized nucleon beta decay
experiment. However, the selection of the axial vector mass parameter
depends on each generator, with values typically around 1.00 GeV/c2.

42.1.2. Resonance Production : Most generators use the cal-
culation of Rein-Sehgal to simulate neutrino-induced single pion
production [13]. To obtain the cross section for a particular channel,
they calculate the amplitude for the production of each resonance
multiplied by the probability for the decay of that resonance into that
particular channel. Implementation differences include the number of
resonances included, whether the amplitudes are added coherently
or incoherently, the invariant mass range over which the model is
used, how non-resonant backgrounds are included, inclusion of lepton
mass terms, and the model parameter values (in particular the axial
mass). In this model it is also possible to calculate the cross-sections
of single photon, kaon and η productions by changing the decay
probability of the resonances, which are included in some of the
programs. However, it is known that discrepancies exist between the
recent pion electro/photoproduction data and the results from the
simulation data with the same framework, i.e. vector part of this
model. There are several attempts to overcome this issue [12] and
some of the generators started using more appropriate form factors.
The GiBUU and NuWRO generators do not use the Rein-Sehgal
model, and instead rely directly on electro-production data for the
vector contribution and fit bubble chamber data to determine the
remaining parameters for the axial contribution [14], [15,16].
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42.1.3. Deep and Shallow Inelastic Scattering : For this process
the fundamental target shifts from the nucleon to its quark
constituents. Therefore, the generators use the standard expression
for the constructions for the nucleon structure functions F2 and
xF3 from parton distributions for high Q2 (the DIS regime) to
calculate direction and momeuntum of lepton. The first challenge
is in extending this picture to the lower values of Q2 and W that
dominate the available phase space for few-GeV interactions (the
so-called ‘shallow inelastic scattering’, or SIS regime). The corrections
proposed in [17] are widely used, while others [7] implement their
own modifictions to the parton distributions at low Q2. Both DIS
and SIS generates hadrons but their production depends on each
generator’s implementation of a hadronization model as described in
the next section. There are various difficulties not only in the actual
hadronization but the relation with the single meson production. It
is necessary to avoid double counting between the resonance and
SIS/DIS models, and all generators are different in this regard.
The scheme chosen can have a significant impact on the results of
simulations at a few-GeV neutrino energies.

42.2. Hadronization Models

For hadrons produced via baryonic resonances, the underlying
model amplitudes and resonance branching fractions can be used to
fully characterize the hadronic system. For non-resonant production,
a hadronization model is required. Most generators use PYTHIA [18]
for this purpose, although some with modified parameters. In
addition some implement their own models to handle invariant
masses that are too low for PYTHIA, typically somwhere around
2.0 GeV/c2. Such models rely heavily on measurements of neutrino
hadro-production in high-resolution devices, such as bubble chambers
and the CHORUS [19] and NOMAD experiments [20], to construct
empirical parametrizations that reproduce the key features of the
data [21,22]. The basic ingredients are the emperical observations
that average charged particle multiplicites increase logarithmically
with the invariant mass of the hadronic system, and that the
distribution of charged particle multiplicities about this average are
described by a single function (an observation known as KNO scaling).
Neutral particles are assumed to be produced with an average
multiplicity that is 50% of the charged particle multiplicity. Simple
parametrizations to more accurately reproduce differences observed in
the forward/backward hemispheres of hadronic systems are included
in GENIE, NEUT, and NuWRO.

42.3. Nuclear Physics

The nuclear physics relevant to neutrino-nucleus scattering at
few-GeV energies is complicated, involving Fermi motion, nuclear
binding, Pauli blocking, in-medium modifications of form factors and
hadronization, intranuclear rescattering of hadrons, and many-body
scattering mechanisms including long- and short-range nucleon-nucleon
correlations.

42.3.1. Scattering Mechanisms :

Most of the models used for neutrino-nuclear scattering kinematics
were developed in the context of few-GeV inclusive electron scattering,
by experiments going back nearly 50 years. A topic of considerable
discussion within this community has been to what extent the impulse
approximation, whereby the nucleus is envisioned as collection of
bound, moving, single nucleons, is appropriate. The question arose
initially in the context of measurements of the quasi-elastic axial
mass, with a number of recent experiments using nuclear targets
measuring values that were significantly higher than those obtained by
an earlier generation of bubble chamber experiments using hydrogen
or deuterium [23]. These led to a revisitation of the role played
by scattering from multi-particle/hole states in the nucleus. The
contribution of these scattering processes is an extremely active area
of theoretical research at present, with significant implications for
generators and analyses [24]. The GiBUU, NuWRO, GENIE, and
NEUT generators have all implemented, or are in the process of
implementing, first models for these processes [25].

In order to obtain the cross-section off nucleons in the nucleus, it
is necessary to take into account the in-medium effects. The basic

models imployed in event generators rely on impulse approximation
schemes, the most simple of which is the Relativistic Fermi Gas Model.
The most common implementations are the Smith-Moniz [26] and
Bodek-Ritchie [27] models. Within the electron scattering community,
the analagous calculations have for decades relied on spectral
functions, which incorpoate information about nucleon momenta and
binding energies in the impulse approximation scheme. The NuWRO
and GiBUU generators currently use spectral functions, they are
incorporated into NEUT as an option, and several of the other
generators are incorporating spectral function models at this time.
It is known from photo and electro-nuclear scattering that the Delta
width is affected by Pauli blocking and collisional broadening. These
effects are included in some, but not all, generators.

When scattering from a nucleus, coherent scattering of various
kinds is possible. Most simulations incorporate, at least, neutral
and charged coherent coherent single pion production. While the
interaction rate for these interactions is typically around a percent of
the total yield, the unique kinematic features of these events can make
them potential backgrounds for oscillation searches. Implemented in
Monte Carlo are PCAC-based methods, while microscopic models
are currently being incorporated into several generators as well.
Reference [9] clearly demonstrates a point mentioned earlier, where
generators implementing the same model [28] are seen to produce very
different predictions.

42.3.2. Hadron Production in Nuclei :

Neutrino pion production is one of the dominant interactions in a
few-GeV region and the interaction cross sections of pions in nucleus
from those interactions are quite large. Therefore, the interactions of
pions in nucleus changes the kinematics of the pions and can have large
effects on the results of simulations at these energies. Most generators
implement this physics through an intranculear cascade simulation.
In generators which utilize cascade models, a hadron, which has been
formed in the nucleus, is moved step by step until it interacts with
the other nucleon or escapes from the nucleus. The probabilities of
each interaction in nuclus are usually given as the mean free paths
and used to determine whether the hadron is interacted or not. If
the hadron is found to be interacted, appropriate interactions are
selected and simulated. Usually, absorption, elastic, and inelastic
scatterings including particle productions are simulated as secondary
interactions. The determination method of the kinematics for the final
state particles heavily depends on the generators but most of them
use experimentally validated models to simulate hadron interactions
in nucleus. No two interanuclear cascade simulations implemented
in neutrino event generators are the same. In all cases hadrons
propagate from an interaction vertex chosen based on the density
distribution of the target nucleus. In determining the generated
position of the hadrons in nucleus, the concept of the formation length
is sometimes employed. Based on this idea, the hadronization process
is not instantaneous and it takes some time before generating the
hadrons [29]. The basis for formation times are measurements at
relatively high energy and Q2, and most generators that employ the
concept do not apply them to resonance interactions, the exception
is [29]. The intranuclear rescattering simulations are typically
validated against hadron scattering data. In some simulations (e.g.
NEUT) the pion-less Delta decay is also considered and 20% of the
events do not have a pion and only the lepton and the nucleon are
generated.

The exception is GiBUU, a semiclassical transport model in coupled
channels that describes the space-time evolution of a manybody
system in the presence of potentials and a collision term [3]. This
approach assures consistency between nuclear effects in the initial
state, such as Fermi motion, Pauli blocking, hadron self-energies,
and modified cross sections, and the final state, such as particle
reinteractions, since the two are derived from the same model.
This model has been previously used to describe a wide variety of
nuclear interaction data. Similarly, the hadronic simulation of the
NUNDIS/NUNRES programs are handled by the well-established
FLUKA hadronic simulation package [7].
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43. MONTE CARLO PARTICLE NUMBERING SCHEME

Revised December 2015 by L. Garren (Fermilab), F. Krauss (Durham
U.), C.-J. Lin (LBNL), S. Navas (U. Granada), P. Richardson
(Durham U.), and T. Sjöstrand (Lund U.).

The Monte Carlo particle numbering scheme presented here is
intended to facilitate interfacing between event generators, detector
simulators, and analysis packages used in particle physics. The
numbering scheme was introduced in 1988 [1] and a revised
version [2,3] was adopted in 1998 in order to allow systematic inclusion
of quark model states which are as yet undiscovered and hypothetical
particles such as SUSY particles. The numbering scheme is used in
several event generators, e.g. HERWIG, PYTHIA, and SHERPA, and
interfaces, e.g. /HEPEVT/ and HepMC.

The general form is a 7–digit number:
±n nr nL nq1 nq2 nq3 nJ .

This encodes information about the particle’s spin, flavor content,
and internal quantum numbers. The details are as follows:

1. Particles are given positive numbers, antiparticles negative
numbers. The PDG convention for mesons is used, so that K+

and B+ are particles.
2. Quarks and leptons are numbered consecutively starting from 1

and 11 respectively; to do this they are first ordered by family
and within families by weak isospin.

3. In composite quark systems (diquarks, mesons, and baryons)
nq1−3

are quark numbers used to specify the quark content, while
the rightmost digit nJ = 2J + 1 gives the system’s spin (except
for the K0

S and K0
L). The scheme does not cover particles of spin

J > 4.
4. Diquarks have 4-digit numbers with nq1 ≥ nq2 and nq3 = 0.
5. The numbering of mesons is guided by the nonrelativistic (L–S

decoupled) quark model, as listed in Tables 15.2 and 15.3.

a. The numbers specifying the meson’s quark content conform
to the convention nq1 = 0 and nq2 ≥ nq3 . The special case

K0
L is the sole exception to this rule.

b. The quark numbers of flavorless, light (u, d, s) mesons are:
11 for the member of the isotriplet (π0, ρ0, . . .), 22 for the
lighter isosinglet (η, ω, . . .), and 33 for the heavier isosinglet
(η′, φ, . . .). Since isosinglet mesons are often large mixtures
of uu + dd and ss states, 22 and 33 are assigned by mass and
do not necessarily specify the dominant quark composition.

c. The special numbers 310 and 130 are given to the K0
S and

K0
L respectively.

d. The fifth digit nL is reserved to distinguish mesons of the
same total (J) but different spin (S) and orbital (L) angular
momentum quantum numbers. For J > 0 the numbers are:
(L, S) = (J − 1, 1) nL = 0, (J, 0) nL = 1, (J, 1) nL = 2
and (J + 1, 1) nL = 3. For the exceptional case J = 0 the
numbers are (0, 0) nL = 0 and (1, 1) nL = 1 (i.e. nL = L).
See Table 43.1.

Table 43.1: Meson numbering logic. Here qq stands for
nq2 nq3.

L = J − 1, S = 1 L = J , S = 0 L = J , S = 1 L = J + 1, S = 1

J code JPC L code JPC L code JPC L code JPC L

0 — — — 00qq1 0−+ 0 — — — 10qq1 0++ 1

1 00qq3 1−− 0 10qq3 1+− 1 20qq3 1++ 1 30qq3 1−− 2

2 00qq5 2++ 1 10qq5 2−+ 2 20qq5 2−− 2 30qq5 2++ 3

3 00qq7 3−− 2 10qq7 3+− 3 20qq7 3++ 3 30qq7 3−− 4

4 00qq9 4++ 3 10qq9 4−+ 4 20qq9 4−− 4 30qq9 4++ 5

e. If a set of physical mesons correspond to a (non-negligible)
mixture of basis states, differing in their internal quantum
numbers, then the lightest physical state gets the smallest
basis state number. For example the K1(1270) is numbered
10313 (11P1 K1B) and the K1(1400) is numbered 20313
(13P1 K1A).

f. The sixth digit nr is used to label mesons radially excited
above the ground state.

g. Numbers have been assigned for complete nr = 0 S- and
P -wave multiplets, even where states remain to be identified.

h. In some instances assignments within the qq̄ meson model
are only tentative; here best guess assignments are made.

i. Many states appearing in the Meson Listings are not yet
assigned within the qq̄ model. Here nq2−3

and nJ are
assigned according to the state’s likely flavors and spin; all
such unassigned light isoscalar states are given the flavor
code 22. Within these groups nL = 0, 1, 2, . . . is used to
distinguish states of increasing mass. These states are flagged
using n = 9. It is to be expected that these numbers will
evolve as the nature of the states are elucidated. Codes are
assigned to all mesons which are listed in the one-page table
at the end of the Meson Summary Table as long as they have
a prefered or established spin. Additional heavy meson states
expected from heavy quark spectroscopy are also assigned
codes.

6. The numbering of baryons is again guided by the nonrelativistic
quark model, see Table 15.6. This numbering scheme is illustrated
through a few examples in Table 43.2.

a. The numbers specifying a baryon’s quark content are such
that in general nq1 ≥ nq2 ≥ nq3 .

b. Two states exist for J = 1/2 baryons containing 3 different
types of quarks. In the lighter baryon (Λ, Ξ, Ω, . . .) the light
quarks are in an antisymmetric (J = 0) state while for
the heavier baryon (Σ0, Ξ′, Ω′, . . .) they are in a symmetric
(J = 1) state. In this situation nq2 and nq3 are reversed for
the lighter state, so that the smaller number corresponds to
the lighter baryon.

c. For excited baryons a scheme is adopted, where the nr

label is used to denote the excitation bands in the harmonic
oscillator model, see Sec. 15.4. Using the notation employed
there, nr is given by the N -index of the DN band identifier.

d. Further degeneracies of excited hadron multiplets with the
same excitation number nr and spin J are lifted by labelling
such multiplets with the nL index according to their mass, as
given by its N or ∆-equivalent.

e. In such excited multiplets extra singlets may occur, the
Λ(1520) being a prominent example. In such cases the
ordering is reversed such that the heaviest quark label is
pushed to the last position: nq3 > nq1 > nq2 .

f. For pentaquark states n = 9, nrnLnq1nq2 gives the four
quark numbers in order nr ≥ nL ≥ nq1 ≥ nq2 , nq3 gives the
antiquark number, and nJ = 2J + 1, with the assumption
that J = 1/2 for the states currently reported.

7. The gluon, when considered as a gauge boson, has official number
21. In codes for glueballs, however, 9 is used to allow a notation
in close analogy with that of hadrons.

8. The pomeron and odderon trajectories and a generic reggeon
trajectory of states in QCD are assigned codes 990, 9990, and 110
respectively, where the final 0 indicates the indeterminate nature
of the spin, and the other digits reflect the expected “valence”
flavor content. We do not attempt a complete classification of all
reggeon trajectories, since there is currently no need to distinguish
a specific such trajectory from its lowest-lying member.

9. Two-digit numbers in the range 21–30 are provided for the
Standard Model gauge bosons and Higgs.

10. Codes 81–100 are reserved for generator-specific pseudoparticles
and concepts. Codes 901–920 are for additional non-standardized
components of parton distribution functions.

11. The search for physics beyond the Standard Model is an active
area, so these codes are also standardized as far as possible.

a. A standard fourth generation of fermions is included by
analogy with the first three.

b. The graviton and the boson content of a two-Higgs-doublet
scenario and of additional SU(2)×U(1) groups are found in
the range 31–40.

c. “One-of-a-kind” exotic particles are assigned numbers in the
range 41–80.

d. Fundamental supersymmetric particles are identified by
adding a nonzero n to the particle number. The superpartner
of a boson or a left-handed fermion has n = 1 while the
superpartner of a right-handed fermion has n = 2. When
mixing occurs, such as between the winos and charged
Higgsinos to give charginos, or between left and right
sfermions, the lighter physical state is given the smaller basis
state number.
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Table 43.2: Some examples of octet (top) and decuplet (bottom) members for the
numbering scheme for excited baryons. Here qqq stands for nq1nq2nq3 . See the text
for the definition of the notation. The numbers in parenthesis correspond to the
mass of the baryons. The states marked as (?) are not experimentally confirmed.

JP (D, LP
N ) nrnLnq1nq2nq3nJ N Λ8 Σ Ξ Λ1

Octet 211,221 312 311,321,322 331,332 213

1/2+ (56,0+
0

) 00qqq2 (939) (1116) (1193) (1318) —

1/2+ (56,0+
2

) 20qqq2 (1440) (1600) (1660) (1690) —

1/2+ (70,0+
2

) 21qqq2 (1710) (1810) (1880) (?) (?)

1/2− (70,1−
1

) 10qqq2 (1535) (1670) (1620) (1750) (1405)

JP (D, LP
N ) nrnLnq1nq2nq3nJ ∆ Σ Ξ Ω

Decuplet 111,211,221,222 311,321,322 331,332 333

3/2+ (56,0+
0

) 00qqq4 (1232) (1385) (1530) (1672)

3/2+ (56,0+
2

) 20qqq4 (1600) (1690) (?) (?)

1/2− (70,1−
1

) 11qqq2 (1620) (1750) (?) (?)

3/2− (70,1−
1

) 12qqq4 (1700) (?) (?) (?)

e. Technicolor states have n = 3, with technifermions treated
like ordinary fermions. States which are ordinary color
singlets have nr = 0. Color octets have nr = 1. If a state
has non-trivial quantum numbers under the topcolor groups
SU(3)1 × SU(3)2, the quantum numbers are specified by
tech,ij, where i and j are 1 or 2. nL is then 2i + j. The
coloron, V8, is a heavy gluon color octet and thus is 3100021.

f. Excited (composite) quarks and leptons are identified by
setting n = 4 and nr = 0.

g. Within several scenarios of new physics, it is possible to
have colored particles sufficiently long-lived for color-singlet
hadronic states to form around them. In the context of
supersymmetric scenarios, these states are called R-hadrons,
since they carry odd R-parity. R-hadron codes, defined here,
should be viewed as templates for corresponding codes also
in other scenarios, for any long-lived particle that is either
an unflavored color octet or a flavored color triplet. The
R-hadron code is obtained by combining the SUSY particle
code with a code for the light degrees of freedom, with as
many intermediate zeros removed from the former as required
to make place for the latter at the end. (To exemplify, a
sparticle n00000nq̃ combined with quarks q1 and q2 obtains
code n00nq̃nq1nq2nJ .) Specifically, the new-particle spin
decouples in the limit of large masses, so that the final nJ

digit is defined by the spin state of the light-quark system
alone. An appropriate number of nq digits is used to define
the ordinary-quark content. As usual, 9 rather than 21 is
used to denote a gluon/gluino in composite states. The sign
of the hadron agrees with that of the constituent new particle
(a color triplet) where there is a distinct new antiparticle,
and else is defined as for normal hadrons. Particle names are
R with the flavor content as lower index.

h. A black hole in models with extra dimensions has code
5000040. Kaluza-Klein excitations in models with extra
dimensions have n = 5 or n = 6, to distinquish excitations
of left- or right-handed fermions or, in case of mixing, the
lighter or heavier state (cf. 11d). The nonzero nr digit gives
the radial excitation number, in scenarios where the level
spacing allow these to be distinguished. Should the model
also contain supersymmetry, excited SUSY states would be
denoted by an nr > 0, with n = 1 or 2 as usual. Should
some colored states be long-lived enough that hadrons would
form around them, the coding strategy of 11g applies, with
the initial two nnr digits preserved in the combined code.

i. Magnetic monopoles and dyons are assumed to have one
unit of Dirac monopole charge and a variable integer number
nq1nq2nq3 units of electric charge. Codes 411nq1nq2nq30 are
then used when the magnetic and electrical charge sign agree
and 412nq1nq2nq30 when they disagree, with the overall sign

of the particle set by the magnetic charge. For now no spin
information is provided.

j. The nature of Dark Matter (DM) is not known, and therefore
a definitive classification is too early. Candidates within
specific scenarios are classified therein, such as 1000022 for
the lightest neutralino. Generic fundamental states can be
given temporary codes in the range 51 - 60, with 51, 52 and
53 reserved for spin 0, 1/2 and 1 ones. Generic mediators
of s-channel DM pair creation of annihilation can be given
codes 54 and 55 for spin 0 or 1 ones. Separate antiparticles,
with negative codes, may or may not exist. More elaborate
new scenarios should be constructed with n = 5 and nr = 9.

k. Hidden Valley particles have n = 4 and nr = 9, and trailing
numbers in agreement with their nearest-analog standard
particles, as far as possible. Thus 4900021 is the gauge
boson gv of a confining gauge field, 490000nqv

and 490001nℓv
fundamental constituents charged or not under this, 4900022
is the γv of a non-confining field, and 4900nq

v1
nq

v2
nJ a

Hidden Valley meson.

12. Occasionally program authors add their own states. To avoid
confusion, these should be flagged by setting nnr = 99.

13. Concerning the non-99 numbers, it may be noted that only
quarks, excited quarks, squarks, and diquarks have nq3 = 0; only
diquarks, baryons (including pentaquarks), and the odderon have
nq1 6= 0; and only mesons, the reggeon, and the pomeron have
nq1 = 0 and nq2 6= 0. Concerning mesons (not antimesons), if nq1
is odd then it labels a quark and an antiquark if even.

14. Nuclear codes are given as 10-digit numbers ±10LZZZAAAI.
For a (hyper)nucleus consisting of np protons, nn neutrons and
nΛ Λ’s, A = np + nn + nΛ gives the total baryon number, Z = np

the total charge and L = nΛ the total number of strange quarks.
I gives the isomer level, with I = 0 corresponding to the ground
state and I > 0 to excitations, see [4], where states denoted
m, n, p, q translate to I = 1 − 4. As examples, the deuteron
is 1000010020 and 235U is 1000922350. To avoid ambiguities,
nuclear codes should not be applied to a single hadron, like p, n
or Λ0, where quark-contents-based codes already exist.

This text and full lists of particle numbers can be found online [5].

References:

1. G.P. Yost et al., Particle Data Group, Phys. Lett. B204, 1 (1988).
2. I.G. Knowles et al., CERN 96-01, v. 2, p. 103.
3. C. Caso et al., Particle Data Group, Eur. Phys. J. C3, 1 (1998).
4. G. Audi et al., Nucl. Phys. A729, 3 (2003).
5. http://pdg.lbl.gov/current/mc-particle-id/.



43. Monte Carlo particle numbering scheme 555

QUARKS

d 1
u 2
s 3
c 4
b 5
t 6
b′ 7
t′ 8

LEPTONS

e− 11
νe 12

µ− 13

νµ 14

τ− 15
ντ 16

τ ′− 17
ντ ′ 18

GAUGE AND

HIGGS BOSONS

g (9) 21

γ 22

Z0 23
W+ 24
h0/H0

1 25

Z ′/Z0
2 32

Z ′′/Z0
3 33

W ′/W+
2

34

H0/H0
2 35

A0/H0
3 36

H+ 37

SPECIAL

PARTICLES

G (graviton) 39

R0 41
LQc 42

DM(S = 0) 51∗

DM(S = 1/2) 52∗

DM(S = 1) 53∗

reggeon 110

pomeron 990

odderon 9990

for MC internal
use 81–100 and 901–920

DIQUARKS

(dd)1 1103

(ud)0 2101

(ud)1 2103

(uu)1 2203

(sd)0 3101

(sd)1 3103

(su)0 3201

(su)1 3203

(ss)1 3303

(cd)0 4101

(cd)1 4103

(cu)0 4201

(cu)1 4203

(cs)0 4301

(cs)1 4303

(cc)1 4403

(bd)0 5101

(bd)1 5103

(bu)0 5201

(bu)1 5203

(bs)0 5301

(bs)1 5303

(bc)0 5401

(bc)1 5403

(bb)1 5503

SUSY

PARTICLES

d̃L 1000001

ũL 1000002

s̃L 1000003

c̃L 1000004

b̃1 1000005a

t̃1 1000006a

ẽ−L 1000011

ν̃eL 1000012

µ̃−

L 1000013

ν̃µL 1000014

τ̃−
1

1000015a

ν̃τL 1000016

d̃R 2000001

ũR 2000002

s̃R 2000003

c̃R 2000004

b̃2 2000005a

t̃2 2000006a

ẽ−R 2000011

µ̃−

R 2000013

τ̃−
2

2000015a

g̃ 1000021

χ̃0
1 1000022b

χ̃0
2 1000023b

χ̃+
1 1000024b

χ̃0
3 1000025b

χ̃0
4 1000035b

χ̃+
2 1000037b

G̃ 1000039

LIGHT I = 1 MESONS

π0 111
π+ 211
a0(980)0 9000111

a0(980)+ 9000211

π(1300)0 100111

π(1300)+ 100211

a0(1450)0 10111

a0(1450)+ 10211

π(1800)0 9010111

π(1800)+ 9010211

ρ(770)0 113

ρ(770)+ 213

b1(1235)0 10113

b1(1235)+ 10213

a1(1260)0 20113

a1(1260)+ 20213

π1(1400)0 9000113

π1(1400)+ 9000213

ρ(1450)0 100113

ρ(1450)+ 100213

π1(1600)0 9010113

π1(1600)+ 9010213

a1(1640)0 9020113

a1(1640)+ 9020213

ρ(1700)0 30113

ρ(1700)+ 30213

ρ(1900)0 9030113

ρ(1900)+ 9030213

ρ(2150)0 9040113

ρ(2150)+ 9040213

a2(1320)0 115

a2(1320)+ 215

π2(1670)0 10115

π2(1670)+ 10215

a2(1700)0 9000115

a2(1700)+ 9000215

π2(2100)0 9010115

π2(2100)+ 9010215

ρ3(1690)0 117

ρ3(1690)+ 217

ρ3(1990)0 9000117

ρ3(1990)+ 9000217

ρ3(2250)0 9010117

ρ3(2250)+ 9010217

a4(2040)0 119

a4(2040)+ 219

LIGHT I = 0 MESONS

(uu, dd, and ss Admixtures)

η 221

η′(958) 331

f0(600) 9000221

f0(980) 9010221

η(1295) 100221

f0(1370) 10221

η(1405) 9020221

η(1475) 100331

f0(1500) 9030221

f0(1710) 10331

η(1760) 9040221

f0(2020) 9050221

f0(2100) 9060221

f0(2200) 9070221

η(2225) 9080221

ω(782) 223

φ(1020) 333

h1(1170) 10223

f1(1285) 20223

h1(1380) 10333

f1(1420) 20333

ω(1420) 100223

f1(1510) 9000223

h1(1595) 9010223

ω(1650) 30223

φ(1680) 100333

f2(1270) 225

f2(1430) 9000225

f ′

2(1525) 335

f2(1565) 9010225

f2(1640) 9020225

η2(1645) 10225

f2(1810) 9030225

η2(1870) 10335

f2(1910) 9040225

f2(1950) 9050225

f2(2010) 9060225

f2(2150) 9070225

f2(2300) 9080225

f2(2340) 9090225

ω3(1670) 227

φ3(1850) 337

f4(2050) 229

fJ (2220) 9000229

f4(2300) 9010229
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STRANGE

MESONS

K0
L 130

K0
S 310

K0 311
K+ 321
K∗

0 (800)0 9000311

K∗

0 (800)+ 9000321

K∗

0 (1430)0 10311

K∗

0 (1430)+ 10321

K(1460)0 100311

K(1460)+ 100321

K(1830)0 9010311

K(1830)+ 9010321

K∗

0 (1950)0 9020311

K∗

0 (1950)+ 9020321

K∗(892)0 313

K∗(892)+ 323

K1(1270)0 10313

K1(1270)+ 10323

K1(1400)0 20313

K1(1400)+ 20323

K∗(1410)0 100313

K∗(1410)+ 100323

K1(1650)0 9000313

K1(1650)+ 9000323

K∗(1680)0 30313

K∗(1680)+ 30323

K∗

2 (1430)0 315

K∗

2 (1430)+ 325

K2(1580)0 9000315

K2(1580)+ 9000325

K2(1770)0 10315

K2(1770)+ 10325

K2(1820)0 20315

K2(1820)+ 20325

K∗

2 (1980)0 9010315

K∗

2 (1980)+ 9010325

K2(2250)0 9020315

K2(2250)+ 9020325

K∗

3 (1780)0 317

K∗

3 (1780)+ 327

K3(2320)0 9010317

K3(2320)+ 9010327

K∗

4 (2045)0 319

K∗

4 (2045)+ 329

K4(2500)0 9000319

K4(2500)+ 9000329

CHARMED

MESONS

D+ 411
D0 421
D∗

0(2400)+ 10411

D∗

0(2400)0 10421

D∗(2010)+ 413

D∗(2007)0 423

D1(2420)+ 10413

D1(2420)0 10423

D1(H)+ 20413

D1(2430)0 20423

D∗

2(2460)+ 415

D∗

2(2460)0 425

D+
s 431

D∗

s0(2317)+ 10431

D∗+
s 433

Ds1(2536)+ 10433

Ds1(2460)+ 20433

D∗

s2(2573)+ 435

BOTTOM

MESONS

B0 511
B+ 521
B∗0

0 10511

B∗+
0 10521

B∗0 513
B∗+ 523
B1(L)0 10513

B1(L)+ 10523

B1(H)0 20513

B1(H)+ 20523

B∗0
2 515

B∗+
2

525

B0
s 531

B∗0
s0 10531

B∗0
s 533

Bs1(L)0 10533

Bs1(H)0 20533

B∗0
s2 535

B+
c 541

B∗+
c0 10541

B∗+
c 543

Bc1(L)+ 10543

Bc1(H)+ 20543

B∗+
c2 545

cc

MESONS

ηc(1S) 441

χc0(1P ) 10441

ηc(2S) 100441

J/ψ(1S) 443

hc(1P ) 10443

χc1(1P ) 20443

ψ(2S) 100443

ψ(3770) 30443

ψ(4040) 9000443

ψ(4160) 9010443

ψ(4415) 9020443

χc2(1P ) 445

χc2(2P ) 100445

bb

MESONS

ηb(1S) 551

χb0(1P ) 10551

ηb(2S) 100551

χb0(2P ) 110551

ηb(3S) 200551

χb0(3P ) 210551

Υ(1S) 553

hb(1P ) 10553

χb1(1P ) 20553

Υ1(1D) 30553

Υ(2S) 100553

hb(2P ) 110553

χb1(2P ) 120553

Υ1(2D) 130553

Υ(3S) 200553

hb(3P ) 210553

χb1(3P ) 220553

Υ(4S) 300553

Υ(10860) 9000553

Υ(11020) 9010553

χb2(1P ) 555

ηb2(1D) 10555

Υ2(1D) 20555

χb2(2P ) 100555

ηb2(2D) 110555

Υ2(2D) 120555

χb2(3P ) 200555

Υ3(1D) 557

Υ3(2D) 100557

LIGHT

BARYONS

p 2212

n 2112
∆++ 2224
∆+ 2214
∆0 2114
∆− 1114

STRANGE

BARYONS

Λ 3122
Σ+ 3222
Σ0 3212
Σ− 3112
Σ∗+ 3224c

Σ∗0 3214c

Σ∗− 3114c

Ξ0 3322
Ξ− 3312
Ξ∗0 3324c

Ξ∗− 3314c

Ω− 3334

CHARMED

BARYONS

Λ+
c 4122

Σ++
c 4222

Σ+
c 4212

Σ0
c 4112

Σ∗++
c 4224

Σ∗+
c 4214

Σ∗0
c 4114

Ξ+
c 4232

Ξ0
c 4132

Ξ′+
c 4322

Ξ′0
c 4312

Ξ∗+
c 4324

Ξ∗0
c 4314

Ω0
c 4332

Ω∗0
c 4334

Ξ+
cc 4412

Ξ++
cc 4422

Ξ∗+
cc 4414

Ξ∗++
cc 4424

Ω+
cc 4432

Ω∗+
cc 4434

Ω++
ccc 4444

BOTTOM

BARYONS

Λ0
b 5122

Σ−

b 5112

Σ0
b 5212

Σ+
b

5222

Σ∗−

b
5114

Σ∗0
b 5214

Σ∗+
b 5224

Ξ−

b
5132

Ξ0
b 5232

Ξ′−

b
5312

Ξ′0
b 5322

Ξ∗−

b
5314

Ξ∗0
b 5324

Ω−

b
5332

Ω∗−

b 5334

Ξ0
bc 5142

Ξ+
bc

5242

Ξ′0
bc 5412

Ξ′+
bc

5422

Ξ∗0
bc 5414

Ξ∗+
bc 5424

Ω0
bc 5342

Ω′0
bc 5432

Ω∗0
bc 5434

Ω+
bcc

5442

Ω∗+
bcc

5444

Ξ−

bb 5512

Ξ0
bb 5522

Ξ∗−

bb
5514

Ξ∗0
bb 5524

Ω−

bb
5532

Ω∗−

bb
5534

Ω0
bbc 5542

Ω∗0
bbc 5544

Ω−

bbb
5554

Footnotes to the Tables:

∗) Numbers or names in bold face are new or have changed since the 2014 Review.
a) Particulary in the third generation, the left and right sfermion states may mix, as shown.

The lighter mixed state is given the smaller number.

b) The physical χ̃ states are admixtures of the pure γ̃, Z̃0, W̃+, H̃0
1 , H̃0

2 , and H̃+ states.
c) Σ∗ and Ξ∗ are alternate names for Σ(1385) and Ξ(1530).
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44. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.

Y 0
1

=

√

3

4π
cos θ

Y 1
1

= −
√

3

8π
sin θ eiφ

Y 0
2

=

√

5

4π

(3

2
cos2 θ − 1

2

)

Y 1
2

= −
√

15

8π
sin θ cos θ eiφ

Y 2
2

=
1

4

√

15

2π
sin2 θ e2iφ

Y −m
ℓ = (−1)mY m∗

ℓ 〈j1j2m1m2|j1j2JM〉
= (−1)J−j1−j2〈j2j1m2m1|j2j1JM〉d ℓ

m,0 =

√

4π

2ℓ + 1
Y m

ℓ e−imφ

d
j
m′,m

= (−1)m−m′

d
j
m,m′ = d

j
−m,−m′ d 1

0,0 = cos θ d
1/2

1/2,1/2
= cos

θ

2

d
1/2

1/2,−1/2
= − sin

θ

2

d 1
1,1 =

1 + cos θ

2

d 1
1,0 = − sin θ√

2

d 1
1,−1

=
1 − cos θ

2

d
3/2

3/2,3/2
=

1 + cos θ

2
cos

θ

2

d
3/2

3/2,1/2
= −

√
3
1 + cos θ

2
sin

θ

2

d
3/2

3/2,−1/2
=

√
3
1 − cos θ

2
cos

θ

2

d
3/2

3/2,−3/2
= −1 − cos θ

2
sin

θ

2

d
3/2

1/2,1/2
=

3 cos θ − 1

2
cos

θ

2

d
3/2

1/2,−1/2
= −3 cos θ + 1

2
sin

θ

2

d 2
2,2 =

(1 + cos θ

2

)

2

d 2
2,1 = −1 + cos θ

2
sin θ

d 2
2,0 =

√
6

4
sin2 θ

d 2
2,−1

= −1 − cos θ

2
sin θ

d 2
2,−2

=
(1 − cos θ

2

)

2

d 2
1,1 =

1 + cos θ

2
(2 cos θ − 1)

d 2
1,0 = −

√

3

2
sin θ cos θ

d 2
1,−1

=
1 − cos θ

2
(2 cos θ + 1) d 2

0,0 =
(3

2
cos2 θ − 1

2

)

Figure 44.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).
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45. SU(3) ISOSCALAR FACTORS AND REPRESENTATION MATRICES

Written by R.L. Kelly (LBNL).

The most commonly used SU(3) isoscalar factors, corresponding
to the singlet, octet, and decuplet content of 8 ⊗ 8 and 10 ⊗ 8, are
shown at the right. The notation uses particle names to identify the
coefficients, so that the pattern of relative couplings may be seen
at a glance. We illustrate the use of the coefficients below. See J.J
de Swart, Rev. Mod. Phys. 35, 916 (1963) for detailed explanations
and phase conventions.

A
√

is to be understood over every integer in the matrices; the
exponent 1/2 on each matrix is a reminder of this. For example, the
Ξ → ΩK element of the 10 → 10 ⊗ 8 matrix is −

√
6/
√

24 = −1/2.

Intramultiplet relative decay strengths may be read directly from
the matrices. For example, in decuplet → octet + octet decays, the
ratio of Ω∗ → ΞK and ∆ → Nπ partial widths is, from the 10 → 8× 8
matrix,

Γ (Ω∗ → ΞK)

Γ (∆ → Nπ)
=

12

6
× (phase space factors) . (45.1)

Including isospin Clebsch-Gordan coefficients, we obtain, e.g.,

Γ(Ω∗− → Ξ0K−)

Γ(∆+ → p π0)
=

1/2

2/3
× 12

6
× p.s.f. =

3

2
× p.s.f. (45.2)

Partial widths for 8 → 8 ⊗ 8 involve a linear superposition of 81

(symmetric) and 82 (antisymmetric) couplings. For example,

Γ(Ξ∗ → Ξπ) ∼
(

−
√

9

20
g1 +

√

3

12
g2

)2

. (45.3)

The relations between g1 and g2 (with de Swart’s normalization)
and the standard D and F couplings that appear in the interaction
Lagrangian,

L = −
√

2 D Tr ({B, B}M) +
√

2 F Tr ([B, B] M) , (45.4)

where [B, B] ≡ BB − BB and {B, B} ≡ BB + BB, are

D =

√
30

40
g1 , F =

√
6

24
g2 . (45.5)

Thus, for example,

Γ(Ξ∗ → Ξπ) ∼ (F − D)2 ∼ (1 − 2α)2 , (45.6)

where α ≡ F/(D + F ). (This definition of α is de Swart’s. The
alternative D/(D + F ), due to Gell-Mann, is also used.)

The generators of SU(3) transformations, λa (a = 1, 8), are 3 × 3
matrices that obey the following commutation and anticommutation
relationships:

[λa, λb] ≡ λaλb − λbλa = 2ifabcλc (45.7)

{λa, λb} ≡ λaλb + λbλa =
4

3
δabI + 2dabcλc , (45.8)

where I is the 3 × 3 identity matrix, and δab is the Kronecker delta
symbol. The fabc are odd under the permutation of any pair of
indices, while the dabc are even. The nonzero values are

1 → 8⊗ 8
(

Λ
)

→
(

NK Σπ Λη ΞK
)

=
1√
8

( 2 3 −1 −2 )1/2

81 → 8⊗ 8








N
Σ
Λ
Ξ









→









Nπ Nη ΣK ΛK
NK Σπ Λπ Ση ΞK

NK Σπ Λη ΞK
ΣK ΛK Ξπ Ξη









=
1√
20







9 −1 −9 −1
−6 0 4 4 −6
2 −12 −4 −2
9 −1 −9 −1







1/2

82 → 8⊗ 8








N
Σ
Λ
Ξ









→









Nπ Nη ΣK ΛK
NK Σπ Λπ Ση ΞK

NK Σπ Λη ΞK
ΣK ΛK Ξπ Ξη









=
1√
12







3 3 3 −3
2 8 0 0 −2

6 0 0 6
3 3 3 −3







1/2

10 → 8⊗ 8








∆
Σ
Ξ
Ω









→









Nπ ΣK
NK Σπ Λπ Ση ΞK

ΣK ΛK Ξπ Ξη
ΞK









=
1√
12







−6 6
−2 2 −3 3 2

3 −3 3 3
12







1/2

8 → 10⊗ 8








N
Σ
Λ
Ξ









→









∆π ΣK
∆K Σπ Ση ΞK

Σπ ΞK
ΣK Ξπ Ξη ΩK









=
1√
15







−12 3
8 −2 −3 2

−9 6
3 −3 −3 6







1/2

10 → 10⊗ 8








∆
Σ
Ξ
Ω









→









∆π ∆η ΣK
∆K Σπ Ση ΞK
ΣK Ξπ Ξη ΩK

ΞK Ωη









=
1√
24







15 3 −6
8 8 0 −8
12 3 −3 −6

12 −12







1/2

abc fabc abc dabc abc dabc

123 1 118 1/
√

3 355 1/2

147 1/2 146 1/2 366 −1/2

156 −1/2 157 1/2 377 −1/2

246 1/2 228 1/
√

3 448 −1/(2
√

3)

257 1/2 247 −1/2 558 −1/(2
√

3)

345 1/2 256 1/2 668 −1/(2
√

3)

367 −1/2 338 1/
√

3 778 −1/(2
√

3)

458
√

3/2 344 1/2 888 −1/
√

3

678
√

3/2

The λa’s are

λ1 =

(

0 1 0
1 0 0
0 0 0

)

λ2 =

(

0 −i 0
i 0 0
0 0 0

)

λ3 =

(

1 0 0
0 − 1 0
0 0 0

)

λ4 =

(

0 0 1
0 0 0
1 0 0

)

λ5 =

(

0 0 −i
0 0 0
i 0 0

)

λ6 =

(

0 0 0
0 0 1
0 1 0

)

λ7 =

(

0 0 0
0 0 −i
0 i 0

)

λ8 =
1√
3

(

1 0 0
0 1 0
0 0 −2

)

Equation (45.7) defines the Lie algebra of SU(3). A general d-
dimensional representation is given by a set of d×d matrices satisfying
Eq. (45.7) with the fabc given above. Equation (45.8) is specific to the
defining 3-dimensional representation.
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46. SU(n) MULTIPLETS AND YOUNG DIAGRAMS

Written by C.G. Wohl (LBNL).

This note tells (1) how SU(n) particle multiplets are identified or
labeled, (2) how to find the number of particles in a multiplet from its
label, (3) how to draw the Young diagram for a multiplet, and (4) how
to use Young diagrams to determine the overall multiplet structure of
a composite system, such as a 3-quark or a meson-baryon system.

In much of the literature, the word “representation” is used where
we use “multiplet,” and “tableau” is used where we use “diagram.”

46.1. Multiplet labels

An SU(n) multiplet is uniquely identified by a string of (n−1)
nonnegative integers: (α, β, γ, . . .). Any such set of integers specifies
a multiplet. For an SU(2) multiplet such as an isospin multiplet, the
single integer α is the number of steps from one end of the multiplet
to the other (i.e., it is one fewer than the number of particles in the
multiplet). In SU(3), the two integers α and β are the numbers of
steps across the top and bottom levels of the multiplet diagram. Thus
the labels for the SU(3) octet and decuplet

1

1

0

3

are (1,1) and (3,0). For larger n, the interpretation of the integers
in terms of the geometry of the multiplets, which exist in an
(n−1)-dimensional space, is not so readily apparent.

The label for the SU(n) singlet is (0, 0, . . . , 0). In a flavor SU(n),
the n quarks together form a (1, 0, . . . , 0) multiplet, and the n
antiquarks belong to a (0, . . . , 0, 1) multiplet. These two multiplets
are conjugate to one another, which means their labels are related by
(α, β, . . .) ↔ (. . . , β, α).

46.2. Number of particles

The number of particles in a multiplet, N = N(α, β, . . .), is given
as follows (note the pattern of the equations).

In SU(2), N = N(α) is

N =
(α + 1)

1
. (46.1)

In SU(3), N = N(α, β) is

N =
(α + 1)

1
·
(β + 1)

1
·
(α + β + 2)

2
. (46.2)

In SU(4), N = N(α, β, γ) is

N =
(α+1)

1
·
(β+1)

1
·
(γ+1)

1
·
(α+β+2)

2
·
(β+γ+2)

2
·
(α+β+γ+3)

3
.

(46.3)

Note that in Eq. (46.3) there is no factor with (α + γ + 2): only a
consecutive sequence of the label integers appears in any factor. One
more example should make the pattern clear for any SU(n). In SU(5),
N = N(α, β, γ, δ) is

N =
(α+1)

1
·
(β+1)

1
·
(γ+1)

1
·
(δ+1)

1
·
(α+β+2)

2
·
(β+γ+2)

2

×
(γ+δ+2)

2
·
(α+β+γ+3)

3
·
(β+γ+δ+3)

3
·
(α+β+γ+δ+4)

4
.(46.4)

From the symmetry of these equations, it is clear that multiplets that
are conjugate to one another have the same number of particles, but
so can other multiplets. For example, the SU(4) multiplets (3,0,0) and
(1,1,0) each have 20 particles. Try the equations and see.

46.3. Young diagrams

A Young diagram consists of an array of boxes (or some other
symbol) arranged in one or more left-justified rows, with each row
being at least as long as the row beneath. The correspondence between
a diagram and a multiplet label is: The top row juts out α boxes to
the right past the end of the second row, the second row juts out β

boxes to the right past the end of the third row, etc. A diagram in
SU(n) has at most n rows. There can be any number of “completed”
columns of n boxes buttressing the left of a diagram; these don’t affect
the label. Thus in SU(3) the diagrams

, , , ,

represent the multiplets (1,0), (0,1), (0,0), (1,1), and (3,0). In any
SU(n), the quark multiplet is represented by a single box, the
antiquark multiplet by a column of (n−1) boxes, and a singlet by a
completed column of n boxes.

46.4. Coupling multiplets together

The following recipe tells how to find the multiplets that occur
in coupling two multiplets together. To couple together more than
two multiplets, first couple two, then couple a third with each of the
multiplets obtained from the first two, etc.

First a definition: A sequence of the letters a, b, c, . . . is admissible

if at any point in the sequence at least as many a’s have occurred as
b’s, at least as many b’s have occurred as c’s, etc. Thus abcd and aabcb

are admissible sequences and abb and acb are not. Now the recipe:

(a) Draw the Young diagrams for the two multiplets, but in one of
the diagrams replace the boxes in the first row with a’s, the boxes in
the second row with b’s, etc. Thus, to couple two SU(3) octets (such

as the π-meson octet and the baryon octet), we start with and

a a

b
. The unlettered diagram forms the upper left-hand corner of all

the enlarged diagrams constructed below.

(b) Add the a’s from the lettered diagram to the right-hand ends
of the rows of the unlettered diagram to form all possible legitimate
Young diagrams that have no more than one a per column. In general,
there will be several distinct diagrams, and all the a’s appear in each
diagram. At this stage, for the coupling of the two SU(3) octets, we
have:

a a , a , a , .
a a

a a

(c) Use the b’s to further enlarge the diagrams already obtained,
subject to the same rules. Then throw away any diagram in which the
full sequence of letters formed by reading right to left in the first row,
then the second row, etc., is not admissible.

(d) Proceed as in (c) with the c’s (if any), etc.

The final result of the coupling of the two SU(3) octets is:

⊗ a a

b
=

a a ⊕ a a ⊕ a ⊕ a ⊕ a ⊕ .
b a b a b a

b b a a b

Here only the diagrams with admissible sequences of a’s and b’s and
with fewer than four rows (since n = 3) have been kept. In terms of
multiplet labels, the above may be written

(1, 1) ⊗ (1, 1) = (2, 2) ⊕ (3, 0) ⊕ (0, 3) ⊕ (1, 1) ⊕ (1, 1) ⊕ (0, 0) .

In terms of numbers of particles, it may be written

8 ⊗ 8 = 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1 .

The product of the numbers on the left here is equal to the sum on
the right, a useful check. (See also Sec. 15 on the Quark Model.)
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47. KINEMATICS

Revised January 2000 by J.D. Jackson (LBNL) and January 2016 by
D.R. Tovey (Sheffield).

Throughout this section units are used in which ~ = c = 1. The
following conversions are useful: ~c = 197.3 MeV fm, (~c)2 = 0.3894
(GeV)2 mb.

47.1. Lorentz transformations

The energy E and 3-momentum p of a particle of mass m form a
4-vector p = (E,p) whose square p2 ≡ E2−|p|2 = m2. The velocity of
the particle is β = p/E. The energy and momentum (E∗,p∗) viewed
from a frame moving with velocity βf are given by

(

E∗

p∗‖

)

=

(

γf −γfβf
−γfβf γf

) (

E
p‖

)

, p∗
T

= p
T

, (47.1)

where γf = (1 − β2
f )−1/2 and p

T
(p‖) are the components of p

perpendicular (parallel) to βf . Other 4-vectors, such as the space-
time coordinates of events, of course transform in the same way. The
scalar product of two 4-momenta p1 · p2 = E1E2 − p1 · p2 is invariant
(frame independent).

47.2. Center-of-mass energy and momentum

In the collision of two particles of masses m1 and m2 the total
center-of-mass energy can be expressed in the Lorentz-invariant form

Ecm =
[

(E1 + E2)
2 − (p1 + p2)

2
]1/2

,

=
[

m2
1 + m2

2 + 2E1E2(1 − β1β2 cos θ)
]1/2

, (47.2)

where θ is the angle between the particles. In the frame where one
particle (of mass m2) is at rest (lab frame),

Ecm = (m2
1 + m2

2 + 2E1 lab m2)
1/2 . (47.3)

The velocity of the center-of-mass in the lab frame is

βcm = plab/(E1 lab + m2) , (47.4)

where plab ≡ p1 lab and

γcm = (E1 lab + m2)/Ecm . (47.5)

The c.m. momenta of particles 1 and 2 are of magnitude

pcm = plab
m2

Ecm
. (47.6)

For example, if a 0.80 GeV/c kaon beam is incident on a proton
target, the center of mass energy is 1.699 GeV and the center of mass
momentum of either particle is 0.442 GeV/c. It is also useful to note
that

Ecm dEcm = m2 dE1 lab = m2 β1 lab dplab . (47.7)

47.3. Lorentz-invariant amplitudes

The matrix elements for a scattering or decay process are written in
terms of an invariant amplitude −iM . As an example, the S-matrix
for 2 → 2 scattering is related to M by

〈p′1p′2 |S| p1p2〉 = I − i(2π)4 δ4(p1 + p2 − p′1 − p′2)

× M (p1, p2; p′1, p′2)

(2E1)1/2 (2E2)1/2 (2E′
1)

1/2 (2E′
2)

1/2
. (47.8)

The state normalization is such that

〈p′|p〉 = (2π)3δ3(p− p′) . (47.9)

For a 2 → 2 scattering process producing unstable particles 1′ and
2′ decaying via 1′ → 3′4′ and 2′ → 5′6′ the matrix element for the
complete process can be written in the narrow width approximation
as:

M (12 → 3′4′5′6′) =
∑

h
1′

,h
2′

M (12 → 1′2′)M (1′ → 3′4′)M (2′ → 5′6′)

(m2
3′4′

− m2
1′

+ im1′Γ1′)(m
2
5′6′

− m2
2′

+ im2′Γ2′)
. (47.10)

Here, mij is the invariant mass of particles i and j, mk and Γk are
the mass and total width of particle k, and the sum runs over the
helicities of the intermediate particles. This enables the cross section
for such a process to be written as the product of the cross section for
the initial 2 → 2 scattering process with the branching ratios (relative
partial decay rates) of the subsequent decays.

47.4. Particle decays

The partial decay rate of a particle of mass M into n bodies in its
rest frame is given in terms of the Lorentz-invariant matrix element
M by

dΓ =
(2π)4

2M
|M |2 dΦn (P ; p1, . . . , pn), (47.11)

where dΦn is an element of n-body phase space given by

dΦn(P ; p1, . . . , pn) = δ4 (P −
n

∑

i=1

pi)

n
∏

i=1

d3pi

(2π)32Ei
. (47.12)

This phase space can be generated recursively, viz.

dΦn(P ; p1, . . . , pn) = dΦj(q; p1, . . . , pj)

× dΦn−j+1 (P ; q, pj+1, . . . , pn)(2π)3dq2 , (47.13)

where q2 = (
∑j

i=1 Ei)
2 −

∣

∣

∣

∑j
i=1 pi

∣

∣

∣

2
. This form is particularly

useful in the case where a particle decays into another particle that
subsequently decays.

47.4.1. Survival probability : If a particle of mass M has mean
proper lifetime τ (= 1/Γ) and has momentum (E,p), then the
probability that it lives for a time t0 or greater before decaying is
given by

P (t0) = e−t0 Γ/γ = e−Mt0 Γ/E , (47.14)

and the probability that it travels a distance x0 or greater is

P (x0) = e−Mx0 Γ/|p| . (47.15)

47.4.2. Two-body decays :

p1, m1

p2, m2

P, M

Figure 47.1: Definitions of variables for two-body decays.

In the rest frame of a particle of mass M , decaying into 2 particles
labeled 1 and 2,

E1 =
M2 − m2

2 + m2
1

2M
, (47.16)

|p1| = |p2|

=

[(

M2 − (m1 + m2)
2
) (

M2 − (m1 − m2)
2
)]1/2

2M
, (47.17)

and

dΓ =
1

32π2 |M |2 |p1|
M2 dΩ , (47.18)

where dΩ = dφ1d(cos θ1) is the solid angle of particle 1. The invariant
mass M can be determined from the energies and momenta using
Eq. (47.2) with M = Ecm.

47.4.3. Three-body decays :

p1, m1

p3, m3

P, M p2, m2

Figure 47.2: Definitions of variables for three-body decays.
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Defining pij = pi + pj and m2
ij = p2

ij , then m2
12 + m2

23 + m2
13 =

M2 +m2
1 +m2

2 +m2
3 and m2

12 = (P − p3)
2 = M2 +m2

3− 2ME3, where
E3 is the energy of particle 3 in the rest frame of M . In that frame,
the momenta of the three decay particles lie in a plane. The relative
orientation of these three momenta is fixed if their energies are known.
The momenta can therefore be specified in space by giving three Euler
angles (α, β, γ) that specify the orientation of the final system relative
to the initial particle [1]. Then

dΓ =
1

(2π)5
1

16M
|M |2 dE1 dE3 dα d(cos β) dγ . (47.19)

Alternatively

dΓ =
1

(2π)5
1

16M2
|M |2 |p∗1| |p3| dm12 dΩ∗

1 dΩ3 , (47.20)

where (|p∗1|, Ω∗
1) is the momentum of particle 1 in the rest frame of

1 and 2, and Ω3 is the angle of particle 3 in the rest frame of the
decaying particle. |p∗1| and |p3| are given by

|p∗1| =

[(

m2
12 − (m1 + m2)

2
) (

m2
12 − (m1 − m2)

2
)]

2m12

1/2

, (47.21a)

and

|p3| =

[(

M2 − (m12 + m3)
2
) (

M2 − (m12 − m3)
2
)]1/2

2M
. (47.21b)

[Compare with Eq. (47.17).]

If the decaying particle is a scalar or we average over its spin states,
then integration over the angles in Eq. (47.19) gives

dΓ =
1

(2π)3
1

8M
|M |2 dE1 dE3

=
1

(2π)3
1

32M3
|M |2 dm2

12 dm2
23 . (47.22)

This is the standard form for the Dalitz plot.

47.4.3.1. Dalitz plot: For a given value of m2
12, the range of m2

23 is
determined by its values when p2 is parallel or antiparallel to p3:

(m2
23)max =

(E∗
2 + E∗

3 )2 −
(

√

E∗2
2 − m2

2 −
√

E∗2
3 − m2

3

)2

, (47.23a)

(m2
23)min =

(E∗
2 + E∗

3 )2 −
(

√

E∗2
2 − m2

2 +
√

E∗2
3 − m2

3

)2

. (47.23b)

Here E∗
2 = (m2

12 − m2
1 + m2

2)/2m12 and E∗
3 = (M2 −m2

12 −m2
3)/2m12

are the energies of particles 2 and 3 in the m12 rest frame. The scatter
plot in m2

12 and m2
23 is called a Dalitz plot. If |M |2 is constant, the

allowed region of the plot will be uniformly populated with events [see
Eq. (47.22)]. A nonuniformity in the plot gives immediate information
on |M |2. For example, in the case of D → Kππ, bands appear when
m(Kπ) = mK∗(892), reflecting the appearance of the decay chain

D → K∗(892)π → Kππ.

47.4.4. Kinematic limits :

47.4.4.1. Three-body decays: In a three-body decay (Fig. 47.2)
the maximum of |p3|, [given by Eq. (47.21)], is achieved when
m12 = m1 +m2, i.e., particles 1 and 2 have the same vector velocity in
the rest frame of the decaying particle. If, in addition, m3 > m1, m2,
then |p

3
|max > |p

1
|max, |p

2
|max. The distribution of m12 values

possesses an end-point or maximum value at m12 = M − m3. This
can be used to constrain the mass difference of a parent particle and
one invisible decay product.

(m23)max

0 1 2 3 4 5
 0

 2

 4

 6

 8

10

m12  (GeV2)

m
2
3
  
(G

e
V

2
)

(m1+m2)2

(M−m3)2

(M−m1)2

(m2+m3)2

(m23)min
2

2

2

2

Figure 47.3: Dalitz plot for a three-body final state. In this
example, the state is π+K0p at 3 GeV. Four-momentum
conservation restricts events to the shaded region.

47.4.4.2. Sequential two-body decays:

bc a

2 1

Figure 47.4: Particles participating in sequential two-body
decay chain. Particles labeled 1 and 2 are visible while the
particle terminating the chain (a) is invisible.

When a heavy particle initiates a sequential chain of two-body
decays terminating in an invisible particle, constraints on the masses of
the states participating in the chain can be obtained from end-points
and thresholds in invariant mass distributions of the aggregated decay
products. For the two-step decay chain depicted in Fig. 47.4 the
invariant mass distribution of the two visible particles possesses an
end-point given by:

(mmax
12 )2 =

(m2
c − m2

b)(m2
b − m2

a)

m2
b

, (47.24)

provided particles 1 and 2 are massless. If visible particle 1 has
non-zero mass m1 then Eq. (47.24) is replaced by

(mmax
12 )2 = m2

1 +
(m2

c − m2
b)

2m2
b

×

(

m2
1 + m2

b − m2
a +

√

(−m2
1 + m2

b − m2
a)

2 − 4m2
1m

2
a

)

. (47.25)

See Refs. 2 and 3 for other cases.

47.4.5. Multibody decays : The above results may be generalized
to final states containing any number of particles by combining some
of the particles into “effective particles” and treating the final states
as 2 or 3 “effective particle” states. Thus, if pijk... = pi + pj + pk + . . .,
then

mijk... =
√

p2
ijk... , (47.26)

and mijk... may be used in place of e.g., m12 in the relations in
Sec. 47.4.3 or Sec. 47.4.4 above.



562 47. Kinematics

47.5. Cross sections

p3, m3

p
n+2, m

n+2

.


.


.

p1, m1

p2, m2

Figure 47.5: Definitions of variables for production of an
n-body final state.

The differential cross section is given by

dσ =
(2π)4|M |2

4
√

(p1 · p2)2 − m2
1m

2
2

× dΦn(p1 + p2; p3, . . . , pn+2) . (47.27)

[See Eq. (47.12).] In the rest frame of m2(lab),
√

(p1 · p2)2 − m2
1m

2
2 = m2p1 lab ; (47.28a)

while in the center-of-mass frame
√

(p1 · p2)2 − m2
1m

2
2 = p1cm

√
s . (47.28b)

47.5.1. Two-body reactions :

p1, m1

p2, m2

p3, m3

p4, m4

Figure 47.6: Definitions of variables for a two-body final state.

Two particles of momenta p1 and p2 and masses m1 and m2 scatter
to particles of momenta p3 and p4 and masses m3 and m4; the
Lorentz-invariant Mandelstam variables are defined by

s = (p1 + p2)
2 = (p3 + p4)

2

= m2
1 + 2E1E2 − 2p1 · p2 + m2

2 , (47.29)

t = (p1 − p3)
2 = (p2 − p4)

2

= m2
1 − 2E1E3 + 2p1 · p3 + m2

3 , (47.30)

u = (p1 − p4)
2 = (p2 − p3)

2

= m2
1 − 2E1E4 + 2p1 · p4 + m2

4 , (47.31)

and they satisfy

s + t + u = m2
1 + m2

2 + m2
3 + m2

4 . (47.32)

The two-body cross section may be written as

dσ

dt
=

1

64πs

1

|p1cm|2 |M |2 . (47.33)

In the center-of-mass frame

t = (E1cm − E3cm)2 − (p1cm − p3cm)2 − 4p1cm p3cm sin2(θcm/2)

= t0 − 4p1cm p3cm sin2(θcm/2) , (47.34)

where θcm is the angle between particle 1 and 3. The limiting values
t0 (θcm = 0) and t1 (θcm = π) for 2 → 2 scattering are

t0(t1) =

[

m2
1 − m2

3 − m2
2 + m2

4

2
√

s

]2

− (p1 cm ∓ p3 cm)2 . (47.35)

In the literature the notation tmin (tmax) for t0 (t1) is sometimes
used, which should be discouraged since t0 > t1. The center-of-mass
energies and momenta of the incoming particles are

E1cm =
s + m2

1 − m2
2

2
√

s
, E2cm =

s + m2
2 − m2

1

2
√

s
, (47.36)

For E3cm and E4cm, change m1 to m3 and m2 to m4. Then

pi cm =
√

E2
i cm − m2

i and p1cm =
p1 lab m2√

s
. (47.37)

Here the subscript lab refers to the frame where particle 2 is at rest.
[For other relations see Eqs. (47.2)–(47.4).]

47.5.2. Inclusive reactions : Choose some direction (usually the
beam direction) for the z-axis; then the energy and momentum of a
particle can be written as

E = m
T

cosh y , px , py , pz = m
T

sinh y , (47.38)

where m
T

, conventionally called the ‘transverse mass’, is given by

m2
T

= m2 + p2
x + p2

y . (47.39)

and the rapidity y is defined by

y =
1

2
ln

(

E + pz

E − pz

)

= ln

(

E + pz

m
T

)

= tanh−1
(pz

E

)

. (47.40)

Note that the definition of the transverse mass in Eq. (47.39) differs
from that used by experimentalists at hadron colliders (see Sec. 47.6.1
below). Under a boost in the z-direction to a frame with velocity β,
y → y− tanh−1 β. Hence the shape of the rapidity distribution dN/dy
is invariant, as are differences in rapidity. The invariant cross section
may also be rewritten

E
d3σ

d3p
=

d3σ

dφ dy p
T

dp
T

=⇒ d2σ

π dy d(p2
T

)
. (47.41)

The second form is obtained using the identity dy/dpz = 1/E, and the
third form represents the average over φ.

Feynman’s x variable is given by

x =
pz

pz max
≈ E + pz

(E + pz)max
(pT ≪ |pz|) . (47.42)

In the c.m. frame,

x ≈ 2pz cm√
s

=
2m

T
sinh ycm√

s
(47.43)

and
= (ycm)max = ln(

√
s/m) . (47.44)

The invariant mass M of the two-particle system described in
Sec. 47.4.2 can be written in terms of these variables as

M2 = m2
1 + m2

2 + 2[ET (1)ET (2) cosh∆y − pT (1) · pT (2)] , (47.45)

where

ET (i) =
√

|pT (i)|2 + m2
i , (47.46)

and pT (i) denotes the transverse momentum vector of particle i.

For p ≫ m, the rapidity [Eq. (47.40)] may be expanded to obtain

y =
1

2
ln

cos2(θ/2) + m2/4p2 + . . .

sin2(θ/2) + m2/4p2 + . . .

≈ − ln tan(θ/2) ≡ η (47.47)

where cos θ = pz/p. The pseudorapidity η defined by the second line
is approximately equal to the rapidity y for p ≫ m and θ ≫ 1/γ,
and in any case can be measured when the mass and momentum
of the particle are unknown. From the definition one can obtain the
identities

sinh η = cot θ , cosh η = 1/ sin θ , tanh η = cos θ . (47.48)
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47.5.3. Partial waves : The amplitude in the center of mass for
elastic scattering of spinless particles may be expanded in Legendre
polynomials

f(k, θ) =
1

k

∑

ℓ

(2ℓ + 1)aℓPℓ(cos θ) , (47.49)

where k is the c.m. momentum, θ is the c.m. scattering angle, aℓ
= (ηℓe

2iδℓ − 1)/2i, 0 ≤ ηℓ ≤ 1, and δℓ is the phase shift of the ℓth

partial wave. For purely elastic scattering, ηℓ = 1. The differential
cross section is

dσ

dΩ
= |f(k, θ)|2 . (47.50)

The optical theorem states that

σtot =
4π

k
Im f(k, 0) , (47.51)

and the cross section in the ℓth partial wave is therefore bounded:

σℓ =
4π

k2
(2ℓ + 1)|aℓ|2 ≤ 4π(2ℓ + 1)

k2
. (47.52)

The evolution with energy of a partial-wave amplitude aℓ can be
displayed as a trajectory in an Argand plot, as shown in Fig. 47.7.

−1/2 1/20

Im A

Re A

1/2

η/2

1

al

2δ

Figure 47.7: Argand plot showing a partial-wave amplitude aℓ
as a function of energy. The amplitude leaves the unitary circle
where inelasticity sets in (ηℓ < 1).

The usual Lorentz-invariant matrix element M (see Sec. 47.3
above) for the elastic process is related to f(k, θ) by

M = −8π
√

s f(k, θ) , (47.53)

so

σtot = − 1

2plab m2
Im M (t = 0) , (47.54)

where s and t are the center-of-mass energy squared and momentum
transfer squared, respectively (see Sec. 47.4.1).

47.5.3.1. Resonances: The Breit-Wigner (nonrelativistic) form for
an elastic amplitude aℓ with a resonance at c.m. energy ER, elastic
width Γel, and total width Γtot is

aℓ =
Γel/2

ER − E − iΓtot/2
, (47.55)

where E is the c.m. energy. As shown in Fig. 47.8, in the absence of
background the elastic amplitude traces a counterclockwise circle with
center ixel/2 and radius xel/2, where the elasticity xel = Γel/Γtot.
The amplitude has a pole at E = ER − iΓtot/2.

The spin-averaged Breit-Wigner cross section for a spin-J resonance
produced in the collision of particles of spin S1 and S2 is

σBW (E) =
(2J + 1)

(2S1 + 1)(2S2 + 1)

π

k2

BinBoutΓ
2
tot

(E − ER)2 + Γ2
tot/4

, (47.56)

where k is the c.m. momentum, E is the c.m. energy, and B in and
B out are the branching fractions of the resonance into the entrance and
exit channels. The 2S + 1 factors are the multiplicities of the incident
spin states, and are replaced by 2 for photons. This expression is valid
only for an isolated state. If the width is not small, Γtot cannot be
treated as a constant independent of E. There are many other forms
for σBW , all of which are equivalent to the one given here in the
narrow-width case. Some of these forms may be more appropriate if
the resonance is broad.

−1/2 1/20

Im A

Re A

ixel/2

xel/2

1

Figure 47.8: Argand plot for a resonance.

The relativistic Breit-Wigner form corresponding to Eq. (47.55) is:

aℓ =
−mΓel

s − m2 + imΓtot
. (47.57)

A better form incorporates the known kinematic dependences,
replacing mΓtot by

√
s Γtot(s), where Γtot(s) is the width the resonance

particle would have if its mass were
√

s, and correspondingly mΓel by√
s Γel(s) where Γel(s) is the partial width in the incident channel for

a mass
√

s:

aℓ =
−√

s Γel(s)

s − m2 + i
√

s Γtot(s)
. (47.58)

For the Z boson, all the decays are to particles whose masses
are small enough to be ignored, so on dimensional grounds
Γtot(s) =

√
s Γ0/mZ , where Γ0 defines the width of the Z, and

Γel(s)/Γtot(s) is constant. A full treatment of the line shape requires
consideration of dynamics, not just kinematics. For the Z this is done
by calculating the radiative corrections in the Standard Model.

47.6. Transverse variables

At hadron colliders, a significant and unknown proportion of the
energy of the incoming hadrons in each event escapes down the
beam-pipe. Consequently if invisible particles are created in the final
state, their net momentum can only be constrained in the plane
transverse to the beam direction. Defining the z-axis as the beam
direction, this net momentum is equal to the missing transverse energy
vector

Emiss
T = −

∑

i

pT (i) , (47.59)

where the sum runs over the transverse momenta of all visible final
state particles.

47.6.1. Single production with semi-invisible final state :

Consider a single heavy particle of mass M produced in association
with visible particles which decays as in Fig. 47.1 to two particles,
of which one (labeled particle 1) is invisible. The mass of the parent
particle can be constrained with the quantity MT defined by

M2
T ≡ [ET (1) + ET (2)]2 − [pT (1) + pT (2)]2

= m2
1 + m2

2 + 2[ET (1)ET (2) − pT (1) · pT (2)] , (47.60)

where
pT (1) = Emiss

T . (47.61)

This quantity is called the ‘transverse mass’ by hadron collider
experimentalists but it should be noted that it is quite different from
that used in the description of inclusive reactions [Eq. (47.39)]. The
distribution of event MT values possesses an end-point at Mmax

T = M .
If m1 = m2 = 0 then

M2
T = 2|pT (1)||pT (2)|(1 − cosφ12) , (47.62)

where φij is defined as the angle between particles i and j in the
transverse plane.
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47.6.2. Pair production with semi-invisible final states :

p
11

, mp
44

, mp

, mp

3 1

22

, m

M M

Figure 47.9: Definitions of variables for pair production of
semi-invisible final states. Particles 1 and 3 are invisible while
particles 2 and 4 are visible.

Consider two identical heavy particles of mass M produced such
that their combined center-of-mass is at rest in the transverse plane
(Fig. 47.9). Each particle decays to a final state consisting of an
invisible particle of fixed mass m1 together with an additional visible
particle. M and m1 can be constrained with the variables MT2 and
MCT which are defined in Refs. 4 and 5.
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48. RESONANCES

Updated 2015 by D. M. Asner (Pacific Northwest National Lab-
oratory), C. Hanhart (Forschungszentrum Jülich) and E. Klempt
(Bonn).

48.1. General Considerations

Perturbative methods can be applied to systems of quarks and
gluons only for large momentum transfers (see review on ’Quantum
chromodynamics’) and, under certain conditions, to some properties
of systems that contain heavy quarks (see review on ’Heavy-Quark
and Soft-Collinear Effective Theory’). In general, however, dealing
with QCD in the low momentum transfer region is a very complicated,
non–perturbative problem where quarks and gluons are confined
within color neutral hadrons. Physical states show up as poles of
the S–matrix either on the physical sheet (bound states) or on the
unphysical sheets (resonances) and manifest themselves as structures
in experimental observables.

Resonances can show up either in so–called formation experiments,
typically of the kind

A + B → R → C1 + ... + Cn ,

where they become visible in an energy scan (a perfect example of
this being the R–function measured in e+e− annihilations — cf .
the corresponding plots in the review on ’Plots of Cross sections
and related quantities’), or together with a spectator particle S in
production experiments of the kind

A → R + S → [C1 + ... + Cn] + S .

In the latter case the resonances properties are commonly extracted
from a Dalitz plot analysis (see review on ’Kinematics’) or projections
thereof. Multi–particle final states are often parametrized in terms of
successive decays of two–body resonances.

Resonance phenomena are very rich: while typical hadronic widths
are of the order of 100 MeV (e.g., for the meson resonances ρ(770)
or ψ(4040) or the baryon resonance ∆(1232)) corresponding to a life
time of 10−23 s, the widths can also be as small as sub MeV (e.g.
of X(3872)) or as large as several hundred MeV (e.g. of the meson
resonances f0(500) or D1(2430) or the baryon resonance N(2190)).

Ideally a resonance appears as a peak in the total cross section.
If the structure is narrow and if there are no relevant thresholds or
other resonances nearby, the resonance properties may be extracted
employing a standard Breit-Wigner parametrization if necessary
improved by using an energy dependent width term (cf. Sec. 2.1
of this review). However, in general unitarity and analyticity call
for the use of more refined tools, e.g. when there are overlapping
resonances with the same quantum numbers the resonance terms
should not simply be added but combined in a non–trivial way either
in a K–matrix approximation (cf. Sec. 2.3 of this review) or using
more refined methods (cf. Sec. 1.4 of this review). Only then the
proper pole parameters can be extracted that are universal resonance
properties — on the contrary, Breit–Wigner parameters are typically
reaction dependent. In addition, for broad resonances there is no
direct relation anymore between pole location and the total width/life
time — then the pole residues need to be used in order to quantify
the decay properties of a given state (cf . Sec. 3 of this review).

For simplicity, throughout this review the formulas are given for
distinguishable, scalar particles. The additional complications that
appear in the presence of spins can be controlled in the helicity
framework developed by Jacob and Wick [1], or in a non-relativistic
[2] or relativistic [3] tensor operator formalism. Within these frames,
sequential (cascade) decays are commonly treated as a coherent sum
of two-body interactions. Therefore below most explicit expressions
are given for two–body kinematics.

48.1.1. Properties of the S-matrix :

The unitary operator that connects asymptotic in and out states
is called the S–matrix. It is an analytic function in the Mandelstam
plane up to its branch points and poles. Branch points appear
whenever there is a channel opening — at each threshold for massive
particles the number of Riemann sheets doubles. Poles refer either
to bound states or to resonances. The former poles are located on
the physical sheet, the latter are located on the unphysical sheet
closest to the physical one, often called the second sheet; each can be
accompanied by mirror poles. If there are resonances in subsystems of
multi–particle states, branch points appear in the complex plane of the
unphysical sheet(s). Any of these singularities leads to some structure
in the observables (see also Ref. [4]). In a partial wave decomposed
amplitude additional singularities not related to resonance physics
may emerge as a result of the partial-wave projection. For a discussion
see, e.g., Ref. [5].
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Figure 48.1: Sketch of the imaginary part of a typical single–
channel amplitude in the complex s-plane. The solid dots
indicate allowed positions for resonance poles, the cross for a
bound state. The solid line is the physical axis (shifted by iǫ
into the physical sheet). The two sheets are connected smoothly
along their discontinuities.

If for simplicity we now restrict ourselves to reactions involving
four particles, the kinematics of the reaction are fully described by the
Mandelstam variables s, t and u, only two of them being independent
(cf. Eqs. (28)-(31) of the kinematics review). Bound state poles are
allowed only on the real s–axis below the lowest threshold. There is
no restriction for the location of poles on the unphysical sheets — only
that analyticity requires that, if there is a pole at some complex value
of s, there must be another pole at its complex conjugate value, s∗.
The pole with a negative imaginary part is closer to the physical axis
and thus influences the observables in the vicinity of the resonance
region more strongly, however, at the threshold both poles are always
equally important. This is illustrated in Fig. 48.1.

The S-matrix is related to the scattering matrix M (c.f. Eq. (8) of
the kinematics review). For two–body scattering it can be cast into
the form

Sab = Iab − 2i
√

ρaMab

√
ρb . (48.1)

M is a matrix in channel space and depends, for two–body scattering,
on both s and t. The channel indices a and b are multi–indices
specifying all properties of the channel including the conserved
quantum numbers. The two-body phase-space ρ is given (cf. Eq. 12
of the kinematics review) by

ρa(s)=
1

16π

2|~qa|√
s

. (48.2)

with qa denoting the relative momentum of the decay particles of
channel a, with masses m1 and m2, cf. Eq. (20a) of the kinematics
review.

As discussed below, unitarity puts strong constraints on the
scattering matrix. Further constraints come, e.g., from crossing
symmetry and duality [6].
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48.1.2. Consequences from unitarity :

In what follows, scattering amplitudes M and decay amplitudes
A will be distinguished, since unitarity puts different constraints on
these. The discontinuity of the scattering amplitude from channel a
to channel b [7] is constrained by unitarity to

i [Mba − M
∗

ab
] = (2π)4

∑

c

∫

dΦcM
∗

cb
Mca . (48.3)

Using Disc(M (s)) = 2i Im(M (s + iǫ)) the optical theorem follows

Im (Maa|forward) = 2qa

√
s σtot(a → anything) . (48.4)

The unitarity relation for a decay amplitude of a heavy state H into a
channel a is given by

i
[

AH
a −AH ∗

a

]

= (2π)4
∑

c

∫

dΦcM
∗

caAH
c . (48.5)

From Eq. (48.5) Watson’s theorem follows straightforwardly: the
phase of A agrees with that of M as long as only a single channel
contributes. For systems where the phase shifts are known like ππ
in S– and P–waves for low energies, AH can be calculated in a
model-independent way using dispersion theory [8]. Those methods
can also be generalized to three–body final states [9] and were applied
to η → πππ in Refs. [10,11,12] and to φ and ω to 3π in Ref. [13].

48.1.3. Partial-wave decomposition :
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Figure 48.2: Argand plot showing a diagonal element of
a partial-wave amplitude, abb, as a function of energy. The
amplitude leaves the unitary circle (solid line) as soon as
inelasticity sets in, η < 1 (dashed line).

In general, a physical amplitude M (c.f. Eq. (8) of the kinematics
review) is a matrix in channel space. It depends, for two–body
scattering, on both s and t. It is often convenient to expand the
amplitudes in partial waves. For this purpose one defines for the
transition matrix from channel a to channel b

Mba(s, t) =

∞
∑

L=0

(2L + 1)M L

ba
(s)PL(cos(θ)) , (48.6)

where L denotes the angular momentum—in the presence of spins the
initial and final value of L does not need to be equal. To simplify
notations below we will drop the label L. The function Mba(s) is
expressed in terms of the partial-wave amplitudes fba(s) via

Mba(s) = −fba(s)/
√

ρaρb . (48.7)

The partial-wave amplitudes fba depend on s only. Using Sba =
δba + 2ifba one gets from the unitarity of the S-matrix

fbb = (η exp(2iδb) − 1)/2i , (48.8)

where δb (η) denotes the phase shift (elasticity parameter — also
called inelasticity) for the scattering from channel b to channel b.
One has 0 ≤ η ≤ 1, where η = 1 refers to purely elastic scattering.
The evolution with energy of a partial-wave amplitude fbb can be
displayed as a trajectory in an Argand plot, as shown in Fig. 48.2. In
case of a two–channel problem the off–diagonal element is typically
parametrized as fba =

√

1 − η2/2 exp(i(δb + δa)).

48.1.4. Explicit parametrizations for scattering and produc-

tion amplitudes :

It is often convenient to decompose the physical amplitude M into
a pole part and a non–pole part, often called background

M = M
b.g. + M

pole . (48.9)

The splitting given in Eq. (48.9) is reaction dependent and not
unique (see, e.g., the discussion in Ref. [14]) , such that some
resonances show up differently in different reactions. What are
independent of the reaction, however, are the location of the pole of
a given resonance R in the complex s-plane, sR, and its residues, or,
more accurately, the pole couplings introduced in the last section of
this review. Those parameters capture all the properties of a given
resonance. The decomposition of Eq. (48.9) is employed, e.g., in
Ref. [15] to study the lineshape of ψ(3770) and in Refs. [16,17] to
investigate πN scattering. Traditionally one introduces the notation

√
sR = MR − iΓR/2 , (48.10)

where MR and ΓR are referred to as mass and total width of
the resonance R, respectively. Note, the standard Breit-Wigner
parameters MBW and ΓBW, also introduced below, in general deviate
from the pole parameters, e.g., due to finite width effects and the
influence of thresholds.

If there are N resonances in a particular channel,

M
pole
ba

(s) = γb(s)[1 − V R(s)Σ(s)]−1
bc

V R
ca(s)γa(s) . (48.11)

where all ingredients are matrices in channel space. Especially

V R
ab

(s) = −
N

∑

n=1

gn b gn a

s − M2
n

, (48.12)

γa and Σa denote the normalized vertex function and the self-energy,
respectively, while gn a denotes the coupling of the resonance Rn to
channel a and Mn its mass parameter (not to be confused with the
pole position). The sign in Eq. (48.12) is necessary to render the
g–parameters real. A relation analogous to Eq. (48.5) holds for any
kind of production amplitude — especially for the normalized vertex
functions, however, with the final state interaction provided by M b.g.

i [γa − γ∗

a] = (2π)4
∑

c

dΦc

(

M
b.g.

)

∗

ca
γc . (48.13)

The discontinuity of the self-energy Σa(s) is

i [Σa − Σ∗

a] = (2π)4
∫

dΦa|γa|2 . (48.14)

The real part of Σa can be calculated from Eq. (48.14) via a
properly subtracted dispersion integral. If M b.g. is unitary, the use of
Eq. (48.11) leads to a unitary full amplitude, cf. Eq. (48.9).

For a single resonance (N = 1) Eq. (48.11) reads

Mpole(s)ba
∣

∣

N=1
= −γb(s)

gb ga

s − M̂R(s)2 + i
√

sΓR(s)tot
γa(s) , (48.15)

where the mass function M̂R(s)2 = M2+
∑

c
g2
cRe(Σc). The imaginary

part of the self-energy gives the width of the resonance via

ΓR
c (s) =

(2π)4

2
√

s
g2
c

∫

dΦc|γc|2; ΓR(s)tot =
∑

c

ΓR
c (s) . (48.16)

Here the sum runs over all channels. Eq. (48.16) agrees with Eq. (10)
of the kinematics review.

In the absence of left–hand cuts in the production mechanism, the
decay amplitude AH can be written as

AH
a (s) = γa(s)

[

1 − V R(s)Σ(s)
]

−1

ab
PH

b
(s) , (48.17)
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where PH is a vector in channel space that may be parametrized as

PH
b

(s) = pb(s) −
N

∑

n=1

gn b αH
n

s − M2
n

(48.18)

and the masses Mn need to agree with those in VR. The function
pa(s) is a background term and the αH

n denote the coupling of the
heavy state H to the particular resonance Rn. If there are additional
particles in the final state of the studied decay of heavy state H ,
not included in the non-perturbative treatment of Eq. (48.17), then
they also contain the corresponding kinematic factors related to
their coupling. If these additional particles are interacting strongly,
a complete few–body treatment of the final state becomes necessary,
especially since rescattering effects can introduce additional complex
phases [18]. However, in practice those effects as well as those from
missing channels are often parametrized by choosing the parameters
αH

n complex valued. With some additional assumptions, Eq. (48.9)
and Eq. (48.17) were employed in Ref. [19] to study the pion
vector form factor. An alternative parametrization for the production
amplitude that is convenient, if the full matrix M — including the
resonances — is known, cf. Ref. [20]

AH
a (s) = Mab(s)P̃H

b
(s) . (48.19)

The function P̃H(s)b needs to cancel the left–hand cuts of M and
therefore could be strongly energy dependent. In actual applications a
low-order polynomial turned out to be sufficient — c.f. Ref. [21,22] for
a study of γγ → ππ. As above, to preserve unitarity the coefficients
of P̃H(s)b need to be real, however, in practice rescattering effects or
missing channels are parametrized by complex valued parameters.

Three-body decays are often represented by Dalitz plots. It is often
of interest to quantify the contribution of a single amplitude AH

a to the
decay of a heavy resonance H , where now AH

a needs to be generalized
to three body kinematics either completely by considering the full
three–body final state interactions or effectively by choosing complex
vertex parameters. Then fractional contributions are introduced (since
different intermediate states leading to the same final state interfere,
the assignment of branching ratios is to be taken with some caution)
via

FH
a =

∫

dΦ|AH
a |2

∫

dΦ|∑
a
AH

a |2 (48.20)

where the phase space integral dΦ extends over the Dalitz plot
region and the angular dependence of the subsystems needs to be
kept (cf. Eq. (48.6)). Typically the effect of interference terms in the
denominator is small.

The formulas given so far are completely general. However, they
require as input, e.g., information on the non–resonant scattering in
the various channels. It is therefore often necessary and appropriate
to find approximations/parametrizations.

48.2. Common parametrizations for resonances

In most common parametrizations the non–pole interaction, M b.g.,
is omitted. While this is a bad approximation for, e.g., scalar–isoscalar
ππ interactions at very low energies [23], under more favorable
conditions this can be justified. Thus in what follows we will assume
M b.g. = 0, which leads to real vertex functions. For two–body
channels one writes

γ(s)a = qLa
a FLa

(qa, qo) ,

where La denotes the angular momentum of the decay products,
giving rise to the centrifugal barrier qLa

a , where qa denotes the
relative momentum of the outgoing particle pair defined in the
rest frame of the decaying particle, cf. Eq. (20a) of the kinematics
review. Often one introduces a phenomenological form factor, here
denoted by FLa

(qa, qo). It depends on the channel momentum as
well as some intrinsic scale qo. Often the Blatt-Weisskopf form
is chosen [24,25], where, e.g., F 2

0 = 1, F 2
1 = 2/(qa + qo) and

F 2
2 = 13/((qa − 3qo)

2 + 9qaqo). In addition, for isolated, narrow
resonances the couplings ga can be related to the partial widths,
ΓR→a, via

ga =
1

γa(sR)

√

MRΓR→a

ρa

, (48.21)

where MR was defined in Eq. (48.10).

48.2.1. The Breit–Wigner and Flatté Parametrizations :

If there is only a single resonance present and all relevant thresholds
are far away, then one may replace ΓR(s)tot with a constant, ΓBW.
Under these conditions also the real part of Σ is a constant that can
be absorbed into the mass parameter and Eq. (48.15) simplifies to

M
pole
ba

∣

∣

∣

N=1
= − gb ga

s − M2
BW + i

√
sΓBW

, (48.22)

which is the standard Breit–Wigner parametrization. For a narrow
resonance it is common to replace

√
s by MBW. If there are nearby

relevant thresholds, ΓBW needs to be replaced by Γ(s). For two–body
decays one writes

Γ(s) =
∑

c

ΓR→c

(

qc

qR c

)2Lc+1 (

MR√
s

) (

FLc
(qc, qo)

FLc
(qR c, qo)

)2

, (48.23)

where qR c = q(MBW)c denotes the decay momentum of resonance R
into channel c. The Breit-Wigner parameters MBW and ΓBW agree
with the pole parameters only if MRΓ(MR) ≪ M2

thr. − M2
R, with

Mthr. for the closest relevant threshold. Otherwise the Breit-Wigner
parameters deviate from the pole parameters and are reaction
dependent.

If there is more than one resonance in one partial wave that
significantly couples to the same channels, it is in general incorrect
to use a sum of Breit-Wigner functions, for it may violate unitarity
constraints. Then more refined methods should be used, like the
K–matrix approximation described in the next section.

Below the corresponding threshold, qc in Eq. (48.23) must be
continued analytically: if, e.g., the particles in channel c have equal
mass mc, then

qc =
i

2

√

4m2
c − s for

√
s < 2mc . (48.24)

The resulting line shape above and below the threshold of channel c is
called Flatté parametrization [26]. If the coupling of a resonance to
the channel opening nearby is very strong, the Flatté parametrization
shows a scaling invariance and does not allow for an extraction of
individual partial decay widths, but only of ratios [27].

48.2.2. The K–matrix approximation :

As soon as there is more than one resonance in one channel, the
use of the K–matrix approximation should be preferred compared
to the Breit–Wigner parametrization discussed above. From the
considerations formulated in Eq. (48.11), the K–matrix approximation
follows straightforwardly by replacing the self-energy Σc by its
imaginary part in the absence of M b.g., but keeping the full matrix
structure of V R. Thus, for two–body intermediate states one writes
within this scheme for the self-energy

Σ(s)c → iρc γ(s)2c . (48.25)

However, in distinction to the Breit-Wigner approach, V R, then called
K–matrix, is kept in the form of Eq. (48.12). The decay amplitude
given in Eq. (48.17) then takes the form of the standard P–vector
formalism introduced in Ref. [28]. For N = 1 the amplitude derived
from the K–matrix is identical to that of Eq. (48.22).

Some authors use the analytic continuation of ρc below the
threshold via the analytic continuation of the particle momentum as
described above [29,30].

48.2.3. Further improvements :

The K–matrix described above usually allows one to get a proper
fit of physical amplitudes and it is easy to deal with, however, it
also has an important deficit: it violates constraints from analyticity
— e.g., ρa, defined in Eq. (48.2), is ill-defined at s = 0 and for
unequal masses develops an unphysical cut. In addition, the analytic
continuation of the amplitudes into the complex plane is not controlled
and typically the parameters of broad resonances come out wrong
(see, e.g., minireview on scalar mesons). A method to improve the
analytic properties was suggested in Refs. [31,32,33,34]. It basically
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amounts to replacing the phase-space factor iρa in Eq. (48.25) by an
analytic function that produces the identical imaginary part on the
right-hand cut. In the simplest case of a channel with equal masses
the expressions that can be used for real values of s read

− ρ̂a

π
log

∣

∣

∣

∣

1 + ρ̂a

1 − ρ̂a

∣

∣

∣

∣

, −2ρ̂a

π
arctan

(

1

ρ̂a

)

, − ρ̂a

π
log

∣

∣

∣

∣

1 + ρ̂a

1 − ρ̂a

∣

∣

∣

∣

+ iρ̂a

for s < 0, 0 < s < 4m2
a, and 4m2

a < s, respectively, with

ρ̂a =
√

|1 − 4m2
a/s| for all values of s, extending the expression of

Eq. (48.2) into the regime below threshold. The more complicated
expression for the case of different masses can be found, e.g., in
Ref. [32].

If there is only a single resonance in a given channel, it is possible to
feed the imaginary part of the Breit-Wigner function, Eq. (48.22) with
an energy-dependent width, directly into a dispersion integral to get a
resonance propagator with the correct analytic structure [35,36].

48.3. Properties of resonances

A resonance is characterized not only by its complex pole position
but also by its residues that quantify its couplings to the various
channels and allow one to define a branching ratio also for broader
resonances. In the Meson Particle Listings the two-photon width
of f0(500) is defined in terms of the corresponding residue. The
Baryon Particle Listings give the elastic pole residues and normalized
transition residues. However, different conventions are used in the two
sectors, which are shortly outlined here.

In the close vicinity of a pole the scattering matrix M can be
written as

lim
s→sR

Mba = − Rba

s − sR
, (48.26)

where sR denotes the pole position of the resonance R. The sign
convention in Eq. (48.26) is consistent with that of Eq. (48.12). The
residues may be calculated via an integration along a closed contour
around the pole using

Rba =
i

2π

∮

dsMba .

The factorization of the residue (Rba)2 = Raa × Rbb allows one to
introduce pole couplings according to

g̃a = Rba/
√

Rbb . (48.27)

The pole couplings are the only quantities that allow one to quantify
the transition strength of a given resonance to some channel a
independent of how the particular resonance was produced. For a
single, narrow state with an energy-independent background in the
resonance region, far away from all relevant thresholds one finds
g̃a = γa(sR)ga with the real valued resonance couplings ga defined in
Eq. (48.12) accompanied by the complex valued vertex functions γa

introduced in Eq. (48.11). Based on this observation one may use the
straightforward generalization of Eq. (48.21) to define a partial width
and a branching fraction even for a broad resonance via

ΓR→a =
|g̃a|2
MR

ρa(M2
R) and Bra = ΓR→a/ΓR , (48.28)

where MR and ΓR were introduced in Eq. (48.10). This expression was
used to define a two–photon width for the broad f0(500) (also called
σ) [21,22]. Eq. (48.28) defines a partial decay width independent of
the reaction used to extract the parameters. It maps smoothly onto
the standard definitions for narrow resonances — cf. Eq. (48.16).
There are cases where a resonance couples to a channel that opens
only above MR. A prominent example for this being f0(980) to K̄K.
If one wants to define a branching fraction that also captures this
situation one may define

Br′a =

∞
∫

threshold

ds

π

|g̃a|2ρ(s)

|D(s)|2 . (48.29)

Here one needs to assume a line shape for the resonance R. A possible
choice is a Flatté form |D(s)|2 = (M2

R − s)2 + (
∑

a
|g̃a|2ρa(s))2. The

only model-independent quantities are the pole couplings/residues —
both forms, Eq. (48.28) and Eq. (48.29), are in general not directly
related to observables but meant to quantify the effect of the pole
couplings by employing better known quantities.

In the baryon sector it is common to define the residue with respect
to the partial-wave amplitudes fba(s) defined in Eq. (48.7) and with
respect to

√
s instead of s. The two definitions are related via

Res(a → b) = −
√

ρa(sR)ρb(sR)

4sR
Rba , (48.30)

where the phase space factors are to be evaluated at the pole. The
elastic pole residues for a → a scattering, in the baryon listings called
r, are

r = −Res(a → a) . (48.31)

One may now define the partial decay widths and the branching ratios
of a resonance R into channel a at its pole position on the basis of the
residues introduced in Eq. (48.30)

ΓR→a = 2 |Res(a → b)| and BRa = 2|Res(a → a)|/ΓR. (48.32)

The only difference between the definitions of the branching ratio of
Eq. (48.28) and Eq. (48.32) is that for the former the phase space
factors are evaluated on the real axis while for the latter they are
evaluated at the pole. The Baryon Particle Listings give information
on the πN elastic residues, r, on various normalized πN → a transition
residues, and on branching ratios.

References:

1. M. Jacob and G.C. Wick, Ann. Phys. 7, 404 (1959) [Ann. Phys.
281, 774 (2000)].

2. C. Zemach, Phys. Rev. 140B, 97 (1965); Phys. Rev. 140B, 109
(1965).

3. A.V. Anisovich et al., J. Phys. G28, 15 (2002); Eur. Phys. J.
A24, 111 (2005).

4. A rapid change in an amplitude is not an unambiguous signal
of a singularity of the S–matrix [37], however, for realistic
interactions this connection holds.
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49. CROSS-SECTION FORMULAE FOR SPECIFIC PROCESSES

Revised October 2009 by H. Baer (University of Oklahoma) and R.N.
Cahn (LBNL).

PART I: STANDARD MODEL PROCESSES

Setting aside leptoproduction (for which, see Sec. 16 of this
Review), the cross sections of primary interest are those with light
incident particles, e+e−, γγ, qq, gq , gg, etc., where g and q represent
gluons and light quarks. The produced particles include both light
particles and heavy ones - t, W , Z, and the Higgs boson H . We
provide the production cross sections calculated within the Standard
Model for several such processes.

49.1. Resonance Formation

Resonant cross sections are generally described by the Breit-Wigner
formula (Sec. 19 of this Review).

σ(E) =
2J + 1

(2S1 + 1)(2S2 + 1)

4π

k2

[
Γ2/4

(E − E0)2 + Γ2/4

]
BinBout, (49.1)

where E is the c.m. energy, J is the spin of the resonance, and the
number of polarization states of the two incident particles are 2S1 + 1
and 2S2 + 1. The c.m. momentum in the initial state is k, E0 is the
c.m. energy at the resonance, and Γ is the full width at half maximum
height of the resonance. The branching fraction for the resonance into
the initial-state channel is Bin and into the final-state channel is Bout.
For a narrow resonance, the factor in square brackets may be replaced
by πΓδ(E − E0)/2.

49.2. Production of light particles

The production of point-like, spin-1/2 fermions in e+e− annihilation
through a virtual photon, e+e− → γ∗ → ff , at c.m. energy squared s
is given by

dσ

dΩ
= Nc

α2

4s
β
[
1 + cos2 θ + (1 − β2) sin2 θ

]
Q2

f , (49.2)

where β is v/c for the produced fermions in the c.m., θ is the c.m.
scattering angle, and Qf is the charge of the fermion. The factor Nc

is 1 for charged leptons and 3 for quarks. In the ultrarelativistic limit,
β → 1,

σ = NcQ
2
f
4πα2

3s
= NcQ

2
f

86.8 nb

s (GeV2)
. (49.3)

The cross section for the annihilation of a qq pair into a distinct pair
q′q′ through a gluon is completely analogous up to color factors, with
the replacement α → αs. Treating all quarks as massless, averaging
over the colors of the initial quarks and defining t = −s sin2(θ/2),
u = −s cos2(θ/2), one finds [1]

dσ

dΩ
(qq → q′q′) =

α2
s

9s

t2 + u2

s2
. (49.4)

Crossing symmetry gives

dσ

dΩ
(qq′ → qq′) =

α2
s

9s

s2 + u2

t2
. (49.5)

If the quarks q and q′ are identical, we have

dσ

dΩ
(qq → qq) =

α2
s

9s

[
t2 + u2

s2 +
s2 + u2

t2
− 2u2

3st

]
, (49.6)

and by crossing

dσ

dΩ
(qq → qq) =

α2
s

9s

[
t2 + s2

u2
+

s2 + u2

t2
− 2s2

3ut

]
. (49.7)

Annihilation of e+e− into γγ has the cross section

dσ

dΩ
(e+e− → γγ) =

α2

2s

u2 + t2

tu
. (49.8)

The related QCD process also has a triple-gluon coupling. The cross
section is

dσ

dΩ
(qq → gg) =

8α2
s

27s
(t2 + u2)

(
1

tu
− 9

4s2

)
. (49.9)

The crossed reactions are

dσ

dΩ
(qg → qg) =

α2
s

9s
(s2 + u2)(− 1

su
+

9

4t2
) (49.10)

and

dσ

dΩ
(gg → qq) =

α2
s

24s
(t2 + u2)(

1

tu
− 9

4s2
) . (49.11)

Finally,

dσ

dΩ
(gg → gg) =

9α2
s

8s
(3 − ut

s2
− su

t2
− st

u2
) . (49.12)

Lepton-quark scattering is analogous (neglecting Z exchange)

dσ

dΩ
(eq → eq) =

α2

2s
e2
q
s2 + u2

t2
. (49.13)

where eq is the charge of the quark. For neutrino scattering with the
four-Fermi interaction

dσ

dΩ
(νd → ℓ−u) =

G2
F s

4π2
, (49.14)

where the Cabibbo angle suppression is ignored. Similarly

dσ

dΩ
(νu → ℓ−d) =

G2
F s

4π2

(1 + cos θ)2

4
. (49.15)

To obtain the formulae for deep inelastic scattering (presented in
more detail in Section 16) we consider quarks of type i carrying a
fraction x = Q2/(2Mν) of the nucleon’s energy, where ν = E − E′ is
the energy lost by the lepton in the nucleon rest frame. With y = ν/E
we have the correspondences

1 + cos θ → 2(1 − y) ,

dΩcm → 4πfi(x)dx dy , (49.16)

where the latter incorporates the quark distribution, fi(x). In this
way we find

dσ

dx dy
(eN → eX) =

4πα2xs

Q4

1

2

[
1 + (1 − y)2

]
(49.17)

×
[4

9
(u(x) + u(x) + . . .) +

1

9
(d(x) + d(x) + . . .)

]

where now s = 2ME is the cm energy squared for the electron-nucleon
collision and we have suppressed contributions from higher mass
quarks.

Similarly,

dσ

dx dy
(νN → ℓ−X) =

G2
F xs

π
[(d(x)+. . .)+(1−y)2(u(x)+. . .)] (49.18)

and

dσ

dx dy
(νN → ℓ+X) =

G2
F xs

π
[(d(x)+. . .)+(1−y)2(u(x)+. . .)] . (49.19)

Quasi-elastic neutrino scattering (νµn → µ−p, νµp → µ+n) is
directly related to the crossed reaction, neutron decay. The formula
for the differential cross section is presented, for example, in N.J. Baker
et al., Phys. Rev. D23, 2499 (1981).
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49.3. Hadroproduction of heavy quarks

For hadroproduction of heavy quarks Q = c, b, t, it is important
to include mass effects in the formulae. For qq̄ → QQ̄, one has

dσ

dΩ
(qq̄ → QQ̄) =

α2
s

9s3

√

1 −
4m2

Q

s

[
(m2

Q − t)2 + (m2
Q − u)2 + 2m2

Qs
]
,

(49.20)
while for gg → QQ̄ one has

dσ

dΩ
(gg → QQ̄) =

α2
s

32s

√

1 −
4m2

Q

s

[
6

s2
(m2

Q − t)(m2
Q − u)

−
m2

Q(s − 4m2
Q)

3(m2
Q − t)(m2

Q − u)

+
4

3

(m2
Q − t)(m2

Q − u) − 2m2
Q(m2

Q + t)

(m2
Q − t)2

+
4

3

(m2
Q − t)(m2

Q − u) − 2m2
Q(m2

Q + u)

(m2
Q − u)2

− 3
(m2

Q − t)(m2
Q − u) + m2

Q(u − t)

s(m2
Q − t)

− 3
(m2

Q − t)(m2
Q − u) + m2

Q(t − u)

s(m2
Q − u)

]
. (49.21)

49.4. Production of Weak Gauge Bosons

49.4.1. W and Z resonant production :

Resonant production of a single W or Z is governed by the partial
widths

Γ(W → ℓiνi) =

√
2GF m3

W

12π
(49.22)

Γ(W → qiqj) = 3

√
2GF |Vij |2m3

W

12π
(49.23)

Γ(Z → ff) = Nc

√
2GF m3

Z

6π

×
[
(T3 − Qf sin2 θW )2 + (Qf sin2 θW )2

]
.(49.24)

The weak mixing angle is θW . The CKM matrix elements are
indicated by Vij and Nc is 3 for qq final states and 1 for leptonic final
states.

The full differential cross section for fif j → (W, Z) → fi′f j′ is
given by

dσ

dΩ
=

Nf
c

N i
c
· 1

256π2s
· s2

(s − M2)2 + sΓ2

×
[
(L2 + R2)(L′2 + R′2)(1 + cos2 θ)

+ (L2 − R2)(L′2 − R′2)2 cosθ
]

(49.25)

where M is the mass of the W or Z. The couplings for the W are
L = (8GF m2

W /
√

2)1/2Vij/
√

2; R = 0 where Vij is the corresponding
CKM matrix element, with an analogous expression for L′ and R′.
For Z, the couplings are L = (8GF m2

Z/
√

2)1/2(T3 − sin2 θW Q); R =

−(8GF m2
Z/

√
2)1/2 sin2 θW Q, where T3 is the weak isospin of the

initial left-handed fermion and Q is the initial fermion’s electric charge.

The expressions for L′ and R′ are analogous. The color factors N i,f
c

are 3 for initial or final quarks and 1 for initial or final leptons.

49.4.2. Production of pairs of weak gauge bosons :

The cross section for ff → W+W− is given in term of the couplings
of the left-handed and right-handed fermion f , ℓ = 2(T3 − QxW ),
r = −2QxW , where T3 is the third component of weak isospin for the
left-handed f , Q is its electric charge (in units of the proton charge),
and xW = sin2 θW :

dσ

dt
=

2πα2

Ncs2

{[(
Q +

ℓ + r

4xW

s

s − m2
Z

)2

+

(
ℓ − r

4xW

s

s − m2
Z

)2]
A(s, t, u)

+
1

2xW

(
Q +

ℓ

2xW

s

s − m2
Z

)
(Θ(−Q)I(s, t, u) − Θ(Q)I(s, u, t))

+
1

8x2
W

(Θ(−Q)E(s, t, u) + Θ(Q)E(s, u, t))

}
, (49.26)

where Θ(x) is 1 for x > 0 and 0 for x < 0, and where

A(s, t, u) =

(
tu

m4
W

− 1

)(
1

4
− m2

W

s
+ 3

m4
W

s2

)
+

s

m2
W

− 4,

I(s, t, u) =

(
tu

m4
W

− 1

)(
1

4
− m2

W

2s
− m4

W

st

)
+

s

m2
W

− 2 + 2
m2

W

t
,

E(s, t, u) =

(
tu

m4
W

− 1

)(
1

4
+

m4
W

t2

)
+

s

m2
W

, (49.27)

and s, t, u are the usual Mandelstam variables with s = (pf + pf )2, t =

(pf − pW−)2, u = (pf − pW+)2. The factor Nc is 3 for quarks and 1
for leptons.

The analogous cross-section for qiqj → W±Z0 is

dσ

dt
=

πα2|Vij |2
6s2x2

W

{(
1

s − m2
W

)2 [(
9 − 8xW

4

)(
ut − m2

W m2
Z

)

+ (8xW − 6) s
(
m2

W + m2
Z

)]

+

[
ut − m2

W m2
Z − s(m2

W + m2
Z)

s − m2
W

][
ℓj

t
− ℓi

u

]

+
ut − m2

W m2
Z

4(1 − xW )

[
ℓ2j
t2

+
ℓ2i
u2

]
+

s(m2
W + m2

Z)

2(1 − xW )

ℓiℓj

tu

}
, (49.28)

where ℓi and ℓj are the couplings of the left-handed qi and qj as
defined above. The CKM matrix element between qi and qj is Vij .

The cross section for qiqi → Z0Z0 is

dσ

dt
=

πα2

96

ℓ4i + r4
i

x2
W (1 − x2

W )2s2

[
t

u
+

u

t
+

4m2
Zs

tu
− m4

Z

(
1

t2
+

1

u2

)]
.

(49.29)

49.5. Production of Higgs Bosons

49.5.1. Resonant Production :

The Higgs boson of the Standard Model can be produced resonantly
in the collisions of quarks, leptons, W or Z bosons, gluons, or photons.
The production cross section is thus controlled by the partial width of
the Higgs boson into the entrance channel and its total width. The
branching fractions for the Standard Model Higgs boson are shown
in Fig. 1 of the “Searches for Higgs bosons” review in the Particle
Listings section, as a function of the Higgs boson mass. The partial
widths are given by the relations
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Γ(H → ff) =
GF m2

fmHNc

4π
√

2

(
1 − 4m2

f/m2
H

)3/2
, (49.30)

Γ(H → W+W−) =
GF m3

HβW

32π
√

2

(
4 − 4aW + 3a2

W

)
, (49.31)

Γ(H → ZZ) =
GF m3

HβZ

64π
√

2

(
4 − 4aZ + 3a2

Z

)
, (49.32)

where Nc is 3 for quarks and 1 for leptons and where aW = 1 − β2
W =

4m2
W /m2

H and aZ = 1 − β2
Z = 4m2

Z/m2
H . The decay to two gluons

proceeds through quark loops, with the t quark dominating [2].
Explicitly,

Γ(H → gg) =
α2

sGF m3
H

36π3
√

2

∣∣∣∣∣
∑

q

I(m2
q/m2

H)

∣∣∣∣∣

2

, (49.33)

where I(z) is complex for z < 1/4. For z < 2× 10−3, |I(z)| is small so
the light quarks contribute negligibly. For mH < 2mt, z > 1/4 and

I(z) = 3

[
2z + 2z(1 − 4z)

(
sin−1 1

2
√

z

)2
]

, (49.34)

which has the limit I(z) → 1 as z → ∞.

49.5.2. Higgs Boson Production in W
∗ and Z

∗ decay :

The Standard Model Higgs boson can be produced in the decay of
a virtual W or Z (“Higgstrahlung”) [3,4]: In particular, if k is the
c.m. momentum of the Higgs boson,

σ(qiqj → WH) =
πα2|Vij |2
36 sin4 θW

2k√
s

k2 + 3m2
W

(s − m2
W )2

(49.35)

σ(ff → ZH) =
2πα2(ℓ2f + r2

f )

48Nc sin4 θW cos4 θW

2k√
s

k2 + 3m2
Z

(s − m2
Z)2

, (49.36)

where ℓ and r are defined as above.

49.5.3. W and Z Fusion :

Just as high-energy electrons can be regarded as sources of virtual
photon beams, at very high energies they are sources of virtual W
and Z beams. For Higgs boson production, it is the longitudinal
components of the W s and Zs that are important [5]. The
distribution of longitudinal W s carrying a fraction y of the electron’s
energy is [6]

f(y) =
g2

16π2

1 − y

y
, (49.37)

where g = e/ sin θW . In the limit s ≫ mH ≫ mW , the partial decay
rate is Γ(H → WLWL) = (g2/64π)(m3

H/m2
W ) and in the equivalent

W approximation [7]

σ(e+e− → νeνeH) =
1

16m2
W

(
α

sin2 θW

)3

×
[(

1 +
m2

H

s

)
log

s

m2
H

− 2 + 2
m2

H

s

]
. (49.38)

There are significant corrections to this relation when mH is not
large compared to mW [8]. For mH = 150 GeV, the estimate is
too high by 51% for

√
s = 1000 GeV, 32% too high at

√
s = 2000

GeV, and 22% too high at
√

s = 4000 GeV. Fusion of ZZ to make
a Higgs boson can be treated similarly. Identical formulae apply for
Higgs production in the collisions of quarks whose charges permit
the emission of a W+ and a W−, except that QCD corrections and
CKM matrix elements are required. Even in the absence of QCD
corrections, the fine-structure constant ought to be evaluated at the
scale of the collision, say mW . All quarks contribute to the ZZ fusion
process.

49.6. Inclusive hadronic reactions

One-particle inclusive cross sections Ed3σ/d3p for the production
of a particle of momentum p are conveniently expressed in terms of
rapidity y (see above) and the momentum p

T
transverse to the beam

direction (in the c.m.):

E
d3σ

d3p
=

d3σ

dφ dy p
T

dp2
T

. (49.39)

In appropriate circumstances, the cross section may be decomposed
as a partonic cross section multiplied by the probabilities of finding
partons of the prescribed momenta:

σhadronic =
∑

ij

∫
dx1 dx2 fi(x1) fj(x2) dσ̂partonic , (49.40)

The probability that a parton of type i carries a fraction of the incident
particle’s that lies between x1 and x1 + dx1 is fi(x1)dx1 and similarly
for partons in the other incident particle. The partonic collision is
specified by its c.m. energy squared ŝ = x1x2s and the momentum
transfer squared t̂. The final hadronic state is more conveniently
specified by the rapidities y1, y2 of the two jets resulting from the
collision and the transverse momentum pT . The connection between
the differentials is

dx1dx2dt̂ = dy1dy2
ŝ

s
dp2

T , (49.41)

so that

d3σ

dy1dy2dp2
T

=
ŝ

s

[
fi(x1)fj(x2)

dσ̂

dt̂
(ŝ, t̂, û) + fi(x2)fj(x1)

dσ̂

dt̂
(ŝ, û, t̂)

]
,

(49.42)

where we have taken into account the possibility that the incident
parton types might arise from either incident particle. The second
term should be dropped if the types are identical: i = j.

49.7. Two-photon processes

In the Weizsäcker-Williams picture, a high-energy electron beam is
accompanied by a spectrum of virtual photons of energies ω and
invariant-mass squared q2 = −Q2, for which the photon number
density is

dn =
α

π

[
1 − ω

E
+

ω2

E2 − m2
e ω2

Q2E2

]
dω

ω

dQ2

Q2 , (49.43)

where E is the energy of the electron beam. The cross section for
e+e− → e+e−X is then [9]

dσe+e−→e+e−X(s) = dn1dn2dσγγ→X(W 2), (49.44)

where W 2 = m2
X . Integrating from the lower limit Q2 =

m2
e

ω2
i

Ei(Ei − ωi)
to a maximum Q2 gives

σe+e−→e+e−X (s) =
α2

π2

∫ 1

zth

dz

z

×
[(

ln
Q2

max

zm2
e

− 1

)2

f(z) +
1

3
(ln z)3

]
σγγ→X(zs),(49.45)

where

f(z) =
(
1 + 1

2
z
)2

ln(1/z)− 1
2 (1 − z)(3 + z). (49.46)

The appropriate value of Q2
max depends on the properties of the

produced system X . For production of hadronic systems, Q2
max ≈ m2

ρ,
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while for lepton-pair production, Q2 ≈ W 2. For production of a
resonance with spin J 6= 1, we have

σe+e−→e+e−R(s) = (2J + 1)
8α2ΓR→γγ

m3
R

×
[
f(m2

R/s)

(
ln

m2
V s

m2
em

2
R

− 1

)2

− 1

3

(
ln

s

M2
R

)3]
,(49.47)

where mV is the mass that enters into the form factor for the γγ → R
transition, typically mρ.

PART II: PROCESSES BEYOND THE STANDARD

MODEL

49.8. Production of supersymmetric particles

In supersymmetric (SUSY) theories (see Supersymmetric Particle
Searches in this Review), every boson has a fermionic superpartner,
and every fermion has a bosonic superpartner. The minimal super-
symmetric Standard Model (MSSM) is a direct supersymmetrization
of the Standard Model (SM), although a second Higgs doublet is
needed to avoid triangle anomalies [10]. Under soft SUSY breaking,
superpartner masses are lifted above the SM particle masses. In weak
scale SUSY, the superpartners are invoked to stabilize the weak scale
under radiative corrections, so the superpartners are expected to have
masses of order the TeV scale.

49.8.1. Gluino and squark production :

The superpartners of gluons are the color octet, spin−1
2 gluinos

(g̃), while each helicity component of quark flavor has a spin-0 squark
partner, e.g. q̃L and q̃R. Third generation left- and right- squarks
are expected to have large mixing, resulting in mass eigenstates q̃1

and q̃2, with mq̃1 < mq̃2 (here, q denotes any of the SM flavors of
quarks and q̃i the corresponding flavor and type (i = L, R or 1, 2) of
squark). Gluino pair production (g̃g̃) takes place via either glue-glue
or quark-antiquark annihilation [11].

The subprocess cross sections are usually presented as differential
distributions in the Mandelstam variables s, t and u. Note that for
a 2 → 2 scattering subprocess ab → cd, the Mandelstam variable
s = (pa + pb)

2 = (pc + pd)
2, where pa is the 4-momentum of particle

a, and so forth. The variable t = (pc − pa)2, where c and a are taken
conventionally to be the most similar particles in the subprocess. The
variable u would then be equal to (pd − pa)2. Note that since s, t and
u are squares of 4-vectors, they are invariants in any inertial reference
frame.

Gluino pair production at hadron colliders is described by:

dσ

dt
(gg → g̃g̃) =

9πα2
s

4s2

{
2(m2

g̃ − t)(m2
g̃ − u)

s2

+
(m2

g̃ − t)(m2
g̃ − u) − 2m2

g̃(m
2
g̃ + t)

(m2
g̃ − t)2

+
(m2

g̃ − t)(m2
g̃ − u) − 2m2

g̃(m
2
g̃ + u)

(m2
g̃ − u)2

+
m2

g̃(s − 4m2
g̃)

(m2
g̃ − t)(m2

g̃ − u)

−
(m2

g̃ − t)(m2
g̃ − u) + m2

g̃(u − t)

s(m2
g̃ − t)

−
(m2

g̃ − t)(m2
g̃ − u) + m2

g̃(t − u)

s(m2
g̃ − u)

}
,

(49.48)
where αs is the strong fine structure constant. Also,

dσ

dt
(qq̄ → g̃g̃) =

8πα2
s

9s2





4

3

(
m2

g̃ − t

m2
q̃ − t

)2

+
4

3

(
m2

g̃ − u

m2
q̃ − u

)2

+
3

s2

[
(m2

g̃ − t)2 + (m2
g̃ − u)2 + 2m2

g̃s
]
− 3

[
(m2

g̃ − t)2 + m2
g̃s

]

s(m2
q̃ − t)

− 3

[
(m2

g̃ − u)2 + m2
g̃s

]

s(m2
q̃ − u)

+
1

3

m2
g̃s

(m2
q̃ − t)(m2

q̃ − u)




 . (49.49)

Gluinos can also be produced in association with squarks: g̃q̃i

production, where q̃i represents any of the various types (left-, right-
or mixed) and flavors of squarks. The subprocess cross section is
independent of whether the squark is the right-, left- or mixed type:

dσ

dt
(gq → g̃q̃i) =

πα2
s

24s2

[
16
3 (s2 + (m2

q̃i
− u)2) + 4

3s(m2
q̃i
− u)

]

s(m2
g̃ − t)(m2

q̃i
− u)2

×
(

(m2
g̃ − u)2 + (m2

q̃i
− m2

g̃)
2 +

2sm2
g̃(m

2
q̃i
− m2

g̃)

(m2
g̃ − t)

)
.

(49.50)

There are many different subprocesses for production of squark
pairs. Since left- and right- squarks generally have different masses
and different decay patterns, we present the differential cross section
for each subprocess of q̃i (i = L, R or 1, 2) separately. (In early
literature, the following formulae were often combined into a single
equation which didn’t differentiate the various squark types.) The
result for gg → q̃i

¯̃qi is:

dσ

dt
(gg → q̃i

¯̃qi) =
πα2

s

4s2





1

3

(
m2

q̃ + t

m2
q̃ − t

)2

+
1

3

(
m2

q̃ + u

m2
q̃ − u

)2

+
3

32s2

(
8s(4m2

q̃ − s) + 4(u − t)2
)

+
7

12

− 1

48

(4m2
q̃ − s)2

(m2
q̃ − t)(m2

q̃ − u)

+
3

32

[
(t − u)(4m2

q̃ + 4t− s) − 2(m2
q̃ − u)(6m2

q̃ + 2t − s)
]

s(m2
q̃ − t)

+
3

32

[
(u − t)(4m2

q̃ + 4u − s) − 2(m2
q̃ − t)(6m2

q̃ + 2u − s)
]

s(m2
q̃ − u)

+
7

96

[
4m2

q̃ + 4t − s
]

m2
q̃ − t

+
7

96

[
4m2

q̃ + 4u − s
]

m2
q̃ − u




 , (49.51)

which has an obvious u ↔ t symmetry.

For qq̄ → q̃i
¯̃qi with the same initial and final state flavors, we have

dσ

dt
(qq̄ → q̃i

¯̃qi) =
2πα2

s

9s2

{
1

(t − m2
g̃)

2
+

2

s2 − 2/3

s(t − m2
g̃)

}

×
[
−st − (t − m2

q̃i
)2

]
, (49.52)

while if initial and final state flavors are different (qq̄ → q̃′i¯̃q
′
i) we

instead have

dσ

dt
(qq̄ → q̃′i¯̃q

′
i) =

4πα2
s

9s4

[
−st − (t − m2

q̃′i
)2

]
. (49.53)

If the two initial state quarks are of different flavors, then we have

dσ

dt
(qq̄′ → q̃i

¯̃q′i) =
2πα2

s

9s2

−st − (t − m2
q̃i

)2

(t − m2
g̃)

2
. (49.54)

If the initial quarks are of different flavor and final state squarks are
of different type (i 6= j) then

dσ

dt
(qq̄′ → q̃i

¯̃q′j) =
2πα2

s

9s2

m2
g̃s

(t − m2
g̃)

2
. (49.55)

For same-flavor initial state quarks, but final state unlike-type squarks,
we also have

dσ

dt
(qq̄ → q̃i

¯̃qj) =
2πα2

s

9s2

m2
g̃s

(t − m2
g̃)

2
. (49.56)
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There also exist cross sections for quark-quark annihilation to squark
pairs. For same flavor quark-quark annihilation to same flavor/same
type final state squarks,

dσ

dt
(qq → q̃iq̃i) =

=
πα2

s

9s2
m2

g̃s

{
1

(t − m2
g̃)

2
+

1

(u − m2
g̃)

2
− 2/3

(t − m2
g̃)(u − m2

g̃)

}
, (49.57)

while if the final type squarks are different (i 6= j), we have

dσ

dt
(qq → q̃iq̃j) =

2πα2
s

9s2





[−st − (t − m2

q̃i
)(t − m2

q̃j
)]

(t − m2
g̃)

+
[−su − (u − m2

q̃i
)(u − m2

q̃j
)]

(u − m2
g̃)




 .

(49.58)
If initial/final state flavors are different, but final state squark types
are the same, then

dσ

dt
(qq′ → q̃iq̃

′
i) =

2πα2
s

9s2

m2
g̃s

(t − m2
g̃)

2
. (49.59)

If initial quark flavors are different and final squark types are different,
then

dσ

dt
(qq′ → q̃iq̃

′
j) =

2πα2
s

9s2

−st − (t − m2
q̃i

)(t − m2
q̃j

)

(t − m2
g̃)

2
. (49.60)

49.8.2. Gluino and squark associated production :

In the MSSM, the charged spin-1
2 winos and higgsinos mix to

make chargino states χ±
1 and χ±

2 , with m
χ±

1

< m
χ±

2

. The spin−1
2

neutral bino, wino and higgsino fields mix to give four neutralino mass
eigenstates χ0

1,2,3,4 ordered according to mass. We sometimes denote
the charginos and neutralinos collectively as -inos for notational
simplicity

For gluino and squark production in association with charginos
and neutralinos [12], the quark-squark-neutralino couplings∗

are defined by the interaction Lagrangian terms L
f̃f χ̃0

i
=

[
iAf

χ̃0
i

f̃†
L

¯̃χ0
i PLf + iBf

χ̃0
i

f̃†
R

¯̃χ0
i PRf + h.c.

]
, where Af

χ̃0
i

and Bf

χ̃0
i

are

coupling constants involving gauge couplings, neutralino mixing
elements and in the case of third generation fermions, Yukawa
couplings. Their form depends on the conventions used for setting
up the MSSM Lagrangian, and can be found in various reviews [13]
and textbooks [14,15]. PL and PR are the usual left- and right-
spinor projection operators and f denotes any of the SM fermions
u, d, e, νe, · · ·. The fermion-sfermion- chargino couplings have

the form L =

[
iAd

χ̃−

i

ũ
†
Lχ̃−

i PLd + iAu
χ̃−

i

d̃
†
Lχ̃c

iPLu + h.c.

]
for u and d

quarks, where the Ad
χ̃−

i

and Au
χ̃−

i

couplings are again convention-

dependent, and can be found in textbooks. The superscript c denotes
“charge conjugate spinor”, defined by ψc ≡ Cψ̄T .

The subprocess cross sections for chargino-squark associated
production occur via squark exchange and are given by

dσ

dt
(ūg → χ̃−

i
¯̃
dL) =

αs

24s2 |A
u
χ̃−

i

|2ψ(md̃L
, m

χ̃−

i
, t), (49.61)

dσ

dt
(dg → χ̃−

i ũL) =
αs

24s2
|Ad

χ̃−

i

|2ψ(mũL
, m

χ̃−

i
, t), (49.62)

* The couplings Af

χ̃0
i

and Bf

χ̃0
i

are given explicitly in Ref. 15 in Eq.

(8.87). Also, the couplings Ad
χ̃−

i

and Au
χ̃−

i

are given in Eq. (8.93). The

couplings X
j
i and Y

j
i are given by Eq. (8.103), while the xi and yi

couplings are given in Eq. (8.100). Finally, the couplings Wij are given
in Eq. (8.101).

while neutralino-squark production is given by

dσ

dt
(qg → χ̃0

i q̃) =
αs

24s2

(
|Aq

χ̃0
i

|2 + |Bq

χ̃0
i

|2
)

ψ(mq̃, mχ̃0
i
, t), (49.63)

where

ψ(m1, m2, t) =
s + t − m2

1

2s
− m2

1(m
2
2 − t)

(m2
1 − t)2

+
t(m2

2 − m2
1) + m2

2(s − m2
2 + m2

1)

s(m2
1 − t)

. (49.64)

Here, the variable t is given by the square of “squark-minus-quark”
four-momentum. The neutralino-gluino associated production cross
section also occurs via squark exchange and is given by

dσ

dt
(qq̄ → χ̃0

i g̃) =
αs

18s2

(
|Aq

χ̃0
i

|2 + |Bq

χ̃0
i

|2
) 


(m2

χ̃0
i

− t)(m2
g̃ − t)

(m2
q̃ − t)2

+
(m2

χ̃0
i

− u)(m2
g̃ − u)

(m2
q̃ − u)2

−
2ηiηg̃mg̃mχ̃0

i
s

(m2
q̃ − t)(m2

q̃ − u)



 ,(49.65)

where ηi is the sign of the neutralino mass eigenvalue and ηg̃ is
the sign of the gluino mass eigenvalue. We also have chargino-gluino
associated production:

dσ

dt
(ūd → χ̃−

i g̃) =
αs

18s2



|Au
χ̃−

i

|2
(m2

χ̃−

i

− t)(m2
g̃ − t)

(m2
d̃L

− t)2

+|Ad
χ̃−

i

|2
(m2

χ̃−

i

− u)(m2
g̃ − u)

(m2
ũL

− u)2
+

2ηg̃Re(Au
χ̃−

i

Ad
χ̃−

i

)mg̃mχ̃i
s

(m2
d̃L

− t)(m2
ũL

− u)



 , (49.66)

where t̂ = (g̃ − d)2 and in the third term one must take the real part
of the in general complex coupling constant product.

49.8.3. Slepton and sneutrino production :

The subprocess cross section for ℓ̃L
¯̃νℓL

production (ℓ = e or µ)
occurs via s-channel W exchange and is given by

dσ

dt
(dū → ℓ̃L

¯̃νℓL
) =

g4|DW (s)|2
192πs2

(
tu − m2

ℓ̃L
m2

ν̃ℓL

)
, (49.67)

where DW (s) = 1/(s − M2
W + iMW ΓW ) is the W -boson propagator

denominator. The production of τ̃1 ¯̃ντ is given as above, but replacing
mℓ̃L

→ mτ̃1 , mν̃ℓL
→ mν̃τ and multiplying by an overall factor

of cos2 θτ (where θτ is the tau-slepton mixing angle). Similar
substitutions hold for τ̃2 ¯̃ντ production, except the overall factor is
sin2 θτ .

Table 49.1: The constants αf and βf that appear in in the SM
neutral current Lagrangian. Here t ≡ tan θW and c ≡ cot θW .

f qf αf βf

ℓ −1
1

4
(3t − c)

1

4
(t + c)

νℓ 0
1

4
(t + c) −1

4
(t + c)

u
2

3
− 5

12
t +

1

4
c −1

4
(t + c)

d −1

3

1

12
t − 1

4
c

1

4
(t + c)
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The subprocess cross section for ℓ̃L
¯̃
ℓL production occurs via s-

channel γ and Z exchange, and depends on the neutral current
interaction, with fermion couplings to γ and Z0 given by Lneutral =
−eqf f̄γµfAµ + ef̄γµ(αf + βfγ5)fZµ (with values of qf , αf , and βf
given in Table 49.1.

The subprocess cross section is given by

dσ

dt
(qq̄ → ℓ̃L

¯̃
ℓL) =

e4

24πs2

(
tu − m4

ℓ̃L

)
×

{
q2
ℓ q2

q

s2 + (αℓ − βℓ)
2(α2

q + β2
q )|DZ(s)|2

+
2qℓqqαq(αℓ − βℓ)(s − M2

Z)

s
|DZ(s)|2

}
, (49.68)

where DZ(s) = 1/(s−M2
Z + iMZΓZ). The cross section for sneutrino

production is given by the same formula, but with αℓ, βℓ, qℓ and m
ℓ̃L

replaced by αν , βν , 0 and mν̃L
, respectively. The cross section for τ̃1 ¯̃τ1

production is obtained by replacing m
ℓ̃L

→ mτ̃1 and βℓ → βℓ cos 2θτ .

The cross section for ℓ̃R
¯̃
ℓR production is given by substituting

αℓ − βℓ → αℓ + βℓ and m
ℓ̃L

→ m
ℓ̃R

in the equation above. The cross

section for τ̃2¯̃τ2 production is obtained from the formula for ℓ̃R
¯̃
ℓR

production by replacing m
ℓ̃R

→ mτ̃2 and βℓ → βℓ cos 2θτ .

Finally, the cross section for τ̃1 ¯̃τ2 production occurs only via Z
exchange, and is given by

dσ

dt
(qq̄ → τ̃1

¯̃τ2) =
dσ

dt
(qq̄ → ¯̃τ1τ̃2) =

e4

24πs2 (α2
q + β2

q )β2
ℓ sin2 2θτ |DZ(s)|2(ut − m2

τ̃1
m2

τ̃2
). (49.69)

49.8.4. Chargino and neutralino pair production :

49.8.4.1. χ̃−
i χ̃0

j production:

The subprocess cross section for dū → χ̃−
i χ̃0

j depends on

Lagrangian couplings LWūd = − g√
2
ūγµPLdW+µ + h.c., L

Wχ̃−

i χ̃0
j

=

−g(−i)θj χ̃−
i[X

j
i +Y

j
i γ5]γµχ̃0

jW
−µ +h.c., L

qq̃χ̃−

i
= iAd

χ̃−

i

ũ
†
Lχ̃−

i PLd+

iAu
χ̃−

i

d̃
†
Lχ̃c

iPLu +h.c. and Lqq̃χ̃0
j

= iA
q

χ̃0
j

q̃
†
Lχ̃0

jPLq +h.c.. Contributing

diagrams include W exchange and also d̃L and ũL squark exchange.

The Xj
i and Y j

i couplings are new, and again convention-dependent:
the cross section formulae works if the interaction Lagrangian is written
in the above form, so that the couplings can be suitably extracted.
The term θj = 0 (1) if mχ̃0

j
> 0 (< 0); it comes about because the

neutralino field must be re-defined by a −iγ5 transformation if its
mass eigenvalue is negative [15]. The subprocess cross section is
given in terms of dot products of four momenta, where particle labels
are used to denote their four-momenta; note that all mass terms in the
cross section formulae are positive definite, so that the signs of mass
eigenstates have been absorbed into the Lagrangian couplings, as for
instance in Ref. [15]. We then have

dσ

dt
(du → χ̃−

i χ̃0
j ) =

1

192πs2

[
TW + Td̃L

+ TũL
+ TWd̃L

+ TWũL
+ Td̃LũL

]
(49.70)

where

TW = 8g4|DW (s)|2
{

[X
j2
i + Y

j2
i ](χ̃0

j · dχ̃−
i · u + χ̃0

j · uχ̃−
i · d)

+ 2(Xj
i Y j

i )(χ̃0
j · dχ̃−

i · u − χ̃0
j · uχ̃−

i · d) + [Xj2
i − Y j2

i ]m
χ̃−

i
mχ̃0

j
d · u

}
,

(49.71)

Td̃L
=

4|Au
χ̃−

i

|2|Ad
χ̃0

j

|2

[(χ̃−
i − u)2 − m2

d̃L
]2

d · χ̃0
j χ̃

−
i · u, (49.72)

TũL
=

4|Ad
χ̃−

i

|2|Au
χ̃0

j

|2

[(χ̃0
j − u)2 − m2

ũL
]2

u · χ̃0
j χ̃

−
i · d (49.73)

T
Wd̃L

=

−
√

2g2Re[Ad∗
χ̃0

j

Au
χ̃−

i

(−i)θj ](s − M2
W )|DW (s)|2

(χ̃−
i − u)2 − m2

d̃L

×
{

8(Xj
i + Y j

i )χ̃0
j · du · χ̃−

i + 4(Xj
i − Y j

i )m
χ̃−

i
mχ̃0

j
d · u

}
(49.74)

TWũL
=

√
2g2Re[Ad∗

χ̃−

i

Au
χ̃0

j

(−i)θj ](s − M2
W )|DW (s)|2

(χ̃0
j − u)2 − m2

ũL

×
{

8(X
j
i − Y

j
i )χ̃0

j · ud · χ̃−
i + 4(X

j
i + Y

j
i )m

χ̃−

i
mχ̃0

j
d · u

}
(49.75)

and

T
d̃LũL

= −
4Re[Ad

χ̃0
j

Au∗
χ̃−

i

Ad∗
χ̃−

i

Au
χ̃0

j

]m
χ̃−

i
mχ̃0

j
d · u

[(χ̃−
i − u)2 − m2

d̃L
][(χ̃0

j − u)2 − m2
ũL

]
. (49.76)

49.8.4.2. Chargino pair production:

The subprocess cross section for dd̄ → χ̃−
i χ̃+

i (i = 1, 2) depends on

Lagrangian couplings L = eχ̃−
i γµχ̃−

i Aµ−e cot θW χ̃−
i γµ(xi−yiγ5)χ̃

−
i Zµ

and also L ∋ iAd
χ̃−

i

ũ†Lχ̃−
i PLd + iAu

χ̃−

i

d̃†Lχ̃−c
i PLu + h.c.. Contributing

diagrams include s-channel γ, Z0 exchange and t-channel ũL
exchange [16,17]. The couplings xi and yi are again new and as usual
convention-dependent.

The subprocess cross section is given by

dσ

dt
(dd → χ̃−

i χ̃+
i ) =

1

192πs2

[
Tγ + TZ + TũL

+ TγZ + TγũL
+ TZũL

]

(49.77)
where

Tγ =
32e4q2

d

s2

[
d · χ̃+

i d · χ̃−
i + d · χ̃−

i d · χ̃+
i + m2

χ̃−

i

d · d
]

(49.78)

TZ = 32e4 cot2 θW |DZ(s)|2
{

(α2
d + β2

d)(x2
i + y2

i )

[
d · χ̃+

i d · χ̃−
i + d · χ̃−

i d · χ̃+
i + m2

χ̃−

i

d · d
]

∓4αdβdxiyi
[
d · χ̃+

i d · χ̃−
i − d · χ̃−

i d · χ̃+
i

]
−2y2

i (α2
d + β2

d)m2
χ̃−

i

d · d
}

,

(49.79)

TũL
=

4|Ad
χ̃−

i

|4

[(d − χ̃−
i )2 − m2

ũL
]2

d · χ̃−
i d · χ̃+

i (49.80)

TγZ =
64e4 cot θW qd(s − M2

Z)|DZ(s)|2
s

×
{

αdxi

(
d · χ̃+

i d · χ̃−
i + d · χ̃−

i d · χ̃+
i + m2

χ̃−

i

d · d
)

±βdyi
(
d · χ̃−

i d · χ̃+
i − d · χ̃+

i d · χ̃−
i

)
}

(49.81)

TγũL
= ∓8e2qd

s

|Ad
χ̃−

i

|2

[(d − χ̃−
i )2 − m2

ũL
]

{
2d · χ̃+

i d · χ̃−
i + m2

χ̃−

i

d · d
}

(49.82)
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and

TZũL
= ∓8e2 cot θW |DZ(s)|2

|Ad
χ̃−

i

|2(s − M2
Z)

[(d − χ̃−
i )2 − m2

ũL
]
(αd − βd)

×
{

2(xi ∓ yi)d · χ̃−
i d · χ̃+

i + m2
χ̃−

i

(xi ± yi)d · d
}

(49.83)

using the upper of the sign choices.

The cross section for uu → χ̃+
i χ̃−

i can be obtained from the above

by replacing αd → αu, βd → βu, qd → qu, ũL → d̃L, Ad
χ̃−

i

→ Au
χ̃−

i

,

d → u, d → u and adopting the lower of the sign choices everywhere.

The cross section for qq̄ → χ̃−
1 χ̃+

2 , χ̃+
1 χ̃−

2 can occur via Z and q̃L

exchange. It is usually much smaller than χ̃−
1,2χ̃

+
1,2 production, so the

cross section will not be presented here. It can be found in Appendix
A of Ref. 15.

49.8.4.3. Neutralino pair production:

Neutralino pair production via qq̄ fusion takes place via s-channel
Z exchange plus t- and u-channel left- and right- squark exchange
(5 diagrams) [17,18]. The Lagrangian couplings (see previous
footnote*) needed include terms given above plus terms of the form

L = Wij χ̃0
iγµ(γ5)

θi+θj+1χ̃0
jZ

µ. The couplings Wij depend only on
the higgsino components of the neutralinos i and j. The subprocess
cross section is given by:

dσ

dt
(qq̄ → χ̃0

i χ̃
0
j ) =

1

192πs2

[
TZ + Tq̃L

+ Tq̃R
+ TZq̃L

+ TZq̃R

]
(49.84)

where
TZ = 128e2|Wij |2(α2

q + β2
q )|DZ(s)|2

[
q · χ̃0

i q̄ · χ̃0
j + q · χ̃0

j q̄ · χ̃0
i − ηiηjmχ̃0

i
mχ̃0

j
q · q̄

]
, (49.85)

Tq̃L
= 4|Aq

χ̃0
i

|2|Aq

χ̃0
j

|2
{

q · χ̃0
i q̄ · χ̃0

j

[(χ̃0
i − q)2 − m2

q̃L
]2

+
q · χ̃0

j q̄ · χ̃0
i

[(χ̃0
j − q)2 − m2

q̃L
]2

− ηiηj

mχ̃0
i
mχ̃0

j
q · q̄

[(χ̃0
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As before, ηi = ±1 corresponding to whether the neutralino mass
eigenvalue is positive or negative. When i = j in the above formula,
one must remember to integrate over just 2π steradians of solid angle
to avoid double counting in the total cross section.

49.9. Universal extra dimensions

In the Universal Extra Dimension (UED) model of Ref. [19] (see
Ref. [20] for a review of models with extra spacetime dimensions),
the Standard Model is embedded in a five dimensional theory, where
the fifth dimension is compactified on an S1/Z2 orbifold. Each SM
chirality state is then the zero mode of an infinite tower of Kaluza-
Klein excitations labelled by n = 0 − ∞. A KK parity is usually
assumed to hold, where each state is assigned KK-parity P = (−1)n.
If the compactification scale is around a TeV, then the n = 1 (or even
higher) KK modes may be accessible to collider searches.

Of interest for hadron colliders are the production of massive n ≥ 1
quark or gluon pairs. These production cross sections have been
calculated in Ref. [21,22]. We list here results for the n = 1 case
only with M1 = 1/R (R is the compactification radius) and s, t and
u are the usual Mandelstam variables; more general formulae can be
found in Ref. [22]. The superscript ∗ stands for any KK excited state,
while • stands for left chirality states and ◦ stands for right chirality
states.
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where
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where t′ = t − M2
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49.10. Large extra dimensions

In the ADD theory [23] with large extra dimensions (LED), the SM
particles are confined to a 3-brane, while gravity propagates in the
bulk. It is assumed that the n extra dimensions are compactified on an
n-dimensional torus of volume (2πr)n, so that the fundamental 4 + n
dimensional Planck scale M∗ is related to the usual 4-dimensional
Planck scale MP l by M2

P l = Mn+2
∗ (2πr)n. If M∗ ∼ 1 TeV, then the

MW − MP l hierarchy problem is just due to gravity propagating in
the large extra dimensions.

In these theories, the KK-excited graviton states Gn
µν for n = 1−∞

can be produced at collider experiments. The graviton couplings to
matter are suppressed by 1/MP l, so that graviton emission cross
sections dσ/dt ∼ 1/M2

P l. However, the mass splittings between the
excited graviton states can be tiny, so the graviton eigenstates are
usually approximated by a continuum distribution. A summation
(integration) over all allowed graviton emissions ends up cancelling the
1/M2

P l factor, so that observable cross section rates can be attained.
Some of the fundamental production formulae for a KK graviton
(denoted G) of mass m at hadron colliders include the subprocesses

dσm
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(f f̄ → γG) =

αQ2
f
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1

sM2
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F1(
t

s
,
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s
), (49.93)

where Qf is the charge of fermion f and Nf is the number of QCD
colors of f . Also,
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where

F1(x, y) =
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and
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These formulae must then be multiplied by the graviton density of

states formula dN = Sn−1
M2

P l

Mn+2
∗

mn−1dm to gain the cross section

d2σ

dtdm
= Sn−1

M2
P l

Mn+2
∗

mn−1 dσm

dt
(49.100)

where Sn =
(2π)n/2

Γ(n/2)
is the surface area of an n-dimensional sphere of

unit radius.

Virtual graviton processes can also be searched for at colliders. For
instance, in Ref. [24] the cross section for Drell-Yan production of
lepton pairs via gluon fusion was calculated, where it is found that, in
the center-of-mass system

dσ

dz
(gg → ℓ+ℓ−) =

λ2s3

64πM8∗
(1 − z2)(1 + z2) (49.101)

where z = cos θ and λ is a model-dependent coupling constant ∼ 1.
Formulae for Drell-Yan production via qq̄ fusion can also be found in
Refs. [24,25].

49.11. Warped extra dimensions

In the Randall-Sundrum model [26] of warped extra dimensions, the
arena for physics is a 5-d anti-deSitter (AdS5) spacetime, for which

a non-factorizable metric exists with a metric warp factor e−2σ(φ).
It is assumed that two opposite tension 3-branes exist within AdS5

at the two ends of an S1/Z2 orbifold parametrized by co-ordinate φ
which runs from 0 − π. The 4-D solution of the Einstein equations
yields σ(φ) = krc|φ|, where rc is the compactification radius of the
extra dimension and k ∼ MP l. The 4-D effective action allows one

to identify M
2
P l =

M3

k
(1 − e−2krcπ), where M is the 5-D Planck

scale. Physical particles on the TeV scale (SM) brane have mass
m = e−krcπm0, where m0 is a fundamental mass of order the Planck
scale. Thus, the weak scale-Planck scale hierarchy occurs due to the
existence of the exponential warp factor if krc ∼ 12.

In the simplest versions of the RS model, the TeV-scale brane
contains only SM particles plus a tower of KK gravitons. The RS
gravitons have mass mn = kxne−krcπ , where the xi are roots of
Bessel functions J1(xn) = 0, with x1 ≃ 3.83, x2 ≃ 7.02 etc. While
the RS zero-mode graviton couplings suppressed by 1/MP l and are
thus inconsequential for collider searches, the n = 1 and higher modes
have couplings suppressed instead by Λπ = e−krcπMP l ∼ TeV . The
n = 1 RS graviton should have width Γ1 = ρm1x

2
1(k/MP l)

2, where
ρ is a constant depending on how many decay modes are open. The
formulae for dilepton production via virtual RS graviton exchange
can be gained from the above formulae for the ADD scenario via the
replacement [27]

λ

M4∗
→ i2

8Λ2
π

∞∑

n=1

1

s − m2
n + imnΓn

. (49.102)
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50. Neutrino Cross Section Measurements

Revised August 2015 by G.P. Zeller (Fermilab)

Neutrino cross sections are an essential ingredient in all neutrino
experiments. Interest in neutrino scattering has recently increased
due to the need for such information in the interpretation of neutrino
oscillation data. Historically, neutrino scattering results on both
charged current (CC) and neutral current (NC) channels have been
collected over many decades using a variety of targets, analysis
techniques, and detector technologies. With the advent of intense
neutrino sources constructed for neutrino oscillation investigations,
experiments are now remeasuring these cross sections with a renewed
appreciation for nuclear effects† and the importance of improved
neutrino flux estimations. This work summarizes accelerator-based
neutrino cross section measurements performed in the ∼ 0.1−300 GeV
range with an emphasis on inclusive, quasi-elastic, and pion production
processes, areas where we have the most experimental input at present
(Table 50.1 and Table 50.2). For a more comprehensive discussion of
neutrino cross sections, including neutrino-electron elastic scattering
and lower energy neutrino measurements, the reader is directed
to a recent review of this subject [1]. Here, we survey existing
experimental data on neutrino interactions and do not attempt to
provide a census of the associated theoretical calculations, which are
both important and plentiful.
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Fig. 50.1: Measurements of νµ and νµ CC inclusive scattering cross sections (per nucleon) divided by neutrino
energy as a function of neutrino energy. Note the transition between logarithmic and linear scales occurring at
100 GeV. Neutrino cross sections are typically twice as large as their corresponding antineutrino counterparts,
although this difference can be larger at lower energies. NC cross sections (not shown) are generally smaller but
non-negligible compared to the CC scattering case.

† Nuclear effects refer to kinematic and final state effects which im-
pact neutrino scattering off nuclei. Such effects can be significant and
are particularly relevant given that modern neutrino experiments make
use of nuclear targets to increase their event yields.

50.1. Inclusive Scattering

Over the years, many experiments have measured the total
inclusive cross section for neutrino (νµ N → µ− X) and antineutrino
(νµ N → µ+ X) scattering off nucleons covering a broad range of
neutrino energies. As can be seen in Fig. 50.1, the inclusive cross
section approaches a linear dependence on neutrino energy. Such
behavior is expected for point-like scattering of neutrinos from quarks,
an assumption which breaks down at lower energies. To provide a more
complete picture, differential cross sections for such inclusive scattering
processes have been reported – these include measurements on iron
from NuTeV [42] and, more recently, at lower neutrino energies on
argon from ArgoNeuT [2,3] and on carbon from T2K [37]. MINERvA
has also provided new measurements of the ratios of the muon neutrino
CC inclusive scattering cross section on a variety of nuclear targets
such as lead, iron, and carbon [11]. At high energy, the inclusive cross
section is dominated by deep inelastic scattering (DIS). Several high
energy neutrino experiments have measured the DIS cross sections
for specific final states, for example opposite-sign dimuon production.
The most recent dimuon cross section measurements include those
from CHORUS [43], NOMAD [44], and NuTeV [45]. At lower
neutrino energies, the inclusive cross section is an additionally complex
combination of quasi-elastic scattering and pion production processes,
two areas we discuss next.
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Table 50.1: List of beam properties, nuclear targets, and
durations for modern accelerator-based neutrino experiments
studying neutrino scattering.

〈Eν〉, 〈Eν〉 neutrino run
Experiment beam GeV target(s) period

ArgoNeuT ν, ν 4.3, 3.6 Ar 2009 – 2010
ICARUS ν 20.0 Ar 2010 – 2012
K2K ν 1.3 CH, H2O 2003 – 2004
MicroBooNE ν 0.8 Ar 2015 –
MINERvA ν, ν 3.5 (LE), 5.5 (ME) He, CH, H2O, Fe, Pb 2009 –
MiniBooNE ν, ν 0.8, 0.7 CH2 2002 – 2012
MINOS ν, ν 3.5, 6.1 Fe 2004 –
NOMAD ν, ν 23.4, 19.7 C 1995 – 1998
NOvA ν, ν 2.0, 2.0 CH2 2010 –
SciBooNE ν, ν 0.8, 0.7 CH 2007 – 2008
T2K ν, ν 0.6, 0.6 CH, H2O 2010 –

Table 50.2: Summary of published neutrino cross section
measurements from modern accelerator-based experiments. All
measurements are νµ or νµ scattering with the exception of the
last column which is a νe measurement.

Experiment inclusive 0π π± π0 νe

ArgoNeuT CC [2,3] 2p [4] CC [5] – –

K2K – CC [6] CC[7,8] CC [9], –
NC [10]

MINERνA CC [11] CC[12,13],1p[14] CC [15] CC [16] –

MiniBooNE – CC [17,18], MA [19], CC [23,24] CC [25], –
NC[20,21,22] NC [26,27]

MINOS CC [28] MA [29] – – –

NOMAD CC [30] CC [31] – NC [32] –

SciBooNE CC [33] – CC [34] NC [35,36] –

T2K CC [37,38] CC [39], – – CC[41]
NC [40]

50.2. Quasi-elastic scattering

Quasi-elastic (QE) scattering is the dominant neutrino interaction
for neutrino energies less than ∼ 1 GeV and represents a large fraction
of the signal samples in many neutrino oscillation experiments.
Historically, neutrino (antineutrino) quasi-elastic scattering refers to
the process, νµ n → µ− p (νµ p → µ+ n), where a charged lepton
and single nucleon are ejected in the elastic interaction of a neutrino
(or antineutrino) with a nucleon in the target material. This is the
final state one would strictly observe, for example, in scattering off
of a free nucleon target. Fig. 50.2 displays the current status of
existing measurements of νµ and νµ QE scattering cross sections
as a function of neutrino energy. In this plot, and all others in
this review, the prediction from a representative neutrino event
generator (NUANCE) [46] provides a theoretical comparator. Other
generators and more sophisticated calculations exist which can yield
significantly different predictions [47]. Note that modern experiments
have recently opted to report QE cross sections as a function of final
state muon or proton kinematics [17,18,48]. Such distributions are
more difficult to compare between experiments but are much less
model-dependent and provide more stringent tests of the theory than
cross sections as a function of neutrino energy (Eν) or 4-momentum
transfer (Q2).

In many of these initial measurements of the neutrino QE cross
section, bubble chamber experiments employed light targets (H2 or
D2) and required both the detection of the final state muon and single
nucleon‡; thus the final state was clear and elastic kinematic conditions
could be verified. The situation is more complicated, of course, for
heavier nuclear targets. In this case, nuclear effects can impact the size
and shape of the cross section as well as the final state kinematics and
topology. Due to intranuclear hadron rescattering and the possible
effects of correlations between target nucleons, additional nucleons may
be ejected in the final state; hence, a QE interaction on a nuclear target
does not always imply the ejection of a single nucleon. One therefore
needs to take some care in defining what one means by neutrino QE
scattering when scattering off targets heavier than H2 or D2. Adding
to the complexity, recent MiniBooNE measurements of the νµ and
νµ QE scattering cross sections on carbon near 1 GeV have revealed
a significantly larger cross section than originally anticipated [17,18].
Such an enhancement was observed many years prior in electron-
nucleus scattering [57] and is believed to be due to the presence of
correlations between target nucleons in the nucleus. As a result, the
impact of such nuclear effects on neutrino QE scattering has recently

‡ In the case of D2, many experiments additionally observed the
spectator proton.
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Figure 50.2: Measurements of νµ (black) and νµ (red) QE
scattering cross sections (per nucleon) as a function of neutrino
energy. Data on a variety of nuclear targets are shown, including
measurements from ANL [49], BEBC [50], BNL [51], FNAL [52],
LSND [53], T2K [39], MINERvA [12], MiniBooNE [17,18],
GGM [54], NOMAD [31], Serpukhov [55], and SKAT [56].
Shown is the QE free nucleon scattering prediction from
NUANCE [46] assuming MA = 1.0 GeV. This prediction is
significantly altered by nuclear effects in the case of neutrino-
nucleus scattering. Although plotted together, care should be
taken in interpreting measurements performed on targets heavier
than D2 due to possible differences in QE identification and
kinematics.

been the subject of intense experimental and theoretical scrutiny
with potential implications on event rates, nucleon emission, neutrino
energy reconstruction, and neutrino/antineutrino ratios. The reader
is referred to a recent review of the situation in [58,59]. Additional
measurements are clearly needed before a complete understanding
is achieved. To help drive further progress, neutrino-nucleus QE
cross sections have been reported for the first time in the form of
double-differential distributions in muon kinematics, d2σ/dTµd cos θµ,
by MiniBooNE [17,18] thus reducing the model-dependence of the
reported data and allowing a more rigorous two-dimensional test of the
underlying nuclear theory. Experiments such as ArgoNeuT have begun
to provide the first measurements of proton multiplicities in neutrino-
argon QE scattering [4,48], a critical ingredient in understanding the
hadronic side of these interactions and final state effects. MINOS,
NOvA, and T2K have started to study QE interactions in their
near detectors with sizable statistics [29,39,60]. Most recently,
MINERvA has measured the differential cross section, dσ/dQ2

QE , νe

QE scattering [61], single proton emission [14], and vertex energy
in both νµ and νµ QE interactions in hydrocarbon [12,13]. With the
MiniBooNE results having revealed additional complexities in the QE
channel, measurements from other neutrino experiments are crucial for
getting a better handle on the underlying nuclear physics impacting
neutrino-nucleus interactions. What we once thought was “simple”
QE scattering is in fact not so simple.

In addition to such charged current investigations, measurements
of the neutral current counterpart of this channel have also been
performed. The most recent NC elastic scattering cross section mea-
surements include those from BNL E734 [62], MiniBooNE [20,21,22],
and T2K [40]. A number of measurements of the Cabibbo-suppressed
antineutrino QE hyperon production cross section have additionally
been reported [56,63], although not in recent years.

50.3. Pion Production

In addition to such elastic processes, neutrinos can also inelastically
scatter producing a nucleon excited state (∆, N∗). Such baryonic
resonances quickly decay, most often to a nucleon and single-pion final
state. Historically, experiments have measured various exclusive final
states associated with these reactions, the majority of which have been
on hydrogen and deuterium targets [1].

In addition to such resonance production processes, neutrinos can
also coherently scatter off of the entire nucleus and produce a distinctly
forward-scattered single pion final state. Both CC (νµ A → µ− Aπ+,
νµ A → µ+ Aπ− ) and NC (νµ A → νµ Aπ0, νµ A → νµ Aπ0) processes
are possible in this case. Even though the level of coherent pion
production is small compared to resonant processes, observations exist
across a broad energy range and on multiple nuclear targets [64]. More
recently, several modern neutrino experiments have measured coherent
pion production cross sections including ArgoNeuT [5], K2K [8],
MINERvA [15], MiniBooNE [27], MINOS [65], NOMAD [32], and
SciBooNE [34,36].

As with QE scattering, a new appreciation for the significance of
nuclear effects has surfaced in pion production channels, again due
to the use of heavy nuclear targets in modern neutrino experiments.
Many experiments have been careful to report cross sections for
various detected final states, thereby not correcting for large and
uncertain nuclear effects (e.g., pion rescattering, charge exchange,
and absorption) which can introduce unwanted sources of uncertainty
and model dependence. Recent measurements of single-pion cross
sections, as published by K2K [9,10], MiniBooNE [24], and
SciBooNE [35], take the form of ratios with respect to QE or
CC inclusive scattering samples. Providing the most comprehensive
survey of neutrino single-pion production to date, MiniBooNE has
recently published a total of 16 single- and double-differential cross
sections for both the final state muon (in the case of CC scattering)
and pion in these interactions; thus, providing the first measurements
of these distributions (Fig. 50.3) [23–26]. MINERvA has recently
produced similar kinematic measurements at higher neutrino energies
(Fig. 50.4) [16,66]. Regardless of the interaction channel, such
differential cross section measurements (in terms of observed final
state particle kinematics) are now preferred for their reduced model
dependence and for the additional kinematic information they provide.
Such a new direction has been the focus of modern measurements as
opposed to the reporting of more model-dependent, historical cross
sections as a function of Eν or Q2. Together with similar results for
other interaction channels, a better understanding and modeling of
nuclear effects will be possible moving forward.
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Figure 50.3: Differential cross sections for CC and NC pion
production from MiniBooNE at a mean neutrino energy of 0.8
GeV. Shown here are the measurements as a function of the
momentum of the outgoing pion in the interaction, a kinematic
that is particularly sensitive to final state interactions. Other
distributions are also available in the publications listed in the
legend.

It should be noted that baryonic resonances can also decay to
multi-pion, other mesonic (K, η, ρ, etc.), and even photon final
states. Experimental results for these channels are typically sparse
or non-existent [1]; however, photon production processes can be
an important background for νµ → νe appearance searches and thus
have become the focus of some recent experimental investigations; for
example, in NOMAD [67].
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Figure 50.4: Differential cross sections for neutrino and
antineutrino pion production from MINERvA at a mean
neutrino energy of 3.3 GeV. Shown here are the measurements
as a function of the momentum of the outgoing pion in the
interaction, a kinematic that is particularly sensitive to final
state interactions. Other distributions are also available in the
publications listed in the legend. Note that while the MINERvA
νµ measurement includes both π+ and π− production, the
sample is almost entirely (> 99%) π+ final states.

50.4. Outlook

Currently operating experiments will continue to produce additional
neutrino cross section measurements as they accumulate additional
statistics, while a few new experiments will soon be coming online.
In the coming years, analysis of a broad energy range of data on a
variety of targets in the MINERvA experiment will provide the most
detailed analysis yet of nuclear effects in neutrino interactions. Data
from ArgoNeuT, ICARUS, MicroBooNE, and SBND will probe deeper
into complex neutrino final states using the superior capabilities of
liquid argon time projection chambers, while the T2K and NOvA
near detectors will collect high statistics samples in intense neutrino
beams. Together, these investigations should significantly advance our
understanding of neutrino-nucleus scattering in the next decade.

50.5. Acknowledgments

The author thanks Anne Schukraft (Fermilab) for help in updating
the plots contained in this review.

References:

1. J.A. Formaggio and G.P. Zeller, Rev. Mod. Phys. 84, 1307
(2012).

2. C. Anderson et al., Phys. Rev. Lett. 108, 161802 (2012).
3. R. Acciarri et al., Phys. Rev. D89, 112003 (2014).
4. R. Acciarri et al., Phys. Rev. D90, 012008 (2014).
5. R. Acciarri et al., Phys. Rev. Lett. 113, 261801 (2014).
6. R. Gran et al., Phys. Rev. D74, 052002 (2006).
7. A. Rodriguez et al., Phys. Rev. D78, 032003 (2008).
8. M. Hasegawa et al., Phys. Rev. Lett. 95, 252301 (2005).
9. C. Mariani et al., Phys. Rev. D83, 054023 (2011).

10. S. Nakayama et al., Phys. Lett. B619, 255 (2005).
11. B.G. Tice et al., Phys. Rev. Lett. 112, 231801 (2014).
12. G.A. Fiorentini et al., Phys. Rev. Lett. 111, 022502 (2013).
13. L. Fields et al., Phys. Rev. Lett. 111, 022501 (2013).
14. T. Walton et al., Phys. Rev. D91, 071301 (2015).

15. A. Higuera et al., Phys. Rev. Lett. 113, 261802 (2014).
16. T. Le et al., Phys. Lett. B749, 130 (2015).
17. A.A. Aguilar-Arevalo et al., Phys. Rev. D81, 092005 (2010).
18. A.A. Aguilar-Arevalo et al., Phys. Rev. D88, 032001 (2013).
19. A.A. Aguilar-Arevalo et al., Phys. Rev. Lett. 100, 032301 (2008).
20. A.A. Aguilar-Arevalo et al., Phys. Rev. D82, 092005 (2010).
21. A.A. Aguilar-Arevalo et al., Phys. Rev. D91, 012004 (2015).
22. A.A. Aguilar-Arevalo et al., Phys. Rev. D91, 012004 (2015).
23. A.A. Aguilar-Arevalo et al., Phys. Rev. D83, 052007 (2011).
24. A.A. Aguilar-Arevalo et al., Phys. Rev. Lett. 103, 081801 (2009).
25. A.A. Aguilar-Arevalo et al., Phys. Rev. D83, 052009 (2011).
26. A.A. Aguilar-Arevalo et al., Phys. Rev. D81, 013005 (2010).
27. A.A. Aguilar-Arevalo et al., Phys. Lett. B664, 41 (2008).
28. P. Adamson et al., Phys. Rev. D81, 072002 (2010).
29. P. Adamson et al., Phys. Rev. 91, 012005 (2015).
30. Q. Wu et al., Phys. Lett. B660, 19 (2008).
31. V. Lyubushkin et al., Eur. Phys. J. C63, 355 (2009).
32. C.T. Kullenberg et al., Phys. Lett. B682, 177 (2009).
33. Y. Nakajima et al., Phys. Rev. D83, 12005 (2011).
34. K. Hiraide et al., Phys. Rev. D78, 112004 (2008).
35. Y. Kurimoto et al., Phys. Rev. D81, 033004 (2010).
36. Y. Kurimoto et al., Phys. Rev. D81, 111102 (R)(2010).
37. K. Abe et al., Phys. Rev. D87, 092003 (2013).
38. K. Abe et al., Phys. Rev. D90, 052010 (2014).
39. K. Abe et al., Phys. Rev. D91, 112002 (2015).
40. K. Abe et al., Phys. Rev. D90, 072012 (2014).
41. K. Abe et al., Phys. Rev. Lett. 113, 241803 (2014).
42. M. Tzanov et al., Phys. Rev. D74, 012008 (2006).
43. A. Kayis-Topaksu et al., Nucl. Phys. B798, 1 (2008).
44. O. Samoylov et al., Nucl. Phys. B876, 339 (2013).
45. D. Mason et al., Phys. Rev. Lett. 99, 192001 (2007).
46. D. Casper, Nucl. Phys. (Proc. Supp.) 112, 161 (2002), default v3

NUANCE.
47. R. Tacik, AIP Conf. Proc. 1405,229(2011); S. Boyd et al., AIP

Conf. Proc. 1189, 60(2009).
48. O. Palamara et al., arXiv:1309.7480 [physics.ins-det].
49. S.J. Barish et al., Phys. Rev. D16, 3103 (1977).
50. D. Allasia et al., Nucl. Phys. B343, 285 (1990).
51. N.J. Baker et al., Phys. Rev. D23, 2499 (1981); G. Fanourakis

et al., Phys. Rev. D21, 562 (1980).
52. T. Kitagaki et al., Phys. Rev. D28, 436 (1983).
53. L.B. Auerbach et al., Phys. Rev. C66, 015501 (2002).
54. S. Bonetti et al., Nuovo Cimento A38, 260 (1977); N. Armenise

et al., Nucl. Phys. B152, 365 (1979).
55. S.V. Belikov et al., Z. Phys. A320, 625 (1985).
56. J. Brunner et al., Z. Phys. C45, 551 (1990).
57. J. Carlson et al., Phys. Rev. C65, 024002 (2002).
58. H. Gallagher et al., Ann. Rev. Nucl. and Part. Sci. 61, 355

(2011).
59. G.T. Garvey et al., Phys. Reports 580, 1 (2015).
60. M. Betancourt, Ph.D. thesis, University of Minnesota,2013.
61. J. Wolcott et al., arXiv:1509.05729 [hep-ex].
62. L.A. Ahrens et al., Phys. Rev. D35, 785 (1987).
63. V.V. Ammosov et al., Z. Phys. C36, 377 (1987); O. Erriques

et al., Phys. Lett. 70B, 383 (1977); T. Eichten et al., Phys. Lett.
40B, 593 (1972).

64. For a compilation of historical coherent pion production data,
please see P. Villain et al., Phys. Lett. B313, 267 (1993).

65. D. Cherdack, AIP Conf. Proc. 1405,115(2011).
66. B. Eberly et al., Phys. Rev. D92, 092008 (2015).
67. C.T. Kullenberg et al., Phys. Lett. B706, 268 (2012).



51. Plots of cross sections and related quantities 583

51. PLOTS OF CROSS SECTIONS AND RELATED QUANTITIES
(For neutrino plots, see review article ”Neutrino Cross Section Measurements” by G.P. Zeller in this edition of RPP)
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Figure 51.1: Inclusive differential jet cross sections, in the central rapidity region, plotted as a function of the jet transverse momentum.
Results earlier than from the Tevatron Run 2 used transverse energy rather than transverse momentum and pseudo-rapidity η rather than
rapidity y, but pT and y are used for all results shown here for simplicity. The error bars plotted are in most cases the experimental stat. and
syst. errors added in quadrature. The CDF and D0 measurements use jet sizes of 0.7 (JetClu for CDF Run 1, and Midpoint and kT for CDF
Run 2, a cone algorithm for D0 in Run 1 and the Midpoint algorithm in Run 2). The ATLAS results are plotted for the antikT algorithm for
R=0.4, while the CMS results also use antikT, but with R=0.5. NLO QCD predictions in general provide a good description of the Tevatron
and LHC data; the Tevatron jet data in fact are crucial components of global PDF fits, and the LHC data are starting to be used as well.
Comparisons with the older cross sections are more difficult due to the nature of the jet algorithms used. ATLAS:Phys. Rev. D86, 014022
(2012), Eur. Phys. J C73, 2509 (2013); CMS: Phys. Rev. D84, 052011 (2011); CDF: Phys. Rev. D75, 092006 (2007), Phys. Rev. D64,
032001 (2001), Phys. Rev. Lett. 70, 1376 (1993); D0: Phys. Rev. D64, 032003 (2001); UA2: Phys. Lett. B257, 232 (1991); UA1: Phys.
Lett. 172, 461 (1986); R807: Phys. Lett. B123, 133 (1983). (Courtesy of J. Huston, Michigan State University, 2013.)
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Figure 51.2: Isolated photon cross
sections plotted as a function of the pho-
ton transverse momentum. The errors
are either statistical only, or statistical
and systematic added in quadrature.
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CMS: Phys. Rev. D84, 052011 (2011);
D0 : Phys. Lett. B639, 151 (2006),
Phys. Rev. Lett. 87, 251805 (2001);
CDF: Phys. Rev. D65, 112003 (2002);
UA6: Phys. Lett. B206, 163 (1988);
UA1: Phys. Lett. B209, 385 (1988);
UA2: Phys. Lett. B288, 386 (1992).
(Courtesy of J. Huston, Michigan State
University, 2013).
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Differential Cross Section forW and Z Boson Production
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Figure 51.3: Differential cross
sections for W and Z production
shown as a function of the boson
transverse momentum. The errors
plotted are either statistical only
or statistical and systematic added
in quadrature. The results are in
good agreement with theoretical
predictions that include both the
effects of NLO corrections and
of qT resummation. ATLAS:
Phys. Rev. D85, 012005 (2012),
Phys. Lett. B705, 415 (2011);
CMS: Phys. Rev. D85, 032002
(2012); D0: Phys. Lett. B513,
292 (2001), Phys. Rev. Lett. 84,
2792 (2000); CDF: Phys. Rev.
Lett. 84, 845 (2000). (Courtesy
of J. Huston, Michigan State
University, 2013.)
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Average Hadron Multiplicities in Hadronic e+e− Annihilation Events
Table 51.1: Average hadron multiplicities per hadronic e+e− annihilation event at

√
s ≈ 10, 29–35, 91, and 130–200

GeV. The rates given include decay products from resonances with cτ < 10 cm, and include the corresponding
anti-particle state. Correlations of the systematic uncertainties were considered for the calculation of the averages.
Quoted errors are not increased by scale factor S. (Updated August 2015 by O. Biebel, LMU, Munich)

Particle
√
s ≈ 10 GeV

√
s = 29–35 GeV

√
s = 91 GeV

√
s = 130–200 GeV

Pseudoscalar mesons:

π+ 6.52± 0.11 10.3± 0.4 17.02± 0.19 21.24± 0.39

π0 3.2± 0.3 5.83± 0.28 9.42± 0.32

K+ 0.953± 0.018 1.48± 0.09 2.228± 0.059 2.82± 0.19

K0 0.91± 0.05 1.48± 0.07 2.049± 0.026 2.10± 0.12

η 0.20± 0.04 0.61± 0.07 1.049± 0.080

η′(958) 0.03± 0.01 0.26± 0.10 0.152± 0.020

D+ 0.194± 0.019(a) 0.17± 0.03 0.175± 0.016

D0 0.446± 0.032(a) 0.45± 0.07 0.454± 0.030

D+
s 0.063± 0.014(a) 0.45± 0.20(b) 0.131± 0.021

B(c) — — 0.134± 0.016(d)

B+ — — 0.141± 0.004(d)

B0
s — — 0.054± 0.011(d)

Scalar mesons:

f0(980) 0.024± 0.006 0.05± 0.02(e) 0.146± 0.012

a0(980)± — — 0.27± 0.11(f)

Vector mesons:

ρ(770)0 0.35± 0.04 0.81± 0.08 1.231± 0.098

ρ(770)± — — 2.40± 0.43(f)

ω(782) 0.30± 0.08 — 1.016± 0.065

K∗(892)+ 0.27± 0.03 0.64± 0.05 0.714± 0.055

K∗(892)0 0.29± 0.03 0.56± 0.06 0.738± 0.024

φ(1020) 0.044± 0.003 0.085± 0.011 0.0963± 0.0032

D∗(2010)+ 0.177± 0.022(a) 0.43± 0.07 0.1937± 0.0057(g)

D∗(2007)0 0.168± 0.019(a) 0.27± 0.11 —

D∗
s(2112)+ 0.048± 0.014(a) — 0.101± 0.048(h)

B∗ (i) — — 0.288± 0.026

J/ψ(1S) 0.00050± 0.00005(a) — 0.0052± 0.0004(j)

ψ(2S) — — 0.0023± 0.0004(j)

Υ(1S) — — 0.00014± 0.00007(j)

Pseudovector mesons:

f1(1285) — — 0.165± 0.051

f1(1420) — — 0.056± 0.012

χc1(3510) — — 0.0041± 0.0011(j)

Tensor mesons:

f2(1270) 0.09± 0.02 0.14± 0.04 0.166± 0.020

f ′
2(1525) — — 0.012± 0.006

K∗
2 (1430)+ — 0.09± 0.03 —

K∗
2 (1430)0 — 0.12± 0.06 0.084± 0.022

B∗∗ (k) — — 0.118± 0.024

D±
s1 — — 0.0052± 0.0011(ℓ)

D∗±
s2 — — 0.0083± 0.0031(ℓ)

Baryons:

p 0.266± 0.008 0.640± 0.050 1.050± 0.032 1.41± 0.18

Λ 0.080± 0.007 0.205± 0.010 0.3915± 0.0065 0.39± 0.03

Σ0 0.023± 0.008 — 0.078± 0.010

Σ− — — 0.081± 0.010

Σ+ — — 0.107± 0.011

Σ± — — 0.174± 0.009

Ξ− 0.0059± 0.0007 0.0176± 0.0027 0.0262± 0.0009

∆(1232)++ 0.040± 0.010 — 0.085± 0.014

Σ(1385)− 0.006± 0.002 0.017± 0.004 0.0240± 0.0017

Σ(1385)+ 0.005± 0.001 0.017± 0.004 0.0239± 0.0015

Σ(1385)± 0.0106± 0.0020 0.033± 0.008 0.0472± 0.0027

Ξ(1530)0 0.0015± 0.0006 — 0.00694± 0.00049

Ω− 0.0007± 0.0004 0.014± 0.007 0.00124± 0.00018

Λ+
c 0.074± 0.031(m) 0.110± 0.050 0.078± 0.017

Λ0
b — — 0.031± 0.016

Σ++
c , Σ0

c 0.014± 0.007 — —

Λ(1520) 0.008± 0.002 — 0.0222± 0.0027
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Notes for Table 51.1:
(a) σhad = 3.33 ± 0.05 ± 0.21 nb (CLEO: Phys. Rev. D29, 1254 (1984)) has been

used in converting the measured cross sections to average hadron multiplicities.

(b) B(Ds → ηπ, η′π) was used (RPP 1994).

(c) Comprises both charged and neutral B meson states.

(d) The Standard Model B(Z → bb) = 0.217 was used.

(e) xp = p/pbeam > 0.1 only.

(f) Both charge states.

(g) B(D∗(2010)+ → D0π+) × B(D0 → K−π+) has been used (RPP 2000).

(h) B(D∗
s → D+

S γ), B(D+
s → φπ+), B(φ → K+K−) have been used (RPP 1998).

(i) Any charge state (i.e., B∗
d , B∗

u, or B∗
s ).

(j) B(Z → hadrons) = 0.699 was used (RPP 1994).

(k) Any charge state (i.e., B∗∗
d , B∗∗

u , or B∗∗
s ).

(ℓ) Assumes B(D+
s1 → D∗+K0 + D∗0K+) = 100% and B(D+

s2 → D0K+) = 45%.

(m) The value was derived from the cross section of Λ+
c → pπK using (a) and

assuming the branching fraction to be (5.0 ± 1.3)% (RPP 2004).
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RPP 1992: Phys. Rev. D45 (1992); RPP 1994: Phys. Rev. D50, 1173 (1994); RPP 1996: Phys. Rev.
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σ andR in e+e− Collisions
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Figure 51.5: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2015. Corrections
by P. Janot (CERN) and M. Schmitt (Northwestern U.))



588 51. Plots of cross sections and related quantities

R in Light-Flavor, Charm, and Beauty Threshold Regions
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Figure 51.6: R in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV.
The curves are the same as in Fig. 51.5. Note: CLEO data above Υ(4S) were not fully corrected for radiative effects, and we retain
them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and
the details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. The computer-readable data are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2015.)
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Annihilation Cross Section NearMZ

 

 

Figure 51.7: Combined data from the ALEPH, DELPHI, L3, and OPAL Collaborations for the cross section in e+e− annihilation into
hadronic final states as a function of the center-of-mass energy near the Z pole. The curves show the predictions of the Standard Model with
two, three, and four species of light neutrinos. The asymmetry of the curve is produced by initial-state radiation. Note that the error bars have
been increased by a factor ten for display purposes. References:

ALEPH: R. Barate et al., Eur. Phys. J. C14, 1 (2000).
DELPHI: P. Abreu et al., Eur. Phys. J. C16, 371 (2000).
L3: M. Acciarri et al., Eur. Phys. J. C16, 1 (2000).
OPAL: G. Abbiendi et al., Eur. Phys. J. C19, 587 (2001).
Combination: The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group,

and the SLD Electroweak and Heavy Flavor Groups, Phys. Rept. 427, 257 (2006) [arXiv:hep-ex/0509008].

(Courtesy of M. Grünewald and the LEP Electroweak Working Group, 2007)



590 51. Plots of cross sections and related quantities

Total Hadronic Cross Sections

(Updated June 2016, COMPAS group, IHEP, Protvino)

This updated version of the total hadronic cross sections review is based on the first half of 2015 update of the database for total cross section
and the ratio of the real-to-imaginary parts of the forward elastic scattering hadronic amplitudes. New data on total pp collisions cross sections
from CERN-LHC-TOTEM [1–4] and CERN-LHC-ATLAS [5] were added.

We use a procedure for ranking models as described in [6] to identify the safest parameterizations for extrapolations. Incidentally, the models
giving the best fit of accelerator data also reproduce the experimental cosmic ray nucleon–nucleon data extracted from nucleon–air data with no
need of any extra phenomenological corrections to the data.

The statement in [6] that the models with universal (across of collision initial states) B log2(s/s0) asymptotic term work much better than
the models with B log(s/s0) or B(s/s0)

∆ terms was confirmed in [7–11] based on matching traditional asymptotic parameterizations with low
energy data in different ways. However in these references the scale parameter s0 was still claimed to be dependent on the colliding particles as
it should be for the asymptotic form of parameterizations constructed by the Regge-Gribov phenomenology prescriptions.

The possibility of the universal log2(s/s0) rise of the hadronic total cross sections for different colliding particles was first pointed out by W.
Heisenberg [12–13] and discussed many times (see for example [14] and more recent [15–17], and references therein). In [16] the universality
of the asymptotic total collision cross sections has been advocated for hadron-nucleus collisions. In [17] additional indications to the universal
asymptotic high-energy behavior for hadronic total collision cross sections in form B log2(s/s0) were obtained from lattice QCD.

In this review we use HPR1R2 model of highest COMPETE–rank modified (as in 2012 version) to save the universality of the rising part in
new form that explicitly includes dependence of the s0 and B on the initial state mass parameters and the new scale parameter M .

σa∓b = H log2

(

s

sab
M

)

+ P ab + Rab
1

(

s

sab
M

)−η1

± Rab
2

(

s

sab
M

)−η2

;

ρa∓b =
1

σa∓b



πH log

(

s

sab
M

)

− Rab
1

(

s

sab
M

)−η1

tan
(η1π

2

)

± Rab
2

(

s

sab
M

)−η2

cot
(η2π

2

)



 ,

where upper signs in formulas are for particles and lower signs for antiparticles. The adjustable parameters are as follows:

H = π
(~c)2

M2 in mb, where notation H§ is after Heisenberg(1952,1975);

P ab in mb, are Pomeranchuk’s(1958) constant terms;

Rab
i in mb are the intensities of the effective secondary Regge pole contributions named after Regge-Gribov(1961);

s, sab
M = (ma + mb + M)2 are in GeV2 ;

ma, mb, (mγ∗ = mρ(770)) are the masses of initial state particles, and M – the mass parameter defining the rate of universal rise of the cross
sections are all in GeV. Parameters M , η1 and η2 are universal for all collisions considered.

Exact factorization hypothesis was used for both H log2( s
sab
M

) and P ab to extend the universal rise of the total hadronic cross sections to the

γ(p, d) → hadrons and γγ → hadrons collisions. This results in one additional adjustable parameter δ with substitutions:

πH log2

(

s

s
γ(p,d)
M

)

+ P γ(p,d) ⇒ δ

[

π(1, λ)H log2

(

s

s
γ(p,d)
M

)

+ P p(p,d)

]

;

πH log2

(

s

s
γγ
M

)

+ P γγ ⇒ δ2

[

πH log2

(

s

s
γγ
M

)

+ P pp

]

.

These parameterizations were used for simultaneous fit with 35 adjustable parameters to the data on collisions:

(p, p) (p, n, d); Σ−p; π∓ (p, n, d); K∓ (p, n, d); γ p; γ γ; γ d.

The results of the fits are presented in the following table and figures. In the table, two values of the fit quality indicator FQ = χ2/(Npt− 35)
are reported in the last element of the first row, where Npt is the number of data points in corresponding sample. FQINT calculated with
“internal” parameter values of machine precision (16 digits) and FQEXT calculated with rounded parameter values as displayed in the table
in accordance with PDG rules (Section 5.3 of J. Beringer et al., (Particle Data Group), Phys. Rev. D86, 010001 (2012)), recent metrology
recommendations [18] and rules for safe uniform rounding of correlated data [19]. The uniformity of the quality of data description across
different collisions is shown in the last two columns of the table; npt is the number of data points in a subsample and χ2/npt is the contribution
of the subsample to the global χ2 reduced to npt.

————————————————————————————
§For collisions with deuteron target Hd=λ H where dimensionless parameter λ is introduced to test the universality of the Heisenberg rise for
particle−nuclear and nuclear−nuclear collisions.
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HPR1R2 M=2.1206± 0.0094 [GeV] H=0.2720± 0.0024 [mb] FQINT = 0.96

at
√

s ≥ 5GeV η1 = 0.4473± 0.0077 η2 = 0.5486± 0.0049 FQEXT = 0.96

δ = (3.063± 0.014) × 10−3 λ = 1.624 ± 0.033

P[mb] R1[mb] R2[mb] Beam/Target Npt=1048 χ2/npt by Groups

34.41 ± 0.13 13.07± 0.17 7.394 ± 0.081 p̄(p)/p 258 1.14

34.71 ± 0.17 12.52± 0.34 6.66 ± 0.15 p̄(p)/n 67 0.48

34.7 ± 1.3 −46.± 18. −48.± 18. Σ−/p 9 0.37

18.75 ± 0.11 9.56 ± 0.15 1.767 ± 0.030 π∓/p 183 1.02

16.36 ± 0.09 4.29 ± 0.13 3.408 ± 0.044 K∓/p 121 0.82

16.31 ± 0.10 3.70 ± 0.19 1.826 ± 0.068 K∓/n 64 0.58

0.0139± 0.0011 γ/p 41 0.62

(−4. ± 17.) × 10−6 γ/γ 37 0.75

0.0370 ± 0.0019 γ/d 13 0.9

64.45 ± 0.32 29.66± 0.39 14.94 ± 0.18 p̄(p)/d 85 1.52

36.65 ± 0.26 18.75± 0.36 0.341 ± 0.091 π∓/d 92 0.72

32.06 ± 0.19 7.70 ± 0.31 5.616 ± 0.082 K ∓ /d 78 0.79

To construct the parameter scatter region we follow Section 39.4.2.2 of J. Beringer et al.. (Particle Data Group), Phys. Rev. D86,
010001 (2012) and recent metrology JCGM 101:2008 recommendations and produce the direct Monte Carlo propagation of uncertainties from
experimental data to the uncertainties of the best fit parameters. To do this we interpret the whole input data sample as statistically independent
sample with total experimental uncertainty at each experimental data point being a Gaussian standard deviation. This technical assumption
allows us to generate MC sampling of experimental data and to obtain at each MC trial new “biased” best fit parameters belonging to scatter
region of the initial best fit parameters values. These biased best fit parameters constitute the MC-samples of cardinalities |MCcut| at each

√
s

cutoff and are the basis for construction of three 35-dimensional empirical parameter distributions.

In paper [19] the asymptotic bounds (Froissart, Martin) on the possible rise of the total collision cross sections in the form log2(s/s0) was
questioned in favour of possible faster rising forms. It was supported by the fits presented in [18] where the form logc(s/s0) with adjustable c was
tested on (p̄)p p data only and it was claimed that values of c obtained in number of different fits are statistically compatible with c ∈ [2.2, 2.4].

We have performed our global fit with adjustable c to the total cross sections and available ρ–parameters (as of August 2015) including
TOTEM data point at 8 TeV [20]. For this fit we have 36 adjustable parameters. Fit was done with all data at

√
s ≥ 5 GeV with FQ = 0.87.

We have obtained value c = 1.98 ± 0.01 (Hessian error) which is in two standard deviation lower than c = 2(exact) and possibly could be
tentatively interpreted as an indication to the slower universal rising total cross sections as it was proposed 45 years ago by Cheng and Wu in

the form log2

(

(s/s0)
a

log2(s/s0)

)

in their seminal paper [21]. However, to notice this difference much experimental, theoretical, and modelling work

has to be done.

In conclusion, the Heisenberg prediction of the universal log2(s/sM ) form of asymptotic rise of the hadronic collision total cross sections is
still actual and should be tested in all aspects at available colliders operating with (p̄, p, nuclei) beams and in experiments with cosmic rays.
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Figure 51.8: Summary of h∓ p → anything, γ p → hadrons, γ γ → hadrons total cross sections σab in mb and ρh∓p the ratio of real to
imaginary parts of the forward hadronic amplitudes. Also for qualitative comparison of the uniformity of data description by HPR1R2–model
across the different collisions and observables. The uncertainties for the experimental data points include both the statistical and systematic
errors. Curves, corresponding to fit above 5 GeV cut, are plotted with error bands calculated with parameter covariance matrix constructed on
MC-propagated vectors from 95% quantile of the empirical distribution.
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Figure 51.9: Summary of all total collision cross sections jointly fitted with available hadronic ρ parameter data. Corresponding
computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html
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High Energy Elastic p̄ p and p pDifferential Cross Sections

(Updated June 2016, COMPAS group, IHEP, Protvino)

Using new results from FNAL-COLLIDER-D0 experiment in p̄ p elastic collisions at
√

s = 1.96 TeV [1], CERN-LHC-TOTEM, CERN-LHC-
ATLAS experiments in p p elastic collisions at

√
s = 7, 8 TeV [2–3] and PAO experiment in proton-air collisions at 57 TeV [4] the amplitudes of

the elastic p̄ p and p p collisions are investigated in a most broad region in
√

s and t via three observables dσ/dt(s, t), σtot(s), and ρ(s). The
summary of the database for dσ/dt(s, t) is presented in Figure 51.10, where projection of the dσ/dt(

√
s, t) to the (dσ/dt,−t) plane orthogonal to

the
√

s axis is displayed.
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Figure 51.10: Cumulative plots of data on dσ/dt for p̄ p (blue) and p p (red) elastic collisions at
√

s ≥ 2.99 GeV. Number of data points
Npt = 6629
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Figure 51.11: Cumulative plots of data on dσ/dt and model description for p̄ p (blue,blue) and p p (red,magenta) elastic collisions at√
s ≥ 6.9 GeV.

All characteristic features of the dσ/dt(
√

s, t) behavior in −t and
√

s are clearly seen:

• The energy-dependent Coulomb-Nuclear Interference (CNI) effects at small −t;

• Diffractive peaks with crossover effect at −t ≈ 0.16 GeV2 for particle-antiparticle data at same energies;

• The first dip/shoulder moving to the left with growing
√

s. New data on dσ/dt in p̄ p and p p elastic collisions at highest accelerator energies
have challenged all previous model predictions that gave “not so bad qualitative agreement” with previously available data on dσ/dt. There is
a need to reveal a quantitative and statistically complete picture of the data description by at least one model with most ambitious claim on
the ”best known description”. There are several conceptually related papers with such a claims [5–7] but with different areas of applicability
and without treatment of the CNI region. Description of dσ/dt by our model (a variation of AGNM [7] parameterization) at

√
s ≥ 6.9 GeV is

displyed on Figure 51.11.

Historically the most complete compilations on dσ/dt data expressed in Mandelstam variables
√

s and t were published in Landolt-Börnstein
volumes (now available in digital form) up to 1981 [8]. Updated (in high energy part) analogous CLM-compilation [9] (available in computer
readable form) was compiled with help of HEPDATA and COMPAS databases and released in 2006. In our fits we use the CLM-compilation
with minor corrections, filled detected gaps, and updated with new data published up to August 2015. We performed simultaneous fits to
the sample of data on dσ/dt(s, t), σtot(s), and ρ(s) in p̄ p and p p collisions at 6.9 GeV ≤ √

s ≤ 8 TeV and all available t. Overall fit quality
FQ = χ2(Npt)/(5266 − 37) = 1.60, which is unreliable for our number of degrees of freedom. Removing contributions to χ2(dσ/dt) from
Nout = 277 points with χ2(point) > (2.4)2 (of 2.4×standard deviation (std) – randomly scattered outliers) we have χ2(Nrest)/(Nrest) = 1.02,
where Nrest = Npt(dσ/dt) − Nout. The uniformity level of the fit quality in different intervals of

√
s is shown on Figure 51.12.
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Figure 51.12: All 12 energy intervals are non-overlapping and cover all data points. All panels have axis labelled as in Figure 51.11. All data
sets corresponding to the same energy have model curve drawn. Some panels have no red or blue data points. In such a cases we add the curve
as prediction of the model.

To reveal a more complete picture of phenomenological description of the elastic scattering data we originally selected the most flexible model
(43 parameters) from [7] with most broad claimed area of applicability. It turns out that without partial removal of some data (made in [7]) the
claimed solution cannot be used even as starting point for adjustments, most probably, because of over-rounded published parameter values, or
misprints in parameter tables, or strong parameter correlations. Moreover, numerous fits with different starting points failed to find any locally
stable solution with physically reasonable adjustable parameter values. We obtain a stable solution only with addition of data in CNI region and
with slightly modified parameterization to reduce the number of adjustable parameters from 43 to 37. Our expressions for observables σtot

± (s),
ρ±(s), and dσ±/dt(s, t) with sign “+” for p p and sign “−” for p̄ p collisions are constructed (in notations of [7]) using corresponding scattering
amplitudes: nuclear T±(s, t) and Coulomb T c

±(s, t) both in mb · GeV2 as follows:

σtot
± (s) =

Im T±(s, 0)
√

s(s − 4m2
p)

, ρ±(s) =
Re T±(s, 0)

Im T±(s, 0)
,

dσ±
dt

(s, t) =

∣

∣T±(s, t) + T c
±(s, t)

∣

∣

2

16π(~c)2s(s − 4m2
p)

,

where constants: mp stands for proton mass, and (~c)2 for mb-to-GeV2 conversion factor. Nuclear amplitudes T±(s, t) are linearly combined
crossing even F+(ŝ, t) and crossing odd F−(ŝ, t) functions.

T±(s, t) = [F+(ŝ, t) ± F−(ŝ, t)],

F+(ŝ, t) = FH
+ (ŝ, t) + FP

+ (ŝ, t) + FPP
+ (ŝ, t) + FR

+ (ŝ, t) + FRP
+ (ŝ, t) + N+(s, t),

F−(ŝ, t) = FMO
− (ŝ, t) + FO

− (ŝ, t) + FOP
− (ŝ, t) + FR

− (ŝ, t) + FRP
− (ŝ, t) + N−(s, t),

FH
+ (ŝ, t) = iŝ















H1
2J1(K+τ̃)

K+τ̃
· eb+1t ln2 s̃ +

H2J0(K+τ̃ ) · eb+2t ln s̃ +
H3 [J0(K+τ̃ ) − K+τ̃ J1(K+τ̃ )] · eb+3t















, FMO
− (ŝ, t) = ŝ















O1
sin(K−τ̃ )

K−τ̃
eb−1t · ln2 s̃ +

O2 cos(K−τ̃ )eb−2t · ln s̃ +
O3 eb−3t















,
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FP
+ (ŝ, t) = −CP ebP te
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π
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ebPP te
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π
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COP
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ebOP te

−i
π
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αOP (t)

(ŝ)αOP (t) ,

FRP
± (ŝ, t) =

tC±
RP

ln s̃
eb±

RP
ti

−1 ± 1

2 e
−i

π

2
α±

RP
(t)

(ŝ)α
±
RP

(t) , FR
± (ŝ, t) = ∓C±

R eb±
R

ti

−1 ± 1

2 e
−i

π

2
α±

R
(t)

(ŝ)α
±
R

(t) ,

N±(s, t) = −i
1±1
2 · ŝ · N± · (ln s̃)

t

t0
· (1 − t/t±)−5,

αP (t) = 1 + α′
P · t; α±

R(t) = α±
R(0) + α±

R
′ · t; αO(t) = 1 + α′

O · t ,

αOP (t) = 1 +
α′

P α′
O

α′
P + α′

O
· t; αPP (t) = 1 +

α′
P

2
· t; α±

RP (t) = α±
R(0) +

αP
′α±

R
′

αP
′ + α±

R
′
· t ,

ŝ(s, t) ≡ ŝ = (−t + 2s − 4m2
p)/(2s0), s0 = 1 GeV2; ln(s̃) = ln(ŝ) − i

π

2
; τ̃ =

√

−t/t0 ln s̃, t0 = 1 GeV2.

Coulomb amplitudes are taken with dipole electric nucleon form factor

T c
±(s, t) = ∓e

[

±iαΦNC
± (s,t)

]

· 8π(~c)2α · s

t
·
(

1 − t

Λ2

)−4

,

where: ΦCN
± (s, t) = ln

[

− t

2

(

B±(s) +
8

Λ2

)]

+ γ − 4t

Λ2
ln

(

− 4t

Λ2

)

− 2t

Λ2
is the CNI phase in the R. Cahn form [10]; Λ =

√
0.71 GeV; α – fine

structure constant; γ – Euler constant. Instead of the traditional definition of the dσ±/dt(s, t) slope function B±(s) =

[

d

dt
ln

(

dσ±
dt

(s, t)

)]

t=0
,

we set B±(s) =
σ±(s)

4π(~c)2
to simplify calculations and to get faster minimization procedures. The odderon contribution at t = 0 can be switched

off by replacing all exponents ebit by ebit(1− e−t/tmin ) in the above expressions for all odderon related terms, where tmin is the minimal |t|-value
for which the data exist in the dσ/dt database. The resulting non-intersecting σ∓(

√
s) and ρmp(

√
s) curves can be obtained without significant

degradation to the fit quality [11]. The effect of switching oderon contribution on and off at t = 0 is shown in Figure 51.13.

Figure 51.13: Comparisons of dσ/dt at
√

s = 7TeV , dσtot, and ρ(
√

s) data with our two variants of AGNM [7] models. Right-hand panels
have odderons switched off at t = 0. Curves for integrated elastic cross sections and inelastic cross sections were obtained from integration of the
elastic differential cross sections. Data from experiments are not used in the fits.
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The best fit parameter values and their standard deviations for both models are listed in the tables below. The table on the left (right) is
with (without) oderon contribution. Estimates of the std were obtained by the MC-propagation of the assumed Gaussian distribution for each
individual data point. Despite of poor MC statistics, the obtained “propagated” covariance matrix is in good conditions and gives reasonable
std estimates. The quality of the fit to the σtot

∓ (s) and ρ∓(s) data is presented in Figure 51.13. Error bands were calculated by propagation of
the parameter scatter region to the scatter region of these observables.

t

FQINT calculated with “internal” parameter values of machine precision (16 digits) and FQEXT calculated with rounded parameter values as
displayed in the table in accordance with PDG rules.

In summary, the solution obtained gives satisfactory picture of the used parametric description of the current database on observables related
to elastic (anti)proton–proton scattering amplitudes, and reveals problems with lack of good data at the pre-asymptotic energies. Indeed:

1. Noisy data in dip/shoulder regions does not allow to tune parameters to give credible description of the depth of dips;

2. All frames in Figure 51.12 with
√

s ≤ 12 GeV apparently show that there is an urgent need in p̄ p data at CNI as well as at the first
dip/shoulder “−t” intervals;

3. Frame marked as “9 to 10 GeV” shows some contradictory data samples in p p collisions (48 “2.4–std outliers” out of 565 data points).
There are no model independent resolution of these contradictions other than remeasurements with much higher statistics and more precise
measuring systems. New accurate experimental data are highly desirable;

4. There is a sharp difference in descriptions of ρ parameter data from our global fits with HPR1R2 model without odderon contribution
(non-intersecting ρ∓ curves) and our variant of AGNM model [7] with odderons (intersecting ρ∓ curves). Further modelling is needed to remove
this difference. Another issue to note is that the ρ−(

√
s) curve is consistently above the ρ+(

√
s) curve with a constant offset (see Figure 19

in [12]);

5. The 277 (> 2.4σ) outliers contribute to about one third of the total χ2 for the 5009 experimental data points. This issue is not fully
understood but may indicate that the procedure of removing some “uncomfortable data” [11,13-15] should be examined more carefully.
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601601601601Illustrative Key to the Parti
le Listingsa0(1200) IG (JPC ) = 1−(0 + +)OMITTED FROM SUMMARY TABLEName of parti
le. \Old" name usedbefore 1986 renaming s
heme alsogiven if di�erent. See the se
tion\Naming S
heme for Hadrons" for de-tails.Quantity tabulated below.Top line gives our best value (and er-ror) of quantity tabulated here, basedon weighted average of measurementsused. Could also be from �t, bestlimit, estimate, or other evaluation.See next page for details.Footnote number linking measure-ment to text of footnote.Number of events above ba
kground.Measured value used in averages, �ts,limits, et
.Error in measured value (often statis-ti
al only; followed by systemati
 ifseparately known; the two are 
om-bined in quadrature for averaging and�tting.)Measured value not used in averages,�ts, limits, et
. See the Introdu
toryText for explanations.Arrow points to weighted average.Shaded pattern extends ±1σ (s
aledby \s
ale fa
tor" S) from weighted av-erage.Value and error for ea
h experiment.
Partial de
ay mode (labeled by �i ).
Bran
hing ratio.Our best value (and error) of quantitytabulated, as determined from 
on-strained �t (using all signi�
ant mea-sured bran
hing ratios for this parti-
le).Weighted average of measurements ofthis ratio only.Footnote (referring to LYNCH 81).
Con�den
e level for measured upperlimit.Referen
es, ordered inversely by year,then author.\Do
ument id" used on data entriesabove.Journal, report, preprint, et
. (Seeabbreviations on next page.)

Parti
le quantum numbers (whereknown).Indi
ates parti
le omitted from Parti-
le Physi
s Summary Table, implyingparti
le's existen
e is not 
on�rmed.General 
omments on parti
le.\Do
ument id" for this result; full ref-eren
e given below.Measurement te
hnique. (See abbre-viations on next page.)S
ale fa
tor > 1 indi
ates possibly in-
onsistent data.Rea
tion produ
ing parti
le, or gen-eral 
omments.\Change bar" indi
ates result addedor 
hanged sin
e previous edition.Charge(s) of parti
le(s) dete
ted.Ideogram to display possibly in
onsis-tent data. Curve is sum of Gaus-sians, one for ea
h experiment (areaof Gaussian = 1/error; width of Gaus-sian = ±error). See Introdu
tory Textfor dis
ussion.Contribution of experiment to χ
2 (ifno entry present, experiment not usedin 
al
ulating χ

2 or s
ale fa
tor be-
ause of very large error).
Our best value for bran
hing fra
tionas determined from data averaging,�tting, evaluating, limit sele
tion, et
.This list is basi
ally a 
ompa
t sum-mary of results in the Bran
hing Ratiose
tion below.
Bran
hing ratio in terms of partialde
ay mode(s) �i above.
Partial list of author(s) in addition to�rst author.Quantum number determinations inthis referen
e.Institution(s) of author(s). (See ab-breviations on next page.)

Eviden
e not 
ompelling, may be a kinemati
 e�e
t.a0(1200) MASSa0(1200) MASSa0(1200) MASSa0(1200) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1206± 7 OUR AVERAGE1206± 7 OUR AVERAGE1206± 7 OUR AVERAGE1206± 7 OUR AVERAGE1210± 8±9 3000 FENNER 87 MMS − 3.5 π
− p1198±10 PIERCE 83 ASPK + 2.1 K− p1216±11±9 1500 1 MERRILL 81 HBC 0 3.2 K− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •1192±16 200 LYNCH 81 HBC ± 2.7 π
− p1Systemati
 error was added quadrati
ally by us in our 1986 edition.a0(1200) WIDTHa0(1200) WIDTHa0(1200) WIDTHa0(1200) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT41±11 OUR AVERAGE41±11 OUR AVERAGE41±11 OUR AVERAGE41±11 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogram below.50± 8 PIERCE 83 ASPK + 2.1 K− p70+30

−20 200 LYNCH 81 HBC ± 2.7 π
− p25± 5±7 MERRILL 81 HBC 0 3.2 K− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<60 FENNER 87 MMS − 3.5 π
− p

WEIGHTED AVERAGE
41±11 (Error scaled by 1.8)

MERRILL 81 HBC 3.4
LYNCH 81 HBC 2.1
PIERCE 83 ASPK 1.3

χ2

       6.8
(Confidence Level = 0.033)

-50 0 50 100 150 200a0(1200) width (MeV)a0(1200) DECAY MODESa0(1200) DECAY MODESa0(1200) DECAY MODESa0(1200) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 3π (65.2±1.3) % S=1.7�2 K K (34.8±1.3) % S=1.7�3 ηπ
±

< 4.9 × 10−4 CL=95%a0(1200) BRANCHING RATIOSa0(1200) BRANCHING RATIOSa0(1200) BRANCHING RATIOSa0(1200) BRANCHING RATIOS�(3π)/�total �1/��(3π)/�total �1/��(3π)/�total �1/��(3π)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENT0.652±0.013 OUR FIT0.652±0.013 OUR FIT0.652±0.013 OUR FIT0.652±0.013 OUR FIT Error in
ludes s
ale fa
tor of 1.7.0.643±0.010 OUR AVERAGE0.643±0.010 OUR AVERAGE0.643±0.010 OUR AVERAGE0.643±0.010 OUR AVERAGE0.64 ±0.01 PIERCE 83 ASPK + 2.1 K− p0.74 ±0.06 MERRILL 81 HBC 0 3.2 K− p
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.48 ±0.15 2 LYNCH 81 HBC ± 2.7 π

− p2Data has questionable ba
kground subtra
tion.�(K K)/�total �2/��(K K)/�total �2/��(K K)/�total �2/��(K K)/�total �2/�VALUE DOCUMENT ID TECN CHG COMMENT0.348±0.013 OUR FIT0.348±0.013 OUR FIT0.348±0.013 OUR FIT0.348±0.013 OUR FIT Error in
ludes s
ale fa
tor of 1.7.0.35 ±0.050.35 ±0.050.35 ±0.050.35 ±0.05 PIERCE 83 ASPK + 2.1 K− p�(K K)/�(3π) �2/�1�(K K)/�(3π) �2/�1�(K K)/�(3π) �2/�1�(K K)/�(3π) �2/�1VALUE DOCUMENT ID TECN CHG COMMENT0.535±0.030 OUR FIT0.535±0.030 OUR FIT0.535±0.030 OUR FIT0.535±0.030 OUR FIT Error in
ludes s
ale fa
tor of 1.7.0.50 ±0.030.50 ±0.030.50 ±0.030.50 ±0.03 MERRILL 81 HBC 0 3.2 K− p�(η (neutral de
ay)π±
)/�total 0.71�3/��(η (neutral de
ay)π±
)/�total 0.71�3/��(η (neutral de
ay)π±
)/�total 0.71�3/��(η (neutral de
ay)π±
)/�total 0.71�3/�VALUE (units 10−4) CL% DOCUMENT ID TECN CHG COMMENT

<3.5<3.5<3.5<3.5 95 PIERCE 83 ASPK + 2.1 K− pa0(1200) REFERENCESa0(1200) REFERENCESa0(1200) REFERENCESa0(1200) REFERENCESFENNER 87 PRL 55 14 H. Fenner et al. (SLAC)PIERCE 83 PL 123B 230 J.H. Pier
e (FNAL) IJPLYNCH 81 PR D24 610 G.R. Lyn
h et al. (CLEO Collab.)MERRILL 81 PRL 47 143 D.W. Merrill et al. (SACL, CERN)



602602602602 Abbreviations Used in the Parti
le Listings
Indicator of Procedure Used to Obtain Our Result

OUR AVERAGE From a weighted average of selected data.

OUR FIT From a constrained or overdetermined multipa-
rameter fit of selected data.

OUR EVALUATION Not from a direct measurement, but evaluated
from measurements of other quantities.

OUR ESTIMATE Based on the observed range of the data. Not
from a formal statistical procedure.

OUR LIMIT For special cases where the limit is evaluated by
us from measured ratios or other data. Not from
a direct measurement.

Measurement Techniques
(i.e., Detectors and Methods of Analysis)

A1 A1 Collaboration at MAMI
ACCM ACCMOR Collaboration
ADMX Axion Dark Matter Experiment
AEMS Argonne effective mass spectrometer

ALEP ALEPH – CERN LEP detector
ALPS Photon regeneration experiment
AMND AMANDA South Pole neutrino detector
AMY AMY detector at KEK-TRISTAN
ANIT Antarctic Impulsive Transient Antenna balloon mission
ANTR ANTARES underwater neutrino telescope in the Western

Mediterranean Sea
APEX FNAL APEX Collab.
ARG ARGUS detector at DORIS
ARGD Fit to semicircular amplitude path on Argand diagram
ASP Anomalous single-photon detector
ASPK Automatic spark chambers
ASTE ASTERIX detector at LEAR
ASTR Astronomy
ATLS ATLAS detector at CERN LHC
B787 BNL experiment 787 detector

B791 BNL experiment 791 detector
B845 BNL experiment 845 detector
B852 BNL E-852
B865 BNL E865 detector
B871 BNL experiment 871 detector
B949 BNL E949 detector at AGS
BABR BaBar Collab.
BAIK Lake Baikal neutrino telescope
BAKS Baksan underground scintillation telescope

BC Bubble chamber
BDMP Beam dump
BEAT CERN BEATRICE Collab.
BEBC Big European bubble chamber at CERN
BELL Belle Collab.
BES BES Beijing Spectrometer at Beijing Electron-Positron Collider

BES2 BES Beijing Spectrometer at Beijing Electron-Positron Collider
BES3 BES Beijing Spectrometer at Beijing Electron-Positron Collider
BIS2 BIS-2 spectrometer at Serpukhov

BKEI BENKEI spectrometer system at KEK Proton Synchroton
BOLO Bolometer, a cryogenic thermal detector
BONA Bonanza nonmagnetic detector at DORIS
BORX BOREXINO
BPWA Barrelet-zero partial-wave analysis
CALO Calorimeter
CAST CAST experiment at CERN

CBAL Crystal Ball detector at SLAC-SPEAR or DORIS
CBAR Crystal Barrel detector at CERN-LEAR
CBOX Crystal Box at LAMPF

CBTP CBELSA/TAPS Collaboration

CC Cloud chamber
CCFR Columbia-Chicago-Fermilab-Rochester detector
CDEX China Dark Matter Experiment

CDF Collider detector at Fermilab
CDF2 CDF-II Collab.
CDHS CDHS neutrino detector at CERN
CDM2 CDMS II, Cryogenic Dark Matter Search at Soudan Under-

ground Lab.
CDMS CDMS Collaboration
CELL CELLO detector at DESY
CGNT CoGeNT dark matter search experiment
CHER Cherenkov detector
CHM2 CHARM-II neutrino detector (glass) at CERN

CHOZ Nuclear Power Station near Chooz, France

CHRM CHARM neutrino detector (marble) at CERN

CHRS CHORUS Collaboration – CERNS SPS
CIB Cosmic Infrared Background
CIBS CERN-IHEP boson spectrometer

CLAS Jefferson CLAS Collab.
CLE2 CLEO II detector at CESR
CLE3 CLEO III detector at CESR
CLEC CLEO-c detector at CESR
CLEO Cornell magnetic detector at CESR
CMB Cosmic Microwave Background
CMD Cryogenic magnetic detector at VEPP-2M, Novosibirsk

CMD2 Cryogenic magnetic detector 2 at VEPP-2M, Novosibirsk
CMD3 Cryogenic magnetic detector 3 at VEPP-2000, Novosibirsk
CMS CMS detector at CERN LHC
CNTR Counters
COMB Combined analysis of data from independent experiments.
COMP COMPASS experiment at the CERN SPS

COSM Cosmology and astrophysics
COSY COSY-TOF Collaboration
COUP COUPP (the Chicagoland Observatory for Underground Parti-

cle Physics) Collab.

CPLR CPLEAR Collaboration
CRBT Crystal Ball and TAPS detector at MAMI
CRES CRESST cryogenic detector

CRYB Crystal Ball at BNL
CRYM Crystal Ball detector at Mainz Microtron MAMI
CSB2 Columbia U. - Stony Brook BGO calorimeter inserted in NaI

array

CSME COSME Collaboration
CUOR CUORICINO experiment at Gran Sasso Laboratory.
CUSB Columbia U. - Stony Brook segmented NaI detector at CESR

D0 D0 detector at Fermilab Tevatron Collider
DAMA DAMA, dark matter detector at Gran Sasso National Lab.
DASP DESY double-arm spectrometer

DAYA Daya Bay Collaboration
DBC Deuterium bubble chamber
DCHZ Double Chooz Collaboration
DLCO DELCO detector at SLAC-SPEAR or SLAC-PEP
DLPH DELPHI detector at LEP
DM1 Magnetic detector no. 1 at Orsay DCI collider

DM2 Magnetic detector no. 2 at Orsay DCI collider
DMIC DAMIC Dark Matter in CCD experiment at Fermilab
DMTP Dark Matter Time Projection Chamber (DMTPC) directional

detection experiment
DONU DONUT Collab.
DPWA Energy-dependent partial-wave analysis

DRFT Directional dark matter detector at Boulby Underground Sci-
ence Facility

DS50 DarkSide-50 Liquid Argon TPC at Gran Sasso National Labo-
ratory

E621 Fermilab E621 detector
E653 Fermilab E653 detector
E665 Fermilab E665 detector
E687 Fermilab E687 detector
E691 Fermilab E691 detector
E705 Fermilab E705 Spectrometer-Calorimeter

E731 Fermilab E731 Spectrometer-Calorimeter
E756 Fermilab E756 detector
E760 Fermilab E760 detector
E761 Fermilab E761 detector
E771 Fermilab E771 detector
E773 Fermilab E773 Spectrometer-Calorimeter

E789 Fermilab E789 detector
E791 Fermilab E791 detector
E799 Fermilab E799 Spectrometer-Calorimeter

E835 Fermilab E835 detector
EDE2 EDELWEISS II dark matter search Collaboration
EDEL EDELWEISS dark matter search Collaboration
EHS Four-pi detector at CERN
ELEC Electronic combination
EMC European muon collaboration detector at CERN

EMUL Emulsions
FAST Fiber Active Scintillator Target detector at PSI
FBC Freon bubble chamber
FENI FENICE (at the ADONE collider of Frascati)

FIT Fit to previously existing data
FLAT Large Area Telescope onboard the Fermi Gamma-Ray Space

Telescope (Fermi-LAT)

FMPS Fermilab Multiparticle Spectrometer
FOCS FNAL E831 FOCUS Collab.
FRAB ADONE B B group detector
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FRAG ADONE γ γ group detector
FRAM ADONE MEA group detector
FREJ FREJUS Collaboration – modular flash chamber detector

(calorimeter)

GA24 Hodoscope Cherenkov γ calorimeter (IHEP GAMS-2000)
(CERN GAMS-4000)

GALX GALLEX solar neutrino detector in the Gran Sasso Under-
ground Lab.

GAM2 IHEP hodoscope Cherenkov γ calorimeter GAMS-2000

GAM4 CERN hodoscope Cherenkov γ calorimeter GAMS-4000
GAMS IHEP hodoscope Cherenkov γ calorimeter GAMS-4π

GNO Gallium Neutrino Observatory in the Gran Sasso Underground
Lab.

GOLI CERN Goliath spectrometer
GRAL GRAAL Collaboration
H1 H1 detector at DESY/HERA

HBC Hydrogen bubble chamber

HDBC Hydrogen and deuterium bubble chambers
HDES HADES Collaboration at GSI in Darmstadt
HDMO Heidelberg-Moscow Experiment

HDMS Heidelberg Dark Matter Search Experiment
HEBC Helium bubble chamber
HEPT Helium proportional tubes

HERB HERA-B detector at DESY/HERA

HERM HERMES detector at DESY/HERA

HESS High Energy Stereoscopic System gamma-ray instrument

HFS Hyperfine structure
HLBC Heavy-liquid bubble chamber
HOME Homestake underground scintillation detector

HPGE High-purity Germanium detector
HPW Harvard-Pennsylvania-Wisconsin detector
HRS SLAC high-resolution spectrometer

HYBR Hybrid: bubble chamber + electronics
HYCP HyperCP Collab. (FNAL E-871)

IACT Imaging Air Cherenkov Telescope
ICAR ICARUS experiment at Gran Sasso Laboratory.

ICCB IceCube neutrino detector at South Pole
IGEX IGEX Collab.
IMB Irvine-Michigan-Brookhaven underground Cherenkov detector

IMB3 Irvine-Michigan-Brookhaven underground Cherenkov detector
INDU Magnetic induction
IPWA Energy-independent partial-wave analysis
ISTR IHEP ISTRA+ spectrometer-calorimeter

JADE JADE detector at DESY
K246 KEK E246 detector with polarimeter
K2K KEK to Super-Kamiokande

K391 KEK E391a detector
K470 KEK-E470 Stopping K detector
KAM2 KAMIOKANDE-II underground Cherenkov detector

KAMI KAMIOKANDE underground Cherenkov detector
KAR2 KARMEN2 calorimeter at the ISIS neutron spallation source at

Rutherford
KARM KARMEN calorimeter at the ISIS neutron spallation source at

Rutherford
KEDR detector operating at VEPP-4M collider (Novosibirsk)

KIMS Korea Invisible Mass Search experiment at YangYang, Korea
KLND KamLand Collab. (Japan)

KLOE KLOE detector at DAFNE (the Frascati e+e- collider Italy)

KOLR Kolar Gold Field underground detector
KTEV KTeV Collaboration
L3 L3 detector at LEP
LASR Laser
LASS Large-angle superconducting solenoid spectrometer at SLAC

LATT Lattice calculations
LEBC Little European bubble chamber at CERN
LEGS BNL LEGS Collab.
LENA Nonmagnetic lead-glass NaI detector at DORIS
LEP From combination of all 4 LEP experiments: ALEPH, DELPHI,

L3, OPAL

LEPS Low-Energy Pion Spectrometer at the Paul Scherrer Institute
LGW Lead Glass Wall collaboration at SPEAR/SLAC

LHC Combined analysis of LHC experiments
LHCB LHCb detector at CERN LHC
LSD Mont Blanc liquid scintillator detector
LSND Liquid Scintillator Neutrino Detector
LSW Light Shining through a Wall
LUX Large Underground Xenon experiment at SURF

MAC MAC detector at PEP/SLAC

MBOO Fermilab MiniBooNE neutrino experiment
MBR Molecular beam resonance technique
MCRO MACRO detector in Gran Sasso
MD1 Magnetic detector at VEPP-4, Novosibirsk

MDRP Millikan drop measurement
MEG Muon to electron conversion detector at PSI
MGIC MAGIC Telescopes gamma-ray observatory.

MICA Underground mica deposits
MINS Fermilab MINOS experiment
MIRA MIRABELLE Liquid-hydrogen bubble chamber

MLEV Magnetic levitation
MLS Modified Laurent Series
MMS Missing mass spectrometer

MPS Multiparticle spectrometer at BNL
MPS2 Multiparticle spectrometer upgrade at BNL
MPSF Multiparticle spectrometer at Fermilab

MPWA Model-dependent partial-wave analysis
MRK1 SLAC Mark-I detector
MRK2 SLAC Mark-II detector
MRK3 SLAC Mark-III detector
MRKJ Mark-J detector at DESY
MRS Magnetic resonance spectrometer

MUG2 MUON(g-2)

MWPC Multi-Wire Proportional Chamber

NA14 CERN NA14
NA31 CERN NA31 Spectrometer-Calorimeter
NA32 CERN NA32 Spectrometer

NA48 CERN NA48 Collaboration
NA49 CERN NA49 Collaboration
NA60 CERN NA60 Collaboration
NA62 CERN NA62 Experiment
NAGE NEWAGE, New generation WIMP-search experiment with ad-

vanced gaseous tracking

NAIA NAIAD (NaI Advanced Detector) dark matter search experi-
ment

ND NaI detector at VEPP-2M, Novosibirsk
NICE Serpukhov nonmagnetic precision spectrometer

NMR Nuclear magnetic resonance
NOMD NOMAD Collaboration, CERN SPS
NTEV NuTeV Collab. at Fermilab
nTRV neutron Time-Reversal Violation
NUSX Mont Blanc NUSEX underground detector
OBLX OBELIX detector at LEAR
OLYA Detector at VEPP-2M and VEPP-4, Novosibirsk
OMEG CERN OMEGA spectrometer
OPAL OPAL detector at LEP
OPER OPERA experiment with emulsion tracking at Gran Sasso
OSPK Optical spark chamber
PANX PandaX dual-phase liquid xenon dark matter experiment at

Jin-Ping
PIBE The PIBETA detector at the Paul Scherrer Institute (PSI),

Switzerland.
PICA PICASSO dark matter search experiment

PICO PICO bubble chamber experiment in SNOLAB underground
laboratory

PIE3 πE3 beam-line of Paul Scherrer Institute
PLAS Plastic detector
PLUT DESY PLUTO detector
PMLA PAMELA space spectrometer on Resurs-DK1 satellite

PRMX The PRIMEX detector in Hall B at TJNAF
PWA Partial-wave analysis
REDE Resonance depolarization

RENO RENO Collaboration
RICE Radio Ice Cherenkov Experiment
RVUE Review of previous data

SAGE US - Russian Gallium Experiment
SCDM SuperCDMS experiment at Soudan Underground Lab.
SELX FNAL SELEX Collab.
SFM CERN split-field magnet
SHF SLAC Hybrid Facility Photon Collaboration
SIGM Serpukhov CERN-IHEP magnetic spectrometer (SIGMA)

SILI Silicon detector
SIMP SIMPLE, dark matter detector at Laboratori Nazionali del Sud

SKAM Super-Kamiokande Collab.
SLAX Solar Axion Experiment in Canfranc Underground Laboratory
SLD SLC Large Detector for e

+
e
− colliding beams at SLAC

SMPL SIMPLE, Superheated Instrument for Massive ParticLe Experi-
ments
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SND Novosibirisk Spherical neutral detector at VEPP-2M
SNDR SINDRUM spectrometer at PSI
SNO SNO Collaboration (Sudbury Neutrino Observatory)

SOU2 Soudan 2 underground detector
SOUD Soudan underground detector

SPEC Spectrometer
SPED From maximum of speed plot or resonant amplitude
SPHR Bonn SAPHIR Collab.
SPNX SPHINX spectrometer at IHEP accelerator
SPRK Spark chamber
SQID SQUID device

STRC Streamer chamber
SVD2 SVD-2 experiment at IHEP, Protvino
T2K T2K Collaboration
TASS DESY TASSO detector
TEVA Combined analysis of CDF and DØ experiments
TEXO TEXONO Collab., ultra low energy Ge detector at Kuo-Sheng

Laboratory
THEO Theoretical or heavily model-dependent result
TNF TNF-IHEP facility at 70 GeV IHEP accelerator

TOF Time-of-flight
TOPZ TOPAZ detector at KEK-TRISTAN
TPC TPC detector at PEP/SLAC

TPS Tagged photon spectrometer at Fermilab
TRAP Penning trap

TWST TWIST spectrometer at TRIUMF
UA1 UA1 detector at CERN
UA2 UA2 detector at CERN
UA5 UA5 detector at CERN
UCNA UCNA collaboration using polarizeed ultracold neutrons at

LANSCE
UKDM UK Dark Matter Collab.
VES Vertex Spectrometer Facility at 70 GeV IHEP accelerator
VLBI Very Long Baseline Interferometer
VNS VENUS detector at KEK-TRISTAN
VRTS Very Energetic Radiation Imaging Telescope Array System

(VERITAS)

WA75 CERN WA75 experiment
WA82 CERN WA82 experiment

WA89 CERN WA89 experiment
WARP Liquid argon detector for CDM searches at Gran Sasso
WASA WASA detector at CELSIUS, Uppsala and at COSY, Juelich

WIRE Wire chamber
X100 XENON100 dark matter search experiment at Gran Sasso Na-

tional Laboratory

XE10 XENON10 experiment at Gran Sasso National Laboratory
XEBC Xenon bubble chamber
XMAS XMASS, liquid xenon scintillation detector at Kamioka Obser-

vatory
ZEP2 ZEPLIN-II dark matter detector
ZEP3 ZEPLIN-III dark matter detector at Palmer Underground Lab.

ZEPL ZEPLIN-I galactic dark matter detector
ZEUS ZEUS detector at DESY/HERA

Conferences

Conferences are generally referred to by the location at which they were
held (e.g., HAMBURG, TORONTO, CORNELL, BRIGHTON, etc.).

Journals

AA Astronomy and Astrophysics
ADVP Advances in Physics

AFIS Anales de Fisica
AJP American Journal of Physics
AL Astronomy Letters

ANP Annals of Physics
ANPL Annals of Physics (Leipzig)

ANYAS Annals of the New York Academy of Sciences
AP Atomic Physics

APAH Acta Physica Academiae Scientiarum Hungaricae
APJ Astrophysical Journal
APJS Astrophysical Journal Suppl.

APP Acta Physica Polonica
APS Acta Physica Slovaca
ARNPS Annual Review of Nuclear and Particle Science
ARNS Annual Review of Nuclear Science
ASP Astroparticle Physics
AST American Statistician

BAPS Bulletin of the American Physical Society
BASUP Bulletin of the Academy of Science, USSR (Physics)

CJNP Chinese Journal of Nuclear Physics
CJP Canadian Journal of Physics
CNPP Comments on Nuclear and Particle Physics

CP Chinese Physics
CPC Chinese Physics C
CTP Communications in Theoretical Physics

CZJP Czechoslovak Journal of Physics
DANS Doklady Akademii nauk SSSR
EPJ The European Physical Journal

EPL Europhysics Letters
FECAY Fizika Elementarnykh Chastits i Atomnogo Yadra
HADJ Hadronic Journal
IJMP International Journal of Modern Physics
JAP Journal of Applied Physics
JCAP Journal of Cosmology and Astroparticle Physics

JETP English Translation of Soviet Physics ZETF
JETPL English Translation of Soviet Physics ZETF Letters
JHEP Journal of High Energy Physics

JINR Joint Inst. for Nuclear Research
JINRRCJINR Rapid Communications
JP Journal of Physics
JPA Journal of Physics, A

JPB Journal of Physics, B
JPCRD Journal of Physical and Chemical Reference Data
JPCS Journal of Physics: Conference Series

JPG Journal of Physics, G
JPSJ Journal of the Physical Society of Japan
LNC Lettere Nuovo Cimento
MNRAS Monthly Notices of the Royal Astronomical Society
MPL Modern Physics Letters
NAST New Astronomy

NAT Nature
NATP Nature Physics
NC Nuovo Cimento
NIM Nuclear Instruments and Methods
NJP New Journal of Physics
NP Nuclear Physics

NPBPS Nuclear Physics B Proceedings Supplement
PAN Physics of Atomic Nuclei (formerly SJNP)

PD Physics Doklady (Magazine)

PDAT Physik Daten
PL Physics Letters
PN Particles and Nuclei
PPCF Plasma Physics and Controlled Fusion
PPN Physics of Particles and Nuclei (formerly SJPN)

PPNL Physics of Particles and Nuclei Letters
PPNP Progress in Particles and Nuclear Physics

PPSL Proc. of the Physical Society of London
PR Physical Review
PRAM Pramana
PRL Physical Review Letters
PRPL Physics Reports (Physics Letters C)

PRSE Proc. of the Royal Society of Edinburgh
PRSL Proc. of the Royal Society of London, Section A
PS Physica Scripta

PTEP Progress of Theoretical and Experimental Physics
PTP Progress of Theoretical Physics
PTPS Progress of Theoretical Physics Supplement

PTRSL Phil. Trans. Royal Society of London
RA Radiochimica Acta
RMP Reviews of Modern Physics

RNC La Rivista del Nuovo Cimento
RPP Reports on Progress in Physics
RRP Revue Roumaine de Physique

SCI Science
SJNP Soviet Journal of Nuclear Physics
SJPN Soviet Journal of Particles and Nuclei
SPD Soviet Physics Doklady (Magazine)

SPU Soviet Physics - Uspekhi

UFN Usp. Fiz. Nauk – Russian version of SPU
YAF Yadernaya Fizika
ZETF Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki

ZETFP Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, Pis’ma v
Redakts
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ZNAT Zeitschrift fur Naturforschung
ZPHY Zeitschrift fur Physik

Institutions

AACH Phys. Inst. der Techn.
Hochschule Aachen (His-
torical, use for general Inst.
der Techn. Hochschule)

Aachen, Germany

AACH1 I Phys. Inst. B, RWTH
Aachen

Aachen, Germany

AACH3 III Phys. Inst. A, RWTH
Aachen Univ.

Aachen, Germany

AACHT Inst. für Theoretische
Teilchenphysik & Kosmolo-
gie, RWTH Aachen

Aachen, Germany

AARH Univ. of Aarhus Aarhus C, Denmark
ABO Åbo Akademi Univ. Turku, Finland
ADEL Adelphi Univ. Garden City, NY, USA

ADLD The Univ. of Adelaide Adelaide, SA, Australia
AERE Atomic Energy Research Es-

tab.
Didcot, United Kingdom

AFRR Armed Forces Radiobiology
Res. Inst.

Bethesda, MD, USA

AHMEDPhysical Research Lab. Ahmedabad, Gujarat, India
AICH Aichi Univ. of Education Aichi, Japan

AKIT Akita Univ. Akita, Japan
ALAH Univ. of Alabama

(Huntsville)
Huntsville, AL, USA

ALAT Univ. of Alabama
(Tuscaloosa)

Tuscaloosa, AL, USA

ALBA SUNY at Albany Albany, NY, USA

ALBE Univ. of Alberta Edmonton, AB, Canada
AMES Ames Lab. Ames, IA, USA
AMHT Amherst College Amherst, MA, USA

AMST Univ. van Amsterdam GL Amsterdam, The Nether-
lands

ANIK NIKHEF Amsterdam, The Netherlands

ANKA Middle East Technical
Univ.; Dept. of Physics; Ex-
perimental HEP Lab

Ankara, Turkey

ANL Argonne National Lab.; High
Energy Physics Division,
Bldg. 362; Physics Division,
Bldg. 203

Argonne, IL, USA

ANSM St. Anselm Coll. Manchester, NH, USA
ARCBO Arecibo Observatory Arecibo, PR, USA
ARIZ Univ. of Arizona Tucson, AZ, USA

ARZS Arizona State Univ. Tempe, AZ, USA
ASCI Russian Academy of Sciences Moscow, Russian Federation
AST Academia Sinica Nankang, Taipei, Taiwan

ATEN NCSR “Demokritos” Aghia Paraskevi , Greece
ATHU Univ. of Athens Athens, Greece
AUCK Univ. of Auckland Auckland, New Zealand

BAKU Natl. Azerbaijan Academy
of Sciences, Inst. of Physics

Baku, Azerbaijan

BANG Indian Inst. of Science Bangalore, India

BANGB Bangabasi College Calcutta, India
BARC Univ. Autónoma de

Barcelona
Bellaterra (Barcelona), Spain

BARI Univ. e del Politecnico di
Bari

Bari, Italy

BART Univ. of Delaware; Bartol
Research Inst.

Newark, DE, USA

BASL Inst. für Physik der Univ.
Basel

Basel, Switzerland

BAYR Univ. Bayreuth Bayreuth, Germany
BCEN Centre d’Etudes Nucleaires de

Bordeaux-Gradignan
Gradignan, France

BCIP Natl. Inst. for Physics & Nu-
clear Eng. ”Horia Hulubei”
(IFIN-HH)

Bucharest-Magurele, Romania

BEIJ Beijing Univ. Beijing, China

BEIJT Inst. of Theoretical
Physics

Beijing, China

BELG Inter-University Inst. for High
Energies (ULB-VUB)

Brussel, Belgium

BELL AT & T Bell Labs Murray Hill, NJ, USA
BERG Univ. of Bergen Bergen, Norway

BERL DESY, Deutsches
Elektronen-Synchrotron

Zeuthen, Germany

BERN Univ. of Berne Berne, Switzerland

BGNA Univ. di Bologna, & INFN,
Sezione di Bologna; Via Irne-
rio, 46, I-40126 Bologna; Viale
C. Berti Pichat, n. 6/2

Bologna, Italy

BHAB Bhabha Atomic Research
Center

Trombay, Bombay, India

BHEP Inst. of High Energy
Physics

Beijing, China

BIEL Univ. Bielefeld Bielefeld, Germany
BING SUNY at Binghamton Binghamton, NY, USA
BIRK Birkbeck College, Univ. of

London
London, United Kingdom

BIRM Univ. of Birmingham Edgbaston, Birmingham,
United Kingdom

BLSU Bloomsburg Univ. Bloomsburg, PA, USA

BNL Brookhaven National Lab. Upton, NY, USA
BOCH Ruhr Univ. Bochum Bochum, Germany
BOHR Niels Bohr Inst. Copenhagen Ø, Denmark

BOIS Boise State Univ. Boise, ID, USA
BOMB Univ. of Bombay Bombay, India
BONN Univ. of Bonn Bonn, Germany

BORD Centre d’Etudes Nucléaires
de Bordeaux Gradignan
(CENBG)

Gradignan, France

BOSE S.N. Bose National Centre
for Basis Sciences

Calcutta, India

BOSK “Rudjer Bošković” Inst. Zagreb, Croatia
BOST Boston Univ. Boston, MA, USA
BRAN Brandeis Univ. Waltham, MA, USA

BRCO Univ. of British Columbia Vancouver, BC, Canada
BRIS Univ. of Bristol Bristol, United Kingdom
BROW Brown Univ. Providence, RI, USA

BRUN Brunel Univ. Uxbridge, Middlesex, United
Kingdom

BRUX Univ. Libre de Bruxelles;
Physique des Particules
Elémentaires

Bruxelles, Belgium

BRUXT Univ. Libre de Bruxelles;
Physique Théorique

Bruxelles, Belgium

BUCH Univ. of Bucharest Bucharest-Magurele, Romania
BUDA Wigner Research Centre for

Physics
Budapest, Hungary

BUFF SUNY at Buffalo Buffalo, NY, USA
BURE Inst. des Hautes Etudes Scien-

tifiques
Bures-sur-Yvette, France

CAEN Lab. de Physique Corpuscu-
laire, ENSICAEN

Caen, France

CAGL Univ. degli Studi di Cagliari Monserrato (CA), Italy

CAIR Cairo University Orman, Giza, Cairo, Egypt
CAIW Carnegie Inst. of Washing-

ton
Washington, DC, USA

CALB Univ. della Calabria Cosenza, Italy
CALC Univ. of Calcutta Calcutta, India

CAMB DAMTP Cambridge, United Kingdom
CAMP Univ. Estadual de Campinas

(UNICAMP)
Campinas, SP, Brasil

CANB Australian National Univ. Canberra, ACT, Australia
CANTB Inst. de F́ısica de Cantabria

(CSIC–Univ. Cantabria)
Santander, Spain

CAPE University of Cape Town Rondebosch, Cape Town,
South Africa

CARA Univ. Central de Venezuela Caracas, Venezuela

CARL Carleton Univ. Ottawa, ON, Canada
CARLC Carleton College Northfield, MN, USA
CASE Case Western Reserve Univ. Cleveland, OH, USA
CAST China Center of Advanced

Science and Technology
Beijing, China

CATA Univ. di Catania Catania, Italy
CATH Catholic Univ. of America Washington, DC, USA

CAVE Cavendish Lab. Cambridge, United Kingdom
CBNM CBNM Geel, Belgium
CBPF Centro Brasileiro de Pesquisas

F́ısicas – BIB/CDI/CBPF
Rio de Janeiro, RJ, Brasil

CCAC Allegheny College Meadville, PA, USA
CDEF Univ. Paris VII, Denis

Diderot
Paris, France
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CEA Cambridge Electron Accelera-

tor (Historical in Review)
Cambridge, MA, USA

CEADE Center for Apl. Studies for
Nuclear Physics

Havana, Cuba

CEBAF Jefferson Lab—Thomas
Jefferson National Accel-
erator Facility

Newport News, VA, USA

CENG Centre d’Etudes Nucleaires Grenoble, France

CERN CERN, European Organiza-
tion for Nuclear Research

Genève, Switzerland

CFPA Univ. of California, (Berke-
ley)

Berkeley, CA, USA

CHIC Univ. of Chicago Chicago, IL, USA

CIAE State Nuclear Power Re-
search Inst.

Beijing, China

CINC Univ. of Cincinnati Cincinnati, OH, USA

CINV CINVESTAV-IPN Centro
de Investigacion y de Estudios
Avanzados del IPN

México, DF, Mexico

CIT California Inst. of Tech. Pasadena, CA, USA

CLER Univ. de Clermont-Ferrand Aubière, France
CLEV Cleveland State Univ. Cleveland, OH, USA
CMNS Comenius Univ. (FMFI UK) Bratislava, Slovakia

CMU Carnegie Mellon Univ. Pittsburgh, PA, USA

CNEA Comisión Nacional de En-
erǵıa Atómica

Buenos Aires, Argentina

CNRC Centre for Research in Parti-
cle Physics

Ottawa, ON, Canada

COIM Univ. de Coimbra Coimbra, Portugal
COLO Univ. of Colorado Boulder, CO, USA

COLU Columbia Univ. New York, NY, USA
CONC Concordia University Montreal, PQ, Canada
CORN Cornell Univ. Ithaca, NY, USA

COSU Colorado State Univ. Fort Collins, CO, USA
CPPM Centre National de la

Recherche Scientifique, Lu-
miny

Marseille, France

CRAC Henryk Niewodnicza’nski Inst.
of Nuclear Physics

Kraków, Poland

CRNL Chalk River Labs. Chalk River, ON, Canada

CSOK Oklahoma Central State
Univ.

Edmond, OK, USA

CST Univ. of Science and Tech-
nology of China

Hefei, Anhui 230026, China

CSULB California State Univ. Long Beach, CA, USA
CSUS California State Univ. Sacramento, CA, USA

CUNY City College of New York New York, NY, USA
CURCP Univ. Pierre et Marie

Curie (Paris VI), LCP
Paris, France

CURIN Univ. Pierre et Marie
Curie (Paris VI), LPNHE

Paris, France

CURIT Univ. Pierre et Marie
Curie (Paris VI), LPTHE

Paris, France

DALH Dalhousie Univ. Halifax, NS, Canada
DALI Dalian Univ. of Tech. Dalian, China
DARE Daresbury Lab Cheshire, United Kingdom

DARM Tech. Hochschule Darmstadt Darmstadt, Germany
DELA Univ. of Delaware; Dept. of

Physics & Astronomy
Newark, DE, USA

DELH Univ. of Delhi Delhi, India

DESY DESY, Deutsches
Elektronen-Synchrotron

Hamburg, Germany

DFAB Escuela de Ingenieros Bilbao, Spain

DOE Department of Energy Washington, DC, USA
DORT Technische Univ. Dortmund Dortmund, Germany
DUKE Duke Univ. Durham, NC, USA

DURH Univ. of Durham Durham , United Kingdom
DUUC University College Dublin Dublin, Ireland
EDIN Univ. of Edinburgh Edinburgh, United Kingdom

EFI Univ. of Chicago, The En-
rico Fermi Inst.

Chicago, IL, USA

ELMT Elmhurst College Elmhurst, IL, USA
ENSP l’Ecole Normale

Supérieure
Paris, France

EOTV Eötvös University Budapest, Hungary
EPOL École Polytechnique Palaiseau, France

ERLA Univ. Erlangen-Nurnberg Erlangen, Germany
ETH Univ. Zürich Zürich, Switzerland

FERR Univ. di Ferrara Ferrara, Italy
FIRZ Univ. degli Studi di Firenze Sesto Fiorentino, Italy
FISK Fisk Univ. Nashville, TN, USA

FLOR Univ. of Florida Gainesville, FL, USA
FNAL Fermilab Batavia, IL, USA
FOM FOM, Stichting voor Funda-

menteel Onderzoek der Ma-
terie

JP Utrecht, The Netherlands

FRAN Frankfurt Inst. for Ad-
vanced Studies (FIAS)

Frankfurt am Main, Germany

FRAS Lab. Nazionali di Frascati
dell’INFN

Frascati (Roma), Italy

FREIB Albert-Ludwigs Univ. Freiburg, Germany
FREIE Freie Univ. Berlin Berlin, Germany
FRIB Univ. de Fribourg Fribourg, Switzerland

FSU Florida State Univ.; High
Energy Physics

Tallahassee, FL, USA

FSUSC Florida State Univ.; SCS
(School of Computational
Science)

Tallahassee, FL, USA

FUKI Fukui Univ. Fukui, Japan
FUKU Fukushima Univ. Fukushima, Japan

GENO Univ. di Genova Genova, Italy
GEOR E. Andronikashvili Inst. of

Physics
Tbilisi, Republic of Georgia

GESC General Electric Co. Schenectady, NY, USA

GEVA Univ. de Genève Genève, Switzerland
GIES Univ. Giessen Giessen, Germany
GIFU Gifu Univ. Gifu, Japan

GLAS Univ. of Glasgow Glasgow, United Kingdom
GMAS George Mason Univ. Fairfax, VA, USA
GOET Univ. Göttingen Göttingen, Germany

GRAN Univ. de Granada Granada, Spain
GRAZ Univ. Graz Graz, Austria
GRON Univ. of Groningen Groningen, The Netherlands

GSCO Geological Survey of
Canada

Ottawa, ON, Canada

GSI GSI Helmholtzzentrum für
Schwerionenforschung GmbH

Darmstadt, Germany

GUAN Univ. de Guanajuato León, Gto., Mexico
GUEL Univ. of Guelph Guelph, ON, Canada
GWU George Washington Univ. Washington, DC, USA

HAHN Hahn-Meitner Inst. Berlin
GmbH

Berlin, Germany

HAIF Technion – Israel Inst. of
Tech.

Technion, Haifa, Israel

HAMB Univ. Hamburg Hamburg, Germany
HANN Univ. Hannover Hannover, Germany
HARC Houston Advanced Re-

search Ctr.
The Woodlands, TX, USA

HARV Harvard Univ. Cambridge, MA, USA
HARV Harvard Univ. (LPPC) Cambridge, MA, USA

HAWA Univ. of Hawai’i Honolulu, HI, USA
HEBR Hebrew Univ. Jerusalem, Israel

HEID Univ. Heidelberg; (unspec-
ified division) (Historical in
Review)

Heidelberg, Germany

HEIDH Ruprecht-Karls Univ. Heidel-
berg

Heidelberg, Germany

HEIDP Univ. Heidelberg; Physics
Inst.

Heidelberg, Germany

HEIDT Ruprecht-Karls-Univ. Heidel-
berg

Heidelberg, Germany

HELS Univ. of Helsinki University of Helsinki, Finland
HIRO Hiroshima Univ. Higashi-Hiroshima, Japan

HOUS Univ. of Houston Houston, TX, USA
HPC Hewlett-Packard Corp. Cupertino, CA, USA
HSCA Harvard-Smithsonian Cen-

ter for Astrophysics
Cambridge, MA, USA

IAS Inst. for Advanced Study Princeton, NJ, USA
IASD Dublin Inst. for Advanced

Studies
Dublin, Ireland

IBAR Ibaraki Univ. Ibaraki, Japan
IBM IBM Corp. Palo Alto, CA, USA
IBMY IBM Yorktown Heights, NY, USA

IBS Inst. for Boson Studies Pasadena, CA, USA
ICEPP The Univ. of Tokyo Tokyo, Japan
ICRR Univ. of Tokyo Chiba, Japan
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ICTP Abdus Salam International

Centre for Theoretical Physics
Trieste, Italy

IFIC IFIC (Instituto de F́ısica
Corpuscular)

Paterna (Valencia), Spain

IFRJ Univ. Federal do Rio de
Janeiro

Rio de Janeiro, RJ, Brasil

IIT Illinois Inst. of Tech. Chicago, IL, USA
ILL Univ. of Illinois at Urbana-

Champaign
Urbana, IL, USA

ILLC Univ. of Illinois at Chicago Chicago, IL, USA
ILLG Inst. Laue-Langevin Grenoble, France

IND Indiana Univ. Bloomington, IN, USA
INEL E G and G Idaho, Inc. Idaho Falls, ID, USA
INFN Ist. Nazionale di Fisica Nu-

clear (Generic INFN, un-
known location)

Various places, Italy

INNS Univ. of Innsbruck Innsbruck, Austria
INPK Henryk Niewodniczański Inst.

of Nuclear Physics
Kraków, Poland

INRM INR, Inst. for Nucl. Research Moscow, Russian Federation
INUS KEK, High Energy Accelera-

tor Research Organization
Tokyo, Japan

IOAN Univ. of Ioannina Ioannina, Greece
IOFF A.F. Ioffe Phys. Tech. Inst. St. Petersburg, Russian Fed-

eration
IOWA Univ. of Iowa Iowa City, IA, USA

IPN IPN, Inst. de Phys. Nucl. Orsay, France
IPNP Univ. Pierre et Marie Curie

(Paris VI)
Paris, France

IRAD Inst. du Radium (Historical) Paris, France

ISNG Lab. de Physique Sub-
atomique et de Cosmologie
(LPSC)

Grenoble, France

ISU Iowa State Univ. Ames, IA, USA
ISUT Isfahan University of Technol-

ogy
Isfahan, Iran

ITEP ITEP, Inst. of Theor. and
Exp. Physics

Moscow, Russian Federation

ITHA Ithaca College Ithaca, NY, USA

IUPU Indiana Univ., Purdue
Univ. Indianapolis

Indianapolis, IN, USA

JADA Jadavpur Univ. Calcutta, India

JAGL Jagiellonian Univ. Kraków, Poland
JHU Johns Hopkins Univ. Baltimore, MD, USA
JINR JINR, Joint Inst. for Nucl.

Research
Dubna, Russian Federation

JULI Forschungszentrum Jülich Jülich, Germany
JYV Univ. of Jyväskylä Jyväskylä, Finland

KAGO Univ. of Kagoshima Kagoshima-shi, Japan
KAIST Korea Advanced Inst. of Sci-

ence and Technology
Yusung ku, Daejon, Republic
of Korea

KANS Univ. of Kansas Lawrence, KS, USA

KARL Univ. Karlsruhe (Historical
in Review)

Karlsruhe, Germany

KARLE Karlsruhe Inst. of Technol-
ogy (KIT); Inst. for Experi-
mental Nuclear Physics

Karlsruhe, Germany

KARLK Karlsruhe Inst. of Technol-
ogy (KIT)

Eggenstein-Leopoldshafen, Ger-
many

KARLT Karlsruhe Inst. of Technol-
ogy (KIT); Inst. for Theoreti-
cal Physics

Karlsruhe, Germany

KAZA Kazakh Inst. of High Energy
Physics

Alma Ata, Kazakhstan

KEK KEK, High Energy Accelera-
tor Research Organization

Ibaraki-ken, Japan

KENT Univ. of Kent Canterbury, United Kingdom
KEYN Open Univ. Milton Keynes, United King-

dom
KFTI Kharkov Inst. of Physics and

Tech. (NSC KIPT)
Kharkov, Ukraine

KIAE Kurchatov Inst. Moscow, Russian Federation
KIAM Keldysh Inst. of Applied

Math., Acad. Sci., Russia
Moscow, Russian Federation

KIDR Vinča Inst. of Nuclear Sci-
ences

Belgrade, Serbia

KIEV Institute for Nuclear Re-
search

Kyiv, Ukraine

KINK Kinki Univ. Osaka, Japan

KNTY Univ. of Kentucky Lexington, KY, USA
KOBE Kobe Univ. Kobe, Japan
KOMABUniv. of Tokyo, Komaba Tokyo, Japan

KONANKonan Univ. Kobe, Japan
KOSI Inst. of Experimental Physics

SAS
Košice, Slovakia

KYOT Kyoto Univ.; Dept. of
Physics, Graduate School of
Science

Kyoto, Japan

KYOTUKyoto Univ.; Yukawa Inst.
for Theor. Physics

Kyoto, Japan

KYUN Kyungpook National Univ. Daegu, Republic of Korea
KYUSH Kyushu Univ.; Elementary

ParticleTheory Group; Exp.
Particle Physics Group; Re-
search Center for Advanced
Particle Physics

Fukuoka, Japan

LALO LAL, Laboratoire de
l’Accélérateur Linéaire

Orsay, France

LANC Lancaster Univ. Lancaster, United Kingdom

LANL Los Alamos National Lab.
(LANL)

Los Alamos, NM, USA

LAPL Univ. Nacional de La Plata La Plata, Argentina
LAPP LAPP, Lab. d’Annecy-le-

Vieux de Phys. des Particules
Annecy-le-Vieux, France

LASL U.C. Los Alamos Scientific
Lab. (Old name for LANL)

Los Alamos, NM, USA

LATV Latvian State Univ. Riga, Latvia
LAUS EPFL Lausanne Lausanne, Switzerland

LAVL Univ. Laval Quebec, QC, Canada
LBL Lawrence Berkeley Na-

tional Lab.
Berkeley, CA, USA

LCGT Univ. di Torino Turin, Italy

LEBD Lebedev Physical Inst. Moscow, Russian Federation
LECE Univ. di Lecce Lecce, Italy
LEED Univ. of Leeds Leeds, United Kingdom

LEGN Lab. Naz. di Legnaro Legnaro, Italy
LEHI Lehigh Univ. Bethlehem, PA, USA
LEHM Lehman College of CUNY Bronx, NY, USA

LEID Univ. Leiden Leiden, The Netherlands
LEMO Le Moyne Coll. Syracuse, NY, USA
LEUV Katholieke Univ. Leuven Leuven, Belgium

LIEG Univ. de Liège Liège, Belgium
LINZ Univ. Linz Linz, Austria
LISB Inst. Nacional de Investigacion

Cientifica
Lisboa CODEX, Portugal

LISBT Centro de F́ısica Teórica de
Part́ıculas (CFTP)

Lisboa, Portugal

LIVP Univ. of Liverpool Liverpool, United Kingdom
LLL Lawrence Livermore Lab.

(Old name for LLNL)
Livermore, CA, USA

LLNL Lawrence Livermore Na-
tional Lab.

Livermore, CA, USA

LOCK Lockheed Palo Alto Res.
Lab

Palo Alto, CA, USA

LOIC Imperial College of Science
Tech. & Medicine

London, United Kingdom

LOQM Queen Mary, Univ. of Lon-
don

London, United Kingdom

LOUC University College London London, United Kingdom
LOUV Univ. Catholique de Louvain Louvain-la-Neuve, Belgium
LOWC Westfield College (Historical,

see LOQM (Queen Mary and
Westfield joined))

London, United Kingdom

LRL U.C. Lawrence Radiation Lab.
(Old name for LBL)

Berkeley, CA, USA

LSU Louisiana State Univ. Baton Rouge, LA, USA
LUND Fysiska Institutionen Lund, Sweden

LUND Lund Univ. Lund, Sweden
LYON Institute de Physique

Nucléaire de Lyon (IPN)
Villeurbanne, France

MADE UAM/CSIC, Inst. de F́ısica
Teórica

Madrid, Cantoblanco, Spain

MADR C.I.E.M.A.T Madrid, Spain
MADRAUniv. of Madras Madras, India
MADU Univ. Autónoma de Madrid Cantoblanco, Madrid, Spain

MANI Univ. of Manitoba Winnipeg, MB, Canada
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MANZ Johannes-Gutenberg-

Univ.; Inst. für Kernphysik,
J.-J.-Becher-Weg 45; Inst. für
Physik, Staudingerweg 7

Mainz, Germany

MARB Univ. Marburg Marburg, Germany
MARS Centre de Physique des Par-

ticules de Marseille
Marseille, France

MASA Univ. of Massachusetts
Amherst

Amherst, MA, USA

MASB Univ. of Massachusetts
Boston

Boston, MA, USA

MASD Univ. of Massachusetts
Dartmouth

North Dartmouth, MA, USA

MCGI McGill Univ. Montreal, QC, Canada
MCHS Univ. of Manchester Manchester, United Kingdom

MCMS McMaster Univ. Hamilton, ON, Canada
MEHTA Harish-Chandra Research

Inst.
Allahabad, India

MEIS Meisei Univ. Tokyo, Japan
MELB Univ. of Melbourne Victoria, Australia
MEUD Observatoire de Meudon Meudon, France

MICH Univ. of Michigan Ann Arbor, MI, USA
MILA Univ. di Milano Milano, Italy
MILAI INFN, Sez. di Milano Milano, Italy

MINN Univ. of Minnesota Minneapolis, MN, USA
MIPT Moscow Institute of Physics

and Technology
Moscow, Russian Federation

MISS Univ. of Mississippi University, MS, USA

MISSR Univ. of Missouri Rolla, MO, USA
MIT MIT Massachusetts Inst.

of Technology
Cambridge, MA, USA

MIU Maharishi International
Univ.

Fairfield, IA, USA

MIYA Miyazaki Univ. Miyazaki-shi, Japan

MONP Univ. de Montpellier II Montpellier, France
MONS Univ. of Mons Mons, Belgium
MONT Univ. de Montréal; Pavillon

René-J.-A.-Lévesque
Montréal, PQ, Canada

MONTCUniv. de Montréal; Centre
de recherches mathématiques

Montréal, PQ, Canada

MOSU Skobeltsyn Inst. of Nuclear
Physics, Lomonosov Moscow
State Univ.; Experimental
HEP Division; Theoretical
HEP Division

Moscow, Russian Federation

MPCM Max Planck Inst. fur Chemie Mainz, Germany
MPEI Moscow Physical Engi-

neering Inst.
Moscow, Russian Federation

MPIG Max-Planck-Institute für
Astrophysik

Garching, Germany

MPIH Max-Planck-Inst. für Kern-
physik

Heidelberg, Germany

MPIM Max-Planck-Inst. für
Physik

München, Germany

MSST Mississippi State University Mississippi State, MS, USA
MSU Michigan State Univ. East Lansing, MI, USA
MTHO Mount Holyoke College South Hadley, MA, USA

MULH Centre Univ. du Haut-Rhin Mulhouse, France
MUNI Ludwig-Maximilians-Univ.

München
Garching, Germany

MUNT Tech. Univ. München Garching, Germany
MURA Midwestern Univ. Research

Assoc. (Historical in Review)
Stroughton, WI, USA

MURC Univ. of Murcia Murcia, Spain
NAAS North Americal Aviation Sci-

ence Center (Historical in
Review)

Thousand Oaks, CA, USA

NAGO Nagoya Univ. Nagoya, Japan
NANJ Nanjing Univ. Nanjing, China

NAPL Univ. di Napoli “Federico II” Napoli, Italy
NASA NASA Greenbelt, MD, USA
NBS U.S National Bureau of

Standards (Old name for
NIST)

Gaithersburg, MD, USA

NBSB National Inst. Standards
Tech.

Boulder, CO, USA

NCAR National Center for Atmo-
spheric Research

Boulder, CO, USA

NCSU North Carolina State Univ. Raleigh, NC, USA
NDAM Univ. of Notre Dame Notre Dame, IN, USA

NEAS Northeastern Univ. Boston, MA, USA
NEBR Univ. of Nebraska Lincoln, NE, USA
NEUC Univ. de Neuchâtel Neuchâtel, Switzerland

NICEA Univ. de Nice Nice, France
NICEO Observatoire de Nice Nice, France
NIHO Nihon Univ. Tokyo, Japan
NIIG Niigata Univ. Niigata, Japan

NIJM Radboud Univ. Nijmegen AJ Nijmegen, The Nether-
lands

NIRS Nat. Inst. Radiological Sci-
ences

Chiba, Japan

NIST National Institute of Stan-
dards & Technology

Gaithersburg, MD, USA

NIU Northern Illinois Univ. De Kalb, IL, USA

NMSU New Mexico State Univ.;
Dept. of Physics, MSC 3D;
Part. & Nucl. Phys. Group,
Box 30001/Dept.

Las Cruces, NM, USA

NORD Nordita Stockholm, Sweden
NOTT Univ. of Nottingham Nottingham, United Kingdom
NOVM Inst. of Mathematics Novosibirsk, Russian Federa-

tion
NOVO BINP, Budker Inst. of Nu-

clear Physics
Novosibirsk, Russian Federa-
tion

NPOL Polytechnic of North Lon-
don

London, United Kingdom

NRL Naval Research Lab Washington, DC, USA
NSF National Science Founda-

tion
Arlington, VA, USA

NTHU National Tsing Hua Univ. Hsinchu, Taiwan
NTUA National Tech. Univ. of

Athens
Athens, Greece

NWES Northwestern Univ. Evanston, IL, USA
NYU New York Univ. New York, NY, USA
OBER Oberlin College Oberlin, OH, USA
OCH Ochanomizu Univ. Tokyo, Japan

OHIO Ohio Univ. Athens, OH, USA
OKAY Okayama Univ. Okayama, Japan
OKLA Univ. of Oklahoma Norman, OK, USA

OKSU Oklahoma State Univ. Stillwater, OK, USA
OREG Univ. of Oregon; Inst. of

Theoretical Science; U.O.
Center for High Energy
Physics

Eugene, OR, USA

ORNL Oak Ridge National Labora-
tory

Oak Ridge, TN, USA

ORSAY Univ. de Paris Sud 11 Orsay CEDEX, France
ORST Oregon State Univ. Corvallis, OR, USA

OSAK Osaka Univ. Osaka, Japan
OSKC Osaka City Univ. Osaka, Japan
OSLO Univ. of Oslo Oslo, Norway

OSU Ohio State Univ. Columbus, OH, USA
OTTA Univ. of Ottawa Ottawa, ON, Canada
OXF University of Oxford Oxford, United Kingdom

OXFTP Univ. of Oxford Oxford, United Kingdom
PADO Univ. degli Studi di Padova Padova, Italy
PARIN LPNHE, IN2P3/CNRS Paris, France

PARIS Univ. de Paris (Historical) Paris, France

PARIT Univ. Paris VII, LPTHE Paris, France
PARM INFN, Gruppo Collegato di

Parma
Parma, Italy

PAST Institut Pasteur Paris, France
PATR Univ. of Patras Patras, Greece
PAVI Univ. di Pavia Pavia, Italy

PAVII INFN, Sez. di Pavia Pavia, Italy
PENN Univ. of Pennsylvania Philadelphia, PA, USA
PGIA INFN, Sezione di Perugia Perugia, Italy

PISA Univ. di Pisa Pisa, Italy
PISAI INFN, Sez. di Pisa Pisa, Italy
PITT Univ. of Pittsburgh Pittsburgh, PA, USA

PLAT SUNY at Plattsburgh Plattsburgh, NY, USA
PLRM Univ. di Palermo Palermo, Italy
PNL Battelle Memorial Inst. Richland, WA, USA

PNPI Petersburg Nuclear Physics
Inst. of Russian Academy of
Sciences

Gatchina, Russian Federation

PPA Princeton-Penn. Proton Accel-
erator (Historical in Review)

Princeton, NJ, USA
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PRAG Inst. of Physics, ASCR Prague, Czech Republic
PRIN Princeton Univ. Princeton, NJ, USA
PSI Paul Scherrer Inst. Villigen PSI, Switzerland

PSLL Physical Science Lab Las Cruces, NM, USA
PSU Penn State Univ. University Park, PA, USA
PUCB Pontif́ıcia Univ. Católica

do Rio de Janeiro
Rio de Janeiro, RJ, Brasil

PUEB Univ. Autonoma de Puebla Puebla, Pue, Mexico
PURD Purdue Univ. West Lafayette, IN, USA
QUKI Queen’s Univ. Kingston, ON, Canada

RAL STFC Rutherford Apple-
ton Lab.

Chilton, Didcot, Oxfordshire,
United Kingdom

REGE Univ. Regensburg Regensburg, Germany

REHO Weizmann Inst. of Science Rehovot, Israel
REZ Nuclear Physics Inst. AVČR Řež, Czech Republic
RGSUL Univ. Federal do Rio

Grande do Sul (UFRGS)
Porto Alegre, RS, Brasil

RHBL Royal Holloway, Univ. of
London

Egham, Surrey, United King-
dom

RHEL Rutherford High Energy
Lab (Old name for RAL)

Chilton, Didcot, Oxon., United
Kingdom

RICE Rice Univ. Houston, TX, USA

RIKEN Riken Nishina Center for
Accelerator-Based Science

Saitama, Japan

RIKK Rikkyo Univ. Tokyo, Japan
RIS Rowland Inst. for Science Cambridge, MA, USA

RISC Rockwell International Thousand Oaks, CA, USA
RISL Universities Research Re-

actor
Risley, Warrington, United
Kingdom

RISO Riso National Laboratory Roskilde, Denmark
RL Rutherford High Energy

Lab (Old name for RAL)
Chilton, Didcot, Oxon., United
Kingdom

RMCS Royal Military Coll. of Sci-
ence

Swindon, Wilts., United King-
dom

ROCH Univ. of Rochester Rochester, NY, USA
ROCK Rockefeller Univ. New York, NY, USA
ROMA Univ. di Roma (Historical) Roma, Italy

ROMA2 Univ. di Roma, “Tor Ver-
gata”

Roma, Italy

ROMA3 INFN, Sez. di Roma Tre Roma, Italy
ROMAI INFN, Sez. di Roma Roma, Italy
ROSE Rose-Hulman Inst. of Tech-

nology
Terre Haute, IN, USA

RPI Rensselaer Polytechnic
Inst.

Troy, NY, USA

RUTG Rutgers, the State Univ. of
New Jersey

Piscataway, NJ, USA

S0GA Sogang University Seoul, Republic of Korea

SACL CEA Saclay, IRFU Gif-sur-Yvette, France
SACL5 CEA Saclay – IPhT Gif-sur-Yvette, France
SACLD CEA Saclay (Essonne) Gif-sur-Yvette, France

SAGA Saga Univ. Saga-shi, Japan
SAHA Saha Inst. of Nuclear Physics Bidhan Nagar, Calcutta, India

SANG Kyoto Sangyo Univ. Kyoto-shi, Japan
SANI Ist. Superiore di Sanità Roma, Italy
SASK Univ. of Saskatchewan Saskatoon, SK, Canada

SASSO Lab. Naz. Gran Sasso
dell’INFN

Assergi (AQ), Italy

SAVO Univ. de Savoie Chambery, France

SBER California State Univ. San Bernardino, CA, USA
SCHAF W.J. Schafer Assoc. Livermore, DA, USA
SCIT Science Univ. of Tokyo Tokyo, Japan
SCOT Scottish Univ. Research and

Reactor Ctr.
Glasgow, United Kingdom

SCUC Univ. of South Carolina Columbia, SC, USA
SEAT Seattle Pacific Coll. Seattle, WA, USA

SEIB Austrian Research Center,
Seibersdorf LTD.

Seibersdorf, Austria

SEOU Korea Univ.; Dept. of
Physics; HEP Group

Seoul, Republic of Korea

SEOUL Seoul National Univ.; Center
for Theoretical Physics; Dept.
of Physics & Astronomy, Coll.
of Natural Sciences

Seoul, Republic of Korea

SERP IHEP, Inst. for High Energy
Physics

Protvino, Russian Federation

SETO Seton Hall Univ. South Orange, NJ, USA
SFLA Univ. of South Florida Tampa, FL, USA
SFRA Simon Fraser University Burnaby, BC, Canada

SFSU California State Univ. San Francisco, CA, USA
SHAMS Ain Shams University Abbassia, Cairo, Egypt
SHDN Shandong Univ. Jinan, Shandong, China

SHEF Univ. of Sheffield Sheffield, United Kingdom
SHMP Univ. of Southampton Southampton, United Kingdom
SHRZ Shiraz Univ. Shiraz, Iran
SIEG Univ. Siegen Siegen, Germany

SILES Univ. of Silesia Katowice, Poland
SIN Swiss Inst. of Nuclear Re-

search (Old name for VILL)
Villigen, Switzerland

SING National Univ. of Singapore Kent Ridge, Singapore

SISSA Scuola Internazionale Superi-
ore di Studi Avanzati

Trieste, Italy

SLAC SLAC National Accelera-
tor Laboratory

Menlo Park, CA, USA

SLOV Inst. of Physics, Slovak Acad.
of Sciences

Bratislava 45, Slovakia

SMU Southern Methodist Univ. Dallas, TX, USA

SNSP Scuola Normale Superiore Pisa, Italy
SOFI Inst. for Nuclear Research and

Nuclear Energy
Sofia, Bulgaria

SOFU Univ. of Sofia “St. Kliment
Ohridski”

Sofia, Bulgaria

SPAUL Univ. de São Paulo São Paulo, SP, Brasil
SPIFT Inst. de F́ısica Teórica (IFT) São Paulo, SP, Brasil

SSL Univ. of California (Berke-
ley)

Berkeley, CA, USA

STAN Stanford Univ. Stanford, CA, USA
STEV Stevens Inst. of Tech. Hoboken, NJ, USA
STFN Jožef Stefan Institute Ljubljana, Slovenia

STLO St. Louis Univ. St. Louis, MO, USA
STOH Stockholm Univ. Stockholm, Sweden
STON SUNY at Stony Brook Stony Brook, NY, USA
STRB Inst. Pluridisciplinaire Hubert

Curien (CNRS)
Strasbourg, France

STUT Univ. Stuttgart Stuttgart, Germany
STUTM Max-Planck-Inst. Stuttgart, Germany
SUGI Sugiyama Jogakuen Univ. Aichi, Japan

SURR Univ. of Surrey Guildford, Surrey, United
Kingdom

SUSS Univ. of Sussex Brighton, United Kingdom

SVR Savannah River Labs. Aiken, SC, USA
SYDN Univ. of Sydney Sydney, NSW, Australia
SYRA Syracuse Univ. Syracuse, NY, USA

TAJK Acad. Sci., Tadzhik SSR Dushanbe, Tadzhikstan
TAMU Texas A&M Univ. College Station, TX, USA
TATA Tata Inst. of Fundamental

Research
Bombay, India

TBIL Tbilisi State University Tbilisi, Republic of Georgia
TELA Tel-Aviv Univ. Tel Aviv, Israel
TELE Teledyne Brown Engineer-

ing
Huntsville, AL, USA

TEMP Temple Univ. Philadelphia, PA, USA
TENN Univ. of Tennessee Knoxville, TN, USA

TEXA Univ. of Texas at Austin Austin, TX, USA
TGAK Tokyo Gakugei Univ. Tokyo, Japan
TGU Tohoku Gakuin Univ. Miyagi, Japan

THES Aristotle Univ. of Thessa-
loniki (AUTh)

Thessaloniki, Greece

TINT Tokyo Inst. of Technology Tokyo, Japan
TISA Sagamihara Inst. of Space &

Astronautical Sci.
Kanagawa, Japan

TMSK Tomsk Polytechnic Univ. Tomsk, Russian Federation
TMTC Tokyo Metropolitan Coll.

Tech.
Tokyo, Japan

TMU Tokyo Metropolitan Univ. Tokyo, Japan

TNTO Univ. of Toronto Toronto, ON, Canada
TOHO Toho Univ. Chiba, Japan
TOHOKTohoku Univ. Sendai, Japan

TOKA Tokai Univ. Shimizu, Japan
TOKAHTokai Univ. Hiratsuka, Japan
TOKMS Univ. of Tokyo; Meson Sci-

ence Laboratory
Tokyo, Japan

TOKU Univ. of Tokushima Tokushima-shi, Japan
TOKY Univ. of Tokyo; High-Energy

Physics Theory Group
Tokyo, Japan

TOKYC Univ. of Tokyo; Dept. of
Chemistry

Tokyo, Japan
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TORI Univ. degli Studi di Torino Torino, Italy
TPTI Uzbek Academy of Sciences Tashkent, Republic of Uzbek-

istan
TRIN Trinity College Dublin Dublin, Ireland

TRIU TRIUMF Vancouver, BC, Canada
TRST Univ. di Trieste Trieste, Italy
TRSTI INFN, Sez. di Trieste Trieste, Italy

TRSTT Univ. degli Studi di Trieste Trieste, Italy
TSUK Univ. of Tsukuba Ibaraki-ken, Japan
TTAM Tamagawa Univ. Tokyo, Japan

TUAT Tokyo Univ. of Agriculture
Tech.

Tokyo, Japan

TUBIN Univ. Tübingen Tübingen, Germany
TUFTS Tufts Univ. Medford, MA, USA

TUW Technische Univ. Wien Vienna, Austria
TUZL Tuzla Univ. Tuzla, Argentina
UBA Univ. de Buenos Aires Buenos Aires, Argentina

UCB Univ. of California (Berke-
ley)

Berkeley, CA, USA

UCD Univ. of California (Davis) Davis, CA, USA

UCI Univ. of California (Irvine) Irvine, CA, USA

UCLA Univ. of California (Los
Angeles)

Los Angeles, CA, USA

UCND Union Carbide Corp. Oak Ridge, TN, USA
UCR Univ. of California (River-

side)
Riverside, CA, USA

UCSB Univ. of California (Santa
Barbara); Physics Dept.,
High Energy Physics Experi-
ment

Santa Barbara, CA, USA

UCSBT Univ. of California (Santa
Barbara); Kavli Inst. for
Theoretical Physics

Santa Barbara, CA, USA

UCSC Univ. of California (Santa
Cruz)

Santa Cruz, CA, USA

UCSD Univ. of California (San
Diego)

La Jolla, CA, USA

UGAZ Univ. of Gaziantep Gaziantep, Turkey

UMD Univ. of Maryland College Park, MD, USA
UNAM Univ. Nac. Autónoma de

México (UNAM)
México, DF, Mexico

UNAM Univ. Nacional Autónoma de
México (UNAM)

México, DF, Mexico

UNC Univ. of North Carolina Greensboro, NC, USA

UNCCH Univ. of North Carolina at
Chapel Hill

Chapel Hill, NC, USA

UNCS Union College Schenectady, NY, USA

UNESP UNESP Botucatu, Brasil
UNH Univ. of New Hampshire Durham, NH, USA
UNM Univ. of New Mexico Albuquerque, NM, USA

UOEH Univ. of Occupational and
Environmental Health

Kitakyushu, Japan

UPNJ Upsala College East Orange, NJ, USA
UPPS Uppsala Univ. Uppsala, Sweden

UPR Univ. of Puerto Rico San Juan, PR, USA
URI Univ. of Rhode Island Kingston, RI, USA
USC Univ. of Southern Califor-

nia
Los Angeles, CA, USA

USF Univ. of San Francisco San Francisco, CA, USA
UTAH Univ. of Utah Salt Lake City, UT, USA

UTRE Univ. of Utrecht Utrecht, The Netherlands
UTRO Norwegian Univ. of Sci-

ence & Technology
Trondheim, Norway

UVA Univ. of Virginia Charlottesville, VA, USA
UZINR Acad. Sci., Ukrainian SSR Uzhgorod, Ukraine
VALE Univ. de Valencia Burjassot, Valencia, Spain
VALP Valparaiso Univ. Valparaiso, IN, USA

VAND Vanderbilt Univ. Nashville, TN, USA
VASS Vassar College Poughkeepsie, NY, USA
VICT Univ. of Victoria Victoria, BC, Canada

VIEN Inst. für Hochenergiephysik
(HEPHY)

Vienna, Austria

VILL ETH Zürich Zürich, Switzerland
VPI Virginia Tech. Blacksburg, VA, USA

VRIJ Vrije Univ. HV Amsterdam, The Nether-
lands

WABRNEidgenossisches Amt für Mess-
wesen

Waber, Switzerland

WARS Univ. of Warsaw Warsaw, Poland
WASCR Waseda Univ.; Cosmic Ray

Division
Tokyo, Japan

WASH Univ. of Washington; Elem.
Particle Experiment (EPE);
Particle Astrophysics (PA)

Seattle, WA, USA

WASU Waseda Univ.; Dept. of
Physics, High Energy Physics
Group

Tokyo, Japan

WAYN Wayne State Univ. Detroit, MI, USA
WESL Wesleyan Univ. Middletown, CT, USA

WIEN Univ. Wien Vienna, Austria
WILL Coll. of William and Mary Williamsburg, VA, USA
WINR National Centre for Nuclear

Research
Warsaw, Poland

WISC Univ. of Wisconsin Madison, WI, USA
WITW Univ. of the Witwatersrand Wits, South Africa
WMIU Western Michigan Univ. Kalamazoo, MI, USA

WONT The Univ. of Western On-
tario

London, ON, Canada

WOOD Woodstock College (No
longer in existence)

Woodstock, MD, USA

WUPP Bergische Univ. Wuppertal Wuppertal, Germany

WURZ Univ. Würzburg Würzburg, Germany
WUSL Washington Univ. St. Louis, MO, USA
WYOM Univ. of Wyoming Laramie, WY, USA

YALE Yale Univ. New Haven, CT, USA
YARO Yaroslavl State Univ. Yaroslavl, Russian Federation
YCC Yokohama Coll. of Com-

merce
Yokohama, Japan

YERE Yerevan Physics Inst. Yerevan, Armenia
YOKO Yokohama National Univ. Yokohama-shi, Japan
YORKC York Univ. Toronto, Canada

ZAGR Zagreb Univ. Zagreb, Croatia
ZARA Univ. de Zaragoza Zaragoza, Spain
ZEEM Univ. van Amsterdam TV Amsterdam, The Nether-

lands
ZHON Zhongshan (Sun Yat-Sen)

Univ.
Guangzhou, China

ZHZH Zhengzhou Univ. Zhengzhou, Henan, China

ZURI Univ. Zürich Zürich, Switzerland
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γ (photon) I (JPC ) = 0,1(1−−)
γ MASSγ MASSγ MASSγ MASSResults prior to 2008 are 
ritiqued in GOLDHABER 10. All experimentalresults published prior to 2005 are summarized in detail by TU 05.The following 
onversions are useful: 1 eV = 1.783× 10−33 g = 1.957×10−6 me ; ��λC = (1.973 × 10−7 m)×(1 eV/mγ).VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<1 × 10−18<1 × 10−18<1 × 10−18<1 × 10−18 1 RYUTOV 07 MHD of solar wind
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.3× 10−9 95 2 EGOROV 14 COSM Lensed quasar position3 ACCIOLY 10 Anomalous mag. mom.
<1 × 10−26 4 ADELBERGER 07A Pro
a gala
ti
 �eldno limit feasible 4 ADELBERGER 07A γ as Higgs parti
le
<1 × 10−19 5 TU 06 Torque on rotating magne-tized toroid
<1.4× 10−7 ACCIOLY 04 Dispersion of GHz radiowaves by sun
<2 × 10−16 6 FULLEKRUG 04 Speed of 5-50 Hz radiationin atmosphere
<7 × 10−19 7 LUO 03 Torque on rotating magne-tized toroid
<1 × 10−17 8 LAKES 98 Torque on toroid balan
e
<6 × 10−17 9 RYUTOV 97 MHD of solar wind
<8 × 10−16 90 10 FISCHBACH 94 Earth magneti
 �eld
<5 × 10−13 11 CHERNIKOV 92 SQID Ampere-law null test
<1.5× 10−9 90 12 RYAN 85 Coulomb-law null test
<3 × 10−27 13 CHIBISOV 76 Gala
ti
 magneti
 �eld
<6 × 10−16 99.7 14 DAVIS 75 Jupiter magneti
 �eld
<7.3× 10−16 HOLLWEG 74 Alfven waves
<6 × 10−17 15 FRANKEN 71 Low freq. res. 
ir.
<2.4× 10−13 16 KROLL 71A Dispersion in atmosphere
<1 × 10−14 17 WILLIAMS 71 CNTR Tests Gauss law
<2.3× 10−15 GOLDHABER 68 Satellite data1RYUTOV 07 extends the method of RYUTOV 97 to the radius of Pluto's orbit.2 EGOROV 14 studies 
hromati
 dispersion of lensed quasar positions (\gravitational rain-bows") that 
ould be produ
ed by any of several me
hanisms, among them via photonmass. Limit not 
ompetitive but obtained on 
osmologi
al distan
e s
ales.3ACCIOLY 10 limits 
ome from possible alterations of anomalous magneti
 moment ofele
tron and gravitational de
e
tion of ele
tromagneti
 radiation. Reported limits arenot "
laimed" by the authors and in any 
ase are not 
ompetitive.4When trying to measure m one must distinguish between measurements performed onlarge and small s
ales. If the photon a
quires mass by the Higgs me
hanism, the large-s
ale behavior of the photon might be e�e
tively Maxwellian. If, on the other hand, onepostulates the Pro
a regime for all s
ales, the very existen
e of the gala
ti
 �eld impliesm < 10−26 eV, as 
orre
tly 
al
ulated by YAMAGUCHI 59 and CHIBISOV 76.5TU 06 
ontinues the work of LUO 03, with extended LAKES 98 method, reportingthe improved limit µ2A = (0.7 ± 1.7) × 10−13 T/m if A = 0.2 µG out to 4 × 1022m. Reported result µ = (0.9 ± 1.5) × 10−52 g redu
es to the frequentist mass limit1.2× 10−19 eV (FELDMAN 98).6 FULLEKRUG 04 adopted KROLL 71A method with newer and better S
hummann res-onan
e data. Result questionable be
ause assumed frequen
y shift with photon massis assumed to be linear. It is quadrati
 a

ording to theorem by GOLDHABER 71B,KROLL 71, and PARK 71.7 LUO 03 extends LAKES 98 te
hnique to set a limit on µ2A, where µ−1 is the Comptonwavelength ��λC of the massive photon and A is the ambient ve
tor potential. Theimportant departure is that the apparatus rotates, removing sensitivity to the dire
tionof A. They take A = 1012 Tm, due to \
luster level �elds." But see 
omment ofGOLDHABER 03 and reply by LUO 03B.8 LAKES 98 reports limits on torque on a toroid Cavendish balan
e, obtaining a limit on

µ2A < 2 × 10−9 Tm/m2 via the Maxwell-Pro
a equations, where µ−1 is the 
hara
-teristi
 length asso
iated with the photon mass and A is the ambient ve
tor potentialin the Lorentz gauge. Assuming A ≈ 1 × 1012 Tm due to 
luster �elds he obtains
µ−1 > 2 × 1010 m, 
orresponding to µ < 1 × 10−17 eV. A more 
onservative limit,using A ≈ (1 µG)×(600 p
) based on the gala
ti
 �eld, is µ−1 > 1 × 109 m or
µ < 2× 10−16 eV.9RYUTOV 97 uses a magnetohydrodynami
s argument 
on
erning survival of the Sun's�eld to the radius of the Earth's orbit. \To re
on
ile observations to theory, one has toredu
e [the photon mass℄ by approximately an order of magnitude 
ompared with" perDAVIS 75. \Se
ure limit, best by this method" (per GOLDHABER 10).10 FISCHBACH 94 analysis is based on terrestrial magneti
 �elds; approa
h analogous toDAVIS 75. Similar result based on a mu
h smaller planet probably follows from morepre
ise B �eld mapping. \Se
ure limit, best by this method" (per GOLDHABER 10).11CHERNIKOV 92, motivated by possibility that photon exhibits mass only below someunknown 
riti
al temperature, sear
hes for departure from Ampere's Law at 1.24 K. Seealso RYAN 85.12RYAN 85, motivated by possibility that photon exhibits mass only below some unknown
riti
al temperature, sets mass limit at < (1.5± 1.4)×10−42 g based on Coulomb's Lawdeparture limit at 1.36 K. We report the result as frequentist 90% CL (FELDMAN 98).13CHIBISOV 76 depends in 
riti
al way on assumptions su
h as appli
ability of virial the-orem. Some of the arguments given only in unpublished referen
es.

14DAVIS 75 analysis of Pioneer-10 data on Jupiter's magneti
 �eld. \Se
ure limit, best bythis method" (per GOLDHABER 10).15 FRANKEN 71 method is of dubious validity (KROLL 71A, JACKSON 99, GOLD-HABER 10, and referen
es therein).16KROLL 71A used low frequen
y S
humann resonan
es in 
avity between the 
ondu
t-ing earth and resistive ionosphere, over
oming obje
tions to resonant-
avity methods(JACKSON 99, GOLDHABER 10, and referen
es therein). \Se
ure limit, best by thismethod" (per GOLDHABER 10).17WILLIAMS 71 is landmark test of Coulomb's law. \Se
ure limit, best by this method"(per GOLDHABER 10).
γ CHARGEγ CHARGEγ CHARGEγ CHARGEOKUN 06 has argued that s
hemes in whi
h all photons are 
harged arein
onsistent. He says that if a neutral photon is also admitted to avoidthis problem, then other problems emerge, su
h as those 
onne
ted withthe emission and absorption of 
harged photons by 
harged parti
les. He
on
ludes that in the absen
e of a self-
onsistent phenomenologi
al basis,interpretation of experimental data is at best diÆ
ult.VALUE (e) CHARGE DOCUMENT ID TECN COMMENT

<1 × 10−46<1 × 10−46<1 × 10−46<1 × 10−46 mixedmixedmixedmixed 1 ALTSCHUL 07B VLBI Aharonov-Bohm e�e
t
<1 × 10−35<1 × 10−35<1 × 10−35<1 × 10−35 singlesinglesinglesingle 2 CAPRINI 05 CMB Isotropy 
onstraint
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1 × 10−32 single 1 ALTSCHUL 07B VLBI Aharonov-Bohm e�e
t
<3 × 10−33 mixed 3 KOBYCHEV 05 VLBI Smear as fun
tion of B·Eγ
<4 × 10−31 single 3 KOBYCHEV 05 VLBI De
e
tion as fun
tion of B·Eγ
<8.5× 10−17 4 SEMERTZIDIS 03 Laser light de
e
tion in B-�eld
<3 × 10−28 single 5 SIVARAM 95 CMB For 
M= 0.3, h2= 0.5
<5 × 10−30 6 RAFFELT 94 TOF Pulsar f1−f2
<2 × 10−28 7 COCCONI 92 VLBA radio teles
ope resolution
<2 × 10−32 COCCONI 88 TOF Pulsar f1− f2 TOF1ALTSCHUL 07B looks for Aharonov-Bohm phase shift in addition to geometri
 phaseshift in radio interferen
e fringes (VSOP mission).2CAPRINI 05 uses isotropy of the 
osmi
 mi
rowave ba
kground to pla
e stringent limitson possible 
harge asymmetry of the Universe. Charge limits are set on the photon,neutrino, and dark matter parti
les. Valid if 
harge asymmetries produ
ed by di�erentparti
les are not anti
orrelated.3KOBYCHEV 05 
onsiders a variety of observable e�e
ts of photon 
harge for extragala
ti

ompa
t radio sour
es. Best limits if sour
e observed through a foreground 
luster ofgalaxies.4 SEMERTZIDIS 03 reports the �rst laboratory limit on the photon 
harge in the last30 years. Straightforward improvements in the apparatus 
ould attain a sensitivity of10−20 e.5 SIVARAM 95 requires that CMB photon 
harge density not overwhelm gravity. Results
ales as 
M h2.6RAFFELT 94 notes that COCCONI 88 negle
ts the fa
t that the time delay due to disper-sion by free ele
trons in the interstellar medium has the same photon energy dependen
eas that due to bending of a 
harged photon in the magneti
 �eld. His limit is based onthe assumption that the entire observed dispersion is due to photon 
harge. It is a fa
torof 200 less stringent than the COCCONI 88 limit.7 See COCCONI 92 for less stringent limits in other frequen
y ranges. Also see RAF-FELT 94 note.

γ REFERENCESγ REFERENCESγ REFERENCESγ REFERENCESEGOROV 14 MNRAS 437 L90 P. Egorov et al. (MOSU, MIPT, INRM)ACCIOLY 10 PR D82 065026 A. A

ioly, J. Helayel-Neto, E. S
atena (LABEX+)GOLDHABER 10 RMP 82 939 A.S. Goldhaber, M.M. Nieto (STON, LANL)ADELBERGER 07A PRL 98 010402 E. Adelberger, G. Dvali, A. Gruzinov (WASH, NYU)ALTSCHUL 07B PRL 98 261801 B. Alts
hul (IND)Also ASP 29 290 B. Alts
hul (SCUC)RYUTOV 07 PPCF 49 B429 D.D. Ryutov (LLNL)OKUN 06 APP B37 565 L.B. Okun (ITEP)TU 06 PL A352 267 L.-C. Tu et al.CAPRINI 05 JCAP 0502 006 C. Caprini, P.G. Ferreira (GEVA, OXFTP)KOBYCHEV 05 AL 31 147 V.V. Koby
hev, S.B. Popov (KIEV, PADO)TU 05 RPP 68 77 L.-C. Tu, J. Luo, G.T. GilliesACCIOLY 04 PR D69 107501 A. A

ioly, R. PaszkoFULLEKRUG 04 PRL 93 043901 M. FullekrugGOLDHABER 03 PRL 91 149101 A.S. Goldhaber, M.M. NietoLUO 03 PRL 90 081801 J. Luo et al.LUO 03B PRL 91 149102 J. Luo et al.SEMERTZIDIS 03 PR D67 017701 Y.K. Semertzidis, G.T. Danby, D.M. LazarusJACKSON 99 Classi
al Ele
trodynami
s J.D. Ja
kson (3rd ed., J. Wiley and Sons (1999))FELDMAN 98 PR D57 3873 G.J. Feldman, R.D. CousinsLAKES 98 PRL 80 1826 R. Lakes (WISC)RYUTOV 97 PPCF 39 A73 D.D. Ryutov (LLNL)SIVARAM 95 AJP 63 473 C. Sivaram (BANG)FISCHBACH 94 PRL 73 514 E. Fis
hba
h et al. (PURD, JHU+)RAFFELT 94 PR D50 7729 G. Ra�elt (MPIM)CHERNIKOV 92 PRL 68 3383 M.A. Chernikov et al. (ETH)Also PRL 69 2999 (erratum) M.A. Chernikov et al. (ETH)COCCONI 92 AJP 60 750 G. Co

oni (CERN)COCCONI 88 PL B206 705 G. Co

oni (CERN)RYAN 85 PR D32 802 J.J. Ryan, F. A

etta, R.H. Austin (PRIN)CHIBISOV 76 SPU 19 624 G.V. Chibisov (LEBD)Translated from UFN 119 551.DAVIS 75 PRL 35 1402 L. Davis, A.S. Goldhaber, M.M. Nieto (CIT, STON+)HOLLWEG 74 PRL 32 961 J.V. Hollweg (NCAR)FRANKEN 71 PRL 26 115 P.A. Franken, G.W. Ampulski (MICH)GOLDHABER 71B RMP 43 277 A.S. Goldhaber, M.M. Nieto (STON, BOHR, UCSB)KROLL 71 PRL 26 1395 N.M. Kroll (SLAC)KROLL 71A PRL 27 340 N.M. Kroll (SLAC)PARK 71 PRL 26 1393 D. Park, E.R. Williams (WILC)WILLIAMS 71 PRL 26 721 E.R. Williams, J.E. Faller, H.A. Hill (WESL)GOLDHABER 68 PRL 21 567 A.S. Goldhaber, M.M. Nieto (STON)YAMAGUCHI 59 PTPS 11 37 Y. Yamagu
hi
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olor o
tetMass m = 0. Theoreti
al value. A mass as large as a few MeVmay not be pre
luded, see YNDURAIN 95.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •ABREU 92E DLPH Spin 1, not 0ALEXANDER 91H OPAL Spin 1, not 0BEHREND 82D CELL Spin 1, not 0BERGER 80D PLUT Spin 1, not 0BRANDELIK 80C TASS Spin 1, not 0gluon REFERENCESgluon REFERENCESgluon REFERENCESgluon REFERENCESYNDURAIN 95 PL B345 524 F.J. Yndurain (MADU)ABREU 92E PL B274 498 P. Abreu et al. (DELPHI Collab.)ALEXANDER 91H ZPHY C52 543 G. Alexander et al. (OPAL Collab.)BEHREND 82D PL B110 329 H.J. Behrend et al. (CELLO Collab.)BERGER 80D PL B97 459 C. Berger et al. (PLUTO Collab.)BRANDELIK 80C PL B97 453 R. Brandelik et al. (TASSO Collab.)graviton J = 2graviton MASSgraviton MASSgraviton MASSgraviton MASSIn 1970 van Dam amd Veltman (VANDAM 70) showed that \. . . there isa dis
rete di�eren
e between the theory with zero-mass and a theory with�nite mass, no matter how small as 
ompared to all external momenta. . . .We may 
on
lude that the graviton has rigorously zero mass." However,see GOLDHABER 10 and referen
es therein. It has been of interest to setexperimental limits, whether or not a �nite mass 
an exist. In most (butnot all) 
ases limits have been set on the distan
e without eviden
e for aYukawa 
uto�. h0 is the Hubble 
onstant in units of 100 km s−1 Mp
−1.The following 
onversions are useful: 1 eV = 1.783× 10−33 g = 1.957×10−6 me ; ��λC = (1.973 × 10−7 m)×(1 eV/mg ).VALUE (eV) DOCUMENT ID COMMENT
<6 × 10−32<6 × 10−32<6 × 10−32<6 × 10−32 1 CHOUDHURY 04 Weak gravitational lensing
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.2× 10−22 2 ABBOTT 16 LIGO bla
k holes merger
<5 × 10−23 3 BRITO 13 Spinning bla
k holes bounds
<4 × 10−25 4 BASKARAN 08 Graviton phase velo
ity 
u
tuations
<6 × 10−32 5 GRUZINOV 05 Solar System observations
<9.0× 10−34 6 GERSHTEIN 04 From 
tot value assuming RTG
>6 × 10−34 7 DVALI 03 Horizon s
ales
<8 × 10−20 8,9 FINN 02 Binary pulsar orbital period de
rease9,10 DAMOUR 91 Binary pulsar PSR 1913+16
< 2× 10−29 h−10 GOLDHABER 74 Ri
h 
lusters
<7 × 10−28 HARE 73 Galaxy
<8 × 104 HARE 73 2γ de
ay1CHOUDHURY 04 
on
ludes from a study of weak-lensing data that masses heavier thanabout the inverse of 100 Mp
 seem to be ruled out if the gravitation �eld has the Yukawaform.2ABBOTT 16 assumes modi�ed dispersion relation for gravitational waves.3BRITO 13 explore massive graviton (spin-2) 
u
tuations around rotating bla
k holes.4BASKARAN 08 
onsider 
u
tuations in pulsar timing due to photon intera
tions (\surf-ing") with ba
kground gravitational waves.5GRUZINOV 05 uses the DGP model (DVALI 00) showing that non-perturbative e�e
tsrestore 
ontinuity with Einstein's equations as the gravition mass approa
hes 0, thenbases his limit on Solar System observations.6GERSHTEIN 04 use non-Einstein �eld relativisti
 theory of gravity (RTG), with a massivegraviton, to obtain the 95% CL mass limit implied by the value of 
tot = 1.02 ± 0.02
urrent at the time of publi
ation.7DVALI 03 suggest s
ale of horizon distan
e via DGP model (DVALI 00). For a horizondistan
e of 3× 1026 m (about age of Universe/
; GOLDHABER 10) this graviton masslimit is implied.8 FINN 02 analyze the orbital de
ay rates of PSR B1913+16 and PSR B1534+12 with apossible graviton mass as a parameter. The 
ombined frequentist mass limit is at 90%CL.9As of 2014, limits on dP/dt are now about 0.1% (see T. Damour, \Experimental testsof gravitational theory," in this Review).10DAMOUR 91 is an analysis of the orbital period 
hange in binary pulsar PSR 1913+16,and 
on�rms the general relativity predi
tion to 0.8%. \The theoreti
al importan
e ofthe [rate of orbital period de
ay℄ measurement has long been re
ognized as a dire
t
on�rmation that the gravitational intera
tion propagates with velo
ity 
 (whi
h is theimmediate 
ause of the appearan
e of a damping for
e in the binary pulsar system)and thereby as a test of the existen
e of gravitational radiation and of its quadrupolarnature." TAYLOR 93 adds that orbital parameter studies now agree with general relativityto 0.5%, and set limits on the level of s
alar 
ontribution in the 
ontext of a family oftensor [spin 2℄-bis
alar theories.

graviton REFERENCESgraviton REFERENCESgraviton REFERENCESgraviton REFERENCESABBOTT 16 PRL 116 061102 B.P. Abbott et al. (LIGO and Virgo Collabs.)BRITO 13 PR D88 023514 R. Brito, V. Cardoso, P. Pani (LISB, MISS, HSCA+)GOLDHABER 10 RMP 82 939 A.S. Goldhaber, M.M. Nieto (STON, LANL)BASKARAN 08 PR D78 044018 D. Baskaran et al.GRUZINOV 05 NAST 10 311 A. Gruzinov (NYU)CHOUDHURY 04 ASP 21 559 S.R. Choudhury et al. (DELPH, MELB)GERSHTEIN 04 PAN 67 1596 S.S. Gershtein et al. (SERP)Translated from YAF 67 1618.DVALI 03 PR D68 024012 G.R. Dvali, A. Grizinov, M. Zaldarriaga (NYU)FINN 02 PR D65 044022 L.S. Finn, P.J. SuttonDVALI 00 PL B485 208 G.R. Dvali, G. Gabadadze, M. Porrati (NYU)TAYLOR 93 NAT 355 132 J.N. Taylor et al. (PRIN, ARCBO, BURE+) JDAMOUR 91 APJ 366 501 T. Damour, J.H. Taylor (BURE, MEUD, PRIN)GOLDHABER 74 PR D9 1119 A.S. Goldhaber, M.M. Nieto (LANL, STON)HARE 73 CJP 51 431 M.G. Hare (SASK)VANDAM 70 NP B22 397 H. van Dam, M. Veltman (UTRE)W J = 1
THE MASS AND WIDTH OF THE W BOSON

Revised September 2013 by M.W. Grünewald (U. College
Dublin and U. Ghent) and A. Gurtu (Formerly Tata Inst.).

Precision determination of the W-mass is of great impor-

tance in testing the internal consistency of the Standard Model.

From the time of its discovery in 1983, the W-boson has been

studied and its mass determined in pp̄ and e+e− interactions; it

is currently studied in pp interactions at the LHC. The W mass

and width definition used here corresponds to a Breit-Wigner

with mass-dependent width.

Production of on-shell W bosons at hadron colliders is

tagged by the high pT charged lepton from its decay. Owing

to the unknown parton-parton effective energy and missing

energy in the longitudinal direction, the collider experiments

reconstruct the transverse mass of the W, and derive the W

mass from comparing the transverse mass distribution with

Monte Carlo predictions as a function of MW . These analyses

use the electron and muon decay modes of the W boson.
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ALEPH 80.440±0.051

DELPHI 80.336±0.067

L3 80.270±0.055

OPAL 80.415±0.052

LEP2 80.376±0.033
χ2/dof =  49 / 41

CDF 80.389±0.019

D0 80.383±0.023

Tevatron 80.387 ±0.016
χ2/dof =   4.2 / 6

Overall average 80.385 ±0.015

Figure 1: Measurements of the W-boson
mass by the LEP and Tevatron experiments.
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In the e+e− collider (LEP) a precise knowledge of the

beam energy enables one to determine the e+e− → W+W−

cross section as a function of center of mass energy, as well as

to reconstruct the W mass precisely from its decay products,

even if one of them decays leptonically. Close to the W+W−

threshold (161 GeV), the dependence of the W-pair production

cross section on MW is large, and this was used to determine

MW . At higher energies (172 to 209 GeV) this dependence is

much weaker and W-bosons were directly reconstructed and the

mass determined as the invariant mass of its decay products,

improving the resolution with a kinematic fit.
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χ2/dof = 37 / 33

CDF 2.033±0.064

D0 2.061±0.068

Tevatron 2.046 ±0.049
χ2/dof = 1.4 / 4

Overall average 2.085 ±0.042

Figure 2: Measurements of the W-boson
width by the LEP and Tevatron experiments.

In order to compute the LEP average W mass, each ex-

periment provided its measured W mass for the qqqq and

qqℓνℓ, ℓ = e, µ, τ channels at each center-of-mass energy,

along with a detailed break-up of errors: statistical, uncor-

related, partially correlated and fully correlated systematics [1].

These have been combined to obtain a LEP W mass of

MW = 80.376±0.033 GeV. Errors due to uncertainties in LEP

energy (9 MeV), and possible effect of color reconnection (CR)

and Bose-Einstein correlations (BEC) between quarks from dif-

ferent W’s (8 MeV) are included. The mass difference between

qqqq and qqℓνℓ final states (due to possible CR and BEC effects)

is −12±45 MeV. In a similar manner, the width results obtained

at LEP have been combined, resulting in ΓW = 2.195 ± 0.083

GeV [1].

The two Tevatron experiments have also identified com-

mon systematic errors. Between the two experiments, uncer-

tainties due to the parton distribution functions, radiative

corrections, and choice of mass (width) in the width (mass)

measurements are treated as correlated. An average W width

of ΓW = 2.046 ± 0.049 GeV [2] is obtained. Errors of 20 MeV

and 7 MeV accounting for PDF and radiative correction un-

certainties in this width combination dominate the correlated

uncertainties. At the 2012 winter conferences, the CDF and D0

experiments have presented new results for the mass of the W

boson based on 2−4 fb−1 of Run-II data, 80.387±0.019 GeV [3]

and 80.375 ± 0.023 GeV [4], respectively. The W-mass deter-

mination from the Tevatron experiments has thus become very

precise. Combining all Tevatron results from Run-I and Run-II

using an improved treatment of correlations, a new average of

80.387± 0.016 GeV is obtained [5], with common uncertainties

of 10 MeV (PDF) and 4 MeV (radiative corrections).

The LEP and Tevatron results on mass and width, which are

based on all results available, are compared in Fig. 1 and Fig. 2.

Good agreement between the results is observed. Combining

these results, assuming no common systematic uncertainties

between the LEP and the Tevatron measurements, yields an

average W mass of MW = 80.385 ± 0.015 GeV and a W width

of ΓW = 2.085 ± 0.042 GeV.

The Standard Model prediction from the electroweak fit,

using Z-pole data plus mtop measurement, gives a W-boson

mass of MW = 80.363 ± 0.020 GeV and a W-boson width of

ΓW = 2.091± 0.002 GeV [1].
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[hep-ex], Phys. Rev. D88, 052018 (2013).W MASSW MASSW MASSW MASSThe W -mass listed here 
orresponds to the mass parameter in a Breit-Wigner distribution with mass-dependent width. To obtain the world av-erage, 
ommon systemati
 un
ertainties between experiments are properlytaken into a

ount. The LEP-2 average W mass based on published re-sults is 80.376 ± 0.033 GeV [SCHAEL 13A℄. The 
ombined Tevatron datayields an average W mass of 80.387 ± 0.016 GeV [AALTONEN 13N℄.OUR FIT uses these average LEP and Tevatron mass values and 
ombinesthem assuming no 
orrelations.VALUE (GeV) EVTS DOCUMENT ID TECN COMMENT80.385± 0.015 OUR FIT80.385± 0.015 OUR FIT80.385± 0.015 OUR FIT80.385± 0.015 OUR FIT80.375± 0.023 2177k 1 ABAZOV 14N D0 Epp
m = 1.96 TeV80.387± 0.019 1095k 2 AALTONEN 12E CDF Epp
m = 1.96 TeV80.336± 0.055±0.039 10.3k 3 ABDALLAH 08A DLPH Eee
m = 161{209 GeV80.415± 0.042±0.031 11830 4 ABBIENDI 06 OPAL Eee
m= 170{209 GeV80.270± 0.046±0.031 9909 5 ACHARD 06 L3 Eee
m= 161{209 GeV80.440± 0.043±0.027 8692 6 SCHAEL 06 ALEP Eee
m= 161{209 GeV80.483± 0.084 49247 7 ABAZOV 02D D0 Epp
m= 1.8 TeV80.433± 0.079 53841 8 AFFOLDER 01E CDF Epp
m= 1.8 TeV



616616616616Gauge & Higgs Boson Parti
le ListingsW
• • • We do not use the following data for averages, �ts, limits, et
. • • •80.367± 0.026 1677k 9 ABAZOV 12F D0 Epp
m = 1.96 TeV80.401± 0.043 500k 10 ABAZOV 09AB D0 Epp
m = 1.96 TeV80.413± 0.034±0.034 115k 11 AALTONEN 07F CDF Epp
m = 1.96 TeV82.87 ± 1.82 +0.30

−0.16 1500 12 AKTAS 06 H1 e± p → νe (νe )X ,√
s ≈ 300 GeV80.3 ± 2.1 ± 1.2 ± 1.0 645 13 CHEKANOV 02C ZEUS e− p → νe X, √s=318 GeV81.4+2.7

−2.6 ± 2.0+3.3
−3.0 1086 14 BREITWEG 00D ZEUS e+ p → νe X, √s ≈300 GeV80.84 ± 0.22 ±0.83 2065 15 ALITTI 92B UA2 See W /Z ratio below80.79 ± 0.31 ±0.84 16 ALITTI 90B UA2 Epp
m= 546,630 GeV80.0 ± 3.3 ±2.4 22 17 ABE 89I CDF Epp
m= 1.8 TeV82.7 ± 1.0 ±2.7 149 18 ALBAJAR 89 UA1 Epp
m= 546,630 GeV81.8 + 6.0

− 5.3 ±2.6 46 19 ALBAJAR 89 UA1 Epp
m= 546,630 GeV89 ± 3 ±6 32 20 ALBAJAR 89 UA1 Epp
m= 546,630 GeV81. ± 5. 6 ARNISON 83 UA1 Eee
m= 546 GeV80. +10.
− 6. 4 BANNER 83B UA2 Repl. by ALITTI 90B1ABAZOV 14N is a 
ombination of ABAZOV 09AB and ABAZOV 12F, also giving moredetails on the analysis.2AALTONEN 12E sele
t 470k W → e ν de
ays and 625k W → µν de
ays in 2.2 fb−1of Run-II data. The mass is determined using the transverse mass, transverse leptonmomentum and transverse missing energy distributions, a

ounting for 
orrelations. Thisresult supersedes AALTONEN 07F. AALTONEN 14D gives more details on the pro
eduresfollowed by the authors.3ABDALLAH 08A use dire
t re
onstru
tion of the kinemati
s of W+W− → qq ℓνand W+W− → qq qq events for energies 172 GeV and above. The W mass wasalso extra
ted from the dependen
e of the WW 
ross se
tion 
lose to the produ
tionthreshold and 
ombined appropriately to obtain the �nal result. The systemati
 errorin
ludes ±0.025 GeV due to �nal state intera
tions and ±0.009 GeV due to LEP energyun
ertainty.4ABBIENDI 06 use dire
t re
onstru
tion of the kinemati
s of W+W− → qq ℓνℓ andW+W− → qq qq events. The result quoted here is obtained 
ombining this massvalue with the results using W+W− → ℓνℓ ℓ′ν

ℓ′ events in the energy range 183{207GeV (ABBIENDI 03C) and the dependen
e of the WW produ
tion 
ross-se
tion on mWat threshold. The systemati
 error in
ludes ±0.009 GeV due to the un
ertainty on theLEP beam energy.5ACHARD 06 use dire
t re
onstru
tion of the kinemati
s of W+W− → qq ℓνℓ andW+W− → qq qq events in the C.M. energy range 189{209 GeV. The result quotedhere is obtained 
ombining this mass value with the results obtained from a dire
t Wmass re
onstru
tion at 172 and 183 GeV and with those from the dependen
e of theWW produ
tion 
ross-se
tion on mW at 161 and 172 GeV (ACCIARRI 99).6 SCHAEL 06 use dire
t re
onstru
tion of the kinemati
s of W+W− → qq ℓνℓ andW+W− → qq qq events in the C.M. energy range 183{209 GeV. The result quotedhere is obtained 
ombining this mass value with those obtained from the dependen
eof the W pair produ
tion 
ross-se
tion on mW at 161 and 172 GeV (BARATE 97 andBARATE 97S respe
tively). The systemati
 error in
ludes ±0.009 GeV due to possiblee�e
ts of �nal state intera
tions in the qq qq 
hannel and ±0.009 GeV due to theun
ertainty on the LEP beam energy.7ABAZOV 02D improve the measurement of the W -boson mass in
luding W → e νeevents in whi
h the ele
tron is 
lose to a boundary of a 
entral ele
tromagneti
 
alorimetermodule. Properly 
ombining the results obtained by �tting mT (W ), pT (e), and pT (ν),this sample provides a mass value of 80.574 ± 0.405 GeV. The value reported here is a
ombination of this measurement with all previous D� W -boson mass measurements.8AFFOLDER 01E �t the transverse mass spe
trum of 30115 W → e νe events (MW=80.473± 0.065± 0.092 GeV) and of 14740 W → µνµ events (MW= 80.465± 0.100±0.103 GeV) obtained in the run IB (1994-95). Combining the ele
tron and muon results,a

ounting for 
orrelated un
ertainties, yields MW= 80.470± 0.089 GeV. They 
ombinethis value with their measurement of ABE 95P reported in run IA (1992-93) to obtainthe quoted value.9ABAZOV 12F sele
t 1677k W → e ν de
ays in 4.3 fb−1 of Run-II data. The massis determined using the transverse mass and transverse lepton momentum distributions,a

ounting for 
orrelations.10ABAZOV 09AB study the transverse mass, transverse ele
tron momentum, and transversemissing energy in a sample of 0.5 million W → e ν de
ays sele
ted in Run-II data. Thequoted result 
ombines all three methods, a

ounting for 
orrelations.11AALTONEN 07F obtain high purity W → e νe and W → µνµ 
andidate samplestotaling 63,964 and 51,128 events respe
tively. The W mass value quoted above isderived by simultaneously �tting the transverse mass and the lepton, and neutrino pTdistributions.12AKTAS 06 �t the Q2 dependen
e (300 < Q2 < 30,000 GeV2) of the 
harged-
urrentdi�erential 
ross se
tion with a propagator mass. The �rst error is experimental and these
ond 
orresponds to un
ertainties due to input parameters and model assumptions.13CHEKANOV 02C �t the Q2 dependen
e (200<Q2 <60000 GeV2) of the 
harged-
urrentdi�erential 
ross se
tions with a propagator mass �t. The last error is due to the un
er-tainty on the probability density fun
tions.14BREITWEG 00D �t the Q2 dependen
e (200 < Q2 < 22500 GeV2) of the 
harged-
urrent di�erential 
ross se
tions with a propagator mass �t. The last error is due to theun
ertainty on the probability density fun
tions.15ALITTI 92B result has two 
ontributions to the systemati
 error (±0.83); one (±0.81)
an
els in mW /mZ and one (±0.17) is non
an
elling. These were added in quadrature.We 
hoose the ALITTI 92B value without using the LEP mZ value, be
ause we performour own 
ombined �t.16There are two 
ontributions to the systemati
 error (±0.84): one (±0.81) whi
h 
an
elsin mW /mZ and one (±0.21) whi
h is non-
an
elling. These were added in quadrature.17ABE 89I systemati
 error dominated by the un
ertainty in the absolute energy s
ale.18ALBAJAR 89 result is from a total sample of 299 W → e ν events.19ALBAJAR 89 result is from a total sample of 67 W → µν events.

20ALBAJAR 89 result is from W → τ ν events.W/Z MASS RATIOW/Z MASS RATIOW/Z MASS RATIOW/Z MASS RATIOVALUE EVTS DOCUMENT ID TECN COMMENT0.88153±0.000170.88153±0.000170.88153±0.000170.88153±0.00017 1 PDG 16
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.8821 ±0.0011 ±0.0008 28323 2 ABBOTT 98N D0 Epp
m= 1.8 TeV0.88114±0.00154±0.00252 5982 3 ABBOTT 98P D0 Epp
m= 1.8 TeV0.8813 ±0.0036 ±0.0019 156 4 ALITTI 92B UA2 Epp
m= 630 GeV1PDG 16 is the PDG average using the world average mW and mZ values as quoted inthis edition of Review of Parti
le Physi
s. The dire
tly measured values of mW /mZ arenot used as their 
orrelation with the Tevatron measured mW is unknown.2ABBOTT 98N obtain this from a study of 28323 W → e νe and 3294 Z → e+ e−de
ays. Of this latter sample, 2179 events are used to 
alibrate the ele
tron energy s
ale.3ABBOTT 98P obtain this from a study of 5982 W → e νe events. The systemati
 errorin
ludes an un
ertainty of ±0.00175 due to the ele
tron energy s
ale.4 S
ale error 
an
els in this ratio. mZ − mWmZ − mWmZ − mWmZ − mWVALUE (GeV) DOCUMENT ID TECN COMMENT10.803±0.015 OUR AVERAGE10.803±0.015 OUR AVERAGE10.803±0.015 OUR AVERAGE10.803±0.015 OUR AVERAGE10.803±0.015 1 PDG 1610.4 ±1.4 ±0.8 ALBAJAR 89 UA1 Epp
m= 546,630 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •11.3 ±1.3 ±0.9 ANSARI 87 UA2 Epp
m= 546,630 GeV1PDG 16 value was obtained using the world average values of mZ and mW as listed inthis publi
ation. mW+ − mW−mW+ − mW−mW+ − mW−mW+ − mW−Test of CPT invarian
e.VALUE (GeV) EVTS DOCUMENT ID TECN COMMENT
−0.19±0.58−0.19±0.58−0.19±0.58−0.19±0.58 1722 ABE 90G CDF Epp
m= 1.8 TeVW WIDTHW WIDTHW WIDTHW WIDTHThe W width listed here 
orresponds to the width parameter in a Breit-Wigner distribution with mass-dependent width. To obtain the world av-erage, 
ommon systemati
 un
ertainties between experiments are properlytaken into a

ount. The LEP-2 average W width based on published re-sults is 2.195 ± 0.083 GeV [SCHAEL 13A℄. The 
ombined Tevatron datayields an average W width of 2.046±0.049 GeV [FERMILAB-TM-2460-E℄.OUR FIT uses these average LEP and Tevatron width values and 
ombinesthem assuming no 
orrelations.VALUE (GeV) EVTS DOCUMENT ID TECN COMMENT2.085±0.042 OUR FIT2.085±0.042 OUR FIT2.085±0.042 OUR FIT2.085±0.042 OUR FIT2.028±0.072 5272 1 ABAZOV 09AK D0 Epp
m = 1.96 GeV2.032±0.045±0.057 6055 2 AALTONEN 08B CDF Epp
m = 1.96 TeV2.404±0.140±0.101 10.3k 3 ABDALLAH 08A DLPH Eee
m= 183{209 GeV1.996±0.096±0.102 10729 4 ABBIENDI 06 OPAL Eee
m= 170{209 GeV2.18 ±0.11 ±0.09 9795 5 ACHARD 06 L3 Eee
m= 172{209 GeV2.14 ±0.09 ±0.06 8717 6 SCHAEL 06 ALEP Eee
m= 183{209 GeV2.23 +0.15

−0.14 ±0.10 294 7 ABAZOV 02E D0 Epp
m = 1.8 TeV2.05 ±0.10 ±0.08 662 8 AFFOLDER 00M CDF Epp
m = 1.8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.152±0.066 79176 9 ABBOTT 00B D0 Extra
ted value2.064±0.060±0.059 10 ABE 95W CDF Extra
ted value2.10 +0.14

−0.13 ±0.09 3559 11 ALITTI 92 UA2 Extra
ted value2.18 +0.26
−0.24 ±0.04 12 ALBAJAR 91 UA1 Extra
ted value1ABAZOV 09AK obtain this result �tting the high-end tail (100-200 GeV) of the transversemass spe
trum in W → e ν de
ays.2AALTONEN 08B obtain this result �tting the high-end tail (90{200 GeV) of the trans-verse mass spe
trum in semileptoni
 W → e νe and W → µνµ de
ays.3ABDALLAH 08A use dire
t re
onstru
tion of the kinemati
s of W+W− → qq ℓν andW+W− → qq qq events. The systemati
 error in
ludes ±0.065 GeV due to �nalstate intera
tions.4ABBIENDI 06 use dire
t re
onstru
tion of the kinemati
s of W+W− → qq ℓνℓ andW+W− → qq qq events. The systemati
 error in
ludes ±0.003 GeV due to theun
ertainty on the LEP beam energy.5ACHARD 06 use dire
t re
onstru
tion of the kinemati
s of W+W− → qq ℓνℓ andW+W− → qq qq events in the C.M. energy range 189{209 GeV. The result quotedhere is obtained 
ombining this value of the width with the result obtained from a dire
tW mass re
onstru
tion at 172 and 183 GeV (ACCIARRI 99).6 SCHAEL 06 use dire
t re
onstru
tion of the kinemati
s of W+W− → qq ℓνℓ andW+W− → qq qq events. The systemati
 error in
ludes ±0.05 GeV due to possi-ble e�e
ts of �nal state intera
tions in the qq qq 
hannel and ±0.01 GeV due to theun
ertainty on the LEP beam energy.



617617617617See key on page 601 Gauge & Higgs Boson Parti
le ListingsW7ABAZOV 02E obtain this result �tting the high-end tail (90{200 GeV) of the transverse-mass spe
trum in semileptoni
 W → e νe de
ays.8AFFOLDER 00M �t the high transverse mass (100{200 GeV) W → e νe and W →
µνµ events to obtain �(W )= 2.04 ± 0.11(stat)±0.09(syst) GeV. This is 
ombined withthe earlier CDF measurement (ABE 95C) to obtain the quoted result.9ABBOTT 00B measure R = 10.43 ± 0.27 for the W → e νe de
ay 
hannel. They usethe SM theoreti
al predi
tions for σ(W )/σ(Z) and �(W → e νe ) and the world averagefor B(Z → e e). The value quoted here is obtained 
ombining this result (2.169 ± 0.070GeV) with that of ABBOTT 99H.10ABE 95W measured R = 10.90 ± 0.32 ± 0.29. They use mW=80.23 ± 0.18 GeV,
σ(W )/σ(Z) = 3.35 ± 0.03, �(W → e ν) = 225.9 ± 0.9 MeV, �(Z → e+ e−) =83.98 ± 0.18 MeV, and �(Z) = 2.4969 ± 0.0038 GeV.11ALITTI 92 measured R = 10.4+0.7

−0.6 ± 0.3. The values of σ(Z) and σ(W ) 
ome fromO(α2s ) 
al
ulations using mW = 80.14 ± 0.27 GeV, and mZ = 91.175 ± 0.021 GeValong with the 
orresponding value of sin2θW = 0.2274. They use σ(W )/σ(Z) =3.26 ± 0.07 ± 0.05 and �(Z) = 2.487 ± 0.010 GeV.12ALBAJAR 91 measured R = 9.5+1.1
−1.0 (stat. + syst.). σ(W )/σ(Z) is 
al
ulated in QCDat the parton level using mW = 80.18 ± 0.28 GeV and mZ = 91.172 ± 0.031 GeValong with sin2θW = 0.2322 ± 0.0014. They use σ(W )/σ(Z) = 3.23 ± 0.05 and �(Z)= 2.498 ± 0.020 GeV. This measurement is obtained 
ombining both the ele
tron andmuon 
hannels. W+ DECAY MODESW+ DECAY MODESW+ DECAY MODESW+ DECAY MODESW− modes are 
harge 
onjugates of the modes below.Mode Fra
tion (�i /�) Con�den
e level�1 ℓ+ν [a℄ (10.86± 0.09) %�2 e+ν (10.71± 0.16) %�3 µ+ν (10.63± 0.15) %�4 τ+ ν (11.38± 0.21) %�5 hadrons (67.41± 0.27) %�6 π+ γ < 7 × 10−6 95%�7 D+s γ < 1.3 × 10−3 95%�8 
X (33.3 ± 2.6 ) %�9 
 s (31 +13

−11 ) %�10 invisible [b℄ ( 1.4 ± 2.9 ) %[a℄ ℓ indi
ates ea
h type of lepton (e, µ, and τ), not sum over them.[b℄ This represents the width for the de
ay of the W boson into a 
hargedparti
le with momentum below dete
tability, p< 200 MeV.W PARTIAL WIDTHSW PARTIAL WIDTHSW PARTIAL WIDTHSW PARTIAL WIDTHS�(invisible) �10�(invisible) �10�(invisible) �10�(invisible) �10This represents the width for the de
ay of the W boson into a 
harged parti
le withmomentum below dete
tability, p< 200 MeV.VALUE (MeV) DOCUMENT ID TECN COMMENT30+52
−48±3330+52
−48±3330+52
−48±3330+52
−48±33 1 BARATE 99I ALEP Eee
m= 161+172+183 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •2 BARATE 99L ALEP Eee
m= 161+172+183 GeV1BARATE 99I measure this quantity using the dependen
e of the total 
ross se
tion
σWW upon a 
hange in the total width. The �t is performed to the WW measured
ross se
tions at 161, 172, and 183 GeV. This partial width is < 139 MeV at 95%CL.2BARATE 99L use W -pair produ
tion to sear
h for e�e
tively invisible W de
ays, taggingwith the de
ay of the other W boson to Standard Model parti
les. The partial width fore�e
tively invisible de
ay is < 27 MeV at 95%CL.W BRANCHING RATIOSW BRANCHING RATIOSW BRANCHING RATIOSW BRANCHING RATIOSOverall �ts are performed to determine the bran
hing ratios of the Wboson. Averages on W → e ν, W → µν, and W → τ ν, and their
orrelations are obtained by 
ombining results from the four LEP experi-ments properly taking into a

ount the 
ommon systemati
 un
ertaintiesand their 
orrelations [SCHAEL 13A℄. A �rst �t determines the three indi-vidual leptoni
 bra
hing ratios B(W → e ν), B(W → µν), and B(W →

τ ν). This �t has a χ2 = 6.3 for 9 degrees of freedom. The 
orrelation 
o-eÆ
ients between the bran
hing fra
tions are 0.14 (e−µ), −0.20 (e−τ),
−0.12 (µ − τ). A se
ond �t assumes lepton universality and determinesthe leptoni
 bran
hing ratio brW → ℓν and the hadroni
 bran
hing ratiois derived as B(W → hadrons) = 1{3 brW → ℓ. This �t has a χ2 =15.4 for 11 degrees of freedom.�(ℓ+ν

)/�total �1/��(ℓ+ν
)/�total �1/��(ℓ+ν
)/�total �1/��(ℓ+ν
)/�total �1/�

ℓ indi
ates average over e, µ, and τ modes, not sum over modes.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT10.86±0.09 OUR FIT10.86±0.09 OUR FIT10.86±0.09 OUR FIT10.86±0.09 OUR FIT10.86±0.12±0.08 16438 ABBIENDI 07A OPAL Eee
m= 161{209 GeV10.85±0.14±0.08 13600 ABDALLAH 04G DLPH Eee
m= 161{209 GeV10.83±0.14±0.10 11246 ACHARD 04J L3 Eee
m= 161{209 GeV10.96±0.12±0.05 16116 SCHAEL 04A ALEP Eee
m= 183{209 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

11.02±0.52 11858 1 ABBOTT 99H D0 Epp
m= 1.8 TeV10.4 ±0.8 3642 2 ABE 92I CDF Epp
m= 1.8 TeV1ABBOTT 99H measure R ≡ [σW B(W → ℓνℓ)℄/[σZ B(Z → ℓℓ)℄ = 10.90 ± 0.52
ombining ele
tron and muon 
hannels. They use MW = 80.39 ± 0.06 GeV and theSM theoreti
al predi
tions for σ(W )/σ(Z) and B(Z → ℓℓ).2 1216 ± 38+27
−31 W → µν events from ABE 92I and 2426W → e ν events of ABE 91C.ABE 92I give the inverse quantity as 9.6 ± 0.7 and we have inverted.�(e+ ν

)/�total �2/��(e+ ν
)/�total �2/��(e+ ν
)/�total �2/��(e+ ν
)/�total �2/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT10.71±0.16 OUR FIT10.71±0.16 OUR FIT10.71±0.16 OUR FIT10.71±0.16 OUR FIT10.71±0.25±0.11 2374 ABBIENDI 07A OPAL Eee
m= 161{209 GeV10.55±0.31±0.14 1804 ABDALLAH 04G DLPH Eee
m= 161{209 GeV10.78±0.29±0.13 1576 ACHARD 04J L3 Eee
m= 161{209 GeV10.78±0.27±0.10 2142 SCHAEL 04A ALEP Eee
m= 183{209 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •10.61±0.28 1 ABAZOV 04D TEVA Epp
m= 1.8 TeV1ABAZOV 04D take into a

ount all 
orrelations to properly 
ombine the CDF (ABE 95W)and D� (ABBOTT 00B) measurements of the ratio R in the ele
tron 
hannel. The ratioR is de�ned as [σW · B(W → e νe )℄ / [σZ · B(Z → e e)℄. The 
ombination givesRTevatron = 10.59 ± 0.23. σW / σZ is 
al
ulated at next{to{next{to{leading order(3.360 ± 0.051). The bran
hing fra
tion B(Z → e e) is taken from this Review as(3.363 ± 0.004)%.�(µ+ν
)/�total �3/��(µ+ν
)/�total �3/��(µ+ν
)/�total �3/��(µ+ν
)/�total �3/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT10.63±0.15 OUR FIT10.63±0.15 OUR FIT10.63±0.15 OUR FIT10.63±0.15 OUR FIT10.78±0.24±0.10 2397 ABBIENDI 07A OPAL Eee
m= 161{209 GeV10.65±0.26±0.08 1998 ABDALLAH 04G DLPH Eee
m = 161{209 GeV10.03±0.29±0.12 1423 ACHARD 04J L3 Eee
m = 161{209 GeV10.87±0.25±0.08 2216 SCHAEL 04A ALEP Eee
m = 183{209 GeV�(τ+ ν
)/�total �4/��(τ+ ν
)/�total �4/��(τ+ ν
)/�total �4/��(τ+ ν
)/�total �4/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT11.38±0.21 OUR FIT11.38±0.21 OUR FIT11.38±0.21 OUR FIT11.38±0.21 OUR FIT11.14±0.31±0.17 2177 ABBIENDI 07A OPAL Eee
m= 161{209 GeV11.46±0.39±0.19 2034 ABDALLAH 04G DLPH Eee
m = 161{209 GeV11.89±0.40±0.20 1375 ACHARD 04J L3 Eee
m = 161{209 GeV11.25±0.32±0.20 2070 SCHAEL 04A ALEP Eee
m = 183{209 GeV�(hadrons)/�total �5/��(hadrons)/�total �5/��(hadrons)/�total �5/��(hadrons)/�total �5/�OUR FIT value is obtained by a �t to the lepton bran
hing ratio data assuming leptonuniversality.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT67.41±0.27 OUR FIT67.41±0.27 OUR FIT67.41±0.27 OUR FIT67.41±0.27 OUR FIT67.41±0.37±0.23 16438 ABBIENDI 07A OPAL Eee
m= 161{209 GeV67.45±0.41±0.24 13600 ABDALLAH 04G DLPH Eee
m = 161{209 GeV67.50±0.42±0.30 11246 ACHARD 04J L3 Eee
m = 161{209 GeV67.13±0.37±0.15 16116 SCHAEL 04A ALEP Eee
m = 183{209 GeV�(µ+ν
)/�(e+ ν

) �3/�2�(µ+ν
)/�(e+ ν

) �3/�2�(µ+ν
)/�(e+ ν

) �3/�2�(µ+ν
)/�(e+ ν

) �3/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.991±0.018 OUR AVERAGE0.991±0.018 OUR AVERAGE0.991±0.018 OUR AVERAGE0.991±0.018 OUR AVERAGE0.993±0.019 SCHAEL 13A LEP Eee
m= 130{209 GeV0.89 ±0.10 13k 1 ABACHI 95D D0 Epp
m= 1.8 TeV1.02 ±0.08 1216 2 ABE 92I CDF Epp
m= 1.8 TeV1.00 ±0.14 ±0.08 67 ALBAJAR 89 UA1 Epp
m= 546,630 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.24 +0.6

−0.4 14 ARNISON 84D UA1 Repl. by ALBAJAR 891ABACHI 95D obtain this result from the measured σW B(W → µν)= 2.09 ± 0.23 ±0.11 nb and σW B(W → e ν)= 2.36 ± 0.07 ± 0.13 nb in whi
h the �rst error is the
ombined statisti
al and systemati
 un
ertainty, the se
ond re
e
ts the un
ertainty inthe luminosity.2ABE 92I obtain σW B(W → µν)= 2.21 ± 0.07 ± 0.21 and 
ombine with ABE 91C σWB((W → e ν)) to give a ratio of the 
ouplings from whi
h we derive this measurement.�(τ+ ν
)/�(e+ν

) �4/�2�(τ+ ν
)/�(e+ν

) �4/�2�(τ+ ν
)/�(e+ν

) �4/�2�(τ+ ν
)/�(e+ν

) �4/�2VALUE EVTS DOCUMENT ID TECN COMMENT1.043±0.024 OUR AVERAGE1.043±0.024 OUR AVERAGE1.043±0.024 OUR AVERAGE1.043±0.024 OUR AVERAGE1.063±0.027 SCHAEL 13A LEP Eee
m= 130{209 GeV0.961±0.061 980 1 ABBOTT 00D D0 Epp
m= 1.8 TeV0.94 ±0.14 179 2 ABE 92E CDF Epp
m= 1.8 TeV1.04 ±0.08 ±0.08 754 3 ALITTI 92F UA2 Epp
m= 630 GeV1.02 ±0.20 ±0.12 32 ALBAJAR 89 UA1 Epp
m= 546,630 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.995±0.112±0.083 198 ALITTI 91C UA2 Repl. by ALITTI 92F1.02 ±0.20 ±0.10 32 ALBAJAR 87 UA1 Repl. by ALBAJAR 89



618618618618Gauge&HiggsBosonParti
leListingsW1ABBOTT 00D measure σW×B(W → τ ντ ) = 2.22 ± 0.09 ± 0.10 ± 0.10 nb. Usingthe ABBOTT 00B result σW×B(W → e νe ) = 2.31 ± 0.01 ± 0.05 ± 0.10 nb, theyquote the ratio of the 
ouplings from whi
h we derive this measurement.2ABE 92E use two pro
edures for sele
ting W → τ ντ events. The missing ET triggerleads to 132± 14± 8 events and the τ trigger to 47± 9± 4 events. Proper statisti
al andsystemati
 
orrelations are taken into a

ount to arrive at σB(W → τ ν) = 2.05 ± 0.27nb. Combined with ABE 91C result on σB(W → e ν), ABE 92E quote a ratio of the
ouplings from whi
h we derive this measurement.3This measurement is derived by us from the ratio of the 
ouplings of ALITTI 92F.�(τ+ ν
)/�(µ+ν

) �4/�3�(τ+ ν
)/�(µ+ν

) �4/�3�(τ+ ν
)/�(µ+ν

) �4/�3�(τ+ ν
)/�(µ+ν

) �4/�3VALUE DOCUMENT ID TECN COMMENT1.070±0.0261.070±0.0261.070±0.0261.070±0.026 SCHAEL 13A LEP Eee
m= 130{209 GeV�(π+ γ
)/�(e+ν

) �6/�2�(π+ γ
)/�(e+ν

) �6/�2�(π+ γ
)/�(e+ν

) �6/�2�(π+ γ
)/�(e+ν

) �6/�2VALUE CL% DOCUMENT ID TECN COMMENT
< 6.4× 10−5< 6.4× 10−5< 6.4× 10−5< 6.4× 10−5 95 AALTONEN 12W CDF Epp
m= 1.96 Tev
< 7 × 10−4 95 ABE 98H CDF Epp
m= 1.8 TeV
< 4.9× 10−3 95 1 ALITTI 92D UA2 Epp
m= 630 GeV
<58 × 10−3 95 2 ALBAJAR 90 UA1 Epp
m= 546, 630 GeV1ALITTI 92D limit is 3.8× 10−3 at 90%CL.2ALBAJAR 90 obtain < 0.048 at 90%CL.�(D+s γ

)/�(e+ν
) �7/�2�(D+s γ

)/�(e+ν
) �7/�2�(D+s γ

)/�(e+ν
) �7/�2�(D+s γ

)/�(e+ν
) �7/�2VALUE CL% DOCUMENT ID TECN COMMENT

<1.2× 10−2<1.2× 10−2<1.2× 10−2<1.2× 10−2 95 ABE 98P CDF Epp
m= 1.8 TeV�(
X)/�(hadrons) �8/�5�(
X)/�(hadrons) �8/�5�(
X)/�(hadrons) �8/�5�(
X)/�(hadrons) �8/�5VALUE EVTS DOCUMENT ID TECN COMMENT0.49 ±0.04 OUR AVERAGE0.49 ±0.04 OUR AVERAGE0.49 ±0.04 OUR AVERAGE0.49 ±0.04 OUR AVERAGE0.481±0.042±0.032 3005 1 ABBIENDI 00V OPAL Eee
m= 183 + 189 GeV0.51 ±0.05 ±0.03 746 2 BARATE 99M ALEP Eee
m= 172 + 183 GeV1ABBIENDI 00V tag W → 
X de
ays using measured jet properties, lifetime infor-mation, and leptons produ
ed in 
harm de
ays. From this result, and using the ad-ditional measurements of �(W ) and B(W → hadrons), ∣∣V
 s ∣∣ is determined to be0.969 ± 0.045 ± 0.036.2BARATE 99M tag 
 jets using a neural network algorithm. From this measurement ∣∣V
 s ∣∣is determined to be 1.00 ± 0.11 ± 0.07.R
 s = �(
 s)/�(hadrons) �9/�5R
 s = �(
 s)/�(hadrons) �9/�5R
 s = �(
 s)/�(hadrons) �9/�5R
 s = �(
 s)/�(hadrons) �9/�5VALUE DOCUMENT ID TECN COMMENT0.46+0.18
−0.14±0.070.46+0.18
−0.14±0.070.46+0.18
−0.14±0.070.46+0.18
−0.14±0.07 1 ABREU 98N DLPH Eee
m= 161+172 GeV1ABREU 98N tag 
 and s jets by identifying a 
harged kaon as the highest momentumparti
le in a hadroni
 jet. They also use a lifetime tag to independently identify a 
 jet,based on the impa
t parameter distribution of 
harged parti
les in a jet. From thismeasurement ∣∣V
 s ∣∣ is determined to be 0.94+0.32

−0.26 ± 0.13.AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAYSummed over parti
le and antiparti
le, when appropriate.
〈Nπ±

〉〈Nπ±
〉〈Nπ±
〉〈Nπ±
〉VALUE DOCUMENT ID TECN COMMENT15.70±0.3515.70±0.3515.70±0.3515.70±0.35 1 ABREU,P 00F DLPH Eee
m= 189 GeV1ABREU,P 00F measure 〈N

π±
〉 = 31.65 ± 0.48 ± 0.76 and 15.51 ± 0.38 ± 0.40 in thefully hadroni
 and semileptoni
 �nal states respe
tively. The value quoted is a weightedaverage without assuming any 
orrelations.

〈NK±
〉〈NK±
〉〈NK±
〉〈NK±
〉VALUE DOCUMENT ID TECN COMMENT2.20±0.192.20±0.192.20±0.192.20±0.19 1 ABREU,P 00F DLPH Eee
m= 189 GeV1ABREU,P 00F measure 〈NK±

〉 = 4.38 ± 0.42 ± 0.12 and 2.23 ± 0.32 ± 0.17 in thefully hadroni
 and semileptoni
 �nal states respe
tively. The value quoted is a weightedaverage without assuming any 
orrelations.
〈Np〉〈Np〉〈Np〉〈Np〉VALUE DOCUMENT ID TECN COMMENT0.92±0.140.92±0.140.92±0.140.92±0.14 1 ABREU,P 00F DLPH Eee
m= 189 GeV1ABREU,P 00F measure 〈Np〉 = 1.82 ± 0.29 ± 0.16 and 0.94 ± 0.23 ± 0.06 in thefully hadroni
 and semileptoni
 �nal states respe
tively. The value quoted is a weightedaverage without assuming any 
orrelations.
〈N
harged〉〈N
harged〉〈N
harged〉〈N
harged〉VALUE DOCUMENT ID TECN COMMENT19.39±0.08 OUR AVERAGE19.39±0.08 OUR AVERAGE19.39±0.08 OUR AVERAGE19.39±0.08 OUR AVERAGE19.38±0.05±0.08 1 ABBIENDI 06A OPAL Eee
m= 189{209 GeV19.44±0.17 2 ABREU,P 00F DLPH Eee
m= 183+189 GeV19.3 ±0.3 ±0.3 3 ABBIENDI 99N OPAL Eee
m= 183 GeV19.23±0.74 4 ABREU 98C DLPH Eee
m= 172 GeV

1ABBIENDI 06A measure 〈N
harged〉 = 38.74 ± 0.12 ± 0.26 when both W bosonsde
ay hadroni
ally and 〈N
harged〉 = 19.39 ± 0.11 ± 0.09 when one W boson de
ayssemileptoni
ally. The value quoted here is obtained under the assumption that there isno 
olor re
onne
tion between W bosons; the value is a weighted average taking intoa

ount 
orrelations in the systemati
 un
ertainties.2ABREU,P 00F measure 〈N
harged〉 = 39.12 ± 0.33 ± 0.36 and 38.11 ± 0.57 ± 0.44in the fully hadroni
 �nal states at 189 and 183 GeV respe
tively, and 〈N
harged〉 =19.49 ± 0.31 ± 0.27 and 19.78 ± 0.49 ± 0.43 in the semileptoni
 �nal states. The valuequoted is a weighted average without assuming any 
orrelations.3ABBIENDI 99N use the �nal states W+W− → qq ℓνℓ to derive this value.4ABREU 98C 
ombine results from both the fully hadroni
 as well semileptoni
 WW �nalstates after demonstrating that the W de
ay 
harged multipli
ity is independent of thetopology within errors.TRIPLE GAUGE COUPLINGS (TGC'S)TRIPLE GAUGE COUPLINGS (TGC'S)TRIPLE GAUGE COUPLINGS (TGC'S)TRIPLE GAUGE COUPLINGS (TGC'S)
EXTRACTION OF TRIPLE GAUGE COUPLINGS
(TGCS)

Revised August 2015 by M.W. Grünewald (U. College Dublin)
and A. Gurtu (Formerly Tata Inst.).

Fourteen independent couplings, seven each for ZWW and

γWW , completely describe the V WW vertices within the most

general framework of the electroweak Standard Model (SM)

consistent with Lorentz invariance and U(1) gauge invariance.

Of each of the seven TGCs, three conserve C and P individually,

three violate CP , and one violates C and P individually

while conserving CP . Assumption of C and P conservation

and electromagnetic gauge invariance reduces the number of

independent V WW couplings to five: one common set [1,2]

is (κγ , κZ , λγ , λZ , gZ
1 ), where κγ = κZ = gZ

1 = 1 and λγ =

λZ = 0 in the Standard Model at tree level. The parameters

κZ and λZ are related to the other three due to constraints

of gauge invariance as follows: κZ = gZ
1 − (κγ − 1) tan2 θW

and λZ = λγ , where θW is the weak mixing angle. The W

magnetic dipole moment, µW , and the W electric quadrupole

moment, qW , are expressed as µW = e (1 + κγ + λγ)/2MW and

qW = −e (κγ − λγ)/M2
W .

Precision measurements of suitable observables at LEP1 has

already led to an exploration of much of the TGC parameter

space. At LEP2, the V WW coupling arises in W -pair produc-

tion via s-channel exchange, or in single W production via the

radiation of a virtual photon off the incident e+ or e−. At the

Tevatron and the LHC, hard-photon bremsstrahlung off a pro-

duced W or Z signals the presence of a triple-gauge vertex. In

order to extract the value of one TGC, the others are generally

kept fixed to their SM values. While most analyses use the

above gauge constraints in the extraction of TGCs, one analysis

of W -pair events also determines the real and imaginary parts

of all 14 couplings using unconstrained single-parameter fits [3].

The results are consistent. Some experiments have determined

limits on the couplings under various non-LEP scenarios and as-

suming different values of the form factor Λ, where the coupling

parameters are scaled by 1/(1+ s/Λ2)2. For practical reasons it

is not possible to quote all such determinations in the listings.

For that the individual papers may be consulted.
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619619619619See key on page 601 Gauge & Higgs Boson Parti
le ListingsWgZ1gZ1gZ1gZ1 OUR FIT below is taken from [SCHAEL 13A℄.VALUE EVTS DOCUMENT ID TECN COMMENT0.984+0.018
−0.020 OUR FIT0.984+0.018
−0.020 OUR FIT0.984+0.018
−0.020 OUR FIT0.984+0.018
−0.020 OUR FIT0.975+0.033
−0.030 7872 1 ABDALLAH 10 DLPH Eee
m= 189{209 GeV1.001±0.027±0.013 9310 2 SCHAEL 05A ALEP Eee
m= 183{209 GeV0.987+0.034
−0.033 9800 3 ABBIENDI 04D OPAL Eee
m= 183{209 GeV0.966+0.034
−0.032±0.015 8325 4 ACHARD 04D L3 Eee
m= 161{209 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •5 AAD 14Y ATLS Epp
m = 8 TeV6 AAD 13AL ATLS Epp
m = 7 TeV7 CHATRCHYAN13BF CMS Epp
m = 7 TeV8 AAD 12CD ATLS Epp
m = 7 TeV9 AALTONEN 12AC CDF Epp
m = 1.96 TeV10 ABAZOV 12AG D0 Epp
m = 1.96 TeV34 11 ABAZOV 11 D0 Epp
m = 1.96 TeV334 12 AALTONEN 10K CDF Epp
m = 1.96 TeV1.04 ±0.09 13 ABAZOV 09ADD0 Epp
m = 1.96 TeV14 ABAZOV 09AJ D0 Epp
m = 1.96 TeV1.07 +0.08
−0.12 1880 15 ABDALLAH 08C DLPH Superseded by ABDAL-LAH 1013 16 ABAZOV 07Z D0 Epp
m = 1.96 TeV2.3 17 ABAZOV 05S D0 Epp
m = 1.96 TeV0.98 ±0.07 ±0.01 2114 18 ABREU 01I DLPH Eee
m= 183+189 GeV331 19 ABBOTT 99I D0 Epp
m= 1.8 TeV1ABDALLAH 10 use data on the �nal states e+ e− → j j ℓν, j j j j, j j X , ℓX , at 
enter-of-mass energies between 189{209 GeV at LEP2, where j = jet, ℓ = lepton, and Xrepresents missing momentum. The �t is 
arried out keeping all other parameters �xedat their SM values.2 SCHAEL 05A study single{photon, single{W , and WW {pair produ
tion from 183 to209 GeV. The result quoted here is derived from the WW {pair produ
tion sample.Ea
h parameter is determined from a single{parameter �t in whi
h the other parametersassume their Standard Model values.3ABBIENDI 04D 
ombine results fromW+W− in all de
ay 
hannels. Only CP-
onserving
ouplings are 
onsidered and ea
h parameter is determined from a single-parameter �t inwhi
h the other parameters assume their Standard Model values. The 95% 
on�den
einterval is 0.923 < gZ1 < 1.054.4ACHARD 04D study WW {pair produ
tion, single{W produ
tion and single{photon pro-du
tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedfrom the WW {pair produ
tion sample in
luding data from 161 to 183 GeV, ACCIA-RRI 99Q. Ea
h parameter is determined from a single{parameter �t in whi
h the otherparameters assume their Standard Model values.5AAD 14Y determine the ele
troweak Z -dijet 
ross se
tion in 8 TeV pp 
ollisions. Z →e e and Z → µµ de
ays are sele
ted with the di-lepton pT > 20 GeV and mass in the81{101 GeV range. Minimum two jets are required with pT > 55 and 45 GeV and noadditional jets with pT > 25 GeV in the rapidity interval between them. The normalizedpT balan
e between the Z and the two jets is required to be < 0.15. This leads to asele
tion of 900 events with dijet mass > 1 TeV. The number of signal and ba
kgroundevents expe
ted is 261 and 592 respe
tively. A Poisson likelihood method is used on anevent by event basis to obtain the 95% CL limit 0.5 < gZ1 < 1.26 for a form fa
tor value� = ∞.6AAD 13AL study WW produ
tion in pp 
ollisions and sele
t 1325 WW 
andidates inde
ay modes with ele
trons or muons with an expe
ted ba
kground of 369 ± 61 events.Assuming the LEP formulation and setting the form-fa
tor � = in�nity, a �t to thetransverse momentum distribution of the leading 
harged lepton, leads to a 95% C.L.range of 0.961 < gZ1 < 1.052. Supersedes AAD 12AC.7 CHATRCHYAN 13BF determine the W+W− produ
tion 
ross se
tion using unlike signdi-lepton (e or µ) events with high 6pT . The leptons have pT > 20 GeV/
 and areisolated. 1134 
andidate events are observed with an expe
ted SM ba
kground of 247 ±34. The pT distribution of the leading lepton is �tted to obtain 95% C.L. limits of 0.905
≤ gZ1 ≤ 1.095.8AAD 12CD study W Z produ
tion in pp 
ollisions and sele
t 317 W Z 
andidates in three
ℓν de
ay modes with an expe
ted ba
kground of 68.0 ± 10.0 events. The resulting 95%C.L. range is: 0.943 < gZ1 < 1.093. Supersedes AAD 12V.9AALTONEN 12AC study W Z produ
tion in pp 
ollisions and sele
t 63 W Z 
andidatesin three ℓν de
ay modes with an expe
ted ba
kground of 7.9 ± 1.0 events. Based onthe 
ross se
tion and shape of the Z transverse momentum spe
trum, the following 95%C.L. range is reported: 0.92 < gZ1 < 1.20 for a form fa
tor of � = 2 TeV.10ABAZOV 12AG 
ombine new results with already published results on W γ, WW andW Z produ
tion in order to determine the 
ouplings with in
reased pre
ision, supersedingABAZOV 08R, ABAZOV 11AC, ABAZOV 09AJ, ABAZOV 09AD. The 68% C.L. result fora formfa
tor 
uto� of � = 2 TeV is gZ1 = 1.022+0.032

−0.030.11ABAZOV 11 study the pp → 3ℓν pro
ess arising in W Z produ
tion. They observe34 W Z 
andidates with an estimated ba
kground of 6 events. An analysis of the pTspe
trum of the Z boson leads to a 95% C.L. limit of 0.944 < gZ1 < 1.154, for a formfa
tor � = 2 TeV.12AALTONEN 10K study pp → W+W− with W → e/µν. The pT of the leading(se
ond) lepton is required to be > 20 (10) GeV. The �nal number of events sele
ted is654 of whi
h 320 ± 47 are estimated to be ba
kground. The 95% C.L. interval is 0.76
< gZ1 < 1.34 for � = 1.5 TeV and 0.78 < gZ1 < 1.30 for � = 2 TeV.13ABAZOV 09AD study the pp → ℓν 2jet pro
ess arising in WW and W Z produ
tion.They sele
t 12,473 (14,392) events in the ele
tron (muon) 
hannel with an expe
ted

di-boson signal of 436 (527) events. The results on the anomalous 
ouplings are derivedfrom an analysis of the pT spe
trum of the 2-jet system and quoted at 68% C.L. andfor a form fa
tor of 2 TeV. This measurement is not used for obtaining the mean as it isfor a spe
i�
 form fa
tor. The 95% 
on�den
e interval is 0.88 < gZ1 < 1.20.14ABAZOV 09AJ study the pp → 2ℓ2ν pro
ess arising in WW produ
tion. They sele
t100 events with an expe
ted WW signal of 65 events. An analysis of the pT spe
trumof the two 
harged leptons leads to 95% C.L. limits of 0.86 < gZ1 < 1.3, for a formfa
tor � = 2 TeV.15ABDALLAH 08C determine this triple gauge 
oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other 
ouplings are �xed to their standard model values.16ABAZOV 07Z set limits on anomalous TGCs using the measured 
ross se
tion and pT (Z)distribution in W Z produ
tion with both the W and the Z de
aying leptoni
ally intoele
trons and muons. Setting the other 
ouplings to their standard model values, the95% C.L. limit for a form fa
tor s
ale � = 2 TeV is 0.86 < gZ1 < 1.35.17ABAZOV 05S study p p → W Z produ
tion with a subsequent trilepton de
ay to ℓν ℓ′ ℓ′(ℓ and ℓ′ = e or µ). Three events (estimated ba
kground 0.71 ± 0.08 events) with WZde
ay 
hara
teristi
s are observed from whi
h they derive limits on the anomalous WWZ
ouplings. The 95% CL limit for a form fa
tor s
ale � = 1.5 TeV is 0.51 < gZ1 <1.66, �xing λZ and κZ to their Standard Model values.18ABREU 01I 
ombine results from e+ e− intera
tions at 189 GeV leading to W+W−and W e νe �nal states with results from ABREU 99L at 183 GeV. The 95% 
on�den
einterval is 0.84 < gZ1 < 1.13.19ABBOTT 99I perform a simultaneous �t to the W γ, WW → dilepton, WW /W Z →e ν j j, WW /W Z → µν j j, and W Z → trilepton data samples. For � = 2.0 TeV, the95%CL limits are 0.63 < gZ1 < 1.57, �xing λZ and κZ to their Standard Model values,and assuming Standard Model values for the WW γ 
ouplings.
κγκγκγκγ OUR FIT below is taken from [SCHAEL 13A℄.VALUE EVTS DOCUMENT ID TECN COMMENT0.982±0.042 OUR FIT0.982±0.042 OUR FIT0.982±0.042 OUR FIT0.982±0.042 OUR FIT1.024+0.077

−0.081 7872 1 ABDALLAH 10 DLPH Eee
m= 189{209 GeV0.971±0.055±0.030 10689 2 SCHAEL 05A ALEP Eee
m= 183{209 GeV0.88 +0.09
−0.08 9800 3 ABBIENDI 04D OPAL Eee
m= 183{209 GeV1.013+0.067
−0.064±0.026 10575 4 ACHARD 04D L3 Eee
m= 161{209 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •5 CHATRCHYAN14AB CMS Epp
m = 7 TeV6 AAD 13AN ATLS Epp
m = 7 TeV7 CHATRCHYAN13BF CMS Epp
m = 7 TeV8 ABAZOV 12AG D0 Epp
m = 1.96 TeV9 ABAZOV 11AC D0 Epp
m = 1.96 TeV10 CHATRCHYAN11M CMS Epp
m = 7 TeV334 11 AALTONEN 10K CDF Epp
m = 1.96 TeV53 12 AARON 09B H1 Eep
m = 0.3 TeV1.07 +0.26
−0.29 13 ABAZOV 09ADD0 Epp
m = 1.96 TeV14 ABAZOV 09AJ D0 Epp
m = 1.96 TeV15 ABAZOV 08R D0 Epp
m = 1.96 TeV0.68 +0.17
−0.15 1880 16 ABDALLAH 08C DLPH Superseded by ABDAL-LAH 101617 17 AALTONEN 07L CDF Epp
m = 1.96 GeV17 18 ABAZOV 06H D0 Epp
m = 1.96 TeV141 19 ABAZOV 05J D0 Epp
m = 1.96 TeV1.25 +0.21
−0.20 ±0.06 2298 20 ABREU 01I DLPH Eee
m= 183+189 GeV21 BREITWEG 00 ZEUS e+ p → e+W±X,√s ≈ 300 GeV0.92 ±0.34 331 22 ABBOTT 99I D0 Epp
m= 1.8 TeV1ABDALLAH 10 use data on the �nal states e+ e− → j j ℓν, j j j j, j j X , ℓX , at 
enter-of-mass energies between 189{209 GeV at LEP2, where j = jet, ℓ = lepton, and Xrepresents missing momentum. The �t is 
arried out keeping all other parameters �xedat their SM values.2 SCHAEL 05A study single{photon, single{W , and WW {pair produ
tion from 183 to209 GeV. Ea
h parameter is determined from a single{parameter �t in whi
h the otherparameters assume their Standard Model values.3ABBIENDI 04D 
ombine results fromW+W− in all de
ay 
hannels. Only CP-
onserving
ouplings are 
onsidered and ea
h parameter is determined from a single-parameter �t inwhi
h the other parameters assume their Standard Model values. The 95% 
on�den
einterval is 0.73 < κγ < 1.07.4ACHARD 04D study WW {pair produ
tion, single{W produ
tion and single{photon pro-du
tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedin
luding data from 161 to 183 GeV, ACCIARRI 99Q. Ea
h parameter is determinedfrom a single{parameter �t in whi
h the other parameters assume their Standard Modelvalues.5CHATRCHYAN 14AB measureW γ produ
tion 
ross se
tion for pγ

T
> 15 GeV and R(ℓγ)

> 0.7, whi
h is the separation between the γ and the �nal state 
harged lepton (e or
µ) in the azimuthal angle-pseudorapidity (φ − η) plane. After ba
kground subtra
tionthe number of e ν γ and µν γ events is determined to be 3200 ± 325 and 4970 ± 543respe
tively, 
ompatible with expe
tations from the SM. This leads to a 95% CL limit of0.62 < κγ < 1.29, assuming other parameters have SM values.



620620620620Gauge & Higgs Boson Parti
le ListingsW6AAD 13AN study W γ produ
tion in pp 
ollisions. In events with no additional jet,4449 (6578) W de
ays to ele
tron (muon) are sele
ted, with an expe
ted ba
kground of1662 ± 262 (2538 ± 362) events. Analysing the photon pT spe
trum above 100 GeVyields a 95% C.L. limit of 0.59 < κγ < 1.46. Supersedes AAD 12BX.7 CHATRCHYAN 13BF determine the W+W− produ
tion 
ross se
tion using unlike signdi-lepton (e or µ) events with high 6pT . The leptons have pT > 20 GeV/
 and areisolated. 1134 
andidate events are observed with an expe
ted SM ba
kground of 247 ±34. The pT distribution of the leading lepton is �tted to obtain 95% C.L. limits of 0.79
≤ kγ ≤ 1.22.8ABAZOV 12AG 
ombine new results with already published results on W γ, WW andW Z produ
tion in order to determine the 
ouplings with in
reased pre
ision, supersedingABAZOV 08R, ABAZOV 11AC, ABAZOV 09AJ, ABAZOV 09AD. The 68% C.L. result fora formfa
tor 
uto� of � = 2 TeV is κγ = 1.048+0.106

−0.105.9ABAZOV 11AC study W γ produ
tion in pp 
ollisions at 1.96 TeV, with the W de
ayprodu
ts 
ontaining an ele
tron or a muon. They sele
t 196 (363) events in the ele
tron(muon) mode, with a SM expe
tation of 190 (372) events. A likelihood �t to the photonET spe
trum above 15 GeV yields at 95% C.L. the result: 0.6 < κγ < 1.4 for aformfa
tor � = 2 TeV.10CHATRCHYAN 11M studyW γ produ
tion in pp 
ollisions at √s = 7 TeV using 36 pb−1pp data with the W de
aying to ele
tron and muon. The total 
ross se
tion is measuredfor photon transverse energy Eγ
T

> 10 GeV and spatial separation from 
harged leptonsin the plane of pseudo rapidity and azimuthal angle �R(ℓ,γ)> 0.7. The number of
andidate (ba
kground) events is 452 (228 ± 21) for the ele
tron 
hannel and 520(277 ± 25) for the muon 
hannel. Setting other 
ouplings to their standard model value,they derive a 95% CL limit of −0.11 < κγ < 2.04.11AALTONEN 10K study pp → W+W− with W → e/µν. The pT of the leading(se
ond) lepton is required to be > 20 (10) GeV. The �nal number of events sele
ted is654 of whi
h 320 ± 47 are estimated to be ba
kground. The 95% C.L. interval is 0.37
< κγ < 1.72 for � = 1.5 TeV and 0.43 < κγ < 1.65 for � = 2 TeV.12AARON 09B study single-W produ
tion in e p 
ollisions at 0.3 TeV C.M. energy. Theysele
t 53 W → e /µ events with a standard model expe
tation of 54.1 ± 7.4 events.Fitting the transverse momentum spe
trum of the hadroni
 re
oil system they obtain a95% C.L. limit of −3.7 < κγ < −1.5 or 0.3< κγ <1.5, where the ambiguity is due tothe quadrati
 dependen
e of the 
ross se
tion to the 
oupling parameter.13ABAZOV 09AD study the pp → ℓν 2jet pro
ess arising in WW and W Z produ
tion.They sele
t 12,473 (14,392) events in the ele
tron (muon) 
hannel with an expe
teddi-boson signal of 436 (527) events. The results on the anomalous 
ouplings are derivedfrom an analysis of the pT spe
trum of the 2-jet system and quoted at 68% C.L. andfor a form fa
tor of 2 TeV. This measurement is not used for obtaining the mean as it isfor a spe
i�
 form fa
tor. The 95% 
on�den
e interval is 0.56 < κγ < 1.55.14ABAZOV 09AJ study the pp → 2ℓ2ν pro
ess arising in WW produ
tion. They sele
t100 events with an expe
ted WW signal of 65 events. An analysis of the pT spe
trumof the two 
harged leptons leads to 95% C.L. limits of 0.46 < κγ < 1.83, for a formfa
tor � = 2 TeV.15ABAZOV 08R use 0.7 fb−1 pp data at √s = 1.96 TeV to sele
t 263 W γ + X events,of whi
h 187 
onstitute signal, with the W de
aying into an ele
tron or a muon, whi
his required to be well separated from a photon with ET > 9 GeV. A likelihood �t to thephoton ET spe
trum yields a 95% CL limit 0.49 < κγ < 1.51 with other 
ouplings �xedto their Standard Model values.16ABDALLAH 08C determine this triple gauge 
oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other 
ouplings are �xed to their standard model values.17AALTONEN 07L set limits on anomalous TGCs using the pT (W ) distribution in WWand W Z produ
tion with the W de
aying to an ele
tron or muon and the Z to 2 jets.Setting other 
ouplings to their standard model value, the 95% C.L. limits are 0.54
< κγ < 1.39 for a form fa
tor s
ale � = 1.5 TeV.18ABAZOV 06H study pp → WW produ
tion with a subsequent de
ay WW →e+ νe e− νe , WW → e± νe µ∓ νµ or WW → µ+ νµµ− νµ. The 95% C.L. limit fora form fa
tor s
ale � = 1 TeV is −0.05 < κγ <2.29, �xing λγ=0. With the assumptionthat the WW γ and WW Z 
ouplings are equal the 95% C.L. one-dimensional limit (�= 2 TeV) is 0.68 < κ < 1.45.19ABAZOV 05J perform a likelihood �t to the photon ET spe
trum of W γ + X events,where the W de
ays to an ele
tron or muon whi
h is required to be well separated fromthe photon. For � = 2.0 TeV the 95% CL limits are 0.12 < κγ < 1.96. In the �t λγis kept �xed to its Standard Model value.20ABREU 01I 
ombine results from e+ e− intera
tions at 189 GeV leading to W+W−,W e νe , and ν ν γ �nal states with results from ABREU 99L at 183 GeV. The 95%
on�den
e interval is 0.87 < κγ < 1.68.21BREITWEG 00 sear
h for W produ
tion in events with large hadroni
 pT . For pT >20GeV, the upper limit on the 
ross se
tion gives the 95%CL limit −3.7 < κγ < 2.5 (for
λγ=0).22ABBOTT 99I perform a simultaneous �t to the W γ, WW → dilepton, WW /W Z →e ν j j , WW /W Z → µν j j, and W Z → trilepton data samples. For � = 2.0 TeV, the95%CL limits are 0.75 < κγ < 1.39.

λγλγλγλγ OUR FIT below is taken from [SCHAEL 13A℄.VALUE EVTS DOCUMENT ID TECN COMMENT
−0.022±0.019 OUR FIT−0.022±0.019 OUR FIT−0.022±0.019 OUR FIT−0.022±0.019 OUR FIT0.002±0.035 7872 1 ABDALLAH 10 DLPH Eee
m= 189{209 GeV
−0.012±0.027±0.011 10689 2 SCHAEL 05A ALEP Eee
m= 183{209 GeV
−0.060+0.034

−0.033 9800 3 ABBIENDI 04D OPAL Eee
m= 183{209 GeV
−0.021+0.035

−0.034±0.017 10575 4 ACHARD 04D L3 Eee
m= 161{209 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •5 CHATRCHYAN14AB CMS Epp
m = 7 TeV6 AAD 13AN ATLS Epp
m = 7 TeV7 ABAZOV 12AG D0 Epp
m = 1.96 TeV8 ABAZOV 11AC D0 Epp
m = 1.96 TeV9 CHATRCHYAN11M CMS Epp
m = 7 TeV53 10 AARON 09B H1 Eep
m = 0.3 TeV0.00 ±0.06 11 ABAZOV 09ADD0 Epp
m = 1.96 TeV12 ABAZOV 09AJ D0 Epp
m = 1.96 TeV13 ABAZOV 08R D0 Epp
m = 1.96 TeV0.16 +0.12
−0.13 1880 14 ABDALLAH 08C DLPH Superseded by ABDAL-LAH 101617 15 AALTONEN 07L CDF Epp
m = 1.96 GeV17 16 ABAZOV 06H D0 Epp
m = 1.96 TeV141 17 ABAZOV 05J D0 Epp
m = 1.96 TeV0.05 ±0.09 ±0.01 2298 18 ABREU 01I DLPH Eee
m= 183+189 GeV19 BREITWEG 00 ZEUS e+ p → e+W±X,√s ≈ 300 GeV0.00 +0.10
−0.09 331 20 ABBOTT 99I D0 Epp
m= 1.8 TeV1ABDALLAH 10 use data on the �nal states e+ e− → j j ℓν, j j j j, j j X , ℓX , at 
enter-of-mass energies between 189{209 GeV at LEP2, where j = jet, ℓ = lepton, and Xrepresents missing momentum. The �t is 
arried out keeping all other parameters �xedat their SM values.2 SCHAEL 05A study single{photon, single{W , and WW {pair produ
tion from 183 to209 GeV. Ea
h parameter is determined from a single{parameter �t in whi
h the otherparameters assume their Standard Model values.3ABBIENDI 04D 
ombine results fromW+W− in all de
ay 
hannels. Only CP-
onserving
ouplings are 
onsidered and ea
h parameter is determined from a single-parameter �t inwhi
h the other parameters assume their Standard Model values. The 95% 
on�den
einterval is −0.13 < λγ < 0.01.4ACHARD 04D study WW {pair produ
tion, single{W produ
tion and single{photon pro-du
tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedin
luding data from 161 to 183 GeV, ACCIARRI 99Q. Ea
h parameter is determinedfrom a single{parameter �t in whi
h the other parameters assume their Standard Modelvalues.5CHATRCHYAN 14AB measureW γ produ
tion 
ross se
tion for pγ

T
> 15 GeV and R(ℓγ)

> 0.7, whi
h is the separation between the γ and the �nal state 
harged lepton (e or
µ) in the azimuthal angle-pseudorapidity (φ − η) plane. After ba
kground subtra
tionthe number of e ν γ and µν γ events is determined to be 3200 ± 325 and 4970 ± 543respe
tively, 
ompatible with expe
tations from the SM. This leads to a 95% CL limit of
−0.050 < λγ < 0.037, assuming all other parameters have SM values.6AAD 13AN study W γ produ
tion in pp 
ollisions. In events with no additional jet,4449 (6578) W de
ays to ele
tron (muon) are sele
ted, with an expe
ted ba
kground of1662 ± 262 (2538 ± 362) events. Analysing the photon pT spe
trum above 100 GeVyields a 95% C.L. limit of −0.065 < λγ < 0.061. Supersedes AAD 12BX.7ABAZOV 12AG 
ombine new results with already published results on W γ, WW andW Z produ
tion in order to determine the 
ouplings with in
reased pre
ision, supersedingABAZOV 08R, ABAZOV 11AC, ABAZOV 09AJ, ABAZOV 09AD. The 68% C.L. result fora formfa
tor 
uto� of � = 2 TeV is λγ = 0.007+0.021

−0.022.8ABAZOV 11AC study W γ produ
tion in pp 
ollisions at 1.96 TeV, with the W de
ayprodu
ts 
ontaining an ele
tron or a muon. They sele
t 196 (363) events in the ele
tron(muon) mode, with a SM expe
tation of 190 (372) events. A likelihood �t to the photonET spe
trum above 15 GeV yields at 95% C.L. the result: −0.08 < λγ < 0.07 for aformfa
tor � = 2 TeV.9CHATRCHYAN 11M studyW γ produ
tion in pp 
ollisions at √s = 7 TeV using 36 pb−1pp data with the W de
aying to ele
tron and muon. The total 
ross se
tion is measuredfor photon transverse energy Eγ
T

> 10 GeV and spatial separation from 
harged leptonsin the plane of pseudo rapidity and azimuthal angle �R(ℓ,γ)> 0.7. The number of
andidate (ba
kground) events is 452 (228 ± 21) for the ele
tron 
hannel and 520(277 ± 25) for the muon 
hannel. Setting other 
ouplings to their standard model value,they derive a 95% CL limit of −0.18 < λγ < 0.17.10AARON 09B study single-W produ
tion in e p 
ollisions at 0.3 TeV C.M. energy. Theysele
t 53 W → e /µ events with a standard model expe
tation of 54.1 ± 7.4 events.Fitting the transverse momentum spe
trum of the hadroni
 re
oil system they obtain a95% C.L. limit of −2.5 < λγ < 2.5.11ABAZOV 09AD study the pp → ℓν 2jet pro
ess arising in WW and W Z produ
tion.They sele
t 12,473 (14,392) events in the ele
tron (muon) 
hannel with an expe
teddi-boson signal of 436 (527) events. The results on the anomalous 
ouplings are derivedfrom an analysis of the pT spe
trum of the 2-jet system and quoted at 68% C.L. andfor a form fa
tor of 2 TeV. This measurement is not used for obtaining the mean as it isfor a spe
i�
 form fa
tor. The 95% 
on�den
e interval is −0.10 < λγ < 0.11.12ABAZOV 09AJ study the pp → 2ℓ2ν pro
ess arising in WW produ
tion. They sele
t100 events with an expe
ted WW signal of 65 events. An analysis of the pT spe
trumof the two 
harged leptons leads to 95% C.L. limits of −0.14 < λγ < 0.18, for a formfa
tor � = 2 TeV.13ABAZOV 08R use 0.7 fb−1 pp data at √s = 1.96 TeV to sele
t 263 W γ + X events,of whi
h 187 
onstitute signal, with the W de
aying into an ele
tron or a muon, whi
his required to be well separated from a photon with ET > 9 GeV. A likelihood �t to thephoton ET spe
trum yields a 95% CL limit −0.12 < λγ < 0.13 with other 
ouplings�xed to their Standard Model values.14ABDALLAH 08C determine this triple gauge 
oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other 
ouplings are �xed to their standard model values.15AALTONEN 07L set limits on anomalous TGCs using the pT (W ) distribution in WWand W Z produ
tion with the W de
aying to an ele
tron or muon and the Z to 2jets. Setting other 
ouplings to their standard model value, the 95% C.L. limits are
−0.18 < λγ < 0.17 for a form fa
tor s
ale � = 1.5 TeV.



621621621621See key on page 601 Gauge&HiggsBosonParti
leListingsW16ABAZOV 06H study pp → WW produ
tion with a subsequent de
ay WW →e+ νe e− νe , WW → e± νe µ∓ νµ or WW → µ+ νµµ− νµ. The 95% C.L. limit fora form fa
tor s
ale � = 1 TeV is −0.97 < λγ < 1.04, �xing κγ=1. With the assumptionthat the WW γ and WW Z 
ouplings are equal the 95% C.L. one-dimensional limit (�= 2 TeV) is −0.29 < λ < 0.30.17ABAZOV 05J perform a likelihood �t to the photon ET spe
trum of W γ + X events,where the W de
ays to an ele
tron or muon whi
h is required to be well separated fromthe photon. For � = 2.0 TeV the 95% CL limits are −0.20 < λγ < 0.20. In the �t
κγ is kept �xed to its Standard Model value.18ABREU 01I 
ombine results from e+ e− intera
tions at 189 GeV leading to W+W−,W e νe , and ν ν γ �nal states with results from ABREU 99L at 183 GeV. The 95%
on�den
e interval is −0.11 < λγ < 0.23.19BREITWEG 00 sear
h for W produ
tion in events with large hadroni
 pT . For pT >20GeV, the upper limit on the 
ross se
tion gives the 95%CL limit −3.2 < λγ < 3.2 for
κγ �xed to its Standard Model value.20ABBOTT 99I perform a simultaneous �t to the W γ, WW → dilepton, WW /W Z →e ν j j , WW /W Z → µν j j, and W Z → trilepton data samples. For � = 2.0 TeV, the95%CL limits are −0.18 < λγ < 0.19.

κZκZκZκZ This 
oupling is CP-
onserving (C- and P- separately 
onserving).VALUE EVTS DOCUMENT ID TECN COMMENT0.924+0.059
−0.056±0.0240.924+0.059
−0.056±0.0240.924+0.059
−0.056±0.0240.924+0.059
−0.056±0.024 7171 1 ACHARD 04D L3 Eee
m = 189{209 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •2 AAD 13AL ATLS Epp
m = 7 TeV3 AAD 12CD ATLS Epp
m = 7 TeV4 AALTONEN 12AC CDF Epp
m = 1.96 TeV34 5 ABAZOV 11 D0 Epp
m = 1.96 TeV17 6 ABAZOV 06H D0 Epp
m = 1.96 TeV2.3 7 ABAZOV 05S D0 Epp
m = 1.96 TeV1ACHARD 04D study WW {pair produ
tion, single{W produ
tion and single{photon pro-du
tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedusing the WW {pair produ
tion sample. Ea
h parameter is determined from a single{parameter �t in whi
h the other parameters assume their Standard Model values.2AAD 13AL study WW produ
tion in pp 
ollisions and sele
t 1325 WW 
andidates inde
ay modes with ele
trons or muons with an expe
ted ba
kground of 369 ± 61 events.Assuming the LEP formulation and setting the form-fa
tor � = in�nity, a �t to thetransverse momentum distribution of the leading 
harged lepton, leads to a 95% C.L.range of 0.957 < κZ < 1.043. Supersedes AAD 12AC.3AAD 12CD study W Z produ
tion in pp 
ollisions and sele
t 317 W Z 
andidates in three
ℓν de
ay modes with an expe
ted ba
kground of 68.0 ± 10.0 events. The resulting 95%C.L. range is: 0.63 < κZ < 1.57. Supersedes AAD 12V.4AALTONEN 12AC study W Z produ
tion in pp 
ollisions and sele
t 63 W Z 
andidatesin three ℓν de
ay modes with an expe
ted ba
kground of 7.9 ± 1.0 events. Based onthe 
ross se
tion and shape of the Z transverse momentum spe
trum, the following 95%C.L. range is reported: 0.61 < κZ < 1.90 for a form fa
tor of � = 2 TeV.5ABAZOV 11 study the pp → 3ℓν pro
ess arising in W Z produ
tion. They observe34 W Z 
andidates with an estimated ba
kground of 6 events. An analysis of the pTspe
trum of the Z boson leads to a 95% C.L. limit of 0.600 < κZ < 1.675, for a formfa
tor � = 2 TeV.6ABAZOV 06H study pp → WW produ
tion with a subsequent de
ay WW →e+ νe e− νe , WW → e± νe µ∓ νµ or WW → µ+ νµµ− νµ. The 95% C.L. limit fora form fa
tor s
ale � = 2 TeV is 0.55 < κZ < 1.55, �xing λZ=0. With the assumptionthat the WW γ and WW Z 
ouplings are equal the 95% C.L. one-dimensional limit (�= 2 TeV) is 0.68 < κ < 1.45.7ABAZOV 05S study p p → W Z produ
tion with a subsequent trilepton de
ay to ℓν ℓ′ ℓ′(ℓ and ℓ′ = e or µ). Three events (estimated ba
kground 0.71 ± 0.08 events) with WZde
ay 
hara
teristi
s are observed from whi
h they derive limits on the anomalous WWZ
ouplings. The 95% CL limit for a form fa
tor s
ale � = 1 TeV is −1.0 < κZ < 3.4,�xing λZ and gZ1 to their Standard Model values.

λZλZλZλZ This 
oupling is CP-
onserving (C- and P- separately 
onserving).VALUE EVTS DOCUMENT ID TECN COMMENT
−0.088+0.060

−0.057±0.023−0.088+0.060
−0.057±0.023−0.088+0.060
−0.057±0.023−0.088+0.060
−0.057±0.023 7171 1 ACHARD 04D L3 Eee
m = 189{209 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •2 AAD 14Y ATLS Epp
m = 8 TeV3 AAD 13AL ATLS Epp
m = 7 TeV4 CHATRCHYAN13BF CMS Epp
m = 7 TeV5 AAD 12CD ATLS Epp
m = 7 TeV6 AALTONEN 12AC CDF Epp
m = 1.96 TeV34 7 ABAZOV 11 D0 Epp
m = 1.96 TeV334 8 AALTONEN 10K CDF Epp
m = 1.96 TeV13 9 ABAZOV 07Z D0 Epp
m = 1.96 TeV17 10 ABAZOV 06H D0 Epp
m = 1.96 TeV2.3 11 ABAZOV 05S D0 Epp
m = 1.96 TeV

1ACHARD 04D study WW {pair produ
tion, single{W produ
tion and single{photon pro-du
tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedusing the WW {pair produ
tion sample. Ea
h parameter is determined from a single{parameter �t in whi
h the other parameters assume their Standard Model values.2AAD 14Y determine the ele
troweak Z -dijet 
ross se
tion in 8 TeV pp 
ollisions. Z →e e and Z → µµ de
ays are sele
ted with the di-lepton pT > 20 GeV and mass in the81{101 GeV range. Minimum two jets are required with pT > 55 and 45 GeV and noadditional jets with pT > 25 GeV in the rapidity interval between them. The normalizedpT balan
e between the Z and the two jets is required to be < 0.15. This leads to asele
tion of 900 events with dijet mass > 1 TeV. The number of signal and ba
kgroundevents expe
ted is 261 and 592 respe
tively. A Poisson likelihood method is used on anevent by event basis to obtain the 95% CL limit −0.15 < λZ < 0.13 for a form fa
torvalue � = ∞.3AAD 13AL study WW produ
tion in pp 
ollisions and sele
t 1325 WW 
andidates inde
ay modes with ele
trons or muons with an expe
ted ba
kground of 369 ± 61 events.Assuming the LEP formulation and setting the form-fa
tor � = in�nity, a �t to thetransverse momentum distribution of the leading 
harged lepton, leads to a 95% C.L.range of −0.062 < λZ < 0.059. Supersedes AAD 12AC.4 CHATRCHYAN 13BF determine the W+W− produ
tion 
ross se
tion using unlike signdi-lepton (e or µ) events with high 6pT . The leptons have pT > 20 GeV/
 and areisolated. 1134 
andidate events are observed with an expe
ted SM ba
kground of 247 ±34. The pT distribution of the leading lepton is �tted to obtain 95% C.L. limits of
−0.048 ≤ λZ ≤ 0.048.5AAD 12CD study W Z produ
tion in pp 
ollisions and sele
t 317 W Z 
andidates in three
ℓν de
ay modes with an expe
ted ba
kground of 68.0 ± 10.0 events. The resulting 95%C.L. range is: −0.046 < λZ < 0.047. Supersedes AAD 12V.6AALTONEN 12AC study W Z produ
tion in pp 
ollisions and sele
t 63 W Z 
andidatesin three ℓν de
ay modes with an expe
ted ba
kground of 7.9 ± 1.0 events. Based onthe 
ross se
tion and shape of the Z transverse momentum spe
trum, the following 95%C.L. range is reported: −0.08 < λZ < 0.10 for a form fa
tor of � = 2 TeV.7ABAZOV 11 study the pp → 3ℓν pro
ess arising in W Z produ
tion. They observe34 W Z 
andidates with an estimated ba
kground of 6 events. An analysis of the pTspe
trum of the Z boson leads to a 95% C.L. limit of −0.077 < λZ < 0.093, for aform fa
tor � = 2 TeV.8AALTONEN 10K study pp → W+W− with W → e/µν. The pT of the leading(se
ond) lepton is required to be > 20 (10) GeV. The �nal number of events sele
tedis 654 of whi
h 320 ± 47 are estimated to be ba
kground. The 95% C.L. interval is
−0.16 < λZ < 0.16 for � = 1.5 TeV and −0.14 < λZ < 0.15 for � = 2 TeV.9ABAZOV 07Z set limits on anomalous TGCs using the measured 
ross se
tion and pT (Z)distribution in W Z produ
tion with both the W and the Z de
aying leptoni
ally intoele
trons and muons. Setting the other 
ouplings to their standard model values, the95% C.L. limit for a form fa
tor s
ale � = 2 TeV is −0.17 < λZ < 0.21.10ABAZOV 06H study pp → WW produ
tion with a subsequent de
ay WW →e+ νe e− νe , WW → e± νe µ∓ νµ or WW → µ+ νµµ− νµ. The 95% C.L. limit fora form fa
tor s
ale � = 2 TeV is −0.39 < λZ < 0.39, �xing κZ=1. With the assump-tion that the WW γ and WW Z 
ouplings are equal the 95% C.L. one-dimensional limit(� = 2 TeV) is −0.29 < λ < 0.30.11ABAZOV 05S study p p → W Z produ
tion with a subsequent trilepton de
ay to ℓν ℓ′ ℓ′(ℓ and ℓ′ = e or µ). Three events (estimated ba
kground 0.71 ± 0.08 events) with WZde
ay 
hara
teristi
s are observed from whi
h they derive limits on the anomalous WWZ
ouplings. The 95% CL limit for a form fa
tor s
ale � = 1.5 TeV is −0.48 < λZ <0.48, �xing gZ1 and κZ to their Standard Model values.gZ5gZ5gZ5gZ5 This 
oupling is CP-
onserving but C- and P-violating.VALUE EVTS DOCUMENT ID TECN COMMENT

−0.07±0.09 OUR AVERAGE−0.07±0.09 OUR AVERAGE−0.07±0.09 OUR AVERAGE−0.07±0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.
−0.04+0.13

−0.12 9800 1 ABBIENDI 04D OPAL Eee
m= 183{209 GeV0.00±0.13±0.05 7171 2 ACHARD 04D L3 Eee
m= 189{209 GeV
−0.44+0.23

−0.22±0.12 1154 3 ACCIARRI 99Q L3 Eee
m= 161+172+ 183 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.31±0.23 4 EBOLI 00 THEO LEP1, SLC+ Tevatron1ABBIENDI 04D 
ombine results fromW+W− in all de
ay 
hannels. Only CP-
onserving
ouplings are 
onsidered and ea
h parameter is determined from a single-parameter �t inwhi
h the other parameters assume their Standard Model values. The 95% 
on�den
einterval is −0.28 < gZ5 < +0.21.2ACHARD 04D study WW {pair produ
tion, single{W produ
tion and single{photon pro-du
tion with missing energy from 189 to 209 GeV. The result quoted here is obtainedusing the WW {pair produ
tion sample. Ea
h parameter is determined from a single{parameter �t in whi
h the other parameters assume their Standard Model values.3ACCIARRI 99Q study W -pair, single-W , and single photon events.4 EBOLI 00 extra
t this indire
t value of the 
oupling studying the non-universal one-loop
ontributions to the experimental value of the Z → bb width (�=1 TeV is assumed).gZ4gZ4gZ4gZ4 This 
oupling is CP-violating (C-violating and P-
onserving).VALUE EVTS DOCUMENT ID TECN COMMENT
−0.30±0.17 OUR AVERAGE−0.30±0.17 OUR AVERAGE−0.30±0.17 OUR AVERAGE−0.30±0.17 OUR AVERAGE
−0.39+0.19

−0.20 1880 1 ABDALLAH 08C DLPH Eee
m= 189{209 GeV
−0.02+0.32

−0.33 1065 2 ABBIENDI 01H OPAL Eee
m= 189 GeV1ABDALLAH 08C determine this triple gauge 
oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other 
ouplings are �xed to their standard model values.2ABBIENDI 01H study W -pair events, with one leptoni
ally and one hadroni
ally de
ayingW . The 
oupling is extra
ted using information from the W produ
tion angle togetherwith de
ay angles from the leptoni
ally de
aying W .
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le ListingsW̃
κZκ̃Zκ̃Zκ̃Z This 
oupling is CP-violating (C-
onserving and P-violating).VALUE EVTS DOCUMENT ID TECN COMMENT
−0.12+0.06

−0.04 OUR AVERAGE−0.12+0.06
−0.04 OUR AVERAGE−0.12+0.06
−0.04 OUR AVERAGE−0.12+0.06
−0.04 OUR AVERAGE

−0.09+0.08
−0.05 1880 1 ABDALLAH 08C DLPH Eee
m= 189{209 GeV

−0.20+0.10
−0.07 1065 2 ABBIENDI 01H OPAL Eee
m= 189 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •3 BLINOV 11 LEP Eee
m= 183{207 GeV1ABDALLAH 08C determine this triple gauge 
oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other 
ouplings are �xed to their standard model values.2ABBIENDI 01H studyW -pair events, with one leptoni
ally and one hadroni
ally de
ayingW . The 
oupling is extra
ted using information from the W produ
tion angle togetherwith de
ay angles from the leptoni
ally de
aying W .3BLINOV 11 use the LEP-average e+ e− → W+W− 
ross se
tion data for √
s =183{207 GeV to determine an upper limit on the TGC κ̃Z . The average values of the
ross se
tions as well as their 
orrelation matrix, and standard model expe
tations of the
ross se
tions are taken from the LEPEWWG note hep-ex/0612034. At 95% 
on�den
elevel ∣∣κ̃Z ∣∣ < 0.13.

λ̃Zλ̃Zλ̃Zλ̃Z This 
oupling is CP-violating (C-
onserving and P-violating).VALUE EVTS DOCUMENT ID TECN COMMENT
−0.09±0.07 OUR AVERAGE−0.09±0.07 OUR AVERAGE−0.09±0.07 OUR AVERAGE−0.09±0.07 OUR AVERAGE
−0.08±0.07 1880 1 ABDALLAH 08C DLPH Eee
m= 189{209 GeV
−0.18+0.24

−0.16 1065 2 ABBIENDI 01H OPAL Eee
m= 189 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3 BLINOV 11 LEP Eee
m= 183{207 GeV1ABDALLAH 08C determine this triple gauge 
oupling from the measurement of the spindensity matrix elements in e+ e− → W+W− → (qq)(ℓν), where ℓ = e or µ. Valuesof all other 
ouplings are �xed to their standard model values.2ABBIENDI 01H studyW -pair events, with one leptoni
ally and one hadroni
ally de
ayingW . The 
oupling is extra
ted using information from the W produ
tion angle togetherwith de
ay angles from the leptoni
ally de
aying W .3BLINOV 11 use the LEP-average e+ e− → W+W− 
ross se
tion data for √

s =183{207 GeV to determine an upper limit on the TGC λ̃Z . The average values of the
ross se
tions as well as their 
orrelation matrix, and standard model expe
tations of the
ross se
tions are taken from the LEPEWWG note hep-ex/0612034. At 95% 
on�den
elevel ∣∣λ̃Z ∣∣ < 0.31.W ANOMALOUS MAGNETIC MOMENTW ANOMALOUS MAGNETIC MOMENTW ANOMALOUS MAGNETIC MOMENTW ANOMALOUS MAGNETIC MOMENTThe full magneti
 moment is given by µW = e(1+κ + λ)/2mW . In theStandard Model, at tree level, κ= 1 and λ= 0. Some papers have de�ned�κ = 1−κ and assume that λ= 0. Note that the ele
tri
 quadrupolemoment is given by −e(κ−λ)/m2W . A des
ription of the parameterizationof these moments and additional referen
es 
an be found in HAGIWARA 87and BAUR 88. The parameter � appearing in the theoreti
al limits belowis a regularization 
uto� whi
h roughly 
orresponds to the energy s
alewhere the stru
ture of the W boson be
omes manifest.VALUE (e/2m
W

) EVTS DOCUMENT ID TECN COMMENT2.22+0.20
−0.192.22+0.20
−0.192.22+0.20
−0.192.22+0.20
−0.19 2298 1 ABREU 01I DLPH Eee
m= 183+189 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •2 ABE 95G CDF3 ALITTI 92C UA24 SAMUEL 92 THEO5 SAMUEL 91 THEO6 GRIFOLS 88 THEO7 GROTCH 87 THEO8 VANDERBIJ 87 THEO9 GRAU 85 THEO10 SUZUKI 85 THEO11 HERZOG 84 THEO1ABREU 01I 
ombine results from e+ e− intera
tions at 189 GeV leading to W+W−,W e νe , and ν ν γ �nal states with results from ABREU 99L at 183 GeV to determine�gZ1 , �κγ , and λγ . �κγ and λγ are simultaneously 
oated in the �t to determine
µW .2ABE 95G report −1.3 < κ < 3.2 for λ=0 and −0.7 < λ < 0.7 for κ=1 in pp → e νe γXand µνµ γX at √s = 1.8 TeV.3ALITTI 92C measure κ = 1+2.6

−2.2 and λ = 0+1.7
−1.8 in pp → e ν γ+ X at √s = 630 GeV.At 95%CL they report −3.5 < κ < 5.9 and −3.6 < λ < 3.5.4 SAMUEL 92 use preliminary CDF and UA2 data and �nd −2.4 < κ < 3.7 at 96%CLand −3.1 < κ < 4.2 at 95%CL respe
tively. They use data for W γ produ
tion andradiative W de
ay.5 SAMUEL 91 use preliminary CDF data for pp → W γX to obtain −11.3 ≤ �κ ≤10.9. Note that their κ = 1−�κ.6GRIFOLS 88 uses deviation from ρ parameter to set limit �κ . 65 (M2W /�2).

7GROTCH 87 �nds the limit −37 < �κ < 73.5 (90% CL) from the experimental limitson e+ e− → ν ν γ assuming three neutrino generations and −19.5 < �κ < 56 forfour generations. Note their �κ has the opposite sign as our de�nition.8VANDERBIJ 87 uses existing limits to the photon stru
ture to obtain ∣∣�κ
∣∣ < 33(mW /�). In addition VANDERBIJ 87 dis
usses problems with using the ρ parameter ofthe Standard Model to determine �κ.9GRAU 85 uses the muon anomaly to derive a 
oupled limit on the anomalous magneti
dipole and ele
tri
 quadrupole (λ) moments 1.05 > �κ ln(�/mW ) + λ/2 > −2.77. Inthe Standard Model λ = 0.10SUZUKI 85 uses partial-wave unitarity at high energies to obtain ∣∣�κ

∣∣ . 190(mW /�)2. From the anomalous magneti
 moment of the muon, SUZUKI 85 obtains∣∣�κ
∣∣ . 2.2/ln(�/mW ). Finally SUZUKI 85 uses deviations from the ρ parameter andobtains a very qualitative, order-of-magnitude limit ∣∣�κ

∣∣ . 150 (mW /�)4 if ∣∣�κ
∣∣ ≪1.11HERZOG 84 
onsider the 
ontribution ofW -boson to muon magneti
 moment in
ludinganomalous 
oupling of WW γ. Obtain a limit −1 < �κ < 3 for � & 1 TeV.ANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGS

ANOMALOUS W/Z QUARTIC COUPLINGS (QGCS)

Revised November 2015 by M.W. Grünewald (U. College
Dublin) and A. Gurtu (Formerly Tata Inst.).

Quartic couplings, WWZZ, WWZγ, WWγγ, and ZZγγ,

were studied at LEP and Tevatron at energies at which the

Standard Model predicts negligible contributions to multiboson

production. Thus, to parametrize limits on these couplings, an

effective theory approach is adopted which supplements the

Standard Model Lagrangian with higher dimensional operators

which include quartic couplings. The LEP collaborations chose

the lowers dimensional representation of operators (dimension

6) which presumes the SU(2)×U(1) gauge symmetry is broken

by means other than the conventional Higgs scalar doublet [1–3].

In this representation possible quartic couplings, a0, ac, an, are

expressed in terms of the following dimension-6 operators [1,2];

L0
6 = − e2

16Λ2 a0 F µν Fµν
~Wα · ~Wα

Lc
6 = − e2

16Λ2 ac F µα Fµβ
~W β · ~Wα

Ln
6 = −i e2

16Λ2 anǫijk W
(i)
µα W

(j)
ν W (k)αF µν

L̃0
6 = − e2

16Λ2 ã0 F µν F̃µν
~Wα · ~Wα

L̃n
6 = −i e2

16Λ2 ãnǫijk W
(i)
µα W

(j)
ν W (k)αF̃ µν

where F, W are photon and W fields, L0
6 and Lc

6 conserve C,

P separately (L̃0
6 conserves only C) and generate anomalous

W+W−γγ and ZZγγ couplings, Ln
6 violates CP (L̃n

6 violates

both C and P ) and generates an anomalous W+W−Zγ cou-

pling, and Λ is an energy scale for new physics. For the ZZγγ

coupling the CP -violating term represented by Ln
6 does not con-

tribute. These couplings are assumed to be real and to vanish

at tree level in the Standard Model.

Within the same framework as above, a more recent de-

scription of the quartic couplings [3] treats the anomalous parts

of the WWγγ and ZZγγ couplings separately, leading to two

sets parametrized as aV
0 /Λ2 and aV

c /Λ2, where V = W or Z.

With the discovery of a Higgs at the LHC in 2012, it is

then useful to go to the next higher dimensional representa-

tion (dimension 8 operators) in which the gauge symmetry is

broken by the conventional Higgs scalar doublet [3,4]. There

are 14 operators which can contribute to the anomalous quartic

coupling signal. Some of the operators have analogues in the

dimension 6 scheme. The CMS collaboration, [5], have used
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this parametrization, in which the connections between the two

schemes are also summarized:

LAQGC = − e2

8

aW
0

Λ2
FµνF µνW+aW−

a

− e2

16

aW
c

Λ2
FµνF

µa(W+νW−
a + W−νW+

a )

− e2g2κW
0

Λ2
FµνZ

µνW+aW−
a

− e2g2

2

κW
c

Λ2
FµνZ

µa(W+νW−
a + W−νW+

a )

+
fT,0

Λ4
Tr[ŴµνŴ

µν ] × Tr[ŴαβŴαβ ]

The energy scale of possible new physics is Λ, and g =

e/sin(θW ), e being the unit electric charge and θW the Wein-

berg angle. The field tensors are described in [3,4].

The two dimension 6 operators aW
0 /Λ2 and aW

c /Λ2 are asso-

ciated with the WWγγ vertex. Among dimension 8 operators,

κW
0 /Λ2 and κW

c /Λ2 are associated with the WWZγ vertex,

whereas the parameter fT,0/Λ4 contributes to both vertices.

There is a relationship between these two dimension 6 parame-

ters and the dimension 8 parameters fM,i/Λ4 as follows [3]:

aW
0

Λ2
= −4M2

W

g2

fM,0

Λ4
− 8M2

W

g′2
fM,2

Λ4

aW
c

Λ2
= −4M2

W

g2

fM,1

Λ4
− 8M2

W

g′2
fM,3

Λ4

where g′ = e/cos(θW ) and MW is the invariant mass of

the W boson. This relation provides a translation between lim-

its on dimension 6 operators aW
0,c and fM,j/Λ4. It is further

required [4] that fM,0 = 2fM,2 and fM,1 = 2fM,3 which sup-

presses contributions to the WWZγ vertex. The complete set of

Lagrangian contributions as presented in [4] corresponds to 19

anomalous couplings in total – fS,i, i = 1, 2, fM,i, i = 0, . . . , 8

and fT,i, i = 0, . . . , 9 – each scaled by 1/Λ4.

The ATLAS collaboration [6], on the other hand, follows

a K-matrix driven approach of Ref. 7 in which the anomalous

couplings can be expressed in terms of two parameters α4 and

α5, which account for all BSM effects.

It is the early stages in the determination of quartic cou-

plings by the LHC experiments. It is hoped that the two

collaborations, ATLAS and CMS, will agree to use at least one

common set of parameters to express these limits to enable the

reader to make a comparison and allow for a possible LHC

combination.
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ouplings are measured by the experiments at LEP, the Tevatron,and the LHC. Some of the re
ent results from the Tevatron and LHC experimentsindividually surpass the 
ombined LEP-2 results in pre
ision (see below). As dis
ussedin the review on the \Anomalous W /Z quarti
 
ouplings (QGCS)," the measurementsare typi
ally done using di�erent operator expansions whi
h then do not allow theresults to be 
ompared and averaged. At least one 
ommon framework should beagreed upon for the use in the future publi
ations by the experiments.VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAD 15N ATLS2 KHACHATRY...15D CMS3 AAD 14AMATLS4 CHATRCHYAN14Q CMS5 ABAZOV 13D D06 CHATRCHYAN13AA CMS7 ABBIENDI 04B OPAL8 ABBIENDI 04L OPAL9 HEISTER 04A ALEP10 ABDALLAH 03I DLPH11 ACHARD 02F L31AAD 15N study W γ γ events in 8 TeV pp intera
tions, where the W de
ays into anele
tron or a muon. The events are 
hara
terized by an isolated lepton, a missingtransverse energy due to the de
ay neutrino, and two isolated photons, with the pT of thelepton and the photons being > 20 GeV. The number of 
andidate events observed in theele
tron 
hannel for N(jet) ≥ 0 and N(jet) = 0 is 47 and 15, the 
orresponding numbersfor the muon 
hannel being 110 and 53. The ba
kgrounds expe
ted are 30.2 ± 7.4,8.7± 3.0, 52.1± 12.2, and 24.4± 8.3 respe
tively. The 95% C.L. limits on the values ofthe parameters fT,0/�4, fM,2/�4 and fM,3/�4 are −0.9{0.9× 102, −0.8{0.8× 104,and −1.5{1.4× 104 respe
tively, without appli
ation of a form fa
tor �FF.2KHACHATRYAN 15D study ve
tor-boson-s
attering tagged by two jets, requiring twosame-sign 
harged leptons arising from W± W± produ
tion and de
ay. The two jetsmust have a transverse momentum larger than 30 GeV, while the leptons, ele
trons ormuons, must have a transverse momentum > 20 GeV. The dijet mass is required to be >500 GeV, the dilepton mass > 50 GeV, with additional requirement of di�ering from theZ mass by > 15 GeV. In the two 
ategoriesW+W+ andW−W−, 10 and 2 data eventsare observed in a data sample 
orresponding to an integrated luminosity of 19.4 fb−1,with an expe
ted ba
kground of 3.1±0.6 and 2.6±0.5 events. Analysing the distributionof the dilepton invariant mass, the following limits at 95% C.L. are obtained, in units ofTeV−4: −38 < FS,0/�4 < 40, −118 < FS,1/�4 < 120, −33 < FM,0/�4 < 32,
−44 < FM,1/�4 < 47, −65 < FM,6/�4 < 63, −70 < FM,7/�4 < 66, −4.2 <FT,0/�4 < 4.6, −1.9 < FT,1/�4 < 2.2, −6.2 < FT,2/�4 < 6.4.3AAD 14AM analyze ele
troweak produ
tion ofWW jet jet same-
harge diboson plus twojets produ
tion, with the W bosons de
aying to ele
tron or muon, to study the quarti
WWWW 
oupling. In a kinemati
 region enhan
ing the ele
troweak produ
tion overthe strong produ
tion, 34 events are observed in the data while 29.8 ± 2.4 events areexpe
ted with a ba
kgound of 15.9 ± 1.9 events. Assuming the other QGC 
oupling tohave the SM value of zero, the observed event yield is used to determine 95% CL limitson the quarti
 gauge 
ouplings: −0.14 < α4 < 0.16 and −0.23 < α5 < 0.24.4CHATRCHYAN 14Q study W V γ produ
tion in 8 TeV pp 
ollisions, in the single lepton�nal state, with W → ℓν, Z → dijet or W → ℓν, W → dijet, the dijet mass resolutionpre
luding di�erentiation between the W and Z . pT and pseudo-rapidity 
uts are puton the lepton, the photon and the two jets to minimize ba
kgrounds. The dijet mass isrequired to be between 7{100 GeV and ∣∣�ηjj

∣∣ < 1.4. The sele
ted number of muon(ele
tron) events are 183 (139), with SM expe
tation being 194.2 ± 11.5 (147.9 ± 10.7)in
luding signal and ba
kground. The photon ET distribution is used to set limits on theanomalous quarti
 
ouplings. The following 95% CL limits are dedu
ed (all in units ofTeV−2 or TeV−4): −21 < aW0 /�2 < 20, −34 < aW
 /�2 < 32, −12 < κW0 /�2 <10 and −18 < κW
 /�2 < 17; and −25 < fT,0/�4 < 24 TeV−4.5ABAZOV 13D sear
hes for anomalous WW γ γ quarti
 gauge 
ouplings in the two-photon-mediated pro
ess pp → ppW W , assuming the WW γ triple gauge boson
ouplings to be at their Standard Model values. 946 events 
ontaining an e+ e− pairwith missing energy are sele
ted in a total luminosity of 9.7 fb−1, with an expe
tationof 983 ± 108 events from Standard-Model pro
esses. The following 1-parameter limitsat 95% CL are otained: ∣∣aW0 /�2∣∣ < 4.3 × 10−4 GeV−2 (aW
 = 0), ∣∣aW
 /�2∣∣ <1.5× 10−3 GeV−2 (aW0 = 0).6CHATRCHYAN 13AA sear
hes for anomalous WW γ γ quarti
 gauge 
ouplings in thetwo-photon-mediated pro
ess pp → ppW W , assuming the WW γ triple gauge boson
ouplings to be at their Standard Model values. 2 events 
ontaining an e±µ∓ pair withpT (e, µ) > 30 GeV are sele
ted in a total luminosity of 5.05 fb−1, with an expe
tedppW W signal of 2.2 ± 0.4 events and an expe
ted ba
kground of 0.84 ± 0.15 events.The following 1-parameter limits at 95% CL are otained from the pT (e, µ) spe
trum:
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∣∣aW0 /�2∣∣ < 4.0 × 10−6 GeV−2 (aW
 = 0), ∣∣aW
 /�2∣∣ < 1.5 × 10−5 GeV−2 (aW0= 0).7ABBIENDI 04B sele
t 187 e+ e− → W+W−γ events in the C.M. energy range180{209 GeV, where Eγ >2.5 GeV, the photon has a polar angle ∣∣
osθγ ∣∣ < 0.975and is well isolated from the nearest jet and 
harged lepton, and the e�e
tive massesof both fermion-antifermion systems agree with the W mass within 3 �W . The mea-sured di�erential 
ross se
tion as a fun
tion of the photon energy and photon polarangle is used to extra
t the 95% CL limits: −0.020 GeV−2 <a0/�2 < 0.020 GeV−2,
−0.053 GeV−2 <ac/�2 < 0.037 GeV−2 and −0.16 GeV−2 <an/�2 < 0.15 GeV−2.8ABBIENDI 04L sele
t 20 e+ e− → ν ν γ γ a
oplanar events in the energy range 180{209GeV and 176 e+ e− → qq γ γ events in the energy range 130{209 GeV. These samplesare used to 
onstrain possible anomalous W+W− γ γ and Z Z γ γ quarti
 
ouplings.Further 
ombining with the W+W− γ sample of ABBIENDI 04B the following one{parameter 95% CL limits are obtained: −0.007 < aZ0 /�2 < 0.023 GeV−2, −0.029 <aZ
 /�2 < 0.029 GeV−2, −0.020 < aW0 /�2 < 0.020 GeV−2, −0.052 < aW
 /�2 <0.037 GeV−2.9 In the CM energy range 183 to 209 GeV HEISTER 04A sele
t 30 e+ e− → ν ν γ γ eventswith two a
oplanar, high energy and high transverse momentum photons. The photon{photon a
oplanarity is required to be > 5◦, Eγ/√s > 0.025 (the more energeti
 photonhaving energy > 0.2 √

s), pTγ
/Ebeam > 0.05 and ∣∣
os θγ

∣∣ < 0.94. A likelihood �tto the photon energy and re
oil missing mass yields the following one{parameter 95%CL limits: −0.012 < aZ0 /�2 < 0.019 GeV−2, −0.041 < aZ
 /�2 < 0.044 GeV−2,
−0.060 < aW0 /�2 < 0.055 GeV−2, −0.099 < aW
 /�2 < 0.093 GeV−2.10ABDALLAH 03I sele
t 122 e+ e− → W+W−γ events in the C.M. energy range189{209 GeV, where Eγ >5 GeV, the photon has a polar angle ∣∣
osθγ ∣∣ < 0.95 andis well isolated from the nearest 
harged fermion. A �t to the photon energy spe
-tra yields a
 /�2= 0.000+0.019

−0.040 GeV−2, a0/�2= −0.004+0.018
−0.010 GeV−2, ã0/�2=

−0.007+0.019
−0.008 GeV−2, an/�2= −0.09+0.16

−0.05 GeV−2, and ãn/�2= +0.05+0.07
−0.15GeV−2, keeping the other parameters �xed to their Standard Model values (0).The 95% CL limits are: −0.063 GeV−2 <a
/�2 < +0.032 GeV−2, −0.020GeV−2 <a0/�2 < +0.020 GeV−2, −0.020 GeV−2 < ã0/�2 < +0.020 GeV−2,

−0.18 GeV−2 <an/�2 < +0.14 GeV−2, −0.16 GeV−2 < ãn/�2 < +0.17 GeV−2.11ACHARD 02F sele
t 86 e+ e− → W+W− γ events at 192{207 GeV, where Eγ >5GeV and the photon is well isolated. They also sele
t 43 a
oplanar e+ e− → ν ν γ γevents in this energy range, where the photon energies are >5 GeV and >1 GeV and thephoton polar angles are between 14◦ and 166◦. All these 43 events are in the re
oil massregion 
orresponding to the Z (75{110 GeV). Using the shape and normalization of thephoton spe
tra in the W+W− γ events, and 
ombining with the 42 event sample from189 GeV data (ACCIARRI 00T), they obtain: a0/�2= 0.000 ± 0.010 GeV−2, a
/�2=
−0.013 ± 0.023 GeV−2, and an/�2= −0.002 ± 0.076 GeV−2. Further 
ombining theanalyses of W+W− γ events with the low re
oil mass region of ν ν γ γ events (in
ludingsamples 
olle
ted at 183 + 189 GeV), they obtain the following one-parameter 95% CLlimits: −0.015 GeV−2 <a0/�2 < 0.015 GeV−2, −0.048 GeV−2 <a
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THE Z BOSON

Revised September 2013 by M.W. Grünewald (U. College
Dublin and U. Ghent), and A. Gurtu (Formerly Tata Inst.).

Precision measurements at the Z-boson resonance using

electron–positron colliding beams began in 1989 at the SLC and

at LEP. During 1989–95, the four LEP experiments (ALEPH,

DELPHI, L3, OPAL) made high-statistics studies of the pro-

duction and decay properties of the Z. Although the SLD

experiment at the SLC collected much lower statistics, it was

able to match the precision of LEP experiments in determining
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the effective electroweak mixing angle sin2θW and the rates of

Z decay to b- and c-quarks, owing to availability of polarized

electron beams, small beam size, and stable beam spot.

The Z-boson properties reported in this section may broadly

be categorized as:

• The standard ‘lineshape’ parameters of the Z con-

sisting of its mass, MZ , its total width, ΓZ , and its

partial decay widths, Γ(hadrons), and Γ(ℓℓ) where

ℓ = e, µ, τ, ν;

• Z asymmetries in leptonic decays and extraction of

Z couplings to charged and neutral leptons;

• The b- and c-quark-related partial widths and charge

asymmetries which require special techniques;

• Determination of Z decay modes and the search for

modes that violate known conservation laws;

• Average particle multiplicities in hadronic Z decay;

• Z anomalous couplings.

The effective vector and axial-vector coupling constants

describing the Z-to-fermion coupling are also measured in

pp̄ and ep collisions at the Tevatron and at HERA. The

corresponding cross-section formulae are given in Section 39

(Cross-section formulae for specific processes) and Section 16

(Structure Functions) in this Review. In this minireview, we

concentrate on the measurements in e+e− collisions at LEP and

SLC.

The standard ‘lineshape’ parameters of the Z are deter-

mined from an analysis of the production cross sections of

these final states in e+e− collisions. The Z → νν(γ) state is

identified directly by detecting single photon production and

indirectly by subtracting the visible partial widths from the

total width. Inclusion in this analysis of the forward-backward

asymmetry of charged leptons, A
(0,ℓ)
FB , of the τ polarization,

P (τ), and its forward-backward asymmetry, P (τ)fb, enables

the separate determination of the effective vector (gV ) and ax-

ial vector (gA) couplings of the Z to these leptons and the ratio

(gV /gA), which is related to the effective electroweak mixing

angle sin2θW (see the “Electroweak Model and Constraints on

New Physics” review).

Determination of the b- and c-quark-related partial widths

and charge asymmetries involves tagging the b and c quarks

for which various methods are employed: requiring the pres-

ence of a high momentum prompt lepton in the event with

high transverse momentum with respect to the accompanying

jet; impact parameter and lifetime tagging using precision ver-

tex measurement with high-resolution detectors; application of

neural-network techniques to classify events as b or non-b on

a statistical basis using event–shape variables; and using the

presence of a charmed meson (D/D∗) or a kaon as a tag.

Z-parameter determination

LEP was run at energy points on and around the Z

mass (88–94 GeV) constituting an energy ‘scan.’ The shape

of the cross-section variation around the Z peak can be de-

scribed by a Breit-Wigner ansatz with an energy-dependent

total width [1–3]. The three main properties of this dis-

tribution, viz., the position of the peak, the width of the

distribution, and the height of the peak, determine respec-

tively the values of MZ , ΓZ , and Γ(e+e−) × Γ(ff), where

Γ(e+e−) and Γ(ff) are the electron and fermion partial widths

of the Z. The quantitative determination of these parameters

is done by writing analytic expressions for these cross sections

in terms of the parameters, and fitting the calculated cross sec-

tions to the measured ones by varying these parameters, taking

properly into account all the errors. Single-photon exchange

(σ0
γ) and γ-Z interference (σ0

γZ) are included, and the large

(∼25 %) initial-state radiation (ISR) effects are taken into ac-

count by convoluting the analytic expressions over a ‘Radiator

Function’ [1–5] H(s, s′). Thus for the process e+e− → ff :

σf (s) =

∫
H(s, s′) σ0

f (s′) ds′ (1)

σ0
f (s) =σ0

Z + σ0
γ + σ0

γZ (2)

σ0
Z =

12π

M2
Z

Γ(e+e−)Γ(ff)

Γ2
Z

s Γ2
Z

(s − M2
Z)2 + s2Γ2

Z/M2
Z

(3)

σ0
γ =

4πα2(s)

3s
Q2

fNf
c (4)

σ0
γZ = − 2

√
2α(s)

3
(QfGF Nf

c Ge
V G

f
V )

× (s − M2
Z)M2

Z

(s − M2
Z)2 + s2Γ2

Z/M2
Z

(5)

where Qf is the charge of the fermion, Nf
c = 3 for quarks and

1 for leptons, and Gf
V is the vector coupling of the Z to the

fermion-antifermion pair ff .

Since σ0
γZ is expected to be much less than σ0

Z , the LEP

Collaborations have generally calculated the interference term

in the framework of the Standard Model. This fixing of σ0
γZ

leads to a tighter constraint on MZ , and consequently a smaller

error on its fitted value. It is possible to relax this constraint

and carry out the fit within the S-matrix framework, which is

briefly described in the next section.

In the above framework, the QED radiative corrections have

been explicitly taken into account by convoluting over the ISR

and allowing the electromagnetic coupling constant to run [6]:

α(s) = α/(1 − ∆α). On the other hand, weak radiative cor-

rections that depend upon the assumptions of the electroweak

theory and on the values of Mtop and MHiggs are accounted

for by absorbing them into the couplings, which are then

called the effective couplings GV and GA (or alternatively the

effective parameters of the ⋆ scheme of Kennedy and Lynn [7].)

Gf
V and Gf

A are complex numbers with small imaginary parts.

As experimental data does not allow simultaneous extraction

of both real and imaginary parts of the effective couplings, the

convention gf
A = Re(Gf

A) and gf
V = Re(Gf

V ) is used and the

imaginary parts are added in the fitting code [4].

Defining

Af = 2
gf
V · gf

A

(gf
V )2 + (gf

A)2
(6)
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the lowest-order expressions for the various lepton-related

asymmetries on the Z pole are [8–10] A
(0,ℓ)
FB = (3/4)AeAf ,

P (τ) = −Aτ , P (τ)fb = −(3/4)Ae, ALR = Ae. The full anal-

ysis takes into account the energy-dependence of the asymme-

tries. Experimentally ALR is defined as (σL − σR)/(σL + σR),

where σL(R) are the e+e− → Z production cross sections with

left- (right)-handed electrons.

The definition of the partial decay width of the Z to ff

includes the effects of QED and QCD final-state corrections,

as well as the contribution due to the imaginary parts of the

couplings:

Γ(ff) =
GF M3

Z

6
√

2π
Nf

c (
∣∣∣Gf

A

∣∣∣
2
Rf

A +
∣∣∣Gf

V

∣∣∣
2
Rf

V ) + ∆ew/QCD (7)

where Rf
V and Rf

A are radiator factors to account for final state

QED and QCD corrections, as well as effects due to nonzero

fermion masses, and ∆ew/QCD represents the non-factorizable

electroweak/QCD corrections.

S-matrix approach to the Z

While most experimental analyses of LEP/SLC data have

followed the ‘Breit-Wigner’ approach, an alternative S-matrix-

based analysis is also possible. The Z, like all unstable parti-

cles, is associated with a complex pole in the S matrix. The

pole position is process-independent and gauge-invariant. The

mass, MZ , and width, ΓZ , can be defined in terms of the pole

in the energy plane via [11–14]

s = M
2
Z − iMZΓZ (8)

leading to the relations

MZ = MZ/
√

1 + Γ2
Z/M2

Z

≈ MZ − 34.1 MeV (9)

ΓZ = ΓZ/
√

1 + Γ2
Z/M2

Z

≈ ΓZ − 0.9 MeV . (10)

The LEP collaborations [15] have analyzed their data using

the S–matrix approach as defined in Eq. (8), in addition to

the conventional one. They observe a downward shift in the

Z mass as expected.

Handling the large-angle e+e− final state

Unlike other ff decay final states of the Z, the e+e− final

state has a contribution not only from the s-channel but also

from the t-channel and s-t interference. The full amplitude

is not amenable to fast calculation, which is essential if one

has to carry out minimization fits within reasonable computer

time. The usual procedure is to calculate the non-s channel

part of the cross section separately using the Standard Model

programs ALIBABA [16] or TOPAZ0 [17], with the measured

value of Mtop, and MHiggs = 150 GeV, and add it to the

s-channel cross section calculated as for other channels. This

leads to two additional sources of error in the analysis: firstly,

the theoretical calculation in ALIBABA itself is known to be

accurate to ∼ 0.5%, and secondly, there is uncertainty due

to the error on Mtop and the unknown value of MHiggs (100–

1000 GeV). These errors are propagated into the analysis by

including them in the systematic error on the e+e− final state.

As these errors are common to the four LEP experiments, this

is taken into account when performing the LEP average.

Errors due to uncertainty in LEP energy determina-

tion [18–23]

The systematic errors related to the LEP energy measure-

ment can be classified as:

• The absolute energy scale error;

• Energy-point-to-energy-point errors due to the non-

linear response of the magnets to the exciting cur-

rents;

• Energy-point-to-energy-point errors due to possible

higher-order effects in the relationship between the

dipole field and beam energy;

• Energy reproducibility errors due to various un-

known uncertainties in temperatures, tidal effects,

corrector settings, RF status, etc.

Precise energy calibration was done outside normal data-

taking using the resonant depolarization technique. Run-time

energies were determined every 10 minutes by measuring the

relevant machine parameters and using a model which takes

into account all the known effects, including leakage currents

produced by trains in the Geneva area and the tidal effects

due to gravitational forces of the Sun and the Moon. The LEP

Energy Working Group has provided a covariance matrix from

the determination of LEP energies for the different running

periods during 1993–1995 [18].

Choice of fit parameters

The LEP Collaborations have chosen the following primary

set of parameters for fitting: MZ , ΓZ , σ0
hadron, R(lepton),

A
(0,ℓ)
FB , where R(lepton) = Γ(hadrons)/Γ(lepton), σ0

hadron =

12πΓ(e+e−)Γ(hadrons)/M2
ZΓ2

Z . With a knowledge of these fit-

ted parameters and their covariance matrix, any other param-

eter can be derived. The main advantage of these parameters

is that they form a physics motivated set of parameters with

much reduced correlations.

Thus, the most general fit carried out to cross section and

asymmetry data determines the nine parameters: MZ , ΓZ ,

σ0
hadron, R(e), R(µ), R(τ), A

(0,e)
FB , A

(0,µ)
FB , A

(0,τ )
FB . Assumption of

lepton universality leads to a five-parameter fit determining

MZ , ΓZ , σ0
hadron, R(lepton), A

(0,ℓ)
FB .

Combining results from LEP and SLC experiments

With a steady increase in statistics over the years and

improved understanding of the common systematic errors be-

tween LEP experiments, the procedures for combining results

have evolved continuously [24]. The Line Shape Sub-group of

the LEP Electroweak Working Group investigated the effects

of these common errors, and devised a combination procedure

for the precise determination of the Z parameters from LEP

experiments. Using these procedures, this note also gives the
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results after combining the final parameter sets from the four

experiments, and these are the results quoted as the fit re-

sults in the Z listings below. Transformation of variables leads

to values of derived parameters like partial decay widths and

branching ratios to hadrons and leptons. Finally, transforming

the LEP combined nine parameter set to (MZ , ΓZ , σ◦
hadron, gf

A,

gf
V , f = e, µ, τ) using the average values of lepton asymmetry

parameters (Ae, Aµ, Aτ ) as constraints, leads to the best fitted

values of the vector and axial-vector couplings (gV , gA) of the

charged leptons to the Z.

Brief remarks on the handling of common errors and their

magnitudes are given below. The identified common errors are

those coming from

(a) LEP energy-calibration uncertainties, and

(b) the theoretical uncertainties in (i) the luminosity deter-

mination using small angle Bhabha scattering, (ii) estimating

the non-s channel contribution to large angle Bhabha scatter-

ing, (iii) the calculation of QED radiative effects, and (iv) the

parametrization of the cross section in terms of the parameter

set used.

Common LEP energy errors

All the collaborations incorporate in their fit the full LEP

energy error matrix as provided by the LEP energy group for

their intersection region [18]. The effect of these errors is

separated out from that of other errors by carrying out fits with

energy errors scaled up and down by ∼ 10% and redoing the

fits. From the observed changes in the overall error matrix, the

covariance matrix of the common energy errors is determined.

Common LEP energy errors lead to uncertainties on MZ , ΓZ ,

and σ◦
hadron of 1.7, 1.2 MeV, and 0.011 nb, respectively.

Common luminosity errors

BHLUMI 4.04 [25] is used by all LEP collaborations for

small-angle Bhabha scattering leading to a common uncertainty

in their measured cross sections of 0.061% [26]. BHLUMI

does not include a correction for production of light fermion

pairs. OPAL explicitly corrects for this effect and reduces their

luminosity uncertainty to 0.054%, which is taken fully corre-

lated with the other experiments. The other three experiments

among themselves have a common uncertainty of 0.061%.

Common non-s channel uncertainties

The same standard model programs ALIBABA [16] and

TOPAZ0 [17] are used to calculate the non-s channel contri-

bution to the large angle Bhabha scattering [27]. As this

contribution is a function of the Z mass, which itself is a vari-

able in the fit, it is parametrized as a function of MZ by each

collaboration to properly track this contribution as MZ varies

in the fit. The common errors on Re and A
(0,e)
FB are 0.024 and

0.0014 respectively, and are correlated between them.

Common theoretical uncertainties: QED

There are large initial-state photon and fermion pair radia-

tion effects near the Z resonance, for which the best currently

available evaluations include contributions up to O(α3). To

estimate the remaining uncertainties, different schemes are in-

corporated in the standard model programs ZFITTER [5],

TOPAZ0 [17], and MIZA [28]. Comparing the different op-

tions leads to error estimates of 0.3 and 0.2 MeV on MZ and

ΓZ respectively, and of 0.02% on σ◦
hadron.

Common theoretical uncertainties: parametrization of

lineshape and asymmetries

To estimate uncertainties arising from ambiguities in the

model-independent parametrization of the differential cross-

section near the Z resonance, results from TOPAZ0 and ZFIT-

TER were compared by using ZFITTER to fit the cross sections

and asymmetries calculated using TOPAZ0. The resulting un-

certainties on MZ , ΓZ , σ◦
hadron, R(lepton), and A

(0,ℓ)
FB are

0.1 MeV, 0.1 MeV, 0.001 nb, 0.004, and 0.0001 respectively.

Thus, the overall theoretical errors on MZ , ΓZ , σ◦
hadron are

0.3 MeV, 0.2 MeV, and 0.008 nb respectively; on each R(lepton)

is 0.004 and on each A
(0,ℓ)
FB is 0.0001. Within the set of three

R(lepton)’s and the set of three A
(0,ℓ)
FB ’s, the respective errors

are fully correlated.

All the theory-related errors mentioned above utilize

Standard Model programs which need the Higgs mass and

running electromagnetic coupling constant as inputs; un-

certainties on these inputs will also lead to common er-

rors. All LEP collaborations used the same set of inputs

for Standard Model calculations: MZ = 91.187 GeV, the

Fermi constant GF = (1.16637 ± 0.00001) × 10−5 GeV−2 [29],

α(5)(MZ) = 1/128.877 ± 0.090 [30], αs(MZ) = 0.119 [31],

Mtop = 174.3 ± 5.1 GeV [31] and MHiggs = 150 GeV. The only

observable effect, on MZ , is due to the variation of MHiggs

between 100–1000 GeV (due to the variation of the γ/Z inter-

ference term which is taken from the Standard Model): MZ

changes by +0.23 MeV per unit change in log10 MHiggs/GeV,

which is not an error but a correction to be applied once MHiggs

is determined. The effect is much smaller than the error on

MZ (±2.1 MeV).

Methodology of combining the LEP experimental results

The LEP experimental results actually used for combination

are slightly modified from those published by the experiments

(which are given in the Listings below). This has been done

in order to facilitate the procedure by making the inputs more

consistent. These modified results are given explicitly in [24].

The main differences compared to the published results are (a)

consistent use of ZFITTER 6.23 and TOPAZ0 (the published

ALEPH results used ZFITTER 6.10); (b) use of the combined

energy-error matrix, which makes a difference of 0.1 MeV on

the MZ and ΓZ for L3 only as at that intersection the RF

modeling uncertainties are the largest.

Thus, nine-parameter sets from all four experiments with

their covariance matrices are used together with all the com-

mon errors correlations. A grand covariance matrix, V , is

constructed and a combined nine-parameter set is obtained by

minimizing χ2 = ∆T V −1 ∆, where ∆ is the vector of residu-

als of the combined parameter set to the results of individual
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experiments. Imposing lepton universality in the combination

results in the combined five parameter set.

Study of Z → bb and Z → cc

In the sector of c- and b-physics, the LEP experiments have

measured the ratios of partial widths Rb = Γ(Z → bb)/Γ(Z →
hadrons), and Rc = Γ(Z → cc)/Γ(Z → hadrons), and the

forward-backward (charge) asymmetries Abb
FB and Acc

FB. The

SLD experiment at SLC has measured the ratios Rc and Rb

and, utilizing the polarization of the electron beam, was able

to obtain the final state coupling parameters Ab and Ac from a

measurement of the left-right forward-backward asymmetry of

b− and c−quarks. The high precision measurement of Rc at

SLD was made possible owing to the small beam size and very

stable beam spot at SLC, coupled with a highly precise CCD

pixel detector. Several of the analyses have also determined

other quantities, in particular the semileptonic branching ratios,

B(b → ℓ−), B(b → c → ℓ+), and B(c → ℓ+), the average time-

integrated B0B
0

mixing parameter χ and the probabilities for

a c–quark to fragment into a D+, a Ds, a D∗+ , or a charmed

baryon. The latter measurements do not concern properties of

the Z boson, and hence they do not appear in the Listing below.

However, for completeness, we will report at the end of this

minireview their values as obtained fitting the data contained

in the Z section. All these quantities are correlated with the

electroweak parameters, and since the mixture of b hadrons is

different from the one at the Υ(4S), their values might differ

from those measured at the Υ(4S).

All the above quantities are correlated to each other since:

• Several analyses (for example the lepton fits) deter-

mine more than one parameter simultaneously;

• Some of the electroweak parameters depend explic-

itly on the values of other parameters (for example

Rb depends on Rc);

• Common tagging and analysis techniques produce

common systematic uncertainties.

The LEP Electroweak Heavy Flavour Working Group has

developed [32] a procedure for combining the measurements tak-

ing into account known sources of correlation. The combining

procedure determines fourteen parameters: the six parameters

of interest in the electroweak sector, Rb, Rc, Abb
FB, Acc

FB, Ab and

Ac and, in addition, B(b → ℓ−), B(b → c → ℓ+), B(c → ℓ+), χ,

f(D+), f(Ds), f(cbaryon) and P (c → D∗+)×B(D∗+ → π+D0),

to take into account their correlations with the electroweak

parameters. Before the fit both the peak and off-peak asym-

metries are translated to the common energy
√

s = 91.26 GeV

using the predicted energy-dependence from ZFITTER [5].

Summary of the measurements and of the various kinds

of analysis

The measurements of Rb and Rc fall into two classes. In

the first, named single-tag measurement, a method for selecting

b and c events is applied and the number of tagged events is

counted. A second technique, named double-tag measurement,

has the advantage that the tagging efficiency is directly derived

from the data thereby reducing the systematic error on the

measurement.

The measurements in the b- and c-sector can be essentially

grouped in the following categories:

• Lifetime (and lepton) double-tagging measurements

of Rb. These are the most precise measurements

of Rb and obviously dominate the combined re-

sult. The main sources of systematics come from

the charm contamination and from estimating the

hemisphere b-tagging efficiency correlation;

• Analyses with D/D∗± to measure Rc. These mea-

surements make use of several different tagging

techniques (inclusive/exclusive double tag, exclu-

sive double tag, reconstruction of all weakly decay-

ing charmed states) and no assumptions are made

on the energy-dependence of charm fragmentation;

• A measurement of Rc using single leptons and

assuming B(b → c → ℓ+);

• Lepton fits which use hadronic events with one

or more leptons in the final state to measure the

asymmetries Abb
FB and Acc

FB. Each analysis usually

gives several other electroweak parameters. The

dominant sources of systematics are due to lepton

identification, to other semileptonic branching ratios

and to the modeling of the semileptonic decay;

• Measurements of Abb
FB using lifetime tagged events

with a hemisphere charge measurement. These

measurements dominate the combined result;

• Analyses with D/D∗± to measure Acc
FB or simulta-

neously Abb
FB and Acc

FB;

• Measurements of Ab and Ac from SLD, using several

tagging methods (lepton, kaon, D/D∗, and vertex

mass). These quantities are directly extracted from

a measurement of the left–right forward–backward

asymmetry in cc and bb production using a polarized

electron beam.

Averaging procedure

All the measurements are provided by the LEP and SLD

Collaborations in the form of tables with a detailed breakdown

of the systematic errors of each measurement and its dependence

on other electroweak parameters.

The averaging proceeds via the following steps:

• Define and propagate a consistent set of external

inputs such as branching ratios, hadron lifetimes,

fragmentation models etc. All the measurements

are checked to ensure that all use a common set

of assumptions (for instance, since the QCD cor-

rections for the forward–backward asymmetries are

strongly dependent on the experimental conditions,

the data are corrected before combining);
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• Form the full (statistical and systematic) covariance

matrix of the measurements. The systematic cor-

relations between different analyses are calculated

from the detailed error breakdown in the mea-

surement tables. The correlations relating several

measurements made by the same analysis are also

used;

• Take into account any explicit dependence of a

measurement on the other electroweak parameters.

As an example of this dependence, we illustrate

the case of the double-tag measurement of Rb,

where c-quarks constitute the main background.

The normalization of the charm contribution is not

usually fixed by the data and the measurement of

Rb depends on the assumed value of Rc, which can

be written as:

Rb = Rmeas
b + a(Rc)

(Rc − Rused
c )

Rc
, (11)

where Rmeas
b is the result of the analysis which

assumed a value of Rc = Rused
c and a(Rc) is the

constant which gives the dependence on Rc;

• Perform a χ2 minimization with respect to the

combined electroweak parameters.

After the fit the average peak asymmetries Acc
FB and Abb

FB

are corrected for the energy shift from 91.26 GeV to MZ and for

QED (initial state radiation), γ exchange, and γZ interference

effects, to obtain the corresponding pole asymmetries A0,c
FB and

A0,b
FB.

This averaging procedure, using the fourteen parameters

described above, and applied to the data contained in the Z

particle listing below, gives the following results (where the last

8 parameters do not depend directly on the Z):

R0
b = 0.21629± 0.00066

R0
c = 0.1721 ± 0.0030

A0,b
FB = 0.0992 ± 0.0016

A0,c
FB = 0.0707 ± 0.0035

Ab = 0.923 ± 0.020

Ac = 0.670 ± 0.027

B(b → ℓ−) = 0.1071 ± 0.0022

B(b → c → ℓ+) = 0.0801 ± 0.0018

B(c → ℓ+) = 0.0969 ± 0.0031

χ = 0.1250 ± 0.0039

f(D+) = 0.235 ± 0.016

f(Ds) = 0.126 ± 0.026

f(cbaryon) = 0.093 ± 0.022

P (c → D∗+) × B(D∗+ → π+D0) = 0.1622 ± 0.0048

Among the non–electroweak observables, the B semileptonic

branching fraction B(b → ℓ−) is of special interest, since the

dominant error source on this quantity is the dependence on

the semileptonic decay model for b → ℓ−, with ∆B(b →
ℓ−)b→ℓ−−model = 0.0012. Extensive studies have been made

to understand the size of this error. Among the electroweak

quantities, the quark asymmetries with leptons depend also

on the semileptonic decay model, while the asymmetries using

other methods usually do not. The fit implicitely requires that

the different methods give consistent results and this effectively

constrains the decay model, and thus reduces in principle the

error from this source in the fit result.

To obtain a conservative estimate of the modelling er-

ror, the above fit has been repeated removing all asymmetry

measurements. The results of the fit on B–decay related ob-

servables are [24]: B(b → ℓ−) = 0.1069 ± 0.0022, with

∆B(b → ℓ−)b→ℓ−−model = 0.0013, B(b → c → ℓ+) = 0.0802 ±
0.0019 and χ = 0.1259 ± 0.0042.
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troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06). The �t is performed using the Z mass and width, theZ hadroni
 pole 
ross se
tion, the ratios of hadroni
 to leptoni
 partialwidths, and the Z pole forward-ba
kward lepton asymmetries. This set isbelieved to be most free of 
orrelations.The Z -boson mass listed here 
orresponds to the mass parameter in aBreit-Wigner distribution with mass dependent width. The value is 34MeV greater than the real part of the position of the pole (in the energy-squared plane) in the Z -boson propagator. Also the LEP experimentshave generally assumed a �xed value of the γ − Z interferen
es termbased on the standard model. Keeping this term as free parameter leadsto a somewhat larger error on the �tted Z mass. See ACCIARRI 00Q andABBIENDI 04G for a detailed investigation of both these issues.VALUE (GeV) EVTS DOCUMENT ID TECN COMMENT91.1876±0.0021 OUR FIT91.1876±0.0021 OUR FIT91.1876±0.0021 OUR FIT91.1876±0.0021 OUR FIT91.1852±0.0030 4.57M 1 ABBIENDI 01A OPAL Eee
m= 88{94 GeV91.1863±0.0028 4.08M 2 ABREU 00F DLPH Eee
m= 88{94 GeV91.1898±0.0031 3.96M 3 ACCIARRI 00C L3 Eee
m= 88{94 GeV91.1885±0.0031 4.57M 4 BARATE 00C ALEP Eee
m= 88{94 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •91.1872±0.0033 5 ABBIENDI 04G OPAL Eee
m= LEP1 +130{209 GeV91.272 ±0.032 ±0.033 6 ACHARD 04C L3 Eee
m= 183{209 GeV91.1875±0.0039 3.97M 7 ACCIARRI 00Q L3 Eee
m= LEP1 +130{189 GeV91.151 ±0.008 8 MIYABAYASHI 95 TOPZ Eee
m= 57.8 GeV91.74 ±0.28 ±0.93 156 9 ALITTI 92B UA2 Epp
m= 630 GeV90.9 ±0.3 ±0.2 188 10 ABE 89C CDF Epp
m= 1.8 TeV91.14 ±0.12 480 11 ABRAMS 89B MRK2 Eee
m= 89{93 GeV93.1 ±1.0 ±3.0 24 12 ALBAJAR 89 UA1 Epp
m= 546,630 GeV1ABBIENDI 01A error in
ludes approximately 2.3 MeV due to statisti
s and 1.8 MeV dueto LEP energy un
ertainty.2The error in
ludes 1.6 MeV due to LEP energy un
ertainty.3The error in
ludes 1.8 MeV due to LEP energy un
ertainty.4BARATE 00C error in
ludes approximately 2.4 MeV due to statisti
s, 0.2MeV due toexperimental systemati
s, and 1.7MeV due to LEP energy un
ertainty.5ABBIENDI 04G obtain this result using the S{matrix formalism for a 
ombined �t totheir 
ross se
tion and asymmetry data at the Z peak and their data at 130{209 GeV.The authors have 
orre
ted the measurement for the 34 MeV shift with respe
t to theBreit{Wigner �ts.6ACHARD 04C sele
t e+ e− → Z γ events with hard initial{state radiation. Z de
ays toqq and muon pairs are 
onsidered. The �t results obtained in the two samples are found
onsistent to ea
h other and 
ombined 
onsidering the un
ertainty due to ISR modellingas fully 
orrelated.7ACCIARRI 00Q interpret the s-dependen
e of the 
ross se
tions and lepton forward-ba
kward asymmetries in the framework of the S-matrix formalism. They �t to their
ross se
tion and asymmetry data at high energies, using the results of S-matrix �ts toZ -peak data (ACCIARRI 00C) as 
onstraints. The 130{189 GeV data 
onstrains the γ/Zinterferen
e term. The authors have 
orre
ted the measurement for the 34.1 MeV shiftwith respe
t to the Breit-Wigner �ts. The error 
ontains a 
ontribution of ±2.3 MeVdue to the un
ertainty on the γZ interferen
e.8MIYABAYASHI 95 
ombine their low energy total hadroni
 
ross-se
tion measurementwith the ACTON 93D data and perform a �t using an S-matrix formalism. As expe
ted,this result is below the mass values obtained with the standard Breit-Wigner parametriza-tion.9 Enters �t through W/Z mass ratio given in the W Parti
le Listings. The ALITTI 92Bsystemati
 error (±0.93) has two 
ontributions: one (±0.92) 
an
els in mW /mZ andone (±0.12) is non
an
elling. These were added in quadrature.10 First error of ABE 89 is 
ombination of statisti
al and systemati
 
ontributions; se
ondis mass s
ale un
ertainty.11ABRAMS 89B un
ertainty in
ludes 35 MeV due to the absolute energy measurement.12ALBAJAR 89 result is from a total sample of 33 Z → e+ e− events.Z WIDTHZ WIDTHZ WIDTHZ WIDTHOUR FIT is obtained using the �t pro
edure and 
orrelations as determinedby the LEP Ele
troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06).VALUE (GeV) EVTS DOCUMENT ID TECN COMMENT2.4952±0.0023 OUR FIT2.4952±0.0023 OUR FIT2.4952±0.0023 OUR FIT2.4952±0.0023 OUR FIT2.4948±0.0041 4.57M 1 ABBIENDI 01A OPAL Eee
m= 88{94 GeV2.4876±0.0041 4.08M 2 ABREU 00F DLPH Eee
m= 88{94 GeV2.5024±0.0042 3.96M 3 ACCIARRI 00C L3 Eee
m= 88{94 GeV2.4951±0.0043 4.57M 4 BARATE 00C ALEP Eee
m= 88{94 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.4943±0.0041 5 ABBIENDI 04G OPAL Eee
m= LEP1 +130{209 GeV2.5025±0.0041 3.97M 6 ACCIARRI 00Q L3 Eee
m= LEP1 +130{189 GeV2.50 ±0.21 ±0.06 7 ABREU 96R DLPH Eee
m= 91.2 GeV3.8 ±0.8 ±1.0 188 ABE 89C CDF Epp
m= 1.8 TeV2.42 +0.45

−0.35 480 8 ABRAMS 89B MRK2 Eee
m= 89{93 GeV2.7 +1.2
−1.0 ±1.3 24 9 ALBAJAR 89 UA1 Epp
m= 546,630 GeV2.7 ±2.0 ±1.0 25 10 ANSARI 87 UA2 Epp
m= 546,630 GeV1ABBIENDI 01A error in
ludes approximately 3.6 MeV due to statisti
s, 1 MeV due toevent sele
tion systemati
s, and 1.3 MeV due to LEP energy un
ertainty.2The error in
ludes 1.2 MeV due to LEP energy un
ertainty.3The error in
ludes 1.3 MeV due to LEP energy un
ertainty.4BARATE 00C error in
ludes approximately 3.8 MeV due to statisti
s, 0.9MeV due toexperimental systemati
s, and 1.3MeV due to LEP energy un
ertainty.5ABBIENDI 04G obtain this result using the S{matrix formalism for a 
ombined �t totheir 
ross se
tion and asymmetry data at the Z peak and their data at 130{209 GeV.The authors have 
orre
ted the measurement for the 1 MeV shift with respe
t to theBreit{Wigner �ts.6ACCIARRI 00Q interpret the s-dependen
e of the 
ross se
tions and lepton forward-ba
kward asymmetries in the framework of the S-matrix formalism. They �t to their
ross se
tion and asymmetry data at high energies, using the results of S-matrix �ts toZ -peak data (ACCIARRI 00C) as 
onstraints. The 130{189 GeV data 
onstrains the γ/Zinterferen
e term. The authors have 
orre
ted the measurement for the 0.9 MeV shiftwith respe
t to the Breit-Wigner �ts.7ABREU 96R obtain this value from a study of the interferen
e between initial and �nalstate radiation in the pro
ess e+ e− → Z → µ+µ−.8ABRAMS 89B un
ertainty in
ludes 50 MeV due to the miniSAM ba
kground subtra
tionerror.9ALBAJAR 89 result is from a total sample of 33 Z → e+ e− events.
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t �t. Ratio of Z and W produ
tion giveseither �(Z) < (1.09±0.07) × �(W ), CL = 90% or �(Z) = (0.82+0.19
−0.14±0.06) × �(W ).Assuming Standard-Model value �(W ) = 2.65 GeV then gives �(Z) < 2.89 ± 0.19 or= 2.17+0.50

−0.37 ± 0.16. Z DECAY MODESZ DECAY MODESZ DECAY MODESZ DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 e+ e− ( 3.363 ±0.004 ) %�2 µ+µ− ( 3.366 ±0.007 ) %�3 τ+ τ− ( 3.370 ±0.008 ) %�4 ℓ+ ℓ− [a℄ ( 3.3658±0.0023) %�5 ℓ+ ℓ− ℓ+ ℓ− [b℄ ( 3.30 ±0.31 )× 10−6 S=1.1�6 invisible (20.00 ±0.06 ) %�7 hadrons (69.91 ±0.06 ) %�8 (uu+

 )/2 (11.6 ±0.6 ) %�9 (dd+ss+bb )/3 (15.6 ±0.4 ) %�10 

 (12.03 ±0.21 ) %�11 bb (15.12 ±0.05 ) %�12 bbbb ( 3.6 ±1.3 )× 10−4�13 g g g < 1.1 % CL=95%�14 π0 γ < 2.01 × 10−5 CL=95%�15 ηγ < 5.1 × 10−5 CL=95%�16 ωγ < 6.5 × 10−4 CL=95%�17 η′(958)γ < 4.2 × 10−5 CL=95%�18 γ γ < 1.46 × 10−5 CL=95%�19 π0π0 < 1.52 × 10−5 CL=95%�20 γ γ γ < 1.0 × 10−5 CL=95%�21 π±W∓ [
℄ < 7 × 10−5 CL=95%�22 ρ±W∓ [
℄ < 8.3 × 10−5 CL=95%�23 J/ψ(1S)X ( 3.51 +0.23
−0.25 )× 10−3 S=1.1�24 J/ψ(1S)γ < 2.6 × 10−6 CL=95%�25 ψ(2S)X ( 1.60 ±0.29 )× 10−3�26 χ
1(1P)X ( 2.9 ±0.7 )× 10−3�27 χ
2(1P)X < 3.2 × 10−3 CL=90%�28 �(1S) X +�(2S) X+�(3S) X ( 1.0 ±0.5 )× 10−4�29 �(1S)X < 3.4 × 10−6 CL=95%�30 �(2S)X < 6.5 × 10−6 CL=95%�31 �(3S)X < 5.4 × 10−6 CL=95%�32 (D0 /D0) X (20.7 ±2.0 ) %�33 D±X (12.2 ±1.7 ) %�34 D∗(2010)±X [
℄ (11.4 ±1.3 ) %�35 Ds1(2536)±X ( 3.6 ±0.8 )× 10−3�36 DsJ (2573)±X ( 5.8 ±2.2 )× 10−3�37 D∗′(2629)±X sear
hed for�38 BX�39 B∗X�40 B+X [d℄ ( 6.08 ±0.13 ) %�41 B0s X [d℄ ( 1.59 ±0.13 ) %�42 B+
 X sear
hed for�43 �+
 X ( 1.54 ±0.33 ) %�44 � 0
 X seen�45 �bX seen�46 b -baryon X [d℄ ( 1.38 ±0.22 ) %�47 anomalous γ+ hadrons [e℄ < 3.2 × 10−3 CL=95%�48 e+ e− γ [e℄ < 5.2 × 10−4 CL=95%�49 µ+µ− γ [e℄ < 5.6 × 10−4 CL=95%�50 τ+ τ− γ [e℄ < 7.3 × 10−4 CL=95%�51 ℓ+ ℓ−γ γ [f ℄ < 6.8 × 10−6 CL=95%�52 qq γ γ [f ℄ < 5.5 × 10−6 CL=95%�53 ν ν γ γ [f ℄ < 3.1 × 10−6 CL=95%�54 e±µ∓ LF [
℄ < 7.5 × 10−7 CL=95%�55 e± τ∓ LF [
℄ < 9.8 × 10−6 CL=95%�56 µ± τ∓ LF [
℄ < 1.2 × 10−5 CL=95%�57 pe L,B < 1.8 × 10−6 CL=95%�58 pµ L,B < 1.8 × 10−6 CL=95%[a℄ ℓ indi
ates ea
h type of lepton (e, µ, and τ), not sum over them.[b℄ Here ℓ indi
ates e or µ.[
 ℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.

[d ℄ This value is updated using the produ
t of (i) the Z → bbfra
tion from this listing and (ii) the b-hadron fra
tion in anunbiased sample of weakly de
aying b-hadrons produ
ed in Z -de
ays provided by the Heavy Flavor Averaging Group (HFAG,http://www.sla
.stanford.edu/xorg/hfag/os
/PDG 2009/#FRACZ).[e℄ See the Parti
le Listings below for the γ energy range used in this mea-surement.[f ℄ For mγ γ = (60 ± 5) GeV.Z PARTIAL WIDTHSZ PARTIAL WIDTHSZ PARTIAL WIDTHSZ PARTIAL WIDTHS�(e+ e−) �1�(e+ e−) �1�(e+ e−) �1�(e+ e−) �1For the LEP experiments, this parameter is not dire
tly used in the overall �t but isderived using the �t results; see the note \The Z boson" and ref. LEP-SLC 06.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT83.91±0.12 OUR FIT83.91±0.12 OUR FIT83.91±0.12 OUR FIT83.91±0.12 OUR FIT83.66±0.20 137.0K ABBIENDI 01A OPAL Eee
m= 88{94 GeV83.54±0.27 117.8k ABREU 00F DLPH Eee
m= 88{94 GeV84.16±0.22 124.4k ACCIARRI 00C L3 Eee
m= 88{94 GeV83.88±0.19 BARATE 00C ALEP Eee
m= 88{94 GeV82.89±1.20±0.89 1 ABE 95J SLD Eee
m= 91.31 GeV1ABE 95J obtain this measurement from Bhabha events in a restri
ted �du
ial region toimprove systemati
s. They use the values 91.187 and 2.489 GeV for the Z mass andtotal de
ay width to extra
t this partial width.�(µ+µ−) �2�(µ+µ−) �2�(µ+µ−) �2�(µ+µ−) �2This parameter is not dire
tly used in the overall �t but is derived using the �t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT83.99±0.18 OUR FIT83.99±0.18 OUR FIT83.99±0.18 OUR FIT83.99±0.18 OUR FIT84.03±0.30 182.8K ABBIENDI 01A OPAL Eee
m= 88{94 GeV84.48±0.40 157.6k ABREU 00F DLPH Eee
m= 88{94 GeV83.95±0.44 113.4k ACCIARRI 00C L3 Eee
m= 88{94 GeV84.02±0.28 BARATE 00C ALEP Eee
m= 88{94 GeV�(τ+ τ−
) �3�(τ+ τ−
) �3�(τ+ τ−
) �3�(τ+ τ−
) �3This parameter is not dire
tly used in the overall �t but is derived using the �t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT84.08±0.22 OUR FIT84.08±0.22 OUR FIT84.08±0.22 OUR FIT84.08±0.22 OUR FIT83.94±0.41 151.5K ABBIENDI 01A OPAL Eee
m= 88{94 GeV83.71±0.58 104.0k ABREU 00F DLPH Eee
m= 88{94 GeV84.23±0.58 103.0k ACCIARRI 00C L3 Eee
m= 88{94 GeV84.38±0.31 BARATE 00C ALEP Eee
m= 88{94 GeV�(ℓ+ ℓ−
) �4�(ℓ+ ℓ−
) �4�(ℓ+ ℓ−
) �4�(ℓ+ ℓ−
) �4In our �t �(ℓ+ ℓ−) is de�ned as the partial Z width for the de
ay into a pair of massless
harged leptons. This parameter is not dire
tly used in the 5-parameter �t assuminglepton universality but is derived using the �t results. See the note \The Z boson"and ref. LEP-SLC 06.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT83.984±0.086 OUR FIT83.984±0.086 OUR FIT83.984±0.086 OUR FIT83.984±0.086 OUR FIT83.82 ±0.15 471.3K ABBIENDI 01A OPAL Eee
m= 88{94 GeV83.85 ±0.17 379.4k ABREU 00F DLPH Eee
m= 88{94 GeV84.14 ±0.17 340.8k ACCIARRI 00C L3 Eee
m= 88{94 GeV84.02 ±0.15 500k BARATE 00C ALEP Eee
m= 88{94 GeV�(invisible) �6�(invisible) �6�(invisible) �6�(invisible) �6We use only dire
t measurements of the invisible partial width using the single pho-ton 
hannel to obtain the average value quoted below. OUR FIT value is obtainedas a di�eren
e between the total and the observed partial widths assuming leptonuniversality.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT499.0± 1.5 OUR FIT499.0± 1.5 OUR FIT499.0± 1.5 OUR FIT499.0± 1.5 OUR FIT503 ±16 OUR AVERAGE503 ±16 OUR AVERAGE503 ±16 OUR AVERAGE503 ±16 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.498 ±12 ±12 1791 ACCIARRI 98G L3 Eee
m= 88{94 GeV539 ±26 ±17 410 AKERS 95C OPAL Eee
m= 88{94 GeV450 ±34 ±34 258 BUSKULIC 93L ALEP Eee
m= 88{94 GeV540 ±80 ±40 52 ADEVA 92 L3 Eee
m= 88{94 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •498.1± 2.6 1 ABBIENDI 01A OPAL Eee
m= 88{94 GeV498.1± 3.2 1 ABREU 00F DLPH Eee
m= 88{94 GeV499.1± 2.9 1 ACCIARRI 00C L3 Eee
m= 88{94 GeV499.1± 2.5 1 BARATE 00C ALEP Eee
m= 88{94 GeV1This is an indire
t determination of �(invisible) from a �t to the visible Z de
ay modes.



632632632632Gauge & Higgs Boson Parti
le ListingsZ�(hadrons) �7�(hadrons) �7�(hadrons) �7�(hadrons) �7This parameter is not dire
tly used in the 5-parameter �t assuming lepton universality,but is derived using the �t results. See the note \The Z boson" and ref. LEP-SLC 06.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1744.4±2.0 OUR FIT1744.4±2.0 OUR FIT1744.4±2.0 OUR FIT1744.4±2.0 OUR FIT1745.4±3.5 4.10M ABBIENDI 01A OPAL Eee
m= 88{94 GeV1738.1±4.0 3.70M ABREU 00F DLPH Eee
m= 88{94 GeV1751.1±3.8 3.54M ACCIARRI 00C L3 Eee
m= 88{94 GeV1744.0±3.4 4.07M BARATE 00C ALEP Eee
m= 88{94 GeVZ BRANCHING RATIOSZ BRANCHING RATIOSZ BRANCHING RATIOSZ BRANCHING RATIOSOUR FIT is obtained using the �t pro
edure and 
orrelations as determinedby the LEP Ele
troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06).�(hadrons)/�(e+ e−) �7/�1�(hadrons)/�(e+ e−) �7/�1�(hadrons)/�(e+ e−) �7/�1�(hadrons)/�(e+ e−) �7/�1VALUE EVTS DOCUMENT ID TECN COMMENT20.804± 0.050 OUR FIT20.804± 0.050 OUR FIT20.804± 0.050 OUR FIT20.804± 0.050 OUR FIT20.902± 0.084 137.0K 1 ABBIENDI 01A OPAL Eee
m= 88{94 GeV20.88 ± 0.12 117.8k ABREU 00F DLPH Eee
m= 88{94 GeV20.816± 0.089 124.4k ACCIARRI 00C L3 Eee
m= 88{94 GeV20.677± 0.075 2 BARATE 00C ALEP Eee
m= 88{94 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •27.0 +11.7

− 8.8 12 3 ABRAMS 89D MRK2 Eee
m= 89{93 GeV1ABBIENDI 01A error in
ludes approximately 0.067 due to statisti
s, 0.040 due to eventsele
tion systemati
s, 0.027 due to the theoreti
al un
ertainty in t-
hannel predi
tion,and 0.014 due to LEP energy un
ertainty.2BARATE 00C error in
ludes approximately 0.062 due to statisti
s, 0.033 due to experi-mental systemati
s, and 0.026 due to the theoreti
al un
ertainty in t-
hannel predi
tion.3ABRAMS 89D have in
luded both statisti
al and systemati
 un
ertainties in their quotederrors.�(hadrons)/�(µ+µ−) �7/�2�(hadrons)/�(µ+µ−) �7/�2�(hadrons)/�(µ+µ−) �7/�2�(hadrons)/�(µ+µ−) �7/�2OUR FIT is obtained using the �t pro
edure and 
orrelations as determined by theLEP Ele
troweak Working Group (see the note \The Z boson" and ref. LEP-SLC 06).VALUE EVTS DOCUMENT ID TECN COMMENT20.785±0.033 OUR FIT20.785±0.033 OUR FIT20.785±0.033 OUR FIT20.785±0.033 OUR FIT20.811±0.058 182.8K 1 ABBIENDI 01A OPAL Eee
m= 88{94 GeV20.65 ±0.08 157.6k ABREU 00F DLPH Eee
m= 88{94 GeV20.861±0.097 113.4k ACCIARRI 00C L3 Eee
m= 88{94 GeV20.799±0.056 2 BARATE 00C ALEP Eee
m= 88{94 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •18.9 +7.1

−5.3 13 3 ABRAMS 89D MRK2 Eee
m= 89{93 GeV1ABBIENDI 01A error in
ludes approximately 0.050 due to statisti
s and 0.027 due toevent sele
tion systemati
s.2BARATE 00C error in
ludes approximately 0.053 due to statisti
s and 0.021 due toexperimental systemati
s.3ABRAMS 89D have in
luded both statisti
al and systemati
 un
ertainties in their quotederrors.�(hadrons)/�(τ+ τ−
) �7/�3�(hadrons)/�(τ+ τ−
) �7/�3�(hadrons)/�(τ+ τ−
) �7/�3�(hadrons)/�(τ+ τ−
) �7/�3OUR FIT is obtained using the �t pro
edure and 
orrelations as determined by theLEP Ele
troweak Working Group (see the note \The Z boson" and ref. LEP-SLC 06).VALUE EVTS DOCUMENT ID TECN COMMENT20.764±0.045 OUR FIT20.764±0.045 OUR FIT20.764±0.045 OUR FIT20.764±0.045 OUR FIT20.832±0.091 151.5K 1 ABBIENDI 01A OPAL Eee
m= 88{94 GeV20.84 ±0.13 104.0k ABREU 00F DLPH Eee
m= 88{94 GeV20.792±0.133 103.0k ACCIARRI 00C L3 Eee
m= 88{94 GeV20.707±0.062 2 BARATE 00C ALEP Eee
m= 88{94 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •15.2 +4.8
−3.9 21 3 ABRAMS 89D MRK2 Eee
m= 89{93 GeV1ABBIENDI 01A error in
ludes approximately 0.055 due to statisti
s and 0.071 due toevent sele
tion systemati
s.2BARATE 00C error in
ludes approximately 0.054 due to statisti
s and 0.033 due toexperimental systemati
s.3ABRAMS 89D have in
luded both statisti
al and systemati
 un
ertainties in their quotederrors.�(hadrons)/�(ℓ+ ℓ−

) �7/�4�(hadrons)/�(ℓ+ ℓ−
) �7/�4�(hadrons)/�(ℓ+ ℓ−
) �7/�4�(hadrons)/�(ℓ+ ℓ−
) �7/�4

ℓ indi
ates ea
h type of lepton (e, µ, and τ), not sum over them.Our �t result is obtained requiring lepton universality.VALUE EVTS DOCUMENT ID TECN COMMENT20.767±0.025 OUR FIT20.767±0.025 OUR FIT20.767±0.025 OUR FIT20.767±0.025 OUR FIT20.823±0.044 471.3K 1 ABBIENDI 01A OPAL Eee
m= 88{94 GeV20.730±0.060 379.4k ABREU 00F DLPH Eee
m= 88{94 GeV20.810±0.060 340.8k ACCIARRI 00C L3 Eee
m= 88{94 GeV20.725±0.039 500k 2 BARATE 00C ALEP Eee
m= 88{94 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •18.9 +3.6

−3.2 46 ABRAMS 89B MRK2 Eee
m= 89{93 GeV

1ABBIENDI 01A error in
ludes approximately 0.034 due to statisti
s and 0.027 due toevent sele
tion systemati
s.2BARATE 00C error in
ludes approximately 0.033 due to statisti
s, 0.020 due to experi-mental systemati
s, and 0.005 due to the theoreti
al un
ertainty in t-
hannel predi
tion.�(hadrons)/�total �7/��(hadrons)/�total �7/��(hadrons)/�total �7/��(hadrons)/�total �7/�This parameter is not dire
tly used in the overall �t but is derived using the �t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (%) DOCUMENT ID69.911±0.056 OUR FIT69.911±0.056 OUR FIT69.911±0.056 OUR FIT69.911±0.056 OUR FIT�(e+ e−)/�total �1/��(e+ e−)/�total �1/��(e+ e−)/�total �1/��(e+ e−)/�total �1/�This parameter is not dire
tly used in the overall �t but is derived using the �t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (%) DOCUMENT ID3.3632±0.0042 OUR FIT3.3632±0.0042 OUR FIT3.3632±0.0042 OUR FIT3.3632±0.0042 OUR FIT�(µ+µ−)/�total �2/��(µ+µ−)/�total �2/��(µ+µ−)/�total �2/��(µ+µ−)/�total �2/�This parameter is not dire
tly used in the overall �t but is derived using the �t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (%) DOCUMENT ID3.3662±0.0066 OUR FIT3.3662±0.0066 OUR FIT3.3662±0.0066 OUR FIT3.3662±0.0066 OUR FIT�(µ+µ−)/�(e+ e−) �2/�1�(µ+µ−)/�(e+ e−) �2/�1�(µ+µ−)/�(e+ e−) �2/�1�(µ+µ−)/�(e+ e−) �2/�1This parameter is not dire
tly used in the overall �t but is derived using the �t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE DOCUMENT ID1.0009±0.0028 OUR FIT1.0009±0.0028 OUR FIT1.0009±0.0028 OUR FIT1.0009±0.0028 OUR FIT�(τ+ τ−
)/�total �3/��(τ+ τ−
)/�total �3/��(τ+ τ−
)/�total �3/��(τ+ τ−
)/�total �3/�This parameter is not dire
tly used in the overall �t but is derived using the �t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (%) DOCUMENT ID3.3696±0.0083 OUR FIT3.3696±0.0083 OUR FIT3.3696±0.0083 OUR FIT3.3696±0.0083 OUR FIT�(τ+ τ−
)/�(e+ e−) �3/�1�(τ+ τ−
)/�(e+ e−) �3/�1�(τ+ τ−
)/�(e+ e−) �3/�1�(τ+ τ−
)/�(e+ e−) �3/�1This parameter is not dire
tly used in the overall �t but is derived using the �t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE DOCUMENT ID1.0019±0.0032 OUR FIT1.0019±0.0032 OUR FIT1.0019±0.0032 OUR FIT1.0019±0.0032 OUR FIT�(ℓ+ ℓ−
)/�total �4/��(ℓ+ ℓ−
)/�total �4/��(ℓ+ ℓ−
)/�total �4/��(ℓ+ ℓ−
)/�total �4/�

ℓ indi
ates ea
h type of lepton (e, µ, and τ), not sum over them.Our �t result assumes lepton universality.This parameter is not dire
tly used in the overall �t but is derived using the �t results;see the note \The Z boson" and ref. LEP-SLC 06.VALUE (%) DOCUMENT ID3.3658±0.0023 OUR FIT3.3658±0.0023 OUR FIT3.3658±0.0023 OUR FIT3.3658±0.0023 OUR FIT�(ℓ+ ℓ− ℓ+ ℓ−
)/�total �5/��(ℓ+ ℓ− ℓ+ ℓ−
)/�total �5/��(ℓ+ ℓ− ℓ+ ℓ−
)/�total �5/��(ℓ+ ℓ− ℓ+ ℓ−
)/�total �5/�Here ℓ indi
ates either e or µ.VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT3.30±0.31 OUR AVERAGE3.30±0.31 OUR AVERAGE3.30±0.31 OUR AVERAGE3.30±0.31 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.3.20±0.25±0.13 172 AAD 14N ATLS Epp
m = 7, 8 TeV4.2 +0.9

−0.8 ±0.2 28 CHATRCHYAN12BN CMS Epp
m = 7 TeV�(invisible)/�total �6/��(invisible)/�total �6/��(invisible)/�total �6/��(invisible)/�total �6/�See the data, the note, and the �t result for the partial width, �6, above.VALUE (%) DOCUMENT ID20.000±0.055 OUR FIT20.000±0.055 OUR FIT20.000±0.055 OUR FIT20.000±0.055 OUR FIT�((uu+

 )/2)/�(hadrons) �8/�7�((uu+

 )/2)/�(hadrons) �8/�7�((uu+

 )/2)/�(hadrons) �8/�7�((uu+

 )/2)/�(hadrons) �8/�7This quantity is the bran
hing ratio of Z → \up-type" quarks to Z → hadrons. Ex
eptACKERSTAFF 97T the values of Z → \up-type" and Z → \down-type" bran
hings areextra
ted from measurements of �(hadrons), and �(Z → γ+ jets) where γ is a high-energy (>5 or 7 GeV) isolated photon. As the experiments use di�erent pro
eduresand slightly di�erent values of MZ , �(hadrons) and αs in their extra
tion pro
edures,our average has to be taken with 
aution.VALUE DOCUMENT ID TECN COMMENT0.166±0.009 OUR AVERAGE0.166±0.009 OUR AVERAGE0.166±0.009 OUR AVERAGE0.166±0.009 OUR AVERAGE0.172+0.011
−0.010 1 ABBIENDI 04E OPAL Eee
m = 91.2 GeV0.160±0.019±0.019 2 ACKERSTAFF 97T OPAL Eee
m= 88{94 GeV0.137+0.038
−0.054 3 ABREU 95X DLPH Eee
m= 88{94 GeV0.137±0.033 4 ADRIANI 93 L3 Eee
m= 91.2 GeV1ABBIENDI 04E sele
t photons with energy > 7 GeV and use �(hadrons) = 1744.4 ± 2.0MeV and αs = 0.1172 ± 0.002 to obtain �u = 300+19

−18 MeV.2ACKERSTAFF 97T measure �uu/(�d d+�uu+�s s ) = 0.258 ± 0.031 ± 0.032. Toobtain this bran
hing ratio authors use R
+Rb = 0.380 ± 0.010. This measurement isfully negatively 
orrelated with the measurement of �d d ,s s/(�d d + �uu + �s s ) givenin the next data blo
k.3ABREU 95X use MZ = 91.187 ± 0.009 GeV, �(hadrons) = 1725 ± 12 MeV and αs =0.123± 0.005. To obtain this bran
hing ratio we divide their value of C2/3 = 0.91+0.25
−0.36by their value of (3C1/3 + 2C2/3) = 6.66 ± 0.05.4ADRIANI 93 use MZ = 91.181 ± 0.022 GeV, �(hadrons) = 1742 ± 19 MeV and αs =0.125± 0.009. To obtain this bran
hing ratio we divide their value of C2/3 = 0.92± 0.22by their value of (3C1/3 + 2C2/3) = 6.720 ± 0.076.



633633633633See key on page 601 Gauge&HiggsBosonParti
leListingsZ�((dd+ss+bb )/3)/�(hadrons) �9/�7�((dd+ss+bb )/3)/�(hadrons) �9/�7�((dd+ss+bb )/3)/�(hadrons) �9/�7�((dd+ss+bb )/3)/�(hadrons) �9/�7This quantity is the bran
hing ratio of Z → \down-type" quarks to Z → hadrons.Ex
ept ACKERSTAFF 97T the values of Z → \up-type" and Z → \down-type"bran
hings are extra
ted from measurements of �(hadrons), and �(Z → γ+ jets)where γ is a high-energy (>5 or 7 GeV) isolated photon. As the experiments usedi�erent pro
edures and slightly di�erent values of MZ , �(hadrons) and αs in theirextra
tion pro
edures, our average has to be taken with 
aution.VALUE DOCUMENT ID TECN COMMENT0.223±0.006 OUR AVERAGE0.223±0.006 OUR AVERAGE0.223±0.006 OUR AVERAGE0.223±0.006 OUR AVERAGE0.218±0.007 1 ABBIENDI 04E OPAL Eee
m = 91.2 GeV0.230±0.010±0.010 2 ACKERSTAFF 97T OPAL Eee
m= 88{94 GeV0.243+0.036
−0.026 3 ABREU 95X DLPH Eee
m= 88{94 GeV0.243±0.022 4 ADRIANI 93 L3 Eee
m= 91.2 GeV1ABBIENDI 04E sele
t photons with energy > 7 GeV and use �(hadrons) = 1744.4 ± 2.0MeV and αs = 0.1172 ± 0.002 to obtain �d = 381 ± 12 MeV.2ACKERSTAFF 97T measure �d d ,s s/(�d d+�uu+�s s ) = 0.371 ± 0.016 ± 0.016. Toobtain this bran
hing ratio authors use R
+Rb = 0.380 ± 0.010. This measurement isfully negatively 
orrelated with the measurement of �uu/(�d d +�uu +�s s ) presentedin the previous data blo
k.3ABREU 95X use MZ = 91.187 ± 0.009 GeV, �(hadrons) = 1725 ± 12 MeV and αs =0.123± 0.005. To obtain this bran
hing ratio we divide their value of C1/3 = 1.62+0.24

−0.17by their value of (3C1/3 + 2C2/3) = 6.66 ± 0.05.4ADRIANI 93 use MZ = 91.181 ± 0.022 GeV, �(hadrons) = 1742 ± 19 MeV and αs =0.125± 0.009. To obtain this bran
hing ratio we divide their value of C1/3 = 1.63± 0.15by their value of (3C1/3 + 2C2/3) = 6.720 ± 0.076.R
 = �(

)/�(hadrons) �10/�7R
 = �(

)/�(hadrons) �10/�7R
 = �(

)/�(hadrons) �10/�7R
 = �(

)/�(hadrons) �10/�7OUR FIT is obtained by a simultaneous �t to several 
- and b-quark measurementsas explained in the note \The Z boson" and ref. LEP-SLC 06.The Standard Model predi
ts R
 = 0.1723 for mt = 174.3 GeV and MH = 150 GeV.VALUE DOCUMENT ID TECN COMMENT0.1721±0.0030 OUR FIT0.1721±0.0030 OUR FIT0.1721±0.0030 OUR FIT0.1721±0.0030 OUR FIT0.1744±0.0031±0.0021 1 ABE 05F SLD Eee
m=91.28 GeV0.1665±0.0051±0.0081 2 ABREU 00 DLPH Eee
m= 88{94 GeV0.1698±0.0069 3 BARATE 00B ALEP Eee
m= 88{94 GeV0.180 ±0.011 ±0.013 4 ACKERSTAFF 98E OPAL Eee
m= 88{94 GeV0.167 ±0.011 ±0.012 5 ALEXANDER 96R OPAL Eee
m= 88{94 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1623±0.0085±0.0209 6 ABREU 95D DLPH Eee
m= 88{94 GeV1ABE 05F use hadroni
 Z de
ays 
olle
ted during 1996{98 to obtain an enri
hed sampleof 
 
 events using a double tag method. The single 
{tag is obtained with a neuralnetwork trained to perform 
avor dis
rimination using as input several signatures (
or-re
ted se
ondary vertex mass, vertex de
ay length, multipli
ity and total momentum ofthe hemisphere). A multitag approa
h is used, de�ning 4 regions of the output value ofthe neural network and Rc is extra
ted from a simultaneous �t to the 
ount rates of the4 di�erent tags. The quoted systemati
 error in
ludes an un
ertainty of ±0.0006 due tothe un
ertainty on Rb.2ABREU 00 obtain this result properly 
ombining the measurement from the D∗+ pro-du
tion rate (R
= 0.1610 ± 0.0104 ± 0.0077 ± 0.0043 (BR)) with that from the overall
harm 
ounting (R
= 0.1692 ± 0.0047 ± 0.0063 ± 0.0074 (BR)) in 
 
 events. The sys-temati
 error in
ludes an un
ertainty of ±0.0054 due to the un
ertainty on the 
harmedhadron bran
hing fra
tions.3BARATE 00B use ex
lusive de
ay modes to independently determine the quantitiesR
×f(
 → X), X=D0, D+, D+s , and �
 . Estimating R
×f(
 → �
 /

 )= 0.0034,they simply sum over all the 
harm de
ays to obtain R
= 0.1738 ± 0.0047 ± 0.0088 ±0.0075(BR). This is 
ombined with all previous ALEPH measurements (BARATE 98Tand BUSKULIC 94G, R
= 0.1681 ± 0.0054 ± 0.0062) to obtain the quoted value.4ACKERSTAFF 98E use an in
lusive/ex
lusive double tag. In one jet D∗± mesons areex
lusively re
onstru
ted in several de
ay 
hannels and in the opposite jet a slow pion(opposite 
harge in
lusive D∗±) tag is used. The b 
ontent of this sample is measuredby the simultaneous dete
tion of a lepton in one jet and an in
lusively re
onstru
tedD∗± meson in the opposite jet. The systemati
 error in
ludes an un
ertainty of ±0.006due to the external bran
hing ratios.5ALEXANDER 96R obtain this value via dire
t 
harm 
ounting, summing the partial
ontributions from D0, D+, D+s , and �+
 , and assuming that strange-
harmed baryonsa

ount for the 15% of the �+
 produ
tion. An un
ertainty of ±0.005 due to theun
ertainties in the 
harm hadron bran
hing ratios is in
luded in the overall systemati
s.6ABREU 95D perform a maximum likelihood �t to the 
ombined p and pT distributionsof single and dilepton samples. The se
ond error in
ludes an un
ertainty of ±0.0124due to models and bran
hing ratios.Rb = �(bb)/�(hadrons) �11/�7Rb = �(bb)/�(hadrons) �11/�7Rb = �(bb)/�(hadrons) �11/�7Rb = �(bb)/�(hadrons) �11/�7OUR FIT is obtained by a simultaneous �t to several 
- and b-quark measurementsas explained in the note \The Z boson" and ref. LEP-SLC 06.The Standard Model predi
ts Rb=0.21581 for mt=174.3 GeV and MH=150 GeV.VALUE DOCUMENT ID TECN COMMENT0.21629±0.00066 OUR FIT0.21629±0.00066 OUR FIT0.21629±0.00066 OUR FIT0.21629±0.00066 OUR FIT0.21594±0.00094±0.00075 1 ABE 05F SLD Eee
m=91.28 GeV0.2174 ±0.0015 ±0.0028 2 ACCIARRI 00 L3 Eee
m= 89{93 GeV0.2178 ±0.0011 ±0.0013 3 ABBIENDI 99B OPAL Eee
m= 88{94 GeV0.21634±0.00067±0.00060 4 ABREU 99B DLPH Eee
m= 88{94 GeV0.2159 ±0.0009 ±0.0011 5 BARATE 97F ALEP Eee
m= 88{94 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.2145 ±0.0089 ±0.0067 6 ABREU 95D DLPH Eee
m= 88{94 GeV0.219 ±0.006 ±0.005 7 BUSKULIC 94G ALEP Eee
m= 88{94 GeV0.251 ±0.049 ±0.030 8 JACOBSEN 91 MRK2 Eee
m= 91 GeV1ABE 05F use hadroni
 Z de
ays 
olle
ted during 1996{98 to obtain an enri
hed sampleof bb events using a double tag method. The single b{tag is obtained with a neuralnetwork trained to perform 
avor dis
rimination using as input several signatures (
or-re
ted se
ondary vertex mass, vertex de
ay length, multipli
ity and total momentum ofthe hemisphere; the key tag is obtained requiring the se
ondary vertex 
orre
ted massto be above the D{meson mass). ABE 05F obtain Rb =0.21604 ± 0.00098 ± 0.00074where the systemati
 error in
ludes an un
ertainty of ±0.00012 due to the un
ertainty onRc. The value reported here is obtained properly 
ombining with ABE 98D. The quotedsystemati
 error in
ludes an un
ertainty of ±0.00012 due to the un
ertainty on Rc.2ACCIARRI 00 obtain this result using a double-tagging te
hnique, with a high pT leptontag and an impa
t parameter tag in opposite hemispheres.3ABBIENDI 99B tag Z → bb de
ays using leptons and/or separated de
ay verti
es. Theb-tagging eÆ
ien
y is measured dire
tly from the data using a double-tagging te
hnique.4ABREU 99B obtain this result 
ombining in a multivariate analysis several tagging meth-ods (impa
t parameter and se
ondary vertex re
onstru
tion, 
omplemented by eventshape variables). For R
 di�erent from its Standard Model value of 0.172, Rb varies as
−0.024×(R
 {0.172).5BARATE 97F 
ombine the lifetime-mass hemisphere tag (BARATE 97E) with event shapeinformation and lepton tag to identify Z → bb 
andidates. They further use 
- andud s-sele
tion tags to identify the ba
kground. For R
 di�erent from its Standard Modelvalue of 0.172, Rb varies as −0.019×(R
 − 0.172).6ABREU 95D perform a maximum likelihood �t to the 
ombined p and pT distributionsof single and dilepton samples. The se
ond error in
ludes an un
ertainty of ±0.0023due to models and bran
hing ratios.7BUSKULIC 94G perform a simultaneous �t to the p and pT spe
tra of both single anddilepton events.8 JACOBSEN 91 tagged bb events by requiring 
oin
iden
e of ≥ 3 tra
ks with signi�
antimpa
t parameters using vertex dete
tor. Systemati
 error in
ludes lifetime and de
ayun
ertainties (±0.014).�(bbbb)/�(hadrons) �12/�7�(bbbb)/�(hadrons) �12/�7�(bbbb)/�(hadrons) �12/�7�(bbbb)/�(hadrons) �12/�7VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.2±1.9 OUR AVERAGE5.2±1.9 OUR AVERAGE5.2±1.9 OUR AVERAGE5.2±1.9 OUR AVERAGE3.6±1.7±2.7 1 ABBIENDI 01G OPAL Eee
m= 88{94 GeV6.0±1.9±1.4 2 ABREU 99U DLPH Eee
m= 88{94 GeV1ABBIENDI 01G use a sample of four-jet events from hadroni
 Z de
ays. To enhan
e thebbbb signal, at least three of the four jets are required to have a signi�
antly deta
hedse
ondary vertex.2ABREU 99U for
e hadroni
 Z de
ays into 3 jets to use all the available phase spa
eand require a b tag for every jet. This de
ay mode in
ludes primary and se
ondary 4bprodu
tion, e.g, from gluon splitting to bb.�(g g g)/�(hadrons) �13/�7�(g g g)/�(hadrons) �13/�7�(g g g)/�(hadrons) �13/�7�(g g g)/�(hadrons) �13/�7VALUE CL% DOCUMENT ID TECN COMMENT

<1.6× 10−2<1.6× 10−2<1.6× 10−2<1.6× 10−2 95 1 ABREU 96S DLPH Eee
m= 88{94 GeV1This bran
hing ratio is slightly dependent on the jet-�nder algorithm. The value we quoteis obtained using the JADE algorithm, while using the DURHAM algorithm ABREU 96Sobtain an upper limit of 1.5× 10−2.�(π0 γ
)/�total �14/��(π0 γ
)/�total �14/��(π0 γ
)/�total �14/��(π0 γ
)/�total �14/�VALUE CL% DOCUMENT ID TECN COMMENT

<2.01× 10−5<2.01× 10−5<2.01× 10−5<2.01× 10−5 95 AALTONEN 14E CDF Epp
m = 1.96 TeV
<5.2 × 10−5 95 1 ACCIARRI 95G L3 Eee
m= 88{94 GeV
<5.5 × 10−5 95 ABREU 94B DLPH Eee
m= 88{94 GeV
<2.1 × 10−4 95 DECAMP 92 ALEP Eee
m= 88{94 GeV
<1.4 × 10−4 95 AKRAWY 91F OPAL Eee
m= 88{94 GeV1This limit is for both de
ay modes Z → π0 γ

/
γ γ whi
h are indistinguishable in ACCIA-RRI 95G.�(ηγ

)/�total �15/��(ηγ
)/�total �15/��(ηγ
)/�total �15/��(ηγ
)/�total �15/�VALUE CL% DOCUMENT ID TECN COMMENT

<7.6× 10−5 95 ACCIARRI 95G L3 Eee
m= 88{94 GeV
<8.0× 10−5 95 ABREU 94B DLPH Eee
m= 88{94 GeV
<5.1× 10−5<5.1× 10−5<5.1× 10−5<5.1× 10−5 95 DECAMP 92 ALEP Eee
m= 88{94 GeV
<2.0× 10−4 95 AKRAWY 91F OPAL Eee
m= 88{94 GeV�(ωγ

)/�total �16/��(ωγ
)/�total �16/��(ωγ
)/�total �16/��(ωγ
)/�total �16/�VALUE CL% DOCUMENT ID TECN COMMENT

<6.5× 10−4<6.5× 10−4<6.5× 10−4<6.5× 10−4 95 ABREU 94B DLPH Eee
m= 88{94 GeV�(η′(958)γ)/�total �17/��(η′(958)γ)/�total �17/��(η′(958)γ)/�total �17/��(η′(958)γ)/�total �17/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.2× 10−5<4.2× 10−5<4.2× 10−5<4.2× 10−5 95 DECAMP 92 ALEP Eee
m= 88{94 GeV�(γ γ

)/�total �18/��(γ γ
)/�total �18/��(γ γ
)/�total �18/��(γ γ
)/�total �18/�This de
ay would violate the Landau-Yang theorem.VALUE CL% DOCUMENT ID TECN COMMENT

<1.46× 10−5<1.46× 10−5<1.46× 10−5<1.46× 10−5 95 AALTONEN 14E CDF Epp
m = 1.96 TeV
<5.2 × 10−5 95 1 ACCIARRI 95G L3 Eee
m= 88{94 GeV
<5.5 × 10−5 95 ABREU 94B DLPH Eee
m= 88{94 GeV
<1.4 × 10−4 95 AKRAWY 91F OPAL Eee
m= 88{94 GeV1This limit is for both de
ay modes Z → π0 γ

/
γ γ whi
h are indistinguishable in ACCIA-RRI 95G.



634634634634Gauge&HiggsBosonParti
leListingsZ�(π0π0)/�total �19/��(π0π0)/�total �19/��(π0π0)/�total �19/��(π0π0)/�total �19/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.52× 10−5<1.52× 10−5<1.52× 10−5<1.52× 10−5 95 AALTONEN 14E CDF Epp
m = 1.96 TeV�(γ γ γ

)/�total �20/��(γ γ γ
)/�total �20/��(γ γ γ
)/�total �20/��(γ γ γ
)/�total �20/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.0× 10−5<1.0× 10−5<1.0× 10−5<1.0× 10−5 95 1 ACCIARRI 95C L3 Eee
m= 88{94 GeV
<1.7× 10−5 95 1 ABREU 94B DLPH Eee
m= 88{94 GeV
<6.6× 10−5 95 AKRAWY 91F OPAL Eee
m= 88{94 GeV1Limit derived in the 
ontext of 
omposite Z model.�(π±W∓)/�total �21/��(π±W∓)/�total �21/��(π±W∓)/�total �21/��(π±W∓)/�total �21/�The value is for the sum of the 
harge states indi
ated.VALUE CL% DOCUMENT ID TECN COMMENT
<7× 10−5<7× 10−5<7× 10−5<7× 10−5 95 DECAMP 92 ALEP Eee
m= 88{94 GeV�(ρ±W∓)/�total �22/��(ρ±W∓)/�total �22/��(ρ±W∓)/�total �22/��(ρ±W∓)/�total �22/�The value is for the sum of the 
harge states indi
ated.VALUE CL% DOCUMENT ID TECN COMMENT
<8.3× 10−5<8.3× 10−5<8.3× 10−5<8.3× 10−5 95 DECAMP 92 ALEP Eee
m= 88{94 GeV�(J/ψ(1S)X)/�total �23/��(J/ψ(1S)X)/�total �23/��(J/ψ(1S)X)/�total �23/��(J/ψ(1S)X)/�total �23/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.51+0.23

−0.25 OUR AVERAGE3.51+0.23
−0.25 OUR AVERAGE3.51+0.23
−0.25 OUR AVERAGE3.51+0.23
−0.25 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.3.21±0.21+0.19

−0.28 553 1 ACCIARRI 99F L3 Eee
m= 88{94 GeV3.9 ±0.2 ±0.3 511 2 ALEXANDER 96B OPAL Eee
m= 88{94 GeV3.73±0.39±0.36 153 3 ABREU 94P DLPH Eee
m= 88{94 GeV1ACCIARRI 99F 
ombine µ+µ− and e+ e− J/ψ(1S) de
ay 
hannels. The bran
hing ratiofor prompt J/ψ(1S) produ
tion is measured to be (2.1± 0.6± 0.4+0.4
−0.2(theor.))×10−4.2ALEXANDER 96B identify J/ψ(1S) from the de
ays into lepton pairs. (4.8 ± 2.4)% ofthis bran
hing ratio is due to prompt J/ψ(1S) produ
tion (ALEXANDER 96N).3Combining µ+µ− and e+ e− 
hannels and taking into a

ount the 
ommon systemati
errors. (7.7+6.3

−5.4)% of this bran
hing ratio is due to prompt J/ψ(1S) produ
tion.�(J/ψ(1S)γ)/�total �24/��(J/ψ(1S)γ)/�total �24/��(J/ψ(1S)γ)/�total �24/��(J/ψ(1S)γ)/�total �24/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.6× 10−6<2.6× 10−6<2.6× 10−6<2.6× 10−6 95 1 AAD 15I ATLS Epp
m = 8 TeV1AAD 15I use events with the highest pT muon in the pair required to have pT > 20GeV, the dimuon mass required to be within 0.2 GeV of the J/ψ(1S) mass and it'stransverse momentum required to be > 36 GeV. The photon is also required to have it'spT > 36 GeV.�(ψ(2S)X)/�total �25/��(ψ(2S)X)/�total �25/��(ψ(2S)X)/�total �25/��(ψ(2S)X)/�total �25/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.60±0.29 OUR AVERAGE1.60±0.29 OUR AVERAGE1.60±0.29 OUR AVERAGE1.60±0.29 OUR AVERAGE1.6 ±0.5 ±0.3 39 1 ACCIARRI 97J L3 Eee
m= 88{94 GeV1.6 ±0.3 ±0.2 46.9 2 ALEXANDER 96B OPAL Eee
m= 88{94 GeV1.60±0.73±0.33 5.4 3 ABREU 94P DLPH Eee
m= 88{94 GeV1ACCIARRI 97J measure this bran
hing ratio via the de
ay 
hannel ψ(2S) → ℓ+ ℓ− (ℓ= µ, e).2ALEXANDER 96B measure this bran
hing ratio via the de
ay 
hannel ψ(2S) →J/ψπ+ π−, with J/ψ → ℓ+ ℓ−.3ABREU 94P measure this bran
hing ratio via de
ay 
hannel ψ(2S) → J/ψπ+π−, withJ/ψ → µ+µ−.�(χ
1(1P)X)/�total �26/��(χ
1(1P)X)/�total �26/��(χ
1(1P)X)/�total �26/��(χ
1(1P)X)/�total �26/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.9±0.7 OUR AVERAGE2.9±0.7 OUR AVERAGE2.9±0.7 OUR AVERAGE2.9±0.7 OUR AVERAGE2.7±0.6±0.5 33 1 ACCIARRI 97J L3 Eee
m= 88{94 GeV5.0±2.1+1.5

−0.9 6.4 2 ABREU 94P DLPH Eee
m= 88{94 GeV1ACCIARRI 97J measure this bran
hing ratio via the de
ay 
hannel χ
1 → J/ψ + γ,with J/ψ → ℓ+ ℓ− (ℓ = µ, e). The M(ℓ+ ℓ− γ){M(ℓ+ ℓ−) mass di�eren
e spe
trumis �tted with two gaussian shapes for χ
1 and χ
2.2This bran
hing ratio is measured via the de
ay 
hannel χ
1 → J/ψ + γ, with J/ψ →
µ+µ−.�(χ
2(1P)X)/�total �27/��(χ
2(1P)X)/�total �27/��(χ
2(1P)X)/�total �27/��(χ
2(1P)X)/�total �27/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.2× 10−3<3.2× 10−3<3.2× 10−3<3.2× 10−3 90 1 ACCIARRI 97J L3 Eee
m= 88{94 GeV1ACCIARRI 97J derive this limit via the de
ay 
hannel χ
2 → J/ψ + γ, with J/ψ →
ℓ+ ℓ− (ℓ = µ, e). The M(ℓ+ ℓ− γ){M(ℓ+ ℓ−) mass di�eren
e spe
trum is �tted withtwo gaussian shapes for χ
1 and χ
2.�(�(1S) X+�(2S) X +�(3S) X)/�total �28/� = (�29+�30+�31)/��(�(1S) X+�(2S) X +�(3S) X)/�total �28/� = (�29+�30+�31)/��(�(1S) X+�(2S) X +�(3S) X)/�total �28/� = (�29+�30+�31)/��(�(1S) X+�(2S) X +�(3S) X)/�total �28/� = (�29+�30+�31)/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.0±0.4±0.221.0±0.4±0.221.0±0.4±0.221.0±0.4±0.22 6.4 1 ALEXANDER 96F OPAL Eee
m= 88{94 GeV1ALEXANDER 96F identify the � (whi
h refers to any of the three lowest bound states)through its de
ay into e+ e− and µ+µ−. The systemati
 error in
ludes an un
ertaintyof ±0.2 due to the produ
tion me
hanism.

�(�(1S)X)/�total �29/��(�(1S)X)/�total �29/��(�(1S)X)/�total �29/��(�(1S)X)/�total �29/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.4× 10−6<3.4× 10−6<3.4× 10−6<3.4× 10−6 95 1 AAD 15I ATLS Epp
m = 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.4× 10−5 95 2 ACCIARRI 99F L3 Eee
m= 88{94 GeV1AAD 15I use events with the highest pT muon in the pair required to have pT > 20 GeV,the dimuon mass required to be in the range 8{12 GeV and it's transverse momentumrequired to be > 36 GeV. The photon is also required to have it's pT > 36 GeV.2ACCIARRI 99F sear
h for �(1S) through its de
ay into ℓ+ ℓ− (ℓ = e or µ).�(�(2S)X)/�total �30/��(�(2S)X)/�total �30/��(�(2S)X)/�total �30/��(�(2S)X)/�total �30/�VALUE CL% DOCUMENT ID TECN COMMENT
< 6.5× 10−6< 6.5× 10−6< 6.5× 10−6< 6.5× 10−6 95 1 AAD 15I ATLS Epp
m = 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<13.9× 10−5 95 2 ACCIARRI 97R L3 Eee
m= 88{94 GeV1AAD 15I use events with the highest pT muon in the pair required to have pT > 20 GeV,the dimuon mass required to be in the range 8{12 GeV and it's transverse momentumrequired to be > 36 GeV. The photon is also required to have it's pT > 36 GeV.2ACCIARRI 97R sear
h for �(2S) through its de
ay into ℓ+ ℓ− (ℓ = e or µ).�(�(3S)X)/�total �31/��(�(3S)X)/�total �31/��(�(3S)X)/�total �31/��(�(3S)X)/�total �31/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.4× 10−6<5.4× 10−6<5.4× 10−6<5.4× 10−6 95 1 AAD 15I ATLS Epp
m = 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9.4× 10−5 95 2 ACCIARRI 97R L3 Eee
m= 88{94 GeV1AAD 15I use events with the highest pT muon in the pair required to have pT > 20 GeV,the dimuon mass required to be in the range 8{12 GeV and it's transverse momentumrequired to be > 36 GeV. The photon is also required to have it's pT > 36 GeV.2ACCIARRI 97R sear
h for �(3S) through its de
ay into ℓ+ ℓ− (ℓ = e or µ).�((D0 /D0) X)/�(hadrons) �32/�7�((D0 /D0) X)/�(hadrons) �32/�7�((D0 /D0) X)/�(hadrons) �32/�7�((D0 /D0) X)/�(hadrons) �32/�7VALUE EVTS DOCUMENT ID TECN COMMENT0.296±0.019±0.0210.296±0.019±0.0210.296±0.019±0.0210.296±0.019±0.021 369 1 ABREU 93I DLPH Eee
m= 88{94 GeV1The (D0 /D0) states in ABREU 93I are dete
ted by the K π de
ay mode. This is a
orre
ted result (see the erratum of ABREU 93I).�(D±X)/�(hadrons) �33/�7�(D±X)/�(hadrons) �33/�7�(D±X)/�(hadrons) �33/�7�(D±X)/�(hadrons) �33/�7VALUE EVTS DOCUMENT ID TECN COMMENT0.174±0.016±0.0180.174±0.016±0.0180.174±0.016±0.0180.174±0.016±0.018 539 1 ABREU 93I DLPH Eee
m= 88{94 GeV1The D± states in ABREU 93I are dete
ted by the K ππ de
ay mode. This is a 
orre
tedresult (see the erratum of ABREU 93I).�(D∗(2010)±X)/�(hadrons) �34/�7�(D∗(2010)±X)/�(hadrons) �34/�7�(D∗(2010)±X)/�(hadrons) �34/�7�(D∗(2010)±X)/�(hadrons) �34/�7The value is for the sum of the 
harge states indi
ated.VALUE EVTS DOCUMENT ID TECN COMMENT0.163±0.019 OUR AVERAGE0.163±0.019 OUR AVERAGE0.163±0.019 OUR AVERAGE0.163±0.019 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.155±0.010±0.013 358 1 ABREU 93I DLPH Eee
m= 88{94 GeV0.21 ±0.04 362 2 DECAMP 91J ALEP Eee
m= 88{94 GeV1D∗(2010)± in ABREU 93I are re
onstru
ted from D0π±, with D0 → K−π+. Thenew CLEO II measurement of B(D∗± → D0π±) = (68.1 ± 1.6) % is used. This is a
orre
ted result (see the erratum of ABREU 93I).2DECAMP 91J report B(D∗(2010)+ → D0π+) B(D0 → K−π+) �(D∗(2010)±X)/ �(hadrons) = (5.11 ± 0.34) × 10−3. They obtained the above number assumingB(D0 → K−π+) = (3.62±0.34±0.44)% and B(D∗(2010)+ → D0π+) = (55±4)%.We have res
aled their original result of 0.26 ± 0.05 taking into a

ount the new CLEOII bran
hing ratio B(D∗(2010)+ → D0π+) = (68.1 ± 1.6)%.�(Ds1(2536)±X)/�(hadrons) �35/�7�(Ds1(2536)±X)/�(hadrons) �35/�7�(Ds1(2536)±X)/�(hadrons) �35/�7�(Ds1(2536)±X)/�(hadrons) �35/�7Ds1(2536)± is an expe
ted orbitally-ex
ited state of the Ds meson.VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.52±0.09±0.060.52±0.09±0.060.52±0.09±0.060.52±0.09±0.06 92 1 HEISTER 02B ALEP Eee
m= 88{94 GeV1HEISTER 02B re
onstru
t this meson in the de
ay modes Ds1(2536)± → D∗±K0 andDs1(2536)± → D∗0K±. The quoted bran
hing ratio assumes that the de
ay width ofthe Ds1(2536) is saturated by the two measured de
ay modes.�(DsJ (2573)±X)/�(hadrons) �36/�7�(DsJ (2573)±X)/�(hadrons) �36/�7�(DsJ (2573)±X)/�(hadrons) �36/�7�(DsJ (2573)±X)/�(hadrons) �36/�7DsJ (2573)± is an expe
ted orbitally-ex
ited state of the Ds meson.VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.83±0.29+0.07

−0.130.83±0.29+0.07
−0.130.83±0.29+0.07
−0.130.83±0.29+0.07
−0.13 64 1 HEISTER 02B ALEP Eee
m= 88{94 GeV1HEISTER 02B re
onstru
t this meson in the de
ay mode D∗s2(2573)± → D0K±. Thequoted bran
hing ratio assumes that the dete
ted de
ay mode represents 45% of the fullde
ay width.�(D∗′(2629)±X)/�(hadrons) �37/�7�(D∗′(2629)±X)/�(hadrons) �37/�7�(D∗′(2629)±X)/�(hadrons) �37/�7�(D∗′(2629)±X)/�(hadrons) �37/�7D∗′(2629)± is a predi
ted radial ex
itation of the D∗(2010)± meson.VALUE DOCUMENT ID TECN COMMENTsear
hed forsear
hed forsear
hed forsear
hed for 1 ABBIENDI 01N OPAL Eee
m= 88{94 GeV1ABBIENDI 01N sear
hed for the de
ay mode D∗′(2629)± → D∗±π+π− withD∗+ → D0π+, and D0 → K−π+. They quote a 95% CL limit for Z →D∗′(2629)±×B(D∗′(2629)+ → D∗+π+π−) < 3.1× 10−3.
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leListingsZ�(B∗X)/[�(BX)+ �(B∗X)] �39/(�38+�39)�(B∗X)/[�(BX)+ �(B∗X)] �39/(�38+�39)�(B∗X)/[�(BX)+ �(B∗X)] �39/(�38+�39)�(B∗X)/[�(BX)+ �(B∗X)] �39/(�38+�39)As the experiments assume di�erent values of the b-baryon 
ontribution, our averageshould be taken with 
aution.VALUE EVTS DOCUMENT ID TECN COMMENT0.75 ±0.04 OUR AVERAGE0.75 ±0.04 OUR AVERAGE0.75 ±0.04 OUR AVERAGE0.75 ±0.04 OUR AVERAGE0.760±0.036±0.083 1 ACKERSTAFF 97M OPAL Eee
m= 88{94 GeV0.771±0.026±0.070 2 BUSKULIC 96D ALEP Eee
m= 88{94 GeV0.72 ±0.03 ±0.06 3 ABREU 95R DLPH Eee
m= 88{94 GeV0.76 ±0.08 ±0.06 1378 4 ACCIARRI 95B L3 Eee
m= 88{94 GeV1ACKERSTAFF 97M use an in
lusive B re
onstru
tion method and assume a (13.2 ±4.1)% b-baryon 
ontribution. The value refers to a b-
avored meson mixture of Bu , Bd ,and Bs .2BUSKULIC 96D use an in
lusive re
onstru
tion of B hadrons and assume a (12.2 ±4.3)% b-baryon 
ontribution. The value refers to a b-
avored mixture of Bu , Bd , andBs .3ABREU 95R use an in
lusive B-re
onstru
tion method and assume a (10± 4)% b-baryon
ontribution. The value refers to a b-
avored meson mixture of Bu , Bd , and Bs .4ACCIARRI 95B assume a 9.4% b-baryon 
ontribution. The value refers to a b-
avoredmixture of Bu , Bd , and Bs .�(B+X)/�(hadrons) �40/�7�(B+X)/�(hadrons) �40/�7�(B+X)/�(hadrons) �40/�7�(B+X)/�(hadrons) �40/�7\OUR EVALUATION" is obtained using our 
urrent values for f(b → B+) and Rb= �(bb)/�(hadrons). We 
al
ulate �(B+ X)/�(hadrons) = Rb × f(b → B+). Thede
ay fra
tion f(b → B+) was provided by the Heavy Flavor Averaging Group (HFAG,http://www.sla
.stanford.edu/xorg/hfag/os
/PDG 2009/#FRACZ).VALUE DOCUMENT ID TECN COMMENT0.0869±0.0019 OUR EVALUATION0.0869±0.0019 OUR EVALUATION0.0869±0.0019 OUR EVALUATION0.0869±0.0019 OUR EVALUATION0.0887±0.00300.0887±0.00300.0887±0.00300.0887±0.0030 1 ABDALLAH 03K DLPH Eee
m = 88{94 GeV1ABDALLAH 03K measure the produ
tion fra
tion of B+ mesons in hadroni
 Z de
aysf(B+) = (40.99 ± 0.82 ± 1.11)%. The value quoted here is obtained multiplying thisprodu
tion fra
tion by our value of Rb = �(b b)/�(hadrons).�(B0s X)/�(hadrons) �41/�7�(B0s X)/�(hadrons) �41/�7�(B0s X)/�(hadrons) �41/�7�(B0s X)/�(hadrons) �41/�7\OUR EVALUATION" is obtained using our 
urrent values for f(b → B0s ) and Rb= �(bb)/�(hadrons). We 
al
ulate �(B0s )/�(hadrons) = Rb × f(b → B0s ). Thede
ay fra
tion f(b → B0s ) was provided by the Heavy Flavor Averaging Group (HFAG,http://www.sla
.stanford.edu/xorg/hfag/os
/PDG 2009/#FRACZ).VALUE DOCUMENT ID TECN COMMENT0.0227±0.0019 OUR EVALUATION0.0227±0.0019 OUR EVALUATION0.0227±0.0019 OUR EVALUATION0.0227±0.0019 OUR EVALUATIONseen 1 ABREU 92M DLPH Eee
m= 88{94 GeVseen 2 ACTON 92N OPAL Eee
m= 88{94 GeVseen 3 BUSKULIC 92E ALEP Eee
m= 88{94 GeV1ABREU 92M reported value is �(B0s X)∗B(B0s → Ds µνµX) ∗B(Ds → φπ)/�(hadrons)= (18 ± 8) × 10−5.2ACTON 92N �nd eviden
e for B0s produ
tion using Ds -ℓ 
orrelations, with D+s → φπ+and K∗(892)K+. Assuming Rb from the Standard Model and averaging over the e and
µ 
hannels, authors measure the produ
t bran
hing fra
tion to be f(b → B0s )×B(B0s →D−s ℓ+ νℓX)×B(D−s → φπ−) = (3.9 ± 1.1 ± 0.8)× 10−4.3BUSKULIC 92E �nd eviden
e for B0s produ
tion using Ds -ℓ 
orrelations, with D+s →
φπ+ and K∗(892)K+. Using B(D+s → φπ+) = (2.7 ± 0.7)% and summing up thee and µ 
hannels, the weighted average produ
t bran
hing fra
tion is measured to beB(b → B0s )×B(B0s → D−s ℓ+ νℓX) = 0.040 ± 0.011+0.010

−0.012.�(B+
 X)/�(hadrons) �42/�7�(B+
 X)/�(hadrons) �42/�7�(B+
 X)/�(hadrons) �42/�7�(B+
 X)/�(hadrons) �42/�7VALUE DOCUMENT ID TECN COMMENTsear
hed for 1 ACKERSTAFF 98O OPAL Eee
m= 88{94 GeVsear
hed for 2 ABREU 97E DLPH Eee
m= 88{94 GeVsear
hed for 3 BARATE 97H ALEP Eee
m= 88{94 GeV1ACKERSTAFF 98O sear
hed for the de
ay modes B
 → J/ψπ+, J/ψa+1 , andJ/ψℓ+ νℓ, with J/ψ → ℓ+ ℓ−, ℓ = e,µ. The number of 
andidates (ba
kground) forthe three de
ay modes is 2 (0.63± 0.2), 0 (1.10± 0.22), and 1 (0.82± 0.19) respe
tively.Interpreting the 2B
 → J/ψπ+ 
andidates as signal, they report �(B+
 X)×B(B
 →J/ψπ+)/�(hadrons) =(3.8+5.0
−2.4± 0.5)×10−5. Interpreted as ba
kground, the 90% CLbounds are �(B+
 X)∗B(B
 → J/ψπ+)/�(hadrons) < 1.06×10−4, �(B+
 X)∗B(B
 →J/ψa+1 )/�(hadrons) < 5.29 × 10−4, �(B+
 X)∗B(B
 → J/ψℓ+ νℓ)/�(hadrons) <6.96 × 10−5.2ABREU 97E sear
hed for the de
ay modes B
 → J/ψπ+, J/ψℓ+ νℓ, and J/ψ (3π)+,with J/ψ → ℓ+ ℓ−, ℓ = e,µ. The number of 
andidates (ba
kground) for the three de
aymodes is 1 (1.7), 0 (0.3), and 1 (2.3) respe
tively. They report the following 90% CL lim-its: �(B+
 X)∗B(B
 → J/ψπ+)/�(hadrons) <(1.05{0.84)× 10−4, �(B+
 X)∗B(B
 →J/ψℓνℓ)/�(hadrons) <(5.8{5.0) × 10−5, �(B+
 X)∗B(B
 → J/ψ (3π)+)/�(hadrons)

< 1.75× 10−4, where the ranges are due to the predi
ted B
 lifetime (0.4{1.4) ps.3BARATE 97H sear
hed for the de
ay modes B
 → J/ψπ+ and J/ψℓ+ νℓ withJ/ψ → ℓ+ ℓ−, ℓ = e,µ. The number of 
andidates (ba
kground) for the two de-
ay modes is 0 (0.44) and 2 (0.81) respe
tively. They report the following 90% CLlimits: �(B+
 X)∗B(B
 → J/ψπ+)/�(hadrons) < 3.6× 10−5 and �(B+
 X)∗B(B
 →J/ψℓ+ νℓ)/�(hadrons) < 5.2× 10−5.

�(�+
 X)/�(hadrons) �43/�7�(�+
 X)/�(hadrons) �43/�7�(�+
 X)/�(hadrons) �43/�7�(�+
 X)/�(hadrons) �43/�7VALUE DOCUMENT ID TECN COMMENT0.022±0.005 OUR AVERAGE0.022±0.005 OUR AVERAGE0.022±0.005 OUR AVERAGE0.022±0.005 OUR AVERAGE0.024±0.005±0.006 1 ALEXANDER 96R OPAL Eee
m = 88{94 GeV0.021±0.003±0.005 2 BUSKULIC 96Y ALEP Eee
m = 88{94 GeV1ALEXANDER 96R measure Rb × f(b → �+
 X ) × B(�+
 → pK−π+) = (0.122 ±0.023 ± 0.010)% in hadroni
 Z de
ays; the value quoted here is obtained using our bestvalue B(�+
 → pK−π+) = (5.0± 1.3)%. The �rst error is the total experiment's errorand the se
ond error is the systemati
 error due to the bran
hing fra
tion un
ertainty.2BUSKULIC 96Y obtain the produ
tion fra
tion of �+
 baryons in hadroni
 Z de
aysf(b → �+
 X ) = 0.110 ± 0.014 ± 0.006 using B(�+
 → pK−π+) = (4.4 ± 0.6)%; wehave res
aled using our best value B(�+
 → pK−π+) = (5.0± 1.3)% obtaining f(b →�+
 X ) = 0.097 ± 0.013 ± 0.025 where the �rst error is their total experiment's errorand the se
ond error is the systemati
 error due to the bran
hing fra
tion un
ertainty.The value quoted here is obtained multiplying this produ
tion fra
tion by our value ofRb = �(bb)/�(hadrons).�(� 0
 X)/�(hadrons) �44/�7�(� 0
 X)/�(hadrons) �44/�7�(� 0
 X)/�(hadrons) �44/�7�(� 0
 X)/�(hadrons) �44/�7VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 1 ABDALLAH 05C DLPH Eee
m = 88{94 GeV1ABDALLAH 05C sear
hed for the 
harmed strange baryon �0
 in the de
ay 
hannel�0
 → �−π+ (�− → �π−). The produ
tion rate is measured to be f�0
 × B(�0
 →�−π+) = (4.7 ± 1.4 ± 1.1)× 10−4 per hadroni
 Z de
ay.�(�bX)/�(hadrons) �45/�7�(�bX)/�(hadrons) �45/�7�(�bX)/�(hadrons) �45/�7�(�bX)/�(hadrons) �45/�7Here �b is used as a notation for the strange b-baryon states �−b and �0b .VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 1 ABDALLAH 05C DLPH Eee
m = 88{94 GeVseen 2 BUSKULIC 96T ALEP Eee
m = 88{94 GeVseen 3 ABREU 95V DLPH Eee
m = 88{94 GeV1ABDALLAH 05C sear
hed for the beauty strange baryon �b in the in
lusive semileptoni
de
ay 
hannel �b → �− ℓ− νℓX . Eviden
e for the �b produ
tion is seen from theobservation of �∓ produ
tion a

ompanied by a lepton of the same sign. From the ex
essof \right-sign" pairs �∓ ℓ∓ 
ompared to \wrong-sign" pairs �∓ ℓ± the produ
tion rateis measured to be B(b → �b) × B(�b → �− ℓ−X ) = (3.0 ± 1.0 ± 0.3)× 10−4 perlepton spe
ies, averaged over ele
trons and muons.2BUSKULIC 96T investigate � -lepton 
orrelations and �nd a signi�
ant ex
ess of \right{sign" pairs �∓ ℓ∓ 
ompared to \wrong{sign" pairs �∓ ℓ±. This ex
ess is interpretedas eviden
e for �b semileptoni
 de
ay. The measured produ
t bran
hing ratio is B(b →�b) × B(�b → X
 X ℓ− νℓ) × B(X
 → �−X ′) = (5.4 ± 1.1 ± 0.8) × 10−4 perlepton spe
ies, averaged over ele
trons and muons, with X
 a 
harmed baryon.3ABREU 95V observe an ex
ess of \right-sign" pairs �∓ ℓ∓ 
ompared to \wrong-sign"pairs �∓ ℓ± in jets: this ex
ess is interpreted as eviden
e for the beauty strange baryon�b produ
tion, with �b → �− ℓ− νℓX . They �nd that the probability for this signal to
ome from non b-baryon de
ays is less than 5× 10−4 and that �b de
ays 
an a

ountfor less than 10% of these events. The �b produ
tion rate is then measured to be B(b →�b) × B(�b → �− ℓ−X ) = (5.9 ± 2.1 ± 1.0) × 10−4 per lepton spe
ies, averagedover ele
trons and muons.�(b -baryon X)/�(hadrons) �46/�7�(b -baryon X)/�(hadrons) �46/�7�(b -baryon X)/�(hadrons) �46/�7�(b -baryon X)/�(hadrons) �46/�7\OUR EVALUATION" is obtained using our 
urrent values for f(b → b-baryon) andRb = �(bb)/�(hadrons). We 
al
ulate �(b-baryon X)/�(hadrons) = Rb × f(b →b-baryon). The de
ay fra
tion f(b → b-baryon) was provided by the Heavy FlavorAveraging Group (HFAG, http://www.sla
.stanford.edu/xorg/hfag/os
/PDG 2009).VALUE DOCUMENT ID TECN COMMENT0.0197±0.0032 OUR EVALUATION0.0197±0.0032 OUR EVALUATION0.0197±0.0032 OUR EVALUATION0.0197±0.0032 OUR EVALUATION0.0221±0.0015±0.00580.0221±0.0015±0.00580.0221±0.0015±0.00580.0221±0.0015±0.0058 1 BARATE 98V ALEP Eee
m= 88{94 GeV1BARATE 98V use the overall number of identi�ed protons in b-hadron de
ays to measuref(b → b-baryon) = 0.102 ± 0.007 ± 0.027. They assume BR(b-baryon→ pX ) =(58 ± 6)% and BR(B0s → pX ) = (8.0 ± 4.0)%. The value quoted here is obtainedmultiplying this produ
tion fra
tion by our value of Rb = �(bb)/�(hadrons).�(anomalous γ+hadrons)/�total �47/��(anomalous γ+hadrons)/�total �47/��(anomalous γ+hadrons)/�total �47/��(anomalous γ+hadrons)/�total �47/�Limits on additional sour
es of prompt photons beyond expe
tations for �nal-statebremsstrahlung.VALUE CL% DOCUMENT ID TECN COMMENT
<3.2× 10−3<3.2× 10−3<3.2× 10−3<3.2× 10−3 95 1 AKRAWY 90J OPAL Eee
m= 88{94 GeV1AKRAWY 90J report �(γX) < 8.2 MeV at 95%CL. They assume a three-body γ qqdistribution and use E(γ) > 10 GeV.�(e+ e−γ

)/�total �48/��(e+ e−γ
)/�total �48/��(e+ e−γ
)/�total �48/��(e+ e−γ
)/�total �48/�VALUE CL% DOCUMENT ID TECN COMMENT

<5.2× 10−4<5.2× 10−4<5.2× 10−4<5.2× 10−4 95 1 ACTON 91B OPAL Eee
m= 91.2 GeV1ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).�(
µ+µ− γ

)/�total �49/��(
µ+µ− γ

)/�total �49/��(
µ+µ− γ

)/�total �49/��(
µ+µ− γ

)/�total �49/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.6× 10−4<5.6× 10−4<5.6× 10−4<5.6× 10−4 95 1 ACTON 91B OPAL Eee
m= 91.2 GeV1ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).
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leListingsZ�(τ+ τ− γ
)/�total �50/��(τ+ τ− γ
)/�total �50/��(τ+ τ− γ
)/�total �50/��(τ+ τ− γ
)/�total �50/�VALUE CL% DOCUMENT ID TECN COMMENT

<7.3× 10−4<7.3× 10−4<7.3× 10−4<7.3× 10−4 95 1 ACTON 91B OPAL Eee
m= 91.2 GeV1ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).�(ℓ+ ℓ−γ γ
)/�total �51/��(ℓ+ ℓ−γ γ
)/�total �51/��(ℓ+ ℓ−γ γ
)/�total �51/��(ℓ+ ℓ−γ γ
)/�total �51/�The value is the sum over ℓ = e, µ, τ .VALUE CL% DOCUMENT ID TECN COMMENT

<6.8× 10−6<6.8× 10−6<6.8× 10−6<6.8× 10−6 95 1 ACTON 93E OPAL Eee
m= 88{94 GeV1For mγ γ = 60 ± 5 GeV.�(qq γ γ
)/�total �52/��(qq γ γ
)/�total �52/��(qq γ γ
)/�total �52/��(qq γ γ
)/�total �52/�VALUE CL% DOCUMENT ID TECN COMMENT

<5.5× 10−6<5.5× 10−6<5.5× 10−6<5.5× 10−6 95 1 ACTON 93E OPAL Eee
m= 88{94 GeV1For mγ γ = 60 ± 5 GeV.�(ν ν γ γ
)/�total �53/��(ν ν γ γ
)/�total �53/��(ν ν γ γ
)/�total �53/��(ν ν γ γ
)/�total �53/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.1× 10−6<3.1× 10−6<3.1× 10−6<3.1× 10−6 95 1 ACTON 93E OPAL Eee
m= 88{94 GeV1For mγ γ = 60 ± 5 GeV.�(e±µ∓)/�total �54/��(e±µ∓)/�total �54/��(e±µ∓)/�total �54/��(e±µ∓)/�total �54/�Test of lepton family number 
onservation. The value is for the sum of the 
hargestates indi
ated.VALUE CL% DOCUMENT ID TECN COMMENT
<7.5× 10−7<7.5× 10−7<7.5× 10−7<7.5× 10−7 95 AAD 14AU ATLS Epp
m = 8 TeV
<2.5× 10−6 95 ABREU 97C DLPH Eee
m= 88{94 GeV
<1.7× 10−6 95 AKERS 95W OPAL Eee
m= 88{94 GeV
<0.6× 10−5 95 ADRIANI 93I L3 Eee
m= 88{94 GeV
<2.6× 10−5 95 DECAMP 92 ALEP Eee
m= 88{94 GeV�(e±µ∓)/�(e+ e−) �54/�1�(e±µ∓)/�(e+ e−) �54/�1�(e±µ∓)/�(e+ e−) �54/�1�(e±µ∓)/�(e+ e−) �54/�1Test of lepton family number 
onservation. The value is for the sum of the 
hargestates indi
ated.VALUE CL% DOCUMENT ID TECN COMMENT
<0.07<0.07<0.07<0.07 90 ALBAJAR 89 UA1 Epp
m= 546,630 GeV�(e± τ∓

)/�total �55/��(e± τ∓
)/�total �55/��(e± τ∓
)/�total �55/��(e± τ∓
)/�total �55/�Test of lepton family number 
onservation. The value is for the sum of the 
hargestates indi
ated.VALUE CL% DOCUMENT ID TECN COMMENT

<2.2× 10−5 95 ABREU 97C DLPH Eee
m= 88{94 GeV
<9.8× 10−6<9.8× 10−6<9.8× 10−6<9.8× 10−6 95 AKERS 95W OPAL Eee
m= 88{94 GeV
<1.3× 10−5 95 ADRIANI 93I L3 Eee
m= 88{94 GeV
<1.2× 10−4 95 DECAMP 92 ALEP Eee
m= 88{94 GeV�(µ± τ∓

)/�total �56/��(µ± τ∓
)/�total �56/��(µ± τ∓
)/�total �56/��(µ± τ∓
)/�total �56/�Test of lepton family number 
onservation. The value is for the sum of the 
hargestates indi
ated.VALUE CL% DOCUMENT ID TECN COMMENT

<1.2× 10−5<1.2× 10−5<1.2× 10−5<1.2× 10−5 95 ABREU 97C DLPH Eee
m= 88{94 GeV
<1.7× 10−5 95 AKERS 95W OPAL Eee
m= 88{94 GeV
<1.9× 10−5 95 ADRIANI 93I L3 Eee
m= 88{94 GeV
<1.0× 10−4 95 DECAMP 92 ALEP Eee
m= 88{94 GeV�(pe)/�total �57/��(pe)/�total �57/��(pe)/�total �57/��(pe)/�total �57/�Test of baryon number and lepton number 
onservations. Charge 
onjugate states areimplied.VALUE CL% DOCUMENT ID TECN COMMENT
<1.8× 10−6<1.8× 10−6<1.8× 10−6<1.8× 10−6 95 1 ABBIENDI 99I OPAL Eee
m= 88{94 GeV1ABBIENDI 99I give the 95%CL limit on the partial width �(Z0 → pe)< 4.6 KeV andwe have transformed it into a bran
hing ratio.�(pµ

)/�total �58/��(pµ
)/�total �58/��(pµ
)/�total �58/��(pµ
)/�total �58/�Test of baryon number and lepton number 
onservations. Charge 
onjugate states areimplied.VALUE CL% DOCUMENT ID TECN COMMENT

<1.8× 10−6<1.8× 10−6<1.8× 10−6<1.8× 10−6 95 1 ABBIENDI 99I OPAL Eee
m= 88{94 GeV1ABBIENDI 99I give the 95%CL limit on the partial width �(Z0 → pµ)< 4.4 KeV andwe have transformed it into a bran
hing ratio.AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAYAVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAYSummed over parti
le and antiparti
le, when appropriate.
〈Nγ

〉〈Nγ

〉〈Nγ

〉〈Nγ

〉VALUE DOCUMENT ID TECN COMMENT20.97±0.02±1.1520.97±0.02±1.1520.97±0.02±1.1520.97±0.02±1.15 ACKERSTAFF 98A OPAL Eee
m= 91.2 GeV

〈Nπ±
〉〈Nπ±
〉〈Nπ±
〉〈Nπ±
〉VALUE DOCUMENT ID TECN COMMENT17.03 ±0.16 OUR AVERAGE17.03 ±0.16 OUR AVERAGE17.03 ±0.16 OUR AVERAGE17.03 ±0.16 OUR AVERAGE17.007±0.209 ABE 04C SLD Eee
m= 91.2 GeV17.26 ±0.10 ±0.88 ABREU 98L DLPH Eee
m= 91.2 GeV17.04 ±0.31 BARATE 98V ALEP Eee
m= 91.2 GeV17.05 ±0.43 AKERS 94P OPAL Eee
m= 91.2 GeV

〈Nπ0〉〈Nπ0〉〈Nπ0〉〈Nπ0〉VALUE DOCUMENT ID TECN COMMENT9.76±0.26 OUR AVERAGE9.76±0.26 OUR AVERAGE9.76±0.26 OUR AVERAGE9.76±0.26 OUR AVERAGE9.55±0.06±0.75 ACKERSTAFF 98A OPAL Eee
m= 91.2 GeV9.63±0.13±0.63 BARATE 97J ALEP Eee
m= 91.2 GeV9.90±0.02±0.33 ACCIARRI 96 L3 Eee
m= 91.2 GeV9.2 ±0.2 ±1.0 ADAM 96 DLPH Eee
m= 91.2 GeV
〈Nη

〉〈Nη

〉〈Nη

〉〈Nη

〉VALUE DOCUMENT ID TECN COMMENT1.01±0.08 OUR AVERAGE1.01±0.08 OUR AVERAGE1.01±0.08 OUR AVERAGE1.01±0.08 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.1.20±0.04±0.11 HEISTER 02C ALEP Eee
m= 91.2 GeV0.97±0.03±0.11 ACKERSTAFF 98A OPAL Eee
m= 91.2 GeV0.93±0.01±0.09 ACCIARRI 96 L3 Eee
m= 91.2 GeV
WEIGHTED AVERAGE
1.01±0.08 (Error scaled by 1.3)

ACCIARRI 96 L3 0.9
ACKERSTAFF 98A OPAL 0.2
HEISTER 02C ALEP 2.5

χ2

       3.5
(Confidence Level = 0.171)

0.6 0.8 1 1.2 1.4 1.6 1.8
〈Nη

〉

〈Nρ±
〉〈Nρ±
〉〈Nρ±
〉〈Nρ±
〉VALUE DOCUMENT ID TECN COMMENT2.57±0.15 OUR AVERAGE2.57±0.15 OUR AVERAGE2.57±0.15 OUR AVERAGE2.57±0.15 OUR AVERAGE2.59±0.03±0.16 1 BEDDALL 09 ALEPH ar
hive, Eee
m= 91.2 GeV2.40±0.06±0.43 ACKERSTAFF 98A OPAL Eee
m= 91.2 GeV1BEDDALL 09 analyse 3.2 million hadroni
 Z de
ays as ar
hived by ALEPH 
ollaborationand report a value of 2.59 ± 0.03 ± 0.15 ± 0.04. The �rst error is statisti
al, the se
ondsystemati
, and the third arises from extrapolation to full phase spa
e. We 
ombine thesystemati
 errors in quadrature.

〈Nρ0〉〈Nρ0〉〈Nρ0〉〈Nρ0〉VALUE DOCUMENT ID TECN COMMENT1.24±0.10 OUR AVERAGE1.24±0.10 OUR AVERAGE1.24±0.10 OUR AVERAGE1.24±0.10 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1.19±0.10 ABREU 99J DLPH Eee
m= 91.2 GeV1.45±0.06±0.20 BUSKULIC 96H ALEP Eee
m= 91.2 GeV
〈Nω

〉〈Nω

〉〈Nω

〉〈Nω

〉VALUE DOCUMENT ID TECN COMMENT1.02±0.06 OUR AVERAGE1.02±0.06 OUR AVERAGE1.02±0.06 OUR AVERAGE1.02±0.06 OUR AVERAGE1.00±0.03±0.06 HEISTER 02C ALEP Eee
m= 91.2 GeV1.04±0.04±0.14 ACKERSTAFF 98A OPAL Eee
m= 91.2 GeV1.17±0.09±0.15 ACCIARRI 97D L3 Eee
m= 91.2 GeV
〈Nη′

〉〈Nη′
〉〈Nη′
〉〈Nη′
〉VALUE DOCUMENT ID TECN COMMENT0.17 ±0.05 OUR AVERAGE0.17 ±0.05 OUR AVERAGE0.17 ±0.05 OUR AVERAGE0.17 ±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4.0.14 ±0.01 ±0.02 ACKERSTAFF 98A OPAL Eee
m= 91.2 GeV0.25 ±0.04 1 ACCIARRI 97D L3 Eee
m= 91.2 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.068±0.018±0.016 2 BUSKULIC 92D ALEP Eee
m= 91.2 GeV1ACCIARRI 97D obtain this value averaging over the two de
ay 
hannels η′ → π+π− ηand η′ → ρ0 γ.2BUSKULIC 92D obtain this value for x> 0.1.



637637637637See key on page 601 Gauge&HiggsBosonParti
leListingsZ
〈Nf0(980)〉〈Nf0(980)〉〈Nf0(980)〉〈Nf0(980)〉VALUE DOCUMENT ID TECN COMMENT0.147±0.011 OUR AVERAGE0.147±0.011 OUR AVERAGE0.147±0.011 OUR AVERAGE0.147±0.011 OUR AVERAGE0.164±0.021 ABREU 99J DLPH Eee
m= 91.2 GeV0.141±0.007±0.011 ACKERSTAFF 98Q OPAL Eee
m= 91.2 GeV
〈Na0(980)±〉〈Na0(980)±〉〈Na0(980)±〉〈Na0(980)±〉VALUE DOCUMENT ID TECN COMMENT0.27±0.04±0.100.27±0.04±0.100.27±0.04±0.100.27±0.04±0.10 ACKERSTAFF 98A OPAL Eee
m= 91.2 GeV
〈Nφ

〉〈Nφ

〉〈Nφ

〉〈Nφ

〉VALUE DOCUMENT ID TECN COMMENT0.098±0.006 OUR AVERAGE0.098±0.006 OUR AVERAGE0.098±0.006 OUR AVERAGE0.098±0.006 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0. See the ideogram below.0.105±0.008 ABE 99E SLD Eee
m= 91.2 GeV0.091±0.002±0.003 ACKERSTAFF 98Q OPAL Eee
m= 91.2 GeV0.104±0.003±0.007 ABREU 96U DLPH Eee
m= 91.2 GeV0.122±0.004±0.008 BUSKULIC 96H ALEP Eee
m= 91.2 GeV
WEIGHTED AVERAGE
0.098±0.006 (Error scaled by 2.0)

BUSKULIC 96H ALEP 7.3
ABREU 96U DLPH 0.7
ACKERSTAFF 98Q OPAL 3.5
ABE 99E SLD 0.8

χ2

      12.4
(Confidence Level = 0.0063)

0.08 0.1 0.12 0.14 0.16 0.18
〈Nφ

〉

〈Nf2(1270)〉〈Nf2(1270)〉〈Nf2(1270)〉〈Nf2(1270)〉VALUE DOCUMENT ID TECN COMMENT0.169±0.025 OUR AVERAGE0.169±0.025 OUR AVERAGE0.169±0.025 OUR AVERAGE0.169±0.025 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.0.214±0.038 ABREU 99J DLPH Eee
m= 91.2 GeV0.155±0.011±0.018 ACKERSTAFF 98Q OPAL Eee
m= 91.2 GeV
〈Nf1(1285)〉〈Nf1(1285)〉〈Nf1(1285)〉〈Nf1(1285)〉VALUE DOCUMENT ID TECN COMMENT0.165±0.0510.165±0.0510.165±0.0510.165±0.051 1 ABDALLAH 03H DLPH Eee
m= 91.2 GeV1ABDALLAH 03H assume a K K π bran
hing ratio of (9.0 ± 0.4)%.
〈Nf1(1420)〉〈Nf1(1420)〉〈Nf1(1420)〉〈Nf1(1420)〉VALUE DOCUMENT ID TECN COMMENT0.056±0.0120.056±0.0120.056±0.0120.056±0.012 1 ABDALLAH 03H DLPH Eee
m= 91.2 GeV1ABDALLAH 03H assume a K K π bran
hing ratio of 100%.
〈Nf ′2(1525)〉〈Nf ′2(1525)〉〈Nf ′2(1525)〉〈Nf ′2(1525)〉VALUE DOCUMENT ID TECN COMMENT0.012±0.0060.012±0.0060.012±0.0060.012±0.006 ABREU 99J DLPH Eee
m= 91.2 GeV
〈NK±

〉〈NK±
〉〈NK±
〉〈NK±
〉VALUE DOCUMENT ID TECN COMMENT2.24 ±0.04 OUR AVERAGE2.24 ±0.04 OUR AVERAGE2.24 ±0.04 OUR AVERAGE2.24 ±0.04 OUR AVERAGE2.203±0.071 ABE 04C SLD Eee
m= 91.2 GeV2.21 ±0.05 ±0.05 ABREU 98L DLPH Eee
m= 91.2 GeV2.26 ±0.12 BARATE 98V ALEP Eee
m= 91.2 GeV2.42 ±0.13 AKERS 94P OPAL Eee
m= 91.2 GeV

〈NK0〉〈NK0〉〈NK0〉〈NK0〉VALUE DOCUMENT ID TECN COMMENT2.039±0.025 OUR AVERAGE2.039±0.025 OUR AVERAGE2.039±0.025 OUR AVERAGE2.039±0.025 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.2.093±0.004±0.029 BARATE 00O ALEP Eee
m= 91.2 GeV2.01 ±0.08 ABE 99E SLD Eee
m= 91.2 GeV2.024±0.006±0.042 ACCIARRI 97L L3 Eee
m= 91.2 GeV1.962±0.022±0.056 ABREU 95L DLPH Eee
m= 91.2 GeV1.99 ±0.01 ±0.04 AKERS 95U OPAL Eee
m= 91.2 GeV

WEIGHTED AVERAGE
2.039±0.025 (Error scaled by 1.3)

AKERS 95U OPAL 1.4
ABREU 95L DLPH 1.6
ACCIARRI 97L L3 0.1
ABE 99E SLD 0.1
BARATE 00O ALEP 3.4

χ2

       6.7
(Confidence Level = 0.152)

1.8 1.9 2 2.1 2.2 2.3
〈NK0〉

〈NK∗(892)±〉〈NK∗(892)±〉〈NK∗(892)±〉〈NK∗(892)±〉VALUE DOCUMENT ID TECN COMMENT0.72 ±0.05 OUR AVERAGE0.72 ±0.05 OUR AVERAGE0.72 ±0.05 OUR AVERAGE0.72 ±0.05 OUR AVERAGE0.712±0.031±0.059 ABREU 95L DLPH Eee
m= 91.2 GeV0.72 ±0.02 ±0.08 ACTON 93 OPAL Eee
m= 91.2 GeV
〈NK∗(892)0〉〈NK∗(892)0〉〈NK∗(892)0〉〈NK∗(892)0〉VALUE DOCUMENT ID TECN COMMENT0.739±0.022 OUR AVERAGE0.739±0.022 OUR AVERAGE0.739±0.022 OUR AVERAGE0.739±0.022 OUR AVERAGE0.707±0.041 ABE 99E SLD Eee
m= 91.2 GeV0.74 ±0.02 ±0.02 ACKERSTAFF 97S OPAL Eee
m= 91.2 GeV0.77 ±0.02 ±0.07 ABREU 96U DLPH Eee
m= 91.2 GeV0.83 ±0.01 ±0.09 BUSKULIC 96H ALEP Eee
m= 91.2 GeV0.97 ±0.18 ±0.31 ABREU 93 DLPH Eee
m= 91.2 GeV
〈NK∗2(1430)〉〈NK∗2(1430)〉〈NK∗2(1430)〉〈NK∗2(1430)〉VALUE DOCUMENT ID TECN COMMENT0.073±0.0230.073±0.0230.073±0.0230.073±0.023 ABREU 99J DLPH Eee
m= 91.2 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.19 ±0.04 ±0.06 1 AKERS 95X OPAL Eee
m= 91.2 GeV1AKERS 95X obtain this value for x< 0.3.
〈ND±

〉〈ND±
〉〈ND±
〉〈ND±
〉VALUE DOCUMENT ID TECN COMMENT0.187±0.020 OUR AVERAGE0.187±0.020 OUR AVERAGE0.187±0.020 OUR AVERAGE0.187±0.020 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.0.170±0.009±0.014 ALEXANDER 96R OPAL Eee
m= 91.2 GeV0.251±0.026±0.025 BUSKULIC 94J ALEP Eee
m= 91.2 GeV0.199±0.019±0.024 1 ABREU 93I DLPH Eee
m= 91.2 GeV1See ABREU 95 (erratum).

WEIGHTED AVERAGE
0.187±0.020 (Error scaled by 1.5)

ABREU 93I DLPH 0.2
BUSKULIC 94J ALEP 3.1
ALEXANDER 96R OPAL 1.1

χ2

       4.3
(Confidence Level = 0.114)

0.1 0.15 0.2 0.25 0.3 0.35 0.4
〈ND±

〉
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〈ND0〉〈ND0〉〈ND0〉〈ND0〉VALUE DOCUMENT ID TECN COMMENT0.462±0.026 OUR AVERAGE0.462±0.026 OUR AVERAGE0.462±0.026 OUR AVERAGE0.462±0.026 OUR AVERAGE0.465±0.017±0.027 ALEXANDER 96R OPAL Eee
m= 91.2 GeV0.518±0.052±0.035 BUSKULIC 94J ALEP Eee
m= 91.2 GeV0.403±0.038±0.044 1 ABREU 93I DLPH Eee
m= 91.2 GeV1See ABREU 95 (erratum).
〈ND±s 〉〈ND±s 〉〈ND±s 〉〈ND±s 〉VALUE DOCUMENT ID TECN COMMENT0.131±0.010±0.0180.131±0.010±0.0180.131±0.010±0.0180.131±0.010±0.018 ALEXANDER 96R OPAL Eee
m= 91.2 GeV
〈ND∗(2010)±〉〈ND∗(2010)±〉〈ND∗(2010)±〉〈ND∗(2010)±〉VALUE DOCUMENT ID TECN COMMENT0.183 ±0.008 OUR AVERAGE0.183 ±0.008 OUR AVERAGE0.183 ±0.008 OUR AVERAGE0.183 ±0.008 OUR AVERAGE0.1854±0.0041±0.0091 1 ACKERSTAFF 98E OPAL Eee
m= 91.2 GeV0.187 ±0.015 ±0.013 BUSKULIC 94J ALEP Eee
m= 91.2 GeV0.171 ±0.012 ±0.016 2 ABREU 93I DLPH Eee
m= 91.2 GeV1ACKERSTAFF 98E systemati
 error in
ludes an un
ertainty of ±0.0069 due to thebran
hing ratios B(D∗+ → D0π+) = 0.683±0.014 and B(D0 → K−π+) = 0.0383±0.0012.2 See ABREU 95 (erratum).
〈NDs1(2536)+〉〈NDs1(2536)+〉〈NDs1(2536)+〉〈NDs1(2536)+〉VALUE (units 10−3) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.9+0.7

−0.6±0.2 1 ACKERSTAFF 97W OPAL Eee
m= 91.2 GeV1ACKERSTAFF 97W obtain this value for x> 0.6 and with the assumption that its de
aywidth is saturated by the D∗K �nal states.
〈NB∗

〉〈NB∗
〉〈NB∗
〉〈NB∗
〉VALUE DOCUMENT ID TECN COMMENT0.28±0.01±0.030.28±0.01±0.030.28±0.01±0.030.28±0.01±0.03 1 ABREU 95R DLPH Eee
m= 91.2 GeV1ABREU 95R quote this value for a 
avor-averaged ex
ited state.

〈NJ/ψ(1S)〉〈NJ/ψ(1S)〉〈NJ/ψ(1S)〉〈NJ/ψ(1S)〉VALUE DOCUMENT ID TECN COMMENT0.0056±0.0003±0.00040.0056±0.0003±0.00040.0056±0.0003±0.00040.0056±0.0003±0.0004 1 ALEXANDER 96B OPAL Eee
m= 91.2 GeV1ALEXANDER 96B identify J/ψ(1S) from the de
ays into lepton pairs.
〈Nψ(2S)〉〈Nψ(2S)〉〈Nψ(2S)〉〈Nψ(2S)〉VALUE DOCUMENT ID TECN COMMENT0.0023±0.0004±0.00030.0023±0.0004±0.00030.0023±0.0004±0.00030.0023±0.0004±0.0003 ALEXANDER 96B OPAL Eee
m= 91.2 GeV
〈Np〉〈Np〉〈Np〉〈Np〉VALUE DOCUMENT ID TECN COMMENT1.046±0.026 OUR AVERAGE1.046±0.026 OUR AVERAGE1.046±0.026 OUR AVERAGE1.046±0.026 OUR AVERAGE1.054±0.035 ABE 04C SLD Eee
m= 91.2 GeV1.08 ±0.04 ±0.03 ABREU 98L DLPH Eee
m= 91.2 GeV1.00 ±0.07 BARATE 98V ALEP Eee
m= 91.2 GeV0.92 ±0.11 AKERS 94P OPAL Eee
m= 91.2 GeV
〈N�(1232)++〉〈N�(1232)++〉〈N�(1232)++〉〈N�(1232)++〉VALUE DOCUMENT ID TECN COMMENT0.087±0.033 OUR AVERAGE0.087±0.033 OUR AVERAGE0.087±0.033 OUR AVERAGE0.087±0.033 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4.0.079±0.009±0.011 ABREU 95W DLPH Eee
m= 91.2 GeV0.22 ±0.04 ±0.04 ALEXANDER 95D OPAL Eee
m= 91.2 GeV
〈N�〉〈N�〉〈N�〉〈N�〉VALUE DOCUMENT ID TECN COMMENT0.388±0.009 OUR AVERAGE0.388±0.009 OUR AVERAGE0.388±0.009 OUR AVERAGE0.388±0.009 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.0.404±0.002±0.007 BARATE 00O ALEP Eee
m= 91.2 GeV0.395±0.022 ABE 99E SLD Eee
m= 91.2 GeV0.364±0.004±0.017 ACCIARRI 97L L3 Eee
m= 91.2 GeV0.374±0.002±0.010 ALEXANDER 97D OPAL Eee
m= 91.2 GeV0.357±0.003±0.017 ABREU 93L DLPH Eee
m= 91.2 GeV

WEIGHTED AVERAGE
0.388±0.009 (Error scaled by 1.7)

ABREU 93L DLPH 3.2
ALEXANDER 97D OPAL 1.9
ACCIARRI 97L L3 1.9
ABE 99E SLD 0.1
BARATE 00O ALEP 4.8

χ2

      11.9
(Confidence Level = 0.018)

0.3 0.35 0.4 0.45 0.5
〈N�〉

〈N�(1520)〉〈N�(1520)〉〈N�(1520)〉〈N�(1520)〉VALUE DOCUMENT ID TECN COMMENT0.0224±0.0027 OUR AVERAGE0.0224±0.0027 OUR AVERAGE0.0224±0.0027 OUR AVERAGE0.0224±0.0027 OUR AVERAGE0.029 ±0.005 ±0.005 ABREU 00P DLPH Eee
m= 91.2 GeV0.0213±0.0021±0.0019 ALEXANDER 97D OPAL Eee
m= 91.2 GeV
〈N�+〉〈N�+〉〈N�+〉〈N�+〉VALUE DOCUMENT ID TECN COMMENT0.107±0.010 OUR AVERAGE0.107±0.010 OUR AVERAGE0.107±0.010 OUR AVERAGE0.107±0.010 OUR AVERAGE0.114±0.011±0.009 ACCIARRI 00J L3 Eee
m= 91.2 GeV0.099±0.008±0.013 ALEXANDER 97E OPAL Eee
m= 91.2 GeV
〈N�−

〉〈N�−
〉〈N�−
〉〈N�−
〉VALUE DOCUMENT ID TECN COMMENT0.082±0.007 OUR AVERAGE0.082±0.007 OUR AVERAGE0.082±0.007 OUR AVERAGE0.082±0.007 OUR AVERAGE0.081±0.002±0.010 ABREU 00P DLPH Eee
m= 91.2 GeV0.083±0.006±0.009 ALEXANDER 97E OPAL Eee
m= 91.2 GeV

〈N�++�−
〉〈N�++�−
〉〈N�++�−
〉〈N�++�−
〉VALUE DOCUMENT ID TECN COMMENT0.181±0.018 OUR AVERAGE0.181±0.018 OUR AVERAGE0.181±0.018 OUR AVERAGE0.181±0.018 OUR AVERAGE0.182±0.010±0.016 1 ALEXANDER 97E OPAL Eee
m= 91.2 GeV0.170±0.014±0.061 ABREU 95O DLPH Eee
m= 91.2 GeV1We have 
ombined the values of 〈N�+〉 and 〈N�−

〉 from ALEXANDER 97E addingthe statisti
al and systemati
 errors of the two �nal states separately in quadrature. Ifisospin symmetry is assumed this value be
omes 0.174 ± 0.010 ± 0.015.
〈N�0〉〈N�0〉〈N�0〉〈N�0〉VALUE DOCUMENT ID TECN COMMENT0.076±0.010 OUR AVERAGE0.076±0.010 OUR AVERAGE0.076±0.010 OUR AVERAGE0.076±0.010 OUR AVERAGE0.095±0.015±0.013 ACCIARRI 00J L3 Eee
m= 91.2 GeV0.071±0.012±0.013 ALEXANDER 97E OPAL Eee
m= 91.2 GeV0.070±0.010±0.010 ADAM 96B DLPH Eee
m= 91.2 GeV
〈N(�++�−+�0)/3〉〈N(�++�−+�0)/3〉〈N(�++�−+�0)/3〉〈N(�++�−+�0)/3〉VALUE DOCUMENT ID TECN COMMENT0.084±0.005±0.0080.084±0.005±0.0080.084±0.005±0.0080.084±0.005±0.008 ALEXANDER 97E OPAL Eee
m= 91.2 GeV
〈N�(1385)+〉〈N�(1385)+〉〈N�(1385)+〉〈N�(1385)+〉VALUE DOCUMENT ID TECN COMMENT0.0239±0.0009±0.00120.0239±0.0009±0.00120.0239±0.0009±0.00120.0239±0.0009±0.0012 ALEXANDER 97D OPAL Eee
m= 91.2 GeV
〈N�(1385)−〉〈N�(1385)−〉〈N�(1385)−〉〈N�(1385)−〉VALUE DOCUMENT ID TECN COMMENT0.0240±0.0010±0.00140.0240±0.0010±0.00140.0240±0.0010±0.00140.0240±0.0010±0.0014 ALEXANDER 97D OPAL Eee
m= 91.2 GeV
〈N�(1385)++�(1385)−〉〈N�(1385)++�(1385)−〉〈N�(1385)++�(1385)−〉〈N�(1385)++�(1385)−〉VALUE DOCUMENT ID TECN COMMENT0.046 ±0.004 OUR AVERAGE0.046 ±0.004 OUR AVERAGE0.046 ±0.004 OUR AVERAGE0.046 ±0.004 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.0.0479±0.0013±0.0026 ALEXANDER 97D OPAL Eee
m= 91.2 GeV0.0382±0.0028±0.0045 ABREU 95O DLPH Eee
m= 91.2 GeV
〈N�−

〉〈N�−
〉〈N�−
〉〈N�−
〉VALUE DOCUMENT ID TECN COMMENT0.0258±0.0009 OUR AVERAGE0.0258±0.0009 OUR AVERAGE0.0258±0.0009 OUR AVERAGE0.0258±0.0009 OUR AVERAGE0.0247±0.0009±0.0025 ABDALLAH 06E DLPH Eee
m = 91.2 GeV0.0259±0.0004±0.0009 ALEXANDER 97D OPAL Eee
m = 91.2 GeV
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le ListingsZ
〈N�(1530)0〉〈N�(1530)0〉〈N�(1530)0〉〈N�(1530)0〉VALUE DOCUMENT ID TECN COMMENT0.0059±0.0011 OUR AVERAGE0.0059±0.0011 OUR AVERAGE0.0059±0.0011 OUR AVERAGE0.0059±0.0011 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3.0.0045±0.0005±0.0006 ABDALLAH 05C DLPH Eee
m= 91.2 GeV0.0068±0.0005±0.0004 ALEXANDER 97D OPAL Eee
m= 91.2 GeV
〈N
−

〉〈N
−
〉〈N
−
〉〈N
−
〉VALUE DOCUMENT ID TECN COMMENT0.00164±0.00028 OUR AVERAGE0.00164±0.00028 OUR AVERAGE0.00164±0.00028 OUR AVERAGE0.00164±0.00028 OUR AVERAGE0.0018 ±0.0003 ±0.0002 ALEXANDER 97D OPAL Eee
m= 91.2 GeV0.0014 ±0.0002 ±0.0004 ADAM 96B DLPH Eee
m= 91.2 GeV

〈N�+
 〉〈N�+
 〉〈N�+
 〉〈N�+
 〉VALUE DOCUMENT ID TECN COMMENT0.078±0.012±0.0120.078±0.012±0.0120.078±0.012±0.0120.078±0.012±0.012 ALEXANDER 96R OPAL Eee
m= 91.2 GeV
〈ND〉〈ND〉〈ND〉〈ND〉VALUE (units 10−6) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.9±1.8±0.5 1 SCHAEL 06A ALEP Eee
m = 91.2 GeV1SCHAEL 06A obtain this anti-deuteron produ
tion rate per hadroni
 Z de
ay in theanti-deuteron momentum range from 0.62 to 1.03 GeV/
.
〈N
harged 〉〈N
harged 〉〈N
harged 〉〈N
harged 〉VALUE DOCUMENT ID TECN COMMENT20.76±0.16 OUR AVERAGE20.76±0.16 OUR AVERAGE20.76±0.16 OUR AVERAGE20.76±0.16 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1. See the ideogram below.20.46±0.01±0.11 ACHARD 03G L3 Eee
m= 91.2 GeV21.21±0.01±0.20 ABREU 99 DLPH Eee
m= 91.2 GeV21.05±0.20 AKERS 95Z OPAL Eee
m= 91.2 GeV20.91±0.03±0.22 BUSKULIC 95R ALEP Eee
m= 91.2 GeV21.40±0.43 ACTON 92B OPAL Eee
m= 91.2 GeV20.71±0.04±0.77 ABREU 91H DLPH Eee
m= 91.2 GeV20.7 ±0.7 ADEVA 91I L3 Eee
m= 91.2 GeV20.1 ±1.0 ±0.9 ABRAMS 90 MRK2 Eee
m= 91.1 GeV

WEIGHTED AVERAGE
20.76±0.16 (Error scaled by 2.1)

ABRAMS 90 MRK2
ADEVA 91I L3
ABREU 91H DLPH
ACTON 92B OPAL 2.2
BUSKULIC 95R ALEP 0.5
AKERS 95Z OPAL 2.1
ABREU 99 DLPH 5.1
ACHARD 03G L3 7.3

χ2

      17.2
(Confidence Level = 0.0018)

19 20 21 22 23 24
〈N
harged〉Z HADRONIC POLE CROSS SECTIONZ HADRONIC POLE CROSS SECTIONZ HADRONIC POLE CROSS SECTIONZ HADRONIC POLE CROSS SECTIONOUR FIT is obtained using the �t pro
edure and 
orrelations as determinedby the LEP Ele
troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06). This quantity is de�ned as

σ0h = 12πM2Z �(e+ e−) �(hadrons)�2ZIt is one of the parameters used in the Z lineshape �t.VALUE (nb) EVTS DOCUMENT ID TECN COMMENT41.541±0.037 OUR FIT41.541±0.037 OUR FIT41.541±0.037 OUR FIT41.541±0.037 OUR FIT41.501±0.055 4.10M 1 ABBIENDI 01A OPAL Eee
m= 88{94 GeV41.578±0.069 3.70M ABREU 00F DLPH Eee
m= 88{94 GeV41.535±0.055 3.54M ACCIARRI 00C L3 Eee
m= 88{94 GeV41.559±0.058 4.07M 2 BARATE 00C ALEP Eee
m= 88{94 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •42 ±4 450 ABRAMS 89B MRK2 Eee
m= 89.2{93.0 GeV1ABBIENDI 01A error in
ludes approximately 0.031 due to statisti
s, 0.033 due to eventsele
tion systemati
s, 0.029 due to un
ertainty in luminosity measurement, and 0.011due to LEP energy un
ertainty.2BARATE 00C error in
ludes approximately 0.030 due to statisti
s, 0.026 due to experi-mental systemati
s, and 0.025 due to un
ertainty in luminosity measurement.

Z VECTOR COUPLINGSZ VECTOR COUPLINGSZ VECTOR COUPLINGSZ VECTOR COUPLINGSThese quantities are the e�e
tive ve
tor 
ouplings of the Z to 
hargedleptons. Their magnitude is derived from a measurement of the Z line-shape and the forward-ba
kward lepton asymmetries as a fun
tion of en-ergy around the Z mass. The relative sign among the ve
tor to axial-ve
tor
ouplings is obtained from a measurement of the Z asymmetry parame-ters, Ae , Aµ, and Aτ . By 
onvention the sign of geA is �xed to be negative(and opposite to that of gνe obtained using νe s
attering measurements).For the light quarks, the sign of the 
ouplings is assigned 
onsistently withthis assumption. The �t values quoted below 
orrespond to global nine- or�ve-parameter �ts to lineshape, lepton forward-ba
kward asymmetry, andAe , Aµ, and Aτ measurements. See the note \The Z boson" and ref.LEP-SLC 06 for details. Where pp and e p data is quoted, OUR FIT value
orresponds to a weighted average of this with the LEP/SLD �t result.g eVg eVg eVg eVVALUE EVTS DOCUMENT ID TECN COMMENT
−0.03817±0.00047 OUR FIT−0.03817±0.00047 OUR FIT−0.03817±0.00047 OUR FIT−0.03817±0.00047 OUR FIT
−0.058 ±0.016 ±0.007 5026 1 ACOSTA 05M CDF Epp
m= 1.96 TeV
−0.0346 ±0.0023 137.0K 2 ABBIENDI 01O OPAL Eee
m= 88{94 GeV
−0.0412 ±0.0027 124.4k 3 ACCIARRI 00C L3 Eee
m= 88{94 GeV
−0.0400 ±0.0037 BARATE 00C ALEP Eee
m= 88{94 GeV
−0.0414 ±0.0020 4 ABE 95J SLD Eee
m= 91.31 GeV1ACOSTA 05M determine the forward{ba
kward asymmetry of e+ e− pairs produ
ed viaqq → Z/γ∗ → e+ e− in 15 M(e+ e−) e�e
tive mass bins ranging from 40 GeV to 600GeV. These results are used to obtain the ve
tor and axial{ve
tor 
ouplings of the Z toe+ e−, assuming the quark 
ouplings are as predi
ted by the standard model. Higherorder radiative 
orre
tions have not been taken into a

ount.2ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba
kward lepton asymmetries.3ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba
kward lepton asymmetries.4ABE 95J obtain this result 
ombining polarized Bhabha results with the ALR measure-ment of ABE 94C. The Bhabha results alone give −0.0507 ± 0.0096 ± 0.0020.gµVgµVgµVgµVVALUE EVTS DOCUMENT ID TECN COMMENT
−0.0367±0.0023 OUR FIT−0.0367±0.0023 OUR FIT−0.0367±0.0023 OUR FIT−0.0367±0.0023 OUR FIT
−0.0388+0.0060

−0.0064 182.8K 1 ABBIENDI 01O OPAL Eee
m= 88{94 GeV
−0.0386±0.0073 113.4k 2 ACCIARRI 00C L3 Eee
m= 88{94 GeV
−0.0362±0.0061 BARATE 00C ALEP Eee
m= 88{94 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.0413±0.0060 66143 3 ABBIENDI 01K OPAL Eee
m= 89{93 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba
kward lepton asymmetries.2ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba
kward lepton asymmetries.3ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry whi
htakes into a

ount e�e
ts of initial state radiation on an event by event basis and ofinitial-�nal state interferen
e.g τVg τVg τVg τVVALUE EVTS DOCUMENT ID TECN COMMENT
−0.0366±0.0010 OUR FIT−0.0366±0.0010 OUR FIT−0.0366±0.0010 OUR FIT−0.0366±0.0010 OUR FIT
−0.0365±0.0023 151.5K 1 ABBIENDI 01O OPAL Eee
m= 88{94 GeV
−0.0384±0.0026 103.0k 2 ACCIARRI 00C L3 Eee
m= 88{94 GeV
−0.0361±0.0068 BARATE 00C ALEP Eee
m= 88{94 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba
kward lepton asymmetries.2ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba
kward lepton asymmetries.g ℓVg ℓVg ℓVg ℓVVALUE EVTS DOCUMENT ID TECN COMMENT
−0.03783±0.00041 OUR FIT−0.03783±0.00041 OUR FIT−0.03783±0.00041 OUR FIT−0.03783±0.00041 OUR FIT
−0.0358 ±0.0014 471.3K 1 ABBIENDI 01O OPAL Eee
m= 88{94 GeV
−0.0397 ±0.0020 379.4k 2 ABREU 00F DLPH Eee
m= 88{94 GeV
−0.0397 ±0.0017 340.8k 3 ACCIARRI 00C L3 Eee
m= 88{94 GeV
−0.0383 ±0.0018 500k BARATE 00C ALEP Eee
m= 88{94 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba
kward lepton asymmetries.2Using forward-ba
kward lepton asymmetries.3ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba
kward lepton asymmetries.guVguVguVguVVALUE EVTS DOCUMENT ID TECN COMMENT0.25 +0.07

−0.06 OUR AVERAGE0.25 +0.07
−0.06 OUR AVERAGE0.25 +0.07
−0.06 OUR AVERAGE0.25 +0.07
−0.06 OUR AVERAGE0.201±0.112 156k 1 ABAZOV 11D D0 Epp
m = 1.97 TeV0.27 ±0.13 1500 2 AKTAS 06 H1 e± p → νe (νe )X ,√

s ≈ 300 GeV0.24 +0.28
−0.11 3 LEP-SLC 06 Eee
m = 88{94 GeV0.399+0.152
−0.188±0.066 5026 4 ACOSTA 05M CDF Epp
m= 1.96 TeV



640640640640Gauge & Higgs Boson Parti
le ListingsZ1ABAZOV 11D study pp → Z /γ∗ e+ e− events using 5 fb−1 data at √s = 1.96 TeV.The 
andidate events are sele
ted by requiring two isolated ele
tromagneti
 showers withET > 25 GeV, at least one ele
tron in the 
entral region and the di-ele
tron mass in therange 50{1000 GeV. From the forward-ba
kward asymmetry, determined as a fun
tion ofthe di-ele
tron mass, they derive the axial and ve
tor 
ouplings of the u- and d- quarksand the value of sin2θℓ
eff = 0.2309 ± 0.0008(stat)±0.0006(syst).2AKTAS 06 �t the neutral 
urrent (1.5 ≤ Q2 ≤ 30,000 GeV2) and 
harged 
urrent(1.5 ≤ Q2 ≤ 15,000 GeV2) di�erential 
ross se
tions. In the determination of the u-quark 
ouplings the ele
tron and d-quark 
ouplings are �xed to their standard modelvalues.3 LEP-SLC 06 is a 
ombination of the results from LEP and SLC experiments using lightquark tagging. s- and d-quark 
ouplings are assumed to be identi
al.4ACOSTA 05M determine the forward-ba
kward asymmetry of e+ e− pairs produ
ed viaqq → Z /γ∗ → e+ e− in 15 M(e+ e−) e�e
tive mass bins ranging from 40 GeV to600 GeV. These results are used to obtain the ve
tor and axial-ve
tor 
ouplings of theZ to the light quarks, assuming the ele
tron 
ouplings are as predi
ted by the StandardModel. Higher order radiative 
orre
tions have not been taken into a

ount.gdVgdVgdVgdVVALUE EVTS DOCUMENT ID TECN COMMENT

−0.33 +0.05
−0.06 OUR AVERAGE−0.33 +0.05
−0.06 OUR AVERAGE−0.33 +0.05
−0.06 OUR AVERAGE−0.33 +0.05
−0.06 OUR AVERAGE

−0.351±0.251 156k 1 ABAZOV 11D D0 Epp
m = 1.97 TeV
−0.33 ±0.33 1500 2 AKTAS 06 H1 e± p → νe (νe )X ,√

s ≈ 300 GeV
−0.33 +0.05

−0.07 3 LEP-SLC 06 Eee
m = 88{94 GeV
−0.226+0.635

−0.290±0.090 5026 4 ACOSTA 05M CDF Epp
m= 1.96 TeV1ABAZOV 11D study pp → Z /γ∗ e+ e− events using 5 fb−1 data at √s = 1.96 TeV.The 
andidate events are sele
ted by requiring two isolated ele
tromagneti
 showers withET > 25 GeV, at least one ele
tron in the 
entral region and the di-ele
tron mass in therange 50{1000 GeV. From the forward-ba
kward asymmetry, determined as a fun
tion ofthe di-ele
tron mass, they derive the axial and ve
tor 
ouplings of the u- and d- quarksand the value of sin2θℓ
eff = 0.2309 ± 0.0008(stat)±0.0006(syst).2AKTAS 06 �t the neutral 
urrent (1.5 ≤ Q2 ≤ 30,000 GeV2) and 
harged 
urrent(1.5 ≤ Q2 ≤ 15,000 GeV2) di�erential 
ross se
tions. In the determination of the d-quark 
ouplings the ele
tron and u-quark 
ouplings are �xed to their standard modelvalues.3 LEP-SLC 06 is a 
ombination of the results from LEP and SLC experiments using lightquark tagging. s- and d-quark 
ouplings are assumed to be identi
al.4ACOSTA 05M determine the forward-ba
kward asymmetry of e+ e− pairs produ
ed viaqq → Z /γ∗ → e+ e− in 15 M(e+ e−) e�e
tive mass bins ranging from 40 GeV to600 GeV. These results are used to obtain the ve
tor and axial-ve
tor 
ouplings of theZ to the light quarks, assuming the ele
tron 
ouplings are as predi
ted by the StandardModel. Higher order radiative 
orre
tions have not been taken into a

ount.Z AXIAL-VECTOR COUPLINGSZ AXIAL-VECTOR COUPLINGSZ AXIAL-VECTOR COUPLINGSZ AXIAL-VECTOR COUPLINGSThese quantities are the e�e
tive axial-ve
tor 
ouplings of the Z to 
hargedleptons. Their magnitude is derived from a measurement of the Z line-shape and the forward-ba
kward lepton asymmetries as a fun
tion of en-ergy around the Z mass. The relative sign among the ve
tor to axial-ve
tor
ouplings is obtained from a measurement of the Z asymmetry parame-ters, Ae , Aµ, and Aτ . By 
onvention the sign of geA is �xed to be negative(and opposite to that of gνe obtained using νe s
attering measurements).For the light quarks, the sign of the 
ouplings is assigned 
onsistently withthis assumption. The �t values quoted below 
orrespond to global nine- or�ve-parameter �ts to lineshape, lepton forward-ba
kward asymmetry, andAe , Aµ, and Aτ measurements. See the note \The Z boson" and ref.LEP-SLC 06 for details. Where pp and e p data is quoted, OUR FIT value
orresponds to a weighted average of this with the LEP/SLD �t result.g eAg eAg eAg eAVALUE EVTS DOCUMENT ID TECN COMMENT

−0.50111±0.00035 OUR FIT−0.50111±0.00035 OUR FIT−0.50111±0.00035 OUR FIT−0.50111±0.00035 OUR FIT
−0.528 ±0.123 ±0.059 5026 1 ACOSTA 05M CDF Epp
m= 1.96 TeV
−0.50062±0.00062 137.0K 2 ABBIENDI 01O OPAL Eee
m= 88{94 GeV
−0.5015 ±0.0007 124.4k 3 ACCIARRI 00C L3 Eee
m= 88{94 GeV
−0.50166±0.00057 BARATE 00C ALEP Eee
m= 88{94 GeV
−0.4977 ±0.0045 4 ABE 95J SLD Eee
m= 91.31 GeV1ACOSTA 05M determine the forward{ba
kward asymmetry of e+ e− pairs produ
ed viaqq → Z/γ∗ → e+ e− in 15 M(e+ e−) e�e
tive mass bins ranging from 40 GeV to 600GeV. These results are used to obtain the ve
tor and axial{ve
tor 
ouplings of the Z toe+ e−, assuming the quark 
ouplings are as predi
ted by the standard model. Higherorder radiative 
orre
tions have not been taken into a

ount.2ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba
kward lepton asymmetries.3ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba
kward lepton asymmetries.4ABE 95J obtain this result 
ombining polarized Bhabha results with the ALR measure-ment of ABE 94C. The Bhabha results alone give −0.4968 ± 0.0039 ± 0.0027.

gµAgµAgµAgµAVALUE EVTS DOCUMENT ID TECN COMMENT
−0.50120±0.00054 OUR FIT−0.50120±0.00054 OUR FIT−0.50120±0.00054 OUR FIT−0.50120±0.00054 OUR FIT
−0.50117±0.00099 182.8K 1 ABBIENDI 01O OPAL Eee
m= 88{94 GeV
−0.5009 ±0.0014 113.4k 2 ACCIARRI 00C L3 Eee
m= 88{94 GeV
−0.50046±0.00093 BARATE 00C ALEP Eee
m= 88{94 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.520 ±0.015 66143 3 ABBIENDI 01K OPAL Eee
m= 89{93 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba
kward lepton asymmetries.2ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba
kward lepton asymmetries.3ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry whi
htakes into a

ount e�e
ts of initial state radiation on an event by event basis and ofinitial-�nal state interferen
e.g τAg τAg τAg τAVALUE EVTS DOCUMENT ID TECN COMMENT
−0.50204±0.00064 OUR FIT−0.50204±0.00064 OUR FIT−0.50204±0.00064 OUR FIT−0.50204±0.00064 OUR FIT
−0.50165±0.00124 151.5K 1 ABBIENDI 01O OPAL Eee
m= 88{94 GeV
−0.5023 ±0.0017 103.0k 2 ACCIARRI 00C L3 Eee
m= 88{94 GeV
−0.50216±0.00100 BARATE 00C ALEP Eee
m= 88{94 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba
kward lepton asymmetries.2ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba
kward lepton asymmetries.g ℓAg ℓAg ℓAg ℓAVALUE EVTS DOCUMENT ID TECN COMMENT
−0.50123±0.00026 OUR FIT−0.50123±0.00026 OUR FIT−0.50123±0.00026 OUR FIT−0.50123±0.00026 OUR FIT
−0.50089±0.00045 471.3K 1 ABBIENDI 01O OPAL Eee
m= 88{94 GeV
−0.5007 ±0.0005 379.4k ABREU 00F DLPH Eee
m= 88{94 GeV
−0.50153±0.00053 340.8k 2 ACCIARRI 00C L3 Eee
m= 88{94 GeV
−0.50150±0.00046 500k BARATE 00C ALEP Eee
m= 88{94 GeV1ABBIENDI 01O use their measurement of the τ polarization in addition to the lineshapeand forward-ba
kward lepton asymmetries.2ACCIARRI 00C use their measurement of the τ polarization in addition to forward-ba
kward lepton asymmetries.guAguAguAguAVALUE EVTS DOCUMENT ID TECN COMMENT0.50 +0.04

−0.06 OUR AVERAGE0.50 +0.04
−0.06 OUR AVERAGE0.50 +0.04
−0.06 OUR AVERAGE0.50 +0.04
−0.06 OUR AVERAGE0.501±0.110 156k 1 ABAZOV 11D D0 Epp
m = 1.97 TeV0.57 ±0.08 1500 2 AKTAS 06 H1 e± p → νe (νe )X ,√

s ≈ 300 GeV0.47 +0.05
−0.33 3 LEP-SLC 06 Eee
m = 88{94 GeV0.441+0.207
−0.173±0.067 5026 4 ACOSTA 05M CDF Epp
m= 1.96 TeV1ABAZOV 11D study pp → Z /γ∗ e+ e− events using 5 fb−1 data at √s = 1.96 TeV.The 
andidate events are sele
ted by requiring two isolated ele
tromagneti
 showers withET > 25 GeV, at least one ele
tron in the 
entral region and the di-ele
tron mass in therange 50{1000 GeV. From the forward-ba
kward asymmetry, determined as a fun
tion ofthe di-ele
tron mass, they derive the axial and ve
tor 
ouplings of the u- and d- quarksand the value of sin2θℓ

eff = 0.2309 ± 0.0008(stat)±0.0006(syst).2AKTAS 06 �t the neutral 
urrent (1.5 ≤ Q2 ≤ 30,000 GeV2) and 
harged 
urrent(1.5 ≤ Q2 ≤ 15,000 GeV2) di�erential 
ross se
tions. In the determination of the u-quark 
ouplings the ele
tron and d-quark 
ouplings are �xed to their standard modelvalues.3 LEP-SLC 06 is a 
ombination of the results from LEP and SLC experiments using lightquark tagging. s- and d-quark 
ouplings are assumed to be identi
al.4ACOSTA 05M determine the forward-ba
kward asymmetry of e+ e− pairs produ
ed viaqq → Z /γ∗ → e+ e− in 15 M(e+ e−) e�e
tive mass bins ranging from 40 GeV to600 GeV. These results are used to obtain the ve
tor and axial-ve
tor 
ouplings of theZ to the light quarks, assuming the ele
tron 
ouplings are as predi
ted by the StandardModel. Higher order radiative 
orre
tions have not been taken into a

ount.gdAgdAgdAgdAVALUE EVTS DOCUMENT ID TECN COMMENT
−0.523+0.050

−0.029 OUR AVERAGE−0.523+0.050
−0.029 OUR AVERAGE−0.523+0.050
−0.029 OUR AVERAGE−0.523+0.050
−0.029 OUR AVERAGE

−0.497±0.165 156k 1 ABAZOV 11D D0 Epp
m = 1.97 TeV
−0.80 ±0.24 1500 2 AKTAS 06 H1 e± p → νe (νe )X ,√

s ≈ 300 GeV
−0.52 +0.05

−0.03 3 LEP-SLC 06 Eee
m = 88{94 GeV
−0.016+0.346

−0.536±0.091 5026 4 ACOSTA 05M CDF Epp
m= 1.96 TeV1ABAZOV 11D study pp → Z /γ∗ e+ e− events using 5 fb−1 data at √s = 1.96 TeV.The 
andidate events are sele
ted by requiring two isolated ele
tromagneti
 showers withET > 25 GeV, at least one ele
tron in the 
entral region and the di-ele
tron mass in therange 50{1000 GeV. From the forward-ba
kward asymmetry, determined as a fun
tion ofthe di-ele
tron mass, they derive the axial and ve
tor 
ouplings of the u- and d- quarksand the value of sin2θℓ
eff = 0.2309 ± 0.0008(stat)±0.0006(syst).



641641641641See key on page 601 Gauge&HiggsBosonParti
leListingsZ2AKTAS 06 �t the neutral 
urrent (1.5 ≤ Q2 ≤ 30,000 GeV2) and 
harged 
urrent(1.5 ≤ Q2 ≤ 15,000 GeV2) di�erential 
ross se
tions. In the determination of the d-quark 
ouplings the ele
tron and u-quark 
ouplings are �xed to their standard modelvalues.3 LEP-SLC 06 is a 
ombination of the results from LEP and SLC experiments using lightquark tagging. s- and d-quark 
ouplings are assumed to be identi
al.4ACOSTA 05M determine the forward-ba
kward asymmetry of e+ e− pairs produ
ed viaqq → Z /γ∗ → e+ e− in 15 M(e+ e−) e�e
tive mass bins ranging from 40 GeV to600 GeV. These results are used to obtain the ve
tor and axial-ve
tor 
ouplings of theZ to the light quarks, assuming the ele
tron 
ouplings are as predi
ted by the StandardModel. Higher order radiative 
orre
tions have not been taken into a

ount.Z COUPLINGS TO NEUTRAL LEPTONSZ COUPLINGS TO NEUTRAL LEPTONSZ COUPLINGS TO NEUTRAL LEPTONSZ COUPLINGS TO NEUTRAL LEPTONSAveraging over neutrino spe
ies, the invisible Z de
ay width determinesthe e�e
tive neutrino 
oupling gνℓ . For gνe and gνµ , νe e and νµ es
attering results are 
ombined with geA and geV measurements at the Zmass to obtain gνe and gνµ following NOVIKOV 93C.gνℓgνℓgνℓgνℓVALUE DOCUMENT ID COMMENT0.50076±0.000760.50076±0.000760.50076±0.000760.50076±0.00076 1 LEP-SLC 06 Eee
m = 88{94 GeV1From invisible Z -de
ay width.gνegνegνegνeVALUE DOCUMENT ID TECN COMMENT0.528±0.0850.528±0.0850.528±0.0850.528±0.085 1 VILAIN 94 CHM2 From νµ e and νe e s
attering1VILAIN 94 derive this value from their value of gνµ and their ratio gνe /gνµ =1.05+0.15
−0.18.gνµgνµgνµgνµVALUE DOCUMENT ID TECN COMMENT0.502±0.0170.502±0.0170.502±0.0170.502±0.017 1 VILAIN 94 CHM2 From νµ e s
attering1VILAIN 94 derive this value from their measurement of the 
ouplings ge νµA = −0.503 ±0.017 and ge νµV = −0.035± 0.017 obtained from νµ e s
attering. We have re-evaluatedthis value using the 
urrent PDG values for geA and geV .Z ASYMMETRY PARAMETERSZ ASYMMETRY PARAMETERSZ ASYMMETRY PARAMETERSZ ASYMMETRY PARAMETERSFor ea
h fermion-antifermion pair 
oupling to the Z these quantities arede�ned as Af = 2g fV g fA(g fV )2 + (g fA)2where gfV and gfA are the e�e
tive ve
tor and axial-ve
tor 
ouplings. Fortheir relation to the various lepton asymmetries see the note \The Z bo-son" and ref. LEP-SLC 06.AeAeAeAe Using polarized beams, this quantity 
an also be measured as (σL − σR )/ (σL + σR ),where σL and σR are the e+ e− produ
tion 
ross se
tions for Z bosons produ
ed withleft-handed and right-handed ele
trons respe
tively.VALUE EVTS DOCUMENT ID TECN COMMENT0.1515±0.0019 OUR AVERAGE0.1515±0.0019 OUR AVERAGE0.1515±0.0019 OUR AVERAGE0.1515±0.0019 OUR AVERAGE0.1454±0.0108±0.0036 144810 1 ABBIENDI 01O OPAL Eee
m= 88{94 GeV0.1516±0.0021 559000 2 ABE 01B SLD Eee
m= 91.24 GeV0.1504±0.0068±0.0008 3 HEISTER 01 ALEP Eee
m= 88{94 GeV0.1382±0.0116±0.0005 105000 4 ABREU 00E DLPH Eee
m= 88{94 GeV0.1678±0.0127±0.0030 137092 5 ACCIARRI 98H L3 Eee
m= 88{94 GeV0.162 ±0.041 ±0.014 89838 6 ABE 97 SLD Eee
m= 91.27 GeV0.202 ±0.038 ±0.008 7 ABE 95J SLD Eee
m= 91.31 GeV1ABBIENDI 01O �t for Ae and Aτ from measurements of the τ polarization at varying

τ produ
tion angles. The 
orrelation between Ae and Aτ is less than 0.03.2ABE 01B use the left-right produ
tion and left-right forward-ba
kward de
ay asymmetriesin leptoni
 Z de
ays to obtain a value of 0.1544 ± 0.0060. This is 
ombined with left-right produ
tion asymmetry measurement using hadroni
 Z de
ays (ABE 00B) to obtainthe quoted value.3HEISTER 01 obtain this result �tting the τ polarization as a fun
tion of the polarprodu
tion angle of the τ .4ABREU 00E obtain this result �tting the τ polarization as a fun
tion of the polar
τ produ
tion angle. This measurement is a 
ombination of di�erent analyses (ex
lu-sive τ de
ay modes, in
lusive hadroni
 1-prong re
onstru
tion, and a neural networkanalysis).5Derived from the measurement of forward-ba
kward τ polarization asymmetry.6ABE 97 obtain this result from a measurement of the observed left-right 
hargeasymmetry, AobsQ = 0.225 ± 0.056 ± 0.019, in hadroni
 Z de
ays. If they 
ombinethis value of AobsQ with their earlier measurement of Aobs

LR
they determine Ae to be0.1574 ± 0.0197 ± 0.0067 independent of the beam polarization.7ABE 95J obtain this result from polarized Bhabha s
attering.

AµAµAµAµ This quantity is dire
tly extra
ted from a measurement of the left-right forward-ba
kward asymmetry in µ+µ− produ
tion at SLC using a polarized ele
tron beam.This double asymmetry eliminates the dependen
e on the Z -e-e 
oupling parameterAe .VALUE EVTS DOCUMENT ID TECN COMMENT0.142±0.0150.142±0.0150.142±0.0150.142±0.015 16844 1 ABE 01B SLD Eee
m= 91.24 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.153±0.012 1.7M 2 AAD 15BT ATLS Epp
m = 7 TeV1ABE 01B obtain this dire
t measurement using the left-right produ
tion and left-rightforward-ba
kward polar angle asymmetries in µ+µ− de
ays of the Z boson obtainedwith a polarized ele
tron beam.2AAD 15BT study pp → Z → ℓ+ ℓ− events where ℓ is an ele
tron or a muon in thedilepton mass region 70{1000 GeV. The ba
kground in the Z peak region is estimatedto be < 1% for the muon 
hannel. The muon asymmetry parameter is derived fromthe measured forward-ba
kward asymmetry assuming the value of the quark asymmetryparameter from the SM. For this reason it is not used in the average.AτAτAτAτ The LEP Collaborations derive this quantity from the measurement of the τ polariza-tion in Z → τ+ τ−. The SLD Collaboration dire
tly extra
ts this quantity from itsmeasured left-right forward-ba
kward asymmetry in Z → τ+ τ− produ
ed using apolarized e− beam. This double asymmetry eliminates the dependen
e on the Z -e-e
oupling parameter Ae .VALUE EVTS DOCUMENT ID TECN COMMENT0.143 ±0.004 OUR AVERAGE0.143 ±0.004 OUR AVERAGE0.143 ±0.004 OUR AVERAGE0.143 ±0.004 OUR AVERAGE0.1456±0.0076±0.0057 144810 1 ABBIENDI 01O OPAL Eee
m= 88{94 GeV0.136 ±0.015 16083 2 ABE 01B SLD Eee
m= 91.24 GeV0.1451±0.0052±0.0029 3 HEISTER 01 ALEP Eee
m= 88{94 GeV0.1359±0.0079±0.0055 105000 4 ABREU 00E DLPH Eee
m= 88{94 GeV0.1476±0.0088±0.0062 137092 ACCIARRI 98H L3 Eee
m= 88{94 GeV1ABBIENDI 01O �t for Ae and Aτ from measurements of the τ polarization at varying

τ produ
tion angles. The 
orrelation between Ae and Aτ is less than 0.03.2ABE 01B obtain this dire
t measurement using the left-right produ
tion and left-rightforward-ba
kward polar angle asymmetries in τ+ τ− de
ays of the Z boson obtainedwith a polarized ele
tron beam.3HEISTER 01 obtain this result �tting the τ polarization as a fun
tion of the polarprodu
tion angle of the τ .4ABREU 00E obtain this result �tting the τ polarization as a fun
tion of the polar
τ produ
tion angle. This measurement is a 
ombination of di�erent analyses (ex
lu-sive τ de
ay modes, in
lusive hadroni
 1-prong re
onstru
tion, and a neural networkanalysis).AsAsAsAs The SLD Collaboration dire
tly extra
ts this quantity by a simultaneous �t to fourmeasured s-quark polar angle distributions 
orresponding to two states of e− polar-ization (positive and negative) and to the K+K− and K±K0S strange parti
le taggingmodes in the hadroni
 �nal states.VALUE EVTS DOCUMENT ID TECN COMMENT0.895±0.066±0.0620.895±0.066±0.0620.895±0.066±0.0620.895±0.066±0.062 2870 1 ABE 00D SLD Eee
m= 91.2 GeV1ABE 00D tag Z → s s events by an absen
e of B or D hadrons and the presen
e in ea
hhemisphere of a high momentum K± or K0S .A
A
A
A
 This quantity is dire
tly extra
ted from a measurement of the left-right forward-ba
kward asymmetry in 
 
 produ
tion at SLC using polarized ele
tron beam. Thisdouble asymmetry eliminates the dependen
e on the Z -e-e 
oupling parameter Ae .OUR FIT is obtained by a simultaneous �t to several 
- and b-quark measurementsas explained in the note \The Z boson" and ref. LEP-SLC 06.VALUE DOCUMENT ID TECN COMMENT0.670 ±0.027 OUR FIT0.670 ±0.027 OUR FIT0.670 ±0.027 OUR FIT0.670 ±0.027 OUR FIT0.6712±0.0224±0.0157 1 ABE 05 SLD Eee
m= 91.24 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.583 ±0.055 ±0.055 2 ABE 02G SLD Eee
m= 91.24 GeV0.688 ±0.041 3 ABE 01C SLD Eee
m= 91.25 GeV1ABE 05 use hadroni
 Z de
ays 
olle
ted during 1996{98 to obtain an enri
hed sample of
 
 events tagging on the invariant mass of re
onstru
ted se
ondary de
ay verti
es. The
harge of the underlying 
{quark is obtained with an algorithm that takes into a

ountthe net 
harge of the vertex as well as the 
harge of tra
ks emanating from the vertex andidenti�ed as kaons. This yields (9970 events) A
 = 0.6747 ± 0.0290 ± 0.0233. Takinginto a

ount all 
orrelations with earlier results reported in ABE 02G and ABE 01C, theyobtain the quoted overall SLD result.2ABE 02G tag b and 
 quarks through their semileptoni
 de
ays into ele
trons and muons.A maximum likelihood �t is performed to extra
t simultaneously Ab and A
 .3ABE 01C tag Z → 
 
 events using two te
hniques: ex
lusive re
onstru
tion of D∗+, D+and D0 mesons and the soft pion tag for D∗+ → D0π+. The large ba
kground fromD mesons produ
ed in bb events is separated eÆ
iently from the signal using pre
isionvertex information. When 
ombining the A
 values from these two samples, 
are is takento avoid double 
ounting of events 
ommon to the two samples, and 
ommon systemati
errors are properly taken into a

ount.
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tly extra
ted from a measurement of the left-right forward-ba
kward asymmetry in bb produ
tion at SLC using polarized ele
tron beam. Thisdouble asymmetry eliminates the dependen
e on the Z -e-e 
oupling parameter Ae .OUR FIT is obtained by a simultaneous �t to several 
- and b-quark measurementsas explained in the note \The Z boson" and ref. LEP-SLC 06.VALUE EVTS DOCUMENT ID TECN COMMENT0.923 ±0.020 OUR FIT0.923 ±0.020 OUR FIT0.923 ±0.020 OUR FIT0.923 ±0.020 OUR FIT0.9170±0.0147±0.0145 1 ABE 05 SLD Eee
m= 91.24 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.907 ±0.020 ±0.024 48028 2 ABE 03F SLD Eee
m= 91.24 GeV0.919 ±0.030 ±0.024 3 ABE 02G SLD Eee
m= 91.24 GeV0.855 ±0.088 ±0.102 7473 4 ABE 99L SLD Eee
m= 91.27 GeV1ABE 05 use hadroni
 Z de
ays 
olle
ted during 1996{98 to obtain an enri
hed sample ofbb events tagging on the invariant mass of re
onstru
ted se
ondary de
ay verti
es. The
harge of the underlying b{quark is obtained with an algorithm that takes into a

ountthe net 
harge of the vertex as well as the 
harge of tra
ks emanating from the vertexand identi�ed as kaons. This yields (25917 events) Ab = 0.9173 ± 0.0184 ± 0.0173.Taking into a

ount all 
orrelations with earlier results reported in ABE 03F, ABE 02Gand ABE 99L, they obtain the quoted overall SLD result.2ABE 03F obtain an enri
hed sample of bb events tagging on the invariant mass of a3-dimensional topologi
ally re
onstru
ted se
ondary de
ay. The 
harge of the underlyingb quark is obtained using a self-
alibrating tra
k-
harge method. For the 1996{1998 datasample they measure Ab = 0.906 ± 0.022 ± 0.023. The value quoted here is obtained
ombining the above with the result of ABE 98I (1993{1995 data sample).3ABE 02G tag b and 
 quarks through their semileptoni
 de
ays into ele
trons and muons.A maximum likelihood �t is performed to extra
t simultaneously Ab and A
 .4ABE 99L obtain an enri
hed sample of bb events tagging with an in
lusive vertex mass
ut. For distinguishing b and b quarks they use the 
harge of identi�ed K±.TRANSVERSE SPIN CORRELATIONS IN Z → τ+ τ−TRANSVERSE SPIN CORRELATIONS IN Z → τ+ τ−TRANSVERSE SPIN CORRELATIONS IN Z → τ+ τ−TRANSVERSE SPIN CORRELATIONS IN Z → τ+ τ−The 
orrelations between the transverse spin 
omponents of τ+ τ− pro-du
ed in Z de
ays may be expressed in terms of the ve
tor and axial-ve
tor
ouplings:CTT = ∣∣gτA∣∣2−∣∣gτV ∣∣2

∣∣gτA∣∣2+∣∣gτV ∣∣2CTN = −2 ∣∣gτA∣∣∣∣gτV ∣∣
∣∣gτA∣∣2+∣∣gτV ∣∣2 sin(�gτV −�gτA )CTT refers to the transverse-transverse (within the 
ollision plane) spin
orrelation and CTN refers to the transverse-normal (to the 
ollision plane)spin 
orrelation.The longitudinal τ polarization Pτ (= −Aτ ) is given by:Pτ = −2 ∣∣gτA∣∣∣∣gτV ∣∣

∣∣gτA∣∣2+∣∣gτV ∣∣2 
os(�gτV −�gτA )Here � is the phase and the phase di�eren
e �gτV −�gτA 
an be obtainedusing both the measurements of CTN and Pτ .CTTCTTCTTCTTVALUE EVTS DOCUMENT ID TECN COMMENT1.01±0.12 OUR AVERAGE1.01±0.12 OUR AVERAGE1.01±0.12 OUR AVERAGE1.01±0.12 OUR AVERAGE0.87±0.20+0.10
−0.12 9.1k ABREU 97G DLPH Eee
m= 91.2 GeV1.06±0.13±0.05 120k BARATE 97D ALEP Eee
m= 91.2 GeVCTNCTNCTNCTNVALUE EVTS DOCUMENT ID TECN COMMENT0.08±0.13±0.040.08±0.13±0.040.08±0.13±0.040.08±0.13±0.04 120k 1 BARATE 97D ALEP Eee
m= 91.2 GeV1BARATE 97D 
ombine their value of CTN with the world average Pτ = −0.140± 0.007to obtain tan(�gτV − �gτA) = −0.57 ± 0.97.FORWARD-BACKWARD e+ e− → f f CHARGE ASYMMETRIESFORWARD-BACKWARD e+ e− → f f CHARGE ASYMMETRIESFORWARD-BACKWARD e+ e− → f f CHARGE ASYMMETRIESFORWARD-BACKWARD e+ e− → f f CHARGE ASYMMETRIESThese asymmetries are experimentally determined by tagging the respe
-tive lepton or quark 
avor in e+ e− intera
tions. Details of heavy 
a-vor (
- or b-quark) tagging at LEP are des
ribed in the note on \TheZ boson" and ref. LEP-SLC 06. The Standard Model predi
tions for LEPdata have been (re)
omputed using the ZFITTER pa
kage (version 6.36)with input parameters MZ=91.187 GeV, Mtop=174.3 GeV, MHiggs=150GeV, αs=0.119, α(5) (MZ )= 1/128.877 and the Fermi 
onstant GF=1.16637× 10−5 GeV−2 (see the note on \The Z boson" for referen
es).For non-LEP data the Standard Model predi
tions are as given by theauthors of the respe
tive publi
ations.A(0,e)FB CHARGE ASYMMETRY IN e+ e− → e+ e−A(0,e)FB CHARGE ASYMMETRY IN e+ e− → e+ e−A(0,e)FB CHARGE ASYMMETRY IN e+ e− → e+ e−A(0,e)FB CHARGE ASYMMETRY IN e+ e− → e+ e−OUR FIT is obtained using the �t pro
edure and 
orrelations as determinedby the LEP Ele
troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06). For the Z peak, we report the pole asymmetry de�nedby (3/4)A2e as determined by the nine-parameter �t to 
ross-se
tion andlepton forward-ba
kward asymmetry data.

STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN1.45±0.25 OUR FIT1.45±0.25 OUR FIT1.45±0.25 OUR FIT1.45±0.25 OUR FIT0.89±0.44 1.57 91.2 1 ABBIENDI 01A OPAL1.71±0.49 1.57 91.2 ABREU 00F DLPH1.06±0.58 1.57 91.2 ACCIARRI 00C L31.88±0.34 1.57 91.2 2 BARATE 00C ALEP1ABBIENDI 01A error in
ludes approximately 0.38 due to statisti
s, 0.16 due to eventsele
tion systemati
s, and 0.18 due to the theoreti
al un
ertainty in t-
hannel predi
tion.2BARATE 00C error in
ludes approximately 0.31 due to statisti
s, 0.06 due to experimentalsystemati
s, and 0.13 due to the theoreti
al un
ertainty in t-
hannel predi
tion.A(0,µ)FB CHARGE ASYMMETRY IN e+ e− → µ+µ−A(0,µ)FB CHARGE ASYMMETRY IN e+ e− → µ+µ−A(0,µ)FB CHARGE ASYMMETRY IN e+ e− → µ+µ−A(0,µ)FB CHARGE ASYMMETRY IN e+ e− → µ+µ−OUR FIT is obtained using the �t pro
edure and 
orrelations as determinedby the LEP Ele
troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06). For the Z peak, we report the pole asymmetry de�nedby (3/4)AeAµ as determined by the nine-parameter �t to 
ross-se
tionand lepton forward-ba
kward asymmetry data.STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN1.69± 0.13 OUR FIT1.69± 0.13 OUR FIT1.69± 0.13 OUR FIT1.69± 0.13 OUR FIT1.59± 0.23 1.57 91.2 1 ABBIENDI 01A OPAL1.65± 0.25 1.57 91.2 ABREU 00F DLPH1.88± 0.33 1.57 91.2 ACCIARRI 00C L31.71± 0.24 1.57 91.2 2 BARATE 00C ALEP
• • • We do not use the following data for averages, �ts, limits, et
. • • •9 ±30 −1.3 20 3 ABREU 95M DLPH7 ±26 −8.3 40 3 ABREU 95M DLPH
−11 ±33 −24.1 57 3 ABREU 95M DLPH
−62 ±17 −44.6 69 3 ABREU 95M DLPH
−56 ±10 −63.5 79 3 ABREU 95M DLPH
−13 ± 5 −34.4 87.5 3 ABREU 95M DLPH
−29.0 + 5.0

− 4.8 ±0.5 −32.1 56.9 4 ABE 90I VNS
− 9.9 ± 1.5 ±0.5 −9.2 35 HEGNER 90 JADE0.05± 0.22 0.026 91.14 5 ABRAMS 89D MRK2
−43.4 ±17.0 −24.9 52.0 6 BACALA 89 AMY
−11.0 ±16.5 −29.4 55.0 6 BACALA 89 AMY
−30.0 ±12.4 −31.2 56.0 6 BACALA 89 AMY
−46.2 ±14.9 −33.0 57.0 6 BACALA 89 AMY
−29 ±13 −25.9 53.3 ADACHI 88C TOPZ+ 5.3 ± 5.0 ±0.5 −1.2 14.0 ADEVA 88 MRKJ
−10.4 ± 1.3 ±0.5 −8.6 34.8 ADEVA 88 MRKJ
−12.3 ± 5.3 ±0.5 −10.7 38.3 ADEVA 88 MRKJ
−15.6 ± 3.0 ±0.5 −14.9 43.8 ADEVA 88 MRKJ
− 1.0 ± 6.0 −1.2 13.9 BRAUNSCH... 88D TASS
− 9.1 ± 2.3 ±0.5 −8.6 34.5 BRAUNSCH... 88D TASS
−10.6 + 2.2

− 2.3 ±0.5 −8.9 35.0 BRAUNSCH... 88D TASS
−17.6 + 4.4

− 4.3 ±0.5 −15.2 43.6 BRAUNSCH... 88D TASS
− 4.8 ± 6.5 ±1.0 −11.5 39 BEHREND 87C CELL
−18.8 ± 4.5 ±1.0 −15.5 44 BEHREND 87C CELL+ 2.7 ± 4.9 −1.2 13.9 BARTEL 86C JADE
−11.1 ± 1.8 ±1.0 −8.6 34.4 BARTEL 86C JADE
−17.3 ± 4.8 ±1.0 −13.7 41.5 BARTEL 86C JADE
−22.8 ± 5.1 ±1.0 −16.6 44.8 BARTEL 86C JADE
− 6.3 ± 0.8 ±0.2 −6.3 29 ASH 85 MAC
− 4.9 ± 1.5 ±0.5 −5.9 29 DERRICK 85 HRS
− 7.1 ± 1.7 −5.7 29 LEVI 83 MRK2
−16.1 ± 3.2 −9.2 34.2 BRANDELIK 82C TASS1ABBIENDI 01A error is almost entirely on a

ount of statisti
s.2BARATE 00C error is almost entirely on a

ount of statisti
s.3ABREU 95M perform this measurement using radiative muon-pair events asso
iated withhigh-energy isolated photons.4ABE 90I measurements in the range 50 ≤

√s ≤ 60.8 GeV.5ABRAMS 89D asymmetry in
ludes both 9 µ+µ− and 15 τ+ τ− events.6BACALA 89 systemati
 error is about 5%.A(0,τ)FB CHARGE ASYMMETRY IN e+ e− → τ+ τ−A(0,τ)FB CHARGE ASYMMETRY IN e+ e− → τ+ τ−A(0,τ)FB CHARGE ASYMMETRY IN e+ e− → τ+ τ−A(0,τ)FB CHARGE ASYMMETRY IN e+ e− → τ+ τ−OUR FIT is obtained using the �t pro
edure and 
orrelations as determinedby the LEP Ele
troweak Working Group (see the note \The Z boson" andref. LEP-SLC 06). For the Z peak, we report the pole asymmetry de�nedby (3/4)AeAτ as determined by the nine-parameter �t to 
ross-se
tionand lepton forward-ba
kward asymmetry data.STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN1.88± 0.17 OUR FIT1.88± 0.17 OUR FIT1.88± 0.17 OUR FIT1.88± 0.17 OUR FIT1.45± 0.30 1.57 91.2 1 ABBIENDI 01A OPAL2.41± 0.37 1.57 91.2 ABREU 00F DLPH2.60± 0.47 1.57 91.2 ACCIARRI 00C L31.70± 0.28 1.57 91.2 2 BARATE 00C ALEP
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• • • We do not use the following data for averages, �ts, limits, et
. • • •

−32.8 + 6.4
− 6.2 ±1.5 −32.1 56.9 3 ABE 90I VNS

− 8.1 ± 2.0 ±0.6 −9.2 35 HEGNER 90 JADE
−18.4 ±19.2 −24.9 52.0 4 BACALA 89 AMY
−17.7 ±26.1 −29.4 55.0 4 BACALA 89 AMY
−45.9 ±16.6 −31.2 56.0 4 BACALA 89 AMY
−49.5 ±18.0 −33.0 57.0 4 BACALA 89 AMY
−20 ±14 −25.9 53.3 ADACHI 88C TOPZ
−10.6 ± 3.1 ±1.5 −8.5 34.7 ADEVA 88 MRKJ
− 8.5 ± 6.6 ±1.5 −15.4 43.8 ADEVA 88 MRKJ
− 6.0 ± 2.5 ±1.0 8.8 34.6 BARTEL 85F JADE
−11.8 ± 4.6 ±1.0 14.8 43.0 BARTEL 85F JADE
− 5.5 ± 1.2 ±0.5 −0.063 29.0 FERNANDEZ 85 MAC
− 4.2 ± 2.0 0.057 29 LEVI 83 MRK2
−10.3 ± 5.2 −9.2 34.2 BEHREND 82 CELL
− 0.4 ± 6.6 −9.1 34.2 BRANDELIK 82C TASS1ABBIENDI 01A error in
ludes approximately 0.26 due to statisti
s and 0.14 due to eventsele
tion systemati
s.2BARATE 00C error in
ludes approximately 0.26 due to statisti
s and 0.11 due to exper-imental systemati
s.3ABE 90I measurements in the range 50 ≤

√s ≤ 60.8 GeV.4BACALA 89 systemati
 error is about 5%.A(0,ℓ)FB CHARGE ASYMMETRY IN e+ e− → ℓ+ ℓ−A(0,ℓ)FB CHARGE ASYMMETRY IN e+ e− → ℓ+ ℓ−A(0,ℓ)FB CHARGE ASYMMETRY IN e+ e− → ℓ+ ℓ−A(0,ℓ)FB CHARGE ASYMMETRY IN e+ e− → ℓ+ ℓ−For the Z peak, we report the pole asymmetry de�ned by (3/4)A2
ℓ
asdetermined by the �ve-parameter �t to 
ross-se
tion and lepton forward-ba
kward asymmetry data assuming lepton universality. For details seethe note \The Z boson" and ref. LEP-SLC 06.STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN1.71±0.10 OUR FIT1.71±0.10 OUR FIT1.71±0.10 OUR FIT1.71±0.10 OUR FIT1.45±0.17 1.57 91.2 1 ABBIENDI 01A OPAL1.87±0.19 1.57 91.2 ABREU 00F DLPH1.92±0.24 1.57 91.2 ACCIARRI 00C L31.73±0.16 1.57 91.2 2 BARATE 00C ALEP1ABBIENDI 01A error in
ludes approximately 0.15 due to statisti
s, 0.06 due to eventsele
tion systemati
s, and 0.03 due to the theoreti
al un
ertainty in t-
hannel predi
tion.2BARATE 00C error in
ludes approximately 0.15 due to statisti
s, 0.04 due to experimentalsystemati
s, and 0.02 due to the theoreti
al un
ertainty in t-
hannel predi
tion.A(0,u)FB CHARGE ASYMMETRY IN e+ e− → uuA(0,u)FB CHARGE ASYMMETRY IN e+ e− → uuA(0,u)FB CHARGE ASYMMETRY IN e+ e− → uuA(0,u)FB CHARGE ASYMMETRY IN e+ e− → uuSTD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN4.0±6.7±2.84.0±6.7±2.84.0±6.7±2.84.0±6.7±2.8 7.27.27.27.2 91.291.291.291.2 1 ACKERSTAFF 97T OPAL1ACKERSTAFF 97T measure the forward-ba
kward asymmetry of various fast hadronsmade of light quarks. Then using SU(2) isospin symmetry and 
avor independen
e fordown and strange quarks authors solve for the di�erent quark types.A(0,s)FB CHARGE ASYMMETRY IN e+ e− → s sA(0,s)FB CHARGE ASYMMETRY IN e+ e− → s sA(0,s)FB CHARGE ASYMMETRY IN e+ e− → s sA(0,s)FB CHARGE ASYMMETRY IN e+ e− → s sThe s-quark asymmetry is derived from measurements of the forward-ba
kward asymmetry of fast hadrons 
ontaining an s quark.STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN9.8 ±1.1 OUR AVERAGE9.8 ±1.1 OUR AVERAGE9.8 ±1.1 OUR AVERAGE9.8 ±1.1 OUR AVERAGE10.08±1.13±0.40 10.1 91.2 1 ABREU 00B DLPH6.8 ±3.5 ±1.1 10.1 91.2 2 ACKERSTAFF 97T OPAL1ABREU 00B tag the presen
e of an s quark requiring a high-momentum-identi�ed 
hargedkaon. The s-quark pole asymmetry is extra
ted from the 
harged-kaon asymmetry tak-ing the expe
ted d- and u-quark asymmetries from the Standard Model and using themeasured values for the 
- and b-quark asymmetries.2ACKERSTAFF 97T measure the forward-ba
kward asymmetry of various fast hadronsmade of light quarks. Then using SU(2) isospin symmetry and 
avor independen
e fordown and strange quarks authors solve for the di�erent quark types. The value reportedhere 
orresponds then to the forward-ba
kward asymmetry for \down-type" quarks.A(0,
)FB CHARGE ASYMMETRY IN e+ e− → 
 
A(0,
)FB CHARGE ASYMMETRY IN e+ e− → 
 
A(0,
)FB CHARGE ASYMMETRY IN e+ e− → 
 
A(0,
)FB CHARGE ASYMMETRY IN e+ e− → 
 
OUR FIT, whi
h is obtained by a simultaneous �t to several 
- and b-quark measurements as explained in the note \The Z boson" and ref.LEP-SLC 06, refers to the Z poleZ poleZ poleZ pole asymmetry. The experimental values,on the other hand, 
orrespond to the measurements 
arried out at therespe
tive energies. STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN7.07± 0.35 OUR FIT7.07± 0.35 OUR FIT7.07± 0.35 OUR FIT7.07± 0.35 OUR FIT6.31± 0.93±0.65 6.35 91.26 1 ABDALLAH 04F DLPH5.68± 0.54±0.39 6.3 91.25 2 ABBIENDI 03P OPAL6.45± 0.57±0.37 6.10 91.21 3 HEISTER 02H ALEP6.59± 0.94±0.35 6.2 91.235 4 ABREU 99Y DLPH6.3 ± 0.9 ±0.3 6.1 91.22 5 BARATE 98O ALEP6.3 ± 1.2 ±0.6 6.1 91.22 6 ALEXANDER 97C OPAL8.3 ± 3.8 ±2.7 6.2 91.24 7 ADRIANI 92D L3

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.1 ± 3.5 ±0.5 −3.5 89.43 1 ABDALLAH 04F DLPH11.0 ± 2.8 ±0.7 12.3 92.99 1 ABDALLAH 04F DLPH
− 6.8 ± 2.5 ±0.9 −3.0 89.51 2 ABBIENDI 03P OPAL14.6 ± 2.0 ±0.8 12.2 92.95 2 ABBIENDI 03P OPAL
−12.4 ±15.9 ±2.0 −9.6 88.38 3 HEISTER 02H ALEP
− 2.3 ± 2.6 ±0.2 −3.8 89.38 3 HEISTER 02H ALEP
− 0.3 ± 8.3 ±0.6 0.9 90.21 3 HEISTER 02H ALEP10.6 ± 7.7 ±0.7 9.6 92.05 3 HEISTER 02H ALEP11.9 ± 2.1 ±0.6 12.2 92.94 3 HEISTER 02H ALEP12.1 ±11.0 ±1.0 14.2 93.90 3 HEISTER 02H ALEP
− 4.96± 3.68±0.53 −3.5 89.434 4 ABREU 99Y DLPH11.80± 3.18±0.62 12.3 92.990 4 ABREU 99Y DLPH
− 1.0 ± 4.3 ±1.0 −3.9 89.37 5 BARATE 98O ALEP11.0 ± 3.3 ±0.8 12.3 92.96 5 BARATE 98O ALEP3.9 ± 5.1 ±0.9 −3.4 89.45 6 ALEXANDER 97C OPAL15.8 ± 4.1 ±1.1 12.4 93.00 6 ALEXANDER 97C OPAL
−12.9 ± 7.8 ±5.5 −13.6 35 BEHREND 90D CELL7.7 ±13.4 ±5.0 −22.1 43 BEHREND 90D CELL
−12.8 ± 4.4 ±4.1 −13.6 35 ELSEN 90 JADE
−10.9 ±12.9 ±4.6 −23.2 44 ELSEN 90 JADE
−14.9 ± 6.7 −13.3 35 OULD-SAADA 89 JADE1ABDALLAH 04F tag b{ and 
{quarks using semileptoni
 de
ays 
ombined with 
harge
ow information from the hemisphere opposite to the lepton. Enri
hed samples of 
 
and bb events are obtained using lifetime information.2ABBIENDI 03P tag heavy 
avors using events with one or two identi�ed leptons. Thisallows the simultaneous �tting of the b and 
 quark forward-ba
kward asymmetries aswell as the average B0-B0 mixing.3HEISTER 02H measure simultaneously b and 
 quark forward-ba
kward asymmetriesusing their semileptoni
 de
ays to tag the quark 
harge. The 
avor separation is obtainedwith a dis
riminating multivariate analysis.4ABREU 99Y tag Z → bb and Z → 
 
 events by an ex
lusive re
onstru
tion of severalD meson de
ay modes (D∗+, D0, and D+ with their 
harge-
onjugate states).5BARATE 98O tag Z → 
 
 events requiring the presen
e of high-momentum re
on-stru
ted D∗+, D+, or D0 mesons.6ALEXANDER 97C identify the b and 
 events using a D/D∗ tag.7ADRIANI 92D use both ele
tron and muon semileptoni
 de
ays.A(0,b)FB CHARGE ASYMMETRY IN e+ e− → bbA(0,b)FB CHARGE ASYMMETRY IN e+ e− → bbA(0,b)FB CHARGE ASYMMETRY IN e+ e− → bbA(0,b)FB CHARGE ASYMMETRY IN e+ e− → bbOUR FIT, whi
h is obtained by a simultaneous �t to several 
- and b-quark measurements as explained in the note \The Z boson" and ref.LEP-SLC 06, refers to the Z poleZ poleZ poleZ pole asymmetry. The experimental values,on the other hand, 
orrespond to the measurements 
arried out at therespe
tive energies. STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN9.92± 0.16 OUR FIT9.92± 0.16 OUR FIT9.92± 0.16 OUR FIT9.92± 0.16 OUR FIT9.58± 0.32± 0.14 9.68 91.231 1 ABDALLAH 05 DLPH10.04± 0.56± 0.25 9.69 91.26 2 ABDALLAH 04F DLPH9.72± 0.42± 0.15 9.67 91.25 3 ABBIENDI 03P OPAL9.77± 0.36± 0.18 9.69 91.26 4 ABBIENDI 02I OPAL9.52± 0.41± 0.17 9.59 91.21 5 HEISTER 02H ALEP10.00± 0.27± 0.11 9.63 91.232 6 HEISTER 01D ALEP7.62± 1.94± 0.85 9.64 91.235 7 ABREU 99Y DLPH9.60± 0.66± 0.33 9.69 91.26 8 ACCIARRI 99D L39.31± 1.01± 0.55 9.65 91.24 9 ACCIARRI 98U L39.4 ± 2.7 ± 2.2 9.61 91.22 10 ALEXANDER 97C OPAL
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.37± 1.43± 0.17 5.8 89.449 1 ABDALLAH 05 DLPH10.41± 1.15± 0.24 12.1 92.990 1 ABDALLAH 05 DLPH6.7 ± 2.2 ± 0.2 5.7 89.43 2 ABDALLAH 04F DLPH11.2 ± 1.8 ± 0.2 12.1 92.99 2 ABDALLAH 04F DLPH4.7 ± 1.8 ± 0.1 5.9 89.51 3 ABBIENDI 03P OPAL10.3 ± 1.5 ± 0.2 12.0 92.95 3 ABBIENDI 03P OPAL5.82± 1.53± 0.12 5.9 89.50 4 ABBIENDI 02I OPAL12.21± 1.23± 0.25 12.0 92.91 4 ABBIENDI 02I OPAL
−13.1 ±13.5 ± 1.0 3.2 88.38 5 HEISTER 02H ALEP5.5 ± 1.9 ± 0.1 5.6 89.38 5 HEISTER 02H ALEP
− 0.4 ± 6.7 ± 0.8 7.5 90.21 5 HEISTER 02H ALEP11.1 ± 6.4 ± 0.5 11.0 92.05 5 HEISTER 02H ALEP10.4 ± 1.5 ± 0.3 12.0 92.94 5 HEISTER 02H ALEP13.8 ± 9.3 ± 1.1 12.9 93.90 5 HEISTER 02H ALEP4.36± 1.19± 0.11 5.8 89.472 6 HEISTER 01D ALEP11.72± 0.97± 0.11 12.0 92.950 6 HEISTER 01D ALEP5.67± 7.56± 1.17 5.7 89.434 7 ABREU 99Y DLPH8.82± 6.33± 1.22 12.1 92.990 7 ABREU 99Y DLPH6.11± 2.93± 0.43 5.9 89.50 8 ACCIARRI 99D L313.71± 2.40± 0.44 12.2 93.10 8 ACCIARRI 99D L34.95± 5.23± 0.40 5.8 89.45 9 ACCIARRI 98U L311.37± 3.99± 0.65 12.1 92.99 9 ACCIARRI 98U L3
− 8.6 ±10.8 ± 2.9 5.8 89.45 10 ALEXANDER 97C OPAL
− 2.1 ± 9.0 ± 2.6 12.1 93.00 10 ALEXANDER 97C OPAL
−71 ±34 + 7

− 8 −58 58.3 SHIMONAKA 91 TOPZ
−22.2 ± 7.7 ± 3.5 −26.0 35 BEHREND 90D CELL
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−49.1 ±16.0 ± 5.0 −39.7 43 BEHREND 90D CELL
−28 ±11 −23 35 BRAUNSCH... 90 TASS
−16.6 ± 7.7 ± 4.8 −24.3 35 ELSEN 90 JADE
−33.6 ±22.2 ± 5.2 −39.9 44 ELSEN 90 JADE3.4 ± 7.0 ± 3.5 −16.0 29.0 BAND 89 MAC
−72 ±28 ±13 −56 55.2 SAGAWA 89 AMY1ABDALLAH 05 obtain an enri
hed samples of bb events using lifetime information. Thequark (or antiquark) 
harge is determined with a neural network using the se
ondaryvertex 
harge, the jet 
harge and parti
le identi�
ation.2ABDALLAH 04F tag b{ and 
{quarks using semileptoni
 de
ays 
ombined with 
harge
ow information from the hemisphere opposite to the lepton. Enri
hed samples of 
 
and bb events are obtained using lifetime information.3ABBIENDI 03P tag heavy 
avors using events with one or two identi�ed leptons. Thisallows the simultaneous �tting of the b and 
 quark forward-ba
kward asymmetries aswell as the average B0-B0 mixing.4ABBIENDI 02I tag Z0 → bb de
ays using a 
ombination of se
ondary vertex and leptontags. The sign of the b-quark 
harge is determined using an in
lusive tag based on jet,vertex, and kaon 
harges.5HEISTER 02H measure simultaneously b and 
 quark forward-ba
kward asymmetriesusing their semileptoni
 de
ays to tag the quark 
harge. The 
avor separation is obtainedwith a dis
riminating multivariate analysis.6HEISTER 01D tag Z → bb events using the impa
t parameters of 
harged tra
ks
omplemented with information from displa
ed verti
es, event shape variables, and leptonidenti�
ation. The b-quark dire
tion and 
harge is determined using the hemisphere
harge method along with information from fast kaon tagging and 
harge estimators ofprimary and se
ondary verti
es. The 
hange in the quoted value due to variation of A
FBand Rb is given as +0.103 (A
FB { 0.0651) −0.440 (Rb { 0.21585).7ABREU 99Y tag Z → bb and Z → 
 
 events by an ex
lusive re
onstru
tion of severalD meson de
ay modes (D∗+, D0, and D+ with their 
harge-
onjugate states).8ACCIARRI 99D tag Z → bb events using high p and pT leptons. The analysis determinessimultaneously a mixing parameter χb = 0.1192 ± 0.0068 ± 0.0051 whi
h is used to
orre
t the observed asymmetry.9ACCIARRI 98U tag Z → bb events using lifetime and measure the jet 
harge using thehemisphere 
harge.10ALEXANDER 97C identify the b and 
 events using a D/D∗ tag.CHARGE ASYMMETRY IN e+ e− → qqCHARGE ASYMMETRY IN e+ e− → qqCHARGE ASYMMETRY IN e+ e− → qqCHARGE ASYMMETRY IN e+ e− → qqSummed over �ve lighter 
avors.Experimental and Standard Model values are somewhat event-sele
tiondependent. Standard Model expe
tations 
ontain some assumptions onB0-B0 mixing and on other ele
troweak parameters.STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •
− 0.76±0.12±0.15 91.2 1 ABREU 92I DLPH4.0 ±0.4 ±0.63 4.0 91.3 2 ACTON 92L OPAL9.1 ±1.4 ±1.6 9.0 57.9 ADACHI 91 TOPZ
− 0.84±0.15±0.04 91 DECAMP 91B ALEP8.3 ±2.9 ±1.9 8.7 56.6 STUART 90 AMY11.4 ±2.2 ±2.1 8.7 57.6 ABE 89L VNS6.0 ±1.3 5.0 34.8 GREENSHAW 89 JADE8.2 ±2.9 8.5 43.6 GREENSHAW 89 JADE1ABREU 92I has 0.14 systemati
 error due to un
ertainty of quark fragmentation.2ACTON 92L use the weight fun
tion method on 259k sele
ted Z → hadrons events.The systemati
 error in
ludes a 
ontribution of 0.2 due to B0-B0 mixing e�e
t, 0.4due to Monte Carlo (MC) fragmentation un
ertainties and 0.3 due to MC statisti
s.ACTON 92L derive a value of sin2θe�W to be 0.2321 ± 0.0017 ± 0.0028.CHARGE ASYMMETRY IN pp → Z → e+ e−CHARGE ASYMMETRY IN pp → Z → e+ e−CHARGE ASYMMETRY IN pp → Z → e+ e−CHARGE ASYMMETRY IN pp → Z → e+ e−STD. √sASYMMETRY (%) MODEL (GeV) DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.2±5.9±0.4 91 ABE 91E CDFANOMALOUS Z Z γ, Z γ γ, AND Z Z V COUPLINGSANOMALOUS Z Z γ, Z γ γ, AND Z Z V COUPLINGSANOMALOUS Z Z γ, Z γ γ, AND Z Z V COUPLINGSANOMALOUS Z Z γ, Z γ γ, AND Z Z V COUPLINGS
ANOMALOUS ZZγ, Zγγ, AND ZZV COUPLINGS

Revised September 2013 by M.W. Grünewald (U. College
Dublin and U. Ghent) and A. Gurtu (Formerly Tata Inst.).

In on-shell Zγ production, deviations from the Standard

Model for the Zγγ∗ and ZγZ∗ couplings may be described in

terms of eight parameters, hV
i (i = 1, 4; V = γ, Z) [1]. The

parameters hγ
i describe the Zγγ∗ couplings and the param-

eters hZ
i the ZγZ∗ couplings. In this formalism hV

1 and hV
2

lead to CP -violating and hV
3 and hV

4 to CP -conserving effects.

All these anomalous contributions to the cross section increase

rapidly with center-of-mass energy. In order to ensure unitarity,

these parameters are usually described by a form-factor rep-

resentation, hV
i (s) = hV

i◦/(1 + s/Λ2)n, where Λ is the energy

scale for the manifestation of a new phenomenon and n is a

sufficiently large power. By convention one uses n = 3 for hV
1,3

and n = 4 for hV
2,4. Usually limits on hV

i ’s are put assuming

some value of Λ, sometimes ∞.

In on-shell ZZ production, deviations from the Standard

Model for the ZZγ∗ and ZZZ∗ couplings may be described by

means of four anomalous couplings fV
i (i = 4, 5; V = γ, Z) [2].

As above, the parameters fγ
i describe the ZZγ∗ couplings

and the parameters fZ
i the ZZZ∗ couplings. The anomalous

couplings fV
5 lead to violation of C and P symmetries while fV

4

introduces CP violation. Also here, formfactors depending on

a scale Λ are used.

All these couplings hV
i and fV

i are zero at tree level in

the Standard Model; they are measured in e+e−, pp̄ and pp

collisions at LEP, Tevatron and LHC.
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2. K. Hagiwara et al., Nucl. Phys. B282, 253 (1987).hVihVihVihVi Combining the LEP-2 results taking into a

ount the 
orrelations, the following 95%CL limits are derived [SCHAEL 13A℄:
−0.12 < hZ1 < +0.11, −0.07 < hZ2 < +0.07,
−0.19 < hZ3 < +0.06, −0.04 < hZ4 < +0.13,
−0.05 < hγ1 < +0.05, −0.04 < hγ2 < +0.02,
−0.05 < hγ3 < +0.00, +0.01 < hγ4 < +0.05.Some of the re
ent results from the Tevatron and LHC experiments individually surpassthe 
ombined LEP-2 results in pre
ision (see below).VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 KHACHATRY...15AC CMS Epp
m = 8 TeV2 CHATRCHYAN14AB CMS Epp
m = 7 TeV3 AAD 13AN ATLS Epp
m = 7 TeV4 CHATRCHYAN13BI CMS Epp
m = 7 TeV5 ABAZOV 12S D0 Epp
m = 1.96 TeV6 AALTONEN 11S CDF Epp
m = 1.96 TeV7 CHATRCHYAN11M CMS Epp
m = 7 TeV8 ABAZOV 09L D0 Epp
m = 1.96 TeV9 ABAZOV 07M D0 Epp
m = 1.96 TeV10 ABDALLAH 07C DLPH Eee
m = 183{208 GeV11 ACHARD 04H L3 Eee
m = 183{208 GeV12 ABBIENDI,G 00C OPAL Eee
m = 189 GeV13 ABBOTT 98M D0 Epp
m = 1.8 TeV14 ABREU 98K DLPH Eee
m = 161, 172 GeV1KHACHATRYAN 15AC study Z γ events in 8 TeV pp intera
tions, where the Z de
aysinto 2 same-
avor, opposite sign leptons (e or µ) and a photon with pT > 15 GeV.The pT of a lepton is required to be > 20 GeV/
, their e�e
tive mass > 50 GeV, andthe photon should have a separation �R > 0.7 with ea
h lepton. The observed pTdistribution of the photons is used to extra
t the 95% C.L. limits: −3.8 × 10−3 <hZ3 < 3.7 × 10−3, −3.1 × 10−5 < hZ4 < 3.0 × 10−5, −4.6 × 10−3 < hγ3 <4.6× 10−3, −3.6× 10−5 < hγ4 < 3.5× 10−5.
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le ListingsZ2CHATRCHYAN 14AB measure Z γ produ
tion 
ross se
tion for pγ
T

> 15 GeV and R(ℓγ)
> 0.7, whi
h is the separation between the γ and the �nal state 
harged lepton (e or
µ) in the azimuthal angle-pseudorapidity (φ − η) plane. The di-lepton mass is requiredto be > 50 GeV. After ba
kground subtra
tion the number of e e γ and µµγ events isdetermined to be 3160 ± 120 and 5030 ± 233 respe
tively, 
ompatible with expe
tationsfrom the SM. This leads to a 95% CL limits of −1 × 10−2 < hγ3 < 1 × 10−2,
−9 × 10−5 < hγ4 < 9 × 10−5, −9× 10−3 < hZ3 < 9 × 10−3, −8× 10−5 <hZ4 < 8× 10−5, assuming hV1 and hV2 have SM values, V = γ or Z .3AAD 13AN study Z γ produ
tion in pp 
ollisions. In events with no additional jet, 1417(2031) Z de
ays to ele
tron (muon) pairs are sele
ted, with an expe
ted ba
kground of156 ± 54 (244 ± 64) events, as well as 662 Z de
ays to neutrino pairs with an expe
tedba
kground of 302±42 events. Analysing the photon pT spe
trum above 100 GeV yieldsthe 95% C.L. limts: −0.013 < hZ3 < 0.014, −8.7 × 10−5 < hZ4 < 8.7 × 10−5,
−0.015 < hγ3 < 0.016, −9.4× 10−5 < hγ4 < 9.2× 10−5. Supersedes AAD 12BX.4 CHATRCHYAN 13BI determine the Z γ → ν ν γ 
ross se
tion by sele
ting events with aphoton of ET > 145 GeV and a 6ET > 130 GeV. 73 
andidate events are observed withan expe
ted SM ba
kground of 30.2± 6.5. The ET spe
trum of the photon is used to set95% C.L. limits as follows: ∣∣hZ3 ∣∣ < 2.7×10−3, ∣∣hZ4 ∣∣ < 1.3×10−5, ∣∣hγ3 ∣∣ < 2.9×10−3,
∣∣hγ4 ∣∣ < 1.5× 10−5.5ABAZOV 12S study Z γ produ
tion in pp 
ollisions at √s = 1.96 TeV using 6.2 fb−1 ofdata where the Z de
ays to ele
tron (muon) pairs and the photon has at least 10 GeVof transverse momentum. In data, 304 (308) di-ele
tron (di-muon) events are observedwith an expe
ted ba
kground of 255 ± 16 (285 ± 24) events. Based on the photonpT spe
trum, and in
luding also earlier data and the Z → ν ν de
ay mode (fromABAZOV 09L), the following 95% C.L. limits are reported: ∣∣hZ03∣∣ < 0.026, ∣∣hZ04∣∣ <0.0013, ∣∣hγ03∣∣ < 0.027, ∣∣hγ04∣∣ < 0.0014 for a form fa
tor s
ale of � = 1.5 TeV.6AALTONEN 11S study Z γ events in pp intera
tions at √s = 1.96 TeV with integratedluminosity 5.1 fb−1 for Z → e+ e− /µ+µ− and 4.9 fb−1 for Z → ν ν. For the
harged lepton 
ase, the two leptons must be of the same 
avor with the transversemomentum/energy of one > 20 GeV and the other > 10 GeV. The isolated photonmust have ET > 50 GeV. They observe 91 events with 87.2 ± 7.8 events expe
ted fromstandard model pro
esses. For the ν ν 
ase they require solitary photons with ET > 25GeV and missing ET > 25 GeV and observe 85 events with standard model expe
tationof 85.9 ± 5.6 events. Taking the form fa
tor � = 1.5 TeV they derive 95% C.L. limitsas ∣∣hγ3 ,Z ∣∣ < 0.022 and ∣∣hγ4 ,Z ∣∣ < 0.0009.7CHATRCHYAN 11M study Z γ produ
tion in pp 
ollisions at √

s = 7 TeV using 36pb−1 pp data, where the Z de
ays to e+ e− or µ+µ−. The total 
ross se
tionsare measured for photon transverse energy Eγ
T

> 10 GeV and spatial separation from
harged leptons in the plane of pseudo rapidity and azimuthal angle �R(ℓ,γ)> 0.7 withthe dilepton invariant mass requirement of Mℓℓ > 50 GeV. The number of e+ e− γ and
µ+µ− γ 
andidates is 81 and 90 with estimated ba
kgrounds of 20.5±2.5 and 27.3±3.2events respe
tively. The 95% CL limits for Z Z γ 
ouplings are −0.05 < hZ3 < 0.06and −0.0005 < hZ4 < 0.0005, and for Z γ γ 
ouplings are −0.07 < hγ3 < 0.07 and
−0.0005 < hγ4 < 0.0006.8ABAZOV 09L study Z γ, Z → ν ν produ
tion in pp 
ollisions at 1.96 TeV C.M. energy.They sele
t 51 events with a photon of transverse energy ET larger than 90 GeV, withan expe
ted ba
kground of 17 events. Based on the photon ET spe
trum and in
ludingalso Z de
ays to 
harged leptons (from ABAZOV 07M), the following 95% CL limits arereported: ∣∣hγ30∣∣ < 0.033, ∣∣hγ40∣∣ < 0.0017, ∣∣hZ30∣∣ < 0.033, ∣∣hZ40∣∣ < 0.0017.9ABAZOV 07M use 968 pp → e+ e− /µ+µ− γX 
andidates, at 1.96 TeV 
enter ofmass energy, to tag pp → Z γ events by requiring ET (γ)> 7 GeV, lepton-gammaseparation �Rℓγ > 0.7, and di-lepton invariant mass > 30 GeV. The 
ross se
tion is inagreement with the SM predi
tion. Using these Z γ events they obtain 95% C.L. limitson ea
h hVi , keeping all others �xed at their SM values. They report: −0.083 < hZ30 <0.082, −0.0053 < hZ40 < 0.0054, −0.085 < hγ30 < 0.084, −0.0053 < hγ40 < 0.0054,for the form fa
tor s
ale �= 1.2 TeV.10Using data 
olle
ted at √

s = 183{208, ABDALLAH 07C sele
t 1,877 e+ e− → Z γevents with Z → qq or ν ν, 171 e+ e− → Z Z events with Z → qq or lepton pair(ex
ept an expli
it τ pair), and 74 e+ e− → Z γ∗ events with a qqµ+µ− or qq e+ e−signature, to derive 95% CL limits on hVi . Ea
h limit is derived with other parametersset to zero. They report: −0.23 < hZ1 < 0.23, −0.30 < hZ3 < 0.16, −0.14 < hγ1 <0.14, −0.049 < hγ3 < 0.044.11ACHARD 04H sele
t 3515 e+ e− → Z γ events with Z → qq or ν ν at √s = 189{209GeV to derive 95% CL limits on hV
i . For deriving ea
h limit the other parameters are�xed at zero. They report: −0.153 < hZ1 < 0.141, −0.087 < hZ2 < 0.079, −0.220 <hZ3 < 0.112, −0.068 < hZ4 < 0.148, −0.057 < hγ1 < 0.057, −0.050 < hγ2 < 0.023,

−0.059 < hγ3 < 0.004, −0.004 < hγ4 < 0.042.12ABBIENDI,G 00C study e+ e− → Z γ events (with Z → qq and Z → ν ν)at 189 GeV to obtain the 
entral values (and 95% CL limits) of these 
ouplings:hZ1 = 0.000 ± 0.100 (−0.190, 0.190), hZ2 = 0.000 ± 0.068 (−0.128, 0.128), hZ3 =
−0.074+0.102

−0.103 (−0.269, 0.119), hZ4 = 0.046 ± 0.068 (−0.084, 0.175), hγ1= 0.000 ±0.061 (−0.115, 0.115), hγ2= 0.000 ± 0.041 (−0.077, 0.077), hγ3= −0.080+0.039
−0.041(−0.164, − 0.006), hγ4= 0.064+0.033

−0.030 (+0.007, + 0.134). The results are derivedassuming that only one 
oupling at a time is di�erent from zero.13ABBOTT 98M study pp → Z γ + X, with Z → e+ e−, µ+µ−, ν ν at 1.8 TeV, toobtain 95% CL limits at �= 750 GeV: ∣∣hZ30∣∣ < 0.36, ∣∣hZ40∣∣ < 0.05 (keeping hγ
i
=0), and

∣∣hγ30∣∣ < 0.37, ∣∣hγ40∣∣ < 0.05 (keeping hZi =0). Limits on the CP-violating 
ouplings are
∣∣hZ10∣∣ < 0.36, ∣∣hZ20∣∣ < 0.05 (keeping hγi =0), and ∣∣hγ10∣∣ < 0.37, ∣∣hγ20∣∣ < 0.05 (keepinghZi =0).

14ABREU 98K determine a 95% CL upper limit on σ(e+ e− → γ+ invisible parti
les) <2.5 pb using 161 and 172 GeV data. This is used to set 95% CL limits on ∣∣hγ30∣∣ < 0.8 and
∣∣hZ30∣∣ < 1.3, derived at a s
ale �=1 TeV and with n=3 in the form fa
tor representation.f Vif Vif Vif Vi Combining the LEP-2 results taking into a

ount the 
orrelations, the following 95%CL limits are derived [SCHAEL 13A℄:

−0.28 < f Z4 < +0.32, −0.34 < f Z5 < +0.35,
−0.17 < f γ4 < +0.19, −0.35 < f γ5 < +0.32.Some of the re
ent results from the Tevatron and LHC experiments individually surpassthe 
ombined LEP-2 results in pre
ision (see below).VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 KHACHATRY...15B CMS Epp
m = 8 TeV2 KHACHATRY...15BC CMS Epp
m = 7, 8 TeV3 AAD 13Z ATLS Epp
m = 7 TeV4 CHATRCHYAN13B CMS Epp
m = 7 TeV5 SCHAEL 09 ALEP Eee
m = 192{209 GeV6 ABAZOV 08K D0 Epp
m = 1.96 TeV7 ABDALLAH 07C DLPH Eee
m = 183{208 GeV8 ABBIENDI 04C OPAL9 ACHARD 03D L31KHACHATRYAN 15B study Z Z produ
tion in 8 TeV pp 
ollisions. In the de
ay modesZ Z → 4e, 4µ, 2e 2µ, 54, 75, 148 events are observed, with an expe
ted ba
kground of2.2 ± 0.9, 1.2 ± 0.6, and 2.4 ± 1.0 events, respe
tively. Analysing the 4-lepton invariantmass spe
trum in the range from 110 GeV to 1200 GeV, the following 95% C.L. limitsare obtained: ∣∣fZ4 ∣∣ < 0.004, ∣∣f Z5 ∣∣ < 0.004, ∣∣f γ4 ∣∣ < 0.005, ∣∣f γ5 ∣∣ < 0.005.2KHACHATRYAN 15BC use the 
ross se
tion measurement of the �nal state pp → Z Z →2ℓ2ν, (ℓ being an ele
tron or a muon) at 7 and 8 TeV to put limits on these triple gauge
ouplings. E�e
tive mass of the 
harged lepton pair is required to be in the range83.5{98.5 GeV and the dilepton pT > 45 GeV. The redu
ed missing ET is requiredto be > 65 GeV, whi
h takes into a

ount the fake missing ET due to dete
tor e�e
ts.The numbers of e+ e− and µ+µ− events sele
ted are 35 and 40 at 7 TeV and 176 and271 at 8 TeV respe
tively. The produ
tion 
ross se
tions so obtained are in agreementwith SM predi
tions. The following 95% C.L. limits are set: −0.0028 < fZ4 < 0.0032,
−0.0037 < f γ4 < 0.0033, −0.0029 < fZ5 < 0.0031, −0.0033 < f γ5 < 0.0037.Combining with previous results (KHACHATRYAN 15B and CHATRCHYAN 13B) whi
hin
lude 7 TeV and 8 TeV data on the �nal states pp → Z Z → 2ℓ2ℓ′ where ℓ and ℓ′ arean ele
tron or a muon, the best limits are −0.0022 < fZ4 < 0.0026, −0029 < f γ4 <0.0026, −0.0023 < fZ5 < 0.0023, −0026 < f γ5 < 0.0027.3AAD 13Z study Z Z produ
tion in pp 
ollisions at √

s = 7 TeV. In the Z Z →
ℓ+ ℓ− ℓ′+ ℓ′− �nal state they observe a total of 66 events with an expe
ted ba
kgroundof 0.9± 1.3. In the Z Z → ℓ+ ℓ− ν ν �nal state they observe a total of 87 events with anexpe
ted ba
kground of 46.9± 5.2. The limits on anomalous TGCs are determined usingthe observed and expe
ted numbers of these Z Z events binned in pZT . The 95% C.L.are as follows: for form fa
tor s
ale � = ∞, −0.015 < f γ4 < 0.015, −0.013 < fZ4 <0.013, −0.016 < f γ5 < 0.015, −0.013 < f Z5 < 0.013; for form fa
tor s
ale � =3 TeV, −0.022 < f γ4 < 0.023, −0.019 < fZ4 < 0.019, −0.023 < f γ5 < 0.023,
−0.020 < fZ5 < 0.019.4CHATRCHYAN 13B study Z Z produ
tion in pp 
ollisions and sele
t 54 Z Z 
andidatesin the Z de
ay 
hannel with ele
trons or muons with an expe
ted ba
kground of 1.4± 0.5events. The resulting 95% C.L. ranges are: −0.013 < f γ4 < 0.015, −0.011 < fZ4 <0.012, −0.014 < f γ5 < 0.014, −0.012 < fZ5 < 0.012.5Using data 
olle
ted in the 
enter of mass energy range 192{209 GeV, SCHAEL 09 sele
t318 e+ e− → Z Z events with 319.4 expe
ted from the standard model. Using thisdata they derive the following 95% CL limits: −0.321 < f γ4 < 0.318, −0.534 < fZ4 <0.534, −0.724 < f γ5 < 0.733, −1.194 < fZ5 < 1.190.6ABAZOV 08K sear
h for Z Z and Z γ∗ events with 1 fb−1 pp data at √s = 1.96 TeV in(e e)(e e), (µµ)(µµ), (e e)(µµ) �nal states requiring the lepton pair masses to be > 30GeV. They observe 1 event, whi
h is 
onsistent with an expe
ted signal of 1.71 ± 0.15events and a ba
kground of 0.13 ± 0.03 events. From this they derive the followinglimits, for a form fa
tor (�) value of 1.2 TeV: −0.28 < fZ40 < 0.28, −0.31 < fZ50 <0.29, −0.26 < f γ40 < 0.26, −0.30 < f γ50 < 0.28.7Using data 
olle
ted at √s = 183{208 GeV, ABDALLAH 07C sele
t 171 e+ e− → Z Zevents with Z → qq or lepton pair (ex
ept an expli
it τ pair), and 74 e+ e− → Z γ∗events with a qqµ+µ− or qq e+ e− signature, to derive 95% CL limits on f Vi . Ea
hlimit is derived with other parameters set to zero. They report: −0.40 < fZ4 < 0.42,
−0.38 < fZ5 < 0.62, −0.23 < f γ4 < 0.25, −0.52 < f γ5 < 0.48.8ABBIENDI 04C study Z Z produ
tion in e+ e− 
ollisions in the C.M. energy range190{209 GeV. They sele
t 340 events with an expe
ted ba
kground of 180 events. In-
luding the ABBIENDI 00N data at 183 and 189 GeV (118 events with an expe
tedba
kground of 65 events) they report the following 95% CL limits: −0.45 <f Z4 < 0.58,
−0.94 <f Z5 < 0.25, −0.32 <f γ4 < 0.33, and −0.71 <f γ5 < 0.59.9ACHARD 03D study Z -boson pair produ
tion in e+ e− 
ollisions in the C.M. energyrange 200{209 GeV. They sele
t 549 events with an expe
ted ba
kground of 432 events.In
luding the ACCIARRI 99G and ACCIARRI 99O data (183 and 189 GeV respe
tively, 286
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le ListingsZ events with an expe
ted ba
kground of 241 events) and the 192{202 GeV ACCIARRI 01Iresults (656 events, expe
ted ba
kground of 512 events), they report the following 95%CL limits: −0.48 ≤ f Z4 ≤ 0.46, −0.36 ≤ f Z5 ≤ 1.03, −0.28 ≤ f γ4 ≤ 0.28, and −0.40 ≤f γ5 ≤ 0.47. ANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGSANOMALOUS W /Z QUARTIC COUPLINGS
ANOMALOUS W/Z QUARTIC COUPLINGS (QGCS)

Revised November 2015 by M.W. Grünewald (U. College
Dublin) and A. Gurtu (Formerly Tata Inst.).

Quartic couplings, WWZZ, WWZγ, WWγγ, and ZZγγ,

were studied at LEP and Tevatron at energies at which the

Standard Model predicts negligible contributions to multiboson

production. Thus, to parametrize limits on these couplings, an

effective theory approach is adopted which supplements the

Standard Model Lagrangian with higher dimensional operators

which include quartic couplings. The LEP collaborations chose

the lowers dimensional representation of operators (dimension

6) which presumes the SU(2)×U(1) gauge symmetry is broken

by means other than the conventional Higgs scalar doublet [1–3].

In this representation possible quartic couplings, a0, ac, an, are

expressed in terms of the following dimension-6 operators [1,2];

L0
6 = − e2

16Λ2 a0 F µν Fµν
~Wα · ~Wα

Lc
6 = − e2

16Λ2 ac F µα Fµβ
~W β · ~Wα

Ln
6 = −i e2

16Λ2 anǫijk W
(i)
µα W

(j)
ν W (k)αF µν

L̃0
6 = − e2

16Λ2 ã0 F µν F̃µν
~Wα · ~Wα

L̃n
6 = −i e2

16Λ2 ãnǫijk W
(i)
µα W

(j)
ν W (k)αF̃ µν

where F, W are photon and W fields, L0
6 and Lc

6 conserve C,

P separately (L̃0
6 conserves only C) and generate anomalous

W+W−γγ and ZZγγ couplings, Ln
6 violates CP (L̃n

6 violates

both C and P ) and generates an anomalous W+W−Zγ cou-

pling, and Λ is an energy scale for new physics. For the ZZγγ

coupling the CP -violating term represented by Ln
6 does not con-

tribute. These couplings are assumed to be real and to vanish

at tree level in the Standard Model.

Within the same framework as above, a more recent de-

scription of the quartic couplings [3] treats the anomalous parts

of the WWγγ and ZZγγ couplings separately, leading to two

sets parametrized as aV
0 /Λ2 and aV

c /Λ2, where V = W or Z.

With the discovery of a Higgs at the LHC in 2012, it is

then useful to go to the next higher dimensional representa-

tion (dimension 8 operators) in which the gauge symmetry is

broken by the conventional Higgs scalar doublet [3,4]. There

are 14 operators which can contribute to the anomalous quartic

coupling signal. Some of the operators have analogues in the

dimension 6 scheme. The CMS collaboration, [5], have used

this parametrization, in which the connections between the two

schemes are also summarized:

LAQGC = − e2

8

aW
0

Λ2
FµνF µνW+aW−

a

− e2

16

aW
c

Λ2
FµνF

µa(W+νW−
a + W−νW+

a )

− e2g2κW
0

Λ2
FµνZ

µνW+aW−
a

− e2g2

2

κW
c

Λ2
FµνZ

µa(W+νW−
a + W−νW+

a )

+
fT,0

Λ4
Tr[ŴµνŴ

µν ] × Tr[ŴαβŴαβ ]

The energy scale of possible new physics is Λ, and g =

e/sin(θW ), e being the unit electric charge and θW the Wein-

berg angle. The field tensors are described in [3,4].

The two dimension 6 operators aW
0 /Λ2 and aW

c /Λ2 are asso-

ciated with the WWγγ vertex. Among dimension 8 operators,

κW
0 /Λ2 and κW

c /Λ2 are associated with the WWZγ vertex,

whereas the parameter fT,0/Λ4 contributes to both vertices.

There is a relationship between these two dimension 6 parame-

ters and the dimension 8 parameters fM,i/Λ4 as follows [3]:

aW
0

Λ2
= −4M2

W

g2

fM,0

Λ4
− 8M2

W

g′2
fM,2

Λ4

aW
c

Λ2
= −4M2

W

g2

fM,1

Λ4
− 8M2

W

g′2
fM,3

Λ4

where g′ = e/cos(θW ) and MW is the invariant mass of

the W boson. This relation provides a translation between lim-

its on dimension 6 operators aW
0,c and fM,j/Λ4. It is further

required [4] that fM,0 = 2fM,2 and fM,1 = 2fM,3 which sup-

presses contributions to the WWZγ vertex. The complete set of

Lagrangian contributions as presented in [4] corresponds to 19

anomalous couplings in total – fS,i, i = 1, 2, fM,i, i = 0, . . . , 8

and fT,i, i = 0, . . . , 9 – each scaled by 1/Λ4.

The ATLAS collaboration [6], on the other hand, follows

a K-matrix driven approach of Ref. 7 in which the anomalous

couplings can be expressed in terms of two parameters α4 and

α5, which account for all BSM effects.

It is the early stages in the determination of quartic cou-

plings by the LHC experiments. It is hoped that the two

collaborations, ATLAS and CMS, will agree to use at least one

common set of parameters to express these limits to enable the

reader to make a comparison and allow for a possible LHC

combination.
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4. O.J.P. Éboli, M.C. Gonzalez-Garcia, and S.M. Lietti, Phys.
Rev. D69, 095005 (2004);
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7. A. Albateanu, W. Killian, and J. Reuter, JHEP 0811, 010

(2008).a0/�2, a
/�2a0/�2, a
/�2a0/�2, a
/�2a0/�2, a
/�2Combining published and unpublished preliminary LEP results the following 95% CLintervals for the QGCs asso
iated with the Z Z γ γ vertex are derived (CERN-PH-EP/2005-051 or hep-ex/0511027):
−0.008 <aZ0 /�2 < +0.021
−0.029 <aZ
 /�2 < +0.039Anomalous Z quarti
 
ouplings 
an also be measured by the experiments at the Teva-tron and the LHC. As dis
ussed in the review on \Anomalous W /Z quarti
 
ouplings(QGCS)," the measurements are typi
ally done using di�erent operator expansionswhi
h then do not allow the results to be 
ompared and averaged. At least one
ommon framework should be agreed upon for use in future publi
ations by the exper-iments.VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 ABBIENDI 04L OPAL2 HEISTER 04A ALEP3 ACHARD 02G L31ABBIENDI 04L sele
t 20 e+ e− → ν ν γ γ a
oplanar events in the energy range 180{209GeV and 176 e+ e− → qq γ γ events in the energy range 130{209 GeV. These samplesare used to 
onstrain possible anomalous W+W− γ γ and Z Z γ γ quarti
 
ouplings.Further 
ombining with the W+W− γ sample of ABBIENDI 04B the following one{parameter 95% CL limits are obtained: −0.007 < aZ0 /�2 < 0.023 GeV−2, −0.029 <aZ
 /�2 < 0.029 GeV−2, −0.020 < aW0 /�2 < 0.020 GeV−2, −0.052 < aW
 /�2 <0.037 GeV−2.2 In the CM energy range 183 to 209 GeV HEISTER 04A sele
t 30 e+ e− → ν ν γ γ eventswith two a
oplanar, high energy and high transverse momentum photons. The photon{photon a
oplanarity is required to be > 5◦, Eγ/√s > 0.025 (the more energeti
 photonhaving energy > 0.2 √
s), pTγ

/Ebeam > 0.05 and ∣∣
os θγ
∣∣ < 0.94. A likelihood �tto the photon energy and re
oil missing mass yields the following one{parameter 95%CL limits: −0.012 < aZ0 /�2 < 0.019 GeV−2, −0.041 < aZ
 /�2 < 0.044 GeV−2,

−0.060 < aW0 /�2 < 0.055 GeV−2, −0.099 < aW
 /�2 < 0.093 GeV−2.3ACHARD 02G study e+ e− → Z γ γ → qq γ γ events using data at 
enter-of-massenergies from 200 to 209 GeV. The photons are required to be isolated, ea
h with energy
>5 GeV and ∣∣
osθ∣∣ < 0.97, and the di-jet invariant mass to be 
ompatible with thatof the Z boson (74{111 GeV). Cuts on Z velo
ity (β < 0.73) and on the energy of themost energeti
 photon redu
e the ba
kgrounds due to non-resonant produ
tion of theqq γ γ state and due to ISR respe
tively, yielding a total of 40 
andidate events of whi
h8.6 are expe
ted to be due to ba
kground. The energy spe
tra of the least energeti
photon are �tted for all ten 
enter-of-mass energy values from 130 GeV to 209 GeV(as obtained adding to the present analysis 130{202 GeV data of ACCIARRI 01E, fora total of 137 events with an expe
ted ba
kground of 34.1 events) to obtain the �ttedvalues a0/�2= 0.00+0.02

−0.01 GeV−2 and a
/�2= 0.03+0.01
−0.02 GeV−2, where the otherparameter is kept �xed to its Standard Model value (0). A simultaneous �t to bothparameters yields the 95% CL limits −0.02 GeV−2 <a0/�2 < 0.03 GeV−2 and −0.07GeV−2 <a
 /�2 < 0.05 GeV−2.Z REFERENCESZ REFERENCESZ REFERENCESZ REFERENCESAAD 15BT JHEP 1509 049 G. Aad et al. (ATLAS Collab.)AAD 15I PRL 114 121801 G. Aad et al. (ATLAS Collab.)KHACHATRY... 15AC JHEP 1504 164 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15B PL B740 250 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15BC EPJ C75 511 V. Kha
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iarri et al. (L3 Collab.)ACCIARRI 95C PL B345 609 M. A

iarri et al. (L3 Collab.)ACCIARRI 95G PL B353 136 M. A

iarri et al. (L3 Collab.)AKERS 95C ZPHY C65 47 R. Akers et al. (OPAL Collab.)AKERS 95U ZPHY C67 389 R. Akers et al. (OPAL Collab.)AKERS 95W ZPHY C67 555 R. Akers et al. (OPAL Collab.)AKERS 95X ZPHY C68 1 R. Akers et al. (OPAL Collab.)AKERS 95Z ZPHY C68 203 R. Akers et al. (OPAL Collab.)ALEXANDER 95D PL B358 162 G. Alexander et al. (OPAL Collab.)
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le ListingsZ , H0BUSKULIC 95R ZPHY C69 15 D. Buskuli
 et al. (ALEPH Collab.)MIYABAYASHI 95 PL B347 171 K. Miyabayashi et al. (TOPAZ Collab.)ABE 94C PRL 73 25 K. Abe et al. (SLD Collab.)ABREU 94B PL B327 386 P. Abreu et al. (DELPHI Collab.)ABREU 94P PL B341 109 P. Abreu et al. (DELPHI Collab.)AKERS 94P ZPHY C63 181 R. Akers et al. (OPAL Collab.)BUSKULIC 94G ZPHY C62 179 D. Buskuli
 et al. (ALEPH Collab.)BUSKULIC 94J ZPHY C62 1 D. Buskuli
 et al. (ALEPH Collab.)VILAIN 94 PL B320 203 P. Vilain et al. (CHARM II Collab.)ABREU 93 PL B298 236 P. Abreu et al. (DELPHI Collab.)ABREU 93I ZPHY C59 533 P. Abreu et al. (DELPHI Collab.)Also ZPHY C65 709 (erratum)P. Abreu et al. (DELPHI Collab.)ABREU 93L PL B318 249 P. Abreu et al. (DELPHI Collab.)ACTON 93 PL B305 407 P.D. A
ton et al. (OPAL Collab.)ACTON 93D ZPHY C58 219 P.D. A
ton et al. (OPAL Collab.)ACTON 93E PL B311 391 P.D. A
ton et al. (OPAL Collab.)ADRIANI 93 PL B301 136 O. Adriani et al. (L3 Collab.)ADRIANI 93I PL B316 427 O. Adriani et al. (L3 Collab.)BUSKULIC 93L PL B313 520 D. Buskuli
 et al. (ALEPH Collab.)NOVIKOV 93C PL B298 453 V.A. Novikov, L.B. Okun, M.I. Vysotsky (ITEP)ABREU 92I PL B277 371 P. Abreu et al. (DELPHI Collab.)ABREU 92M PL B289 199 P. Abreu et al. (DELPHI Collab.)ACTON 92B ZPHY C53 539 D.P. A
ton et al. (OPAL Collab.)ACTON 92L PL B294 436 P.D. A
ton et al. (OPAL Collab.)ACTON 92N PL B295 357 P.D. A
ton et al. (OPAL Collab.)ADEVA 92 PL B275 209 B. Adeva et al. (L3 Collab.)ADRIANI 92D PL B292 454 O. Adriani et al. (L3 Collab.)ALITTI 92B PL B276 354 J. Alitti et al. (UA2 Collab.)BUSKULIC 92D PL B292 210 D. Buskuli
 et al. (ALEPH Collab.)BUSKULIC 92E PL B294 145 D. Buskuli
 et al. (ALEPH Collab.)DECAMP 92 PRPL 216 253 D. De
amp et al. (ALEPH Collab.)ABE 91E PRL 67 1502 F. Abe et al. (CDF Collab.)ABREU 91H ZPHY C50 185 P. Abreu et al. (DELPHI Collab.)ACTON 91B PL B273 338 D.P. A
ton et al. (OPAL Collab.)ADACHI 91 PL B255 613 I. Ada
hi et al. (TOPAZ Collab.)ADEVA 91I PL B259 199 B. Adeva et al. (L3 Collab.)AKRAWY 91F PL B257 531 M.Z. Akrawy et al. (OPAL Collab.)DECAMP 91B PL B259 377 D. De
amp et al. (ALEPH Collab.)DECAMP 91J PL B266 218 D. De
amp et al. (ALEPH Collab.)JACOBSEN 91 PRL 67 3347 R.G. Ja
obsen et al. (Mark II Collab.)SHIMONAKA 91 PL B268 457 A. Shimonaka et al. (TOPAZ Collab.)ABE 90I ZPHY C48 13 K. Abe et al. (VENUS Collab.)ABRAMS 90 PRL 64 1334 G.S. Abrams et al. (Mark II Collab.)AKRAWY 90J PL B246 285 M.Z. Akrawy et al. (OPAL Collab.)BEHREND 90D ZPHY C47 333 H.J. Behrend et al. (CELLO Collab.)BRAUNSCH... 90 ZPHY C48 433 W. Brauns
hweig et al. (TASSO Collab.)ELSEN 90 ZPHY C46 349 E. Elsen et al. (JADE Collab.)HEGNER 90 ZPHY C46 547 S. Hegner et al. (JADE Collab.)STUART 90 PRL 64 983 D. Stuart et al. (AMY Collab.)ABE 89 PRL 62 613 F. Abe et al. (CDF Collab.)ABE 89C PRL 63 720 F. Abe et al. (CDF Collab.)ABE 89L PL B232 425 K. Abe et al. (VENUS Collab.)ABRAMS 89B PRL 63 2173 G.S. Abrams et al. (Mark II Collab.)ABRAMS 89D PRL 63 2780 G.S. Abrams et al. (Mark II Collab.)ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.)BACALA 89 PL B218 112 A. Ba
ala et al. (AMY Collab.)BAND 89 PL B218 369 H.R. Band et al. (MAC Collab.)GREENSHAW 89 ZPHY C42 1 T. Greenshaw et al. (JADE Collab.)OULD-SAADA 89 ZPHY C44 567 F. Ould-Saada et al. (JADE Collab.)SAGAWA 89 PRL 63 2341 H. Sagawa et al. (AMY Collab.)ADACHI 88C PL B208 319 I. Ada
hi et al. (TOPAZ Collab.)ADEVA 88 PR D38 2665 B. Adeva et al. (Mark-J Collab.)BRAUNSCH... 88D ZPHY C40 163 W. Brauns
hweig et al. (TASSO Collab.)ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.)BEHREND 87C PL B191 209 H.J. Behrend et al. (CELLO Collab.)BARTEL 86C ZPHY C30 371 W. Bartel et al. (JADE Collab.)Also ZPHY C26 507 W. Bartel et al. (JADE Collab.)Also PL 108B 140 W. Bartel et al. (JADE Collab.)ASH 85 PRL 55 1831 W.W. Ash et al. (MAC Collab.)BARTEL 85F PL 161B 188 W. Bartel et al. (JADE Collab.)DERRICK 85 PR D31 2352 M. Derri
k et al. (HRS Collab.)FERNANDEZ 85 PRL 54 1624 E. Fernandez et al. (MAC Collab.)LEVI 83 PRL 51 1941 M.E. Levi et al. (Mark II Collab.)BEHREND 82 PL 114B 282 H.J. Behrend et al. (CELLO Collab.)BRANDELIK 82C PL 110B 173 R. Brandelik et al. (TASSO Collab.)H0 J = 0In the following H0 refers to the signal that has been dis
overed inthe Higgs sear
hes. Whereas the observed signal is labeled as a spin0 parti
le and is 
alled a Higgs Boson, the detailed properties of H0and its role in the 
ontext of ele
troweak symmetry breaking need tobe further 
lari�ed. These issues are addressed by the measurementslisted below.Con
erning mass limits and 
ross se
tion limits that have been ob-tained in the sear
hes for neutral and 
harged Higgs bosons, seethe se
tions \Sear
hes for Neutral Higgs Bosons" and \Sear
hes forCharged Higgs Bosons (H± and H±±)", respe
tively.H0 MASSH0 MASSH0 MASSH0 MASSVALUE (GeV) DOCUMENT ID TECN COMMENT125.09±0.21±0.11125.09±0.21±0.11125.09±0.21±0.11125.09±0.21±0.11 1,2 AAD 15B LHC pp, 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •125.07±0.25±0.14 2 AAD 15B LHC pp, 7, 8 TeV, γ γ125.15±0.37±0.15 2 AAD 15B LHC pp, 7, 8 TeV, Z Z∗ → 4ℓ126.02±0.43±0.27 AAD 15B ATLS pp, 7, 8 TeV, γ γ124.51±0.52±0.04 AAD 15B ATLS pp, 7, 8 TeV, Z Z∗ → 4ℓ125.59±0.42±0.17 AAD 15B CMS pp, 7, 8 TeV, Z Z∗ → 4ℓ125.02+0.26

−0.27+0.14
−0.15 3 KHACHATRY...15AMCMS pp, 7, 8 TeV125.36±0.37±0.18 1,4 AAD 14W ATLS pp, 7, 8 TeV125.98±0.42±0.28 4 AAD 14W ATLS pp, 7, 8 TeV, γ γ124.51±0.52±0.06 4 AAD 14W ATLS pp, 7, 8 TeV, Z Z∗ → 4ℓ125.6 ±0.4 ±0.2 5 CHATRCHYAN14AA CMS pp, 7, 8 TeV, Z Z∗ → 4ℓ

122 ±7 6 CHATRCHYAN14K CMS pp, 7, 8 TeV, τ τ124.70±0.31±0.15 7 KHACHATRY...14P CMS pp, 7, 8 TeV, γ γ125.5 ±0.2 +0.5
−0.6 1,8 AAD 13AK ATLS pp, 7, 8 TeV126.8 ±0.2 ±0.7 8 AAD 13AK ATLS pp, 7, 8 TeV, γ γ124.3 +0.6

−0.5 +0.5
−0.3 8 AAD 13AK ATLS pp, 7, 8 TeV, Z Z∗ → 4ℓ125.8 ±0.4 ±0.4 1,9 CHATRCHYAN13J CMS pp, 7, 8 TeV126.2 ±0.6 ±0.2 9 CHATRCHYAN13J CMS pp, 7, 8 TeV, Z Z∗ → 4ℓ126.0 ±0.4 ±0.4 1,10 AAD 12AI ATLS pp, 7, 8 TeV125.3 ±0.4 ±0.5 1,11 CHATRCHYAN12N CMS pp, 7, 8 TeV1Combined value from γ γ and Z Z∗ → 4ℓ �nal states.2ATLAS and CMS data are �tted simultaneously.3KHACHATRYAN 15AM use up to 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and up to19.7 fb−1 at E
m = 8 TeV.4AAD 14W use 4.5 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.3 fb−1 at 8 TeV.5CHATRCHYAN 14AA use 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 atE
m = 8 TeV.6CHATRCHYAN 14K use 4.9 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 atE
m = 8 TeV.7KHACHATRYAN 14P use 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 atE
m = 8 TeV.8AAD 13AK use 4.7 fb−1 of pp 
ollisions at E
m=7 TeV and 20.7 fb−1 at E
m=8 TeV.Superseded by AAD 14W.9 CHATRCHYAN 13J use 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and 12.2 fb−1 atE
m = 8 TeV.10AAD 12AI obtain results based on 4.6{4.8 fb−1 of pp 
ollisions at E
m = 7 TeV and5.8{5.9 fb−1 at E
m = 8 TeV. An ex
ess of events over ba
kground with a lo
alsigni�
an
e of 5.9 σ is observed at mH0 = 126 GeV. See also AAD 12DA.11CHATRCHYAN 12N obtain results based on 4.9{5.1 fb−1 of pp 
ollisions at E
m = 7TeV and 5.1{5.3 fb−1 at E
m = 8 TeV. An ex
ess of events over ba
kground with a lo
alsigni�
an
e of 5.0 σ is observed at about mH0 = 125 GeV. See also CHATRCHYAN 12BYand CHATRCHYAN 13Y.H0 SPIN AND CP PROPERTIESH0 SPIN AND CP PROPERTIESH0 SPIN AND CP PROPERTIESH0 SPIN AND CP PROPERTIESThe observation of the signal in the γ γ �nal state rules out the possibility that thedis
overed parti
le has spin 1, as a 
onsequen
e of the Landau-Yang theorem. Thisargument relies on the assumptions that the de
aying parti
le is an on-shell resonan
eand that the de
ay produ
ts are indeed two photons rather than two pairs of boostedphotons, whi
h ea
h 
ould in prin
iple be misidenti�ed as a single photon.Con
erning distinguishing the spin 0 hypothesis from a spin 2 hypothesis, some 
arehas to be taken in modelling the latter in order to ensure that the dis
riminating poweris a
tually based on the spin properties rather than on unphysi
al behavior that maya�e
t the model of the spin 2 state.Under the assumption that the observed signal 
onsists of a single state rather thanan overlap of more than one resonan
e, it is suÆ
ient to dis
riminate between distin
thypotheses in the spin analyses. On the other hand, the determination of the CPproperties is in general mu
h more diÆ
ult sin
e in prin
iple the observed state 
ould
onsist of any admixture of CP-even and CP-odd 
omponents. As a �rst step, the
ompatibility of the data with distin
t hypotheses of pure CP-even and pure CP-odd states with di�erent spin assignments has been investigated. In order to treatthe 
ase of a possible mixing of di�erent CP states, 
ertain 
ross se
tion ratios are
onsidered. Those 
ross se
tion ratios need to be distinguished from the amount ofmixing between a CP-even and a CP-odd state, as the 
ross se
tion ratios dependin addition also on the 
oupling strengths of the CP-even and CP-odd 
omponentsto the involved parti
les. A small relative 
oupling implies a small sensitivity of the
orresponding 
ross se
tion ratio to e�e
ts of CP mixing.VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAD 16 ATLS H0 → γ γ2 AAD 15AX ATLS H0 → WW ∗3 AAD 15CI ATLS H0 → Z Z∗, WW ∗, γ γ4 AALTONEN 15 TEVA pp → W H0, Z H0, H0 → bb5 AALTONEN 15B CDF pp → W H0, Z H0, H0 → bb6 KHACHATRY...15Y CMS H0 → 4ℓ, WW ∗, γ γ7 ABAZOV 14F D0 pp → W H0, Z H0, H0 → bb8 CHATRCHYAN14AA CMS H0 → Z Z∗9 CHATRCHYAN14G CMS H0 → WW ∗10 KHACHATRY...14P CMS H0 → γ γ11 AAD 13AJ ATLS H0 → γ γ, Z Z∗ → 4ℓ, WW ∗ → ℓν ℓν12 CHATRCHYAN13J CMS H0 → Z Z∗ → 4ℓ1AAD 16 study H0 → γ γ with an e�e
tive Lagrangian in
luding CP even and oddterms in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. The data is 
onsistent with theexpe
tations for the Higgs boson of the Standard Model. Limits on anomalous 
ouplingsare also given.2AAD 15AX 
ompare the JCP= 0+ Standard Model assignment with other JCP hy-potheses in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV, using the pro
ess H0 →WW ∗ → e νµν. 2+ hypotheses are ex
luded at 84.5{99.4%CL, 0− at 96.5%CL, 0+(�eld strength 
oupling) at 70.8%CL. See their Fig. 19 for limits on possible CP mixtureparameters.
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leListingsH03AAD 15CI 
ompare the JCP= 0+ Standard Model assignment with other JCP hypothe-ses in 4.5 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.3 fb−1 at E
m = 8 TeV,using the pro
esses H0 → Z Z∗ → 4ℓ. H0 → γ γ and 
ombine with AAD 15AX data.0+ (�eld strength 
oupling), 0− and several 2+ hypotheses are ex
luded at more than99.9% CL. See their Tables 7{9 for limits on possible CP mixture parameters.4AALTONEN 15 
ombine AALTONEN 15B and ABAZOV 14F data. An upper limit of0.36 of the Standard Model produ
tion rate at 95% CL is obtained both for a 0− and a2+ state. Assuming the SM event rate, the JCP = 0− (2+) hypothesis is ex
luded atthe 5.0σ (4.9σ) level.5AALTONEN 15B 
ompare the JCP = 0+ Standard Model assignment with other JCPhypotheses in 9.45 fb−1 of pp 
ollisions at E
m = 1.96 TeV, using the pro
esses Z H0 →
ℓℓbb, WH0 → ℓν bb, and Z H0 → ν ν bb. Bounds on the produ
tion rates of 0−and 2+ (graviton-like) states are set, see their tables II and III.6KHACHATRYAN 15Y 
ompare the JCP = 0+ Standard Model assignment with otherJCP hypotheses in up to 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and up to 19.7 fb−1at E
m = 8 TeV, using the pro
esses H0 → 4ℓ, H0 → WW ∗, and H0 → γ γ. 0−is ex
luded at 99.98% CL, and several 2+ hypotheses are ex
luded at more than 99%CL. Spin 1 models are ex
luded at more than 99.999% CL in Z Z∗ and WW ∗ modes.Limits on anomalous 
ouplings and several 
ross se
tion fra
tions, treating the 
ase ofCP-mixed states, are also given.7ABAZOV 14F 
ompare the JCP= 0+ Standard Model assignment with JCP= 0− and2+ (graviton-like 
oupling) hypotheses in up to 9.7 fb−1 of pp 
ollisions at E
m = 1.96TeV. They use kinemati
 
orrelations between the de
ay produ
ts of the ve
tor bosonand the Higgs boson in the �nal states Z H → ℓℓbb, W H → ℓν bb, and Z H →
ν ν bb. The 0− (2+) hypothesis is ex
luded at 97.6% CL (99.0% CL). In order to treatthe 
ase of a possible mixture of a 0+ state with another JCP state, the 
ross se
tionfra
tions fX = σX /(σ0+ + σX ) are 
onsidered, where X = 0−, 2+. Values for f0−(f2+) above 0.80 (0.67) are ex
luded at 95% CL under the assumption that the total
ross se
tion is that of the SM Higgs boson.8CHATRCHYAN 14AA 
ompare the JCP= 0+ Standard Model assignment with variousJCP hypotheses in 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 at E
m= 8 TeV. JCP= 0− and 1± hypotheses are ex
luded at 99% CL, and several J = 2hypotheses are ex
luded at 95% CL. In order to treat the 
ase of a possible mixture of a0+ state with another JCP state, the 
ross se
tion fra
tion fa3 = ∣∣a3∣∣2 σ3 / (∣∣a1∣∣2 σ1+ ∣∣a2∣∣2 σ2 + ∣∣a3∣∣2 σ3) is 
onsidered, where the 
ase a3 = 1, a1 = a2 = 0 
orrespondsto a pure CP-odd state. Assuming a2 = 0, a value for fa3 above 0.51 is ex
luded at95% CL.9CHATRCHYAN 14G 
ompare the JCP= 0+ Standard Model assignment with JCP=0− and 2+ (graviton-like 
oupling) hypotheses in 4.9 fb−1 of pp 
ollisions at E
m =7 TeV and 19.4 fb−1 at E
m = 8 TeV. Varying the fra
tion of the produ
tion of the2+ state via g g and qq, 2+ hypotheses are disfavored at CL between 83.7 and 99.8%.The 0− hypothesis is disfavored against 0+ at the 65.3% CL.10KHACHATRYAN 14P 
ompare the JCP= 0+ Standard Model assignment with a 2+(graviton-like 
oupling) hypothesis in 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and19.7 fb−1 at E
m = 8 TeV. Varying the fra
tion of the produ
tion of the 2+ state viag g and qq, 2+ hypotheses are disfavored at CL between 71 and 94%.11AAD 13AJ 
ompare the spin 0, CP-even hypothesis with spe
i�
 alternative hypothesesof spin 0, CP-odd, spin 1, CP-even and CP-odd, and spin 2, CP-even models using theHiggs boson de
ays H → γ γ, H → Z Z∗ → 4ℓ and H → WW ∗ → ℓν ℓν and
ombinations thereof. The data are 
ompatible with the spin 0, CP-even hypothesis,while all other tested hypotheses are ex
luded at 
on�den
e levels above 97.8%.12CHATRCHYAN 13J study angular distributions of the lepton pairs in the Z Z∗ 
hannelwhere both Z bosons de
ay to e or µ pairs. Under the assumption that the observedparti
le has spin 0, the data are found to be 
onsistent with the pure CP-even hypothesis,while the pure CP-odd hypothesis is disfavored.H0 DECAY WIDTHH0 DECAY WIDTHH0 DECAY WIDTHH0 DECAY WIDTHThe total de
ay width for a light Higgs boson with a mass in the observed range is notexpe
ted to be dire
tly observable at the LHC. For the 
ase of the Standard Modelthe predi
tion for the total width is about 4 MeV, whi
h is three orders of magnitudesmaller than the experimental mass resolution. There is no indi
ation from the resultsobserved so far that the natural width is broadened by new physi
s e�e
ts to su
h anextent that it 
ould be dire
tly observable. Furthermore, as all LHC Higgs 
hannels relyon the identi�
ation of Higgs de
ay produ
ts, the total Higgs width 
annot be measuredindire
tly without additional assumptions. The di�erent dependen
e of on-peak ando�-peak 
ontributions on the total width in Higgs de
ays to Z Z∗ and interferen
ee�e
ts between signal and ba
kground in Higgs de
ays to γ γ 
an provide additionalinformation in this 
ontext. Constraints on the total width from the 
ombination ofon-peak and o�-peak 
ontributions in Higgs de
ays to Z Z∗ rely on the assumptionof equal on- and o�-shell e�e
tive 
ouplings. Without an experimental determinationof the total width or further theoreti
al assumptions, only ratios of 
ouplings 
an bedetermined at the LHC rather than absolute values of 
ouplings.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

<1.7<1.7<1.7<1.7 95 1 KHACHATRY...15AMCMS pp, 7, 8 TeV
>3.5 × 10−12 95 2 KHACHATRY...15BA CMS pp, 7, 8 TeV, 
ight distan
e
<5.0 95 3 AAD 14W ATLS pp, 7, 8 TeV, γ γ

<2.6 95 3 AAD 14W ATLS pp, 7, 8 TeV, Z Z∗ → 4ℓ
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.0227 95 4 AAD 15BE ATLS pp, 8 TeV, Z Z(∗), WW (∗)
<0.046 95 5 KHACHATRY...15BA CMS pp, 7, 8 TeV, Z Z(∗) → 4ℓ
<3.4 95 6 CHATRCHYAN14AA CMS pp, 7, 8 TeV, Z Z∗ → 4ℓ
<0.022 95 7 KHACHATRY...14D CMS pp, 7, 8 TeV, Z Z(∗)
<2.4 95 8 KHACHATRY...14P CMS pp, 7, 8 TeV, γ γ

1KHACHATRYAN 15AM 
ombine γ γ and Z Z∗ → 4ℓ results. The expe
ted limit is 2.3GeV.2KHACHATRYAN 15BA derive a lower limit on the total width from an upper limit onthe de
ay 
ight distan
e τ < 1.9 × 10−13 s. 5.1 fb−1 of pp 
ollisions at E
m = 7TeV and 19.7 fb−1 at 8 TeV are used.3AAD 14W use 4.5 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.3 fb−1 at 8 TeV. Theexpe
ted limit is 6.2 GeV.4AAD 15BE derive 
onstraints on the total width from 
omparing Z Z(∗) and WW (∗)produ
tion via on-shell and o�-shell H0 using 20.3 fb−1 of pp 
ollisions at E
m = 8TeV. The K fa
tor for the ba
kground pro
esses is assumed to be equal to that for thesignal.5KHACHATRYAN 15BA derive 
onstraints on the total width from 
omparing Z Z(∗)produ
tion via on-shell and o�-shell H0 with an un
onstrained anomalous 
oupling. 4ℓ�nal states in 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 at E
m = 8TeV are used.6CHATRCHYAN 14AA use 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 atE
m = 8 TeV. The expe
ted limit is 2.8 GeV.7KHACHATRYAN 14D derive 
onstraints on the total width from 
omparing Z Z(∗) pro-du
tion via on-shell and o�-shell H0. 4ℓ and ℓℓν ν �nal states in 5.1 fb−1 of pp 
ollisionsat E
m = 7 TeV and 19.7 fb−1 at E
m = 8 TeV are used.8KHACHATRYAN 14P use 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 atE
m = 8 TeV. The expe
ted limit is 3.1 GeV.H0 DECAY MODESH0 DECAY MODESH0 DECAY MODESH0 DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 WW ∗�2 Z Z∗�3 γ γ�4 bb�5 e+ e− < 1.9 × 10−3 95%�6 µ+µ−�7 τ+ τ−�8 Z γ�9 J/ψγ < 1.5 × 10−3 95%�10 �(1S)γ < 1.3 × 10−3 95%�11 �(2S)γ < 1.9 × 10−3 95%�12 �(3S)γ < 1.3 × 10−3 95%�13 µτ < 1.51 % 95%�14 invisible <58 % 95%H0 BRANCHING RATIOSH0 BRANCHING RATIOSH0 BRANCHING RATIOSH0 BRANCHING RATIOS�(e+ e−)/�total �5/��(e+ e−)/�total �5/��(e+ e−)/�total �5/��(e+ e−)/�total �5/�VALUE CL% DOCUMENT ID TECN
<1.9× 10−3<1.9× 10−3<1.9× 10−3<1.9× 10−3 95 1 KHACHATRY...15H CMS1KHACHATRYAN 15H use 5.0 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 at8 TeV.�(J/ψγ

)/�total �9/��(J/ψγ
)/�total �9/��(J/ψγ
)/�total �9/��(J/ψγ
)/�total �9/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.5× 10−3 95 1 KHACHATRY...16B CMS 8 TeV
<1.5× 10−3<1.5× 10−3<1.5× 10−3<1.5× 10−3 95 2 AAD 15I ATLS 8 TeV1KHACHATRYAN 16B use 19.7 fb−1 of pp 
ollision data at 8 TeV.2AAD 15I use 19.7 fb−1 of pp 
ollision data at 8 TeV.�(�(1S)γ)/�total �10/��(�(1S)γ)/�total �10/��(�(1S)γ)/�total �10/��(�(1S)γ)/�total �10/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.3× 10−3<1.3× 10−3<1.3× 10−3<1.3× 10−3 95 1 AAD 15I ATLS 8 TeV1AAD 15I use 19.7 fb−1 of pp 
ollision data at 8 TeV.�(�(2S)γ)/�total �11/��(�(2S)γ)/�total �11/��(�(2S)γ)/�total �11/��(�(2S)γ)/�total �11/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.9× 10−3<1.9× 10−3<1.9× 10−3<1.9× 10−3 95 1 AAD 15I ATLS 8 TeV1AAD 15I use 19.7 fb−1 of pp 
ollision data at 8 TeV.�(�(3S)γ)/�total �12/��(�(3S)γ)/�total �12/��(�(3S)γ)/�total �12/��(�(3S)γ)/�total �12/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.3× 10−3<1.3× 10−3<1.3× 10−3<1.3× 10−3 95 1 AAD 15I ATLS 8 TeV1AAD 15I use 19.7 fb−1 of pp 
ollision data at 8 TeV.�(µτ

)/�total �13/��(µτ
)/�total �13/��(µτ
)/�total �13/��(µτ
)/�total �13/�VALUE CL% DOCUMENT ID TECN

<1.51× 10−2<1.51× 10−2<1.51× 10−2<1.51× 10−2 95 1 KHACHATRY...15Q CMS1KHACHATRYAN 15Q sear
h for H0 → µτ with τ de
aying ele
troni
ally or hadron-i
ally in 19.7 fb−1 of pp 
ollisions at E
m = 8 TeV. The �t gives B(H0 → µτ) =(0.84+0.39
−0.37)% with a signi�
an
e of 2.4 σ.



650650650650Gauge & Higgs Boson Parti
le ListingsH0�(invisible)/�total �14/��(invisible)/�total �14/��(invisible)/�total �14/��(invisible)/�total �14/�Invisible �nal states.VALUE CL% DOCUMENT ID TECN COMMENT
<0.75<0.75<0.75<0.75 95 1 AAD 14O ATLS pp → H0Z X , 7, 8 TeV
<0.58<0.58<0.58<0.58 95 2 CHATRCHYAN14B CMS pp → H0Z X , qqH0X
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.78 95 3 AAD 15BD ATLS pp → H0W /Z X , 8 TeV
<0.81 95 4 CHATRCHYAN14B CMS pp → H0Z X , 7, 8 TeV
<0.65 95 5 CHATRCHYAN14B CMS pp → qqH0X , 8 TeV1AAD 14O sear
h for pp → H0Z X , Z → ℓℓ, with H0 de
aying to invisible �nal statesin 4.5 fb−1 at E
m = 7 TeV and 20.3 fb−1 at E
m = 8 TeV. The quoted limit on thebran
hing ratio is given for mH0 = 125.5 GeV and assumes the Standard Model rate forH0Z produ
tion.2CHATRCHYAN 14B sear
h for pp → H0Z X , Z → ℓℓ and Z → bb, and also pp →qqH0X with H0 de
aying to invisible �nal states using data at E
m = 7 and 8 TeV.The quoted limit on the bran
hing ratio is obtained from a 
ombination of the limitsfrom H0Z and qqH0. It is given for mH0 = 125 GeV and assumes the Standard Modelrates for the two produ
tion pro
esses.3AAD 15BD sear
h for pp → H0W X and pp → H0Z X with W or Z de
ayinghadroni
ally and H0 de
aying to invisible �nal states using data at E
m = 8 TeV. Thequoted limit is given for mH0 = 125 GeV, assumes the Standard Model rates for theprodu
tion pro
esses and is based on a 
ombination of the 
ontributions from H0W ,H0Z and the gluon-fusion pro
ess.4CHATRCHYAN 14B sear
h for pp → H0Z X with H0 de
aying to invisible �nal statesand Z → ℓℓ in 4.9 fb−1 at E
m = 7 TeV and 19.7 fb−1 at E
m = 8 TeV, and alsowith Z → bb in 18.9 fb−1 at E
m = 8 TeV. The quoted limit on the bran
hing ratio isgiven for mH0 = 125 GeV and assumes the Standard Model rate for H0Z produ
tion.5CHATRCHYAN 14B sear
h for pp → qqH0X (ve
tor boson fusion) with H0 de
ayingto invisible �nal states in 19.5 fb−1 at E
m = 8 TeV. The quoted limit on the bran
hingratio is given for mH0 = 125 GeV and assumes the Standard Model rate for qqH0produ
tion.H0 SIGNAL STRENGTHS IN DIFFERENT CHANNELSH0 SIGNAL STRENGTHS IN DIFFERENT CHANNELSH0 SIGNAL STRENGTHS IN DIFFERENT CHANNELSH0 SIGNAL STRENGTHS IN DIFFERENT CHANNELSThe H0 signal strength in a parti
ular �nal state x x is given by the 
rossse
tion times bran
hing ratio in this 
hannel normalized to the StandardModel (SM) value, σ · B(H0 → x x) / (σ · B(H0 → x x))SM, for thespe
i�ed mass value of H0. For the SM predi
tions, see DITTMAIER 11,DITTMAIER 12, and HEINEMEYER 13A. Results for �du
ial and di�er-ential 
ross se
tions are also listed below.Combined Final StatesCombined Final StatesCombined Final StatesCombined Final StatesVALUE DOCUMENT ID TECN COMMENT1.10±0.11 OUR AVERAGE1.10±0.11 OUR AVERAGE1.10±0.11 OUR AVERAGE1.10±0.11 OUR AVERAGE1.09±0.07±0.04±0.03+0.07

−0.06 1,2 AAD 16J LHC pp, 7, 8 TeV1.44+0.59
−0.56 3 AALTONEN 13M TEVA pp → H0X , 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.20±0.10±0.06±0.04+0.08
−0.07 2 AAD 16J ATLS pp, 7, 8 TeV0.97±0.09±0.05+0.04

−0.03+0.07
−0.06 2 AAD 16J CMS pp, 7, 8 TeV1.18±0.10±0.07+0.08

−0.07 4 AAD 16K ATLS pp, 7, 8 TeV0.75+0.28
−0.26+0.13

−0.11+0.08
−0.05 4 AAD 16K ATLS pp, 7 TeV1.28±0.11+0.08

−0.07+0.10
−0.08 4 AAD 16K ATLS pp, 8 TeV5 AAD 15P ATLS pp, 8 TeV, 
ross se
-tion1.00±0.09±0.07+0.08
−0.07 6 KHACHATRY...15AMCMS pp, 7, 8 TeV1.33+0.14

−0.10±0.15 7 AAD 13AK ATLS pp, 7 and 8 TeV1.54+0.77
−0.73 8 AALTONEN 13L CDF pp → H0X , 1.96 TeV1.40+0.92
−0.88 9 ABAZOV 13L D0 pp → H0X , 1.96 TeV1.4 ±0.3 10 AAD 12AI ATLS pp → H0X , 7, 8 TeV1.2 ±0.4 10 AAD 12AI ATLS pp → H0X , 7 TeV1.5 ±0.4 10 AAD 12AI ATLS pp → H0X , 8 TeV0.87±0.23 11 CHATRCHYAN12N CMS pp → H0X , 7, 8 TeV1AAD 16J perform �ts to the ATLAS and CMS data at E
m = 7 and 8 TeV. The signalstrengths for individual produ
tion pro
esses are 1.03+0.16

−0.14 for gluon fusion, 1.18+0.25
−0.23for ve
tor boson fusion, 0.89+0.40

−0.38 for W H0 produ
tion, 0.79+0.38
−0.36 for Z H0 produ
-tion, and 2.3+0.7

−0.6 for t t H0 produ
tion.2The un
ertainties represent statisti
s, experimental systemati
s, theory systemati
s onthe ba
kground, and theory systemati
s on the signal. The quoted signal strengths aregiven for mH0 = 125.09 GeV. In the �t, relative bran
hing ratios and relative produ
tion
ross se
tions are �xed to those in the Standard Model.3AALTONEN 13M 
ombine all Tevatron data from the CDF and D0 Collaborations withup to 10.0 fb−1 and 9.7 fb−1, respe
tively, of pp 
ollisions at E
m = 1.96 TeV. Thequoted signal strength is given for mH0 = 125 GeV.

4AAD 16K use up to 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and up to 20.3 fb−1at E
m = 8 TeV. The third un
ertainty in the measurement is theory systemati
s. Thesignal strengths for individual produ
tion modes are 1.23 ± 0.14+0.09
−0.08+0.16

−0.12 for gluonfusion, 1.23+0.28
−0.27+0.13

−0.12+0.11
−0.09 for ve
tor boson fusion, 0.80+0.31

−0.30 ± 0.17+0.10
−0.05 forW /Z H0 produ
tion, and 1.81+0.52

−0.50+0.58
−0.55+0.31

−0.12 for t t H0 produ
tion. The quotedsignal strengths are given for mH0 = 125.36 GeV.5AAD 15P measure total and di�erential 
ross se
tions of the pro
ess pp → H0X atE
m = 8 TeV with 20.3 fb−1. γ γ and 4ℓ �nal states are used. σ(pp → H0X ) =33.0 ± 5.3 ± 1.6 pb is given. See their Figs. 2 and 3 for data on di�erential 
rossse
tions.6KHACHATRYAN 15AM use up to 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and upto 19.7 fb−1 at E
m = 8 TeV. The third un
ertainty in the measurement is theorysystemati
s. Fits to ea
h produ
tion mode give the value of 0.85+0.19
−0.16 for gluon fu-sion, 1.16+0.37

−0.34 for ve
tor boson fusion, 0.92+0.38
−0.36 for W H0, Z H0 produ
tion, and2.90+1.08

−0.94 for t t H0 produ
tion.7AAD 13AK use 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.7 fb−1 at E
m =8 TeV. The 
ombined signal strength is based on the γ γ, Z Z∗ → 4ℓ, and WW ∗ →
ℓν ℓν 
hannels. The quoted signal strength is given for mH0 = 125.5 GeV. Reportedstatisti
al error value modi�ed following private 
ommuni
ation with the experiment.8AALTONEN 13L 
ombine all CDF results with 9.45{10.0 fb−1 of pp 
ollisions at E
m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.9ABAZOV 13L 
ombine all D0 results with up to 9.7 fb−1 of pp 
ollisions at E
m =1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.10AAD 12AI obtain results based on 4.6{4.8 fb−1 of pp 
ollisions at E
m = 7 TeV and5.8{5.9 fb−1 at E
m = 8 TeV. An ex
ess of events over ba
kground with a lo
alsigni�
an
e of 5.9 σ is observed at mH0 = 126 GeV. The quoted signal strengths aregiven for mH0 = 126 GeV. See also AAD 12DA.11CHATRCHYAN 12N obtain results based on 4.9{5.1 fb−1 of pp 
ollisions at E
m = 7TeV and 5.1{5.3 fb−1 at E
m = 8 TeV. An ex
ess of events over ba
kground with alo
al signi�
an
e of 5.0 σ is observed at about mH0 = 125 GeV. The 
ombined signalstrength is based on the γ γ, Z Z∗, WW ∗, τ+ τ−, and bb 
hannels. The quoted signalstrength is given for mH0 = 125.5 GeV. See also CHATRCHYAN 13Y.WW ∗ Final StateWW ∗ Final StateWW ∗ Final StateWW ∗ Final StateVALUE DOCUMENT ID TECN COMMENT1.08+0.18
−0.16 OUR AVERAGE1.08+0.18
−0.16 OUR AVERAGE1.08+0.18
−0.16 OUR AVERAGE1.08+0.18
−0.16 OUR AVERAGE1.09+0.18
−0.16 1,2 AAD 16J LHC pp, 7, 8 TeV0.94+0.85
−0.83 3 AALTONEN 13M TEVA pp → H0X , 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.22+0.23
−0.21 2 AAD 16J ATLS pp, 7, 8 TeV0.90+0.23
−0.21 2 AAD 16J CMS pp, 7, 8 TeV1.18±0.16+0.17

−0.14 4 AAD 16K ATLS pp, 7, 8 TeV1.09+0.16
−0.15+0.17

−0.14 5 AAD 15AA ATLS pp, 7, 8 TeV3.0 +1.3
−1.1 +1.0

−0.7 6 AAD 15AQ ATLS pp → H0W /Z X , 7,8 TeV1.16+0.16
−0.15+0.18

−0.15 7 AAD 15AQ ATLS pp, 7, 8 TeV0.72±0.12±0.10+0.12
−0.10 8 CHATRCHYAN14G CMS pp, 7, 8 TeV0.99+0.31

−0.28 9 AAD 13AK ATLS pp, 7 and 8 TeV0.00+1.78
−0.00 10 AALTONEN 13L CDF pp → H0X , 1.96 TeV1.90+1.63
−1.52 11 ABAZOV 13L D0 pp → H0X , 1.96 TeV1.3 ±0.5 12 AAD 12AI ATLS pp → H0X , 7, 8 TeV0.5 ±0.6 12 AAD 12AI ATLS pp → H0X , 7 TeV1.9 ±0.7 12 AAD 12AI ATLS pp → H0X , 8 TeV0.60+0.42
−0.37 13 CHATRCHYAN12N CMS pp → H0X , 7, 8 TeV1AAD 16J perform �ts to the ATLAS and CMS data at E
m = 7 and 8 TeV. The signalstrengths for individual produ
tion pro
esses are 0.84+0.17

−0.17 for gluon fusion, 1.2+0.4
−0.4for ve
tor boson fusion, 1.6+1.2

−1.0 for WH0 produ
tion, 5.9+2.6
−2.2 for Z H0 produ
tion,and 5.0+1.8

−1.7 for t t H0 produ
tion.2 In the �t, relative produ
tion 
ross se
tions are �xed to those in the Standard Model.The quoted signal strength is given for mH0 = 125.09 GeV.3AALTONEN 13M 
ombine all Tevatron data from the CDF and D0 Collaborations withup to 10.0 fb−1 and 9.7 fb−1, respe
tively, of pp 
ollisions at E
m = 1.96 TeV. Thequoted signal strength is given for mH0 = 125 GeV.4AAD 16K use up to 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and up to 20.3 fb−1 atE
m = 8 TeV. The quoted signal strength is given for mH0 = 125.36 GeV.5AAD 15AA use 4.5 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.3 fb−1 at E
m= 8 TeV. The signal strength for the gluon fusion and ve
tor boson fusion mode is1.02 ± 0.19+0.22
−0.18 and 1.27+0.44

−0.40+0.30
−0.21, respe
tively. The quoted signal strengths aregiven for mH0 = 125.36 GeV.6AAD 15AQ use 4.5 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.3 fb−1 at E
m = 8TeV. The quoted signal strength is given for mH0 = 125.36 GeV.



651651651651See key on page 601 Gauge & Higgs Boson Parti
le ListingsH07AAD 15AQ 
ombine their result on W /Z H0 produ
tion with the results of AAD 15AA(gluon fusion and ve
tor boson fusion, slightly updated). The quoted signal strength isgiven for mH0 = 125.36 GeV.8CHATRCHYAN 14G use 4.9 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.4 fb−1 atE
m = 8 TeV. The last un
ertainty in the measurement is theory systemati
s. Thequoted signal strength is given for mH0 = 125.6 GeV.9AAD 13AK use 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.7 fb−1 at E
m= 8 TeV. The quoted signal strength is given for mH0 = 125.5 GeV. Superseded byAAD 15AA.10AALTONEN 13L 
ombine all CDF results with 9.45{10.0 fb−1 of pp 
ollisions at E
m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.11ABAZOV 13L 
ombine all D0 results with up to 9.7 fb−1 of pp 
ollisions at E
m =1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.12AAD 12AI obtain results based on 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and 5.8fb−1 at E
m = 8 TeV. The quoted signal strengths are given for mH0 = 126 GeV. Seealso AAD 12DA.13CHATRCHYAN 12N obtain results based on 4.9 fb−1 of pp 
ollisions at E
m = 7 TeVand 5.1 fb−1 at E
m = 8 TeV. The quoted signal strength is given for mH0 = 125.5GeV. See also CHATRCHYAN 13Y.Z Z∗ Final StateZ Z∗ Final StateZ Z∗ Final StateZ Z∗ Final StateVALUE DOCUMENT ID TECN COMMENT1.29+0.26
−0.231.29+0.26
−0.231.29+0.26
−0.231.29+0.26
−0.23 1,2 AAD 16J LHC pp, 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.52+0.40
−0.34 2 AAD 16J ATLS pp, 7, 8 TeV1.04+0.32
−0.26 2 AAD 16J CMS pp, 7, 8 TeV1.46+0.35
−0.31+0.19

−0.13 3 AAD 16K ATLS pp, 7, 8 TeV1.44+0.34
−0.31+0.21

−0.11 4 AAD 15F ATLS pp → H0X , 7, 8 TeV5 AAD 14AR ATLS pp, 8 TeV, di�erential 
rossse
tion0.93+0.26
−0.23+0.13

−0.09 6 CHATRCHYAN14AA CMS pp, 7, 8 TeV1.43+0.40
−0.35 7 AAD 13AK ATLS pp, 7 and 8 TeV0.80+0.35
−0.28 8 CHATRCHYAN13J CMS pp → H0X , 7, 8 TeV1.2 ±0.6 9 AAD 12AI ATLS pp → H0X , 7, 8 TeV1.4 ±1.1 9 AAD 12AI ATLS pp → H0X , 7 TeV1.1 ±0.8 9 AAD 12AI ATLS pp → H0X , 8 TeV0.73+0.45
−0.33 10 CHATRCHYAN12N CMS pp → H0X , 7, 8 TeV1AAD 16J perform �ts to the ATLAS and CMS data at E
m = 7 and 8 TeV. The signalstrengths for individual produ
tion pro
esses are 1.13+0.34

−0.31 for gluon fusion and 0.1+1.1
−0.6for ve
tor boson fusion.2 In the �t, relative produ
tion 
ross se
tions are �xed to those in the Standard Model.The quoted signal strength is given for mH0 = 125.09 GeV.3AAD 16K use up to 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and up to 20.3 fb−1 atE
m = 8 TeV. The quoted signal strength is given for mH0 = 125.36 GeV.4AAD 15F use 4.5 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.3 fb−1 at E
m = 8TeV. The quoted signal strength is given for mH0 = 125.36 GeV. The signal strengthfor the gluon fusion produ
tion mode is 1.66+0.45

−0.41+0.25
−0.15, while the signal strength forthe ve
tor boson fusion produ
tion mode is 0.26+1.60

−0.91+0.36
−0.23.5AAD 14AR measure the 
ross se
tion for pp → H0X , H0 → Z Z∗ using 20.3 fb−1at E
m = 8 TeV. They give σ · B = 2.11+0.53

−0.47 ± 0.08 fb in their �du
ial region,where 1.30 ± 0.13 fb is expe
ted in the Standard Model for mH0 = 125.4 GeV. Variousdi�erential 
ross se
tions are also given, whi
h are in agreement with the Standard Modelexpe
tations.6CHATRCHYAN 14AA use 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 atE
m = 8 TeV. The quoted signal strength is given for mH0 = 125.6 GeV. The signalstrength for the gluon fusion and t t H produ
tion mode is 0.80+0.46
−0.36, while the signalstrength for the ve
tor boson fusion and W H0, Z H0 produ
tion mode is 1.7+2.2

−2.1.7AAD 13AK use 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.7 fb−1 at E
m = 8TeV. The quoted signal strength is given for mH0 = 125.5 GeV.8CHATRCHYAN 13J obtain results based on Z Z → 4ℓ �nal states in 5.1 fb−1 of pp
ollisions at E
m = 7 TeV and 12.2 fb−1 at E
m = 8 TeV. The quoted signal strengthis given for mH0 = 125.8 GeV. Superseded by CHATRCHYAN 14AA.9AAD 12AI obtain results based on 4.7{4.8 fb−1 of pp 
ollisions at E
m = 7 TeV and5.8 fb−1 at E
m = 8 TeV. The quoted signal strengths are given for mH0 = 126 GeV.See also AAD 12DA.10CHATRCHYAN 12N obtain results based on 4.9{5.1 fb−1 of pp 
ollisions at E
m = 7TeV and 5.1{5.3 fb−1 at E
m = 8 TeV. An ex
ess of events over ba
kground with a lo
alsigni�
an
e of 5.0 σ is observed at about mH0 = 125 GeV. The quoted signal strengthsare given for mH0 = 125.5 GeV. See also CHATRCHYAN 12BY and CHATRCHYAN 13Y.
γ γ Final Stateγ γ Final Stateγ γ Final Stateγ γ Final StateVALUE DOCUMENT ID TECN COMMENT1.16±0.18 OUR AVERAGE1.16±0.18 OUR AVERAGE1.16±0.18 OUR AVERAGE1.16±0.18 OUR AVERAGE1.14+0.19

−0.18 1,2 AAD 16J LHC pp, 7, 8 TeV5.97+3.39
−3.12 3 AALTONEN 13M TEVA pp → H0X , 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.14+0.27
−0.25 2 AAD 16J ATLS pp, 7, 8 TeV1.11+0.25
−0.23 2 AAD 16J CMS pp, 7, 8 TeV4 KHACHATRY...16B CMS H0 → γ∗γ → ℓ+ ℓ− γ5 KHACHATRY...16G CMS di�erential 
ross se
tion1.17±0.23+0.10

−0.08+0.12
−0.08 6 AAD 14BC ATLS pp → H0X , 7, 8 TeV7 AAD 14BJ ATLS pp, 8 TeV, di�erential 
rossse
tion1.14±0.21+0.09

−0.05+0.13
−0.09 8 KHACHATRY...14P CMS pp, 7, 8 TeV1.55+0.33

−0.28 9 AAD 13AK ATLS pp, 7 and 8 TeV7.81+4.61
−4.42 10 AALTONEN 13L CDF pp → H0X , 1.96 TeV4.20+4.60
−4.20 11 ABAZOV 13L D0 pp → H0X , 1.96 TeV1.8 ±0.5 12 AAD 12AI ATLS pp → H0X , 7, 8 TeV2.2 ±0.7 12 AAD 12AI ATLS pp → H0X , 7 TeV1.5 ±0.6 12 AAD 12AI ATLS pp → H0X , 8 TeV1.54+0.46
−0.42 13 CHATRCHYAN12N CMS pp → H0X , 7, 8 TeV1AAD 16J perform �ts to the ATLAS and CMS data at E
m = 7 and 8 TeV. The signalstrengths for individual produ
tion pro
esses are 1.10+0.23

−0.22 for gluon fusion, 1.3+0.5
−0.5for ve
tor boson fusion, 0.5+1.3

−1.2 for WH0 produ
tion, 0.5+3.0
−2.5 for Z H0 produ
tion,and 2.2+1.6

−1.3 for t t H0 produ
tion.2 In the �t, relative produ
tion 
ross se
tions are �xed to those in the Standard Model.The quoted signal strength is given for mH0 = 125.09 GeV.3AALTONEN 13M 
ombine all Tevatron data from the CDF and D0 Collaborations withup to 10.0 fb−1 and 9.7 fb−1, respe
tively, of pp 
ollisions at E
m = 1.96 TeV. Thequoted signal strength is given for mH0 = 125 GeV.4KHACHATRYAN 16B sear
h for H0 → γ∗ γ → e+ e− γ and µ+µ− γ (with m(ℓ+ ℓ−)
< 20 GeV) in 19.7 fb−1 of pp 
ollisions at E
m = 8 TeV. An upper limit of 6.7 timesthe Standard Model expe
tation is obtained at 95% CL. See their Fig. 6 for limits onindividual 
hannels.5KHACHATRYAN 16Gmeasure �du
ial and di�erential 
ross se
tions of the pro
ess pp →H0X , H0 → γ γ at E
m = 8 TeV with 19.7 fb−1. See their Figs. 4{6 and Table 1 fordata.6AAD 14BC use 4.5 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.3 fb−1 at E
m= 8 TeV. The last un
ertainty in the measurement is theory systemati
s. The quotedsignal strength is given for mH0 = 125.4 GeV. The signal strengths for the individualprodu
tion modes are: 1.32 ± 0.38 for gluon fusion, 0.8 ± 0.7 for ve
tor boson fusion,1.0 ± 1.6 for W H0 produ
tion, 0.1+3.7

−0.1 for Z H0 produ
tion, and 1.6+2.7
−1.8 for t t H0produ
tion.7AAD 14BJ measure �du
ial and di�erential 
ross se
tions of the pro
ess pp → H0X ,H0 → γ γ at E
m = 8 TeV with 20.3 fb−1. See their Table 3 and Figs. 3{12 for data.8KHACHATRYAN 14P use 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1at E
m = 8 TeV. The last un
ertainty in the measurement is theory systemati
s. Thequoted signal strength is given for mH0 = 124.7 GeV. The signal strength for the gluonfusion and t t H produ
tion mode is 1.13+0.37

−0.31, while the signal strength for the ve
torboson fusion and WH0, Z H0 produ
tion mode is 1.16+0.63
−0.58.9AAD 13AK use 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.7 fb−1 at E
m = 8TeV. The quoted signal strength is given for mH0 = 125.5 GeV.10AALTONEN 13L 
ombine all CDF results with 9.45{10.0 fb−1 of pp 
ollisions at E
m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.11ABAZOV 13L 
ombine all D0 results with up to 9.7 fb−1 of pp 
ollisions at E
m =1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.12AAD 12AI obtain results based on 4.8 fb−1 of pp 
ollisions at E
m = 7 TeV and 5.9fb−1 at E
m = 8 TeV. The quoted signal strengths are given for mH0 = 126 GeV. Seealso AAD 12DA.13CHATRCHYAN 12N obtain results based on 5.1 fb−1 of pp 
ollisions at E
m=7 TeVand 5.3 fb−1 at E
m=8 TeV. The quoted signal strength is given for mH0=125.5 GeV.See also CHATRCHYAN 13Y.bb Final Statebb Final Statebb Final Statebb Final StateVALUE DOCUMENT ID TECN COMMENT0.82±0.30 OUR AVERAGE0.82±0.30 OUR AVERAGE0.82±0.30 OUR AVERAGE0.82±0.30 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.70+0.29

−0.27 1,2 AAD 16J LHC pp, 7, 8 TeV1.59+0.69
−0.72 3 AALTONEN 13M TEVA pp → H0X , 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.62±0.37 2 AAD 16J ATLS pp, 7, 8 TeV0.81+0.45
−0.43 2 AAD 16J CMS pp, 7, 8 TeV0.63+0.31
−0.30+0.24

−0.23 4 AAD 16K ATLS pp, 7, 8 TeV0.52±0.32±0.24 5 AAD 15G ATLS pp → H0W /Z X , 7, 8 TeV2.8 +1.6
−1.4 6 KHACHATRY...15Z CMS pp → H0X , VBF, 8 TeV1.03+0.44
−0.42 7 KHACHATRY...15Z CMS pp, 8 TeV, 
ombined1.0 ±0.5 8 CHATRCHYAN14AI CMS pp → H0W /Z X , 7, 8 TeV1.72+0.92
−0.87 9 AALTONEN 13L CDF pp → H0X , 1.96 TeV1.23+1.24
−1.17 10 ABAZOV 13L D0 pp → H0X , 1.96 TeV0.5 ±2.2 11 AAD 12AI ATLS pp → H0W /Z X , 7 TeV12 AALTONEN 12T TEVA pp → H0W /Z X , 1.96 TeV0.48+0.81
−0.70 13 CHATRCHYAN12N CMS pp → H0W /Z X , 7, 8 TeV



652652652652Gauge&HiggsBosonParti
le ListingsH01AAD 16J perform �ts to the ATLAS and CMS data at E
m = 7 and 8 TeV. The signalstrengths for individual produ
tion pro
esses are 1.0+0.5
−0.5 forW H0 produ
tion, 0.4+0.4

−0.4for Z H0 produ
tion, and 1.1+1.0
−1.0 for t t H0 produ
tion.2 In the �t, relative produ
tion 
ross se
tions are �xed to those in the Standard Model.The quoted signal strength is given for mH0 = 125.09 GeV.3AALTONEN 13M 
ombine all Tevatron data from the CDF and D0 Collaborations withup to 10.0 fb−1 and 9.7 fb−1, respe
tively, of pp 
ollisions at E
m = 1.96 TeV. Thequoted signal strength is given for mH0 = 125 GeV.4AAD 16K use up to 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and up to 20.3 fb−1 atE
m = 8 TeV. The quoted signal strength is given for mH0 = 125.36 GeV.5AAD 15G use 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.3 fb−1 at E
m = 8TeV. The quoted signal strength is given for mH0 = 125.36 GeV.6KHACHATRYAN 15Z sear
h for ve
tor-boson fusion produ
tion of H0 de
aying to bb inup to 19.8 fb−1 of pp 
ollisions at E
m = 8 TeV. The quoted signal strength is givenfor mH0 = 125 GeV.7KHACHATRYAN 15Z 
ombined ve
tor boson fusion,W H0, Z H0 produ
tion, and t t H0produ
tion results. The quoted signal strength is given for mH0 = 125 GeV.8CHATRCHYAN 14AI use up to 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and up to18.9 fb−1 at E
m = 8 TeV. The quoted signal strength is given for mH0 = 125 GeV.See also CHATRCHYAN 14AJ.9AALTONEN 13L 
ombine all CDF results with 9.45{10.0 fb−1 of pp 
ollisions at E
m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.10ABAZOV 13L 
ombine all D0 results with up to 9.7 fb−1 of pp 
ollisions at E
m =1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.11AAD 12AI obtain results based on 4.6{4.8 fb−1 of pp 
ollisions at E
m = 7 TeV. Thequoted signal strengths are given in their Fig. 10 for mH0 = 126 GeV. See also Fig. 13of AAD 12DA.12AALTONEN 12T 
ombine AALTONEN 12Q, AALTONEN 12R, AALTONEN 12S,ABAZOV 12O, ABAZOV 12P, and ABAZOV 12K. An ex
ess of events over ba
kgroundis observed whi
h is most signi�
ant in the region mH0 = 120{135 GeV, with a lo
alsigni�
an
e of up to 3.3 σ. The lo
al signi�
an
e at mH0 = 125 GeV is 2.8 σ, whi
h
orresponds to (σ(H0W ) + σ(H0 Z)) · B(H0 → bb) = (0.23+0.09

−0.08) pb, 
ompared tothe Standard Model expe
tation at mH0 = 125 GeV of 0.12 ± 0.01 pb. Superseded byAALTONEN 13M.13CHATRCHYAN 12N obtain results based on 5.0 fb−1 of pp 
ollisions at E
m=7 TeVand 5.1 fb−1 at E
m=8 TeV. The quoted signal strength is given for mH0=125.5 GeV.See also CHATRCHYAN 13Y.
µ+µ− Final Stateµ+µ− Final Stateµ+µ− Final Stateµ+µ− Final StateVALUE CL% DOCUMENT ID TECN COMMENT
<7.4 95 1 KHACHATRY...15H CMS pp → H0X , 7, 8 TeV
<7.0<7.0<7.0<7.0 95 2 AAD 14AS ATLS pp → H0X , 7, 8 TeV1KHACHATRYAN 15H use 5.0 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 at8 TeV. The quoted signal strength is given for mH0 = 125 GeV.2AAD 14AS sear
h for H0 → µ+µ− in 4.5 fb−1 of pp 
ollisions at E
m = 7 TeV and20.3 fb−1 at E
m = 8 TeV. The quoted signal strength is given for mH0 = 125.5 GeV.
τ+ τ− Final Stateτ+ τ− Final Stateτ+ τ− Final Stateτ+ τ− Final StateVALUE DOCUMENT ID TECN COMMENT1.12±0.23 OUR AVERAGE1.12±0.23 OUR AVERAGE1.12±0.23 OUR AVERAGE1.12±0.23 OUR AVERAGE1.11+0.24

−0.22 1,2 AAD 16J LHC pp, 7, 8 TeV1.68+2.28
−1.68 3 AALTONEN 13M TEVA pp → H0X , 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.41+0.40
−0.36 2 AAD 16J ATLS pp, 7, 8 TeV0.88+0.30
−0.28 2 AAD 16J CMS pp, 7, 8 TeV1.44+0.30
−0.29+0.29

−0.23 4 AAD 16K ATLS pp, 7, 8 TeV1.43+0.27
−0.26+0.32

−0.25±0.09 5 AAD 15AH ATLS pp → H0X , 7, 8 TeV0.78±0.27 6 CHATRCHYAN14K CMS pp → H0X , 7, 8 TeV0.00+8.44
−0.00 7 AALTONEN 13L CDF pp → H0X , 1.96 TeV3.96+4.11
−3.38 8 ABAZOV 13L D0 pp → H0X , 1.96 TeV0.4 +1.6
−2.0 9 AAD 12AI ATLS pp → H0X , 7 TeV0.09+0.76
−0.74 10 CHATRCHYAN12N CMS pp → H0X , 7, 8 TeV1AAD 16J perform �ts to the ATLAS and CMS data at E
m = 7 and 8 TeV. The signalstrengths for individual produ
tion pro
esses are 1.0+0.6

−0.6 for gluon fusion, 1.3+0.4
−0.4 forve
tor boson fusion, −1.4+1.4

−1.4 forW H0 produ
tion, 2.2+2.2
−1.8 for Z H0 produ
tion, and

−1.9+3.7
−3.3 for t t H0 produ
tion.2 In the �t, relative produ
tion 
ross se
tions are �xed to those in the Standard Model.The quoted signal strength is given for mH0 = 125.09 GeV.3AALTONEN 13M 
ombine all Tevatron data from the CDF and D0 Collaborations withup to 10.0 fb−1 and 9.7 fb−1, respe
tively, of pp 
ollisions at E
m = 1.96 TeV. Thequoted signal strength is given for mH0 = 125 GeV.4AAD 16K use up to 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and up to 20.3 fb−1 atE
m = 8 TeV. The quoted signal strength is given for mH0 = 125.36 GeV.

5AAD 15AH use 4.5 fb−1 of pp 
ollisions at E
m = 7 TeV and 20.3 fb−1 at E
m= 8 TeV. The third un
ertainty in the measurement is theory systemati
s. The signalstrength for the gluon fusion mode is 2.0 ± 0.8+1.2
−0.8 ± 0.3 and that for ve
tor bosonfusion and W /Z H0 produ
tion modes is 1.24+0.49

−0.45+0.31
−0.29 ± 0.08. The quoted signalstrength is given for mH0 = 125.36 GeV.6CHATRCHYAN 14K use 4.9 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1at E
m = 8 TeV. The quoted signal strength is given for mH0 = 125 GeV. See alsoCHATRCHYAN 14AJ.7AALTONEN 13L 
ombine all CDF results with 9.45{10.0 fb−1 of pp 
ollisions at E
m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.8ABAZOV 13L 
ombine all D0 results with up to 9.7 fb−1 of pp 
ollisions at E
m =1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.9AAD 12AI obtain results based on 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV. Thequoted signal strengths are given in their Fig. 10 for mH0 = 126 GeV. See also Fig. 13of AAD 12DA.10CHATRCHYAN 12N obtain results based on 4.9 fb−1 of pp 
ollisions at E
m=7 TeVand 5.1 fb−1 at E
m=8 TeV. The quoted signal strength is given for mH0=125.5 GeV.See also CHATRCHYAN 13Y .Z γ Final StateZ γ Final StateZ γ Final StateZ γ Final StateVALUE CL% DOCUMENT ID TECN COMMENT

<11 95 1 AAD 14J ATLS pp → H0X , 7, 8 TeV
< 9.5< 9.5< 9.5< 9.5 95 2 CHATRCHYAN13BK CMS pp → H0X , 7, 8 TeV1AAD 14J sear
h for H0 → Z γ → ℓℓγ in 4.5 fb−1 of pp 
ollisions at E
m = 7 TeVand 20.3 fb−1 at E
m = 8 TeV. The quoted signal strength is given for mH0 = 125.5GeV.2CHATRCHYAN 13BK sear
h for H0 → Z γ → ℓℓγ in 5.0 fb−1 of pp 
ollisions at E
m= 7 TeV and 19.6 fb−1 at E
m = 8 TeV. A limit on 
ross se
tion times bran
hing ratiowhi
h 
orresponds to (4{25) times the expe
ted Standard Model 
ross se
tion is givenin the range mH0 = 120{160 GeV at 95% CL. The quoted limit is given for mH0 = 125GeV, where 10 is expe
ted for no signal.t t H0 Produ
tiont t H0 Produ
tiont t H0 Produ
tiont t H0 Produ
tionSignal strengh relative to the Standard Model 
ross se
tion.VALUE CL% DOCUMENT ID TECN COMMENT2.3 +0.7

−0.62.3 +0.7
−0.62.3 +0.7
−0.62.3 +0.7
−0.6 1,2 AAD 16J LHC pp, 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.9 +0.8
−0.7 2 AAD 16J ATLS pp, 7, 8 TeV2.9 +1.0
−0.9 2 AAD 16J CMS pp, 7, 8 TeV1.81+0.52
−0.50+0.58

−0.55+0.31
−0.12 3 AAD 16K ATLS pp, 7, 8 TeV1.4 +2.1

−1.4 +0.6
−0.3 4 AAD 15 ATLS pp, 7, 8 TeV1.5 ±1.1 5 AAD 15BC ATLS pp, 8 TeV2.1 +1.4

−1.2 6 AAD 15T ATLS pp, 8 TeV1.2 +1.6
−1.5 7 KHACHATRY...15AN CMS pp, 8 TeV2.8 +1.0
−0.9 8 KHACHATRY...14H CMS pp, 7, 8 TeV9.49+6.60
−6.28 9 AALTONEN 13L CDF pp, 1.96 TeV

<5.8 95 10 CHATRCHYAN13X CMS pp → H0 t t X1AAD 16J perform �ts to the ATLAS and CMS data at E
m = 7 and 8 TeV.2 In the �t, relative bran
hing ratios are �xed to those in the Standard Model. The quotedsignal strength is given for mH0 = 125.09 GeV.3AAD 16K use up to 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV and up to 20.3 fb−1at E
m = 8 TeV. The third un
ertainty in the measurement is theory systemati
s. Thequoted signal strength is given for mH0 = 125.36 GeV.4AAD 15 sear
h for t t H0 produ
tion with H0 de
aying to γ γ in 4.5 fb−1 of pp 
ollisionsat E
m = 7 TeV and 20.3 fb−1 at E
m = 8 TeV. The quoted result on the signal strengthis equivalent to an upper limit of 6.7 at 95% CL and is given for mH0 = 125.4 GeV.5AAD 15BC sear
h for t t H0 produ
tion with H0 de
aying to bb in 20.3 fb−1 of pp
ollisions at E
m = 8 TeV. The 
orresponding upper limit is 3.4 at 95% CL. The quotedsignal strength is given for mH0 = 125 GeV.6AAD 15T sear
h for t t H0 produ
tion with H0 resulting in multilepton �nal states (mainlyfrom WW ∗, τ τ , Z Z∗) in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. The quotedresult on the signal strength is given for mH0 = 125 GeV and 
orresponds to an upperlimit of 4.7 at 95% CL. The data sample is independent from AAD 15 and AAD 15BC.7KHACHATRYAN 15AN sear
h for t t H0 produ
tion with H0 de
aying to bb in 19.5 fb−1of pp 
ollisions at E
m = 8 TeV. The quoted result on the signal strength is equivalentto an upper limit of 4.2 at 95% CL and is given for mH0 = 125 GeV.8KHACHATRYAN 14H sear
h for t t H0 produ
tion with H0 de
aying to bb, τ τ , γ γ,WW ∗, and Z Z∗, in 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 at E
m= 8 TeV. The quoted signal strength is given for mH0 = 125.6 GeV.9AALTONEN 13L 
ombine all CDF results with 9.45{10.0 fb−1 of pp 
ollisions at E
m= 1.96 TeV. The quoted signal strength is given for mH0 = 125 GeV.10CHATRCHYAN 13X sear
h for t t H0 produ
tion followed by H0 → bb, one top de
ayingto ℓν and the other to either ℓν or qq in 5.0 fb−1 and 5.1 fb−1 of pp 
ollisions atE
m = 7 and 8 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to(4.0{8.6) times the expe
ted Standard Model 
ross se
tion is given for mH0 = 110{140GeV at 95% CL. The quoted limit is given for mH0 = 125 GeV, where 5.2 is expe
tedfor no signal.
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hatryan et al. (CMS Collab.)AAD 15 PL B740 222 G. Aad et al. (ATLAS Collab.)AAD 15AA PR D92 012006 G. Aad et al. (ATLAS Collab.)AAD 15AH JHEP 1504 117 G. Aad et al. (ATLAS Collab.)AAD 15AQ JHEP 1508 137 G. Aad et al. (ATLAS Collab.)AAD 15AX EPJ C75 231 G. Aad et al. (ATLAS Collab.)AAD 15B PRL 114 191803 G. Aad et al. (ATLAS and CMS Collabs.)AAD 15BC EPJ C75 349 G. Aad et al. (ATLAS Collab.)AAD 15BD EPJ C75 337 G. Aad et al. (ATLAS Collab.)AAD 15BE EPJ C75 335 G. Aad et al. (ATLAS Collab.)AAD 15CI EPJ C75 476 G. Aad et al. (ATLAS Collab.)AAD 15F PR D91 012006 G. Aad et al. (ATLAS Collab.)AAD 15G JHEP 1501 069 G. Aad et al. (ATLAS Collab.)AAD 15I PRL 114 121801 G. Aad et al. (ATLAS Collab.)AAD 15P PRL 115 091801 G. Aad et al. (ATLAS Collab.)AAD 15T PL B749 519 G. Aad et al. (ATLAS Collab.)AALTONEN 15 PRL 114 151802 T. Aaltonen et al. (CDF and D0 Collabs.)AALTONEN 15B PRL 114 141802 T. Aaltonen et al. (CDF Collab.)KHACHATRY... 15AM EPJ C75 212 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15AN EPJ C75 251 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15BA PR D92 072010 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15H PL B744 184 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15Q PL B749 337 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15Y PR D92 012004 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15Z PR D92 032008 V. Kha
hatryan et al. (CMS Collab.)AAD 14AR PL B738 234 G. Aad et al. (ATLAS Collab.)AAD 14AS PL B738 68 G. Aad et al. (ATLAS Collab.)AAD 14BC PR D90 112015 G. Aad et al. (ATLAS Collab.)AAD 14BJ JHEP 1409 112 G. Aad et al. (ATLAS Collab.)AAD 14J PL B732 8 G. Aad et al. (ATLAS Collab.)AAD 14O PRL 112 201802 G. Aad et al. (ATLAS Collab.)AAD 14W PR D90 052004 G. Aad et al. (ATLAS Collab.)ABAZOV 14F PRL 113 161802 V.M. Abazov et al. (D0 Collab.)CHATRCHYAN 14AA PR D89 092007 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 14AI PR D89 012003 S. Chatr
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hyan et al. (CMS Collab.)CHATRCHYAN 13X JHEP 1305 145 S. Chatr
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hyan et al. (CMS Collab.)CHATRCHYAN 12N PL B716 30 S. Chatr
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hes forCONTENTS:CONTENTS:CONTENTS:CONTENTS:Mass Limits for Neutral Higgs Bosons in Supersymmetri
 Models
− Mass Limits for H01 (Higgs Boson) in Supersymmetri
 Models
− Mass Limits for A0 (Pseudos
alar Higgs Boson) in Supersymmetri
 ModelsMass Limits for Neutral Higgs Bosons in Extended Higgs Models
− Mass Limits in General two-Higgs-doublet Models
− Mass Limits for H0 with Vanishing Yukawa Couplings
− Mass Limits for H0 De
aying to Invisible Final States
− Mass Limits for Light A0
− Other Mass LimitsSear
hes for a Higgs Boson with Standard Model Couplings
− Dire
t Mass Limits for H0
− Indire
t Mass Limits for H0 from Ele
troweak AnalysisMASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSIN SUPERSYMMETRIC MODELSIN SUPERSYMMETRIC MODELSIN SUPERSYMMETRIC MODELSIN SUPERSYMMETRIC MODELSThe minimal supersymmetri
 model has two 
omplex doublets of Higgsbosons. The resulting physi
al states are two s
alars [H01 and H02, wherewe de�ne mH01 < mH02 ℄, a pseudos
alar (A0), and a 
harged Higgs pair(H±). H01 and H02 are also 
alled h and H in the literature. There aretwo free parameters in the Higgs se
tor whi
h 
an be 
hosen to be mA0and tanβ = v2/v1, the ratio of va
uum expe
tation values of the twoHiggs doublets. Tree-level Higgs masses are 
onstrained by the model tobe mH01 ≤ mZ , mH02 ≥ mZ , mA0 ≥ mH01 , and mH± ≥ mW .

However, as des
ribed in the review on \Status of Higgs Boson Physi
s"in this Volume these relations are violated by radiative 
orre
tions.Unless otherwise noted, the experiments in e+ e− 
ollisions sear
h forthe pro
esses e+ e− → H01Z0 in the 
hannels used for the StandardModel Higgs sear
hes and e+ e− → H01A0 in the �nal states bbbb andbb τ+ τ−. In pp and pp 
ollisions the experiments sear
h for a varietyof pro
esses, as expli
itly spe
i�ed for ea
h entry. Limits on the A0 massarise from these dire
t sear
hes, as well as from the relations valid in theminimal supersymmetri
 model between mA0 and mH01. As dis
ussedin the review on \Status of Higgs Boson Physi
s" in this Volume, theserelations depend, via potentially large radiative 
orre
tions, on the mass ofthe t quark and on the supersymmetri
 parameters, in parti
ular those ofthe stop se
tor. These indire
t limits are weaker for larger t and t̃ masses.To in
lude the radiative 
orre
tions to the Higgs masses, unless otherwisestated, the listed papers use theoreti
al predi
tions in
orporating two-loop
orre
tions, and the results are given for the mmax
h

ben
hmark s
enario,whi
h gives rise to the most 
onservative upper bound on the mass of H01for given values of mA0 and tanβ, see CARENA 99B, CARENA 03, andCARENA 13.Limits in the low-mass region of H01, as well as other by now obsolete limitsfrom di�erent te
hniques, have been removed from this 
ompilation, and
an be found in earlier editions of this Review. Unless otherwise stated,the following results assume no invisible H01 or A0 de
ays.The observed signal at about 125 GeV, see se
tion \H0", 
an be inter-preted as one of the neutral Higgs bosons of supersymmetri
 models.Mass Limits for H01 (Higgs Boson) in Supersymmetri
 ModelsMass Limits for H01 (Higgs Boson) in Supersymmetri
 ModelsMass Limits for H01 (Higgs Boson) in Supersymmetri
 ModelsMass Limits for H01 (Higgs Boson) in Supersymmetri
 ModelsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>89.7 1 ABDALLAH 08B DLPH E
m ≤ 209 GeV
>92.8>92.8>92.8>92.8 95 2 SCHAEL 06B LEP E
m ≤ 209 GeV
>84.5 95 3,4 ABBIENDI 04M OPAL E
m ≤ 209 GeV
>86.0 95 3,5 ACHARD 02H L3 E
m ≤ 209 GeV, tanβ > 0.4
• • • We do not use the following data for averages, �ts, limits, et
. • • •6 KHACHATRY...16A CMS H01,2 /A0 → µ+µ−7 AAD 15CE ATLS H02 → H0H08 KHACHATRY...15AY CMS pp → H01,2 /A0 + b + X ,

H01,2 /A0 → bb9 AAD 14AWATLS pp → H01,2 /A0 + X ,H01,2 /A0 → τ τ10 KHACHATRY...14M CMS pp → H01,2 /A0 + X ,H01,2 /A0 → τ τ11 AAD 13O ATLS pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−, µ+µ−12 AAIJ 13T LHCB pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−13 CHATRCHYAN13AG CMS pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb14 AALTONEN 12AQ TEVA pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb15 AALTONEN 12X CDF pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb16 ABAZOV 12G D0 pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−17 CHATRCHYAN12K CMS pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−18 ABAZOV 11K D0 pp → H01,2 /A0 + b + X ,
H01,2 /A0 → bb19 ABAZOV 11W D0 pp → H01,2 /A0 + b + X ,
H01,2 /A0 → τ+ τ−20 AALTONEN 09AR CDF pp → H01,2 /A0 + X ,
H01,2 /A0 → τ+ τ−21 ABBIENDI 03G OPAL H01 → A0A0

>89.8 95 3,22 HEISTER 02 ALEP E
m ≤ 209 GeV, tanβ > 0.51ABDALLAH 08B give limits in eight CP-
onserving ben
hmark s
enarios and some CP-violating s
enarios. See paper for ex
luded regions for ea
h s
enario. Supersedes AB-DALLAH 04.2 SCHAEL 06B make a 
ombined analysis of the LEP data. The quoted limit is for themmax
h

s
enario with mt = 174.3 GeV. In the CP-violating CPX s
enario no lower boundon mH01 
an be set at 95% CL. See paper for ex
luded regions in various s
enarios. SeeFigs. 2{6 and Tabs. 14{21 for limits on σ(Z H0)· B(H0 → bb, τ+ τ−) and σ(H01H02)·B(H01,H02→ bb,τ+ τ−).



654654654654Gauge & Higgs Boson Parti
le ListingsNeutral Higgs Bosons, Sear
hes for3Sear
h for e+ e− → H01A0 in the �nal states bbbb and bb τ+ τ−, and e+ e− →H01Z . Universal s
alar mass of 1 TeV, SU(2) gaugino mass of 200 GeV, and µ= −200GeV are assumed, and two-loop radiative 
orre
tions in
orporated. The limits hold formt=175 GeV, and for the mmaxh s
enario.4ABBIENDI 04M ex
lude 0.7 < tanβ < 1.9, assuming mt = 174.3 GeV. Limits for otherMSSM ben
hmark s
enarios, as well as for CP violating 
ases, are also given.5ACHARD 02H also sear
h for the �nal state H01Z → 2A0 qq, A0 → qq. In addition,the MSSM parameter set in the \large-µ" and \no-mixing" s
enarios are examined.6KHACHATRYAN 16A sear
h for produ
tion of a Higgs boson in gluon fusion and inasso
iation with a bb pair followed by the de
ay H01,2 /A0 → µ+µ− in 5.1 fb−1 ofpp 
ollisions at E
m = 7 TeV and 19.3 fb−1 at E
m = 8 TeV. See their Fig. 7 for theex
luded region in the MSSM parameter spa
e in the mmod+
h

ben
hmark s
enario andFig. 9 for limits on 
ross se
tion times bran
hing ratio.7AAD 15CE sear
h for produ
tion of H02 de
aying to H0H0 in the �nal states bb τ+ τ−and γ γWW∗ in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV and 
ombine with datafrom AAD 15H (γ γ bb) and AAD 15BK (bb bb). See their Fig. 7 for ex
luded regionsin the parameter spa
e in several s
enarios.8KHACHATRYAN 15AY sear
h for produ
tion of a Higgs boson in asso
iation with a bquark in the de
ay H01,2 /A0 → bb in 19.7 fb−1 of pp 
ollisions at E
m = 8 TeV and
ombine with CHATRCHYAN 13AG 7 TeV data. See their Fig. 6 for the limits on 
rossse
tion times bran
hing ratio for mA0 = 100{900 GeV and Figs. 7{9 for the ex
ludedregion in the MSSM parameter spa
e in various ben
hmark s
enarios.9AAD 14AW sear
h for produ
tion of a Higgs boson followed by the de
ay H01,2 /A0 →

τ+ τ− in 19.5{20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 11 for thelimits on 
ross se
tion times bran
hing ratio and their Figs. 9 and 10 for the ex
ludedregion in the MSSM parameter spa
e. For mA0 = 140 GeV, the region tanβ > 5.4 isex
luded at 95% CL in the mmax
h s
enario.10KHACHATRYAN 14M sear
h for produ
tion of a Higgs boson in gluon fusion and inasso
iation with a b quark followed by the de
ay H01,2 /A0 → τ+ τ− in 4.9 fb−1 ofpp 
ollisions at E
m = 7 TeV and 19.7 fb−1 at E
m = 8 TeV. See their Figs. 7 and8 for one- and two-dimensional limits on 
ross se
tion times bran
hing ratio and theirFigs. 5 and 6 for the ex
luded region in the MSSM parameter spa
e. For mA0 = 140GeV, the region tanβ > 3.8 is ex
luded at 95% CL in the mmax

h
s
enario.11AAD 13O sear
h for produ
tion of a Higgs boson in the de
ay H01,2 /A0 → τ+ τ− and

µ+µ− with 4.7{4.8 fb−1 of pp 
ollisions at E
m = 7 TeV. See their Fig. 6 for theex
luded region in the MSSM parameter spa
e and their Fig. 7 for the limits on 
rossse
tion times bran
hing ratio. For mA0 = 110{170 GeV, tanβ & 10 is ex
luded, andfor tanβ = 50, mA0 below 470 GeV is ex
luded at 95% CL in the mmax
h

s
enario.12AAIJ 13T sear
h for produ
tion of a Higgs boson in the forward region in the de
ayH01,2/A0 → τ+ τ− in 1.0 fb−1 of pp 
ollisions at E
m = 7 TeV. See their Fig. 2 forthe limits on 
ross se
tion times bran
hing ratio and the ex
luded region in the MSSMparameter spa
e.13CHATRCHYAN 13AG sear
h for produ
tion of a Higgs boson in asso
iation with a bquark in the de
ay H01,2/A0 → bb in 2.7{4.8 fb−1 of pp 
ollisions at E
m = 7 TeV.See their Fig. 6 for the ex
luded region in the MSSM parameter spa
e and Fig. 5 for thelimits on 
ross se
tion times bran
hing ratio. For mA0 = 90{350 GeV, upper bounds ontanβ of 18{42 at 95% CL are obtained in the mmax
h

s
enario with µ = +200 GeV.14AALTONEN 12AQ 
ombine AALTONEN 12X and ABAZOV 11K. See their Table I andFig. 1 for the limit on 
ross se
tion times bran
hing ratio and Fig. 2 for the ex
ludedregion in the MSSM parameter spa
e.15AALTONEN 12X sear
h for asso
iated produ
tion of a Higgs boson and a b quark in thede
ay H01,2 /A0 → bb, with 2.6 fb−1 of pp 
ollisions at E
m = 1.96 TeV. See theirTable III and Fig. 15 for the limit on 
ross se
tion times bran
hing ratio and Figs. 17,18 for the ex
luded region in the MSSM parameter spa
e.16ABAZOV 12G sear
h for produ
tion of a Higgs boson in the de
ay H01,2 /A0 → τ+ τ−with 7.3 fb−1 of pp 
ollisions at E
m = 1.96 TeV and 
ombine with ABAZOV 11Wand ABAZOV 11K. See their Figs. 4, 5, and 6 for the ex
luded region in the MSSMparameter spa
e. For mA0 = 90{180 GeV, tanβ & 30 is ex
luded at 95% CL. in themmax
h

s
enario.17CHATRCHYAN 12K sear
h for produ
tion of a Higgs boson in the de
ay H01,2 /A0 →

τ+ τ− with 4.6 fb−1 of pp 
ollisions at E
m = 7 TeV. See their Fig. 3 and Ta-ble 4 for the ex
luded region in the MSSM parameter spa
e. For mA0 = 160 GeV,the region tanβ > 7.1 is ex
luded at 95% CL in the mmax
h

s
enario. Superseded byKHACHATRYAN 14M.18ABAZOV 11K sear
h for asso
iated produ
tion of a Higgs boson and a b quark, followedby the de
ay H01,2/A0 → bb, in 5.2 fb−1 of pp 
ollisions at E
m = 1.96 TeV. Seetheir Fig. 5/Table 2 for the limit on 
ross se
tion times bran
hing ratio and Fig. 6 for theex
luded region in the MSSM parameter spa
e for µ = −200 GeV.19ABAZOV 11W sear
h for asso
iated produ
tion of a Higgs boson and a b quark, followedby the de
ay H01,2/A0 → τ τ , in 7.3 fb−1 of pp 
ollisions at E
m = 1.96 TeV. See theirFig. 2 for the limit on 
ross se
tion times bran
hing ratio and for the ex
luded region inthe MSSM parameter spa
e.20AALTONEN 09AR sear
h for Higgs bosons de
aying to τ+ τ− in two doublet modelsin 1.8 fb−1 of pp 
ollisions at E
m = 1.96 TeV. See their Fig. 2 for the limit on
σ · B(H01,2/A0 → τ+ τ−) for di�erent Higgs masses, and see their Fig. 3 for theex
luded region in the MSSM parameter spa
e.21ABBIENDI 03G sear
h for e+ e− → H01Z followed by H01 → A0A0, A0 → 
 
, g g ,or τ+ τ−. In the no-mixing s
enario, the region mH01 = 45-85 GeV and mA0 = 2-9.5GeV is ex
luded at 95% CL.22HEISTER 02 ex
ludes the range 0.7 <tanβ < 2.3. A wider range is ex
luded withdi�erent stop mixing assumptions. Updates BARATE 01C.

Mass Limits for A0 (Pseudos
alar Higgs Boson) in Supersymmetri
 ModelsMass Limits for A0 (Pseudos
alar Higgs Boson) in Supersymmetri
 ModelsMass Limits for A0 (Pseudos
alar Higgs Boson) in Supersymmetri
 ModelsMass Limits for A0 (Pseudos
alar Higgs Boson) in Supersymmetri
 ModelsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>90.4 1 ABDALLAH 08B DLPH E
m ≤ 209 GeV
>93.4>93.4>93.4>93.4 95 2 SCHAEL 06B LEP E
m ≤ 209 GeV
>85.0 95 3,4 ABBIENDI 04M OPAL E
m ≤ 209 GeV
>86.5 95 3,5 ACHARD 02H L3 E
m ≤ 209 GeV, tanβ > 0.4
>90.1 95 3,6 HEISTER 02 ALEP E
m ≤ 209 GeV, tanβ > 0.5
• • • We do not use the following data for averages, �ts, limits, et
. • • •7 KHACHATRY...16A CMS H01,2 /A0 → µ+µ−8 KHACHATRY...15AY CMS pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb9 AAD 14AWATLS pp → H01,2 /A0 + X ,H01,2 /A0 → τ τ10 KHACHATRY...14M CMS pp → H01,2 /A0 + X ,H01,2 /A0 → τ τ11 AAD 13O ATLS pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−, µ+µ−12 AAIJ 13T LHCB pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−13 CHATRCHYAN13AG CMS pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb14 AALTONEN 12AQ TEVA pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb15 AALTONEN 12X CDF pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb16 ABAZOV 12G D0 pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−17 CHATRCHYAN12K CMS pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−18 ABAZOV 11K D0 pp → H01,2 /A0 + b + X ,H01,2 /A0 → bb19 ABAZOV 11W D0 pp → H01,2 /A0 + b + X ,H01,2 /A0 → τ+ τ−20 AALTONEN 09AR CDF pp → H01,2 /A0 + X ,H01,2 /A0 → τ+ τ−21 ACOSTA 05Q CDF pp → H01,2 /A0 + X22 ABBIENDI 03G OPAL H01 → A0A023 AKEROYD 02 RVUE1ABDALLAH 08B give limits in eight CP-
onserving ben
hmark s
enarios and some CP-violating s
enarios. See paper for ex
luded regions for ea
h s
enario. Supersedes AB-DALLAH 04.2 SCHAEL 06B make a 
ombined analysis of the LEP data. The quoted limit is for themmaxh s
enario with mt = 174.3 GeV. In the CP-violating CPX s
enario no lower boundon mH01 
an be set at 95% CL. See paper for ex
luded regions in various s
enarios. SeeFigs. 2{6 and Tabs. 14{21 for limits on σ(Z H0)· B(H0 → bb, τ+ τ−) and σ(H01H02)·B(H01,H02→ bb,τ+ τ−).3 Sear
h for e+ e− → H01A0 in the �nal states bbbb and bb τ+ τ−, and e+ e− →H01Z . Universal s
alar mass of 1 TeV, SU(2) gaugino mass of 200 GeV, and µ= −200GeV are assumed, and two-loop radiative 
orre
tions in
orporated. The limits hold formt=175 GeV, and for the mmax

h
s
enario.4ABBIENDI 04M ex
lude 0.7 < tanβ < 1.9, assuming mt = 174.3 GeV. Limits for otherMSSM ben
hmark s
enarios, as well as for CP violating 
ases, are also given.5ACHARD 02H also sear
h for the �nal state H01Z → 2A0 qq, A0 → qq. In addition,the MSSM parameter set in the \large-µ" and \no-mixing" s
enarios are examined.6HEISTER 02 ex
ludes the range 0.7 <tanβ < 2.3. A wider range is ex
luded withdi�erent stop mixing assumptions. Updates BARATE 01C.7KHACHATRYAN 16A sear
h for produ
tion of a Higgs boson in gluon fusion and inasso
iation with a bb pair followed by the de
ay H01,2 /A0 → µ+µ− in 5.1 fb−1 ofpp 
ollisions at E
m = 7 TeV and 19.3 fb−1 at E
m = 8 TeV. See their Fig. 7 for theex
luded region in the MSSM parameter spa
e in the mmod+

h
ben
hmark s
enario andFig. 9 for limits on 
ross se
tion times bran
hing ratio.8KHACHATRYAN 15AY sear
h for produ
tion of a Higgs boson in asso
iation with a bquark in the de
ay H01,2 /A0 → bb in 19.7 fb−1 of pp 
ollisions at E
m = 8 TeV and
ombine with CHATRCHYAN 13AG 7 TeV data. See their Fig. 6 for the limits on 
rossse
tion times bran
hing ratio for mA0 = 100{900 GeV and Figs. 7{9 for the ex
ludedregion in the MSSM parameter spa
e in various ben
hmark s
enarios.9AAD 14AW sear
h for produ
tion of a Higgs boson followed by the de
ay H01,2 /A0 →

τ+ τ− in 19.5{20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 11 for thelimits on 
ross se
tion times bran
hing ratio and their Figs. 9 and 10 for the ex
ludedregion in the MSSM parameter spa
e. For mA0 = 140 GeV, the region tanβ > 5.4 isex
luded at 95% CL in the mmax
h

s
enario.



655655655655See key on page 601 Gauge&HiggsBosonParti
leListingsNeutral Higgs Bosons, Sear
hes for10KHACHATRYAN 14M sear
h for produ
tion of a Higgs boson in gluon fusion and inasso
iation with a b quark followed by the de
ay H01,2 /A0 → τ+ τ− in 4.9 fb−1 ofpp 
ollisions at E
m = 7 TeV and 19.7 fb−1 at E
m = 8 TeV. See their Figs. 7 and8 for one- and two-dimensional limits on 
ross se
tion times bran
hing ratio and theirFigs. 5 and 6 for the ex
luded region in the MSSM parameter spa
e. For mA0 = 140GeV, the region tanβ > 3.8 is ex
luded at 95% CL in the mmax
h

s
enario.11AAD 13O sear
h for produ
tion of a Higgs boson in the de
ay H01,2 /A0 → τ+ τ− and
µ+µ− with 4.7{4.8 fb−1 of pp 
ollisions at E
m = 7 TeV. See their Fig. 6 for theex
luded region in the MSSM parameter spa
e and their Fig. 7 for the limits on 
rossse
tion times bran
hing ratio. For mA0 = 110{170 GeV, tanβ & 10 is ex
luded, andfor tanβ = 50, mA0 below 470 GeV is ex
luded at 95% CL in the mmax

h
s
enario.12AAIJ 13T sear
h for produ
tion of a Higgs boson in the forward region in the de
ayH01,2/A0 → τ+ τ− in 1.0 fb−1 of pp 
ollisions at E
m = 7 TeV. See their Fig. 2 forthe limits on 
ross se
tion times bran
hing ratio and the ex
luded region in the MSSMparameter spa
e.13CHATRCHYAN 13AG sear
h for produ
tion of a Higgs boson in asso
iation with a bquark in the de
ay H01,2/A0 → bb in 2.7{4.8 fb−1 of pp 
ollisions at E
m = 7 TeV.See their Fig. 6 for the ex
luded region in the MSSM parameter spa
e and Fig. 5 for thelimits on 
ross se
tion times bran
hing ratio. For mA0 = 90{350 GeV, upper bounds ontanβ of 18{42 at 95% CL are obtained in the mmax

h
s
enario with µ = +200 GeV.14AALTONEN 12AQ 
ombine AALTONEN 12X and ABAZOV 11K. See their Table I andFig. 1 for the limit on 
ross se
tion times bran
hing ratio and Fig. 2 for the ex
ludedregion in the MSSM parameter spa
e.15AALTONEN 12X sear
h for asso
iated produ
tion of a Higgs boson and a b quark in thede
ay H01,2 /A0 → bb, with 2.6 fb−1 of pp 
ollisions at E
m = 1.96 TeV. See theirTable III and Fig. 15 for the limit on 
ross se
tion times bran
hing ratio and Figs. 17,18 for the ex
luded region in the MSSM parameter spa
e.16ABAZOV 12G sear
h for produ
tion of a Higgs boson in the de
ay H01,2 /A0 → τ+ τ−with 7.3 fb−1 of pp 
ollisions at E
m = 1.96 TeV and 
ombine with ABAZOV 11Wand ABAZOV 11K. See their Figs. 4, 5, and 6 for the ex
luded region in the MSSMparameter spa
e. For mA0 = 90{180 GeV, tanβ & 30 is ex
luded at 95% CL. in themmax

h s
enario.17CHATRCHYAN 12K sear
h for produ
tion of a Higgs boson in the de
ay H01,2 /A0 →

τ+ τ− with 4.6 fb−1 of pp 
ollisions at E
m = 7 TeV. See their Fig. 3 and Ta-ble 4 for the ex
luded region in the MSSM parameter spa
e. For mA0 = 160 GeV,the region tanβ > 7.1 is ex
luded at 95% CL in the mmax
h

s
enario. Superseded byKHACHATRYAN 14M.18ABAZOV 11K sear
h for asso
iated produ
tion of a Higgs boson and a b quark, followedby the de
ay H01,2/A0 → bb, in 5.2 fb−1 of pp 
ollisions at E
m = 1.96 TeV. Seetheir Fig. 5/Table 2 for the limit on 
ross se
tion times bran
hing ratio and Fig. 6 for theex
luded region in the MSSM parameter spa
e for µ = −200 GeV.19ABAZOV 11W sear
h for asso
iated produ
tion of a Higgs boson and a b quark, followedby the de
ay H01,2/A0 → τ τ , in 7.3 fb−1 of pp 
ollisions at E
m = 1.96 TeV. See theirFig. 2 for the limit on 
ross se
tion times bran
hing ratio and for the ex
luded region inthe MSSM parameter spa
e.20AALTONEN 09AR sear
h for Higgs bosons de
aying to τ+ τ− in two doublet modelsin 1.8 fb−1 of pp 
ollisions at E
m = 1.96 TeV. See their Fig. 2 for the limit on
σ · B(H01,2/A0 → τ+ τ−) for di�erent Higgs masses, and see their Fig. 3 for theex
luded region in the MSSM parameter spa
e.21ACOSTA 05Q sear
h for H01,2/A0 produ
tion in pp 
ollisions at E
m = 1.8 TeV with
H01,2/A0 → τ+ τ−. At mA0 = 100 GeV, the obtained 
ross se
tion upper limit isabove theoreti
al expe
tation.22ABBIENDI 03G sear
h for e+ e− → H01Z followed by H01 → A0A0, A0 → 
 
, g g ,or τ+ τ−. In the no-mixing s
enario, the region mH01 = 45-85 GeV and mA0 = 2-9.5GeV is ex
luded at 95% CL.23AKEROYD 02 examine the possibility of a light A0 with tanβ <1. Ele
troweak mea-surements are found to be in
onsistent with su
h a s
enario.MASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSMASS LIMITS FOR NEUTRAL HIGGS BOSONSIN EXTENDED HIGGS MODELSIN EXTENDED HIGGS MODELSIN EXTENDED HIGGS MODELSIN EXTENDED HIGGS MODELSThis Se
tion 
overs models whi
h do not �t into either the Standard Modelor its simplest minimal Supersymmetri
 extension (MSSM), leading toanomalous produ
tion rates, or nonstandard �nal states and bran
hing ra-tios. In parti
ular, this Se
tion 
overs limits whi
h may apply to generi
two-Higgs-doublet models (2HDM), or to spe
ial regions of the MSSMparameter spa
e where de
ays to invisible parti
les or to photon pairs aredominant (see the review on \Status of Higgs Boson Physi
s"). Con
ern-ing the mass limits for H0 and A0 listed below, see the footnotes or the
omment lines for details on the nature of the models to whi
h the limitsapply.The observed signal at about 125 GeV, see se
tion \H0", 
an be inter-preted as one of the neutral Higgs bosons of an extended Higgs se
tor.Mass Limits in General two-Higgs-doublet ModelsMass Limits in General two-Higgs-doublet ModelsMass Limits in General two-Higgs-doublet ModelsMass Limits in General two-Higgs-doublet ModelsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAD 15BK ATLS H02 → H0H02 AAD 15S ATLS A0 → Z H03 KHACHATRY...15BB CMS H02, A0 → γ γ

4 KHACHATRY...15N CMS A0 → Z H05 AAD 14M ATLS H02 → H±W∓ →H0W±W∓, H0 → bb6 KHACHATRY...14Q CMS H02 → H0H0, A0 → Z H07 AALTONEN 09AR CDF pp → H01,2 /A0 + X ,
H01,2 /A0 → τ+ τ−none 1{55 95 8 ABBIENDI 05A OPAL H01, Type II model

>110.6 95 9 ABDALLAH 05D DLPH H0 → 2 jets10 ABDALLAH 04O DLPH Z → f f H11 ABDALLAH 04O DLPH e+ e− → H0Z , H0A012 ABBIENDI 02D OPAL e+ e− → bbHnone 1{44 95 13 ABBIENDI 01E OPAL H01, Type-II model
> 68.0 95 14 ABBIENDI 99E OPAL tanβ > 115 ABREU 95H DLPH Z → H0Z∗, H0A016 PICH 92 RVUE Very light Higgs1AAD 15BK sear
h for produ
tion of a heavy H02 de
aying to H0H0 in the �nal statebbbb in 19.5 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Figs. 15{18 for ex
ludedregions in the parameter spa
e.2AAD 15S sear
h for produ
tion of A0 de
aying to Z H0 → ℓ+ ℓ− bb, ν ν bb and

ℓ+ ℓ− τ+ τ− in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Figs. 4 and5 for ex
luded regions in the parameter spa
e.3KHACHATRYAN 15BB sear
h for H02 , A0 → γ γ in 19.7 fb−1 of pp 
ollisions atE
m = 8 TeV. See their Fig. 10 for ex
luded regions in the two-Higgs-doublet modelparameter spa
e.4KHACHATRYAN 15N sear
h for produ
tion of A0 de
aying to Z H0 → ℓ+ ℓ− bb in19.7 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 5 for ex
luded regions in thetanβ − 
os(β − α) plane for mA0 = 300 GeV.5AAD 14M sear
h for the de
ay 
as
ade H02 → H±W∓ → H0W±W∓, H0 de
ayingto bb in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Table IV for limits in atwo-Higgs-doublet model for mH02= 325{1025 GeV and mH+= 225{825 GeV.6KHACHATRYAN 14Q sear
h for H02 → H0H0 and A0 → Z H0 in 19.5 fb−1 of pp
ollisions at E
m = 8 TeV. See their Figs. 4 and 5 for limits on 
ross se
tion timesbran
hing ratio for mH2,A0= 260{360 GeV and their Figs. 7{9 for limits in two-Higgs-doublet models.7AALTONEN 09AR sear
h for Higgs bosons de
aying to τ+ τ− in two doublet modelsin 1.8 fb−1 of pp 
ollisions at E
m = 1.96 TeV. See their Fig. 2 for the limit on
σ · B(H01,2/A0 → τ+ τ−) for di�erent Higgs masses, and see their Fig. 3 for theex
luded region in the MSSM parameter spa
e.8ABBIENDI 05A sear
h for e+ e− → H01A0 in general Type-II two-doublet models, withde
ays H01, A0 → qq, g g , τ+ τ−, and H01 → A0A0.9ABDALLAH 05D sear
h for e+ e− → H0Z and H0A0 with H0, A0 de
aying to twojets of any 
avor in
luding g g . The limit is for SM H0Z produ
tion 
ross se
tion withB(H0 → j j) = 1.10ABDALLAH 04O sear
h for Z → bbH0, bbA0, τ+ τ−H0 and τ+ τ−A0 in the �nalstates 4b, bb τ+ τ−, and 4τ . See paper for limits on Yukawa 
ouplings.11ABDALLAH 04O sear
h for e+ e− → H0Z and H0A0, with H0, A0 de
aying to bb,
τ+ τ−, or H0 → A0A0 at E
m = 189{208 GeV. See paper for limits on 
ouplings.12ABBIENDI 02D sear
h for Z → bbH01 and bbA0 with H01 /A0 → τ+ τ−, in the range4<mH <12 GeV. See their Fig. 8 for limits on the Yukawa 
oupling.13ABBIENDI 01E sear
h for neutral Higgs bosons in general Type-II two-doublet models,at E
m ≤ 189 GeV. In addition to usual �nal states, the de
ays H01, A0 → qq, g g aresear
hed for. See their Figs. 15,16 for ex
luded regions.14ABBIENDI 99E sear
h for e+ e− → H0A0 and H0Z at E
m = 183 GeV. The limit iswith mH=mA in general two Higgs-doublet models. See their Fig. 18 for the ex
lusionlimit in the mH{mA plane. Updates the results of ACKERSTAFF 98S.15 See Fig. 4 of ABREU 95H for the ex
luded region in the mH0 − mA0 plane for generaltwo-doublet models. For tanβ >1, the region mH0+mA0 . 87 GeV, mH0 <47 GeV isex
luded at 95% CL.16PICH 92 analyse H0 with mH0 < 2mµ in general two-doublet models. Ex
luded regionsin the spa
e of mass-mixing angles from LEP, beam dump, and π±, η rare de
ays areshown in Figs. 3,4. The 
onsidered mass region is not totally ex
luded.Mass Limits for H0 with Vanishing Yukawa CouplingsMass Limits for H0 with Vanishing Yukawa CouplingsMass Limits for H0 with Vanishing Yukawa CouplingsMass Limits for H0 with Vanishing Yukawa CouplingsThese limits assume that H0 
ouples to gauge bosons with the same strength as theStandard Model Higgs boson, but has no 
oupling to quarks and leptons (this is oftenreferred to as \fermiophobi
").VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •95 1 AALTONEN 13K CDF H0 → WW (∗)none 100{113 95 2 AALTONEN 13L CDF H0 → γ γ, WW∗, Z Z∗none 100{116 95 3 AALTONEN 13M TEVA H0 → γ γ, WW∗, Z Z∗4 ABAZOV 13G D0 H0 → WW (∗)none 100{113 95 5 ABAZOV 13H D0 H0 → γ γ6 ABAZOV 13I D0 H0 → WW (∗)7 ABAZOV 13J D0 H0 → WW (∗), Z Z(∗)none 100{114 95 8 ABAZOV 13L D0 H0 → γ γ, WW∗, Z Z∗none 110{147 95 9 CHATRCHYAN13AL CMS H0 → γ γnone 110{118,119.5{121 95 10 AAD 12N ATLS H0 → γ γnone 100{114 95 11 AALTONEN 12AN CDF H0 → γ γ



656656656656Gauge&HiggsBosonParti
leListingsNeutral Higgs Bosons, Sear
hes fornone 110{194 95 12 CHATRCHYAN12AO CMS H0 → γ γ, WW (∗), Z Z(∗)none 70{106 95 13 AALTONEN 09AB CDF H0 → γ γnone 70{100 95 14 ABAZOV 08U D0 H0 → γ γ

>105.8 95 15 SCHAEL 07 ALEP e+ e− → H0Z , H0 →WW ∗
>104.1 95 16,17 ABDALLAH 04L DLPH e+ e− → H0Z , H0 → γ γ

>107 95 18 ACHARD 03C L3 H0 → WW ∗,Z Z∗, γ γ

>105.5 95 16,19 ABBIENDI 02F OPAL H0 → γ γ

>105.4 95 20 ACHARD 02C L3 H0 → γ γnone 60{82 95 21 AFFOLDER 01H CDF pp → H0W /Z , H0 → γ γ

> 94.9 95 22 ACCIARRI 00S L3 e+ e− → H0Z , H0 → γ γ

>100.7 95 23 BARATE 00L ALEP e+ e− → H0Z , H0 → γ γ

> 96.2 95 24 ABBIENDI 99O OPAL e+ e− → H0Z , H0 → γ γ

> 78.5 95 25 ABBOTT 99B D0 pp → H0W /Z , H0 → γ γ26 ABREU 99P DLPH e+ e− → H0 γ and/or H0 →
γ γ1AALTONEN 13K sear
h for H0 → WW (∗) in 9.7 fb−1 of pp 
ollisions at E
m =1.96 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to (1.3{6.6)times the expe
ted 
ross se
tion is given in the range mH0 = 110{200 GeV at 95% CL.2AALTONEN 13L 
ombine all CDF sear
hes with 9.45{10.0 fb−1 of pp 
ollisions at E
m= 1.96 TeV.3AALTONEN 13M 
ombine all Tevatron data from the CDF and D0 Collaborations of pp
ollisions at E
m = 1.96 TeV.4ABAZOV 13G sear
h for H0 → WW (∗) in 9.7 fb−1 of pp 
ollisions at E
m = 1.96TeV. A limit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to (2{9) times theexpe
ted 
ross se
tion is given for mH0 = 100{200 GeV at 95% CL.5ABAZOV 13H sear
h for H0 → γ γ in 9.6 fb−1 of pp 
ollisions at E
m = 1.96 TeV.6ABAZOV 13I sear
h for H0 produ
tion in the �nal state with one lepton and two ormore jets plus missing ET in 9.7 fb−1 of pp 
ollisions at E
m = 1.96 TeV. Thesear
h is sensitive to WH0, Z H0 and ve
tor-boson fusion Higgs produ
tion with H0 →WW (∗). A limit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to (8{30)times the expe
ted 
ross se
tion is given in the range mH0 = 100{200 GeV at 95% CL.7ABAZOV 13J sear
h for H0 produ
tion in the �nal states e e µ, e µµ, µτ τ , and e±µ±in 8.6{9.7 fb−1 of pp 
ollisions at E
m = 1.96 TeV. The sear
h is sensitive to W H0,Z H0 produ
tion with H0 → WW (∗), Z Z(∗), de
aying to leptoni
 �nal states. Alimit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to (2.4{13.0) times theexpe
ted 
ross se
tion is given in the range mH0 = 100{200 GeV at 95% CL.8ABAZOV 13L 
ombine all D0 results with up to 9.7 fb−1 of pp 
ollisions at E
m =1.96 TeV.9CHATRCHYAN 13AL sear
h for H0 → γ γ in 5.1 fb−1 and 5.3 fb−1 of pp 
ollisionsat E
m = 7 and 8 TeV.10AAD 12N sear
h for H0 → γ γ with 4.9 fb−1 of pp 
ollisions at E
m = 7 TeV in themass range mH0 = 110{150 GeV.11AALTONEN 12AN sear
h for H0 → γ γ with 10 fb−1 of pp 
ollisions at E
m = 1.96TeV in the mass range mH0 = 100{150 GeV.12CHATRCHYAN 12AO use data from CHATRCHYAN 12G, CHATRCHYAN 12E, CHA-TRCHYAN 12H, CHATRCHYAN 12I, CHATRCHYAN 12D, and CHATRCHYAN 12C.13AALTONEN 09AB sear
h for H0 → γ γ in 3.0 fb−1 of pp 
ollisions at E
m = 1.96TeV in the mass range mH0 = 70{150 GeV. Asso
iated H0W , H0Z produ
tion andWW , Z Z fusion are 
onsidered.14ABAZOV 08U sear
h for H0 → γ γ in pp 
ollisions at E
m = 1.96 TeV in the massrange mH0 = 70{150 GeV. Asso
iated H0W , H0Z produ
tion and WW , Z Z fusionare 
onsidered. See their Tab. 1 for the limit on σ · B(H0 → γ γ), and see their Fig. 3for the ex
luded region in the mH0 | B(H0 → γ γ) plane.15 SCHAEL 07 sear
h for Higgs bosons in asso
iation with a fermion pair and de
aying toWW ∗. The limit is from this sear
h and HEISTER 02L for a H0 with SM produ
tion
ross se
tion.16 Sear
h for asso
iated produ
tion of a γ γ resonan
e with a Z boson, followed by Z →qq, ℓ+ ℓ−, or ν ν, at E
m ≤ 209 GeV. The limit is for a H0 with SM produ
tion 
rossse
tion.17Updates ABREU 01F.18ACHARD 03C sear
h for e+ e− → Z H0 followed by H0 → WW ∗ or Z Z∗ at E
m=200-209 GeV and 
ombine with the ACHARD 02C result. The limit is for a H0 with SMprodu
tion 
ross se
tion. For B(H0 → WW ∗) + B(H0 → Z Z∗) = 1, mH0 > 108.1GeV is obtained. See �g. 6 for the limits under di�erent BR assumptions.19 For B(H0 → γ γ)=1, mH0 >117 GeV is obtained.20ACHARD 02C sear
h for asso
iated produ
tion of a γ γ resonan
e with a Z boson,followed by Z → qq, ℓ+ ℓ−, or ν ν, at E
m ≤ 209 GeV. The limit is for a H0 with SMprodu
tion 
ross se
tion. For B(H0 → γ γ)=1, mH0 >114 GeV is obtained.21AFFOLDER 01H sear
h for asso
iated produ
tion of a γ γ resonan
e and a W or Z(tagged by two jets, an isolated lepton, or missing ET ). The limit assumes StandardModel values for the produ
tion 
ross se
tion and for the 
ouplings of the H0 to W andZ bosons. See their Fig. 11 for limits with B(H0 → γ γ)< 1.22ACCIARRI 00S sear
h for asso
iated produ
tion of a γ γ resonan
e with a qq, ν ν,or ℓ+ ℓ− pair in e+ e− 
ollisions at E
m= 189 GeV. The limit is for a H0 with SMprodu
tion 
ross se
tion. For B(H0 → γ γ)=1, mH0 > 98 GeV is obtained. See theirFig. 5 for limits on B(H → γ γ)·σ(e+ e− → H f f )/σ(e+ e− → H f f ) (SM).23BARATE 00L sear
h for asso
iated produ
tion of a γ γ resonan
e with a qq, ν ν, or

ℓ+ ℓ− pair in e+ e− 
ollisions at E
m= 88{202 GeV. The limit is for a H0 with SMprodu
tion 
ross se
tion. For B(H0 → γ γ)=1, mH0 > 109 GeV is obtained. See theirFig. 3 for limits on B(H → γ γ)·σ(e+ e− → H f f )/σ(e+ e− → H f f ) (SM).24ABBIENDI 99O sear
h for asso
iated produ
tion of a γ γ resonan
e with a qq, ν ν, or
ℓ+ ℓ− pair in e+ e− 
ollisions at 189 GeV. The limit is for a H0 with SM produ
tion 
ross

se
tion. See their Fig. 4 for limits on σ(e+ e− → H0Z0)×B(H0 → γ γ)×B(X0 →f f ) for various masses. Updates the results of ACKERSTAFF 98Y.25ABBOTT 99B sear
h for asso
iated produ
tion of a γ γ resonan
e and a dijet pair.The limit assumes Standard Model values for the produ
tion 
ross se
tion and for the
ouplings of the H0 to W and Z bosons. Limits in the range of σ(H0 +Z/W )·B(H0 →
γ γ)= 0.80{0.34 pb are obtained in the mass range mH0= 65{150 GeV.26ABREU 99P sear
h for e+ e− → H0 γ with H0 → bb or γ γ, and e+ e− → H0 qqwith H0 → γ γ. See their Fig. 4 for limits on σ×B. Expli
it limits within an e�e
tiveintera
tion framework are also given.Mass Limits for H0 De
aying to Invisible Final StatesMass Limits for H0 De
aying to Invisible Final StatesMass Limits for H0 De
aying to Invisible Final StatesMass Limits for H0 De
aying to Invisible Final StatesThese limits are for a neutral s
alar H0 whi
h predominantly de
ays to invisible �nalstates. Standard Model values are assumed for the 
ouplings of H0 to ordinary parti
lesunless otherwise stated.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAD 15BD ATLS pp → H0WX , H0Z X2 AAD 15BH ATLS jet + missing ET3 AAD 14BA ATLS se
ondary vertex4 AAD 14O ATLS pp → H0Z X5 CHATRCHYAN14B CMS pp → H0Z X , qqH0X6 AAD 13AG ATLS se
ondary vertex7 AAD 13AT ATLS ele
tron jets8 CHATRCHYAN13BJ CMS9 AAD 12AQ ATLS se
ondary vertex10 AALTONEN 12AB CDF se
ondary vertex11 AALTONEN 12U CDF se
ondary vertex
>108.2 95 12 ABBIENDI 10 OPAL13 ABBIENDI 07 OPAL large width
>112.3 95 14 ACHARD 05 L3
>112.1 95 14 ABDALLAH 04B DLPH
>114.1 95 14 HEISTER 02 ALEP E
m ≤ 209 GeV
>106.4 95 14 BARATE 01C ALEP E
m ≤ 202 GeV
> 89.2 95 15 ACCIARRI 00M L31AAD 15BD sear
h for pp → H0W X and pp → H0Z X with W or Z de
ayinghadroni
ally and H0 de
aying to invisible �nal states in 20.3 fb−1 at E
m = 8TeV. Seetheir Fig. 6 for a limit on the 
ross se
tion times bran
hing ratio for mH0 = 115{300GeV.2AAD 15BH sear
h for events with a jet and missing ET in 20.3 fb−1 of pp 
ollisions atE
m = 8 TeV. Limits on σ(H′0) B(H′0 → invisible) < (44{10) pb (95%CL) is givenfor mH ′0 = 115{300 GeV.3AAD 14BA sear
h for H0 produ
tion in the de
ay mode H0 → X0X0, where X0 is along-lived parti
le whi
h de
ays to 
ollimated pairs of e+ e−, µ+µ−, or π+π− plusinvisible parti
les, in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Figs. 15 and16 for limits on 
ross se
tion times bran
hing ratio.4AAD 14O sear
h for pp → H0Z X , Z → ℓℓ, with H0 de
aying to invisible �nal statesin 4.5 fb−1 at E
m = 7 TeV and 20.3 fb−1 at E
m = 8 TeV. See their Fig. 3 for alimit on the 
ross se
tion times bran
hing ratio for mH0 = 110{400 GeV.5CHATRCHYAN 14B sear
h for pp → H0Z X , Z → ℓℓ and Z → bb, and also pp →qqH0X with H0 de
aying to invisible �nal states using data at E
m = 7 and 8 TeV.See their Figs. 10, 11 for limits on the 
ross se
tion times bran
hing ratio for mH0 =100{400 GeV.6AAD 13AG sear
h for H0 produ
tion in the de
ay mode H0 → X0X0, where X0 is along-lived parti
le whi
h de
ays to µ+µ−X ′0, in 1.9 fb−1 of pp 
ollisions at E
m = 7TeV. See their Fig. 7 for limits on 
ross se
tion times bran
hing ratio.7AAD 13AT sear
h for H0 produ
tion in the de
ay H0 → X0X0, where X0 eventuallyde
ays to 
lusters of 
ollimated e+ e− pairs, in 2.04 fb−1 of pp 
ollisions at E
m = 7TeV. See their Fig. 3 for limits on 
ross se
tion times bran
hing ratio.8CHATRCHYAN 13BJ sear
h for H0 produ
tion in the de
ay 
hain H0 → X0X0, X0 →

µ+µ−X ′0 in 5.3 fb−1 of pp 
ollisions at E
m = 7 TeV. See their Fig. 2 for limits on
ross se
tion times bran
hing ratio.9AAD 12AQ sear
h for H0 produ
tion in the de
ay mode H0 → X0X0, where X0 is along-lived parti
le whi
h de
ays mainly to bb in the muon dete
tor, in 1.94 fb−1 of pp
ollisions at E
m = 7 TeV. See their Fig. 3 for limits on 
ross se
tion times bran
hingratio for mH0 = 120, 140 GeV, mX 0 = 20, 40 GeV in the 
τ range of 0.5{35 m.10AALTONEN 12AB sear
h for H0 produ
tion in the de
ay H0 → X0X0, where X0eventually de
ays to 
lusters of 
ollimated ℓ+ ℓ− pairs, in 5.1 fb−1 of pp 
ollisionsat E
m = 1.96 TeV. Cross se
tion limits are provided for a ben
hmark MSSM modelin
orporating the parameters given in Table VI.11AALTONEN 12U sear
h for H0 produ
tion in the de
ay mode H0 → X0X0, where X0is a long-lived parti
le with 
τ ≈ 1 
m whi
h de
ays mainly to bb, in 3.2 fb−1 of pp
ollisions at E
m = 1.96 TeV. See their Figs. 9 and 10 for limits on 
ross se
tion timesbran
hing ratio for mH0 = (130{170) GeV, mX 0 = 20, 40 GeV.12ABBIENDI 10 sear
h for e+ e− → H0Z with H0 de
aying invisibly. The limit assumesSM produ
tion 
ross se
tion and B(H0 → invisible) = 1.13ABBIENDI 07 sear
h for e+ e− → H0Z with Z → qq and H0 de
aying to invisible �nalstates. The H0 width is varied between 1 GeV and 3 TeV. A limit σ ·B(H0 → invisible)
< (0.07{0.57) pb (95%CL) is obtained at E
m = 206 GeV for mH0 = 60{114 GeV.14 Sear
h for e+ e− → H0Z with H0 de
aying invisibly. The limit assumes SM produ
tion
ross se
tion and B(H0 → invisible) = 1.15ACCIARRI 00M sear
h for e+ e− → Z H0 with H0 de
aying invisibly atE
m=183{189 GeV. The limit assumes SM produ
tion 
ross se
tion and B(H0 → in-visible)=1. See their Fig. 6 for limits for smaller bran
hing ratios.



657657657657See key on page 601 Gauge & Higgs Boson Parti
le ListingsNeutral Higgs Bosons, Sear
hes forMass Limits for Light A0Mass Limits for Light A0Mass Limits for Light A0Mass Limits for Light A0These limits are for a pseudos
alar A0 in the mass range below O(10) GeV.VALUE (GeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 KHACHATRY...16F CMS H0 → A0A02 LEES 15H BABR �(1S) → A0 γ3 LEES 13C BABR �(1S) → A0 γ4 LEES 13L BABR �(1S) → A0 γ5 LEES 13R BABR �(1S) → A0 γ6 CHATRCHYAN12V CMS A0 → µ+µ−7 AALTONEN 11P CDF t → bH+, H+ → W+A08,9 ABOUZAID 11A KTEV KL → π0π0A0, A0 → µ+µ−10 DEL-AMO-SA...11J BABR �(1S) → A0 γ11 LEES 11H BABR �(2S, 3S) → A0 γ12 ANDREAS 10 RVUE9,13 HYUN 10 BELL B0 → K∗0A0, A0 → µ+µ−9,14 HYUN 10 BELL B0 → ρ0A0, A0 → µ+µ−15 AUBERT 09P BABR �(3S) → A0 γ16 AUBERT 09Z BABR �(2S) → A0 γ17 AUBERT 09Z BABR �(3S) → A0 γ9,18 TUNG 09 K391 KL → π0π0A0, A0 → γ γ19 LOVE 08 CLEO �(1S) → A0 γ20 BESSON 07 CLEO �(1S) → ηb γ21 PARK 05 HYCP �+ → pA0, A0 → µ+µ−22 BALEST 95 CLE2 �(1S) → A0 γ23 ANTREASYAN 90C CBAL �(1S) → A0 γ1KHACHATRYAN 16F sear
h for the de
ay H0 → A0A0 → τ+ τ− τ+ τ− in 19.7 fb−1of pp 
ollisions at E
m = 8 TeV. See their Fig. 8 for 
ross se
tion limits for mA0 =4{8 GeV.2 LEES 15H sear
h for the pro
ess �(2S) → �(1S)π+π− → A0 γπ+π− with A0de
aying to 
 
 and give limits on B(�(1S) → A0 γ)·B(A0 → 
 
) in the range7.4× 10−5{2.4× 10−3 (90% CL) for 4.00 ≤ mA0 ≤ 8.95 and 9.10 ≤ mA0 ≤ 9.25GeV. See their Fig. 6.3 LEES 13C sear
h for the pro
ess �(2S, 3S)→ �(1S)π+π− → A0 γπ+π− with A0de
aying to µ+µ− and give limits on B(�(1S) → A0 γ)·B(A0 → µ+µ−) in the range(0.3{9.7) × 10−6 (90% CL) for 0.212 ≤ mA0 ≤ 9.20 GeV. See their Fig. 5(e) forlimits on the b−A0 Yukawa 
oupling derived by 
ombining this result with AUBERT 09Z.4 LEES 13L sear
h for the pro
ess �(2S) → �(1S)π+π− → A0 γπ+π− with A0de
aying to g g or s s and give limits on B(�(1S) → A0 γ)·B(A0 → g g) between1 × 10−6 and 2 × 10−2 (90% CL) for 0.5 ≤ mA0 ≤ 9.0 GeV, and B(�(1S) →A0 γ)·B(A0 → s s) between 4× 10−6 and 1× 10−3 (90%CL) for 1.5 ≤ mA0 ≤ 9.0GeV. See their Fig. 4.5 LEES 13R sear
h for the pro
ess �(2S) → �(1S)π+π− → A0 γπ+π− with A0de
aying to τ+ τ− and give limits on B(�(1S) → A0 γ)·B(A0 → τ+ τ−) in the range0.9{13× 10−5 (90% CL) for 3.6 ≤ mA0 ≤ 9.2 GeV. See their Fig. 4 for limits on theb − A0 Yukawa 
oupling derived by 
ombining this result with AUBERT 09P.6 CHATRCHYAN 12V sear
h for A0 produ
tion in the de
ay A0 → µ+µ− with 1.3 fb−1of pp 
ollisions at E
m = 7 TeV. A limit on σ(A0)·B(A0 → µ+µ−) in the range(1.5{7.5) pb is given for mA0 = (5.5{8.7) and (11.5{14) GeV at 95% CL.7AALTONEN 11P sear
h in 2.7 fb−1 of pp 
ollisions at E
m = 1.96 TeV for the de
ay
hain t → bH+, H+ → W+A0, A0 → τ+ τ− with mA0 between 4 and 9 GeV. Seetheir Fig. 4 for limits on B(t → bH+) for 90 < mH+ < 160 GeV.8ABOUZAID 11A sear
h for the de
ay 
hain KL → π0π0A0, A0 → µ+µ− and give alimit B(KL → π0π0A0) · B(A0 → µ+µ−) < 1.0 × 10−10 at 90% CL for mA0 =214.3 MeV.9The sear
h was motivated by PARK 05.10DEL-AMO-SANCHEZ 11J sear
h for the pro
ess �(2S) → �(1S)π+π− →A0 γπ+π− with A0 de
aying to invisible �nal states. They give limits on B(�(1S) →A0 γ)·B(A0 → invisible) in the range (1.9{4.5) × 10−6 (90% CL) for 0 ≤ mA0 ≤8.0 GeV, and (2.7{37) × 10−6 for 8.0 ≤ mA0 ≤ 9.2 GeV.11 LEES 11H sear
h for the pro
ess �(2S, 3S) → A0 γ with A0 de
aying hadroni
ally andgive limits on B(�(2S, 3S) → A0 γ)·B(A0 → hadrons) in the range 1×10−6{8×10−5(90% CL) for 0.3 < mA0 < 7 GeV. The de
ay rates for �(2S) and �(3S) are assumedto be equal up to the phase spa
e fa
tor. See their Fig. 5.12ANDREAS 10 analyze 
onstraints from rare de
ays and other pro
esses on a light A0with mA0 < 2mµ and give limits on its 
oupling to fermions at the level of 10−4 timesthe Standard Model value.13HYUN 10 sear
h for the de
ay 
hain B0 → K∗0A0, A0 → µ+µ− and give a limit onB(B0 → K∗0A0) · B(A0 → µ+µ−) in the range (2.26{5.53)× 10−8 at 90%CL formA0 = 212{300 MeV. The limit for mA0 = 214.3 MeV is 2.26× 10−8.14HYUN 10 sear
h for the de
ay 
hain B0 → ρ0A0, A0 → µ+µ− and give a limit onB(B0 → ρ0A0) · B(A0 → µ+µ−) in the range (1.73{4.51) × 10−8 at 90%CL formA0 = 212{300 MeV. The limit for mA0 = 214.3 MeV is 1.73× 10−8.15AUBERT 09P sear
h for the pro
ess �(3S) → A0 γ with A0 → τ+ τ− for 4.03

< mA0 < 9.52 and 9.61 < mA0 < 10.10 GeV, and give limits on B(�(3S) →A0 γ)·B(A0 → τ+ τ−) in the range (1.5{16)× 10−5 (90% CL).16AUBERT 09Z sear
h for the pro
ess �(2S) → A0 γ with A0 → µ+µ− for 0.212 <mA0 < 9.3 GeV and give limits on B(�(2S) → A0 γ)·B(A0 → µ+µ−) in the range(0.3{8) × 10−6 (90% CL).17AUBERT 09Z sear
h for the pro
ess �(3S) → A0 γ with A0 → µ+µ− for 0.212 <mA0 < 9.3 GeV and give limits on B(�(3S) → A0 γ)·B(A0 → µ+µ−) in the range(0.3{5) × 10−6 (90% CL).

18TUNG 09 sear
h for the de
ay 
hain KL → π0π0A0, A0 → γ γ and give a limit onB(KL → π0π0A0) · B(A0 → γ γ) in the range (2.4{10.7)× 10−7 at 90%CL for mA0= 194.3{219.3 MeV. The limit for mA0 = 214.3 MeV is 2.4× 10−7.19 LOVE 08 sear
h for the pro
ess �(1S) → A0 γ with A0 → µ+µ− (for mA0 < 2mτ )and A0 → τ+ τ−. Limits on B(�(1S) → A0 γ) · B(A0 → ℓ+ ℓ−) in the range10−6{10−4 (90% CL) are given.20BESSON 07 give a limit B(�(1S) → ηb γ) · B(ηb → τ+ τ−) < 0.27% (95% CL),whi
h 
onstrains a possible A0 ex
hange 
ontribution to the ηb de
ay.21PARK 05 found three 
andidate events for �+ → pµ+µ− in the HyperCP experiment.Due to a narrow spread in dimuon mass, they hypothesize the events as a possible signalof a new boson. It 
an be interpreted as a neutral parti
le with mA0 = 214.3 ± 0.5MeVand the bran
hing fra
tion B(�+ → pA0)·B(A0 → µ+µ−) = (3.1+2.4
−1.9±1.5)×10−8.22BALEST 95 give limits B(�(1S) → A0 γ) < 1.5× 10−5 at 90% CL for mA0 < 5 GeV.The limit be
omes < 10−4 for mA0 < 7.7 GeV.23ANTREASYAN 90C give limits B(�(1S) → A0 γ) < 5.6× 10−5 at 90% CL for mA0 <7.2 GeV. A0 is assumed not to de
ay in the dete
tor.Other Mass LimitsOther Mass LimitsOther Mass LimitsOther Mass LimitsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAD 16C ATLS H0 → W+W−2 KHACHATRY...16F CMS H02 → H01H013 AAD 15BK ATLS H02 → H0H04 AAD 15BZ ATLS H0 → A0A05 AAD 15BZ ATLS H02 → A0A06 AAD 15CE ATLS H02 → H0H07 AAD 15H ATLS H02 → H0H08 AAD 15S ATLS A0 → Z H09 KHACHATRY...15AWCMS H02 → W+W−, Z Z10 KHACHATRY...15BB CMS H0 → γ γ11 KHACHATRY...15N CMS A0 → Z H012 KHACHATRY...15O CMS A0 → Z H013 AAD 14AP ATLS H0 → γ γ14 AAD 14M ATLS H02 → H±W∓ →H0W±W∓, H0 → bb15 CHATRCHYAN14G CMS H0 → WW (∗)16 KHACHATRY...14P CMS H0 → γ γ17 AALTONEN 13P CDF H′0 → H±W∓ →H0W+W−18 CHATRCHYAN13BJ CMS H0 → A0A019 AALTONEN 11P CDF t → bH+, H+ → W+A020 ABBIENDI 10 OPAL H0 → χ̃01 χ̃0221 SCHAEL 10 ALEP H0 → A0A022 ABAZOV 09V D0 H0 → A0A0none 3{63 95 23 ABBIENDI 05A OPAL A0, Type II model
>104 95 24 ABBIENDI 04K OPAL H0 → 2 jets25 ABDALLAH 04 DLPH H0V V 
ouplings
>110.3 95 26 ACHARD 04B L3 H0 → 2 jets27 ACHARD 04F L3 Anomalous 
oupling28 ABBIENDI 03F OPAL e+ e− → H0Z , H0 → any29 ABBIENDI 03G OPAL H01 → A0A0
>105.4 95 30,31 HEISTER 02L ALEP H01 → γ γ

>109.1 95 32 HEISTER 02M ALEP H0 → 2 jets or τ+ τ−none 12{56 95 33 ABBIENDI 01E OPAL A0, Type-II model34 ACCIARRI 00R L3 e+ e− → H0 γ and/orH0 → γ γ35 ACCIARRI 00R L3 e+ e− → e+ e−H036 GONZALEZ-G...98B RVUE Anomalous 
oupling37 KRAWCZYK 97 RVUE (g−2)µ38 ALEXANDER 96H OPAL Z → H0 γ1AAD 16C sear
h for produ
tion of a heavy H0 state de
aying to W+W− in the �nalstates ℓν ℓν and ℓν qq in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Figs.12, 13, and 16 for upper limits on σ(H0) B(H0 → W+W−) for mH0 ranging from300 GeV to 1000 or 1500 GeV with various assumptions on the total width of H0.2KHACHATRYAN 16F sear
h for the de
ay H02 → H01H01 → τ+ τ− τ+ τ− with mH02= 125 GeV in 19.7 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 8 for 
rossse
tion limits for mH01 = 4{8 GeV.3AAD 15BK sear
h for produ
tion of a heavy H02 de
aying to H0H0 in the �nal statebbbb in 19.5 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 14(
) for σ(H02)B(H02 → H0H0) for mH02 = 500{1500 GeV with �H02 = 1 GeV.4AAD 15BZ sear
h for the de
ay H0 → A0A0 → µ+µ− τ+ τ− (mH0 = 125 GeV) in20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 6 for limits on 
ross se
tiontimes bran
hing ratio for mA0 = 3.7{50 GeV.5AAD 15BZ sear
h for a state H02 via the de
ay H02 → A0A0 → µ+µ− τ+ τ− in 20.3fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 6 for limits on 
ross se
tion timesbran
hing ratio for mH02 = 100{500 GeV and mA0 = 5 GeV.
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hes for6AAD 15CE sear
h for produ
tion of a heavy H02 de
aying to H0H0 in the �nal statesbb τ+ τ− and γ γWW∗ in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV and 
ombinewith data from AAD 15H and AAD 15BK. A limit σ(H02) B(H02 → H0H0) < 2.1{0.011pb (95% CL) is given for mH02 = 260{1000 GeV. See their Fig. 6.7AAD 15H sear
h for produ
tion of a heavy H02 de
aying to H0H0 in the �nalstate γ γ bbin 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV.A limit of σ(H02) B(H02 → H0H0)
< 3.5{0.7 pb is given for mH02 = 260{500 GeV at 95% CL. See their Fig. 3.8AAD 15S sear
h for produ
tion of A0 de
aying to Z H0 → ℓ+ ℓ− bb, ν ν bb and
ℓ+ ℓ− τ+ τ− in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 3 for
ross se
tion limits for mA0 = 200{1000 GeV.9KHACHATRYAN 15AW sear
h for produ
tion of a heavy state H02 of an ele
troweaksinglet extension of the Standard Model via the de
ays of H02 to W+W− and Z Z inup to 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and up to 19.7 fb−1 at E
m = 8 TeVin the range mH02 = 145{1000 GeV. See their Figs. 8 and 9 for limits in the parameterspa
e of the model.10KHACHATRYAN 15BB sear
h for produ
tion of a resonan
e H0 de
aying to γ γ in 19.7fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 7 for limits on 
ross se
tion timesbran
hing ratio for mH0 = 150{850 GeV.11KHACHATRYAN 15N sear
h for produ
tion of A0 de
aying to Z H0 → ℓ+ ℓ− bb in19.7 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 3 for limits on 
ross se
tiontimes bran
hing ratios for mA0 = 225{600 GeV.12KHACHATRYAN 15O sear
h for produ
tion of a high-mass narrow resonan
e A0 de
ayingto Z H0 → qq τ+ τ− in 19.7 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 6for limits on 
ross se
tion times bran
hing ratios for mA0 = 800{2500 GeV.13AAD 14AP sear
h for a se
ond H0 state de
aying to γ γ in addition to the state at about125 GeV in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 4 for limits on
ross se
tion times bran
hing ratio for mH0 = 65{600 GeV.14AAD 14M sear
h for the de
ay 
as
ade H02 → H±W∓ → H0W±W∓, H0 de
ayingto bb in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Table III for limits on
ross se
tion times bran
hing ratio for mH02= 325{1025 GeV and mH+= 225{925 GeV.15CHATRCHYAN 14G sear
h for a se
ond H0 state de
aying to WW (∗) in addition tothe observed signal at about 125 GeV using 4.9 fb−1 of pp 
ollisions at E
m = 7 TeVand 19.4 fb−1 at E
m = 8 TeV. See their Fig. 21 (right) for 
ross se
tion limits in themass range 110{600 GeV.16KHACHATRYAN 14P sear
h for a se
ond H0 state de
aying to γ γ in addition to theobserved signal at about 125 GeV using 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and19.7 fb−1 at E
m = 8 TeV. See their Figs. 27 and 28 for 
ross se
tion limits in themass range 110{150 GeV.17AALTONEN 13P sear
h for produ
tion of a heavy Higgs boson H′0 that de
ays intoa 
harged Higgs boson H± and a lighter Higgs boson H0 via the de
ay 
hain H′0 →H±W∓, H± → W±H0, H0 → bb in the �nal state ℓν plus 4 jets in 8.7 fb−1of pp 
ollisions at E
m = 1.96 TeV. See their Fig. 4 for limits on 
ross se
tion timesbran
hing ratio in the mH±−mH ′0 plane for mH0 = 126 GeV.18CHATRCHYAN 13BJ sear
h for H0 produ
tion in the de
ay 
hain H0 → A0A0, A0 →
µ+µ− in 5.3 fb−1 of pp 
ollisions at E
m = 7 TeV. See their Fig. 2 for limits on 
rossse
tion times bran
hing ratio.19AALTONEN 11P sear
h in 2.7 fb−1 of pp 
ollisions at E
m = 1.96 TeV for the de
ay
hain t → bH+, H+ → W+A0, A0 → τ+ τ− with mA0 between 4 and 9 GeV. Seetheir Fig. 4 for limits on B(t → bH+) for 90 < mH+ < 160 GeV.20ABBIENDI 10 sear
h for e+ e− → Z H0 with the de
ay 
hain H0 → χ̃01 χ̃02, χ̃02 →
χ̃01 + (γ or Z∗), when χ̃01 and χ̃02 are nearly degenerate. For a mass di�eren
e of 2 (4)GeV, a lower limit on mH0 of 108.4 (107.0) GeV (95% CL) is obtained for SM Z H0
ross se
tion and B(H0 → χ̃01 χ̃02) = 1.21 SCHAEL 10 sear
h for the pro
ess e+ e− → H0Z followed by the de
ay 
hain H0 →A0A0 → τ+ τ− τ+ τ− with Z → ℓ+ ℓ−, ν ν at E
m = 183{209 GeV. For a H0Z Z
oupling equal to the SM value, B(H0 → A0A0) = B(A0 → τ+ τ−) = 1, and mA0= 4{10 GeV, mH0 up to 107 GeV is ex
luded at 95% CL.22ABAZOV 09V sear
h for H0 produ
tion followed by the de
ay 
hain H0 → A0A0 →
µ+µ−µ+µ− or µ+µ− τ+ τ− in 4.2 fb−1 of pp 
ollisions at E
m = 1.96 TeV. Seetheir Fig. 3 for limits on σ(H0)·B(H0 → A0A0) for mA0 = 3.6{19 GeV.23ABBIENDI 05A sear
h for e+ e− → H01A0 in general Type-II two-doublet models, withde
ays H01, A0 → qq, g g , τ+ τ−, and H01 → A0A0.24ABBIENDI 04K sear
h for e+ e− → H0Z with H0 de
aying to two jets of any 
avorin
luding g g . The limit is for SM produ
tion 
ross se
tion with B(H0 → j j) = 1.25ABDALLAH 04 
onsider the full 
ombined LEP and LEP2 datasets to set limits on theHiggs 
oupling to W or Z bosons, assuming SM de
ays of the Higgs. Results in Fig. 26.26ACHARD 04B sear
h for e+ e− → H0Z with H0 de
aying to bb, 
 
 , or g g . Thelimit is for SM produ
tion 
ross se
tion with B(H0 → j j) = 1.27ACHARD 04F sear
h for H0 with anomalous 
oupling to gauge boson pairs in the pro-
esses e+ e− → H0 γ, e+ e−H0, H0Z with de
ays H0 → f f , γ γ, Z γ, and W∗Wat E
m = 189{209 GeV. See paper for limits.28ABBIENDI 03F sear
h for H0 → anything in e+ e− → H0Z , using the re
oil massspe
trum of Z → e+ e− or µ+µ−. In addition, it sear
hed for Z → ν ν and H0 →e+ e− or photons. S
enarios with large width or 
ontinuum H0 mass distribution are
onsidered. See their Figs. 11{14 for the results.29ABBIENDI 03G sear
h for e+ e− → H01Z followed by H01 → A0A0, A0 → 
 
, g g ,or τ+ τ− in the region mH01 = 45-86 GeV and mA0 = 2-11 GeV. See their Fig. 7 forthe limits.

30 Sear
h for asso
iated produ
tion of a γ γ resonan
e with a Z boson, followed by Z →qq, ℓ+ ℓ−, or ν ν, at E
m ≤ 209 GeV. The limit is for a H0 with SM produ
tion 
rossse
tion and B(H0 → f f )=0 for all fermions f .31 For B(H0 → γ γ)=1, mH0 > 113.1 GeV is obtained.32HEISTER 02M sear
h for e+ e− → H0Z , assuming that H0 de
ays to qq, g g , or
τ+ τ− only. The limit assumes SM produ
tion 
ross se
tion.33ABBIENDI 01E sear
h for neutral Higgs bosons in general Type-II two-doublet models,at E
m ≤ 189 GeV. In addition to usual �nal states, the de
ays H01, A0 → qq, g g aresear
hed for. See their Figs. 15,16 for ex
luded regions.34ACCIARRI 00R sear
h for e+ e− → H0 γ with H0 → bb, Z γ, or γ γ. See their Fig. 3for limits on σ ·B. Expli
it limits within an e�e
tive intera
tion framework are also given,for whi
h the Standard Model Higgs sear
h results are used in addition.35ACCIARRI 00R sear
h for the two-photon type pro
esses e+ e− → e+ e−H0 withH0 → bb or γ γ. See their Fig. 4 for limits on �(H0 → γ γ)·B(H0 → γ γ or bb) formH0=70{170 GeV.36GONZALEZ-GARCIA 98B use D� limit for γ γ events with missing ET in pp 
ollisions(ABBOTT 98) to 
onstrain possible Z H or WH produ
tion followed by un
onventionalH → γ γ de
ay whi
h is indu
ed by higher-dimensional operators. See their Figs. 1 and 2for limits on the anomalous 
ouplings.37KRAWCZYK 97 analyse the muon anomalous magneti
 moment in a two-doublet Higgsmodel (with type II Yukawa 
ouplings) assuming no H01Z Z 
oupling and obtain mH01 &5 GeV or mA0 & 5 GeV for tanβ > 50. Other Higgs bosons are assumed to be mu
hheavier.38ALEXANDER 96H give B(Z → H0 γ)×B(H0 → qq) < 1{4 × 10−5 (95%CL) andB(Z → H0 γ)×B(H0 → bb) < 0.7{2× 10−5 (95%CL) in the range 20 <mH0 <80GeV. SEARCHES FOR A HIGGS BOSONSEARCHES FOR A HIGGS BOSONSEARCHES FOR A HIGGS BOSONSEARCHES FOR A HIGGS BOSONWITH STANDARD MODEL COUPLINGSWITH STANDARD MODEL COUPLINGSWITH STANDARD MODEL COUPLINGSWITH STANDARD MODEL COUPLINGSThese listings are based on experimental sear
hes for a s
alar boson whose
ouplings to W , Z and fermions are pre
isely those of the Higgs bosonpredi
ted by the three-generation Standard Model with the minimal Higgsse
tor.For a review and a bibliography, see the review on \Status of Higgs BosonPhysi
s."Dire
t Mass Limits for H0Dire
t Mass Limits for H0Dire
t Mass Limits for H0Dire
t Mass Limits for H0The mass limits shown below apply to a Higgs boson H0 with Standard Model 
ou-plings whose mass is a priori unknown. These mass limits are 
ompatible with andindependent of the observed signal at about 125 GeV. In parti
ular, the symbol H0employed below does not in general refer to the observed signal at about 125 GeV.The 
ross se
tion times bran
hing ratio limits quoted in the footnotes below are typ-i
ally given relative to those of a Standard Model Higgs boson of the relevant mass.These limits 
an be reinterpreted in terms of more general models (e.g. extended Higgsse
tors) in whi
h the Higgs 
ouplings to W , Z and fermions are re-s
aled from theirStandard Model values.All data that have been superseded by newer results are marked as \not used" or havebeen removed from this 
ompilation, and are do
umented in previous editions of thisReview of Parti
le Physi
s.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

> 122 and none 128{1000 (CL = 95%)> 122 and none 128{1000 (CL = 95%)> 122 and none 128{1000 (CL = 95%)> 122 and none 128{1000 (CL = 95%)none 145{1000none 145{1000none 145{1000none 145{1000 95 1 KHACHATRY...15AWCMS pp → H0X 
ombinednone 90{102,149{172 95 2 AALTONEN 13L CDF pp → H0X , 
ombinednone 90{109,149{182 95 3 AALTONEN 13M TEVA Tevatron 
ombinednone 90{101,157{178 95 4 ABAZOV 13L D0 pp → H0X , 
ombinednone 110{121.5none 110{121.5none 110{121.5none 110{121.5,128{145128{145128{145128{145 95 5 CHATRCHYAN12N CMS pp → H0X 
ombined
>114.1 95 6 ABDALLAH 04 DLPH e+ e− → H0Z
>112.7 95 6 ABBIENDI 03B OPAL e+ e− → H0Z
>114.4>114.4>114.4>114.4 95 6,7 HEISTER 03D LEP e+ e− → H0Z
>111.5 95 6,8 HEISTER 02 ALEP e+ e− → H0Z
>112.0 95 6 ACHARD 01C L3 e+ e− → H0Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •none 132{200 95 9 AAD 15AA ATLS pp → H0X , H0 → WW (∗)10 AAD 15G ATLS pp → H0W /Z X , H0 → bb11 AAD 14AS ATLS pp → H0X , H0 → µµ12 AAD 14J ATLS pp → H0X , H0 → Z γnone 114.5{119,129.5{832 95 13 CHATRCHYAN14AA CMS pp → H0X , H0 → 4ℓ14 CHATRCHYAN14AI CMS pp → H0W /Z X , H0 → bbnone 127{600 95 15 CHATRCHYAN14G CMS pp → H0X , H0 → WW (∗)16 AALTONEN 13B CDF pp → H0W /Z X , H0 → bb17 AALTONEN 13C CDF pp → H0X , H0 → bbnone 149{172 95 18 AALTONEN 13K CDF pp → H0X , H0 → WW (∗)19 ABAZOV 13E D0 pp → H0X , 4ℓ20 ABAZOV 13F D0 pp → H0X , ℓτ j jnone 159{176 95 21 ABAZOV 13G D0 pp → H0X , H0 → WW (∗)22 ABAZOV 13H D0 pp → H0X , H0 → γ γ23 ABAZOV 13I D0 pp → H0X , ℓν j j
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hes for24 ABAZOV 13J D0 pp → H0X , leptoni
25 ABAZOV 13K D0 pp → H0Z X26 CHATRCHYAN13AL CMS pp → H0X , H0 → τ τ ,WW (∗), Z Z(∗)27 CHATRCHYAN13BK CMS pp → H0X , H0 → Z γnone 145{710 95 28 CHATRCHYAN13Q CMS pp → H0X 
ombined29 CHATRCHYAN13X CMS pp → H0 t t Xnone 113{122,128{133,138{149 95 30 CHATRCHYAN13Y CMS pp → H0X , H0 → γ γnone 130{164,170{180 95 31 CHATRCHYAN13Y CMS pp → H0X , H0 → Z Z∗none 129{160 95 32 CHATRCHYAN13Y CMS pp → H0X , H0 → WW ∗none 111{122,131{559 95 33 AAD 12AI ATLS pp → H0X 
ombinednone 133{261 95 34 AAD 12AJ ATLS pp → H0X , H0 → WW (∗)35 AAD 12BU ATLS pp → H0X , H0 → τ+ τ−none 319{558 95 36 AAD 12BZ ATLS pp → H0X , H0 → Z Znone 300{322,353{410 95 37 AAD 12CA ATLS pp → H0X , H0 → Z Z38 AAD 12CN ATLS pp → H0W /Z X , H0 → bb39 AAD 12CO ATLS pp → H0X , H0 → WWnone 134{156,182{233,256{265,268{415 95 40 AAD 12D ATLS pp → H0X , H0 → Z Z(∗)none 113{115,134.5{136 95 41 AAD 12G ATLS pp → H0X , H0 → γ γ42 AALTONEN 12AK CDF pp → H0 t t X43 AALTONEN 12AMCDF pp → H0X , in
lusive 4ℓ44 AALTONEN 12AN CDF pp → H0X , H0 → γ γ45 AALTONEN 12J CDF pp → H0X , H0 → τ τ46 AALTONEN 12Q CDF pp → H0Z X , H0 → bbnone 100{106 95 47 AALTONEN 12T TEVA pp → H0W /Z X , H0 → bb48 ABAZOV 12K D0 pp → H0W /Z X , H0 → bb49,50 CHATRCHYAN12AY CMS pp → H0W X , H0Z X51 CHATRCHYAN12C CMS pp → H0X , H0 → Z Z52 CHATRCHYAN12D CMS pp → H0X , H0 → Z Z(∗)none 129{270 95 53 CHATRCHYAN12E CMS pp → H0X , H0 → WW (∗)54 CHATRCHYAN12F CMS pp → H0W X , H0Z Xnone 128{132 95 55 CHATRCHYAN12G CMS pp → H0X , H0 → γ γnone 134{158,180{305,340{465 95 56 CHATRCHYAN12H CMS pp → H0X , H0 → Z Z(∗)none 270{440 95 57 CHATRCHYAN12I CMS pp → H0X , H0 → Z Z58 CHATRCHYAN12K CMS pp → H0X , H0 → τ+ τ−59 ABAZOV 11G D0 pp → H0X , H0 → WW (∗)60 CHATRCHYAN11J CMS pp → H0X , H0 → WWnone 162{166 95 61 AALTONEN 10F TEVA pp → H0X , H0 → WW (∗)62 AALTONEN 10M TEVA pp → g g X → H0X , H0 →WW (∗)63 AALTONEN 09A CDF pp → H0X , H0 → WW (∗)64 ABAZOV 09U D0 H0 → τ+ τ−65 ABAZOV 06 D0 pp → H0X , H0 → WW ∗66 ABAZOV 06O D0 pp → H0W X , H0 → WW ∗1KHACHATRYAN 15AW sear
h for H0 produ
tion in the de
ays H0 → W+W− →
ℓν ℓν, ℓν qq, and H0 → Z Z → 4ℓ, ℓℓτ τ , ℓℓν ν, and ℓℓqq in up to 5.1 fb−1 of pp
ollisions at E
m = 7 TeV and up to 19.7 fb−1 at E
m=8 TeV in the range mH0 =145{1000 GeV. See their Fig. 7 for limits on 
ross se
tion times bran
hing ratio.2AALTONEN 13L 
ombine all CDF sear
hes with 9.45{10.0 fb−1 of pp 
ollisions atE
m = 1.96 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to(0.45{4.8) times the expe
ted Standard Model 
ross se
tion is given for mH0 = 90{200GeV at 95 %CL. An ex
ess of events over ba
kground is observed with a lo
al signi�
an
eof 2.0 σ at mH0 = 125 GeV. In the Standard Model with an additional generation ofheavy quarks and leptons whi
h re
eive their masses via the Higgs me
hanism, mH0values between 124 and 203 GeV are ex
luded at 95% CL.3AALTONEN 13M 
ombine all Tevatron data from the CDF and D0 Collaborations. Alimit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to (0.37{3.1) times theexpe
ted Standard Model 
ross se
tion is given for mH0 = 90{200 GeV at 95% CL. Anex
ess of events over ba
kground is observed with a lo
al signi�
an
e of 3.0σ at mH0= 125 GeV. In the Standard Model with an additional generation of heavy quarks andleptons whi
h re
eive their masses via the Higgs me
hanism, mH0 values between 121and 225 GeV are ex
luded at 95% CL.4ABAZOV 13L 
ombine all D0 results with up to 9.7 fb−1 of pp 
ollisions at E
m =1.96 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to (0.66{3.1)times the expe
ted Standard Model 
ross se
tion is given in the range mH0 = 90{200GeV at 95% CL. An ex
ess of events over ba
kground is observed with a lo
al signi�
an
eof 1.7σ at mH0 = 125 GeV. In the Standard Model with an additional generation ofheavy quarks and leptons whi
h re
eive their masses via the Higgs me
hanism, mH0values between 125 and 218 GeV are ex
luded at 95% CL.5CHATRCHYAN 12N sear
h for H0 produ
tion in the de
ays H → γ γ, Z Z∗ → 4ℓ,WW ∗ → ℓν ℓν, τ τ , and bb in 4.9{5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and5.1{5.3 fb−1 at E
m = 8 TeV. The expe
ted ex
lusion region for no signal is 110{145GeV at 99.9% CL. See also CHATRCHYAN 13Y.6 Sear
h for e+ e− → H0Z at E
m ≤ 209 GeV in the �nal states H0 → bb with Z →
ℓℓ, ν ν, qq, τ+ τ− and H0 → τ+ τ− with Z → qq.7 Combination of the results of all LEP experiments.8A 3σ ex
ess of 
andidate events 
ompatible with mH0 near 114 GeV is observed in the
ombined 
hannels qq qq, qq ℓℓ, qq τ+ τ−.

9AAD 15AA sear
h for H0 → WW (∗) in 4.5 fb−1 of pp 
ollisions at E
m = 7 TeVand 20.3 fb−1 at E
m = 8 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h
orresponds to (0.2{6) times the expe
ted Standard Model 
ross se
tion is given formH0 = 110{200 GeV at 95% CL.10AAD 15G sear
h for WH0 and Z H0 produ
tion followed by H0 → bb in 4.7 fb−1of pp 
ollisions at E
m = 7 TeV and 20.3 fb−1 at E
m = 8 TeV. A limit on the
ross se
tion times bran
hing ratio whi
h 
orresponds to (0.8{2.6) times the expe
tedStandard Model 
ross se
tion is given for mH0 = 110{140 GeV at 95% CL.11AAD 14AS sear
h for H0 → µ+µ− in 4.5 fb−1 of pp 
ollisions at E
m = 7 TeV and20.3 fb−1 at E
m = 8 TeV. A limit on the 
ross se
tion times bran
hing ratio whi
h
orresponds to (6.5{16.8) times the expe
ted Standard Model 
ross se
tion is given formH0 = 120{150 GeV at 95% CL.12AAD 14J sear
h for H0 → Z γ → ℓℓγ in 4.5 fb−1 of pp 
ollisions at E
m = 7 TeVand 20.3 fb−1 at E
m = 8 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h
orresponds to (4{18) times the expe
ted Standard Model 
ross se
tion is given for mH0= 120{150 GeV at 95% CL.13CHATRCHYAN 14AA sear
h for H0 produ
tion in the de
ay mode H0 → Z Z(∗) →4ℓ in 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.7 fb−1 at E
m = 8 TeV. Theexpe
ted ex
lusion region for no signal is 115{740 GeV at the 95% CL. See their Fig. 18for 
ross se
tion limits for mH0 = 110{1000 GeV.14CHATRCHYAN 14AI sear
h for WH0 and Z H0 produ
tion followed by H0 → bb inup to 5.1 fb−1 of pp 
ollisions at E
m = 7 TeV and up to 18.9 fb−1 at E
m = 8 TeV.A limit on the 
ross se
tion times bran
hing ratio whi
h 
orresponds to (1{3) times theexpe
ted Standard Model 
ross se
tion is given for mH0 = 110{135 GeV at 95% CL.15CHATRCHYAN 14G sear
h for H0 produ
tion in the de
ay mode H0 → WW (∗) →
ℓν ℓν in 4.9 fb−1 of pp 
ollisions at E
m = 7 TeV and 19.4 fb−1 at E
m = 8 TeV.The expe
ted ex
lusion region for no signal is 115{600 GeV at the 95% CL. See theirFig. 21 (left) for 
ross se
tion limits for mH0 = 110{600 GeV.16AALTONEN 13B sear
h for asso
iated H0Z produ
tion in the �nal state H0 → bb,Z → ν ν, and H0W produ
tion in H0 → bb, W → ℓν (ℓ not identi�ed) with animproved b identi�
ation algorithm in 9.45 fb−1 of pp 
ollisions at E
m = 1.96 TeV. Alimit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to (0.72{11.8) times theexpe
ted Standard Model 
ross se
tion is given for mH0 = 90{150 GeV at 95%CL. Thelimit for mH0 = 125 GeV is 3.06, where 3.33 is expe
ted for no signal.17AALTONEN 13C sear
h for asso
iated H0W and H0Z as well as ve
tor-boson fusionH0 qq′ produ
tion in the �nal state H0 → bb, W /Z → qq with 9.45 fb−1 of pp
ollisions at E
m = 1.96 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h is(7.0{64.6) times larger than the expe
ted Standard Model 
ross se
tion is given in therange mH0 = 100{150 GeV at 95% CL. The limit for mH0 = 125 GeV is 9.0, where11.0 is expe
ted for no signal.18AALTONEN 13K sear
h for H0 produ
tion (with a possible additional W or Z) in the�nal state H0 → WW (∗) → ℓν ℓν in 9.7 fb−1 of pp 
ollisions at E
m = 1.96 TeV.A limit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to (0.49{14.1) timesthe expe
ted Standard Model 
ross se
tion is given in the range mH0 = 110{200 GeVat 95% CL. The limit at mH0 = 125 GeV is 3.26, where 3.25 is expe
ted for no signal.In the Standard Model with an additional generation of heavy quarks and leptons whi
hre
eive their masses via the Higgs me
hanism, mH0 values between 124 and 200 GeVare ex
luded at 95% CL.19ABAZOV 13E sear
h for H0 produ
tion in four-lepton �nal states from H0 → Z Z(∗)and H0Z in 9.6{9.8 fb−1 of pp 
ollisions at E
m = 1.96 TeV. A limit on 
ross se
tiontimes bran
hing ratio whi
h 
orresponds to (8.6{78.9) times the expe
ted StandardModel 
ross se
tion is given in the range mH0 = 115{200 GeV at 95% CL. The limitfor mH0 = 125 GeV is 42.3, where 42.8 is expe
ted for no signal.20ABAZOV 13F sear
h for H0 produ
tion in �nal states e τ j j and µτ jj in 9.7 fb−1 of pp
ollisions at E
m = 1.96 TeV. The sear
h is sensitive to H → τ τ and H → WW (∗).A limit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to (9.4{17.9) times theexpe
ted Standard Model 
ross se
tion is given in the range mH0 = 105{150 GeV at95% CL. The limit for mH0 = 125 GeV is 11.3, where 9.0 is expe
ted for no signal.21ABAZOV 13G sear
h for H0 produ
tion in �nal states H0 → WW (∗) → ℓ+ ν ℓ− νin 9.7 fb−1 of pp 
ollisions at E
m = 1.96 TeV and give a limit on 
ross se
tion timesbran
hing ratio formH0 = 100{150 GeV at 95% CL. The limit formH0 = 125 GeV is 4.1,where 3.4 is expe
ted for no signal. In the Standard Model with an additional generationof heavy quarks and leptons whi
h re
eive their masses via the Higgs me
hanism, mH0values between 125 and 218 GeV are ex
luded at 95% CL.22ABAZOV 13H sear
h for H0 produ
tion with the de
ay H0 → γ γ in 9.6 fb−1 of pp
ollisions at E
m = 1.96 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h
orresponds to (8.3{25.4) times the expe
ted Standard Model 
ross se
tion is given inthe range mH0 = 100{150 GeV at 95% CL. The limit for mH0 = 125 GeV is 12.8,where 8.7 is expe
ted for no signal.23ABAZOV 13I sear
h for H0 produ
tion in the �nal state with one lepton and two or morejets plus missing ET with b identi�
ation in 9.7 fb−1 of pp 
ollisions at E
m = 1.96TeV. The sear
h is mainly sensitive to H0W → bb ℓν, H0 → WW (∗) → ℓν qq, andH0V → V WW (∗) → ℓν qq qq (V =W , Z). A limit on 
ross se
tion times bran
hingratio whi
h 
orresponds to (1.3{11.4) times the expe
ted Standard Model 
ross se
tion isgiven in the range mH0 = 90{200 GeV at 95% CL. The limit for mH0 = 125 GeV is 5.8,where 4.7 is expe
ted for no signal. In the Standard Model with an additional generationof heavy quarks and leptons whi
h re
eive their masses via the Higgs me
hanism, mH0values between 150 and 188 GeV are ex
luded at 95% CL.24ABAZOV 13J sear
h for H0 produ
tion in the �nal states e e µ, e µµ, µτ τ , and e±µ± in8.6{9.7 fb−1 of pp 
ollisions at E
m = 1.96 TeV. The sear
h is sensitive toWH0, Z H0and gluon fusion produ
tion with H0 → WW (∗), Z Z(∗), de
aying to leptoni
 �nalstates, and toWH0, Z H0 produ
tion with H0 → τ+ τ−. A limit on 
ross se
tion timesbran
hing ratio whi
h 
orresponds to (4.4{12.7) times the expe
ted Standard Model 
rossse
tion is given in the range mH0 = 100{200 GeV at 95% CL. The limit for mH0 =125 GeV is 8.4, where 6.3 is expe
ted for no signal.25ABAZOV 13K sear
h for asso
iated H0Z produ
tion in the �nal states ℓℓbb with bidenti�
ation in 9.7 fb−1 of pp 
ollisions at E
m = 1.96 TeV. A limit on 
ross se
tiontimes bran
hing ratio whi
h 
orresponds to (1.8{53) times the expe
ted Standard Model
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hes for
ross se
tion is given for mH0 = 90{150 GeV at 95% CL. The limit for mH0 = 125GeV is 7.1, where 5.1 is expe
ted for no signal.26CHATRCHYAN 13AL sear
h for H0 → τ+ τ−, WW (∗), and Z Z(∗) in 5.1 fb−1 and5.3 fb−1 of pp 
ollisions at E
m = 7 and 8 TeV. In the Standard Model with anadditional generation of heavy quarks and leptons whi
h re
eive their masses via theHiggs me
hanism, mH0 values between 110 and 600 GeV are ex
luded at 99% CL.27CHATRCHYAN 13BK sear
h for H0 → Z γ → ℓℓγ in 5.0 fb−1 of pp 
ollisions at E
m= 7 TeV and 19.6 fb−1 at E
m = 8 TeV. A limit on 
ross se
tion times bran
hing ratiowhi
h 
orresponds to (4{25) times the expe
ted Standard Model 
ross se
tion is givenin the range mH0 = 120{160 GeV at 95% CL. The limit for mH0 = 125 GeV is 9.5,where 10 is expe
ted for no signal.28CHATRCHYAN 13Q sear
h for H0 produ
tion in the de
ays H0 → W+W− → ℓν ℓν,
ℓν qq and H0 → ZZ → 4ℓ, ℓℓτ τ , ℓℓν ν, and ℓℓqq in up to 5.1 fb−1 of pp 
ollisionsat E
m = 7 TeV and up to 5.3 fb−1 at E
m = 8 TeV in the range mH0 = 145{1000GeV. Superseded by KHACHATRYAN 15AW.29CHATRCHYAN 13X sear
h for H0 t t produ
tion followed by H0 → bb, one top de
ayingto ℓν and the other to either ℓν or qq in 5.0 fb−1 and 5.1 fb−1 of pp 
ollisions atE
m = 7 and 8 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h 
orresponds to(4.0{8.6) times the expe
ted Standard Model 
ross se
tion is given for mH0 = 110{140GeV at 95% CL. The limit for mH0 = 125 GeV is 5.8, where 5.2 is expe
ted for nosignal.30CHATRCHYAN 13Y sear
h for H0 produ
tion in the de
ay H → γ γ in 5.1 fb−1 ofpp 
ollisions at E
m = 7 TeV and 5.3 fb−1 at E
m = 8 TeV. The expe
ted ex
lusionregion for no signal is 110{144 GeV at 95% CL.31CHATRCHYAN 13Y sear
h for H0 produ
tion in the de
ay H → Z Z∗ → 4ℓ in 5.0fb−1 of pp 
ollisions at E
m = 7 TeV and 5.3 fb−1 at E
m = 8 TeV. The expe
tedex
lusion region for no signal is 120{180 GeV at 95% CL.32CHATRCHYAN 13Y sear
h for H0 produ
tion in the de
ay H → WW ∗ → ℓν ℓν in 4.9fb−1 of pp 
ollisions at E
m = 7 TeV and 5.3 fb−1 at E
m = 8 TeV. The expe
tedex
lusion region for no signal is 122{160 GeV at 95% CL.33AAD 12AI sear
h for H0 produ
tion in pp 
ollisions for the �nal states H0 → Z Z(∗),
γ γ, WW (∗), bb, τ τ with 4.6{4.8 fb−1 at E
m = 7 TeV, and H0 → Z Z(∗) → 4ℓ,
γ γ, WW (∗) → e νµν with 5.8{5.9 fb−1 at E
m = 8 TeV. The 99% CL ex
ludedrange is 113{114, 117{121, and 132{527 GeV. An ex
ess of events over ba
kground witha lo
al signi�
an
e of 5.9 σ is observed at mH0 = 126 GeV.34AAD 12AJ sear
h for H0 produ
tion in the de
ay H0 → WW (∗) → ℓν ℓν with 4.7fb−1 of pp 
ollisions at E
m = 7 TeV. A limit on 
ross se
tion times bran
hing ratiowhi
h 
orresponds to (0.2{10) times the expe
ted Standard Model 
ross se
tion is givenfor mH0 = 110{600 GeV at 95% CL.35AAD 12BU sear
h for H0 produ
tion in the de
ay H → τ+ τ− with 4.7 fb−1 of pp
ollisions at E
m = 7 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h is(2.9{11.7) times larger than the expe
ted Standard Model 
ross se
tion is given formH0 = 100{150 GeV at 95% CL.36AAD 12BZ sear
h for H0 produ
tion in the de
ay H → Z Z → ℓ+ ℓ− ν ν with 4.7fb−1 of pp 
ollisions at E
m = 7 TeV. A limit on 
ross se
tion times bran
hing ratiowhi
h 
orresponds to (0.2{4) times the expe
ted Standard Model 
ross se
tion is givenfor mH0 = 200{600 GeV at 95% CL.37AAD 12CA sear
h for H0 produ
tion in the de
ay H → Z Z → ℓ+ ℓ− qq with 4.7fb−1 of pp 
ollisions at E
m = 7 TeV. A limit on 
ross se
tion times bran
hing ratiowhi
h 
orresponds to (0.7{9) times the expe
ted Standard Model 
ross se
tion is givenfor mH0 = 200{600 GeV at 95% CL.38AAD 12CN sear
h for asso
iated H0W and H0Z produ
tion in the 
hannels W → ℓν,Z → ℓ+ ℓ−, ν ν, and H0 → bb, with 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV.A limit on 
ross se
tion times bran
hing ratio whi
h is (2.5{5.5) times larger than theexpe
ted Standard Model 
ross se
tion is given for mH0 = 110{130 GeV at 95% CL.39AAD 12CO sear
h for H0 produ
tion in the de
ay H → WW → ℓν qq with 4.7 fb−1of pp 
ollisions at E
m = 7 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h is(1.9{10) times larger than the expe
ted Standard Model 
ross se
tion is given for mH0= 300{600 GeV at 95% CL.40AAD 12D sear
h for H0 produ
tion with H → Z Z(∗) → 4ℓ in 4.8 fb−1 of pp 
ollisionsat E
m = 7 TeV in the mass range mH0 = 110{600 GeV. An ex
ess of events overba
kground with a lo
al signi�
an
e of 2.1 σ is observed at 125 GeV.41AAD 12G sear
h for H0 produ
tion with H → γ γ in 4.9 fb−1 of pp 
ollisions at E
m= 7 TeV in the mass range mH0 = 110{150 GeV. An ex
ess of events over ba
kgroundwith a lo
al signi�
an
e of 2.8 σ is observed at 126.5 GeV.42AALTONEN 12AK sear
h for asso
iated H0 t t produ
tion in the de
ay 
hain t t →WW bb → ℓν qqbb with 9.45 fb−1 of pp 
ollisions at E
m = 1.96 TeV. A limiton 
ross se
tion times bran
hing ratio whi
h is (10{40) times larger than the expe
tedStandard Model 
ross se
tion is given for mH0 = 100{150 GeV at 95% CL. The limitfor mH0 = 125 GeV is 20.5, where 12.6 is expe
ted.43AALTONEN 12AM sear
h for H0 produ
tion in in
lusive four-lepton �nal states 
omingfrom H0 → Z Z , H0Z → WW (∗) ℓℓ, or H0Z → τ τ ℓℓ, with 9.7 fb−1 of pp 
ollisionsat E
m = 1.96 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h is (7.2{42.4)times larger than the expe
ted Standard Model 
ross se
tion is given for mH0 = 120{300GeV at 95% CL. The best limit is for mH0 = 200 GeV.44AALTONEN 12AN sear
h for H0 produ
tion in the de
ay H0 → γ γ with 10 fb−1 ofpp 
ollisions at E
m = 1.96 TeV. A limit on 
ross se
tion times bran
hing ratio whi
his (7.7{21.3) times larger than the expe
ted Standard Model 
ross se
tion is given formH0 = 100{150 GeV at 95% CL. The limit for mH0 = 125 GeV is 17.0, where 9.9 isexpe
ted.45AALTONEN 12J sear
h for H0 produ
tion in the de
ay H0 → τ+ τ− (one leptoni
,the other hadroni
) with 6.0 fb−1 of pp 
ollisions at E
m = 1.96 TeV. A limit on
ross se
tion times bran
hing ratio whi
h is (14.6{70.2) times larger than the expe
tedStandard Model 
ross se
tion is given for mH0 = 100{150 GeV at 95% CL. The bestlimit is for mH0 = 120 GeV.46AALTONEN 12Q sear
h for asso
iated H0Z produ
tion in the �nal state H0 → bb, Z →
ℓ+ ℓ− with 9.45 fb−1 of pp 
ollisions at E
m = 1.96 TeV. A limit on 
ross se
tion timesbran
hing ratio whi
h 
orresponds to (1.0{37.5) times the expe
ted Standard Model 
ross

se
tion is given for mH0 = 90{150 GeV at 95% CL. The limit for mH0 = 125 GeV is7.1, where 3.9 is expe
ted. A broad ex
ess of events for mH0 > 110 GeV is observed,with a lo
al signi�
an
e of 2.4 σ at mH0 = 135 GeV.47AALTONEN 12T 
ombine AALTONEN 12Q, AALTONEN 12R, AALTONEN 12S,ABAZOV 12O, ABAZOV 12P, and ABAZOV 12K. An ex
ess of events over ba
kgroundis observed whi
h is most signi�
ant in the region mH0 = 120{135 GeV, with a lo
alsigni�
an
e of up to 3.3 σ. The lo
al signi�
an
e at mH0 = 125 GeV is 2.8 σ, whi
h
orresponds to (σ(H0W ) + σ(H0 Z)) B(H0 → bb)) = (0.23+0.09
−0.08) pb, 
ompared tothe Standard Model expe
tation at mH0 = 125 GeV of 0.12 ± 0.01 pb.48ABAZOV 12K sear
h for asso
iated H0Z produ
tion in the �nal state H0 → bb, Z →

ν ν, and H0W produ
tion withW → ℓν (ℓ not identi�ed) with 9.5 fb−1 of pp 
ollisionsat E
m = 1.96 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h is (1.9{16.8)times larger than the expe
ted Standard Model 
ross se
tion is given for mH0 = 100{150GeV at 95% CL. The limit for mH0 = 125 GeV is 4.3, where 3.9 is expe
ted.49CHATRCHYAN 12AY sear
h for asso
iated H0W and H0Z produ
tion in the 
hannelsW → ℓν, Z → ℓ+ ℓ−, and H0 → τ τ , WW (∗), with 5 fb−1 of pp 
ollisions at E
m= 7 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h is (3.1{9.1) times largerthan the expe
ted Standard Model 
ross se
tion is given for mH0 = 110{200 GeV at95% CL.50CHATRCHYAN 12AY 
ombine CHATRCHYAN 12F and CHATRCHYAN 12AO in additionand give a limit on 
ross se
tion times bran
hing ratio whi
h is (2.1{3.7) times largerthan the expe
ted Standard Model 
ross se
tion for mH0 = 110{170 GeV at 95% CL.The limit for mH0 = 125 GeV is 3.3.51CHATRCHYAN 12C sear
h for H0 produ
tion with H → Z Z → ℓ+ ℓ− τ+ τ− in4.7 fb−1 of pp 
ollisions at E
m = 7 TeV. A limit on 
ross se
tion times bran
hing ratiowhi
h is (4{12) times larger than the expe
ted Standard Model 
ross se
tion is given formH0 = 190{600 GeV at 95% CL. The best limit is at mH0 = 200 GeV.52CHATRCHYAN 12D sear
h for H0 produ
tion with H → Z Z(∗) → ℓ+ ℓ− qq in4.6 fb−1 of pp 
ollisions at E
m = 7 TeV. A limit on 
ross se
tion times bran
hing ratiowhi
h 
orresponds to (1{22) times the expe
ted Standard Model 
ross se
tion is givenfor mH0 = 130{164 GeV, 200{600 GeV at 95% CL. The best limit is at mH0 = 230GeV. In the Standard Model with an additional generation of heavy quarks and leptonswhi
h re
eive their masses via the Higgs me
hanism, mH0 values in the ranges mH0 =154{161 GeV and 200{470 GeV are ex
luded at 95% CL.53CHATRCHYAN 12E sear
h for H0 produ
tion with H → WW (∗) → ℓ+ ν ℓ− ν in 4.6fb−1 of pp 
ollisions at E
m = 7 TeV in the mass range mH0 = 110{600 GeV.54CHATRCHYAN 12F sear
h for asso
iated H0W and H0Z produ
tion followed by W →
ℓν, Z → ℓ+ ℓ−, ν ν, and H0 → bb, in 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV.A limit on 
ross se
tion times bran
hing ratio whi
h is (3.1{9.0) times larger than theexpe
ted Standard Model 
ross se
tion is given for mH0 = 110{135 GeV at 95% CL.The best limit is at mH0 = 110 GeV.55CHATRCHYAN 12G sear
h for H0 produ
tion with H → γ γ in 4.8 fb−1 of pp 
ollisionsat E
m = 7 TeV in the mass range mH0 = 110{150 GeV. An ex
ess of events overba
kground with a lo
al signi�
an
e of 3.1 σ is observed at 124 GeV.56CHATRCHYAN 12H sear
h for H0 produ
tion with H → Z Z(∗) → 4ℓ in 4.7 fb−1of pp 
ollisions at E
m = 7 TeV in the mass range mH0 = 110{600 GeV. Ex
esses ofevents over ba
kground are observed around 119, 126 and 320 GeV. The region mH0 =114.4{134 GeV remains 
onsistent with the expe
tation for the produ
tion of a SM-likeHiggs boson.57CHATRCHYAN 12I sear
h for H0 produ
tion with H → Z Z → ℓ+ ℓ− ν ν in 4.6 fb−1of pp 
ollisions at E
m = 7 TeV in the mass range mH0 = 250{600 GeV.58CHATRCHYAN 12K sear
h for H0 produ
tion in the de
ay H → τ+ τ− with 4.6 fb−1of pp 
ollisions at E
m = 7 TeV. A limit on 
ross se
tion times bran
hing ratio whi
h is(3.2{7.0) times larger than the expe
ted Standard Model 
ross se
tion is given for mH0= 110{145 GeV at 95% CL.59ABAZOV 11G sear
h for H0 produ
tion in 5.4 fb−1 of pp 
ollisions at E
m = 1.96 TeVin the de
ay mode H0 → WW (∗) → ℓν qq′ (and pro
esses with similar �nal states).A limit on 
ross se
tion times bran
hing ratio whi
h is (3.9{37) times larger than theexpe
ted Standard Model 
ross se
tion is given for mH0 = 115{200 GeV at 95% CL.The best limit is at mH0 = 160 GeV.60CHATRCHYAN 11J sear
h for H0 produ
tion with H → W+W− → ℓℓν ν in 36pb−1 of pp 
ollisions at E
m = 7 TeV. See their Fig. 6 for a limit on 
ross se
tiontimes bran
hing ratio for mH0 = 120{600 GeV at 95% CL. In the Standard Model withan additional generation of heavy quarks and leptons whi
h re
eive their masses via theHiggs me
hanism, mH0 values between 144 and 207 GeV are ex
luded at 95% CL.61AALTONEN 10F 
ombine sear
hes for H0 de
aying to W+W− in pp 
ollisions at E
m= 1.96 TeV with 4.8 fb−1 (CDF) and 5.4 fb−1 (D� ).62AALTONEN 10M 
ombine sear
hes for H0 de
aying to W+W− in pp 
ollisions at E
m= 1.96 TeV with 4.8 fb−1 (CDF) and 5.4 fb−1 (D� ) and derive limits σ(pp → H0)·B(H0 → W+W−) < (1.75{0.38) pb for mH = 120{165 GeV, where H0 is produ
edin g g fusion. In the Standard Model with an additional generation of heavy quarks,mH0 between 131 and 204 GeV is ex
luded at 95% CL.63AALTONEN 09A sear
h for H0 produ
tion in pp 
ollisions at E
m =1.96 TeV in thede
ay mode H0 → WW (∗) → ℓ+ ℓ− ν ν. A limit on σ(H0) · B(H0 → WW (∗))between 0.7 and 2.5 pb (95% CL) is given for mH0 = 110{200 GeV, whi
h is 1.7{45times larger than the expe
ted Standard Model 
ross se
tion. The best limit is obtainedfor mH0 = 160 GeV.64ABAZOV 09U sear
h for H0 → τ+ τ− with τ → hadrons in 1 fb−1 of pp 
ollisions atE
m = 1.96 TeV. The produ
tion me
hanisms in
lude asso
iated W/Z+H0 produ
tion,weak boson fusion, and gluon fusion. A limit (95% CL) is given for mH0 = 105{145GeV, whi
h is 20{82 times larger than the expe
ted Standard Model 
ross se
tion. Thelimit for mH0 = 115 GeV is 29 times larger than the expe
ted Standard Model 
rossse
tion.65ABAZOV 06 sear
h for Higgs boson produ
tion in pp 
ollisions at E
m = 1.96 TeVwith the de
ay 
hain H0 → WW ∗ → ℓ± ν ℓ′∓ ν. A limit σ(H0)·B(H0 → WW ∗) <
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le ListingsNeutral Higgs Bosons, Sear
hes for(5.6{3.2) pb (95 %CL) is given for mH0 = 120{200 GeV, whi
h far ex
eeds the expe
tedStandard Model 
ross se
tion.66ABAZOV 06O sear
h for asso
iated H0W produ
tion in pp 
ollisions at E
m = 1.96TeV with the de
ay H0 → WW ∗, in the �nal states ℓ± ℓ′∓ ν ν′X where ℓ = e, µ.A limit σ(H0W )· B(H0 → WW ∗) < (3.2{2.8) pb (95 %CL) is given for mH0 =115{175 GeV, whi
h far ex
eeds the expe
ted Standard Model 
ross se
tion.Indire
t Mass Limits for H0 from Ele
troweak AnalysisIndire
t Mass Limits for H0 from Ele
troweak AnalysisIndire
t Mass Limits for H0 from Ele
troweak AnalysisIndire
t Mass Limits for H0 from Ele
troweak AnalysisThe mass limits shown below apply to a Higgs boson H0 with Standard Model 
ou-plings whose mass is a priori unknown.For limits obtained before the dire
t measurement of the top quark mass, see the1996 (Physi
al Review D54D54D54D54 1 (1996)) Edition of this Review. Other studies based ondata available prior to 1996 
an be found in the 1998 Edition (The European Physi
alJournal C3C3C3C3 1 (1998)) of this Review.VALUE (GeV) DOCUMENT ID TECN94+25
−2294+25
−2294+25
−2294+25
−22 1 BAAK 12A RVUE

• • • We do not use the following data for averages, �ts, limits, et
. • • •91+30
−23 2 BAAK 12 RVUE91+31
−24 3 ERLER 10A RVUE129+74
−49 4 LEP-SLC 06 RVUE1BAAK 12A make Standard Model �ts to Z and neutral 
urrent parameters, mt , mW ,and �W measurements available in 2012 (using also preliminary data). The quotedresult is obtained from a �t that does not in
lude the measured mass value of the signalobserved at the LHC and also no limits from dire
t Higgs sear
hes.2BAAK 12 make Standard Model �ts to Z and neutral 
urrent parameters, mt , mW , and�W measurements available in 2010 (using also preliminary data). The quoted result isobtained from a �t that does not in
lude the limit from the dire
t Higgs sear
hes. Theresult in
luding dire
t sear
h data from LEP2, the Tevatron and the LHC is 120+12

− 5GeV.3ERLER 10A makes Standard Model �ts to Z and neutral 
urrent parameters, mt , mWmeasurements available in 2009 (using also preliminary data). The quoted result isobtained from a �t that does not in
lude the limits from the dire
t Higgs sear
hes. Withdire
t sear
h data from LEP2 and Tevatron added to the �t, the 90% CL (99% CL)interval is 115{148 (114{197) GeV.4 LEP-SLC 06 make Standard Model �ts to Z parameters from LEP/SLC and mt , mW ,and �W measurements available in 2005 with �α
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662662662662Gauge & Higgs Boson Parti
le ListingsNeutral Higgs Bosons, Sear
hes for, Charged Higgs Bosons (H± and H±±), Sear
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zyk, J. Zo
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h, J. Prades, P. Yepes (CERN, CPPM)ANTREASYAN 90C PL B251 204 D. Antreasyan et al. (Crystal Ball Collab.)Charged Higgs Bosons (H± and H±±),Sear
hes forCONTENTS:CONTENTS:CONTENTS:CONTENTS:H± (Charged Higgs) Mass LimitsMass limits for H±± (doubly-
harged Higgs boson)
− Limits for H±± with T3 = ±1
− Limits for H±± with T3 = 0H± (Charged Higgs) MASS LIMITSH± (Charged Higgs) MASS LIMITSH± (Charged Higgs) MASS LIMITSH± (Charged Higgs) MASS LIMITSUnless otherwise stated, the limits below assume B(H+ →

τ+ ν)+B(H+ → 
 s)=1, and hold for all values of B(H+ → τ+ ντ ), andassume H+ weak isospin of T3=+1/2. In the following, tanβ is the ratioof the two va
uum expe
tation values in two-doublet models (2HDM).The limits are also appli
able to point-like te
hnipions. For a dis
ussionof te
hniparti
les, see the Review of Dynami
al Ele
troweak SymmetryBreaking in this Review.For limits obtained in hadroni
 
ollisions before the observation of the topquark, and based on the top mass values in
onsistent with the 
urrentmeasurements, see the 1996 (Physi
al Review D54D54D54D54 1 (1996)) Edition ofthis Review.Sear
hes in e+ e− 
ollisions at and above the Z pole have 
on
lusivelyruled out the existen
e of a 
harged Higgs in the region mH+ . 45 GeV,and are meanwhile superseded by the sear
hes in higher energy e+ e− 
ol-lisions at LEP. Results that are by now obsolete are therefore not in
ludedin this 
ompilation, and 
an be found in a previous Edition (The EuropeanPhysi
al Journal C15C15C15C15 1 (2000)) of this Review.In the following, and unless otherwise stated, results from the LEP experi-ments (ALEPH, DELPHI, L3, and OPAL) are assumed to derive from thestudy of the e+ e− → H+H− pro
ess. Limits from b → s γ de
ays areusually stronger in generi
 2HDM models than in Supersymmetri
 models.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
> 80> 80> 80> 80 95 1 LEP 13 LEP e+ e− → H+H−,E
m ≤209GeV
> 76.3 95 2 ABBIENDI 12 OPAL e+ e− → H+H−,E
m ≤209GeV
> 74.4 95 ABDALLAH 04I DLPH E
m ≤ 209 GeV
> 76.5 95 ACHARD 03E L3 E
m ≤ 209 GeV
> 79.3 95 HEISTER 02P ALEP E
m ≤ 209 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3 AAD 15AF ATLS t → bH+4 AAD 15AF ATLS t H±5 AAD 15M ATLS H± → W±Z6 KHACHATRY...15AX CMS t → bH+, H+ → τ+ ν7 KHACHATRY...15AX CMS t H+, H+ → t b8 KHACHATRY...15AX CMS t H±, H± → τ± ν9 KHACHATRY...15BF CMS t → bH+, H+ → 
 s10 AAD 14M ATLS H02 → H±W∓ →H0W±W∓, H0 → bb11 AALTONEN 14A CDF t → b τ ν12 AAD 13AC ATLS t → bH+13 AAD 13V ATLS t → bH+, lepton non-universality14 AAD 12BH ATLS t → bH+15 CHATRCHYAN12AA CMS t → bH+16 AALTONEN 11P CDF t → bH+, H+ → W+A0
>316 95 17 DESCHAMPS 10 RVUE Type II, 
avor physi
s data18 AALTONEN 09AJ CDF t → bH+19 ABAZOV 09AC D0 t → bH+20 ABAZOV 09AG D0 t → bH+

21 ABAZOV 09AI D0 t → bH+22 ABAZOV 09P D0 H+ → t b23 ABULENCIA 06E CDF t → bH+
> 92.0 95 ABBIENDI 04 OPAL B(τ ν) = 1
> 76.7 95 24 ABDALLAH 04I DLPH Type I25 ABBIENDI 03 OPAL τ → µν ν, e ν ν26 ABAZOV 02B D0 t → bH+, H → τ ν27 BORZUMATI 02 RVUE28 ABBIENDI 01Q OPAL B → τ ντ X29 BARATE 01E ALEP B → τ ντ
>315 99 30 GAMBINO 01 RVUE b → s γ31 AFFOLDER 00I CDF t → bH+, H → τ ν

> 59.5 95 ABBIENDI 99E OPAL E
m ≤ 183 GeV32 ABBOTT 99E D0 t → bH+33 ACKERSTAFF 99D OPAL τ → e ν ν, µν ν34 ACCIARRI 97F L3 B → τ ντ35 AMMAR 97B CLEO τ → µν ν36 COARASA 97 RVUE B → τ ντ X37 GUCHAIT 97 RVUE t → bH+, H → τ ν38 MANGANO 97 RVUE B u(
) → τ ντ39 STAHL 97 RVUE τ → µν ν

>244 95 40 ALAM 95 CLE2 b → s γ41 BUSKULIC 95 ALEP b → τ ντ X1 LEP 13 give a limit that refers to the Type II s
enario. The limit for B(H+ → τ ν) =1 is 94 GeV (95% CL), and for B(H+ → 
 s) = 1 the region below 80.5 as well as theregion 83{88 GeV is ex
luded (95% CL). LEP 13 also sear
h for the de
ay mode H+ →A0W ∗ with A0 → bb, whi
h is not negligible in Type I models. The limit in Type Imodels is 72.5 GeV (95% CL) if mA0 > 12 GeV.2ABBIENDI 12 also sear
h for the de
ay mode H+ → A0W ∗ with A0 → bb.3AAD 15AF sear
h for t t produ
tion followed by t → bH+, H+ → τ+ ν in 19.5 fb−1of pp 
ollisions at E
m = 8 TeV. Upper limits on B(t → bH+) B(H+ → τ ν) between2.3× 10−3 and 1.3× 10−2 (95% CL) are given for mH+ = 80{160 GeV. See their Fig.8 for the ex
luded regions in di�erent ben
hmark s
enarios of the MSSM. The regionmH+ < 140 GeV is ex
luded for tanβ > 1 in the 
onsidered s
enarios.4AAD 15AF sear
h for t H± asso
iated produ
tion followed by H± → τ± ν in 19.5 fb−1of pp 
ollisions at E
m = 8 TeV. Upper limits on σ(t H±) B(H+ → τ ν) between760 and 4.5 fb (95% CL) are given for mH+ = 180{1000 GeV. See their Fig. 8 for theex
luded regions in di�erent ben
hmark s
enarios of the MSSM.5AAD 15M sear
h for ve
tor boson fusion produ
tion of H± de
aying to H± → W±Z →qq ℓ+ ℓ− in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Fig. 2 for limits on
ross se
tion times bran
hing ratio for mH± = 200{1000 GeV, and Fig. 3 for limits onthetriplet va
uum expe
tation value fra
tion in the Georgi-Ma
ha
ek model.6KHACHATRYAN 15AX sear
h for t t produ
tion followed by t → bH+, H+ → τ+ νin 19.7 fb−1 of pp 
ollisions at E
m = 8 TeV. Upper limits on B(t → bH+) B(H+ →
τ ν) between 1.2× 10−2 and 1.5× 10−3 (95% CL) are given for mH+ = 80{160 GeV.See their Fig. 11 for the ex
luded regions in di�erent ben
hmark s
enarios of the MSSM.The region mH+ < 155 GeV is ex
luded for tanβ > 1 in the 
onsidered s
enarios.7KHACHATRYAN 15AX sear
h for t H± asso
iated produ
tion followed by H± → t b in19.7 fb−1 of pp 
ollisions at E
m = 8 TeV. Upper limits on σ(t H±) B(H+ → t b)between 2.0 and 0.13 pb (95% CL) are given for mH+ = 180{600 GeV. See their Fig.11 for the ex
luded regions in di�erent ben
hmark s
enarios of the MSSM.8KHACHATRYAN 15AX sear
h for t H± asso
iated produ
tion followed by H± → τ± νin 19.7 fb−1 of pp 
ollisions at E
m = 8 TeV. Upper limits on σ(t H±) B(H+ → τ ν)between 380 and 25 fb (95% CL) are given for mH+ = 180{600 GeV. See their Fig. 11for the ex
luded regions in di�erent ben
hmark s
enarios of the MSSM.9KHACHATRYAN 15BF sear
h for t t produ
tion followed by t → bH+, H+ → 
 s in19.7 fb−1 of pp 
ollisions at E
m = 8 TeV. Upper limits on B(t → bH+) B(H+ →
 s) between 1.2× 10−2 and 6.5× 10−2 (95% CL) are given for mH+ = 90{160 GeV.10AAD 14M sear
h for the de
ay 
as
ade H02 → H±W∓ → H0W±W∓, H0 de
ayingto bb in 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See their Table III for limits on
ross se
tion times bran
hing ratio for mH02= 325{1025 GeV and mH+= 225{925 GeV.11AALTONEN 14A measure B(t → b τ ν) = 0.096 ± 0.028 using 9 fb−1 of pp 
ollisionsat E
m = 1.96 TeV. For mH+= 80{140 GeV, this measured value is translated to alimit B(t → bH+) < 0.059 at 95% CL assuming B(H+ → τ+ ν) = 1.12AAD 13AC sear
h for t t produ
tion followed by t → bH+, H+ → 
 s (
avor uniden-ti�ed) in 4.7 fb−1 of pp 
ollisions at E
m = 7 TeV. Upper limits on B(t → bH+)between 0.05 and 0.01 (95%CL) are given for mH+=90{150 GeV and B(H+ → 
 s)=1.13AAD 13V sear
h for t t produ
tion followed by t → bH+, H+ → τ+ ν through violationof lepton universality with 4.6 fb−1 of pp 
ollisions at E
m = 7 TeV. Upper limits onB(t → bH+) between 0.032 and 0.044 (95% CL) are given for mH+ = 90{140 GeVand B(H+ → τ+ ν) = 1. By 
ombining with AAD 12BH, the limits improve to 0.008to 0.034 for mH+ = 90{160 GeV. See their Fig. 7 for the ex
luded region in the mmaxhs
enario of the MSSM.14AAD 12BH sear
h for t t produ
tion followed by t → bH+, H+ → τ+ ν with 4.6 fb−1of pp 
ollisions at E
m = 7 TeV. Upper limits on B(t → bH+) between 0.01 and 0.05(95% CL) are given for mH+ = 90{160 GeV and B(H+ → τ+ ν) = 1. See their Fig. 8for the ex
luded region in the mmaxh s
enario of the MSSM.15CHATRCHYAN 12AA sear
h for t t produ
tion followed by t → bH+, H+ → τ+ νwith 2 fb−1 of pp 
ollisions at E
m = 7 TeV. Upper limits on B(t → bH+) between0.019 and 0.041 (95% CL) are given for mH+ = 80{160 GeV and B(H+ → τ+ ν)=1.



663663663663See key on page 601 Gauge & Higgs Boson Parti
le ListingsCharged Higgs Bosons (H± and H±±), Sear
hes for16AALTONEN 11P sear
h in 2.7 fb−1 of pp 
ollisions at E
m = 1.96 TeV for the de
ay
hain t → bH+, H+ → W+A0, A0 → τ+ τ− with mA0 between 4 and 9 GeV. Seetheir Fig. 4 for limits on B(t → bH+) for 90 < mH+ < 160 GeV.17DESCHAMPS 10 make Type II two Higgs doublet model �ts to weak leptoni
 andsemileptoni
 de
ays, b → s γ, B, Bs mixings, and Z → bb. The limit holds irrespe
tiveof tanβ.18AALTONEN 09AJ sear
h for t → bH+, H+ → 
 s in t t events in 2.2 fb−1 of pp
ollisions at E
m = 1.96 TeV. Upper limits on B(t → bH+) between 0.08 and 0.32(95% CL) are given for mH+ = 60{150 GeV and B(H+ → 
 s) = 1.19ABAZOV 09AC sear
h for t → bH+, H+ → τ+ ν in t t events in 0.9 fb−1 of pp
ollisions at E
m = 1.96 TeV. Upper limits on B(t → bH+) between 0.19 and 0.25(95% CL) are given for mH+ = 80{155 GeV and B(H+ → τ+ ν) = 1. See their Fig. 4for an ex
luded region in a MSSM s
enario.20ABAZOV 09AG measure t t 
ross se
tions in �nal states with ℓ + jets (ℓ = e, µ), ℓℓ,and τ ℓ in 1 fb−1 of pp 
ollisions at E
m = 1.96 TeV, whi
h 
onstrains possible t →bH+ bran
hing fra
tions. Upper limits (95% CL) on B(t → bH+) between 0.15 and0.40 (0.48 and 0.57) are given for B(H+ → τ+ ν) = 1 (B(H+ → 
 s) = 1) for mH+= 80{155 GeV.21ABAZOV 09AI sear
h for t → bH+ in t t events in 1 fb−1 of pp 
ollisions at E
m =1.96 TeV. Final states with ℓ + jets (ℓ = e, µ), ℓℓ, and τ ℓ are examined. Upper limits onB(t → bH+) (95% CL) between 0.15 and 0.19 (0.19 and 0.22) are given for B(H+ →
τ+ ν) = 1 (B(H+ → 
 s) = 1) for mH+ = 80{155 GeV. For B(H+ → τ+ ν) = 1also a simultaneous extra
tion of B(t → bH+) and the t t 
ross se
tion is performed,yielding a limit on B(t → bH+) between 0.12 and 0.26 for mH+ = 80{155 GeV. Seetheir Figs. 5{8 for ex
luded regions in several MSSM s
enarios.22ABAZOV 09P sear
h for H+ produ
tion by qq′ annihilation followed by H+ → t bde
ay in 0.9 fb−1 of pp 
ollisions at E
m = 1.96 TeV. Cross se
tion limits in severaltwo-doublet models are given for mH+ = 180{300 GeV. A region with 20 . tanβ .70 is ex
luded (95% CL) for 180 GeV . mH+ . 184 GeV in type-I models.23ABULENCIA 06E sear
h for asso
iated H0W produ
tion in pp 
ollisions at E
m = 1.96TeV. A �t is made for t t produ
tion pro
esses in dilepton, lepton + jets, and lepton + τ�nal states, with the de
ays t → W+b and t → H+ b followed by H+ → τ+ ν, 
 s,t∗ b, or W+H0. Within the MSSM the sear
h is sensitive to the region tanβ < 1 or
> 30 in the mass range mH+ = 80{160 GeV. See Fig. 2 for the ex
luded region in a
ertain MSSM s
enario.24ABDALLAH 04I sear
h for e+ e− → H+H− with H± de
aying to τ ν, 
 s , or W ∗A0in Type-I two-Higgs-doublet models.25ABBIENDI 03 give a limit mH+ > 1.28tanβ GeV (95%CL) in Type II two-doubletmodels.26ABAZOV 02B sear
h for a 
harged Higgs boson in top de
ays with H+ → τ+ ν atE
m=1.8 TeV. For mH+=75 GeV, the region tanβ > 32.0 is ex
luded at 95%CL. Theex
luded mass region extends to over 140 GeV for tanβ values above 100.27BORZUMATI 02 point out that the de
ay modes su
h as bbW , A0W , and supersym-metri
 ones 
an have substantial bran
hing fra
tions in the mass range explored at LEP IIand Tevatron.28ABBIENDI 01Q give a limit tanβ/mH+ < 0.53 GeV−1 (95%CL) in Type II two-doubletmodels.29BARATE 01E give a limit tanβ/mH+ < 0.40 GeV−1 (90% CL) in Type II two-doubletmodels. An independent measurement of B → τ ντ X gives tanβ/mH+ < 0.49 GeV−1(90% CL).30GAMBINO 01 use the world average data in the summer of 2001 B(b → s γ) = (3.23 ±0.42) × 10−4. The limit applies for Type-II two-doublet models.31AFFOLDER 00I sear
h for a 
harged Higgs boson in top de
ays with H+ → τ+ ν inpp 
ollisions at E
m=1.8 TeV. The ex
luded mass region extends to over 120 GeV fortanβ values above 100 and B(τ ν) = 1. If B(t → bH+)& 0.6, mH+ up to 160 GeVis ex
luded. Updates ABE 97L.32ABBOTT 99E sear
h for a 
harged Higgs boson in top de
ays in pp 
ollisions at E
m=1.8TeV, by 
omparing the observed t t 
ross se
tion (extra
ted from the data assuming thedominant de
ay t → bW+) with theoreti
al expe
tation. The sear
h is sensitive toregions of the domains tanβ . 1, 50 <mH+(GeV) . 120 and tanβ & 40, 50 <mH+(GeV) . 160. See Fig. 3 for the details of the ex
luded region.33ACKERSTAFF 99D measure the Mi
hel parameters ρ, ξ, η, and ξδ in leptoni
 τ de
aysfrom Z → τ τ . Assuming e-µ universality, the limit mH+ > 0.97 tanβ GeV (95%CL)is obtained for two-doublet models in whi
h only one doublet 
ouples to leptons.34ACCIARRI 97F give a limit mH+ > 2.6 tanβ GeV (90% CL) from their limit on theex
lusive B → τ ντ bran
hing ratio.35AMMAR 97B measure the Mi
hel parameter ρ from τ → e ν ν de
ays and assumes e/µuniversality to extra
t the Mi
hel η parameter from τ → µν ν de
ays. The measurementis translated to a lower limit on mH+ in a two-doublet model mH+ > 0.97 tanβ GeV(90% CL).36COARASA 97 reanalyzed the 
onstraint on the (mH± ,tanβ) plane derived from thein
lusive B → τ ντ X bran
hing ratio in GROSSMAN 95B and BUSKULIC 95. Theyshow that the 
onstraint is quite sensitive to supersymmetri
 one-loop e�e
ts.37GUCHAIT 97 studies the 
onstraints on mH+ set by Tevatron data on ℓτ �nal states int t → (W b)(H b), W → ℓν, H → τ ντ . See Fig. 2 for the ex
luded region.38MANGANO 97 re
onsiders the limit in ACCIARRI 97F in
luding the e�e
t of the poten-tially large B
 → τ ντ ba
kground to Bu → τ ντ de
ays. Stronger limits are obtained.39 STAHL 97 �t τ lifetime, leptoni
 bran
hing ratios, and the Mi
hel parameters and derivelimit mH+ > 1.5 tanβ GeV (90% CL) for a two-doublet model. See also STAHL 94.40ALAM 95 measure the in
lusive b → s γ bran
hing ratio at �(4S) and give B(b →s γ)< 4.2× 10−4 (95% CL), whi
h translates to the limit mH+ >[244 + 63/(tanβ)1.3℄GeV in the Type II two-doublet model. Light supersymmetri
 parti
les 
an invalidate thisbound.41BUSKULIC 95 give a limit mH+ > 1.9 tanβ GeV (90% CL) for Type-II models fromb → τ ντ X bran
hing ratio, as proposed in GROSSMAN 94.

MASS LIMITS for H±± (doubly-
harged Higgs boson)MASS LIMITS for H±± (doubly-
harged Higgs boson)MASS LIMITS for H±± (doubly-
harged Higgs boson)MASS LIMITS for H±± (doubly-
harged Higgs boson)This se
tion 
overs sear
hes for a doubly-
harged Higgs boson with 
ou-plings to lepton pairs. Its weak isospin T3 is thus restri
ted to twopossibilities depending on lepton 
hiralities: T3(H±±) = ±1, with the
oupling gℓℓ to ℓ−L ℓ′−L and ℓ+R ℓ′+R (\left-handed") and T3(H±±) = 0,with the 
oupling to ℓ−R ℓ′−R and ℓ+L ℓ′+L (\right-handed"). These Higgsbosons appear in some left-right symmetri
 models based on the gaugegroup SU(2)L×SU(2)R×U(1), the type-II seesaw model, and the Zee-Babu model. The two 
ases are listed separately in the following. Unlessnoted, one of the lepton 
avor 
ombinations is assumed to be dominantin the de
ay.LIMITS for H±± with T3 = ±1LIMITS for H±± with T3 = ±1LIMITS for H±± with T3 = ±1LIMITS for H±± with T3 = ±1VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>551>551>551>551 95 1 AAD 15AG ATLS e e
>468 95 1 AAD 15AG ATLS eµ
>516 95 1 AAD 15AG ATLS µµ
>400 95 2 AAD 15AP ATLS e τ
>400 95 2 AAD 15AP ATLS µτ

>169 95 3 CHATRCHYAN12AU CMS τ τ

>300 95 3 CHATRCHYAN12AU CMS µτ

>293 95 3 CHATRCHYAN12AU CMS e τ

>395 95 3 CHATRCHYAN12AU CMS µµ

>391 95 3 CHATRCHYAN12AU CMS eµ

>382 95 3 CHATRCHYAN12AU CMS e e
> 98.1 95 4 ABDALLAH 03 DLPH τ τ

> 99.0 95 5 ABBIENDI 02C OPAL τ τ

• • • We do not use the following data for averages, �ts, limits, et
. • • •6 KANEMURA 15 RVUE W (∗)±W (∗)±7 KHACHATRY...15D CMS W±W±8 KANEMURA 14 RVUE W (∗)±W (∗)±
>330 95 9 AAD 13Y ATLS µµ

>237 95 9 AAD 13Y ATLS µτ

>355 95 10 AAD 12AY ATLS µµ

>398 95 11 AAD 12CQ ATLS µµ

>375 95 11 AAD 12CQ ATLS eµ

>409 95 11 AAD 12CQ ATLS e e
>128 95 12 ABAZOV 12A D0 τ τ

>144 95 12 ABAZOV 12A D0 µτ

>245 95 13 AALTONEN 11AF CDF µµ

>210 95 13 AALTONEN 11AF CDF eµ

>225 95 13 AALTONEN 11AF CDF e e
>114 95 14 AALTONEN 08AA CDF e τ

>112 95 14 AALTONEN 08AA CDF µτ

>168 95 15 ABAZOV 08V D0 µµ16 AKTAS 06A H1 single H±±
>133 95 17 ACOSTA 05L CDF stable
>118.4 95 18 ABAZOV 04E D0 µµ19 ABBIENDI 03Q OPAL E
m ≤ 209 GeV, singleH±±20 GORDEEV 97 SPEC muonium 
onversion21 ASAKA 95 THEO
> 45.6 95 22 ACTON 92M OPAL
> 30.4 95 23 ACTON 92M OPALnone 6.5{36.6 95 24 SWARTZ 90 MRK21AAD 15AG sear
h for H++H−− produ
tion in 20.3 fb−1 of pp 
ollisions at E
m = 8TeV. The limit assumes 100% bran
hing ratio to the spe
i�ed �nal state. See their Fig.5 for limits for arbitrary bran
hing ratios.2AAD 15AP sear
h for H++H−− produ
tion in 20.3 fb−1 of pp 
ollisions at E
m = 8TeV. The limit assumes 100% bran
hing ratio to the spe
i�ed �nal state.3CHATRCHYAN 12AU sear
h for H++H−− produ
tion with 4.9 fb−1 of pp 
ollisions atE
m = 7 TeV. The limit assumes 100% bran
hing ratio to the spe
i�ed �nal state. Seetheir Table 6 for limits in
luding asso
iated H++H− produ
tion or assuming di�erents
enarios.4ABDALLAH 03 sear
h for H++H−− pair produ
tion either followed by H++ →

τ+ τ+, or de
aying outside the dete
tor.5ABBIENDI 02C sear
hes for pair produ
tion of H++H−−, with H±± → ℓ± ℓ± (ℓ,ℓ′= e,µ,τ). The limit holds for ℓ=ℓ′=τ , and be
omes stronger for other 
ombinations ofleptoni
 �nal states. To ensure the de
ay within the dete
tor, the limit only applies forg(H ℓℓ)& 10−7.6KANEMURA 15 examine the 
ase where H++ de
ays preferentially to W (∗)W (∗) andestimate that a lower mass limit of ∼ 84 GeV 
an be derived from the same-sign dileptondata of AAD 15AG if H++ de
ays with 100% bran
hing ratio to W (∗)W (∗).7KHACHATRYAN 15D sear
h for H±± produ
tion by ve
tor boson fusion followed bythe de
ay H±± → W±W± in 19.4 fb−1 of pp 
ollisions at E
m = 8 TeV. See theirFig. 4 for limits on 
ross se
tion times bran
hing ratio for mH++ between 160 and 800GeV.8KANEMURA 14 examine the 
ase where H++ de
ays preferentially to W (∗)W (∗) andestimate that a lower mass limit of ∼ 60 GeV 
an be derived from the same-sign dileptondata of AAD 12CY.9AAD 13Y sear
h for H++H−− produ
tion in a generi
 sear
h of events with three
harged leptons in 4.6 fb−1 of pp 
ollisions at E
m = 7 TeV. The limit assumes 100%bran
hing ratio to the spe
i�ed �nal state.10AAD 12AY sear
h for H++H−− produ
tion with 1.6 fb−1 of pp 
ollisions at E
m =7 TeV. The limit assumes 100% bran
hing ratio to the spe
i�ed �nal state.11AAD 12CQ sear
h for H++H−− produ
tion with 4.7 fb−1 of pp 
ollisions at E
m =7 TeV. The limit assumes 100% bran
hing ratio to the spe
i�ed �nal state. See theirTable 1 for limits assuming smaller bran
hing ratios.



664664664664Gauge & Higgs Boson Parti
le ListingsCharged Higgs Bosons (H± and H±±), Sear
hes for12ABAZOV 12A sear
h for H++H−− produ
tion in 7.0 fb−1 of pp 
ollisions at E
m =1.96 TeV.13AALTONEN 11AF sear
h for H++H−− produ
tion in 6.1 fb−1 of pp 
ollisions at E
m= 1.96 TeV.14AALTONEN 08AA sear
h for H++H−− produ
tion in pp 
ollisions at E
m= 1.96 TeV.The limit assumes 100% bran
hing ratio to the spe
i�ed �nal state.15ABAZOV 08V sear
h for H++H−− produ
tion in pp 
ollisions at E
m= 1.96 TeV.The limit is for B(H → µµ) = 1. The limit is updated in ABAZOV 12A.16AKTAS 06A sear
h for single H±± produ
tion in e p 
ollisions at HERA. Assumingthat H++ only 
ouples to e+µ+ with ge µ = 0.3 (ele
tromagneti
 strength), a limitmH++ > 141 GeV (95% CL) is derived. For the 
ase where H++ 
ouples to e τ onlythe limit is 112 GeV.17ACOSTA 05L sear
h for H++H−− pair produ
tion in pp 
ollisions. The limit is validfor g
ℓℓ′ < 10−8 so that the Higgs de
ays outside the dete
tor.18ABAZOV 04E sear
h for H++H−− pair produ
tion in H±± → µ±µ±. The limit isvalid for gµµ & 10−7.19ABBIENDI 03Q sear
hes for single H±± via dire
t produ
tion in e+ e− → e∓ e∓H±±,and via t-
hannel ex
hange in e+ e− → e+ e−. In the dire
t 
ase, and assumingB(H±± → ℓ± ℓ±) = 1, a 95% CL limit on hee < 0.071 is set for mH±± < 160 GeV(see Fig. 6). In the se
ond 
ase, indire
t limits on hee are set for mH±± < 2 TeV (seeFig. 8).20GORDEEV 97 sear
h for muonium-antimuonium 
onversion and �nd GMM/GF < 0.14(90% CL), where GMM is the lepton-
avor violating e�e
tive four-fermion 
oupling.This limit may be 
onverted to mH++ > 210 GeV if the Yukawa 
ouplings of H++to ee and µµ are as large as the weak gauge 
oupling. For similar limits on muonium-antimuonium 
onversion, see the muon Parti
le Listings.21ASAKA 95 point out that H++ de
ays dominantly to four fermions in a large region ofparameter spa
e where the limit of ACTON 92M from the sear
h of dilepton modes doesnot apply.22ACTON 92M limit assumes H±± → ℓ± ℓ± or H±± does not de
ay in the dete
tor.Thus the region gℓℓ ≈ 10−7 is not ex
luded.23ACTON 92M from ��Z <40 MeV.24 SWARTZ 90 assume H±± → ℓ± ℓ± (any 
avor). The limits are valid for the Higgs-lepton 
oupling g(H ℓℓ) & 7.4 × 10−7/[mH/GeV℄1/2. The limits improve somewhatfor e e and µµ de
ay modes.LIMITS for H±± with T3 = 0LIMITS for H±± with T3 = 0LIMITS for H±± with T3 = 0LIMITS for H±± with T3 = 0VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>374 95 1 AAD 15AG ATLS e e
>402 95 1 AAD 15AG ATLS eµ

>438>438>438>438 95 1 AAD 15AG ATLS µµ

>290 95 2 AAD 15AP ATLS e τ

>290 95 2 AAD 15AP ATLS µτ

> 97.3 95 3 ABDALLAH 03 DLPH τ τ

> 97.3 95 4 ACHARD 03F L3 τ τ

> 98.5 95 5 ABBIENDI 02C OPAL τ τ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
>251 95 6 AAD 12AY ATLS µµ

>306 95 7 AAD 12CQ ATLS µµ

>310 95 7 AAD 12CQ ATLS eµ

>322 95 7 AAD 12CQ ATLS e e
>113 95 8 ABAZOV 12A D0 µτ

>205 95 9 AALTONEN 11AF CDF µµ

>190 95 9 AALTONEN 11AF CDF eµ

>205 95 9 AALTONEN 11AF CDF e e
>145 95 10 ABAZOV 08V D0 µµ11 AKTAS 06A H1 single H±±
>109 95 12 ACOSTA 05L CDF stable
> 98.2 95 13 ABAZOV 04E D0 µµ14 ABBIENDI 03Q OPAL E
m ≤ 209 GeV, singleH±±15 GORDEEV 97 SPEC muonium 
onversion
> 45.6 95 16 ACTON 92M OPAL
> 25.5 95 17 ACTON 92M OPALnone 7.3{34.3 95 18 SWARTZ 90 MRK21AAD 15AG sear
h for H++H−− produ
tion in 20.3 fb−1 of pp 
ollisions at E
m = 8TeV. The limit assumes 100% bran
hing ratio to the spe
i�ed �nal state. See their Fig.5 for limits for arbitrary bran
hing ratios.2AAD 15AP sear
h for H++H−− produ
tion in 20.3 fb−1 of pp 
ollisions at E
m = 8TeV. The limit assumes 100% bran
hing ratio to the spe
i�ed �nal state.3ABDALLAH 03 sear
h for H++H−− pair produ
tion either followed by H++ →

τ+ τ+, or de
aying outside the dete
tor.4ACHARD 03F sear
h for e+ e− → H++H−− with H±± → ℓ± ℓ′±. The limit holdsfor ℓ = ℓ′ = τ , and slightly di�erent limits apply for other 
avor 
ombinations. The limitis valid for g
ℓℓ′ & 10−7.5ABBIENDI 02C sear
hes for pair produ
tion of H++H−−, with H±± → ℓ± ℓ± (ℓ,ℓ′= e,µ,τ). the limit holds for ℓ=ℓ′=τ , and be
omes stronger for other 
ombinations ofleptoni
 �nal states. To ensure the de
ay within the dete
tor, the limit only applies forg(H ℓℓ)& 10−7.6AAD 12AY sear
h for H++H−− produ
tion with 1.6 fb−1 of pp 
ollisions at E
m =7 TeV. The limit assumes 100% bran
hing ratio to the spe
i�ed �nal state.7AAD 12CQ sear
h for H++H−− produ
tion with 4.7 fb−1 of pp 
ollisions at E
m =7 TeV. The limit assumes 100% bran
hing ratio to the spe
i�ed �nal state. See theirTable 1 for limits assuming smaller bran
hing ratios.8ABAZOV 12A sear
h for H++H−− produ
tion in 7.0 fb−1 of pp 
ollisions at E
m =1.96 TeV.

9AALTONEN 11AF sear
h for H++H−− produ
tion in 6.1 fb−1 of pp 
ollisions at E
m= 1.96 TeV.10ABAZOV 08V sear
h for H++H−− produ
tion in pp 
ollisions at E
m= 1.96 TeV.The limit is for B(H → µµ) = 1. The limit is updated in ABAZOV 12A.11AKTAS 06A sear
h for single H±± produ
tion in e p 
ollisions at HERA. Assumingthat H++ only 
ouples to e+µ+ with ge µ = 0.3 (ele
tromagneti
 strength), a limitmH++ > 141 GeV (95% CL) is derived. For the 
ase where H++ 
ouples to e τ onlythe limit is 112 GeV.12ACOSTA 05L sear
h for H++H−− pair produ
tion in pp 
ollisions. The limit is validfor g
ℓℓ′ < 10−8 so that the Higgs de
ays outside the dete
tor.13ABAZOV 04E sear
h for H++H−− pair produ
tion in H±± → µ±µ±. The limit isvalid for gµµ & 10−7.14ABBIENDI 03Q sear
hes for single H±± via dire
t produ
tion in e+ e− → e∓ e∓H±±,and via t-
hannel ex
hange in e+ e− → e+ e−. In the dire
t 
ase, and assumingB(H±± → ℓ± ℓ±) = 1, a 95% CL limit on hee < 0.071 is set for mH±± < 160 GeV(see Fig. 6). In the se
ond 
ase, indire
t limits on hee are set for mH±± < 2 TeV (seeFig. 8).15GORDEEV 97 sear
h for muonium-antimuonium 
onversion and �nd GMM/GF < 0.14(90% CL), where GMM is the lepton-
avor violating e�e
tive four-fermion 
oupling.This limit may be 
onverted to mH++ > 210 GeV if the Yukawa 
ouplings of H++to ee and µµ are as large as the weak gauge 
oupling. For similar limits on muonium-antimuonium 
onversion, see the muon Parti
le Listings.16ACTON 92M limit assumes H±± → ℓ± ℓ± or H±± does not de
ay in the dete
tor.Thus the region gℓℓ ≈ 10−7 is not ex
luded.17ACTON 92M from ��Z <40 MeV.18 SWARTZ 90 assume H±± → ℓ± ℓ± (any 
avor). The limits are valid for the Higgs-lepton 
oupling g(H ℓℓ) & 7.4 × 10−7/[mH/GeV℄1/2. The limits improve somewhatfor e e and µµ de
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The W ′ boson is a massive hypothetical particle of spin 1

and electric charge ±1, which is a color singlet and is predicted

in various extensions of the Standard Model (SM).

W ′ couplings to quarks and leptons. The Lagrangian terms

describing couplings of a W ′+ boson to fermions are given by

W ′+
µ√
2

[
ui

(
CR

qij
PR+CL

qij
PL

)
γµdj+νi

(
CR

ℓij
PR+CL

ℓij
PL

)
γµej

]
.

(1)

Here u, d, ν and e are the SM fermions in the mass eigenstate

basis, i, j = 1, 2, 3 label the fermion generation, and PR,L =

(1±γ5)/2. The coefficients CL
qij

, CR
qij

, CL
ℓij

, and CR
ℓij

are complex

dimensionless parameters. If CR
ℓij

6= 0, then the ith generation

includes a right-handed neutrino. Using this notation, the SM

W couplings are CL
q = gVCKM, CL

ℓ = g ≈ 0.63 and CR
q = CR

ℓ = 0.

Unitarity considerations imply that the W ′ boson is asso-

ciated with a spontaneously-broken gauge symmetry. This is

true even when it is a composite particle (e.g., ρ±-like bound

states [1]) if its mass is much smaller than the compositeness

scale, or a Kaluza-Klein mode in theories where the W bo-

son propagates in extra dimensions [2]. The simplest extension

of the electroweak gauge group that includes a W ′ boson is

SU(2)1 × SU(2)2 × U(1), but larger groups are encountered

in some theories. A generic property of these gauge theories is

that they also include a Z ′ boson [3] ; whether the W ′ boson

can be discovered first depends on theoretical and experimental

details.

A tree-level mass mixing may be induced between the

electrically-charged gauge bosons. Upon diagonalization of their

mass matrix, the W − Z mass ratio and the couplings of

the observed W boson are shifted from the SM values. Their

measurements imply that the mixing angle between the gauge

eigenstates, θ
+
, must be smaller than about 10−2. In certain

theories the mixing is negligible (e.g. due to a new parity [4]),

even when the W ′ mass is near the electroweak scale.

The W ′ coupling to WZ is fixed by Lorentz and gauge

invariances, and to leading order in θ
+

is given by [5]

g θ
+
i

cos θW

[
W ′+

µ

(
W−

ν Zνµ + ZνW
−µν

)
+ ZνW−µW ′+

νµ

]
+H.c., (2)

where W µν ≡ ∂µW ν − ∂νW µ, etc. The θW dependence shown

here corrects the one given in [6], which has been referred to as

the Extended Gauge Model by the experimental collaborations.

The W ′ coupling to Wh0, where h0 is the SM Higgs boson, is

−ξh g
W ′

MW W ′+
µ W µ−h0 + H.c., (3)

where g
W ′

is the gauge coupling of the W ′ boson, and the

coefficient ξh satisfies ξh ≤ 1 in simple Higgs sectors [5].

In models based on the “left-right symmetric” gauge

group [7], SU(2)L × SU(2)R × U(1)B−L, the SM fermions that

couple to the W boson transform as doublets under SU(2)L
while the other fermions transform as doublets under SU(2)R.

Consequently, the W ′ boson couples primarily to right-handed

fermions; its coupling to left-handed fermions arises due to the

θ+ mixing, so that CL
q is proportional to the CKM matrix and

its elements are much smaller than the diagonal elements of CR
q .

Generically, CR
q does not need to be proportional to VCKM.

There are many other models based on the SU(2)1 ×
SU(2)2 × U(1) gauge symmetry. In the “alternate left-right”

model [8], all the couplings shown in Eq. (1) vanish, but there

are some new fermions such that the W ′ boson couples to pairs

involving a SM fermion and a new fermion. In the “ununified

SM” [9], the left-handed quarks are doublets under one SU(2),

and the left-handed leptons are doublets under a different

SU(2), leading to a mostly leptophobic W ′ boson: CL
ℓij

≪ CL
qij

and CR
ℓij

= CR
qij

= 0. Fermions of different generations may also

transform as doublets under different SU(2) gauge groups [10].

In particular, the couplings to third generation quarks may be

enhanced [11].

It is also possible that the W ′ couplings to SM fermions are

highly suppressed. For example, if the quarks and leptons are

singlets under one SU(2) [12], then the couplings are propor-

tional to the tiny mixing angle θ+. Similar suppressions may

arise if some vectorlike fermions mix with the SM fermions [13].

Gauge groups that embed the electroweak symmetry, such

as SU(3)W ×U(1) or SU(4)W ×U(1), also include one or more

W ′ bosons [14].
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Collider searches. At LEP-II, W ′ bosons could have been

produced in pairs via their photon and Z couplings. The produc-

tion cross section is large enough to rule out MW ′ <
√

s/2 ≈ 105

GeV for most patterns of decay modes.

At hadron colliders, W ′ bosons can be detected through

resonant pair production of fermions or electroweak bosons.

Assuming that the W ′ width is much smaller than its mass,

the contribution of the s-channel W ′ boson exchange to the

total rate for pp → f f̄ ′X , where f and f ′ are fermions with

an f f̄ ′ electric charge of ±1, and X is any final state, may be

approximated by the branching fraction B(W ′ → f f̄ ′) times

the production cross section

σ
(
pp→W ′X

)
≃ π

48 s

∑

i,j

[
(CL

qij
)2+(CR

qij
)2

]
wij

(
M2

W ′/s, MW ′

)
.

(4)

The functions wij include the information about proton struc-

ture, and are given to leading order in αs by

wij(z, µ) =

∫ 1

z

dx

x

[
ui(x, µ) dj

(z

x
, µ

)
+ ui(x, µ) dj

(z

x
, µ

)]
, (5)

where ui(x, µ) and di(x, µ) are the parton distributions inside

the proton, at the factorization scale µ and parton momentum

fraction x, for the up- and down-type quark of the ith genera-

tion, respectively. QCD corrections to W ′ production are sizable

(they also include quark-gluon initial states), but preserve the

above factorization of couplings at next-to-leading order [15].

The most commonly studied W ′ signal consists of a high-

momentum electron or muon and large missing transverse

momentum, with the transverse mass distribution forming a

Jacobian peak with its endpoint at MW ′ (see Fig. 1e of [16]).

Given that the branching fractions for W ′ → eν and W ′ → µν

could be very different, these channels should be analyzed sep-

arately. Searches in these channels often implicitly assume that

the left-handed couplings vanish (no interference between W

and W ′), and that the right-handed neutrino is light compared

to the W ′ boson and escapes the detector. These assumptions

correspond to the following choice of parameters: CR
q = gVCKM,

CR
ℓ = g, CL

q = CL
ℓ = 0, which define a model that is essentially

equivalent to the Sequential SM used in many searches. How-

ever, if a W ′ boson were discovered and the final state fermions

have left-handed helicity, then the effects of W −W ′ interference

could be observed [17], providing useful information about the

W ′ couplings.

In the eν channel, the ATLAS and CMS Collaborations

set limits on the W ′ production cross section times branching

fraction (and thus indirectly on the W ′ couplings) when MW ′

is in the 0.2 − 6 TeV range, based on 20 fb−1 of LHC data

at
√

s = 8 TeV [16,18] and 2–3 fb−1 at
√

s = 13 TeV [19,20],

as shown in Fig. 1. ATLAS sets the strongest mass lower limit

MW ′ > 4.0 TeV in the Sequential SM (all limits in this mini-

review are at the 95% CL). The coupling limits are much weaker

for MW ′ < 200 GeV, a range last explored with the Tevatron

at
√

s = 1.8 TeV [21].
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Figure 1: Upper limit on σ(pp →W ′X)B(W ′→eν)
from ATLAS [20], at 95% CL. The red line shows the
theoretical prediction in the Sequential SM.

In the µν channel, ATLAS and CMS set rate limits for MW ′

in the 0.2 − 6 TeV range from the same analyses as mentioned

above, with the strongest lower mass limit of 4.0 TeV set by

CMS [19] using the
√

s = 13 TeV data. When combined with

the eν channel, the upper limit on the
√

s = 13 TeV cross

section times branching fraction to ℓν varies between 1 and 2

fb for MW ′ between 1 and 5 TeV [19]. Only weak limits on

W ′ → µν exist for MW ′ < 200 GeV [22]. Note that masses of

the order of the electroweak scale are interesting from a theory

point of view, while lepton universality does not necessarily

apply to a W ′ boson.

A dedicated search for W ′ → τν has been performed by the

CMS Collaboration at 8 TeV [23]. Limits are set on σ · B for

MW ′ between 0.3 and 4.0 TeV. A lower mass limit of 2.7 TeV

is set in the Sequential SM.

The W ′ decay into a lepton and a right-handed neutrino,

νR, may also be followed by the νR decay through a virtual

W ′ boson into a lepton and two quark jets. The ATLAS [24]

and CMS [25] searches in the eejj and µµjj channels have

set limits on the cross section times branching fraction as a

function of the νR mass or of MW ′. These searches are typically

performed with same-charge lepton pairs that provide strong

background reduction and are motivated by models with a left-

right symmetry. However, it is also interesting to search in final

states with opposite-charge lepton pairs, as done in the CMS

analysis.

The tb̄ channel is particularly important because a W ′

boson that couples only to right-handed fermions cannot decay

to leptons when the right-handed neutrinos are heavier than

the W ′ boson (additional motivations are provided by a W ′

boson with enhanced couplings to the third generation [11], and

by a leptophobic W ′ boson). The usual signature consists of a

leptonically-decaying W boson and two b-jets. Recent studies

have also incorporated the fully hadronic decay channel for

MW ′ ≫ mt with the use of jet substructure techniques to tag
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Figure 2: Upper limits on W ′ couplings (at 95%
CL) using the tb̄ and t̄b final states, assuming
that the diagonal couplings are generation inde-
pendent. Left panel: ATLAS [26] limit on CR

q11/g.
Right panel: CMS [27] limit on MW ′ as contours in
the CR

q11/g – CL
q11/g plane.

highly boosted top-jets. Upper limits on the W ′ couplings to

right- and left-handed quarks normalized to the SM W couplings

have been set by ATLAS [26] and CMS [27] at
√

s = 8 TeV, as

shown in Fig. 2. Using about 2 fb−1 of data at
√

s = 13 TeV in

the ℓ + jets channel, CMS [28] sets an upper limit on the W ′

production cross section times branching fraction to the ℓνbb̄

final state decreasing from 1.6 pb at MW ′ = 1 TeV to 35 fb

at MW ′ = 3 TeV The limit MW ′ > 2.38 TeV obtained in the

Sequential SM with a light νR increases with the νR mass. The

best limits on the couplings to right-handed quarks for MW ′ in

the 300–600 GeV range have been set by CDF with 9.5 fb−1

of pp̄ collisions at
√

s = 1.96 TeV [29]. Finally, if W ′ couplings

to left-handed quarks are large, then interference effects modify

the SM s-channel single-top production [30].

Searches for dijet resonances may be used to set limits on

W ′ → qq̄′. The best limits on W ′ couplings to quarks have been

set by UA2 [31] in the 140− 250 GeV mass range, by CDF [32]

in the 250 − 500 GeV range and by CMS [33] in the 500 − 750

GeV range. ATLAS and CMS provide similar coverage in the

∼ 0.75 − 7 TeV range with data collected at
√

s = 8 and 13

TeV [34] with the most stringent lower W ′ mass limit in the

Sequential SM set to 2.6 TeV using 13 TeV data.

In some theories [4], the W ′ couplings to SM fermions are

suppressed by discrete symmetries. W ′ production then occurs

in pairs, through a photon or Z boson. The decay modes are

model-dependent and often involve other new particles. The

ensuing collider signals arise from cascade decays and typically

include missing transverse momentum.

Searches for WZ resonances at the LHC have focused on

the process pp → W ′ → WZ with the production mainly from

ud̄ → W ′ assuming SM-like couplings to quarks. ATLAS and

CMS have set the strongest upper limits on the W ′WZ coupling

for MW ′ in the 0.2 − 4 TeV range with a combination of fully

leptonic, semi-leptonic and fully hadronic channels at both 8

and 13 TeV [35,36,37,38]. ATLAS has also combined the results

from all channels at 8 TeV and obtains MW ′ > 1.81 TeV in the

Sequential SM [39].

A fermiophobic W ′ boson that couples to WZ may be

produced at hadron colliders in association with a Z boson, or

via WZ fusion. This would give rise to (WZ)Z and (WZ)jj

final states, where the parentheses represent a resonance [40].

W ′ bosons have also been searched for recently in final

states with a W boson and a SM Higgs boson in the channels

W → ℓν and h0 → bb̄ or h0 → WW by ATLAS [41,42] and

CMS [43] at
√

s = 8 and 13 TeV. Cross section limits are set for

W ′ masses in the range between 0.4 and 3.0 TeV. The strongest

lower limit on the mass is set by the ATLAS 13 TeV analysis:

MW ′ > 1.49 TeV in the context of the Heavy Vector Triplet

weakly-coupled scenario A [44].

Low-energy constraints. The properties of W ′ bosons are

also constrained by measurements of processes at energies much

below MW ′. The bounds on W −W ′ mixing [45] are mostly due

to the change in W properties compared to the SM. Limits on

deviations in the ZWW couplings provide a leading constraint

for fermiophobic W ′ bosons [13].

Constraints arising from low-energy effects of W ′ exchange

are strongly model-dependent. If the W ′ couplings to quarks

are not suppressed, then box diagrams involving a W and a W ′

boson contribute to neutral meson-mixing. In the case of W ′

couplings to right-handed quarks as in the left-right symmetric

model, the limit from KL − KS mixing is severe: MW ′ > 2.9

TeV for CL
q = CR

q [46]. However, if no correlation between the

W ′ and W couplings is assumed, then the limit on MW ′ may

be significantly relaxed [47].

W ′ exchange also contributes at tree level to various low-

energy processes. In particular, it would impact the measure-

ment of the Fermi constant GF in muon decay, which in

turn would change the predictions of many other electroweak

processes. A recent test of parity violation in polarized muon

decay [48] has set limits of about 600 GeV on MW ′, assuming

W ′ couplings to right-handed leptons as in left-right symmet-

ric models and a light νR. There are also W ′ contributions

to the neutron electric dipole moment, β decays, and other

processes [45].

If right-handed neutrinos have Majorana masses, then there

are tree-level contributions to neutrinoless double-beta decay,

and a limit on MW ′ versus the νR mass may be derived [49].

For νR masses below a few GeV, the W ′ boson contributes to

leptonic and semileptonic B meson decays, so that limits may

be placed on various combinations of W ′ parameters [47]. For

νR masses below ∼ 30 MeV, the most stringent constraints on

MW ′ are due to the limits on νR emission from supernovae.
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tor Boson Other Than W )MASS LIMITS for W ′ (Heavy Charged Ve
tor Boson Other Than W )MASS LIMITS for W ′ (Heavy Charged Ve
tor Boson Other Than W )MASS LIMITS for W ′ (Heavy Charged Ve
tor Boson Other Than W )in Hadron Collider Experimentsin Hadron Collider Experimentsin Hadron Collider Experimentsin Hadron Collider ExperimentsCouplings of W ′ to quarks and leptons are taken to be identi
al with those of W . Thefollowing limits are obtained from pp or pp → W ′X with W ′ de
aying to the modeindi
ated in the 
omments. New de
ay 
hannels (e.g., W ′ → W Z) are assumed tobe suppressed. The most re
ent preliminary results 
an be found in the \W ′-bosonsear
hes" review above.VALUE (GeV) CL% DOCUMENT ID TECN COMMENTnone 400{1590 95 1 AAD 15AU ATLS W ′ → W Znone 1500{1760 95 2 AAD 15AV ATLS W ′ → t bnone 300{1490 95 3 AAD 15AZ ATLS W ′ → W Znone 1300{1500 95 4 AAD 15CP ATLS W ′ → W Znone 500{1920 95 5 AAD 15R ATLS W ′ → t bnone 800{2450 95 6 AAD 15V ATLS W ′ → qq

>1470 95 7 KHACHATRY...15C CMS W ′ → W Z
>3710>3710>3710>3710 95 8 KHACHATRY...15T CMS W ′ → e ν, µνnone 1200{1900 and2000{2200 95 9 KHACHATRY...15V CMS W ′ → qq
>3240 95 AAD 14AI ATLS W ′ → e ν, µνnone 200{1520 95 10 AAD 14S ATLS W ′ → W Znone 1000{1700 95 11 KHACHATRY...14 CMS W ′ → W Znone 1000{3010 95 12 KHACHATRY...14O CMS W ′ → N ℓ → ℓℓ j jnone 800{1510 95 13 CHATRCHYAN13E CMS W ′ → t b
• • • We do not use the following data for averages, �ts, limits, et
. • • •14 AAD 15BB ATLS W ′ → W hnone 300{880 95 15 AALTONEN 15C CDF W ′ → t b16 AAD 14AT ATLS W ′ → W γ17 KHACHATRY...14A CMS W ′ → W Znone 500{950 95 18 AAD 13AO ATLS W ′ → W Znone 1100{1680 95 AAD 13D ATLS W ′ → qqnone 1000{1920 95 CHATRCHYAN13A CMS W ′ → qq19 CHATRCHYAN13AJ CMS W ′ → W Z
>2900 95 20 CHATRCHYAN13AQ CMS W ′ → e ν, µνnone 700{940 95 21 CHATRCHYAN13U CMS W ′ → W Znone 700{1130 95 22 AAD 12AV ATLS W ′ → t bnone 200{760 95 23 AAD 12BB ATLS W ′ → W Z24 AAD 12CK ATLS W ′ → t q
>2550 95 25 AAD 12CR ATLS W ′ → e ν, µν26 AAD 12M ATLS W ′ → N ℓ → ℓℓ j j27 AALTONEN 12N CDF W ′ → t qnone 200{1143 95 23 CHATRCHYAN12AF CMS W ′ → W Z28 CHATRCHYAN12AR CMS W ′ → t q29 CHATRCHYAN12BG CMS W ′ → N ℓ → ℓℓ j j
>1120 95 AALTONEN 11C CDF W ′ → e νnone 180{690 95 30 ABAZOV 11H D0 W ′ → W Znone 600{863 95 31 ABAZOV 11L D0 W ′ → t bnone 285{516 95 32 AALTONEN 10N CDF W ′ → W Znone 280{840 95 33 AALTONEN 09AC CDF W ′ → qq
>1000 95 ABAZOV 08C D0 W ′ → e νnone 300{800 95 ABAZOV 04C D0 W ′ → qqnone 225{536 95 34 ACOSTA 03B CDF W ′ → t bnone 200{480 95 35 AFFOLDER 02C CDF W ′ → W Z
> 786 95 36 AFFOLDER 01I CDF W ′ → e ν, µνnone 300{420 95 37 ABE 97G CDF W ′ → qq
> 720 95 38 ABACHI 96C D0 W ′ → e ν

> 610 95 39 ABACHI 95E D0 W ′ → e ν, τ νnone 260{600 95 40 RIZZO 93 RVUE W ′ → qq
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le ListingsNew Heavy Bosons1AAD 15AU sear
h for W ′ de
aying into the W Z �nal state with W → qq′, Z →
ℓ+ ℓ− using pp 
ollisions at √s = 8 TeV. The quoted limit assumes gW ′W Z /gW W Z= (MW /MW ′)2.2AAD 15AV limit is for a SM like right-handed W ′ using pp 
ollisions at √

s = 8 TeV.W ′ → ℓν de
ay is assumed to be forbidden.3AAD 15AZ sear
h for W ′ de
aying into the W Z �nal state with W → ℓν, Z → qqusing pp 
ollisions at √
s = 8 TeV. The quoted limit assumes gW ′W Z /gW W Z =(MW /MW ′)2.4AAD 15CP sear
h for W ′ de
aying into the W Z �nal state with W → qq, Z → qqusing pp 
ollisions at √
s = 8 TeV. The quoted limit assumes gW ′W Z /gW W Z =(MW /MW ′)2.5AAD 15R limit is for a SM like right-handed W ′ using pp 
ollisions at √

s = 8 TeV.W ′ → ℓν de
ay is assumed to be forbidden.6AAD 15V sear
h for new resonan
e de
aying to dijets in pp 
ollisions at √s = 8 TeV.7KHACHATRYAN 15C sear
h for W ′ de
aying via W Z to fully leptoni
 �nal statesusing pp 
ollisions at √s=8 TeV. The quoted limit assumes gW ′W Z /gW W Z = MWMZ/M2W ′ .8KHACHATRYAN 15T limit is for W ′ with SM-like 
oupling whi
h interferes the SM Wboson 
onstru
tively using pp 
ollisions at √
s = 8 TeV. For W ′ without interferen
e,the limit be
omes > 3280 GeV.9KHACHATRYAN 15V sear
h new resonan
e de
aying to dijets in pp 
ollisions at √s =8 TeV.10AAD 14S sear
h for W ′ de
aying into the W Z �nal state with W → ℓν, Z → ℓℓusing pp 
ollisions at √

s=8 TeV. The quoted limit assumes gW ′W Z /gW W Z =(MW /MW ′)2.11KHACHATRYAN 14 sear
h for W ′ de
aying into W Z �nal state with W → qq, Z →qq using pp 
ollisions at √
s=8 TeV. The quoted limit assumes gW ′W Z /gW W Z =(MW /MW ′)2.12KHACHATRYAN 14O sear
h for right-handed WR in pp 
ollisions at √s = 8 TeV. WRis assumed to de
ay into ℓ and hypotheti
al heavy neutrino N, with N de
aying into ℓ j j.The quoted limit is for MνeR

= MνµR = MWR /2. See their Fig. 3 and Fig. 5 forex
luded regions in the MWR −Mν plane.13CHATRCHYAN 13E limit is for W ′ with SM-like 
oupling whi
h intereferes with theSM W boson using pp 
ollisions at √
s=7 TeV. For W ′ with right-handed 
oupling,the bound be
omes >1850 GeV (>1910 GeV) if W ′ de
ays to both leptons and quarks(only to quarks). If both left- and right-handed 
ouplings are present, the limit be
omes

>1640 GeV.14AAD 15BB sear
h for W ′ de
aying into W h with W → ℓν, h → bb. See their Fig. 4for the ex
lusion limits in the heavy ve
tor triplet ben
hmark model parameter spa
e.15AALTONEN 15C limit is for a SM-like right-handed W ′ assuming W ′ → ℓν de
ays areforbidden, using pp 
ollisions at √s=1.96 TeV. See their Fig. 3 for limit on gW ′/gW .16AAD 14AT sear
h for a narrow 
harged ve
tor boson de
aying to W γ. See their Fig. 3afor the ex
lusion limit in mW ′ − σB plane.17KHACHATRYAN 14A sear
h for W ′ de
aying into the W Z �nal state with W → ℓν,Z → qq, or W → qq, Z → ℓℓ. pp 
ollisions data at √
s=8 TeV are used forthe sear
h. See their Fig. 13 for the ex
lusion limit on the number of events in themass−width plane.18AAD 13AO sear
h for W ′ de
aying into the W Z �nal state with W → ℓν, Z →2j using pp 
ollisions at √

s=7 TeV. The quoted limit assumes gW ′W Z /gW W Z =(MW /MW ′)2.19CHATRCHYAN 13AJ sear
h for resonan
es de
aying to W Z pair, using the hadroni
de
ay modes of W and Z , in pp 
ollisions at √s=7 TeV. See their Fig. 7 for the limiton the 
ross se
tion.20CHATRCHYAN 13AQ limit is for W ′ with SM-like 
oupling whi
h interferes with the SMW boson using pp 
ollisions at √s=7 TeV.21CHATRCHYAN 13U sear
h for W ′ de
aying to the W Z �nal state, with W de
ayinginto jets, in pp 
ollisions at √
s=7 TeV. The quoted limit assumes gW ′W Z /gW W Z= (MW /MW ′)2.22The AAD 12AV quoted limit is for a SM-like right-handed W ′ using pp 
ollisions at√

s=7 TeV. W ′ → ℓν de
ay is assumed to be forbidden.23AAD 12BB use pp 
ollisions data at √
s=7 TeV. The quoted limit assumesgW ′W Z /gW W Z = (MW /MW ′)2.24AAD 12CK sear
h for pp → tW ′, W ′ → t q events in pp 
ollisions. See their Fig. 5for the limit on σ · B.25AAD 12CR use pp 
ollisions at √s=7 TeV.26AAD 12M sear
h for right-handed WR in pp 
ollisions at √s = 7 TeV. WR is assumedto de
ay into ℓ and hypotheti
al heavy neutrino N, with N de
aying into ℓ j j. See theirFig. 4 for the limit in the mN−mW ′ plane.27AALTONEN 12N sear
h for pp → tW ′, W ′ → t d events in pp 
ollisions. See theirFig. 3 for the limit on σ · B.28CHATRCHYAN 12AR sear
h for pp → tW ′, W ′ → t d events in pp 
ollisions. Seetheir Fig. 2 for the limit on σ · B.29CHATRCHYAN 12BG sear
h for right-handed WR in pp 
ollisions √

s = 7 TeV. WR isassumed to de
ay into ℓ and hypotheti
al heavy neutrino N, with N de
aying into ℓ j j.See their Fig. 3 for the limit in the mN−mW ′ plane.30ABAZOV 11H use data from pp 
ollisions at √s=1.96 TeV. The quoted limit is obtainedassumingW ′W Z 
oupling strength is the same as the ordinaryWW Z 
oupling strengthin the Standard Model.31ABAZOV 11L limit is for W ′ with SM-like 
oupling whi
h interferes with the SM Wboson, using pp 
ollisions at √
s=1.96 TeV. For W ′ with right-handed 
oupling, thebound be
omes >885 GeV (>890 GeV) if W ′ de
ays to both leptons and quarks (onlyto quarks). If both left- and right-handed 
ouplings present, the limit be
omes >916GeV.32AALTONEN 10N use pp 
ollision data at √

s=1.96 TeV. The quoted limit assumesgW ′W Z /gW W Z = (MW /MW ′)2. See their Fig. 4 for limits in mass-
oupling plane.

33AALTONEN 09AC sear
h for new parti
le de
aying to dijets using pp 
ollisions at√
s=1.96 TeV.34The ACOSTA 03B quoted limit is for MW ′ ≫ MνR , using pp 
ollisions at √s=1.8 TeV.For MW ′ <MνR , MW ′ between 225 and 566 GeV is ex
luded.35The quoted limit is obtained assuming W ′W Z 
oupling strength is the same as theordinary WW Z 
oupling strength in the Standard Model, using pp 
ollisions at √s=1.8TeV. See their Fig. 2 for the limits on the produ
tion 
ross se
tions as a fun
tion of theW ′ width.36AFFOLDER 01I 
ombine a new bound on W ′ → e ν of 754 GeV, using pp 
ollisions at√
s=1.8 TeV, with the bound of ABE 00 on W ′ → µν to obtain quoted bound.37ABE 97G sear
h for new parti
le de
aying to dijets using pp 
ollisions at √s=1.8 TeV.38For bounds on WR with nonzero right-handed mass, see Fig. 5 from ABACHI 96C.39ABACHI 95E assume that the de
ay W ′ → W Z is suppressed and that the neutrinofrom W ′ de
ay is stable and has a mass signi�
antly less mW ′.40RIZZO 93 analyses CDF limit on possible two-jet resonan
es. The limit is sensitive tothe in
lusion of the assumed K fa
tor.WR (Right-Handed W Boson) MASS LIMITSWR (Right-Handed W Boson) MASS LIMITSWR (Right-Handed W Boson) MASS LIMITSWR (Right-Handed W Boson) MASS LIMITSAssuming a light right-handed neutrino, ex
ept for BEALL 82, LANGACKER 89B,and COLANGELO 91. gR = gL assumed. [Limits in the se
tion MASS LIMITS forW ′ below are also valid for WR if mνR ≪ mWR .℄ Some limits assume manifestleft-right symmetry, i.e., the equality of left- and right Cabibbo-Kobayashi-Maskawamatri
es. For a 
omprehensive review, see LANGACKER 89B. Limits on the WL-WRmixing angle ζ are found in the next se
tion. Values in bra
kets are from 
osmologi
aland astrophysi
al 
onsiderations and assume a light right-handed neutrino.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

> 592 90 1 BUENO 11 TWST µ de
ay
> 715> 715> 715> 715 90 2 CZAKON 99 RVUE Ele
troweak
• • • We do not use the following data for averages, �ts, limits, et
. • • •
> 235 90 3 PRIEELS 14 PIE3 µ de
ay
> 245 90 4 WAUTERS 10 CNTR 60Co β de
ay
>2500 5 ZHANG 08 THEO mK0L−mK0S
> 180 90 6 MELCONIAN 07 CNTR 37K β+ de
ay
> 290.7 90 7 SCHUMANN 07 CNTR Polarized neutron de
ay[> 3300℄ 95 8 CYBURT 05 COSM Nu
leosynthesis; light νR
> 310 90 9 THOMAS 01 CNTR β+ de
ay
> 137 95 10 ACKERSTAFF 99D OPAL τ de
ay
>1400 68 11 BARENBOIM 98 RVUE Ele
troweak, Z -Z ′ mixing
> 549 68 12 BARENBOIM 97 RVUE µ de
ay
> 220 95 13 STAHL 97 RVUE τ de
ay
> 220 90 14 ALLET 96 CNTR β+ de
ay
> 281 90 15 KUZNETSOV 95 CNTR Polarized neutron de
ay
> 282 90 16 KUZNETSOV 94B CNTR Polarized neutron de
ay
> 439 90 17 BHATTACH... 93 RVUE Z -Z ′ mixing
> 250 90 18 SEVERIJNS 93 CNTR β+ de
ay19 IMAZATO 92 CNTR K+ de
ay
> 475 90 20 POLAK 92B RVUE µ de
ay
> 240 90 21 AQUINO 91 RVUE Neutron de
ay
> 496 90 21 AQUINO 91 RVUE Neutron and muon de
ay
> 700 22 COLANGELO 91 THEO mK0L − mK0S
> 477 90 23 POLAK 91 RVUE µ de
ay[none 540{23000℄ 24 BARBIERI 89B ASTR SN 1987A; light νR
> 300 90 25 LANGACKER 89B RVUE General
> 160 90 26 BALKE 88 CNTR µ → e ν ν

> 406 90 27 JODIDIO 86 ELEC Any ζ

> 482 90 27 JODIDIO 86 ELEC ζ = 0
> 800 MOHAPATRA 86 RVUE SU(2)L×SU(2)R×U(1)
> 400 95 28 STOKER 85 ELEC Any ζ

> 475 95 28 STOKER 85 ELEC ζ <0.04129 BERGSMA 83 CHRM νµ e → µνe
> 380 90 30 CARR 83 ELEC µ+ de
ay
>1600 31 BEALL 82 THEO mK0L − mK0S1The quoted limit is for manifest left-right symmetri
 model.2CZAKON 99 perform a simultaneous �t to 
harged and neutral se
tors.3PRIEELS 14 limit is from µ+ → e+ ν ν de
ay parameter ξ′′, whi
h is determined bythe positron polarization measurement.4WAUTERS 10 limit is from a measurement of the asymmetry parameter of polarized60Co β de
ays. The listed limit assumes no mixing.5ZHANG 08 limit uses a latti
e QCD 
al
ulation of the relevant hadroni
 matrix elements,while BEALL 82 limit used the va
uum saturation approximation.6MELCONIAN 07 measure the neutrino angular asymmetry in β+-de
ays of polarized37K, stored in a magneto-opti
al trap. Result is 
onsistent with SM predi
tion and doesnot 
onstrain the WL−WR mixing angle appre
iably.7 SCHUMANN 07 limit is from measurements of the asymmetry 〈

~pν · σn〉 in the β de
ayof polarized neutrons. Zero mixing is assumed.8CYBURT 05 limit follows by requiring that three light νR 's de
ouple when Tdec > 140MeV. For di�erent Tdec, the bound be
omes MWR > 3.3 TeV (Tdec / 140 MeV)3/4.9THOMAS 01 limit is from measurement of β+ polarization in de
ay of polarized 12N.The listed limit assumes no mixing.10ACKERSTAFF 99D limit is from τ de
ay parameters. Limit in
rease to 145 GeV for zeromixing.11BARENBOIM 98 assumes minimal left-right model with Higgs of SU(2)R in SU(2)Ldoublet. For Higgs in SU(2)L triplet, mWR >1100 GeV. Bound 
al
ulated from e�e
tof 
orresponding ZLR on ele
troweak data through Z{ZLR mixing.
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le ListingsNew Heavy Bosons12The quoted limit is from µ de
ay parameters. BARENBOIM 97 also evaluate limit fromKL-KS mass di�eren
e.13 STAHL 97 limit is from �t to τ -de
ay parameters.14ALLET 96 measured polarization-asymmetry 
orrelation in 12Nβ+ de
ay. The listedlimit assumes zero L-R mixing.15KUZNETSOV 95 limit is from measurements of the asymmetry 〈
~pν ·σn〉 in the β de
ayof polarized neutrons. Zero mixing assumed. See also KUZNETSOV 94B.16KUZNETSOV 94B limit is from measurements of the asymmetry 〈
~pν ·σn〉 in the β de
ayof polarized neutrons. Zero mixing assumed.17BHATTACHARYYA 93 uses Z -Z ′ mixing limit from LEP '90 data, assuming a spe
i�
Higgs se
tor of SU(2)L×SU(2)R×U(1) gauge model. The limit is for mt=200 GeV andslightly improves for smaller mt .18 SEVERIJNS 93 measured polarization-asymmetry 
orrelation in 107In β+ de
ay. Thelisted limit assumes zero L-R mixing. Value quoted here is from SEVERIJNS 94 erratum.19 IMAZATO 92 measure positron asymmetry in K+ → µ+ νµ de
ay and obtain

ξPµ > 0.990 (90% CL). If WR 
ouples to u s with full weak strength (VRus=1), theresult 
orresponds to mWR >653 GeV. See their Fig. 4 for mWR limits for general
∣∣VRus ∣∣2=1−∣∣VRud ∣∣2.20POLAK 92B limit is from �t to muon de
ay parameters and is essentially determined byJODIDIO 86 data assuming ζ=0. Supersedes POLAK 91.21AQUINO 91 limits obtained from neutron lifetime and asymmetries together with uni-tarity of the CKM matrix. Manifest left-right symmetry assumed. Stronger of the twolimits also in
ludes muon de
ay results.22COLANGELO 91 limit uses hadroni
 matrix elements evaluated by QCD sum rule andis less restri
tive than BEALL 82 limit whi
h uses va
uum saturation approximation.Manifest left-right symmetry assumed.23POLAK 91 limit is from �t to muon de
ay parameters and is essentially determined byJODIDIO 86 data assuming ζ=0. Superseded by POLAK 92B.24BARBIERI 89B limit holds for mνR ≤ 10 MeV.25 LANGACKER 89B limit is for any νR mass (either Dira
 or Majorana) and for a general
lass of right-handed quark mixing matri
es.26BALKE 88 limit is for mνeR = 0 and mνµR ≤ 50 MeV. Limits 
ome from pre
isemeasurements of the muon de
ay asymmetry as a fun
tion of the positron energy.27 JODIDIO 86 is the same TRIUMF experiment as STOKER 85 (and CARR 83); how-ever, it uses a di�erent te
hnique. The results given here are 
ombined results of thetwo te
hniques. The te
hnique here involves pre
ise measurement of the end-point e+spe
trum in the de
ay of the highly polarized µ+.28STOKER 85 is same TRIUMF experiment as CARR 83. Here they measure the de
ay e+spe
trum asymmetry above 46 MeV/
 using a muon-spin-rotation te
hnique. Assumeda light right-handed neutrino. Quoted limits are from 
ombining with CARR 83.29BERGSMA 83 set limit mW2/mW1 >1.9 at CL = 90%.30CARR 83 is TRIUMF experiment with a highly polarized µ+ beam. Looked for deviationfrom V−A at the high momentum end of the de
ay e+ energy spe
trum. Limit fromprevious world-average muon polarization parameter is mWR >240 GeV. Assumes alight right-handed neutrino.31BEALL 82 limit is obtained assuming thatWR 
ontribution to K0L{K0S mass di�eren
e issmaller than the standard one, negle
ting the top quark 
ontributions. Manifest left-rightsymmetry assumed.Limit on WL-WR Mixing Angle ζLimit on WL-WR Mixing Angle ζLimit on WL-WR Mixing Angle ζLimit on WL-WR Mixing Angle ζLighter mass eigenstate W1 = WL
osζ −WRsinζ. Light νR assumed unless noted.Values in bra
kets are from 
osmologi
al and astrophysi
al 
onsiderations.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.020 to 0.017 90 BUENO 11 TWST µ → e ν ν

< 0.022 90 MACDONALD 08 TWST µ → e ν ν

< 0.12 95 1 ACKERSTAFF 99D OPAL τ de
ay
< 0.013 90 2 CZAKON 99 RVUE Ele
troweak
< 0.0333 3 BARENBOIM 97 RVUE µ de
ay
< 0.04 90 4 MISHRA 92 CCFR νN s
attering
−0.0006 to 0.0028 90 5 AQUINO 91 RVUE[none 0.00001{0.02℄ 6 BARBIERI 89B ASTR SN 1987A

< 0.040 90 7 JODIDIO 86 ELEC µ de
ay
−0.056 to 0.040 90 7 JODIDIO 86 ELEC µ de
ay1ACKERSTAFF 99D limit is from τ de
ay parameters.2CZAKON 99 perform a simultaneous �t to 
harged and neutral se
tors.3The quoted limit is from µ de
ay parameters. BARENBOIM 97 also evaluate limit fromKL-KS mass di�eren
e.4MISHRA 92 limit is from the absen
e of extra large-x, large-y νµN → νµX events atTevatron, assuming left-handed ν and right-handed ν in the neutrino beam. The resultgives ζ2(1−2m2W1/m2W2)< 0.0015. The limit is independent of νR mass.5AQUINO 91 limits obtained from neutron lifetime and asymmetries together with uni-tarity of the CKM matrix. Manifest left-right asymmetry is assumed.6BARBIERI 89B limit holds for mνR ≤ 10 MeV.7 First JODIDIO 86 result assumes mWR=∞, se
ond is for un
onstrained mWR .

Z ′-BOSON SEARCHES

Revised Jan. 2016 by M.-C. Chen (UC Irvine), B.A. Dobrescu
(Fermilab) and S. Willocq (Univ. of Massachusetts).

The Z ′ boson is a massive, electrically-neutral and color-

singlet hypothetical particle of spin 1. This particle is predicted

in many extensions of the Standard Model (SM) and has been

the object of extensive phenomenological studies [1].

Z ′ boson couplings to quarks and leptons. The couplings

of a Z ′ boson to the first-generation fermions are given by

Z ′
µ (gLu uLγµuL + gLd dLγµdL + gRu uRγµuR + gRd dRγµdR

+ gLν νLγµνL + gLe eLγµeL + gRe eRγµeR

)
, (1)

where u, d, ν and e are the quark and lepton fields in the

mass eigenstate basis, and the coefficients gLu, gLd, gRu, gRd, gLν,
gLe, gRe are real dimensionless parameters. If the Z ′ couplings

to quarks and leptons are generation-independent, then these

seven parameters describe the couplings of the Z ′ boson to

all SM fermions. More generally, however, the Z ′ couplings

to fermions are generation-dependent, in which case Eq. (1)

may be written with generation indices i, j = 1, 2, 3 labeling

the quark and lepton fields, and with the seven coefficients

promoted to 3 × 3 Hermitian matrices (e.g., gLeij ei
Lγµej

L, where

e2
L is the left-handed muon, etc.).

These parameters describing the Z ′ boson interactions with

quarks and leptons are subject to some theoretical constraints.

Quantum field theories that include a heavy spin-1 particle

are well behaved at high energies only if that particle is a

gauge boson associated with a spontaneously broken gauge

symmetry. Quantum effects preserve the gauge symmetry only

if the couplings of the gauge boson to fermions satisfy anomaly

cancellation conditions. Furthermore, the fermion charges under

the new gauge symmetry are constrained by the requirement

that the quarks and leptons get masses from gauge-invariant

interactions with Higgs fields.

The relation between the couplings displayed in Eq. (1)

and the gauge charges zLfi and zRfi of the fermions f = u, d, ν, e

involves the unitary 3 × 3 matrices VL
f and VR

f that transform

the gauge eigenstate fermions f iL and f iR , respectively, into the

mass eigenstates. The Z ′ couplings are also modified if the new

gauge boson in the gauge eigenstate basis (Z̃ ′
µ) has a kinetic

mixing (−χ/2)BµνZ̃ ′
µν with the hypercharge gauge boson Bµ

(χ is a dimensionless parameter), or a mass mixing δM2 Z̃µZ̃ ′
µ

with the linear combination (Z̃µ) of neutral bosons that couples

as the SM Z boson [2]. Since both the kinetic and mass mixings

shift the mass and couplings of the Z boson, electroweak

measurements impose upper limits on χ and δM2/(M2
Z′ −M2

Z)

of the order of 10−3 [3]. Keeping only linear terms in these two

small quantities, the couplings of the mass-eigenstate Z ′ boson

are given by

gLf ij
= gzV

L
fii′ z

L
f i′

(
VL

f

)†
i′j

+
e

cW (
sWχM2

Z′ + δM2

2sW (
M2

Z′−M2
Z

)σ3
f − ǫ Qf

)
,

gRf ij
= gzV

R
fii′ z

R
fi′

(
VR

f

)†
i′j

− e

cW
ǫ Qf , (2)

where gz is the new gauge coupling, Qf is the electric charge of

f , e is the electromagnetic gauge coupling, sW and cW are the
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Table 1: Examples of generation- indepen-
dent U(1)′ charges for quarks and leptons.
The parameter x is an arbitrary rational num-
ber. Anomaly cancellation requires certain new
fermions [5].

fermion U(1)B−xL U(1)10+x5̄ U(1)d−xu U(1)q+xu

(uL, dL) 1/3 1/3 0 1/3

uR 1/3 −1/3 −x/3 x/3

dR 1/3 −x/3 1/3 (2 − x)/3

(νL, eL) −x x/3 (−1 + x)/3 −1

eR −x −1/3 x/3 −(2 + x)/3

sine and cosine of the weak mixing angle, σ3
f = +1 for f = u, ν

and σ3
f = −1 for f = d, e, and

ǫ =
χ

(
M2

Z′ − c2
WM2

Z

)
+ sW δM2

M2
Z′ − M2

Z

. (3)

The interaction of the Z ′ boson with a pair of W bosons

has the form
(
i(W−

µ Z ′
ν−W−

ν Z ′
µ)∂µW+ν+ H.c.

)
+ i

(
W+

µ W−
ν −W+

ν W−
µ

)
∂µZ ′ν

(4)

with a coefficient of order M2
W/M2

Z′ [4]. The Z ′ also couples

to one SM Higgs boson and one Z boson, Z ′
µZµ h0, with a

coefficient of order MZ .

U(1) gauge groups. A simple origin of a Z ′ boson is a new

U(1)′ gauge symmetry. In that case, the matricial equalities

zLu = zLd and zLν = zLe are required by the SM SU(2)W gauge

symmetry. Given that the U(1)′ interaction is not asymptot-

ically free, the theory may be well-behaved at high energies

(e.g., by embedding U(1)′ in a non-Abelian gauge group) only

if the charges are commensurate numbers, i.e. any ratio of

charges is a rational number. Satisfying the anomaly cancella-

tion conditions (which include an equation cubic in charges)

with rational numbers is highly nontrivial and in general new

fermions charged under U(1)′ are necessary.

Consider first generation-independent couplings (the Vf

matrices then disappear from Eq. (2)) and neglect the Z̃ − Z̃ ′

mixing, so that there are five commensurate couplings: gLq, gRu,

gRd, gLl , gRe . Four sets of charges are displayed in Table 1, each of

them spanned by a free parameter x[5]. The first set, labelled

B − xL, has charges proportional to the baryon number minus

x times the lepton number. These charges allow all SM Yukawa

couplings to a Higgs doublet which is neutral under U(1)B−xL,

so that there is no tree-level Z̃ − Z̃ ′ mixing. For x = 1 one

recovers the U(1)B−L group, which is non-anomalous in the

presence of one “right-handed neutrino” (a chiral fermion that

is a singlet under the SM gauge group) per generation. For

x 6= 1, it is necessary to include some fermions that are vector-

like (i.e. their mass terms are gauge invariant) with respect

to the electroweak gauge group and chiral with respect to

U(1)B−xL. In the particular cases x = 0 or x ≫ 1, the Z ′ is

leptophobic or quark-phobic, respectively.

The second set, U(1)10+x5̄, has charges that commute

with the representations of the SU(5) grand unified group.

Here x is related to the mixing angle between the two U(1)

bosons encountered in the E6→SU(5)×U(1)×U(1) symmetry

breaking patterns of grand unified theories [1,6]. This set leads

to Z̃−Z̃ ′ mass mixing at tree level, such that for a Z ′ mass close

to the electroweak scale, the measurements at the Z-pole require

some fine tuning between the charges and VEVs of the two Higgs

doublets. Vector-like fermions charged under the electroweak

gauge group and also carrying color are required (except for

x = −3) to make this set anomaly free. The particular cases

x = −3, 1,−1/2 are usually labelled U(1)χ, U(1)ψ, and U(1)η,

respectively. Under the third set, U(1)d−xu, the weak-doublet

quarks are neutral, and the ratio of uR and dR charges is −x.

For x = 1 this is the “right-handed” group U(1)R. For x = 0,

the charges are those of the E6-inspired U(1)I group, which

requires new quarks and leptons. Other generation-independent

sets of U(1)′ charges are given in [7].

In the absence of new fermions charged under the SM

group, the most general generation-independent charge assign-

ment is U(1)q+xu, which is a linear combination of hyper-

charge and B − L. Many other anomaly-free solutions exist

if generation-dependent charges are allowed. An example is

B − xLe − yLµ + (y − 3)Lτ , with x, y free parameters. This

allows all fermion masses to be generated by Yukawa cou-

plings to a single Higgs doublet, without inducing tree-level

flavor-changing neutral current (FCNC) processes. There are

also lepton-flavor dependent charges that allow neutrino masses

to arise only from operators of high dimensionality [8].

If the SU(2)W -doublet quarks have generation-dependent

U(1)′ charges, then the mass eigenstate quarks have flavor off-

diagonal couplings to the Z ′ boson (see Eq. (1), and note that

VL
u

(
VL

d

)†
is the CKM matrix). These are severely constrained

by measurements of FCNC processes, which in this case are

mediated at tree-level by Z ′ boson exchange [9]. The constraints

are relaxed if the first and second generation charges are

the same, although they are increasingly tightened by the

measurements of B meson properties [10]. If only the SU(2)W -

singlet quarks have generation-dependent U(1)′ charges, there

is more freedom in adjusting the flavor off-diagonal couplings

because the V R
u,d matrices are not observable in the SM.

The anomaly cancellation conditions for U(1)′ could be

relaxed only if there is an axion with certain dimension-5

couplings to the gauge bosons. However, such a scenario violates

unitarity unless the quantum field theory description breaks

down at a scale near MZ′ [11].

Other models. Z ′ bosons may also arise from larger gauge

groups. These may extend the electroweak group, as in SU(2)×
SU(2) × U(1), or may embed the electroweak group, as in

SU(3)W×U(1) [12]. If the larger group is spontaneously broken

down to SU(2)W × U(1)Y × U(1)′ at a scale v⋆ ≫ MZ′/gz,

then the above discussion applies up to corrections of order

M2
Z′/(gzv⋆)

2. For v⋆ ∼ MZ′/gz, additional gauge bosons have
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masses comparable to MZ′ , including at least a W ′ boson [12].

If the larger gauge group breaks together with the electroweak

symmetry directly to the electromagnetic U(1)em, then the

left-handed fermion charges are no longer correlated (zLu 6= zLd,
zLν 6= zLe) and a Z ′W+W− coupling is induced.

If the electroweak gauge bosons propagate in extra di-

mensions, then their Kaluza-Klein (KK) excitations include a

series of Z ′ boson pairs. Each of these pairs can be associated

with a different SU(2) × U(1) gauge group in four dimensions.

The properties of the KK particles depend strongly on the

extra-dimensional theory [13]. For example, in universal extra

dimensions there is a parity that forces all couplings of Eq. (1)

to vanish in the case of the lightest KK bosons, while allowing

couplings to pairs of fermions involving a SM and a heavy

vector-like fermion. There are also 4-dimensional gauge theo-

ries (e.g. little Higgs with T parity) with Z ′ bosons exhibiting

similar properties. By contrast, in a warped extra dimension,

the couplings of Eq. (1) may be sizable even when SM fields

propagate along the extra dimension.

Z ′ bosons may also be composite particles. For example, in

confining gauge theories [14], the ρ-like bound state is a spin-1

boson that may be interpreted as arising from a spontaneously

broken gauge symmetry [15].

Resonances versus cascade decays. In the presence of the

couplings shown in Eq. (1), the Z ′ boson may be produced in

the s-channel at colliders, and would decay to pairs of fermions.

The decay width into a pair of electrons is given by

Γ
(
Z ′ → e+e−

)
≃

[(
gLe)2

+
(
gRe)2

] MZ′

24π
, (5)

where small corrections from electroweak loops are not included.

The decay width into qq̄ is similar, except for an additional

color factor of 3, QCD radiative corrections, and fermion mass

corrections. Thus, one may compute the Z ′ branching fractions

in terms of the couplings of Eq. (1). However, other decay

channels, such as WW or a pair of new particles, could have

large widths and need to be added to the total decay width.

As mentioned above, there are theories in which the Z ′ cou-

plings are controlled by a discrete symmetry that forbids decays

into a pair of SM particles. Typically, such theories involve

several new particles, which may be produced only in pairs and

undergo cascade decays through Z ′ bosons, leading to signals

involving some missing (transverse) momentum. Given that the

cascade decays depend on the properties of new particles other

than the Z ′ boson, this case is not discussed further here.

LEP-II limits. The Z ′ contribution to the cross sections

for e+e− → f f̄ proceeds through an s-channel Z ′ exchange

(when f = e, there are also t- and u-channel exchanges). For

MZ′ <
√

s, the Z ′ appears as an f f̄ resonance in the radiative

return process where photon emission tunes the effective center-

of-mass energy to MZ′. The agreement between the LEP-II

measurements and the SM predictions implies that either the

Z ′ couplings are smaller than or of order 10−2, or else MZ′ is

 [TeV]Z’M
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 B
 [p

b]
σ

-410

-310
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-110

1
Expected limit

σ 1±Expected 

σ 2±Expected 

Observed limit

SSMZ’

χZ’

ψZ’

 PreliminaryATLAS

 ll→Z’ 

-1 = 13 TeV, 3.2 fbs

Figure 1: Upper limit on σ
(
pp →Z ′X→ℓ+ℓ−X

)

with ℓ = e or µ as a function of MZ′ [23], assuming
equal couplings for electrons and muons. The lines
labelled by Z ′

ψ and Z ′
χ are theoretical predictions for

the U(1)10+x5̄ models in Table 1 with x = −3 and
x = +1, respectively, for gz fixed by an E6 unification
condition. The Z ′

SSM line corresponds to Z ′ couplings
equal to those of the Z boson.

above 209 GeV, the maximum energy of LEP-II. In the latter

case, the Z ′ effects may be approximated up to corrections of

order s/M2
Z′ by the contact interactions

g2
z

M2
Z′ − s

[
ēγµ

(
zLePL + zRePR

)
e
] [

f̄γµ
(
zLfPL + zRfPR

)
f
]
, (6)

where PL,R are chirality projection operators, and the rela-

tion between Z ′ couplings and charges (see Eq. (2) in the

limit where the mass and kinetic mixings are neglected) is

used, assuming generation-independent charges. The four LEP

collaborations have set limits on the coefficients of such op-

erators for all possible chiral structures and for various com-

binations of fermions [16] . Thus, one may derive bounds on

(MZ′/gz)|zLezLf |−1/2 and the analogous combinations of LR, RL

and RR charges, which are typically on the order of a few TeV.

LEP-II limits were derived [5] on the four sets of charges shown

in Table 1.

Somewhat stronger bounds can be set on MZ′/gz for specific

sets of Z ′ couplings if the effects of several operators from Eq. (6)

are combined. Dedicated analyses by the LEP collaborations

have set limits on Z ′ bosons for particular values of the gauge

coupling (see section 3.5 of [16]).

Searches at hadron colliders. Z ′ bosons with couplings to

quarks (see Eq. (1)) may be produced at hadron colliders in

the s-channel and would show up as resonances in the invariant

mass distribution of the decay products. The cross section for
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producing a Z ′ boson at the LHC, which then decays to some

f f̄ final state, takes the form

σ
(
pp → Z ′X → f f̄X

)
≃ π

48 s

∑

q

cf
q wq

(
s, M2

Z′

)
(7)

for flavor-diagonal couplings to quarks. Here, we have ne-

glected the interference with the SM contribution to f f̄ produc-

tion, which is a good approximation for a narrow Z ′ resonance

(deviations from the narrow width approximation are discussed

in [17]). The coefficients

cf
q =

[(
gLq)2

+
(
gRq)2

]
B(Z ′ → f f̄) (8)

contain all the dependence on the Z ′ couplings, while

the functions wq include all the information about parton

distributions and QCD corrections [5,7]. This factorization holds

exactly to NLO and the deviations from it induced at NNLO are

very small. Note that the wu and wd functions are substantially

larger than the wq functions for the other quarks. Eq. (7) also

applies to the Tevatron, except for changing the pp initial state

to pp̄, which implies that the wq(s, M
2
Z′) functions are replaced

by some other functions w̄q((1.96 TeV)2, M2
Z′).
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Figure 2: Upper limits in the cℓ
u–cℓ

d plane
(ℓ = e or µ), set by CMS [25], are shown as thin
lines for certain MZ′ values. For specific sets
of charges (labelled by E6, GSM and LR, and
described in [7]) parametrized by a mixing angle,
the lower mass limit is given by the intersection
of thick and thin lines. The black dots with
smaller labels represent particular models.

It is common to present results of Z ′ searches as limits

on the cross section versus MZ′ (see for example Fig. 1). An

alternative is to plot exclusion curves for fixed MZ′ values in

the cf
u − cf

d planes, allowing a simple derivation of the mass

limit within any Z ′ model. The CMS upper limits in the cℓ
u − cℓ

d

plane (ℓ = e or µ) for different MZ′ are shown in Fig. 2 (for

Tevatron limits, see [18,7]).

The discovery of a dilepton resonance at the LHC would

determine the Z ′ mass and width. A measurement of the total

cross section would define a band in the cℓ
u − cℓ

d plane. Angular

distributions can be used to measure several combinations

of Z ′ parameters (an example of how angular distributions

improve the Tevatron sensitivity is given in [19]). Even though

the original quark direction in a pp collider is unknown, the

leptonic forward-backward asymmetry Aℓ
FB can be extracted

from the kinematics of the dilepton system, and is sensitive to

parity-violating couplings. A fit to the Z ′ rapidity distribution

can distinguish between the couplings to up and down quarks.

These measurements, combined with off-peak observables, have

the potential to differentiate among various Z ′ models [20].

With 100 fb−1 of data at
√

s = 14 TeV, the spin of the Z ′

boson may be determined for MZ′ ≤ 3 TeV [21], and the

expected sensitivity extends to MZ′ ∼ 4 − 5 TeV for many

models [22].

Searches for Z ′ decays to e+e− and µ+µ− by the ATLAS

and CMS collaborations set 95% C.L. lower limits on the Z ′

mass in the range between 2.8 and 3.4 TeV, depending on the

specific model [23,24]. Lower mass limits for the flavor-violating

leptonic final states have also been reported by ATLAS and

CMS [26]; the limits obtained at 13 TeV in the e±µ∓ channel

are similar to those in the lepton-conserving channels above. In

the case of final states with taus, lower limits obtained at 8 TeV

are ≈ 2.0 TeV for the τ+τ− [27] decay and ≈ 2.2 TeV for the

flavor-violating decays e±τ∓ and µ±τ∓.

Final states with higher background, tt̄, bb̄ and jj, are also

important as they probe various combinations of Z ′ couplings

to quarks. In the tt̄ channel, the 8 TeV data [28] sets lower

mass limits in the 2–2.5 TeV range in a model where Z ′ couples

only to the quarks of the first and third generations [29] . In

the jj channel, the 13 TeV data [30] has been used to set

limits on the production cross section of Z ′ bosons of masses

larger than 1.5 TeV, where the trigger efficiency has reached its

asymptotic value. For a comparison of earlier dijet resonance

searches, see [31]. In the bb̄ channel [32], the b tagging leads to

a reduction in both the background and the signal, so it may

prove useful only if the Z ′ → bb̄ branching fraction is large.

Z ′ decays to Zh0 with Z → ℓ+ℓ− or νν̄ and h0 → bb̄ have

been studied by ATLAS [33] using 13 TeV data. The lower mass

limit obtained in the context of the Heavy Vector Triplet model

weakly-coupled scenario A [34] is 1.48 TeV. The Zh0 channel

with the Z decaying hadronically and the Higgs boson decaying

either hadronically or into τ+τ− has been studied by CMS [35]

using 8 TeV data.
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The pp →Z ′X →W+W−X process has also been searched

for at the LHC. The channel where the Z ′ boson is produced

through its couplings to quarks, and the W bosons decay

hadronically, has been explored using boosted techniques to

analyze the 13 TeV data [36] . The Z ′ boson may also be

produced through its couplings to W bosons [37].

At the Tevatron, the CDF and DØ collaborations have

searched for Z ′ bosons in the e+e− [38], µ+µ− [39], e±µ∓ [40],

τ+τ− [41], tt̄ [42], jj [43] and W+W− [44] final states. Although

these limits have been often superseded by the LHC results, the

Tevatron limits on certain Z ′ couplings (most notably, those

arising from jj resonance searches [31]) remain competitive for

MZ′ below about 0.5 TeV.

Table 2: Lower mass limits (in GeV) at 95%
C.L. on various Z ′ bosons. The electroweak re-
sults [3] from low energy and W and Z boson
data are for Higgs sectors consisting of dou-
blets and singlets only (ρ0 = 1). The gauge cou-
pling is fixed by an SO(10) unification condition
for U(1)χ, U(1)ψ and U(1)η. The secluded ZS

emerges in a supersymmetric model [46], and
ZSSM is the sequential Z ′ (same coupling as the
SM Z boson). The last three columns show the
limits from dilepton resonance searches at the
LHC [23,24] and the Tevatron [39,38], and from
e+e− → f f̄ measurements at LEP-II [16].

Z ′ electroweak ATLAS/CMS CDF/DØ LEP-II

Zχ 1141 3080 930 785

Zψ 147 2790 917 500

Zη 427 2850 938 500

ZS 1257 3030 858 −
ZSSM 1403 3400 1071 1760

Low-energy constraints. Z ′ boson properties are also con-

strained by a variety of low-energy experiments [45]. Polarized

electron-nucleon scattering and atomic parity violation are sen-

sitive to electron-quark contact interactions, which get contri-

butions from Z ′ exchange that can be expressed in terms of the

couplings introduced in Eq. (1) and M ′
Z . Further corrections

to the electron-quark contact interactions are induced in the

presence of Z̃ − Z̃ ′ mixing because of the shifts in the Z cou-

plings to quarks and leptons [2]. Deep-inelastic neutrino-nucleon

scattering is similarly affected by Z ′ bosons. Other low-energy

observables are discussed in [3] . In some models, the lower

limits on MZ′ set by low energy data are above 1 TeV, as

shown in Table 2 (for more general models, see [1,5,47]). The

mass bounds from direct searches at the LHC [23,24] exceed

the electroweak constraints by a factor of two or more for the

models considered there. While the electroweak constraints can

be slightly improved by fixing the Higgs mass to the value

measured at the LHC, and the collider bounds are moderately

weakened if there are open exotic decay channels [48], this

conclusion will not change.

Although the LHC data are most constraining for many Z ′

models, one should be careful in assessing the relative reach

of various experiments given the freedom in Z ′ couplings. For

example, a Z ′ coupled to B − yLµ + (y − 3)Lτ has implications

for the muon g− 2, neutrino oscillations or τ decays, and would

be hard to see in processes involving first-generation fermions.

Moreover, the combination of LHC searches and low-energy

measurements could allow a precise determination of the Z ′

parameters [49].
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tor Boson Other Than Z )MASS LIMITS for Z ′ (Heavy Neutral Ve
tor Boson Other Than Z )MASS LIMITS for Z ′ (Heavy Neutral Ve
tor Boson Other Than Z )MASS LIMITS for Z ′ (Heavy Neutral Ve
tor Boson Other Than Z )Limits for Z ′SMLimits for Z ′SMLimits for Z ′SMLimits for Z ′SMZ ′SM is assumed to have 
ouplings with quarks and leptons whi
h are identi
al tothose of Z , and de
ays only to known fermions. The most re
ent preliminary results
an be found in the \Z ′-boson sear
hes" review above.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>2020 95 1 AAD 15AMATLS pp; Z ′SM → τ+ τ−

>2900>2900>2900>2900 95 2 KHACHATRY...15AE CMS pp; Z ′SM → e+ e−, µ+µ−none 1200{1700 95 3 KHACHATRY...15V CMS pp; Z ′SM → qq
>2900>2900>2900>2900 95 4 AAD 14V ATLS pp; Z ′SM → e+ e−, µ+µ−

>1470 95 5 CHATRCHYAN13A CMS pp; Z ′
SM

→ qq
>1400 95 6 CHATRCHYAN12O CMS pp; Z ′

SM
→ τ+ τ−

>1500>1500>1500>1500 95 7 CHEUNG 01B RVUE Ele
troweak

• • • We do not use the following data for averages, �ts, limits, et
. • • •
>1400 95 8 AAD 13S ATLS pp; Z ′SM → τ+ τ−

>2590 95 9 CHATRCHYAN13AF CMS pp; Z ′
SM

→ e+ e−, µ+µ−

>2220 95 10 AAD 12CC ATLS pp; Z ′
SM

→ e+ e−, µ+µ−

>1071 95 11 AALTONEN 11I CDF pp; Z ′
SM

→ µ+µ−

>1023 95 12 ABAZOV 11A D0 pp, Z ′SM → e+ e−none 247{544 95 13 AALTONEN 10N CDF Z ′ → WWnone 320{740 95 14 AALTONEN 09AC CDF Z ′ → qq
> 963 95 12 AALTONEN 09T CDF pp, Z ′SM → e+ e−
>1403 95 15 ERLER 09 RVUE Ele
troweak
>1305 95 16 ABDALLAH 06C DLPH e+ e−
> 399 95 17 ACOSTA 05R CDF p p: Z ′

SM
→ τ+ τ−none 400{640 95 ABAZOV 04C D0 pp: Z ′SM → qq

>1018 95 18 ABBIENDI 04G OPAL e+ e−
> 670 95 19 ABAZOV 01B D0 pp, Z ′SM→ e+ e−
> 710 95 20 ABREU 00S DLPH e+ e−
> 898 95 21 BARATE 00I ALEP e+ e−
> 809 95 22 ERLER 99 RVUE Ele
troweak
> 690 95 23 ABE 97S CDF pp; Z ′SM → e+ e−, µ+µ−

> 398 95 24 VILAIN 94B CHM2 νµ e → νµ e and νµ e → νµ e
> 237 90 25 ALITTI 93 UA2 pp; Z ′SM → qqnone 260{600 95 26 RIZZO 93 RVUE pp; Z ′SM → qq
> 426 90 27 ABE 90F VNS e+ e−1AAD 15AM sear
h for resonan
es de
aying to τ+ τ− in pp 
ollisions at √s = 8 TeV.2KHACHATRYAN 15AE sear
h for resonan
es de
aying to e+ e−, µ+µ− in pp 
ollisionsat √s = 8 TeV.3KHACHATRYAN 15V sear
h for resonan
es de
aying to dijets in pp 
ollisions at √s =8 TeV.4AAD 14V sear
h for resonan
es de
aying to e+ e−, µ+µ− in pp 
ollisions at √

s = 8TeV.5CHATRCHYAN 13A use pp 
ollisions at √s=7 TeV.6CHATRCHYAN 12O sear
h for resonan
es de
aying to τ+ τ− in pp 
ollisions at √s =7 TeV.7CHEUNG 01B limit is derived from bounds on 
onta
t intera
tions in a global ele
troweakanalysis.8AAD 13S sear
h for resonan
es de
aying to τ+ τ− in pp 
ollisions at √s = 7 TeV.9CHATRCHYAN 13AF sear
h for resonan
es de
aying to e+ e−, µ+µ− in pp 
ollisionsat √s = 7 TeV and 8 TeV.10AAD 12CC sear
h for resonan
es de
aying to e+ e−, µ+µ− in pp 
ollisions at √s = 7TeV.11AALTONEN 11I sear
h for resonan
es de
aying to µ+µ− in pp 
ollisions at √s = 1.96TeV.12ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L sear
h forresonan
es de
aying to e+ e− in pp 
ollisions at √s = 1.96 TeV.13The quoted limit assumes gW W Z ′/gW W Z = (MW /MZ ′)2. See their Fig. 4 for limitsin mass-
oupling plane.14AALTONEN 09AC sear
h for new parti
le de
aying to dijets.15ERLER 09 give 95% CL limit on the Z -Z ′ mixing −0.0026 < θ < 0.0006.16ABDALLAH 06C use data √
s = 130{207 GeV.17ACOSTA 05R sear
h for resonan
es de
aying to tau lepton pairs in pp 
ollisions at √

s= 1.96 TeV.18ABBIENDI 04G give 95% CL limit on Z -Z ′ mixing −0.00422 < θ <0.00091. √
s = 91to 207 GeV.19ABAZOV 01B sear
h for resonan
es in pp → e+ e− at √s=1.8 TeV. They �nd σ ·B(Z ′ → e e)< 0.06 pb for MZ ′ > 500 GeV.20ABREU 00S uses LEP data at √s=90 to 189 GeV.21BARATE 00I sear
h for deviations in 
ross se
tion and asymmetries in e+ e− → fermionsat √s=90 to 183 GeV. Assume θ=0. Bounds in the mass-mixing plane are shown intheir Figure 18.22ERLER 99 give 90%CL limit on the Z -Z ′ mixing −0.0041 < θ < 0.0003. ρ0=1 isassumed.23ABE 97S �nd σ(Z ′)×B(e+ e−,µ+µ−)< 40 fb for mZ ′ > 600 GeV at √s= 1.8 TeV.24VILAIN 94B assume mt = 150 GeV.25ALITTI 93 sear
h for resonan
es in the two-jet invariant mass. The limit assumes B(Z ′ →qq)=0.7. See their Fig. 5 for limits in the mZ ′−B(qq) plane.26RIZZO 93 analyses CDF limit on possible two-jet resonan
es.27ABE 90F use data for R, Rℓℓ, and Aℓℓ. They �x mW = 80.49 ± 0.43 ± 0.24 GeV andmZ = 91.13 ± 0.03 GeV.Limits for ZLRLimits for ZLRLimits for ZLRLimits for ZLRZLR is the extra neutral boson in left-right symmetri
 models. gL = gR is assumedunless noted. Values in parentheses assume stronger 
onstraint on the Higgs se
tor,usually motivated by spe
i�
 left-right symmetri
 models (see the Note on the W ′).Values in bra
kets are from 
osmologi
al and astrophysi
al 
onsiderations and assumea light right-handed neutrino. Dire
t sear
h bounds assume de
ays to Standard Modelfermions only, unless noted.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>1162>1162>1162>1162 95 1 DEL-AGUILA 10 RVUE Ele
troweak
> 630> 630> 630> 630 95 2 ABE 97S CDF pp; Z ′LR → e+ e−, µ+µ−
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• • • We do not use the following data for averages, �ts, limits, et
. • • •
> 998 95 3 ERLER 09 RVUE Ele
troweak
> 600 95 SCHAEL 07A ALEP e+ e−
> 455 95 4 ABDALLAH 06C DLPH e+ e−
> 518 95 5 ABBIENDI 04G OPAL e+ e−
> 860 95 6 CHEUNG 01B RVUE Ele
troweak
> 380 95 7 ABREU 00S DLPH e+ e−
> 436 95 8 BARATE 00I ALEP Repl. by SCHAEL 07A
> 550 95 9 CHAY 00 RVUE Ele
troweak10 ERLER 00 RVUE Cs11 CASALBUONI 99 RVUE Cs(> 1205) 90 12 CZAKON 99 RVUE Ele
troweak
> 564 95 13 ERLER 99 RVUE Ele
troweak(> 1673) 95 14 ERLER 99 RVUE Ele
troweak(> 1700) 68 15 BARENBOIM 98 RVUE Ele
troweak
> 244 95 16 CONRAD 98 RVUE νµN s
attering
> 253 95 17 VILAIN 94B CHM2 νµ e → νµ e and νµ e → νµ enone 200{600 95 18 RIZZO 93 RVUE pp; ZLR→ qq[> 2000℄ WALKER 91 COSM Nu
leosynthesis; light νRnone 200{500 19 GRIFOLS 90 ASTR SN 1987A; light νRnone 350{2400 20 BARBIERI 89B ASTR SN 1987A; light νR1DEL-AGUILA 10 give 95% CL limit on the Z -Z ′ mixing −0.0012 < θ < 0.0004.2ABE 97S �nd σ(Z ′)×B(e+ e−,µ+µ−)< 40 fb for mZ ′ > 600 GeV at √s= 1.8 TeV.3ERLER 09 give 95% CL limit on the Z -Z ′ mixing −0.0013 < θ < 0.0006.4ABDALLAH 06C give 95% CL limit ∣∣θ

∣∣ < 0.0028. See their Fig. 14 for limit 
ontours inthe mass-mixing plane.5ABBIENDI 04G give 95% CL limit on Z -Z ′ mixing −0.00098 < θ < 0.00190. See theirFig. 20 for the limit 
ontour in the mass-mixing plane. √
s = 91 to 207 GeV.6CHEUNG 01B limit is derived from bounds on 
onta
t intera
tions in a global ele
troweakanalysis.7ABREU 00S give 95% CL limit on Z -Z ′ mixing ∣∣θ

∣∣ < 0.0018. See their Fig. 6 for thelimit 
ontour in the mass-mixing plane. √s=90 to 189 GeV.8BARATE 00I sear
h for deviations in 
ross se
tion and asymmetries in e+ e− → fermionsat √s=90 to 183 GeV. Assume θ=0. Bounds in the mass-mixing plane are shown intheir Figure 18.9CHAY 00 also �nd −0.0003 < θ < 0.0019. For gR free, mZ ′ > 430 GeV.10ERLER 00 dis
uss the possibility that a dis
repan
y between the observed and predi
tedvalues of QW (Cs) is due to the ex
hange of Z ′. The data are better des
ribed in a
ertain 
lass of the Z ′ models in
luding ZLR and Zχ.11CASALBUONI 99 dis
uss the dis
repan
y between the observed and predi
ted values ofQW (Cs). It is shown that the data are better des
ribed in a 
lass of models in
ludingthe ZLR model.12CZAKON 99 perform a simultaneous �t to 
harged and neutral se
tors. Assumes manifestleft-right symmetri
 model. Finds ∣∣θ
∣∣ < 0.0042.13ERLER 99 give 90% CL limit on the Z -Z ′ mixing −0.0009 < θ < 0.0017.14ERLER 99 assumes 2 Higgs doublets, transforming as 10 of SO(10), embedded in E6.15BARENBOIM 98 also gives 68% CL limits on the Z -Z ′ mixing −0.0005 < θ < 0.0033.Assumes Higgs se
tor of minimal left-right model.16CONRAD 98 limit is from measurements at CCFR, assuming no Z -Z ′ mixing.17VILAIN 94B assume mt = 150 GeV and θ=0. See Fig. 2 for limit 
ontours in themass-mixing plane.18RIZZO 93 analyses CDF limit on possible two-jet resonan
es.19GRIFOLS 90 limit holds for mνR . 1 MeV. A spe
i�
 Higgs se
tor is assumed. Seealso GRIFOLS 90D, RIZZO 91.20BARBIERI 89B limit holds for mνR ≤ 10 MeV. Bounds depend on assumed supernova
ore temperature.Limits for ZχLimits for ZχLimits for ZχLimits for ZχZχ is the extra neutral boson in SO(10) → SU(5) × U(1)χ. gχ = e/
osθW isassumed unless otherwise stated. We list limits with the assumption ρ= 1 but withno further 
onstraints on the Higgs se
tor. Values in parentheses assume stronger
onstraint on the Higgs se
tor motivated by superstring models. Values in bra
ketsare from 
osmologi
al and astrophysi
al 
onsiderations and assume a light right-handedneutrino.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>2620>2620>2620>2620 95 1 AAD 14V ATLS pp, Z ′χ → e+ e−, µ+µ−

>1141>1141>1141>1141 95 2 ERLER 09 RVUE Ele
troweak
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>1970 95 3 AAD 12CC ATLS pp, Z ′

χ
→ e+ e−, µ+µ−

> 930 95 4 AALTONEN 11I CDF pp; Z ′
χ

→ µ+µ−

> 903 95 5 ABAZOV 11A D0 pp, Z ′χ → e+ e−
>1022 95 6 DEL-AGUILA 10 RVUE Ele
troweak
> 862 95 5 AALTONEN 09T CDF pp, Z ′χ → e+ e−
> 892 95 7 AALTONEN 09V CDF Repl. by AALTONEN 11I
> 822 95 5 AALTONEN 07H CDF Repl. by AALTONEN 09T
> 680 95 SCHAEL 07A ALEP e+ e−
> 545 95 8 ABDALLAH 06C DLPH e+ e−
> 740 5 ABULENCIA 06L CDF Repl. by AALTONEN 07H
> 690 95 9 ABULENCIA 05A CDF pp; Z ′χ → e+ e−, µ+µ−

> 781 95 10 ABBIENDI 04G OPAL e+ e−
>2100 11 BARGER 03B COSM Nu
leosynthesis; light νR
> 680 95 12 CHEUNG 01B RVUE Ele
troweak
> 440 95 13 ABREU 00S DLPH e+ e−

> 533 95 14 BARATE 00I ALEP Repl. by SCHAEL 07A
> 554 95 15 CHO 00 RVUE Ele
troweak16 ERLER 00 RVUE Cs17 ROSNER 00 RVUE Cs
> 545 95 18 ERLER 99 RVUE Ele
troweak(> 1368) 95 19 ERLER 99 RVUE Ele
troweak
> 215 95 20 CONRAD 98 RVUE νµN s
attering
> 595 95 21 ABE 97S CDF pp; Z ′χ → e+ e−, µ+µ−

> 190 95 22 ARIMA 97 VNS Bhabha s
attering
> 262 95 23 VILAIN 94B CHM2 νµ e → νµ e; νµ e → νµ e[>1470℄ 24 FARAGGI 91 COSM Nu
leosynthesis; light νR
> 231 90 25 ABE 90F VNS e+ e−[> 1140℄ 26 GONZALEZ-G...90D COSM Nu
leosynthesis; light νR[> 2100℄ 27 GRIFOLS 90 ASTR SN 1987A; light νR1AAD 14V sear
h for resonan
es de
aying to e+ e−, µ+µ− in pp 
ollisions at √

s = 8TeV.2ERLER 09 give 95% CL limit on the Z -Z ′ mixing −0.0016 < θ < 0.0006.3AAD 12CC sear
h for resonan
es de
aying to e+ e−, µ+µ− in pp 
ollisions at √s = 7TeV.4AALTONEN 11I sear
h for resonan
es de
aying to µ+µ− in pp 
ollisions at √s = 1.96TeV.5ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L sear
h forresonan
es de
aying to e+ e− in pp 
ollisions at √s = 1.96 TeV.6DEL-AGUILA 10 give 95% CL limit on the Z -Z ′ mixing −0.0011 < θ < 0.0007.7AALTONEN 09V sear
h for resonan
es de
aying to µ+µ− in pp 
ollisions at √
s =1.96 TeV.8ABDALLAH 06C give 95% CL limit ∣∣θ

∣∣ < 0.0031. See their Fig. 14 for limit 
ontours inthe mass-mixing plane.9ABULENCIA 05A sear
h for resonan
es de
aying to ele
tron or muon pairs in pp 
ollisionsat √s = 1.96 TeV.10ABBIENDI 04G give 95% CL limit on Z -Z ′ mixing −0.00099 < θ < 0.00194. See theirFig. 20 for the limit 
ontour in the mass-mixing plane. √
s = 91 to 207 GeV.11BARGER 03B limit is from the nu
leosynthesis bound on the e�e
tive number of lightneutrino δNν <1. The quark-hadron transition temperature T
=150 MeV is assumed.The limit with T
=400 MeV is >4300 GeV.12CHEUNG 01B limit is derived from bounds on 
onta
t intera
tions in a global ele
troweakanalysis.13ABREU 00S give 95% CL limit on Z -Z ′ mixing ∣∣θ

∣∣ < 0.0017. See their Fig. 6 for thelimit 
ontour in the mass-mixing plane. √s=90 to 189 GeV.14BARATE 00I sear
h for deviations in 
ross se
tion and asymmetries in e+ e− → fermionsat √s=90 to 183 GeV. Assume θ=0. Bounds in the mass-mixing plane are shown intheir Figure 18.15CHO 00 use various ele
troweak data to 
onstrain Z ′ models assuming mH=100 GeV.See Fig. 3 for limits in the mass-mixing plane.16ERLER 00 dis
uss the possibility that a dis
repan
y between the observed and predi
tedvalues of QW (Cs) is due to the ex
hange of Z ′. The data are better des
ribed in a
ertain 
lass of the Z ′ models in
luding ZLR and Zχ.17ROSNER 00 dis
usses the possibility that a dis
repan
y between the observed and pre-di
ted values of QW (Cs) is due to the ex
hange of Z ′. The data are better des
ribedin a 
ertain 
lass of the Z ′ models in
luding Zχ.18 ERLER 99 give 90% CL limit on the Z -Z ′ mixing −0.0020 < θ < 0.0015.19ERLER 99 assumes 2 Higgs doublets, transforming as 10 of SO(10), embedded in E6.20CONRAD 98 limit is from measurements at CCFR, assuming no Z -Z ′ mixing.21ABE 97S �nd σ(Z ′)×B(e+ e−,µ+µ−)< 40 fb for mZ ′ > 600 GeV at √s= 1.8 TeV.22Z -Z ′ mixing is assumed to be zero. √s= 57.77 GeV.23VILAIN 94B assume mt = 150 GeV and θ=0. See Fig. 2 for limit 
ontours in themass-mixing plane.24 FARAGGI 91 limit assumes the nu
leosynthesis bound on the e�e
tive number of neu-trinos �Nν < 0.5 and is valid for mνR < 1 MeV.25ABE 90F use data for R, Rℓℓ, and Aℓℓ. ABE 90F �x mW = 80.49 ± 0.43 ± 0.24 GeVand mZ = 91.13 ± 0.03 GeV.26Assumes the nu
leosynthesis bound on the e�e
tive number of light neutrinos (δNν < 1)and that νR is light (. 1 MeV).27GRIFOLS 90 limit holds for mνR . 1 MeV. See also GRIFOLS 90D, RIZZO 91.Limits for ZψLimits for ZψLimits for ZψLimits for ZψZψ is the extra neutral boson in E6 → SO(10) × U(1)ψ . gψ = e/
osθW is assumedunless otherwise stated. We list limits with the assumption ρ= 1 but with no fur-ther 
onstraints on the Higgs se
tor. Values in bra
kets are from 
osmologi
al andastrophysi
al 
onsiderations and assume a light right-handed neutrino.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>2570>2570>2570>2570 95 1 KHACHATRY...15AE CMS pp; Z ′

ψ
→ e+ e−, µ+µ−

>2510 95 2 AAD 14V ATLS pp, Z ′ψ → e+ e−, µ+µ−

>1100 95 3 CHATRCHYAN12O CMS pp, Z ′ψ → τ+ τ−

> 476> 476> 476> 476 95 4 DEL-AGUILA 10 RVUE Ele
troweak
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>2260 95 5 CHATRCHYAN13AF CMS pp, Z ′ψ → e+ e−, µ+µ−

>1790 95 6 AAD 12CC ATLS pp, Z ′ψ → e+ e−, µ+µ−

>2000 95 7 CHATRCHYAN12M CMS Repl. by CHA-TRCHYAN 13AF
> 917 95 8 AALTONEN 11I CDF pp; Z ′ψ → µ+µ−

> 891 95 9 ABAZOV 11A D0 pp, Z ′ψ → e+ e−
> 851 95 9 AALTONEN 09T CDF pp, Z ′

ψ
→ e+ e−

> 878 95 10 AALTONEN 09V CDF Repl. by AALTONEN 11I
> 147 95 11 ERLER 09 RVUE Ele
troweak



677677677677See key on page 601 Gauge&HiggsBosonParti
leListingsNewHeavyBosons
> 822 95 9 AALTONEN 07H CDF Repl. by AALTONEN 09T
> 410 95 SCHAEL 07A ALEP e+ e−
> 475 95 12 ABDALLAH 06C DLPH e+ e−
> 725 9 ABULENCIA 06L CDF Repl. by AALTONEN 07H
> 675 95 13 ABULENCIA 05A CDF Repl. by AALTONEN 11Iand AALTONEN 09T
> 366 95 14 ABBIENDI 04G OPAL e+ e−
> 600 15 BARGER 03B COSM Nu
leosynthesis; light νR
> 350 95 16 ABREU 00S DLPH e+ e−
> 294 95 17 BARATE 00I ALEP Repl. by SCHAEL 07A
> 137 95 18 CHO 00 RVUE Ele
troweak
> 146 95 19 ERLER 99 RVUE Ele
troweak
> 54 95 20 CONRAD 98 RVUE νµN s
attering
> 590 95 21 ABE 97S CDF pp; Z ′ψ → e+ e−, µ+µ−

> 135 95 22 VILAIN 94B CHM2 νµ e → νµ e; νµ e → νµ e
> 105 90 23 ABE 90F VNS e+ e−[> 160℄ 24 GONZALEZ-G...90D COSM Nu
leosynthesis; light νR[> 2000℄ 25 GRIFOLS 90D ASTR SN 1987A; light νR1KHACHATRYAN 15AE sear
h for resonan
es de
aying to e+ e−, µ+µ− in pp 
ollisionsat √s = 8 TeV.2AAD 14V sear
h for resonan
es de
aying to e+ e−, µ+µ− in pp 
ollisions at √

s = 8TeV.3CHATRCHYAN 12O sear
h for resonan
es de
aying to τ+ τ− in pp 
ollisions at √s =7 TeV.4DEL-AGUILA 10 give 95% CL limit on the Z -Z ′ mixing −0.0019 < θ < 0.0007.5CHATRCHYAN 13AF sear
h for resonan
es de
aying to e+ e−, µ+µ− in pp 
ollisionsat √s = 7 TeV and 8 TeV.6AAD 12CC sear
h for resonan
es de
aying to e+ e−, µ+µ− in pp 
ollisions at √s = 7TeV.7CHATRCHYAN 12M sear
h for resonan
es de
aying to e+ e− or µ+µ− in pp 
ollisionsat √s = 7 TeV.8AALTONEN 11I sear
h for resonan
es de
aying to µ+µ− in pp 
ollisions at √s = 1.96TeV.9ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L sear
h forresonan
es de
aying to e+ e− in pp 
ollisions at √s = 1.96 TeV.10AALTONEN 09V sear
h for resonan
es de
aying to µ+µ− in pp 
ollisions at √
s =1.96 TeV.11ERLER 09 give 95% CL limit on the Z -Z ′ mixing −0.0018 < θ < 0.0009.12ABDALLAH 06C give 95% CL limit ∣∣θ

∣∣ < 0.0027. See their Fig. 14 for limit 
ontours inthe mass-mixing plane.13ABULENCIA 05A sear
h for resonan
es de
aying to ele
tron or muon pairs in pp 
ollisionsat √s = 1.96 TeV.14ABBIENDI 04G give 95% CL limit on Z -Z ′ mixing −0.00129 < θ < 0.00258. See theirFig. 20 for the limit 
ontour in the mass-mixing plane. √
s = 91 to 207 GeV.15BARGER 03B limit is from the nu
leosynthesis bound on the e�e
tive number of lightneutrino δNν <1. The quark-hadron transition temperature T
=150 MeV is assumed.The limit with T
=400 MeV is >1100 GeV.16ABREU 00S give 95% CL limit on Z -Z ′ mixing ∣∣θ

∣∣ < 0.0018. See their Fig. 6 for thelimit 
ontour in the mass-mixing plane. √s=90 to 189 GeV.17BARATE 00I sear
h for deviations in 
ross se
tion and asymmetries in e+ e− → fermionsat √s=90 to 183 GeV. Assume θ=0. Bounds in the mass-mixing plane are shown intheir Figure 18.18CHO 00 use various ele
troweak data to 
onstrain Z ′ models assuming mH=100 GeV.See Fig. 3 for limits in the mass-mixing plane.19ERLER 99 give 90% CL limit on the Z -Z ′ mixing −0.0013 < θ < 0.0024.20CONRAD 98 limit is from measurements at CCFR, assuming no Z -Z ′ mixing.21ABE 97S �nd σ(Z ′)×B(e+ e−,µ+µ−)< 40 fb for mZ ′ > 600 GeV at √s= 1.8 TeV.22VILAIN 94B assume mt = 150 GeV and θ=0. See Fig. 2 for limit 
ontours in themass-mixing plane.23ABE 90F use data for R, Rℓℓ, and Aℓℓ. ABE 90F �x mW = 80.49 ± 0.43 ± 0.24 GeVand mZ = 91.13 ± 0.03 GeV.24Assumes the nu
leosynthesis bound on the e�e
tive number of light neutrinos (δNν < 1)and that νR is light (. 1 MeV).25GRIFOLS 90D limit holds for mνR . 1 MeV. See also RIZZO 91.Limits for ZηLimits for ZηLimits for ZηLimits for ZηZη is the extra neutral boson in E6 models, 
orresponding to Qη = √3/8 Qχ −
√5/8 Qψ . gη = e/
osθW is assumed unless otherwise stated. We list limits withthe assumption ρ= 1 but with no further 
onstraints on the Higgs se
tor. Values inparentheses assume stronger 
onstraint on the Higgs se
tor motivated by superstringmodels. Values in bra
kets are from 
osmologi
al and astrophysi
al 
onsiderations andassume a light right-handed neutrino.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>1870>1870>1870>1870 95 1 AAD 12CC ATLS pp, Z ′
η
→ e+ e−, µ+µ−

> 619> 619> 619> 619 95 2 CHO 00 RVUE Ele
troweak
• • • We do not use the following data for averages, �ts, limits, et
. • • •
> 938 95 3 AALTONEN 11I CDF pp; Z ′η → µ+µ−

> 923 95 4 ABAZOV 11A D0 pp, Z ′η → e+ e−
> 488 95 5 DEL-AGUILA 10 RVUE Ele
troweak
> 877 95 4 AALTONEN 09T CDF pp, Z ′η → e+ e−
> 904 95 6 AALTONEN 09V CDF Repl. by AALTONEN 11I
> 427 95 7 ERLER 09 RVUE Ele
troweak
> 891 95 4 AALTONEN 07H CDF Repl. by AALTONEN 09T
> 350 95 SCHAEL 07A ALEP e+ e−
> 360 95 8 ABDALLAH 06C DLPH e+ e−
> 745 4 ABULENCIA 06L CDF Repl. by AALTONEN 07H
> 720 95 9 ABULENCIA 05A CDF Repl. by AALTONEN 11Iand AALTONEN 09T

> 515 95 10 ABBIENDI 04G OPAL e+ e−
>1600 11 BARGER 03B COSM Nu
leosynthesis; light νR
> 310 95 12 ABREU 00S DLPH e+ e−
> 329 95 13 BARATE 00I ALEP Repl. by SCHAEL 07A
> 365 95 14 ERLER 99 RVUE Ele
troweak
> 87 95 15 CONRAD 98 RVUE νµN s
attering
> 620 95 16 ABE 97S CDF pp; Z ′

η
→ e+ e−, µ+µ−

> 100 95 17 VILAIN 94B CHM2 νµ e → νµ e; νµ e → νµ e
> 125 90 18 ABE 90F VNS e+ e−[> 820℄ 19 GONZALEZ-G...90D COSM Nu
leosynthesis; light νR[> 3300℄ 20 GRIFOLS 90 ASTR SN 1987A; light νR[> 1040℄ 19 LOPEZ 90 COSM Nu
leosynthesis; light νR1AAD 12CC sear
h for resonan
es de
aying to e+ e−, µ+µ− in pp 
ollisions at √s = 7TeV.2CHO 00 use various ele
troweak data to 
onstrain Z ′ models assuming mH=100 GeV.See Fig. 3 for limits in the mass-mixing plane.3AALTONEN 11I sear
h for resonan
es de
aying to µ+µ− in pp 
ollisions at √s = 1.96TeV.4ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L sear
h forresonan
es de
aying to e+ e− in pp 
ollisions at √s = 1.96 TeV.5DEL-AGUILA 10 give 95% CL limit on the Z -Z ′ mixing −0.0023 < θ < 0.0027.6AALTONEN 09V sear
h for resonan
es de
aying to µ+µ− in pp 
ollisions at √

s =1.96 TeV.7ERLER 09 give 95% CL limit on the Z -Z ′ mixing −0.0047 < θ < 0.0021.8ABDALLAH 06C give 95% CL limit ∣∣θ
∣∣ < 0.0092. See their Fig. 14 for limit 
ontours inthe mass-mixing plane.9ABULENCIA 05A sear
h for resonan
es de
aying to ele
tron or muon pairs in pp 
ollisionsat √s = 1.96 TeV.10ABBIENDI 04G give 95% CL limit on Z -Z ′ mixing −0.00447 < θ <0.00331. See theirFig. 20 for the limit 
ontour in the mass-mixing plane. √

s = 91 to 207 GeV.11BARGER 03B limit is from the nu
leosynthesis bound on the e�e
tive number of lightneutrino δNν <1. The quark-hadron transition temperature T
=150 MeV is assumed.The limit with T
=400 MeV is >3300 GeV.12ABREU 00S give 95% CL limit on Z -Z ′ mixing ∣∣θ
∣∣ < 0.0024. See their Fig. 6 for thelimit 
ontour in the mass-mixing plane. √s=90 to 189 GeV.13BARATE 00I sear
h for deviations in 
ross se
tion and asymmetries in e+ e− → fermionsat √s=90 to 183 GeV. Assume θ=0. Bounds in the mass-mixing plane are shown intheir Figure 18.14ERLER 99 give 90% CL limit on the Z -Z ′ mixing −0.0062 < θ < 0.0011.15CONRAD 98 limit is from measurements at CCFR, assuming no Z -Z ′ mixing.16ABE 97S �nd σ(Z ′)×B(e+ e−,µ+µ−)< 40 fb for mZ ′ > 600 GeV at √s= 1.8 TeV.17VILAIN 94B assume mt = 150 GeV and θ=0. See Fig. 2 for limit 
ontours in themass-mixing plane.18ABE 90F use data for R, Rℓℓ, and Aℓℓ. ABE 90F �x mW = 80.49 ± 0.43 ± 0.24 GeVand mZ = 91.13 ± 0.03 GeV.19These authors 
laim that the nu
leosynthesis bound on the e�e
tive number of lightneutrinos (δNν < 1) 
onstrains Z ′ masses if νR is light (. 1 MeV).20GRIFOLS 90 limit holds for mνR . 1 MeV. See also GRIFOLS 90D, RIZZO 91.Limits for other Z ′Limits for other Z ′Limits for other Z ′Limits for other Z ′VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
>2400 95 1 KHACHATRY...16E CMS Z ′ → t t2 AAD 15AO ATLS Z ′ → t t3 AAD 15AT ATLS monotop4 AAD 15CD ATLS h → Z Z ′, Z ′Z ′; Z ′ →

ℓ+ ℓ−5 AAD 15O ATLS Z ′ → e µ, e τ , µτ6 KHACHATRY...15F CMS monotop7 KHACHATRY...15O CMS Z ′ → hZ8 AAD 14AT ATLS Z ′ → Z γ9 KHACHATRY...14A CMS Z ′ → V V10 MARTINEZ 14 RVUE Ele
troweak11 AAD 13AI ATLS Z ′ → e µ, e τ , µτnone 500{1740 95 12 AAD 13AQ ATLS Z ′ → t t
>1320 or 1000{1280 95 13 AAD 13G ATLS Z ′ → t t
> 915 95 13 AALTONEN 13A CDF Z ′ → t t
>1300 95 14 CHATRCHYAN13AP CMS Z ′ → t t
>2100 95 13 CHATRCHYAN13BMCMS Z ′ → t t15 AAD 12BV ATLS Z ′ → t t16 AAD 12K ATLS Z ′ → t t17 AALTONEN 12AR CDF Chromophili
18 AALTONEN 12N CDF Z ′ → t u
> 835 95 19 ABAZOV 12R D0 Z ′ → t t20 CHATRCHYAN12AI CMS Z ′ → t u21 CHATRCHYAN12AQ CMS Z ′ → t t
>1490 95 13 CHATRCHYAN12BL CMS Z ′ → t t22 AAD 11H ATLS Z ′ → e µ23 AAD 11Z ATLS Z ′ → e µ24 AALTONEN 11AD CDF Z ′ → t t25 AALTONEN 11AE CDF Z ′ → t t26 CHATRCHYAN11O CMS pp → t t27 AALTONEN 08D CDF Z ′ → t t
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le ListingsNew Heavy Bosons27 AALTONEN 08Y CDF Z ′ → t t27 ABAZOV 08AA D0 Z ′ → t t28 ABULENCIA 06M CDF Z ′ → e µ29 ABAZOV 04A D0 Repl. by ABAZOV 08AA30 BARGER 03B COSM Nu
leosynthesis; light νR31 CHO 00 RVUE E6-motivated32 CHO 98 RVUE E6-motivated33 ABE 97G CDF Z ′ → q q1KHACHATRYAN 16E sear
h for a leptophobi
 top-
olor Z ′ de
aying to t t using pp
ollisions at √
s = 8 TeV. The quoted limit assumes that �Z ′/mZ ′ = 0.012. AlsomZ ′ < 2.9 TeV is ex
luded for wider top
olor Z ′ with �Z ′/mZ ′ = 0.1.2AAD 15AO sear
h for narrow resonan
e de
aying to t t using pp 
ollisions at √

s = 8TeV. See Fig. 11 for limit on σB.3AAD 15AT sear
h for monotop produ
tion plus large missing ET events in pp 
ollisionsat √s = 8 TeV and give 
onstraints on a Z ′ model having Z ′ u t 
oupling. Z ′ is assumedto de
ay invisibly. See their Fig. 6 for limits on σ · B.4AAD 15CD sear
h for de
ays of Higgs bosons to 4 ℓ states via Z ′ bosons, h → Z Z ′ →4ℓ or h → Z ′Z ′ → 4ℓ. See Fig. 5 for the limit on the signal strength of the h →Z Z ′ → 4ℓ pro
ess and Fig. 16 for the limit on h → Z ′Z ′ → 4ℓ.5AAD 15O sear
h for new parti
le with lepton 
avor violating de
ay in pp 
ollisions at√
s = 8 TeV. See their Fig. 2 for limits on σB.6KHACHATRYAN 15F sear
h for monotop produ
tion plus large missing ET events inpp 
ollisions at √s = 8 TeV and give 
onstraints on a Z ′ model having Z ′ u t 
oupling.Z ′ is assumed to de
ay invisibly. See Fig. 3 for limits on σB.7KHACHATRYAN 15O sear
h for narrow Z ′ resonan
e de
aying to Z h in pp 
ollisions at√
s = 8 TeV. See their Fig. 6 for limit on σB.8AAD 14AT sear
h for a narrow neutral ve
tor boson de
aying to Z γ. See their Fig. 3bfor the ex
lusion limit in mZ ′ − σB plane.9KHACHATRYAN 14A sear
h for new resonan
e in theWW (ℓν qq) and the Z Z (ℓℓqq)
hannels using pp 
ollisions at √

s=8 TeV. See their Fig.13 for the ex
lusion limit onthe number of events in the mass-width plane.10MARTINEZ 14 use various ele
troweak data to 
onstrain the Z ′ boson in the 3-3-1models.11AAD 13AI sear
h for new parti
le with lepton 
avor violating de
ay in pp 
ollisions at√
s = 7 TeV. See their Fig. 2 for limits on σ · B.12AAD 13AQ sear
h for a leptophobi
 top-
olor Z ′ de
aying to t t . The quoted limitassumes that �Z ′/mZ ′ = 0.012.13CHATRCHYAN 13BM sear
h for top-
olor Z ′ de
aying to t t using pp 
ollisions at √s=8TeV. The quoted limit is for �Z ′/mZ ′ = 0.012.14CHATRCHYAN 13AP sear
h for top-
olor leptophobi
 Z ′ de
aying to t t using pp 
olli-sions at √s=7 TeV. The quoted limit is for �Z ′/mZ ′ = 0.012.15AAD 12BV sear
h for narrow resonan
e de
aying to t t using pp 
ollisions at √s=7 TeV.See their Fig. 7 for limit on σ · B.16AAD 12K sear
h for narrow resonan
e de
aying to t t using pp 
ollisions at √s=7 TeV.See their Fig. 5 for limit on σ · B.17AALTONEN 12AR sear
h for 
hromophili
 Z ′ in pp 
ollisions at √

s = 1.96 TeV. Seetheir Fig. 5 for limit on σ · B.18AALTONEN 12N sear
h for pp → t Z ′, Z ′ → t u events in pp 
ollisions. See their Fig.3 for the limit on σ · B.19ABAZOV 12R sear
h for top-
olor Z ′ boson de
aying ex
lusively to t t . The quoted limitis for �Z ′/mZ ′= 0.012.20CHATRCHYAN 12AI sear
h for pp → t t events and give 
onstraints on a Z ′ modelhaving Z ′ u t 
oupling. See their Fig. 4 for the limit in mass-
oupling plane.21 Sear
h for resonan
e de
aying to t t . See their Fig. 6 for limit on σ · B.22AAD 11H sear
h for new parti
le with lepton 
avor violating de
ay in pp 
ollisions at√
s = 7 TeV. See their Fig. 3 for ex
lusion plot on the produ
tion 
ross se
tion.23AAD 11Z sear
h for new parti
le with lepton 
avor violating de
ay in pp 
ollisions at √s= 7 TeV. See their Fig. 3 for limit on σ · B.24Sear
h for narrow resonan
e de
aying to t t . See their Fig. 4 for limit on σ · B.25Sear
h for narrow resonan
e de
aying to t t . See their Fig. 3 for limit on σ · B.26CHATRCHYAN 11O sear
h for same-sign top produ
tion in pp 
ollisions indu
ed by ahypotheti
al FCNC Z ′ at √s = 7 TeV. See their Fig. 3 for limit in mass-
oupling plane.27 Sear
h for narrow resonan
e de
aying to t t . See their Fig. 3 for limit on σ · B.28ABULENCIA 06M sear
h for new parti
le with lepton 
avor violating de
ay at √

s =1.96 TeV. See their Fig. 4 for an ex
lusion plot on a mass-
oupling plane.29 Sear
h for narrow resonan
e de
aying to t t . See their Fig. 2 for limit on σ · B.30BARGER 03B use the nu
leosynthesis bound on the e�e
tive number of light neutrino
δNν . See their Figs. 4{5 for limits in general E6 motivated models.31CHO 00 use various ele
troweak data to 
onstrain Z ′ models assuming mH=100 GeV.See Fig. 2 for limits in general E6-motivated models.32CHO 98 study 
onstraints on four-Fermi 
onta
t intera
tions obtained from low-energyele
troweak experiments, assuming no Z -Z ′ mixing.33 Sear
h for Z ′ de
aying to dijets at √s=1.8 TeV. For Z ′ with ele
tromagneti
 strength
oupling, no bound is obtained.Indire
t Constraints on Kaluza-Klein Gauge BosonsIndire
t Constraints on Kaluza-Klein Gauge BosonsIndire
t Constraints on Kaluza-Klein Gauge BosonsIndire
t Constraints on Kaluza-Klein Gauge BosonsBounds on a Kaluza-Klein ex
itation of the Z boson or photon in d=1 extra dimension.These bounds 
an also be interpreted as a lower bound on 1/R, the size of the extradimension. Unless otherwise stated, bounds assume all fermions live on a single braneand all gauge �elds o

upy the 4+d-dimensional bulk. See also the se
tion on \ExtraDimensions" in the \Sear
hes" Listings in this Review.VALUE (TeV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 4.7 1 MUECK 02 RVUE Ele
troweak
> 3.3 95 2 CORNET 00 RVUE e ν qq′
>5000 3 DELGADO 00 RVUE ǫK
> 2.6 95 4 DELGADO 00 RVUE Ele
troweak
> 3.3 95 5 RIZZO 00 RVUE Ele
troweak
> 2.9 95 6 MARCIANO 99 RVUE Ele
troweak
> 2.5 95 7 MASIP 99 RVUE Ele
troweak
> 1.6 90 8 NATH 99 RVUE Ele
troweak
> 3.4 95 9 STRUMIA 99 RVUE Ele
troweak1MUECK 02 limit is 2σ and is from global ele
troweak �t ignoring 
orrelations amongobservables. Higgs is assumed to be 
on�ned on the brane and its mass is �xed. For s
e-narios of bulk Higgs, of brane-SU(2)L , bulk-U(1)Y , and of bulk-SU(2)L , brane-U(1)Y ,the 
orresponding limits are > 4.6 TeV, > 4.3 TeV and > 3.0 TeV, respe
tively.2Bound is derived from limits on e ν qq′ 
onta
t intera
tion, using data from HERA andthe Tevatron.3Bound holds only if �rst two generations of quarks lives on separate branes. If quarkmixing is not 
omplex, then bound lowers to 400 TeV from �mK .4 See Figs. 1 and 2 of DELGADO 00 for several model variations. Spe
ial boundary 
on-ditions 
an be found whi
h permit KK states down to 950 GeV and that agree with themeasurement of QW (Cs). Quoted bound assumes all Higgs bosons 
on�ned to brane;pla
ing one Higgs doublet in the bulk lowers bound to 2.3 TeV.5Bound is derived from global ele
troweak analysis assuming the Higgs �eld is trapped onthe matter brane. If the Higgs propagates in the bulk, the bound in
reases to 3.8 TeV.6Bound is derived from global ele
troweak analysis but 
onsidering only presen
e of theKK W bosons.7Global ele
troweak analysis used to obtain bound independent of position of Higgs onbrane or in bulk.8Bounds from e�e
t of KK states on GF , α, MW , and MZ . Hard 
uto� at string s
aledetermined using gauge 
oupling uni�
ation. Limits for d=2,3,4 rise to 3.5, 5.7, and 7.8TeV.9Bound obtained for Higgs 
on�ned to the matter brane with mH=500 GeV. For Higgsin the bulk, the bound in
reases to 3.5 TeV.
LEPTOQUARKS

Updated September 2015 by S. Rolli (US Department of Energy)
and M. Tanabashi (Nagoya U.)

Leptoquarks are hypothetical particles carrying both baryon

number (B) and lepton number (L). The possible quantum num-

bers of leptoquark states can be restricted by assuming that

their direct interactions with the ordinary SM fermions are di-

mensionless and invariant under the standard model (SM) gauge

group. Table 1 shows the list of all possible quantum numbers

with this assumption [1]. The columns of SU(3)C , SU(2)W ,

and U(1)Y in Table 1 indicate the QCD representation, the

weak isospin representation, and the weak hypercharge, respec-

tively. The spin of a leptoquark state is taken to be 1 (vector

leptoquark) or 0 (scalar leptoquark).

Table 1: Possible leptoquarks and their quan-
tum numbers.

Spin 3B + L SU(3)c SU(2)W U(1)Y Allowed coupling

0 −2 3̄ 1 1/3 q̄c
LℓL or ūc

ReR

0 −2 3̄ 1 4/3 d̄c
ReR

0 −2 3̄ 3 1/3 q̄c
LℓL

1 −2 3̄ 2 5/6 q̄c
LγµeR or d̄c

RγµℓL

1 −2 3̄ 2 −1/6 ūc
RγµℓL

0 0 3 2 7/6 q̄LeR or ūRℓL

0 0 3 2 1/6 d̄RℓL

1 0 3 1 2/3 q̄LγµℓL or d̄RγµeR

1 0 3 1 5/3 ūRγµeR

1 0 3 3 2/3 q̄LγµℓL
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If we do not require leptoquark states to couple directly

with SM fermions, different assignments of quantum numbers

become possible [2,3].

Leptoquark states are expected to exist in various exten-

sions of SM. The Pati-Salam model [4] is an example predicting

the existence of a leptoquark state. Vector leptoquark states

also exist in grand unification theories based on SU(5) [5],

SO(10) [6], which includes Pati-Salam color SU(4), and larger

gauge groups. Scalar quarks in supersymmetric models with

R-parity violation may also have leptoquark-type Yukawa cou-

plings. The bounds on the leptoquark states can therefore be

applied to constrain R-parity-violating supersymmetric models.

Scalar leptoquarks are expected to exist at TeV scale in ex-

tended technicolor models [7,8] where leptoquark states appear

as the bound states of techni-fermions. Compositeness of quarks

and leptons also provides examples of models which may have

light leptoquark states [9].

Bounds on leptoquark states are obtained both directly and

indirectly. Direct limits are from their production cross sections

at colliders, while indirect limits are calculated from the bounds

on the leptoquark-induced four-fermion interactions, which are

obtained from low-energy experiments, or from collider experi-

ments below threshold.

If a leptoquark couples to fermions belonging to more

than a single generation in the mass eigenbasis of the

SM fermions, it can induce four-fermion interactions caus-

ing flavor-changing neutral currents and lepton-family-number

violations. The quantum number assignment of Table 1 al-

lows several leptoquark states to couple to both left- and

right-handed quarks simultaneously. Such leptoquark states are

called non-chiral and may cause four-fermion interactions af-

fecting the (π → eν)/(π → µν) ratio [10]. Non-chiral scalar

leptoquarks also contribute to the muon anomalous magnetic

moment [11,12]. Since indirect limits provide more stringent

constraints on these types of leptoquarks, it is often assumed

that a leptoquark state couples only to a single generation

in a chiral interaction, for which indirect limits become much

weaker. Additionally, this assumption gives strong constraints

on concrete models of leptoquarks.

Leptoquark states which couple only to left- or right-

handed quarks are called chiral leptoquarks. Leptoquark states

which couple only to the first (second, third) generation

are referred as the first- (second-, third-) generation lepto-

quarks. Refs. [13,14] give extensive lists of the bounds on the

leptoquark-induced four-fermion interactions. For the isoscalar

and vector leptoquarks S0 and V0, for example, which cou-

ple with the first- (second-) generation left-handed quark,

and the first-generation left-handed lepton, the bounds of

Ref. 13 read λ2 < 0.03 × (MLQ/300 GeV)2 for S0, and

λ2 < 0.02×(MLQ/300 GeV)2 for V0 (λ2 < 5×(MLQ/300 GeV)2

for S0, and λ2 < 3 × (MLQ/300 GeV)2 for V0) with λ be-

ing the leptoquark coupling strength. The e+e− experiments

are sensitive to the indirect effects coming from t- and u-

channel exchanges of leptoquarks in the e+e− → qq̄ process.

The HERA experiments give bounds on the leptoquark-induced

four-fermion interaction. For detailed bounds obtained in this

way, see the Boson Particle Listings for “Indirect Limits for

Leptoquarks” and its references.

Collider experiments provide direct limits on the lepto-

quark states through limits on the pair- and single-production

cross sections. The leading-order cross sections of the parton

processes

q + q̄ → LQ + LQ

g + g → LQ + LQ

e + q → LQ (1)

may be written as [15]

σ̂LO

[
qq̄ → LQ + LQ

]
=

2α2
sπ

27ŝ
β3,

σ̂LO

[
gg → LQ + LQ

]
=

α2
sπ

96ŝ

×
[
β(41 − 31β2) + (18β2 − β4 − 17) log

1 + β

1 − β

]
,

σ̂LO

[
eq → LQ

]
=

πλ2

4
δ(ŝ − M2

LQ) (2)

for a scalar leptoquark. Here
√

ŝ is the invariant energy of the

parton subprocess, and β ≡
√

1 − 4M2
LQ/ŝ. The leptoquark

Yukawa coupling is given by λ. Leptoquarks are also produced

singly at hadron colliders through g + q → LQ + ℓ [16], which

allows extending to higher masses the collider reach in the

leptoquark search [17], depending on the leptoquark Yukawa

coupling.

The LHC, Tevatron and LEP experiments search for pair

production of the leptoquark states, which arises from the

leptoquark gauge interaction. The searches are carried on in

signatures including high PT leptons, ET jets and large missing

transverse energy, due to the typical decay of the leptoquark.

The gauge couplings of a scalar leptoquark are determined

uniquely according to its quantum numbers in Table 1. Since

all of the leptoquark states belong to color-triplet representa-

tion, the scalar leptoquark pair-production cross section at the

Tevatron and LHC can be determined solely as a function of

the leptoquark mass without making further assumptions. This

is in contrast to the indirect or single-production limits, which

give constraints in the leptoquark mass-coupling plane. For the

first- and second-generation scalar leptoquark states with de-

caying branching fraction β = B(eq) = 1 and β = B(µq) = 1,

the CDF and DØ experiments obtain the lower bounds on

the leptoquark mass > 236 GeV (first generation, CDF) [18],

> 299 GeV (first generation, DØ) [19], > 226 GeV (second

generation, CDF) [20], and > 316 GeV (second generation,

DØ) [21] at 95% CL. Third generation leptoquark mass bounds

come from the DØ experiment [22] which sets a limit at 247 GeV

for a charge −1/3 third generation scalar leptoquark, at 95%

C.L.
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Recent results from the LHC proton-proton collider, running

at a center of mass energy of 7 and 8 TeV, extend previous

Tevatron mass limits for scalar leptoquarks to > 830 GeV (first

generation, CMS, β =1,
√

s = 7 TeV) and > 640 GeV(first

generation, CMS, β =0.5,
√

s = 7 TeV) [23]; > 1050 GeV (first

generation, ATLAS, β =1,,
√

s = 8 TeV) and > 900 GeV (first

generation, ATLAS, β =0.5,
√

s = 8 TeV) [24]; > 1070 GeV

(second generation, CMS, β =1,
√

s = 7 TeV) [25] and >

785 GeV (second generation, CMS, β =0.5,
√

s = 7 TeV) [25];

and > 1000 GeV (second generation, ATLAS, β =1,
√

s = 8

TeV) and > 850 GeV (second generation, ATLAS, β =0.5,
√

s =

8 TeV) [24]. All limits at 95% C.L.

As for third generation leptoquarks, CMS results are the

following: 1) assuming that all leptoquarks decay to a top quark

and a τ lepton, the existence of pair produced, third-generation

leptoquarks up to a mass of 685 GeV (β =1) is excluded at 95%

confidence level [26]; 2) assuming that all leptoquarks decay to

a bottom quark and a τ lepton, the existence of pair produced,

third-generation leptoquarks up to a mass of 740 GeV (β =1)

is excluded at 95% confidence level [27]; 3)assuming that all

leptoquarks decay to a bottom quark and a τ neutrino, the

existence of pair produced, third-generation leptoquarks up to

a mass of 450 GeV (β =0.5)is excluded at 95% confidence

level [28].

The ATLAS collaboration has a limit on third generation

scalar leptoquark for the case of β =1 of 525 GeV [29] and

625 GeV for third-generation leptoquarks in the bottom τ neu-

trino channel, and 640 GeV in the top τ neutrino channel [24].

The magnetic-dipole-type and the electric-quadrupole-type

interactions of a vector leptoquark are not determined even if

we fix its gauge quantum numbers as listed in the Table [30].

The production of vector leptoquarks depends in general on

additional assumptions that the leptoquark couplings and their

pair-production cross sections are enhanced relative to the scalar

leptoquark contributions. At the Tevatron for instance, since

the acceptance for vector and scalar leptoquark detection is

similar, limits on the vector leptoquark mass will be more strin-

gent (see for example [36,19]) . The leptoquark pair-production

cross sections in e+e− collisions depend on the leptoquark

SU(2)×U(1) quantum numbers and Yukawa coupling with elec-

tron [31]. The OPAL experiment sets mass bounds on various

leptoquark states from the pair-production cross sections [32].

For a second-generation weak-isosinglet weak-hypercharge −4/3

scalar-leptoquark state, for example, the OPAL pair-production

bound is MLQ > 100 GeV/c2 at 95% C.L. The LEP experi-

ments also searched for the single production of the leptoquark

states from the process eγ → LQ + q.

The most stringent searches for the leptoquark single pro-

duction are performed by the HERA experiments. Since the lep-

toquark single-production cross section depends on its Yukawa

coupling, the leptoquark mass limits from HERA are usually

displayed in the mass-coupling plane. For leptoquark Yukawa

coupling λ = 0.1, the ZEUS bounds on the first-generation

leptoquarks range from 248 to 290 GeV, depending on the lep-

toquark species [33]. Recently the H1 Collaboration released a

comprehensive summary of searches for first generation lepto-

quarks using the full data sample collected in ep collisions at

HERA (446 pb−1). No evidence of production of leptoquarks

is observed in final states with a large transverse momentum

electron or large missing transverse momentum. For a coupling

strength λ = 0.3, first generation leptoquarks with masses up

to 800 GeV are excluded at 95% C.L. [35]

The search for LQ will be continued with more LHC data.

Early feasability studies by the LHC experiments ATLAS [37]

and CMS [38] indicate that clear signals can be established

for masses up to about M(LQ) 1.3 to 1.4 TeV for first- and

second-generation scalar LQ, with a likely final reach 1.5 TeV,

for collisions at 14 TeV in the center of mass.
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> 85.5 95 35 ABBIENDI 00M OPAL Superseded by ABBIENDI 03R
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> 148 95 38 AFFOLDER 00K CDF Third generation
> 160 95 39 ABBOTT 99J D0 Se
ond generation
> 225 95 40 ABBOTT 98E D0 First generation
> 94 95 41 ABBOTT 98J D0 Third generation
> 202 95 42 ABE 98S CDF Se
ond generation
> 242 95 43 GROSS-PILCH...98 First generation
> 99 95 44 ABE 97F CDF Third generation
> 213 95 45 ABE 97X CDF First generation
> 45.5 95 46,47 ABREU 93J DLPH First + se
ond generation
> 44.4 95 48 ADRIANI 93M L3 First generation
> 44.5 95 48 ADRIANI 93M L3 Se
ond generation
> 45 95 48 DECAMP 92 ALEP Third generationnone 8.9{22.6 95 49 KIM 90 AMY First generationnone 10.2{23.2 95 49 KIM 90 AMY Se
ond generationnone 5{20.8 95 50 BARTEL 87B JADEnone 7{20.5 95 51 BEHREND 86B CELL1AAD 16G sear
h for s
alar leptoquarks using e e j j events in 
ollisions at √

s = 8 TeV.The limit above assumes B(e q) = 1.2AAD 16G sear
h for s
alar leptoquarks using µµ j j events in 
ollisions at √s = 8 TeV.The limit above assumes B(µq) = 1.3AAD 16G sear
h for s
alar leptoquarks de
aying to bν. The limit above assumes B(bν)= 1.4AAD 16G sear
h for s
alar leptoquarks de
aying to t ν. The limit above assumes B(t ν)= 1.5KHACHATRYAN 15AJ sear
h for s
alar leptoquarks using τ τ t t events in pp 
ollisionsat √s = 8 TeV. The limit above assumes B(τ t) = 1.6KHACHATRYAN 14T sear
h for s
alar leptoquarks de
aying to τ b using pp 
ollisionsat √s=8 TeV. The limit above assumes B(τ b) = 1. See their Fig. 5 for ex
lusion limitas fun
tion of B(τ b).7AAD 13AE sear
h for s
alar leptoquarks using τ τ bb events in pp 
ollisions at E
m =7 TeV. The limit above assumes B(τ b) = 1.8CHATRCHYAN 12AG sear
h for s
alar leptoquarks using e e j j and e ν j j events in pp
ollisions at E
m = 7 TeV. The limit above assumes B(e q) = 1. For B(e q) = 0.5, thelimit be
omes 640 GeV.9CHATRCHYAN 12AG sear
h for s
alar leptoquarks using µµ j j and µν j j events in pp
ollisions at E
m = 7 TeV. The limit above assumes B(µq) = 1. For B(µq) = 0.5, thelimit be
omes 650 GeV.10CHATRCHYAN 13M sear
h for s
alar and ve
tor leptoquarks de
aying to τ b in pp
ollisions at E
m = 7 TeV. The limit above is for s
alar leptoquarks with B(τ b) = 1.11AAD 12H sear
h for s
alar leptoquarks using e e j j and e ν j j events in pp 
ollisions atE
m = 7 TeV. The limit above assumes B(e q) = 1. For B(e q) = 0.5, the limit be
omes607 GeV.12AAD 12O sear
h for s
alar leptoquarks using µµ j j and µν j j events in pp 
ollisions atE
m = 7 TeV. The limit above assumes B(µq) = 1. For B(µq) = 0.5, the limit be
omes594 GeV.13CHATRCHYAN 12BO sear
h for s
alar leptoquarks de
aying to ν b in pp 
ollisions at √s= 7 TeV. The limit above assumes B(ν b) = 1.14AAD 11D sear
h for s
alar leptoquarks using e e j j and e ν j j events in pp 
ollisions atE
m = 7 TeV.The limit above assumes B(e q) = 1. For B(e q) = 0.5, the limit be
omes319 GeV.15AAD 11D sear
h for s
alar leptoquarks using µµ j j and µν j j events in pp 
ollisions atE
m = 7 TeV. The limit above assumes B(µq) = 1. For B(µq) = 0.5, the limit be
omes362 GeV.16ABAZOV 11V sear
h for s
alar leptoquarks using e ν j j events in pp 
ollisions at E
m= 1.96 TeV. The limit above assumes B(e q) = 0.5.17CHATRCHYAN 11N sear
h for s
alar leptoquarks using e ν j j events in pp 
ollisions atE
m = 7 TeV. The limit above assumes B(e q) = 0.5.18KHACHATRYAN 11D sear
h for s
alar leptoquarks using e e j j events in pp 
ollisions atE
m = 7 TeV. The limit above assumes B(e q) = 1.19KHACHATRYAN 11E sear
h for s
alar leptoquarks using µµ j j events in pp 
ollisions atE
m = 7 TeV. The limit above assumes B(µq) = 1.20ABAZOV 10L sear
h for pair produ
tions of s
alar leptoquark state de
aying to ν b inpp 
ollisions at E
m = 1.96 TeV. The limit above assumes B(ν b) = 1.21ABAZOV 09 sear
h for s
alar leptoquarks using µµ j j and µν j j events in pp 
ollisionsat E
m = 1.96 TeV. The limit above assumes B(µq) = 1. For B(µq) = 0.5, the limitbe
omes 270 GeV.22ABAZOV 09AF sear
h for s
alar leptoquarks using e e j j and e ν j j events in pp 
ollisionsat E
m = 1.96 TeV. The limit above assumes B(e q) = 1. For B(e q) = 0.5 the boundbe
omes 284 GeV.23AALTONEN 08P sear
h for ve
tor leptoquarks using τ+ τ− bb events in pp 
ollisionsat E
m = 1.96 TeV. Assuming Yang-Mills (minimal) 
ouplings, the mass limit is >317GeV (251 GeV) at 95% CL for B(τ b) = 1.24 Sear
h for pair produ
tion of s
alar leptoquark state de
aying to τ b in pp 
ollisions atE
m= 1.96 TeV. The limit above assumes B(τ b) = 1.25 Sear
h for s
alar leptoquarks using ν ν j j events in pp 
ollisions at E
m = 1.96 TeV.The limit above assumes B(ν q) = 1.26ABAZOV 07J sear
h for pair produ
tions of s
alar leptoquark state de
aying to ν b inpp 
ollisions at E
m = 1.96 TeV. The limit above assumes B(ν b) = 1.27ABAZOV 06A sear
h for s
alar leptoquarks using µµ j j events in pp 
ollisions at E
m= 1.8 TeV and 1.96 TeV. The limit above assumes B(µq) = 1. For B(µq) = 0.5, thelimit be
omes 204 GeV.28ABAZOV 06L sear
h for s
alar leptoquarks using ν ν j j events in pp 
ollisions at E
m =1.8 TeV and at 1.96 TeV. The limit above assumes B(ν q) = 1.
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h for s
alar leptoquarks using µµ j j, µν j j, and ν ν j j events inpp 
ollisions at E
m = 1.96 TeV. The quoted limit assumes B(µq) = 1. For B(µq) =0.5 or 0.1, the bound be
omes 208 GeV or 143 GeV, respe
tively. See their Fig. 4 for theex
lusion limit as a fun
tion of B(µq).30ABAZOV 05H sear
h for s
alar leptoquarks using e e j j and e ν j j events in p p 
ollisionsat E
m = 1.8 TeV and 1.96 TeV. The limit above assumes B(e q) = 1. For B(e q) =0.5 the bound be
omes 234 GeV.31ACOSTA 05P sear
h for s
alar leptoquarks using e e j j, e ν j j events in p p 
ollisions atE
m = 1.96TeV. The limit above assumes B(e q) = 1. For B(e q) = 0.5 and 0.1, thebound be
omes 205 GeV and 145 GeV, respe
tively.32ABBIENDI 03R sear
h for s
alar/ve
tor leptoquarks in e+ e− 
ollisions at √s = 189{209GeV. The quoted limits are for 
harge −4/3 isospin 0 s
alar-leptoquark with B(ℓq) = 1.See their table 12 for other 
ases.33ABAZOV 02 sear
h for s
alar leptoquarks using ν ν j j events in p p 
ollisions at E
m=1.8TeV. The bound holds for all leptoquark generations. Ve
tor leptoquarks are likewise
onstrained to lie above 200 GeV.34ABAZOV 01D sear
h for s
alar leptoquarks using e ν j j , e e j j, and ν ν j j events in pp
ollisions at E
m=1.8 TeV. The limit above assumes B(e q)=1. For B(e q)=0.5 and 0,the bound be
omes 204 and 79 GeV, respe
tively. Bounds for ve
tor leptoquarks are alsogiven. Supersedes ABBOTT 98E.35ABBIENDI 00M sear
h for s
alar/ve
tor leptoquarks in e+ e− 
ollisions at √s=183 GeV.The quoted limits are for 
harge −4/3 isospin 0 s
alar-leptoquarks with B(ℓq)=1. Seetheir Table 8 and Figs. 6{9 for other 
ases.36ABBOTT 00C sear
h for s
alar leptoquarks using µµ j j, µν j j, and ν ν j j events in pp
ollisions at E
m=1.8 TeV. The limit above assumes B(µq)=1. For B(µq)=0.5 and 0,the bound be
omes 180 and 79 GeV respe
tively. Bounds for ve
tor leptoquarks are alsogiven.37AFFOLDER 00K sear
h for s
alar leptoquark using ν ν 
 
 events in pp 
ollisions atE
m=1.8 TeV. The quoted limit assumes B(ν 
)=1. Bounds for ve
tor leptoquarks arealso given.38AFFOLDER 00K sear
h for s
alar leptoquark using ν ν bb events in pp 
ollisions atE
m=1.8 TeV. The quoted limit assumes B(ν b)=1. Bounds for ve
tor leptoquarks arealso given.39ABBOTT 99J sear
h for leptoquarks using µν j j events in pp 
ollisions at E
m= 1.8TeV.The quoted limit is for a s
alar leptoquark with B(µq) = B(ν q) = 0.5. Limits on ve
torleptoquarks range from 240 to 290 GeV.40ABBOTT 98E sear
h for s
alar leptoquarks using e ν j j , e e j j, and ν ν j j events in pp
ollisions at E
m=1.8 TeV. The limit above assumes B(e q)=1. For B(e q)=0.5 and 0,the bound be
omes 204 and 79 GeV, respe
tively.41ABBOTT 98J sear
h for 
harge −1/3 third generation s
alar and ve
tor leptoquarks inpp 
ollisions at E
m= 1.8 TeV. The quoted limit is for s
alar leptoquark with B(ν b)=1.42ABE 98S sear
h for s
alar leptoquarks using µµ j j events in pp 
ollisions at E
m=1.8 TeV. The limit is for B(µq)= 1. For B(µq)=B(ν q)=0.5, the limit is > 160 GeV.43GROSS-PILCHER 98 is the 
ombined limit of the CDF and D� Collaborations as deter-mined by a joint CDF/D� working group and reported in this FNAL Te
hni
al Memo.Original data published in ABE 97X and ABBOTT 98E.44ABE 97F sear
h for third generation s
alar and ve
tor leptoquarks in pp 
ollisions atE
m = 1.8 TeV. The quoted limit is for s
alar leptoquark with B(τ b) = 1.45ABE 97X sear
h for s
alar leptoquarks using e e j j events in pp 
ollisions at E
m=1.8TeV. The limit is for B(e q)=1.46 Limit is for 
harge −1/3 isospin-0 leptoquark with B(ℓq) = 2/3.47 First and se
ond generation leptoquarks are assumed to be degenerate. The limit isslightly lower for ea
h generation.48 Limits are for 
harge −1/3, isospin-0 s
alar leptoquarks de
aying to ℓ− q or ν q with anybran
hing ratio. See paper for limits for other 
harge-isospin assignments of leptoquarks.49KIM 90 assume pair produ
tion of 
harge 2/3 s
alar-leptoquark via photon ex
hange.The de
ay of the �rst (se
ond) generation leptoquark is assumed to be any mixture ofd e+ and uν (s µ+ and 
 ν). See paper for limits for spe
i�
 bran
hing ratios.50BARTEL 87B limit is valid when a pair of 
harge 2/3 spinless leptoquarks X is produ
edwith point 
oupling, and when they de
ay under the 
onstraint B(X → 
 νµ) + B(X →s µ+) = 1.51BEHREND 86B assumed that a 
harge 2/3 spinless leptoquark, χ, de
ays either intosµ+ or 
ν: B(χ → sµ+) + B(χ → 
ν) = 1.MASS LIMITS for Leptoquarks from Single Produ
tionMASS LIMITS for Leptoquarks from Single Produ
tionMASS LIMITS for Leptoquarks from Single Produ
tionMASS LIMITS for Leptoquarks from Single Produ
tionThese limits depend on the q-ℓ-leptoquark 
oupling gLQ . It is often assumed thatg2LQ/4π=1/137. Limits shown are for a s
alar, weak isos
alar, 
harge −1/3 lepto-quark.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>304>304>304>304 95 1 ABRAMOWICZ12A ZEUS First generation
> 73> 73> 73> 73 95 2 ABREU 93J DLPH Se
ond generation
• • • We do not use the following data for averages, �ts, limits, et
. • • •3 AARON 11A H1 Lepton-
avor violation
>300 95 4 AARON 11B H1 First generation5 ABAZOV 07E D0 Se
ond generation
>295 95 6 AKTAS 05B H1 First generation7 CHEKANOV 05A ZEUS Lepton-
avor violation
>298 95 8 CHEKANOV 03B ZEUS First generation
>197 95 9 ABBIENDI 02B OPAL First generation10 CHEKANOV 02 ZEUS Repl. by CHEKANOV 05A
>290 95 11 ADLOFF 01C H1 First generation
>204 95 12 BREITWEG 01 ZEUS First generation13 BREITWEG 00E ZEUS First generation
>161 95 14 ABREU 99G DLPH First generation
>200 95 15 ADLOFF 99 H1 First generation16 DERRICK 97 ZEUS Lepton-
avor violation
>168 95 17 DERRICK 93 ZEUS First generation

1ABRAMOWICZ 12A limit is for a s
alar, weak isos
alar, 
harge −1/3 leptoquark 
oupledwith eR . See their Figs. 12{17 and Table 4 for states with di�erent quantum numbers.2 Limit from single produ
tion in Z de
ay. The limit is for a leptoquark 
oupling ofele
tromagneti
 strength and assumes B(ℓq) = 2/3. The limit is 77 GeV if �rst andse
ond leptoquarks are degenerate.3AARON 11A sear
h for various leptoquarks with lepton-
avor violating 
ouplings. Seetheir Figs. 2{3 and Tables 1{4 for detailed limits.4The quoted limit is for a s
alar, weak isos
alar, 
harge −1/3 leptoquark 
oupled witheR . See their Figs. 3{5 for limits on states with di�erent quantum numbers.5ABAZOV 07E sear
h for leptoquark single produ
tion through qg fusion pro
ess in pp
ollisions. See their Fig. 4 for ex
lusion plot in mass-
oupling plane.6AKTAS 05B limit is for a s
alar, weak isos
alar, 
harge −1/3 leptoquark 
oupled witheR . See their Fig. 3 for limits on states with di�erent quantum numbers.7CHEKANOV 05 sear
h for various leptoquarks with lepton-
avor violating 
ouplings. Seetheir Figs.6{10 and Tables 1{8 for detailed limits.8CHEKANOV 03B limit is for a s
alar, weak isos
alar, 
harge −1/3 leptoquark 
oupledwith eR . See their Figs. 11{12 and Table 5 for limits on states with di�erent quantumnumbers.9 For limits on states with di�erent quantum numbers and the limits in the mass-
ouplingplane, see their Fig. 4 and Fig. 5.10CHEKANOV 02 sear
h for various leptoquarks with lepton-
avor violating 
ouplings. Seetheir Figs. 6{7 and Tables 5{6 for detailed limits.11 For limits on states with di�erent quantum numbers and the limits in the mass-
ouplingplane, see their Fig. 3.12 See their Fig. 14 for limits in the mass-
oupling plane.13BREITWEG 00E sear
h for F=0 leptoquarks in e+ p 
ollisions. For limits in mass-
oupling plane, see their Fig. 11.14ABREU 99G limit obtained from pro
ess e γ → LQ+q. For limits on ve
tor and s
alarstates with di�erent quantum numbers and the limits in the 
oupling-mass plane, seetheir Fig. 4 and Table 2.15 For limits on states with di�erent quantum numbers and the limits in the mass-
ouplingplane, see their Fig. 13 and Fig. 14. ADLOFF 99 also sear
h for leptoquarks with lepton-
avor violating 
ouplings. ADLOFF 99 supersedes AID 96B.16DERRICK 97 sear
h for various leptoquarks with lepton-
avor violating 
ouplings. Seetheir Figs. 5{8 and Table 1 for detailed limits.17DERRICK 93 sear
h for single leptoquark produ
tion in e p 
ollisions with the de
ay e qand ν q. The limit is for leptoquark 
oupling of ele
tromagneti
 strength and assumesB(e q) = B(ν q) = 1/2. The limit for B(e q) = 1 is 176 GeV. For limits on states withdi�erent quantum numbers, see their Table 3.Indire
t Limits for LeptoquarksIndire
t Limits for LeptoquarksIndire
t Limits for LeptoquarksIndire
t Limits for LeptoquarksVALUE (TeV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 BESSAA 15 RVUE qq → e+ e−

> 14 95 2 SAHOO 15A RVUE B s,d → µ+µ−3 SAKAKI 13 RVUE B → D(∗) τ ν, B → Xs ν ν4 KOSNIK 12 RVUE b → s ℓ+ ℓ−
> 2.5 95 5 AARON 11C H1 First generation6 DORSNER 11 RVUE s
alar, weak singlet, 
harge 4/37 AKTAS 07A H1 Lepton-
avor violation
> 0.49 95 8 SCHAEL 07A ALEP e+ e− → qq9 SMIRNOV 07 RVUE K → e µ, B → e τ10 CHEKANOV 05A ZEUS Lepton-
avor violation
> 1.7 96 11 ADLOFF 03 H1 First generation
> 46 90 12 CHANG 03 BELL Pati-Salam type13 CHEKANOV 02 ZEUS Repl. by CHEKANOV 05A
> 1.7 95 14 CHEUNG 01B RVUE First generation
> 0.39 95 15 ACCIARRI 00P L3 e+ e− → qq
> 1.5 95 16 ADLOFF 00 H1 First generation
> 0.2 95 17 BARATE 00I ALEP Repl. by SCHAEL 07A18 BARGER 00 RVUE Cs19 GABRIELLI 00 RVUE Lepton 
avor violation
> 0.74 95 20 ZARNECKI 00 RVUE S1 leptoquark21 ABBIENDI 99 OPAL
> 19.3 95 22 ABE 98V CDF Bs → e±µ∓, Pati-Salam type23 ACCIARRI 98J L3 e+ e− → qq24 ACKERSTAFF 98V OPAL e+ e− → qq, e+ e− → bb
> 0.76 95 25 DEANDREA 97 RVUE R̃2 leptoquark26 DERRICK 97 ZEUS Lepton-
avor violation27 GROSSMAN 97 RVUE B → τ+ τ− (X)28 JADACH 97 RVUE e+ e− → qq
>1200 29 KUZNETSOV 95B RVUE Pati-Salam type30 MIZUKOSHI 95 RVUE Third generation s
alar leptoquark
> 0.3 95 31 BHATTACH... 94 RVUE Spin-0 leptoquark 
oupled to eR tL32 DAVIDSON 94 RVUE
> 18 33 KUZNETSOV 94 RVUE Pati-Salam type
> 0.43 95 34 LEURER 94 RVUE First generation spin-1 leptoquark
> 0.44 95 34 LEURER 94B RVUE First generation spin-0 leptoquark35 MAHANTA 94 RVUE P and T violation
> 1 36 SHANKER 82 RVUE Non
hiral spin-0 leptoquark
> 125 36 SHANKER 82 RVUE Non
hiral spin-1 leptoquark1BESSAA 15 obtain limit on leptoquark indu
ed four-fermion intera
tions from the ATLASand CMS limit on the q qe e 
onta
t intera
tions.2 SAHOO 15A obtain limit on leptoquark indu
ed four-fermion intera
tions from B s,d →

µ+µ− for λ ≃ O(1).3 SAKAKI 13 explain the B → D(∗) τ ν anomaly using Wilson 
oeÆ
ients of leptoquark-indu
ed four-fermion operators.
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le ListingsNew Heavy Bosons4KOSNIK 12 obtains limits on leptoquark indu
ed four-fermion intera
tions from b →s ℓ+ ℓ− de
ays.5AARON 11C limit is for weak isotriplet spin-0 leptoquark at strong 
oupling λ = √4π.For the limits of leptoquarks with di�erent quantum numbers, see their Table 3. Limitsare derived from bounds of e q 
onta
t interera
tions.6DORSNER 11 give bounds on s
alar, weak singlet, 
harge 4/3 leptoquark from K , B, τde
ays, meson mixings, LFV, g−2 and Z → bb.7AKTAS 07A sear
h for lepton-
avor violation in e p 
ollision. See their Tables 4{7 forlimits on lepton-
avor violating four-fermion intera
tions indu
ed by various leptoquarks.8 SCHAEL 07A limit is for the weak-isos
alar spin-0 left-handed leptoquark with the 
ou-pling of ele
tromagneti
 strength. For the limits of leptoquarks with di�erent quantumnumbers, see their Table 35.9 SMIRNOV 07 obtains mass limits for the ve
tor and s
alar 
hiral leptoquark states fromK → e µ, B → e τ de
ays.10CHEKANOV 05 sear
h for various leptoquarks with lepton-
avor violating 
ouplings. Seetheir Figs.6{10 and Tables 1{8 for detailed limits.11ADLOFF 03 limit is for the weak isotriplet spin-0 leptoquark at strong 
oupling λ=√4π.For the limits of leptoquarks with di�erent quantum numbers, see their Table 3. Limitsare derived from bounds on e± q 
onta
t intera
tions.12The bound is derived from B(B0 → e±µ∓) < 1.7× 10−7.13CHEKANOV 02 sear
h for lepton-
avor violation in e p 
ollisions. See their Tables 1{4for limits on lepton-
avor violating and four-fermion intera
tions indu
ed by variousleptoquarks.14CHEUNG 01B quoted limit is for a s
alar, weak isos
alar, 
harge −1/3 leptoquark witha 
oupling of ele
tromagneti
 strength. The limit is derived from bounds on 
onta
tintera
tions in a global ele
troweak analysis. For the limits of leptoquarks with di�erentquantum numbers, see Table 5.15ACCIARRI 00P limit is for the weak isos
alar spin-0 leptoquark with the 
oupling ofele
tromagneti
 strength. For the limits of leptoquarks with di�erent quantum numbers,see their Table 4.16ADLOFF 00 limit is for the weak isotriplet spin-0 leptoquark at strong 
oupling,
λ=√4π. For the limits of leptoquarks with di�erent quantum numbers, see their Table 2.ADLOFF 00 limits are from the Q2 spe
trum measurement of e+ p → e+X.17BARATE 00I sear
h for deviations in 
ross se
tion and jet-
harge asymmetry in e+ e− →q q due to t-
hannel ex
hange of a leptoquark at √s=130 to 183 GeV. Limits for others
alar and ve
tor leptoquarks are also given in their Table 22.18BARGER 00 explain the deviation of atomi
 parity violation in 
esium atoms from pre-di
tion is explained by s
alar leptoquark ex
hange.19GABRIELLI 00 
al
ulate various pro
ess with lepton 
avor violation in leptoquark models.20ZARNECKI 00 limit is derived from data of HERA, LEP, and Tevatron and from variouslow-energy data in
luding atomi
 parity violation. Leptoquark 
oupling with ele
tromag-neti
 strength is assumed.21ABBIENDI 99 limits are from e+ e− → qq 
ross se
tion at 130{136, 161{172, 183GeV. See their Fig. 8 and Fig. 9 for limits in mass-
oupling plane.22ABE 98V quoted limit is from B(Bs → e±µ∓)< 8.2 × 10−6. ABE 98V also obtaina similar limit on MLQ > 20.4 TeV from B(Bd → e±µ∓)< 4.5 × 10−6. Bothbounds assume the non-
anoni
al asso
iation of the b quark with ele
trons or muonsunder SU(4).23ACCIARRI 98J limit is from e+ e− → qq 
ross se
tion at √s= 130{172 GeV whi
h
an be a�e
ted by the t- and u-
hannel ex
hanges of leptoquarks. See their Fig. 4 andFig. 5 for limits in the mass-
oupling plane.24ACKERSTAFF 98V limits are from e+ e− → qq and e+ e− → bb 
ross se
tions at √s= 130{172 GeV, whi
h 
an be a�e
ted by the t- and u-
hannel ex
hanges of leptoquarks.See their Fig. 21 and Fig. 22 for limits of leptoquarks in mass-
oupling plane.25DEANDREA 97 limit is for R̃2 leptoquark obtained from atomi
 parity violation (APV).The 
oupling of leptoquark is assumed to be ele
tromagneti
 strength. See Table 2 forlimits of the four-fermion intera
tions indu
ed by various s
alar leptoquark ex
hange.DEANDREA 97 
ombines APV limit and limits from Tevatron and HERA. See Fig. 1{4for 
ombined limits of leptoquark in mass-
oupling plane.26DERRICK 97 sear
h for lepton-
avor violation in e p 
ollision. See their Tables 2{5 forlimits on lepton-
avor violating four-fermion intera
tions indu
ed by various leptoquarks.27GROSSMAN 97 estimate the upper bounds on the bran
hing fra
tion B → τ+ τ− (X)from the absen
e of the B de
ay with large missing energy. These bounds 
an be usedto 
onstrain leptoquark indu
ed four-fermion intera
tions.28 JADACH 97 limit is from e+ e− → qq 
ross se
tion at √s=172.3 GeV whi
h 
an bea�e
ted by the t- and u-
hannel ex
hanges of leptoquarks. See their Fig. 1 for limits onve
tor leptoquarks in mass-
oupling plane.29KUZNETSOV 95B use π, K , B, τ de
ays and µe 
onversion and give a list of boundson the leptoquark mass and the fermion mixing matrix in the Pati-Salam model. Thequoted limit is from KL → µe de
ay assuming zero mixing.30MIZUKOSHI 95 
al
ulate the one-loop radiative 
orre
tion to the Z -physi
s parametersin various s
alar leptoquark models. See their Fig. 4 for the ex
lusion plot of thirdgeneration leptoquark models in mass-
oupling plane.31BHATTACHARYYA 94 limit is from one-loop radiative 
orre
tion to the leptoni
 de
aywidth of the Z . mH=250 GeV, αs (mZ )=0.12, mt=180 GeV, and the ele
troweakstrength of leptoquark 
oupling are assumed. For leptoquark 
oupled to eL tR , µt, and
τ t, see Fig. 2 in BHATTACHARYYA 94B erratum and Fig. 3.32DAVIDSON 94 gives an extensive list of the bounds on leptoquark-indu
ed four-fermionintera
tions from π, K , D, B, µ, τ de
ays and meson mixings, et
. See Table 15 ofDAVIDSON 94 for detail.33KUZNETSOV 94 gives mixing independent bound of the Pati-Salam leptoquark fromthe 
osmologi
al limit on π0 → ν ν.34 LEURER 94, LEURER 94B limits are obtained from atomi
 parity violation and apply toany 
hiral leptoquark whi
h 
ouples to the �rst generation with ele
tromagneti
 strength.For a non
hiral leptoquark, universality in πℓ2 de
ay provides a mu
h more stringentbound.35MAHANTA 94 gives bounds of P- and T-violating s
alar-leptoquark 
ouplings fromatomi
 and mole
ular experiments.36 From (π → e ν)/(π → µν) ratio. SHANKER 82 assumes the leptoquark indu
edfour-fermion 
oupling 4g2/M2 (νeL uR ) (dL eR )with g=0.004 for spin-0 leptoquarkand g2/M2 (νeL γµ uL) (dR γµ eR ) with g≃ 0.6 for spin-1 leptoquark.MASS LIMITS for DiquarksMASS LIMITS for DiquarksMASS LIMITS for DiquarksMASS LIMITS for DiquarksVALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>4700 (CL = 95%) OUR LIMIT>4700 (CL = 95%) OUR LIMIT>4700 (CL = 95%) OUR LIMIT>4700 (CL = 95%) OUR LIMITnone 1200{4700none 1200{4700none 1200{4700none 1200{4700 95 1 KHACHATRY...15V CMS E6 diquark

• • • We do not use the following data for averages, �ts, limits, et
. • • •
>3750 95 2 CHATRCHYAN13A CMS E6 diquarknone 1000{4280 95 3 CHATRCHYAN13AS CMS Superseded by KHACHA-TRYAN 15V
>3520 95 4 CHATRCHYAN11Y CMS Superseded by CHA-TRCHYAN 13Anone 970{1080,1450{1600 95 5 KHACHATRY...10 CMS Superseded by CHA-TRCHYAN 13Anone 290{630 95 6 AALTONEN 09AC CDF E6 diquarknone 290{420 95 7 ABE 97G CDF E6 diquarknone 15{31.7 95 8 ABREU 94O DLPH SUSY E6 diquark1KHACHATRYAN 15V sear
h for resonan
es de
aying to dijets in pp 
ollisions at √s =8 TeV.2CHATRCHYAN 13A sear
h for new resonan
e de
aying to dijets in pp 
ollisions at √s= 7 TeV.3CHATRCHYAN 13AS sear
h for new resonan
e de
aying to dijets in pp 
ollisions at √s= 8 TeV.4CHATRCHYAN 11Y sear
h for new resonan
e de
aying to dijets in pp 
ollisions at√

s= 7 TeV.5KHACHATRYAN 10 sear
h for new resonan
e de
aying to dijets in pp 
ollisions at√
s= 7 TeV.6AALTONEN 09AC sear
h for new narrow resonan
e de
aying to dijets.7ABE 97G sear
h for new parti
le de
aying to dijets.8ABREU 94O limit is from e+ e− → 
 s 
 s . Range extends up to 43 GeV if diquarks aredegenerate in mass.MASS LIMITS for gA (axigluon) and Other Color-O
tet Gauge BosonsMASS LIMITS for gA (axigluon) and Other Color-O
tet Gauge BosonsMASS LIMITS for gA (axigluon) and Other Color-O
tet Gauge BosonsMASS LIMITS for gA (axigluon) and Other Color-O
tet Gauge BosonsAxigluons are massive 
olor-o
tet gauge bosons in 
hiral 
olor models and have axial-ve
tor 
oupling to quarks with the same 
oupling strength as gluons.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>3600 (CL = 95%) OUR LIMIT>3600 (CL = 95%) OUR LIMIT>3600 (CL = 95%) OUR LIMIT>3600 (CL = 95%) OUR LIMITnone 1300{3600none 1300{3600none 1300{3600none 1300{3600 95 1 KHACHATRY...15V CMS pp → gAX , gA → 2j
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>2800 95 2 KHACHATRY...16E CMS pp → gKK X , gKK →t t3 KHACHATRY...15AV CMS pp → �0�0 → bbZ g4 AALTONEN 13R CDF pp → gAX , gA → σσ,

σ → 2j
>3360 95 5 CHATRCHYAN13A CMS pp → gAX, gA → 2jnone 1000{3270 95 6 CHATRCHYAN13AS CMS Superseded by KHACHA-TRYAN 15Vnone 250{740 95 7 CHATRCHYAN13AU CMS pp → 2gAX ,gA → 2j
> 775 95 8 ABAZOV 12R D0 pp → gAX , gA → t t
>2470 95 9 CHATRCHYAN11Y CMS Superseded by CHA-TRCHYAN 13A10 AALTONEN 10L CDF pp → gAX , gA → t tnone 1470{1520 95 11 KHACHATRY...10 CMS Superseded by CHA-TRCHYAN 13Anone 260{1250 95 12 AALTONEN 09AC CDF pp → gAX, gA → 2j
> 910 95 13 CHOUDHURY 07 RVUE pp → t t X
> 365 95 14 DONCHESKI 98 RVUE �(Z → hadron)none 200{980 95 15 ABE 97G CDF pp → gAX, gA → 2jnone 200{870 95 16 ABE 95N CDF pp → gAX, gA → qqnone 240{640 95 17 ABE 93G CDF pp → gAX, gA → 2j
> 50 95 18 CUYPERS 91 RVUE σ(e+ e− → hadrons)none 120{210 95 19 ABE 90H CDF pp → gAX, gA → 2j
> 29 20 ROBINETT 89 THEO Partial-wave unitaritynone 150{310 95 21 ALBAJAR 88B UA1 pp → gAX, gA → 2j
> 20 BERGSTROM 88 RVUE pp → �X via gAg
> 9 22 CUYPERS 88 RVUE � de
ay
> 25 23 DONCHESKI 88B RVUE � de
ay1KHACHATRYAN 15V sear
h for resonan
es de
aying to dijets in pp 
ollisions at √s =8 TeV.2KHACHATRYAN 16E sear
h for KK gluon de
aying to t t in pp 
ollisions at √

s = 8TeV.3KHACHATRYAN 15AV sear
h for pair produ
tions of neutral 
olor-o
tet weak-triplets
alar parti
les (�0), de
aying to bb, Z g or γ g , in pp 
ollisions at √
s = 8 TeV.The �0 parti
le is often predi
ted in 
oloron (G ′, 
olor-o
tet gauge boson) models andappear in the pp 
ollisions through G ′ → �0�0 de
ays. Assuming B(�0 → bb) =0.5, they give limits m�0 > 623 GeV (426 GeV) for mG ′ = 2.3 m�0 (mG ′ = 5 m�0).4AALTONEN 13R sear
h for new resonan
e de
aying to σσ, with hypotheti
al stronglyintera
ting σ parti
le subsequently de
aying to 2 jets, in pp 
ollisions at √s = 1.96 TeV,using data 
orresponding to an integrated luminosity of 6.6 fb−1. For 50 GeV < mσ <mgA/2, axigluons in mass range 150{400 GeV are ex
luded.5CHATRCHYAN 13A sear
h for new resonan
e de
aying to dijets in pp 
ollisions at √s= 7 TeV.6CHATRCHYAN 13AS sear
h for new resonan
e de
aying to dijets in pp 
ollisions at √s= 8 TeV.7CHATRCHYAN 13AU sear
h for the pair produ
ed 
olor-o
tet ve
tor bosons de
aying toqq pairs in pp 
ollisions. The quoted limit is for B(gA → qq) = 1.8ABAZOV 12R sear
h for massive 
olor o
tet ve
tor parti
le de
aying to t t . The quotedlimit assumes gA 
ouplings with light quarks are suppressed by 0.2.9CHATRCHYAN 11Y sear
h for new resonan
e de
aying to dijets in pp 
ollisions at√

s= 7 TeV.10AALTONEN 10L sear
h for massive 
olor o
tet non-
hiral ve
tor parti
le de
aying intot t pair with mass in the range 400 GeV < M < 800 GeV. See their Fig. 6 for limit inthe mass-
oupling plane.11KHACHATRYAN 10 sear
h for new resonan
e de
aying to dijets in pp 
ollisions at√
s= 7 TeV.12AALTONEN 09AC sear
h for new narrow resonan
e de
aying to dijets.13CHOUDHURY 07 limit is from the t t produ
tion 
ross se
tion measured at CDF.
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leListingsNewHeavyBosons14DONCHESKI 98 
ompare αs derived from low-energy data and that from �(Z →hadrons)/�(Z → leptons).15ABE 97G sear
h for new parti
le de
aying to dijets.16ABE 95N assume axigluons de
aying to quarks in the Standard Model only.17ABE 93G assume �(gA) = NαsmgA/6 with N = 10.18CUYPERS 91 
ompare αs measured in � de
ay and that from R at PEP/PETRAenergies.19ABE 90H assumes �(gA) = NαsmgA/6 with N = 5 (�(gA) = 0.09mgA). For N = 10,the ex
luded region is redu
ed to 120{150 GeV.20ROBINETT 89 result demands partial-wave unitarity of J = 0 tt → tt s
atteringamplitude and derives a limit mgA > 0.5 mt . Assumes mt > 56 GeV.21ALBAJAR 88B result is from the nonobservation of a peak in two-jet invariant massdistribution. �(gA) < 0.4 mgA assumed. See also BAGGER 88.22CUYPERS 88 requires �(� → g gA)< �(� → g g g). A similar result is obtained byDONCHESKI 88.23DONCHESKI 88B requires �(� → g qq)/�(� → g g g) < 0.25, where the formerde
ay pro
eeds via axigluon ex
hange. A more 
onservative estimate of < 0.5 leads tomgA > 21 GeV.MASS LIMITS for Color-O
tet S
alar BosonsMASS LIMITS for Color-O
tet S
alar BosonsMASS LIMITS for Color-O
tet S
alar BosonsMASS LIMITS for Color-O
tet S
alar BosonsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 KHACHATRY...15AV CMS pp → �0�0 → bbZ gnone 150{287 95 2 AAD 13K ATLS pp → S8 S8X ,S8 → 2 jets1KHACHATRYAN 15AV sear
h for pair produ
tions of neutral 
olor-o
tet weak-triplets
alar parti
les (�0), de
aying to bb, Z g or γ g , in pp 
ollisions at √

s = 8 TeV.The �0 parti
le is often predi
ted in 
oloron (G ′, 
olor-o
tet gauge boson) models andappear in the pp 
ollisions through G ′ → �0�0 de
ays. Assuming B(�0 → bb) =0.5, they give limits m�0 > 623 GeV (426 GeV) for mG ′ = 2.3 m�0 (mG ′ = 5 m�0).2AAD 13K sear
h for pair produ
tion of 
olor-o
tet s
alar parti
les in pp 
ollisions at √s= 7 TeV. Cross se
tion limits are interpreted as mass limits on s
alar partners of a Dira
gluino.X 0 (Heavy Boson) Sear
hes in Z De
aysX 0 (Heavy Boson) Sear
hes in Z De
aysX 0 (Heavy Boson) Sear
hes in Z De
aysX 0 (Heavy Boson) Sear
hes in Z De
aysSear
hes for radiative transition of Z to a lighter spin-0 state X0 de
aying to hadrons,a lepton pair, a photon pair, or invisible parti
les as shown in the 
omments. Thelimits are for the produ
t of bran
hing ratios.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 BARATE 98U ALEP X0 → ℓℓ, qq, g g , γ γ, ν ν2 ACCIARRI 97Q L3 X0 → invisible parti
le(s)3 ACTON 93E OPAL X0 → γ γ4 ABREU 92D DLPH X0 → hadrons5 ADRIANI 92F L3 X0 → hadrons6 ACTON 91 OPAL X0 → anything
<1.1× 10−4 95 7 ACTON 91B OPAL X0 → e+ e−
<9 × 10−5 95 7 ACTON 91B OPAL X0 → µ+µ−
<1.1× 10−4 95 7 ACTON 91B OPAL X0 → τ+ τ−
<2.8× 10−4 95 8 ADEVA 91D L3 X0 → e+ e−
<2.3× 10−4 95 8 ADEVA 91D L3 X0 → µ+µ−
<4.7× 10−4 95 9 ADEVA 91D L3 X0 → hadrons
<8 × 10−4 95 10 AKRAWY 90J OPAL X0 → hadrons1BARATE 98U obtain limits on B(Z → γX0)B(X0 → ℓℓ , qq , g g , γ γ , ν ν). Seetheir Fig. 17.2 See Fig. 4 of ACCIARRI 97Q for the upper limit on B(Z → γX0; Eγ >Emin) as afun
tion of Emin.3ACTON 93E give σ(e+ e− → X0 γ)·B(X0 → γ γ)< 0.4 pb (95%CL) for mX 0=60 ±2.5 GeV. If the pro
ess o

urs via s-
hannel γ ex
hange, the limit translates to�(X0)·B(X0 → γ γ)2 <20 MeV for mX 0 = 60 ± 1 GeV.4ABREU 92D give σZ · B(Z → γX0) · B(X0 → hadrons) <(3{10) pb for mX 0 =10{78 GeV. A very similar limit is obtained for spin-1 X0.5ADRIANI 92F sear
h for isolated γ in hadroni
 Z de
ays. The limit σZ · B(Z → γX0)

· B(X0 → hadrons) <(2{10) pb (95%CL) is given for mX 0 = 25{85 GeV.6ACTON 91 sear
hes for Z → Z∗X0, Z∗ → e+ e−, µ+µ−, or ν ν. Ex
ludes anynew s
alar X0 with mX 0 < 9.5 GeV/
 if it has the same 
oupling to Z Z∗ as the MSMHiggs boson.7ACTON 91B limits are for mX 0 = 60{85 GeV.8ADEVA 91D limits are for mX 0 = 30{89 GeV.9ADEVA 91D limits are for mX 0 = 30{86 GeV.10AKRAWY 90J give �(Z → γX0)·B(X0 → hadrons) < 1.9 MeV (95%CL) for mX 0= 32{80 GeV. We divide by �(Z) = 2.5 GeV to get produ
t of bran
hing ratios. Fornonresonant transitions, the limit is B(Z → γ qq) < 8.2 MeV assuming three-bodyphase spa
e distribution.MASS LIMITS for a Heavy Neutral Boson Coupling to e+ e−MASS LIMITS for a Heavy Neutral Boson Coupling to e+ e−MASS LIMITS for a Heavy Neutral Boson Coupling to e+ e−MASS LIMITS for a Heavy Neutral Boson Coupling to e+ e−VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

none 55{61 1 ODAKA 89 VNS �(X0 → e+ e−) ·B(X0 → had.)& 0.2 MeV
>45 95 2 DERRICK 86 HRS �(X0 → e+ e−)=6 MeV
>46.6 95 3 ADEVA 85 MRKJ �(X0 → e+ e−)=10 keV
>48 95 3 ADEVA 85 MRKJ �(X0 → e+ e−)=4 MeV4 BERGER 85B PLUTnone 39.8{45.5 5 ADEVA 84 MRKJ �(X0 → e+ e−)=10 keV
>47.8 95 5 ADEVA 84 MRKJ �(X0 → e+ e−)=4 MeVnone 39.8{45.2 5 BEHREND 84C CELL
>47 95 5 BEHREND 84C CELL �(X0 → e+ e−)=4 MeV1ODAKA 89 looked for a narrow or wide s
alar resonan
e in e+ e− → hadrons at E
m= 55.0{60.8 GeV.2DERRICK 86 found no deviation from the Standard Model Bhabha s
attering at E
m=29 GeV and set limits on the possible s
alar boson e+ e− 
oupling. See their �gure 4for ex
luded region in the �(X0 → e+ e−)-mX 0 plane. Ele
troni
 
hiral invarian
erequires a parity doublet of X0, in whi
h 
ase the limit applies for �(X0 → e+ e−) =3 MeV.3ADEVA 85 �rst limit is from 2γ, µ+µ−, hadrons assuming X0 is a s
alar. Se
ond limitis from e+ e− 
hannel. E
m = 40{47 GeV. Supersedes ADEVA 84.4BERGER 85B looked for e�e
t of spin-0 boson ex
hange in e+ e− → e+ e− and µ+µ−at E
m = 34.7 GeV. See Fig. 5 for ex
luded region in the mX 0 − �(X0) plane.5ADEVA 84 and BEHREND 84C have E
m = 39.8{45.5 GeV. MARK-J sear
hed X0 ine+ e− → hadrons, 2γ, µ+µ−, e+ e− and CELLO in the same 
hannels plus τ pair.No narrow or broad X0 is found in the energy range. They also sear
hed for the e�e
t ofX0 with mX > E
m. The se
ond limits are from Bhabha data and for spin-0 singlet.The same limits apply for �(X0 → e+ e−) = 2 MeV if X0 is a spin-0 doublet. These
ond limit of BEHREND 84C was read o� from their �gure 2. The original papers alsolist limits in other 
hannels.Sear
h for X 0 Resonan
e in e+ e− CollisionsSear
h for X 0 Resonan
e in e+ e− CollisionsSear
h for X 0 Resonan
e in e+ e− CollisionsSear
h for X 0 Resonan
e in e+ e− CollisionsThe limit is for �(X0 → e+ e−) · B(X0 → f ), where f is the spe
i�ed �nal state.Spin 0 is assumed for X0.VALUE (keV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<103 95 1 ABE 93C VNS �(e e)
<(0.4{10) 95 2 ABE 93C VNS f = γ γ

<(0.3{5) 95 3,4 ABE 93D TOPZ f = γ γ

<(2{12) 95 3,4 ABE 93D TOPZ f = hadrons
<(4{200) 95 4,5 ABE 93D TOPZ f = e e
<(0.1{6) 95 4,5 ABE 93D TOPZ f = µµ

<(0.5{8) 90 6 STERNER 93 AMY f = γ γ1 Limit is for �(X0 → e+ e−) mX 0 = 56{63.5 GeV for �(X0) = 0.5 GeV.2 Limit is for mX 0 = 56{61.5 GeV and is valid for �(X0) ≪ 100 MeV. See their Fig. 5 forlimits for � = 1,2 GeV.3 Limit is for mX 0 = 57.2{60 GeV.4 Limit is valid for �(X0) ≪ 100 MeV. See paper for limits for � = 1 GeV and those forJ = 2 resonan
es.5 Limit is for mX 0 = 56.6{60 GeV.6 STERNER 93 limit is for mX 0 = 57{59.6 GeV and is valid for �(X0)<100 MeV. Seetheir Fig. 2 for limits for � = 1,3 GeV.Sear
h for X 0 Resonan
e in e p CollisionsSear
h for X 0 Resonan
e in e p CollisionsSear
h for X 0 Resonan
e in e p CollisionsSear
h for X 0 Resonan
e in e p CollisionsVALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 CHEKANOV 02B ZEUS X → j j1CHEKANOV 02B sear
h for photoprodu
tion of X de
aying into dijets in e p 
ollisions.See their Fig. 5 for the limit on the photoprodu
tion 
ross se
tion.Sear
h for X 0 Resonan
e in e+ e− → X 0 γSear
h for X 0 Resonan
e in e+ e− → X 0 γSear
h for X 0 Resonan
e in e+ e− → X 0 γSear
h for X 0 Resonan
e in e+ e− → X 0 γVALUE (GeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 ABBIENDI 03D OPAL X0 → γ γ2 ABREU 00Z DLPH X0 de
aying invisibly3 ADAM 96C DLPH X0 de
aying invisibly1ABBIENDI 03D measure the e+ e− → γ γ γ 
ross se
tion at √s=181{209 GeV. Theupper bound on the produ
tion 
ross se
tion, σ(e+ e− → X0 γ) times the bran
hingratio for X0 → γ γ, is less than 0.03 pb at 95%CL for X0 masses between 20 and 180GeV. See their Fig. 9b for the limits in the mass-
ross se
tion plane.2ABREU 00Z is from the single photon 
ross se
tion at √s=183, 189 GeV. The produ
tion
ross se
tion upper limit is less than 0.3 pb for X0 mass between 40 and 160 GeV. Seetheir Fig. 4 for the limit in mass-
ross se
tion plane.3ADAM 96C is from the single photon produ
tion 
ross at √s=130, 136 GeV. The upperbound is less than 3 pb for X0 masses between 60 and 130 GeV. See their Fig. 5 for theexa
t bound on the 
ross se
tion σ(e+ e− → γX0).Sear
h for X 0 Resonan
e in Z → f f X 0Sear
h for X 0 Resonan
e in Z → f f X 0Sear
h for X 0 Resonan
e in Z → f f X 0Sear
h for X 0 Resonan
e in Z → f f X 0The limit is for B(Z → f f X0) · B(X0 → F ) where f is a fermion and F is thespe
i�ed �nal state. Spin 0 is assumed for X0.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
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le ListingsNewHeavy Bosons1 ABREU 96T DLPH f=e,µ,τ ; F=γ γ

<3.7× 10−6 95 2 ABREU 96T DLPH f=ν; F=γ γ3 ABREU 96T DLPH f=q; F=γ γ

<6.8× 10−6 95 2 ACTON 93E OPAL f=e,µ,τ ; F=γ γ

<5.5× 10−6 95 2 ACTON 93E OPAL f=q; F=γ γ

<3.1× 10−6 95 2 ACTON 93E OPAL f=ν; F=γ γ

<6.5× 10−6 95 2 ACTON 93E OPAL f=e,µ; F=ℓℓ, qq, ν ν

<7.1× 10−6 95 2 BUSKULIC 93F ALEP f=e,µ; F=ℓℓ, qq, ν ν4 ADRIANI 92F L3 f=q; F=γ γ1ABREU 96T obtain limit as a fun
tion of mX 0 . See their Fig. 6.2 Limit is for mX 0 around 60 GeV.3ABREU 96T obtain limit as a fun
tion of mX 0 . See their Fig. 15.4ADRIANI 92F give σZ · B(Z → qqX0) · B(X0 → γ γ)<(0.75{1.5) pb (95%CL) formX 0 = 10{70 GeV. The limit is 1 pb at 60 GeV.Sear
h for X 0 Resonan
e in W X 0 �nal stateSear
h for X 0 Resonan
e in W X 0 �nal stateSear
h for X 0 Resonan
e in W X 0 �nal stateSear
h for X 0 Resonan
e in W X 0 �nal stateVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AALTONEN 13AA CDF X0 → j j2 CHATRCHYAN12BR CMS X0 → j j3 ABAZOV 11I D0 X0 → j j4 ABE 97W CDF X0 → bb1AALTONEN 13AA sear
h for X0 produ
tion asso
iated with W (or Z) in pp 
ollisionsat E
m = 1.96 TeV. The upper limit on the 
ross se
tion σ(pp → WX0) is 2.2 pb forMX 0 = 145 GeV.2CHATRCHYAN 12BR sear
h for X0 produ
tion asso
iated with W in pp 
ollisions atE
m = 7 TeV. The upper limit on the 
ross se
tion is 5.0 pb at 95% CL for mX 0 =150 GeV.3ABAZOV 11I sear
h for X0 produ
tion asso
iated with W in pp 
ollisions at E
m =1.96 TeV. The 95% CL upper limit on the 
ross se
tion ranges from 2.57 to 1.28 pb forX0 mass between 110 and 170 GeV.4ABE 97W sear
h for X0 produ
tion asso
iated with W in pp 
ollisions at E
m=1.8TeV. The 95%CL upper limit on the produ
tion 
ross se
tion times the bran
hing ratiofor X0 → bb ranges from 14 to 19 pb for X0 mass between 70 and 120 GeV. See theirFig. 3 for upper limits of the produ
tion 
ross se
tion as a fun
tion of mX 0.Sear
h for X 0 Resonan
e in Quarkonium De
aysSear
h for X 0 Resonan
e in Quarkonium De
aysSear
h for X 0 Resonan
e in Quarkonium De
aysSear
h for X 0 Resonan
e in Quarkonium De
aysLimits are for bran
hing ratios to modes shown. Spin 1 is assumed for X0.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
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Introduction

In this section, we list coupling-strength and mass limits for

light neutral scalar or pseudoscalar bosons that couple weakly

to normal matter and radiation. Such bosons may arise from

a global spontaneously broken U(1) symmetry, resulting in a

massless Nambu-Goldstone (NG) boson. If there is a small

explicit symmetry breaking, either already in the Lagrangian or

due to quantum effects such as anomalies, the boson acquires a

mass and is called a pseudo-NG boson. Typical examples are

axions (A0) [1,2], familons [3] and Majorons [4], associated,

respectively, with a spontaneously broken Peccei-Quinn, family

and lepton-number symmetry.

A common characteristic among these light bosons φ is that

their coupling to Standard-Model particles is suppressed by the

energy scale that characterizes the symmetry breaking, i.e., the

decay constant f . The interaction Lagrangian is

L = f−1Jµ∂µ φ , (1)

where Jµ is the Noether current of the spontaneously broken

global symmetry. If f is very large, these new particles inter-

act very weakly. Detecting them would provide a window to

physics far beyond what can be probed at accelerators.

Axions are of particular interest because the Peccei-Quinn

(PQ) mechanism remains perhaps the most credible scheme to

preserve CP in QCD. Moreover, the cold dark matter of the

universe may well consist of axions and they are searched for in

dedicated experiments with a realistic chance of discovery.

Originally it was assumed that the PQ scale fA was re-

lated to the electroweak symmetry-breaking scale vweak =
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2GF)−1/2 = 247 GeV. However, the associated “standard”

and “variant” axions were quickly excluded—we refer to the

Listings for detailed limits. Here we focus on “invisible axions”

with fA ≫ vweak as the main possibility.

Axions have a characteristic two-photon vertex, inherited

from their mixing with π0 and η. This coupling allows for

the main search strategy based on axion-photon conversion

in external magnetic fields [5], an effect that also can be

of astrophysical interest. While for axions the product “Aγγ

interaction strength × mass” is essentially fixed by the corre-

sponding π0 properties, one may consider a more general class

of axion-like particles (ALPs) where the two parameters (cou-

pling and mass) are independent. A number of experiments

explore this more general parameter space. ALPs populating

the latter are predicted to arise generically, in addition to the

axion, in low-energy effective field theories emerging from string

theory [6]. The latter often contain also very light Abelian

vector bosons under which the Standard-Model particles are

not charged: so-called hidden-sector photons, dark photons or

paraphotons. They share a number of phenomenological fea-

tures with the axion and ALPs, notably the possibility of

hidden photon to photon conversion. Their physics cases and

the current constraints are compiled in Ref. [7].

I. THEORY

I.1 Peccei-Quinn mechanism and axions

The QCD Lagrangian includes a CP-violating term LΘ =

−Θ̄ (αs/8π) GµνaG̃a
µν , where −π ≤ Θ̄ ≤ +π is the effective

Θ parameter after diagonalizing quark masses, Ga
µν is the

color field strength tensor, and G̃a,µν ≡ ǫµνλρGa
λρ/2, with

ε0123 = 1, its dual. Limits on the neutron electric dipole

moment [8] imply |Θ̄| <∼ 10−10 even though Θ̄ = O(1) is

otherwise completely satisfactory. The spontaneously broken

global Peccei-Quinn symmetry U(1)PQ was introduced to solve

this “strong CP problem” [1], the axion being the pseudo-NG

boson of U(1)PQ [2]. This symmetry is broken due to the

axion’s anomalous triangle coupling to gluons,

L =

(
φA

fA
− Θ̄

)
αs

8π
GµνaG̃a

µν , (2)

where φA is the axion field and fA the axion decay constant.

Color anomaly factors have been absorbed in the normalization

of fA which is defined by this Lagrangian. Thus normalized,

fA is the quantity that enters all low-energy phenomena [9].

Non-perturbative topological fluctuations of the gluon fields in

QCD induce a potential for φA whose minimum is at φA = Θ̄ fA,

thereby canceling the Θ̄ term in the QCD Lagrangian and thus

restoring CP symmetry.

The resulting axion mass, in units of the PQ scale fA, is

identical to the square root of the topological susceptibility in

QCD, mAfA =
√

χ. The latter can be evaluated further [10],

exploiting the chiral limit (masses of up and down quarks much

smaller than the scale of QCD), yielding mAfA =
√

χ ≈ fπmπ,

where mπ = 135 MeV and fπ ≈ 92 MeV. In more detail one

finds, to leading order in chiral perturbation theory,

mA =
z1/2

1 + z

fπmπ

fA
=

0.60 meV

fA/1010 GeV
, (3)

where z = mu/md. We have used the canonical value z =

0.56 [11], although the range z = 0.38–0.58 is plausible [12].

The next-to-leading order correction to the axion mass has been

evaluated recently in Ref. [13].

Originally one assumed fA ∼ vweak [1,2]. Tree-level flavor

conservation fixes the axion properties in terms of a single

parameter: the ratio of the vacuum expectation values of two

Higgs fields that appear as a minimal ingredient. This “stan-

dard axion” was excluded after extensive searches [14]. A nar-

row peak structure observed in positron spectra from heavy ion

collisions [15] suggested an axion-like particle of mass 1.8 MeV

that decays into e+e−, but extensive follow-up searches were

negative. “Variant axion models” were proposed which keep

fA ∼ vweak while relaxing the constraint of tree-level flavor

conservation [16], but these models are also excluded [17].

However, axions with fA ≫ vweak evade all current exper-

imental limits. One generic class of models invokes “hadronic

axions” where new heavy quarks carry U(1)PQ charges, leaving

ordinary quarks and leptons without tree-level axion couplings.

The archetype is the KSVZ model [18], where in addition the

heavy quarks are electrically neutral. Another generic class re-

quires at least two Higgs doublets and ordinary quarks and

leptons carry PQ charges, the archetype being the DFSZ

model [19]. All of these models contain at least one elec-

troweak singlet scalar that acquires a vacuum expectation value

and thereby breaks the PQ symmetry. The KSVZ and DFSZ

models are frequently used as benchmark examples, but other

models exist where both heavy quarks and Higgs doublets carry

PQ charges. In supersymmetric models, the axion is part of

a supermultiplet and thus inevitably accompanied by a spin-0

saxion and a spin-1 axino, which both also have couplings

suppressed by fA, and are expected to have large masses due to

supersymmetry breaking [20].

I.2 Model-dependent axion couplings

Although the generic axion interactions scale approximately

with fπ/fA from the corresponding π0 couplings, there are non-

negligible model-dependent factors and uncertainties. The ax-

ion’s two-photon interaction plays a key role for many searches,

LAγγ = −GAγγ

4
FµνF̃

µνφA = GAγγE · BφA , (4)

where F is the electromagnetic field-strength tensor and F̃ µν ≡
ǫµνλρFλρ/2, with ε0123 = 1, its dual. The coupling constant is

GAγγ =
α

2πfA

(
E

N
− 2

3

4 + z

1 + z

)

=
α

2π

(
E

N
− 2

3

4 + z

1 + z

)
1 + z

z1/2

mA

mπfπ
,

(5)

where E and N are the electromagnetic and color anomalies of

the axial current associated with the axion. In grand unified
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models, and notably for DFSZ [19], E/N = 8/3, whereas for

KSVZ [18] E/N = 0 if the electric charge of the new heavy

quark is taken to vanish. In general, a broad range of E/N

values is possible [21], as indicated by the yellow band in

Figure 1. The two-photon decay width is

ΓA→γγ =
G2

Aγγm3
A

64 π
= 1.1 × 10−24 s−1

(mA

eV

)5
. (6)

The second expression uses Eq. (5) with z = 0.56 and E/N = 0.

Axions decay faster than the age of the universe if mA
>∼ 20 eV.
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Figure 1: Exclusion plot for axion-like parti-
cles as described in the text.

The interaction with fermions f has derivative form and is

invariant under a shift φA → φA + φ0 as behooves a NG boson,

LAff =
Cf

2fA
Ψ̄fγµγ5Ψf∂µφA . (7)

Here, Ψf is the fermion field, mf its mass, and Cf a

model-dependent coefficient. The dimensionless combination

gAff ≡ Cfmf/fA plays the role of a Yukawa coupling and

αAff ≡ g2
Aff/4π of a “fine-structure constant.” The often-

used pseudoscalar form LAff = −i (Cfmf/fA) Ψ̄fγ5ΨfφA need

not be equivalent to the appropriate derivative structure, for

example when two NG bosons are attached to one fermion line

as in axion emission by nucleon bremsstrahlung [22].

In the DFSZ model [19], the tree-level coupling coefficient

to electrons is [23]

Ce =
cos2 β′

3
, (8)

where tan β′ = vd/vu is the ratio of the vacuum expectation

value vd of the Higgs field Hd giving masses to the down-type

quarks and the vacuum expectation value vu of the Higgs field

Hu giving masses to the up-type quarks. (The prime at the

angle indicates that the convention in the axion literature differs

from the one in the Higgs literature, which uses tanβ = vu/vd =

cot β′ [24]. )

For nucleons, Cn,p are related to axial-vector current matrix

elements by generalized Goldberger-Treiman relations,

Cp = (Cu − η)∆u + (Cd − ηz)∆d + (Cs − ηw)∆s ,

Cn = (Cu − η)∆d + (Cd − ηz)∆u + (Cs − ηw)∆s .
(9)

Here, η = (1 + z + w)−1 with z = mu/md and w = mu/ms ≪ z

and the ∆q are given by the axial vector current matrix element

∆q Sµ = 〈p|q̄γµγ5q|p〉 with Sµ the proton spin.

Neutron beta decay and strong isospin symmetry considera-

tions imply ∆u−∆d = F +D = 1.269±0.003, whereas hyperon

decays and flavor SU(3) symmetry imply ∆u + ∆d − 2∆s =

3F −D = 0.586± 0.031 [25]. The strange-quark contribution

is ∆s = −0.08 ± 0.01stat ± 0.05syst from the COMPASS experi-

ment [26], and ∆s = −0.085± 0.008exp ± 0.013theor ± 0.009evol

from HERMES [25], in agreement with each other and with

an early estimate of ∆s = −0.11 ± 0.03 [27]. We thus adopt

∆u = 0.84 ± 0.02, ∆d = −0.43 ± 0.02 and ∆s = −0.09 ± 0.02,

very similar to what was used in the axion literature.

The uncertainty of the axion-nucleon couplings is dominated

by the uncertainty z = mu/md = 0.38–0.58 that we mentioned

earlier. For hadronic axions Cu,d,s = 0, so that −0.51 < Cp <

−0.36 and 0.10 > Cn > −0.05. Therefore it is well possible that

Cn = 0 whereas Cp does not vanish within the plausible z range.

In the DFSZ model, Cu = 1
3 sin2 β′ and Cd = 1

3 cos2 β′ and Cn

and Cp as functions of β′ and z do not vanish simultaneously.

The axion-pion interaction is given by the Lagrangian [28]

LAπ =
CAπ

fπfA

(
π0π+∂µπ− + π0π−∂µπ+ − 2π+π−∂µπ0

)
∂µφA ,

(10)

where CAπ = (1− z)/[3(1 + z)] in hadronic models. The chiral

symmetry-breaking Lagrangian provides an additional term

L′
Aπ ∝ (m2

π/fπfA) (π0π0 + 2π−π+) π0φA. For hadronic axions

it vanishes identically, in contrast to the DFSZ model (Roberto

Peccei, private communication).

II. LABORATORY SEARCHES

II.1 Light shining through walls

Searching for “invisible axions” is extremely challenging due

to its extraordinarily feeble coupling to normal matter and ra-

diation. Currently, the most promising approaches rely on the

axion-two-photon vertex, allowing for axion-photon conversion

in external electric or magnetic fields [5]. For the Coulomb

field of a charged particle, the conversion is best viewed as a

scattering process, γ+Ze ↔ Ze+A, called Primakoff effect [29].

In the other extreme of a macroscopic field, usually a large-scale

B-field, the momentum transfer is small, the interaction coher-

ent over a large distance, and the conversion is best viewed as

an axion-photon oscillation phenomenon in analogy to neutrino

flavor oscillations [30].

Photons propagating through a transverse magnetic field,

with incident Eγ and magnet B parallel, may convert into

axions. For m2
AL/2ω ≪ 2π, where L is the length of the

B field region and ω the photon energy, the resultant axion

beam is coherent with the incident photon beam and the
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conversion probability is Π ∼ (1/4)(GAγγBL)2. A practical

realization uses a laser beam propagating down the bore of a

superconducting dipole magnet (like the bending magnets in

high-energy accelerators). If another magnet is in line with

the first, but shielded by an optical barrier, then photons may

be regenerated from the pure axion beam [31]. The overall

probability is P (γ → A → γ) = Π2.

The first such experiment utilized two magnets of length

L = 4.4 m and B = 3.7 T and found |GAγγ| < 6.7×10−7 GeV−1

at 95% CL for mA < 1 meV [32]. More recently, several

such experiments were performed (see Listings) [33,34]. The

current best limit, |GAγγ| < 3.5 × 10−8 GeV−1 at 95% CL for

mA
<∼ 0.3 meV (see Figure 1), has been achieved by the OSQAR

(Optical Search for QED Vacuum Birefringence, Axions, and

Photon Regeneration) experiment, which exploited two 9 T

LHC dipole magnets and an 18.5 W continuous wave laser

emitting at the wavelength of 532 nm [34]. Some of these

experiments have also reported limits for scalar bosons where

the photon Eγ must be chosen perpendicular to the magnet B.

The concept of resonantly enhanced photon regeneration

may open unexplored regions of coupling strength [35]. In this

scheme, both the production and detection magnets are within

Fabry-Perot optical cavities and actively locked in frequency.

The γ → A → γ rate is enhanced by a factor 2FF ′/π2 relative

to a single-pass experiment, where F and F ′ are the finesses of

the two cavities. The resonant enhancement could be of order

10(10−12), improving the GAγγ sensitivity by 10(2.5−3). The

experiment ALPS II (Any Light Particle Search II) is based

on this concept and aims at an improvement of the current

laboratory bound on GAγγ by a factor ∼ 3 × 103 in the year

2018 [36].

Resonantly enhanced photon regeneration has already been

exploited in experiments searching for ”radiowaves shining

through a shielding” [37,38]. For mA
<∼ 10−5 eV, the upper

bound on GAγγ established by the CROWS (CERN Resonant

Weakly Interacting sub-eV Particle Search) experiment [39] is

slightly less stringent than the one set by OSQAR.

II.2 Photon polarization

An alternative to regenerating the lost photons is to use

the beam itself to detect conversion: the polarization of light

propagating through a transverse B field suffers dichroism

and birefringence [40]. Dichroism: The E‖ component, but

not E⊥, is depleted by axion production, causing a small

rotation of linearly polarized light. For m2
AL/2ω ≪ 2π, the

effect is independent of mA. For heavier axions, it oscillates

and diminishes as mA increases, and it vanishes for mA > ω.

Birefringence: This rotation occurs because there is mixing of

virtual axions in the E‖ state, but not for E⊥. Hence, linearly

polarized light will develop elliptical polarization. Higher-order

QED also induces vacuum magnetic birefringence (VMB). A

search for these effects was performed in the same dipole

magnets in the early experiment above [41]. The dichroic

rotation gave a stronger limit than the ellipticity rotation:

|GAγγ | < 3.6× 10−7 GeV−1 at 95% CL for mA < 5× 10−4 eV.

The ellipticity limits are better at higher masses, as they fall off

smoothly and do not terminate at mA.

In 2006 the PVLAS collaboration reported a signature of

magnetically induced vacuum dichroism that could be inter-

preted as the effect of a pseudoscalar with mA = 1–1.5 meV

and |GAγγ | = (1.6–5) × 10−6 GeV−1 [42]. Since then, these

findings are attributed to instrumental artifacts [43]. This

particle interpretation is also excluded by the above photon

regeneration searches that were inspired by the original PVLAS

result. Recently, the fourth generation setup of the PVLAS

experiment has published new results on searches for VMB

(see Figure 1) and dichroism [44]. The bounds from the non-

observation of the latter on GAγγ are slightly weaker than the

ones from OSQAR.

II.3 Long-range forces

New bosons would mediate long-range forces, which are

severely constrained by “fifth force” experiments [45]. Those

looking for new mass-spin couplings provide significant con-

straints on pseudoscalar bosons [46]. Presently, the most

restrictive limits are obtained from combining long-range force

measurements with stellar cooling arguments [47]. For the

moment, any of these limits are far from realistic values ex-

pected for axions. Still, these efforts provide constraints on

more general low-mass bosons.

Recently, a method was proposed that can extend the search

for axion-mediated spin-dependent forces by several orders of

magnitude [48]. By combining techniques used in nuclear

magnetic resonance and short-distance tests of gravity, this

method appears to be sensitive to axions in the µeV – meV

mass range, independent of the cosmic axion abundance.

III. AXIONS FROM ASTROPHYSICAL SOURCES

III.1 Stellar energy-loss limits:

Low-mass weakly-interacting particles (neutrinos, gravitons,

axions, baryonic or leptonic gauge bosons, etc.) are produced

in hot astrophysical plasmas, and can thus transport energy

out of stars. The coupling strength of these particles with

normal matter and radiation is bounded by the constraint

that stellar lifetimes or energy-loss rates not conflict with

observation [49–51].

We begin this discussion with our Sun and concentrate

on hadronic axions. They are produced predominantly by the

Primakoff process γ+Ze → Ze+A. Integrating over a standard

solar model yields the axion luminosity [52]

LA = G2
10 1.85 × 10−3 L⊙ , (11)

where G10 = |GAγγ| × 1010 GeV. The maximum of the spec-

trum is at 3.0 keV, the average at 4.2 keV, and the number

flux at Earth is G2
10 3.75 × 1011 cm−2 s−1. The solar photon

luminosity is fixed, so axion losses require enhanced nuclear

energy production and thus enhanced neutrino fluxes. The all-

flavor measurements by SNO together with a standard solar
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model imply LA

<∼ 0.10 L⊙, corresponding to G10 <∼ 7 [53],

mildly superseding a similar limit from helioseismology [54].

Recently, the limit was improved to G10 < 4.1 (at 3σ), exploit-

ing a new statistical analysis that combined helioseismology

(sound speed, surface helium and convective radius) and solar

neutrino observations, including theoretical and observational

errors, and accounting for tensions between input parameters of

solar models, in particular the solar element abundances [55].

A more restrictive limit derives from globular-cluster (GC)

stars that allow for detailed tests of stellar-evolution theory.

The stars on the horizontal branch (HB) in the color-magnitude

diagram have reached helium burning with a core-averaged en-

ergy release of about 80 erg g−1 s−1, compared to Primakoff

axion losses of G2
10 30 erg g−1 s−1. The accelerated consump-

tion of helium reduces the HB lifetime by about 80/(80+30 G2
10).

Number counts of HB stars in a large sample of 39 Galactic

GCs compared with the number of red giants (that are not

much affected by Primakoff losses) give a weak indication of

non-standard losses which may be accounted by Primakoff-

like axion emission, if the photon coupling is in the range

|GAγγ | = 4.5+1.2
−1.6 × 10−11 GeV−1 [56]. Still, the upper bound

found in this analysis,

|GAγγ | < 6.6 × 10−11 GeV−1 (95% CL), (12)

represents the strongest limit on GAγγ for a wide mass range,

see Figure 1.
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Figure 2: Exclusion ranges as described in
the text. The intervals in the bottom row are
the approximate ADMX, CASPEr, CAST, and
IAXO search ranges, with green regions indi-
cating the projected reach. Limits on coupling
strengths are translated into limits on mA and
fA using z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough representa-
tion of the exclusion range for standard or vari-
ant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA
<∼ 150 meV

(0.21 eV <∼ mA
<∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

determined. The relevant temperature is around 10 keV and

the average photon energy is therefore around 30 keV. The

excluded mA range thus certainly extends beyond the shown

100 keV.

If axions couple directly to electrons, the dominant emission

processes are atomic axio-recombination and axio-deexcitation,

axio-bremsstrahlung in electron-ion or electron-electron colli-

sions, and Compton scattering [57]. Stars in the red giant

(RG) branch of the color-magnitude diagram of GCs are partic-

ularly sensitive to these processes. In fact, they would lead to

an extension of the latter to larger brightness. A recent analysis

provided high-precision photometry for the Galactic globular

cluster M5 (NGC 5904), allowing for a detailed comparison

between the observed tip of the RG branch with predictions

based on state-of-the-art stellar evolution theory [58]. It was

found that, within the uncertainties, the observed and predicted

tip of the RG branch brightness agree reasonably well within

uncertainties, leading to the bound

αAee < 1.5 × 10−26 (95% CL), (13)

implying an upper bound on the axion mass in the DFSZ model,

mA cos2 β′ < 15 meV (95% CL), (14)

see Figure 2. Intriguingly, the agreement would improve with a

small amount of extra cooling that slightly postpones helium ig-

nition, prefering an electron coupling around αAee ∼ 2.8×10−27,

corresponding to mA cos2 β′ ∼ 7 meV. Recently, it has been

pointed out that the best fit simultaneously explaining the extra

energy losses of HB stars reported above and the ones of RGs

prefers a photon coupling around GAγγ ∼ few × 10−12 GeV−1

and an electron coupling of order αAee ∼ 10−27 [59].

Bremsstrahlung is also efficient in white dwarfs (WDs),

where the Primakoff and Compton processes are suppressed

by the large plasma frequency. A comparison of the predicted

and observed luminosity function of WDs can be used to put

limits on αAee [60]. A recent analysis, based on detailed

WD cooling treatment and new data on the WD luminosity

function (WDLF) of the Galactic Disk, found that electron

couplings above αAee
>∼ 6 × 10−27, corresponding to a DFSZ

axion mass mA cos2 β′ >∼ 10 meV, are disfavoured [61], see

Figure 2. Lower couplings can not be discarded from the

current knowledge of the WDLF of the Galactic Disk. On

the contrary, features in some WDLFs can be interpreted as

suggestions for electron couplings in the range 4.1 × 10−28 <∼
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αAee

<∼ 3.7 × 10−27, corresponding to 2.5 meV <∼ mA cos2 β′ <∼
7.5 meV [61,62], see Figure 2. For pulsationally unstable WDs

(ZZ Ceti stars), the period decrease Ṗ /P is a measure of the

cooling speed. The corresponding observations of the pulsating

WDs G117-B15A and R548 imply additional cooling that can

be interpreted also in terms of similar axion losses [63].

Similar constraints derive from the measured duration of

the neutrino signal of the supernova SN 1987A. Numerical simu-

lations for a variety of cases, including axions and Kaluza-Klein

gravitons, reveal that the energy-loss rate of a nuclear medium

at the density 3×1014 g cm−3 and temperature 30 MeV should

not exceed about 1 × 1019 erg g−1 s−1 [50]. The energy-loss

rate from nucleon bremsstrahlung, N + N → N + N + A, is

(CN/2fA)2(T 4/π2mN ) F . Here F is a numerical factor that

represents an integral over the dynamical spin-density structure

function because axions couple to the nucleon spin. For realis-

tic conditions, even after considerable effort, one is limited to a

heuristic estimate leading to F ≈ 1 [51].

The SN 1987A limits are of particular interest for hadronic

axions where the bounds on αAee are moot. Within uncer-

tainties of z = mu/md a reasonable choice for the coupling

constants is then Cp = −0.4 and Cn = 0. Using a proton

fraction of 0.3, F = 1, and T = 30 MeV one finds [51]

fA
>∼ 4 × 108 GeV and mA

<∼ 16 meV , (15)

see Figure 2. If axions interact sufficiently strongly they are

trapped. Only about three orders of magnitude in gANN or

mA are excluded, a range shown somewhat schematically in

Figure 2. For even larger couplings, the axion flux would have

been negligible, yet it would have triggered additional events in

the detectors, excluding a further range [64]. A possible gap

between these two SN 1987A arguments was discussed as the

“hadronic axion window” under the assumption that GAγγ was

anomalously small [65]. This range is now excluded by hot

dark matter bounds (see below).

Intriguingly, there is another hint for excessive stellar energy

losses from the neutron star (NS) in the supernova remnant

Cassiopeia A (Cas A): its surface temperature measured over

10 years reveals an unusually fast cooling rate. This may

be interpreted as a hint for extra cooling by axion neutron

bremsstrahlung, requiring a coupling to the neutron of size [66]

gAnn = (3.8 ± 3) × 10−10 (16)

corresponding to an axion mass

mA = (2.4 ± 2) meV/Cn, (17)

see Figure 2. The hint is compatible with the state-of-the-art

upper limit on this coupling,

gAnn < 8 × 10−10, (18)

from NS cooling [67]. In fact, as recently pointed out, the

more rapid cooling of the superfluid core in the neutron star

may also arise from a phase transition of the neutron condensate

into a multicomponent state [68].

Finally, let us note that if the interpretation of the various

hints for additional cooling of stars reported in this section in

terms of emission of axions with mA ∼meV were correct, SNe

would lose a large fraction of their energy as axions. This would

lead to a diffuse SN axion background in the universe with an

energy density comparable to the extra-galactic background

light [69]. However, there is no apparent way of detecting it

or the axion burst from the next nearby SN.

III.2 Searches for solar axions and ALPs

Instead of using stellar energy losses to derive axion limits,

one can also search directly for these fluxes, notably from the

Sun. The main focus has been on axion-like particles with

a two-photon vertex. They are produced by the Primakoff

process with a flux given by Equation 11 and an average energy

of 4.2 keV, and can be detected at Earth with the reverse

process in a macroscopic B-field (“axion helioscope”) [5]. In

order to extend the sensitivity in mass towards larger values,

one can endow the photon with an effective mass in a gas,

mγ = ωplas, thus matching the axion and photon dispersion

relations [70].

An early implementation of these ideas used a conventional

dipole magnet, with a conversion volume of variable-pressure

gas with a xenon proportional chamber as x-ray detector [71].

The conversion magnet was fixed in orientation and collected

data for about 1000 s/day. Axions were excluded for |GAγγ| <

3.6 × 10−9 GeV−1 for mA < 0.03 eV, and |GAγγ | < 7.7 ×
10−9 GeV−1 for 0.03 < mA < 0.11 eV at 95% CL.

Later, the Tokyo axion helioscope used a superconducting

magnet on a tracking mount, viewing the Sun continuously.

They reported |GAγγ | < 6×10−10 GeV−1 for mA < 0.3 eV [72].

This experiment was recommissioned and a similar limit for

masses around 1 eV was reported [73].

The most recent helioscope CAST (CERN Axion Solar

Telescope) uses a decommissioned LHC dipole magnet on a

tracking mount. The hardware includes grazing-incidence x-

ray optics with solid-state x-ray detectors, as well as a novel

x-ray Micromegas position-sensitive gaseous detector. CAST

has established a 95% CL limit |GAγγ| < 8.8 × 10−11 GeV−1

for mA < 0.02 eV [52]. To cover larger masses, the magnet

bores are filled with a gas at varying pressure. The runs with
4He cover masses up to about 0.4 eV [74], providing the 4He

limits shown in Figure 1. To cover yet larger masses, 3He was

used to achieve a larger pressure at cryogenic temperatures.

Limits up to 1.17 eV allowed CAST to “cross the axion line”

for the KSVZ model [75], see Figure 1.

Recently, the XENON100 experiment has presented first

results of searches for solar axions and ALPs [76]. The axion-

electron coupling constant, gAee, has been probed by exploiting

the axio-electric effect in liquid xenon, resulting in an upper

bound

gAee < 7.7 × 10−12 (90% CL), (19)
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excluding DFSZ models with mA cos2 β′ > 0.27 eV, cf. see

Figure 2.

Going to yet larger masses in a helioscope search is not well

motivated because of the cosmic hot dark matter bound of mA
<∼

1 eV (see below). Sensitivity to significantly smaller values of

GAγγ can be achieved with a next-generation axion helioscope

with a much larger magnetic-field cross section. Realistic design

options for this “International Axion Observatory” (IAXO)

have been studied in some detail [77]. Such a next-generation

axion helioscope may also push the sensitivity in the product of

couplings to photons and to electrons, GAγγgAee, into a range

beyond stellar energy-loss limits and test the hypothesis that

WD cooling is dominated by axion emission [78].

Other Primakoff searches for solar axions and ALPs have

been carried out using crystal detectors, exploiting the coherent

conversion of axions into photons when the axion angle of

incidence satisfies a Bragg condition with a crystal plane [79].

However, none of these limits is more restrictive than the

one derived from the constraint on the solar axion luminosity

(LA
<∼ 0.10 L⊙) discussed earlier.

Another idea is to look at the Sun with an x-ray satellite

when the Earth is in between. Solar axions and ALPs would

convert in the Earth magnetic field on the far side and could be

detected [80]. The sensitivity to GAγγ could be comparable

to CAST, but only for much smaller mA. Deep solar x-ray

measurements with existing satellites, using the solar magne-

tosphere as conversion region, have reported preliminary limits

on GAγγ [81].

III.3 Conversion of astrophysical photon fluxes

Large-scale B fields exist in astrophysics that can induce

axion-photon oscillations. In practical cases, B is much smaller

than in the laboratory, whereas the conversion region L is much

larger. Therefore, while the product BL can be large, realistic

sensitivities are usually restricted to very low-mass particles,

far away from the “axion band” in a plot like Figure 1.

One example is SN 1987A, which would have emitted a burst

of axion-like particles (ALPs) due to the Primakoff production

in its core. They would have partially converted into γ-rays

in the galactic B-field. The lack of a gamma-ray signal in the

GRS instrument of the SMM satellite in coincidence with the

observation of the neutrinos emitted from SN1987A therefore

provides a strong bound on their coupling to photons [82].

Recently, this bound has been revisited and the underlying

physics has been brought to the current state-of-the-art, as far

as modelling of the supernova and the Milky-Way magnetic

field are concerned, resulting in the limit [83]

|GAγγ | < 5.3 × 10−12 GeV−1, for mA
<∼ 4.4 × 10−10 eV.

Magnetically induced oscillations between photons and

axion-like particles (ALPs) can modify the photon fluxes

from distant sources in various ways, featuring (i) frequency-

dependent dimming, (ii) modified polarization, and (iii) avoid-

ing absorption by propagation in the form of axions.

For example, dimming of SNe Ia could influence the inter-

pretation in terms of cosmic acceleration [84], although it has

become clear that photon-ALP conversion could only be a sub-

dominant effect [85]. Searches for linearly polarised emission

from magnetised white dwarfs [86] and changes of the linear

polarisation from radio galaxies (see, e.g., Ref. [87]) provide

limits close to GAγγ ∼ 10−11 GeV−1, for masses mA
<∼ 10−7 eV

and mA
<∼ 10−15 eV, respectively, albeit with uncertainties re-

lated to the underlying assumptions. Even stronger limits,

GAγγ
<∼ 2 × 10−13 GeV−1, for mA

<∼ 10−14 eV, have been

obtained by exploiting high-precision measurements of quasar

polarisations [88].

Remarkably, it appears that the universe could be too

transparent to TeV γ-rays that should be absorbed by pair

production on the extra-galactic background light [89]. The

situation is not conclusive at present [90], but the possible

role of photon-ALP oscillations in TeV γ-ray astronomy is

tantalizing [91]. Fortunately, the region in ALP parameter

space, GAγγ ∼ 10−12 − 10−10 GeV−1 for mA
<∼ 10−7 eV [92],

required to explain the anomalous TeV transparency of the

universe, could be conceivably probed by the next generation

of laboratory experiments (ALPS II) and helioscopes (IAXO)

mentioned above. This parameter region can also be probed by

searching for an irregular behavior of the gamma ray spectrum

of distant active galactic nuclei (AGN), expected to arise from

photon-ALP mixing in a limited energy range. The H.E.S.S.

collaboration has set a limit of |GAγγ| <∼ 2.1×10−11 GeV−1, for

1.5×10−8 eV <∼ mA
<∼ 6.0×10−8 eV, from the non-observation

of an irregular behavior of the spectrum of the AGN PKS

2155 [93], see Figure 1.

Last but not least, it was found that observed soft X-ray

excesses in many galaxy clusters may be explained by the

conversion of a hypothetical cosmic ALP background (CAB)

radiation, corresponding to an effective number △Neff of extra

neutrinos, into photons in the cluster magnetic fields [94].

This explanation requires that the CAB spectrum is peaked

in the soft X-ray region and that the ALP coupling and

mass satisfy |GAγγ | >∼ (1 − 2) × 10−13 GeV−1
√

0.5/△Neff , for

mA
<∼ 10−12 eV.

III.4 Superradiance of black holes

Ultralight bosonic fields such as axions or ALPs can affect

the dynamics and gravitational wave emission of rapidly rotat-

ing astrophysical black holes through the Penrose superradiance

mechanism. When their Compton wavelength is of order of the

black hole size, they form bound states around the black hole

nucleus. Their occupation number grows exponentially by ex-

tracting rotational energy and angular momentum from the

ergosphere, thus forming a rotating Bose-Einstein condensate

emitting gravitational waves. For black holes lighter than 107

solar masses, accretion cannot replenish the spin of the black

hole. The existence of destabilizing ultralight bosonic fields

thus leads to gaps in the mass vs. spin plot of rapidly rotating

black holes. Stellar black hole spin measurements – exploiting
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well-studied binaries and two independent techniques – exclude

a mass range 6 × 10−13 eV < mA < 2 × 10−11 eV at 2σ, which

for the axion excludes 3 × 1017 GeV < fA < 1 × 1019 GeV [95].

Long lasting, monochromatic gravitational wave signals, which

can be distinguished from ordinary astrophysical sources, are

expected to be produced by axions transitioning between the

levels of the gravitational atom and axions annihilating to gravi-

tons. Accordingly, the gravitational wave detector Advanced

LIGO should be sensitive to the axion in the mA ∼ 10−10 eV

region.

IV. COSMIC AXIONS

IV.1 Cosmic axion populations

In the early universe, axions are produced by processes in-

volving quarks and gluons [96]. After color confinement, the

dominant thermalization process is π + π ↔ π + A [28]. The

resulting axion population would contribute a hot dark mat-

ter component in analogy to massive neutrinos. Cosmological

precision data provide restrictive constraints on a possible hot

dark-matter fraction that translate into mA
<∼ 1 eV [97], but

in detail depend on the used data set and assumed cosmological

model. In the future, data from a EUCLID-like survey com-

bined with Planck CMB data can detect hot dark matter axions

mass mA
>∼ 0.15 eV at very high significance [98].

For mA
>∼ 20 eV, axions decay fast on a cosmic time scale,

removing the axion population while injecting photons. This

excess radiation provides additional limits up to very large

axion masses [99]. An anomalously small GAγγ provides no

loophole because suppressing decays leads to thermal axions

overdominating the mass density of the universe.

The main cosmological interest in axions derives from their

possible role as cold dark matter (CDM). In addition to thermal

processes, axions are abundantly produced by the “re-alignment

mechanism” [100]. After the breakdown of the PQ symmetry,

the axion field relaxes somewhere in the “bottom of the wine

bottle” potential. Near the QCD epoch, topological fluctua-

tions of the gluon fields such as instantons explicitly break

the PQ symmetry, the very effect that causes dynamical PQ

symmetry restoration. This “tilting of the wine bottle” drives

the axion field toward the CP-conserving minimum, thereby

exciting coherent oscillations of the axion field that ultimately

represent a condensate of CDM. The fractional cosmic mass

density in this homogeneous field mode is [101,102],

Ωreal
A h2 ≈ 0.11

(
fA

5 × 1011 GeV

)1.19

F Θ̄2
i

= 0.11

(
12 µeV

mA

)1.19

F Θ̄2
i ,

(20)

where h is the present-day Hubble expansion parameter in

units of 100 km s−1 Mpc−1, and −π ≤ Θ̄i ≤ π is the initial

“misalignment angle” relative to the CP-conserving position

attained in the causally connected region which evolved into to-

day’s observable universe. F = F (Θ̄i, fA) is a factor accounting

for anharmonicities in the axion potential.

For F Θ̄2
i = O(1), mA should be above ∼ 10 µeV in order

that the cosmic axion density does not exceed the observed

CDM density, ΩCDMh2 = 0.11. However, much smaller axion

masses (much higher PQ scales) would still be possible if the PQ

symmetry is broken during inflation and not restored afterwards.

In this case, the initial value Θ̄i may just happen to be

small enough in today’s observable universe (“anthropic axion

window” [103]) . However, since the axion field is then present

during inflation and thus subject to quantum fluctuations, the

non-observation of the associated isocurvature fluctuations in

the CMB puts severe constraints in the (fA, r) plane, where

r is the ratio of the power in tensor to the one in scalar

fluctuations [104]. In fact, isocurvature constraints, combined

with a future measurement of a sizeable r, would strongly

disfavor axions with [105]

fA
>∼ 1.3 × 1013 GeV

( r

0.1

)1/2
, mA

<∼ 0.4 µeV
( r

0.1

)−1/2
.

If the PQ symmetry breakdown takes place after inflation,

Θ̄i will take on different values in different patches of the

universe. The average contribution is [101]

Ωreal
A h2 ≈ 0.11

(
41 µeV

mA

)1.19

. (21)

However, the additional contribution from the decay of topo-

logical defects suffers from significant uncertainties. According

to Sikivie and collaborators, these populations are comparable

to the re-alignment contribution [106]. Other groups find a

significantly enhanced axion density [102,107] or rather, a larger

mA value for axions providing CDM, namely

mA ≈ (0.8 − 1.3) × 10−4 eV, (22)

for models with short-lived (requiring unit color anomaly N =

1) domain walls, such as the KSVZ model, and

mA ≈ (6 × 10−4 − 4 × 10−3) eV, (23)

for models with long-lived (N > 1) domain walls, such as an

accidental DFSZ model [108], where the PQ symmetry is

broken by higher dimensional Planck suppressed operators, see

Figure 2. Moreover, the spatial axion density variations are

large at the QCD transition and they are not erased by free

streaming. When matter begins to dominate the universe, grav-

itationally bound “axion mini clusters” form promptly [109].

A significant fraction of CDM axions can reside in these bound

objects.

In the above predictions of the fractional cosmic mass

density in axions, the exponent, 1.19, arises from the non-

trivial temperature dependence of the axion mass mA(T ) =√
χ(T )/fA, which has been obtained from the dilute instanton

gas/liquid approximation (DIGA). Lattice QCD provides a first

principle technique to determine the topological susceptibil-

ity χ(T ) in the relevant temperature range around the QCD

phase transition. A full result needs two ingredients: physical

quark masses and a controlled continuum extrapolation from
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non-vanishing to zero lattice spacings. The latter has been

done recently in the quenched framework (neglecting the ef-

fects of light quarks) and compared with the prediction of the

DIGA [110,111]. Nice agreement was found for the temperature

dependence, whereas the overall normalization of the DIGA re-

sult turned out to differ from the non-perturbative continuum

extrapolated lattice results by a factor of order ten [111]. If

this finding can be extrapolated to full QCD, the prediction

of the axion mass relevant for dark matter will decrease by

about 20 % compared to the DIGA prediction. Lattice simula-

tions with physical quark masses are about two-to-three orders

of magnitude more CPU intensive than quenched ones. In

addition one expects much smaller topological susceptibilities

and larger cutoff effects. Correspondingly, available pioneering

studies in full QCD [112] do not extend to the relevant temper-

ature range and may still suffer from strong cutoff effects. But

lattice campaigns dedicated to axion cosmology are ongoing.

In R-parity conserving supersymmetric models, more pos-

sibilities arise: cold dark matter might be a mixture of axions

along with the lightest SUSY particle (LSP) [20]. Candidates

for the LSP include the lightest neutralino, the gravitino, the

axino, or a sneutrino. In the case of a neutralino LSP, saxion

and axino production in the early universe have a strong impact

on the neutralino and axion abundance. The former almost al-

ways gets increased beyond its thermal-production-only value,

favoring then models with higgsino-like or wino-like neutrali-

nos [113]. For large values of fA, saxions from the vacuum

re-alignment mechanism may produce large relic dilution via

entropy dumping, thus allowing for much larger values of fA,

sometimes as high as approaching the GUT scale, ∼ 1016 GeV,

for natural values of the initial re-alignment angle. Then the

dark matter may be either neutralino- or axion-dominated, or

a comparable mixture. In such scenarios, one might expect

eventual direct detection of both relic neutralinos and relic

axions.

Finally, it is worth mentioning that the non-thermal pro-

duction mechanisms attributed to axions are indeed generic to

bosonic weakly interacting ultra-light particles such as ALPs:

a wide range in GAγγ – mA parameter space outside the ax-

ion band can generically contain models with adequate CDM

density [114].

IV.2 Telescope searches

The two-photon decay is extremely slow for axions with

masses in the CDM regime, but could be detectable for eV

masses. The signature would be a quasi-monochromatic emis-

sion line from galaxies and galaxy clusters. The expected

optical line intensity for DFSZ axions is similar to the contin-

uum night emission. An early search in three rich Abell clus-

ters [115], and a recent search in two rich Abell clusters [116],

exclude the “Telescope” range in Figure 1 and Figure 2 unless

the axion-photon coupling is strongly suppressed. Of course,

axions in this mass range would anyway provide an excessive

hot DM contribution.

Very low-mass axions in halos produce a weak quasi-

monochromatic radio line. Virial velocities in undisrupted

dwarf galaxies are very low, and the axion decay line

would therefore be extremely narrow. A search with the

Haystack radio telescope on three nearby dwarf galaxies pro-

vided a limit |GAγγ| < 1.0 × 10−9 GeV−1 at 96% CL for

298 < mA < 363 µeV [117]. However, this combination of

mA and GAγγ does not exclude plausible axion models.

IV.3 Microwave cavity experiments

The limits of Figure 2 suggest that axions, if they exist,

provide a significant fraction or even perhaps all of the cos-

mic CDM. In a broad range of the plausible mA range for

CDM, galactic halo axions may be detected by their resonant

conversion into a quasi-monochromatic microwave signal in a

high-Q electromagnetic cavity permeated by a strong static B

field [5,118]. The cavity frequency is tunable, and the signal

is maximized when the frequency is the total axion energy, rest

mass plus kinetic energy, of ν = (mA/2π) [1 + O(10−6)], the

width above the rest mass representing the virial distribution

in the galaxy. The frequency spectrum may also contain finer

structure from axions more recently fallen into the galactic

potential and not yet completely virialized [119].

Figure 3: Exclusion region reported from
the microwave cavity experiments RBF and
UF [120] and ADMX [121]. A local dark-matter
density of 450 MeV cm−3 is assumed.

The feasibility of this technique was established in early

experiments of relatively small sensitive volume, O(1 liter),

with HFET-based amplifiers, setting limits in the range

4.5 < mA < 16.3 µeV [120], but lacking by 2–3 orders of

magnitude the sensitivity required to detect realistic axions.

Later, ADMX (B ∼ 8 T, V ∼ 200 liters) has achieved sen-

sitivity to KSVZ axions, assuming they saturate the local

dark matter density and are well virialized, over the mass

range 1.9–3.3 µeV [121]. Should halo axions have a signifi-

cant component not yet virialized, ADMX is sensitive to DFSZ
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axions [122]. The corresponding 90% CL exclusion regions

shown in Figure 3 are normalized to an assumed local CDM

density of 7.5 × 10−25 g cm−3 (450 MeV cm−3). More re-

cently the ADMX experiment commissioned an upgrade [123]

that replaces the microwave HFET amplifiers by near quan-

tum-limited low-noise dc SQUID microwave amplifiers [124],

allowing for a significantly improved sensitivity [125]. This

apparatus is also sensitive to other hypothetical light bosons,

such as hidden photons or chameleons, over a limited parameter

space [114,126]. Alternatively, a Rydberg atom single-photon

detector [127] can in principle evade the standard quantum

limit for coherent photon detection.

Other new concepts for searching for axion dark matter are

also being investigated. For instance, photons from dark matter

axions or ALPs could be focused in a manner similar to a dish

antenna instead of a resonant cavity [128], enabling broadband

searches at higher masses than the RF technique. Searches for

hidden photon dark matter exploiting this technique are already

underway [129]. Another alternative to the microwave cavity

technique is based on a novel detector architecture consisting of

an open, Fabry-Perot resonator and a series of current-carrying

wire planes [130]. The Orpheus detector has demonstrated

this new technique, excluding dark matter ALPs with masses

between 68.2 and 76.5µeV and axion-photon couplings greater

than 4 × 10−7 GeV−1. This technique may be able to probe

dark matter axions in the mass range from 40 to 700 µeV.

Another proposed axion dark matter search method sensitive

in the 100 µeV mass range is to cool a kilogram-sized sample

to millikelvin temperatures and count axion induced atomic

transitions using laser techniques [131].

IV.4 Magnetic resonance searches

The oscillating galactic dark matter axion field induces os-

cillating nuclear electric dipole moments (EDMs). These EDMs

cause the precession of nuclear spins in a nucleon spin polar-

ized sample in the presence of an electric field. The resulting

transverse magnetization can be searched for by exploiting

magnetic-resonance (MR) techniques, which are most sensitive

in the range of low oscillation frequencies corresponding to

sub-neV axion masses. The aim of the corresponding Cosmic

Axion Spin Precession Experiment (CASPEr) [132] is to probe

axion dark matter in the anthropic window, fA
>∼ 1015 GeV,

corresponding to mA
<∼ neV, complementary to the classic axion

window probed by the RF cavity technique.

In the intermediate mass region, neV<∼ mA
<∼ 0.1 µeV, one

may exploit a cooled LC circuit and precision magnetometry

to search for the oscillating electric current induced by dark

matter axions in a strong magnetic field [133].

An eventually non-zero axion electron coupling gAee will

lead to a spin precession about the axion dark matter wind [134].

The QUAX (QUaerere AXions) experiment aims at exploiting

MR inside a magnetized material [135]. Because of the higher

Larmor frequency of the electron, it is sensitive in the classic

window.

Conclusions

There is a strengthening physics case for very weakly cou-

pled ultralight particles beyond the Standard Model. The el-

egant solution of the strong CP problem proposed by Peccei

and Quinn yields a particularly strong motivation for the axion.

In many theoretically appealing ultraviolet completions of the

Standard Model axions and axion-like particles occur automati-

cally. Moreover, they are natural cold dark matter candidates.

Perhaps the first hints of their existence have already been seen

in the anomalous excessive cooling of stars and the anomalous

transparency of the Universe for VHE gamma rays. Inter-

estingly, a significant portion of previously unexplored, but

phenomenologically very interesting and theoretically very well

motivated axion and ALP parameter space can be tackled in

the foreseeable future by a number of terrestrial experiments

searching for axion/ALP dark matter, for solar axions/ALPs,

and for light apparently shining through a wall.
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A.H. Córsico et al., Mon. Not. Roy. Astron. Soc.
424, 2792 (2012);
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<5.2× 10−10 90 13 ADLER 96 B787 K+ → π+X0
<2.8× 10−4 90 14 AMSLER 96B CBAR π0 → γX0, mX 0 < 65 MeV
<3 × 10−4 90 14 AMSLER 96B CBAR η → γX0, mX 0= 50{200 MeV
<4 × 10−5 90 14 AMSLER 96B CBAR η′ → γX0, mX 0= 50{925 MeV
<6 × 10−5 90 14 AMSLER 94B CBAR π0 → γX0, mX 0=65{125 MeV
<6 × 10−5 90 14 AMSLER 94B CBAR η → γX0, mX 0=200{525 MeV
<7 × 10−3 90 15 MEIJERDREES94 CNTR π0 → γX0, mX 0=25 MeV
<2 × 10−3 90 15 MEIJERDREES94 CNTR π0 → γX0, mX 0=100 MeV
<2 × 10−7 90 16 ATIYA 93B B787 Sup. by ADLER 04
<3 × 10−13 17 NG 93 COSM π0 → γX0
<1.1× 10−8 90 18 ALLIEGRO 92 SPEC K+ → π+X0 (X0 → e+ e−)
<5 × 10−4 90 19 ATIYA 92 B787 π0 → γX0
<1 × 10−12 95 20 BARABASH 92 BDMP π± → e± νX0(X0 → e+ e−,

γ γ), mX 0 = 8 MeV
<1 × 10−12 95 21 BARABASH 92 BDMP K± → π±X0(X0 → e+ e−,

γ γ), mX 0 = 10 MeV
<1 × 10−11 95 22 BARABASH 92 BDMP K0L → π0X0(X0 → e+ e−,

γ γ), mX 0 = 10 MeV
<1 × 10−14 95 23 BARABASH 92 BDMP η′ → ηX0(X0 → e+ e−, γ γ),mX 0 = 10 MeV
<4 × 10−6 90 24 MEIJERDREES92 SPEC π0 → γX0 (X0 → e+ e−),mX 0= 100 MeV
<1 × 10−7 90 25 ATIYA 90B B787 Sup. by KITCHING 97
<1.3× 10−8 90 26 KORENCHE... 87 SPEC π+ → e+ νA0 (A0 → e+ e−)
<1 × 10−9 90 27 EICHLER 86 SPEC Stopped π+ → e+ νA0
<2 × 10−5 90 28 YAMAZAKI 84 SPEC For 160<m<260 MeV
<(1.5{4)× 10−6 90 28 YAMAZAKI 84 SPEC K de
ay, mX 0 ≪ 100 MeV29 ASANO 82 CNTR Stopped K+ → π+X030 ASANO 81B CNTR Stopped K+ → π+X031 ZHITNITSKII 79 Heavy axion1The limit is for τX 0 = 10 ps and mX 0 = 214{4350 MeV. See their Fig. 4 for mass-and lifetime-dependent limits.2 Limits between 2.0× 10−5 and 1.5× 10−6 are obtained for mX 0 = 20{100 MeV (seetheir Fig. 8). Angular momentum 
onservation requires that X0 has spin ≥ 1.3The limit is for B(φ → ηX0)·B(X0 → e+ e−) and applies to mX 0 = 410 MeV. Itis derived by analyzing η → π0π0π0 and π−π+π0. Limits between 1 × 10−6 and2× 10−8 are obtained for mX 0 ≤ 450 MeV (see their Fig. 6).4ARCHILLI 12 analyzed η → π+π−π0 de
ays. Derived limits on α′/α < 2 × 10−5for mX 0 = 50{420 MeV at 90% CL. See their Fig. 8 for mass-dependent limits.5This limit is for B(π0 → γX0)·B(X0 → e+ e−) and applies for mX 0 = 90 MeV and

τX 0 ≃ 1× 10−8 se
. Limits between 10−8 and 2 × 10−15 are obtained for mX 0 =3{120 MeV and τX 0 = 1× 10−11{1 se
. See their Fig. 3 for limits at di�erent massesand lifetimes.6This limit is for B(η → γX0)·B(X0 → e+ e−) and applies for mX 0 = 100 MeV and
τX 0 ≃ 6× 10−9 se
. Limits between 10−5 and 3× 10−14 are obtained for mX 0 .550 MeV and τX 0 = 10−10{10 se
. See their Fig. 5 for limits at di�erent mass andlifetime and for η′ de
ays.7This limit applies for a mass near 180 MeV. For other masses in the range mX 0 =150{250 MeV the limit is less restri
tive, but still improves ADLER 02C and ATIYA 93B.8ANISIMOVSKY 04 bound is for mX 0=0.9ADLER 02C bound is for mX 0 <60 MeV. See Fig. 2 for limits at higher masses.10The quoted limit is for mX 0 = 0{80 MeV. See their Fig. 5 for the limit at higher mass.The bran
hing fra
tion limit assumes pure phase spa
e de
ay distributions.11ALTEGOER 98 looked for X0 from π0 de
ay whi
h penetrate the shielding and 
onvertto π0 in the external Coulomb �eld of a nu
leus.



699699699699See key on page 601 Gauge & Higgs Boson Parti
le ListingsAxions (A0) and Other Very Light Bosons12KITCHING 97 limit is for B(K+ → π+X0)·B(X0 → γ γ) and applies for mX 0 ≃ 50MeV, τX 0 < 10−10 s. Limits are provided for 0<mX 0 < 100 MeV, τX 0 < 10−8 s.13ADLER 96 looked for a peak in missing-mass distribution. This work is an update ofATIYA 93. The limit is for massless stable X0 parti
les and extends to mX 0=80 MeVat the same level. See paper for dependen
e on �nite lifetime.14AMSLER 94B and AMSLER 96B looked for a peak in missing-mass distribution.15The MEIJERDREES 94 limit is based on in
lusive photon spe
trum and is independentof X0 de
ay modes. It applies to τ(X0)> 10−23 se
.16ATIYA 93B looked for a peak in missing mass distribution. The bound applies for stableX0 of mX 0=150{250 MeV, and the limit be
omes stronger (10−8) for mX 0=180{240MeV.17NG 93 studied the produ
tion of X0 via γ γ → π0 → γX0 in the early universe at T≃ 1MeV. The bound on extra neutrinos from nu
leosynthesis �Nν < 0.3 (WALKER 91) isemployed. It applies to mX 0 ≪ 1 MeV in order to be relativisti
 down to nu
leosynthesistemperature. See paper for heavier X0.18ALLIEGRO 92 limit applies for mX 0=150{340 MeV and is the bran
hing ratio times thede
ay probability. Limit is < 1.5× 10−8 at 99%CL.19ATIYA 92 looked for a peak in missing mass distribution. The limit applies tomX 0=0{130 MeV in the narrow resonan
e limit. See paper for the dependen
e onlifetime. Covarian
e requires X0 to be a ve
tor parti
le.20BARABASH 92 is a beam dump experiment that sear
hed for a light Higgs. Limitsbetween 1× 10−12 and 1× 10−7 are obtained for 3 < mX 0 < 40 MeV.21 Limits between 1× 10−12 and 1 are obtained for 4 < mX 0 < 69 MeV.22 Limits between 1× 10−11 and 5× 10−3 are obtained for 4 < mX 0 < 63 MeV.23 Limits between 1× 10−14 and 1 are obtained for 3 < mX 0 < 82 MeV.24MEIJERDREES 92 limit applies for τX 0 = 10−23{10−11 se
. Limits between 2×10−4and 4 × 10−6 are obtained for mX 0 = 25{120 MeV. Angular momentum 
onservationrequires that X0 has spin ≥ 1.25ATIYA 90B limit is for B(K+ → π+X0)·B(X0 → γ γ) and applies for mX 0 = 50 MeV,
τX 0 < 10−10 s. Limits are also provided for 0 < mX 0 < 100 MeV, τX 0 < 10−8 s.26KORENCHENKO 87 limit assumes mA0 = 1.7 MeV, τA0 . 10−12 s, and B(A0 →e+ e−) = 1.27EICHLER 86 looked for π+ → e+ νA0 followed by A0 → e+ e−. Limits on thebran
hing fra
tion depend on the mass and and lifetime of A0. The quoted limits arevalid when τ(A0)& 3. × 10−10s if the de
ays are kinemati
ally allowed.28YAMAZAKI 84 looked for a dis
rete line in K+ → π+X. Sensitive to wide mass range(5{300 MeV), independent of whether X de
ays promptly or not.29ASANO 82 at KEK set limits for B(K+ → π+X0) for mX 0 <100 MeV as BR
< 4.× 10−8 for τ(X0 → nγ 's) > 1.× 10−9 s, BR < 1.4× 10−6 for τ < 1.× 10−9s.30ASANO 81B is KEK experiment. Set B(K+ → π+X0) < 3.8× 10−8 at CL = 90%.31ZHITNITSKII 79 argue that a heavy axion predi
ted by YANG 78 (3 <m <40 MeV)
ontradi
ts experimental muon anomalous magneti
 moments.A0 (Axion) Sear
hes in Quarkonium De
aysA0 (Axion) Sear
hes in Quarkonium De
aysA0 (Axion) Sear
hes in Quarkonium De
aysA0 (Axion) Sear
hes in Quarkonium De
aysDe
ay or transition of quarkonium. Limits are for bran
hing ratio.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.0× 10−5 90 1 ANTREASYAN 90C CBAL �(1S) → A0 γ

<5 × 10−5 90 2 DRUZHININ 87 ND φ → A0 γ (A0 → e+ e−)
<2 × 10−3 90 3 DRUZHININ 87 ND φ → A0 γ (A0 → γ γ)
<7 × 10−6 90 4 DRUZHININ 87 ND φ → A0 γ (A0 → missing)
<1.4× 10−5 90 5 EDWARDS 82 CBAL J/ψ → A0 γ1ANTREASYAN 90C assume that A0 does not de
ay in the dete
tor.2The �rst DRUZHININ 87 limit is valid when τA0/mA0 < 3 × 10−13 s/MeV andmA0 < 20 MeV.3The se
ond DRUZHININ 87 limit is valid when τA0/mA0 < 5 × 10−13 s/MeV andmA0 < 20 MeV.4The third DRUZHININ 87 limit is valid when τA0/mA0 > 7 × 10−12 s/MeV andmA0 < 200 MeV.5EDWARDS 82 looked for J/ψ → γA0 de
ays by looking for events with a single

γ
[of energy ∼ 1/2 the J/ψ(1S) mass], plus nothing else in the dete
tor. The limit isin
onsistent with the axion interpretation of the FAISSNER 81B result.A0 (Axion) Sear
hes in Positronium De
aysA0 (Axion) Sear
hes in Positronium De
aysA0 (Axion) Sear
hes in Positronium De
aysA0 (Axion) Sear
hes in Positronium De
aysDe
ay or transition of positronium. Limits are for bran
hing ratio.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.4× 10−5 90 1 BADERT... 02 CNTR o-Ps → γX1X2, mX1+mX2 ≤900 keV
<2 × 10−4 90 MAENO 95 CNTR o-Ps → A0 γ mA0=850{1013 keV
<3.0× 10−4 90 2 ASAI 94 CNTR o-Ps → A0 γ mA0=30{500 keV
<2.8× 10−5 90 3 AKOPYAN 91 CNTR o-Ps → A0 γ (A0 → γ γ),mA0 < 30 keV
<1.1× 10−6 90 4 ASAI 91 CNTR o-Ps → A0 γ, mA0 < 800 keV
<3.8× 10−4 90 GNINENKO 90 CNTR o-Ps → A0 γ, mA0 < 30 keV
<(1{5)× 10−4 95 5 TSUCHIAKI 90 CNTR o-Ps → A0 γ, mA0 = 300{900 keV
<6.4× 10−5 90 6 ORITO 89 CNTR o-Ps → A0 γ, mA0 < 30 keV7 AMALDI 85 CNTR Ortho-positronium8 CARBONI 83 CNTR Ortho-positronium

1BADERTSCHER 02 looked for a three-body de
ay of ortho-positronium into a photonand two penetrating (neutral or milli-
harged) parti
les.2The ASAI 94 limit is based on in
lusive photon spe
trum and is independent of A0 de
aymodes.3The AKOPYAN 91 limit applies for a short-lived A0 with τA0 < 10−13 mA0 [keV℄ s.4ASAI 91 limit translates to g2A0 e+ e−/4π < 1.1 × 10−11 (90% CL) for mA0 < 800keV.5The TSUCHIAKI 90 limit is based on in
lusive photon spe
trum and is independent ofA0 de
ay modes.6ORITO 89 limit translates to g2A0 e e/4π < 6.2 × 10−10. Somewhat more sensitivelimits are obtained for larger mA0 : B < 7.6× 10−6 at 100 keV.7AMALDI 85 set limits B(A0 γ) / B(γ γ γ) < (1{5) × 10−6 for mA0 = 900{100 keVwhi
h are about 1/10 of the CARBONI 83 limits.8CARBONI 83 looked for orthopositronium → A0 γ. Set limit for A0 ele
tron 
ouplingsquared, g(e e A0)2/(4π) < 6. × 10−10{7. × 10−9 for mA0 from 150{900 keV (CL =99.7%). This is about 1/10 of the bound from g−2 experiments.A0 (Axion) Sear
h in Photoprodu
tionA0 (Axion) Sear
h in Photoprodu
tionA0 (Axion) Sear
h in Photoprodu
tionA0 (Axion) Sear
h in Photoprodu
tionVALUE DOCUMENT ID COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 BASSOMPIE... 95 mA0 = 1.8 ± 0.2 MeV1BASSOMPIERRE 95 is an extension of BASSOMPIERRE 93. They looked for a peakin the invariant mass of e+ e− pairs in the region me+ e− = 1.8 ± 0.2 MeV. Theyobtained bounds on the produ
tion rate A0 for τ(A0) = 10−18{10−9 se
. They alsofound an ex
ess of events in the range me+ e− = 2.1{3.5 MeV.A0 (Axion) Produ
tion in Hadron CollisionsA0 (Axion) Produ
tion in Hadron CollisionsA0 (Axion) Produ
tion in Hadron CollisionsA0 (Axion) Produ
tion in Hadron CollisionsLimits are for σ(A0) / σ(π0).VALUE CL% EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 JAIN 07 CNTR A0 → e+ e−2 AHMAD 97 SPEC e+ produ
tion3 LEINBERGER 97 SPEC A0 → e+ e−4 GANZ 96 SPEC A0 → e+ e−5 KAMEL 96 EMUL 32S emulsion, A0 →e+ e−6 BLUEMLEIN 92 BDMP A0NZ → ℓ+ ℓ−NZ7 MEIJERDREES92 SPEC π− p → nA0, A0 →e+ e−8 BLUEMLEIN 91 BDMP A0 → e+ e−, 2γ9 FAISSNER 89 OSPK Beam dump,A0 → e+ e−10 DEBOER 88 RVUE A0 → e+ e−11 EL-NADI 88 EMUL A0 → e+ e−12 FAISSNER 88 OSPK Beam dump, A0 → 2γ13 BADIER 86 BDMP A0 → e+ e−
<2. × 10−11 90 0 14 BERGSMA 85 CHRM CERN beam dump
<1. × 10−13 90 0 14 BERGSMA 85 CHRM CERN beam dump24 15 FAISSNER 83 OSPK Beam dump, A0 → 2γ16 FAISSNER 83B RVUE LAMPF beam dump17 FRANK 83B RVUE LAMPF beam dump18 HOFFMAN 83 CNTR πp → nA0(A0 → e+ e−)19 FETSCHER 82 RVUE See FAISSNER 81B12 20 FAISSNER 81 OSPK CERN PS ν wideband15 21 FAISSNER 81B OSPK Beam dump, A0 → 2γ8 22 KIM 81 OSPK 26 GeV pN → A0X0 23 FAISSNER 80 OSPK Beam dump,A0 → e+ e−
<1. × 10−8 90 24 JACQUES 80 HLBC 28 GeV protons
<1. × 10−14 90 24 JACQUES 80 HLBC Beam dump25 SOUKAS 80 CALO 28 GeV p beam dump26 BECHIS 79 CNTR
<1. × 10−8 90 27 COTEUS 79 OSPK Beam dump
<1. × 10−3 95 28 DISHAW 79 CALO 400 GeV pp
<1. × 10−8 90 ALIBRAN 78 HYBR Beam dump
<6. × 10−9 95 ASRATYAN 78B CALO Beam dump
<1.5× 10−8 90 29 BELLOTTI 78 HLBC Beam dump
<5.4× 10−14 90 29 BELLOTTI 78 HLBC mA0=1.5 MeV
<4.1× 10−9 90 29 BELLOTTI 78 HLBC mA0=1 MeV
<1. × 10−8 90 30 BOSETTI 78B HYBR Beam dump31 DONNELLY 78
<0.5× 10−8 90 HANSL 78D WIRE Beam dump32 MICELMAC... 7833 VYSOTSKII 781 JAIN 07 
laims eviden
e for A0 → e+ e− produ
ed in 207Pb 
ollision on nu
learemulsion (Ag/Br) for m(A0) = 7 ± 1 or 19 ± 1 MeV and τ(A0) ≤ 10−13 s.2AHMAD 97 reports a result of APEX Collaboration whi
h studied positron produ
tion in238U+232Ta and 238U+181Ta 
ollisions, without requiring a 
oin
ident ele
tron. Nonarrow lines were found for 250 <Ee+ < 750 keV.
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le ListingsAxions (A0) and Other Very Light Bosons3 LEINBERGER 97 (ORANGE Collaboration) at GSI looked for a narrow sum-energye+ e−-line at ∼ 635 keV in 238U+181Ta 
ollision. Limits on the produ
tion proba-bility for a narrow sum-energy e+ e− line are set. See their Table 2.4GANZ 96 (EPos II Collaboration) has pla
ed upper bounds on the produ
tion 
ross se
-tion of e+ e− pairs from 238U+181Ta and 238U+232Th 
ollisions at GSI. See Table 2for limits both for ba
k-to-ba
k and isotropi
 
on�gurations of e+ e− pairs. These lim-its rule out the existen
e of peaks in the e+ e− sum-energy distribution, reported by anearlier version of this experiment.5KAMEL 96 looked for e+ e− pairs from the 
ollision of 32S (200 GeV/nu
leon) andemulsion. No eviden
e of mass peaks is found in the region of sensitivity mee >2 MeV.6BLUEMLEIN 92 is a proton beam dump experiment at Serpukhov with a se
ondarytarget to indu
e Bethe-Heitler produ
tion of e+ e− or µ+µ− from the produ
e A0.See Fig. 5 for the ex
luded region in mA0-x plane. For the standard axion, 0.3 <x<25is ex
luded at 95% CL. If 
ombined with BLUEMLEIN 91, 0.008 <x<32 is ex
luded.7MEIJERDREES 92 give �(π− p → nA0)·B(A0 → e+ e−)/�(π− p → all) < 10−5(90% CL) for mA0 = 100 MeV, τA0 = 10−11{10−23 se
. Limits ranging from 2.5 ×10−3 to 10−7 are given for mA0 = 25{136 MeV.8BLUEMLEIN 91 is a proton beam dump experiment at Serpukhov. No 
andidate eventfor A0 → e+ e−, 2γ are found. Fig. 6 gives the ex
luded region in mA0-x plane (x=tanβ = v2/v1). Standard axion is ex
luded for 0.2 < mA0 < 3.2 MeV for mostx > 1, 0.2{11 MeV for most x < 1.9 FAISSNER 89 sear
hed for A0 → e+ e− in a proton beam dump experiment at SIN. Noex
ess of events was observed over the ba
kground. A standard axion with mass 2me{20MeV is ex
luded. Lower limit on fA0 of ≃ 104 GeV is given for mA0 = 2me{20 MeV.10DEBOER 88 reanalyze EL-NADI 88 data and 
laim eviden
e for three distin
t stateswith mass ∼ 1.1, ∼ 2.1, and ∼ 9 MeV, lifetimes 10−16{10−15 s de
aying to e+ e−and note the similarity of the data with those of a 
osmi
-ray experiment by Bristol group(B.M. Anand, Pro
. of the Royal So
iety of London, Se
tion A A22A22A22A22 183 (1953)). For a
riti
ism see PERKINS 89, who suggests that the events are 
ompatible with π0 Dalitzde
ay. DEBOER 89B is a reply whi
h 
ontests the 
riti
ism.11EL-NADI 88 
laim the existen
e of a neutral parti
le de
aying into e+ e− with mass1.60 ± 0.59 MeV, lifetime (0.15 ± 0.01) × 10−14 s, whi
h is produ
ed in heavy ionintera
tions with emulsion nu
lei at ∼ 4 GeV/
/nu
leon.12 FAISSNER 88 is a proton beam dump experiment at SIN. They found no 
andidate eventfor A0 → γ γ. A standard axion de
aying to 2γ is ex
luded ex
ept for a region x≃ 1.Lower limit on fA0 of 102{103 GeV is given for mA0 = 0.1{1 MeV.13BADIER 86 did not �nd long-lived A0 in 300 GeV π− Beam Dump Experiment thatde
ays into e+ e− in the mass rangemA0 = (20{200) MeV, whi
h ex
ludes the A0 de
ay
onstant f (A0) in the interval (60{600) GeV. See their �gure 6 for ex
luded region onf (A0)-mA0 plane.14BERGSMA 85 look for A0 → 2γ, e+ e−, µ+µ−. First limit above is for mA0 = 1MeV; se
ond is for 200 MeV. See their �gure 4 for ex
luded region on fA0−mA0 plane,where fA0 is A0 de
ay 
onstant. For Pe

ei-Quinn PECCEI 77 A0, mA0 <180 keV and
τ >0.037 s. (CL = 90%). For the axion of FAISSNER 81B at 250 keV, BERGSMA 85expe
t 15 events but observe zero.15 FAISSNER 83 observed 19 1-γ and 12 2-γ events where a ba
kground of 4.8 and 2.3respe
tively is expe
ted. A small-angle peak is observed even if iron wall is set in frontof the de
ay region.16 FAISSNER 83B extrapolate SIN γ signal to LAMPF ν experimental 
ondition. Resulting370 γ's are not at varian
e with LAMPF upper limit of 450 γ's. Derived from LAMPFlimit that [dσ(A0)/dω at 90◦]mA0/τA0 < 14 × 10−35 
m2 sr−1 MeV ms−1. See
omment on FRANK 83B.17 FRANK 83B stress the importan
e of LAMPF data bins with negative net signal. Bystatisti
al analysis say that LAMPF and SIN-A0 are at varian
e when extrapolation byphase-spa
e model is done. They �nd LAMPF upper limit is 248 not 450 γ's. See
omment on FAISSNER 83B.18HOFFMAN 83 set CL = 90% limit dσ/dt B(e+ e−) < 3.5× 10−32 
m2/GeV2 for 140
<mA0 <160 MeV. Limit assumes τ(A0) < 10−9 s.19 FETSCHER 82 reanalyzes SIN beam-dump data of FAISSNER 81. Claims no eviden
efor axion sin
e 2-γ peak rate remarkably de
reases if iron wall is set in front of the de
ayregion.20 FAISSNER 81 see ex
ess µe events. Suggest axion intera
tions.21 FAISSNER 81B is SIN 590 MeV proton beam dump. Observed 14.5 ± 5.0 events of 2γde
ay of long-lived neutral penetrating parti
le with m2γ . 1 MeV. Axion interpreta-tion with η-A0 mixing gives mA0 = 250 ± 25 keV, τ(2γ) = (7.3 ± 3.7)× 10−3 s fromabove rate. See 
riti
al remarks below in 
omments of FETSCHER 82, FAISSNER 83,FAISSNER 83B, FRANK 83B, and BERGSMA 85. Also see in the next subse
tion ALEK-SEEV 82B, CAVAIGNAC 83, and ANANEV 85.22KIM 81 analyzed 8 
andidates for A0 → 2γ obtained by Aa
hen-Padova experiment atCERN with 26 GeV protons on Be. Estimated axion mass is about 300 keV and lifetimeis (0.86∼ 5.6) × 10−3 s depending on models. Faissner (private 
ommuni
ation), saysaxion produ
tion underestimated and mass overestimated. Corre
t value around 200keV.23FAISSNER 80 is SIN beam dump experiment with 590 MeV protons looking for A0 →e+ e− de
ay. Assuming A0/π0 = 5.5× 10−7, obtained de
ay rate limit 20/(A0 mass)MeV/s (CL = 90%), whi
h is about 10−7 below theory and interpreted as upper limitto mA0 <2me− .24 JACQUES 80 is a BNL beam dump experiment. First limit above 
omes from nonobser-vation of ex
ess neutral-
urrent-type events [

σ(produ
tion)σ(intera
tion) < 7.× 10−68
m4, CL = 90%]. Se
ond limit is from nonobservation of axion de
ays into 2γ's ore+ e−, and for axion mass a few MeV.25 SOUKAS 80 at BNL observed no ex
ess of neutral-
urrent-type events in beam dump.26BECHIS 79 looked for the axion produ
tion in low energy ele
tron Bremsstrahlung andthe subsequent de
ay into either 2γ or e+ e−. No signal found. CL = 90% limits formodel parameter(s) are given.27COTEUS 79 is a beam dump experiment at BNL.

28DISHAW 79 is a 
alorimetri
 experiment and looks for low energy tail of energy distri-butions due to energy lost to weakly intera
ting parti
les.29BELLOTTI 78 �rst value 
omes from sear
h for A0 → e+ e−. Se
ond value 
omesfrom sear
h for A0 → 2γ, assuming mass <2me− . For any mass satisfying this,limit is above value×(mass−4). Third value uses data of PL 60B 401 and quotes
σ(produ
tion)σ(intera
tion) < 10−67 
m4.30BOSETTI 78B quotes σ(produ
tion)σ(intera
tion) < 2. × 10−67 
m4.31DONNELLY 78 examines data from rea
tor neutrino experiments of REINES 76 andGURR 74 as well as SLAC beam dump experiment. Eviden
e is negative.32MICELMACHER 78 �nds no eviden
e of axion existen
e in rea
tor experiments ofREINES 76 and GURR 74. (See referen
e under DONNELLY 78 below).33VYSOTSKII 78 derived lower limit for the axion mass 25 keV from luminosity of the sunand 200 keV from red supergiants.A0 (Axion) Sear
hes in Rea
tor ExperimentsA0 (Axion) Sear
hes in Rea
tor ExperimentsA0 (Axion) Sear
hes in Rea
tor ExperimentsA0 (Axion) Sear
hes in Rea
tor ExperimentsVALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 CHANG 07 Primako� or Compton2 ALTMANN 95 CNTR Rea
tor; A0 → e+ e−3 KETOV 86 SPEC Rea
tor, A0 → γ γ4 KOCH 86 SPEC Rea
tor; A0 → γ γ5 DATAR 82 CNTR Light water rea
tor6 VUILLEUMIER 81 CNTR Rea
tor, A0 → 2γ1CHANG 07 looked for mono
hromati
 photons from Primako� or Compton 
onversionof axions from the Kuo-Sheng rea
tor due to axion 
oupling to photon or ele
tron,respe
tively. The sear
h pla
es model-independent limits on the produ
ts GAγ γGANNand GAe eGANN for m(A0) less than the MeV range.2ALTMANN 95 looked for A0 de
aying into e+ e− from the Bugey 5 nu
lear rea
-tor. They obtain an upper limit on the A0 produ
tion rate of ω(A0)/ω(γ) ×B(A0 →e+ e−)< 10−16 for mA0 = 1.5 MeV at 90% CL. The limit is weaker for heavier A0. Inthe 
ase of a standard axion, this limit ex
ludes a mass in the range 2me <mA0 < 4.8MeV at 90% CL. See Fig. 5 of their paper for ex
lusion limits of axion-like resonan
esZ0 in the (mX 0 ,fX 0) plane.3KETOV 86 sear
hed for A0 at the Rovno nu
lear power plant. They found an upperlimit on the A0 produ
tion probability of 0.8 [100 keV/mA0]6 × 10−6 per �ssion. Inthe standard axion model, this 
orresponds to mA0 >150 keV. Not valid for mA0 &1 MeV.4KOCH 86 sear
hed for A0 → γ γ at nu
lear power rea
tor Biblis A. They found anupper limit on the A0 produ
tion rate of ω(A0)/ω(γ(M1)) < 1.5× 10−10 (CL=95%).Standard axion with mA0 = 250 keV gives 10−5 for the ratio. Not valid for mA0 >1022keV.5DATAR 82 looked for A0 → 2γ in neutron 
apture (np → d A0) at Tarapur 500 MWrea
tor. Sensitive to sum of I = 0 and I = 1 amplitudes. With ZEHNDER 81 [(I = 0)
− (I = 1)] result, assert nonexisten
e of standard A0.6VUILLEUMIER 81 is at Grenoble rea
tor. Set limit mA0 <280 keV.A0 (Axion) and Other Light Boson (X 0) Sear
hes in Nu
lear TransitionsA0 (Axion) and Other Light Boson (X 0) Sear
hes in Nu
lear TransitionsA0 (Axion) and Other Light Boson (X 0) Sear
hes in Nu
lear TransitionsA0 (Axion) and Other Light Boson (X 0) Sear
hes in Nu
lear TransitionsLimits are for bran
hing ratio.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 8.5× 10−6 90 1 DERBIN 02 CNTR 125mTe de
ay2 DEBOER 97C RVUE M1 transitions
< 5.5× 10−10 95 3 TSUNODA 95 CNTR 252Cf �ssion, A0 → e e
< 1.2× 10−6 95 4 MINOWA 93 CNTR 139La∗ → 139LaA0
< 2 × 10−4 90 5 HICKS 92 CNTR 35S de
ay, A0 → γ γ

< 1.5× 10−9 95 6 ASANUMA 90 CNTR 241Am de
ay
<(0.4{10)× 10−3 95 7 DEBOER 90 CNTR 8Be∗ → 8BeA0,A0 → e+ e−
<(0.2{1)× 10−3 90 8 BINI 89 CNTR 16O∗ → 16OX0,X0 → e+ e−9 AVIGNONE 88 CNTR Cu∗ → CuA0 (A0 → 2γ,A0 e → γ e, A0Z → γZ)
< 1.5× 10−4 90 10 DATAR 88 CNTR 12C∗ → 12CA0,A0 → e+ e−
< 5 × 10−3 90 11 DEBOER 88C CNTR 16O∗ → 16OX0,X0 → e+ e−
< 3.4× 10−5 95 12 DOEHNER 88 SPEC 2H∗, A0 → e+ e−
< 4 × 10−4 95 13 SAVAGE 88 CNTR Nu
lear de
ay (isove
tor)
< 3 × 10−3 95 13 SAVAGE 88 CNTR Nu
lear de
ay (isos
alar)
<10.6× 10−2 90 14 HALLIN 86 SPEC 6Li isove
tor de
ay
<10.8 90 14 HALLIN 86 SPEC 10B isos
alar de
ays
< 2.2 90 14 HALLIN 86 SPEC 14N isos
alar de
ays
< 4 × 10−4 90 15 SAVAGE 86B CNTR 14N∗16 ANANEV 85 CNTR Li∗, deut∗ A0 → 2γ17 CAVAIGNAC 83 CNTR 97Nb∗, deut∗ transitionA0 → 2γ18 ALEKSEEV 82B CNTR Li∗, deut∗ transitionA0 → 2γ19 LEHMANN 82 CNTR Cu∗ → CuA0 (A0 → 2γ)20 ZEHNDER 82 CNTR Li∗, Nb∗ de
ay, n-
apt.21 ZEHNDER 81 CNTR Ba∗ → BaA0 (A0 → 2γ)22 CALAPRICE 79 Carbon
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leListingsAxions (A0) andOther Very Light Bosons1DERBIN 02 looked for the axion emission in an M1 transition in 125mTe de
ay. Theylooked for a possible presen
e of a shifted energy spe
trum in gamma rays due to theundete
ted axion.2DEBOER 97C reanalyzed the existent data on Nu
lear M1 transitions and �nd that a9 MeV boson de
aying into e+ e− would explain the ex
ess of events with large openingangles. See also DEBOER 01 for follow-up experiments.3TSUNODA 95 looked for axion emission when 252Cf undergoes a spontaneous �ssion,with the axion de
aying into e+ e−. The bound is for mA0=40 MeV. It improves to2.5× 10−5 for mA0=200 MeV.4MINOWA 93 studied 
hain pro
ess, 139Ce → 139La∗ by ele
tron 
apture and M1transition of 139La∗ to the ground state. It does not assume de
ay modes of A0. Thebound applies for mA0 < 166 keV.5HICKS 92 bound is appli
able for τX 0 < 4× 10−11 se
.6The ASANUMA 90 limit is for the bran
hing fra
tion of X0 emission per 241Amα de
ayand valid for τX 0 < 3× 10−11 s.7The DEBOER 90 limit is for the bran
hing ratio 8Be∗ (18.15 MeV, 1+) → 8BeA0,A0 → e+ e− for the mass range mA0 = 4{15 MeV.8The BINI 89 limit is for the bran
hing fra
tion of 16O∗ (6.05 MeV, 0+) → 16OX0,X0 → e+ e− for mX = 1.5{3.1 MeV. τX 0 . 10−11 s is assumed. The spin-parityof X is restri
ted to 0+ or 1−.9AVIGNONE 88 looked for the 1115 keV transition C∗ → CuA0, either from A0 →2γ in-
ight de
ay or from the se
ondary A0 intera
tions by Compton and by Primako�pro
esses. Limits for axion parameters are obtained for mA0 < 1.1 MeV.10DATAR 88 rule out light pseudos
alar parti
le emission through its de
ay A0 → e+ e−in the mass range 1.02{2.5 MeV and lifetime range 10−13{10−8 s. The above limit isfor τ = 5 × 10−13 s and m = 1.7 MeV; see the paper for the τ -m dependen
e of thelimit.11The limit is for the bran
hing fra
tion of 16O∗ (6.05 MeV, 0+) → 16OX0, X0 →e+ e− against internal pair 
onversion for mX 0 = 1.7 MeV and τX 0 < 10−11 s.Similar limits are obtained for mX 0 = 1.3{3.2 MeV. The spin parity of X0 must beeither 0+ or 1−. The limit at 1.7 MeV is translated into a limit for the X0-nu
leon
oupling 
onstant: g2X 0NN
/4π < 2.3× 10−9.12The DOEHNER 88 limit is for mA0 = 1.7 MeV, τ(A0) < 10−10 s. Limits less than10−4 are obtained for mA0 = 1.2{2.2 MeV.13 SAVAGE 88 looked for A0 that de
ays into e+ e− in the de
ay of the 9.17 MeV JP =2+ state in 14N, 17.64 MeV state JP = 1+ in 8Be, and the 18.15 MeV state JP =1+ in 8Be. This experiment 
onstrains the isove
tor 
oupling of A0 to hadrons, if mA0= (1.1 → 2.2) MeV and the isos
alar 
oupling of A0 to hadrons, if mA0 = (1.1 →2.6) MeV. Both limits are valid only if τ(A0) . 1× 10−11 s.14 Limits are for �(A0(1.8 MeV))/�(πM1); i.e., for 1.8 MeV axion emission normalizedto the rate for internal emission of e+ e− pairs. Valid for τA0 < 2 × 10−11s. 6Liisove
tor de
ay data strongly disfavor PECCEI 86 model I, whereas the 10B and 14Nisos
alar de
ay data strongly reje
t PECCEI 86 model II and III.15 SAVAGE 86B looked for A0 that de
ays into e+ e− in the de
ay of the 9.17 MeV JP =2+ state in 14N. Limit on the bran
hing fra
tion is valid if τA0 . 1.× 10−11s for mA0= (1.1{1.7) MeV. This experiment 
onstrains the iso-ve
tor 
oupling of A0 to hadrons.16ANANEV 85 with IBR-2 pulsed rea
tor ex
lude standard A0 at CL = 95% masses below470 keV (Li∗ de
ay) and below 2me for deuteron* de
ay.17CAVAIGNAC 83 at Bugey rea
tor ex
lude axion at any m97Nb∗de
ay and axion withmA0 between 275 and 288 keV (deuteron* de
ay).18ALEKSEEV 82 with IBR-2 pulsed rea
tor ex
lude standard A0 at CL = 95% mass-rangesmA0 <400 keV (Li∗ de
ay) and 330 keV <mA0 <2.2 MeV. (deuteron* de
ay).19 LEHMANN 82 obtained A0 → 2γ rate < 6.2 × 10−5/s (CL = 95%) ex
luding mA0between 100 and 1000 keV.20ZEHNDER 82 used Gosgen 2.8GW light-water rea
tor to 
he
k A0 produ
tion. No2γ peak in Li∗, Nb∗ de
ay (both single p transition) nor in n 
apture (
ombined withprevious Ba∗ negative result) rules out standard A0. Set limit mA0 <60 keV for anyA0.21ZEHNDER 81 looked for Ba∗ → A0Ba transition with A0 → 2γ. Obtained 2γ
oin
iden
e rate < 2.2 × 10−5/s (CL = 95%) ex
luding mA0 >160 keV (or 200 keVdepending on Higgs mixing). However, see BARROSO 81.22CALAPRICE 79 saw no axion emission from ex
ited states of 
arbon. Sensitive to axionmass between 1 and 15 MeV.A0 (Axion) Limits from Its Ele
tron CouplingA0 (Axion) Limits from Its Ele
tron CouplingA0 (Axion) Limits from Its Ele
tron CouplingA0 (Axion) Limits from Its Ele
tron CouplingLimits are for τ(A0 → e+ e−).VALUE (s) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •none 4× 10−16{4.5× 10−12 90 1 BROSS 91 BDMP e N → e A0N(A0 → e e)2 GUO 90 BDMP e N → e A0N(A0 → e e)3 BJORKEN 88 CALO A → e+ e− or2γ4 BLINOV 88 MD1 e e → e e A0(A0 → e e)none 1× 10−14{1× 10−10 90 5 RIORDAN 87 BDMP e N → e A0N(A0 → e e)none 1× 10−14{1× 10−11 90 6 BROWN 86 BDMP e N → e A0N(A0 → e e)none 6× 10−14{9× 10−11 95 7 DAVIER 86 BDMP e N → e A0N(A0 → e e)none 3× 10−13{1× 10−7 90 8 KONAKA 86 BDMP e N → e A0N(A0 → e e)

1The listed BROSS 91 limit is for mA0 = 1.14MeV. B(A0 → e+ e−) = 1 assumed.Ex
luded domain in the τA0{mA0 plane extends up to mA0 ≈ 7 MeV (see Fig. 5).Combining with ele
tron g { 2 
onstraint, axions 
oupling only to e+ e− ruled out formA0 < 4.8 MeV (90% CL).2GUO 90 use the same apparatus as BROWN 86 and improve the previous limit in theshorter lifetime region. Combined with g { 2 
onstraint, axions 
oupling only to e+ e−are ruled out for mA0 < 2.7 MeV (90% CL).3BJORKEN 88 reports limits on axion parameters (fA, mA, τA) for mA0 < 200 MeVfrom ele
tron beam-dump experiment with produ
tion via Primako� photoprodu
tion,bremsstrahlung from ele
trons, and resonant annihilation of positrons on atomi
 ele
-trons.4BLINOV 88 assume zero spin, m = 1.8 MeV and lifetime < 5 × 10−12 s and �nd�(A0 → γ γ)B(A0 → e+ e−) < 2 eV (CL=90%).5Assumes A0 γ γ 
oupling is small and hen
e Primako� produ
tion is small. Their �gure2 shows limits on axions for mA0 < 15 MeV.6Uses ele
trons in hadroni
 showers from an in
ident 800 GeV proton beam. Limits formA0 < 15 MeV are shown in their �gure 3.7mA0 = 1.8 MeV assumed. The ex
luded domain in the τA0−mA0 plane extends up tomA0 ≈ 14 MeV, see their �gure 4.8The limits are obtained from their �gure 3. Also given is the limit on theA0 γ γ−A0 e+ e− 
oupling plane by assuming Primako� produ
tion.Sear
h for A0 (Axion) Resonan
e in Bhabha S
atteringSear
h for A0 (Axion) Resonan
e in Bhabha S
atteringSear
h for A0 (Axion) Resonan
e in Bhabha S
atteringSear
h for A0 (Axion) Resonan
e in Bhabha S
atteringThe limit is for �(A0)[B(A0 → e+ e−)℄2.VALUE (10−3 eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.3 97 1 HALLIN 92 CNTR mA0 = 1.75{1.88 MeVnone 0.0016{0.47 90 2 HENDERSON 92C CNTR mA0= 1.5{1.86 MeV
< 2.0 90 3 WU 92 CNTR mA0= 1.56{1.86 MeV
< 0.013 95 TSERTOS 91 CNTR mA0 = 1.832 MeVnone 0.19{3.3 95 4 WIDMANN 91 CNTR mA0= 1.78{1.92 MeV
< 5 97 BAUER 90 CNTR mA0 = 1.832 MeVnone 0.09{1.5 95 5 JUDGE 90 CNTR mA0 = 1.832 MeV,elasti

< 1.9 97 6 TSERTOS 89 CNTR mA0 = 1.82 MeV
<(10{40) 97 6 TSERTOS 89 CNTR mA0 = 1.51{1.65 MeV
<(1{2.5) 97 6 TSERTOS 89 CNTR mA0 = 1.80{1.86 MeV
< 31 95 LORENZ 88 CNTR mA0 = 1.646 MeV
< 94 95 LORENZ 88 CNTR mA0 = 1.726 MeV
< 23 95 LORENZ 88 CNTR mA0 = 1.782 MeV
< 19 95 LORENZ 88 CNTR mA0 = 1.837 MeV
< 3.8 97 7 TSERTOS 88 CNTR mA0 = 1.832 MeV8 VANKLINKEN 88 CNTR9 MAIER 87 CNTR
<2500 90 MILLS 87 CNTR mA0 = 1.8 MeV10 VONWIMMER...87 CNTR1HALLIN 92 quote limits on lifetime, 8 × 10−14 { 5 × 10−13 se
 depending on mass,assuming B(A0 → e+ e−) = 100%. They say that TSERTOS 91 overstated theirsensitivity by a fa
tor of 3.2HENDERSON 92C ex
lude axion with lifetime τA0=1.4 × 10−12 { 4.0 × 10−10 s, as-suming B(A0 → e+ e−)=100%. HENDERSON 92C also ex
lude a ve
tor boson with

τ=1.4× 10−12 { 6.0× 10−10 s.3WU 92 quote limits on lifetime > 3.3 × 10−13 s assuming B(A0 → e+ e−)=100%.They say that TSERTOS 89 overestimate the limit by a fa
tor of π/2. WU 92 also quotea bound for ve
tor boson, τ > 8.2× 10−13 s.4WIDMANN 91 bound applies ex
lusively to the 
ase B(A0 → e+ e−)=1, sin
e thedete
tion eÆ
ien
y varies substantially as �(A0)total 
hanges. See their Fig. 6.5 JUDGE 90 ex
ludes an elasti
 pseudos
alar e+ e− resonan
e for 4.5×10−13 s < τ(A0)
< 7.5 × 10−12 s (95% CL) at mA0 = 1.832 MeV. Comparable limits 
an be set formA0 = 1.776{1.856 MeV.6 See also TSERTOS 88B in referen
es.7The upper limit listed in TSERTOS 88 is too large by a fa
tor of 4. See TSERTOS 88B,footnote 3.8VANKLINKEN 88 looked for relatively long-lived resonan
e (τ = 10−10{10−12 s). Thesensitivity is not suÆ
ient to ex
lude su
h a narrow resonan
e.9MAIER 87 obtained limits R� . 60 eV (100 eV) at mA0 ≃ 1.64 MeV (1.83 MeV) forenergy resolution �E
m ≃ 3 keV, where R is the resonan
e 
ross se
tion normalizedto that of Bhabha s
attering, and � = �2e e/�total. For a dis
ussion implying that�E
m ≃ 10 keV, see TSERTOS 89.10VONWIMMERSPERG 87 measured Bhabha s
attering for E
m = 1.37{1.86 MeV andfound a possible peak at 1.73 with ∫

σdE
m = 14.5 ± 6.8 keV·b. For a 
omment anda reply, see VANKLINKEN 88B and VONWIMMERSPERG 88. Also see CONNELL 88.Sear
h for A0 (Axion) Resonan
e in e+ e− → γ γSear
h for A0 (Axion) Resonan
e in e+ e− → γ γSear
h for A0 (Axion) Resonan
e in e+ e− → γ γSear
h for A0 (Axion) Resonan
e in e+ e− → γ γThe limit is for �(A0 → e+ e−)·�(A0 → γ γ)/�totalVALUE (10−3 eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
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< 0.18 95 VO 94 CNTR mA0=1.1 MeV
< 1.5 95 VO 94 CNTR mA0=1.4 MeV
<12 95 VO 94 CNTR mA0=1.7 MeV
< 6.6 95 1 TRZASKA 91 CNTR mA0 = 1.8 MeV
< 4.4 95 WIDMANN 91 CNTR mA0= 1.78{1.92 MeV2 FOX 89 CNTR
< 0.11 95 3 MINOWA 89 CNTR mA0 = 1.062 MeV
<33 97 CONNELL 88 CNTR mA0 = 1.580 MeV
<42 97 CONNELL 88 CNTR mA0 = 1.642 MeV
<73 97 CONNELL 88 CNTR mA0 = 1.782 MeV
<79 97 CONNELL 88 CNTR mA0 = 1.832 MeV1TRZASKA 91 also give limits in the range (6.6{30) × 10−3 eV (95%CL) for mA0 =1.6{2.0MeV.2 FOX 89 measured positron annihilation with an ele
tron in the sour
e material into twophotons and found no signal at 1.062 MeV (< 9× 10−5 of two-photon annihilation atrest).3 Similar limits are obtained for mA0 = 1.045{1.085 MeV.Sear
h for X 0 (Light Boson) Resonan
e in e+ e− → γ γ γSear
h for X 0 (Light Boson) Resonan
e in e+ e− → γ γ γSear
h for X 0 (Light Boson) Resonan
e in e+ e− → γ γ γSear
h for X 0 (Light Boson) Resonan
e in e+ e− → γ γ γThe limit is for �(X0 → e+ e−)·�(X0 → γ γ γ)/�total . C invarian
e forbids spin-0X0 
oupling to both e+ e− and γ γ γ.VALUE (10−3 eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.2 95 1 VO 94 CNTR mX 0=1.1{1.9 MeV
< 1.0 95 2 VO 94 CNTR mX 0=1.1 MeV
< 2.5 95 2 VO 94 CNTR mX 0=1.4 MeV
<120 95 2 VO 94 CNTR mX 0=1.7 MeV
< 3.8 95 3 SKALSEY 92 CNTR mX 0= 1.5 MeV1VO 94 looked for X0 → γ γ γ de
aying at rest. The pre
ise limits depend on mX 0 . SeeFig. 2(b) in paper.2VO 94 looked for X0 → γ γ γ de
aying in 
ight.3 SKALSEY 92 also give limits 4.3 for mX 0 = 1.54 and 7.5 for 1.64 MeV. The spin of X0is assumed to be one.Light Boson (X 0) Sear
h in Nonresonant e+ e− Annihilation at RestLight Boson (X 0) Sear
h in Nonresonant e+ e− Annihilation at RestLight Boson (X 0) Sear
h in Nonresonant e+ e− Annihilation at RestLight Boson (X 0) Sear
h in Nonresonant e+ e− Annihilation at RestLimits are for the ratio of nγ + X0 produ
tion relative to γ γ.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.2 90 1 MITSUI 96 CNTR γX0
< 4 68 2 SKALSEY 95 CNTR γX0
<40 68 3 SKALSEY 95 RVUE γX0
< 0.18 90 4 ADACHI 94 CNTR γ γX0, X0 → γ γ

< 0.26 90 5 ADACHI 94 CNTR γ γX0, X0 → γ γ

< 0.33 90 6 ADACHI 94 CNTR γX0, X0 → γ γ γ1MITSUI 96 looked for a mono
hromati
 γ. The bound applies for a ve
tor X0 withC=−1 and mX 0 <200 keV. They derive an upper bound on e e X0 
oupling and hen
eon the bran
hing ratio B(o-Ps → γ γX0)< 6.2×10−6. The bounds weaken for heavierX0.2 SKALSEY 95 looked for a mono
hromati
 γ without an a

ompanying γ in e+ e−annihilation. The bound applies for s
alar and ve
tor X0 with C = −1 and mX 0 =100{1000 keV.3 SKALSEY 95 reinterpreted the bound on γA0 de
ay of o-Ps by ASAI 91 where 3% ofdelayed annihilations are not from 3S1 states. The bound applies for s
alar and ve
torX0 with C = −1 and mX 0 = 0{800 keV.4ADACHI 94 looked for a peak in the γ γ invariant mass distribution in γ γ γ γ produ
tionfrom e+ e− annihilation. The bound applies for mX 0 = 70{800 keV.5ADACHI 94 looked for a peak in the missing-mass mass distribution in γ γ 
hannel, using
γ γ γ γ produ
tion from e+ e− annihilation. The bound applies for mX 0 <800 keV.6ADACHI 94 looked for a peak in the missing mass distribution in γ γ γ 
hannel, using
γ γ γ γ produ
tion from e+ e− annihilation. The bound applies for mX 0 = 200{900keV.Sear
hes for Goldstone Bosons (X 0)Sear
hes for Goldstone Bosons (X 0)Sear
hes for Goldstone Bosons (X 0)Sear
hes for Goldstone Bosons (X 0)(In
luding Horizontal Bosons and Majorons.) Limits are for bran
hing ratios.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9 × 10−6 90 1 BAYES 15 TWST µ+ → e+X0, Familon2 LATTANZI 13 COSM Majoron dark matter de
ay3 LESSA 07 RVUE Meson, ℓ de
ays to Majoron4 DIAZ 98 THEO H0 → X0X0, A0 →X0X0X0, Majoron5 BOBRAKOV 91 Ele
tron quasi-magneti
 in-tera
tion
<3.3× 10−2 95 6 ALBRECHT 90E ARG τ → µX0. Familon
<1.8× 10−2 95 6 ALBRECHT 90E ARG τ → e X0. Familon
<6.4× 10−9 90 7 ATIYA 90 B787 K+ → π+X0. Familon
<1.1× 10−9 90 8 BOLTON 88 CBOX µ+ → e+ γX0. Familon

9 CHANDA 88 ASTR Sun, Majoron10 CHOI 88 ASTR Majoron, SN 1987A
<5 × 10−6 90 11 PICCIOTTO 88 CNTR π → e νX0, Majoron
<1.3× 10−9 90 12 GOLDMAN 87 CNTR µ → e γX0. Familon
<3 × 10−4 90 13 BRYMAN 86B RVUE µ → e X0. Familon
<1 × 10−10 90 14 EICHLER 86 SPEC µ+ → e+X0. Familon
<2.6× 10−6 90 15 JODIDIO 86 SPEC µ+ → e+X0. Familon16 BALTRUSAIT...85 MRK3 τ → ℓX0. Familon17 DICUS 83 COSM ν (hvy) → ν (light)X01BAYES 15 limits are the average over mX 0 = 13{80 MeV for the isotropi
 de
ay distri-bution of positrons. See their Fig. 4 and Table II for the mass-dependent limits as wellas the dependen
e on the de
ay anisotropy. In parti
ular, they �nd a limit < 58× 10−6at 90% CL for massless familons and for the same asymmetry as normal muon de
ay, a
ase not 
overed by JODIDIO 86.2 LATTANZI 13 use WMAP 9 year data as well as X-ray and γ-ray observations to derivelimits on de
aying majoron dark matter. A limit on the de
ay width �(X0 → ν ν)

< 6.4× 10−19 s−1 at 95% CL is found if majorons make up all of the dark matter.3 LESSA 07 
onsider de
ays of the form Meson → ℓνMajoron and ℓ → ℓ′ ν νMajoronand use existing data to derive limits on the neutrino-Majoron Yukawa 
ouplings gαβ(α,β=e,µ,τ). Their best limits are ∣∣geα
∣∣2 < 5.5 × 10−6, ∣∣gµα

∣∣2 < 4.5 × 10−5,
∣∣gτ α

∣∣2 < 5.5× 10−2 at CL = 90%.4DIAZ 98 studied models of spontaneously broken lepton number with both singlet andtriplet Higgses. They obtain limits on the parameter spa
e from invisible de
ay Z →H0A0 → X0X0X0X0X0 and e+ e− → Z H0 with H0 → X0X0.5BOBRAKOV 91 sear
hed for anomalous magneti
 intera
tions between polarized ele
-trons expe
ted from the ex
hange of a massless pseudos
alar boson (arion). A limitx2e < 2× 10−4 (95%CL) is found for the e�e
tive anomalous magneton parametrizedas xe (GF /8π√2)1/2.6ALBRECHT 90E limits are for B(τ → ℓX0)/B(τ → ℓν ν). Valid for mX 0 < 100MeV. The limits rise to 7.1% (for µ), 5.0% (for e) for mX 0 = 500 MeV.7ATIYA 90 limit is for mX 0 = 0. The limit B < 1 × 10−8 holds for mX 0 < 95 MeV.For the redu
tion of the limit due to �nite lifetime of X0, see their Fig. 3.8BOLTON 88 limit 
orresponds to F > 3.1 × 109 GeV, whi
h does not depend on the
hirality property of the 
oupling.9CHANDA 88 �nd vT < 10 MeV for the weak-triplet Higgs va
uum expe
tation valuein Gelmini-Ron
adelli model, and vS > 5.8× 106 GeV in the singlet Majoron model.10CHOI 88 used the observed neutrino 
ux from the supernova SN 1987A to ex
lude theneutrino Majoron Yukawa 
oupling h in the range 2 × 10−5 < h < 3 × 10−4 for theintera
tion Lint = 12 ihψ
νγ5ψνφX. For several families of neutrinos, the limit applies for(�h4i )1/4.11PICCIOTTO 88 limit applies when mX 0 < 55 MeV and τX 0 > 2ns, and it de
reasesto 4× 10−7 at mX 0 = 125 MeV, beyond whi
h no limit is obtained.12GOLDMAN 87 limit 
orresponds to F > 2.9×109 GeV for the family symmetry breakings
ale from the Lagrangian Lint = (1/F)ψµγµ (a+bγ5) ψe∂µφX 0 with a2+b2 = 1.This is not as sensitive as the limit F > 9.9×109 GeV derived from the sear
h for µ+ →e+X0 by JODIDIO 86, but does not depend on the 
hirality property of the 
oupling.13 Limits are for �(µ → e X0)/�(µ → e ν ν). Valid when mX 0 = 0{93.4, 98.1{103.5MeV.14EICHLER 86 looked for µ+ → e+X0 followed by X0 → e+ e−. Limits on thebran
hing fra
tion depend on the mass and and lifetime of X0. The quoted limits arevalid when τX 0 . 3. × 10−10 s if the de
ays are kinemati
ally allowed.15 JODIDIO 86 
orresponds to F > 9.9× 109 GeV for the family symmetry breaking s
alewith the parity-
onserving e�e
tive Lagrangian Lint = (1/F) ψµγµψe∂µφX 0 .16BALTRUSAITIS 85 sear
h for light Goldstone boson(X0) of broken U(1). CL = 95%limits are B(τ → µ+X0)/B(τ → µ+ ν ν) <0.125 and B(τ → e+X0)/B(τ → e+ ν ν)
<0.04. Inferred limit for the symmetry breaking s
ale is m >3000 TeV.17The primordial heavy neutrino must de
ay into ν and familon, fA, early so that thered-shifted de
ay produ
ts are below 
riti
al density, see their table. In addition, K →
π fA and µ → e fA are unseen. Combining these ex
ludes mheavyν between 5× 10−5and 5× 10−4 MeV (µ de
ay) and mheavyν between 5× 10−5 and 0.1 MeV (K -de
ay).Majoron Sear
hes in Neutrinoless Double β De
ayMajoron Sear
hes in Neutrinoless Double β De
ayMajoron Sear
hes in Neutrinoless Double β De
ayMajoron Sear
hes in Neutrinoless Double β De
ayLimits are for the half-life of neutrinoless ββ de
ay with a Majoron emission.No experiment 
urrently 
laims any su
h eviden
e. Only the best or 
omparable limitsfor ea
h isotope are reported. Also see the reviews ZUBER 98 and FAESSLER 98B.t1/2(1021 yr) CL% ISOTOPE TRANSITION METHOD DOCUMENT ID

>7200>7200>7200>7200 90909090 128Te128Te128Te128Te CNTRCNTRCNTRCNTR 1 BERNATOW... 92
• • • We do not use the following data for averages, �ts, limits, et
. • • •
> 420 90 76Ge 0ν1χ GERDA 2 AGOSTINI 15A
> 400 90 100Mo 0ν1χ NEMO-3 3 ARNOLD 15
>1200 90 136Xe 0ν1χ EXO-200 4 ALBERT 14A
>2600 90 136Xe 0ν1χ KamLAND-Zen 5 GANDO 12
> 16 90 130Te 0ν1χ NEMO-3 6 ARNOLD 11
> 1.9 90 96Zr 2ν1χ NEMO-3 7 ARGYRIADES 10
> 1.52 90 150Nd 0ν1χ NEMO-3 8 ARGYRIADES 09
> 27 90 100Mo 0ν1χ NEMO-3 9 ARNOLD 06
> 15 90 82Se 0ν1χ NEMO-3 10 ARNOLD 06
> 14 90 100Mo 0ν1χ NEMO-3 11 ARNOLD 04
> 12 90 82Se 0ν1χ NEMO-3 12 ARNOLD 04
> 2.2 90 130Te 0ν1χ Cryog. det. 13 ARNABOLDI 03
> 0.9 90 130Te 0ν2χ Cryog. det. 14 ARNABOLDI 03
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> 8 90 116Cd 0ν1χ CdWO4 s
int. 15 DANEVICH 03
> 0.8 90 116Cd 0ν2χ CdWO4 s
int. 16 DANEVICH 03
> 500 90 136Xe 0ν1χ Liquid Xe S
int. 17 BERNABEI 02D
> 5.8 90 100Mo 0ν1χ ELEGANT V 18 FUSHIMI 02
> 0.32 90 100Mo 0ν1χ Liq. Ar ioniz. 19 ASHITKOV 01
> 0.0035 90 160Gd 0ν1χ 160Gd2SiO5:Ce 20 DANEVICH 01
> 0.013 90 160Gd 0ν 2χ 160Gd2SiO5:Ce 21 DANEVICH 01
> 2.3 90 82Se 0ν1χ NEMO 2 22 ARNOLD 00
> 0.31 90 96Zr 0ν1χ NEMO 2 23 ARNOLD 00
> 0.63 90 82Se 0ν 2χ NEMO 2 24 ARNOLD 00
> 0.063 90 96Zr 0ν 2χ NEMO 2 24 ARNOLD 00
> 0.16 90 100Mo 0ν 2χ NEMO 2 24 ARNOLD 00
> 2.4 90 82Se 0ν1χ NEMO 2 25 ARNOLD 98
> 7.2 90 136Xe 0ν 2χ TPC 26 LUESCHER 98
> 7.91 90 76Ge SPEC 27 GUENTHER 96
> 17 90 76Ge CNTR BECK 931BERNATOWICZ 92 studied double-β de
ays of 128Te and 130Te, and found the ratio

τ(130Te)/τ(128Te) = (3.52 ± 0.11) × 10−4 in agreement with relatively stable theo-reti
al predi
tions. The bound is based on the requirement that Majoron-emitting de
ay
annot be larger than the observed double-beta rate of 128Te of (7.7± 0.4)×1024 year.We 
al
ulated 90% CL limit as (7.7{1.28× 0.4=7.2)× 1024.2AGOSTINI 15A analyze a 20.3 kg yr of data set of the GERDA 
alorimeter to determinegν χ < 3.4{8.7× 10−5 on the Majoron-neutrino 
oupling 
onstant. The range re
e
tsthe spread of the nu
lear matrix elements.3ARNOLD 15 use the NEMO-3 tra
king 
alorimeter with 3.43 kg yr exposure to determinethe limit on Majoron emission. The limit 
orresponds to gν χ < 1.6{3.0× 10−4. Thespread re
e
ts di�erent nu
lear matrix elements. Supersedes ARNOLD 06.4ALBERT 14A utilize 100 kg yr of exposure of the EXO-200 tra
king 
alorimeter to pla
ea limit on the gνχ < 0.8{1.7× 10−5 on the Majoron-neutrino 
oupling 
onstant. Therange re
e
ts the spread of the nu
lear matrix elements.5GANDO 12 use the KamLAND-Zen dete
tor to obtain the limit on the 0νχ de
ay withMajoron emission. It implies that the 
oupling 
onstant gνχ < 0.8{1.6 × 10−5 de-pending on the nu
lear matrix elements used.6ARNOLD 11 use the NEMO-3 dete
tor to obtain the reported limit on Majoron emission.It implies that the 
oupling 
onstant gνχ < 0.6{1.6× 10−4 depending on the nu
learmatrix element used. Super
edes ARNABOLDI 03.7ARGYRIADES 10 use the NEMO-3 tra
king dete
tor and 96Zr to derive the reportedlimit. No limit for the Majoron ele
tron 
oupling is given.8ARGYRIADES 09 use 150Nd data taken with the NEMO-3 tra
king dete
tor. Thereported limit 
orresponds to 〈 gνχ
〉

< 1.7{3.0× 10−4 using a range of nu
lear matrixelements that in
lude the e�e
t of nu
lear deformation.9ARNOLD 06 use 100Mo data taken with the NEMO-3 tra
king dete
tor. The reportedlimit 
orresponds to 〈gν χ
〉

< (0.4{1.8)× 10−4 using a range of matrix element 
al
u-lations. Superseded by ARNOLD 15.10NEMO-3 tra
king 
alorimeter is used in ARNOLD 06 . Reported half-life limit for 82Se
orresponds to 〈gνχ
〉

< (0.66{1.9)×10−4 using a range of matrix element 
al
ulations.Supersedes ARNOLD 04.11ARNOLD 04 use the NEMO-3 tra
king dete
tor. The limit 
orresponds to 〈gν χ
〉

<(0.5{0.9)10−4 using the matrix elements of SIMKOVIC 99, STOICA 01 and CIV-ITARESE 03. Superseded by ARNOLD 06.12ARNOLD 04 use the NEMO-3 tra
king dete
tor. The limit 
orresponds to 〈gν χ
〉

<(0.7{1.6)10−4 using the matrix elements of SIMKOVIC 99, STOICA 01 and CIV-ITARESE 03.13 Supersedes ALESSANDRELLO 00. Array of TeO2 
rystals in high resolution 
ryogeni

alorimeter. Some enri
hed in 130Te. Derive 〈gνχ
〉

< 17{33 × 10−5 depending onmatrix element.14 Supersedes ALESSANDRELLO 00. Cryogeni
 
alorimeter sear
h.15 Limit for the 0ν χ de
ay with Majoron emission of 116Cd using enri
hed CdWO4 s
in-tillators. 〈gν χ
〉

< 4.6{8.1 × 10−5 depending on the matrix element. SupersedesDANEVICH 00.16 Limit for the 0ν2χ de
ay of 116Cd. Supersedes DANEVICH 00.17BERNABEI 02D obtain limit for 0ν χ de
ay with Majoron emission of 136Xe using liquidXe s
intillation dete
tor. They derive 〈gνχ
〉

< 2.0{3.0 × 10−5 with several nu
learmatrix elements.18Repla
es TANAKA 93. FUSHIMI 02 derive half-life limit for the 0νχ de
ay by meansof tra
king 
alorimeter ELEGANT V. Considering various matrix element 
al
ulations, arange of limits for the Majoron-neutrino 
oupling is given: 〈gνχ
〉

<(6.3{360) × 10−5.19ASHITKOV 01 result for 0ν χ of 100Mo is less stringent than ARNOLD 00.20DANEVICH 01 obtain limit for the 0ν χ de
ay with Majoron emission of 160Gd usingGd2SiO5:Ce 
rystal s
intillators.21DANEVICH 01 obtain limit for the 0ν 2χ de
ay with 2 Majoron emission of 160Gd.22ARNOLD 00 reports limit for the 0νχ de
ay with Majoron emission derived from tra
king
alorimeter NEMO 2. Using 82Se sour
e: 〈gνχ
〉

< 1.6 × 10−4. Matrix element fromGUENTHER 96.23Using 96Zr sour
e: 〈gν χ
〉

< 2.6× 10−4. Matrix element from ARNOLD 99.24ARNOLD 00 reports limit for the 0ν 2χ de
ay with two Majoron emission derived fromtra
king 
alorimeter NEMO 2.25ARNOLD 98 determine the limit for 0νχ de
ay with Majoron emission of 82Se using theNEMO-2 tra
king dete
tor. They derive 〈gνχ

〉
< 2.3{4.3 × 10−4 with several nu
learmatrix elements.26 LUESCHER 98 report a limit for the 0ν de
ay with Majoron emission of 136Xe using XeTPC. This result is more stringent than BARABASH 89. Using the matrix elements ofENGEL 88, they obtain a limit on 〈gν χ

〉 of 2.0× 10−4.27 See Table 1 in GUENTHER 96 for limits on the Majoron 
oupling in di�erent models.

Invisible A0 (Axion) MASS LIMITS from Astrophysi
s and CosmologyInvisible A0 (Axion) MASS LIMITS from Astrophysi
s and CosmologyInvisible A0 (Axion) MASS LIMITS from Astrophysi
s and CosmologyInvisible A0 (Axion) MASS LIMITS from Astrophysi
s and Cosmologyv1 = v2 is usually assumed (vi = va
uum expe
tation values). For a review of theselimits, see RAFFELT 91 and TURNER 90. In the 
omment lines below, D and K referto DFSZ and KSVZ axion types, dis
ussed in the above minireview.VALUE (eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.67 95 1 ARCHIDIACO...13A COSM K, hot dark matternone 0.7{3× 105 2 CADAMURO 11 COSM D abundan
e
<105 90 3 DERBIN 11A CNTR D, solar axion4 ANDRIAMON...10 CAST K, solar axions
< 0.72 95 5 HANNESTAD 10 COSM K, hot dark matter6 ANDRIAMON...09 CAST K, solar axions
<191 90 7 DERBIN 09A CNTR K, solar axions
<334 95 8 KEKEZ 09 HPGE K, solar axions
< 1.02 95 9 HANNESTAD 08 COSM K, hot dark matter
< 1.2 95 10 HANNESTAD 07 COSM K, hot dark matter
< 0.42 95 11 MELCHIORRI 07A COSM K, hot dark matter
< 1.05 95 12 HANNESTAD 05A COSM K, hot dark matter3 to 20 13 MOROI 98 COSM K, hot dark matter
< 0.007 14 BORISOV 97 ASTR D, neutron star
< 4 15 KACHELRIESS 97 ASTR D, neutron star 
ooling
<(0.5{6)× 10−3 16 KEIL 97 ASTR SN 1987A
< 0.018 17 RAFFELT 95 ASTR D, red giant
< 0.010 18 ALTHERR 94 ASTR D, red giants, whitedwarfs19 CHANG 93 ASTR K, SN 1987A
< 0.01 WANG 92 ASTR D, white dwarf
< 0.03 WANG 92C ASTR D, C-O burningnone 3{8 20 BERSHADY 91 ASTR D, K,intergala
ti
 light
< 10 21 KIM 91C COSM D, K, mass density ofthe universe, super-symmetry22 RAFFELT 91B ASTR D,K, SN 1987A
< 1 × 10−3 23 RESSELL 91 ASTR K, intergala
ti
 lightnone 10−3{3 BURROWS 90 ASTR D,K, SN 1987A24 ENGEL 90 ASTR D,K, SN 1987A
< 0.02 25 RAFFELT 90D ASTR D, red giant
< 1 × 10−3 26 BURROWS 89 ASTR D,K, SN 1987A
<(1.4{10)× 10−3 27 ERICSON 89 ASTR D,K, SN 1987A
< 3.6 × 10−4 28 MAYLE 89 ASTR D,K, SN 1987A
< 12 CHANDA 88 ASTR D, Sun
< 1 × 10−3 RAFFELT 88 ASTR D,K, SN 1987A29 RAFFELT 88B ASTR red giant
< 0.07 FRIEMAN 87 ASTR D, red giant
< 0.7 30 RAFFELT 87 ASTR K, red giant
< 2{5 TURNER 87 COSM K, thermal produ
tion
< 0.01 31 DEARBORN 86 ASTR D, red giant
< 0.06 RAFFELT 86 ASTR D, red giant
< 0.7 32 RAFFELT 86 ASTR K, red giant
< 0.03 RAFFELT 86B ASTR D, white dwarf
< 1 33 KAPLAN 85 ASTR K, red giant
< 0.003{0.02 IWAMOTO 84 ASTR D, K, neutron star
> 1 × 10−5 ABBOTT 83 COSM D,K, mass density ofthe universe
> 1 × 10−5 DINE 83 COSM D,K, mass density ofthe universe
< 0.04 ELLIS 83B ASTR D, red giant
> 1 × 10−5 PRESKILL 83 COSM D,K, mass density ofthe universe
< 0.1 BARROSO 82 ASTR D, red giant
< 1 34 FUKUGITA 82 ASTR D, stellar 
ooling
< 0.07 FUKUGITA 82B ASTR D, red giant1ARCHIDIACONO 13A is analogous to HANNESTAD 05A. The limit is based on the CMBtemperature power spe
trum of the Plan
k data, the CMB polarization from the WMAP9-yr data, the matter power spe
trum from SDSS-DR7, and the lo
al Hubble parametermeasurement by the Carnegie Hubble program.2CADAMURO 11 use the deuterium abundan
e to show that the mA0 range 0.7 eV {300 keV is ex
luded for axions, 
omplementing HANNESTAD 10.3DERBIN 11A look for solar axions produ
ed by Compton and bremsstrahlung pro
esses,in the resonant ex
itation of 169Tm, 
onstraining the axion-ele
tron × axion nu
leon
ouplings.4ANDRIAMONJE 10 sear
h for solar axions produ
ed from 7Li (478 keV) and D(p,γ)3He(5.5 MeV) nu
lear transitions. They show limits on the axion-photon 
oupling for tworeferen
e values of the axion-nu
leon 
oupling for mA < 100 eV.5This is an update of HANNESTAD 08 in
luding 7 years of WMAP data.6ANDRIAMONJE 09 look for solar axions produ
ed from the thermally ex
ited 14.4 keVlevel of 57Fe. They show limits on the axion-nu
leon × axion-photon 
oupling assumingmA < 0.03 eV.7DERBIN 09A look for Primako�-produ
ed solar axions in the resonant ex
itation of169Tm, 
onstraining the axion-photon × axion-nu
leon 
ouplings.8KEKEZ 09 look at axio-ele
tri
 e�e
t of solar axions in HPGe dete
tors. The one-loopaxion-ele
tron 
oupling for hadroni
 axions is used.9This is an update of HANNESTAD 07 in
luding 5 years of WMAP data.10This is an update of HANNESTAD 05A with new 
osmologi
al data, notably WMAP (3years) and baryon a
ousti
 os
illations (BAO). Lyman-α data are left out, in 
ontrast toHANNESTAD 05A and MELCHIORRI 07A, be
ause it is argued that systemati
 errorsare large. It uses Bayesian statisti
s and marginalizes over a possible neutrino hot darkmatter 
omponent.11MELCHIORRI 07A is analogous to HANNESTAD 05A, with updated 
osmologi
al data,notably WMAP (3 years). Uses Bayesian statisti
s and marginalizes over a possible
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omponent. Leaving out Lyman-α data, a 
onservative limit is1.4 eV.12HANNESTAD 05A puts an upper limit on the mass of hadroni
 axion be
ause in this massrange it would have been thermalized and 
ontribute to the hot dark matter 
omponentof the universe. The limit is based on the CMB anisotropy from WMAP, SDSS larges
ale stru
ture, Lyman α, and the prior Hubble parameter from HST Key Proje
t. A χ2statisti
 is used. Neutrinos are assumed not to 
ontribute to hot dark matter.13MOROI 98 points out that a KSVZ axion of this mass range (see CHANG 93) 
an be aviable hot dark matter of Universe, as long as the model-dependent gAγ is a

identallysmall enough as originally emphasized by KAPLAN 85; see Fig. 1.14BORISOV 97 bound is on the axion-ele
tron 
oupling gae < 1×10−13 from the photo-produ
tion of axions o� of magneti
 �elds in the outer layers of neutron stars.15KACHELRIESS 97 bound is on the axion-ele
tron 
oupling gae < 1 × 10−10 from theprodu
tion of axions in strongly magnetized neutron stars. The authors also quote astronger limit, gae < 9 × 10−13 whi
h is strongly dependent on the strength of themagneti
 �eld in white dwarfs.16KEIL 97 uses new measurements of the axial-ve
tor 
oupling strength of nu
leons, aswell as a reanalysis of many-body e�e
ts and pion-emission pro
esses in the 
ore of theneutron star, to update limits on the invisible-axion mass.17RAFFELT 95 reexamined the 
onstraints on axion emission from red giants due to theaxion-ele
tron 
oupling. They improve on DEARBORN 86 by taking into proper a

ountdegenera
y e�e
ts in the bremsstrahlung rate. The limit 
omes from requiring the redgiant 
ore mass at helium ignition not to ex
eed its standard value by more than 5%(0.025 solar masses).18ALTHERR 94 bound is on the axion-ele
tron 
oupling gae < 1.5× 10−13, from energyloss via axion emission.19CHANG 93 updates ENGEL 90 bound with the Kaplan-Manohar ambiguity in z=mu/md(see the Note on the Quark Masses in the Quark Parti
le Listings). It leaves the windowfA=3×105{3×106 GeV open. The 
onstraint from Big-Bang Nu
leosynthesis is satis�edin this window as well.20BERSHADY 91 sear
hed for a line at wave length from 3100{8300 �A expe
ted from 2γde
ays of reli
 thermal axions in intergala
ti
 light of three ri
h 
lusters of galaxies.21KIM 91C argues that the bound from the mass density of the universe will 
hange dras-ti
ally for the supersymmetri
 models due to the entropy produ
tion of saxion (s
alar
omponent in the axioni
 
hiral multiplet) de
ay. Note that it is an upperbound ratherthan a lowerbound.22RAFFELT 91B argue that previous SN 1987A bounds must be relaxed due to 
orre
tionsto nu
leon bremsstrahlung pro
esses.23RESSELL 91 uses absen
e of any intra
luster line emission to set limit.24ENGEL 90 rule out 10−10 . gAN . 10−3, whi
h for a hadroni
 axion with EMCmotivated axion-nu
leon 
ouplings 
orresponds to 2.5 × 10−3 eV . mA0 . 2.5 ×104 eV. The 
onstraint is loose in the middle of the range, i.e. for gAN ∼ 10−6.25RAFFELT 90D is a re-analysis of DEARBORN 86.26The region mA0 & 2 eV is also allowed.27ERICSON 89 
onsidered various nu
lear 
orre
tions to axion emission in a supernova
ore, and found a redu
tion of the previous limit (MAYLE 88) by a large fa
tor.28MAYLE 89 limit based on naive quark model 
ouplings of axion to nu
leons. Limit basedon 
ouplings motivated by EMC measurements is 2{4 times weaker. The limit fromaxion-ele
tron 
oupling is weak: see HATSUDA 88B.29RAFFELT 88B derives a limit for the energy generation rate by exoti
 pro
esses in helium-burning stars ǫ < 100 erg g−1 s−1, whi
h gives a �rmer basis for the axion limits basedon red giant 
ooling.30RAFFELT 87 also gives a limit gAγ < 1× 10−10 GeV−1.31DEARBORN 86 also gives a limit gAγ < 1.4× 10−11 GeV−1.32RAFFELT 86 gives a limit gAγ < 1.1×10−10 GeV−1 from red giants and < 2.4×10−9GeV−1 from the sun.33KAPLAN 85 says mA0 < 23 eV is allowed for a spe
ial 
hoi
e of model parameters.34 FUKUGITA 82 gives a limit gAγ < 2.3× 10−10 GeV−1.Sear
h for Reli
 Invisible AxionsSear
h for Reli
 Invisible AxionsSear
h for Reli
 Invisible AxionsSear
h for Reli
 Invisible AxionsLimits are for [GAγ γ/mA0 ℄2ρA where GAγ γ denotes the axion two-photon 
oupling,Lint = −
GAγ γ4 φAFµν F̃µν = GAγ γφAEEEE·BBBB, and ρA is the axion energy densitynear the earth.VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 BECK 13 mA0 = 0.11 meV
<3.5× 10−43 2 HOSKINS 11 ADMX mA0 = 3.3{3.69× 10−6 eV
<2.9× 10−43 90 3 ASZTALOS 10 ADMX mA0 = 3.34{3.53× 10−6 eV
<1.9× 10−43 97.7 4 DUFFY 06 ADMX mA0 = 1.98{2.17× 10−6 eV
<5.5× 10−43 90 5 ASZTALOS 04 ADMX mA0 = 1.9{3.3× 10−6 eV6 KIM 98 THEO
<2 × 10−41 7 HAGMANN 90 CNTR mA0 = (5.4{5.9)10−6 eV
<1.3× 10−42 95 8 WUENSCH 89 CNTR mA0 = (4.5{10.2)10−6 eV
<2 × 10−41 95 8 WUENSCH 89 CNTR mA0 = (11.3{16.3)10−6 eV1BECK 13 argues that dark-matter axions passing through Earth may generate a smallobservable signal in resonant S/N/S Josephson jun
tions. A measurement by HOFF-MANN 04 [Physi
al Review B70B70B70B70 180503 (2004)℄ is interpreted in terms of subdominantdark matter axions with mA0 = 0.11 meV.2HOSKINS 11 is analogous to DUFFY 06. See Fig. 4 for the mass-dependent limit interms of the lo
al density.3ASZTALOS 10 used the upgraded dete
tor of ASZTALOS 04 to sear
h for halo axions.See their Fig. 5 for the mA0 dependen
e of the limit.4DUFFY 06 used the upgraded dete
tor of ASZTALOS 04, while assuming a smallervelo
ity dispersion than the isothermal model as in Eq. (8) of their paper. See Fig. 10of their paper on the axion mass dependen
e of the limit.5ASZTALOS 04 looked for a 
onversion of halo axions to mi
rowave photons in mag-neti
 �eld. At 90% CL, the KSVZ axion 
annot have a lo
al halo density more than

0.45 GeV/
m3 in the quoted mass range. See Fig. 7 of their paper on the axion massdependen
e of the limit.6KIM 98 
al
ulated the axion-to-photon 
ouplings for various axion models and 
om-pared them to the HAGMANN 90 bounds. This analysis demonstrates a strong modeldependen
e of GAγ γ and hen
e the bound from reli
 axion sear
h.7HAGMANN 90 experiment is based on the proposal of SIKIVIE 83.8WUENSCH 89 looks for 
ondensed axions near the earth that 
ould be 
onverted tophotons in the presen
e of an intense ele
tromagneti
 �eld via the Primako� e�e
t,following the proposal of SIKIVIE 83. The theoreti
al predi
tion with [GAγ γ/mA0 ℄2 =2 × 10−14 MeV−4 (the three generation DFSZ model) and ρA = 300 MeV/
m3 thatmakes up gala
ti
 halos gives (GAγ γ/mA0)2 ρA = 4×10−44. Note that our de�nitionof GAγ γ is (1/4π) smaller than that of WUENSCH 89.Invisible A0 (Axion) Limits from Photon CouplingInvisible A0 (Axion) Limits from Photon CouplingInvisible A0 (Axion) Limits from Photon CouplingInvisible A0 (Axion) Limits from Photon CouplingLimits are for the modulus of the axion-two-photon 
oupling GAγ γ de�ned byL=−GAγ γφAEEEE····BBBB. For s
alars S0 the limit is on the 
oupling 
onstant inL=GS γ γφS(EEEE2−BBBB2). The relation between GAγ γ and mA0 is not used unlessstated otherwise, i.e., many of these bounds apply to low-mass axion-like parti
les(ALPs), not to QCD axions.VALUE (GeV−1) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 ANASTASSO... 15 CAST Chameleons
<1.47× 10−10 95 2 ARIK 15 CAST mA0 = 0.39{0.42 eV
<3.5 × 10−8 95 3 BALLOU 15 LSW mA0 < 2× 10−4 eV4 BRAX 15 ASTR mS0 < 4× 10−12 eV
<5.42× 10−4 95 5 HASEBE 15 LASR mA0 = 0.15 eV6 MILLEA 15 COSM Axion-like parti
les7 VANTILBURG 15 Dilaton-like dark matter
<4.1 × 10−10 99.7 8 VINYOLES 15 ASTR mA0 = 0.6{185 eV
<3.3 × 10−10 95 9 ARIK 14 CAST mA0 = 0.64{1.17 eV
<6.6 × 10−11 95 10 AYALA 14 ASTR Globular 
lusters
<1.4 × 10−7 95 11 DELLA-VALLE 14 mA0 = 1 meV12 EJLLI 14 COSM mA0 = 2.66{48.8 µeV
<8 × 10−8 95 13 PUGNAT 14 LSW mA0 < 0.3 meV
<1 × 10−11 14 REESMAN 14 ASTR mA0 < 1× 10−10 eV
<2.1 × 10−11 95 15 ABRAMOWSKI13A IACT mA0 = 15{60 neV
<2.15× 10−9 95 16 ARMENGAUD 13 EDEL mA0 < 200 eV
<4.5 × 10−8 95 17 BETZ 13 LSW mA0 = 7.2× 10−6 eV
<8 × 10−11 18 FRIEDLAND 13 ASTR Red giants
>2 × 10−11 19 MEYER 13 ASTR mA0 < 1× 10−7 eV20 CADAMURO 12 COSM Axion-like parti
les
<2.5 × 10−13 95 21 PAYEZ 12 ASTR mA0 < 4.2× 10−14 eV
<2.3 × 10−10 95 22 ARIK 11 CAST mA0 = 0.39{0.64 eV
<6.5 × 10−8 95 23 EHRET 10 ALPS mA0 < 0.7 meV
<2.4 × 10−9 95 24 AHMED 09A CDMS mA0 < 100 eV
< 1.2{2.8× 10−10 95 25 ARIK 09 CAST mA0 = 0.02{0.39 eV26 CHOU 09 Chameleons
<7 × 10−10 27 GONDOLO 09 ASTR mA0 < few keV
<1.3 × 10−6 95 28 AFANASEV 08 mS0 < 1 meV
<3.5 × 10−7 99.7 29 CHOU 08 mA0 < 0.5 meV
<1.1 × 10−6 99.7 30 FOUCHE 08 mA0 < 1 meV
< 5.6{13.4× 10−10 95 31 INOUE 08 mA0 = 0.84{1.00 eV
<5 × 10−7 32 ZAVATTINI 08 mA0 < 1 meV
<8.8 × 10−11 95 33 ANDRIAMON...07 CAST mA0 < 0.02 eV
<1.25× 10−6 95 34 ROBILLIARD 07 mA0 < 1 meV2{5× 10−6 35 ZAVATTINI 06 mA0 = 1{1.5 meV
<1.1 × 10−9 95 36 INOUE 02 mA0= 0.05{0.27 eV
<2.78× 10−9 95 37 MORALES 02B mA0 <1 keV
<1.7 × 10−9 90 38 BERNABEI 01B mA0 <100 eV
<1.5 × 10−4 90 39 ASTIER 00B NOMD mA0 <40 eV40 MASSO 00 THEO indu
ed γ 
oupling
<2.7 × 10−9 95 41 AVIGNONE 98 SLAX mA0 < 1 keV
<6.0 × 10−10 95 42 MORIYAMA 98 mA0 < 0.03 eV
<3.6 × 10−7 95 43 CAMERON 93 mA0 < 10−3 eV,opti
al rotation
<6.7 × 10−7 95 44 CAMERON 93 mA0 < 10−3 eV,photon regeneration
<3.6 × 10−9 99.7 45 LAZARUS 92 mA0 < 0.03 eV
<7.7 × 10−9 99.7 45 LAZARUS 92 mA0= 0.03{0.11 eV
<7.7 × 10−7 99 46 RUOSO 92 mA0 < 10−3 eV
<2.5 × 10−6 47 SEMERTZIDIS 90 mA0 < 7× 10−4 eV1ANASTASSOPOULOS 15 sear
h for solar 
hameleons with CAST and derived limits onthe 
hameleon 
oupling to photons and matter. See their Fig. 12 for the ex
lusionregion.2ARIK 15 is analogous to ARIK 09, and sear
h for solar axions for mA0 around 0.2 and0.4 eV. See their Figs. 1 and 3 for the mass-dependent limits.
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leListingsAxions (A0) andOther Very Light Bosons3Based on OSQAR photon regeneration experiment. See their Fig. 6 for mass-dependentlimits on s
alar and pseudos
alar bosons.4BRAX 15 derived limits on 
onformal and disformal 
ouplings of a s
alar to photons bysear
hing for a 
haoti
 absorption pattern in the X-ray and UV bands of the Hydra Agalaxy 
luster and a BL la
 obje
t, respe
tively. See their Fig. 8.5HASEBE 15 look for an axion via a four-wave mixing pro
ess at quasi-parallel 
ollidinglaser beams. They also derived limits on a s
alar 
oupling to photons GS γ γ < 2.62×10−4 GeV−1 at mS0 = 0.15 eV. See their Figs. 11 and 12 for mass-dependent limits.6MILLEA 15 is similar to CADAMURO 12, in
luding the Plan
k data and the latestinferen
es of primordial deuterium abundan
e. See their Fig. 3 for mass-dependentlimits.7VANTILBURG 15 look for harmoni
 variations in the dyprosium transition frequen
ydata, indu
ed by 
oherent os
illations of the �ne-stru
ture 
onstant due to dilaton-likedark matter, and set the limits, GS γ γ < 6× 10−27 GeV−1 at mS0 = 6× 10−23 eV.See their Fig. 4 for mass-dependent limits between 1× 10−24 < mS0 < 1× 10−15 eV.8VINYOLES 15 performed a global �t analysis based on helioseismology and solar neutrinoobservations. See their Fig. 9.9ARIK 14 is similar to ARIK 11. See their Fig. 2 for mass-dependent limits.10AYALA 14 derived the limit from the helium-burning lifetime of horizontal-bran
h starsbased on number 
ounts in globular 
lusters.11DELLA-VALLE 14 use the new PVLAS apparatus to set a limit on va
uum magneti
birefringen
e indu
ed by axion-like parti
les. See their Fig. 6 for the mass-dependentlimits.12EJLLI 14 set limits on a produ
t of primordial magneti
 �eld and the axion mass usingCMB distortion indu
ed by resonant axion produ
tion from CMB photons. See theirFig. 1 for limits applying spe
i�
ally to the DFSZ and KSVZ axion models.13PUGNAT 14 is analogous to EHRET 10. See their Fig. 5 for mass-dependent limits ons
alar and pseudos
alar bosons.14REESMAN 14 derive limits by requiring e�e
ts of axion-photon inter
onversion ongamma-ray spe
tra from distant blazars to be no larger than errors in the best-�t opti
aldepth based on a 
ertain extragala
ti
 ba
kground light model. See their Fig. 5 formass-dependent limits.15ABRAMOWSKI 13A look for irregularities in the energy spe
trum of the BL La
 obje
tPKS 2155{304 measured by H.E.S.S. The limits depend on assumed magneti
 �eldaround the sour
e. See their Fig. 7 for mass-dependent limits.16ARMENGAUD 13 is analogous to AVIGNONE 98. See Fig. 6 for the limit.17BETZ 13 performed a mi
rowave-based light shining through the wall experiment. Seetheir Fig. 13 for mass-dependent limits.18 FRIEDLAND 13 derived the limit by 
onsidering blue-loop suppression of the evolutionof red giants with 7{12 solar masses.19MEYER 13 attributed to axion-photon os
illations the observed ex
ess of very high-energy
γ-rays with respe
t to predi
tions based on extragala
ti
 ba
kground light models. Seetheir Fig.4 for mass-dependent lower limits for various magneti
 �eld 
on�gurations.20CADAMURO 12 derived 
osmologi
al limits on GAγγ for axion-like parti
les. See theirFig. 1 for mass-dependent limits.21PAYEZ 12 derive limits from polarization measurements of quasar light (see their Fig. 3).The limits depend on assumed magneti
 �eld strength in galaxy 
lusters. The limitsdepend on assumed magneti
 �eld and ele
tron density in the lo
al galaxy super
luster.22ARIK 11 sear
h for solar axions using 3He bu�er gas in CAST, 
ontinuing from the 4Heversion of ARIK 09. See Fig. 2 for the exa
t mass-dependent limits.23ALPS is a photon regeneration experiment. See their Fig. 4 for mass-dependent limitson s
alar and pseudos
alar bosons.24AHMED 09A is analogous to AVIGNONE 98.25ARIK 09 is the 4He �lling version of the CAST axion helios
ope in analogy to INOUE 02and INOUE 08. See their Fig. 7 for mass-dependent limits.26CHOU 09 use the GammeV apparatus in the afterglow mode to sear
h for 
hameleons,(pseudo)s
alar bosons with a mass depending on the environment. For pseudos
alarsthey ex
lude at 3σ the range 2.6 × 10−7 GeV−1 < GAγγ < 4.2× 10−6 GeV−1 forva
uum mA0 roughly below 6 meV for density s
aling index ex
eeding 0.8.27GONDOLO 09 use the all-
avor measured solar neutrino 
ux to 
onstrain solar interiortemperature and thus energy losses.28 LIPSS photon regeneration experiment, assuming s
alar parti
le S0. See Fig. 4 for mass-dependent limits.29CHOU 08 perform a variable-baseline photon regeneration experiment. See their Fig. 3for mass-dependent limits. Ex
ludes the PVLAS result of ZAVATTINI 06.30 FOUCHE 08 is an update of ROBILLIARD 07. See their Fig. 12 for mass-dependentlimits.31 INOUE 08 is an extension of INOUE 02 to larger axion masses, using the Tokyo axionhelios
ope. See their Fig. 4 for mass-dependent limits.32ZAVATTINI 08 is an upgrade of ZAVATTINI 06, see their Fig. 8 for mass-dependentlimits. They now ex
lude the parameter range where ZAVATTINI 06 had seen a positivesignature.33ANDRIAMONJE 07 looked for Primako� 
onversion of solar axions in 9T super
ondu
t-ing magnet into X-rays. Supersedes ZIOUTAS 05.34ROBILLIARD 07 perform a photon regeneration experiment with a pulsed laser andpulsed magneti
 �eld. See their Fig. 4 for mass-dependent limits. Ex
ludes the PVLASresult of ZAVATTINI 06 with a CL ex
eeding 99.9%.35ZAVATTINI 06 propagate a laser beam in a magneti
 �eld and observe di
hroism andbirefringen
e e�e
ts that 
ould be attributed to an axion-like parti
le. This result is nowex
luded by ROBILLIARD 07, ZAVATTINI 08, and CHOU 08.36 INOUE 02 looked for Primako� 
onversion of solar axions in 4T super
ondu
ting magnetinto X ray.37MORALES 02B looked for the 
oherent 
onversion of solar axions to photons via thePrimako� e�e
t in Germanium dete
tor.38BERNABEI 01B looked for Primako� 
oherent 
onversion of solar axions into photonsvia Bragg s
attering in NaI 
rystal in DAMA dark matter dete
tor.39ASTIER 00B looked for produ
tion of axions from the intera
tion of high-energy photonswith the horn magneti
 �eld and their subsequent re-
onversion to photons via theintera
tion with the NOMAD dipole magneti
 �eld.40MASSO 00 studied limits on axion-proton 
oupling using the indu
ed axion-photon 
ou-pling through the proton loop and CAMERON 93 bound on the axion-photon 
ouplingusing opti
al rotation. They obtained the bound g2p/4π < 1.7 × 10−9 for the 
ouplinggppγ5pφA.

41AVIGNONE 98 result is based on the 
oherent 
onversion of solar axions to photons viathe Primako� e�e
t in a single 
rystal germanium dete
tor.42Based on the 
onversion of solar axions to X-rays in a strong laboratory magneti
 �eld.43Experiment based on proposal by MAIANI 86.44Experiment based on proposal by VANBIBBER 87.45 LAZARUS 92 experiment is based on proposal found in VANBIBBER 89.46RUOSO 92 experiment is based on the proposal by VANBIBBER 87.47 SEMERTZIDIS 90 experiment is based on the proposal of MAIANI 86. The limit isobtained by taking the noise amplitude as the upper limit. Limits extend to mA0 =4× 10−3 where GAγ γ < 1× 10−4 GeV−1.Limit on Invisible A0 (Axion) Ele
tron CouplingLimit on Invisible A0 (Axion) Ele
tron CouplingLimit on Invisible A0 (Axion) Ele
tron CouplingLimit on Invisible A0 (Axion) Ele
tron CouplingThe limit is for GAe e∂µφAeγµγ5e in GeV−1, or equivalently, the dipole-dipolepotential G2Ae e4π ((σσσσ1 · σσσσ2) −3(σσσσ1 · nnnn) (σσσσ2 · nnnn))/r3 where nnnn=rrrr/r.VALUE (GeV−1) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.8 × 10−10 90 1 ABE 14F XMAS mA0 = 60 keV
<7.5 × 10−9 90 2 APRILE 14B X100 Solar axions
<1 × 10−9 90 3 APRILE 14B X100 mA0 = 5{7 keV
< 0.94{8.0× 10−5 90 4 DERBIN 14 CNTR mA0 = 0.1{1 MeV
<3 × 10−10 99 5 MILLER-BER...14 ASTR White dwarf 
ooling
<5.3 × 10−8 90 6 ABE 13D XMAS Solar axions
<1.05× 10−9 90 7 ARMENGAUD 13 EDEL mA0 = 12.5 keV
<2.53× 10−8 90 8 ARMENGAUD 13 EDEL Solar axions9 BARTH 13 CAST Solar axions
< 1.4{9.5× 10−4 90 10 DERBIN 13 CNTR mA0 = 0.1{1 MeV
<2.9 × 10−5 68 11 HECKEL 13 mA0 ≤ 0.1 µeV
<4.2 × 10−10 95 12 VIAUX 13A ASTR Low-mass red giants
<7 × 10−10 95 13 CORSICO 12 ASTR White dwarf 
ooling
<2.2 × 10−7 90 14 DERBIN 12 CNTR Solar axions
< 0.02{1× 10−7 90 15 AALSETH 11 CNTR mA0 = 0.3{8 keV
<1.4 × 10−9 90 16 AHMED 09A CDMS mA0 = 2.5 keV
<3 × 10−6 17 DAVOUDIASL 09 ASTR Earth 
ooling
<5.3 × 10−5 66 18 NI 94 Indu
ed magnetism
<6.7 × 10−5 66 18 CHUI 93 Indu
ed magnetism
<3.6 × 10−4 66 19 PAN 92 Torsion pendulum
<2.7 × 10−5 95 18 BOBRAKOV 91 Indu
ed magnetism
<1.9 × 10−3 66 20 WINELAND 91 NMR
<8.9 × 10−4 66 19 RITTER 90 Torsion pendulum
<6.6 × 10−5 95 18 VOROBYOV 88 Indu
ed magnetism1ABE 14F set limits on the axioele
tri
 e�e
t in the XMASS dete
tor assuming the pseu-dos
alar 
onstitutes all the lo
al dark matter. See their Fig. 3 for limits between mA0= 40{120 keV.2APRILE 14B look for solar axions using the XENON100 dete
tor.3APRILE 14B is analogous to AHMED 09A. See their Fig. 7 for limits between 1 keV <mA0 < 35 keV.4DERBIN 14 is an update of DERBIN 13 with a BGO s
intillating bolometer. See theirFig. 3 for mass-dependent limits.5MILLER-BERTOLAMI 14 studied the impa
t of axion emission on white dwarf 
oolingin a self-
onsistent way.6ABE 13D is analogous to DERBIN 12, using the XMASS dete
tor.7ARMENGAUD 13 is similar to AALSETH 11. See their Fig. 10 for limits between 3 keV

< mA0 < 100 keV.8ARMENGAUD 13 is similar to DERBIN 12, and take a

ount of axio-re
ombination andaxio-deex
itation e�e
ts. See their Fig. 12 for mass-dependent limits.9BARTH 13 sear
h for solar axions produ
ed by axion-ele
tron 
oupling, and obtained thelimit, GAe e · GAγ γ < 7.9× 10−20 GeV−2 at 95%CL.10DERBIN 13 looked for 5.5 MeV solar axions produ
ed in pd → 3He A0 in a BGOdete
tor through the axioele
tri
 e�e
t. See their Fig. 4 for mass-dependent limits.11HECKEL 13 studied the in
uen
e of 2 or 4 stationary sour
es ea
h 
ontaining 6.0×1024polarized ele
trons, on a rotating torsion pendulum 
ontaining 9.8 × 1024 polarizedele
trons. See their Fig. 4 for mass-dependent limits.12VIAUX 13A 
onstrain axion emission using the observed brightness of the tip of thered-giant bran
h in the globular 
luster M5.13CORSICO 12 attributed the ex
essive 
ooling rate of the pulsating white dwarf R548 toemission of axions with GAee ≃ 5× 10−10.14DERBIN 12 look for solar axions with the axio-ele
tri
 e�e
t in a Si(Li) dete
tor. Thesolar produ
tion is based on Compton and bremsstrahlung pro
esses.15AALSETH 11 is analogous to AHMED 09A. See their Fig. 4 for mass-dependent limits.16AHMED 09A assume keV-mass pseudos
alars are the lo
al dark matter and 
onstrain theaxio-ele
tri
 e�e
t in the CDMS dete
tor. See their Fig. 5 for mass-dependent limits.17DAVOUDIASL 09 use geophysi
al 
onstraints on Earth 
ooling by axion emission.18These experiments measured indu
ed magnetization of a bulk material by the spin-dependent potential generated from other bulk material with aligned ele
tron spins,where the magneti
 �eld is shielded with super
ondu
tor.19These experiments used a torsion pendulum to measure the potential between two bulkmatter obje
ts where the spins are polarized but without a net magneti
 �eld in eitherof them.20WINELAND 91 looked for an e�e
t of bulk matter with aligned ele
tron spins on atomi
hyper�ne splitting using nu
lear magneti
 resonan
e.



706706706706Gauge&HiggsBosonParti
leListingsAxions (A0) andOther Very Light BosonsInvisible A0 (Axion) Limits from Nu
leon CouplingInvisible A0 (Axion) Limits from Nu
leon CouplingInvisible A0 (Axion) Limits from Nu
leon CouplingInvisible A0 (Axion) Limits from Nu
leon CouplingLimits are for the axion mass in eV.VALUE (eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1 × 102 95 1 GAVRILYUK 15 CNTR Solar axion2 KLIMCHITSK...15 Casimir-less3 BEZERRA 14 Casimir e�e
t4 BEZERRA 14A Casimir e�e
t5 BEZERRA 14B Casimir e�e
t6 BEZERRA 14C Casimir e�e
t7 BLUM 14 COSM 4He abundan
e8 LEINSON 14 ASTR Neutron star 
ooling
<2.50× 102 95 9 ALESSANDRIA13 CNTR Solar axion
<1.55× 102 90 10 ARMENGAUD 13 EDEL Solar axion
<8.6 × 103 90 11 BELLI 12 CNTR Solar axion
<1.41× 102 90 12 BELLINI 12B BORX Solar axion
<1.45× 102 95 13 DERBIN 11 CNTR Solar axion14 BELLINI 08 CNTR Solar axion15 ADELBERGER 07 Test of Newton's law1GAVRILYUK 15 look for solar axions emitted by the M1 transition of 83Kr (9.4 keV).The mass bound assumes mu/md = 0.56 and S = 0.5.2KLIMCHITSKAYA 15 use the measurement of di�erential for
es between a test mass androtating sour
e masses of Au and Si to 
onstrain the for
e due to two-axion ex
hangefor 1.7× 10−3 < mA0 < 0.9 eV. See their Figs. 1 and 2 for mass dependent limits.3BEZERRA 14 use the measurement of the thermal Casimir-Polder for
e between a Bose-Einstein 
ondensate of 87Rb atoms and a SiO2 plate to 
onstrain the for
e mediated byex
hange of two pseudos
alars for 0.1 meV < mA0 < 0.3 eV. See their Fig. 2 for themass-dependent limit on pseudos
alar 
oupling to nu
leons.4BEZERRA 14A is analogous to BEZERRA 14. They use the measurement of the Casimirpressure between two Au-
oated plates to 
onstrain pseudos
alar 
oupling to nu
leonsfor 1× 10−3 eV < mA0 < 15 eV. See their Figs. 1 and 2 for the mass-dependent limit.5BEZERRA 14B is analogous to BEZERRA 14. BEZERRA 14B use the measurementof the normal and lateral Casimir for
es between sinusoidally 
orrugated surfa
es of asphere and a plate to 
onstrain pseudos
alar 
oupling to nu
leons for 1 eV < mA0 <20 eV. See their Figs. 1{3 for mass-dependent limits.6BEZERRA 14C is analogous to BEZERRA 14. They use the measurement of the gradientof the Casimir for
e between Au- and Ni-
oated surfa
es of a sphere and a plate to
onstrain pseudos
alar 
oupling to nu
leons for 3× 10−5 eV < mA0 < 1 eV. See theirFigs. 1, 3, and 4 for the mass-dependent limits.7BLUM 14 studied e�e
ts of an os
illating strong CP phase indu
ed by axion dark matteron the primordial 4He abundan
e. See their Fig. 1 for mass-dependent limits.8 LEINSON 14 attributes the ex
essive 
ooling rate of the neutron star in Cassiopeia A toaxion emission from the super
uid 
ore, and found C2

n
m2A0 ≃ 5.7× 10−6 eV2, whereCn is the e�e
tive Pe

ei-Quinn 
harge of the neutron.9ALESSANDRIA 13 used the CUORE experiment to look for 14.4 keV solar axions pro-du
ed from the M1 transition of thermally ex
ited 57Fe nu
lei in the solar 
ore, usingthe axio-ele
tri
 e�e
t. The limit assumes the hadroni
 axion model. See their Fig. 4for the limit on produ
t of axion 
ouplings to ele
trons and nu
leons.10ARMENGAUD 13 is analogous to ALESSANDRIA 13. The limit assumes the hadroni
axion model. See their Fig. 8 for the limit on produ
t of axion 
ouplings to ele
tronsand nu
leons.11BELLI 12 looked for solar axions emitted by the M1 transition of 7Li∗ (478 keV) after theele
tron 
apture of 7Be, using the resonant ex
itation 7Li in the LiF 
rystal. The massbound assumes mu/md = 0.55, mu/ms = 0.029, and the 
avor-singlet axial ve
tormatrix element S = 0.4.12BELLINI 12B looked for 5.5 MeV solar axions produ
ed in the pd → 3He A0. The limitassumes the hadroni
 axion model. See their Figs. 4 and 5 for mass-dependent limits onprodu
ts of axion 
ouplings to photons, ele
trons, and nu
leons.13DERBIN 11 looked for solar axions emitted by the M1 transition of thermally ex
ited57Fe nu
lei in the Sun, using their possible resonant 
apture on 57Fe in the laboratory.The mass bound assumes mu/md = 0.56 and the 
avor-singlet axial ve
tor matrixelement S = 3F − D ≃ 0.5.14BELLINI 08 
onsider solar axions emitted in the M1 transition of 7Li∗ (478 keV) andlook for a peak at 478 keV in the energy spe
tra of the Counting Test Fa
ility (CTF), aBorexino prototype. For mA0 < 450 keV they �nd mass-dependent limits on produ
tsof axion 
ouplings to photons, ele
trons, and nu
leons.15ADELBERGER 07 use pre
ision tests of Newton's law to 
onstrain a for
e 
ontributionfrom the ex
hange of two pseudos
alars. See their Fig. 5 for limits on the pseudos
alar
oupling to nu
leons, relevant for mA0 below about 1 meV.Axion Limits from T-violating Medium-Range For
esAxion Limits from T-violating Medium-Range For
esAxion Limits from T-violating Medium-Range For
esAxion Limits from T-violating Medium-Range For
esThe limit is for the 
oupling g = gp gs in a T-violating potential between nu
leons ornu
leon and ele
tron of the form V = g�h28πmp (σσσσ·r̂̂r̂r̂r) ( 1r2 + 1

λr ) e−r/λ, where gp andgs are dimensionless s
alar and pseudos
alar 
oupling 
onstants and λ = �h/(mA
) isthe range of the for
e.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AFACH 15 ultra
old neutrons2 STADNIK 15 THEO nu
leon spin 
ontributions for nu
lei3 BULATOWICZ 13 NMR polarized 129Xe and 131Xe4 CHU 13 polarized 3He

5 TULLNEY 13 SQID polarized 3He and 129Xe6 RAFFELT 12 stellar energy loss7 HOEDL 11 torsion pendulum8 PETUKHOV 10 polarized 3He9 SEREBROV 10 ultra
old neutrons10 IGNATOVICH 09 RVUE ultra
old neutrons11 SEREBROV 09 RVUE ultra
old neutrons12 BAESSLER 07 ultra
old neutrons13 HECKEL 06 torsion pendulum14 NI 99 paramagneti
 Tb F315 POSPELOV 98 THEO neutron EDM16 YOUDIN 9617 RITTER 93 torsion pendulum18 VENEMA 92 nu
lear spin-pre
ession frequen
ies19 WINELAND 91 NMR1AFACH 15 look for a 
hange of spin pre
ession frequen
y of ultra
old neutrons when amagneti
 �eld with opposite dire
tions is applied, and �nd g < 2.2 × 10−27 (m/λ)2at 95% CL for 1 µm < λ < 5 mm. See their Fig. 3 for their limits.2 STADNIK 15 studied proton and neutron spin 
ontributions for nu
lei and derive thelimits g < 10−28{10−23 for λ > 3× 10−4 m using the data of TULLNEY 13. Seetheir Figs. 1 and 2 for λ-dependent limits.3BULATOWICZ 13 looked for NMR frequen
y shifts in polarized 129Xe and 131Xe whena zir
onia rod is positioned near the NMR 
ell, and �nd g < 1× 10−19{1× 10−24 for
λ = 0.01{1 
m. See their Fig. 4 for their limits.4CHU 13 look for a shift of the spin pre
ession frequen
y of polarized 3He in the presen
eof an unpolarized mass, in analogy to YOUDIN 96. See Fig. 3 for limits on g in theapproximate mA0 range 0.02{2 meV.5TULLNEY 13 look for a shift of the pre
ession frequen
y di�eren
e between the 
olo
ated3He and 129Xe in the presen
e an unpolarized mass, and derive limits g < 3×10−29{2×10−22 for λ > 3× 10−4 m. See their Fig. 3 for λ-dependent limits.6RAFFELT 12 show that the pseudos
alar 
ouplings to ele
tron and nu
leon and thes
alar 
oupling to nu
leon are individually 
onstrained by stellar energy-loss argumentsand sear
hes for anomalous monopole-monopole for
es, together providing restri
tive
onstraints on g. See their Figs. 2 and 3 for results.7HOEDL 11 use a novel torsion pendulum to study the for
e by the polarized ele
trons ofan external magnet. In their Fig. 3 they show restri
tive limits on g in the approximatemA0 range 0.03{10 meV.8PETUKHOV 10 use spin relaxation of polarized 3He and �nd g < 3× 10−23 (
m/λ)2at 95% CL for the for
e range λ = 10−4{1 
m.9 SEREBROV 10 use spin pre
ession of ultra
old neutrons 
lose to bulk matter and �ndg < 2× 10−21 (
m/λ)2 at 95% CL for the for
e range λ = 10−4{1 
m.10 IGNATOVICH 09 use data on depolarization of ultra
old neutrons in material traps.They show λ-dependent limits in their Fig. 1.11 SEREBROV 09 uses data on depolarization of ultra
old neutrons stored in materialtraps and �nds g < 2.96 × 10−21 (
m/λ)2 for the for
e range λ = 10−3{1 
m andg < 3.9× 10−22 (
m/λ)2 for λ = 10−4{10−3 
m, ea
h time at 95% CL, signi�
antlyimproving on BAESSLER 07.12BAESSLER 07 use the observation of quantum states of ultra
old neutrons in the Earth'sgravitational �eld to 
onstrain g for an intera
tion range 1 µm{a few mm. See their Fig. 3for results.13HECKEL 06 studied the in
uen
e of unpolarized bulk matter, in
luding the laboratory'ssurroundings or the Sun, on a torsion pendulum 
ontaining about 9 × 1022 polarizedele
trons. See their Fig. 4 for limits on g as a fun
tion of intera
tion range.14NI 99 sear
hed for a T-violating medium-range for
e a
ting on paramagneti
 Tb F3 salt.See their Fig. 1 for the result.15POSPELOV 98 studied the possible 
ontribution of T-violating Medium-Range For
e tothe neutron ele
tri
 dipole moment, whi
h is possible when axion intera
tions violateCP. The size of the for
e among nu
leons must be smaller than gravity by a fa
tor of2× 10−10 (1 
m/λA), where λA=�h/mA
.16YOUDIN 96 
ompared the pre
ession frequen
ies of atomi
 199Hg and Cs when a largemass is positioned near the 
ells, relative to an applied magneti
 �eld. See Fig. 3 fortheir limits.17RITTER 93 studied the in
uen
e of bulk mass with polarized ele
trons on an unpolarizedtorsion pendulum, providing limits in the intera
tion range from 1 to 100 
m.18VENEMA 92 looked for an e�e
t of Earth's gravity on nu
lear spin-pre
ession frequen
iesof 199Hg and 201Hg atoms.19WINELAND 91 looked for an e�e
t of bulk matter with aligned ele
tron spins on atomi
hyper�ne resonan
es in stored 9Be+ ions using nu
lear magneti
 resonan
e.Hidden Photons: Kineti
 Mixing Parameter LimitsHidden Photons: Kineti
 Mixing Parameter LimitsHidden Photons: Kineti
 Mixing Parameter LimitsHidden Photons: Kineti
 Mixing Parameter LimitsHidden photons limits are listed for the �rst time, in
luding only the most re
entpapers. Suggestions for previous important results are wel
ome. Limits are on thekineti
 mixing parameter χ whi
h is de�ned by the LagrangianL = − 14 FµνFµν −14 F ′µνF ′µν − χ2 FµνF ′µν + m2

γ′2 A′µA′µ,where Aµ and A′
µ
are the photon and hidden-photon �elds with �eld strengths Fµνand F ′µν , respe
tively, and m

γ′ is the hidden-photon mass.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.7 × 10−6 95 1 KHACHATRY...16 CMS m

γ′ = 2 GeV
<4 × 10−2 95 2 AAD 15CD ATLS m

γ′ = 15{55 GeV
<1.4 × 10−3 90 3 ADARE 15 m

γ′ = 30{90 MeV4 AN 15A m
γ′ = 12 eV - 40 keV5 ANASTASI 15 KLOE m
γ′ = 2mµ - 1 GeV

<1.7 × 10−3 90 6 ANASTASI 15A KLOE m
γ′ = 5{320 MeV
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<4.2 × 10−4 90 7 BATLEY 15A NA48 m

γ′ = 36 MeV8 JAEGLE 15 BELL m
γ′ = 0.1{3.5 GeV

<3 × 10−13 9 KAZANAS 15 ASTR m
γ′ = 2me { 100 MeV10 SUZUKI 15 m
γ′ = 1.9{4.3 eV

<2.3 × 10−13 99.7 11 VINYOLES 15 ASTR m
γ′ = 8 eV12 ABE 14F XMAS m
γ′ = 40{120 keV

<1.8 × 10−3 90 13 AGAKISHIEV 14 HDES m
γ′ = 63 MeV

<9.0 × 10−4 90 14 BABUSCI 14 KLOE m
γ′ = 969 MeV15 BATELL 14 BDMP m
γ′ = 10−3{1 GeV

<1.3 × 10−7 95 16 BLUEMLEIN 14 BDMP m
γ′ = 0.6 GeV

<3 × 10−18 17 FRADETTE 14 COSM m
γ′ = 50{300 MeV

<3.5 × 10−4 90 18 LEES 14J BABR m
γ′ = 0.2 GeV

<9 × 10−4 95 19 MERKEL 14 A1 m
γ′ = 40{300 MeV

<3 × 10−15 20 AN 13B ASTR m
γ′ = 2 keV

<7 × 10−14 21 AN 13C XE10 m
γ′ = 100 eV

<2.2 × 10−13 22 HORVAT 13 HPGE m
γ′ = 230 eV

<8.06× 10−5 95 23 INADA 13 LSW m
γ′ = 0.04 eV−26 keV

<2 × 10−10 95 24 MIZUMOTO 13 m
γ′ = 1 eV

<1.7 × 10−7 25 PARKER 13 LSW m
γ′ = 53 µeV

<5.32× 10−15 26 PARKER 13 m
γ′ = 53 µeV

<1 × 10−15 27 REDONDO 13 ASTR m
γ′ = 2 keV

<9 × 10−8 95 28 BLUEMLEIN 11 BDMP m
γ′ = 70 MeV1KHACHATRYAN 16 look for γ′ → µ+µ− in a dark SUSY s
enario where the SM-likeHiggs boson de
ays into a pair of the visible lightest neutralinos with mass 10 GeV, bothof whi
h de
ay into γ′ and a hidden neutralino with mass 1 GeV. See the right panel intheir Fig. 2.2AAD 15CD look for H → Z γ′ → 4ℓ with the ATLAS dete
tor at LHC and �nd

χ < 4{17× 10−2 for m
γ′ = 15{55 GeV. See their Fig. 6.3ADARE 15 look for a hidden photon in π0, η0 → γ e+ e− at the PHENIX experiment.See their Fig. 4 for mass-dependent limits.4AN 15A derived limits from the absen
e of ionization signals in the XENON10 andXENON100 experiments, assuming hidden photons 
onstitute all the lo
al dark matter.Their best limit is χ < 1.3×10−15 at m

γ′ = 18 eV. See their Fig. 1 for mass-dependentlimits.5ANASTASI 15 look for a produ
tion of a hidden photon and a hidden Higgs boson withthe KLOE dete
tor at DA�NE, where the hidden photon de
ays into a pair of muonsand the hidden Higgs boson lighter than m
γ′ es
ape dete
tion. See their Figs. 6 and7 for mass-dependent limits on a produ
t of the hidden �ne stru
ture 
onstant and thekineti
 mixing.6ANASTASI 15A look for the de
ay γ′ → e+ e− in the rea
tion e+ e− → e+ e− γ.Limits between 1.7× 10−3 and 1× 10−2 are obtained for m

γ′ = 5{320 MeV (see theirFig. 7).7BATLEY 15A look for π0 → γ γ′ (γ′ → e+ e−) at the NA48/2 experiment. Limitsbetween 4.2× 10−4 and 8.8× 10−3 are obtained for m
γ′ = 9{120 MeV (see their Fig.4).8 JAEGLE 15 look for the de
ay γ′ → e+ e−, µ+µ−, or π+π− in the dark Higgstrahlung
hannel, e+ e− → γ′H′ (H′ → γ′γ′) at the BELLE experiment. They set limits on aprodu
t of the bran
hing fra
tion and the Born 
ross se
tion as well as a produ
t of thehidden �ne stru
ture 
onstant and the kineti
 mixing. See their Figs. 3 and 4.9KAZANAS 15 set limits by studying the de
ay of hidden photons γ′ → e+ e− insideand near the progenitor star of SN1987A. See their Fig. 6 for mass-dependent limits.10 SUZUKI 15 looked for hidden-photon dark matter with a dish antenna and derived limitsassuming they 
onstitute all the lo
al dark matter. Their limits are χ < 6× 10−12 form

γ′ = 1.9{4.3 eV. See their Fig. 7 for mass-dependent limits.11VINYOLES 15 performed a global �t analysis based on helioseismology and solar neutrinoobservations, and set the limits χm
γ′ < 1.8 × 10−12 eV for m

γ′ = 3 × 10−5{8 eV.See their Fig. 11.12ABE 14F look for the photoele
tri
-like intera
tion in the XMASS dete
tor assuming thehidden photon 
onstitutes all the lo
al dark matter. Limits between 2 × 10−13 and1× 10−12 are obtained. See their Fig. 3 for mass-dependent limits.13AGAKISHIEV 14 look for hidden photons γ′ → e+ e− at the HADES experiment, andset limits on χ for m
γ′ = 0.02{0.6 GeV. See their Fig. 5 for mass-dependent limits.14BABUSCI 14 look for the de
ay γ′ → µ+µ− in the rea
tion e+ e− → µ+µ− γ.Limits between 4× 10−3 and 9.0× 10−4 are obtained for 520 MeV < m

γ′ < 980 MeV(see their Fig. 7).15BATELL 14 derived limits from the ele
tron beam dump experiment at SLAC (E-137)by sear
hing for events with re
oil ele
trons by sub-GeV dark matter produ
ed from thede
ay of the hidden photon. Limits at the level of 10−4{10−1 are obtained for m
γ′ =10−3{1 GeV, depending on the dark matter mass and the hidden gauge 
oupling (seetheir Fig. 2).16BLUEMLEIN 14 analyzed the beam dump data taken at the U-70 a

elerator to lookfor γ′-bremsstrahlung and the subsequent de
ay into muon pairs and hadrons. See theirFig. 4 for mass-dependent ex
luded region.17 FRADETTE 14 studied e�e
ts of de
ay of reli
 hidden photons on BBN and CMB toset 
onstraints on very small values of the kineti
 mixing. See their Figs. 4 and 7 formass-dependent ex
luded regions.

18 LEES 14J look for hidden photons in the rea
tion e+ e− → γ γ′ (γ′ → e+ e−, µ+µ−).Limits at the level of 10−4{10−3 are obtained for 0.02 GeV < m
γ′ < 10.2 GeV. Seetheir Fig. 4 for mass-dependent limits.19MERKEL 14 look for γ′ → e+ e− at the A1 experiment at the Mainz Mi
rotron(MAMI). See their Fig. 3 for mass-dependent limits.20AN 13B examined the stellar produ
tion of hidden photons, 
orre
ting an important errorof the produ
tion rate of the longitudinal mode whi
h now dominates. See their Fig. 2for mass-dependent limits based on solar energy loss.21AN 13C use the solar 
ux of hidden photons to set a limit on the atomi
 ionization ratein the XENON10 experiment. They �nd χ m

γ′ < 3× 10−12 eV for m
γ′ < 1 eV. Seetheir Fig. 2 for mass-dependent limits.22HORVAT 13 look for hidden-photo-ele
tri
 e�e
t in HPGe dete
tors indu
ed by solarhidden photons. See their Fig. 3 for mass-dependent limits.23 INADA 13 sear
h for hidden photons using an intense X-ray beamline at SPring-8. Seetheir Fig. 4 for mass-dependent limits.24MIZUMOTO 13 look for solar hidden photons. See their Fig. 5 for mass-dependentlimits.25PARKER 13 look for hidden photons using a 
ryogeni
 resonant mi
rowave 
avity. Seetheir Fig.5 for mass-dependent limits.26PARKER 13 derived a limit for the hidden photon CDM with a randomly oriented hiddenphoton �eld.27REDONDO 13 examined the solar emission of hidden photons in
luding the enhan
ementfa
tor for the longitudinal mode pointed out by AN 13B, and also updated stellar-energyloss arguments. See their Fig.3 for mass-dependent limits, in
luding a review of the
urrently best limits from other arguments.28BLUEMLEIN 11 analyzed the beam dump data taken at the U-70 a

elerator to look for

π0 → γ γ′ (γ′ → e+ e−). See their Fig. 5 for mass-dependent limits.REFERENCES FOR Sear
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le ListingseLEPTONSLEPTONSLEPTONSLEPTONSe J = 12e MASS (atomi
 mass units u)e MASS (atomi
 mass units u)e MASS (atomi
 mass units u)e MASS (atomi
 mass units u)The primary determination of an ele
tron's mass 
omes from measuringthe ratio of the mass to that of a nu
leus, so that the result is obtained inu (atomi
 mass units). The 
onversion fa
tor to MeV is more un
ertainthan the mass of the ele
tron in u; indeed, the re
ent improvements inthe mass determination are not evident when the result is given in MeV.In this datablo
k we give the result in u, and in the following datablo
k inMeV.VALUE (10−6 u) DOCUMENT ID TECN COMMENT548.579909070±0.000000016548.579909070±0.000000016548.579909070±0.000000016548.579909070±0.000000016 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •548.57990946 ±0.00000022 MOHR 12 RVUE 2010 CODATA value548.57990943 ±0.00000023 MOHR 08 RVUE 2006 CODATA value548.57990945 ±0.00000024 MOHR 05 RVUE 2002 CODATA value548.5799092 ±0.0000004 1 BEIER 02 CNTR Penning trap548.5799110 ±0.0000012 MOHR 99 RVUE 1998 CODATA value548.5799111 ±0.0000012 2 FARNHAM 95 CNTR Penning trap548.579903 ±0.000013 COHEN 87 RVUE 1986 CODATA value1BEIER 02 
ompares Larmor frequen
y of the ele
tron bound in a 12C5+ ion with the
y
lotron frequen
y of a single trapped 12C5+ ion.2 FARNHAM 95 
ompares 
y
lotron frequen
y of trapped ele
trons with that of a singletrapped 12C6+ ion. e MASSe MASSe MASSe MASS2010 CODATA (MOHR 12) gives the 
onversion fa
tor from u (atomi
mass units, see the above datablo
k) to MeV as 931.494 061 (21). Ear-lier values use the then-
urrent 
onversion fa
tor. The 
onversion errordominates the un
ertainty of the masses given below.VALUE (MeV) DOCUMENT ID TECN COMMENT0.5109989461±0.00000000310.5109989461±0.00000000310.5109989461±0.00000000310.5109989461±0.0000000031 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.510998928 ±0.000000011 MOHR 12 RVUE 2010 CODATA value0.510998910 ±0.000000013 MOHR 08 RVUE 2006 CODATA value0.510998918 ±0.000000044 MOHR 05 RVUE 2002 CODATA value0.510998901 ±0.000000020 1,2 BEIER 02 CNTR Penning trap0.510998902 ±0.000000021 MOHR 99 RVUE 1998 CODATA value0.510998903 ±0.000000020 1,3 FARNHAM 95 CNTR Penning trap0.510998895 ±0.000000024 1 COHEN 87 RVUE 1986 CODATA value0.5110034 ±0.0000014 COHEN 73 RVUE 1973 CODATA value1Converted to MeV using the 1998 CODATA value of the 
onversion 
onstant,931.494013 ± 0.000037 MeV/u.2BEIER 02 
ompares Larmor frequen
y of the ele
tron bound in a 12C5+ ion with the
y
lotron frequen
y of a single trapped 12C5+ ion.3 FARNHAM 95 
ompares 
y
lotron frequen
y of trapped ele
trons with that of a singletrapped 12C6+ ion. (me+ − me−) / maverage(me+ − me−) / maverage(me+ − me−) / maverage(me+ − me−) / maverageA test of CPT invarian
e.VALUE CL% DOCUMENT ID TECN COMMENT
<8× 10−9<8× 10−9<8× 10−9<8× 10−9 90 1 FEE 93 CNTR Positronium spe
tros
opy
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4× 10−23 90 2 DOLGOV 14 From photon mass limit
<4× 10−8 90 CHU 84 CNTR Positronium spe
tros
opy1FEE 93 value is obtained under the assumption that the positronium Rydberg 
onstantis exa
tly half the hydrogen one.2DOLGOV 14 result is obtained under the assumption that any mass di�eren
e betweenele
tron and positron would lead to a non-zero photon mass. The PDG 12 limit of1× 10−18 eV on the photon mass is in turn used to derive the value quoted here.

∣∣qe+ + qe− ∣∣/e∣∣qe+ + qe− ∣∣/e∣∣qe+ + qe− ∣∣/e∣∣qe+ + qe− ∣∣/eA test of CPT invarian
e. See also similar tests involving the proton.VALUE DOCUMENT ID TECN COMMENT
<4× 10−8<4× 10−8<4× 10−8<4× 10−8 1 HUGHES 92 RVUE
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2× 10−18 2 SCHAEFER 95 THEO Va
uum polarization
<1× 10−18 3 MUELLER 92 THEO Va
uum polarization1HUGHES 92 uses re
ent measurements of Rydberg-energy and 
y
lotron-frequen
y ra-tios.2 SCHAEFER 95 removes model dependen
y of MUELLER 92.3MUELLER 92 argues that an inequality of the 
harge magnitudes would, through higher-order va
uum polarization, 
ontribute to the net 
harge of atoms.

e MAGNETIC MOMENT ANOMALYe MAGNETIC MOMENT ANOMALYe MAGNETIC MOMENT ANOMALYe MAGNETIC MOMENT ANOMALY
µe/µB − 1 = (g−2)/2µe/µB − 1 = (g−2)/2µe/µB − 1 = (g−2)/2µe/µB − 1 = (g−2)/2VALUE (units 10−6) DOCUMENT ID TECN CHG COMMENT1159.65218091±0.000000261159.65218091±0.000000261159.65218091±0.000000261159.65218091±0.00000026 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •1159.65218076±0.00000027 MOHR 12 RVUE 2010 CODATA value1159.65218073±0.00000028 HANNEKE 08 MRS Single ele
tron1159.65218111±0.00000074 1 MOHR 08 RVUE 2006 CODATA value1159.65218085±0.00000076 2 ODOM 06 MRS − Single ele
tron1159.6521859 ±0.0000038 MOHR 05 RVUE 2002 CODATA value1159.6521869 ±0.0000041 MOHR 99 RVUE 1998 CODATA value1159.652193 ±0.000010 COHEN 87 RVUE 1986 CODATA value1159.6521884 ±0.0000043 VANDYCK 87 MRS − Single ele
tron1159.6521879 ±0.0000043 VANDYCK 87 MRS + Single positron1MOHR 08 average is dominated by ODOM 06.2 Superseded by HANNEKE 08 per private 
ommuni
ation with Gerald Gabrielse.(ge+ − ge−) / gaverage(ge+ − ge−) / gaverage(ge+ − ge−) / gaverage(ge+ − ge−) / gaverageA test of CPT invarian
e.VALUE (units 10−12) CL% DOCUMENT ID TECN COMMENT

− 0.5± 2.1− 0.5± 2.1− 0.5± 2.1− 0.5± 2.1 1 VANDYCK 87 MRS Penning trap
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 12 95 2 VASSERMAN 87 CNTR Assumes me+ = me−22 ±64 SCHWINBERG 81 MRS Penning trap1VANDYCK 87 measured (g−/g+)−1 and we 
onverted it.2VASSERMAN 87 measured (g+ − g−)/(g−2). We multiplied by (g−2)/g = 1.2 ×10−3. e ELECTRIC DIPOLE MOMENT (d)e ELECTRIC DIPOLE MOMENT (d)e ELECTRIC DIPOLE MOMENT (d)e ELECTRIC DIPOLE MOMENT (d)A nonzero value is forbidden by both T invarian
e and P invarian
e.VALUE (10−28 e 
m) CL% DOCUMENT ID TECN COMMENT
< 0.87< 0.87< 0.87< 0.87 90 1 BARON 14 CNTR ThO mole
ules
• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 5570 ± 7980 ±120 KIM 15 CNTR Gd3Ga5O12mole
ules
< 6050 90 2 ECKEL 12 CNTR Eu0.5Ba0.5TiO3mole
ules
< 10.5 90 3 HUDSON 11 NMR YbF mole
ules6.9 ± 7.4 REGAN 02 MRS 205Tl beams18 ± 12 ± 10 4 COMMINS 94 MRS 205Tl beams
− 27 ± 83 4 ABDULLAH 90 MRS 205Tl beams
− 1400 ± 2400 CHO 89 NMR TlF mole
ules
− 150 ± 550 ±150 MURTHY 89 Cs, no B �eld
− 5000 ±11000 LAMOREAUX 87 NMR 199Hg19000 ±34000 90 SANDARS 75 MRS Thallium7000 ±22000 90 PLAYER 70 MRS Xenon

< 30000 90 WEISSKOPF 68 MRS Cesium1BARON 14 gives a measurement 
orresponding to this limit as (−0.21 ± 0.37 ± 0.25)×10−28 e
m.2ECKEL 12 gives a measurement 
orresponding to this limit as (−1.07 ± 3.06 ± 1.74)×10−25 e
m.3HUDSON 11 gives a measurement 
orresponding to this limit as (−2.4 ± 5.7 ± 1.5)×10−28 e
m.4ABDULLAH 90, COMMINS 94, and REGAN 02 use the relativisti
 enhan
ement of avalen
e ele
tron's ele
tri
 dipole moment in a high-Z atom.e− MEAN LIFE / BRANCHING FRACTIONe− MEAN LIFE / BRANCHING FRACTIONe− MEAN LIFE / BRANCHING FRACTIONe− MEAN LIFE / BRANCHING FRACTIONA test of 
harge 
onservation. See the \Note on Testing Charge Conserva-tion and the Pauli Ex
lusion Prin
iple" following this se
tion in our 1992edition (Physi
al Review D45D45D45D45 S1 (1992), p. VI.10).Most of these experiments are one of three kinds: Attempts to observe(a) the 255.5 keV gamma ray produ
ed in e− → νe γ, (b) the (K) shellx ray produ
ed when an ele
tron de
ays without additional energy deposit,e.g., e− → νe νe νe (\disappearan
e" experiments), and (
) nu
lear de-ex
itation gamma rays after the ele
tron disappears from an atomi
 shelland the nu
leus is left in an ex
ited state. The last 
an in
lude both weakboson and photon mediating pro
esses. We use the best e− → νe γ limitfor the Summary Tables.Note that we use the mean life rather than the half life, whi
h is oftenreported.e → νe γ and astrophysi
al limitse → νe γ and astrophysi
al limitse → νe γ and astrophysi
al limitse → νe γ and astrophysi
al limitsVALUE (yr) CL% DOCUMENT ID TECN COMMENT
>6.6 × 1028>6.6 × 1028>6.6 × 1028>6.6 × 1028 90 AGOSTINI 15B BORX e− → ν γ
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le Listingse, µ
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>1.22× 1026 68 1 KLAPDOR-K... 07 CNTR e− → ν γ

>4.6 × 1026 90 BACK 02 BORX e− → ν γ

>3.4 × 1026 68 BELLI 00B DAMA e− → ν γ, liquid Xe
>3.7 × 1025 68 AHARONOV 95B CNTR e− → ν γ

>2.35× 1025 68 BALYSH 93 CNTR e− → ν γ, 76Ge dete
tor
>1.5 × 1025 68 AVIGNONE 86 CNTR e− → ν γ

>1 × 1039 2 ORITO 85 ASTR Astrophysi
al argument
>3 × 1023 68 BELLOTTI 83B CNTR e− → ν γ1The authors of A. Derbin et al, arXiv:0704.2047v1 argue that this limit is overestimatedby at least a fa
tor of 5.2ORITO 85 assumes that ele
tromagneti
 for
es extend out to large enough distan
es andthat the age of our galaxy is 1010 years.Disappearan
e and nu
lear-de-ex
itation experimentsDisappearan
e and nu
lear-de-ex
itation experimentsDisappearan
e and nu
lear-de-ex
itation experimentsDisappearan
e and nu
lear-de-ex
itation experimentsVALUE (yr) CL% DOCUMENT ID TECN COMMENT
>6.4× 1024>6.4× 1024>6.4× 1024>6.4× 1024 68 1 BELLI 99B DAMA De-ex
itation of 129Xe
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>4.2× 1024 68 BELLI 99 DAMA Iodine L-shell disappearan
e
>2.4× 1023 90 2 BELLI 99D DAMA De-ex
itation of 127I (in NaI)
>4.3× 1023 68 AHARONOV 95B CNTR Ge K-shell disappearan
e
>2.7× 1023 68 REUSSER 91 CNTR Ge K-shell disappearan
e
>2 × 1022 68 BELLOTTI 83B CNTR Ge K-shell disappearan
e1BELLI 99B limit on 
harge non
onserving e− 
apture involving ex
itation of the 236.1keV nu
lear state of 129Xe; the 90% CL limit is 3.7× 1024 yr. Less stringent limits forother states are also given.2BELLI 99D limit on 
harge non
onserving e− 
apture involving ex
itation of the 57.6keV nu
lear state of 127I. Less stringent limits for the other states and for the state of23Na are also given.LIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTIONLIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTIONLIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTIONLIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTIONForbidden by lepton family number 
onservation.This se
tion was added for the 2008 edition of this Review and is not
omplete. For a list of further measurements see referen
es in the paperslisted below.
σ(e+ e− → e± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → e± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → e± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → e± τ∓) / σ(e+ e− → µ+µ−)VALUE CL% DOCUMENT ID TECN COMMENT
<8.9× 10−6<8.9× 10−6<8.9× 10−6<8.9× 10−6 95 AUBERT 07P BABR e+ e− at E
m = 10.58 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.8× 10−3 95 GOMEZ-CAD... 91 MRK2 e+ e− at E
m = 29 GeV
σ(e+ e− → µ± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → µ± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → µ± τ∓) / σ(e+ e− → µ+µ−)σ(e+ e− → µ± τ∓) / σ(e+ e− → µ+µ−)VALUE CL% DOCUMENT ID TECN COMMENT
<4.0× 10−6<4.0× 10−6<4.0× 10−6<4.0× 10−6 95 AUBERT 07P BABR e+ e− at E
m = 10.58 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.1× 10−3 95 GOMEZ-CAD... 91 MRK2 e+ e− at E
m = 29 GeVe REFERENCESe REFERENCESe REFERENCESe REFERENCESMOHR 16 arXiv:1507.07956 P.J. Mohr, D.B. Newell, B.N. Taylor (NIST)A

epted for publi
ation in RMPAGOSTINI 15B PRL 115 231802 M. Agostini et al. (BOREXINO Collab.)KIM 15 PR D91 102004 Y.J. Kim et al. (IND, YALE, LANL)BARON 14 SCIENCE 343 269 J. Baron et al. (ACME Collab.)DOLGOV 14 PL B732 244 A.D. Dolgov, V.A. NovikovECKEL 12 PRL 109 193003 S. E
kel, A.O. Sushkov, S.K. Lamoreaux (YALE)MOHR 12 RMP 84 1527 P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)PDG 12 PR D86 010001 J. Beringer et al. (PDG Collab.)HUDSON 11 NAT 473 493 J.J. Hadson et al. (LOIC)HANNEKE 08 PRL 100 120801 D. Hanneke, S. Fogwell, G. Gabrielse (HARV)MOHR 08 RMP 80 633 P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)AUBERT 07P PR D75 031103 B. Aubert et al. (BABAR Collab.)KLAPDOR-K... 07 PL B644 109 H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, I.V. TitkovaODOM 06 PRL 97 030801 B. Odom et al. (HARV)MOHR 05 RMP 77 1 P.J. Mohr, B.N. Taylor (NIST)BACK 02 PL B525 29 H.O. Ba
k et al. (BOREXINO/SASSO Collab.)BEIER 02 PRL 88 011603 T. Beier et al.REGAN 02 PRL 88 071805 B.C. Regan et al.BELLI 00B PR D61 117301 P. Belli et al. (DAMA Collab.)BELLI 99 PL B460 236 P. Belli et al. (DAMA Collab.)BELLI 99B PL B465 315 P. Belli et al. (DAMA Collab.)BELLI 99D PR C60 065501 P. Belli et al. (DAMA Collab.)MOHR 99 JPCRD 28 1713 P.J. Mohr, B.N. Taylor (NIST)Also RMP 72 351 P.J. Mohr, B.N. Taylor (NIST)AHARONOV 95B PR D52 3785 Y. Aharonov et al. (SCUC, PNL, ZARA+)Also PL B353 168 Y. Aharonov et al. (SCUC, PNL, ZARA+)FARNHAM 95 PRL 75 3598 D.L. Farnham, R.S. van Dy
k, P.B. S
hwinberg (WASH)SCHAEFER 95 PR A51 838 A. S
haefer, J. Reinhardt (FRAN)COMMINS 94 PR A50 2960 E.D. Commins et al.BALYSH 93 PL B298 278 A. Balysh et al. (KIAE, MPIH, SASSO)FEE 93 PR A48 192 M.S. Fee et al.HUGHES 92 PRL 69 578 R.J. Hughes, B.I. Deut
h (LANL, AARH)MUELLER 92 PRL 69 3432 B. Muller, M.H. Thoma (DUKE)PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+)GOMEZ-CAD... 91 PRL 66 1007 J.J. Gomez-Cadenas et al. (SLAC MARK-2 Collab.)REUSSER 91 PL B255 143 D. Reusser et al. (NEUC, CIT, PSI)ABDULLAH 90 PRL 65 2347 K. Abdullah et al. (LBL, UCB)CHO 89 PRL 63 2559 D. Cho, K. Sangster, E.A. Hinds (YALE)MURTHY 89 PRL 63 965 S.A. Murthy et al. (AMHT)COHEN 87 RMP 59 1121 E.R. Cohen, B.N. Taylor (RISC, NBS)LAMOREAUX 87 PRL 59 2275 S.K. Lamoreaux et al. (WASH)VANDYCK 87 PRL 59 26 R.S. van Dy
k, P.B. S
hwinberg, H.G. Dehmelt (WASH)VASSERMAN 87 PL B198 302 I.B. Vasserman et al. (NOVO)Also PL B187 172 I.B. Vasserman et al. (NOVO)

AVIGNONE 86 PR D34 97 F.T. Avignone et al. (PNL, SCUC)ORITO 85 PRL 54 2457 S. Orito, M. Yoshimura (TOKY, KEK)CHU 84 PRL 52 1689 S. Chu, A.P. Mills, J.L. Hall (BELL, NBS, COLO)BELLOTTI 83B PL 124B 435 E. Bellotti et al. (MILA)SCHWINBERG 81 PRL 47 1679 P.B. S
hwinberg, R.S. van Dy
k, H.G. Dehmelt (WASH)SANDARS 75 PR A11 473 P.G.H. Sandars, D.M. Sternheimer (OXF, BNL)COHEN 73 JPCRD 2 664 E.R. Cohen, B.N. Taylor (RISC, NBS)PLAYER 70 JP B3 1620 M.A. Player, P.G.H. Sandars (OXF)WEISSKOPF 68 PRL 21 1645 M.C. Weisskopf et al. (BRAN)
µ J = 12

µ MASS (atomi
 mass units u)µ MASS (atomi
 mass units u)µ MASS (atomi
 mass units u)µ MASS (atomi
 mass units u)The muon's mass is obtained from the muon-ele
tron mass ratio as deter-mined from the measurement of Zeeman transition frequen
ies in muonium(µ+ e− atom). Sin
e the ele
tron's mass is most a

urately known in u,the muon's mass is also most a

urately known in u. The 
onversion fa
-tor to MeV has approximately the same relative un
ertainty as the massof the muon in u. In this datablo
k we give the result in u, and in thefollowing datablo
k in MeV.VALUE (u) DOCUMENT ID TECN COMMENT0.1134289257±0.00000000250.1134289257±0.00000000250.1134289257±0.00000000250.1134289257±0.0000000025 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1134289267±0.0000000029 MOHR 12 RVUE 2010 CODATA value0.1134289256±0.0000000029 MOHR 08 RVUE 2006 CODATA value0.1134289264±0.0000000030 MOHR 05 RVUE 2002 CODATA value0.1134289168±0.0000000034 1 MOHR 99 RVUE 1998 CODATA value0.113428913 ±0.000000017 2 COHEN 87 RVUE 1986 CODATA value1MOHR 99 make use of other 1998 CODATA entries below.2COHEN 87 make use of other 1986 CODATA entries below.

µ MASSµ MASSµ MASSµ MASS2010 CODATA (MOHR 12) gives the 
onversion fa
tor from u (atomi
mass units, see the above datablo
k) to MeV as 931.494 061 (21). Ear-lier values use the then-
urrent 
onversion fa
tor. The 
onversion error
ontributes signi�
antly to the un
ertainty of the masses given below.VALUE (MeV) DOCUMENT ID TECN CHG COMMENT105.6583745±0.0000024105.6583745±0.0000024105.6583745±0.0000024105.6583745±0.0000024 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •105.6583715±0.0000035 MOHR 12 RVUE 2010 CODATA value105.6583668±0.0000038 MOHR 08 RVUE 2006 CODATA value105.6583692±0.0000094 MOHR 05 RVUE 2002 CODATA value105.6583568±0.0000052 MOHR 99 RVUE 1998 CODATA value105.658353 ±0.000016 1 COHEN 87 RVUE 1986 CODATA value105.658386 ±0.000044 2 MARIAM 82 CNTR +105.65836 ±0.00026 3 CROWE 72 CNTR105.65865 ±0.00044 4 CRANE 71 CNTR1Converted to MeV using the 1998 CODATA value of the 
onversion 
onstant,931.494013 ± 0.000037 MeV/u.2MARIAM 82 give mµ/me = 206.768259(62).3CROWE 72 give mµ/me = 206.7682(5).4CRANE 71 give mµ/me = 206.76878(85).

µ MEAN LIFE τµ MEAN LIFE τµ MEAN LIFE τµ MEAN LIFE τMeasurements with an error > 0.001× 10−6 s have been omitted.VALUE (10−6 s) DOCUMENT ID TECN CHG COMMENT2.1969811±0.0000022 OUR AVERAGE2.1969811±0.0000022 OUR AVERAGE2.1969811±0.0000022 OUR AVERAGE2.1969811±0.0000022 OUR AVERAGE2.1969803±0.0000021±0.0000007 1 TISHCHENKO 13 CNTR + Surfa
e µ+ at PSI2.197083 ±0.000032 ±0.000015 BARCZYK 08 CNTR + Muons from π+de
ay at rest2.197013 ±0.000021 ±0.000011 CHITWOOD 07 CNTR + Surfa
e µ+ at PSI2.197078 ±0.000073 BARDIN 84 CNTR +2.197025 ±0.000155 BARDIN 84 CNTR −2.19695 ±0.00006 GIOVANETTI 84 CNTR +2.19711 ±0.00008 BALANDIN 74 CNTR +2.1973 ±0.0003 DUCLOS 73 CNTR +
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.1969803±0.0000022 WEBBER 11 CNTR + Surfa
e µ+ at PSI1TISHCHENKO 13 uses 1.6× 1012 µ+ events and supersedes WEBBER 11.

τ µ+/τ µ− MEAN LIFE RATIOτ µ+/τ µ− MEAN LIFE RATIOτ µ+/τ µ− MEAN LIFE RATIOτ µ+/τ µ− MEAN LIFE RATIOA test of CPT invarian
e.VALUE DOCUMENT ID TECN COMMENT1.000024±0.0000781.000024±0.0000781.000024±0.0000781.000024±0.000078 BARDIN 84 CNTR
• • • We do not use the following data for averages, �ts, limits, et
. • • •
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µ1.0008 ±0.0010 BAILEY 79 CNTR Storage ring1.000 ±0.001 MEYER 63 CNTR Mean life µ+/ µ−(τ µ+ − τ µ−) / τ average(τ µ+ − τ µ−) / τ average(τ µ+ − τ µ−) / τ average(τ µ+ − τ µ−) / τ averageA test of CPT invarian
e. Cal
ulated from the mean-life ratio, above.VALUE DOCUMENT ID(2±8)× 10−5 OUR EVALUATION(2±8)× 10−5 OUR EVALUATION(2±8)× 10−5 OUR EVALUATION(2±8)× 10−5 OUR EVALUATION

µ/p MAGNETIC MOMENT RATIOµ/p MAGNETIC MOMENT RATIOµ/p MAGNETIC MOMENT RATIOµ/p MAGNETIC MOMENT RATIOThis ratio is used to obtain a pre
ise value of the muon mass and toredu
e experimental muon Larmor frequen
y measurements to the muonmagneti
 moment anomaly. Measurements with an error > 0.00001 havebeen omitted. By 
onvention, the minus sign on this ratio is omitted.CODATA values were �tted using their sele
tion of data, plus other datafrom multiparameter �ts.VALUE DOCUMENT ID TECN CHG COMMENT3.183345142±0.0000000713.183345142±0.0000000713.183345142±0.0000000713.183345142±0.000000071 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.183345107±0.000000084 MOHR 12 RVUE 2010 CODATA value3.183345137±0.000000085 MOHR 08 RVUE 2006 CODATA value3.183345118±0.000000089 MOHR 05 RVUE 2002 CODATA value3.18334513 ±0.00000039 LIU 99 CNTR + HFS in muonium3.18334539 ±0.00000010 MOHR 99 RVUE 1998 CODATA value3.18334547 ±0.00000047 COHEN 87 RVUE 1986 CODATA value3.1833441 ±0.0000017 KLEMPT 82 CNTR + Pre
ession strob3.1833461 ±0.0000011 MARIAM 82 CNTR + HFS splitting3.1833448 ±0.0000029 CAMANI 78 CNTR + See KLEMPT 823.1833403 ±0.0000044 CASPERSON 77 CNTR + HFS splitting3.1833402 ±0.0000072 COHEN 73 RVUE 1973 CODATA value3.1833467 ±0.0000082 CROWE 72 CNTR + Pre
ession phase
THE MUON ANOMALOUS MAGNETIC MOMENT

Updated August 2013 by A. Hoecker (CERN), and W.J. Mar-
ciano (BNL).

The Dirac equation predicts a muon magnetic moment,
~M = gµ

e

2mµ

~S, with gyromagnetic ratio gµ = 2. Quantum

loop effects lead to a small calculable deviation from gµ = 2,

parameterized by the anomalous magnetic moment

aµ ≡ gµ − 2

2
. (1)

That quantity can be accurately measured and, within the

Standard Model (SM) framework, precisely predicted. Hence,

comparison of experiment and theory tests the SM at its quan-

tum loop level. A deviation in aexp
µ from the SM expectation

would signal effects of new physics, with current sensitivity

reaching up to mass scales of O(TeV) [1,2]. For recent and

very thorough muon g − 2 reviews, see Refs. [3–5].

The E821 experiment at Brookhaven National Lab (BNL)

studied the precession of µ+ and µ− in a constant external

magnetic field as they circulated in a confining storage ring. It

found [7] 1

aexp
µ+ = 11 659 204(6)(5)× 10−10 ,

aexp
µ− = 11 659 215(8)(3)× 10−10 , (2)

1 The original results reported by the experiment have been

updated in Eq. (2) and Eq. (3) to the newest value for the ab-

solute muon-to-proton magnetic ratio λ = 3.183 345 107(84) [6].

The change induced in aexp
µ with respect to the value of λ =

3.183 345 39(10) used in Ref. 7 amounts to +1.12 × 10−10.

γ

γ

µ µ

γ

Z

µ µ

γ

W W

ν

µ µ

γ

γ γ

µ µ
had

where the first errors are statistical and the second system-

atic. Assuming CPT invariance and taking into account cor-

relations between systematic uncertainties, one finds for their

average [6,7]

aexp
µ = 11 659 209.1(5.4)(3.3)× 10−10 . (3)

These results represent about a factor of 14 improvement over

the classic CERN experiments of the 1970’s [8]. Improvement

of the measurement in Eq. (3) by a factor of four by moving the

E821 storage ring to Fermilab, and utilizing a cleaner and more

intense muon beam is in progress. An even more ambitious

precision goal is set by an experiment based on a beam of

ultra-cold muons proposed at the Japan Proton Accelerator

Research Complex.

The SM prediction for aSM
µ is generally divided into three

parts (see Fig. 1 for representative Feynman diagrams)

aSM
µ = aQED

µ + aEW
µ + aHad

µ . (4)

The QED part includes all photonic and leptonic (e, µ, τ) loops

starting with the classic α/2π Schwinger contribution. It has

been computed through 5 loops [9]

aQED
µ =

α

2π
+ 0.765 857 425(17)

(α

π

)2
+ 24.050 509 96(32)

(α

π

)3

+ 130.879 6(6 3)
(α

π

)4
+ 753.3(1.0)

(α

π

)5
+ · · · (5)

with a few significant changes in the coefficients since our

previous update of this review in 2011. Employing2 α−1 =

137.035 999 049(90), obtained [6] from the precise measure-

ments of h/mRb [11], the Rydberg constant and mRb/me [6],

leads to [9]

aQED
µ = 116 584 718.95(0.08)× 10−11 , (6)

where the small error results mainly from the uncertainty in α.

Loop contributions involving heavy W±, Z or Higgs parti-

cles are collectively labeled as aEW
µ . They are suppressed by at

least a factor of
α

π

m2
µ

m2
W

≃ 4 × 10−9. At 1-loop order [12]

aEW
µ [1-loop] =

Gµm2
µ

8
√

2π2

[
5

3
+

1

3

(
1 − 4 sin2θW

)2

+ O
(

m2
µ

M2
W

)
+ O

(
m2

µ

m2
H

)]
,

= 194.8 × 10−11 , (7)

2 In the previous versions of this review we used the precise

α value determined from the electron ae measurement [9,10].

With the new measurement [11] of the recoil velocity of Rubid-

ium, h/mRb, an ae-independent determination of α with suffi-

cient precision is available and preferred.
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µ

for sin2θW ≡ 1 − M2
W/M2

Z ≃ 0.223, and where Gµ ≃
1.166 × 10−5 GeV−2 is the Fermi coupling constant. Two-loop

corrections are relatively large and negative [13]. For a Higgs

boson mass of ≃126 GeV [13]

aEW
µ [2-loop] = −41.2(1.0) × 10−11 , (8)

where the uncertainty stems from quark triangle loops. The

3-loop leading logarithms are negligible [13,14], O(10−12),

implying in total

aEW
µ = 153.6(1.0)× 10−11 . (9)

Hadronic (quark and gluon) loop contributions to aSM
µ give rise

to its main theoretical uncertainties. At present, those effects

are not calculable from first principles, but such an approach,

at least partially, may become possible as lattice QCD matures.

Instead, one currently relies on a dispersion relation approach

to evaluate the lowest-order (i.e., O(α2)) hadronic vacuum

polarization contribution aHad
µ [LO] from corresponding cross

section measurements [15]

aHad
µ [LO] =

1

3

(
α

π

)2 ∞∫

m2
π

ds
K(s)

s
R(0)(s) , (10)

where K(s) is a QED kernel function [16], and where R(0)(s)

denotes the ratio of the bare3 cross section for e+e− annihilation

into hadrons to the pointlike muon-pair cross section at center-

of-mass energy
√

s. The function K(s) ∼ 1/s in Eq. (10) gives

a strong weight to the low-energy part of the integral. Hence,

aHad
µ [LO] is dominated by the ρ(770) resonance.

Currently, the available σ(e+e− → hadrons) data give a

leading-order hadronic vacuum polarization (representative)

contribution of [17]

aHad
µ [LO] = 6 923(42)(3)× 10−11 , (11)

where the first error is experimental (dominated by system-

atic uncertainties), and the second due to perturbative QCD,

which is used at intermediate and large energies to predict the

contribution from the quark-antiquark continuum. New multi-

hadron data from the BABAR experiment have increased the

constraints on unmeasured exclusive final states and led to a

small reduction in the hadronic contribution compared to the

2009 PDG value.

Alternatively, one can use precise vector spectral functions

from τ → ντ + hadrons decays [18] that can be related to

isovector e+e− → hadrons cross sections by isospin symmetry.

Replacing e+e− data in the two-pion and four-pion channels

by the corresponding isospin-transformed τ data, and applying

3 The bare cross section is defined as the measured cross sec-

tion corrected for initial-state radiation, electron-vertex loop

contributions and vacuum-polarization effects in the photon pro-

pagator. However, QED effects in the hadron vertex and final

state, as photon radiation, are included.

isospin-violating corrections (from QED and md−mu 6= 0), one

finds [17]

aHad
µ [LO] = 7 015(42)(19)(3)× 10−11 (τ) , (12)

where the first error is experimental, the second estimates the

uncertainty in the isospin-breaking corrections applied to the

τ data, and the third error is due to perturbative QCD. The

current discrepancy between the e+e− and τ -based determina-

tions of aHad
µ [LO] has been reduced to 1.8σ with respect to

earlier evaluations. New e+e− and τ data from the B-factory

experiments BABAR and Belle have increased the experimental

information. Reevaluated isospin-breaking corrections have also

contributed to this improvement [19]. BABAR reported good

agreement with the τ data in the most important two-pion

channel [20]. The remaining discrepancy with the older e+e−

and τ datasets may be indicative of problems with one or

both data sets. It may also suggest the need for additional

isospin-violating corrections to the τ data. Several evaluations

of aHad
µ [LO] have been published leading to similar results (see

Fig. 2). The low-energy contribution to aHad
µ [LO] has also been

evaluated with the use of additional theory or model constraints

in Refs. [22] and [23], respectively.

Higher order, O(α3), hadronic contributions are obtained

from dispersion relations using the same e+e− → hadrons

data [18,21,24], giving aHad,Disp
µ [NLO] = (−98.4± 0.6)× 10−11,

along with model-dependent estimates of the hadronic light-

by-light scattering contribution, aHad,LBL
µ [NLO], motivated by

large-NC QCD [25–31]. 4 Following [29], one finds for the sum

of the two terms

aHad
µ [NLO] = 7(26) × 10−11 , (13)

where the error is dominated by hadronic light-by-light uncer-

tainties.

Adding Eqs. (6), (9), (11) and (13) gives the representative

e+e− data based SM prediction

aSM
µ = 116 591 803(1)(42)(26)× 10−11 , (14)

where the errors are due to the electroweak, lowest-order

hadronic, and higher-order hadronic contributions, respectively.

The difference between experiment and theory

∆aµ = aexp
µ − aSM

µ = 288(63)(49)× 10−11 , (15)

(with all errors combined in quadrature) represents an inter-

esting but not yet conclusive discrepancy of 3.6 times the

estimated 1σ error. All the recent estimates for the hadronic

contribution compiled in Fig. 2 exhibit similar discrepancies.

Switching to τ data reduces the discrepancy to 2.4σ, assuming

the isospin-violating corrections are under control within the

4 Some representative recent estimates of the hadronic light-

by-light scattering contribution, aHad,LBL
µ [NLO], that followed

after the sign correction of [27], are: 105(26) × 10−11 [29],

110(40)× 10−11 [25], 136(25)× 10−11 [26].



717717717717See key on page 601 Lepton Parti
le Listings
µ

-700 -600 -500 -400 -300 -200 -100 0

aµ  –  aµ
    exp × 10–11
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JN 09 (e+e–-based)

DHMZ 10 (τ-based)

DHMZ 10 (e+e–)

HLMNT 11 (e+e–)
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–289 ± 49

–263 ± 49

0 ± 63

Figure 2: Compilation of recent published re-
sults for aµ (in units of 10−11), subtracted by the
central value of the experimental average (3).
The shaded band indicates the size of the ex-
perimental uncertainty. The SM predictions are
taken from: JN [4], DHMZ [17], HMNT [21].
Note that the quoted errors in the figure do
not include the uncertainty on the subtracted
experimental value. To obtain for each theory
calculation a result equivalent to Eq. (15), the
errors from theory and experiment must be
added in quadrature.

estimated uncertainties (see Ref. 32 for an analysis leading to a

different conclusion).

An alternate interpretation is that ∆aµ may be a new

physics signal with supersymmetric particle loops as the leading

candidate explanation. Such a scenario is quite natural, since

generically, supersymmetric models predict [1] an additional

contribution to aSM
µ

aSUSY
µ ≃ sign(µ) · 130 × 10−11 ·

(
100 GeV

mSUSY

)2

tanβ , (16)

where mSUSY is a representative supersymmetric mass scale,

tanβ ≃ 3–40 a potential enhancement factor, and sign(µ) = ±1.

Supersymmetric particles in the mass range 100–500 GeV could

be the source of the deviation ∆aµ. If so, those particles should

be directly observed at the Large Hadron Collider at CERN.

New physics effects [1] other than supersymmetry could also

explain a non-vanishing ∆aµ. A recent popular scenario involves

the “dark photon”, a relatively light hypothetical vector boson

from the dark matter sector that couples to our world of particle

physics through mixing with the ordinary photon [33–35]. As

a result, it couples to ordinary charged particles with strength

ε · e and gives rise to an additional muon anomalous magnetic

moment contribution

adark photon
µ =

α

2π
ε2F (mV /mµ) , (17)

where F (x) =
∫ 1
0 2z(1 − z)2/[(1 − z)2 + x2z] dz. For values of

ε ∼ 1–2 · 10−3 and mV ∼ 10–100 MeV, the dark photon, which

was originally motivated by cosmology, can provide a viable

solution to the muon g − 2 discrepancy. Searches for the dark

photon in that mass range are currently underway at Jefferson

Lab, USA, and MAMI in Mainz, Germany.
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µ MAGNETIC MOMENT ANOMALYµ MAGNETIC MOMENT ANOMALYµ MAGNETIC MOMENT ANOMALYµ MAGNETIC MOMENT ANOMALYThe parity-violating de
ay of muons in a storage ring is observed. Thedi�eren
e frequen
y ωa between the muon spin pre
ision and the orbitalangular frequen
y (e/mµ
)〈B〉 is measured, as is the free proton NMRfrequen
y ωp , thus determining the ratio R=ωa/ωp . Given the magneti
moment ratio λ=µµ/µp (from hyper�ne stru
ture in muonium), (g−2)/2= R/(λ−R).
µµ/(e�h/2mµ)−1 = (gµ−2)/2µµ/(e�h/2mµ)−1 = (gµ−2)/2µµ/(e�h/2mµ)−1 = (gµ−2)/2µµ/(e�h/2mµ)−1 = (gµ−2)/2VALUE (units 10−10) DOCUMENT ID TECN CHG COMMENT11659208.9± 5.4±3.311659208.9± 5.4±3.311659208.9± 5.4±3.311659208.9± 5.4±3.3 1 BENNETT 06 MUG2 Average µ+ and µ−
• • • We do not use the following data for averages, �ts, limits, et
. • • •11659208 ± 6 BENNETT 04 MUG2 Average µ+ and µ−11659214 ± 8 ±3 BENNETT 04 MUG2 − Storage ring11659203 ± 6 ±5 BENNETT 04 MUG2 + Storage ring11659204 ± 7 ±5 BENNETT 02 MUG2 + Storage ring11659202 ± 14 ±6 BROWN 01 MUG2 + Storage ring11659191 ± 59 BROWN 00 MUG2 +11659100 ± 110 2 BAILEY 79 CNTR + Storage ring11659360 ± 120 2 BAILEY 79 CNTR − Storage ring11659230 ± 85 2 BAILEY 79 CNTR ± Storage ring11620000 ±5000 CHARPAK 62 CNTR +1BENNETT 06 reports (gµ−2)/2 = (11659208.0 ± 5.4 ± 3.3) × 10−10. We res
aledthis value using µ/p magneti
 moment ratio of 3.183345137(85) from MOHR 08.2BAILEY 79 values re
al
ulated by HUGHES 99 using the COHEN 87 µ/p magneti
moment. The improved MOHR 99 value does not 
hange the result.

(gµ+ − gµ−) / gaverage(gµ+ − gµ−) / gaverage(gµ+ − gµ−) / gaverage(gµ+ − gµ−) / gaverageA test of CPT invarian
e.VALUE (units 10−8) DOCUMENT ID TECN
−0.11±0.12−0.11±0.12−0.11±0.12−0.11±0.12 BENNETT 04 MUG2
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−2.6 ±1.6 BAILEY 79 CNTR

µ ELECTRIC DIPOLE MOMENT (d)µ ELECTRIC DIPOLE MOMENT (d)µ ELECTRIC DIPOLE MOMENT (d)µ ELECTRIC DIPOLE MOMENT (d)A nonzero value is forbidden by both T invarian
e and P invarian
e.VALUE (10−19 e 
m) DOCUMENT ID TECN CHG COMMENT
−0.1±0.9−0.1±0.9−0.1±0.9−0.1±0.9 1 BENNETT 09 MUG2 ± Storage ring
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.1±1.0 BENNETT 09 MUG2 + Storage ring
−0.1±0.7 BENNETT 09 MUG2 − Storage ring
−3.7±3.4 2 BAILEY 78 CNTR ± Storage ring8.6±4.5 BAILEY 78 CNTR + Storage ring0.8±4.3 BAILEY 78 CNTR − Storage ring1This is the 
ombination of the two BENNETT 09 results quoted here separately for µ+and µ−. BENNETT 09 uses the 
onvention d = 1/2 · (d

µ−− d
µ+ ).2This is the 
ombination of the two BAILEY 78 results quoted here separately for µ+ and

µ−. BAILEY 78 uses the 
onvention d = 1/2 · (d
µ+− d

µ− ) and reports 3.7 ± 3.4. We
onvert their result to use the same 
onvention as BENNETT 09.MUON-ELECTRON CHARGE RATIO ANOMALY qµ+/qe− + 1MUON-ELECTRON CHARGE RATIO ANOMALY qµ+/qe− + 1MUON-ELECTRON CHARGE RATIO ANOMALY qµ+/qe− + 1MUON-ELECTRON CHARGE RATIO ANOMALY qµ+/qe− + 1VALUE DOCUMENT ID TECN CHG COMMENT(1.1±2.1)× 10−9(1.1±2.1)× 10−9(1.1±2.1)× 10−9(1.1±2.1)× 10−9 1 MEYER 00 CNTR + 1s{2s muoniuminterval1MEYER 00 measure the 1s{2s muonium interval, and then interpret the result in termsof muon-ele
tron 
harge ratio q
µ+/qe− .

µ− DECAY MODESµ− DECAY MODESµ− DECAY MODESµ− DECAY MODES
µ+ modes are 
harge 
onjugates of the modes below.Mode Fra
tion (�i /�) Con�den
e level�1 e−νe νµ ≈ 100%�2 e−νe νµ γ [a℄ (1.4±0.4) %�3 e−νe νµ e+ e− [b℄ (3.4±0.4)× 10−5Lepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modes�4 e−νe νµ LF [
℄ < 1.2 % 90%�5 e−γ LF < 5.7 × 10−13 90%�6 e− e+ e− LF < 1.0 × 10−12 90%�7 e−2γ LF < 7.2 × 10−11 90%[a℄ This only in
ludes events with the γ energy > 10 MeV. Sin
e the e−νe νµand e−νe νµ γ modes 
annot be 
learly separated, we regard the lattermode as a subset of the former.[b℄ See the Parti
le Listings below for the energy limits used in this mea-surement.[
 ℄ A test of additive vs. multipli
ative lepton family number 
onservation.

µ− BRANCHING RATIOSµ− BRANCHING RATIOSµ− BRANCHING RATIOSµ− BRANCHING RATIOS�(e− νe νµ γ
)/�total �2/��(e− νe νµ γ
)/�total �2/��(e− νe νµ γ
)/�total �2/��(e− νe νµ γ
)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENT0.014 ±0.0040.014 ±0.0040.014 ±0.0040.014 ±0.004 CRITTENDEN 61 CNTR γ KE > 10 MeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •862 BOGART 67 CNTR γ KE > 14.5 MeV0.0033±0.0013 CRITTENDEN 61 CNTR γ KE > 20 MeV27 ASHKIN 59 CNTR�(e− νe νµ e+ e−)/�total �3/��(e− νe νµ e+ e−)/�total �3/��(e− νe νµ e+ e−)/�total �3/��(e− νe νµ e+ e−)/�total �3/�VALUE (units 10−5) EVTS DOCUMENT ID TECN CHG COMMENT3.4±0.2±0.33.4±0.2±0.33.4±0.2±0.33.4±0.2±0.3 7443 1 BERTL 85 SPEC + SINDRUM
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.2±1.5 7 2 CRITTENDEN 61 HLBC + E(e+e−) > 10 MeV2 1 3 GUREVICH 60 EMUL +1.5±1.0 3 4 LEE 59 HBC +1BERTL 85 has transverse momentum 
ut pT > 17 MeV/
. Systemati
 error wasin
reased by us.2CRITTENDEN 61 
ount only those de
ays where total energy of either (e+, e−) 
om-bination is >10 MeV.3GUREVICH 60 interpret their event as either virtual or real photon 
onversion. e+ ande− energies not measured.4 In the three LEE 59 events, the sum of energies E(e+) + E(e−) + E(e+) was 51 MeV,55 MeV, and 33 MeV.
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µ�(e− νe νµ

)/�total �4/��(e− νe νµ

)/�total �4/��(e− νe νµ

)/�total �4/��(e− νe νµ

)/�total �4/�Forbidden by the additive 
onservation law for lepton family number. A multipli
ativelaw predi
ts this bran
hing ratio to be 1/2. For a review see NEMETHY 81.VALUE CL% DOCUMENT ID TECN CHG COMMENT
< 0.012< 0.012< 0.012< 0.012 90 1 FREEDMAN 93 CNTR + ν os
illation sear
h
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.018 90 KRAKAUER 91B CALO +
< 0.05 90 2 BERGSMA 83 CALO νµ e → µ− νe
< 0.09 90 JONKER 80 CALO See BERGSMA 83
−0.001±0.061 WILLIS 80 CNTR +0.13 ±0.15 BLIETSCHAU 78 HLBC ± Avg. of 4 values

< 0.25 90 EICHTEN 73 HLBC +1FREEDMAN 93 limit on νe observation is here interpreted as a limit on lepton familynumber violation.2BERGSMA 83 gives a limit on the inverse muon de
ay 
ross-se
tion ratio σ(νµ e− →
µ− νe )/σ(νµ e− → µ− νe ), whi
h is essentially equivalent to �(e− νe νµ

)/�total forsmall values like that quoted.�(e− γ
)/�total �5/��(e− γ
)/�total �5/��(e− γ
)/�total �5/��(e− γ
)/�total �5/�Forbidden by lepton family number 
onservation.VALUE (units 10−11) CL% DOCUMENT ID TECN CHG COMMENT

< 0.057< 0.057< 0.057< 0.057 90 ADAM 13B SPEC + MEG at PSI
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.24 90 ADAM 11 SPEC + MEG at PSI
< 2.8 90 ADAM 10 SPEC + MEG at PSI
< 1.2 90 AHMED 02 SPEC + MEGA
< 1.2 90 BROOKS 99 SPEC + LAMPF
< 4.9 90 BOLTON 88 CBOX + LAMPF
<100 90 AZUELOS 83 CNTR + TRIUMF
< 17 90 KINNISON 82 SPEC + LAMPF
<100 90 SCHAAF 80 ELEC + SIN�(e− e+ e−)/�total �6/��(e− e+ e−)/�total �6/��(e− e+ e−)/�total �6/��(e− e+ e−)/�total �6/�Forbidden by lepton family number 
onservation.VALUE (units 10−12) CL% DOCUMENT ID TECN CHG COMMENT
< 1.0< 1.0< 1.0< 1.0 90 1 BELLGARDT 88 SPEC + SINDRUM
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 36 90 BARANOV 91 SPEC + ARES
< 35 90 BOLTON 88 CBOX + LAMPF
< 2.4 90 1 BERTL 85 SPEC + SINDRUM
<160 90 1 BERTL 84 SPEC + SINDRUM
<130 90 1 BOLTON 84 CNTR LAMPF1These experiments assume a 
onstant matrix element.�(e− 2γ)/�total �7/��(e− 2γ)/�total �7/��(e− 2γ)/�total �7/��(e− 2γ)/�total �7/�Forbidden by lepton family number 
onservation.VALUE (units 10−11) CL% DOCUMENT ID TECN CHG COMMENT
< 7.2< 7.2< 7.2< 7.2 90 BOLTON 88 CBOX + LAMPF
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 840 90 1 AZUELOS 83 CNTR + TRIUMF
<5000 90 2 BOWMAN 78 CNTR DEPOMMIER 77 data1AZUELOS 83 uses the phase spa
e distribution of BOWMAN 78.2BOWMAN 78 assumes an intera
tion Lagrangian lo
al on the s
ale of the inverse µmass. LIMIT ON µ− → e− CONVERSIONLIMIT ON µ− → e− CONVERSIONLIMIT ON µ− → e− CONVERSIONLIMIT ON µ− → e− CONVERSIONForbidden by lepton family number 
onservation.
σ(µ− 32S → e− 32S) / σ(µ− 32S → νµ

32P∗)σ(µ− 32S → e− 32S) / σ(µ− 32S → νµ
32P∗)σ(µ− 32S → e− 32S) / σ(µ− 32S → νµ
32P∗)σ(µ− 32S → e− 32S) / σ(µ− 32S → νµ
32P∗)VALUE CL% DOCUMENT ID TECN COMMENT

<7× 10−11<7× 10−11<7× 10−11<7× 10−11 90 BADERT... 80 STRC SIN
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4× 10−10 90 BADERT... 77 STRC SIN
σ(µ−Cu → e−Cu) / σ(µ−Cu → 
apture)σ(µ−Cu → e−Cu) / σ(µ−Cu → 
apture)σ(µ−Cu → e−Cu) / σ(µ−Cu → 
apture)σ(µ−Cu → e−Cu) / σ(µ−Cu → 
apture)VALUE CL% DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.6× 10−8 90 BRYMAN 72 SPEC
σ(µ−Ti → e−Ti) / σ(µ−Ti → 
apture)σ(µ−Ti → e−Ti) / σ(µ−Ti → 
apture)σ(µ−Ti → e−Ti) / σ(µ−Ti → 
apture)σ(µ−Ti → e−Ti) / σ(µ−Ti → 
apture)VALUE CL% DOCUMENT ID TECN COMMENT
<4.3× 10−12<4.3× 10−12<4.3× 10−12<4.3× 10−12 90 1 DOHMEN 93 SPEC SINDRUM II
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.6× 10−12 90 AHMAD 88 TPC TRIUMF
<1.6× 10−11 90 BRYMAN 85 TPC TRIUMF1DOHMEN 93 assumes µ− → e− 
onversion leaves the nu
leus in its ground state, apro
ess enhan
ed by 
oheren
e and expe
ted to dominate.
σ(µ−Pb → e−Pb) / σ(µ−Pb → 
apture)σ(µ−Pb → e−Pb) / σ(µ−Pb → 
apture)σ(µ−Pb → e−Pb) / σ(µ−Pb → 
apture)σ(µ−Pb → e−Pb) / σ(µ−Pb → 
apture)VALUE CL% DOCUMENT ID TECN COMMENT
<4.6× 10−11<4.6× 10−11<4.6× 10−11<4.6× 10−11 90 HONECKER 96 SPEC SINDRUM II
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.9× 10−10 90 AHMAD 88 TPC TRIUMF

σ(µ−Au → e−Au) / σ(µ−Au → 
apture)σ(µ−Au → e−Au) / σ(µ−Au → 
apture)σ(µ−Au → e−Au) / σ(µ−Au → 
apture)σ(µ−Au → e−Au) / σ(µ−Au → 
apture)VALUE CL% DOCUMENT ID TECN CHG COMMENT
<7× 10−13<7× 10−13<7× 10−13<7× 10−13 90 BERTL 06 SPEC − SINDRUM IILIMIT ON µ− → e+ CONVERSIONLIMIT ON µ− → e+ CONVERSIONLIMIT ON µ− → e+ CONVERSIONLIMIT ON µ− → e+ CONVERSIONForbidden by total lepton number 
onservation.
σ(µ− 32S → e+32Si∗) / σ(µ− 32S → νµ

32P∗)σ(µ− 32S → e+32Si∗) / σ(µ− 32S → νµ
32P∗)σ(µ− 32S → e+32Si∗) / σ(µ− 32S → νµ
32P∗)σ(µ− 32S → e+32Si∗) / σ(µ− 32S → νµ
32P∗)VALUE CL% DOCUMENT ID TECN COMMENT

<9 × 10−10<9 × 10−10<9 × 10−10<9 × 10−10 90 BADERT... 80 STRC SIN
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.5× 10−9 90 BADERT... 78 STRC SIN
σ(µ− 127I → e+127Sb∗) / σ(µ− 127I → anything)σ(µ− 127I → e+127Sb∗) / σ(µ− 127I → anything)σ(µ− 127I → e+127Sb∗) / σ(µ− 127I → anything)σ(µ− 127I → e+127Sb∗) / σ(µ− 127I → anything)VALUE CL% DOCUMENT ID TECN COMMENT
<3× 10−10<3× 10−10<3× 10−10<3× 10−10 90 1 ABELA 80 CNTR Radio
hemi
al te
h.1ABELA 80 is upper limit for µ− e+ 
onversion leading to parti
le-stable states of 127Sb.Limit for total 
onversion rate is higher by a fa
tor less than 4 (G. Ba
kenstoss, private
ommuni
ation).
σ(µ−Cu → e+Co) / σ(µ−Cu → νµNi)σ(µ−Cu → e+Co) / σ(µ−Cu → νµNi)σ(µ−Cu → e+Co) / σ(µ−Cu → νµNi)σ(µ−Cu → e+Co) / σ(µ−Cu → νµNi)VALUE CL% DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.6× 10−8 90 BRYMAN 72 SPEC
<2.2× 10−7 90 CONFORTO 62 OSPK
σ(µ−Ti → e+Ca) / σ(µ−Ti → 
apture)σ(µ−Ti → e+Ca) / σ(µ−Ti → 
apture)σ(µ−Ti → e+Ca) / σ(µ−Ti → 
apture)σ(µ−Ti → e+Ca) / σ(µ−Ti → 
apture)VALUE CL% EVTS DOCUMENT ID TECN CHG COMMENT
<3.6× 10−11<3.6× 10−11<3.6× 10−11<3.6× 10−11 90 1 1,2 KAULARD 98 SPEC − SINDRUM II
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.7× 10−12 90 1 2,3 KAULARD 98 SPEC − SINDRUM II
<4.3× 10−12 90 3 DOHMEN 93 SPEC SINDRUM II
<8.9× 10−11 90 1 DOHMEN 93 SPEC SINDRUM II
<1.7× 10−10 90 4 AHMAD 88 TPC TRIUMF1This limit assumes a giant resonan
e ex
itation of the daughter Ca nu
leus (mean energyand width both 20 MeV).2KAULARD 98 obtained these same limits using the uni�ed 
lassi
al analysis of FELD-MAN 98.3This limit assumes the daughter Ca nu
leus is left in the ground state. However, theprobability of this is unknown.4Assuming a giant-resonan
e-ex
itation model.LIMIT ON MUONIUM → ANTIMUONIUM CONVERSIONLIMIT ON MUONIUM → ANTIMUONIUM CONVERSIONLIMIT ON MUONIUM → ANTIMUONIUM CONVERSIONLIMIT ON MUONIUM → ANTIMUONIUM CONVERSIONForbidden by lepton family number 
onservation.Rg = GC / GFRg = GC / GFRg = GC / GFRg = GC / GFThe e�e
tive Lagrangian for the µ+ e− → µ− e+ 
onversion is assumed to be

L = 2−1/2 GC [ψµγλ (1 − γ5) ψe ℄ [ψµγλ (1 − γ5) ψe ℄ + h.
.The experimental result is then an upper limit on GC /GF , where GF is the Fermi
oupling 
onstant.VALUE CL% EVTS DOCUMENT ID TECN CHG COMMENT
< 0.0030< 0.0030< 0.0030< 0.0030 90 1 1 WILLMANN 99 SPEC + µ+ at 26 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.14 90 1 2 GORDEEV 97 SPEC + JINR phasotron
< 0.018 90 0 3 ABELA 96 SPEC + µ+ at 24 MeV
< 6.9 90 NI 93 CBOX LAMPF
< 0.16 90 MATTHIAS 91 SPEC LAMPF
< 0.29 90 HUBER 90B CNTR TRIUMF
<20 95 BEER 86 CNTR TRIUMF
<42 95 MARSHALL 82 CNTR1WILLMANN 99 quote both probability PMM < 8.3× 10−11 at 90%CL in a 0.1 T �eldand Rg= GC /GF .2GORDEEV 97 quote limits on both f=GMM/GF and the probability WMM < 4.7 ×10−7 (90% CL).3ABELA 96 quote both probability PMM < 8× 10−9 at 90% CL and Rg = GC /GF .
MUON DECAY PARAMETERS

Revised September 2013 by W. Fetscher and H.-J. Gerber (ETH
Zürich).

Introduction: All measurements in direct muon decay, µ− →
e− + 2 neutrals, and its inverse, νµ + e− → µ− + neutral, are

successfully described by the “V -A interaction,” which is a par-

ticular case of a local, derivative-free, lepton-number-conserving,
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four-fermion interaction [1]. As shown below, within this frame-

work, the Standard Model assumptions, such as the V -A form

and the nature of the neutrals (νµ and ν̄e), and hence the dou-

blet assignments (νe e−)L and (νµ µ−)L, have been determined

from experiments [2,3]. All considerations on muon decay are

valid for the leptonic tau decays τ → ℓ + ντ + ν̄e with the

replacements mµ → mτ , me → mℓ.

Parameters: The differential decay probability to obtain an

e± with (reduced) energy between x and x + dx, emitted in the

direction x̂3 at an angle between ϑ and ϑ + dϑ with respect

to the muon polarization vector P µ, and with its spin parallel

to the arbitrary direction ζ̂, neglecting radiative corrections, is

given by

d2Γ

dx d cos ϑ
=

mµ

4π3
W 4

eµ G2
F

√
x2 − x2

0

× (FIS(x) ± Pµ cos ϑ FAS(x))

×
[
1 + ζ̂ · P e(x, ϑ)

]
. (1)

Here, Weµ = max(Ee) = (m2
µ + m2

e)/2mµ is the maximum e±

energy, x = Ee/Weµ is the reduced energy, x0 = me/Weµ =

9.67 × 10−3, and Pµ = |P µ| is the degree of muon polarization.

ζ̂ is the direction in which a perfect polarization-sensitive

electron detector is most sensitive. The isotropic part of the

spectrum, FIS(x), the anisotropic part FAS(x), and the electron

polarization, P e(x, ϑ), may be parametrized by the Michel

parameter ρ [1], by η [4], by ξ and δ [5,6], etc. These are

bilinear combinations of the coupling constants gγ
εµ, which occur

in the matrix element (given below).

If the masses of the neutrinos as well as x2
0 are neglected,

the energy and angular distribution of the electron in the rest

frame of a muon (µ±) measured by a polarization insensitive

detector, is given by

d2Γ

dx d cos ϑ
∼ x2 ·

{
3(1 − x) +

2ρ

3
(4x − 3) + 3η x0(1 − x)/x

± Pµ · ξ · cos ϑ

[
1 − x +

2δ

3
(4x − 3)

]}
. (2)

Here, ϑ is the angle between the electron momentum and the

muon spin, and x ≡ 2Ee/mµ. For the Standard Model coupling,

we obtain ρ = ξδ = 3/4, ξ = 1, η = 0 and the differential decay

rate is

d2Γ

dx d cos ϑ
=

G2
Fm5

µ

192π3
[3 − 2x ± Pµ cos ϑ(2x − 1)] x2 . (3)

The coefficient in front of the square bracket is the total decay

rate.

If only the neutrino masses are neglected, and if the e±

polarization is detected, then the functions in Eq. (1) become

FIS(x) = x(1 − x) + 2
9

ρ(4x2 − 3x − x2
0) + η · x0(1 − x)

FAS(x) = 1
3
ξ

√
x2 − x2

0

× [1 − x + 2
3
δ(4x − 3 + (

√
1 − x2

0 − 1))]

P e(x, ϑ) = PT1
· x̂1 + PT2

· x̂2 + PL · x̂3 . (4)

Here x̂1, x̂2, and x̂3 are orthogonal unit vectors defined as

follows:

x̂3 is along the e momentum pe

x̂3 × P µ

|x̂2 × P µ|
= x̂2 is transverse to pe and perpendicular

to the “decay plane”
x̂2 × x̂3 = x̂1 is transverse to the pe and in the

“decay plane.”

The components of P e then are given by

PT1
(x, ϑ) = Pµ sin ϑ · FT1

(x)/ (FIS(x) ± Pµ cos ϑ · FAS(x))

PT2
(x, ϑ) = Pµ sin ϑ · FT2

(x)/ (FIS(x) ± Pµ cos ϑ · FAS(x))

PL(x, ϑ) =
(
±FIP(x) + Pµ cos ϑ

× FAP(x)
)
/ (FIS(x) ± Pµ cos ϑ · FAS(x)) ,

where

FT1
(x) = 1

12

{
−2

[
ξ′′ + 12(ρ − 3

4
)
]
(1 − x)x0

−3η(x2 − x2
0) + η′′(−3x2 + 4x − x2

0)
}

FT2
(x) = 1

3

√
x2 − x2

0

{
3
α′

A
(1 − x) + 2

β′

A

√
1 − x2

0

}

FIP(x) = 1
54

√
x2 − x2

0

{
9ξ′

(
−2x + 2 +

√
1 − x2

0

)

+ 4ξ(δ − 3
4
)(4x − 4 +

√
1 − x2

0)
}

FAP(x) = 1
6

{
ξ′′(2x2 − x − x2

0) + 4(ρ − 3
4
)
(
4x2 − 3x − x2

0

)

+2η′′(1 − x)x0

}
. (5)

For the experimental values of the parameters ρ, ξ, ξ ′, ξ′′, δ,

η, η′′, α/A, β/A, α′/A, β′/A, which are not all independent,

see the Data Listings below. Experiments in the past have also

been analyzed using the parameters a, b, c, a′, b′, c′, α/A, β/A,

α′/A, β′/A (and η = (α − 2β)/2A), as defined by Kinoshita

and Sirlin [5,6]. They serve as a model-independent summary

of all possible measurements on the decay electron (see Listings

below). The relations between the two sets of parameters are

ρ − 3
4

= 3
4
(−a + 2c)/A ,

η = (α − 2β)/A ,

η ′′ = (3α + 2β)/A ,

δ − 3
4

= 9
4

· (a′ − 2c′)/A

1 − [a + 3a′ + 4(b + b′) + 6c − 14c′]/A
,

1 − ξ
δ

ρ
= 4

[(b + b′) + 2(c − c′)]/A

1 − (a − 2c)/A
,

1 − ξ′ = [(a + a′) + 4(b + b′) + 6(c + c′)]/A ,

1 − ξ ′′ = (−2a + 20c)/A ,

where

A = a + 4b + 6c . (6)

The differential decay probability to obtain a left-handed νe with

(reduced) energy between y and y + dy, neglecting radiative
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corrections as well as the masses of the electron and of the

neutrinos, is given by [7]

dΓ

dy
=

m5
µ G2

F

16π3
· Qνe

L · y2
{

(1 − y) − ωL · (y − 3
4
)
}

. (7)

Here, y = 2 Eνe/mµ. Qνe

L and ωL are parameters. ωL is the

neutrino analog of the spectral shape parameter ρ of Michel.

Since in the Standard Model, Qνe

L = 1, ωL = 0, the measure-

ment of dΓ/dy has allowed a null-test of the Standard Model

(see Listings below).

Matrix element: All results in direct muon decay (energy

spectra of the electron and of the neutrinos, polarizations,

and angular distributions), and in inverse muon decay (the

reaction cross section) at energies well below mW c2, may be

parametrized in terms of amplitudes gγ
εµ and the Fermi coupling

constant GF , using the matrix element

4GF√
2

∑

γ=S,V,T
ε,µ=R,L

gγ
εµ〈ēε|Γγ |(νe)n〉〈(ν̄µ)m|Γγ |µµ〉. (8)

We use the notation of Fetscher et al. [2], who in turn use the

sign conventions and definitions of Scheck [8]. Here, γ = S, V, T

indicates a scalar, vector, or tensor interaction; and ε, µ = R, L

indicate a right- or left-handed chirality of the electron or muon.

The chiralities n and m of the νe and ν̄µ are then determined

by the values of γ, ε, and µ. The particles are represented by

fields of definite chirality [9].

As shown by Langacker and London [10], explicit lepton-

number nonconservation still leads to a matrix element equiv-

alent to Eq. (8). They conclude that it is not possible, even in

principle, to test lepton-number conservation in (leptonic) muon

decay if the final neutrinos are massless and are not observed.

The ten complex amplitudes gγ
εµ (gT

RR and gT
LL are identi-

cally zero) and GF constitute 19 independent (real) parameters

to be determined by experiment. The Standard Model interac-

tion corresponds to one single amplitude gV
LL being unity and

all the others being zero.

The (direct) muon decay experiments are compatible with

an arbitrary mix of the scalar and vector amplitudes gS
LL and

gV
LL – in the extreme even with purely scalar gS

LL = 2, gV
LL = 0.

The decision in favour of the Standard Model comes from the

quantitative observation of inverse muon decay, which would be

forbidden for pure gS
LL [2].

Experimental determination of V –A: In order to deter-

mine the amplitudes gγ
εµ uniquely from experiment, the fol-

lowing set of equations, where the left-hand sides represent

experimental results, has to be solved.

a = 16(|gV
RL|2 + |gV

LR|2) + |gS
RL + 6gT

RL|2 + |gS
LR + 6gT

LR|2

a′ = 16(|gV
RL|2 − |gV

LR|2) + |gS
RL + 6gT

RL|2 − |gS
LR + 6gT

LR|2

α = 8Re
{

gV
RL(gS∗

LR + 6gT∗
LR) + gV

LR(gS∗
RL + 6gT∗

RL)
}

α′ = 8Im
{
gV
LR(gS∗

RL + 6gT∗
RL) − gV

RL(gS∗
LR + 6gT∗

LR)
}

b = 4(|gV
RR|2 + |gV

LL|2) + |gS
RR|2 + |gS

LL|2

b′ = 4(|gV
RR|2 − |gV

LL|2) + |gS
RR|2 − |gS

LL|2

β = −4Re
{
gV
RRgS∗

LL + gV
LLgS∗

RR

}

β′ = 4Im
{
gV
RRgS∗

LL − gV
LLgS∗

RR

}

c = 1
2

{
|gS

RL − 2gT
RL|2 + |gS

LR − 2gT
LR|2

}

c′ = 1
2

{
|gS

RL − 2gT
RL|2 − |gS

LR − 2gT
LR|2

}

and

Qνe

L = 1 −
{

1
4
|gS

LR|2 + 1
4
|gS

LL|2 + |gV
RR|2 + |gV

RL|2 + 3|gT
LR|2

}

ωL = 3
4

{|gS
RR|2 + 4|gV

LR|2 + |gS
RL + 2gT

RL|2}
|gS

RL|2 + |gS
RR|2 + 4|gV

LL|2 + 4|gV
LR|2 + 12|gT

RL|2}
.

It has been noted earlier by C. Jarlskog [11], that certain exper-

iments observing the decay electron are especially informative

if they yield the V -A values. The complete solution is now

found as follows. Fetscher et al. [2] introduced four probabilities

Qεµ(ε, µ = R, L) for the decay of a µ-handed muon into an

ε-handed electron, and showed that there exist upper bounds

on QRR, QLR, and QRL, and a lower bound on QLL. These

probabilities are given in terms of the gγ
εµ’s by

Qεµ = 1
4
|gS

εµ|2 + |gV
εµ|2 + 3(1 − δεµ)|gT

εµ|2 , (9)

where δεµ = 1 for ε = µ, and δεµ = 0 for ε 6= µ. They are

related to the parameters a, b, c, a′, b′, and c′ by

QRR = 2(b + b′)/A ,

QLR = [(a − a′) + 6(c − c′)]/2A ,

QRL = [(a + a′) + 6(c + c′)]/2A ,

QLL = 2(b − b′)/A , (10)

with A = 16. In the Standard Model, QLL = 1 and the others

are zero.

Since the upper bounds on QRR, QLR, and QRL are found

to be small, and since the helicity of the νµ in pion decay is

known from experiment [12,13] to very high precision to be

−1 [14], the cross section S of inverse muon decay, normalized

to the V -A value, yields [2]

|gS
LL|2 ≤ 4(1 − S) (11)

and

|gV
LL|2 = S . (12)

Thus the Standard Model assumption of a pure V -A leptonic

charged weak interaction of e and µ is derived (within errors)

from experiments at energies far below mass of the W±: Eq. (12)

gives a lower limit for V -A, and Eqs. (9) and (11) give upper

limits for the other four-fermion interactions. The existence of

such upper limits may also be seen from QRR+QRL = (1−ξ′)/2

and QRR + QLR = 1
2
(1 + ξ/3 − 16 ξδ/9). Table 1 gives the

current experimental limits on the magnitudes of the gγ
εµ’s.

More stringent limits on the six coupling constants gS
LR, gV

LR,
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gT
LR, gS

RL, gV
RL, and gT

RL have been derived from upper limits

on the neutrino mass [18]. Limits on the “charge retention”

coordinates, as used in the older literature (e.g., Ref. 19), are

given by Burkard et al. [20].

Table 1. Coupling constants gγ
εµ and some combina-

tions of them. Ninety-percent confidence level experi-
mental limits. The limits on |gS

LL| and |gV
LL| are from

Ref. 15, and the others from a general analysis of
muon decay measurements. Top three rows: Ref. 22,
fourth row: Ref. 16, next three rows: Ref. 17, last row:
Ref. 21. The experimental uncertainty on the muon
polarization in pion decay is included. Note that, by
definition, |gS

εµ| ≤ 2, |gV
εµ| ≤ 1 and |gT

εµ| ≤ 1/
√

3.

|gS
RR| < 0.035 |gV

RR| < 0.017 |gT
RR| ≡ 0

|gS
LR| < 0.050 |gV

LR| < 0.023 |gT
LR| < 0.015

|gS
RL| < 0.420 |gV

RL| < 0.105 |gT
RL| < 0.105

|gS
LL| < 0.550 |gV

LL| > 0.960 |gT
LL| ≡ 0

|gS
LR + 6gT

LR| < 0.143 |gS
RL + 6gT

RL| < 0.418

|gS
LR + 2gT

LR| < 0.108 |gS
RL + 2gT

RL| < 0.417

|gS
LR − 2gT

LR| < 0.070 |gS
RL − 2gT

RL| < 0.418

QRR + QLR < 8.2 × 10−4
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µ DECAY PARAMETERSµ DECAY PARAMETERSµ DECAY PARAMETERSµ DECAY PARAMETERS
ρ PARAMETERρ PARAMETERρ PARAMETERρ PARAMETER(V−A) theory predi
ts ρ = 0.75.VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.74979±0.00026 OUR AVERAGE0.74979±0.00026 OUR AVERAGE0.74979±0.00026 OUR AVERAGE0.74979±0.00026 OUR AVERAGE0.74977±0.00012±0.00023 1 BAYES 11 TWST + Surfa
e µ+0.7518 ±0.0026 DERENZO 69 RVUE
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.75014±0.00017±0.00045 2 MACDONALD 08 TWST + Surfa
e µ+0.75080±0.00032±0.00100 6G 3 MUSSER 05 TWST + Surfa
e µ+0.72 ±0.06 ±0.08 AMORUSO 04 ICAR Liquid Ar TPC0.762 ±0.008 170k 4 FRYBERGER 68 ASPK + 25{53 MeV e+0.760 ±0.009 280k 4 SHERWOOD 67 ASPK + 25{53 MeV e+0.7503 ±0.0026 800k 4 PEOPLES 66 ASPK + 20{53 MeV e+1The quoted systemati
 error in
ludes a 
ontribution of 0.00013 (added in quadrature)from un
ertainties on radiative 
orre
tions and on the Mi
hel parameter η.2The quoted systemati
 error in
ludes a 
ontribution of 0.00011 (added in quadrature)from the dependen
e on the Mi
hel parameter η.3The quoted systemati
 error in
ludes a 
ontribution of 0.00023 (added in quadrature)from the dependen
e on the Mi
hel parameter η.4 η 
onstrained = 0. These values in
orporated into a two parameter �t to ρ and η byDERENZO 69.
η PARAMETERη PARAMETERη PARAMETERη PARAMETER(V−A) theory predi
ts η = 0.VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.057 ±0.034 OUR AVERAGE0.057 ±0.034 OUR AVERAGE0.057 ±0.034 OUR AVERAGE0.057 ±0.034 OUR AVERAGE0.071 ±0.037 ±0.005 30M DANNEBERG 05 CNTR + 7{53 MeV e+0.011 ±0.081 ±0.026 5.3M 1 BURKARD 85BCNTR + 9{53 MeV e+
−0.12 ±0.21 6346 DERENZO 69 HBC + 1.6{6.8 MeV e+
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.0021±0.0070±0.0010 30M 2 DANNEBERG 05 CNTR + 7{53 MeV e+
−0.012 ±0.015 ±0.003 5.3M 2 BURKARD 85BCNTR + 9{53 MeV e+
−0.007 ±0.013 5.3M 3 BURKARD 85BFIT + 9{53 MeV e+
−0.7 ±0.5 170k 4 FRYBERGER 68 ASPK + 25{53 MeV e+
−0.7 ±0.6 280k 4 SHERWOOD 67 ASPK + 25{53 MeV e+0.05 ±0.5 800k 4 PEOPLES 66 ASPK + 20{53 MeV e+
−2.0 ±0.9 9213 5 PLANO 60 HBC + Whole spe
trum1Previously we used the global �t result from BURKARD 85B in OUR AVERAGE, we nowonly in
lude their a
tual measurement.2α = α′ = 0 assumed.3Global �t to all measured parameters. The �t 
orrelation 
oeÆ
ients are given inBURKARD 85B.4 ρ 
onstrained = 0.75.5Two parameter �t to ρ and η; PLANO 60 dis
ounts value for η.
δ PARAMETERδ PARAMETERδ PARAMETERδ PARAMETER(V−A) theory predi
ts δ = 0.75.VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.75047±0.00034 OUR AVERAGE0.75047±0.00034 OUR AVERAGE0.75047±0.00034 OUR AVERAGE0.75047±0.00034 OUR AVERAGE0.75049±0.00021±0.00027 1 BAYES 11 TWST + Surfa
e µ+0.7486 ±0.0026 ±0.0028 2 BALKE 88 SPEC + Surfa
e µ+
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.75067±0.00030±0.00067 MACDONALD 08 TWST + Surfa
e µ+0.74964±0.00066±0.00112 6G GAPONENKO 05 TWST + Surfa
e µ+3 VOSSLER 690.752 ±0.009 490k FRYBERGER 68 ASPK + 25{53 MeV e+0.782 ±0.031 KRUGER 610.78 ±0.05 8354 PLANO 60 HBC + Whole spe
trum1The quoted systemati
 error in
ludes a 
ontribution of 0.00006 (added in quadrature)from un
ertainties on radiative 
orre
tions and on the Mi
hel parameter η.2BALKE 88 uses ρ = 0.752 ± 0.003.3VOSSLER 69 has measured the asymmetry below 10 MeV. See 
omments about radiative
orre
tions in VOSSLER 69.
∣∣(ξ PARAMETER)×(µ LONGITUDINAL POLARIZATION)∣∣∣∣(ξ PARAMETER)×(µ LONGITUDINAL POLARIZATION)∣∣∣∣(ξ PARAMETER)×(µ LONGITUDINAL POLARIZATION)∣∣∣∣(ξ PARAMETER)×(µ LONGITUDINAL POLARIZATION)∣∣(V−A) theory predi
ts ξ = 1, longitudinal polarization = 1.VALUE DOCUMENT ID TECN CHG COMMENT1.0009 +0.0016

−0.0007 OUR AVERAGE1.0009 +0.0016
−0.0007 OUR AVERAGE1.0009 +0.0016
−0.0007 OUR AVERAGE1.0009 +0.0016
−0.0007 OUR AVERAGE1.00084±0.00029+0.00165

−0.00063 BUENO 11 TWST Surfa
e µ+ beam1.0027 ±0.0079 ±0.0030 BELTRAMI 87 CNTR SIN, π de
ay in 
ight
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.0003 ±0.0006 ±0.0038 JAMIESON 06 TWST + surfa
e µ+ beam1.0013 ±0.0030 ±0.0053 1 IMAZATO 92 SPEC + K+ → µ+ νµ0.975 ±0.015 AKHMANOV 68 EMUL 140 kG0.975 ±0.030 GUREVICH 64 EMUL See AKHMANOV 680.903 ±0.027 2 ALI-ZADE 61 EMUL + 27 kG0.93 ±0.06 PLANO 60 HBC + 8.8 kG0.97 ±0.05 BARDON 59 CNTR Bromoform target1The 
orresponding 90% 
on�den
e limit from IMAZATO 92 is ∣∣ξPµ

∣∣ > 0.990. Thismeasurement is of K+ de
ay, not π+ de
ay, so we do not in
lude it in an average, nordo we yet set up a separate data blo
k for K results.2Depolarization by medium not known suÆ
iently well.
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µ

ξ × (µ LONGITUDINAL POLARIZATION) × δ / ρξ × (µ LONGITUDINAL POLARIZATION) × δ / ρξ × (µ LONGITUDINAL POLARIZATION) × δ / ρξ × (µ LONGITUDINAL POLARIZATION) × δ / ρVALUE CL% DOCUMENT ID TECN CHG COMMENT1.00179+0.00156
−0.000711.00179+0.00156
−0.000711.00179+0.00156
−0.000711.00179+0.00156
−0.00071 1 BAYES 11 TWST + Surfa
e µ+ beam

• • • We do not use the following data for averages, �ts, limits, et
. • • •
>0.99682 90 2 JODIDIO 86 SPEC + TRIUMF
>0.9966 90 3 STOKER 85 SPEC + µ-spin rotation
>0.9959 90 CARR 83 SPEC + 11 kG1BAYES 11 obtains the limit > 0.99909 (90% CL) with the 
onstraint that ξ×(µ LON-GITUDINAL POLARIZATION)× δ/ρ ≤ 1.0.2 JODIDIO 86 in
ludes data from CARR 83 and STOKER 85. The value here is from theerratum.3 STOKER 85 �nd (ξPµδ/ρ) >0.9955 and >0.9966, where the �rst limit is from new µspin-rotation data and the se
ond is from 
ombination with CARR 83 data. In V−Atheory, (δ/ρ) = 1.0.
ξ′ = LONGITUDINAL POLARIZATION OF e+ξ′ = LONGITUDINAL POLARIZATION OF e+ξ′ = LONGITUDINAL POLARIZATION OF e+ξ′ = LONGITUDINAL POLARIZATION OF e+(V−A) theory predi
ts the longitudinal polarization = ±1 for e±, respe
tively. Wehave 
ipped the sign for e− so our programs 
an average.VALUE EVTS DOCUMENT ID TECN CHG COMMENT1.00 ±0.04 OUR AVERAGE1.00 ±0.04 OUR AVERAGE1.00 ±0.04 OUR AVERAGE1.00 ±0.04 OUR AVERAGE0.998±0.045 1M BURKARD 85 CNTR + Bhabha + annihil0.89 ±0.28 29k SCHWARTZ 67 OSPK − Moller s
attering0.94 ±0.38 BLOOM 64 CNTR + Brems. transmiss.1.04 ±0.18 DUCLOS 64 CNTR + Bhabha s
attering1.05 ±0.30 BUHLER 63 CNTR + Annihilation
ξ′′ PARAMETERξ′′ PARAMETERξ′′ PARAMETERξ′′ PARAMETERVALUE EVTS DOCUMENT ID TECN CHG COMMENT0.98 ±0.04 OUR AVERAGE0.98 ±0.04 OUR AVERAGE0.98 ±0.04 OUR AVERAGE0.98 ±0.04 OUR AVERAGE0.981±0.045±0.003 3.87M PRIEELS 14 CNTR + Bhabha + annihil0.65 ±0.36 326k 1 BURKARD 85 CNTR + Bhabha + annihil1BURKARD 85 measure (ξ′′-ξξ′)/ξ and ξ′ and set ξ = 1.TRANSVERSE e+ POLARIZATION IN PLANE OF µ SPIN, e+ MOMEN-TUMTRANSVERSE e+ POLARIZATION IN PLANE OF µ SPIN, e+ MOMEN-TUMTRANSVERSE e+ POLARIZATION IN PLANE OF µ SPIN, e+ MOMEN-TUMTRANSVERSE e+ POLARIZATION IN PLANE OF µ SPIN, e+ MOMEN-TUMVALUE (units 10−3) EVTS DOCUMENT ID TECN CHG COMMENT7 ± 8 OUR AVERAGE7 ± 8 OUR AVERAGE7 ± 8 OUR AVERAGE7 ± 8 OUR AVERAGE6.3± 7.7± 3.4 30M DANNEBERG 05 CNTR + 7{53 MeV e+16 ±21 ±10 5.3M BURKARD 85B CNTR + Annihil 9{53 MeVTRANSVERSE e+ POLARIZATION NORMAL TO PLANE OF µ SPIN, e+MOMENTUMTRANSVERSE e+ POLARIZATION NORMAL TO PLANE OF µ SPIN, e+MOMENTUMTRANSVERSE e+ POLARIZATION NORMAL TO PLANE OF µ SPIN, e+MOMENTUMTRANSVERSE e+ POLARIZATION NORMAL TO PLANE OF µ SPIN, e+MOMENTUMZero if T invarian
e holds.VALUE (units 10−3) EVTS DOCUMENT ID TECN CHG COMMENT
−2 ± 8 OUR AVERAGE−2 ± 8 OUR AVERAGE−2 ± 8 OUR AVERAGE−2 ± 8 OUR AVERAGE
−3.7± 7.7±3.4 30M DANNEBERG 05 CNTR + 7{53 MeV e+7 ±22 ±7 5.3M BURKARD 85B CNTR + Annihil 9{53 MeV
α/Aα/Aα/Aα/AVALUE (units 10−3) EVTS DOCUMENT ID TECN CHG COMMENT0.4± 4.30.4± 4.30.4± 4.30.4± 4.3 1 BURKARD 85B FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •15 ±50 ±14 5.3M BURKARD 85B CNTR + 9{53 MeV e+1Global �t to all measured parameters. Correlation 
oeÆ
ients are given inBURKARD 85B.
α′/Aα′/Aα′/Aα′/AZero if T invarian
e holds.VALUE (units 10−3) EVTS DOCUMENT ID TECN CHG COMMENT
−10 ±20 OUR AVERAGE−10 ±20 OUR AVERAGE−10 ±20 OUR AVERAGE−10 ±20 OUR AVERAGE
− 3.4±21.3± 4.9 30M DANNEBERG 05 CNTR + 7{53 MeV e+
−47 ±50 ±14 5.3M 1 BURKARD 85B CNTR + 9{53 MeV e+
• • • We do not use the following data for averages, �ts, limits, et
. • • •
− 0.2± 4.3 2 BURKARD 85B FIT1Previously we used the global �t result from BURKARD 85B in OUR AVERAGE, we nowonly in
lude their a
tual measurement. BURKARD 85B measure e+ polarizations PT 1and PT 2 versus e+ energy.2Global �t to all measured parameters. The �t 
orrelation 
oeÆ
ients are given inBURKARD 85B.
β/Aβ/Aβ/Aβ/AVALUE (units 10−3) EVTS DOCUMENT ID TECN CHG COMMENT3.9± 6.23.9± 6.23.9± 6.23.9± 6.2 1 BURKARD 85B FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2 ±17 ±6 5.3M BURKARD 85B CNTR + 9{53 MeV e+1Global �t to all measured parameters. The �t 
orrelation 
oeÆ
ients are given inBURKARD 85B.

β′/Aβ′/Aβ′/Aβ′/AZero if T invarian
e holds.VALUE (units 10−3) EVTS DOCUMENT ID TECN CHG COMMENT2 ± 7 OUR AVERAGE2 ± 7 OUR AVERAGE2 ± 7 OUR AVERAGE2 ± 7 OUR AVERAGE
− 0.5± 7.8±1.8 30M DANNEBERG 05 CNTR + 7{53 MeV e+17 ±17 ±6 5.3M 1 BURKARD 85B CNTR + 9{53 MeV e+
• • • We do not use the following data for averages, �ts, limits, et
. • • •
− 1.3± 3.5±0.6 30M 2 DANNEBERG 05 CNTR + 7{53 MeV e+1.5± 6.3 3 BURKARD 85B FIT1Previously we used the global �t result from BURKARD 85B in OUR AVERAGE, we nowonly in
lude their a
tual measurement. BURKARD 85B measure e+ polarizations PT 1and PT 2 versus e+ energy.2α = α′ = 0 assumed.3Global �t to all measured parameters. The �t 
orrelation 
oeÆ
ients are given inBURKARD 85B.a/Aa/Aa/Aa/A This 
omes from an alternative parameterization to that used in the Summary Table(see the \Note on Muon De
ay Parameters" above).VALUE (units 10−3) CL% DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<15.9 90 1 BURKARD 85B FIT1Global �t to all measured parameters. Correlation 
oeÆ
ients are given inBURKARD 85B.a′/Aa′/Aa′/Aa′/A This 
omes from an alternative parameterization to that used in the Summary Table(see the \Note on Muon De
ay Parameters" above).VALUE (units 10−3) DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.3±4.1 1 BURKARD 85B FIT1Global �t to all measured parameters. Correlation 
oeÆ
ients are given inBURKARD 85B.(b′+b)/A(b′+b)/A(b′+b)/A(b′+b)/AThis 
omes from an alternative parameterization to that used in the Summary Table(see the \Note on Muon De
ay Parameters" above).VALUE (units 10−3) CL% DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.04 90 1 BURKARD 85B FIT1Global �t to all measured parameters. Correlation 
oeÆ
ients are given inBURKARD 85B.
/A
/A
/A
/A This 
omes from an alternative parameterization to that used in the Summary Table(see the \Note on Muon De
ay Parameters" above).VALUE (units 10−3) CL% DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.4 90 1 BURKARD 85B FIT1Global �t to all measured parameters. Correlation 
oeÆ
ients are given inBURKARD 85B.
 ′/A
 ′/A
 ′/A
 ′/A This 
omes from an alternative parameterization to that used in the Summary Table(see the \Note on Muon De
ay Parameters" above).VALUE (units 10−3) DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.5±2.0 1 BURKARD 85B FIT1Global �t to all measured parameters. Correlation 
oeÆ
ients are given inBURKARD 85B.
η PARAMETERη PARAMETERη PARAMETERη PARAMETER(V−A) theory predi
ts η = 0. η a�e
ts spe
trum of radiative muon de
ay.VALUE DOCUMENT ID TECN CHG COMMENT0.02 ±0.08 OUR AVERAGE0.02 ±0.08 OUR AVERAGE0.02 ±0.08 OUR AVERAGE0.02 ±0.08 OUR AVERAGE
−0.014±0.090 EICHENBER... 84 ELEC + ρ free+0.09 ±0.14 BOGART 67 CNTR +
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.035±0.098 EICHENBER... 84 ELEC + ρ=0.75 assumed

µ REFERENCESµ REFERENCESµ REFERENCESµ REFERENCESMOHR 16 arXiv:1507.07956 P.J. Mohr, D.B. Newell, B.N. Taylor (NIST)A

epted for publi
ation in RMPPRIEELS 14 PR D90 112003 R. Prieels et al. (LOUV, ETH, PSI+)ADAM 13B PRL 110 201801 J. Adam et al. (MEG Collab.)TISHCHENKO 13 PR D87 052003 V. Tish
henko et al. (MuLan Collab.)MOHR 12 RMP 84 1527 P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)ADAM 11 PRL 107 171801 J. Adam et al. (MEG Collab.)BAYES 11 PRL 106 041804 R. Bayes et al. (TWIST Collab.)Also PR D85 092013 A. Hillairet et al. (TWIST Collab.)BUENO 11 PR D84 032005 J.F. Bueno et al. (TWIST Collab.)Also PR D85 039908 (errat.) J.F. Bueno et al. (TWIST Collab.)WEBBER 11 PRL 106 041803 D.M. Webber et al. (MuLan Collab.)Also PRL 106 079901 (errat.) D.M. Webber et al. (MuLan Collab.)ADAM 10 NP B834 1 J. Adam et al. (MEG Collab.)BENNETT 09 PR D80 052008 G.W. Bennett et al. (MUG-2 Collab.)BARCZYK 08 PL B663 172 A. Bar
zyk et al. (FAST Collab.)MACDONALD 08 PR D78 032010 R.P. Ma
Donald et al. (TWIST Collab.)
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µ, τMOHR 08 RMP 80 633 P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)CHITWOOD 07 PRL 99 032001 D.B. Chitwood et al. (MULAN Collab.)BENNETT 06 PR D73 072003 G.W. Bennett et al. (MUG-2 Collab.)BERTL 06 EPJ C47 337 W. Bertl et al. (SINDRUM II Collab.)JAMIESON 06 PR D74 072007 B. Jamieson et al. (TWIST Collab.)DANNEBERG 05 PRL 94 021802 N. Danneberg et al. (ETH, JAGL, PSI+)GAPONENKO 05 PR D71 071101 A. Gaponenko et al. (TWIST Collab.)MOHR 05 RMP 77 1 P.J. Mohr, B.N. Taylor (NIST)MUSSER 05 PRL 94 101805 J.R. Musser et al. (TWIST Collab.)AMORUSO 04 EPJ C33 233 S. Amoruso et al. (ICARUS Collab.)BENNETT 04 PRL 92 161802 G.W. Bennett et al. (Muon(g-2) Collab.)AHMED 02 PR D65 112002 M. Ahmed et al. (MEGA Collab.)BENNETT 02 PRL 89 101804 G.W. Bennett et al. (Muon(g-2) Collab.)BROWN 01 PRL 86 2227 H.N. Brown et al. (Muon(g-2) Collab.)BROWN 00 PR D62 091101 H.N. Brown et al. (BNL/G-2 Collab.)MEYER 00 PRL 84 1136 V. Meyer et al.BROOKS 99 PRL 83 1521 M.L. Brooks et al. (MEGA/LAMPF Collab.)HUGHES 99 RMP 71 S133 V.W. Hughes, T. KinoshitaLIU 99 PRL 82 711 W. Liu et al. (LAMPF Collab.)MOHR 99 JPCRD 28 1713 P.J. Mohr, B.N. Taylor (NIST)Also RMP 72 351 P.J. Mohr, B.N. Taylor (NIST)WILLMANN 99 PRL 82 49 L. Willmann et al.FELDMAN 98 PR D57 3873 G.J. Feldman, R.D. CousinsKAULARD 98 PL B422 334 J. Kaulard et al. (SINDRUM-II Collab.)GORDEEV 97 PAN 60 1164 V.A. Gordeev et al. (PNPI)Translated from YAF 60 1291.ABELA 96 PRL 77 1950 R. Abela et al. (PSI, ZURI, HEIDH, TBIL+)HONECKER 96 PRL 76 200 W. Hone
ker et al. (SINDRUM II Collab.)DOHMEN 93 PL B317 631 C. Dohmen et al. (PSI SINDRUM-II Collab.)FREEDMAN 93 PR D47 811 S.J. Freedman et al. (LAMPF E645 Collab.)NI 93 PR D48 1976 B. Ni et al. (LAMPF Crystal-Box Collab.)IMAZATO 92 PRL 69 877 J. Imazato et al. (KEK, INUS, TOKY+)BARANOV 91 SJNP 53 802 V.A. Baranov et al. (JINR)Translated from YAF 53 1302.KRAKAUER 91B PL B263 534 D.A. Krakauer et al. (UMD, UCI, LANL)MATTHIAS 91 PRL 66 2716 B.E. Matthias et al. (YALE, HEIDP, WILL+)Also PRL 67 932 (erratum) B.E. Matthias et al. (YALE, HEIDP, WILL+)HUBER 90B PR D41 2709 T.M. Huber et al. (WYOM, VICT, ARIZ+)AHMAD 88 PR D38 2102 S. Ahmad et al. (TRIU, VICT, VPI, BRCO+)Also PRL 59 970 S. Ahmad et al. (TRIU, VPI, VICT, BRCO+)BALKE 88 PR D37 587 B. Balke et al. (LBL, UCB, COLO, NWES+)BELLGARDT 88 NP B299 1 U. Bellgardt et al. (SINDRUM Collab.)BOLTON 88 PR D38 2077 R.D. Bolton et al. (LANL, STAN, CHIC+)Also PRL 56 2461 R.D. Bolton et al. (LANL, STAN, CHIC+)Also PRL 57 3241 D. Grosni
k et al. (CHIC, LANL, STAN+)BELTRAMI 87 PL B194 326 I. Beltrami et al. (ETH, SIN, MANZ)COHEN 87 RMP 59 1121 E.R. Cohen, B.N. Taylor (RISC, NBS)BEER 86 PRL 57 671 G.A. Beer et al. (VICT, TRIU, WYOM)JODIDIO 86 PR D34 1967 A. Jodidio et al. (LBL, NWES, TRIU)Also PR D37 237 (erratum) A. Jodidio et al. (LBL, NWES, TRIU)BERTL 85 NP B260 1 W. Bertl et al. (SINDRUM Collab.)BRYMAN 85 PRL 55 465 D.A. Bryman et al. (TRIU, CNRC, BRCO+)BURKARD 85 PL 150B 242 H. Burkhardt et al. (ETH, SIN, MANZ)BURKARD 85B PL 160B 343 H. Burkhardt et al. (ETH, SIN, MANZ)Also PR D24 2004 F. Corriveau et al. (ETH, SIN, MANZ)Also PL 129B 260 F. Corriveau et al. (ETH, SIN, MANZ)STOKER 85 PRL 54 1887 D.P. Stoker et al. (LBL, NWES, TRIU)BARDIN 84 PL 137B 135 G. Bardin et al. (SACL, CERN, BGNA, FIRZ)BERTL 84 PL 140B 299 W. Bertl et al. (SINDRUM Collab.)BOLTON 84 PRL 53 1415 R.D. Bolton et al. (LANL, CHIC, STAN+)EICHENBER... 84 NP A412 523 W. Ei
henberger, R. Engfer, A. van der S
ha�GIOVANETTI 84 PR D29 343 K.L. Giovanetti et al. (WILL)AZUELOS 83 PRL 51 164 G. Azuelos et al. (MONT, TRIU, BRCO)Also PRL 39 1113 P. Depommier et al. (MONT, BRCO, TRIU+)BERGSMA 83 PL 122B 465 F. Bergsma et al. (CHARM Collab.)CARR 83 PRL 51 627 J. Carr et al. (LBL, NWES, TRIU)KINNISON 82 PR D25 2846 W.W. Kinnison et al. (EFI, STAN, LANL)Also PRL 42 556 J.D. Bowman et al. (LASL, EFI, STAN)KLEMPT 82 PR D25 652 E. Klempt et al. (MANZ, ETH)MARIAM 82 PRL 49 993 F.G. Mariam et al. (YALE, HEIDH, BERN)MARSHALL 82 PR D25 1174 G.M. Marshall et al. (BRCO)NEMETHY 81 CNPP 10 147 P. Nemethy, V.W. Hughes (LBL, YALE)ABELA 80 PL 95B 318 R. Abela et al. (BASL, KARLK, KARLE)BADERT... 80 LNC 28 401 A. Baderts
her et al. (BERN)Also NP A377 406 A. Baderts
her et al. (BERN)JONKER 80 PL 93B 203 M. Jonker et al. (CHARM Collab.)SCHAAF 80 NP A340 249 A. van der S
haaf et al. (ZURI, ETH+)Also PL 72B 183 H.P. Povel et al. (ZURI, ETH, SIN)WILLIS 80 PRL 44 522 S.E. Willis et al. (YALE, LBL, LASL+)Also PRL 45 1370 S.E. Willis et al. (YALE, LBL, LASL+)BAILEY 79 NP B150 1 J.M. Bailey (CERN, DARE, MANZ)BADERT... 78 PL 79B 371 A. Baderts
her et al. (BERN)BAILEY 78 JP G4 345 J.M. Bailey (DARE, BERN, SHEF, MANZ, RMCS+)Also NP B150 1 J.M. Bailey (CERN, DARE, MANZ)BLIETSCHAU 78 NP B133 205 J. Bliets
hau et al. (Gargamelle Collab.)BOWMAN 78 PRL 41 442 J.D. Bowman et al. (LASL, IAS, CMU+)CAMANI 78 PL 77B 326 M. Camani et al. (ETH, MANZ)BADERT... 77 PRL 39 1385 A. Baderts
her et al. (BERN)CASPERSON 77 PRL 38 956 D.E. Casperson et al. (BERN, HEIDH, LASL+)DEPOMMIER 77 PRL 39 1113 P. Depommier et al. (MONT, BRCO, TRIU+)BALANDIN 74 JETP 40 811 M.P. Balandin et al. (JINR)Translated from ZETF 67 1631.COHEN 73 JPCRD 2 664 E.R. Cohen, B.N. Taylor (RISC, NBS)DUCLOS 73 PL 47B 491 J. Du
los, A. Magnon, J. Pi
ard (SACL)EICHTEN 73 PL 46B 281 T. Ei
hten et al. (Gargamelle Collab.)BRYMAN 72 PRL 28 1469 D.A. Bryman et al. (VPI)CROWE 72 PR D5 2145 K.M. Crowe et al. (LBL, WASH)CRANE 71 PRL 27 474 T. Crane et al. (YALE)DERENZO 69 PR 181 1854 S.E. Derenzo (EFI)VOSSLER 69 NC 63A 423 C. Vossler (EFI)AKHMANOV 68 SJNP 6 230 V.V. Akhmanov et al. (KIAE)Translated from YAF 6 316.FRYBERGER 68 PR 166 1379 D. Fryberger (EFI)BOGART 67 PR 156 1405 E. Bogart et al. (COLU)SCHWARTZ 67 PR 162 1306 D.M. S
hwartz (EFI)SHERWOOD 67 PR 156 1475 B.A. Sherwood (EFI)PEOPLES 66 Nevis 147 unpub. J. Peoples (COLU)BLOOM 64 PL 8 87 S. Bloom et al. (CERN)DUCLOS 64 PL 9 62 J. Du
los et al. (CERN)GUREVICH 64 PL 11 185 I.I. Gurevi
h et al. (KIAE)BUHLER 63 PL 7 368 A. Buhler-Broglin et al. (CERN)MEYER 63 PR 132 2693 S.L. Meyer et al. (COLU)CHARPAK 62 PL 1 16 G. Charpak et al. (CERN)CONFORTO 62 NC 26 261 G. Conforto et al. (INFN, ROMA, CERN)ALI-ZADE 61 JETP 13 313 S.A. Ali-Zade, I.I. Gurevi
h, B.A. NikolskyTranslated from ZETF 40 452.CRITTENDEN 61 PR 121 1823 R.R. Crittenden, W.D. Walker, J. Ballam (WISC+)KRUGER 61 UCRL 9322 unpub. H. Kruger (LRL)GUREVICH 60 JETP 10 225 I.I. Gurevi
h, B.A. Nikolsky, L.V. Surkova (ITEP)Translated from ZETF 37 318.

PLANO 60 PR 119 1400 R.J. Plano (COLU)ASHKIN 59 NC 14 1266 J. Ashkin et al. (CERN)BARDON 59 PRL 2 56 M. Bardon, D. Berley, L.M. Lederman (COLU)LEE 59 PRL 3 55 J. Lee, N.P. Samios (COLU)
τ J = 12

τ dis
overy paper was PERL 75. e+ e− → τ+ τ− 
ross-se
tionthreshold behavior and magnitude are 
onsistent with pointlike spin-1/2 Dira
 parti
le. BRANDELIK 78 ruled out pointlike spin-0 orspin-1 parti
le. FELDMAN 78 ruled out J = 3/2. KIRKBY 79 alsoruled out J=integer, J = 3/2.
τ MASSτ MASSτ MASSτ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1776.86±0.12 OUR AVERAGE1776.86±0.12 OUR AVERAGE1776.86±0.12 OUR AVERAGE1776.86±0.12 OUR AVERAGE1776.91±0.12+0.10

−0.13 1171 1 ABLIKIM 14D BES3 23.3 pb−1, Eee
m=3.54{3.60 GeV1776.68±0.12±0.41 682k 2 AUBERT 09AK BABR 423 fb−1, Eee
m=10.6 GeV1776.81+0.25
−0.23±0.15 81 ANASHIN 07 KEDR 6.7 pb−1, Eee
m=3.54{3.78 GeV1776.61±0.13±0.35 2 BELOUS 07 BELL 414 fb−1 Eee
m=10.6 GeV1775.1 ±1.6 ±1.0 13.3k 3 ABBIENDI 00A OPAL 1990{1995 LEP runs1778.2 ±0.8 ±1.2 ANASTASSOV 97 CLEO Eee
m= 10.6 GeV1776.96+0.18
−0.21+0.25

−0.17 65 4 BAI 96 BES Eee
m= 3.54{3.57 GeV1776.3 ±2.4 ±1.4 11k 5 ALBRECHT 92M ARG Eee
m= 9.4{10.6 GeV1783 +3
−4 692 6 BACINO 78B DLCO Eee
m= 3.1{7.4 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1777.8 ±0.7 ±1.7 35k 7 BALEST 93 CLEO Repl. by ANASTASSOV 971776.9 +0.4
−0.5 ±0.2 14 8 BAI 92 BES Repl. by BAI 961ABLIKIM 14D �t σ(e+ e− → τ+ τ−) at di�erent energies near threshold.2AUBERT 09AK and BELOUS 07 �t τ pseudomass spe
trum in τ → ππ+π− ντ de
ays.Result assumes mντ

= 0.3ABBIENDI 00A �t τ pseudomass spe
trum in τ → π± ≤ 2π0 ντ and
τ → π±π+π− ≤ 1π0 ντ de
ays. Result assumes mντ

=0.4BAI 96 �t σ(e+ e− → τ+ τ−) at di�erent energies near threshold.5ALBRECHT 92M �t τ pseudomass spe
trum in τ− → 2π−π+ ντ de
ays. Resultassumes mντ
=0.6BACINO 78B value 
omes from e±X∓ threshold. Published mass 1782 MeV in
reasedby 1 MeV using the high pre
ision ψ(2S) mass measurement of ZHOLENTZ 80 toeliminate the absolute SPEAR energy 
alibration un
ertainty.7BALEST 93 �t spe
tra of minimum kinemati
ally allowed τ mass in events of the typee+ e− → τ+ τ− → (π+ nπ0 ντ )(π−mπ0ντ ) n ≤ 2, m ≤ 2, 1 ≤ n+m ≤ 3. Ifmντ

6= 0, result in
reases by (m2
ντ

/1100 MeV).8BAI 92 �t σ(e+ e− → τ+ τ−) near threshold using e µ events.(mτ+ − mτ−)/maverage(mτ+ − mτ−)/maverage(mτ+ − mτ−)/maverage(mτ+ − mτ−)/maverageA test of CPT invarian
e.VALUE CL% DOCUMENT ID TECN COMMENT
<2.8× 10−4<2.8× 10−4<2.8× 10−4<2.8× 10−4 90 BELOUS 07 BELL 414 fb−1, Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.5× 10−4 90 1 AUBERT 09AK BABR 423 fb−1, Eee
m=10.6 GeV
<3.0× 10−3 90 ABBIENDI 00A OPAL 1990{1995 LEP runs1AUBERT 09AK quote both the listed upper limit and (m

τ+ − m
τ−)/maverage =(−3.4 ± 1.3 ± 0.3)× 10−4.

τ MEAN LIFEτ MEAN LIFEτ MEAN LIFEτ MEAN LIFEVALUE (10−15 s) EVTS DOCUMENT ID TECN COMMENT290.3 ± 0.5 OUR AVERAGE290.3 ± 0.5 OUR AVERAGE290.3 ± 0.5 OUR AVERAGE290.3 ± 0.5 OUR AVERAGE290.17± 0.53± 0.33 1.1M BELOUS 14 BELL 711 fb−1 Eee
m=10.6 GeV290.9 ± 1.4 ± 1.0 ABDALLAH 04T DLPH 1991-1995 LEP runs293.2 ± 2.0 ± 1.5 ACCIARRI 00B L3 1991{1995 LEP runs290.1 ± 1.5 ± 1.1 BARATE 97R ALEP 1989{1994 LEP runs289.2 ± 1.7 ± 1.2 ALEXANDER 96E OPAL 1990{1994 LEP runs289.0 ± 2.8 ± 4.0 57.4k BALEST 96 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •291.2 ± 2.0 ± 1.2 BARATE 97I ALEP Repl. by BARATE 97R291.4 ± 3.0 ABREU 96B DLPH Repl. by ABDALLAH 04T290.1 ± 4.0 34k ACCIARRI 96K L3 Repl. by ACCIARRI 00B297 ± 9 ± 5 1671 ABE 95Y SLD 1992{1993 SLC runs304 ±14 ± 7 4100 BATTLE 92 CLEO Eee
m= 10.6 GeV301 ±29 3780 KLEINWORT 89 JADE Eee
m= 35{46 GeV288 ±16 ±17 807 AMIDEI 88 MRK2 Eee
m= 29 GeV
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τ306 ±20 ±14 695 BRAUNSCH... 88C TASS Eee
m= 36 GeV299 ±15 ±10 1311 ABACHI 87C HRS Eee
m= 29 GeV295 ±14 ±11 5696 ALBRECHT 87P ARG Eee
m= 9.3{10.6 GeV309 ±17 ± 7 3788 BAND 87B MAC Eee
m= 29 GeV325 ±14 ±18 8470 BEBEK 87C CLEO Eee
m= 10.5 GeV460 ± 190 102 FELDMAN 82 MRK2 Eee
m= 29 GeV(τ τ+ − τ τ−) / τ average(τ τ+ − τ τ−) / τ average(τ τ+ − τ τ−) / τ average(τ τ+ − τ τ−) / τ averageTest of CPT invarian
e.VALUE CL% DOCUMENT ID TECN COMMENT

<7.0× 10−3<7.0× 10−3<7.0× 10−3<7.0× 10−3 90 1 BELOUS 14 BELL 711 fb−1 Eee
m = 10.6 GeV1BELOUS 14 quote limit on the absolute value of the relative lifetime di�eren
e.
τ MAGNETIC MOMENT ANOMALYτ MAGNETIC MOMENT ANOMALYτ MAGNETIC MOMENT ANOMALYτ MAGNETIC MOMENT ANOMALYThe q2 dependen
e is expe
ted to be small providing no thresholds arenearby.

µτ/(e�h/2mτ )−1 = (gτ−2)/2µτ/(e�h/2mτ )−1 = (gτ−2)/2µτ/(e�h/2mτ )−1 = (gτ−2)/2µτ/(e�h/2mτ )−1 = (gτ−2)/2For a theoreti
al 
al
ulation [(gτ−2)/2 = 117 721(5) × 10−8℄, see EIDELMAN 07.VALUE CL% DOCUMENT ID TECN COMMENT
> −0.052 and < 0.013 (CL = 95%) OUR LIMIT> −0.052 and < 0.013 (CL = 95%) OUR LIMIT> −0.052 and < 0.013 (CL = 95%) OUR LIMIT> −0.052 and < 0.013 (CL = 95%) OUR LIMIT
> −0.052 and < 0.013 95 1 ABDALLAH 04K DLPH e+ e− → e+ e− τ+ τ−at LEP2
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.107 95 2 ACHARD 04G L3 e+ e− → e+ e− τ+ τ−at LEP2
> −0.007 and < 0.005 95 3 GONZALEZ-S...00 RVUE e+ e− → τ+ τ− andW → τ ντ
> −0.052 and < 0.058 95 4 ACCIARRI 98E L3 1991{1995 LEP runs
> −0.068 and < 0.065 95 5 ACKERSTAFF 98N OPAL 1990{1995 LEP runs
> −0.004 and < 0.006 95 6 ESCRIBANO 97 RVUE Z → τ+ τ− at LEP
<0.01 95 7 ESCRIBANO 93 RVUE Z → τ+ τ− at LEP
<0.12 90 GRIFOLS 91 RVUE Z → τ τ γ at LEP
<0.023 95 8 SILVERMAN 83 RVUE e+ e− → τ+ τ− atPETRA1ABDALLAH 04K limit is derived from e+ e− → e+ e− τ+ τ− total 
ross-se
tion mea-surements at √

s between 183 and 208 GeV. In addition to the limits, the authors alsoquote a value of −0.018 ± 0.017.2ACHARD 04G limit is derived from e+ e− → e+ e− τ+ τ− total 
ross-se
tion mea-surements at √s between 189 and 206 GeV, and is on the absolute value of the magneti
moment anomaly.3GONZALEZ-SPRINBERG 00 use data on tau lepton produ
tion at LEP1, SLC, andLEP2, and data from 
olliders and LEP2 to determine limits. Assume imaginary 
ompo-nent is zero.4ACCIARRI 98E use Z → τ+ τ− γ events. In addition to the limits, the authors alsoquote a value of 0.004 ± 0.027 ± 0.023.5ACKERSTAFF 98N use Z → τ+ τ− γ events. The limit applies to an average of theform fa
tor for o�-shell τ 's having p2 ranging from m2
τ
to (MZ {mτ )2.6 ESCRIBANO 97 use preliminary experimental results.7 ESCRIBANO 93 limit derived from �(Z → τ+ τ−), and is on the absolute value of themagneti
 moment anomaly.8 SILVERMAN 83 limit is derived from e+ e− → τ+ τ− total 
ross-se
tion measurementsfor q2 up to (37 GeV)2.

τ ELECTRIC DIPOLE MOMENT (dτ )τ ELECTRIC DIPOLE MOMENT (dτ )τ ELECTRIC DIPOLE MOMENT (dτ )τ ELECTRIC DIPOLE MOMENT (dτ )A nonzero value is forbidden by both T invarian
e and P invarian
e.The q2 dependen
e is expe
ted to be small providing no thresholds arenearby.Re(dτ )Re(dτ )Re(dτ )Re(dτ )VALUE (10−16 e 
m) CL% DOCUMENT ID TECN COMMENT
− 0.22 to 0.45− 0.22 to 0.45− 0.22 to 0.45− 0.22 to 0.45 95 1 INAMI 03 BELL Eee
m= 10.6 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 2.3 90 2 GROZIN 09A RVUE From e EDM limit
< 3.7 95 3 ABDALLAH 04K DLPH e+ e− → e+ e− τ+ τ−at LEP2
< 11.4 95 4 ACHARD 04G L3 e+ e− → e+ e− τ+ τ−at LEP2
< 4.6 95 5 ALBRECHT 00 ARG Eee
m= 10.4 GeV
> −3.1 and < 3.1 95 ACCIARRI 98E L3 1991{1995 LEP runs
> −3.8 and < 3.6 95 6 ACKERSTAFF 98N OPAL 1990{1995 LEP runs
< 0.11 95 7,8 ESCRIBANO 97 RVUE Z → τ+ τ− at LEP
< 0.5 95 9 ESCRIBANO 93 RVUE Z → τ+ τ− at LEP
< 7 90 GRIFOLS 91 RVUE Z → τ τ γ at LEP
< 1.6 90 DELAGUILA 90 RVUE e+ e− → τ+ τ−Eee
m= 35 GeV

1 INAMI 03 use e+ e− → τ+ τ− events.2GROZIN 09A 
al
ulate the 
ontribution to the ele
tron ele
tri
 dipole moment from the
τ ele
tri
 dipole moment appearing in loops, whi
h is �de = 6.9× 10−12 dτ . Dividingthe REGAN 02 upper limit ∣∣de∣∣ ≤ 1.6× 10−27 e 
m at CL=90% by 6.9× 10−12 givesthis limit.3ABDALLAH 04K limit is derived from e+ e− → e+ e− τ+ τ− total 
ross-se
tion mea-surements at √s between 183 and 208 GeV and is on the absolute value of dτ .4ACHARD 04G limit is derived from e+ e− → e+ e− τ+ τ− total 
ross-se
tion mea-surements at √s between 189 and 206 GeV, and is on the absolute value of dτ .5ALBRECHT 00 use e+ e− → τ+ τ− events. Limit is on the absolute value of Re(dτ ).6ACKERSTAFF 98N use Z → τ+ τ− γ events. The limit applies to an average of theform fa
tor for o�-shell τ 's having p2 ranging from m2

τ
to (MZ {mτ )2.7 ESCRIBANO 97 derive the relationship ∣∣dτ ∣∣ = 
ot θW ∣∣dWτ ∣∣ using e�e
tive Lagrangianmethods, and use a 
onferen
e result ∣∣dW

τ

∣∣ < 5.8×10−18 e 
m at 95% CL (L. Silvestris,ICHEP96) to obtain this result.8 ESCRIBANO 97 use preliminary experimental results.9 ESCRIBANO 93 limit derived from �(Z → τ+ τ−), and is on the absolute value of theele
tri
 dipole moment.Im(dτ )Im(dτ )Im(dτ )Im(dτ )VALUE (10−16 e 
m) CL% DOCUMENT ID TECN COMMENT
−0.25 to 0.008−0.25 to 0.008−0.25 to 0.008−0.25 to 0.008 95 1 INAMI 03 BELL Eee
m= 10.6 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.8 95 2 ALBRECHT 00 ARG Eee
m= 10.4 GeV1 INAMI 03 use e+ e− → τ+ τ− events.2ALBRECHT 00 use e+ e− → τ+ τ− events. Limit is on the absolute value of Im(dτ ).

τ WEAK DIPOLE MOMENT (dwτ )τ WEAK DIPOLE MOMENT (dwτ )τ WEAK DIPOLE MOMENT (dwτ )τ WEAK DIPOLE MOMENT (dwτ )A nonzero value is forbidden by CP invarian
e.The q2 dependen
e is expe
ted to be small providing no thresholds arenearby.Re(dwτ )Re(dwτ )Re(dwτ )Re(dwτ )VALUE (10−17 e 
m) CL% DOCUMENT ID TECN COMMENT
<0.50<0.50<0.50<0.50 95 1 HEISTER 03F ALEP 1990{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.0 90 1 ACCIARRI 98C L3 1991{1995 LEP runs
<0.56 95 ACKERSTAFF 97L OPAL 1991{1995 LEP runs
<0.78 95 2 AKERS 95F OPAL Repl. by ACKERSTAFF 97L
<1.5 95 2 BUSKULIC 95C ALEP Repl. by HEISTER 03F
<7.0 95 2 ACTON 92F OPAL Z → τ+ τ− at LEP
<3.7 95 2 BUSKULIC 92J ALEP Repl. by BUSKULIC 95C1 Limit is on the absolute value of the real part of the weak dipole moment.2 Limit is on the absolute value of the real part of the weak dipole moment, and appliesfor q2 = m2Z .Im(dwτ )Im(dwτ )Im(dwτ )Im(dwτ )VALUE (10−17 e 
m) CL% DOCUMENT ID TECN COMMENT
<1.1<1.1<1.1<1.1 95 1 HEISTER 03F ALEP 1990{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.5 95 ACKERSTAFF 97L OPAL 1991{1995 LEP runs
<4.5 95 2 AKERS 95F OPAL Repl. by ACKERSTAFF 97L1HEISTER 03F limit is on the absolute value of the imaginary part of the weak dipolemoment.2 Limit is on the absolute value of the imaginary part of the weak dipole moment, andapplies for q2 = m2Z .

τ WEAK ANOMALOUS MAGNETIC DIPOLE MOMENT (αwτ )τ WEAK ANOMALOUS MAGNETIC DIPOLE MOMENT (αwτ )τ WEAK ANOMALOUS MAGNETIC DIPOLE MOMENT (αwτ )τ WEAK ANOMALOUS MAGNETIC DIPOLE MOMENT (αwτ )Ele
troweak radiative 
orre
tions are expe
ted to 
ontribute at the 10−6level. See BERNABEU 95.The q2 dependen
e is expe
ted to be small providing no thresholds arenearby.Re(αwτ )Re(αwτ )Re(αwτ )Re(αwτ )VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−3<1.1× 10−3<1.1× 10−3<1.1× 10−3 95 1 HEISTER 03F ALEP 1990{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •
> −0.0024 and < 0.0025 95 2 GONZALEZ-S...00 RVUE e+ e− → τ+ τ−and W → τ ντ
<4.5× 10−3 90 1 ACCIARRI 98C L3 1991{1995 LEP runs1 Limit is on the absolute value of the real part of the weak anomalous magneti
 dipolemoment.2GONZALEZ-SPRINBERG 00 use data on tau lepton produ
tion at LEP1, SLC, andLEP2, and data from 
olliders and LEP2 to determine limits. Assume imaginary 
ompo-nent is zero.



726726726726LeptonParti
le Listings
τIm(αw

τ )Im(αw
τ )Im(αw
τ )Im(αw
τ )VALUE CL% DOCUMENT ID TECN COMMENT

<2.7× 10−3<2.7× 10−3<2.7× 10−3<2.7× 10−3 95 1 HEISTER 03F ALEP 1990{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9.9× 10−3 90 1 ACCIARRI 98C L3 1991{1995 LEP runs1 Limit is on the absolute value of the imaginary part of the weak anomalous magneti
dipole moment.

τ− DECAY MODESτ− DECAY MODESτ− DECAY MODESτ− DECAY MODES
τ+ modes are 
harge 
onjugates of the modes below. \h±" stands for
π± or K±. \ℓ" stands for e or µ. \Neutrals" stands for γ's and/or π0's.S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelModes with one 
harged parti
leModes with one 
harged parti
leModes with one 
harged parti
leModes with one 
harged parti
le�1 parti
le− ≥ 0 neutrals ≥ 0K 0ντ(\1-prong") (85.24 ± 0.06 ) %�2 parti
le− ≥ 0 neutrals ≥ 0K 0Lντ (84.58 ± 0.06 ) %�3 µ−νµ ντ [a℄ (17.39 ± 0.04 ) %�4 µ−νµ ντ γ [b℄ ( 3.68 ± 0.10 )× 10−3�5 e−νe ντ [a℄ (17.82 ± 0.04 ) %�6 e−νe ντ γ [b℄ ( 1.84 ± 0.05 ) %�7 h− ≥ 0K0L ντ (12.03 ± 0.05 ) %�8 h−ντ (11.51 ± 0.05 ) %�9 π− ντ [a℄ (10.82 ± 0.05 ) %�10 K−ντ [a℄ ( 6.96 ± 0.10 )× 10−3�11 h− ≥ 1 neutralsντ (37.00 ± 0.09 ) %�12 h− ≥ 1π0 ντ (ex.K0) (36.51 ± 0.09 ) %�13 h−π0 ντ (25.93 ± 0.09 ) %�14 π−π0 ντ [a℄ (25.49 ± 0.09 ) %�15 π−π0 non-ρ(770)ντ ( 3.0 ± 3.2 )× 10−3�16 K−π0 ντ [a℄ ( 4.33 ± 0.15 )× 10−3�17 h− ≥ 2π0 ντ (10.81 ± 0.09 ) %�18 h−2π0 ντ ( 9.48 ± 0.10 ) %�19 h−2π0 ντ (ex.K0) ( 9.32 ± 0.10 ) %�20 π− 2π0ντ (ex.K0) [a℄ ( 9.26 ± 0.10 ) %�21 π− 2π0ντ (ex.K0),s
alar < 9 × 10−3 CL=95%�22 π− 2π0ντ (ex.K0),ve
tor < 7 × 10−3 CL=95%�23 K−2π0 ντ (ex.K0) [a℄ ( 6.5 ± 2.2 )× 10−4�24 h− ≥ 3π0 ντ ( 1.34 ± 0.07 ) %�25 h− ≥ 3π0 ντ (ex. K0) ( 1.25 ± 0.07 ) %�26 h−3π0 ντ ( 1.18 ± 0.07 ) %�27 π− 3π0ντ (ex.K0) [a℄ ( 1.04 ± 0.07 ) %�28 K−3π0 ντ (ex.K0, η) [a℄ ( 4.8 ± 2.1 )× 10−4�29 h−4π0 ντ (ex.K0) ( 1.6 ± 0.4 )× 10−3�30 h−4π0 ντ (ex.K0,η) [a℄ ( 1.1 ± 0.4 )× 10−3�31 a1(1260)ντ → π− γ ντ ( 3.8 ± 1.5 )× 10−4�32 K− ≥ 0π0 ≥ 0K0 ≥ 0γ ντ ( 1.552± 0.029) %�33 K− ≥ 1 (π0 or K0 or γ) ντ ( 8.59 ± 0.28 )× 10−3Modes with K0'sModes with K0'sModes with K0'sModes with K0's�34 K0S (parti
les)− ντ ( 9.44 ± 0.28 )× 10−3�35 h−K0 ντ ( 9.87 ± 0.14 )× 10−3�36 π−K0 ντ [a℄ ( 8.40 ± 0.14 )× 10−3�37 π−K0 (non-K∗(892)−)ντ ( 5.4 ± 2.1 )× 10−4�38 K−K0ντ [a℄ ( 1.48 ± 0.05 )× 10−3�39 K−K0 ≥ 0π0 ντ ( 2.98 ± 0.08 )× 10−3�40 h−K0π0 ντ ( 5.32 ± 0.13 )× 10−3�41 π−K0π0 ντ [a℄ ( 3.82 ± 0.13 )× 10−3�42 K0ρ− ντ ( 2.2 ± 0.5 )× 10−3�43 K−K0π0 ντ [a℄ ( 1.50 ± 0.07 )× 10−3�44 π−K0 ≥ 1π0 ντ ( 4.08 ± 0.25 )× 10−3�45 π−K0π0π0 ντ (ex.K0) [a℄ ( 2.6 ± 2.3 )× 10−4�46 K−K0π0π0 ντ < 1.6 × 10−4 CL=95%�47 π−K0K0ντ ( 1.55 ± 0.24 )× 10−3�48 π−K0S K0S ντ [a℄ ( 2.33 ± 0.07 )× 10−4�49 π−K0S K0Lντ [a℄ ( 1.08 ± 0.24 )× 10−3�50 π−K0LK0L ντ ( 2.33 ± 0.07 )× 10−4�51 π−K0K0π0 ντ ( 3.6 ± 1.2 )× 10−4�52 π−K0S K0S π0 ντ [a℄ ( 1.82 ± 0.21 )× 10−5�53 K∗−K0π0 ντ →

π−K0S K0S π0 ντ

( 1.08 ± 0.21 )× 10−5

�54 f1(1285)π−ντ →
π−K0S K0S π0 ντ

( 6.8 ± 1.5 )× 10−6�55 f1(1420)π−ντ →
π−K0S K0S π0 ντ

( 2.4 ± 0.8 )× 10−6�56 π−K0S K0Lπ0 ντ [a℄ ( 3.2 ± 1.2 )× 10−4�57 π−K0LK0Lπ0 ντ ( 1.82 ± 0.21 )× 10−5�58 K−K0S K0S ντ < 6.3 × 10−7 CL=90%�59 K−K0S K0S π0 ντ < 4.0 × 10−7 CL=90%�60 K0h+ h−h− ≥ 0 neutrals ντ < 1.7 × 10−3 CL=95%�61 K0h+ h−h−ντ [a℄ ( 2.5 ± 2.0 )× 10−4Modes with three 
harged parti
lesModes with three 
harged parti
lesModes with three 
harged parti
lesModes with three 
harged parti
les�62 h−h− h+ ≥ 0 neutrals ≥ 0K 0Lντ (15.21 ± 0.06 ) %�63 h− h−h+ ≥ 0 neutrals ντ(ex. K0S → π+π−)(\3-prong") (14.55 ± 0.06 ) %�64 h−h− h+ντ ( 9.80 ± 0.05 ) %�65 h−h− h+ντ (ex.K0) ( 9.46 ± 0.05 ) %�66 h−h− h+ντ (ex.K0,ω) ( 9.43 ± 0.05 ) %�67 π−π+π− ντ ( 9.31 ± 0.05 ) %�68 π−π+π− ντ (ex.K0) ( 9.02 ± 0.05 ) %�69 π−π+π− ντ (ex.K0),non-axial ve
tor < 2.4 % CL=95%�70 π−π+π− ντ (ex.K0,ω) [a℄ ( 8.99 ± 0.05 ) %�71 h−h− h+ ≥ 1 neutrals ντ ( 5.29 ± 0.05 ) %�72 h−h− h+ ≥ 1π0 ντ (ex. K0) ( 5.09 ± 0.05 ) %�73 h−h− h+π0 ντ ( 4.76 ± 0.05 ) %�74 h−h− h+π0 ντ (ex.K0) ( 4.57 ± 0.05 ) %�75 h−h− h+π0 ντ (ex. K0, ω) ( 2.79 ± 0.07 ) %�76 π−π+π−π0 ντ ( 4.62 ± 0.05 ) %�77 π−π+π−π0 ντ (ex.K0) ( 4.49 ± 0.05 ) %�78 π−π+π−π0 ντ (ex.K0,ω) [a℄ ( 2.74 ± 0.07 ) %�79 h−ρπ0 ντ�80 h−ρ+ h−ντ�81 h−ρ− h+ντ�82 h−h− h+ ≥ 2π0ντ (ex.K0) ( 5.17 ± 0.31 )× 10−3�83 h−h− h+2π0 ντ ( 5.05 ± 0.31 )× 10−3�84 h−h− h+2π0 ντ (ex.K0) ( 4.95 ± 0.31 )× 10−3�85 h−h− h+2π0 ντ (ex.K0,ω,η) [a℄ (10 ± 4 )× 10−4�86 h−h− h+3π0 ντ ( 2.12 ± 0.30 )× 10−4�87 2π−π+ 3π0ντ (ex.K0) ( 1.94 ± 0.30 )× 10−4�88 2π−π+ 3π0ντ (ex.K0, η,f1(1285)) ( 1.7 ± 0.4 )× 10−4�89 2π−π+ 3π0ντ (ex.K0, η,
ω, f1(1285)) [a℄ ( 1.4 ± 2.7 )× 10−5�90 K−h+h− ≥ 0 neutrals ντ ( 6.29 ± 0.14 )× 10−3�91 K−h+π− ντ (ex.K0) ( 4.37 ± 0.07 )× 10−3�92 K−h+π−π0 ντ (ex.K0) ( 8.6 ± 1.2 )× 10−4�93 K−π+π− ≥ 0 neutrals ντ ( 4.77 ± 0.14 )× 10−3�94 K−π+π− ≥ 0π0ντ (ex.K0) ( 3.73 ± 0.13 )× 10−3�95 K−π+π−ντ ( 3.45 ± 0.07 )× 10−3�96 K−π+π−ντ (ex.K0) ( 2.93 ± 0.07 )× 10−3�97 K−π+π−ντ (ex.K0,ω) [a℄ ( 2.93 ± 0.07 )× 10−3�98 K−ρ0 ντ →K−π+π−ντ

( 1.4 ± 0.5 )× 10−3�99 K−π+π−π0 ντ ( 1.31 ± 0.12 )× 10−3�100 K−π+π−π0 ντ (ex.K0) ( 7.9 ± 1.2 )× 10−4�101 K−π+π−π0 ντ (ex.K0,η) ( 7.6 ± 1.2 )× 10−4�102 K−π+π−π0 ντ (ex.K0,ω) ( 3.7 ± 0.9 )× 10−4�103 K−π+π−π0 ντ (ex.K0,ω,η)[a℄ ( 3.9 ± 1.4 )× 10−4�104 K−π+K− ≥ 0 neut. ντ < 9 × 10−4 CL=95%�105 K−K+π− ≥ 0 neut. ντ ( 1.496± 0.033)× 10−3�106 K−K+π− ντ [a℄ ( 1.435± 0.027)× 10−3�107 K−K+π−π0 ντ [a℄ ( 6.1 ± 1.8 )× 10−5�108 K−K+K−ντ ( 2.2 ± 0.8 )× 10−5 S=5.4�109 K−K+K−ντ (ex. φ) < 2.5 × 10−6 CL=90%�110 K−K+K−π0 ντ < 4.8 × 10−6 CL=90%�111 π−K+π− ≥ 0 neut. ντ < 2.5 × 10−3 CL=95%�112 e− e− e+νe ντ ( 2.8 ± 1.5 )× 10−5�113 µ− e− e+νµ ντ < 3.6 × 10−5 CL=90%
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τModes with �ve 
harged parti
lesModes with �ve 
harged parti
lesModes with �ve 
harged parti
lesModes with �ve 
harged parti
les�114 3h−2h+ ≥ 0 neutrals ντ(ex. K0S → π−π+)(\5-prong") ( 9.9 ± 0.4 )× 10−4�115 3h−2h+ντ (ex.K0) ( 8.22 ± 0.32 )× 10−4�116 3π−2π+ντ (ex.K0, ω) ( 8.21 ± 0.31 )× 10−4�117 3π−2π+ντ (ex.K0, ω,f1(1285)) [a℄ ( 7.69 ± 0.30 )× 10−4�118 K−2π−2π+ντ (ex.K0) [a℄ ( 6 ±12 )× 10−7�119 K+3π−π+ ντ < 5.0 × 10−6 CL=90%�120 K+K−2π−π+ ντ < 4.5 × 10−7 CL=90%�121 3h−2h+π0 ντ (ex.K0) ( 1.64 ± 0.11 )× 10−4�122 3π−2π+π0 ντ (ex.K0) ( 1.62 ± 0.11 )× 10−4�123 3π−2π+π0 ντ (ex.K0, η,f1(1285)) ( 1.11 ± 0.10 )× 10−4�124 3π−2π+π0 ντ (ex.K0, η, ω,f1(1285)) [a℄ ( 3.8 ± 0.9 )× 10−5�125 K−2π−2π+π0 ντ (ex.K0) [a℄ ( 1.1 ± 0.6 )× 10−6�126 K+3π−π+π0 ντ < 8 × 10−7 CL=90%�127 3h−2h+2π0ντ < 3.4 × 10−6 CL=90%Mis
ellaneous other allowed modesMis
ellaneous other allowed modesMis
ellaneous other allowed modesMis
ellaneous other allowed modes�128 (5π )− ντ ( 7.8 ± 0.5 )× 10−3�129 4h−3h+ ≥ 0 neutrals ντ(\7-prong") < 3.0 × 10−7 CL=90%�130 4h−3h+ντ < 4.3 × 10−7 CL=90%�131 4h−3h+π0 ντ < 2.5 × 10−7 CL=90%�132 X− (S=−1)ντ ( 2.92 ± 0.04 ) %�133 K∗(892)− ≥ 0 neutrals ≥0K0Lντ

( 1.42 ± 0.18 ) % S=1.4�134 K∗(892)−ντ ( 1.20 ± 0.07 ) % S=1.8�135 K∗(892)−ντ → π−K0 ντ ( 7.83 ± 0.26 )× 10−3�136 K∗(892)0K− ≥ 0 neutrals ντ ( 3.2 ± 1.4 )× 10−3�137 K∗(892)0K−ντ ( 2.1 ± 0.4 )× 10−3�138 K∗(892)0π− ≥ 0 neutrals ντ ( 3.8 ± 1.7 )× 10−3�139 K∗(892)0π− ντ ( 2.2 ± 0.5 )× 10−3�140 (K∗(892)π )− ντ →
π−K0π0 ντ

( 1.0 ± 0.4 )× 10−3�141 K1(1270)−ντ ( 4.7 ± 1.1 )× 10−3�142 K1(1400)−ντ ( 1.7 ± 2.6 )× 10−3 S=1.7�143 K∗(1410)−ντ ( 1.5 + 1.4
− 1.0 ) × 10−3�144 K∗0(1430)−ντ < 5 × 10−4 CL=95%�145 K∗2(1430)−ντ < 3 × 10−3 CL=95%�146 a0(980)− ≥ 0 neutrals ντ�147 ηπ− ντ < 9.9 × 10−5 CL=95%�148 ηπ−π0 ντ [a℄ ( 1.39 ± 0.07 )× 10−3�149 ηπ−π0π0 ντ [a℄ ( 1.9 ± 0.4 )× 10−4�150 ηK−ντ [a℄ ( 1.55 ± 0.08 )× 10−4�151 ηK∗(892)−ντ ( 1.38 ± 0.15 )× 10−4�152 ηK−π0 ντ [a℄ ( 4.8 ± 1.2 )× 10−5�153 ηK−π0 (non-K∗(892))ντ < 3.5 × 10−5 CL=90%�154 ηK0π−ντ [a℄ ( 9.4 ± 1.5 )× 10−5�155 ηK0π−π0 ντ < 5.0 × 10−5 CL=90%�156 ηK−K0 ντ < 9.0 × 10−6 CL=90%�157 ηπ+π−π− ≥ 0 neutrals ντ < 3 × 10−3 CL=90%�158 ηπ−π+π−ντ (ex.K0) [a℄ ( 2.19 ± 0.13 )× 10−4�159 ηπ−π+π−ντ (ex.K0,f1(1285)) ( 9.9 ± 1.6 )× 10−5�160 ηa1(1260)− ντ → ηπ− ρ0 ντ < 3.9 × 10−4 CL=90%�161 ηηπ− ντ < 7.4 × 10−6 CL=90%�162 ηηπ−π0 ντ < 2.0 × 10−4 CL=95%�163 ηηK− ντ < 3.0 × 10−6 CL=90%�164 η′(958)π− ντ < 4.0 × 10−6 CL=90%�165 η′(958)π−π0 ντ < 1.2 × 10−5 CL=90%�166 η′(958)K−ντ < 2.4 × 10−6 CL=90%�167 φπ− ντ ( 3.4 ± 0.6 )× 10−5�168 φK− ντ [a℄ ( 4.4 ± 1.6 )× 10−5�169 f1(1285)π−ντ ( 3.9 ± 0.5 )× 10−4 S=1.9�170 f1(1285)π−ντ →

ηπ−π+π−ντ

( 1.18 ± 0.07 )× 10−4 S=1.3�171 f1(1285)π−ντ → 3π−2π+ντ [a℄ ( 5.2 ± 0.4 )× 10−5�172 π(1300)−ντ → (ρπ)− ντ →(3π)− ντ

< 1.0 × 10−4 CL=90%�173 π(1300)−ντ →((ππ)S−wave π)− ντ →(3π)− ντ

< 1.9 × 10−4 CL=90%

�174 h−ω ≥ 0 neutrals ντ ( 2.40 ± 0.08 ) %�175 h−ωντ ( 1.99 ± 0.06 ) %�176 π−ωντ [a℄ ( 1.95 ± 0.06 ) %�177 K−ωντ [a℄ ( 4.1 ± 0.9 )× 10−4�178 h−ωπ0 ντ [a℄ ( 4.1 ± 0.4 )× 10−3�179 h−ω2π0 ντ ( 1.4 ± 0.5 )× 10−4�180 π−ω2π0ντ [a℄ ( 7.1 ± 1.6 )× 10−5�181 h−2ωντ < 5.4 × 10−7 CL=90%�182 2h−h+ωντ ( 1.20 ± 0.22 )× 10−4�183 2π−π+ωντ (ex.K0) [a℄ ( 8.4 ± 0.6 )× 10−5Lepton Family number (LF ), Lepton number (L),Lepton Family number (LF ), Lepton number (L),Lepton Family number (LF ), Lepton number (L),Lepton Family number (LF ), Lepton number (L),or Baryon number (B) violating modesor Baryon number (B) violating modesor Baryon number (B) violating modesor Baryon number (B) violating modesL means lepton number violation (e.g. τ− → e+π−π−). Following
ommon usage, LF means lepton family violation and not lepton numberviolation (e.g. τ− → e−π+π−). B means baryon number violation.�184 e−γ LF < 3.3 × 10−8 CL=90%�185 µ−γ LF < 4.4 × 10−8 CL=90%�186 e−π0 LF < 8.0 × 10−8 CL=90%�187 µ−π0 LF < 1.1 × 10−7 CL=90%�188 e−K0S LF < 2.6 × 10−8 CL=90%�189 µ−K0S LF < 2.3 × 10−8 CL=90%�190 e−η LF < 9.2 × 10−8 CL=90%�191 µ−η LF < 6.5 × 10−8 CL=90%�192 e−ρ0 LF < 1.8 × 10−8 CL=90%�193 µ−ρ0 LF < 1.2 × 10−8 CL=90%�194 e−ω LF < 4.8 × 10−8 CL=90%�195 µ−ω LF < 4.7 × 10−8 CL=90%�196 e−K∗(892)0 LF < 3.2 × 10−8 CL=90%�197 µ−K∗(892)0 LF < 5.9 × 10−8 CL=90%�198 e−K∗(892)0 LF < 3.4 × 10−8 CL=90%�199 µ−K∗(892)0 LF < 7.0 × 10−8 CL=90%�200 e−η′(958) LF < 1.6 × 10−7 CL=90%�201 µ−η′(958) LF < 1.3 × 10−7 CL=90%�202 e− f0(980) → e−π+π− LF < 3.2 × 10−8 CL=90%�203 µ− f0(980) → µ−π+π− LF < 3.4 × 10−8 CL=90%�204 e−φ LF < 3.1 × 10−8 CL=90%�205 µ−φ LF < 8.4 × 10−8 CL=90%�206 e− e+ e− LF < 2.7 × 10−8 CL=90%�207 e−µ+µ− LF < 2.7 × 10−8 CL=90%�208 e+µ−µ− LF < 1.7 × 10−8 CL=90%�209 µ− e+ e− LF < 1.8 × 10−8 CL=90%�210 µ+ e− e− LF < 1.5 × 10−8 CL=90%�211 µ−µ+µ− LF < 2.1 × 10−8 CL=90%�212 e−π+π− LF < 2.3 × 10−8 CL=90%�213 e+π−π− L < 2.0 × 10−8 CL=90%�214 µ−π+π− LF < 2.1 × 10−8 CL=90%�215 µ+π−π− L < 3.9 × 10−8 CL=90%�216 e−π+K− LF < 3.7 × 10−8 CL=90%�217 e−π−K+ LF < 3.1 × 10−8 CL=90%�218 e+π−K− L < 3.2 × 10−8 CL=90%�219 e−K0S K0S LF < 7.1 × 10−8 CL=90%�220 e−K+K− LF < 3.4 × 10−8 CL=90%�221 e+K−K− L < 3.3 × 10−8 CL=90%�222 µ−π+K− LF < 8.6 × 10−8 CL=90%�223 µ−π−K+ LF < 4.5 × 10−8 CL=90%�224 µ+π−K− L < 4.8 × 10−8 CL=90%�225 µ−K0S K0S LF < 8.0 × 10−8 CL=90%�226 µ−K+K− LF < 4.4 × 10−8 CL=90%�227 µ+K−K− L < 4.7 × 10−8 CL=90%�228 e−π0π0 LF < 6.5 × 10−6 CL=90%�229 µ−π0π0 LF < 1.4 × 10−5 CL=90%�230 e−ηη LF < 3.5 × 10−5 CL=90%�231 µ−ηη LF < 6.0 × 10−5 CL=90%�232 e−π0 η LF < 2.4 × 10−5 CL=90%�233 µ−π0 η LF < 2.2 × 10−5 CL=90%�234 pµ−µ− L,B < 4.4 × 10−7 CL=90%�235 pµ+µ− L,B < 3.3 × 10−7 CL=90%�236 pγ L,B < 3.5 × 10−6 CL=90%�237 pπ0 L,B < 1.5 × 10−5 CL=90%�238 p2π0 L,B < 3.3 × 10−5 CL=90%�239 pη L,B < 8.9 × 10−6 CL=90%�240 pπ0 η L,B < 2.7 × 10−5 CL=90%�241 �π− L,B < 7.2 × 10−8 CL=90%



728728728728Lepton Parti
le Listings
τ�242 �π− L,B < 1.4 × 10−7 CL=90%�243 e− light boson LF < 2.7 × 10−3 CL=95%�244 µ− light boson LF < 5 × 10−3 CL=95%[a℄ Basis mode for the τ .[b℄ See the Parti
le Listings below for the energy limits used in this mea-surement. CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 85 bran
hing ratios uses 169 measurements andone 
onstraint to determine 46 parameters. The overall �t has a

χ2 = 134.9 for 124 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients〈
δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total.x5 18x9 2 −1x10 3 4 5x14 −18 −19 −17 −5x16 −1 −1 1 −2 −9x20 −11 −11 −14 −4 −46 −1x23 −1 0 −2 −3 −1 −14 −10x27 −6 −5 −10 −1 0 0 −39 1x28 −1 −1 −1 −2 0 −13 −3 −23 −11x30 −4 −4 −11 −1 −9 0 7 −2 −44 2x36 −2 −2 −3 −1 −1 0 −2 0 −1 0x38 0 0 0 0 0 −2 0 −3 0 −3x41 −2 −2 −2 −1 −1 0 −2 0 −1 0x43 −1 −1 −1 −1 0 −3 0 −5 0 −5x45 −5 −5 −5 −2 −3 −1 −5 −2 −1 −2x48 0 0 0 0 0 0 0 0 0 0x49 −5 −5 −5 −2 −3 −1 −5 −2 −1 −2x52 0 0 0 0 0 0 0 −1 0 −1x56 −2 −2 −2 −1 −1 −1 −2 −1 −1 −1x61 −5 −5 −5 −2 −3 −1 −4 −2 −1 −2x70 −7 −9 4 −2 −6 3 −12 −2 −7 −1x78 −4 −4 −5 0 −9 0 1 1 −1 1x85 0 0 −2 0 −2 0 0 0 2 0x89 0 0 0 0 0 0 0 0 0 0x97 −2 −2 −1 −1 −1 −1 −4 −1 −2 −1x103 1 1 0 −1 1 −1 −1 −1 0 −1x106 −2 −2 2 −1 −1 2 −2 −1 −1 −1x107 0 0 0 0 0 0 0 0 0 0x117 −1 0 0 0 0 0 −1 0 −1 0x118 0 0 0 0 0 0 0 0 0 0x124 0 0 0 0 0 0 0 0 0 0x125 0 0 0 0 0 0 0 0 0 0x148 −1 −1 −1 0 −1 0 −2 −1 0 −1x149 −1 −1 −1 0 0 0 −1 0 0 0x150 0 0 0 0 0 0 0 −1 0 −1x152 0 0 0 0 0 0 0 0 0 0x154 0 0 0 0 0 0 0 0 0 0x158 −1 −1 −1 0 0 0 −1 0 0 0x168 0 0 0 0 0 0 0 0 0 0x171 0 0 0 0 0 0 −1 0 0 0x176 −3 −3 −3 −1 −4 −1 −1 0 −1 0x177 0 0 0 0 0 0 0 0 0 0x178 −2 −2 −5 −1 −3 0 −2 −1 2 −1x180 0 0 0 0 0 0 0 0 0 0x183 −1 0 0 0 0 0 −1 0 0 0x3 x5 x9 x10 x14 x16 x20 x23 x27 x28

x36 0x38 0 −22x41 0 −13 4x43 0 2 −21 −20x45 0 −3 0 −6 0x48 0 −1 1 −4 1 0x49 0 −5 0 −4 −1 −10 0x52 0 0 7 0 5 0 −7 0x56 0 −2 0 −2 −1 −4 0 −8 0x61 0 −2 0 −2 0 −4 0 −4 0 −2x70 −5 −2 0 −1 0 −4 1 −4 0 −2x78 3 1 0 1 0 2 0 2 0 1x85 2 0 0 0 0 0 0 0 0 0x89 0 0 0 0 0 0 0 0 −1 0x97 −1 −1 0 −1 0 −2 0 −2 0 −1x103 −1 −1 0 −1 0 −1 0 −1 0 −1x106 −1 −1 0 0 0 −1 0 −1 0 0x107 0 0 0 0 0 0 0 0 0 0x117 −1 0 0 0 0 −1 0 −1 0 0x118 0 0 0 0 0 0 0 0 0 0x124 0 0 0 0 0 0 0 0 0 0x125 0 0 0 0 0 0 0 0 0 0x148 −2 0 0 0 0 −1 1 −1 0 0x149 0 0 0 0 0 −1 0 −1 0 0x150 0 0 0 0 0 0 1 0 0 0x152 0 0 0 0 0 0 0 0 0 0x154 0 0 0 0 0 0 0 −1 0 0x158 −1 0 0 0 0 −1 0 −1 0 0x168 0 0 0 0 0 0 0 0 0 0x171 0 0 0 0 0 0 0 0 0 0x176 1 −1 0 0 0 −1 0 −1 0 0x177 0 0 0 0 0 0 0 0 0 0x178 2 −1 0 0 0 −1 0 −1 0 0x180 0 0 0 0 0 0 0 0 0 0x183 −1 0 0 0 0 0 0 0 0 0x30 x36 x38 x41 x43 x45 x48 x49 x52 x56x70 −4x78 2 −19x85 0 −1 −8x89 0 −1 −1 0x97 −2 19 −6 0 0x103 −1 −4 −14 −1 0 −1x106 −1 15 −4 0 0 0 −1x107 0 −1 −1 0 0 0 −3 0x117 −1 0 0 0 −4 0 0 0 0x118 0 0 0 0 0 0 0 0 0 −1x124 0 0 0 0 0 0 0 0 0 3x125 0 0 0 0 0 0 0 0 0 −1x148 −1 0 0 −5 0 0 0 0 0 0x149 −1 −1 0 0 −11 0 0 0 0 10x150 0 2 0 0 0 0 −1 1 0 0x152 0 0 0 −1 0 0 0 0 0 0x154 0 0 0 0 −2 0 0 0 0 0x158 −1 −1 0 0 −8 0 0 0 0 47x168 0 −1 0 0 0 1 0 1 0 0x171 0 0 0 0 −2 0 0 0 0 35x176 −1 −9 −67 −3 0 −2 10 −2 0 0x177 0 0 12 0 0 −2 −58 0 0 0x178 −1 −2 −11 −64 −1 −1 −1 −1 0 0x180 0 0 0 0 −16 0 0 0 0 8x183 0 0 0 0 −4 0 0 0 0 39x61 x70 x78 x85 x89 x97 x103 x106 x107 x117
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τ BRANCHING FRACTIONS

Revised April 2016 by S.Banerjee (University of Louisville),
K.Hayes (Hillsdale College), A.Lusiani (Scuola Normale Supe-
riore and INFN, sezione di Pisa)

In order to make optimal use of the experimental data

to determine the τ branching fractions, their uncertainties,

and their correlations, we perform a global minimum χ2 fit

using the measured values, their uncertainties, their statistical

correlations, their dependencies on external parameters and

common systematics, and the relations that hold between the

branching fractions, including a unitarity constraint on the

sum of all the exclusive τ decay branching fractions. Starting

with this edition, we use a new fit procedure, which has been

elaborated by the Tau Physics Group within the Heavy Flavour

Averaging Group (HFAG) [1].

In the following, we use “branching fraction” to refer to

the partial decay fraction of a particle like the τ into a specific

decay mode, and “branching ratio” to refer to quantities derived

from the branching fractions [2], like for instance a ratio of

two branching fractions, or a ratio of two linear combinations

of branching fractions.

The constrained fit to τ branching fractions.

The τ Listings contains 242 τ decay modes, out of which 61

are Lepton Family number, Lepton number, or Baryon number

violating modes. The fit computes the branching fractions of 112

decay modes. Although no new τ branching fraction and ratio

measurements have been released since the 2015 edition, the fit

in this edition includes more experimental measurements (169,

up from 143 in 2015) and determines in the fit several additional

τ branching fractions and ratios, relying on a larger and

updated set of constraints that relate the branching fractions

and ratios between themselves. The measurements are treated

as follows [1].

Many published measurements depend on external param-

eters such as the τ pair production cross-section in e+e−

annihilations at the Υ(4S) peak. We compute the size and

sign of these dependencies and update the measurements and

their uncertainties to the current values of the external param-

eters. Accordingly, the measurements and their uncertainties

are updated to account for updated values of external pa-

rameters. The dependencies on common systematic effects are

also determined in size and sign, and all the common system-

atic dependencies of different measurements are used together

with the published statistical and systematic uncertainties and

correlations in order to compute a single all-inclusive vari-

ance and covariance matrix of the experimental measurements.

All the measurements, their uncertainties, and their correla-

tions were taken from the respective published papers. Their

values and the constraints used in the fit are reported in

the τ Listings section that follows this review. If only a few

measurements are correlated, the correlation coefficients are

listed in the footnote for each measurement (see for exam-

ple Γ(particle− ≥ 0 neutrals ≥ 0 K0ντ (“1-prong”))/Γtotal). If

a large number of measurements are correlated, then the full

correlation matrix is listed in the footnote to the measurement

that first appears in the τ Listings. Footnotes to the other

measurements refer to the first measurement. For example, the

large correlation matrices for the branching fraction or ratio

measurements contained in Refs. [3,4] are listed in Footnotes to

the Γ(e−νeντ )/Γtotal and Γ(h−ντ )/Γtotal measurements respec-

tively. The constraints between the τ branching fractions and

ratios include coefficients that correspond to physical quantities,

like for instance the branching fractions of the η and ω mesons.

All quantities are taken from the 2015 edition of the Review of

Particle Physics. Their uncertainties are neglected in the fit.

Compared to the 2015 edition, the fit now includes several

additional modes, mainly related to the most recent BaBar

papers on high multiplicity modes [5] and K0
SK0

S modes [6] and

the Belle paper on neutral kaon modes [7]:

B(τ → π−π0K0
SK0

Sντ )

B(τ → K−K−K+ντ )

B(τ → K−π0ηντ )

B(τ → π−K̄0ηντ ) ;

Also, the following components of τ -decay modes are now

included [5,8,9]:

B(τ → π−2π0ηντ (η → π+π−π0) (ex. K0))

B(τ → 2π−π+ηντ (η → π+π−π0) (ex. K0))

B(τ → 2π−π+ηντ (η → γγ) (ex. K0))

B(τ → π−2π0ωντ (ex. K0))

B(τ → 2π−π+ωντ (ex. K0))

B(τ → π−f1ντ (f1 → 2π−2π+)) .

B(τ → K−φντ ) .

We obtain the branching fraction of τ → a−1 (→ π−γ)ντ

using the ALEPH estimate for B(a−1 → π−γ) [3], which uses the

measurement of Γ(a−1 → π−γ) [10]. In the fit, we assume that

B(τ− → a−1 ντ ) is equal to B(τ → π−π−π+ντ (ex. K0, ω)) +

B(τ → π−2π0ντ (ex. K0)).
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Figure 1: Pulls of individual measurements
against the respective fitted quantity. No scale
factor is used.

In some cases, constraints describe approximate relations

that nevertheless hold within the present experimental pre-

cision. For instance, the constraint B(τ → K−K−K+ντ ) =

B(τ → K−φντ )×B(φ → K+K−) is justified within the current

experimental evidence.

In the fit, scale factors are applied to the published un-

certainties of measurements only if significant inconsistency

between different measurements remain after accounting for

all relevant uncertainties and correlations. After examining the

data and the fit pulls, it has been decided to apply just one scale

factor of 5.4 on the measurements of B(τ → K−K−K+ντ ). The

scale factor has been computed and applied according to the

standard PDG procedure. Without the scale factor applied, the

χ2 probability of the fit is about 2%. On a per-measurement

basis, the pull distribution in figure 1 indicates that just a few

measurements have more than 3σ pulls. (The uncertainties to

obtain the pulls are computed using the measurements variance

matrix and the variance matrix of the result, accounting for the

fact that the variance matrix of the result is obtained from the

measurement variance with the fit.) The pull probability distri-

bution in figure 2 is reasonably flat. With many measurements

some entries on the tails of the normal distribution must be

expected. There are 169 pulls, one per measurement. They are

partially correlated, and the effective number of independent

pulls is equal to the number of degrees of freedom of the fit,

124. Only the τ → K−K−K+ντ decay mode has a pull that

is inconsistent at the level of more than 3σ even if considered

as the largest pull in a set of 124. This confirms the choice of

adopting just that one scale factor.

After scaling the error the 2016 constrained fit has a χ2 of

134.9 for 124 degrees of freedom, corresponding to a χ2 proba-

bility of 24%. We use 169 measurements and 84 constraints on

the branching fractions and ratios to determine 129 quantities,

consisting of 112 branching fractions and 17 branching ratios.

A total of 85 quantities have at least one measurement in the

fit. The constraints include the unitarity constraint on the sum

of all the exclusive τ decay modes, Ball = 1. If the unitarity
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Figure 2: Probability of individual measure-
ment pulls against the respective fitted quantity.
No scale factor is used.

constraint is released, the fit result for Ball is consistent with

unitarity with 1 − Ball = (0.07 ± 0.10)%.

For the convenience of summarizing the fit results, we list in

the following the values and uncertainties for a set of 46 “basis”

decay modes, from which all remaining branching fractions and

ratios can be obtained using the constraints. Unlike in previous

editions, the basis decay modes are not intended to sum up

to 1. The new unitarity constraint corresponds to a linear

combination of the basis modes weighted by the coefficients

listed in the following. The corresponding correlation matrix is

listed in the τ Listings.

decay mode fit result (%) coefficient

µ−ν̄µντ 17.3936 ± 0.0384 1.0000

e−ν̄eντ 17.8174 ± 0.0399 1.0000

π−ντ 10.8165 ± 0.0512 1.0000

K−ντ 0.6964 ± 0.0096 1.0000

π−π0ντ 25.4940 ± 0.0893 1.0000

K−π0ντ 0.4329 ± 0.0148 1.0000

π−2π0ντ (ex. K0) 9.2595 ± 0.0964 1.0021

K−2π0ντ (ex. K0) 0.0648 ± 0.0218 1.0000

π−3π0ντ (ex. K0) 1.0428 ± 0.0707 1.0000

K−3π0ντ (ex. K0, η) 0.0478 ± 0.0212 1.0000

h−4π0ντ (ex. K0, η) 0.1119 ± 0.0391 1.0000

π−K̄0ντ 0.8395 ± 0.0140 1.0000

K−K0ντ 0.1479 ± 0.0053 1.0000

π−K̄0π0ντ 0.3821 ± 0.0129 1.0000

K−π0K0ντ 0.1503 ± 0.0071 1.0000

π−K̄0π0π0ντ (ex. K0) 0.0263 ± 0.0226 1.0000

π−K0
SK0

Sντ 0.0233 ± 0.0007 2.0000

π−K0
SK0

Lντ 0.1080 ± 0.0241 1.0000

π−π0K0
SK0

Sντ 0.0018 ± 0.0002 2.0000

π−π0K0
SK0

Lντ 0.0325 ± 0.0119 1.0000

K̄0h−h−h+ντ 0.0247 ± 0.0199 1.0000

π−π−π+ντ (ex. K0, ω) 8.9870 ± 0.0514 1.0021

π−π−π+π0ντ (ex. K0, ω) 2.7404 ± 0.0710 1.0000

h−h−h+2π0ντ (ex. K0, ω, η) 0.0980 ± 0.0356 1.0000
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π−K−K+ντ 0.1435 ± 0.0027 1.0000

π−K−K+π0ντ 0.0061 ± 0.0018 1.0000

π−π0ηντ 0.1389 ± 0.0072 1.0000

K−ηντ 0.0155 ± 0.0008 1.0000

K−π0ηντ 0.0048 ± 0.0012 1.0000

π−K̄0ηντ 0.0094 ± 0.0015 1.0000

π−π+π−ηντ (ex. K0) 0.0219 ± 0.0013 1.0000

K−ωντ 0.0410 ± 0.0092 1.0000

h−π0ωντ 0.4085 ± 0.0419 1.0000

K−φντ 0.0044 ± 0.0016 0.8310

π−ωντ 1.9494 ± 0.0645 1.0000

K−π−π+ντ (ex. K0, ω) 0.2927 ± 0.0068 1.0000

K−π−π+π0ντ (ex. K0, ω, η) 0.0394 ± 0.0142 1.0000

π−2π0ωντ (ex. K0) 0.0071 ± 0.0016 1.0000

2π−π+3π0ντ (ex. K0, η, ω, f1) 0.0014 ± 0.0027 1.0000

3π−2π+ντ (ex. K0, ω, f1) 0.0769 ± 0.0030 1.0000

K−2π−2π+ντ (ex. K0) 0.0001 ± 0.0001 1.0000

2π−π+ωντ (ex. K0) 0.0084 ± 0.0006 1.0000

3π−2π+π0ντ (ex. K0, η, ω, f1) 0.0038 ± 0.0009 1.0000

K−2π−2π+π0ντ (ex. K0) 0.0001 ± 0.0001 1.0000

π−f1ντ (f1 → 2π−2π+) 0.0052 ± 0.0004 1.0000

π−2π0ηντ 0.0194 ± 0.0038 1.0000

Applying the fit procedure on the PDG 2015 inputs, the

fit results differ from the 2015 fit by at most 20% of their

uncertainty, for fitted quantities that have measurements with

asymmetric errors, and by at most 5% of their uncertainty for

the other quantities. The differences originate from the differ-

ent treatment of asymmetric errors. The present fit procedure

symmetrizes the errors as σ2
symm = (σ2

+ +σ2
−)/2, while the PDG

2015 fit did model the asymmetric error distributions in the fit.

Comparing the results of the previous edition with the current

fit, there are differences up to 2.3 times the fitted quantity

uncertainty (2.3σ) for quantities that have no measurement in-

cluded in the fit and are derived through the constraints. Those

differences arise mainly from three changes: the unitarity con-

straint has been updated to accomodate several additional decay

modes, the definitions of the respective quantities have been

updated to use the additional decay modes, and the parameters

of all constraints (typically, K, η, ω branching fractions) have

been updated to the values reported in the last published PDG

edition. For quantities that have measurements in the fit, the

fitted values changed at most by 1.1σ, reflecting the inclusion of

several additional measurements, especially on high-multiplicity

decay modes. The uncertainties on the fit results are generally

smaller than in 2015 because only one error scale factor is used

and some additional measurements have been used.

In defining the fit constraints and in selecting the modes

that sum up to one we made some assumptions and choices. We

assume that some channels, like τ− → π−K+π− ≥ 0π0ντ and

τ− → π+K−K− ≥ 0π0ντ , have negligible branching fractions

as expected from the Standard Model, even if the experimental

limits for these branching fractions are not very stringent. The

95% confidence level upper limits are B(τ− → π−K+π− ≥

0π0ντ ) < 0.25% and B(τ− → π+K−K− ≥ 0π0ντ ) < 0.09%,

values not so different from measured branching fractions for

allowed 3-prong modes containing charged kaons. For decays

to final states containing one neutral kaon we assume that

the branching fraction with the K0
L are the same as the

corresponding one with a K0
S. On decays with two neutral

kaons we assume that the branching fractions with K0
LK0

L are

the same as the ones with K0
SK0

S.

BaBar and Belle measure on average lower branching

fractions and ratios.

We compare the BaBar and Belle measurements with the

results of a fit where all their measurements have been excluded.

We find that that BaBar and Belle tend to measure lower τ

branching fractions and ratios than the other experiments.

Figure 3 shows histograms of the 27 normalized differences

between the B-factory measurements and the respective non-

B-factory fit results. The normalization is the uncertainty on

the difference. The average normalized difference between the

two sets of measurements is -0.8σ (-0.8σ for the 16 Belle

measurements and -0.9σ for the 11 BaBar measurements).
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Figure 3: Distribution of the normalized dif-
ference between the 27 B-factory measurements
and non-B-factory measurements. The list in-
cludes 16 measurements of branching fractions
and ratios published by the Belle collaboration
and 11 by the BaBar collaboration that are
used in the fit and for which non-B-factory
measurements exist.

Overconsistency of Leptonic Branching Fraction Mea-

surements.

As observed in the previous editions of this review, measure-

ments of the leptonic branching fractions are more consistent

with each other than expected from the quoted errors on the

individual measurements. The χ2 is 0.34 for Be and 0.08 for
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Bµ. Assuming normal errors, the probability of a smaller χ2 is

1.3% for Be and 0.08% for Bµ.

Technical implementation of the fit.

The fit computes a set of quantities denoted with qi by min-

imizing a χ2 while respecting a series of equality constraints on

the qi. The χ2 is computed using the measurements mi and their

covariance matrix Eij as χ2 = (mi − Aikqk)
tE−1

ij (mj − Ajlql)

where the model matrix Aij is used to get the vector of the

predicted measurements m′
i from the vector of the fit param-

eters qj as m′
i = Aijqj . In this particular implementation the

measurements are grouped by the quantity that they measure,

and all quantities with at least one measurement correspond

to a fit parameter. Therefore, the matrix Aij has one row per

measurement mi and one column per fitted quantity qj , with

unity coefficients for the rows and column that identify a mea-

surement mi of the quantity qj , respectively. The constraints

are equations involving the fit parameters. The fit does not

impose limitations on the functional form of the constraints. In

summary, the fit requires:

min(mi − Aikqk)
tE−1

ij (mj − Ajlql), (1a)

subjected to fr(qs) − cr = 0, (1b)

where the left term of Eq. (1b) defines the constraint expressions.

Using the method of Lagrange multipliers, a set of equations

is obtained by taking the derivatives with respect to the fitted

quantities qk and the Lagrange multipliers λr of the sum of the

χ2 and the constraint expressions multiplied by the Lagrange

multipliers λr, one for each constraint:

min
[
(Aikqk−mi)

tE−1
ij (Ajlql−mj) + 2λr(fr(qs) − cr)

]
(2a)

(∂/∂qk, ∂/∂λr)[expression above] = 0 (2b)

Eq. (2b) defines a set of equations for the vector of the unknowns

(qk, λr), some of which may be non-linear, in case of non-linear

constraints. An iterative minimization procedure approximates

at each step the non-linear constraint expressions by their first

order Taylor expansion around the current values of the fitted

quantities, q̄s:

fr(qs) − cr = fr(q̄s) +
∂fr(qs)

∂qs

∣∣∣∣
q̄s

(qs − q̄s) − cr, (3a)

which can be written as

Brsqs − c′r, (3b)

where c′r are the resulting constant known terms, independent

of qs at first order. After linearization, the differentiation by qk

and λr is trivial and leads to a set of linear equations

At
kiE

−1
ij Ajlql + Bt

krλr = At
kiE

−1
ij mj (4a)

Brsqs = c′r, (4b)

which can be expressed as:

Fijuj = vi (5)

where uj = (qk, λr) and vi is the vector of the known constant

terms running over the index k and then r in the right terms of

Eq. (4a) and Eq. (4b), respectively. Solving the equation set in

Eq. (5) by matrix inversion gives the the fitted quantities and

their variance and covariance matrix, using the measurements

and their variance and covariance matrix. The fit procedure

starts by computing the linear approximation of the non-linear

constraint expressions around the quantities seed values. With

an iterative procedure, the unknowns are updated at each step

by solving the equations and the equations are then linearized

around the updated values, until the variation of the fitted

unknowns is reduced below a numerically small threshold.
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−0.36±0.23±0.11−0.36±0.23±0.11−0.36±0.23±0.11−0.36±0.23±0.11 LEES 12M BABR 476 fb−1 Eee
m = 10.6 GeV

τ− BRANCHING RATIOSτ− BRANCHING RATIOSτ− BRANCHING RATIOSτ− BRANCHING RATIOS�(parti
le− ≥ 0 neutrals ≥ 0K 0ντ (\1-prong"))/�total �1/��(parti
le− ≥ 0 neutrals ≥ 0K 0ντ (\1-prong"))/�total �1/��(parti
le− ≥ 0 neutrals ≥ 0K 0ντ (\1-prong"))/�total �1/��(parti
le− ≥ 0 neutrals ≥ 0K 0ντ (\1-prong"))/�total �1/��1/� = (�3+�5+�9+�10+�14+�16+�20+�23+�27+�28+�30+�36+�38+�41+�43+�45+�48+�49+�50+�52+�56+�57+0.7212�148+0.7212�150+0.7212�152+0.7212�154+0.342�168+0.0828�176+0.0828�177+0.0828�178)/�The 
harged parti
le here 
an be e, µ, or hadron. In many analyses, the sum of thetopologi
al bran
hing fra
tions (1, 3, and 5 prongs) is 
onstrained to be unity. Sin
ethe 5-prong fra
tion is very small, the measured 1-prong and 3-prong fra
tions arehighly 
orrelated and 
annot be treated as independent quantities in our overall �t.We arbitrarily 
hoose to use the 3-prong fra
tion in our �t, and leave the 1-prongfra
tion out. We do, however, use these 1-prong measurements in our average below.The measurements used only for the average are marked \avg," whereas \f&a" marksa result used for the �t and the average.VALUE (%) EVTS DOCUMENT ID TECN COMMENT85.24 ±0.06 OUR FIT85.24 ±0.06 OUR FIT85.24 ±0.06 OUR FIT85.24 ±0.06 OUR FIT85.26 ±0.13 OUR AVERAGE85.26 ±0.13 OUR AVERAGE85.26 ±0.13 OUR AVERAGE85.26 ±0.13 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogrambelow.
• • • We use the following data for averages but not for �ts. • • •85.316±0.093±0.049 78k 1 ABREU 01M DLPH 1992{1995 LEP runs85.274±0.105±0.073 2 ACHARD 01D L3 1992{1995 LEP runs84.48 ±0.27 ±0.23 ACTON 92H OPAL 1990{1991 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •85.45 +0.69

−0.73 ±0.65 DECAMP 92C ALEP Repl. by SCHAEL 05C
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τ1The 
orrelation 
oeÆ
ients between this measurement and the ABREU 01M measure-ments of B(τ → 3-prong) and B(τ → 5-prong) are −0.98 and −0.08 respe
tively.2The 
orrelation 
oeÆ
ients between this measurement and the ACHARD 01D measure-ments of B(τ → \3-prong") and B(τ → \5-prong") are−0.978 and −0.082 respe
tively.

WEIGHTED AVERAGE
85.26±0.13 (Error scaled by 1.6)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ACTON 92H OPAL 4.8
ACHARD 01D L3 0.0
ABREU 01M DLPH 0.3

χ2

       5.1
(Confidence Level = 0.077)

83.5 84 84.5 85 85.5 86 86.5 87�(parti
le− ≥ 0 neutrals ≥ 0K0 ντ (\1-prong"))/�total (%)�(parti
le− ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �2/��(parti
le− ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �2/��(parti
le− ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �2/��(parti
le− ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �2/��2/� = (�3+�5+�9+�10+�14+�16+�20+�23+�27+�28+�30+0.6534�36+0.6534�38+0.6534�41+0.6534�43+0.6534�45+0.0942�48+0.3069�49+�50+0.0942�52+0.3069�56+�57+0.7212�148+0.7212�150+0.7212�152+0.4712�154+0.1049�168+0.0828�176+0.0828�177+0.0828�178)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT84.58±0.06 OUR FIT84.58±0.06 OUR FIT84.58±0.06 OUR FIT84.58±0.06 OUR FIT85.1 ±0.4 OUR AVERAGE85.1 ±0.4 OUR AVERAGE85.1 ±0.4 OUR AVERAGE85.1 ±0.4 OUR AVERAGE
• • • We use the following data for averages but not for �ts. • • •85.6 ±0.6 ±0.3 3300 1 ADEVA 91F L3 Eee
m= 88.3{94.3 GeV84.9 ±0.4 ±0.3 BEHREND 89B CELL Eee
m= 14{47 GeV84.7 ±0.8 ±0.6 2 AIHARA 87B TPC Eee
m= 29 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •86.4 ±0.3 ±0.3 ABACHI 89B HRS Eee
m= 29 GeV87.1 ±1.0 ±0.7 3 BURCHAT 87 MRK2 Eee
m= 29 GeV87.2 ±0.5 ±0.8 SCHMIDKE 86 MRK2 Eee
m= 29 GeV84.7 ±1.1 +1.6

−1.3 169 4 ALTHOFF 85 TASS Eee
m= 34.5 GeV86.1 ±0.5 ±0.9 BARTEL 85F JADE Eee
m= 34.6 GeV87.8 ±1.3 ±3.9 5 BERGER 85 PLUT Eee
m= 34.6 GeV86.7 ±0.3 ±0.6 FERNANDEZ 85 MAC Eee
m= 29 GeV1Not independent of ADEVA 91F �(h− h− h+ ≥ 0 neutrals ≥ 0K0L ντ
)/�total value.2Not independent of AIHARA 87B �(

µ− νµντ
)/�total, �(e− νe ντ

)/�total, and�(h− ≥ 0 neutrals ≥ 0K0L ντ
)/�total values.3Not independent of SCHMIDKE 86 value (also not independent of BURCHAT 87 valuefor �(h− h− h+ ≥ 0 neutrals ≥ 0K0L ντ

)/�total.4Not independent of ALTHOFF 85 �(
µ− νµντ

)/�total, �(e− νe ντ
)/�total, �(h− ≥ 0neutrals ≥ 0K0L ντ

)/�total, and �(h− h− h+ ≥ 0 neutrals ≥ 0K0L ντ
)/�total values.5Not independent of (1-prong + 0π0) and (1-prong + ≥ 1π0) values.�(

µ−νµ ντ

)/�total �3/��(
µ−νµ ντ

)/�total �3/��(
µ−νµ ντ

)/�total �3/��(
µ−νµ ντ

)/�total �3/�To minimize the e�e
t of experiments with large systemati
 errors, we ex
lude exper-iments whi
h together would 
ontribute 5% of the weight in the average.VALUE (%) EVTS DOCUMENT ID TECN COMMENT17.39 ±0.04 OUR FIT17.39 ±0.04 OUR FIT17.39 ±0.04 OUR FIT17.39 ±0.04 OUR FIT17.33 ±0.05 OUR AVERAGE17.33 ±0.05 OUR AVERAGE17.33 ±0.05 OUR AVERAGE17.33 ±0.05 OUR AVERAGE17.319±0.070±0.032 54k 1 SCHAEL 05C ALEP 1991-1995 LEP runs17.34 ±0.09 ±0.06 31.4k ABBIENDI 03 OPAL 1990-1995 LEP runs17.342±0.110±0.067 21.5k 2 ACCIARRI 01F L3 1991-1995 LEP runs17.325±0.095±0.077 27.7k ABREU 99X DLPH 1991-1995 LEP runs
• • • We use the following data for averages but not for �ts. • • •17.37 ±0.08 ±0.18 3 ANASTASSOV 97 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •17.31 ±0.11 ±0.05 20.7k BUSKULIC 96C ALEP Repl. by SCHAEL 05C17.02 ±0.19 ±0.24 6586 ABREU 95T DLPH Repl. by ABREU 99X17.36 ±0.27 7941 AKERS 95I OPAL Repl. by ABBIENDI 0317.6 ±0.4 ±0.4 2148 ADRIANI 93M L3 Repl. by ACCIARRI 01F17.4 ±0.3 ±0.5 4 ALBRECHT 93G ARG Eee
m= 9.4{10.6 GeV17.35 ±0.41 ±0.37 DECAMP 92C ALEP 1989-1990 LEP runs17.7 ±0.8 ±0.4 568 BEHREND 90 CELL Eee
m= 35 GeV17.4 ±1.0 2197 ADEVA 88 MRKJ Eee
m= 14{16 GeV17.7 ±1.2 ±0.7 AIHARA 87B TPC Eee
m= 29 GeV

18.3 ±0.9 ±0.8 BURCHAT 87 MRK2 Eee
m= 29 GeV18.6 ±0.8 ±0.7 558 5 BARTEL 86D JADE Eee
m= 34.6 GeV12.9 ±1.7 +0.7
−0.5 ALTHOFF 85 TASS Eee
m= 34.5 GeV18.0 ±0.9 ±0.5 473 5 ASH 85B MAC Eee
m= 29 GeV18.0 ±1.0 ±0.6 6 BALTRUSAIT...85 MRK3 Eee
m= 3.77 GeV19.4 ±1.6 ±1.7 153 BERGER 85 PLUT Eee
m= 34.6 GeV17.6 ±2.6 ±2.1 47 BEHREND 83C CELL Eee
m= 34 GeV17.8 ±2.0 ±1.8 BERGER 81B PLUT Eee
m= 9{32 GeV1See footnote to SCHAEL 05C �(τ− → e− νe ντ )/�total measurement for 
orrelationswith other measurements.2The 
orrelation 
oeÆ
ient between this measurement and the ACCIARRI 01F measure-ment of B(τ− → e− νe ντ ) is 0.08.3The 
orrelation 
oeÆ
ients between this measurement and the ANASTASSOV 97 mea-surements of B(e νe ντ ), B(µνµ ντ )/B(e νe ντ ), B(h− ντ ), and B(h− ντ )/B(e νe ντ )are 0.50, 0.58, 0.50, and 0.08 respe
tively.4Not independent of ALBRECHT 92D �(µ− νµντ )/�(e− νe ντ ) and ALBRECHT 93G�(µ− νµ ντ )× �(e− νe ντ )/�2total values.5Modi�ed using B(e− νe ντ )/B(\1 prong") and B(\1 prong") ,= 0.855.6 Error 
orrelated with BALTRUSAITIS 85 e ν ν value.�(

µ−νµ ντ γ
)/�total �4/��(

µ−νµ ντ γ
)/�total �4/��(

µ−νµ ντ γ
)/�total �4/��(

µ−νµ ντ γ
)/�total �4/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.368±0.010 OUR AVERAGE0.368±0.010 OUR AVERAGE0.368±0.010 OUR AVERAGE0.368±0.010 OUR AVERAGE0.369±0.003±0.010 16k 1 LEES 15G BABR 431 fb−1 Eee
m=10.6 GeV0.361±0.016±0.035 2 BERGFELD 00 CLEO Eee
m= 10.6 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.30 ±0.04 ±0.05 116 3 ALEXANDER 96S OPAL 1991{1994 LEP runs0.23 ±0.10 10 4 WU 90 MRK2 Eee
m= 29 GeV1LEES 15G impose requirements on dete
ted γ's 
orresponding to a τ -rest-frame energy
uto� E∗γ > 10 MeV.2BERGFELD 00 impose requirements on dete
ted γ's 
orresponding to a τ -rest-frameenergy 
uto� E∗γ > 10 MeV. For E∗γ > 20 MeV, they quote (3.04± 0.14± 0.30)×10−3.3ALEXANDER 96S impose requirements on dete
ted γ's 
orresponding to a τ -rest-frameenergy 
uto� Eγ >20 MeV.4WU 90 reports �(µ− νµντ γ)/�(µ− νµντ ) = 0.013 ± 0.006, whi
h is 
onverted to�(µ− νµ ντ γ)/�total using �(µ− νµ ντ γ)/�total = 17.35%. Requirements on dete
ted
γ's 
orrespond to a τ rest frame energy 
uto� Eγ > 37 MeV.�(e− νe ντ

)/�total �5/��(e− νe ντ

)/�total �5/��(e− νe ντ

)/�total �5/��(e− νe ντ

)/�total �5/�To minimize the e�e
t of experiments with large systemati
 errors, we ex
lude exper-iments whi
h together would 
ontribute 5% of the weight in the average.VALUE (%) EVTS DOCUMENT ID TECN COMMENT17.82 ±0.04 OUR FIT17.82 ±0.04 OUR FIT17.82 ±0.04 OUR FIT17.82 ±0.04 OUR FIT17.82 ±0.05 OUR AVERAGE17.82 ±0.05 OUR AVERAGE17.82 ±0.05 OUR AVERAGE17.82 ±0.05 OUR AVERAGE17.837±0.072±0.036 56k 1 SCHAEL 05C ALEP 1991-1995 LEP runs17.806±0.104±0.076 24.7k 2 ACCIARRI 01F L3 1991{1995 LEP runs17.81 ±0.09 ±0.06 33.1k ABBIENDI 99H OPAL 1991{1995 LEP runs17.877±0.109±0.110 23.3k ABREU 99X DLPH 1991{1995 LEP runs17.76 ±0.06 ±0.17 3 ANASTASSOV 97 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •17.78 ±0.10 ±0.09 25.3k ALEXANDER 96D OPAL Repl. by ABBI-ENDI 99H17.79 ±0.12 ±0.06 20.6k BUSKULIC 96C ALEP Repl. by SCHAEL 05C17.51 ±0.23 ±0.31 5059 ABREU 95T DLPH Repl.. by ABREU 99X17.9 ±0.4 ±0.4 2892 ADRIANI 93M L3 Repl. by ACCIARRI 01F17.5 ±0.3 ±0.5 4 ALBRECHT 93G ARG Eee
m= 9.4{10.6 GeV17.97 ±0.14 ±0.23 3970 AKERIB 92 CLEO Repl. by ANAS-TASSOV 9719.1 ±0.4 ±0.6 2960 5 AMMAR 92 CLEO Eee
m= 10.5{10.9 GeV18.09 ±0.45 ±0.45 DECAMP 92C ALEP Repl. by SCHAEL 05C17.0 ±0.5 ±0.6 1.7k ABACHI 90 HRS Eee
m= 29 GeV18.4 ±0.8 ±0.4 644 BEHREND 90 CELL Eee
m= 35 GeV16.3 ±0.3 ±3.2 JANSSEN 89 CBAL Eee
m= 9.4{10.6 GeV18.4 ±1.2 ±1.0 AIHARA 87B TPC Eee
m= 29 GeV19.1 ±0.8 ±1.1 BURCHAT 87 MRK2 Eee
m= 29 GeV16.8 ±0.7 ±0.9 515 5 BARTEL 86D JADE Eee
m= 34.6 GeV20.4 ±3.0 +1.4

−0.9 ALTHOFF 85 TASS Eee
m= 34.5 GeV17.8 ±0.9 ±0.6 390 5 ASH 85B MAC Eee
m= 29 GeV18.2 ±0.7 ±0.5 6 BALTRUSAIT...85 MRK3 Eee
m= 3.77 GeV13.0 ±1.9 ±2.9 BERGER 85 PLUT Eee
m= 34.6 GeV18.3 ±2.4 ±1.9 60 BEHREND 83C CELL Eee
m= 34 GeV16.0 ±1.3 459 7 BACINO 78B DLCO Eee
m= 3.1{7.4 GeV1Correlation matrix for SCHAEL 05C bran
hing fra
tions, in per
ent:(1) �(τ− → e− νe ντ )/�total(2) �(τ− → µ− νµντ )/�total(3) �(τ− → π− ντ )/�total(4) �(τ− → π−π0 ντ )/�total(5) �(τ− → π− 2π0 ντ (ex.K0))/�total
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τ (6) �(τ− → π− 3π0 ντ (ex.K0))/�total(7) �(τ− → h− 4π0 ντ (ex.K0,η))/�total(8) �(τ− → π−π+π− ντ (ex.K0,ω))/�total(9) �(τ− → π−π+π−π0 ντ (ex.K0))/�total(10) �(τ− → h− h− h+2π0 ντ (ex.K0))/�total(11) �(τ− → h− h− h+3π0 ντ )/�total(12) �(τ− → 3h− 2h+ ντ (ex.K0))/�total(13) �(τ− → 3h− 2h+π0 ντ (ex.K0))/�total(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)(2) -20(3) -9 -6(4) -16 -12 2(5) -5 -5 -17 -37(6) 0 -4 -15 2 -27(7) -2 -4 -24 -15 20 -47(8) -14 -9 15 -5 -17 -14 -8(9) -13 -12 -25 -30 4 -2 16 -15(10) 0 -2 -23 -14 4 10 13 -6 -17(11) 1 0 -5 1 4 6 0 -9 -2 -11(12) 0 1 9 4 -8 -4 -6 9 -5 -4 -2(13) 1 -4 -3 -5 3 2 -4 -3 -1 4 1 -242The 
orrelation 
oeÆ
ient between this measurement and the ACCIARRI 01F measure-ment of B(τ− → µ− νµ ντ ) is 0.08.3The 
orrelation 
oeÆ
ients between this measurement and the ANASTASSOV 97 mea-surements of B(µνµ ντ ), B(µνµ ντ )/B(e νe ντ ), B(h− ντ ), and B(h− ντ )/B(e νe ντ )are 0.50, −0.42, 0.48, and −0.39 respe
tively.4Not independent of ALBRECHT 92D �(µ− νµντ )/�(e− νe ντ ) and ALBRECHT 93G�(µ− νµ ντ )× �(e− νe ντ )/�2total values.5Modi�ed using B(e− νe ντ )/B(\1 prong") and B(\1 prong") ,= 0.855.6 Error 
orrelated with BALTRUSAITIS 85 �(

µ− νµ ντ
)/�total.7BACINO 78B value 
omes from �t to events with e± and one other nonele
tron 
hargedprong.�(µ−νµ ντ

)/�(e− νe ντ

) �3/�5�(µ−νµ ντ

)/�(e− νe ντ

) �3/�5�(µ−νµ ντ

)/�(e− νe ντ

) �3/�5�(µ−νµ ντ

)/�(e− νe ντ

) �3/�5Standard Model predi
tion in
luding mass e�e
ts is 0.9726.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT97.62±0.28 OUR FIT97.62±0.28 OUR FIT97.62±0.28 OUR FIT97.62±0.28 OUR FIT97.9 ±0.4 OUR AVERAGE97.9 ±0.4 OUR AVERAGE97.9 ±0.4 OUR AVERAGE97.9 ±0.4 OUR AVERAGE97.96±0.16±0.36 731k 1 AUBERT 10F BABR 467 fb−1 Eee
m= 10.6 GeV97.77±0.63±0.87 2 ANASTASSOV 97 CLEO Eee
m= 10.6 GeV99.7 ±3.5 ±4.0 ALBRECHT 92D ARG Eee
m= 9.4{10.6 GeV1Correlation matrix for AUBERT 10F bran
hing fra
tions:(1) �(τ− → µ− νµντ ) / �(τ− → e− νe ντ )(2) �(τ− → π− ντ ) / �(τ− → e− νe ντ )(3) �(τ− → K− ντ ) / �(τ− → e− νe ντ )(1) (2)(2) 0.25(3) 0.12 0.332The 
orrelation 
oeÆ
ients between this measurement and the ANASTASSOV 97 mea-surements of B(µνµ ντ ), B(e νe ντ ), B(h− ντ ), and B(h− ντ )/B(e νe ντ ) are 0.58,
−0.42, 0.07, and 0.45 respe
tively.�(e− νe ντ γ

)/�total �6/��(e− νe ντ γ
)/�total �6/��(e− νe ντ γ
)/�total �6/��(e− νe ντ γ
)/�total �6/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.84 ±0.05 OUR AVERAGE1.84 ±0.05 OUR AVERAGE1.84 ±0.05 OUR AVERAGE1.84 ±0.05 OUR AVERAGE1.847±0.015±0.052 18k 1 LEES 15G BABR 431 fb−1 Eee
m=10.6 GeV1.75 ±0.06 ±0.17 2 BERGFELD 00 CLEO Eee
m= 10.6 GeV1LEES 15G impose requirements on dete
ted γ's 
orresponding to a τ -rest-frame energy
uto� E∗γ > 10 MeV.2BERGFELD 00 impose requirements on dete
ted γ's 
orresponding to a τ -rest-frameenergy 
uto� E∗γ > 10 MeV.�(h− ≥ 0K0L ντ

)/�total �7/��(h− ≥ 0K0L ντ

)/�total �7/��(h− ≥ 0K0L ντ

)/�total �7/��(h− ≥ 0K0L ντ

)/�total �7/��7/� = (�9+�10+12�36+12�38+�50)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT12.03±0.05 OUR FIT12.03±0.05 OUR FIT12.03±0.05 OUR FIT12.03±0.05 OUR FIT12.2 ±0.4 OUR AVERAGE12.2 ±0.4 OUR AVERAGE12.2 ±0.4 OUR AVERAGE12.2 ±0.4 OUR AVERAGE12.47±0.26±0.43 2967 1 ACCIARRI 95 L3 1992 LEP run12.4 ±0.7 ±0.7 283 2 ABREU 92N DLPH 1990 LEP run12.1 ±0.7 ±0.5 309 ALEXANDER 91D OPAL 1990 LEP run
• • • We use the following data for averages but not for �ts. • • •11.3 ±0.5 ±0.8 798 3 FORD 87 MAC Eee
m= 29 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •12.44±0.11±0.11 15k 4 BUSKULIC 96 ALEP Repl. by SCHAEL 05C11.7 ±0.6 ±0.8 5 ALBRECHT 92D ARG Eee
m= 9.4{10.6 GeV12.98±0.44±0.33 6 DECAMP 92C ALEP Repl. by SCHAEL 05C12.3 ±0.9 ±0.5 1338 BEHREND 90 CELL Eee
m= 35 GeV

11.1 ±1.1 ±1.4 7 BURCHAT 87 MRK2 Eee
m= 29 GeV12.3 ±0.6 ±1.1 328 8 BARTEL 86D JADE Eee
m= 34.6 GeV13.0 ±2.0 ±4.0 BERGER 85 PLUT Eee
m= 34.6 GeV11.2 ±1.7 ±1.2 34 9 BEHREND 83C CELL Eee
m= 34 GeV1ACCIARRI 95 with 0.65% added to remove their 
orre
tion for π−K0L ba
kgrounds.2ABREU 92N with 0.5% added to remove their 
orre
tion for K∗(892)− ba
kgrounds.3 FORD 87 result for B(π− ντ ) with 0.67% added to remove their K− 
orre
tion andadjusted for 1992 B(\1 prong").4BUSKULIC 96 quote 11.78 ± 0.11 ± 0.13 We add 0.66 to undo their 
orre
tion forunseen K0L and modify the systemati
 error a

ordingly.5Not independent of ALBRECHT 92D �(µ− νµ ντ )/�(e− νe ντ ), �(µ− νµ ντ ) ×�(e− νe ντ ), and �(h− ≥ 0K0L ντ )/�(e− νe ντ ) values.6DECAMP 92C quote B(h− ≥ 0K0L ≥ 0 (K0S → π+π−) ντ ) = 13.32 ± 0.44 ± 0.33.We subtra
t 0.35 to 
orre
t for their in
lusion of the K0S de
ays.7BURCHAT 87 with 1.1% added to remove their 
orre
tion for K− and K∗(892)− ba
k-grounds.8BARTEL 86D result for B(π− ντ ) with 0.59% added to remove their K− 
orre
tion andadjusted for 1992 B(\1 prong").9BEHREND 83C quote B(π− ντ ) = 9.9± 1.7± 1.3 after subtra
ting 1.3± 0.5 to 
orre
tfor B(K− ντ ).�(h−ντ

)/�total �8/�= (�9+�10)/��(h−ντ

)/�total �8/�= (�9+�10)/��(h−ντ

)/�total �8/�= (�9+�10)/��(h−ντ

)/�total �8/�= (�9+�10)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT11.51 ±0.05 OUR FIT11.51 ±0.05 OUR FIT11.51 ±0.05 OUR FIT11.51 ±0.05 OUR FIT11.63 ±0.12 OUR AVERAGE11.63 ±0.12 OUR AVERAGE11.63 ±0.12 OUR AVERAGE11.63 ±0.12 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogrambelow.11.571±0.120±0.114 19k 1 ABDALLAH 06A DLPH 1992{1995 LEP runs11.98 ±0.13 ±0.16 ACKERSTAFF 98M OPAL 1991{1995 LEP runs11.52 ±0.05 ±0.12 2 ANASTASSOV 97 CLEO Eee
m= 10.6 GeV1Correlation matrix for ABDALLAH 06A bran
hing fra
tions, in per
ent:(1) �(τ− → h− ντ )/�total(2) �(τ− → h−π0 ντ )/�total(3) �(τ− → h− ≥ 1π0 ντ (ex.K0))/�total(4) �(τ− → h− 2π0 ντ (ex.K0))/�total(5) �(τ− → h− ≥ 3π0 ντ (ex. K0))/�total(6) �(τ− → h− h− h+ ντ (ex.K0))/�total(7) �(τ− → h− h− h+π0 ντ (ex.K0))/�total(8) �(τ− → h− h− h+ ≥ 1π0 ντ (ex. K0))/�total(9) �(τ− → h− h− h+ ≥ 2π0 ντ (ex. K0))/�total(10) �(τ− → 3h− 2h+ ντ (ex.K0))/�total(11) �(τ− → 3h− 2h+π0 ντ (ex.K0))/�total(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)(2) -34(3) -47 56(4) 6 -66 15(5) -6 38 11 -86(6) -7 -8 15 0 -2(7) -2 -1 -5 -3 3 -53(8) -4 -4 -13 -4 -2 -56 75(9) -1 -1 -4 3 -6 26 -78 -16(10) -1 -1 1 0 0 -2 -3 -1 3(11) 0 0 0 0 0 1 0 -5 5 -572The 
orrelation 
oeÆ
ients between this measurement and the ANASTASSOV 97 mea-surements of B(µνµ ντ ), B(e νe ντ ), B(µνµ ντ )/B(e νe ντ ), and B(h− ντ )/B(e νe ντ )are 0.50, 0.48, 0.07, and 0.63 respe
tively.
WEIGHTED AVERAGE
11.63±0.12 (Error scaled by 1.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ANASTASSOV 97 CLEO 0.7
ACKERSTAFF 98M OPAL 2.9
ABDALLAH 06A DLPH 0.1

χ2

       3.7
(Confidence Level = 0.155)

11 11.5 12 12.5 13�(h−ντ

)/�total (%)



735735735735See key on page 601 LeptonParti
le Listings
τ�(h−ντ

)/�(e− νe ντ

) �8/�5 = (�9+�10)/�5�(h−ντ

)/�(e− νe ντ

) �8/�5 = (�9+�10)/�5�(h−ντ

)/�(e− νe ντ

) �8/�5 = (�9+�10)/�5�(h−ντ

)/�(e− νe ντ

) �8/�5 = (�9+�10)/�5VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT64.62±0.33 OUR FIT64.62±0.33 OUR FIT64.62±0.33 OUR FIT64.62±0.33 OUR FIT64.0 ±0.7 OUR AVERAGE64.0 ±0.7 OUR AVERAGE64.0 ±0.7 OUR AVERAGE64.0 ±0.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.
• • • We use the following data for averages but not for �ts. • • •63.33±0.14±0.61 394k 1 AUBERT 10F BABR 467 fb−1 Eee
m=10.6 GeV64.84±0.41±0.60 2 ANASTASSOV 97 CLEO Eee
m= 10.6 GeV1Not independent of AUBERT 10F �(τ− → π− ντ )/�(τ− → e− νe ντ ) and �(τ− →K− ντ )/�(τ− → e− νe ντ ).2The 
orrelation 
oeÆ
ients between this measurement and the ANASTASSOV 97 mea-surements of B(µνµντ ), B(e νe ντ ), B(µνµντ )/B(e νe ντ ), and B(h− ντ ) are 0.08,

−0.39, 0.45, and 0.63 respe
tively.�(
π− ντ

)/�total �9/��(
π− ντ

)/�total �9/��(
π− ντ

)/�total �9/��(
π− ντ

)/�total �9/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT10.82 ±0.05 OUR FIT10.82 ±0.05 OUR FIT10.82 ±0.05 OUR FIT10.82 ±0.05 OUR FIT10.828±0.070±0.07810.828±0.070±0.07810.828±0.070±0.07810.828±0.070±0.078 38k 1 SCHAEL 05C ALEP 1991-1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •11.06 ±0.11 ±0.14 2 BUSKULIC 96 ALEP Repl. by SCHAEL 05C11.7 ±0.4 ±1.8 1138 BLOCKER 82D MRK2 Eee
m= 3.5{6.7 GeV1See footnote to SCHAEL 05C �(τ− → e− νe ντ )/�total measurement for 
orrelationswith other measurements.2Not independent of BUSKULIC 96 B(h− ντ ) and B(K− ντ ) values.�(

π− ντ

)/�(e− νe ντ

) �9/�5�(
π− ντ

)/�(e− νe ντ

) �9/�5�(
π− ντ

)/�(e− νe ντ

) �9/�5�(
π− ντ

)/�(e− νe ντ

) �9/�5VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT60.71±0.32 OUR FIT60.71±0.32 OUR FIT60.71±0.32 OUR FIT60.71±0.32 OUR FIT59.45±0.14±0.6159.45±0.14±0.6159.45±0.14±0.6159.45±0.14±0.61 369k 1 AUBERT 10F BABR 467 fb−1 Eee
m= 10.6 GeV1See footnote to AUBERT 10F �(τ− → µ− νµ ντ )/�(τ− → e− νe ντ ) for 
orrelationswith other measurements.�(K−ντ

)/�total �10/��(K−ντ

)/�total �10/��(K−ντ

)/�total �10/��(K−ντ

)/�total �10/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.696±0.010 OUR FIT0.696±0.010 OUR FIT0.696±0.010 OUR FIT0.696±0.010 OUR FIT0.685±0.023 OUR AVERAGE0.685±0.023 OUR AVERAGE0.685±0.023 OUR AVERAGE0.685±0.023 OUR AVERAGE0.658±0.027±0.029 1 ABBIENDI 01J OPAL 1990{1995 LEP runs0.696±0.025±0.014 2032 BARATE 99K ALEP 1991{1995 LEP runs0.85 ±0.18 27 ABREU 94K DLPH LEP 1992 Z data0.66 ±0.07 ±0.09 99 BATTLE 94 CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.72 ±0.04 ±0.04 728 BUSKULIC 96 ALEP Repl. by BARATE 99K0.59 ±0.18 16 MILLS 84 DLCO Eee
m= 29 GeV1.3 ±0.5 15 BLOCKER 82B MRK2 Eee
m= 3.9{6.7 GeV1The 
orrelation 
oeÆ
ient between this measurement and the ABBIENDI 01J B(τ− →K− ≥ 0π0 ≥ 0K0 ≥ 0γ ντ ) is 0.60.�(K−ντ

)/�(e−νe ντ

) �10/�5�(K−ντ

)/�(e−νe ντ

) �10/�5�(K−ντ

)/�(e−νe ντ

) �10/�5�(K−ντ

)/�(e−νe ντ

) �10/�5VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.91 ±0.05 OUR FIT3.91 ±0.05 OUR FIT3.91 ±0.05 OUR FIT3.91 ±0.05 OUR FIT3.882±0.032±0.0573.882±0.032±0.0573.882±0.032±0.0573.882±0.032±0.057 25k 1 AUBERT 10F BABR 467 fb−1 Eee
m= 10.6 GeV1See footnote to AUBERT 10F �(τ− → µ− νµ ντ )/�(τ− → e− νe ντ ) for 
orrelationswith other measurements.�(K−ντ

)/�(
π−ντ

) �10/�9�(K−ντ

)/�(
π−ντ

) �10/�9�(K−ντ

)/�(
π−ντ

) �10/�9�(K−ντ

)/�(
π−ντ

) �10/�9VALUE (units 10−2) DOCUMENT ID TECN COMMENT6.44 ±0.09 OUR FIT6.44 ±0.09 OUR FIT6.44 ±0.09 OUR FIT6.44 ±0.09 OUR FIT
• • • We use the following data for averages but not for �ts. • • •6.531±0.056±0.0936.531±0.056±0.0936.531±0.056±0.0936.531±0.056±0.093 1 AUBERT 10F BABR 467 fb−1 Eee
m= 10.6 GeV1Not independent of AUBERT 10F �(τ− → π− ντ )/�(τ− → e− νe ντ ) and �(τ− →K− ντ )/�(τ− → e− νe ντ ).�(h− ≥ 1 neutralsντ

)/�total �11/��(h− ≥ 1 neutralsντ

)/�total �11/��(h− ≥ 1 neutralsντ

)/�total �11/��(h− ≥ 1 neutralsντ

)/�total �11/��11/� = (�14+�16+�20+�23+�27+�28+�30+0.15344�36+0.15344�38+0.15344�41+0.15344�43+0.0942�48+0.0942�52+0.7212�148+0.7212�150+0.7212�152+0.1107�154+0.0828�176+0.0828�177+0.0828�178)/�VALUE (%) DOCUMENT ID TECN COMMENT37.00±0.09 OUR FIT37.00±0.09 OUR FIT37.00±0.09 OUR FIT37.00±0.09 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •36.14±0.33±0.58 1 AKERS 94E OPAL 1991{1992 LEP runs38.4 ±1.2 ±1.0 2 BURCHAT 87 MRK2 Eee
m= 29 GeV42.7 ±2.0 ±2.9 BERGER 85 PLUT Eee
m= 34.6 GeV1Not independent of ACKERSTAFF 98M B(h−π0 ντ ) and B(h− ≥ 2π0 ντ ) values.2BURCHAT 87 quote for B(π± ≥ 1 neutralντ ) = 0.378 ± 0.012 ± 0.010. We add 0.006to a

ount for 
ontribution from (K∗− ντ ) whi
h they �xed at BR = 0.013.

�(h− ≥ 1π0 ντ (ex.K0))/�total �12/��(h− ≥ 1π0 ντ (ex.K0))/�total �12/��(h− ≥ 1π0 ντ (ex.K0))/�total �12/��(h− ≥ 1π0 ντ (ex.K0))/�total �12/��12/� = (�14+�16+�20+�23+�27+�28+�30+0.3268�148+0.3268�150+0.3268�152)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT36.51 ±0.09 OUR FIT36.51 ±0.09 OUR FIT36.51 ±0.09 OUR FIT36.51 ±0.09 OUR FIT
• • • We use the following data for averages but not for �ts. • • •36.641±0.155±0.12736.641±0.155±0.12736.641±0.155±0.12736.641±0.155±0.127 45k 1 ABDALLAH 06A DLPH 1992{1995 LEP runs1 See footnote to ABDALLAH 06A �(τ− → h− ντ )/�total measurement for 
orrelationswith other measurements.�(h−π0 ντ

)/�total �13/�= (�14+�16)/��(h−π0 ντ

)/�total �13/�= (�14+�16)/��(h−π0 ντ

)/�total �13/�= (�14+�16)/��(h−π0 ντ

)/�total �13/�= (�14+�16)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT25.93 ±0.09 OUR FIT25.93 ±0.09 OUR FIT25.93 ±0.09 OUR FIT25.93 ±0.09 OUR FIT25.73 ±0.16 OUR AVERAGE25.73 ±0.16 OUR AVERAGE25.73 ±0.16 OUR AVERAGE25.73 ±0.16 OUR AVERAGE25.67 ±0.01 ±0.39 5.4M FUJIKAWA 08 BELL 72 fb−1 Eee
m=10.6GeV25.740±0.201±0.138 35k 1 ABDALLAH 06A DLPH 1992{1995 LEP runs25.89 ±0.17 ±0.29 ACKERSTAFF 98M OPAL 1991{1995 LEP runs25.05 ±0.35 ±0.50 6613 ACCIARRI 95 L3 1992 LEP run25.87 ±0.12 ±0.42 51k 2 ARTUSO 94 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •25.76 ±0.15 ±0.13 31k BUSKULIC 96 ALEP Repl. by SCHAEL 05C25.98 ±0.36 ±0.52 3 AKERS 94E OPAL Repl. by ACKER-STAFF 98M22.9 ±0.8 ±1.3 283 4 ABREU 92N DLPH Eee
m= 88.2{94.2 GeV23.1 ±0.4 ±0.9 1249 5 ALBRECHT 92Q ARG Eee
m= 10 GeV25.02 ±0.64 ±0.88 1849 DECAMP 92C ALEP 1989{1990 LEP runs22.0 ±0.8 ±1.9 779 ANTREASYAN 91 CBAL Eee
m= 9.4{10.6 GeV22.6 ±1.5 ±0.7 1101 BEHREND 90 CELL Eee
m= 35 GeV23.1 ±1.9 ±1.6 BEHREND 84 CELL Eee
m= 14,22 GeV1See footnote to ABDALLAH 06A �(τ− → h− ντ )/�total measurement for 
orrelationswith other measurements.2ARTUSO 94 reports the 
ombined result from three independent methods, one of whi
h(23% of the τ− → h−π0 ντ ) is normalized to the in
lusive one-prong bran
hing fra
tion,taken as 0.854 ± 0.004. Renormalization to the present value 
auses negligible 
hange.3AKERS 94E quote (26.25 ± 0.36 ± 0.52)× 10−2; we subtra
t 0.27% from their numberto 
orre
t for τ− → h−K0L ντ .4ABREU 92N with 0.5% added to remove their 
orre
tion for K∗(892)− ba
kgrounds.5ALBRECHT 92Q with 0.5% added to remove their 
orre
tion for τ− → K∗(892)− ντba
kground.�(

π−π0 ντ

)/�total �14/��(
π−π0 ντ

)/�total �14/��(
π−π0 ντ

)/�total �14/��(
π−π0 ντ

)/�total �14/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT25.49 ±0.09 OUR FIT25.49 ±0.09 OUR FIT25.49 ±0.09 OUR FIT25.49 ±0.09 OUR FIT25.46 ±0.12 OUR AVERAGE25.46 ±0.12 OUR AVERAGE25.46 ±0.12 OUR AVERAGE25.46 ±0.12 OUR AVERAGE25.471±0.097±0.085 81k 1 SCHAEL 05C ALEP 1991-1995 LEP runs
• • • We use the following data for averages but not for �ts. • • •25.36 ±0.44 2 ARTUSO 94 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •25.30 ±0.15 ±0.13 3 BUSKULIC 96 ALEP Repl. by SCHAEL 05C21.5 ±0.4 ±1.9 4400 4,5 ALBRECHT 88L ARG Eee
m= 10 GeV23.0 ±1.3 ±1.7 582 ADLER 87B MRK3 Eee
m= 3.77 GeV25.8 ±1.7 ±2.5 6 BURCHAT 87 MRK2 Eee
m= 29 GeV22.3 ±0.6 ±1.4 629 5 YELTON 86 MRK2 Eee
m= 29 GeV1See footnote to SCHAEL 05C �(τ− → e− νe ντ )/�total measurement for 
orrelationswith other measurements.2Not independent of ARTUSO 94 B(h−π0 ντ ) and BATTLE 94 B(K−π0 ντ ) values.3Not independent of BUSKULIC 96 B(h−π0 ντ ) and B(K−π0 ντ ) values.4The authors divide by ( �3 + �5 + �9 + �10 )/� = 0.467 to obtain this result.5 Experiment had no hadron identi�
ation. Kaon 
orre
tions were made, but insuÆ
ientinformation is given to permit their removal.6BURCHAT 87 value is not independent of YELTON 86 value. Nonresonant de
aysin
luded.�(

π−π0 non-ρ(770)ντ

)/�total �15/��(
π−π0 non-ρ(770)ντ

)/�total �15/��(
π−π0 non-ρ(770)ντ

)/�total �15/��(
π−π0 non-ρ(770)ντ

)/�total �15/�VALUE (%) DOCUMENT ID TECN COMMENT0.3±0.1±0.30.3±0.1±0.30.3±0.1±0.30.3±0.1±0.3 1 BEHREND 84 CELL Eee
m= 14,22 GeV1BEHREND 84 assume a 
at nonresonant mass distribution down to the ρ(770) mass,using events with mass above 1300 to set the level.�(K−π0 ντ

)/�total �16/��(K−π0 ντ

)/�total �16/��(K−π0 ντ

)/�total �16/��(K−π0 ντ

)/�total �16/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.433±0.015 OUR FIT0.433±0.015 OUR FIT0.433±0.015 OUR FIT0.433±0.015 OUR FIT0.426±0.016 OUR AVERAGE0.426±0.016 OUR AVERAGE0.426±0.016 OUR AVERAGE0.426±0.016 OUR AVERAGE0.416±0.003±0.018 78k AUBERT 07AP BABR 230 fb−1 Eee
m= 10.6 GeV0.471±0.059±0.023 360 ABBIENDI 04J OPAL 1991-1995 LEP runs0.444±0.026±0.024 923 BARATE 99K ALEP 1991-1995 LEP runs0.51 ±0.10 ±0.07 37 BATTLE 94 CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.52 ±0.04 ±0.05 395 BUSKULIC 96 ALEP Repl. by BARATE 99K
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τ�(h− ≥ 2π0 ντ

)/�total �17/��(h− ≥ 2π0 ντ

)/�total �17/��(h− ≥ 2π0 ντ

)/�total �17/��(h− ≥ 2π0 ντ

)/�total �17/��17/� = (�20+�23+�27+�28+�30+0.15344�36+0.15344�38+0.15344�41+0.15344�43+0.09419�48+0.0942�52+0.3268�148+0.3268�150+0.3268�152)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT10.81±0.09 OUR FIT10.81±0.09 OUR FIT10.81±0.09 OUR FIT10.81±0.09 OUR FIT9.91±0.31±0.279.91±0.31±0.279.91±0.31±0.279.91±0.31±0.27 ACKERSTAFF 98M OPAL 1991{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.89±0.34±0.55 1 AKERS 94E OPAL Repl. by ACKER-STAFF 98M14.0 ±1.2 ±0.6 938 2 BEHREND 90 CELL Eee
m= 35 GeV12.0 ±1.4 ±2.5 3 BURCHAT 87 MRK2 Eee
m= 29 GeV13.9 ±2.0 +1.9

−2.2 4 AIHARA 86E TPC Eee
m= 29 GeV1AKERS 94E not independent of AKERS 94E B(h− ≥ 1π0 ντ ) and B(h−π0 ντ ) mea-surements.2No independent of BEHREND 90 �(h− 2π0 ντ (exp. K0)) and �(h− ≥ 3π0 ντ ).3 Error 
orrelated with BURCHAT 87 �(ρ− νe )/�(total) value.4AIHARA 86E (TPC) quote B(2π0π− ντ ) + 1.6B(3π0π− ντ ) + 1.1B(π0 ηπ− ντ ).�(h−2π0 ντ

)/�total �18/��(h−2π0 ντ

)/�total �18/��(h−2π0 ντ

)/�total �18/��(h−2π0 ντ

)/�total �18/��18/� = (�20+�23+0.15344�36+0.15344�38)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT9.48±0.10 OUR FIT9.48±0.10 OUR FIT9.48±0.10 OUR FIT9.48±0.10 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.48±0.13±0.10 12k 1 BUSKULIC 96 ALEP Repl. by SCHAEL 05C1BUSKULIC 96 quote 9.29 ± 0.13 ± 0.10. We add 0.19 to undo their 
orre
tion for

τ− → h−K0 ντ .�(h−2π0 ντ (ex.K0))/�total �19/��(h−2π0 ντ (ex.K0))/�total �19/��(h−2π0 ντ (ex.K0))/�total �19/��(h−2π0 ντ (ex.K0))/�total �19/��19/� = (�20+�23)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT9.32 ±0.10 OUR FIT9.32 ±0.10 OUR FIT9.32 ±0.10 OUR FIT9.32 ±0.10 OUR FIT9.17 ±0.27 OUR AVERAGE9.17 ±0.27 OUR AVERAGE9.17 ±0.27 OUR AVERAGE9.17 ±0.27 OUR AVERAGE9.498±0.320±0.275 9.5k 1 ABDALLAH 06A DLPH 1992{1995 LEP runs8.88 ±0.37 ±0.42 1060 ACCIARRI 95 L3 1992 LEP run
• • • We use the following data for averages but not for �ts. • • •8.96 ±0.16 ±0.44 2 PROCARIO 93 CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •10.38 ±0.66 ±0.82 809 3 DECAMP 92C ALEP Repl. by SCHAEL 05C5.7 ±0.5 +1.7

−1.0 133 4 ANTREASYAN 91 CBAL Eee
m= 9.4{10.6 GeV10.0 ±1.5 ±1.1 333 5 BEHREND 90 CELL Eee
m= 35 GeV8.7 ±0.4 ±1.1 815 6 BAND 87 MAC Eee
m= 29 GeV6.2 ±0.6 ±1.2 7 GAN 87 MRK2 Eee
m= 29 GeV6.0 ±3.0 ±1.8 BEHREND 84 CELL Eee
m= 14,22 GeV1See footnote to ABDALLAH 06A �(τ− → h− ντ )/�total measurement for 
orrelationswith other measurements.2PROCARIO 93 entry is obtained from B(h− 2π0 ντ )/B(h−π0 ντ ) using ARTUSO 94result for B(h−π0 ντ ).3We subtra
t 0.0015 to a

ount for τ− → K∗(892)− ντ 
ontribution.4ANTREASYAN 91 subtra
t 0.001 to a

ount for the τ− → K∗(892)− ντ 
ontribution.5BEHREND 90 subtra
t 0.002 to a

ount for the τ− → K∗(892)− ντ 
ontribution.6BAND 87 assume B(π− 3π0 ντ ) = 0.01 and B(π−π0 ηντ ) = 0.005.7GAN 87 analysis use photon multipli
ity distribution.�(h−2π0 ντ (ex.K0))/�(h−π0 ντ

) �19/�13�(h−2π0 ντ (ex.K0))/�(h−π0 ντ

) �19/�13�(h−2π0 ντ (ex.K0))/�(h−π0 ντ

) �19/�13�(h−2π0 ντ (ex.K0))/�(h−π0 ντ

) �19/�13�19/�13 = (�20+�23)/(�14+�16)VALUE (units 10−2) DOCUMENT ID TECN COMMENT36.0±0.4 OUR FIT36.0±0.4 OUR FIT36.0±0.4 OUR FIT36.0±0.4 OUR FIT34.2±0.6±1.634.2±0.6±1.634.2±0.6±1.634.2±0.6±1.6 1 PROCARIO 93 CLEO Eee
m ≈ 10.6 GeV1PROCARIO 93 quote 0.345 ± 0.006 ± 0.016 after 
orre
tion for 2 kaon ba
kgroundsassuming B(K∗− ντ )=1.42 ± 0.18% and B(h−K0π0 ντ )=0.48 ± 0.48%. We multiplyby 0.990 ± 0.010 to remove these 
orre
tions to B(h−π0 ντ ).�(
π− 2π0ντ (ex.K0))/�total �20/��(
π− 2π0ντ (ex.K0))/�total �20/��(
π− 2π0ντ (ex.K0))/�total �20/��(
π− 2π0ντ (ex.K0))/�total �20/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT9.26 ±0.10 OUR FIT9.26 ±0.10 OUR FIT9.26 ±0.10 OUR FIT9.26 ±0.10 OUR FIT9.239±0.086±0.0909.239±0.086±0.0909.239±0.086±0.0909.239±0.086±0.090 31k 1 SCHAEL 05C ALEP 1991-1995 LEP runs

• • • We do not use the following data for averages, �ts, limits, et
. • • •9.21 ±0.13 ±0.11 2 BUSKULIC 96 ALEP Repl. by SCHAEL 05C1See footnote to SCHAEL 05C �(τ− → e− νe ντ )/�total measurement for 
orrelationswith other measurements.2Not independent of BUSKULIC 96 B(h− 2π0 ντ (ex. K0)) and B(K− 2π0 ντ (ex. K0))values.�(
π− 2π0ντ (ex.K0), s
alar)/�(

π− 2π0ντ (ex.K0)) �21/�20�(
π− 2π0ντ (ex.K0), s
alar)/�(

π− 2π0ντ (ex.K0)) �21/�20�(
π− 2π0ντ (ex.K0), s
alar)/�(

π− 2π0ντ (ex.K0)) �21/�20�(
π− 2π0ντ (ex.K0), s
alar)/�(

π− 2π0ντ (ex.K0)) �21/�20VALUE CL% DOCUMENT ID TECN COMMENT
<0.094<0.094<0.094<0.094 95 1 BROWDER 00 CLEO 4.7 fb−1 Eee
m= 10.6 GeV1Model-independent limit from stru
ture fun
tion analysis on 
ontribution to B(τ− →

π− 2π0 ντ (ex. K0)) from s
alars.

�(
π− 2π0ντ (ex.K0), ve
tor)/�(

π− 2π0 ντ (ex.K0)) �22/�20�(
π− 2π0ντ (ex.K0), ve
tor)/�(

π− 2π0 ντ (ex.K0)) �22/�20�(
π− 2π0ντ (ex.K0), ve
tor)/�(

π− 2π0 ντ (ex.K0)) �22/�20�(
π− 2π0ντ (ex.K0), ve
tor)/�(

π− 2π0 ντ (ex.K0)) �22/�20VALUE CL% DOCUMENT ID TECN COMMENT
<0.073<0.073<0.073<0.073 95 1 BROWDER 00 CLEO 4.7 fb−1 Eee
m= 10.6 GeV1Model-independent limit from stru
ture fun
tion analysis on 
ontribution to B(τ− →

π− 2π0 ντ (ex. K0)) from ve
tors.�(K−2π0 ντ (ex.K0))/�total �23/��(K−2π0 ντ (ex.K0))/�total �23/��(K−2π0 ντ (ex.K0))/�total �23/��(K−2π0 ντ (ex.K0))/�total �23/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.5± 2.2 OUR FIT6.5± 2.2 OUR FIT6.5± 2.2 OUR FIT6.5± 2.2 OUR FIT5.8± 2.4 OUR AVERAGE5.8± 2.4 OUR AVERAGE5.8± 2.4 OUR AVERAGE5.8± 2.4 OUR AVERAGE5.6± 2.0±1.5 131 BARATE 99K ALEP 1991{1995 LEP runs9 ±10 ±3 3 1 BATTLE 94 CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •8 ± 2 ±2 59 BUSKULIC 96 ALEP Repl. by BARATE 99K1BATTLE 94 quote (14 ± 10 ± 3) × 10−4 or < 30 × 10−4 at 90% CL. We subtra
t(5 ± 2)× 10−4 to a

ount for τ− → K− (K0 → π0π0)ντ ba
kground.�(h− ≥ 3π0 ντ

)/�total �24/��(h− ≥ 3π0 ντ

)/�total �24/��(h− ≥ 3π0 ντ

)/�total �24/��(h− ≥ 3π0 ντ

)/�total �24/��24/� = (�27+�28+�30+0.15344�41+0.15344�43+0.0942�48+0.0942�52+0.3268�148+0.3268�150+0.3268�152+0.0501�154)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.34±0.07 OUR FIT1.34±0.07 OUR FIT1.34±0.07 OUR FIT1.34±0.07 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.53±0.40±0.46 186 DECAMP 92C ALEP Repl. by SCHAEL 05C3.2 ±1.0 ±1.0 BEHREND 90 CELL Eee
m= 35 GeV�(h− ≥ 3π0 ντ (ex. K0))/�total �25/��(h− ≥ 3π0 ντ (ex. K0))/�total �25/��(h− ≥ 3π0 ντ (ex. K0))/�total �25/��(h− ≥ 3π0 ντ (ex. K0))/�total �25/��25/� = (�27+�28+�30+0.3268�148+0.3268�150+0.3268�152)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.25 ±0.07 OUR FIT1.25 ±0.07 OUR FIT1.25 ±0.07 OUR FIT1.25 ±0.07 OUR FIT1.403±0.214±0.2241.403±0.214±0.2241.403±0.214±0.2241.403±0.214±0.224 1.1k 1 ABDALLAH 06A DLPH 1992{1995 LEP runs1 See footnote to ABDALLAH 06A �(τ− → h− ντ )/�total measurement for 
orrelationswith other measurements.�(h−3π0 ντ

)/�total �26/��(h−3π0 ντ

)/�total �26/��(h−3π0 ντ

)/�total �26/��(h−3π0 ντ

)/�total �26/��26/� = (�27+�28+0.15344�41+0.15344�43+0.3268�150)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.18±0.07 OUR FIT1.18±0.07 OUR FIT1.18±0.07 OUR FIT1.18±0.07 OUR FIT1.21±0.17 OUR AVERAGE1.21±0.17 OUR AVERAGE1.21±0.17 OUR AVERAGE1.21±0.17 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1.70±0.24±0.38 293 ACCIARRI 95 L3 1992 LEP run
• • • We use the following data for averages but not for �ts. • • •1.15±0.08±0.13 1 PROCARIO 93 CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.24±0.09±0.11 2.3k 2 BUSKULIC 96 ALEP Repl. by SCHAEL 05C0.0 +1.4

−0.1 +1.1
−0.1 3 GAN 87 MRK2 Eee
m= 29 GeV1PROCARIO 93 entry is obtained from B(h− 3π0 ντ )/B(h−π0 ντ ) using ARTUSO 94result for B(h−π0 ντ ).2BUSKULIC 96 quote B(h− 3π0 ντ (ex. K0)) = 1.17 ± 0.09 ± 0.11. We add 0.07 toremove their 
orre
tion for K0 ba
kgrounds.3Highly 
orrelated with GAN 87 �(

ηπ−π0 ντ
)/�total value. Authors quoteB(π± 3π0 ντ ) + 0.67B(π± ηπ0 ντ ) = 0.047 ± 0.010 ± 0.011.�(h−3π0 ντ

)/�(h−π0 ντ

) �26/�13�(h−3π0 ντ

)/�(h−π0 ντ

) �26/�13�(h−3π0 ντ

)/�(h−π0 ντ

) �26/�13�(h−3π0 ντ

)/�(h−π0 ντ

) �26/�13�26/�13 = (�27+�28+0.15344�41+0.15344�43+0.3268�150)/(�14+�16)VALUE (units 10−2) DOCUMENT ID TECN COMMENT4.54±0.28 OUR FIT4.54±0.28 OUR FIT4.54±0.28 OUR FIT4.54±0.28 OUR FIT4.4 ±0.3 ±0.54.4 ±0.3 ±0.54.4 ±0.3 ±0.54.4 ±0.3 ±0.5 1 PROCARIO 93 CLEO Eee
m ≈ 10.6 GeV1PROCARIO 93 quote 0.041 ± 0.003 ± 0.005 after 
orre
tion for 2 kaon ba
kgroundsassuming B(K∗− ντ )=1.42 ± 0.18% and B(h−K0π0 ντ )=0.48 ± 0.48%. We add0.003 ± 0.003 and multiply the sum by 0.990 ± 0.010 to remove these 
orre
tions.�(
π− 3π0ντ (ex.K0))/�total �27/��(
π− 3π0ντ (ex.K0))/�total �27/��(
π− 3π0ντ (ex.K0))/�total �27/��(
π− 3π0ντ (ex.K0))/�total �27/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.04 ±0.07 OUR FIT1.04 ±0.07 OUR FIT1.04 ±0.07 OUR FIT1.04 ±0.07 OUR FIT0.977±0.069±0.0580.977±0.069±0.0580.977±0.069±0.0580.977±0.069±0.058 6.1k 1 SCHAEL 05C ALEP 1991-1995 LEP runs1 See footnote to SCHAEL 05C �(τ− → e− νe ντ )/�total measurement for 
orrelationswith other measurements.�(K−3π0 ντ (ex.K0, η))/�total �28/��(K−3π0 ντ (ex.K0, η))/�total �28/��(K−3π0 ντ (ex.K0, η))/�total �28/��(K−3π0 ντ (ex.K0, η))/�total �28/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.8± 2.1 OUR FIT4.8± 2.1 OUR FIT4.8± 2.1 OUR FIT4.8± 2.1 OUR FIT3.7± 2.1±1.13.7± 2.1±1.13.7± 2.1±1.13.7± 2.1±1.1 22 BARATE 99K ALEP 1991{1995 LEP runs

• • • We do not use the following data for averages, �ts, limits, et
. • • •5 ±13 1 BUSKULIC 94E ALEP Repl. by BARATE 99K1BUSKULIC 94E quote B(K− ≥ 0π0 ≥ 0K0 ντ ) − [B(K− ντ ) + B(K−π0 ντ ) +B(K−K0 ντ ) + B(K−π0π0 ντ ) + B(K−π0K0 ντ )℄ = (5 ± 13) × 10−4 a

ountingfor 
ommon systemati
 errors in BUSKULIC 94E and BUSKULIC 94F measurements ofthese modes. We assume B(K− ≥ 2K0 ντ ) and B(K− ≥ 4π0 ντ ) are negligible.
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τ�(h−4π0 ντ (ex.K0))/�total �29/��(h−4π0 ντ (ex.K0))/�total �29/��(h−4π0 ντ (ex.K0))/�total �29/��(h−4π0 ντ (ex.K0))/�total �29/��29/� = (�30+0.3268�148+0.3268�152)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.16±0.04 OUR FIT0.16±0.04 OUR FIT0.16±0.04 OUR FIT0.16±0.04 OUR FIT0.16±0.05±0.050.16±0.05±0.050.16±0.05±0.050.16±0.05±0.05 1 PROCARIO 93 CLEO Eee
m ≈ 10.6 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.16±0.04±0.09 232 2 BUSKULIC 96 ALEP Repl. by SCHAEL 05C1PROCARIO 93 quotes B(h− 4π0 ντ )/B(h−π0 ντ ) =0.006±0.002±0.002. We multiplyby the ARTUSO 94 result for B(h−π0 ντ ) to obtain B(h− 4π0 ντ ). PROCARIO 93assume B(h− ≥ 5 π0 ντ ) is small and do not 
orre
t for it.2BUSKULIC 96 quote result for τ− → h− ≥ 4π0 ντ . We assume B(h− ≥ 5π0 ντ ) isnegligible.�(h−4π0 ντ (ex.K0,η))/�total �30/��(h−4π0 ντ (ex.K0,η))/�total �30/��(h−4π0 ντ (ex.K0,η))/�total �30/��(h−4π0 ντ (ex.K0,η))/�total �30/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.11 ±0.04 OUR FIT0.11 ±0.04 OUR FIT0.11 ±0.04 OUR FIT0.11 ±0.04 OUR FIT0.112±0.037±0.0350.112±0.037±0.0350.112±0.037±0.0350.112±0.037±0.035 957 1 SCHAEL 05C ALEP 1991-1995 LEP runs1 See footnote to SCHAEL 05C �(τ− → e− νe ντ )/�total measurement for 
orrelationswith other measurements.�(a1(1260)ντ → π− γ ντ

)/�total �31/� = (0.0021�20+0.0021�70)/��(a1(1260)ντ → π− γ ντ

)/�total �31/� = (0.0021�20+0.0021�70)/��(a1(1260)ντ → π− γ ντ

)/�total �31/� = (0.0021�20+0.0021�70)/��(a1(1260)ντ → π− γ ντ

)/�total �31/� = (0.0021�20+0.0021�70)/�The un
ertainty on �(τ− → a1(1260)ντ → π− γ ντ )/�total takes into a

ountthe non-negligible 
ontribution from the un
ertainty of the 
oeÆ
ient of the re-lationship that de�nes �(τ− → a1(1260)ντ → π− γ ντ ) in terms of �(τ− →
π− 2π0 ντ (ex.K0)) and �(τ− → π−π+π− ντ (ex.K0,ω)).VALUE (units 10−4) DOCUMENT ID3.8±1.5 OUR FIT3.8±1.5 OUR FIT3.8±1.5 OUR FIT3.8±1.5 OUR FIT�(K− ≥ 0π0 ≥ 0K0 ≥ 0γ ντ

)/�total �32/��(K− ≥ 0π0 ≥ 0K0 ≥ 0γ ντ

)/�total �32/��(K− ≥ 0π0 ≥ 0K0 ≥ 0γ ντ

)/�total �32/��(K− ≥ 0π0 ≥ 0K0 ≥ 0γ ντ

)/�total �32/��32/� = (�10+�16+�23+�28+�38+�43+0.7212�150+0.1049�168)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.552±0.029 OUR FIT1.552±0.029 OUR FIT1.552±0.029 OUR FIT1.552±0.029 OUR FIT1.53 ±0.04 OUR AVERAGE1.53 ±0.04 OUR AVERAGE1.53 ±0.04 OUR AVERAGE1.53 ±0.04 OUR AVERAGE1.528±0.039±0.040 1 ABBIENDI 01J OPAL 1990{1995 LEP runs1.54 ±0.24 ABREU 94K DLPH LEP 1992 Z data1.70 ±0.12 ±0.19 202 2 BATTLE 94 CLEO Eee
m ≈ 10.6 GeV
• • • We use the following data for averages but not for �ts. • • •1.520±0.040±0.041 4006 3 BARATE 99K ALEP 1991{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.70 ±0.05 ±0.06 1610 4 BUSKULIC 96 ALEP Repl. by BARATE 99K1.6 ±0.4 ±0.2 35 AIHARA 87B TPC Eee
m= 29 GeV1.71 ±0.29 53 MILLS 84 DLCO Eee
m= 29 GeV1The 
orrelation 
oeÆ
ient between this measurement and the ABBIENDI 01J B(τ− →K− ντ ) is 0.60.2BATTLE 94 quote 1.60 ± 0.12 ± 0.19. We add 0.10 ± 0.02 to 
orre
t for their reje
tionof K0S → π+π− de
ays.3Not independent of BARATE 99K B(K− ντ ), B(K−π0 ντ ), B(K− 2π0 ντ (ex. K0)),B(K− 3π0 ντ (ex. K0)), B(K−K0 ντ ), and B(K−K0π0 ντ ) values.4Not independent of BUSKULIC 96 B(K− ντ ), B(K−π0 ντ ), B(K− 2π0 ντ ),B(K−K0 ντ ), and B(K−K0π0 ντ ) values.�(K− ≥ 1 (π0 orK0 or γ) ντ

)/�total �33/��(K− ≥ 1 (π0 orK0 or γ) ντ

)/�total �33/��(K− ≥ 1 (π0 orK0 or γ) ντ

)/�total �33/��(K− ≥ 1 (π0 orK0 or γ) ντ

)/�total �33/��33/� = (�16+�23+�28+�38+�43+0.7212�150+0.7212�152+0.1049�168)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.859±0.028 OUR FIT0.859±0.028 OUR FIT0.859±0.028 OUR FIT0.859±0.028 OUR FIT0.86 ±0.05 OUR AVERAGE0.86 ±0.05 OUR AVERAGE0.86 ±0.05 OUR AVERAGE0.86 ±0.05 OUR AVERAGE
• • • We use the following data for averages but not for �ts. • • •0.869±0.031±0.034 1 ABBIENDI 01J OPAL 1990{1995 LEP runs0.69 ±0.25 2 ABREU 94K DLPH LEP 1992 Z data
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.2 ±0.5 +0.2

−0.4 9 AIHARA 87B TPC Eee
m= 29 GeV1Not independent of ABBIENDI 01J B(τ− → K− ντ ) and B(τ− → K− ≥ 0π0 ≥0K0 ≥ 0γ ντ ) values.2Not independent of ABREU 94K B(K− ντ ) and B(K− ≥ 0 neutralsντ ) measurements.�(K0S (parti
les)− ντ

)/�total �34/��(K0S (parti
les)− ντ

)/�total �34/��(K0S (parti
les)− ντ

)/�total �34/��(K0S (parti
les)− ντ

)/�total �34/��34/� = (12�36+12�38+12�41+12�43+12�45+�48+�49+�52+�56+0.3606�154+0.342�168)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.944±0.028 OUR FIT0.944±0.028 OUR FIT0.944±0.028 OUR FIT0.944±0.028 OUR FIT0.918±0.015 OUR AVERAGE0.918±0.015 OUR AVERAGE0.918±0.015 OUR AVERAGE0.918±0.015 OUR AVERAGE0.970±0.058±0.062 929 BARATE 98E ALEP 1991{1995 LEP runs0.97 ±0.09 ±0.06 141 AKERS 94G OPAL Eee
m= 88{94 GeV
• • • We use the following data for averages but not for �ts. • • •0.915±0.001±0.015 398k 1 RYU 14 BELL 669 fb−1 Eee
m=10.6 GeV1Not independent of RYU 14 measurements of B(τ− → π−K0 ντ ), B(τ− →K−K0 ντ ), B(τ− → π−K0π0 ντ ), B(τ− → K−K0π0 ντ ), B(τ− →

π−K0S K0S ντ ), and B(τ− → π−K0S K0S π0 ντ ).

�(h−K0 ντ

)/�total �35/�= (�36+�38)/��(h−K0 ντ

)/�total �35/�= (�36+�38)/��(h−K0 ντ

)/�total �35/�= (�36+�38)/��(h−K0 ντ

)/�total �35/�= (�36+�38)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.987±0.014 OUR FIT0.987±0.014 OUR FIT0.987±0.014 OUR FIT0.987±0.014 OUR FIT0.90 ±0.07 OUR AVERAGE0.90 ±0.07 OUR AVERAGE0.90 ±0.07 OUR AVERAGE0.90 ±0.07 OUR AVERAGE0.855±0.036±0.073 1242 COAN 96 CLEO Eee
m ≈ 10.6 GeV
• • • We use the following data for averages but not for �ts. • • •1.01 ±0.11 ±0.07 555 1 BARATE 98E ALEP 1991{1995 LEP runs1Not independent of BARATE 98E B(τ− → π−K0 ντ ) and B(τ− → K−K0 ντ ) values.�(

π−K0 ντ

)/�total �36/��(
π−K0 ντ

)/�total �36/��(
π−K0 ντ

)/�total �36/��(
π−K0 ντ

)/�total �36/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT8.40±0.14 OUR FIT8.40±0.14 OUR FIT8.40±0.14 OUR FIT8.40±0.14 OUR FIT8.39±0.22 OUR AVERAGE8.39±0.22 OUR AVERAGE8.39±0.22 OUR AVERAGE8.39±0.22 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.8.32±0.02±0.16 158k 1 RYU 14 BELL 669 fb−1 Eee
m=10.6 GeV9.33±0.68±0.49 377 ABBIENDI 00C OPAL 1991{1995 LEP runs9.28±0.45±0.34 937 2 BARATE 99K ALEP 1991{1995 LEP runs9.5 ±1.5 ±0.6 3 ACCIARRI 95F L3 1991{1993 LEP runs
• • • We use the following data for averages but not for �ts. • • •8.55±1.17±0.66 509 4 BARATE 98E ALEP 1991{1995 LEP runs7.04±0.41±0.72 5 COAN 96 CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.08±0.04±0.26 53k EPIFANOV 07 BELL Repl. by RYU 147.9 ±1.0 ±0.9 98 6 BUSKULIC 96 ALEP Repl. by BARATE 99K1RYU 14 re
onstru
t K0's using K0S → π+π− de
ays.2BARATE 99K measure K0's by dete
ting K0L's in their hadron 
alorimeter.3ACCIARRI 95F do not identify π−/K− and assume B(K−K0 ντ ) = (0.29 ± 0.12)%.4BARATE 98E re
onstru
t K0's using K0S → π+π− de
ays. Not independent ofBARATE 98E B(K0 parti
les− ντ ) value.5Not independent of COAN 96 B(h−K0 ντ ) and B(K−K0 ντ ) measurements.6BUSKULIC 96 measure K0's by dete
ting K0L's in their hadron 
alorimeter.

WEIGHTED AVERAGE
8.39±0.22 (Error scaled by 1.5)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ACCIARRI 95F L3
COAN 96 CLEO 2.7
BARATE 98E ALEP
BARATE 99K ALEP 2.5
ABBIENDI 00C OPAL 1.3
RYU 14 BELL 0.2

χ2

       6.6
(Confidence Level = 0.086)

4 6 8 10 12 14�(
π−K0 ντ

)/�total (units 10−3)�(
π−K0 (non-K∗(892)−)ντ

)/�total �37/��(
π−K0 (non-K∗(892)−)ντ

)/�total �37/��(
π−K0 (non-K∗(892)−)ντ

)/�total �37/��(
π−K0 (non-K∗(892)−)ντ

)/�total �37/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT5.4±2.15.4±2.15.4±2.15.4±2.1 1 EPIFANOV 07 BELL 351 fb−1 Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<17 95 ACCIARRI 95F L3 1991{1993 LEP runs1EPIFANOV 07 quote B(τ− → K∗(892)− ντ ) B(K∗(892)− → K0S π−) / B(τ− →K0S π− ντ ) = 0.933 ± 0.027. We multiply their B(τ− → K0π− ντ ) by [1−(0.933 ±0.027)℄ to obtain this result.�(K−K0ντ

)/�total �38/��(K−K0ντ

)/�total �38/��(K−K0ντ

)/�total �38/��(K−K0ντ

)/�total �38/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT14.8 ±0.5 OUR FIT14.8 ±0.5 OUR FIT14.8 ±0.5 OUR FIT14.8 ±0.5 OUR FIT14.9 ±0.5 OUR AVERAGE14.9 ±0.5 OUR AVERAGE14.9 ±0.5 OUR AVERAGE14.9 ±0.5 OUR AVERAGE14.80±0.14±0.54 33k 1 RYU 14 BELL 669 fb−1 Eee
m=10.6 GeV16.2 ±2.1 ±1.1 150 2 BARATE 99K ALEP 1991{1995 LEP runs15.8 ±4.2 ±1.7 46 3 BARATE 98E ALEP 1991{1995 LEP runs15.1 ±2.1 ±2.2 111 COAN 96 CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •26 ±9 ±2 13 4 BUSKULIC 96 ALEP Repl. by BARATE 99K1RYU 14 re
onstru
t K0's using K0S → π+π− de
ays.2BARATE 99K measure K0's by dete
ting K0L's in their hadron 
alorimeter.3BARATE 98E re
onstru
t K0's using K0S → π+π− de
ays.4BUSKULIC 96 measure K0's by dete
ting K0L's in their hadron 
alorimeter.
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τ�(K−K0 ≥ 0π0 ντ

)/�total �39/�= (�38+�43)/��(K−K0 ≥ 0π0 ντ

)/�total �39/�= (�38+�43)/��(K−K0 ≥ 0π0 ντ

)/�total �39/�= (�38+�43)/��(K−K0 ≥ 0π0 ντ

)/�total �39/�= (�38+�43)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.298±0.008 OUR FIT0.298±0.008 OUR FIT0.298±0.008 OUR FIT0.298±0.008 OUR FIT0.330±0.055±0.0390.330±0.055±0.0390.330±0.055±0.0390.330±0.055±0.039 124 ABBIENDI 00C OPAL 1991{1995 LEP runs�(h−K0π0 ντ

)/�total �40/�= (�41+�43)/��(h−K0π0 ντ

)/�total �40/�= (�41+�43)/��(h−K0π0 ντ

)/�total �40/�= (�41+�43)/��(h−K0π0 ντ

)/�total �40/�= (�41+�43)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.532±0.013 OUR FIT0.532±0.013 OUR FIT0.532±0.013 OUR FIT0.532±0.013 OUR FIT0.50 ±0.06 OUR AVERAGE0.50 ±0.06 OUR AVERAGE0.50 ±0.06 OUR AVERAGE0.50 ±0.06 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.562±0.050±0.048 264 COAN 96 CLEO Eee
m ≈ 10.6 GeV
• • • We use the following data for averages but not for �ts. • • •0.446±0.052±0.046 157 1 BARATE 98E ALEP 1991{1995 LEP runs1Not independent of BARATE 98E B(τ− → π−K0π0 τ) and B(τ− → K−K0π0 ντ )values.�(π−K0π0 ντ

)/�total �41/��(π−K0π0 ντ

)/�total �41/��(π−K0π0 ντ

)/�total �41/��(π−K0π0 ντ

)/�total �41/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.382±0.013 OUR FIT0.382±0.013 OUR FIT0.382±0.013 OUR FIT0.382±0.013 OUR FIT0.383±0.014 OUR AVERAGE0.383±0.014 OUR AVERAGE0.383±0.014 OUR AVERAGE0.383±0.014 OUR AVERAGE0.386±0.004±0.014 27k 1 RYU 14 BELL 669 fb−1 Eee
m=10.6 GeV0.347±0.053±0.037 299 2 BARATE 99K ALEP 1991{1995 LEP runs0.294±0.073±0.037 142 3 BARATE 98E ALEP 1991{1995 LEP runs0.41 ±0.12 ±0.03 4 ACCIARRI 95F L3 1991{1993 LEP runs
• • • We use the following data for averages but not for �ts. • • •0.417±0.058±0.044 5 COAN 96 CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.32 ±0.11 ±0.05 23 6 BUSKULIC 96 ALEP Repl. by BARATE 99K1RYU 14 re
onstru
t K0's using K0S → π+π− de
ays.2BARATE 99K measure K0's by dete
ting K0L's in their hadron 
alorimeter.3BARATE 98E re
onstru
t K0's using K0S → π+π− de
ays.4ACCIARRI 95F do not identify π−/K− and assume B(K−K0π0 ντ ) = (0.05± 0.05)%.5Not independent of COAN 96 B(h−K0π0 ντ ) and B(K−K0π0 ντ ) measurements.6BUSKULIC 96 measure K0's by dete
ting K0L's in their hadron 
alorimeter.�(K0ρ− ντ

)/�total �42/��(K0ρ− ντ

)/�total �42/��(K0ρ− ντ

)/�total �42/��(K0ρ− ντ

)/�total �42/�VALUE (%) DOCUMENT ID TECN COMMENT0.22 ±0.05 OUR AVERAGE0.22 ±0.05 OUR AVERAGE0.22 ±0.05 OUR AVERAGE0.22 ±0.05 OUR AVERAGE0.250±0.057±0.044 1 BARATE 99K ALEP 1991{1995 LEP runs0.188±0.054±0.038 2 BARATE 98E ALEP 1991{1995 LEP runs1BARATE 99K measure K0's by dete
ting K0L's in hadron 
alorimeter. They determinethe K0 ρ− fra
tion in τ− → π−K0π0 ντ de
ays to be (0.72 ± 0.12 ± 0.10) andmultiply their B(π−K0π0 ντ ) measurement by this fra
tion to obtain the quoted result.2BARATE 98E re
onstru
t K0's using K0S → π+π− de
ays. They determine the K0 ρ−fra
tion in τ− → π−K0π0 ντ de
ays to be (0.64 ± 0.09 ± 0.10) and multiply theirB(π−K0π0 ντ ) measurement by this fra
tion to obtain the quoted result.�(K−K0π0 ντ

)/�total �43/��(K−K0π0 ντ

)/�total �43/��(K−K0π0 ντ

)/�total �43/��(K−K0π0 ντ

)/�total �43/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT15.0 ±0.7 OUR FIT15.0 ±0.7 OUR FIT15.0 ±0.7 OUR FIT15.0 ±0.7 OUR FIT14.9 ±0.7 OUR AVERAGE14.9 ±0.7 OUR AVERAGE14.9 ±0.7 OUR AVERAGE14.9 ±0.7 OUR AVERAGE14.96±0.20±0.74 8.3k 1 RYU 14 BELL 669 fb−1 Eee
m=10.6 GeV14.3 ±2.5 ±1.5 78 2 BARATE 99K ALEP 1991{1995 LEP runs15.2 ±7.6 ±2.1 15 3 BARATE 98E ALEP 1991{1995 LEP runs14.5 ±3.6 ±2.0 32 COAN 96 CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •10 ±5 ±3 5 4 BUSKULIC 96 ALEP Repl. by BARATE 99K1RYU 14 re
onstru
t K0's using K0S → π+π− de
ays.2BARATE 99K measure K0's by dete
ting K0L's in their hadron 
alorimeter.3BARATE 98E re
onstru
t K0's using K0S → π+π− de
ays.4BUSKULIC 96 measure K0's by dete
ting K0L's in their hadron 
alorimeter.�(π−K0 ≥ 1π0 ντ

)/�total �44/�= (�41+�45)/��(π−K0 ≥ 1π0 ντ

)/�total �44/�= (�41+�45)/��(π−K0 ≥ 1π0 ντ

)/�total �44/�= (�41+�45)/��(π−K0 ≥ 1π0 ντ

)/�total �44/�= (�41+�45)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.408±0.025 OUR FIT0.408±0.025 OUR FIT0.408±0.025 OUR FIT0.408±0.025 OUR FIT0.324±0.074±0.0660.324±0.074±0.0660.324±0.074±0.0660.324±0.074±0.066 148 ABBIENDI 00C OPAL 1991{1995 LEP runs�(π−K0π0π0 ντ (ex.K0))/�total �45/��(π−K0π0π0 ντ (ex.K0))/�total �45/��(π−K0π0π0 ντ (ex.K0))/�total �45/��(π−K0π0π0 ντ (ex.K0))/�total �45/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT0.26±0.23 OUR FIT0.26±0.23 OUR FIT0.26±0.23 OUR FIT0.26±0.23 OUR FIT0.26±0.240.26±0.240.26±0.240.26±0.24 1 BARATE 99R ALEP 1991{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.66 95 17 2 BARATE 99K ALEP 1991{1995 LEP runs0.58±0.33±0.14 5 3 BARATE 98E ALEP 1991{1995 LEP runs1BARATE 99R 
ombine the BARATE 98E and BARATE 99K measurements to obtain thisvalue.2BARATE 99K measure K0's by dete
ting K0L's in their hadron 
alorimeter.3BARATE 98E re
onstru
t K0's using K0S → π+π− de
ays.

�(K−K0π0π0 ντ

)/�total �46/��(K−K0π0π0 ντ

)/�total �46/��(K−K0π0π0 ντ

)/�total �46/��(K−K0π0π0 ντ

)/�total �46/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.16× 10−3<0.16× 10−3<0.16× 10−3<0.16× 10−3 95 1 BARATE 99R ALEP 1991{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.18× 10−3 95 2 BARATE 99K ALEP 1991{1995 LEP runs
<0.39× 10−3 95 3 BARATE 98E ALEP 1991{1995 LEP runs1BARATE 99R 
ombine the BARATE 98E and BARATE 99K bounds to obtain this value.2BARATE 99K measure K0's by dete
ting K0L's in hadron 
alorimeter.3BARATE 98E re
onstru
t K0's by using K0S → π+π− de
ays.�(π−K0K0ντ

)/�total �47/� = (�48+�49+�50)/��(π−K0K0ντ

)/�total �47/� = (�48+�49+�50)/��(π−K0K0ντ

)/�total �47/� = (�48+�49+�50)/��(π−K0K0ντ

)/�total �47/� = (�48+�49+�50)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.155±0.024 OUR FIT0.155±0.024 OUR FIT0.155±0.024 OUR FIT0.155±0.024 OUR FIT
• • • We use the following data for averages but not for �ts. • • •0.153±0.030±0.0160.153±0.030±0.0160.153±0.030±0.0160.153±0.030±0.016 74 1 BARATE 98E ALEP 1991{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.31 ±0.12 ±0.04 2 ACCIARRI 95F L3 1991{1993 LEP runs1BARATE 98E obtain this value by adding twi
e their B(π−K0S K0S ντ ) value to theirB(π−K0S K0L ντ ) value.2ACCIARRI 95F assume B(π− K0S K0S ν)= B(π− K0S K0L ν) = 1/2B(π− K0S K0L ν).�(π−K0S K0S ντ

)/�total �48/��(π−K0S K0S ντ

)/�total �48/��(π−K0S K0S ντ

)/�total �48/��(π−K0S K0S ντ

)/�total �48/�Bose-Einstein 
orrelations might make the mixing fra
tion di�erent than 1/4.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.33±0.07 OUR FIT2.33±0.07 OUR FIT2.33±0.07 OUR FIT2.33±0.07 OUR FIT2.32±0.06 OUR AVERAGE2.32±0.06 OUR AVERAGE2.32±0.06 OUR AVERAGE2.32±0.06 OUR AVERAGE2.33±0.03±0.09 6.7k RYU 14 BELL 669 fb−1 Eee
m=10.6 GeV2.31±0.04±0.08 5.0k LEES 12Y BABR 468 fb−1 Eee
m=10.6 GeV2.6 ±1.0 ±0.5 6 BARATE 98E ALEP 1991{1995 LEP runs2.3 ±0.5 ±0.3 42 COAN 96 CLEO Eee
m ≈ 10.6 GeV�(π−K0S K0Lντ

)/�total �49/��(π−K0S K0Lντ

)/�total �49/��(π−K0S K0Lντ

)/�total �49/��(π−K0S K0Lντ

)/�total �49/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT10.8±2.4 OUR FIT10.8±2.4 OUR FIT10.8±2.4 OUR FIT10.8±2.4 OUR FIT10.1±2.3±1.310.1±2.3±1.310.1±2.3±1.310.1±2.3±1.3 68 BARATE 98E ALEP 1991{1995 LEP runs�(π−K0LK0L ντ

)/�total �50/�= �48/��(π−K0LK0L ντ

)/�total �50/�= �48/��(π−K0LK0L ντ

)/�total �50/�= �48/��(π−K0LK0L ντ

)/�total �50/�= �48/�VALUE (units 10−4) DOCUMENT ID2.33±0.07 OUR FIT2.33±0.07 OUR FIT2.33±0.07 OUR FIT2.33±0.07 OUR FIT�(π−K0K0π0 ντ

)/�total �51/� = (�52+�56+�57)/��(π−K0K0π0 ντ

)/�total �51/� = (�52+�56+�57)/��(π−K0K0π0 ντ

)/�total �51/� = (�52+�56+�57)/��(π−K0K0π0 ντ

)/�total �51/� = (�52+�56+�57)/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.6±1.2 OUR FIT3.6±1.2 OUR FIT3.6±1.2 OUR FIT3.6±1.2 OUR FIT
• • • We use the following data for averages but not for �ts. • • •3.1±2.33.1±2.33.1±2.33.1±2.3 1 BARATE 99R ALEP 1991{1995 LEP runs1BARATE 99R 
ombine BARATE 98E �(π−K0S K0S π0 ντ )/�total and�(π−K0S K0Lπ0 ντ )/�total measurements to obtain this value.�(π−K0S K0S π0 ντ

)/�total �52/��(π−K0S K0S π0 ντ

)/�total �52/��(π−K0S K0S π0 ντ

)/�total �52/��(π−K0S K0S π0 ντ

)/�total �52/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT1.82±0.21 OUR FIT1.82±0.21 OUR FIT1.82±0.21 OUR FIT1.82±0.21 OUR FIT1.80±0.21 OUR AVERAGE1.80±0.21 OUR AVERAGE1.80±0.21 OUR AVERAGE1.80±0.21 OUR AVERAGE2.00±0.22±0.20 303 RYU 14 BELL 669 fb−1 Eee
m=10.6 GeV1.60±0.20±0.22 409 LEES 12Y BABR 468 fb−1 Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<20 95 BARATE 98E ALEP 1991{1995 LEP runs�(K∗−K0π0 ντ → π−K0S K0S π0 ντ

)/�total �53/��(K∗−K0π0 ντ → π−K0S K0S π0 ντ

)/�total �53/��(K∗−K0π0 ντ → π−K0S K0S π0 ντ

)/�total �53/��(K∗−K0π0 ντ → π−K0S K0S π0 ντ

)/�total �53/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT10.8±1.4±1.510.8±1.4±1.510.8±1.4±1.510.8±1.4±1.5 RYU 14 BELL 669 fb−1 Eee
m=10.6 GeV�(f1(1285)π−ντ → π−K0S K0S π0 ντ

)/�total �54/��(f1(1285)π−ντ → π−K0S K0S π0 ντ

)/�total �54/��(f1(1285)π−ντ → π−K0S K0S π0 ντ

)/�total �54/��(f1(1285)π−ντ → π−K0S K0S π0 ντ

)/�total �54/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT6.8±1.3±0.76.8±1.3±0.76.8±1.3±0.76.8±1.3±0.7 RYU 14 BELL 669 fb−1 Eee
m=10.6 GeV�(f1(1420)π−ντ → π−K0S K0S π0 ντ

)/�total �55/��(f1(1420)π−ντ → π−K0S K0S π0 ντ

)/�total �55/��(f1(1420)π−ντ → π−K0S K0S π0 ντ

)/�total �55/��(f1(1420)π−ντ → π−K0S K0S π0 ντ

)/�total �55/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.4±0.5±0.62.4±0.5±0.62.4±0.5±0.62.4±0.5±0.6 RYU 14 BELL 669 fb−1 Eee
m=10.6 GeV�(π−K0S K0Lπ0 ντ

)/�total �56/��(π−K0S K0Lπ0 ντ

)/�total �56/��(π−K0S K0Lπ0 ντ

)/�total �56/��(π−K0S K0Lπ0 ντ

)/�total �56/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.2±1.2 OUR FIT3.2±1.2 OUR FIT3.2±1.2 OUR FIT3.2±1.2 OUR FIT3.1±1.1±0.53.1±1.1±0.53.1±1.1±0.53.1±1.1±0.5 11 BARATE 98E ALEP 1991{1995 LEP runs



739739739739See key on page 601 LeptonParti
le Listings
τ�(

π−K0LK0Lπ0 ντ

)/�total �57/�= �52/��(
π−K0LK0Lπ0 ντ

)/�total �57/�= �52/��(
π−K0LK0Lπ0 ντ

)/�total �57/�= �52/��(
π−K0LK0Lπ0 ντ

)/�total �57/�= �52/�VALUE (units 10−5) DOCUMENT ID1.82±0.21 OUR FIT1.82±0.21 OUR FIT1.82±0.21 OUR FIT1.82±0.21 OUR FIT�(K−K0S K0S ντ

)/�total �58/��(K−K0S K0S ντ

)/�total �58/��(K−K0S K0S ντ

)/�total �58/��(K−K0S K0S ντ

)/�total �58/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.3× 10−7<6.3× 10−7<6.3× 10−7<6.3× 10−7 90 LEES 12Y BABR 468 fb−1 Eee
m=10.6 GeV�(K−K0S K0S π0 ντ

)/�total �59/��(K−K0S K0S π0 ντ

)/�total �59/��(K−K0S K0S π0 ντ

)/�total �59/��(K−K0S K0S π0 ντ

)/�total �59/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.0× 10−7<4.0× 10−7<4.0× 10−7<4.0× 10−7 90 LEES 12Y BABR 468 fb−1 Eee
m=10.6 GeV�(K0h+ h−h− ≥ 0 neutrals ντ

)/�total �60/��(K0h+ h−h− ≥ 0 neutrals ντ

)/�total �60/��(K0h+ h−h− ≥ 0 neutrals ντ

)/�total �60/��(K0h+ h−h− ≥ 0 neutrals ντ

)/�total �60/�VALUE (%) CL% DOCUMENT ID TECN COMMENT
<0.17<0.17<0.17<0.17 95 TSCHIRHART 88 HRS Eee
m= 29 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.27 90 BELTRAMI 85 HRS Eee
m= 29 GeV�(K0h+ h−h−ντ

)/�total �61/��(K0h+ h−h−ντ

)/�total �61/��(K0h+ h−h−ντ

)/�total �61/��(K0h+ h−h−ντ

)/�total �61/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.5±2.0 OUR FIT2.5±2.0 OUR FIT2.5±2.0 OUR FIT2.5±2.0 OUR FIT2.3±1.9±0.72.3±1.9±0.72.3±1.9±0.72.3±1.9±0.7 6 1 BARATE 98E ALEP 1991{1995 LEP runs1BARATE 98E re
onstru
t K0's using K0S → π+π− de
ays.�(h−h− h+ ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �62/��(h−h− h+ ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �62/��(h−h− h+ ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �62/��(h−h− h+ ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �62/��62/� = (0.34598�36+0.34598�38+0.34598�41+0.34598�43+0.4247�48+0.6920�49+0.4247�52+0.6920�56+0.6534�61+�70+�78+�85+�86+�97+�103+�106+�107+0.2810�148+0.2810�150+0.2810�152+0.2628�154+0.7259�168+0.9078�176+0.9078�177+0.9078�178)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT15.21± 0.06 OUR FIT15.21± 0.06 OUR FIT15.21± 0.06 OUR FIT15.21± 0.06 OUR FIT14.8 ± 0.4 OUR AVERAGE14.8 ± 0.4 OUR AVERAGE14.8 ± 0.4 OUR AVERAGE14.8 ± 0.4 OUR AVERAGE14.4 ± 0.6 ±0.3 ADEVA 91F L3 Eee
m= 88.3{94.3 GeV15.0 ± 0.4 ±0.3 BEHREND 89B CELL Eee
m= 14{47 GeV15.1 ± 0.8 ±0.6 AIHARA 87B TPC Eee
m= 29 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •13.5 ± 0.3 ±0.3 ABACHI 89B HRS Eee
m= 29 GeV12.8 ± 1.0 ±0.7 1 BURCHAT 87 MRK2 Eee
m= 29 GeV12.1 ± 0.5 ±1.2 RUCKSTUHL 86 DLCO Eee
m= 29 GeV12.8 ± 0.5 ±0.8 1420 SCHMIDKE 86 MRK2 Eee
m= 29 GeV15.3 ± 1.1 +1.3

−1.6 367 ALTHOFF 85 TASS Eee
m= 34.5 GeV13.6 ± 0.5 ±0.8 BARTEL 85F JADE Eee
m= 34.6 GeV12.2 ± 1.3 ±3.9 2 BERGER 85 PLUT Eee
m= 34.6 GeV13.3 ± 0.3 ±0.6 FERNANDEZ 85 MAC Eee
m= 29 GeV24 ± 6 35 BRANDELIK 80 TASS Eee
m= 30 GeV32 ± 5 692 3 BACINO 78B DLCO Eee
m= 3.1{7.4 GeV35 ±11 3 BRANDELIK 78 DASP Assumes V−A de
ay18 ± 6.5 33 3 JAROS 78 LGW Eee
m > 6 GeV1BURCHAT 87 value is not independent of SCHMIDKE 86 value.2Not independent of BERGER 85 �(
µ− νµ ντ

)/�total, �(e− νe ντ
)/�total, �(h− ≥ 1neutralsντ

)/�total, and �(h− ≥ 0K0L ντ
)/�total, and therefore not used in the �t.3 Low energy experiments are not in average or �t be
ause the systemati
 errors in ba
k-ground subtra
tion are judged to be large.�(h− h−h+ ≥ 0 neutrals ντ (ex. K0S → π+π−)(\3-prong"))/�total �63/��(h− h−h+ ≥ 0 neutrals ντ (ex. K0S → π+π−)(\3-prong"))/�total �63/��(h− h−h+ ≥ 0 neutrals ντ (ex. K0S → π+π−)(\3-prong"))/�total �63/��(h− h−h+ ≥ 0 neutrals ντ (ex. K0S → π+π−)(\3-prong"))/�total �63/��63/� = (�70+�78+�85+�86+�97+�103+�106+�107+0.2810�148+0.2810�150+0.2810�152+0.489�168+0.9078�176+0.9078�177+0.9078�178)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT14.55 ±0.06 OUR FIT14.55 ±0.06 OUR FIT14.55 ±0.06 OUR FIT14.55 ±0.06 OUR FIT14.61 ±0.06 OUR AVERAGE14.61 ±0.06 OUR AVERAGE14.61 ±0.06 OUR AVERAGE14.61 ±0.06 OUR AVERAGE14.556±0.105±0.076 1 ACHARD 01D L3 1992{1995 LEP runs14.96 ±0.09 ±0.22 10.4k AKERS 95Y OPAL 1991{1994 LEP runs

• • • We use the following data for averages but not for �ts. • • •14.652±0.067±0.086 SCHAEL 05C ALEP 1991{1995 LEP runs14.569±0.093±0.048 23k 2 ABREU 01M DLPH 1992{1995 LEP runs14.22 ±0.10 ±0.37 3 BALEST 95C CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •15.26 ±0.26 ±0.22 ACTON 92H OPAL Repl. by AKERS 95Y13.3 ±0.3 ±0.8 4 ALBRECHT 92D ARG Eee
m= 9.4{10.6 GeV14.35 +0.40

−0.45 ±0.24 DECAMP 92C ALEP 1989{1990 LEP runs1The 
orrelation 
oeÆ
ients between this measurement and the ACHARD 01D measure-ments of B(τ → \1-prong") and B(τ → \5-prong") are −0.978 and −0.19 respe
tively.2The 
orrelation 
oeÆ
ients between this measurement and the ABREU 01M measure-ments of B(τ → 1-prong) and B(τ → 5-prong) are −0.98 and −0.08 respe
tively.3Not independent of BALEST 95C B(h− h− h+ ντ ) and B(h− h− h+π0 ντ ) values, andBORTOLETTO 93 B(h− h− h+2π0 ντ )/B(h− h− h+ ≥ 0 neutrals ντ ) value.4This ALBRECHT 92D value is not independent of their �(µ− νµντ )�(e− νe ντ )/�2totalvalue.

�(h−h− h+ντ

)/�total �64/��(h−h− h+ντ

)/�total �64/��(h−h− h+ντ

)/�total �64/��(h−h− h+ντ

)/�total �64/��64/� = (0.34598�36+0.34598�38+�70+�97+�106+0.489�168+0.0153�176+0.0153�177)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT9.80±0.05 OUR FIT9.80±0.05 OUR FIT9.80±0.05 OUR FIT9.80±0.05 OUR FIT
• • • We use the following data for averages but not for �ts. • • •7.6 ±0.1 ±0.57.6 ±0.1 ±0.57.6 ±0.1 ±0.57.6 ±0.1 ±0.5 7.5k 1 ALBRECHT 96E ARG Eee
m= 9.4{10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.92±0.10±0.09 11.2k 2 BUSKULIC 96 ALEP Repl. by SCHAEL 05C9.49±0.36±0.63 DECAMP 92C ALEP Repl. by SCHAEL 05C8.7 ±0.7 ±0.3 694 3 BEHREND 90 CELL Eee
m= 35 GeV7.0 ±0.3 ±0.7 1566 4 BAND 87 MAC Eee
m= 29 GeV6.7 ±0.8 ±0.9 5 BURCHAT 87 MRK2 Eee
m= 29 GeV6.4 ±0.4 ±0.9 6 RUCKSTUHL 86 DLCO Eee
m= 29 GeV7.8 ±0.5 ±0.8 890 SCHMIDKE 86 MRK2 Eee
m= 29 GeV8.4 ±0.4 ±0.7 1255 6 FERNANDEZ 85 MAC Eee
m= 29 GeV9.7 ±2.0 ±1.3 BEHREND 84 CELL Eee
m= 14,22 GeV1ALBRECHT 96E not independent of ALBRECHT 93C �(h− h− h+ ντ (ex. K0) ×�(parti
le− ≥ 0 neutrals ≥ 0K0L ντ )/�2total value.2BUSKULIC 96 quote B(h− h− h+ ντ (ex. K0)) = 9.50 ± 0.10 ± 0.11. We add 0.42 toremove their K0 
orre
tion and redu
e the systemati
 error a

ordingly.3BEHREND 90 subtra
t 0.3% to a

ount for the τ− → K∗(892)− ντ 
ontribution tomeasured events.4BAND 87 subtra
t for 
harged kaon modes; not independent of FERNANDEZ 85 value.5BURCHAT 87 value is not independent of SCHMIDKE 86 value.6Value obtained by multiplying paper's R = B(h− h− h+ ντ )/B(3-prong) by B(3-prong)= 0.143 and subtra
ting 0.3% for K∗(892) ba
kground.�(h−h− h+ντ (ex.K0))/�total �65/��(h−h− h+ντ (ex.K0))/�total �65/��(h−h− h+ντ (ex.K0))/�total �65/��(h−h− h+ντ (ex.K0))/�total �65/��65/� = (�70+�97+�106+0.489�168+0.0153�176+0.0153�177)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT9.46 ±0.05 OUR FIT9.46 ±0.05 OUR FIT9.46 ±0.05 OUR FIT9.46 ±0.05 OUR FIT9.44 ±0.14 OUR AVERAGE9.44 ±0.14 OUR AVERAGE9.44 ±0.14 OUR AVERAGE9.44 ±0.14 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.9.317±0.090±0.082 12.2k 1 ABDALLAH 06A DLPH 1992{1995 LEP runs9.51 ±0.07 ±0.20 37.7k BALEST 95C CLEO Eee
m ≈ 10.6 GeV
• • • We use the following data for averages but not for �ts. • • •9.87 ±0.10 ±0.24 2 AKERS 95Y OPAL 1991{1994 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.50 ±0.10 ±0.11 11.2k 3 BUSKULIC 96 ALEP Repl. by SCHAEL 05C1See footnote to ABDALLAH 06A �(τ− → h− ντ )/�total measurement for 
orrelationswith other measurements.2Not independent of AKERS 95Y B(h− h− h+ ≥ 0 neutralsντ (ex. K0S → π+π−)) andB(h− h− h+ ντ (ex. K0))/B(h− h− h+ ≥ 0 neutralsντ (ex. K0S → π+π−)) values.3Not independent of BUSKULIC 96 B(h− h− h+ ντ ) value.

WEIGHTED AVERAGE
9.44±0.14 (Error scaled by 1.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BALEST 95C CLEO 0.1
AKERS 95Y OPAL 2.8
ABDALLAH 06A DLPH 1.0

χ2

       3.9
(Confidence Level = 0.145)

8.5 9 9.5 10 10.5 11�(h−h−h+ ντ (ex.K0))/�total (%)�(h−h− h+ντ (ex.K0))/�(h− h−h+ ≥ 0 neutrals ντ (ex. K0S → π+π−)(\3-prong")) �65/�63�(h−h− h+ντ (ex.K0))/�(h− h−h+ ≥ 0 neutrals ντ (ex. K0S → π+π−)(\3-prong")) �65/�63�(h−h− h+ντ (ex.K0))/�(h− h−h+ ≥ 0 neutrals ντ (ex. K0S → π+π−)(\3-prong")) �65/�63�(h−h− h+ντ (ex.K0))/�(h− h−h+ ≥ 0 neutrals ντ (ex. K0S → π+π−)(\3-prong")) �65/�63�65/�63 = (�70+�97+�106+0.489�168+0.0153�176+0.0153�177)/(0.4247�52+�70+�78+�85+�89+�97+�103+�106+�107+0.2810�148+0.2292�149+0.2810�150+0.2810�152+0.1131�154+0.3268�158+0.489�168+0.9078�176+0.9078�177+0.9078�178+0.892�180)VALUE (units 10−2) DOCUMENT ID TECN COMMENT64.98±0.31 OUR FIT64.98±0.31 OUR FIT64.98±0.31 OUR FIT64.98±0.31 OUR FIT66.0 ±0.4 ±1.466.0 ±0.4 ±1.466.0 ±0.4 ±1.466.0 ±0.4 ±1.4 AKERS 95Y OPAL 1991{1994 LEP runs



740740740740Lepton Parti
le Listings
τ�(h−h− h+ντ (ex.K0,ω))/�total �66/��(h−h− h+ντ (ex.K0,ω))/�total �66/��(h−h− h+ντ (ex.K0,ω))/�total �66/��(h−h− h+ντ (ex.K0,ω))/�total �66/��66/� = (�70+�97+�106+0.489�168)/�VALUE (%) DOCUMENT ID9.43±0.05 OUR FIT9.43±0.05 OUR FIT9.43±0.05 OUR FIT9.43±0.05 OUR FIT�(

π−π+π− ντ

)/�total �67/� = (0.34598�36+�70+0.0153�176)/��(
π−π+π− ντ

)/�total �67/� = (0.34598�36+�70+0.0153�176)/��(
π−π+π− ντ

)/�total �67/� = (0.34598�36+�70+0.0153�176)/��(
π−π+π− ντ

)/�total �67/� = (0.34598�36+�70+0.0153�176)/�VALUE (%) DOCUMENT ID9.31±0.05 OUR FIT9.31±0.05 OUR FIT9.31±0.05 OUR FIT9.31±0.05 OUR FIT�(
π−π+π− ντ (ex.K0))/�total �68/�= (�70+0.0153�176)/��(
π−π+π− ντ (ex.K0))/�total �68/�= (�70+0.0153�176)/��(
π−π+π− ντ (ex.K0))/�total �68/�= (�70+0.0153�176)/��(
π−π+π− ντ (ex.K0))/�total �68/�= (�70+0.0153�176)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT9.02±0.05 OUR FIT9.02±0.05 OUR FIT9.02±0.05 OUR FIT9.02±0.05 OUR FIT8.77±0.13 OUR AVERAGE8.77±0.13 OUR AVERAGE8.77±0.13 OUR AVERAGE8.77±0.13 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.8.42±0.00+0.26

−0.25 8.9M 1 LEE 10 BELL 666 fb−1 Eee
m = 10.6 GeV8.83±0.01±0.13 1.6M 2 AUBERT 08 BABR 342 fb−1 Eee
m = 10.6 GeV9.13±0.05±0.46 43k 3 BRIERE 03 CLE3 Eee
m= 10.6 GeV1Quoted statisti
al error is 0.003%. Correlation matrix for LEE 10 bran
hing fra
tions:(1) �(τ− → π−π+π− ντ (ex.K0))/�total(2) �(τ− → K−π+π− ντ (ex.K0))/�total(3) �(τ− → K−K+π− ντ )/�total(4) �(τ− → K−K+K− ντ )/�total(1) (2) (3)(2) 0.175(3) 0.049 0.080(4) -0.053 0.035 -0.0082Correlation matrix for AUBERT 08 bran
hing fra
tions:(1) �(τ− → π−π+π− ντ (ex.K0))/�total(2) �(τ− → K−π+π− ντ (ex.K0))/�total(3) �(τ− → K−K+π− ντ )/�total(4) �(τ− → K−K+K− ντ )/�total(1) (2) (3)(2) 0.544(3) 0.390 0.177(4) 0.031 0.093 0.0873 47% 
orrelated with BRIERE 03 τ− → K−π+π− ντ and 71% 
orrelated with τ− →K−K+π− ντ be
ause of a 
ommon 5% normalization error.�(
π−π+π− ντ (ex.K0), non-axial ve
tor)/�(

π−π+π−ντ (ex.K0)) �69/�68�(
π−π+π− ντ (ex.K0), non-axial ve
tor)/�(

π−π+π−ντ (ex.K0)) �69/�68�(
π−π+π− ντ (ex.K0), non-axial ve
tor)/�(

π−π+π−ντ (ex.K0)) �69/�68�(
π−π+π− ντ (ex.K0), non-axial ve
tor)/�(

π−π+π−ντ (ex.K0)) �69/�68�69/�68 = �69/(�70+0.0153�175)VALUE CL% DOCUMENT ID TECN COMMENT
<0.261<0.261<0.261<0.261 95 1 ACKERSTAFF 97R OPAL 1992{1994 LEP runs1Model-independent limit from stru
ture fun
tion analysis on 
ontribution to B(τ− →

π−π+π− ντ (ex. K0)) from non-axial ve
tors.�(
π−π+π− ντ (ex.K0,ω))/�total �70/��(
π−π+π− ντ (ex.K0,ω))/�total �70/��(
π−π+π− ντ (ex.K0,ω))/�total �70/��(
π−π+π− ντ (ex.K0,ω))/�total �70/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT8.99 ±0.05 OUR FIT8.99 ±0.05 OUR FIT8.99 ±0.05 OUR FIT8.99 ±0.05 OUR FIT9.041±0.060±0.0769.041±0.060±0.0769.041±0.060±0.0769.041±0.060±0.076 29k 1 SCHAEL 05C ALEP 1991-1995 LEP runs1 See footnote to SCHAEL 05C �(τ− → e− νe ντ )/�total measurement for 
orrelationswith other measurements.�(h−h− h+ ≥ 1 neutrals ντ

)/�total �71/��(h−h− h+ ≥ 1 neutrals ντ

)/�total �71/��(h−h− h+ ≥ 1 neutrals ντ

)/�total �71/��(h−h− h+ ≥ 1 neutrals ντ

)/�total �71/��71/� = (0.34598�41+0.34598�43+0.4247�48+0.4247�52+�78+�85+�86+�103+�107+0.2810�148+0.2810�150+0.2810�152+0.2926�154+0.892�176+0.892�177+0.9078�178)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT5.29±0.05 OUR FIT5.29±0.05 OUR FIT5.29±0.05 OUR FIT5.29±0.05 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.6 ±0.7 ±0.3 352 1 BEHREND 90 CELL Eee
m= 35 GeV4.2 ±0.5 ±0.9 203 2 ALBRECHT 87L ARG Eee
m= 10 GeV6.1 ±0.8 ±0.9 3 BURCHAT 87 MRK2 Eee
m= 29 GeV7.6 ±0.4 ±0.9 4,5 RUCKSTUHL 86 DLCO Eee
m= 29 GeV4.7 ±0.5 ±0.8 530 6 SCHMIDKE 86 MRK2 Eee
m= 29 GeV5.6 ±0.4 ±0.7 5 FERNANDEZ 85 MAC Eee
m= 29 GeV6.2 ±2.3 ±1.7 BEHREND 84 CELL Eee
m= 14,22 GeV1BEHREND 90 value is not independent of BEHREND 90 B(3hντ ≥ 1 neutrals) +B(5-prong).2ALBRECHT 87L measure the produ
t of bran
hing ra-tios B(3π±π0 ντ ) B((e ν orµν orπorK orρ)ντ ) = 0.029 and use the PDG 86 valuesfor the se
ond bran
hing ratio whi
h sum to 0.69 ± 0.03 to get the quoted value.3BURCHAT 87 value is not independent of SCHMIDKE 86 value.4Contributions from kaons and from >1π0 are subtra
ted. Not independent of (3-prong+ 0π0) and (3-prong + ≥ 0π0) values.5Value obtained using paper's R = B(h− h− h+ ντ )/B(3-prong) and 
urrent B(3-prong)= 0.143.6Not independent of SCHMIDKE 86 h− h− h+ ντ and h− h− h+( ≥ 0π0)ντ values.

�(h−h− h+ ≥ 1π0 ντ (ex. K0))/�total �72/��(h−h− h+ ≥ 1π0 ντ (ex. K0))/�total �72/��(h−h− h+ ≥ 1π0 ντ (ex. K0))/�total �72/��(h−h− h+ ≥ 1π0 ντ (ex. K0))/�total �72/��72/� = (�78+�85+�86+�103+�107+0.2292�148+0.2292�150+0.2292�152+0.892�176+0.892�177+0.9078�178)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT5.09 ±0.05 OUR FIT5.09 ±0.05 OUR FIT5.09 ±0.05 OUR FIT5.09 ±0.05 OUR FIT5.10 ±0.12 OUR AVERAGE5.10 ±0.12 OUR AVERAGE5.10 ±0.12 OUR AVERAGE5.10 ±0.12 OUR AVERAGE
• • • We use the following data for averages but not for �ts. • • •5.106±0.083±0.103 10.1k 1 ABDALLAH 06A DLPH 1992{1995 LEP runs5.09 ±0.10 ±0.23 2 AKERS 95Y OPAL 1991{1994 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.95 ±0.29 ±0.65 570 DECAMP 92C ALEP Repl. by SCHAEL 05C1See footnote to ABDALLAH 06A �(τ− → h− ντ )/�total measurement for 
orrelationswith other measurements.2Not independent of AKERS 95Y B(h− h− h+ ≥ 0 neutralsντ (ex. K0S → π+π−))and B(h− h− h+ ≥ 0 neutralsντ (ex. K0))/B(h− h− h+ ≥ 0 neutralsντ (ex. K0S →

π+π−)) values.�(h−h− h+π0 ντ

)/�total �73/��(h−h− h+π0 ντ

)/�total �73/��(h−h− h+π0 ντ

)/�total �73/��(h−h− h+π0 ντ

)/�total �73/��73/� = (0.34598�41+0.34598�43+�78+�103+�107+0.2292�150+0.892�176+0.892�177+0.0153�178)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT4.76±0.05 OUR FIT4.76±0.05 OUR FIT4.76±0.05 OUR FIT4.76±0.05 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.45±0.09±0.07 6.1k 1 BUSKULIC 96 ALEP Repl. by SCHAEL 05C1BUSKULIC 96 quote B(h− h− h+π0 ντ (ex. K0)) = 4.30 ± 0.09 ± 0.09. We add 0.15to remove their K0 
orre
tion and redu
e the systemati
 error a

ordingly.�(h−h− h+π0 ντ (ex.K0))/�total �74/��(h−h− h+π0 ντ (ex.K0))/�total �74/��(h−h− h+π0 ντ (ex.K0))/�total �74/��(h−h− h+π0 ντ (ex.K0))/�total �74/��74/� = (�78+�103+�107+0.2292�150+0.892�176+0.892�177+0.0153�178)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT4.57 ±0.05 OUR FIT4.57 ±0.05 OUR FIT4.57 ±0.05 OUR FIT4.57 ±0.05 OUR FIT4.45 ±0.14 OUR AVERAGE4.45 ±0.14 OUR AVERAGE4.45 ±0.14 OUR AVERAGE4.45 ±0.14 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.4.545±0.106±0.103 8.9k 1 ABDALLAH 06A DLPH 1992{1995 LEP runs4.23 ±0.06 ±0.22 7.2k BALEST 95C CLEO Eee
m ≈ 10.6 GeV1See footnote to ABDALLAH 06A �(τ− → h− ντ )/�total measurement for 
orrelationswith other measurements.�(h−h− h+π0 ντ (ex. K0, ω))/�total�75/�= (�78+�103+�107+0.2292�150)/��(h−h− h+π0 ντ (ex. K0, ω))/�total�75/�= (�78+�103+�107+0.2292�150)/��(h−h− h+π0 ντ (ex. K0, ω))/�total�75/�= (�78+�103+�107+0.2292�150)/��(h−h− h+π0 ντ (ex. K0, ω))/�total�75/�= (�78+�103+�107+0.2292�150)/�VALUE (%) DOCUMENT ID2.79±0.07 OUR FIT2.79±0.07 OUR FIT2.79±0.07 OUR FIT2.79±0.07 OUR FIT�(

π−π+π−π0 ντ

)/�total �76/��(
π−π+π−π0 ντ

)/�total �76/��(
π−π+π−π0 ντ

)/�total �76/��(
π−π+π−π0 ντ

)/�total �76/��76/� = (0.34598�41+�78+0.892�176+0.0153�178)/�VALUE (%) DOCUMENT ID4.62±0.05 OUR FIT4.62±0.05 OUR FIT4.62±0.05 OUR FIT4.62±0.05 OUR FIT�(
π−π+π−π0 ντ (ex.K0))/�total �77/��(
π−π+π−π0 ντ (ex.K0))/�total �77/��(
π−π+π−π0 ντ (ex.K0))/�total �77/��(
π−π+π−π0 ντ (ex.K0))/�total �77/��77/� = (�78+0.892�176+0.0153�178)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT4.49 ±0.05 OUR FIT4.49 ±0.05 OUR FIT4.49 ±0.05 OUR FIT4.49 ±0.05 OUR FIT4.55 ±0.13 OUR AVERAGE4.55 ±0.13 OUR AVERAGE4.55 ±0.13 OUR AVERAGE4.55 ±0.13 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.4.598±0.057±0.064 16k 1 SCHAEL 05C ALEP 1991-1995 LEP runs4.19 ±0.10 ±0.21 2 EDWARDS 00A CLEO 4.7 fb−1 Eee
m= 10.6 GeV1SCHAEL 05C quote (4.590±0.057±0.064)%. We add 0.008% to remove their 
orre
tionfor τ− → π−π0ωντ → π−π0π+π− ντ de
ays. See footnote to SCHAEL 05C�(τ− → e− νe ντ )/�total measurement for 
orrelations with other measurements.2 EDWARDS 00A quote (4.19 ± 0.10) × 10−2 with a 5% systemati
 error.�(
π−π+π−π0 ντ (ex.K0,ω))/�total �78/��(
π−π+π−π0 ντ (ex.K0,ω))/�total �78/��(
π−π+π−π0 ντ (ex.K0,ω))/�total �78/��(
π−π+π−π0 ντ (ex.K0,ω))/�total �78/�VALUE (%) DOCUMENT ID2.74±0.07 OUR FIT2.74±0.07 OUR FIT2.74±0.07 OUR FIT2.74±0.07 OUR FIT�(h−ρπ0 ντ

)/�(h− h−h+π0 ντ

) �79/�73�(h−ρπ0 ντ

)/�(h− h−h+π0 ντ

) �79/�73�(h−ρπ0 ντ

)/�(h− h−h+π0 ντ

) �79/�73�(h−ρπ0 ντ

)/�(h− h−h+π0 ντ

) �79/�73VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.30±0.04±0.02 393 ALBRECHT 91D ARG Eee
m= 9.4{10.6 GeV�(h−ρ+ h−ντ

)/�(h−h−h+π0 ντ

) �80/�73�(h−ρ+ h−ντ

)/�(h−h−h+π0 ντ

) �80/�73�(h−ρ+ h−ντ

)/�(h−h−h+π0 ντ

) �80/�73�(h−ρ+ h−ντ

)/�(h−h−h+π0 ντ

) �80/�73VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.10±0.03±0.04 142 ALBRECHT 91D ARG Eee
m= 9.4{10.6 GeV�(h−ρ− h+ντ

)/�(h−h−h+π0 ντ

) �81/�73�(h−ρ− h+ντ

)/�(h−h−h+π0 ντ

) �81/�73�(h−ρ− h+ντ

)/�(h−h−h+π0 ντ

) �81/�73�(h−ρ− h+ντ

)/�(h−h−h+π0 ντ

) �81/�73VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.26±0.05±0.01 370 ALBRECHT 91D ARG Eee
m= 9.4{10.6 GeV
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τ�(h−h− h+ ≥ 2π0 ντ (ex. K0))/�total �82/��(h−h− h+ ≥ 2π0 ντ (ex. K0))/�total �82/��(h−h− h+ ≥ 2π0 ντ (ex. K0))/�total �82/��(h−h− h+ ≥ 2π0 ντ (ex. K0))/�total �82/��82/� = (�85+�86+0.2292�148+0.2292�152+0.892�178)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.517±0.031 OUR FIT0.517±0.031 OUR FIT0.517±0.031 OUR FIT0.517±0.031 OUR FIT0.561±0.068±0.0950.561±0.068±0.0950.561±0.068±0.0950.561±0.068±0.095 1.3k 1 ABDALLAH 06A DLPH 1992{1995 LEP runs1 See footnote to ABDALLAH 06A �(τ− → h− ντ )/�total measurement for 
orrelationswith other measurements.�(h−h− h+2π0 ντ

)/�total �83/��(h−h− h+2π0 ντ

)/�total �83/��(h−h− h+2π0 ντ

)/�total �83/��(h−h− h+2π0 ντ

)/�total �83/��83/� = (0.4247�48+�85+0.2292�148+0.2292�152+0.892�178)/�VALUE (%) DOCUMENT ID0.505±0.031 OUR FIT0.505±0.031 OUR FIT0.505±0.031 OUR FIT0.505±0.031 OUR FIT�(h−h− h+2π0 ντ (ex.K0))/�total �84/��(h−h− h+2π0 ντ (ex.K0))/�total �84/��(h−h− h+2π0 ντ (ex.K0))/�total �84/��(h−h− h+2π0 ντ (ex.K0))/�total �84/��84/� = (�85+0.2292�148+0.2292�152+0.892�178)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.495±0.031 OUR FIT0.495±0.031 OUR FIT0.495±0.031 OUR FIT0.495±0.031 OUR FIT0.435±0.030±0.0350.435±0.030±0.0350.435±0.030±0.0350.435±0.030±0.035 2.6k 1 SCHAEL 05C ALEP 1991-1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.50 ±0.07 ±0.07 1.8k BUSKULIC 96 ALEP Repl. by SCHAEL 05C1SCHAEL 05C quote (0.392 ± 0.030 ± 0.035)%. We add 0.043% to remove their 
or-re
tion for τ− → π− ηπ0 ντ → π−π+π− 2π0 ντ and τ− → K∗(892)− ηντ →K−π+π− 2π0 ντ de
ays. See footnote to SCHAEL 05C �(τ− → e− νe ντ )/�totalmeasurement for 
orrelations with other measurements.�(h−h− h+2π0 ντ (ex.K0))/�(h− h−h+ ≥ 0 neutrals ≥ 0K 0Lντ

) �84/�62�(h−h− h+2π0 ντ (ex.K0))/�(h− h−h+ ≥ 0 neutrals ≥ 0K 0Lντ

) �84/�62�(h−h− h+2π0 ντ (ex.K0))/�(h− h−h+ ≥ 0 neutrals ≥ 0K 0Lντ

) �84/�62�(h−h− h+2π0 ντ (ex.K0))/�(h− h−h+ ≥ 0 neutrals ≥ 0K 0Lντ

) �84/�62�84/�62 = (�85+0.2292�148+0.2292�152+0.892�178)/(0.34598�36+0.34598�38+0.34598�41+0.34598�43+0.4247�48+0.6920�49+0.8494�52+0.6920�56+0.6534�61+�70+�78+�85+�89+�97+�103+�106+�107+0.2810�148+0.2292�149+0.2810�150+0.2810�152+0.3759�154+0.3268�158+0.7259�168+0.9078�176+0.9078�177+0.9078�178+0.892�180)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.26±0.20 OUR FIT3.26±0.20 OUR FIT3.26±0.20 OUR FIT3.26±0.20 OUR FIT3.4 ±0.2 ±0.33.4 ±0.2 ±0.33.4 ±0.2 ±0.33.4 ±0.2 ±0.3 668 BORTOLETTO93 CLEO Eee
m ≈ 10.6 GeV�(h−h− h+2π0 ντ (ex.K0,ω,η))/�total �85/��(h−h− h+2π0 ντ (ex.K0,ω,η))/�total �85/��(h−h− h+2π0 ντ (ex.K0,ω,η))/�total �85/��(h−h− h+2π0 ντ (ex.K0,ω,η))/�total �85/�VALUE (units 10−4) DOCUMENT ID10±4 OUR FIT10±4 OUR FIT10±4 OUR FIT10±4 OUR FIT�(h−h− h+3π0 ντ

)/�total �86/�= (0.4247�52+�87+0.1131�154)/��(h−h− h+3π0 ντ

)/�total �86/�= (0.4247�52+�87+0.1131�154)/��(h−h− h+3π0 ντ

)/�total �86/�= (0.4247�52+�87+0.1131�154)/��(h−h− h+3π0 ντ

)/�total �86/�= (0.4247�52+�87+0.1131�154)/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT2.12±0.30 OUR FIT2.12±0.30 OUR FIT2.12±0.30 OUR FIT2.12±0.30 OUR FIT2.2 ±0.3 ±0.42.2 ±0.3 ±0.42.2 ±0.3 ±0.42.2 ±0.3 ±0.4 139 ANASTASSOV 01 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.9 95 SCHAEL 05C ALEP 1991-1995 LEP runs2.85±0.56±0.51 57 ANDERSON 97 CLEO Repl. by ANAS-TASSOV 0111 ±4 ±5 440 1 BUSKULIC 96 ALEP Repl. by SCHAEL 05C1BUSKULIC 96 state their measurement is for B(h− h− h+ ≥ 3π0 ντ ). We assume thatB(h− h− h+ ≥ 4π0 ντ ) is very small.�(2π−π+ 3π0ντ (ex.K0))/�total �87/��(2π−π+ 3π0ντ (ex.K0))/�total �87/��(2π−π+ 3π0ντ (ex.K0))/�total �87/��(2π−π+ 3π0ντ (ex.K0))/�total �87/��87/� = (�89+0.2292�149+0.3268�158+0.892�180)/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.94±0.30 OUR FIT1.94±0.30 OUR FIT1.94±0.30 OUR FIT1.94±0.30 OUR FIT
• • • We use the following data for averages but not for �ts. • • •2.07±0.18±0.372.07±0.18±0.372.07±0.18±0.372.07±0.18±0.37 1 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV1Not independent of LEES 12X �(τ− → ηπ−π+π− ντ (ex.K0))/�, �(τ− →

ηπ−π0π0 ντ )/�, �(τ− → π−ω2π0 ντ )/�, and �(τ− → f1(1285)π− ντ →
ηπ−π+π− ντ )/� values.�(2π−π+ 3π0ντ (ex.K0, η, f1(1285)) )/�total �88/��(2π−π+ 3π0ντ (ex.K0, η, f1(1285)) )/�total �88/��(2π−π+ 3π0ντ (ex.K0, η, f1(1285)) )/�total �88/��(2π−π+ 3π0ντ (ex.K0, η, f1(1285)) )/�total �88/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.69±0.08±0.431.69±0.08±0.431.69±0.08±0.431.69±0.08±0.43 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV�(2π−π+ 3π0ντ (ex.K0, η, ω, f1(1285)) )/�total �89/��(2π−π+ 3π0ντ (ex.K0, η, ω, f1(1285)) )/�total �89/��(2π−π+ 3π0ντ (ex.K0, η, ω, f1(1285)) )/�total �89/��(2π−π+ 3π0ντ (ex.K0, η, ω, f1(1285)) )/�total �89/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.4±2.7 OUR FIT1.4±2.7 OUR FIT1.4±2.7 OUR FIT1.4±2.7 OUR FIT1.0±0.8±3.01.0±0.8±3.01.0±0.8±3.01.0±0.8±3.0 1 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV1LEES 12X meaurement 
orresponds to the lower limit of < 5.8× 10−5 at 90% CL.�(K−h+h− ≥ 0 neutrals ντ

)/�total �90/��(K−h+h− ≥ 0 neutrals ντ

)/�total �90/��(K−h+h− ≥ 0 neutrals ντ

)/�total �90/��(K−h+h− ≥ 0 neutrals ντ

)/�total �90/��90/� = (0.34598�38+0.34598�43+�97+�103+�106+�107+0.2810�150+0.489�168+0.9078�177)/�VALUE (%) CL% DOCUMENT ID TECN COMMENT0.629±0.014 OUR FIT0.629±0.014 OUR FIT0.629±0.014 OUR FIT0.629±0.014 OUR FIT
<0.6<0.6<0.6<0.6 90 AIHARA 84C TPC Eee
m= 29 GeV

�(K−h+π− ντ (ex.K0))/�total �91/�= (�97+�106+0.0153�177)/��(K−h+π− ντ (ex.K0))/�total �91/�= (�97+�106+0.0153�177)/��(K−h+π− ντ (ex.K0))/�total �91/�= (�97+�106+0.0153�177)/��(K−h+π− ντ (ex.K0))/�total �91/�= (�97+�106+0.0153�177)/�VALUE (%) DOCUMENT ID0.437±0.007 OUR FIT0.437±0.007 OUR FIT0.437±0.007 OUR FIT0.437±0.007 OUR FIT�(K−h+π− ντ (ex.K0))/�(
π−π+π− ντ (ex.K0)) �91/�68�(K−h+π− ντ (ex.K0))/�(
π−π+π− ντ (ex.K0)) �91/�68�(K−h+π− ντ (ex.K0))/�(
π−π+π− ντ (ex.K0)) �91/�68�(K−h+π− ντ (ex.K0))/�(
π−π+π− ντ (ex.K0)) �91/�68�91/�68 = (�97+�106+0.0153�177)/(�70+0.0153�176)VALUE (%) EVTS DOCUMENT ID TECN COMMENT4.84±0.08 OUR FIT4.84±0.08 OUR FIT4.84±0.08 OUR FIT4.84±0.08 OUR FIT5.44±0.21±0.535.44±0.21±0.535.44±0.21±0.535.44±0.21±0.53 7.9k RICHICHI 99 CLEO Eee
m= 10.6 GeV�(K−h+π−π0 ντ (ex.K0))/�total �92/��(K−h+π−π0 ντ (ex.K0))/�total �92/��(K−h+π−π0 ντ (ex.K0))/�total �92/��(K−h+π−π0 ντ (ex.K0))/�total �92/��92/� = (�103+�107+0.2292�150+0.892�177)/�VALUE (units 10−4) DOCUMENT ID8.6±1.2 OUR FIT8.6±1.2 OUR FIT8.6±1.2 OUR FIT8.6±1.2 OUR FIT�(K−h+π−π0 ντ (ex.K0))/�(

π−π+π−π0 ντ (ex.K0)) �92/�77�(K−h+π−π0 ντ (ex.K0))/�(
π−π+π−π0 ντ (ex.K0)) �92/�77�(K−h+π−π0 ντ (ex.K0))/�(
π−π+π−π0 ντ (ex.K0)) �92/�77�(K−h+π−π0 ντ (ex.K0))/�(
π−π+π−π0 ντ (ex.K0)) �92/�77�92/�77 = (�103+�107+0.2292�150+0.892�177)/(�78+0.892�176+0.0153�178)VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.91±0.26 OUR FIT1.91±0.26 OUR FIT1.91±0.26 OUR FIT1.91±0.26 OUR FIT2.61±0.45±0.422.61±0.45±0.422.61±0.45±0.422.61±0.45±0.42 719 RICHICHI 99 CLEO Eee
m= 10.6 GeV�(K−π+π− ≥ 0 neutrals ντ

)/�total �93/��(K−π+π− ≥ 0 neutrals ντ

)/�total �93/��(K−π+π− ≥ 0 neutrals ντ

)/�total �93/��(K−π+π− ≥ 0 neutrals ντ

)/�total �93/��93/� = (0.34598�38+0.34598�43+�97+�103+0.2810�150+0.9078�177)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.477±0.014 OUR FIT0.477±0.014 OUR FIT0.477±0.014 OUR FIT0.477±0.014 OUR FIT0.58 +0.15
−0.13 ±0.120.58 +0.15
−0.13 ±0.120.58 +0.15
−0.13 ±0.120.58 +0.15
−0.13 ±0.12 20 1 BAUER 94 TPC Eee
m= 29 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.22 +0.16
−0.13 ±0.05 9 2 MILLS 85 DLCO Eee
m= 29 GeV1We multiply 0.58% by 0.20, the relative systemati
 error quoted by BAUER 94, to obtainthe systemati
 error.2 Error 
orrelated with MILLS 85 (K K πν) value. We multiply 0.22% by 0.23, the relativesystemati
 error quoted by MILLS 85, to obtain the systemati
 error.�(K−π+π− ≥ 0π0 ντ (ex.K0))/�total �94/��(K−π+π− ≥ 0π0 ντ (ex.K0))/�total �94/��(K−π+π− ≥ 0π0 ντ (ex.K0))/�total �94/��(K−π+π− ≥ 0π0 ντ (ex.K0))/�total �94/��94/� = (�97+�103+0.2292�150+0.9078�177)/�VALUE (%) DOCUMENT ID TECN COMMENT0.373±0.013 OUR FIT0.373±0.013 OUR FIT0.373±0.013 OUR FIT0.373±0.013 OUR FIT0.30 ±0.05 OUR AVERAGE0.30 ±0.05 OUR AVERAGE0.30 ±0.05 OUR AVERAGE0.30 ±0.05 OUR AVERAGE

• • • We use the following data for averages but not for �ts. • • •0.343±0.073±0.031 ABBIENDI 00D OPAL 1990{1995 LEP runs0.275±0.064 1 BARATE 98 ALEP 1991{1995 LEP runs1Not independent of BARATE 98 �(τ− → K−π+π− ντ )/�total and �(τ− →K−π+π−π0 ντ )/�total values.�(K−π+π−ντ

)/�total �95/� = (0.34598�38+�97+0.0153�177)/��(K−π+π−ντ

)/�total �95/� = (0.34598�38+�97+0.0153�177)/��(K−π+π−ντ

)/�total �95/� = (0.34598�38+�97+0.0153�177)/��(K−π+π−ντ

)/�total �95/� = (0.34598�38+�97+0.0153�177)/�VALUE (%) DOCUMENT ID0.345±0.007 OUR FIT0.345±0.007 OUR FIT0.345±0.007 OUR FIT0.345±0.007 OUR FIT�(K−π+π−ντ (ex.K0))/�total �96/�= (�97+0.0153�177)/��(K−π+π−ντ (ex.K0))/�total �96/�= (�97+0.0153�177)/��(K−π+π−ντ (ex.K0))/�total �96/�= (�97+0.0153�177)/��(K−π+π−ντ (ex.K0))/�total �96/�= (�97+0.0153�177)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.293±0.007 OUR FIT0.293±0.007 OUR FIT0.293±0.007 OUR FIT0.293±0.007 OUR FIT0.290±0.018 OUR AVERAGE0.290±0.018 OUR AVERAGE0.290±0.018 OUR AVERAGE0.290±0.018 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogram below.0.330±0.001+0.016
−0.017 794k 1 LEE 10 BELL 666 fb−1 Eee
m=10.6 GeV0.273±0.002±0.009 70k 2 AUBERT 08 BABR 342 fb−1 Eee
m=10.6 GeV0.415±0.053±0.040 269 ABBIENDI 04J OPAL 1991-1995 LEP runs0.384±0.014±0.038 3.5k 3 BRIERE 03 CLE3 Eee
m= 10.6 GeV0.214±0.037±0.029 BARATE 98 ALEP 1991{1995 LEP runs

• • • We use the following data for averages but not for �ts. • • •0.346±0.023±0.056 158 4 RICHICHI 99 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.360±0.082±0.048 ABBIENDI 00D OPAL 1990{1995 LEP runs1 See footnote to LEE 10 �(τ− → π−π+π− ντ (ex.K0))/�total measurement for
orrelations with other measurements. Not independent of LEE 10 �(τ− →K−π+π− ντ (ex.K0))/�(τ− → π−π+π− ντ (ex.K0)) value.2 See footnote to AUBERT 08 �(τ− → π−π+π− ντ (ex.K0))/�total measurement for
orrelations with other measurements.3 47% 
orrelated with BRIERE 03 τ− → π−π+π− ντ and 34% 
orrelated with τ− →K−K+π− ντ be
ause of a 
ommon 5% normalization error.4Not independent of RICHICHI 99�(τ− → K− h+π− ντ (ex.K0))/�(τ− → π−π+π− ντ (ex.K0)), �(τ− →K−K+π− ντ )/�(τ− → π−π+π− ντ (ex.K0)) and BALEST 95C �(τ− →h− h− h+ ντ (ex.K0))/�total values.
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WEIGHTED AVERAGE
0.290±0.018 (Error scaled by 2.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BARATE 98 ALEP 2.6
RICHICHI 99 CLEO
BRIERE 03 CLE3 5.4
ABBIENDI 04J OPAL
AUBERT 08 BABR 3.5
LEE 10 BELL 5.4

χ2

      16.9
(Confidence Level = 0.0007)

0.1 0.2 0.3 0.4 0.5 0.6�(K−π+π−ντ (ex.K0))/�total (%)�(K−π+π−ντ (ex.K0))/�(
π−π+π− ντ (ex.K0)) �96/�68�(K−π+π−ντ (ex.K0))/�(
π−π+π− ντ (ex.K0)) �96/�68�(K−π+π−ντ (ex.K0))/�(
π−π+π− ντ (ex.K0)) �96/�68�(K−π+π−ντ (ex.K0))/�(
π−π+π− ντ (ex.K0)) �96/�68�96/�68 = (�97+0.0153�177)/(�70+0.0153�176)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.25±0.07 OUR FIT3.25±0.07 OUR FIT3.25±0.07 OUR FIT3.25±0.07 OUR FIT

• • • We use the following data for averages but not for �ts. • • •3.92±0.02+0.15
−0.163.92±0.02+0.15
−0.163.92±0.02+0.15
−0.163.92±0.02+0.15
−0.16 794k 1 LEE 10 BELL 666 fb−1 Eee
m = 10.6 GeV1Not independent of LEE 10 �(τ− → K−π+π− ντ (ex.K0))/�total and �(τ− →

π−π+π− ντ (ex.K0))/�total values.�(K−π+π−ντ (ex.K0,ω))/�total �97/��(K−π+π−ντ (ex.K0,ω))/�total �97/��(K−π+π−ντ (ex.K0,ω))/�total �97/��(K−π+π−ντ (ex.K0,ω))/�total �97/�VALUE (units 10−3) DOCUMENT ID2.93±0.07 OUR FIT2.93±0.07 OUR FIT2.93±0.07 OUR FIT2.93±0.07 OUR FIT�(K−ρ0 ντ → K−π+π− ντ

)/�(K−π+π− ντ (ex.K0)) �98/�96�(K−ρ0 ντ → K−π+π− ντ

)/�(K−π+π− ντ (ex.K0)) �98/�96�(K−ρ0 ντ → K−π+π− ντ

)/�(K−π+π− ντ (ex.K0)) �98/�96�(K−ρ0 ντ → K−π+π− ντ

)/�(K−π+π− ντ (ex.K0)) �98/�96VALUE DOCUMENT ID TECN COMMENT0.48±0.14±0.100.48±0.14±0.100.48±0.14±0.100.48±0.14±0.10 1 ASNER 00B CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.39±0.14 2 BARATE 99R ALEP 1991{1995 LEP runs1ASNER 00B assume τ− → K−π+π− ντ (ex. K0) de
ays pro
eed only through K ρ andK∗π intermediate states. They assume the resonan
e stru
ture of τ− → K−π+π− ντ(ex. K0) de
ays is dominated by K1(1270)− and K1(1400)− resonan
es, and assumeB(K1(1270) → K∗(892)π) = (16 ± 5)%, B(K1(1270) → K ρ) = (42 ± 6)%, andB(K1(1400) → K ρ) = 0.2BARATE 99R assume τ− → K−π+π− ντ (ex. K0) de
ays pro
eed only through K ρand K∗π intermediate states. The quoted error is statisti
al only.�(K−π+π−π0 ντ

)/�total �99/��(K−π+π−π0 ντ

)/�total �99/��(K−π+π−π0 ντ

)/�total �99/��(K−π+π−π0 ντ

)/�total �99/��99/� = (0.34598�43+�103+0.2292�150+0.892�177)/�VALUE (units 10−4) DOCUMENT ID13.1±1.2 OUR FIT13.1±1.2 OUR FIT13.1±1.2 OUR FIT13.1±1.2 OUR FIT�(K−π+π−π0 ντ (ex.K0))/�total �100/��(K−π+π−π0 ντ (ex.K0))/�total �100/��(K−π+π−π0 ντ (ex.K0))/�total �100/��(K−π+π−π0 ντ (ex.K0))/�total �100/��100/� = (�103+0.2292�150+0.892�177)/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT7.9±1.2 OUR FIT7.9±1.2 OUR FIT7.9±1.2 OUR FIT7.9±1.2 OUR FIT7.3±1.2 OUR AVERAGE7.3±1.2 OUR AVERAGE7.3±1.2 OUR AVERAGE7.3±1.2 OUR AVERAGE7.4±0.8±1.1 1 ARMS 05 CLE3 7.6 fb−1, Eee
m= 10.6 GeV6.1±3.9±1.8 BARATE 98 ALEP 1991{1995 LEP runs
• • • We use the following data for averages but not for �ts. • • •7.5±2.6±1.8 2 RICHICHI 99 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<17 95 ABBIENDI 00D OPAL 1990{1995 LEP runs1Not independent of ARMS 05 �(τ− → K−π+π−π0 ντ (ex.K0,ω)) / �total and�(τ− → K−ωντ ) / �total values.2Not independent of RICHICHI 99�(τ− → K− h+π− ντ (ex.K0))/�(τ− → π−π+π− ντ (ex.K0)), �(τ− →K−K+π− ντ )/�(τ− → π−π+π− ντ (ex.K0)) and BALEST 95C �(τ− →h− h− h+ ντ (ex.K0))/�total values.�(K−π+π−π0 ντ (ex.K0,η))/�total �101/�= (�103+0.892�177)/��(K−π+π−π0 ντ (ex.K0,η))/�total �101/�= (�103+0.892�177)/��(K−π+π−π0 ντ (ex.K0,η))/�total �101/�= (�103+0.892�177)/��(K−π+π−π0 ντ (ex.K0,η))/�total �101/�= (�103+0.892�177)/�VALUE (units 10−4) DOCUMENT ID7.6±1.2 OUR FIT7.6±1.2 OUR FIT7.6±1.2 OUR FIT7.6±1.2 OUR FIT�(K−π+π−π0 ντ (ex.K0,ω))/�total �102/��(K−π+π−π0 ντ (ex.K0,ω))/�total �102/��(K−π+π−π0 ντ (ex.K0,ω))/�total �102/��(K−π+π−π0 ντ (ex.K0,ω))/�total �102/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.7±0.5±0.83.7±0.5±0.83.7±0.5±0.83.7±0.5±0.8 833 ARMS 05 CLE3 7.6 fb−1, Eee
m= 10.6 GeV

�(K−π+π−π0 ντ (ex.K0,ω,η))/�total �103/��(K−π+π−π0 ντ (ex.K0,ω,η))/�total �103/��(K−π+π−π0 ντ (ex.K0,ω,η))/�total �103/��(K−π+π−π0 ντ (ex.K0,ω,η))/�total �103/�VALUE (units 10−4) DOCUMENT ID3.9±1.4 OUR FIT3.9±1.4 OUR FIT3.9±1.4 OUR FIT3.9±1.4 OUR FIT�(K−π+K− ≥ 0 neut. ντ

)/�total �104/��(K−π+K− ≥ 0 neut. ντ

)/�total �104/��(K−π+K− ≥ 0 neut. ντ

)/�total �104/��(K−π+K− ≥ 0 neut. ντ

)/�total �104/�VALUE (%) CL% DOCUMENT ID TECN COMMENT
<0.09<0.09<0.09<0.09 95 BAUER 94 TPC Eee
m= 29 GeV�(K−K+π− ≥ 0 neut. ντ

)/�total �105/�= (�106+�107)/��(K−K+π− ≥ 0 neut. ντ

)/�total �105/�= (�106+�107)/��(K−K+π− ≥ 0 neut. ντ

)/�total �105/�= (�106+�107)/��(K−K+π− ≥ 0 neut. ντ

)/�total �105/�= (�106+�107)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.1496±0.0033 OUR FIT0.1496±0.0033 OUR FIT0.1496±0.0033 OUR FIT0.1496±0.0033 OUR FIT0.203 ±0.031 OUR AVERAGE0.203 ±0.031 OUR AVERAGE0.203 ±0.031 OUR AVERAGE0.203 ±0.031 OUR AVERAGE0.159 ±0.053 ±0.020 ABBIENDI 00D OPAL 1990{1995 LEP runs0.15 +0.09
−0.07 ±0.03 4 1 BAUER 94 TPC Eee
m= 29 GeV

• • • We use the following data for averages but not for �ts. • • •0.238 ±0.042 2 BARATE 98 ALEP 1991{1995 LEP runs1We multiply 0.15% by 0.20, the relative systemati
 error quoted by BAUER 94, to obtainthe systemati
 error.2Not independent of BARATE 98 �(τ− → K−K+π− ντ )/�total and �(τ− →K−K+π−π0 ντ )/�total values.�(K−K+π− ντ

)/�total �106/��(K−K+π− ντ

)/�total �106/��(K−K+π− ντ

)/�total �106/��(K−K+π− ντ

)/�total �106/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.435±0.027 OUR FIT1.435±0.027 OUR FIT1.435±0.027 OUR FIT1.435±0.027 OUR FIT1.43 ±0.07 OUR AVERAGE1.43 ±0.07 OUR AVERAGE1.43 ±0.07 OUR AVERAGE1.43 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogram below.1.55 ±0.01 +0.06
−0.05 108k 1 LEE 10 BELL 666 fb−1 Eee
m=10.6 GeV1.346±0.010±0.036 18k 2 AUBERT 08 BABR 342 fb−1 Eee
m= 10.6 GeV1.55 ±0.06 ±0.09 932 3 BRIERE 03 CLE3 Eee
m= 10.6 GeV1.63 ±0.21 ±0.17 BARATE 98 ALEP 1991{1995 LEP runs

• • • We use the following data for averages but not for �ts. • • •0.87 ±0.56 ±0.40 ABBIENDI 00D OPAL 1990{1995 LEP runs1.45 ±0.13 ±0.28 2.3k 4 RICHICHI 99 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.2 +1.7

−1.1 ±0.5 9 5 MILLS 85 DLCO Eee
m= 29 GeV1See footnote to LEE 10 �(τ− → π−π+π− ντ (ex.K0))/�total measurement for
orrelations with other measurements. Not independent of LEE 10 �(τ− →K−K+π− ντ )/�(τ− → π−π+π− ντ (ex.K0)) value.2 See footnote to AUBERT 08 �(τ− → π−π+π− ντ (ex.K0))/�total measurement for
orrelations with other measurements.3 71% 
orrelated with BRIERE 03 τ− → π−π+π− ντ and 34% 
orrelated with τ →K−π+π− ντ be
ause of a 
ommon 5% normalization error.4Not independent of RICHICHI 99 �(τ− → K−K+π− ντ )/ �(τ− →
π−π+π− ντ (ex.K0)) and BALEST 95C �(τ− → h− h− h+ ντ (ex.K0))/�total val-ues.5 Error 
orrelated with MILLS 85 (K πππ0 ν) value. We multiply 0.22% by 0.23, therelative systemati
 error quoted by MILLS 85, to obtain the systemati
 error.

WEIGHTED AVERAGE
1.43±0.07 (Error scaled by 2.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BARATE 98 ALEP
RICHICHI 99 CLEO
ABBIENDI 00D OPAL
BRIERE 03 CLE3 1.3
AUBERT 08 BABR 4.9
LEE 10 BELL 5.7

χ2

      11.8
(Confidence Level = 0.0027)

1 1.2 1.4 1.6 1.8 2 2.2�(K−K+π−ντ

)/�total (units 10−3)�(K−K+π− ντ

)/�(
π−π+π−ντ (ex.K0)) �106/�68�(K−K+π− ντ

)/�(
π−π+π−ντ (ex.K0)) �106/�68�(K−K+π− ντ

)/�(
π−π+π−ντ (ex.K0)) �106/�68�(K−K+π− ντ

)/�(
π−π+π−ντ (ex.K0)) �106/�68�106/�68 = �106/(�70+0.0153�176)VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.592±0.030 OUR FIT1.592±0.030 OUR FIT1.592±0.030 OUR FIT1.592±0.030 OUR FIT1.83 ±0.05 OUR AVERAGE1.83 ±0.05 OUR AVERAGE1.83 ±0.05 OUR AVERAGE1.83 ±0.05 OUR AVERAGE1.60 ±0.15 ±0.30 2.3k RICHICHI 99 CLEO Eee
m= 10.6 GeV

• • • We use the following data for averages but not for �ts. • • •1.84 ±0.01 ±0.05 108k 1 LEE 10 BELL 666 fb−1 Eee
m= 10.6 GeV1Not independent of LEE 10 �(τ− → K−K+π− ντ )/�total and �(τ− →
π−π+π− ντ (ex.K0))/�total values.



743743743743See key on page 601 LeptonParti
le Listings
τ�(K−K+π−π0 ντ

)/�total �107/��(K−K+π−π0 ντ

)/�total �107/��(K−K+π−π0 ντ

)/�total �107/��(K−K+π−π0 ντ

)/�total �107/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT0.61±0.18 OUR FIT0.61±0.18 OUR FIT0.61±0.18 OUR FIT0.61±0.18 OUR FIT0.60±0.18 OUR AVERAGE0.60±0.18 OUR AVERAGE0.60±0.18 OUR AVERAGE0.60±0.18 OUR AVERAGE0.55±0.14±0.12 48 ARMS 05 CLE3 7.6 fb−1,Eee
m=10.6 GeV7.5 ±2.9 ±1.5 BARATE 98 ALEP 1991{1995 LEP runs
• • • We use the following data for averages but not for �ts. • • •3.3 ±1.8 ±0.7 158 1 RICHICHI 99 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<27 95 ABBIENDI 00D OPAL 1990{1995 LEP runs1Not independent of RICHICHI 99�(τ− → K−K+π− ντ )/�(τ− → π−π+π− ντ (ex.K0)) and BALEST 95C �(τ− →h− h− h+ ντ (ex.K0))/�total values.�(K−K+π−π0 ντ

)/�(
π−π+π−π0 ντ (ex.K0)) �107/�77�(K−K+π−π0 ντ

)/�(
π−π+π−π0 ντ (ex.K0)) �107/�77�(K−K+π−π0 ντ

)/�(
π−π+π−π0 ντ (ex.K0)) �107/�77�(K−K+π−π0 ντ

)/�(
π−π+π−π0 ντ (ex.K0)) �107/�77�107/�77 = �107/(�78+0.892�176+0.0153�178)VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.14±0.04 OUR FIT0.14±0.04 OUR FIT0.14±0.04 OUR FIT0.14±0.04 OUR FIT0.79±0.44±0.160.79±0.44±0.160.79±0.44±0.160.79±0.44±0.16 158 1 RICHICHI 99 CLEO Eee
m= 10.6 GeV1RICHICHI 99 also quote a 95%CL upper limit of 0.0157 for this measurement.�(K−K+K−ντ

)/�total �108/�= 0.489�168/��(K−K+K−ντ

)/�total �108/�= 0.489�168/��(K−K+K−ντ

)/�total �108/�= 0.489�168/��(K−K+K−ντ

)/�total �108/�= 0.489�168/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT2.2 ±0.8 OUR FIT2.2 ±0.8 OUR FIT2.2 ±0.8 OUR FIT2.2 ±0.8 OUR FIT Error in
ludes s
ale fa
tor of 5.4.2.1 ±0.8 OUR AVERAGE2.1 ±0.8 OUR AVERAGE2.1 ±0.8 OUR AVERAGE2.1 ±0.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 5.4.3.29±0.17+0.19
−0.20 3.2k 1 LEE 10 BELL 666 fb−1 Eee
m = 10.6 GeV1.58±0.13±0.12 275 2 AUBERT 08 BABR 342 fb−1 Eee
m= 10.6 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.7 90 BRIERE 03 CLE3 Eee
m= 10.6 GeV
< 19 90 BARATE 98 ALEP 1991{1995 LEP runs1 See footnote to LEE 10 �(τ− → π−π+π− ντ (ex.K0))/�total measurement for
orrelations with other measurements. Not independent of LEE 10 �(τ− →K−K+K− ντ )/�(τ− → π−π+π− ντ (ex.K0)) value.2 See footnote to AUBERT 08 �(τ− → π−π+π− ντ (ex.K0))/�total measurement for
orrelations with other measurements.�(K−K+K−ντ

)/�(
π−π+π− ντ (ex.K0)) �108/�68�(K−K+K−ντ

)/�(
π−π+π− ντ (ex.K0)) �108/�68�(K−K+K−ντ

)/�(
π−π+π− ντ (ex.K0)) �108/�68�(K−K+K−ντ

)/�(
π−π+π− ντ (ex.K0)) �108/�68VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.90±0.02+0.22
−0.23 3.2k 1 LEE 10 BELL 666 fb−1 Eee
m = 10.6 GeV1Not independent of LEE 10 �(τ− → K−K+K− ντ )/�total and �(τ− →

π−π+π− ντ (ex.K0))/�total values.�(K−K+K−ντ (ex. φ))/�total �109/��(K−K+K−ντ (ex. φ))/�total �109/��(K−K+K−ντ (ex. φ))/�total �109/��(K−K+K−ντ (ex. φ))/�total �109/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.5× 10−6<2.5× 10−6<2.5× 10−6<2.5× 10−6 90 AUBERT 08 BABR 342 fb−1 Eee
m = 10.6 GeV�(K−K+K−π0 ντ

)/�total �110/��(K−K+K−π0 ντ

)/�total �110/��(K−K+K−π0 ντ

)/�total �110/��(K−K+K−π0 ντ

)/�total �110/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.8× 10−6<4.8× 10−6<4.8× 10−6<4.8× 10−6 90 ARMS 05 CLE3 7.6 fb−1, Eee
m= 10.6 GeV�(

π−K+π− ≥ 0 neut. ντ

)/�total �111/��(
π−K+π− ≥ 0 neut. ντ

)/�total �111/��(
π−K+π− ≥ 0 neut. ντ

)/�total �111/��(
π−K+π− ≥ 0 neut. ντ

)/�total �111/�VALUE (%) CL% DOCUMENT ID TECN COMMENT
<0.25<0.25<0.25<0.25 95 BAUER 94 TPC Eee
m= 29 GeV�(e− e− e+νe ντ

)/�total �112/��(e− e− e+νe ντ

)/�total �112/��(e− e− e+νe ντ

)/�total �112/��(e− e− e+νe ντ

)/�total �112/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.8±1.4±0.42.8±1.4±0.42.8±1.4±0.42.8±1.4±0.4 5 ALAM 96 CLEO Eee
m= 10.6 GeV�(
µ− e− e+νµ ντ

)/�total �113/��(
µ− e− e+νµ ντ

)/�total �113/��(
µ− e− e+νµ ντ

)/�total �113/��(
µ− e− e+νµ ντ

)/�total �113/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<3.6<3.6<3.6<3.6 90 ALAM 96 CLEO Eee
m= 10.6 GeV

�(3h−2h+ ≥ 0 neutrals ντ (ex. K0S → π−π+)(\5-prong"))/�total �114/��(3h−2h+ ≥ 0 neutrals ντ (ex. K0S → π−π+)(\5-prong"))/�total �114/��(3h−2h+ ≥ 0 neutrals ντ (ex. K0S → π−π+)(\5-prong"))/�total �114/��(3h−2h+ ≥ 0 neutrals ντ (ex. K0S → π−π+)(\5-prong"))/�total �114/��114/� = (�115+�121)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.099±0.004 OUR FIT0.099±0.004 OUR FIT0.099±0.004 OUR FIT0.099±0.004 OUR FIT0.107±0.007 OUR AVERAGE0.107±0.007 OUR AVERAGE0.107±0.007 OUR AVERAGE0.107±0.007 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.170±0.022±0.026 1 ACHARD 01D L3 1992{1995 LEP runs0.097±0.005±0.011 419 GIBAUT 94B CLEO Eee
m= 10.6 GeV0.102±0.029 13 BYLSMA 87 HRS Eee
m= 29 GeV
• • • We use the following data for averages but not for �ts. • • •0.093±0.009±0.012 SCHAEL 05C ALEP 1991-1995 LEP runs0.115±0.013±0.006 112 2 ABREU 01M DLPH 1992{1995 LEP runs0.119±0.013±0.008 119 3 ACKERSTAFF 99E OPAL 1991{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.26 ±0.06 ±0.05 ACTON 92H OPAL Eee
m= 88.2{94.2 GeV0.10 +0.05

−0.04 ±0.03 DECAMP 92C ALEP 1989{1990 LEP runs0.16 ±0.13 ±0.04 BEHREND 89B CELL Eee
m= 14{47 GeV0.3 ±0.1 ±0.2 BARTEL 85F JADE Eee
m= 34.6 GeV0.13 ±0.04 10 BELTRAMI 85 HRS Repl. by BYLSMA 870.16 ±0.08 ±0.04 4 BURCHAT 85 MRK2 Eee
m= 29 GeV1.0 ±0.4 10 BEHREND 82 CELL Repl. by BEHREND 89B1The 
orrelation 
oeÆ
ients between this measurement and the ACHARD 01D measure-ments of B(τ → \1-prong") and B(τ → \3-prong") are −0.082 and −0.19 respe
tively.2The 
orrelation 
oeÆ
ients between this measurement and the ABREU 01M measure-ments of B(τ → 1-prong) and B(τ → 3-prong) are −0.08 and −0.08 respe
tively.3Not independent of ACKERSTAFF 99E B(τ− → 3h− 2h+ ντ (ex. K0)) and B(τ− →3h− 2h+π0 ντ (ex. K0)) measurements.�(3h−2h+ντ (ex.K0))/�total �115/�= (�116+�118+0.0153�183)/��(3h−2h+ντ (ex.K0))/�total �115/�= (�116+�118+0.0153�183)/��(3h−2h+ντ (ex.K0))/�total �115/�= (�116+�118+0.0153�183)/��(3h−2h+ντ (ex.K0))/�total �115/�= (�116+�118+0.0153�183)/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8.22±0.32 OUR FIT8.22±0.32 OUR FIT8.22±0.32 OUR FIT8.22±0.32 OUR FIT8.32±0.35 OUR AVERAGE8.32±0.35 OUR AVERAGE8.32±0.35 OUR AVERAGE8.32±0.35 OUR AVERAGE9.7 ±1.5 ±0.5 96 1 ABDALLAH 06A DLPH 1992{1995 LEP runs7.2 ±0.9 ±1.2 165 2 SCHAEL 05C ALEP 1991-1995 LEP runs9.1 ±1.4 ±0.6 97 ACKERSTAFF 99E OPAL 1991{1995 LEP runs7.7 ±0.5 ±0.9 295 GIBAUT 94B CLEO Eee
m= 10.6 GeV6.4 ±2.3 ±1.0 12 ALBRECHT 88B ARG Eee
m= 10 GeV5.1 ±2.0 7 BYLSMA 87 HRS Eee
m= 29 GeV
• • • We use the following data for averages but not for �ts. • • •8.56±0.05±0.42 34k AUBERT,B 05W BABR 232 fb−1, Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.0 ±1.1 ±1.3 58 BUSKULIC 96 ALEP Repl. by SCHAEL 05C6.7 ±3.0 5 3 BELTRAMI 85 HRS Repl. by BYLSMA 871See footnote to ABDALLAH 06A �(τ− → h− ντ )/�total measurement for 
orrelationswith other measurements.2 See footnote to SCHAEL 05C �(τ− → e− νe ντ )/�total measurement for 
orrelationswith other measurements.3The error quoted is statisti
al only.�(3π−2π+ντ (ex.K0, ω))/�total �116/�= (�117+�171)/��(3π−2π+ντ (ex.K0, ω))/�total �116/�= (�117+�171)/��(3π−2π+ντ (ex.K0, ω))/�total �116/�= (�117+�171)/��(3π−2π+ντ (ex.K0, ω))/�total �116/�= (�117+�171)/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT8.21±0.31 OUR FIT8.21±0.31 OUR FIT8.21±0.31 OUR FIT8.21±0.31 OUR FIT
• • • We use the following data for averages but not for �ts. • • •8.33±0.04±0.438.33±0.04±0.438.33±0.04±0.438.33±0.04±0.43 1 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV1Not independent of LEES 12X �(τ− → f1(1285)π− ντ → 3π− 2π+ ντ )/� and �(τ− →3π− 2π+ ντ (ex.K0, ω, f1(1285)))/� values.�(3π−2π+ντ (ex.K0, ω, f1(1285)))/�total �117/��(3π−2π+ντ (ex.K0, ω, f1(1285)))/�total �117/��(3π−2π+ντ (ex.K0, ω, f1(1285)))/�total �117/��(3π−2π+ντ (ex.K0, ω, f1(1285)))/�total �117/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.69±0.30 OUR FIT7.69±0.30 OUR FIT7.69±0.30 OUR FIT7.69±0.30 OUR FIT7.68±0.04±0.407.68±0.04±0.407.68±0.04±0.407.68±0.04±0.40 69k LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV�(K−2π−2π+ντ (ex.K0))/�total �118/��(K−2π−2π+ντ (ex.K0))/�total �118/��(K−2π−2π+ντ (ex.K0))/�total �118/��(K−2π−2π+ντ (ex.K0))/�total �118/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT0.6±1.2 OUR FIT0.6±1.2 OUR FIT0.6±1.2 OUR FIT0.6±1.2 OUR FIT0.6±0.5±1.10.6±0.5±1.10.6±0.5±1.10.6±0.5±1.1 1 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV1LEES 12X meaurement 
orresponds to the lower limit of < 2.4× 10−6 at 90% CL.�(K+3π−π+ ντ

)/�total �119/��(K+3π−π+ ντ

)/�total �119/��(K+3π−π+ ντ

)/�total �119/��(K+3π−π+ ντ

)/�total �119/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.0× 10−6<5.0× 10−6<5.0× 10−6<5.0× 10−6 90 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV�(K+K−2π−π+ ντ

)/�total �120/��(K+K−2π−π+ ντ

)/�total �120/��(K+K−2π−π+ ντ

)/�total �120/��(K+K−2π−π+ ντ

)/�total �120/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.5× 10−7<4.5× 10−7<4.5× 10−7<4.5× 10−7 90 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV
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τ�(3h−2h+π0 ντ (ex.K0))/�total �121/�= (�122+�125)/��(3h−2h+π0 ντ (ex.K0))/�total �121/�= (�122+�125)/��(3h−2h+π0 ντ (ex.K0))/�total �121/�= (�122+�125)/��(3h−2h+π0 ντ (ex.K0))/�total �121/�= (�122+�125)/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.64±0.11 OUR FIT1.64±0.11 OUR FIT1.64±0.11 OUR FIT1.64±0.11 OUR FIT1.74±0.27 OUR AVERAGE1.74±0.27 OUR AVERAGE1.74±0.27 OUR AVERAGE1.74±0.27 OUR AVERAGE1.6 ±1.2 ±0.6 13 1 ABDALLAH 06A DLPH 1992{1995 LEP runs2.1 ±0.7 ±0.9 95 2 SCHAEL 05C ALEP 1991-1995 LEP runs1.7 ±0.2 ±0.2 231 ANASTASSOV 01 CLEO Eee
m= 10.6 GeV2.7 ±1.8 ±0.9 23 ACKERSTAFF 99E OPAL 1991{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.8 ±0.7 ±1.2 18 BUSKULIC 96 ALEP Repl. by SCHAEL 05C1.9 ±0.4 ±0.4 31 GIBAUT 94B CLEO Repl. by ANASTASSOV 015.1 ±2.2 6 BYLSMA 87 HRS Eee
m= 29 GeV6.7 ±3.0 5 3 BELTRAMI 85 HRS Repl. by BYLSMA 871See footnote to ABDALLAH 06A �(τ− → h− ντ )/�total measurement for 
orrelationswith other measurements.2 SCHAEL 05C quote (1.4 ± 0.7 ± 0.9) × 10−4. We add 0.7 × 10−4 to remove their
orre
tion for τ− → ηπ−π+π− ντ → 3π− 2π+π0 ντ and τ− → K∗(892)− ηντ →3π− 2π+π0 ντ de
ays. See footnote to SCHAEL 05C �(τ− → e− νe ντ )/�total mea-surement for 
orrelations with other measurements.3The error quoted is statisti
al only.�(3π−2π+π0 ντ (ex.K0))/�total �122/��(3π−2π+π0 ντ (ex.K0))/�total �122/��(3π−2π+π0 ντ (ex.K0))/�total �122/��(3π−2π+π0 ντ (ex.K0))/�total �122/��122/� = (�124+0.2292�158+0.892�183)/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.62±0.11 OUR FIT1.62±0.11 OUR FIT1.62±0.11 OUR FIT1.62±0.11 OUR FIT
• • • We use the following data for averages but not for �ts. • • •1.65±0.05±0.091.65±0.05±0.091.65±0.05±0.091.65±0.05±0.09 1 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV1Not independent of LEES 12X measurements of �(τ− → 2π−π+ωντ (ex.K0))/�,�(τ− → ηπ−π+π− ντ (ex.K0))/�, and �(τ− → 3π− 2π+π0 ντ (ex.K0, η, ω,f1(1285)))/�.�(3π−2π+π0 ντ (ex.K0, η, f1(1285)))/�total �123/��(3π−2π+π0 ντ (ex.K0, η, f1(1285)))/�total �123/��(3π−2π+π0 ντ (ex.K0, η, f1(1285)))/�total �123/��(3π−2π+π0 ντ (ex.K0, η, f1(1285)))/�total �123/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.11±0.04±0.091.11±0.04±0.091.11±0.04±0.091.11±0.04±0.09 1 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV1Not independent of LEES 12X �(τ− → 2π−π+ωντ (ex.K0))/� and �(τ− →3π− 2π+π0 ντ (ex.K0, η, ω, f1(1285)))/� values.�(3π−2π+π0 ντ (ex.K0, η, ω, f1(1285)))/�total �124/��(3π−2π+π0 ντ (ex.K0, η, ω, f1(1285)))/�total �124/��(3π−2π+π0 ντ (ex.K0, η, ω, f1(1285)))/�total �124/��(3π−2π+π0 ντ (ex.K0, η, ω, f1(1285)))/�total �124/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.38±0.09 OUR FIT0.38±0.09 OUR FIT0.38±0.09 OUR FIT0.38±0.09 OUR FIT0.36±0.03±0.090.36±0.03±0.090.36±0.03±0.090.36±0.03±0.09 7.3k LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV�(K−2π−2π+π0 ντ (ex.K0))/�total �125/��(K−2π−2π+π0 ντ (ex.K0))/�total �125/��(K−2π−2π+π0 ντ (ex.K0))/�total �125/��(K−2π−2π+π0 ντ (ex.K0))/�total �125/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT1.1±0.6 OUR FIT1.1±0.6 OUR FIT1.1±0.6 OUR FIT1.1±0.6 OUR FIT1.1±0.4±0.41.1±0.4±0.41.1±0.4±0.41.1±0.4±0.4 1 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV1LEES 12X meaurement 
orresponds to the lower limit of < 1.9× 10−6 at 90% CL.�(K+3π−π+π0 ντ

)/�total �126/��(K+3π−π+π0 ντ

)/�total �126/��(K+3π−π+π0 ντ

)/�total �126/��(K+3π−π+π0 ντ

)/�total �126/�VALUE CL% DOCUMENT ID TECN COMMENT
<8× 10−7<8× 10−7<8× 10−7<8× 10−7 90 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV�(3h−2h+2π0ντ

)/�total �127/��(3h−2h+2π0ντ

)/�total �127/��(3h−2h+2π0ντ

)/�total �127/��(3h−2h+2π0ντ

)/�total �127/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.4× 10−6<3.4× 10−6<3.4× 10−6<3.4× 10−6 90 AUBERT,B 06 BABR 232 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.1× 10−4 90 GIBAUT 94B CLEO Eee
m= 10.6 GeV�((5π )− ντ

)/�total �128/��((5π )− ντ

)/�total �128/��((5π )− ντ

)/�total �128/��((5π )− ντ

)/�total �128/��128/� = (�30+12�45+�48+12�61+�85+�115+0.5559�148+0.892�178)/�VALUE (%) DOCUMENT ID TECN COMMENT0.78±0.05 OUR FIT0.78±0.05 OUR FIT0.78±0.05 OUR FIT0.78±0.05 OUR FIT
• • • We use the following data for averages but not for �ts. • • •0.61±0.06±0.080.61±0.06±0.080.61±0.06±0.080.61±0.06±0.08 1 GIBAUT 94B CLEO Eee
m= 10.6 GeV1Not independent of GIBAUT 94B B(3h− 2h+ ντ ), PROCARIO 93 B(h− 4π0 ντ ), andBORTOLETTO 93 B(2h− h+2π0 ντ )/B(\3prong") measurements. Result is 
orre
tedfor η 
ontributions.�(4h−3h+ ≥ 0 neutrals ντ (\7-prong"))/�total �129/��(4h−3h+ ≥ 0 neutrals ντ (\7-prong"))/�total �129/��(4h−3h+ ≥ 0 neutrals ντ (\7-prong"))/�total �129/��(4h−3h+ ≥ 0 neutrals ντ (\7-prong"))/�total �129/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.0× 10−7<3.0× 10−7<3.0× 10−7<3.0× 10−7 90 AUBERT,B 05F BABR 232 fb−1, Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.8× 10−5 95 ACKERSTAFF 97J OPAL 1990{1995 LEP runs
<2.4× 10−6 90 EDWARDS 97B CLEO Eee
m= 10.6 GeV
<2.9× 10−4 90 BYLSMA 87 HRS Eee
m= 29 GeV�(4h−3h+ντ

)/�total �130/��(4h−3h+ντ

)/�total �130/��(4h−3h+ντ

)/�total �130/��(4h−3h+ντ

)/�total �130/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.3× 10−7<4.3× 10−7<4.3× 10−7<4.3× 10−7 90 AUBERT,B 05F BABR 232 fb−1, Eee
m= 10.6GeV

�(4h−3h+π0 ντ

)/�total �131/��(4h−3h+π0 ντ

)/�total �131/��(4h−3h+π0 ντ

)/�total �131/��(4h−3h+π0 ντ

)/�total �131/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.5× 10−7<2.5× 10−7<2.5× 10−7<2.5× 10−7 90 AUBERT,B 05F BABR 232 fb−1, Eee
m= 10.6 GeV�(X− (S=−1)ντ

)/�total �132/��(X− (S=−1)ντ

)/�total �132/��(X− (S=−1)ντ

)/�total �132/��(X− (S=−1)ντ

)/�total �132/��132/� = (�10+�16+�23+�28+�36+�41+�45+�61+�97+�103+�118+�125+�150+�152+�154+0.8312�168+�177)/�VALUE (%) DOCUMENT ID TECN COMMENT2.92±0.04 OUR FIT2.92±0.04 OUR FIT2.92±0.04 OUR FIT2.92±0.04 OUR FIT
• • • We use the following data for averages but not for �ts. • • •2.87±0.122.87±0.122.87±0.122.87±0.12 1 BARATE 99R ALEP 1991{1995 LEP runs1BARATE 99R perform a 
ombined analysis of all ALEPH LEP 1 data on τ bran
hingfra
tion measurements for de
ay modes having total strangeness equal to −1.�(K∗(892)− ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �133/��(K∗(892)− ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �133/��(K∗(892)− ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �133/��(K∗(892)− ≥ 0 neutrals ≥ 0K 0Lντ

)/�total �133/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.42±0.18 OUR AVERAGE1.42±0.18 OUR AVERAGE1.42±0.18 OUR AVERAGE1.42±0.18 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.1.19±0.15+0.13
−0.18 104 ALBRECHT 95H ARG Eee
m= 9.4{10.6 GeV1.94±0.27±0.15 74 1 AKERS 94G OPAL Eee
m= 88{94 GeV1.43±0.11±0.13 475 2 GOLDBERG 90 CLEO Eee
m= 9.4{10.9 GeV1AKERS 94G reje
t events in whi
h a K0S a

ompanies the K∗(892)−. We do not 
orre
tfor them.2GOLDBERG 90 estimates that 10% of observed K∗(892) are a

ompanied by a π0.

WEIGHTED AVERAGE
1.42±0.18 (Error scaled by 1.4)

GOLDBERG 90 CLEO 0.0
AKERS 94G OPAL 2.8
ALBRECHT 95H ARG 1.3

χ2

       4.2
(Confidence Level = 0.124)

0.5 1 1.5 2 2.5 3 3.5�(K∗(892)− ≥ 0 neutrals ≥ 0K0L ντ

)/�total (%)�(K∗(892)− ντ

)/�total �134/��(K∗(892)− ντ

)/�total �134/��(K∗(892)− ντ

)/�total �134/��(K∗(892)− ντ

)/�total �134/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.20 ±0.07 OUR AVERAGE1.20 ±0.07 OUR AVERAGE1.20 ±0.07 OUR AVERAGE1.20 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogram below.1.131±0.006±0.051 49k 1 EPIFANOV 07 BELL 351 fb−1 Eee
m=10.6 GeV1.326±0.063 BARATE 99R ALEP 1991{1995 LEP runs1.11 ±0.12 2 COAN 96 CLEO Eee
m ≈ 10.6 GeV1.42 ±0.22 ±0.09 3 ACCIARRI 95F L3 1991{1993 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.39 ±0.09 ±0.10 4 BUSKULIC 96 ALEP Repl. by BARATE 99R1.45 ±0.13 ±0.11 273 5 BUSKULIC 94F ALEP Repl. by BUSKULIC 961.23 ±0.21 +0.11

−0.21 54 6 ALBRECHT 88L ARG Eee
m= 10 GeV1.9 ±0.3 ±0.4 44 7 TSCHIRHART 88 HRS Eee
m= 29 GeV1.5 ±0.4 ±0.4 15 8 AIHARA 87C TPC Eee
m= 29 GeV1.3 ±0.3 ±0.3 31 YELTON 86 MRK2 Eee
m= 29 GeV1.7 ±0.7 11 DORFAN 81 MRK2 Eee
m= 4.2{6.7 GeV1EPIFANOV 07 quote B(τ− → K∗(892)− ντ ) B(K∗(892)− → K0S π−) = (3.77 ±0.02(stat) ±0.12(syst) ±0.12(mod)) × 10−3. We add the systemati
 and model un-
ertainties in quadrature and divide by B(K∗(892)− → K0S π−) = 0.3333.2Not independent of COAN 96 B(π−K0 ντ ) and BATTLE 94 B(K−π0 ντ ) measure-ments. K π �nal states are 
onsistent with and assumed to originate from K∗(892)−produ
tion.3This result is obtained from their B(π−K0 ντ ) assuming all those de
ays originate inK∗(892)− de
ays.4Not independent of BUSKULIC 96 B(π−K0 ντ ) and B(K−π0 ντ ) measurements.5BUSKULIC 94F obtain this result from BUSKULIC 94F B(K0π− ντ ) and BUSKULIC 94EB(K−π0 ντ ) assuming all of those de
ays originate in K∗(892)− de
ays.6The authors divide by �2/� = 0.865 to obtain this result.7Not independent of TSCHIRHART 88 �(τ− → h−K0 ≥ 0 neutrals ≥ 0K0L ντ ) / �.8De
ay π− identi�ed in this experiment, is assumed in the others.
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WEIGHTED AVERAGE
1.20±0.07 (Error scaled by 1.8)

ACCIARRI 95F L3
COAN 96 CLEO 0.6
BARATE 99R ALEP 3.7
EPIFANOV 07 BELL 2.0

χ2

       6.4
(Confidence Level = 0.041)

0.8 1 1.2 1.4 1.6 1.8 2 2.2�(K∗(892)− ντ

)/�total (%)�(K∗(892)− ντ

)/�(
π−π0 ντ

) �134/�14�(K∗(892)− ντ

)/�(
π−π0 ντ

) �134/�14�(K∗(892)− ντ

)/�(
π−π0 ντ

) �134/�14�(K∗(892)− ντ

)/�(
π−π0 ντ

) �134/�14VALUE DOCUMENT ID TECN COMMENT0.075±0.0270.075±0.0270.075±0.0270.075±0.027 1 ABREU 94K DLPH LEP 1992 Z data1ABREU 94K quote B(τ− → K∗(892)− ντ )B(K∗(892)− → K−π0)/B(τ− → ρ− ντ )= 0.025 ± 0.009. We divide by B(K∗(892)− → K−π0) = 0.333 to obtain this result.�(K∗(892)− ντ → π−K0ντ

)/�(
π−K0 ντ

) �135/�36�(K∗(892)− ντ → π−K0ντ

)/�(
π−K0 ντ

) �135/�36�(K∗(892)− ντ → π−K0ντ

)/�(
π−K0 ντ

) �135/�36�(K∗(892)− ντ → π−K0ντ

)/�(
π−K0 ντ

) �135/�36VALUE EVTS DOCUMENT ID TECN COMMENT0.933±0.0270.933±0.0270.933±0.0270.933±0.027 49k EPIFANOV 07 BELL 351 fb−1 Eee
m= 10.6 GeV�(K∗(892)0K− ≥ 0 neutrals ντ

)/�total �136/��(K∗(892)0K− ≥ 0 neutrals ντ

)/�total �136/��(K∗(892)0K− ≥ 0 neutrals ντ

)/�total �136/��(K∗(892)0K− ≥ 0 neutrals ντ

)/�total �136/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.32±0.08±0.120.32±0.08±0.120.32±0.08±0.120.32±0.08±0.12 119 GOLDBERG 90 CLEO Eee
m= 9.4{10.9 GeV�(K∗(892)0K−ντ

)/�total �137/��(K∗(892)0K−ντ

)/�total �137/��(K∗(892)0K−ντ

)/�total �137/��(K∗(892)0K−ντ

)/�total �137/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.21 ±0.04 OUR AVERAGE0.21 ±0.04 OUR AVERAGE0.21 ±0.04 OUR AVERAGE0.21 ±0.04 OUR AVERAGE0.213±0.048 1 BARATE 98 ALEP 1991{1995 LEP runs0.20 ±0.05 ±0.04 47 ALBRECHT 95H ARG Eee
m= 9.4{10.6 GeV1BARATE 98 measure the K− (ρ0 → π+π−) fra
tion in τ− → K−π+π− ντ de-
ays to be (35 ± 11)% and derive this result from their measurement of �(τ− →K−π+π− ντ )/�total assuming the intermediate states are all K− ρ and K−K∗(892)0.�(K∗(892)0π− ≥ 0 neutrals ντ

)/�total �138/��(K∗(892)0π− ≥ 0 neutrals ντ

)/�total �138/��(K∗(892)0π− ≥ 0 neutrals ντ

)/�total �138/��(K∗(892)0π− ≥ 0 neutrals ντ

)/�total �138/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.38±0.11±0.130.38±0.11±0.130.38±0.11±0.130.38±0.11±0.13 105 GOLDBERG 90 CLEO Eee
m= 9.4{10.9 GeV�(K∗(892)0π− ντ

)/�total �139/��(K∗(892)0π− ντ

)/�total �139/��(K∗(892)0π− ντ

)/�total �139/��(K∗(892)0π− ντ

)/�total �139/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.22 ±0.05 OUR AVERAGE0.22 ±0.05 OUR AVERAGE0.22 ±0.05 OUR AVERAGE0.22 ±0.05 OUR AVERAGE0.209±0.058 1 BARATE 98 ALEP 1991{1995 LEP runs0.25 ±0.10 ±0.05 27 ALBRECHT 95H ARG Eee
m= 9.4{10.6 GeV1BARATE 98 measure the K−K∗(892)0 fra
tion in τ− → K−K+π− ντ de-
ays to be (87 ± 13)% and derive this result from their measurement of �(τ− →K−K+π− ντ )/�total.�((K∗(892)π )− ντ → π−K0π0 ντ

)/�total �140/��((K∗(892)π )− ντ → π−K0π0 ντ

)/�total �140/��((K∗(892)π )− ντ → π−K0π0 ντ

)/�total �140/��((K∗(892)π )− ντ → π−K0π0 ντ

)/�total �140/�VALUE (%) DOCUMENT ID TECN COMMENT0.10 ±0.04 OUR AVERAGE0.10 ±0.04 OUR AVERAGE0.10 ±0.04 OUR AVERAGE0.10 ±0.04 OUR AVERAGE0.097±0.044±0.036 1 BARATE 99K ALEP 1991{1995 LEP runs0.106±0.037±0.032 2 BARATE 98E ALEP 1991{1995 LEP runs1BARATE 99K measure K0's by dete
ting K0L's in their hadron 
alorimeter. They de-termine the K0 ρ− fra
tion in τ− → π−K0π0 ντ de
ays to be (0.72 ± 0.12 ± 0.10)and multiply their B(π−K0π0 ντ ) measurement by one minus this fra
tion to obtainthe quoted result.2BARATE 98E re
onstru
t K0's using K0S → π+π− de
ays. They determine the K0 ρ−fra
tion in τ− → π−K0π0 ντ de
ays to be (0.64 ± 0.09 ± 0.10) and multiply theirB(π−K0π0 ντ ) measurement by one minus this fra
tion to obtain the quoted result.�(K1(1270)−ντ

)/�total �141/��(K1(1270)−ντ

)/�total �141/��(K1(1270)−ντ

)/�total �141/��(K1(1270)−ντ

)/�total �141/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.47±0.11 OUR AVERAGE0.47±0.11 OUR AVERAGE0.47±0.11 OUR AVERAGE0.47±0.11 OUR AVERAGE0.48±0.11 BARATE 99R ALEP 1991{1995 LEP runs0.41+0.41
−0.35±0.10 5 1 BAUER 94 TPC Eee
m= 29 GeV1We multiply 0.41% by 0.25, the relative systemati
 error quoted by BAUER 94, to obtainthe systemati
 error.

�(K1(1400)−ντ

)/�total �142/��(K1(1400)−ντ

)/�total �142/��(K1(1400)−ντ

)/�total �142/��(K1(1400)−ντ

)/�total �142/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.17±0.26 OUR AVERAGE0.17±0.26 OUR AVERAGE0.17±0.26 OUR AVERAGE0.17±0.26 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.0.05±0.17 BARATE 99R ALEP 1991{1995 LEP runs0.76+0.40
−0.33±0.20 11 1 BAUER 94 TPC Eee
m= 29 GeV1We multiply 0.76% by 0.25, the relative systemati
 error quoted by BAUER 94, to obtainthe systemati
 error.

[�(K1(1270)−ντ

) +�(K1(1400)−ντ

)]/�total (�141+�142)/�[�(K1(1270)−ντ

) +�(K1(1400)−ντ

)]/�total (�141+�142)/�[�(K1(1270)−ντ

) +�(K1(1400)−ντ

)]/�total (�141+�142)/�[�(K1(1270)−ντ

) +�(K1(1400)−ντ

)]/�total (�141+�142)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.17+0.41
−0.37±0.291.17+0.41
−0.37±0.291.17+0.41
−0.37±0.291.17+0.41
−0.37±0.29 16 1 BAUER 94 TPC Eee
m= 29 GeV1We multiply 1.17% by 0.25, the relative systemati
 error quoted by BAUER 94, to obtainthe systemati
 error. Not independent of BAUER 94 B(K1(1270)− ντ ) and BAUER 94B(K1(1400)− ντ ) measurements.�(K1(1270)−ντ

)/[�(K1(1270)− ντ

) +�(K1(1400)− ντ

)] �141/(�141+�142)�(K1(1270)−ντ

)/[�(K1(1270)− ντ

) +�(K1(1400)− ντ

)] �141/(�141+�142)�(K1(1270)−ντ

)/[�(K1(1270)− ντ

) +�(K1(1400)− ντ

)] �141/(�141+�142)�(K1(1270)−ντ

)/[�(K1(1270)− ντ

) +�(K1(1400)− ντ

)] �141/(�141+�142)VALUE DOCUMENT ID TECN COMMENT0.69±0.15 OUR AVERAGE0.69±0.15 OUR AVERAGE0.69±0.15 OUR AVERAGE0.69±0.15 OUR AVERAGE0.71±0.16±0.11 1 ABBIENDI 00D OPAL 1990{1995 LEP runs0.66±0.19±0.13 2 ASNER 00B CLEO Eee
m= 10.6 GeV1ABBIENDI 00D assume the resonan
e stru
ture of τ− → K−π+π− ντ de
ays isdominated by the K1(1270)− and K1(1400)− resonan
es.2ASNER 00B assume the resonan
e stru
ture of τ− → K−π+π− ντ (ex. K0) de
aysis dominated by K1(1270)− and K1(1400)− resonan
es.�(K∗(1410)−ντ

)/�total �143/��(K∗(1410)−ντ

)/�total �143/��(K∗(1410)−ντ

)/�total �143/��(K∗(1410)−ντ

)/�total �143/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.5+1.4
−1.01.5+1.4
−1.01.5+1.4
−1.01.5+1.4
−1.0 BARATE 99R ALEP 1991{1995 LEP runs�(K∗0(1430)−ντ

)/�total �144/��(K∗0(1430)−ντ

)/�total �144/��(K∗0(1430)−ντ

)/�total �144/��(K∗0(1430)−ντ

)/�total �144/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.5<0.5<0.5<0.5 95 BARATE 99R ALEP 1991{1995 LEP runs�(K∗2(1430)−ντ

)/�total �145/��(K∗2(1430)−ντ

)/�total �145/��(K∗2(1430)−ντ

)/�total �145/��(K∗2(1430)−ντ

)/�total �145/�VALUE (%) CL% EVTS DOCUMENT ID TECN COMMENT
<0.3<0.3<0.3<0.3 95 TSCHIRHART 88 HRS Eee
m= 29 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.33 95 1 ACCIARRI 95F L3 1991{1993 LEP runs
<0.9 95 0 DORFAN 81 MRK2 Eee
m= 4.2{6.7 GeV1ACCIARRI 95F quote B(τ− → K∗(1430)− → π−K0 ντ ) < 0.11%. We divide byB(K∗(1430)− → π−K0) = 0.33 to obtain the limit shown.�(a0(980)− ≥ 0 neutrals ντ

)/�total ×B(a0(980)→ K0K−) �146/�× B�(a0(980)− ≥ 0 neutrals ντ

)/�total ×B(a0(980)→ K0K−) �146/�× B�(a0(980)− ≥ 0 neutrals ντ

)/�total ×B(a0(980)→ K0K−) �146/�× B�(a0(980)− ≥ 0 neutrals ντ

)/�total ×B(a0(980)→ K0K−) �146/�× BVALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<2.8<2.8<2.8<2.8 90 GOLDBERG 90 CLEO Eee
m= 9.4{10.9 GeV�(

ηπ− ντ

)/�total �147/��(
ηπ− ντ

)/�total �147/��(
ηπ− ντ

)/�total �147/��(
ηπ− ντ

)/�total �147/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT
< 0.99< 0.99< 0.99< 0.99 95 1 DEL-AMO-SA...11E BABR 470 fb−1 Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 6.2 95 BUSKULIC 97C ALEP 1991{1994 LEP runs
< 1.4 95 0 BARTELT 96 CLEO Eee
m ≈ 10.6 GeV
< 3.4 95 ARTUSO 92 CLEO Eee
m ≈ 10.6 GeV
< 90 95 ALBRECHT 88M ARG Eee
m ≈ 10 GeV
<140 90 BEHREND 88 CELL Eee
m= 14{46.8 GeV
<180 95 BARINGER 87 CLEO Eee
m= 10.5 GeV
<250 90 0 COFFMAN 87 MRK3 Eee
m= 3.77 GeV510 ±100±120 65 DERRICK 87 HRS Eee
m= 29 GeV
<100 95 GAN 87B MRK2 Eee
m= 29 GeV1DEL-AMO-SANCHEZ 11E also quote B(τ− → ηπ− ντ ) = (3.4 ± 3.4 ± 2.1)× 10−5.�(

ηπ−π0 ντ

)/�total �148/��(
ηπ−π0 ντ

)/�total �148/��(
ηπ−π0 ντ

)/�total �148/��(
ηπ−π0 ντ

)/�total �148/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT1.39± 0.07 OUR FIT1.39± 0.07 OUR FIT1.39± 0.07 OUR FIT1.39± 0.07 OUR FIT1.38± 0.09 OUR AVERAGE1.38± 0.09 OUR AVERAGE1.38± 0.09 OUR AVERAGE1.38± 0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1.35± 0.03± 0.07 6.0k INAMI 09 BELL 490 fb−1 Eee
m= 10.6GeV1.8 ± 0.4 ± 0.2 BUSKULIC 97C ALEP 1991{1994 LEP runs1.7 ± 0.2 ± 0.2 125 ARTUSO 92 CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 11.0 95 ALBRECHT 88M ARG Eee
m ≈ 10 GeV
< 21.0 95 BARINGER 87 CLEO Eee
m= 10.5 GeV42.0 + 7.0

−12.0 ±16.0 1 GAN 87 MRK2 Eee
m= 29 GeV1Highly 
orrelated with GAN 87 �(π− 3π0 ντ )/�(total) value.
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τ�(

ηπ−π0π0 ντ

)/�total �149/��(
ηπ−π0π0 ντ

)/�total �149/��(
ηπ−π0π0 ντ

)/�total �149/��(
ηπ−π0π0 ντ

)/�total �149/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT1.9 ±0.4 OUR FIT1.9 ±0.4 OUR FIT1.9 ±0.4 OUR FIT1.9 ±0.4 OUR FIT1.81±0.31 OUR AVERAGE1.81±0.31 OUR AVERAGE1.81±0.31 OUR AVERAGE1.81±0.31 OUR AVERAGE2.01±0.34±0.22 381 LEES 12X BABR 468 fb−1 Eee
m =10.6 GeV
• • • We use the following data for averages but not for �ts. • • •1.5 ±0.5 30 1 ANASTASSOV 01 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.4 ±0.6 ±0.3 15 2 BERGFELD 97 CLEO Repl. by ANAS-TASSOV 01
< 4.3 95 ARTUSO 92 CLEO Eee
m ≈ 10.6 GeV
<120 95 ALBRECHT 88M ARG Eee
m ≈ 10 GeV1Weighted average of BERGFELD 97 and ANASTASSOV 01 value of (1.5 ± 0.6± 0.3)×10−4 obtained using η's re
onstru
ted from η → π+π−π0 de
ays.2BERGFELD 97 re
onstru
t η's using η → γ γ de
ays.�(

ηK−ντ

)/�total �150/��(
ηK−ντ

)/�total �150/��(
ηK−ντ

)/�total �150/��(
ηK−ντ

)/�total �150/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT1.55±0.08 OUR FIT1.55±0.08 OUR FIT1.55±0.08 OUR FIT1.55±0.08 OUR FIT1.54±0.08 OUR AVERAGE1.54±0.08 OUR AVERAGE1.54±0.08 OUR AVERAGE1.54±0.08 OUR AVERAGE1.42±0.11±0.07 690 DEL-AMO-SA...11E BABR 470 fb−1 Eee
m= 10.6 GeV1.58±0.05±0.09 1.6k INAMI 09 BELL 490 fb−1 Eee
m= 10.6 GeV2.9 +1.3
−1.2 ±0.7 BUSKULIC 97C ALEP 1991{1994 LEP runs2.6 ±0.5 ±0.5 85 BARTELT 96 CLEO Eee
m ≈ 10.6 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.7 95 ARTUSO 92 CLEO Eee
m ≈ 10.6 GeV�(

ηK∗(892)−ντ

)/�total �151/��(
ηK∗(892)−ντ

)/�total �151/��(
ηK∗(892)−ντ

)/�total �151/��(
ηK∗(892)−ντ

)/�total �151/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.38±0.15 OUR AVERAGE1.38±0.15 OUR AVERAGE1.38±0.15 OUR AVERAGE1.38±0.15 OUR AVERAGE1.34±0.12±0.09 245 1 INAMI 09 BELL 490 fb−1 Eee
m= 10.6GeV2.90±0.80±0.42 25 BISHAI 99 CLEO Eee
m= 10.6 GeV1Not independent of INAMI 09 B(τ− → ηK−π0 ντ ) and B(τ− → ηK0π− ντ ) values.�(
ηK−π0 ντ

)/�total �152/��(
ηK−π0 ντ

)/�total �152/��(
ηK−π0 ντ

)/�total �152/��(
ηK−π0 ντ

)/�total �152/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.48±0.12 OUR FIT0.48±0.12 OUR FIT0.48±0.12 OUR FIT0.48±0.12 OUR FIT0.48±0.12 OUR AVERAGE0.48±0.12 OUR AVERAGE0.48±0.12 OUR AVERAGE0.48±0.12 OUR AVERAGE0.46±0.11±0.04 270 INAMI 09 BELL 490 fb−1 Eee
m= 10.6 GeV1.77±0.56±0.71 36 BISHAI 99 CLEO Eee
m= 10.6 GeV�(
ηK−π0 (non-K∗(892))ντ

)/�total �153/��(
ηK−π0 (non-K∗(892))ντ

)/�total �153/��(
ηK−π0 (non-K∗(892))ντ

)/�total �153/��(
ηK−π0 (non-K∗(892))ντ

)/�total �153/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.5× 10−5<3.5× 10−5<3.5× 10−5<3.5× 10−5 90 INAMI 09 BELL 490 fb−1 Eee
m= 10.6 GeV�(

ηK0π− ντ

)/�total �154/��(
ηK0π− ντ

)/�total �154/��(
ηK0π− ντ

)/�total �154/��(
ηK0π− ντ

)/�total �154/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.94±0.15 OUR FIT0.94±0.15 OUR FIT0.94±0.15 OUR FIT0.94±0.15 OUR FIT0.93±0.15 OUR AVERAGE0.93±0.15 OUR AVERAGE0.93±0.15 OUR AVERAGE0.93±0.15 OUR AVERAGE0.88±0.14±0.06 161 1 INAMI 09 BELL 490 fb−1 Eee
m= 10.6GeV2.20±0.70±0.22 15 2 BISHAI 99 CLEO Eee
m= 10.6 GeV1We multiply the INAMI 09 measurement B(τ− → ηK0S π− ντ ) = (0.44 ± 0.07 ±0.03) × 10−4 by 2 to obtain the listed value.2We multiply the BISHAI 99 measurement B(τ− → ηK0S π− ντ ) = (1.10 ± 0.35 ±0.11) × 10−4 by 2 to obtain the listed value.�(
ηK0π−π0 ντ

)/�total �155/��(
ηK0π−π0 ντ

)/�total �155/��(
ηK0π−π0 ντ

)/�total �155/��(
ηK0π−π0 ντ

)/�total �155/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.0× 10−5<5.0× 10−5<5.0× 10−5<5.0× 10−5 90 1 INAMI 09 BELL 490 fb−1 Eee
m= 10.6 GeV1We multiply the INAMI 09 measurement B(τ− → ηK0S π−π0 ντ ) < 2.5 × 10−5 by2 to obtain the listed value.�(

ηK−K0 ντ

)/�total �156/��(
ηK−K0 ντ

)/�total �156/��(
ηK−K0 ντ

)/�total �156/��(
ηK−K0 ντ

)/�total �156/�VALUE CL% DOCUMENT ID TECN COMMENT
<9.0× 10−6<9.0× 10−6<9.0× 10−6<9.0× 10−6 90 1 INAMI 09 BELL 490 fb−1 Eee
m= 10.6 GeV1We multiply the INAMI 09 measurement B(τ− → ηK−K0S ντ ) < 4.5 × 10−6 by 2to obtain the listed value.�(

ηπ+π−π− ≥ 0 neutrals ντ

)/�total �157/��(
ηπ+π−π− ≥ 0 neutrals ντ

)/�total �157/��(
ηπ+π−π− ≥ 0 neutrals ντ

)/�total �157/��(
ηπ+π−π− ≥ 0 neutrals ντ

)/�total �157/�VALUE (%) CL% DOCUMENT ID TECN COMMENT
<0.3<0.3<0.3<0.3 90 ABACHI 87B HRS Eee
m= 29 GeV

�(
ηπ−π+π−ντ (ex.K0))/�total �158/��(
ηπ−π+π−ντ (ex.K0))/�total �158/��(
ηπ−π+π−ντ (ex.K0))/�total �158/��(
ηπ−π+π−ντ (ex.K0))/�total �158/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.19±0.13 OUR FIT2.19±0.13 OUR FIT2.19±0.13 OUR FIT2.19±0.13 OUR FIT2.23±0.12 OUR AVERAGE2.23±0.12 OUR AVERAGE2.23±0.12 OUR AVERAGE2.23±0.12 OUR AVERAGE2.10±0.09±0.13 2.9k 1 LEES 12X BABR η → γ γ2.37±0.12±0.18 1.4k 1 LEES 12X BABR η → π+π−π02.54±0.27±0.25 315 1 LEES 12X BABR η → 3π0

• • • We use the following data for averages but not for �ts. • • •2.3 ±0.5 170 2 ANASTASSOV 01 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.60±0.05±0.11 1.8 k AUBERT 08AE BABR Repl. by LEES 12X3.4 +0.6

−0.5 ±0.6 89 3 BERGFELD 97 CLEO Repl. by ANASTASSOV 011LEES 12X uses 468 fb−1 of data taken at Eee
m = 10.6 GeV. It gives the average of thethree measurements listed here as (2.25 ± 0.07 ± 0.12) × 10−4.2Weighted average of BERGFELD 97 and ANASTASSOV 01 measurements using η'sre
onstru
ted from η → π+π−π0 and η → 3π0 de
ays.3BERGFELD 97 re
onstru
t η's using η → γ γ and η → 3π0 de
ays.�(
ηπ−π+π−ντ (ex.K0,f1(1285)))/�total �159/��(
ηπ−π+π−ντ (ex.K0,f1(1285)))/�total �159/��(
ηπ−π+π−ντ (ex.K0,f1(1285)))/�total �159/��(
ηπ−π+π−ντ (ex.K0,f1(1285)))/�total �159/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.99±0.09±0.130.99±0.09±0.130.99±0.09±0.130.99±0.09±0.13 1 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV1LEES 12X obtain this result by subtra
ting their B(τ− → f1(1285)π− ντ →
ηπ−π+π− ντ ) measurement from their B(τ− → ηπ−π+π− ντ (ex.K0)) measure-ment.�(

ηa1(1260)− ντ → ηπ− ρ0 ντ

)/�total �160/��(
ηa1(1260)− ντ → ηπ− ρ0 ντ

)/�total �160/��(
ηa1(1260)− ντ → ηπ− ρ0 ντ

)/�total �160/��(
ηa1(1260)− ντ → ηπ− ρ0 ντ

)/�total �160/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.9× 10−4<3.9× 10−4<3.9× 10−4<3.9× 10−4 90 BERGFELD 97 CLEO Eee
m= 10.6 GeV�(

ηηπ− ντ

)/�total �161/��(
ηηπ− ντ

)/�total �161/��(
ηηπ− ντ

)/�total �161/��(
ηηπ− ντ

)/�total �161/�VALUE CL% DOCUMENT ID TECN COMMENT
<7.4× 10−6<7.4× 10−6<7.4× 10−6<7.4× 10−6 90 INAMI 09 BELL 490 fb−1 Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.1× 10−4 95 ARTUSO 92 CLEO Eee
m ≈ 10.6 GeV
<8.3× 10−3 95 ALBRECHT 88M ARG Eee
m ≈ 10 GeV�(

ηηπ−π0 ντ

)/�total �162/��(
ηηπ−π0 ντ

)/�total �162/��(
ηηπ−π0 ντ

)/�total �162/��(
ηηπ−π0 ντ

)/�total �162/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 2.0< 2.0< 2.0< 2.0 95 ARTUSO 92 CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<90 95 ALBRECHT 88M ARG Eee
m ≈ 10 GeV�(

ηηK− ντ

)/�total �163/��(
ηηK− ντ

)/�total �163/��(
ηηK− ντ

)/�total �163/��(
ηηK− ντ

)/�total �163/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.0× 10−6<3.0× 10−6<3.0× 10−6<3.0× 10−6 90 INAMI 09 BELL 490 fb−1 Eee
m= 10.6 GeV�(

η′(958)π− ντ

)/�total �164/��(
η′(958)π− ντ

)/�total �164/��(
η′(958)π− ντ

)/�total �164/��(
η′(958)π− ντ

)/�total �164/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.0× 10−6<4.0× 10−6<4.0× 10−6<4.0× 10−6 90 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.2× 10−6 90 AUBERT 08AE BABR 384 fb−1, Eee
m= 10.6 GeV
<7.4× 10−5 90 BERGFELD 97 CLEO Eee
m= 10.6 GeV�(

η′(958)π−π0 ντ

)/�total �165/��(
η′(958)π−π0 ντ

)/�total �165/��(
η′(958)π−π0 ντ

)/�total �165/��(
η′(958)π−π0 ντ

)/�total �165/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−5<1.2× 10−5<1.2× 10−5<1.2× 10−5 90 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8.0× 10−5 90 BERGFELD 97 CLEO Eee
m= 10.6 GeV�(

η′(958)K−ντ

)/�total �166/��(
η′(958)K−ντ

)/�total �166/��(
η′(958)K−ντ

)/�total �166/��(
η′(958)K−ντ

)/�total �166/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.4× 10−6<2.4× 10−6<2.4× 10−6<2.4× 10−6 90 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV�(

φπ− ντ

)/�total �167/��(
φπ− ντ

)/�total �167/��(
φπ− ντ

)/�total �167/��(
φπ− ντ

)/�total �167/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT3.42±0.55±0.253.42±0.55±0.253.42±0.55±0.253.42±0.55±0.25 344 AUBERT 08 BABR 342 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 20 90 1 AVERY 97 CLEO Eee
m= 10.6 GeV
< 35 90 ALBRECHT 95H ARG Eee
m= 9.4{10.6 GeV1AVERY 97 limit varies from (1.2{2.0)× 10−4 depending on de
ay model assumptions.
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τ�(

φK− ντ

)/�total �168/��(
φK− ντ

)/�total �168/��(
φK− ντ

)/�total �168/��(
φK− ντ

)/�total �168/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT4.4 ±1.6 OUR FIT4.4 ±1.6 OUR FIT4.4 ±1.6 OUR FIT4.4 ±1.6 OUR FIT3.70±0.33 OUR AVERAGE3.70±0.33 OUR AVERAGE3.70±0.33 OUR AVERAGE3.70±0.33 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.
• • • We use the following data for averages but not for �ts. • • •3.39±0.20±0.28 274 AUBERT 08 BABR 342 fb−1 Eee
m = 10.6 GeV4.05±0.25±0.26 551 INAMI 06 BELL 401 fb−1 Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.7 90 1 AVERY 97 CLEO Eee
m= 10.6 GeV1AVERY 97 limit varies from (5.4{6.7)× 10−5 depending on de
ay model assumptions.�(f1(1285)π−ντ

)/�total �169/��(f1(1285)π−ντ

)/�total �169/��(f1(1285)π−ντ

)/�total �169/��(f1(1285)π−ντ

)/�total �169/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.9 ±0.5 OUR AVERAGE3.9 ±0.5 OUR AVERAGE3.9 ±0.5 OUR AVERAGE3.9 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.4.73±0.28±0.45 3.7k 1 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV3.60±0.18±0.23 2.5k 2 LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.19±0.18±1.00 1.3 k 3 AUBERT 08AE BABR Repl. by LEES 12X3.9 ±0.7 ±0.5 1.4 k 4 AUBERT,B 05W BABR Repl. by LEES 12X5.8 +1.4

−1.3 ±1.8 54 5 BERGFELD 97 CLEO Eee
m= 10.6 GeV1LEES 12X obtain this value by dividing their B(τ− → f1(1285)π− ντ → 3π− 2π+ ντ )measurement by the PDG 12 value of B(f1(1285) → 2π+2π−) = 0.111+0.007
−0.006.2 LEES 12X obtain this value by dividing their B(τ− → f1(1285)π− ντ →

ηπ−π+π− ντ ) measurement by 2/3 of the PDG 12 value of B(f1(1285) → ηππ)= 0.524+0.019
−0.021.3AUBERT 08AE obtain this value by dividing their B(τ− → f1(1285)π− ντ →

ηπ−π+π− ντ ) measurement by the PDG 06 value of B(f1(1285) → ηπ−π+) =0.35 ± 0.11. The quote (3.19 ± 0.18 ± 0.16 ± 0.99)× 10−4 where the �nal error is dueto the un
ertainty on B(f1(1285) → ηπ−π+). We 
ombine the two systemati
 errorsin quadrature.4AUBERT,B 05W use the f1(1285) → 2π+2π− de
ay mode and the PDG 04 value ofB(f1(1285) → 2π+2π−) = 0.110+0.007
−0.006.5BERGFELD 97 use the f1(1285) → ηπ+π− de
ay mode.�(f1(1285)π−ντ → ηπ−π+π− ντ

)/�total �170/��(f1(1285)π−ντ → ηπ−π+π− ντ

)/�total �170/��(f1(1285)π−ντ → ηπ−π+π− ντ

)/�total �170/��(f1(1285)π−ντ → ηπ−π+π− ντ

)/�total �170/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.18±0.07 OUR AVERAGE1.18±0.07 OUR AVERAGE1.18±0.07 OUR AVERAGE1.18±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.1.26±0.06±0.06 2.5k LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV1.11±0.06±0.05 1.3 k AUBERT 08AE BABR 384 fb−1, Eee
m= 10.6 GeV�(f1(1285)π−ντ → ηπ−π+π− ντ

)/�(
ηπ−π+π− ντ (ex.K0)) �170/�158�(f1(1285)π−ντ → ηπ−π+π− ντ

)/�(
ηπ−π+π− ντ (ex.K0)) �170/�158�(f1(1285)π−ντ → ηπ−π+π− ντ

)/�(
ηπ−π+π− ντ (ex.K0)) �170/�158�(f1(1285)π−ντ → ηπ−π+π− ντ

)/�(
ηπ−π+π− ντ (ex.K0)) �170/�158VALUE DOCUMENT ID TECN COMMENT0.69±0.01±0.050.69±0.01±0.050.69±0.01±0.050.69±0.01±0.05 1 AUBERT 08AE BABR 384 fb−1, Eee
m= 10.6 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.55±0.14 BERGFELD 97 CLEO Eee
m= 10.6 GeV1Not independent of AUBERT 08AE B(τ− → f1(1285)π− ντ → ηπ−π+π− ντ ) andB(τ− → ηπ−π+π− ντ (ex.K0)) values.�(f1(1285)π−ντ → 3π− 2π+ντ

)/�total �171/��(f1(1285)π−ντ → 3π− 2π+ντ

)/�total �171/��(f1(1285)π−ντ → 3π− 2π+ντ

)/�total �171/��(f1(1285)π−ντ → 3π− 2π+ντ

)/�total �171/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.52 ±0.04 OUR FIT0.52 ±0.04 OUR FIT0.52 ±0.04 OUR FIT0.52 ±0.04 OUR FIT0.520±0.031±0.0370.520±0.031±0.0370.520±0.031±0.0370.520±0.031±0.037 3.7k LEES 12X BABR 468 fb−1 Eee
m=10.6 GeV�(
π(1300)−ντ → (ρπ)− ντ → (3π)−ντ

)/�total �172/��(
π(1300)−ντ → (ρπ)− ντ → (3π)−ντ

)/�total �172/��(
π(1300)−ντ → (ρπ)− ντ → (3π)−ντ

)/�total �172/��(
π(1300)−ντ → (ρπ)− ντ → (3π)−ντ

)/�total �172/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.0× 10−4<1.0× 10−4<1.0× 10−4<1.0× 10−4 90 ASNER 00 CLEO Eee
m= 10.6 GeV�(

π(1300)−ντ → ((ππ)S−wave π)− ντ → (3π)−ντ

)/�total �173/��(
π(1300)−ντ → ((ππ)S−wave π)− ντ → (3π)−ντ

)/�total �173/��(
π(1300)−ντ → ((ππ)S−wave π)− ντ → (3π)−ντ

)/�total �173/��(
π(1300)−ντ → ((ππ)S−wave π)− ντ → (3π)−ντ

)/�total �173/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.9× 10−4<1.9× 10−4<1.9× 10−4<1.9× 10−4 90 ASNER 00 CLEO Eee
m= 10.6 GeV�(h−ω ≥ 0 neutrals ντ

)/�total �174/��(h−ω ≥ 0 neutrals ντ

)/�total �174/��(h−ω ≥ 0 neutrals ντ

)/�total �174/��(h−ω ≥ 0 neutrals ντ

)/�total �174/��174/� = (�176+�177+�178)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT2.40±0.08 OUR FIT2.40±0.08 OUR FIT2.40±0.08 OUR FIT2.40±0.08 OUR FIT
• • • We use the following data for averages but not for �ts. • • •1.65±0.3 ±0.21.65±0.3 ±0.21.65±0.3 ±0.21.65±0.3 ±0.2 1513 ALBRECHT 88M ARG Eee
m ≈ 10 GeV�(h−ωντ

)/�total �175/�= (�176+�177)/��(h−ωντ

)/�total �175/�= (�176+�177)/��(h−ωντ

)/�total �175/�= (�176+�177)/��(h−ωντ

)/�total �175/�= (�176+�177)/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.99±0.06 OUR FIT1.99±0.06 OUR FIT1.99±0.06 OUR FIT1.99±0.06 OUR FIT1.92±0.07 OUR AVERAGE1.92±0.07 OUR AVERAGE1.92±0.07 OUR AVERAGE1.92±0.07 OUR AVERAGE1.91±0.07±0.06 5803 BUSKULIC 97C ALEP 1991{1994 LEP runs1.60±0.27±0.41 139 BARINGER 87 CLEO Eee
m= 10.5 GeV
• • • We use the following data for averages but not for �ts. • • •1.95±0.07±0.11 2223 1 BALEST 95C CLEO Eee
m ≈ 10.6 GeV1Not independent of BALEST 95C B(τ− → h−ωντ )/B(τ− → h− h− h+π0 ντ ) value.

[�(
π−ωντ

)+�(K−ωντ

)]/�(h−h− h+π0 ντ (ex.K0)) (�176+�177)/�74[�(
π−ωντ

)+�(K−ωντ

)]/�(h−h− h+π0 ντ (ex.K0)) (�176+�177)/�74[�(
π−ωντ

)+�(K−ωντ

)]/�(h−h− h+π0 ντ (ex.K0)) (�176+�177)/�74[�(
π−ωντ

)+�(K−ωντ

)]/�(h−h− h+π0 ντ (ex.K0)) (�176+�177)/�74(�176+�177)/�74 = (�176+�177)/(�78+�103+�107+0.2292�150+0.892�176+0.892�177+0.0153�178)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT43.5±1.4 OUR FIT43.5±1.4 OUR FIT43.5±1.4 OUR FIT43.5±1.4 OUR FIT45.3±1.9 OUR AVERAGE45.3±1.9 OUR AVERAGE45.3±1.9 OUR AVERAGE45.3±1.9 OUR AVERAGE43.1±3.3 2350 1 BUSKULIC 96 ALEP LEP 1991{1993 data46.4±1.6±1.7 2223 2 BALEST 95C CLEO Eee
m ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •37 ±5 ±2 458 3 ALBRECHT 91D ARG Eee
m= 9.4{10.6 GeV1BUSKULIC 96 quote the fra
tion of τ → h− h− h+π0 ντ (ex. K0) de
ays whi
horiginate in a h−ω �nal state = 0.383 ± 0.029. We divide this by the ω(782) →

π+π−π0 bran
hing fra
tion (0.888).2BALEST 95C quote the fra
tion of τ− → h− h− h+π0 ντ (ex. K0) de
ays whi
horiginate in a h−ω �nal state equals 0.412 ± 0.014 ± 0.015. We divide this by the
ω(782) → π+π−π0 bran
hing fra
tion (0.888).3ALBRECHT 91D quote the fra
tion of τ− → h− h− h+π0 ντ de
ays whi
h originate ina π−ω �nal state equals 0.33± 0.04± 0.02. We divide this by the ω(782) → π+π−π0bran
hing fra
tion (0.888).�(

π−ωντ

)/�total �176/��(
π−ωντ

)/�total �176/��(
π−ωντ

)/�total �176/��(
π−ωντ

)/�total �176/�VALUE (%) DOCUMENT ID1.95±0.06 OUR FIT1.95±0.06 OUR FIT1.95±0.06 OUR FIT1.95±0.06 OUR FIT�(K−ωντ

)/�total �177/��(K−ωντ

)/�total �177/��(K−ωντ

)/�total �177/��(K−ωντ

)/�total �177/�/medskipVALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.1±0.9 OUR FIT4.1±0.9 OUR FIT4.1±0.9 OUR FIT4.1±0.9 OUR FIT4.1±0.6±0.74.1±0.6±0.74.1±0.6±0.74.1±0.6±0.7 500 ARMS 05 CLE3 7.6 fb−1, Eee
m= 10.6 GeV�(h−ωπ0 ντ

)/�total �178/��(h−ωπ0 ντ

)/�total �178/��(h−ωπ0 ντ

)/�total �178/��(h−ωπ0 ντ

)/�total �178/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.41±0.04 OUR FIT0.41±0.04 OUR FIT0.41±0.04 OUR FIT0.41±0.04 OUR FIT0.43±0.06±0.050.43±0.06±0.050.43±0.06±0.050.43±0.06±0.05 7283 BUSKULIC 97C ALEP 1991{1994 LEP runs�(h−ωπ0 ντ

)/�(h−h− h+ ≥ 0 neutrals ≥ 0K 0Lντ

) �178/�62�(h−ωπ0 ντ

)/�(h−h− h+ ≥ 0 neutrals ≥ 0K 0Lντ

) �178/�62�(h−ωπ0 ντ

)/�(h−h− h+ ≥ 0 neutrals ≥ 0K 0Lντ

) �178/�62�(h−ωπ0 ντ

)/�(h−h− h+ ≥ 0 neutrals ≥ 0K 0Lντ

) �178/�62�178/�62 = �178/(0.34598�36+0.34598�38+0.34598�41+0.34598�43+0.4247�48+0.6920�49+0.8494�52+0.6920�56+0.6534�61+�70+�78+�85+�89+�97+�103+�106+�107+0.2810�148+0.2292�149+0.2810�150+0.2810�152+0.3759�154+0.3268�158+0.7259�168+0.9078�176+0.9078�177+0.9078�178+0.892�180)VALUE EVTS DOCUMENT ID TECN COMMENT(2.69 ±0.28 )× 10−2 OUR FIT(2.69 ±0.28 )× 10−2 OUR FIT(2.69 ±0.28 )× 10−2 OUR FIT(2.69 ±0.28 )× 10−2 OUR FIT
• • • We use the following data for averages but not for �ts. • • •0.028±0.003±0.0030.028±0.003±0.0030.028±0.003±0.0030.028±0.003±0.003 430 1 BORTOLETTO 93 CLEO Eee
m ≈ 10.6 GeV1Not independent of BORTOLETTO 93 �(τ− → h−ωπ0 ντ )/�(τ− →h− h− h+2π0 ντ (ex.K0)) value.�(h−ωπ0 ντ

)/�(h−h− h+2π0 ντ (ex.K0)) �178/�84�(h−ωπ0 ντ

)/�(h−h− h+2π0 ντ (ex.K0)) �178/�84�(h−ωπ0 ντ

)/�(h−h− h+2π0 ντ (ex.K0)) �178/�84�(h−ωπ0 ντ

)/�(h−h− h+2π0 ντ (ex.K0)) �178/�84�178/�84 = �178/(�85+0.2292�148+0.2292�152+0.892�178)VALUE (units 10−2) DOCUMENT ID TECN COMMENT82±8 OUR FIT82±8 OUR FIT82±8 OUR FIT82±8 OUR FIT81±6±681±6±681±6±681±6±6 BORTOLETTO93 CLEO Eee
m ≈ 10.6 GeV�(h−ω2π0 ντ

)/�total �179/��(h−ω2π0 ντ

)/�total �179/��(h−ω2π0 ντ

)/�total �179/��(h−ω2π0 ντ

)/�total �179/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.4 ±0.4 ±0.31.4 ±0.4 ±0.31.4 ±0.4 ±0.31.4 ±0.4 ±0.3 53 ANASTASSOV 01 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.89+0.74

−0.67±0.40 19 ANDERSON 97 CLEO Repl. by ANASTASSOV 01�(
π−ω2π0ντ

)/�total �180/��(
π−ω2π0ντ

)/�total �180/��(
π−ω2π0ντ

)/�total �180/��(
π−ω2π0ντ

)/�total �180/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.71±0.16 OUR FIT0.71±0.16 OUR FIT0.71±0.16 OUR FIT0.71±0.16 OUR FIT0.73±0.12±0.120.73±0.12±0.120.73±0.12±0.120.73±0.12±0.12 1.1k LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV�(h−2ωντ

)/�total �181/��(h−2ωντ

)/�total �181/��(h−2ωντ

)/�total �181/��(h−2ωντ

)/�total �181/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.4× 10−7<5.4× 10−7<5.4× 10−7<5.4× 10−7 90 AUBERT,B 06 BABR 232 fb−1 Eee
m = 10.6 GeV�(2h−h+ωντ

)/�total �182/��(2h−h+ωντ

)/�total �182/��(2h−h+ωντ

)/�total �182/��(2h−h+ωντ

)/�total �182/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.2±0.2±0.11.2±0.2±0.11.2±0.2±0.11.2±0.2±0.1 110 ANASTASSOV 01 CLEO Eee
m= 10.6 GeV



748748748748LeptonParti
le Listings
τ�(2π−π+ωντ (ex.K0))/�total �183/��(2π−π+ωντ (ex.K0))/�total �183/��(2π−π+ωντ (ex.K0))/�total �183/��(2π−π+ωντ (ex.K0))/�total �183/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.84±0.06 OUR FIT0.84±0.06 OUR FIT0.84±0.06 OUR FIT0.84±0.06 OUR FIT0.84±0.04±0.060.84±0.04±0.060.84±0.04±0.060.84±0.04±0.06 2.4k LEES 12X BABR 468 fb−1 Eee
m = 10.6 GeV�(e− γ

)/�total �184/��(e− γ
)/�total �184/��(e− γ
)/�total �184/��(e− γ
)/�total �184/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<3.3× 10−8<3.3× 10−8<3.3× 10−8<3.3× 10−8 90 AUBERT 10B BABR 516 fb−1, Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.2× 10−7 90 HAYASAKA 08 BELL 535 fb−1, Eee
m= 10.6 GeV
<1.1× 10−7 90 AUBERT 06C BABR 232 fb−1, Eee
m= 10.6 GeV
<3.9× 10−7 90 HAYASAKA 05 BELL 86.7 fb−1, Eee
m=10.6 GeV
<2.7× 10−6 90 EDWARDS 97 CLEO
<1.1× 10−4 90 ABREU 95U DLPH 1990{1993 LEP runs
<1.2× 10−4 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<2.0× 10−4 90 KEH 88 CBAL Eee
m= 10 GeV
<6.4× 10−4 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV�(

µ−γ
)/�total �185/��(

µ−γ
)/�total �185/��(

µ−γ
)/�total �185/��(

µ−γ
)/�total �185/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

< 4.4 × 10−8< 4.4 × 10−8< 4.4 × 10−8< 4.4 × 10−8 90 AUBERT 10B BABR 516 fb−1, Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.5 × 10−8 90 HAYASAKA 08 BELL 535 fb−1, Eee
m = 10.6 GeV
< 6.8 × 10−8 90 AUBERT,B 05A BABR 232 fb−1, Eee
m= 10.6 GeV
< 3.1 × 10−7 90 ABE 04B BELL 86.3 fb−1, Eee
m = 10.6 GeV
< 1.1 × 10−6 90 AHMED 00 CLEO Eee
m= 10.6 GeV
< 3.0 × 10−6 90 EDWARDS 97 CLEO
< 6.2 × 10−5 90 ABREU 95U DLPH 1990{1993 LEP runs
< 0.42× 10−5 90 BEAN 93 CLEO Eee
m= 10.6 GeV
< 3.4 × 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<55 × 10−5 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV�(e−π0)/�total �186/��(e−π0)/�total �186/��(e−π0)/�total �186/��(e−π0)/�total �186/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
< 8.0× 10−8< 8.0× 10−8< 8.0× 10−8< 8.0× 10−8 90 MIYAZAKI 07 BELL 401 fb−1, Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.3× 10−7 90 AUBERT 07I BABR 339 fb−1, Eee
m=10.6 GeV
< 1.9× 10−7 90 ENARI 05 BELL 154 fb−1, Eee
m= 10.6 GeV
< 3.7× 10−6 90 BONVICINI 97 CLEO Eee
m= 10.6 GeV
< 17 × 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
< 14 × 10−5 90 KEH 88 CBAL Eee
m= 10 GeV
<210 × 10−5 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV�(

µ−π0)/�total �187/��(
µ−π0)/�total �187/��(
µ−π0)/�total �187/��(
µ−π0)/�total �187/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

< 1.1× 10−7< 1.1× 10−7< 1.1× 10−7< 1.1× 10−7 90 AUBERT 07I BABR 339 fb−1, Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.2× 10−7 90 MIYAZAKI 07 BELL 401 fb−1, Eee
m=10.6 GeV
< 4.1× 10−7 90 ENARI 05 BELL 154 fb−1, Eee
m= 10.6 GeV
< 4.0× 10−6 90 BONVICINI 97 CLEO Eee
m= 10.6 GeV
< 4.4× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<82 × 10−5 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV�(e−K0S)/�total �188/��(e−K0S)/�total �188/��(e−K0S)/�total �188/��(e−K0S)/�total �188/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<2.6× 10−8<2.6× 10−8<2.6× 10−8<2.6× 10−8 90 MIYAZAKI 10A BELL 671 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.3× 10−8 90 AUBERT 09D BABR 469 fb−1 Eee
m = 10.6 GeV
<5.6× 10−8 90 MIYAZAKI 06A BELL 281 fb−1 Eee
m = 10.6 GeV
<9.1× 10−7 90 CHEN 02C CLEO Eee
m= 10.6 GeV
<1.3× 10−3 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV�(

µ−K0S)/�total �189/��(
µ−K0S)/�total �189/��(
µ−K0S)/�total �189/��(
µ−K0S)/�total �189/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<2.3× 10−8<2.3× 10−8<2.3× 10−8<2.3× 10−8 90 MIYAZAKI 10A BELL 671 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.0× 10−8 90 AUBERT 09D BABR 469 fb−1 Eee
m = 10.6 GeV
<4.9× 10−8 90 MIYAZAKI 06A BELL 281 fb−1 Eee
m = 10.6 GeV
<9.5× 10−7 90 CHEN 02C CLEO Eee
m= 10.6 GeV
<1.0× 10−3 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV

�(e− η
)/�total �190/��(e− η
)/�total �190/��(e− η
)/�total �190/��(e− η
)/�total �190/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

< 9.2× 10−8< 9.2× 10−8< 9.2× 10−8< 9.2× 10−8 90 MIYAZAKI 07 BELL 401 fb−1, Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.6× 10−7 90 AUBERT 07I BABR 339 fb−1, Eee
m=10.6 GeV
< 2.4× 10−7 90 ENARI 05 BELL 154 fb−1, Eee
m= 10.6 GeV
< 8.2× 10−6 90 BONVICINI 97 CLEO Eee
m= 10.6 GeV
< 6.3× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<24 × 10−5 90 KEH 88 CBAL Eee
m= 10 GeV�(

µ−η
)/�total �191/��(

µ−η
)/�total �191/��(

µ−η
)/�total �191/��(

µ−η
)/�total �191/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<6.5× 10−8<6.5× 10−8<6.5× 10−8<6.5× 10−8 90 MIYAZAKI 07 BELL 401 fb−1, Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.5× 10−7 90 AUBERT 07I BABR 339 fb−1, Eee
m=10.6 GeV
<1.5× 10−7 90 ENARI 05 BELL 154 fb−1, Eee
m= 10.6 GeV
<3.4× 10−7 90 ENARI 04 BELL 84.3 fb−1, Eee
m=10.6 GeV
<9.6× 10−6 90 BONVICINI 97 CLEO Eee
m= 10.6 GeV
<7.3× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV�(e− ρ0)/�total �192/��(e− ρ0)/�total �192/��(e− ρ0)/�total �192/��(e− ρ0)/�total �192/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
< 1.8× 10−8< 1.8× 10−8< 1.8× 10−8< 1.8× 10−8 90 MIYAZAKI 11 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.6× 10−8 90 AUBERT 09W BABR 451 fb−1 Eee
m = 10.6 GeV
< 6.3× 10−8 90 NISHIO 08 BELL 543 fb−1 Eee
m = 10.6 GeV
< 6.5× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
< 2.0× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
< 4.2× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
< 1.9× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<37 × 10−5 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV1BARTELT 94 assume phase spa
e de
ays.�(

µ−ρ0)/�total �193/��(
µ−ρ0)/�total �193/��(
µ−ρ0)/�total �193/��(
µ−ρ0)/�total �193/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

< 1.2× 10−8< 1.2× 10−8< 1.2× 10−8< 1.2× 10−8 90 MIYAZAKI 11 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 2.6× 10−8 90 AUBERT 09W BABR 451 fb−1 Eee
m = 10.6 GeV
< 6.8× 10−8 90 NISHIO 08 BELL 543 fb−1 Eee
m = 10.6 GeV
< 2.0× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
< 6.3× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
< 5.7× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
< 2.9× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<44 × 10−5 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV1BARTELT 94 assume phase spa
e de
ays.�(e−ω

)/�total �194/��(e−ω
)/�total �194/��(e−ω
)/�total �194/��(e−ω
)/�total �194/�VALUE CL% DOCUMENT ID TECN COMMENT

<4.8× 10−8<4.8× 10−8<4.8× 10−8<4.8× 10−8 90 MIYAZAKI 11 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.1× 10−7 90 AUBERT 08K BABR 384 fb−1 Eee
m = 10.6 GeV
<1.8× 10−7 90 NISHIO 08 BELL 543 fb−1 Eee
m = 10.6 GeV�(

µ−ω
)/�total �195/��(

µ−ω
)/�total �195/��(

µ−ω
)/�total �195/��(

µ−ω
)/�total �195/�VALUE CL% DOCUMENT ID TECN COMMENT

<4.7× 10−8<4.7× 10−8<4.7× 10−8<4.7× 10−8 90 MIYAZAKI 11 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.0× 10−7 90 AUBERT 08K BABR 384 fb−1 Eee
m = 10.6 GeV
<8.9× 10−8 90 NISHIO 08 BELL 543 fb−1 Eee
m = 10.6 GeV�(e−K∗(892)0)/�total �196/��(e−K∗(892)0)/�total �196/��(e−K∗(892)0)/�total �196/��(e−K∗(892)0)/�total �196/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<3.2× 10−8<3.2× 10−8<3.2× 10−8<3.2× 10−8 90 MIYAZAKI 11 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.9× 10−8 90 AUBERT 09W BABR 451 fb−1 Eee
m = 10.6 GeV
<7.8× 10−8 90 NISHIO 08 BELL 543 fb−1 Eee
m = 10.6 GeV
<3.0× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<5.1× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<6.3× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<3.8× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV1BARTELT 94 assume phase spa
e de
ays.



749749749749See key on page 601 LeptonParti
le Listings
τ�(

µ−K∗(892)0)/�total �197/��(
µ−K∗(892)0)/�total �197/��(
µ−K∗(892)0)/�total �197/��(
µ−K∗(892)0)/�total �197/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<5.9× 10−8<5.9× 10−8<5.9× 10−8<5.9× 10−8 90 NISHIO 08 BELL 543 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.2× 10−8 90 MIYAZAKI 11 BELL 854 fb−1 Eee
m = 10.6 GeV
<1.7× 10−7 90 AUBERT 09W BABR 451 fb−1 Eee
m = 10.6 GeV
<3.9× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<7.5× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<9.4× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<4.5× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV1BARTELT 94 assume phase spa
e de
ays.�(e−K∗(892)0)/�total �198/��(e−K∗(892)0)/�total �198/��(e−K∗(892)0)/�total �198/��(e−K∗(892)0)/�total �198/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<3.4× 10−8<3.4× 10−8<3.4× 10−8<3.4× 10−8 90 MIYAZAKI 11 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.6× 10−8 90 AUBERT 09W BABR 451 fb−1 Eee
m = 10.6 GeV
<7.7× 10−8 90 NISHIO 08 BELL 543 fb−1 Eee
m = 10.6 GeV
<4.0× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<7.4× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<1.1× 10−5 90 1 BARTELT 94 CLEO Repl. by BLISS 981BARTELT 94 assume phase spa
e de
ays.�(

µ−K∗(892)0)/�total �199/��(
µ−K∗(892)0)/�total �199/��(
µ−K∗(892)0)/�total �199/��(
µ−K∗(892)0)/�total �199/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<7.0× 10−8<7.0× 10−8<7.0× 10−8<7.0× 10−8 90 MIYAZAKI 11 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.3× 10−8 90 AUBERT 09W BABR 451 fb−1 Eee
m = 10.6 GeV
<1.0× 10−7 90 NISHIO 08 BELL 543 fb−1 Eee
m = 10.6 GeV
<4.0× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<7.5× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<8.7× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 981BARTELT 94 assume phase spa
e de
ays.�(e− η′(958))/�total �200/��(e− η′(958))/�total �200/��(e− η′(958))/�total �200/��(e− η′(958))/�total �200/�VALUE CL% DOCUMENT ID TECN COMMENT
< 1.6× 10−7< 1.6× 10−7< 1.6× 10−7< 1.6× 10−7 90 MIYAZAKI 07 BELL 401 fb−1, Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 2.4× 10−7 90 AUBERT 07I BABR 339 fb−1, Eee
m=10.6 GeV
<10. × 10−7 90 ENARI 05 BELL 154 fb−1, Eee
m= 10.6 GeV�(

µ−η′(958))/�total �201/��(
µ−η′(958))/�total �201/��(
µ−η′(958))/�total �201/��(
µ−η′(958))/�total �201/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.3× 10−7<1.3× 10−7<1.3× 10−7<1.3× 10−7 90 MIYAZAKI 07 BELL 401 fb−1, Eee
m=10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.4× 10−7 90 AUBERT 07I BABR 339 fb−1, Eee
m=10.6 GeV
<4.7× 10−7 90 ENARI 05 BELL 154 fb−1, Eee
m= 10.6 GeV�(e− f0(980)→ e−π+π−)/�total �202/��(e− f0(980)→ e−π+π−)/�total �202/��(e− f0(980)→ e−π+π−)/�total �202/��(e− f0(980)→ e−π+π−)/�total �202/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.2× 10−8<3.2× 10−8<3.2× 10−8<3.2× 10−8 90 MIYAZAKI 09 BELL 671 fb−1 Eee
m= 10.6 GeV�(

µ− f0(980)→ µ−π+π−)/�total �203/��(
µ− f0(980)→ µ−π+π−)/�total �203/��(
µ− f0(980)→ µ−π+π−)/�total �203/��(
µ− f0(980)→ µ−π+π−)/�total �203/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.4× 10−8<3.4× 10−8<3.4× 10−8<3.4× 10−8 90 MIYAZAKI 09 BELL 671 fb−1 Eee
m= 10.6 GeV�(e−φ
)/�total �204/��(e−φ
)/�total �204/��(e−φ
)/�total �204/��(e−φ
)/�total �204/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<3.1× 10−8<3.1× 10−8<3.1× 10−8<3.1× 10−8 90 MIYAZAKI 11 BELL 854 fb−1 Eee
m = 10.6 GeV
<3.1× 10−8<3.1× 10−8<3.1× 10−8<3.1× 10−8 90 AUBERT 09W BABR 451 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.3× 10−8 90 NISHIO 08 BELL 543 fb−1 Eee
m = 10.6 GeV
<7.3× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<6.9× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV�(

µ−φ
)/�total �205/��(

µ−φ
)/�total �205/��(

µ−φ
)/�total �205/��(

µ−φ
)/�total �205/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<8.4× 10−8<8.4× 10−8<8.4× 10−8<8.4× 10−8 90 MIYAZAKI 11 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.9× 10−7 90 AUBERT 09W BABR 451 fb−1 Eee
m = 10.6 GeV
<1.3× 10−7 90 NISHIO 08 BELL 543 fb−1 Eee
m = 10.6 GeV
<7.7× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<7.0× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV

�(e− e+ e−)/�total �206/��(e− e+ e−)/�total �206/��(e− e+ e−)/�total �206/��(e− e+ e−)/�total �206/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
< 2.7 × 10−8< 2.7 × 10−8< 2.7 × 10−8< 2.7 × 10−8 90 HAYASAKA 10 BELL 782 fb−1 Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 2.9 × 10−8 90 LEES 10A BABR 468 fb−1 Eee
m= 10.6 GeV
< 3.6 × 10−8 90 MIYAZAKI 08 BELL 535 fb−1 Eee
m= 10.6 GeV
< 4.3 × 10−8 90 AUBERT 07BK BABR 376 fb−1 Eee
m= 10.6 GeV
< 2.0 × 10−7 90 AUBERT 04J BABR 91.5 fb−1 Eee
m= 10.6 GeV
< 3.5 × 10−7 90 YUSA 04 BELL 87.1 fb−1 Eee
m= 10.6 GeV
< 2.9 × 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
< 0.33× 10−5 90 1 BARTELT 94 CLEO Repl. by BLISS 98
< 1.3 × 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
< 2.7 × 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.9
<40 × 10−5 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV1BARTELT 94 assume phase spa
e de
ays.�(e−µ+µ−)/�total �207/��(e−µ+µ−)/�total �207/��(e−µ+µ−)/�total �207/��(e−µ+µ−)/�total �207/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
< 2.7 × 10−8< 2.7 × 10−8< 2.7 × 10−8< 2.7 × 10−8 90 HAYASAKA 10 BELL 782 fb−1 Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.2 × 10−8 90 LEES 10A BABR 468 fb−1 Eee
m= 10.6 GeV
< 4.1 × 10−8 90 MIYAZAKI 08 BELL 535 fb−1 Eee
m= 10.6 GeV
< 3.7 × 10−8 90 AUBERT 07BK BABR 376 fb−1 Eee
m= 10.6 GeV
< 3.3 × 10−7 90 AUBERT 04J BABR 91.5 fb−1 Eee
m= 10.6 GeV
< 2.0 × 10−7 90 YUSA 04 BELL 87.1 fb−1 Eee
m= 10.6 GeV
< 1.8 × 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
< 0.36× 10−5 90 1 BARTELT 94 CLEO Repl. by BLISS 98
< 1.9 × 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
< 2.7 × 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.9
<33 × 10−5 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV1BARTELT 94 assume phase spa
e de
ays.�(e+µ−µ−)/�total �208/��(e+µ−µ−)/�total �208/��(e+µ−µ−)/�total �208/��(e+µ−µ−)/�total �208/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.7 × 10−8<1.7 × 10−8<1.7 × 10−8<1.7 × 10−8 90 HAYASAKA 10 BELL 782 fb−1 Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.6 × 10−8 90 LEES 10A BABR 468 fb−1 Eee
m= 10.6 GeV
<2.3 × 10−8 90 MIYAZAKI 08 BELL 535 fb−1 Eee
m= 10.6 GeV
<5.6 × 10−8 90 AUBERT 07BK BABR 376 fb−1 Eee
m= 10.6 GeV
<1.3 × 10−7 90 AUBERT 04J BABR 91.5 fb−1 Eee
m= 10.6 GeV
<2.0 × 10−7 90 YUSA 04 BELL 87.1 fb−1 Eee
m= 10.6 GeV
<1.5 × 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<0.35× 10−5 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<1.8 × 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<1.6 × 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.�(

µ− e+ e−)/�total �209/��(
µ− e+ e−)/�total �209/��(
µ− e+ e−)/�total �209/��(
µ− e+ e−)/�total �209/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

< 1.8 × 10−8< 1.8 × 10−8< 1.8 × 10−8< 1.8 × 10−8 90 HAYASAKA 10 BELL 782 fb−1 Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 2.2 × 10−8 90 LEES 10A BABR 468 fb−1 Eee
m= 10.6 GeV
< 2.7 × 10−8 90 MIYAZAKI 08 BELL 535 fb−1 Eee
m= 10.6 GeV
< 8.0 × 10−8 90 AUBERT 07BK BABR 376 fb−1 Eee
m= 10.6 GeV
< 2.7 × 10−7 90 AUBERT 04J BABR 91.5 fb−1 Eee
m= 10.6 GeV
< 1.9 × 10−7 90 YUSA 04 BELL 87.1 fb−1 Eee
m= 10.6 GeV
< 1.7 × 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
< 0.34× 10−5 90 1 BARTELT 94 CLEO Repl. by BLISS 98
< 1.4 × 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
< 2.7 × 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.9
<44 × 10−5 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV1BARTELT 94 assume phase spa
e de
ays.



750750750750LeptonParti
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τ�(µ+ e− e−)/�total �210/��(µ+ e− e−)/�total �210/��(µ+ e− e−)/�total �210/��(µ+ e− e−)/�total �210/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.5 × 10−8<1.5 × 10−8<1.5 × 10−8<1.5 × 10−8 90 HAYASAKA 10 BELL 782 fb−1 Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.8 × 10−8 90 LEES 10A BABR 468 fb−1 Eee
m= 10.6 GeV
<2.0 × 10−8 90 MIYAZAKI 08 BELL 535 fb−1 Eee
m= 10.6 GeV
<5.8 × 10−8 90 AUBERT 07BK BABR 376 fb−1 Eee
m= 10.6 GeV
<1.1 × 10−7 90 AUBERT 04J BABR 91.5 fb−1 Eee
m= 10.6 GeV
<2.0 × 10−7 90 YUSA 04 BELL 87.1 fb−1 Eee
m= 10.6 GeV
<1.5 × 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<0.34× 10−5 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<1.4 × 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<1.6 × 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.�(µ−µ+µ−)/�total �211/��(µ−µ+µ−)/�total �211/��(µ−µ+µ−)/�total �211/��(µ−µ+µ−)/�total �211/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
< 2.1 × 10−8< 2.1 × 10−8< 2.1 × 10−8< 2.1 × 10−8 90 HAYASAKA 10 BELL 782 fb−1 Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.6 × 10−8 90 AAIJ 15AI LHCB 3.0 fb−1 √

s = 7, 8 TeV
< 8.0 × 10−8 90 1 AAIJ 13AH LHCB 1.0 fb−1, √s = 7 TeV
< 3.3 × 10−8 90 LEES 10A BABR 468 fb−1 Eee
m= 10.6 GeV
< 3.2 × 10−8 90 MIYAZAKI 08 BELL 535 fb−1 Eee
m= 10.6 GeV
< 5.3 × 10−8 90 AUBERT 07BK BABR 376 fb−1 Eee
m= 10.6 GeV
< 1.9 × 10−7 90 AUBERT 04J BABR 91.5 fb−1 Eee
m= 10.6 GeV
< 2.0 × 10−7 90 YUSA 04 BELL 87.1 fb−1 Eee
m= 10.6 GeV
< 1.9 × 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
< 0.43× 10−5 90 2 BARTELT 94 CLEO Repl. by BLISS 98
< 1.9 × 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
< 1.7 × 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.9
<49 × 10−5 90 HAYES 82 MRK2 Eee
m= 3.8{6.8 GeV1Repl. by AAIJ 15AI.2BARTELT 94 assume phase spa
e de
ays.�(e−π+π−)/�total �212/��(e−π+π−)/�total �212/��(e−π+π−)/�total �212/��(e−π+π−)/�total �212/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<2.3× 10−8<2.3× 10−8<2.3× 10−8<2.3× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.4× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<7.3× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<1.2× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<2.2× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<4.4× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<2.7× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<6.0× 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.�(e+π−π−)/�total �213/��(e+π−π−)/�total �213/��(e+π−π−)/�total �213/��(e+π−π−)/�total �213/�Test of lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<2.0× 10−8<2.0× 10−8<2.0× 10−8<2.0× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8.8× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<2.0× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<2.7× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<1.9× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<4.4× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<1.8× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<1.7× 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.�(µ−π+π−)/�total �214/��(µ−π+π−)/�total �214/��(µ−π+π−)/�total �214/��(µ−π+π−)/�total �214/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<2.1× 10−8<2.1× 10−8<2.1× 10−8<2.1× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.3× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<4.8× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<2.9× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<8.2× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<7.4× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<3.6× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<3.9× 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.

�(µ+π−π−)/�total �215/��(µ+π−π−)/�total �215/��(µ+π−π−)/�total �215/��(µ+π−π−)/�total �215/�Test of lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<3.9× 10−8<3.9× 10−8<3.9× 10−8<3.9× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.7× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<3.4× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<7 × 10−8 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<3.4× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<6.9× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<6.3× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<3.9× 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.�(e−π+K−)/�total �216/��(e−π+K−)/�total �216/��(e−π+K−)/�total �216/��(e−π+K−)/�total �216/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<3.7× 10−8<3.7× 10−8<3.7× 10−8<3.7× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.8× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<7.2× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<3.2× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<6.4× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<7.7× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<2.9× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<5.8× 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.�(e−π−K+)/�total �217/��(e−π−K+)/�total �217/��(e−π−K+)/�total �217/��(e−π−K+)/�total �217/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<3.1× 10−8<3.1× 10−8<3.1× 10−8<3.1× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.2× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<1.6× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<1.7× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<3.8× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<4.6× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<5.8× 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.�(e+π−K−)/�total �218/��(e+π−K−)/�total �218/��(e+π−K−)/�total �218/��(e+π−K−)/�total �218/�Test of lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<3.2× 10−8<3.2× 10−8<3.2× 10−8<3.2× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.7× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<1.9× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<1.8× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<2.1× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<4.5× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<2.0× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<4.9× 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.�(e−K0S K0S)/�total �219/��(e−K0S K0S)/�total �219/��(e−K0S K0S)/�total �219/��(e−K0S K0S)/�total �219/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<7.1× 10−8<7.1× 10−8<7.1× 10−8<7.1× 10−8 90 MIYAZAKI 10A BELL 671 fb−1 Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.2× 10−6 90 CHEN 02C CLEO Eee
m= 10.6 GeV�(e−K+K−)/�total �220/��(e−K+K−)/�total �220/��(e−K+K−)/�total �220/��(e−K+K−)/�total �220/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<3.4× 10−8<3.4× 10−8<3.4× 10−8<3.4× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.4× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<3.0× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<1.4× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<6.0× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV�(e+K−K−)/�total �221/��(e+K−K−)/�total �221/��(e+K−K−)/�total �221/��(e+K−K−)/�total �221/�Test of lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<3.3× 10−8<3.3× 10−8<3.3× 10−8<3.3× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.0× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<3.1× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<1.5× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<3.8× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
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τ�(µ−π+K−)/�total �222/��(µ−π+K−)/�total �222/��(µ−π+K−)/�total �222/��(µ−π+K−)/�total �222/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

< 8.6× 10−8< 8.6× 10−8< 8.6× 10−8< 8.6× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.6× 10−7 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
< 2.7× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
< 2.6× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
< 7.5× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
< 8.7× 10−6 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<11 × 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
< 7.7× 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.�(µ−π−K+)/�total �223/��(µ−π−K+)/�total �223/��(µ−π−K+)/�total �223/��(µ−π−K+)/�total �223/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<4.5× 10−8<4.5× 10−8<4.5× 10−8<4.5× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.0× 10−7 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<7.3× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<3.2× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<7.4× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<1.5× 10−5 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<7.7× 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.�(µ+π−K−)/�total �224/��(µ+π−K−)/�total �224/��(µ+π−K−)/�total �224/��(µ+π−K−)/�total �224/�Test of lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<4.8× 10−8<4.8× 10−8<4.8× 10−8<4.8× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9.4× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<2.9× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<2.2× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<7.0× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV
<2.0× 10−5 90 1 BARTELT 94 CLEO Repl. by BLISS 98
<5.8× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV
<4.0× 10−5 90 BOWCOCK 90 CLEO Eee
m= 10.4{10.91BARTELT 94 assume phase spa
e de
ays.�(µ−K0S K0S)/�total �225/��(µ−K0S K0S)/�total �225/��(µ−K0S K0S)/�total �225/��(µ−K0S K0S)/�total �225/�VALUE CL% DOCUMENT ID TECN COMMENT
<8.0× 10−8<8.0× 10−8<8.0× 10−8<8.0× 10−8 90 MIYAZAKI 10A BELL 671 fb−1 Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.4× 10−6 90 CHEN 02C CLEO Eee
m= 10.6 GeV�(µ−K+K−)/�total �226/��(µ−K+K−)/�total �226/��(µ−K+K−)/�total �226/��(µ−K+K−)/�total �226/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
< 4.4× 10−8< 4.4× 10−8< 4.4× 10−8< 4.4× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 6.8× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
< 8.0× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
< 2.5× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<15 × 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV�(µ+K−K−)/�total �227/��(µ+K−K−)/�total �227/��(µ+K−K−)/�total �227/��(µ+K−K−)/�total �227/�Test of lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<4.7× 10−8<4.7× 10−8<4.7× 10−8<4.7× 10−8 90 MIYAZAKI 13 BELL 854 fb−1 Eee
m = 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9.6× 10−8 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13
<4.4× 10−7 90 YUSA 06 BELL 158 fb−1 Eee
m = 10.6 GeV
<4.8× 10−7 90 AUBERT,BE 05D BABR 221 fb−1, Eee
m= 10.6 GeV
<6.0× 10−6 90 BLISS 98 CLEO Eee
m= 10.6 GeV�(e−π0π0)/�total �228/��(e−π0π0)/�total �228/��(e−π0π0)/�total �228/��(e−π0π0)/�total �228/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<6.5× 10−6<6.5× 10−6<6.5× 10−6<6.5× 10−6 90 BONVICINI 97 CLEO Eee
m= 10.6 GeV�(µ−π0π0)/�total �229/��(µ−π0π0)/�total �229/��(µ−π0π0)/�total �229/��(µ−π0π0)/�total �229/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<14× 10−6<14× 10−6<14× 10−6<14× 10−6 90 BONVICINI 97 CLEO Eee
m= 10.6 GeV�(e− ηη

)/�total �230/��(e− ηη
)/�total �230/��(e− ηη
)/�total �230/��(e− ηη
)/�total �230/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<35× 10−6<35× 10−6<35× 10−6<35× 10−6 90 BONVICINI 97 CLEO Eee
m= 10.6 GeV

�(µ−ηη
)/�total �231/��(µ−ηη
)/�total �231/��(µ−ηη
)/�total �231/��(µ−ηη
)/�total �231/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<60× 10−6<60× 10−6<60× 10−6<60× 10−6 90 BONVICINI 97 CLEO Eee
m= 10.6 GeV�(e−π0 η
)/�total �232/��(e−π0 η
)/�total �232/��(e−π0 η
)/�total �232/��(e−π0 η
)/�total �232/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<24× 10−6<24× 10−6<24× 10−6<24× 10−6 90 BONVICINI 97 CLEO Eee
m= 10.6 GeV�(µ−π0 η
)/�total �233/��(µ−π0 η
)/�total �233/��(µ−π0 η
)/�total �233/��(µ−π0 η
)/�total �233/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<22× 10−6<22× 10−6<22× 10−6<22× 10−6 90 BONVICINI 97 CLEO Eee
m= 10.6 GeV�(pµ−µ−)/�total �234/��(pµ−µ−)/�total �234/��(pµ−µ−)/�total �234/��(pµ−µ−)/�total �234/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.4× 10−7<4.4× 10−7<4.4× 10−7<4.4× 10−7 90 AAIJ 13AH LHCB 1.0 fb−1, √s = 7 TeV�(pµ+µ−)/�total �235/��(pµ+µ−)/�total �235/��(pµ+µ−)/�total �235/��(pµ+µ−)/�total �235/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.3× 10−7<3.3× 10−7<3.3× 10−7<3.3× 10−7 90 AAIJ 13AH LHCB 1.0 fb−1, √s = 7 TeV�(pγ

)/�total �236/��(pγ
)/�total �236/��(pγ
)/�total �236/��(pγ
)/�total �236/�Test of lepton number and baryon number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

< 3.5× 10−6< 3.5× 10−6< 3.5× 10−6< 3.5× 10−6 90 GODANG 99 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<29 × 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV�(pπ0)/�total �237/��(pπ0)/�total �237/��(pπ0)/�total �237/��(pπ0)/�total �237/�Test of lepton number and baryon number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<15× 10−6<15× 10−6<15× 10−6<15× 10−6 90 GODANG 99 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<66× 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV�(p2π0)/�total �238/��(p2π0)/�total �238/��(p2π0)/�total �238/��(p2π0)/�total �238/�Test of lepton number and baryon number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<33× 10−6<33× 10−6<33× 10−6<33× 10−6 90 GODANG 99 CLEO Eee
m= 10.6 GeV�(pη

)/�total �239/��(pη
)/�total �239/��(pη
)/�total �239/��(pη
)/�total �239/�Test of lepton number and baryon number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

< 8.9× 10−6< 8.9× 10−6< 8.9× 10−6< 8.9× 10−6 90 GODANG 99 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<130 × 10−5 90 ALBRECHT 92K ARG Eee
m= 10 GeV�(pπ0 η

)/�total �240/��(pπ0 η
)/�total �240/��(pπ0 η
)/�total �240/��(pπ0 η
)/�total �240/�Test of lepton number and baryon number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<27× 10−6<27× 10−6<27× 10−6<27× 10−6 90 GODANG 99 CLEO Eee
m= 10.6 GeV�(�π−)/�total �241/��(�π−)/�total �241/��(�π−)/�total �241/��(�π−)/�total �241/�Test of lepton number and baryon number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<0.72× 10−7<0.72× 10−7<0.72× 10−7<0.72× 10−7 90 MIYAZAKI 06 BELL 154 fb−1, Eee
m= 10.6 GeV�(�π−)/�total �242/��(�π−)/�total �242/��(�π−)/�total �242/��(�π−)/�total �242/�Test of lepton number and baryon number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.4× 10−7<1.4× 10−7<1.4× 10−7<1.4× 10−7 90 MIYAZAKI 06 BELL 154 fb−1, Eee
m= 10.6 GeV
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τ�(e− light boson)/�(e−νe ντ

) �243/�5�(e− light boson)/�(e−νe ντ

) �243/�5�(e− light boson)/�(e−νe ντ

) �243/�5�(e− light boson)/�(e−νe ντ

) �243/�5Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<0.015<0.015<0.015<0.015 95 1 ALBRECHT 95G ARG Eee
m= 9.4{10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.018 95 2 ALBRECHT 90E ARG Eee
m= 9.4{10.6 GeV
<0.040 95 3 BALTRUSAIT...85 MRK3 Eee
m= 3.77 GeV1ALBRECHT 95G limit holds for bosons with mass < 0.4 GeV. The limit rises to 0.036for a mass of 1.0 GeV, then falls to 0.006 at the upper mass limit of 1.6 GeV.2ALBRECHT 90E limit applies for spinless boson with mass < 100 MeV, and rises to0.050 for mass = 500 MeV.3BALTRUSAITIS 85 limit applies for spinless boson with mass < 100 MeV.�(µ− light boson)/�(e−νe ντ

) �244/�5�(µ− light boson)/�(e−νe ντ

) �244/�5�(µ− light boson)/�(e−νe ντ

) �244/�5�(µ− light boson)/�(e−νe ντ

) �244/�5Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<0.026<0.026<0.026<0.026 95 1 ALBRECHT 95G ARG Eee
m= 9.4{10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.033 95 2 ALBRECHT 90E ARG Eee
m= 9.4{10.6 GeV
<0.125 95 3 BALTRUSAIT...85 MRK3 Eee
m= 3.77 GeV1ALBRECHT 95G limit holds for bosons with mass < 1.3 GeV. The limit rises to 0.034for a mass of 1.4 GeV, then falls to 0.003 at the upper mass limit of 1.6 GeV.2ALBRECHT 90E limit applies for spinless boson with mass < 100 MeV, and rises to0.071 for mass = 500 MeV.3BALTRUSAITIS 85 limit applies for spinless boson with mass < 100 MeV.

τ -DECAY PARAMETERSτ -DECAY PARAMETERSτ -DECAY PARAMETERSτ -DECAY PARAMETERS
τ -LEPTON DECAY PARAMETERS

Updated August 2011 by A. Stahl (RWTH Aachen).

The purpose of the measurements of the decay parameters

(also known as Michel parameters) of the τ is to determine

the structure (spin and chirality) of the current mediating its

decays.

Leptonic Decays: The Michel parameters are extracted from

the energy spectrum of the charged daughter lepton ℓ = e, µ in

the decays τ → ℓνℓντ . Ignoring radiative corrections, neglect-

ing terms of order (mℓ/mτ )2 and (mτ/
√

s)
2
, and setting the

neutrino masses to zero, the spectrum in the laboratory frame

reads

dΓ

dx
=

G2
τℓ m5

τ

192 π3
×

{
f0 (x) + ρf1 (x) + η

mℓ

mτ
f2 (x) − Pτ [ξg1 (x) + ξδg2 (x)]

}
, (1)

with

f0 (x) = 2 − 6 x2 + 4 x3

f1 (x) = −4

9
+ 4 x2 − 32

9
x3 g1 (x) = −2

3
+ 4 x − 6 x2 +

8

3
x3

f2 (x) = 12 (1 − x)2 g2 (x) =
4

9
− 16

3
x + 12 x2 − 64

9
x3 .

The quantity x is the fractional energy of the daughter lepton

ℓ, i.e., x = Eℓ/Eℓ,max ≈ Eℓ/(
√

s/2) and Pτ is the polarization

of the tau leptons. The integrated decay width is given by

Γ =
G2

τℓ m5
τ

192 π3

(
1 + 4 η

mℓ

mτ

)
. (2)

The situation is similar to muon decays µ → eνeνµ. The gener-

alized matrix element with the couplings gγ
εµ and their relations

to the Michel parameters ρ, η, ξ, and δ have been described in

the “Note on Muon Decay Parameters.” The Standard Model

expectations are 3/4, 0, 1, and 3/4, respectively. For more

details, see Ref. 1.

Hadronic Decays: In the case of hadronic decays τ → hντ ,

with h = π, ρ, or a1, the ansatz is restricted to purely vectorial

currents. The matrix element is

Gτh√
2

∑

λ=R,L

gλ 〈 Ψω(ντ ) | γµ | Ψλ(τ) 〉 Jh
µ (3)

with the hadronic current Jh
µ . The neutrino chirality ω is

uniquely determined from λ. The spectrum depends only on a

single parameter ξh

dnΓ

dx1dx2 . . . dxn
= f (~x) + ξhPτg (~x) , (4)

with f and g being channel-dependent functions of the n

observables ~x = (x1, x2, . . . , xn) (see Ref. 2). The parameter ξh

is related to the couplings through

ξh = |gL|2 − |gR|2 . (5)

ξh is the negative of the chirality of the τ neutrino in these

decays. In the Standard Model, ξh = 1. Also included in the

Data Listings for ξh are measurements of the neutrino helicity

which coincide with ξh, if the neutrino is massless (ASNER

00, ACKERSTAFF 97R, AKERS 95P, ALBRECHT 93C, and

ALBRECHT 90I).

Combination of Measurements: The individual measure-

ments are combined, taking into account the correlations be-

tween the parameters. In a first fit, universality between the two

leptonic decays, and between all hadronic decays, is assumed.

A second fit is made without these assumptions. The results

of the two fits are provided as OUR FIT in the Data Listings

below in the tables whose title includes “(e or mu)” or “(all

hadronic modes),” and “(e),” “(mu)” etc., respectively. The

measurements show good agreement with the Standard Model.

The χ2 values with respect to the Standard model predictions

are 24.1 for 41 degrees of freedom and 26.8 for 56 degrees of

freedom, respectively. The correlations are reduced through this

combination to less than 20%, with the exception of ρ and η

which are correlated by +23%, for the fit with universality and

by +70% for τ → µνµντ .

Model-independent Analysis: From the Michel parameters,

limits can be derived on the couplings gκ
ελ without further

model assumptions. In the Standard model gV
LL = 1 (leptonic

decays), and gL = 1 (hadronic decays) and all other couplings

vanish. First, the partial decay widths have to be compared

to the Standard Model predictions to derive limits on the

normalization of the couplings Ax = G2
τx/G2

F with Fermi’s

constant GF :

Ae = 1.0029 ± 0.0046 ,

Aµ = 0.981 ± 0.018 ,

Aπ = 1.0020± 0.0073 . (6)

Then limits on the couplings (95% CL) can be extracted (see

Ref. 3 and Ref. 4). Without the assumption of universality, the

limits given in Table 1 are derived.
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Table 1: Coupling constants gγ
εµ. 95% confi-

dence level experimental limits. The limits in-
clude the quoted values of Ae, Aµ, and Aπ and
assume Aρ = Aa1

= 1.

τ → eνeντ

|gS
RR| < 0.70 |gV

RR| < 0.17 |gT
RR| ≡ 0

|gS
LR| < 0.99 |gV

LR| < 0.13 |gT
LR| < 0.082

|gS
RL| < 2.01 |gV

RL| < 0.52 |gT
RL| < 0.51

|gS
LL| < 2.01 |gV

LL| < 1.005 |gT
LL| ≡ 0

τ → µνµντ

|gS
RR| < 0.72 |gV

RR| < 0.18 |gT
RR| ≡ 0

|gS
LR| < 0.95 |gV

LR| < 0.12 |gT
LR| < 0.079

|gS
RL| < 2.01 |gV

RL| < 0.52 |gT
RL| < 0.51

|gS
LL| < 2.01 |gV

LL| < 1.005 |gT
LL| ≡ 0

τ → πντ

|gV
R | < 0.15 |gV

L | > 0.992

τ → ρντ

|gV
R | < 0.10 |gV

L | > 0.995

τ → a1ντ

|gV
R | < 0.16 |gV

L | > 0.987

Model-dependent Interpretation: More stringent limits can

be derived assuming specific models. For example, in the frame-

work of a two Higgs doublet model, the measurements corre-

spond to a limit of mH± > 1.9 GeV × tan β on the mass of the

charged Higgs boson, or a limit of 253 GeV on the mass of the

second W boson in left-right symmetric models for arbitrary

mixing (both 95% CL). See Ref. 4 and Ref. 5.
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ρ(e or µ) PARAMETERρ(e or µ) PARAMETERρ(e or µ) PARAMETERρ(e or µ) PARAMETER(V−A) theory predi
ts ρ = 0.75.VALUE EVTS DOCUMENT ID TECN COMMENT0.745±0.008 OUR FIT0.745±0.008 OUR FIT0.745±0.008 OUR FIT0.745±0.008 OUR FIT0.749±0.008 OUR AVERAGE0.749±0.008 OUR AVERAGE0.749±0.008 OUR AVERAGE0.749±0.008 OUR AVERAGE0.742±0.014±0.006 81k HEISTER 01E ALEP 1991{1995 LEP runs0.775±0.023±0.020 36k ABREU 00L DLPH 1992{1995 runs0.781±0.028±0.018 46k ACKERSTAFF 99D OPAL 1990{1995 LEP runs0.762±0.035 54k ACCIARRI 98R L3 1991{1995 LEP runs

0.731±0.031 1 ALBRECHT 98 ARG Eee
m= 9.5{10.6 GeV0.72 ±0.09 ±0.03 2 ABE 97O SLD 1993{1995 SLC runs0.747±0.010±0.006 55k ALEXANDER 97F CLEO Eee
m= 10.6 GeV0.79 ±0.10 ±0.10 3732 FORD 87B MAC Eee
m= 29 GeV0.71 ±0.09 ±0.03 1426 BEHRENDS 85 CLEO e+ e− near �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.735±0.013±0.008 31k AMMAR 97B CLEO Repl. by ALEXAN-DER 97F0.794±0.039±0.031 18k ACCIARRI 96H L3 Repl. by ACCIARRI 98R0.732±0.034±0.020 8.2k 3 ALBRECHT 95 ARG Eee
m= 9.5{10.6 GeV0.738±0.038 4 ALBRECHT 95C ARG Repl. by ALBRECHT 980.751±0.039±0.022 BUSKULIC 95D ALEP Repl. by HEISTER 01E0.742±0.035±0.020 8000 ALBRECHT 90E ARG Eee
m= 9.4{10.6 GeV1Combined �t to ARGUS tau de
ay parameter measurements in ALBRECHT 98, AL-BRECHT 95C, ALBRECHT 93G, and ALBRECHT 94E. ALBRECHT 98 use tau pairevents of the type τ− τ+ → (ℓ− νℓ ντ )(π+π0 ντ ), and their 
harged 
onjugates.2ABE 97O assume η = 0 in their �t. Letting η vary in the �t gives a ρ value of 0.69 ±0.13 ± 0.05.3Value is from a simultaneous �t for the ρ and η de
ay parameters to the lepton energyspe
trum. Not independent of ALBRECHT 90E ρ(e or µ) value whi
h assumes η = 0.Result is strongly 
orrelated with ALBRECHT 95C.4 Combined �t to ARGUS tau de
ay parameter measurements in ALBRECHT 95C, AL-BRECHT 93G, and ALBRECHT 94E.
ρ(e) PARAMETERρ(e) PARAMETERρ(e) PARAMETERρ(e) PARAMETER(V−A) theory predi
ts ρ = 0.75.VALUE EVTS DOCUMENT ID TECN COMMENT0.747±0.010 OUR FIT0.747±0.010 OUR FIT0.747±0.010 OUR FIT0.747±0.010 OUR FIT0.744±0.010 OUR AVERAGE0.744±0.010 OUR AVERAGE0.744±0.010 OUR AVERAGE0.744±0.010 OUR AVERAGE0.747±0.019±0.014 44k HEISTER 01E ALEP 1991{1995 LEP runs0.744±0.036±0.037 17k ABREU 00L DLPH 1992{1995 runs0.779±0.047±0.029 25k ACKERSTAFF 99D OPAL 1990{1995 LEP runs0.68 ±0.04 ±0.07 1 ALBRECHT 98 ARG Eee
m= 9.5{10.6 GeV0.71 ±0.14 ±0.05 ABE 97O SLD 1993{1995 SLC runs0.747±0.012±0.004 34k ALEXANDER 97F CLEO Eee
m= 10.6 GeV0.735±0.036±0.020 4.7k 2 ALBRECHT 95 ARG Eee
m= 9.5{10.6 GeV0.79 ±0.08 ±0.06 3230 3 ALBRECHT 93G ARG Eee
m= 9.4{10.6 GeV0.64 ±0.06 ±0.07 2753 JANSSEN 89 CBAL Eee
m= 9.4{10.6 GeV0.62 ±0.17 ±0.14 1823 FORD 87B MAC Eee
m= 29 GeV0.60 ±0.13 699 BEHRENDS 85 CLEO e+ e− near �(4S)0.72 ±0.10 ±0.11 594 BACINO 79B DLCO Eee
m= 3.5{7.4 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.732±0.014±0.009 19k AMMAR 97B CLEO Repl. by ALEXAN-DER 97F0.793±0.050±0.025 BUSKULIC 95D ALEP Repl. by HEISTER 01E0.747±0.045±0.028 5106 ALBRECHT 90E ARG Repl. by ALBRECHT 951ALBRECHT 98 use tau pair events of the type τ− τ+ → (ℓ− νℓ ντ )(π+π0 ντ ), andtheir 
harged 
onjugates.2ALBRECHT 95 use tau pair events of the type τ− τ+ → (ℓ− νℓ ντ )(h+ h− h+(π0 )ντ ) and their 
harged 
onjugates.3ALBRECHT 93G use tau pair events of the type τ− τ+ → (µ− νµ ντ ) (e+ νe ντ ) andtheir 
harged 
onjugates.
ρ(µ) PARAMETERρ(µ) PARAMETERρ(µ) PARAMETERρ(µ) PARAMETER(V−A) theory predi
ts ρ = 0.75.VALUE EVTS DOCUMENT ID TECN COMMENT0.763±0.020 OUR FIT0.763±0.020 OUR FIT0.763±0.020 OUR FIT0.763±0.020 OUR FIT0.770±0.022 OUR AVERAGE0.770±0.022 OUR AVERAGE0.770±0.022 OUR AVERAGE0.770±0.022 OUR AVERAGE0.776±0.045±0.019 46k HEISTER 01E ALEP 1991{1995 LEP runs0.999±0.098±0.045 22k ABREU 00L DLPH 1992{1995 runs0.777±0.044±0.016 27k ACKERSTAFF 99D OPAL 1990{1995 LEP runs0.69 ±0.06 ±0.06 1 ALBRECHT 98 ARG Eee
m= 9.5{10.6 GeV0.54 ±0.28 ±0.14 ABE 97O SLD 1993{1995 SLC runs0.750±0.017±0.045 22k ALEXANDER 97F CLEO Eee
m= 10.6 GeV0.76 ±0.07 ±0.08 3230 ALBRECHT 93G ARG Eee
m= 9.4{10.6 GeV0.734±0.055±0.027 3041 ALBRECHT 90E ARG Eee
m= 9.4{10.6 GeV0.89 ±0.14 ±0.08 1909 FORD 87B MAC Eee
m= 29 GeV0.81 ±0.13 727 BEHRENDS 85 CLEO e+ e− near �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.747±0.048±0.044 13k AMMAR 97B CLEO Repl. by ALEXAN-DER 97F0.693±0.057±0.028 BUSKULIC 95D ALEP Repl. by HEISTER 01E1ALBRECHT 98 use tau pair events of the type τ− τ+ → (ℓ− νℓ ντ )(π+π0 ντ ), andtheir 
harged 
onjugates.
ξ(e or µ) PARAMETERξ(e or µ) PARAMETERξ(e or µ) PARAMETERξ(e or µ) PARAMETER(V−A) theory predi
ts ξ = 1.VALUE EVTS DOCUMENT ID TECN COMMENT0.985±0.030 OUR FIT0.985±0.030 OUR FIT0.985±0.030 OUR FIT0.985±0.030 OUR FIT0.981±0.031 OUR AVERAGE0.981±0.031 OUR AVERAGE0.981±0.031 OUR AVERAGE0.981±0.031 OUR AVERAGE0.986±0.068±0.031 81k HEISTER 01E ALEP 1991{1995 LEP runs0.929±0.070±0.030 36k ABREU 00L DLPH 1992{1995 runs0.98 ±0.22 ±0.10 46k ACKERSTAFF 99D OPAL 1990{1995 LEP runs0.70 ±0.16 54k ACCIARRI 98R L3 1991{1995 LEP runs1.03 ±0.11 1 ALBRECHT 98 ARG Eee
m= 9.5{10.6 GeV1.05 ±0.35 ±0.04 2 ABE 97O SLD 1993{1995 SLC runs1.007±0.040±0.015 55k ALEXANDER 97F CLEO Eee
m= 10.6 GeV
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• • • We do not use the following data for averages, �ts, limits, et
. • • •0.94 ±0.21 ±0.07 18k ACCIARRI 96H L3 Repl. by ACCIARRI 98R0.97 ±0.14 3 ALBRECHT 95C ARG Repl. by ALBRECHT 981.18 ±0.15 ±0.16 BUSKULIC 95D ALEP Repl. by HEISTER 01E0.90 ±0.15 ±0.10 3230 4 ALBRECHT 93G ARG Eee
m= 9.4{10.6 GeV1Combined �t to ARGUS tau de
ay parameter measurements in ALBRECHT 98, AL-BRECHT 95C, ALBRECHT 93G, and ALBRECHT 94E. ALBRECHT 98 use tau pairevents of the type τ− τ+ → (ℓ− νℓ ντ )(π+π0 ντ ), and their 
harged 
onjugates.2ABE 97O assume η = 0 in their �t. Letting η vary in the �t gives a ξ value of 1.02 ±0.36 ± 0.05.3Combined �t to ARGUS tau de
ay parameter measurements in ALBRECHT 95C, AL-BRECHT 93G, and ALBRECHT 94E. ALBRECHT 95C uses events of the type τ− τ+ →(ℓ− νℓ ντ ) (h+ h− h+ ντ ) and their 
harged 
onjugates.4ALBRECHT 93G measurement determines ∣∣ξ
∣∣ for the 
ase ξ(e) = ξ(µ), but the authorspoint out that other LEP experiments determine the sign to be positive.

ξ(e) PARAMETERξ(e) PARAMETERξ(e) PARAMETERξ(e) PARAMETER(V−A) theory predi
ts ξ = 1.VALUE EVTS DOCUMENT ID TECN COMMENT0.994±0.040 OUR FIT0.994±0.040 OUR FIT0.994±0.040 OUR FIT0.994±0.040 OUR FIT1.00 ±0.04 OUR AVERAGE1.00 ±0.04 OUR AVERAGE1.00 ±0.04 OUR AVERAGE1.00 ±0.04 OUR AVERAGE1.011±0.094±0.038 44k HEISTER 01E ALEP 1991{1995 LEP runs1.01 ±0.12 ±0.05 17k ABREU 00L DLPH 1992{1995 runs1.13 ±0.39 ±0.14 25k ACKERSTAFF 99D OPAL 1990{1995 LEP runs1.11 ±0.20 ±0.08 1 ALBRECHT 98 ARG Eee
m= 9.5{10.6 GeV1.16 ±0.52 ±0.06 ABE 97O SLD 1993{1995 SLC runs0.979±0.048±0.016 34k ALEXANDER 97F CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.03 ±0.23 ±0.09 BUSKULIC 95D ALEP Repl. by HEISTER 01E1ALBRECHT 98 use tau pair events of the type τ− τ+ → (ℓ− νℓ ντ )(π+π0 ντ ), andtheir 
harged 
onjugates.
ξ(µ) PARAMETERξ(µ) PARAMETERξ(µ) PARAMETERξ(µ) PARAMETER(V−A) theory predi
ts ξ = 1.VALUE EVTS DOCUMENT ID TECN COMMENT1.030±0.059 OUR FIT1.030±0.059 OUR FIT1.030±0.059 OUR FIT1.030±0.059 OUR FIT1.06 ±0.06 OUR AVERAGE1.06 ±0.06 OUR AVERAGE1.06 ±0.06 OUR AVERAGE1.06 ±0.06 OUR AVERAGE1.030±0.120±0.050 46k HEISTER 01E ALEP 1991{1995 LEP runs1.16 ±0.19 ±0.06 22k ABREU 00L DLPH 1992{1995 runs0.79 ±0.41 ±0.09 27k ACKERSTAFF 99D OPAL 1990{1995 LEP runs1.26 ±0.27 ±0.14 1 ALBRECHT 98 ARG Eee
m= 9.5{10.6 GeV0.75 ±0.50 ±0.14 ABE 97O SLD 1993{1995 SLC runs1.054±0.069±0.047 22k ALEXANDER 97F CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.23 ±0.22 ±0.10 BUSKULIC 95D ALEP Repl. by HEISTER 01E1ALBRECHT 98 use tau pair events of the type τ− τ+ → (ℓ− νℓ ντ )(π+π0 ντ ), andtheir 
harged 
onjugates.
η(e or µ) PARAMETERη(e or µ) PARAMETERη(e or µ) PARAMETERη(e or µ) PARAMETER(V−A) theory predi
ts η = 0.VALUE EVTS DOCUMENT ID TECN COMMENT0.013±0.020 OUR FIT0.013±0.020 OUR FIT0.013±0.020 OUR FIT0.013±0.020 OUR FIT0.015±0.021 OUR AVERAGE0.015±0.021 OUR AVERAGE0.015±0.021 OUR AVERAGE0.015±0.021 OUR AVERAGE0.012±0.026±0.004 81k HEISTER 01E ALEP 1991{1995 LEP runs
−0.005±0.036±0.037 ABREU 00L DLPH 1992{1995 runs0.027±0.055±0.005 46k ACKERSTAFF 99D OPAL 1990{1995 LEP runs0.27 ±0.14 54k ACCIARRI 98R L3 1991{1995 LEP runs
−0.13 ±0.47 ±0.15 ABE 97O SLD 1993{1995 SLC runs
−0.015±0.061±0.062 31k AMMAR 97B CLEO Eee
m= 10.6 GeV0.03 ±0.18 ±0.12 8.2k ALBRECHT 95 ARG Eee
m= 9.5{10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.25 ±0.17 ±0.11 18k ACCIARRI 96H L3 Repl. by ACCIARRI 98R
−0.04 ±0.15 ±0.11 BUSKULIC 95D ALEP Repl. by HEISTER 01E
η(µ) PARAMETERη(µ) PARAMETERη(µ) PARAMETERη(µ) PARAMETER(V−A) theory predi
ts η = 0.VALUE EVTS DOCUMENT ID TECN COMMENT0.094±0.073 OUR FIT0.094±0.073 OUR FIT0.094±0.073 OUR FIT0.094±0.073 OUR FIT0.17 ±0.15 OUR AVERAGE0.17 ±0.15 OUR AVERAGE0.17 ±0.15 OUR AVERAGE0.17 ±0.15 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.160±0.150±0.060 46k HEISTER 01E ALEP 1991{1995 LEP runs0.72 ±0.32 ±0.15 ABREU 00L DLPH 1992{1995 runs
−0.59 ±0.82 ±0.45 1 ABE 97O SLD 1993{1995 SLC runs0.010±0.149±0.171 13k 2 AMMAR 97B CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.010±0.065±0.001 27k 3 ACKERSTAFF 99D OPAL 1990{1995 LEP runs
−0.24 ±0.23 ±0.18 BUSKULIC 95D ALEP Repl. by HEISTER 01E1Highly 
orrelated (
orr. = 0.92) with ABE 97O ρ(µ) measurement.2Highly 
orrelated (
orr. = 0.949) with AMMAR 97B ρ(µ) value.3ACKERSTAFF 99D result is dominated by a 
onstraint on η from the OPAL measure-ments of the τ lifetime and B(τ− → µ− νµ ντ ) assuming lepton universality for thetotal 
oupling strength.

(δξ)(e or µ) PARAMETER(δξ)(e or µ) PARAMETER(δξ)(e or µ) PARAMETER(δξ)(e or µ) PARAMETER(V−A) theory predi
ts (δξ) = 0.75.VALUE EVTS DOCUMENT ID TECN COMMENT0.746±0.021 OUR FIT0.746±0.021 OUR FIT0.746±0.021 OUR FIT0.746±0.021 OUR FIT0.744±0.022 OUR AVERAGE0.744±0.022 OUR AVERAGE0.744±0.022 OUR AVERAGE0.744±0.022 OUR AVERAGE0.776±0.045±0.024 81k HEISTER 01E ALEP 1991{1995 LEP runs0.779±0.070±0.028 36k ABREU 00L DLPH 1992{1995 runs0.65 ±0.14 ±0.07 46k ACKERSTAFF 99D OPAL 1990{1995 LEP runs0.70 ±0.11 54k ACCIARRI 98R L3 1991{1995 LEP runs0.63 ±0.09 1 ALBRECHT 98 ARG Eee
m= 9.5{10.6 GeV0.88 ±0.27 ±0.04 2 ABE 97O SLD 1993{1995 SLC runs0.745±0.026±0.009 55k ALEXANDER 97F CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.81 ±0.14 ±0.06 18k ACCIARRI 96H L3 Repl. by ACCIARRI 98R0.65 ±0.12 3 ALBRECHT 95C ARG Repl. by ALBRECHT 980.88 ±0.11 ±0.07 BUSKULIC 95D ALEP Repl. by HEISTER 01E1Combined �t to ARGUS tau de
ay parameter measurements in ALBRECHT 98, AL-BRECHT 95C, ALBRECHT 93G, and ALBRECHT 94E. ALBRECHT 98 use tau pairevents of the type τ− τ+ → (ℓ− νℓ ντ )(π+π0 ντ ), and their 
harged 
onjugates.2ABE 97O assume η = 0 in their �t. Letting η vary in the �t gives a (δξ) value of0.87 ± 0.27 ± 0.04.3Combined �t to ARGUS tau de
ay parameter measurements in ALBRECHT 95C, AL-BRECHT 93G, and ALBRECHT 94E. ALBRECHT 95C uses events of the type τ− τ+ →(ℓ− νℓ ντ ) (h+ h− h+ ντ ) and their 
harged 
onjugates.(δξ)(e) PARAMETER(δξ)(e) PARAMETER(δξ)(e) PARAMETER(δξ)(e) PARAMETER(V−A) theory predi
ts (δξ) = 0.75.VALUE EVTS DOCUMENT ID TECN COMMENT0.734±0.028 OUR FIT0.734±0.028 OUR FIT0.734±0.028 OUR FIT0.734±0.028 OUR FIT0.731±0.029 OUR AVERAGE0.731±0.029 OUR AVERAGE0.731±0.029 OUR AVERAGE0.731±0.029 OUR AVERAGE0.778±0.066±0.024 44k HEISTER 01E ALEP 1991{1995 LEP runs0.85 ±0.12 ±0.04 17k ABREU 00L DLPH 1992{1995 runs0.72 ±0.31 ±0.14 25k ACKERSTAFF 99D OPAL 1990{1995 LEP runs0.56 ±0.14 ±0.06 1 ALBRECHT 98 ARG Eee
m= 9.5{10.6 GeV0.85 ±0.43 ±0.08 ABE 97O SLD 1993{1995 SLC runs0.720±0.032±0.010 34k ALEXANDER 97F CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.11 ±0.17 ±0.07 BUSKULIC 95D ALEP Repl. by HEISTER 01E1ALBRECHT 98 use tau pair events of the type τ− τ+ → (ℓ− νℓ ντ )(π+π0 ντ ), andtheir 
harged 
onjugates.(δξ)(µ) PARAMETER(δξ)(µ) PARAMETER(δξ)(µ) PARAMETER(δξ)(µ) PARAMETER(V−A) theory predi
ts (δξ) = 0.75.VALUE EVTS DOCUMENT ID TECN COMMENT0.778±0.037 OUR FIT0.778±0.037 OUR FIT0.778±0.037 OUR FIT0.778±0.037 OUR FIT0.79 ±0.04 OUR AVERAGE0.79 ±0.04 OUR AVERAGE0.79 ±0.04 OUR AVERAGE0.79 ±0.04 OUR AVERAGE0.786±0.066±0.028 46k HEISTER 01E ALEP 1991{1995 LEP runs0.86 ±0.13 ±0.04 22k ABREU 00L DLPH 1992{1995 runs0.63 ±0.23 ±0.05 27k ACKERSTAFF 99D OPAL 1990{1995 LEP runs0.73 ±0.18 ±0.10 1 ALBRECHT 98 ARG Eee
m= 9.5{10.6 GeV0.82 ±0.32 ±0.07 ABE 97O SLD 1993{1995 SLC runs0.786±0.041±0.032 22k ALEXANDER 97F CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.71 ±0.14 ±0.06 BUSKULIC 95D ALEP Repl. by HEISTER 01E1ALBRECHT 98 use tau pair events of the type τ− τ+ → (ℓ− νℓ ντ )(π+π0 ντ ), andtheir 
harged 
onjugates.
ξ(π) PARAMETERξ(π) PARAMETERξ(π) PARAMETERξ(π) PARAMETER(V−A) theory predi
ts ξ(π) = 1.VALUE EVTS DOCUMENT ID TECN COMMENT0.993±0.022 OUR FIT0.993±0.022 OUR FIT0.993±0.022 OUR FIT0.993±0.022 OUR FIT0.994±0.023 OUR AVERAGE0.994±0.023 OUR AVERAGE0.994±0.023 OUR AVERAGE0.994±0.023 OUR AVERAGE0.994±0.020±0.014 27k HEISTER 01E ALEP 1991{1995 LEP runs0.81 ±0.17 ±0.02 ABE 97O SLD 1993{1995 SLC runs1.03 ±0.06 ±0.04 2.0k COAN 97 CLEO Eee
m= 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.987±0.057±0.027 BUSKULIC 95D ALEP Repl. by HEISTER 01E0.95 ±0.11 ±0.05 1 BUSKULIC 94D ALEP 1990+1991 LEP run1Superseded by BUSKULIC 95D.
ξ(ρ) PARAMETERξ(ρ) PARAMETERξ(ρ) PARAMETERξ(ρ) PARAMETER(V−A) theory predi
ts ξ(ρ) = 1.VALUE EVTS DOCUMENT ID TECN COMMENT0.994±0.008 OUR FIT0.994±0.008 OUR FIT0.994±0.008 OUR FIT0.994±0.008 OUR FIT0.994±0.009 OUR AVERAGE0.994±0.009 OUR AVERAGE0.994±0.009 OUR AVERAGE0.994±0.009 OUR AVERAGE0.987±0.012±0.011 59k HEISTER 01E ALEP 1991{1995 LEP runs0.99 ±0.12 ±0.04 ABE 97O SLD 1993{1995 SLC runs0.995±0.010±0.003 66k ALEXANDER 97F CLEO Eee
m= 10.6 GeV1.022±0.028±0.030 1.7k 1 ALBRECHT 94E ARG Eee
m= 9.4{10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.045±0.058±0.032 BUSKULIC 95D ALEP Repl. by HEISTER 01E1.03 ±0.11 ±0.05 2 BUSKULIC 94D ALEP 1990+1991 LEP run1ALBRECHT 94E measure the square of this quantity and use the sign determined byALBRECHT 90I to obtain the quoted result.2 Superseded by BUSKULIC 95D.
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ξ(a1) PARAMETERξ(a1) PARAMETERξ(a1) PARAMETERξ(a1) PARAMETER(V−A) theory predi
ts ξ(a1) = 1.VALUE EVTS DOCUMENT ID TECN COMMENT1.001±0.027 OUR FIT1.001±0.027 OUR FIT1.001±0.027 OUR FIT1.001±0.027 OUR FIT1.002±0.028 OUR AVERAGE1.002±0.028 OUR AVERAGE1.002±0.028 OUR AVERAGE1.002±0.028 OUR AVERAGE1.000±0.016±0.024 35k 1 HEISTER 01E ALEP 1991{1995 LEP runs1.02 ±0.13 ±0.03 17.2k ASNER 00 CLEO Eee
m= 10.6 GeV1.29 ±0.26 ±0.11 7.4k 2 ACKERSTAFF 97R OPAL 1992{1994 LEP runs0.85 +0.15
−0.17 ±0.05 ALBRECHT 95C ARG Eee
m= 9.5{10.6 GeV1.25 ±0.23 +0.15

−0.08 7.5k ALBRECHT 93C ARG Eee
m= 9.4{10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.08 +0.46

−0.41 +0.14
−0.25 2.6k 3 AKERS 95P OPAL Repl. by ACKER-STAFF 97R0.937±0.116±0.064 BUSKULIC 95D ALEP Repl. by HEISTER 01E1HEISTER 01E quote 1.000 ± 0.016 ± 0.013 ± 0.020 where the errors are statisti
al,systemati
, and an un
ertainty due to the �nal state model. We 
ombine the systemati
error and model un
ertainty.2ACKERSTAFF 97R obtain this result with a model independent �t to the hadroni
 stru
-ture fun
tions. Fitting with the model of Kuhn and Santamaria (ZPHY C48C48C48C48, 445 (1990))gives 0.87 ± 0.16 ± 0.04, and with the model of of Isgur et al. (PR D39D39D39D39,1357 (1989))they obtain 1.20 ± 0.21 ± 0.14.3AKERS 95P obtain this result with a model independent �t to the hadroni
 stru
turefun
tions. Fitting with the model of Kuhn and Santamaria (ZPHY C48C48C48C48, 445 (1990))gives 0.87 ± 0.27+0.05

−0.06, and with the model of of Isgur et al. (PR D39D39D39D39,1357 (1989))they obtain 1.10 ± 0.31+0.13
−0.14.

ξ(all hadroni
 modes) PARAMETERξ(all hadroni
 modes) PARAMETERξ(all hadroni
 modes) PARAMETERξ(all hadroni
 modes) PARAMETER(V−A) theory predi
ts ξ = 1.VALUE EVTS DOCUMENT ID TECN COMMENT0.995±0.007 OUR FIT0.995±0.007 OUR FIT0.995±0.007 OUR FIT0.995±0.007 OUR FIT0.997±0.007 OUR AVERAGE0.997±0.007 OUR AVERAGE0.997±0.007 OUR AVERAGE0.997±0.007 OUR AVERAGE0.992±0.007±0.008 102k 1 HEISTER 01E ALEP 1991{1995 LEP runs0.997±0.027±0.011 39k 2 ABREU 00L DLPH 1992{1995 runs1.02 ±0.13 ±0.03 17.2k 3 ASNER 00 CLEO Eee
m= 10.6 GeV1.032±0.031 37k 4 ACCIARRI 98R L3 1991{1995 LEP runs0.93 ±0.10 ±0.04 ABE 97O SLD 1993{1995 SLC runs1.29 ±0.26 ±0.11 7.4k 5 ACKERSTAFF 97R OPAL 1992{1994 LEP runs0.995±0.010±0.003 66k 6 ALEXANDER 97F CLEO Eee
m= 10.6 GeV1.03 ±0.06 ±0.04 2.0k 7 COAN 97 CLEO Eee
m= 10.6 GeV1.017±0.039 8 ALBRECHT 95C ARG Eee
m= 9.5{10.6 GeV1.25 ±0.23 +0.15
−0.08 7.5k 9 ALBRECHT 93C ARG Eee
m= 9.4{10.6 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.970±0.053±0.011 14k 10 ACCIARRI 96H L3 Repl. by ACCIARRI 98R1.08 +0.46
−0.41 +0.14

−0.25 2.6k 11 AKERS 95P OPAL Repl. by ACKER-STAFF 97R1.006±0.032±0.019 12 BUSKULIC 95D ALEP Repl. by HEISTER 01E1.022±0.028±0.030 1.7k 13 ALBRECHT 94E ARG Eee
m= 9.4{10.6 GeV0.99 ±0.07 ±0.04 14 BUSKULIC 94D ALEP 1990+1991 LEP run1HEISTER 01E quote 0.992 ± 0.007 ± 0.006 ± 0.005 where the errors are statisti
al,systemati
, and an un
ertainty due to the �nal state model. We 
ombine the systemati
error and model un
ertainty. They use τ → πντ , τ → K ντ , τ → ρντ , and τ →a1 ντ de
ays.2ABREU 00L use τ− → h− ≥ 0π0 ντ de
ays.3ASNER 00 use τ− → π− 2π0 ντ de
ays.4ACCIARRI 98R use τ → πντ , τ → K ντ , and τ → ρντ de
ays.5ACKERSTAFF 97R use τ → a1 ντ de
ays.6ALEXANDER 97F use τ → ρντ de
ays.7COAN 97 use h+ h− energy 
orrelations.8Combined �t to ARGUS tau de
ay parameter measurements in ALBRECHT 95C, AL-BRECHT 93G, and ALBRECHT 94E.9Uses τ → a1 ντ de
ays. Repla
ed by ALBRECHT 95C.10ACCIARRI 96H use τ → πντ , τ → K ντ , and τ → ρντ de
ays.11AKERS 95P use τ → a1 ντ de
ays.12BUSKULIC 95D use τ → πντ , τ → ρντ , and τ → a1 ντ de
ays.13ALBRECHT 94E measure the square of this quantity and use the sign determined byALBRECHT 90I to obtain the quoted result. Uses τ → a1 ντ de
ays. Repla
ed byALBRECHT 95C.14BUSKULIC 94D use τ → πντ and τ → ρντ de
ays. Superseded by BUSKULIC 95D.
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ayed to a fourth generation
νL (or L0) where νL was stable, or that L± de
ays to a light νℓ via mixing.See the \Quark and Lepton Compositeness, Sear
hes for" Listings for limits on radia-tively de
aying ex
ited leptons, i.e. ℓ∗ → ℓγ. See the \WIMPs and other Parti
leSear
hes" se
tion for heavy 
harged parti
le sear
h limits in whi
h the 
harged parti
le
ould be a lepton.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>100.8>100.8>100.8>100.8 95 ACHARD 01B L3 De
ay to νW
>101.9 95 ACHARD 01B L3 mL − mL0 > 15 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
> 81.5 95 ACKERSTAFF 98C OPAL Assumed mL± − mL0 > 8.4GeV
> 80.2 95 ACKERSTAFF 98C OPAL mL0 >mL± and L± → νW
< 48 or > 61 95 1 ACCIARRI 96G L3
> 63.9 95 ALEXANDER 96P OPAL De
ay to massless ν's
> 63.5 95 BUSKULIC 96S ALEP mL − mL0 > 7 GeV
> 65 95 BUSKULIC 96S ALEP De
ay to massless ν'snone 10{225 2 AHMED 94 CNTR H1 Collab. at HERAnone 12.6{29.6 95 KIM 91B AMY Massless ν assumed
> 44.3 95 AKRAWY 90G OPALnone 0.5{10 95 3 RILES 90 MRK2 For (mL0 -mL0)> 0.25{0.4GeV
> 8 4 STOKER 89 MRK2 For (mL+ − mL0)= 0.4 GeV
> 12 4 STOKER 89 MRK2 For mL0=0.9 GeVnone 18.4{27.6 95 5 ABE 88 VNS
> 25.5 95 6 ADACHI 88B TOPZnone 1.5{22.0 95 BEHREND 88C CELL
> 41 90 7 ALBAJAR 87B UA1
> 22.5 95 8 ADEVA 85 MRKJ
> 18.0 95 9 BARTEL 83 JADEnone 4{14.5 95 10 BERGER 81B PLUT
> 15.5 95 11 BRANDELIK 81 TASS
> 13. 12 AZIMOV 80
> 16. 95 13 BARBER 80B CNTR
> 0.490 14 ROTHE 69 RVUE1ACCIARRI 96G assumes LEP result that the asso
iated neutral heavy lepton mass > 40GeV.2The AHMED 94 limits are from a sear
h for neutral and 
harged sequential heavy leptonsat HERA via the de
ay 
hannels L− → e γ, L− → νW−, L− → e Z ; and L0 → ν γ,L0 → e−W+, L− → νZ , where the W de
ays to ℓνℓ, or to jets, and Z de
ays to

ℓ+ ℓ− or jets.3RILES 90 limits were the result of a spe
ial analysis of the data in the 
ase where the massdi�eren
e mL− − mL0 was allowed to be quite small, where L0 denotes the neutrinointo whi
h the sequential 
harged lepton de
ays. With a slightly redu
ed mL± range,the mass di�eren
e extends to about 4 GeV.4 STOKER 89 (Mark II at PEP) gives bounds on 
harged heavy lepton (L+) mass forthe generalized 
ase in whi
h the 
orresponding neutral heavy lepton (L0) in the SU(2)doublet is not of negligible mass.5ABE 88 sear
h for L+ and L− → hadrons looking for a
oplanar jets. The bound isvalid for mν < 10 GeV.6ADACHI 88B sear
h for hadroni
 de
ays giving a
oplanar events with large missing energy.E
mee = 52 GeV.



757757757757See key on page 601 Lepton Parti
le ListingsHeavy Charged Lepton Sear
hes, Neutrino Properties7Assumes asso
iated neutrino is approximately massless.8ADEVA 85 analyze one-isolated-muon data and sensitive to τ <10 nanose
. AssumeB(lepton) = 0.30. E
m = 40{47 GeV.9BARTEL 83 limit is from PETRA e+ e− experiment with average E
m = 34.2 GeV.10BERGER 81B is DESY DORIS and PETRA experiment. Looking for e+ e− → L+ L−.11BRANDELIK 81 is DESY-PETRA experiment. Looking for e+ e− → L+L−.12AZIMOV 80 estimated probabilities forM + N type events in e+ e− → L+ L− dedu
ingsemi-hadroni
 de
ay multipli
ities of L from e+ e− annihilation data at E
m = (2/3)mL.Obtained above limit 
omparing these with e+ e− data (BRANDELIK 80).13BARBER 80B looked for e+ e− → L+ L−, L→ ν+L X with MARK-J at DESY-PETRA.14ROTHE 69 examines previous data on µ pair produ
tion and π and K de
ays.Stable Charged Heavy Lepton (L±) MASS LIMITSStable Charged Heavy Lepton (L±) MASS LIMITSStable Charged Heavy Lepton (L±) MASS LIMITSStable Charged Heavy Lepton (L±) MASS LIMITSVALUE (GeV) CL% DOCUMENT ID TECN
>102.6>102.6>102.6>102.6 95 ACHARD 01B L3
• • • We do not use the following data for averages, �ts, limits, et
. • • •
> 28.2 95 15 ADACHI 90C TOPZnone 18.5{42.8 95 AKRAWY 90O OPAL
> 26.5 95 DECAMP 90F ALEPnone mµ{36.3 95 SODERSTROM90 MRK215ADACHI 90C put lower limits on the mass of stable 
harged parti
les with ele
tri
 
hargeQ satisfying 2/3 < Q/e < 4/3 and with spin 0 or 1/2. We list here the spe
ial 
ase fora stable 
harged heavy lepton.Charged Long-Lived Heavy Lepton MASS LIMITSCharged Long-Lived Heavy Lepton MASS LIMITSCharged Long-Lived Heavy Lepton MASS LIMITSCharged Long-Lived Heavy Lepton MASS LIMITSVALUE (GeV) CL% DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>574 95 CHATRCHYAN13AB CMS Leptons singlet model
>102.0 95 ABBIENDI 03L OPAL pair produ
ed in e+ e−
> 0.1 16 ANSORGE 73B HBC − Long-livednone 0.55{4.5 17 BUSHNIN 73 CNTR − Long-livednone 0.2{0.92 18 BARNA 68 CNTR − Long-livednone 0.97{1.03 18 BARNA 68 CNTR − Long-lived16ANSORGE 73B looks for ele
tron pair produ
tion and ele
tron-like Bremsstrahlung.17BUSHNIN 73 is SERPUKHOV 70 GeV p experiment. Masses assume mean life above7 × 10−10 and 3 × 10−8 respe
tively. Cal
ulated from 
ross se
tion (see \ChargedQuasi-Stable Lepton Produ
tion Di�erential Cross Se
tion" below) and 30 GeV muonpair produ
tion data.18BARNA 68 is SLAC photoprodu
tion experiment.Doubly-Charged Heavy Lepton MASS LIMITSDoubly-Charged Heavy Lepton MASS LIMITSDoubly-Charged Heavy Lepton MASS LIMITSDoubly-Charged Heavy Lepton MASS LIMITSVALUE (GeV) CL% DOCUMENT ID TECN CHG
• • • We do not use the following data for averages, �ts, limits, et
. • • •none 1{9 GeV 90 19 CLARK 81 SPEC ++19CLARK 81 is FNAL experiment with 209 GeV muons. Bounds apply to µP whi
h
ouples with full weak strength to muon. See also se
tion on \Doubly-Charged LeptonProdu
tion Cross Se
tion."Doubly-Charged Lepton Produ
tion Cross Se
tionDoubly-Charged Lepton Produ
tion Cross Se
tionDoubly-Charged Lepton Produ
tion Cross Se
tionDoubly-Charged Lepton Produ
tion Cross Se
tion(µN S
attering)(µN S
attering)(µN S
attering)(µN S
attering)VALUE (
m2) EVTS DOCUMENT ID TECN CHG
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6. × 10−38 0 20 CLARK 81 SPEC ++20CLARK 81 is FNAL experiment with 209 GeV muon. Looked for µ+nu
leon → µ0P X,

µ0P → µ+µ− νµ and µ+ n → µ++P X, µ++P → 2µ+ νµ. Above limits are for σ×BRtaken from their mass-dependen
e plot �gure 2.REFERENCES FOR Heavy Charged Lepton Sear
hesREFERENCES FOR Heavy Charged Lepton Sear
hesREFERENCES FOR Heavy Charged Lepton Sear
hesREFERENCES FOR Heavy Charged Lepton Sear
hesCHATRCHYAN 13AB JHEP 1307 122 S. Chatr
hyan et al. (CMS Collab.)ABBIENDI 03L PL B572 8 G. Abbiendi et al. (OPAL Collab.)ACHARD 01B PL B517 75 P. A
hard et al. (L3 Collab.)ACKERSTAFF 98C EPJ C1 45 K. A
kersta� et al. (OPAL Collab.)ACCIARRI 96G PL B377 304 M. A

iarri et al. (L3 Collab.)ALEXANDER 96P PL B385 433 G. Alexander et al. (OPAL Collab.)BUSKULIC 96S PL B384 439 D. Buskuli
 et al. (ALEPH Collab.)AHMED 94 PL B340 205 T. Ahmed et al. (H1 Collab.)KIM 91B IJMP A6 2583 G.N. Kim et al. (AMY Collab.)ADACHI 90C PL B244 352 I. Ada
hi et al. (TOPAZ Collab.)AKRAWY 90G PL B240 250 M.Z. Akrawy et al. (OPAL Collab.)AKRAWY 90O PL B252 290 M.Z. Akrawy et al. (OPAL Collab.)DECAMP 90F PL B236 511 D. De
amp et al. (ALEPH Collab.)RILES 90 PR D42 1 K. Riles et al. (Mark II Collab.)SODERSTROM 90 PRL 64 2980 E. Soderstrom et al. (Mark II Collab.)STOKER 89 PR D39 1811 D.P. Stoker et al. (Mark II Collab.)ABE 88 PRL 61 915 K. Abe et al. (VENUS Collab.)ADACHI 88B PR D37 1339 I. Ada
hi et al. (TOPAZ Collab.)BEHREND 88C ZPHY C41 7 H.J. Behrend et al. (CELLO Collab.)ALBAJAR 87B PL B185 241 C. Albajar et al. (UA1 Collab.)ADEVA 85 PL 152B 439 B. Adeva et al. (Mark-J Collab.)Also PRPL 109 131 B. Adeva et al. (Mark-J Collab.)BARTEL 83 PL 123B 353 W. Bartel et al. (JADE Collab.)BERGER 81B PL 99B 489 C. Berger et al. (PLUTO Collab.)BRANDELIK 81 PL 99B 163 R. Brandelik et al. (TASSO Collab.)CLARK 81 PRL 46 299 A.R. Clark et al. (UCB, LBL, FNAL+)Also PR D25 2762 W.H. Smith et al. (LBL, FNAL, PRIN)AZIMOV 80 JETPL 32 664 Y.I. Azimov, V.A. Khoze (PNPI)Translated from ZETFP 32 677.BARBER 80B PRL 45 1904 D.P. Barber et al. (Mark-J Collab.)BRANDELIK 80 PL 92B 199 R. Brandelik et al. (TASSO Collab.)ANSORGE 73B PR D7 26 R.E. Ansorge et al. (CAVE)BUSHNIN 73 NP B58 476 Y.B. Bushnin et al. (SERP)Also PL 42B 136 S.V. Golovkin et al. (SERP)ROTHE 69 NP B10 241 K.W. Rothe, A.M. Wolsky (PENN)BARNA 68 PR 173 1391 A. Barna et al. (SLAC, STAN)
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s in Collision Conferen
e.Neutrino Properties
INTRODUCTION TO THE NEUTRINO
PROPERTIES LISTINGS

Revised August 2013 by P. Vogel (Caltech) and A. Piepke
(University of Alabama).

The following Listings concern measurements of various

properties of neutrinos. Nearly all of the measurements, all

of which so far are limits, actually concern superpositions of

the mass eigenstates νi, which are in turn related to the weak

eigenstates νℓ, via the neutrino mixing matrix

|νℓ〉 =
∑

i

Uℓi |νi〉 .

In the analogous case of quark mixing via the CKM matrix,

the smallness of the off-diagonal terms (small mixing angles)

permits a “dominant eigenstate” approximation. However, the

results of neutrino oscillation searches show that the mixing

matrix contains two large mixing angles and a third angle that

is not exceedingly small. We cannot, therefore, associate any

particular state |νi〉 with any particular lepton label e, µ or τ .

Nevertheless, note that in the standard labeling the |ν1〉 has

the largest |νe〉 component (∼ 2/3), |ν2〉 contains ∼ 1/3 of the

|νe〉 component and |ν3〉 contains only a small ∼ 2.5% |νe〉
component.

Neutrinos are produced in weak decays with a definite lep-

ton flavor, and are typically detected by the charged current

weak interaction again associated with a specific lepton fla-

vor. Hence, the listings for the neutrino mass that follow are

separated into the three associated charged lepton categories.

Other properties (mean lifetime, magnetic moment, charge and

charge radius) are no longer separated this way. If needed, the

associated lepton flavor is reported in the footnotes.

Measured quantities (mass-squared, magnetic moments,

mean lifetimes, etc.) all depend upon the mixing parameters

|Uℓi|2, but to some extent also on experimental conditions (e.g.,

on energy resolution). Most of these observables, in particular

mass-squared, cannot distinguish between Dirac and Majorana

neutrinos, and are unaffected by CP phases.

Direct neutrino mass measurements are usually based on

the analysis of the kinematics of charged particles (leptons,

pions) emitted together with neutrinos (flavor states) in various

weak decays. The most sensitive neutrino mass measurement

to date, involving electron type antineutrinos, is based on

fitting the shape of the beta spectrum. The quantity 〈m2
β〉 =∑

i |Uei|2m2
νi

is determined or constrained, where the sum is

over all mass eigenvalues mνi
that are too close together to be

resolved experimentally. If the energy resolution is better than

∆m2
ij ≡ m2

νi
− m2

νj
, the corresponding heavier mνi

and mixing
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parameter could be determined by fitting the resulting spectral

anomaly (step or kink).

A limit on 〈m2
β〉 implies an upper limit on the minimum

value m2
min of m2

νi
, independent of the mixing parameters Uei:

m2
min ≤ 〈m2

β〉. However, if and when the value of 〈m2
β〉 is

determined then its combination with the results derived from

neutrino oscillations that give us the values of the neutrino

mass-squared differences ∆m2
ij ≡ m2

i − m2
j and the mixing

parameters |Uei|2, the individual neutrino mass squares m2
νj

=

〈m2
β〉 −

∑
i |Uei|2∆m2

ij can be determined.

So far solar, reactor, atmospheric and accelerator neutrino

oscillation experiments can be consistently described using

three active neutrino flavors, i.e. two mass splittings and three

mixing angles. However, several experiments with radioactive

sources, reactors, and accelerators imply the possible existence

of one or more non-interacting neutrino species that might be

observable since they couple weakly to the flavor neutrinos |νl〉.
Combined three neutrino analyses determine the squared

mass differences and all three mixing angles to within reasonable

accuracy. For given |∆m2
ij | a limit on 〈m2

β〉 from beta decay

defines an upper limit on the maximum value mmax of mνi
:

m2
max ≤ 〈m2

β〉 +
∑

i<j |∆m2
ij |. The analysis of the low energy

beta decay of tritium, combined with the oscillation results, thus

limits all active neutrino masses. Traditionally, experimental

neutrino mass limits obtained from pion decay π+ → µ+ + νµ

or the shape of the spectrum of decay products of the τ lepton

did not distinguish between flavor and mass eigenstates. These

results are reported as limits of the µ and τ based neutrino

mass. After the determination of the |∆m2
ij |’s and the mixing

angles θij , the corresponding neutrino mass limits are no longer

competitive with those derived from low energy beta decays.

The spread of arrival times of the neutrinos from SN1987A,

coupled with the measured neutrino energies, provided a time-

of-flight limit on a quantity similar to 〈mβ〉 ≡
√

〈m2
β〉. This

statement, clothed in various degrees of sophistication, has

been the basis for a very large number of papers. The resulting

limits, however, are no longer comparable with the limits from

tritium beta decay.

Constraint on the sum of the neutrino masses can be

obtained from the analysis of the cosmic microwave background

anisotropy, combined with the galaxy redshift surveys and

other data. These limits are reported in a separate table ( Sum

of Neutrino Masses, mtot). Discussion concerning the model

dependence of this limit is continuing.

ν MASS (ele
tron based)ν MASS (ele
tron based)ν MASS (ele
tron based)ν MASS (ele
tron based)Those limits given below are for the square root of m2(e�)
νe ≡

∑
i
∣∣Uei

∣∣2m2
νi . Limits that 
ome from the kinemati
s of 3Hβ− ν de
ay are thesquare roots of the limits for m2(e�)

νe . Obtained from the measurementsreported in the Listings for \ν Mass Squared," below.VALUE (eV) CL% DOCUMENT ID TECN COMMENT
< 2 OUR EVALUATION< 2 OUR EVALUATION< 2 OUR EVALUATION< 2 OUR EVALUATION
< 2.05< 2.05< 2.05< 2.05 95 1 ASEEV 11 SPEC 3H β de
ay
< 2.3 95 2 KRAUS 05 SPEC 3H β de
ay

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 5.8 95 3 PAGLIAROLI 10 ASTR SN1987A
<21.7 90 4 ARNABOLDI 03A BOLO 187Re β-de
ay
< 5.7 95 5 LOREDO 02 ASTR SN1987A
< 2.5 95 6 LOBASHEV 99 SPEC 3H β de
ay
< 2.8 95 7 WEINHEIMER 99 SPEC 3H β de
ay
< 4.35 95 8 BELESEV 95 SPEC 3H β de
ay
<12.4 95 9 CHING 95 SPEC 3Hβ de
ay
<92 95 10 HIDDEMANN 95 SPEC 3H β de
ay15 +32

−15 HIDDEMANN 95 SPEC 3H β de
ay
<19.6 95 KERNAN 95 ASTR SN 1987A
< 7.0 95 11 STOEFFL 95 SPEC 3H β de
ay
< 7.2 95 12 WEINHEIMER 93 SPEC 3H β de
ay
<11.7 95 13 HOLZSCHUH 92B SPEC 3H β de
ay
<13.1 95 14 KAWAKAMI 91 SPEC 3H β de
ay
< 9.3 95 15 ROBERTSON 91 SPEC 3H β de
ay
<14 95 AVIGNONE 90 ASTR SN 1987A
<16 SPERGEL 88 ASTR SN 1987A17 to 40 16 BORIS 87 SPEC 3Hβ de
ay1ASEEV 11 report the analysis of the entire beta endpoint data, taken with the Troitskintegrating ele
trostati
 spe
trometer between 1997 and 2002 (some of the earlier runswere reje
ted), using a windowless gaseous tritium sour
e. The �tted value of mν , basedon the method of Feldman and Cousins, is obtained from the upper limit of the �t form2

ν . Previous analysis problems were resolved by 
areful monitoring of the tritium gas
olumn density. Supersedes LOBASHEV 99 and BELESEV 95.2KRAUS 05 is a 
ontinuation of the work reported in WEINHEIMER 99. This result rep-resents the �nal analysis of data taken from 1997 to 2001. Various sour
es of systemati
un
ertainties have been identi�ed and quanti�ed. The ba
kground has been redu
ed
ompared to the initial running period. A spe
tral anomaly at the endpoint, reported inLOBASHEV 99, was not observed.3PAGLIAROLI 10 is 
riti
al of the likelihood method used by LOREDO 02.4ARNABOLDI 03A etal . report kinemati
al neutrino mass limit using β-de
ay of 187Re.Bolometri
 AgReO4 mi
ro-
alorimeters are used. Mass bound is substantially weakerthan those derived from tritium β-de
ays but has di�erent systemati
 un
ertainties.5 LOREDO 02 updates LOREDO 89.6 LOBASHEV 99 report a new measurement whi
h 
ontinues the work reported in BELE-SEV 95. This limit depends on phenomenologi
al �t parameters used to derive their best�t to m2
ν , making unambiguous interpretation diÆ
ult. See the footnote under \ν MassSquared."7WEINHEIMER 99 presents two analyses whi
h ex
lude the spe
tral anomaly and resultin an a

eptable m2

ν
. We report the most 
onservative limit, but the other is nearly thesame. See the footnote under \ν Mass Squared."8BELESEV 95 (Mos
ow) use an integral ele
trostati
 spe
trometer with adiabati
 mag-neti
 
ollimation and a gaseous tritium sour
es. A �t to a normal Kurie plot above18300{18350 eV (to avoid a low-energy anomaly) plus a mono
hromati
 line 7{15 eVbelow the endpoint yields m2

ν
= −4.1 ± 10.9 eV2, leading to this Bayesian limit.9CHING 95 quotes results previously given by SUN 93; no experimental details are given.A possible explanation for 
onsistently negative values of m2

ν
is given.10HIDDEMANN 95 (Muni
h) experiment uses atomi
 tritium embedded in a metal-dioxidelatti
e. Bayesian limit 
al
ulated from the weighted mean m2

ν = 221 ± 4244 eV2 fromthe two runs listed below.11 STOEFFL 95 (LLNL) result is the Bayesian limit obtained from the m2
ν errors givenbelow but with m2

ν
set equal to 0. The anomalous endpoint a

umulation leads to avalue of m2

ν whi
h is negative by more than 5 standard deviations.12WEINHEIMER 93 (Mainz) is a measurement of the endpoint of the tritium β spe
trumusing an ele
trostati
 spe
trometer with a magneti
 guiding �eld. The sour
e is mole
ulartritium frozen onto an aluminum substrate.13HOLZSCHUH 92B (Zuri
h) result is obtained from the measurementm2
ν =−24±48±61(1σ errors), in eV2, using the PDG pres
ription for 
onversion to a limit in mν .14KAWAKAMI 91 (Tokyo) experiment uses tritium-labeled ara
hidi
 a
id. This result is theBayesian limit obtained from the m2

ν limit with the errors 
ombined in quadrature. Thiswas also done in ROBERTSON 91, although the authors report a di�erent pro
edure.15ROBERTSON 91 (LANL) experiment uses gaseous mole
ular tritium. The result is instrong disagreement with the earlier 
laims by the ITEP group [LUBIMOV 80, BORIS 87(+ BORIS 88 erratum)℄ that mν lies between 17 and 40 eV. However, the probability ofa positive m2 is only 3% if statisti
al and systemati
 error are 
ombined in quadrature.16 See also 
omment in BORIS 87B and erratum in BORIS 88.
ν MASS SQUARED (ele
tron based)ν MASS SQUARED (ele
tron based)ν MASS SQUARED (ele
tron based)ν MASS SQUARED (ele
tron based)Given troubling systemati
s whi
h result in improbably negative estima-tors of m2(e�)

νe ≡
∑

i
∣∣Uei

∣∣2 m2
νi , in many experiments, we use onlyKRAUS 05 and LOBASHEV 99 for our average.VALUE (eV2) CL% DOCUMENT ID TECN COMMENT

− 0.6 ± 1.9 OUR AVERAGE− 0.6 ± 1.9 OUR AVERAGE− 0.6 ± 1.9 OUR AVERAGE− 0.6 ± 1.9 OUR AVERAGE
− 0.67± 2.53 1 ASEEV 11 SPEC 3H β de
ay
− 0.6 ± 2.2 ± 2.1 2 KRAUS 05 SPEC 3H β de
ay
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• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 1.9 ± 3.4 ± 2.2 3 LOBASHEV 99 SPEC 3H β de
ay
− 3.7 ± 5.3 ± 2.1 4 WEINHEIMER 99 SPEC 3H β de
ay
− 22 ± 4.8 5 BELESEV 95 SPEC 3H β de
ay129 ±6010 6 HIDDEMANN 95 SPEC 3H β de
ay313 ±5994 6 HIDDEMANN 95 SPEC 3H β de
ay
−130 ± 20 ±15 95 7 STOEFFL 95 SPEC 3H β de
ay
− 31 ± 75 ±48 8 SUN 93 SPEC 3Hβ de
ay
− 39 ± 34 ±15 9 WEINHEIMER 93 SPEC 3H β de
ay
− 24 ± 48 ±61 10 HOLZSCHUH 92B SPEC 3H β de
ay
− 65 ± 85 ±65 11 KAWAKAMI 91 SPEC 3H β de
ay
−147 ± 68 ±41 12 ROBERTSON 91 SPEC 3H β de
ay1ASEEV 11 report the analysis of the entire beta endpoint data, taken with the Troitsk in-tegrating ele
trostati
 spe
trometer between 1997 and 2002, using a windowless gaseoustritium sour
e. The analysis does not use the two additional �t parameters (see LOBA-SHEV 99) for a step-like stru
ture near the endpoint. Using only the runs where thetritium gas 
olumn density was 
arefully monitored the need for su
h parameters waseliminated. Supersedes LOBASHEV 99 and BELESEV 95.2KRAUS 05 is a 
ontinuation of the work reported in WEINHEIMER 99. This resultrepresents the �nal analysis of data taken from 1997 to 2001. Problems with signif-i
antly negative squared neutrino masses, observed in some earlier experiments, havebeen resolved in this work.3 LOBASHEV 99 report a new measurement whi
h 
ontinues the work reported in BELE-SEV 95. The data were 
orre
ted for ele
tron trapping e�e
ts in the sour
e, eliminatingthe dependen
e of the �tted neutrino mass on the �t interval. The analysis assuminga pure beta spe
trum yields signi�
antly negative �tted m2

ν ≈ −(20{10) eV2. Thisproblem is attributed to a dis
rete spe
tral anomaly of about 6 × 10−11 intensity witha time-dependent energy of 5{15 eV below the endpoint. The data analysis a

ountsfor this anomaly by introdu
ing two extra phenomenologi
al �t parameters resulting ina best �t of m2
ν
=−1.9 ± 3.4 ± 2.2 eV2 whi
h is used to derive a neutrino mass limit.However, the introdu
tion of phenomenologi
al �t parameters whi
h are 
orrelated withthe derived m2

ν limit makes unambiguous interpretation of this result diÆ
ult.4WEINHEIMER 99 is a 
ontinuation of the work reported in WEINHEIMER 93 . Usinga lower temperature of the frozen tritium sour
e eliminated the dewetting of the T2�lm, whi
h introdu
ed a dependen
e of the �tted neutrino mass on the �t interval inthe earlier work. An indi
ation for a spe
tral anomaly reported in LOBASHEV 99 hasbeen seen, but its time dependen
e does not agree with LOBASHEV 99. Two analyses,whi
h ex
lude the spe
tral anomaly either by 
hoi
e of the analysis interval or by using aparti
ular data set whi
h does not exhibit the anomaly, result in a

eptable m2
ν
�ts andare used to derive the neutrino mass limit published by the authors. We list the most
onservative of the two.5BELESEV 95 (Mos
ow) use an integral ele
trostati
 spe
trometer with adiabati
 mag-neti
 
ollimation and a gaseous tritium sour
es. This value 
omes from a �t to a normalKurie plot above 18300{18350 eV (to avoid a low-energy anomaly), in
luding the e�e
tsof an apparent peak 7{15 eV below the endpoint.6HIDDEMANN 95 (Muni
h) experiment uses atomi
 tritium embedded in a metal-dioxidelatti
e. They quote measurements from two data sets.7 STOEFFL 95 (LLNL) uses a gaseous sour
e of mole
ular tritium. An anomalous pileupof events at the endpoint leads to the negative value for m2

ν
. The authors a
knowledgethat \the negative value for the best �t of m2

ν has no physi
al meaning" and dis
usspossible explanations for this e�e
t.8 SUN 93 uses a tritiated hydro
arbon sour
e. See also CHING 95.9WEINHEIMER 93 (Mainz) is a measurement of the endpoint of the tritium β spe
trumusing an ele
trostati
 spe
trometer with a magneti
 guiding �eld. The sour
e is mole
ulartritium frozen onto an aluminum substrate.10HOLZSCHUH 92B (Zuri
h) sour
e is a monolayer of tritiated hydro
arbon.11KAWAKAMI 91 (Tokyo) experiment uses tritium-labeled ara
hidi
 a
id.12ROBERTSON 91 (LANL) experiment uses gaseous mole
ular tritium. The result is instrong disagreement with the earlier 
laims by the ITEP group [LUBIMOV 80, BORIS 87(+ BORIS 88 erratum)℄ that mν lies between 17 and 40 eV. However, the probability ofa positive m2
ν is only 3% if statisti
al and systemati
 error are 
ombined in quadrature.

ν MASS (ele
tron based)ν MASS (ele
tron based)ν MASS (ele
tron based)ν MASS (ele
tron based)These are measurement of mν (in 
ontrast to mν , given above). Themasses 
an be di�erent for a Dira
 neutrino in the absen
e of CPT in-varian
e. The possible distin
tion between ν and ν properties is usuallyignored elsewhere in these Listings.VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<460 68 YASUMI 94 CNTR 163Ho de
ay
<225 95 SPRINGER 87 CNTR 163Ho de
ay

ν MASS (muon based)ν MASS (muon based)ν MASS (muon based)ν MASS (muon based)Limits given below are for the square root of m2(e�)
νµ

≡
∑

i
∣∣Uµi

∣∣2 m2
νi .In some of the COSM papers listed below, the authors did not distinguishbetween weak and mass eigenstates.OUR EVALUATION is based on OUR AVERAGE for the π± mass and theASSAMAGAN 96 value for the muon momentum for the π+ de
ay at rest.The limit is 
al
ulated using the uni�ed 
lassi
al analysis of FELDMAN 98for a Gaussian distribution near a physi
al boundary. WARNING: sin
e

m2(e�)
νµ

is 
al
ulated from the di�eren
es of large numbers, it and the
orresponding limits are extraordinarily sensitive to small 
hanges in thepion mass, the de
ay muon momentum, and their errors. For example,the limits obtained using JECKELMANN 94, LENZ 98, and the weightedaverages are 0.15, 0.29, and 0.19 MeV, respe
tively.VALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<0.19 (CL = 90%) OUR EVALUATION<0.19 (CL = 90%) OUR EVALUATION<0.19 (CL = 90%) OUR EVALUATION<0.19 (CL = 90%) OUR EVALUATION
<0.17 90 1 ASSAMAGAN 96 SPEC m2

ν
= −0.016 ± 0.023

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.15 2 DOLGOV 95 COSM Nu
leosynthesis
<0.48 3 ENQVIST 93 COSM Nu
leosynthesis
<0.3 4 FULLER 91 COSM Nu
leosynthesis
<0.42 4 LAM 91 COSM Nu
leosynthesis
<0.50 90 5 ANDERHUB 82 SPEC m2

ν
= −0.14 ± 0.20

<0.65 90 CLARK 74 ASPK Kµ3 de
ay1ASSAMAGAN 96 measurement of pµ from π+ → µ+ ν at rest 
ombined with JECK-ELMANN 94 Solution B pion mass yields m2
ν = −0.016 ± 0.023 with 
orrespondingBayesian limit listed above. If Solution A is used, m2

ν
= −0.143 ± 0.024 MeV2. Re-pla
es ASSAMAGAN 94.2DOLGOV 95 removes earlier assumptions (DOLGOV 93) about thermal equilibrium belowTQCD for wrong-heli
ity Dira
 neutrinos (ENQVIST 93, FULLER 91) to set more strin-gent limits.3 ENQVIST 93 bases limit on the fa
t that thermalized wrong-heli
ity Dira
 neutrinoswould speed up expansion of early universe, thus redu
ing the primordial abundan
e.FULLER 91 exploits the same me
hanism but in the older 
al
ulation obtains a largerprodu
tion rate for these states, and hen
e a lower limit. Neutrino lifetime assumed toex
eed nu
leosynthesis time, ∼ 1 s.4Assumes neutrino lifetime >1 s. For Dira
 neutrinos only. See also ENQVIST 93.5ANDERHUB 82 kinemati
s is insensitive to the pion mass.

ν MASS (tau based)ν MASS (tau based)ν MASS (tau based)ν MASS (tau based)The limits given below are the square roots of limits for m2(e�)
ντ

≡
∑

i
∣∣Uτi

∣∣2 m2
νi .In some of the ASTR and COSM papers listed below, the authors did notdistinguish between weak and mass eigenstates.VALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT

< 18.2< 18.2< 18.2< 18.2 95 1 BARATE 98F ALEP 1991{1995 LEP runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 28 95 2 ATHANAS 00 CLEO Eee
m= 10.6 GeV
< 27.6 95 3 ACKERSTAFF 98T OPAL 1990{1995 LEP runs
< 30 95 473 4 AMMAR 98 CLEO Eee
m = 10.6 GeV
< 60 95 5 ANASTASSOV 97 CLEO Eee
m= 10.6 GeV
< 0.37 or >22 6 FIELDS 97 COSM Nu
leosynthesis
< 68 95 7 SWAIN 97 THEO mτ , ττ , τ partialwidths
< 29.9 95 8 ALEXANDER 96M OPAL 1990{1994 LEP runs
<149 9 BOTTINO 96 THEO π, µ, τ leptoni
 de
ays
<1 or >25 10 HANNESTAD 96C COSM Nu
leosynthesis
< 71 95 11 SOBIE 96 THEO mτ , ττ , B(τ− →e− νe ντ )
< 24 95 25 12 BUSKULIC 95H ALEP 1991{1993 LEP runs
< 0.19 13 DOLGOV 95 COSM Nu
leosynthesis
< 3 14 SIGL 95 ASTR SN 1987A
< 0.4 or > 30 15 DODELSON 94 COSM Nu
leosynthesis
< 0.1 or > 50 16 KAWASAKI 94 COSM Nu
leosynthesis155{225 17 PERES 94 THEO π,K ,µ,τ weak de
ays
< 32.6 95 113 18 CINABRO 93 CLEO Eee
m ≈ 10.6 GeV
< 0.3 or > 35 19 DOLGOV 93 COSM Nu
leosynthesis
< 0.74 20 ENQVIST 93 COSM Nu
leosynthesis
< 31 95 19 21 ALBRECHT 92M ARG Eee
m= 9.4{10.6 GeV
< 0.3 22 FULLER 91 COSM Nu
leosynthesis
< 0.5 or > 25 23 KOLB 91 COSM Nu
leosynthesis
< 0.42 22 LAM 91 COSM Nu
leosynthesis1BARATE 98F result based on kinemati
s of 2939 τ− → 2π−π+ ντ and 52 τ− →3π− 2π+(π0)ντ de
ays. If possible 2.5% ex
ited a1 de
ay is in
luded in 3-prong sampleanalysis, limit in
reases to 19.2 MeV.2ATHANAS 00 bound 
omes from analysis of τ− → π−π+π−π0 ντ de
ays.3ACKERSTAFF 98T use τ → 5π± ντ de
ays to obtain a limit of 43.2 MeV (95%CL).They 
ombine this with ALEXANDER 96M value using τ → 3h± ντ de
ays to obtainquoted limit.4AMMAR 98 limit 
omes from analysis of τ− → 3π− 2π+ ντ and τ− → 2π−π+2π0 ντde
ay modes.5ANASTASSOV 97 derive limit by 
omparing their mτ measurement (whi
h depends onmντ

) to BAI 96 mτ threshold measurement.
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le ListingsNeutrino Properties6FIELDS 97 limit for a Dira
 neutrino. For a Majorana neutrino the mass region < 0.93or >31 MeV is ex
luded. These bounds assume Nν <4 from nu
leosynthesis; a widerex
luded region o

urs with a smaller Nν upper limit.7 SWAIN 97 derive their limit from the Standard Model relationships between the tau mass,lifetime, bran
hing fra
tions for τ− → e− νe ντ , τ− → µ− νµντ , τ− → π− ντ , and
τ− → K− ντ , and the muon mass and lifetime by assuming lepton universality and usingworld average values. Limit is redu
ed to 48 MeV when the CLEO τ mass measurement(BALEST 93) is in
luded; see CLEO's more re
ent mντ

limit (ANASTASSOV 97).Consideration of mixing with a fourth generation heavy neutrino yields sin2θL < 0.016(95%CL).8ALEXANDER 96M bound 
omes from analyses of τ− → 3π− 2π+ ντ and τ− →h− h− h+ ντ de
ays.9BOTTINO 96 assumes three generations of neutrinos with mixing, �nds 
onsisten
y withmassless neutrinos with no mixing based on 1995 data for masses, lifetimes, and leptoni
partial widths.10HANNESTAD 96C limit is on the mass of a Majorana neutrino. This bound assumesNν < 4 from nu
leosynthesis. A wider ex
luded region o

urs with a smaller Nν up-per limit. This paper is the 
orre
ted version of HANNESTAD 96; see the erratum:HANNESTAD 96B.11 SOBIE 96 derive their limit from the Standard Model relationship between the tau mass,lifetime, and leptoni
 bran
hing fra
tion, and the muon mass and lifetime, by assuminglepton universality and using world average values.12BUSKULIC 95H bound 
omes from a two-dimensional �t of the visible energy and in-variant mass distribution of τ → 5π (π0 )ντ de
ays. Repla
ed by BARATE 98F.13DOLGOV 95 removes earlier assumptions (DOLGOV 93) about thermal equilibrium belowTQCD for wrong-heli
ity Dira
 neutrinos (ENQVIST 93, FULLER 91) to set more strin-gent limits. DOLGOV 96 argues that a possible window near 20 MeV is ex
luded.14 SIGL 95 ex
lude massive Dira
 or Majorana neutrinos with lifetimes between 10−3 and108 se
onds if the de
ay produ
ts are predominantly γ or e+ e−.15DODELSON 94 
al
ulate 
onstraints on ντ mass and lifetime from nu
leosynthesis for4 generi
 de
ay modes. Limits depend strongly on de
ay mode. Quoted limit is valid forall de
ay modes of Majorana neutrinos with lifetime greater than about 300 s. For Dira
neutrinos limits 
hange to < 0.3 or > 33.16KAWASAKI 94 ex
luded region is for Majorana neutrino with lifetime >1000 s. Otherlimits are given as a fun
tion of ντ lifetime for de
ays of the type ντ → νµφ where φis a Nambu-Goldstone boson.17PERES 94 used PDG 92 values for parameters to obtain a value 
onsistent with mixing.Reexamination by BOTTINO 96 whi
h in
luded radiative 
orre
tions and 1995 PDGparameters resulted in two allowed regions, m3 < 70 MeV and 140 MeV m3 < 149MeV.18CINABRO 93 bound 
omes from analysis of τ− → 3π− 2π+ ντ and τ− →2π−π+2π0 ντ de
ay modes.19DOLGOV 93 assumes neutrino lifetime >100 s. For Majorana neutrinos, the low masslimit is 0.5 MeV. KAWANO 92 points out that these bounds 
an be over
ome for a Dira
neutrino if it possesses a magneti
 moment. See also DOLGOV 96.20ENQVIST 93 bases limit on the fa
t that thermalized wrong-heli
ity Dira
 neutrinoswould speed up expansion of early universe, thus redu
ing the primordial abundan
e.FULLER 91 exploits the same me
hanism but in the older 
al
ulation obtains a largerprodu
tion rate for these states, and hen
e a lower limit. Neutrino lifetime assumed toex
eed nu
leosynthesis time, ∼ 1 s.21ALBRECHT 92M reports measurement of a slightly lower τ mass, whi
h has the e�e
tof redu
ing the ντ mass reported in ALBRECHT 88B. Bound is from analysis of τ− →3π− 2π+ ντ mode.22Assumes neutrino lifetime >1 s. For Dira
 neutrinos. See also ENQVIST 93.23KOLB 91 ex
lusion region is for Dira
 neutrino with lifetime >1 s; other limits are given.
SUM OF NEUTRINO MASSES

Revised January 2016 by K.A. Olive (University of Minnesota).

The limits on low mass (mν
<∼ 1 MeV) neutrinos apply to

mtot given by

mtot =
∑

ν

(gν/2)mν ,

where gν is the number of spin degrees of freedom for ν

plus ν: gν = 4 for neutrinos with Dirac masses; gν = 2 for

Majorana neutrinos. Stable neutrinos in this mass range make

a contribution to the total energy density of the Universe which

is given by

ρν = mtotnν = mtot(3/11)nγ ,

where the factor 3/11 is the ratio of (light) neutrinos to photons.

Writing Ων = ρν/ρc, where ρc is the critical energy density of

the Universe, and using nγ = 412 cm−3, we have

Ωνh
2 = mtot/(94 eV) .

While an upper limit to the matter density of Ωmh2 < 0.12

would constrain mtot < 11 eV, much stronger constraints are

obtained from a combination of observations of the CMB, the

amplitude of density fluctuations on smaller scales from the

clustering of galaxies and the Lyman-α forest, baryon acoustic

oscillations, and new Hubble parameter data. These combine

to give an upper limit of around 0.2 eV, and may, in the near

future, be able to provide a lower bound on the sum of the

neutrino masses.SUM OF THE NEUTRINO MASSES, mtotSUM OF THE NEUTRINO MASSES, mtotSUM OF THE NEUTRINO MASSES, mtotSUM OF THE NEUTRINO MASSES, mtot(De�ned in the above note), of e�e
tively stable neutrinos (i.e., thosewith mean lives greater than or equal to the age of the universe). Thesepapers assumed Dira
 neutrinos. When ne
essary, we have generalizedthe results reported so they apply to mtot. For other limits, see SZA-LAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84,and COWSIK 85.VALUE (eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 0.15 95 1 PALANQUE-... 15 COSM SDSS/BOSS
< 0.12 95 2 PALANQUE-... 15A COSM SDSS/BOSS
< 0.23 95 3 ADE 14 COSM Plan
k0.320±0.081 4 BATTYE 14 COSM0.35 ±0.10 5 BEUTLER 14 COSM BOSS0.22 +0.09

−0.10 6 COSTANZI 14 COSM
< 0.22 95 7 GIUSARMA 14 COSM0.32 ±0.11 8 HOU 14 COSM
< 0.26 95 9 LEISTEDT 14 COSM
< 0.18 95 10 RIEMER-SOR...14 COSM
< 0.24 68 11 MORESCO 12 COSM
< 0.29 95 12 XIA 12 COSM
< 0.81 95 13 SAITO 11 COSM SDSS
< 0.44 95 14 HANNESTAD 10 COSM
< 0.6 95 15 SEKIGUCHI 10 COSM
< 0.28 95 16 THOMAS 10 COSM
< 1.1 17 ICHIKI 09 COSM
< 1.3 95 18 KOMATSU 09 COSM WMAP
< 1.2 19 TERENO 09 COSM
< 0.33 20 VIKHLININ 09 COSM
< 0.28 21 BERNARDIS 08 COSM
< 0.17{2.3 22 FOGLI 07 COSM
< 0.42 95 23 KRISTIANSEN 07 COSM
< 0.63{2.2 24 ZUNCKEL 07 COSM
< 0.24 95 25 CIRELLI 06 COSM
< 0.62 95 26 HANNESTAD 06 COSM
< 1.2 27 SANCHEZ 06 COSM
< 0.17 95 25 SELJAK 06 COSM
< 2.0 95 28 ICHIKAWA 05 COSM
< 0.75 29 BARGER 04 COSM
< 1.0 30 CROTTY 04 COSM
< 0.7 31 SPERGEL 03 COSM WMAP
< 0.9 32 LEWIS 02 COSM
< 4.2 33 WANG 02 COSM CMB
< 2.7 34 FUKUGITA 00 COSM
< 5.5 35 CROFT 99 ASTR Ly α power spe

<180 SZALAY 74 COSM
<132 COWSIK 72 COSM
<280 MARX 72 COSM
<400 GERSHTEIN 66 COSM1Constrains the total mass of neutrinos using the Lyman α forest power spe
trum ob-tained by BOSS. The analysis in
ludes CMB data from Plan
k, WMAP, ACT, andSPT. Limit improves to 0.14 when BAO data are in
luded. Superseded by PALANQUE-DELABROUILLE 15A.2 Constrains the total mass of neutrinos using the Lyman-α forest power spe
trum obtainedby BOSS. The analysis in
ludes CMB data from Plank, ACT, and SPT.Limit is un
hangedwhen BAO data are in
luded. Supersedes PALANQUE-DELABROUILLE 15.3Constrains the total mass of neutrinos from Plan
k CMB data along with WMAP polar-ization, high L, and BAO data.4 Finite neutrino mass �t to resolve dis
repan
y between CMB and lensing measurements.5 Fit to the total mass of neutrinos from BOSS data along with WMAP CMB data anddata from other BAO 
onstraints and weak lensing.6 Fit to the total mass of neutrinos from Plan
k CMB data along with BAO.7Constrains the total mass of neutrinos from Plan
k CMB data 
ombined with baryona
ousti
 os
illation data from BOSS and HST data on the Hubble parameter.8 Fit based on the SPT-SZ survey 
ombined with CMB, BAO, and H0 data.9Constraints the total mass of neutrinos (marginalizing over the e�e
tive number of neu-trino spe
ies) from CMB, CMB lensing, BAO, and galaxy 
lustering data.



761761761761See key on page 601 LeptonParti
le ListingsNeutrino Properties10Constrains the total mass of neutrinos from Plan
k CMB data 
ombined with baryona
ousti
 os
illation data from BOSS, 6dFGS, SDSS, WiggleZ data on the galaxy powerspe
trum, and HST data on the Hubble parameter. The limit is in
reased to 0.25 eV ifa lower bound to the sum of neutrino masses of 0.04 eV is assumed.11Constrains the total mass of neutrinos from observational Hubble parameter data withseven-year WMAP data and the most re
ent estimate of H0.12Constrains the total mass of neutrinos from the CFHTLS 
ombined with seven-yearWMAP data and a prior on the Hubble parameter. Limit is relaxed to 0.41 eV whensmall s
ales a�e
ted by non-linearities are removed.13Constrains the total mass of neutrinos from the Sloan Digital Sky Survey and the �ve-yearWMAP data.14Constrains the total mass of neutrinos from the 7-year WMAP data in
luding SDSSand HST data. Limit relaxes to 1.19 eV when CMB data is used alone. SupersedesHANNESTAD 06.15Constrains the total mass of neutrinos from a 
ombination of CMB data, a re
ent mea-surement of H0 (SHOES), and baryon a
ousti
 os
illation data from SDSS.16Constrains the total mass of neutrinos from SDSS MegaZ LRG DR7 galaxy 
lusteringdata 
ombined with CMB, HST, supernovae and baryon a
ousti
 os
illation data. Limitrelaxes to 0.47 eV when the equation of state parameter, w 6= 1.17Constrains the total mass of neutrinos from weak lensing measurements when 
ombinedwith CMB. Limit improves to 0.54 eV when supernovae and baryon a
ousti
 os
illationobservations are in
luded. Assumes �CDM model.18Constrains the total mass of neutrinos from �ve-year WMAP data. Limit improves to 0.67eV when supernovae and baryon a
ousti
 os
illation observations are in
luded. Limitsquoted assume the �CDM model. Supersedes SPERGEL 07.19Constrains the total mass of neutrinos from weak lensing measurements when 
ombinedwith CMB. Limit improves to 0.03 < �mν < 0.54 eV when supernovae and baryona
ousti
 os
illation observations are in
luded. The slight preferen
e for massive neutrinosat the two-sigma level disappears when systemati
 errors are taken into a

ount. Assumes�CDM model.20Constrains the total mass of neutrinos from re
ent Chandra X-ray observations of galaxy
lusters when 
ombined with CMB, supernovae, and baryon a
ousti
 os
illation measure-ments. Assumes 
at universe and 
onstant dark-energy equation of state, w.21Constraints the total mass of neutrinos from re
ent CMB and SOSS LRG power spe
trumdata along with bias mass relations from SDSS, DEEP2, and Lyman-Break Galaxies. Itassumes �CDM model. Limit degrades to 0.59 eV in a more general wCDM model.22Constrains the total mass of neutrinos from neutrino os
illation experiments and 
osmo-logi
al data. The most 
onservative limit uses only WMAP three-year data, while themost stringent limit in
ludes CMB, large-s
ale stru
ture, supernova, and Lyman-alphadata.23Constrains the total mass of neutrinos from re
ent CMB, large s
ale stru
ture, SN1a, andbaryon a
ousti
 os
illation data. The limit relaxes to 1.75 when WMAP data alone is usedwith no prior. Paper shows results with several 
ombinations of data sets. SupersedesKRISTIANSEN 06.24Constrains the total mass of neutrinos from the CMB and the large s
ale stru
ture data.The most 
onservative limit is obtained when generi
 initial 
onditions are allowed.25Constrains the total mass of neutrinos from re
ent CMB, large s
ale stru
ture, Lyman-alpha forest, and SN1a data.26Constrains the total mass of neutrinos from re
ent CMB and large s
ale stru
ture data.See also GOOBAR 06. Superseded by HANNESTAD 10.27Constrains the total mass of neutrinos from the CMB and the �nal 2dF Galaxy RedshiftSurvey.28Constrains the total mass of neutrinos from the CMB experiments alone, assuming �CDMUniverse. FUKUGITA 06 show that this result is un
hanged by the 3-year WMAP data.29Constrains the total mass of neutrinos from the power spe
trum of 
u
tuations derivedfrom the Sloan Digital Sky Survey and the 2dF galaxy redshift survey, WMAP and 27other CMB experiments and measurements by the HST Key proje
t.30Constrains the total mass of neutrinos from the power spe
trum of 
u
tuations derivedfrom the Sloan Digital Sky Survey, the 2dF galaxy redshift survey, WMAP and ACBAR.The limit is strengthened to 0.6 eV when measurements by the HST Key proje
t andsupernovae data are in
luded.31Constrains the fra
tional 
ontribution of neutrinos to the total matter density in theUniverse from WMAP data 
ombined with other CMB measurements, the 2dfGRS data,and Lyman α data. The limit does not noti
eably 
hange if the Lyman α data are notused.32 LEWIS 02 
onstrains the total mass of neutrinos from the power spe
trum of 
u
tuationsderived from the CMB, HST Key proje
t, 2dF galaxy redshift survey, supernovae type Ia,and BBN.33WANG 02 
onstrains the total mass of neutrinos from the power spe
trum of 
u
tuationsderived from the CMB and other 
osmologi
al data sets su
h as galaxy 
lustering andthe Lyman α forest.34 FUKUGITA 00 is a limit on neutrino masses from stru
ture formation. The 
onstraint isbased on the 
lustering s
ale σ8 and the COBE normalization and leads to a 
onservativelimit of 0.9 eV assuming 3 nearly degenerate neutrinos. The quoted limit is on the sumof the light neutrino masses.35CROFT 99 result based on the power spe
trum of the Ly α forest. If 
matter < 0.5,the limit is improved to mν < 2.4 (
matter/0.17{1) eV.Limits on MASSES of Light Stable Right-Handed νLimits on MASSES of Light Stable Right-Handed νLimits on MASSES of Light Stable Right-Handed νLimits on MASSES of Light Stable Right-Handed ν(with ne
essarily suppressed intera
tion strengths)(with ne
essarily suppressed intera
tion strengths)(with ne
essarily suppressed intera
tion strengths)(with ne
essarily suppressed intera
tion strengths)VALUE (eV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<100{200 1 OLIVE 82 COSM Dira
 ν

<200{2000 1 OLIVE 82 COSM Majorana ν1Depending on intera
tion strength GR where GR <GF .

Limits on MASSES of Heavy Stable Right-Handed νLimits on MASSES of Heavy Stable Right-Handed νLimits on MASSES of Heavy Stable Right-Handed νLimits on MASSES of Heavy Stable Right-Handed ν(with ne
essarily suppressed intera
tion strengths)(with ne
essarily suppressed intera
tion strengths)(with ne
essarily suppressed intera
tion strengths)(with ne
essarily suppressed intera
tion strengths)VALUE (GeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 10 1 OLIVE 82 COSM GR/GF <0.1
>100 1 OLIVE 82 COSM GR/GF <0.011These results apply to heavy Majorana neutrinos and are summarized by the equation:mν >1.2 GeV (GF /GR ). The bound saturates, and if GR is too small no mass rangeis allowed.

ν CHARGEν CHARGEν CHARGEν CHARGEVALUE (units: ele
tron 
harge) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2.1× 10−12 90 1 CHEN 14A TEXO Nu
lear rea
tor
<1.5× 10−12 90 2 STUDENIKIN 14 Nu
lear rea
tor
<3.7× 10−12 90 3 GNINENKO 07 RVUE Nu
lear rea
tor
<2 × 10−14 4 RAFFELT 99 ASTR Red giant luminosity
<6 × 10−14 5 RAFFELT 99 ASTR Solar 
ooling
<4 × 10−4 6 BABU 94 RVUE BEBC beam dump
<3 × 10−4 7 DAVIDSON 91 RVUE SLAC e− beam dump
<2 × 10−15 8 BARBIELLINI 87 ASTR SN 1987A
<1 × 10−13 9 BERNSTEIN 63 ASTR Solar energy losses1CHEN 14A use the Multi-Con�guration RRPA method to analyze rea
tor νe s
atteringon Ge atoms with 300 eV re
oil energy threshold to obtain this limit.2 STUDENIKIN 14 uses the limit on µν from BEDA 13 and the 2.8 keV threshold of theele
tron re
oil energy to obtain this limit.3GNINENKO 07 use limit on νe magneti
 moment from LI 03B to derive this result. Thelimit is 
onsiderably weaker than the limits on the 
harge of νe and νe from variousastrophysi
s 
onsiderations.4This RAFFELT 99 limit applies to all neutrino 
avors whi
h are light enough (<5 keV)to be emitted from globular-
luster red giants.5This RAFFELT 99 limit is derived from the helioseismologi
al limit on a new energy-loss
hannel of the Sun, and applies to all neutrino 
avors whi
h are light enough (<1 keV)to be emitted from the sun.6BABU 94 use COOPER-SARKAR 92 limit on ν magneti
 moment to derive quotedresult. It applies to ντ .7DAVIDSON 91 use data from early SLAC ele
tron beam dump experiment to derive
harge limit as a fun
tion of neutrino mass. It applies to ντ .8 Exa
t BARBIELLINI 87 limit depends on assumptions about the intergala
ti
 or gala
ti
magneti
 �elds and about the dire
t distan
e and time through the �eld. It applies to νe .9The limit applies to all 
avors.

ν (MEAN LIFE) / MASSν (MEAN LIFE) / MASSν (MEAN LIFE) / MASSν (MEAN LIFE) / MASSMeasures [∑ ∣∣Uℓ j ∣∣2 �j mj]−1, where the sum is over mass eigenstateswhi
h 
annot be resolved experimentally. Some of the limits 
onstrain theradiative de
ay and are based on the limit of the 
orresponding photon
ux. Other apply to the de
ay of a heavier neutrino into the lighter oneand a Majoron or other invisible parti
le. Many of these limits apply toany ν within the indi
ated mass range.Limits on the radiative de
ay are either dire
tly based on the limits of the
orresponding photon 
ux, or are derived from the limits on the neutrinomagneti
 moments. In the later 
ase the transition rate for νi → νj + γis 
onstrained by �ij = 1
τ ij

= (m2
i
−m2

j
)3m3

i

µ2ij where µij is the neutrinotransition moment in the mass eigenstates basis. Typi
ally, the limits onlifetime based on the magneti
 moments are many orders of magnitudemore restri
tive than limits based on the nonobservation of photons.VALUE (s/eV) CL% DOCUMENT ID TECN COMMENT
> 15.4> 15.4> 15.4> 15.4 90 1 KRAKAUER 91 CNTR νµ, νµ at LAMPF
> 7 × 109> 7 × 109> 7 × 109> 7 × 109 2 RAFFELT 85 ASTR
> 300> 300> 300> 300 90 3 REINES 74 CNTR νe
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 105 − 1010 95 4 CECCHINI 11 ASTR ν2→ ν1 radiative de
ay90 5 MIRIZZI 07 CMB radiative de
ay90 6 MIRIZZI 07 CIB radiative de
ay7 WONG 07 CNTR Rea
tor νe
> 0.11 90 8 XIN 05 CNTR Rea
tor νe9 XIN 05 CNTR Rea
tor νe
> 0.004 90 10 AHARMIM 04 SNO quasidegen. ν masses
> 4.4 × 10−5 90 10 AHARMIM 04 SNO hierar
hi
al ν masses
& 100 95 11 CECCHINI 04 ASTR Radiative de
ay for νmass > 0.01 eV
> 0.067 90 12 EGUCHI 04 KLND quasidegen. ν masses
> 1.1 × 10−3 90 12 EGUCHI 04 KLND hierar
hi
al ν masses
> 8.7 × 10−5 99 13 BANDYOPA... 03 FIT nonradiative de
ay
≥ 4200 90 14 DERBIN 02B CNTR Solar pp and Be ν

> 2.8 × 10−5 99 15 JOSHIPURA 02B FIT nonradiative de
ay



762762762762LeptonParti
le ListingsNeutrino Properties16 DOLGOV 99 COSM17 BILLER 98 ASTR mν= 0.05{1 eV
> 2.8 × 1015 18,19 BLUDMAN 92 ASTR mν < 50 eVnone 10−12 − 5× 104 20 DODELSON 92 ASTR mν=1{300 keV
< 10−12 or > 5× 104 20 DODELSON 92 ASTR mν=1{300 keV21 GRANEK 91 COSM De
aying L0
> 6.4 90 22 KRAKAUER 91 CNTR νe at LAMPF
> 1.1 × 1015 23 WALKER 90 ASTR mν= 0.03 { ∼ 2 MeV
> 6.3 × 1015 19,24 CHUPP 89 ASTR mν < 20 eV
> 1.7 × 1015 19 KOLB 89 ASTR mν < 20 eV25 RAFFELT 89 RVUE ν (Dira
, Majorana)26 RAFFELT 89B ASTR
> 8.3 × 1014 27 VONFEILIT... 88 ASTR
> 22 68 28 OBERAUER 87 νR (Dira
)
> 38 68 28 OBERAUER 87 ν (Majorana)
> 59 68 28 OBERAUER 87 νL (Dira
)
> 30 68 KETOV 86 CNTR ν (Dira
)
> 20 68 KETOV 86 CNTR ν (Majorana)29 BINETRUY 84 COSM mν ∼ 1 MeV
> 0.11 90 30 FRANK 81 CNTR ν ν LAMPF
> 2 × 1021 31 STECKER 80 ASTR mν= 10{100 eV
> 1.0 × 10−2 90 30 BLIETSCHAU 78 HLBC νµ, CERN GGM
> 1.7 × 10−2 90 30 BLIETSCHAU 78 HLBC νµ, CERN GGM
< 3 × 10−11 32 FALK 78 ASTR mν <10 MeV
> 2.2 × 10−3 90 30 BARNES 77 DBC ν, ANL 12-ft33 COWSIK 77 ASTR
> 3. × 10−3 90 30 BELLOTTI 76 HLBC ν, CERN GGM
> 1.3 × 10−2 90 30 BELLOTTI 76 HLBC ν, CERN GGM1KRAKAUER 91 quotes the limit τ/mν1 > (0.75a2 + 21.65a + 26.3) s/eV, where ais a parameter des
ribing the asymmetry in the neutrino de
ay de�ned as dNγ

/d
osθ= (1/2)(1 + a 
osθ) The parameter a= 0 for a Majorana neutrino, but 
an vary from
−1 to 1 for a Dira
 neutrino. The bound given by the authors is the most 
onservative(whi
h applies for a= − 1).2RAFFELT 85 limit on the radiative de
ay is from solar x- and γ-ray 
uxes. Limit dependson ν 
ux from pp, now established from GALLEX and SAGE to be > 0.5 of expe
tation.3REINES 74 looked for ν of nonzero mass de
aying radiatively to a neutral of lesser mass+ γ. Used liquid s
intillator dete
tor near �ssion rea
tor. Finds lab lifetime 6 × 107 sor more. Above value of (mean life)/mass assumes average e�e
tive neutrino energy of0.2 MeV. To obtain the limit 6× 107 s REINES 74 assumed that the full νe rea
tor 
ux
ould be responsible for yielding de
ays with photon energies in the interval 0.1 MeV {0.5 MeV. This represents some overestimate so their lower limit is an over-estimate ofthe lab lifetime (VOGEL 84). If so, OBERAUER 87 may be 
omparable or better.4CECCHINI 11 sear
h for radiative de
ays of solar neutrinos into visible photons duringthe 2006 total solar e
lipse. The range of (mean life)/mass values 
orresponds to a rangeof ν1 masses between 10−4 and 0.1 eV.5MIRIZZI 07 determine a limit on the neutrino radiative de
ay from analysis of the maxi-mum allowed distortion of the CMB spe
trum as measured by the COBE/FIRAS. For thede
ay ν2 → ν1 the lifetime limit is . 4× 1020 s for mmin . 0.14 eV. For transitionwith the ∣∣�m31∣∣ mass di�eren
e the lifetime limit is ∼ 2 × 1019 s for mmin . 0.14eV and ∼ 5× 1020 s for mmin & 0.14 eV.6MIRIZZI 07 determine a limit on the neutrino radiative de
ay from analysis of the 
osmi
infrared ba
kground (CIB) using the Spitzer Observatory data. For transition with the∣∣�m31∣∣ mass di�eren
e they obtain the lifetime limit ∼ 1020 s for mmin . 0.14 eV.7WONG 07 use their limit on the neutrino magneti
 moment together with the assumedexperimental value of �m213 ∼ 2×10−3 eV2 to obtain τ13/m31 > 3.2×1027 s/eV3 forthe radiative de
ay in the 
ase of the inverted mass hierar
hy. Similarly to RAFFELT 89this limit 
an be violated if ele
tri
 and magneti
 moments are equal to ea
h other.Analogous, but numeri
ally somewhat di�erent limits are obtained for τ23 and τ21.8XIN 05 sear
h for the γ from radiative de
ay of νe produ
ed by the ele
tron 
apture on51Cr. No events were seen and the limit on τ/mν was derived. This is a weaker limiton the de
ay of νe than KRAKAUER 91.9XIN 05 use their limit on the neutrino magneti
 moment of νe together with the assumedexperimental value of �m21,3 ∼ 2×10−3 eV2 to obtain τ13/m31 > 1×1023 s/eV3 forthe radiative de
ay in the 
ase of the inverted mass hierar
hy. Similarly to RAFFELT 89this limit 
an be violated if ele
tri
 and magneti
 moments are equal to ea
h other.Analogous, but numeri
ally somewhat di�erent limits are obtained for τ23 and τ21.Again, this limit is spe
i�
 for νe .10AHARMIM 04 obtained these results from the solar νe 
ux limit set by the SNO mea-surement assuming ν2 de
ay through nonradiative pro
ess ν2 → ν1X , where X is aMajoron or other invisible parti
le. Limits are given for the 
ases of quasidegenerate andhierar
hi
al neutrino masses.11CECCHINI 04 obtained this bound through the observations performed on the o

asionof the 21 June 2001 total solar e
lipse, looking for visible photons from radiative de
aysof solar neutrinos. Limit is a τ/mν2 in ν2 → ν1 γ. Limit ranges from ∼ 100 to107 s/eV for 0.01 < mν1 < 0.1 eV.12EGUCHI 04 obtained these results from the solar νe 
ux limit set by the KamLANDmeasurement assuming ν2 de
ay through nonradiative pro
ess ν2 → ν1X , where X isa Majoron or other invisible parti
le. Limits are given for the 
ases of quasidegenerateand hierar
hi
al neutrino masses.13The ratio of the lifetime over the mass derived by BANDYOPADHYAY 03 is for ν2. Theyobtained this result using the following solar-neutrino data: total rates measured in Cland Ga experiments, the Super-Kamiokande's zenith-angle spe
tra, and SNO's day andnight spe
tra. They assumed that ν1 is the lowest mass, stable or nearly stable neutrino

state and ν2 de
ays through nonradiative Majoron emission pro
ess, ν2 → ν1 + J, orthrough nonradiative pro
ess with all the �nal state parti
les being sterile. The best �tis obtained in the region of the LMA solution.14DERBIN 02B (also BACK 03B) obtained this bound for the radiative de
ay from theresults of ba
kground measurements with Counting Test Fa
ility (the prototype of theBorexino dete
tor). The laboratory gamma spe
trum is given as dNγ/d 
osθ= (1/2) (1 +
α
osθ) with α=0 for a Majorana neutrino, and α varying to −1 to 1 for a Dira
 neutrino.The listed bound is for the 
ase of α=0. The most 
onservative bound 1.5×103 s eV−1is obtained for the 
ase of α=−1.15The ratio of the lifetime over the mass derived by JOSHIPURA 02B is for ν2. Theyobtained this result from the total rates measured in all solar neutrino experiments.They assumed that ν1 is the lowest mass, stable or nearly stable neutrino state and ν2de
ays through nonradiative pro
ess like Majoron emission de
ay, ν2 → ν′1 + J where
ν′1 state is sterile. The exa
t limit depends on the spe
i�
 solution of the solar neutrinoproblem. The quoted limit is for the LMA solution.16DOLGOV 99 pla
es limits in the (Majorana) τ -asso
iated ν mass-lifetime plane based onnu
leosynthesis. Results would be 
onsiderably modi�ed if neutrino os
illations exist.17BILLER 98 use the observed TeV γ-ray spe
tra to set limits on the mean life of anyradiatively de
aying neutrino between 0.05 and 1 eV. Curve shows τν/Bγ > 0.15×1021 sat 0.05 eV, > 1.2× 1021 s at 0.17 eV, > 3× 1021 s at 1 eV, where Bγ is the bran
hingratio to photons.18BLUDMAN 92 sets additional limits by this method for higher mass ranges. Cosmologi
allimits are also obtained.19 Limit on the radiative de
ay based on nonobservation of γ's in 
oin
iden
e with ν's fromSN 1987A.20DODELSON 92 range is for wrong-heli
ity keV mass Dira
 ν's from the 
ore of neutronstar in SN 1987A de
aying to ν's that would have intera
ted in KAM2 or IMB dete
tors.21GRANEK 91 
onsiders heavy neutrino de
ays to γ νL and 3νL, where mνL <100 keV.Lifetime is 
al
ulated as a fun
tion of heavy neutrino mass, bran
hing ratio into γ νL,and mνL.22KRAKAUER 91 quotes the limit for νe , τ/mν > (0.3a2 + 9.8a + 15.9) s/eV, wherea is a parameter des
ribing the asymmetry in the radiative neutrino de
ay de�ned asdNγ

/d
osθ = (1/2)(1 + a 
osθ) a= 0 for a Majorana neutrino, but 
an vary from −1to 1 for a Dira
 neutrino. The bound given by the authors is the most 
onservative(whi
h applies for a= − 1).23WALKER 90 uses SN 1987A γ 
ux limits after 289 days.24CHUPP 89 should be multiplied by a bran
hing ratio (about 1) and a dete
tion eÆ
ien
y(about 1/4), and pertains to radiative de
ay of any neutrino to a lighter or sterile neutrino.25RAFFELT 89 uses KYULDJIEV 84 to obtain τm3 > 3 × 1018 s eV3 (based on νe e−
ross se
tions). The bound for the radiative de
ay is not valid if ele
tri
 and magneti
transition moments are equal for Dira
 neutrinos.26RAFFELT 89B analyze stellar evolution and ex
lude the region 3 × 1012 < τm3
< 3× 1021 s eV3.27Model-dependent theoreti
al analysis of SN 1987A neutrinos. Quoted limit is for[∑

j
∣∣Uℓ j ∣∣2 �j mj]−1, where ℓ=µ, τ . Limit is 3.3× 1014 s/eV for ℓ=e.28OBERAUER 87 looks for photons and e+ e− pairs from radiative de
ays of rea
torneutrinos.29BINETRUY 84 �nds τ < 108 s for neutrinos in a radiation-dominated universe.30These experiments look for νk → νj γ or νk → νj γ.31 STECKER 80 limit based on UV ba
kground; result given is τ > 4×1022 s at mν=20 eV.32FALK 78 �nds lifetime 
onstraints based on supernova energeti
s.33COWSIK 77 
onsiders variety of s
enarios. For neutrinos produ
ed in the big bang,present limits on opti
al photon 
ux require τ > 1023 s for mν ∼ 1 eV. See alsoCOWSIK 79 and GOLDMAN 79.

ν MAGNETIC MOMENTν MAGNETIC MOMENTν MAGNETIC MOMENTν MAGNETIC MOMENTThe 
oupling of neutrinos to an ele
tromagneti
 �eld is a 
hara
terizedby a 3×3 matrix λ of the magneti
 (µ) and ele
tri
 (d) dipole moments(λ = µ - id). For Majorana neutrinos the matrix λ is antisymmetri
and only transition moments are allowed, while for Dira
 neutrinos λ isa general 3×3 matrix. In the standard ele
troweak theory extended toin
lude neutrino masses (see FUJIKAWA 80) µν = 3eGFmν/(8π2√2) =3.2 × 10−19(mν/eV)µB , i.e. it is unobservably small given the knownsmall neutrino masses. In more general models there is no longer a propor-tionality between neutrino mass and its magneti
 moment, even thoughonly massive neutrinos have nonvanishing magneti
 moments without �netuning.Laboratory bounds on λ are obtained via elasti
 ν-e s
attering, where thes
attered neutrino is not observed. The 
ombinations of matrix elementsof λ that are 
onstrained by various experiments depend on the initialneutrino 
avor and on its propagation between sour
e and dete
tor (e.g.,solar νe and rea
tor νe do not 
onstrain the same 
ombinations). Thelistings below therefore identify the initial neutrino 
avor.Other limits, e.g. from various stellar 
ooling pro
esses, apply to all neu-trino 
avors. Analogous 
avor independent, but weaker, limits are ob-tained from the analysis of e+ e− → ν ν γ 
ollider experiments.



763763763763See key on page 601 Lepton Parti
le ListingsNeutrino PropertiesVALUE (10−10 µB ) CL% DOCUMENT ID TECN COMMENT
< 0.29< 0.29< 0.29< 0.29 90 1 BEDA 13 CNTR Rea
tor νe
< 6.8< 6.8< 6.8< 6.8 90 2 AUERBACH 01 LSND νe e, νµ e s
attering
< 3900< 3900< 3900< 3900 90 3 SCHWIENHO...01 DONU ντ e− → ντ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 0.022 90 4 ARCEO-DIAZ 15 ASTR Red giants
< 0.1 95 5 CORSICO 14 ASTR
< 0.05 95 6 MILLER-BER...14B ASTR
< 0.045 95 7 VIAUX 13A ASTR Globular 
luster M5
< 0.32 90 8 BEDA 10 CNTR Rea
tor νe
< 2.2 90 9 DENIZ 10 TEXO Rea
tor νe
< 0.011{0.027 10 KUZNETSOV 09 ASTR νL → νR in SN1987A
< 0.54 90 11 ARPESELLA 08A BORX Solar ν spe
trum shape
< 0.58 90 12 BEDA 07 CNTR Rea
tor νe
< 0.74 90 13 WONG 07 CNTR Rea
tor νe
< 0.9 90 14 DARAKTCH... 05 Rea
tor νe
< 130 90 15 XIN 05 CNTR Rea
tor νe
< 37 95 16 GRIFOLS 04 FIT Solar 8B ν (SNO NC)
< 3.6 90 17 LIU 04 SKAM Solar ν spe
trum shape
< 1.1 90 18 LIU 04 SKAM Solar ν spe
trum shape(LMA region)
< 5.5 90 19 BACK 03B CNTR Solar pp and Be ν

< 1.0 90 20 DARAKTCH... 03 Rea
tor νe
< 1.3 90 21 LI 03B CNTR Rea
tor νe
< 2 90 22 GRIMUS 02 FIT solar + rea
tor (Majo-rana ν)
<80000 90 23 TANIMOTO 00 RVUE e+ e− → ν ν γ

< 0.01{0.04 24 AYALA 99 ASTR νL → νR in SN 1987A
< 1.5 90 25 BEACOM 99 SKAM ν spe
trum shape
< 0.03 26 RAFFELT 99 ASTR Red giant luminosity
< 4 27 RAFFELT 99 ASTR Solar 
ooling
<44000 90 ABREU 97J DLPH e+ e− → ν ν γ at LEP
<33000 90 28 ACCIARRI 97Q L3 e+ e− → ν ν γ at LEP
< 0.62 29 ELMFORS 97 COSM Depolarization in earlyuniverse plasma
<27000 95 30 ESCRIBANO 97 RVUE �(Z → ν ν) at LEP
< 30 90 VILAIN 95B CHM2 νµ e → νµ e
<55000 90 GOULD 94 RVUE e+ e− → ν ν γ at LEP
< 1.9 95 31 DERBIN 93 CNTR Rea
tor ν e → ν e
< 5400 90 32 COOPER-... 92 BEBC ντ e− → ντ e−
< 2.4 90 33 VIDYAKIN 92 CNTR Rea
tor ν e → ν e
<56000 90 DESHPANDE 91 RVUE e+ e− → ν ν γ

< 100 95 34 DORENBOS... 91 CHRM νµ e → νµ e
< 8.5 90 AHRENS 90 CNTR νµ e → νµ e
< 10.8 90 35 KRAKAUER 90 CNTR LAMPF ν e → ν e
< 7.4 90 35 KRAKAUER 90 CNTR LAMPF (νµ, νµ )eelast.
< 0.02 36 RAFFELT 90 ASTR Red giant luminosity
< 0.1 37 RAFFELT 89B ASTR Cooling helium stars38 FUKUGITA 88 COSM Primordial magn. �elds
<40000 90 39 GROTCH 88 RVUE e+ e− → ν ν γ

≤ .3 37 RAFFELT 88B ASTR He burning stars
< 0.11 37 FUKUGITA 87 ASTR Cooling helium stars
< 0.0006 40 NUSSINOV 87 ASTR Cosmi
 EM ba
k-grounds
< 0.1{0.2 MORGAN 81 COSM 4He abundan
e
< 0.85 BEG 78 ASTR Stellar plasmons
< 0.6 41 SUTHERLAND 76 ASTR Red giants + degener-ate dwarfs
< 81 42 KIM 74 RVUE νµ e → νµ e
< 1 BERNSTEIN 63 ASTR Solar 
ooling
< 14 COWAN 57 CNTR Rea
tor ν1BEDA 13 report νe e− s
attering results, using the Kalinin Nu
lear Power Plant and ashielded Ge dete
tor. The re
oil ele
tron spe
trum is analyzed between 2.5 and 55 keV.Supersedes BEDA 07. Supersedes BEDA 10. This is the most stringent limit on themagneti
 moment of rea
tor νe .2AUERBACH 01 limit is based on the LSND νe and νµ ele
tron s
attering measurements.The limit is slightly more stringent than KRAKAUER 90.3 SCHWIENHORST 01 quote an experimental sensitivity of 4.9× 10−7.4ARCEO-DIAZ 15 
onstrains the neutrino magneti
 moment from observation of the tipof the red giant bran
h in the globular 
luster ω-Centauri.5 CORSICO 14 
onstrains the neutrino magneti
 moment from observations of white drarfpulsations.6MILLER-BERTOLAMI 14B 
onstrains the neutrino magneti
 moment from observationsof the white dwarf luminosity fun
tion of the Gala
ti
 disk.7VIAUX 13A 
onstrains the neutrino magneti
 moment from observations of the globular
luster M5.8BEDA 10 report νe e− s
attering results, using the Kalinin Nu
lear Power Plant and ashielded Ge dete
tor. The re
oil ele
tron spe
trum is analyzed between 2.9 and 45 keV.Supersedes BEDA 07. Superseded by BEDA 13.9DENIZ 10 observe rea
tor νe e s
attering with re
oil kineti
 energies 3{8 MeV usingCsI(Tl) dete
tors. The observed rate and spe
tral shape are 
onsistent with the StandardModel predi
tion, leading to the reported 
onstraint on νe magneti
 moment.

10KUZNETSOV 09 obtain a limit on the 
avor averaged magneti
 moment of Dira
 neu-trinos from the time averaged neutrino signal of SN1987A. Improves and supersedes theanalysis of BARBIERI 88 and AYALA 99.11ARPESELLA 08A obtained this limit using the shape of the re
oil ele
tron energy spe
-trum from the Borexino 192 live days of solar neutrino data.12BEDA 07 performed sear
h for ele
tromagneti
 νe -e s
attering at Kalininskaya nu
learrea
tor. A Ge dete
tor with a
tive and passive shield was used and the ele
tron re
oilspe
trum between 3.0 and 61.3 keV analyzed. Superseded by BEDA 10.13WONG 07 performed sear
h for non-standard νe -e s
attering at the Kuo-Sheng nu
learrea
tor. Ge dete
tor equipped with a
tive anti-Compton shield is used. Most stringentlaboratory limit on magneti
 moment of rea
tor νe . Supersedes LI 03B.14DARAKTCHIEVA 05 present the �nal analysis of the sear
h for non-standard νe -e s
at-tering 
omponent at Bugey nu
lear rea
tor. Full kinemati
al event re
onstru
tion ofboth the kineti
 energy above 700 keV and s
attering angle of the re
oil ele
tron, byuse of TPC. Most stringent laboratory limit on magneti
 moment. Supersedes DARAK-TCHIEVA 03.15XIN 05 evaluated the νe 
ux at the Kuo-Sheng nu
lear rea
tor and sear
hed for non-standard νe -e s
attering. Ge dete
tor equipped with a
tive anti-Compton shield wasused. This laboratory limit on magneti
 moment is 
onsiderably less stringent than thelimits for rea
tor νe , but is spe
i�
 to νe .16GRIFOLS 04 obtained this bound using the SNO data of the solar 8B neutrino 
uxmeasured with deuteron breakup. This bound applies to µe� = (µ221 + µ222 + µ223)1/2.17 LIU 04 obtained this limit using the shape of the re
oil ele
tron energy spe
trum from theSuper-Kamiokande-I 1496 days of solar neutrino data. Neutrinos are assumed to haveonly diagonal magneti
 moments, µν1 = µν2. This limit 
orresponds to the os
illationparameters in the va
uum os
illation region.18 LIU 04 obtained this limit using the shape of the re
oil ele
tron energy spe
trum fromthe Super-Kamiokande-I 1496 live-day solar neutrino data, by limiting the os
illation pa-rameter region in the LMA region allowed by solar neutrino experiments plus KamLAND.
µν1 = µν2 is assumed. In the LMA region, the same limit would be obtained even ifneutrinos have o�-diagonal magneti
 moments.19BACK 03B obtained this bound from the results of ba
kground measurements withCounting Test Fa
ility (the prototype of the Borexino dete
tor). Standard Solar Model
ux was assumed. This µν 
an be di�erent from the rea
tor µν in 
ertain os
illations
enarios (see BEACOM 99).20DARAKTCHIEVA 03 sear
hed for non-standard νe -e s
attering 
omponent at Bugeynu
lear rea
tor. Full kinemati
al event re
onstru
tion by use of TPC. Superseded byDARAKTCHIEVA 05.21 LI 03B used Ge dete
tor in a
tive shield near nu
lear rea
tor to test for nonstandard νe -es
attering.22GRIMUS 02 obtain stringent bounds on all Majorana neutrino transition moments froma simultaneous �t of LMA-MSW os
illation parameters and transition moments to globalsolar neutrino data + rea
tor data. Using only solar neutrino data, a 90% CL bound of6.3× 10−10µB is obtained.23TANIMOTO 00 
ombined e+ e− → ν ν γ data from VENUS, TOPAZ, and AMY.24AYALA 99 improves the limit of BARBIERI 88.25BEACOM 99 obtain the limit using the shape, but not the absolute magnitude whi
his a�e
ted by os
illations, of the solar neutrino spe
trum obtained by Superkamiokande(825 days). This µν 
an be di�erent from the rea
tor µν in 
ertain os
illation s
enarios.26RAFFELT 99 is an update of RAFFELT 90. This limit applies to all neutrino 
avorswhi
h are light enough (< 5 keV) to be emitted from globular-
luster red giants. Thislimit pertains equally to ele
tri
 dipole moments and magneti
 transition moments, andit applies to both Dira
 and Majorana neutrinos.27RAFFELT 99 is essentially an update of BERNSTEIN 63, but is derived from the he-lioseismologi
al limit on a new energy-loss 
hannel of the Sun. This limit applies to allneutrino 
avors whi
h are light enough (<1 keV) to be emitted from the Sun. This limitpertains equally to ele
tri
 dipole and magneti
 transition moments, and it applies toboth Dira
 and Majorana neutrinos.28ACCIARRI 97Q result applies to both dire
t and transition magneti
 moments and forq2=0.29ELMFORS 97 
al
ulate the rate of depolarization in a plasma for neutrinos with a mag-neti
 moment and use the 
onstraints from a big-bang nu
leosynthesis on additionaldegrees of freedom.30Applies to absolute value of magneti
 moment.31DERBIN 93 determine the 
ross se
tion for 0.6{2.0 MeV ele
tron energy as (1.28 ±0.63) × σweak. However, the (rea
tor on { rea
tor o�)/(rea
tor o�) is only ∼ 1/100.32COOPER-SARKAR 92 assume fDs /fπ = 2 and Ds , Ds produ
tion 
ross se
tion =2.6 µb to 
al
ulate ν 
ux.33VIDYAKIN 92 limit is from a e νe elasti
 s
attering experiment. No experimental detailsare given ex
ept for the 
ross se
tion from whi
h this limit is derived. Signal/noise was1/10. The limit uses sin2θW = 0.23 as input.34DORENBOSCH 91 
orre
ts an in
orre
t statement in DORENBOSCH 89 that the νmagneti
 moment is < 1 × 10−9 at the 95%CL. DORENBOSCH 89 measures both
νµ e and ν e elasti
 s
attering and assume µ(ν) = µ(ν).35KRAKAUER 90 experiment fully reported in ALLEN 93.36RAFFELT 90 limit applies for a diagonal magneti
 moment of a Dira
 neutrino, or for atransition magneti
 moment of a Majorana neutrino. In the latter 
ase, the same analysisgives < 1.4× 10−12. Limit at 95%CL obtained from δM
 .37 Signi�
ant dependen
e on details of stellar models.38 FUKUGITA 88 �nd magneti
 dipole moments of any two neutrino spe
ies are boundedby µ < 10−16 [10−9 G/B0℄ where B0 is the present-day intergala
ti
 �eld strength.39GROTCH 88 
ombined data from MAC, ASP, CELLO, and Mark J.



764764764764LeptonParti
le ListingsNeutrino Properties40For mν = 8{200 eV. NUSSINOV 87 examines transition magneti
 moments for νµ →
νe and obtain < 3× 10−15 for mν > 16 eV and < 6× 10−14 for mν > 4 eV.41We obtain above limit from SUTHERLAND 76 using their limit f < 1/3.42KIM 74 is a theoreti
al analysis of νµ rea
tion data.NEUTRINO CHARGE RADIUS SQUAREDNEUTRINO CHARGE RADIUS SQUAREDNEUTRINO CHARGE RADIUS SQUAREDNEUTRINO CHARGE RADIUS SQUAREDWe report limits on the so-
alled neutrino 
harge radius squared. Whilethe straight-forward de�nition of a neutrino 
harge radius has been provento be gauge-dependent and, hen
e, unphysi
al (LEE 77C), there have beenre
ent attempts to de�ne a physi
ally observable neutrino 
harge radius(BERNABEU 00, BERNABEU 02). The issue is still 
ontroversial (FU-JIKAWA 03, BERNABEU 03). A more general interpretation of the exper-imental results is that they are limits on 
ertain nonstandard 
ontributionsto neutrino s
attering.VALUE (10−32 
m2) CL% DOCUMENT ID TECN COMMENT

−2.1 to 3.3−2.1 to 3.3−2.1 to 3.3−2.1 to 3.3 90 1 DENIZ 10 TEXO Rea
tor νe e
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.53 to 0.68 90 2 HIRSCH 03 νµ e s
at.
−8.2 to 9.9 90 3 HIRSCH 03 anomalous e+ e− → ν ν γ

−2.97 to 4.14 90 4 AUERBACH 01 LSND νe e → νe e
−0.6 to 0.6 90 VILAIN 95B CHM2 νµ e elasti
 s
at.0.9 ±2.7 ALLEN 93 CNTR LAMPF ν e → ν e

< 2.3 95 MOURAO 92 ASTR HOME/KAM2 ν rates
< 7.3 90 5 VIDYAKIN 92 CNTR Rea
tor ν e → ν e1.1 ±2.3 ALLEN 91 CNTR Repl. by ALLEN 93
−1.1 ±1.0 6 AHRENS 90 CNTR νµ e elasti
 s
at.
−0.3 ±1.5 6 DORENBOS... 89 CHRM νµ e elasti
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THE NUMBER OF LIGHT NEUTRINO TYPES
FROM COLLIDER EXPERIMENTS

Revised March 2008 by D. Karlen (University of Victoria and
TRIUMF).

The most precise measurements of the number of light

neutrino types, Nν , come from studies of Z production in e+e−

collisions. The invisible partial width, Γinv, is determined by

subtracting the measured visible partial widths, corresponding

to Z decays into quarks and charged leptons, from the total Z

width. The invisible width is assumed to be due to Nν light

neutrino species each contributing the neutrino partial width

Γν as given by the Standard Model. In order to reduce the

model dependence, the Standard Model value for the ratio of

the neutrino to charged leptonic partial widths, (Γν/Γℓ)SM =

1.991±0.001, is used instead of (Γν)SM to determine the number

of light neutrino types:

Nν =
Γinv

Γℓ

(
Γℓ

Γν

)

SM

. (1)

The combined result from the four LEP experiments is Nν =

2.984 ± 0.008 [1].

In the past, when only small samples of Z decays had been

recorded by the LEP experiments and by the Mark II at SLC,

the uncertainty in Nν was reduced by using Standard Model

fits to the measured hadronic cross sections at several center-

of-mass energies near the Z resonance. Since this method is

much more dependent on the Standard Model, the approach

described above is favored.

Before the advent of the SLC and LEP, limits on the

number of neutrino generations were placed by experiments at

lower-energy e+e− colliders by measuring the cross section of

the process e+e− → ννγ. The ASP, CELLO, MAC, MARK J,

and VENUS experiments observed a total of 3.9 events above

background [2], leading to a 95% CL limit of Nν < 4.8.

This process has a much larger cross section at center-of-mass

energies near the Z mass and has been measured at LEP by

the ALEPH, DELPHI, L3, and OPAL experiments [3]. These

experiments have observed several thousand such events, and

the combined result is Nν = 3.00 ± 0.08. The same process has

also been measured by the LEP experiments at much higher

center-of-mass energies, between 130 and 208 GeV, in searches

for new physics [4]. Combined with the lower energy data, the

result is Nν = 2.92 ± 0.05.

Experiments at pp colliders also placed limits on Nν by

determining the total Z width from the observed ratio of

W± → ℓ±ν to Z → ℓ+ℓ− events [5]. This involved a calculation

that assumed Standard Model values for the total W width and

the ratio of W and Z leptonic partial widths, and used an

estimate of the ratio of Z to W production cross sections.

Now that the Z width is very precisely known from the LEP

experiments, the approach is now one of those used to determine

the W width.
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t Measurement of Invisible Z WidthIn the following, the invisible Z width is obtained from studies of single-photon eventsfrom the rea
tion e+ e− → ν ν γ. All are obtained from LEP runs in the Eee
m range88{209 GeV.VALUE DOCUMENT ID TECN COMMENT2.92±0.05 OUR AVERAGE2.92±0.05 OUR AVERAGE2.92±0.05 OUR AVERAGE2.92±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.2.84±0.10±0.14 ABDALLAH 05B DLPH √
s = 180{209 GeV2.98±0.05±0.04 ACHARD 04E L3 1990-2000 LEP runs2.86±0.09 HEISTER 03C ALEP √
s = 189{209 GeV2.69±0.13±0.11 ABBIENDI,G 00D OPAL 1998 LEP run2.89±0.32±0.19 ABREU 97J DLPH 1993{1994 LEP runs3.23±0.16±0.10 AKERS 95C OPAL 1990{1992 LEP runs2.68±0.20±0.20 BUSKULIC 93L ALEP 1990{1991 LEP runs

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.84±0.15±0.14 ABREU 00Z DLPH 1997{1998 LEP runs3.01±0.08 ACCIARRI 99R L3 1991{1998 LEP runs3.1 ±0.6 ±0.1 ADAM 96C DLPH √s = 130, 136 GeVLimits from Astrophysi
s and CosmologyLimits from Astrophysi
s and CosmologyLimits from Astrophysi
s and CosmologyLimits from Astrophysi
s and CosmologyE�e
tive Number of Light ν TypesE�e
tive Number of Light ν TypesE�e
tive Number of Light ν TypesE�e
tive Number of Light ν Types(\Light" means < about 1 MeV). The quoted values 
orrespond to Ne� , where Ne�= 3.046 in the Standard Model with Nν = 3. See also OLIVE 81. For a review oflimits based on Nu
leosynthesis, Supernovae, and also on terrestial experiments, seeDENEGRI 90. Also see \Big-Bang Nu
leosynthesis" in this Review.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.3 ±0.5 95 1 ADE 14 COSM Plan
k3.78+0.31

−0.30 2 COSTANZI 14 COSM3.29±0.31 3 HOU 14 COSM
< 3.80 95 4 LEISTEDT 14 COSM
< 4.10 95 5 MORESCO 12 COSM
< 5.79 95 6 XIA 12 COSM
< 4.08 95 MANGANO 11 COSM BBN0.9 < Nν < 8.2 7 ICHIKAWA 07 COSM3 < Nν < 7 95 8 CIRELLI 06 COSM2.7 < Nν < 4.6 95 9 HANNESTAD 06 COSM3.6 < Nν < 7.4 95 8 SELJAK 06 COSM
< 4.4 10 CYBURT 05 COSM
< 3.3 11 BARGER 03C COSM1.4 <Nν < 6.8 12 CROTTY 03 COSM1.9 <Nν < 6.6 12 PIERPAOLI 03 COSM2 < Nν < 4 LISI 99 COSM BBN
< 4.3 OLIVE 99 COSM BBN
< 4.9 COPI 97 Cosmology
< 3.6 HATA 97B High D/H quasar abs.
< 4.0 OLIVE 97 BBN; high 4He and 7Li
< 4.7 CARDALL 96B COSM High D/H quasar abs.
< 3.9 FIELDS 96 COSM BBN; high 4He and 7Li
< 4.5 KERNAN 96 COSM High D/H quasar abs.
< 3.6 OLIVE 95 BBN; ≥ 3 massless ν

< 3.3 WALKER 91 Cosmology
< 3.4 OLIVE 90 Cosmology
< 4 YANG 84 Cosmology
< 4 YANG 79 Cosmology
< 7 STEIGMAN 77 CosmologyPEEBLES 71 Cosmology
<16 13 SHVARTSMAN69 CosmologyHOYLE 64 Cosmology

1Fit to the number of neutrino degrees of freedom from Plan
k CMB data along withWMAP polarization, high L, and BAO data.2 Fit to the number of neutrinos degrees of freedom from Plan
k CMB data along withBAO, shear and 
luster data.3 Fit based on the SPT-SZ survey 
ombined with CMB, BAO, and H0 data.4Constrains the number of neutrino degrees of freedom (marginalizing over the total mass)from CMB, CMB lensing, BAO, and galaxy 
lustering data.5 Limit on the number of light neutrino types from observational Hubble parameter datawith seven-year WMAP data, SPT, and the most re
ent estimate of H0. Best �t is3.45 ± 0.65.6 Limit on the number of light neutrino types from the CFHTLS 
ombined with seven-yearWMAP data and a prior on the Hubble parameter. Best �t is 4.17+1.62
−1.26. Limit isrelaxed to 3.98+2.02

−1.20 when small s
ales a�e
ted by non-linearities are removed.7Constrains the number of neutrino types from re
ent CMB and large s
ale stru
ture data.No priors on other 
osmologi
al parameters are used.8Constrains the number of neutrino types from re
ent CMB, large s
ale stru
ture, Lyman-alpha forest, and SN1a data. The slight preferen
e for Nν > 3 
omes mostly from theLyman-alpha forest data.9Constrains the number of neutrino types from re
ent CMB and large s
ale stru
ture data.See also HAMANN 07.10 Limit on the number of neutrino types based on 4He and D/H abundan
e assuming abaryon density �xed to the WMAP data. Limit relaxes to 4.6 if D/H is not used or to5.8 if only D/H and the CMB are used. See also CYBURT 01 and CYBURT 03.11 Limit on the number of neutrino types based on 
ombination of WMAP data and big-bang nu
leosynthesis. The limit from WMAP data alone is 8.3. See also KNELLER 01.Nν ≥ 3 is assumed to 
ompute the limit.12 95% 
on�den
e level range on the number of neutrino 
avors fromWMAP data 
ombinedwith other CMB measurements, the 2dfGRS data, and HST data.13 SHVARTSMAN 69 limit inferred from his equations.Number Coupling with Less Than Full Weak StrengthNumber Coupling with Less Than Full Weak StrengthNumber Coupling with Less Than Full Weak StrengthNumber Coupling with Less Than Full Weak StrengthVALUE DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<20 1 OLIVE 81C COSM
<20 1 STEIGMAN 79 COSM1Limit varies with strength of 
oupling. See also WALKER 91.REFERENCES FOR Limits on Number of Neutrino TypesREFERENCES FOR Limits on Number of Neutrino TypesREFERENCES FOR Limits on Number of Neutrino TypesREFERENCES FOR Limits on Number of Neutrino TypesADE 14 AA 571 A16 P.A.R. Ade et al. (Plan
k Collab.)COSTANZI 14 JCAP 1410 081 M. Costanzi et al. (TRST, TRSTI)HOU 14 APJ 782 74 Z. Hou et al.LEISTEDT 14 PRL 113 041301 B. Leistedt, H.V. Peiris, L. VerdeMORESCO 12 JCAP 1207 053 M. Mores
o et al.XIA 12 JCAP 1206 010 J.-Q. Xia et al.MANGANO 11 PL B701 296 G. Mangano, P. Serpi
oHAMANN 07 JCAP 0708 021 J. Hamann et al.ICHIKAWA 07 JCAP 0705 007 K. I
hikawa, M. Kawasaki, F. TakahashiCIRELLI 06 JCAP 0612 013 M. Cirelli et al.HANNESTAD 06 JCAP 0611 016 S. Hannestad, G. Ra�eltLEP-SLC 06 PRPL 427 257 ALEPH, DELPHI, L3, OPAL, SLD and working groupsSELJAK 06 JCAP 0610 014 U. Seljak, A. Slosar, P. M
DonaldABDALLAH 05B EPJ C38 395 J. Abdallah et al. (DELPHI Collab.)CYBURT 05 ASP 23 313 R.H. Cyburt et al.ACHARD 04E PL B587 16 P. A
hard et al. (L3 Collab.)BARGER 03C PL B566 8 V. Barger et al.CROTTY 03 PR D67 123005 P. Crotty, J. Lesgourgues, S. PastorCYBURT 03 PL B567 227 R.H. Cyburt, B.D. Fields, K.A. OliveHEISTER 03C EPJ C28 1 A. Heister et al. (ALEPH Collab.)PIERPAOLI 03 MNRAS 342 L63 E. PierpaoliCYBURT 01 ASP 17 87 R.H. Cyburt, B.D. Fields, K.A. OliveKNELLER 01 PR D64 123506 J.P. Kneller et al.ABBIENDI,G 00D EPJ C18 253 G. Abbiendi et al. (OPAL Collab.)ABREU 00Z EPJ C17 53 P. Abreu et al. (DELPHI Collab.)ACCIARRI 99R PL B470 268 M. A

iarri et al. (L3 Collab.)LISI 99 PR D59 123520 E. Lisi, S. Sarkar, F.L. VillanteOLIVE 99 ASP 11 403 K.A. Olive, D. ThomasABREU 97J ZPHY C74 577 P. Abreu et al. (DELPHI Collab.)COPI 97 PR D55 3389 C.J. Copi, D.N. S
hramm, M.S. Turner (CHIC)HATA 97B PR D55 540 N. Hata et al. (OSU, PENN)OLIVE 97 ASP 7 27 K.A. Olive, D. Thomas (MINN, FLOR)ADAM 96C PL B380 471 W. Adam et al. (DELPHI Collab.)CARDALL 96B APJ 472 435 C.Y. Cardall, G.M. Fuller (UCSD)FIELDS 96 New Ast 1 77 B.D. Fields et al. (NDAM, CERN, MINN+)KERNAN 96 PR D54 3681 P.S. Kernan, S. Sarkar (CASE, OXFTP)AKERS 95C ZPHY C65 47 R. Akers et al. (OPAL Collab.)OLIVE 95 PL B354 357 K.A. Olive, G. Steigman (MINN, OSU)BUSKULIC 93L PL B313 520 D. Buskuli
 et al. (ALEPH Collab.)LEP 92 PL B276 247 LEP Collabs. (LEP, ALEPH, DELPHI, L3, OPAL)WALKER 91 APJ 376 51 T.P. Walker et al. (HSCA, OSU, CHIC+)DENEGRI 90 RMP 62 1 D. Denegri, B. Sadoulet, M. Spiro (CERN, UCB+)OLIVE 90 PL B236 454 K.A. Olive et al. (MINN, CHIC, OSU+)YANG 84 APJ 281 493 J. Yang et al. (CHIC, BART)OLIVE 81 APJ 246 557 K.A. Olive et al. (CHIC, BART)OLIVE 81C NP B180 497 K.A. Olive, D.N. S
hramm, G. Steigman (EFI+)STEIGMAN 79 PRL 43 239 G. Steigman, K.A. Olive, D.N. S
hramm (BART+)YANG 79 APJ 227 697 J. Yang et al. (CHIC, YALE, UVA)STEIGMAN 77 PL 66B 202 G. Steigman, D.N. S
hramm, J.E. Gunn (YALE, CHIC+)PEEBLES 71 Physi
al Cosmology P.Z. Peebles (PRIN)Prin
eton Univ. Press (1971)SHVARTSMAN 69 JETPL 9 184 V.F. Shvartsman (MOSU)Translated from ZETFP 9 315.HOYLE 64 NAT 203 1108 F. Hoyle, R.J. Tayler (CAMB)
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Observation of neutrinoless double-beta (0νββ) decay would

signal violation of total lepton number conservation. The pro-

cess can be mediated by an exchange of a light Majorana

neutrino, or by an exchange of other particles. However, the

existence of 0νββ-decay requires Majorana neutrino mass, no

matter what the actual mechanism is. As long as only a limit

on the lifetime is available, limits on the effective Majorana

neutrino mass, on the lepton-number violating right-handed

current or other possible mechanisms mediating 0νββ-decay

can be obtained, independently of the actual mechanism by as-

suming that one of these “new physics” possibilities dominates.

These limits are listed in the next three tables, together with a

claimed 0νββ-decay signal reported by part of the Heidelberg-

Moscow collaboration. There is tension between that claim and

several recent experiments which did not find evidence for 0νββ

decay.

In the following we assume that the exchange of light

Majorana neutrinos (mνi
≤ 10 MeV) contributes dominantly

to the decay rate. Besides a dependence on the phase space

(G0ν) and the nuclear matrix element (M0ν), the observable

0νββ-decay rate is proportional to the square of the effective

Majorana mass 〈mββ〉, (T 0ν
1/2)

−1 = G0ν · |M 0ν|2 · 〈mββ〉2, with

〈mββ〉2 = |
∑

i U
2
eimνi

|2. The sum contains, in general, com-

plex CP-phases in U2
ei, i.e., cancellations may occur. For three

neutrino flavors, there are three physical phases for Majorana

neutrinos. There is only one phase if neutrinos are Dirac parti-

cles. The two additional Majorana phase differences affect only

processes to which lepton-number-changing amplitudes con-

tribute. Given the general 3 × 3 mixing matrix for Majorana

neutrinos, one can construct other analogous lepton number

violating quantities, 〈mℓℓ′〉 =
∑

i UℓiUℓ′imνi
(l or l′ 6= e). How-

ever, these are currently much less constrained than 〈mββ〉.
Nuclear structure calculations are needed to deduce 〈mββ〉

from the decay rate. While G0ν can be calculated, the compu-

tation of M0ν is subject to uncertainty. Comparing different

nuclear model evaluations indicates a factor ∼2 to 3 spread

in the calculated nuclear matrix elements. In addition, if the

effective value of the axial current coupling constant gA in

nuclei is substantially smaller than its single nucleon value

gA = 1.2723 ± 0.0023, the decay rate might be further reduced.

The particle physics quantities to be determined are thus nu-

clear model-dependent, so the half-life measurements are listed

first. Where possible, we reference the nuclear matrix elements

used in the subsequent analysis. Since rates for the more con-

ventional 2νββ decay serve to calibrate some nuclear models

(e.g. QRPA-based calculations), results for this process are

also given.

Oscillation experiments utilizing atmospheric-, accelerator-,

solar-, and reactor-produced neutrinos and anti-neutrinos yield

strong evidence that at least some neutrinos are massive.

However, these findings shed no light on the mass hierarchy

(i.e., on the sign of ∆m2
31), the absolute neutrino mass values

or the properties of neutrinos under CPT-conjugation (Dirac or

Majorana).

All confirmed oscillation experiments can be consistently de-

scribed using three interacting neutrino species with two mass

splittings and three mixing angles. Full three flavor analyses

such as e.g. [1] yield: |∆m2
31| = 2.48+0.05

−0.07 (2.38+0.05
−0.06) × 10−3

eV2 and sin2 θ23 = 0.567+0.032
−0.124 (0.573+0.025

−0.039) for the param-

eters observed in atmospheric and accelerator experiments,

where the values correspond to the normal (inverted) hi-

erarchies. Observations of solar νe and reactor ν̄e lead to

∆m2
21 = 7.60+0.19

−0.18 × 10−5 eV2 and sin2 θ12 = 0.323 ± 0.016.

The investigation of reactor ν̄e at ∼1.5 km baseline shows that

electron type neutrinos couple only weakly to the third mass

eigenstate with sin2 θ13 = 0.0226 ± 0.0012 (0.0229 ± 0.0012).

(All errors correspond to 1σ.)

Based on the 3-neutrino analysis: 〈mββ〉2 = | cos2 θ13

cos2 θ12m1+ei∆α21 cos2 θ13 sin2 θ12m2+ei∆α31 sin2 θ13m3|2, with

∆α21, ∆α31 denoting the physically relevant Majorana CP-

phase differences (possible Dirac phase δ is absorbed in these

∆α). Given the present knowledge of the neutrino oscillation

parameters one can derive the relation between the effective

Majorana mass and the mass of the lightest neutrino, as illus-

trated in the left panel of Fig. 1. The three mass hierarchies

allowed by the oscillation data: normal (m1 < m2 < m3), in-

verted (m3 < m1 < m2), and degenerate (m1 ≈ m2 ≈ m3),

result in different projections. The width of the innermost

hatched bands reflects the uncertainty introduced by the un-

known Majorana and Dirac phases. If the experimental errors

of the oscillation parameters are taken into account, then the

allowed areas are widened as shown by the outer bands of Fig. 1.

Because of the overlap of the different mass scenarios a measure-

ment of 〈mββ〉 in the degenerate or inversely hierarchical ranges

would not determine the hierarchy. The middle panel of Fig. 1

depicts the relation of 〈mββ〉 with the summed neutrino mass

mtot = m1 + m2 + m3, constrained by observational cosmology.

The oscillation data thus allow to test whether observed values

of 〈mββ〉 and mtot are consistent within the 3 neutrino frame-

work and the light neutrino-exchange dominance assumption.

The right hand panel of Fig. 1, finally, shows 〈mββ〉 as a

function of the kinematical mass 〈mβ〉 = [Σ|Uei|2m2
νi

]1/2 deter-

mined through the analysis of the electron energy distribution

in low energy beta decays. The rather large intrinsic width of

the ββ-decay constraint essentially does not allow to positively

identify the inverted hierarchy, and thus the sign of ∆m2
31, even

in combination with these other observables. Naturally, if the

value of 〈mββ〉 ≤ 0.01 eV, but non-zero is ever established then

normal hierarchy becomes the only possible scenario.
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Figure 1: The left panel shows the depen-
dence of 〈mββ〉 on the absolute mass of the light-
est neutrino mmin. The middle panel shows
〈mββ〉 as a function of the summed neutrino
mass mtot, while the right panel depicts 〈mββ〉
as a function of the mass 〈mβ〉. In all panels
the width of the hatched areas is due to the
unknown Majorana phases and thus irreducible.
The allowed areas given by the solid lines are
obtained by taking into account the errors of
the oscillation parameters (at 90% confidence
level [1]) . The two sets of solid lines corre-
spond to the normal (blue) and inverted(red)
hierarchies. These sets merge into each other
for 〈mββ〉 ≥ 0.1 eV, which corresponds to the
degenerate mass pattern.

It should be noted that systematic uncertainties of the

nuclear matrix elements are not folded into the mass projections

shown in Fig. 1. Taking this additional uncertainty into account

would further widen the allowed areas. The uncertainties in

oscillation parameters affect the width of the allowed bands in

an asymmetric manner, as shown in Fig. 1. For example, for

the degenerate mass pattern (〈mββ〉 ≥ 0.1 eV) the upper edge

is simply 〈mββ〉 ∼ m, where m is the common mass of the

degenerate multiplet, independent of the oscillation parameters,

while the lower edge is m cos(2θ12). Similar arguments explain

the other features of Fig. 1. The plots in Fig. 1 are based on a

3-neutrino analysis. If it turns out that additional, i.e. sterile

light neutrinos exist, the allowed regions would be modified

substantially.

If the neutrinoless double-beta decay is observed, it will be

possible to fix a range of absolute values of the masses mνi
.

Unlike the direct neutrino mass measurements, however, a limit

on 〈mββ〉 does not allow one to constrain the individual mass

values mνi
even when the mass differences ∆m2 are known.

Neutrino oscillation data imply, for the first time, the

existence of a lower limit ∼ 0.014 eV for the Majorana neutrino

mass for the inverted hierarchy mass pattern while 〈mββ〉 could,

by fine tuning, vanish in the case of the normal mass hierarchy.

Several new double beta searches have been proposed to probe

the interesting 〈mββ〉 mass range, with the prospect of full

coverage of the inverted mass hierarchy region within the next

decade.

The 0νββ decay mechanism discussed so far is not the

only way in which the decay can occur. Numerous other

possible scenarios have been proposed, however, all of them

requiring new physics. It will be a challenging task to decide

which mechanism was responsible once 0νββ decay is observed.

LHC experiments may reveal corresponding signatures for new

physics of lepton number violation. If lepton-number-violating

right-handed current weak interactions exist, their strength can

be characterized by the phenomenological coupling constants η

and λ (η describes the coupling between the right-handed lepton

current and left-handed quark current while λ describes the cou-

pling when both currents are right-handed). The 0νββ decay

rate then depends on 〈η〉 = η
∑

i UeiVei and 〈λ〉 = λ
∑

i UeiVei

that vanish for massless or unmixed neutrinos (Vℓj is a matrix

analogous to Uℓj but describing the mixing with the hypo-

thetical right-handed neutrinos). The observation of the single

electron spectra could, in principle, allow to distinguish this

mechanism of 0νββ from the light Majorana neutrino exchange

driven mode. The limits on 〈η〉 and 〈λ〉 are listed in a sepa-

rate table. The reader is cautioned that a number of earlier

experiments did not distinguish between η and λ. In addition,

see the section on Majoron searches for additional limits set by

these experiments.
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> 0.11 90 64Zn 0ν ECEC ZnW04 s
int. 46 BELLI 09A0.55+0.12
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> 140 90 82Se 0ν NEMO-3 58 ARNOLD 040.14+0.04

−0.02 ± 0.03 150Nd 0ν+2ν 0+→ 0+1 γ in Ge det. 59 BARABASH 04
> 31 90 130Te 0ν 0+→ 2+ Cryog. det. 60 ARNABOLDI 03
> 110 90 128Te 0ν Cryog. det. 61 ARNABOLDI 03(0.029+0.004

−0.003) 116Cd 2ν 116CdWO4 s
int.62 DANEVICH 03
> 170 90 116Cd 0ν 116CdWO4 s
int.63 DANEVICH 03
> 29 90 116Cd 0ν 0+→ 2+ 116CdWO4 s
int.64 DANEVICH 03
> 14 90 116Cd 0ν 0+→ 0+1 116CdWO4 s
int.65 DANEVICH 03
> 6 90 116Cd 0ν 0+→ 0+2 116CdWO4 s
int.66 DANEVICH 03
> 1.1 90 186W 0ν CdWO4 s
int. 67 DANEVICH 03
> 1.1 90 186W 0ν 0+→ 2+ CdWO4 s
int. 68 DANEVICH 03
>15700 90 76Ge 0ν Enri
hed HPGe 69 AALSETH 02B
> 58 90 134Xe 0ν Liquid Xe S
int. 70 BERNABEI 02D
> 1.3 90 160Gd 0ν Gd2SiO5:Ce 71 DANEVICH 01
> 1.3 90 160Gd 0ν 0+→ 2+ Gd2SiO5:Ce 72 DANEVICH 01
> 19000 90 76Ge 0ν Enri
hed HPGe 73 KLAPDOR-K... 01(9.4 ± 3.2)E-3 96Zr 0ν+2ν Geo
hem 74 WIESER 010.042+0.033

−0.013 48Ca 2ν Ge spe
trometer 75 BRUDANIN 000.021+0.008
−0.004 ± 0.002 96Zr 2ν NEMO-2 76 ARNOLD 99

> 2.8 90 82Se 0ν 0+ → 2+ NEMO-2 77 ARNOLD 98(6.75+0.37
−0.42 ± 0.68)E-3 150Nd 2ν TPC 78 DESILVA 970.043+0.024
−0.011 ± 0.014 48Ca 2ν TPC 79 BALYSH 960.026+0.009
−0.005 116Cd 2ν 0+ → 0+ ELEGANT IV EJIRI 957200 ± 400 128Te 0ν+2ν Geo
hem 80 BERNATOW... 922.0 ± 0.6 238U 0ν+2ν Radio
hem 81 TURKEVICH 911800 ± 700 128Te 0ν+2ν Geo
hem. 82 LIN 88B

1ASAKURA 16 use the KamLAND-Zen liquid s
intillator 
alorimeter (136Xe 89.5 kg yr)to pla
e a limit on the 0νββ-de
ay into the �rst ex
ited state of the daughter nu
lide.2ASAKURA 16 use the KamLAND-Zen liquid s
intillator 
alorimeter (136Xe 89.5 kg yr)to pla
e a limit on the 0νββ-de
ay into the se
ond ex
ited state of the daughter nu
lide.3ASAKURA 16 use the KamLAND-Zen liquid s
intillator 
alorimeter (136Xe 89.5 kg yr)to pla
e a limit on the 0νββ-de
ay into the third ex
ited state of the daughter nu
lide.4AGOSTINI 15A use 17.9 kg yr exposure of the GERDA 
alorimeter to derive an improvedmeasurement of the 2νββ de
ay half life of 76Ge.5ALFONSO 15 use the 
ombined exposure of the high resolution CUORICINO (19.75 kgyr) and CUORE-0 (9.8 kg yr) bolometers to 
onstru
t a Bayesian limit on the 0νββde
ay half life of 130Te.6ARNOLD 15 use the NEMO-3 tra
king 
alorimeter with 34.3 kg yr exposure to determinethe 2νββ-half life of 100Mo. Supersedes ARNOLD 05A and ARNOLD 04.7ARNOLD 15 use the NEMO-3 tra
king 
alorimeter with 34.3 kg yr exposure to determinethe limit of 0νββ-half life of 100Mo. Supersedes ARNOLD 2005A and BARABASH 11A.8ALBERT 14 use the EXO-200 tra
king dete
tor for a re-measurement of the 2νββ-halflife of 136Xe. A nu
lear matrix element of 0.0218 ± 0.0003 MeV−1 is derived from thisdata. Supersedes ACKERMAN 11.9ALBERT 14B use 100 kg yr of exposure of the EXO-200 tra
king 
alorimeter to pla
e alower limit on the 0νββ-half life of 136Xe. Supersedes AUGER 12.10ARNOLD 14 use 34.7 kg yr of exposure of the NEMO-3 tra
king 
alorimeter to derivea limit on the 〈m〉-driven (light neutrino mass) 0νββ-half life of 100Mo. SupersedesBARABASH 11A.11ARNOLD 14 use 34.7 kg yr of exposure of the NEMO-3 tra
king 
alorimeter to derivea limit on the 〈
λ
〉-driven (right handed quark and lepton 
urrents) 0νββ-half life of100Mo.12ARNOLD 14 use 34.7 kg yr of exposure of the NEMO-3 tra
king 
alorimeter to derive alimit on the 〈

η
〉-driven (right handed quark 
urrent) 0νββ-half life of 100Mo.13KIDD 14 utilize two undergraound Ge dete
tors to determine the in
lusive double betade
ay rate to the �rst ex
ited 0+1 state using γ-γ 
oin
iden
es.14AGOSTINI 13A use 21.6 kg yr of data, 
olle
ted with GERDA dete
tor array, to pla
e alower limit on the 0νββ-half life of 76Ge. This result is in tension with the eviden
e for0νββ-de
ay reported in KLAPDOR-KLEINGROTHAUS 06A. This half-life limit ex
eedsthe limit reported in KLAPDOR-KLEINGROTHAUS 01.15BELLI 13A use an underground Ge dete
tor to sear
h for the 2β+-de
ay of 96Ru viathe intensity of the annihilation peak. This method 
annot distinguish two from zeroneutrino de
ay.16GANDO 13A use the KamLAND dete
tor to sear
h for 0νββ-de
ay of 136Xe based onan exposure of 89.5 kg yr. This result is in tension with the eviden
e of 0νββ reportedin KLAPDOR-KLEINGROTHAUS 06A and earier referen
es to that work. SupersedesGANDO 12A and is more sensitive than BERNABEI 02D.17GAVRILYAK 13 use a proportional 
ounter �lled with Kr gas to sear
h for the 2ν2Kde
ay of 78Kr. Data with the enri
hed and depleted Kr were used to determine signaland ba
kground. A 2.5σ ex
ess of events obtained with the enri
hed sample is interpretedas an indi
ation for the presen
e of this de
ay.18GAVRILYAK 13 use a proportional 
ounter �lled with Kr gas to sear
h for the 0ν2Kde
ay of 78Kr into 2828 keV ex
ited state of 78Se. This transition 
ould be subje
t toresonant rate enhan
ement. Data obtained with the enri
hed and depleted Kr were usedto determine signal and ba
kground.19ANDREOTTI 12 use high resolution TeO2 bolometri
 
alorimeter to sear
h for the 0νββde
ay of 130Te leading to the ex
ited 01+ state at 1793.5 keV.20BELLI 12A use 106CdWO4 215 g 
rystal s
intillator to sear
h for various ββ de
aymodes. The limit for the ECEC mode is derived from the �t to the ba
kground spe
trumin the 1.8{3.2 MeV energy interval in the run of 6590 hours. The same analysis providesseveral limits (∼ 2{5× 1020 years) for the ECEC mode leading to the ex
ited 0+ and2+ states. Also a similar size limits for the possible resonan
e pro
ess populating statesat 2718 keV, 2741 keV, and 2748 keV were obtained.21BELLI 12A use 106CdWO4 215 g 
rystal s
intillator to sear
h for various ββ de
ay modes.The limit for the ECβ+ mode is derived from the �t to the ba
kground spe
trum in the2.0{3.0 MeV energy interval in the run of 6590 hours. The same analysis provides severallimits (∼ 0.5{1.3 × 1021 years) for the ECβ+ mode leading to the ex
ited 0+ and 2+states.22BELLI 12A use 106CdWO4 215 g 
rystal s
intillator to sear
h for various ββ de
ay modes.The limit for the β+β+ mode is derived from the �t to the ba
kground spe
trum in the0.76{2.8 MeV energy interval in the run of 6590 hours. The same analysis provides thelimit (1.2× 1021 years) for the β+β+ mode leading to the �rst ex
ited 2+ state.23GANDO 12A use a modi�
ation of the existing KamLAND dete
tor. The ββ de
aysour
e/dete
tor is 13 tons of enri
hed 136Xe-loaded s
intillator 
ontained in an innerballoon. The 2νββ de
ay rate is derived from the �t to the spe
trum between 0.5 and4.8 MeV. This result is in agreement with ACKERMAN 11.24ARNOLD 11 use enri
hed 130Te in the NEMO-3 dete
tor to measure the 2ν ββ de
ayrate. This result is in agreement with, but more a

urate than ARNABOLDI 03.25ARNOLD 11 use the NEMO-3 dete
tor to obtain a limit for the 0ν ββ de
ay.This resultis less signi�
ant than ARNABOLDI 05.26BARABASH 11 use 100 g of enri
hed 112Sn to determine a limit for the ECEC 0νββde
ay to the 0+3 state of 112Cd by sear
hing for the de-ex
itation γ with a Ge dete
tor.This de
ay mode is a 
andidate for resonant rate enhan
ement.27BARABASH 11 use 100 g of enri
hed 112Sn to determine a limit for the ECEC 0νββde
ay to the 0+2 state of 112Cd by sear
hing for the de-ex
itation γ with a Ge dete
tor.28BARABASH 11 use 100 g of enri
hed 112Sn to determine a limit for the ECEC 0νββde
ay to the 0+1 state of 112Cd by sear
hing for the de-ex
itation γ with a Ge dete
tor.29BARABASH 11 use 100 g of enri
hed 112Sn to determine a limit for the ECEC 0νββde
ay to the ground state of 112Cd by sear
hing for the de-ex
itation γ with a Gedete
tor.
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ay30Supersedes DANEVICH 03 and ARNOLD 96.31 Supersedes BRUDANIN 00 and BALYSH 96.32BARABASH 11A use the NEMO-3 dete
tor to measure 2νββ rates and pla
e limits on0νββ half lives for various nu
lides.33 Supersedes ARNABOLDI 03.34 Supersedes ARNOLD 05A, ARNOLD 04, ARNOLD 98, and ELLIOTT 92.35 Less restri
tive than ARNABOLDI 08.36 Less restri
tive than DANEVICH 03.37BELLI 11D use ZnWO4 s
intillator 
alorimeters to sear
h for various ββ de
ay modes of64Zn, 70Zn, 180W, and 186W.38RUKHADZE 11 uses 13.6 g of enri
hed 106Cd to sear
h for the neutrinoless ECEC de
ayinto an ex
ited state of 106Pd and its 
hara
teristi
 γ-radiation using the TGV2 dete
tor.This de
ay mode is a 
andidate for resonant rate enhan
ement, however, hindered bythe large spin di�eren
e.39ARGYRIADES 10 use 9.4 ± 0.2 g of 96Zr in NEMO-3 dete
tor and identify its 2νββde
ay. The result is in agreement and supersedes ARNOLD 99.40ARGYRIADES 10 use 9.4 ± 0.2 g of 96Zr in NEMO-3 dete
tor and obtain a limit of the0νββ de
ay. The result is in agreement and supersedes ARNOLD 99.41ARGYRIADES 10 use 9.4 ± 0.2 g of 96Zr in NEMO-3 dete
tor and obtain a limit of the0νββ de
ay into the �rst ex
ited 0+1 state in 96Mo.42BELLI 10 use enri
hed 100Mo with 4 HP Ge dete
tors to re
ord the 590.8 and 539.5 keV
γ rays from the de
ay of the 0+1 state in 100Ru both in singles and 
oin
iden
es. Thisresult 
on�rms the measurement of KIDD 09 and ARNOLD 07 and supersedes them.43ARGYRIADES 09 use the NEMO-3 tra
king 
alorimeter 
ontaining 36.5 g of 150Nd,a total exposure of 924.7 days, to derive a limit for the 0νββ half-life. SupersedesDESILVA 97.44ARGYRIADES 09 use the NEMO-3 tra
king 
alorimeter 
ontaining 36.5 g of 150Nd, atotal exposure of 924.7 days, to determine the value of the 2νββ half-life. This result isin marginal agreement, but has somewhat smaller error bars, than DESILVA 97.45BELLI 09A use ZnWO4 s
intillating 
rystals to sear
h for various modes of ββ de
ay.This work improves the limits for di�erent modes of 64Zn de
ay into the ground stateof 64Ni, in this 
ase for the 0νβ+EC mode. Supersedes BELLI 08.46BELLI 09A use ZnWO4 s
intillating 
rystals to sear
h for various modes of ββ de
ay.This work improves the limits for di�erent modes of 64Zn de
ay into the ground stateof 64Ni, in this 
ase for the 0νββ ECEC mode. Supersedes BELLI 08.47KIDD 09 
ombine past and new data with an improved 
oin
iden
e dete
tion eÆ
ien
ydetermination. The result agrees with ARNOLD 95. Supersedes DEBRAECKELEER 01and BARABASH 95.48BELLI 08 use ZnWO4 s
intillation 
alorimeter to sear
h for neutrinoless β+ plus ele
tron
apture de
ay of 64Zn. The hal
ife limit for the 2νββ mode is 2.1× 1020 years.49BELLI 08B use CdWO4 s
intillation 
alorimeter to sear
h for 0νββ de
ay of 114Cd.50UMEHARA 08 use CaF2 s
intillation 
alorimeter to sear
h for double beta de
ay of48Ca. Limit is signi�
antly more stringent than quoted sensitivity: 18 × 1021 years.51 First ex
lusive measurement of 2ν-de
ay to the �rst ex
ited 0+1 -state of daughter nu
leus.ARNOLD 07 use the NEMO-3 tra
king 
alorimeter to dete
t all parti
les emitted in de
ay.Result agrees with the in
lusive (0ν + 2ν) measurement of DEBRAECKELEER 01.52 Limit on 0ν-de
ay to the �rst ex
ited 0+1 -state of daughter nu
leus using NEMO-3tra
king 
alorimeter. Supersedes DASSIE 95.53 Limit on 0ν-de
ay to the �rst ex
ited 2+-state of daughter nu
leus using NEMO-3tra
king 
alorimeter.54KLAPDOR-KLEINGROTHAUS 06A present re-analysis of data originally published inKLAPDOR-KLEINGROTHAUS 04A. Modi�ed pulse shape analysis leads the authors to
laim improved 6σ statisti
al eviden
e for observation of 0ν-de
ay, 
ompared to 4.2σin KLAPDOR-KLEINGROTHAUS 04A. Analysis of the systemati
 un
ertainty is notpresented. This re-analysis is disputed in AGOSTINI 13A and SCHWINGENHEUER 13.55 Supersedes ARNABOLDI 04. Bolometri
 TeO2 dete
tor array CUORICINO is used forhigh resolution sear
h for 0νββ de
ay. The half-life limit is derived from 3.09 kg yr130Te exposure.56NEMO-3 tra
king 
alorimeter is used in ARNOLD 05A to pla
e limit on 0ν ββ half-lifeof 82Se. Dete
tor 
ontains 0.93 kg of enri
hed 82Se. Supersedes ARNOLD 04.57ARNOLD 05A use the NEMO-3 tra
king dete
tor to determine the 2ν ββ half-life of82Se with high statisti
s and low ba
kground (389 days of data taking). SupersedesARNOLD 04.58ARNOLD 04 use the NEMO-3 tra
king dete
tor to determine the limit for 0νββ hal
ifeof 82Se. This represents an improvement, by a fa
tor of ∼ 10, when 
ompared withELLIOTT 92. It supersedes the limit of ARNOLD 98 for this de
ay using NEMO-2.59BARABASH 04 perform an in
lusive measurement of the ββ de
ay of 150Nd into the�rst ex
ited (0+1 ) state of 150Sm. Gamma radiation emitted in de
ay of the ex
itedstate is dete
ted.60De
ay into �rst ex
ited state of daughter nu
leus.61 Supersedes ALESSANDRELLO 00. Array of TeO2 
rystals in high resolution 
ryogeni

alorimeter. Some enri
hed in 128Te. Ground state to ground state de
ay.62Calorimetri
 measurement of 2νββ ground state de
ay of 116Cd using enri
hed CdWO4s
intillators. Agrees with EJIRI 95 and ARNOLD 96. Supersedes DANEVICH 00.63 Limit on 0νββ de
ay of 116Cd using enri
hed CdWO4 s
intillators. SupersedesDANEVICH 00.64 Limit on 0νββ de
ay of 116Cd into �rst ex
ited 2+ state of daughter nu
leus usingenri
hed CdWO4 s
intillators. Supersedes DANEVICH 00.

65 Limit on 0νββ de
ay of 116Cd into �rst ex
ited 0+ state of daughter nu
leus usingenri
hed CdWO4 s
intillators. Supersedes DANEVICH 00.66 Limit on 0νββ de
ay of 116Cd into se
ond ex
ited 0+ state of daughter nu
leus usingenri
hed CdWO4 s
intillators. Supersedes DANEVICH 00.67 Limit on the 0νββ ground state de
ay of 186W using enri
hed CdWO4 s
intillators.68 Limit on the 0νββ de
ay of 186W to the �rst ex
ited 2+ state of the daughter nu
leususing enri
hed CdWO4 s
intillators.69AALSETH 02B limit is based on 117 mol·yr of data using enri
hed Ge dete
-tors. Ba
kground redu
tion by means of pulse shape analysis is applied to partof the data set. Reported limit is slightly less restri
tive than that in KLAPDOR-KLEINGROTHAUS 01 However, it ex
ludes part of the allowed half-life range reportedin KLAPDOR-KLEINGROTHAUS 01B for the same nu
lide. The analysis has been 
rit-i
ized in KLAPDOR-KLEINGROTHAUS 04B. The 
riti
ism was addressed and disputedin AALSETH 04.70BERNABEI 02D report a limit for the 0ν, 0+ → 0+ de
ay of 134Xe, present in thesour
e at 17%, by 
onsidering the maximum number of events for this mode 
ompatiblewith the �tted smooth ba
kground.71DANEVICH 01 pla
e limit on 0νββ de
ay of 160Gd using Gd2SiO5:Ce 
rystal s
intilla-tors. The limit is more stringent than KOBAYASHI 95.72DANEVICH 01 pla
e limits on 0νββ de
ay of 160Gd into ex
ited 2+ state of daughternu
leus using Gd2SiO5:Ce 
rystal s
intillators.73KLAPDOR-KLEINGROTHAUS 01 is a 
ontinuation of the work published in BAUDIS 99.Isotopi
ally enri
hed Ge dete
tors are used in 
alorimetri
 measurement. The most strin-gent bound is derived from the data set in whi
h pulse-shape analysis has been used toredu
e ba
kground. Exposure time is 35.5 kg y. Supersedes BAUDIS 99 as most stringentresult.74WIESER 01 reports an in
lusive geo
hemi
al measurement of 96Zr ββ half life.Their result agrees within 2σ with ARNOLD 99 but only marginally, within 3σ, withKAWASHIMA 93.75BRUDANIN 00 determine the 2νββ hal
ife of 48Ca. Their value is less a

urate thanBALYSH 96.76ARNOLD 99 measure dire
tly the 2νββ de
ay of Zr for the �rst time, using the NEMO-2tra
king dete
tor and an isotopi
ally enri
hed sour
e. The lifetime is more a

urate thanthe geo
hemi
al result of KAWASHIMA 93.77ARNOLD 98 determine the limit for 0νββ de
ay to the ex
ited 2+ state of 82Se usingthe NEMO-2 tra
king dete
tor.78DESILVA 97 result for 2νββ de
ay of 150Nd is in marginal agreement with ARTEMEV 93.It has smaller errors.79BALYSH 96 measure the 2νββ de
ay of 48Ca, using a passive sour
e of enri
hed 48Cain a TPC.80BERNATOWICZ 92 �nds 128Te/130Te a
tivity ratio from slope of 128Xe/132Xe vs130Xe/132Xe ratios during extra
tion, and normalizes to lead-dated ages for the 130Telifetime. The authors state that their results imply that \(a) the double beta de
ay of128Te has been �rmly established and its half-life has been determined . . . without anyambiguity due to trapped Xe interferen
es. . . (b) Theoreti
al 
al
ulations . . . underes-timate the [long half-lives of 128Te 130Te℄ by 1 or 2 orders of magnitude, pointing toa real suppression in the 2νββ de
ay rate of these isotopes. (
) Despite [this℄, most
ββ-models predi
t a ratio of 2νββ de
ay widths . . . in fair agreement with observation."Further details of the experiment are given in BERNATOWICZ 93. Our listed half-lifehas been revised downward from the published value by the authors, on the basis ofreevaluated 
osmi
-ray 128Xe produ
tion 
orre
tions.81TURKEVICH 91 observes a
tivity in old U sample. The authors 
ompare their resultswith theoreti
al 
al
ulations. They state \Using the phase-spa
e fa
tors of Boehm andVogel (BOEHM 87) leads to matrix element values for the 238U transition in the samerange as dedu
ed for 130Te and 76Ge. On the other hand, the latest theoreti
al estimates(STAUDT 90) give an upper limit that is 10 times lower. This large dis
repan
y implieseither a defe
t in the 
al
ulations or the presen
e of a faster path than the standardtwo-neutrino mode in this 
ase." See BOEHM 87 and STAUDT 90.82Ratio of in
lusive double beta half lives of 128Te and 130Te determined from mineralsmelonite (NiTe2) and altaite (PbTe) by means of mass spe
tros
opi
 measurement ofabundan
e of ββ-de
ay produ
ts. As gas-retention-age 
ould not be determined theauthors use half life of 130Te (LIN 88) to infer the half life of 128Te. No estimate of thesystemati
 un
ertainty of this method is given. The dire
tly determined half life ratioagrees with BERNATOWICZ 92. However, the inferred 128Te half life disagrees withKIRSTEN 83 and BERNATOWICZ 92.

〈mν

〉, The E�e
tive Weighted Sum of Majorana Neutrino Masses〈mν

〉, The E�e
tive Weighted Sum of Majorana Neutrino Masses〈mν

〉, The E�e
tive Weighted Sum of Majorana Neutrino Masses〈mν

〉, The E�e
tive Weighted Sum of Majorana Neutrino MassesContributing to Neutrinoless Double-β De
ayContributing to Neutrinoless Double-β De
ayContributing to Neutrinoless Double-β De
ayContributing to Neutrinoless Double-β De
ay
〈mν

〉 = ∣∣� U21 jmνj ∣∣, where the sum goes from 1 to n and where n = number ofneutrino generations, and νj is a Majorana neutrino. Note that U2e j , not ∣∣Ue j ∣∣2,o

urs in the sum. The possibility of 
an
ellations has been stressed. In the followingListings, only best or 
omparable limits or lifetimes for ea
h isotope are reported.VALUE (eV) CL% ISOTOPE TRANSITION METHOD DOCUMENT ID
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 0.27{0.65 90 130Te 0ν,g.s.→ g.s. CUORE 1 ALFONSO 15
< 0.33{0.62 90 100Mo 0ν NEMO-3 2 ARNOLD 15
< 0.19{0.45 90 136Xe 0ν,g.s.→ g.s. EXO-200 3 ALBERT 14B
< 0.2{0.4 90 76Ge 0ν GERDA 4 AGOSTINI 13A
< 0.12{0.25 90 136Xe 0ν,g.s.→ g.s. KamLAND-Zen 5 GANDO 13A
< 0.3{0.6 90 136Xe 0ν,g.s.→ g.s. KamLAND-Zen 6 GANDO 12A
< 0.89{2.43 90 82Se 0ν NEMO-3 7 BARABASH 11A
< 7.2{19.5 90 96Zr 0ν NEMO-3 8 ARGYRIADES 10
< 4.0{6.8 90 150Nd 0ν NEMO-3 9 ARGYRIADES 09
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< 3.5{22 90 48Ca 0ν CaF2 s
int. 10 UMEHARA 08
< 9.3{60 90 100Mo 0+→ 0+1 NEMO-3 11 ARNOLD 07
< 6500 90 100Mo 0+→ 2+ NEMO-3 12 ARNOLD 070.32±0.03 68 76Ge 0ν Enri
hed HPGe 13 KLAPDOR-K... 06A
< 0.2{1.1 90 130Te Cryog. det. 14 ARNABOLDI 05
< 0.7{2.8 90 100Mo 0ν NEMO-3 15 ARNOLD 05A
< 1.7{4.9 90 82Se 0ν NEMO-3 16 ARNOLD 05A
< 0.37{1.9 90 130Te Cryog. det. 17 ARNABOLDI 04
< 0.8{1.2 90 100Mo 0ν NEMO-3 18 ARNOLD 04
< 1.5{3.1 90 82Se 0ν NEMO-3 18 ARNOLD 040.1{0.9 99.776Ge Enri
hed HP Ge 19 KLAPDOR-K... 04A
< 7.2{44.7 90 48Ca CaF2 s
int. 20 OGAWA 04
< 1.1{2.6 90 130Te Cryog. det. 21 ARNABOLDI 03
< 1.5{1.7 90 116Cd 0ν 116CdWO4 s
int. 22 DANEVICH 03
< 0.33{1.35 90 Enri
hed HPGe 23 AALSETH 02B
<2.9 90 136Xe 0ν Liquid Xe S
int. 24 BERNABEI 02D0.39+0.17

−0.28 76Ge 0ν Enri
hed HPGe 25 KLAPDOR-K... 02D
< 2.1{4.8 90 100Mo 0ν ELEGANT V 26 EJIRI 01
< 0.35 90 76Ge Enri
hed HPGe 27 KLAPDOR-K... 01
<23 90 96Zr NEMO-2 28 ARNOLD 99
< 1.1{1.5 128Te Geo
hem 29 BERNATOW... 92
<5 68 82Se TPC 30 ELLIOTT 92
<8.3 76 48Ca 0ν CaF2 s
int. YOU 911ALFONSO 15 report a range of mass limits using the 
ombined data of the CUORICINOand CUORE-0 experiments. The reported mass range re
e
ts the variability of the nu
learmatrix element 
al
ulations.2ARNOLD 15 use the NEMO-3 tra
king 
alorimeter with 34.3 kg yr exposure to determinethe neutrino mass limit based on the 0νββ-half life of 100Mo. The spread range re
e
tsdi�erent nu
lear matrix elements. Supersedes ARNOLD 14 and BARABASH 11A.3ALBERT 14B is based on 100 kg yr of exposure of the EXO-200 tra
king 
alorimeter.The mass range re
e
ts the nu
lear matrix element 
al
ulations. Supersedes AUGER 12.4AGOSTINI 13A is based on 21.6 kg yr of data 
olle
ted by the GERDA dete
tor. Thereported range re
e
ts di�erent nu
lear matrix elements. This result is in tension withthe eviden
e for 0νββ-de
ay reported in KLAPDOR-KLEINGROTHAUS 06A and earlierreferen
es to that work.5GANDO 13A limit is based on a 
ombination of KamLAND-Zen and EXO-200(AUGER 12) data. The reported range re
e
ts di�erent nu
lear matrix elements. Su-persedes GANDO 12A.6GANDO 12A limit is based on the KamLAND-Zen data. The reported range re
e
tsdi�erent nu
lear matrix elements. Superseded by GANDO 13A.7BARABASH 11A limit is based on NEMO-3 data for 82Se. The reported range re
e
tsdi�erent nu
lear matrix elements. Supersedes ARNOLD 05A and ARNOLD 04.8ARGYRIADES 10 use 96Zr and the NEMO-3 tra
king dete
tor to obtain the reportedmass limit. The range re
e
ts the 
u
tuation of the nu
lear matrix elements 
onsidered.9ARGYRIADES 09 limit is based on data taken with the NEMO-3 dete
tor and 150Nd.A range of nu
lear matrix elements that in
lude the e�e
t of nu
lear deformation havebeen used.10 Limit was obtained using CaF2 s
intillation 
alorimeter to sear
h for double beta de
ayof 48Ca. Reported range of limits re
e
ts spread of QRPA and SM matrix element
al
ulations used. Supersedes OGAWA 04.11ARNOLD 07 use NEMO-3 half life limit for 0ν-de
ay of 100Mo to the �rst ex
ited 0+1 -state of daughter nu
leus to obtain neutrino mass limit. The spread re
e
ts the 
hoi
eof two di�erent nu
lear matrix elements. This limit is not 
ompetitive when 
omparedto the de
ay to the ground state.12ARNOLD 07 use NEMO-3 half life limit for 0ν-de
ay of 100Mo to the �rst ex
ited 2+-state of daughter nu
leus to obtain neutrino mass limit. This limit is not 
ompetitivewhen 
ompared to the de
ay to the ground state.13Re-analysis of data originally published in KLAPDOR-KLEINGROTHAUS 04A. Modi�edpulse shape analysis leads the authors to 
laim 6σ statisti
al eviden
e for observation of0ν-de
ay. Authors use matrix element of STAUDT 90. Un
ertainty of nu
lear matrixelement is not re
e
ted in stated error. Supersedes KLAPDOR-KLEINGROTHAUS 04A.14 Supersedes ARNABOLDI 04. Reported range of limits due to use of di�erent nu
learmatrix element 
al
ulations.15Mass limits reported in ARNOLD 05A are derived from 100Mo data, obtained by theNEMO-3 
ollaboration. The range re
e
ts the spread of matrix element 
al
ulations
onsidered in this work. Supersedes ARNOLD 04.16Neutrino mass limits based on 82Se data utilizing the NEMO-3 dete
tor. The rangereported in ARNOLD 05A re
e
ts the spread of matrix element 
al
ulations 
onsideredin this work. Supersedes ARNOLD 04.17 Supersedes ARNABOLDI 03. Reported range of limits due to use of di�erent nu
learmatrix element 
al
ulations.18ARNOLD 04 limit is based on the nu
lear matrix elements of SIMKOVIC 99, STOICA 01and CIVITARESE 03.19 Supersedes KLAPDOR-KLEINGROTHAUS 02D. Event ex
ess at ββ-de
ay energy is usedto derive Majorana neutrino mass using the nu
lear matrix elements of STAUDT 90.The mass range shown is based on the authors evaluation of the un
ertainties of theSTAUDT 90 matrix element 
al
ulation. If this un
ertainty is negle
ted, and only statis-ti
al errors are 
onsidered, the range in 〈m〉 be
omes (0.2{0.6) eV at the 3 σ level.20Calorimetri
 CaF2 s
intillator. Range of limits re
e
ts authors' estimate of the un
er-tainty of the nu
lear matrix elements. Repla
es YOU 91 as the most stringest limit basedon 48Ca.21 Supersedes ALESSANDRELLO 00. Cryogeni
 
alorimeter sear
h. Reported a rangere
e
ting un
ertainty in nu
lear matrix element 
al
ulations.

22 Limit for 〈mν
〉 is based on the nu
lear matrix elements of STAUDT 90 and ARNOLD 96.Supersedes DANEVICH 00.23AALSETH 02B reported range of limits on 〈mν

〉 re
e
ts the spread of theoreti
al nu-
lear matrix elements. Ex
ludes part of allowed mass range reported in KLAPDOR-KLEINGROTHAUS 01B.24BERNABEI 02D limit is based on the matrix elements of SIMKOVIC 02. The range ofneutrino masses based on a variety of matrix elements is 1.1{2.9 eV.25KLAPDOR-KLEINGROTHAUS 02D is a detailed des
ription of the analysis of the data
olle
ted by the Heidelberg-Mos
ow experiment, previously presented in KLAPDOR-KLEINGROTHAUS 01B. Matrix elements in STAUDT 90 have been used. Seethe footnote in the pre
eding table for further details. See also KLAPDOR-KLEINGROTHAUS 02B.26The range of the reported 〈mν
〉 values re
e
ts the spread of the nu
lear matrix elements.On axis value assuming 〈

λ
〉=〈

η
〉=0.27KLAPDOR-KLEINGROTHAUS 01 uses the 
al
ulation by STAUDT 90. Using severalother models in the literature 
ould worsen the limit up to 1.2 eV. This is the moststringent experimental bound on mν . It supersedes BAUDIS 99B.28ARNOLD 99 limit based on the nu
lear matrix elements of STAUDT 90.29BERNATOWICZ 92 �nds these majorana neutrino mass limits assuming that the mea-sured geo
hemi
al de
ay width is a limit on the 0ν de
ay width. The range is the rangefound using matrix elements from HAXTON 84, TOMODA 87, and SUHONEN 91.Further details of the experiment are given in BERNATOWICZ 93.30ELLIOTT 92 uses the matrix elements of HAXTON 84.Limits on Lepton-Number Violating (V+A) Current AdmixtureLimits on Lepton-Number Violating (V+A) Current AdmixtureLimits on Lepton-Number Violating (V+A) Current AdmixtureLimits on Lepton-Number Violating (V+A) Current AdmixtureFor reasons given in the dis
ussion at the beginning of this se
tion, we list only resultsfrom 1989 and later. 〈

λ
〉 = λ

∑UejVej and 〈
η
〉 = η

∑UejVej , where the sum isover the number of neutrino generations. This sum vanishes for massless or unmixedneutrinos. In the following Listings, only best or 
omparable limits or lifetimes for ea
hisotope are reported.
〈
λ

〉 (10−6) CL% 〈
η
〉 (10−8) CL% ISOTOPE METHOD DOCUMENT ID

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 0.9{1.3 90 < 0.5{0.8 90 100Mo NEMO-3 1 ARNOLD 14
<120 90 100Mo 0+→ 2+ 2 ARNOLD 070.692+0.058

−0.056 68 0.305+0.026
−0.025 68 76Ge Enri
hed HPGe 3 KLAPDOR-K... 06A

< 2.5 90 100Mo 0ν, NEMO-3 4 ARNOLD 05A
< 3.8 90 82Se 0ν, NEMO-3 5 ARNOLD 05A
< 1.5{2.0 90 100Mo 0ν, NEMO-3 6 ARNOLD 04
< 3.2{3.8 90 82Se 0ν, NEMO-3 7 ARNOLD 04
< 1.6{2.4 90 < 0.9{5.3 90 130Te Cryog. det. 8 ARNABOLDI 03
< 2.2 90 <2.5 90 116Cd 116CdWO4 s
int. 9 DANEVICH 03
< 3.2{4.7 90 < 2.4{2.7 90 100Mo ELEGANT V 10 EJIRI 01
< 1.1 90 <0.64 90 76Ge Enri
hed HPGe 11 GUENTHER 97
< 4.4 90 <2.3 90 136Xe TPC 12 VUILLEUMIER 93

<5.3 128Te Geo
hem 13 BERNATOW... 921ARNOLD 14 is based on 34.7 kg yr of exposure of the NEMO-3 tra
king 
alorimeter.The reported range limit on 〈
λ
〉 and 〈

η
〉 re
e
ts the nu
lear matrix element un
ertaintyin 100Mo.2ARNOLD 07 use NEMO-3 half life limit for 0ν-de
ay of 100Mo to the �rst ex
ited 2+-state of daughter nu
leus to limit the right-right handed admixture of weak 
urrents 〈

λ
〉.This limit is not 
ompetitive when 
ompared to the de
ay to the ground state.3Re-analysis of data originally published in KLAPDOR-KLEINGROTHAUS 04A. Modi�edpulse shape analysis leads the authors to 
laim 6σ statisti
al eviden
e for observationof 0ν-de
ay. Authors use matrix element of MUTO 89 to determine 〈

λ
〉 and 〈

η
〉.Un
ertainty of nu
lear matrix element is not re
e
ted in stated errors.4ARNOLD 05A derive limit for 〈

λ
〉 based on 100Mo data 
olle
ted with NEMO-3 dete
tor.No limit for 〈

η
〉 is given. Supersedes ARNOLD 04.5ARNOLD 05A derive limit for 〈

λ
〉 based on 82Se data 
olle
ted with NEMO-3 dete
tor.No limit for 〈

η
〉 is given. Supersedes ARNOLD 04.6ARNOLD 04 use the matrix elements of SUHONEN 94 to obtain a limit for 〈

λ
〉, no limitfor 〈

η
〉 is given. This limit is more stringent than the limit in EJIRI 01 for the samenu
leus.7ARNOLD 04 use the matrix elements of TOMODA 91 and SUHONEN 91 to obtain alimit for 〈

λ
〉, no limit for 〈

η
〉 is given.8 Supersedes ALESSANDRELLO 00. Cryogeni
 
alorimeter sear
h. Reported a rangere
e
ting un
ertainty in nu
lear matrix element 
al
ulations.9 Limits for 〈

λ
〉 and 〈

η
〉 are based on nu
lear matrix elements of STAUDT 90. SupersedesDANEVICH 00.10The range of the reported 〈

λ
〉 and 〈

η
〉 values re
e
ts the spread of the nu
lear matrixelements. On axis value assuming 〈mν
〉=0 and 〈

λ
〉=〈

η
〉=0, respe
tively.11GUENTHER 97 limits use the matrix elements of STAUDT 90. Supersedes BALYSH 95and BALYSH 92.12VUILLEUMIER 93 uses the matrix elements of MUTO 89. Based on a half-life limit2.6× 1023 y at 90%CL.13BERNATOWICZ 92 takes the measured geo
hemi
al de
ay width as a limit on the 0νwidth, and uses the SUHONEN 91 
oeÆ
ients to obtain the least restri
tive limit on η.Further details of the experiment are given in BERNATOWICZ 93.
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hwingenheuer (MPIH)ANDREOTTI 12 PR C85 045503 E. Andreotti et al. (CUORICINO Collab.)AUGER 12 PRL 109 032505 M. Auger et al. (EXO-200 Collab.)BELLI 12A PR C85 044610 P. Belli et al.GANDO 12A PR C85 045504 A. Gando et al. (KamLAND-Zen Collab.)ACKERMAN 11 PRL 107 212501 N. A
kerman et al. (EXO Collab.)ARNOLD 11 PRL 107 062504 R. Arnold et al. (NEMO-3 Collab.)BARABASH 11 PR C83 045503 A.S. Barabash et al.BARABASH 11A PAN 74 312 A.S. Barabash et al. (NEMO-3 Collab.)Translated from YAF 74 330.BELLI 11D JP G38 115107 P. Belli et al. (DAMA-INR Collab.)RUKHADZE 11 NP A852 197 N.I. Rukhadze et al. (TGV-2 Collab.)ARGYRIADES 10 NP A847 168 J. Argyriades et al. (NEMO-3 Collab.)BELLI 10 NP A846 143 P. Belli et al. (DAMA-INR Collab.)ARGYRIADES 09 PR C80 032501 J. Argyriades et al. (NEMO-3 Collab.)BELLI 09A NP A826 256 P. Belli et al. (DAMA-INR Collab.)KIDD 09 NP A821 251 M. Kidd et al.ARNABOLDI 08 PR C78 035502 C. Arnaboldi et al.BELLI 08 PL B658 193 P. Belli et al. (DAMA-INR Collab.)BELLI 08B EPJ A36 167 P. Belli et al.UMEHARA 08 PR C78 058501 S. Umehara et al.ARNOLD 07 NP A781 209 R. Arnold et al. (NEMO-3 Collab.)KLAPDOR-K... 06A MPL A21 1547 H.V. Klapdor-Kleingrothaus, I.V. KrivosheinaARNABOLDI 05 PRL 95 142501 C. Arnaboldi et al. (CUORICINO Collab.)ARNOLD 05A PRL 95 182302 R. Arnold et al. (NEMO-3 Collab.)AALSETH 04 PR D70 078302 C.E. Aalseth et al.ARNABOLDI 04 PL B584 260 C. Arnaboldi et al.ARNOLD 04 JETPL 80 377 R. Arnold et al. (NEMO-3 Collab.)Translated from ZETFP 80 429.BARABASH 04 JETPL 79 10 A.S. Barabash et al.KLAPDOR-K... 04A PL B586 198 H.V. Klapdor-Kleingrothaus et al.KLAPDOR-K... 04B PR D70 078301 H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. KrivosheinaOGAWA 04 NP A730 215 I. Ogawa et al.ARNABOLDI 03 PL B557 167 C. Arnaboldi et al.CIVITARESE 03 NP A729 867 O. Civitarese, J. SuhonenDANEVICH 03 PR C68 035501 F.A. Danevi
h et al.AALSETH 02B PR D65 092007 C.E. Aalseth et al. (IGEX Collab.)BERNABEI 02D PL B546 23 R. Bernabei et al. (DAMA Collab.)KLAPDOR-K... 02B PPNL 110 57 H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. KrivosheinaKLAPDOR-K... 02D FP 32 1181 H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. KrivosheinaSIMKOVIC 02 hep-ph/0204278 F. Simkovi
, P. Domin, A. FaesslerDANEVICH 01 NP A694 375 F.A. Danevi
h et al.DEBRAECKEL...01 PRL 86 3510 L. De Brae
keleer et al.EJIRI 01 PR C63 065501 H. Ejiri et al.KLAPDOR-K... 01 EPJ A12 147 H.V. Klapdor-Kleingrothaus et al.KLAPDOR-K... 01B MPL A16 2409 H.V. Klapdor-Kleingrothaus et al.STOICA 01 NP A694 269 S. Stoi
a, H.V. Klapdor-KleingrothousWIESER 01 PR C64 024308 M.E. Wieser, J.R. De LaeterALESSAND... 00 PL B486 13 A. Alessandrello et al.BRUDANIN 00 PL B495 63 V.B. Brudanin et al. (TGV Collab.)DANEVICH 00 PR C62 045501 F.A. Danevi
h et al.ARNOLD 99 NP A658 299 R. Arnold et al. (NEMO Collab.)BAUDIS 99 PR D59 022001 L. Baudis et al. (Heidelberg-Mos
ow Collab.)BAUDIS 99B PRL 83 41 L. Baudis et al. (Heidelberg-Mos
ow Collab.)SIMKOVIC 99 PR C60 055502 F. Simkovi
 et al.ARNOLD 98 NP A636 209 R. Arnold et al. (NEMO-2 Collab.)DESILVA 97 PR C56 2451 A. de Silva et al. (UCI)GUENTHER 97 PR D55 54 M. Gunther et al. (Heidelberg-Mos
ow Collab.)ARNOLD 96 ZPHY C72 239 R. Arnold et al. (BCEN, CAEN, JINR+)BALYSH 96 PRL 77 5186 A. Balysh et al. (KIAE, UCI, CIT)ARNOLD 95 JETPL 61 170 R.G. Arnold et al. (NEMO Collab.)Translated from ZETFP 61 168.BALYSH 95 PL B356 450 A. Balysh et al. (Heidelberg-Mos
ow Collab.)BARABASH 95 PL B345 408 A.S. Barabash et al. (ITEP, SCUC, PNL+)DASSIE 95 PR D51 2090 D. Dassie et al. (NEMO Collab.)EJIRI 95 JPSJ 64 339 H. Ejiri et al. (OSAK, KIEV)KOBAYASHI 95 NP A586 457 M. Kobayashi, M. Kobayashi (KEK, SAGA)SUHONEN 94 PR C49 3055 J. Suhonen, O. CivitareseARTEMEV 93 JETPL 58 262 V.A. Artemiev et al. (ITEP, INRM)Translated from ZETFP 58 256.BERNATOW... 93 PR C47 806 T. Bernatowi
z et al. (WUSL, TATA)KAWASHIMA 93 PR C47 R2452 A. Kawashima, K. Takahashi, A. Masuda (TOKYC+)VUILLEUMIER 93 PR D48 1009 J.C. Vuilleumier et al. (NEUC, CIT, VILL)BALYSH 92 PL B283 32 A. Balysh et al. (MPIH, KIAE, SASSO)BERNATOW... 92 PRL 69 2341 T. Bernatowi
z et al. (WUSL, TATA)ELLIOTT 92 PR C46 1535 S.R. Elliott et al. (UCI)SUHONEN 91 NP A535 509 J. Suhonen, S.B. Khadkikar, A. Faessler (JYV+)TOMODA 91 RPP 54 53 T. TomodaTURKEVICH 91 PRL 67 3211 A. Turkevi
h, T.E. E
onomou, G.A. Cowan (CHIC+)YOU 91 PL B265 53 K. You et al. (BHEP, CAST+)STAUDT 90 EPL 13 31 A. Staudt, K. Muto, H.V. Klapdor-KleingrothausMUTO 89 ZPHY A334 187 K. Muto, E. Bender, H.V. Klapdor (TINT, MPIH)LIN 88 NP A481 477 W.J. Lin et al.LIN 88B NP A481 484 W.J. Lin et al.BOEHM 87 Massive Neutrinos F. Bohm, P. Vogel (CIT)Cambridge Univ. Press, CambridgeTOMODA 87 PL B199 475 T. Tomoda, A. Faessler (TUBIN)HAXTON 84 PPNP 12 409 W.C. Haxton, G.J. StevensonKIRSTEN 83 PRL 50 474 T. Kirsten, H. Ri
hter, E. Jessberger (MPIH)Neutrino Mixing
With the exception of a few possible anomalies such as

LSND, current neutrino data can be described within the

framework of a 3×3 mixing matrix between the flavor eigen-

states νe, νµ, and ντ and the mass eigenstates ν1, ν2, and

ν3. (See Eq. (14.6) of the review “Neutrino Mass, Mixing, and

Oscillations” by K. Nakamura and S.T. Petcov.) The Listings

are divided into the following sections:

(A) Neutrino fluxes and event ratios: shows measurements

which correspond to various oscillation tests for Accelerator, Re-

actor, Atmospheric, and Solar neutrino experiments. Typically

ratios involve a measurement in a realm sensitive to oscillations

compared to one for which no oscillation effect is expected.

(B) Three neutrino mixing parameters: shows measure-

ments of sin2(2θ12), sin2(2θ23), ∆m2
21, ∆m2

32, and sin2(2θ13)

which are all interpretations of data based on the three neu-

trino mixing scheme described in the review “Neutrino Mass,

Mixing, and Oscillations.” by K. Nakamura and S.T. Petcov.

Many parameters have been calculated in the two-neutrino

approximation.

(C) Other neutrino mixing results: shows measurements

and limits for the probability of oscillation for experiments

which might be relevant to the LSND oscillation claim. In-

cluded are experiments which are sensitive to νµ → νe, ν̄µ → ν̄e,

sterile neutrinos, and CPT tests.(A) Neutrino 
uxes and event ratios(A) Neutrino 
uxes and event ratios(A) Neutrino 
uxes and event ratios(A) Neutrino 
uxes and event ratiosEvents (observed/expe
ted) from a

elerator νµ experiments.Events (observed/expe
ted) from a

elerator νµ experiments.Events (observed/expe
ted) from a

elerator νµ experiments.Events (observed/expe
ted) from a

elerator νµ experiments.Some neutrino os
illation experiments 
ompare the 
ux in two or more dete
tors. Thisis usually quoted as the ratio of the event rate in the far dete
tor to the expe
ted ratebased on an extrapolation from the near dete
tor in the absen
e of os
illations.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.01±0.10 1 ABE 14B T2K νe rate in T2K near dete
t.0.71±0.08 2 AHN 06A K2K K2K to Super-K0.64±0.05 3 MICHAEL 06 MINS All 
harged 
urrent events0.71+0.08

−0.09 4 ALIU 05 K2K KEK to Super-K0.70+0.10
−0.11 5 AHN 03 K2K KEK to Super-K1The rate of νe from µ de
ay was measured to be 0.68 ± 0.30 
ompared to the predi
ted
ux. From K de
ay 1.10 ± 0.14 
ompared to the predi
ted 
ux.2Based on the observation of 112 events when 158.1+9.2

−8.6 were expe
ted without os-
illations. In
luding not only the number of events but also the shape of the energydistribution, the eviden
e for os
illation is at the level of about 4.3 σ. SupersedesALIU 05.3This ratio is based on the observation of 215 events 
ompared to an expe
tation of336 ± 14 without os
illations. See also ADAMSON 08.4This ratio is based on the observation of 107 events at the far dete
tor 250 km awayfrom KEK, and an expe
tation of 151+12
−10.5This ratio is based on the observation of 56 events with an expe
tation of 80.1+6.2

−5.4.Events (observed/expe
ted) from rea
tor νe experiments.Events (observed/expe
ted) from rea
tor νe experiments.Events (observed/expe
ted) from rea
tor νe experiments.Events (observed/expe
ted) from rea
tor νe experiments.The quoted values are the ratios of the measured rea
tor νe event rate at the quoteddistan
es, and the rate expe
ted without os
illations. The expe
ted rate is based onthe experimental data for the most signi�
ant rea
tor fuels (235U, 239Pu, 241Pu)and on 
al
ulations for 238U.A re
ent re-evaluation of the spe
tral 
onversion of ele
tron to νe in MUELLER 11results in an upward shift of the rea
tor νe spe
trum by 3% and, thus, might requirerevisions to the ratios listed in this table.VALUE DOCUMENT ID TECN COMMENT0.944±0.007±0.0030.944±0.007±0.0030.944±0.007±0.0030.944±0.007±0.003 1 AN 13 DAYA DayaBay, LIng Ao/Ao II rea
tors
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.944±0.016±0.040 2 ABE 12 DCHZ Chooz rea
tors0.920±0.009±0.014 3 AHN 12 RENO Yonggwang rea
tors0.940±0.011±0.004 4 AN 12 DAYA DayaBay, LIng Ao/Ao II rea
tors1.08 ±0.21 ±0.16 5 DENIZ 10 TEXO Kuo-Sheng rea
tor, 28 m0.658±0.044±0.047 6 ARAKI 05 KLND Japanese rea
t. ∼ 180 km0.611±0.085±0.041 7 EGUCHI 03 KLND Japanese rea
t. ∼ 180 km1.01 ±0.024±0.053 8 BOEHM 01 Palo Verde rea
t. 0.75{0.89 km1.01 ±0.028±0.027 9 APOLLONIO 99 CHOZ Chooz rea
tors 1 km
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le ListingsNeutrinoMixing0.987±0.006±0.037 10 GREENWOOD 96 Savannah River, 18.2 m0.988±0.004±0.05 ACHKAR 95 CNTR Bugey rea
tor, 15 m0.994±0.010±0.05 ACHKAR 95 CNTR Bugey rea
tor, 40 m0.915±0.132±0.05 ACHKAR 95 CNTR Bugey rea
tor, 95 m0.987±0.014±0.027 11 DECLAIS 94 CNTR Bugey rea
tor, 15 m0.985±0.018±0.034 KUVSHINN... 91 CNTR Rovno rea
tor1.05 ±0.02 ±0.05 VUILLEUMIER 82 G�osgen rea
tor0.955±0.035±0.110 12 KWON 81 νe p → e+ n0.89 ±0.15 12 BOEHM 80 νe p → e+ n1AN 13 use six identi
al dete
tors, with three pla
ed near the rea
tor 
ores (
ux-weightedbaselines of 470 and 576 m) and the remaining three at the far hall (at the 
ux averageddistan
e of 1648 m from all six rea
tor 
ores) to determine the mixing angle θ13 using the
νe observed intera
tion rate ratios. This rate-only analysis ex
ludes the no-os
illationhypothesis at 7.7 standard deviations. The value of �m231 = 2.32 × 10−3 eV2 wasassumed in the analysis. This is an improved result (2.5 times in
rease in statisti
s)
ompared to AN 12.2ABE 12 determine the νe intera
tion rate in a single dete
tor, lo
ated 1050 m from the
ores of two rea
tors. The rate normalization is �xed by the results of the Bugey4 rea
torexperiment, thus avoiding any dependen
e on possible very short baseline os
illations.3AHN 12 use two identi
al dete
tors, pla
ed at 
ux weighted distan
es of 408.56 m and1433.99m from six rea
tor 
ores, to determine the νe intera
tion rate ratio.4AN 12 use six identi
al dete
tors with three pla
ed near the rea
tor 
ores (
ux-weightedbaselines of 470 m and 576 m) and the remaining three at the far hall (at the 
uxaveraged distan
e of 1648 m from all six rea
tor 
ores) to determine the νe intera
tionrate ratios. Superseded by AN 13.5DENIZ 10 observe rea
tor νe e s
attering with re
oil kineti
 energies 3{8 MeV usingCsI(Tl) dete
tors. The observed rate is 
onsistent with the Standard Model predi
tion,leading to a 
onstraint on sin2θW = 0.251 ± 0.031(stat)±0.024(sys).6Updated result of KamLAND, in
luding the data used in EGUCHI 03. Note that thesurvival probabilities for di�erent periods are not dire
tly 
omparable be
ause the e�e
tivebaseline varies with power output of the rea
tor sour
es involved, and there were largevariations in the rea
tor power produ
tion in Japan in 2003.7 EGUCHI 03 observe rea
tor neutrino disappearan
e at ∼ 180 km baseline to variousJapanese nu
lear power rea
tors.8BOEHM 01 sear
h for neutrino os
illations at 0.75 and 0.89 km distan
e from the PaloVerde rea
tors.9APOLLONIO 99, APOLLONIO 98 sear
h for neutrino os
illations at 1.1 km �xed dis-tan
e from Chooz rea
tors. They use νe p → e+ n in Gd-loaded s
intillator target.APOLLONIO 99 supersedes APOLLONIO 98. See also APOLLONIO 03 for detaileddes
ription.10GREENWOOD 96 sear
h for neutrino os
illations at 18 m and 24 m from the rea
tor atSavannah River.11DECLAIS 94 result based on integral measurement of neutrons only. Result is ra-tio of measured 
ross se
tion to that expe
ted in standard V-A theory. Repla
ed byACHKAR 95.12KWON 81 represents an analysis of a larger set of data from the same experiment asBOEHM 80. Atmospheri
 neutrinosAtmospheri
 neutrinosAtmospheri
 neutrinosAtmospheri
 neutrinosNeutrinos and antineutrinos produ
ed in the atmosphere indu
e µ-like ande-like events in underground dete
tors. The ratio of the numbers of thetwo kinds of events is de�ned as µ/e. It has the advantage that systemati
e�e
ts, su
h as 
ux un
ertainty, tend to 
an
el, for both experimental andtheoreti
al values of the ratio. The \ratio of the ratios" of experimentalto theoreti
al µ/e, R(µ/e), or that of experimental to theoreti
al µ/total,R(µ/total) with total = µ+e, is reported below. If the a
tual value isnot unity, the value obtained in a given experiment may depend on theexperimental 
onditions. In addition, the measured \up-down asymmetry"for µ (Nup(µ)/Ndown(µ)) or e (Nup(e)/Ndown(e)) is reported. Theexpe
ted \up-down asymmetry" is nearly unity if there is no neutrinoos
illation.R(µ/e) = (Measured Ratio µ/e) / (Expe
ted Ratio µ/e)R(µ/e) = (Measured Ratio µ/e) / (Expe
ted Ratio µ/e)R(µ/e) = (Measured Ratio µ/e) / (Expe
ted Ratio µ/e)R(µ/e) = (Measured Ratio µ/e) / (Expe
ted Ratio µ/e)VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.658±0.016±0.035 1 ASHIE 05 SKAM sub-GeV0.702+0.032
−0.030±0.101 2 ASHIE 05 SKAM multi-GeV0.69 ±0.10 ±0.06 3 SANCHEZ 03 SOU2 Calorimeter raw data4 FUKUDA 96B KAMI Water Cherenkov1.00 ±0.15 ±0.08 5 DAUM 95 FREJ Calorimeter0.60 +0.06
−0.05 ±0.05 6 FUKUDA 94 KAMI sub-GeV0.57 +0.08
−0.07 ±0.07 7 FUKUDA 94 KAMI multi-Gev8 BECKER-SZ... 92B IMB Water Cherenkov1ASHIE 05 results are based on an exposure of 92 kton yr during the 
omplete Super-Kamiokande I running period. The analyzed data sample 
onsists of fully-
ontainedsingle-ring e-like events with 0.1 GeV/
 < pe and µ-like events 0.2 GeV/
 < pµ,both having a visible energy < 1.33 GeV. These 
riteria mat
h the de�nition used byFUKUDA 94.2ASHIE 05 results are based on an exposure of 92 kton yr during the 
omplete Super-Kamiokande I running period. The analyzed data sample 
onsists of fully-
ontainedsingle-ring events with visible energy > 1.33 GeV and partially-
ontained events. Allpartially-
ontained events are 
lassi�ed as µ-like.

3 SANCHEZ 03 result is based on an exposure of 5.9 kton yr, and updates ALLISON 99result. The analyzed data sample 
onsists of fully-
ontained e-
avor and µ-
avor eventshaving lepton momentum > 0.3 GeV/
.4 FUKUDA 96B studied neutron ba
kground in the atmospheri
 neutrino sample observedin the Kamiokande dete
tor. No eviden
e for the ba
kground 
ontamination was found.5DAUM 95 results are based on an exposure of 2.0 kton yr whi
h in
ludes the data usedby BERGER 90B. This ratio is for the 
ontained and semi
ontained events. DAUM 95also report R(µ/e) = 0.99 ± 0.13 ± 0.08 for the total neutrino indu
ed data samplewhi
h in
ludes upward going stopping muons and horizontal muons in addition to the
ontained and semi
ontained events.6 FUKUDA 94 result is based on an exposure of 7.7 kton yr and updates the HIRATA 92result. The analyzed data sample 
onsists of fully-
ontained e-like events with 0.1 <pe < 1.33 GeV/
 and fully-
ontained µ-like events with 0.2 < pµ < 1.5 GeV/
.7 FUKUDA 94 analyzed the data sample 
onsisting of fully 
ontained events with visibleenergy > 1.33 GeV and partially 
ontained µ-like events.8BECKER-SZENDY 92B reports the fra
tion of nonshowering events (mostly muons fromatmospheri
 neutrinos) as 0.36± 0.02± 0.02, as 
ompared with expe
ted fra
tion 0.51±0.01 ± 0.05. After 
utting the energy range to the Kamiokande limits, BEIER 92 �ndsR(µ/e) very 
lose to the Kamiokande value.R(νµ) = (Measured Flux of νµ) / (Expe
ted Flux of νµ)R(νµ) = (Measured Flux of νµ) / (Expe
ted Flux of νµ)R(νµ) = (Measured Flux of νµ) / (Expe
ted Flux of νµ)R(νµ) = (Measured Flux of νµ) / (Expe
ted Flux of νµ)VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.84±0.12 1 ADAMSON 06 MINS MINOS atmospheri
0.72±0.026±0.13 2 AMBROSIO 01 MCRO upward through-going0.57±0.05 ±0.15 3 AMBROSIO 00 MCRO upgoing partially 
ontained0.71±0.05 ±0.19 4 AMBROSIO 00 MCRO downgoing partially 
ontained+ upgoing stopping0.74±0.036±0.046 5 AMBROSIO 98 MCRO Streamer tubes6 CASPER 91 IMB Water Cherenkov7 AGLIETTA 89 NUSX0.95±0.22 8 BOLIEV 81 Baksan0.62±0.17 CROUCH 78 Case Western/UCI1ADAMSON 06 uses a measurement of 107 total neutrinos 
ompared to an expe
ted rateof 127 ± 13 without os
illations.2AMBROSIO 01 result is based on the upward through-going muon tra
ks with Eµ > 1GeV. The data 
ame from three di�erent dete
tor 
on�gurations, but the statisti
s islargely dominated by the full dete
tor run, from May 1994 to De
ember 2000. The totallive time, normalized to the full dete
tor 
on�guration, is 6.17 years. The �rst error isthe statisti
al error, the se
ond is the systemati
 error, dominated by the theoreti
al errorin the predi
ted 
ux.3AMBROSIO 00 result is based on the upgoing partially 
ontained event sample. It 
amefrom 4.1 live years of data taking with the full dete
tor, from April 1994 to February1999. The average energy of atmospheri
 muon neutrinos 
orresponding to this sampleis 4 GeV. The �rst error is statisti
al, the se
ond is the systemati
 error, dominated bythe 25% theoreti
al error in the rate (20% in the 
ux and 15% in the 
ross se
tion, addedin quadrature). Within statisti
s, the observed de�
it is uniform over the zenith angle.4AMBROSIO 00 result is based on the 
ombined samples of downgoing partially 
ontainedevents and upgoing stopping events. These two subsamples 
ould not be distinguisheddue to the la
k of timing information. The result 
ame from 4.1 live years of datataking with the full dete
tor, from April 1994 to February 1999. The average energyof atmospheri
 muon neutrinos 
orresponding to this sample is 4 GeV. The �rst error isstatisti
al, the se
ond is the systemati
 error, dominated by the 25% theoreti
al error inthe rate (20% in the 
ux and 15% in the 
ross se
tion, added in quadrature). Withinstatisti
s, the observed de�
it is uniform over the zenith angle.5AMBROSIO 98 result is for all nadir angles and updates AHLEN 95 result. The lower
uto� on the muon energy is 1 GeV. In addition to the statisti
al and systemati
 errors,there is a Monte Carlo 
ux error (theoreti
al error) of ±0.13. With a neutrino os
il-lation hypothesis, the �t either to the 
ux or zenith distribution independently yieldssin22θ=1.0 and �(m2) ∼ a few times 10−3 eV2. However, the �t to the observedzenith distribution gives a maximum probability for χ2 of only 5% for the best os
illationhypothesis.6CASPER 91 
orrelates showering/nonshowering signature of single-ring events with par-ent atmospheri
-neutrino 
avor. They �nd nonshowering (≈ νµ indu
ed) fra
tion is0.41 ± 0.03 ± 0.02, as 
ompared with expe
ted 0.51 ± 0.05 (syst).7AGLIETTA 89 �nds no eviden
e for any anomaly in the neutrino 
ux. They de-�ne ρ = (measured number of νe 's)/(measured number of νµ's). They report

ρ(measured)=ρ(expe
ted) = 0.96+0.32
−0.28.8 From this data BOLIEV 81 obtain the limit �(m2) ≤ 6 × 10−3 eV2 for maximalmixing, νµ 6→ νµ type os
illation.R(µ/total) = (Measured Ratio µ/total) / (Expe
ted Ratio µ/total)R(µ/total) = (Measured Ratio µ/total) / (Expe
ted Ratio µ/total)R(µ/total) = (Measured Ratio µ/total) / (Expe
ted Ratio µ/total)R(µ/total) = (Measured Ratio µ/total) / (Expe
ted Ratio µ/total)VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.1+0.07
−0.12±0.11 1 CLARK 97 IMB multi-GeV1CLARK 97 obtained this result by an analysis of fully 
ontained and partially 
ontainedevents in the IMB water-Cherenkov dete
tor with visible energy > 0.95 GeV.Nup(µ)/Ndown(µ)Nup(µ)/Ndown(µ)Nup(µ)/Ndown(µ)Nup(µ)/Ndown(µ)VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •



774774774774LeptonParti
le ListingsNeutrinoMixing0.71 ±0.06 1 ADAMSON 12B MINS 
ontained-vertex muons0.551+0.035
−0.033±0.004 2 ASHIE 05 SKAM multi-GeV1ADAMSON 12B reports the atmospheri
 neutrino results obtained with MINOS far de-te
tor in 2,553 live days (an exposure of 37.9 kton·yr). This result is obtained with asample of high resolution 
ontained-vertex muons. The quoted error is statisti
al only.2ASHIE 05 results are based on an exposure of 92 kton yr during the 
omplete Super-Kamiokande I running period. The analyzed data sample 
onsists of fully-
ontainedsingle-ring µ-like events with visible energy > 1.33 GeV and partially-
ontained events.All partially-
ontained events are 
lassi�ed as µ-like. Upward-going events are thosewith −1 < 
os(zenith angle) < −0.2 and downward-going events are those with 0.2<
os(zenith angle) <1. The µ-like up-down ratio for the multi-GeV data deviates from 1(the expe
tation for no atmospheri
 νµ os
illations) by more than 12 standard deviations.Nup(e)/Ndown(e)Nup(e)/Ndown(e)Nup(e)/Ndown(e)Nup(e)/Ndown(e)VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.961+0.086
−0.079±0.016 1 ASHIE 05 SKAM multi-GeV1ASHIE 05 results are based on an exposure of 92 kton yr during the 
omplete Super-Kamiokande I running period. The analyzed data sample 
onsists of fully-
ontainedsingle-ring e-like events with visible energy > 1.33 GeV. Upward-going events are thosewith −1 < 
os(zenith angle) < −0.2 and downward-going events are those with 0.2

< 
os(zenith angle) < 1. The e-like up-down ratio for the multi-GeV data is 
onsistentwith 1 (the expe
tation for no atmospheri
 νe os
illations).R(up/down; µ) = (Measured up/down; µ) / (Expe
ted up/down; µ)R(up/down; µ) = (Measured up/down; µ) / (Expe
ted up/down; µ)R(up/down; µ) = (Measured up/down; µ) / (Expe
ted up/down; µ)R(up/down; µ) = (Measured up/down; µ) / (Expe
ted up/down; µ)VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.62±0.05±0.02 1 ADAMSON 12B MINS 
ontained-vertex muons0.62+0.19

−0.14±0.02 2 ADAMSON 06 MINS atmospheri
 ν with far dete
tor1ADAMSON 12B reports the atmospheri
 neutrino results obtained with MINOS far de-te
tor in 2,553 live days (an exposure of 37.9 kton·yr). This result is obtained with asample of high resolution 
ontained-vertex muons. The expe
ted ratio is 
al
ulated withno neutrino os
illation.2ADAMSON 06 result is obtained with the MINOS far dete
tor with an exposure of 4.54kton yr. The expe
ted ratio is 
al
ulated with no neutrino os
illation.N(µ+)/N(µ−)N(µ+)/N(µ−)N(µ+)/N(µ−)N(µ+)/N(µ−)VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.46+0.05

−0.04 1,2 ADAMSON 12B MINS 
ontained-vertex muons0.63+0.09
−0.08 1,3 ADAMSON 12B MINS ν-indu
ed ro
k-muons1ADAMSON 12B reports the atmospheri
 neutrino results obtained with MINOS fardete
tor in 2,553 live days (an exposure of 37.9 kton·yr). The muon 
harge ratioN(µ+)/N(µ−) represents the νµ/νµ ratio.2This result is obtained with a 
harge-separated sample of high resolution 
ontained-vertexmuons. The quoted error is statisti
al only.3This result is obtained with a 
harge-separated sample of high resolution neutrino-indu
edro
k-muons. The quoted error is statisti
al only.R(µ+/µ−) = (Measured N(µ+)/N(µ−)) / (Expe
ted N(µ+)/N(µ−))R(µ+/µ−) = (Measured N(µ+)/N(µ−)) / (Expe
ted N(µ+)/N(µ−))R(µ+/µ−) = (Measured N(µ+)/N(µ−)) / (Expe
ted N(µ+)/N(µ−))R(µ+/µ−) = (Measured N(µ+)/N(µ−)) / (Expe
ted N(µ+)/N(µ−))VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.93±0.09±0.09 1,2 ADAMSON 12B MINS 
ontained-vertex muons1.29+0.19
−0.17±0.16 1,3 ADAMSON 12B MINS ν-indu
ed ro
k-muons1.03±0.08±0.08 1,4 ADAMSON 12B MINS 
ontained1.39+0.35
−0.46+0.08

−0.14 5 ADAMSON 07 MINS Upward and horizontal µ withfar dete
tor0.96+0.38
−0.27±0.15 6 ADAMSON 06 MINS atmospheri
 ν with far dete
tor1ADAMSON 12B reports the atmospheri
 neutrino results obtained with MINOS fardete
tor in 2,553 live days (an exposure of 37.9 kton·yr). The muon 
harge ratioN(µ+)/N(µ−) represents the νµ/νµ ratio. As far as the same os
illation parametersare used for νs and νs, the expe
ted νµ/νµ ratio is almost entirely independent of anyinput os
illations.2This result is obtained with a 
harge-separated sample of high resolution 
ontained-vertexmuons.3This result is obtained with a 
harge-separated sample of high resolution neutrino-indu
edro
k-muons.4The 
harge-separated samples of high resolution 
ontained-vertex muons and neutrino-indu
ed ro
k-muons are 
ombined to obtain this result whi
h is 
onsistent with unity.5ADAMSON 07 result is obtained with the MINOS far dete
tor in 854.24 live days, basedon neutrino-indu
ed upward-going and horizontal muons. This result is 
onsistent withCPT 
onservation.6ADAMSON 06 result is obtained with the MINOS far dete
tor with an exposure of 4.54kton yr, based on 
ontained events. The expe
ted ratio is 
al
ulated by assuming thesame os
illation parameters for neutrinos and antineutrinos.

Solar neutrinosSolar neutrinosSolar neutrinosSolar neutrinosSolar neutrinos are produ
ed by thermonu
lear fusion rea
tions in theSun. Radio
hemi
al experiments measure parti
ular 
ombinations of 
uxesfrom various neutrino-produ
ing rea
tions, whereas water-Cherenkov ex-periments mainly measure a 
ux of neutrinos from de
ay of 8B. Solarneutrino 
uxes are 
omposed of all a
tive neutrino spe
ies, νe , νµ, and
ντ . In addition, some other me
hanisms may 
ause antineutrino 
ompo-nents in solar neutrino 
uxes. Ea
h measurement method is sensitive toa parti
ular 
omponent or a 
ombination of 
omponents of solar neutrino
uxes. For details, see Se
tion 13.4 of Reviews, Tables, and Plots.

νe Capture Rates from Radio
hemi
al Experimentsνe Capture Rates from Radio
hemi
al Experimentsνe Capture Rates from Radio
hemi
al Experimentsνe Capture Rates from Radio
hemi
al Experiments1 SNU (Solar Neutrino Unit) = 10−36 
aptures per atom per se
ond.VALUE (SNU) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •73.4 +6.1

−6.0 +3.7
−4.1 1 KAETHER 10 GALX reanalysis67.6 ±4.0 ±3.2 2 KAETHER 10 GNO+GALX reanalysis 
ombined65.4 +3.1

−3.0 +2.6
−2.8 3 ABDURASHI... 09 SAGE 71Ga → 71Ge62.9 +5.5

−5.3 ±2.5 4 ALTMANN 05 GNO 71Ga → 71Ge69.3 ±4.1 ±3.6 5 ALTMANN 05 GNO GNO + GALX 
ombined77.5 ±6.2 +4.3
−4.7 6 HAMPEL 99 GALX 71Ga → 71Ge2.56±0.16±0.16 7 CLEVELAND 98 HOME 37Cl → 37Ar1KAETHER 10 reports the reanalysis results of a 
omplete GALLEX data (GALLEXI+II+III+IV, reported in HAMPEL 99) based on the event sele
tion with a new pulseshape analysis, whi
h provides a better ba
kground redu
tion than the rise time analysisadopted in HAMPEL 99.2Combined result of GALLEX I+II+III+IV reanalysis and GNO I+II+III (ALTMANN 05).3ABDURASHITOV 09 reports a 
ombined analysis of 168 extra
tions of the SAGE solarneutrino experiment during the period January 1990 through De
ember 2007, and up-dates the ABDURASHITOV 02 result. The data are 
onsistent with the assumption thatthe solar neutrino produ
tion rate is 
onstant in time. Note that a ∼ 15% systemati
un
ertainty in the overall normalization may be added to the ABDURASHITOV 09 result,be
ause 
alibration experiments for gallium solar neutrino measurements using intense51Cr (twi
e by GALLEX and on
e by SAGE) and 37Ar (by SAGE) result in an averageratio of 0.87 ± 0.05 of the observed to 
al
ulated rates.4ALTMANN 05 reports the 
omplete result from the GNO solar neutrino experiment(GNO I+II+III), whi
h is the su

essor proje
t of GALLEX. Experimental te
hnique ofGNO is essentially the same as that of GALLEX. The run data 
over the period 20 May1998 through 9 April 2003.5Combined result of GALLEX I+II+III+IV (HAMPEL 99) and GNO I+II+III.6HAMPEL 99 report the 
ombined result for GALLEX I+II+III+IV (65 runs in total),whi
h update the HAMPEL 96 result. The GALLEX IV result (12 runs) is 118.4 ±17.8 ± 6.6 SNU. (HAMPEL 99 dis
uss the 
onsisten
y of partial results with the mean.)The GALLEX experimental program has been 
ompleted with these runs. The total rundata 
over the period 14 May 1991 through 23 January 1997. A total of 300 71Ge eventswere observed. Note that a ∼ 15% systemati
 un
ertainty in the overall normalizationmay be added to the HAMPEL 99 result, be
ause 
alibration experiments for galliumsolar neutrino measurements using intense 51Cr (twi
e by GALLEX and on
e by SAGE)and 37Ar (by SAGE) result in an average ratio of 0.87±0.05 of the observed to 
al
ulatedrates.7CLEVELAND 98 is a detailed report of the 37Cl experiment at the Homestake Mine.The average solar neutrino-indu
ed 37Ar produ
tion rate from 108 runs between 1970and 1994 updates the DAVIS 89 result.

φES (8B)φES (8B)φES (8B)φES (8B)8B solar-neutrino 
ux measured via ν e elasti
 s
attering. This pro
ess is sensitive toall a
tive neutrino 
avors, but with redu
ed sensitivity to νµ, ντ due to the 
ross-se
tion di�eren
e, σ(ν µ,τ e) ∼ 0.16σ(νe e). If the 8B solar-neutrino 
ux involvesnonele
tron 
avor a
tive neutrinos, their 
ontribution to the 
ux is ∼ 0.16 times of
νe .VALUE (106 
m−2s−1) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.32±0.04±0.05 1 ABE 11 SKAM SK-III average 
ux2.41±0.05+0.16
−0.15 2 ABE 11 SKAM SK-II average 
ux2.38±0.02±0.08 3 ABE 11 SKAM SK-I average 
ux2.77±0.26±0.32 4 ABE 11B KLND average 
ux2.4 ±0.4 ±0.1 5 BELLINI 10A BORX average 
ux1.77+0.24

−0.21+0.09
−0.10 6 AHARMIM 08 SNO Phase III2.38±0.05+0.16
−0.15 7 CRAVENS 08 SKAM average 
ux2.35±0.02±0.08 8 HOSAKA 06 SKAM average 
ux2.35±0.22±0.15 9 AHARMIM 05A SNO Salty D2O; 8B shape not 
on-strained2.34±0.23+0.15
−0.14 9 AHARMIM 05A SNO Salty D2O; 8B shape 
onstrained2.39+0.24

−0.23±0.12 10 AHMAD 02 SNO average 
ux



775775775775See key on page 601 LeptonParti
le ListingsNeutrinoMixing2.39±0.34+0.16
−0.14 11 AHMAD 01 SNO average 
ux2.80±0.19±0.33 12 FUKUDA 96 KAMI average 
ux2.70±0.27 12 FUKUDA 96 KAMI day 
ux2.87+0.27

−0.26 12 FUKUDA 96 KAMI night 
ux1ABE 11 reports the Super-Kamiokande-III results for 548 live days from August 4, 2006to August 18, 2008. The analysis threshold is 5.0 MeV, but the event sample in the5.0{6.5 MeV total ele
tron range has a total live time of 298 days.2ABE 11 re
al
ulated the Super-Kamiokande-II results using 8B spe
trum of WIN-TER 06A.3ABE 11 re
al
ulated the Super-Kamiokande-I results using 8B spe
trum of WINTER 06A.4ABE 11B use a 123 kton·day exposure of the KamLAND liquid s
intillation dete
torto measure the 8B solar neutrino 
ux. They utilize ν − e elasti
 s
attering above are
onstru
ted-energy threshold of 5.5 MeV, 
orresponding to 5 MeV ele
tron re
oil en-ergy. 299 ele
tron re
oil 
andidate events are reported, of whi
h 157 ± 23.6 are assignedto ba
kground.5BELLINI 10A reports the Borexino result with 3 MeV energy threshold for s
atteredele
trons. The data 
orrespond to 345.3 live days with a target mass of 100 t, betweenJuly 15, 2007 and August 23, 2009.6AHARMIM 08 reports the results from SNO Phase III measurement using an array of3He proportional 
ounters to measure the rate of NC intera
tions in heavy water, overthe period between November 27, 2004 and November 28, 2006, 
orresponding to 385.17live days. A simultaneous �t was made for the number of NC events dete
ted by theproportional 
ounters and the numbers of NC, CC, and ES events dete
ted by the PMTs,where the spe
tral distributions of the ES and CC events were not 
onstrained to the 8Bshape.7CRAVENS 08 reports the Super-Kamiokande-II results for 791 live days from De
ember2002 to O
tober 2005. The photo
athode 
overage of the dete
tor is 19% (redu
ed from40% of that of Super-Kamiokande-I due to an a

ident in 2001). The analysis thresholdfor the average 
ux is 7 MeV.8HOSAKA 06 reports the �nal results for 1496 live days with Super-Kamiokande-I betweenMay 31, 1996 and July 15, 2001, and repla
e FUKUDA 02 results. The analysis thresholdis 5 MeV ex
ept for the �rst 280 live days (6.5 MeV).9AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) inheavy water over the period between July 26, 2001 and August 28, 2003, 
orrespondingto 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statisti
allyseparated. In one method, the 8B energy spe
trum was not 
onstrained. In the othermethod, the 
onstraint of an undistorted 8B energy spe
trum was added for 
omparisonwith AHMAD 02 results.10AHMAD 02 reports the 8B solar-neutrino 
ux measured via ν e elasti
 s
attering abovethe kineti
 energy threshold of 5 MeV. The data 
orrespond to 306.4 live days with SNObetween November 2, 1999 and May 28, 2001, and updates AHMAD 01 results.11AHMAD 01 reports the 8B solar-neutrino 
ux measured via ν e elasti
 s
attering abovethe kineti
 energy threshold of 6.75 MeV. The data 
orrespond to 241 live days withSNO between November 2, 1999 and January 15, 2001.12 FUKUDA 96 results are for a total of 2079 live days with Kamiokande II and III fromJanuary 1987 through February 1995, 
overing the entire solar 
y
le 22, with thresholdEe > 9.3MeV (�rst 449 days), > 7.5 MeV (middle 794 days), and > 7.0MeV (last 836days). These results update the HIRATA 90 result for the average 8B solar-neutrino 
uxand HIRATA 91 result for the day-night variation in the 8B solar-neutrino 
ux. The totaldata sample was also analyzed for short-term variations: within experimental errors, nostrong 
orrelation of the solar-neutrino 
ux with the sunspot numbers was found.
φCC (8B)φCC (8B)φCC (8B)φCC (8B)8B solar-neutrino 
ux measured with 
harged-
urrent rea
tion whi
h is sensitive ex-
lusively to νe .VALUE (106 
m−2s−1) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.67+0.05

−0.04+0.07
−0.08 1 AHARMIM 08 SNO Phase III1.68±0.06+0.08
−0.09 2 AHARMIM 05A SNO Salty D2O; 8B shapenot 
onst.1.72±0.05±0.11 2 AHARMIM 05A SNO Salty D2O; 8B shape
onstrained1.76+0.06

−0.05±0.09 3 AHMAD 02 SNO average 
ux1.75 ± 0.07+0.12
−0.11 ± 0.05 4 AHMAD 01 SNO average 
ux1AHARMIM 08 reports the results from SNO Phase III measurement using an array of3He proportional 
ounters to measure the rate of NC intera
tions in heavy water, overthe period between November 27, 2004 and November 28, 2006, 
orresponding to 385.17live days. A simultaneous �t was made for the number of NC events dete
ted by theproportional 
ounters and the numbers of NC, CC, and ES events dete
ted by the PMTs,where the spe
tral distributions of the ES and CC events were not 
onstrained to the 8Bshape.2AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) inheavy water over the period between July 26, 2001 and August 28, 2003, 
orrespondingto 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statisti
allyseparated. In one method, the 8B energy spe
trum was not 
onstrained. In the othermethod, the 
onstraint of an undistorted 8B energy spe
trum was added for 
omparisonwith AHMAD 02 results.3AHMAD 02 reports the SNO result of the 8B solar-neutrino 
ux measured with 
harged-
urrent rea
tion on deuterium, νe d → ppe−, above the kineti
 energy threshold of5 MeV. The data 
orrespond to 306.4 live days with SNO between November 2, 1999and May 28, 2001, and updates AHMAD 01 results. The 
omplete des
ription of theSNO Phase I data set is given in AHARMIM 07.

4AHMAD 01 reports the �rst SNO result of the 8B solar-neutrino 
ux measured with the
harged-
urrent rea
tion on deuterium, νe d → ppe− , above the kineti
 energy thresh-old of 6.75 MeV. The data 
orrespond to 241 live days with SNO between November 2,1999 and January 15, 2001.
φNC (8B)φNC (8B)φNC (8B)φNC (8B)8B solar neutrino 
ux measured with neutral-
urrent rea
tion, whi
h is equally sensitiveto νe , νµ, and ντ .VALUE (106 
m−2s−1) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.25 ±0.16 +0.11

−0.13 1 AHARMIM 13 SNO All three phases 
ombined5.140+0.160
−0.158+0.132

−0.117 2 AHARMIM 10 SNO Phase I+II, low threshold5.54 +0.33
−0.31 +0.36

−0.34 3 AHARMIM 08 SNO Phase III, prop. 
ounter + PMT4.94 ±0.21 +0.38
−0.34 4 AHARMIM 05A SNO Salty D2O; 8B shape not 
onst.4.81 ±0.19 +0.28
−0.27 4 AHARMIM 05A SNO Salty D2O; 8B shape 
onstrained5.09 +0.44

−0.43 +0.46
−0.43 5 AHMAD 02 SNO average 
ux; 8B shape 
onst.6.42 ±1.57 +0.55
−0.58 5 AHMAD 02 SNO average 
ux; 8B shape not 
onst.1AHARMIM 13 obtained this result from a 
ombined analysis of the data from all threephases, SNO-I, II, and III. The measurement of the 8B 
ux mostly 
omes from the NCsignal, however, CC 
ontribution is in
luded in the �t.2AHARMIM 10 reports this result from a joint analysis of SNO Phase I+II data with the"e�e
tive ele
tron kineti
 energy" threshold of 3.5 MeV. This result is obtained with a"binned-histogram un
onstrained �t" where binned probability distribution fun
tions ofthe neutrino signal observables were used without any model 
onstraints on the shapeof the neutrino spe
trum.3AHARMIM 08 reports the results from SNO Phase III measurement using an array of3He proportional 
ounters to measure the rate of NC intera
tions in heavy water, overthe period between November 27, 2004 and November 28, 2006, 
orresponding to 385.17live days. A simultaneous �t was made for the number of NC events dete
ted by theproportional 
ounters and the numbers of NC, CC, and ES events dete
ted by the PMTs,where the spe
tral distributions of the ES and CC events were not 
onstrained to the 8Bshape.4AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) inheavy water over the period between July 26, 2001 and August 28, 2003, 
orrespondingto 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statisti
allyseparated. In one method, the 8B energy spe
trum was not 
onstrained. In the othermethod, the 
onstraint of an undistorted 8B energy spe
trum was added for 
omparisonwith AHMAD 02 results.5AHMAD 02 reports the �rst SNO result of the 8B solar-neutrino 
ux measured withthe neutral-
urrent rea
tion on deuterium, νℓ d → npνℓ, above the neutral-
urrentrea
tion threshold of 2.2 MeV. The data 
orrespond to 306.4 live days with SNO betweenNovember 2, 1999 and May 28, 2001. The 
omplete des
ription of the SNO Phase Idata set is given in AHARMIM 07.

φνµ+ντ
(8B)φνµ+ντ
(8B)φνµ+ντ
(8B)φνµ+ντ
(8B)Nonele
tron-
avor a
tive neutrino 
omponent (νµ and ντ ) in the 8B solar-neutrino
ux.VALUE (106 
m−2s−1) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.26±0.25+0.40
−0.35 1 AHARMIM 05A SNO From φNC , φCC , and φES ;8B shape not 
onst.3.09±0.22+0.30
−0.27 1 AHARMIM 05A SNO From φNC , φCC , and φES ;8B shape 
onstrained3.41±0.45+0.48
−0.45 2 AHMAD 02 SNO From φNC , φCC , and φES3.69±1.13 3 AHMAD 01 Derived from SNO+SuperKam,water Cherenkov1AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) inheavy water over the period between July 26, 2001 and August 28, 2003, 
orrespondingto 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statisti
allyseparated. In one method, the 8B energy spe
trum was not 
onstrained. In the othermethod, the 
onstraint of an undistorted 8B energy spe
trum was added for 
omparisonwith AHMAD 02 results.2AHMAD 02 dedu
ed the nonele
tron-
avor a
tive neutrino 
omponent (νµ and ντ )in the 8B solar-neutrino 
ux, by 
ombining the 
harged-
urrent result, the ν e elasti
-s
attering result and the neutral-
urrent result. The 
omplete des
ription of the SNOPhase I data set is given in AHARMIM 07.3AHMAD 01 dedu
ed the nonele
tron-
avor a
tive neutrino 
omponent (νµ and ντ ) inthe 8B solar-neutrino 
ux, by 
ombining the SNO 
harged-
urrent result (AHMAD 01)and the Super-Kamiokande ν e elasti
-s
attering result (FUKUDA 01).Total Flux of A
tive 8B Solar NeutrinosTotal Flux of A
tive 8B Solar NeutrinosTotal Flux of A
tive 8B Solar NeutrinosTotal Flux of A
tive 8B Solar NeutrinosTotal 
ux of a
tive neutrinos (νe , νµ, and ντ ).VALUE (106 
m−2s−1) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
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−0.13 1 AHARMIM 13 SNO All three phases 
ombined5.046+0.159

−0.152+0.107
−0.123 2 AHARMIM 10 SNO From φNC in Phase I+II, lowthreshold5.54 +0.33

−0.31 +0.36
−0.34 3 AHARMIM 08 SNO φNC in Phase III4.94 ±0.21 +0.38
−0.34 4 AHARMIM 05A SNO From φNC ; 8B shape not 
onst.4.81 ±0.19 +0.28
−0.27 4 AHARMIM 05A SNO From φNC ; 8B shape 
onstrained5.09 +0.44

−0.43 +0.46
−0.43 5 AHMAD 02 SNO Dire
t measurement from φNC5.44 ±0.99 6 AHMAD 01 Derived from SNO+SuperKam,water Cherenkov1AHARMIM 13 obtained this result from a 
ombined analysis of the data from all threephases, SNO-I, II, and III. The measurement of the 8B 
ux mostly 
omes from the NCsignal, however, CC 
ontribution is in
luded in the �t.2AHARMIM 10 reports this result from a joint analysis of SNO Phase I+II data withthe "e�e
tive ele
tron kineti
 energy" threshold of 3.5 MeV. This result is obtainedwith the assumption of unitarity, whi
h relates the NC, CC, and ES rates. The datawere �t with the free parameters dire
tly des
ribing the total 8B neutrino 
ux and theenergy-dependent νe survival probability.3AHARMIM 08 reports the results from SNO Phase III measurement using an array of3He proportional 
ounters to measure the rate of NC intera
tions in heavy water, overthe period between November 27, 2004 and November 28, 2006, 
orresponding to 385.17live days. A simultaneous �t was made for the number of NC events dete
ted by theproportional 
ounters and the numbers of NC, CC, and ES events dete
ted by the PMTs,where the spe
tral distributions of the ES and CC events were not 
onstrained to the 8Bshape.4AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) inheavy water over the period between July 26, 2001 and August 28, 2003, 
orrespondingto 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statisti
allyseparated. In one method, the 8B energy spe
trum was not 
onstrained. In the othermethod, the 
onstraint of an undistorted 8B energy spe
trum was added for 
omparisonwith AHMAD 02 results.5AHMAD 02 determined the total 
ux of a
tive 8B solar neutrinos by dire
tly measuringthe neutral-
urrent rea
tion, νℓ d → npνℓ, whi
h is equally sensitive to νe , νµ, and ντ .The 
omplete des
ription of the SNO Phase I data set is given in AHARMIM 07.6AHMAD 01 dedu
ed the total 
ux of a
tive 8B solar neutrinos by 
ombining the SNO
harged-
urrent result (AHMAD 01) and the Super-Kamiokande ν e elasti
-s
atteringresult (FUKUDA 01).Day-Night Asymmetry (8B)Day-Night Asymmetry (8B)Day-Night Asymmetry (8B)Day-Night Asymmetry (8B)A = (φnight − φday) / φaverageVALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.032±0.011±0.005 1 RENSHAW 14 SKAM Based on φES0.063±0.042±0.037 2 CRAVENS 08 SKAM Based on φES0.021±0.020+0.012
−0.013 3 HOSAKA 06 SKAM Based on φES0.017±0.016+0.012
−0.013 4 HOSAKA 06 SKAM Fitted in the LMA region

−0.056±0.074±0.053 5 AHARMIM 05A SNO From salty SNO φCC
−0.037±0.063±0.032 5 AHARMIM 05A SNO From salty SNO φCC ; 
onst.of no φNC asymmetry0.14 ±0.063+0.015

−0.014 6 AHMAD 02B SNO Derived from SNO φCC0.07 ±0.049+0.013
−0.012 7 AHMAD 02B SNO Const. of no φNC asymmetry1RENSHAW 14 obtains this result by using the "amplitude �t" introdu
ed in SMY 04.The data from the Super-Kamiokande(SK)-I, -II, -III, and 1306 live days of the SK-IVmeasurements are used. The analysis threshold is re
oil-ele
tron kineti
 energy of 4.5MeV for SK-III, and SK-IV ex
ept for 250 live days in SK-III (6.0 MeV). The analysisthreshold for SK-I and SK-II is the same as in the previous reports. (Note that in theprevious SK solar-neutrino results, the analysis threshold is quoted as re
oil-ele
trontotal energy.) This day-night asymmetry result is 
onsistent with neutrino os
illationsfor 4 × 10−5 eV2 < �m221 < 7 × 10−5 eV2 and large mixing values of θ12 at the68% CL.2CRAVENS 08 reports the Super-Kamiokande-II results for 791 live days from De
ember2002 to O
tober 2005. The photo
athode 
overage of the dete
tor is 19% (redu
ed from40% of that of Super-Kamiokande-I due to an a

ident in 2001). The analysis thresholdfor the day and night 
uxes is 7.5 MeV ex
ept for the �rst 159 live days (8.0 MeV).3HOSAKA 06 reports the �nal results for 1496 live days with Super-Kamiokande-I betweenMay 31, 1996 and July 15, 2001, and repla
e FUKUDA 02 results. The analysis thresholdis 5 MeV ex
ept for the �rst 280 live days (6.5 MeV).4This result with redu
ed statisti
al un
ertainty is obtained by assuming two-neutrinoos
illations within the LMA (large mixing angle) region and by �tting the time variation ofthe solar neutrino 
ux measured via νe elasti
 s
attering to the variations expe
ted fromneutrino os
illations. For details, see SMY 04. There is an additional small systemati
error of ±0.0004 
oming from un
ertainty of os
illation parameters.5AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) inheavy water over the period between July 26, 2001 and August 28, 2003, with 176.5days of the live time re
orded during the day and 214.9 days during the night. Thisresult is obtained with the spe
tral distribution of the CC events not 
onstrained to the8B shape.6AHMAD 02B results are based on the 
harged-
urrent intera
tions re
orded betweenNovember 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and177.9 days, respe
tively. The 
omplete des
ription of the SNO Phase I data set is givenin AHARMIM 07.

7AHMAD 02B results are derived from the 
harged-
urrent intera
tions, neutral-
urrentintera
tions, and ν e elasti
 s
attering, with the total 
ux of a
tive neutrinos 
onstrainedto have no asymmetry. The data were re
orded between November 2, 1999 and May28, 2001, with the day and night live times of 128.5 and 177.9 days, respe
tively. The
omplete des
ription of the SNO Phase I data set is given in AHARMIM 07.
φES (7Be)φES (7Be)φES (7Be)φES (7Be)7Be solar-neutrino 
ux measured via νe elasti
 s
attering. This pro
ess is sensitiveto all a
tive neutrino 
avors, but with redu
ed sensitivity to νµ, ντ due to the 
ross-se
tion di�eren
e, σ(ν µ,τ e) ∼ 0.2 σ(νe e). If the 7Be solar-neutrino 
ux involvesnonele
tron 
avor a
tive neutrinos, their 
ontribution to the 
ux is ∼ 0.2 times thatof νe .VALUE (109 
m−2 s−1) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.26±0.52 1 GANDO 15 KLND average 
ux3.10±0.15 2 BELLINI 11A BORX average 
ux1GANDO 15 uses 165.4 kton·day exposure of the KamLAND liquid s
intillator dete
torto measure the 862 keV 7Be solar neutrino 
ux via ν − e elasti
 s
attering2BELLINI 11A reports the 7Be solar neutrino 
ux measured via ν − e elasti
 s
attering.The data 
orrespond to 740.7 live days between May 16, 2007 and May 8, 2010, andalso 
orrespond to 153.6 ton·year �du
ial exposure. BELLINI 11A measured the 862 keV7Be solar neutrino 
ux, whi
h is an 89.6% bran
h of the 7Be solar neutrino 
ux, to be(2.78 ± 0.13)× 109 
m−2 s−1. Super
edes ARPESELLA 08A.
φES (pe p)φES (pe p)φES (pe p)φES (pe p)pe p solar-neutrino 
ux measured via νe elasti
 s
attering. This pro
ess is sensitiveto all a
tive neutrino 
avors, but with redu
ed sensitivity to νµ, ντ due to the 
rossse
tion di�eren
e, σ(νµ,τ e) ∼ 0.2 σ(νe e). If the pe p solar-neutrino 
ux involvesnon-ele
tron 
avor a
tive neutrinos, their 
ontribution to the 
ux is ∼ 0.2 times thatof νe .VALUE (108 
m−2s−1) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.0±0.2 1 BELLINI 12A BORX average 
ux1BELLINI 12A reports 1.44 MeV pe p solar-neutrino 
ux measured via νe elasti
 s
attering.The data were 
olle
ted between January 13, 2008 and May 9, 2010, 
orresponding to20,4009 ton·day �du
ial exposure. The listed 
ux value is 
al
ulated from the observedrate of pe p solar neutrino intera
tions in Borexino (3.1 ± 0.6 ± 0.3 
ounts/(day·100ton)) and the 
orresponding rate expe
ted for no neutrino 
avor os
illations (4.47± 0.05
ounts/(day·100 ton)), using the SSM predi
tion for the pe p solar neutrino 
ux of(1.441 ± 0.012) × 108 
m−2s−1.
φES (CNO)φES (CNO)φES (CNO)φES (CNO)CNO solar-neutrino 
ux measured via νe elasti
 s
attering. This pro
ess is sensitiveto all a
tive neutrino 
avors, but with redu
ed sensitivity to νµ, ντ due to the 
rossse
tion di�eren
e, σ(νµ,τ e) ∼ 0.2 σ(νe e). If the CNO solar-neutrino 
ux involvesnon-ele
tron 
avor a
tive neutrinos, their 
ontribution to the 
ux is ∼ 0.2 times thatof νe .VALUE (108 
m−2s−1) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<7.7 90 1 BELLINI 12A BORX MSW-LMA solution assumed1BELLINI 12A reports an upper limit of the CNO solar neutrino 
ux measured via νeelasti
 s
attering. The data were 
olle
ted between January 13, 2008 and May 9, 2010,
orresponding to 20,409 ton·day �du
ial exposure.
φES(pp)φES(pp)φES(pp)φES(pp)pp solar-neutrino 
ux measured via ν e elasti
 s
attering. This pro
ess is sensitiveto all a
tive neutrino 
avors, but with redu
ed sensitivity to νµ, ντ due to the 
rossse
tion di�eren
e, σ(νµ,τ e) ∼ 0.3 σ(νe e). If the pp solar-neutrino 
ux involvesnonele
tron 
avor a
tive neutrinos, their 
ontribution to the 
ux is ∼ 0.3 times of νe .VALUE (1010 
m−2 s−1) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.4±0.5 1 BELLINI 14A BORX average 
ux1BELLINI 14A reports pp solar-neutrino 
ux measured via ν e elasti
 s
attering. Thedata were 
olle
ted between January 2012 and May 2013, 
orresponding to 408 days ofdata. The pp neutrino intera
tion rate in Borexino is measured to be 144 ± 13 ± 10
ounts/(day·100 ton) by �tting the measured energy spe
trum of events in the 165{590keV re
oil ele
tron kineti
 energy window with the expe
ted signal + ba
kground spe
-trum. The listed 
ux value φES(pp) is 
al
ulated from the observed rate and the numberof (3.307± 0.003)×1031 ele
trons for 100 tons of the Borexino s
intillator, and the νe eintegrated 
ross se
tion over the pp neutrino spe
trum, σ(νe e) = 11.38× 10−46 
m2.
φCC (pp)φCC (pp)φCC (pp)φCC (pp)pp solar-neutrino 
ux measured with 
harged-
urrent rea
tion whi
h is sensitive ex
lu-sively to νe .VALUE (1010 
m−2 s−1) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.38±0.47 1 ABDURASHI... 09 FIT Fit existing solar-ν data



777777777777See key on page 601 Lepton Parti
le ListingsNeutrino Mixing1ABDURASHITOV 09 reports the pp solar-neutrino 
ux derived from the Ga solar neu-trino 
apture rate by subtra
ting 
ontributions from 8B, 7Be, pe p and CNO solar neu-trino 
uxes determined by other solar neutrino experiments as well as neutrino os
illationparameters determined from available world neutrino os
illation data.
φES (hep)φES (hep)φES (hep)φES (hep)hep solar-neutrino 
ux measured via ν e elasti
 s
attering. This pro
ess is sensitiveto all a
tive neutrino 
avors, but with redu
ed sensitivity to νµ, ντ due to the 
ross-se
tion di�eren
e, σ(ν µ,τ e) ∼ 0.16σ(νe e). If the hep solar-neutrino 
ux involvesnonele
tron 
avor a
tive neutrinos, their 
ontribution to the 
ux is ∼ 0.16 times of

νe .VALUE (103 
m−2s−1) CL% DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<73 90 1 HOSAKA 06 SKAM1HOSAKA 06 result is obtained from the re
oil ele
tron energy window of 18{21 MeV,and updates FUKUDA 01 result.
φνe (8B)φνe (8B)φνe (8B)φνe (8B)Sear
hes are made for ele
tron antineutrino 
ux from the Sun. Flux limits listed hereare derived relative to the BS05(OP) Standard Solar Model 8B solar neutrino 
ux(5.69× 106 
m−2 s−1), with an assumption that solar νe s follow an unos
illated 8Bneutrino spe
trum.VALUE (%) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.013 90 BELLINI 11 BORX Eνe > 1.8 MeV
<1.9 90 1 BALATA 06 CNTR 1.8< Eνe < 20.0 MeV
<0.72 90 AHARMIM 04 SNO 4.0< Eνe < 14.8 MeV
<0.022 90 EGUCHI 04 KLND 8.3< Eνe < 14.8 MeV
<0.7 90 GANDO 03 SKAM 8.0< Eνe < 20.0 MeV
<1.7 90 AGLIETTA 96 LSD 7< Eνe < 17 MeV1BALATA 06 obtained this result from the sear
h for νe intera
tions with Counting TestFa
ility (the prototype of the Borexino dete
tor).(B) Three-neutrino mixing parameters(B) Three-neutrino mixing parameters(B) Three-neutrino mixing parameters(B) Three-neutrino mixing parameters
INTRODUCTION TO THREE-NEUTRINO MIXING
PARAMETERS LISTINGS

Updated November 2015 by M. Goodman (ANL).

Introduction and Notation: With the exception of possible

short-baseline anomalies (such as LSND), current accelerator,

reactor, solar and atmospheric neutrino data can be described

within the framework of a 3 × 3 mixing matrix between the

flavor eigenstates νe, νµ and ντ and mass eigenstates ν1, ν2 and

ν3. (See equation 14.6 of the review “Neutrino Mass, Mixing

and Oscillations” by K. Nakamura and S.T. Petcov.) Whether

or not this is the ultimately correct framework, it is currently

widely used to parametrize neutrino mixing data and to plan

new experiments.

The mass differences are called ∆m2
21 ≡ m2

2 − m2
1 and

∆m2
32 ≡ m2

3 − m2
2. In these listings, we assume

∆m2
32 ∼ ∆m2

31 (1)

even though the experimental error is comparable to the dif-

ference ∆m2
31 − ∆m2

32 = ∆m2
21. The measurements made by

νµ disappearance at accelerators and by νe disappearance at

reactors are slightly different mixtures of ∆m2
32 and ∆m2

31. The

angles are labeled θ12, θ23 and θ13. The CP violating phase is

called δ. The familiar two neutrino form for oscillations is

P (νa → νb; a 6= b) = sin2(2θ) sin2(∆m2L/4E). (2)

Despite the fact that the mixing angles have been measured

to be much larger than in the quark sector, the two neutrino

form is often a very good approximation and is used in many

situations.

The angles appear in the equations below in many forms.

They most often appear as sin2(2θ). The listings currently now

use sin2(θ) because this distinguishes whether θ23 is larger or

smaller than 45◦.

Accelerator neutrino experiments: Ignoring ∆m2
21, CP vi-

olation, and matter effects, the equations for the probability of

appearance in an accelerator oscillation experiment are:

P (νµ → ντ ) = sin2(2θ23) cos4(θ13) sin2(∆m2
32L/4E) (3)

P (νµ → νe) = sin2(2θ13) sin2(θ23) sin2(∆m2
32L/4E) (4)

P (νe → νµ) = sin2(2θ13) sin2(θ23) sin2(∆m2
32L/4E) (5)

P (νe → ντ ) = sin2(2θ13) cos2(θ23) sin2(∆m2
32L/4E) . (6)

Current and future long-baseline accelerator experiments

are studying non-zero θ13 through P (νµ → νe). Including the

CP terms and low mass scale, the equation for neutrino oscilla-

tion in vacuum is:

P (νµ → νe) = P1 + P2 + P3 + P4

P1 = sin2(θ23) sin2(2θ13) sin2(∆m2
32L/4E)

P2 = cos2(θ23) sin2(2θ13) sin2(∆m2
21L/4E)

P3 = −/+ J sin(δ) sin(∆m2
32L/4E)

P4 = J cos(δ) cos(∆m2
32L/4E) (7)

where

J = cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23)×
sin(∆m2

32L/4E) sin(∆m2
21L/4E) (8)

and the sign in P3 is negative for neutrinos and positive for anti-

neutrinos respectively. For most new long-baseline accelerator

experiments, P2 can safely be neglected but the other three

terms can all be large. Also, depending on the distance and the

mass hierarchy, matter effects will need to be included.

Reactor neutrino experiments: Nuclear reactors are prolific

sources of ν̄e with an energy near 4 MeV. The oscillation

probability can be expressed

P (ν̄e → ν̄e) = 1 − cos4(θ13) sin2(2θ12) sin2(∆m2
21L/4E)

− cos2(θ12) sin2(2θ13) sin2(∆m2
31L/4E)

− sin2(θ12) sin2(2θ13) sin2(∆m2
32L/4E) (9)

not using the approximation in Eq. (1). For short distances

(L<5 km) we can ignore the second term on the right and can

reimpose approximation Eq. (1). This takes the familiar two

neutrino form with θ13 and ∆m2
32:

P (ν̄e → ν̄e) = 1 − sin2(2θ13) sin2(∆m2
32L/4E). (10)

Solar and Atmospheric neutrino experiments: Solar neu-

trino experiments are sensitive to νe disappearance and have
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allowed the measurement of θ12 and ∆m2

21. They are also

sensitive to θ13. We identify ∆m2
⊙ = ∆m2

21 and θ⊙ = θ12.

Atmospheric neutrino experiments are primarily sensitive

to νµ disappearance through νµ → ντ oscillations, and have

allowed the measurement of θ23 and ∆m2
32. We identify ∆m2

A =

∆m2
32 and θA = θ23. Despite the large νe component of the

atmospheric neutrino flux, it is difficult to measure ∆m2
21

effects. This is because of a cancellation between νµ → νe and

νe → νµ together with the fact that the ratio of νµ and νe

atmospheric fluxes, which arise from sequential π and µ decay,

is near 2.

Oscillation Parameter Listings: In Section (B) we encode

the three mixing angles θ12, θ23, θ13 and two mass squared differ-

ences ∆m2
21 and ∆m2

32. Our knowledge of θ12 and ∆m2
21 comes

from the KamLAND reactor neutrino experiment together with

solar neutrino experiments. Our knowledge of θ23 and ∆m2
32

comes from atmospheric, reactor and long-baseline accelerator

neutrino experiments. For the earlier experiments, we identified

the large mass splitting as ∆m2
32. Now that σ(∆m2

32) ≈ ∆m2
21,

some experiments report separate values for the two hierarchies.

Results on θ13 come from reactor antineutrino disappearance

experiments. There are also results from long-baseline acceler-

ator experiments looking for νe appearance. The interpretation

of both kinds of results depends on ∆m2
32, and the accelerator

results also depend on the mass hierarchy, θ23 and the CP

violating phase δ.

Accelerator and atmospheric experiments are beginning to

have some sensitivity to the CP violation phase δ through

Eq. (7). Note that P3 depends on the sign of ∆m2
32 so the

sensitivity depends on the mass hierarchy. For non-maximal

θ23 mixing, it also depends on the octant of θ23, i.e. whether

θ23 > π/4 or θ23 < π/4.sin2(θ12)sin2(θ12)sin2(θ12)sin2(θ12)VALUE DOCUMENT ID TECN COMMENT0.304+0.014
−0.0130.304+0.014
−0.0130.304+0.014
−0.0130.304+0.014
−0.013 1 GANDO 13 FIT KamLAND + global solar +SBL + a

elerator: 3ν

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.323±0.016 2 FORERO 14 FIT 3ν0.304+0.013
−0.012 3 GONZALEZ-G...14 FIT Either mass ordering; global �t0.299+0.014
−0.014 4,5 AHARMIM 13 FIT global solar: 2ν0.307+0.016
−0.013 5,6 AHARMIM 13 FIT global solar: 3ν0.304+0.022
−0.018 5,7 AHARMIM 13 FIT KamLAND + global solar: 3ν0.304+0.014
−0.013 8 GANDO 13 FIT KamLAND + global solar: 3ν0.325+0.039
−0.039 9 GANDO 13 FIT KamLAND: 3ν0.30 +0.02
−0.01 10 ABE 11 FIT KamLAND + global solar: 2ν0.30 +0.02
−0.01 11 ABE 11 FIT global solar: 2ν0.31 +0.03
−0.02 12 ABE 11 FIT KamLAND + global solar: 3ν0.31 +0.03
−0.03 13 ABE 11 FIT global solar: 3ν0.314+0.015
−0.012 14 BELLINI 11A FIT KamLAND + global solar: 2ν0.319+0.017
−0.015 15 BELLINI 11A FIT global solar: 2ν0.311+0.016
−0.016 16 GANDO 11 FIT KamLAND + solar: 3ν0.304+0.046
−0.042 17 GANDO 11 FIT KamLAND: 3ν0.314+0.018
−0.014 18,19 AHARMIM 10 FIT KamLAND + global solar: 2ν

0.314+0.017
−0.020 18,20 AHARMIM 10 FIT global solar: 2ν0.319+0.019
−0.016 18,21 AHARMIM 10 FIT KamLAND + global solar: 3ν0.319+0.023
−0.024 18,22 AHARMIM 10 FIT global solar: 3ν0.36 +0.05
−0.04 23 ABE 08A FIT KamLAND0.32 ±0.03 24 ABE 08A FIT KamLAND + global �t0.32 ±0.02 25 AHARMIM 08 FIT KamLAND + global solar0.31 +0.04
−0.04 26 HOSAKA 06 FIT KamLAND + global solar0.31 +0.04
−0.03 27 HOSAKA 06 FIT SKAM+SNO+KamLAND0.31 +0.03
−0.04 28 HOSAKA 06 FIT SKAM+SNO0.31 +0.02
−0.03 29 AHARMIM 05A FIT KamLAND + global solar0.25{0.39 30 AHARMIM 05A FIT global solar0.29 ±0.03 31 ARAKI 05 FIT KamLAND + global solar0.29 +0.03
−0.02 32 AHMED 04A FIT KamLAND + global solar0.23{0.37 33 AHMED 04A FIT global solar0.31 +0.04
−0.04 34 SMY 04 FIT KamLAND + global solar0.29 +0.04
−0.04 35 SMY 04 FIT global solar0.32 +0.06
−0.05 36 SMY 04 FIT SKAM + SNO0.19{0.33 37 AHMAD 02B FIT global solar0.19{0.39 38 FUKUDA 02 FIT global solar1GANDO 13 obtained this result by a three-neutrino os
illation analysis using KamLAND,global solar neutrino, short-baseline (SBL) rea
tor, and a

elerator data, assuming CPTinvarian
e. Supersedes GANDO 11.2 FORERO 14 performs a global �t to neutrino os
illations using solar, rea
tor, long-baseline a

elerator, and atmospheri
 neutrino data.3GONZALEZ-GARCIA 14 result 
omes from a frequentist global �t. The 
orrespond-ing Bayesian global �t to the same data results are reported in BERGSTROM 15 as0.304+0.013

−0.012 for normal and 0.305+0.012
−0.013 for inverted mass ordering.4AHARMIM 13 obtained this result by a two-neutrino os
illation analysis using globalsolar neutrino data.5AHARMIM 13 global solar neutrino data in
lude SNO's all-phases-
ombined analysisresults on the total a
tive 8B neutrino 
ux and energy-dependent νe survival probabilityparameters, measurements of Cl (CLEVELAND 98), Ga (ABDURASHITOV 09 whi
h
ontains 
ombined analysis with GNO (ALTMANN 05 and Ph.D. thesis of F. Kaether)),and 7Be (BELLINI 11A) rates, and 8B solar-neutrino re
oil ele
tron measurements of SK-I (HOSAKA 06) zenith, SK-II (CRAVENS 08) and SK-III (ABE 11) day/night spe
tra,and Borexino (BELLINI 10A) spe
tra.6AHARMIM 13 obtained this result by a three-neutrino os
illation analysis with the valueof �m232 �xed to 2.45 × 10−3 eV2, using global solar neutrino data.7AHARMIM 13 obtained this result by a three-neutrino os
illation analysis with thevalue of �m232 �xed to 2.45 × 10−3 eV2, using global solar neutrino and KamLAND(GANDO 11) data. CPT invarian
e is assumed.8GANDO 13 obtained this result by a three-neutrino os
illation analysis using KamLANDand global solar neutrino data, assuming CPT invarian
e. Supersedes GANDO 11.9GANDO 13 obtained this result by a three-neutrino os
illation analysis using KamLANDdata. Supersedes GANDO 11.10ABE 11 obtained this result by a two-neutrino os
illation analysis using solar neu-trino data in
luding Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake,GALLEX/GNO, SAGE, and KamLAND data. CPT invarian
e is assumed.11ABE 11 obtained this result by a two-neutrino os
illation analysis using solar neu-trino data in
luding Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake,GALLEX/GNO, and SAGE data.12ABE 11 obtained this result by a three-neutrino os
illation analysis with the value of�m232 �xed to 2.4× 10−3 eV2, using solar neutrino data in
luding Super-Kamiokande,SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLANDdata. The normal neutrino mass ordering and CPT invarian
e are assumed.13ABE 11 obtained this result by a three-neutrino os
illation analysis with the value of�m232 �xed to 2.4× 10−3 eV2, using solar neutrino data in
luding Super-Kamiokande,SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normalneutrino mass ordering is assumed.14BELLINI 11A obtained this result by a two-neutrino os
illation analysis using KamLAND,Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino(BELLINI 11A) data and the SSM 
ux predi
tion in SERENELLI 11 (Astrophysi
al Jour-nal 743743743743 24 (2011)) with the ex
eption that the 8B 
ux was left free. CPT invarian
e isassumed.15BELLINI 11A obtained this result by a two-neutrino os
illation analysis using Home-stake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino(BELLINI 11A) data and the SSM 
ux predi
tion in SERENELLI 11 (Astrophysi
al Jour-nal 743743743743 24 (2011)) with the ex
eption that the 8B 
ux was left free.16GANDO 11 obtain this result with three-neutrino �t using the KamLAND + solar data.Superseded by GANDO 13.17GANDO 11 obtain this result with three-neutrino �t using the KamLAND data only.Superseded by GANDO 13.18AHARMIM 10 global solar neutrino data in
lude SNO's low-energy-threshold analysissurvival probability day/night 
urves, SNO Phase III integral rates (AHARMIM 08), Cl(CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALT-MANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-IIday/night spe
tra (CRAVENS 08).
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le ListingsNeutrino Mixing19AHARMIM 10 obtained this result by a two-neutrino os
illation analysis using globalsolar neutrino data and KamLAND data (ABE 08A). CPT invarian
e is assumed.20AHARMIM 10 obtained this result by a two-neutrino os
illation analysis using globalsolar neutrino data.21AHARMIM 10 obtained this result by a three-neutrino os
illation analysis with the valueof �m231 �xed to 2.3×10−3 eV2, using global solar neutrino data and KamLAND data(ABE 08A). CPT invarian
e is assumed.22AHARMIM 10 obtained this result by a three-neutrino os
illation analysis with the valueof �m231 �xed to 2.3× 10−3 eV2, using global solar neutrino data.23ABE 08A obtained this result by a rate + shape + time 
ombined geoneutrino andrea
tor two-neutrino �t for �m221 and tan2θ12, using KamLAND data only. Supersededby GANDO 11.24ABE 08A obtained this result by means of a two-neutrino �t using KamLAND, Homestake,SAGE, GALLEX, GNO, SK (zenith angle and E-spe
trum), the SNO χ2-map, and solar
ux data. CPT invarian
e is assumed. Superseded by GANDO 11.25The result given by AHARMIM 08 is θ = (34.4+1.3
−1.2)◦. This result is obtained bya two-neutrino os
illation analysis using solar neutrino data in
luding those of Borex-ino (ARPESELLA 08A) and Super-Kamiokande-I (HOSAKA 06), and KamLAND data(ABE 08A). CPT invarian
e is assumed.26HOSAKA 06 obtained this result by a two-neutrino os
illation analysis using SK νe data,CC data from other solar neutrino experiments, and KamLAND data (ARAKI 05). CPTinvarian
e is assumed.27HOSAKA 06 obtained this result by a two-neutrino os
illation analysis using the data fromSuper-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05)experiments. CPT invarian
e is assumed.28HOSAKA 06 obtained this result by a two-neutrino os
illation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data.29The result given by AHARMIM 05A is θ = (33.9 ± 1.6)◦. This result is obtained bya two-neutrino os
illation analysis using SNO pure deuteron and salt phase data, SK

νe data, Cl and Ga CC data, and KamLAND data (ARAKI 05). CPT invarian
e isassumed. AHARMIM 05A also quotes θ = (33.9+2.4
−2.2)◦ as the error enveloping the 68%CL two-dimensional region. This translates into sin22 θ = 0.86+0.05

−0.06.30AHARMIM 05A obtained this result by a two-neutrino os
illation analysis using the datafrom all solar neutrino experiments. The listed range of the parameter envelops the 95%CL two-dimensional region shown in �gure 35a of AHARMIM 05A. AHARMIM 05A alsoquotes tan2θ = 0.45+0.09
−0.08 as the error enveloping the 68% CL two-dimensional region.This translates into sin22 θ = 0.86+0.05

−0.07.31ARAKI 05 obtained this result by a two-neutrino os
illation analysis using KamLAND andsolar neutrino data. CPT invarian
e is assumed. The 1σ error shown here is translatedfrom the number provided by the KamLAND 
ollaboration, tan2θ = 0.40+0.07
−0.05. The
orresponding number quoted in ARAKI 05 is tan2θ = 0.40+0.10

−0.07 (sin22 θ = 0.82 ±0.07), whi
h envelops the 68% CL two-dimensional region.32The result given by AHMED 04A is θ = (32.5+1.7
−1.6)◦. This result is obtained by a two-neutrino os
illation analysis using solar neutrino and KamLAND data (EGUCHI 03). CPTinvarian
e is assumed. AHMED 04A also quotes θ = (32.5+2.4

−2.3)◦ as the error envelopingthe 68% CL two-dimensional region. This translates into sin22 θ = 0.82 ± 0.06.33AHMED 04A obtained this result by a two-neutrino os
illation analysis using the datafrom all solar neutrino experiments. The listed range of the parameter envelops the 95%CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-�t point is�(m2) = 6.5× 10−5 eV2, tan2θ = 0.40 (sin22 θ = 0.82).34The result given by SMY 04 is tan2θ = 0.44 ± 0.08. This result is obtained by a two-neutrino os
illation analysis using solar neutrino and KamLAND data (IANNI 03). CPTinvarian
e is assumed.35 SMY 04 obtained this result by a two-neutrino os
illation analysis using the data fromall solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04.36 SMY 04 obtained this result by a two-neutrino os
illation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σerrors are read from Fig. 6(a) of SMY 04.37AHMAD 02B obtained this result by a two-neutrino os
illation analysis using the datafrom all solar neutrino experiments. The listed range of the parameter envelops the 95%CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best �t point is�(m2) = 5.0× 10−5 eV2 and tanθ = 0.34 (sin22 θ = 0.76).38 FUKUDA 02 obtained this result by a two-neutrino os
illation analysis using the datafrom all solar neutrino experiments. The listed range of the parameter envelops the 95%CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best �t point is �(m2)= 6.9× 10−5 eV2 and tan2θ = 0.38 (sin22 θ = 0.80).�m221�m221�m221�m221VALUE (10−5 eV2) DOCUMENT ID TECN COMMENT7.53±0.187.53±0.187.53±0.187.53±0.18 1 GANDO 13 FIT KamLAND + global solar + SBL+ a

elerator: 3ν
• • • We do not use the following data for averages, �ts, limits, et
. • • •7.6 +0.19

−0.18 2 FORERO 14 FIT 3ν7.50+0.19
−0.17 3 GONZALEZ-G...14 FIT Either mass ordering; global �t5.13+1.29
−0.96 4,5 AHARMIM 13 FIT global solar: 2ν5.13+1.49
−0.98 5,6 AHARMIM 13 FIT global solar: 3ν7.46+0.20
−0.19 5,7 AHARMIM 13 FIT KamLAND + global solar: 3ν

7.53+0.19
−0.18 8 GANDO 13 FIT KamLAND + global solar: 3ν7.54+0.19
−0.18 9 GANDO 13 FIT KamLAND: 3ν7.6 ±0.2 10 ABE 11 FIT KamLAND + global solar: 2ν6.2 +1.1
−1.9 11 ABE 11 FIT global solar: 2ν7.7 ±0.3 12 ABE 11 FIT KamLAND + global solar: 3ν6.0 +2.2
−2.5 13 ABE 11 FIT global solar: 3ν7.50+0.16
−0.24 14 BELLINI 11A FIT KamLAND + global solar: 2ν5.2 +1.5
−0.9 15 BELLINI 11A FIT global solar: 2ν7.50+0.19
−0.20 16 GANDO 11 FIT KamLAND + solar: 3ν7.49±0.20 17 GANDO 11 FIT KamLAND: 3ν7.59+0.20
−0.21 18,19 AHARMIM 10 FIT KamLAND + global solar: 2ν5.89+2.13
−2.16 18,20 AHARMIM 10 FIT global solar: 2ν7.59±0.21 18,21 AHARMIM 10 FIT KamLAND + global solar: 3ν6.31+2.49
−2.58 18,22 AHARMIM 10 FIT global solar: 3ν7.58+0.14
−0.13±0.15 23 ABE 08A FIT KamLAND7.59±0.21 24 ABE 08A FIT KamLAND + global solar7.59+0.19
−0.21 25 AHARMIM 08 FIT KamLAND + global solar8.0 ±0.3 26 HOSAKA 06 FIT KamLAND + global solar8.0 ±0.3 27 HOSAKA 06 FIT SKAM+SNO+KamLAND6.3 +3.7
−1.5 28 HOSAKA 06 FIT SKAM+SNO5{12 29 HOSAKA 06 FIT SKAM day/night in the LMAregion8.0 +0.4
−0.3 30 AHARMIM 05A FIT KamLAND + global solar LMA3.3{14.4 31 AHARMIM 05A FIT global solar7.9 +0.4
−0.3 32 ARAKI 05 FIT KamLAND + global solar7.1 +1.0
−0.3 33 AHMED 04A FIT KamLAND + global solar3.2{13.7 34 AHMED 04A FIT global solar7.1 +0.6
−0.5 35 SMY 04 FIT KamLAND + global solar6.0 +1.7
−1.6 36 SMY 04 FIT global solar6.0 +2.5
−1.6 37 SMY 04 FIT SKAM + SNO2.8{12.0 38 AHMAD 02B FIT global solar3.2{19.1 39 FUKUDA 02 FIT global solar1GANDO 13 obtained this result by a three-neutrino os
illation analysis using KamLAND,global solar neutrino, short-baseline (SBL) rea
tor, and a

elerator data, assuming CPTinvarian
e. Supersedes GANDO 11.2 FORERO 14 performs a global �t to �m221 using solar, rea
tor, long-baseline a

elerator,and atmospheri
 neutrino data.3GONZALEZ-GARCIA 14 result 
omes from a frequentist global �t. The 
orrespond-ing Bayesian global �t to the same data results are reported in BERGSTROM 15 as(7.50+0.19

−0.17) × 10−5 eV2 for normal and (7.50+0.18
−0.17) × 10−5 eV2 for inverted massordering.4AHARMIM 13 obtained this result by a two-neutrino os
illation analysis using globalsolar neutrino data.5AHARMIM 13 global solar neutrino data in
lude SNO's all-phases-
ombined analysisresults on the total a
tive 8B neutrino 
ux and energy-dependent νe survival probabilityparameters, measurements of Cl (CLEVELAND 98), Ga (ABDURASHITOV 09 whi
h
ontains 
ombined analysis with GNO (ALTMANN 05 and Ph.D. thesis of F. Kaether)),and 7Be (BELLINI 11A) rates, and 8B solar-neutrino re
oil ele
tron measurements of SK-I (HOSAKA 06) zenith, SK-II (CRAVENS 08), and SK-III (ABE 11) day/night spe
tra,and Borexino (BELLINI 10A) spe
tra.6AHARMIM 13 obtained this result by a three-neutrino os
illation analysis with the valueof �m231 �xed to 2.45 × 10−3 eV2, using global solar neutrino data.7AHARMIM 13 obtained this result by a three-neutrino os
illation analysis with the valueof �m231 �xed to 2.45 × 10−3 eV2, using global solar neutrino and KamLAND data(GANDO 11). CPT invarian
e is assumed.8GANDO 13 obtained this result by a three-neutrino os
illation analysis using KamLANDand global solar neutrino data, assuming CPT invarian
e. Supersedes GANDO 11.9GANDO 13 obtained this result by a three-neutrino os
illation analysis using KamLANDdata. Supersedes GANDO 11.10ABE 11 obtained this result by a two-neutrino os
illation analysis using solar neu-trino data in
luding Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake,GALLEX/GNO, SAGE, and KamLAND data. CPT invarian
e is assumed.11ABE 11 obtained this result by a two-neutrino os
illation analysis using solar neu-trino data in
luding Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake,GALLEX/GNO, and SAGE data.12ABE 11 obtained this result by a three-neutrino os
illation analysis with the value of�m232 �xed to 2.4× 10−3 eV2, using solar neutrino data in
luding Super-Kamiokande,SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLANDdata. The normal neutrino mass ordering and CPT invarian
e are assumed.13ABE 11 obtained this result by a three-neutrino os
illation analysis with the value of�m232 �xed to 2.4× 10−3 eV2, using solar neutrino data in
luding Super-Kamiokande,SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normalneutrino mass ordering is assumed.
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le ListingsNeutrino Mixing14BELLINI 11A obtained this result by a two-neutrino os
illation analysis using KamLAND,Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino(BELLINI 11A) data and the SSM 
ux predi
tion in SERENELLI 11 (Astrophysi
al Jour-nal 743743743743 24 (2011)) with the ex
eption that the 8B 
ux was left free. CPT invarian
e isassumed.15BELLINI 11A obtained this result by a two-neutrino os
illation analysis using Home-stake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino(BELLINI 11A) data and the SSM 
ux predi
tion in SERENELLI 11 (Astrophysi
al Jour-nal 743743743743 24 (2011)) with the ex
eption that the 8B 
ux was left free.16GANDO 11 obtain this result with three-neutrino �t using the KamLAND + solar data.Superseded by GANDO 13.17GANDO 11 obtain this result with three-neutrino �t using the KamLAND data only.Supersedes ABE 08A.18AHARMIM 10 global solar neutrino data in
lude SNO's low-energy-threshold analysissurvival probability day/night 
urves, SNO Phase III integral rates (AHARMIM 08), Cl(CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALT-MANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-IIday/night spe
tra (CRAVENS 08).19AHARMIM 10 obtained this result by a two-neutrino os
illation analysis using globalsolar neutrino data and KamLAND data (ABE 08A). CPT invarian
e is assumed.20AHARMIM 10 obtained this result by a two-neutrino os
illation analysis using globalsolar neutrino data.21AHARMIM 10 obtained this result by a three-neutrino os
illation analysis with the valueof �m231 �xed to 2.3×10−3 eV2, using global solar neutrino data and KamLAND data(ABE 08A). CPT invarian
e is assumed.22AHARMIM 10 obtained this result by a three-neutrino os
illation analysis with the valueof �m231 �xed to 2.3× 10−3 eV2, using global solar neutrino data.23ABE 08A obtained this result by a rate + shape + time 
ombined geoneutrino andrea
tor two-neutrino �t for �m221 and tan2θ12, using KamLAND data only. Supersededby GANDO 11.24ABE 08A obtained this result by means of a two-neutrino �t using KamLAND, Homestake,SAGE, GALLEX, GNO, SK (zenith angle and E-spe
trum), the SNO χ2-map, and solar
ux data. CPT invarian
e is assumed. Superseded by GANDO 11.25AHARMIM 08 obtained this result by a two-neutrino os
illation analysis using all solarneutrino data in
luding those of Borexino (ARPESELLA 08A) and Super-Kamiokande-I(HOSAKA 06), and KamLAND data (ABE 08A). CPT invarian
e is assumed.26HOSAKA 06 obtained this result by a two-neutrino os
illation analysis using solar neutrinoand KamLAND data (ARAKI 05). CPT invarian
e is assumed.27HOSAKA 06 obtained this result by a two-neutrino os
illation analysis using the data fromSuper-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05)experiments. CPT invarian
e is assumed.28HOSAKA 06 obtained this result by a two-neutrino os
illation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data.29HOSAKA 06 obtained this result from the 
onsisten
y between the observed and expe
tedday-night 
ux asymmetry amplitude. The listed 68% CL range is derived from the 1σboundary of the amplitude �t to the data. Os
illation parameters are 
onstrained to bein the LMA region. The mixing angle is �xed at tan2θ = 0.44 be
ause the �t dependsonly very weekly on it.30AHARMIM 05A obtained this result by a two-neutrino os
illation analysis using solarneutrino and KamLAND data (ARAKI 05). CPT invarian
e is assumed. AHARMIM 05Aalso quotes �(m2) = (8.0+0.6
−0.4)× 10−5 eV2 as the error enveloping the 68% CL two-dimensional region.31AHARMIM 05A obtained this result by a two-neutrino os
illation analysis using the datafrom all solar neutrino experiments. The listed range of the parameter envelops the95% CL two-dimensional region shown in �gure 35a of AHARMIM 05A. AHARMIM 05Aalso quotes �(m2) = (6.5+4.4
−2.3)× 10−5 eV2 as the error enveloping the 68% CL two-dimensional region.32ARAKI 05 obtained this result by a two-neutrino os
illation analysis using KamLANDand solar neutrino data. CPT invarian
e is assumed. The 1σ error shown here is providedby the KamLAND 
ollaboration. The error quoted in ARAKI 05, �(m2) = (7.9+0.6

−0.5)×10−5, envelops the 68% CL two-dimensional region.33AHMED 04A obtained this result by a two-neutrino os
illation analysis using solar neu-trino and KamLAND data (EGUCHI 03). CPT invarian
e is assumed. AHMED 04Aalso quotes �(m2) = (7.1+1.2
−0.6)× 10−5 eV2 as the error enveloping the 68% CL two-dimensional region.34AHMED 04A obtained this result by a two-neutrino os
illation analysis using the datafrom all solar neutrino experiments. The listed range of the parameter envelops the 95%CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-�t point is�(m2) = 6.5× 10−5 eV2, tan2θ = 0.40 (sin22 θ = 0.82).35 SMY 04 obtained this result by a two-neutrino os
illation analysis using solar neutrinoand KamLAND data (IANNI 03). CPT invarian
e is assumed.36 SMY 04 obtained this result by a two-neutrino os
illation analysis using the data fromall solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04.37 SMY 04 obtained this result by a two-neutrino os
illation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σerrors are read from Fig. 6(a) of SMY 04.38AHMAD 02B obtained this result by a two-neutrino os
illation analysis using the datafrom all solar neutrino experiments. The listed range of the parameter envelops the 95%CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best �t point is�(m2) = 5.0× 10−5 eV2 and tanθ = 0.34 (sin22 θ = 0.76).39 FUKUDA 02 obtained this result by a two-neutrino os
illation analysis using the datafrom all solar neutrino experiments. The listed range of the parameter envelops the 95%

CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best �t point is �(m2)= 6.9× 10−5 eV2 and tan2θ = 0.38 (sin22 θ = 0.80).sin2(θ23)sin2(θ23)sin2(θ23)sin2(θ23)The reported limits below 
orrespond to the proje
tion onto the sin2(θ23) axis of the90% CL 
ontours in the sin2(θ23) − �m232 plane presented by the authors. Unlessotherwise spe
i�ed, the limits are 90% CL and the reported un
ertainties are 68% CL.VALUE DOCUMENT ID TECN COMMENT0.50 ±0.05 OUR FIT0.50 ±0.05 OUR FIT0.50 ±0.05 OUR FIT0.50 ±0.05 OUR FIT Assuming inverted mass hierar
hy0.51 ±0.05 OUR FIT0.51 ±0.05 OUR FIT0.51 ±0.05 OUR FIT0.51 ±0.05 OUR FIT Assuming normal mass hierar
hy0.53 +0.09
−0.12 1 AARTSEN 15A ICCB 3ν os
; normal mass ordering0.51 +0.09
−0.11 1 AARTSEN 15A ICCB 3ν os
; inverted mass ordering0.514+0.055
−0.056 2 ABE 14 T2K 3ν os
.; normal mass ordering0.511±0.055 2 ABE 14 T2K 3ν os
.; inverted mass ordering0.41 +0.23
−0.06 3 ADAMSON 14 MINS 3ν os
., normal mass ordering0.41 +0.26
−0.07 3 ADAMSON 14 MINS 3ν os
.; inverted mass ordering

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.567+0.032
−0.128 4 FORERO 14 FIT Normal mass ordering0.573+0.025
−0.043 4 FORERO 14 FIT Inverted mass ordering0.452+0.052
−0.028 5 GONZALEZ-G...14 FIT Normal mass ordering; global �t0.579+0.025
−0.037 5 GONZALEZ-G...14 FIT Inverted mass ordering; global �t0.24 to 0.76 6 AARTSEN 13B ICCB DeepCore, 2ν os
illation0.514±0.082 7 ABE 13G T2K 3ν os
.; normal mass ordering0.388+0.051
−0.053 8 ADAMSON 13B MINS Beam + Atmospheri
; identi
al ν & ν0.3 to 0.7 9 ABE 12A T2K o�-axis beam0.28 to 0.72 10 ADAMSON 12 MINS ν beam0.25 to 0.75 11,12 ADAMSON 12B MINS MINOS atmospheri
0.27 to 0.73 11,13 ADAMSON 12B MINS MINOS pure atmospheri
 ν0.21 to 0.79 11,13 ADAMSON 12B MINS MINOS pure atmospheri
 ν0.15 to 0.85 14 ADRIAN-MAR...12 ANTR atmospheri
 ν with deep see teles
ope0.39 to 0.61 15 ABE 11C SKAM Super-Kamiokande0.34 to 0.66 ADAMSON 11 MINS 2ν os
.; maximal mixing0.31 +0.10
−0.07 16 ADAMSON 11B MINS ν beam0.41 to 0.59 17 WENDELL 10 SKAM 3ν os
. with solar terms; θ13=00.39 to 0.61 18 WENDELL 10 SKAM 3ν os
.; normal mass ordering0.37 to 0.63 19 WENDELL 10 SKAM 3ν os
.; inverted mass ordering0.31 to 0.69 ADAMSON 08A MINS MINOS0.05 to 0.95 20 ADAMSON 06 MINS atmospheri
 ν with far dete
tor0.18 to 0.82 21 AHN 06A K2K KEK to Super-K0.23 to 0.77 22 MICHAEL 06 MINS MINOS0.18 to 0.82 23 ALIU 05 K2K KEK to Super-K0.18 to 0.82 24 ALLISON 05 SOU20.36 to 0.64 25 ASHIE 05 SKAM Super-Kamiokande0.28 to 0.72 26 AMBROSIO 04 MCRO MACRO0.34 to 0.66 27 ASHIE 04 SKAM L/E distribution0.08 to 0.92 28 AHN 03 K2K KEK to Super-K0.13 to 0.87 29 AMBROSIO 03 MCRO MACRO0.26 to 0.74 30 AMBROSIO 03 MCRO MACRO0.15 to 0.85 31 SANCHEZ 03 SOU2 Soudan-2 Atmospheri
0.28 to 0.72 32 AMBROSIO 01 MCRO upward µ0.29 to 0.71 33 AMBROSIO 01 MCRO upward µ0.13 to 0.87 34 FUKUDA 99C SKAM upward µ0.23 to 0.77 35 FUKUDA 99D SKAM upward µ0.08 to 0.92 36 FUKUDA 99D SKAM stop µ / through0.29 to 0.71 37 FUKUDA 98C SKAM Super-Kamiokande0.08 to 0.92 38 HATAKEYAMA98 KAMI Kamiokande0.24 to 0.76 39 HATAKEYAMA98 KAMI Kamiokande0.20 to 0.80 40 FUKUDA 94 KAMI Kamiokande1AARTSEN 15A obtains this result by a three-neutrino os
illation analysis using 10{100GeV muon neutrino sample from a total of 953 days of measurement with the low-energysubdete
tor DeepCore of the I
eCube neutrino teles
ope.2ABE 14 results are based on νµ disappearan
e using three-neutrino os
illation �t. The
on�den
e intervals are derived from one dimensional pro�led likelihoods.3ADAMSON 14 uses a 
omplete set of a

elerator and atmospheri
 data. The analysis
ombines the νµ disappearan
e and νe appearan
e data using three-neutrino os
illation�t. The �t results are obtained for normal and inverted mass ordering assumptions. Thebest �t is for lower θ23 quadrant and inverted mass ordering.4 FORERO 14 performs a global �t to neutrino os
illations using solar, rea
tor, long-baseline a

elerator, and atmospheri
 neutrino data.5GONZALEZ-GARCIA 14 result 
omes from a frequentist global �t. The 
orrespondingBayesian global �t to the same data results are reported in BERGSTROM 15 as 68% CLintervals of 0.433{0.496 or 0.530{0.594 for normal and 0.514{0.612 for inverted massordering.6AARTSEN 13B obtained this result by a two-neutrino os
illation analysis using 20{100GeV muon neutrino sample from a total of 318.9 days of live-time measurement withthe low-energy subdete
tor DeepCore of the I
eCube neutrino teles
ope.



781781781781See key on page 601 LeptonParti
le ListingsNeutrinoMixing7The best �t value is sin2(θ23) = 0.514 ± 0.082. Superseded by ABE 14.8ADAMSON 13B obtained this result from νµ and νµ disappearan
e using νµ (10.71 ×1020 POT) and νµ (3.36× 1020 POT) beams, and atmospheri
 (37.88kton-years) datafrom MINOS The �t assumed two-
avor neutrino hypothesis and identi
al νµ and νµos
illation parameters. Superseded by ADAMSON 14.9ABE 12A obtained this result by a two-neutrino os
illation analysis. The best-�t point issin2(2θ23) = 0.98.10ADAMSON 12 is a two-neutrino os
illation analysis using antineutrinos. The best �tvalue is sin2(2θ23) = 0.95+0.10
−0.11 ± 0.01.11ADAMSON 12B obtained this result by a two-neutrino os
illation analysis of the L/Edistribution using 37.9 kton·yr atmospheri
 neutrino data with the MINOS far dete
tor.12The best �t point is �m2 = 0.0019 eV2 and sin22θ = 0.99. The 90% single-parameter
on�den
e interval at the best �t point is sin22θ > 0.86.13The data are separated into pure samples of νs and νs, and separate os
illation parametersfor νs and νs are �t to the data. The best �t point is (�m2, sin22θ) = (0.0022 eV2,0.99) and (�m2, sin22θ) = (0.0016 eV2, 1.00). The quoted result is taken from the90% C.L. 
ontour in the (�m2, sin22θ) plane obtained by minimizing the four parameterlog-likelihood fun
tion with respe
t to the other os
illation parameters.14ADRIAN-MARTINEZ 12 measured the os
illation parameters of atmospheri
 neutrinoswith the ANTARES deep sea neutrino teles
ope using the data taken from 2007 to 2010(863 days of total live time).15ABE 11C obtained this result by a two-neutrino os
illation analysis using the Super-Kamiokande-I+II+III atmospheri
 neutrino data. ABE 11C also reported results undera two-neutrino disappearan
e model with separate mixing parameters between ν and ν,and obtained sin22θ > 0.93 for ν and sin22θ > 0.83 for ν at 90% C.L.16ADAMSON 11B obtained this result by a two-neutrino os
illation analysis of antineutrinosin an antineutrino enhan
ed beam with 1.71 × 1020 protons on target. This results is
onsistent with the neutrino measurements of ADAMSON 11 at 2% C.L.17WENDELL 10 obtained this result (sin2θ23 = 0.407{0.583) by a three-neutrino os
illa-tion analysis using the Super-Kamiokande-I+II+III atmospheri
 neutrino data, assuming

θ13 = 0 but in
luding the solar os
illation parameters �m221 and sin2θ12 in the �t.18WENDELL 10 obtained this result (sin2θ23 = 0.43{0.61) by a three-neutrino os
illationanalysis with one mass s
ale dominan
e (�m221 = 0) using the Super-Kamiokande-I+II+III atmospheri
 neutrino data, and updates the HOSAKA 06A result.19WENDELL 10 obtained this result (sin2θ23 = 0.44{0.63) by a three-neutrino os
illationanalysis with one mass s
ale dominan
e (�m221 = 0) using the Super-Kamiokande-I+II+III atmospheri
 neutrino data, and updates the HOSAKA 06A result.20ADAMSON 06 obtained this result by a two-neutrino os
illation analysis of the L/Edistribution using 4.54 kton yr atmospheri
 neutrino data with the MINOS far dete
tor.21 Super
edes ALIU 05.22MICHAEL 06 best �t is for maximal mixing. See also ADAMSON 08.23The best �t is for maximal mixing.24ALLISON 05 result is based upon atmospheri
 neutrino intera
tions in
luding upward-stopping muons, with an exposure of 5.9 kton yr. From a two-
avor os
illation analysisthe best-�t point is �m2 = 0.0017 eV2 and sin2(2θ) = 0.97.25ASHIE 05 obtained this result by a two-neutrino os
illation analysis using 92 kton yratmospheri
 neutrino data from the 
omplete Super-Kamiokande I running period.26AMBROSIO 04 obtained this result, without using the absolute normalization of theneutrino 
ux, by 
ombining the angular distribution of upward through-going muon tra
kswith Eµ > 1 GeV, Nlow and Nhigh, and the numbers of InDown + UpStop and InUpevents. Here, Nlow and Nhigh are the number of events with re
onstru
ted neutrinoenergies < 30 GeV and > 130 GeV, respe
tively. InDown and InUp represent eventswith downward and upward-going tra
ks starting inside the dete
tor due to neutrinointera
tions, while UpStop represents entering upward-going tra
ks whi
h stop in thedete
tor. The best �t is for maximal mixing.27ASHIE 04 obtained this result from the L(
ight length)/E(estimated neutrino energy)distribution of νµ disappearan
e probability, using the Super-Kamiokande-I 1489 live-dayatmospheri
 neutrino data.28There are several islands of allowed region from this K2K analysis, extending to highvalues of �m2. We only in
lude the one that overlaps atmospheri
 neutrino analyses.The best �t is for maximal mixing.29AMBROSIO 03 obtained this result on the basis of the ratio R = Nlow/Nhigh, whereNlow and Nhigh are the number of upward through-going muon events with re
on-stru
ted neutrino energy < 30 GeV and > 130 GeV, respe
tively. The data 
ame fromthe full dete
tor run started in 1994. The method of FELDMAN 98 is used to obtainthe limits.30AMBROSIO 03 obtained this result by using the ratio R and the angular distributionof the upward through-going muons. R is given in the previous note and the angulardistribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used toobtain the limits. The best �t is to maximal mixing.31 SANCHEZ 03 is based on an exposure of 5.9 kton yr. The result is obtained using alikelihood analysis of the neutrino L/E distribution for a sele
tion µ 
avor sample whilethe e-
avor sample provides 
ux normalization. The method of FELDMAN 98 is usedto obtain the allowed region. The best �t is sin2(2θ) = 0.97.32AMBROSIO 01 result is based on the angular distribution of upward through-going muontra
ks with Eµ > 1 GeV. The data 
ame from three di�erent dete
tor 
on�gurations, butthe statisti
s is largely dominated by the full dete
tor run, from May 1994 to De
ember2000. The total live time, normalized to the full dete
tor 
on�guration is 6.17 years.The best �t is obtained outside the physi
al region. The method of FELDMAN 98 isused to obtain the limits. The best �t is for maximal mixing.33AMBROSIO 01 result is based on the angular distribution and normalization of upwardthrough-going muon tra
ks with Eµ > 1 GeV. See the previous footnote.

34 FUKUDA 99C obtained this result from a total of 537 live days of upward through-goingmuon data in Super-Kamiokande between April 1996 to January 1998. With a thresholdof Eµ > 1.6 GeV, the observed 
ux is (1.74 ± 0.07 ± 0.02) × 10−13 
m−2s−1sr−1.The best �t is sin2(2θ) = 0.95.35 FUKUDA 99D obtained this result from a simultaneous �tting to zenith angle distributionsof upward-stopping and through-going muons. The 
ux of upward-stopping muons ofminimum energy of 1.6 GeV measured between April 1996 and January 1998 is (0.39 ±0.04 ± 0.02)×10−13 
m−2s−1sr−1. This is 
ompared to the expe
ted 
ux of (0.73 ±0.16 (theoreti
al error)) × 10−13 
m−2s−1sr−1. The best �t is to maximal mixing.36 FUKUDA 99D obtained this result from the zenith dependen
e of the upward-stopping/through-going 
ux ratio. The best �t is to maximal mixing.37 FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheri
 neutrinodata. The best �t is for maximal mixing.38HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-goingmuon data in Kamiokande between De
ember 1985 and May 1995. With a threshold ofEµ > 1.6 GeV, the observed 
ux of upward through-going muons is (1.94±0.10+0.07
−0.06)×10−13 
m−2s−1sr−1. This is 
ompared to the expe
ted 
ux of (2.46±0.54 (theoreti
alerror)) × 10−13 
m−2s−1sr−1. The best �t is for maximal mixing.39HATAKEYAMA 98 obtained this result from a 
ombined analysis of Kamiokande 
on-tained events (FUKUDA 94) and upward going muon events. The best �t is sin2(2θ) =0.95.40 FUKUDA 94 obtained the result by a 
ombined analysis of sub- and multi-GeV atmo-spheri
 neutrino events in Kamiokande. The best �t is for maximal mixing.�m232�m232�m232�m232The sign of �m232 is not known at this time. Only the absolute value is quoted below.Unless otherwise spe
i�ed, the ranges below 
orrespond to the proje
tion onto the�m232 axis of the 90% CL 
ontours in the sin2(2θ23) − �m232 plane presented by theauthors. If un
ertainties are reported with the value, they 
orrespond to one standarddeviation un
ertainty.VALUE (10−3 eV2) DOCUMENT ID TECN COMMENT2.51 ±0.06 OUR FIT2.51 ±0.06 OUR FIT2.51 ±0.06 OUR FIT2.51 ±0.06 OUR FIT Assuming inverted mass hierar
hy2.44 ±0.06 OUR FIT2.44 ±0.06 OUR FIT2.44 ±0.06 OUR FIT2.44 ±0.06 OUR FIT Assuming normal mass hierar
hy2.72 +0.19

−0.20 1 AARTSEN 15A ICCB 3ν os
; normal mass ordering2.73 +0.18
−0.21 1 AARTSEN 15A ICCB 3ν os
; inverted mass ordering2.37 ±0.11 2 AN 15 DAYA 3ν os
.; normal mass ordering2.47 ±0.11 2 AN 15 DAYA 3ν os
.; inverted mass ordering2.51 ±0.10 3 ABE 14 T2K 3ν os
.; normal mass ordering2.56 ±0.10 3 ABE 14 T2K 3ν os
.; inverted mass ordering2.37 ±0.09 4 ADAMSON 14 MINS 3ν os
., a

el., atmospheri
;normal mass ordering2.41 +0.12
−0.09 4 ADAMSON 14 MINS 3ν os
., a

el., atmsopheri
;inverted mass ordering

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.54 +0.19
−0.20 5 AN 14 DAYA 3ν os
.; normal mass ordering2.64 +0.19
−0.20 5 AN 14 DAYA 3ν os
.; inverted mass ordering2.48 +0.05
−0.07 6 FORERO 14 FIT 3ν; normal mass ordering2.38 +0.05
−0.06 6 FORERO 14 FIT 3ν; inverted mass ordering2.457±0.047 7,8 GONZALEZ-G...14 FIT Normal mass ordering; global�t2.449+0.048
−0.047 7 GONZALEZ-G...14 FIT Inverted mass ordering; global�t2.3 +0.6
−0.5 9 AARTSEN 13B ICCB DeepCore, 2ν os
illation2.44 +0.17
−0.15 10 ABE 13G T2K 3ν os
.; normal mass ordering2.41 +0.09
−0.10 11 ADAMSON 13B MINS 2ν os
.; beam + atmospheri
;identi
al ν & ν2.2{3.1 12 ABE 12A T2K o�-axis beam2.62 +0.31
−0.28 ±0.09 13 ADAMSON 12 MINS ν beam1.35{2.55 14,15 ADAMSON 12B MINS MINOS atmospheri
1.4{5.6 14,16 ADAMSON 12B MINS MINOS pure atmospheri
 ν0.9{2.5 14,16 ADAMSON 12B MINS MINOS pure atmospheri
 ν1.8{5.0 17 ADRIAN-MAR...12 ANTR atm. ν with deep see tele-s
ope1.3{4.0 18 ABE 11C SKAM atmospheri
 ν2.32 +0.12
−0.08 ADAMSON 11 MINS 2ν os
illation; maximal mixing3.36 +0.46
−0.40 19 ADAMSON 11B MINS ν beam

<3.37 20 ADAMSON 11C MINS MINOS1.9{2.6 21 WENDELL 10 SKAM 3ν os
.; normal mass ordering1.7{2.7 21 WENDELL 10 SKAM 3ν os
.; inverted mass ordering2.43 ±0.13 ADAMSON 08A MINS MINOS0.07{50 22 ADAMSON 06 MINS atmospheri
 ν with far dete
-tor1.9{4.0 23,24 AHN 06A K2K KEK to Super-K2.2{3.8 25 MICHAEL 06 MINS MINOS



782782782782LeptonParti
le ListingsNeutrinoMixing1.9{3.6 23 ALIU 05 K2K KEK to Super-K0.3{12 26 ALLISON 05 SOU21.5{3.4 27 ASHIE 05 SKAM atmospheri
 neutrino0.6{8.0 28 AMBROSIO 04 MCRO MACRO1.9 to 3.0 29 ASHIE 04 SKAM L/E distribution1.5{3.9 30 AHN 03 K2K KEK to Super-K0.25{9.0 31 AMBROSIO 03 MCRO MACRO0.6{7.0 32 AMBROSIO 03 MCRO MACRO0.15{15 33 SANCHEZ 03 SOU2 Soudan-2 Atmospheri
0.6{15 34 AMBROSIO 01 MCRO upward µ1.0{6.0 35 AMBROSIO 01 MCRO upward µ1.0{50 36 FUKUDA 99C SKAM upward µ1.5{15.0 37 FUKUDA 99D SKAM upward µ0.7{18 38 FUKUDA 99D SKAM stop µ / through0.5{6.0 39 FUKUDA 98C SKAM Super-Kamiokande0.55{50 40 HATAKEYAMA98 KAMI Kamiokande4{23 41 HATAKEYAMA98 KAMI Kamiokande5{25 42 FUKUDA 94 KAMI Kamiokande1AARTSEN 15A obtains this result by a three-neutrino os
illation analysis using 10{100GeV muon neutrino sample from a total of 953 days of measurements with the low-energysubdete
tor DeepCore of the I
eCube neutrino teles
ope.2AN 15 uses all eight identi
al dete
tors, with four pla
ed near the rea
tor 
ores and theremaining four at the far hall to determine prompt energy spe
tra. The results 
orrespondto the exposure of 6.9×105 GWth-ton-days. They derive �m2ee = (2.42± 0.11)×10−3eV2. Assuming the normal (inverted) ordering, the �tted �m232 = (2.37± 0.11)×10−3((2.47 ± 0.11) × 10−3) eV2. Supersedes AN 14.3ABE 14 results are based on νµ disappearan
e using three-neutrino os
illation �t. The
on�den
e intervals are derived from one dimensional pro�led likelihoods. In ABE 14 theinverted mass ordering result is reported as �m213 = (2.48 ± 0.10) × 10−3 eV2 whi
hwe 
onverted to �m232 by adding PDG 14 value of �m221 = (7.53 ± 0.18)×10−5 eV2.4ADAMSON 14 uses a 
omplete set of a

elerator and atmospheri
 data. The analysis
ombines The analysis 
ombines the νµ disappearan
e and νe appearan
e data usingthree-neutrino os
illation �t. The �t results are obtained for normal and inverted massordering assumptions.5AN 14 uses six identi
al dete
tors, with three pla
ed near the rea
tor 
ores (
ux-weightedbaselines of 512 and 561 m) and the remaining three at the far hall (at the 
ux averageddistan
e of 1579 m from all six rea
tor 
ores) to determine prompt energy spe
tra andderive �m2ee = (2.59+0.19
−0.20) × 10−3 eV2. Assuming the normal (inverted) ordering,the �tted �m232 = (2.54+0.19

−0.20) × 10−3 ((2.64+0.19
−0.20) × 10−3) eV2. Superseded byAN 15.6 FORERO 14 performs a global �t to �m231 using solar, rea
tor, long-baseline a

elerator,and atmospheri
 neutrino data.7GONZALEZ-GARCIA 14 result 
omes from a frequentist global �t. The 
orrespondingBayesian global �t to the same data results are reported in BERGSTROM 15 as (2.460±0.046)×10−3 eV2 for normal and (2.445+0.047

−0.045)×10−3 eV2 for inverted mass ordering.8The value for normal mass ordering is a
tually a measurement of �m231 whi
h di�ersfrom �m232 by a mu
h smaller value of �m212.9AARTSEN 13B obtained this result by a two-neutrino os
illation analysis using 20{100GeV muon neutrino sample from a total of 318.9 days of live-time measurement withthe low-energy subdete
tor DeepCore of the I
eCube neutrino teles
ope.10Based on the observation of 58 νµ events with 205 ± 17(syst) expe
ted in the absen
eof neutrino os
illations. Superseded by ABE 14.11ADAMSON 13B obtained this result from νµ and νµ disappearan
e using νµ (10.71 ×1020 POT) and νµ (3.36×1020 POT) beams, and atmospheri
 (37.88 kton-years) datafrom MINOS. The �t assumed two-
avor neutrino hypothesis and identi
al νµ and νµos
illation parameters.12ABE 12A obtained this result by a two-neutrino os
illation analysis. The best-�t point is�m232 = 2.65× 10−3 eV2.13ADAMSON 12 is a two-neutrino os
illation analysis using antineutrinos.14ADAMSON 12B obtained this result by a two-neutrino os
illation analysis of the L/Edistribution using 37.9 kton·yr atmospheri
 neutrino data with the MINOS far dete
tor.15The 90% single-parameter 
on�den
e interval at the best �t point is �m2 = 0.0019 ±0.0004 eV2.16The data are separated into pure samples of νs and νs, and separate os
illation parametersfor νs and νs are �t to the data. The best �t point is (�m2, sin22θ) = (0.0022 eV2,0.99) and (�m2, sin22θ) = (0.0016 eV2, 1.00). The quoted result is taken from the90% C.L. 
ontour in the (�m2, sin22θ) plane obtained by minimizing the four parameterlog-likelihood fun
tion with respe
t to the other os
illation parameters.17ADRIAN-MARTINEZ 12 measured the os
illation parameters of atmospheri
 neutrinoswith the ANTARES deep sea neutrino teles
ope using the data taken from 2007 to 2010(863 days of total live time).18ABE 11C obtained this result by a two-neutrino os
illation analysis with separate mixingparameters between neutrinos and antineutrinos, using the Super-Kamiokande-I+II+IIIatmospheri
 neutrino data. The 
orresponding 90% CL neutrino os
illation parameterrange obtained from this analysis is �m2 = 1.7{3.0× 10−3 eV2.19ADAMSON 11B obtained this result by a two-neutrino os
illation analysis of antineutrinosin an antineutrino enhan
ed beam with 1.71 × 1020 protons on target. This results is
onsistent with the neutrino measurements of ADAMSON 11 at 2% C.L.20ADAMSON 11C obtains this result based on a study of antineutrinos in a neutrino beamand assumes maximal mixing in the two-
avor approximation.21WENDELL 10 obtained this result by a three-neutrino os
illation analysis with one masss
ale dominan
e (�m221 = 0) using the Super-Kamiokande-I+II+III atmospheri
 neu-trino data, and updates the HOSAKA 06A result.

22ADAMSON 06 obtained this result by a two-neutrino os
illation analysis of the L/Edistribution using 4.54 kton yr atmospheri
 neutrino data with the MINOS far dete
tor.23The best �t in the physi
al region is for �m2 = 2.8× 10−3 eV2.24 Super
edes ALIU 05.25MICHAEL 06 best �t is 2.74× 10−3 eV2. See also ADAMSON 08.26ALLISON 05 result is based on an atmospheri
 neutrino observation with an exposure of5.9 kton yr. From a two-
avor os
illation analysis the best-�t point is �m2 = 0.0017eV2 and sin22 θ = 0.97.27ASHIE 05 obtained this result by a two-neutrino os
illation analysis using 92 kton yratmospheri
 neutrino data from the 
omplete Super-Kamiokande I running period. Thebest �t is for �m2 = 2.1× 10−3 eV2.28AMBROSIO 04 obtained this result, without using the absolute normalization of theneutrino 
ux, by 
ombining the angular distribution of upward through-going muon tra
kswith Eµ > 1 GeV, Nlow and Nhigh, and the numbers of InDown + UpStop and InUpevents. Here, Nlow and Nhigh are the number of events with re
onstru
ted neutrinoenergies < 30 GeV and > 130 GeV, respe
tively. InDown and InUp represent eventswith downward and upward-going tra
ks starting inside the dete
tor due to neutrinointera
tions, while UpStop represents entering upward-going tra
ks whi
h stop in thedete
tor. The best �t is for �m2 = 2.3× 10−3 eV2.29ASHIE 04 obtained this result from the L(
ight length)/E(estimated neutrino energy)distribution of νµ disappearan
e probability, using the Super-Kamiokande-I 1489 live-dayatmospheri
 neutrino data. The best �t is for �m2 = 2.4× 10−3 eV2.30There are several islands of allowed region from this K2K analysis, extending to highvalues of �m2. We only in
lude the one that overlaps atmospheri
 neutrino analyses.The best �t is for �m2 = 2.8× 10−3 eV2.31AMBROSIO 03 obtained this result on the basis of the ratio R = Nlow/Nhigh, whereNlow and Nhigh are the number of upward through-going muon events with re
on-stru
ted neutrino energy < 30 GeV and > 130 GeV, respe
tively. The data 
ame fromthe full dete
tor run started in 1994. The method of FELDMAN 98 is used to obtainthe limits. The best �t is for �m2 = 2.5× 10−3 eV2.32AMBROSIO 03 obtained this result by using the ratio R and the angular distributionof the upward through-going muons. R is given in the previous note and the angulardistribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used toobtain the limits. The best �t is for �m2 = 2.5× 10−3 eV2.33 SANCHEZ 03 is based on an exposure of 5.9 kton yr. The result is obtained using alikelihood analysis of the neutrino L/E distribution for a sele
tion µ 
avor sample whilethe e-
avor sample provides 
ux normalization. The method of FELDMAN 98 is usedto obtain the allowed region. The best �t is for �m2 = 5.2× 10−3 eV2.34AMBROSIO 01 result is based on the angular distribution of upward through-going muontra
ks with Eµ > 1 GeV. The data 
ame from three di�erent dete
tor 
on�gurations, butthe statisti
s is largely dominated by the full dete
tor run, from May 1994 to De
ember2000. The total live time, normalized to the full dete
tor 
on�guration is 6.17 years.The best �t is obtained outside the physi
al region. The method of FELDMAN 98 isused to obtain the limits.35AMBROSIO 01 result is based on the angular distribution and normalization of upwardthrough-going muon tra
ks with Eµ > 1 GeV. See the previous footnote.36 FUKUDA 99C obtained this result from a total of 537 live days of upward through-goingmuon data in Super-Kamiokande between April 1996 to January 1998. With a thresholdof Eµ > 1.6 GeV, the observed 
ux is (1.74 ± 0.07 ± 0.02) × 10−13 
m−2s−1sr−1.The best �t is for �m2 = 5.9× 10−3 eV2.37FUKUDA 99D obtained this result from a simultaneous �tting to zenith angle distributionsof upward-stopping and through-going muons. The 
ux of upward-stopping muons ofminimum energy of 1.6 GeV measured between April 1996 and January 1998 is (0.39 ±0.04 ± 0.02)×10−13 
m−2s−1sr−1. This is 
ompared to the expe
ted 
ux of (0.73 ±0.16 (theoreti
al error))×10−13 
m−2s−1sr−1. The best �t is for �m2 = 3.9×10−3eV2.38FUKUDA 99D obtained this result from the zenith dependen
e of the upward-stopping/through-going 
ux ratio. The best �t is for �m2 = 3.1× 10−3 eV2.39FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheri
 neutrinodata. The best �t is for �m2 = 2.2× 10−3 eV2.40HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-goingmuon data in Kamiokande between De
ember 1985 and May 1995. With a threshold ofEµ > 1.6 GeV, the observed 
ux of upward through-going muons is (1.94±0.10+0.07
−0.06)×10−13 
m−2s−1sr−1. This is 
ompared to the expe
ted 
ux of (2.46±0.54 (theoreti
alerror)) × 10−13 
m−2s−1sr−1. The best �t is for �m2 = 2.2× 10−3 eV2.41HATAKEYAMA 98 obtained this result from a 
ombined analysis of Kamiokande 
on-tained events (FUKUDA 94) and upward going muon events. The best �t is for �m2 =13 × 10−3 eV2.42FUKUDA 94 obtained the result by a 
ombined analysis of sub- and multi-GeV atmo-spheri
 neutrino events in Kamiokande. The best �t is for �m2 = 16× 10−3 eV2.sin2(θ13)sin2(θ13)sin2(θ13)sin2(θ13)At present time dire
t measurements of sin2( θ13) are derived from the rea
tor νedisappearan
e at distan
es 
orresponding to the �m232 value, i.e. L ∼ 1km. Alter-natively, limits 
an also be obtained from the analysis of the solar neutrino data anda

elerator-based νµ → νe experiments.VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT2.19± 0.12 OUR AVERAGE2.19± 0.12 OUR AVERAGE2.19± 0.12 OUR AVERAGE2.19± 0.12 OUR AVERAGE2.15± 0.13 1 AN 15 DAYA DayaBay, Ling Ao/Ao II rea
tors2.3 + 0.9

− 0.8 2 ABE 14H DCHZ Chooz rea
tors



783783783783See key on page 601 Lepton Parti
le ListingsNeutrino Mixing2.12± 0.47 3 AN 14B DAYA DayaBay, Ling Ao/Ao II rea
tors2.5 ± 0.9 ±0.9 4 ABE 13C DCHZ Chooz rea
tors2.9 ± 0.3 ±0.5 5 AHN 12 RENO Yonggwang rea
tors
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.6 + 1.2

− 1.1 6 ABE 14A DCHZ Chooz rea
tors3.0 + 1.3
− 1.0 7 ABE 14C T2K Inverted mass ordering3.6 + 1.0
− 0.9 7 ABE 14C T2K Normal mass ordering2.3 ± 0.2 8 AN 14 DAYA DayaBay, Ling Ao/Ao II rea
tors2.34± 0.20 9 FORERO 14 FIT Normal mass ordering2.40± 0.19 9 FORERO 14 FIT Inverted mass ordering2.18± 0.10 10 GONZALEZ-G...14 FIT Normal mass ordering; global �t2.19+ 0.11
− 0.10 10 GONZALEZ-G...14 FIT Inverted mass ordering; global �t2.3 + 1.3
− 1.0 11 ABE 13E T2K Normal mass ordering2.8 + 1.6
− 1.2 11 ABE 13E T2K Inverted mass ordering1.6 + 1.3
− 0.9 12 ADAMSON 13A MINS Normal mass ordering3.0 + 1.8
− 1.6 12 ADAMSON 13A MINS Inverted mass ordering

<13 90 AGAFONOVA13 OPER OPERA: 3ν
< 3.6 95 13 AHARMIM 13 FIT global solar: 3ν2.3 ± 0.3 ±0.1 14 AN 13 DAYA DayaBay, LIng Ao/Ao II rea
tors2.2 ± 1.1 ±0.8 15 ABE 12 DCHZ Chooz rea
tors2.8 ± 0.8 ±0.7 16 ABE 12B DCHZ Chooz rea
tors2.4 ± 0.4 ±0.1 17 AN 12 DAYA DayaBay, Ling Ao/Ao II rea
tors2.5 + 1.8

− 1.6 68 18 ABE 11 FIT KamLAND + global solar
< 6.1 95 19 ABE 11 FIT Global solar1.3 to 5.6 68 20 ABE 11A T2K Normal mass ordering1.5 to 5.6 68 21 ABE 11A T2K Inverted mass ordering0.3 to 2.3 68 22 ADAMSON 11D MINS Normal mass ordering0.8 to 3.9 68 23 ADAMSON 11D MINS Inverted mass ordering8 ± 3 68 24 FOGLI 11 FIT Global neutrino data7.8 ± 6.2 68 25 GANDO 11 FIT KamLAND + solar: 3ν12.4 ±13.3 68 26 GANDO 11 FIT KamLAND: 3ν3 + 9

− 7 90 27 ADAMSON 10A MINS Normal mass ordering6 +14
− 6 90 28 ADAMSON 10A MINS Inverted mass ordering8 + 8
− 7 29,30 AHARMIM 10 FIT KamLAND + global solar: 3ν

< 30 9529,31 AHARMIM 10 FIT global solar: 3ν
< 15 90 32 WENDELL 10 SKAM 3ν os
.; normal m ordering
< 33 90 32 WENDELL 10 SKAM 3ν os
.; inverted m ordering11 +11

− 8 33 ADAMSON 09 MINS Normal mass ordering18 +15
−11 34 ADAMSON 09 MINS Inverted mass ordering6 ± 4 35 FOGLI 08 FIT Global neutrino data8 ± 7 36 FOGLI 08 FIT Solar + KamLAND data5 ± 5 37 FOGLI 08 FIT Atmospheri
+LBL+CHOOZ

< 36 90 38 YAMAMOTO06 K2K A

elerator experiment
< 48 90 39 AHN 04 K2K A

elerator experiment
< 36 90 40 BOEHM 01 Palo Verde rea
t.
< 45 90 41 BOEHM 00 Palo Verde rea
t.
< 15 90 42 APOLLONIO 99 CHOZ Rea
tor Experiment1AN 15 uses all eight identi
al dete
tors, with four pla
ed near the rea
tor 
ores and theremaining four at the far hall to determine the mixing angle θ13 using the νe observedintera
tion rates with neutron 
apture on Gd and energy spe
tra. The result 
orrespondsto the exposure of 6.9× 105 GWth-ton-days. Supersedes AN 14.2ABE 14H uses 467.9 live days of one dete
tor, 1050 m away from two rea
tor 
ores ofthe Chooz nu
lear power station, to determine the mixing parameter sin2(2 θ13). TheBugey4 data (DECLAIS 94) is used to 
onstrain the neutrino 
ux. The data set in
ludes7.24 rea
tor-o� days. A rate and shape analysis is performed. Super
edes ABE 14A.3AN 14B uses six identi
al anti-neutrino dete
tors with 
ux-weighted baselines of ∼ 500m and ∼ 1.6 km to six power rea
tors. This rate analysis uses a 217-day data set andneutron 
apture on protons (not Gd) only. �m231= 2.32× 10−3 eV2 is assumed.4ABE 13C uses delayed neutron 
apture on hydrogen instead of on Gd used previously.The physi
al volume is thus three times larger. The �t is based on the rate and shapeanalysis as in ABE 12B. The Bugey4 data (DECLAIS 94) is used to 
onstrain the neutrino
ux.5AHN 12 uses two identi
al dete
tors, pla
ed at 
ux weighted distan
es of 408.56 m and1433.99 m from six rea
tor 
ores, to determine the mixing angle θ13. This rate-onlyanalysis ex
ludes the no-os
illation hypothesis at 4.9 standard deviations. The value of�m231 = (2.32+0.12

−0.08)× 10−3 eV2 was assumed in the analysis.6ABE 14A uses 467.9 live days of one dete
tor, 1050 m away from two rea
tor 
ores ofthe Chooz nu
lear power station, to determine the mixing parameter sin2(2 θ13). TheBugey4 data (DECLAIS 94) is used to 
onstrain the neutrino 
ux. The data set in
ludes7.24 rea
tor-o� days. A "rate-modulation" analysis is performed. Super
edes ABE 12B.7ABE 14C result is for νe appearan
e and assumes �m232 = 2.4× 10−3 eV2, sin2( θ23)= 0.5, and δ = 0.

8AN 14 uses six identi
al dete
tors, with three pla
ed near the rea
tor 
ores (
ux-weightedbaselines of 512 and 561 m) and the remaining three at the far hall (at the 
ux averageddistan
e of 1579 m from all six rea
tor 
ores) to determine the mixing angle θ13 using the
νe observed intera
tion rates with neutron 
apture on Gd and energy spe
tra. SupersedesAN 13 and superseded by AN 15.9 FORERO 14 performs a global �t to neutrino os
illations using solar, rea
tor, long-baseline a

elerator, and atmospheri
 neutrino data.10GONZALEZ-GARCIA 14 result 
omes from a frequentist global �t. The 
orrespond-ing Bayesian global �t to the same data results are reported in BERGSTROM 15 as(2.18+0.10

−0.11) × 10−2 eV2 for normal and (2.19+0.12
−0.10) × 10−2 eV2 for inverted massordering.11ABE 13E assumes maximal θ23 mixing and CP phase δ = 0.12ADAMSON 13A results obtained from νe appearan
e, assuming δ = 0, and sin2(2 θ23)= 0.957.13AHARMIM 13 obtained this result by a three-neutrino os
illation analysis with the valueof �m232 �xed to 2.45 × 10−3 eV2, using global solar neutrino data. AHARMIM 13global solar neutrino data in
lude SNO's all-phases-
ombined analysis results on thetotal a
tive 8B neutrino 
ux and energy-dependent νe survival probability parame-ters, measurements of Cl (CLEVELAND 98), Ga (ABDURASHITOV 09 whi
h 
ontains
ombined analysis with GNO (ALTMANN 05 and Ph.D. thesis of F. Kaether)), and7Be (BELLINI 11A) rates, and 8B solar-neutrino re
oil ele
tron measurements of SK-I(HOSAKA 06) zenith, SK-II (CRAVENS 08) and SK-III (ABE 11) day/night spe
tra,and Borexino (BELLINI 10A) spe
tra. AHARMIM 13 also reported a result 
ombiningglobal solar and KamLAND data, whi
h is sin2(2 θ13) = (9.1+2.9

−3.1) × 10−2.14AN 13 uses six identi
al dete
tors, with three pla
ed near the rea
tor 
ores (
ux-weightedbaselines of 498 and 555 m) and the remaining three at the far hall (at the 
ux averageddistan
e of 1628 m from all six rea
tor 
ores) to determine the νe intera
tion rate ratios.Superseded by AN 14.15ABE 12 determines the νe intera
tion rate in a single dete
tor, lo
ated 1050 m from the
ores of two rea
tors. A rate and shape analysis is performed. The rate normalization is�xed by the results of the Bugey4 rea
tor experiment, thus avoiding any dependen
e onpossible very short baseline os
illations. The value of �m231 = 2.4× 10−3 eV2 is usedin the analysis. Superseded by ABE 12B.16ABE 12B determines the neutrino mixing angle θ13 using a single dete
tor, lo
ated1050 m from the 
ores of two rea
tors. This result is based on a spe
tral shape andrate analysis. The Bugey4 data (DECLAIS 94) is used to 
onstrain the neutrino 
ux.Superseded by ABE 14A.17AN 12 uses six identi
al dete
tors with three pla
ed near the rea
tor 
ores (
ux-weightedbaselines of 470 m and 576 m) and the remaining three at the far hall (at the 
ux averageddistan
e of 1648 m from all six rea
tor 
ores) to determine the mixing angle θ13 usingthe νe observed intera
tion rate ratios. This rate-only analysis ex
ludes the no-os
illationhypothesis at 5.2 standard deviations. The value of �m231 = (2.32+0.12
−0.08)× 10−3 eV2was assumed in the analysis. Superseded by AN 13.18ABE 11 obtained this result by a three-neutrino os
illation analysis with the value of�m232 �xed to 2.4× 10−3 eV2, using solar neutrino data in
luding Super-Kamiokande,SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLANDdata. This result implies an upper bound of sin2θ13 < 0.059 (95% CL) or sin22θ13 <0.22 (95% CL). The normal neutrino mass ordering and CPT invarian
e are assumed.19ABE 11 obtained this result by a three-neutrino os
illation analysis with the value of�m232 �xed to 2.4× 10−3 eV2, using solar neutrino data in
luding Super-Kamiokande,SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normalneutrino mass ordering is assumed.20The quoted limit is for �m232 = 2.4 × 10−3 eV2, θ23 = π/2, δ = 0, and the normalmass ordering. For other values of δ, the 68% region spans from 0.03 to 0.25, and the90% region from 0.02 to 0.32.21The quoted limit is for �m232 = 2.4 × 10−3 eV2, θ23 = π/2, δ = 0, and the invertedmass ordering. For other values of δ, the 68% region spans from 0.04 to 0.30, and the90% region from 0.02 to 0.39.22The quoted limit is for �m232 = 2.32× 10−3 eV2, θ23 = π/2, δ = 0, and the normalmass ordering. For other values of δ, the 68% region spans from 0.02 to 0.12, and the90% region from 0 to 0.16.23The quoted limit is for �m232 = 2.32× 10−3 eV2, θ23 = π/2, δ = 0, and the invertedmass ordering. For other values of δ, the 68% region spans from 0.02 to 0.16, and the90% region from 0 to 0.21.24 FOGLI 11 obtained this result from an analysis using the atmospheri
, a

elerator longbaseline, CHOOZ, solar, and KamLAND data. Re
ently, MUELLER 11 suggested anaverage in
rease of about 3.5% in normalization of the rea
tor νe 
uxess, and usingthese 
uxes, the �tted result be
omes 0.10 ± 0.03.25GANDO 11 report sin2θ13 = 0.020±0.016. This result was obtained with three-neutrino�t using the KamLAND + solar data.26GANDO 11 report sin2θ13 = 0.032±0.037. This result was obtained with three-neutrino�t using the KamLAND data only.27This result 
orresponds to the limit of <0.12 at 90% CL for �m232 = 2.43× 10−3 eV2,

θ23 = π/2, and δ = 0. For other values of δ, the 90% CL region spans from 0 to 0.16.28This result 
orresponds to the limit of <0.20 at 90% CL for �m232 = 2.43× 10−3 eV2,
θ23 = π/2, and δ = 0. For other values of δ, the 90% CL region spans from 0 to 0.21.29AHARMIM 10 global solar neutrino data in
lude SNO's low-energy-threshold analysissurvival probability day/night 
urves, SNO Phase III integral rates (AHARMIM 08), Cl(CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALT-MANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-IIday/night spe
tra (CRAVENS 08).30AHARMIM 10 obtained this result by a three-neutrino os
illation analysis with the valueof �m231 �xed to 2.3×10−3 eV2, using global solar neutrino data and KamLAND data(ABE 08A). CPT invarian
e is assumed. This result implies an upper bound of sin2θ13 <0.057 (95% CL) or sin22θ13 < 0.22 (95% CL).



784784784784LeptonParti
le ListingsNeutrinoMixing31AHARMIM 10 obtained this result by a three-neutrino os
illation analysis with the valueof �m231 �xed to 2.3× 10−3 eV2, using global solar neutrino data.32WENDELL 10 obtained this result by a three-neutrino os
illation analysis with one masss
ale dominan
e (�m221 = 0) using the Super-Kamiokande-I+II+III atmospheri
 neu-trino data, and updates the HOSAKA 06A result.33The quoted limit is for �m232 = 2.43 × 10−3 eV2, θ23 = π/2, and δ = 0. For othervalues of δ, the 68% CL region spans from 0.02 to 0.26.34The quoted limit is for �m232 = 2.43 × 10−3 eV2, θ23 = π/2, and δ = 0. For othervalues of δ, the 68% CL region spans from 0.04 to 0.34.35 FOGLI 08 obtained this result from a global analysis of all neutrino os
illation data, thatis, solar + KamLAND + atmospheri
 + a

elerator long baseline + CHOOZ.36FOGLI 08 obtained this result from an analysis using the solar and KamLAND neutrinoos
illation data.37 FOGLI 08 obtained this result from an analysis using the atmospheri
, a

elerator longbaseline, and CHOOZ neutrino os
illation data.38YAMAMOTO 06 sear
hed for νµ → νe appearan
e. Assumes 2 sin2(2θµe ) =sin2(2θ13). The quoted limit is for �m232 = 1.9× 10−3 eV2. That value of �m232 isthe one-σ low value for AHN 06A. For the AHN 06A best �t value of 2.8 × 10−3 eV2,the sin2(2θ13) limit is < 0.26. Supersedes AHN 04.39AHN 04 sear
hed for νµ → νe appearan
e. Assuming 2 sin2(2 θµe ) = sin2(2 θ13), alimit on sin2(2 θµe ) is 
onverted to a limit on sin2(2 θ13).The quoted limit is for �m232= 1.9 × 10−3 eV2. That value of �m232 is the one-σ low value for ALIU 05. For theALIU 05 best �t value of 2.8× 10−3 eV2, the sin2(2 θ13) limit is < 0.30.40The quoted limit is for �m232 = 1.9× 10−3 eV2. That value of �m232 is the 1-σ lowvalue for ALIU 05. For the ALIU 05 best �t value of 2.8×10−3 eV2, the sin22 θ13 limitis < 0.19. In this range, the θ13 limit is larger for lower values of �m232, and smallerfor higher values of �m232.41The quoted limit is for �m232 = 1.9× 10−3 eV2. That value of �m232 is the 1-σ lowvalue for ALIU 05. For the ALIU 05 best �t value of 2.8 × 10−3 eV2, the sin22 θ13limit is < 0.23.42The quoted limit is for �m232 = 2.43× 10−3 eV2. That value of �m232 is the 
entralvalue for ADAMSON 08. For the ADAMSON 08 1-σ low value of 2.30 × 10−3 eV2,the sin22 θ13 limit is < 0.16. See also APOLLONIO 03 for a detailed des
ription of theexperiment. CP violating phaseCP violating phaseCP violating phaseCP violating phase
δ, CP violating phaseδ, CP violating phaseδ, CP violating phaseδ, CP violating phaseMeasurements of δ 
ome from atmospheri
 and a

elarator experiments looking at νeappearan
e. We en
ode values between 0 and 2π, though it is equivalent to use −πto π.VALUE (π rad) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0 to 0.15, 0.83 to 2 90 ABE 15D T2K Normal mass hierar
hy1.09 to 1.92 90 ABE 15D T2K Inverted mass hierar
hy0.05 to 1.2 90 1 ADAMSON 14 MINS Normal mass hierar
hy1.34+0.64

−0.38 FORERO 14 FIT Normal mass hierar
hy1.48+0.34
−0.32 FORERO 14 FIT Inverted mass hierar
hy1.70+0.22
−0.39 2 GONZALEZ-G...14 FIT Normal mass hierar
hy;global �t1.41+0.35
−0.34 2 GONZALEZ-G...14 FIT Inverted mass hierar
hy;global �t0 to 1.5 or 1.9 to 2 90 3 ADAMSON 13A MINS Normal mass hierar
hy1Based on three-
avor formalism and θ23 > π/4. Likelihood as a fun
tion of δ is alsoshown for the other three 
ombinations of hierar
hy and θ23 quadrant; all values of δare allowed at 90% C.L.2GONZALEZ-GARCIA 14 result 
omes from a frequentist global �t. The 
orrespondingBayesian global �t to the same data results are reported in BERGSTROM 15 as 68% CLintervals of 1.24{1.94 for normal and 1.15{1.77 for inverted mass ordering.3Based on νe appearan
e in MINOS and the 
al
ulated sin2(2θ23) = 0.957, θ23 > π/4,and normal mass hierar
hy. Likelihood as a fun
tion of δ is also shown for the other three
ombinations of hierar
hy and θ23 quadrant; all values of δ are allowed at 90% C.L.(C) Other neutrino mixing results(C) Other neutrino mixing results(C) Other neutrino mixing results(C) Other neutrino mixing resultsThe LSND 
ollaboration reported in AGUILAR 01 a signal whi
h is 
on-sistent with νµ → νe os
illations. In a three neutrino framework, thiswould be a measurement of θ12 and �m221. This does not appear to be
onsistent with most of the other neutrino data. The MiniBooNE exper-iment, reported in AGUILAR-AREVALO 07, does a two-neutrino analysiswhi
h, assuming CP 
onservation, rules out AGUILAR 01. However, theMiniBooNE antineutrino data reported in AGUILAR-AREVALO 13A are
onsistent with the signal reported in AGUILAR 01. The following list-ings in
lude results whi
h might be relevant towards understanding theseobservations. They in
lude sear
hes for νµ → νe , νµ → νe , sterileneutrino os
illations, and CPT violation.

�(m2) for sin2(2θ) = 1 (νµ → νe )�(m2) for sin2(2θ) = 1 (νµ → νe )�(m2) for sin2(2θ) = 1 (νµ → νe )�(m2) for sin2(2θ) = 1 (νµ → νe )VALUE (eV2) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.015 to 0.050 90 1 AGUILAR-AR...13A MBOO MiniBooNE
<0.34 90 2 MAHN 12 MBOO MiniBooNE/S
iBooNE
<0.034 90 AGUILAR-AR...07 MBOO MiniBooNE
<0.0008 90 AHN 04 K2K Water Cherenkov
<0.4 90 ASTIER 03 NOMD CERN SPS
<2.4 90 AVVAKUMOV 02 NTEV NUTEV FNAL3 AGUILAR 01 LSND νµ → νe os
.prob.0.03 to 0.3 95 4 ATHANASSO...98 LSND νµ → νe
<2.3 90 5 LOVERRE 96 CHARM/CDHS
<0.9 90 VILAIN 94C CHM2 CERN SPS
<0.09 90 ANGELINI 86 HLBC BEBC CERN PS1Based on νµ → νe appearan
e of 162.0 ± 47.8 events; marginally 
ompatible with twoneutrino os
illations. The best �t value is �m2 = 3.14 eV2.2MAHN 12 is a 
ombined spe
tral �t of MiniBooNE and S
iBooNE neutrino data withthe range of �m2 up to 25 eV2. The best limit is 0.04 at 7 eV2.3AGUILAR 01 is the �nal analysis of the LSND full data set. Sear
h is made for the

νµ → νe os
illations using νµ from π+ de
ay in 
ight by observing beam-on ele
tronevents from νe C → e−X . Present analysis results in 8.1 ± 12.2 ± 1.7 ex
ess eventsin the 60<Ee < 200 MeV energy range, 
orresponding to os
illation probability of0.10 ± 0.16 ± 0.04%. This is 
onsistent, though less signi�
ant, with the previous resultof ATHANASSOPOULOS 98, whi
h it supersedes. The present analysis uses sele
tion
riteria developed for the de
ay at rest region, and is less e�e
tive in removing theba
kground above 60 MeV than ATHANASSOPOULOS 98.4ATHANASSOPOULOS 98 is a sear
h for the νµ → νe os
illations using νµ from π+de
ay in 
ight. The 40 observed beam-on ele
tron events are 
onsistent with νe C →e−X; the expe
ted ba
kground is 21.9±2.1. Authors interpret this ex
ess as eviden
e foran os
illation signal 
orresponding to os
illations with probability (0.26± 0.10± 0.05)%.Although the signi�
an
e is only 2.3 σ, this measurement is an important and 
onsistent
ross 
he
k of ATHANASSOPOULOS 96 who reported eviden
e for νµ → νe os
illationsfrom µ+ de
ay at rest. See also ATHANASSOPOULOS 98B.5 LOVERRE 96 uses the 
harged-
urrent to neutral-
urrent ratio from the 
ombinedCHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.sin2(2θ) for \Large" �(m2) (νµ → νe )sin2(2θ) for \Large" �(m2) (νµ → νe )sin2(2θ) for \Large" �(m2) (νµ → νe )sin2(2θ) for \Large" �(m2) (νµ → νe )VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 7.2 90 AGAFONOVA 13 OPER �(m2) > 0.1 eV20.8 to 3 90 1 AGUILAR-AR...13A MBOO MiniBooNE
< 11 90 2 ANTONELLO 13 ICAR νµ → νe
< 6.8 90 3 ANTONELLO 13A ICAR νµ → νe
<100 90 4 MAHN 12 MBOO MiniBooNE/S
iBooNE
< 1.8 90 5 AGUILAR-AR...07 MBOO MiniBooNE
<110 90 6 AHN 04 K2K Water Cherenkov
< 1.4 90 ASTIER 03 NOMD CERN SPS
< 1.6 90 AVVAKUMOV 02 NTEV NUTEV FNAL7 AGUILAR 01 LSND νµ → νe os
.prob.0.5 to 30 95 8 ATHANASSO...98 LSND νµ → νe
< 3.0 90 9 LOVERRE 96 CHARM/CDHS
< 9.4 90 VILAIN 94C CHM2 CERN SPS
< 5.6 90 10 VILAIN 94C CHM2 CERN SPS1Based on νµ → νe appearan
e of 162.0 ± 47.8 events; marginally 
ompatible with twoneutrino os
illations. The best �t value is sin22θ = 0.002.2ANTONELLO 13 use the ICARUS T600 dete
tor at LNGS and ∼ 20 GeV beam of νµfrom CERN 730 km away to sear
h for an ex
ess of νe events. Two events are foundwith 3.7 ± 0.6 expe
ted from 
onventional sour
es. This result ex
ludes some parts ofthe parameter spa
e expe
ted by LSND. Superseded by ANTONELLO 13A.3Based on four events with a ba
kground of 6.4 ± 0.9 from 
onventional sour
es with anaverage energy of 20 GeV and 730 km from the sour
e of νµ.4MAHN 12 is a 
ombined �t of MiniBooNE and S
iBooNE neutrino data.5The limit is sin22θ < 0.9×10−3 at �m2 = 2 eV2. That value of �m2 
orresponds tothe smallest mixing angle 
onsistent with the reported signal from LSND in AGUILAR 01.6The limit be
omes sin22θ < 0.15 at �m2 = 2.8× 10−3 eV2, the bets-�t value of the

νµ disappearan
e analysis in K2K.7AGUILAR 01 is the �nal analysis of the LSND full data set of the sear
h for the νµ →
νe os
illations. See footnote in pre
eding table for further details.8ATHANASSOPOULOS 98 report (0.26 ± 0.10 ± 0.05)% for the os
illation probability;the value of sin22θ for large �m2 is dedu
ed from this probability. See footnote inpre
eding table for further details, and see the paper for a plot showing allowed regions.If e�e
t is due to os
illation, it is most likely to be intermediate sin22θ and �m2. Seealso ATHANASSOPOULOS 98B.9 LOVERRE 96 uses the 
harged-
urrent to neutral-
urrent ratio from the 
ombinedCHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.10VILAIN 94C limit derived by 
ombining the νµ and νµ data assuming CP 
onservation.



785785785785See key on page 601 Lepton Parti
le ListingsNeutrino Mixing�(m2) for sin2(2θ) = 1 (νµ → νe )�(m2) for sin2(2θ) = 1 (νµ → νe )�(m2) for sin2(2θ) = 1 (νµ → νe )�(m2) for sin2(2θ) = 1 (νµ → νe )VALUE (eV2) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.023 to 0.060 90 1 AGUILAR-AR...13A MBOO MiniBooNE
<0.16 90 2 CHENG 12 MBOO MiniBooNE/S
iBooNE0.03{0.09 90 3 AGUILAR-AR...10 MBOO Eν > 475 MeV0.03{0.07 90 4 AGUILAR-AR...10 MBOO Eν > 200 MeV
<0.06 90 AGUILAR-AR...09B MBOO MiniBooNE
<0.055 90 5 ARMBRUSTER02 KAR2 Liquid S
i. 
alor.
<2.6 90 AVVAKUMOV 02 NTEV NUTEV FNAL0.03{0.05 6 AGUILAR 01 LSND LAMPF0.05{0.08 90 7 ATHANASSO...96 LSND LAMPF0.048{0.090 80 8 ATHANASSO...95
<0.07 90 9 HILL 95
<0.9 90 VILAIN 94C CHM2 CERN SPS
<0.14 90 10 FREEDMAN 93 CNTR LAMPF1Based on νµ → νe appearan
e of 78.4 ± 28.5 events. The best �t values are �m2 =0.043 eV2 and sin22θ = 0.88.2CHENG 12 is a 
ombined �t of MiniBooNE and S
iBooNE antineutrino data.3This value is for a two neutrino os
illation analysis for ex
ess antineutrino events withEν > 475 MeV. The best �t is at 0.07. The allowed region is 
onsistent with LSNDreported by AGUILAR 01. Super
edes AGUILAR-AREVALO 09B.4This value is for a two neutrino os
illation analysis for ex
ess antineutrino events withEν > 200 MeV with subtra
tion of the expe
ted 12 events low energy ex
ess seen in theneutrino 
omponent of the beam. The best �t value is 0.007 for �(m2) = 4.4 eV2.5ARMBRUSTER 02 is the �nal analysis of the KARMEN 2 data for 17.7 m distan
e fromthe ISIS stopped pion and muon neutrino sour
e. It is a sear
h for νe , dete
ted by theinverse β-de
ay rea
tion on protons and 12C. 15 
andidate events are observed, and15.8 ± 0.5 ba
kground events are expe
ted, hen
e no os
illation signal is dete
ted. Theresults ex
lude large regions of the parameter area favored by the LSND experiment.6AGUILAR 01 is the �nal analysis of the LSND full data set. It is a sear
h for νe 30 m fromLAMPF beam stop. Neutrinos originate mainly for π+ de
ay at rest. νe are dete
tedthrough νe p → e+ n (20<Ee+ < 60 MeV) in delayed 
oin
iden
e with np → d γ.Authors observe 87.9 ± 22.4 ± 6.0 total ex
ess events. The observation is attributedto νµ → νe os
illations with the os
illation probability of 0.264 ± 0.067 ± 0.045%,
onsistent with the previously published result. Taking into a

ount all 
onstraints,the most favored allowed region of os
illation parameters is a band of �(m2) from0.2{2.0 eV2. Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, andATHANASSOPOULOS 98.7ATHANASSOPOULOS 96 is a sear
h for νe 30 m from LAMPF beam stop. Neutrinosoriginate mainly from π+ de
ay at rest. νe 
ould 
ome from either νµ → νe or

νe → νe ; our entry assumes the �rst interpretation. They are dete
ted through νe p →e+ n (20 MeV <Ee+ <60 MeV) in delayed 
oin
iden
e with np → d γ. Authorsobserve 51 ± 20 ± 8 total ex
ess events over an estimated ba
kground 12.5 ± 2.9.ATHANASSOPOULOS 96B is a shorter version of this paper.8ATHANASSOPOULOS 95 error 
orresponds to the 1.6σ band in the plot. The ex-pe
ted ba
kground is 2.7 ± 0.4 events. Corresponds to an os
illation probability of(0.34+0.20
−0.18 ± 0.07)%. For a di�erent interpretation, see HILL 95. Repla
ed byATHANASSOPOULOS 96.9HILL 95 is a report by one member of the LSND Collaboration, reporting a di�erent 
on-
lusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95).Contrary to the rest of the LSND Collaboration, Hill �nds no eviden
e for the neutrinoos
illation νµ → νe and obtains only upper limits.10 FREEDMAN 93 is a sear
h at LAMPF for νe generated from any of the three neutrinotypes νµ, νµ, and νe whi
h 
ome from the beam stop. The νe 's would be dete
ted bythe rea
tion νe p → e+ n. FREEDMAN 93 repla
es DURKIN 88.sin2(2θ) for \Large" �(m2) (νµ → νe )sin2(2θ) for \Large" �(m2) (νµ → νe )sin2(2θ) for \Large" �(m2) (νµ → νe )sin2(2θ) for \Large" �(m2) (νµ → νe )VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<640 90 1 ANTONELLO 13A ICAR νe appearan
e
<150 90 2 CHENG 12 MBOO MiniBooNE/S
iBooNE0.4{9.0 99 3 AGUILAR-AR...10 MBOO Eν > 475 MeV0.4{9.0 99 4 AGUILAR-AR...10 MBOO Eν > 200 MeV
< 3.3 90 5 AGUILAR-AR...09B MBOO MiniBooNE
< 1.7 90 6 ARMBRUSTER02 KAR2 Liquid S
i. 
alor.
< 1.1 90 AVVAKUMOV 02 NTEV NUTEV FNAL5.3±1.3±9.0 7 AGUILAR 01 LSND LAMPF6.2±2.4±1.0 8 ATHANASSO...96 LSND LAMPF3{12 80 9 ATHANASSO...95
< 6 90 10 HILL 951ANTONELLO 13A obtained the limit by assuming νµ → νe os
illation from the ∼ 2%of νµ evnets 
ontamination in the CNGS beam.2CHENG 12 is a 
ombined �t of MiniBooNE and S
iBooNE antineutrino data.3This value is for a two neutrino os
illation analysis for ex
ess antineutrino events withEν > 475 MeV. At 90% CL there is no solution at high �(m2). The best �t is atmaximal mixing. The allowed region is 
onsistent with LSND reported by AGUILAR 01.Super
edes AGUILAR-AREVALO 09B.4This value is for a two neutrino os
illation analysis for ex
ess antineutrino events withEν > 200 MeV with subtra
tion of the expe
ted 12 events low energy ex
ess seen in the

neutrino 
omponent of the beam. At 90% CL there is no solution at high �(m2). Thebest �t value is 0.007 for �(m2) = 4.4 eV2.5This result is in
on
lusive with respe
t to small amplitude mixing suggested by LSND.6ARMBRUSTER 02 is the �nal analysis of the KARMEN 2 data. See footnote in thepre
eding table for further details, and the paper for the ex
lusion plot.7AGUILAR 01 is the �nal analysis of the LSND full data set. The dedu
ed os
illation prob-ability is 0.264± 0.067± 0.045%; the value of sin22θ for large �(m2) is twi
e this proba-bility (although these values are ex
luded by other 
onstraints). See footnote in pre
edingtable for further details, and the paper for a plot showing allowed regions. SupersedesATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98.8ATHANASSOPOULOS 96 reports (0.31 ± 0.12 ± 0.05)% for the os
illation probability;the value of sin22θ for large �(m2) should be twi
e this probability. See footnote inpre
eding table for further details, and see the paper for a plot showing allowed regions.9ATHANASSOPOULOS 95 error 
orresponds to the 1.6σ band in the plot. The ex-pe
ted ba
kground is 2.7 ± 0.4 events. Corresponds to an os
illation probability of(0.34+0.20
−0.18 ± 0.07)%. For a di�erent interpretation, see HILL 95. Repla
ed byATHANASSOPOULOS 96.10HILL 95 is a report by one member of the LSND Collaboration, reporting a di�erent 
on-
lusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95).Contrary to the rest of the LSND Collaboration, Hill �nds no eviden
e for the neutrinoos
illation νµ → νe and obtains only upper limits.�(m2) for sin2(2θ) = 1 (νµ (νµ ) → νe (νe ))�(m2) for sin2(2θ) = 1 (νµ (νµ ) → νe (νe ))�(m2) for sin2(2θ) = 1 (νµ (νµ ) → νe (νe ))�(m2) for sin2(2θ) = 1 (νµ (νµ ) → νe (νe ))VALUE (eV2) CL% DOCUMENT ID TECN COMMENT

<0.075<0.075<0.075<0.075 90 BORODOV... 92 CNTR BNL E776
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.6 90 1 ROMOSAN 97 CCFR FNAL1ROMOSAN 97 uses wideband beam with a 0.5 km de
ay region.sin2(2θ) for \Large" �(m2) (νµ (νµ ) → νe (νe ))sin2(2θ) for \Large" �(m2) (νµ (νµ ) → νe (νe ))sin2(2θ) for \Large" �(m2) (νµ (νµ ) → νe (νe ))sin2(2θ) for \Large" �(m2) (νµ (νµ ) → νe (νe ))VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<1.8<1.8<1.8<1.8 90 1 ROMOSAN 97 CCFR FNAL
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.8 90 2 MCFARLAND 95 CCFR FNAL
<3 90 BORODOV... 92 CNTR BNL E7761ROMOSAN 97 uses wideband beam with a 0.5 km de
ay region.2MCFARLAND 95 state that \This result is the most stringent to date for 250<�(m2) <450 eV2 and also ex
ludes at 90%CL mu
h of the high �(m2) region favored bythe re
ent LSND observation." See ATHANASSOPOULOS 95 and ATHANASSOPOU-LOS 96.�(m2) for sin2(2θ) = 1 (νe 6→ νe)�(m2) for sin2(2θ) = 1 (νe 6→ νe)�(m2) for sin2(2θ) = 1 (νe 6→ νe)�(m2) for sin2(2θ) = 1 (νe 6→ νe)VALUE (eV2) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.01 90 1 ACHKAR 95 CNTR Bugey rea
tor1ACHKAR 95 bound is for L=15, 40, and 95 m.sin2(2θ) for \Large" �(m2) (νe 6→ νe )sin2(2θ) for \Large" �(m2) (νe 6→ νe )sin2(2θ) for \Large" �(m2) (νe 6→ νe )sin2(2θ) for \Large" �(m2) (νe 6→ νe )VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.02 90 1 ACHKAR 95 CNTR For �(m2) = 0.6 eV21ACHKAR 95 bound is from data for L=15, 40, and 95 m distan
e from the Bugey rea
tor.Sterile neutrino limits from atmospheri
 neutrino studiesSterile neutrino limits from atmospheri
 neutrino studiesSterile neutrino limits from atmospheri
 neutrino studiesSterile neutrino limits from atmospheri
 neutrino studies�(m2) for sin2(2θ) = 1 (νµ → νs )�(m2) for sin2(2θ) = 1 (νµ → νs )�(m2) for sin2(2θ) = 1 (νµ → νs )�(m2) for sin2(2θ) = 1 (νµ → νs )
νs means ντ or any sterile (nonintera
ting) ν.VALUE (10−5 eV2) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3000 (or <550) 90 1 OYAMA 89 KAMI Water Cherenkov
< 4.2 or > 54. 90 BIONTA 88 IMB Flux has νµ, νµ, νe , and νe1OYAMA 89 gives a range of limits, depending on assumptions in their analysis. Theyargue that the region �(m2) = (100{1000) × 10−5 eV2 is not ruled out by any datafor large mixing.Sear
h for νµ → νsSear
h for νµ → νsSear
h for νµ → νsSear
h for νµ → νsVALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AMBROSIO 01 MCRO matter e�e
ts2 FUKUDA 00 SKAM neutral 
urrents + matter ef-fe
ts



786786786786Lepton Parti
le ListingsNeutrino Mixing1AMBROSIO 01 tested the pure 2-
avor νµ → νs hypothesis using matter e�e
ts whi
h
hange the shape of the zenith-angle distribution of upward through-going muons. Withmaximum mixing and �(m2) around 0.0024 eV2, the νµ → νs os
illation is disfavoredwith 99% 
on�den
e level with respe
t to the νµ → ντ hypothesis.2 FUKUDA 00 tested the pure 2-
avor νµ → νs hypothesis using three 
omplementaryatmospheri
-neutrino data samples. With this hypothesis, zenith-angle distributions areexpe
ted to show 
hara
teristi
 behavior due to neutral 
urrents and matter e�e
ts.In the �(m2) and sin22θ region preferred by the Super-Kamiokande data, the νµ →
νs hypothesis is reje
ted at the 99% 
on�den
e level, while the νµ → ντ hypothesis
onsistently �ts all of the data sample.CPT testsCPT testsCPT testsCPT tests

〈�m221 −�m221〉〈�m221 −�m221〉〈�m221 −�m221〉〈�m221 −�m221〉VALUE (10−4 eV2) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.1 99.7 1 DEGOUVEA 05 FIT solar vs. rea
tor1DEGOUVEA 05 obtained this bound at the 3σ CL from the KamLAND (ARAKI 05) andsolar neutrino data.
〈�m232 −�m232〉〈�m232 −�m232〉〈�m232 −�m232〉〈�m232 −�m232〉VALUE (10−3 eV2) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.6+2.4

−0.8 90 1 ADAMSON 12B MINS MINOS atmospheri
1The quoted result is the single-parameter 90% C.L. interval determined from the 90% C.L.
ontour in the (�m2, �m2) plane, whi
h is obtained by minimizing the four parameterlog-likelihood fun
tion with respe
t to the other os
illation parameters.REFERENCES FOR Neutrino MixingREFERENCES FOR Neutrino MixingREFERENCES FOR Neutrino MixingREFERENCES FOR Neutrino MixingAARTSEN 15A PR D91 072004 M.G. Aartsen (I
eCube Collab.)ABE 15D PR D91 072010 K. Abe et al. (T2K Collab.)AN 15 PRL 115 111802 F.P. An et al. (Daya Bay Collab.)BERGSTROM 15 JHEP 1509 200 J. Bergstrom et al. (BARC, STON, MADU+)GANDO 15 PR C92 055808 A. Gando et al. (KamLAND Collab.)ABE 14 PRL 112 181801 K. Abe et al. (T2K Collab.)Also PR D91 072010 K. Abe et al. (T2K Collab.)ABE 14A PL B735 51 Y. Abe et al. (Double Chooz Collab.)ABE 14B PR D89 092003 K. Abe et al. (T2K Collab.)ABE 14C PRL 112 061802 K. Abe et al. (T2K Collab.)ABE 14H JHEP 1410 086 Y. Abe et al. (Double Chooz Collab.)Also JHEP 1502 074 (errat.) Y. Abe et al. (Double Chooz Collab.)ADAMSON 14 PRL 112 191801 P. Adamson et al. (MINOS Collab.)AN 14 PRL 112 061801 F.P. An et al. (Daya Bay Collab.)AN 14B PR D90 071101 F.P. An et al. (Daya Bay Collab.)BELLINI 14A NAT 512 383 G. Bellini et al. (Borexino Collab.)FORERO 14 PR D90 093006 D. V. Forero, M. Tortola, J. W. F. ValleGONZALEZ-G... 14 JHEP 1411 052 M.C. Gonzalez-Gar
ia, M. Maltoni, T. S
hwetzPDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)RENSHAW 14 PRL 112 091805 A. Renshaw et al. (Super-Kamiokande Collab.)AARTSEN 13B PRL 111 081801 M.G. Aartsen et al. (I
eCube Collab.)ABE 13C PL B723 66 Y. Abe et al. (Double Chooz Collab.)ABE 13E PR D88 032002 K. Abe et al. (T2K Collab.)ABE 13G PRL 111 211803 K. Abe et al. (T2K Collab.)ADAMSON 13A PRL 110 171801 P. Adamson et al. (MINOS Collab.)ADAMSON 13B PRL 110 251801 P. Adamson et al. (MINOS Collab.)AGAFONOVA 13 JHEP 1307 004 N. Agafonova et al. (OPERA Collab.)AGUILAR-AR... 13A PRL 110 161801 A.A. Aguilar-Arevalo et al. (MiniBooNE Collab.)AHARMIM 13 PR C88 025501 B. Aharmim et al. (SNO Collab.)AN 13 CPC 37 011001 F.P. An et al. (Daya Bay Collab.)Also CPC 37 011001 (errat.) F.P. An et al. (Daya Bay Collab.)ANTONELLO 13 EPJ C73 2345 M. Antonello et al. (ICARUS Collab.)ANTONELLO 13A EPJ C73 2599 M. Antonello et al. (ICARUS Collab.)GANDO 13 PR D88 033001 A. Gando et al. (KamLAND Collab.)ABE 12 PRL 108 131801 Y. Abe et al. (Double Chooz Collab.)ABE 12A PR D85 031103 K. Abe et al. (T2K Collab.)ABE 12B PR D86 052008 Y. Abe et al. (Double Chooz Collab.)ADAMSON 12 PRL 108 191801 P. Adamson et al. (MINOS Collab.)ADAMSON 12B PR D86 052007 P. Adamson et al. (MINOS Collab.)ADRIAN-MAR...12 PL B714 224 S. Adrian-Martinez et al. (ANTARES Collab.)AHN 12 PRL 108 191802 J.K. Ahn et al. (RENO Collab.)AN 12 PRL 108 171803 F.P. An et al. (Daya Bay Collab.)Also CPC 37 011001 (errat.) F.P. An et al. (Daya Bay Collab.)BELLINI 12A PRL 108 051302 G. Bellini et al. (Borexino Collab.)CHENG 12 PR D86 052009 G. Cheng et al. (MiniBooNE/S
iBooNE Collab.)MAHN 12 PR D85 032007 K.B.M. Mahn et al. (MiniBooNE/S
iBooNE Collab.)ABE 11 PR D83 052010 K. Abe et al. (Super-Kamiokande Collab.)ABE 11A PRL 107 041801 K. Abe et al. (T2K Collab.)ABE 11B PR C84 035804 S. Abe et al. (KamLAND Collab.)ABE 11C PRL 107 241801 K. Abe et al. (Super-Kamiokande Collab.)ADAMSON 11 PRL 106 181801 P. Adamson et al. (MINOS Collab.)ADAMSON 11B PRL 107 021801 P. Adamson et al. (MINOS Collab.)ADAMSON 11C PR D84 071103 P. Adamson et al. (MINOS Collab.)ADAMSON 11D PRL 107 181802 P. Adamson et al. (MINOS Collab.)BELLINI 11 PL B696 191 G. Bellini et al. (Borexino Collab.)BELLINI 11A PRL 107 141302 G. Bellini et al. (Borexino Collab.)FOGLI 11 PR D84 053007 G.L. Fogli et al.GANDO 11 PR D83 052002 A. Gando et al. (KamLAND Collab.)MUELLER 11 PR C83 054615 Th.A Mueller et al.SERENELLI 11 APJ 743 24 A.M. Serenelli, W.C. Haxton, C. Pena-GarayADAMSON 10A PR D82 051102 P. Adamson et al. (MINOS Collab.)AGUILAR-AR... 10 PRL 105 181801 A.A. Aguillar-Arevalo et al. (MiniBooNE Collab.)AHARMIM 10 PR C81 055504 B. Aharmim et al. (SNO Collab.)BELLINI 10A PR D82 033006 G. Bellini et al. (Borexino Collab.)DENIZ 10 PR D81 072001 M. Deniz et al. (TEXONO Collab.)KAETHER 10 PL B685 47 F. Kaether et al.WENDELL 10 PR D81 092004 R. Wendell et al. (Super-Kamiokande Collab.)
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hael et al. (MINOS Collab.)WINTER 06A PR C73 025503 W.T. Winter et al.YAMAMOTO 06 PRL 96 181801 S. Yamamoto et al. (K2K Collab.)AHARMIM 05A PR C72 055502 B. Aharmim et al. (SNO Collab.)ALIU 05 PRL 94 081802 E. Aliu et al. (K2K Collab.)ALLISON 05 PR D72 052005 W.W.M. Allison et al. (SOUDAN-2 Collab.)ALTMANN 05 PL B616 174 M. Altmann et al. (GNO Collab.)ARAKI 05 PRL 94 081801 T. Araki et al. (KamLAND Collab.)ASHIE 05 PR D71 112005 Y. Ashie et al. (Super-Kamiokande Collab.)DEGOUVEA 05 PR D71 093002 A. de Gouvea, C. Pena-GarayAHARMIM 04 PR D70 093014 B. Aharmim et al. (SNO Collab.)AHMED 04A PRL 92 181301 S.N. Ahmed et al. (SNO Collab.)AHN 04 PRL 93 051801 M.H. Ahn et al. (K2K Collab.)AMBROSIO 04 EPJ C36 323 M. Ambrosio et al. (MACRO Collab.)ASHIE 04 PRL 93 101801 Y. Ashie et al. (Super-Kamiokande Collab.)EGUCHI 04 PRL 92 071301 K. Egu
hi et al. (KamLAND Collab.)SMY 04 PR D69 011104 M.B. Smy et al. (Super-Kamiokande Collab.)AHN 03 PRL 90 041801 M.H. Ahn et al. (K2K Collab.)AMBROSIO 03 PL B566 35 M. Ambrosio et al. (MACRO Collab.)APOLLONIO 03 EPJ C27 331 M. Apollonio et al. (CHOOZ Collab.)ASTIER 03 PL B570 19 P. Astier et al. (NOMAD Collab.)EGUCHI 03 PRL 90 021802 K. Egu
hi et al. (KamLAND Collab.)GANDO 03 PRL 90 171302 Y. Gando et al. (Super-Kamiokande Collab.)IANNI 03 JP G29 2107 A. Ianni (INFN Gran Sasso)SANCHEZ 03 PR D68 113004 M. San
hez et al. (Soudan 2 Collab.)ABDURASHI... 02 JETP 95 181 J.N. Abdurashitov et al. (SAGE Collab.)Translated from ZETF 122 211.AHMAD 02 PRL 89 011301 Q.R. Ahmad et al. (SNO Collab.)AHMAD 02B PRL 89 011302 Q.R. Ahmad et al. (SNO Collab.)ARMBRUSTER 02 PR D65 112001 B. Armbruster et al. (KARMEN 2 Collab.)AVVAKUMOV 02 PRL 89 011804 S. Avvakumov et al. (NuTeV Collab.)FUKUDA 02 PL B539 179 S. Fukuda et al. (Super-Kamiokande Collab.)AGUILAR 01 PR D64 112007 A. Aguilar et al. (LSND Collab.)AHMAD 01 PRL 87 071301 Q.R. Ahmad et al. (SNO Collab.)AMBROSIO 01 PL B517 59 M. Ambrosio et al. (MACRO Collab.)BOEHM 01 PR D64 112001 F. Boehm et al.FUKUDA 01 PRL 86 5651 S. Fukuda et al. (Super-Kamiokande Collab.)AMBROSIO 00 PL B478 5 M. Ambrosio et al. (MACRO Collab.)BOEHM 00 PRL 84 3764 F. Boehm et al.FUKUDA 00 PRL 85 3999 S. Fukuda et al. (Super-Kamiokande Collab.)ALLISON 99 PL B449 137 W.W.M. Allison et al. (Soudan 2 Collab.)APOLLONIO 99 PL B466 415 M. Apollonio et al. (CHOOZ Collab.)Also PL B472 434 (errat.) M. Apollonio et al. (CHOOZ Collab.)FUKUDA 99C PRL 82 2644 Y. Fukuda et al. (Super-Kamiokande Collab.)FUKUDA 99D PL B467 185 Y. Fukuda et al. (Super-Kamiokande Collab.)HAMPEL 99 PL B447 127 W. Hampel et al. (GALLEX Collab.)AMBROSIO 98 PL B434 451 M. Ambrosio et al. (MACRO Collab.)APOLLONIO 98 PL B420 397 M. Apollonio et al. (CHOOZ Collab.)ATHANASSO... 98 PRL 81 1774 C. Athanassopoulos et al. (LSND Collab.)ATHANASSO... 98B PR C58 2489 C. Athanassopoulos et al. (LSND Collab.)CLEVELAND 98 APJ 496 505 B.T. Cleveland et al. (Homestake Collab.)FELDMAN 98 PR D57 3873 G.J. Feldman, R.D. CousinsFUKUDA 98C PRL 81 1562 Y. Fukuda et al. (Super-Kamiokande Collab.)HATAKEYAMA 98 PRL 81 2016 S. Hatakeyama et al. (Kamiokande Collab.)CLARK 97 PRL 79 345 R. Clark et al. (IMB Collab.)ROMOSAN 97 PRL 78 2912 A. Romosan et al. (CCFR Collab.)AGLIETTA 96 JETPL 63 791 M. Aglietta et al. (LSD Collab.)Translated from ZETFP 63 753.ATHANASSO... 96 PR C54 2685 C. Athanassopoulos et al. (LSND Collab.)ATHANASSO... 96B PRL 77 3082 C. Athanassopoulos et al. (LSND Collab.)FUKUDA 96 PRL 77 1683 Y. Fukuda et al. (Kamiokande Collab.)FUKUDA 96B PL B388 397 Y. Fukuda et al. (Kamiokande Collab.)GREENWOOD 96 PR D53 6054 Z.D. Greenwood et al. (UCI, SVR, SCUC)HAMPEL 96 PL B388 384 W. Hampel et al. (GALLEX Collab.)LOVERRE 96 PL B370 156 P.F. LoverreACHKAR 95 NP B434 503 B. A
hkar et al. (SING, SACLD, CPPM, CDEF+)AHLEN 95 PL B357 481 S.P. Ahlen et al. (MACRO Collab.)ATHANASSO... 95 PRL 75 2650 C. Athanassopoulos et al. (LSND Collab.)DAUM 95 ZPHY C66 417 K. Daum et al. (FREJUS Collab.)HILL 95 PRL 75 2654 J.E. Hill (PENN)MCFARLAND 95 PRL 75 3993 K.S. M
Farland et al. (CCFR Collab.)DECLAIS 94 PL B338 383 Y. De
lais et al.FUKUDA 94 PL B335 237 Y. Fukuda et al. (Kamiokande Collab.)VILAIN 94C ZPHY C64 539 P. Vilain et al. (CHARM II Collab.)FREEDMAN 93 PR D47 811 S.J. Freedman et al. (LAMPF E645 Collab.)BECKER-SZ... 92B PR D46 3720 R.A. Be
ker-Szendy et al. (IMB Collab.)BEIER 92 PL B283 446 E.W. Beier et al. (KAM2 Collab.)Also PTRSL A346 63 E.W. Beier, E.D. Frank (PENN)BORODOV... 92 PRL 68 274 L. Borodovsky et al. (COLU, JHU, ILL)HIRATA 92 PL B280 146 K.S. Hirata et al. (Kamiokande II Collab.)CASPER 91 PRL 66 2561 D. Casper et al. (IMB Collab.)HIRATA 91 PRL 66 9 K.S. Hirata et al. (Kamiokande II Collab.)KUVSHINN... 91 JETPL 54 253 A.A. Kuvshinnikov et al. (KIAE)BERGER 90B PL B245 305 C. Berger et al. (FREJUS Collab.)HIRATA 90 PRL 65 1297 K.S. Hirata et al. (Kamiokande II Collab.)AGLIETTA 89 EPL 8 611 M. Aglietta et al. (FREJUS Collab.)DAVIS 89 ARNPS 39 467 R. Davis, A.K. Mann, L. Wolfenstein (BNL, PENN+)OYAMA 89 PR D39 1481 Y. Oyama et al. (Kamiokande II Collab.)BIONTA 88 PR D38 768 R.M. Bionta et al. (IMB Collab.)DURKIN 88 PRL 61 1811 L.S. Durkin et al. (OSU, ANL, CIT+)ABRAMOWICZ 86 PRL 57 298 H. Abramowi
z et al. (CDHS Collab.)ALLABY 86 PL B177 446 J.V. Allaby et al. (CHARM Collab.)ANGELINI 86 PL B179 307 C. Angelini et al. (PISA, ATHU, PADO+)VUILLEUMIER 82 PL 114B 298 J.L. Vuilleumier et al. (CIT, SIN, MUNI)BOLIEV 81 SJNP 34 787 M.M. Boliev et al. (INRM)Translated from YAF 34 1418.KWON 81 PR D24 1097 H. Kwon et al. (CIT, ISNG, MUNI)BOEHM 80 PL 97B 310 F. Boehm et al. (ILLG, CIT, ISNG, MUNI)CROUCH 78 PR D18 2239 M.F. Crou
h et al. (CASE, UCI, WITW)



787787787787See key on page 601 Lepton Parti
le ListingsHeavy Neutral Leptons, Sear
hes forHeavy Neutral Leptons, Sear
hes for(A) Heavy Neutral Leptons(A) Heavy Neutral Leptons(A) Heavy Neutral Leptons(A) Heavy Neutral LeptonsStable Neutral Heavy Lepton MASS LIMITSStable Neutral Heavy Lepton MASS LIMITSStable Neutral Heavy Lepton MASS LIMITSStable Neutral Heavy Lepton MASS LIMITSNote that LEP results in 
ombination with REUSSER 91 ex
lude a fourthstable neutrino with m< 2400 GeV.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>45.0>45.0>45.0>45.0 95 ABREU 92B DLPH Dira

>39.5>39.5>39.5>39.5 95 ABREU 92B DLPH Majorana
>44.1 95 ALEXANDER 91F OPAL Dira

>37.2 95 ALEXANDER 91F OPAL Majorananone 3{100 90 SATO 91 KAM2 Kamiokande II
>42.8 95 1 ADEVA 90S L3 Dira

>34.8 95 1 ADEVA 90S L3 Majorana
>42.7 95 DECAMP 90F ALEP Dira
1ADEVA 90S limits for the heavy neutrino apply if the mixing with the 
harged leptonssatis�es ∣∣U1 j ∣∣2 + ∣∣U2 j ∣∣2 + ∣∣U3 j ∣∣2 > 6.2×10−8 atmL0 = 20 GeV and > 5.1×10−10for mL0 = 40 GeV.Heavy Neutral Lepton MASS LIMITSHeavy Neutral Lepton MASS LIMITSHeavy Neutral Lepton MASS LIMITSHeavy Neutral Lepton MASS LIMITSLimits apply only to heavy lepton type given in 
omment at right of dataListings.See the \Quark and Lepton Compositeness, Sear
hes for" Listings forlimits on radiatively de
aying ex
ited neutral leptons, i.e. ν∗ → ν γ.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>101.3>101.3>101.3>101.3 95 ACHARD 01B L3 Dira
 
oupling to e
>101.5>101.5>101.5>101.5 95 ACHARD 01B L3 Dira
 
oupling to µ

> 90.3> 90.3> 90.3> 90.3 95 ACHARD 01B L3 Dira
 
oupling to τ

> 89.5> 89.5> 89.5> 89.5 95 ACHARD 01B L3 Majorana 
oupling to e
> 90.7> 90.7> 90.7> 90.7 95 ACHARD 01B L3 Majorana 
oupling to µ

> 80.5> 80.5> 80.5> 80.5 95 ACHARD 01B L3 Majorana 
oupling to τ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 76.0 95 ABBIENDI 00I OPAL Majorana, 
oupling to e
> 88.0 95 ABBIENDI 00I OPAL Dira
, 
oupling to e
> 76.0 95 ABBIENDI 00I OPAL Majorana, 
oupling to µ

> 88.1 95 ABBIENDI 00I OPAL Dira
, 
oupling to µ

> 53.8 95 ABBIENDI 00I OPAL Majorana, 
oupling to τ

> 71.1 95 ABBIENDI 00I OPAL Dira
, 
oupling to τ

> 76.5 95 ABREU 99O DLPH Dira
 
oupling to e
> 79.5 95 ABREU 99O DLPH Dira
 
oupling to µ

> 60.5 95 ABREU 99O DLPH Dira
 
oupling to τ

> 63 95 2,3 BUSKULIC 96S ALEP Dira

> 54.3 95 2,4 BUSKULIC 96S ALEP Majorana2BUSKULIC 96S requires the de
ay length of the heavy lepton to be < 1 
m, limiting thesquare of the mixing angle ∣∣Uℓ j ∣∣2 to 10−10.3BUSKULIC 96S limit for mixing with τ . Mass is > 63.6 GeV for mixing with e or µ.4BUSKULIC 96S limit for mixing with τ . Mass is > 55.2 GeV for mixing with e or µ.Astrophysi
al Limits on Neutrino MASS for mν > 1 GeVAstrophysi
al Limits on Neutrino MASS for mν > 1 GeVAstrophysi
al Limits on Neutrino MASS for mν > 1 GeVAstrophysi
al Limits on Neutrino MASS for mν > 1 GeVVALUE (GeV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •none 60{115 5 FARGION 95 ASTR Dira
none 9.2{2000 6 GARCIA 95 COSM Nu
leosynthesisnone 26{4700 6 BECK 94 COSM Dira
none 6 { hundreds 7,8 MORI 92B KAM2 Dira
 neutrinonone 24 { hundreds 7,8 MORI 92B KAM2 Majorana neutrinonone 10{2400 90 9 REUSSER 91 CNTR HPGe sear
hnone 3{100 90 SATO 91 KAM2 Kamiokande II10 ENQVIST 89 COSMnone 12{1400 6 CALDWELL 88 COSM Dira
 νnone 4{16 90 6,7 OLIVE 88 COSM Dira
 νnone 4{35 90 OLIVE 88 COSM Majorana ν

>4.2 to 4.7 SREDNICKI 88 COSM Dira
 ν

>5.3 to 7.4 SREDNICKI 88 COSM Majorana νnone 20{1000 95 6 AHLEN 87 COSM Dira
 ν

>4.1 GRIEST 87 COSM Dira
 ν5FARGION 95 bound is sensitive to assumed ν 
on
entration in the Galaxy. See alsoKONOPLICH 94.6These results assume that neutrinos make up dark matter in the gala
ti
 halo.7 Limits based on annihilations in the sun and are due to an absen
e of high energyneutrinos dete
ted in underground experiments.

8MORI 92B results assume that neutrinos make up dark matter in the gala
ti
 halo. Limitsbased on annihilations in earth are also given.9REUSSER 91 uses existing ββ dete
tor (see FISHER 89) to sear
h for CDM Dira
neutrinos.10ENQVIST 89 argue that there is no 
osmologi
al upper bound on heavy neutrinos.(B) Other Bounds from Nu
lear and Parti
le De
ays(B) Other Bounds from Nu
lear and Parti
le De
ays(B) Other Bounds from Nu
lear and Parti
le De
ays(B) Other Bounds from Nu
lear and Parti
le De
aysLimits on ∣∣Ue x ∣∣2 as Fun
tion of mνxLimits on ∣∣Ue x ∣∣2 as Fun
tion of mνxLimits on ∣∣Ue x ∣∣2 as Fun
tion of mνxLimits on ∣∣Ue x ∣∣2 as Fun
tion of mνxPeak and kink sear
h testsPeak and kink sear
h testsPeak and kink sear
h testsPeak and kink sear
h testsLimits on ∣∣Ue x ∣∣2 as fun
tion of mνjVALUE CL% DOCUMENT ID TECN COMMENT
<1 × 10−7<1 × 10−7<1 × 10−7<1 × 10−7 90 11 BRITTON 92B CNTR 50 MeV < mνx < 130MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5 × 10−6 90 DELEENER-... 91 mνx=20 MeV
<5 × 10−7 90 DELEENER-... 91 mνx=40 MeV
<3 × 10−7 90 DELEENER-... 91 mνx=60 MeV
<1 × 10−6 90 DELEENER-... 91 mνx=80 MeV
<1 × 10−6 90 DELEENER-... 91 mνx=100 MeV
<5 × 10−7 90 AZUELOS 86 CNTR mνx=60 MeV
<2 × 10−7 90 AZUELOS 86 CNTR mνx=80 MeV
<3 × 10−7 90 AZUELOS 86 CNTR mνx=100 MeV
<1 × 10−6 90 AZUELOS 86 CNTR mνx=120 MeV
<2 × 10−7 90 AZUELOS 86 CNTR mνx=130 MeV
<1 × 10−4 90 12 BRYMAN 83B CNTR mνx=5 MeV
<1.5× 10−6 90 BRYMAN 83B CNTR mνx=53 MeV
<1 × 10−5 90 BRYMAN 83B CNTR mνx=70 MeV
<1 × 10−4 90 BRYMAN 83B CNTR mνx=130 MeV
<1 × 10−4 68 13 SHROCK 81 THEO mνx=10 MeV
<5 × 10−6 68 13 SHROCK 81 THEO mνx=60 MeV
<1 × 10−5 68 14 SHROCK 80 THEO mνx=80 MeV
<3 × 10−6 68 14 SHROCK 80 THEO mνx=160 MeV11BRITTON 92B is from a sear
h for additional peaks in the e+ spe
trum from π+ →e+ νe de
ay at TRIUMF. See also BRITTON 92.12BRYMAN 83B obtain upper limits from both dire
t peak sear
h and analysis of B(π →e ν)/B(π → µν). Latter limits are not listed, ex
ept for this entry (i.e. | we list themost stringent limits for given mass).13Analysis of (π+ → e+ νe )/(π+ → µ+ νµ) and (K+ → e+ νe )/(K+ → µ+ νµ)de
ay ratios.14Analysis of (K+ → e+ νe ) spe
trum.Kink sear
h in nu
lear β de
ayKink sear
h in nu
lear β de
ayKink sear
h in nu
lear β de
ayKink sear
h in nu
lear β de
ayHigh-sensitivity follow-up experiments show that indi
ations for a neutrino with mass17 keV (Simpson, Hime, and others) were not valid. A

ordingly, we no longer listthe experiments by these authors and some others whi
h made positive 
laims of17 keV neutrino emission. Complete listings are given in the 1994 edition (Physi
alReview D50D50D50D50 1173 (1994)) and in the 1998 edition (The European Physi
al JournalC3C3C3C3 1 (1998)). We list below only the best limits on ∣∣Uex

∣∣2 for ea
h mνx . SeeWIETFELDT 96 for a 
omprehensive review.VALUE(units 10−3) CL% mνj
(keV) ISOTOPE METHOD DOCUMENT ID

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 4{20 90 700{3500 38mK Trap 15 TRINCZEK 03
< 9{116 95 1{0.1 187Re 
ryog. 16 GALEAZZI 01
< 1 95 10{90 35S Mag spe
t 17 HOLZSCHUH 00
< 4 95 14{17 241Pu Ele
trostati
 spe
 18 DRAGOUN 99
< 1 95 4{30 63Ni Mag spe
t 19 HOLZSCHUH 99
< 10{40 90 370{640 37Ar EC ion re
oil 20 HINDI 98
< 10 95 1 3H SPEC 21 HIDDEMANN 95
< 6 95 2 3H SPEC 21 HIDDEMANN 95
< 2 95 3 3H SPEC 21 HIDDEMANN 95
< 0.7 99 16.3{16.6 3H Prop 
hamber 22 KALBFLEISCH 93
< 2 95 13{40 35S Si(Li) 23 MORTARA 93
< 0.73 95 17 63Ni Mag spe
t OHSHIMA 93
< 1.0 95 10{24 63Ni Mag spe
t KAWAKAMI 92
< 0.9{2.5 90 1200{6800 20F beta spe
trum 24 DEUTSCH 90
< 8 90 80 35S Mag spe
t 25 APALIKOV 85
< 1.5 90 60 35S Mag spe
t APALIKOV 85
< 3.0 90 5{50 Mag spe
t MARKEY 85
< 0.62 90 48 35S Si(Li) OHI 85
< 0.90 90 30 35S Si(Li) OHI 85
< 4 90 140 64Cu Mag spe
t 26 SCHRECK... 83
< 8 90 440 64Cu Mag spe
t 26 SCHRECK... 83
<100 90 0.1{3000 THEO 27 SHROCK 80
< 0.1 68 80 THEO 28 SHROCK 80



788788788788LeptonParti
le ListingsHeavyNeutral Leptons, Sear
hes for15TRINCZEK 03 is a sear
h for admixture of heavy neutrino to νe , in 
ontrast to νe usedin many other sear
hes. Full kinemati
 re
onstru
tion of the neutrino momentum by useof a magneto opti
al trap.16GALEAZZI 01 use an 
ryogeni
 mi
ro
alorimeter to sear
h for mass 50{1000 eV neutrinoadmixtures using the 187Re beta spe
trum with 2.4 keV endpoint. They derive limitsfor the admixture of heavy neutrinos, ranging from 9 × 10−3 for mass 1 keV to 0.116for mass 100 eV. This is a signi�
ant improvement with respe
t to HIDDEMANN 95,espe
ially for masses below ∼ 500 MeV, where the limit is about a fa
tor of ∼ 2 higher.17HOLZSCHUH 00 use an iron-free β spe
trometer to measure the 35Sβ de
ay spe
trum.An analysis of the spe
trum in the energy range 56{173 keV is used to derive limits forthe admixture of heavy neutrinos. This extends the range of neutrino masses exploredin HOLZSCHUH 99.18DRAGOUN 99 analyze the β de
ay spe
trum of 241Pu in the energy range 0.2{9.2keV to derive limits for the admixture of heavy neutrinos. It is not 
ompetitive withHOLZSCHUH 99.19HOLZSCHUH 99 use an iron-free β spe
trometer to measure the 63Niβ de
ay spe
trum.An analysis of the spe
trum in the energy rage 33{67.8 keV is used to derive limits forthe admixture of heavy neutrinos.20HINDI 98 obtain a limit on heavy neutrino admixture from EC de
ay of 37Ar by measuringthe time-of-
ight distribution of the re
oiling ions in 
oin
iden
e with x-rays or Augerele
trons. The authors report upper limit for ∣∣Uex ∣∣2 of ≈ 3% for mνx=500 keV, 1% formνx=550 keV, 2% for mνx=600 keV, and 4% for mx=650 keV. Their reported limitsfor mνx ≤ 450 keV are inferior to the limits of SCHRECKENBACH 83.21 In the beta spe
trum from tritium β de
ay nonvanishing or mixed mν1 state in the massregion 0.01{4 keV. For mνx <1 keV, their upper limit on ∣∣Uex ∣∣2 be
omes less22KALBFLEISCH 93 extends the 17 keV neutrino sear
h of BAHRAN 92, using an im-proved proportional 
hamber to whi
h a small amount of 3H is added. Systemati
s aresigni�
antly redu
ed, allowing for an improved upper limit. The authors give a 99% 
on-�den
e limit on ∣∣Ue x ∣∣2 as a fun
tion of mνx in the range from 13.5 keV to 17.5 keV.See also the related papers BAHRAN 93, BAHRAN 93B, and BAHRAN 95 on theoreti
alaspe
ts of beta spe
tra and �tting methods for heavy neutrinos.23MORTARA 93 limit is from study using a high-resolution solid-state dete
tor with asuper
ondu
ting solenoid. The authors note that \The sensitivity to neutrino mass isveri�ed by measurement with a mixed sour
e of 35S and 14C, whi
h arti�
ially produ
esa distortion in the beta spe
trum similar to that expe
ted from the massive neutrino."24DEUTSCH 90 sear
h for emission of heavy νe in super-allowed beta de
ay of 20F byspe
tral analysis of the ele
trons.25This limit was taken from the �gure 3 of APALIKOV 85; the text gives a more restri
tivelimit of 1.7× 10−3 at CL = 90%.26SCHRECKENBACH 83 is a 
ombined measurement of the β+ and β− spe
trum.27 SHROCK 80 was a retroa
tive analysis of data on several superallowed β de
ays to sear
hfor kinks in the Kurie plot.28Appli
ation of test to sear
h for kinks in β de
ay Kurie plots.Sear
hes for De
ays of Massive νSear
hes for De
ays of Massive νSear
hes for De
ays of Massive νSear
hes for De
ays of Massive νLimits on ∣∣Ue x ∣∣2 as fun
tion of mνxVALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.6× 10−4 90 29 BACK 03A CNTR mνx = 4 MeV
<4.5× 10−5 90 29 BACK 03A CNTR mνx = 7 MeV
<3.8× 10−5 90 29 BACK 03A CNTR mνx = 10 MeV
<1.5× 10−3 95 ACHARD 01 L3 mνx=80 GeV
<2 × 10−2 95 ACHARD 01 L3 mνx=175 GeV
<0.3 95 ACHARD 01 L3 mνx=200 GeV
<4 × 10−3 95 ACCIARRI 99K L3 mνx=80 GeV
<5 × 10−2 95 ACCIARRI 99K L3 mνx= 175 GeV
<2 × 10−5 95 30 ABREU 97I DLPH mνx=6 GeV
<3 × 10−5 95 30 ABREU 97I DLPH mνx=50 GeV
<1.8× 10−3 90 31 HAGNER 95 MWPC mνh = 1.5 MeV
<2.5× 10−4 90 31 HAGNER 95 MWPC mνh = 4 MeV
<4.2× 10−3 90 31 HAGNER 95 MWPC mνh = 9 MeV
<1 × 10−5 90 32 BARANOV 93 mνx=100 MeV
<1 × 10−6 90 32 BARANOV 93 mνx= 200 MeV
<3 × 10−7 90 32 BARANOV 93 mνx= 300 MeV
<2 × 10−7 90 32 BARANOV 93 mνx=400 MeV
<6.2× 10−8 95 ADEVA 90S L3 mνx=20 GeV
<5.1× 10−10 95 ADEVA 90S L3 mνx=40 GeVall values ruled out 95 33 BURCHAT 90 MRK2 mνx < 19.6 GeV
<1 × 10−10 95 33 BURCHAT 90 MRK2 mνx= 22 GeV
<1 × 10−11 95 33 BURCHAT 90 MRK2 mνx= 41 GeVall values ruled out 95 DECAMP 90F ALEP mνx= 25.0{42.7 GeV
<1 × 10−13 95 DECAMP 90F ALEP mνx= 42.7{45.7 GeV
<5 × 10−3 90 AKERLOF 88 HRS mνx=1.8 GeV
<2 × 10−5 90 AKERLOF 88 HRS mνx=4 GeV
<3 × 10−6 90 AKERLOF 88 HRS mνx=6 GeV
<1.2× 10−7 90 BERNARDI 88 CNTR mνx=100 MeV

<1 × 10−8 90 BERNARDI 88 CNTR mνx=200 MeV
<2.4× 10−9 90 BERNARDI 88 CNTR mνx=300 MeV
<2.1× 10−9 90 BERNARDI 88 CNTR mνx=400 MeV
<2 × 10−2 68 34 OBERAUER 87 mνx=1.5 MeV
<8 × 10−4 68 34 OBERAUER 87 mνx=4.0 MeV
<8 × 10−3 90 BADIER 86 CNTR mνx=400 MeV
<8 × 10−5 90 BADIER 86 CNTR mνx=1.7 GeV
<8 × 10−8 90 BERNARDI 86 CNTR mνx=100 MeV
<4 × 10−8 90 BERNARDI 86 CNTR mνx=200 MeV
<6 × 10−9 90 BERNARDI 86 CNTR mνx=400 MeV
<3 × 10−5 90 DORENBOS... 86 CNTR mνx=150 MeV
<1 × 10−6 90 DORENBOS... 86 CNTR mνx=500 MeV
<1 × 10−7 90 DORENBOS... 86 CNTR mνx=1.6 GeV
<7 × 10−7 90 35 COOPER-... 85 HLBC mνx=0.4 GeV
<8 × 10−8 90 35 COOPER-... 85 HLBC mνx=1.5 GeV
<1 × 10−2 90 36 BERGSMA 83B CNTR mνx=10 MeV
<1 × 10−5 90 36 BERGSMA 83B CNTR mνx=110 MeV
<6 × 10−7 90 36 BERGSMA 83B CNTR mνx=410 MeV
<1 × 10−5 90 GRONAU 83 mνx=160 MeV
<1 × 10−6 90 GRONAU 83 mνx=480 MeV29BACK 03A sear
hed for heavy neutrinos emitted from 8B de
ay in the Sun using thede
ay νh → νe e+ e− in the Counting Test Fa
ility (the prototype of the Borexinodete
tor) and obtained limits on heavy neutrino admixture for the νh mass range 1.1{12MeV.30ABREU 97I long-lived νx analysis. Short-lived analysis extends limit to lower masseswith de
reasing sensitivity ex
ept at 3.5 GeV, where the limit is the same as at 6 GeV.31HAGNER 95 obtain limits on heavy neutrino admixture from the de
ay νh → νe e+ e−at a nu
lear rea
tor for the νh mass range 2{9 MeV.32BARANOV 93 is a sear
h for neutrino de
ays into e+ e− νe using a beam dump experi-ment at the 70 GeV Serpukhov proton syn
hrotron. The limits are not as good as thosea
hieved earlier by BERGSMA 83 and BERNARDI 86, BERNARDI 88.33BURCHAT 90 in
ludes the analyses reported in JUNG 90, ABRAMS 89C, andWENDT 87.34OBERAUER 87 bounds from sear
h for ν → ν′ e e de
ay mode using rea
tor(anti)neutrinos.35COOPER-SARKAR 85 also give limits based on model-dependent assumptions for ντ
ux. We do not list these. Note that for this bound to be nontrivial, x is not equalto 3, i.e. νx 
annot be the dominant mass eigenstate in ντ sin
e mν3 <70 MeV(ALBRECHT 85I). Also, of 
ourse, x is not equal to 1 or 2, so a fourth generation wouldbe required for this bound to be nontrivial.36BERGSMA 83B also quote limits on ∣∣Ue3∣∣2 where the index 3 refers to the mass eigen-state dominantly 
oupled to the τ . Those limits were based on assumptions about theDs mass and Ds → τ ντ bran
hing ratio whi
h are no longer valid. See COOPER-SARKAR 85.Limits on Coupling of µ to νx as Fun
tion of mνxLimits on Coupling of µ to νx as Fun
tion of mνxLimits on Coupling of µ to νx as Fun
tion of mνxLimits on Coupling of µ to νx as Fun
tion of mνxPeak sear
h testPeak sear
h testPeak sear
h testPeak sear
h testLimits on B(π (or K) → µνx ).VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •37 ASTIER 02 NOMD π → µX for mX=33.9MeV
<6.0 × 10−10 95 38 DAUM 00 CNTR π → µX for mX=33.9MeV39 FORMAGGIO 00 CNTR π → µX for mX=33.9MeV
<0.22 90 40 ASSAMAGAN 98 SILI mνx= 0.53 MeV
<0.029 90 40 ASSAMAGAN 98 SILI mνx= 0.75 MeV
<0.016 90 40 ASSAMAGAN 98 SILI mνx= 1.0 MeV
< 4{6× 10−5 41 BRYMAN 96 CNTR mνx = 30{33.91 MeV
∼ 1× 10−16 42 ARMBRUSTER95 KARM mνx = 33.9 MeV
<4 × 10−7 95 43 BILGER 95 LEPS mνx = 33.9 MeV
<7 × 10−8 95 43 BILGER 95 LEPS mνx = 33.9 MeV
<2.6 × 10−8 95 43 DAUM 95B TOF mνx = 33.9 MeV
<2 × 10−2 90 DAUM 87 mνx=1 MeV
<1 × 10−3 90 DAUM 87 mνx=2 MeV
<6 × 10−5 90 DAUM 87 3 MeV < mνx < 19.5 MeV
<3 × 10−2 90 44 MINEHART 84 mνx=2 MeV
<1 × 10−3 90 44 MINEHART 84 mνx=4 MeV
<3 × 10−4 90 44 MINEHART 84 mνx=10 GeV
<5 × 10−6 90 45 HAYANO 82 mνx=330 MeV
<1 × 10−4 90 45 HAYANO 82 mνx=70 MeV
<9 × 10−7 90 45 HAYANO 82 mνx=250 MeV
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<1 × 10−1 90 44 ABELA 81 mνx=4 MeV
<7 × 10−5 90 44 ABELA 81 mνx=10.5 MeV
<2 × 10−4 90 44 ABELA 81 mνx=11.5 MeV
<2 × 10−5 90 44 ABELA 81 mνx=16{30 MeV37ASTIER 02 sear
h for anomalous pion de
ay into a 33.9 MeV neutral parti
le. Noeviden
e was found and the sensitivity to the bran
hing ratio B(π → µX )·B(X →

ν e+ e−) is as low as 3.7× 10−15, depending on the X lifetime.38DAUM 00 sear
h for anomalous pion de
ay into a 33.9 MeV neutral parti
le that might beresponsible for the time-distribution anomaly observed by the KARMEN Collaboration.39 FORMAGGIO 00 sear
h for anomalous pion de
ay into a 33.9 MeV neutral parti
le Q0that might be responsible for the time-distribution anomaly observed by the KARMENCollaboration. In the E815 (NuTeV) experiment at Fermilab no eviden
e was found,with sensitivity for the pion bran
hing ratio B(π → µQ0)·B(Q0 → visible) as low as10−13.40ASSAMAGAN 98 obtain a limit on heavy neutrino admixture from π+ de
ay essentiallyat rest, by measuring with good resolution the momentum distribution of the muons.However, the sear
h uses an ad ho
 shape 
orre
tion. The authors report upper limit for∣∣Uµx ∣∣2 of 0.22 for mν = 0.53 MeV, 0.029 for mν = 0.75 MeV, and 0.016 for mν =1.0 MeV at 90%CL.41BRYMAN 96 sear
h for massive un
onventional neutrinos of mass mνx in π+ de
ay.42ARMBRUSTER 95 study the rea
tions 12C(νe ,e−) 12N and 12C(ν,ν′) 12C∗ indu
ed byneutrinos from π+ and µ+ de
ay at the ISIS neutron spallation sour
e at the Rutherford-Appleton laboratory. An anomaly in the time distribution 
an be interpreted as the de
ay
π+ → µ+ νx , where νx is a neutral weakly intera
ting parti
le with mass ≈ 33.9 MeVand spin 1/2. The lower limit to the bran
hing ratio is a fun
tion of the lifetime of thenew massive neutral parti
le, and rea
hes a minimum of a few × 10−16 for τx ∼ 5 s.43 From experiments of π+ and π− de
ay in 
ight at PSI, to 
he
k the 
laim of theKARMEN Collaboration quoted above (ARMBRUSTER 95).44π+ → µ+ νµ peak sear
h experiment.45K+ → µ+ νµ peak sear
h experiment.Peak sear
h testPeak sear
h testPeak sear
h testPeak sear
h testLimits on ∣∣Uµ x ∣∣2 as fun
tion of mνxVALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1{10× 10−4 46 BRYMAN 96 CNTR mνx = 30{33.91 MeV
<2× 10−5 95 47 ASANO 81 mνx=70 MeV
<3× 10−6 95 47 ASANO 81 mνx=210 MeV
<3× 10−6 95 47 ASANO 81 mνx=230 MeV
<6× 10−6 95 48 ASANO 81 mνx=240 MeV
<5× 10−7 95 48 ASANO 81 mνx=280 MeV
<6× 10−6 95 48 ASANO 81 mνx=300 MeV
<1× 10−2 95 CALAPRICE 81 mνx=7 MeV
<3× 10−3 95 49 CALAPRICE 81 mνx=33 MeV
<1× 10−4 68 50 SHROCK 81 THEO mνx=13 MeV
<3× 10−5 68 50 SHROCK 81 THEO mνx=33 MeV
<6× 10−3 68 51 SHROCK 81 THEO mνx=80 MeV
<5× 10−3 68 51 SHROCK 81 THEO mνx=120 MeV46BRYMAN 96 sear
h for massive un
onventional neutrinos of mass mνx in π+ de
ay.They interpret the result as an upper limit for the admixture of a heavy sterile or otherwise47K+ → µ+ νµ peak sear
h experiment.48Analysis of experiment on K+ → µ+ νµ νx νx de
ay.49π+ → µ+ νµ peak sear
h experiment.50Analysis of magneti
 spe
trometer experiment, bubble 
hamber experiment, and emulsionexperiment on π+ → µ+ νµ de
ay.51Analysis of magneti
 spe
trometer experiment on K → µ, νµ de
ay.Peak Sear
h in Muon CapturePeak Sear
h in Muon CapturePeak Sear
h in Muon CapturePeak Sear
h in Muon CaptureLimits on ∣∣Uµ x ∣∣2 as fun
tion of mνxVALUE DOCUMENT ID COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1× 10−1 DEUTSCH 83 mνx=45 MeV
<7× 10−3 DEUTSCH 83 mνx=70 MeV
<1× 10−1 DEUTSCH 83 mνx=85 MeVSear
hes for De
ays of Massive νSear
hes for De
ays of Massive νSear
hes for De
ays of Massive νSear
hes for De
ays of Massive νLimits on ∣∣Uµ x ∣∣2 as fun
tion of mνxVALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5 × 10−7 90 52 VAITAITIS 99 CCFR mνx=0.28 GeV
<8 × 10−8 90 52 VAITAITIS 99 CCFR mνx=0.37 GeV
<5 × 10−7 90 52 VAITAITIS 99 CCFR mνx= 0.50 GeV
<6 × 10−8 90 52 VAITAITIS 99 CCFR mνx= 1.50 GeV
<2 × 10−5 95 53 ABREU 97I DLPH mνx=6 GeV
<3 × 10−5 95 53 ABREU 97I DLPH mνx=50 GeV
<3 × 10−6 90 GALLAS 95 CNTR mνx = 1 GeV
<3 × 10−5 90 54 VILAIN 95C CHM2 mνx = 2 GeV
<6.2× 10−8 95 ADEVA 90S L3 mνx=20 GeV
<5.1× 10−10 95 ADEVA 90S L3 mνx=40 GeVall values ruled out 95 55 BURCHAT 90 MRK2 mνx < 19.6 GeV
<1 × 10−10 95 55 BURCHAT 90 MRK2 mνx = 22 GeV
<1 × 10−11 95 55 BURCHAT 90 MRK2 mνx = 41 GeVall values ruled out 95 DECAMP 90F ALEP mνx= 25.0{42.7 GeV
<1 × 10−13 95 DECAMP 90F ALEP mνx= 42.7{45.7 GeV
<5 × 10−3 90 AKERLOF 88 HRS mνx=1.8 GeV
<2 × 10−5 90 AKERLOF 88 HRS mνx=4 GeV
<3 × 10−6 90 AKERLOF 88 HRS mνx=6 GeV
<1 × 10−7 90 BERNARDI 88 CNTR mνx=200 MeV
<3 × 10−9 90 BERNARDI 88 CNTR mνx=300 MeV
<4 × 10−4 90 56 MISHRA 87 CNTR mνx=1.5 GeV
<4 × 10−3 90 56 MISHRA 87 CNTR mνx=2.5 GeV
<0.9× 10−2 90 56 MISHRA 87 CNTR mνx=5 GeV
<0.1 90 56 MISHRA 87 CNTR mνx=10 GeV
<8 × 10−4 90 BADIER 86 CNTR mνx=600 MeV
<1.2× 10−5 90 BADIER 86 CNTR mνx=1.7 GeV
<3 × 10−8 90 BERNARDI 86 CNTR mνx=200 MeV
<6 × 10−9 90 BERNARDI 86 CNTR mνx=350 MeV
<1 × 10−6 90 DORENBOS... 86 CNTR mνx=500 MeV
<1 × 10−7 90 DORENBOS... 86 CNTR mνx=1600 MeV
<0.8× 10−5 90 57 COOPER-... 85 HLBC mνx=0.4 GeV
<1.0× 10−7 90 57 COOPER-... 85 HLBC mνx=1.5 GeV52VAITAITIS 99 sear
h for L0µ → µX . See paper for rather 
ompli
ated limit as fun
tionof mνx .53ABREU 97I long-lived νx analysis. Short-lived analysis extends limit to lower masseswith de
reasing sensitivity ex
ept at 3.5 GeV, where the limit is the same as at 6 GeV.54VILAIN 95C is a sear
h for the de
ays of heavy isosinglet neutrinos produ
ed by neutral
urrent neutrino intera
tions. Limits were quoted for masses in the range from 0.3 to 24GeV. The best limit is listed above.55BURCHAT 90 in
ludes the analyses reported in JUNG 90, ABRAMS 89C, andWENDT 87.56 See also limits on ∣∣U3x∣∣ from WENDT 87.57COOPER-SARKAR 85 also give limits based on model-dependent assumptions for ντ
ux. We do not list these. Note that for this bound to be nontrivial, x is not equalto 3, i.e. νx 
annot be the dominant mass eigenstate in ντ sin
e mν3 <70 MeV(ALBRECHT 85I). Also, of 
ourse, x is not equal to 1 or 2, so a fourth generation wouldbe required for this bound to be nontrivial.Limits on ∣∣Uτ x ∣∣2 as a Fun
tion of mνxLimits on ∣∣Uτ x ∣∣2 as a Fun
tion of mνxLimits on ∣∣Uτ x ∣∣2 as a Fun
tion of mνxLimits on ∣∣Uτ x ∣∣2 as a Fun
tion of mνxVALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1 × 10−2 90 58 ORLOFF 02 CHRM mνx=45 MeV
<1.4 × 10−4 90 58 ORLOFF 02 CHRM mνx=180 MeV
<0.025 90 ASTIER 01 mνx=45 MeV
<0.002 90 ASTIER 01 mνx=140 MeV
<2 × 10−5 95 59 ABREU 97I DLPH mνx=6 GeV
<3 × 10−5 95 59 ABREU 97I DLPH mνx=50 GeV
<6.2 × 10−8 95 ADEVA 90S L3 mνx=20 GeV
<5.1 × 10−10 95 ADEVA 90S L3 mνx=40 GeVall values ruled out 95 60 BURCHAT 90 MRK2 mνx < 19.6 GeV
<1 × 10−10 95 60 BURCHAT 90 MRK2 mνx = 22 GeV
<1 × 10−11 95 60 BURCHAT 90 MRK2 mνx = 41 GeVall values ruled out 95 DECAMP 90F ALEP mνx= 25.0{42.7 GeV
<1 × 10−13 95 DECAMP 90F ALEP mνx= 42.7{45.7 GeV
<5 × 10−2 80 AKERLOF 88 HRS mνx=2.5 GeV
<9 × 10−5 80 AKERLOF 88 HRS mνx=4.5 GeV58ORLOFF 02 use the negative result of a sear
h for neutral parti
les de
aying into twoele
trons performed by CHARM to get these limits for a mostly isosinglet heavy neutrino.59ABREU 97I long-lived νx analysis. Short-lived analysis extends limit to lower masseswith de
reasing sensitivity.60BURCHAT 90 in
ludes the analyses reported in JUNG 90, ABRAMS 89C, andWENDT 87.
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hes forLimits on ∣∣Ua x ∣∣2Limits on ∣∣Ua x ∣∣2Limits on ∣∣Ua x ∣∣2Limits on ∣∣Ua x ∣∣2Where a = e, µ from ρ parameter in µ de
ay.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1× 10−2 68 SHROCK 81B THEO mνx=10 GeV
<2× 10−3 68 SHROCK 81B THEO mνx=40 MeV
<4× 10−2 68 SHROCK 81B THEO mνx=70 MeVLimits on ∣∣U1 j×U2 j ∣∣ as Fun
tion of mνjLimits on ∣∣U1 j×U2 j ∣∣ as Fun
tion of mνjLimits on ∣∣U1 j×U2 j ∣∣ as Fun
tion of mνjLimits on ∣∣U1 j×U2 j ∣∣ as Fun
tion of mνjVALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3 × 10−5 90 61 BARANOV 93 mνj= 80 MeV
<3 × 10−6 90 61 BARANOV 93 mνj= 160 MeV
<6 × 10−7 90 61 BARANOV 93 mνj= 240 MeV
<2 × 10−7 90 61 BARANOV 93 mνj= 320 MeV
<9 × 10−5 90 BERNARDI 86 CNTR mνj=25 MeV
<3.6× 10−7 90 BERNARDI 86 CNTR mνj=100 MeV
<3 × 10−8 90 BERNARDI 86 CNTR mνj=200 MeV
<6 × 10−9 90 BERNARDI 86 CNTR mνj=350 MeV
<1 × 10−2 90 BERGSMA 83B CNTR mνj=10 MeV
<1 × 10−5 90 BERGSMA 83B CNTR mνj=140 MeV
<7 × 10−7 90 BERGSMA 83B CNTR mνj=370 MeV61BARANOV 93 is a sear
h for neutrino de
ays into e+ e− νe using a beam dump exper-iment at the 70 GeV Serpukhov proton syn
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A. Introduction

This note discusses some of the theoretical issues relevant

for the determination of quark masses, which are fundamental

parameters of the Standard Model of particle physics. Unlike

the leptons, quarks are confined inside hadrons and are not

observed as physical particles. Quark masses therefore cannot

be measured directly, but must be determined indirectly through

their influence on hadronic properties. Although one often

speaks loosely of quark masses as one would of the mass of the

electron or muon, any quantitative statement about the value

of a quark mass must make careful reference to the particular

theoretical framework that is used to define it. It is important

to keep this scheme dependence in mind when using the quark

mass values tabulated in the data listings.

Historically, the first determinations of quark masses were

performed using quark models. The resulting masses only make

sense in the limited context of a particular quark model, and

cannot be related to the quark mass parameters of the Standard

Model. In order to discuss quark masses at a fundamental level,

definitions based on quantum field theory must be used, and

the purpose of this note is to discuss these definitions and the

corresponding determinations of the values of the masses.

B. Mass parameters and the QCD Lagrangian

The QCD [1] Lagrangian for NF quark flavors is

L =

NF∑

k=1

qk (i /D − mk) qk − 1
4
GµνG

µν , (1)

where /D = (∂µ − igAµ) γµ is the gauge covariant derivative,

Aµ is the gluon field, Gµν is the gluon field strength, mk is the

mass parameter of the kth quark, and qk is the quark Dirac

field. After renormalization, the QCD Lagrangian Eq. (1)

gives finite values for physical quantities, such as scattering

amplitudes. Renormalization is a procedure that invokes a

subtraction scheme to render the amplitudes finite, and requires

the introduction of a dimensionful scale parameter µ. The

mass parameters in the QCD Lagrangian Eq. (1) depend on

the renormalization scheme used to define the theory, and

also on the scale parameter µ. The most commonly used

renormalization scheme for QCD perturbation theory is the MS

scheme.

The QCD Lagrangian has a chiral symmetry in the limit

that the quark masses vanish. This symmetry is spontaneously

broken by dynamical chiral symmetry breaking, and explicitly

broken by the quark masses. The nonperturbative scale of

dynamical chiral symmetry breaking, Λχ, is around 1 GeV [2].

It is conventional to call quarks heavy if m > Λχ, so that

explicit chiral symmetry breaking dominates (c, b, and t quarks

are heavy), and light if m < Λχ, so that spontaneous chiral

symmetry breaking dominates (the u and d are light and s

quarks are considered to be light when using SU(3)L×SU(3)R
chiral perturbation theory). The determination of light- and

heavy-quark masses is considered separately in sections D and

E below.

At high energies or short distances, nonperturbative effects,

such as chiral symmetry breaking, become small and one can, in

principle, determine quark masses by analyzing mass-dependent

effects using QCD perturbation theory. Such computations are

conventionally performed using the MS scheme at a scale

µ ≫ Λχ, and give the MS “running” mass m(µ). We use

the MS scheme when reporting quark masses; one can readily

convert these values into other schemes using perturbation

theory.

The µ dependence of m(µ) at short distances can be

calculated using the renormalization group equation,

µ2 dm (µ)

dµ2
= −γ(αs (µ)) m (µ) , (2)

where γ is the anomalous dimension which is now known

to four-loop order in perturbation theory [3,4]. αs is the

coupling constant in the MS scheme. Defining the expansion

coefficients γr by

γ (αs) ≡
∞∑

r=1

γr

(
αs

4π

)r

,

the first four coefficients are given by

γ1 = 4,

γ2 =
202

3
− 20NL

9
,

γ3 = 1249 +

(
−2216

27
− 160

3
ζ (3)

)
NL − 140

81
N2

L,

γ4 =
4603055

162
+

135680

27
ζ (3) − 8800ζ (5)

+

(
−91723

27
− 34192

9
ζ (3) + 880ζ (4) +

18400

9
ζ (5)

)
NL

+

(
5242

243
+

800

9
ζ (3) − 160

3
ζ (4)

)
N2

L

+

(
−332

243
+

64

27
ζ (3)

)
N3

L,

where NL is the number of active light quark flavors at the

scale µ, i.e. flavors with masses < µ, and ζ is the Riemann
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zeta function (ζ(3) ≃ 1.2020569, ζ(4) ≃ 1.0823232, and ζ(5) ≃
1.0369278). In addition, as the renormalization scale crosses

quark mass thresholds one needs to match the scale dependence

of m below and above the threshold. There are finite threshold

corrections; the necessary formulae can be found in Ref. [5].

The quark masses for light quarks discussed so far are

often referred to as current quark masses. Nonrelativistic

quark models use constituent quark masses, which are of order

350 MeV for the u and d quarks. Constituent quark masses

model the effects of dynamical chiral symmetry breaking, and

are not directly related to the quark mass parameters mk of the

QCD Lagrangian Eq. (1). Constituent masses are only defined

in the context of a particular hadronic model.

C. Lattice Gauge Theory

The use of the lattice simulations for ab initio determi-

nations of the fundamental parameters of QCD, including the

coupling constant and quark masses (except for the top-quark

mass) is a very active area of research (see the review on

Lattice Quantum Chromodynamics in this Review). Here we

only briefly recall those features which are required for the

determination of quark masses. In order to determine the lat-

tice spacing (a, i.e. the distance between neighboring points

of the lattice) and quark masses, one computes a convenient

and appropriate set of physical quantities (frequently chosen

to be a set of hadronic masses) for a variety of input values

of the quark masses. The true (physical) values of the quark

masses are those which correctly reproduce the set of physical

quantities being used for the calibration.

The values of the quark masses obtained directly in lat-

tice simulations are bare quark masses, corresponding to a

particular discretization of QCD and with the lattice spac-

ing as the ultraviolet cut-off. In order for these results to

be useful in phenomenological applications, it is necessary to

relate them to renormalized masses defined in some standard

renormalization scheme such as MS. Provided that both the

ultraviolet cut-off a−1 and the renormalization scale µ are much

greater than ΛQCD, the bare and renormalized masses can be

related in perturbation theory. However, in order to avoid

uncertainties due to the unknown higher-order coefficients in

lattice perturbation theory, most results obtained recently use

non-perturbative renormalization to relate the bare masses to

those defined in renormalization schemes which can be simu-

lated directly in lattice QCD (e.g. those obtained from quark

and gluon Green functions at specified momenta in the Landau

gauge [62] or those defined using finite-volume techniques and

the Schrödinger functional [63]) . The conversion to the MS

scheme (which cannot be simulated) is then performed using

continuum perturbation theory.

The determination of quark masses using lattice simulations

is well established and the current emphasis is on the reduction

and control of the systematic uncertainties. With improved al-

gorithms and access to more powerful computing resources, the

precision of the results has improved immensely in recent years.

Vacuum polarisation effects are included with Nf = 2, 2 + 1

or Nf = 2 + 1 + 1 flavors of sea quarks. The number 2 here

indicates that the up and down quarks are degenerate. In ear-

lier reviews, results were presented from simulations in which

vacuum polarization effects were completely neglected (this is

the so-called quenched approximation), leading to systematic

uncertainties which could not be estimated reliably. It is no

longer necessary to include quenched results in compilations of

quark masses. Particularly pleasing is the observation that re-

sults obtained using different formulations of lattice QCD, with

different systematic uncertainties, give results which are largely

consistent with each other. This gives us broad confidence in

the estimates of the systematic errors. As the precision of the

results approaches (or even exceeds in some cases) 1%, isospin

breaking effects, including electromagnetic corrections need to

be included and this is beginning to be done as will be dis-

cussed below. The results however, are still at an early stage

and therefore, unless explicitly stated otherwise, the results

presented below will neglect isospin breaking.

Members of the lattice QCD community have organised

a Flavour Lattice Averaging Group (FLAG) which critically

reviews quantities computed in lattice QCD relevant to flavor

physics, including the determination of light quark masses,

against stated quality criteria and presents its view of the

current status of the results. The latest (2nd) edition reviewed

lattice results published before November 30th 2013 [16].

D. Light quarks

In this section we review the determination of the masses

of the light quarks u, d and s from lattice simulations and then

discuss the consequences of the approximate chiral symmetry.

Lattice Gauge Theory: The most reliable determina-

tions of the strange quark mass ms and of the average of the up

and down quark masses mud = (mu + md)/2 are obtained from

lattice simulations. As explained in section C above, the sim-

ulations are generally performed with degenerate up and down

quarks (mu = md) and so it is the average which is obtained

directly from the computations. Below we discuss attempts to

derive mu and md separately using lattice results in combina-

tion with other techniques, but we start by briefly present our

estimate of the current status of the latest lattice results in the

isospin symmetric limit. Based largely on references [21–25],

which its authors considered to have the most reliable estimates

of the systematic uncertainties, the FLAG Review [16] quoted

as its summary of results obtained with Nf = 2 + 1 flavors of

sea quarks:

ms = (93.8 ± 1.5 ± 1.9) MeV , (3)

mud = (3.42 ± 0.06 ± 0.07) MeV (4)

and

ms

mud
= 27.46 ± 0.15 ± 0.41 . (5)
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The masses are given in the MS scheme at a renormalization

scale of 2 GeV. The first error comes from averaging the lattice

results and the second is an estimate of the neglect of sea-quark

effects from the charm and more massive quarks. Because

of the systematic errors, these results are not simply the

combinations of all the results in quadrature, but include a

judgement of the remaining uncertainties. Since the different

collaborations use different formulations of lattice QCD, the

(relatively small) variations of the results between the groups

provides important information about the reliability of the

estimates.

Since the publication of the FLAG review [16] there have

been a number of studies with Nf = 2 + 1 + 1 [26–28] and

Nf = 2 + 1 [29] and a reasonable summary of the current

status may be mud = (3.4±0.1)MeV, ms = (93.5±2)MeV and

ms/mud = 27.5 ± 0.3.

To obtain the individual values of mu and md requires the

introduction of isospin breaking effects, including electromag-

netism. In principle this can be done completely using lattice

field theory. Such calculations are indeed beginning (note the

recent computation of the neutron-proton mass splitting [30])

but are still at a relatively early stage. In practice therefore,

mu and md are extracted by combining lattice results with

some elements of continuum phenomenology, most frequently

based on chiral perturbation theory. Such studies include refer-

ences [32,17,24,28,33,34] as well the Flavianet Lattice Averaging

Group [43]. Based on these results we summarise the current

status as

mu

md
= 0.46(5) , mu = 2.15(15) MeV , md = 4.70(20) MeV . (6)

Again the masses are given in the MS scheme at a renormal-

ization scale of 2 GeV. Of particular importance is the fact that

mu 6= 0 since there would have been no strong CP problem had

mu been equal to zero.

The quark mass ranges for the light quarks given in the

listings combine the lattice and continuum values and use the

PDG method for determining errors given in the introductory

notes.

Chiral Perturbation Theory: For light quarks, one can

use the techniques of chiral perturbation theory [6–8] to extract

quark mass ratios. The mass term for light quarks in the QCD

Lagrangian is

ΨMΨ = ΨLMΨR + ΨRM †ΨL, (7)

where M is the light quark mass matrix,

M =




mu 0 0
0 md 0
0 0 ms


 , (8)

Ψ = (u, d, s), and L and R are the left- and right-chiral

components of Ψ given by ΨL,R = PL,RΨ, PL = (1 − γ5)/2,

PR = (1 + γ5)/2. The mass term is the only term in the QCD

Lagrangian that mixes left- and right-handed quarks. In the

limit M → 0, there is an independent SU(3) × U(1) flavor

symmetry for the left- and right-handed quarks. The vector

U(1) symmetry is baryon number; the axial U(1) symmetry

of the classical theory is broken in the quantum theory due

to the anomaly. The remaining Gχ = SU(3)L × SU(3)R chiral

symmetry of the QCD Lagrangian is spontaneously broken to

SU(3)V , which, in the limit M → 0, leads to eight massless

Goldstone bosons, the π’s, K’s, and η.

The symmetry Gχ is only an approximate symmetry, since

it is explicitly broken by the quark mass matrix M . The

Goldstone bosons acquire masses which can be computed in a

systematic expansion in M , in terms of low-energy constants,

which are unknown nonperturbative parameters of the effective

theory, and are not fixed by the symmetries. One treats the

quark mass matrix M as an external field that transforms under

Gχ as M → LMR†, where ΨL → LΨL and ΨR → RΨR are

the SU(3)L and SU(3)R transformations, and writes down the

most general Lagrangian invariant under Gχ. Then one sets

M to its given constant value Eq. (8), which implements the

symmetry breaking. To first order in M one finds that [9]

m2
π0 =B (mu + md) ,

m2
π± =B (mu + md) + ∆em ,

m2
K0 = m2

K
0 =B (md + ms) , (9)

m2
K± =B (mu + ms) + ∆em ,

m2
η =

1

3
B (mu + md + 4ms) ,

with two unknown constants B and ∆em, the electromagnetic

mass difference. From Eq. (9), one can determine the quark

mass ratios [9]

mu

md
=

2m2
π0 − m2

π+ + m2
K+ − m2

K0

m2
K0 − m2

K+ + m2
π+

= 0.56 ,

ms

md
=

m2
K0 + m2

K+ − m2
π+

m2
K0 + m2

π+ − m2
K+

= 20.2 , (10)

to lowest order in chiral perturbation theory, with an error which

will be estimated below. Since the mass ratios extracted using

chiral perturbation theory use the symmetry transformation

property of M under the chiral symmetry Gχ, it is important

to use a renormalization scheme for QCD that does not change

this transformation law. Any mass independent subtraction

scheme such as MS is suitable. The ratios of quark masses

are scale independent in such a scheme, and Eq. (10) can be

taken to be the ratio of MS masses. Chiral perturbation theory

cannot determine the overall scale of the quark masses, since it

uses only the symmetry properties of M , and any multiple of

M has the same Gχ transformation law as M .

Chiral perturbation theory is a systematic expansion in

powers of the light quark masses. The typical expansion pa-

rameter is m2
K/Λ2

χ ∼ 0.25 if one uses SU(3) chiral symmetry,

and m2
π/Λ2

χ ∼ 0.02 if instead one uses SU(2) chiral symme-

try. Electromagnetic effects at the few percent level also break
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SU(2) and SU(3) symmetry. The mass formulæ Eq. (9) were

derived using SU(3) chiral symmetry, and are expected to

have approximately a 25% uncertainty due to second order

corrections. This estimate of the uncertainty is consistent with

the lattice results found in Eq. (3) - Eq. (5) and more recent

calculations.

C1

C2

Im s

Re s

m2 4m2

m2

Figure 1: The analytic structure of Π(s) in
the complex s-plane. The contours C1 and C2

are the integration contours discussed in the
text.

There is a subtlety which arises when one tries to determine

quark mass ratios at second order in chiral perturbation theory.

The second order quark mass term [10]

(
M †

)−1
det M † (11)

(which can be generated by instantons) transforms in the

same way under Gχ as M . Chiral perturbation theory cannot

distinguish between M and
(
M †

)−1
det M †; one can make the

replacement M → M(λ) = M + λM
(
M †M

)−1
det M † in the

chiral Lagrangian,

M(λ) = diag (mu(λ) , md(λ) , ms(λ))

= diag (mu + λmdms , md + λmums , ms + λmumd) , (12)

and leave all observables unchanged.

The combination

(
mu

md

)2

+
1

Q2

(
ms

md

)2

= 1 (13)

where

Q2 =
m2

s − m̂2

m2
d − m2

u

, m̂ =
1

2
(mu + md) ,

is insensitive to the transformation in Eq. (12). Eq. (13)

gives an ellipse in the mu/md − ms/md plane. The ellipse is

well-determined by chiral perturbation theory, but the exact

location on the ellipse, and the absolute normalization of the

quark masses, has larger uncertainties. Q is determined to be

in the range 21–25 from η → 3π decay and the electromagnetic

contribution to the K+–K0 and π+–π0 mass differences [11].

The absolute normalization of the quark masses cannot be

determined using chiral perturbation theory. Other methods,

such as lattice simulations discussed above or spectral function

sum rules [12,13] for hadronic correlation functions, which we

review next are necessary.

Sum Rules: Sum rule methods have been used extensively

to determine quark masses and for illustration we briefly dis-

cuss here their application to hadronic τ decays [14]. Other

applications involve very similar techniques.

The experimentally measured quantity is Rτ ,

dRτ

ds
=

dΓ/ds
(
τ− → hadrons + ντ (γ)

)

Γ (τ− → e−νeντ (γ))
(14)

the hadronic invariant mass spectrum in semihadronic τ

decay, normalized to the leptonic τ decay rate. It is useful to

define q as the total momentum of the hadronic final state, so

s = q2 is the hadronic invariant mass. The total hadronic τ

decay rate Rτ is then given by integrating dRτ/ds over the

kinematically allowed range 0 ≤ s ≤ M2
τ .

Rτ can be written as

Rτ =12π

∫ M2
τ

0

ds

M2
τ

(
1 − s

M2
τ

)2

×
[(

1 + 2
s

M2
τ

)
Im ΠT (s) + Im ΠL(s)

]
(15)

where s = q2, and the hadronic spectral functions ΠL,T are

defined from the time-ordered correlation function of two weak

currents is the time-ordered correlator of the weak interaction

current (jµ(x) and jν(0)) by

Πµν(q) =i

∫
d4x eiq·x 〈0|T

(
jµ(x)jν(0)†

)
|0〉 , (16)

Πµν(q) = (−gµν + qµqν)ΠT (s) + qµqνΠL(s), (17)

and the decomposition Eq. (17) is the most general possible

structure consistent with Lorentz invariance.

By the optical theorem, the imaginary part of Πµν is

proportional to the total cross-section for the current to produce

all possible states. A detailed analysis including the phase

space factors leads to Eq. (15). The spectral functions ΠL,T (s)

are analytic in the complex s plane, with singularities along

the real axis. There is an isolated pole at s = m2
π, and

single- and multi-particle singularities for s ≥ 4m2
π, the two-

particle threshold. The discontinuity along the real axis is

ΠL,T (s + i0+) − ΠL,T (s − i0+) = 2iIm ΠL,T (s). As a result,

Eq. (15) can be rewritten with the replacement Im ΠL,T (s) →
−iΠL,T (s)/2, and the integration being over the contour C1.

Finally, the contour C1 can be deformed to C2 without crossing

any singularities, and so leaving the integral unchanged. One

can derive a series of sum rules analogous to Eq. (15) by
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weighting the differential τ hadronic decay rate by different

powers of the hadronic invariant mass,

Rkl
τ =

∫ M2
τ

0
ds

(
1 − s

M2
τ

)k (
s

M2
τ

)l
dRτ

ds
(18)

where dRτ/ds is the hadronic invariant mass distribution in τ

decay normalized to the leptonic decay rate. This leads to the

final form of the sum rule(s),

Rkl
τ = − 6πi

∫

C2

ds

M2
τ

(
1 − s

M2
τ

)2+k (
s

M2
τ

)l

×
[(

1 + 2
s

M2
τ

)
ΠT (s) + ΠL(s)

]
. (19)

The manipulations so far are completely rigorous and exact,

relying only on the general analytic structure of quantum field

theory. The left-hand side of the sum rule Eq. (19) is obtained

from experiment. The right hand-side can be computed for s

far away from any physical cuts using the operator product

expansion (OPE) for the time-ordered product of currents in

Eq. (16), and QCD perturbation theory. The OPE is an

expansion for the time-ordered product Eq. (16) in a series of

local operators, and is an expansion about the q → ∞ limit. It

gives Π(s) as an expansion in powers of αs(s) and Λ2
QCD/s, and

is valid when s is far (in units of Λ2
QCD) from any singularities

in the complex s-plane.

The OPE gives Π(s) as a series in αs, quark masses, and

various non-perturbative vacuum matrix element. By comput-

ing Π(s) theoretically, and comparing with the experimental

values of Rkl
τ , one determines various parameters such as αs

and the quark masses. The theoretical uncertainties in using

Eq. (19) arise from neglected higher order corrections (both

perturbative and non-perturbative), and because the OPE is no

longer valid near the real axis, where Π has singularities. The

contribution of neglected higher order corrections can be esti-

mated as for any other perturbative computation. The error

due to the failure of the OPE is more difficult to estimate. In

Eq. (19), the OPE fails on the endpoints of C2 that touch the

real axis at s = M2
τ . The weight factor (1− s/M2

τ ) in Eq. (19)

vanishes at this point, so the importance of the endpoint can

be reduced by choosing larger values of k.

E. Heavy quarks

For heavy-quark physics one can exploit the fact that

mQ ≫ ΛQCD to construct effective theories (mQ is the mass of

the heavy quark Q). The masses and decay rates of hadrons

containing a single heavy quark, such as the B and D mesons

can be determined using the heavy quark effective theory

(HQET) [45]. The theoretical calculations involve radiative

corrections computed in perturbation theory with an expansion

in αs(mQ) and non-perturbative corrections with an expansion

in powers of ΛQCD/mQ. Due to the asymptotic nature of

the QCD perturbation series, the two kinds of corrections are

intimately related; an example of this are renormalon effects

in the perturbative expansion which are associated with non-

perturbative corrections.

Systems containing two heavy quarks such as the Υ or

J/Ψ are treated using non-relativistic QCD (NRQCD) [46].

The typical momentum and energy transfers in these systems

are αsmQ, and α2
smQ, respectively, so these bound states are

sensitive to scales much smaller than mQ. However, smeared

observables, such as the cross-section for e+e− → bb averaged

over some range of s that includes several bound state energy

levels, are better behaved and only sensitive to scales near mQ.

For this reason, most determinations of the c, b quark masses

using perturbative calculations compare smeared observables

with experiment [47–49].

There are many continuum extractions of the c and b quark

masses, some with quoted errors of 10 MeV or smaller. There

are systematic effects of comparable size, which are typically not

included in these error estimates. Reference [41], for example,

shows that even though the error estimate of mc using the rapid

convergence of the αs perturbation series is only a few MeV,

the central value of mc can differ by a much larger amount

depending on which algorithm (all of which are formally equally

good) is used to determine mc from the data. This leads to

a systematic error from perturbation theory of around 20 MeV

for the c quark and 25 MeV for the b quark. Electromagnetic

effects, which also are important at this precision, are often

not included. For this reason, we inflate the errors on the

continuum extractions of mc and mb. The average values of

mc and mb from continuum determinations are (see Sec. G for

the 1S scheme)

mc(mc) = (1.28 ± 0.025) GeV

mb(mb) = (4.18 ± 0.03) GeV , m1S
b = (4.65 ± 0.03) GeV .

Lattice simulations of QCD lead to discretization errors

which are powers of mQ a (modulated by logarithms); the

power depends on the formulation of lattice QCD being used

and in most cases is quadratic. Clearly these errors can be re-

duced by performing simulations at smaller lattice spacings, but

also by using improved discretizations of the theory. Recently,

with more powerful computing resources, better algorithms and

techniques, it has become possible to perform simulations in

the charm quark region and beyond, also decreasing the ex-

trapolation which has to be performed to reach the b-quark. A

novel approach proposed in [64] has been to compare the lattice

results for moments of correlation functions of cc quark-bilinear

operators to perturbative calculations of the same quantities at

4-loop order. In this way both the strong coupling constant

and the charm quark mass can be determined with remarkably

small errors; in particular mc(mc) = 1.273(6) GeV [36]. This

lattice determination also uses the perturbative expression for

the current-current correlator, and so has the perturbation the-

ory systematic error discussed above. Recent updates using

this correlator method, both with a very similar result, can be

found in [27,37]. It should be remembered that these results
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were obtained in QCD with exact isospin symmetry; isospin

breaking effects, including electromagnetism may well be larger

or of the order of the quoted uncertainty.

As the range of heavy-quark masses which can be used in

numerical simulations increases, results obtained by extrapo-

lating the results to b-physics are becoming ever more reliable

(see e.g. [27]) . Traditionally however, the main approach to

controlling the discretization errors in lattice studies of heavy

quark physics has been to perform simulations of the effective

theories such as HQET and NRQCD. This remains an impor-

tant technique, both in its own right and in providing additional

information for extrapolations from lower masses to the bottom

region. Using effective theories, mb is obtained from what is

essentially a computation of the difference of MHb
− mb, where

MHb
is the mass of a hadron Hb containing a b-quark. The

relative error on mb is therefore much smaller than that for

MHb
− mb. The principal systematic errors are the matching

of the effective theories to QCD and the presence of power

divergences in a−1 in the 1/mb corrections which have to be

subtracted numerically. The use of HQET or NRQCD is less

precise for the charm quark, but in this case, as mentioned

above, direct QCD simulations are now possible.

F. Pole Mass

For an observable particle such as the electron, the position

of the pole in the propagator is the definition of its mass.

In QCD this definition of the quark mass is known as the

pole mass. It is known that the on-shell quark propagator

has no infrared divergences in perturbation theory [52,53], so

this provides a perturbative definition of the quark mass. The

pole mass cannot be used to arbitrarily high accuracy because

of nonperturbative infrared effects in QCD. The full quark

propagator has no pole because the quarks are confined, so that

the pole mass cannot be defined outside of perturbation theory.

The relation between the pole mass mQ and the MS mass mQ

is known to three loops [54,55,56,57]

mQ = mQ(mQ)

{
1 +

4αs(mQ)

3π

+

[
−1.0414

∑

k

(
1 − 4

3

mQk

mQ

)
+ 13.4434

][
αs(mQ)

π

]2

+
[
0.6527N2

L − 26.655NL + 190.595
] [

αs(mQ)

π

]3
}

, (20)

where αs(µ) is the strong interaction coupling constants in

the MS scheme, and the sum over k extends over the NL flavors

Qk lighter than Q. The complete mass dependence of the α2
s

term can be found in [54]; the mass dependence of the α3
s

term is not known. For the b-quark, Eq. (20) reads

mb = mb (mb) [1 + 0.10 + 0.05 + 0.03] , (21)

where the contributions from the different orders in αs are shown

explicitly. The two and three loop corrections are comparable

in size and have the same sign as the one loop term. This

is a signal of the asymptotic nature of the perturbation series

[there is a renormalon in the pole mass]. Such a badly behaved

perturbation expansion can be avoided by directly extracting

the MS mass from data without extracting the pole mass as an

intermediate step.

Figure 2: The allowed region (shown in
white) for up quark and down quark masses.
This region was determined in part from papers
reporting values for mu and md (data points
shown) and in part from analysis of the allowed
ranges of other mass parameters (see Fig. 3).
The parameter (mu + md)/2 yields the two
downward-sloping lines, while mu/md yields the
two rising lines originating at (0,0).

G. Numerical values and caveats

The quark masses in the particle data listings have been

obtained by using a wide variety of methods. Each method

involves its own set of approximations and uncertainties. In

most cases, the errors are an estimate of the size of neglected

higher-order corrections or other uncertainties. The expansion

parameters for some of the approximations are not very small

(for example, they are m2
K/Λ2

χ ∼ 0.25 for the chiral expansion
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Figure 3. The values of each quark mass parameter taken from

the Data Listings. The points are in chronological order with
the more recent measurements at the top. Points from papers

reporting no error bars are colored grey. The shaded regions
indicate values excluded by our evaluations; some regions were

determined in part through examination of Fig. 2.

and ΛQCD/mb ∼ 0.1 for the heavy-quark expansion), so an

unexpectedly large coefficient in a neglected higher-order term

could significantly alter the results. It is also important to note

that the quark mass values can be significantly different in the

different schemes.

The heavy quark masses obtained using HQET, QCD sum

rules, or lattice gauge theory are consistent with each other

if they are all converted into the same scheme and scale. We

have specified all masses in the MS scheme. For light quarks,

the renormalization scale has been chosen to be µ = 2 GeV.

The light quark masses at 1 GeV are significantly different from

those at 2 GeV, m(1 GeV)/m(2 GeV) ∼ 1.33. It is conventional

to choose the renormalization scale equal to the quark mass for

a heavy quark, so we have quoted mQ(µ) at µ = mQ for the

c and b quarks. Recent analyses of inclusive B meson decays

have shown that recently proposed mass definitions lead to

a better behaved perturbation series than for the MS mass,

and hence to more accurate mass values. We have chosen to

also give values for one of these, the b quark mass in the

1S-scheme [58,59]. Other schemes that have been proposed

are the PS-scheme [60] and the kinetic scheme [61].

If necessary, we have converted values in the original papers

to our chosen scheme using two-loop formulæ. It is important

to realized that our conversions introduce significant additional

errors. In converting to the MS b-quark mass, for example,

the three-loop conversions from the 1S and pole masses give

values about 35 MeV and 135 MeV lower than the two-loop
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conversions. The uncertainty in αs(MZ) = 0.1181(13) gives

an uncertainty of ±10 MeV and ±35 MeV respectively in the

same conversions. We have not added these additional errors

when we do our conversions. The αs value in the conversion

is correlated with the αs value used in determining the quark

mass, so the conversion error is not a simple additional error on

the quark mass.
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801801801801See key on page 601 QuarkParti
le Listingsd, s, LightQuarks (u, d, s)d I (JP ) = 12 (12+)Mass m = 4.7+0.5
−0.4 MeV Charge = −13 e Iz = −12ms/md = 17{22m = (mu + md )/2 = 3.5+0.7

−0.3 MeVs I (JP ) = 0(12+)Mass m = 96+8
−4 MeV Charge = −13 e Strangeness = −1(ms { (mu + md )/2)/(md − mu) = 27.3 ± 0.7Light Quarks (u, d, s)OMITTED FROM SUMMARY TABLEu-QUARK MASSu-QUARK MASSu-QUARK MASSu-QUARK MASSThe u-, d-, and s-quark masses are estimates of so-
alled \
urrent-quarkmasses," in a mass- independent subtra
tion s
heme su
h as MS. Theratios mu/md and ms/md are extra
ted from pion and kaon massesusing 
hiral symmetry. The estimates of d and u masses are not without
ontroversy and remain under a
tive investigation. Within the literaturethere are even suggestions that the u quark 
ould be essentially massless.The s-quark mass is estimated from SU(3) splittings in hadron masses.We have normalized the MS masses at a renormalization s
ale of µ = 2GeV. Results quoted in the literature at µ = 1 GeV have been res
aled bydividing by 1.35. The values of \Our Evaluation" were determined in partvia Figures 1 and 2.VALUE (MeV) DOCUMENT ID TECN COMMENT2.2 +0.6

−0.4 OUR EVALUATION2.2 +0.6
−0.4 OUR EVALUATION2.2 +0.6
−0.4 OUR EVALUATION2.2 +0.6
−0.4 OUR EVALUATION See the ideogram below.2.36±0.24 1 CARRASCO 14 LATT MS s
heme2.57±0.26±0.07 2 AOKI 12 LATT MS s
heme2.15±0.03±0.10 3 DURR 11 LATT MS s
heme1.9 ±0.2 4 BAZAVOV 10 LATT MS s
heme2.24±0.10±0.34 5 BLUM 10 LATT MS s
heme2.01±0.14 6 MCNEILE 10 LATT MS s
heme2.9 ±0.2 7 DOMINGUEZ 09 THEO MS s
heme

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.01±0.14 6 DAVIES 10 LATT MS s
heme2.9 ±0.8 8 DEANDREA 08 THEO MS s
heme3.02±0.33 9 BLUM 07 LATT MS s
heme2.7 ±0.4 10 JAMIN 06 THEO MS s
heme1.9 ±0.2 11 MASON 06 LATT MS s
heme2.8 ±0.2 12 NARISON 06 THEO MS s
heme1.7 ±0.3 13 AUBIN 04A LATT MS s
heme1CARRASCO 14 is a latti
e QCD 
omputation of light quark masses using 2 + 1 + 1dynami
al quarks, with mu = md 6= ms 6= m
 . The u and d quark masses areobtained separately by using the K meson mass splittings and latti
e results for theele
tromagneti
 
ontributions.2AOKI 12 is a latti
e 
omputation using 1 + 1 + 1 dynami
al quark 
avors.3DURR 11 determine quark mass from a latti
e 
omputation of the meson spe
trum usingNf = 2 + 1 dynami
al 
avors. The latti
e simulations were done at the physi
al quarkmass, so that extrapolation in the quark mass was not needed. The individual mu , mdvalues are obtained using the latti
e determination of the average mass mud and of theratio ms/mud and the value of Q = (m2s − m2ud) / (m2d − m2u) as determined from
η → 3π de
ays.4BAZAVOV 10 is a latti
e 
omputation using 2+1 dynami
al quark 
avors.5BLUM 10 determines light quark masses using a QCD plus QED latti
e 
omputation ofthe ele
tromagneti
 mass splittings of the low-lying hadrons. The latti
e simulations use2+1 dynami
al quark 
avors.6DAVIES 10 and MCNEILE 10 determine m
 (µ)/ms (µ) = 11.85 ± 0.16 using a latti
e
omputation with Nf = 2 + 1 dynami
al fermions of the pseudos
alar meson masses.Mass mu is obtained from this using the value of m
 from ALLISON 08 or MCNEILE 10and the BAZAVOV 10 values for the light quark mass ratios, ms/m and mu/md .7DOMINGUEZ 09 use QCD �nite energy sum rules for the two-point fun
tion of thedivergen
e of the axial ve
tor 
urrent 
omputed to order α4

s
.8DEANDREA 08 determine mu−md from η → 3π0, and 
ombine with the PDG 06latti
e average value of mu+md = 7.6 ± 1.6 to determine mu and md .9BLUM 07 determine quark masses from the pseudos
alar meson masses using a QEDplus QCD latti
e 
omputation with two dynami
al quark 
avors.10 JAMIN 06 determine mu(2 GeV) by 
ombining the value of ms obtained from thespe
tral fun
tion for the s
alar K π form fa
tor with other determinations of the quarkmass ratios.11MASON 06 extra
t light quark masses from a latti
e simulation using staggered fermionswith an improved a
tion, and three dynami
al light quark 
avors with degenerate u andd quarks. Perturbative 
orre
tions were in
luded at NNLO order. The quark massesmu and md were determined from their (mu+md )/2 measurement and AUBIN 04Amu/md value.12NARISON 06 uses sum rules for e+ e− → hadrons to order α3s to determine ms 
om-bined with other determinations of the quark mass ratios.13AUBIN 04A employ a partially quen
hed latti
e 
al
ulation of the pseudos
alar mesonmasses.

WEIGHTED AVERAGE
2.22±0.12 (Error scaled by 1.8)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

DOMINGUEZ 09 THEO 11.7
MCNEILE 10 LATT 2.2
BLUM 10 LATT 0.0
BAZAVOV 10 LATT 2.5
DURR 11 LATT 0.4
AOKI 12 LATT 1.7
CARRASCO 14 LATT 0.4

χ2

      18.9
(Confidence Level = 0.0044)

1 1.5 2 2.5 3 3.5 4u-QUARK MASS (MeV)d-QUARK MASSd-QUARK MASSd-QUARK MASSd-QUARK MASSSee the 
omment for the u quark above.We have normalized the MS masses at a renormalization s
ale of µ = 2GeV. Results quoted in the literature at µ = 1 GeV have been res
aled bydividing by 1.35. The values of \Our Evaluation" were determined in partvia Figures 1 and 2.VALUE (MeV) DOCUMENT ID TECN COMMENT4.7 +0.5
−0.4 OUR EVALUATION4.7 +0.5
−0.4 OUR EVALUATION4.7 +0.5
−0.4 OUR EVALUATION4.7 +0.5
−0.4 OUR EVALUATION See the ideogram below.5.03±0.26 1 CARRASCO 14 LATT MS s
heme3.68±0.29±0.10 2 AOKI 12 LATT MS s
heme4.79±0.07±0.12 3 DURR 11 LATT MS s
heme4.6 ±0.3 4 BAZAVOV 10 LATT MS s
heme4.65±0.15±0.32 5 BLUM 10 LATT MS s
heme4.77±0.15 6 MCNEILE 10 LATT MS s
heme5.3 ±0.4 7 DOMINGUEZ 09 THEO MS s
heme

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.79±0.16 6 DAVIES 10 LATT MS s
heme4.7 ±0.8 8 DEANDREA 08 THEO MS s
heme5.49±0.39 9 BLUM 07 LATT MS s
heme4.8 ±0.5 10 JAMIN 06 THEO MS s
heme4.4 ±0.3 11 MASON 06 LATT MS s
heme5.1 ±0.4 12 NARISON 06 THEO MS s
heme3.9 ±0.5 13 AUBIN 04A LATT MS s
heme1CARRASCO 14 is a latti
e QCD 
omputation of light quark masses using 2 + 1 + 1dynami
al quarks, with mu = md 6= ms 6= m
 . The u and d quark masses areobtained separately by using the K meson mass splittings and latti
e results for theele
tromagneti
 
ontributions.2AOKI 12 is a latti
e 
omputation using 1 + 1 + 1 dynami
al quark 
avors.3DURR 11 determine quark mass from a latti
e 
omputation of the meson spe
trum usingNf = 2 + 1 dynami
al 
avors. The latti
e simulations were done at the physi
al quarkmass, so that extrapolation in the quark mass was not needed. The individual mu , mdvalues are obtained using the latti
e determination of the average mass mud and of theratio ms/mud and the value of Q = (m2s − m2ud) / (m2d − m2u) as determined from
η → 3π de
ays.4BAZAVOV 10 is a latti
e 
omputation using 2+1 dynami
al quark 
avors.5BLUM 10 determines light quark masses using a QCD plus QED latti
e 
omputation ofthe ele
tromagneti
 mass splittings of the low-lying hadrons. The latti
e simulations use2+1 dynami
al quark 
avors.6DAVIES 10 and MCNEILE 10 determine m
 (µ)/ms (µ) = 11.85 ± 0.16 using a latti
e
omputation with Nf = 2 + 1 dynami
al fermions of the pseudos
alar meson masses.Mass md is obtained from this using the value of m
 from ALLISON 08 or MCNEILE 10and the BAZAVOV 10 values for the light quark mass ratios, ms/m and mu/md .7DOMINGUEZ 09 use QCD �nite energy sum rules for the two-point fun
tion of thedivergen
e of the axial ve
tor 
urrent 
omputed to order α4

s
.8DEANDREA 08 determine mu−md from η → 3π0, and 
ombine with the PDG 06latti
e average value of mu+md = 7.6 ± 1.6 to determine mu and md .9BLUM 07 determine quark masses from the pseudos
alar meson masses using a QEDplus QCD latti
e 
omputation with two dynami
al quark 
avors.10 JAMIN 06 determine md (2 GeV) by 
ombining the value of ms obtained from thespe
tral fun
tion for the s
alar K π form fa
tor with other determinations of the quarkmass ratios.11MASON 06 extra
t light quark masses from a latti
e simulation using staggered fermionswith an improved a
tion, and three dynami
al light quark 
avors with degenerate u andd quarks. Perturbative 
orre
tions were in
luded at NNLO order. The quark massesmu and md were determined from their (mu+md )/2 measurement and AUBIN 04Amu/md value.12NARISON 06 uses sum rules for e+ e− → hadrons to order α3s to determine ms 
om-bined with other determinations of the quark mass ratios.13AUBIN 04A perform three 
avor dynami
al latti
e 
al
ulation of pseudos
alar mesonmasses, with 
ontinuum estimate of ele
tromagneti
 e�e
ts in the kaon masses, andone-loop perturbative renormalization 
onstant.
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WEIGHTED AVERAGE
4.73±0.13 (Error scaled by 1.6)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

DOMINGUEZ 09 THEO 2.0
MCNEILE 10 LATT 0.1
BLUM 10 LATT 0.1
BAZAVOV 10 LATT 0.2
DURR 11 LATT 0.2
AOKI 12 LATT 11.7
CARRASCO 14 LATT 1.4

χ2

      15.6
(Confidence Level = 0.016)

3 4 5 6 7 8d-QUARK MASS (MeV)m = (mu+md )/2m = (mu+md )/2m = (mu+md )/2m = (mu+md )/2See the 
omments for the u quark above.We have normalized the MS masses at a renormalization s
ale of µ = 2GeV. Results quoted in the literature at µ = 1 GeV have been res
aled bydividing by 1.35. The values of \Our Evaluation" were determined in partvia Figures 1 and 2.VALUE (MeV) DOCUMENT ID TECN COMMENT3.5 +0.7
−0.3 OUR EVALUATION3.5 +0.7
−0.3 OUR EVALUATION3.5 +0.7
−0.3 OUR EVALUATION3.5 +0.7
−0.3 OUR EVALUATION See the ideogram below.3.70 ±0.17 1 CARRASCO 14 LATT MS s
heme3.45 ±0.12 2 ARTHUR 13 LATT MS s
heme3.59 ±0.21 3 AOKI 11A LATT MS s
heme3.469±0.047±0.048 4 DURR 11 LATT MS s
heme3.6 ±0.2 5 BLOSSIER 10 LATT MS s
heme3.39 ±0.06 6 MCNEILE 10 LATT MS s
heme4.1 ±0.2 7 DOMINGUEZ 09 THEO MS s
heme3.72 ±0.41 8 ALLTON 08 LATT MS s
heme3.55 +0.65
−0.28 9 ISHIKAWA 08 LATT MS s
heme4.25 ±0.35 10 BLUM 07 LATT MS s
heme

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.40 ±0.07 6 DAVIES 10 LATT MS s
heme3.85 ±0.12 ±0.4 11 BLOSSIER 08 LATT MS s
heme
≥ 4.85 ±0.20 12 DOMINGUEZ...08B THEO MS s
heme4.026±0.048 13 NAKAMURA 08 LATT MS s
heme4.08 ±0.25 ±0.42 14 GOCKELER 06 LATT MS s
heme4.7 ±0.2 ±0.3 15 GOCKELER 06A LATT MS s
heme3.2 ±0.3 16 MASON 06 LATT MS s
heme3.95 ±0.3 17 NARISON 06 THEO MS s
heme2.8 ±0.3 18 AUBIN 04 LATT MS s
heme4.29 ±0.14 ±0.65 19 AOKI 03 LATT MS s
heme3.223±0.3 20 AOKI 03B LATT MS s
heme4.4 ±0.1 ±0.4 21 BECIREVIC 03 LATT MS s
heme4.1 ±0.3 ±1.0 22 CHIU 03 LATT MS s
heme1CARRASCO 14 is a latti
e QCD 
omputation of light quark masses using 2 + 1 + 1dynami
al quarks, with mu = md 6= ms 6= m
 . The u and d quark masses areobtained separately by using the K meson mass splittings and latti
e results for theele
tromagneti
 
ontributions.2ARTHUR 13 is a latti
e 
omputation using 2+1 dynami
al domain wall fermions. Massesat µ = 3 GeV have been 
onverted to µ = 2 GeV using 
onversion fa
tors given in theirpaper.3AOKI 11A determine quark masses from a latti
e 
omputation of the hadron spe
trumusing Nf = 2 + 1 dynami
al 
avors of domain wall fermions.4DURR 11 determine quark mass from a latti
e 
omputation of the meson spe
trum usingNf = 2 + 1 dynami
al 
avors. The latti
e simulations were done at the physi
al quarkmass, so that extrapolation in the quark mass was not needed.5BLOSSIER 10 determines quark masses from a 
omputation of the hadron spe
trumusing Nf =2 dynami
al twisted-mass Wilson fermions.6DAVIES 10 and MCNEILE 10 determine m
 (µ)/ms (µ) = 11.85 ± 0.16 using a latti
e
omputation with Nf = 2 + 1 dynami
al fermions of the pseudos
alar meson masses.Mass m is obtained from this using the value of m
 from ALLISON 08 or MCNEILE 10and the BAZAVOV 10 values for the light quark mass ratio, ms/m.7DOMINGUEZ 09 use QCD �nite energy sum rules for the two-point fun
tion of thedivergen
e of the axial ve
tor 
urrent 
omputed to order α4s .8ALLTON 08 use a latti
e 
omputation of the π, K , and 
 masses with 2+1 dynami
al
avors of domain wall quarks, and non-perturbative renormalization.9 ISHIKAWA 08 use a latti
e 
omputation of the light meson spe
trum with 2+1 dynami
al
avors of O(a) improved Wilson quarks, and one-loop perturbative renormalization.10BLUM 07 determine quark masses from the pseudos
alar meson masses using a QEDplus QCD latti
e 
omputation with two dynami
al quark 
avors.

11BLOSSIER 08 use a latti
e 
omputation of pseudos
alar meson masses and de
ay 
on-stants with 2 dynami
al 
avors and non-perturbative renormalization.12DOMINGUEZ-CLARIMON 08B obtain an inequality from sum rules for the s
alar two-point 
orrelator.13NAKAMURA 08 do a latti
e 
omputation using quen
hed domain wall fermions andnon-perturbative renormalization.14GOCKELER 06 use an unquen
hed latti
e 
omputation of the axial Ward Identity withNf = 2 dynami
al light quark 
avors, and non-perturbative renormalization, to obtainm(2 GeV) = 4.08± 0.25± 0.19± 0.23 MeV, where the �rst error is statisti
al, the se
ondand third are systemati
 due to the �t range and for
e s
ale un
ertainties, respe
tively.We have 
ombined the systemati
 errors linearly.15GOCKELER 06A use an unquen
hed latti
e 
omputation of the pseudos
alar mesonmasses with Nf = 2 dynami
al light quark 
avors, and non-perturbative renormalization.16MASON 06 extra
t light quark masses from a latti
e simulation using staggered fermionswith an improved a
tion, and three dynami
al light quark 
avors with degenerate u andd quarks. Perturbative 
orre
tions were in
luded at NNLO order.17NARISON 06 uses sum rules for e+ e− → hadrons to order α3s to determine ms 
om-bined with other determinations of the quark mass ratios.18AUBIN 04 perform three 
avor dynami
al latti
e 
al
ulation of pseudos
alar mesonmasses, with one-loop perturbative renormalization 
onstant.19AOKI 03 uses quen
hed latti
e simulation of the meson and baryon masses with de-generate light quarks. The extrapolations are done using quen
hed 
hiral perturbationtheory.20The errors given in AOKI 03B were +0.046
−0.069. We 
hanged them to ±0.3 for 
al
ulatingthe overall best values. AOKI 03B uses latti
e simulation of the meson and baryon masseswith two dynami
al light quarks. Simulations are performed using the O(a) improvedWilson a
tion.21BECIREVIC 03 perform quen
hed latti
e 
omputation using the ve
tor and axial Wardidentities. Uses O(a) improved Wilson a
tion and nonperturbative renormalization.22CHIU 03 determines quark masses from the pion and kaon masses using a latti
e simu-lation with a 
hiral fermion a
tion in quen
hed approximation.

WEIGHTED AVERAGE
3.49±0.06 (Error scaled by 1.7)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BLUM 07 LATT 4.7
ISHIKAWA 08 LATT
ALLTON 08 LATT
DOMINGUEZ 09 THEO 9.3
MCNEILE 10 LATT 2.8
BLOSSIER 10 LATT 0.3
DURR 11 LATT 0.1
AOKI 11A LATT 0.2
ARTHUR 13 LATT 0.1
CARRASCO 14 LATT 1.5

χ2

      19.1
(Confidence Level = 0.0080)

3 3.5 4 4.5 5 5.5m = (mu+md )/2 (MeV)mu/md MASS RATIOmu/md MASS RATIOmu/md MASS RATIOmu/md MASS RATIOVALUE DOCUMENT ID TECN COMMENT0.38{0.58 OUR EVALUATION0.38{0.58 OUR EVALUATION0.38{0.58 OUR EVALUATION0.38{0.58 OUR EVALUATION See the ideogram below.0.4482+0.0173
−0.0206 1 BASAK 15 LATT0.470 ±0.056 2 CARRASCO 14 LATT0.698 ±0.051 3 AOKI 12 LATT0.42 ±0.01 ±0.04 4 BAZAVOV 10 LATT0.4818±0.0096±0.0860 5 BLUM 10 LATT0.550 ±0.031 6 BLUM 07 LATT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.43 ±0.08 7 AUBIN 04A LATT0.410 ±0.036 8 NELSON 03 LATT0.553 ±0.043 9 LEUTWYLER 96 THEO Compilation1BASAK 15 is a latti
e 
omputation using 2+1 dynami
al quark 
avors.2CARRASCO 14 is a latti
e QCD 
omputation of light quark masses using 2 + 1 + 1dynami
al quarks, with mu = md 6= ms 6= m
 . The u and d quark masses areobtained separately by using the K meson mass splittings and latti
e results for theele
tromagneti
 
ontributions.3AOKI 12 is a latti
e 
omputation using 1 + 1 + 1 dynami
al quark 
avors.4BAZAVOV 10 is a latti
e 
omputation using 2+1 dynami
al quark 
avors.5BLUM 10 is a latti
e 
omputation using 2+1 dynami
al quark 
avors.6BLUM 07 determine quark masses from the pseudos
alar meson masses using a QEDplus QCD latti
e 
omputation with two dynami
al quark 
avors.7AUBIN 04A perform three 
avor dynami
al latti
e 
al
ulation of pseudos
alar mesonmasses, with 
ontinuum estimate of ele
tromagneti
 e�e
ts in the kaon masses.8NELSON 03 
omputes 
oeÆ
ients in the order p4 
hiral Lagrangian using a latti
e
al
ulation with three dynami
al 
avors. The ratio mu/md is obtained by 
ombiningthis with the 
hiral perturbation theory 
omputation of the meson masses to order p4.



803803803803See key on page 601 QuarkParti
le ListingsLightQuarks (u, d, s)9 LEUTWYLER 96 uses a 
ombined �t to η → 3π and ψ′ → J/ψ (π,η) de
ay rates,and the ele
tromagneti
 mass di�eren
es of the π and K .
WEIGHTED AVERAGE
0.482±0.033 (Error scaled by 2.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BLUM 07 LATT 4.8
BLUM 10 LATT 0.0
BAZAVOV 10 LATT 2.3
AOKI 12 LATT 17.9
CARRASCO 14 LATT 0.1
BASAK 15 LATT 3.8

χ2

      28.9
(Confidence Level < 0.0001)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1mu/md MASS RATIOs-QUARK MASSs-QUARK MASSs-QUARK MASSs-QUARK MASSSee the 
omment for the u quark above.We have normalized the MS masses at a renormalization s
ale of µ = 2GeV. Results quoted in the literature at µ = 1 GeV have been res
aled bydividing by 1.35.VALUE (MeV) DOCUMENT ID TECN COMMENT96 + 8
− 4 OUR EVALUATION96 + 8
− 4 OUR EVALUATION96 + 8
− 4 OUR EVALUATION96 + 8
− 4 OUR EVALUATION See the ideogram below.93.6± 0.8 1 CHAKRABOR...15 LATT MS s
heme99.6± 4.3 2 CARRASCO 14 LATT MS s
heme94.4± 2.3 3 ARTHUR 13 LATT MS s
heme94 ± 9 4 BODENSTEIN 13 THEO MS s
heme102 ± 3 ± 1 5 FRITZSCH 12 LATT MS s
heme96.2± 2.7 6 AOKI 11A LATT MS s
heme95.5± 1.1± 1.5 7 DURR 11 LATT MS s
heme95 ± 6 8 BLOSSIER 10 LATT MS s
heme97.6± 2.9± 5.5 9 BLUM 10 LATT MS s
heme107.3±11.7 10 ALLTON 08 LATT MS s
heme102 ± 8 11 DOMINGUEZ 08A THEO MS s
heme90.1+17.2
− 6.1 12 ISHIKAWA 08 LATT MS s
heme

• • • We do not use the following data for averages, �ts, limits, et
. • • •92.4± 1.5 13 DAVIES 10 LATT MS s
heme92.2± 1.3 13 MCNEILE 10 LATT MS s
heme105 ± 3 ± 9 14 BLOSSIER 08 LATT MS s
heme105.6± 1.2 15 NAKAMURA 08 LATT MS s
heme119.5± 9.3 16 BLUM 07 LATT MS s
heme105 ± 6 ± 7 17 CHETYRKIN 06 THEO MS s
heme111 ± 6 ±10 18 GOCKELER 06 LATT MS s
heme119 ± 5 ± 8 19 GOCKELER 06A LATT MS s
heme92 ± 9 20 JAMIN 06 THEO MS s
heme87 ± 6 21 MASON 06 LATT MS s
heme104 ±15 22 NARISON 06 THEO MS s
heme
≥ 71 ± 4, ≤ 151 ± 14 23 NARISON 06 THEO MS s
heme96 + 5

− 3 +16
−18 24 BAIKOV 05 THEO MS s
heme81 ±22 25 GAMIZ 05 THEO MS s
heme125 ±28 26 GORBUNOV 05 THEO MS s
heme93 ±32 27 NARISON 05 THEO MS s
heme76 ± 8 28 AUBIN 04 LATT MS s
heme116 ± 6 ± 0.65 29 AOKI 03 LATT MS s
heme84.5+12

− 1.7 30 AOKI 03B LATT MS s
heme106 ± 2 ± 8 31 BECIREVIC 03 LATT MS s
heme92 ± 9 ±16 32 CHIU 03 LATT MS s
heme117 ±17 33 GAMIZ 03 THEO MS s
heme103 ±17 34 GAMIZ 03 THEO MS s
heme1CHAKRABORTY 15 is a latti
e QCD 
omputation that determines m
 and m
/msusing pseudos
alar mesons masses tuned on gluon �eld 
on�gurations with 2+1+1 dy-nami
al 
avors of HISQ quarks with u/d masses down to the physi
al value.2CARRASCO 14 is a latti
e QCD 
omputation of light quark masses using 2 + 1 + 1dynami
al quarks, with mu = md 6= ms 6= m
 . The u and d quark masses areobtained separately by using the K meson mass splittings and latti
e results for theele
tromagneti
 
ontributions.3ARTHUR 13 is a latti
e 
omputation using 2+1 dynami
al domain wall fermions. Massesat µ = 3 GeV have been 
onverted to µ = 2 GeV using 
onversion fa
tors given in theirpaper.4BODENSTEIN 13 determines ms from QCD �nite energy sum rules, and the perturbative
omputation of the pseudos
alar 
orrelator to �ve-loop order.

5 FRITZSCH 12 determine ms using a latti
e 
omputation with Nf = 2 dynami
al 
avors.6AOKI 11A determine quark masses from a latti
e 
omputation of the hadron spe
trumusing Nf = 2 + 1 dynami
al 
avors of domain wall fermions.7DURR 11 determine quark mass from a latti
e 
omputation of the meson spe
trum usingNf = 2 + 1 dynami
al 
avors. The latti
e simulations were done at the physi
al quarkmass, so that extrapolation in the quark mass was not needed.8BLOSSIER 10 determines quark masses from a 
omputation of the hadron spe
trumusing Nf =2 dynami
al twisted-mass Wilson fermions.9BLUM 10 determines light quark masses using a QCD plus QED latti
e 
omputation ofthe ele
tromagneti
 mass splittings of the low-lying hadrons. The latti
e simulations use2+1 dynami
al quark 
avors.10ALLTON 08 use a latti
e 
omputation of the π, K , and 
 masses with 2+1 dynami
al
avors of domain wall quarks, and non-perturbative renormalization.11DOMINGUEZ 08A make determination from QCD �nite energy sum rules for the pseu-dos
alar two-point fun
tion 
omputed to order α4s .12 ISHIKAWA 08 use a latti
e 
omputation of the light meson spe
trum with 2+1 dynami
al
avors of O(a) improved Wilson quarks, and one-loop perturbative renormalization.13DAVIES 10 and MCNEILE 10 determine m
 (µ)/ms (µ) = 11.85 ± 0.16 using a latti
e
omputation with Nf = 2 + 1 dynami
al fermions of the pseudos
alar meson masses.Mass ms is obtained from this using the value of m
 from ALLISON 08 or MCNEILE 10.14BLOSSIER 08 use a latti
e 
omputation of pseudos
alar meson masses and de
ay 
on-stants with 2 dynami
al 
avors and non-perturbative renormalization.15NAKAMURA 08 do a latti
e 
omputation using quen
hed domain wall fermions andnon-perturbative renormalization.16BLUM 07 determine quark masses from the pseudos
alar meson masses using a QEDplus QCD latti
e 
omputation with two dynami
al quark 
avors.17CHETYRKIN 06 use QCD sum rules in the pseudos
alar 
hannel to order α4s .18GOCKELER 06 use an unquen
hed latti
e 
omputation of the axial Ward Identity withNf = 2 dynami
al light quark 
avors, and non-perturbative renormalization, to obtainms (2 GeV) = 111 ± 6 ± 4 ± 6 MeV, where the �rst error is statisti
al, the se
ond andthird are systemati
 due to the �t range and for
e s
ale un
ertainties, respe
tively. Wehave 
ombined the systemati
 errors linearly.19GOCKELER 06A use an unquen
hed latti
e 
omputation of the pseudos
alar mesonmasses with Nf = 2 dynami
al light quark 
avors, and non-perturbative renormalization.20 JAMIN 06 determine ms (2 GeV) from the spe
tral fun
tion for the s
alar K π formfa
tor.21MASON 06 extra
t light quark masses from a latti
e simulation using staggered fermionswith an improved a
tion, and three dynami
al light quark 
avors with degenerate u andd quarks. Perturbative 
orre
tions were in
luded at NNLO order.22NARISON 06 uses sum rules for e+ e− → hadrons to order α3s .23NARISON 06 obtains the quoted range from positivity of the spe
tral fun
tions.24BAIKOV 05 determines ms (Mτ ) = 100+5
−3+17

−19 from sum rules using the strange spe
tralfun
tion in τ de
ay. The 
omputations were done to order α3s , with an estimate of the
α4s terms. We have 
onverted the result to µ = 2 GeV.25GAMIZ 05 determines ms (2 GeV) from sum rules using the strange spe
tral fun
tion in
τ de
ay. The 
omputations were done to order α2s , with an estimate of the α3s terms.26GORBUNOV 05 use hadroni
 tau de
ays to N3LO, in
luding power 
orre
tions.27NARISON 05 determines ms (2 GeV) from sum rules using the strange spe
tral fun
tionin τ de
ay. The 
omputations were done to order α3s .28AUBIN 04 perform three 
avor dynami
al latti
e 
al
ulation of pseudos
alar mesonmasses, with one-loop perturbative renormalization 
onstant.29AOKI 03 uses quen
hed latti
e simulation of the meson and baryon masses with degener-ate light quarks. The extrapolations are done using quen
hed 
hiral perturbation theory.Determines ms=113.8± 2.3+5.8

−2.9 using K mass as input and ms=142.3± 5.8+22
− 0 using

φ mass as input. We have performed a weighted average of these values.30AOKI 03B uses latti
e simulation of the meson and baryon masses with two dynami
allight quarks. Simulations are performed using the O(a) improved Wilson a
tion.31BECIREVIC 03 perform quen
hed latti
e 
omputation using the ve
tor and axial Wardidentities. Uses O(a) improved Wilson a
tion and nonperturbative renormalization. Theyalso quote m/ms=24.3 ± 0.2 ± 0.6.32CHIU 03 determines quark masses from the pion and kaon masses using a latti
e simu-lation with a 
hiral fermion a
tion in quen
hed approximation.33GAMIZ 03 determines ms from SU(3) breaking in the τ hadroni
 width. The value ofVus is 
hosen to satisfy CKM unitarity.34GAMIZ 03 determines ms from SU(3) breaking in the τ hadroni
 width. The value ofVus is taken from the PDG.
WEIGHTED AVERAGE
94.7±0.7 (Error scaled by 1.1)

ISHIKAWA 08 LATT
DOMINGUEZ 08A THEO
ALLTON 08 LATT
BLUM 10 LATT 0.2
BLOSSIER 10 LATT 0.0
DURR 11 LATT 0.2
AOKI 11A LATT 0.3
FRITZSCH 12 LATT 5.4
BODENSTEIN 13 THEO
ARTHUR 13 LATT 0.0
CARRASCO 14 LATT 1.3
CHAKRABOR...15 LATT 1.8

χ2

       9.2
(Confidence Level = 0.236)

80 90 100 110 120 130s-QUARK MASS (MeV)



804804804804QuarkParti
le ListingsLightQuarks (u, d, s), 
OTHER LIGHT QUARK MASS RATIOSOTHER LIGHT QUARK MASS RATIOSOTHER LIGHT QUARK MASS RATIOSOTHER LIGHT QUARK MASS RATIOSms/md MASS RATIOms/md MASS RATIOms/md MASS RATIOms/md MASS RATIOVALUE DOCUMENT ID TECN COMMENT17{22 OUR EVALUATION17{22 OUR EVALUATION17{22 OUR EVALUATION17{22 OUR EVALUATION
• • • We do not use the following data for averages, �ts, limits, et
. • • •20.0 1 GAO 97 THEO18.9±0.8 2 LEUTWYLER 96 THEO Compilation21 3 DONOGHUE 92 THEO18 4 GERARD 90 THEO18 to 23 5 LEUTWYLER 90B THEO1GAO 97 uses ele
tromagneti
 mass splittings of light mesons.2 LEUTWYLER 96 uses a 
ombined �t to η → 3π and ψ′ → J/ψ (π,η) de
ay rates,and the ele
tromagneti
 mass di�eren
es of the π and K .3DONOGHUE 92 result is from a 
ombined analysis of meson masses, η → 3π us-ing se
ond-order 
hiral perturbation theory in
luding nonanalyti
 terms, and (ψ(2S) →J/ψ(1S)π)/(ψ(2S) → J/ψ(1S)η).4GERARD 90 uses large N and η-η′ mixing.5 LEUTWYLER 90B determines quark mass ratios using se
ond-order 
hiral perturbationtheory for the meson and baryon masses, in
luding nonanalyti
 
orre
tions. Also usesWeinberg sum rules to determine L7.ms/m MASS RATIOms/m MASS RATIOms/m MASS RATIOms/m MASS RATIOm ≡ (mu + md )/2VALUE DOCUMENT ID TECN27.3 ±0.7 OUR EVALUATION27.3 ±0.7 OUR EVALUATION27.3 ±0.7 OUR EVALUATION27.3 ±0.7 OUR EVALUATION See the ideogram below.27.35±0.05+0.10

−0.07 1 BAZAVOV 14A LATT26.66±0.32 2 CARRASCO 14 LATT27.36±0.54 3 ARTHUR 13 LATT26.8 ±1.4 4 AOKI 11A LATT27.53±0.20±0.08 5 DURR 11 LATT27.3 ±0.9 6 BLOSSIER 10 LATT28.8 ±1.65 7 ALLTON 08 LATT27.3 ±0.3 ±1.2 8 BLOSSIER 08 LATT23.5 ±1.5 9 OLLER 07A THEO
• • • We do not use the following data for averages, �ts, limits, et
. • • •27.4 ±0.4 10 AUBIN 04 LATT1BAZAVOV 14A is a latti
e 
omputation using 4 dynami
al 
avors of HISQ fermions.2CARRASCO 14 is a latti
e QCD 
omputation of light quark masses using 2 + 1 + 1dynami
al quarks, with mu = md 6= ms 6= m
 . The u and d quark masses areobtained separately by using the K meson mass splittings and latti
e results for theele
tromagneti
 
ontributions.3ARTHUR 13 is a latti
e 
omputation using 2+1 dynami
al domain wall fermions.4AOKI 11A determine quark masses from a latti
e 
omputation of the hadron spe
trumusing Nf = 2 + 1 dynami
al 
avors of domain wall fermions.5DURR 11 determine quark mass from a latti
e 
omputation of the meson spe
trum usingNf = 2 + 1 dynami
al 
avors. The latti
e simulations were done at the physi
al quarkmass, so that extrapolation in the quark mass was not needed.6BLOSSIER 10 determines quark masses from a 
omputation of the hadron spe
trumusing Nf =2 dynami
al twisted-mass Wilson fermions.7ALLTON 08 use a latti
e 
omputation of the π, K , and 
 masses with 2+1 dynami
al
avors of domain wall quarks, and non-perturbative renormalization.8BLOSSIER 08 use a latti
e 
omputation of pseudos
alar meson masses and de
ay 
on-stants with 2 dynami
al 
avors and non-perturbative renormalization.9OLLER 07A use unitarized 
hiral perturbation theory to order p4.10Three 
avor dynami
al latti
e 
al
ulation of pseudos
alar meson masses.

WEIGHTED AVERAGE
27.32+0.12-0.10 (Error scaled by 1.3)

OLLER 07A THEO
BLOSSIER 08 LATT
ALLTON 08 LATT
BLOSSIER 10 LATT
DURR 11 LATT 0.9
AOKI 11A LATT
ARTHUR 13 LATT 0.0
CARRASCO 14 LATT 4.3
BAZAVOV 14A LATT 0.1

χ2

       5.3
(Confidence Level = 0.151)

25 26 27 28 29 30ms/m MASS RATIOQ MASS RATIOQ MASS RATIOQ MASS RATIOQ MASS RATIOQ ≡
√(m2s−m2)/(m2d−m2u); m ≡ (mu + md )/2VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •22.8±0.4 1 MARTEMYA... 05 THEO22.7±0.8 2 ANISOVICH 96 THEO

1MARTEMYANOV 05 determine Q from η → 3π de
ay.2ANISOVICH 96 �nd Q from η → π+π−π0 de
ay using dispersion relations and 
hiralperturbation theory.LIGHT QUARKS (u, d, s) REFERENCESLIGHT QUARKS (u, d, s) REFERENCESLIGHT QUARKS (u, d, s) REFERENCESLIGHT QUARKS (u, d, s) REFERENCESBASAK 15 JPCS 640 012052 S. Basak et al. (MILC Collab.)CHAKRABOR... 15 PR D91 054508 B. Chakraborty et al. (HPQCD Collab.)BAZAVOV 14A PR D90 074509 A. Bazavov et al. (Fermi-LAT and MILC Collabs.)CARRASCO 14 NP B887 19 N. Carras
o et al. (European Twisted Mass Collab.)ARTHUR 13 PR D87 094514 R. Arthur et al. (RBC and UKQCD Collabs.)BODENSTEIN 13 JHEP 1307 138 S. Bodenstein, C.A. Dominguez, K. S
hil
her (MANZ+)AOKI 12 PR D86 034507 S. Aoki et al. (PACS-CS Collab.)FRITZSCH 12 NP B865 397 P. Fritzs
h et al. (ALPHA Collab.)AOKI 11A PR D83 074508 Y. Aoki et al. (RBC-UKQCD Collab.)DURR 11 PL B701 265 S. Durr et al. (BMW Collab.)BAZAVOV 10 RMP 82 1349 A. Bazavov et al. (MILC Collab.)BLOSSIER 10 PR D82 114513 B. Blossier et al. (ETM Collab.)BLUM 10 PR D82 094508 T. Blum et al.DAVIES 10 PRL 104 132003 C.T.H. Davies et al. (HPQCD Collab.)MCNEILE 10 PR D82 034512 C. M
Neile et al. (HPQCD Collab.)DOMINGUEZ 09 PR D79 014009 C.A. Dominguez et al.ALLISON 08 PR D78 054513 I. Allison et al. (HPQCD Collab.)ALLTON 08 PR D78 114509 C. Allton et al. (RBC and UKQCD Collabs.)BLOSSIER 08 JHEP 0804 020 B. Blossier et al. (ETM Collab.)DEANDREA 08 PR D78 034032 A. Deandrea, A. Nehme, P. TalaveraDOMINGUEZ 08A JHEP 0805 020 C.A. Dominguez et al.DOMINGUEZ... 08B PL B660 49 A. Dominguez-Clarimon, E. de Rafael, J. TaronISHIKAWA 08 PR D78 011502 T. Ishikawa et al. (CP-PACS and JLQCD Collabs.)NAKAMURA 08 PR D78 034502 Y. Nakamura et al. (CP-PACS Collab.)BLUM 07 PR D76 114508 T. Blum et al. (RBC Collab.)OLLER 07A EPJ A34 371 J.A. Oller, L. Ro
aCHETYRKIN 06 EPJ C46 721 K.G. Chetyrkin, A. KhodjamirianGOCKELER 06 PR D73 054508 M. Go
keler et al. (QCDSF, UKQCD Collabs)GOCKELER 06A PL B639 307 M. Go
keler et al. (QCDSF, UKQCD Collabs)JAMIN 06 PR D74 074009 M. Jamin, J.A. Oller, A. Pi
hMASON 06 PR D73 114501 Q. Mason et al. (HPQCD Collab.)NARISON 06 PR D74 034013 S. NarisonPDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)BAIKOV 05 PRL 95 012003 P.A. Baikov, K.G. Chetyrkin, J.H. KuhnGAMIZ 05 PRL 94 011803 E. Gamiz et al.GORBUNOV 05 PR D71 013002 D.S. Gorbunov, A.A. PivovarovMARTEMYA... 05 PR D71 017501 B.V. Martemyanov, V.S. SopovNARISON 05 PL B626 101 S. NarisonAUBIN 04 PR D70 031504 C. Aubin et al. (HPQCD, MILC, UKQCD Collabs.)AUBIN 04A PR D70 114501 C. Aubin et al. (MILC Collab.)AOKI 03 PR D67 034503 S. Aoki et al. (CP-PACS Collab.)AOKI 03B PR D68 054502 S. Aoki et al. (CP-PACS Collab.)BECIREVIC 03 PL B558 69 D. Be
irevi
, V. Lubi
z, C. TarantinoCHIU 03 NP B673 217 T.-W. Chiu, T.-H. HsiehGAMIZ 03 JHEP 0301 060 E. Gamiz et al.NELSON 03 PRL 90 021601 D. Nelson, G.T. Fleming, G.W. Kil
upGAO 97 PR D56 4115 D.-N. Gao, B.A. Li, M.-L. YanANISOVICH 96 PL B375 335 A.V. Anisovi
h, H. LeutwylerLEUTWYLER 96 PL B378 313 H. LeutwylerDONOGHUE 92 PRL 69 3444 J.F. Donoghue, B.R. Holstein, D. Wyler (MASA+)GERARD 90 MPL A5 391 J.M. Gerard (MPIM)LEUTWYLER 90B NP B337 108 H. Leutwyler (BERN)
 I (JP ) = 0(12+)Charge = 23 e Charm = +1
-QUARK MASS
-QUARK MASS
-QUARK MASS
-QUARK MASSThe 
-quark mass 
orresponds to the \running" mass m
 (µ = m
 )in the MS s
heme. We have 
onverted masses in other s
hemes to theMS s
heme using two-loop QCD perturbation theory with αs (µ=m
 ) =0.38 ± 0.03. The value 1.27 ± 0.03 GeV for the MS mass 
orresponds to1.67 ± 0.07 GeV for the pole mass (see the \Note on Quark Masses").VALUE (GeV) DOCUMENT ID TECN COMMENT1.27 ±0.03 OUR EVALUATION1.27 ±0.03 OUR EVALUATION1.27 ±0.03 OUR EVALUATION1.27 ±0.03 OUR EVALUATION See the ideogram below.1.246 ±0.023 1 KIYO 16 THEO MS s
heme1.2715±0.0095 2 CHAKRABOR...15 LATT MS s
heme1.288 ±0.020 3 DEHNADI 15 THEO MS s
heme1.348 ±0.046 4 CARRASCO 14 LATT MS s
heme1.26 ±0.05 ±0.04 5 ABRAMOWICZ13C COMB MS s
heme1.24 ±0.03 +0.03
−0.07 6 ALEKHIN 13 THEO MS s
heme1.282 ±0.011 ±0.022 7 DEHNADI 13 THEO MS s
heme1.286 ±0.066 8 NARISON 13 THEO MS s
heme1.159 ±0.075 9 SAMOYLOV 13 NOMD MS s
heme1.36 ±0.04 ±0.10 10 ALEKHIN 12 THEO MS s
heme1.261 ±0.016 11 NARISON 12A THEO MS s
heme1.278 ±0.009 12 BODENSTEIN 11 THEO MS s
heme1.28 +0.07

−0.06 13 LASCHKA 11 THEO MS s
heme1.28 ±0.04 15 BLOSSIER 10 LATT MS s
heme1.279 ±0.013 16 CHETYRKIN 09 THEO MS s
heme1.25 ±0.04 17 SIGNER 09 THEO MS s
heme
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.01 ±0.09 ±0.03 18 ALEKHIN 11 THEO MS s
heme1.299 ±0.026 19 BODENSTEIN 10 THEO MS s
heme1.273 ±0.006 20 MCNEILE 10 LATT MS s
heme1.261 ±0.018 21 NARISON 10 THEO MS s
heme1.268 ±0.009 22 ALLISON 08 LATT MS s
heme1.286 ±0.013 23 KUHN 07 THEO MS s
heme1.295 ±0.015 24 BOUGHEZAL 06 THEO MS s
heme



805805805805See key on page 601 QuarkParti
le Listings
1.24 ±0.09 25 BUCHMUEL... 06 THEO MS s
heme1.224 ±0.017 ±0.054 26 HOANG 06 THEO MS s
heme1.33 ±0.10 27 AUBERT 04X THEO MS s
heme1.29 ±0.07 28 HOANG 04 THEO MS s
heme1.319 ±0.028 29 DEDIVITIIS 03 LATT MS s
heme1.19 ±0.11 30 EIDEMULLER 03 THEO MS s
heme1.289 ±0.043 31 ERLER 03 THEO MS s
heme1.26 ±0.02 32 ZYABLYUK 03 THEO MS s
heme1KIYO 16 determine m
 (m
 ) from the J/ψ(1S) mass at order α3s (N3LO).2CHAKRABORTY 15 is a latti
e QCD 
omputation using 2+1+1 dynami
al 
avors.Moments of pseudos
alar 
urrent-
urrent 
orrelators are mat
hed to α3s -a

urate QCDperturbation theory with the η
 meson mass tuned to experiment.3DEHNADI 15 determine m
 (m
 ) using sum rules for e+ e− → hadrons at order α3s(N3LO), and �tting to both experimental data and latti
e results.4CARRASCO 14 is a latti
e QCD 
omputation of light quark masses using 2 + 1 + 1dynami
al quarks, with mu = md 6= ms 6= m
 . The u and d quark masses areobtained separately by using the K meson mass splittings and latti
e results for theele
tromagneti
 
ontributions.5ABRAMOWICZ 13C determines m
 from 
harm produ
tion in deep inelasti
 e p s
atter-ing, using the QCD predi
tion at NLO order. The un
ertainties from model and param-eterization assumptions, and the value of αs , of ±0.03, ±0.02, and ±0.02 respe
tively,have been 
ombined in quadrature.6ALEKHIN 13 determines m
 from 
harm produ
tion in deep inelasti
 s
attering at HERAusing approximate NNLO QCD.7DEHNADI 13 determines m
 using QCD sum rules for the 
harmonium spe
trum and
harm 
ontinuum to order α3s (N3LO). The statisti
al and systemati
 experimental errorsof ±0.006 and ±0.009 have been 
ombined in quadrature. The theoreti
al un
ertainties
±0.019 from trun
ation of the perturbation series, ±0.010 from αs , and ±0.002 fromthe gluon 
ondensate have been 
ombined in quadrature.8NARISON 13 determines m
 using QCD spe
tral sum rules to order α2s (NNLO) andin
luding 
ondensates up to dimension 6.9 SAMOYLOV 13 determines m
 from a study of 
harm dimuon produ
tion in neutrino-iron s
attering using the NLO QCD result for the 
harm quark produ
tion 
ross se
tion.10ALEKHIN 12 determines m
 from heavy quark produ
tion in deep inelasti
 s
atteringat HERA using approximate NNLO QCD.11NARISON 12A determines m
 using sum rules for the ve
tor 
urrent 
orrelator to order
α3s , in
luding the e�e
t of gluon 
ondensates up to dimension eight.12BODENSTEIN 11 determine m
 (3 GeV) = 0.987 ± 0.009 GeV and m
 (m
 ) = 1.278 ±0.009 GeV using QCD sum rules for the 
harm quark ve
tor 
urrent 
orrelator.13 LASCHKA 11 determine the 
 mass from the 
harmonium spe
trum. The theoreti
al
omputation uses the heavy QQ potential to order 1/mQ obtained by mat
hing theshort-distan
e perturbative result onto latti
e QCD result at larger s
ales.14AUBERT 10A determine the b- and 
-quark masses from a �t to the in
lusive de
ayspe
tra in semileptoni
 B de
ays in the kineti
 s
heme (and 
onvert it to the MS s
heme).15BLOSSIER 10 determines quark masses from a 
omputation of the hadron spe
trumusing Nf =2 dynami
al twisted-mass Wilson fermions.16CHETYRKIN 09 determine m
 and mb from the e+ e− → QQ 
ross-se
tion and sumrules, using an order α3s 
omputation of the heavy quark va
uum polarization. They alsodetermine m
 (3 GeV) = 0.986 ± 0.013GeV.17 SIGNER 09 determines the 
-quark mass using non-relativisti
 sum rules to analyze thee+ e− → 
 
 
ross-se
tion near threshold. Also determine the PS mass mPS(µF = 0.7GeV) = 1.50 ± 0.04 GeV.18ALEKHIN 11 determines m
 from heavy quark produ
tion in deep inelasti
 s
atteringusing �xed target and HERA data, and approximate NNLO QCD.19BODENSTEIN 10 determines m
 (3 GeV) = 1.008 ± 0.026 GeV using �nite energy sumrules for the ve
tor 
urrent 
orrelator. The authors have 
onverted this to m
 (m
 ) using
αs (MZ ) = 0.1189 ± 0.0020.20MCNEILE 10 determines m
 by 
omparing the order α3s perturbative results for thepseudo-s
alar 
urrent to latti
e simulations with Nf = 2+1 sea-quarks by the HPQCD
ollaboration.21NARISON 10 determines m
 from ratios of moments of ve
tor 
urrent 
orrelators 
om-puted to order α3s and in
luding the dimension-six gluon 
ondensate.22ALLISON 08 determine m
 by 
omparing four-loop perturbative results for the pseudo-s
alar 
urrent 
orrelator to latti
e simulations by the HPQCD 
ollaboration. The resulthas been updated in MCNEILE 10.23KUHN 07 determine m
 (µ = 3 GeV) = 0.986±0.013 GeV and m
 (m
 ) from a four-loopsum-rule 
omputation of the 
ross-se
tion for e+ e− → hadrons in the 
harm thresholdregion.24BOUGHEZAL 06 result 
omes from the �rst moment of the hadroni
 produ
tion 
ross-se
tion to order α3s .25BUCHMUELLER 06 determine mb and m
 by a global �t to in
lusive B de
ay spe
tra.26HOANG 06 determines m
 (m
 ) from a global �t to in
lusive B de
ay data. The Bde
ay distributions were 
omputed to order α2s β0, and the 
onversion between di�erentm
 mass s
hemes to order α3s .27AUBERT 04X obtain m
 from a �t to the hadron mass and lepton energy distributionsin semileptoni
 B de
ay. The paper quotes values in the kineti
 s
heme. The MS valuehas been provided by the BABAR 
ollaboration.28HOANG 04 determines m
 (m
 ) from moments at order α2s of the 
harm produ
tion
ross-se
tion in e+ e− annihilation.29DEDIVITIIS 03 use a quen
hed latti
e 
omputation of heavy-heavy and heavy-light me-son masses.30EIDEMULLER 03 determines mb and mc using QCD sum rules.31ERLER 03 determines mb and mc using QCD sum rules. In
ludes re
ent BES data.32ZYABLYUK 03 determines mc by using QCD sum rules in the pseudos
alar 
hannel and
omparing with the ηc mass.

WEIGHTED AVERAGE
1.273±0.005 (Error scaled by 1.0)

SIGNER 09 THEO 0.3
CHETYRKIN 09 THEO 0.2
BLOSSIER 10 LATT 0.0
AUBERT 10A BABR
LASCHKA 11 THEO
BODENSTEIN 11 THEO 0.2
NARISON 12A THEO 0.6
ALEKHIN 12 THEO
SAMOYLOV 13 NOMD
NARISON 13 THEO
DEHNADI 13 THEO 0.1
ALEKHIN 13 THEO 0.6
ABRAMOWICZ 13C COMB
CARRASCO 14 LATT 2.6
DEHNADI 15 THEO 0.5
CHAKRABOR...15 LATT 0.0
KIYO 16 THEO 1.4

χ2

       6.7
(Confidence Level = 0.753)

1.1 1.2 1.3 1.4 1.5 1.6
-QUARK MASS (GeV)m
/ms MASS RATIOm
/ms MASS RATIOm
/ms MASS RATIOm
/ms MASS RATIOVALUE DOCUMENT ID TECN11.72 ±0.25 OUR EVALUATION11.72 ±0.25 OUR EVALUATION11.72 ±0.25 OUR EVALUATION11.72 ±0.25 OUR EVALUATION See the ideogram below.11.652±0.065 1 CHAKRABOR...15 LATT11.747±0.019+0.059
−0.043 2 BAZAVOV 14A LATT11.62 ±0.16 3 CARRASCO 14 LATT11.27 ±0.30 ±0.26 4 DURR 12 LATT12.0 ±0.3 5 BLOSSIER 10 LATT11.85 ±0.16 6 DAVIES 10 LATT1CHAKRABORTY 15 is a latti
e QCD 
omputation on gluon �eld 
on�gurations with2+1+1 dynami
al 
avors of HISQ quarks with u/d masses down to the physi
al value.m
 and ms are tuned from pseudos
alar meson masses.2BAZAVOV 14A is a latti
e 
omputation using 4 dynami
al 
avors of HISQ fermions.3CARRASCO 14 is a latti
e QCD 
omputation of light quark masses using 2 + 1 + 1dynami
al quarks, with mu = md 6= ms 6= m
 . The u and d quark masses areobtained separately by using the K meson mass splittings and latti
e results for theele
tromagneti
 
ontributions.4DURR 12 determine m
/ms using a latti
e 
omputation with Nf = 2 dynami
alfermions. The result is 
ombined with other determinations of m
 to obtain ms(2GeV) = 97.0 ± 2.6 ± 2.5MeV.5BLOSSIER 10 determine m
/ms from a 
omputation of the hadron spe
trum using Nf= 2 dynami
al twisted-mass Wilson fermions.6DAVIES 10 determine m
/ms from meson masses 
al
ulated on gluon �elds in
ludingu, d, and s sea quarks with latti
e spa
ing down to 0.045 fm. The Highly ImprovedStaggered quark formalism is used for the valen
e quarks.

WEIGHTED AVERAGE
11.72±0.04 (Error scaled by 1.0)

DAVIES 10 LATT 0.7
BLOSSIER 10 LATT
DURR 12 LATT
CARRASCO 14 LATT 0.3
BAZAVOV 14A LATT 0.4
CHAKRABOR...15 LATT 0.9

χ2

       2.4
(Confidence Level = 0.488)

11 11.5 12 12.5 13m
/ms MASS RATIOmb/m
 MASS RATIOmb/m
 MASS RATIOmb/m
 MASS RATIOmb/m
 MASS RATIOVALUE DOCUMENT ID TECN4.528±0.0544.528±0.0544.528±0.0544.528±0.054 1 CHAKRABOR...15 LATT1CHAKRABORTY 15 is a latti
e 
omputation using 4 dynami
al quark 
avors.mb−m
 QUARK MASS DIFFERENCEmb−m
 QUARK MASS DIFFERENCEmb−m
 QUARK MASS DIFFERENCEmb−m
 QUARK MASS DIFFERENCEVALUE (GeV) DOCUMENT ID TECN3.45 ±0.05 OUR EVALUATION3.45 ±0.05 OUR EVALUATION3.45 ±0.05 OUR EVALUATION3.45 ±0.05 OUR EVALUATION
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.472±0.032 1 AUBERT 10A BABR3.42 ±0.06 2 ABDALLAH 06B DLPH3.44 ±0.03 3 AUBERT 04X BABR3.41 ±0.01 3 BAUER 04 THEO1AUBERT 10A determine the b- and 
-quark masses from a �t to the in
lusive de
ayspe
tra in semileptoni
 B de
ays in the kineti
 s
heme.2ABDALLAH 06B determine mb−m
 from moments of the hadron invariant mass andlepton energy spe
tra in semileptoni
 in
lusive B de
ays.3Determine mb−m
 from a global �t to in
lusive B de
ay spe
tra.
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hutzmeierBUCHMUEL... 06 PR D73 073008 O.L. Bu
hmueller, H.U. Fla
her (RHBL)HOANG 06 PL B633 526 A.H. Hoang, A.V. ManoharAUBERT 04X PRL 93 011803 B. Aubert et al. (BABAR Collab.)BAUER 04 PR D70 094017 C. Bauer et al.HOANG 04 PL B594 127 A.H. Hoang, M. JaminDEDIVITIIS 03 NP B675 309 G.M. de Divitiis et al.EIDEMULLER 03 PR D67 113002 M. EidemullerERLER 03 PL B558 125 J. Erler, M. LuoZYABLYUK 03 JHEP 0301 081 K.N. Zyablyuk (ITEP)b I (JP ) = 0(12+)Charge = −13 e Bottom = −1b-QUARK MASSb-QUARK MASSb-QUARK MASSb-QUARK MASSThe �rst value is the \running mass" mb(µ = mb) in the MS s
heme,and the se
ond value is the 1S mass, whi
h is half the mass of the �(1S)in perturbation theory. For a review of di�erent quark mass de�nitionsand their properties, see EL-KHADRA 02. The 1S mass is better suitedfor use in analyzing B de
ays than the MS mass be
ause it gives a stableperturbative expansion. We have 
onverted masses in other s
hemes tothe MS mass and 1S mass using two-loop QCD perturbation theory with
αs (µ = mb) = 0.223 ± 0.008. The values 4.18+0.04

−0.03 GeV for the MSmass and 4.66+0.04
−0.03 GeV for the 1S mass 
orrespond to 4.78 ± 0.06 GeVfor the pole mass, using the two-loop 
onversion formula. A dis
ussion ofmasses in di�erent s
hemes 
an be found in the \Note on Quark Masses."MS MASS (GeV) 1S MASS (GeV) DOCUMENT ID TECN4.18 +0.04

−0.03 OUR EVALUATION4.18 +0.04
−0.03 OUR EVALUATION4.18 +0.04
−0.03 OUR EVALUATION4.18 +0.04
−0.03 OUR EVALUATION of MS Mass. See the ideogram below.4.66 +0.04
−0.03 OUR EVALUATION4.66 +0.04
−0.03 OUR EVALUATION4.66 +0.04
−0.03 OUR EVALUATION4.66 +0.04
−0.03 OUR EVALUATION of 1S Mass. See the ideogram below.4.197±0.022 4.671 ± 0.024 1 KIYO 16 THEO4.183±0.037 4.656 ± 0.041 2 ALBERTI 15 THEO4.193+0.022
−0.035 4.667+0.024

−0.039 3 BENEKE 15 THEO4.176±0.023 4.648 ± 0.026 4 DEHNADI 15 THEO4.07 ±0.17 4.53 ± 0.19 5 ABRAMOWICZ14A HERA4.201±0.043 4.676 ± 0.048 6 AYALA 14A THEO4.21 ±0.11 4.69 ± 0.12 7 BERNARDONI 14 LATT4.169±0.002±0.008 4.640 ± 0.002 ± 0.009 8 PENIN 14 THEO4.166±0.043 4.637 ± 0.048 9 LEE 13O LATT4.247±0.034 4.727 ± 0.039 10 LUCHA 13 THEO4.236±0.069 4.715 ± 0.077 11 NARISON 13 THEO4.213±0.059 4.689 ± 0.066 12 NARISON 13A THEO4.171±0.009 4.642 ± 0.010 13 BODENSTEIN 12 THEO4.29 ±0.14 4.77 ± 0.16 14 DIMOPOUL... 12 LATT4.235±0.003±0.055 4.755 ± 0.003 ± 0.058 15 HOANG 12 THEO4.177±0.011 4.649 ± 0.012 16 NARISON 12 THEO4.18 +0.05
−0.04 4.65+0.06

−0.04 17 LASCHKA 11 THEO4.186±0.044±0.015 4.659 ± 0.050 ± 0.017 18 AUBERT 10A BABR4.164±0.023 4.635 ± 0.026 19 MCNEILE 10 LATT4.163±0.016 4.633 ± 0.018 20 CHETYRKIN 09 THEO4.243±0.049 4.723 ± 0.055 21 SCHWANDA 08 BELL
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.212±0.032 4.688 ± 0.036 22 NARISON 12 THEO4.171±0.014 4.642 ± 0.016 23 NARISON 12A THEO4.173±0.010 4.645 ± 0.011 24 NARISON 10 THEO5.26 ±1.2 5.85 ± 1.3 25 ABDALLAH 08D DLPH4.42 ±0.06 ±0.08 4.92 ± 0.07 ± 0.09 26 GUAZZINI 08 LATT4.347±0.048±0.08 4.838 ± 0.053 ± 0.09 27 DELLA-MOR... 07 LATT4.164±0.025 4.635 ± 0.028 28 KUHN 07 THEO4.19 ±0.40 4.66 ± 0.45 29 ABDALLAH 06D DLPH4.205±0.058 4.68 ± 0.06 30 BOUGHEZAL 06 THEO4.20 ±0.04 4.67 ± 0.04 31 BUCHMUEL... 06 THEO

4.19 ±0.06 4.66 ± 0.07 32 PINEDA 06 THEO4.4 ±0.3 4.9 ± 0.3 33,34 GRAY 05 LATT4.22 ±0.06 4.72 ± 0.07 35 AUBERT 04X THEO4.17 ±0.03 4.68 ± 0.03 36 BAUER 04 THEO4.22 ±0.11 4.72 ± 0.12 34,37 HOANG 04 THEO4.25 ±0.11 4.76 ± 0.12 34,38 MCNEILE 04 LATT4.22 ±0.09 4.74 ± 0.10 39 BAUER 03 THEO4.19 ±0.05 4.66 ± 0.05 40 BORDES 03 THEO4.20 ±0.09 4.67 ± 0.10 41 CORCELLA 03 THEO4.33 ±0.10 4.84 ± 0.11 34,42 DEDIVITIIS 03 LATT4.24 ±0.10 4.72 ± 0.11 43 EIDEMULLER 03 THEO4.207±0.031 4.682 ± 0.035 44 ERLER 03 THEO4.33 ±0.06 ±0.10 4.82 ± 0.07 ± 0.11 45 MAHMOOD 03 CLEO4.190±0.032 4.663 ± 0.036 46 BRAMBILLA 02 THEO4.346±0.070 4.837 ± 0.078 47 PENIN 02 THEO1KIYO 16 determine mb(mb) from the �(1S) mass at order α3s (N3LO). We have
onverted this to the 1S s
heme.2ALBERTI 15 determine mb(mb) from �ts to in
lusive B → X
 e ν de
ay. We have
onverted this to the 1S s
heme. They also �nd mkin
b (1 GeV) = 4.553 ± 0.020 GeV.3BENEKE 15 determine mb(mb) using sum rules for e+ e− → hadrons at order N3LOin
luding �nite m
 e�e
ts. We have 
onverted this to the 1S s
heme. They also �ndmPS

b (2 GeV) = 4.532+0.013
−0.039 GeV. When the four-loop 
onversion between the poleand the MS mass is applied in BENEKE 16, the mb(mb) mass 
hanges to 4.203+0.016

−0.034GeV.4DEHNADI 15 determine mb(mb) using sum rules for e+ e− → hadrons at order α3s(N3LO), and �tting to both experimental data and latti
e results. We have 
onvertedthis to the 1S s
heme.5ABRAMOWICZ 14A determine mb(mb) = 4.07 ± 0.14+0.01
−0.07+0.05

−0.00+0.08
−0.05 from theprodu
tion of b quarks in e p 
ollisions at HERA. The errors due to �tting, modeling,PDF parameterization, and theoreti
al QCD un
ertainties due to the values of αs , m
 ,and the renormalization s
ale µ have been 
ombined in quadrature. We have 
onvertedmb(mb) to the 1S s
heme.6AYALA 14A determine mb(mb) from the �(1S) mass 
omputed to N3LO order inperturbation theory using a renormalon subtra
ted s
heme. We have 
onverted mb(mb)to the 1S s
heme.7BERNARDONI 14 determine mb from Nf = 2 latti
e 
al
ulations using heavy quarke�e
tive theory non-perturbatively renormalized and mat
hed to QCD at 1/m order. Wehave 
onverted mb(mb) to the 1S s
heme.8PENIN 14 determine mb(mb) = 4.169± 0.008± 0.002± 0.002 using an estimate of theorder α3s b-quark va
uum polarization fun
tion in the threshold region, in
luding �nitem
 e�e
ts. The errors of ±0.008 from theoreti
al un
ertainties, and ±0.002 from αshave been 
ombined in quadrature. We have 
onverted mb(mb) to the 1S s
heme.9 LEE 13O determines mb using latti
e 
al
ulations of the � and Bs binding energies inNRQCD, in
luding three light dynami
al quark 
avors. The quark mass shift in NRQCDis determined to order α2s , with partial α3s 
ontributions.10 LUCHA 13 determines mb from QCD sum rules for heavy-light 
urrents using the latti
evalue for fB of 191.5 ± 7.3 GeV.11NARISON 13 determines mb using QCD spe
tral sum rules to order α2s (NNLO) andin
luding 
ondensates up to dimension 6. We have 
onverted the MS value to the 1Ss
heme.12NARISON 13A determines mb using HQET sum rules to order α2s (NNLO) and the Bmeson mass and de
ay 
onstant.13BODENSTEIN 12 determine mb using sum rules for the ve
tor 
urrent 
orrelator andthe e+ e− → QQ total 
ross-se
tion. We have 
onverted mb(mb) to the 1S s
heme.14DIMOPOULOS 12 determine quark masses from a latti
e 
omputation using Nf = 2dynami
al 
avors of twisted mass fermions. We have 
onverted mb(mb) to the 1Ss
heme.15HOANG 12 determine mb using non-relativisti
 sum rules for the � system at order α2s(NNLO) with renormalization group improvement.16Determines mb to order α3s (N3LO), in
luding the e�e
t of gluon 
ondensates up todimension eight 
ombining the methods of NARISON 12 and NARISON 12A. We have
onverted mb(mb) to the 1S s
heme.17 LASCHKA 11 determine the b mass from the 
harmonium spe
trum. The theoreti
al
omputation uses the heavy QQ potential to order 1/mQ obtained by mat
hing theshort-distan
e perturbative result onto latti
e QCD result at larger s
ales. We have
onverted mb(mb) to the 1S s
heme.18AUBERT 10A determine the b- and 
-quark masses from a �t to the in
lusive de
ayspe
tra in semileptoni
 B de
ays in the kineti
 s
heme (and 
onvert it to the MS s
heme).We have 
onverted this to the 1S s
heme.19MCNEILE 10 determines mb by 
omparing order α3s (N3LO) perturbative results for thepseudo-s
alar 
urrent to latti
e simulations with Nf = 2+1 sea-quarks by the HPQCD
ollaboration. We have 
onverted mb (mb) to the 1S s
heme.20CHETYRKIN 09 determine m
 and mb from the e+ e− → QQ 
ross-se
tion and sumrules, using an order α3s (N3LO) 
omputation of the heavy quark va
uum polarization.We have 
onverted their mb to the 1S s
heme.21 SCHWANDA 08 measure moments of the in
lusive photon spe
trum in B → Xs γ de
ayto determine m1Sb . We have 
onverted this to MS s
heme.22NARISON 12 determines mb using exponential sum rules for the ve
tor 
urrent 
orrelatorto order α3s , in
luding the e�e
t of gluon 
ondensates up to dimension eight. We have
onverted mb(mb) to the 1S s
heme.23NARISON 12A determines mb using sum rules for the ve
tor 
urrent 
orrelator to order

α3s , in
luding the e�e
t of gluon 
ondensates up to dimension eight. We have 
onvertedmb(mb) to the 1S s
heme.24NARISON 10 determines mb from ratios of moments of ve
tor 
urrent 
orrelators 
om-puted to order α3s and in
luding the dimension-six gluon 
ondensate. These values aretaken from the erratum to that referen
e.



807807807807See key on page 601 Quark Parti
le Listingsb, t25ABDALLAH 08D determine mb(MZ ) = 3.76 ± 1.0 GeV from a leading order study offour-jet rates at LEP. We have 
onverted this to mb(mb) and m1Sb .26GUAZZINI 08 determine mb(mb) from a quen
hed latti
e simulation of heavy mesonmasses. The ±0.08 is an estimate of the quen
hing error. We have 
onverted thesevalues to the 1S s
heme.27DELLA-MORTE 07 determine mb(mb) from a 
omputation of the spin-averaged Bmeson mass using quen
hed latti
e HQET at order 1/m. The ±0.08 is an estimate ofthe quen
hing error.28KUHN 07 determine mb(µ = 10 GeV) = 3.609 ± 0.025 GeV and mb(mb) from a four-loop sum-rule 
omputation of the 
ross-se
tion for e+ e− → hadrons in the bottomthreshold region. We have 
onverted this to the 1S s
heme.29ABDALLAH 06D determine mb(MZ ) = 2.85 ± 0.32 GeV from Z -de
ay three-jet events
ontaining a b-quark. We have 
onverted this to mb(mb) and m1Sb .30BOUGHEZAL 06 MS s
heme result 
omes from the �rst moment of the hadroni
 pro-du
tion 
ross-se
tion to order α3s . We have 
onverted it to the 1S s
heme.31BUCHMUELLER 06 determine mb and m
 by a global �t to in
lusive B de
ay spe
tra.We have 
onverted this to the 1S s
heme.32PINEDA 06 MS s
heme result 
omes from a partial NNLL evaluation (
omplete at order
α2s (NNLO)) of sum rules of the bottom produ
tion 
ross-se
tion in e+ e− annihilation.We have 
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THE TOP QUARK

Updated September 2015 by T.M. Liss (The City College of
New York), F. Maltoni (Univ. Catholique de Louvain), and
A. Quadt (Univ. Göttingen).

A. Introduction

The top quark is the Q = 2/3, T3 = +1/2 member of

the weak-isospin doublet containing the bottom quark (see the

review on the “Electroweak Model and Constraints on New

Physics” for more information). Its phenomenology is driven

by its large mass. Being heavier than a W boson, it is the

only quark that decays semi-weakly, i.e., into a real W boson

and a b quark. Therefore, it has a very short lifetime and

decays before hadronization can occur. In addition, it is the

only quark whose Yukawa coupling to the Higgs boson is order

of unity. For these reasons the top quark plays a special role

in the Standard Model (SM) and in many extensions thereof.

Its phenomenology provides a unique laboratory where our

understanding of the strong interactions, both in the perturba-

tive and non-perturbative regimes, can be tested. An accurate

knowledge of its properties (mass, couplings, production cross

section, decay branching ratios, etc.) can bring key information

on fundamental interactions at the electroweak breaking scale

and beyond. This review provides a concise discussion of the ex-

perimental and theoretical issues involved in the determination

the top-quark properties.

B. Top-quark production at the Tevatron and LHC

In hadron collisions, top quarks are produced dominantly

in pairs through the processes qq → tt and gg → tt, at

leading order in QCD. Approximately 85% of the production

cross section at the Tevatron is from qq annihilation, with
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the remainder from gluon-gluon fusion, while at LHC energies

about 90% of the production is from the latter process at√
s = 14 TeV (≈ 80% at

√
s = 7 TeV).

Predictions for the total cross sections are now available

at next-to-next-to leading order (NNLO) with next-to-next-to-

leading-log (NNLL) soft gluon resummation [1]. These results

supersede previous approximate ones [2]. Assuming a top-

quark mass of 173.3 GeV/c2, close to the Tevatron + LHC

average [3] (LHC results not yet included), the resulting

theoretical prediction of the top-quark pair cross-section at

NNLO+NNLL accuracy at the Tevatron at
√

s = 1.96 TeV is

σtt̄ = 7.16+0.11
−0.20

+0.17
−0.12 pb where the first uncertainty is from scale

dependence and the second from parton distribution functions.

At the LHC, assuming a top-quark mass of 173.2 GeV/c2 the

cross sections are : σtt̄ = 173.6+4.5
−5.9

+8.9
−8.9 pb,at

√
s = 7 TeV, σtt̄ =

247.7+6.3
−8.5

+11.5
−11.5 pb at

√
s = 8 TeV, and σtt̄ = 816.0+19.4

−28.6
+34.4
−34.4 pb

at
√

s = 13 TeV [1].

Electroweak single top-quark production mechanisms, na-

mely from qq′ → tb [4], qb → q′t [5], mediated by virtual

s-channel and t-channel W -bosons, and Wt-associated pro-

duction, through bg → W−t, lead to somewhat smaller cross

sections. For example, t-channel production, while suppressed

by the weak coupling with respect to the strong pair produc-

tion, is kinematically enhanced, resulting in a sizable cross

section both at Tevatron and LHC energies. At the Tevatron,

the t- and s-channel cross sections of top and antitop are

identical, while at the LHC they are not, due to the charge-

asymmetric initial state. Approximate NNLO cross sections for

t-channel single top-quark production (t + t̄) are calculated

for mt = 173.3 GeV/c2 to be 2.06+0.13
−0.13 pb in pp collisions at√

s = 1.96 TeV (scale and parton distribution functions uncer-

tainties are combined in quadrature) and 65.7+1.9
−1.9 (87.1+0.24

−0.24)

pb in pp collisions at
√

s = 7 (8) TeV, where 65% and 35%

are the relative proportions of t and t̄ [6]. A calculation at

NNLO accuracy for the t-channel cross section has been re-

cently performed predicting a cross section of 85.1+2.5
−1.4 pb at 8

TeV [7]. For the s-channel, these calculations yield 1.03+0.05
−0.05 pb

for the Tevatron, and 4.5+0.2
−0.2(5.5

+0.2
−0.2) pb for

√
s = 7 (8) TeV at

the LHC, with 69% (31%) of top (anti-top) quarks [8]. While

negligible at the Tevatron, at LHC energies the Wt-associated

production becomes relevant. At
√

s = 7 (8) TeV, an approxi-

mate NNLO calculation gives 15.5+1.2
−1.2(22.1+1.5

−1.5) pb (t + t̄), with

an equal proportion of top and anti-top quarks [9].

Assuming |Vtb| ≫ |Vtd|, |Vts| (see the review “The CKM

Quark-Mixing Matrix” for more information), the cross sections

for single top production are proportional to |Vtb|2, and no

extra hypothesis is needed on the number of quark families

or on the unitarity of the CKM matrix in extracting |Vtb|.
Separate measurements of the s- and t-channel processes provide

sensitivity to physics beyond the Standard Model [10].

With a mass above the Wb threshold, and |Vtb| ≫ |Vtd|,
|Vts|, the decay width of the top quark is expected to be

dominated by the two-body channel t → Wb. Neglecting terms

of order m2
b/m2

t , α2
s, and (αs/π)M 2

W/m2
t , the width predicted

in the SM at NLO is [11]:

Γt =
GF m3

t

8π
√

2

(
1 − M2

W

m2
t

)2 (
1 + 2

M2
W

m2
t

) [
1 − 2αs

3π

(
2π2

3
− 5

2

)]
,

(1)

where mt refers to the top-quark pole mass. The width for a

value of mt = 173.3 GeV/c2 is 1.35 GeV/c2 (we use αs(MZ) =

0.118) and increases with mass. With its correspondingly short

lifetime of ≈ 0.5 × 10−24 s, the top quark is expected to decay

before top-flavored hadrons or tt-quarkonium-bound states can

form [12]. In fact, since the decay time is close to the would-be-

resonance binding time, a peak will be visible in e+e− scattering

at the tt threshold [13] and it is in principle present (yet very

difficult to measure) in hadron collisions, too [14]. The order

α2
s QCD corrections to Γt are also available [15], thereby

improving the overall theoretical accuracy to better than 1%.

The final states for the leading pair-production process can

be divided into three classes:

A. tt → W+ b W− b → q q′ b q′′ q′′′ b, (45.7%)

B. tt → W+ b W− b → q q′ b ℓ− νℓ b + ℓ+ νℓ b q′′ q′′′ b, (43.8%)

C. tt → W+ b W− b → ℓ+ νℓ b ℓ′− νℓ′ b. (10.5%)

The quarks in the final state evolve into jets of hadrons. A,

B, and C are referred to as the all-jets, lepton+jets (ℓ+jets),

and dilepton (ℓℓ) channels, respectively. Their relative contribu-

tions, including hadronic corrections, are given in parentheses

assuming lepton universality. While ℓ in the above processes

refers to e, µ, or τ , most of the analyses distinguish the e

and µ from the τ channel, which is more difficult to recon-

struct. Therefore, in what follows, we will use ℓ to refer to e

or µ, unless otherwise noted. Here, typically leptonic decays of

τ are included. In addition to the quarks resulting from the

top-quark decays, extra QCD radiation (quarks and gluons)

from the colored particles in the event can lead to extra jets.

The number of jets reconstructed in the detectors depends

on the decay kinematics, as well as on the algorithm for

reconstructing jets used by the analysis. Information on the

transverse momenta of neutrinos is obtained from the imbalance

in transverse momentum measured in each event (missing pT ,

which is here also called missing ET ).

The identification of top quarks in the electroweak single

top channel is much more difficult than in the QCD tt chan-

nel, due to a less distinctive signature and significantly larger

backgrounds, mostly due to tt and W+jets production.

Fully exclusive predictions via Monte Carlo generators for

the tt̄ and single top production processes at NLO accuracy in

QCD, including top-quark decays, are available [16,17] through

the MC@NLO [18] and POWHEG [19] methods.

Besides fully inclusive QCD or EW top-quark production,

more exclusive final states can be accessed at hadron collid-

ers, whose cross sections are typically much smaller, yet can

provide key information on the properties of the top quark.

For all relevant final states (e.g., tt̄V, tt̄V V with V = γ, W, Z,

tt̄H, tt̄+jets, tt̄bb̄, tt̄tt̄) automatic or semi-automatic predictions
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at NLO accuracy in QCD also in the form of event generators,

i.e., interfaced to parton-shower programs, are available (see the

review “Monte Carlo event generators” for more information).

C. Top-quark measurements

Since the discovery of the top quark, direct measurements

of tt production have been made at five center-of-mass energies,

providing stringent tests of QCD. The first measurements were

made in Run I at the Tevatron at
√

s = 1.8 TeV. In Run II

at the Tevatron relatively precise measurements were made at√
s = 1.96 TeV. Finally, beginning in 2010, measurements have

been made at the LHC at
√

s = 7 TeV and
√

s = 8 TeV, and

very recently at
√

s = 13 TeV.

Production of single top quarks through electroweak in-

teractions has now been measured with good precision at the

Tevatron at
√

s = 1.96 TeV, and at the LHC at
√

s = 7 TeV

and
√

s = 8 TeV, and now also at
√

s = 13 TeV. Recent mea-

surements at the Tevatron have managed to separate the s- and

t-channel production cross sections, and at the LHC, the Wt

mechanism as well, though the t-channel is measured with best

precision to date. The measurements allow an extraction of the

CKM matrix element Vtb.

With approximately 10 fb−1 of Tevatron data analyzed as

of this writing, and almost 5 fb−1 at 7 TeV, 20 fb−1 at 8 TeV

and the first 78 pb−1 at 13 TeV at the LHC, many properties

of the top quark have been measured with precision. These

include properties related to the production mechanism, such

as tt spin correlations, forward-backward or charge asymmetries,

and differential production cross sections, as well as properties

related to the tWb decay vertex, such as the helicity of the

W -bosons from the top-quark decay. Recently, also studies of

the tt̄γ and the tt̄Z interactions have been made. In addition,

many searches for physics beyond the Standard Model are being

performed with increasing reach in both production and decay

channels.

In the following sections we review the current status of

measurements of the characteristics of the top quark.

C.1 Top-quark production

C.1.1 tt production: Fig. 1 summarizes the tt production

cross-section measurements from both the Tevatron and LHC.

The most recent measurement from DØ [20], combining the

measurements from the dilepton and lepton plus jets final states

in 9.7 fb−1, is 7.73 ± 0.13 ± 0.55 pb.

From CDF the most precise measurement made recently [21]

is in 8.8 fb−1 in the dilepton channel requiring at least one b-tag,

yielding 7.09 ± 0.84 pb. Both of these measurements assume a

top-quark mass of 172.5 GeV/c2. The dependence of the cross

section measurements on the value chosen for the mass is less

than that of the theory calculations because it only affects

the determination of the acceptance. In some analyses also the

shape of topological variables might be modified.

The resulting combined tt̄ cross-section is σtt̄ = 7.63 ±
0.50 pb (6.6%) for CDF, σtt̄ = 7.56±0.59 pb (7.8%) for DØ and

σtt̄ = 7.60 ± 0.41 pb (5.4%) for the Tevatron combination [22]

in good agreement with the SM expectation of 7.35+0.28
−0.33 pb at

NNLO+NNLL in perturbative QCD [1] for a top mass of 172.5

GeV. The contributions to the uncertainty are 0.20 pb from

statistical sources, 0.29 pb from systematic sources, and 0.21

pb from the uncertainty on the integrated luminosity.

CDF has measured the tt̄ production cross section in the

dilepton channel with one hadronically decaying tau in 9.0 fb−1,

yielding σtt̄ = 8.1± 2.1 pb. By separately identifying the single-

tau and the ditau components, they measure the branching

fraction of the top quark into the tau lepton, tau neutrino,

and bottom quark to be (9.6 ± 2.8)% [23]. CDF also performs

measurements of the tt̄ production cross section normalized to

the Z production cross section in order to reduce the impact of

the luminosity uncertainty.

The LHC experiments ATLAS and CMS use similar tech-

niques to measure the tt̄ cross-section in pp collisions. The

most precise measurements come from the dilepton channel,

and in particular the eµ channel. At
√

s = 7 TeV, ATLAS

uses 4.6 fb−1 of eµ events in which they select an extremely

clean sample and determine the tt̄ cross-section simultane-

ously with the efficiency to reconstruct and tag b-jets, yielding

σtt̄ = 182.9 ± 7.1 pb, corresponding to 3.9% precision [24].

Other measurements by ATLAS at
√

s = 7 TeV, include

a measurement in 0.7 fb−1 in the lepton+jets channel [25],

in the dilepton channel [26], and in 1.02 fb−1 in the all-

hadronic channel [27], which together yield a combined value

of σtt̄ = 177 ± 3(stat.)+8
−7(syst.) ± 7(lumi.) pb (6.2%) assum-

ing mt = 172.5 GeV/c2 [28]. In 4.7 fb−1 of all-jets events,

they obtain σtt̄ = 168 ± 62 pb [29]. Further analyses in the

hadronic τ plus jets channel in 1.67 fb−1 [30] and the hadronic

τ + lepton channel in 2.05 fb−1 [31], yield consistent albeit

less precise results. The most precise measurement from CMS

is also obtained in the dilepton channel, where they measure

σtt̄ = 162±2(stat.)±5(syst.)±4(lumi.) pb, corresponding to a

4.2% precision [32]. Other measurements at
√

s = 7 TeV from

CMS include measurements with 2.3 fb−1 in the e/µ+jets chan-

nel [33], with 3.5 fb−1 in the all-hadronic channel [34], with

2.2 fb−1 in the lepton+τ channel [35], and with 3.9 fb−1 in the

τ+jets channel [36]. ATLAS and CMS also provide a combined

cross section of 173.3 ± 2.3(stat.) ± 7.6(syst.) ± 6.3(lump.) pb

using slightly older results based on 0.7 − 1.1 fb−1 [37].

At
√

s = 8 TeV, ATLAS measures the tt̄ cross-section with

20.3 fb−1 using eµ dilepton events, with a simultaneous mea-

surement of the b−tagging efficiency, yielding σtt̄ = 242.4 ±
1.7(stat.) ± 5.5(syst.) ± 7.5(lumi.) ± 4.2(beamenergy) pb [24]

assuming mt = 172.5 GeV/c2, which corresponds to a 4.7%

precision. In the lepton+jets channel, they measure σtt̄ =

260 ± 1(stat.)+20
−23(syst.) ± 8(lumi.) ± 4(beamenergy) pb [38]

in 20.3 fb−1 using a likelihood discriminant fit and b-jet identi-

fication.

CMS performs a template fit to the Mlb mass distri-

bution using 2.8 fb−1 in the lepton+jets channel yielding



810810810810Quark Parti
le Listingst
σtt̄ = 228±9(stat.)+29

−26(syst.)±10(lumi.) pb [39]. In the dilep-

ton channel, the cross sections are extracted using a binned

likelihood fit to multi-differential final state distributions re-

lated to identified b quark and other jets in the event. Using

the full data samples collected in 2011 and 2012 they obtain

σtt̄ = 245.6± 1.3(stat.)± 6.0(syst.)± 6.5(lumi.) pb [40]. The

cross section is also measured in the all-jets final state giv-

ing σtt̄ = 275.6 ± 6.1(stat.) ± 37.8(syst.) ± 7.2(lumi.) pb [41].

In combination of the most precise eµ measurements in

5.3 − 20.3 fb−1, ATLAS and CMS together yield σtt̄ =

241.5 ± 1.4(stat.) ± 5.7(syst.) ± 6.2(lumi.) pb [42], which

corresponds to a 3.5% precision, challenging the precision of the

corresponding theoretical predictions.
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Figure 1: Measured and predicted tt production cross sec-
tions from Tevatron energies in pp collisions to LHC ener-
gies in pp collisions. Tevatron data points at

√
s = 1.8 TeV

are from Refs. [49,50]. Those at
√

s = 1.96 TeV are from
Refs. [20–22]. The ATLAS, CMS, and LHCb data points are
from Refs. [28–29,38], and [33–34], and [43], respectively.
Theory curves and uncertainties are generated using [1] for
mt = 172.5 GeV/c2, the mt value assumed in the cross section
measurements. Figure adapted from Ref. [46].

Recently, the LHCb collaboration presented the first ob-

servation of top-quark production in the forward region in

pp-collisions. The W + b final state with W → µν is recon-

structed using muons with a transverse momentum, pT , larger

than 25 GeV in the pseudorapidity range 2.0 < η < 4.5.

The b-jets are required to have 50 GeV < pT < 100 GeV and

2.2 < η < 4.2, while the transverse component of the sum of the

muon and b-jet momenta must satisfy pT > 20 GeV. The results

are based on data corresponding to integrated luminosities of 1.0

and 2.0 fb−1 collected at center-of-mass energies of 7 and 8 TeV

by LHCb. The inclusive top quark production cross-sections in

the fiducial region are σtt̄ = 239 ± 53(stat.) ± 38(syst.) pb at

7 TeV, and σtt̄ = 289 ± 43(stat.)± 46(syst.) pb at 8 TeV [43].

Very recently, ATLAS and CMS have also measured the tt̄

production cross section with early Run-II data at
√

s = 13 TeV

in eµ events with at least one b-tag. ATLAS uses 78 pb−1

and obtains σtt̄ = 825 ± 114 pb [44]. CMS uses 42 pb−1 and

measures σtt̄ = 836±27(stat.)±88(syst.)±100(lumi.) pb [45].

These experimental results should be compared to the

theoretical calculations at NNLO+NNLL that yield 7.16+0.20
−0.23 pb

for top-quark mass of 173.3 GeV/c2 [1] at
√

s = 1.96 TeV, and

for top-quark mass of 173.2 GeV/c2 σtt̄ = 173.6+4.5
−5.9

+8.9
−8.9 pb at√

s = 7 TeV, σtt̄ = 247.7+6.3
−8.5

+11.5
−11.5 pb at

√
s = 8 TeV, and

σtt̄ = 816.0+19.4
−28.6

+34.4
−34.4 pb at

√
s = 13 TeV, at the LHC [1].

In Fig. 1, one sees the importance of pp at Tevatron energies

where the valence antiquarks in the antiprotons contribute to

the dominant qq production mechanism. At LHC energies, the

dominant production mode is gluon-gluon fusion and the pp-pp

difference nearly disappears. The excellent agreement of these

measurements with the theory calculations is a strong validation

of QCD and the soft-gluon resummation techniques employed

in the calculations. The measurements reach high precision and

provide stringent tests of pQCD calculations at NNLO+NNLL

level including their respective PDF uncertainties.

Most of these measurements assume a t → Wb branching

ratio of 100%. CDF and DØ have made direct measurements

of the t → Wb branching ratio [47]. Comparing the number

of events with 0, 1 and 2 tagged b jets in the lepton+jets

channel, and also in the dilepton channel, using the known

b-tagging efficiency, the ratio R = B(t → Wb)/
∑

q=d,s,b B(t →
Wq) can be extracted. In 5.4 fb−1 of data, DØ measures

R = 0.90 ± 0.04, 2.5σ from unity. The currently most precise

measurement was made by CMS in 19.7 fb−1 at
√

s = 8 TeV.

They find R = 1.014±0.003(stat.)±0.032(syst.) and R > 0.955

at 95% C.L. [48]. A significant deviation of R from unity

would imply either non-SM top-quark decay (for example a

flavor-changing neutral-current decay), or a fourth generation

of quarks.

Thanks to the large available event samples, the Tevatron

and the LHC experiments also performed differential cross-

section measurements in tt̄ production. Such measurements are

crucial, as they allow even more stringent tests of perturbative

QCD as description of the production mechanism, allow the

extraction or the use of PDF fits, and enhance the sensitivity to

possible new physics contributions, especially now that NNLO

predictions for the main differential observables in tt̄ prediction

have become available [51]. Furthermore, such measurements

reduce the uncertainty in the description of tt̄ production as

background in Higgs physics and searches for rare processes

or beyond Standard Model physics. Differential cross-sections

are typically measured by a selection of candidate events,

their kinematic reconstruction and subsequent unfolding of the

obtained event counts in bins of kinematic distributions in

order to correct for detector resolution effects, acceptance and

migration effects. In some cases a bin-by-bin unfolding is used,

while other analyses use a more sophisticated techniques.

Experiments at Tevatron and LHC measure the differential

cross-section with respect to the tt̄ invariant mass, dσ/dMtt̄.

The spectra are fully corrected for detector efficiency and

resolution effects and are compared to several Monte Carlo
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simulations as well as selected theoretical calculations. Using

2.7 fb−1, CDF measured dσ/dMtt̄, in the lepton+jets channel

providing sensitivity to a variety of exotic particles decaying

into tt̄ pairs [52]. In 9.7 fb−1 of lepton+jets data, DØ measured

the differential tt̄ production cross-section with respect to the

transverse momentum and absolute rapidity of the top quarks

as well as of the invariant mass of the tt̄ pair [53], which are all

found to be in good agreement with the SM predictions. Also

ATLAS measured the differential tt̄ production cross-section

with respect to the top-quark transverse momentum, and of the

mass, transverse momentum and rapidity of the top-quark, the

antitop-quark as well as the tt̄ system in 4.6 fb−1 at
√

s = 7 TeV

in the lepton+jets channel [54–56]. The results show sensitivity

to these predictions and to different sets of parton distribution

functions. It is found that data is softer than all predictions

for higher values of the mass of the tt̄ system as well as in

the tail of the top-quark pT spectrum beginning at 200 GeV,

particularly in the case of the Alpgen+Herwig generator. The

Mtt̄ spectrum is not well described by NLO+NNLL calculations

and there are also disagreements between the measured ytt̄ spec-

trum and the MC@NLO+Herwig and POWHEG+Herwig generators,

both evaluated with the CT10 PDF set. All distributions show

a preference for HERAPDF1.5 when used for the NLO QCD

predictions. Recently, using 20.3 fb−1 of 8 TeV data, ATLAS

performed a dedicated differential tt̄ cross section measurement

of highly boosted top quarks, where the hadronically decaying

top quark has a transverse momentum above 300 GeV [57]. Jet

substructure techniques are employed to identify top quarks,

which are reconstructed with an anti-kt jet with a radius pa-

rameters R = 1.0. The predictions of next-to-leading-order and

leading-order matrix element plus parton shower Monte Carlo

generators are found to generally overestimate the measured

cross sections. A corresponding analysis at high transverse mo-

mentum regime for the top quarks, is performed by the CMS

collaboration in 19.7 fb−1 at
√

s = 8 TeV [58]. The measure-

ment is performed for events in electron/muon plus jets final

states where the hadronically decaying top quark is recon-

structed as a single large-radius jet and identified as a top can-

didate using jet substructure techniques. The integrated cross

section is measured at particle-level within a fiducial region

resembling the detector-level selection as well as at parton-

level. At particle-level, the cross section is measured to be σtt̄ =

1.28±0.09(stat.+syst.)±0.10(pdf)±0.09(scales)±0.03(lumi.)

pb for pT > 400 GeV. At parton-level, it translates to σtt̄ =

1.44±0.10(stat.+syst.)±0.13(pdf)±0.15(scales)±0.04(lumi.)

pb, 14% lower than the SM prediction of POWHEG+Pythia6. In

5.0 fb−1 of
√

s = 7 TeV data in the lepton+jets and the

dilepton channels, CMS measured normalised differential tt̄

cross-sections with respect to kinematic properties of the final-

state charged leptons and jets associated to b-quarks, as well

as those of the top quarks and the tt̄ system. The data are

compared with several predictions from perturbative QCD cal-

culations and found to be consistent [59]. Recently, in 19.7 fb−1

at
√

s = 8 TeV, CMS repeated those measurements in the lep-

ton+jets and in the dilepton channels [60]. While the overall

precision is improved, no significant deviations from the Stan-

dard Model are found, yet a softer spectrum for the top quark

at high pT with respect to theoretical available predictions has

been observed. This behaviour has been also observed in the

all-jets final state [41].

Very recently, they also performed differential cross-section

measurements in 42 pb−1 of single-lepton data at 13 TeV with

respect to kinematic properties of the top quarks and the tt̄

system, as well as of the jet multiplicity in the event. The

results are confronted with several predictions from pQCD and

found to be consistent [61].

Further cross-section measurements are performed for tt̄+

heavy flavour [62] and tt̄+jets production as well as the differ-

ential measurement of the jet multiplicity in tt̄ events [63,64].

Here, MC@NLO+Herwig MC is found to predict too few events at

higher jet multiplicities. In addition, CMS measured the cross

section ratio σtt̄bb̄/σtt̄jj using 19.6 fb−1 of 8 TeV data [65]. This

is of high relevance for top quark production as background to

searches, for example for the ongoing search for tt̄h production.

Very recently, ATLAS also measured the tt̄ production cross

section along with as the branching ratios into channels with

leptons and quarks using 4.6 fb−1 of 7 TeV data [66]. They

find agreement with the standard model at the level of a few

percent.

C.1.2 Single-top production: Single-top quark production

was first observed in 2009 by DØ [67] and CDF [68,69] at

the Tevatron. The production cross section at the Tevatron is

roughly half that of the tt cross section, but the final state

with a single W -boson and typically two jets is less distinct

than that for tt and much more difficult to distinguish from

the background of W+jets and other sources. A comprehensive

review of the first observation and the techniques used to extract

the signal from the backgrounds can be found in [70].

The dominant production at the Tevatron is through s-

channel and t-channel W -boson exchange. Associated produc-

tion with a W -boson (Wt production) has a cross section that

is too small to observe at the Tevatron. The t-channel process

is qb → q′t, while the s-channel process is qq′ → tb. The s- and

t-channel productions can be separated kinematically. This is of

particular interest because potential physics beyond the Stan-

dard Model, such as fourth-generation quarks, heavy W and

Z bosons, flavor-changing-neutral-currents [10], or a charged

Higgs boson, would affect the s- and t-channels differently.

However, the separation is difficult and initial observations and

measurements at the Tevatron by both experiments were of com-

bined s + t-channel production. The two experiments combined

their measurements for maximum precision with a resulting

s+ t-channel production cross section of 2.76+0.58
−0.47 pb [71]. The

measured value assumes a top-quark mass of 170 GeV/c2. The

mass dependence of the result comes both from the acceptance

dependence and from the tt background evaluation. Also the
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shape of discriminating topological variables is sensitive to mt.

It is therefore not necessarily a simple linear dependence but

amounts to only a few tenths of picobarns over the range

170 − 175 GeV/c2. The measured value agrees well with the

theoretical calculation at mt = 173 GeV/c2 of σs+t = 3.12 pb

(including both top and anti-top production) [6,8].

Using the full Run-II data set of up to 9.7 fb−1, CDF and

DØ have measured the t-channel single-top quark production

to be σt = 2.25+0.29
−0.31 pb [72]. In the same publication, they

also present the simultaneously measured s− and t−channel

cross sections and the s+ t combined cross section measurement

resulting in σs+t = 3.30+0.52
−0.40 pb, without assuming the SM ratio

of σs/σt. The modulus of the CKM matrix element obtained

from the s + t-channel measurement is |Vtb| = 1.02+0.06
−0.05 and

its value is used to set a lower limit of |Vtb| > 0.92 at 95%

C.L. Those results are in good agreement with the theoretical

value at the mass 172.5 GeV/c2 of σt = 2.08 ± 0.13 pb [6]. It

should be noted that the theory citations here list cross sections

for t or t alone, whereas the experiments measure the sum. At

the Tevatron, these cross sections are equal. The theory values

quoted here already include this factor of two.

Using datasets of 9.7 fb−1 each, CDF and DØ combine their

analyses and report the first observation of single-top-quark

production in the s-channel, yielding σs = 1.29+0.26
−0.24 pb [73].

The probability of observing a statistical fluctuation of the

background of the given size is 1.8 × 10−10, corresponding to a

significance of 6.3 standard deviations.

At the LHC, the t-channel cross section is expected to be

more than three times as large as s-channel and Wt production,

combined. Both ATLAS and CMS have measured single top

production cross sections at
√

s = 7 TeV in pp collisions

(assuming mt = 172.5 GeV/c2 unless noted otherwise).

Using 4.59 fb−1 of data, ATLAS measures the t-channel

single-top quark cross section in the lepton plus 2 or 3

jets channel with one b-tag by fitting the distribution of

a multivariate discriminant constructed with a neural net-

work, yielding σt = 46 ± 6 pb, σt̄ = 23 ± 4 pb with a ratio

Rt = σt/σt̄ = 2.04 ± 0.18 and σt+t̄ = 68 ± 8 pb, consistent with

SM expectations [74]. CMS follows two approaches in 1.6 fb−1

of lepton plus jets events. The first approach exploits the distri-

butions of the pseudorapidity of the recoil jet and reconstructed

top-quark mass using background estimates determined from

control samples in data. The second approach is based on mul-

tivariate analysis techniques that probe the compatibility of the

candidate events with the signal. They find σt = 67.2 ± 6.1 pb,

and |Vtb| = 1.020 ± 0.046(exp.) ± 0.017(th.) [76].

At
√

s = 8 TeV, both experiments repeat and refine their

measurements. ATLAS uses 20.3 fb−1 by performing a com-

bined binned maximum likelihood fit to the neural network

output distribution. The measured t-channel cross-section is

σt = 82.6 ± 1.2(stat.) ± 11.4(syst.) ± 3.1(pdf) ± 2.3(lumi.) pb

with |Vtb| = 0.97+0.09
−0.10 and |Vtb| > 0.78 at 95% C.L. [77].

CMS uses 19.7 fb−1 in the electron or muon plus jets

channel, exploiting the pseudorapidity distribution of the re-

coil jet. They find σt = 53.8 ± 1.5(stat.) ± 4.4(syst.) pb and

σt̄ = 27.6 ± 1.3(stat.) ± 3.7(syst.) pb, resulting in an in-

clusive t-channel cross section of σt+t̄ = 83.6 ± 2.3(stat.) ±
7.4(syst.) [78]. They measure a cross section ratio of

Rt = σt/σt̄ = 1.95 ± 0.10(stat.) ± 0.19(syst.), in agreement

with the SM. The CKM matrix element Vtb is extracted to be

|Vtb| = 0.998 ± 0.038(exp.) ± 0.016(th.).

More recently, CMS has also provided a fiducial cross

section measurement for t-channel single top at
√

s = 8 TeV

with 19.7 fb−1 of data in signal events with exactly one muon

or electron and two jets, one of which is associated with a b-

hadron. The definition of the fiducial phase space follows closely

the constraints imposed by event-selection criteria and detector

acceptance. The total fiducial cross section is measured using

different generators at next-to-leading order plus parton-shower

accuracy. Using as reference the aMC@NLO MC predictions in the

four-flavour scheme a σfid
t = 3.38 ± 0.25(exp.) ± 0.20(th.) pb is

obtained, in good agreement with the theory predictions.

A measurement of the t-channel single top-quark cross

section is also available at 13 TeV with the CMS detector,

corresponding to an integrated luminosity of 42 pb−1. The

measured cross-section is σt = 274 ± 98(stat.) ± 52(syst.) ±
33(lumi.) pb [79].

The s-channel production cross section is expected to be

only 4.6± 0.3 pb for mt = 173 GeV/c2 at
√

s = 7 TeV [8]. The

Wt process has a theoretical cross section of 15.6 ± 1.2 pb [9].

This is of interest because it probes the Wtb vertex in a different

kinematic region than s- and t-channel production, and because

of its similarity to the associated production of a charged-Higgs

boson and a top quark. The signal is difficult to extract because

of its similarity to the tt signature. Furthermore, it is difficult

to uniquely define because at NLO a subset of diagrams have

the same final state as tt and the two interfere [80]. The cross

section is calculated using the diagram removal technique [81]

to define the signal process. In the diagram removal technique

the interfering diagrams are removed, at the amplitude level,

from the signal definition (an alternative technique, diagram

subtraction removes these diagrams at the cross-section level

and yields similar results [81]) . These techniques work provided

the selection cuts are defined such that the interference effects

are small, which is usually the case.

Both, ATLAS and CMS, also provide evidence for the as-

sociate Wt production at
√

s = 7 TeV [82,83]. ATLAS uses

2.05 fb−1 in the dilepton plus missing ET plus jets channel,

where a template fit to the final classifier distributions resulting

from boosted decision trees as signal to background separation

is performed. The result is incompatible with the background-

only hypothesis at the 3.3σ (3.4σ expected) level, yielding

σWt = 16.8±2.9(stat.)±4.9(syst.) pb and |Vtb| = 1.03+0.16
−0.19 [82].

CMS uses 4.9 fb−1 in the dilepton plus jets channel with at least

one b-tag. A multivariate analysis based on kinematic properties

is utilized to separate the tt̄ background from the signal. The
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observed signal has a significance of 4.0σ and corresponds to a

cross section of σWt = 16+5
−4 pb [83]. Both experiments repeated

their analyses at
√

s = 8 TeV. ATLAS uses 20.3 fb−1 to select

events with one electron and one oppositely-charged muon, sig-

nificant missing transverse momentum and at least one b-tagged

central jet. They perform a template fit to a boosted decision

tree classifier distribution and obtain σWt = 27.2 ± 5.8 pb

and |Vtb| = 1.10 ± 0.12(exp.) ± 0.03(th.) [84], which cor-

responds to a 4.2σ significance. Assuming |Vtb| ≫ |Vts|, |Vtd|
they derive |Vtb| > 0.72 at 95% C.L. CMS uses 12.2 fb−1

in events with two leptons and a jet originated from a b-

quark. A multivariate analysis based on kinematic properties is

utilized to separate the signal and background. The Wt asso-

ciate production signal is observed at the level of 6.1σ, yielding

σWt = 23.4±5.4 pb and |Vtb| = 1.03±0.12(exp.)±0.04(th.) [85].

They also combine their measurements and obtain σWt =

25.0±1.4(stat.)±4.4(syst.)±0.7(lumi.) pb = 25.0±4.7 pb [86],

in agreement with the NLO+NNLL expectation. They extract a

95% C.L. lower limit on the CKM matrix element of |Vtb| > 0.79

At ATLAS, a search for s-channel single top quark produc-

tion is performed in 0.7 fb−1 at 7 TeV using events containing

one lepton, missing transverse energy and two b-jets. Using a

cut-based analysis, an observed (expected) upper limit at 95%

C.L. on the s-channel cross-section of σs < 26.5(20.5) pb is

obtained [87]. In 8 TeV data, both ATLAS and CMS search

for s-channel production. ATLAS uses 20.3 fb−1 of data with

one lepton, large missing transverse momentum and exactly

two b-tagged jets. They perform a maximum-likelihood fit of a

discriminant based on a Matrix Element Method and optimized

in order to separate single top-quark s-channel events from

the main background contributions which are top-quark pair

production and W boson production in association with heavy

flavour jets. They find σs = 4.8 ± 1.1 pb with a signal signifi-

cance of 3.2 standard deviations [88]. CMS uses 19.3 fb−1 and

analyses leptonic decay modes by performaing a likelihood fit

to a multivariate discriminant as form by a Boosted Decision

Tree, yielding an upper limit of σs < 11.5 pb at 95% C.L. [89].

Fig. 2 provides a summary of all single top cross-section

measurements at the Tevatron and the LHC as a function

of the center-of-mass energy. All cross-section measurements

are very well described by the theory calculation within their

uncertainty.

Thanks to the large statistics now available at the LHC,

both CMS and ATLAS experiments also performed differen-

tial cross-section measurements in single-top t-channel produc-

tion [74], [98]. Such measurements are extremely useful as

they test our understanding of both QCD and EW top-quark

interactions.

The CMS collaboration has measured differential single top

quark t-channel production cross sections as functions of the

transverse momentum and the absolute value of the rapidity

of the top quark. The analysis is performed in the leptonic

decay channels of the top quark, with either a muon or an

electron in the final state, using data collected with the CMS
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Figure 2: Measured and predicted single top production cross
sections from Tevatron energies in pp collisions to LHC energies
in pp collisions. Tevatron data points at

√
s = 1.96 TeV are

from Refs. [90,91] and [92]. The ATLAS and CMS data points
at

√
s = 7 TeV are from Refs. [75,82,87,93] and [76,83,94],

respectively. The ones at
√

s = 8 TeV are from Refs. [84,96]
and [95,96,97]. Theory curves are generated using [6,8,9].

experiment at the LHC at
√

s = 8 TeV and corresponding to

an integrated luminosity of 19.7 fb−1. Artificial neural networks

are used to discriminate the signal process from the various

background contributions. The results are found to agree with

predictions from Monte Carlo generators [98]. Using the same

data set and under the assumption that the spin analyzing

power of a charged lepton is 100% as predicted in the SM,

they are also able to measure the polarization of the top quark

Pt = 0.82 ± 0.12(stat.)± 0.32(syst.) [99].

C.1.3 Top-Quark Forward-Backward & Charge Asym-

metry: A forward-backward asymmetry in tt production arises

starting at order α3
S in QCD from the interference between

the Born amplitude qq̄ → tt̄ with 1-loop box production dia-

grams and between diagrams with initial- and final-state gluon

radiation. The asymmetry, AFB, is defined by

AFB =
N(∆y > 0) − N(∆y < 0)

N(∆y > 0) + N(∆y < 0)
(2)

where ∆y = yt − yt̄ is the rapidity difference between the top-

and the anti-top quark. Calculations at α3
S predict a small AFB

at the Tevatron. The most recent calculations up to order α4
S,

including electromagnetic and electroweak corrections, yield a

predicted asymmetry of (≈ 9.5 ± 0.7)% [100]. This is about

10% higher than the previous calculation at NLO [101,102],

and improves the agreement with experiment.

Both, CDF and DØ, measured asymmetry values in ex-

cess of the SM prediction, fueling speculation about exotic

production mechanisms (see, for example, [103] and references

therein). The first measurement of this asymmetry by DØ in

0.9 fb−1 [104] found an asymmetry at the detector level of

(12±8)%. The first CDF measurement in 1.9 fb−1 [105] yielded

(24 ± 14)% at parton level. Both values were higher, though
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statistically consistent with the SM expectation. With the ad-

dition of more data, the uncertainties have been reduced, and

the central values, if somewhat smaller, have remained con-

sistent with the first measurements. At the same time, the

improved calculations from theory have increased the predicted

asymmetry values to the point where the discrepancy is no

longer statistically significant. The most recent measurement

from DØ using the full Tevatron dataset of 9.7 fb−1 finds an

asymmetry in lepton+jet events, corrected for detector accep-

tance and resolution, of (10.6 ± 3.0)% [106] in good agreement

with the prediction. Using the same dataset, the DØ measure-

ment in dilepton events and assuming SM top polarization is

17.5±5.6(stat.)±3.1(syst.)% [107]. Combining the lepton+jets

with the dilepton gives 11.8 ± 2.5(stat.) ± 1.3(syst.).

From CDF, the most recent measurement in lepton+jets

uses 9.4 fb−1, and finds (16.4± 4.7)% [108]. This measurement

has now been combined with an asymmetry measured in dilep-

ton events using 9.1 fb−1 [109]. The asymmetry reported for

dilepton events is (12 ± 13)%, and the combined asymmetry is

(16.0± 4.5)%, which is about 1.5σ above the NNLO prediction.

Both experiments have measured AFB as a function of

Mtt, the tt invariant mass and in bins of |∆y| [108,106]. The

experiments see, and theory predicts, a positive slope in AFB

with increasing Mtt and |∆y|. The slopes seen in the CDF

data remain larger than the theoretical expectation, while the

DØ data are in good agreement with the latest theoretical

calculation [100].

At the LHC, where the dominant tt production mechanism

is the charge-symmetric gluon-gluon fusion, the measurement is

more difficult. For the sub-dominant qq production mechanism,

the symmetric pp collision does not define a forward and

backward direction. Instead, the charge asymmetry, AC , is

defined in terms of a positive versus a negative t − t rapidity

difference

AC =
N(∆|y| > 0) − N(∆|y| < 0)

N(∆|y| > 0) + N(∆|y| < 0)
(3)

Both CMS and ATLAS have measured AC in the LHC

dataset. Using lepton+jets events in 4.7 fb−1 of data at
√

s = 7

TeV, ATLAS measures AC = (0.6±1.0)% [110]. More recently,

ATLAS has reported on the same measurement performed at√
s = 8 TeV with at 20.3 fb−1 of data. The result is AC =

(0.009 ± 0.005) [111]. CMS, in 5.0(19.7) fb−1 of
√

s = 7(8)

TeV data uses lepton+jets events to measure AC = (0.4 ±
1.5)% (AC = (0.33 ± 0.26(stat.) ± 0.33(syst.))%) [112,113].

Both measurements are consistent with the SM expectations of

AC = 1.23± 0.05% at
√

s = 7 TeV and 1.11± 0.04% at
√

s = 8

TeV [102], although the uncertainties are still too large for a

precision test. In their 7 and 8 TeV analyses ATLAS and CMS

also provide differential measurements as a function of Mtt and

the transverse momentum pT and rapidity y of the tt system.

In a recent work [114] the CMS collaboration has provided the

result of AC = −0.0035±0.0072(stat.)±0.0031(syst.) obtained

in the fiducial phase space of top quark pair production.

Another avenue for measuring the forward-backward and

charge asymmetries that has recently been exploited by the

experiments is given by the measurement of the pseudorapidity

distributions of the charged leptons resulting from tt decay.

Although the expected asymmetry is smaller, this technique

does not require the reconstruction of the top-quark direction.

Single-lepton asymmetries, Aℓ
FB, are defined by q × η, and

dilepton asymmetries, Aℓℓ, by the sign of ∆η, where q and η are

the charge and pseudorapidity of the lepton and ∆η = ηℓ+−ηℓ− .

DØ has measured Aℓ
FB in 9.7 fb−1 of lepton+jets events, and

finds a value of (4.2 ± 2.3+1.7
−2.0)% [115], consistent with an

expectation of (3.8±0.6)% [102]. A measurement by DØ using

dilepton events in the same dataset [116] yields Aℓℓ=(12.3 ±
5.4 ± 1.5), compared to the expectation of (4.8 ± 0.4)% [102],

and Aℓ
FB = 4.4 ± 3.7 ± 1.1. The combination of the results

for Aℓ
FB in the single lepton and dilepton channels by DØ

yields (4.2 ± 2.0 ± 1.4)%. CDF, in 9.4 fb−1 of Tevatron data

measures [117] Aℓ
FB = (9.4+3.2

−2.9)%. As in the DØ case, this is

larger than the SM expectation, but less than two standard

deviations away.

At the LHC, both ATLAS and CMS have now measured

leptonic asymmetries. ATLAS, in 4.6 fb−1 of
√

s = 7 TeV data,

has measured Aℓℓ = (2.4± 1.5 ± 0.9)% in dilepton events [118].

Using a neutrino weighting technique in the same dataset to

reconstruct the top quarks, ATLAS measures AC = (2.1 ±
2.5 ± 1.7)%. CMS, in 5.0 fb−1 of

√
s = 7 TeV data, uses

dilepton events to measure AC = (1.0 ± 1.5 ± 0.6)%, where

a matrix weighting technique is used to reconstruct the top

quarks, and Aℓℓ = (0.9 ± 1.0 ± 0.6)% [119]. An earlier result

using lepton+jets events from the same CMS dataset found

AC = (0.4± 1.0± 1.1)% [112]. These results are all consistent,

within their large uncertainties, with the SM expectations of

Aℓℓ = (0.70 ± 0.03)% and AC = (1.23 ± 0.05)% [102].

A model-independent comparison of the Tevatron and LHC

results is made difficult by the differing tt production mecha-

nisms at work at the two accelerators and by the symmetric

nature of the pp collisions at the LHC. Given a particular

model of BSM physics, a comparison can be obtained through

the resulting asymmetry predicted by the model at the two

machines, see for example [120].

C.2 Top-Quark Properties

C.2.1 Top-Quark Mass Measurements: The most pre-

cisely studied property of the top quark is its mass. The top-

quark mass has been measured in the lepton+jets, the dilepton,

and the all-jets channel by all four Tevatron and LHC experi-

ments. The latest and/or most precise results are summarized

in Table 1. The lepton+jets channel yields the most precise

single measurements because of good signal to background ra-

tio (in particular after b-tagging) and the presence of only a

single neutrino in the final state. The momentum of a single

neutrino can be reconstructed (up to a quadratic ambiguity)

via the missing ET measurement and the constraint that the
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lepton and neutrino momenta reconstruct to the known W

boson mass. In the large data samples available at the LHC,

measurements in the dilepton channel can be competitive and

certainly complementary to those in the lepton+jets final state.

A large number of techniques have now been applied

to measuring the top-quark mass. The original ‘template

method’ [121], in which Monte Carlo templates of recon-

structed mass distributions are fit to data, has evolved into a

precision tool in the lepton+jets channel, where the system-

atic uncertainty due to the jet energy scale (JES) uncertainty is

controlled by a simultaneous, in situ fit to the W → jj hypoth-

esis [122]. All the latest measurements in the lepton+jets and

the all-jets channels use this technique in one way or another.

In 4.6 fb−1 of data at
√

s = 7 TeV in the lepton+jets channel,

ATLAS achieves a total uncertainty of 0.73% with a statistical

component of 0.44% [123]. The measurement is based on a 3-

dimensional template fit, determining the top-quark mass, the

global jet energy scale and a b-to-light jet energy scale factor. In

19.7 fb−1 of
√

s = 8 TeV data, CMS achieves a total uncertainty

of 0.45% with a statistical component of 0.11% [124].

The template method is complemented by the ‘matrix

element’ method. This method was first applied by the DØ

Collaboration [125], and is similar to a technique originally

suggested by Kondo et al. [126] and Dalitz and Goldstein [127].

In the matrix element method a probability for each event is

calculated as a function of the top-quark mass, using a LO

matrix element for the production and decay of tt̄ pairs. The

in situ calibration of dijet pairs to the W → jj hypothesis is

now also used with the matrix element technique to constrain

the jet energy scale uncertainty. The latest measurement with

this technique from DØ in the lepton+jets channel uses the full

Tevatron dataset of 9.7 fb−1 and yields an uncertainty of about

0.43% [128].

In the dilepton channel, the signal to background is typi-

cally very good, but reconstruction of the mass is non-trivial

because there are two neutrinos in the final state, yielding

a kinematically unconstrained system. A variety of techniques

have been developed to handle this. An analytic solution to

the problem has been proposed [129], but this has not yet

been used in the mass measurement. One of the most precise

measurements in the dilepton channel comes from using the

invariant mass of the charged lepton and b-quark system (Mℓb),

which is sensitive to the top-quark mass and avoids the kine-

matic difficulties of the two-neutrino final state. In 4.6 fb−1 of√
s = 7 TeV data, ATLAS has measured the top-quark mass in

the dilepton channel to a precision of 0.81% using a template

fit to the Mℓb distribution [123]. A similar measurement has

been also provided by CMS [130], giving a precision of 0.75%.

The other dilepton-channel measurement of similar precision

comes from 19.7 fb−1 of CMS data at
√

s = 8 TeV [131] using

a so-called analytical matrix weighting technique (AMWT) in

which each event is fit many times to a range of top-quark

masses and each fit is assigned a weight, from the PDFs, given

by the inferred kinematics of the initial state partons, and from

the probability of the observed charged lepton energies for the

top-quark mass in question.

Several other techniques can also yield precise measurements

in the dilepton channel. In the neutrino weighting technique,

similar to AMWT above, a weight is assigned by assuming a top-

quark mass value and applying energy-momentum conservation

to the top-quark decay, resulting in up to four possible pairs

of solutions for the neutrino and anti-neutrino momenta. The

missing ET calculated in this way is then compared to the

observed missing ET to assign a weight [132]. A recent CDF

result, using the full 9.1 fb−1 dataset achieves a precision of 1.8%

using a combination of neutrino weighting and an ”alternative

mass”, which is insensitive to the jet energy scale [133]. The

alternative mass depends on the angles between the leptons and

the leading jets and the lepton four-momenta.

In the all-jets channel there is no ambiguity due to neutrino

momenta, but the signal to background is significantly poorer

due to the severe QCD multijets background. The emphasis

therefore has been on background modeling, and reduction

through event selection. The most recent measurement in the

all-jets channel, by CMS in 18.2 fb−1 of
√

s = 8 TeV data [134],

uses an ideogram and a 2-dimensional simultaneous fit for

mt and the jet energy scale to extract the top-quark mass

and achieves a precision of 0.53%. A recent measurement from

ATLAS [135] uses the template method in the all-hadronic

channel, also with an in situ, fit to the W → jj hypothesis,

yielding a measurement with 1.9% precision in 4.6 fb−1 of

data. A measurement from CDF in 9.3 fb−1 uses similar two-

dimensional template fit and achieves a precision of 1.1% [136].

A dominant systematic uncertainty in these methods is

the understanding of the jet energy scale, and so several

techniques have been developed that have little sensitivity to

the jet energy scale uncertainty. In addition to Reference [133]

mentioned above, these include the measurement of the top-

quark mass using the following techniques: Fitting of the lepton

pT spectrum of candidate events [137]; fitting of the transverse

decay length of the b-jet (Lxy) [138]; fitting the invariant mass

of a lepton from the W -decay and a muon from the semileptonic

b decay [139].

Several measurements have now been made in which the

top-quark mass is extracted from the measured cross section

using the theoretical relationship between the mass and the

production cross section. These determinations make use of

predictions calculated at higher orders, where the top mass

enters as an input parameter defined in a given scheme. At

variance with the usual methods, which involve the kinematic

properties of the final states and therefore the pole mass, this

approach allows to directly determine a short-distance mass,

such as the MS mass [140]. With an alternative method ATLAS

recently extracted the top-quark pole mass using tt events with

at least one additional jet, basing the measurement on the

relationship between the differential rate of gluon radiation and

the mass of the quark [141].
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Each of the experiments has produced a measurement com-

bining its various results. The combined measurement from

CMS with up to 19.7 fb−1 of data achieves statistical and

systematic uncertainties of 0.06% and 0.38%, respectively [142].

The combined measurement from ATLAS, with 4.6 fb−1 yields

statistical and systematic uncertainties of 0.28% and 0.45%, re-

spectively [123]. CDF has combined measurements with up to

9.3 fb−1 [143] and achieves a statistical precision of 0.33% and

a systematic uncertainty of 0.43%. DØ achieves a 0.33% sta-

tistical+JES and a 0.28% systematic uncertainty by combining

results in 9.7 fb−1 [144].

Combined measurements from the Tevatron experiments

and from the LHC experiments take into account the correla-

tions between different measurements from a single experiment

and between measurements from different experiments. The

Tevatron average [145], using up to 9.7 fb−1 of data, now has a

precision of 0.37%. The LHC combination, using up to 4.9 fb−1

of data, has a precision of 0.56% [146], where more work on

systematic uncertainties is required. The first Tevatron-LHC

combination has now been released, combining the results of

all four experiments, using the full Tevatron dataset and the√
s = 7 TeV LHC data, with a resulting precision of 0.44% [3]

The direct measurements of the top-quark mass, such as

those shown in Table 1, strictly speaking, is the corresponding

parameter used in the Monte Carlo generators. The relation

between the parameter in the Monte Carlo generator and

the pole mass is affected by non-perturbative contributions,

which could be order 1 GeV/c2 [147], i.e., comparable to the

measurement uncertainty.

With the discovery of a Higgs boson at the LHC with a mass

of about 126 GeV/c2 [148,149], the precision measurement of

the top-quark mass takes a central role in the question of the

stability of the electroweak vacuum because top-quark radiative

corrections tend to drive the Higgs quartic coupling, λ, negative,

potentially leading to an unstable vacuum. A recent calculation

at NNLO [150] leads to the conclusion of vacuum stability for a

Higgs mass satisfying MH ≥ 129.4 ± 5.6 GeV/c2 [151]. Given

the uncertainty, a Higgs mass of 126 GeV/c2 satisfies the limit,

but the central values of the Higgs and top-quark masses put

the electroweak vacuum squarely in the metastable region. The

uncertainty is dominated by the precision of the top-quark mass

measurement and its interpretation as the pole mass. For more

details, see the Higgs boson review in this volume.

As a test of the CPT-symmetry, the mass difference of top-

and antitop-quarks ∆mt = mt − mt̄, which is expected to be

zero, can be measured. CDF measures the mass difference in

8.7 fb−1 of 1.96 TeV data in the lepton+jets channel using

a template methode to find ∆mt = −1.95 ± 1.11(stat.) ±
0.59(syst.) GeV/c2 [152] while DØ uses 3.6 fb−1 of lepton+jets

events and the matrix element method with at least one b-tag.

They find ∆mt = 0.8±1.8(stat.)±0.5(syst.) GeV/c2 [153]. In

4.7 fb−1 of 7 TeV data, ATLAS measures the mass difference

in lepton+jets events with a double b-tag requirement and

hence very low background to find ∆mt = 0.67 ± 0.61(stat.) ±

Table 1: Measurements of top-quark mass from
Tevatron and LHC.

∫
Ldt is given in fb−1. The

results shown are mostly preliminary (not yet
submitted for publication as of August 2015);
for a complete set of published results see the
Listings. Statistical uncertainties are listed first,
followed by systematic uncertainties.

mt (GeV/c2) Source
∫
Ldt Ref. Channel

172.99 ± 0.48 ± 0.78 ATLAS 4.6 [123] ℓ+jets+ℓℓ

172.04 ± 0.19 ± 0.75 CMS 19.7 [124] ℓ+jets

172.47 ± 0.17 ± 1.40 CMS 19.7 [131] ℓℓ

172.32 ± 0.25 ± 0.59 CMS 19.7 [134] All jets

174.34 ± 0.37 ± 0.52 CDF,DØ (I+II)≤9.7 [145] publ. or prelim.

173.34 ± 0.27 ± 0.71 Tevatron+LHC ≤8.7+≤4.9 [3] publ. or prelim.

0.41(syst.) GeV/c2 [154]. CMS measures the top-quark mass

difference in 5 fb−1 of 7 TeV data in the lepton+jets channel

and finds ∆mt = −0.44±0.46(stat.)±0.27(syst.) GeV/c2 [155].

They repeat this measurement with 18.9 fb−1 of 8 TeV data

to find ∆mt = −0.27 ± 0.20(stat.) ± 0.12(syst.) GeV/c2 [156].

All measurements are consistent with the SM expectation.

C.2.2 Top-Quark Spin Correlations, Polarization, and

Width: One of the unique features of the top quark is that it

decays before its spin can be flipped by the strong interaction.

Thus the top-quark polarization is directly observable via the

angular distribution of its decay products. Hence, it is possible

to define and measure observables sensitive to the top-quark spin

and its production mechanism. Although the top- and antitop-

quarks produced by strong interactions in hadron collisions are

essentially unpolarized, the spins of t and t̄ are correlated.

For QCD production at threshold, the tt̄ system is produced

in a 3S1 state with parallel spins for qq̄ annihilation or in a
1S0 state with antiparallel spins for gluon-gluon fusion. Hence,

the situations at the Tevatron and at the LHC are somewhat

complementary. However, at the LHC production of tt̄ pairs at

large invariant mass occurs primarily via fusion of gluons with

opposite helicities, and the tt̄ pairs so produced have parallel

spins as in production at the Tevatron via qq̄ annihilation.

The direction of the top-quark spin is 100% correlated to the

angular distributions of the down-type fermion (charged leptons

or d-type quarks) in the decay. The joint angular distribution

[157–159]

1

σ

d2σ

d(cos θ+)d(cos θ−)
=

1 + κ · cos θ+ · cos θ−
4

, (4)

where θ+ and θ− are the angles of the daughters in the top-

quark rest frame with respect to a particular spin quantization

axis, is a very sensitive observable. The maximum value for κ,

0.782 at NLO at the Tevatron [160], is found in the off-diagonal

basis [157], while at the LHC the value at NLO is 0.326 in the

helicity basis [160]. In place of κ, Aα+α− is often used, where
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αi is the spin analyzing power, and A is the spin correlation

coefficient, defined as

A=
N(↑↑) + N(↓↓) − N(↑↓) − N(↓↑)
N(↑↑) + N(↓↓) + N(↑↓) + N(↓↑), (5)

where the first arrow represents the direction of the top-quark

spin along a chosen quantization axis, and the second arrow

represents the same for the antitop-quark. The spin analyzing

power αi is +0.998 for positively charged leptons, -0.966 for

down-type quarks from W decays, and -0.393 for bottom

quarks [161]. The sign of α flips for the respective antiparticles.

The spin correlation could be modified by a new tt̄ production

mechanism such as through a Z ′ boson, Kaluza-Klein gluons,

or a Higgs boson.

CDF used 5.1 fb−1 in the dilepton channel to measure the

correlation coefficient in the beam axis [162]. The measurement

was made using the expected distributions of (cos θ+, cos θ−)

and (cos θb, cos θb̄) of the charged leptons or the b-quarks in the

tt̄ signal and background templates to calculate a likelihood of

observed reconstructed distributions as a function of assumed κ.

They determined the 68% confidence interval for the correlation

coefficient κ as −0.52 < κ < 0.61 or κ = 0.04 ± 0.56 assuming

mt = 172.5 GeV/c2.

CDF also analyzed lepton+jets events in 5.3 fb−1 [163]

assuming mt = 172.5 GeV/c2. They form three separate tem-

plates - the same-spin template, the opposite-spin template,

and the background template for the 2-dimensional distri-

butions in cos(θl) cos(θd) vs. cos(θl) cos(θb). The fit to the

data in the helicity basis returns an opposite helicity frac-

tion of FOH = 0.74 ± 0.24(stat.) ± 0.11(syst.). Converting this

to the spin correlation coefficient yields κhelicity = 0.48 ±
0.48(stat.) ± 0.22(syst.). In the beamline basis, they find an

opposite spin fraction of FOS = 0.86 ± 0.32(stat.)± 0.13(syst.)

which can be converted into a correlation coefficient of

κbeam = 0.72 ± 0.64(stat.)± 0.26(syst.).

DØ performed a measurement of the ratio f of events with

correlated t and t̄ spins to the total number of tt̄ events in

5.3 fb−1 in the lepton+jets channel using a matrix element

technique [164]. The SM expectation is f = 1. From 729

events, they obtain fexp. = 1.15+0.42
−0.43(stat. + syst.) and can

exclude values of f < 0.420 at the 95% C.L. In the dilepton

channel [165], they also use a matrix element method and

can exclude at the 97.7% C.L. the hypothesis that the spins

of the t and t̄ are uncorrelated. The combination [164] yields

fexp. = 0.85 ± 0.29 (stat + syst) and a tt̄ production cross

section which is in good agreement with the SM prediction

and previous measurements. For an expected fraction of f = 1,

they can exclude f < 0.481 at the 95% C.L. For the observed

value of fexp. = 0.85, they can exclude f < 0.344(0.052) at

the 95(99.7)% C.L. The observed fraction fexp. translates to a

measured asymmetry value of Aexp. = 0.66±0.23(stat.+syst.).

They therefore obtained the first evidence of SM spin correlation

at 3.1 standard deviations.

Using 5.4 fb−1 of data, DØ measures the correlation in

the dilepton channel also from the angles of the two leptons

in the t and t̄ rest frames, yielding a correlation strength

C = 0.10±0.45 [166]( C is equivalent to negative κ in Eq. 4), in

agreement with the NLO QCD prediction, but also in agreement

with the no correlation hypothesis.

Spin correlations have now been conclusively measured at

the LHC by both the ATLAS and CMS collaborations. In the

dominant gluon fusion production mode for tt̄ pairs at the LHC,

the angular distribution between the two leptons in tt̄ decays to

dileptons is sensitive to the degree of spin correlation [167].

The ATLAS collaboration has measured spin correlations

in tt̄ production at
√

s = 7 TeV using 4.6 fb−1 of data.

Candidate events are selected in the dilepton and lepton plus

jets topologies. Four observables are used to extract the spin

correlation: The difference, ∆φ in azimuthal angle between

the two charged leptons in dilepton events or the lepton and

down-quark or bottom-quark candidate from the hadronic W -

decay; An observable based on the ratio matrix elements

with and without spin correlation; The double differential

distribution of Eq. 4 in two different bases. The most sensitive

measurement comes from using ∆φ in dilepton events and

results in fSM = 1.19±0.09±0.18. Using the helicity basis as the

quantization axis, the strength of the spin correlation between

the top- and antitop-quark is measured to be Aexp.
helicity = 0.37 ±

0.03±0.06 [168], which is in agreement with the NLO prediction

of about 0.31 [169]. Using the same events but converting

fexp. into Aexp.
maximal yields Aexp.

maximal = 0.52 ± 0.04 ± 0.08, to

be compared to the NLO prediction of 0.44. In a similar

analysis using 20.3 fb−1 of data at
√

s = 8 TeV, ATLAS

measures fSM = 1.20 ± 0.05(stat.)± 0.13(syst.), corresponding

to Aexp.
helicity = 0.38± 0.04 [170], which compares well to the SM

expectation of ASM
helicity = 0.318 ± 0.005 [169].

The CMS collaboration uses angular asymmetry variables

in dilepton events, unfolded to the parton level. The most

sensitive measurement is made using

A∆φ =
N(∆φℓ+ℓ− > π/2) − N(∆φℓ+ℓ− < π/2)

N(∆φℓ+ℓ− > π/2) + N(∆φℓ+ℓ− < π/2),
(6)

In 5.0 fb−1 of pp collisions at
√

s = 7 TeV, CMS measures

A∆φ = 0.113 ± 0.010 ± 0.006 ± 0.012 [171], where the uncer-

tainties are statistical, systematic, and due to the reweighting

of the top pT in the Monte Carlo to match data. A recent CMS

result in µ plus jets events in 19.7 fb−1 of
√

s = 8 TeV data uses

a matrix-element technique to extract fexp. = 0.72 ± 0.09+0.15
−0.13,

corresponding to Aexp.
helicity = 0.22±0.03+0.05

−0.04 [172]. Correspond-

ing results obtained by studying the dilepton final state, also

show consistency with the SM expectations [173].

Measurements of the polarization of top quarks in tt pro-

duction at
√

s = 7 TeV have been made by both ATLAS

and CMS. In 4.7 fb−1 of data, ATLAS measures the product

of the leptonic spin-analyzing power (αℓ) and the top quark

polarization. The measurement is made in one or two lep-

ton final states, assuming that the polarization is introduced
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by a CP-conserving (CPC) or maximally CP-violating (CPV)

process. The results are αℓPCPC = −0.035 ± 0.014± 0.037 and

αℓPCPV = 0.020±0.016+0.013
−0.017 [174], where the uncertainties are

statistical and systematic, respectively. The CMS measurement

is made with 5.0 fb−1 of dilepton events. The polarization is ex-

tracted through an asymmetry, AP , in the angular distribution

of the two leptons, AP , defined as

AP =
N(cos θ∗ℓ > 0) − N(cos θ∗ℓ < 0)

N(cos θ∗ℓ > 0) + N(cos θ∗ℓ < 0),
(7)

where θ∗ is the angle of the charged lepton in the rest frame

of its parent top quark or antiquark. The polarization, P in

the helicity basis is given by P = 2AP . After unfolding to the

parton level, the measurement yields AP = 0.005 ± 0.013 ±
0.014 ± 0.008 [171], where the uncertainties are, respectively,

statistical, systematic, and from top-quark pT reweighting.

Both the ATLAS and CMS results are consistent with the SM

expectation of negligible polarization.

Observation of top-quark spin correlations requires a top-

quark lifetime less than the spin decorrelation timescale [175].

The top-quark width, inversely proportional to its lifetime,

is expected to be of order 1 GeV/c2 (Eq. 1). The sensitivity

of current experiments does not approach this level in direct

measurements. Nevertheless, several measurements have been

made.

CDF presents a direct measurement of the top-quark width

in the lepton+jets decay channel of tt̄ events from a data

sample corresponding to 8.7 fb−1 of integrated luminosity. The

top-quark mass and the mass of the hadronically decaying W

boson that comes from the top-quark decay are reconstructed

for each event and compared with templates of different top-

quark widths (Γt) and deviations from nominal jet energy scale

(∆JES) to perform a simultaneous fit for both parameters,

where ∆JES is used for the in situ calibration of the jet energy

scale. By applying a Feldman-Cousins approach, they establish

an upper limit at 95% C.L. of Γt < 6.38 GeV and a two-sided

68% C.L. interval of 1.10 GeV < Γt < 4.05 GeV, corresponding

to a lifetime interval of 1.6 × 10−15 < τtop < 6.0 × 10−25 [176],

consistent with the SM prediction. For comparison, a typical

hadronization timescale is an order of magnitude larger than

these limits.

The total width of the top-quark can also be determined

from the partial decay width Γ(t → Wb) and the branching frac-

tion B(t → Wb). DØ obtains Γ(t → Wb) from the measured t-

channel cross section for single top-quark production in 5.4 fb−1,

and B(t → Wb) is extracted from a measurement of the ra-

tio R = B(t → Wb)/B(t → Wq) in tt̄ events in lepton+jets

channels with 0, 1 and 2 b-tags. Assuming B(t → Wq) = 1,

where q includes any kinematically accessible quark, the result

is: Γt = 2.00+0.47
−0.43 GeV which translates to a top-quark lifetime

of τt = (3.29+0.90
−0.63) × 10−25 s. Assuming a high mass fourth

generation b′ quark and unitarity of the four-generation quark-

mixing matrix, they set the first upper limit on |Vtb′| < 0.59 at

95% C.L. [177]. A similar analysis has performed by CMS in

19.7 fb−1 of
√

s = 8 TeV data. It provides a better determina-

tion of the total width with respect to the measurement by DØ

giving Γt = 1.36 ± 0.02(stat.)+0.14
−0.11(syst.) GeV [178].

C.2.3 W-Boson Helicity in Top-Quark Decay: The Stan-

dard Model dictates that the top quark has the same vector-

minus-axial-vector (V − A) charged-current weak interactions(
−i

g√
2
Vtbγ

µ1

2
(1 − γ5)

)
as all the other fermions. In the SM,

the fraction of top-quark decays to longitudinally polarized

W bosons is similar to its Yukawa coupling and hence en-

hanced with respect to the weak coupling. It is expected to

be [179] FSM
0 ≈ x/(1 + x), x = m2

t /2M2
W (FSM

0 ∼ 70% for

mt = 175 GeV/c2). Fractions of left-handed, right-handed, or

longitudinal W bosons are denoted as F−, F+, and F0 respec-

tively. In the SM, F− is expected to be ≈ 30% and F+ ≈ 0%.

Predictions for the W polarization fractions at NNLO in QCD

are available [180].

The Tevatron and the LHC experiments use various tech-

niques to measure the helicity of the W boson in top-quark

decays, in both the lepton+jets and in dilepton channels in tt̄

production.

The first method uses a kinematic fit, similar to that used

in the lepton+jets mass analyses, but with the top-quark mass

constrained to a fixed value, to improve the reconstruction of

final-state observables, and render the under-constrained dilep-

ton channel solvable. Alternatively, in the dilepton channel the

final-state momenta can also be obtained through an algebraic

solution of the kinematics. The distribution of the helicity an-

gle (cos θ∗) between the lepton and the b quark in the W rest

frame provides the most direct measure of the W helicity. In

a simplified version of this approach, the cos θ∗ distribution is

reduced to a forward-backward asymmetry.

The second method (pℓ
T ) uses the different lepton pT spec-

tra from longitudinally or transversely polarized W -decays to

determine the relative contributions.

A third method uses the invariant mass of the lepton and

the b-quark in top-quark decays (M2
ℓb) as an observable, which

is directly related to cos θ∗.

At the LHC, top-quark pairs in the dilepton channels

are reconstructed by solving a set of six independent kine-

matic equations on the missing transverse energy in x- and

in y-direction, two W -masses, and the two top/antitop-quark

masses. In addition, the two jets with the largest pT in the

event are interpreted as b-jets. The pairing of the jets to the

charged leptons is based on the minimization of the sum of

invariant masses Mmin. Simulations show that this criterion

gives the correct pairing in 68% of the events.

Finally, the Matrix Element method (ME) has also been

used, in which a likelihood is formed from a product of event

probabilities calculated from the ME for a given set of mea-

sured kinematic variables and assumed W -helicity fractions.

The results of recent CDF, DØ, ATLAS, and CMS analyses are

summarized in Table 2.
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Table 2: Measurement and 95% C.L. upper limits
of the W helicity in top-quark decays. The table
includes both preliminary, as of August 2015, and
published results. A full set of published results is
given in the Listings.

W Helicity Source
∫
Ldt Ref. Method

(fb−1)

F0 = 0.722 ± 0.081 CDF+DØ Run II 2.7-5.4 [181] cos θ∗ 2-par.

F0 = 0.682 ± 0.057 CDF+DØ Run II 2.7-5.4 [181] cos θ∗ 1-par.

F0 = 0.726 ± 0.094 CDF Run II 8.7 [182] ME 2-param

F0 = 0.67 ± 0.07 ATLAS (7 TeV) 1.0 [183] cos θ∗ 3-par.

F0 = 0.682 ± 0.045 CMS (7 TeV) 5.0 [184] cos θ∗ 3-par.

F0 = 0.626 ± 0.059 ATLAS+CMS (7 TeV) 2.2 [185] cos θ∗ 3-par.

F0 = 0.659 ± 0.027 CMS (8 TeV) 19.6 [186] cos θ∗ 3-par.

F0 = 0.720 ± 0.054 CMS (8 TeV) 19.7 [187] cos θ∗ 3-par.

F0 = 0.653 ± 0.029 CMS (8 TeV) 19.7 [188] cos θ∗ 3-par.

F+ = −0.033 ± 0.046 CDF+DØ Run II 2.7-5.4 [181] cos θ∗ 2-par.

F+ = −0.015 ± 0.035 CDF+DØ Run II 2.7-5.4 [181] cos θ∗ 1-par.

F+ = −0.045 ± 0.073 CDF Run II 8.7 [182] ME 2-par.

F+ = 0.01 ± 0.05 ATLAS (7 TeV) 1.0 [183] cos θ∗ 3-par.

F+ = 0.008 ± 0.018 CMS (7 TeV) 5.0 [184] cos θ∗ 3-par.

F+ = 0.015 ± 0.034 ATLAS+CMS (7 TeV) 2.2 [185] cos θ∗ 3-par.

F+ = −0.009 ± 0.021 CMS (8 TeV) 19.6 [186] cos θ∗ 3-par.

F+ = −0.018 ± 0.022 CMS (8 TeV) 19.7 [187] cos θ∗ 3-par.

F+ = 0.018 ± 0.027 CMS (8 TeV) 19.7 [188] cos θ∗ 3-par.

The datasets are now large enough to allow for a simul-

taneous fit of F0, F− and F+, which we denote by ‘3-param’

or F0 and F+, which we denote by ‘2-param’ in the table.

Results with either F0 or F+ fixed at its SM value are denoted

‘1-param’. For the simultaneous fits, the correlation coefficient

between the two values is about −0.8. A complete set of pub-

lished results can be found in the Listings. All results are in

agreement with the SM expectation.

CDF and DØ combined their results based on 2.7−5.4 fb−1

[181] for a top-quark mass of 172.5 GeV/c2. ATLAS presents

results from 1.04 fb−1 of
√

s = 7 TeV data using a template

method for the cos θ∗ distribution and angular asymmetries

from the unfolded cos θ∗ distribution in the lepton+jets and the

dilepton channel [183]. CMS performs a similar measurement

based on template fits to the cos θ∗ distribution with 5.0 fb−1

of 7 TeV data in the lepton+jets final state [184]. As the

polarization of the W bosons in top-quark decays is sensitive

to the Wtb vertex Lorentz structure and anomalous couplings,

both experiments also derive limits on anomalous contributions

to the Wtb couplings. Recently, both experiments also combined

their results from 7 TeV data to obtain values on the helicity

fractions as well as limits on anomalous couplings [185].

CMS came out with a measurement of the W -helicity frac-

tions in 19.6 fb−1 of muon+jets events recorded at 8 TeV [186].

Also, using the same dataset a first measurement of the W -

boson helicity in top-quark decays was made in electroweak

single top production [187], yielding similarly precise and

consistent results.

C.2.4 Top-Quark Electroweak Charges: The top quark is

the only quark whose electric charge has not been measured

through production at threshold in e+e− collisions. Further-

more, it is the only quark whose electromagnetic coupling has

not been observed and studied until recently. Since the CDF

and DØ analyses on top-quark production did not associate the

b, b̄, and W± uniquely to the top or antitop, decays such as

t → W+b̄, t̄ → W−b were not excluded. A charge 4/3 quark of

this kind is consistent with current electroweak precision data.

The Z → ℓ+ℓ− and Z → bb̄ data, in particular the discrepancy

between ALR from SLC at SLAC and A0,b
FB of b-quarks and A0,ℓ

FB

of leptons from LEP at CERN, can be fitted with a top quark of

mass mt = 270 GeV/c2, provided that the right-handed b quark

mixes with the isospin +1/2 component of an exotic doublet of

charge −1/3 and −4/3 quarks, (Q1, Q4)R [189,190].

DØ studies the top-quark charge in double-tagged lep-

ton+jets events, CDF does it in single tagged lepton+jets and

dilepton events. Assuming the top- and antitop-quarks have

equal but opposite electric charge, then reconstructing the

charge of the b-quark through jet charge discrimination tech-

niques, the |Qtop| = 4/3 and |Qtop| = 2/3 scenarios can be

differentiated. For the exotic model of Chang et al. [190] with

a top-quark charge |Qtop| = 4/3, DØ excludes the exotic model

at 91.2% C.L.% [191] using 370 pb−1, while CDF excludes the

model at 99% C.L. [192] in 5.6 fb−1. Recently, DØ excluded the

model at a significance greater than 5 standard deviations using

5.3 fb−1 and set an upper limit of 0.46 on the fraction of such

quarks in the selected sample [193]. All those results indicate

that the observed particle is indeed consistent with being a SM

|Qtop| = 2/3 quark.

In 2.05 fb−1 at
√

s = 7 TeV, ATLAS performed a similar

analysis, reconstructing the b-quark charge either via a jet-

charge technique or via the lepton charge in soft muon decays

in combination with a kinematic likelihood fit. They measure

the top-quark charge to be 0.64±0.02(stat.)±0.08(syst.)e from

the charges of the top-quark decay products in single lepton tt̄

events, and hence exclude the exotic scenario with charge −4/3

at more than 8σ [194].

In 4.6 fb−1 at
√

s = 7 TeV, CMS discriminates between the

Standard Model and the exotic top-quark charge scenario in

the muon+jets final states in tt̄ events. They exploit the charge

correlation between high-pt muons from W -boson decays and

soft muons from B-hadron decays in b-jets. Using an asymmetry

technique, where A = −1 represent the exotic q = −4/3 scenario

and A = +1 the Standard Model q = +2/3 scenario, they find

Ameas = 0.97 ± 0.12(stat.) ± 0.31(sys.), which agrees with the

Standard Model expectation and excludes the exotic scenario

at 99.9% C.L. [195].

The electromagnetic or the weak coupling of the top quark

can be probed directly by investigating tt̄ events with an

additional gauge boson, like tt̄γ and tt̄Z events.

CDF performs a search for events containing a lepton,

a photon, significant missing transverse momentum, and a

jet identified as containing a b-quark and at least three jets

and large total transverse energy in 6.0 fb−1. They reported

evidence for the observation of tt̄γ production with a cross
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section σtt̄γ = 0.18 ± 0.08 pb and a ratio of σtt̄γ/σtt̄ = 0.024 ±
0.009 [196].

ATLAS performed a first measurement of the tt̄γ cross

section in pp collisions at
√

s = 7 TeV using 4.6 fb−1 of data.

Events are selected that contain a large transverse momentum

electron or muon and a large transverse momentum photon,

yielding 140 and 222 events in the electron and muon samples,

respectively. The production of tt̄γ events is observed with a

significance of 5.3% standard deviations. The resulting cross

section times branching ratio into the single lepton channel

for tt̄γ production with a photon with transverse momentum

above 20 GeV is σfid.(tt̄γ) × Br = 63 ± 8(stat.)+17
−13(syst.) ±

1(lumi.) pb per lepton flavour [198], which is consistent

with leading-order theoretical calculations. Using 19.7 fb−1 of

data at 8 TeV, CMS performs a similar measurement of the

tt̄γ production cross section in the muon+jets decay mode

with a photon transverse momentum above 20 GeV and a

separation ∆R(γ, b/b̄) > 0.1. They obtain a normalized cross

section R = σtt̄+γ/σtt̄ = (1.07±0.07(stat.)±0.27(syst.))×10−2

and a cross section σtt̄+γ = 2.4±0.2(stat.)±0.6(syst.) pb [199],

consistent with the Standard Model expectations. A real test,

however, of the vector and axial vector couplings in tt̄γ events or

searches for possible tensor couplings of top-quarks to photons

will only be feasible with an integrated luminosity of several

hundred fb−1 in the future.

ATLAS and CMS also studied the associate production

of top-antitop quark pairs along with an electroweak gauge

boson, where in the Standard Model the W -boson is expected

to be produced via initial state radiation, while the Z-boson

can also be radiated from a final-state top-quark and hence

provides sensitivity to the top-quark neutral current weak gauge

coupling, which implies a sensitivity to the third component of

the top-quark’s weak isospin.

CMS performed measurements of the tt̄W and tt̄Z produc-

tion cross section at
√

s = 7 TeV with 5 fb−1, yielding results

at about 3 standard deviations significance [200]. ATLAS per-

formed a similar analysis with 4.7 fb−1 in the three-lepton

channel and set an upper limit of 0.71 pb at 95% C.L. [201].

Using 20.3 fb−1 of 8 TeV data, ATLAS performs a si-

multaneous measurement of the tt̄W and tt̄Z cross section.

They observe the tt̄W and tt̄Z production at the 5.0σ

and 4.2σ level, respectively, yielding σtt̄W = 369+100
−91 fb and

σtt̄Z = 176+58
−52 fb [202]. CMS performs an analysis where sig-

nal events are identified by matching reconstructed objects

in the detector to specific final state particles from tt̄W

and tt̄Z decays. using 19.5 fb−1 of 8 TeV data. They obtain

σtt̄W = 382+117
−102 fb and σtt̄Z = 242+65

−55 fb, yielding a significance

of 4.8 and 6.4 standard, respectively [203]. These measure-

ments are used to set bounds on five anomalous dimension-six

operators that would affect the tt̄W and tt̄Z cross sections.

C.3 Searches for Physics Beyond the Standard Model

The top quark plays a special role in the SM. Being the

only quark with a coupling to the Higgs boson of order one,

it provides the most important contributions to the quadratic

radiative corrections to the Higgs mass raising the question of

the naturalness of the SM. It is therefore very common for

models where the naturalness problem is addressed to have new

physics associated with the top quark. In SUSY, for instance,

naturalness predicts the scalar top partners to be the lightest

among the squarks and to be accessible at the LHC energies

(see the review ”Supersymmetry: Theory”). In models where

the Higgs is a pseudo-Goldstone boson, such as Little Higgs

models, naturalness predicts the existence of partners of the

top quarks with the same spin and color, but with different

electroweak couplings, the so-called vectorial t′. Stops and t′’s

are expected to have sizable branching ratios to top quarks.

Another intriguing prediction of SUSY models with universal

couplings at the unification scale is that for a top-quark mass

close to the measured value, the running of the Yukawa coupling

down to 1 TeV naturally leads to the radiative breaking of the

electroweak symmetry [204]. In fact, the top quark plays a role

in the dynamics of electroweak symmetry breaking in many

models. One example is topcolor [205], where a large top-quark

mass can be generated through the formation of a dynamic

tt̄ condensate, X , which is formed by a new strong gauge

force coupling preferentially to the third generation. Another

example is topcolor-assisted technicolor [206], predicting the

existence of a heavy Z ′ boson that couples preferentially to the

third generation of quarks. If light enough such a state might

be directly accessible at the present hadron collider energies, or

if too heavy, lead to four-top interactions possibly visible in the

tt̄tt̄ final state, for which limits on production cross sections at

the LHC
√

s = 8 TeV exist [207,208].

Current strategies to search for new physics in top-quark

events at hadron colliders are either tailored to the discovery

of specific models or model independent. They can be broadly

divided in two classes. In the first class new resonant states are

looked for through decay processes involving the top quarks.

Current searches for bosonic resonances in tt̄ final states, or

for direct stop and t′ production, or for a charged Higgs in

H+ → tb̄ fall in the category. On the other hand, if new states

are too heavy to be directly produced, they might still give

rise to deviations from the SM predictions for the strength and

Lorentz form of the top-quark couplings to other SM particles.

Accurate predictions and measurements are therefore needed

and the results be efficiently systematized in the framework of

an effective field theory [210,211]. For instance, the on-going

efforts to constrain the structure of the top couplings to vector

bosons (g, γ, Z, W ) and to the Higgs boson, including flavor-

changing neutral currents involving the top quark [212], fall in

this second category.

C.3.1 New Physics in Top-Quark Production: Theoreti-

cal [213–215] and experimental efforts have been devoted to the

searches of tt resonances.

At the Tevatron, both the CDF and DØ collaborations have

searched for resonant production of tt̄ pairs in the lepton+jets
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channel [216,217]. In both analyses, the data indicate no evi-

dence of resonant production of tt̄ pairs. They place upper limits

on the production cross section times branching fraction to tt̄

in comparison to the prediction for a narrow (ΓZ′ = 0.012MZ′)

leptophobic topcolor Z ′ boson. Within this model, they exclude

Z ′ bosons with masses below 915 (CDF-full data set) and 835

(DØ, 5 fb−1) GeV/c2 at the 95% C.L. These limits turn out to

be independent of couplings of the tt̄ resonance (pure vector,

pure axial-vector, or SM-like Z ′). A similar analysis has been

performed by CDF in the all-jets channel using 2.8 fb−1 of

data [218].

At the LHC, both the CMS and ATLAS collaborations have

searched for resonant production of tt̄ pairs, employing differ-

ent techniques and final-state signatures (all-jets, lepton+jets,

dilepton) at
√

s = 7 and 8 TeV. In the low mass range, from

the tt̄ threshold to about one TeV, standard techniques based

on the reconstruction of each of the decay objects (lepton, jets

and b-jets, missing ET ) are used to identify the top quarks,

while at higher invariant mass, the top quarks are boosted

and the decay products more collimated and can appear as

large-radius jets with substructure. Dedicated reconstruction

techniques have been developed in recent years for boosted top

quarks [219] that are currently employed at the LHC. Most of

the analyses are model-independent (i.e., no assumption on the

quantum numbers of the resonance is made) yet they assume a

small width and no signal-background interference.

Using dilepton and lepton+jets signatures in a data set

corresponding to an integrated luminosity of 5.0 fb−1, the CMS

collaboration finds no significant deviations from the SM back-

ground. In the dilepton analysis, upper limits are presented

for the production cross section times branching fraction of

top quark-antiquark resonances for masses from 750 to 3000

GeV/c2. In particular, the existence of a leptophobic topcolor

particle Z ′ is excluded at the 95% confidence level for resonance

masses MZ′ < 1.3 (1.9) TeV/c2 for ΓZ′ = 0.012(0.1)MZ′ [220].

Using a lepton+jets sample, results are obtained from the

combination of two dedicated searches optimized for boosted

production and production at threshold. In this case, topcolor

Z ′ bosons with narrow (wide) width are excluded at 95% confi-

dence level for masses below 1.49 (2.04) TeV/c2 and an upper

limit of 0.3 (1.3) pb or lower is set on the production cross

section times branching fraction for resonance masses above

1 TeV/c2. Kaluza-Klein excitations of a gluon with masses

below 1.82 TeV/c2 (at 95% confidence level) in the Randall-

Sundrum model are also excluded, and an upper limit of 0.7

pb or lower is set on the production cross section times branch-

ing fraction for resonance masses above 1 TeV/c2 [221]. In

19.7 fb−1 of 8 TeV data, CMS recently updated their measure-

ment in the lepton+jets and the all-jets channel to obtain an

exclusion of MZ′ < 2.1(2.7) TeV/c2 for ΓZ′ = 0.013(0.1)MZ′

and gluon masses below 2.5 TeV/c2 in Randall-Sundrum models

at 95% C.L. [222]. These limits have been improved in a recent

analysis which uses events with three different final states, de-

fined by the number of leptons and optimized for reconstruction

of top quarks with high Lorentz boosts [223]. For example, in

this analysis a narrow leptophobic topcolor Z’ resonance with a

mass below 2.4 TeV is excluded at 95% confidence level.

The ATLAS collaboration has performed a search for res-

onant tt̄ production in the lepton+jets channel using 4.7 fb−1

(19.7 fb−1) of proton-proton (pp) collision data collected at a

center-of-mass energy
√

s = 7(8) TeV [224,225]. The tt̄ system

is reconstructed using both small-radius and large-radius jets,

the latter being supplemented by a jet substructure analysis.

A search for local excesses in the number of data events com-

pared to the Standard Model expectation in the tt̄ invariant

mass spectrum is performed. No evidence for a tt̄ resonance is

found and 95% confidence-level limits on the production rate

are determined for massive states predicted in two benchmark

models. The most stringent limits come from the sample col-

lected at 8 TeV. The upper limits on the cross section times

branching ratio of a narrow Z ′ boson decaying to top-quark

pairs range from 4.2 pb for a resonance mass of 0.4 TeV/c2 to

0.03 pb for a mass of 3 TeV/c2. A narrow leptophobic topcolor

Z ′ boson with a mass below 1.8 TeV/c2 is excluded. Upper

limits are set on the cross section times branching ratio for a

broad color-octet resonance with Γ/m = 15% decaying to tt̄.

These range from 2.5 pb for a mass of 0.4 TeV/c2 to 0.03 pb

for a mass of 3 TeV/c2. A Kaluza-Klein excitation of the gluon

in a Randall-Sundrum model (a slightly different model is used

compared to CMS) is excluded for masses below 2.2 TeV/c2.

ATLAS has also conducted a search in the all-jet final

state at 7 TeV corresponding to an integrated luminosity of

4.7 fb−1 [226]. The tt̄ events are reconstructed by selecting

two top quarks in their fully hadronic decay modes which are

reconstructed using the Cambridge/Aachen jet finder algorithm

with a radius parameter of 1.5. The substructure of the jets is

analysed using the HEPTopTagger algorithm [227] to separate

top-quark jets from those originating from gluons and lighter

quark jets. The invariant mass spectrum of the data is compared

to the SM prediction, and no evidence for resonant production

of top-quark pairs is found. The data are used to set upper

limits on the cross section times branching ratio for resonant tt̄

production in two models at 95% confidence level. Leptophobic

Z ′ bosons with masses between 700 and 1000 GeV/c2 as

well as 1280 − 1320 GeV/c2 and Kaluza-Klein-Gluons with

masses between 700 and 1620 GeV/c2 are excluded at the 95%

confidence level.

Heavy charged bosons, such as W ′ or H+, can also be

searched for in tb̄ final states (for more information see the

review ”W ′-boson searches” and ”Higgs Bosons: theory and

searches”). Other resonances are searched for in final states

such as tZ, tj, tH, tW, bW .

For instance, ATLAS has performed a search for t-jet

resonances in the lepton+jets channel of tt̄+ jets events in 4.7

fb−1 at
√

s = 7 TeV [228]. A heavy new particle, assumed to

be produced singly in association with a t(t̄) quark, decays to

a t(t̄) quark and a light flavor quark, leading to a color singlet

(triplet) resonance in the t(t̄)+jet system. The full 2011 ATLAS
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pp collision dataset from the LHC (4.7 fb−1) is used to select

tt̄ events. The data are consistent with the SM expectation

and a new particle with mass below 350 (430) GeV/c2 for W

(color triplet) models is excluded with a 95% confidence level,

assuming unit right-handed coupling. ATLAS has conducted

a search for the single and pair production of a new charge

+2/3 quark (T) decaying via T → Zt (and also -1/3 quark (B)

decaying via B → Zb) in a dataset corresponding to 20.3 fb−1

luminosity at
√

s = 8 TeV [229]. Selected events contain a high

transverse momentum Z-boson candidate reconstructed from a

pair of oppositely charged electrons or muons. Additionally, the

presence of at least two jets possessing properties consistent

with the decay of a b-hadron is required, as well as large

total transverse momentum of all central jets in the event.

No significant excess of events above the SM expectation is

observed, and upper limits are derived for vector-like quarks

of various masses in a two-dimensional plane of branching

ratios. Under branching ratio assumptions corresponding to a

weak-isospin singlet scenario, a T quark with mass lower than

655 GeV/c2 is excluded at the 95% confidence level. Under

branching ratio assumptions corresponding to a particular weak-

isospin doublet scenario, a T quark with mass lower than

735 GeV/c2 is excluded at the 95% confidence level.

A complementary search [208] in the lepton+jets final state

of the same dataset, characterized by an isolated electron or

muon with moderately high transverse momentum, significant

missing transverse momentum, and multiple jets is performed

to look for T (B) → Wb, Zt, Ht(Wt, Zb, Hb), decays. No sig-

nificant excess of events above the SM expectation is observed,

and upper limits are derived for vector-like quarks of various

masses under several branching ratio hypotheses. The 95% C.L.

observed lower limits on the T quark mass range between 715

GeV and 950 GeV for all possible values of the branching ratios

into the three decay modes. In addition this study provides

limits on four top-quark production and production of two

positively-charged top quarks. No significant excess of events

over the background expectation is observed. The four top-

quark production cross section must be less than 23 fb in the

SM and less than 12 fb for production via a contact interaction;

in the case of sgluon pair production decaying to tt̄, where a

sgluon is a scalar partner of the gluino [209], the mass of a

sgluon must be greater than 1.06 TeV/c2. Finally, limits in the

context of models featuring two extra dimensions are also set.

In many models top-quark partners preferably decay to

top quarks and weakly interacting neutral stable particles,

i.e., possibly dark matter candidates, that are not detected.

An observable especially sensitive to new physics effects in tt̄

production is therefore the missing momentum.

CMS has presented a differential cross section measurement

of top-quark pair production with missing transverse energy

using 20 fb−1 at 8 TeV [230]. The results are consistent with

the predictions of the SM. More recently, CMS has presented

a search for particle dark matter produced in association with

a pair of top quarks in 19.7 fb−1 of data at 8 TeV [231].

This search requires the presence of one lepton, multiple jets,

and large missing transverse energy. No excess of events is

found above the SM expectation, and upper limits are derived

on the production cross section. Cross sections larger than 20

to 55 fb are excluded at 90% C.L. for dark matter particles

with the masses ranging from 1 to 1000 GeV. Interpreting the

findings in the context of a scalar contact interaction between

fermionic dark matter particles and top quarks, lower limits on

the interaction scale are set. Assuming a dark matter particle

with a mass of 100 GeV, values of the interaction scale below

118 GeV are excluded at 90% C.L. An analogous search, at

a center-of-mass energy of 7 TeV in 1.04 fb−1 of data has

been performed by ATLAS [232]. The search is carried out in

the lepton+jets channel. The results are interpreted in terms

of a model where new top-quark partners are pair-produced

and each decay to an on-shell top (or antitop) quark and a

long-lived undetected neutral particle. The data are found to

be consistent with SM expectations. A limit at 95% C.L. is set

excluding a cross-section times branching ratio of 1.1 pb for a

top-partner mass of 420 GeV/c2 and a neutral particle mass

less than 10 GeV/c2. In a model of exotic fourth generation

quarks, top-partner masses are excluded up to 420 GeV/c2 and

neutral particle masses up to 140 GeV/c2.

Flavor-changing-neutral-currents (FCNC) are hugely sup-

pressed in the SM, and non zero only due to the large mass

hierarchy between the top quark and the other quarks. Several

observables are accessible at colliders to test and constrain such

couplings.

CMS has performed several studies on the search for FCNC

in top-quark production. They have considered single top quark

production in the t-channel in 5 fb−1 integrated luminosity at

7 TeV [233]. Events with the top quark decaying into a muon,

neutrino and b-quark are selected. The upper limits on effective

coupling strength can be translated to the 95% upper limits on

the corresponding branching ratios B(t → gu) ≤ 3.55 · 10−4,

B(t → gc) ≤ 3.44 · 10−3. They have performed a search for

a single top quark produced in association with a photon in

19.1 fb−1 integrated luminosity at 8 TeV [234]. The event

selection requires the presence of one isolated muon and jets in

the final state. The upper limits on effective coupling strength

can be translated to the 95% upper limits on the corresponding

branching ratios B(t → γu) ≤ 0.0161%, B(t → γc) ≤ 0.182%.

ATLAS has presented results on the search for single top-

quark production via FCNC’s in strong interactions using data

collected at
√

s=8 TeV and corresponding to an integrated

luminosity of 20.3 fb−1. Flavor-changing-neutral-current events

are searched for in which a light quark (u or c) interacts

with a gluon to produce a single top quark, either with or

without the associated production of another light quark or

gluon. Candidate events of top quarks decaying into leptons

and jets are selected and classified into signal- and background-

like events using a neural network. The observed 95% C.L. limit

is σqq→t×B(t → Wb) < 3.4 pb that can be interpreted as limits

on the branching ratios, B(t → ug) < 4 · 10−5 and B(t → cg) <
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1.7 ·10−4 [235]. This result supersedes the corresponding 7 TeV

analysis in 2 fb−1 [236].

Constraints on FCNC couplings of the top quark can also

be obtained from searches for anomalous single top-quark pro-

duction in e+e− collisions, via the process e+e− → γ, Z∗ → tq

and its charge-conjugate (q = u, c), or in e±p collisions, via the

process e±u → e±t. For a leptonic W decay, the topology is at

least a high-pT lepton, a high-pT jet and missing ET , while for

a hadronic W -decay, the topology is three high-pT jets. Limits

on the cross section for this reaction have been obtained by the

LEP collaborations [237] in e+e− collisions, and by H1 [238]

and ZEUS [239] in e±p collisions. When interpreted in terms

of branching ratios in top decay [240,241], the LEP limits

lead to typical 95% C.L. upper bounds of B(t → qZ) < 0.137.

Assuming no coupling to the Z boson, the 95% C.L. limits

on the anomalous FCNC coupling κγ < 0.13 and < 0.27 by

ZEUS and H1, respectively, are stronger than the CDF limit of

κγ < 0.42, and improve over LEP sensitivity in that domain.

The H1 limit is slightly weaker than the ZEUS limit due to

an observed excess of five-candidate events over an expected

background of 3.2 ± 0.4. If this excess is attributed to FCNC

top-quark production, this leads to a total cross section of

σ(ep → e + t + X,
√

s = 319 GeV) < 0.25 pb [238,242].

C.3.2 New Physics in Top-Quark decays: The large

sample of top quarks produced at the Tevatron and the LHC

allows to measure or set stringent limits on the branching

ratios of rare top-quark decays. For example, the existence

of a light H+ can be constrained by looking for t → H+b

decay, in particular with tau-leptons in the final state (for

more information see the review ”Higgs Bosons: theory and

searches”).

A first class of searches for new physics focuses on the

structure of the Wtb vertex. Using up to 2.7 fb−1 of data,

DØ has measured the Wtb coupling form factors by combining

information from the W -boson helicity in top-quark decays in

tt̄ events and single top-quark production, allowing to place

limits on the left-handed and right-handed vector and tensor

couplings [243–245].

ATLAS has published the results of a search for CP viola-

tion in the decay of single top quarks produced in the t-channel

where the top quarks are predicted to be highly polarized, using

the lepton+jets final state [246]. The data analyzed are from

pp collisions at
√

s = 7 TeV and correspond to an integrated

luminosity of 4.7 fb−1. In the Standard Model, the couplings at

the Wtb vertex are left-handed, right-handed couplings being

absent. A forward-backward asymmetry with respect to the

normal to the plane defined by the W -momentum and the top-

quark polarization has been used to probe the complex phase of

a possibly non-zero value of the right-handed coupling, signaling

a source of CP -violation beyond the SM. The measured value

of the asymmetry is 0.031 ± 0.065(stat.)+0.029
−0.031(syst.) in good

agreement with the Standard Model.

A second class of searches focuses on FCNC’s in the top-

quark decays. Both, CDF and DØ, have provided the first

limits for FCNC’s in Run I and II. The most recent results

from CDF give B(t → qZ) < 3.7% and B(t → qγ) < 3.2% at

the 95% C.L. [247] while DØ [248,249] sets B(t → qZ)(q = u, c

quarks ) < 3.2%) at 95% C.L., B(t → gu) < 2.0 · 10−4, and

B(t → gc) < 3.9 · 10−3 at the 95% C.L.

At the LHC, CMS has used a sample at a center-of-mass

energy of 8 TeV corresponding to 19.7 fb−1 of integrated lumi-

nosity to perform a search for flavor changing neutral current

top-quark decay t → Zq. Events with a topology compatible

with the decay chain tt → Wb + Zq → ℓν b + ℓℓq are searched

for. There is no excess seen in the observed number of events

relative to the SM prediction; thus no evidence for flavor chang-

ing neutral current in top-quark decays is found. A combination

with a previous search at 7 TeV excludes a t → Zq branching

fraction greater than 0.05% at the 95% confidence level [250].

The ATLAS collaboration has also searched for FCNC processes

in 20.3 fb−1 of tt̄ events with one top quark decaying through

FCNC (t → qZ) and the other through the SM dominant mode

(t → bW ). Only the decays of the Z boson to charged leptons

and leptonic W boson decays were considered as signal, leading

to a final state topology characterized by the presence of three

isolated leptons, at least two jets and missing transverse energy

from the undetected neutrino. No evidence for an FCNC signal

was found. An upper limit on the t → qZ branching ratio of

B(t → qZ) < 7 × 10−4 is set at the 95% confidence level [251],

which supersedes previous results [252].

Another search for FCNCs is in the decay of a top-quark

to a Higgs boson plus a light parton, t → qH , q = u, c. The

CMS collaboration has performed two searches using a sample

at a center-of-mass energy of 8 TeV corresponding to 19.7 fb−1

of integrated luminosity, one in a multi-lepton final state [253]

and the other with the Higgs boson decaying to γγ [254]. The

first analysis sets an upper limit on the t → cH branching

ratio of B(t → cH) < 0.93% at 95% confidence level, while

the second sets an upper limit on the t → c(u)H branching

ratios of B(t → c(u)H) < 0.71(0.65)% at 95% confidence level.

The ATLAS collaboration considers t → qH , q = u, c with

4.7 fb−1 of tt̄ events at
√

s = 7 TeV and 20.3 fb−1 of tt̄ events

at
√

s = 8 TeV. A combined measurement including H → γγ

and H → WW∗, ττ modes yields a 95% C.L. upper limit of

0.46% and 0.45% on the branching ratios of B(t → cH) and

B(t → uH), respectively [255].

D. Outlook

Top-quark physics at hadron colliders has developed into

precision physics. Various properties of the top quark have

been measured with high precision, where the LHC is about

to or has already reached the precision of the Tevatron. Sev-

eral
√

s-dependent physics quantities, such as the production

cross-section, have been measured at several energies at the

Tevatron and the LHC. Up to now, all measurements are

consistent with the SM predictions and allow stringent tests

of the underlying production mechanisms by strong and weak

interactions. Given the very large event samples available at
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the LHC, top-quark properties will be further determined in

tt̄ as well as in electroweak single top-quark production. At

the Tevatron, the t− and s−channels for electroweak single

top-quark production have been measured separately. At the

LHC, significant progress has been achieved and all the three

relevant channels are expected to be independently accessible

in the near future. Furthermore, tt̄γ, tt̄Z, and tt̄W together

with tt̄H associated production will provide further informa-

tion on the top-quark electroweak couplings. At the same time

various models of physics beyond the SM involving top-quark

production are being constrained. With the first results from

LHC Run-II at a higher center-of-mass energy and much higher

luminosity starting to be released, top-quark physics has the

potential to shed light on open questions and new aspects of

physics at the TeV scale.
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Phys.1512,061(2015).t-QUARK MASSt-QUARK MASSt-QUARK MASSt-QUARK MASSWe �rst list the dire
t measurements of the top quark mass whi
h employthe event kinemati
s and then list the measurements whi
h extra
t a topquark mass from the measured t t 
ross-se
tion using theory 
al
ulations.A dis
ussion of the de�nition of the top quark mass in these measurements
an be found in the review \The Top Quark."OUR EVALUATION of 173.21±0.51±0.71 GeV is an average of publishedtop mass measurements from Tevatron Runs. The �rst 
ombination of thetop-quark mass measurements, in
luding some unpublished data, has beenperformed by the CDF and D0 experiments at the Tevatron and ATLASand CMS experiments at the LHC. The resulting 
ombined top-quark massis 173.34 ± 0.27 ± 0.71 GeV, 
onsistent with Tevatron average. Thelatest Tevatron average, 174.34 ± 0.37 ± 0.52 GeV, was provided by theTevatron Ele
troweak Working Group (TEVEWWG). It takes 
orrelatedun
ertainties into a

ount and has a χ2 of 10.8 for 11 degrees of freedom.For earlier sear
h limits see PDG 96, Physi
al Review D54D54D54D54 1 (1996). Weno longer in
lude a 
ompilation of indire
t top mass determinations fromStandard Model Ele
troweak �ts in the Listings (our last 
ompilation 
anbe found in the Listings of the 2007 partial update). For a dis
ussion of
urrent results see the reviews "The Top Quark" and "Ele
troweak Modeland Constraints on New Physi
s."t-Quark Mass (Dire
t Measurements)t-Quark Mass (Dire
t Measurements)t-Quark Mass (Dire
t Measurements)t-Quark Mass (Dire
t Measurements)The following measurements extra
t a t-quark mass from the kinemati
s of t t events.They are sensitive to the top quark mass used in the MC generator that is usuallyinterpreted as the pole mass, but the theoreti
al un
ertainty in this interpretation ishard to quantify. See the review \The Top Quark" and referen
es therein for moreinformation.VALUE (GeV) DOCUMENT ID TECN COMMENT173.21± 0.51± 0.71 OUR EVALUATION173.21± 0.51± 0.71 OUR EVALUATION173.21± 0.51± 0.71 OUR EVALUATION173.21± 0.51± 0.71 OUR EVALUATION See 
omments in the header above.173.32± 1.36± 0.85 1 ABAZOV 16 D0 ℓℓ + 6ET + ≥ 2j ( ≥ 2b)175.1 ± 1.4 ± 1.2 2 AAD 15AWATLS small 6ET , ≥ 6 jets (2b-tag)172.99± 0.48± 0.78 3 AAD 15BF ATLS ℓ + jets and dilepton171.5 ± 1.9 ± 2.5 4 AALTONEN 15D CDF ℓℓ + 6ET + ≥ 2j175.07± 1.19+ 1.55

− 1.58 5 AALTONEN 14N CDF small 6ET , 6{8 jets ( ≥ 1b-tag)174.98± 0.58± 0.49 6 ABAZOV 14C D0 ℓ + 6ET + 4 jets ( ≥ 1 b-tag)173.49± 0.69± 1.21 7 CHATRCHYAN14C CMS ≥ 6 jets ( ≥ 2 b-tag)173.93± 1.64± 0.87 8 AALTONEN 13H CDF 6ET + ≥ 4 jets ( ≥ 1 b)173.9 ± 0.9 + 1.7
− 2.1 9 CHATRCHYAN13S CMS ℓℓ+6ET+ ≥ 2b-tag (MT2(T ))172.85± 0.71± 0.85 10 AALTONEN 12AI CDF ℓ+ 6ET+ ≥ 4j (0,1,2b) template172.7 ± 9.3 ± 3.7 11 AALTONEN 12AL CDF τh + 6ET +4j ( ≥ 1b)173.9 ± 1.9 ± 1.6 12 ABAZOV 12AB D0 ℓℓ+ 6ET+ ≥ 2j (νWT+MWT)

172.5 ± 0.4 ± 1.5 13 CHATRCHYAN12BA CMS ℓℓ+ 6ET+ ≥ 2j ( ≥ 1b), AMWT173.49± 0.43± 0.98 14 CHATRCHYAN12BP CMS ℓ+ 6ET+ ≥ 4j ( ≥ 2b)173.0 ± 1.2 15 AALTONEN 10AE CDF ℓ + 6ET + 4 jets ( ≥ 1 b-tag),ME method170.7 ± 6.3 ± 2.6 16 AALTONEN 10D CDF ℓ + 6ET + 4 jets (b-tag)180.1 ± 3.6 ± 3.9 17,18 ABAZOV 04G D0 lepton + jets176.1 ± 5.1 ± 5.3 19 AFFOLDER 01 CDF lepton + jets167.4 ±10.3 ± 4.8 20,21 ABE 99B CDF dilepton168.4 ±12.3 ± 3.6 18 ABBOTT 98D D0 dilepton186 ±10 ± 5.7 20,22 ABE 97R CDF 6 or more jets
• • • We do not use the following data for averages, �ts, limits, et
. • • •174.5 ± 0.6 ± 2.3 23 AAD 12I ATLS ℓ+ 6ET+ ≥ 4 jets ( ≥ 1 b), MT173.18± 0.56± 0.75 24 AALTONEN 12AP TEVA CDF, D0 
ombination172.5 ± 1.4 ± 1.5 25 AALTONEN 12G CDF 6{8 jets with ≥ 1 b173.7 ± 2.8 ± 1.5 26 ABAZOV 12AB D0 ℓℓ + 6ET + ≥ 2 j (νWT)172.4 ± 1.4 ± 1.3 27 AALTONEN 11AC CDF ℓ + 6ET + 4 jets ( ≥ 1 b-tag)172.3 ± 2.4 ± 1.0 28 AALTONEN 11AK CDF Repl. by AALTONEN 13H172.1 ± 1.1 ± 0.9 29 AALTONEN 11E CDF ℓ + jets and dilepton176.9 ± 8.0 ± 2.7 30 AALTONEN 11T CDF ℓ + 6ET + 4 jets ( ≥ 1 b-tag),pT (ℓ) shape174.94± 0.83± 1.24 31 ABAZOV 11P D0 ℓ + 6ET + 4 jets ( ≥ 1 b-tag)174.0 ± 1.8 ± 2.4 32 ABAZOV 11R D0 dilepton + 6ET + ≥ 2 jets175.5 ± 4.6 ± 4.6 33 CHATRCHYAN11F CMS dilepton + 6ET + jets169.3 ± 2.7 ± 3.2 34 AALTONEN 10C CDF dilepton + b-tag (MT2+NWA)174.8 ± 2.4 + 1.2

− 1.0 35 AALTONEN 10E CDF ≥ 6 jets, vtx b-tag180.5 ±12.0 ± 3.6 36 AALTONEN 09AK CDF ℓ + 6ET + jets (soft µ b-tag)172.7 ± 1.8 ± 1.2 37 AALTONEN 09J CDF ℓ + 6ET + 4 jets (b-tag)171.1 ± 3.7 ± 2.1 38 AALTONEN 09K CDF 6 jets, vtx b-tag171.9 ± 1.7 ± 1.1 39 AALTONEN 09L CDF ℓ + jets, ℓℓ + jets171.2 ± 2.7 ± 2.9 40 AALTONEN 09O CDF dilepton165.5 + 3.4
− 3.3 ± 3.1 41 AALTONEN 09X CDF ℓℓ + 6ET (νφ weighting)174.7 ± 4.4 ± 2.0 42 ABAZOV 09AH D0 dilepton + b-tag (νWT+MWT)170.7 + 4.2
− 3.9 ± 3.5 43,44 AALTONEN 08C CDF dilepton, σt t 
onstrained171.5 ± 1.8 ± 1.1 45 ABAZOV 08AH D0 ℓ + 6ET + 4 jets177.1 ± 4.9 ± 4.7 46,47 AALTONEN 07 CDF 6 jets with ≥ 1 b vtx172.3 +10.8
− 9.6 ±10.8 48 AALTONEN 07B CDF ≥ 4 jets (b-tag)174.0 ± 2.2 ± 4.8 49 AALTONEN 07D CDF ≥ 6 jets, vtx b-tag170.8 ± 2.2 ± 1.4 50,51 AALTONEN 07I CDF lepton + jets (b-tag)173.7 ± 4.4 + 2.1

− 2.0 47,52 ABAZOV 07F D0 lepton + jets176.2 ± 9.2 ± 3.9 53 ABAZOV 07W D0 dilepton (MWT)179.5 ± 7.4 ± 5.6 53 ABAZOV 07W D0 dilepton (νWT)164.5 ± 3.9 ± 3.9 51,54 ABULENCIA 07D CDF dilepton180.7 +15.5
−13.4 ± 8.6 55 ABULENCIA 07J CDF lepton + jets170.3 + 4.1
− 4.5 + 1.2

− 1.8 51,56 ABAZOV 06U D0 lepton + jets (b-tag)173.2 + 2.6
− 2.4 ± 3.2 57,58 ABULENCIA 06D CDF lepton + jets173.5 + 3.7
− 3.6 ± 1.3 44,57 ABULENCIA 06D CDF lepton + jets165.2 ± 6.1 ± 3.4 51,59 ABULENCIA 06G CDF dilepton170.1 ± 6.0 ± 4.1 44,60 ABULENCIA 06V CDF dilepton178.5 ±13.7 ± 7.7 61,62 ABAZOV 05 D0 6 or more jets176.1 ± 6.6 63 AFFOLDER 01 CDF dilepton, lepton+jets, all-jets172.1 ± 5.2 ± 4.9 64 ABBOTT 99G D0 di-lepton, lepton+jets176.0 ± 6.5 21,65 ABE 99B CDF dilepton, lepton+jets, all-jets173.3 ± 5.6 ± 5.5 18,66 ABBOTT 98F D0 lepton + jets175.9 ± 4.8 ± 5.3 20,67 ABE 98E CDF lepton + jets161 ±17 ±10 20 ABE 98F CDF dilepton172.1 ± 5.2 ± 4.9 68 BHAT 98B RVUE dilepton and lepton+jets173.8 ± 5.0 69 BHAT 98B RVUE dilepton, lepton+jets, all-jets173.3 ± 5.6 ± 6.2 18 ABACHI 97E D0 lepton + jets199 +19
−21 ±22 ABACHI 95 D0 lepton + jets176 ± 8 ±10 ABE 95F CDF lepton + b-jet174 ±10 +13

−12 ABE 94E CDF lepton + b-jet1ABAZOV 16 based on 9.7 fb−1 of data in pp 
ollisions at √s = 1.96 TeV. Employs im-proved �t to minimize statisti
al errors and improved jet energy 
alibration, using lepton+ jets mode, whi
h redu
es error of jet energy s
ale. Based on previous determination inABAZOV 12AB with in
reased integrated luminosity and improved �t and 
alibrations.2AAD 15AW based on 4.6 fb−1 of pp data at √s = 7 TeV. Uses template �ts to the ratioof the masses of three-jets (from t 
andidate) and dijets (from W 
andidate). Largeba
kground from multijet produ
tion is modeled with data-driven methods.3AAD 15BF based on 4.6 fb−1 in pp 
ollisions at √s = 7 TeV. Using a three-dimensionaltemplate likelihood te
hnique the lepton plus jets ( ≥ 1b-tagged) 
hannel gives 172.33±0.75 ± 1.02 GeV, while exploiting a one dimensional template method using mℓb thedilepton 
hannel (1 or 2b-tags) gives 173.79±0.54±1.30 GeV. The results are 
ombined.4AALTONEN 15D based on 9.1 fb−1 of pp data at √
s = 1.96 TeV. Uses a templatete
hnique to �t a distribution of a variable de�ned by a linear 
ombination of variablessensitive and insensitive to jet energy s
ale to optimize redu
tion of systemati
 errors.b-tagged and non-b-tagged events are separately analyzed and 
ombined.5Based on 9.3 fb−1 of pp data at √

s = 1.96 TeV. Multivariate algorithm is used todis
riminate signal from ba
kgrounds, and templates are used to measure mt .6Based on 9.7 fb−1 of pp data at √
s = 1.96 TeV. A matrix element method is usedto 
al
ulate the probability of an event to be signal or ba
kground, and the overall jetenergy s
ale is 
onstrained in situ by mW . See ABAZOV 15G for further details.



829829829829See key on page 601 Quark Parti
le Listingst7Based on 3.54 fb−1 of pp data at √
s = 7 TeV. The mass is re
onstru
ted for ea
hevent employing a kinemati
 �t of the jets to a ttbar hypothesis. The 
ombinationwith the pervious CMS measurements in the dilepton and the lepton+jets 
hannels gives173.54 ± 0.33 ± 0.96 GeV.8Based on 8.7 fb−1 in pp 
ollisions at √s = 1.96 TeV. Events with an identi�ed 
hargedlepton or small 6ET are reje
ted from the event sample, so that the measurement isstatisti
ally independent from those in the ℓ + jets and all hadroni
 
hannels while beingsensitive to those events with a τ lepton in the �nal state.9Based on 5.0 fb−1 of pp data at √s = 7 TeV. CHATRCHYAN 13S studied events withdi-lepton + 6ET + ≥ 2 b-jets, and looked for kinemati
al endpoints of MT2, MT2T ,and subsystem variables.10Based on 8.7 fb−1 of data in pp 
ollisions at 1.96 TeV. The JES is 
alibrated by usingthe dijet mass from the W boson de
ay.11Use the ME method based on 2.2 fb−1 of data in pp 
ollisions at 1.96 TeV.12Combination with the result in 1 fb−1 of pre
eding data reported in ABAZOV 09AH aswell as the MWT result of ABAZOV 11R with a statisti
al 
orrelation of 60%.13Based on 5.0 fb−1 of pp data at √

s = 7 TeV. Uses an analyti
al matrix weightingte
hnique (AMWT) and full kinemati
 analysis (KIN).14Based on 5.0 fb−1 of pp data at √
s = 7 TeV. The �rst error is statisti
al and JES
ombined, and the se
ond is systemati
. Ideogram method is used to obtain 2D liklihoodfor the kinemati
al �t with two parameters mtop and JES.15Based on 5.6 fb−1 in pp 
ollisions at √

s = 1.96 TeV. The likelihood 
al
ulated usinga matrix element method gives mt = 173.0 ± 0.7(stat)±0.6(JES)±0.9(syst) GeV, fora total un
ertainty of 1.2 GeV.16Based on 1.9 fb−1 in pp 
ollisions at √
s = 1.96 TeV. The result is from the mea-surement using the transverse de
ay length of b-hadrons and that using the transversemomentum of the W de
ay muons, whi
h are both insensitive to the JES (jet energys
ale) un
ertainty. OUR EVALUATION uses only the measurement exploiting the de-
ay length signi�
an
e whi
h yields 166.9+9.5

−8.5(stat)±2.9 (syst) GeV. The measurementthat uses the lepton transverse momentum is ex
luded from the average be
ause of astatisti
al 
orrelation with other samples.17Obtained by re-analysis of the lepton + jets 
andidate events that led to ABBOTT 98F.It is based upon the maximum likelihood method whi
h makes use of the leading ordermatrix elements.18Based on 125 ± 7 pb−1 of data at √s = 1.8 TeV.19Based on ∼ 106 pb−1 of data at √s= 1.8 TeV.20Based on 109 ± 7 pb−1 of data at √s = 1.8 TeV.21 See AFFOLDER 01 for details of systemati
 error re-evaluation.22Based on the �rst observation of all hadroni
 de
ays of t t pairs. Single b-quark taggingwith jet-shape variable 
onstraints was used to sele
t signal enri
hed multi-jet events.The updated systemati
 error is listed. See AFFOLDER 01, appendix C.23AAD 12I based on 1.04 fb−1 of pp data at √
s = 7 TeV. Uses 2d-template analysis(MT) with mt and jet energy s
ale fa
tor (JSF) from mW mass �t.24Combination based on up to 5.8 fb−1 of data in pp 
ollisions at 1.96 TeV.25Based on 5.8 fb−1 of data in pp 
ollisions at 1.96 TeV. The quoted systemati
 error is thesum of JES(±1.0) and systemati
(±1.1) un
ertainties. The measurement is performedwith a liklihood �t te
hnique whi
h simultaneously determines mt and JES.26Based on 4.3 fb−1 of data in p-pbar 
ollisions at 1.96 TeV. The measurement redu
esthe JES un
ertainty by using the single lepton 
hannel study of ABAZOV 11P.27Based on 3.2 fb−1 in pp 
ollisions at √s = 1.96 TeV. The �rst error is from statisti
sand JES 
ombined, and the latter is from the other systemati
 un
ertainties. The resultis obtained using an unbinned maximum likelihood method where the top quark massand the JES are measured simultaneously, with �JES = 0.3 ± 0.3(stat).28Based on 5.7 fb−1 in pp 
ollisions at √s = 1.96 TeV. Events with an identi�ed 
hargedlepton or small 6ET are reje
ted from the event sample, so that the measurement isstatisti
ally independent from those in the ℓ + jets and all hadroni
 
hannels while beingsensitive to those events with a τ lepton in the �nal state. Supersedes AALTONEN 07B.29AALTONEN 11E based on 5.6 fb−1 in pp 
ollisions at √s = 1.96 TeV. Employs a multi-dimensional template likelihood te
hnique where the lepton plus jets (one or two b-tags)
hannel gives 172.2 ± 1.2 ± 0.9 GeV while the dilepton 
hannel yields 170.3 ± 2.0 ± 3.1GeV. The results are 
ombined. OUR EVALUATION in
ludes the measurement in thedilepton 
hannel only.30Uses a likelihood �t of the lepton pT distribution based on 2.7 fb−1 in pp 
ollisions at√

s = 1.96 TeV.31Based on 3.6 fb−1 in pp 
ollisions at √s = 1.96 TeV. ABAZOV 11P reports 174.94 ±0.83±0.78±0.96 GeV, where the �rst un
ertainty is from statisti
s, the se
ond from JES,and the last from other systemati
 un
ertainties. We 
ombine the JES and systemati
un
ertainties. A matrix-element method is used where the JES un
ertainty is 
onstrainedby the W mass. ABAZOV 11P des
ribes a measurement based on 2.6 fb−1 that is
ombined with ABAZOV 08AH, whi
h employs an independent 1 fb−1 of data.32Based on a matrix-element method whi
h employs 5.4 fb−1 in pp 
ollisions at √
s =1.96 TeV. Superseded by ABAZOV 12AB.33Based on 36 pb−1 of pp 
ollisions at √s = 7 TeV. A Kinemati
 Method using b-taggingand an analyti
al Matrix Weighting Te
hnique give 
onsistent results and are 
ombined.Superseded by CHATRCHYAN 12BA.34Based on 3.4 fb−1 of pp 
ollisions at√s = 1.96 TeV. The result is obtained by 
ombiningthe MT2 variable method and the NWA (Neutrino Weighting Algorithm). The MT2method alone gives mt = 168.0+4.8

−4.0(stat)±2.9(syst) GeV with smaller systemati
 errordue to small JES un
ertainty.35Based on 2.9 fb−1 of pp 
ollisions at √s = 1.96 TeV. The �rst error is from statisti
sand JES un
ertainty, and the latter is from the other systemati
s. Neural-network-basedkinemati
al sele
tion of 6 highest ET jets with a vtx b-tag is used to distinguish signalfrom ba
kground. Superseded by AALTONEN 12G.36Based on 2 fb−1 of data at √
s = 1.96 TeV. The top mass is obtained from the mea-surement of the invariant mass of the lepton (e or µ) from W de
ays and the soft µ inb-jet. The result is insensitive to jet energy s
aling.37Based on 1.9 fb−1 of data at √

s = 1.96 TeV. The �rst error is from statisti
s and jetenergy s
ale un
ertainty, and the latter is from the other systemati
s. Matrix elementmethod with e�e
tive propagators.38Based on 943 pb−1 of data at √
s = 1.96 TeV. The �rst error is from statisti
al andjet-energy-s
ale un
ertainties, and the latter is from other systemati
s. AALTONEN 09Ksele
ted 6 jet events with one or more vertex b-tags and used the tree-level matrix elementto 
onstru
t template models of signal and ba
kground.

39Based on 1.9 fb−1 of data at √
s = 1.96 TeV. The �rst error is from statisti
al andjet-energy-s
ale (JES) un
ertainties, and the se
ond is from other systemati
s. Eventswith lepton + jets and those with dilepton + jets were simultaneously �t to 
onstrainmt and JES. Lepton + jets data only give mt = 171.8 ± 2.2 GeV, and dilepton dataonly give mt = 171.2+5.3

−5.1 GeV.40Based on 2 fb−1 of data at √s = 1.96 TeV. Matrix Element method. Optimal sele
tion
riteria for 
andidate events with two high pT leptons, high 6ET , and two or more jetswith and without b-tag are obtained by neural network with neuroevolution te
hnique tominimize the statisti
al error of mt .41Based on 2.9 fb−1 of data at √s = 1.96 TeV. Mass mt is estimated from the likelihoodfor the eight-fold kinemati
al solutions in the plane of the azimuthal angles of the twoneutrino momenta.42Based on 1 fb−1 of data at √
s = 1.96 TeV. Events with two identi�ed leptons, andthose with one lepton plus one isolated tra
k and a b-tag were used to 
onstrain mt . Theresult is a 
ombination of the νWT (ν Weighting Te
hnique) result of 176.2 ± 4.8 ± 2.1GeV and the MWT (Matrix-element Weighting Te
hnique) result of 173.2 ± 4.9 ± 2.0GeV.43Reports measurement of 170.7+4.2
−3.9 ± 2.6 ± 2.4 GeV based on 1.2 fb−1 of data at √s= 1.96 TeV. The last error is due to the theoreti
al un
ertainty on σt t . Without the
ross-se
tion 
onstraint a top mass of 169.7+5.2

−4.9 ± 3.1 GeV is obtained.44Template method.45Result is based on 1 fb−1 of data at √
s = 1.96 TeV. The �rst error is from statisti
sand jet energy s
ale un
ertainty, and the latter is from the other systemati
s.46Based on 310 pb−1 of data at √s = 1.96 TeV.47 Ideogram method.48Based on 311 pb−1 of data at √s = 1.96 TeV. Events with 4 or more jets with ET >15 GeV, signi�
ant missing ET , and se
ondary vertex b-tag are used in the �t. About44% of the signal a

eptan
e is from τ ν + 4 jets. Events with identi�ed e or µ arevetoed to provide a statisti
ally independent measurement.49Based on 1.02 fb−1 of data at √s = 1.96 TeV. Superseded by AALTONEN 12G.50Based on 955 pb−1 of data √

s = 1.96 TeV. mt and JES (Jet Energy S
ale) are �ttedsimultaneously, and the �rst error 
ontains the JES 
ontribution of 1.5 GeV.51Matrix element method.52Based on 425 pb−1 of data at√s = 1.96 TeV. The �rst error is a 
ombination of statisti
sand JES (Jet Energy S
ale) un
ertainty, whi
h has been measured simultaneously to giveJES = 0.989 ± 0.029(stat).53Based on 370 pb−1 of data at √
s = 1.96 TeV. Combined result of MWT (Matrix-element Weighting Te
hnique) and νWT (ν Weighting Te
hnique) analyses is 178.1 ±6.7 ± 4.8 GeV.54Based on 1.0 fb−1 of data at √

s = 1.96 TeV. ABULENCIA 07D improves the matrixelement des
ription by in
luding the e�e
ts of initial-state radiation.55Based on 695 pb−1 of data at √
s = 1.96 TeV. The transverse de
ay length of the bhadron is used to determine mt , and the result is free from the JES (jet energy s
ale)un
ertainty.56Based on ∼ 400 pb−1 of data at √s = 1.96 TeV. The �rst error in
ludes statisti
al andsystemati
 jet energy s
ale un
ertainties, the se
ond error is from the other systemati
s.The result is obtained with the b-tagging information. The result without b-tagging is169.2+5.0

−7.4+1.5
−1.4 GeV. Superseded by ABAZOV 08AH.57Based on 318 pb−1 of data at √s = 1.96 TeV.58Dynami
al likelihood method.59Based on 340 pb−1 of data at √s = 1.96 TeV.60Based on 360 pb−1 of data at √s = 1.96 TeV.61Based on 110.2 ± 5.8 pb−1 at √s = 1.8 TeV.62Based on the all hadroni
 de
ays of t t pairs. Single b-quark tagging via the de
ay 
hainb → 
 → µ was used to sele
t signal enri
hed multijet events. The result was obtainedby the maximum likelihood method after bias 
orre
tion.63Obtained by 
ombining the measurements in the lepton + jets [AFFOLDER 01℄, all-jets[ABE 97R, ABE 99B℄, and dilepton [ABE 99B℄ de
ay topologies.64Obtained by 
ombining the D0 result mt (GeV) = 168.4 ± 12.3 ± 3.6 from 6 di-leptonevents (see also ABBOTT 98D) and mt (GeV) = 173.3 ± 5.6 ± 5.5 from lepton+jetevents (ABBOTT 98F).65Obtained by 
ombining the CDF results of mt (GeV)=167.4± 10.3± 4.8 from 8 dileptonevents, mt (GeV)=175.9 ± 4.8 ± 5.3 from lepton+jet events (ABE 98E), and mt(GeV)=186.0 ± 10.0 ± 5.7 from all-jet events (ABE 97R). The systemati
 errors inthe latter two measurements are 
hanged in this paper.66 See ABAZOV 04G.67The updated systemati
 error is listed. See AFFOLDER 01, appendix C.68Obtained by 
ombining the D� results of mt (GeV)=168.4± 12.3± 3.6 from 6 dileptonevents and mt (GeV)=173.3 ± 5.6 ± 5.5 from 77 lepton+jet events.69Obtained by 
ombining the D� results from dilepton and lepton+jet events, and theCDF results (ABE 99B) from dilepton, lepton+jet events, and all-jet events.t-Quark MS Mass from Cross-Se
tion Measurementst-Quark MS Mass from Cross-Se
tion Measurementst-Quark MS Mass from Cross-Se
tion Measurementst-Quark MS Mass from Cross-Se
tion MeasurementsThe top quark MS or pole mass 
an be extra
ted from a measurement of σ(t t) byusing theory 
al
ulations. We quote below the MS mass. See the review \The TopQuark" and referen
es therein for more information.VALUE (GeV) DOCUMENT ID TECN COMMENT160.0+4.8

−4.3160.0+4.8
−4.3160.0+4.8
−4.3160.0+4.8
−4.3 1 ABAZOV 11S D0 σ(t t) + theory

• • • We do not use the following data for averages, �ts, limits, et
. • • •2 ABAZOV 09AG D0 
ross se
ts, theory + exp3 ABAZOV 09R D0 
ross se
ts, theory + exp



830830830830Quark Parti
le Listingst 1Based on 5.3 fb−1 in pp 
ollisions at √s = 1.96 TeV. ABAZOV 11S uses the measuredt t produ
tion 
ross se
tion of 8.13+1.02
−0.90 pb [ABAZOV 11E℄ in the lepton plus jets
hannel to obtain the top quark MS mass by using an approximate NNLO 
omputation(MOCH 08, LANGENFELD 09). The 
orresponding top quark pole mass is 167.5+5.4

−4.9GeV. A di�erent theory 
al
ulation (AHRENS 10, AHRENS 10A) is also used and yieldsmMS
t = 154.5+5.0

−4.3 GeV.2Based on 1 fb−1 of data at √
s = 1.96 TeV. Uses the ℓ + jets, ℓℓ, and ℓτ + jets
hannels. ABAZOV 09AG extra
t the pole mass of the top quark using two di�erent
al
ulations that yield 169.1+5.9

−5.2 GeV (MOCH 08, LANGENFELD 09) and 168.2+5.9
−5.4GeV (KIDONAKIS 08).3Based on 1 fb−1 of data at √

s = 1.96 TeV. Uses the ℓℓ and ℓτ + jets 
hannels.ABAZOV 09R extra
t the pole mass of the top quark using two di�erent 
al
ulationsthat yield 173.3+9.8
−8.6 GeV (MOCH 08, LANGENFELD 09) and 171.5+9.9

−8.8 GeV (CAC-CIARI 08).t-Quark Pole Mass from Cross-Se
tion Measurementst-Quark Pole Mass from Cross-Se
tion Measurementst-Quark Pole Mass from Cross-Se
tion Measurementst-Quark Pole Mass from Cross-Se
tion MeasurementsVALUE (GeV) DOCUMENT ID TECN COMMENT174.2±1.4 OUR AVERAGE174.2±1.4 OUR AVERAGE174.2±1.4 OUR AVERAGE174.2±1.4 OUR AVERAGE173.7+2.3
−2.1 1 AAD 15BWATLS ℓ+ 6ET+ ≥ 5j (2b-tag)172.9+2.5
−2.6 2 AAD 14AY ATLS pp at √s = 7, 8 TeV176.7+3.0
−2.8 3 CHATRCHYAN14 CMS pp at √s = 7 TeV1AAD 15BW based on 4.6 fb−1 of pp data at √s = 7 TeV. Uses normalized di�erential
ross se
tion for t t + 1 jet as a fun
tion of the inverse of the invariant mass of the t t+ 1 jet system. The measured 
ross se
tion is 
orre
ted to the parton level. Then a �tto the data using NLO + parton shower predi
tion is performed.2Used σ(t t) for e µ events. The result is a 
ombination of the measurements mt =171.4 ± 2.6 GeV based on 4.6 fb−1 of data at 7 TeV and mt = 174.1 ± 2.6 GeV basedon 20.3 fb−1 of data at 8 TeV.3Used σ(t t) from pp 
ollisions at √

s = 7 TeV measured in CHATRCHYAN 12AX toobtain mt(pole) for αs (mZ ) = 0.1184 ± 0.0007. The errors have been 
orre
ted inKHACHATRYAN 14K. mt − mtmt − mtmt − mtmt − mtTest of CPT 
onservation. OUR AVERAGE assumes that the systemati
un
ertainties are un
orrelated.VALUE (GeV) DOCUMENT ID TECN COMMENT
−0.2 ±0.5 OUR AVERAGE−0.2 ±0.5 OUR AVERAGE−0.2 ±0.5 OUR AVERAGE−0.2 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.67±0.61±0.41 1 AAD 14 ATLS ℓ + 6ET + ≥ 4j ( ≥ 2 b-tags)
−1.95±1.11±0.59 2 AALTONEN 13E CDF ℓ + 6ET + ≥ 4j (0,1,2 b-tags)
−0.44±0.46±0.27 3 CHATRCHYAN12Y CMS ℓ + 6ET + ≥ 4j0.8 ±1.8 ±0.5 4 ABAZOV 11T D0 ℓ + 6ET + 4 jets ( ≥ 1 b-tag)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−3.3 ±1.4 ±1.0 5 AALTONEN 11K CDF Repl. by AALTONEN 13E3.8 ±3.4 ±1.2 6 ABAZOV 09AA D0 ℓ + 6ET + 4 jets ( ≥ 1 b-tag)1Based on 4.7 fb−1 of pp data at √s = 7 TeV and an average top mass of 172.5 GeV/
2.2Based on 8.7 fb−1 of pp 
ollisions at √s = 1.96 TeV and an average top mass of 172.5GeV/
2.3Based on 4.96 fb−1 of pp data at √s = 7 TeV. Based on the �tted mt for ℓ+ and ℓ−events using the Ideogram method.4Based on a matrix-element method whi
h employs 3.6 fb−1 in pp 
ollisions at √

s =1.96 TeV.5Based on a template likelihood te
hnique whi
h employs 5.6 fb−1 in pp 
ollisions at √s= 1.96 TeV.6Based on 1 fb−1 of data in pp 
ollisions at √s = 1.96 TeV.t-quark DECAY WIDTHt-quark DECAY WIDTHt-quark DECAY WIDTHt-quark DECAY WIDTHVALUE (GeV) CL% DOCUMENT ID TECN COMMENT1.41+0.19
−0.15 OUR AVERAGE1.41+0.19
−0.15 OUR AVERAGE1.41+0.19
−0.15 OUR AVERAGE1.41+0.19
−0.15 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.1.36±0.02+0.14

−0.11 1 KHACHATRY...14E CMS ℓℓ+6ET+2-4jets (0-2b-tag)2.00+0.47
−0.43 2 ABAZOV 12T D0 �(t → bW )/B(t → bW )

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 6.38 95 3 AALTONEN 13Z CDF ℓ+ 6ET+ ≥ 4j ( ≥ 0 b),dire
t1.99+0.69

−0.55 4 ABAZOV 11B D0 Repl. by ABAZOV 12T
> 1.21 95 4 ABAZOV 11B D0 � (t → W b)
< 7.6 95 5 AALTONEN 10AC CDF ℓ + jets, dire
t
<13.1 95 6 AALTONEN 09M CDF mt (re
) distribution1Based on 19.7 fb−1 of pp data at √s = 8 TeV. The result is obtained by 
ombining themeasurement of R = � (t → W b)/� (t → W q (q=b,s ,d)) and a previous CMS mea-surement of the t-
hannel single top produ
tion 
ross se
tion of CHATRCHYAN 12BQ,by using the theoreti
al 
al
ulation of � (t → W b) for mt = 172.5 GeV.2Based on 5.4 fb−1 of data in pp 
ollisions at 1.96 TeV. �(t → bW ) = 1.87+0.44

−0.40GeV is obtained from the observed t-
hannel single top quark produ
tion 
ross se
tion,whereas B(t → bW ) = 0.90 ± 0.04 is used assuming ∑
qB(t → qW ) = 1. The resultis valid for mt = 172.5 GeV. See the paper for the values for mt = 170 or 175 GeV.3Based on 8.7 fb−1 of data. The two sided 68% CL interval is 1.10 GeV < �t < 4.05GeV for mt = 172.5 GeV.

4Based on 2.3 fb−1 in pp 
ollisions at √
s = 1.96 TeV. ABAZOV 11B extra
ted�t from the partial width � (t → W b) = 1.92+0.58

−0.51 GeV measured using the t-
hannel single top produ
tion 
ross se
tion, and the bran
hing fra
tion brt → W b =0.962+0.068
−0.066(stat)+0.064

−0.052(syst). The � (t → W b) measurement gives the 95% CLlowerbound of � (t → W b) and hen
e that of �t .5Results are based on 4.3 fb−1 of data in pp 
ollisions at √s = 1.96 TeV. The top quarkmass and the hadroni
ally de
aying W boson mass are re
onstru
ted for ea
h 
andidateevents and 
ompared with templates of di�erent top quark width. The two sided 68%CL interval is 0.3 GeV< �t < 4.4 GeV for mt = 172.5 GeV.6Based on 955 pb−1 of pp 
ollision data at √s = 1.96 TeV. AALTONEN 09M sele
tedt t 
andidate events for the ℓ + 6ET + jets 
hannel with one or two b-tags, and examinethe de
ay width dependen
e of the re
onstru
ted mt distribution. The result is for mt=175 GeV, whereas the upper limit is lower for smaller mt .t DECAY MODESt DECAY MODESt DECAY MODESt DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 t → W q (q = b, s , d)�2 t → W b�3 t → ℓνℓ anything [a,b℄ ( 9.4±2.4) %�4 t → e νe b (13.3±0.6) %�5 t → µνµb (13.4±0.6) %�6 t → τ ντ b�7 t → qq b (66.5±1.4) %�8 t → γ q (q=u,
) [
℄ < 5.9 × 10−3 95%�T = 1 weak neutral 
urrent (T1) modes�T = 1 weak neutral 
urrent (T1) modes�T = 1 weak neutral 
urrent (T1) modes�T = 1 weak neutral 
urrent (T1) modes�9 t → Z q (q=u,
) T1 [d℄ < 5 × 10−4 95%�10 t → Hq�11 t → ℓ+qq′ (q=d ,s ,b; q′=u,
) < 1.6 × 10−3 95%[a℄ ℓ means e or µ de
ay mode, not the sum over them.[b℄ Assumes lepton universality and W -de
ay a

eptan
e.[
 ℄ This limit is for �(t → γ q)/�(t → W b).[d ℄ This limit is for �(t → Z q)/�(t → W b).t BRANCHING RATIOSt BRANCHING RATIOSt BRANCHING RATIOSt BRANCHING RATIOS�(W b)/�(W q (q = b, s , d)) �2/�1�(W b)/�(W q (q = b, s , d)) �2/�1�(W b)/�(W q (q = b, s , d)) �2/�1�(W b)/�(W q (q = b, s , d)) �2/�1OUR AVERAGE assumes that the systemati
 un
ertainties are un
orrelated.VALUE DOCUMENT ID TECN COMMENT0.957±0.034 OUR AVERAGE0.957±0.034 OUR AVERAGE0.957±0.034 OUR AVERAGE0.957±0.034 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.0.87 ±0.07 1 AALTONEN 14G CDF ℓℓ+ 6ET+ ≥ 2j (0,1,2 b-tag)1.014±0.003±0.032 2 KHACHATRY...14E CMS ℓℓ+ 6ET + 2,3,4j (0{2b-tag)0.94 ±0.09 3 AALTONEN 13G CDF ℓ+ 6ET+ ≥ 3jets ( ≥ 1b-tag)0.90 ±0.04 4 ABAZOV 11X D0
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.97 +0.09

−0.08 5 ABAZOV 08M D0 ℓ + n jets with 0,1,2 b-tag1.03 +0.19
−0.17 6 ABAZOV 06K D01.12 +0.21
−0.19 +0.17

−0.13 7 ACOSTA 05A CDF Repl. by AALTONEN 13G0.94 +0.26
−0.21 +0.17

−0.12 8 AFFOLDER 01C CDF1Based on 8.7 fb−1 of data. This measurement gives ∣∣V tb ∣∣ = 0.93 ± 0.04 and ∣∣V tb ∣∣ >0.85 (95% CL) in the SM.2Based on 19.7 fb−1 of pp data at √s = 8 TeV. The result is obtained by 
ounting thenumber of b jets per t t signal events in the dilepton 
hannel. The t t produ
tion 
rossse
tion is measured to be σ(t t) = 238 ± 1 ± 15 pb, in good agreement with the SMpredi
tion and the latest CMS measurement of CHATRCHYAN 14F. The measurementgives R > 0.995 (95% CL), or ∣∣V tb ∣∣ > 0.975 (95% CL) in the SM, requiring R ≤ 1.3Based on 8.7 fb−1 of pp 
ollisions at √
s = 1.96 TeV. Measure the fra
tion of t →W b de
ays simultaneously with the t t 
ross se
tion. The 
orrelation 
oeÆ
ient betweenthose two measurements is −0.434. Assume unitarity of the 3×3 CKM matrix and set∣∣V tb ∣∣ > 0.89 at 95% CL.4Based on 5.4 fb−1 of data. The error is statisti
al and systemati
 
ombined. The resultis a 
ombination of 0.95 ± 0.07 from ℓ + jets 
hannel and 0.86 ± 0.05 from ℓℓ 
hannel.∣∣Vtb∣∣ = 0.95± 0.02 follows from the result by assuming unitarity of the 3x3 CKM matrix.5Result is based on 0.9 fb−1 of data. The 95% CL lower bound R > 0.79 gives ∣∣V tb ∣∣ >0.89 (95% CL).6ABAZOV 06K result is from the analysis of t t → ℓν + ≥ 3 jets with 230 pb−1 ofdata at √s = 1.96 TeV. It gives R > 0.61 and ∣∣V tb ∣∣ >0.78 at 95% CL. Superseded byABAZOV 08M.7ACOSTA 05A result is from the analysis of lepton + jets and di-lepton + jets �nal statesof t t 
andidate events with ∼ 162 pb−1 of data at √s = 1.96 TeV. The �rst error isstatisti
al and the se
ond systemati
. It gives R > 0.61, or ∣∣V tb ∣∣ > 0.78 at 95% CL.8AFFOLDER 01C measures the top-quark de
ay width ratio R= �(W b)/�(W q), whereq is a d, s , or b quark, by using the number of events with multiple b tags. The �rsterror is statisti
al and the se
ond systemati
. A numeri
al integration of the likelihoodfun
tion gives R> 0.61 (0.56) at 90% (95%) CL. By assuming three generation unitarity,∣∣Vt b ∣∣= 0.97+0.16

−0.12 or ∣∣Vt b ∣∣ > 0.78 (0.75) at 90% (95%) CL is obtained. The resultis based on 109 pb−1 of data at √s= 1.8 TeV.



831831831831See key on page 601 Quark Parti
le Listingst
WEIGHTED AVERAGE
0.957±0.034 (Error scaled by 1.5)

ABAZOV 11X D0 2.0
AALTONEN 13G CDF 0.0
KHACHATRY... 14E CMS 3.2
AALTONEN 14G CDF 1.5

χ2

       6.8
(Confidence Level = 0.080)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3�(W b)/�(W q (q = b, s , d))�(
ℓνℓ anything)/�total �3/��(
ℓνℓ anything)/�total �3/��(
ℓνℓ anything)/�total �3/��(
ℓνℓ anything)/�total �3/�VALUE DOCUMENT ID TECN0.094±0.0240.094±0.0240.094±0.0240.094±0.024 1 ABE 98X CDF1 ℓ means e or µ de
ay mode, not the sum. Assumes lepton universality and W -de
aya

eptan
e.�(e νe b)/�total �4/��(e νe b)/�total �4/��(e νe b)/�total �4/��(e νe b)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.133±0.004±0.0050.133±0.004±0.0050.133±0.004±0.0050.133±0.004±0.005 1 AAD 15CC ATLS ℓ+jets, ℓℓ+jets, ℓτh+jets1AAD 15CC based on 4.6 fb−1 of pp data at √

s = 7 TeV. It is assumed that the topbran
hing ratios to leptons and jets add up to one and that only SM pro
esses 
ontributeto the ba
kground. The event sele
tion 
riteria are optimized for the ℓτh + jets 
hannel.�(
µνµb)/�total �5/��(
µνµb)/�total �5/��(
µνµb)/�total �5/��(
µνµb)/�total �5/�VALUE DOCUMENT ID TECN COMMENT0.134±0.003±0.0050.134±0.003±0.0050.134±0.003±0.0050.134±0.003±0.005 1 AAD 15CC ATLS ℓ+jets, ℓℓ+jets, ℓτh+jets1AAD 15CC based on 4.6 fb−1 of pp data at √

s = 7 TeV. It is assumed that the topbran
hing ratios to leptons and jets add up to one and that only SM pro
esses 
ontributeto the ba
kground. The event sele
tion 
riteria are optimized for the ℓτh + jets 
hannel.�(
τ ντ b)/�total �6/��(
τ ντ b)/�total �6/��(
τ ντ b)/�total �6/��(
τ ντ b)/�total �6/�VALUE DOCUMENT ID TECN COMMENT0.071±0.006 OUR AVERAGE0.071±0.006 OUR AVERAGE0.071±0.006 OUR AVERAGE0.071±0.006 OUR AVERAGE0.070±0.003±0.005 1 AAD 15CC ATLS ℓ+jets, ℓℓ+jets, ℓτh+jets0.096±0.028 2 AALTONEN 14A CDF ℓ+τh+ ≥ 2jets ( ≥ 1b-tag)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3 ABULENCIA 06R CDF ℓτ + jets4 ABE 97V CDF ℓτ + jets1AAD 15CC based on 4.6 fb−1 of pp data at √
s = 7 TeV. It is assumed that the topbran
hing ratios to leptons and jets add up to one and that only SM pro
esses 
ontributeto the ba
kground. The event sele
tion 
riteria are optimized for the ℓτh + jets 
hannel.2Based on 9 fb−1 of data. The measurement is in the 
hannel t t → (b ℓν)(b τ ν), where

τ de
ays into hadrons (τh), and ℓ (e or µ) in
lude ℓ from τ de
ays (τℓ). The result is
onsistent with lepton universality.3ABULENCIA 06R looked for t t → (ℓνℓ ) (τ ντ )bb events in 194 pb−1 of pp 
ollisions at√
s = 1.96 TeV. 2 events are found where 1.00± 0.17 signal and 1.29± 0.25 ba
kgroundevents are expe
ted, giving a 95% CL upper bound for the partial width ratio �(t →

τ ν q) / �SM (t → τ ν q) < 5.2.4ABE 97V sear
hed for t t → (ℓνℓ ) (τ ντ )bb events in 109 pb−1 of pp 
ollisions at√s = 1.8 TeV. They observed 4 
andidate events where one expe
ts ∼ 1 signal and ∼ 2ba
kground events. Three of the four observed events have jets identi�ed as b 
andidates.�(qq b)/�total �7/��(qq b)/�total �7/��(qq b)/�total �7/��(qq b)/�total �7/�VALUE DOCUMENT ID TECN COMMENT0.665±0.004±0.0130.665±0.004±0.0130.665±0.004±0.0130.665±0.004±0.013 1 AAD 15CC ATLS ℓ+jets, ℓℓ+jets, ℓτh+jets1AAD 15CC based on 4.6 fb−1 of pp data at √s = 7 TeV. Bran
hing ratio of top quarkinto b and jets. It is assumed that the top bran
hing ratios to leptons and jets add upto one and that only SM pro
esses 
ontribute to the ba
kground. The event sele
tion
riteria are optimized for the ℓτh + jets 
hannel.�(
γ q (q=u,
))/�total �8/��(
γ q (q=u,
))/�total �8/��(
γ q (q=u,
))/�total �8/��(
γ q (q=u,
))/�total �8/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.0059<0.0059<0.0059<0.0059 95 1 CHEKANOV 03 ZEUS B(t → γ u)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.0064 95 2 AARON 09A H1 t → γ u
<0.0465 95 3 ABDALLAH 04C DLPH B(γ 
 or γ u)
<0.0132 95 4 AKTAS 04 H1 B(t → γ u)
<0.041 95 5 ACHARD 02J L3 B(t → γ 
 or γ u)
<0.032 95 6 ABE 98G CDF t t → (W b) (γ 
 or γ u)

1CHEKANOV 03 looked for single top produ
tion via FCNC in the rea
tion e± p → e±(t or t) X in 130.1 pb−1 of data at √s=300{318 GeV. No eviden
e for top produ
-tion and its de
ay into bW was found. The result is obtained for mt=175 GeV whenB(γ 
)=B(Z q)=0, where q is a u or 
 quark. Bounds on the e�e
tive t-u-γ and t-u-Z
ouplings are found in their Fig. 4. The 
onversion to the 
onstraint listed is from private
ommuni
ation, E. Gallo, January 2004.2AARON 09A looked for single top produ
tion via FCNC in e± p 
ollisions at HERA with474 pb−1. The upper bound of the 
ross se
tion gives the bound on the FCNC 
oupling
κt uγ/� < 1.03 TeV−1, whi
h 
orresponds to the result for mt = 175 GeV.3ABDALLAH 04C looked for single top produ
tion via FCNC in the rea
tion e+ e− →t 
 or t u in 541 pb−1 of data at √s=189{208 GeV. No deviation from the SM is found,whi
h leads to the bound on B(t → γ q), where q is a u or a 
 quark, for mt =175 GeV when B(t → Z q)=0 is assumed. The 
onversion to the listed bound is fromprivate 
ommuni
ation, O. Yush
henko, April 2005. The bounds on the e�e
tive t-q-γand t-q-Z 
ouplings are given in their Fig. 7 and Table 4, for mt = 170{180 GeV, wheremost 
onservative bounds are found by 
hoosing the 
hiral 
ouplings to maximize thenegative interferen
e between the virtual γ and Z ex
hange amplitudes.4AKTAS 04 looked for single top produ
tion via FCNC in e± 
ollisions at HERA with118.3 pb−1, and found 5 events in the e or µ 
hannels. By assuming that they are dueto statisti
al 
u
tuation, the upper bound on the t uγ 
oupling κt uγ < 0.27 (95% CL)is obtained. The 
onversion to the partial width limit, when B(γ 
) = B(Z u) = B(Z 
)= 0, is from private 
ommuni
ation, E. Perez, May 2005.5ACHARD 02J looked for single top produ
tion via FCNC in the rea
tion e+ e− → t 
or t u in 634 pb−1 of data at √s= 189{209 GeV. No deviation from the SM is found,whi
h leads to a bound on the top-quark de
ay bran
hing fra
tion B(γ q), where q is a uor 
 quark. The bound assumes B(Z q)=0 and is for mt= 175 GeV; bounds for mt=170GeV and 180 GeV and B(Z q) 6= 0 are given in Fig. 5 and Table 7.6ABE 98G looked for t t events where one t de
ays into qγ while the other de
ays intobW . The quoted bound is for �(γ q)/�(W b).�(Z q (q=u,
))/�total �9/��(Z q (q=u,
))/�total �9/��(Z q (q=u,
))/�total �9/��(Z q (q=u,
))/�total �9/�Test for �T=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

< 0.7 95 1 AAD 16D ATLS t → Z q (q = u, 
)
< 0.5< 0.5< 0.5< 0.5 95 2 CHATRCHYAN14S CMS t → Z q (q = u, 
)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.6 95 3 CHATRCHYAN14S CMS t → Z q (q = u, 
)
< 2.1 95 4 CHATRCHYAN13F CMS t → Z q (q = u, 
)
< 7.3 95 5 AAD 12BT ATLS t t → ℓ+ ℓ− ℓ′± + 6ET + jets
<32 95 6 ABAZOV 11M D0 t → Z q (q = u, 
)
<83 95 7 AALTONEN 09AL CDF t → Z q (q=
)
<37 95 8 AALTONEN 08AD CDF t → Z q (q = u, 
)
< 1.59× 102 95 9 ABDALLAH 04C DLPH e+ e− → t 
 or t u
< 1.37× 102 95 10 ACHARD 02J L3 e+ e− → t 
 or t u
< 1.4 × 102 95 11 HEISTER 02Q ALEP e+ e− → t 
 or t u
< 1.37× 102 95 12 ABBIENDI 01T OPAL e+ e− → t 
 or t u
< 1.7 × 102 95 13 BARATE 00S ALEP e+ e− → t 
 or t u
< 3.3 × 102 95 14 ABE 98G CDF t t → (W b) (Z 
 or Z u)1AAD 16D based on 20.3 fb−1 of pp data at √s = 8 TeV. The FCNC de
ay is sear
hedfor in t t events in the �nal state (bW )(qZ) when both W and Z de
ay leptoni
ally,giving 3 
harged leptons.2CHATRCHYAN 14S 
ombined sear
h limit from this and CHATRCHYAN 13F data.3Based on 19.7 fb−1 of pp data at √s = 8 TeV. The 
avor 
hanging de
ay is sear
hedfor in t t events in the �nal state (bW )(qZ) when both W and Z de
ay leptoi
ally,giving 3 
harged leptons.4Based on 5.0 fb−1 of pp data at √s = 7 TeV. Sear
h for FCNC de
ays of the top quarkin t t → ℓ+ ℓ− ℓ′± ν + jets (ℓ, ℓ′ = e, µ) �nal states found no ex
ess of signal events.5Based on 2.1 fb−1 of pp data at √s = 7 TeV.6Based on 4.1 fb−1 of data. ABAZOV 11M sear
hed for FCNC de
ays of the top quarkin t t → ℓ+ ℓ− ℓ′± ν + jets (ℓ, ℓ′ = e, µ) �nal states, and absen
e of the signal givesthe bound.7Based on pp data of 1.52 fb−1. AALTONEN 09AL 
ompared t t → W bW b → ℓν b j j band t t → Z 
W b → ℓℓ
 j j b de
ay 
hains, and absen
e of the latter signal gives thebound. The result is for 100% longitudinally polarized Z boson and the theoreti
al t tprodu
tion 
ross se
tion The results for di�erent Z polarizations and those without the
ross se
tion assumption are given in their Table XII.8Result is based on 1.9 fb−1 of data at √

s = 1.96 TeV. t t → W bZ q or Z qZ qpro
esses have been looked for in Z + ≥ 4 jet events with and without b-tag. No signalleads to the bound B(t → Z q) < 0.037 (0.041) for mt = 175 (170) GeV.9ABDALLAH 04C looked for single top produ
tion via FCNC in the rea
tion e+ e− →t 
 or t u in 541 pb−1 of data at √s=189{208 GeV. No deviation from the SM is found,whi
h leads to the bound on B(t → Z q), where q is a u or a 
 quark, for mt =175 GeV when B(t → γ q)=0 is assumed. The 
onversion to the listed bound is fromprivate 
ommuni
ation, O. Yush
henko, April 2005. The bounds on the e�e
tive t-q-γand t-q-Z 
ouplings are given in their Fig. 7 and Table 4, for mt = 170{180 GeV, wheremost 
onservative bounds are found by 
hoosing the 
hiral 
ouplings to maximize thenegative interferen
e between the virtual γ and Z ex
hange amplitudes.10ACHARD 02J looked for single top produ
tion via FCNC in the rea
tion e+ e− → t 
or t u in 634 pb−1 of data at √s= 189{209 GeV. No deviation from the SM is found,whi
h leads to a bound on the top-quark de
ay bran
hing fra
tion B(Z q), where q isa u or 
 quark. The bound assumes B(γ q)=0 and is for mt= 175 GeV; bounds formt=170 GeV and 180 GeV and B(γ q) 6=0 are given in Fig. 5 and Table 7. Table 6 gives
onstraints on t-
-e-e four-fermi 
onta
t intera
tions.11HEISTER 02Q looked for single top produ
tion via FCNC in the rea
tion e+ e− → t 
or t u in 214 pb−1 of data at √s= 204{209 GeV. No deviation from the SM is found,whi
h leads to a bound on the bran
hing fra
tion B(Z q), where q is a u or 
 quark. Thebound assumes B(γ q)=0 and is for mt= 174 GeV. Bounds on the e�e
tive t- (
 or u)-
γ and t- (
 or u)- Z 
ouplings are given in their Fig. 2.12ABBIENDI 01T looked for single top produ
tion via FCNC in the rea
tion e+ e− → t 
or t u in 600 pb−1 of data at √s= 189{209 GeV. No deviation from the SM is found,whi
h leads to bounds on the bran
hing fra
tions B(Z q) and B(γ q), where q is a u
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 quark. The result is obtained for mt= 174 GeV. The upper bound be
omes 9.7%(20.6%) for mt= 169 (179) GeV. Bounds on the e�e
tive t- (
 or u)-γ and t- (
 oru)-Z 
ouplings are given in their Fig. 4.13BARATE 00S looked for single top produ
tion via FCNC in the rea
tion e+ e− → t 
 ort u in 411 pb−1 of data at 
.m. energies between 189 and 202 GeV. No deviation fromthe SM is found, whi
h leads to a bound on the bran
hing fra
tion. The bound assumesB(γ q)=0. Bounds on the e�e
tive t- (
 or u)-γ and t- (
 or u)-Z 
ouplings are givenin their Fig. 4.14ABE 98G looked for t t events where one t de
ays into three jets and the other de
aysinto qZ with Z → ℓℓ. The quoted bound is for �(Z q)/�(W b).�(Hq)/�total �10/��(Hq)/�total �10/��(Hq)/�total �10/��(Hq)/�total �10/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
< 5.6 95 1 AAD 15CO ATLS t → H
(H → bb)
< 6.1 95 1 AAD 15CO ATLS t → Hu(H → bb)
< 5.6 95 2 KHACHATRY...14Q CMS t → H
 (H → γ γ or lep-tons)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 7.9 95 3 AAD 14AA ATLS t → Hq (q=u,
; H → γ γ)
<13 95 4 CHATRCHYAN14R CMS t → H
 (H → ≥ 2 ℓ)1AAD 15CO based on 20.3 fb−1 at √

s = 8 TeV of pp data. Sear
hes for t t events,where the other top quark de
ays semi-leptoni
ally. Exploits high multipli
ity of b-jetsand uses a likelihood dis
riminant. Combining with other ATLAS sear
hes for di�erentHiggs de
ay modes, B(t → H
) < 0.46% and B(t → Hu) < 0.45% are obtained.2KHACHATRYAN 14Q based on 19.5 fb−1 at √s = 8 TeV of pp data. Sear
h for �nalstates with ≥ 3 isolated 
harged leptons or with a photon pair a

ompanied by ≥ 1lepton(s).3AAD 14AA based on 4.7 fb−1 at √
s = 7 TeV and 20.3 fb−1 at √

s = 8 TeV of ppdata. The upper-bound is for the sum of Br(t → H 
) and Br(t → Hu). Sear
h for t tevents, where the other top quark de
ays hadroni
ally or semi-leptoni
ally. The upperbound 
onstrains the H-t-
 Yukawa 
ouplings √∣∣YHt 
L ∣∣2 + ∣∣YHt 
R ∣∣2 < 0.17 (95% CL).4Based on 19.5 fb−1 of pp data at √s = 8 TeV. Sear
h for �nal states with 3 or moreisolated high ET 
harged leptons (ℓ = e, µ) bounds the t → H
 de
ay in t t eventswhen H de
ays 
ontain a pair of leptons. The upper bound 
onstrains the H-t-
 Yukawa
ouplings √∣∣YHt 
L ∣∣2 + ∣∣YHt 
R ∣∣2 < 0.21 (95% CL).�(
ℓ+qq′ (q=d ,s ,b; q′=u,
))/�total �11/��(
ℓ+qq′ (q=d ,s ,b; q′=u,
))/�total �11/��(
ℓ+qq′ (q=d ,s ,b; q′=u,
))/�total �11/��(
ℓ+qq′ (q=d ,s ,b; q′=u,
))/�total �11/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.6× 10−3<1.6× 10−3<1.6× 10−3<1.6× 10−3 95 1 CHATRCHYAN14O CMS µ + dijets
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.7× 10−3 95 1 CHATRCHYAN14O CMS e + dijets1Based on 19.5 fb−1 of pp data at √s = 8 TeV. Baryon number violating de
ays of thetop quark are sear
hed for in t t produ
tion events where one of the pair de
ays intohadroni
 three jets. t-quark EW Couplingst-quark EW Couplingst-quark EW Couplingst-quark EW CouplingsW heli
ity fra
tions in top de
ays. F0 is the fra
tion of longitudinal andF+ the fra
tion of right-handed W bosons. FV +A is the fra
tion of V+A
urrent in top de
ays. The e�e
tive Lagrangian (
ited by ABAZOV 08AI)has terms fL1 and fR1 for V−A and V+A 
ouplings, fL2 and fR2 for tensor
ouplings with bR and bL respe
tively.F0F0F0F0VALUE DOCUMENT ID TECN COMMENT0.690±0.030 OUR AVERAGE0.690±0.030 OUR AVERAGE0.690±0.030 OUR AVERAGE0.690±0.030 OUR AVERAGE0.726±0.066±0.067 1 AALTONEN 13D CDF F0 = B(t → W0 b)0.682±0.030±0.033 2 CHATRCHYAN13BH CMS F0 = B(t → W0 b)0.67 ±0.07 3 AAD 12BG ATLS F0 = B(t → W0 b)0.722±0.062±0.052 4 AALTONEN 12Z TEVA F0 = B(t → W0 b)0.669±0.078±0.065 5 ABAZOV 11C D0 F0 = B(t → W0 b)0.91 ±0.37 ±0.13 6 AFFOLDER 00B CDF F0 = B(t → W0 b)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.70 ±0.07 ±0.04 7 AALTONEN 10Q CDF Repl. by AALTONEN 12Z0.62 ±0.10 ±0.05 8 AALTONEN 09Q CDF Repl. by AALTONEN 10Q0.425±0.166±0.102 9 ABAZOV 08B D0 Repl. by ABAZOV 11C0.85 +0.15

−0.22 ±0.06 10 ABULENCIA 07I CDF F0 = B(t → W0 b)0.74 +0.22
−0.34 11 ABULENCIA 06U CDF F0 = B(t → W0 b)0.56 ±0.31 12 ABAZOV 05G D0 F0 = B(t → W0 b)1Based on 8.7 fb−1 of data in pp 
ollisions at √s = 1.96 TeV using t t events with ℓ +

6ET + ≥ 4 jets( ≥ 1 b), and under the 
onstraint F0 + F+ + F− = 1. The statsti
alerrors of F0 and F+ are 
orrelated with 
orrelation 
oeÆ
ient ρ(F0,F+) = −0.69.2Based on 5.0 fb−1 of pp data at √s = 7 TeV. CHATRCHYAN 13BH studied tt eventswith large 6ET and ℓ + ≥ 4 jets using a 
onstrained kinemati
 �t.3Based on 1.04 fb−1 of pp data at √s = 7 TeV. AAD 12BG studied tt events with large
6ET and either ℓ + ≥ 4j or ℓℓ + ≥ 2j. The un
ertainties are not independent, ρ(F0,F−)= −0.96.4Based on 2.7 and 5.1 fb−1 of CDF data in ℓ + jets and dilepton 
hannels, and 5.4 fb−1of D0 data in ℓ + jets and dilepton 
hannels. F0 = 0.682 ± 0.035 ± 0.046 if F+ =0.0017(1), while F+ = −0.015 ± 0.018 ± 0.030 if F0 = 0.688(4), where the assumed�xed values are the SM predi
tion for mt = 173.3± 1.1 GeV and mW = 80.399± 0.023GeV.

5Results are based on 5.4 fb−1 of data in pp 
ollisions at 1.96 TeV, in
luding those ofABAZOV 08B. Under the SM 
onstraint of f0 = 0.698 (for mt = 173.3 GeV, mW =80.399 GeV), f+ = 0.010 ± 0.022 ± 0.030 is obtained.6AFFOLDER 00B studied the angular distribution of leptoni
 de
ays of W bosons in t →W b events. The ratio F0 is the fra
tion of the heli
ity zero (longitudinal) W bosonsin the de
aying top quark rest frame. B(t → W+ b) is the fra
tion of positive heli
ity(right-handed) positive 
harge W bosons in the top quark de
ays. It is obtained byassuming the Standard Model value of F0.7Results are based on 2.7 fb−1 of data in pp 
ollisions at √
s = 1.96 TeV. F0 result isobtained by assuming F+ = 0, while F+ result is obtained for F0 = 0.70, the SM value.Model independent �ts for the two fra
tions give F0 = 0.88 ± 0.11 ± 0.06 and F+ =

−0.15 ± 0.07 ± 0.06 with 
orrelation 
oeÆ
ient of −0.59. The results are for mt =175 GeV.8Results are based on 1.9 fb−1 of data in pp 
ollisions at √
s = 1.96 TeV. F0 result isobtained assuming F+ = 0, while F+ result is obtained for F0 = 0.70, the SM values.Model independent �ts for the two fra
tions give F0 = 0.66 ± 0.16 ± 0.05 and F+ =

−0.03 ± 0.06 ± 0.03.9Based on 1 fb−1 at √s = 1.96 TeV.10Based on 318 pb−1 of data at √s = 1.96 TeV.11Based on 200 pb−1 of data at √s = 1.96 TeV. t → W b → ℓν b (ℓ = e or µ). Theerrors are stat + syst.12ABAZOV 05G studied the angular distribution of leptoni
 de
ays of W bosons in t t
andidate events with lepton + jets �nal states, and obtained the fra
tion of longitudinallypolarized W under the 
onstraint of no right-handed 
urrent, F+ = 0. Based on 125pb−1 of data at √s = 1.8 TeV.F−F−F−F−VALUE DOCUMENT ID TECN COMMENT0.314±0.025 OUR AVERAGE0.314±0.025 OUR AVERAGE0.314±0.025 OUR AVERAGE0.314±0.025 OUR AVERAGE0.310±0.022±0.022 1 CHATRCHYAN13BH CMS F− = B(t → W− b)0.32 ±0.04 2 AAD 12BG ATLS F− = B(t → W− b)1Based on 5.0 fb−1 of pp data at √s = 7 TeV. CHATRCHYAN 13BH studied tt eventswith large 6ET and ℓ + ≥ 4 jets using a 
onstrained kinemati
 �t.2Based on 1.04 fb−1 of pp data at √s = 7 TeV. AAD 12BG studied tt events with large
6ET and either ℓ + ≥ 4j or ℓℓ + ≥ 2j. The un
ertainties are not independent, ρ(F0,F−)= −0.96.F+F+F+F+VALUE CL% DOCUMENT ID TECN COMMENT0.008±0.016 OUR AVERAGE0.008±0.016 OUR AVERAGE0.008±0.016 OUR AVERAGE0.008±0.016 OUR AVERAGE

−0.045±0.044±0.058 1 AALTONEN 13D CDF F+ = B(t → W+ b)0.008±0.012±0.014 2 CHATRCHYAN13BH CMS F+ = B(t → W+ b)0.01 ±0.05 3 AAD 12BG ATLS F+ = B(t → W+ b)0.023±0.041±0.034 4 ABAZOV 11C D0 F+ = B(t → W+ b)0.11 ±0.15 5 AFFOLDER 00B CDF F+ = B(t → W+ b)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.033±0.034±0.031 6 AALTONEN 12Z TEVA F+ = B(t → W+ b)
−0.01 ±0.02 ±0.05 7 AALTONEN 10Q CDF Repl. by AALTO-NEN 13D
−0.04 ±0.04 ±0.03 8 AALTONEN 09Q CDF Repl. by AALTO-NEN 10Q0.119±0.090±0.053 9 ABAZOV 08B D0 Repl. by ABAZOV 11C0.056±0.080±0.057 10 ABAZOV 07D D0 F+ = B(t → W+ b)0.05 +0.11

−0.05 ±0.03 11 ABULENCIA 07I CDF F+ = B(t → W+ b)
< 0.26 95 11 ABULENCIA 07I CDF F+ = B(t → W+ b)
< 0.27 95 12 ABULENCIA 06U CDF F+ = B(t → W+ b)0.00 ±0.13 ±0.07 13 ABAZOV 05L D0 F+ = B(t → W+ b)
< 0.25 95 13 ABAZOV 05L D0 F+ = B(t → W+ b)
< 0.24 95 14 ACOSTA 05D CDF F+ = B(t → W+ b)1Based on 8.7 fb−1 of data in pp 
ollisions at √s = 1.96 TeV using t t events with ℓ +

6ET + ≥ 4 jets( ≥ 1 b), and under the 
onstraint F0 + F+ + F− = 1. The statsti
alerrors of F0 and F+ are 
orrelated with 
orrelation 
oeÆ
ient ρ(F0,F+) = −0.69.2Based on 5.0 fb−1 of pp data at √s = 7 TeV. CHATRCHYAN 13BH studied tt eventswith large 6ET and ℓ + ≥ 4 jets using a 
onstrained kinemati
 �t.3Based on 1.04 fb−1 of pp data at √s = 7 TeV. AAD 12BG studied tt events with large
6ET and either ℓ + ≥ 4j or ℓℓ + ≥ 2j.4Results are based on 5.4 fb−1 of data in pp 
ollisions at 1.96 TeV, in
luding those ofABAZOV 08B. Under the SM 
onstraint of f0 = 0.698 (for mt = 173.3 GeV, mW =80.399 GeV), f+ = 0.010 ± 0.022 ± 0.030 is obtained.5AFFOLDER 00B studied the angular distribution of leptoni
 de
ays of W bosons in t →W b events. The ratio F0 is the fra
tion of the heli
ity zero (longitudinal) W bosonsin the de
aying top quark rest frame. B(t → W+ b) is the fra
tion of positive heli
ity(right-handed) positive 
harge W bosons in the top quark de
ays. It is obtained byassuming the Standard Model value of F0.6Based on 2.7 and 5.1 fb−1 of CDF data in ℓ + jets and dilepton 
hannels, and 5.4 fb−1of D0 data in ℓ + jets and dilepton 
hannels. F0 = 0.682 ± 0.035 ± 0.046 if F+ =0.0017(1), while F+ = −0.015 ± 0.018 ± 0.030 if F0 = 0.688(4), where the assumed�xed values are the SM predi
tion for mt = 173.3± 1.1 GeV and mW = 80.399± 0.023GeV.7Results are based on 2.7 fb−1 of data in pp 
ollisions at √

s = 1.96 TeV. F0 result isobtained by assuming F+ = 0, while F+ result is obtained for F0 = 0.70, the SM value.Model independent �ts for the two fra
tions give F0 = 0.88 ± 0.11 ± 0.06 and F+ =
−0.15 ± 0.07 ± 0.06 with 
orrelation 
oeÆ
ient of −0.59. The results are for mt =175 GeV.
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le Listingst8Results are based on 1.9 fb−1 of data in pp 
ollisions at √
s = 1.96 TeV. F0 result isobtained assuming F+ = 0, while F+ result is obtained for F0 = 0.70, the SM values.Model independent �ts for the two fra
tions give F0 = 0.66 ± 0.16 ± 0.05 and F+ =

−0.03 ± 0.06 ± 0.03.9Based on 1 fb−1 at √s = 1.96 TeV.10Based on 370 pb−1 of data at √
s = 1.96 TeV, using the ℓ + jets and dilepton de
ay
hannels. The result assumes F0 = 0.70, and it gives F+ < 0.23 at 95% CL.11Based on 318 pb−1 of data at √s = 1.96 TeV.12Based on 200 pb−1 of data at √s = 1.96 TeV. t → W b → ℓν b (ℓ = e or µ). Theerrors are stat + syst.13ABAZOV 05L studied the angular distribution of leptoni
 de
ays of W bosons in t tevents, where one of the W 's from t or t de
ays into e or µ and the other de
ayshadroni
ally. The fra
tion of the \+" heli
ity W boson is obtained by assuming F0= 0.7, whi
h is the generi
 predi
tion for any linear 
ombination of V and A 
urrents.Based on 230 ± 15 pb−1 of data at √s = 1.96 TeV.14ACOSTA 05D measures the m2

ℓ +b distribution in t t produ
tion events where one orboth W 's de
ay leptoni
ally to ℓ = e or µ, and �nds a bound on the V+A 
oupling ofthe t bW vertex. By assuming the SM value of the longitudinal W fra
tion F0 = B(t →W0 b) = 0.70, the bound on F+ is obtained. If the results are 
ombined with those ofAFFOLDER 00B, the bounds be
ome FV +A < 0.61 (95% CL) and F+ < 0.18 (95%CL), respe
tively. Based on 109 ± 7 pb−1 of data at √s = 1.8 TeV (run I).FV +AFV +AFV +AFV +AVALUE CL% DOCUMENT ID TECN COMMENT
< 0.29< 0.29< 0.29< 0.29 95 1 ABULENCIA 07G CDF FV +A = B(t → W bR )
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.06±0.22±0.12 1 ABULENCIA 07G CDF FV +A = B(t → W bR )
< 0.80 95 2 ACOSTA 05D CDF FV +A = B(t → W bR )1Based on 700 pb−1 of data at √s = 1.96 TeV.2ACOSTA 05D measures the m2

ℓ +b distribution in t t produ
tion events where one orboth W 's de
ay leptoni
ally to ℓ = e or µ, and �nds a bound on the V+A 
oupling ofthe t bW vertex. By assuming the SM value of the longitudinal W fra
tion F0 = B(t →W0 b) = 0.70, the bound on F+ is obtained. If the results are 
ombined with those ofAFFOLDER 00B, the bounds be
ome FV +A < 0.61 (95% CL) and F+ < 0.18 (95%CL), respe
tively. Based on 109 ± 7 pb−1 of data at √s = 1.8 TeV (run I).fR1fR1fR1fR1VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.20 <Re(Vtb fR1 )<0.23 95 1 AAD 12BG ATLS Constr. on W t b vtx(V tb fR1 )2 < 0.93 95 2 ABAZOV 12E D0 Single-top∣∣fR1 ∣∣2 < 0.30 95 3 ABAZOV 12I D0 single-t + W heli
ity∣∣fR1 ∣∣2 < 1.01 95 4 ABAZOV 09J D0 ∣∣fL1 ∣∣ = 1, ∣∣fL2 ∣∣=∣∣fR2 ∣∣=0
∣∣fR1 ∣∣2 < 2.5 95 5 ABAZOV 08AI D0 ∣∣fL1 ∣∣2 = 1.8+1.0

−1.31Based on 1.04 fb−1 of pp data at √s = 7 TeV. AAD 12BG studied tt events with large
6ET and either ℓ + ≥ 4j or ℓℓ + ≥ 2j.2Based on 5.4 fb−1 of data. For ea
h value of the form fa
tor quoted the other twoare assumed to have their SM value. Their Fig. 4 shows two-dimensional posteriorprobability density distributions for the anomalous 
ouplings.3Based on 5.4 fb−1 of data in pp 
ollisions at 1.96 TeV. Results are obtained by 
om-bining the limits from the W heli
ity measurements and those from the single top quarkprodu
tion.4Based on 1 fb−1 of data at pp 
ollisions √

s = 1.96 TeV. Combined result of the Wheli
ity measurement in t t events (ABAZOV 08B) and the sear
h for anomalous t bW
ouplings in the single top produ
tion (ABAZOV 08AI). Constraints when fL1 and one ofthe anomalous 
ouplings are simultaneously allowed to vary are given in their Fig. 1 andTable 1.5Result is based on 0.9 fb−1 of data at√s = 1.96 TeV. Single top quark produ
tion eventsare used to measure the Lorentz stru
ture of the t bW 
oupling. The upper bounds onthe non-standard 
ouplings are obtained when only one non-standard 
oupling is allowedto be present together with the SM one, fL1 = V∗t b .fL2fL2fL2fL2VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.14 < Re(fL2 )< 0.11 95 1 AAD 12BG ATLS Constr. on W t b vtx(V tb fL2 )2 < 0.13 95 2 ABAZOV 12E D0 Single-top∣∣fL2 ∣∣2 < 0.05 95 3 ABAZOV 12I D0 single-t + W heli
ity∣∣fL2 ∣∣2 < 0.28 95 4 ABAZOV 09J D0 ∣∣fL1 ∣∣ = 1, ∣∣fR1 ∣∣=∣∣fR2 ∣∣=0
∣∣fL2 ∣∣2 < 0.5 95 5 ABAZOV 08AI D0 ∣∣fL1 ∣∣2 = 1.4+0.6

−0.51Based on 1.04 fb−1 of pp data at √s = 7 TeV. AAD 12BG studied tt events with large
6ET and either ℓ + ≥ 4j or ℓℓ + ≥ 2j.2Based on 5.4 fb−1 of data. For ea
h value of the form fa
tor quoted the other twoare assumed to have their SM value. Their Fig. 4 shows two-dimensional posteriorprobability density distributions for the anomalous 
ouplings.3Based on 5.4 fb−1 of data in pp 
ollisions at 1.96 TeV. Results are obtained by 
om-bining the limits from the W heli
ity measurements and those from the single top quarkprodu
tion.4Based on 1 fb−1 of data at pp 
ollisions √

s = 1.96 TeV. Combined result of the Wheli
ity measurement in t t events (ABAZOV 08B) and the sear
h for anomalous t bW
ouplings in the single top produ
tion (ABAZOV 08AI). Constraints when fL1 and one ofthe anomalous 
ouplings are simultaneously allowed to vary are given in their Fig. 1 andTable 1.5Result is based on 0.9 fb−1 of data at√s = 1.96 TeV. Single top quark produ
tion eventsare used to measure the Lorentz stru
ture of the t bW 
oupling. The upper bounds onthe non-standard 
ouplings are obtained when only one non-standard 
oupling is allowedto be present together with the SM one, fL1 = V∗t b .

fR2fR2fR2fR2VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.08 < Re(fR2 )< 0.04 95 1 AAD 12BG ATLS Constr. on W t b vtx(V tb fR2 )2 < 0.06 95 2 ABAZOV 12E D0 Single-top∣∣fR2 ∣∣2 < 0.12 95 3 ABAZOV 12I D0 single-t + W heli
ity∣∣fR2 ∣∣2 < 0.23 95 4 ABAZOV 09J D0 ∣∣fL1 ∣∣ = 1, ∣∣fR1 ∣∣=∣∣fL2 ∣∣=0
∣∣fR2 ∣∣2 < 0.3 95 5 ABAZOV 08AI D0 ∣∣fL1 ∣∣2 = 1.4+0.9

−0.81Based on 1.04 fb−1 of pp data at √s = 7 TeV. AAD 12BG studied tt events with large
6ET and either ℓ + ≥ 4j or ℓℓ + ≥ 2j.2Based on 5.4 fb−1 of data. For ea
h value of the form fa
tor quoted the other twoare assumed to have their SM value. Their Fig. 4 shows two-dimensional posteriorprobability density distributions for the anomalous 
ouplings.3Based on 5.4 fb−1 of data in pp 
ollisions at 1.96 TeV. Results are obtained by 
om-bining the limits from the W heli
ity measurements and those from the single top quarkprodu
tion.4Based on 1 fb−1 of data at pp 
ollisions √

s = 1.96 TeV. Combined result of the Wheli
ity measurement in t t events (ABAZOV 08B) and the sear
h for anomalous t bW
ouplings in the single top produ
tion (ABAZOV 08AI). Constraints when fL1 and one ofthe anomalous 
ouplings are simultaneously allowed to vary are given in their Fig. 1 andTable 1.5Result is based on 0.9 fb−1 of data at√s = 1.96 TeV. Single top quark produ
tion eventsare used to measure the Lorentz stru
ture of the t bW 
oupling. The upper bounds onthe non-standard 
ouplings are obtained when only one non-standard 
oupling is allowedto be present together with the SM one, fL1 = V∗t b .Spin Correlation in t t Produ
tion in pp CollisionsSpin Correlation in t t Produ
tion in pp CollisionsSpin Correlation in t t Produ
tion in pp CollisionsSpin Correlation in t t Produ
tion in pp CollisionsC is the 
orrelation strength parameter, f is the ratio of events with 
orrelated t and tspins (SM predi
tion: f = 1), and κ is the spin 
orrelation 
oeÆ
ient. See "The TopQuark" review for more information.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.85±0.29 1 ABAZOV 12B D0 f (ℓℓ + ≥ 2 jets, ℓ + ≥ 4 jets)1.15+0.42

−0.43 2 ABAZOV 12B D0 f (ℓ + 6ET + ≥ 4 jets)0.60+0.50
−0.16 3 AALTONEN 11AR CDF κ (ℓ + 6ET + ≥ 4 jets)0.74+0.40
−0.41 4 ABAZOV 11AE D0 f (ℓℓ +6ET + ≥ 2 jets)0.10±0.45 5 ABAZOV 11AF D0 C (ℓℓ + 6ET + ≥ 2 jets)1This is a 
ombination of the lepton + jets analysis presented in ABAZOV 12B and thedilepton measurement of ABAZOV 11AE. It provides a 3.1 σ eviden
e for the t t spin
orrelation.2Based on 5.3 fb−1 of data. The error is statisti
al and systemati
 
ombined. A matrixelement method is used.3Based on 4.3 fb−1 of data. The measurement is based on the angular study of the topquark de
ay produ
ts in the heli
ity basis.The theory predi
tion is κ ≈ 0.40.4Based on 5.4 fb−1 of data using a matrix element method. The error is statisti
al andsystemati
 
ombined. The no-
orrelation hypothesis is ex
luded at the 97.7% CL.5Based on 5.4 fb−1 of data. The error is statisti
al and systemati
 
ombined. TheNLO QCD predi
tion is C = 0.78 ± 0.03. The neutrino weighting method is used forre
onstru
tion of kinemati
s.Spin Correlation in t t Produ
tion in pp CollisionsSpin Correlation in t t Produ
tion in pp CollisionsSpin Correlation in t t Produ
tion in pp CollisionsSpin Correlation in t t Produ
tion in pp CollisionsSpin 
orrelation, fSM , measures the strength of the 
orrelation between the spins ofthe pair produ
ed tt . fSM =1 for the SM, while fSM =0 for no spin 
orrelation.VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.20±0.05±0.13 1 AAD 15J ATLS �φ(ℓℓ) in ℓℓ+ ≥ 2j( ≥ 1b)1.19±0.09±0.18 2 AAD 14BB ATLS �φ(ℓℓ) in ℓℓ + ≥ 2j events1.12±0.11±0.22 2 AAD 14BB ATLS �φ(ℓ j) in ℓ + ≥ 4j events0.87±0.11±0.14 2,3 AAD 14BB ATLS S-ratio in ℓℓ + ≥ 2j events0.75±0.19±0.23 2,4 AAD 14BB ATLS 
osθ(ℓ+)
osθ(ℓ−) in ℓℓ +
≥ 2j events0.83±0.14±0.18 2,5 AAD 14BB ATLS 
osθ(ℓ+)
osθ(ℓ−) in ℓℓ +
≥ 2j events1AAD 15J based on 20.3 fb−1 of pp data at √

s = 8 TeV. Uses a �t in
luding a linearsuperposition of �φ distribution from the SM NLO simulation with 
oeÆ
ient fSM andfrom t t simulation without spin 
orrelation with 
oeÆ
ient (1 − fSM ).2Based on 4.6 fb−1 of pp data at √s =7 TeV. The results are for mt = 172.5 GeV.3The S-ratio is de�ned as the SM spin 
orrelation in the like-heli
ity gluon-gluon 
ollisionsnormalized to the no spin 
orrelation 
ase; see eq.(6) for the LO expression.4The polar angle 
orrelation along the heli
ity axis.5The polar angle 
orrelation along the dire
tion whi
h maximizes the 
orrelation.t-quark FCNC Couplings κutg/� and κctg/�t-quark FCNC Couplings κutg/� and κctg/�t-quark FCNC Couplings κutg/� and κctg/�t-quark FCNC Couplings κutg/� and κctg/�VALUE (TeV−1) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.0069 95 1 AAD 12BP ATLS ttug/� (ttcg = 0)
<0.016 95 1 AAD 12BP ATLS ttcg/� (ttug = 0)
<0.013 95 2 ABAZOV 10K D0 κtug/�
<0.057 95 2 ABAZOV 10K D0 κtcg/�
<0.018 95 3 AALTONEN 09N CDF κtug/� (κtcg = 0)
<0.069 95 3 AALTONEN 09N CDF κtcg/� (κtug = 0)
<0.037 95 4 ABAZOV 07V D0 κutg/�
<0.15 95 4 ABAZOV 07V D0 κctg/�



834834834834Quark Parti
le Listingst 1Based on 2.05 fb−1 of pp data at √s = 7 TeV. The results are obtained from the 95%CL upper limit on the single top-quark produ
tion σ(qg → t)·B(t → bW ) < 3.9 pb,for q=u or q=
, B(t → ug) < 5.7× 10−5 and B(t → ug) < 2.7× 10−4.2Based on 2.3 fb−1 of data in pp 
ollisions at √s = 1.96 TeV. Upper limit of single topquark produ
tion 
ross se
tion 0.20 pb and 0.27 pb via FCNC t-u-g and t-
-g 
ouplings,respe
tively, lead to the bounds without assuming the absen
e of the other 
oupling.B(t → u + g) < 2.0× 10−4 and B(t → 
 + g) < 3.9× 10−3 follow.3Based on 2.2 fb−1 of data in pp 
ollisions at √s = 1.96 TeV. Upper limit of single topquark produ
tion 
ross se
tion σ(u(
) + g → t) < 1.8 pb (95% CL) via FCNC t-u-gand t-
-g 
ouplings lead to the bounds. B(t → u + g) < 3.9 × 10−4 and B(t →
 + g) < 5.7× 10−3 follow.4Result is based on 230 pb−1 of data at √
s = 1.96 TeV. Absen
e of single top quarkprodu
tion events via FCNC t-u-g and t-
-g 
ouplings lead to the upper bounds on thedimensioned 
ouplings, κutg/� and κctg/�, respe
tively.

σ(H t t) /σ(H t t)SMσ(H t t) /σ(H t t)SMσ(H t t) /σ(H t t)SMσ(H t t) /σ(H t t)SMVALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.7 95 1 AAD 15 ATLS H t t ; H → γ γ2.8±1.0 2 KHACHATRY...14H CMS H → bb, τh τh , γ γ,WW /Z Z(leptons)1Based on 4.5 fb−1 of data at 7 TeV and 20.3 fb−1 at 8 TeV. The result is for mH= 125.4 GeV. The measurement 
onstrains the top quark Yukawa 
oupling strengthparameter κt = Yt/YSMt to be −1.3 < κt < 8.0 (95% CL).2Based on 5.1 fb−1 of pp data at 7 TeV and 19.7 fb−1 at 8 TeV. The results are obtainedby assuming the SM de
ay bran
hing fra
tions for the Higgs boson of mass 125.6 GeV.The signal strength for individual Higgs de
ay 
hannels are given in Fig. 13, and thepreferred region in the (κV , κf ) spa
e is given in Fig. 14.Single t-Quark Produ
tion Cross Se
tion in pp Collisions at √s = 1.8 TeVSingle t-Quark Produ
tion Cross Se
tion in pp Collisions at √s = 1.8 TeVSingle t-Quark Produ
tion Cross Se
tion in pp Collisions at √s = 1.8 TeVSingle t-Quark Produ
tion Cross Se
tion in pp Collisions at √s = 1.8 TeVDire
t probe of the t bW 
oupling and possible new physi
s at √s = 1.8 TeV.VALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<24 95 1 ACOSTA 04H CDF pp → t b + X , t q b + X
<18 95 2 ACOSTA 02 CDF pp → t b + X
<13 95 3 ACOSTA 02 CDF pp → t q b + X1ACOSTA 04H bounds single top-quark produ
tion from the s-
hannel W -ex
hange pro-
ess, q′ q → t b, and the t-
hannel W -ex
hange pro
ess, q′ g → q t b. Based on

∼ 106 pb−1 of data.2ACOSTA 02 bounds the 
ross se
tion for single top-quark produ
tion via the s-
hannelW -ex
hange pro
ess, q′ q → t b. Based on ∼ 106 pb−1 of data.3ACOSTA 02 bounds the 
ross se
tion for single top-quark produ
tion via the t-
hannelW -ex
hange pro
ess, q′ g → q t b. Based on ∼ 106 pb−1 of data.Single t-Quark Produ
tion Cross Se
tion in pp Collisions at √s = 1.96 TeVSingle t-Quark Produ
tion Cross Se
tion in pp Collisions at √s = 1.96 TeVSingle t-Quark Produ
tion Cross Se
tion in pp Collisions at √s = 1.96 TeVSingle t-Quark Produ
tion Cross Se
tion in pp Collisions at √s = 1.96 TeVDire
t probes of the t bW 
oupling and possible new physi
s at √s = 1.96 TeV.OUR AVERAGE assumes that the systemati
 un
ertainties are un
orrelated.VALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.25+0.29

−0.31 1 AALTONEN 15H TEVA t-
hannel3.30+0.52
−0.40 1,2 AALTONEN 15H TEVA s- + t-
hannels1.12+0.61
−0.57 3 AALTONEN 14K CDF s-
hannel (0ℓ+6ET+2,3j( ≥ 1b-tag))1.41+0.44
−0.42 4 AALTONEN 14L CDF s-
hannel (ℓ+ 6ET+2j ( ≥1b-tag))1.29+0.26
−0.24 5 AALTONEN 14M TEVA s-
hannel (CDF + D0)3.04+0.57
−0.53 6 AALTONEN 14O CDF s + t + Wt (ℓ + 6ET +2 or 3 jets ( ≥ 1b-tag))1.10+0.33
−0.31 7 ABAZOV 13O D0 s-
hannel3.07+0.54
−0.49 7 ABAZOV 13O D0 t-
hannel4.11+0.60
−0.55 7 ABAZOV 13O D0 s- + t-
hannels0.98±0.63 8 ABAZOV 11AA D0 s-
hannel2.90±0.59 8 ABAZOV 11AA D0 t-
hannel3.43+0.73
−0.74 9 ABAZOV 11ADD0 s- + t-
hannels1.8 +0.7
−0.5 10 AALTONEN 10AB CDF s-
hannel0.8 ±0.4 10 AALTONEN 10AB CDF t-
hannel4.9 +2.5
−2.2 11 AALTONEN 10U CDF 6ET + jets de
ay3.14+0.94
−0.80 12 ABAZOV 10 D0 t-
hannel1.05±0.81 12 ABAZOV 10 D0 s-
hannel

< 7.3 95 13 ABAZOV 10J D0 τ + jets de
ay2.3 +0.6
−0.5 14 AALTONEN 09AT CDF s- + t-
hannel3.94±0.88 15 ABAZOV 09Z D0 s- + t-
hannel2.2 +0.7
−0.6 16 AALTONEN 08AH CDF s- + t-
hannel4.7 ±1.3 17 ABAZOV 08I D0 s- + t-
hannel4.9 ±1.4 18 ABAZOV 07H D0 s- + t-
hannel

< 6.4 95 19 ABAZOV 05P D0 pp → t b + X
< 5.0 95 19 ABAZOV 05P D0 pp → t q b + X
<10.1 95 20 ACOSTA 05N CDF pp → t q b + X
<13.6 95 20 ACOSTA 05N CDF pp → t b + X
<17.8 95 20 ACOSTA 05N CDF pp → t b + X , t q b + X

1AALTONEN 15H based on 9.7 fb−1 of data per experiment. The result is for mt= 172.5 GeV, and is a 
ombination of the CDF measurements (AALTONEN 16) andthe D0 measurements (ABAZOV 13O) on the t-
hannel single t-quark produ
tion 
rossse
tion. The result is 
onsistent with the NLO+NNLL SM predi
tion and gives ∣∣V tb ∣∣ =1.02+0.06
−0.05 and ∣∣V tb ∣∣ > 0.92 (95% CL).2AALTONEN 15H is a 
ombined measurement of s-
hannel single top 
ross se
tion byCDF + D0. AALTONEN 14M is not in
luded.3Based on 9.45 fb−1 of data, using neural networks to separate signal from ba
kgrounds.The result is for mt = 172.5 GeV. Combination of this result with the CDF measurementin the 1 lepton 
hannel AALTONEN 14L gives 1.36+0.37

−0.32 pb, 
onsistent with the SMpredi
tion, and is 4.2 sigma away from the ba
kground only hypothesis.4Based on 9.4 fb−1 of data, using neural networks to separate signal from ba
kgrounds.The result is for mt = 172.5 GeV. The result is 3.8 sigma away from the ba
kgroundonly hypothesis.5Based on 9.7 fb−1 of data per experiment. The result is for mt = 172.5 GeV, and is a
ombination of the CDF measurements AALTONEN 14L, AALTONEN 14K and the D0measurement ABAZOV 13O on the s-
hannel single t-quark produ
tion 
ross se
tion.The result is 
onsistent with the SM predi
tion of 1.05 ± 0.06 pb and the signi�
an
eof the observation is of 6.3 standard deviations.6Based on 7.5 fb−1 of data. Neural network is used to dis
riminate signals (s-, t- andWt-
hannel single top produ
tion) from ba
kgrounds. The result is 
onsistent with theSM predi
tion, and gives ∣∣V tb ∣∣ = 0.95 ± 0.09(stat + syst)±0.05(theory) and ∣∣V tb ∣∣ >0.78 (95% CL). The result is for mt = 172.5 GeV.7Based on 9.7 fb−1 of data. Events with ℓ + 6ET + 2 or 3 jets (1 or 2 b-tag) are analysed,assuming mt = 172.5 GeV. The 
ombined s- + t-
hannel 
ross se
tion gives ∣∣Vtb f L1 ∣∣= 1.12+0.09
−0.08, or ∣∣V tb ∣∣ > 0.92 at 95% CL for fL1 = 1 and a 
at prior within 0 ≤

∣∣Vtb
∣∣2 ≤ 1.8Based on 5.4 fb−1 of data. The error is statisti
al + systemati
 
ombined. The re-sults are for mt = 172.5 GeV. Results for other mt values are given in Table 2 ofABAZOV 11AA.9Based on 5.4 fb−1 of data and for mt = 172.5 GeV. The error is statisti
al + systemati

ombined. Results for other mt values are given in Table III of ABAZOV 11AD. Theresult is obtained by assuming the SM ratio between t b (s-
hannel) and t q b (t-
hannel)produ
tions, and gives ∣∣Vtb fL1 ∣∣ = 1.02+0.10

−0.11, or ∣∣Vtb
∣∣ > 0.79 at 95% CL for a 
atprior within 0 <

∣∣Vtb
∣∣2 < 1.10Based on 3.2 fb−1 of data. For 
ombined s- + t-
hannel result see AALTONEN 09AT.11Result is based on 2.1 fb−1 of data. Events with large missing ET and jets with atleast one b-jet without identi�ed ele
tron or muon are sele
ted. Result is obtained whenobserved 2.1 σ ex
ess over the ba
kground originates from the signal for mt = 175 GeV,giving ∣∣V tb ∣∣ = 1.24+0.34

−0.29 ± 0.07(theory).12Result is based on 2.3 fb−1 of data. Events with isolated ℓ + 6ET + 2 ,3, 4 jets withone or two b-tags are sele
ted. The analysis assumes mt = 170 GeV.13Result is based on 4.8 fb−1 of data. Events with an isolated re
onstru
ted tau lepton,missing ET + 2, 3 jets with one or two b-tags are sele
ted. When 
ombined withABAZOV 09Z result for e + µ 
hannels, the s- and t-
hannels 
ombined 
ross se
tionis 3.84+0.89
−0.83 pb.14Based on 3.2 fb−1 of data. Events with isolated ℓ + 6ET + jets with at least oneb-tag are analyzed and s- and t-
hannel single top events are sele
ted by using thelikelihood fun
tion, matrix element, neural-network, boosted de
ision tree, likelihoodfun
tion optimized for s-
hannel pro
ess, and neural-networked based analysis of eventswith 6ET that has sensitivity for W → τ ν de
ays. The result is for mt = 175 GeV,and the mean value de
reases by 0.02 pb/GeV for smaller mt . The signal has 5.0sigma signi�
an
e. The result gives ∣∣V tb ∣∣ = 0.91 ± 0.11 (stat+syst)±0.07 (theory), or∣∣V tb ∣∣ > 0.71 at 95% CL.15Based on 2.3 fb−1 of data. Events with isolated ℓ + 6ET + ≥ 2 jets with 1 or 2 b-tagsare analyzed and s- and t-
hannel single top events are sele
ted by using boosted de
isiontree, Bayesian neural networks and the matrix element method. The signal has 5.0 sigmasigni�
an
e. The result gives ∣∣V tb ∣∣ = 1.07 ± 0.12 , or ∣∣V tb ∣∣ > 0.78 at 95% CL. Theanalysis assumes mt = 170 GeV.16Result is based on 2.2 fb−1 of data. Events with isolated ℓ + 6ET + 2, 3 jets withat least one b-tag are sele
ted, and s- and t-
hannel single top events are sele
ted byusing likelihood, matrix element, and neural network dis
riminants. The result 
an beinterpreted as ∣∣V tb ∣∣ = 0.88+0.13

−0.12(stat + syst)±0.07(theory), and ∣∣V tb ∣∣ > 0.66 (95%CL) under the ∣∣V tb ∣∣ < 1 
onstraint.17Result is based on 0.9 fb−1 of data. Events with isolated ℓ + 6ET + 2, 3, 4 jets withone or two b-vertex-tag are sele
ted, and 
ontributions from W + jets, t t , s- and t-
hannel single top events are identi�ed by using boosted de
ision trees, Bayesian neuralnetworks, and matrix element analysis. The result 
an be interpreted as the measurementof the CKM matrix element ∣∣V tb ∣∣ = 1.31+0.25
−0.21, or ∣∣V tb ∣∣ > 0.68 (95% CL) under the

∣∣V tb ∣∣ < 1 
onstraint.18Result is based on 0.9 fb−1 of data. This result 
onstrains V tb to 0.68 <
∣∣V tb ∣∣ ≤ 1at 95% CL.19ABAZOV 05P bounds single top-quark produ
tion from either the s-
hannelW -ex
hangepro
ess, q′ q → t b, or the t-
hannel W -ex
hange pro
ess, q′ g → q t b, based on

∼ 230 pb−1 of data.20ACOSTA 05N bounds single top-quark produ
tion from the t-
hannel W -ex
hange pro-
ess (q′ g → q t b), the s-
hannel W -ex
hange pro
ess (q′ q → t b), and from the
ombined 
ross se
tion of t- and s-
hannel. Based on ∼ 162 pb−1 of data.t-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVt-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVt-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVt-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVDire
t probe of the t bW 
oupling and possible new physi
s at √s = 7 TeV.VALUE (pb) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •68 ± 2 ± 8 1 AAD 14BI ATLS ℓ + 6ET + 2j or 3j83 ± 4 +20

−19 2 AAD 12CH ATLS t-
hannel ℓ+ 6ET+ (2,3)j (1b)67.2± 6.1 3 CHATRCHYAN12BQ CMS t-
hannel ℓ + 6ET+ ≥ 2j (1b)83.6±29.8± 3.3 4 CHATRCHYAN11R CMS t-
hannel



835835835835See key on page 601 Quark Parti
le Listingst1Based on 4.59 fb−1 of data, using neural networks for signal and ba
kground separation.
σ(t q) = 46 ± 1 ± 6 pb and σ(t q) = 23 ± 1 ± 3 pb are separately measured, as wellas their ratio R = σ(t q)/σ(t q) = 2.04 ± 0.13 ± 0.12. The results are for mt = 172.5GeV, and those for other mt values are given by eq.(4) and Table IV. The measurementsgive ∣∣Vtb

∣∣ = 1.02 ± 0.07 or ∣∣Vtb
∣∣ > 0.88 (95% CL).2Based on 1.04 fb−1 of data. The result gives ∣∣Vtb

∣∣ = 1.13+0.14
−0.13 from the ratio

σ(exp)/σ(th), where σ(th) is the SM predi
tion for ∣∣Vtb
∣∣ = 1. The 95% CL lowerbound of ∣∣Vtb

∣∣ > 0.75 is found if ∣∣Vtb
∣∣ < 1 is assumed. σ(t) = 59+18

−16 pb and
σ(t) = 33+13

−12 pb are found for the separate single t and t produ
tion 
ross se
tions,respe
tively. The results assume mt = 172.5 GeV for the a

eptan
e.3Based on 1.17 fb−1 of data for ℓ = µ, 1.56 fb−1 of data for ℓ = e at 7 TeV 
olle
tedduring 2011. The result gives ∣∣Vtb
∣∣ = 1.020 ± 0.046(meas)±0.017(th). The 95% CLlower bound of ∣∣Vtb

∣∣ > 0.92 is found if ∣∣Vtb
∣∣ < 1 is assumed. The results assume mt= 172.5 GeV for the a

eptan
e.4Based on 36 pb−1 of data. The �rst error is statisti
al + systemati
 
ombined, these
ond is luminosity. The result gives ∣∣Vtb

∣∣ = 1.114 ± 0.22(exp)±0.02(th) from theratio σ(exp)/σ(th), where σ(th) is the SM predi
tion for ∣∣Vtb
∣∣ = 1. The 95% CL lowerbound of ∣∣Vtb

∣∣ > 0.62 (0.68) is found from the 2D (BDT) analysis under the 
onstraint0 <
∣∣Vtb

∣∣2 < 1.W t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVW t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVW t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVW t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVVALUE (pb) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •16+5

−4 1 CHATRCHYAN13C CMS t+W 
hannel, 2ℓ+ 6ET+1b1Based on 4.9 fb−1 of data. The result gives Vtb = 1.01+0.16
−0.13(exp)+0.03

−0.04(th). Vtb >0.79 (95% CL) if Vtb < 1 is assumed. The results assume mt = 172.5 GeV for thea

eptan
e.t-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVVALUE (pb) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •83.6±2.3±7.4 1 KHACHATRY...14F CMS ℓ+ 6ET+ ≥ 2 j (1,2 b, 1 forward j)1Based on 19.7 fb−1 of data. The t and t produ
tion 
ross se
tions are measuredseparately as σt−ch.(t) = 53.8 ± 1.5 ± 4.4 pb and σt−ch.(t) = 27.6 ± 1.3 ± 3.7 pb,respe
tively, as well as their ratio Rt−ch = σt−ch.(t)/σt−ch.(t) = 1.95 ± 0.10 ± 0.19,in agreement with the SM predi
tions. Combination with a previous CMS result at √

s= 7 TeV [CHATRCHYAN 12BQ℄ gives ∣∣V tb ∣∣ = 0.998 ± 0.038 ± 0.016. Also obtainedis the ratio R8/7 = σt−ch.(8TeV)/σt−ch.(7TeV) = 1.24 ± 0.08 ± 0.12.s-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVs-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVs-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVs-
hannel Single t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVVALUE (pb) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.0±4.3 1 AAD 15A ATLS ℓ + 6ET + 2b1Based on 20.3 fb−1 of data, using a multivariate analysis to separate signal and ba
k-grounds. The 95% CL upper bound of the 
ross se
tion is 14.6 pb. The results are
onsistent with the SM predi
tion of 5.61 ± 0.22 pb at approximate NNLO.W t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVW t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVW t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVW t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVVALUE (pb) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •23.0±1.3+3.2

−3.5±1.1 1 AAD 16B ATLS 2ℓ+ 6ET+1b23.4±5.4 2 CHATRCHYAN14AC CMS t+W 
hannel, 2ℓ+ 6ET+1b1AAD 16B based on 20.3 fb−1 of data. The result gives ∣∣V tb ∣∣ = 1.01±0.10 and ∣∣V tb ∣∣ >0.80 (95% CL) without assuming unitarity of the CKM matrix. The results assume mt= 172.5 GeV for the a

eptan
e.2Based on 12.2 fb−1 of data. Events with two oppositely 
harged leptons, large 6ETand a b-tagged jet are sele
ted, and a multivariate analysis is used to separate thesignal from the ba
kgrounds. The result is 
onsistent with the SM predi
tion of 22.2 ±0.6(s
ale)±1.4(PDF) pb at approximate NNLO.Single t-Quark Produ
tion Cross Se
tion in e p CollisionsSingle t-Quark Produ
tion Cross Se
tion in e p CollisionsSingle t-Quark Produ
tion Cross Se
tion in e p CollisionsSingle t-Quark Produ
tion Cross Se
tion in e p CollisionsVALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.25 95 1 AARON 09A H1 e± p → e± t X
<0.55 95 2 AKTAS 04 H1 e± p → e± t X
<0.225 95 3 CHEKANOV 03 ZEUS e± p → e± t X1AARON 09A looked for single top produ
tion via FCNC in e± p 
ollisions at HERA with474 pb−1 of data at √s = 301{319 GeV. The result supersedes that of AKTAS 04.2AKTAS 04 looked for single top produ
tion via FCNC in e± 
ollisions at HERA with118.3 pb−1, and found 5 events in the e or µ 
hannels while 1.31 ± 0.22 events areexpe
ted from the Standard Model ba
kground. No ex
ess was found for the hadroni

hannel. The observed 
ross se
tion of σ(e p → e t X ) = 0.29+0.15

−0.14 pb at √
s =319 GeV gives the quoted upper bound if the observed events are due to statisti
al
u
tuation.3CHEKANOV 03 looked in 130.1 pb−1 of data at √s = 301 and 318 GeV. The limit isfor √s = 318 GeV and assumes mt = 175 GeV.

t t Produ
tion Cross Se
tion in pp Collisions at √s = 1.8 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 1.8 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 1.8 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 1.8 TeVOnly the �nal 
ombined t t produ
tion 
ross se
tions obtained from Tevatron Run I bythe CDF and D0 experiments are quoted below.VALUE (pb) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.69±1.21±1.04 1 ABAZOV 03A D0 Combined Run I data6.5 +1.7

−1.4 2 AFFOLDER 01A CDF Combined Run I data1Combined result from 110 pb−1 of Tevatron Run I data. Assume mt = 172.1 GeV.2Combined result from 105 pb−1 of Tevatron Run I data. Assume mt = 175 GeV.t t Produ
tion Cross Se
tion in pp Collisions at √s = 1.96 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 1.96 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 1.96 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 1.96 TeVUnless otherwise noted the �rst quoted error is from statisti
s, the se
ond from sys-temati
 un
ertainties, and the third from luminosity. If only two errors are quoted theluminosity is in
luded in the systemati
 un
ertainties.VALUE (pb) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.1 ±2.1 1 AALTONEN 14A CDF ℓ + τh + ≥ 2jets ( ≥ 1b-tag)7.60±0.20±0.29±0.21 2 AALTONEN 14H TEVA ℓℓ, ℓ+jets, all-jets 
hannels8.0 ±0.7 ±0.6 ±0.5 3 ABAZOV 14K D0 ℓ+ 6ET+ ≥ 4 jets ( ≥ 1b-tag)7.09±0.84 4 AALTONEN 13AB CDF ℓℓ + 6ET + ≥ 2 jets7.5 ±1.0 5 AALTONEN 13G CDF ℓ + 6ET + ≥ 3jets ( ≥ 1b-tag)8.8 ±3.3 ±2.2 6 AALTONEN 12AL CDF τh + 6ET +4j ( ≥ 1b)8.5 ±0.6 ±0.7 7 AALTONEN 11D CDF ℓ + 6ET + jets ( ≥ 1b-tag)7.64±0.57±0.45 8 AALTONEN 11W CDF ℓ + 6ET + jets ( ≥ 1b-tag)7.99±0.55±0.76±0.46 9 AALTONEN 11Y CDF 6ET + ≥ 4jets (0,1,2 b-tag)7.78+0.77

−0.64 10 ABAZOV 11E D0 ℓ + 6ET + ≥ 2 jets7.56+0.63
−0.56 11 ABAZOV 11Z D0 Combination6.27±0.73±0.63±0.39 12 AALTONEN 10AA CDF Repl. by AALTONEN 13AB7.2 ±0.5 ±1.0 ±0.4 13 AALTONEN 10E CDF ≥ 6 jets, vtx b-tag7.8 ±2.4 ±1.6 ±0.5 14 AALTONEN 10V CDF ℓ + ≥ 3 jets, soft-e b-tag7.70±0.52 15 AALTONEN 10W CDF ℓ + 6ET + ≥ 3 jets + b-tag,norm. to σ(Z → ℓℓ)TH6.9 ±2.0 16 ABAZOV 10I D0 ≥ 6 jets with 2 b-tags6.9 ±1.2 +0.8

−0.7 ±0.4 17 ABAZOV 10Q D0 τh + jets9.6 ±1.2 +0.6
−0.5 ±0.6 18 AALTONEN 09AD CDF ℓℓ + 6ET / vtx b-tag9.1 ±1.1 +1.0
−0.9 ±0.6 19 AALTONEN 09H CDF ℓ + ≥ 3 jets+ 6ET /soft µ b-tag8.18+0.98

−0.87 20 ABAZOV 09AG D0 ℓ + jets, ℓℓ and ℓτ + jets7.5 ±1.0 +0.7
−0.6 +0.6

−0.5 21 ABAZOV 09R D0 ℓℓ and ℓτ + jets8.18+0.90
−0.84±0.50 22 ABAZOV 08M D0 ℓ + n jets with 0,1,2 b-tag7.62±0.85 23 ABAZOV 08N D0 ℓ + n jets + b-tag or kinemati
s8.5 +2.7
−2.2 24 ABULENCIA 08 CDF ℓ+ ℓ− (ℓ = e, µ)8.3 ±1.0 +2.0

−1.5 ±0.5 25 AALTONEN 07D CDF ≥ 6 jets, vtx b-tag7.4 ±1.4 ±1.0 26 ABAZOV 07O D0 ℓℓ + jets, vtx b-tag4.5 +2.0
−1.9 +1.4

−1.1 ±0.3 27 ABAZOV 07P D0 ≥ 6 jets, vtx b-tag6.4 +1.3
−1.2 ±0.7 ±0.4 28 ABAZOV 07R D0 ℓ + ≥ 4 jets6.6 ±0.9 ±0.4 29 ABAZOV 06X D0 ℓ + jets, vtx b-tag8.7 ±0.9 +1.1

−0.9 30 ABULENCIA 06Z CDF ℓ + jets, vtx b-tag5.8 ±1.2 +0.9
−0.7 31 ABULENCIA,A 06C CDF missing ET + jets, vtx b-tag7.5 ±2.1 +3.3
−2.2 +0.5

−0.4 32 ABULENCIA,A 06E CDF 6{8 jets, b-tag8.9 ±1.0 +1.1
−1.0 33 ABULENCIA,A 06F CDF ℓ + ≥ 3 jets, b-tag8.6 +1.6

−1.5 ±0.6 34 ABAZOV 05Q D0 ℓ + n jets8.6+3.2
−2.7 ± 1.1 ± 0.6 35 ABAZOV 05R D0 di-lepton + n jets6.7 +1.4
−1.3 +1.6

−1.1 ±0.4 36 ABAZOV 05X D0 ℓ + jets / kinemati
s5.3 ±3.3 +1.3
−1.0 37 ACOSTA 05S CDF ℓ + jets / soft µ b-tag6.6 ±1.1 ±1.5 38 ACOSTA 05T CDF ℓ + jets / kinemati
s6.0 +1.5

−1.6 +1.2
−1.3 39 ACOSTA 05U CDF ℓ + jets/kinemati
s + vtx b-tag5.6 +1.2

−1.1 +0.9
−0.6 40 ACOSTA 05V CDF ℓ + n jets7.0 +2.4

−2.1 +1.6
−1.1 ±0.4 41 ACOSTA 04I CDF di-lepton + jets + missing ET1Based on 9 fb−1 of data. The measurement is in the 
hannel t t → (b ℓν)(b τ ν), where

τ de
ays into hadrons (τh), and ℓ (e or µ) in
lude ℓ from τ de
ays (τℓ). The result isfor mt = 173 GeV.2Based on 8.8 fb−1 of data. Combination of CDF and D0 measurements given, respe
-tively, by σ(tt ; CDF) = 7.63± 0.31± 0.36± 0.16 pb, σ(tt ; D0) = 7.56± 0.20± 0.32±0.46 pb. All the results are for mt = 172.5 GeV. The mt dependen
e of the mean valueis parametrized in eq. (1) and shown in Fig. 2.3Based on 9.7 fb−1 of data. Di�erential 
ross se
tions with respe
t to mtt, ∣∣y(top)∣∣,ET (top) are shown in Figs. 9, 10, 11, respe
tively, and are 
ompared to the predi
tionsof MC models.4Based on 8.8 fb−1 of pp 
ollisions at √s = 1.96 TeV.5Based on 8.7 fb−1 of pp 
ollisions at √
s = 1.96 TeV. Measure the t t 
ross se
tionsimultaneously with the fra
tion of t → W b de
ays. The 
orrelation 
oeÆ
ient between



836836836836Quark Parti
le Listingst those two measurements is −0.434. Assume unitarity of the 3×3 CKM matrix and set∣∣V tb ∣∣ > 0.89 at 95% CL.6Based on 2.2 fb−1 of data in pp 
ollisions at 1.96 TeV. The result assumes the a

ep-tan
e for mt = 172.5 GeV.7Based on 1.12 fb−1 and assumes mt = 175 GeV, where the 
ross se
tion 
hanges by
±0.1 pb for every ∓1 GeV shift in mt . AALTONEN 11D �ts simultaneously the t tprodu
tion 
ross se
tion and the b-tagging eÆ
ien
y and �nd improvements in bothmeasurements.8Based on 2.7 fb−1. The �rst error is from statisti
s and systemati
s, the se
ond is fromluminosity. The result is for mt = 175 GeV. AALTONEN 11W �ts simultaneously a jet
avor dis
riminator between b-, 
-, and light-quarks, and �nd signi�
ant redu
tion inthe systemati
 error.9Based on 2.2 fb−1. The result is for mt = 172.5 GeV. AALTONEN 11Y sele
ts multi-jetevents with large 6ET , and vetoes identi�ed ele
trons and muons.10Based on 5.3 fb−1. The error is statisti
al + systemati
 + luminosity 
ombined. Theresult is for mt = 172.5 GeV. The results for other mt values are given in Table XII andeq.(10) of ABAZOV 11E.11Combination of a dilepton measurement presented in ABAZOV 11Z (based on 5.4fb−1), whi
h yields 7.36+0.90

−0.79 (stat+syst) pb, and the lepton + jets measurementof ABAZOV 11E. The result is for mt = 172.5 GeV. The results for other mt values isgiven by eq.(5) of ABAZOV 11A.12Based on 2.8 fb−1. The result is for mt = 175 GeV.13Based on 2.9 fb−1. Result is obtained from the fra
tion of signal events in the top quarkmass measurement in the all hadroni
 de
ay 
hannel.14Based on 1.7 fb−1. The result is for mt = 175 GeV. AALTONEN 10V uses soft ele
tronsfrom b-hadron de
ays to suppress W+jets ba
kground events.15Based on 4.6 fb−1. The result is for mt = 172.5 GeV. The ratio σ(t t → ℓ+jets) /
σ(Z /γ∗ → ℓℓ) is measured and then multiplied by the theoreti
al Z /γ∗ → ℓℓ 
rossse
tion of σ(Z /γ∗ → ℓℓ) = 251.3 ± 5.0 pb, whi
h is free from the luminosity error.16Based on 1 fb−1. The result is for mt = 175 GeV. 7.9 ± 2.3 pb is found for mt =170 GeV. ABAZOV 10I uses a likelihood dis
riminant to separate signal from ba
kground,where the ba
kground model was 
reated from lower jet-multipli
ity data.17Based on 1 fb−1. The result is for mt = 170 GeV. For mt = 175 GeV, the resultis 6.3+1.2

−1.1(stat)±0.7(syst)±0.4(lumi) pb. Cross se
tion of t t produ
tion has beenmeasured in the t t → τh + jets topology, where τh denotes hadroni
ally de
aying τleptons. The result for the 
ross se
tion times the bran
hing ratio is σ(t t) · B(t t →
τh + jets) = 0.60+0.23

−0.22+0.15
−0.14 ± 0.04 pb for mt = 170 GeV.18Based on 1.1 fb−1. The result is for B(W → ℓν) = 10.8% and mt = 175 GeV; themean value is 9.8 for mt = 172.5 GeV and 10.1 for mt = 170 GeV. AALTONEN 09ADused high pT e or µ with an isolated tra
k to sele
t t t de
ays into dileptons in
luding ℓ= τ . The result is based on the 
andidate event samples with and without vertex b-tag.19Based on 2 fb−1. The result is for mt = 175 GeV; the mean value is 3% higher for mt= 170 GeV and 4% lower for mt = 180 GeV.20Result is based on 1 fb−1 of data. The result is for mt = 170 GeV, and the mean valuede
reases with in
reasing mt ; see their Fig. 2. The result is obtained after 
ombining ℓ+ jets, ℓℓ, and ℓτ �nal states, and the ratios of the extra
ted 
ross se
tions are Rℓℓ/ℓ j= 0.86+0.19

−0.17 and Rℓτ /ℓℓ−ℓ j = 0.97+0.32
−0.29, 
onsistent with the SM expe
tation of R= 1. This leads to the upper bound of B(t → bH+) as a fun
tion of mH+ . Results areshown in their Fig. 1 for B(H+ → τ ν) = 1 and B(H+ → 
 s) = 1 
ases. Comparisonof the mt dependen
e of the extra
ted 
ross se
tion and a partial NNLO predi
tion givesmt = 169.1+5.9

−5.2 GeV.21Result is based on 1 fb−1 of data. The result is for mt = 170 GeV, and the mean value
hanges by −0.07 [mt(GeV)−170℄ pb near the referen
e mt value. Comparison of themt dependen
e of the extra
ted 
ross se
tion and a partial NNLO QCD predi
tion givesmt = 171.5+9.9
−8.8 GeV. The ℓτ 
hannel alone gives 7.6+4.9

−4.3+3.5
−3.4+1.4

−0.9 pb and the ℓℓ
hannel gives 7.5+1.2
−1.1+0.7

−0.6+0.7
−0.5 pb.22Result is based on 0.9 fb−1 of data. The �rst error is from stat + syst, while the lattererror is from luminosity. The result is for mt=175 GeV, and the mean value 
hanges by

−0.09 pb·[mt (GeV)−175℄.23Result is based on 0.9 fb−1 of data. The 
ross se
tion is obtained from the ℓ + ≥ 3 jetevent rates with 1 or 2 b-tag, and also from the kinemati
al likelihood analysis of the
ℓ+ 3, 4 jet events. The result is for mt= 172.6 GeV, and its mt dependen
e shown inFig. 3 leads to the 
onstraint mt = 170 ± 7 GeV when 
ompared to the SM predi
tion.24Result is based on 360 pb−1 of data. Events with high pT oppositely 
harged dileptons
ℓ+ ℓ− (ℓ = e, µ) are used to obtain 
ross se
tions for t t , W+W−, and Z → τ+ τ−produ
tion pro
esses simultaneously. The other 
ross se
tions are given in Table IV.25Based on 1.02 fb−1 of data. Result is for mt = 175 GeV. Se
ondary vertex b-tag andneural network sele
tions are used to a
hieve a signal-to-ba
kground ratio of about 1/2.26Based on 425 pb−1 of data. Result is for mt = 175 GeV. For mt = 170.9 GeV,7.8 ± 1.8(stat + syst) pb is obtained.27Based on 405 ± 25 pb−1 of data. Result is for mt = 175 GeV. The last error is forluminosity. Se
ondary vertex b-tag and neural network are used to separate the signalevents from the ba
kground.28Based on 425 pb−1 of data. Assumes mt = 175 GeV.29Based on ∼ 425 pb−1. Assuming mt = 175 GeV. The �rst error is 
ombined statisti
aland systemati
, the se
ond one is luminosity.30Based on ∼ 318 pb−1. Assuming mt = 178 GeV. The 
ross se
tion 
hanges by ±0.08pb for ea
h ∓ GeV 
hange in the assumed mt . Result is for at least one b-tag. For atleast two b-tagged jets, t t signal of signi�
an
e greater than 5σ is found, and the 
rossse
tion is 10.1+1.6

−1.4+2.0
−1.3 pb for mt = 178 GeV.31Based on ∼ 311 pb−1. Assuming mt = 178 GeV. For mt = 175 GeV, the result is6.0 ± 1.2+0.9

−0.7. This is the �rst CDF measurement without lepton identi�
ation, andhen
e it has sensitivity to the W → τ ν mode.32ABULENCIA,A 06E measures the t t produ
tion 
ross se
tion in the all hadroni
 de
aymode by sele
ting events with 6 to 8 jets and at least one b-jet. S/B = 1/5 has beena
hieved. Based on 311 pb−1. Assuming mt = 178 GeV.

33Based on ∼ 318 pb−1. Assuming mt = 178 GeV. Result is for at least one b-tag. Forat least two b-tagged jets, the 
ross se
tion is 11.1+2.3
−1.9+2.5

−1.9 pb.34ABAZOV 05Q measures the top-quark pair produ
tion 
ross se
tion with ∼ 230 pb−1of data, based on the analysis of W plus n-jet events where W de
ays into e or µplus neutrino, and at least one of the jets is b-jet like. The �rst error is statisti
al andsystemati
, and the se
ond a

ounts for the luminosity un
ertainty. The result assumesmt = 175 GeV; the mean value 
hanges by (175−mt (GeV)) × 0.06 pb in the massrange 160 to 190 GeV.35ABAZOV 05R measures the top-quark pair produ
tion 
ross se
tion with 224{243 pb−1of data, based on the analysis of events with two 
harged leptons in the �nal state. Theresult assumes mt = 175 GeV; the mean value 
hanges by (175−mt (GeV)) × 0.08 pbin the mass range 160 to 190 GeV.36Based on 230 pb−1. Assuming mt = 175 GeV.37Based on 194 pb−1. Assuming mt = 175 GeV.38Based on 194 ± 11 pb−1. Assuming mt = 175 GeV.39Based on 162 ± 10 pb−1. Assuming mt = 175 GeV.40ACOSTA 05V measures the top-quark pair produ
tion 
ross se
tion with ∼ 162 pb−1data, based on the analysis of W plus n-jet events where W de
ays into e or µ plusneutrino, and at least one of the jets is b-jet like. Assumes mt = 175 GeV.41ACOSTA 04I measures the top-quark pair produ
tion 
ross se
tion with 197 ± 12 pb−1data, based on the analysis of events with two 
harged leptons in the �nal state. Assumesmt = 175 GeV.Ratio of the Produ
tion Cross Se
tions of t t γ to t t at √s = 1.96 TeVRatio of the Produ
tion Cross Se
tions of t t γ to t t at √s = 1.96 TeVRatio of the Produ
tion Cross Se
tions of t t γ to t t at √s = 1.96 TeVRatio of the Produ
tion Cross Se
tions of t t γ to t t at √s = 1.96 TeVVALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.024±0.009 1 AALTONEN 11Z CDF ET (γ) > 10 GeV, ∣∣η(γ)∣∣ <1.01Based on 6.0 fb−1 of data. The error is statisti
al and systemati
 
ombined. Eventswith lepton + 6ET + ≥ 3 jets( ≥ 1b) with and without 
entral, high ET photon aremeasured. The result is 
onsistent with the SM predi
tion of 0.024±0.005. The absoluteprodu
tion 
ross se
tion is measured to be 0.18 ± 0.08 fb. The statisti
al signi�
an
e is3.0 standard deviations.t t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVUnless otherwise noted the �rst quoted error is from statisti
s, the se
ond from sys-temati
 un
ertainties, and the third from luminosity. If only two errors are quoted theluminosity is in
luded in the systemati
 un
ertainties.VALUE (pb) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •181.2± 2.8+10.8

−10.6 1 AAD 15BOATLS e + µ + 6ET + ≥ 0j178 ± 3 ±16 ± 3 2 AAD 15CC ATLS ℓ+jets, ℓℓ+jets, ℓτh+jets3 AAIJ 15R LHCB µ+ ≥ 1j(b-tag) forward re-gion182.9± 3.1± 6.4 4 AAD 14AY ATLS e + µ + 1 or 2b jets194 ±18 ±46 5 AAD 13X ATLS τh + 6ET + ≥ 5j ( ≥ 2b)139 ±10 ±26 6 CHATRCHYAN13AY CMS ≥ 6 jets with 2 b-tags158.1± 2.1±10.8 7 CHATRCHYAN13BB CMS ℓ + 6ET + jets( ≥ 1 b-tag)152 ±12 ±32 8 CHATRCHYAN13BE CMS τh+ 6ET+ ≥ 4 jets ( ≥ 1 b)177 ±20 ±14 ± 7 9 AAD 12B ATLS Repl. by AAD 12BF176 ± 5 +14
−11 ± 8 10 AAD 12BF ATLS ℓℓ+ 6ET+ ≥ 2j187 ±11 +18
−17 ± 6 11 AAD 12BOATLS ℓ + 6ET + ≥ 3j with b-tag186 ±13 ±20 ± 7 12 AAD 12CG ATLS ℓ + τh+ 6ET+ ≥ 2j ( ≥ 1b)143 ±14 ±22 ± 3 13 CHATRCHYAN12AC CMS ℓ + τh+ 6ET+ ≥ 2j ( ≥ 1b)161.9± 2.5+ 5.1
− 5.0± 3.6 14 CHATRCHYAN12AX CMS ℓℓ + 6ET + ≥ 2b145 ±31 +42
−27 15 AAD 11A ATLS ℓ+ 6ET+ ≥ 4j, ℓℓ+6ET+ ≥ 2j173 +39

−32 ± 7 16 CHATRCHYAN11AA CMS ℓ + 6ET + ≥ 3 jets168 ±18 ±14 ± 7 17 CHATRCHYAN11F CMS ℓℓ + 6ET + jets154 ±17 ± 6 18 CHATRCHYAN11Z CMS Combination194 ±72 ±24 ±21 19 KHACHATRY...11A CMS ℓℓ + 6ET + ≥ 2 jets1Based on 4.6 fb−1 of data. Uses a template �t to distributions of 6ET and jet multipli
itiesto measure simultaneously t t , WW , and Z/γ∗ → τ τ 
ross se
tions, assuming mt =172.5 GeV.2AAD 15CC based on 4.6 fb−1 of data. The event sele
tion 
riteria are optimized for the
ℓτh + jets 
hannel. Using only this 
hannel 183 ± 9 ± 23 ± 3 pb is derived for the 
rossse
tion.3AAIJ 15R, based on 1.0 fb−1 of data, reports 0.239 ± 0.053 ± 0.033 ± 0.024 pb 
rossse
tion for the forward �du
ial region pT (µ) > 25 GeV, 2.0 < η(µ) < 4.5, 50 GeV <pT (b) < 100 GeV, 2.2 < η(b) < 4.2, �R(µ,b) > 0.5, and pT (µ+b) > 20 GeV. Thethree errors are from statisti
s, systemati
s, and theory. The result agrees with the SMNLO predi
tion.4AAD 14AY reports 182.9 ± 3.1 ± 4.2 ± 3.6 ± 3.3 pb value based on 4.6 fb−1 ofdata. The four errors are from statisti
s, systemati
, luminosity, and the 0.66% beamenergy un
ertainty. We have 
ombined the systemati
 un
ertainties in quadrature. Theresult is for mt = 172.5GeV; for other mt , σ(mt ) = σ(172.5GeV)×[1−0.0028×(mt −172.5GeV)℄. The result is 
onsistent with the SM predi
tion at NNLO.5Based on 1.67 fb−1 of data. The result uses the a

eptan
e for mt = 172.5 GeV.6Based on 3.54 fb−1 of data.7Based on 2.3 fb−1 of data.8Based on 3.9 fb−1 of data.9Based on 35 pb−1 of data for an assumed top quark mass of mt = 172.5 GeV.10Based on 0.70 fb−1 of data. The 3 errors are from statisti
s, systemati
s, and luminosity.The result uses the a

eptan
e for mt = 172.5 GeV.11Based on 35 pb−1 of data. The 3 errors are from statisti
s, systemati
s, and luminosity.The result uses the a

eptan
e for mt = 172.5 GeV and 173 ± 17+18

−16 ± 6 pb is foundwithout the b-tag.
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le Listingst12Based on 2.05 fb−1 of data. The hadroni
 τ 
andidates are sele
ted using a BDTte
hnique. The 3 errors are from statisti
s, systemati
s, and luminosity. The result usesthe a

eptan
e for mt = 172.5 GeV.13Based on 2.0 fb−1 and 2.2 fb−1 of data for ℓ = e and ℓ = µ, respe
tively. The 3 errorsare from statisti
s, systemati
s, and luminosity. The result uses the a

eptan
e for mt= 172.5 GeV.14Based on 2.3 fb−1 of data. The 3 errors are from statisti
s, systemati
s, and luminosity.The result uses the pro�le likelihood-ratio (PLB) method and an assumed mt of 172.5GeV.15Based on 2.9 pb−1 of data. The result for single lepton 
hannels is 142 ± 34+50
−31 pb,while for the dilepton 
hannels is 151+78

−62+37
−24 pb.16Result is based on 36 pb−1 of data. The �rst un
ertainty 
orresponds to the statisti
aland systemati
 un
ertainties, and the se
ond 
orresponds to the luminosity.17Based on 36 pb−1 of data. The ratio of t t and Z/γ∗ 
ross se
tions is measured as

σ(pp → t t)/σ(pp → Z/γ∗ → e+ e−/µ+µ−) = 0.175 ± 0.018(stat)±0.015(syst)for 60 < mℓℓ < 120 GeV, for whi
h they use an NNLO predi
tion for the denominator
ross se
tion of 972 ± 42 pb.18Result is based on 36 pb−1 of data. The �rst error is from statisti
al and systemati
un
ertainties, and the se
ond from luminosity. This is a 
ombination of a measurement inthe dilepton 
hannel (CHATRCHYAN 11F) and the measurement in the ℓ + jets 
hannel(CHATRCHYAN 11Z) whi
h yields 150 ± 9 ± 17 ± 6 pb.19Result is based on 3.1 ± 0.3 pb−1 of data.t t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVUnless otherwise noted the �rst quoted error is from statisti
s, the se
ond from sys-temati
 un
ertainties, and the third from luminosity. If only two errors are quoted theluminosity is in
luded in the systemati
 un
ertainties.VALUE (pb) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •260 ±1 +24

−25 1 AAD 15BP ATLS ℓ+ 6ET+ ≥ 3j ( ≥ 1b)2 AAIJ 15R LHCB µ+ ≥ 1j(b-tag) forward region242.4±1.7±10.2 3 AAD 14AY ATLS e + µ + 1 or 2b jets239 ±2 ±11 ±6 4 CHATRCHYAN14F CMS ℓℓ+6ET+ ≥ 2j ( ≥ 1 b-tag)257 ±3 ±24 ±7 5 KHACHATRY...14S CMS ℓ+τh+6ET+ ≥ 2j ( ≥ 1b)1AAD 15BP based on 20.3 fb−1 of data. The result is for mt = 172.5 GeV and inagreement with the SM predi
tion 253+13
−15 pb at NNLO+NNLL.2AAIJ 15R, based on 2.0 fb−1 of data, reports 0.289 ± 0.043 ± 0.040 ± 0.029 pb 
rossse
tion for the forward �du
ial region pT (µ) > 25 GeV, 2.0 < η(µ) < 4.5, 50 GeV <pT (b) < 100 GeV, 2.2 < η(b) < 4.2, �R(µ,b) > 0.5, and pT (µ+b) > 20 GeV. Thethree errors are from statisti
s, systemati
s, and theory. The result agrees with the SMNLO predi
tion.3AAD 14AY reports 242.4 ± 1.7 ± 5.5 ± 7.5 ± 4.2 pb value based on 20.3 fb−1 ofdata. The four errors are from statisti
s, systemati
, luminosity, and the 0.66% beamenergy un
ertainty. We have 
ombined the systemati
 un
ertainties in quadrature. Theresult is for mt = 172.5GeV; for other mt , σ(mt ) = σ(172.5GeV)×[1−0.0028×(mt −172.5GeV)℄. Also measured is the ratio σ(t t; 8TeV)/σ(t t ; 7TeV) = 1.326 ± 0.024 ±0.015 ± 0.049 ± 0.001. The results are 
onsistent with the SM predi
tions at NNLO.4Based on 5.3 fb−1 of data. The result is for mt = 172.5 GeV, and a parametrizationis given in eq.(6.1) for the mean value at other mt values. The result is in agreementwith the SM predi
tion 252.9+6.4

−8.6 pb at NNLO.5Based on 19.6 fb−1 of data. The measurement is in the 
hannel t t → (b ℓν)(b τ ν),where τ de
ays into hadrons (τh). The result is for mt = 172.5 GeV. For mt = 173.3GeV, the 
ross se
tion is lower by 3.1 pb.t t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVt t Produ
tion Cross Se
tion in pp Collisions at √s = 7 TeVVALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.7 95 1 AAD 12BE ATLS ℓ+ℓ++6ET+ ≥ 2j +HT1Based on 1.04 fb−1 of pp data at √s = 7 TeV. The upper bounds are the same for LL,LR and RR 
hiral 
omponents of the two top quarks.t t t t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt t t t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt t t t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt t t t Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVVALUE (fb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<23 95 1 AAD 15AR ATLS ℓ+ 6ET+ ≥ 5j ( ≥ 2 b)
<70 95 2 AAD 15BY ATLS ≥ 2ℓ+ 6ET+ ≥ 2j ( ≥ 1 b)
<32 95 3 KHACHATRY...14R CMS ℓ+ 6ET+ ≥ 6j ( ≥ 2 b)1AAD 15AR based on 20.3 fb−1 of data. A �t to HT distributions in multi-
hannels
lassi�ed by the number of jets and of b-tagged jets is performed.2AAD 15BY based on 20.3 fb−1 of data. A same-sign lepton pair is required. An ex
essover the SM predi
tion rea
hes 2.5σ for hypotheses involving heavy resonan
es de
ayinginto t t t t .3Based on 19.6 fb−1 of data, using a multivariate analysis to separate signal from ba
k-grounds. About σ(t t t t) = 1 fb is expe
ted in the SM.t tW Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt tW Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt tW Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt tW Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVVALUE (fb) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •170+90

−80±70 1 KHACHATRY...14N CMS t tW → same sign dilepton+ 6ET + jets1Based on 19.5 fb−1 of data. The result is 
onsistent with the SM predi
tion of σ(t tW )= 206+21
−23 fb.

t t Z Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt t Z Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt t Z Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVt t Z Produ
tion Cross Se
tion in pp Collisions at √s = 8 TeVVALUE (fb) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •200+80

−70+40
−30 1 KHACHATRY...14N CMS t t Z → 3,4 ℓ + 6ET + jets1Based on 19.5 fb−1 of data. The result is 
onsistent with the SM predi
tion of σ(t t Z)= 197+22
−25 fb.f(Q0): t t Fra
tion of Events with a Veto on Additional Central Jet A
tivityf(Q0): t t Fra
tion of Events with a Veto on Additional Central Jet A
tivityf(Q0): t t Fra
tion of Events with a Veto on Additional Central Jet A
tivityf(Q0): t t Fra
tion of Events with a Veto on Additional Central Jet A
tivityin pp Collisions at √s = 7 TeVin pp Collisions at √s = 7 TeVin pp Collisions at √s = 7 TeVin pp Collisions at √s = 7 TeVQ0 denotes the threshold of the additional jet pT .VALUE (%) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •80.0±1.1±1.6 1 CHATRCHYAN14AE CMS Q0 = 75 GeV (∣∣y∣∣ <2.4)92.0±0.7±0.8 1 CHATRCHYAN14AE CMS Q0= 150 GeV (∣∣y∣∣ <2.4)98.0±0.3±0.3 1 CHATRCHYAN14AE CMS Q0= 300 GeV (∣∣y∣∣ <2.4)56.4±1.3+2.6
−2.8 2 AAD 12BL ATLS Q0 = 25 GeV (∣∣y∣∣ <2.1)84.7±0.9±1.0 2 AAD 12BL ATLS Q0 = 75 GeV (∣∣y∣∣ <2.1)95.2+0.5

−0.6±0.4 2 AAD 12BL ATLS Q0= 150 GeV (∣∣y∣∣ <2.1)1CHATRCHYAN 15 based on 5.0 fb−1 of data. The t t events are sele
ted in the dileptonand lepton + jets de
ay 
hannels. For other values of Q0 see Table 5.2Based on 2.05 fb−1 of data. The t t events are sele
ted in the dilepton de
ay 
hannelwith two identi�ed b-jets.Fra
tion of t t + multi-jet Events in pp Collisions at √s = 7 TeVFra
tion of t t + multi-jet Events in pp Collisions at √s = 7 TeVFra
tion of t t + multi-jet Events in pp Collisions at √s = 7 TeVFra
tion of t t + multi-jet Events in pp Collisions at √s = 7 TeVVALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAD 15D ATLS ℓ+ 6ET + nj (n=3 to 8)0.332±0.090 2 CHATRCHYAN14AE CMS t t(ℓℓ) + 0 jet (ET > 30GeV)0.436±0.098 2 CHATRCHYAN14AE CMS t t(ℓℓ) + 1 jet (ET > 30GeV)0.232±0.125 2 CHATRCHYAN14AE CMS t t(ℓℓ) + ≥ 2 jet (ET > 30GeV)1Based on 4.6 fb−1 of data. Fidu
ial t t produ
tion 
ross se
tion is presented as a fun
tionof the jet multipli
ity for up to eight jets with the jet pT threshold of 25, 40, 60, and 80GeV, and as a fun
tion of jet pT up to the 5th jet. MC models 
an be dis
riminated byusing data for high jet multipli
ity and by pT distributions of the leading and 5th jet.2Based on 5.0 fb−1 of data. Events with two oppositely 
harged leptons, large 6ET andjets with at least 1 b-tag are used to measure the fra
tion of t t plus additional jets. Thegap fra
tion (n=0 jet rate) as a fun
tion of the jet pT and that of HT , the s
alar sumof the pT 's of additional jets, is shown in Fig. 8.t t Charge Asymmetry (AC ) in pp Collisions at √s = 7 TeVt t Charge Asymmetry (AC ) in pp Collisions at √s = 7 TeVt t Charge Asymmetry (AC ) in pp Collisions at √s = 7 TeVt t Charge Asymmetry (AC ) in pp Collisions at √s = 7 TeVAC = (N(�∣∣y∣∣ >0) − N(�∣∣y∣∣ <0) ) / (N(�∣∣y∣∣ >0) + N(�∣∣y∣∣ <0) ) where �∣∣y∣∣= ∣∣yt ∣∣ −

∣∣yt ∣∣ is the di�eren
e between the absolute values of the top and antitoprapidities and N is the number of events with �∣∣y∣∣ positive or negative.VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.1±2.5±1.7 1 AAD 15AJ ATLS ℓℓ + 6ET + ≥ 2j0.6±1.0 2 AAD 14I ATLS ℓ + 6ET + ≥ 4j ( ≥ 1b)
−1.0±1.7±0.8 3 CHATRCHYAN14D CMS ℓℓ + 6ET + ≥ 2j ( ≥ 1b)
−1.9±2.8±2.4 4 AAD 12BK ATLS ℓ + 6ET + ≥ 4j ( ≥ 1b)0.4±1.0±1.1 5 CHATRCHYAN12BB CMS ℓ + 6ET + ≥ 4j ( ≥ 1b)
−1.3±2.8+2.9

−3.1 6 CHATRCHYAN12BS CMS ℓ + 6ET + ≥ 4j ( ≥ 1b)1AAD 15AJ based on 4.6 fb−1 of data. After kinemati
 re
onstru
tion the top quarkmomenta are 
orre
ted for dete
tor resolution and a

eptan
e e�e
ts by unfolding, usingparton level information of the MC generators. The lepton 
harge asymmetry is measuredas Aℓ
C = 0.024 ± 0.015 ± 0.009. All the measurements are 
onsistent with the SMpredi
tions.2Based on 4.7 fb−1 of data. The result is 
onsistent with the SM predi
tion of AC =0.0123 ± 0.0005. The asymmetry is 0.011 ± 0.018 if restri
ted to those events where

βZ (t t) > 0.6, whi
h is also 
onsistent with the SM predi
tion of 0.020+0.006
−0.007.3Based on 5.0 fb−1 of data. The lepton 
harge asymmetry is measured as Aℓ

C = 0.009±0.0010 ± 0.006. Aℓ
C

dependen
es on mt t , ∣∣y(t t)∣∣, and pT (t t) are given in Fig. 5. Allmeasurements are 
onsistent with the SM predi
tions.4Based on 1.04 fb−1 of data. The result is 
onsistent with AC = 0.006 ± 0.002 (MC atNLO). No signi�
ant dependen
e of AC on mt t is observed.5Based on 5.0 fb−1 of data at 7 TeV.6Based on 1.09 fb−1 of data. The result is 
onsistent with the SM predi
tions.t-quark Polarization in t t Events in pp Collisions at √s = 1.96 TeVt-quark Polarization in t t Events in pp Collisions at √s = 1.96 TeVt-quark Polarization in t t Events in pp Collisions at √s = 1.96 TeVt-quark Polarization in t t Events in pp Collisions at √s = 1.96 TeVVALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.113±0.091±0.019 1 ABAZOV 15K D0 Aℓ

FB in ℓℓ+ 6ET+ ≥ 2j( ≥ 1b)1ABAZOV 15K based on 9.7 fb−1 of data. The value is top quark polarization times spinanalyzing power in the beam basis. The result is 
onsistent with the SM predi
tion of
−0.0019 ± 0.0005.
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le Listingstt-quark Polarization in t t Events in pp Collisions at √s = 7 TeVt-quark Polarization in t t Events in pp Collisions at √s = 7 TeVt-quark Polarization in t t Events in pp Collisions at √s = 7 TeVt-quark Polarization in t t Events in pp Collisions at √s = 7 TeVThe double di�erential distribution in polar angles, θ1 (θ2) of the de
ay parti
le of thetop (anti-top) de
ay produ
ts, is parametrized as (1/σ)dσ/(d
osθ1 d
osθ2) = (1/4) (1 + At 
osθ1 + At 
osθ2 − C 
osθ1 
osθ2 ). The 
harged lepton is used to tag t or t .The 
oeÆ
ient At and At measure the average heli
ity of t and t , respe
tively. ACPCassumes CP 
onservation, whereas ACPV 
orresponds to maximal CP violation.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.035±0.014±0.037 1 AAD 13BE ATLS ACPC = At = At0.020±0.016+0.013

−0.017 1 AAD 13BE ATLS ACPV = At = −At1Based on 4.7 fb−1 of data using the �nal states 
ontaining one or two isolated ele
tronsor muons and jets with at least one b-tag.g g → t t Fra
tion in pp Collisions at √s = 1.96 TeVg g → t t Fra
tion in pp Collisions at √s = 1.96 TeVg g → t t Fra
tion in pp Collisions at √s = 1.96 TeVg g → t t Fra
tion in pp Collisions at √s = 1.96 TeVVALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.33 68 1 AALTONEN 09F CDF t t 
orrelations0.07±0.14±0.07 2 AALTONEN 08AG CDF low pT number of tra
ks1Based on 955 pb−1. AALTONEN 09F used di�eren
es in the t t produ
tion angulardistribution and polarization 
orrelation to des
riminate between g g → t t and qq →t t subpro
esses. The 
ombination with the result of AALTONEN 08AG gives 0.07+0.15

−0.07.2Result is based on 0.96 fb−1 of data. The 
ontribution of the subpro
esses g g → t tand qq → t t is distinguished by using the di�eren
e between quark and gluon initiatedjets in the number of small pT (0.3 GeV < pT < 3 GeV) 
harged parti
les in the
entral region (∣∣η∣∣ < 1.1).AFB of t t in pp Collisions at √s = 1.96 TeVAFB of t t in pp Collisions at √s = 1.96 TeVAFB of t t in pp Collisions at √s = 1.96 TeVAFB of t t in pp Collisions at √s = 1.96 TeVVALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •17.5± 5.6±3.1 1 ABAZOV 15K D0 Aℓ

FB in ℓℓ+ 6ET+ ≥ 2j( ≥ 1b)7.2± 6.0 2 AALTONEN 14F CDF Aℓ
FB in dilepton 
hannel(ℓℓ+ 6ET+ ≥ 2j)7.6± 8.2 2 AALTONEN 14F CDF Aℓℓ
FB

in dilepton 
hannel(ℓℓ+ 6ET+ ≥ 2j)4.2± 2.3+1.7
−2.0 3 ABAZOV 14G D0 Aℓ

FB (ℓ + 6ET+ ≥ 3j (0,1 ≥ 2b))10.6± 3.0 4 ABAZOV 14H D0 AFB (ℓ + 6ET + ≥ 3j ( ≥ 1b))20.1± 6.7 5 AALTONEN 13AD CDF a1/a0 in ℓ+ 6ET+ ≥ 4j ( ≥ 1b)
− 0.2± 3.1 5 AALTONEN 13AD CDF a3,a5,a7 in ℓ+ 6ET+ ≥ 4j ( ≥ 1b)16.4± 4.7 6 AALTONEN 13S CDF ℓ + 6ET + ≥ 4 jets( ≥ 1b-tag)9.4+ 3.2

− 2.9 7 AALTONEN 13X CDF ℓ + 6ET + ≥ 4 jets ( ≥ 1 b-tag)11.8± 3.2 8 ABAZOV 13A D0 ℓℓ & ℓ+ jets 
omb.
−11.6±15.3 9 AALTONEN 11F CDF mt t < 450 GeV47.5±11.4 9 AALTONEN 11F CDF mt t > 450 GeV19.6± 6.5 10 ABAZOV 11AH D0 ℓ + 6ET + ≥ 4 jets( ≥ 1b-tag)17 ± 8 11 AALTONEN 08AB CDF pp frame24 ±14 11 AALTONEN 08AB CDF t t frame12 ± 8 ±1 12 ABAZOV 08L D0 ℓ + 6ET + ≥ 4 jets1ABAZOV 15K based on 9.7 fb−1 of data. The result is 
onsistent with the SM pre-di
tions. By 
ombining with the previous D0 measurement in the ℓ + jet 
hannelABAZOV 14H, Aℓ

FB
= 0.118 ± 0.025 ± 0.013 is obtained.2Based on 9.1 fb−1 of data. Both results are 
onsistent with the SM predi
tions. By
ombining with the previous CDF measurement in the ℓ+jet 
hannel AALTONEN 13X,Aℓ

FB
= 0.090+0.028

−0.026 is obtained. The 
ombined result is about two sigma larger thanthe SM predi
tion of Aℓ
FB = 0.038 ± 0.003.3Based on 9.7 fb−1 of pp data at √s = 1.96 TeV. The asymmetry is 
orre
ted for theprodu
tion level for events with ∣∣yl∣∣ < 1.5. Asymmetry as fun
tions of ET (ℓ) and ∣∣yl∣∣are given in Figs. 7 and 8, respe
tively. Combination with the asymmetry measured inthe dilepton 
hannel [ABAZOV 13P℄ gives Aℓ

FB
= 4.2± 2.0± 1.4 %, in agreement withthe SM predi
tion of 2.0%.4Based on 9.7 fb−1 of data of pp data at √s=1.96 TeV. The measured asymmetry is inagreement with the SM predi
tions of 8.8± 0.9 % [BERNREUTHER 12℄, whi
h in
ludesthe EW e�e
ts. The dependen
es of the asymmetry on ∣∣y(t) − y(t)∣∣ and mt t are shownin Figs. 9 and 10, respe
tively.5Based on 9.4 fb−1 of data. Reported AFB values 
ome from the determination of ai
oeÆ
ients of dσ/d(
osθt) = �i aiPi(
os(θt)) measurement. The result of a1/a0 =(40 ± 12)% seems higher than the NLO SM predi
tion of (15+7

−3)%.6Based on 9.4 fb−1 of data. The quoted result is the asymmetry at the parton level.7Based on 9.4 fb−1 of data. The observed asymmetry is to be 
ompared with the SMpredi
tion of Aℓ
FB = 0.038 ± 0.003.8Based on 5.4 fb−1 of data. ABAZOV 13A studied the dilepton 
hannel of the t t eventsand measured the leptoni
 forward-ba
kward asymmetry to be Aℓ

FB = 5.8± 5.1± 1.3%,whi
h is 
onsistent with the SM (QCD+EW) predi
tion of 4.7 ± 0.1%. The resultis obtained after 
ombining the measurement (15.2 ± 4.0%) in the ℓ + jets 
hannelABAZOV 11AH. The top quark heli
ity is measured by using the neutrino weightingmethod to be 
onsistent with zero in both dilepton and ℓ + jets 
hannels.9Based on 5.3 fb−1 of data. The error is statisti
al and systemati
 
ombined. Eventswith lepton + 6ET + ≥ 4jets( ≥ 1b) are used. AALTONEN 11F also measures theasymmetry as a fun
tion of the rapidity di�eren
e ∣∣yt − yt ∣∣. The NLO QCD predi
tions[MCFM℄ are (4.0± 0.6)% and (8.8± 1.3)% for mt t < 450 and > 450 GeV, respe
tively.

10Based on 5.4 fb−1 of data. The error is statisti
al and systemati
 
ombined. The quotedasymmetry is obtained after unfolding to be 
ompared with the MC�NLO predi
tion of(5.0 ± 0.1)%. No signi�
ant di�eren
e between the mt t < 450 and > 450 GeV datasamples is found. A 
orre
ted asymmetry based on the lepton from a top quark de
ay of(15.2 ± 4.0)% is measured to be 
ompared to the MC�NLO predi
tion of (2.1 ± 0.1)%.11Result is based on 1.9 fb−1 of data. The FB asymmetry in the t t events has beenmeasured in the ℓ + jets mode, where the lepton 
harge is used as the 
avor tag. Theasymmetry in the pp frame is de�ned in terms of 
os(θ) of hadroni
ally de
aying t-quarkmomentum, whereas that in the t t frame is de�ned in terms of the t and t rapiditydi�eren
e. The results are 
onsistent ( ≤ 2 σ) with the SM predi
tions.12Result is based on 0.9 fb−1 of data. The asymmetry in the number of t t events withyt > yt and those with yt < yt has been measured in the lepton + jets �nal state.The observed value is 
onsistent with the SM predi
tion of 0.8% by MC�NLO, and anupper bound on the Z ′ → t t 
ontribution for the SM Z -like 
ouplings is given in in Fig.2 for 350 GeV < mZ ′ < 1 TeV.t-Quark Ele
tri
 Charget-Quark Ele
tri
 Charget-Quark Ele
tri
 Charget-Quark Ele
tri
 ChargeVALUE DOCUMENT ID TECN COMMENT0.64±0.02±0.080.64±0.02±0.080.64±0.02±0.080.64±0.02±0.08 1 AAD 13AY ATLS ℓ+ 6ET+ ≥ 4 jets ( ≥ 1 b)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2 ABAZOV 14D D0 ℓ+6ET+ ≥ 4 jets ( ≥ 2 b)3 AALTONEN 13J CDF pp at 1.96 TeV4 AALTONEN 10S CDF Repl. by AALTONEN 13J5 ABAZOV 07C D0 fra
tion of ∣∣q∣∣=4e/3 pair1AAD 13AY result is based on 2.05 fb−1 of pp data at √s = 7 TeV, the result is obtainedby re
onstru
ting t t events in the lepton + jets �nal state, where b-jet 
harges are taggedby the jet-
harge algorithm. This measurement ex
ludes the 
harge −4/3 assignment tothe top quark at more than 8 standard deviations.2ABAZOV 14D result is based on 5.3 fb−1 of pp data at √

s=1.96 TeV. The ele
tri

harge of b + W system in tt 
andidate events is measured from the 
harges of theleptons from W de
ay and in b jets. Under the assumption that the b + W system
onsists of the sum of the top quark and the 
harge −4/3 quark b′(-4/3) of the samemass, the top quark fra
tion is found to be f = 0.88 ± 0.13 (stat)±0.11 (syst), or theupper bound for the b′(-4/3) 
ontamination of 1 − f < 0.46 (95% CL).3AALTONEN 13J ex
ludes the 
harge −4/3 assignment to the top quark at 99% CL, using5.6 fb−1 of data in pp 
ollisions at √s = 1.96 TeV. Result is obtained by re
onstru
tingt t events in the lepton + jets �nal state, where b-jet 
harges are tagged by the jet-
hargealgorithm.4AALTONEN 10S ex
ludes the 
harge −4/3 assignment for the top quark [CHANG 99℄ at95%CL, using 2.7 fb−1 of data in pp 
ollisions at √s = 1.96 TeV. Result is obtained byre
onstru
ting t t events in the lepton + jets �nal state, where b-jet 
harges are taggedby the SLT (soft lepton tag) algorithm.5ABAZOV 07C reports an upper limit ρ < 0.80 (90% CL) on the fra
tion ρ of exoti
quark pairs QQ with ele
tri
 
harge ∣∣q∣∣ = 4e/3 in t t 
andidate events with high pTlepton, missing ET and ≥ 4 jets. The result is obtained by measuring the fra
tion ofevents in whi
h the quark pair de
ays into W− + b and W+ + b, where b and b jetsare dis
riminated by using the 
harge and momenta of tra
ks within the jet 
ones. Themaximum CL at whi
h the model of CHANG 99 
an be ex
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osta et al. (CDF Collab.)HEISTER 02Q PL B543 173 A. Heister et al. (ALEPH Collab.)ABBIENDI 01T PL B521 181 G. Abbiendi et al. (OPAL Collab.)AFFOLDER 01 PR D63 032003 T. A�older et al. (CDF Collab.)AFFOLDER 01A PR D64 032002 T. A�older et al. (CDF Collab.)AFFOLDER 01C PRL 86 3233 T. A�older et al. (CDF Collab.)AFFOLDER 00B PRL 84 216 T. A�older et al. (CDF Collab.)BARATE 00S PL B494 33 S. Barate et al. (ALEPH Collab.)ABBOTT 99G PR D60 052001 B. Abbott et al. (D0 Collab.)ABE 99B PRL 82 271 F. Abe et al. (CDF Collab.)Also PRL 82 2808 (erratum) F. Abe et al. (CDF Collab.)CHANG 99 PR D59 091503 D. Chang, W. Chang, E. MaABBOTT 98D PRL 80 2063 B. Abbott et al. (D0 Collab.)ABBOTT 98F PR D58 052001 B. Abbott et al. (D0 Collab.)ABE 98E PRL 80 2767 F. Abe et al. (CDF Collab.)ABE 98F PRL 80 2779 F. Abe et al. (CDF Collab.)ABE 98G PRL 80 2525 F. Abe et al. (CDF Collab.)ABE 98X PRL 80 2773 F. Abe et al. (CDF Collab.)BHAT 98B IJMP A13 5113 P.C. Bhat, H.B. Prosper, S.S. SnyderABACHI 97E PRL 79 1197 S. Aba
hi et al. (D0 Collab.)ABE 97R PRL 79 1992 F. Abe et al. (CDF Collab.)ABE 97V PRL 79 3585 F. Abe et al. (CDF Collab.)PDG 96 PR D54 1 R. M. Barnett et al. (PDG Collab.)ABACHI 95 PRL 74 2632 S. Aba
hi et al. (D0 Collab.)



840840840840Quark Parti
le Listingst, b′ (Fourth Generation) QuarkABE 95F PRL 74 2626 F. Abe et al. (CDF Collab.)ABE 94E PR D50 2966 F. Abe et al. (CDF Collab.)Also PRL 73 225 F. Abe et al. (CDF Collab.)b′ (4th Generation) Quark, Sear
hes forb′(−1/3)-quark/hadron mass limits in pp and pp 
ollisionsb′(−1/3)-quark/hadron mass limits in pp and pp 
ollisionsb′(−1/3)-quark/hadron mass limits in pp and pp 
ollisionsb′(−1/3)-quark/hadron mass limits in pp and pp 
ollisionsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>620 95 1 AAD 15BY ATLS W t, Z b, hb modes
>730 95 2 AAD 15BY ATLS B(b′ → W t) = 1
>810 95 3 AAD 15Z ATLS
>755>755>755>755 95 4 AAD 14AZ ATLS
>675>675>675>675 95 5 CHATRCHYAN13I CMS B(b′ → W t) = 1
>190>190>190>190 95 6 ABAZOV 08X D0 
τ= 200mm
>190>190>190>190 95 7 ACOSTA 03 CDF quasi-stable b′
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<350, 580{635, >700 95 8 AAD 15AR ATLS B(b′ → H b) = 1
>690 95 9 AAD 15CN ATLS B(b′ → W q) = 1 (q=u)
>480 95 10 AAD 12AT ATLS B(b′ → W t) = 1
>400 95 11 AAD 12AU ATLS B(b′ → Z b) = 1
>350 95 12 AAD 12BC ATLS B(b′ → W q) = 1(q=u,
)
>450 95 13 AAD 12BE ATLS B(b′ → W t) = 1
>685 95 14 CHATRCHYAN12BH CMS mt ′ = mb′
>611 95 15 CHATRCHYAN12X CMS B(b′ → W t) = 1
>372 95 16 AALTONEN 11J CDF b′ → W t
>361 95 17 CHATRCHYAN11L CMS Repl. by CHA-TRCHYAN 12X
>338 95 18 AALTONEN 10H CDF b′ → W t
> 380{430 95 19 FLACCO 10 RVUE mb′ > mt ′
>268 95 20,21 AALTONEN 07C CDF B(b′ → Zb) = 1
>199 95 22 AFFOLDER 00 CDF NC: b′ → Z b
>148 95 23 ABE 98N CDF NC: b′ → Z b + vertex
> 96 95 24 ABACHI 97D D0 NC: b′ → bγ

>128 95 25 ABACHI 95F D0 ℓℓ + jets, ℓ + jets
> 75 95 26 MUKHOPAD... 93 RVUE NC: b′ → b ℓℓ

> 85 95 27 ABE 92 CDF CC: ℓℓ

> 72 95 28 ABE 90B CDF CC: e + µ

> 54 95 29 AKESSON 90 UA2 CC: e + jets + 6ET
> 43 95 30 ALBAJAR 90B UA1 CC: µ + jets
> 34 95 31 ALBAJAR 88 UA1 CC: e or µ + jets1AAD 15BY based on 20.3 fb−1 of pp data at √

s = 8 TeV. Limit on pair-produ
edve
tor-like b′ assuming the bran
hing fra
tions to W , Z , and h modes of the singletmodel. Used events 
ontaining ≥ 2ℓ + 6ET + ≥ 2j ( ≥ 1 b) and in
luding a same-signlepton pair.2AAD 15BY based on 20.3 fb−1 of pp data at √
s = 8 TeV. Limit on pair-produ
ed
hiral b′-quark. Used events 
ontaining ≥ 2ℓ + 6ET + ≥ 2j ( ≥ 1 b) and in
luding asame-sign lepton pair.3AAD 15Z based on 20.3 fb−1 of pp data at √s = 8 TeV. Used events with ℓ + 6ET +

≥ 6j ( ≥ 1 b) and at least one pair of jets from weak boson de
ay, primarily designed tosele
t the signature b′ b′ → WW t t → WWWW bb. This is a limit on pair-produ
edve
tor-like b′. The lower mass limit is 640 GeV for a ve
tor-like singlet b′.4Based on 20.3 fb−1 of pp data at√s = 8 TeV. No signi�
ant ex
ess over SM expe
tationis found in the sear
h for pair produ
tion or single produ
tion of b′ in the events withdilepton from a high pT Z and additional jets ( ≥ 1 b-tag). If instead of B(b′ → W t)= 1 an ele
troweak singlet with B(b′ → W t) ∼ 0.45 is assumed, the limit redu
es to685 GeV.5Based on 5.0 fb−1 of pp data at √
s = 7 TeV. CHATRCHYAN 13I looked for eventswith one isolated ele
tron or muon, large 6ET , and at least four jets with large transversemomenta, where one jet is likely to originate from the de
ay of a bottom quark.6Result is based on 1.1 fb−1 of data. No signal is found for the sear
h of long-livedparti
les whi
h de
ay into �nal states with two ele
trons or photons, and upper boundon the 
ross se
tion times bran
hing fra
tion is obtained for 2 < 
τ < 7000 mm; see Fig.3. 95% CL ex
luded region of b′ lifetime and mass is shown in Fig. 4.7ACOSTA 03 looked for long-lived fourth generation quarks in the data sample of 90pb−1 of √s=1.8 TeV pp 
ollisions by using the muon-like penetration and anomalouslyhigh ionization energy loss signature. The 
orresponding lower mass bound for the 
harge(2/3)e quark (t′) is 220 GeV. The t′ bound is higher than the b′ bound be
ause t′ ismore likely to produ
e 
harged hadrons than b′. The 95% CL upper bounds for theprodu
tion 
ross se
tions are given in their Fig. 3.8AAD 15AR based on 20.3 fb−1 of pp data at √

s = 8 TeV. Used lepton-plus-jets �nalstate. See Fig. 24 for mass limits in the plane of B(b′ → W t) vs. B(b′ → Hb) fromb′ b′ → Hb + X sear
hes.9AAD 15CN based on 20.3 fb−1 of pp data at √s = 8 TeV. Limit on pair-produ
tion of
hiral b′-quark. Used events with ℓ + 6ET + ≥ 4j (non-b-tagged). Limits on a heavyve
tor-like quark, whi
h de
ays into W q, Z q, hq, are presented in the plane B(Q →W q) vs. B(Q → hq) in Fig. 12.10Based on 1.04 fb−1 of pp data at √
s = 7 TeV. No signal is found for the sear
h ofheavy quark pair produ
tion that de
ay into W and a t quark in the events with a highpT isolated lepton, large 6ET , and at least 6 jets in whi
h one, two or more dijets arefrom W .11Based on 2.0 fb−1 of pp data at √

s = 7 TeV. No b′ → Z b invariant mass peak isfound in the sear
h of heavy quark pair produ
tion that de
ay into Z and a b quark inevents with Z → e+ e− and at least one b-jet. The lower mass limit is 358 GeV for ave
tor-like singlet b′ mixing solely with the third SM generation.

12Based on 1.04 fb−1 of pp data at √
s = 7 TeV. No signal is found for the sear
h ofheavy quark pair produ
tion that de
ay into W and a quark in the events with dileptons,large 6ET , and ≥ 2 jets.13Based on 1.04 fb−1 of pp data at √s = 7 TeV. AAD 12BE looked for events with twoisolated like-sign leptons and at least 2 jets, large 6ET and HT > 350 GeV.14Based on 5 fb−1 of pp data at √s = 7 TeV. CHATRCHYAN 12BH sear
hed for QCDand EW produ
tion of single and pair of degenerate 4'th generation quarks that de
ayto bW or tW . Absen
e of signal in events with one lepton, same-sign dileptons or tri-leptons gives the bound. With a mass di�eren
e of 25 GeV/
2 between mt ′ and mb′ ,the 
orresponding limit shifts by about ±20 GeV/
2.15Based on 4.9 fb−1 of pp data at √

s = 7 TeV. CHATRCHYAN 12X looked for eventswith trileptons or same-sign dileptons and at least one b jet.16Based on 4.8 fb−1 of data in pp 
ollisions at 1.96 TeV. AALTONEN 11J looked forevents with ℓ + 6ET + ≥ 5j ( ≥ 1 b or 
). No signal is observed and the bound σ(b′ b′)
< 30 fb for mb′ > 375 GeV is found for B(b′ → W t) = 1.17Based on 34 pb−1 of data in pp 
ollisions at 7 TeV. CHATRCHYAN 11L looked for multi-jet events with trileptons or same-sign dileptons. No ex
ess above the SM ba
kgroundex
ludes mb′ between 255 and 361 GeV at 95% CL for B(b′ → W t) = 1.18Based on 2.7 fb−1 of data in pp 
ollisions at √s = 1.96 TeV. AALTONEN 10H lookedfor pair produ
tion of heavy quarks whi
h de
ay into tW− or tW+, in events withsame sign dileptons (e or µ), several jets and large missing ET . The result is obtainedfor b′ whi
h de
ays into tW−. For the 
harge 5/3 quark (T5/3) whi
h de
ays intotW+, mT5/3 > 365 GeV (95% CL) is found when it has the 
harge −1/3 partner Bof the same mass.19 FLACCO 10 result is obtained from AALTONEN 10H result of mb′ > 338 GeV, byrelaxing the 
ondition B(b′ → W t) = 100% when mb′ > mt ′ .20Result is based on 1.06 fb−1 of data. No ex
ess from the SM Z+jet events is foundwhen Z de
ays into e e or µµ. The mb′ bound is found by 
omparing the resulting upperbound on σ(b′ b′) [1-(1-B(b′ → Z b))2℄ and the LO estimate of the b′ pair produ
tion
ross se
tion shown in Fig. 38 of the arti
le.21HUANG 08 reexamined the b′ mass lower bound of 268 GeV obtained in AALTONEN 07Cthat assumes B(b′ → Z b) = 1, whi
h does not hold for mb′ > 255 GeV. The lowermass bound is given in the plane of sin2(θt b′ ) and mb′ .22AFFOLDER 00 looked for b′ that de
ays in to b+Z . The signal sear
hed for is bbZ Zevents where one Z de
ays into e+ e− or µ+µ− and the other Z de
ays hadroni
ally.The bound assumes B(b′ → Z b)= 100%. Between 100 GeV and 199 GeV, the 95%CLupper bound on σ(b′ → b′)×B2(b′ → Z b) is also given (see their Fig. 2).23ABE 98N looked for Z → e+ e− de
ays with displa
ed verti
es. Quoted limit assumesB(b′ → Z b)=1 and 
 τ

b′=1 
m. The limit is lower than mZ+mb (∼ 96 GeV) if
 τ> 22 
m or 
 τ< 0.009 
m. See their Fig. 4.24ABACHI 97D sear
hed for b′ that de
ays mainly via FCNC. They obtained 95%CL upperbounds on B(b′ b′ → γ+ 3 jets) and B(b′ b′ → 2γ+ 2 jets), whi
h 
an be interpretedas the lower mass bound mb′ >mZ+mb .25ABACHI 95F bound on the top-quark also applies to b′ and t′ quarks that de
ay pre-dominantly into W . See FROGGATT 97.26MUKHOPADHYAYA 93 analyze CDF dilepton data of ABE 92G in terms of a newquark de
aying via 
avor-
hanging neutral 
urrent. The above limit assumes B(b′ →b ℓ+ ℓ−)=1%. For an exoti
 quark de
aying only via virtual Z [B(b ℓ+ ℓ−) = 3%℄, thelimit is 85 GeV.27ABE 92 dilepton analysis limit of >85 GeV at CL=95% also applies to b′ quarks, asdis
ussed in ABE 90B.28ABE 90B ex
lude the region 28{72 GeV.29AKESSON 90 sear
hed for events having an ele
tron with pT > 12 GeV, missingmomentum > 15 GeV, and a jet with ET > 10 GeV, ∣∣η
∣∣ < 2.2, and ex
luded mb′between 30 and 69 GeV.30For the redu
tion of the limit due to non-
harged-
urrent de
ay modes, see Fig. 19 ofALBAJAR 90B.31ALBAJAR 88 study events at E
m = 546 and 630 GeV with a muon or isolated ele
tron,a

ompanied by one or more jets and �nd agreement with Monte Carlo predi
tions forthe produ
tion of 
harm and bottom, without the need for a new quark. The lower masslimit is obtained by using a 
onservative estimate for the b′ b′ produ
tion 
ross se
tionand by assuming that it 
annot be produ
ed in W de
ays. The value quoted here isrevised using the full O(α3s ) 
ross se
tion of ALTARELLI 88.b′(−1/3) mass limits from single produ
tion in pp and pp 
ollisionsb′(−1/3) mass limits from single produ
tion in pp and pp 
ollisionsb′(−1/3) mass limits from single produ
tion in pp and pp 
ollisionsb′(−1/3) mass limits from single produ
tion in pp and pp 
ollisionsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>1390>1390>1390>1390 95 1 KHACHATRY...16I CMS g b → b′→ tW , B(b′ →tW )=1
>1430>1430>1430>1430 95 2 KHACHATRY...16I CMS g b → b′ → tW , B(b′ →tW )=1
>1530>1530>1530>1530 95 3 KHACHATRY...16I CMS g b → b′ → tW , B(b′ →tW )=1
> 693> 693> 693> 693 95 4 ABAZOV 11F D0 qu → q′ b′ → q′(W u)

κ̃ub′=1, B(b′ → W u)=1
> 430> 430> 430> 430 95 4 ABAZOV 11F D0 qd → qb′ → q(Z d)

κ̃d b′=√2, B(b′ → Z d)=11Based on 19.7 fb−1 of data in pp 
ollisions at 8 TeV. Limit on left-handed b′ assuming100% de
ay to tW and using all-hadroni
, lepton + jets, and dilepton �nal states.2Based on 19.7 fb−1 of data in pp 
ollisions at 8 TeV. Limit on right-handed b′ assuming100% de
ay to tW and using all-hadroni
, lepton + jets, and dilepton �nal states.3Based on 19.7 fb−1 of data in pp 
ollisions at 8 TeV. Limit on ve
tor-like b′ assuming100% de
ay to tW and using all-hadroni
, lepton+jets, and dilepton �nal states.4Based on 5.4 fb−1 of data in ppbar 
ollisions at 1.96 TeV. ABAZOV 11F looked forsingle produ
tion of b′ via the W or Z 
oupling to the �rst generation up or downquarks, respe
tively. Model independent 
ross se
tion limits for the single produ
tionpro
esses pp → b′ q → W uq, and pp → b′ q → Z d q are given in Figs. 3 and 4,



841841841841See key on page 601 Quark Parti
le Listingsb′ (Fourth Generation) Quark, t ′ (Fourth Generation) Quarkrespe
tively, and the mass limits are obtained for the model of ATRE 09 with degeneratebi-doublets of ve
tor-like quarks.MASS LIMITS for b′ (4th Generation) Quark or Hadron in e+ e− CollisionsMASS LIMITS for b′ (4th Generation) Quark or Hadron in e+ e− CollisionsMASS LIMITS for b′ (4th Generation) Quark or Hadron in e+ e− CollisionsMASS LIMITS for b′ (4th Generation) Quark or Hadron in e+ e− CollisionsSear
h for hadrons 
ontaining a fourth-generation −1/3 quark denoted b′.The last 
olumn spe
i�es the assumption for the de
ay mode (C C denotes the 
on-ventional 
harged-
urrent de
ay) and the event signature whi
h is looked for.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>46.0>46.0>46.0>46.0 95 1 DECAMP 90F ALEP any de
ay
• • • We do not use the following data for averages, �ts, limits, et
. • • •none 96{103 95 2 ABDALLAH 07 DLPH b′ → bZ , 
W3 ADRIANI 93G L3 Quarkonium
>44.7 95 ADRIANI 93M L3 �(Z)
>45 95 ABREU 91F DLPH �(Z)none 19.4{28.2 95 ABE 90D VNS Any de
ay; event shape
>45.0 95 ABREU 90D DLPH B(C C) = 1; eventshape
>44.5 95 4 ABREU 90D DLPH b′ → 
 H−, H− →
 s , τ− ν
>40.5 95 5 ABREU 90D DLPH �(Z → hadrons)
>28.3 95 ADACHI 90 TOPZ B(FCNC)=100%; isol.

γ or 4 jets
>41.4 95 6 AKRAWY 90B OPAL Any de
ay; a
oplanarity
>45.2 95 6 AKRAWY 90B OPAL B(C C) = 1; a
opla-narity
>46 95 7 AKRAWY 90J OPAL b′ → γ + any
>27.5 95 8 ABE 89E VNS B(C C) =1; µ, enone 11.4{27.3 95 9 ABE 89G VNS B(b′ → bγ) > 10%;isolated γ
>44.7 95 10 ABRAMS 89C MRK2 B(C C)= 100%; isol.tra
k
>42.7 95 10 ABRAMS 89C MRK2 B(bg)= 100%; eventshape
>42.0 95 10 ABRAMS 89C MRK2 Any de
ay; event shape
>28.4 95 11,12 ADACHI 89C TOPZ B(C C) =1; µ

>28.8 95 13 ENO 89 AMY B(C C) & 90%; µ, e
>27.2 95 13,14 ENO 89 AMY any de
ay; event shape
>29.0 95 13 ENO 89 AMY B(b′ → bg) & 85%;event shape
>24.4 95 15 IGARASHI 88 AMY µ,e
>23.8 95 16 SAGAWA 88 AMY event shape
>22.7 95 17 ADEVA 86 MRKJ µ

>21 18 ALTHOFF 84C TASS R, event shape
>19 19 ALTHOFF 84I TASS Aplanarity1DECAMP 90F looked for isolated 
harged parti
les, for isolated photons, and for four-jet�nal states. The modes b′ → bg for B(b′ → bg) > 65% b′ → bγ for B(b′ → bγ)

> 5% are ex
luded. Charged Higgs de
ay were not dis
ussed.2ABDALLAH 07 sear
hed for b′ pair produ
tion at E
m=196{209 GeV, with 420 pb−1.No signal leads to the 95% CL upper limits on B(b′ → bZ) and B(b′ → 
W ) for mb′= 96 to 103 GeV.3ADRIANI 93G sear
h for ve
tor quarkonium states near Z and give limit on quarkonium-Z mixing parameter δm2 <(10{30) GeV2 (95%CL) for the mass 88{94.5 GeV. UsingRi
hardson potential, a 1S (b′ b′) state is ex
luded for the mass range 87.7{94.7 GeV.This range depends on the potential 
hoi
e.4ABREU 90D assumed mH− < mb′ − 3 GeV.5 Superseded by ABREU 91F.6AKRAWY 90B sear
h was restri
ted to data near the Z peak at E
m = 91.26 GeV atLEP. The ex
luded region is between 23.6 and 41.4 GeV if no H+ de
ays exist. For
harged Higgs de
ays the ex
luded regions are between (mH+ + 1.5 GeV) and 45.5GeV.7AKRAWY 90J sear
h for isolated photons in hadroni
 Z de
ay and deriveB(Z → b′ b′)·B(b′ → γX)/B(Z → hadrons) < 2.2× 10−3. Mass limit assumesB(b′ → γX) > 10%.8ABE 89E sear
h at E
m = 56{57 GeV at TRISTAN for multihadron events with aspheri
al shape (using thrust and a
oplanarity) or 
ontaining isolated leptons.9ABE 89G sear
h was at E
m = 55{60.8 GeV at TRISTAN.10 If the photoni
 de
ay mode is large (B(b′ → bγ) > 25%), the ABRAMS 89C limit is45.4 GeV. The limit for for Higgs de
ay (b′ → 
 H−, H− → 
 s) is 45.2 GeV.11ADACHI 89C sear
h was at E
m = 56.5{60.8 GeV at TRISTAN using multi-hadronevents a

ompanying muons.12ADACHI 89C also gives limits for any mixture of C C and bg de
ays.13ENO 89 sear
h at E
m = 50{60.8 at TRISTAN.14ENO 89 
onsiders arbitrary mixture of the 
harged 
urrent, bg , and bγ de
ays.15 IGARASHI 88 sear
hes for leptons in low-thrust events and gives �R(b′) < 0.26 (95%CL) assuming 
harged 
urrent de
ay, whi
h translates to mb′ > 24.4 GeV.16 SAGAWA 88 set limit σ(top) < 6.1 pb at CL=95% for top-
avored hadron produ
tionfrom event shape analyses at E
m = 52 GeV. By using the quark parton model 
ross-se
tion formula near threshold, the above limit leads to lower mass bounds of 23.8 GeVfor 
harge −1/3 quarks.17ADEVA 86 give 95%CL upper bound on an ex
ess of the normalized 
ross se
tion, �R,as a fun
tion of the minimum 
.m. energy (see their �gure 3). Produ
tion of a pair of1/3 
harge quarks is ex
luded up to E
m = 45.4 GeV.18ALTHOFF 84C narrow state sear
h sets limit �(e+ e−)B(hadrons) <2.4 keV CL = 95%and heavy 
harge 1/3 quark pair produ
tion m >21 GeV, CL = 95%.19ALTHOFF 84I ex
lude heavy quark pair produ
tion for 7 <m <19 GeV (1/3 
harge)using aplanarity distributions (CL = 95%).

REFERENCES FOR Sear
hes for (Fourth Generation) b′ QuarkREFERENCES FOR Sear
hes for (Fourth Generation) b′ QuarkREFERENCES FOR Sear
hes for (Fourth Generation) b′ QuarkREFERENCES FOR Sear
hes for (Fourth Generation) b′ QuarkKHACHATRY... 16I JHEP 1601 166 V. Kha
hatryan et al. (CMS Collab.)AAD 15AR JHEP 1508 105 G. Aad et al. (ATLAS Collab.)AAD 15BY JHEP 1510 150 G. Aad et al. (ATLAS Collab.)AAD 15CN PR D92 112007 G. Aad et al. (ATLAS Collab.)AAD 15Z PR D91 112011 G. Aad et al. (ATLAS Collab.)AAD 14AZ JHEP 1411 104 G. Aad et al. (ATLAS Collab.)CHATRCHYAN 13I JHEP 1301 154 S. Chatr
hyan et al. (CMS Collab.)AAD 12AT PRL 109 032001 G. Aad et al. (ATLAS Collab.)AAD 12AU PRL 109 071801 G. Aad et al. (ATLAS Collab.)AAD 12BC PR D86 012007 G. Aad et al. (ATLAS Collab.)AAD 12BE JHEP 1204 069 G. Aad et al. (ATLAS Collab.)CHATRCHYAN 12BH PR D86 112003 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 12X JHEP 1205 123 S. Chatr
hyan et al. (CMS Collab.)AALTONEN 11J PRL 106 141803 T. Aaltonen et al. (CDF Collab.)ABAZOV 11F PRL 106 081801 V.M. Abazov et al. (D0 Collab.)CHATRCHYAN 11L PL B701 204 S. Chatr
hyan et al. (CMS Collab.)AALTONEN 10H PRL 104 091801 T. Aaltonen et al. (CDF Collab.)FLACCO 10 PRL 105 111801 C.J. Fla

o et al. (UCI, HAIF)ATRE 09 PR D79 054018 A. Atre et al.ABAZOV 08X PRL 101 111802 V.M. Abazov et al. (D0 Collab.)HUANG 08 PR D77 037302 P.Q. Hung, M. Sher (UVA, WILL)AALTONEN 07C PR D76 072006 T. Aaltonen et al. (CDF Collab.)ABDALLAH 07 EPJ C50 507 J. Abdallah et al. (DELPHI Collab.)ACOSTA 03 PRL 90 131801 D. A
osta et al. (CDF Collab.)AFFOLDER 00 PRL 84 835 A. A�older et al. (CDF Collab.)ABE 98N PR D58 051102 F. Abe et al. (CDF Collab.)ABACHI 97D PRL 78 3818 S. Aba
hi et al. (D0 Collab.)FROGGATT 97 ZPHY C73 333 C.D. Froggatt, D.J. Smith, H.B. Nielsen (GLAS+)ABACHI 95F PR D52 4877 S. Aba
hi et al. (D0 Collab.)ADRIANI 93G PL B313 326 O. Adriani et al. (L3 Collab.)ADRIANI 93M PRPL 236 1 O. Adriani et al. (L3 Collab.)MUKHOPAD... 93 PR D48 2105 B. Mukhopadhyaya, D.P. Roy (TATA)ABE 92 PRL 68 447 F. Abe et al. (CDF Collab.)Also PR D45 3921 F. Abe et al. (CDF Collab.)ABE 92G PR D45 3921 F. Abe et al. (CDF Collab.)ABREU 91F NP B367 511 P. Abreu et al. (DELPHI Collab.)ABE 90B PRL 64 147 F. Abe et al. (CDF Collab.)ABE 90D PL B234 382 K. Abe et al. (VENUS Collab.)ABREU 90D PL B242 536 P. Abreu et al. (DELPHI Collab.)ADACHI 90 PL B234 197 I. Ada
hi et al. (TOPAZ Collab.)AKESSON 90 ZPHY C46 179 T. Akesson et al. (UA2 Collab.)AKRAWY 90B PL B236 364 M.Z. Akrawy et al. (OPAL Collab.)AKRAWY 90J PL B246 285 M.Z. Akrawy et al. (OPAL Collab.)ALBAJAR 90B ZPHY C48 1 C. Albajar et al. (UA1 Collab.)DECAMP 90F PL B236 511 D. De
amp et al. (ALEPH Collab.)ABE 89E PR D39 3524 K. Abe et al. (VENUS Collab.)ABE 89G PRL 63 1776 K. Abe et al. (VENUS Collab.)ABRAMS 89C PRL 63 2447 G.S. Abrams et al. (Mark II Collab.)ADACHI 89C PL B229 427 I. Ada
hi et al. (TOPAZ Collab.)ENO 89 PRL 63 1910 S. Eno et al. (AMY Collab.)ALBAJAR 88 ZPHY C37 505 C. Albajar et al. (UA1 Collab.)ALTARELLI 88 NP B308 724 G. Altarelli et al. (CERN, ROMA, ETH)IGARASHI 88 PRL 60 2359 S. Igarashi et al. (AMY Collab.)SAGAWA 88 PRL 60 93 H. Sagawa et al. (AMY Collab.)ADEVA 86 PR D34 681 B. Adeva et al. (Mark-J Collab.)ALTHOFF 84C PL 138B 441 M. Altho� et al. (TASSO Collab.)ALTHOFF 84I ZPHY C22 307 M. Altho� et al. (TASSO Collab.)t ′ (4th Generation) Quark, Sear
hes fort ′(2/3)-quark/hadron mass limits in pp and pp 
ollisionst ′(2/3)-quark/hadron mass limits in pp and pp 
ollisionst ′(2/3)-quark/hadron mass limits in pp and pp 
ollisionst ′(2/3)-quark/hadron mass limits in pp and pp 
ollisionsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>770 95 1 AAD 15AR ATLS B(t′ → W b) = 1
>590 95 2 AAD 15BY ATLS W b, Z t, ht modes
>745 95 3 KHACHATRY...15AI CMS B(t′ → ht) = 1
>735 95 4 AAD 14AZ ATLS
>700>700>700>700 95 5 CHATRCHYAN14A CMS B(t′ → W b) = 1
>706>706>706>706 95 5 CHATRCHYAN14A CMS B(t′ → Z t) = 1
>782>782>782>782 95 5 CHATRCHYAN14A CMS B(t′ → ht) = 1
>350>350>350>350 95 6 AAD 12BC ATLS B(t′ → W q)=1 (q=d,s ,b)
>420>420>420>420 95 7 AAD 12C ATLS t′ → X t (mX < 140 GeV)
>685>685>685>685 95 8 CHATRCHYAN12BH CMS mb′ = mt ′
>557>557>557>557 95 9 CHATRCHYAN12P CMS t′ t ′ → W+ bW−b →b ℓ+ν b ℓ− ν
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>656 95 10 AAD 13F ATLS B(t′ → W b) = 1
>625 95 11 CHATRCHYAN13I CMS B(t′ → Z t) = 1
>404 95 12 AAD 12AR ATLS B(t′ → W b) = 1
>570 95 13 CHATRCHYAN12BC CMS t′ t ′ → W+ bW−b
>400 95 14 AALTONEN 11AH CDF t′ → X t (mX < 70 GeV)
>358 95 15 AALTONEN 11AL CDF t′ → W b
>340 95 15 AALTONEN 11AL CDF t′ → W q (q=d,s ,b)
>360 95 16 AALTONEN 11O CDF t′ → X t (mX < 100 GeV)
>285 95 17 ABAZOV 11Q D0 t′ → W q (q=d,s ,b)
>256 95 18,19 AALTONEN 08H CDF t′ → W q1AAD 15AR based on 20.3 fb−1 of pp data at √s = 8 TeV. Used lepton-plus-jets �nalstate. See Fig. 20 for mass limits in the plane of B(t′ → H t) vs. B(t′ → W b) from a
ombination of t′ t ′ → W b + X and t′ t ′ → H t + X sear
hes. Any bran
hing ratios
enario is ex
luded for mass below 715 GeV.2AAD 15BY based on 20.3 fb−1 of pp data at √

s = 8 TeV. Limit on pair-produ
edve
tor-like t′ assuming the bran
hing fra
tions to W , Z , and h modes of the singletmodel. Used events 
ontaining ≥ 2ℓ + 6ET + ≥ 2j ( ≥ 1 b) and in
luding a same-signlepton pair.3KHACHATRYAN 15AI based on 19.7 fb−1 of pp data at √
s = 8 TeV. The sear
hexploits all-hadroni
 �nal states by tagging boosted Higgs boson using jet substru
tureand b-tagging.



842842842842QuarkParti
le Listingst ′ (FourthGeneration)Quark, FreeQuark Sear
hes4Based on 20.3 fb−1 of pp data at√s = 8 TeV. No signi�
ant ex
ess over SM expe
tationis found in the sear
h for pair produ
tion or single produ
tion of t′ in the events withdilepton from a high pT Z and additional jets ( ≥ 1 b-tag). If instead of B(b′ → W t)= 1 an ele
troweak singlet with B(b′ → W t) ∼ 0.45 is assumed, the limit redu
es to685 GeV.5Based on 19.5 fb−1 of pp data at √
s = 8TeV. The t′ quark is pair produ
ed and isassumed to de
ay into three di�erent �nal states of bW , tZ, and th. The sear
h is
arried out using events with at least one isolated lepton.6Based on 1.04 fb−1 of pp data at √
s = 7 TeV. No signal is found for the sear
h ofheavy quark pair produ
tion that de
ay into W and a quark in the events with dileptons,large 6ET , and ≥ 2 jets.7Based on 1.04 fb−1 of data in pp 
ollisions at 7 TeV. AAD 12C looked for t′ t ′ produ
tionfollowed by t′ de
aying into a top quark and X , an invisible parti
le, in a �nal state withan isolated high-PT lepton, four or more jets, and a large missing transverse energy. Noex
ess over the SM t t produ
tion gives the upper limit on t′ t ′ produ
tion 
ross se
tionas a fun
tion of mt ′ and mX . The result is obtained for B(t′ → W t) = 1.8Based on 5 fb−1 of pp data at √s = 7 TeV. CHATRCHYAN 12BH sear
hed for QCDand EW produ
tion of single and pair of degenerate 4'th generation quarks that de
ayto W b or W t. Absen
e of signal in events with one lepton, same-sign dileptons or tri-leptons gives the bound. With a mass di�eren
e of 25 GeV/
2 between mt ′ and mb′ ,the 
orresponding limit shifts by about ±20 GeV/
2.9Based on 5.0 fb−1 of pp data at √
s = 7 TeV. CHATRCHYAN 12P looked for t′ t ′produ
tion events with two isolated high pT leptons, large 6ET , and 2 high pT jets withb-tag. The absen
e of signal above the SM ba
kground gives the limit for B(t′ → W b)= 1.10Based on 4.7 fb−1 of pp data at √s = 7 TeV. No signal is found for the sear
h of heavyquark pair produ
tion that de
ay into W and a b quark in the events with a high pTisolated lepton, large 6ET and at least 3 jets ( ≥ 1 b-tag). Ve
tor-like quark of 
harge2/3 with 400 < mt ′ < 550 GeV and B(t′ → W b) > 0.63 is ex
luded at 95% CL.11Based on 5.0 fb−1 of pp data at √

s = 7 TeV. CHATRCHYAN 13I looked for eventswith one isolated ele
tron or muon, large 6ET , and at least four jets with large transversemomenta, where one jet is likely to originate from the de
ay of a bottom quark.12Based on 1.04 fb−1 of pp data at √
s = 7 TeV. No signal is found in the sear
h forpair produ
ed heavy quarks that de
ay into W boson and a b quark in the events witha high pT isolated lepton, large 6ET and at least 3 jets ( ≥ 1 b-tag).13Based on 5.0 fb−1 of pp data at √

s = 7 TeV. CHATRCHYAN 12BC looked for t′ t ′produ
tion events with a single isolated high pT lepton, large 6ET and at least 4 highpT jets with a b-tag. The absen
e of signal above the SM ba
kground gives the limitfor B(t′ → W b) = 1.14Based on 5.7 fb−1 of data in pp 
ollisions at 1.96 TeV. AALTONEN 11AH looked fort′ t ′ produ
tion followed by t′ de
aying into a top quark and X , an invisible parti
le,in the all hadroni
 de
ay mode of t t . No ex
ess over the SM t t produ
tion gives theupper limit on t′ t ′ produ
tion 
ross se
tion as a fun
tion of mt ′ and mX . The result isobtained for B(t′ → X t) = 1.15Based on 5.6 fb−1 of data in ppbar 
ollisions at 1.96 TeV. AALTONEN 11AL looked for
ℓ + ≥ 4j events and set upper limits on σ(t′ t ′) as fun
tions of mt ′ .16Based on 4.8 fb−1 of data in pp 
ollisions at 1.96 TeV. AALTONEN 11O looked fort′ t ′ produ
tion signal when t′ de
ays into a top quark and X , an invisible parti
le, in ℓ+ 6ET + jets 
hannel. No ex
ess over the SM t t produ
tion gives the upper limit ont′ t ′ produ
tion 
ross se
tion as a fun
tion of mt ′ and mX . The result is obtained forB(t′ → X t) = 1.17Based on 5.3 fb−1 of data in pp 
ollisions at 1.96 TeV. ABAZOV 11Q looked for ℓ +
6ET + ≥ 4j events and set upper limits on σ(t′ t ′) as fun
tions of mt ′ .18 Sear
hes for pair produ
tion of a new heavy top-like quark t′ de
aying to a W bo-son and another quark by �tting the observed spe
trum of total transverse energy andre
onstru
ted t′ mass in the lepton + jets events.19HUANG 08 reexamined the t′ mass lower bound of 256 GeV obtained in AALTONEN 08Hthat assumes B(b′ → qZ) = 1 for q = u, 
 whi
h does not hold when mb′ <mt ′−mWor the mixing sin2(θb t ′ ) is so tiny that the de
ay o

urs outside of the vertex dete
tor.Fig. 1 gives that lower bound on mt ′ in the plane of sin2(θb t ′ ) and mb′ .t ′(5/3)-quark/hadron mass limits in pp and pp 
ollisionst ′(5/3)-quark/hadron mass limits in pp and pp 
ollisionst ′(5/3)-quark/hadron mass limits in pp and pp 
ollisionst ′(5/3)-quark/hadron mass limits in pp and pp 
ollisionsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>750 95 1 AAD 15BY ATLS t′(5/3) → tW+
>840 95 2 AAD 15Z ATLS t′(5/3) → tW+
>800>800>800>800 95 3 CHATRCHYAN14T CMS t′(5/3) → tW+1AAD 15BY based on 20.3 fb−1 of pp data at √s = 8 TeV. Limit on t′(5/3) in pair andsingle produ
tion assuming its 
oupling to W t is equal to one. Used events 
ontaining

≥ 2ℓ + 6ET + ≥ 2j ( ≥ 1 b) and in
luding a same-sign lepton pair.2AAD 15Z based on 20.3 fb−1 of pp data at √s = 8 TeV. Used events with ℓ + 6ET +
≥ 6j ( ≥ 1 b) and at least one pair of jets from weak boson de
ay, sensitive to the �nalstate bbW+W−W+W−.3Based on 19.5 fb−1 of pp data at √

s = 8 TeV. Non-observation of anomaly inHT distribution in the same sign dilepton events leads to the limit when pair pro-du
ed t′(5/3) quark de
ays ex
lusively into t and W+, resulting in the �nal state withbbW+W−W+W−.t ′(2/3) mass limits from single produ
tion in pp and pp 
ollisionst ′(2/3) mass limits from single produ
tion in pp and pp 
ollisionst ′(2/3) mass limits from single produ
tion in pp and pp 
ollisionst ′(2/3) mass limits from single produ
tion in pp and pp 
ollisionsVALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>403>403>403>403 95 1 ABAZOV 11F D0 qd → q′ t′ → q′(W d)

κ̃d t ′=1, B(t′ → W d)=1
>551>551>551>551 95 1 ABAZOV 11F D0 qu → q t′ → q(Z u)

κ̃u t ′=√2, B(t′ → Z u)=1

1Based on 5.4 fb−1 of data in ppbar 
ollisions at 1.96 TeV. ABAZOV 11F looked forsingle produ
tion of t′ via the Z or E 
oupling to the �rst generation up or down quarks,respe
tively. Model independent 
ross se
tion limits for the single produ
tion pro
essespp → t′ q → (W d)q, and pp → t′ q → (Z d)q are given in Figs. 3 and 4, respe
tively,and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doubletsof ve
tor-like quarks.REFERENCES FOR Sear
hes for (Fourth Generation) t ′ QuarkREFERENCES FOR Sear
hes for (Fourth Generation) t ′ QuarkREFERENCES FOR Sear
hes for (Fourth Generation) t ′ QuarkREFERENCES FOR Sear
hes for (Fourth Generation) t ′ QuarkAAD 15AR JHEP 1508 105 G. Aad et al. (ATLAS Collab.)AAD 15BY JHEP 1510 150 G. Aad et al. (ATLAS Collab.)AAD 15Z PR D91 112011 G. Aad et al. (ATLAS Collab.)KHACHATRY... 15AI JHEP 1506 080 V. Kha
hatryan et al. (CMS Collab.)AAD 14AZ JHEP 1411 104 G. Aad et al. (ATLAS Collab.)CHATRCHYAN 14A PL B729 149 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 14T PRL 112 171801 S. Chatr
hyan et al. (CMS Collab.)AAD 13F PL B718 1284 G. Aad et al. (ATLAS Collab.)CHATRCHYAN 13I JHEP 1301 154 S. Chatr
hyan et al. (CMS Collab.)AAD 12AR PRL 108 261802 G. Aad et al. (ATLAS Collab.)AAD 12BC PR D86 012007 G. Aad et al. (ATLAS Collab.)AAD 12C PRL 108 041805 G. Aad et al. (ATLAS Collab.)CHATRCHYAN 12BC PL B718 307 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 12BH PR D86 112003 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 12P PL B716 103 S. Chatr
hyan et al. (CMS Collab.)AALTONEN 11AH PRL 107 191803 T. Aaltonen et al. (CDF Collab.)AALTONEN 11AL PRL 107 261801 T. Aaltonen et al. (CDF Collab.)AALTONEN 11O PRL 106 191801 T. Aaltonen et al. (CDF Collab.)ABAZOV 11F PRL 106 081801 V.M. Abazov et al. (D0 Collab.)ABAZOV 11Q PRL 107 082001 V.M. Abazov et al. (D0 Collab.)ATRE 09 PR D79 054018 A. Atre et al.AALTONEN 08H PRL 100 161803 T. Aaltonen et al. (CDF Collab.)HUANG 08 PR D77 037302 P.Q. Hung, M. Sher (UVA, WILL)Free Quark Sear
hes
FREE QUARK SEARCHES

The basis for much of the theory of particle scattering and

hadron spectroscopy is the construction of the hadrons from a

set of fractionally charged constituents (quarks). A central but

unproven hypothesis of this theory, Quantum Chromodynamics,

is that quarks cannot be observed as free particles but are

confined to mesons and baryons.

Experiments show that it is at best difficult to “unglue”

quarks. Accelerator searches at increasing energies have pro-

duced no evidence for free quarks, while only a few cosmic-ray

and matter searches have produced uncorroborated events.

This compilation is only a guide to the literature, since the

quoted experimental limits are often only indicative. Reviews

can be found in Refs. 1–4.
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(1982).Quark Produ
tion Cross Se
tion | A

elerator Sear
hesQuark Produ
tion Cross Se
tion | A

elerator Sear
hesQuark Produ
tion Cross Se
tion | A

elerator Sear
hesQuark Produ
tion Cross Se
tion | A

elerator Sear
hesX-SECT CHG MASS ENERGY(
m2) (e/3) (GeV) (GeV) BEAM EVTS DOCUMENT ID TECN

<1.7-2.3E−39 ±2 100{600 7000 pp 0 1 CHATRCHYAN13AR CMS
<14-5.4E−39 ±1 100{600 7000 pp 0 1 CHATRCHYAN13AR CMS
<1.3E−36 ±2 45{84 130{172 e+ e− 0 ABREU 97D DLPH
<2.E−35 +2 250 1800 pp 0 2 ABE 92J CDF
<1.E−35 +4 250 1800 pp 0 2 ABE 92J CDF
<3.8E−28 14.5A 28Si{Pb 0 3 HE 91 PLAS
<3.2E−28 14.5A 28Si{Cu 0 3 HE 91 PLAS
<1.E−40 ±1,2 <10 p,ν,ν 0 BERGSMA 84B CHRM
<1.E−36 ±1,2 <9 200 µ 0 AUBERT 83C SPEC
<2.E−10 ±2,4 1{3 200 p 0 4 BUSSIERE 80 CNTR
<5.E−38 +1,2 >5 300 p 0 5,6 STEVENSON 79 CNTR
<1.E−33 ±1 <20 52 pp 0 BASILE 78 SPEC
<9.E−39 ±1,2 <6 400 p 0 5 ANTREASYAN 77 SPEC
<8.E−35 +1,2 <20 52 pp 0 7 FABJAN 75 CNTR
<5.E−38 −1,2 4{9 200 p 0 NASH 74 CNTR



843843843843See key on page 601 QuarkParti
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hes
<1.E−32 +2,4 4{24 52 pp 0 ALPER 73 SPEC
<5.E−31 +1,2,4 <12 300 p 0 LEIPUNER 73 CNTR
<6.E−34 ±1,2 <13 52 pp 0 BOTT 72 CNTR
<1.E−36 −4 4 70 p 0 ANTIPOV 71 CNTR
<1.E−35 ±1,2 2 28 p 0 8 ALLABY 69B CNTR
<4.E−37 −2 <5 70 p 0 4 ANTIPOV 69 CNTR
<3.E−37 −1,2 2{5 70 p 0 8 ANTIPOV 69B CNTR
<1.E−35 +1,2 <7 30 p 0 DORFAN 65 CNTR
<2.E−35 −2 < 2.5{5 30 p 0 9 FRANZINI 65B CNTR
<5.E−35 +1,2 <2.2 21 p 0 BINGHAM 64 HLBC
<1.E−32 +1,2 <4.0 28 p 0 BLUM 64 HBC
<1.E−35 +1,2 <2.5 31 p 0 9 HAGOPIAN 64 HBC
<1.E−34 +1 <2 28 p 0 LEIPUNER 64 CNTR
<1.E−33 +1,2 <2.4 24 p 0 MORRISON 64 HBC1CHATRCHYAN 13AR limits assume pair-produ
ed long-lived spin-1/2 parti
les neutralunder SU(3)C and SU(2)L.2ABE 92J 
ux limits de
rease as the mass in
reases from 50 to 500 GeV.3HE 91 limits are for 
harges of the form N±1/3 from 23/3 to 38/3.4Hadroni
 or leptoni
 quarks.5Cross se
tion 
m2/GeV2.6 3× 10−5 <lifetime < 1× 10−3 s.7 In
ludes BOTT 72 results.8Assumes isotropi
 
m produ
tion.9Cross se
tion inferred from 
ux.Quark Di�erential Produ
tion Cross Se
tion | A

elerator Sear
hesQuark Di�erential Produ
tion Cross Se
tion | A

elerator Sear
hesQuark Di�erential Produ
tion Cross Se
tion | A

elerator Sear
hesQuark Di�erential Produ
tion Cross Se
tion | A

elerator Sear
hesX-SECT CHG MASS ENERGY(
m2sr−1GeV−1) e/3 (GeV) (GeV) BEAM EVTS DOCUMENT ID TECN
<4.E−36 −2,4 1.5{6 70 p 0 BALDIN 76 CNTR
<2.E−33 ±4 5{20 52 pp 0 ALBROW 75 SPEC
<5.E−34 <7 7{15 44 pp 0 JOVANOV... 75 CNTR
<5.E−35 20 γ 0 1 GALIK 74 CNTR
<9.E−35 −1,2 200 p 0 NASH 74 CNTR
<4.E−36 −4 2.3{2.7 70 p 0 ANTIPOV 71 CNTR
<3.E−35 ±1,2 <2.7 27 p 0 ALLABY 69B CNTR
<7.E−38 −1,2 <2.5 70 p 0 ANTIPOV 69B CNTR1Cross se
tion in 
m2/sr/equivalent quanta.Quark Flux | A

elerator Sear
hesQuark Flux | A

elerator Sear
hesQuark Flux | A

elerator Sear
hesQuark Flux | A

elerator Sear
hesThe de�nition of FLUX depends on the experiment(a) is the ratio of measured free quarks to predi
ted free quarks if there is no \
on-�nement."(b) is the probability of fra
tional 
harge on nu
lear fragments. Energy is inGeV/nu
leon.(
) is the 90%CL upper limit on fra
tionally-
harged parti
les produ
ed per intera
-tion.(d) is quarks per 
ollision.(e) is in
lusive quark-produ
tion 
ross-se
tion ratio to σ(e+ e− → µ+µ−).(f) is quark 
ux per 
harged parti
le.(g) is the 
ux per ν-event.(h) is quark yield per π− yield.(i) is 2-body ex
lusive quark-produ
tion 
ross-se
tion ratio to σ(e+ e− →

µ+µ−).CHG MASS ENRGYFLUX (e/3) (GeV) (GeV) BEAM EVTS DOCUMENT ID TECN
<1.6E−3 b see note 200 32S{Pb 0 1 HUENTRUP 96 PLAS
<6.2E−4 b see note 10.6 32S{Pb 0 1 HUENTRUP 96 PLAS
<0.94E−4 e ±2 2{30 88{94 e+ e− 0 AKERS 95R OPAL
<1.7E−4 e ±2 30{40 88{94 e+ e− 0 AKERS 95R OPAL
<3.6E−4 e ±4 5{30 88{94 e+ e− 0 AKERS 95R OPAL
<1.9E−4 e ±4 30{45 88{94 e+ e− 0 AKERS 95R OPAL
<2.E−3 e +1 5{40 88{94 e+ e− 0 2 BUSKULIC 93C ALEP
<6.E−4 e +2 5{30 88{94 e+ e− 0 2 BUSKULIC 93C ALEP
<1.2E−3 e +4 15{40 88{94 e+ e− 0 2 BUSKULIC 93C ALEP
<3.6E−4 i +4 5.0{10.2 88{94 e+ e− 0 BUSKULIC 93C ALEP
<3.6E−4 i +4 16.5{26.0 88{94 e+ e− 0 BUSKULIC 93C ALEP
<6.9E−4 i +4 26.0{33.3 88{94 e+ e− 0 BUSKULIC 93C ALEP
<9.1E−4 i +4 33.3{38.6 88{94 e+ e− 0 BUSKULIC 93C ALEP
<1.1E−3 i +4 38.6{44.9 88{94 e+ e− 0 BUSKULIC 93C ALEP
<1.6E−4 b see note see note 0 3 CECCHINI 93 PLASb 4,5,7,8 2.1A 16O 0,2,0,6 4 GHOSH 92 EMUL
<6.4E−5 g 1 ν,ν 1 5 BASILE 91 CNTR
<3.7E−5 g 2 ν,ν 0 5 BASILE 91 CNTR
<3.9E−5 g 1 ν,ν 1 6 BASILE 91 CNTR
<2.8E−5 g 2 ν,ν 0 6 BASILE 91 CNTR
<1.9E−4 
 14.5A 28Si{Pb 0 7 HE 91 PLAS
<3.9E−4 
 14.5A 28Si{Cu 0 7 HE 91 PLAS
<1.E−9 
 ±1,2,4 14.5A 16O{Ar 0 MATIS 91 MDRP
<5.1E−10 
 ±1,2,4 14.5A 16O{Hg 0 MATIS 91 MDRP
<8.1E−9 
 ±1,2,4 14.5A Si{Hg 0 MATIS 91 MDRP
<1.7E−6 
 ±1,2,4 60A 16O{Hg 0 MATIS 91 MDRP
<3.5E−7 
 ±1,2,4 200A 16O{Hg 0 MATIS 91 MDRP
<1.3E−6 
 ±1,2,4 200A S{Hg 0 MATIS 91 MDRP
<5E−2 e 2 19{27 52{60 e+ e− 0 ADACHI 90C TOPZ

<5E−2 e 4 <24 52{60 e+ e− 0 ADACHI 90C TOPZ
<1.E−4 e +2 <3.5 10 e+ e− 0 BOWCOCK 89B CLEO
<1.E−6 d ±1,2 60 16O{Hg 0 CALLOWAY 89 MDRP
<3.5E−7 d ±1,2 200 16O{Hg 0 CALLOWAY 89 MDRP
<1.3E−6 d ±1,2 200 S{Hg 0 CALLOWAY 89 MDRP
<1.2E−10 d ±1 1 800 p{Hg 0 MATIS 89 MDRP
<1.1E−10 d ±2 1 800 p{Hg 0 MATIS 89 MDRP
<1.2E−10 d ±1 1 800 p{N2 0 MATIS 89 MDRP
<7.7E−11 d ±2 1 800 p{N2 0 MATIS 89 MDRP
<6.E−9 h −5 0.9{2.3 12 p 0 NAKAMURA 89 SPEC
<5.E−5 g 1,2 <0.5 ν,ν d 0 ALLASIA 88 BEBC
<3.E−4 b See note 14.5 16O{Pb 0 8 HOFFMANN 88 PLAS
<2.E−4 b See note 200 16O{Pb 0 9 HOFFMANN 88 PLAS
<8E−5 b 19,20,22,23 200A GERBIER 87 PLAS
<2.E−4 a ±1,2 <300 320 p p 0 LYONS 87 MLEV
<1.E−9 
 ±1,2,4,5 14.5 16O{Hg 0 SHAW 87 MDRP
<3.E−3 d −1,2,3,4,6 <5 2 Si{Si 0 10 ABACHI 86C CNTR
<1.E−4 e ±1,2,4 <4 10 e+ e− 0 ALBRECHT 85G ARG
<6.E−5 b ±1,2 1 540 pp 0 BANNER 85 UA2
<5.E−3 e −4 1{8 29 e+ e− 0 AIHARA 84 TPC
<1.E−2 e ±1,2 1{13 29 e+ e− 0 AIHARA 84B TPC
<2.E−4 b ±1 72 40Ar 0 11 BARWICK 84 CNTR
<1.E−4 e ±2 <0.4 1.4 e+ e− 0 BONDAR 84 OLYA
<5.E−1 e ±1,2 <13 29 e+ e− 0 GURYN 84 CNTR
<3.E−3 b ±1,2 <2 540 pp 0 BANNER 83 CNTR
<1.E−4 b ±1,2 106 56Fe 0 LINDGREN 83 CNTR
<3.E−3 b >

∣∣ ± 0.1∣∣ 74 40Ar 0 11 PRICE 83 PLAS
<1.E−2 e ±1,2 <14 29 e+ e− 0 MARINI 82B CNTR
<8.E−2 e ±1,2 <12 29 e+ e− 0 ROSS 82 CNTR
<3.E−4 e ±2 1.8{2 7 e+ e− 0 WEISS 81 MRK2
<5.E−2 e +1,2,4,5 2{12 27 e+ e− 0 BARTEL 80 JADE
<2.E−5 g 1,2 ν 0 5,6 BASILE 80 CNTR
<3.E−10 f ±2,4 1{3 200 p 0 12 BOZZOLI 79 CNTR
<6.E−11 f ±1 <21 52 pp 0 BASILE 78 SPEC
<5.E−3 g νµ 0 BASILE 78B CNTR
<2.E−9 f ±1 <26 62 pp 0 BASILE 77 SPEC
<7.E−10 f +1,2 <20 52 p 0 13 FABJAN 75 CNTR+1,2 >4.5 γ 0 5,6 GALIK 74 CNTR+1,2 >1.5 12 e− 0 5,6 BELLAMY 68 CNTR+1,2 >0.9 γ 0 6 BATHOW 67 CNTR+1,2 >0.9 6 γ 0 6 FOSS 67 CNTR1HUENTRUP 96 quote 95% CL limits for produ
tion of fragments with 
harge di�eringby as mu
h as ±1/3 (in units of e) for 
harge 6 ≤ Z ≤ 10.2BUSKULIC 93C limits for in
lusive quark produ
tion are more 
onservative if the ALEPHhadroni
 fragmentation fun
tion is assumed.3CECCHINI 93 limit at 90%CL for 23/3 ≤ Z ≤ 40/3, for 16A GeV O, 14.5A Si, and200A S in
ident on Cu target. Other limits are 2.3 × 10−4 for 17/3 ≤ Z ≤ 20/3 and1.2× 10−4 for 20/3 ≤ Z ≤ 23/3.4GHOSH 92 reports measurement of spallation fragment 
harge based on ionization inemulsion. Out of 650 measured tra
ks, 2 were 
onsistent with 
harge 5e/3, and 4 with7e/3.5Hadroni
 quark.6 Leptoni
 quark.7HE 91 limits are for 
harges of the form N±1/3 from 23/3 to 38/3, and 
orrespond to
ross-se
tion limits of 380µb (Pb) and 320µb (Cu).8The limits apply to proje
tile fragment 
harges of 17, 19, 20, 22, 23 in units of e/3.9The limits apply to proje
tile fragment 
harges of 16, 17, 19, 20, 22, 23 in units of e/3.10 Flux limits and mass range depend on 
harge.11Bound to nu
lei.12Quark lifetimes > 1× 10−8 s.13One 
andidate m <0.17 GeV.Quark Flux | Cosmi
 Ray Sear
hesQuark Flux | Cosmi
 Ray Sear
hesQuark Flux | Cosmi
 Ray Sear
hesQuark Flux | Cosmi
 Ray Sear
hesShielding values followed with an asterisk indi
ate altitude in km. Shielding values notfollowed with an asterisk indi
ate sea level in kg/
m2.FLUX CHG MASS(
m−2sr−1s−1) (e/3) (GeV) SHIELDING DOCUMENT ID TECN
< 1.E−8 ±1/6{1/10 1 AGNESE 15 CDMS
< 9.2E−15 ±1 3800 2 AMBROSIO 00C MCRO
<2.1E−15 ±1 MORI 91 KAM2
<2.3E−15 ±2 MORI 91 KAM2
<2.E−10 ±1, 2 0.3 WADA 88 CNTR

±4 0.3 3 WADA 88 CNTR
±4 0.3 4 WADA 86 CNTR

<1.E−12 ±2,3/2 −70. 5 KAWAGOE 84B PLAS
<9.E−10 ±1,2 0.3 WADA 84B CNTR
<4.E−9 ±4 0.3 WADA 84B CNTR
<2.E−12 ±1,2,3 −0.3 ∗ MASHIMO 83 CNTR
<3.E−10 ±1,2 0.3 MARINI 82 CNTR
<2.E−11 ±1,2 MASHIMO 82 CNTR
<8.E−10 ±1,2 0.3 5 NAPOLITANO 82 CNTR6 YOCK 78 CNTR
<1.E−9 7 BRIATORE 76 ELEC
<2.E−11 +1 8 HAZEN 75 CC
<2.E−10 +1,2 KRISOR 75 CNTR
<1.E−7 +1,2 8,9 CLARK 74B CC
<3.E−10 +1 >20 KIFUNE 74 CNTR
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<8.E−11 +1 8 ASHTON 73 CNTR
<2.E−8 +1,2 HICKS 73B CNTR
<5.E−10 +4 2.8 ∗ BEAUCHAMP 72 CNTR
<1.E−10 +1,2 8 BOHM 72B CNTR
<1.E−10 +1,2 2.8 ∗ COX 72 ELEC
<3.E−10 +2 CROUCH 72 CNTR
<3.E−8 7 7 DARDO 72 CNTR
<4.E−9 +1 8 EVANS 72 CC
<2.E−9 >10 7 TONWAR 72 CNTR
<2.E−10 +1 2.8 ∗ CHIN 71 CNTR
<3.E−10 +1,2 8 CLARK 71B CC
<1.E−10 +1,2 8 HAZEN 71 CC
<5.E−10 +1,2 3.5 ∗ BOSIA 70 CNTR+1,2 <6.5 8 CHU 70 HLBC
<2.E−9 +1 FAISSNER 70B CNTR
<2.E−10 +1,2 0.8 ∗ KRIDER 70 CNTR
<5.E−11 +2 CAIRNS 69 CC
<8.E−10 +1,2 <10 FUKUSHIMA 69 CNTR+2 8,10 MCCUSKER 69 CC
<1.E−10 >5 1.7,3.6 7 BJORNBOE 68 CNTR
<1.E−8 ±1,2,4 6.3,.2 ∗ 5 BRIATORE 68 CNTR
<3.E−8 >2 FRANZINI 68 CNTR
<9.E−11 ±1,2 GARMIRE 68 CNTR
<4.E−10 ±1 HANAYAMA 68 CNTR
<3.E−8 >15 KASHA 68 OSPK
<2.E−10 +2 KASHA 68B CNTR
<2.E−10 +4 KASHA 68C CNTR
<2.E−10 +2 6 BARTON 67 CNTR
<2.E−7 +4 0.008,0.5 ∗ BUHLER 67 CNTR
<5.E−10 1,2 0.008,0.5 ∗ BUHLER 67B CNTR
<4.E−10 +1,2 GOMEZ 67 CNTR
<2.E−9 +2 KASHA 67 CNTR
<2.E−10 +2 220 BARTON 66 CNTR
<2.E−9 +1,2 0.5 ∗ BUHLER 66 CNTR
<3.E−9 +1,2 KASHA 66 CNTR
<2.E−9 +1,2 LAMB 66 CNTR
<2.E−8 +1,2 >7 2.8 ∗ DELISE 65 CNTR
<5.E−8 +2 >2.5 0.5 ∗ MASSAM 65 CNTR
<2.E−8 +1 2.5 ∗ BOWEN 64 CNTR
<2.E−7 +1 0.8 SUNYAR 64 CNTR1See AGNESE 15 Fig.6 for limits on verti
al density as fun
tion of 
harge extending to∣∣q∣∣/e < 1/10.2AMBROSIO 00C limit is below 11× 10−15 for 0.25 <q/e< 0.5, and is 
hanging rapidlynear q/e=2/3, where it is 2× 10−14.3Distribution in 
elestial sphere was des
ribed as anisotropi
.4With teles
ope axis at zenith angle 40◦ to the south.5 Leptoni
 quarks.6 Lifetime > 10−8 s; 
harge ±0.70, 0.68, 0.42; and mass >4.4, 4.8, and 20 GeV, respe
-tively.7Time delayed air shower sear
h.8Prompt air shower sear
h.9Also e/4 and e/6 
harges.10No events in subsequent experiments.Quark Density | Matter Sear
hesQuark Density | Matter Sear
hesQuark Density | Matter Sear
hesQuark Density | Matter Sear
hesQUARKS/ CHG MASSNUCLEON (e/3) (GeV) MATERIAL/METHOD EVTS DOCUMENT ID
<1.17E−22 sili
one oil drops 0 1 LEE 02
<4.71E−22 sili
one oil drops 1 2 HALYO 00
<4.7E−21 ±1,2 sili
one oil drops 0 MAR 96
<8.E−22 +2 Si/infrared photoionization 0 PERERA 93
<5.E−27 ±1,2 sea water/levitation 0 HOMER 92
<4.E−20 ±1,2 meteorites/mag. levitation 0 JONES 89
<1.E−19 ±1,2 various/spe
trometer 0 MILNER 87
<5.E−22 ±1,2 W/levitation 0 SMITH 87
<3.E−20 +1,2 org liq/droplet tower 0 VANPOLEN 87
<6.E−20 −1,2 org liq/droplet tower 0 VANPOLEN 87
<3.E−21 ±1 Hg drops-untreated 0 SAVAGE 86
<3.E−22 ±1,2 levitated niobium 0 SMITH 86
<2.E−26 ±1,2 4He/levitation 0 SMITH 86B
<2.E−20 >±1 0.2{250 niobium+tungs/ion 0 MILNER 85
<1.E−21 ±1 levitated niobium 0 SMITH 85+1,2 <100 niobium/mass spe
 0 KUTSCHERA 84
<5.E−22 levitated steel 0 MARINELLI 84
<9.E−20 ± <13 water/oil drop 0 JOYCE 83
<2.E−21 >

∣∣ ± 1/2∣∣ levitated steel 0 LIEBOWITZ 83
<1.E−19 ±1,2 photo ion spe
 0 VANDESTEEG 83
<2.E−20 mer
ury/oil drop 0 3 HODGES 811.E−20 +1 levitated niobium 4 4 LARUE 811.E−20 −1 levitated niobium 4 4 LARUE 81
<1.E−21 levitated steel 0 MARINELLI 80B
<6.E−16 helium/mass spe
 0 BOYD 791.E−20 +1 levitated niobium 2 4 LARUE 79
<4.E−28 earth+/ion beam 0 OGOROD... 79
<5.E−15 +1 tungs./mass spe
 0 BOYD 78
<5.E−16 +3 <1.7 hydrogen/mass spe
 0 BOYD 78B

<1.E−21 ±2,4 water/ion beam 0 LUND 78
<6.E−15 >1/2 levitated tungsten 0 PUTT 78
<1.E−22 metals/mass spe
 0 SCHIFFER 78
<5.E−15 levitated tungsten ox 0 BLAND 77
<3.E−21 levitated iron 0 GALLINARO 772.E−21 −1 levitated niobium 1 4 LARUE 774.E−21 +1 levitated niobium 2 4 LARUE 77
<1.E−13 +3 <7.7 hydrogen/mass spe
 0 MULLER 77
<5.E−27 water+/ion beam 0 OGOROD... 77
<1.E−21 lunar+/ion spe
 0 STEVENS 76
<1.E−15 +1 <60 oxygen+/ion spe
 0 ELBERT 70
<5.E−19 levitated graphite 0 MORPURGO 70
<5.E−23 water+/atom beam 0 COOK 69
<1.E−17 ±1,2 levitated graphite 0 BRAGINSK 68
<1.E−17 water+/uv spe
 0 RANK 68
<3.E−19 ±1 levitated iron 0 STOVER 67
<1.E−10 sun/uv spe
 0 5 BENNETT 66
<1.E−17 +1,2 meteorites+/ion beam 0 CHUPKA 66
<1.E−16 ±1 levitated graphite 0 GALLINARO 66
<1.E−22 argon/ele
trometer 0 HILLAS 59

−2 levitated oil 0 MILLIKAN 101 95% CL limit for fra
tional 
harge parti
les with 0.18e ≤
∣∣Qresidual

∣∣ ≤ 0.82e in totalof 70.1 mg of sili
one oil.2 95% CL limit for parti
les with fra
tional 
harge ∣∣Qresidual
∣∣ >0.16e in total of 17.4 mgof sili
one oil.3Also set limits for Q = ±e/6.4Note that in PHILLIPS 88 these authors report a subtle magneti
 e�e
t whi
h 
oulda

ount for the apparent fra
tional 
harges.5 Limit inferred by JONES 77B.REFERENCES FOR Free Quark Sear
hesREFERENCES FOR Free Quark Sear
hesREFERENCES FOR Free Quark Sear
hesREFERENCES FOR Free Quark Sear
hesAGNESE 15 PRL 114 111302 R. Agnese et al. (CDMS Collab.)CHATRCHYAN 13AR PR D87 092008 S. Chatr
hyan et al. (CMS Collab.)LEE 02 PR D66 012002 I.T. Lee et al.AMBROSIO 00C PR D62 052003 M. Ambrosio et al. (MACRO Collab.)HALYO 00 PRL 84 2576 V. Halyo et al.ABREU 97D PL B396 315 P. Abreu et al. (DELPHI Collab.)HUENTRUP 96 PR C53 358 G. Huentrup et al. (SIEG)MAR 96 PR D53 6017 N.M. Mar et al. (SLAC, SCHAF, LANL, UCI)AKERS 95R ZPHY C67 203 R. Akers et al. (OPAL Collab.)BUSKULIC 93C PL B303 198 D. Buskuli
 et al. (ALEPH Collab.)CECCHINI 93 ASP 1 369 S. Ce

hini et al.PERERA 93 PRL 70 1053 A.G.U. Perera et al. (PITT)ABE 92J PR D46 R1889 F. Abe et al. (CDF Collab.)GHOSH 92 NC 105A 99 D. Ghosh et al. (JADA, BANGB)HOMER 92 ZPHY C55 549 G.J. Homer et al. (RAL, SHMP, LOQM)BASILE 91 NC 104A 405 M. Basile et al. (BGNA, INFN, CERN, PLRM+)HE 91 PR C44 1672 Y.B. He, P.B. Pri
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LIGHT UNFLAVORED MESONS (S = C = B = 0)

• π± . . . . . . . . . . . . . . . . . . . . . 849
• π0 . . . . . . . . . . . . . . . . . . . . . 853
• η . . . . . . . . . . . . . . . . . . . . . . 855
• f0(500) . . . . . . . . . . . . . . . . . . . 861
• ρ(770) . . . . . . . . . . . . . . . . . . . . 870
• ω(782) . . . . . . . . . . . . . . . . . . . 876
• η′(958) . . . . . . . . . . . . . . . . . . . 881
• f0(980) . . . . . . . . . . . . . . . . . . . 886
• a0(980) . . . . . . . . . . . . . . . . . . . 889
• φ(1020) . . . . . . . . . . . . . . . . . . . 891
• h1(1170) . . . . . . . . . . . . . . . . . . . 897
• b1(1235) . . . . . . . . . . . . . . . . . . . 898
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π±LIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONS(S = C = B = 0)(S = C = B = 0)(S = C = B = 0)(S = C = B = 0)For I = 1 (π, b, ρ, a): ud , (uu−dd)/√2, du;for I = 0 (η, η′, h, h′, ω, φ, f , f ′): 
1(uu + d d) + 
2(s s)

π± IG (JP ) = 1−(0−)We have omitted some results that have been superseded by laterexperiments. The omitted results may be found in our 1988 editionPhysi
s Letters B204B204B204B204 1 (1988).
π± MASSπ± MASSπ± MASSπ± MASSThe most a

urate 
harged pion mass measurements are based upon x-ray wavelength measurements for transitions in π−-mesoni
 atoms. Theobserved line is the blend of three 
omponents, 
orresponding to di�erentK-shell o

upan
ies. JECKELMANN 94 revisits the o

upan
y question,with the 
on
lusion that two sets of o

upan
y ratios, resulting in two dif-ferent pion masses (Solutions A and B), are equally probable. We 
hoosethe higher Solution B sin
e only this solution is 
onsistent with a positivemass-squared for the muon neutrino, given the pre
ise muon momentummeasurements now available (DAUM 91, ASSAMAGAN 94, and ASSAM-AGAN 96) for the de
ay of pions at rest. Earlier mass determinations withpi-mesoni
 atoms may have used in
orre
t K-shell s
reening 
orre
tions.Measurements with an error of > 0.005 MeV have been omitted from thisListing.VALUE (MeV) DOCUMENT ID TECN CHG COMMENT139.57018±0.00035 OUR FIT139.57018±0.00035 OUR FIT139.57018±0.00035 OUR FIT139.57018±0.00035 OUR FIT Error in
ludes s
ale fa
tor of 1.2.139.57018±0.00035 OUR AVERAGE139.57018±0.00035 OUR AVERAGE139.57018±0.00035 OUR AVERAGE139.57018±0.00035 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.139.57071±0.00053 1 LENZ 98 CNTR − pioni
 N2-atoms gas target139.56995±0.00035 2 JECKELMANN 94 CNTR − π− atom, Soln. B

• • • We do not use the following data for averages, �ts, limits, et
. • • •139.57022±0.00014 3 ASSAMAGAN 96 SPEC + π+ → µ+ νµ139.56782±0.00037 4 JECKELMANN 94 CNTR − π− atom, Soln. A139.56996±0.00067 5 DAUM 91 SPEC + π+ → µ+ ν139.56752±0.00037 6 JECKELMANN 86B CNTR − Mesoni
 atoms139.5704 ±0.0011 5 ABELA 84 SPEC + See DAUM 91139.5664 ±0.0009 7 LU 80 CNTR − Mesoni
 atoms139.5686 ±0.0020 CARTER 76 CNTR − Mesoni
 atoms139.5660 ±0.0024 7,8 MARUSHEN... 76 CNTR − Mesoni
 atoms1 LENZ 98 result does not su�er K-ele
tron 
on�guration un
ertainties as does JECKEL-MANN 94.2 JECKELMANN 94 Solution B (dominant 2-ele
tron K-shell o

upan
y), 
hosen for 
on-sisten
y with positive m2
νµ

.3ASSAMAGAN 96 measures the µ+ momentum pµ in π+ → µ+ νµ de
ay at rest tobe 29.79200 ± 0.00011 MeV/
. Combined with the µ+ mass and the assumption mνµ= 0, this gives the π+ mass above; if mνµ
> 0, m

π+ given above is a lower limit.Combined instead with mµ and (assuming CPT) the π− mass of JECKELMANN 94,pµ gives an upper limit on mνµ
(see the νµ).4 JECKELMANN 94 Solution A (small 2-ele
tron K-shell o

upan
y) in 
ombination witheither the DAUM 91 or ASSAMAGAN 94 pion de
ay muon momentum measurementyields a signi�
antly negative m2

νµ
. It is a

ordingly not used in our �ts.5The DAUM 91 value in
ludes the ABELA 84 result. The value is based on a measurementof the µ+ momentum for π+ de
ay at rest, pµ = 29.79179 ± 0.00053 MeV, uses mµ =105.658389 ± 0.000034 MeV, and assumes that mνµ

= 0. The last assumption meansthat in fa
t the value is a lower limit.6 JECKELMANN 86B gives mπ/me = 273.12677(71). We use me = 0.51099906(15)MeV from COHEN 87. The authors note that two solutions for the probability distributionof K-shell o

upan
y �t equally well, and use other data to 
hoose the lower of the twopossible π± masses.7These values are s
aled with a new wavelength-energy 
onversion fa
tor Vλ =1.23984244(37) × 10−6 eV m from COHEN 87. The LU 80 s
reening 
orre
tion re-lies upon a theoreti
al 
al
ulation of inner-shell re�lling rates.8This MARUSHENKO 76 value used at the authors' request to use the a

epted set of
alibration γ energies. Error in
reased from 0.0017 MeV to in
lude QED 
al
ulation errorof 0.0017 MeV (12 ppm). mπ+ − mµ+mπ+ − mµ+mπ+ − mµ+mπ+ − mµ+Measurements with an error > 0.05 MeV have been omitted from thisListing.VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •33.91157±0.00067 1 DAUM 91 SPEC + π+ → µ+ ν33.9111 ±0.0011 ABELA 84 SPEC See DAUM 9133.925 ±0.025 BOOTH 70 CNTR + Magneti
 spe
t.33.881 ±0.035 145 HYMAN 67 HEBC + K− He

1The DAUM 91 value assumes that mνµ
= 0 and uses our mµ = 105.658389 ± 0.000034MeV. (mπ+ − mπ−) / maverage(mπ+ − mπ−) / maverage(mπ+ − mπ−) / maverage(mπ+ − mπ−) / maverageA test of CPT invarian
e.VALUE (units 10−4) DOCUMENT ID TECN2±52±52±52±5 AYRES 71 CNTR

π± MEAN LIFEπ± MEAN LIFEπ± MEAN LIFEπ± MEAN LIFEMeasurements with an error > 0.02× 10−8 s have been omitted.VALUE (10−8 s) DOCUMENT ID TECN CHG COMMENT2.6033 ±0.0005 OUR AVERAGE2.6033 ±0.0005 OUR AVERAGE2.6033 ±0.0005 OUR AVERAGE2.6033 ±0.0005 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.2.60361±0.00052 1 KOPTEV 95 SPEC + Surfa
e µ+'s2.60231±0.00050±0.00084 NUMAO 95 SPEC + Surfa
e µ+'s2.609 ±0.008 DUNAITSEV 73 CNTR +2.602 ±0.004 AYRES 71 CNTR ±2.604 ±0.005 NORDBERG 67 CNTR +2.602 ±0.004 ECKHAUSE 65 CNTR +
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.640 ±0.008 2 KINSEY 66 CNTR +1KOPTEV 95 
ombines the statisti
al and systemati
 errors; the statisti
al error domi-nates.2 Systemati
 errors in the 
alibration of this experiment are dis
ussed by NORDBERG 67.(τ π+ − τ π−) / τ average(τ π+ − τ π−) / τ average(τ π+ − τ π−) / τ average(τ π+ − τ π−) / τ averageA test of CPT invarian
e.VALUE (units 10−4) DOCUMENT ID TECN5.5± 7.15.5± 7.15.5± 7.15.5± 7.1 AYRES 71 CNTR
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−14 ±29 PETRUKHIN 68 CNTR40 ±70 BARDON 66 CNTR23 ±40 1 LOBKOWICZ 66 CNTR1This is the most 
onservative value given by LOBKOWICZ 66.

π ELECTRIC POLARIZABILITY αππ ELECTRIC POLARIZABILITY αππ ELECTRIC POLARIZABILITY αππ ELECTRIC POLARIZABILITY απSee HOLSTEIN 14 for a general review on hadron polarizability.VALUE (10−4 fm3) EVTS DOCUMENT ID TECN COMMENT2.0±0.6±0.72.0±0.6±0.72.0±0.6±0.72.0±0.6±0.7 63k 1 ADOLPH 15A SPEC π− γ → π− γ Compton s
att.1Value is derived assuming απ = −βπ .
π+ DECAY MODESπ+ DECAY MODESπ+ DECAY MODESπ+ DECAY MODES

π− modes are 
harge 
onjugates of the modes below.For de
ay limits to parti
les whi
h are not established, see the se
tion onSear
hes for Axions and Other Very Light Bosons.Mode Fra
tion (�i /�) Con�den
e level�1 µ+νµ [a℄ (99.98770±0.00004) %�2 µ+νµ γ [b℄ ( 2.00 ±0.25 )× 10−4�3 e+νe [a℄ ( 1.230 ±0.004 )× 10−4�4 e+νe γ [b℄ ( 7.39 ±0.05 )× 10−7�5 e+νe π0 ( 1.036 ±0.006 )× 10−8�6 e+νe e+ e− ( 3.2 ±0.5 )× 10−9�7 e+νe ν ν < 5 × 10−6 90%Lepton Family number (LF) or Lepton number (L) violating modesLepton Family number (LF) or Lepton number (L) violating modesLepton Family number (LF) or Lepton number (L) violating modesLepton Family number (LF) or Lepton number (L) violating modes�8 µ+νe L [
℄ < 1.5 × 10−3 90%�9 µ+νe LF [
℄ < 8.0 × 10−3 90%�10 µ− e+ e+ν LF < 1.6 × 10−6 90%[a℄ Measurements of �(e+νe )/�(µ+ νµ) always in
lude de
ays with γ's, andmeasurements of �(e+ νe γ) and �(µ+ νµ γ) never in
lude low-energy γ's.Therefore, sin
e no 
lean separation is possible, we 
onsider the modeswith γ's to be subrea
tions of the modes without them, and let [�(e+ νe )+ �(µ+ νµ)℄/�total = 100%.[b℄ See the Parti
le Listings below for the energy limits used in this mea-surement; low-energy γ's are not in
luded.[
 ℄ Derived from an analysis of neutrino-os
illation experiments.
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π+ BRANCHING RATIOSπ+ BRANCHING RATIOSπ+ BRANCHING RATIOSπ+ BRANCHING RATIOS�(e+ νe)/�total �3/��(e+ νe)/�total �3/��(e+ νe)/�total �3/��(e+ νe)/�total �3/�See note [a℄ in the list of π+ de
ay modes just above, and see also the next blo
kof data. See also the note on \De
ay Constants of Charged Pseudos
alar Mesons" inthe D+s Listings.VALUE (units 10−4) DOCUMENT ID1.230±0.004 OUR EVALUATION1.230±0.004 OUR EVALUATION1.230±0.004 OUR EVALUATION1.230±0.004 OUR EVALUATION
[�(e+νe)+�(e+νe γ

)
]/[�(µ+ νµ

)+�(µ+ νµ γ
)
] (�3+�4)/(�1+�2)[�(e+νe)+�(e+νe γ

)
]/[�(µ+ νµ

)+�(µ+ νµ γ
)
] (�3+�4)/(�1+�2)[�(e+νe)+�(e+νe γ

)
]/[�(µ+ νµ

)+�(µ+ νµ γ
)
] (�3+�4)/(�1+�2)[�(e+νe)+�(e+νe γ

)
]/[�(µ+ νµ

)+�(µ+ νµ γ
)
] (�3+�4)/(�1+�2)See note [a℄ in the list of π+ de
ay modes above. See NUMAO 92 for a dis
ussionof e-µ universality. See also the note on \De
ay Constants of Charged Pseudos
alarMesons" in the D+s Listings.VALUE (units 10−4) EVTS DOCUMENT ID TECN CHG COMMENT1.2327±0.0023 OUR AVERAGE1.2327±0.0023 OUR AVERAGE1.2327±0.0023 OUR AVERAGE1.2327±0.0023 OUR AVERAGE1.2344±0.0023±0.0019 400k AGUILAR-AR...15 CNTR + Stopping π+1.2346±0.0035±0.0036 120k CZAPEK 93 CALO Stopping π+1.2265±0.0034±0.0044 190k BRITTON 92 CNTR Stopping π+1.218 ±0.014 32k BRYMAN 86 CNTR Stopping π+

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.273 ±0.028 11k 1 DICAPUA 64 CNTR1.21 ±0.07 ANDERSON 60 SPEC1DICAPUA 64 has been updated using the 
urrent mean life.�(µ+νµ γ
)/�total �2/��(µ+νµ γ
)/�total �2/��(µ+νµ γ
)/�total �2/��(µ+νµ γ
)/�total �2/�Note that measurements here do not 
over the full kinemati
 range.VALUE (units 10−4) EVTS DOCUMENT ID TECN CHG COMMENT2.0 ±0.24±0.082.0 ±0.24±0.082.0 ±0.24±0.082.0 ±0.24±0.08 1 BRESSI 98 CALO + Stopping π+

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.24±0.25 26 CASTAGNOLI 58 EMUL KEµ < 3.38 MeV1BRESSI 98 result is given for Eγ > 1 MeV only. Result agrees with QED expe
tation,2.283× 10−4 and does not 
on�rm dis
repan
y of earlier experiment CASTAGNOLI 58.�(e+ νe γ
)/�total �4/��(e+ νe γ
)/�total �4/��(e+ νe γ
)/�total �4/��(e+ νe γ
)/�total �4/�The very di�erent values re
e
t the very di�erent kinemati
 ranges 
overed (biggerrange, bigger value). And none of them 
overs the whole kinemati
 range.VALUE (units 10−8) EVTS DOCUMENT ID TECN COMMENT73.86±0.5473.86±0.5473.86±0.5473.86±0.54 65k 1 BYCHKOV 09 PIBE e+ ν γ at rest

• • • We do not use the following data for averages, �ts, limits, et
. • • •16.1 ±2.3 2 BOLOTOV 90B SPEC 17 GeV π− →e− νe γ5.6 ±0.7 226 3 STETZ 78 SPEC Pe > 56 MeV/
3.0 143 DEPOMMIER 63B CNTR (KE)e+ γ
> 48 MeV1This BYCHKOV 09 value is for Eγ > 10 MeV and �e+ γ

> 40◦.2BOLOTOV 90B is for Eγ > 21 MeV, Ee > 70 − 0.8 Eγ .3 STETZ 78 is for an e− γ opening angle > 132◦. Obtains 3.7 when using same 
uto�sas DEPOMMIER 63B.�(e+ νe π0)/�total �5/��(e+ νe π0)/�total �5/��(e+ νe π0)/�total �5/��(e+ νe π0)/�total �5/�VALUE (units 10−8) EVTS DOCUMENT ID TECN CHG COMMENT1.036±0.006 OUR AVERAGE1.036±0.006 OUR AVERAGE1.036±0.006 OUR AVERAGE1.036±0.006 OUR AVERAGE1.036±0.006 64k 1,2 POCANIC 04 PIBE + π de
ay at rest1.026±0.039 1224 3 MCFARLANE 85 CNTR + De
ay in 
ight1.00 +0.08
−0.10 332 DEPOMMIER 68 CNTR +1.07 ±0.21 38 4 BACASTOW 65 OSPK +1.10 ±0.26 4 BERTRAM 65 OSPK +1.1 ±0.2 43 4 DUNAITSEV 65 CNTR +0.97 ±0.20 36 4 BARTLETT 64 OSPK +

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.15 ±0.22 52 4 DEPOMMIER 63 CNTR + See DEPOMMIER 681POCANIC 04 normalizes to e+ νe de
ays, using the PDG 2004 value B(π+ → e+ νe )= (1.230± 0.004)×10−4. We add their statisti
al (0.004×10−8), systemati
 (0.004×10−8) and systemati
 error due to the un
ertainty of B(π+ → e+ νe ) (0.003× 10−8)in quadrature.2This result 
an be used to 
al
ulate Vud from pion beta de
ay: VPIBETA
ud

= 0.9728±0.0030.3MCFARLANE 85 
ombines a measured rate (0.394 ± 0.015)/s with 1982 PDG meanlife.4DEPOMMIER 68 says the result of DEPOMMIER 63 is at least 10% too large be
auseof a systemati
 error in the π0 dete
tion eÆ
ien
y, and that this may be true of all theprevious measurements (also V. Soergel, private 
ommuni
ation, 1972).�(e+ νe e+ e−)/�(µ+νµ

) �6/�1�(e+ νe e+ e−)/�(µ+νµ

) �6/�1�(e+ νe e+ e−)/�(µ+νµ

) �6/�1�(e+ νe e+ e−)/�(µ+νµ

) �6/�1VALUE (units 10−9) CL% EVTS DOCUMENT ID TECN COMMENT3.2 ±0.5 ±0.23.2 ±0.5 ±0.23.2 ±0.5 ±0.23.2 ±0.5 ±0.2 98 EGLI 89 SPEC Uses RPCAC =0.068 ± 0.004
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.46±0.16±0.07 7 1 BARANOV 92 SPEC Stopped π+
< 4.8 90 KORENCHE... 76B SPEC
<34 90 KORENCHE... 71 OSPK1This measurement by BARANOV 92 is of the stru
ture-dependent part of the de
ay.The value depends on values assumed for ratios of form fa
tors.

�(e+ νe ν ν
)/�total �7/��(e+ νe ν ν
)/�total �7/��(e+ νe ν ν
)/�total �7/��(e+ νe ν ν
)/�total �7/�VALUE (units 10−6) CL% DOCUMENT ID TECN

<5<5<5<5 90 PICCIOTTO 88 SPEC�(µ+νe)/�total �8/��(µ+νe)/�total �8/��(µ+νe)/�total �8/��(µ+νe)/�total �8/�Forbidden by total lepton number 
onservation. See the note on \De
ay Constants ofCharged Pseudos
alar Mesons" in the D+s Listings.VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<1.5<1.5<1.5<1.5 90 1 COOPER 82 HLBC Wideband ν beam1COOPER 82 limit on νe observation is here interpreted as a limit on lepton numberviolation.�(µ+νe)/�total �9/��(µ+νe)/�total �9/��(µ+νe)/�total �9/��(µ+νe)/�total �9/�Forbidden by lepton family number 
onservation.VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<8.0<8.0<8.0<8.0 90 1 COOPER 82 HLBC Wideband ν beam1COOPER 82 limit on νe observation is here interpreted as a limit on lepton family numberviolation.�(µ− e+ e+ν

)/�total �10/��(µ− e+ e+ν
)/�total �10/��(µ− e+ e+ν
)/�total �10/��(µ− e+ e+ν
)/�total �10/�Forbidden by lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN CHG

<1.6<1.6<1.6<1.6 90 BARANOV 91B SPEC +
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.7 90 KORENCHE... 87 SPEC +

π+ | POLARIZATION OF EMITTED µ+π+ | POLARIZATION OF EMITTED µ+π+ | POLARIZATION OF EMITTED µ+π+ | POLARIZATION OF EMITTED µ+
π+ → µ+ νπ+ → µ+ νπ+ → µ+ νπ+ → µ+ νTests the Lorentz stru
ture of leptoni
 
harged weak intera
tions.VALUE CL% DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<(−0.9959) 90 1 FETSCHER 84 RVUE +
−0.99±0.16 2 ABELA 83 SPEC − µ X-rays1 FETSCHER 84 uses only the measurement of CARR 83.2 Sign of measurement reversed in ABELA 83 to 
ompare with µ+ measurements.
FORM FACTORS FOR RADIATIVE PION
AND KAON DECAYS

Updated August 2015 by M. Bychkov (University of Virginia)
and G. D’Ambrosio (INFN Sezione di Napoli)

The radiative decays, π± → l±νγ and K± → l±νγ, with

l standing for an e or a µ, and γ for a real or virtual

photon (e+e− pair), provide a powerful tool to investigate

the hadronic structure of pions and kaons. The structure-

dependent part SDi of the amplitude describes the emission

of photons from virtual hadronic states, and is parametrized

in terms of form factors V, A, (vector, axial vector), in the

standard description [1,2,3,4]. Note that in the Listings below

and some literature, equivalent nomenclature FV and FA for

the vector and axial form factors is often used. Exotic, non-

standard contributions like i = T, S (tensor, scalar) have also

been considered. Apart from the SD terms, there is also the

Inner Bremsstrahlung amplitude, IB, corresponding to photon

radiation from external charged particles and described by

Low theorem in terms of the physical decay π±(K±) → l±ν.

Experiments try to optimize their kinematics so as to minimize

the IB part of the amplitude.

The SD amplitude in its standard form is given as

M(SDV ) =
−eGF Uqq′√

2mP

ǫµlνV P ǫµνστk
σqτ (1)

M(SDA) =
−ieGF Uqq′√

2mP

ǫµlν{AP [(qk − k2)gµν − qµkν]

+ RP k2gµν} , (2)



851851851851See key on page 601 Meson Parti
le Listings
π±

which contains an additional axial form factor RP which only

can be accessed if the photon remains virtual. Uqq′ is the

Cabibbo-Kobayashi-Maskawa mixing-matrix element; ǫµ is the

polarization vector of the photon (or the effective vertex, ǫµ =

(e/k2)u(p−)γµv(p+), of the e+e− pair); ℓν = u(pν)γ
ν(1 −

γ5)v(pℓ) is the lepton-neutrino current; q and k are the meson

and photon four-momenta (k = p+ + p− for virtual photons);

and P stands for π or K.

The pion vector form factor, V π, is related via CVC

(Conserved Vector Current) to the π0 → γγ decay width. The

constant term is given by |V π(0)| = (1/α)
√

2Γπ0→γγ/πmπ0 [3].

The resulting value, V π(0) = 0.0259(9), has been confirmed

by calculations based on chiral perturbation theory (χPT ) [4],

and by two experiments given in the Listings below. A recent

experiment by the PIBETA collaboration [5] obtained a V π(0)

that is in excellent agreement with the CVC hypothesis. It also

measured the slope parameter a in V π(s) = V π(0)(1 + a · s),
where s = (1 − 2Eγ/mπ), and Eγ is the gamma energy in the

pion rest frame: a = 0.095 ± 0.058. A functional dependence

on s is expected for all form factors. It becomes non-negligible

in the case of V π(s) when a wide range of photon momenta

is recorded; proper treatment in the analysis of K decays is

mandatory.

The form factor, RP , can be related to the electromagnetic

radius, rP , of the meson [2]: RP = 1
3mP fP 〈r2

P 〉 using PCAC

(Partial Conserved Axial vector Current; fP is the meson

decay constant). In lowest order χPT , the ratio Aπ/V π is

related to the pion electric polarizability αE = [α/(8π2mπf2
π)]×

Aπ/V π [6]. The experimental and theoretical status of the pion

polarizability is currently an area under discussion and will be

addressed in a future edition of this article. The first non-

trivial χPT contributions to AK and V K appear at O(p4) [4],

respectively from Gasser-Leutwyler coefficients, Li’s, and the

anomalous lagrangian:

AK =
4
√

2MK

Fπ
(Lr

9 + Lr
10) = 0.042, V K =

√
2MK

8π2Fπ
= 0.096.

(3)

O(p6) contributions to AK can be predicted accurately: they

are flat in the momentum dependence and shift the O(p4) value

to 0.034. O(p6) contributions to V K are model dependent and

can be approximated by a form factor linearly dependent on

momentum. For example, when looking at the spread of results

obtained within two different models, the constant piece of this

linear form factor is shifted to 0.078 ± 0.005 [1,2,4].

For decay processes where the photon is real, the partial

decay width can be written in analytical form as a sum of IB,

SD, and IB/SD interference terms INT [1,4]:

d2ΓP→ℓνγ

dxdy
=

d2 (ΓIB + ΓSD + ΓINT)

dxdy

=
α

2π
ΓP→ℓν

1

(1 − r)2

{

IB(x, y)
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Figure 1: Components of the structure de-
pendent terms of the decay width. Left: SD+,
right: SD−

+
1

r

(

mP

2fP

)2
[

(V + A)2SD+(x, y) + (V − A)2SD−(x, y)
]

+
mP

fP

[

(V + A)S+
INT(x, y) + (V − A)S−INT(x, y)

]

}

. (4)

Here

IB(x, y) =

[

1 − y + r

x2(x + y − 1 − r)

]

[

x2 + 2(1 − x)(1 − r) − 2xr(1 − r)

x + y − 1 − r

]

SD+(x, y) = (x + y − 1 − r)
[

(x + y − 1)(1 − x) − r
]

SD−(x, y) = (1 − y + r)
[

(1 − x)(1 − y) + r
]

S+
INT(x, y) =

[

1 − y + r

x(x + y − 1 − r)

][

(1 − x)(1 − x − y) + r

]

S−INT(x, y) =

[

1 − y + r

x(x + y − 1 − r)

][

x2 − (1 − x)(1 − x − y) − r

]

(5)

where x = 2Eγ/mP , y = 2Eℓ/mP , and r = (mℓ/mP )2. The

structure dependent terms SD+ and SD− are shown in Fig. 1.

The SD− term is maximized in the same kinematic region

where overwhelming IB term dominates (along x + y = 1

diagonal). Thus experimental yields with less background are

dominated by SD+ contribution and proportional to AP + V P

making simultaneous precise determination of the form factors

difficult.

Recently, formulas (4) and (5) have been extended to

describe polarized distributions in radiative meson and muon

decays [7].

The “helicity” factor r is responsible for the enhancement

of the SD over the IB amplitude in the decays π± → e±νγ,

while π± → µ±νγ is dominated by IB. Interference terms are

important for the decay K± → µ±νγ [8], but contribute only

a few percent correction to pion decays. However, they provide

the basis for determining the signs of V and A. Radiative

corrections to the decay π+ → e+νγ have to be taken into

account in the analysis of the precision experiments. They
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make up to 4% corrections in the total decay rate [9]. In

π± → e±νe+e− and K± → ℓ±νe+e− decays, all three form

factors, V P , AP , and RP , can be determined [10,11].

We give the experimental π± form factors V π, Aπ, and Rπ

in the Listings below. In the K± Listings, we give the extracted

sum AK +V K and difference AK −V K , as well as V K , AK and

RK . In particular KLOE has measured for the constant piece

of the form factor AK + V K = 0.125 ± 0.007 ± 0.001 [13] while

Istra+, V K − AK = 0.21 ± 0.04 ± 0.04 [14].

Several searches for the exotic form factors F π
T , FK

T (tensor),

and FK
S (scalar) have been pursued in the past. In particular,

F π
T has been brought into focus by experimental as well as

theoretical work [12]. New high-statistics data from the PI-

BETA collaboration have been re-analyzed together with an

additional data set optimized for low backgrounds in the ra-

diative pion decay. In particular, lower beam rates have been

used in order to reduce the accidental background, thereby

making the treatment of systematic uncertainties easier and

more reliable. The PIBETA analysis now restricts F π
T to the

range −5.2 × 10−4 < F π
T < 4.0 × 10−4 at a 90% confidence

limit [5]. This result is in excellent agreement with the most

recent theoretical work [4].

Precision measurements of radiative pion and kaon decays

are effective tools to study QCD in the non-perturbative re-

gion and are of interest beyond the scope of radiative decays.

Meanwhile other processes such as π+ → e+ν that seem to be

better suited to search for new physics at the precision frontier

are currently studied. The advantages of such process are the

very accurate and reliable theoretical predictions and the more

straightforward experimental analysis.
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π± FORM FACTORSπ± FORM FACTORSπ± FORM FACTORSπ± FORM FACTORSFV , VECTOR FORM FACTORFV , VECTOR FORM FACTORFV , VECTOR FORM FACTORFV , VECTOR FORM FACTORVALUE EVTS DOCUMENT ID TECN COMMENT0.0254±0.0017 OUR AVERAGE0.0254±0.0017 OUR AVERAGE0.0254±0.0017 OUR AVERAGE0.0254±0.0017 OUR AVERAGE0.0258±0.0017 65k 1 BYCHKOV 09 PIBE e+ ν γ at rest0.014 ±0.009 2 BOLOTOV 90B SPEC 17 GeV π− →e− νe γ0.023 +0.015
−0.013 98 EGLI 89 SPEC π+ → e+ νe e+ e−1The BYCHKOV 09 FA and FV results are highly (anti-)
orrelated: FA + 1.0286 FV= 0.03853 ± 0.00014.2BOLOTOV 90B only determines the absolute value.FA, AXIAL-VECTOR FORM FACTORFA, AXIAL-VECTOR FORM FACTORFA, AXIAL-VECTOR FORM FACTORFA, AXIAL-VECTOR FORM FACTORVALUE EVTS DOCUMENT ID TECN COMMENT0.0119±0.00010.0119±0.00010.0119±0.00010.0119±0.0001 65k 1,2 BYCHKOV 09 PIBE e+ ν γ at rest

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0115±0.0004 41k 1,3 FRLEZ 04 PIBE π+ → e+ ν γ at rest0.0106±0.0060 1,4 BOLOTOV 90B SPEC 17 GeV π− →e− νe γ0.021 +0.011
−0.013 98 EGLI 89 SPEC π+ → e+ νe e+ e−0.0135±0.0016 1,4 BAY 86 SPEC π+ → e+ ν γ0.006 ±0.003 1,4 PIILONEN 86 SPEC π+ → e+ ν γ0.011 ±0.003 1,4,5 STETZ 78 SPEC π+ → e+ ν γ1These values 
ome from �xing the ve
tor form fa
tor at the CVC predi
tion, FV =0.0259 ± 0.0005.2When FV is released, the BYCHKOV 09 FA is 0.0117± 0.0017, and FA and FV resultsare highly (anti-)
orrelated: FA + 1.0286 FV = 0.03853 ± 0.00014.3The sign of γ = FA /FV is determined to be positive.4Only the absolute value of FA is determined.5The result of STETZ 78 has a two-fold ambiguity. We take the solution 
ompatible withlater determinations.VECTOR FORM FACTOR SLOPE PARAMETER aVECTOR FORM FACTOR SLOPE PARAMETER aVECTOR FORM FACTOR SLOPE PARAMETER aVECTOR FORM FACTOR SLOPE PARAMETER aThis is a in FV (q2) = FV (0) (1 + a q2)VALUE EVTS DOCUMENT ID TECN COMMENT0.10±0.060.10±0.060.10±0.060.10±0.06 65k BYCHKOV 09 PIBE e+ ν γ at restR, SECOND AXIAL-VECTOR FORM FACTORR, SECOND AXIAL-VECTOR FORM FACTORR, SECOND AXIAL-VECTOR FORM FACTORR, SECOND AXIAL-VECTOR FORM FACTORVALUE EVTS DOCUMENT ID TECN COMMENT0.059+0.009

−0.0080.059+0.009
−0.0080.059+0.009
−0.0080.059+0.009
−0.008 98 EGLI 89 SPEC π+ → e+ νe e+ e−

π± CHARGE RADIUSπ± CHARGE RADIUSπ± CHARGE RADIUSπ± CHARGE RADIUSVALUE (fm) DOCUMENT ID TECN COMMENT0.672±0.008 OUR AVERAGE0.672±0.008 OUR AVERAGE0.672±0.008 OUR AVERAGE0.672±0.008 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.0.65 ±0.05 ±0.06 ESCHRICH 01 CNTR πe → πe0.740±0.031 LIESENFELD 99 CNTR e p → eπ+ n0.663±0.006 AMENDOLIA 86 CNTR πe → πe0.663±0.023 DALLY 82 CNTR πe → πe0.711±0.009±0.016 BEBEK 78 CNTR eN → e πN0.678±0.004±0.008 QUENZER 78 CNTR e+ e− → π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.661±0.012 1 BIJNENS 98 CNTR χPT extra
tion0.660±0.024 AMENDOLIA 84 CNTR πe → πe0.78 +0.09

−0.10 ADYLOV 77 CNTR πe → πe0.74 +0.11
−0.13 BARDIN 77 CNTR e p → eπ+ n0.56 ±0.04 DALLY 77 CNTR πe → πe
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π±, π01BIJNENS 98 �ts existing data.

WEIGHTED AVERAGE
0.672±0.008 (Error scaled by 1.7)

QUENZER 78 CNTR 0.5
BEBEK 78 CNTR 4.6
DALLY 82 CNTR 0.2
AMENDOLIA 86 CNTR 2.2
LIESENFELD 99 CNTR 4.8
ESCHRICH 01 CNTR

χ2

      12.2
(Confidence Level = 0.016)

0.6 0.65 0.7 0.75 0.8 0.85

π± 
harge radius
π± REFERENCESπ± REFERENCESπ± REFERENCESπ± REFERENCESWe have omitted some papers that have been superseded by later exper-iments. The omitted papers may be found in our 1988 edition Physi
sLetters B204B204B204B204 1 (1988).ADOLPH 15A PRL 114 062002 C. Adolph et al. (COMPASS Collab.)AGUILAR-AR... 15 PRL 115 071801 A.A. Aguilar-Arevalo et al. (PiENu Collab.)HOLSTEIN 14 ARNPS 64 51 B. Holstein, S. S
herer (MASA, MANZ)BYCHKOV 09 PRL 103 051802 M. By
hkov et al. (PSI PIBETA Collab.)FRLEZ 04 PRL 93 181804 E. Frlez et al. (PSI PIBETA Collab.)POCANIC 04 PRL 93 181803 D. Po
ani
 et al. (PSI PIBETA Collab.)ESCHRICH 01 PL B522 233 I. Es
hri
h et al. (FNAL SELEX Collab.)LIESENFELD 99 PL B468 20 A. Liesenfeld et al.BIJNENS 98 JHEP 9805 014 J. Bijnens et al.BRESSI 98 NP B513 555 G. Bressi et al.LENZ 98 PL B416 50 S. Lenz et al.ASSAMAGAN 96 PR D53 6065 K.A. Assamagan et al. (PSI, ZURI, VILL+)KOPTEV 95 JETPL 61 877 V.P. Koptev et al. (PNPI)Translated from ZETFP 61 865.NUMAO 95 PR D52 4855 T. Numao et al. (TRIU, BRCO)ASSAMAGAN 94 PL B335 231 K.A. Assamagan et al. (PSI, ZURI, VILL+)JECKELMANN 94 PL B335 326 B. Je
kelmann, P.F.A. Goudsmit, H.J. Leisi (WABRN+)CZAPEK 93 PRL 70 17 G. Czapek et al. (BERN, VILL)BARANOV 92 SJNP 55 1644 V.A. Baranov et al. (JINR)Translated from YAF 55 2940.BRITTON 92 PRL 68 3000 D.I. Britton et al. (TRIU, CARL)Also PR D49 28 D.I. Britton et al. (TRIU, CARL)NUMAO 92 MPL A7 3357 T. Numao (TRIU)BARANOV 91B SJNP 54 790 V.A. Baranov et al. (JINR)Translated from YAF 54 1298.DAUM 91 PL B265 425 M. Daum et al. (VILL)BOLOTOV 90B PL B243 308 V.N. Bolotov et al. (INRM)EGLI 89 PL B222 533 S. Egli et al. (SINDRUM Collab.)Also PL B175 97 S. Egli et al. (AACH3, ETH, SIN, ZURI)PDG 88 PL B204 1 G.P. Yost et al. (LBL+)PICCIOTTO 88 PR D37 1131 C.E. Pi

iotto et al. (TRIU, CNRC)COHEN 87 RMP 59 1121 E.R. Cohen, B.N. Taylor (RISC, NBS)KORENCHE... 87 SJNP 46 192 S.M. Koren
henko et al. (JINR)Translated from YAF 46 313.AMENDOLIA 86 NP B277 168 S.R. Amendolia et al. (CERN NA7 Collab.)BAY 86 PL B174 445 A. Bay et al. (LAUS, ZURI)BRYMAN 86 PR D33 1211 D.A. Bryman et al. (TRIU, CNRC)Also PRL 50 7 D.A. Bryman et al. (TRIU, CNRC)JECKELMANN 86B NP A457 709 B. Je
kelmann et al. (ETH, FRIB)Also PRL 56 1444 B. Je
kelmann et al. (ETH, FRIB)PIILONEN 86 PRL 57 1402 L.E. Piilonen et al. (LANL, TEMP, CHIC)MCFARLANE 85 PR D32 547 W.K. M
Farlane et al. (TEMP, LANL)ABELA 84 PL 146B 431 R. Abela et al. (SIN)Also PL 74B 126 M. Daum et al. (SIN)Also PR D20 2692 M. Daum et al. (SIN)AMENDOLIA 84 PL 146B 116 S.R. Amendolia et al. (CERN NA7 Collab.)FETSCHER 84 PL 140B 117 W. Fets
her (ETH)ABELA 83 NP A395 413 R. Abela et al. (BASL, KARLK, KARLE)CARR 83 PRL 51 627 J. Carr et al. (LBL, NWES, TRIU)COOPER 82 PL 112B 97 A.M. Cooper et al. (RL)DALLY 82 PRL 48 375 E.B. Dally et al.LU 80 PRL 45 1066 D.C. Lu et al. (YALE, COLU, JHU)BEBEK 78 PR D17 1693 C.J. Bebek et al.QUENZER 78 PL 76B 512 A. Quenzer et al. (LALO)STETZ 78 NP B138 285 A.W. Stetz et al. (LBL, UCLA)ADYLOV 77 NP B128 461 G.T. Adylov et al.BARDIN 77 NP B120 45 G. Bardin et al.DALLY 77 PRL 39 1176 E.B. Dally et al.CARTER 76 PRL 37 1380 A.L. Carter et al. (CARL, CNRC, CHIC+)KORENCHE... 76B JETP 44 35 S.M. Koren
henko et al. (JINR)Translated from ZETF 71 69.MARUSHEN... 76 JETPL 23 72 V.I. Marushenko et al. (PNPI)Translated from ZETFP 23 80.Also Private Comm. R.E. Shafer (FNAL)Also Private Comm. A. Smirnov (PNPI)DUNAITSEV 73 SJNP 16 292 A.F. Dunaitsev et al. (SERP)Translated from YAF 16 524.AYRES 71 PR D3 1051 D.S. Ayres et al. (LRL, UCSB)Also PR 157 1288 D.S. Ayres et al. (LRL)Also PRL 21 261 D.S. Ayres et al. (LRL, UCSB)Also Thesis UCRL 18369 D.S. Ayres (LRL)Also PRL 23 1267 A.J. Greenberg et al. (LRL, UCSB)KORENCHE... 71 SJNP 13 189 S.M. Koren
henko et al. (JINR)Translated from YAF 13 339.

BOOTH 70 PL 32B 723 P.S.L. Booth et al. (LIVP)DEPOMMIER 68 NP B4 189 P. Depommier et al. (CERN)PETRUKHIN 68 JINR P1 3862 V.I. Petrukhin et al. (JINR)HYMAN 67 PL 25B 376 L.G. Hyman et al. (ANL, CMU, NWES)NORDBERG 67 PL 24B 594 M.E. Nordberg, F. Lobkowi
z, R.L. Burman (ROCH)BARDON 66 PRL 16 775 M. Bardon et al. (COLU)KINSEY 66 PR 144 1132 K.F. Kinsey, F. Lobkowi
z, M.E. Nordberg (ROCH)LOBKOWICZ 66 PRL 17 548 F. Lobkowi
z et al. (ROCH, BNL)BACASTOW 65 PR 139 B407 R.B. Ba
astow et al. (LRL, SLAC)BERTRAM 65 PR 139 B617 W.K. Bertram et al. (MICH, CMU)DUNAITSEV 65 JETP 20 58 A.F. Dunaitsev et al. (JINR)Translated from ZETF 47 84.ECKHAUSE 65 PL 19 348 M. E
khause et al. (WILL)BARTLETT 64 PR 136 B1452 D. Bartlett et al. (COLU)DICAPUA 64 PR 133 B1333 M. di Capua et al. (COLU)Also Private Comm. L. Pondrom (WISC)DEPOMMIER 63 PL 5 61 P. Depommier et al. (CERN)DEPOMMIER 63B PL 7 285 P. Depommier et al. (CERN)ANDERSON 60 PR 119 2050 H.L. Anderson et al. (EFI)CASTAGNOLI 58 PR 112 1779 C. Castagnoli, M. Mu
hnik (ROMA)
π0 IG (JPC ) = 1−(0−+)We have omitted some results that have been superseded by laterexperiments. The omitted results may be found in our 1988 editionPhysi
s Letters B204B204B204B204 1 (1988).

π0 MASSπ0 MASSπ0 MASSπ0 MASSThe value is 
al
ulated from m
π± and (m

π± − m
π0). See also the notesunder the π± Mass Listings.VALUE (MeV) DOCUMENT ID134.9766±0.0006 OUR FIT134.9766±0.0006 OUR FIT134.9766±0.0006 OUR FIT134.9766±0.0006 OUR FIT Error in
ludes s
ale fa
tor of 1.1.mπ± − mπ0mπ± − mπ0mπ± − mπ0mπ± − mπ0Measurements with an error > 0.01 MeV have been omitted.VALUE (MeV) DOCUMENT ID TECN COMMENT4.5936 ±0.0005 OUR FIT4.5936 ±0.0005 OUR FIT4.5936 ±0.0005 OUR FIT4.5936 ±0.0005 OUR FIT4.5936 ±0.0005 OUR AVERAGE4.5936 ±0.0005 OUR AVERAGE4.5936 ±0.0005 OUR AVERAGE4.5936 ±0.0005 OUR AVERAGE4.59364±0.00048 CRAWFORD 91 CNTR π− p → π0 n, n TOF4.5930 ±0.0013 CRAWFORD 86 CNTR π− p → π0 n, n TOF

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.59366±0.00048 CRAWFORD 88B CNTR See CRAWFORD 914.6034 ±0.0052 VASILEVSKY 66 CNTR4.6056 ±0.0055 CZIRR 63 CNTR
π0 MEAN LIFEπ0 MEAN LIFEπ0 MEAN LIFEπ0 MEAN LIFEMost experiments measure the π0 width whi
h we 
onvert to a lifetime.ATHERTON 85 is the only dire
t measurement of the π0 lifetime. Our av-erage based only on indire
t measurement yields (8.30 ± 0.19)×10−17 s.The two Primako� measurements from 1970 have been ex
luded fromour average be
ause they su�ered model-related systemati
s unknown atthe time. More information on the π0 lifetime 
an be found in BERN-STEIN 13.VALUE (10−17 s) EVTS DOCUMENT ID TECN COMMENT8.52±0.18 OUR AVERAGE8.52±0.18 OUR AVERAGE8.52±0.18 OUR AVERAGE8.52±0.18 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.8.32±0.15±0.18 1 LARIN 11 PRMX Primako� e�e
t8.5 ±1.1 2 BYCHKOV 09 PIBE π+ → e+ ν γ at rest8.4 ±0.5 ±0.5 1182 3 WILLIAMS 88 CBAL e+ e− → e+ e−π08.97±0.22±0.17 ATHERTON 85 CNTR Dire
t measurement8.2 ±0.4 4 BROWMAN 74 CNTR Primako� e�e
t

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.6 ±0.6 BELLETTINI 70 CNTR Primako� e�e
t9 ±0.68 KRYSHKIN 70 CNTR Primako� e�e
t7.3 ±1.1 BELLETTINI 65B CNTR Primako� e�e
t1 LARIN 11 reported �(π0 → γ γ) = 7.82 ± 0.14 ± 0.17 eV whi
h we 
onverted to meanlife τ = �h/�(total).2BYCHKOV 09 obtains this using the 
onserved-ve
tor-
urrent relation between the ve
torform fa
tor FV and the π0 lifetime.3WILLIAMS 88 gives �(γ γ) = 7.7 ± 0.5 ± 0.5 eV. We give here τ = �h/�(total).4BROWMAN 74 gives a π0 width � = 8.02 ± 0.42 eV. The mean life is �h/�.
π0 DECAY MODESπ0 DECAY MODESπ0 DECAY MODESπ0 DECAY MODESFor de
ay limits to parti
les whi
h are not established, see the appropriateSear
h se
tions (A0 (axion) and Other Light Boson (X0) Sear
hes, et
.).S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 2γ (98.823±0.034) % S=1.5�2 e+ e− γ ( 1.174±0.035) % S=1.5�3 γ positronium ( 1.82 ±0.29 )× 10−9�4 e+ e+ e− e− ( 3.34 ±0.16 )× 10−5�5 e+ e− ( 6.46 ±0.33 )× 10−8
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π0�6 4γ < 2 × 10−8 CL=90%�7 ν ν [a℄ < 2.7 × 10−7 CL=90%�8 νe νe < 1.7 × 10−6 CL=90%�9 νµ νµ < 1.6 × 10−6 CL=90%�10 ντ ντ < 2.1 × 10−6 CL=90%�11 γ ν ν < 6 × 10−4 CL=90%Charge 
onjugation (C ) or Lepton Family number (LF ) violating modesCharge 
onjugation (C ) or Lepton Family number (LF ) violating modesCharge 
onjugation (C ) or Lepton Family number (LF ) violating modesCharge 
onjugation (C ) or Lepton Family number (LF ) violating modes�12 3γ C < 3.1 × 10−8 CL=90%�13 µ+ e− LF < 3.8 × 10−10 CL=90%�14 µ− e+ LF < 3.4 × 10−9 CL=90%�15 µ+ e− + µ− e+ LF < 3.6 × 10−10 CL=90%[a℄ Astrophysi
al and 
osmologi
al arguments give limits of order 10−13; seethe Parti
le Listings below.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 2 bran
hing ratios uses 6 measurements and one
onstraint to determine 3 parameters. The overall �t has a χ2 =4.6 for 4 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −100x4 0 −1x1 x2
π0 BRANCHING RATIOSπ0 BRANCHING RATIOSπ0 BRANCHING RATIOSπ0 BRANCHING RATIOS�(e+ e−γ

)/�(2γ) �2/�1�(e+ e−γ
)/�(2γ) �2/�1�(e+ e−γ
)/�(2γ) �2/�1�(e+ e−γ
)/�(2γ) �2/�1VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.188±0.035 OUR FIT1.188±0.035 OUR FIT1.188±0.035 OUR FIT1.188±0.035 OUR FIT Error in
ludes s
ale fa
tor of 1.5.1.188±0.034 OUR AVERAGE1.188±0.034 OUR AVERAGE1.188±0.034 OUR AVERAGE1.188±0.034 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.1.140±0.024±0.033 12.5k 5 BEDDALL 08 ALEP e+ e− → Z → hadrons1.25 ±0.04 SCHARDT 81 SPEC π− p → nπ01.166±0.047 3071 6 SAMIOS 61 HBC π− p → nπ01.17 ±0.15 27 BUDAGOV 60 HBC

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.196 JOSEPH 60 THEO QED 
al
ulation5This BEDDALL 08 value is obtained from ALEPH ar
hived data.6 SAMIOS 61 value uses a Panofsky ratio = 1.62.
WEIGHTED AVERAGE
1.188±0.034 (Error scaled by 1.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BUDAGOV 60 HBC
SAMIOS 61 HBC 0.2
SCHARDT 81 SPEC 2.4
BEDDALL 08 ALEP 1.4

χ2

       4.0
(Confidence Level = 0.135)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6�(e+ e− γ
)/�(2γ) (%)�(γ positronium)/�(2γ) �3/�1�(γ positronium)/�(2γ) �3/�1�(γ positronium)/�(2γ) �3/�1�(γ positronium)/�(2γ) �3/�1VALUE (units 10−9) EVTS DOCUMENT ID TECN COMMENT1.84±0.291.84±0.291.84±0.291.84±0.29 277 AFANASYEV 90 CNTR pC 70 GeV�(e+ e+ e− e−)/�(2γ) �4/�1�(e+ e+ e− e−)/�(2γ) �4/�1�(e+ e+ e− e−)/�(2γ) �4/�1�(e+ e+ e− e−)/�(2γ) �4/�1VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.38±0.16 OUR FIT3.38±0.16 OUR FIT3.38±0.16 OUR FIT3.38±0.16 OUR FIT3.38±0.16 OUR AVERAGE3.38±0.16 OUR AVERAGE3.38±0.16 OUR AVERAGE3.38±0.16 OUR AVERAGE3.46±0.19 30.5k 7 ABOUZAID 08D KTEV K0L → π0π0π0

DD3.18±0.30 146 8 SAMIOS 62B HBC

7This ABOUZAID 08D value in
ludes all radiative �nal states. The error in
ludes bothstatisti
al and systemati
 errors. The 
orrelation between the Dalitz-pair planes gives adire
t measurement of the π0 parity. The π0 2γ∗ form fa
tor is measured and limits arepla
ed on a s
alar 
ontribution to the de
ay.8 SAMIOS 62B value uses a Panofsky ratio = 1.62.�(e+ e−)/�total �5/��(e+ e−)/�total �5/��(e+ e−)/�total �5/��(e+ e−)/�total �5/�Experimental results are listed; bran
hing ratios 
orre
ted for radiative e�e
ts are givenin the footnotes. BERMAN 60 found B(π0 → e+ e−) ≥ 4.69 × 10−8 via an exa
tQED 
al
ulation.VALUE (units 10−8) EVTS DOCUMENT ID TECN CHG COMMENT6.46±0.33 OUR AVERAGE6.46±0.33 OUR AVERAGE6.46±0.33 OUR AVERAGE6.46±0.33 OUR AVERAGE6.44±0.25±0.22 794 9 ABOUZAID 07 KTEV K0L → 3π0 in 
ight6.9 ±2.3 ±0.6 21 10 DESHPANDE 93 SPEC K+ → π+π07.6 +2.9
−2.8 ±0.5 8 11 MCFARLAND 93 SPEC K0L → 3π0 in 
ight

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.09±0.40±0.24 275 12 ALAVI-HARATI99C SPEC 0 Repl. by ABOUZAID 079ABOUZAID 07 result is for me+ e−/mπ0 > 0.95. With radiative 
orre
tions the resultbe
omes (7.48 ± 0.29 ± 0.25) × 10−8.10The DESHPANDE 93 result with bremsstrahlung radiative 
orre
tions is (8.0 ± 2.6 ±0.6) × 10−8.11The MCFARLAND 93 result is for B[π0 → e+ e−, (me+ e−/mπ0)2 > 0.95℄. Withradiative 
orre
tions it be
omes (8.8+4.5
−3.2 ± 0.6) × 10−8.12ALAVI-HARATI 99C quote result for B[π0 → e+ e−, (me+ e−/mπ0)2 > 0.95℄ tominimize radiative 
ontributions from π0 → e+ e− γ. After radiative 
orre
tions theyobtain (7.04 ± 0.46 ± 0.28)× 10−8.�(e+ e−)/�(2γ) �5/�1�(e+ e−)/�(2γ) �5/�1�(e+ e−)/�(2γ) �5/�1�(e+ e−)/�(2γ) �5/�1VALUE (units 10−7) CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.3 90 NIEBUHR 89 SPEC π− p → π0 n atrest
<5.3 90 ZEPHAT 87 SPEC π− p → π0 n0.3 GeV/
1.7 ±0.6 ±0.3 59 FRANK 83 SPEC π− p → nπ01.8 ±0.6 58 MISCHKE 82 SPEC See FRANK 832.23+2.40

−1.10 90 8 FISCHER 78B SPRK K+ → π+π0�(4γ)/�total �6/��(4γ)/�total �6/��(4γ)/�total �6/��(4γ)/�total �6/�VALUE (units 10−8) CL% EVTS DOCUMENT ID TECN COMMENT
< 2< 2< 2< 2 90 MCDONOUGH 88 CBOX π− p at rest
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<160 90 BOLOTOV 86C CALO
<440 90 0 AUERBACH 80 CNTR�(ν ν

)/�total �7/��(ν ν
)/�total �7/��(ν ν
)/�total �7/��(ν ν
)/�total �7/�The astrophysi
al and 
osmologi
al limits are many orders of magnitude lower, but weuse the best laboratory limit for the Summary Tables.VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT

< 0.27< 0.27< 0.27< 0.27 90 13 ARTAMONOV 05A B949 K+ → π+π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 0.83 90 13 ATIYA 91 B787 K+ → π+ ν ν′
< 2.9 × 10−7 14 LAM 91 Cosmologi
al limit
< 3.2 × 10−7 15 NATALE 91 SN 1987A
< 6.5 90 DORENBOS... 88 CHRM Beam dump,prompt ν
<24 90 0 13 HERCZEG 81 RVUE K+ → π+ ν ν′13This limit applies to all possible ν ν′ states as well as to other massless, weakly intera
tingstates.14 LAM 91 
onsiders the produ
tion of right-handed neutrinos produ
ed from the 
osmi
thermal ba
kground at the temperature of about the pion mass through the rea
tion

γ γ → π0 → ν ν.15NATALE 91 
onsiders the ex
ess energy-loss rate from SN 1987A if the pro
ess γ γ →
π0 → ν ν o

urs, permitted if the neutrinos have a right-handed 
omponent. As pointedout in LAM 91 (and 
on�rmed by Natale), there is a fa
tor 4 error in the NATALE 91published result (0.8× 10−7).�(νe νe)/�total �8/��(νe νe)/�total �8/��(νe νe)/�total �8/��(νe νe)/�total �8/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<1.7<1.7<1.7<1.7 90 DORENBOS... 88 CHRM Beam dump, prompt ν

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.1 90 16 HOFFMAN 88 RVUE Beam dump, prompt ν16HOFFMAN 88 analyzes data from a 400-GeV BEBC beam-dump experiment.
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π0, η�(νµ νµ

)/�total �9/��(νµ νµ

)/�total �9/��(νµ νµ

)/�total �9/��(νµ νµ

)/�total �9/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT
<1.6<1.6<1.6<1.6 90 8.7 AUERBACH 04 LSND 800 MeV p on Cu
<3.1 90 17 HOFFMAN 88 RVUE Beam dump, prompt ν
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.8 90 DORENBOS... 88 CHRM Beam dump, prompt ν17HOFFMAN 88 analyzes data from a 400-GeV BEBC beam-dump experiment.�(ντ ντ

)/�total �10/��(ντ ντ

)/�total �10/��(ντ ντ

)/�total �10/��(ντ ντ

)/�total �10/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<2.1<2.1<2.1<2.1 90 18 HOFFMAN 88 RVUE Beam dump, prompt ν
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.1 90 DORENBOS... 88 CHRM Beam dump, prompt ν18HOFFMAN 88 analyzes data from a 400-GeV BEBC beam-dump experiment.�(γ ν ν

)/�total �11/��(γ ν ν
)/�total �11/��(γ ν ν
)/�total �11/��(γ ν ν
)/�total �11/�Standard Model predi
tion is 6× 10−18.VALUE CL% DOCUMENT ID TECN COMMENT

<6× 10−4<6× 10−4<6× 10−4<6× 10−4 90 ATIYA 92 CNTR K+ → γ ν νπ+�(3γ)/�total �12/��(3γ)/�total �12/��(3γ)/�total �12/��(3γ)/�total �12/�Forbidden by C invarian
e.VALUE (units 10−8) CL% EVTS DOCUMENT ID TECN COMMENT
< 3.1< 3.1< 3.1< 3.1 90 MCDONOUGH 88 CBOX π− p at rest
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 38 90 0 HIGHLAND 80 CNTR
<150 90 0 AUERBACH 78 CNTR
<490 90 0 19 DUCLOS 65 CNTR
<490 90 19 KUTIN 65 CNTR19These experiments give B(3γ/2γ) < 5.0× 10−6.�(µ+ e−)/�total �13/��(µ+ e−)/�total �13/��(µ+ e−)/�total �13/��(µ+ e−)/�total �13/�Forbidden by lepton family number 
onservation.VALUE (units 10−9) CL% EVTS DOCUMENT ID TECN COMMENT
< 0.38< 0.38< 0.38< 0.38 90 0 APPEL 00 SPEC K+ → π+µ+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<16 90 LEE 90 SPEC K+ → π+µ+ e−
<78 90 CAMPAGNARI 88 SPEC See LEE 90�(µ− e+)/�total �14/��(µ− e+)/�total �14/��(µ− e+)/�total �14/��(µ− e+)/�total �14/�Forbidden by lepton family number 
onservation.VALUE (units 10−9) CL% EVTS DOCUMENT ID TECN COMMENT
<3.4<3.4<3.4<3.4 90 0 APPEL 00B B865 K+ → π+ e+µ−
[�(µ+ e−)+�(µ− e+)

]/�total �15/�[�(µ+ e−)+�(µ− e+)
]/�total �15/�[�(µ+ e−)+�(µ− e+)
]/�total �15/�[�(µ+ e−)+�(µ− e+)
]/�total �15/�Forbidden by lepton family number 
onservation.VALUE (units 10−9) CL% DOCUMENT ID TECN COMMENT

< 0.36< 0.36< 0.36< 0.36 90 ABOUZAID 08C KTEV K0L → 2π0µ± e∓
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 17.2 90 KROLAK 94 E799 In K0L → 3π0
<140 HERCZEG 84 RVUE K+ → π+µe
< 2 × 10−6 HERCZEG 84 THEO µ− → e− 
onversion
< 70 90 BRYMAN 82 RVUE K+ → π+µe

π0 ELECTROMAGNETIC FORM FACTORπ0 ELECTROMAGNETIC FORM FACTORπ0 ELECTROMAGNETIC FORM FACTORπ0 ELECTROMAGNETIC FORM FACTORThe amplitude for the pro
ess π0 → e+ e− γ 
ontains a form fa
tor F(x)at the π0 γ γ vertex, where x = [me+e−/mπ0 ℄2. The parameter a in thelinear expansion F(x) = 1 + ax is listed below.All the measurements ex
ept that of BEHREND 91 are in the time-likeregion of momentum transfer.LINEAR COEFFICIENT OF π0 ELECTROMAGNETIC FORM FACTORLINEAR COEFFICIENT OF π0 ELECTROMAGNETIC FORM FACTORLINEAR COEFFICIENT OF π0 ELECTROMAGNETIC FORM FACTORLINEAR COEFFICIENT OF π0 ELECTROMAGNETIC FORM FACTORVALUE EVTS DOCUMENT ID TECN COMMENT0.032 ±0.004 OUR AVERAGE0.032 ±0.004 OUR AVERAGE0.032 ±0.004 OUR AVERAGE0.032 ±0.004 OUR AVERAGE+0.026 ±0.024 ±0.048 7548 FARZANPAY 92 SPEC π− p → π0 n atrest+0.025 ±0.014 ±0.026 54k MEIJERDREES92B SPEC π− p → π0 n atrest+0.0326±0.0026±0.0026 127 20 BEHREND 91 CELL e+ e− →e+ e−π0
−0.11 ±0.03 ±0.08 32k FONVIEILLE 89 SPEC Radiation 
orr.
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.12 +0.05

−0.04 21 TUPPER 83 THEO FISCHER 78 data+0.10 ±0.03 31k 22 FISCHER 78 SPEC Radiation 
orr.+0.01 ±0.11 2200 DEVONS 69 OSPK No radiation 
orr.
−0.15 ±0.10 7676 KOBRAK 61 HBC No radiation 
orr.
−0.24 ±0.16 3071 SAMIOS 61 HBC No radiation 
orr.20BEHREND 91 estimates that their systemati
 error is of the same order of magnitude astheir statisti
al error, and so we have in
luded a systemati
 error of this magnitude. Thevalue of a is obtained by extrapolation from the region of large spa
e-like momentumtransfer assuming ve
tor dominan
e.21TUPPER 83 is a theoreti
al analysis of FISCHER 78 in
luding 2-photon ex
hange in the
orre
tions.22The FISCHER 78 error is statisti
al only. The result without radiation 
orre
tions is+0.05 ± 0.03.

π0 REFERENCESπ0 REFERENCESπ0 REFERENCESπ0 REFERENCESWe have omitted some papers that have been superseded by later exper-iments. The omitted papers may be found in our 1988 edition Physi
sLetters B204B204B204B204 1 (1988).BERNSTEIN 13 RMP 85 49 A. M. Bernstein, B. R. Holstein (AMHT, MIT)LARIN 11 PRL 106 162303 I. Larin et al. (PrimEx Collab.)BYCHKOV 09 PRL 103 051802 M. By
hkov et al. (PSI PIBETA Collab.)ABOUZAID 08C PRL 100 131803 E. Abouzaid et al. (FNAL KTeV Collab.)ABOUZAID 08D PRL 100 182001 E. Abouzaid et al. (FNAL KTeV Collab.)BEDDALL 08 EPJ C54 365 A. Beddall, A. Beddall (UGAZ)ABOUZAID 07 PR D75 012004 E. Abouzaid et al. (KTeV Collab.)ARTAMONOV 05A PR D72 091102 A.V. Artamonov et al. (BNL E949 Collab.)AUERBACH 04 PRL 92 091801 L.B. Auerba
h et al. (LSND Collab.)APPEL 00 PRL 85 2450 R. Appel et al. (BNL 865 Collab.)Also Thesis, Yale Univ. D.R. BergmanAlso Thesis, Univ. Zuri
h S. PislakAPPEL 00B PRL 85 2877 R. Appel et al. (BNL 865 Collab.)ALAVI-HARATI 99C PRL 83 922 A. Alavi-Harati et al. (FNAL KTeV Collab.)KROLAK 94 PL B320 407 P. Krolak et al. (EFI, UCLA, COLO, ELMT+)DESHPANDE 93 PRL 71 27 A. Deshpande et al. (BNL E851 Collab.)MCFARLAND 93 PRL 71 31 K.S. M
Farland et al. (EFI, UCLA, COLO+)ATIYA 92 PRL 69 733 M.S. Atiya et al. (BNL, LANL, PRIN+)FARZANPAY 92 PL B278 413 F. Farzanpay et al. (ORST, TRIU, BRCO+)MEIJERDREES 92B PR D45 1439 R. Meijer Drees et al. (PSI SINDRUM-I Collab.)ATIYA 91 PRL 66 2189 M.S. Atiya et al. (BNL, LANL, PRIN+)BEHREND 91 ZPHY C49 401 H.J. Behrend et al. (CELLO Collab.)CRAWFORD 91 PR D43 46 J.F. Crawford et al. (VILL, UVA)LAM 91 PR D44 3345 W.P. Lam, K.W. Ng (AST)NATALE 91 PL B258 227 A.A. Natale (SPIFT)AFANASYEV 90 PL B236 116 L.G. Afanasyev et al. (JINR, MOSU, SERP)Also SJNP 51 664 L.G. Afanasyev et al. (JINR)Translated from YAF 51 1040.LEE 90 PRL 64 165 A.M. Lee et al. (BNL, FNAL, VILL, WASH+)FONVIEILLE 89 PL B233 65 H. Fonvieille et al. (CLER, LYON, SACL)NIEBUHR 89 PR D40 2796 C. Niebuhr et al. (SINDRUM Collab.)CAMPAGNARI 88 PRL 61 2062 C. Campagnari et al. (BNL, FNAL, PSI+)CRAWFORD 88B PL B213 391 J.F. Crawford et al. (PSI, UVA)DORENBOS... 88 ZPHY C40 497 J. Dorenbos
h et al. (CHARM Collab.)HOFFMAN 88 PL B208 149 C.M. Ho�man (LANL)MCDONOUGH 88 PR D38 2121 J.M. M
Donough et al. (TEMP, LANL, CHIC)PDG 88 PL B204 1 G.P. Yost et al. (LBL+)WILLIAMS 88 PR D38 1365 D.A. Williams et al. (Crystal Ball Collab.)ZEPHAT 87 JP G13 1375 A.G. Zephat et al. (OMICRON Collab.)BOLOTOV 86C JETPL 43 520 V.N. Bolotov et al. (INRM)Translated from ZETFP 43 405.CRAWFORD 86 PRL 56 1043 J.F. Crawford et al. (SIN, UVA)ATHERTON 85 PL 158B 81 H.W. Atherton et al. (CERN, ISU, LUND+)HERCZEG 84 PR D29 1954 P. Her
zeg, C.M. Ho�man (LANL)FRANK 83 PR D28 423 J.S. Frank et al. (LANL, ARZS)TUPPER 83 PR D28 2905 G.B. Tupper, T.R. Grose, M.A. Samuel (OKSU)BRYMAN 82 PR D26 2538 D.A. Bryman (TRIU)MISCHKE 82 PRL 48 1153 R.E. Mis
hke et al. (LANL, ARZS)HERCZEG 81 PL 100B 347 P. Her
zeg, C.M. Ho�man (LANL)SCHARDT 81 PR D23 639 M.A. S
hardt et al. (ARZS, LANL)AUERBACH 80 PL 90B 317 L.B. Auerba
h et al. (TEMP, LASL)HIGHLAND 80 PRL 44 628 V.L. Highland et al. (TEMP, LASL)AUERBACH 78 PRL 41 275 L.B. Auerba
h et al. (TEMP, LASL)FISCHER 78 PL 73B 359 J. Fis
her et al. (GEVA, SACL)FISCHER 78B PL 73B 364 J. Fis
her et al. (GEVA, SACL)BROWMAN 74 PRL 33 1400 A. Browman et al. (CORN, BING)BELLETTINI 70 NC 66A 243 G. Bellettini et al. (PISA, BONN)KRYSHKIN 70 JETP 30 1037 V.I. Kryshkin, A.G. Sterligov, Y.P. Usov (TMSK)Translated from ZETF 57 1917.DEVONS 69 PR 184 1356 S. Devons et al. (COLU, ROMA)VASILEVSKY 66 PL 23 281 I.M. Vasilevsky et al. (JINR)BELLETTINI 65B NC 40A 1139 G. Bellettini et al. (PISA, FIRZ)DUCLOS 65 PL 19 253 J. Du
los et al. (CERN, HEID)KUTIN 65 JETPL 2 243 V.M. Kutjin, V.I. Petrukhin, Y.D. Prokoshkin (JINR)Translated from ZETFP 2 387.CZIRR 63 PR 130 341 J.B. Czirr (LRL)SAMIOS 62B PR 126 1844 N.P. Samios et al. (COLU, BNL)KOBRAK 61 NC 20 1115 H. Kobrak (EFI)SAMIOS 61 PR 121 275 N.P. Samios (COLU, BNL)BERMAN 60 NC XVIII 1192 S. Berman, D. Ge�enBUDAGOV 60 JETP 11 755 Y.A. Budagov et al. (JINR)Translated from ZETF 38 1047.JOSEPH 60 NC 16 997 D.W. Joseph (EFI)
η IG (JPC ) = 0+(0−+)We have omitted some results that have been superseded by laterexperiments. The omitted results may be found in our 1988 editionPhysi
s Letters B204B204B204B204 (1988).

η MASSη MASSη MASSη MASSRe
ent measurements resolve the obvious in
onsisten
y in previous η massmeasurements in favor of the higher value �rst reported by NA48 (LAI 02).We use only pre
ise measurements 
onsistent with this higher mass valuefor our η mass average.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE547.865±0.031±0.062 NIKOLAEV 14 CRYB γ p → pη547.873±0.005±0.027 1M GOSLAWSKI 12 SPEC d p → 3He η547.874±0.007±0.029 AMBROSINO 07B KLOE e+ e− → φ → ηγ547.785±0.017±0.057 16k MILLER 07 CLEO ψ(2S) → J/ψη547.843±0.030±0.041 1134 LAI 02 NA48 η → 3π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •547.311±0.028±0.032 1 ABDEL-BARY 05 SPEC d p → 3He η547.12 ±0.06 ±0.25 KRUSCHE 95D SPEC γ p → ηp, threshold547.30 ±0.15 PLOUIN 92 SPEC d p → 3He η547.45 ±0.25 DUANE 74 SPEC π− p → n neutrals
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η548.2 ±0.65 FOSTER 65C HBC549.0 ±0.7 148 FOELSCHE 64 HBC548.0 ±1.0 91 ALFF-... 62 HBC549.0 ±1.2 53 BASTIEN 62 HBC1ABDEL-BARY 05 disagrees signi�
antly with re
ent measurements of similar or betterpre
ision. See 
omment in the header.

η WIDTHη WIDTHη WIDTHη WIDTHThis is the partial de
ay rate �(η → γ γ) divided by the �tted bran
hingfra
tion for that mode. See the note at the start of the �(2γ) data blo
k,next below.VALUE (keV) DOCUMENT ID1.31±0.05 OUR FIT1.31±0.05 OUR FIT1.31±0.05 OUR FIT1.31±0.05 OUR FIT
η DECAY MODESη DECAY MODESη DECAY MODESη DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelNeutral modesNeutral modesNeutral modesNeutral modes�1 neutral modes (72.12±0.34) % S=1.2�2 2γ (39.41±0.20) % S=1.1�3 3π0 (32.68±0.23) % S=1.1�4 π0 2γ ( 2.56±0.22) × 10−4�5 2π0 2γ < 1.2 × 10−3 CL=90%�6 4γ < 2.8 × 10−4 CL=90%�7 invisible < 1.0 × 10−4 CL=90%Charged modesCharged modesCharged modesCharged modes�8 
harged modes (28.10±0.34) % S=1.2�9 π+π−π0 (22.92±0.28) % S=1.2�10 π+π−γ ( 4.22±0.08) % S=1.1�11 e+ e− γ ( 6.9 ±0.4 ) × 10−3 S=1.3�12 µ+µ− γ ( 3.1 ±0.4 ) × 10−4�13 e+ e− < 2.3 × 10−6 CL=90%�14 µ+µ− ( 5.8 ±0.8 ) × 10−6�15 2e+2e− ( 2.40±0.22) × 10−5�16 π+π− e+ e− (γ) ( 2.68±0.11) × 10−4�17 e+ e−µ+µ− < 1.6 × 10−4 CL=90%�18 2µ+2µ− < 3.6 × 10−4 CL=90%�19 µ+µ−π+π− < 3.6 × 10−4 CL=90%�20 π+ e−νe+ 
.
. < 1.7 × 10−4 CL=90%�21 π+π−2γ < 2.1 × 10−3�22 π+π−π0 γ < 5 × 10−4 CL=90%�23 π0µ+µ− γ < 3 × 10−6 CL=90%Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation × Parity (CP), orCharge 
onjugation × Parity (CP), orCharge 
onjugation × Parity (CP), orCharge 
onjugation × Parity (CP), orLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modes�24 π0 γ C < 9 × 10−5 CL=90%�25 π+π− P,CP < 1.3 × 10−5 CL=90%�26 2π0 P,CP < 3.5 × 10−4 CL=90%�27 2π0 γ C < 5 × 10−4 CL=90%�28 3π0 γ C < 6 × 10−5 CL=90%�29 3γ C < 1.6 × 10−5 CL=90%�30 4π0 P,CP < 6.9 × 10−7 CL=90%�31 π0 e+ e− C [a℄ < 4 × 10−5 CL=90%�32 π0µ+µ− C [a℄ < 5 × 10−6 CL=90%�33 µ+ e− + µ− e+ LF < 6 × 10−6 CL=90%[a℄ C parity forbids this to o

ur as a single-photon pro
ess.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 2 de
ay rate and 19 bran
hing ratios uses 50measurements and one 
onstraint to determine 9 parameters. Theoverall �t has a χ2 = 43.8 for 42 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.

x3 24x4 4 1x9 −73 −80 −4x10 −56 −60 −3 61x11 −5 −5 0 −6 −4x12 −1 0 0 −1 0 0x16 0 0 0 0 0 0 0� −14 −3 −32 11 8 1 0 0x2 x3 x4 x9 x10 x11 x12 x16Mode Rate (keV) S
ale fa
tor�2 2γ 0.515 ±0.018�3 3π0 0.427 ±0.015�4 π0 2γ (3.34 ±0.28 )× 10−4�9 π+π−π0 0.299 ±0.011�10 π+π−γ 0.0551±0.0022�11 e+ e− γ 0.0090±0.0006 1.2�12 µ+µ− γ (4.1 ±0.5 )× 10−4�16 π+π− e+ e− (γ) (3.50 ±0.19 )× 10−4
η DECAY RATESη DECAY RATESη DECAY RATESη DECAY RATES�(2γ) �2�(2γ) �2�(2γ) �2�(2γ) �2See the table immediately above giving the �tted de
ay rates. Following the advi
e ofNEFKENS 02, we have removed the Primako�-e�e
t measurement from the average.See also the \Note on the De
ay Width �(η → γ γ)," in our 1994 edition, Phys. Rev.D50D50D50D50, 1 August 1994, Part I, p. 1451, for a dis
ussion of the various measurements.VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.515±0.018 OUR FIT0.515±0.018 OUR FIT0.515±0.018 OUR FIT0.515±0.018 OUR FIT0.516±0.018 OUR AVERAGE0.516±0.018 OUR AVERAGE0.516±0.018 OUR AVERAGE0.516±0.018 OUR AVERAGE0.520±0.020±0.013 BABUSCI 13A KLOE e+ e− → e+ e− η0.51 ±0.12 ±0.05 36 BARU 90 MD1 e+ e− → e+ e− η0.490±0.010±0.048 2287 ROE 90 ASP e+ e− → e+ e− η0.514±0.017±0.035 1295 WILLIAMS 88 CBAL e+ e− → e+ e− η0.53 ±0.04 ±0.04 BARTEL 85E JADE e+ e− → e+ e− η

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.476±0.062 1 RODRIGUES 08 CNTR Reanalysis0.64 ±0.14 ±0.13 AIHARA 86 TPC e+ e− → e+ e− η0.56 ±0.16 56 WEINSTEIN 83 CBAL e+ e− → e+ e− η0.324±0.046 BROWMAN 74B CNTR Primako� e�e
t1.00 ±0.22 2 BEMPORAD 67 CNTR Primako� e�e
t1RODRIGUES 08 uses a more sophisti
ated 
al
ulation for the inelasti
 ba
kground dueto in
oherent photoprodu
tion to reanalyze the η photoprodu
tion data on Be and Cuat 9 GeV from BROWMAN 74B. This brings the value of �(η → 2γ) in line with dire
tmeasurements of the width. The error here is only statisti
al.2BEMPORAD 67 gives �(2γ) = 1.21 ± 0.26 keV assuming �(2γ)/�(total) = 0.314.Bemporad private 
ommuni
ation gives �(2γ)2/�(total) = 0.380 ± 0.083. We evaluatethis using �(2γ)/�(total) = 0.38± 0.01. Not in
luded in average be
ause the un
ertaintyresulting from the separation of the 
oulomb and nu
lear amplitudes has apparently beenunderestimated.�(π0 2γ) �4�(π0 2γ) �4�(π0 2γ) �4�(π0 2γ) �4VALUE (eV) EVTS DOCUMENT ID TECN COMMENT0.334±0.028 OUR FIT0.334±0.028 OUR FIT0.334±0.028 OUR FIT0.334±0.028 OUR FIT0.33 ±0.030.33 ±0.030.33 ±0.030.33 ±0.03 1200 NEFKENS 14 CRYB γ p → ηp
η BRANCHING RATIOSη BRANCHING RATIOSη BRANCHING RATIOSη BRANCHING RATIOSNeutral modesNeutral modesNeutral modesNeutral modes�(neutral modes)/�total �1/�= (�2+�3+�4)/��(neutral modes)/�total �1/�= (�2+�3+�4)/��(neutral modes)/�total �1/�= (�2+�3+�4)/��(neutral modes)/�total �1/�= (�2+�3+�4)/�VALUE EVTS DOCUMENT ID TECN COMMENT0.7212±0.0034 OUR FIT0.7212±0.0034 OUR FIT0.7212±0.0034 OUR FIT0.7212±0.0034 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.705 ±0.0080.705 ±0.0080.705 ±0.0080.705 ±0.008 16k BASILE 71D CNTR MM spe
trometer

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.79 ±0.08 BUNIATOV 67 OSPK�(2γ)/�total �2/��(2γ)/�total �2/��(2γ)/�total �2/��(2γ)/�total �2/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT39.41±0.20 OUR FIT39.41±0.20 OUR FIT39.41±0.20 OUR FIT39.41±0.20 OUR FIT Error in
ludes s
ale fa
tor of 1.1.39.49±0.17±0.3039.49±0.17±0.3039.49±0.17±0.3039.49±0.17±0.30 65k ABEGG 96 SPEC pd → 3Heη

• • • We do not use the following data for averages, �ts, limits, et
. • • •38.45±0.40±0.36 14k 1 LOPEZ 07 CLEO ψ(2S) → J/ψη1Not independent of other results listed for LOPEZ 07. Assuming de
ays of η → γ γ,3π0, π+π−π0, π+π− γ, and e+ e− γ a

ount for all η de
ays within a 
ontributionof 0.3% to the systemati
 error.
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η�(2γ)/�(neutral modes) �2/�1 =�2/(�2+�3+�4)�(2γ)/�(neutral modes) �2/�1 =�2/(�2+�3+�4)�(2γ)/�(neutral modes) �2/�1 =�2/(�2+�3+�4)�(2γ)/�(neutral modes) �2/�1 =�2/(�2+�3+�4)VALUE EVTS DOCUMENT ID TECN COMMENT0.5465±0.0019 OUR FIT0.5465±0.0019 OUR FIT0.5465±0.0019 OUR FIT0.5465±0.0019 OUR FIT0.548 ±0.023 OUR AVERAGE0.548 ±0.023 OUR AVERAGE0.548 ±0.023 OUR AVERAGE0.548 ±0.023 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.0.535 ±0.018 BUTTRAM 70 OSPK0.59 ±0.033 BUNIATOV 67 OSPK

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.52 ±0.09 88 ABROSIMOV 80 HLBC0.60 ±0.14 113 KENDALL 74 OSPK0.57 ±0.09 STRUGALSKI 71 HLBC0.579 ±0.052 FELDMAN 67 OSPK0.416 ±0.044 DIGIUGNO 66 CNTR Error doubled0.44 ±0.07 GRUNHAUS 66 OSPK0.39 ±0.06 1 JONES 66 CNTR1This result from 
ombining 
ross se
tions from two di�erent experiments.�(3π0)/�total �3/��(3π0)/�total �3/��(3π0)/�total �3/��(3π0)/�total �3/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT32.68±0.23 OUR FIT32.68±0.23 OUR FIT32.68±0.23 OUR FIT32.68±0.23 OUR FIT Error in
ludes s
ale fa
tor of 1.1.
• • • We do not use the following data for averages, �ts, limits, et
. • • •34.03±0.56±0.49 1821 1 LOPEZ 07 CLEO ψ(2S) → J/ψη1Not independent of other results listed for LOPEZ 07. Assuming de
ays of η → γ γ,3π0, π+π−π0, π+π− γ, and e+ e− γ a

ount for all η de
ays within a 
ontributionof 0.3% to the systemati
 error.�(3π0)/�(neutral modes) �3/�1 =�3/(�2+�3+�4)�(3π0)/�(neutral modes) �3/�1 =�3/(�2+�3+�4)�(3π0)/�(neutral modes) �3/�1 =�3/(�2+�3+�4)�(3π0)/�(neutral modes) �3/�1 =�3/(�2+�3+�4)VALUE EVTS DOCUMENT ID TECN COMMENT0.4531±0.0019 OUR FIT0.4531±0.0019 OUR FIT0.4531±0.0019 OUR FIT0.4531±0.0019 OUR FIT0.439 ±0.0240.439 ±0.0240.439 ±0.0240.439 ±0.024 BUTTRAM 70 OSPK
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.44 ±0.08 75 ABROSIMOV 80 HLBC0.32 ±0.09 STRUGALSKI 71 HLBC0.41 ±0.033 BUNIATOV 67 OSPK Not indep. of �(2γ)/�(neutral modes)0.177 ±0.035 FELDMAN 67 OSPK0.209 ±0.054 DIGIUGNO 66 CNTR Error doubled0.29 ±0.10 GRUNHAUS 66 OSPK�(3π0)/�(2γ) �3/�2�(3π0)/�(2γ) �3/�2�(3π0)/�(2γ) �3/�2�(3π0)/�(2γ) �3/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.829±0.006 OUR FIT0.829±0.006 OUR FIT0.829±0.006 OUR FIT0.829±0.006 OUR FIT0.829±0.007 OUR AVERAGE0.829±0.007 OUR AVERAGE0.829±0.007 OUR AVERAGE0.829±0.007 OUR AVERAGE0.884±0.022±0.019 1821 LOPEZ 07 CLEO ψ(2S) → J/ψη0.817±0.012±0.032 17.4k 1 AKHMETSHIN 05 CMD2 e+ e− → φ → ηγ0.826±0.024 ACHASOV 00D SND e+ e− → φ → ηγ0.832±0.005±0.012 KRUSCHE 95D SPEC γ p → ηp, threshold0.841±0.034 AMSLER 93 CBAR pp → π+π− η at rest0.822±0.009 ALDE 84 GAM2
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.796±0.016±0.016 ACHASOV 00 SND See ACHASOV 00D0.91 ±0.14 COX 70B HBC0.75 ±0.09 DEVONS 70 OSPK0.88 ±0.16 BALTAY 67D DBC1.1 ±0.2 CENCE 67 OSPK1.25 ±0.39 BACCI 63 CNTR Inverse BR reported1Uses result from AKHMETSHIN 01B.�(

π0 2γ)/�total �4/��(

π0 2γ)/�total �4/��(

π0 2γ)/�total �4/��(

π0 2γ)/�total �4/�Early results are summarized in the review by LANDSBERG 85.VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT2.56±0.22 OUR FIT2.56±0.22 OUR FIT2.56±0.22 OUR FIT2.56±0.22 OUR FIT2.21±0.24±0.472.21±0.24±0.472.21±0.24±0.472.21±0.24±0.47 ≈ 500 1 PRAKHOV 08 CRYB π− p → ηn ≈ threshold
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.5 ±0.7 ±0.6 1.6k 2,3 PRAKHOV 05 CRYB See PRAKHOV 08
<8.4 90 7 ACHASOV 01D SND e+ e− → φ → ηγ

<30 90 0 DAVYDOV 81 GAM2 π− p → ηn1PRAKHOV 08 is a reanalysis of the data of PRAKHOV 05, using for the �rst time theinvariant-mass spe
trum of the two photons.2Normalized using �(η → 2γ)/� = 0.3943 ± 0.0026.3This measurement and the independent analysis of the same data by KNECHT 04 bothimply a lower value of �(π0 2γ) than the one obtained by ALDE 84 from �(π0 2γ)/�(2γ).�(

π0 2γ)/�(2γ) �4/�2�(

π0 2γ)/�(2γ) �4/�2�(

π0 2γ)/�(2γ) �4/�2�(

π0 2γ)/�(2γ) �4/�2VALUE (units 10−3) EVTS DOCUMENT ID TECN CHG COMMENT0.65±0.06 OUR FIT0.65±0.06 OUR FIT0.65±0.06 OUR FIT0.65±0.06 OUR FIT1.8 ±0.41.8 ±0.41.8 ±0.41.8 ±0.4 ALDE 84 GAM2 0
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.5 ±0.6 70 BINON 82 GAM2 See ALDE 84�(

π0 2γ)/�(3π0) �4/�3�(

π0 2γ)/�(3π0) �4/�3�(

π0 2γ)/�(3π0) �4/�3�(

π0 2γ)/�(3π0) �4/�3VALUE (units 10−4) DOCUMENT ID TECN COMMENT7.8±0.7 OUR FIT7.8±0.7 OUR FIT7.8±0.7 OUR FIT7.8±0.7 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.3±2.8±1.4 1 KNECHT 04 CRYB π− p → nη1 Independent analysis of same data as PRAKHOV 05.

�(2π0 2γ)/�total �5/��(2π0 2γ)/�total �5/��(2π0 2γ)/�total �5/��(2π0 2γ)/�total �5/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−3<1.2× 10−3<1.2× 10−3<1.2× 10−3 90 1 NEFKENS 05A CRYB p(720 MeV/
) π− → nη

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<4.0× 10−3 90 BLIK 07 GAM4 π− p → ηn1Measurement is done in limited γ γ energy range.�(4γ)/�total �6/��(4γ)/�total �6/��(4γ)/�total �6/��(4γ)/�total �6/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.8× 10−4<2.8× 10−4<2.8× 10−4<2.8× 10−4 90 BLIK 07 GAM4 π− p → ηn�(invisible)/�(2γ) �7/�2�(invisible)/�(2γ) �7/�2�(invisible)/�(2γ) �7/�2�(invisible)/�(2γ) �7/�2VALUE CL% DOCUMENT ID TECN COMMENT
<2.6 × 10−4<2.6 × 10−4<2.6 × 10−4<2.6 × 10−4 90 1 ABLIKIM 13 BES3 J/ψ → φη

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.65× 10−3 90 2 ABLIKIM 06Q BES2 J/ψ → φη1Based on 225M J/ψ de
ays.2Based on 58M J/ψ de
ays. Charged modesCharged modesCharged modesCharged modes�(

π+π−π0)/�total �9/��(

π+π−π0)/�total �9/��(

π+π−π0)/�total �9/��(

π+π−π0)/�total �9/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT22.92±0.28 OUR FIT22.92±0.28 OUR FIT22.92±0.28 OUR FIT22.92±0.28 OUR FIT Error in
ludes s
ale fa
tor of 1.2.
• • • We do not use the following data for averages, �ts, limits, et
. • • •22.60±0.35±0.29 3915 1 LOPEZ 07 CLEO ψ(2S) → J/ψη1Not independent of other results listed for LOPEZ 07. Assuming de
ays of η → γ γ,3π0, π+π−π0, π+π− γ, and e+ e− γ a

ount for all η de
ays within a 
ontributionof 0.3% to the systemati
 error.�(neutral modes)/�(

π+π−π0) �1/�9 = (�2+�3+�4)/�9�(neutral modes)/�(

π+π−π0) �1/�9 = (�2+�3+�4)/�9�(neutral modes)/�(

π+π−π0) �1/�9 = (�2+�3+�4)/�9�(neutral modes)/�(

π+π−π0) �1/�9 = (�2+�3+�4)/�9VALUE EVTS DOCUMENT ID TECN3.15±0.05 OUR FIT3.15±0.05 OUR FIT3.15±0.05 OUR FIT3.15±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.2.3.26±0.30 OUR AVERAGE3.26±0.30 OUR AVERAGE3.26±0.30 OUR AVERAGE3.26±0.30 OUR AVERAGE2.54±1.89 74 KENDALL 74 OSPK3.4 ±1.1 29 AGUILAR-... 72B HBC2.83±0.80 70 1 BLOODWO... 72B HBC3.6 ±0.6 244 FLATTE 67B HBC2.89±0.56 ALFF-... 66 HBC3.6 ±0.8 50 KRAEMER 64 DBC3.8 ±1.1 PAULI 64 DBC1Error in
reased from published value 0.5 by Bloodworth (private 
ommuni
ation).�(2γ)/�(

π+π−π0) �2/�9�(2γ)/�(

π+π−π0) �2/�9�(2γ)/�(

π+π−π0) �2/�9�(2γ)/�(

π+π−π0) �2/�9VALUE EVTS DOCUMENT ID TECN COMMENT1.720±0.028 OUR FIT1.720±0.028 OUR FIT1.720±0.028 OUR FIT1.720±0.028 OUR FIT Error in
ludes s
ale fa
tor of 1.2.1.70 ±0.04 OUR AVERAGE1.70 ±0.04 OUR AVERAGE1.70 ±0.04 OUR AVERAGE1.70 ±0.04 OUR AVERAGE1.704±0.032±0.026 3915 1 LOPEZ 07 CLEO ψ(2S) → J/ψη1.61 ±0.14 ABLIKIM 06E BES2 e+ e− → J/ψ → ηγ1.78 ±0.10 ±0.13 1077 AMSLER 95 CBAR pp → π+π− η at rest1.72 ±0.25 401 BAGLIN 69 HLBC1.61 ±0.39 FOSTER 65 HBC1LOPEZ 07 reports �(η → π+π−π0) / �(η → 2γ) = �9/�2 = 0.587± 0.011± 0.009.�(3π0)/�(

π+π−π0) �3/�9�(3π0)/�(

π+π−π0) �3/�9�(3π0)/�(

π+π−π0) �3/�9�(3π0)/�(

π+π−π0) �3/�9VALUE EVTS DOCUMENT ID TECN COMMENT1.426±0.026 OUR FIT1.426±0.026 OUR FIT1.426±0.026 OUR FIT1.426±0.026 OUR FIT Error in
ludes s
ale fa
tor of 1.2.1.48 ±0.05 OUR AVERAGE1.48 ±0.05 OUR AVERAGE1.48 ±0.05 OUR AVERAGE1.48 ±0.05 OUR AVERAGE1.46 ±0.03 ±0.09 ACHASOV 06A SND e+ e− → ηγ1.52 ±0.04 ±0.08 23k 1 AKHMETSHIN 01B CMD2 e+ e− → φ → ηγ1.44 ±0.09 ±0.10 1627 AMSLER 95 CBAR pp → π+π− η at rest1.50 +0.15
−0.29 199 BAGLIN 69 HLBC1.47 +0.20
−0.17 BULLOCK 68 HLBC

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.3 ±0.4 BAGLIN 67B HLBC0.90 ±0.24 FOSTER 65 HBC2.0 ±1.0 FOELSCHE 64 HBC0.83 ±0.32 CRAWFORD 63 HBC1AKHMETSHIN 01B uses results from AKHMETSHIN 99F.�(

π+π−π0)/[�(2γ)+�(3π0)] �9/(�2+�3)�(

π+π−π0)/[�(2γ)+�(3π0)] �9/(�2+�3)�(

π+π−π0)/[�(2γ)+�(3π0)] �9/(�2+�3)�(

π+π−π0)/[�(2γ)+�(3π0)] �9/(�2+�3)VALUE DOCUMENT ID TECN COMMENT0.318 ±0.005 OUR FIT0.318 ±0.005 OUR FIT0.318 ±0.005 OUR FIT0.318 ±0.005 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.304 ±0.0120.304 ±0.0120.304 ±0.0120.304 ±0.012 ACHASOV 00D SND e+ e− → φ → ηγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.3141±0.0081±0.0058 ACHASOV 00B SND See ACHASOV 00D



858858858858MesonParti
le Listings
η�(

π+π−γ
)/�total �10/��(

π+π−γ
)/�total �10/��(

π+π−γ
)/�total �10/��(

π+π−γ
)/�total �10/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT4.22±0.08 OUR FIT4.22±0.08 OUR FIT4.22±0.08 OUR FIT4.22±0.08 OUR FIT Error in
ludes s
ale fa
tor of 1.1.

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.96±0.14±0.14 859 1 LOPEZ 07 CLEO ψ(2S) → J/ψη1Not independent of other results listed for LOPEZ 07. Assuming de
ays of η → γ γ,3π0, π+π−π0, π+π− γ, and e+ e− γ a

ount for all η de
ays within a 
ontributionof 0.3% to the systemati
 error.�(

π+π−γ
)/�(

π+π−π0) �10/�9�(

π+π−γ
)/�(

π+π−π0) �10/�9�(

π+π−γ
)/�(

π+π−π0) �10/�9�(

π+π−γ
)/�(

π+π−π0) �10/�9VALUE EVTS DOCUMENT ID TECN COMMENT0.1842±0.0027 OUR FIT0.1842±0.0027 OUR FIT0.1842±0.0027 OUR FIT0.1842±0.0027 OUR FIT0.1847±0.0030 OUR AVERAGE0.1847±0.0030 OUR AVERAGE0.1847±0.0030 OUR AVERAGE0.1847±0.0030 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.1856±0.0005±0.0028 200k BABUSCI 13 KLOE e+ e− → φ → ηγ0.175 ±0.007 ±0.006 859 LOPEZ 07 CLEO ψ(2S) → J/ψη

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.209 ±0.004 18k THALER 73 ASPK0.201 ±0.006 7250 GORMLEY 70 ASPK0.28 ±0.04 BALTAY 67B DBC0.25 ±0.035 LITCHFIELD 67 DBC0.30 ±0.06 CRAWFORD 66 HBC0.196 ±0.041 FOSTER 65C HBC�(e+ e−γ
)/�total �11/��(e+ e−γ
)/�total �11/��(e+ e−γ
)/�total �11/��(e+ e−γ
)/�total �11/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT6.9 ±0.4 OUR FIT6.9 ±0.4 OUR FIT6.9 ±0.4 OUR FIT6.9 ±0.4 OUR FIT Error in
ludes s
ale fa
tor of 1.3.6.7 ±0.5 OUR AVERAGE6.7 ±0.5 OUR AVERAGE6.7 ±0.5 OUR AVERAGE6.7 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.6.6 ±0.4 ±0.4 1345 BERGHAUSER 11 SPEC γ p → pη7.8 ±0.5 ±0.8 435 ± 31 BERLOWSKI 08 WASA pd → 3He η5.15±0.62±0.74 283 ACHASOV 01B SND e+ e− → φ → ηγ7.10±0.64±0.46 323 AKHMETSHIN 01 CMD2 e+ e− → φ → ηγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •9.4 ±0.7 ±0.5 172 1 LOPEZ 07 CLEO ψ(2S) → J/ψη1Not independent of other results listed for LOPEZ 07. Assuming de
ays of η → γ γ,3π0, π+π−π0, π+π− γ, and e+ e− γ a

ount for all η de
ays within a 
ontributionof 0.3% to the systemati
 error.�(e+ e−γ
)/�(

π+π−γ
) �11/�10�(e+ e−γ

)/�(

π+π−γ
) �11/�10�(e+ e−γ

)/�(

π+π−γ
) �11/�10�(e+ e−γ

)/�(

π+π−γ
) �11/�10VALUE EVTS DOCUMENT ID TECN COMMENT0.163±0.011 OUR FIT0.163±0.011 OUR FIT0.163±0.011 OUR FIT0.163±0.011 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.237±0.021±0.0150.237±0.021±0.0150.237±0.021±0.0150.237±0.021±0.015 172 LOPEZ 07 CLEO ψ(2S) → J/ψη�(e+ e−γ

)/�(

π+π−π0) �11/�9�(e+ e−γ
)/�(

π+π−π0) �11/�9�(e+ e−γ
)/�(

π+π−π0) �11/�9�(e+ e−γ
)/�(

π+π−π0) �11/�9VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.00±0.19 OUR FIT3.00±0.19 OUR FIT3.00±0.19 OUR FIT3.00±0.19 OUR FIT Error in
ludes s
ale fa
tor of 1.3.2.1 ±0.52.1 ±0.52.1 ±0.52.1 ±0.5 80 JANE 75B OSPK See the erratum�(neutral modes)/[�(

π+π−π0) +�(

π+π−γ
) +�(e+ e− γ

)
]�1/(�9+�10+�11) = (�2+�3+�4)/(�9+�10+�11)�(neutral modes)/[�(

π+π−π0) +�(

π+π−γ
) +�(e+ e− γ

)
]�1/(�9+�10+�11) = (�2+�3+�4)/(�9+�10+�11)�(neutral modes)/[�(

π+π−π0) +�(

π+π−γ
) +�(e+ e− γ

)
]�1/(�9+�10+�11) = (�2+�3+�4)/(�9+�10+�11)�(neutral modes)/[�(

π+π−π0) +�(

π+π−γ
) +�(e+ e− γ

)
]�1/(�9+�10+�11) = (�2+�3+�4)/(�9+�10+�11)VALUE EVTS DOCUMENT ID TECN2.59±0.04 OUR FIT2.59±0.04 OUR FIT2.59±0.04 OUR FIT2.59±0.04 OUR FIT Error in
ludes s
ale fa
tor of 1.2.2.64±0.232.64±0.232.64±0.232.64±0.23 BALTAY 67B DBC

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.5 ±1.0 280 1 JAMES 66 HBC3.20±1.26 53 1 BASTIEN 62 HBC2.5 ±1.0 10 1 PICKUP 62 HBC1These experiments are not used in the averages as they do not separate 
learly η →
π+π−π0 and η → π+π− γ from ea
h other. The reported values thus probably
ontain some unknown fra
tion of η → π+π− γ.�(2γ)/[�(

π+π−π0)+�(

π+π− γ
)+�(e+ e−γ

)
] �2/(�9+�10+�11)�(2γ)/[�(

π+π−π0)+�(

π+π− γ
)+�(e+ e−γ

)
] �2/(�9+�10+�11)�(2γ)/[�(

π+π−π0)+�(

π+π− γ
)+�(e+ e−γ

)
] �2/(�9+�10+�11)�(2γ)/[�(

π+π−π0)+�(

π+π− γ
)+�(e+ e−γ

)
] �2/(�9+�10+�11)VALUE EVTS DOCUMENT ID TECN1.417±0.023 OUR FIT1.417±0.023 OUR FIT1.417±0.023 OUR FIT1.417±0.023 OUR FIT Error in
ludes s
ale fa
tor of 1.2.1.1 ±0.4 OUR AVERAGE1.1 ±0.4 OUR AVERAGE1.1 ±0.4 OUR AVERAGE1.1 ±0.4 OUR AVERAGE1.51 ±0.93 75 KENDALL 74 OSPK0.99 ±0.48 CRAWFORD 63 HBC�(

µ+µ− γ
)/�total �12/��(

µ+µ− γ
)/�total �12/��(

µ+µ− γ
)/�total �12/��(

µ+µ− γ
)/�total �12/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.1±0.4 OUR FIT3.1±0.4 OUR FIT3.1±0.4 OUR FIT3.1±0.4 OUR FIT3.1±0.43.1±0.43.1±0.43.1±0.4 600 DZHELYADIN 80 SPEC π− p → ηn

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.5±0.75 100 BUSHNIN 78 SPEC See DZHELYADIN 80�(e+ e−)/�total �13/��(e+ e−)/�total �13/��(e+ e−)/�total �13/��(e+ e−)/�total �13/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.3 × 10−6<2.3 × 10−6<2.3 × 10−6<2.3 × 10−6 90 AGAKISHIEV 14 pp → η + X
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.6 × 10−6 90 1 AGAKISHIEV 12A SPEC pp → η + X
<2.7 × 10−5 90 BERLOWSKI 08 WASA pd → 3He η

<0.77× 10−4 90 BROWDER 97B CLE2 e+ e− ≃ 10.5 GeV
<2 × 10−4 90 WHITE 96 SPEC pd → η3He
<3 × 10−4 90 DAVIES 74 RVUE Uses ESTEN 671AGAKISHIEV 12A uses a data sample of 3.5 GeV proton beam 
ollisions on liquid hy-drogen target 
olle
ted by the HADES dete
tor.

�(

µ+µ−)/�total �14/��(

µ+µ−)/�total �14/��(

µ+µ−)/�total �14/��(

µ+µ−)/�total �14/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT5.8±0.8 OUR AVERAGE5.8±0.8 OUR AVERAGE5.8±0.8 OUR AVERAGE5.8±0.8 OUR AVERAGE5.7±0.7±0.5 114 ABEGG 94 SPEC pd → η3He6.5±2.1 27 DZHELYADIN 80B SPEC π− p → ηn
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.6+0.6

−0.7±0.5 100 KESSLER 93 SPEC See ABEGG 94
< 20 95 0 WEHMANN 68 OSPK�(

µ+µ−)/�(2γ) �14/�2�(

µ+µ−)/�(2γ) �14/�2�(

µ+µ−)/�(2γ) �14/�2�(

µ+µ−)/�(2γ) �14/�2VALUE (units 10−5) DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.9±2.2 HYAMS 69 OSPK�(2e+2e−)/�total �15/��(2e+2e−)/�total �15/��(2e+2e−)/�total �15/��(2e+2e−)/�total �15/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT2.4±0.2±0.12.4±0.2±0.12.4±0.2±0.12.4±0.2±0.1 362 1 AMBROSINO 11B KLOE e+ e− → φ → ηγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<9.7 90 BERLOWSKI 08 WASA pd → 3He η

<6.9 90 AKHMETSHIN 01 CMD2 e+ e− → φ → ηγ1This measurement is fully in
lusive (in
ludes "2e+2e− γ" 
hannel).�(

π+π− e+ e− (γ))/�total �16/��(

π+π− e+ e− (γ))/�total �16/��(

π+π− e+ e− (γ))/�total �16/��(

π+π− e+ e− (γ))/�total �16/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.68±0.11 OUR FIT2.68±0.11 OUR FIT2.68±0.11 OUR FIT2.68±0.11 OUR FIT2.68±0.09±0.072.68±0.09±0.072.68±0.09±0.072.68±0.09±0.07 1555 ± 52 1 AMBROSINO 09B KLOE e+ e− → φ → ηγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.3 +2.0
−1.6 ±0.4 16 BERLOWSKI 08 WASA pd → 3He η4.3 ±1.3 ±0.4 16 BARGHOLTZ 07 CNTR See BERLOWSKI 083.7 +2.5
−1.8 ±0.3 4 AKHMETSHIN 01 CMD2 e+ e− → φ → ηγ1This AMBROSINO 09B value in
ludes radiative events.�(e+ e−µ+µ−)/�total �17/��(e+ e−µ+µ−)/�total �17/��(e+ e−µ+µ−)/�total �17/��(e+ e−µ+µ−)/�total �17/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.6× 10−4<1.6× 10−4<1.6× 10−4<1.6× 10−4 90 BERLOWSKI 08 WASA pd → 3He η�(2µ+2µ−)/�total �18/��(2µ+2µ−)/�total �18/��(2µ+2µ−)/�total �18/��(2µ+2µ−)/�total �18/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.6× 10−4<3.6× 10−4<3.6× 10−4<3.6× 10−4 90 BERLOWSKI 08 WASA pd → 3He η�(

µ+µ−π+π−)/�total �19/��(

µ+µ−π+π−)/�total �19/��(

µ+µ−π+π−)/�total �19/��(

µ+µ−π+π−)/�total �19/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.6× 10−4<3.6× 10−4<3.6× 10−4<3.6× 10−4 90 BERLOWSKI 08 WASA pd → 3He η�(

π+ e−νe+ 
.
.)/�(

π+π−π0) �20/�9�(

π+ e−νe+ 
.
.)/�(

π+π−π0) �20/�9�(

π+ e−νe+ 
.
.)/�(

π+π−π0) �20/�9�(

π+ e−νe+ 
.
.)/�(

π+π−π0) �20/�9VALUE CL% DOCUMENT ID TECN COMMENT
<7.3× 10−4<7.3× 10−4<7.3× 10−4<7.3× 10−4 90 ABLIKIM 13G BES3 J/ψ → φη�(

π+π−2γ)/�(

π+π−π0) �21/�9�(

π+π−2γ)/�(

π+π−π0) �21/�9�(

π+π−2γ)/�(

π+π−π0) �21/�9�(

π+π−2γ)/�(

π+π−π0) �21/�9VALUE CL% DOCUMENT ID TECN
< 9× 10−3< 9× 10−3< 9× 10−3< 9× 10−3 PRICE 67 HBC
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<16× 10−3 95 BALTAY 67B DBC�(

π+π−π0 γ
)/�(

π+π−π0) �22/�9�(

π+π−π0 γ
)/�(

π+π−π0) �22/�9�(

π+π−π0 γ
)/�(

π+π−π0) �22/�9�(

π+π−π0 γ
)/�(

π+π−π0) �22/�9VALUE CL% EVTS DOCUMENT ID TECN
<0.24× 10−2<0.24× 10−2<0.24× 10−2<0.24× 10−2 90 0 THALER 73 ASPK
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.7 × 10−2 90 ARNOLD 68 HLBC
<1.6 × 10−2 95 BALTAY 67B DBC
<7.0 × 10−2 FLATTE 67 HBC
<0.9 × 10−2 PRICE 67 HBC�(

π0µ+µ− γ
)/�total �23/��(

π0µ+µ− γ
)/�total �23/��(

π0µ+µ− γ
)/�total �23/��(

π0µ+µ− γ
)/�total �23/�VALUE CL% DOCUMENT ID TECN COMMENT

<3× 10−6<3× 10−6<3× 10−6<3× 10−6 90 DZHELYADIN 81 SPEC π− p → ηnForbidden modesForbidden modesForbidden modesForbidden modes�(

π0 γ
)/�total �24/��(

π0 γ
)/�total �24/��(

π0 γ
)/�total �24/��(

π0 γ
)/�total �24/�Forbidden by angular momentum 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<9× 10−5<9× 10−5<9× 10−5<9× 10−5 90 NEFKENS 05A CRYB p(720 MeV/
) π− → nη



859859859859See key on page 601 MesonParti
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η�(π+π−)/�total �25/��(π+π−)/�total �25/��(π+π−)/�total �25/��(π+π−)/�total �25/�Forbidden by P and CP invarian
e.VALUE CL% EVTS DOCUMENT ID TECN COMMENT

< 0.13× 10−4< 0.13× 10−4< 0.13× 10−4< 0.13× 10−4 90 16M AMBROSINO 05A KLOE e+ e− → φ → ηγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 3.9 × 10−4 90 225M ABLIKIM 11G BES3 e+ e− → J/ψ → ηγ

< 3.3 × 10−4 90 AKHMETSHIN 99B CMD2 e+ e− → φ → ηγ

< 9 × 10−4 90 AKHMETSHIN 97C CMD2 See AKHMETSHIN 99B
<15 × 10−4 0 THALER 73 ASPK�(2π0)/�total �26/��(2π0)/�total �26/��(2π0)/�total �26/��(2π0)/�total �26/�Forbidden by P and CP invarian
e.VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<3.5× 10−4<3.5× 10−4<3.5× 10−4<3.5× 10−4 90 BLIK 07 GAM4 π− p → ηn
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.9× 10−4 90 225M ABLIKIM 11G BES3 e+ e− → J/ψ → ηγ

<4.3× 10−4 90 AKHMETSHIN 99C CMD2 e+ e− → φ → ηγ

<6 × 10−4 90 1 ACHASOV 98 SND e+ e− → φ → ηγ1ACHASOV 98 observes one event in a ±3σ region around the η mass, while a MonteCarlo 
al
ulation gives 10 ± 5 events. The limit here is the Poisson upper limit for oneobserved event and no ba
kground.�(2π0 γ
)/�total �27/��(2π0 γ
)/�total �27/��(2π0 γ
)/�total �27/��(2π0 γ
)/�total �27/�Forbidden by C invarian
e.VALUE CL% DOCUMENT ID TECN CHG COMMENT

< 5× 10−4< 5× 10−4< 5× 10−4< 5× 10−4 90 NEFKENS 05 CRYB 0 p(720 MeV/
) π− → nη

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<17× 10−4 90 BLIK 07 GAM4 π− p → ηn�(3π0 γ
)/�total �28/��(3π0 γ
)/�total �28/��(3π0 γ
)/�total �28/��(3π0 γ
)/�total �28/�Forbidden by C invarian
e.VALUE CL% DOCUMENT ID TECN CHG COMMENT

< 6× 10−5< 6× 10−5< 6× 10−5< 6× 10−5 90 NEFKENS 05 CRYB 0 p(720 MeV/
) π− → nη

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<24× 10−5 90 BLIK 07 GAM4 π− p → ηn�(3γ)/�total �29/��(3γ)/�total �29/��(3γ)/�total �29/��(3γ)/�total �29/�Forbidden by C invarian
e.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<16× 10−5 90 BLIK 07 GAM4 π− p → ηn
< 4× 10−5 90 NEFKENS 05A CRYB p(720 MeV/
) π− → nη�(3γ)/�(2γ) �29/�2�(3γ)/�(2γ) �29/�2�(3γ)/�(2γ) �29/�2�(3γ)/�(2γ) �29/�2VALUE CL% DOCUMENT ID TECN CHG
<1.2× 10−3 95 ALDE 84 GAM2 0�(3γ)/�(3π0) �29/�3�(3γ)/�(3π0) �29/�3�(3γ)/�(3π0) �29/�3�(3γ)/�(3π0) �29/�3VALUE CL% DOCUMENT ID TECN COMMENT
<4.9× 10−5<4.9× 10−5<4.9× 10−5<4.9× 10−5 90 ALOISIO 04 KLOE φ → ηγ�(4π0)/�total �30/��(4π0)/�total �30/��(4π0)/�total �30/��(4π0)/�total �30/�Forbidden by P and CP invarian
e.VALUE CL% DOCUMENT ID TECN COMMENT
< 6.9× 10−7< 6.9× 10−7< 6.9× 10−7< 6.9× 10−7 90 PRAKHOV 00 CRYB π− p → nη, 720 MeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<200 × 10−7 90 BLIK 07 GAM4 π− p → ηn�(π0 e+ e−)/�total �31/��(π0 e+ e−)/�total �31/��(π0 e+ e−)/�total �31/��(π0 e+ e−)/�total �31/�C parity forbids this to o

ur as a single-photon pro
ess.VALUE CL% DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1.6× 10−4 90 MARTYNOV 76 HLBC
< 8.4× 10−4 90 BAZIN 68 DBC
<70 × 10−4 RITTENBERG 65 HBC�(π0 e+ e−)/�(π+π−π0) �31/�9�(π0 e+ e−)/�(π+π−π0) �31/�9�(π0 e+ e−)/�(π+π−π0) �31/�9�(π0 e+ e−)/�(π+π−π0) �31/�9C parity forbids this to o

ur as a single-photon pro
ess.VALUE CL% EVTS DOCUMENT ID TECN
< 1.9× 10−4< 1.9× 10−4< 1.9× 10−4< 1.9× 10−4 90 JANE 75 OSPK
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 42 × 10−4 90 BAGLIN 67 HLBC
< 16 × 10−4 90 0 BILLING 67 HLBC
< 77 × 10−4 0 FOSTER 65B HBC
<110 × 10−4 PRICE 65 HBC�(π0µ+µ−)/�total �32/��(π0µ+µ−)/�total �32/��(π0µ+µ−)/�total �32/��(π0µ+µ−)/�total �32/�C parity forbids this to o

ur as a single-photon pro
ess.VALUE CL% DOCUMENT ID TECN COMMENT
< 5× 10−6< 5× 10−6< 5× 10−6< 5× 10−6 90 DZHELYADIN 81 SPEC π− p → ηn
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<500× 10−6 WEHMANN 68 OSPK

[�(µ+ e−)+�(µ− e+)
]/�total �33/�[�(µ+ e−)+�(µ− e+)
]/�total �33/�[�(µ+ e−)+�(µ− e+)
]/�total �33/�[�(µ+ e−)+�(µ− e+)
]/�total �33/�Forbidden by lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT

<6× 10−6<6× 10−6<6× 10−6<6× 10−6 90 WHITE 96 SPEC pd → η 3He
η C-NONCONSERVING DECAY PARAMETERSη C-NONCONSERVING DECAY PARAMETERSη C-NONCONSERVING DECAY PARAMETERSη C-NONCONSERVING DECAY PARAMETERS

π+π−π0 LEFT-RIGHT ASYMMETRY PARAMETERπ+π−π0 LEFT-RIGHT ASYMMETRY PARAMETERπ+π−π0 LEFT-RIGHT ASYMMETRY PARAMETERπ+π−π0 LEFT-RIGHT ASYMMETRY PARAMETERMeasurements with an error > 1.0× 10−2 have been omitted.VALUE (units 10−2) EVTS DOCUMENT ID TECN0.09+0.11
−0.12 OUR AVERAGE0.09+0.11
−0.12 OUR AVERAGE0.09+0.11
−0.12 OUR AVERAGE0.09+0.11
−0.12 OUR AVERAGE+0.09±0.10+0.09

−0.14 1.34M AMBROSINO 08D KLOE0.28±0.26 165k JANE 74 OSPK
−0.05±0.22 220k LAYTER 72 ASPK
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.5 ±0.5 37k 1 GORMLEY 68C ASPK1The GORMLEY 68C asymmetry is probably due to unmeasured (EEEE × BBBB) spark 
hambere�e
ts. New experiments with (EEEE × BBBB) 
ontrols don't observe an asymmetry.
π+π−π0 SEXTANT ASYMMETRY PARAMETERπ+π−π0 SEXTANT ASYMMETRY PARAMETERπ+π−π0 SEXTANT ASYMMETRY PARAMETERπ+π−π0 SEXTANT ASYMMETRY PARAMETERMeasurements with an error > 2.0× 10−2 have been omitted.VALUE (units 10−2) EVTS DOCUMENT ID TECN0.12+0.10

−0.11 OUR AVERAGE0.12+0.10
−0.11 OUR AVERAGE0.12+0.10
−0.11 OUR AVERAGE0.12+0.10
−0.11 OUR AVERAGE+0.08±0.10+0.08

−0.13 1.34M AMBROSINO 08D KLOE0.20±0.25 165k JANE 74 OSPK0.10±0.22 220k LAYTER 72 ASPK0.5 ±0.5 37k GORMLEY 68C WIRE
π+π−π0 QUADRANT ASYMMETRY PARAMETERπ+π−π0 QUADRANT ASYMMETRY PARAMETERπ+π−π0 QUADRANT ASYMMETRY PARAMETERπ+π−π0 QUADRANT ASYMMETRY PARAMETERVALUE (units 10−2) EVTS DOCUMENT ID TECN
−0.09±0.09 OUR AVERAGE−0.09±0.09 OUR AVERAGE−0.09±0.09 OUR AVERAGE−0.09±0.09 OUR AVERAGE
−0.05±0.10+0.03

−0.05 1.34M AMBROSINO 08D KLOE
−0.30±0.25 165k JANE 74 OSPK
−0.07±0.22 220k LAYTER 72 ASPK
π+π−γ LEFT-RIGHT ASYMMETRY PARAMETERπ+π−γ LEFT-RIGHT ASYMMETRY PARAMETERπ+π−γ LEFT-RIGHT ASYMMETRY PARAMETERπ+π−γ LEFT-RIGHT ASYMMETRY PARAMETERMeasurements with an error > 2.0× 10−2 have been omitted.VALUE (units 10−2) EVTS DOCUMENT ID TECN0.9 ±0.4 OUR AVERAGE0.9 ±0.4 OUR AVERAGE0.9 ±0.4 OUR AVERAGE0.9 ±0.4 OUR AVERAGE1.2 ±0.6 35k JANE 74B OSPK0.5 ±0.6 36k THALER 72 ASPK1.22±1.56 7257 GORMLEY 70 ASPK
π+π−γ PARAMETER β (D-wave)π+π−γ PARAMETER β (D-wave)π+π−γ PARAMETER β (D-wave)π+π−γ PARAMETER β (D-wave)Sensitive to a D-wave 
ontribution: dN/d
osθ = sin2θ (1 + β 
os2θ).VALUE EVTS DOCUMENT ID TECN
−0.02 ±0.07 OUR AVERAGE−0.02 ±0.07 OUR AVERAGE−0.02 ±0.07 OUR AVERAGE−0.02 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.11 ±0.11 35k JANE 74B OSPK
−0.060±0.065 7250 GORMLEY 70 WIRE
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.12 ±0.06 1 THALER 72 ASPK1The authors don't believe this indi
ates D-wave be
ause the dependen
e of β on the γenergy is in
onsistent with the theoreti
al predi
tion. A 
os2θ dependen
e 
an also 
omefrom P- and F-wave interferen
e.

η CP-NONCONSERVING DECAY PARAMETERη CP-NONCONSERVING DECAY PARAMETERη CP-NONCONSERVING DECAY PARAMETERη CP-NONCONSERVING DECAY PARAMETER
π+π− e+ e− DECAY-PLANE ASYMMETRY PARAMETER Aφπ+π− e+ e− DECAY-PLANE ASYMMETRY PARAMETER Aφπ+π− e+ e− DECAY-PLANE ASYMMETRY PARAMETER Aφπ+π− e+ e− DECAY-PLANE ASYMMETRY PARAMETER AφIn the η rest frame, the total momentum of the e+ e− pair is equal and opposite tothat of the π+π− pair. Let ẑ be the unit ve
tor along the momentum of the e+ e−pair; let n̂ee and n̂ππ be the unit ve
tors normal to the e+ e− and π+π− planes;and let φ be the angle between the two normals. Thensinφ 
osφ = [(n̂ee × n̂ππ) · ẑ℄ (n̂ee · n̂ππ) ,and Aφ ≡

Nsinφ 
osφ>0 −Nsinφ 
osφ<0Nsinφ 
osφ>0 +Nsinφ 
osφ<0 .VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
−0.6±2.5±1.8−0.6±2.5±1.8−0.6±2.5±1.8−0.6±2.5±1.8 1555 ± 52 AMBROSINO 09B KLOE e+ e− → φ → ηγENERGY DEPENDENCE OF η → 3π DALITZ PLOTSENERGY DEPENDENCE OF η → 3π DALITZ PLOTSENERGY DEPENDENCE OF η → 3π DALITZ PLOTSENERGY DEPENDENCE OF η → 3π DALITZ PLOTSPARAMETERS FOR η → π+π−π0PARAMETERS FOR η → π+π−π0PARAMETERS FOR η → π+π−π0PARAMETERS FOR η → π+π−π0See the \Note on η De
ay Parameters" in our 1994 edition, Phys. Rev. D50D50D50D50, 1 August1994, Part I, p. 1454. The following experiments �t to one or more of the 
oeÆ
ientsa, b, 
, d, or e for ∣

∣matrix element∣∣2 = 1 + ay + by2 + 
x + dx2 + exy.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •79k ABLIKIM 15G BES3 e+ e− → J/ψ → γ η
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η 174k ADLARSON 14A WASA pd → η 3He1.34M AMBROSINO 08D KLOE3230 1 ABELE 98D CBAR pp → π0π0 η at rest1077 2 AMSLER 95 CBAR pp → π+π− η at rest81k LAYTER 73 ASPK220k LAYTER 72 ASPK1138 CARPENTER 70 HBC349 DANBURG 70 DBC7250 GORMLEY 70 WIRE526 BAGLIN 69 HLBC7170 CNOPS 68 OSPK37k GORMLEY 68C WIRE1300 CLPWY 66 HBC705 LARRIBE 66 HBC1ABELE 98D obtains a = −1.22 ± 0.07 and b = 0.22 ± 0.11 when 
 (our d) is �xed at0.06.2AMSLER 95 �ts to (1+ay+by2) and obtains a=−0.94 ± 0.15 and b=0.11 ± 0.27.
α PARAMETER FOR η → 3π0α PARAMETER FOR η → 3π0α PARAMETER FOR η → 3π0α PARAMETER FOR η → 3π0See the \Note on η De
ay Parameters" in our 1994 edition, Phys. Rev. D50D50D50D50, 1 August1994, Part I, p. 1454. The value here is of α in ∣

∣matrix element∣∣2 = 1 + 2αz.VALUE EVTS DOCUMENT ID TECN COMMENT
−0.0318±0.0015 OUR AVERAGE−0.0318±0.0015 OUR AVERAGE−0.0318±0.0015 OUR AVERAGE−0.0318±0.0015 OUR AVERAGE
−0.055 ±0.014 ±0.004 33k ABLIKIM 15G BES3 e+ e− → J/ψ → γ η

−0.0301±0.0035+0.0022
−0.0035 512k AMBROSINO 10A KLOE e+ e− → φ → ηγ

−0.027 ±0.008 ±0.005 120k 1 ADOLPH 09 WASA pp → ppη

−0.0322±0.0012±0.0022 3M 2 PRAKHOV 09 CRYB γ p → pη

−0.032 ±0.002 ±0.002 1.8M 2 UNVERZAGT 09 CRYB γ p → pη

−0.026 ±0.010 ±0.010 75k BASHKANOV 07 WASA pp → ppη

−0.010 ±0.021 ±0.010 12k ACHASOV 01C SND e+ e− → φ → ηγ

−0.031 ±0.004 1M TIPPENS 01 CRYB π− p → nη, 720 MeV
−0.052 ±0.017 ±0.010 98k ABELE 98C CBAR p p → 5π0
−0.022 ±0.023 50k ALDE 84 GAM2
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.038 ±0.003 +0.012
−0.008 1.34M 3 AMBROSINO 08D KLOE

−0.32 ±0.37 192 BAGLIN 70 HLBC1This ADOLPH 09 result is independent of the BASHKANOV 07 result.2The PRAKHOV 09 and UNVERZAGT 09 results are independent.3This AMBROSINO 08D value is an indire
t result using η → π+π0π− events anda res
attering matrix that mixes isospin de
ay amplitudes.
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hasov et al. (SND Collab.)ABDEL-BARY 05 PL B619 281 M. Abdel-Bary et al. (GEM Collab.)AKHMETSHIN 05 PL B605 26 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AMBROSINO 05A PL B606 276 F. Ambrosino et al. (KLOE Collab.)NEFKENS 05 PRL 94 041601 B.M.K. Nefkens et al. (BNL Crystal Ball Collab.)NEFKENS 05A PR C72 035212 B.M.K. Nefkens et al. (BNL Crystal Ball Collab.)PRAKHOV 05 PR C72 025201 S. Prakhov et al. (BNL Crystal Ball Collab.)ALOISIO 04 PL B591 49 A. Aloisio et al. (KLOE Collab.)KNECHT 04 PL B589 14 N. Kne
ht et al.LAI 02 PL B533 196 A. Lai et al. (CERN NA48 Collab.)NEFKENS 02 PS T99 114 B.M.K. Nefkens, J.W. Pri
e (UCLA)ACHASOV 01B PL B504 275 M.N. A
hasov et al. (Novosibirsk SND Collab.)ACHASOV 01C JETPL 73 451 M.N. A
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I. Introduction: In contrast to the vector and tensor mesons,

the identification of the scalar mesons is a long-standing puzzle.

Scalar resonances are difficult to resolve because some of them

have large decay widths which cause a strong overlap between

resonances and background. In addition, several decay channels

sometimes open up within a short mass interval (e.g. at the

KK̄ and ηη thresholds), producing cusps in the line shapes

of the near-by resonances. Furthermore, one expects non-qq̄

scalar objects, such as glueballs and multiquark states in the

mass range below 2 GeV (for reviews see, e.g., Refs. [1–5] and

the mini-review on non–q̄q states in this Review of Particle

Physics (RPP)).

Light scalars are produced, for example, in πN scattering on

polarized/unpolarized targets, pp̄ annihilation, central hadronic

production, J/Ψ, B-, D- and K-meson decays, γγ formation,

and φ radiative decays. Especially for the lightest scalar mesons

simple parameterizations fail and more advanced theory tools

are necessary to extract the resonance parameters from data. In

the analyses available in the literature fundamental properties of

the amplitudes such as unitarity, analyticity, Lorentz invariance,

chiral and flavor symmetry are implemented at different levels

of rigor. Especially, chiral symmetry implies the appearance

of zeros close to the threshold in elastic S-wave scattering

amplitudes involving soft pions [6,7], which may be shifted or

removed in associated production processes [8]. The methods

employed are the K-matrix formalism, the N/D-method, the

Dalitz–Tuan ansatz, unitarized quark models with coupled

channels, effective chiral field theories and the linear sigma

model, etc. Dynamics near the lowest two-body thresholds in

some analyses are described by crossed channel (t, u) meson

exchange or with an effective range parameterization instead of,

or in addition to, resonant features in the s-channel. Dispersion

theoretical approaches are applied to pin down the location of

resonance poles for the low–lying states [9–12].

The mass and width of a resonance are found from the

position of the nearest pole in the process amplitude (T -matrix

or S-matrix) at an unphysical sheet of the complex energy

plane, traditionally labeled as

√

sPole = M − i Γ/2 .

It is important to note that the pole of a Breit-Wigner

parameterization agrees with this pole position only for narrow

and well–separated resonances, far away from the opening of

decay channels. For a detailed discussion of this issue we refer

to the review on Resonances in this RPP.

In this note, we discuss the light scalars below 2 GeV

organized in the listings under the entries (I = 1/2) K∗
0(800)

(or κ, currently omitted from the summary table), K∗
0(1430),

(I = 1) a0(980), a0(1450), and (I = 0) f0(500) (or σ), f0(980),

f0(1370), f0(1500), and f0(1710). This list is minimal and

does not necessarily exhaust the list of actual resonances. The

(I = 2) ππ and (I = 3/2) Kπ phase shifts do not exhibit any

resonant behavior.

II. The I = 1/2 States: The K∗
0
(1430) [13] is perhaps

the least controversial of the light scalar mesons. The Kπ

S-wave scattering has two possible isospin channels, I = 1/2

and I = 3/2. The I = 3/2 wave is elastic and repulsive

up to 1.7 GeV [14] and contains no known resonances. The

I = 1/2 Kπ phase shift, measured from about 100 MeV

above threshold in Kp production, rises smoothly, passes 90◦ at

1350 MeV, and continues to rise to about 170◦ at 1600 MeV. The

first important inelastic threshold is Kη′(958). In the inelastic

region the continuation of the amplitude is uncertain since the

partial-wave decomposition has several solutions. The data are

extrapolated towards the Kπ threshold using effective range

type formulas [13,15] or chiral perturbation predictions [16,17].

From analyses using unitarized amplitudes there is agreement

on the presence of a resonance pole around 1410 MeV having

a width of about 300 MeV. With reduced model dependence,

Ref. [18] finds a larger width of 500 MeV.

Similar to the situation for the f0(500), discussed in the next

section, the presence and properties of the light K∗
0
(800) (or

κ) meson in the 700-900 MeV region are difficult to establish

since it appears to have a very large width (Γ ≈ 500 MeV) and

resides close to the Kπ threshold. Hadronic D- and B-meson

decays provide additional data points in the vicinity of the

Kπ threshold and are discussed in detail in the Review on

Multibody Charm Analyses in this RPP. Precision information

from semileptonic D decays avoiding theoretically ambiguous

three-body final state interactions is not available. BES II [19]

(re-analyzed in [20]) finds a K∗
0(800)–like structure in J/ψ

decays to K̄∗0(892)K+π− where K∗
0(800) recoils against the

K∗(892). Also clean with respect to final state interaction is

the decay τ− → K0
Sπ−ντ studied by Belle [21], with K∗

0(800)

parameters fixed to those of Ref. [19].

Some authors find a K∗
0(800) pole in their phenomenological

analysis (see, e.g., [22–33]), while others do not need to include

it in their fits (see, e.g., [17,34–37]). Similarly to the case of the

f0(500) discussed below, all works including constraints from

chiral symmetry at low energies naturally seem to find a light

K∗
0(800) below 800 MeV, see, e.g., [38–42]. In these works

the K∗
0 (800), f0(500), f0(980) and a0(980) appear to form a

nonet [39,40]. Additional evidence for this assignment is pre-

sented in Ref. [12], where the couplings of the nine states to q̄q

sources were compared. The same low–lying scalar nonet was



862862862862Meson Parti
le Listingsf0(500)
also found earlier in the unitarized quark model of Ref. [41].

The analysis of Ref. [43] is based on the Roy-Steiner equations,

which include analyticity and crossing symmetry. It establishes

the existence of a light K∗
0(800) pole in the Kπ → Kπ ampli-

tude on the second sheet. In Ref. [44] a first lattice study for

the Kπ S-wave system is presented, however, with a pion mass

of 400 MeV it can not be compared to data yet.

III. The I = 1 States: Two isovector scalar states are known

below 2 GeV, the a0(980) and the a0(1450). Independent of

any model, the KK̄ component in the a0(980) wave function

must be large: it lies just below the opening of the KK̄

channel to which it strongly couples [15,45]. This generates

an important cusp-like behavior in the resonant amplitude.

Hence, its mass and width parameters are strongly distorted.

To reveal its true coupling constants, a coupled–channel model

with energy-dependent widths and mass shift contributions is

necessary. All listed a0(980) measurements agree on a mass

position value near 980 MeV, but the width takes values

between 50 and 100 MeV, mostly due to the different models.

For example, the analysis of the pp̄-annihilation data [15] using

a unitary K-matrix description finds a width as determined

from the T -matrix pole of 92 ± 8 MeV, while the observed

width of the peak in the πη mass spectrum is about 45 MeV.

The relative coupling KK̄/πη is determined indirectly from

f1(1285) [46–48] or η(1410) decays [49–51], from the line

shape observed in the πη decay mode [52–55], or from the

coupled-channel analysis of the ππη and KK̄π final states of

pp̄ annihilation at rest [15].

The a0(1450) is seen in pp̄ annihilation experiments with

stopped and higher momenta antiprotons, with a mass of about

1450 MeV or close to the a2(1320) meson which is typically a

dominant feature. A contribution from a0(1450) is also found

in the analysis of the D± → K+K−π± decay [56]. The

broad structure at about 1300 MeV observed in πN → KK̄N

reactions [57] needs still further confirmation in its existence

and isospin assignment.

IV. The I = 0 States: The I = 0, JPC = 0++ sector is

the most complex one, both experimentally and theoretically.

The data have been obtained from the ππ, KK̄, ηη, 4π,

and ηη′(958) systems produced in S-wave. Analyses based on

several different production processes conclude that probably

four poles are needed in the mass range from ππ threshold to

about 1600 MeV. The claimed isoscalar resonances are found

under separate entries f0(500) (or σ), f0(980), f0(1370), and

f0(1500).

For discussions of the ππ S wave below the KK̄ threshold

and on the long history of the f0(500), which was suggested in

linear sigma models more than 50 years ago, see our reviews in

previous editions and the recent review [5].

Information on the ππ S-wave phase shift δI
J = δ0

0 was

already extracted many years ago from πN scattering [58–60],

and near threshold from the Ke4-decay [61]. The kaon de-

cays were later revisited leading to consistent data, however,

with very much improved statistics [62,63]. The reported

ππ → KK̄ cross sections [64–67] have large uncertainties.

The πN data have been analyzed in combination with high-

statistics data (see entries labeled as RVUE for re-analyses of

the data). The 2π0 invariant mass spectra of the pp̄ anni-

hilation at rest [68–70] and the central collision [71] do not

show a distinct resonance structure below 900 MeV, but these

data are consistently described with the standard solution for

πN data [59,72], which allows for the existence of the broad

f0(500). An enhancement is observed in the π+π− invariant

mass near threshold in the decays D+ → π+π−π+ [73–101] and

J/ψ → ωπ+π− [76,98], and in ψ(2S) → J/ψπ+π− with very

limited phase space [78,79].

The precise f0(500) (or σ) pole is difficult to establish

because of its large width, and because it can certainly not

be modeled by a naive Breit-Wigner resonance. For the same

reason a splitting in background and resonance contributions is

not possible in a model-independent way. The ππ scattering

amplitude shows an unusual energy dependence due to the

presence of a zero in the unphysical regime close to the threshold

[6–7], required by chiral symmetry, and possibly due to crossed

channel exchanges, the f0(1370), and other dynamical features.

However, most of the analyses listed under f0(500) agree on a

pole position near (500 − i 250 MeV). In particular, analyses

of ππ data that include unitarity, ππ threshold behavior,

strongly constrained by the Ke4 data, and the chiral symmetry

constraints from Adler zeroes and/or scattering lengths find a

light f0(500), see, e.g., [80,81].

Precise pole positions with an uncertainty of less than

20 MeV (see our table for the T -matrix pole) were extracted

by use of Roy equations, which are twice subtracted dispersion

relations derived from crossing symmetry and analyticity. In

Ref. [10] the subtraction constants were fixed to the S-wave

scattering lengths a0
0 and a2

0 derived from matching Roy equa-

tions and two-loop chiral perturbation theory [9]. The only

additional relevant input to fix the f0(500) pole turned out to

be the ππ-wave phase shifts at 800 MeV. The analysis was

improved further in Ref. [12]. Alternatively, in Ref. [11] only

data were used as input inside Roy equations. In that reference

also once-subtracted Roy–like equations, called GKPY equa-

tions, were used, since the extrapolation into the complex plane

based on the twice subtracted equations leads to larger uncer-

tainties mainly due to the limited experimental information on

the isospin–2 ππ scattering length. All these extractions find

consistent results. Using analyticity and unitarity only to de-

scribe data from K2π and Ke4 decays, Ref. [82] finds consistent

values for the pole position and the scattering length a0
0. The

importance of the ππ scattering data for fixing the f0(500) pole

is nicely illustrated by comparing analyses of p̄p → 3π0 omitting

[68,83] or including [69,84] information on ππ scattering: while

the former analyses find an extremely broad structure above 1

GeV, the latter find f0(500) masses of the order of 400 MeV.
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Figure 1: Location of the f0(500) (or σ)
poles in the complex energy plane. Circles de-
note the recent analyses based on Roy(-like)
dispersion relations [9–12], while all other anal-
yses are denoted by triangles. The correspond-
ing references are given in the listing.

As a result of the sensitivity of the extracted f0(500)

pole position on the high accuracy low energy ππ scattering

data [62,63], the currently quoted range of pole positions for

the f0(500), namely

√

sσ
Pole = (400 − 550) − i(200 − 350) MeV ,

in the listing was fixed including only those analyses consistent

with these data, Refs. [26,29,39,41,42,54,69,78–82,85–101] as

well as the advanced dispersion analyses [9–12]. The pole

positions from those references are compared to the range of

pole positions quoted above in Fig. 1. Note that this range

is labeled as ’our estimate’ — it is not an average over the

quoted analyses but is chosen to include the bulk of the

analyses consistent with the mentioned criteria. An averaging

procedure is not justified, since the analyses use overlapping or

identical data sets.

One might also take the more radical point of view and just

average the most advanced dispersive analyses, Refs. [9–12],

shown as solid dots in Fig. 1, for they provide a determination

of the pole positions with minimal bias. This procedure leads

to the much more restricted range of f0(500) parameters

√

sσ
Pole = (446 ± 6) − i(276 ± 5) MeV .

Due to the large strong width of the f0(500) an extraction

of its two–photon width directly from data is not possible.

Thus, the values for Γ(γγ) quoted in the literature as well as

the listing are based on the expression in the narrow width

approximation [102] Γ(γγ) ≃ α2|gγ|2/(4Re(
√

sσ
Pole)) where gγ

is derived from the residue at the f0(500) pole to two photons

and α denotes the electromagnetic fine structure constant.

Figure 2: Values of the f0(980) masses as
they appear in the listing compared to the
currently quoted mass estimate. The newest
references appear at the bottom, the oldest on
the top. The corresponding references are given
in the listing.

The explicit form of the expression may vary between different

authors due to different definitions of the coupling constant,

however, the expression given for Γ(γγ) is free of ambiguities.

According to Refs. [103,104], the data for f0(500) → γγ are

consistent with what is expected for a two–step process of

γγ → π+π− via pion exchange in the t- and u-channel, followed

by a final state interaction π+π− → π0π0. The same conclusion

is drawn in Ref. [105] where the bulk part of the f0(500) → γγ

decay width is dominated by re–scattering. Therefore, it might

be difficult to learn anything new about the nature of the

f0(500) from its γγ coupling. For the most recent work on

γγ → ππ, see [106–108]. There are theoretical indications

(e.g., [109–112]) that the f0(500) pole behaves differently

from a qq̄-state – see next section and the mini-review on non

qq̄-states in this RPP for details.

The f0(980) overlaps strongly with the background repre-

sented mainly by the f0(500) and the f0(1370). This can lead

to a dip in the ππ spectrum at the KK̄ threshold. It changes

from a dip into a peak structure in the π0π0 invariant mass

spectrum of the reaction π−p → π0π0n [113], with increasing

four-momentum transfer to the π0π0 system, which means in-

creasing the a1-exchange contribution in the amplitude, while

the π-exchange decreases. The f0(500) and the f0(980) are

also observed in data for radiative decays (φ → f0γ) from

SND [114,115], CMD2 [116], and KLOE [117,118]. A dis-

persive analysis was used to simultaneously pin down the pole

parameters of both the f0(500) and the f0(980) [11]; the

uncertainty in the pole position quoted for the latter state is
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of the order of 10 MeV, only (see the lowest point in Fig. 2).

Compared to the 2010 issue of the Review of Particle Physics, in

this issue we extended the allowed range of the f0(980) masses

to include the mass value derived in Ref. [11]. We now quote

for the mass

Mf0(980) = 990 ± 20 MeV .

As in case of the f0(500) (or σ), this range is not an average,

but is labeled as ’our estimate’. A comparison of the mass

values in the listing and the allocated range is shown in Fig. 2.

Analyses of γγ → ππ data [119–121] underline the im-

portance of the KK̄ coupling of f0(980), while the resulting

two-photon width of the f0(980) cannot be determined pre-

cisely [122]. The prominent appearance of the f0(980) in the

semileptonic Ds decays and decays of B and Bs-mesons implies

a dominant (s̄s) component: those decays occur via weak tran-

sitions that alternatively result in φ(1020) production. Ratios

of decay rates of B and/or Bs mesons into J/ψ plus f0(980) or

f0(500) were proposed to allow for an extraction of the flavor

mixing angle and to probe the tetraquark nature of those mesons

within a certain model [123,124]. The phenomenological fits

of the LHCb collaboration using the isobar model do neither

allow for a contribution of the f0(980) in the B → J/ψππ [125]

nor for an f0(500) in Bs → J/ψππ decays [126]. From the

former analysis the authors conclude that their data is incom-

patible with a model where f0(500) and f0(980) are formed

from two quarks and two antiquarks (tetraquarks) at the eight

standard deviation level. In addition, they extract an upper

limit for the mixing angle of 17o at 90% C.L. between the

f0(980) and the f0(500) that would correspond to a substan-

tial (s̄s) content in f0(980) [125]. However, in a dispersive

analysis of the same data that allows for a model–independent

inclusion of the hadronic final state interactions in Ref. [127]

a substantial f0(980) contribution is also found in the B–decays

putting into question the conclusions of Ref. [125].

The f0’s above 1 GeV. A meson resonance that is very

well studied experimentally, is the f0(1500) seen by the Crystal

Barrel experiment in five decay modes: ππ, KK̄, ηη, ηη′(958),

and 4π [15,69,70]. Due to its interference with the f0(1370)

(and f0(1710)), the peak attributed to the f0(1500) can

appear shifted in invariant mass spectra. Therefore, the appli-

cation of simple Breit-Wigner forms arrives at slightly different

resonance masses for f0(1500). Analyses of central-production

data of the likewise five decay modes Refs. [128,129] agree on

the description of the S-wave with the one above. The pp̄,

pn̄/np̄ measurements [70,130–132] show a single enhancement

at 1400 MeV in the invariant 4π mass spectra, which is re-

solved into f0(1370) and f0(1500) [133,134]. The data on 4π

from central production [135] require both resonances, too, but

disagree on the relative content of ρρ and f0(500)f0(500) in

4π. All investigations agree that the 4π decay mode represents

about half of the f0(1500) decay width and is dominant for

f0(1370).

The determination of the ππ coupling of f0(1370) is ag-

gravated by the strong overlap with the broad f0(500) and

f0(1500). Since it does not show up prominently in the 2π

spectra, its mass and width are difficult to determine. Multi-

channel analyses of hadronically produced two- and three-body

final states agree on a mass between 1300 MeV and 1400 MeV

and a narrow f0(1500), but arrive at a somewhat smaller width

for f0(1370).

V. Interpretation of the scalars below 1 GeV: In the

literature, many suggestions are discussed, such as conventional

qq̄ mesons, qq̄qq̄ or meson-meson bound states. In addition,

one expects a scalar glueball in this mass range. In reality,

there can be superpositions of these components, and one often

depends on models to determine the dominant one. Although

we have seen progress in recent years, this question remains

open. Here, we mention some of the present conclusions.

The f0(980) and a0(980) are often interpreted as multiquark

states [136–140] or KK̄ bound states [141]. The insight into

their internal structure using two-photon widths [115,142–148]

is not conclusive. The f0(980) appears as a peak structure

in J/ψ → φπ+π− and in Ds decays without f0(500) back-

ground, while being nearly invisible in J/ψ → ωπ+π−. Based

on that observation it is suggested that f0(980) has a large

ss̄ component, which according to Ref. [149] is surrounded by

a virtual KK̄ cloud (see also Ref. [150]) . Data on radiative

decays (φ → f0γ and φ → a0γ) from SND, CMD2, and KLOE

(see above) are consistent with a prominent role of kaon loops.

This observation is interpreted as evidence for a compact four-

quark [151] or a molecular [152,153] nature of these states.

Details of this controversy are given in the comments [154,155];

see also Ref. [156]. It remains quite possible that the states

f0(980) and a0(980), together with the f0(500) and the K∗
0 (800),

form a new low-mass state nonet of predominantly four-quark

states, where at larger distances the quarks recombine into a

pair of pseudoscalar mesons creating a meson cloud (see, e.g.,

Ref. [157]) . Different QCD sum rule studies [158–162] do not

agree on a tetraquark configuration for the same particle group.

Models that start directly from chiral Lagrangians, either

in non-linear [42,25,80,152] or in linear [163–169] realization,

predict the existence of the f0(500) meson near 500 MeV. Here

the f0(500), a0(980), f0(980), and K∗
0(800) (in some models

the K∗
0(1430)) would form a nonet (not necessarily qq̄). In

the linear sigma models the lightest pseudoscalars appear as

their chiral partners. In these models the light f0(500) is often

referred to as the ”Higgs boson of strong interactions”, since

here the f0(500) plays a role similar to the Higgs particle

in electro-weak symmetry breaking: within the linear sigma

models it is important for the mechanism of chiral symmetry

breaking, which generates most of the proton mass, and what

is referred to as the constituent quark mass.

In the non–linear approaches of [25,80] the above resonances

together with the low lying vector states are generated starting

from chiral perturbation theory predictions near the first open
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channel, and then by extending the predictions to the resonance

regions using unitarity and analyticity.

Ref. [163] uses a framework with explicit resonances that

are unitarized and coupled to the light pseudoscalars in a

chirally invariant way. Evidence for a non-q̄q nature of the

lightest scalar resonances is derived from their mixing scheme.

In Ref. [164] the scheme is extended and applied to the decay

η′ → ηππ, which lead to the same conclusions. To identify the

nature of the resonances generated from scattering equations,

in Ref. [170] the large Nc behavior of the poles was studied,

with the conclusion that, while the light vector states behave

consistent with what is predicted for q̄q states, the light scalars

behave very differently. This finding provides strong support

for a non-q̄q nature of the light scalar resonances. Note, the

more refined study of Ref. [109] found, in case of the f0(500), in

addition to a dominant non-q̄q nature, indications for a subdom-

inant q̄q component located around 1 GeV. Additional support

for the non-qq̄ nature of the f0(500) is given in Ref. [171],

where the connection between the pole of resonances and their

Regge trajectories is analyzed.

A model–independent method to identify hadronic molecu-

les goes back to a proposal by Weinberg [172], shown to be

equivalent to the pole counting arguments of [173–175] in

Ref. [176]. The formalism allows one to extract the amount

of molecular component in the wave function from the effective

coupling constant of a physical state to a nearby continuum

channel. It can be applied to near threshold states only and

provided strong evidence that the f0(980) is a K̄K molecule,

while the situation turned out to be less clear for the a0(980) (see

also Refs. [148,146]) . Further insights into a0(980) and f0(980)

are expected from their mixing [177]. The corresponding sig-

nal predicted in Refs. [178,179] was recently observed at BES

III [180]. It turned out that in order to get a quantitative

understanding of those data in addition to the mixing mech-

anism itself, some detailed understanding of the production

mechanism seems necessary [181].

In the unitarized quark model with coupled qq̄ and meson-

meson channels, the light scalars can be understood as addi-

tional manifestations of bare qq̄ confinement states, strongly

mass shifted from the 1.3 - 1.5 GeV region and very dis-

torted due to the strong 3P0 coupling to S-wave two-meson

decay channels [182] vanbeveren01b. Thus, in these models the

light scalar nonet comprising the f0(500), f0(980), K∗
0 (800),

and a0(980), as well as the nonet consisting of the f0(1370),

f0(1500) (or f0(1710)), K∗
0(1430), and a0(1450), respectively,

are two manifestations of the same bare input states (see also

Ref. [184]) .

Other models with different groupings of the observed

resonances exist and may, e.g., be found in earlier versions of

this review.

VI. Interpretation of the f0’s above 1 GeV: The f0(1370)

and f0(1500) decay mostly into pions (2π and 4π) while the

f0(1710) decays mainly into the KK̄ final states. The KK̄

decay branching ratio of the f0(1500) is small [128,185].

If one uses the naive quark model, it is natural to assume

that the f0(1370), a0(1450), and the K∗
0 (1430) are in the

same SU(3) flavor nonet, being the (uū + dd̄), ud̄ and us̄

states, probably mixing with the light scalars [186], while the

f0(1710) is the ss̄ state. Indeed, the production of f0(1710)

(and f ′
2(1525)) is observed in pp̄ annihilation [187] but the rate

is suppressed compared to f0(1500) (respectively, f2(1270)),

as would be expected from the OZI rule for ss̄ states. The

f0(1500) would also qualify as a (uū + dd̄) state, although it is

very narrow compared to the other states and too light to be

the first radial excitation.

However, in γγ collisions leading to K0
SK0

S [188] a spin–

0 signal is observed at the f0(1710) mass (together with a

dominant spin–2 component), while the f0(1500) is not observed

in γγ → KK̄ nor π+π− [189]. In γγ collisions leading to π0π0

Ref. [190] reports the observation of a scalar around 1470 MeV

albeit with large uncertainties on the mass and γγ couplings.

This state could be the f0(1370) or the f0(1500). The upper

limit from π+π− [189] excludes a large nn̄ (here n stands for

the two lightest quarks) content for the f0(1500) and hence

points to a mainly ss̄ state [191]. This appears to contradict

the small KK̄ decay branching ratio of the f0(1500) and makes

a qq̄ assignment difficult for this state. Hence the f0(1500)

could be mainly glue due the absence of a 2γ-coupling, while

the f0(1710) coupling to 2γ would be compatible with an ss̄

state. This is in accord with the recent high–statistics Belle

data in γγ → K0
SK0

S [192] in which the f0(1500) is absent,

while a prominent peak at 1710 MeV is observed with quantum

numbers 0++, compatible with the formation of an ss̄ state.

However, the 2γ-couplings are sensitive to glue mixing with

qq̄ [193].

Note that an isovector scalar, possibly the a0(1450) (albeit

at a lower mass of 1317 MeV) is observed in γγ collisions

leading to ηπ0 [194]. The state interferes destructively with

the non-resonant background, but its γγ coupling is comparable

to that of the a2(1320), in accord with simple predictions (see,

e.g., Ref. [191]) .

The small width of f0(1500), and its enhanced production at

low transverse momentum transfer in central collisions [195–197]

also favor f0(1500) to be non-qq̄. In the mixing scheme of

Ref. [193], which uses central production data from WA102 and

the recent hadronic J/ψ decay data from BES [198,199], glue is

shared between f0(1370), f0(1500) and f0(1710). The f0(1370)

is mainly nn̄, the f0(1500) mainly glue and the f0(1710)

dominantly ss̄. This agrees with previous analyses [200,201].

In Ref. [202] f0(1710) qualifies as a glueball candidate based

on an analysis of decay data in an extended linear sigma model

with a dilaton field.

However, alternative schemes have been proposed (e.g., in

[203–204]; for a review see, e.g., Ref. [1]) . In particular,

for a scalar glueball, the two-gluon coupling to nn̄ appears

to be suppressed by chiral symmetry [205] and therefore the

KK̄ decay could be enhanced. This mechanism would imply

that the f0(1710) can possibly be interpreted as an unmixed
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glueball [206]. In Ref. [207], a large K+K− scalar signal

reported by Belle in B decays into KKK̄ [208], compatible with

the f0(1500), is explained as due to constructive interference

with a broad glueball background. However, the Belle data

are inconsistent with the BaBar measurements which show

instead a broad scalar at this mass for B decays into both

K±K±K∓ [209] and K+K−π0 [210].

Whether the f0(1500) is observed in ’gluon rich’ radiative

J/ψ decays is debatable [211] because of the limited amount of

data - more data for this and the γγ mode are needed.

In Ref. [212], further refined in Ref. [213], f0(1370) and

f0(1710) (together with f2(1270) and f ′
2(1525)) were interpreted

as bound systems of two vector mesons. This picture could be

tested in radiative J/ψ decays [214] as well as radiative decays

of the states themselves [215]. The vector-vector component

of the f0(1710) might also be the origin of the enhancement

seen in J/ψ → γφω near threshold [216] observed at BES [217].
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−53) 20 ISHIDA 01 �(3S) → � ππ610 ± 14 − i620 ± 26 21 SUROVTSEV 01 RVUE ππ → ππ, KK(540+36
−29)−i(193+32

−40) ISHIDA 00B pp → π0π0π0445 − i235 HANNAH 99 RVUE π s
alar form fa
tor(523 ± 12)−i(259 ± 7) KAMINSKI 99 RVUE ππ → ππ, KK , σσ442 − i 227 OLLER 99 RVUE ππ → ππ, KK469 − i203 OLLER 99B RVUE ππ → ππ, KK445 − i221 OLLER 99C RVUE ππ → ππ, KK , ηη(1530+ 90
−250)−i(560 ± 40) ANISOVICH 98B RVUE Compilation420 − i 212 LOCHER 98 RVUE ππ → ππ , K K440 − i245 22 DOBADO 97 RVUE Compilation(602 ± 26)−i(196 ± 27) 23 ISHIDA 97 ππ → ππ(537 ± 20)−i(250 ± 17) 24 KAMINSKI 97B RVUE ππ → ππ, KK , 4π470 − i250 25,26 TORNQVIST 96 RVUE ππ → ππ, KK , K π,

ηπ387 − i305 26,27 JANSSEN 95 RVUE ππ → ππ, KK420 − i370 28 ACHASOV 94 RVUE ππ → ππ(506 ± 10)−i(247 ± 3) KAMINSKI 94 RVUE ππ → ππ, KK370 − i356 29 ZOU 94B RVUE ππ → ππ, KK408 − i342 26,29 ZOU 93 RVUE ππ → ππ, KK470 − i208 30 VANBEVEREN 86 RVUE ππ → ππ, KK , ηη,...(750 ± 50)−i(450 ± 50) 31 ESTABROOKS 79 RVUE ππ → ππ, KK(660 ± 100)−i(320 ± 70) PROTOPOP... 73 HBC ππ → ππ, KK650 − i370 32 BASDEVANT 72 RVUE ππ → ππ1Applying the 
hiral unitary approa
h at NLO to the Ke4 data of BATLEY 10 and πN →
ππN data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73.2Uses the Ke4 data of BATLEY 10C and the πN → ππN data of HYAMS 73,GRAYER 74, and PROTOPOPESCU 73.3Analyti
 
ontinuation using Roy equations.4Analyti
 
ontinuation using GKPY equations.5Using Roy equations.6Average of three variants of the analyti
 K-matrix model. Uses the Ke4 data of BAT-LEY 08A and the πN → ππN data of HYAMS 73 and GRAYER 74.7Average of the analyses of three data sets in the K-matrix model. Uses the data ofBATLEY 08A, HYAMS 73, and GRAYER 74, partially of COHEN 80 or ETKIN 82B.8 From the Ke4 data of BATLEY 08A and πN → ππN data of HYAMS 73.9 From the Ke4 data of BATLEY 08A and πN → ππN data of PROTOPOPESCU 73,GRAYER 74, and ESTABROOKS 74.10From a mean of three di�erent f0(500) parametrizations. Uses 40k events.11 From an isobar model using 2.6k events.12Reanalysis of ABLIKIM 04A, PISLAK 01, and HYAMS 73 data.13Using the N/D method.14 From the solution of the Roy equation (ROY 71) for the isos
alar S-wave and using aphase-shift analysis of HYAMS 73 and PROTOPOPESCU 73 data.



869869869869See key on page 601 MesonParti
le Listingsf0(500)15Reanalysis of the data from PROTOPOPESCU 73, ESTABROOKS 74, GRAYER 74,ROSSELET 77, PISLAK 03, and AKHMETSHIN 04.16 From a mean of six di�erent analyses and f0(500) parameterizations.17Using data on ψ(2S) → J/ψππ from BAI 00E and on �(nS) → �(mS)ππ fromBUTLER 94B and ALEXANDER 98.18Reanalysis of data from PROTOPOPESCU 73, ESTABROOKS 74, GRAYER 74, andCOHEN 80 in the unitarized ChPT model.19 From a 
ombined analysis of HYAMS 73, AUGUSTIN 89, AITALA 01B, and PISLAK 01.20A similar analysis (KOMADA 01) �nds (580+79
−30)−i(190+107

− 49) MeV.21Coupled 
hannel reanalysis of BATON 70, BENSINGER 71, BAILLON 72, HYAMS 73,HYAMS 75, ROSSELET 77, COHEN 80, and ETKIN 82B using the uniformizing variable.22Using the inverse amplitude method and data of ESTABROOKS 73, GRAYER 74, andPROTOPOPESCU 73.23Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77using the interfering amplitude method.24Average and spread of 4 variants (\up" and \down") of KAMINSKI 97B 3-
hannel model.25Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA-SON 83, ASTON 88, and ARMSTRONG 91B. Coupled 
hannel analysis with 
avorsymmetry and all light two-pseudos
alars systems.26Demonstrates expli
itly that f0(500) and f0(1370) are two di�erent poles.27Analysis of data from FALVARD 88.28Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.29Analysis of data from OCHS 73, GRAYER 74, and ROSSELET 77.30Coupled-
hannel analysis using data from PROTOPOPESCU 73, HYAMS 73,HYAMS 75, GRAYER 74, ESTABROOKS 74, ESTABROOKS 75, FROGGATT 77, COR-DEN 79, BISWAS 81.31Analysis of data from APEL 73, GRAYER 74, CASON 76, PAWLICKI 77. In
ludes spreadand errors of 4 solutions.32Analysis of data from BATON 70, BENSINGER 71, COLTON 71, BAILLON 72,PRO-TOPOPESCU 73, and WALKER 67.f0(500) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERSf0(500) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERSf0(500) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERSf0(500) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERSVALUE (MeV) DOCUMENT ID TECN COMMENT(400{550) OUR ESTIMATE(400{550) OUR ESTIMATE(400{550) OUR ESTIMATE(400{550) OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •513±32 33 MURAMATSU 02 CLEO e+ e− ≈ 10 GeV478+24

−23±17 AITALA 01B E791 D+ → π−π+π+563+58
−29 34 ISHIDA 01 �(3S) → � ππ555 35 ASNER 00 CLE2 τ− → π−π0π0 ντ540±36 ISHIDA 00B pp → π0π0π0750± 4 ALEKSEEV 99 SPEC 1.78 π− ppolar → π−π+ n744± 5 ALEKSEEV 98 SPEC 1.78 π− ppolar → π−π+ n759± 5 36 TROYAN 98 5.2 np → npπ+π−780±30 ALDE 97 GAM2 450 pp → ppπ0π0585±20 37 ISHIDA 97 ππ → ππ761±12 38 SVEC 96 RVUE 6{17 πN polar → π+π−N

∼ 860 39,40 TORNQVIST 96 RVUE ππ → ππ, K K , K π, ηπ1165±50 41,42 ANISOVICH 95 RVUE π− p → π0π0 n,p p → π0π0π0, π0π0 η,
π0 ηη

∼ 1000 43 ACHASOV 94 RVUE ππ → ππ414±20 38 AUGUSTIN 89 DM233Statisti
al un
ertainty only.34A similar analysis (KOMADA 01) �nds 526+48
−37 MeV.35From the best �t of the Dalitz plot.36 6σ e�e
t, no PWA.37Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77using the interfering amplitude method.38Breit-Wigner �t to S-wave intensity measured in πN → π−π+N on polarized targets.The �t does not in
lude f0(980).39Uses data from ASTON 88, OCHS 73, HYAMS 73, ARMSTRONG 91B, GRAYER 74,CASON 83, ROSSELET 77, and BEIER 72B. Coupled 
hannel analysis with 
avor sym-metry and all light two-pseudos
alars systems.40Also observed by ASNER 00 in τ− → π−π0π0 ντ de
ays.41Uses π0π0 data from ANISOVICH 94, AMSLER 94D, and ALDE 95B, π+π− data fromOCHS 73, GRAYER 74 and ROSSELET 77, and ηη data from ANISOVICH 94.42The pole is on Sheet III. Demonstrates expli
itly that f0(500) and f0(1370) are twodi�erent poles.43Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.f0(500) BREIT-WIGNER WIDTHf0(500) BREIT-WIGNER WIDTHf0(500) BREIT-WIGNER WIDTHf0(500) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT(400{700) OUR ESTIMATE(400{700) OUR ESTIMATE(400{700) OUR ESTIMATE(400{700) OUR ESTIMATE

• • • We do not use the following data for averages, �ts, limits, et
. • • •335± 67 44 MURAMATSU 02 CLEO e+ e− ≈ 10 GeV324+ 42
− 40±21 AITALA 01B E791 D+ → π−π+π+372+229
− 95 45 ISHIDA 01 �(3S) → � ππ540 46 ASNER 00 CLE2 τ− → π−π0π0 ντ372± 80 ISHIDA 00B pp → π0π0π0119± 13 ALEKSEEV 99 SPEC 1.78 π− ppolar → π−π+ n77± 22 ALEKSEEV 98 SPEC 1.78 π− ppolar → π−π+ n

35± 12 47 TROYAN 98 5.2 np → npπ+π−780± 60 ALDE 97 GAM2 450 pp → ppπ0π0385± 70 48 ISHIDA 97 ππ → ππ290± 54 49 SVEC 96 RVUE 6{17 πN polar → π+π−N
∼ 880 50,51 TORNQVIST 96 RVUE ππ → ππ, K K , K π, ηπ460± 40 52,53 ANISOVICH 95 RVUE π− p → π0π0 n,p p → π0π0π0, π0π0 η,

π0 ηη
∼ 3200 54 ACHASOV 94 RVUE ππ → ππ494± 58 49 AUGUSTIN 89 DM244Statisti
al un
ertainty only.45A similar analysis (KOMADA 01) �nds 301+145

−100 MeV.46From the best �t of the Dalitz plot.47 6σ e�e
t, no PWA.48Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77using the interfering amplitude method.49Breit-Wigner �t to S-wave intensity measured in πN → π−π+N on polarized targets.The �t does not in
lude f0(980).50Uses data from ASTON 88, OCHS 73, HYAMS 73, ARMSTRONG 91B, GRAYER 74,CASON 83, ROSSELET 77, and BEIER 72B. Coupled 
hannel analysis with 
avor sym-metry and all light two-pseudos
alars systems.51Also observed by ASNER 00 in τ− → π−π0π0 ντ de
ays.52Uses π0π0 data from ANISOVICH 94, AMSLER 94D, and ALDE 95B, π+π− data fromOCHS 73, GRAYER 74 and ROSSELET 77, and ηη data from ANISOVICH 94.53The pole is on Sheet III. Demonstrates expli
itly that f0(500) and f0(1370) are twodi�erent poles.54Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.f0(500) DECAY MODESf0(500) DECAY MODESf0(500) DECAY MODESf0(500) DECAY MODESMode Fra
tion (�i /�)�1 ππ dominant�2 γ γ seenf0(500) PARTIAL WIDTHSf0(500) PARTIAL WIDTHSf0(500) PARTIAL WIDTHSf0(500) PARTIAL WIDTHS�(γ γ
) �2�(γ γ
) �2�(γ γ
) �2�(γ γ
) �2VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.05±0.21 55 DAI 14A RVUE Compilation1.7 ±0.4 56 HOFERICHTER11 RVUE Compilation3.08±0.82 57 MENNESSIER 11 RVUE Compilation2.08±0.2 +0.07
−0.04 58 MOUSSALLAM11 RVUE Compilation2.08 59 MAO 09 RVUE Compilation1.2 ±0.4 60 BERNABEU 08 RVUE3.9 ±0.6 57 MENNESSIER 08 RVUE γ γ → π+π−, π0π01.8 ±0.4 61 OLLER 08 RVUE Compilation1.68±0.15 61,62 OLLER 08A RVUE Compilation3.1 ±0.5 63,64 PENNINGTON 08 RVUE Compilation2.4 ±0.4 64,65 PENNINGTON 08 RVUE Compilation4.1 ±0.3 66 PENNINGTON 06 RVUE γ γ → π0π03.8 ±1.5 67,68 BOGLIONE 99 RVUE γ γ → π+π−, π0π05.4 ±2.3 67 MORGAN 90 RVUE γ γ → π+π− , π0π010 ±6 COURAU 86 DM1 e+ e− → π+π− e+ e−55Using dispersive analysis with phases from GARCIA-MARTIN 11A and BUETTIKER 04as input.56Using Roy-Steiner equations with ππ phase shifts from an update of COLANGELO 01and from GARCIA-MARTIN 11A.57Using an analyti
 K-matrix model.58Using dispersion integral with phase input from Roy equations and data from MAR-SISKE 90, BOYER 90, BEHREND 92, UEHARA 08A, and MORI 07.59Used dispersion theory. The value quoted used the f0(500) pole position of 457 − i276MeV.60Using p, n polarizabilities from PDG 06 and �tting to ππ phase motion from GARCIA-MARTIN 07 and σ-poles from GARCIA-MARTIN 07 and CAPRINI 06.61Using twi
e-subtra
ted dispersion integrals.62 Supersedes OLLER 08.63 Solution A (preferred solution based on χ2-analysis).64Dispersion theory based amplitude analysis of BOYER 90, MARSISKE 90, BEHREND 92,and MORI 07.65 Solution B (worse than solution A; still a

eptable when systemati
 un
ertainties arein
luded).66Using unitarity and the σ pole position from CAPRINI 06.67This width 
ould equally well be assigned to the f0(1370). The authors analyse data fromBOYER 90 and MARSISKE 90 and report strong 
orrelation with γ γ width of f2(1270).68 Supersedes MORGAN 90.
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ρ(770) IG (JPC ) = 1+(1−−)

THE ρ(770)

Updated May 2012 by S. Eidelman (Novosibirsk) and G. Ve-
nanzoni (Frascati).

The determination of the parameters of the ρ(770) is beset

with many difficulties because of its large width. In physical

region fits, the line shape does not correspond to a relativis-

tic Breit-Wigner function with a P -wave width, but requires

some additional shape parameter. This dependence on pa-

rameterization was demonstrated long ago [1]. Bose-Einstein

correlations are another source of shifts in the ρ(770) line shape,

particularly in multiparticle final state systems [2].

The same model-dependence afflicts any other source of

resonance parameters, such as the energy-dependence of the

phase shift δ1
1 , or the pole position. It is, therefore, not

surprising that a study of ρ(770) dominance in the decays of

the η and η′ reveals the need for specific dynamical effects, in

addition to the ρ(770) pole [3,4].

The cleanest determination of the ρ(770) mass and width

comes from e+e− annihilation and τ -lepton decays. Analysis

of ALEPH [5] showed that the charged ρ(770) parameters

measured from τ -lepton decays are consistent with those of the

neutral one determined from e+e− data [6]. This conclusion

is qualitatively supported by the later studies of CLEO [7] and

Belle [8]. However, model-independent comparison of the

two-pion mass spectrum in τ decays, and the e+e− → π+π−

cross section, gave indications of discrepancies between the

overall normalization: τ data are about 3% higher than e+e−

data [7,9]. A detailed analysis using such two-pion mass

spectra from τ decays measured by OPAL [10], CLEO [7], and

ALEPH [11,12], as well as recent pion form factor measurements

in e+e− annihilation by CMD-2 [13,14], showed that the

discrepancy can be as high as 10% above the ρ meson [15,16].

This discrepancy remains after recent measurements of the

two-pion cross section in e+e− annihilation at KLOE [17,18]

and SND [19,20]. This effect is not accounted for by isospin

breaking [21–24], but the accuracy of its calculation may be

overestimated [25,26].

This problem seems to be solved after a recent analysis

in [27] which showed that after correcting the τ data for the

missing ρ - γ mixing contribution, besides the other known

isospin symmetry violating corrections, the ππ I=1 part of the

hadronic vacuum polarization contribution to the muon g - 2 is

fully compatible between τ based and e+e− based evaluations

including more recent BaBar [28] and KLOE [29] data. Further

proof of the consistency of the data on τ decays to two pions

and e+e− annihilation is given by the global fit of the whole set

of the ρ, ω, and φ decays, taking into account mixing effects in

the hidden local symmetry model [30].
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ρ(770) MASSρ(770) MASSρ(770) MASSρ(770) MASSWe no longer list S-wave Breit-Wigner �ts, or data with high 
ombinatorialba
kground.NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e−VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT775.26±0.25 OUR AVERAGE775.26±0.25 OUR AVERAGE775.26±0.25 OUR AVERAGE775.26±0.25 OUR AVERAGE775.02±0.35 1 LEES 12G BABR e+ e− → π+π− γ775.97±0.46±0.70 900k 2 AKHMETSHIN 07 e+ e− → π+π−774.6 ±0.4 ±0.5 800k 3,4 ACHASOV 06 SND e+ e− → π+π−775.65±0.64±0.50 114k 5,6 AKHMETSHIN 04 CMD2 e+ e− → π+π−775.9 ±0.5 ±0.5 1.98M 7 ALOISIO 03 KLOE 1.02 e+ e− →
π+π−π0775.8 ±0.9 ±2.0 500k 7 ACHASOV 02 SND 1.02 e+ e− →
π+π−π0775.9 ±1.1 8 BARKOV 85 OLYA e+ e− → π+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •775.8 ±0.5 ±0.3 1.98M 9 ALOISIO 03 KLOE 1.02 e+ e− →
π+π−π0775.9 ±0.6 ±0.5 1.98M 10 ALOISIO 03 KLOE 1.02 e+ e− →
π+π−π0775.0 ±0.6 ±1.1 500k 11 ACHASOV 02 SND 1.02 e+ e− →
π+π−π0775.1 ±0.7 ±5.3 12 BENAYOUN 98 RVUE e+ e− → π+π−,
µ+µ−770.5 ±1.9 ±5.1 13 GARDNER 98 RVUE 0.28{0.92 e+ e− →
π+π−764.1 ±0.7 14 O'CONNELL 97 RVUE e+ e− → π+π−757.5 ±1.5 15 BERNICHA 94 RVUE e+ e− → π+π−768 ±1 16 GESHKEN... 89 RVUE e+ e− → π+π−

CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e−VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT775.11±0.34 OUR AVERAGE775.11±0.34 OUR AVERAGE775.11±0.34 OUR AVERAGE775.11±0.34 OUR AVERAGE774.6 ±0.2 ±0.5 5.4M 17,18 FUJIKAWA 08 BELL ± τ− → π−π0 ντ775.5 ±0.7 18,19 SCHAEL 05C ALEP τ− → π−π0 ντ775.5 ±0.5 ±0.4 1.98M 7 ALOISIO 03 KLOE 1.02 e+ e− →
π+π−π0775.1 ±1.1 ±0.5 87k 20,21 ANDERSON 00A CLE2 τ− → π−π0 ντ

• • • We do not use the following data for averages, �ts, limits, et
. • • •774.8 ±0.6 ±0.4 1.98M 10 ALOISIO 03 KLOE − 1.02 e+ e− →
π+π−π0776.3 ±0.6 ±0.7 1.98M 10 ALOISIO 03 KLOE + 1.02 e+ e− →
π+π−π0773.9 ±2.0 +0.3

−1.0 22 SANZ-CILLERO03 RVUE τ− → π−π0 ντ774.5 ±0.7 ±1.5 500k 7 ACHASOV 02 SND ± 1.02 e+ e− →
π+π−π0775.1 ±0.5 23 PICH 01 RVUE τ− → π−π0 ντMIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT763.0±0.3±1.2763.0±0.3±1.2763.0±0.3±1.2763.0±0.3±1.2 600k 24 ABELE 99E CBAR 0± 0.0 p p →
π+π−π0CHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT766.5±1.1 OUR AVERAGE766.5±1.1 OUR AVERAGE766.5±1.1 OUR AVERAGE766.5±1.1 OUR AVERAGE763.7±3.2 ABELE 97 CBAR pn → π−π0π0768 ±9 AGUILAR-... 91 EHS 400 pp767 ±3 2935 25 CAPRARO 87 SPEC − 200 π−Cu →

π−π0Cu761 ±5 967 25 CAPRARO 87 SPEC − 200 π−Pb →
π−π0Pb771 ±4 HUSTON 86 SPEC + 202 π+A →
π+π0A766 ±7 6500 26 BYERLY 73 OSPK − 5 π− p766.8±1.5 9650 27 PISUT 68 RVUE − 1.7{3.2 π− p, t <10767 ±6 900 25 EISNER 67 HBC − 4.2 π− p, t <10NEUTRAL ONLY, PHOTOPRODUCEDNEUTRAL ONLY, PHOTOPRODUCEDNEUTRAL ONLY, PHOTOPRODUCEDNEUTRAL ONLY, PHOTOPRODUCEDVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT769.0± 1.0 OUR AVERAGE769.0± 1.0 OUR AVERAGE769.0± 1.0 OUR AVERAGE769.0± 1.0 OUR AVERAGE771 ± 2 +2

−1 63.5k 28 ABRAMOWICZ12 ZEUS e p → eπ+π− p770 ± 2 ±1 79k 29 BREITWEG 98B ZEUS 50{100 γ p767.6± 2.7 BARTALUCCI 78 CNTR γ p → e+ e− p775 ± 5 GLADDING 73 CNTR 2.9{4.7 γ p767 ± 4 1930 BALLAM 72 HBC 2.8 γ p770 ± 4 2430 BALLAM 72 HBC 4.7 γ p765 ±10 ALVENSLEB... 70 CNTR γA, t <0.01767.7± 1.9 140k BIGGS 70 CNTR <4.1 γC → π+π−C765 ± 5 4000 ASBURY 67B CNTR γ + Pb
• • • We do not use the following data for averages, �ts, limits, et
. • • •771 ± 2 79k 30 BREITWEG 98B ZEUS 50{100 γ pNEUTRAL ONLY, OTHER REACTIONSNEUTRAL ONLY, OTHER REACTIONSNEUTRAL ONLY, OTHER REACTIONSNEUTRAL ONLY, OTHER REACTIONSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT769.0±0.9 OUR AVERAGE769.0±0.9 OUR AVERAGE769.0±0.9 OUR AVERAGE769.0±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.765 ±6 BERTIN 97C OBLX 0.0 p p → π+π−π0773 ±1.6 WEIDENAUER 93 ASTE pp → π+π−ω762.6±2.6 AGUILAR-... 91 EHS 400 pp770 ±2 31 HEYN 81 RVUE Pion form fa
tor768 ±4 32,33 BOHACIK 80 RVUE 0769 ±3 26 WICKLUND 78 ASPK 0 3,4,6 π±N768 ±1 76000 DEUTSCH... 76 HBC 0 16 π+ p767 ±4 4100 ENGLER 74 DBC 0 6 π+ n → π+π− p775 ±4 32000 32 PROTOPOP... 73 HBC 0 7.1 π+ p, t <0.4764 ±3 6800 RATCLIFF 72 ASPK 0 15 π− p, t <0.3774 ±3 1700 REYNOLDS 69 HBC 0 2.26 π− p769.2±1.5 13300 34 PISUT 68 RVUE 0 1.7{3.2 π− p, t <10
• • • We do not use the following data for averages, �ts, limits, et
. • • •773.5±2.5 35 COLANGELO 01 RVUE ππ → ππ762.3±0.5±1.2 600k 36 ABELE 99E CBAR 0 0.0 p p → π+π−π0777 ±2 4943 37 ADAMS 97 E665 470 µp → µXB770 ±2 38 BOGOLYUB... 97 MIRA 32 pp → π+π−X768 ±8 38 BOGOLYUB... 97 MIRA 32 pp → π+π−X761.1±2.9 DUBNICKA 89 RVUE π form fa
tor777.4±2.0 39 CHABAUD 83 ASPK 0 17 π− p polarized769.5±0.7 32,33 LANG 79 RVUE 0770 ±9 33 ESTABROOKS 74 RVUE 0 17 π− p → π+π− n773.5±1.7 11200 25 JACOBS 72 HBC 0 2.8 π− p775 ±3 2250 HYAMS 68 OSPK 0 11.2 π− p
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WEIGHTED AVERAGE
769.0±0.9 (Error scaled by 1.4)

PISUT 68 RVUE 0.0
REYNOLDS 69 HBC 2.8
RATCLIFF 72 ASPK 2.8
PROTOPOP... 73 HBC 2.2
ENGLER 74 DBC 0.2
DEUTSCH... 76 HBC 1.0
WICKLUND 78 ASPK 0.0
BOHACIK 80 RVUE 0.1
HEYN 81 RVUE 0.2
AGUILAR-... 91 EHS 6.1
WEIDENAUER 93 ASTE 6.2
BERTIN 97C OBLX 0.4

χ2

      22.1
(Confidence Level = 0.023)

750 760 770 780 790 800

ρ(770)0 mass (MeV)1Using the GOUNARIS 68 parametrization with the 
omplex phase of the ρ−ω interferen
eand leaving the masses and widths of the ρ(1450), ρ(1700), and ρ(2150) resonan
es asfree parameters of the �t.2A 
ombined �t of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05.3 Supersedes ACHASOV 05A.4A �t of the SND data from 400 to 1000 MeV using parameters of the ρ(1450) and
ρ(1700) from a �t of the data of BARKOV 85, BISELLO 89 and ANDERSON 00A.5Using the GOUNARIS 68 parametrization with the 
omplex phase of the ρ-ω interferen
e.6Update of AKHMETSHIN 02.7Assuming m

ρ+ = m
ρ− , �ρ+ = �

ρ− .8 From the GOUNARIS 68 parametrization of the pion form fa
tor.9Assuming m
ρ+ = m

ρ− = m
ρ0 , �ρ+ = �

ρ− = �
ρ0 .10Without limitations on masses and widths.11Assuming m

ρ0 = m
ρ± , gρ0ππ

= g
ρ±ππ

.12Using the data of BARKOV 85 in the hidden lo
al symmetry model.13 From the �t to e+ e− → π+π− data from the 
ompilations of HEYN 81 andBARKOV 85, in
luding the GOUNARIS 68 parametrization of the pion form fa
tor.14A �t of BARKOV 85 data assuming the dire
t ωππ 
oupling.15Applying the S-matrix formalism to the BARKOV 85 data.16 In
ludes BARKOV 85 data. Model-dependent width de�nition.17 ∣

∣Fπ(0)∣∣2 �xed to 1.18 From the GOUNARIS 68 parametrization of the pion form fa
tor.19The error 
ombines statisti
al and systemati
 un
ertainties. Supersedes BARATE 97M.20 ρ(1700) mass and width �xed at 1700 MeV and 235 MeV respe
tively.21 From the GOUNARIS 68 parametrization of the pion form fa
tor. The se
ond error is amodel error taking into a

ount di�erent parametrizations of the pion form fa
tor.22Using the data of BARATE 97M and the e�e
tive 
hiral Lagrangian.23 From a �t of the model-independent parameterization of the pion form fa
tor to the dataof BARATE 97M.24Assuming the equality of ρ+ and ρ− masses and widths.25Mass errors enlarged by us to �/√N; see the note with the K∗(892) mass.26Phase shift analysis. Systemati
 errors added 
orresponding to spread of di�erent �ts.27 From �t of 3-parameter relativisti
 P-wave Breit-Wigner to total mass distribution. In-
ludes BATON 68, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGO-PIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65 and CARMONY 64.28Using the KUHN 90 parametrization of the pion form fa
tor, negle
ting ρ−ω interferen
e.29 From the parametrization a

ording to SOEDING 66.30From the parametrization a

ording to ROSS 66.31HEYN 81 in
ludes all spa
elike and timelike Fπ values until 1978.32 From pole extrapolation.33 From phase shift analysis of GRAYER 74 data.34 In
ludes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66,WEST 66, GOLDHABER 64, ABOLINS 63.35Breit-Wigner mass from a phase-shift analysis of HYAMS 73 and PROTOPOPESCU 73data.36Using relativisti
 Breit-Wigner and taking into a

ount ρ-ω interferen
e.37 Systemati
 errors not evaluated.38 Systemati
 e�e
ts not studied.39 From �t of 3-parameter relativisti
 Breit-Wigner to heli
ity-zero part of P-wave intensity.CHABAUD 83 in
ludes data of GRAYER 74.mρ(770)0 − mρ(770)±mρ(770)0 − mρ(770)±mρ(770)0 − mρ(770)±mρ(770)0 − mρ(770)±VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
−0.7±0.8 OUR AVERAGE−0.7±0.8 OUR AVERAGE−0.7±0.8 OUR AVERAGE−0.7±0.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.
−2.4±0.8 40 SCHAEL 05C ALEP τ− → π−π0 ντ0.4±0.7±0.6 1.98M 41 ALOISIO 03 KLOE 1.02 e+ e− →

π+π−π01.3±1.1±2.0 500k 41 ACHASOV 02 SND 1.02 e+ e− →
π+π−π01.6±0.6±1.7 600k ABELE 99E CBAR 0± 0.0 p p →
π+π−π0

−4 ±4 3000 42 REYNOLDS 69 HBC −0 2.26 π− p
−5 ±5 3600 42 FOSTER 68 HBC ±0 0.0 p p2.4±2.1 22950 43 PISUT 68 RVUE πN → ρN

40From the 
ombined �t of the τ− data from ANDERSON 00A and SCHAEL 05C ande+ e− data from the 
ompilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05.Supersedes BARATE 97M.41Assuming m
ρ+ = m

ρ− , �ρ+ = �
ρ− .42 From quoted masses of 
harged and neutral modes.43 In
ludes MALAMUD 69, ARMENISE 68, BATON 68, BACON 67, HUWE 67,MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JA-COBS 66B, JAMES 66, WEST 66, BLIEDEN 65, CARMONY 64, GOLDHABER 64,ABOLINS 63.

WEIGHTED AVERAGE
-0.7±0.8 (Error scaled by 1.5)

PISUT 68 RVUE 2.2
FOSTER 68 HBC
REYNOLDS 69 HBC 0.7
ABELE 99E CBAR 1.6
ACHASOV 02 SND 0.8
ALOISIO 03 KLOE 1.4
SCHAEL 05C ALEP 4.6

χ2

      11.2
(Confidence Level = 0.048)

-15 -10 -5 0 5 10 15m
ρ(770)0 − m

ρ(770)± (MeV)mρ(770)+ − mρ(770)−mρ(770)+ − mρ(770)−mρ(770)+ − mρ(770)−mρ(770)+ − mρ(770)−VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.5±0.8±0.7 1.98M 44 ALOISIO 03 KLOE 1.02 e+ e− → π+π−π044Without limitations on masses and widths.

ρ(770) RANGE PARAMETERρ(770) RANGE PARAMETERρ(770) RANGE PARAMETERρ(770) RANGE PARAMETERThe range parameter R enters an energy-dependent 
orre
tion to thewidth, of the form (1 + q2r R2) / (1 + q2 R2), where q is the mo-mentum of one of the pions in the ππ rest system. At resonan
e, q =qr .VALUE (GeV−1) DOCUMENT ID TECN CHG COMMENT5.3+0.9
−0.75.3+0.9
−0.75.3+0.9
−0.75.3+0.9
−0.7 CHABAUD 83 ASPK 0 17 π− p polar-ized

ρ(770) WIDTHρ(770) WIDTHρ(770) WIDTHρ(770) WIDTHWe no longer list S-wave Breit-Wigner �ts, or data with high 
ombinatorialba
kground.NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e−NEUTRAL ONLY, e+ e−VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT147.8 ±0.9 OUR AVERAGE147.8 ±0.9 OUR AVERAGE147.8 ±0.9 OUR AVERAGE147.8 ±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0. See the ideogram below.149.59±0.67 45 LEES 12G BABR e+ e− → π+π− γ145.98±0.75±0.50 900k 46 AKHMETSHIN 07 e+ e− → π+π−146.1 ±0.8 ±1.5 800k 47,48 ACHASOV 06 SND e+ e− → π+π−143.85±1.33±0.80 114k 49,50 AKHMETSHIN 04 CMD2 e+ e− → π+π−147.3 ±1.5 ±0.7 1.98M 51 ALOISIO 03 KLOE 1.02 e+ e− →
π+π−π0151.1 ±2.6 ±3.0 500k 51 ACHASOV 02 SND 0 1.02 e+ e− →
π+π−π0150.5 ±3.0 52 BARKOV 85 OLYA 0 e+ e− → π+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •143.9 ±1.3 ±1.1 1.98M 53 ALOISIO 03 KLOE 1.02 e+ e− →
π+π−π0147.4 ±1.5 ±0.7 1.98M 54 ALOISIO 03 KLOE 1.02 e+ e− →
π+π−π0149.8 ±2.2 ±2.0 500k 55 ACHASOV 02 SND 1.02 e+ e− →
π+π−π0147.9 ±1.5 ±7.5 56 BENAYOUN 98 RVUE e+ e− → π+π−,
µ+µ−153.5 ±1.3 ±4.6 57 GARDNER 98 RVUE 0.28{0.92 e+ e− →
π+π−145.0 ±1.7 58 O'CONNELL 97 RVUE e+ e− → π+π−142.5 ±3.5 59 BERNICHA 94 RVUE e+ e− → π+π−138 ±1 60 GESHKEN... 89 RVUE e+ e− → π+π−
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ρ(770)

WEIGHTED AVERAGE
147.8±0.9 (Error scaled by 2.0)

BARKOV 85 OLYA 0.8
ACHASOV 02 SND
ALOISIO 03 KLOE 0.1
AKHMETSHIN 04 CMD2 6.4
ACHASOV 06 SND 1.0
AKHMETSHIN 07 3.9
LEES 12G BABR 7.4

χ2

      19.6
(Confidence Level = 0.0015)

140 145 150 155 160 165Neutral only, e+ e−CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e−CHARGED ONLY, τ DECAYS and e+ e−VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT149.1±0.8 OUR FIT149.1±0.8 OUR FIT149.1±0.8 OUR FIT149.1±0.8 OUR FIT149.1±0.8 OUR AVERAGE149.1±0.8 OUR AVERAGE149.1±0.8 OUR AVERAGE149.1±0.8 OUR AVERAGE148.1±0.4±1.7 5.4M 61,62 FUJIKAWA 08 BELL ± τ− → π−π0 ντ149.0±1.2 62,63 SCHAEL 05C ALEP τ− → π−π0 ντ149.9±2.3±2.0 500k 51 ACHASOV 02 SND ± 1.02 e+ e− →
π+π−π0150.4±1.4±1.4 87k 64,65 ANDERSON 00A CLE2 τ− → π−π0 ντ

• • • We do not use the following data for averages, �ts, limits, et
. • • •143.7±1.3±1.2 1.98M 51 ALOISIO 03 KLOE ± 1.02 e+ e− →
π+π−π0142.9±1.3±1.4 1.98M 54 ALOISIO 03 KLOE − 1.02 e+ e− →
π+π−π0144.7±1.4±1.2 1.98M 54 ALOISIO 03 KLOE + 1.02 e+ e− →
π+π−π0150.2±2.0+0.7

−1.6 66 SANZ-CILLERO03 RVUE τ− → π−π0 ντ150.9±2.2±2.0 500k 55 ACHASOV 02 SND 1.02 e+ e− →
π+π−π0MIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONSMIXED CHARGES, OTHER REACTIONSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT149.5±1.3149.5±1.3149.5±1.3149.5±1.3 600k 67 ABELE 99E CBAR 0± 0.0 p p →

π+π−π0CHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT150.2± 2.4 OUR FIT150.2± 2.4 OUR FIT150.2± 2.4 OUR FIT150.2± 2.4 OUR FIT150.2± 2.4 OUR AVERAGE150.2± 2.4 OUR AVERAGE150.2± 2.4 OUR AVERAGE150.2± 2.4 OUR AVERAGE152.8± 4.3 ABELE 97 CBAR pn → π−π0π0155 ±11 2935 68 CAPRARO 87 SPEC − 200 π−Cu →
π−π0Cu154 ±20 967 68 CAPRARO 87 SPEC − 200 π−Pb →
π−π0Pb150 ± 5 HUSTON 86 SPEC + 202 π+A →
π+π0A146 ±12 6500 69 BYERLY 73 OSPK − 5 π− p148.2± 4.1 9650 70 PISUT 68 RVUE − 1.7{3.2 π− p, t <10146 ±13 900 EISNER 67 HBC − 4.2 π− p, t <10NEUTRAL ONLY, PHOTOPRODUCEDNEUTRAL ONLY, PHOTOPRODUCEDNEUTRAL ONLY, PHOTOPRODUCEDNEUTRAL ONLY, PHOTOPRODUCEDVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT151.7± 2.6 OUR AVERAGE151.7± 2.6 OUR AVERAGE151.7± 2.6 OUR AVERAGE151.7± 2.6 OUR AVERAGE155 ± 5 ± 2 63.5k 71 ABRAMOWICZ12 ZEUS e p → eπ+π− p146 ± 3 ±13 79k 72 BREITWEG 98B ZEUS 50{100 γ p150.9± 3.0 BARTALUCCI 78 CNTR γ p → e+ e− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •138 ± 3 79k 73 BREITWEG 98B ZEUS 50{100 γ p147 ±11 GLADDING 73 CNTR 2.9{4.7 γ p155 ±12 2430 BALLAM 72 HBC 4.7 γ p145 ±13 1930 BALLAM 72 HBC 2.8 γ p140 ± 5 ALVENSLEB... 70 CNTR γA, t <0.01146.1± 2.9 140k BIGGS 70 CNTR <4.1 γC → π+π−C160 ±10 LANZEROTTI 68 CNTR γ p130 ± 5 4000 ASBURY 67B CNTR γ + PbNEUTRAL ONLY, OTHER REACTIONSNEUTRAL ONLY, OTHER REACTIONSNEUTRAL ONLY, OTHER REACTIONSNEUTRAL ONLY, OTHER REACTIONSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT150.9± 1.7 OUR AVERAGE150.9± 1.7 OUR AVERAGE150.9± 1.7 OUR AVERAGE150.9± 1.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.122 ±20 BERTIN 97C OBLX 0.0 p p → π+π−π0145.7± 5.3 WEIDENAUER 93 ASTE pp → π+π−ω144.9± 3.7 DUBNICKA 89 RVUE π form fa
tor148 ± 6 74,75 BOHACIK 80 RVUE 0152 ± 9 69 WICKLUND 78 ASPK 0 3,4,6 π± pN154 ± 2 76000 DEUTSCH... 76 HBC 0 16 π+ p157 ± 8 6800 RATCLIFF 72 ASPK 0 15 π− p, t <0.3143 ± 8 1700 REYNOLDS 69 HBC 0 2.26 π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •147.0± 2.5 600k 76 ABELE 99E CBAR 0 0.0 p p → π+π−π0146 ± 3 4943 77 ADAMS 97 E665 470 µp → µXB160.0+ 4.1
− 4.0 78 CHABAUD 83 ASPK 0 17 π− p polarized155 ± 1 79 HEYN 81 RVUE 0 π form fa
tor148.0± 1.3 74,75 LANG 79 RVUE 0146 ±14 4100 ENGLER 74 DBC 0 6 π+ n → π+π− p143 ±13 75 ESTABROOKS 74 RVUE 0 17 π− p → π+π− n160 ±10 32000 74 PROTOPOP... 73 HBC 0 7.1 π+ p, t <0.4145 ±12 2250 68 HYAMS 68 OSPK 0 11.2 π− p163 ±15 13300 80 PISUT 68 RVUE 0 1.7{3.2 π− p, t <1045Using the GOUNARIS 68 parametrization with the 
omplex phase of the ρ−ω interferen
eand leaving the masses and widths of the ρ(1450), ρ(1700), and ρ(2150) resonan
es asfree parameters of the �t.46A 
ombined �t of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05.47 Supersedes ACHASOV 05A.48A �t of the SND data from 400 to 1000 MeV using parameters of the ρ(1450) and

ρ(1700) from a �t of the data of BARKOV 85, BISELLO 89 and ANDERSON 00A.49Using the GOUNARIS 68 parametrization with the 
omplex phase of the ρ-ω interferen
e.50 From a �t in the energy range 0.61 to 0.96 GeV. Update of AKHMETSHIN 02.51Assuming m
ρ+ = m

ρ− , �ρ+ = �
ρ− .52 From the GOUNARIS 68 parametrization of the pion form fa
tor.53Assuming m

ρ+ = m
ρ− = m

ρ0 , �ρ+ = �
ρ− = �

ρ0 .54Without limitations on masses and widths.55Assuming m
ρ0 = m

ρ± , gρ0ππ
= g

ρ±ππ
.56Using the data of BARKOV 85 in the hidden lo
al symmetry model.57 From the �t to e+ e− → π+π− data from the 
ompilations of HEYN 81 andBARKOV 85, in
luding the GOUNARIS 68 parametrization of the pion form fa
tor.58A �t of BARKOV 85 data assuming the dire
t ωππ 
oupling.59Applying the S-matrix formalism to the BARKOV 85 data.60 In
ludes BARKOV 85 data. Model-dependent width de�nition.61 ∣

∣Fπ(0)∣∣2 �xed to 1.62 From the GOUNARIS 68 parametrization of the pion form fa
tor.63The error 
ombines statisti
al and systemati
 un
ertainties. Supersedes BARATE 97M.64 ρ(1700) mass and width �xed at 1700 MeV and 235 MeV respe
tively.65 From the GOUNARIS 68 parametrization of the pion form fa
tor. The se
ond error is amodel error taking into a

ount di�erent parametrizations of the pion form fa
tor.66Using the data of BARATE 97M and the e�e
tive 
hiral Lagrangian.67Assuming the equality of ρ+ and ρ− masses and widths.68Width errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.69Phase shift analysis. Systemati
 errors added 
orresponding to spread of di�erent �ts.70 From �t of 3-parameter relativisti
 P-wave Breit-Wigner to total mass distribution. In-
ludes BATON 68, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGO-PIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65 and CARMONY 64.71Using the KUHN 90 parametrization of the pion form fa
tor, negle
ting ρ−ω interferen
e.72 From the parametrization a

ording to SOEDING 66.73From the parametrization a

ording to ROSS 66.74 From pole extrapolation.75 From phase shift analysis of GRAYER 74 data.76Using relativisti
 Breit-Wigner and taking into a

ount ρ-ω interferen
e.77 Systemati
 errors not evaluated.78 From �t of 3-parameter relativisti
 Breit-Wigner to heli
ity-zero part of P-wave intensity.CHABAUD 83 in
ludes data of GRAYER 74.79HEYN 81 in
ludes all spa
elike and timelike Fπ values until 1978.80 In
ludes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66,WEST 66, GOLDHABER 64, ABOLINS 63.�ρ(770)0 − �ρ(770)±�ρ(770)0 − �ρ(770)±�ρ(770)0 − �ρ(770)±�ρ(770)0 − �ρ(770)±VALUE EVTS DOCUMENT ID TECN COMMENT0.3±1.3 OUR AVERAGE0.3±1.3 OUR AVERAGE0.3±1.3 OUR AVERAGE0.3±1.3 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.
−0.2±1.0 81 SCHAEL 05C ALEP τ− → π−π0 ντ3.6±1.8±1.7 1.98M 82 ALOISIO 03 KLOE 1.02 e+ e− →

π+π−π0�ρ(770)+ − �ρ(770)−�ρ(770)+ − �ρ(770)−�ρ(770)+ − �ρ(770)−�ρ(770)+ − �ρ(770)−VALUE EVTS DOCUMENT ID TECN COMMENT1.8±2.0±0.51.8±2.0±0.51.8±2.0±0.51.8±2.0±0.5 1.98M 83 ALOISIO 03 KLOE 1.02 e+ e− →
π+π−π081From the 
ombined �t of the τ− data from ANDERSON 00A and SCHAEL 05C ande+ e− data from the 
ompilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05.Supersedes BARATE 97M.82Assuming m

ρ+ = m
ρ− , �ρ+ = �

ρ− .83Without limitations on masses and widths.
ρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 ππ ∼ 100 %

ρ(770)± de
aysρ(770)± de
aysρ(770)± de
aysρ(770)± de
ays�2 π±π0 ∼ 100 %�3 π± γ ( 4.5 ±0.5 )× 10−4 S=2.2�4 π± η < 6 × 10−3 CL=84%�5 π±π+π−π0 < 2.0 × 10−3 CL=84%
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ρ(770)0 de
aysρ(770)0 de
aysρ(770)0 de
aysρ(770)0 de
ays�6 π+π− ∼ 100 %�7 π+π−γ ( 9.9 ±1.6 )× 10−3�8 π0 γ ( 6.0 ±0.8 )× 10−4�9 ηγ ( 3.00±0.20 )× 10−4�10 π0π0 γ ( 4.5 ±0.8 )× 10−5�11 µ+µ− [a℄ ( 4.55±0.28 )× 10−5�12 e+ e− [a℄ ( 4.72±0.05 )× 10−5�13 π+π−π0 ( 1.01+0.54
−0.36±0.34)× 10−4�14 π+π−π+π− ( 1.8 ±0.9 )× 10−5�15 π+π−π0π0 ( 1.6 ±0.8 )× 10−5�16 π0 e+ e− < 1.2 × 10−5 CL=90%�17 ηe+ e−[a℄ The ωρ interferen
e is then due to ωρ mixing only, and is expe
ted tobe small. If eµ universality holds, �(ρ0 → µ+µ−) = �(ρ0 → e+ e−)

× 0.99785. CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the total width and a partial width uses 10 mea-surements and one 
onstraint to determine 3 parameters. Theoverall �t has a χ2 = 10.7 for 8 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x3 −100� 15 −15x2 x3Mode Rate (MeV) S
ale fa
tor�2 π±π0 150.2 ±2.4�3 π± γ 0.068±0.007 2.3CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the total width, a partial width, and 7 bran
hingratios uses 21 measurements and one 
onstraint to determine 9parameters. The overall �t has a χ2 = 6.0 for 13 degrees offreedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x7 −100x8 −5 0x9 −1 0 1x10 −1 0 0 0x11 2 −3 0 0 0x12 0 0 −8 −9 0 0x14 −1 0 0 0 0 0 0� 0 0 4 5 0 0 −54 0x6 x7 x8 x9 x10 x11 x12 x14Mode Rate (MeV)�6 π+π− 147.5 ±0.9�7 π+π−γ 1.48 ±0.24�8 π0 γ 0.089 ±0.012�9 ηγ 0.0447 ±0.0031�10 π0π0 γ 0.0066 ±0.0012�11 µ+µ− [a℄ 0.0068 ±0.0004�12 e+ e− [a℄ 0.00704±0.00006�14 π+π−π+π− 0.0027 ±0.0014
ρ(770) PARTIAL WIDTHSρ(770) PARTIAL WIDTHSρ(770) PARTIAL WIDTHSρ(770) PARTIAL WIDTHS�(π± γ

) �3�(π± γ
) �3�(π± γ
) �3�(π± γ
) �3VALUE (keV) DOCUMENT ID TECN CHG COMMENT68 ±7 OUR FIT68 ±7 OUR FIT68 ±7 OUR FIT68 ±7 OUR FIT Error in
ludes s
ale fa
tor of 2.3.68 ±7 OUR AVERAGE68 ±7 OUR AVERAGE68 ±7 OUR AVERAGE68 ±7 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2. See the ideogram below.81 ±4 ±4 CAPRARO 87 SPEC − 200 π−A → π−π0A59.8±4.0 HUSTON 86 SPEC + 202 π+A → π+π0A71 ±7 JENSEN 83 SPEC − 156{260 π−A → π−π0A

WEIGHTED AVERAGE
68±7 (Error scaled by 2.2)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

JENSEN 83 SPEC 0.2
HUSTON 86 SPEC 3.8
CAPRARO 87 SPEC 5.6

χ2

       9.6
(Confidence Level = 0.0080)

40 50 60 70 80 90 100 110�(

π±γ
) (keV)�(e+ e−) �12�(e+ e−) �12�(e+ e−) �12�(e+ e−) �12VALUE (keV) EVTS DOCUMENT ID TECN COMMENT7.04 ±0.06 OUR FIT7.04 ±0.06 OUR FIT7.04 ±0.06 OUR FIT7.04 ±0.06 OUR FIT7.04 ±0.06 OUR AVERAGE7.04 ±0.06 OUR AVERAGE7.04 ±0.06 OUR AVERAGE7.04 ±0.06 OUR AVERAGE7.048±0.057±0.050 900k 84 AKHMETSHIN 07 e+ e− → π+π−7.06 ±0.11 ±0.05 114k 85,86 AKHMETSHIN 04 CMD2 e+ e− → π+π−6.77 ±0.10 ±0.30 BARKOV 85 OLYA e+ e− → π+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •7.12 ±0.02 ±0.11 800k 87 ACHASOV 06 SND e+ e− → π+π−6.3 ±0.1 88 BENAYOUN 98 RVUE e+ e− → π+π−,
µ+µ−�(π0 γ

) �8�(π0 γ
) �8�(π0 γ
) �8�(π0 γ
) �8VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •77±17±11 36500 89 ACHASOV 03 SND 0.60{0.97 e+ e− →
π0 γ121±31 DOLINSKY 89 ND e+ e− → π0 γ�(ηγ

) �9�(ηγ
) �9�(ηγ
) �9�(ηγ
) �9VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •62±17 90 DOLINSKY 89 ND e+ e− → ηγ�(π+π−π+π−) �14�(π+π−π+π−) �14�(π+π−π+π−) �14�(π+π−π+π−) �14VALUE (keV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.8±1.4±0.5 153 AKHMETSHIN 00 CMD2 0.6{0.97 e+ e− →

π+π−π+π−84A 
ombined �t of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05.85Using the GOUNARIS 68 parametrization with the 
omplex phase of the ρ-ω interferen
e.86 From a �t in the energy range 0.61 to 0.96 GeV. Update of AKHMETSHIN 02.87 Supersedes ACHASOV 05A.88Using the data of BARKOV 85 in the hidden lo
al symmetry model.89Using �total= 147.9 ± 1.3 MeV and B(ρ → π0 γ) from ACHASOV 03.90 Solution 
orresponding to 
onstru
tive ω-ρ interferen
e.
ρ(770) �(e+ e−)�(i)/�2(total)ρ(770) �(e+ e−)�(i)/�2(total)ρ(770) �(e+ e−)�(i)/�2(total)ρ(770) �(e+ e−)�(i)/�2(total)�(e+ e−)/�total × �(

π+π−)/�total �12/�× �6/��(e+ e−)/�total × �(

π+π−)/�total �12/�× �6/��(e+ e−)/�total × �(

π+π−)/�total �12/�× �6/��(e+ e−)/�total × �(

π+π−)/�total �12/�× �6/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT4.876±0.023±0.0644.876±0.023±0.0644.876±0.023±0.0644.876±0.023±0.064 800k 91,92 ACHASOV 06 SND e+ e− → π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.72 ±0.02 93 BENAYOUN 10 RVUE 0.4{1.05 e+ e−91Supersedes ACHASOV 05A.92A �t of the SND data from 400 to 1000 MeV using parameters of the ρ(1450) and

ρ(1700) from a �t of the data of BARKOV 85, BISELLO 89 and ANDERSON 00A.93A simultaneous �t of e+ e− → π+π−, π+π−π0, π0 γ, ηγ data.�(e+ e−)/�total × �(

ηγ
)/�total �12/�× �9/��(e+ e−)/�total × �(

ηγ
)/�total �12/�× �9/��(e+ e−)/�total × �(

ηγ
)/�total �12/�× �9/��(e+ e−)/�total × �(

ηγ
)/�total �12/�× �9/�VALUE (units 10−8) EVTS DOCUMENT ID TECN COMMENT1.42±0.10 OUR FIT1.42±0.10 OUR FIT1.42±0.10 OUR FIT1.42±0.10 OUR FIT1.45±0.12 OUR AVERAGE1.45±0.12 OUR AVERAGE1.45±0.12 OUR AVERAGE1.45±0.12 OUR AVERAGE1.32±0.14±0.08 33k 94 ACHASOV 07B SND 0.6{1.38 e+ e− → ηγ1.50±0.65±0.09 17.4k 95 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → ηγ1.61±0.20±0.11 23k 96,97 AKHMETSHIN 01B CMD2 e+ e− → ηγ1.85±0.49 98 DOLINSKY 89 ND e+ e− → ηγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.05±0.02 99 BENAYOUN 10 RVUE 0.4{1.05 e+ e−
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ρ(770)94From a 
ombined �t of σ(e+ e− → ηγ) with η → 3π0 and η → π+π−π0, and�xing B(η → 3π0) / B(η → π+π−π0) = 1.44 ± 0.04. Re
al
ulated by us from the
ross se
tion at the peak. Supersedes ACHASOV 00D and ACHASOV 06A.95 From the η → 2γ de
ay and using B(η → γ γ)= 39.43 ± 0.26%.96From the η → 3π0 de
ay and using B(η → 3π0)= (32.24 ± 0.29) × 10−2.97The 
ombined �t from 600 to 1380 MeV taking into a

ount ρ(770), ω(782), φ(1020),and ρ(1450) (mass and width �xed at 1450 MeV and 310 MeV respe
tively).98Re
al
ulated by us from the 
ross se
tion in the peak.99A simultaneous �t of e+ e− → π+π−, π+π−π0, π0 γ, ηγ data.�(e+ e−)/�total × �(π0 γ

)/�total �12/�× �8/��(e+ e−)/�total × �(π0 γ
)/�total �12/�× �8/��(e+ e−)/�total × �(π0 γ
)/�total �12/�× �8/��(e+ e−)/�total × �(π0 γ
)/�total �12/�× �8/�VALUE (units 10−8) EVTS DOCUMENT ID TECN COMMENT2.8 ±0.4 OUR FIT2.8 ±0.4 OUR FIT2.8 ±0.4 OUR FIT2.8 ±0.4 OUR FIT2.8 ±0.4 OUR AVERAGE2.8 ±0.4 OUR AVERAGE2.8 ±0.4 OUR AVERAGE2.8 ±0.4 OUR AVERAGE2.90 +0.60

−0.55 ±0.18 18680 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− →
π0 γ2.37 ±0.53 ±0.33 36500 100 ACHASOV 03 SND 0.60{0.97 e+ e− →
π0 γ3.61 ±0.74 ±0.49 10625 101 DOLINSKY 89 ND e+ e− → π0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.875±0.026 102 BENAYOUN 10 RVUE 0.4{1.05 e+ e−100Using σ
φ →π0 γ

from ACHASOV 00 and mρ= 775.97 MeV in the model with theenergy-independent phase of ρ-ω interferen
e equal to (−10.2 ± 7.0)◦.101Re
al
ulated by us from the 
ross se
tion in the peak.102A simultaneous �t of e+ e− → π+π−, π+π−π0, π0 γ, ηγ data.�(e+ e−)/�total × �(π+π−π0)/�total �12/�× �13/��(e+ e−)/�total × �(π+π−π0)/�total �12/�× �13/��(e+ e−)/�total × �(π+π−π0)/�total �12/�× �13/��(e+ e−)/�total × �(π+π−π0)/�total �12/�× �13/�VALUE (units 10−9) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.903±0.076 103 BENAYOUN 10 RVUE 0.4{1.05 e+ e−4.58 +2.46

−1.64 ±1.56 1.2M 104 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π0103A simultaneous �t of e+ e− → π+π−, π+π−π0, π0 γ, ηγ data.104 Statisti
al signi�
an
e is less than 3 σ.

ρ(770) BRANCHING RATIOSρ(770) BRANCHING RATIOSρ(770) BRANCHING RATIOSρ(770) BRANCHING RATIOS�(π± η
)/�(ππ

) �4/�1�(π± η
)/�(ππ

) �4/�1�(π± η
)/�(ππ

) �4/�1�(π± η
)/�(ππ

) �4/�1VALUE (units 10−4) CL% DOCUMENT ID TECN CHG COMMENT
<60<60<60<60 84 FERBEL 66 HBC ± π± p above 2.5�(π±π+π−π0)/�(ππ

) �5/�1�(π±π+π−π0)/�(ππ
) �5/�1�(π±π+π−π0)/�(ππ
) �5/�1�(π±π+π−π0)/�(ππ
) �5/�1VALUE (units 10−4) CL% DOCUMENT ID TECN CHG COMMENT

<20<20<20<20 84 FERBEL 66 HBC ± π± p above 2.5
• • • We do not use the following data for averages, �ts, limits, et
. • • •35±40 JAMES 66 HBC + 2.1 π+ p�(µ+µ−)/�(π+π−) �11/�6�(µ+µ−)/�(π+π−) �11/�6�(µ+µ−)/�(π+π−) �11/�6�(µ+µ−)/�(π+π−) �11/�6VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.60±0.28 OUR FIT4.60±0.28 OUR FIT4.60±0.28 OUR FIT4.60±0.28 OUR FIT4.6 ±0.2 ±0.24.6 ±0.2 ±0.24.6 ±0.2 ±0.24.6 ±0.2 ±0.2 ANTIPOV 89 SIGM π−Cu →

µ+µ−π−Cu
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.2 +1.6

−3.6 105 ROTHWELL 69 CNTR Photoprodu
tion5.6 ±1.5 106 WEHMANN 69 OSPK 12 π−C, Fe9.7 +3.1
−3.3 107 HYAMS 67 OSPK 11 π−Li, H�(e+ e−)/�(ππ

) �12/�1�(e+ e−)/�(ππ
) �12/�1�(e+ e−)/�(ππ
) �12/�1�(e+ e−)/�(ππ
) �12/�1VALUE (units 10−4) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.40±0.05 108 BENAKSAS 72 OSPK e+ e− → π+π−�(ηγ
)/�total �9/��(ηγ
)/�total �9/��(ηγ
)/�total �9/��(ηγ
)/�total �9/�VALUE (units 10−4) EVTS DOCUMENT ID TECN CHG COMMENT3.00±0.21 OUR FIT3.00±0.21 OUR FIT3.00±0.21 OUR FIT3.00±0.21 OUR FIT2.90±0.32 OUR AVERAGE2.90±0.32 OUR AVERAGE2.90±0.32 OUR AVERAGE2.90±0.32 OUR AVERAGE2.79±0.34±0.03 33k 109 ACHASOV 07B SND 0.6{1.38 e+ e− → ηγ3.6 ±0.9 110 ANDREWS 77 CNTR 0 6.7{10 γCu

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.21±1.39±0.20 17.4k111,112 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → ηγ3.39±0.42±0.23 110,113,114 AKHMETSHIN 01B CMD2 e+ e− → ηγ1.9 +0.6
−0.8 115 BENAYOUN 96 RVUE 0.54-1.04 e+ e− → ηγ4.0 ±1.1 110,112 DOLINSKY 89 ND e+ e− → ηγ�(π+π−π+π−)/�total �14/��(π+π−π+π−)/�total �14/��(π+π−π+π−)/�total �14/��(π+π−π+π−)/�total �14/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT1.8±0.9 OUR FIT1.8±0.9 OUR FIT1.8±0.9 OUR FIT1.8±0.9 OUR FIT1.8±0.9±0.31.8±0.9±0.31.8±0.9±0.31.8±0.9±0.3 153 AKHMETSHIN 00 CMD2 0.6{0.97 e+ e− →

π+π−π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<20 90 KURDADZE 88 OLYA e+ e− →

π+π−π+π−

�(π+π−π+π−)/�(ππ
) �14/�1�(π+π−π+π−)/�(ππ
) �14/�1�(π+π−π+π−)/�(ππ
) �14/�1�(π+π−π+π−)/�(ππ
) �14/�1VALUE (units 10−4) CL% DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<15 90 ERBE 69 HBC 0 2.5{5.8 γ p
<20 CHUNG 68 HBC 0 3.2,4.2 π− p
<20 90 HUSON 68 HLBC 0 16.0 π− p
<80 JAMES 66 HBC 0 2.1 π+ p�(π+π−π0)/�total �13/��(π+π−π0)/�total �13/��(π+π−π0)/�total �13/��(π+π−π0)/�total �13/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.01+0.54

−0.36±0.34 1.2M 116 ACHASOV 03D RVUE 0.44{2.00e+ e− →
π+π−π0

<1.2 90 VASSERMAN 88B ND e+ e− →
π+π−π0�(π+π−π0)/�(ππ

) �13/�1�(π+π−π0)/�(ππ
) �13/�1�(π+π−π0)/�(ππ
) �13/�1�(π+π−π0)/�(ππ
) �13/�1VALUE CL% DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 0.01 BRAMON 86 RVUE 0 J/ψ → ωπ0
<0.01 84 117 ABRAMS 71 HBC 0 3.7 π+ p�(π+π−π0π0)/�total �15/��(π+π−π0π0)/�total �15/��(π+π−π0π0)/�total �15/��(π+π−π0π0)/�total �15/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT1.60±0.74±0.181.60±0.74±0.181.60±0.74±0.181.60±0.74±0.18 118 ACHASOV 09A SND e+ e− → π+π−π0π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 4 90 AULCHENKO 87C ND e+ e− → π+π−π0π0
<20 90 KURDADZE 86 OLYA e+ e− → π+π−π0π0�(π+π−γ

)/�total �7/��(π+π−γ
)/�total �7/��(π+π−γ
)/�total �7/��(π+π−γ
)/�total �7/�VALUE CL% DOCUMENT ID TECN COMMENT0.0099±0.0016 OUR FIT0.0099±0.0016 OUR FIT0.0099±0.0016 OUR FIT0.0099±0.0016 OUR FIT0.0099±0.00160.0099±0.00160.0099±0.00160.0099±0.0016 119 DOLINSKY 91 ND e+ e− → π+π− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0111±0.0014 120 VASSERMAN 88 ND e+ e− → π+π− γ

<0.005 90 121 VASSERMAN 88 ND e+ e− → π+π− γ�(π0 γ
)/�total �8/��(π0 γ
)/�total �8/��(π0 γ
)/�total �8/��(π0 γ
)/�total �8/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.21+1.28
−1.18±0.39 18680122,123 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− →

π0 γ5.22±1.17±0.75 36500123,124 ACHASOV 03 SND 0.60{0.97 e+ e− →
π0 γ6.8 ±1.7 125 BENAYOUN 96 RVUE 0.54-1.04 e+ e− →
π0 γ7.9 ±2.0 123 DOLINSKY 89 ND e+ e− → π0 γ�(π0 e+ e−)/�total �16/��(π0 e+ e−)/�total �16/��(π0 e+ e−)/�total �16/��(π0 e+ e−)/�total �16/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<1.2<1.2<1.2<1.2 90 ACHASOV 08 SND 0.36{0.97 e+ e− → π0 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.6 AKHMETSHIN 05A CMD2 0.72-0.84 e+ e−�(ηe+ e−)/�total �17/��(ηe+ e−)/�total �17/��(ηe+ e−)/�total �17/��(ηe+ e−)/�total �17/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.7 AKHMETSHIN 05A CMD2 0.72-0.84 e+ e−�(π0π0 γ
)/�total �10/��(π0π0 γ
)/�total �10/��(π0π0 γ
)/�total �10/��(π0π0 γ
)/�total �10/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT4.5±0.8 OUR FIT4.5±0.8 OUR FIT4.5±0.8 OUR FIT4.5±0.8 OUR FIT4.5+0.9

−0.8 OUR AVERAGE4.5+0.9
−0.8 OUR AVERAGE4.5+0.9
−0.8 OUR AVERAGE4.5+0.9
−0.8 OUR AVERAGE5.2+1.5
−1.3±0.6 190 126 AKHMETSHIN 04B CMD2 0.6{0.97 e+ e− →

π0π0 γ4.1+1.0
−0.9±0.3 295 127 ACHASOV 02F SND 0.36{0.97 e+ e− →

π0π0 γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.8+3.4

−1.8±0.5 63 128 ACHASOV 00G SND e+ e− → π0π0 γ105Possibly large ρ-ω interferen
e leads us to in
rease the minus error.106Result 
ontains 11 ± 11% 
orre
tion using SU(3) for 
entral value. The error on the
orre
tion takes a

ount of possible ρ-ω interferen
e and the upper limit agrees with theupper limit of ω → µ+µ− from this experiment.107HYAMS 67's mass resolution is 20 MeV. The ω region was ex
luded.108The ρ′ 
ontribution is not taken into a

ount.109ACHASOV 07B reports [�(

ρ(770) → ηγ
)/�total℄ × [B(ρ(770) → e+ e−)℄ =(1.32 ± 0.14 ± 0.08) × 10−8 whi
h we divide by our best value B(ρ(770) → e+ e−)= (4.72 ± 0.05) × 10−5. Our �rst error is their experiment's error and our se
ond



876876876876Meson Parti
le Listings
ρ(770), ω(782)error is the systemati
 error from using our best value. Supersedes ACHASOV 00D andACHASOV 06A.110 Solution 
orresponding to 
onstru
tive ω-ρ interferen
e.111Using B(ρ → e+ e−) = (4.67 ± 0.09) × 10−5 and B(η → γ γ) = 39.43 ± 0.26%.112Not independent of the 
orresponding �(e+ e−)× �(ηγ)/�2total .113The 
ombined �t from 600 to 1380 MeV taking into a

ount ρ(770), ω(782), φ(1020),and ρ(1450) (mass and width �xed at 1450 MeV and 310 MeV respe
tively).114Using B(ρ → e+ e−) = (4.75 ± 0.10) × 10−5 from AKHMETSHIN 02 and B(η →3π0) = (32.24 ± 0.29) × 10−2.115Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 taking into a

ounta triangle anomaly 
ontribution. Constru
tive ρ-ω interferen
e solution.116 Statisti
al signi�
an
e is less than 3σ.117Model dependent, assumes I = 1, 2, or 3 for the 3π system.118Assuming no interferen
e between the ρ and ω 
ontributions.119Bremsstrahlung from a de
ay pion and for photon energy above 50 MeV.120Superseded by DOLINSKY 91.121 Stru
ture radiation due to quark rearrangement in the de
ay.122Using B(ρ → e+ e−) = (4.67 ± 0.09) × 10−5.123Not independent of the 
orresponding �(e+ e−)× �(π0 γ)/�2total .124Using B(ρ → e+ e−) = (4.54 ± 0.10) × 10−5.125Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 taking into a

ounta triangle anomaly 
ontribution.126This bran
hing ratio in
ludes the 
onventional VMD me
hanism ρ → ωπ0, ω → π0 γ,and the new de
ay mode ρ → f0(500)γ, f0(500) → π0π0 with a bran
hing ratio(2.0+1.1

−0.9 ± 0.3)× 10−5 di�ering from zero by 2.0 standard deviations.127This bran
hing ratio in
ludes the 
onventional VMD me
hanism ρ → ωπ0, ω → π0 γand the new de
ay mode ρ → f0(500)γ, f0(500) → π0π0 with a bran
hing ratio(1.9+0.9
−0.8 ± 0.4) × 10−5 di�ering from zero by 2.4 standard deviations. SupersedesACHASOV 00G.128 Superseded by ACHASOV 02F.
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on et al. (BNL)EISNER 67 PR 164 1699 R.L. Eisner et al. (PURD)HUWE 67 PL 24B 252 D.O. Huwe et al. (COLU)HYAMS 67 PL 24B 634 B.D. Hyams et al. (CERN, MPIM)MILLER 67B PR 153 1423 D.H. Miller et al. (PURD)ALFF-... 66 PR 145 1072 C. Al�-Steinberger et al. (COLU, RUTG)FERBEL 66 PL 21 111 T. Ferbel (ROCH)HAGOPIAN 66 PR 145 1128 V. Hagopian et al. (PENN, SACL)HAGOPIAN 66B PR 152 1183 V. Hagopian, Y.L. Pan (PENN, LRL)JACOBS 66B UCRL 16877 L.D. Ja
obs (LRL)JAMES 66 PR 142 896 F.E. James, H.L. Kraybill (YALE, BNL)ROSS 66 PR 149 1172 M. Ross, L. StodolskySOEDING 66 PL B19 702 P. SoedingWEST 66 PR 149 1089 E. West et al. (WISC)BLIEDEN 65 PL 19 444 H.R. Blieden et al. (CERN MMS Collab.)CARMONY 64 PRL 12 254 D.D. Carmony et al. (UCB)GOLDHABER 64 PRL 12 336 G. Goldhaber et al. (LRL, UCB)ABOLINS 63 PRL 11 381 M.A. Abolins et al. (UCSD)
ω(782) IG (JPC ) = 0−(1−−)

ω(782) MASSω(782) MASSω(782) MASSω(782) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT782.65±0.12 OUR AVERAGE782.65±0.12 OUR AVERAGE782.65±0.12 OUR AVERAGE782.65±0.12 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.783.20±0.13±0.16 18680 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− →
π0 γ782.68±0.09±0.04 11200 1 AKHMETSHIN 04 CMD2 e+ e− → π+π−π0782.79±0.08±0.09 1.2M 2 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π0782.7 ±0.1 ±1.5 19500 WURZINGER 95 SPEC 1.33 pd → 3Heω781.96±0.17±0.80 11k 3 AMSLER 94C CBAR 0.0 p p → ωηπ0782.08±0.36±0.82 3463 4 AMSLER 94C CBAR 0.0 p p → ωηπ0781.96±0.13±0.17 15k AMSLER 93B CBAR 0.0 p p → ωπ0π0782.4 ±0.2 270k WEIDENAUER 93 ASTE pp → 2π+2π−π0782.2 ±0.4 1488 KURDADZE 83B OLYA e+ e− → π+π−π0782.4 ±0.5 7000 5 KEYNE 76 CNTR π− p → ωn

• • • We do not use the following data for averages, �ts, limits, et
. • • •781.91±0.24 6 LEES 12G BABR e+ e− → π+π− γ781.78±0.10 7 BARKOV 87 CMD e+ e− → π+π−π0783.3 ±0.4 433 CORDIER 80 DM1 e+ e− → π+π−π0782.5 ±0.8 33260 ROOS 80 RVUE 0.0{3.6 pp782.6 ±0.8 3000 BENKHEIRI 79 OMEG 9{12 π± p781.8 ±0.6 1430 COOPER 78B HBC 0.7{0.8 pp → 5π782.7 ±0.9 535 VANAPEL... 78 HBC 7.2 p p → p pω783.5 ±0.8 2100 GESSAROLI 77 HBC 11 π− p → ωn782.5 ±0.8 418 AGUILAR-... 72B HBC 3.9,4.6 K− p783.4 ±1.0 248 BIZZARRI 71 HBC 0.0 pp → K+K−ω781.0 ±0.6 510 BIZZARRI 71 HBC 0.0 pp → K1K1ω783.7 ±1.0 3583 8 COYNE 71 HBC 3.7 π+ p →pπ+π+π−π0784.1 ±1.2 750 ABRAMOVI... 70 HBC 3.9 π− p783.2 ±1.6 9 BIGGS 70B CNTR <4.1 γC → π+π−C782.4 ±0.5 2400 BIZZARRI 69 HBC 0.0 p p1Update of AKHMETSHIN 00C.2 From the 
ombined �t of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, andACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− �nal states.Supersedes ACHASOV 99E and ACHASOV 02E.3 From the η → γ γ de
ay.4 From the η → 3π0 de
ay.



877877877877See key on page 601 Meson Parti
le Listings
ω(782)5Observed by threshold-
rossing te
hnique. Mass resolution = 4.8 MeV FWHM.6From the ρ−ω interferen
e in the π+π− mass spe
trum using the Breit-Wigner for the

ω and leaving its mass and width as free parameters of the �t.7 Systemati
 un
ertainties underestimated.8 From best-resolution sample of COYNE 71.9 From ω-ρ interferen
e in the π+π− mass spe
trum assuming ω width 12.6 MeV.
WEIGHTED AVERAGE
782.65±0.12 (Error scaled by 1.9)

KEYNE 76 CNTR 0.2
KURDADZE 83B OLYA 1.2
WEIDENAUER 93 ASTE 1.5
AMSLER 93B CBAR 10.3
AMSLER 94C CBAR
AMSLER 94C CBAR
WURZINGER 95 SPEC
ACHASOV 03D RVUE 1.4
AKHMETSHIN 04 CMD2 0.1
AKHMETSHIN 05 CMD2 7.2

χ2

      22.0
(Confidence Level = 0.0012)

781 782 783 784 785

ω(782) mass (MeV)
ω(782) WIDTHω(782) WIDTHω(782) WIDTHω(782) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT8.49±0.08 OUR AVERAGE8.49±0.08 OUR AVERAGE8.49±0.08 OUR AVERAGE8.49±0.08 OUR AVERAGE8.68±0.23±0.10 11200 1 AKHMETSHIN 04 CMD2 e+ e− → π+π−π08.68±0.04±0.15 1.2M 2 ACHASOV 03D RVUE 0.44{2.00 e+ e− →

π+π−π08.2 ±0.3 19500 WURZINGER 95 SPEC 1.33 pd → 3Heω8.4 ±0.1 3 AULCHENKO 87 ND e+ e− → π+π−π08.30±0.40 BARKOV 87 CMD e+ e− → π+π−π09.8 ±0.9 1488 KURDADZE 83B OLYA e+ e− → π+π−π09.0 ±0.8 433 CORDIER 80 DM1 e+ e− → π+π−π09.1 ±0.8 451 BENAKSAS 72B OSPK e+ e− → π+π−π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.13±0.45 4 LEES 12G BABR e+ e− → π+π− γ12 ±2 1430 COOPER 78B HBC 0.7{0.8 pp → 5π9.4 ±2.5 2100 GESSAROLI 77 HBC 11 π− p → ωn10.22±0.43 20000 5 KEYNE 76 CNTR π− p → ωn13.3 ±2 418 AGUILAR-... 72B HBC 3.9,4.6 K− p10.5 ±1.5 BORENSTEIN 72 HBC 2.18 K− p7.70±0.9 ±1.15 940 BROWN 72 MMS 2.5 π− p → nMM10.3 ±1.4 510 BIZZARRI 71 HBC 0.0 pp → K1K1ω12.8 ±3.0 248 BIZZARRI 71 HBC 0.0 pp → K+K−ω9.5 ±1.0 3583 COYNE 71 HBC 3.7 π+ p →pπ+π+π−π01Update of AKHMETSHIN 00C.2 From the 
ombined �t of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, andACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− �nal states.Supersedes ACHASOV 99E and ACHASOV 02E.3Relativisti
 Breit-Wigner in
ludes radiative 
orre
tions.4 From the ρ−ω interferen
e in the π+π− mass spe
trum using the Breit-Wigner for the

ω and leaving its mass and width as free parameters of the �t.5Observed by threshold-
rossing te
hnique. Mass resolution = 4.8 MeV FWHM.
ω(782) DECAY MODESω(782) DECAY MODESω(782) DECAY MODESω(782) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 π+π−π0 (89.2 ±0.7 ) %�2 π0 γ ( 8.28±0.28) % S=2.1�3 π+π− ( 1.53+0.11

−0.13) % S=1.2�4 neutrals (ex
ludingπ0 γ ) ( 8 +8
−5 )× 10−3 S=1.1�5 ηγ ( 4.6 ±0.4 ) × 10−4 S=1.1�6 π0 e+ e− ( 7.7 ±0.6 ) × 10−4�7 π0µ+µ− ( 1.3 ±0.4 ) × 10−4 S=2.1�8 ηe+ e−�9 e+ e− ( 7.28±0.14) × 10−5 S=1.3�10 π+π−π0π0 < 2 × 10−4 CL=90%�11 π+π−γ < 3.6 × 10−3 CL=95%

�12 π+π−π+π− < 1 × 10−3 CL=90%�13 π0π0 γ ( 6.6 ±1.1 ) × 10−5�14 ηπ0 γ < 3.3 × 10−5 CL=90%�15 µ+µ− ( 9.0 ±3.1 ) × 10−5�16 3γ < 1.9 × 10−4 CL=95%Charge 
onjugation (C ) violating modesCharge 
onjugation (C ) violating modesCharge 
onjugation (C ) violating modesCharge 
onjugation (C ) violating modes�17 ηπ0 C < 2.1 × 10−4 CL=90%�18 2π0 C < 2.1 × 10−4 CL=90%�19 3π0 C < 2.3 × 10−4 CL=90%CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 15 bran
hing ratios uses 51 measurements andone 
onstraint to determine 10 parameters. The overall �t has a
χ2 = 51.8 for 42 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 22x3 −18 −4x4 −92 −56 1x5 7 7 −1 −9x6 −1 0 0 0 0x7 −1 0 0 0 0 0x9 −38 −33 7 44 −21 0 0x13 1 4 0 −2 0 0 0 −1x15 0 0 0 0 0 0 0 0 0x1 x2 x3 x4 x5 x6 x7 x9 x13
ω(782) PARTIAL WIDTHSω(782) PARTIAL WIDTHSω(782) PARTIAL WIDTHSω(782) PARTIAL WIDTHS�(π0 γ

) �2�(π0 γ
) �2�(π0 γ
) �2�(π0 γ
) �2VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •880±50 7815 1 ACHASOV 13 SND 1.05{2.00 e+ e− → π0π0 γ788±12±27 36500 2 ACHASOV 03 SND 0.60{0.97 e+ e− → π0 γ764±51 10625 DOLINSKY 89 ND e+ e− → π0 γ1Systemati
 un
ertainty not estimated.2Using �ω = 8.44 ± 0.09 MeV and B(ω → π0 γ) from ACHASOV 03.�(ηγ
) �5�(ηγ
) �5�(ηγ
) �5�(ηγ
) �5VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.1±2.5 1 DOLINSKY 89 ND e+ e− → ηγ1Using �ω = 8.4 ± 0.1 MeV and B(ω → ηγ) from DOLINSKY 89.�(e+ e−) �9�(e+ e−) �9�(e+ e−) �9�(e+ e−) �9VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.60 ±0.02 OUR EVALUATION0.60 ±0.02 OUR EVALUATION0.60 ±0.02 OUR EVALUATION0.60 ±0.02 OUR EVALUATION
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.591±0.015 11200 1,2 AKHMETSHIN 04 CMD2 e+ e− → π+π−π00.653±0.003±0.021 1.2M 3 ACHASOV 03D RVUE 0.44{2.00 e+ e− →

π+π−π00.600±0.031 10625 DOLINSKY 89 ND e+ e− → π0 γ1Using B(ω → π+π−π0) = 0.891 ± 0.007 and �total = 8.44 ± 0.09 MeV.2Update of AKHMETSHIN 00C.3Using ACHASOV 03, ACHASOV 03D and B(ω → π+π−) = (1.70 ± 0.28)%.
ω(782) �(e+ e−)�(i)/�2(total)ω(782) �(e+ e−)�(i)/�2(total)ω(782) �(e+ e−)�(i)/�2(total)ω(782) �(e+ e−)�(i)/�2(total)�(e+ e−)/�total × �(π+π−π0)/�total �9/�× �1/��(e+ e−)/�total × �(π+π−π0)/�total �9/�× �1/��(e+ e−)/�total × �(π+π−π0)/�total �9/�× �1/��(e+ e−)/�total × �(π+π−π0)/�total �9/�× �1/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT6.49±0.11 OUR FIT6.49±0.11 OUR FIT6.49±0.11 OUR FIT6.49±0.11 OUR FIT Error in
ludes s
ale fa
tor of 1.3.6.38±0.10 OUR AVERAGE6.38±0.10 OUR AVERAGE6.38±0.10 OUR AVERAGE6.38±0.10 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.6.24±0.11±0.08 11.2k 1 AKHMETSHIN 04 CMD2 e+ e− → π+π−π06.70±0.06±0.27 AUBERT,B 04N BABR 10.6 e+ e− →

π+π−π0 γ6.74±0.04±0.24 1.2M 2,3 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π06.37±0.35 2 DOLINSKY 89 ND e+ e− → π+π−π06.45±0.24 2 BARKOV 87 CMD e+ e− → π+π−π05.79±0.42 1488 2 KURDADZE 83B OLYA e+ e− → π+π−π05.89±0.54 433 2 CORDIER 80 DM1 e+ e− → π+π−π07.54±0.84 451 2 BENAKSAS 72B OSPK e+ e− → π+π−π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.20±0.13 4 BENAYOUN 10 RVUE 0.4{1.05 e+ e−



878878878878MesonParti
le Listings
ω(782)1Update of AKHMETSHIN 00C.2Re
al
ulated by us from the 
ross se
tion in the peak.3 From the 
ombined �t of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, andACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− �nal states.Supersedes ACHASOV 99E and ACHASOV 02E.4A simultaneous �t of e+ e− → π+π−, π+π−π0, π0 γ, ηγ data.�(e+ e−)/�total × �(π0 γ

)/�total �9/�× �2/��(e+ e−)/�total × �(π0 γ
)/�total �9/�× �2/��(e+ e−)/�total × �(π0 γ
)/�total �9/�× �2/��(e+ e−)/�total × �(π0 γ
)/�total �9/�× �2/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT6.02±0.20 OUR FIT6.02±0.20 OUR FIT6.02±0.20 OUR FIT6.02±0.20 OUR FIT Error in
ludes s
ale fa
tor of 1.9.6.45±0.17 OUR AVERAGE6.45±0.17 OUR AVERAGE6.45±0.17 OUR AVERAGE6.45±0.17 OUR AVERAGE6.47±0.14±0.39 18680 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → π0 γ6.50±0.11±0.20 36500 1 ACHASOV 03 SND 0.60{0.97 e+ e− →

π0 γ6.34±0.21±0.21 10625 2 DOLINSKY 89 ND e+ e− → π0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.80±0.13 3 BENAYOUN 10 RVUE 0.4{1.05 e+ e−1Using σ
φ →π0 γ

from ACHASOV 00 and mω= 782.57 MeV in the model with theenergy-independent phase of ρ-ω interferen
e equal to (−10.2 ± 7.0)◦.2Re
al
ulated by us from the 
ross se
tion in the peak.3A simultaneous �t of e+ e− → π+π−, π+π−π0, π0 γ, ηγ data.�(e+ e−)/�total × �(π+π−)/�total �9/�× �3/��(e+ e−)/�total × �(π+π−)/�total �9/�× �3/��(e+ e−)/�total × �(π+π−)/�total �9/�× �3/��(e+ e−)/�total × �(π+π−)/�total �9/�× �3/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT1.225±0.058±0.0411.225±0.058±0.0411.225±0.058±0.0411.225±0.058±0.041 800k 1 ACHASOV 06 SND e+ e− → π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.166±0.036 2 BENAYOUN 13 RVUE 0.4{1.05 e+ e−1.05 ±0.08 3 DAVIER 13 RVUE e+ e− → π+π− (γ)1 Supersedes ACHASOV 05A.2A simultaneous �t to e+ e− → π+π−, π+π−π0, π0 γ, ηγ, K K , and τ− → π−π0 ντdata. Supersedes BENAYOUN 10.3 From e+ e− → π+π− (γ) data of LEES 12G.�(e+ e−)/�total × �(ηγ

)/�total �9/�× �5/��(e+ e−)/�total × �(ηγ
)/�total �9/�× �5/��(e+ e−)/�total × �(ηγ
)/�total �9/�× �5/��(e+ e−)/�total × �(ηγ
)/�total �9/�× �5/�VALUE (units 10−8) EVTS DOCUMENT ID TECN COMMENT3.32±0.28 OUR FIT3.32±0.28 OUR FIT3.32±0.28 OUR FIT3.32±0.28 OUR FIT Error in
ludes s
ale fa
tor of 1.1.3.18±0.28 OUR AVERAGE3.18±0.28 OUR AVERAGE3.18±0.28 OUR AVERAGE3.18±0.28 OUR AVERAGE3.10±0.31±0.11 33k 1 ACHASOV 07B SND 0.6{1.38 e+ e− → ηγ3.17+1.85

−1.31±0.21 17.4k 2 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → ηγ3.41±0.52±0.21 23k 3,4 AKHMETSHIN 01B CMD2 e+ e− → ηγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.50±0.10 5 BENAYOUN 10 RVUE 0.4{1.05 e+ e−1From a 
ombined �t of σ(e+ e− → ηγ) with η → 3π0 and η → π+π−π0, and�xing B(η → 3π0) / B(η → π+π−π0) = 1.44 ± 0.04. Re
al
ulated by us from the
ross se
tion at the peak. Supersedes ACHASOV 00D and ACHASOV 06A.2 From the η → 2γ de
ay and using B(η → γ γ)= 39.43 ± 0.26%.3From the η → 3π0 de
ay and using B(η → 3π0)= (32.24 ± 0.29) × 10−2.4The 
ombined �t from 600 to 1380 MeV taking into a

ount ρ(770), ω(782), φ(1020),and ρ(1450) (mass and width �xed at 1450 MeV and 310 MeV respe
tively).5A simultaneous �t of e+ e− → π+π−, π+π−π0, π0 γ, ηγ data.
ω(782) BRANCHING RATIOSω(782) BRANCHING RATIOSω(782) BRANCHING RATIOSω(782) BRANCHING RATIOS�(π+π−π0)/�total �1/��(π+π−π0)/�total �1/��(π+π−π0)/�total �1/��(π+π−π0)/�total �1/�NIECKNIG 12 des
ribes �nal-state intera
tions between the three pions in a dispersiveframework using data on the ππ P-wave s
attering phase shift.VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.9024±0.0019 1 AMBROSINO 08G KLOE 1.0{1.03 e+ e− →
π+π− 2π0, 2π0 γ0.8965±0.0016±0.0048 1.2M 2,3 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π00.880 ±0.020 ±0.032 11200 3,4 AKHMETSHIN 00C CMD2 e+ e− → π+π−π00.8942±0.0062 3 DOLINSKY 89 ND e+ e− → π+π−π01Not independent of �(π0 γ) / �(π+π−π0) from AMBROSINO 08G.2Using ACHASOV 03, ACHASOV 03D and B(ω → π+π−) = (1.70 ± 0.28)%.3Not independent of the 
orresponding �(e+ e−)× �(π+π−π0)/�2total .4Using �(e+ e−)=0.60 ± 0.02 keV.�(π0 γ

)/�total �2/��(π0 γ
)/�total �2/��(π0 γ
)/�total �2/��(π0 γ
)/�total �2/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.09±0.14 1 AMBROSINO 08G KLOE e+ e− → π+π− 2π0, 2π0 γ9.06±0.20±0.57 18680 2,3 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → π0 γ9.34±0.15±0.31 36500 3 ACHASOV 03 SND 0.60{0.97 e+ e− → π0 γ8.65±0.16±0.42 1.2M 4,5 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π08.39±0.24 9975 6 BENAYOUN 96 RVUE e+ e− → π0 γ8.88±0.62 10625 3 DOLINSKY 89 ND e+ e− → π0 γ

1Not independent of �(π0 γ) / �(π+π−π0) from AMBROSINO 08G.2Using B(ω → e+ e−)= (7.14 ± 0.13)× 10−5.3Not independent of the 
orresponding �(e+ e−) × �(π0 γ)/�2total .4Using ACHASOV 03, ACHASOV 03D and B(ω → π+π−) = (1.70 ± 0.28)%.5Not independent of the 
orresponding �(e+ e−) × �(π+π−π0)/�2total .6Reanalysis of DRUZHININ 84, DOLINSKY 89, DOLINSKY 91 taking into a

ount thetriangle anomaly 
ontributions.�(π0 γ
)/�(π+π−π0) �2/�1�(π0 γ
)/�(π+π−π0) �2/�1�(π0 γ
)/�(π+π−π0) �2/�1�(π0 γ
)/�(π+π−π0) �2/�1VALUE (units 10−2) DOCUMENT ID TECN COMMENT9.28±0.31 OUR FIT9.28±0.31 OUR FIT9.28±0.31 OUR FIT9.28±0.31 OUR FIT Error in
ludes s
ale fa
tor of 2.3.9.05±0.27 OUR AVERAGE9.05±0.27 OUR AVERAGE9.05±0.27 OUR AVERAGE9.05±0.27 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.8.97±0.16 AMBROSINO 08G KLOE e+ e− → π+π− 2π0, 2π0 γ9.94±0.36±0.38 1 AULCHENKO 00A SND e+ e− → π+π− 2π0, 2π0 γ8.4 ±1.3 KEYNE 76 CNTR π− p → ωn10.9 ±2.5 BENAKSAS 72C OSPK e+ e− → π0 γ8.1 ±2.0 BALDIN 71 HLBC 2.9 π+ p13 ±4 JACQUET 69B HLBC 2.05 π+ p → π+ pω

• • • We do not use the following data for averages, �ts, limits, et
. • • •9.7 ±0.2 ±0.5 2,3 ACHASOV 03D RVUE 0.44{2.00 e+ e− → π+π−π09.9 ±0.7 2 DOLINSKY 89 ND e+ e− → π0 γ1From σ
ωπ0 →π0π0 γ0 (mφ)/σωπ0 →π+π−π0π00 (mφ) with a phase-spa
e 
orre
tionfa
tor of 1/1.023.2Not independent of the 
orresponding �(e+ e−) × �(π0 γ)/�2total .3Using ACHASOV 03. Based on 1.2M events.�(π+π−)/�total �3/��(π+π−)/�total �3/��(π+π−)/�total �3/��(π+π−)/�total �3/�See also �(

π+π−
)/�(

π+π−π0).VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.53+0.11
−0.13 OUR FIT1.53+0.11
−0.13 OUR FIT1.53+0.11
−0.13 OUR FIT1.53+0.11
−0.13 OUR FIT Error in
ludes s
ale fa
tor of 1.2.1.49±0.13 OUR AVERAGE1.49±0.13 OUR AVERAGE1.49±0.13 OUR AVERAGE1.49±0.13 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.1.46±0.12±0.02 900k 1 AKHMETSHIN 07 e+ e− → π+π−1.30±0.24±0.05 11.2k 2 AKHMETSHIN 04 CMD2 e+ e− → π+π−2.38+1.77
−0.90±0.18 5.4k 3 ACHASOV 02E SND 1.1{1.38 e+ e− →

π+π−π02.3 ±0.5 BARKOV 85 OLYA e+ e− → π+π−1.6 +0.9
−0.7 QUENZER 78 DM1 e+ e− → π+π−3.6 ±1.9 BENAKSAS 72 OSPK e+ e− → π+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.75±0.11 4.5M 4 ACHASOV 05A SND e+ e− → π+π−2.01±0.29 5 BENAYOUN 03 RVUE e+ e− → π+π−1.9 ±0.3 6 GARDNER 99 RVUE e+ e− → π+π−2.3 ±0.4 7 BENAYOUN 98 RVUE e+ e− → π+π−, µ+µ−1.0 ±0.11 8 WICKLUND 78 ASPK 3,4,6 π±N1.22±0.30 ALVENSLEB... 71C CNTR Photoprodu
tion1.3 +1.2
−0.9 MOFFEIT 71 HBC 2.8,4.7 γ p0.80+0.28
−0.20 9 BIGGS 70B CNTR 4.2γC → π+π−C1A 
ombined �t of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05.2Update of AKHMETSHIN 02.3 From the m

π+π− spe
trum taking into a

ount the interferen
e of the ρπ and ωπamplitudes.4Using �(ω → e+ e−) from the 2004 Edition of this Review (PDG 04).5Using the data of AKHMETSHIN 02 in the hidden lo
al symmetry model.6Using the data of BARKOV 85.7Using the data of BARKOV 85 in the hidden lo
al symmetry model.8 From a model-dependent analysis assuming 
omplete 
oheren
e.9Re-evaluated under �(

π+π−
)/�(

π+π−π0) by BEHREND 71 using more a

urate ω →
ρ photoprodu
tion 
ross-se
tion ratio.

WEIGHTED AVERAGE
1.49±0.13 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BENAKSAS 72 OSPK
QUENZER 78 DM1
BARKOV 85 OLYA 2.6
ACHASOV 02E SND
AKHMETSHIN 04 CMD2 0.6
AKHMETSHIN 07 0.1

χ2

       3.3
(Confidence Level = 0.194)

0 1 2 3 4 5�(

π+π−
)/�total (units 10−2)



879879879879See key on page 601 MesonParti
le Listings
ω(782)�(

π+π−)/�(

π+π−π0) �3/�1�(

π+π−)/�(

π+π−π0) �3/�1�(

π+π−)/�(

π+π−π0) �3/�1�(

π+π−)/�(

π+π−π0) �3/�1See also �(

π+π−
)/�total.VALUE DOCUMENT ID TECN COMMENT0.0172±0.0014 OUR FIT0.0172±0.0014 OUR FIT0.0172±0.0014 OUR FIT0.0172±0.0014 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.026 ±0.005 OUR AVERAGE0.026 ±0.005 OUR AVERAGE0.026 ±0.005 OUR AVERAGE0.026 ±0.005 OUR AVERAGE0.021 +0.028

−0.009 1,2 RATCLIFF 72 ASPK 15 π− p → n2π0.028 ±0.006 1 BEHREND 71 ASPK Photoprodu
tion0.022 +0.009
−0.01 3 ROOS 70 RVUE1The �tted width of these data is 160 MeV in agreement with present average, thus the

ω 
ontribution is overestimated. Assuming ρ width 145 MeV.2 Signi�
ant interferen
e e�e
t observed. NB of ω → 3π 
omes from an extrapolation.3ROOS 70 
ombines ABRAMOVICH 70 and BIZZARRI 70.�(

π+π−)/�(

π0 γ
) �3/�2�(

π+π−)/�(

π0 γ
) �3/�2�(

π+π−)/�(

π0 γ
) �3/�2�(

π+π−)/�(

π0 γ
) �3/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.20±0.040.20±0.040.20±0.040.20±0.04 1.98M 1 ALOISIO 03 KLOE 1.02 e+ e− →

π+π−π01Using the data of ALOISIO 02D.�(neutrals)/�total (�2+�4)/��(neutrals)/�total (�2+�4)/��(neutrals)/�total (�2+�4)/��(neutrals)/�total (�2+�4)/�VALUE EVTS DOCUMENT ID TECN COMMENT0.091±0.006 OUR FIT0.091±0.006 OUR FIT0.091±0.006 OUR FIT0.091±0.006 OUR FIT0.081±0.011 OUR AVERAGE0.081±0.011 OUR AVERAGE0.081±0.011 OUR AVERAGE0.081±0.011 OUR AVERAGE0.075±0.025 BIZZARRI 71 HBC 0.0 pp0.079±0.019 DEINET 69B OSPK 1.5 π− p0.084±0.015 BOLLINI 68C CNTR 2.1 π− p
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.073±0.018 42 BASILE 72B CNTR 1.67 π− p�(neutrals)/�(

π+π−π0) (�2+�4)/�1�(neutrals)/�(

π+π−π0) (�2+�4)/�1�(neutrals)/�(

π+π−π0) (�2+�4)/�1�(neutrals)/�(

π+π−π0) (�2+�4)/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.102±0.008 OUR FIT0.102±0.008 OUR FIT0.102±0.008 OUR FIT0.102±0.008 OUR FIT0.103+0.011
−0.010 OUR AVERAGE0.103+0.011
−0.010 OUR AVERAGE0.103+0.011
−0.010 OUR AVERAGE0.103+0.011
−0.010 OUR AVERAGE0.15 ±0.04 46 AGUILAR-... 72B HBC 3.9,4.6 K− p0.10 ±0.03 19 BARASH 67B HBC 0.0 p p0.134±0.026 850 DIGIUGNO 66B CNTR 1.4 π− p0.097±0.016 348 FLATTE 66 HBC 1.4 { 1.7 K− p → �MM0.06 +0.05
−0.02 JAMES 66 HBC 2.1 π+ p0.08 ±0.03 35 KRAEMER 64 DBC 1.2 π+ d

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.11 ±0.02 20 BUSCHBECK 63 HBC 1.5 K− p�(

π0 γ
)/�(neutrals) �2/(�2+�4)�(

π0 γ
)/�(neutrals) �2/(�2+�4)�(

π0 γ
)/�(neutrals) �2/(�2+�4)�(

π0 γ
)/�(neutrals) �2/(�2+�4)VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.78±0.07 1 DAKIN 72 OSPK 1.4 π− p → nMM
>0.81 90 DEINET 69B OSPK1Error statisti
al only. Authors obtain good �t also assuming π0 γ as the only neutralde
ay.�(neutrals)/�(
harged parti
les) (�2+�4)/(�1+�3)�(neutrals)/�(
harged parti
les) (�2+�4)/(�1+�3)�(neutrals)/�(
harged parti
les) (�2+�4)/(�1+�3)�(neutrals)/�(
harged parti
les) (�2+�4)/(�1+�3)VALUE DOCUMENT ID TECN COMMENT0.100±0.008 OUR FIT0.100±0.008 OUR FIT0.100±0.008 OUR FIT0.100±0.008 OUR FIT0.124±0.0210.124±0.0210.124±0.0210.124±0.021 FELDMAN 67C OSPK 1.2 π− p�(

ηγ
)/�total �5/��(

ηγ
)/�total �5/��(

ηγ
)/�total �5/��(

ηγ
)/�total �5/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.6 ±0.4 OUR FIT4.6 ±0.4 OUR FIT4.6 ±0.4 OUR FIT4.6 ±0.4 OUR FIT Error in
ludes s
ale fa
tor of 1.1.6.3 ±1.3 OUR AVERAGE6.3 ±1.3 OUR AVERAGE6.3 ±1.3 OUR AVERAGE6.3 ±1.3 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.6.6 ±1.7 1 ABELE 97E CBAR 0.0 p p → 5γ8.3 ±2.1 ALDE 93 GAM2 38π− p → ωn3.0 +2.5

−1.8 2 ANDREWS 77 CNTR 6.7{10 γCu
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.3 ±0.5 ±0.1 33k 3 ACHASOV 07B SND 0.6{1.38 e+ e− → ηγ4.44+2.59

−1.83±0.28 17.4k 4,5 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → ηγ5.10±0.72±0.34 23k 6 AKHMETSHIN 01B CMD2 e+ e− → ηγ0.7 to 5.5 7 CASE 00 CBAR 0.0 pp → ηηγ6.56+2.41
−2.55 3525 2,8 BENAYOUN 96 RVUE e+ e− → ηγ7.3 ±2.9 2,4 DOLINSKY 89 ND e+ e− → ηγ1No 
at ηηγ ba
kground assumed.2 Solution 
orresponding to 
onstru
tive ω-ρ interferen
e.3ACHASOV 07B reports [�(

ω(782) → ηγ
)/�total℄ × [B(ω(782) → e+ e−)℄ =(3.10 ± 0.31 ± 0.11) × 10−8 whi
h we divide by our best value B(ω(782) → e+ e−)= (7.28 ± 0.14) × 10−5. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value. Supersedes ACHASOV 00D andACHASOV 06A.4Not independent of the 
orresponding �(e+ e−)× �(ηγ)/�2total .5Using B(ω → e+ e−) = (7.14 ± 0.13) × 10−5 and B(η → γ γ) = 39.43 ± 0.26%.6Using B(ω → e+ e−)= (7.07 ± 0.19) × 10−5 and using B(η → 3π0)= (32.24 ±0.29) × 10−2. Solution 
orresponding to 
onstru
tive ω-ρ interferen
e. The 
ombined

�t from 600 to 1380 MeV taking into a

ount ρ(770), ω(782), φ(1020), and ρ(1450)(mass and width �xed at 1450 MeV and 310 MeV respe
tively). Not independent of the
orresponding �(e+ e−)× �(ηγ)/�2total .7Depending on the degree of 
oheren
e with the 
at ηηγ ba
kground and using B(ω →
π0 γ)=(8.5 ± 0.5)× 10−2.8Reanalysis of DRUZHININ 84, DOLINSKY 89, DOLINSKY 91 taking into a

ount thetriangle anomaly 
ontributions.�(

ηγ
)/�(

π0 γ
) �5/�2�(

ηγ
)/�(

π0 γ
) �5/�2�(

ηγ
)/�(

π0 γ
) �5/�2�(

ηγ
)/�(

π0 γ
) �5/�2VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0098±0.0024 1 ALDE 93 GAM2 38π− p → ωn0.0082±0.0033 2 DOLINSKY 89 ND e+ e− → ηγ0.010 ±0.045 APEL 72B OSPK 4{8 π− p → n3γ1Model independent determination.2 Solution 
orresponding to 
onstru
tive ω-ρ interferen
e.�(

π0 e+ e−)/�total �6/��(

π0 e+ e−)/�total �6/��(

π0 e+ e−)/�total �6/��(

π0 e+ e−)/�total �6/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.7 ±0.6 OUR FIT7.7 ±0.6 OUR FIT7.7 ±0.6 OUR FIT7.7 ±0.6 OUR FIT7.7 ±0.6 OUR AVERAGE7.7 ±0.6 OUR AVERAGE7.7 ±0.6 OUR AVERAGE7.7 ±0.6 OUR AVERAGE7.61±0.53±0.64 ACHASOV 08 SND 0.36{0.97 e+ e− → π0 e+ e−8.19±0.71±0.62 AKHMETSHIN 05A CMD2 0.72-0.84 e+ e−5.9 ±1.9 43 DOLINSKY 88 ND e+ e− → π0 e+ e−�(

π0µ+µ−)/�total �7/��(

π0µ+µ−)/�total �7/��(

π0µ+µ−)/�total �7/��(

π0µ+µ−)/�total �7/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.3 ±0.4 OUR FIT1.3 ±0.4 OUR FIT1.3 ±0.4 OUR FIT1.3 ±0.4 OUR FIT Error in
ludes s
ale fa
tor of 2.1.1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1.1.72±0.25±0.14 3k ARNALDI 09 NA60 158A In−In 
ollisions0.96±0.23 DZHELYADIN 81B CNTR 25{33 π− p → ωn�(

ηe+ e−)/�total �8/��(

ηe+ e−)/�total �8/��(

ηe+ e−)/�total �8/��(

ηe+ e−)/�total �8/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.1 AKHMETSHIN 05A CMD2 0.72-0.84 e+ e−�(e+ e−)/�total �9/��(e+ e−)/�total �9/��(e+ e−)/�total �9/��(e+ e−)/�total �9/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.728±0.014 OUR FIT0.728±0.014 OUR FIT0.728±0.014 OUR FIT0.728±0.014 OUR FIT Error in
ludes s
ale fa
tor of 1.3.
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.700±0.016 11200 1,2 AKHMETSHIN 04 CMD2 e+ e− → π+π−π00.752±0.004±0.024 1.2M 2,3 ACHASOV 03D RVUE 0.44{2.00 e+ e− →

π+π−π00.714±0.036 2 DOLINSKY 89 ND e+ e− → π+π−π00.72 ±0.03 2 BARKOV 87 CMD e+ e− → π+π−π00.64 ±0.04 1488 2 KURDADZE 83B OLYA e+ e− → π+π−π00.675±0.069 433 2 CORDIER 80 DM1 e+ e− → π+π−π00.83 ±0.10 451 2 BENAKSAS 72B OSPK e+ e− → π+π−π00.77 ±0.06 4 AUGUSTIN 69D OSPK e+ e− → π+π−π00.65 ±0.13 33 5 ASTVACAT... 68 OSPK Assume SU(3)+mixing1Using B(ω → π+π−π0) = 0.891 ± 0.007. Update of AKHMETSHIN 00C.2Not independent of the 
orresponding �(e+ e−) × �(π+π−π0)/�2total .3Using ACHASOV 03, ACHASOV 03D and B(ω → π+π−) = (1.70 ± 0.28)%.4Res
aled by us to 
orrespond to ω width 8.4 MeV. Systemati
 errors underestimated.5Not resolved from ρ de
ay. Error statisti
al only.�(

π+π−π0π0)/�total �10/��(

π+π−π0π0)/�total �10/��(

π+π−π0π0)/�total �10/��(

π+π−π0π0)/�total �10/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 2< 2< 2< 2 90 ACHASOV 09A SND e+ e− → π+π−π0π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<200 90 KURDADZE 86 OLYA e+ e− → π+π−π0π0�(

π+π−γ
)/�total �11/��(

π+π−γ
)/�total �11/��(

π+π−γ
)/�total �11/��(

π+π−γ
)/�total �11/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.0036<0.0036<0.0036<0.0036 95 WEIDENAUER 90 ASTE pp → π+π−π+π− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.004 95 BITYUKOV 88B SPEC 32 π− p → π+π− γX�(

π+π−γ
)/�(

π+π−π0) �11/�1�(

π+π−γ
)/�(

π+π−π0) �11/�1�(

π+π−γ
)/�(

π+π−π0) �11/�1�(

π+π−γ
)/�(

π+π−π0) �11/�1VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.066 90 KALBFLEISCH 75 HBC 2.18 K− p → �π+π− γ

<0.05 90 FLATTE 66 HBC 1.2 { 1.7 K− p →�π+π− γ�(

π+π−π+π−)/�total �12/��(

π+π−π+π−)/�total �12/��(

π+π−π+π−)/�total �12/��(

π+π−π+π−)/�total �12/�VALUE CL% DOCUMENT ID TECN COMMENT
<1× 10−3<1× 10−3<1× 10−3<1× 10−3 90 KURDADZE 88 OLYA e+ e− →

π+π−π+π−
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ω(782)�(π0π0 γ

)/�total �13/��(π0π0 γ
)/�total �13/��(π0π0 γ
)/�total �13/��(π0π0 γ
)/�total �13/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT6.6±1.1 OUR FIT6.6±1.1 OUR FIT6.6±1.1 OUR FIT6.6±1.1 OUR FIT6.5±1.2 OUR AVERAGE6.5±1.2 OUR AVERAGE6.5±1.2 OUR AVERAGE6.5±1.2 OUR AVERAGE6.4+2.4

−2.0±0.8 190 1 AKHMETSHIN 04B CMD2 0.6{0.97 e+ e− → π0π0 γ6.6+1.4
−1.3±0.6 295 ACHASOV 02F SND 0.36{0.97 e+ e− →

π0π0 γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •11.8+2.1

−1.9±1.4 190 2 AKHMETSHIN 04B CMD2 0.6{0.97 e+ e− → π0π0 γ7.8±2.7±2.0 63 1,3 ACHASOV 00G SND e+ e− → π0π0 γ12.7±2.3±2.5 63 2,3 ACHASOV 00G SND e+ e− → π0π0 γ1 In the model assuming the ρ → π0π0 γ de
ay via the ωπ and f0(500)γ me
hanisms.2 In the model assuming the ρ → π0π0 γ de
ay via the ωπ me
hanism only.3 Superseded by ACHASOV 02F.�(π0π0 γ
)/�(π+π−π0) �13/�1�(π0π0 γ
)/�(π+π−π0) �13/�1�(π0π0 γ
)/�(π+π−π0) �13/�1�(π0π0 γ
)/�(π+π−π0) �13/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.00045<0.00045<0.00045<0.00045 90 DOLINSKY 89 ND e+ e− → π0π0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.08 95 JACQUET 69B HLBC 2.05 π+ p → π+ pω�(π0π0 γ

)/�(π0 γ
) �13/�2�(π0π0 γ

)/�(π0 γ
) �13/�2�(π0π0 γ

)/�(π0 γ
) �13/�2�(π0π0 γ

)/�(π0 γ
) �13/�2VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT8.0±1.3 OUR FIT8.0±1.3 OUR FIT8.0±1.3 OUR FIT8.0±1.3 OUR FIT8.5±2.98.5±2.98.5±2.98.5±2.9 40 ± 14 ALDE 94B GAM2 38π− p → π0π0 γ n

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 50 90 DOLINSKY 89 ND e+ e− → π0π0 γ

<1800 95 KEYNE 76 CNTR π− p → ωn
<1500 90 BENAKSAS 72C OSPK e+ e−
<1400 BALDIN 71 HLBC 2.9 π+ p
<1000 90 BARMIN 64 HLBC 1.3{2.8 π− p�(π0π0 γ

)/�(neutrals) �13/(�2+�4)�(π0π0 γ
)/�(neutrals) �13/(�2+�4)�(π0π0 γ
)/�(neutrals) �13/(�2+�4)�(π0π0 γ
)/�(neutrals) �13/(�2+�4)VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.22±0.07 1 DAKIN 72 OSPK 1.4 π− p → nMM
<0.19 90 DEINET 69B OSPK1See �(

π0 γ
)/�(neutrals).�(ηπ0 γ

)/�total �14/��(ηπ0 γ
)/�total �14/��(ηπ0 γ
)/�total �14/��(ηπ0 γ
)/�total �14/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<3.3<3.3<3.3<3.3 90 AKHMETSHIN 04B CMD2 0.6{0.97 e+ e− →
ηπ0 γ�(µ+µ−)/�total �15/��(µ+µ−)/�total �15/��(µ+µ−)/�total �15/��(µ+µ−)/�total �15/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT9.0±3.1 OUR FIT9.0±3.1 OUR FIT9.0±3.1 OUR FIT9.0±3.1 OUR FIT9.0±2.9±1.19.0±2.9±1.19.0±2.9±1.19.0±2.9±1.1 18 HEISTER 02C ALEP Z → µ+µ− + X�(µ+µ−)/�(π+π−π0) �15/�1�(µ+µ−)/�(π+π−π0) �15/�1�(µ+µ−)/�(π+π−π0) �15/�1�(µ+µ−)/�(π+π−π0) �15/�1VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.2<0.2<0.2<0.2 90 WILSON 69 OSPK 12 π−C → Fe
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.7 74 FLATTE 66 HBC 1.2 { 1.7 K− p →�µ+µ−
<1.2 BARBARO-... 65 HBC 2.7 K− p�(π0µ+µ−)/�(µ+µ−) �7/�15�(π0µ+µ−)/�(µ+µ−) �7/�15�(π0µ+µ−)/�(µ+µ−) �7/�15�(π0µ+µ−)/�(µ+µ−) �7/�15VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.2±0.6 30 1 DZHELYADIN 79 CNTR 25{33 π− p1Superseded by DZHELYADIN 81B result above.�(3γ)/�total �16/��(3γ)/�total �16/��(3γ)/�total �16/��(3γ)/�total �16/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.9<1.9<1.9<1.9 95 1 ABELE 97E CBAR 0.0 p p → 5γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2 90 1 PROKOSHKIN 95 GAM2 38 π− p → 3γ n1From dire
t 3γ de
ay sear
h.

�(ηπ0)/�total �17/��(ηπ0)/�total �17/��(ηπ0)/�total �17/��(ηπ0)/�total �17/�Violates C 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.001 90 ALDE 94B GAM2 38π− p → ηπ0 n
[�(ηγ

)+�(ηπ0)]/�(π+π−π0) (�5+�17)/�1[�(ηγ
)+�(ηπ0)]/�(π+π−π0) (�5+�17)/�1[�(ηγ
)+�(ηπ0)]/�(π+π−π0) (�5+�17)/�1[�(ηγ
)+�(ηπ0)]/�(π+π−π0) (�5+�17)/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.016<0.016<0.016<0.016 90 1 FLATTE 66 HBC 1.2 { 1.7 K− p →�π+π−MM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.045 95 JACQUET 69B HLBC 2.05 π+ p → π+ pω1Restated by us using B(η → 
harged modes) = 29.2%.�(ηπ0)/�(π0 γ
) �17/�2�(ηπ0)/�(π0 γ
) �17/�2�(ηπ0)/�(π0 γ
) �17/�2�(ηπ0)/�(π0 γ
) �17/�2Violates C 
onservation.VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<2.6<2.6<2.6<2.6 90 1 STAROSTIN 09 CRYM γ p → ηπ0 p1STAROSTIN 09 reports [�(

ω(782) → ηπ0)/�(

ω(782) → π0 γ
)℄ × [B(η → 2γ)℄

< 1.01 × 10−3 whi
h we divide by our best value B(η → 2γ) = 39.41 × 10−2.�(2π0)/�(π0 γ
) �18/�2�(2π0)/�(π0 γ
) �18/�2�(2π0)/�(π0 γ
) �18/�2�(2π0)/�(π0 γ
) �18/�2Violates C 
onservation and Bose-Einstein statisti
s.VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<2.59<2.59<2.59<2.59 90 STAROSTIN 09 CRYM γ p → 2π0 p�(3π0)/�total �19/��(3π0)/�total �19/��(3π0)/�total �19/��(3π0)/�total �19/�Violates C 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3× 10−4 90 PROKOSHKIN 95 GAM2 38 π− p → 3π0 n�(3π0)/�(π0 γ
) �19/�2�(3π0)/�(π0 γ
) �19/�2�(3π0)/�(π0 γ
) �19/�2�(3π0)/�(π0 γ
) �19/�2Violates C 
onservation.VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<2.72<2.72<2.72<2.72 90 STAROSTIN 09 CRYM γ p → 3π0 p�(3π0)/�(π+π−π0) �19/�1�(3π0)/�(π+π−π0) �19/�1�(3π0)/�(π+π−π0) �19/�1�(3π0)/�(π+π−π0) �19/�1Violates C 
onservation.VALUE CL% DOCUMENT ID COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.009 90 BARBERIS 01 450 pp → pf 3π0 psPARAMETER � IN ω → π0µ+µ− DECAYPARAMETER � IN ω → π0µ+µ− DECAYPARAMETER � IN ω → π0µ+µ− DECAYPARAMETER � IN ω → π0µ+µ− DECAYIn the pole approximation the ele
tromagneti
 transition form fa
tor for a resonan
eof mass M is given by the expression:
∣

∣F∣

∣

2 = (1 − M2/�2)−2,where for the parameter � ve
tor dominan
e predi
ts � = Mp ≈ 0.770 GeV. TheARNALDI 09 measurement is in obvious 
on
i
t with this expe
tation. Note thatfor η → µ+µ− γ de
ay ARNALDI 09 and DZHELYADIN 80 obtain the value of �
onsistent with ve
tor dominan
e.VALUE (GeV) EVTS DOCUMENT ID TECN COMMENT0.668±0.009±0.0030.668±0.009±0.0030.668±0.009±0.0030.668±0.009±0.003 3k ARNALDI 09 NA60 158A In−In 
ollisions
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.65 ±0.03 DZHELYADIN 81B CNTR 25{33 π− p → ωn

ω(782) REFERENCESω(782) REFERENCESω(782) REFERENCESω(782) REFERENCESACHASOV 13 PR D88 054013 M.N. A
hasov et al. (SND Collab.)BENAYOUN 13 EPJ C73 2453 M. Benayoun, P. David, L. DelBuono (PARIN, BERLIN+)DAVIER 13 EPJ C73 2597 M. Davier et al.LEES 12G PR D86 032013 J.P. Lees et al. (BABAR Collab.)NIECKNIG 12 EPJ C72 2014 F. Nie
knig, B. Kubis, S.P. S
hneider (BONN)BENAYOUN 10 EPJ C65 211 M. Benayoun et al.ACHASOV 09A JETP 109 379 M.N. A
hasov et al. (SND Collab.)Translated from ZETF 136 442.ARNALDI 09 PL B677 260 R. Arnaldi et al. (NA60 Collab.)STAROSTIN 09 PR C79 065201 A. Starostin et al. (Crystal Ball Collab. at MAMI)ACHASOV 08 JETP 107 61 M.N. A
hasov et al. (SND Collab.)Translated from ZETF 134 80.AMBROSINO 08G PL B669 223 F. Ambrosino et al. (KLOE Collab.)ACHASOV 07B PR D76 077101 M.N. A
hasov et al. (SND Collab.)AKHMETSHIN 07 PL B648 28 R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)ACHASOV 06 JETP 103 380 M.N. A
hasov et al. (Novosibirsk SND Collab.)Translated from ZETF 130 437.



881881881881See key on page 601 MesonParti
le Listings
ω(782), η′(958)ACHASOV 06A PR D74 014016 M.N. A
hasov et al. (SND Collab.)AULCHENKO 06 JETPL 84 413 V.M. Aul
henko et al. (Novosibirsk CMD-2 Collab.)Translated from ZETFP 84 491.ACHASOV 05A JETP 101 1053 M.N. A
hasov et al. (Novosibirsk SND Collab.)Translated from ZETF 128 1201.AKHMETSHIN 05 PL B605 26 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AKHMETSHIN 05A PL B613 29 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AULCHENKO 05 JETPL 82 743 V.M. Aul
henko et al. (Novosibirsk CMD-2 Collab.)Translated from ZETFP 82 841.AKHMETSHIN 04 PL B578 285 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AKHMETSHIN 04B PL B580 119 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AUBERT,B 04N PR D70 072004 B. Aubert et al. (BABAR Collab.)PDG 04 PL B592 1 S. Eidelman et al. (PDG Collab.)ACHASOV 03 PL B559 171 M.N. A
hasov et al. (Novosibirsk SND Collab.)ACHASOV 03D PR D68 052006 M.N. A
hasov et al. (Novosibirsk SND Collab.)ALOISIO 03 PL B561 55 A. Aloisio et al. (KLOE Collab.)BENAYOUN 03 EPJ C29 397 M. Benayoun et al.ACHASOV 02E PR D66 032001 M.N. A
hasov et al. (Novosibirsk SND Collab.)ACHASOV 02F PL B537 201 M.N. A
hasov et al. (Novosibirsk SND Collab.)AKHMETSHIN 02 PL B527 161 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)ALOISIO 02D PL B537 21 A. Aloisio et al. (KLOE Collab.)HEISTER 02C PL B528 19 A. Heister et al. (ALEPH Collab.)ACHASOV 01E PR D63 072002 M.N. A
hasov et al. (Novosibirsk SND Collab.)AKHMETSHIN 01B PL B509 217 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)BARBERIS 01 PL B507 14 D. Barberis et al.ACHASOV 00 EPJ C12 25 M.N. A
hasov et al. (Novosibirsk SND Collab.)ACHASOV 00D JETPL 72 282 M.N. A
hasov et al. (Novosibirsk SND Collab.)Translated from ZETFP 72 411.ACHASOV 00G JETPL 71 355 M.N. A
hasov et al. (Novosibirsk SND Collab.)Translated from ZETFP 71 519.AKHMETSHIN 00C PL B476 33 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AULCHENKO 00A JETP 90 927 V.M. Aul
henko et al. (Novosibirsk SND Collab.)Translated from ZETF 117 1067.CASE 00 PR D61 032002 T. Case et al. (Crystal Barrel Collab.)ACHASOV 99E PL B462 365 M.N. A
hasov et al. (Novosibirsk SND Collab.)GARDNER 99 PR D59 076002 S. Gardner, H.B. O'ConnellBENAYOUN 98 EPJ C2 269 M. Benayoun et al. (IPNP, NOVO, ADLD+)ABELE 97E PL B411 361 A. Abele et al. (Crystal Barrel Collab.)BENAYOUN 96 ZPHY C72 221 M. Benayoun et al. (IPNP, NOVO)PROKOSHKIN 95 SPD 40 273 Y.D. Prokoshkin, V.D. Samoilenko (SERP)Translated from DANS 342 610.WURZINGER 95 PR C51 443 R. Wurzinger et al. (BONN, ORSAY, SACL+)ALDE 94B PL B340 122 D.M. Alde et al. (SERP, BELG, LANL, LAPP+)AMSLER 94C PL B327 425 C. Amsler et al. (Crystal Barrel Collab.)ALDE 93 PAN 56 1229 D.M. Alde et al. (SERP, LAPP, LANL, BELG+)Translated from YAF 56 137.Also ZPHY C61 35 D.M. Alde et al. (SERP, LAPP, LANL, BELG+)AMSLER 93B PL B311 362 C. Amsler et al. (Crystal Barrel Collab.)WEIDENAUER 93 ZPHY C59 387 P. Weidenauer et al. (ASTERIX Collab.)ANTONELLI 92 ZPHY C56 15 A. Antonelli et al. (DM2 Collab.)DOLINSKY 91 PRPL 202 99 S.I. Dolinsky et al. (NOVO)WEIDENAUER 90 ZPHY C47 353 P. Weidenauer et al. (ASTERIX Collab.)DOLINSKY 89 ZPHY C42 511 S.I. Dolinsky et al. (NOVO)BITYUKOV 88B SJNP 47 800 S.I. Bityukov et al. (SERP)Translated from YAF 47 1258.DOLINSKY 88 SJNP 48 277 S.I. Dolinsky et al. (NOVO)Translated from YAF 48 442.KURDADZE 88 JETPL 47 512 L.M. Kurdadze et al. (NOVO)Translated from ZETFP 47 432.AULCHENKO 87 PL B186 432 V.M. Aul
henko et al. (NOVO)BARKOV 87 JETPL 46 164 L.M. Barkov et al. (NOVO)Translated from ZETFP 46 132.KURDADZE 86 JETPL 43 643 L.M. Kurdadze et al. (NOVO)Translated from ZETFP 43 497.BARKOV 85 NP B256 365 L.M. Barkov et al. (NOVO)DRUZHININ 84 PL 144B 136 V.P. Druzhinin et al. (NOVO)KURDADZE 83B JETPL 36 274 A.M. Kurdadze et al. (NOVO)Translated from ZETFP 36 221.DZHELYADIN 81B PL 102B 296 R.I. Dzhelyadin et al. (SERP)CORDIER 80 NP B172 13 A. Cordier et al. (LALO)DZHELYADIN 80 PL 94B 548 R.I. Dzhelyadin et al. (SERP)ROOS 80 LNC 27 321 M. Roos, A. Pellinen (HELS)BENKHEIRI 79 NP B150 268 P. Benkheiri et al. (EPOL, CERN, CDEF+)DZHELYADIN 79 PL 84B 143 R.I. Dzhelyadin et al. (SERP)COOPER 78B NP B146 1 A.M. Cooper et al. (TATA, CERN, CDEF+)QUENZER 78 PL 76B 512 A. Quenzer et al. (LALO)VANAPEL... 78 NP B133 245 G.W. van Apeldoorn et al. (ZEEM)WICKLUND 78 PR D17 1197 A.B. Wi
klund et al. (ANL)ANDREWS 77 PRL 38 198 D.E. Andrews et al. (ROCH)GESSAROLI 77 NP B126 382 R. Gessaroli et al. (BGNA, FIRZ, GENO+)KEYNE 76 PR D14 28 J. Keyne et al. (LOIC, SHMP)Also PR D8 2789 D.M. Binnie et al. (LOIC, SHMP)KALBFLEISCH 75 PR D11 987 G.R. Kalb
eis
h, R.C. Strand, J.W. Chapman (BNL+)AGUILAR-... 72B PR D6 29 M. Aguilar-Benitez et al. (BNL)APEL 72B PL 41B 234 W.D. Apel et al. (KARLK, KARLE, PISA)BASILE 72B Phil. Conf. 153 M. Basile et al. (CERN)BENAKSAS 72 PL 39B 289 D. Benaksas et al. (ORSAY)BENAKSAS 72B PL 42B 507 D. Benaksas et al. (ORSAY)BENAKSAS 72C PL 42B 511 D. Benaksas et al. (ORSAY)BORENSTEIN 72 PR D5 1559 S.R. Borenstein et al. (BNL, MICH)BROWN 72 PL 42B 117 R.M. Brown et al. (ILL, ILLC)DAKIN 72 PR D6 2321 J.T. Dakin et al. (PRIN)RATCLIFF 72 PL 38B 345 B.N. Rat
li� et al. (SLAC)ALVENSLEB... 71C PRL 27 888 H. Alvensleben et al. (DESY)BALDIN 71 SJNP 13 758 A.B. Baldin et al. (ITEP)Translated from YAF 13 1318.BEHREND 71 PRL 27 61 H.J. Behrend et al. (ROCH, CORN, FNAL)BIZZARRI 71 NP B27 140 R. Bizzarri et al. (CERN, CDEF)COYNE 71 NP B32 333 D.G. Coyne et al. (LRL)MOFFEIT 71 NP B29 349 K.C. Mo�eit et al. (LRL, UCB, SLAC+)ABRAMOVI... 70 NP B20 209 M. Abramovi
h et al. (CERN)BIGGS 70B PRL 24 1201 P.J. Biggs et al. (DARE)BIZZARRI 70 PRL 25 1385 R. Bizzarri et al. (ROMA, SYRA)ROOS 70 DNPL/R7 173 M. Roos (CERN)Pro
. Daresbury Study Weekend No. 1.AUGUSTIN 69D PL 28B 513 J.E. Augustin et al. (ORSAY)BIZZARRI 69 NP B14 169 R. Bizzarri et al. (CERN, CDEF)DEINET 69B PL 30B 426 W. Deinet et al. (KARL, CERN)JACQUET 69B NC 63A 743 F. Ja
quet et al. (EPOL, BERG)WILSON 69 Private Comm. R. Wilson (HARV)Also PR 178 2095 A.A. Wehmann et al. (HARV, CASE, SLAC+)ASTVACAT... 68 PL 27B 45 R.G. Astvatsaturov et al. (JINR, MOSU)BOLLINI 68C NC 56A 531 D. Bollini et al. (CERN, BGNA, STRB)BARASH 67B PR 156 1399 N. Barash et al. (COLU)FELDMAN 67C PR 159 1219 M. Feldman et al. (PENN)DIGIUGNO 66B NC 44A 1272 G. Di Giugno et al. (NAPL, FRAS, TRST)FLATTE 66 PR 145 1050 S.M. Flatte et al. (LRL)JAMES 66 PR 142 896 F.E. James, H.L. Kraybill (YALE, BNL)BARBARO-... 65 PRL 14 279 A. Barbaro-Galtieri, R.D. Tripp (LRL)BARMIN 64 JETP 18 1289 V.V. Barmin et al. (ITEP)Translated from ZETF 45 1879.

KRAEMER 64 PR 136 B496 R.W. Kraemer et al. (JHU, NWES, WOOD)BUSCHBECK 63 Siena Conf. 1 166 B. Bus
hbe
k et al. (VIEN, CERN, ANIK)
η′(958) IG (JPC ) = 0+(0−+)

η′(958) MASSη′(958) MASSη′(958) MASSη′(958) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT957.78 ±0.06 OUR AVERAGE957.78 ±0.06 OUR AVERAGE957.78 ±0.06 OUR AVERAGE957.78 ±0.06 OUR AVERAGE957.793±0.054±0.036 3.9k LIBBY 08 CLEO J/ψ → γ η′957.9 ±0.2 ±0.6 4800 WURZINGER 96 SPEC 1.68 pd → 3Heη′957.46 ±0.33 DUANE 74 MMS π− p → nMM958.2 ±0.5 1414 DANBURG 73 HBC 2.2 K− p → �η′958 ±1 400 JACOBS 73 HBC 2.9 K− p → �η′956.1 ±1.1 3415 1 BASILE 71 CNTR 1.6 π− p → nη′
• • • We do not use the following data for averages, �ts, limits, et
. • • •957.5 ±0.2 BAI 04J BES2 J/ψ → γ γπ+π−959 ±1 630 2 BELADIDZE 92C VES 36 π−Be → π− η′ ηBe958 ±1 340 2 ARMSTRONG 91B OMEG 300 pp → ppηπ+ π−958.2 ±0.4 622 2 AUGUSTIN 90 DM2 J/ψ → γ ηπ+π−957.8 ±0.2 2420 2 AUGUSTIN 90 DM2 J/ψ → γ γπ+π−956.3 ±1.0 143 2 GIDAL 87 MRK2 e+ e− →e+ e− ηπ+π−957.4 ±1.4 535 3 BASILE 71 CNTR 1.6 π− p → nη′957 ±1 RITTENBERG 69 HBC 1.7{2.7 K− p1Using all η′ de
ays.2 Systemati
 un
ertainty not estimated.3Using η′ de
ays into neutrals. Not independent of the other listed BASILE 71 η′ massmeasurement.

η′(958) WIDTHη′(958) WIDTHη′(958) WIDTHη′(958) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT0.197±0.009 OUR FIT0.197±0.009 OUR FIT0.197±0.009 OUR FIT0.197±0.009 OUR FIT0.230±0.021 OUR AVERAGE0.230±0.021 OUR AVERAGE0.230±0.021 OUR AVERAGE0.230±0.021 OUR AVERAGE0.226±0.017±0.014 2300 CZERWINSKI 10 MMS pp → ppη′0.40 ±0.22 4800 WURZINGER 96 SPEC 1.68 pd → 3Heη′0.28 ±0.10 1000 BINNIE 79 MMS 0 π− p → nMM
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.20 ±0.04 BAI 04J BES2 J/ψ → γ γπ+π−

η′(958) DECAY MODESη′(958) DECAY MODESη′(958) DECAY MODESη′(958) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 π+π−η (42.9 ±0.7 ) %�2 ρ0 γ (in
luding non-resonant
π+ π− γ) (29.1 ±0.5 ) %�3 π0π0 η (22.3 ±0.8 ) %�4 ωγ ( 2.62±0.13) %�5 ω e+ e− ( 2.0 ±0.4 ) × 10−4�6 γ γ ( 2.21±0.08) %�7 3π0 ( 2.20±0.20) × 10−3�8 µ+µ− γ ( 1.08±0.27) × 10−4�9 π+π−µ+µ− < 2.9 × 10−5 90%�10 π+π−π0 ( 3.82±0.35) × 10−3�11 π0 ρ0 < 4 % 90%�12 2(π+π−) ( 8.5 ±0.9 ) × 10−5�13 π+π−2π0 ( 1.8 ±0.4 ) × 10−4�14 2(π+π−) neutrals < 1 % 95%�15 2(π+π−)π0 < 1.9 × 10−3 90%�16 2(π+π−)2π0 < 1 % 95%�17 3(π+π−) < 3.1 × 10−5 90%�18 π+π− e+ e− ( 2.4 +1.3

−1.0 )× 10−3�19 π+ e−νe+ 
.
. < 2.1 × 10−4 90%�20 γ e+ e− ( 4.70±0.30) × 10−4�21 π0 γ γ < 8 × 10−4 90%�22 4π0 < 3.2 × 10−4 90%�23 e+ e− < 5.6 × 10−9 90%�24 invisible < 5 × 10−4 90%
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η′(958) Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Lepton family number (LF ) violating modesLepton family number (LF ) violating modesLepton family number (LF ) violating modesLepton family number (LF ) violating modes�25 π+π− P,CP < 6 × 10−5 90%�26 π0π0 P,CP < 4 × 10−4 90%�27 π0 e+ e− C [a℄ < 1.4 × 10−3 90%�28 ηe+ e− C [a℄ < 2.4 × 10−3 90%�29 3γ C < 1.0 × 10−4 90%�30 µ+µ−π0 C [a℄ < 6.0 × 10−5 90%�31 µ+µ− η C [a℄ < 1.5 × 10−5 90%�32 eµ LF < 4.7 × 10−4 90%[a℄ C parity forbids this to o

ur as a single-photon pro
ess.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the total width, a partial width, 2 
ombinationsof partial widths obtained from integrated 
ross se
tion, and 16bran
hing ratios uses 46 measurements and one 
onstraint to de-termine 9 parameters. The overall �t has a χ2 = 52.8 for 38degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x2 −2x3 −77 −58x4 −11 −13 2x6 −29 −25 32 −1x7 −24 −19 30 0 9x10 0 −2 −2 0 −1 −1x18 −4 −6 −5 −1 −3 −2 0� 25 5 −19 3 −71 −5 1 3x1 x2 x3 x4 x6 x7 x10 x18Mode Rate (MeV)�1 π+π−η 0.085 ±0.004�2 ρ0 γ (in
luding non-resonant
π+ π− γ) 0.0574 ±0.0028�3 π0π0 η 0.0440 ±0.0023�4 ωγ 0.00517±0.00035�6 γ γ 0.00435±0.00013�7 3π0 (4.3 ±0.4 )× 10−4�10 π+π−π0 (7.5 ±0.8 )× 10−4�18 π+π− e+ e− (4.7 +2.6

−1.9 ) × 10−4
η′(958) PARTIAL WIDTHSη′(958) PARTIAL WIDTHSη′(958) PARTIAL WIDTHSη′(958) PARTIAL WIDTHS�(γ γ

) �6�(γ γ
) �6�(γ γ
) �6�(γ γ
) �6VALUE (keV) EVTS DOCUMENT ID TECN COMMENT4.35±0.14 OUR FIT4.35±0.14 OUR FIT4.35±0.14 OUR FIT4.35±0.14 OUR FIT4.28±0.19 OUR AVERAGE4.28±0.19 OUR AVERAGE4.28±0.19 OUR AVERAGE4.28±0.19 OUR AVERAGE4.17±0.10±0.27 2000 1 ACCIARRI 98Q L3 e+ e− → e+ e−π+π− γ4.53±0.29±0.51 266 KARCH 92 CBAL e+ e− → e+ e− ηπ0 π03.61±0.13±0.48 2 BEHREND 91 CELL e+ e− → e+ e− η′(958)4.6 ±1.1 ±0.6 23 BARU 90 MD1 e+ e− → e+ e−π+π− γ4.57±0.25±0.44 BUTLER 90 MRK2 e+ e− → e+ e− η′(958)5.08±0.24±0.71 547 3 ROE 90 ASP e+ e− → e+ e− 2γ3.8 ±0.7 ±0.6 34 AIHARA 88C TPC e+ e− → e+ e− ηπ+π−4.9 ±0.5 ±0.5 136 4 WILLIAMS 88 CBAL e+ e− → e+ e− 2γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.7 ±0.6 ±0.9 143 5 GIDAL 87 MRK2 e+ e− → e+ e− ηπ+π−4.0 ±0.9 6 BARTEL 85E JADE e+ e− → e+ e− 2γ1No non-resonant π+π− 
ontribution found.2Reevaluated by us using B(η′ → ρ(770)γ) = (30.2 ± 1.3)%.3Reevaluated by us using B(η′ → γ γ) = (2.11 ± 0.13)%.4Reevaluated by us using B(η′ → γ γ) = (2.11 ± 0.13)%.5 Superseded by BUTLER 90.6 Systemati
 error not evaluated.�(e+ e−) �23�(e+ e−) �23�(e+ e−) �23�(e+ e−) �23VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<1.1× 10−3<1.1× 10−3<1.1× 10−3<1.1× 10−3 90 1,2 ACHASOV 15 SND 0.958 e+ e− → ππη
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.0× 10−3 90 2 ACHASOV 15 SND 0.958 e+ e− → ππη
<2.4× 10−3 90 2 AKHMETSHIN 15 CMD3 0.958 e+ e− → π+π− η1Combining data of ACHASOV 15 and AKHMETSHIN 15.2Using η and η′ bran
hing fra
tions from PDG 14.

η′(958) �(i)�(γ γ)/�(total)η′(958) �(i)�(γ γ)/�(total)η′(958) �(i)�(γ γ)/�(total)η′(958) �(i)�(γ γ)/�(total)This 
ombination of a partial width with the partial width into γ γ andwith the total width is obtained from the integrated 
ross se
tion into
hannel(i) in the γ γ annihilation.�(γ γ
)

× �(

ρ0 γ (in
luding non-resonant π+ π− γ))/�total �6�2/��(γ γ
)

× �(

ρ0 γ (in
luding non-resonant π+ π− γ))/�total �6�2/��(γ γ
)

× �(

ρ0 γ (in
luding non-resonant π+ π− γ))/�total �6�2/��(γ γ
)

× �(

ρ0 γ (in
luding non-resonant π+ π− γ))/�total �6�2/�VALUE (keV) EVTS DOCUMENT ID TECN COMMENT1.27±0.04 OUR FIT1.27±0.04 OUR FIT1.27±0.04 OUR FIT1.27±0.04 OUR FIT1.26±0.07 OUR AVERAGE1.26±0.07 OUR AVERAGE1.26±0.07 OUR AVERAGE1.26±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1.09±0.04±0.13 BEHREND 91 CELL e+ e− → e+ e− ρ(770)0 γ1.35±0.09±0.21 AIHARA 87 TPC e+ e− → e+ e− ργ1.13±0.04±0.13 867 ALBRECHT 87B ARG e+ e− → e+ e− ργ1.53±0.09±0.21 ALTHOFF 84E TASS e+ e− → e+ e− ργ1.14±0.08±0.11 243 BERGER 84B PLUT e+ e− → e+ e− ργ1.73±0.34±0.35 95 JENNI 83 MRK2 e+ e− → e+ e− ργ1.49±0.13±0.027 213 BARTEL 82B JADE e+ e− → e+ e− ργ

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.85±0.31±0.24 43 BEHREND 83B CELL e+ e− → e+ e− ργ�(γ γ
)

× �(

π0π0 η
)/�total �6�3/��(γ γ

)

× �(

π0π0 η
)/�total �6�3/��(γ γ

)

× �(

π0π0 η
)/�total �6�3/��(γ γ

)

× �(

π0π0 η
)/�total �6�3/�VALUE (keV) DOCUMENT ID TECN COMMENT0.97±0.05 OUR FIT0.97±0.05 OUR FIT0.97±0.05 OUR FIT0.97±0.05 OUR FIT0.92±0.06±0.110.92±0.06±0.110.92±0.06±0.110.92±0.06±0.11 1 KARCH 92 CBAL e+ e− → e+ e− ηπ0π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.95±0.05±0.08 2 KARCH 90 CBAL e+ e− → e+ e− ηπ0π01.00±0.08±0.10 2,3 ANTREASYAN 87 CBAL e+ e− → e+ e− ηπ0π01Reevaluated by us using B(η → γ γ) = (39.21± 0.34)%. Supersedes ANTREASYAN 87and KARCH 90.2 Superseded by KARCH 92.3Using BR(η → 2γ)=(38.9 ± 0.5)%.
η′(958) �(i)�(e+ e−)/�(total)η′(958) �(i)�(e+ e−)/�(total)η′(958) �(i)�(e+ e−)/�(total)η′(958) �(i)�(e+ e−)/�(total)�(π+π−η

)

× �(e+ e−)/�total �1�23/��(π+π−η
)

× �(e+ e−)/�total �1�23/��(π+π−η
)

× �(e+ e−)/�total �1�23/��(π+π−η
)

× �(e+ e−)/�total �1�23/�VALUE (10−3 eV) CL% DOCUMENT ID TECN COMMENT
<1.0<1.0<1.0<1.0 90 1 AKHMETSHIN 15 CMD3 0.958 e+ e− → π+π− η1AKHMETSHIN 15 reports [�(

η′(958) → π+π− η
)

× �(

η′(958) → e+ e−)/�total℄
× [B(η → 2γ)℄ < 4.1 × 10−4 eV whi
h we divide by our best value B(η → 2γ) =39.41 × 10−2.

η′(958) BRANCHING RATIOSη′(958) BRANCHING RATIOSη′(958) BRANCHING RATIOSη′(958) BRANCHING RATIOS�(π+π−η
)/�total �1/��(π+π−η
)/�total �1/��(π+π−η
)/�total �1/��(π+π−η
)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.429±0.007 OUR FIT0.429±0.007 OUR FIT0.429±0.007 OUR FIT0.429±0.007 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.424±0.011±0.004 1.2k 1 PEDLAR 09 CLEO J/ψ → γ η′1Not independent of other η′ bran
hing fra
tions and ratios in PEDLAR 09.�(π+π−η (
harged de
ay))/�total 0.286�1/��(π+π−η (
harged de
ay))/�total 0.286�1/��(π+π−η (
harged de
ay))/�total 0.286�1/��(π+π−η (
harged de
ay))/�total 0.286�1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.1228±0.0020 OUR FIT0.1228±0.0020 OUR FIT0.1228±0.0020 OUR FIT0.1228±0.0020 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.123 ±0.014 107 RITTENBERG 69 HBC 1.7{2.7 K− p0.10 ±0.04 10 LONDON 66 HBC 2.24 K−p → �2π+2π−π00.07 ±0.04 7 BADIER 65B HBC 3 K− p�(π+π−η (neutral de
ay))/�total 0.714�1/��(π+π−η (neutral de
ay))/�total 0.714�1/��(π+π−η (neutral de
ay))/�total 0.714�1/��(π+π−η (neutral de
ay))/�total 0.714�1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.307±0.005 OUR FIT0.307±0.005 OUR FIT0.307±0.005 OUR FIT0.307±0.005 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.314±0.026 281 RITTENBERG 69 HBC 1.7{2.7 K− p�(ρ0 γ (in
luding non-resonant π+ π− γ))/�total �2/��(ρ0 γ (in
luding non-resonant π+ π− γ))/�total �2/��(ρ0 γ (in
luding non-resonant π+ π− γ))/�total �2/��(ρ0 γ (in
luding non-resonant π+ π− γ))/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENT0.291±0.005 OUR FIT0.291±0.005 OUR FIT0.291±0.005 OUR FIT0.291±0.005 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.287±0.007±0.004 0.2k 1 PEDLAR 09 CLEO J/ψ → γ η′0.329±0.033 298 RITTENBERG 69 HBC 1.7{2.7 K− p0.2 ±0.1 20 LONDON 66 HBC 2.24 K− p → �π+π− γ0.34 ±0.09 35 BADIER 65B HBC 3 K− p1Not independent of other η′ bran
hing fra
tions and ratios in PEDLAR 09.�(ρ0 γ (in
luding non-resonant π+ π− γ))/�(π+π−η

) �2/�1�(ρ0 γ (in
luding non-resonant π+ π− γ))/�(π+π−η
) �2/�1�(ρ0 γ (in
luding non-resonant π+ π− γ))/�(π+π−η
) �2/�1�(ρ0 γ (in
luding non-resonant π+ π− γ))/�(π+π−η
) �2/�1VALUE DOCUMENT ID TECN COMMENT0.678±0.017 OUR FIT0.678±0.017 OUR FIT0.678±0.017 OUR FIT0.678±0.017 OUR FIT0.683±0.020 OUR AVERAGE0.683±0.020 OUR AVERAGE0.683±0.020 OUR AVERAGE0.683±0.020 OUR AVERAGE0.677±0.024±0.011 PEDLAR 09 CLE3 J/ψ → η′ γ0.69 ±0.03 ABLIKIM 06E BES2 J/ψ → η′ γ



883883883883See key on page 601 Meson Parti
le Listings
η′(958)�(

ρ0 γ (in
luding non-resonant π+ π− γ))/�(

π+π−η (neutral de
ay))�2/0.714�1�(

ρ0 γ (in
luding non-resonant π+ π− γ))/�(

π+π−η (neutral de
ay))�2/0.714�1�(

ρ0 γ (in
luding non-resonant π+ π− γ))/�(

π+π−η (neutral de
ay))�2/0.714�1�(

ρ0 γ (in
luding non-resonant π+ π− γ))/�(

π+π−η (neutral de
ay))�2/0.714�1VALUE EVTS DOCUMENT ID TECN COMMENT0.950±0.024 OUR FIT0.950±0.024 OUR FIT0.950±0.024 OUR FIT0.950±0.024 OUR FIT0.97 ±0.09 OUR AVERAGE0.97 ±0.09 OUR AVERAGE0.97 ±0.09 OUR AVERAGE0.97 ±0.09 OUR AVERAGE0.70 ±0.22 AMSLER 04B CBAR 0 p p → π+π− η1.07 ±0.17 BELADIDZE 92C VES 36 π−Be → π− η′ ηBe0.92 ±0.14 473 DANBURG 73 HBC 2.2 K− p → �X01.11 ±0.18 192 JACOBS 73 HBC 2.9 K− p → �X0�(

π0π0 η
)/�total �3/��(

π0π0 η
)/�total �3/��(

π0π0 η
)/�total �3/��(

π0π0 η
)/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENT0.223±0.008 OUR FIT0.223±0.008 OUR FIT0.223±0.008 OUR FIT0.223±0.008 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.235±0.013±0.004 3.2k 1 PEDLAR 09 CLEO J/ψ → γ η′1Not independent of other η′ bran
hing fra
tions and ratios in PEDLAR 09.�(

π0π0 η (3π0 de
ay))/�total 0.321�3/��(

π0π0 η (3π0 de
ay))/�total 0.321�3/��(

π0π0 η (3π0 de
ay))/�total 0.321�3/��(

π0π0 η (3π0 de
ay))/�total 0.321�3/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0716±0.0026 OUR FIT0.0716±0.0026 OUR FIT0.0716±0.0026 OUR FIT0.0716±0.0026 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.11 ±0.06 4 BENSINGER 70 DBC 2.2 π+ d�(

π0π0 η
)/�(

π+π−η
) �3/�1�(

π0π0 η
)/�(

π+π−η
) �3/�1�(

π0π0 η
)/�(

π+π−η
) �3/�1�(

π0π0 η
)/�(

π+π−η
) �3/�1VALUE DOCUMENT ID TECN COMMENT0.519±0.026 OUR FIT0.519±0.026 OUR FIT0.519±0.026 OUR FIT0.519±0.026 OUR FIT0.555±0.043±0.0130.555±0.043±0.0130.555±0.043±0.0130.555±0.043±0.013 PEDLAR 09 CLE3 J/ψ → η′ γ�(

ρ0 γ (in
luding non-resonant π+ π− γ))/�(

ππη
) �2/(�1+�3)�(

ρ0 γ (in
luding non-resonant π+ π− γ))/�(

ππη
) �2/(�1+�3)�(

ρ0 γ (in
luding non-resonant π+ π− γ))/�(

ππη
) �2/(�1+�3)�(

ρ0 γ (in
luding non-resonant π+ π− γ))/�(

ππη
) �2/(�1+�3)VALUE DOCUMENT ID TECN COMMENT0.446±0.012 OUR FIT0.446±0.012 OUR FIT0.446±0.012 OUR FIT0.446±0.012 OUR FIT0.43 ±0.02 ±0.020.43 ±0.02 ±0.020.43 ±0.02 ±0.020.43 ±0.02 ±0.02 BARBERIS 98C OMEG 450 pp → pf η′ ps

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.31 ±0.15 DAVIS 68 HBC 5.5 K− p�(

ωγ
)/�total �4/��(

ωγ
)/�total �4/��(

ωγ
)/�total �4/��(

ωγ
)/�total �4/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.62±0.13 OUR FIT2.62±0.13 OUR FIT2.62±0.13 OUR FIT2.62±0.13 OUR FIT2.55±0.03±0.162.55±0.03±0.162.55±0.03±0.162.55±0.03±0.16 33.2k 1 ABLIKIM 15AD BES3 J/ψ → η′ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.34±0.30±0.04 70 2 PEDLAR 09 CLEO J/ψ → γ η′1Using B(J/ψ → η′ γ) = (5.15± 0.16)×10−3 and B(ω → π+π−π0) = (89.2± 0.7)%.2Not independent of other η′ bran
hing fra
tions and ratios in PEDLAR 09.�(

ωγ
)/�(

π+π−η
) �4/�1�(

ωγ
)/�(

π+π−η
) �4/�1�(

ωγ
)/�(

π+π−η
) �4/�1�(

ωγ
)/�(

π+π−η
) �4/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.0610±0.0033 OUR FIT0.0610±0.0033 OUR FIT0.0610±0.0033 OUR FIT0.0610±0.0033 OUR FIT0.055 ±0.007 ±0.0010.055 ±0.007 ±0.0010.055 ±0.007 ±0.0010.055 ±0.007 ±0.001 PEDLAR 09 CLE3 J/ψ → η′ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.068 ±0.013 68 ZANFINO 77 ASPK 8.4 π− p�(

ωγ
)/�(

π0π0 η
) �4/�3�(

ωγ
)/�(

π0π0 η
) �4/�3�(

ωγ
)/�(

π0π0 η
) �4/�3�(

ωγ
)/�(

π0π0 η
) �4/�3VALUE DOCUMENT ID TECN COMMENT0.117±0.007 OUR FIT0.117±0.007 OUR FIT0.117±0.007 OUR FIT0.117±0.007 OUR FIT0.147±0.0160.147±0.0160.147±0.0160.147±0.016 ALDE 87B GAM2 38 π− p → n4γ�(

ω e+ e−)/�(

ωγ
) �5/�4�(

ω e+ e−)/�(

ωγ
) �5/�4�(

ω e+ e−)/�(

ωγ
) �5/�4�(

ω e+ e−)/�(

ωγ
) �5/�4VALUE (units 10−3) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •7.71±1.34±0.54 1 ABLIKIM 15AD BES3 J/ψ → η′ γ1Obtained from other ABLIKIM 15AD meausurements with 
ommon systemati
s takeninto a

ount.�(

ω e+ e−)/�total �5/��(

ω e+ e−)/�total �5/��(

ω e+ e−)/�total �5/��(

ω e+ e−)/�total �5/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.97±0.34±0.171.97±0.34±0.171.97±0.34±0.171.97±0.34±0.17 66 1 ABLIKIM 15AD BES3 J/ψ → η′ γ1Using B(J/ψ → η′ γ) = (5.15± 0.16)×10−3 and B(ω → π+π−π0) = (89.2± 0.7)%.�(

ρ0 γ (in
luding non-resonant π+ π− γ))/[�(

π+π−η
) +�(

π0π0 η
) +�(

ωγ
)
] �2/(�1+�3+�4)�(

ρ0 γ (in
luding non-resonant π+ π− γ))/[�(

π+π−η
) +�(

π0π0 η
) +�(

ωγ
)
] �2/(�1+�3+�4)�(

ρ0 γ (in
luding non-resonant π+ π− γ))/[�(

π+π−η
) +�(

π0π0 η
) +�(

ωγ
)
] �2/(�1+�3+�4)�(

ρ0 γ (in
luding non-resonant π+ π− γ))/[�(

π+π−η
) +�(

π0π0 η
) +�(

ωγ
)
] �2/(�1+�3+�4)VALUE DOCUMENT ID TECN COMMENT0.429±0.011 OUR FIT0.429±0.011 OUR FIT0.429±0.011 OUR FIT0.429±0.011 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.25 ±0.14 DAUBER 64 HBC 1.95 K−p
[�(

π0π0 η (
harged de
ay)) +�(

ω (
harged de
ay)γ)
]/�total(0.286�3+0.89�4)/�[�(

π0π0 η (
harged de
ay)) +�(

ω (
harged de
ay)γ)
]/�total(0.286�3+0.89�4)/�[�(

π0π0 η (
harged de
ay)) +�(

ω (
harged de
ay)γ)
]/�total(0.286�3+0.89�4)/�[�(

π0π0 η (
harged de
ay)) +�(

ω (
harged de
ay)γ)
]/�total(0.286�3+0.89�4)/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0871±0.0026 OUR FIT0.0871±0.0026 OUR FIT0.0871±0.0026 OUR FIT0.0871±0.0026 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.045 ±0.029 42 RITTENBERG 69 HBC 1.7{2.7 K− p

�(

π+π−neutrals)/�total (0.714�1+0.286�3+0.89�4)/��(

π+π−neutrals)/�total (0.714�1+0.286�3+0.89�4)/��(

π+π−neutrals)/�total (0.714�1+0.286�3+0.89�4)/��(

π+π−neutrals)/�total (0.714�1+0.286�3+0.89�4)/�VALUE EVTS DOCUMENT ID TECN COMMENT0.394±0.004 OUR FIT0.394±0.004 OUR FIT0.394±0.004 OUR FIT0.394±0.004 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.4 ±0.1 39 LONDON 66 HBC 2.24 K− p → �π+π− neutrals0.35 ±0.06 33 BADIER 65B HBC 3 K− p�(

γ γ
)/�total �6/��(

γ γ
)/�total �6/��(

γ γ
)/�total �6/��(

γ γ
)/�total �6/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.21±0.08 OUR FIT2.21±0.08 OUR FIT2.21±0.08 OUR FIT2.21±0.08 OUR FIT2.00±0.15 OUR AVERAGE2.00±0.15 OUR AVERAGE2.00±0.15 OUR AVERAGE2.00±0.15 OUR AVERAGE1.98+0.31

−0.27±0.07 114 1 WICHT 08 BELL B± → K± γ γ2.00±0.18 2 STANTON 80 SPEC 8.45 π− p → nπ+π− 2γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.25±0.16±0.03 0.3k 3 PEDLAR 09 CLEO J/ψ → γ η′1.8 ±0.2 6000 4 APEL 79 NICE 15{40 π− p → n2γ2.5 ±0.7 DUANE 74 MMS π− p → nMM1.71±0.33 68 DALPIAZ 72 CNTR 1.6 π− p → nX02.0 +0.8

−0.6 31 HARVEY 71 OSPK 3.65 π− p → nX01WICHT 08 reports [�(

η′(958) → γ γ
)/�total℄ × [B(B+ → η′K+)℄ =(1.40+0.16

−0.15+0.15
−0.12) × 10−6 whi
h we divide by our best value B(B+ → η′K+) =(7.06 ± 0.25)× 10−5. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2 In
ludes APEL 79 result.3Not independent of other η′ bran
hing fra
tions and ratios in PEDLAR 09.4Data is in
luded in STANTON 80 evaluation.�(

γ γ
)/�(

π+π−η
) �6/�1�(

γ γ
)/�(

π+π−η
) �6/�1�(

γ γ
)/�(

π+π−η
) �6/�1�(

γ γ
)/�(

π+π−η
) �6/�1VALUE DOCUMENT ID TECN COMMENT0.0514±0.0022 OUR FIT0.0514±0.0022 OUR FIT0.0514±0.0022 OUR FIT0.0514±0.0022 OUR FIT0.053 ±0.004 ±0.0010.053 ±0.004 ±0.0010.053 ±0.004 ±0.0010.053 ±0.004 ±0.001 PEDLAR 09 CLE3 J/ψ → η′ γ�(

γ γ
)/�(

ρ0 γ (in
luding non-resonant π+ π− γ)) �6/�2�(

γ γ
)/�(

ρ0 γ (in
luding non-resonant π+ π− γ)) �6/�2�(

γ γ
)/�(

ρ0 γ (in
luding non-resonant π+ π− γ)) �6/�2�(

γ γ
)/�(

ρ0 γ (in
luding non-resonant π+ π− γ)) �6/�2VALUE DOCUMENT ID TECN COMMENT0.0758±0.0033 OUR FIT0.0758±0.0033 OUR FIT0.0758±0.0033 OUR FIT0.0758±0.0033 OUR FIT0.080 ±0.0080.080 ±0.0080.080 ±0.0080.080 ±0.008 ABLIKIM 06E BES2 J/ψ → η′ γ�(

γ γ
)/�(

π0π0 η
) �6/�3�(

γ γ
)/�(

π0π0 η
) �6/�3�(

γ γ
)/�(

π0π0 η
) �6/�3�(

γ γ
)/�(

π0π0 η
) �6/�3VALUE DOCUMENT ID TECN COMMENT0.099±0.004 OUR FIT0.099±0.004 OUR FIT0.099±0.004 OUR FIT0.099±0.004 OUR FIT0.105±0.010 OUR AVERAGE0.105±0.010 OUR AVERAGE0.105±0.010 OUR AVERAGE0.105±0.010 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.0.091±0.009 AMSLER 93 CBAR 0.0 p p0.112±0.002±0.006 ALDE 87B GAM2 38 π− p → n2γ�(

γ γ
)/�(

π0π0 η (neutral de
ay)) �6/0.714�3�(

γ γ
)/�(

π0π0 η (neutral de
ay)) �6/0.714�3�(

γ γ
)/�(

π0π0 η (neutral de
ay)) �6/0.714�3�(

γ γ
)/�(

π0π0 η (neutral de
ay)) �6/0.714�3VALUE EVTS DOCUMENT ID TECN COMMENT0.139±0.006 OUR FIT0.139±0.006 OUR FIT0.139±0.006 OUR FIT0.139±0.006 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.188±0.058 16 APEL 72 OSPK 3.8 π− p → nX0�(neutrals)/�total (0.714�3+0.09�4+�6)/��(neutrals)/�total (0.714�3+0.09�4+�6)/��(neutrals)/�total (0.714�3+0.09�4+�6)/��(neutrals)/�total (0.714�3+0.09�4+�6)/�VALUE EVTS DOCUMENT ID TECN COMMENT0.184±0.006 OUR FIT0.184±0.006 OUR FIT0.184±0.006 OUR FIT0.184±0.006 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.185±0.022 535 BASILE 71 CNTR 1.6 π− p → nX00.189±0.026 123 RITTENBERG 69 HBC 1.7{2.7 K− p�(3π0)/�total �7/��(3π0)/�total �7/��(3π0)/�total �7/��(3π0)/�total �7/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.20±0.20 OUR FIT2.20±0.20 OUR FIT2.20±0.20 OUR FIT2.20±0.20 OUR FIT3.7 ±0.4 OUR AVERAGE3.7 ±0.4 OUR AVERAGE3.7 ±0.4 OUR AVERAGE3.7 ±0.4 OUR AVERAGE4.79±0.59±1.14 183 1 ABLIKIM 15P BES3 J/ψ → K+K− 3π3.56±0.22±0.34 309 ABLIKIM 12E BES3 J/ψ → γ (3π0)1We have added all systemati
 un
ertainties in quadrature to a single value.�(3π0)/�(

π0π0 η
) �7/�3�(3π0)/�(

π0π0 η
) �7/�3�(3π0)/�(

π0π0 η
) �7/�3�(3π0)/�(

π0π0 η
) �7/�3VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT99± 9 OUR FIT99± 9 OUR FIT99± 9 OUR FIT99± 9 OUR FIT78±10 OUR AVERAGE78±10 OUR AVERAGE78±10 OUR AVERAGE78±10 OUR AVERAGE86±19 235 BLIK 08 GAMS 32 π− p → η′ n74±15 ALDE 87B GAM2 38 π− p → n6γ75±18 BINON 84 GAM2 30{40 π− p → n6γ�(

µ+µ− γ
)/�(

γ γ
) �8/�6�(

µ+µ− γ
)/�(

γ γ
) �8/�6�(

µ+µ− γ
)/�(

γ γ
) �8/�6�(

µ+µ− γ
)/�(

γ γ
) �8/�6VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.9±1.24.9±1.24.9±1.24.9±1.2 33 VIKTOROV 80 CNTR 25,33 π− p → 2µγ



884884884884MesonParti
le Listings
η′(958)�(

π+π−µ+µ−)/�total �9/��(

π+π−µ+µ−)/�total �9/��(

π+π−µ+µ−)/�total �9/��(

π+π−µ+µ−)/�total �9/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.29 90 1 ABLIKIM 13O BES3 J/ψ → γ η′
<2.4 90 2 NAIK 09 CLEO J/ψ → γ η′1Using �2/� = (29.3 ± 0.6)% from PDG 12.2Not independent of measured value of �9/�1 from NAIK 09.�(

π+π−µ+µ−)/�(

π+π− η
) �9/�1�(

π+π−µ+µ−)/�(

π+π− η
) �9/�1�(

π+π−µ+µ−)/�(

π+π− η
) �9/�1�(

π+π−µ+µ−)/�(

π+π− η
) �9/�1VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.5<0.5<0.5<0.5 90 1 NAIK 09 CLEO J/ψ → γ η′1NAIK 09 reports [�(

η′(958) → π+π−µ+µ−
)/�(

η′(958) → π+π− η
)℄ / [B(η →2γ)℄ < 1.3× 10−3 whi
h we multiply by our best value B(η → 2γ) = 39.41× 10−2.�(

π+π−µ+µ−)/�(

ρ0 γ (in
luding non-resonant π+ π− γ)) �9/�2�(

π+π−µ+µ−)/�(

ρ0 γ (in
luding non-resonant π+ π− γ)) �9/�2�(

π+π−µ+µ−)/�(

ρ0 γ (in
luding non-resonant π+ π− γ)) �9/�2�(

π+π−µ+µ−)/�(

ρ0 γ (in
luding non-resonant π+ π− γ)) �9/�2VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.0<1.0<1.0<1.0 90 ABLIKIM 13O BES3 J/ψ → γ η′�(

π+π−π0)/�total �10/��(

π+π−π0)/�total �10/��(

π+π−π0)/�total �10/��(

π+π−π0)/�total �10/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.82±0.35 OUR FIT3.82±0.35 OUR FIT3.82±0.35 OUR FIT3.82±0.35 OUR FIT3.9 ±0.4 OUR AVERAGE3.9 ±0.4 OUR AVERAGE3.9 ±0.4 OUR AVERAGE3.9 ±0.4 OUR AVERAGE4.28±0.49±1.11 78 1 ABLIKIM 15P BES3 J/ψ → K+K− 3π3.83±0.15±0.39 1014 ABLIKIM 12E BES3 J/ψ → γ (π+π−π0)3.7 +1.1
−0.9 ±0.4 2 NAIK 09 CLEO J/ψ → γ η′1We have added all systemati
 un
ertainties in quadrature to a single value.2Not independent of measured value of �10/�1 from NAIK 09.�(

π+π−π0)/�(

π+π− η
) �10/�1�(

π+π−π0)/�(

π+π− η
) �10/�1�(

π+π−π0)/�(

π+π− η
) �10/�1�(

π+π−π0)/�(

π+π− η
) �10/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT8.9 ±0.8 OUR FIT8.9 ±0.8 OUR FIT8.9 ±0.8 OUR FIT8.9 ±0.8 OUR FIT8.28+2.49

−2.12±0.048.28+2.49
−2.12±0.048.28+2.49
−2.12±0.048.28+2.49
−2.12±0.04 20 1 NAIK 09 CLEO J/ψ → γ η′1NAIK 09 reports [�(

η′(958) → π+π−π0)/�(

η′(958) → π+π− η
)℄ / [B(η → 2γ)℄ =(21+6

−5 ± 2)×10−3 whi
h we multiply by our best value B(η → 2γ) = (39.41± 0.20)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.�(

π0 ρ0)/�total �11/��(

π0 ρ0)/�total �11/��(

π0 ρ0)/�total �11/��(

π0 ρ0)/�total �11/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.04<0.04<0.04<0.04 90 RITTENBERG 65 HBC 2.7 K− p�(2(π+π−))/�total �12/��(2(π+π−))/�total �12/��(2(π+π−))/�total �12/��(2(π+π−))/�total �12/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT8.5±0.9±0.38.5±0.9±0.38.5±0.9±0.38.5±0.9±0.3 199 1 ABLIKIM 14M BES3 J/ψ → γ η′
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 24 90 2 NAIK 09 CLEO J/ψ → γ η′
<1000 90 RITTENBERG 69 HBC 1.7{2.7 K− p1ABLIKIM 14M reports [�(

η′(958) → 2(π+π−))/�total℄ × [B(J/ψ(1S) → γ η′(958))℄= (4.40 ± 0.35 ± 0.30) × 10−7 whi
h we divide by our best value B(J/ψ(1S) →
γ η′(958)) = (5.15 ± 0.16) × 10−3. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2Not independent of measured value of �12/�1 from NAIK 09.�(2(π+π−))/�(

π+π− η
) �12/�1�(2(π+π−))/�(

π+π− η
) �12/�1�(2(π+π−))/�(

π+π− η
) �12/�1�(2(π+π−))/�(

π+π− η
) �12/�1VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.6<0.6<0.6<0.6 90 1 NAIK 09 CLEO J/ψ → γ η′1NAIK 09 reports [�(

η′(958) → 2(π+π−))/�(

η′(958) → π+π− η
)℄ / [B(η → 2γ)℄

< 1.4× 10−3 whi
h we multiply by our best value B(η → 2γ) = 39.41× 10−2.�(

π+π−2π0)/�total �13/��(

π+π−2π0)/�total �13/��(

π+π−2π0)/�total �13/��(

π+π−2π0)/�total �13/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT1.8±0.4±0.11.8±0.4±0.11.8±0.4±0.11.8±0.4±0.1 84 1 ABLIKIM 14M BES3 J/ψ → γ η′
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<27 90 2 NAIK 09 CLEO J/ψ → γ η′1ABLIKIM 14M reports [�(

η′(958) → π+π− 2π0)/�total℄ × [B(J/ψ(1S) → γ η′(958))℄= (9.38±1.79±0.89)×10−7 whi
h we divide by our best value B(J/ψ(1S) → γ η′(958))= (5.15 ± 0.16)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Not independent of measured value of �13/�1 from NAIK 09.�(

π+π−2π0)/�(

π+π−η
) �13/�1�(

π+π−2π0)/�(

π+π−η
) �13/�1�(

π+π−2π0)/�(

π+π−η
) �13/�1�(

π+π−2π0)/�(

π+π−η
) �13/�1VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<6<6<6<6 90 1 NAIK 09 CLEO J/ψ → γ η′1NAIK 09 reports [�(

η′(958) → π+π− 2π0)/�(

η′(958) → π+π− η
)℄ / [B(η → 2γ)℄

< 15 × 10−3 whi
h we multiply by our best value B(η → 2γ) = 39.41 × 10−2.

�(2(π+π−) neutrals)/�total �14/��(2(π+π−) neutrals)/�total �14/��(2(π+π−) neutrals)/�total �14/��(2(π+π−) neutrals)/�total �14/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.01<0.01<0.01<0.01 95 DANBURG 73 HBC 2.2 K− p → �X0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.01 90 RITTENBERG 69 HBC 1.7{2.7 K− p�(2(π+π−)π0)/�total �15/��(2(π+π−)π0)/�total �15/��(2(π+π−)π0)/�total �15/��(2(π+π−)π0)/�total �15/�VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.002 90 1 NAIK 09 CLEO J/ψ → γ η′
<0.01 90 RITTENBERG 69 HBC 1.7{2.7 K− p1Not independent of measured value of �15/�1 from NAIK 09.�(2(π+π−)π0)/�(

π+π− η
) �15/�1�(2(π+π−)π0)/�(

π+π− η
) �15/�1�(2(π+π−)π0)/�(

π+π− η
) �15/�1�(2(π+π−)π0)/�(

π+π− η
) �15/�1VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<4<4<4<4 90 1 NAIK 09 CLEO J/ψ → γ η′1NAIK 09 reports [�(

η′(958) → 2(π+π−)π0)/�(

η′(958) → π+π− η
)℄ / [B(η → 2γ)℄

< 11 × 10−3 whi
h we multiply by our best value B(η → 2γ) = 39.41 × 10−2.�(2(π+π−)2π0)/�total �16/��(2(π+π−)2π0)/�total �16/��(2(π+π−)2π0)/�total �16/��(2(π+π−)2π0)/�total �16/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.01<0.01<0.01<0.01 95 KALBFLEISCH 64B HBC K− p → �2(π+π−)+MM
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.01 90 LONDON 66 HBC Compilation�(3(π+π−))/�total �17/��(3(π+π−))/�total �17/��(3(π+π−))/�total �17/��(3(π+π−))/�total �17/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
< 3.1< 3.1< 3.1< 3.1 90 1 ABLIKIM 13U BES3 J/ψ → γ 3(π+π−)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 53 90 2 NAIK 09 CLEO J/ψ → γ η′
<500 95 KALBFLEISCH 64B HBC K−p → �2(π+π−)1Using B(J/ψ → γ η′(958)) = (5.16 ± 0.15) × 10−3.2Not independent of measured value of �17/�1 from NAIK 09.�(3(π+π−))/�(

π+π− η
) �17/�1�(3(π+π−))/�(

π+π− η
) �17/�1�(3(π+π−))/�(

π+π− η
) �17/�1�(3(π+π−))/�(

π+π− η
) �17/�1VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<1.2<1.2<1.2<1.2 90 1 NAIK 09 CLEO J/ψ → γ η′1NAIK 09 reports [�(

η′(958) → 3(π+π−))/�(

η′(958) → π+π− η
)℄ / [B(η → 2γ)℄

< 3.0× 10−3 whi
h we multiply by our best value B(η → 2γ) = 39.41× 10−2.�(

π+π− e+ e−)/�total �18/��(

π+π− e+ e−)/�total �18/��(

π+π− e+ e−)/�total �18/��(

π+π− e+ e−)/�total �18/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT2.4 +1.3
−1.0 OUR FIT2.4 +1.3
−1.0 OUR FIT2.4 +1.3
−1.0 OUR FIT2.4 +1.3
−1.0 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.11±0.12±0.14 429 1 ABLIKIM 13O BES3 J/ψ → γ η′2.5 +1.2
−0.9 ±0.5 2 NAIK 09 CLEO J/ψ → γ η′

<6 90 RITTENBERG 65 HBC 2.7 K− p1Using �2/� = (29.3 ± 0.6)% from PDG 12.2Not independent of measured value of �18/�1 from NAIK 09.�(

π+π− e+ e−)/�(

π+π− η
) �18/�1�(

π+π− e+ e−)/�(

π+π− η
) �18/�1�(

π+π− e+ e−)/�(

π+π− η
) �18/�1�(

π+π− e+ e−)/�(

π+π− η
) �18/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT5.6 +3.0

−2.2 OUR FIT5.6 +3.0
−2.2 OUR FIT5.6 +3.0
−2.2 OUR FIT5.6 +3.0
−2.2 OUR FIT5.52+3.00
−2.30±0.035.52+3.00
−2.30±0.035.52+3.00
−2.30±0.035.52+3.00
−2.30±0.03 8 1 NAIK 09 CLEO J/ψ → γ η′1NAIK 09 reports [�(

η′(958) → π+π− e+ e−)/�(

η′(958) → π+π− η
)℄ / [B(η →2γ)℄ = (14+7

−5 ± 3) × 10−3 whi
h we multiply by our best value B(η → 2γ) =(39.41 ± 0.20) × 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(

π+π− e+ e−)/�(

ρ0γ (in
luding non-resonant π+ π− γ)) �18/�2�(

π+π− e+ e−)/�(

ρ0γ (in
luding non-resonant π+ π− γ)) �18/�2�(

π+π− e+ e−)/�(

ρ0γ (in
luding non-resonant π+ π− γ)) �18/�2�(

π+π− e+ e−)/�(

ρ0γ (in
luding non-resonant π+ π− γ)) �18/�2VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT7.2±0.4±0.57.2±0.4±0.57.2±0.4±0.57.2±0.4±0.5 429 ABLIKIM 13O BES3 J/ψ → γ η′�(

π+ e−νe+ 
.
.)/�(

π+π−η
) �19/�1�(

π+ e−νe+ 
.
.)/�(

π+π−η
) �19/�1�(

π+ e−νe+ 
.
.)/�(

π+π−η
) �19/�1�(

π+ e−νe+ 
.
.)/�(

π+π−η
) �19/�1VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<5.0<5.0<5.0<5.0 90 ABLIKIM 13G BES3 J/ψ → φη′�(

γ e+ e−)/�total �20/��(

γ e+ e−)/�total �20/��(

γ e+ e−)/�total �20/��(

γ e+ e−)/�total �20/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.9 90 BRIERE 00 CLEO 10.6 e+ e−�(

γ e+ e−)/�(

γ γ
) �20/�6�(

γ e+ e−)/�(

γ γ
) �20/�6�(

γ e+ e−)/�(

γ γ
) �20/�6�(

γ e+ e−)/�(

γ γ
) �20/�6VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.13±0.09±0.072.13±0.09±0.072.13±0.09±0.072.13±0.09±0.07 864 ABLIKIM 15O BES3 J/ψ → γ e+ e−



885885885885See key on page 601 Meson Parti
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η′(958)�(π0 γ γ

)/�(π0π0 η
) �21/�3�(π0 γ γ

)/�(π0π0 η
) �21/�3�(π0 γ γ

)/�(π0π0 η
) �21/�3�(π0 γ γ

)/�(π0π0 η
) �21/�3VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<37<37<37<37 90 ALDE 87B GAM2 38 π− p → n4γ�(4π0)/�total �22/��(4π0)/�total �22/��(4π0)/�total �22/��(4π0)/�total �22/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.2× 10−4<3.2× 10−4<3.2× 10−4<3.2× 10−4 90 DONSKOV 14 GAM4 32.5 π− p → η′ n�(4π0)/�(π0π0 η

) �22/�3�(4π0)/�(π0π0 η
) �22/�3�(4π0)/�(π0π0 η
) �22/�3�(4π0)/�(π0π0 η
) �22/�3VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<23 90 ALDE 87B GAM2 38 π− p → n8γ�(e+ e−)/�total �23/��(e+ e−)/�total �23/��(e+ e−)/�total �23/��(e+ e−)/�total �23/�VALUE CL% DOCUMENT ID TECN COMMENT
< 5.6× 10−9< 5.6× 10−9< 5.6× 10−9< 5.6× 10−9 90 1 ACHASOV 15 SND 0.958 e+ e− → ππη

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<12 × 10−9 90 2 AKHMETSHIN 15 CMD3 0.958 e+ e− → π+π− η

< 2.1× 10−7 90 VOROBYEV 88 ND e+ e− → π+π− η1Combining data of ACHASOV 15 and AKHMETSHIN 15 and using �(η′) = 0.198±0.009MeV.2Using �
η′(958) = 198 ± 9 keV, B(η′(958) → π+π− η) = (42.9 ± 0.7)%, and B(η →

γ γ) = (39.41 ± 0.20)%.�(invisible)/�total �24/��(invisible)/�total �24/��(invisible)/�total �24/��(invisible)/�total �24/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<9.5 90 1 NAIK 09 CLEO J/ψ → γ η′1Not independent of measured value of �24/�1 from NAIK 09.�(invisible)/�(γ γ
) �24/�6�(invisible)/�(γ γ
) �24/�6�(invisible)/�(γ γ
) �24/�6�(invisible)/�(γ γ
) �24/�6VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT

<2.4<2.4<2.4<2.4 90 ABLIKIM 13 BES3 J/ψ → φη′
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.69 90 ABLIKIM 06Q BES J/ψ → φη′�(invisible)/�(π+π− η
) �24/�1�(invisible)/�(π+π− η
) �24/�1�(invisible)/�(π+π− η
) �24/�1�(invisible)/�(π+π− η
) �24/�1VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2.1 90 1 NAIK 09 CLEO J/ψ → γ η′1NAIK 09 reports [�(

η′(958) → invisible)/�(

η′(958) → π+π− η
)℄ / [B(η → 2γ)℄

< 5.4× 10−3 whi
h we multiply by our best value B(η → 2γ) = 39.41× 10−2.�(π+π−)/�total �25/��(π+π−)/�total �25/��(π+π−)/�total �25/��(π+π−)/�total �25/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 0.6< 0.6< 0.6< 0.6 90 1 ABLIKIM 11G BES3 J/ψ → γπ+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 29 90 2 MORI 07A BELL γ γ → π+π−
< 3.3 90 3 MORI 07A BELL γ γ → π+π−
<800 95 DANBURG 73 HBC 2.2 K− p → �X0
<200 90 RITTENBERG 69 HBC 1.7{2.7 K− p1ABLIKIM 11G reports [�(

η′(958) → π+π−
)/�total℄ × [B(J/ψ(1S) → γ η′(958))℄ <2.84×10−7 whi
h we divide by our best value B(J/ψ(1S) → γ η′(958)) = 5.15×10−3.2Taking into a

ount interferen
e with the γ γ → π+π− 
ontinuum.3Without interferen
e with the γ γ → π+π− 
ontinuum.�(π0π0)/�total �26/��(π0π0)/�total �26/��(π0π0)/�total �26/��(π0π0)/�total �26/�VALUE CL% DOCUMENT ID TECN COMMENT

<4× 10−4<4× 10−4<4× 10−4<4× 10−4 90 1 ABLIKIM 11G BES3 J/ψ → γπ0π01ABLIKIM 11G reports [�(

η′(958) → π+π−
)/�total℄ × [B(J/ψ(1S) → γ η′(958))℄ <2.84×10−7 whi
h we divide by our best value B(J/ψ(1S) → γ η′(958)) = 5.15×10−3.�(π0π0)/�(π0π0 η

) �26/�3�(π0π0)/�(π0π0 η
) �26/�3�(π0π0)/�(π0π0 η
) �26/�3�(π0π0)/�(π0π0 η
) �26/�3VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<45<45<45<45 90 ALDE 87B GAM2 38 π− p → n4γ�(π0 e+ e−)/�total �27/��(π0 e+ e−)/�total �27/��(π0 e+ e−)/�total �27/��(π0 e+ e−)/�total �27/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
< 1.4< 1.4< 1.4< 1.4 90 BRIERE 00 CLEO 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<13 90 RITTENBERG 65 HBC 2.7 K− p�(ηe+ e−)/�total �28/��(ηe+ e−)/�total �28/��(ηe+ e−)/�total �28/��(ηe+ e−)/�total �28/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
< 2.4< 2.4< 2.4< 2.4 90 BRIERE 00 CLEO 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<11 90 RITTENBERG 65 HBC 2.7 K− p

�(3γ)/�(π0π0 η
) �29/�3�(3γ)/�(π0π0 η
) �29/�3�(3γ)/�(π0π0 η
) �29/�3�(3γ)/�(π0π0 η
) �29/�3VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<4.6<4.6<4.6<4.6 90 ALDE 87B GAM2 38 π− p → n3γ�(µ+µ−π0)/�total �30/��(µ+µ−π0)/�total �30/��(µ+µ−π0)/�total �30/��(µ+µ−π0)/�total �30/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<6.0<6.0<6.0<6.0 90 DZHELYADIN 81 CNTR 30 π− p → η′ n�(µ+µ− η

)/�total �31/��(µ+µ− η
)/�total �31/��(µ+µ− η
)/�total �31/��(µ+µ− η
)/�total �31/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<1.5<1.5<1.5<1.5 90 DZHELYADIN 81 CNTR 30 π− p → η′ n�(eµ
)/�total �32/��(eµ
)/�total �32/��(eµ
)/�total �32/��(eµ
)/�total �32/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<4.7<4.7<4.7<4.7 90 BRIERE 00 CLEO 10.6 e+ e−
η′(958) → ηππ DECAY PARAMETERSη′(958) → ηππ DECAY PARAMETERSη′(958) → ηππ DECAY PARAMETERSη′(958) → ηππ DECAY PARAMETERS

∣

∣MATRIX ELEMENT∣

∣

2 = ∣

∣1 + αY∣

∣

2 + CX + DX2∣

∣MATRIX ELEMENT∣

∣

2 = ∣

∣1 + αY∣

∣

2 + CX + DX2∣

∣MATRIX ELEMENT∣

∣

2 = ∣

∣1 + αY∣

∣

2 + CX + DX2∣

∣MATRIX ELEMENT∣

∣

2 = ∣

∣1 + αY∣

∣

2 + CX + DX2X and Y are Dalitz variables; α is 
omplex and C, and D are real-valued.Parameters C and D are not ne
essarily equal to 
 and d, respe
tively, inthe generalized parameterization following this one. May be di�erent for
η′(958) → ηπ+π− and η′(958) → ηπ0 π0 de
ays. Be
ause of di�erentinitial assumptions and strong 
orrelations of the parameters we do notaverage the parameters in the se
tion below.Re(α) de
ay parameterRe(α) de
ay parameterRe(α) de
ay parameterRe(α) de
ay parameterVALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.033±0.005±0.003 44k 1 ABLIKIM 11 BES3 J/ψ → γ ηπ+π−
−0.072±0.012±0.006 7k 2 AMELIN 05A VES 28 π−A →

ηπ+π−π−A∗
−0.021±0.018±0.017 6.7k 3 BRIERE 00 CLEO 10.6 e+ e− →

ηπ+π−X
−0.058±0.013±0.003 5.4k 4 ALDE 86 GAM2 38 π− p → nηπ0 π0
−0.08 ±0.03 4,5 KALBFLEISCH 74 RVUE η′ → ηπ+π−1See ABLIKIM 11 for the full 
orrelation matrix.2 Superseded by DOROFEEV 07, whi
h found this parameterization una

eptable. Seebelow.3Assuming Im(α) = 0, C = 0, and D = 0.4Assuming C = 0.5From the data of DAUBER 64, RITTENBERG 69, AGUILAR-BENITEZ 72B, JA-COBS 73, and DANBURG 73.Im(α) de
ay parameterIm(α) de
ay parameterIm(α) de
ay parameterIm(α) de
ay parameterVALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.000±0.049±0.001 44k 1 ABLIKIM 11 BES3 J/ψ → γ ηπ+π−0.0 ±0.1 ±0.0 7k 2 AMELIN 05A VES 28 π−A →

ηπ+π−π−A∗
−0.00 ±0.13 ±0.00 5.4k 3 ALDE 86 GAM2 38 π− p → nηπ0 π00.0 ±0.3 3,4 KALBFLEISCH 74 RVUE η′ → ηπ+π−1See ABLIKIM 11 for the full 
orrelation matrix.2 Superseded by DOROFEEV 07, whi
h found this parameterization una

eptable. Seebelow.3Assuming C = 0.4From the data of DAUBER 64, RITTENBERG 69, AGUILAR-BENITEZ 72B, JA-COBS 73, and DANBURG 73.C de
ay parameterC de
ay parameterC de
ay parameterC de
ay parameterVALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.018±0.009±0.003 44k 1 ABLIKIM 11 BES3 J/ψ → γ ηπ+π−0.020±0.018±0.004 7k 2 AMELIN 05A VES 28 π−A →

ηπ+π−π−A∗1See ABLIKIM 11 for the full 
orrelation matrix.2 Superseded by DOROFEEV 07, whi
h found this parameterization una

eptable. Seebelow.D de
ay parameterD de
ay parameterD de
ay parameterD de
ay parameterVALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.059±0.012±0.004 44k 1 ABLIKIM 11 BES3 J/ψ → γ ηπ+π−
−0.066±0.030±0.015 7k 2 AMELIN 05A VES 28 π−A →

ηπ+π−π−A∗0.00 ±0.03 ±0.00 5.4k 3 ALDE 86 GAM2 38 π− p → nηπ0 π00 3,4 KALBFLEISCH 74 RVUE η′ → ηπ+π−1See ABLIKIM 11 for the full 
orrelation matrix.2 Superseded by DOROFEEV 07, whi
h found this parameterization una

eptable. Seebelow.3Assuming C = 0.4From the data of DAUBER 64, RITTENBERG 69, AGUILAR-BENITEZ 72B, JA-COBS 73, and DANBURG 73.
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η′(958), f0(980)

η′(958) → ηππ DECAY PARAMETERSη′(958) → ηππ DECAY PARAMETERSη′(958) → ηππ DECAY PARAMETERSη′(958) → ηππ DECAY PARAMETERS
∣

∣MATRIX ELEMENT∣

∣

2 ∝ 1 + a Y + b Y 2 + 
 X + d X 2∣

∣MATRIX ELEMENT∣

∣

2 ∝ 1 + a Y + b Y 2 + 
 X + d X 2∣

∣MATRIX ELEMENT∣

∣

2 ∝ 1 + a Y + b Y 2 + 
 X + d X 2∣

∣MATRIX ELEMENT∣

∣

2 ∝ 1 + a Y + b Y 2 + 
 X + d X 2X and Y are Dalitz variables and a, b, 
, and d are real-valued parameters.May be di�erent for η′(958) → ηπ+π− and η′(958) → ηπ0π0 de
ays.We do not average measurements in the se
tion below be
ause parametervalues from ea
h experiment are strongly 
orrelated.a de
ay parametera de
ay parametera de
ay parametera de
ay parameterVALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.047±0.011±0.003 44k 1 ABLIKIM 11 BES3 J/ψ → γ ηπ+π−
−0.066±0.016±0.003 15k 2 BLIK 09 GAM4 32.5 π− p → η′ n
−0.127±0.016±0.008 20k 3 DOROFEEV 07 VES 27 π− p → η′ n,

π−A → η′π−A∗1See ABLIKIM 11 for the full 
orrelation matrix.2 From η′ → ηπ0π0 de
ay.3 From η′ → ηπ+π− de
ay.b de
ay parameterb de
ay parameterb de
ay parameterb de
ay parameterVALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.069±0.019±0.009 44k 1 ABLIKIM 11 BES3 J/ψ → γ ηπ+π−
−0.063±0.028±0.004 15k 2 BLIK 09 GAM4 32.5 π− p → η′ n
−0.106±0.028±0.014 20k 3 DOROFEEV 07 VES 27 π− p → η′ n,

π−A → η′π−A∗1See ABLIKIM 11 for the full 
orrelation matrix.2 From η′ → ηπ0π0 de
ay.3 From η′ → ηπ+π− de
ay.
 de
ay parameter
 de
ay parameter
 de
ay parameter
 de
ay parameterVALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.019±0.011±0.003 44k 1 ABLIKIM 11 BES3 J/ψ → γ ηπ+π−
−0.107±0.096±0.003 15k 2 BLIK 09 GAM4 32.5 π− p → η′ n0.015±0.011±0.014 20k 3 DOROFEEV 07 VES 27 π− p → η′ n,

π−A → η′π−A∗1See ABLIKIM 11 for the full 
orrelation matrix.2 From η′ → ηπ0π0 de
ay.3 From η′ → ηπ+π− de
ay.d de
ay parameterd de
ay parameterd de
ay parameterd de
ay parameterVALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.073±0.012±0.003 44k 1 ABLIKIM 11 BES3 J/ψ → γ ηπ+π−0.018±0.078±0.006 15k 2 BLIK 09 GAM4 32.5 π− p → η′ n
−0.082±0.017±0.008 20k 3 DOROFEEV 07 VES 27 π− p → η′ n,

π−A → η′π−A∗1See ABLIKIM 11 for the full 
orrelation matrix.2 From η′ → ηπ0π0 de
ay. If 
 ≡ 0 from Bose-Einstein symmetry, d = −0.067 ±0.020 ± 0.003.3 From η′ → ηπ+π− de
ay.
η′(958) β PARAMETERη′(958) β PARAMETERη′(958) β PARAMETERη′(958) β PARAMETER

∣

∣MATRIX ELEMENT∣

∣

2 = (1 + 2βZ )∣

∣MATRIX ELEMENT∣

∣

2 = (1 + 2βZ )∣

∣MATRIX ELEMENT∣

∣

2 = (1 + 2βZ )∣

∣MATRIX ELEMENT∣

∣

2 = (1 + 2βZ )See the \Note on η De
ay Parameters" in our 1994 edition Physi
al ReviewD50D50D50D50 1173 (1994), p. 1454.
β de
ay parameterβ de
ay parameterβ de
ay parameterβ de
ay parameterVALUE EVTS DOCUMENT ID TECN COMMENT
−0.61 ±0.08 OUR AVERAGE−0.61 ±0.08 OUR AVERAGE−0.61 ±0.08 OUR AVERAGE−0.61 ±0.08 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.
−0.640±0.046±0.047 1.8k ABLIKIM 15G BES3 J/ψ → γ (π0π0π0)
−0.59 ±0.18 235 BLIK 08 GAMS 32 π− p → η′ n
−0.1 ±0.3 ALDE 87B GAM2 38 π− p → n3π0

η′(958) C-NONCONSERVING DECAY PARAMETERη′(958) C-NONCONSERVING DECAY PARAMETERη′(958) C-NONCONSERVING DECAY PARAMETERη′(958) C-NONCONSERVING DECAY PARAMETERSee the note on η de
ay parameters in the Stable Parti
le Parti
le Listingsfor de�nition of this parameter.DECAY ASYMMETRY PARAMETER FOR π+π− γDECAY ASYMMETRY PARAMETER FOR π+π− γDECAY ASYMMETRY PARAMETER FOR π+π− γDECAY ASYMMETRY PARAMETER FOR π+π− γVALUE EVTS DOCUMENT ID TECN COMMENT
−0.03 ±0.04 OUR AVERAGE−0.03 ±0.04 OUR AVERAGE−0.03 ±0.04 OUR AVERAGE−0.03 ±0.04 OUR AVERAGE
−0.019±0.056 AIHARA 87 TPC 2γ → π+π− γ

−0.069±0.078 295 GRIGORIAN 75 STRC 2.1 π− p0.00 ±0.10 103 KALBFLEISCH 75 HBC 2.18 K− p → �π+π− γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.07 ±0.08 152 RITTENBERG 65 HBC 2.1{2.7 K− p
η′(958) → γ ℓ+ ℓ− TRANSITION FORM FACTOR SLOPEη′(958) → γ ℓ+ ℓ− TRANSITION FORM FACTOR SLOPEη′(958) → γ ℓ+ ℓ− TRANSITION FORM FACTOR SLOPEη′(958) → γ ℓ+ ℓ− TRANSITION FORM FACTOR SLOPERelated to the e�e
tive virtual meson mass �, via slope ≈ �−2. See e.g. LANDS-BERG 85, eq. (3.8), for a detailed de�nition.VALUE (GeV−2) EVTS DOCUMENT ID TECN COMMENT1.62±0.17 OUR AVERAGE1.62±0.17 OUR AVERAGE1.62±0.17 OUR AVERAGE1.62±0.17 OUR AVERAGE1.60±0.17±0.08 864 1 ABLIKIM 15O BES3 J/ψ → γ e+ e−1.7 ±0.4 33 1 VIKTOROV 80 25,33 π− p → 2µγ

1 In the single-pole Ansatz where slope = 1/(�2 + γ2) with �, γ being a Breit-Wignermass, width for the e�e
tive 
ontributing ve
tor meson.
η′(958) REFERENCESη′(958) REFERENCESη′(958) REFERENCESη′(958) REFERENCESABLIKIM 15AD PR D92 051101 M. Ablikim et al. (BES III Collab.)ABLIKIM 15G PR D92 012014 M. Ablikim et al. (BES III Collab.)ABLIKIM 15O PR D92 012001 M. Ablikim et al. (BES III Collab.)ABLIKIM 15P PR D92 012007 M. Ablikim et al. (BES III Collab.)ACHASOV 15 PR D91 092010 M.N. A
hasov et al. (SND Collab.)AKHMETSHIN 15 PL B740 273 R.R. Akhmetshin et al. (CMD-3 Collab.)ABLIKIM 14M PRL 112 251801 M. Ablikim et al. (BES III Collab.)DONSKOV 14 MPL A29 1450213 S. Donskov et al. (GAMS-4π Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)ABLIKIM 13 PR D87 012009 M. Ablikim et al. (BES III Collab.)ABLIKIM 13G PR D87 032006 M. Ablikim et al. (BES III Collab.)ABLIKIM 13O PR D87 092011 M. Ablikim et al. (BES III Collab.)ABLIKIM 13U PR D88 091502 M. Ablikim et al. (BES III Collab.)ABLIKIM 12E PRL 108 182001 M. Ablikim et al. (BES III Collab.)PDG 12 PR D86 010001 J. Beringer et al. (PDG Collab.)ABLIKIM 11 PR D83 012003 M. Ablikim et al. (BES III Collab.)ABLIKIM 11G PR D84 032006 M. Ablikim et al. (BES III Collab.)CZERWINSKI 10 PRL 105 122001 E. Czerwinski et al. (COSY-11 Collab.)BLIK 09 PAN 72 231 A.M. Blik et al. (IHEP (Protvino))Translated from YAF 72 258.NAIK 09 PRL 102 061801 P. Naik et al. (CLEO Collab.)PEDLAR 09 PR D79 111101 T.K. Pedlar et al. (CLEO Collab.)BLIK 08 PAN 71 2124 A. Blik et al. (GAMS-4π Collab.)Translated from YAF 71 2161.LIBBY 08 PRL 101 182002 J. Libby et al. (CLEO Collab.)WICHT 08 PL B662 323 J. Wi
ht et al. (BELLE Collab.)DOROFEEV 07 PL B651 22 V. Dorofeev et al. (VES Collab.)MORI 07A JPSJ 76 074102 T. Mori et al. (BELLE Collab.)ABLIKIM 06E PR D73 052008 M. Ablikim et al. (BES Collab.)ABLIKIM 06Q PRL 97 202002 M. Ablikim et al. (BES Collab.)AMELIN 05A PAN 68 372 D.V. Amelin et al. (VES Collab.)Translated from YAF 68 401.AMSLER 04B EPJ C33 23 C. Amsler et al. (Crystal Barrel Collab.)BAI 04J PL B594 47 J.Z. Bai et al. (BES Collab.)BRIERE 00 PRL 84 26 R. Briere et al. (CLEO Collab.)ACCIARRI 98Q PL B418 399 M. A

iarri et al. (L3 Collab.)BARBERIS 98C PL B440 225 D. Barberis et al. (WA 102 Collab.)WURZINGER 96 PL B374 283 R. Wurzinger et al. (BONN, ORSAY, SACL+)PDG 94 PR D50 1173 L. Montanet et al. (CERN, LBL, BOST+)AMSLER 93 ZPHY C58 175 C. Amsler et al. (Crystal Barrel Collab.)BELADIDZE 92C SJNP 55 1535 G.M. Beladidze, S.I. Bityukov, G.V. Borisov (SERP+)Translated from YAF 55 2748.KARCH 92 ZPHY C54 33 K. Kar
h et al. (Crystal Ball Collab.)ARMSTRONG 91B ZPHY C52 389 T.A. Armstrong et al. (ATHU, BARI, BIRM+)BEHREND 91 ZPHY C49 401 H.J. Behrend et al. (CELLO Collab.)AUGUSTIN 90 PR D42 10 J.E. Augustin et al. (DM2 Collab.)BARU 90 ZPHY C48 581 S.E. Baru et al. (MD-1 Collab.)BUTLER 90 PR D42 1368 F. Butler et al. (Mark II Collab.)KARCH 90 PL B249 353 K. Kar
h et al. (Crystal Ball Collab.)ROE 90 PR D41 17 N.A. Roe et al. (ASP Collab.)AIHARA 88C PR D38 1 H. Aihara et al. (TPC-2γ Collab.)VOROBYEV 88 SJNP 48 273 P.V. Vorobiev et al. (NOVO)Translated from YAF 48 436.WILLIAMS 88 PR D38 1365 D.A. Williams et al. (Crystal Ball Collab.)AIHARA 87 PR D35 2650 H. Aihara et al. (TPC-2γ Collab.) JPALBRECHT 87B PL B199 457 H. Albre
ht et al. (ARGUS Collab.)ALDE 87B ZPHY C36 603 D.M. Alde et al. (LANL, BELG, SERP, LAPP)ANTREASYAN 87 PR D36 2633 D. Antreasyan et al. (Crystal Ball Collab.)GIDAL 87 PRL 59 2012 G. Gidal et al. (LBL, SLAC, HARV)ALDE 86 PL B177 115 D.M. Alde et al. (SERP, BELG, LANL, LAPP)BARTEL 85E PL 160B 421 W. Bartel et al. (JADE Collab.)LANDSBERG 85 PRPL 128 301 L.G. Landsberg (SERP)ALTHOFF 84E PL 147B 487 M. Altho� et al. (TASSO Collab.)BERGER 84B PL 142B 125 C. Berger (PLUTO Collab.)BINON 84 PL 140B 264 F.G. Binon et al. (SERP, BELG, LAPP+)BEHREND 83B PL 125B 518 (erratum) H.J. Behrend et al. (CELLO Collab.)Also PL 114B 378 H.J. Behrend et al. (CELLO Collab.)JENNI 83 PR D27 1031 P. Jenni et al. (SLAC, LBL)BARTEL 82B PL 113B 190 W. Bartel et al. (JADE Collab.)DZHELYADIN 81 PL 105B 239 R.I. Dzhelyadin et al. (SERP)STANTON 80 PL B92 353 N.R. Stanton et al. (OSU, CARL, MCGI+)VIKTOROV 80 SJNP 32 520 V.A. Viktorov et al. (SERP)Translated from YAF 32 1005.APEL 79 PL 83B 131 W.D. Apel, K.H. Augenstein, E. Bertolu

i (KARLK+)BINNIE 79 PL 83B 141 D.M. Binnie et al. (LOIC)ZANFINO 77 PRL 38 930 C. Zan�no et al. (CARL, MCGI, OHIO+)GRIGORIAN 75 NP B91 232 A. Grigorian et al. (+)KALBFLEISCH 75 PR D11 987 G.R. Kalb
eis
h, R.C. Strand, J.W. Chapman (BNL+)DUANE 74 PRL 32 425 A. Duane et al. (LOIC, SHMP)KALBFLEISCH 74 PR D10 916 G.R. Kalb
eis
h (BNL)DANBURG 73 PR D8 3744 J.S. Danburg et al. (BNL, MICH) JPJACOBS 73 PR D8 18 S.M. Ja
obs et al. (BRAN, UMD, SYRA+) JPAGUILAR-... 72B PR D6 29 M. Aguilar-Benitez et al. (BNL)APEL 72 PL 40B 680 W.D. Apel et al. (KARLK, KARLE, PISA)DALPIAZ 72 PL 42B 377 P.F. Dalpiaz et al. (CERN)BASILE 71 NC 3A 371 M. Basile et al. (CERN, BGNA, STRB)HARVEY 71 PRL 27 885 E.H. Harvey et al. (MINN, MICH)BENSINGER 70 PL 33B 505 J.R. Bensinger et al. (WISC)RITTENBERG 69 Thesis UCRL 18863 A. Rittenberg (LRL) IDAVIS 68 PL 27B 532 R. Davis et al. (NWES, ANL)LONDON 66 PR 143 1034 G.W. London et al. (BNL, SYRA) IJPBADIER 65B PL 17 337 J. Badier et al. (EPOL, SACL, AMST)RITTENBERG 65 PRL 15 556 A. Rittenberg, G.R. Kalb
eis
h (LRL, BNL)DAUBER 64 PRL 13 449 P.M. Dauber et al. (UCLA) JPKALBFLEISCH 64B PRL 13 349 G.R. Kalb
eis
h, O.I. Dahl, A. Rittenberg (LRL) JPf0(980) IG (JPC ) = 0+(0 + +)See also the minireview on s
alar mesons under f0(500). (See theindex for the page number.)f0(980) MASSf0(980) MASSf0(980) MASSf0(980) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT990 ±20 OUR ESTIMATE990 ±20 OUR ESTIMATE990 ±20 OUR ESTIMATE990 ±20 OUR ESTIMATE

• • • We do not use the following data for averages, �ts, limits, et
. • • •



887887887887See key on page 601 MesonParti
le Listingsf0(980)989.4± 1.3 424 ABLIKIM 15P BES3 J/ψ → K+K− 3π989.9± 0.4 706 ABLIKIM 12E BES3 J/ψ → γ 3π1003 + 5
−27 1,2 GARCIA-MAR...11 RVUE Compilation996 ± 7 1,3 GARCIA-MAR...11 RVUE Compilation996 + 4
−14 4 MOUSSALLAM11 RVUE Compilation981 ±43 5 MENNESSIER 10 RVUE Compilation1030 +30
−10 6 ANISOVICH 09 RVUE 0.0 p p, πN977 +11
− 9 ± 1 44 7 ECKLUND 09 CLEO 4.17 e+ e− →D−s D∗+s + 
.
.982.2± 1.0+ 8.1

− 8.0 8 UEHARA 08A BELL 10.6 e+ e− →e+ e−π0π0976.8± 0.3+10.1
− 0.6 64k 9 AMBROSINO 07 KLOE 1.02 e+ e− → π0π0 γ984.7± 0.4+ 2.4
− 3.7 64k 10 AMBROSINO 07 KLOE 1.02 e+ e− → π0π0 γ973 ± 3 262± 30 11 AUBERT 07AKBABR 10.6 e+ e− →

φπ+π− γ970 ± 7 54 ± 9 11 AUBERT 07AKBABR 10.6 e+ e− →
φπ0π0 γ953 ±20 2.6k 12 BONVICINI 07 CLEO D+ → π−π+π+985.6+ 1.2

− 1.5+ 1.1
− 1.6 13 MORI 07 BELL 10.6 e+ e− →e+ e−π+π−983.0± 0.6+ 4.0
− 3.0 14 AMBROSINO 06B KLOE 1.02 e+ e− →

π+π− γ977.3± 0.9+ 3.7
− 4.3 15 AMBROSINO 06B KLOE 1.02 e+ e− →

π+π− γ950 ± 9 4286 16 GARMASH 06 BELL B+ → K+π+π−965 ±10 17 ABLIKIM 05 BES2 J/ψ → φπ+π−,
φK+K−1031 ± 8 18 ANISOVICH 03 RVUE1037 ±31 TIKHOMIROV 03 SPEC 40.0 π−C →K0S K0S K0LX973 ± 1 2438 19 ALOISIO 02D KLOE e+ e− → π0π0 γ977 ± 3 ± 2 848 20 AITALA 01A E791 D+s → π−π+π+969.8± 4.5 419 21 ACHASOV 00H SND e+ e− → π0π0 γ985 +16

−12 419 22,23 ACHASOV 00H SND e+ e− → π0π0 γ976 ± 5 ± 6 24 AKHMETSHIN 99B CMD2 e+ e− → π+π− γ977 ± 3 ± 6 268 24 AKHMETSHIN 99C CMD2 e+ e− → π0π0 γ975 ± 4 ± 6 25 AKHMETSHIN 99C CMD2 e+ e− → π0π0 γ975 ± 4 ± 6 26 AKHMETSHIN 99C CMD2 e+ e− → π+π− γ,
π0π0 γ985 ±10 BARBERIS 99 OMEG 450 pp →ps pf K+K−982 ± 3 BARBERIS 99B OMEG 450 pp → ps pf π+π−982 ± 3 BARBERIS 99C OMEG 450 pp → ps pf π0π0987 ± 6 ± 6 27 BARBERIS 99D OMEG 450 pp → K+K−,
π+π−989 ±15 BELLAZZINI 99 GAM4 450 pp → ppπ0 π0991 ± 3 28 KAMINSKI 99 RVUE ππ → ππ, KK , σσ

∼ 980 28 OLLER 99 RVUE ππ → ππ, KK
∼ 993.5 OLLER 99B RVUE ππ → ππ, KK
∼ 987 28 OLLER 99C RVUE ππ → ππ, KK , ηη957 ± 6 29 ACKERSTAFF 98Q OPAL Z → f0 X960 ±10 ALDE 98 GAM41015 ±15 28 ANISOVICH 98B RVUE Compilation1008 30 LOCHER 98 RVUE ππ → ππ , K K955 ±10 29 ALDE 97 GAM2 450 pp → ppπ0 π0994 ± 9 31 BERTIN 97C OBLX 0.0 p p → π+π−π0993.2± 6.5± 6.9 32 ISHIDA 96 RVUE ππ → ππ, KK1006 TORNQVIST 96 RVUE ππ → ππ, KK , K π,

ηπ997 ± 5 3k 33 ALDE 95B GAM2 38 π− p → π0π0 n960 ±10 10k 34 ALDE 95B GAM2 38 π− p → π0π0 n994 ± 5 AMSLER 95B CBAR 0.0 p p → 3π0
∼ 996 35 AMSLER 95D CBAR 0.0 p p → π0π0π0,

π0 ηη, π0π0 η987 ± 6 36 ANISOVICH 95 RVUE1015 JANSSEN 95 RVUE ππ → ππ, KK983 37 BUGG 94 RVUE pp → η2π0973 ± 2 38 KAMINSKI 94 RVUE ππ → ππ, KK988 39 ZOU 94B RVUE988 ±10 40 MORGAN 93 RVUE ππ (K K) → ππ (K K),J/ψ → φππ (K K),Ds → π (ππ)971.1± 4.0 29 AGUILAR-... 91 EHS 400 pp979 ± 4 41 ARMSTRONG 91 OMEG 300 pp → ppππ ,ppK K956 ±12 BREAKSTONE90 SFM pp → ppπ+π−959.4± 6.5 29 AUGUSTIN 89 DM2 J/ψ → ωπ+π−978 ± 9 29 ABACHI 86B HRS e+ e− → π+π−X985.0+ 9.0
−39.0 ETKIN 82B MPS 23 π− p → n2K0S974 ± 4 41 GIDAL 81 MRK2 J/ψ → π+π−X975 42 ACHASOV 80 RVUE

986 ±10 41 AGUILAR-... 78 HBC 0.7 p p → K0S K0S969 ± 5 41 LEEPER 77 ASPK 2{2.4 π− p →
π+π− n , K+K− n987 ± 7 41 BINNIE 73 CNTR π− p → nMM1012 ± 6 43 GRAYER 73 ASPK 17 π− p → π+π− n1007 ±20 43 HYAMS 73 ASPK 17 π− p → π+π− n997 ± 6 43 PROTOPOP... 73 HBC 7 π+ p → π+ pπ+π−1Quoted number refers to real part of pole position.2Analyti
 
ontinuation using Roy equations. Uses the Ke4 data of BATLEY 10C and the

πN → ππN data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73.3Analyti
 
ontinuation using GKPY equations. Uses the Ke4 data of BATLEY 10C andthe πN → ππN data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73.4Pole position. Used Roy equations.5Average of the analyses of three data sets in the K-matrix model. Uses the data ofBATLEY 08A, HYAMS 73, and GRAYER 74, partially of COHEN 80 or ETKIN 82B.6On sheet II in a 2-pole solution. The other pole is found on sheet III at (850−100i) MeV7Using a relativisti
 Breit-Wigner fun
tion and taking into a

ount the �nite Ds mass.8Breit-Wigner mass. Using �nite width 
orre
tions a

ording to FLATTE 76 andACHASOV 05, and the ratio gf0K K /gf0ππ = 0.9 In the kaon-loop �t.10 In the no-stru
ture �t.11 Systemati
 errors not estimated.12 FLATTE 76 parameterization. gf0ππ = 329± 96 MeV/
2 assuming gf0K K /gf0ππ=2.13Breit-Wigner mass. Using �nite width 
orre
tions a

ording to FLATTE 76 andACHASOV 05, and the ratio gf0K K /gf0ππ = 4.21 ± 0.25 ± 0.21 from ABLIKIM 05.14 In the kaon-loop �t following formalism of ACHASOV 89.15 In the no-stru
ture �t assuming a dire
t 
oupling of φ to f0 γ.16 FLATTE 76 parameterization. Supersedes GARMASH 05.17FLATTE 76 parameterization, gf0K K /gf0ππ = 4.21 ± 0.25 ± 0.21.18K-matrix pole from 
ombined analysis of π− p → π0π0 n, π− p → K K n,
π+π− → π+π−, p p → π0π0π0, π0 ηη, π0π0 η, π+π−π0, K+K−π0, K0S K0S π0,K+K0S π− at rest, p n → π−π−π+, K0S K−π0, K0S K0S π− at rest.19 From the negative interferen
e with the f0(500) meson of AITALA 01B using theACHASOV 89 parameterization for the f0(980), a Breit-Wigner for the f0(500), andACHASOV 01F for the ρπ 
ontribution.20Coupled-
hannel Breit-Wigner, 
ouplings gπ=0.09±0.01±0.01, gK=0.02±0.04±0.03.21 Supersedes ACHASOV 98I. Using the model of ACHASOV 89.22 Supersedes ACHASOV 98I.23 In the \narrow resonan
e" approximation.24Assuming �(f0)= 40 MeV.25From a narrow pole �t taking into a

ount f0(980) and f0(1200) intermediate me
ha-nisms.26 From the 
ombined �t of the photon spe
tra in the rea
tions e+ e− → π+π− γ,
π0π0 γ.27 Supersedes BARBERIS 99 and BARBERIS 99B28T-matrix pole.29 From invariant mass �t.30On sheet II in a 2 pole solution. The other pole is found on sheet III at (1039−93i) MeV.31On sheet II in a 2 pole solution. The other pole is found on sheet III at (963-29i) MeV.32Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77using the interfering amplitude method.33At high ∣

∣t∣∣.34At low ∣

∣t∣∣.35On sheet II in a 4-pole solution, the other poles are found on sheet III at (953−55i) MeVand on sheet IV at (938−35i) MeV.36Combined �t of ALDE 95B, ANISOVICH 94, AMSLER 94D.37On sheet II in a 2 pole solution. The other pole is found on sheet III at (996−103i) MeV.38From sheet II pole position.39On sheet II in a 2 pole solution. The other pole is found on sheet III at (797−185i) MeVand 
an be interpreted as a shadow pole.40On sheet II in a 2 pole solution. The other pole is found on sheet III at (978−28i) MeV.41From 
oupled 
hannel analysis.42Coupled 
hannel analysis with �nite width 
orre
tions.43 In
luded in AGUILAR-BENITEZ 78 �t.f0(980) WIDTHf0(980) WIDTHf0(980) WIDTHf0(980) WIDTHWidth determination very model dependent. Peak width in ππ is about50 MeV, but de
ay width 
an be mu
h larger.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT10 to 100 OUR ESTIMATE10 to 100 OUR ESTIMATE10 to 100 OUR ESTIMATE10 to 100 OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •15.3± 4.7 424 ABLIKIM 15P BES3 J/ψ → K+K− 3π9.5± 1.1 706 ABLIKIM 12E BES3 J/ψ → γ 3π42 + 20

− 16 1,2 GARCIA-MAR...11 RVUE Compilation50 + 20
− 12 2,3 GARCIA-MAR...11 RVUE Compilation48 + 22
− 6 4 MOUSSALLAM11 RVUE Compilation36 ± 22 5 MENNESSIER 10 RVUE Compilation70 + 20
− 32 6 ANISOVICH 09 RVUE 0.0 p p, πN91 + 30
− 22 ± 3 44 7 ECKLUND 09 CLEO 4.17 e+ e− →D−s D∗+s + 
.
.66.9± 2.2+17.6

−12.5 8 UEHARA 08A BELL 10.6 e+ e− →e+ e−π0π0



888888888888MesonParti
le Listingsf0(980)65 ± 13 262 ± 30 9 AUBERT 07AK BABR 10.6 e+ e− →
φπ+π− γ81 ± 21 54 ± 9 9 AUBERT 07AK BABR 10.6 e+ e− →
φπ0π0 γ51.3+ 20.8

− 17.7+13.2
− 3.8 10 MORI 07 BELL 10.6 e+ e− →e+ e−π+π−61 ± 9 +14
− 8 2584 11 GARMASH 05 BELL B+ → K+π+π−64 ± 16 12 ANISOVICH 03 RVUE121 ± 23 TIKHOMIROV 03 SPEC 40.0 π−C →K0S K0S K0LX

∼ 70 13 BRAMON 02 RVUE 1.02 e+ e− →
π0π0 γ44 ± 2 ± 2 848 14 AITALA 01A E791 D+s → π−π+π+201 ± 28 419 15 ACHASOV 00H SND e+ e− → π0π0 γ122 ± 13 419 16,17 ACHASOV 00H SND e+ e− → π0π0 γ56 ± 20 18 AKHMETSHIN 99C CMD2 e+ e− → π0π0 γ65 ± 20 BARBERIS 99 OMEG 450 pp →ps pf K+K−80 ± 10 BARBERIS 99B OMEG 450 pp →ps pf π+π−80 ± 10 BARBERIS 99C OMEG 450 pp →ps pf π0π048 ± 12 ± 8 19 BARBERIS 99D OMEG 450 pp → K+K−,
π+π−65 ± 25 BELLAZZINI 99 GAM4 450 pp → ppπ0 π071 ± 14 20 KAMINSKI 99 RVUE ππ → ππ, KK , σσ

∼ 28 20 OLLER 99 RVUE ππ → ππ, KK
∼ 25 OLLER 99B RVUE ππ → ππ, KK
∼ 14 20 OLLER 99C RVUE ππ → ππ, KK , ηη70 ± 20 ALDE 98 GAM486 ± 16 20 ANISOVICH 98B RVUE Compilation54 21 LOCHER 98 RVUE ππ → ππ , K K69 ± 15 22 ALDE 97 GAM2 450 pp → ppπ0 π038 ± 20 23 BERTIN 97C OBLX 0.0 p p → π+π−π0
∼ 100 24 ISHIDA 96 RVUE ππ → ππ, KK34 TORNQVIST 96 RVUE ππ → ππ, KK , K π,

ηπ48 ± 10 3k 25 ALDE 95B GAM2 38 π− p → π0π0 n95 ± 20 10k 26 ALDE 95B GAM2 38 π− p → π0π0 n26 ± 10 AMSLER 95B CBAR 0.0 p p → 3π0
∼ 112 27 AMSLER 95D CBAR 0.0 p p → π0π0π0,

π0 ηη, π0π0 η80 ± 12 28 ANISOVICH 95 RVUE30 JANSSEN 95 RVUE ππ → ππ, KK74 29 BUGG 94 RVUE pp → η2π029 ± 2 30 KAMINSKI 94 RVUE ππ → ππ, KK46 31 ZOU 94B RVUE48 ± 12 32 MORGAN 93 RVUE ππ (K K) →
ππ (K K), J/ψ →
φππ (K K), Ds →
π (ππ)37.4± 10.6 22 AGUILAR-... 91 EHS 400 pp72 ± 8 33 ARMSTRONG 91 OMEG 300 pp → ppππ ,ppK K110 ± 30 BREAKSTONE90 SFM pp → ppπ+π−29 ± 13 22 ABACHI 86B HRS e+ e− → π+π−X120 ±281 ±20 ETKIN 82B MPS 23 π− p → n2K0S28 ± 10 33 GIDAL 81 MRK2 J/ψ → π+π−X70 to 300 34 ACHASOV 80 RVUE100 ± 80 35 AGUILAR-... 78 HBC 0.7 p p → K0S K0S30 ± 8 33 LEEPER 77 ASPK 2{2.4 π− p →
π+π− n , K+K− n48 ± 14 33 BINNIE 73 CNTR π− p → nMM32 ± 10 36 GRAYER 73 ASPK 17 π− p → π+π− n30 ± 10 36 HYAMS 73 ASPK 17 π− p → π+π− n54 ± 16 36 PROTOPOP... 73 HBC 7 π+ p →
π+ pπ+π−1Analyti
 
ontinuation using Roy equations. Uses the Ke4 data of BATLEY 10C and the

πN → ππN data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73.2Quoted number refers to twi
e imaginary part of pole position.3Analyti
 
ontinuation using GKPY equations. Uses the Ke4 data of BATLEY 10C andthe πN → ππN data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73.4Pole position. Used Roy equations.5Average of the analyses of three data sets in the K-matrix model. Uses the data ofBATLEY 08A, HYAMS 73, and GRAYER 74, partially of COHEN 80 or ETKIN 82B.6On sheet II in a 2-pole solution. The other pole is found on sheet III at (850−100i) MeV7Using a relativisti
 Breit-Wigner fun
tion and taking into a

ount the �nite Ds mass.8Breit-Wigner ππ width. Using �nite width 
orre
tions a

ording to FLATTE 76 andACHASOV 05, and the ratio gf0K K /gf0ππ = 0.9 Systemati
 errors not estimated.10Breit-Wigner ππ width. Using �nite width 
orre
tions a

ording to FLATTE 76 andACHASOV 05, and the ratio gf0K K /gf0ππ = 4.21 ± 0.25 ± 0.21 from ABLIKIM 05.11Breit-Wigner, solution 1, PWA ambiguous.12K-matrix pole from 
ombined analysis of π− p → π0π0 n, π− p → K K n,
π+π− → π+π−, p p → π0π0π0, π0 ηη, π0π0 η, π+π−π0, K+K−π0, K0S K0S π0,K+K0S π− at rest, p n → π−π−π+, K0S K−π0, K0S K0S π− at rest.

13Using the data of AKHMETSHIN 99C, ACHASOV 00H, and ALOISIO 02D.14Breit-Wigner width.15 Supersedes ACHASOV 98I. Using the model of ACHASOV 89.16 Supersedes ACHASOV 98I.17 In the \narrow resonan
e" approximation.18 From the 
ombined �t of the photon spe
tra in the rea
tions e+ e− → π+π− γ,
π0π0 γ.19 Supersedes BARBERIS 99 and BARBERIS 99B20T-matrix pole.21On sheet II in a 2 pole solution. The other pole is found on sheet III at (1039−93i) MeV.22From invariant mass �t.23On sheet II in a 2 pole solution. The other pole is found on sheet III at (963-29i) MeV.24Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77using the interfering amplitude method.25At high ∣

∣t∣∣.26At low ∣

∣t∣∣.27On sheet II in a 4-pole solution, the other poles are found on sheet III at (953−55i) MeVand on sheet IV at (938−35i) MeV.28Combined �t of ALDE 95B, ANISOVICH 94,29On sheet II in a 2 pole solution. The other pole is found on sheet III at (996−103i) MeV.30From sheet II pole position.31On sheet II in a 2 pole solution. The other pole is found on sheet III at (797−185i) MeVand 
an be interpreted as a shadow pole.32On sheet II in a 2 pole solution. The other pole is found on sheet III at (978−28i) MeV.33From 
oupled 
hannel analysis.34Coupled 
hannel analysis with �nite width 
orre
tions.35 From 
oupled 
hannel �t to the HYAMS 73 and PROTOPOPESCU 73 data. With asimultaneous �t to the ππ phase-shifts, inelasti
ity and to the K0S K0S invariant mass.36 In
luded in AGUILAR-BENITEZ 78 �t.f0(980) DECAY MODESf0(980) DECAY MODESf0(980) DECAY MODESf0(980) DECAY MODESMode Fra
tion (�i /�)�1 ππ dominant�2 K K seen�3 γ γ seen�4 e+ e− f0(980) PARTIAL WIDTHSf0(980) PARTIAL WIDTHSf0(980) PARTIAL WIDTHSf0(980) PARTIAL WIDTHS�(γ γ
) �3�(γ γ
) �3�(γ γ
) �3�(γ γ
) �3VALUE (keV) DOCUMENT ID TECN COMMENT0.31 +0.05
−0.04 OUR AVERAGE0.31 +0.05
−0.04 OUR AVERAGE0.31 +0.05
−0.04 OUR AVERAGE0.31 +0.05
−0.04 OUR AVERAGE0.32 ±0.05 1 DAI 14A RVUE Compilation0.286±0.017+0.211

−0.070 2 UEHARA 08A BELL 10.6 e+ e− → e+ e−π0π00.205+0.095
−0.083+0.147

−0.117 3 MORI 07 BELL 10.6 e+ e− → e+ e−π+π−0.42 ±0.06 ±0.18 4 OEST 90 JADE e+ e− → e+ e−π0π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.16 ±0.01 5 MENNESSIER 11 RVUE0.29 ±0.21 +0.02

−0.07 6 MOUSSALLAM11 RVUE Compilation0.42 7,8 PENNINGTON 08 RVUE Compilation0.10 8,9 PENNINGTON 08 RVUE Compilation0.28 +0.09
−0.13 10 BOGLIONE 99 RVUE γ γ → π+π−, π0π00.29 ±0.07 ±0.12 11,12 BOYER 90 MRK2 e+ e− → e+ e−π+π−0.31 ±0.14 ±0.09 11,12 MARSISKE 90 CBAL e+ e− → e+ e−π0π00.63 ±0.14 13 MORGAN 90 RVUE γ γ → π+π− , π0π01Using dispersive analysis with phases from GARCIA-MARTIN 11A and BUETTIKER 04as input.2Using �nite width 
orre
tions a

ording to FLATTE 76 and ACHASOV 05, and the ratiogf0K K /gf0ππ = 0.3Using �nite width 
orre
tions a

ording to FLATTE 76 and ACHASOV 05, and the ratiogf0K K /gf0ππ = 4.21 ± 0.25 ± 0.21 from ABLIKIM 05.4OEST 90 quote systemati
 errors +0.08

−0.18. We use ±0.18. Observed 60 events.5Uses an analyti
 K-matrix model. Compilation.6Using dispersion integral with phase input from Roy equations and data from MAR-SISKE 90, BOYER 90, BEHREND 92, UEHARA 08A, and MORI 07.7 Solution A (preferred solution based on χ2-analysis).8Dispersion theory based amplitude analysis of BOYER 90, MARSISKE 90, BEHREND 92,and MORI 07.9 Solution B (worse than solution A; still a

eptable when systemati
 un
ertainties arein
luded).10 Supersedes MORGAN 90.11From analysis allowing arbitrary ba
kground un
onstrained by unitarity.12Data in
luded in MORGAN 90, BOGLIONE 99 analyses.13 From amplitude analysis of BOYER 90 and MARSISKE 90, data 
orresponds to resonan
eparameters m = 989 MeV, � = 61 MeV.�(e+ e−) �4�(e+ e−) �4�(e+ e−) �4�(e+ e−) �4VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<8.4<8.4<8.4<8.4 90 VOROBYEV 88 ND e+ e− → π0π0



889889889889See key on page 601 MesonParti
le Listingsf0(980), a0(980)f0(980) BRANCHING RATIOSf0(980) BRANCHING RATIOSf0(980) BRANCHING RATIOSf0(980) BRANCHING RATIOS�(ππ
)/[�(ππ

)+�(K K)
] �1/(�1+�2)�(ππ

)/[�(ππ
)+�(K K)

] �1/(�1+�2)�(ππ
)/[�(ππ

)+�(K K)
] �1/(�1+�2)�(ππ

)/[�(ππ
)+�(K K)

] �1/(�1+�2)VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.52±0.12 9.9k 1 AUBERT 06O BABR B± → K±π±π∓0.75+0.11

−0.13 2 ABLIKIM 05Q BES2 χ
0 → 2π+2π−,
π+π−K+K−0.84±0.02 3 ANISOVICH 02D SPEC Combined �t

∼ 0.68 OLLER 99B RVUE ππ → ππ, K K0.67±0.09 4 LOVERRE 80 HBC 4 π− p → n2K0S0.81+0.09
−0.04 4 CASON 78 STRC 7 π− p → n2K0S0.78±0.03 4 WETZEL 76 OSPK 8.9 π− p → n2K0S1Re
al
ulated by us using �(K+K−) / �(π+π−) = 0.69± 0.32 from AUBERT 06O andisospin relations.2Using data from ABLIKIM 04G.3 From a 
ombined K-matrix analysis of Crystal Barrel (0. pp → π0π0π0, π0 ηη,

π0π0 η), GAMS (πp → π0π0 n, ηηn, ηη′ n), and BNL (πp → K K n) data.4Measure ππ elasti
ity assuming two resonan
es 
oupled to the ππ and K K 
hannelsonly. f0(980) REFERENCESf0(980) REFERENCESf0(980) REFERENCESf0(980) REFERENCESABLIKIM 15P PR D92 012007 M. Ablikim et al. (BES III Collab.)DAI 14A PR D90 036004 L.-Y. Dai, M.R. Pennington (CEBAF)ABLIKIM 12E PRL 108 182001 M. Ablikim et al. (BES III Collab.)GARCIA-MAR... 11 PRL 107 072001 R. Gar
ia-Martin et al. (MADR, CRAC)GARCIA-MAR... 11A PR D83 074004 R. Gar
ia-Martin et al. (MADR, CRAC)MENNESSIER 11 PL B696 40 G. Mennessier, S. Narison, X.-G. WangMOUSSALLAM 11 EPJ C71 1814 B. MoussallamBATLEY 10C EPJ C70 635 J.R. Batley et al. (CERN NA48/2 Collab.)MENNESSIER 10 PL B688 59 G. Mennessier, S. Narison, X.-G. WangANISOVICH 09 IJMP A24 2481 V.V. Anisovi
h, A.V. SarantsevECKLUND 09 PR D80 052009 K.M. E
klund et al. (CLEO Collab.)BATLEY 08A EPJ C54 411 J.R. Batley et al. (CERN NA48/2 Collab.)PENNINGTON 08 EPJ C56 1 M.R. Pennington et al.UEHARA 08A PR D78 052004 S. Uehara et al. (BELLE Collab.)AMBROSINO 07 EPJ C49 473 F. Ambrosino et al. (KLOE Collab.)AUBERT 07AK PR D76 012008 B. Aubert et al. (BABAR Collab.)BONVICINI 07 PR D76 012001 G. Bonvi
ini et al. (CLEO Collab.)MORI 07 PR D75 051101 T. Mori et al. (BELLE Collab.)AMBROSINO 06B PL B634 148 F. Ambrosino et al. (KLOE Collab.)AUBERT 06O PR D74 032003 B. Aubert et al. (BABAR Collab.)GARMASH 06 PRL 96 251803 A. Garmash et al. (BELLE Collab.)ABLIKIM 05 PL B607 243 M. Ablikim et al. (BES Collab.)ABLIKIM 05Q PR D72 092002 M. Ablikim et al. (BES Collab.)ACHASOV 05 PR D72 013006 N.N. A
hasov, G.N. ShestakovGARMASH 05 PR D71 092003 A. Garmash et al. (BELLE Collab.)ABLIKIM 04G PR D70 092002 M. Ablikim et al. (BES Collab.)BUETTIKER 04 EPJ C33 409 P. Buettiker, S. Des
otes-Genon, B. MoussallamANISOVICH 03 EPJ A16 229 V.V. Anisovi
h et al.TIKHOMIROV 03 PAN 66 828 G.D. Tikhomirov et al.Translated from YAF 66 860.ALOISIO 02D PL B537 21 A. Aloisio et al. (KLOE Collab.)ANISOVICH 02D PAN 65 1545 V.V. Anisovi
h et al.Translated from YAF 65 1583.BRAMON 02 EPJ C26 253 A. Bramon et al.ACHASOV 01F PR D63 094007 N.N. A
hasov, V.V. Gubin (Novosibirsk SND Collab.)AITALA 01A PRL 86 765 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 01B PRL 86 770 E.M. Aitala et al. (FNAL E791 Collab.)ACHASOV 00H PL B485 349 M.N. A
hasov et al. (Novosibirsk SND Collab.)AKHMETSHIN 99B PL B462 371 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AKHMETSHIN 99C PL B462 380 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)BARBERIS 99 PL B453 305 D. Barberis et al. (Omega Expt.)BARBERIS 99B PL B453 316 D. Barberis et al. (Omega Expt.)BARBERIS 99C PL B453 325 D. Barberis et al. (Omega Expt.)BARBERIS 99D PL B462 462 D. Barberis et al. (Omega Expt.)BELLAZZINI 99 PL B467 296 R. Bellazzini et al.BOGLIONE 99 EPJ C9 11 M. Boglione, M.R. PenningtonKAMINSKI 99 EPJ C9 141 R. Kaminski, L. Lesniak, B. Loiseau (CRAC, PARIN)OLLER 99 PR D60 099906 (erratum)J.A. Oller et al.OLLER 99B NP A652 407 (erratum) J.A. Oller, E. OsetOLLER 99C PR D60 074023 J.A. Oller, E. OsetACHASOV 98I PL B440 442 M.N. A
hasov et al.ACKERSTAFF 98Q EPJ C4 19 K. A
kersta� et al. (OPAL Collab.)ALDE 98 EPJ A3 361 D. Alde et al. (GAM4 Collab.)Also PAN 62 405 D. Alde et al. (GAMS Collab.)Translated from YAF 62 446.ANISOVICH 98B SPU 41 419 V.V. Anisovi
h et al.Translated from UFN 168 481.LOCHER 98 EPJ C4 317 M.P. Lo
her et al. (PSI)ALDE 97 PL B397 350 D.M. Alde et al. (GAMS Collab.)BERTIN 97C PL B408 476 A. Bertin et al. (OBELIX Collab.)ISHIDA 96 PTP 95 745 S. Ishida et al. (TOKY, MIYA, KEK)TORNQVIST 96 PRL 76 1575 N.A. Tornqvist, M. Roos (HELS)ALDE 95B ZPHY C66 375 D.M. Alde et al. (GAMS Collab.)AMSLER 95B PL B342 433 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 95D PL B355 425 C. Amsler et al. (Crystal Barrel Collab.)ANISOVICH 95 PL B355 363 V.V. Anisovi
h et al. (PNPI, SERP)JANSSEN 95 PR D52 2690 G. Janssen et al. (STON, ADLD, JULI)AMSLER 94D PL B333 277 C. Amsler et al. (Crystal Barrel Collab.)ANISOVICH 94 PL B323 233 V.V. Anisovi
h et al. (Crystal Barrel Collab.)BUGG 94 PR D50 4412 D.V. Bugg et al. (LOQM)KAMINSKI 94 PR D50 3145 R. Kaminski, L. Lesniak, J.P. Maillet (CRAC+)ZOU 94B PR D50 591 B.S. Zou, D.V. Bugg (LOQM)MORGAN 93 PR D48 1185 D. Morgan, M.R. Pennington (RAL, DURH)BEHREND 92 ZPHY C56 381 H.J. Behrend (CELLO Collab.)AGUILAR-... 91 ZPHY C50 405 M. Aguilar-Benitez et al. (LEBC-EHS Collab.)ARMSTRONG 91 ZPHY C51 351 T.A. Armstrong et al. (ATHU, BARI, BIRM+)BOYER 90 PR D42 1350 J. Boyer et al. (Mark II Collab.)BREAKSTONE 90 ZPHY C48 569 A.M. Breakstone et al. (ISU, BGNA, CERN+)MARSISKE 90 PR D41 3324 H. Marsiske et al. (Crystal Ball Collab.)

MORGAN 90 ZPHY C48 623 D. Morgan, M.R. Pennington (RAL, DURH)OEST 90 ZPHY C47 343 T. Oest et al. (JADE Collab.)ACHASOV 89 NP B315 465 N.N. A
hasov, V.N. Ivan
henkoAUGUSTIN 89 NP B320 1 J.E. Augustin, G. Cosme (DM2 Collab.)VOROBYEV 88 SJNP 48 273 P.V. Vorobiev et al. (NOVO)Translated from YAF 48 436.ABACHI 86B PRL 57 1990 S. Aba
hi et al. (PURD, ANL, IND, MICH+)ETKIN 82B PR D25 1786 A. Etkin et al. (BNL, CUNY, TUFTS, VAND)GIDAL 81 PL 107B 153 G. Gidal et al. (SLAC, LBL)ACHASOV 80 SJNP 32 566 N.N. A
hasov, S.A. Devyanin, G.N. Shestakov (NOVM)Translated from YAF 32 1098.COHEN 80 PR D22 2595 D. Cohen et al. (ANL) IJPLOVERRE 80 ZPHY C6 187 P.F. Loverre et al. (CERN, CDEF, MADR+) IJPAGUILAR-... 78 NP B140 73 M. Aguilar-Benitez et al. (MADR, BOMB+)CASON 78 PRL 41 271 N.M. Cason et al. (NDAM, ANL)LEEPER 77 PR D16 2054 R.J. Leeper et al. (ISU)ROSSELET 77 PR D15 574 L. Rosselet et al. (GEVA, SACL)FLATTE 76 PL 63B 224 S.M. Flatte (CERN)WETZEL 76 NP B115 208 W. Wetzel et al. (ETH, CERN, LOIC)SRINIVASAN 75 PR D12 681 V. Srinivasan et al. (NDAM, ANL)GRAYER 74 NP B75 189 G. Grayer et al. (CERN, MPIM)BINNIE 73 PRL 31 1534 D.M. Binnie et al. (LOIC, SHMP)GRAYER 73 Tallahassee G. Grayer et al. (CERN, MPIM)HYAMS 73 NP B64 134 B.D. Hyams et al. (CERN, MPIM)PROTOPOP... 73 PR D7 1279 S.D. Protopopes
u et al. (LBL)a0(980) IG (JPC ) = 1−(0 + +)See our minireview on s
alar mesons under f0(500). (See the indexfor the page number.) a0(980) MASSa0(980) MASSa0(980) MASSa0(980) MASSVALUE (MeV) DOCUMENT ID980±20 OUR ESTIMATE980±20 OUR ESTIMATE980±20 OUR ESTIMATE980±20 OUR ESTIMATE Mass determination very model dependent
ηπ FINAL STATE ONLYηπ FINAL STATE ONLYηπ FINAL STATE ONLYηπ FINAL STATE ONLYVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •982.5 ± 1.6 ±1.1 16.9k 1 AMBROSINO 09F KLOE 1.02 e+ e− → ηπ0 γ986 ± 4 ANISOVICH 09 RVUE 0.0 pp, πN982.3 + 0.6

− 0.7 +3.1
−4.7 2 UEHARA 09A BELL γ γ → π0 η987.4 ± 1.0 ±3.0 3,4 BUGG 08A RVUE 0 p p → π0π0 η989.1 ± 1.0 ±3.0 4,5 BUGG 08A RVUE 0 p p → π0π0 η985 ± 4 ±6 318 ACHARD 02B L3 183{209 e+ e− →e+ e− ηπ+π−995 +52

−10 36 6 ACHASOV 00F SND e+ e− → ηπ0 γ994 +33
− 8 36 7 ACHASOV 00F SND e+ e− → ηπ0 γ975 ± 7 BARBERIS 00H 450 pp → pf ηπ0 ps988 ± 8 BARBERIS 00H 450 pp →�++f ηπ− ps

∼ 1055 8 OLLER 99 RVUE ηπ, K K
∼ 1009.2 8 OLLER 99B RVUE ππ → ππ, K K993.1 ± 2.1 9 TEIGE 99 B852 18.3 π− p →

ηπ+π− n988 ± 6 8 ANISOVICH 98B RVUE Compilation987 TORNQVIST 96 RVUE ππ → ππ, K K , K π,
ηπ991 JANSSEN 95 RVUE ηπ → ηπ, K K , K π,
ηπ984.45± 1.23±0.34 AMSLER 94C CBAR 0.0 pp → ωηπ0982 ± 2 10 AMSLER 92 CBAR 0.0 pp → ηηπ0984 ± 4 1040 10 ARMSTRONG 91B OMEG± 300 pp →ppηπ+ π−976 ± 6 ATKINSON 84E OMEG± 25{55 γ p → ηπn986 ± 3 500 11 EVANGELIS... 81 OMEG± 12 π− p →
ηπ+π−π− p990 ± 7 145 11 GURTU 79 HBC ± 4.2 K− p → �η2π980 ±11 47 CONFORTO 78 OSPK − 4.5 π− p → pX−978 ±16 50 CORDEN 78 OMEG± 12{15 π− p → nη2π977 ± 7 GRASSLER 77 HBC − 16 π∓ p → pη3π989 ± 4 70 WELLS 75 HBC − 3.1{6 K− p → �η2π972 ±10 150 DEFOIX 72 HBC ± 0.7 pp → 7π970 ±15 20 BARNES 69C HBC − 4{5 K− p → �η2π980 ±10 CAMPBELL 69 DBC ± 2.7 π+ d980 ±10 15 MILLER 69B HBC − 4.5 K−N → ηπ�980 ±10 30 AMMAR 68 HBC ± 5.5 K− p → �η2π1Using the model of ACHASOV 89 and ACHASOV 03B.2 From a �t with the S-wave amplitude in
luding two interfering Breit-Wigners plus aba
kground term.3Parameterizes 
ouplings to K K , πη, and πη′.4Using AMSLER 94D and ABELE 98.5 From the T-matrix pole on sheet II.6Using the model of ACHASOV 89. Supersedes ACHASOV 98B.7Using the model of JAFFE 77. Supersedes ACHASOV 98B.8T-matrix pole.9Breit-Wigner �t, average between a±0 and a00. The �t favors a slightly heavier a±0 .10 From a single Breit-Wigner �t.11 From f1(1285) de
ay.



890890890890MesonParti
le Listingsa0(980)K K ONLYK K ONLYK K ONLYK K ONLYVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 1053 12 OLLER 99C RVUE ππ → ππ, KK982 ± 3 13 ABELE 98 CBAR 0.0 p p → K0LK±π∓975 ±15 BERTIN 98B OBLX ± 0.0 p p → K±Ks π∓976 ± 6 316 DEBILLY 80 HBC ± 1.2{2 pp → f1(1285)ω1016 ±10 100 14 ASTIER 67 HBC ± 0.0 p p1003.3± 7.0 143 15 ROSENFELD 65 RVUE ±12T-matrix pole.13T-matrix pole on sheet II, the pole on sheet III is at 1006-i49 MeV.14ASTIER 67 in
ludes data of BARLOW 67, CONFORTO 67, ARMENTEROS 65.15Plus systemati
 errors. a0(980) WIDTHa0(980) WIDTHa0(980) WIDTHa0(980) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT50 to 100 OUR ESTIMATE50 to 100 OUR ESTIMATE50 to 100 OUR ESTIMATE50 to 100 OUR ESTIMATE Width determination very model dependent. Peak widthin ηπ is about 60 MeV, but de
ay width 
an be mu
h larger.
• • • We do not use the following data for averages, �ts, limits, et
. • • •75.6 ± 1.6 +17.4

−10.0 16 UEHARA 09A BELL γ γ → π0 η80.2 ± 3.8 ± 5.4 17 BUGG 08A RVUE 0 p p → π0π0 η50 ±13 ± 4 318 ACHARD 02B L3 183{209 e+ e− →e+ e− ηπ+π−72 ±16 BARBERIS 00H 450 pp → pf ηπ0 ps61 ±19 BARBERIS 00H 450 pp →�++f ηπ− ps
∼ 42 18 OLLER 99 RVUE ηπ, K K
∼ 112 18 OLLER 99B RVUE ππ → ηπ, K K71 ± 7 TEIGE 99 B852 18.3 π− p →

ηπ+π− n92 ±20 18 ANISOVICH 98B RVUE Compilation65 ±10 19 BERTIN 98B OBLX ± 0.0 pp → K±Ks π∓
∼ 100 TORNQVIST 96 RVUE ππ → ππ, K K , K π,

ηπ202 JANSSEN 95 RVUE ηπ → ηπ, K K , K π,
ηπ54.12± 0.34± 0.12 AMSLER 94C CBAR 0.0 pp → ωηπ054 ±10 20 AMSLER 92 CBAR 0.0 pp → ηηπ095 ±14 1040 20 ARMSTRONG 91B OMEG± 300 pp →ppηπ+ π−62 ±15 500 21 EVANGELIS... 81 OMEG± 12 π− p →
ηπ+π−π− p60 ±20 145 21 GURTU 79 HBC ± 4.2 K− p → �η2π60 +50

−30 47 CONFORTO 78 OSPK − 4.5 π− p → pX−86.0 +60.0
−50.0 50 CORDEN 78 OMEG± 12{15 π− p → nη2π44 ±22 GRASSLER 77 HBC − 16 π∓ p → pη3π80 to 300 22 FLATTE 76 RVUE − 4.2 K− p → �η2π16.0 +25.0
−16.0 70 WELLS 75 HBC − 3.1{6 K− p → �η2π30 ± 5 150 DEFOIX 72 HBC ± 0.7 pp → 7π40 ±15 CAMPBELL 69 DBC ± 2.7 π+ d60 ±30 15 MILLER 69B HBC − 4.5 K−N → ηπ�80 ±30 30 AMMAR 68 HBC ± 5.5 K− p → �η2π16From a �t with the S-wave amplitude in
luding two interfering Breit-Wigners plus aba
kground term.17From the T-matrix pole on sheet II, using AMSLER 94D and ABELE 98.18T-matrix pole.19The ηπ width.20 From a single Breit-Wigner �t.21 From f1(1285) de
ay.22Using a two-
hannel resonan
e parametrization of GAY 76B data.K K ONLYK K ONLYK K ONLYK K ONLYVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT92± 892± 892± 892± 8 23 ABELE 98 CBAR 0.0 p p → K0LK±π∓

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 24 24 OLLER 99C RVUE ππ → ππ, KK
∼ 25 100 25 ASTIER 67 HBC ±57±13 143 26 ROSENFELD 65 RVUE ±23T-matrix pole on sheet II, the pole on sheet III is at 1006-i49 MeV.24T-matrix pole.25ASTIER 67 in
ludes data of BARLOW 67, CONFORTO 67, ARMENTEROS 65.26Plus systemati
 errors. a0(980) DECAY MODESa0(980) DECAY MODESa0(980) DECAY MODESa0(980) DECAY MODESMode Fra
tion (�i /�)�1 ηπ dominant�2 K K seen�3 ρπ�4 γ γ seen�5 e+ e−

a0(980) PARTIAL WIDTHSa0(980) PARTIAL WIDTHSa0(980) PARTIAL WIDTHSa0(980) PARTIAL WIDTHS�(γ γ
) �4�(γ γ
) �4�(γ γ
) �4�(γ γ
) �4VALUE (keV) DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.30±0.10 27 AMSLER 98 RVUE27Using �γ γB(a0(980) → ηπ) =0.24 ± 0.08 keV.a0(980) �(i)�(γ γ)/�(total)a0(980) �(i)�(γ γ)/�(total)a0(980) �(i)�(γ γ)/�(total)a0(980) �(i)�(γ γ)/�(total)�(ηπ
)

× �(γ γ
)/�total �1�4/��(ηπ

)

× �(γ γ
)/�total �1�4/��(ηπ

)

× �(γ γ
)/�total �1�4/��(ηπ

)

× �(γ γ
)/�total �1�4/�VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.21 +0.08

−0.04 OUR AVERAGE0.21 +0.08
−0.04 OUR AVERAGE0.21 +0.08
−0.04 OUR AVERAGE0.21 +0.08
−0.04 OUR AVERAGE0.128+0.003
−0.002+0.502

−0.043 28 UEHARA 09A BELL γ γ → π0 η0.28 ±0.04 ±0.10 44 OEST 90 JADE e+ e− → e+ e−π0 η0.19 ±0.07 +0.10
−0.07 ANTREASYAN 86 CBAL e+ e− → e+ e−π0 η28From a �t with the S-wave amplitude in
luding two interfering Breit-Wigners plus aba
kground term.�(ηπ

)

× �(e+ e−)/�total �1�5/��(ηπ
)

× �(e+ e−)/�total �1�5/��(ηπ
)

× �(e+ e−)/�total �1�5/��(ηπ
)

× �(e+ e−)/�total �1�5/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<1.5<1.5<1.5<1.5 90 VOROBYEV 88 ND e+ e− → π0 ηa0(980) BRANCHING RATIOSa0(980) BRANCHING RATIOSa0(980) BRANCHING RATIOSa0(980) BRANCHING RATIOS�(K K)/�(ηπ

) �2/�1�(K K)/�(ηπ
) �2/�1�(K K)/�(ηπ
) �2/�1�(K K)/�(ηπ
) �2/�1VALUE DOCUMENT ID TECN CHG COMMENT0.183±0.024 OUR AVERAGE0.183±0.024 OUR AVERAGE0.183±0.024 OUR AVERAGE0.183±0.024 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.57 ±0.16 29 BARGIOTTI 03 OBLX p p0.23 ±0.05 30 ABELE 98 CBAR 0.0 pp → K0LK±π∓0.166±0.01 ±0.02 31 BARBERIS 98C OMEG 450 pp → pf f1(1285)ps

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.20 ±0.15 32 ANISOVICH 09 RVUE 0.0 pp, πN1.05 ±0.07 ±0.05 33 BUGG 08A RVUE 0 p p → π0π0 η

∼ 0.60 OLLER 99B RVUE ππ → ηπ, K K0.7 ±0.3 31 CORDEN 78 OMEG 12{15 π− p → nη2π0.25 ±0.08 31 DEFOIX 72 HBC ± 0.7 p → 7π�(ρπ
)/�(ηπ

) �3/�1�(ρπ
)/�(ηπ

) �3/�1�(ρπ
)/�(ηπ

) �3/�1�(ρπ
)/�(ηπ

) �3/�1
ρπ forbidden.VALUE CL% DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.25 70 AMMAR 70 HBC ± 4.1,5.5 K−p → �η2π29Coupled 
hannel analysis of π+π−π0, K+K−π0, and K±K0S π∓.30Using π0π0 η from AMSLER 94D.31 From the de
ay of f1(1285).32This is a ratio of 
ouplings.33A ratio of 
ouplings, using AMSLER 94D and ABELE 98. Supersedes BUGG 94.a0(980) REFERENCESa0(980) REFERENCESa0(980) REFERENCESa0(980) REFERENCESAMBROSINO 09F PL B681 5 F. Ambrosino et al. (KLOE Collab.)ANISOVICH 09 IJMP A24 2481 V.V. Anisovi
h, A.V. SarantsevUEHARA 09A PR D80 032001 S. Uehara et al. (BELLE Collab.)BUGG 08A PR D78 074023 D.V. Bugg (LOQM)ACHASOV 03B PR D68 014006 N.N. A
hsaov, A.V. KiselevBARGIOTTI 03 EPJ C26 371 M. Bargiotti et al. (OBELIX Collab.)ACHARD 02B PL B526 269 P. A
hard et al. (L3 Collab.)ACHASOV 00F PL B479 53 M.N. A
hasov et al. (Novosibirsk SND Collab.)BARBERIS 00H PL B488 225 D. Barberis et al. (WA 102 Collab.)OLLER 99 PR D60 099906 (erratum)J.A. Oller et al.OLLER 99B NP A652 407 (erratum) J.A. Oller, E. OsetOLLER 99C PR D60 074023 J.A. Oller, E. OsetTEIGE 99 PR D59 012001 S. Teige et al. (BNL E852 Collab.)ABELE 98 PR D57 3860 A. Abele et al. (Crystal Barrel Collab.)ACHASOV 98B PL B438 441 M.N. A
hasov et al. (Novosibirsk SND Collab.)AMSLER 98 RMP 70 1293 C. AmslerANISOVICH 98B SPU 41 419 V.V. Anisovi
h et al.Translated from UFN 168 481.BARBERIS 98C PL B440 225 D. Barberis et al. (WA 102 Collab.)BERTIN 98B PL B434 180 A. Bertin et al. (OBELIX Collab.)TORNQVIST 96 PRL 76 1575 N.A. Tornqvist, M. Roos (HELS)JANSSEN 95 PR D52 2690 G. Janssen et al. (STON, ADLD, JULI)AMSLER 94C PL B327 425 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 94D PL B333 277 C. Amsler et al. (Crystal Barrel Collab.)BUGG 94 PR D50 4412 D.V. Bugg et al. (LOQM)AMSLER 92 PL B291 347 C. Amsler et al. (Crystal Barrel Collab.)ARMSTRONG 91B ZPHY C52 389 T.A. Armstrong et al. (ATHU, BARI, BIRM+)OEST 90 ZPHY C47 343 T. Oest et al. (JADE Collab.)ACHASOV 89 NP B315 465 N.N. A
hasov, V.N. Ivan
henkoVOROBYEV 88 SJNP 48 273 P.V. Vorobiev et al. (NOVO)Translated from YAF 48 436.ANTREASYAN 86 PR D33 1847 D. Antreasyan et al. (Crystal Ball Collab.)ATKINSON 84E PL 138B 459 M. Atkinson et al. (BONN, CERN, GLAS+)EVANGELIS... 81 NP B178 197 C. Evangelista et al. (BARI, BONN, CERN+)DEBILLY 80 NP B176 1 L. de Billy et al. (CURIN, LAUS, NEUC+)GURTU 79 NP B151 181 A. Gurtu et al. (CERN, ZEEM, NIJM, OXF)CONFORTO 78 LNC 23 419 B. Conforto et al. (RHEL, TNTO, CHIC+)CORDEN 78 NP B144 253 M.J. Corden et al. (BIRM, RHEL, TELA+)GRASSLER 77 NP B121 189 H. Grassler et al. (AACH3, BERL, BONN+)



891891891891See key on page 601 MesonParti
le Listingsa0(980), φ(1020)JAFFE 77 PR D15 267,281 R. Ja�e (MIT)FLATTE 76 PL 63B 224 S.M. Flatte (CERN)GAY 76B PL 63B 220 J.B. Gay et al. (CERN, AMST, NIJM) JPWELLS 75 NP B101 333 J. Wells et al. (OXF)DEFOIX 72 NP B44 125 C. Defoix et al. (CDEF, CERN)AMMAR 70 PR D2 430 R. Ammar et al. (KANS, NWES, ANL, WISC)BARNES 69C PRL 23 610 V.E. Barnes et al. (BNL, SYRA)CAMPBELL 69 PRL 22 1204 J.H. Campbell et al. (PURD)MILLER 69B PL 29B 255 D.H. Miller et al. (PURD)Also PR 188 2011 W.L. Yen et al. (PURD)AMMAR 68 PRL 21 1832 R. Ammar et al. (NWES, ANL)ASTIER 67 PL 25B 294 A. Astier et al. (CDEF, CERN, IRAD)In
ludes data of BARLOW 67, CONFORTO 67, and ARMENTEROS 65.BARLOW 67 NC 50A 701 J. Barlow et al. (CERN, CDEF, IRAD, LIVP)CONFORTO 67 NP B3 469 G. Conforto et al. (CERN, CDEF, IPNP+)ARMENTEROS 65 PL 17 344 R. Armenteros et al. (CERN, CDEF)ROSENFELD 65 Oxford Conf. 58 A.H. Rosenfeld (LRL)
φ(1020) IG (JPC ) = 0−(1−−)

φ(1020) MASSφ(1020) MASSφ(1020) MASSφ(1020) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1019.461±0.019 OUR AVERAGE1019.461±0.019 OUR AVERAGE1019.461±0.019 OUR AVERAGE1019.461±0.019 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1019.51 ±0.02 ±0.05 1 LEES 13Q BABR e+ e− → K+K− γ1019.30 ±0.02 ±0.10 105k AKHMETSHIN 06 CMD2 0.98{1.06 e+ e− →
π+π−π01019.52 ±0.05 ±0.05 17.4k AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− →
ηγ1019.483±0.011±0.025 272k 2 AKHMETSHIN 04 CMD2 e+ e− → K0LK0S1019.42 ±0.05 1900k 3 ACHASOV 01E SND e+ e− → K+K−,KS KL, π+π−π01019.40 ±0.04 ±0.05 23k AKHMETSHIN 01B CMD2 e+ e− → ηγ1019.36 ±0.12 4 ACHASOV 00B SND e+ e− → ηγ1019.38 ±0.07 ±0.08 2200 5 AKHMETSHIN 99F CMD2 e+ e− → π+π− ≥2γ1019.51 ±0.07 ±0.10 11169 AKHMETSHIN 98 CMD2 e+ e− → π+π−π01019.5 ±0.4 BARBERIS 98 OMEG 450 pp →pp2K+2K−1019.42 ±0.06 55600 AKHMETSHIN 95 CMD2 e+ e− → hadrons1019.7 ±0.3 2012 DAVENPORT 86 MPSF 400 pA → 4K X1019.7 ±0.1 ±0.1 5079 ALBRECHT 85D ARG 10 e+ e− →K+K−X1019.3 ±0.1 1500 ARENTON 82 AEMS 11.8 polar. pp →KK1019.67 ±0.17 25080 6 PELLINEN 82 RVUE1019.52 ±0.13 3681 BUKIN 78C OLYA e+ e− → hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •1019.48 ±0.01 LEES 13F BABR D+ → K+K−π+1019.441±0.008±0.080 542k 7 AKHMETSHIN 08 CMD2 1.02 e+ e− →K+K−1019.63 ±0.07 12540 8 AUBERT,B 05J BABR D0 → K0K+K−1019.8 ±0.7 ARMSTRONG 86 OMEG 85 π+/pp →
π+/p4K p1020.1 ±0.11 5526 8 ATKINSON 86 OMEG 20{70 γ p1019.7 ±1.0 BEBEK 86 CLEO e+ e− → �(4S)1019.411±0.008 642k 9 DIJKSTRA 86 SPEC 100{200 π±, p, p,K±, on Be1020.9 ±0.2 8 FRAME 86 OMEG 13 K+ p → φK+ p1021.0 ±0.2 8 ARMSTRONG 83B OMEG 18.5 K−p →K−K+�1020.0 ±0.5 8 ARMSTRONG 83B OMEG 18.5 K−p →K−K+�1019.7 ±0.3 8 BARATE 83 GOLI 190 π−Be → 2µX1019.8 ±0.2 ±0.5 766 IVANOV 81 OLYA 1{1.4 e+ e− →K+K−1019.4 ±0.5 337 COOPER 78B HBC 0.7{0.8 pp →K0S K0Lπ+π−1020 ±1 383 8 BALDI 77 CNTR 10 π− p → π−φp1018.9 ±0.6 800 COHEN 77 ASPK 6 π±N →K+K−N1019.7 ±0.5 454 KALBFLEISCH 76 HBC 2.18 K−p → �K K1019.4 ±0.8 984 BESCH 74 CNTR 2 γ p → pK+K−1020.3 ±0.4 100 BALLAM 73 HBC 2.8{9.3 γ p1019.4 ±0.7 BINNIE 73B CNTR π− p → φn1019.6 ±0.5 120 10 AGUILAR-... 72B HBC 3.9,4.6 K− p →�K+K−1019.9 ±0.5 100 10 AGUILAR-... 72B HBC 3.9,4.6 K− p →K−pK+K−1020.4 ±0.5 131 COLLEY 72 HBC 10 K+ p → K+ pφ1019.9 ±0.3 410 STOTTLE... 71 HBC 2.9 K− p →� /�K K1Using a phenomenologi
al model based on KUHN 90 with a sum of Breit-Wigner reso-nan
es for ρ(770), ω(782), φ(1020) and their higher mass ex
itations.2Update of AKHMETSHIN 99D3From the 
ombined �t assuming that the total φ(1020) produ
tion 
ross se
tion issaturated by those of K+K−, KS KL, π+π−π0, and ηγ de
ays modes and usingACHASOV 00B for the ηγ de
ay mode.4Using a total width of 4.43 ± 0.05 MeV. Systemati
 un
ertainty in
luded.5Using a total width of 4.43 ± 0.05 MeV.

6PELLINEN 82 review in
ludes AKERLOF 77, DAUM 81, BALDI 77, AYRES 74, DE-GROOT 74.7 Strongly 
orrelated with AKHMETSHIN 04.8 Systemati
 errors not evaluated.9Weighted and s
aled average of 12 measurements of DIJKSTRA 86.10Mass errors enlarged by us to �/√N; see the note with the K∗(892) mass.
φ(1020) WIDTHφ(1020) WIDTHφ(1020) WIDTHφ(1020) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT4.266±0.031 OUR AVERAGE4.266±0.031 OUR AVERAGE4.266±0.031 OUR AVERAGE4.266±0.031 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.4.29 ±0.04 ±0.07 1 LEES 13Q BABR e+ e− → K+K− γ4.30 ±0.06 ±0.17 105k AKHMETSHIN 06 CMD2 0.98{1.06 e+ e− →

π+π−π04.280±0.033±0.025 272k 2 AKHMETSHIN 04 CMD2 e+ e− → K0LK0S4.21 ±0.04 1900k 3 ACHASOV 01E SND e+ e− → K+K−,KS KL, π+π−π04.44 ±0.09 55600 AKHMETSHIN 95 CMD2 e+ e− → hadrons4.5 ±0.7 1500 ARENTON 82 AEMS 11.8 polar. pp → K K4.2 ±0.6 766 4 IVANOV 81 OLYA 1{1.4 e+ e− → K+K−4.3 ±0.6 4 CORDIER 80 DM1 e+ e− → π+π−π04.36 ±0.29 3681 4 BUKIN 78C OLYA e+ e− → hadrons4.4 ±0.6 984 4 BESCH 74 CNTR 2 γ p → pK+K−4.67 ±0.72 681 4 BALAKIN 71 OSPK e+ e− → hadrons4.09 ±0.29 BIZOT 70 OSPK e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.37 ±0.02 LEES 13F BABR D+ → K+K−π+4.24 ±0.02 ±0.03 542k 5 AKHMETSHIN 08 CMD2 1.02 e+ e− → K+K−4.28 ±0.13 12540 6 AUBERT,B 05J BABR D0 → K0K+K−4.45 ±0.06 271k DIJKSTRA 86 SPEC 100 π−Be3.6 ±0.8 337 4 COOPER 78B HBC 0.7{0.8 pp →K0S K0Lπ+π−4.5 ±0.50 1300 4,6 AKERLOF 77 SPEC 400 pA → K+K−X4.5 ±0.8 500 4,6 AYRES 74 ASPK 3{6 π− p →K+K− n, K− p →K+K−�/�03.81 ±0.37 COSME 74B OSPK e+ e− → K0LK0S3.8 ±0.7 454 4 BORENSTEIN 72 HBC 2.18 K−p → K K n1Using a phenomenologi
al model based on KUHN 90 with a sum of Breit-Wigner reso-nan
es for ρ(770), ω(782), φ(1020) and their higher mass ex
itations.2Update of AKHMETSHIN 99D3From the 
ombined �t assuming that the total φ(1020) produ
tion 
ross se
tion issaturated by those of K+K−, KS KL, π+π−π0, and ηγ de
ays modes and usingACHASOV 00B for the ηγ de
ay mode.4Width errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.5 Strongly 
orrelated with AKHMETSHIN 04.6 Systemati
 errors not evaluated.

φ(1020) DECAY MODESφ(1020) DECAY MODESφ(1020) DECAY MODESφ(1020) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 K+K− (48.9 ±0.5 ) % S=1.1�2 K0LK0S (34.2 ±0.4 ) % S=1.1�3 ρπ + π+π−π0 (15.32 ±0.32 ) % S=1.1�4 ρπ�5 π+π−π0�6 ηγ ( 1.309±0.024) % S=1.2�7 π0 γ ( 1.27 ±0.06 )× 10−3�8 ℓ+ ℓ− |�9 e+ e− ( 2.954±0.030)× 10−4 S=1.1�10 µ+µ− ( 2.87 ±0.19 )× 10−4�11 ηe+ e− ( 1.08 ±0.04 )× 10−4�12 π+π− ( 7.4 ±1.3 )× 10−5�13 ωπ0 ( 4.7 ±0.5 )× 10−5�14 ωγ < 5 % CL=84%�15 ργ < 1.2 × 10−5 CL=90%�16 π+π−γ ( 4.1 ±1.3 )× 10−5�17 f0(980)γ ( 3.22 ±0.19 )× 10−4 S=1.1�18 π0π0 γ ( 1.13 ±0.06 )× 10−4�19 π+π−π+π− ( 4.0 +2.8
−2.2 )× 10−6�20 π+π+π−π−π0 < 4.6 × 10−6 CL=90%�21 π0 e+ e− ( 1.12 ±0.28 )× 10−5�22 π0 ηγ ( 7.27 ±0.30 )× 10−5 S=1.5�23 a0(980)γ ( 7.6 ±0.6 )× 10−5�24 K0K0 γ < 1.9 × 10−8 CL=90%�25 η′(958)γ ( 6.25 ±0.21 )× 10−5�26 ηπ0π0 γ < 2 × 10−5 CL=90%�27 µ+µ− γ ( 1.4 ±0.5 )× 10−5
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φ(1020)�28 ργ γ < 1.2 × 10−4 CL=90%�29 ηπ+π− < 1.8 × 10−5 CL=90%�30 ηµ+µ− < 9.4 × 10−6 CL=90%�31 ηU → ηe+ e− < 1 × 10−6 CL=90%Lepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modes�32 e±µ∓ LF < 2 × 10−6 CL=90%CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 30 bran
hing ratios uses 79 measurements andone 
onstraint to determine 14 parameters. The overall �t has a

χ2 = 57.4 for 66 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −72x3 −53 −21x6 −13 7 2x7 −5 3 1 5x9 30 −25 −10 −32 −15x10 −4 3 1 3 2 −11x12 −2 1 0 2 1 −5 1x13 −2 2 1 2 1 −7 1 0x17 0 0 0 0 0 0 0 0 0x18 −6 4 2 17 3 −17 2 1 1 0x19 0 0 0 0 0 −1 0 0 0 0x23 0 0 0 0 0 0 0 0 0 0x25 −4 2 1 32 2 −10 1 1 1 0x1 x2 x3 x6 x7 x9 x10 x12 x13 x17x19 0x23 0 0x25 5 0 0x18 x19 x23
φ(1020) PARTIAL WIDTHSφ(1020) PARTIAL WIDTHSφ(1020) PARTIAL WIDTHSφ(1020) PARTIAL WIDTHS�(ηγ

) �6�(ηγ
) �6�(ηγ
) �6�(ηγ
) �6VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •58.9±0.5±2.4 ACHASOV 00 SND e+ e− → ηγ�(π0 γ
) �7�(π0 γ
) �7�(π0 γ
) �7�(π0 γ
) �7VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.40±0.16+0.43
−0.40 ACHASOV 00 SND e+ e− → π0 γ�(ℓ+ ℓ−

) �8�(ℓ+ ℓ−
) �8�(ℓ+ ℓ−
) �8�(ℓ+ ℓ−
) �8VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.320±0.017±0.015 1 AMBROSINO 05 KLOE 1.02 e+ e− → µ+µ−�(e+ e−) �9�(e+ e−) �9�(e+ e−) �9�(e+ e−) �9VALUE (keV) DOCUMENT ID TECN COMMENT1.27 ±0.04 OUR EVALUATION1.27 ±0.04 OUR EVALUATION1.27 ±0.04 OUR EVALUATION1.27 ±0.04 OUR EVALUATION1.251±0.021 OUR AVERAGE1.251±0.021 OUR AVERAGE1.251±0.021 OUR AVERAGE1.251±0.021 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1.235±0.006±0.022 2 AKHMETSHIN 11 CMD2 1.02 e+ e− → φ1.32 ±0.05 ±0.03 3 AMBROSINO 05 KLOE 1.02 e+ e− → e+ e−1.28 ±0.05 AKHMETSHIN 95 CMD2 1.02 e+ e− → φ

(�(e+ e−)

× �(µ+µ−))1/2 (�9�10)1/2(�(e+ e−)

× �(µ+µ−))1/2 (�9�10)1/2(�(e+ e−)

× �(µ+µ−))1/2 (�9�10)1/2(�(e+ e−)

× �(µ+µ−))1/2 (�9�10)1/2VALUE (keV) DOCUMENT ID TECN COMMENT1.320±0.018±0.0171.320±0.018±0.0171.320±0.018±0.0171.320±0.018±0.017 AMBROSINO 05 KLOE 1.02 e+ e− → µ+µ−1Weighted average of �ee and √�e e�µµ from AMBROSINO 05 assuming lepton uni-versality.2Combined analysis of the CMD-2 data on φ → K+K−, K0S K0L, π+π−π0, ηγ assum-ing that the sum of their bran
hing fra
tions is 0.99741 ± 0.00007.3 From forward-ba
kward asymmetry and using �total = 4.26 ± 0.05 MeV from the 2004edition of this Review.

φ(1020) �(i)�(e+ e−)/�(total)φ(1020) �(i)�(e+ e−)/�(total)φ(1020) �(i)�(e+ e−)/�(total)φ(1020) �(i)�(e+ e−)/�(total)�(K+K−)

× �(e+ e−)/�total �1�9/��(K+K−)

× �(e+ e−)/�total �1�9/��(K+K−)

× �(e+ e−)/�total �1�9/��(K+K−)

× �(e+ e−)/�total �1�9/�VALUE (keV) DOCUMENT ID TECN COMMENT0.6340±0.0070±0.00390.6340±0.0070±0.00390.6340±0.0070±0.00390.6340±0.0070±0.0039 1 LEES 13Q BABR e+ e− → K+K− γ1Using a phenomenologi
al model based on KUHN 90 with a sum of Breit-Wigner res-onan
es for ρ(770), ω(782), φ(1020) and their higher mass ex
itations. The �rst er-ror 
ombines statisti
al and systemati
 un
ertainties. The se
ond one is due to theparametrization of the 
harged kaon form fa
tor and mass 
alibration.
φ(1020) �(i)�(e+ e−)/�2(total)φ(1020) �(i)�(e+ e−)/�2(total)φ(1020) �(i)�(e+ e−)/�2(total)φ(1020) �(i)�(e+ e−)/�2(total)�(K+K−)/�total × �(e+ e−)/�total �1/�× �9/��(K+K−)/�total × �(e+ e−)/�total �1/�× �9/��(K+K−)/�total × �(e+ e−)/�total �1/�× �9/��(K+K−)/�total × �(e+ e−)/�total �1/�× �9/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT14.46±0.23 OUR FIT14.46±0.23 OUR FIT14.46±0.23 OUR FIT14.46±0.23 OUR FIT Error in
ludes s
ale fa
tor of 1.1.14.24±0.30 OUR AVERAGE14.24±0.30 OUR AVERAGE14.24±0.30 OUR AVERAGE14.24±0.30 OUR AVERAGE14.27±0.05±0.31 542k AKHMETSHIN 08 CMD2 1.02 e+ e− → K+K−13.93±0.14±0.99 1000k 1 ACHASOV 01E SND e+ e− → K+K−,KS KL, π+π−π0�(K0LK0S)/�total × �(e+ e−)/�total �2/�× �9/��(K0LK0S)/�total × �(e+ e−)/�total �2/�× �9/��(K0LK0S)/�total × �(e+ e−)/�total �2/�× �9/��(K0LK0S)/�total × �(e+ e−)/�total �2/�× �9/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT10.10±0.13 OUR FIT10.10±0.13 OUR FIT10.10±0.13 OUR FIT10.10±0.13 OUR FIT10.06±0.16 OUR AVERAGE10.06±0.16 OUR AVERAGE10.06±0.16 OUR AVERAGE10.06±0.16 OUR AVERAGE10.01±0.04±0.17 272k 2 AKHMETSHIN 04 CMD2 e+ e− → K0LK0S10.27±0.07±0.34 500k 1 ACHASOV 01E SND e+ e− → K+K−,KS KL, π+π−π0

[�(ρπ
)+�(π+π−π0)]/�total × �(e+ e−)/�total �3/�× �9/�[�(ρπ
)+�(π+π−π0)]/�total × �(e+ e−)/�total �3/�× �9/�[�(ρπ
)+�(π+π−π0)]/�total × �(e+ e−)/�total �3/�× �9/�[�(ρπ
)+�(π+π−π0)]/�total × �(e+ e−)/�total �3/�× �9/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT4.53 ±0.10 OUR FIT4.53 ±0.10 OUR FIT4.53 ±0.10 OUR FIT4.53 ±0.10 OUR FIT Error in
ludes s
ale fa
tor of 1.1.4.46 ±0.12 OUR AVERAGE4.46 ±0.12 OUR AVERAGE4.46 ±0.12 OUR AVERAGE4.46 ±0.12 OUR AVERAGE4.51 ±0.16 ±0.11 105k AKHMETSHIN 06 CMD2 0.98{1.06 e+ e− →

π+π−π04.30 ±0.08 ±0.21 AUBERT,B 04N BABR 10.6 e+ e− →
π+π−π0 γ4.665±0.042±0.261 400k 1 ACHASOV 01E SND e+ e− → K+K−,KS KL, π+π−π04.35 ±0.27 ±0.08 11169 3 AKHMETSHIN 98 CMD2 e+ e− → π+π−π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.38 ±0.12 BENAYOUN 10 RVUE 0.4{1.05 e+ e−�(ηγ
)/�total × �(e+ e−)/�total �6/�× �9/��(ηγ
)/�total × �(e+ e−)/�total �6/�× �9/��(ηγ
)/�total × �(e+ e−)/�total �6/�× �9/��(ηγ
)/�total × �(e+ e−)/�total �6/�× �9/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT3.87 ±0.07 OUR FIT3.87 ±0.07 OUR FIT3.87 ±0.07 OUR FIT3.87 ±0.07 OUR FIT Error in
ludes s
ale fa
tor of 1.2.3.93 ±0.09 OUR AVERAGE3.93 ±0.09 OUR AVERAGE3.93 ±0.09 OUR AVERAGE3.93 ±0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.4.050±0.067±0.118 33k 4 ACHASOV 07B SND 0.6{1.38 e+ e− → ηγ4.093+0.040
−0.043±0.247 17.4k 5 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → ηγ3.850±0.041±0.159 23k 6,7 AKHMETSHIN 01B CMD2 e+ e− → ηγ4.00 ±0.04 ±0.11 8 ACHASOV 00 SND e+ e− → ηγ3.53 ±0.08 ±0.17 2200 9,10 AKHMETSHIN 99F CMD2 e+ e− → ηγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.19 ±0.06 11 BENAYOUN 10 RVUE 0.4{1.05 e+ e−
WEIGHTED AVERAGE
3.93±0.09 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

AKHMETSHIN 99F CMD2 4.5
ACHASOV 00 SND 0.4
AKHMETSHIN 01B CMD2 0.2
AKHMETSHIN 05 CMD2 0.4
ACHASOV 07B SND 0.8

χ2

       6.3
(Confidence Level = 0.176)

3 3.5 4 4.5 5 5.5�(

ηγ
)/�total × �(e+ e−)/�total �6/� × �9/�
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φ(1020)�(π0 γ

)/�total × �(e+ e−)/�total �7/�× �9/��(π0 γ
)/�total × �(e+ e−)/�total �7/�× �9/��(π0 γ
)/�total × �(e+ e−)/�total �7/�× �9/��(π0 γ
)/�total × �(e+ e−)/�total �7/�× �9/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT3.74±0.18 OUR FIT3.74±0.18 OUR FIT3.74±0.18 OUR FIT3.74±0.18 OUR FIT3.71±0.21 OUR AVERAGE3.71±0.21 OUR AVERAGE3.71±0.21 OUR AVERAGE3.71±0.21 OUR AVERAGE3.75±0.11±0.29 18680 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → π0 γ3.67±0.10+0.27

−0.25 12 ACHASOV 00 SND e+ e− → π0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.29±0.11 11 BENAYOUN 10 RVUE 0.4{1.05 e+ e−�(µ+µ−)/�total × �(e+ e−)/�total �10/�× �9/��(µ+µ−)/�total × �(e+ e−)/�total �10/�× �9/��(µ+µ−)/�total × �(e+ e−)/�total �10/�× �9/��(µ+µ−)/�total × �(e+ e−)/�total �10/�× �9/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT8.5 +0.5
−0.6 OUR FIT8.5 +0.5
−0.6 OUR FIT8.5 +0.5
−0.6 OUR FIT8.5 +0.5
−0.6 OUR FIT8.8 ±0.9 OUR AVERAGE8.8 ±0.9 OUR AVERAGE8.8 ±0.9 OUR AVERAGE8.8 ±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.8.36±0.59±0.37 ACHASOV 01G SND e+ e− → µ+µ−9.9 ±1.4 ±0.9 9 ACHASOV 99C SND e+ e− → µ+µ−14.4 ±3.0 3 VASSERMAN 81 OLYA e+ e− → µ+µ−8.6 ±5.9 3 AUGUSTIN 73 OSPK e+ e− → µ+µ−

WEIGHTED AVERAGE
8.8±0.9 (Error scaled by 1.5)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

AUGUSTIN 73 OSPK
VASSERMAN 81 OLYA 3.4
ACHASOV 99C SND 0.4
ACHASOV 01G SND 0.5

χ2

       4.3
(Confidence Level = 0.116)

0 5 10 15 20 25�(

µ+µ−
)/�total × �(e+ e−)/�total �10/� × �9/��(π+π−)/�total × �(e+ e−)/�total �12/�× �9/��(π+π−)/�total × �(e+ e−)/�total �12/�× �9/��(π+π−)/�total × �(e+ e−)/�total �12/�× �9/��(π+π−)/�total × �(e+ e−)/�total �12/�× �9/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT2.2 ±0.4 OUR FIT2.2 ±0.4 OUR FIT2.2 ±0.4 OUR FIT2.2 ±0.4 OUR FIT2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE2.1 ±0.3 ±0.3 9 ACHASOV 00C SND e+ e− → π+π−1.95+1.15

−0.87 3 GOLUBEV 86 ND e+ e− → π+π−6.01+3.19
−2.51 3 VASSERMAN 81 OLYA e+ e− → π+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.31±0.99 13 BENAYOUN 13 RVUE 0.4{1.05 e+ e−�(ωπ0)/�total × �(e+ e−)/�total �13/�× �9/��(ωπ0)/�total × �(e+ e−)/�total �13/�× �9/��(ωπ0)/�total × �(e+ e−)/�total �13/�× �9/��(ωπ0)/�total × �(e+ e−)/�total �13/�× �9/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT1.40±0.15 OUR FIT1.40±0.15 OUR FIT1.40±0.15 OUR FIT1.40±0.15 OUR FIT1.37±0.17±0.011.37±0.17±0.011.37±0.17±0.011.37±0.17±0.01 14,15 AMBROSINO 08G KLOE e+ e− → π+π− 2π0, 2π0 γ�(π0π0 γ
)/�total × �(e+ e−)/�total �18/�× �9/��(π0π0 γ
)/�total × �(e+ e−)/�total �18/�× �9/��(π0π0 γ
)/�total × �(e+ e−)/�total �18/�× �9/��(π0π0 γ
)/�total × �(e+ e−)/�total �18/�× �9/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT3.34±0.17 OUR FIT3.34±0.17 OUR FIT3.34±0.17 OUR FIT3.34±0.17 OUR FIT3.33+0.04

−0.09+0.19
−0.203.33+0.04

−0.09+0.19
−0.203.33+0.04

−0.09+0.19
−0.203.33+0.04

−0.09+0.19
−0.20 16 AMBROSINO 07 KLOE e+ e− → π0π0 γ�(π+π−π+π−)/�total × �(e+ e−)/�total �19/�× �9/��(π+π−π+π−)/�total × �(e+ e−)/�total �19/�× �9/��(π+π−π+π−)/�total × �(e+ e−)/�total �19/�× �9/��(π+π−π+π−)/�total × �(e+ e−)/�total �19/�× �9/�VALUE (units 10−9) EVTS DOCUMENT ID TECN COMMENT1.2 +0.8

−0.7 OUR FIT1.2 +0.8
−0.7 OUR FIT1.2 +0.8
−0.7 OUR FIT1.2 +0.8
−0.7 OUR FIT1.17±0.52±0.641.17±0.52±0.641.17±0.52±0.641.17±0.52±0.64 3285 9 AKHMETSHIN 00E CMD2 e+ e− → π+π−π+π−1From the 
ombined �t assuming that the total φ(1020) produ
tion 
ross se
tion issaturated by those of K+K−, KS KL, π+π−π0, and ηγ de
ays modes and usingACHASOV 00B for the ηγ de
ay mode.2Update of AKHMETSHIN 99D3Re
al
ulated by us from the 
ross se
tion in the peak.4 From a 
ombined �t of σ(e+ e− → ηγ) with η → 3π0 and η → π+π−π0, and�xing B(η → 3π0) / B(η → π+π−π0) = 1.44 ± 0.04. Re
al
ulated by us from the
ross se
tion at the peak. Supersedes ACHASOV 00D and ACHASOV 06A.5 From the η → 2γ de
ay and using B(η → γ γ) = 39.43 ± 0.26%.6From the η → 3π0 de
ay and using B(η → 3π0)= (32.24 ± 0.29) × 10−2.7The 
ombined �t from 600 to 1380 MeV taking into a

ount ρ(770), ω(782), φ(1020),and ρ(1450) (mass and width �xed at 1450 MeV and 310 MeV respe
tively).8 From the η → 2γ de
ay and using B(η → 2γ) =(39.21 ± 0.34) × 10−2.

9Re
al
ulated by the authors from the 
ross se
tion in the peak.10 From the η → π+π−π0 de
ay and using B(η → π+π−π0) =(23.1 ± 0.5)× 10−2.11A simultaneous �t of e+ e− → π+π−, π+π−π0, π0 γ, ηγ data.12 From the π0 → 2γ de
ay and using B(π0 → 2γ) =(98.798 ± 0.032)× 10−2.13A simultaneous �t to e+ e− → π+π−, π+π−π0, π0 γ, ηγ, K K , and τ− → π−π0 ντdata.14Re
al
ulated by the authors from the 
ross se
tion at the peak.15AMBROSINO 08G reports [�(

φ(1020) → ωπ0)/�total × �(

φ(1020) → e+ e−)/�total℄ × [B(ω(782) → π+π−π0)℄ = (1.22 ± 0.13 ± 0.08) × 10−8 whi
h we divideby our best value B(ω(782) → π+π−π0) = (89.2 ± 0.7) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.16Cal
ulated by the authors from the 
ross se
tion at the peak.
φ(1020) BRANCHING RATIOSφ(1020) BRANCHING RATIOSφ(1020) BRANCHING RATIOSφ(1020) BRANCHING RATIOS�(K+K−)/�total �1/��(K+K−)/�total �1/��(K+K−)/�total �1/��(K+K−)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.489±0.005 OUR FIT0.489±0.005 OUR FIT0.489±0.005 OUR FIT0.489±0.005 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.493±0.010 OUR AVERAGE0.493±0.010 OUR AVERAGE0.493±0.010 OUR AVERAGE0.493±0.010 OUR AVERAGE0.492±0.012 2913 AKHMETSHIN 95 CMD2 e+ e− → K+K−0.44 ±0.05 321 KALBFLEISCH 76 HBC 2.18 K−p → �K+K−0.49 ±0.06 270 DEGROOT 74 HBC 4.2 K− p → �φ0.540±0.034 565 BALAKIN 71 OSPK e+ e− → K+K−0.48 ±0.04 252 LINDSEY 66 HBC 2.1{2.7 K− p → �K+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.493±0.003±0.007 1 AKHMETSHIN 11 CMD2 1.02 e+ e− → K+K−0.476±0.017 1000k 2 ACHASOV 01E SND e+ e− → K+K−, KS KL,
π+π−π0�(K0LK0S)/�total �2/��(K0LK0S)/�total �2/��(K0LK0S)/�total �2/��(K0LK0S)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENT0.342±0.004 OUR FIT0.342±0.004 OUR FIT0.342±0.004 OUR FIT0.342±0.004 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.331±0.009 OUR AVERAGE0.331±0.009 OUR AVERAGE0.331±0.009 OUR AVERAGE0.331±0.009 OUR AVERAGE0.335±0.010 40644 AKHMETSHIN 95 CMD2 e+ e− → K0LK0S0.326±0.035 DOLINSKY 91 ND e+ e− → K0LK0S0.310±0.024 DRUZHININ 84 ND e+ e− → K0LK0S

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.336±0.002±0.006 1 AKHMETSHIN 11 CMD2 1.02 e+ e− → K0S K0L0.351±0.013 500k 2 ACHASOV 01E SND e+ e− → K+K−,KS KL, π+π−π00.27 ±0.03 133 KALBFLEISCH 76 HBC 2.18 K−p → �K0LK0S0.257±0.030 95 BALAKIN 71 OSPK e+ e− → K0LK0S0.40 ±0.04 167 LINDSEY 66 HBC 2.1{2.7 K− p → �K0LK0S�(K0LK0S)/�(K+K−) �2/�1�(K0LK0S)/�(K+K−) �2/�1�(K0LK0S)/�(K+K−) �2/�1�(K0LK0S)/�(K+K−) �2/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.698±0.014 OUR FIT0.698±0.014 OUR FIT0.698±0.014 OUR FIT0.698±0.014 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.740±0.031 OUR AVERAGE0.740±0.031 OUR AVERAGE0.740±0.031 OUR AVERAGE0.740±0.031 OUR AVERAGE0.70 ±0.06 2732 BUKIN 78C OLYA e+ e− → K0LK0S0.82 ±0.08 LOSTY 78 HBC 4.2 K− p → φhyperon0.71 ±0.05 LAVEN 77 HBC 10 K− p → K+K−�0.71 ±0.08 LYONS 77 HBC 3{4 K− p → �φ0.89 ±0.10 144 AGUILAR-... 72B HBC 3.9,4.6 K− p
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.68 ±0.03 3 AKHMETSHIN 95 CMD2 e+ e− → K0LK0S , K+K−�(K0LK0S)/�(K K) �2/(�1+�2)�(K0LK0S)/�(K K) �2/(�1+�2)�(K0LK0S)/�(K K) �2/(�1+�2)�(K0LK0S)/�(K K) �2/(�1+�2)VALUE EVTS DOCUMENT ID TECN COMMENT0.411±0.005 OUR FIT0.411±0.005 OUR FIT0.411±0.005 OUR FIT0.411±0.005 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.45 ±0.04 OUR AVERAGE0.45 ±0.04 OUR AVERAGE0.45 ±0.04 OUR AVERAGE0.45 ±0.04 OUR AVERAGE0.44 ±0.07 LONDON 66 HBC 2.24 K− p → �K K0.48 ±0.07 52 BADIER 65B HBC 3 K− p0.40 ±0.10 34 SCHLEIN 63 HBC 1.95 K− p → �K K
[�(ρπ

)+�(π+π−π0)]/�total �3/�[�(ρπ
)+�(π+π−π0)]/�total �3/�[�(ρπ
)+�(π+π−π0)]/�total �3/�[�(ρπ
)+�(π+π−π0)]/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENT0.1532±0.0032 OUR FIT0.1532±0.0032 OUR FIT0.1532±0.0032 OUR FIT0.1532±0.0032 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.151 ±0.009 OUR AVERAGE0.151 ±0.009 OUR AVERAGE0.151 ±0.009 OUR AVERAGE0.151 ±0.009 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.0.161 ±0.008 11761 AKHMETSHIN 95 CMD2 e+ e− → π+π−π00.143 ±0.007 DOLINSKY 91 ND e+ e− → π+π−π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.155 ±0.002 ±0.005 1 AKHMETSHIN 11 CMD2 1.02 e+ e− → π+π−π00.159 ±0.008 400k 2 ACHASOV 01E SND e+ e− → K+K−,KS KL, π+π−π00.145 ±0.009 ±0.003 11169 4 AKHMETSHIN 98 CMD2 e+ e− → π+π−π00.139 ±0.007 5 PARROUR 76B OSPK e+ e−
[�(ρπ

)+�(π+π−π0)]/�(K+K−) �3/�1[�(ρπ
)+�(π+π−π0)]/�(K+K−) �3/�1[�(ρπ
)+�(π+π−π0)]/�(K+K−) �3/�1[�(ρπ
)+�(π+π−π0)]/�(K+K−) �3/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.313±0.009 OUR FIT0.313±0.009 OUR FIT0.313±0.009 OUR FIT0.313±0.009 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.28 ±0.090.28 ±0.090.28 ±0.090.28 ±0.09 34 AGUILAR-... 72B HBC 3.9,4.6 K− p
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φ(1020)
[�(ρπ

)+�(π+π−π0)]/�(K K) �3/(�1+�2)[�(ρπ
)+�(π+π−π0)]/�(K K) �3/(�1+�2)[�(ρπ
)+�(π+π−π0)]/�(K K) �3/(�1+�2)[�(ρπ
)+�(π+π−π0)]/�(K K) �3/(�1+�2)VALUE DOCUMENT ID TECN COMMENT0.184±0.005 OUR FIT0.184±0.005 OUR FIT0.184±0.005 OUR FIT0.184±0.005 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.24 ±0.04 OUR AVERAGE0.24 ±0.04 OUR AVERAGE0.24 ±0.04 OUR AVERAGE0.24 ±0.04 OUR AVERAGE0.237±0.039 CERRADA 77B HBC 4.2 K− p → �3π0.30 ±0.15 LONDON 66 HBC 2.24 K− p → �π+π−π0

[�(ρπ
)+�(π+π−π0)]/�(K0LK0S) �3/�2[�(ρπ
)+�(π+π−π0)]/�(K0LK0S) �3/�2[�(ρπ
)+�(π+π−π0)]/�(K0LK0S) �3/�2[�(ρπ
)+�(π+π−π0)]/�(K0LK0S) �3/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.448±0.012 OUR FIT0.448±0.012 OUR FIT0.448±0.012 OUR FIT0.448±0.012 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.51 ±0.05 OUR AVERAGE0.51 ±0.05 OUR AVERAGE0.51 ±0.05 OUR AVERAGE0.51 ±0.05 OUR AVERAGE0.56 ±0.07 3681 BUKIN 78C OLYA e+ e− → K0LK0S , π+π−π00.47 ±0.06 516 COSME 74 OSPK e+ e− → π+π−π0�(π+π−π0)/�total �5/��(π+π−π0)/�total �5/��(π+π−π0)/�total �5/��(π+π−π0)/�total �5/�VALUE CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
≃ 0.0087 1.98M 6,7 ALOISIO 03 KLOE 1.02 e+ e− → π+π−π0
<0.0006 90 8 ACHASOV 02 SND 1.02 e+ e− → π+π−π0
<0.23 90 8 CORDIER 80 DM1 e+ e− → π+π−π0
<0.20 90 8 PARROUR 76B OSPK e+ e− → π+π−π0�(ηγ

)/�total �6/��(ηγ
)/�total �6/��(ηγ
)/�total �6/��(ηγ
)/�total �6/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.309±0.024 OUR FIT1.309±0.024 OUR FIT1.309±0.024 OUR FIT1.309±0.024 OUR FIT Error in
ludes s
ale fa
tor of 1.2.1.26 ±0.04 OUR AVERAGE1.26 ±0.04 OUR AVERAGE1.26 ±0.04 OUR AVERAGE1.26 ±0.04 OUR AVERAGE1.246±0.025±0.057 10k 9 ACHASOV 98F SND e+ e− → 7γ1.18 ±0.11 279 10 AKHMETSHIN 95 CMD2 e+ e− → π+π− 3γ1.30 ±0.06 11 DRUZHININ 84 ND e+ e− → 3γ1.4 ±0.2 12 DRUZHININ 84 ND e+ e− → 6γ0.88 ±0.20 290 KURDADZE 83C OLYA e+ e− → 3γ1.35 ±0.29 ANDREWS 77 CNTR 6.7{10 γCu1.5 ±0.4 54 11 COSME 76 OSPK e+ e−

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.38 ±0.02 ±0.02 1 AKHMETSHIN 11 CMD2 1.02 e+ e− → ηγ1.37 ±0.05 ±0.01 33k 13 ACHASOV 07B SND 0.6{1.38 e+ e− → ηγ1.373±0.014±0.085 17.4k 14,15 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → ηγ1.287±0.013±0.063 16,17 AKHMETSHIN 01B CMD2 e+ e− → ηγ1.338±0.012±0.052 18 ACHASOV 00 SND e+ e− → ηγ1.18 ±0.03 ±0.06 2200 19 AKHMETSHIN 99F CMD2 e+ e− → ηγ1.21 ±0.07 20 BENAYOUN 96 RVUE 0.54-1.04 e+ e− → ηγ�(π0 γ
)/�total �7/��(π0 γ
)/�total �7/��(π0 γ
)/�total �7/��(π0 γ
)/�total �7/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.27 ±0.06 OUR FIT1.27 ±0.06 OUR FIT1.27 ±0.06 OUR FIT1.27 ±0.06 OUR FIT1.31 ±0.13 OUR AVERAGE1.31 ±0.13 OUR AVERAGE1.31 ±0.13 OUR AVERAGE1.31 ±0.13 OUR AVERAGE1.30 ±0.13 DRUZHININ 84 ND e+ e− → 3γ1.4 ±0.5 32 COSME 76 OSPK e+ e−

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.258±0.037±0.077 18680 21,22 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → π0 γ1.226±0.036+0.096
−0.089 23 ACHASOV 00 SND e+ e− → π0 γ1.26 ±0.17 20 BENAYOUN 96 RVUE 0.54-1.04 e+ e− → π0 γ�(ηγ

)/�(π0 γ
) �6/�7�(ηγ

)/�(π0 γ
) �6/�7�(ηγ

)/�(π0 γ
) �6/�7�(ηγ

)/�(π0 γ
) �6/�7VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •10.9±0.3+0.7
−0.8 ACHASOV 00 SND e+ e− → ηγ, π0 γ�(e+ e−)/�total �9/��(e+ e−)/�total �9/��(e+ e−)/�total �9/��(e+ e−)/�total �9/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.954±0.030 OUR FIT2.954±0.030 OUR FIT2.954±0.030 OUR FIT2.954±0.030 OUR FIT Error in
ludes s
ale fa
tor of 1.1.2.98 ±0.07 OUR AVERAGE2.98 ±0.07 OUR AVERAGE2.98 ±0.07 OUR AVERAGE2.98 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.2.93 ±0.14 1900k 24 ACHASOV 01E SND e+ e− → K+K−,KS KL, π+π−π02.88 ±0.09 55600 AKHMETSHIN 95 CMD2 e+ e− → hadrons3.00 ±0.21 3681 BUKIN 78C OLYA e+ e− → hadrons3.10 ±0.14 25 PARROUR 76 OSPK e+ e−3.3 ±0.3 COSME 74 OSPK e+ e− → hadrons2.81 ±0.25 681 BALAKIN 71 OSPK e+ e− → hadrons3.50 ±0.27 CHATELUS 71 OSPK e+ e−�(µ+µ−)/�total �10/��(µ+µ−)/�total �10/��(µ+µ−)/�total �10/��(µ+µ−)/�total �10/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.87±0.19 OUR FIT2.87±0.19 OUR FIT2.87±0.19 OUR FIT2.87±0.19 OUR FIT2.5 ±0.4 OUR AVERAGE2.5 ±0.4 OUR AVERAGE2.5 ±0.4 OUR AVERAGE2.5 ±0.4 OUR AVERAGE2.69±0.46 26 HAYES 71 CNTR 8.3,9.8 γC → µ+µ−X2.17±0.60 26 EARLES 70 CNTR 6.0 γC → µ+µ−X

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.87±0.20±0.14 27 ACHASOV 01G SND e+ e− → µ+µ−3.30±0.45±0.32 4 ACHASOV 99C SND e+ e− → µ+µ−4.83±1.02 28 VASSERMAN 81 OLYA e+ e− → µ+µ−2.87±1.98 28 AUGUSTIN 73 OSPK e+ e− → µ+µ−

�(ηe+ e−)/�total �11/��(ηe+ e−)/�total �11/��(ηe+ e−)/�total �11/��(ηe+ e−)/�total �11/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.08 ±0.04 OUR AVERAGE1.08 ±0.04 OUR AVERAGE1.08 ±0.04 OUR AVERAGE1.08 ±0.04 OUR AVERAGE1.075±0.007±0.038 30k 29 BABUSCI 15 KLOE 1.02 e+ e− → ηe+ e−1.19 ±0.19 ±0.12 213 30 ACHASOV 01B SND e+ e− → ηe+ e−1.14 ±0.10 ±0.06 355 31 AKHMETSHIN 01 CMD2 e+ e− → ηe+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.13 ±0.14 ±0.07 183 32 AKHMETSHIN 01 CMD2 e+ e− → ηe+ e−1.21 ±0.14 ±0.09 130 33 AKHMETSHIN 01 CMD2 e+ e− → ηe+ e−1.04 ±0.20 ±0.08 42 34 AKHMETSHIN 01 CMD2 e+ e− → ηe+ e−1.3 +0.8

−0.6 7 GOLUBEV 85 ND e+ e− → ηe+ e−�(π+π−)/�total �12/��(π+π−)/�total �12/��(π+π−)/�total �12/��(π+π−)/�total �12/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.71±0.11±0.09 4 ACHASOV 00C SND e+ e− → π+π−0.65+0.38

−0.29 4 GOLUBEV 86 ND e+ e− → π+π−2.01+1.07
−0.84 4 VASSERMAN 81 OLYA e+ e− → π+π−

<6.6 95 BUKIN 78B OLYA e+ e− → π+π−
<2.7 95 ALVENSLEB... 72 CNTR 6.7 γC → Cπ+π−�(ωπ0)/�total �13/��(ωπ0)/�total �13/��(ωπ0)/�total �13/��(ωπ0)/�total �13/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.7±0.5 OUR FIT4.7±0.5 OUR FIT4.7±0.5 OUR FIT4.7±0.5 OUR FIT5.2+1.3

−1.15.2+1.3
−1.15.2+1.3
−1.15.2+1.3
−1.1 35,36 AULCHENKO 00A SND e+ e− → π+π−π0π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.4±0.6 37 AMBROSINO 08G KLOE e+ e− → π+π− 2π0, 2π0 γ

∼ 5.4 38 ACHASOV 00E SND e+ e− → π0π0 γ5.5+1.6
−1.4±0.3 36,39 AULCHENKO 00A SND e+ e− → π+π−π0π04.8+1.9
−1.7±0.8 38 ACHASOV 99 SND e+ e− → π+π−π0π0�(ωγ
)/�total �14/��(ωγ
)/�total �14/��(ωγ
)/�total �14/��(ωγ
)/�total �14/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.05<0.05<0.05<0.05 84 LINDSEY 66 HBC 2.1{2.7 K− p → �π+π− neutrals�(ργ
)/�total �15/��(ργ
)/�total �15/��(ργ
)/�total �15/��(ργ
)/�total �15/�VALUE (units10−4) CL% DOCUMENT ID TECN COMMENT

< 0.12< 0.12< 0.12< 0.12 90 40 AKHMETSHIN 99B CMD2 e+ e− → π+π− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 7 90 AKHMETSHIN 97C CMD2 e+ e− → π+π− γ

<200 84 LINDSEY 66 HBC 2.1{2.7 K− p → �π+π− neutrals�(π+π−γ
)/�total �16/��(π+π−γ
)/�total �16/��(π+π−γ
)/�total �16/��(π+π−γ
)/�total �16/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT0.41±0.12±0.040.41±0.12±0.040.41±0.12±0.040.41±0.12±0.04 30175 41 AKHMETSHIN 99B CMD2 e+ e− → π+π− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 0.3 90 42 AKHMETSHIN 97C CMD2 e+ e− → π+π− γ

<600 90 KALBFLEISCH 75 HBC 2.18 K−p →�π+π− γ
< 70 90 COSME 74 OSPK e+ e− → π+π− γ

<400 90 LINDSEY 65 HBC 2.1{2.7 K− p →�π+π− neutrals�(f0(980)γ)/�total �17/��(f0(980)γ)/�total �17/��(f0(980)γ)/�total �17/��(f0(980)γ)/�total �17/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT3.22±0.19 OUR FIT3.22±0.19 OUR FIT3.22±0.19 OUR FIT3.22±0.19 OUR FIT Error in
ludes s
ale fa
tor of 1.1.3.21±0.19 OUR AVERAGE3.21±0.19 OUR AVERAGE3.21±0.19 OUR AVERAGE3.21±0.19 OUR AVERAGE3.21+0.03
−0.09±0.18 43 AMBROSINO 07 KLOE e+ e− → π0π0 γ2.90±0.21±1.54 44 AKHMETSHIN 99C CMD2 e+ e− → π+π− γ,

π0π0 γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.47±0.21 2438 45 ALOISIO 02D KLOE e+ e− → π0π0 γ3.5 ±0.3 +1.3

−0.5 419 46,47 ACHASOV 00H SND e+ e− → π0π0 γ1.93±0.46±0.50 27188 48 AKHMETSHIN 99B CMD2 e+ e− → π+π− γ3.05±0.25±0.72 268 49 AKHMETSHIN 99C CMD2 e+ e− → π0π0 γ1.5 ±0.5 268 50 AKHMETSHIN 99C CMD2 e+ e− → π0π0 γ3.42±0.30±0.36 164 46 ACHASOV 98I SND e+ e− → 5γ
< 1 90 51 AKHMETSHIN 97C CMD2 e+ e− → π+π− γ

< 7 90 52 AKHMETSHIN 97C CMD2 e+ e− → π+π− γ

< 20 90 DRUZHININ 87 ND e+ e− → π0π0 γ�(f0(980)γ)/�(ηγ
) �17/�6�(f0(980)γ)/�(ηγ
) �17/�6�(f0(980)γ)/�(ηγ
) �17/�6�(f0(980)γ)/�(ηγ
) �17/�6VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.46±0.15 OUR FIT2.46±0.15 OUR FIT2.46±0.15 OUR FIT2.46±0.15 OUR FIT Error in
ludes s
ale fa
tor of 1.1.2.6 ±0.2 +0.8

−0.32.6 ±0.2 +0.8
−0.32.6 ±0.2 +0.8
−0.32.6 ±0.2 +0.8
−0.3 419 46 ACHASOV 00H SND e+ e− → π0π0 γ
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φ(1020)�(

π0π0 γ
)/�total �18/��(

π0π0 γ
)/�total �18/��(

π0π0 γ
)/�total �18/��(

π0π0 γ
)/�total �18/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT1.07 ±0.06 OUR AVERAGE1.07 ±0.06 OUR AVERAGE1.07 ±0.06 OUR AVERAGE1.07 ±0.06 OUR AVERAGE1.07 +0.01

−0.03 +0.06
−0.06 53 AMBROSINO 07 KLOE e+ e− → π0π0 γ1.08 ±0.17 ±0.09 268 AKHMETSHIN 99C CMD2 e+ e− → π0π0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.09 ±0.03 ±0.05 2438 ALOISIO 02D KLOE e+ e− → π0π0 γ1.158±0.093±0.052 419 47,54 ACHASOV 00H SND e+ e− → π0π0 γ

<10 90 DRUZHININ 87 ND e+ e− → 5γ�(

π0π0 γ
)/�(

ηγ
) �18/�6�(

π0π0 γ
)/�(

ηγ
) �18/�6�(

π0π0 γ
)/�(

ηγ
) �18/�6�(

π0π0 γ
)/�(

ηγ
) �18/�6VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.86 ±0.04 OUR FIT0.86 ±0.04 OUR FIT0.86 ±0.04 OUR FIT0.86 ±0.04 OUR FIT0.865±0.070±0.0170.865±0.070±0.0170.865±0.070±0.0170.865±0.070±0.017 419 54 ACHASOV 00H SND e+ e− → π0π0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.90 ±0.08 ±0.07 164 ACHASOV 98I SND e+ e− → 5γ�(

π+π−π+π−)/�total �19/��(

π+π−π+π−)/�total �19/��(

π+π−π+π−)/�total �19/��(

π+π−π+π−)/�total �19/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.93±1.74±2.14 3285 AKHMETSHIN 00E CMD2 e+ e− → π+π−π+π−
< 870 90 CORDIER 79 WIRE e+ e− → π+π−π+π−�(

π+π+π−π−π0)/�total �20/��(

π+π+π−π−π0)/�total �20/��(

π+π+π−π−π0)/�total �20/��(

π+π+π−π−π0)/�total �20/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 4.6< 4.6< 4.6< 4.6 90 AKHMETSHIN 00E CMD2 e+ e− → π+π−π+π−π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<150 95 BARKOV 88 CMD e+ e− → π+π−π+π−π0�(

π0 e+ e−)/�total �21/��(

π0 e+ e−)/�total �21/��(

π0 e+ e−)/�total �21/��(

π0 e+ e−)/�total �21/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT1.12±0.28 OUR AVERAGE1.12±0.28 OUR AVERAGE1.12±0.28 OUR AVERAGE1.12±0.28 OUR AVERAGE1.01±0.28±0.29 52 55 ACHASOV 02D SND e+ e− → π0 e+ e−1.22±0.34±0.21 46 56 AKHMETSHIN 01C CMD2 e+ e− → π0 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<12 90 DOLINSKY 88 ND e+ e− → π0 e+ e−�(

π0 ηγ
)/�total �22/��(

π0 ηγ
)/�total �22/��(

π0 ηγ
)/�total �22/��(

π0 ηγ
)/�total �22/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT7.27±0.30 OUR AVERAGE7.27±0.30 OUR AVERAGE7.27±0.30 OUR AVERAGE7.27±0.30 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.7.06±0.22 16.9k 57 AMBROSINO 09F KLOE 1.02 e+ e− → ηπ0 γ8.51±0.51±0.57 607 58 ALOISIO 02C KLOE e+ e− → ηπ0 γ7.96±0.60±0.40 197 59 ALOISIO 02C KLOE e+ e− → ηπ0 γ8.8 ±1.4 ±0.9 36 60 ACHASOV 00F SND e+ e− → ηπ0 γ9.0 ±2.4 ±1.0 80 AKHMETSHIN 99C CMD2 e+ e− → ηπ0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •7.01±0.10±0.20 13.3k 58,61 AMBROSINO 09F KLOE 1.02 e+ e− → ηπ0 γ7.12±0.13±0.22 3.6k 59,62 AMBROSINO 09F KLOE 1.02 e+ e− → ηπ0 γ8.3 ±2.3 ±1.2 20 ACHASOV 98B SND e+ e− → 5γ
<250 90 DOLINSKY 91 ND e+ e− → π0 ηγ

WEIGHTED AVERAGE
7.27±0.30 (Error scaled by 1.5)

AKHMETSHIN 99C CMD2
ACHASOV 00F SND
ALOISIO 02C KLOE 0.9
ALOISIO 02C KLOE 2.6
AMBROSINO 09F KLOE 0.9

χ2

       4.4
(Confidence Level = 0.108)

6 8 10 12 14�(

π0ηγ
)/�total (units 10−5)

�(a0(980)γ)/�total �23/��(a0(980)γ)/�total �23/��(a0(980)γ)/�total �23/��(a0(980)γ)/�total �23/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT7.6±0.6 OUR FIT7.6±0.6 OUR FIT7.6±0.6 OUR FIT7.6±0.6 OUR FIT7.6±0.6 OUR AVERAGE7.6±0.6 OUR AVERAGE7.6±0.6 OUR AVERAGE7.6±0.6 OUR AVERAGE7.4±0.7 63 ALOISIO 02C KLOE e+ e− → ηπ0 γ8.8±1.7 36 64 ACHASOV 00F SND e+ e− → ηπ0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •11 ±2 65 GOKALP 02 RVUE e+ e− → ηπ0 γ

<500 90 DOLINSKY 91 ND e+ e− → π0 ηγ�(f0(980)γ)/�(a0(980)γ) �17/�23�(f0(980)γ)/�(a0(980)γ) �17/�23�(f0(980)γ)/�(a0(980)γ) �17/�23�(f0(980)γ)/�(a0(980)γ) �17/�23VALUE DOCUMENT ID TECN COMMENT6.1±0.66.1±0.66.1±0.66.1±0.6 66 ALOISIO 02C KLOE e+ e− → ηπ0 γ�(K0K0 γ
)/�total �24/��(K0K0 γ
)/�total �24/��(K0K0 γ
)/�total �24/��(K0K0 γ
)/�total �24/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.9× 10−8<1.9× 10−8<1.9× 10−8<1.9× 10−8 90 AMBROSINO 09C KLOE e+ e− → K0S K0S γ�(

η′(958)γ)/�total �25/��(

η′(958)γ)/�total �25/��(

η′(958)γ)/�total �25/��(

η′(958)γ)/�total �25/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT6.25±0.21 OUR FIT6.25±0.21 OUR FIT6.25±0.21 OUR FIT6.25±0.21 OUR FIT6.25±0.30 OUR AVERAGE6.25±0.30 OUR AVERAGE6.25±0.30 OUR AVERAGE6.25±0.30 OUR AVERAGE6.25±0.28±0.11 3407 67 AMBROSINO 07A KLOE 1.02 e+ e− →
π+π− 7γ6.7 +2.8

−2.4 ±0.8 12 68 AULCHENKO 03B SND e+ e− → η′ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.7 +5.0
−4.2 ±1.5 7 AULCHENKO 03B SND e+ e− → 7γ6.10±0.61±0.43 120 69 ALOISIO 02E KLOE 1.02 e+ e− →

π+π− 3γ8.2 +2.1
−1.9 ±1.1 21 70 AKHMETSHIN 00B CMD2 e+ e− → π+π− 3γ4.9 +2.2
−1.8 ±0.6 9 71 AKHMETSHIN 00F CMD2 e+ e− →

π+π−π+π− ≥ 2γ6.4 ±1.6 30 72 AKHMETSHIN 00F CMD2 e+ e− → η′(958)γ6.7 +3.4
−2.9 ±1.0 5 73 AULCHENKO 99 SND e+ e− → π+π− 3γ

<11 90 AULCHENKO 98 SND e+ e− → 7γ12 +7
−5 ±2 6 70 AKHMETSHIN 97B CMD2 e+ e− → π+π− 3γ

<41 90 DRUZHININ 87 ND e+ e− → γ ηπ+π−�(

η′(958)γ)/�(K0LK0S) �25/�2�(

η′(958)γ)/�(K0LK0S) �25/�2�(

η′(958)γ)/�(K0LK0S) �25/�2�(

η′(958)γ)/�(K0LK0S) �25/�2VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.83±0.06 OUR FIT1.83±0.06 OUR FIT1.83±0.06 OUR FIT1.83±0.06 OUR FIT1.46+0.64
−0.54±0.181.46+0.64
−0.54±0.181.46+0.64
−0.54±0.181.46+0.64
−0.54±0.18 9 74 AKHMETSHIN 00F CMD2 e+ e− → π+π−π+π− ≥2γ�(

η′(958)γ)/�(

ηγ
) �25/�6�(

η′(958)γ)/�(

ηγ
) �25/�6�(

η′(958)γ)/�(

ηγ
) �25/�6�(

η′(958)γ)/�(

ηγ
) �25/�6VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.77±0.15 OUR FIT4.77±0.15 OUR FIT4.77±0.15 OUR FIT4.77±0.15 OUR FIT4.78±0.20 OUR AVERAGE4.78±0.20 OUR AVERAGE4.78±0.20 OUR AVERAGE4.78±0.20 OUR AVERAGE4.77±0.09±0.19 3407 AMBROSINO 07A KLOE 1.02 e+ e− → π+π− 7γ4.70±0.47±0.31 120 75 ALOISIO 02E KLOE 1.02 e+ e− → π+π− 3γ6.5 +1.7

−1.5 ±0.8 21 AKHMETSHIN 00B CMD2 e+ e− → π+π− 3γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.5 +5.2

−4.0 ±1.4 6 76 AKHMETSHIN 97B CMD2 e+ e− → π+π− 3γ�(

ηπ0π0 γ
)/�total �26/��(

ηπ0π0 γ
)/�total �26/��(

ηπ0π0 γ
)/�total �26/��(

ηπ0π0 γ
)/�total �26/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<2<2<2<2 90 AULCHENKO 98 SND e+ e− → 7γ�(

µ+µ− γ
)/�total �27/��(

µ+µ− γ
)/�total �27/��(

µ+µ− γ
)/�total �27/��(

µ+µ− γ
)/�total �27/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.43±0.45±0.141.43±0.45±0.141.43±0.45±0.141.43±0.45±0.14 27188 48 AKHMETSHIN 99B CMD2 e+ e− → µ+µ− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.3 ±1.0 824 ± 33 77 AKHMETSHIN 97C CMD2 e+ e− → µ+µ− γ�(

ργ γ
)/�total �28/��(

ργ γ
)/�total �28/��(

ργ γ
)/�total �28/��(

ργ γ
)/�total �28/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.2<1.2<1.2<1.2 90 AULCHENKO 08 CMD2 φ → π+π− γ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5 90 AKHMETSHIN 98 CMD2 e+ e− → π+π− γ γ�(

ηπ+π−)/�total �29/��(

ηπ+π−)/�total �29/��(

ηπ+π−)/�total �29/��(

ηπ+π−)/�total �29/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
< 1.8< 1.8< 1.8< 1.8 90 AKHMETSHIN 00E CMD2 e+ e− → π+π−π+π−π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 6.1 90 AULCHENKO 08 CMD2 φ → ηπ+π−
<30 90 AKHMETSHIN 98 CMD2 e+ e− → π+π− γ γ
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φ(1020)�(ηµ+µ−)/�total �30/��(ηµ+µ−)/�total �30/��(ηµ+µ−)/�total �30/��(ηµ+µ−)/�total �30/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<9.4<9.4<9.4<9.4 90 AKHMETSHIN 01 CMD2 e+ e− → ηe+ e−�(ηU → ηe+ e−)/�total �31/��(ηU → ηe+ e−)/�total �31/��(ηU → ηe+ e−)/�total �31/��(ηU → ηe+ e−)/�total �31/�VALUE CL% DOCUMENT ID TECN COMMENT
<1× 10−6<1× 10−6<1× 10−6<1× 10−6 90 78 BABUSCI 13B KLOE 1.02 e+ e− → ηe+ e−1Combined analysis of the CMD-2 data on φ → K+K−, K0S K0L, π+π−π0, ηγ assum-ing that the sum of their bran
hing fra
tions is 0.99741 ± 0.00007.2Using B(φ → e+ e−)= (2.93 ± 0.14) × 10−4.3Theoreti
al analysis of BRAMON 00 taking into a

ount phase-spa
e di�eren
e, ele
-tromagneti
 radiative 
orre
tions, as well as isospin breaking, predi
ts 0.62. FLOREZ-BAEZ 08 predi
ts 0.63 
onsidering also stru
ture-dependent radiative 
orre
tions. FIS-CHBACH 02 
al
ulates additional 
orre
tions 
aused by the 
lose threshold and predi
ts0.68. See also BENAYOUN 01 and DUBYNSKIY 07. BENAYOUN 12 obtains 0.71±0.01in the HLS model.4Using B(φ → e+ e−)=(2.99 ± 0.08)× 10−4.5Using �(φ)= 4.1 MeV. If interferen
e between the ρπ and 3π modes is negle
ted, thefra
tion of the ρπ is more than 80% at the 90% 
on�den
e level.6 From a �t without limitations on 
harged and neutral ρ masses and widths.7Adding the dire
t and ωπ 
ontributions and 
onsidering the interferen
e between the ρπand π+π−π0.8Negle
ting the interferen
e between the ρπ and π+π−π0.9Using B(φ → e+ e−) = (2.99± 0.08)×10−4 and B(η → 3π0)= (32.2± 0.4)×10−2.10 From π+π−π0 de
ay mode of η.11 From 2γ de
ay mode of η.12 From 3π0 de
ay mode of η.13ACHASOV 07B reports [�(

φ(1020) → ηγ
)/�total℄ × [B(φ(1020) → e+ e−)℄ =(4.050± 0.067± 0.118)×10−6 whi
h we divide by our best value B(φ(1020) → e+ e−)= (2.954 ± 0.030) × 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value. Supersedes ACHASOV 00D andACHASOV 06A.14Using B(φ → e+ e−) = (2.98 ± 0.04)× 10−4 and B(η → γ γ) = 39.43 ± 0.26%.15Not independent of the 
orresponding �(e+ e−)× �(ηγ)/�2total .16Using B(φ → e+ e−) = (2.99±0.08)×10−4 and B(η → 3π0)=(32.24±0.29)×10−2.17The 
ombined �t from 600 to 1380 MeV taking into a

ount ρ(770), ω(782), φ(1020),and ρ(1450) (mass and width �xed at 1450 MeV and 310 MeV respe
tively).18 From the η → 2γ de
ay and using B(φ → e+ e−) =(2.99 ± 0.08)× 10−4.19 From π+π−π0 de
ay mode of η and using B(φ → e+ e−)= (2.99 ± 0.08) × 10−4.20Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 taking into a

ounta triangle anomaly 
ontribution.21Using B(φ → e+ e−) = (2.98 ± 0.04)× 10−4.22Not independent of the 
orresponding �(e+ e−)× �(π0 γ)/�2total .23 From the π0 → 2γ de
ay and using B(φ → e+ e−) = (2.99 ± 0.08)× 10−4.24 From the 
ombined �t assuming that the total φ(1020) produ
tion 
ross se
tion issaturated by those of K+K−, KS KL, π+π−π0, and ηγ de
ays modes and usingACHASOV 00B for the ηγ de
ay mode.25Using total width 4.2 MeV. They dete
t 3π mode and observe signi�
ant interferen
ewith ω tail. This is a

ounted for in the result quoted above.26Negle
ting interferen
e between resonan
e and 
ontinuum.27Using B(φ → e+ e−) = (2.91 ± 0.07)× 10−4.28Re
al
ulated by us using B(φ → e+ e−)= (2.99 ± 0.08) × 10−4.29Using B(η → 3π0) = (32.57 ± 0.23)% from PDG 12.30Using B(η → γ γ) = (39.25 ± 0.32)%, B(φ → ηγ) = (1.26 ± 0.06)%, and B(φ →e+ e−) = (3.00 ± 0.06)× 10−4.31The average of the bran
hing ratios separately obtained from the η → γ γ, 3π0,

π+π−π0 de
ays.32 From η → γ γ de
ays and using B(η → γ γ) = (39.33±0.25)×10−2, B(η → π+π− γ)= (4.75 ± 11) × 10−2, and B(φ → ηγ) = (1.297 ± 0.033) × 10−2.33 From η → 3π0 de
ays and using B(π0 → γ γ) = (98.798 ± 0.033) × 10−2, B(η →3π0) = (32.24 ± 0.29)×10−2, B(η → π+π− γ) = (4.75 ± 0.11)×10−2, and B(φ →
ηγ) = (1.297 ± 0.033) × 10−2.34 From η → π+π−π0 de
ays and using B(π0 → γ γ) = (98.798 ± 0.033) × 10−2,B(π0 → e+ e− γ) = (1.198±0.032)×10−2, B(η → π+π−π0) = (23.0±0.4)×10−2,B(φ → π+π−π0) = (15.5± 0.6)×10−2, and B(φ → ηγ) = (1.297± 0.033)×10−2.35Using the 1996 and 1998 data.36 (2.3 ± 0.3)% 
orre
tion for other de
ay modes of the ω(782) applied.37Not independent of the 
orresponding �(ωπ0)× �(e+ e−) / �2(total).38Using the 1996 data.39Using the 1998 data.40 Supersedes AKHMETSHIN 97C.41 For Eγ > 20 MeV and assuming that B(φ(1020) → f0(980)γ) is negligible. SupersedesAKHMETSHIN 97C.42 For Eγ > 20 MeV and assuming that B(φ(1020) → f0(980)γ) is negligible.43Obtained by the authors taking into a

ount the π+π− de
ay mode. In
ludes a 
om-ponent due to ππ produ
tion via the f0(500) meson. Supersedes ALOISIO 02D.44 From the 
ombined �t of the photon spe
tra in the rea
tions e+ e− → π+π− γ,
π0π0 γ.45 From the negative interferen
e with the f0(500) meson of AITALA 01B using theACHASOV 89 parameterization for the f0(980), a Breit-Wigner for the f0(500), andACHASOV 01F for the ρπ 
ontribution. Superseded by AMBROSINO 07.46Assuming that the π0π0 γ �nal state is 
ompletely determined by the f0 γ me
hanism,negle
ting the de
ay B(φ → K K γ) and using B(f0 → π+π−)= 2B(f0 → π0π0).47Using the value B(φ → ηγ)=(1.338 ± 0.053) × 10−2.48 For Eγ > 20 MeV. Supersedes AKHMETSHIN 97C.49Negle
ting other intermediate me
hanisms (ρπ, σγ).

50A narrow pole �t taking into a

ount f0(980) and f0(1200) intermediate me
hanisms.51 For destru
tive interferen
e with the Bremsstrahlung pro
ess52 For 
onstru
tive interferen
e with the Bremsstrahlung pro
ess53 Supersedes ALOISIO 02D.54 Supersedes ACHASOV 98I. Ex
luding ωπ0.55Using various bran
hing ratios from the 2000 Edition of this Review (PDG 00).56Using B(π0 → γ γ) = 0.98798 ± 0.00032, B(φ → ηγ) = (1.297 ± 0.033) × 10−2,and B(η → π+π− γ) = (4.75 ± 0.11) × 10−2.57Combined results of η → γ γ and η → π+π−π0 de
ay modes measurements.58 From the de
ay mode η → γ γ.59 From the de
ay mode η → π+π−π0.60 Supersedes ACHASOV 98B.61Using B(φ → ηγ) = (1.304 ± 0.025)%, B(η → 3π0) = (32.56 ± 0.23)%, and B(η →
γ γ) = (39.31 ± 0.20)%.62Using B(φ → ηγ) = (1.304 ± 0.025)%, B(η → 3π0) = (32.56 ± 0.23)%, and B(η →
π+π−π0) = (22.73 ± 0.28)%.63Using Ma0(980)=984.8 MeV and assuming a0(980)γ dominan
e.64Assuming a0(980)γ dominan
e in the ηπ0 γ �nal state.65Using data of ACHASOV 00F.66Using results of ALOISIO 02D and assuming that f0(980) de
ays into ππ only anda0(980) into ηπ only.67AMBROSINO 07A reports [�(

φ(1020) → η′(958)γ)/�total℄ / [B(φ(1020) → ηγ)℄ =(4.77 ± 0.09 ± 0.19)× 10−3 whi
h we multiply by our best value B(φ(1020) → ηγ) =(1.309 ± 0.024)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.68Averaging AULCHENKO 03B with AULCHENKO 99.69Using B(φ → ηγ)= (1.297 ± 0.033)%.70Using the value B(φ → ηγ) = (1.26 ± 0.06)× 10−2.71Using B(φ → K0LK0S ) = (33.8 ± 0.6)%.72Averaging AKHMETSHIN 00B with AKHMETSHIN 00F.73Using the value B(η′ → ηπ+π−)= (43.7 ± 1.5)× 10−2 and B(η → γ γ)= (39.25 ±0.31) × 10−2.74Using various bran
hing ratios of K0S , K0L, η, η′ from the 2000 edition (The EuropeanPhysi
al Journal C15C15C15C15 1 (2000)) of this Review.75From the de
ay mode η′ → ηπ+π−, η → γ γ.76 Superseded by AKHMETSHIN 00B.77 For Eγ > 20 MeV.78For a narrow ve
tor U with mass between 5 and 470 MeV, from the 
ombined analysisof η → π+π−π0 and η → π0π0π0 from ARCHILLI 12. Measured 90% CL limits asa fun
tion of mU range from 2.2× 10−8 to 10−6.Lepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modes�(e±µ∓)/�total �32/��(e±µ∓)/�total �32/��(e±µ∓)/�total �32/��(e±µ∓)/�total �32/�VALUE CL% DOCUMENT ID TECN COMMENT
<2× 10−6<2× 10−6<2× 10−6<2× 10−6 90 ACHASOV 10A SND e+ e− → e±µ∓

π+π−π0 / ρπ AMPLITUDE RATIO a1 IN DECAY OF φ → π+π−π0π+π−π0 / ρπ AMPLITUDE RATIO a1 IN DECAY OF φ → π+π−π0π+π−π0 / ρπ AMPLITUDE RATIO a1 IN DECAY OF φ → π+π−π0π+π−π0 / ρπ AMPLITUDE RATIO a1 IN DECAY OF φ → π+π−π0NIECKNIG 12 des
ribes �nal-state intera
tions between the three pionsin a dispersive framework using data on the ππ P-wave s
attering phaseshift.VALUE (units 10−2) CL% EVTS DOCUMENT ID TECN COMMENT9.1±1.2 OUR AVERAGE9.1±1.2 OUR AVERAGE9.1±1.2 OUR AVERAGE9.1±1.2 OUR AVERAGE10.1±4.4±1.7 80k 1 AKHMETSHIN 06 CMD2 1.017{1.021 e+ e− →
π+π−π09.0±1.1±0.6 1.98M 2,3 ALOISIO 03 KLOE 1.02 e+ e− →
π+π−π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •
−6 <a1 < 6 500k 3 ACHASOV 02 SND e+ e− → π+π−π0
−16 < a1 < 11 90 9.8k 1,4 AKHMETSHIN 98 CMD2 e+ e− → π+π− γ γ1Dalitz plot analysis taking into a

ount interferen
e between the 
onta
t and ρπ ampli-tudes.2 From a �t without limitations on 
harged and neutral ρ masses and widths.3Re
al
ulated by us to mat
h the notations of AKHMETSHIN 98.4Assuming zero phase for the 
onta
t term.PARAMETER β IN φ → ηe+ e− DECAYPARAMETER β IN φ → ηe+ e− DECAYPARAMETER β IN φ → ηe+ e− DECAYPARAMETER β IN φ → ηe+ e− DECAYIn the one-pole approximation the ele
tromagneti
 transition form fa
torfor φ → ηe+ e− is given as a fun
tion of the e+ e− invariant masssquared, q2, by the expression:

∣

∣F(q2)∣∣2 = (1 − q2/�2)−2,where ve
tor meson dominan
e predi
ts parameter � ≈ 0.770 GeV (�−2 ≈1.687 GeV−2). The slope of this form fa
tor, β = dF/dq2(q2=0), equals�−2 in this approximation.The measurements below obtain β in the one-pole approximation.VALUE (GeV−2) EVTS DOCUMENT ID TECN COMMENT1.29±0.13 OUR AVERAGE1.29±0.13 OUR AVERAGE1.29±0.13 OUR AVERAGE1.29±0.13 OUR AVERAGE1.28±0.10+0.09
−0.08 30k BABUSCI 15 KLOE 1.02 e+ e− → ηe+ e−3.8 ±1.8 213 1 ACHASOV 01B SND 1.02 e+ e− → ηe+ e−1The un
ertainty is statisti
al only. The systemati
 one is negligible, in 
omparison.
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φ(1020), h1(1170)

φ(1020) REFERENCESφ(1020) REFERENCESφ(1020) REFERENCESφ(1020) REFERENCESBABUSCI 15 PL B742 1 D. Babus
i et al. (KLOE-2 Collab.)BABUSCI 13B PL B720 111 D. Babus
i et al. (KLOE-2 Collab.)BENAYOUN 13 EPJ C73 2453 M. Benayoun, P. David, L. DelBuono (PARIN, BERLIN+)LEES 13F PR D87 052010 J.P. Lees et al. (BABAR Collab.)LEES 13Q PR D88 032013 J.P. Lees et al. (BABAR Collab.)ARCHILLI 12 PL B706 251 F. Ar
hilli et al. (KLOE-2 Collab.)BENAYOUN 12 EPJ C72 1848 M. Benayoun et al.NIECKNIG 12 EPJ C72 2014 F. Nie
knig, B. Kubis, S.P. S
hneider (BONN)PDG 12 PR D86 010001 J. Beringer et al. (PDG Collab.)AKHMETSHIN 11 PL B695 412 R. Akhmetshin et al. (CMD2 Collab.)ACHASOV 10A PR D81 057102 M.N. A
hasov et al. (Novosibirsk SND Collab.)BENAYOUN 10 EPJ C65 211 M. Benayoun et al.AMBROSINO 09C PL B679 10 F. Ambrosino et al. (KLOE Collab.)AMBROSINO 09F PL B681 5 F. Ambrosino et al. (KLOE Collab.)AKHMETSHIN 08 PL B669 217 R.R. Akhmetshin et al. (CMD-2 Collab.)AMBROSINO 08G PL B669 223 F. Ambrosino et al. (KLOE Collab.)AULCHENKO 08 JETPL 88 85 V. Aul
henko et al. (CMD-2 Collab.)Translated from ZETFP 88 93.FLOREZ-BAEZ 08 PR D78 077301 F.V. Florez-Baez, G. Lopez CastroACHASOV 07B PR D76 077101 M.N. A
hasov et al. (SND Collab.)AMBROSINO 07 EPJ C49 473 F. Ambrosino et al. (KLOE Collab.)AMBROSINO 07A PL B648 267 F. Ambrosino et al. (KLOE Collab.)DUBYNSKIY 07 PR D75 113001 S. Dubynskiy et al.ACHASOV 06A PR D74 014016 M.N. A
hasov et al. (SND Collab.)AKHMETSHIN 06 PL B642 203 R.R. Akhmetshin et al. (CMD-2 Collab.)AKHMETSHIN 05 PL B605 26 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AMBROSINO 05 PL B608 199 F. Ambrosino et al. (KLOE Collab.)AUBERT,B 05J PR D72 052008 B. Aubert et al. (BABAR Collab.)AKHMETSHIN 04 PL B578 285 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AUBERT,B 04N PR D70 072004 B. Aubert et al. (BABAR Collab.)ALOISIO 03 PL B561 55 A. Aloisio et al. (KLOE Collab.)AULCHENKO 03B JETP 97 24 V.M. Aul
henko et al. (Novosibirsk SND Collab.)Translated from ZETF 124 28.ACHASOV 02 PR D65 032002 M.N. A
hasov et al. (Novosibirsk SND Collab.)ACHASOV 02D JETPL 75 449 M.N. A
hasov et al. (Novosibirsk SND Collab.)Translated from ZETFP 75 539.ALOISIO 02C PL B536 209 A. Aloisio et al. (KLOE Collab.)ALOISIO 02D PL B537 21 A. Aloisio et al. (KLOE Collab.)ALOISIO 02E PL B541 45 A. Aloisio et al. (KLOE Collab.)FISCHBACH 02 PL B526 355 E. Fis
hba
h, A.W. Overhauser, B. WoodahlGOKALP 02 JP G28 2783 A. Gokalp et al.ACHASOV 01B PL B504 275 M.N. A
hasov et al. (Novosibirsk SND Collab.)ACHASOV 01E PR D63 072002 M.N. A
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hlein et al. (UCLA) IGJPh1(1170) IG (JPC ) = 0−(1 +−)h1(1170) MASSh1(1170) MASSh1(1170) MASSh1(1170) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT1170±20 OUR ESTIMATE1170±20 OUR ESTIMATE1170±20 OUR ESTIMATE1170±20 OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •1168± 4 ANDO 92 SPEC 8 π− p →

π+π−π0 n1166± 5±3 1 ANDO 92 SPEC 8 π− p →
π+π−π0 n1190±60 2 DANKOWY... 81 SPEC 0 8 πp → 3πn1Average and spread of values using 2 variants of the model of BOWLER 75.2Uses the model of BOWLER 75.h1(1170) WIDTHh1(1170) WIDTHh1(1170) WIDTHh1(1170) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT360±40 OUR ESTIMATE360±40 OUR ESTIMATE360±40 OUR ESTIMATE360±40 OUR ESTIMATE

• • • We do not use the following data for averages, �ts, limits, et
. • • •345± 6 ANDO 92 SPEC 8 π− p →
π+π−π0 n375± 6±34 3 ANDO 92 SPEC 8 π− p →
π+π−π0 n320±50 4 DANKOWY... 81 SPEC 0 8 πp → 3πn3Average and spread of values using 2 variants of the model of BOWLER 75.4Uses the model of BOWLER 75.h1(1170) DECAY MODESh1(1170) DECAY MODESh1(1170) DECAY MODESh1(1170) DECAY MODESMode Fra
tion (�i /�)�1 ρπ seenh1(1170) BRANCHING RATIOSh1(1170) BRANCHING RATIOSh1(1170) BRANCHING RATIOSh1(1170) BRANCHING RATIOS�(ρπ

)/�total �1/��(ρπ
)/�total �1/��(ρπ
)/�total �1/��(ρπ
)/�total �1/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen ANDO 92 SPEC 8 π− p → π+π−π0 nseen ATKINSON 84 OMEG 20{70 γ p →
π+π−π0 pseen DANKOWY... 81 SPEC 8 πp → 3πnh1(1170) REFERENCESh1(1170) REFERENCESh1(1170) REFERENCESh1(1170) REFERENCESANDO 92 PL B291 496 A. Ando et al. (KEK, KYOT, NIRS, SAGA+)ATKINSON 84 NP B231 15 M. Atkinson et al. (BONN, CERN, GLAS+)DANKOWY... 81 PRL 46 580 J.A. Dankowy
h et al. (TNTO, BNL, CARL+)BOWLER 75 NP B97 227 M.G. Bowler et al. (OXFTP, DARE)



898898898898MesonParti
le Listingsb1(1235)b1(1235) IG (JPC ) = 1+(1 +−)b1(1235) MASSb1(1235) MASSb1(1235) MASSb1(1235) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1229.5± 3.2 OUR AVERAGE1229.5± 3.2 OUR AVERAGE1229.5± 3.2 OUR AVERAGE1229.5± 3.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.1225 ± 5 WEIDENAUER 93 ASTE pp → 2π+2π−π01235 ±15 ALDE 92C GAM2 38,100 π− p → ωπ0 n1236 ±16 FUKUI 91 SPEC 8.95 π− p → ωπ0 n1222 ± 6 ATKINSON 84E OMEG ± 25{55 γ p → ωπX1237 ± 7 ATKINSON 84E OMEG 0 25{55 γ p → ωπX1239 ± 5 EVANGELIS... 81 OMEG − 12 π− p → ωπp1251 ± 8 450 GESSAROLI 77 HBC − 11 π− p → π−ωp1245 ±11 890 FLATTE 76C HBC − 4.2 K− p → π−ω�+1222 ± 4 1400 CHALOUPKA 74 HBC − 3.9 π− p1220 ± 7 600 KARSHON 74B HBC + 4.9 π+ p
• • • We do not use the following data for averages, �ts, limits, et
. • • •1190 ±10 AUGUSTIN 89 DM2 ± e+ e− → 5π1213 ± 5 ATKINSON 84C OMEG 0 20{70 γ p1271 ±11 COLLICK 84 SPEC + 200 π+Z → Zπω

WEIGHTED AVERAGE
1229.5±3.2 (Error scaled by 1.6)

KARSHON 74B HBC 1.8
CHALOUPKA 74 HBC 3.5
FLATTE 76C HBC 2.0
GESSAROLI 77 HBC 7.2
EVANGELIS... 81 OMEG 3.6
ATKINSON 84E OMEG 1.1
ATKINSON 84E OMEG 1.6
FUKUI 91 SPEC 0.2
ALDE 92C GAM2 0.1
WEIDENAUER 93 ASTE 0.8

χ2

      22.0
(Confidence Level = 0.0089)

1200 1220 1240 1260 1280 1300b1(1235) mass (MeV) b1(1235) WIDTHb1(1235) WIDTHb1(1235) WIDTHb1(1235) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT142± 9 OUR AVERAGE142± 9 OUR AVERAGE142± 9 OUR AVERAGE142± 9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.113±12 WEIDENAUER 93 ASTE pp → 2π+2π−π0160±30 ALDE 92C GAM2 38,100 π− p → ωπ0 n151±31 FUKUI 91 SPEC 8.95 π− p → ωπ0 n170±15 EVANGELIS... 81 OMEG − 12 π− p → ωπp170±50 225 BALTAY 78B HBC + 15 π+ p → p4π155±32 450 GESSAROLI 77 HBC − 11 π− p → π−ωp182±45 890 FLATTE 76C HBC − 4.2 K− p → π−ω�+135±20 1400 CHALOUPKA 74 HBC − 3.9 π− p156±22 600 KARSHON 74B HBC + 4.9 π+ p
• • • We do not use the following data for averages, �ts, limits, et
. • • •210±19 AUGUSTIN 89 DM2 ± e+ e− → 5π231±14 ATKINSON 84C OMEG 0 20{70 γ p232±29 COLLICK 84 SPEC + 200 π+Z → Zπωb1(1235) DECAY MODESb1(1235) DECAY MODESb1(1235) DECAY MODESb1(1235) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 ωπ dominant[D/S amplitude ratio = 0.277 ± 0.027℄�2 π± γ ( 1.6±0.4)× 10−3�3 ηρ seen�4 π+π+π−π0 < 50 % 84%�5 K∗(892)±K∓ seen�6 (KK)±π0 < 8 % 90%�7 K0S K0Lπ± < 6 % 90%�8 K0S K0S π± < 2 % 90%�9 φπ < 1.5 % 84%

b1(1235) PARTIAL WIDTHSb1(1235) PARTIAL WIDTHSb1(1235) PARTIAL WIDTHSb1(1235) PARTIAL WIDTHS�(π± γ
) �2�(π± γ
) �2�(π± γ
) �2�(π± γ
) �2VALUE (keV) DOCUMENT ID TECN CHG COMMENT230±60230±60230±60230±60 COLLICK 84 SPEC + 200 π+Z →Zπωb1(1235) D-wave/S-wave AMPLITUDE RATIOb1(1235) D-wave/S-wave AMPLITUDE RATIOb1(1235) D-wave/S-wave AMPLITUDE RATIOb1(1235) D-wave/S-wave AMPLITUDE RATIOIN DECAY OF b1(1235) → ωπIN DECAY OF b1(1235) → ωπIN DECAY OF b1(1235) → ωπIN DECAY OF b1(1235) → ωπVALUE EVTS DOCUMENT ID TECN CHG COMMENT0.277±0.027 OUR AVERAGE0.277±0.027 OUR AVERAGE0.277±0.027 OUR AVERAGE0.277±0.027 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogram below.0.269±0.009±0.010 NOZAR 02 MPS − 18 π− p → ωπ− p0.23 ±0.03 AMSLER 94C CBAR 0.0 p p → ωηπ00.45 ±0.04 AMSLER 93B CBAR 0.0 p p → ωπ0π00.235±0.047 ATKINSON 84C OMEG 20{70 γ p0.4 +0.1

−0.1 GESSAROLI 77 HBC − 11 π− p → π−ωp0.21 ±0.08 CHUNG 75B HBC + 7.1 π+ p0.3 ±0.1 CHALOUPKA 74 HBC − 3.9{7.5 π− p0.35 ±0.25 600 KARSHON 74B HBC + 4.9 π+ p
WEIGHTED AVERAGE
0.277±0.027 (Error scaled by 2.4)

KARSHON 74B HBC
CHALOUPKA 74 HBC
CHUNG 75B HBC 0.7
GESSAROLI 77 HBC
ATKINSON 84C OMEG 0.8
AMSLER 93B CBAR 18.8
AMSLER 94C CBAR 2.4
NOZAR 02 MPS 0.3

χ2

      23.0
(Confidence Level = 0.0001)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7b1(1235) D-wave/S-wave amplitude ratio in de
ay of b1(1235) → ωπb1(1235) D-wave/S-wave AMPLITUDE PHASE DIFFERENCEb1(1235) D-wave/S-wave AMPLITUDE PHASE DIFFERENCEb1(1235) D-wave/S-wave AMPLITUDE PHASE DIFFERENCEb1(1235) D-wave/S-wave AMPLITUDE PHASE DIFFERENCEIN DECAY OF b1(1235) → ωπIN DECAY OF b1(1235) → ωπIN DECAY OF b1(1235) → ωπIN DECAY OF b1(1235) → ωπVALUE (◦) DOCUMENT ID TECN CHG COMMENT10.5±2.4±3.910.5±2.4±3.910.5±2.4±3.910.5±2.4±3.9 NOZAR 02 MPS − 18 π− p → ωπ− pb1(1235) BRANCHING RATIOSb1(1235) BRANCHING RATIOSb1(1235) BRANCHING RATIOSb1(1235) BRANCHING RATIOS�(ηρ
)/�(ωπ

) �3/�1�(ηρ
)/�(ωπ

) �3/�1�(ηρ
)/�(ωπ

) �3/�1�(ηρ
)/�(ωπ

) �3/�1VALUE DOCUMENT ID TECN COMMENT
<0.10<0.10<0.10<0.10 ATKINSON 84D OMEG 20{70 γ p�(π+π+π−π0)/�(ωπ

) �4/�1�(π+π+π−π0)/�(ωπ
) �4/�1�(π+π+π−π0)/�(ωπ
) �4/�1�(π+π+π−π0)/�(ωπ
) �4/�1VALUE DOCUMENT ID TECN CHG COMMENT

<0.5<0.5<0.5<0.5 ABOLINS 63 HBC + 3.5 π+ p�(K∗(892)±K∓)/�total �5/��(K∗(892)±K∓)/�total �5/��(K∗(892)±K∓)/�total �5/��(K∗(892)±K∓)/�total �5/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 ABLIKIM 10E BES2 J/ψ → K±K0S π∓π01From a �t in
luding ten additional resonan
es and energy-independent Breit-Wignerwidth.�((KK )±π0)/�(ωπ
) �6/�1�((KK )±π0)/�(ωπ
) �6/�1�((KK )±π0)/�(ωπ
) �6/�1�((KK )±π0)/�(ωπ
) �6/�1VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.08<0.08<0.08<0.08 90 BALTAY 67 HBC ± 0.0 p p�(K0S K0Lπ±)/�(ωπ
) �7/�1�(K0S K0Lπ±)/�(ωπ
) �7/�1�(K0S K0Lπ±)/�(ωπ
) �7/�1�(K0S K0Lπ±)/�(ωπ
) �7/�1VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.06<0.06<0.06<0.06 90 BALTAY 67 HBC ± 0.0 p p�(K0S K0S π±)/�(ωπ
) �8/�1�(K0S K0S π±)/�(ωπ
) �8/�1�(K0S K0S π±)/�(ωπ
) �8/�1�(K0S K0S π±)/�(ωπ
) �8/�1VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.02<0.02<0.02<0.02 90 BALTAY 67 HBC ± 0.0 p p



899899899899See key on page 601 MesonParti
le Listingsb1(1235), a1(1260)�(φπ
)/�(ωπ

) �9/�1�(φπ
)/�(ωπ

) �9/�1�(φπ
)/�(ωπ

) �9/�1�(φπ
)/�(ωπ

) �9/�1VALUE CL% DOCUMENT ID TECN CHG COMMENT
<0.004<0.004<0.004<0.004 95 VIKTOROV 96 SPEC 0 32.5 π− p → K+K−π0 n
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.04 95 BIZZARRI 69 HBC ± 0.0 pp
<0.015 DAHL 67 HBC 1.6{4.2 π− pb1(1235) REFERENCESb1(1235) REFERENCESb1(1235) REFERENCESb1(1235) REFERENCESABLIKIM 10E PL B693 88 M. Ablikim et al. (BES II Collab.)NOZAR 02 PL B541 35 M. Nozar et al.VIKTOROV 96 PAN 59 1184 V.A. Viktorov et al. (SERP)Translated from YAF 59 1239.AMSLER 94C PL B327 425 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 93B PL B311 362 C. Amsler et al. (Crystal Barrel Collab.)WEIDENAUER 93 ZPHY C59 387 P. Weidenauer et al. (ASTERIX Collab.)ALDE 92C ZPHY C54 553 D.M. Alde et al. (BELG, SERP, KEK, LANL+)FUKUI 91 PL B257 241 S. Fukui et al. (SUGI, NAGO, KEK, KYOT+)AUGUSTIN 89 NP B320 1 J.E. Augustin, G. Cosme (DM2 Collab.)ATKINSON 84C NP B243 1 M. Atkinson et al. (BONN, CERN, GLAS+) JPATKINSON 84D NP B242 269 M. Atkinson et al. (BONN, CERN, GLAS+)ATKINSON 84E PL 138B 459 M. Atkinson et al. (BONN, CERN, GLAS+)COLLICK 84 PRL 53 2374 B. Colli
k et al. (MINN, ROCH, FNAL)EVANGELIS... 81 NP B178 197 C. Evangelista et al. (BARI, BONN, CERN+)BALTAY 78B PR D17 62 C. Baltay et al. (COLU, BING)GESSAROLI 77 NP B126 382 R. Gessaroli et al. (BGNA, FIRZ, GENO+) JPFLATTE 76C PL 64B 225 S.M. Flatte et al. (CERN, AMST, NIJM+) JPCHUNG 75B PR D11 2426 S.U. Chung et al. (BNL, LBL, UCSC) JPCHALOUPKA 74 PL 51B 407 V. Chaloupka et al. (CERN) JPKARSHON 74B PR D10 3608 U. Karshon et al. (REHO) JPBIZZARRI 69 NP B14 169 R. Bizzarri et al. (CERN, CDEF)BALTAY 67 PRL 18 93 C. Baltay et al. (COLU)DAHL 67 PR 163 1377 O.I. Dahl et al. (LRL)ABOLINS 63 PRL 11 381 M.A. Abolins et al. (UCSD)a1(1260) IG (JPC ) = 1−(1 + +)See also our review under the a1(1260) in PDG 06, Journal ofPhysi
s G33G33G33G33 1 (2006). a1(1260) MASSa1(1260) MASSa1(1260) MASSa1(1260) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1230±40 OUR ESTIMATE1230±40 OUR ESTIMATE1230±40 OUR ESTIMATE1230±40 OUR ESTIMATE1255± 6+ 7

−171255± 6+ 7
−171255± 6+ 7
−171255± 6+ 7
−17 420k ALEKSEEV 10 COMP 190 π−Pb → π−π−π+Pb′

• • • We do not use the following data for averages, �ts, limits, et
. • • •1243±12±20 1 AUBERT 07AU BABR 10.6 e+ e− → ρ0 ρ±π∓ γ1230{1270 6360 2 LINK 07A FOCS D0 → π−π+π−π+1203± 3 3 GOMEZ-DUM...04 RVUE τ+ → π+π+π− ντ1330±24 90k SALVINI 04 OBLX pp → 2π+2π−1331±10± 3 37k 4 ASNER 00 CLE2 10.6 e+ e− → τ+ τ−,
τ− → π−π0π0 ντ1255± 7± 6 5904 5 ABREU 98G DLPH e+ e−1207± 5± 8 5904 6 ABREU 98G DLPH e+ e−1196± 4± 5 5904 7,8 ABREU 98G DLPH e+ e−1240±10 BARBERIS 98B 450 pp → pf π+π−π0 ps1262± 9± 7 5,9 ACKERSTAFF 97R OPAL Eee
m= 88{94, τ → 3πν1210± 7± 2 6,9 ACKERSTAFF 97R OPAL Eee
m= 88{94, τ → 3πν1211± 7+50

− 0 6 ALBRECHT 93C ARG τ+ → π+π+π− ν1121± 8 10 ANDO 92 SPEC 8 π− p → π+π−π0 n1242±37 11 IVANOV 91 RVUE τ → π+π+π− ν1260±14 12 IVANOV 91 RVUE τ → π+π+π− ν1250± 9 13 IVANOV 91 RVUE τ → π+π+π− ν1208±15 ARMSTRONG 90 OMEG 300.0pp → ppπ+ π−π01220±15 14 ISGUR 89 RVUE τ+ → π+π+π− ν1260±25 15 BOWLER 88 RVUE1166±18±11 BAND 87 MAC τ+ → π+π+π− ν1164±41±23 BAND 87 MAC τ+ → π+π0π0 ν1250±40 14 TORNQVIST 87 RVUE1046±11 ALBRECHT 86B ARG τ+ → π+π+π− ν1056±20±15 RUCKSTUHL 86 DLCO τ+ → π+π+π− ν1194±14±10 SCHMIDKE 86 MRK2 τ+ → π+π+π− ν1255±23 BELLINI 85 SPEC 40 π−A → π−π+π−A1240±80 16 DANKOWY... 81 SPEC 8.45 π− p → n3π1280±30 16 DAUM 81B CNTR 63,94 π− p → p3π1041±13 17 GAVILLET 77 HBC 4.2 K− p → � 3π1The ρ±π∓ state 
an be also due to the π(1300).2Using the Breit-Wigner parameterization; strong 
orrelation between mass and width.3Using the data of BARATE 98R.4 From a �t to the 3π mass spe
trum in
luding the K K∗(892) threshold.5Uses the model of KUHN 90.6Uses the model of ISGUR 89.7 In
ludes the e�e
t of a possible a′1 state.8Uses the model of FEINDT 90.9 Supersedes AKERS 95P.10Average and spread of values using 2 variants of the model of BOWLER 75.11Reanalysis of RUCKSTUHL 86.12Reanalysis of SCHMIDKE 86.

13Reanalysis of ALBRECHT 86B.14 From a 
ombined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.15From a 
ombined reanalysis of ALBRECHT 86B and DAUM 81B.16Uses the model of BOWLER 75.17Produ
ed in K− ba
kward s
attering.a1(1260) WIDTHa1(1260) WIDTHa1(1260) WIDTHa1(1260) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT250 to 600 OUR ESTIMATE250 to 600 OUR ESTIMATE250 to 600 OUR ESTIMATE250 to 600 OUR ESTIMATE367± 9+ 28
− 25367± 9+ 28
− 25367± 9+ 28
− 25367± 9+ 28
− 25 420k ALEKSEEV 10 COMP 190 π−Pb → π−π−π+Pb′

• • • We do not use the following data for averages, �ts, limits, et
. • • •410± 31± 30 18 AUBERT 07AU BABR 10.6 e+ e− → ρ0 ρ±π∓ γ520{680 6360 19 LINK 07A FOCS D0 → π−π+π−π+480± 20 20 GOMEZ-DUM...04 RVUE τ+ → π+π+π− ντ580± 41 90k SALVINI 04 OBLX pp → 2π+2π−460± 85 205 21 DRUTSKOY 02 BELL B → D (∗)K−K∗0814± 36± 13 37k 22 ASNER 00 CLE2 10.6 e+ e− → τ+ τ−,
τ− → π−π0π0 ντ450± 50 22k 23 AKHMETSHIN 99E CMD2 1.05{1.38 e+ e− →
π+π−π0π0570± 10 24 BONDAR 99 RVUE e+ e− → 4π, τ → 3πντ587± 27± 21 5904 25 ABREU 98G DLPH e+ e−478± 3± 15 5904 26 ABREU 98G DLPH e+ e−425± 14± 8 5904 27,28 ABREU 98G DLPH e+ e−400± 35 BARBERIS 98B 450 pp → pf π+π−π0 ps621± 32± 58 25,29 ACKERSTAFF 97R OPAL Eee
m= 88{94, τ → 3πν457± 15± 17 26,29 ACKERSTAFF 97R OPAL Eee
m= 88{94, τ → 3πν446± 21+140

− 0 26 ALBRECHT 93C ARG τ+ → π+π+π− ν239± 11 ANDO 92 SPEC 8 π− p → π+π−π0 n266± 13± 4 30 ANDO 92 SPEC 8 π− p → π+π−π0 n465+228
−143 31 IVANOV 91 RVUE τ → π+π+π− ν298+ 40
− 34 32 IVANOV 91 RVUE τ → π+π+π− ν488± 32 33 IVANOV 91 RVUE τ → π+π+π− ν430± 50 ARMSTRONG 90 OMEG 300.0pp → ppπ+ π−π0420± 40 34 ISGUR 89 RVUE τ+ → π+π+π− ν396± 43 35 BOWLER 88 RVUE405± 75± 25 BAND 87 MAC τ+ → π+π+π− ν419±108± 57 BAND 87 MAC τ+ → π+π0π0 ν521± 27 ALBRECHT 86B ARG τ+ → π+π+π− ν476+132
−120± 54 RUCKSTUHL 86 DLCO τ+ → π+π+π− ν462± 56± 30 SCHMIDKE 86 MRK2 τ+ → π+π+π− ν292± 40 BELLINI 85 SPEC 40 π−A → π−π+π−A380±100 36 DANKOWY... 81 SPEC 8.45 π− p → n3π300± 50 36 DAUM 81B CNTR 63,94 π− p → p3π230± 50 37 GAVILLET 77 HBC 4.2 K− p → � 3π18The ρ±π∓ state 
an be also due to the π(1300).19Using the Breit-Wigner parameterization; strong 
orrelation between mass and width.20Using the data of BARATE 98R.21 From a �t of the K−K∗0 distribution assuming ma1= 1230 MeV and purely resonantprodu
tion of the K−K∗0 system.22From a �t to the 3π mass spe
trum in
luding the K K∗(892) threshold.23Using the a1(1260) mass of 1230 MeV.24From AKHMETSHIN 99E and ASNER 00 data using the a1(1260) mass of 1230 MeV.25Uses the model of KUHN 90.26Uses the model of ISGUR 89.27 In
ludes the e�e
t of a possible a′1 state.28Uses the model of FEINDT 90.29 Supersedes AKERS 95P.30Average and spread of values using 2 variants of the model of BOWLER 75.31Reanalysis of RUCKSTUHL 86.32Reanalysis of SCHMIDKE 86.33Reanalysis of ALBRECHT 86B.34 From a 
ombined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.35From a 
ombined reanalysis of ALBRECHT 86B and DAUM 81B.36Uses the model of BOWLER 75.37Produ
ed in K− ba
kward s
attering.a1(1260) DECAY MODESa1(1260) DECAY MODESa1(1260) DECAY MODESa1(1260) DECAY MODESMode Fra
tion (�i /�)�1 π+π−π0�2 π0π0π0�3 (ρπ)S−wave seen�4 (ρπ)D−wave seen�5 (ρ(1450)π )S−wave seen�6 (ρ(1450)π )D−wave seen



900900900900MesonParti
le Listingsa1(1260)�7 σπ seen�8 f0(980)π not seen�9 f0(1370)π seen�10 f2(1270)π seen�11 K K∗(892)+ 
.
. seen�12 πγ seena1(1260) PARTIAL WIDTHSa1(1260) PARTIAL WIDTHSa1(1260) PARTIAL WIDTHSa1(1260) PARTIAL WIDTHS�(πγ
) �12�(πγ
) �12�(πγ
) �12�(πγ
) �12VALUE (keV) DOCUMENT ID TECN COMMENT640±246640±246640±246640±246 ZIELINSKI 84C SPEC 200 π+Z → Z3πD-wave/S-wave AMPLITUDE RATIO IN DECAY OF a1(1260)→ ρπD-wave/S-wave AMPLITUDE RATIO IN DECAY OF a1(1260)→ ρπD-wave/S-wave AMPLITUDE RATIO IN DECAY OF a1(1260)→ ρπD-wave/S-wave AMPLITUDE RATIO IN DECAY OF a1(1260)→ ρπVALUE DOCUMENT ID TECN COMMENT

−0.062±0.020 OUR AVERAGE−0.062±0.020 OUR AVERAGE−0.062±0.020 OUR AVERAGE−0.062±0.020 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3. See the ideogrambelow.
−0.043±0.009±0.005 LINK 07A FOCS D0 → π−π+π−π+
−0.14 ±0.04 ±0.07 38 CHUNG 02 B852 18.3 π− p → π+π−π− p
−0.10 ±0.02 ±0.02 39,40 ACKERSTAFF 97R OPAL Eee
m= 88{94, τ → 3πν

−0.11 ±0.02 39 ALBRECHT 93C ARG τ+ → π+π+π− ν38De
k-type ba
kground not subtra
ted.39Uses the model of ISGUR 89.40 Supersedes AKERS 95P.
WEIGHTED AVERAGE
-0.062±0.020 (Error scaled by 2.3)

ALBRECHT 93C ARG 5.8
ACKERSTAFF 97R OPAL 1.8
CHUNG 02 B852
LINK 07A FOCS 3.4

χ2

      11.0
(Confidence Level = 0.0041)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05D-wave/S-wave AMPLITUDE RATIO IN DECAY OF a1(1260) → ρπa1(1260) BRANCHING RATIOSa1(1260) BRANCHING RATIOSa1(1260) BRANCHING RATIOSa1(1260) BRANCHING RATIOS�((ρπ)S−wave)/�total �3/��((ρπ)S−wave)/�total �3/��((ρπ)S−wave)/�total �3/��((ρπ)S−wave)/�total �3/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •60.19 37k 41 ASNER 00 CLE2 10.6 e+ e− → τ+ τ−,

τ− → π−π0π0 ντ�((ρπ)D−wave)/�total �4/��((ρπ)D−wave)/�total �4/��((ρπ)D−wave)/�total �4/��((ρπ)D−wave)/�total �4/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.30±0.60±0.22 37k 41 ASNER 00 CLE2 10.6 e+ e− → τ+ τ−,

τ− → π−π0π0 ντ�((ρ(1450)π )S−wave)/�total �5/��((ρ(1450)π )S−wave)/�total �5/��((ρ(1450)π )S−wave)/�total �5/��((ρ(1450)π )S−wave)/�total �5/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.56±0.84±0.32 37k 41,42 ASNER 00 CLE2 10.6 e+ e− → τ+ τ−,

τ− → π−π0π0 ντ�((ρ(1450)π )D−wave)/�total �6/��((ρ(1450)π )D−wave)/�total �6/��((ρ(1450)π )D−wave)/�total �6/��((ρ(1450)π )D−wave)/�total �6/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.04±1.20±0.28 37k 41,42 ASNER 00 CLE2 10.6 e+ e− → τ+ τ−,

τ− → π−π0π0 ντ�(σπ
)/�total �7/��(σπ
)/�total �7/��(σπ
)/�total �7/��(σπ
)/�total �7/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen CHUNG 02 B852 18.3 π− p →
π+π−π− p18.76±4.29±1.48 37k 41,43 ASNER 00 CLE2 10.6 e+ e− → τ+ τ−,
τ− → π−π0π0 ντ

�(f0(980)π)/�total �8/��(f0(980)π)/�total �8/��(f0(980)π)/�total �8/��(f0(980)π)/�total �8/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen 37k ASNER 00 CLE2 10.6 e+ e− → τ+ τ−,

τ− → π−π0π0 ντ�(f0(1370)π)/�total �9/��(f0(1370)π)/�total �9/��(f0(1370)π)/�total �9/��(f0(1370)π)/�total �9/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •7.40±2.71±1.26 37k 41,44 ASNER 00 CLE2 10.6 e+ e− → τ+ τ−,

τ− → π−π0π0 ντ�(f2(1270)π)/�total �10/��(f2(1270)π)/�total �10/��(f2(1270)π)/�total �10/��(f2(1270)π)/�total �10/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.19±0.49±0.17 37k 41,45 ASNER 00 CLE2 10.6 e+ e− → τ+ τ−,

τ− → π−π0π0 ντ�(K K∗(892)+ 
.
.)/�total �11/��(K K∗(892)+ 
.
.)/�total �11/��(K K∗(892)+ 
.
.)/�total �11/��(K K∗(892)+ 
.
.)/�total �11/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.2±0.5 2255 46 COAN 04 CLEO τ− → K−π−K+ ντ8 to 15 205 47 DRUTSKOY 02 BELL B → D (∗)K−K∗03.3±0.5±0.1 37k 48 ASNER 00 CLE2 10.6 e+ e− → τ+ τ−,

τ− → π−π0π0 ντ2.6±0.3 49 BARATE 99R ALEP τ → K K πντ�(σπ
)/�((ρπ)S−wave) �7/�3�(σπ
)/�((ρπ)S−wave) �7/�3�(σπ
)/�((ρπ)S−wave) �7/�3�(σπ
)/�((ρπ)S−wave) �7/�3VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.06 ±0.05 90k SALVINI 04 OBLX pp → 2π+2π−
∼ 0.3 28k AKHMETSHIN 99E CMD2 1.05{1.38 e+ e− →

π+π−π+π−0.003±0.003 50 LONGACRE 82 RVUE�(π0π0π0)/�(π+π−π0) �2/�1�(π0π0π0)/�(π+π−π0) �2/�1�(π0π0π0)/�(π+π−π0) �2/�1�(π0π0π0)/�(π+π−π0) �2/�1VALUE CL% DOCUMENT ID COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.008 90 51 BARBERIS 01 450 pp → pf 3π0 ps41From a �t to the Dalitz plot.42Assuming for ρ(1450) mass and width of 1370 and 386 MeV respe
tively.43Assuming for σ mass and width of 860 and 880 MeV respe
tively.44Assuming for f0(1370) mass and width of 1186 and 350 MeV respe
tively.45Assuming for f2(1270) mass and width of 1275 and 185 MeV respe
tively.46Using stru
ture fun
tions from KUHN 92 and DECKER 93A and B(τ− →K−π−K+ ντ ) = (0.155 ± 0.006 ± 0.009)% from BRIERE 03.47 From a 
omparison to ALAM 94 assuming purely resonant produ
tion of the K−K∗0system.48From a �t to the 3π mass spe
trum in
luding the K K∗(892) threshold.49Assuming a1(1260) dominan
e and taking B(τ → a1(1260)ντ ) from BUSKULIC 96.50Uses multi
hannel Ait
hison-Bowler model (BOWLER 75). Uses data from GAVIL-LET 77, DAUM 80, and DANKOWYCH 81.51 In
onsistent with observations of σπ, f0(1370)π, and f2(1270)π de
ay modes.a1(1260) REFERENCESa1(1260) REFERENCESa1(1260) REFERENCESa1(1260) REFERENCESALEKSEEV 10 PRL 104 241803 M.G. Alekseev et al. (COMPASS Collab.)AUBERT 07AU PR D76 092005 B. Aubert et al. (BABAR Collab.)LINK 07A PR D75 052003 J.M. Link et al. (FNAL FOCUS Collab.)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)COAN 04 PRL 92 232001 T.E. Coan et al. (CLEO Collab.)GOMEZ-DUM... 04 PR D69 073002 D. Gomez Dumm, A. Pi
h, J. PortolesSALVINI 04 EPJ C35 21 P. Salvini et al. (OBELIX Collab.)BRIERE 03 PRL 90 181802 R. A. Briere et al. (CLEO Collab.)CHUNG 02 PR D65 072001 S.U. Chung et al. (BNL E852 Collab.)DRUTSKOY 02 PL B542 171 A. Drutskoy et al. (BELLE Collab.)BARBERIS 01 PL B507 14 D. Barberis et al.ASNER 00 PR D61 012002 D.M. Asner et al. (CLEO Collab.)AKHMETSHIN 99E PL B466 392 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)BARATE 99R EPJ C11 599 R. Barate et al. (ALEPH Collab.)BONDAR 99 PL B466 403 A.E. Bondar et al. (Novosibirsk CMD-2 Collab.)ABREU 98G PL B426 411 P. Abreu et al. (DELPHI Collab.)BARATE 98R EPJ C4 409 R. Barate et al. (ALEPH Collab.)BARBERIS 98B PL B422 399 D. Barberis et al. (WA 102 Collab.)ACKERSTAFF 97R ZPHY C75 593 K. A
kersta� et al. (OPAL Collab.)BUSKULIC 96 ZPHY C70 579 D. Buskuli
 et al. (ALEPH Collab.)AKERS 95P ZPHY C67 45 R. Akers et al. (OPAL Collab.)ALAM 94 PR D50 43 M.S. Alam et al. (CLEO Collab.)ALBRECHT 93C ZPHY C58 61 H. Albre
ht et al. (ARGUS Collab.)DECKER 93A ZPHY C58 445 R. De
ker et al.ANDO 92 PL B291 496 A. Ando et al. (KEK, KYOT, NIRS, SAGA+)KUHN 92 ZPHY C56 661 J.H. Kuhn, E. MirkesIVANOV 91 ZPHY C49 563 Y.P. Ivanov, A.A. Osipov, M.K. Volkov (JINR)ARMSTRONG 90 ZPHY C48 213 T.A. Armstrong, M. Benayoun, W. Beus
h (WA76 Coll.)FEINDT 90 ZPHY C48 681 M. Feindt (HAMB)KUHN 90 ZPHY C48 445 J.H. Kuhn et al. (MPIM)ISGUR 89 PR D39 1357 N. Isgur, C. Morningstar, C. Reader (TNTO)BOWLER 88 PL B209 99 M.G. Bowler (OXF)BAND 87 PL B198 297 H.R. Band et al. (MAC Collab.)TORNQVIST 87 ZPHY C36 695 N.A. Tornqvist (HELS)ALBRECHT 86B ZPHY C33 7 H. Albre
ht et al. (ARGUS Collab.)RUCKSTUHL 86 PRL 56 2132 W. Ru
kstuhl et al. (DELCO Collab.)SCHMIDKE 86 PRL 57 527 W.B. S
hmidke et al. (Mark II Collab.)BELLINI 85 SJNP 41 781 D. Bellini et al.Translated from YAF 41 1223.



901901901901See key on page 601 MesonParti
le Listingsa1(1260), f2(1270)ZIELINSKI 84C PRL 52 1195 M. Zielinski et al. (ROCH, MINN, FNAL)LONGACRE 82 PR D26 82 R.S. Longa
re (BNL)DANKOWY... 81 PRL 46 580 J.A. Dankowy
h et al. (TNTO, BNL, CARL+)DAUM 81B NP B182 269 C. Daum et al. (AMST, CERN, CRAC, MPIM+)DAUM 80 PL 89B 281 C. Daum et al. (AMST, CERN, CRAC, MPIM+) JPGAVILLET 77 PL 69B 119 P. Gavillet et al. (AMST, CERN, NIJM+) JPBOWLER 75 NP B97 227 M.G. Bowler et al. (OXFTP, DARE)f2(1270) IG (JPC ) = 0+(2 + +)f2(1270) MASSf2(1270) MASSf2(1270) MASSf2(1270) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1275.5± 0.8 OUR AVERAGE1275.5± 0.8 OUR AVERAGE1275.5± 0.8 OUR AVERAGE1275.5± 0.8 OUR AVERAGE1275.8± 1.0±0.4 1 BOGOLYUB... 13 SPEC 7π+(K+,p)A → nγ + X1262 + 1
− 2 ±8 ABLIKIM 06V BES2 e+ e− → J/ψ →

γπ+π−1275 ±15 ABLIKIM 05 BES2 J/ψ → φπ+π−1283 ± 5 ALDE 98 GAM4 100 π− p → π0π0 n1278 ± 5 2 BERTIN 97C OBLX 0.0 p p → π+π−π01272 ± 8 200k PROKOSHKIN 94 GAM2 38 π− p → π0π0 n1269.7± 5.2 5730 AUGUSTIN 89 DM2 e+ e− → 5π1283 ± 8 400 3 ALDE 87 GAM4 100 π− p → 4π0 n1274 ± 5 3 AUGUSTIN 87 DM2 J/ψ → γπ+π−1283 ± 6 4 LONGACRE 86 MPS 22 π− p → n2K0S1276 ± 7 COURAU 84 DLCO e+ e− → e+ e−π+π−1273.3± 2.3 5 CHABAUD 83 ASPK 17 π− p polarized1280 ± 4 6 CASON 82 STRC 8 π+ p → �++π0π01281 ± 7 11600 GIDAL 81 MRK2 J/ψ de
ay1282 ± 5 7 CORDEN 79 OMEG 12{15 π− p → n2π1269 ± 4 10k APEL 75 NICE 40 π− p → n2π01272 ± 4 4600 ENGLER 74 DBC 6 π+ n → π+π− p1277 ± 4 5300 FLATTE 71 HBC 7.0 π+ p1273 ± 8 3 STUNTEBECK 70 HBC 8 π− p, 5.4 π+ d1265 ± 8 BOESEBECK 68 HBC 8 π+ p
• • • We do not use the following data for averages, �ts, limits, et
. • • •1259 ± 4 ±4 1.7k 8,9 DOBBS 15 J/ψ → γπ+π−1267 ± 4 ±3 1.5k 8,9 DOBBS 15 ψ(2S) → γπ+π−1270 ± 8 10 ANISOVICH 09 RVUE 0.0 p p, πN1277 ± 6 870 11 SCHEGELSKY 06A RVUE γ γ → K0S K0S1251 ±10 TIKHOMIROV 03 SPEC 40.0 π−C → K0S K0S K0LX1260 ±10 12 ALDE 97 GAM2 450 pp → ppπ0 π01278 ± 6 12 GRYGOREV 96 SPEC 40 π−N → K0S K0S X1262 ±11 AGUILAR-... 91 EHS 400 pp1275 ±10 AKER 91 CBAR 0.0 p p → 3π01220 ±10 BREAKSTONE90 SFM pp → ppπ+π−1288 ±12 ABACHI 86B HRS e+ e− → π+π−X1284 ±30 3k BINON 83 GAM2 38 π− p → n2η1280 ±20 3k APEL 82 CNTR 25 π− p → n2π01284 ±10 16000 DEUTSCH... 76 HBC 16 π+ p1258 ±10 600 TAKAHASHI 72 HBC 8 π− p → n2π1275 ±13 ARMENISE 70 HBC 9 π+ n → pπ+π−1261 ± 5 1960 3 ARMENISE 68 DBC 5.1 π+ n → pπ+MM−1270 ±10 360 3 ARMENISE 68 DBC 5.1 π+ n → pπ0MM1268 ± 6 13 JOHNSON 68 HBC 3.7{4.2 π− p1Averaged over six nu
lear targets, no statisti
ally signi�
ant dependen
e on target nu
leusobserved.2T-matrix pole.3Mass errors enlarged by us to �/√N; see the note with the K∗(892) mass.4 From a partial-wave analysis of data using a K-matrix formalism with 5 poles.5 From an energy-independent partial-wave analysis.6 From an amplitude analysis of the rea
tion π+π− → 2π0.7 From an amplitude analysis of π+π− → π+π− s
attering data.8Using CLEO-
 data but not authored by the CLEO Collaboration.9 From a �t to a Breit-Wigner line shape with �xed � = 185 MeV.10 4-poles, 5-
hannel K matrix �t.11 From analysis of L3 data at 91 and 183{209 GeV.12 Systemati
 un
ertainties not estimated.13 JOHNSON 68 in
ludes BONDAR 63, LEE 64, DERADO 65, EISNER 67.f2(1270) WIDTHf2(1270) WIDTHf2(1270) WIDTHf2(1270) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT186.7+ 2.2

− 2.5 OUR FIT186.7+ 2.2
− 2.5 OUR FIT186.7+ 2.2
− 2.5 OUR FIT186.7+ 2.2
− 2.5 OUR FIT Error in
ludes s
ale fa
tor of 1.4.185.9+ 2.8
− 2.1 OUR AVERAGE185.9+ 2.8
− 2.1 OUR AVERAGE185.9+ 2.8
− 2.1 OUR AVERAGE185.9+ 2.8
− 2.1 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.190.3± 1.9± 1.8 1 BOGOLYUB... 13 SPEC 7π+(K+,p)A → nγ + X175 + 6
− 4 ±10 ABLIKIM 06V BES2 e+ e− → J/ψ →

γπ+π−190 ±20 ABLIKIM 05 BES2 J/ψ → φπ+π−

171 ±10 ALDE 98 GAM4 100 π− p → π0π0 n204 ±20 2 BERTIN 97C OBLX 0.0 p p → π+π−π0192 ± 5 200k PROKOSHKIN 94 GAM2 38 π− p → π0π0 n180 ±24 AGUILAR-... 91 EHS 400 pp169 ± 9 5730 3 AUGUSTIN 89 DM2 e+ e− → 5π150 ±30 400 3 ALDE 87 GAM4 100 π− p → 4π0 n186 + 9
− 2 4 LONGACRE 86 MPS 22 π− p → n2K0S179.2+ 6.9
− 6.6 5 CHABAUD 83 ASPK 17 π− p polarized160 ±11 DENNEY 83 LASS 10 π+N196 ±10 3k APEL 82 CNTR 25 π− p → n2π0152 ± 9 6 CASON 82 STRC 8 π+ p → �++π0π0186 ±27 11600 GIDAL 81 MRK2 J/ψ de
ay216 ±13 7 CORDEN 79 OMEG 12{15 π− p → n2π190 ±10 10k APEL 75 NICE 40 π− p → n2π0192 ±16 4600 ENGLER 74 DBC 6 π+ n → π+π− p183 ±15 5300 FLATTE 71 HBC 7 π+ p → �++ f2196 ±30 3 STUNTEBECK 70 HBC 8 π− p, 5.4 π+ d216 ±20 1960 3 ARMENISE 68 DBC 5.1 π+ n → pπ+MM−128 ±27 3 BOESEBECK 68 HBC 8 π+ p176 ±21 3,8 JOHNSON 68 HBC 3.7{4.2 π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •194 ±36 9 ANISOVICH 09 RVUE 0.0 p p, πN195 ±15 870 10 SCHEGELSKY 06A RVUE γ γ → K0S K0S121 ±26 TIKHOMIROV 03 SPEC 40.0 π−C → K0S K0S K0LX187 ±20 11 ALDE 97 GAM2 450 pp → ppπ0 π0184 ±10 11 GRYGOREV 96 SPEC 40 π−N → K0S K0S X200 ±10 AKER 91 CBAR 0.0 p p → 3π0240 ±40 3k BINON 83 GAM2 38 π− p → n2η187 ±30 650 3 ANTIPOV 77 CIBS 25 π− p → p3π225 ±38 16000 DEUTSCH... 76 HBC 16 π+ p166 ±28 600 3 TAKAHASHI 72 HBC 8 π− p → n2π173 ±53 3 ARMENISE 70 HBC 9 π+ n → pπ+π−1Averaged over six nu
lear targets, no statisti
ally signi�
ant dependen
e on target nu
leusobserved.2T-matrix pole.3Width errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.4 From a partial-wave analysis of data using a K-matrix formalism with 5 poles.5 From an energy-independent partial-wave analysis.6 From an amplitude analysis of the rea
tion π+π− → 2π0.7 From an amplitude analysis of π+π− → π+π− s
attering data.8 JOHNSON 68 in
ludes BONDAR 63, LEE 64, DERADO 65, EISNER 67.9 4-poles, 5-
hannel K matrix �t.10 From analysis of L3 data at 91 and 183{209 GeV.11 Systemati
 un
ertainties not estimated.
WEIGHTED AVERAGE
185.9+2.8-2.1 (Error scaled by 1.6)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

JOHNSON 68 HBC 0.2
BOESEBECK 68 HBC
ARMENISE 68 DBC 2.3
STUNTEBECK 70 HBC
FLATTE 71 HBC 0.0
ENGLER 74 DBC 0.1
APEL 75 NICE 0.2
CORDEN 79 OMEG 5.4
GIDAL 81 MRK2
CASON 82 STRC 14.2
APEL 82 CNTR 1.0
DENNEY 83 LASS 5.6
CHABAUD 83 ASPK 0.9
LONGACRE 86 MPS 0.0
ALDE 87 GAM4
AUGUSTIN 89 DM2 3.5
AGUILAR-... 91 EHS
PROKOSHKIN 94 GAM2 1.5
BERTIN 97C OBLX 0.8
ALDE 98 GAM4 2.2
ABLIKIM 05 BES2 0.0
ABLIKIM 06V BES2 0.9
BOGOLYUB... 13 SPEC 2.8

χ2

      41.7
(Confidence Level = 0.0007)

100 150 200 250 300f2(1270) width (MeV)



902902902902MesonParti
le Listingsf2(1270) f2(1270) DECAY MODESf2(1270) DECAY MODESf2(1270) DECAY MODESf2(1270) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 ππ (84.2 +2.9
−0.9 ) % S=1.1�2 π+π−2π0 ( 7.7 +1.1
−3.2 ) % S=1.2�3 K K ( 4.6 +0.5
−0.4 ) % S=2.7�4 2π+2π− ( 2.8 ±0.4 ) % S=1.2�5 ηη ( 4.0 ±0.8 ) × 10−3 S=2.1�6 4π0 ( 3.0 ±1.0 ) × 10−3�7 γ γ ( 1.42±0.24) × 10−5 S=1.4�8 ηππ < 8 × 10−3 CL=95%�9 K0K−π++ 
.
. < 3.4 × 10−3 CL=95%�10 e+ e− < 6 × 10−10 CL=90%CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the total width, 4 partial widths, a 
ombinationof partial widths obtained from integrated 
ross se
tions, and 6bran
hing ratios uses 45 measurements and one 
onstraint to de-termine 8 parameters. The overall �t has a χ2 = 83.0 for 38degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x2 −90x3 10 −39x4 10 −38 1x5 1 −6 0 0x6 0 −7 0 0 0x7 3 1 −15 0 0 0� −71 65 −10 −7 −1 0 −6x1 x2 x3 x4 x5 x6 x7Mode Rate (MeV) S
ale fa
tor�1 ππ 157.2 +4.0
−1.1�2 π+π−2π0 14.4 +2.1
−6.0 1.2�3 K K 8.5 ±0.8 2.8�4 2π+2π− 5.2 ±0.7 1.2�5 ηη 0.75 ±0.14 2.1�6 4π0 0.56 ±0.19�7 γ γ 0.0026±0.0005 1.4f2(1270) PARTIAL WIDTHSf2(1270) PARTIAL WIDTHSf2(1270) PARTIAL WIDTHSf2(1270) PARTIAL WIDTHS�(ππ

) �1�(ππ
) �1�(ππ
) �1�(ππ
) �1VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT157.2+4.0
−1.1 OUR FIT157.2+4.0
−1.1 OUR FIT157.2+4.0
−1.1 OUR FIT157.2+4.0
−1.1 OUR FIT157.0+6.0
−1.0157.0+6.0
−1.0157.0+6.0
−1.0157.0+6.0
−1.0 1 LONGACRE 86 MPS 22 π− p → n2K0S

• • • We do not use the following data for averages, �ts, limits, et
. • • •152 ±8 870 2 SCHEGELSKY 06A RVUE γ γ → K0S K0S�(K K) �3�(K K) �3�(K K) �3�(K K) �3VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT8.5±0.8 OUR FIT8.5±0.8 OUR FIT8.5±0.8 OUR FIT8.5±0.8 OUR FIT Error in
ludes s
ale fa
tor of 2.8.9.0+0.7
−0.39.0+0.7
−0.39.0+0.7
−0.39.0+0.7
−0.3 1 LONGACRE 86 MPS 22 π− p → n2K0S

• • • We do not use the following data for averages, �ts, limits, et
. • • •7.5±2.0 870 2 SCHEGELSKY 06A RVUE γ γ → K0S K0S�(ηη
) �5�(ηη
) �5�(ηη
) �5�(ηη
) �5VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT0.75±0.14 OUR FIT0.75±0.14 OUR FIT0.75±0.14 OUR FIT0.75±0.14 OUR FIT Error in
ludes s
ale fa
tor of 2.1.1.0 ±0.11.0 ±0.11.0 ±0.11.0 ±0.1 1 LONGACRE 86 MPS 22 π− p → n2K0S

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.8 ±0.4 870 2 SCHEGELSKY 06A RVUE γ γ → K0S K0S

�(γ γ
) �7�(γ γ
) �7�(γ γ
) �7�(γ γ
) �7The value of this width depends on the theoreti
al model used. Unitary approa
heswith s
alars typi
ally (with ex
eption of PENNINGTON 08) give values 
lusteringaround 2.6 keV; without an S-wave 
ontribution, values are systemati
ally higher (typ-i
ally around 3 keV).VALUE (keV) EVTS DOCUMENT ID TECN COMMENT2.6 ±0.5 OUR FIT2.6 ±0.5 OUR FIT2.6 ±0.5 OUR FIT2.6 ±0.5 OUR FIT Error in
ludes s
ale fa
tor of 1.4.2.93±0.402.93±0.402.93±0.402.93±0.40 3 DAI 14A RVUE Compilation

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.14±0.20 4,5 PENNINGTON 08 RVUE Compilation3.82±0.30 5,6 PENNINGTON 08 RVUE Compilation2.55±0.15 870 2 SCHEGELSKY 06A RVUE γ γ → K0S K0S2.84±0.35 BOGLIONE 99 RVUE γ γ → π+π−, π0π02.93±0.23±0.32 7 YABUKI 95 VNS2.58±0.13+0.36
−0.27 8 BEHREND 92 CELL e+ e− → e+ e−π+π−3.10±0.35±0.35 9 BLINOV 92 MD1 e+ e− → e+ e−π+π−2.27±0.47±0.11 ADACHI 90D TOPZ e+ e− → e+ e−π+π−3.15±0.04±0.39 BOYER 90 MRK2 e+ e− → e+ e−π+π−3.19±0.16+0.29
−0.28 MARSISKE 90 CBAL e+ e− → e+ e−π0π02.35±0.65 10 MORGAN 90 RVUE γ γ → π+π− , π0π03.19±0.09+0.22
−0.38 2177 OEST 90 JADE e+ e− → e+ e−π0π03.2 ±0.1 ±0.4 11 AIHARA 86B TPC e+ e− → e+ e−π+π−2.5 ±0.1 ±0.5 BEHREND 84B CELL e+ e− → e+ e−π+π−2.85±0.25±0.5 12 BERGER 84 PLUT e+ e− → e+ e− 2π2.70±0.05±0.20 COURAU 84 DLCO e+ e− → e+ e−π+π−2.52±0.13±0.38 13 SMITH 84C MRK2 e+ e− → e+ e−π+π−2.7 ±0.2 ±0.6 EDWARDS 82F CBAL e+ e− → e+ e− 2π02.9 +0.6

−0.4 ±0.6 14 EDWARDS 82F CBAL e+ e− → e+ e− 2π03.2 ±0.2 ±0.6 BRANDELIK 81B TASS e+ e− → e+ e−π+π−3.6 ±0.3 ±0.5 ROUSSARIE 81 MRK2 e+ e− → e+ e−π+π−2.3 ±0.8 15 BERGER 80B PLUT e+ e−�(e+ e−) �10�(e+ e−) �10�(e+ e−) �10�(e+ e−) �10VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<0.11<0.11<0.11<0.11 90 ACHASOV 00K SND e+ e− → π0π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.7 90 VOROBYEV 88 ND e+ e− → π0π01From a partial-wave analysis of data using a K-matrix formalism with 5 poles.2 From analysis of L3 data at 91 and 183{209 GeV and using SU(3) relations.3Based on a K-matrix analysis of BELLE data from MORI 07, UEHARA 08A, UEHARA 09and UEHARA 13. The width is derived for the pole on the third sheet whi
h is 
losestto the physi
al axis. Supersedes PENNINGTON 08.4 Solution A (preferred solution based on χ2-analysis).5Dispersion theory based amplitude analysis of BOYER 90, MARSISKE 90, BEHREND 92,and MORI 07.6 Solution B (worse than solution A; still a

eptable when systemati
 un
ertainties arein
luded).7With a narrow s
alar state around 1220 MeV.8Using a unitarized model with a 300 - 500 keV wide s
alar at 1100 MeV.9Using the unitarized model of LYTH 85.10Error in
ludes spread of di�erent solutions. Data of MARK2 and CRYSTAL BALL usedin the analysis. Authors report strong 
orrelations with γ γ width of f0(1370) : �(f2) +1/4 �(f 0) = 3.6 ± 0.3 KeV.11Radiative 
orre
tions modify the partial widths; for instan
e the COURAU 84 valuebe
omes 2.66 ± 0.21 in the 
al
ulation of LANDRO 86.12Using the MENNESSIER 83 model.13 Superseded by BOYER 90.14 If heli
ity = 2 assumption is not made.15Using mass, width and B(f2(1270) → 2π) from PDG 78.f2(1270) �(i)�(γ γ)/�(total)f2(1270) �(i)�(γ γ)/�(total)f2(1270) �(i)�(γ γ)/�(total)f2(1270) �(i)�(γ γ)/�(total)�(K K)

× �(γ γ
)/�total �3�7/��(K K)

× �(γ γ
)/�total �3�7/��(K K)

× �(γ γ
)/�total �3�7/��(K K)

× �(γ γ
)/�total �3�7/�VALUE (keV) DOCUMENT ID TECN COMMENT0.121±0.020 OUR FIT0.121±0.020 OUR FIT0.121±0.020 OUR FIT0.121±0.020 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.091±0.007±0.0270.091±0.007±0.0270.091±0.007±0.0270.091±0.007±0.027 1 ALBRECHT 90G ARG e+ e− → e+ e−K+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.104±0.007±0.072 2 ALBRECHT 90G ARG e+ e− → e+ e−K+K−1Using an in
oherent ba
kground.2Using a 
oherent ba
kground.�(ηη
)

× �(γ γ
)/�total �5�7/��(ηη

)

× �(γ γ
)/�total �5�7/��(ηη

)

× �(γ γ
)/�total �5�7/��(ηη

)

× �(γ γ
)/�total �5�7/�VALUE (eV) DOCUMENT ID TECN COMMENT11.5+1.8

−2.0+4.5
−3.711.5+1.8

−2.0+4.5
−3.711.5+1.8

−2.0+4.5
−3.711.5+1.8

−2.0+4.5
−3.7 1 UEHARA 10A BELL 10.6 e+ e− → e+ e− ηη1 In
luding interferen
e with the f ′2(1525) (parameters �xed to the values from the 2008edition of this review, PDG 08) and f0(Y).



903903903903See key on page 601 MesonParti
le Listingsf2(1270)Heli
ity-0/Heli
ity-2 RATIO IN γ γ → f2(1270) → ππHeli
ity-0/Heli
ity-2 RATIO IN γ γ → f2(1270) → ππHeli
ity-0/Heli
ity-2 RATIO IN γ γ → f2(1270) → ππHeli
ity-0/Heli
ity-2 RATIO IN γ γ → f2(1270) → ππVALUE (units 10−2) DOCUMENT ID TECN COMMENT3.7±0.3+15.9
− 2.93.7±0.3+15.9
− 2.93.7±0.3+15.9
− 2.93.7±0.3+15.9
− 2.9 UEHARA 08A BELL 10.6 e+ e− →e+ e−π0π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •9.5±1.8 1 DAI 14A RVUE Compilation13 2,3 PENNINGTON 08 RVUE Compilation26 3,4 PENNINGTON 08 RVUE Compilation1Based on a K-matrix analysis of BELLE data from MORI 07, UEHARA 08A, UEHARA 09and UEHARA 13. The width is derived for the pole on the third sheet whi
h is 
losestto the physi
al axis.2 Solution A (preferred solution based on χ2-analysis).3Dispersion theory based amplitude analysis of BOYER 90, MARSISKE 90, BEHREND 92,and MORI 07.4 Solution B (worse than solution A; still a

eptable when systemati
 un
ertainties arein
luded). f2(1270) BRANCHING RATIOSf2(1270) BRANCHING RATIOSf2(1270) BRANCHING RATIOSf2(1270) BRANCHING RATIOS�(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.842+0.029
−0.009 OUR FIT0.842+0.029
−0.009 OUR FIT0.842+0.029
−0.009 OUR FIT0.842+0.029
−0.009 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.837±0.020 OUR AVERAGE0.837±0.020 OUR AVERAGE0.837±0.020 OUR AVERAGE0.837±0.020 OUR AVERAGE0.849±0.025 CHABAUD 83 ASPK 17 π− p polarized0.85 ±0.05 250 BEAUPRE 71 HBC 8 π+ p → �++ f20.8 ±0.04 600 OH 70 HBC 1.26 π− p → π+π− n�(π+π−2π0)/�(ππ

) �2/�1�(π+π−2π0)/�(ππ
) �2/�1�(π+π−2π0)/�(ππ
) �2/�1�(π+π−2π0)/�(ππ
) �2/�1Should be twi
e �(2π+2π−)/�(

ππ
) if de
ay is ρρ. (See ASCOLI 68D.)VALUE EVTS DOCUMENT ID TECN COMMENT0.091+0.014

−0.040 OUR FIT0.091+0.014
−0.040 OUR FIT0.091+0.014
−0.040 OUR FIT0.091+0.014
−0.040 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.15 ±0.060.15 ±0.060.15 ±0.060.15 ±0.06 600 EISENBERG 74 HBC 4.9 π+ p → �++ f2

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.07 EMMS 75D DBC 4 π+ n → p f2�(K K)/�(ππ
) �3/�1�(K K)/�(ππ
) �3/�1�(K K)/�(ππ
) �3/�1�(K K)/�(ππ
) �3/�1We average only experiments whi
h either take into a

ount f2(1270)-a2(1320) inter-feren
e expli
itly or demonstrate that a2(1320) produ
tion is negligible.VALUE EVTS DOCUMENT ID TECN COMMENT0.054+0.005

−0.006 OUR FIT0.054+0.005
−0.006 OUR FIT0.054+0.005
−0.006 OUR FIT0.054+0.005
−0.006 OUR FIT Error in
ludes s
ale fa
tor of 2.7.0.041+0.004
−0.005 OUR AVERAGE0.041+0.004
−0.005 OUR AVERAGE0.041+0.004
−0.005 OUR AVERAGE0.041+0.004
−0.005 OUR AVERAGE0.045±0.01 1 BARGIOTTI 03 OBLX pp0.037+0.008
−0.021 ETKIN 82B MPS 23 π− p → n2K0S0.045±0.009 CHABAUD 81 ASPK 17 π− p polarized0.039±0.008 LOVERRE 80 HBC 4 π− p → K K N

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.052±0.025 ABLIKIM 04E BES2 J/ψ → ωK+K−0.036±0.005 2 COSTA... 80 OMEG 1{2.2 π− p → K+K− n0.030±0.005 3 MARTIN 79 RVUE0.027±0.009 4 POLYCHRO... 79 STRC 7 π− p → n2K0S0.025±0.015 EMMS 75D DBC 4 π+ n → p f20.031±0.012 20 ADERHOLZ 69 HBC 8 π+ p → K+K−π+ p�(2π+2π−)/�(ππ
) �4/�1�(2π+2π−)/�(ππ
) �4/�1�(2π+2π−)/�(ππ
) �4/�1�(2π+2π−)/�(ππ
) �4/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.033±0.005 OUR FIT0.033±0.005 OUR FIT0.033±0.005 OUR FIT0.033±0.005 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.033±0.004 OUR AVERAGE0.033±0.004 OUR AVERAGE0.033±0.004 OUR AVERAGE0.033±0.004 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.024±0.006 160 EMMS 75D DBC 4 π+ n → p f20.051±0.025 70 EISENBERG 74 HBC 4.9 π+ p → �++ f20.043+0.007

−0.011 285 LOUIE 74 HBC 3.9 π− p → n f20.037±0.007 154 ANDERSON 73 DBC 6 π+ n → p f20.047±0.013 OH 70 HBC 1.26 π− p → π+π− n�(ηη
)/�total �5/��(ηη
)/�total �5/��(ηη
)/�total �5/��(ηη
)/�total �5/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT4.0±0.8 OUR FIT4.0±0.8 OUR FIT4.0±0.8 OUR FIT4.0±0.8 OUR FIT Error in
ludes s
ale fa
tor of 2.1.2.9±0.5 OUR AVERAGE2.9±0.5 OUR AVERAGE2.9±0.5 OUR AVERAGE2.9±0.5 OUR AVERAGE2.7±0.7 BINON 05 GAMS 33 π− p → ηηn2.8±0.7 ALDE 86D GAM4 100 π− p → 2ηn5.2±1.7 BINON 83 GAM2 38 π− p → 2ηn�(ηη
)/�(ππ

) �5/�1�(ηη
)/�(ππ

) �5/�1�(ηη
)/�(ππ

) �5/�1�(ηη
)/�(ππ

) �5/�1VALUE CL% DOCUMENT ID TECN COMMENT0.003±0.0010.003±0.0010.003±0.0010.003±0.001 BARBERIS 00E 450 pp → pf ηηps
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.05 95 EDWARDS 82F CBAL e+ e− → e+ e− 2η
<0.016 95 EMMS 75D DBC 4 π+ n → p f2
<0.09 95 EISENBERG 74 HBC 4.9 π+ p → �++ f2

�(4π0)/�total �6/��(4π0)/�total �6/��(4π0)/�total �6/��(4π0)/�total �6/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0030±0.0010 OUR FIT0.0030±0.0010 OUR FIT0.0030±0.0010 OUR FIT0.0030±0.0010 OUR FIT0.003 ±0.0010.003 ±0.0010.003 ±0.0010.003 ±0.001 400 ± 50 ALDE 87 GAM4 100 π− p → 4π0 n�(γ γ
)/�total �7/��(γ γ
)/�total �7/��(γ γ
)/�total �7/��(γ γ
)/�total �7/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.57±0.01+1.39
−0.14 UEHARA 08A BELL 10.6 e+ e− →e+ e−π0π0�(ηππ

)/�(ππ
) �8/�1�(ηππ

)/�(ππ
) �8/�1�(ηππ

)/�(ππ
) �8/�1�(ηππ

)/�(ππ
) �8/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.010<0.010<0.010<0.010 95 EMMS 75D DBC 4 π+ n → p f2�(K0K−π++ 
.
.)/�(ππ
) �9/�1�(K0K−π++ 
.
.)/�(ππ
) �9/�1�(K0K−π++ 
.
.)/�(ππ
) �9/�1�(K0K−π++ 
.
.)/�(ππ
) �9/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.004<0.004<0.004<0.004 95 EMMS 75D DBC 4 π+ n → p f2�(e+ e−)/�total �10/��(e+ e−)/�total �10/��(e+ e−)/�total �10/��(e+ e−)/�total �10/�VALUE (units 10−10) CL% DOCUMENT ID TECN COMMENT
<6<6<6<6 90 ACHASOV 00K SND e+ e− → π0π01Coupled 
hannel analysis of π+π−π0, K+K−π0, and K±K0S π∓.2Re-evaluated by CHABAUD 83.3 In
ludes PAWLICKI 77 data.4Takes into a

ount the f2(1270)-f ′2(1525) interferen
e.f2(1270) REFERENCESf2(1270) REFERENCESf2(1270) REFERENCESf2(1270) REFERENCESDOBBS 15 PR D91 052006 S. Dobbs et al. (NWES)DAI 14A PR D90 036004 L.-Y. Dai, M.R. Pennington (CEBAF)BOGOLYUB... 13 PAN 76 1324 M.Yu. Bogolyubsky et al. (HYPERON-M Collab.)Translated from YAF 76 1389.UEHARA 13 PTEP 2013 123C01 S. Uehara et al. (BELLE Collab.)UEHARA 10A PR D82 114031 S. Uehara et al. (BELLE Collab.)ANISOVICH 09 IJMP A24 2481 V.V. Anisovi
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le Listingsf2(1270), f1(1285)POLYCHRO... 79 PR D19 1317 V.A. Poly
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k et al. (NDAM)ADERHOLZ 69 NP B11 259 M. Aderholz et al. (AACH3, BERL, CERN+)ARMENISE 68 NC 54A 999 N. Armenise et al. (BARI, BGNA, FIRZ+)ASCOLI 68D PRL 21 1712 G. As
oli et al. (ILL)BOESEBECK 68 NP B4 501 K. Boesebe
k et al. (AACH, BERL, CERN)JOHNSON 68 PR 176 1651 P.B. Johnson et al. (NDAM, PURD, SLAC)EISNER 67 PR 164 1699 R.L. Eisner et al. (PURD)DERADO 65 PRL 14 872 I. Derado et al. (NDAM)LEE 64 PRL 12 342 Y.Y. Lee et al. (MICH)BONDAR 63 PL 5 153 L. Bondar et al. (AACH, BIRM, BONN, DESY+)f1(1285) IG (JPC ) = 0+(1 + +)f1(1285) MASSf1(1285) MASSf1(1285) MASSf1(1285) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1282.0 ± 0.5 OUR AVERAGE1282.0 ± 0.5 OUR AVERAGE1282.0 ± 0.5 OUR AVERAGE1282.0 ± 0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogrambelow.1287.4 ± 3.0 87 ABLIKIM 15P BES3 J/ψ → K+K− 3π1281.16± 0.39± 0.45 1 LEES 12X BABR τ− → π− f1(1285)ντ1285.1 ± 1.0 + 1.6
− 0.3 2 ABLIKIM 11J BES3 J/ψ → ω(ηπ+ π−)1281 ± 2 ± 1 AUBERT 07AU BABR 10.6 e+ e− →f1(1285)π+π− γ1276.1 ± 8.1 ± 8.0 203 BAI 04J BES2 J/ψ → γ γπ+π−1274 ± 6 237 ABDALLAH 03H DLPH 91.2 e+ e− →K0S K±π∓ + X1280 ± 4 ACCIARRI 01G L31288 ± 4 ± 5 20k ADAMS 01B B852 18 GeV π− p →K+K−π0 n1284 ± 6 1400 ALDE 97B GAM4 100 π− p → ηπ0π0 n1281 ± 1 BARBERIS 97B OMEG 450 pp → pp2(π+ π−)1281 ± 1 BARBERIS 97C OMEG 450 pp → ppK0S K±π∓1280 ± 2 3 ANTINORI 95 OMEG 300,450 pp →pp2(π+π−)1282.2 ± 1.5 LEE 94 MPS2 18 π− p → K+K0 2π− p1279 ± 5 FUKUI 91C SPEC 8.95 π− p → ηπ+π− n1278 ± 2 140 ARMSTRONG 89 OMEG 300 pp → K K πpp1278 ± 2 ARMSTRONG 89G OMEG 85 π+ p → 4ππp, pp →4πpp1280.1 ± 2.1 60 RATH 89 MPS 21.4 π− p → K0S K0S π0 n1285 ± 1 4750 4 BIRMAN 88 MPS 8 π− p → K+K0π− n1280 ± 1 504 BITYUKOV 88 SPEC 32.5 π− p →K+K−π0 n1280 ± 4 ANDO 86 SPEC 8 π− p → ηπ+π− n1277 ± 2 420 REEVES 86 SPEC 6.6 pp → K K πX1285 ± 2 CHUNG 85 SPEC 8 π− p → NK K π1279 ± 2 604 ARMSTRONG 84 OMEG 85 π+ p → K K ππp,pp → K K πpp1286 ± 1 CHAUVAT 84 SPEC ISR 31.5 pp1278 ± 4 EVANGELIS... 81 OMEG 12 π− p → ηπ+π−π− p1283 ± 3 103 DIONISI 80 HBC 4 π− p → K K πn1282 ± 2 320 NACASCH 78 HBC 0.7,0.76 p p → K K 3π1279 ± 5 210 GRASSLER 77 HBC 16 π∓ p1286 ± 3 180 DUBOC 72 HBC 1.2 p p → 2K 4π1283 ± 5 DAHL 67 HBC 1.6{4.2 π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •1284.2 ± 2.2 5 AAIJ 14Y LHCB B0(s) → J/ψ2(π+ π−)1281.9 ± 0.5 5 SOSA 99 SPEC pp → pslow(K0S K+π−) pfast1282.8 ± 0.6 5 SOSA 99 SPEC pp → pslow(K0S K−π+) pfast1270 ±10 AMELIN 95 VES 37 π−N →
π−π+π− γN1280 ± 2 ABATZIS 94 OMEG 450 pp → pp2(π+ π−)1282 ± 4 ARMSTRONG 93C E760 pp → π0 ηη → 6γ1270 ± 6 ±10 ARMSTRONG 92C OMEG 300 pp → ppπ+π− γ1281 ± 1 ARMSTRONG 89E OMEG 300 pp → pp2(π+ π−)1279 ± 6 ±10 16 BECKER 87 MRK3 e+ e− → φK K π1286 ± 9 GIDAL 87 MRK2 e+ e− →e+ e− ηπ+π−1287 ± 5 353 BITYUKOV 84B SPEC 32 π− p → K+K−π0 n

∼ 1279 6 TORNQVIST 82B RVUE

1275 ± 6 31 BROMBERG 80 SPEC 100 π− p → KK πX1288 ± 9 200 GURTU 79 HBC 4.2 K− p → nη2π
∼ 1275.0 46 7 STANTON 79 CNTR 8.5 π− p → n2γ 2π1271 ±10 34 CORDEN 78 OMEG 12{15 π− p →K+K−πn1295 ±12 85 CORDEN 78 OMEG 12{15 π− p → n5π1292 ±10 150 DEFOIX 72 HBC 0.7 p p → 7π1280 ± 3 500 8 THUN 72 MMS 13.4 π− p1303 ± 8 BARDADIN-... 71 HBC 8 π+ p → p6π1283 ± 6 BOESEBECK 71 HBC 16.0 πp → p5π1270 ±10 CAMPBELL 69 DBC 2.7 π+ d1285 ± 7 LORSTAD 69 HBC 0.7 p p, 4,5-body1290 ± 7 D'ANDLAU 68 HBC 1.2 p p, 5{6 body1Using the 2π+2π− and π+π− η modes of f1(1285) de
ay.2The sele
ted pro
ess is J/ψ → ωa0(980)π.3 Supersedes ABATZIS 94, ARMSTRONG 89E.4 From partial wave analysis of K+K0π− system.5No systemati
 error given.6 From a unitarized quark-model 
al
ulation.7 From phase shift analysis of ηπ+π− system.8 Seen in the missing mass spe
trum.

WEIGHTED AVERAGE
1282.0±0.5 (Error scaled by 1.8)

DAHL 67 HBC
DUBOC 72 HBC 1.8
GRASSLER 77 HBC
NACASCH 78 HBC 0.0
DIONISI 80 HBC 0.1
EVANGELIS... 81 OMEG 1.0
CHAUVAT 84 SPEC 16.3
ARMSTRONG 84 OMEG 2.2
CHUNG 85 SPEC 2.3
REEVES 86 SPEC 6.2
ANDO 86 SPEC 0.2
BITYUKOV 88 SPEC 3.9
BIRMAN 88 MPS 9.2
RATH 89 MPS 0.8
ARMSTRONG 89G OMEG 3.9
ARMSTRONG 89 OMEG 3.9
FUKUI 91C SPEC
LEE 94 MPS2 0.0
ANTINORI 95 OMEG 1.0
BARBERIS 97C OMEG 0.9
BARBERIS 97B OMEG 0.9
ALDE 97B GAM4
ADAMS 01B B852
ACCIARRI 01G L3 0.2
ABDALLAH 03H DLPH
BAI 04J BES2
AUBERT 07AU BABR 0.2
ABLIKIM 11J BES3 9.0
LEES 12X BABR 1.8
ABLIKIM 15P BES3 3.3

χ2

      69.2
(Confidence Level < 0.0001)

1270 1275 1280 1285 1290 1295 1300f1(1285) mass (MeV) f1(1285) WIDTHf1(1285) WIDTHf1(1285) WIDTHf1(1285) WIDTHOnly experiments giving width error less than 20 MeV are kept for aver-aging.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT24.1± 1.0 OUR AVERAGE24.1± 1.0 OUR AVERAGE24.1± 1.0 OUR AVERAGE24.1± 1.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.18.3± 6.3 87 ABLIKIM 15P BES3 J/ψ → K+K− 3π22.0± 3.1+ 2.0
− 1.5 1 ABLIKIM 11J BES3 J/ψ → ω(ηπ+ π−)35 ± 6 ± 4 AUBERT 07AU BABR 10.6 e+ e− →f1(1285)π+π− γ40.0± 8.6± 9.3 203 BAI 04J BES2 J/ψ → γ γπ+π−29 ±12 237 ABDALLAH 03H DLPH 91.2 e+ e− →K0S K±π∓ + X45 ± 9 ± 7 20k ADAMS 01B B852 18 GeV π− p →K+K−π0 n55 ±18 1400 ALDE 97B GAM4 100 π− p → ηπ0π0 n24 ± 3 BARBERIS 97B OMEG 450 pp → pp2(π+ π−)20 ± 2 BARBERIS 97C OMEG 450 pp → ppK0S K±π∓36 ± 5 2 ANTINORI 95 OMEG 300,450 pp →pp2(π+π−)29.0± 4.1 LEE 94 MPS2 18 π− p → K+K0 2π− p25 ± 4 140 ARMSTRONG 89 OMEG 300 pp → K K πpp22 ± 2 4750 3 BIRMAN 88 MPS 8 π− p → K+K0π− n



905905905905See key on page 601 MesonParti
le Listingsf1(1285)25 ± 4 504 BITYUKOV 88 SPEC 32.5 π− p → K+K−π0 n19 ± 5 ANDO 86 SPEC 8 π− p → ηπ+π− n32 ± 8 420 REEVES 86 SPEC 6.6 pp → K K πX22 ± 2 CHUNG 85 SPEC 8 π− p → NK K π32 ± 3 604 ARMSTRONG 84 OMEG 85 π+ p → K K ππp,pp → K K πpp24 ± 3 CHAUVAT 84 SPEC ISR 31.5 pp29 ±10 103 DIONISI 80 HBC 4 π− p → K K πn28.3± 6.7 320 NACASCH 78 HBC 0.7,0.76 p p → K K 3π
• • • We do not use the following data for averages, �ts, limits, et
. • • •32.4± 5.8 4 AAIJ 14Y LHCB B0(s) → J/ψ2(π+ π−)18.2± 1.2 4 SOSA 99 SPEC pp → pslow (K0S K+π−)pfast19.4± 1.5 4 SOSA 99 SPEC pp → pslow (K0S K−π+)pfast40 ± 5 ABATZIS 94 OMEG 450 pp → pp2(π+ π−)31 ± 5 ARMSTRONG 89E OMEG 300 pp → pp2(π+ π−)41 ±12 ARMSTRONG 89G OMEG 85 π+ p → 4ππp, pp →4πpp17.9±10.9 60 RATH 89 MPS 21.4 π− p → K0S K0S π0 n14 +20

−14 ±10 16 BECKER 87 MRK3 e+ e− → φK K π26 ±12 EVANGELIS... 81 OMEG 12 π− p → ηπ+π−π− p25 ±15 200 GURTU 79 HBC 4.2 K− p → nη2π
∼ 10 5 STANTON 79 CNTR 8.5 π− p → n2γ 2π24 ±18 210 GRASSLER 77 HBC 16 π∓ p28 ± 5 150 6 DEFOIX 72 HBC 0.7 p p → 7π46 ± 9 180 6 DUBOC 72 HBC 1.2 p p → 2K 4π37 ± 5 500 7 THUN 72 MMS 13.4 π− p10 ±10 BOESEBECK 71 HBC 16.0 πp → p5π30 ±15 CAMPBELL 69 DBC 2.7 π+ d60 ±15 6 LORSTAD 69 HBC 0.7 p p, 4,5-body35 ±10 6 DAHL 67 HBC 1.6{4.2 π− p1The sele
ted pro
ess is J/ψ → ωa0(980)π.2 Supersedes ABATZIS 94, ARMSTRONG 89E.3 From partial wave analysis of K+K0π− system.4No systemati
 error given.5 From phase shift analysis of ηπ+π− system.6Resolution is not unfolded.7 Seen in the missing mass spe
trum.

WEIGHTED AVERAGE
24.1±1.0 (Error scaled by 1.3)

NACASCH 78 HBC 0.4
DIONISI 80 HBC 0.2
CHAUVAT 84 SPEC 0.0
ARMSTRONG 84 OMEG 6.9
CHUNG 85 SPEC 1.1
REEVES 86 SPEC 1.0
ANDO 86 SPEC 1.0
BITYUKOV 88 SPEC 0.1
BIRMAN 88 MPS 1.1
ARMSTRONG 89 OMEG 0.1
LEE 94 MPS2 1.4
ANTINORI 95 OMEG 5.7
BARBERIS 97C OMEG 4.2
BARBERIS 97B OMEG 0.0
ALDE 97B GAM4
ADAMS 01B B852
ABDALLAH 03H DLPH
BAI 04J BES2
AUBERT 07AU BABR 2.3
ABLIKIM 11J BES3 0.3
ABLIKIM 15P BES3 0.9

χ2

      26.7
(Confidence Level = 0.045)

0 10 20 30 40 50 60 70f1(1285) width (MeV)f1(1285) DECAY MODESf1(1285) DECAY MODESf1(1285) DECAY MODESf1(1285) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 4π (33.1+ 2.1
− 1.8) % S=1.3�2 π0π0π+π− (22.0+ 1.4
− 1.2) % S=1.3�3 2π+2π− (11.0+ 0.7
− 0.6) % S=1.3�4 ρ0π+π− (11.0+ 0.7
− 0.6) % S=1.3�5 ρ0 ρ0 seen�6 4π0 < 7 × 10−4 CL=90%�7 ηπ+π− (35 ±15 ) %�8 ηππ (52.4+ 1.9
− 2.2) % S=1.2

�9 a0(980)π [ignoring a0(980) →K K ℄ (36 ± 7 ) %�10 ηππ [ex
luding a0(980)π℄ (16 ± 7 ) %�11 K K π ( 9.0± 0.4) % S=1.1�12 K K∗(892) not seen�13 π+π−π0 ( 3.0± 0.9)× 10−3�14 ρ±π∓ < 3.1 × 10−3 CL=95%�15 γ ρ0 ( 5.5± 1.3) % S=2.8�16 φγ ( 7.4± 2.6)× 10−4�17 γ γ∗�18 γ γ CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 7 bran
hing ratios uses 16 measurements and one
onstraint to determine 5 parameters. The overall �t has a χ2 =24.7 for 12 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x9 −17x10 −8 −95x11 46 −9 −4x15 −36 −4 −2 −34x1 x9 x10 x11f1(1285) �(i)�(γ γ)/�(total)f1(1285) �(i)�(γ γ)/�(total)f1(1285) �(i)�(γ γ)/�(total)f1(1285) �(i)�(γ γ)/�(total)�(ηππ
)

× �(γ γ
)/�total �8�18/�= (�9+�10)�18/��(ηππ

)

× �(γ γ
)/�total �8�18/�= (�9+�10)�18/��(ηππ

)

× �(γ γ
)/�total �8�18/�= (�9+�10)�18/��(ηππ

)

× �(γ γ
)/�total �8�18/�= (�9+�10)�18/�VALUE (keV) CL% DOCUMENT ID TECN COMMENT

<0.62<0.62<0.62<0.62 95 GIDAL 87 MRK2 e+ e− → e+ e− ηπ+π−�(ηππ
)

× �(γ γ∗
)/�total �8�17/�= (�9+�10)�17/��(ηππ

)

× �(γ γ∗
)/�total �8�17/�= (�9+�10)�17/��(ηππ

)

× �(γ γ∗
)/�total �8�17/�= (�9+�10)�17/��(ηππ

)

× �(γ γ∗
)/�total �8�17/�= (�9+�10)�17/�VALUE (keV) EVTS DOCUMENT ID TECN COMMENT1.4 ±0.4 OUR AVERAGE1.4 ±0.4 OUR AVERAGE1.4 ±0.4 OUR AVERAGE1.4 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.1.18±0.25±0.20 26 1,2 AIHARA 88B TPC e+ e− → e+ e− ηπ+π−2.30±0.61±0.42 1,3 GIDAL 87 MRK2 e+ e− → e+ e− ηπ+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.8 ±0.3 ±0.3 420 4 ACHARD 02B L3 183{209 e+ e− →e+ e− ηπ+π−1Assuming a ρ-pole form fa
tor.2Published value multiplied by ηππ bran
hing ratio 0.49.3Published value divided by 2 and multiplied by the ηππ bran
hing ratio 0.49.4Published value multiplied by the ηππ bran
hing ratio 0.52.f1(1285) BRANCHING RATIOSf1(1285) BRANCHING RATIOSf1(1285) BRANCHING RATIOSf1(1285) BRANCHING RATIOS�(K K π
)/�(4π) �11/�1�(K K π
)/�(4π) �11/�1�(K K π
)/�(4π) �11/�1�(K K π
)/�(4π) �11/�1VALUE DOCUMENT ID TECN COMMENT0.271±0.016 OUR FIT0.271±0.016 OUR FIT0.271±0.016 OUR FIT0.271±0.016 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.271±0.016 OUR AVERAGE0.271±0.016 OUR AVERAGE0.271±0.016 OUR AVERAGE0.271±0.016 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.265±0.014 1 BARBERIS 97C OMEG 450 pp → ppK0S K±π∓0.28 ±0.05 2 ARMSTRONG 89E OMEG 300 pp → pp f1(1285)0.37 ±0.03 ±0.05 3 ARMSTRONG 89G OMEG 85 πp → 4πX1Using 2(π+π−) data from BARBERIS 97B.2Assuming ρππ and a0(980)π intermediate states.3 4π 
onsistent with being entirely ρππ.�(π0π0π+π−)/�total �2/�= 23�1/��(π0π0π+π−)/�total �2/�= 23�1/��(π0π0π+π−)/�total �2/�= 23�1/��(π0π0π+π−)/�total �2/�= 23�1/�VALUE DOCUMENT ID0.220+0.014

−0.012 OUR FIT0.220+0.014
−0.012 OUR FIT0.220+0.014
−0.012 OUR FIT0.220+0.014
−0.012 OUR FIT Error in
ludes s
ale fa
tor of 1.3.�(2π+2π−)/�total �3/�= 13�1/��(2π+2π−)/�total �3/�= 13�1/��(2π+2π−)/�total �3/�= 13�1/��(2π+2π−)/�total �3/�= 13�1/�VALUE DOCUMENT ID0.110+0.007
−0.006 OUR FIT0.110+0.007
−0.006 OUR FIT0.110+0.007
−0.006 OUR FIT0.110+0.007
−0.006 OUR FIT Error in
ludes s
ale fa
tor of 1.3.�(ρ0π+π−)/�total �4/�= 13�1/��(ρ0π+π−)/�total �4/�= 13�1/��(ρ0π+π−)/�total �4/�= 13�1/��(ρ0π+π−)/�total �4/�= 13�1/�VALUE DOCUMENT ID0.110+0.007
−0.006 OUR FIT0.110+0.007
−0.006 OUR FIT0.110+0.007
−0.006 OUR FIT0.110+0.007
−0.006 OUR FIT Error in
ludes s
ale fa
tor of 1.3.�(ρ0π+π−)/�(2π+2π−) �4/�3�(ρ0π+π−)/�(2π+2π−) �4/�3�(ρ0π+π−)/�(2π+2π−) �4/�3�(ρ0π+π−)/�(2π+2π−) �4/�3VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.0±0.4 GRASSLER 77 HBC 16 GeV π± p



906906906906MesonParti
le Listingsf1(1285)�(ρ0 ρ0)/�total �5/��(ρ0 ρ0)/�total �5/��(ρ0 ρ0)/�total �5/��(ρ0 ρ0)/�total �5/�VALUE DOCUMENT ID COMMENTseenseenseenseen BARBERIS 00C 450 pp → pf 4πps�(4π0)/�total �6/��(4π0)/�total �6/��(4π0)/�total �6/��(4π0)/�total �6/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<7<7<7<7 90 ALDE 87 GAM4 100 π− p → 4π0 n�(π+π−π0)/�(ηπ+π−) �13/�7�(π+π−π0)/�(ηπ+π−) �13/�7�(π+π−π0)/�(ηπ+π−) �13/�7�(π+π−π0)/�(ηπ+π−) �13/�7VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.86±0.16±0.200.86±0.16±0.200.86±0.16±0.200.86±0.16±0.20 2.3k 1 DOROFEEV 11 VES π−N → π− f1(1285)N1Value obtained sele
ting the region 
orresponding to f0(980) in the π+π− mass spe
-trum.�(ηππ

)/�total �8/�= (�9+�10)/��(ηππ
)/�total �8/�= (�9+�10)/��(ηππ
)/�total �8/�= (�9+�10)/��(ηππ
)/�total �8/�= (�9+�10)/�VALUE DOCUMENT ID0.524+0.019

−0.022 OUR FIT0.524+0.019
−0.022 OUR FIT0.524+0.019
−0.022 OUR FIT0.524+0.019
−0.022 OUR FIT Error in
ludes s
ale fa
tor of 1.2.�(4π)/�(ηππ

) �1/�8 =�1/(�9+�10)�(4π)/�(ηππ
) �1/�8 =�1/(�9+�10)�(4π)/�(ηππ
) �1/�8 =�1/(�9+�10)�(4π)/�(ηππ
) �1/�8 =�1/(�9+�10)VALUE DOCUMENT ID TECN COMMENT0.63±0.06 OUR FIT0.63±0.06 OUR FIT0.63±0.06 OUR FIT0.63±0.06 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.41±0.14 OUR AVERAGE0.41±0.14 OUR AVERAGE0.41±0.14 OUR AVERAGE0.41±0.14 OUR AVERAGE0.37±0.11±0.11 BOLTON 92 MRK3 J/ψ → γ f1(1285)0.64±0.40 GURTU 79 HBC 4.2 K− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.93±0.30 1 GRASSLER 77 HBC 16 π∓ p1Assuming ρππ and a0(980)π intermediate states.�(2π+2π−)/�(ηππ
) �3/�8�(2π+2π−)/�(ηππ
) �3/�8�(2π+2π−)/�(ηππ
) �3/�8�(2π+2π−)/�(ηππ
) �3/�8VALUE DOCUMENT ID TECN COMMENT0.28±0.02±0.020.28±0.02±0.020.28±0.02±0.020.28±0.02±0.02 1 LEES 12X BABR τ− → π− f1(1285)ντ1Assuming B(f1(1285) → ππη) = 3/2 B(f1(1285) → π+π− η).�(a0(980)π [ignoring a0(980)→ K K ℄)/�(ηππ

) �9/�8 =�9/(�9+�10)�(a0(980)π [ignoring a0(980)→ K K ℄)/�(ηππ
) �9/�8 =�9/(�9+�10)�(a0(980)π [ignoring a0(980)→ K K ℄)/�(ηππ
) �9/�8 =�9/(�9+�10)�(a0(980)π [ignoring a0(980)→ K K ℄)/�(ηππ
) �9/�8 =�9/(�9+�10)VALUE CL% EVTS DOCUMENT ID TECN COMMENT0.69±0.13 OUR FIT0.69±0.13 OUR FIT0.69±0.13 OUR FIT0.69±0.13 OUR FIT0.69+0.13

−0.12 OUR AVERAGE0.69+0.13
−0.12 OUR AVERAGE0.69+0.13
−0.12 OUR AVERAGE0.69+0.13
−0.12 OUR AVERAGE0.72±0.15 GURTU 79 HBC 4.2 K− p0.6 +0.3
−0.2 CORDEN 78 OMEG 12{15 π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •
>0.69 95 318 ACHARD 02B L3 183{209 e+ e− →e+ e− ηπ+π−0.28±0.07 1400 ALDE 97B GAM4 100 π− p → ηπ0π0 n1.0 ±0.3 GRASSLER 77 HBC 16 π∓ p�(K K π

)/�(ηππ
) �11/�8 = �11/(�9+�10)�(K K π

)/�(ηππ
) �11/�8 = �11/(�9+�10)�(K K π

)/�(ηππ
) �11/�8 = �11/(�9+�10)�(K K π

)/�(ηππ
) �11/�8 = �11/(�9+�10)VALUE DOCUMENT ID TECN COMMENT0.171±0.013 OUR FIT0.171±0.013 OUR FIT0.171±0.013 OUR FIT0.171±0.013 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.170±0.012 OUR AVERAGE0.170±0.012 OUR AVERAGE0.170±0.012 OUR AVERAGE0.170±0.012 OUR AVERAGE0.166±0.01 ±0.008 BARBERIS 98C OMEG 450 pp → pf f1(1285)ps0.42 ±0.15 GURTU 79 HBC 4.2 K− p0.5 ±0.2 1 CORDEN 78 OMEG 12{15 π− p0.20 ±0.08 2 DEFOIX 72 HBC 0.7 pp → 7π0.16 ±0.08 CAMPBELL 69 DBC 2.7 π+ d1CORDEN 78 assumes low-mass ηππ region is dominantly 1++. See BARBERIS 98Cand MANAK 00A for dis
ussion.2K K system 
hara
terized by the I = 1 threshold enhan
ement. (See under a0(980)).�(K K∗(892))/�total �12/��(K K∗(892))/�total �12/��(K K∗(892))/�total �12/��(K K∗(892))/�total �12/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen NACASCH 78 HBC 0.7,0.76 pp → K K 3π

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 1 ACHARD 07 L3 183{209 e+ e− → e+ e−K0S K±π∓1A 
lear signal of 19.8 ± 4.4 events observed at high Q2.�(π+π−π0)/�total �13/��(π+π−π0)/�total �13/��(π+π−π0)/�total �13/��(π+π−π0)/�total �13/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.30±0.055±0.0740.30±0.055±0.0740.30±0.055±0.0740.30±0.055±0.074 2.3k 1 DOROFEEV 11 VES π−N → π− f1(1285)N1Value obtained sele
ting the region 
orresponding to f0(980) in the π+π− mass spe
-trum. The sytemati
 error in
ludes the un
ertainty on the partial width f1 → ηππobtained from PDG 10 data.�(ρ±π∓)/�total �14/��(ρ±π∓)/�total �14/��(ρ±π∓)/�total �14/��(ρ±π∓)/�total �14/�VALUE (%) CL% DOCUMENT ID TECN COMMENT
<0.31<0.31<0.31<0.31 95 DOROFEEV 11 VES π−N → π− f1(1285)N�(γ ρ0)/�total �15/��(γ ρ0)/�total �15/��(γ ρ0)/�total �15/��(γ ρ0)/�total �15/�VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT5.5±1.3 OUR FIT5.5±1.3 OUR FIT5.5±1.3 OUR FIT5.5±1.3 OUR FIT Error in
ludes s
ale fa
tor of 2.8.2.8±0.7±0.62.8±0.7±0.62.8±0.7±0.62.8±0.7±0.6 AMELIN 95 VES 37 π−N → π−π+π− γN
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5 95 BITYUKOV 91B SPEC 32 π− p → π+π− γ n

�(γ ρ0)/�(2π+2π−) �15/�3 =�15/13�1�(γ ρ0)/�(2π+2π−) �15/�3 =�15/13�1�(γ ρ0)/�(2π+2π−) �15/�3 =�15/13�1�(γ ρ0)/�(2π+2π−) �15/�3 =�15/13�1VALUE DOCUMENT ID TECN COMMENT0.50±0.13 OUR FIT0.50±0.13 OUR FIT0.50±0.13 OUR FIT0.50±0.13 OUR FIT Error in
ludes s
ale fa
tor of 2.5.0.45±0.180.45±0.180.45±0.180.45±0.18 1 COFFMAN 90 MRK3 J/ψ → γ γπ+π−1Using B(J/ψ → γ f1(1285) → γ γ ρ0)=0.25 × 10−4 and B(J/ψ → γ f1(1285) →
γ 2π+2π−)=0.55 × 10−4 given by MIR 88.�(ηππ

)/�(γ ρ0) �8/�15 = (�9+�10)/�15�(ηππ
)/�(γ ρ0) �8/�15 = (�9+�10)/�15�(ηππ
)/�(γ ρ0) �8/�15 = (�9+�10)/�15�(ηππ
)/�(γ ρ0) �8/�15 = (�9+�10)/�15VALUE DOCUMENT ID TECN COMMENT9.5±2.0 OUR FIT9.5±2.0 OUR FIT9.5±2.0 OUR FIT9.5±2.0 OUR FIT Error in
ludes s
ale fa
tor of 2.5.7.9±0.9 OUR AVERAGE7.9±0.9 OUR AVERAGE7.9±0.9 OUR AVERAGE7.9±0.9 OUR AVERAGE10.0±1.0±2.0 BARBERIS 98C OMEG 450 pp → pf f1(1285)ps7.5±1.0 1 ARMSTRONG 92C OMEG 300 pp → ppπ+π− γ , ppηπ+ π−1Published value multiplied by 1.5.�(γ ρ0)/�(K K π

) �15/�11�(γ ρ0)/�(K K π
) �15/�11�(γ ρ0)/�(K K π
) �15/�11�(γ ρ0)/�(K K π
) �15/�11VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

>0.035 90 1 COFFMAN 90 MRK3 J/ψ → γ γπ+π−1Using B(J/ψ → γ f1(1285) → γ γ ρ0)=0.25 × 10−4 and B(J/ψ → γ f1(1285) →
γK K π)=< 0.72× 10−3.�(φγ

)/�(K K π
) �16/�11�(φγ

)/�(K K π
) �16/�11�(φγ

)/�(K K π
) �16/�11�(φγ

)/�(K K π
) �16/�11VALUE (units 10−2) CL% EVTS DOCUMENT ID TECN COMMENT0.82±0.21±0.200.82±0.21±0.200.82±0.21±0.200.82±0.21±0.20 19 BITYUKOV 88 SPEC 32.5 π− p →K+K−π0 n

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.50 95 BARBERIS 98C OMEG 450 pp →pf f1(1285)ps
<0.93 95 AMELIN 95 VES 37 π−N →

π−π+π− γNf1(1285) REFERENCESf1(1285) REFERENCESf1(1285) REFERENCESf1(1285) REFERENCESABLIKIM 15P PR D92 012007 M. Ablikim et al. (BES III Collab.)AAIJ 14Y PRL 112 091802 R. Aaij et al. (LHCb Collab.)LEES 12X PR D86 092010 J.P. Lees et al. (BABAR Collab.)ABLIKIM 11J PRL 107 182001 M. Ablikim et al. (BES III Collab.)DOROFEEV 11 EPJ A47 68 V. Dorofeev et al. (SERP, MIPT)PDG 10 JP G37 075021 K. Nakamura et al. (PDG Collab.)ACHARD 07 JHEP 0703 018 P. A
hard et al. (L3 Collab.)AUBERT 07AU PR D76 092005 B. Aubert et al. (BABAR Collab.)BAI 04J PL B594 47 J.Z. Bai et al. (BES Collab.)ABDALLAH 03H PL B569 129 J. Abdallah et al. (DELPHI Collab.)ACHARD 02B PL B526 269 P. A
hard et al. (L3 Collab.)ACCIARRI 01G PL B501 1 M. A

iarri et al. (L3 Collab.)ADAMS 01B PL B516 264 G.S. Adams et al. (BNL E852 Collab.)BARBERIS 00C PL B471 440 D. Barberis et al. (WA 102 Collab.)MANAK 00A PR D62 012003 J.J. Manak et al. (BNL E852 Collab.)SOSA 99 PRL 83 913 M. Sosa et al.BARBERIS 98C PL B440 225 D. Barberis et al. (WA 102 Collab.)ALDE 97B PAN 60 386 D. Alde et al. (GAMS Collab.)Translated from YAF 60 458.BARBERIS 97B PL B413 217 D. Barberis et al. (WA 102 Collab.)BARBERIS 97C PL B413 225 D. Barberis et al. (WA 102 Collab.)AMELIN 95 ZPHY C66 71 D.V. Amelin et al. (VES Collab.)ANTINORI 95 PL B353 589 F. Antinori et al. (ATHU, BARI, BIRM+)ABATZIS 94 PL B324 509 S. Abatzis et al. (ATHU, BARI, BIRM+)LEE 94 PL B323 227 J.H. Lee et al. (BNL, IND, KYUN, MASD+)ARMSTRONG 93C PL B307 394 T.A. Armstrong et al. (FNAL, FERR, GENO+)ARMSTRONG 92C ZPHY C54 371 T.A. Armstrong et al. (ATHU, BARI, BIRM+)BOLTON 92 PL B278 495 T. Bolton et al. (Mark III Collab.)BITYUKOV 91B SJNP 54 318 S.I. Bityukov et al. (SERP)Translated from YAF 54 529.FUKUI 91C PL B267 293 S. Fukui et al. (SUGI, NAGO, KEK, KYOT+)COFFMAN 90 PR D41 1410 D.M. Co�man et al. (Mark III Collab.)ARMSTRONG 89 PL B221 216 T.A. Armstrong et al. (CERN, CDEF, BIRM+) JPCARMSTRONG 89E PL B228 536 T.A. Armstrong, M. Benayoun (ATHU, BARI, BIRM+)ARMSTRONG 89G ZPHY C43 55 T.A. Armstrong et al. (CERN, BIRM, BARI+)RATH 89 PR D40 693 M.G. Rath et al. (NDAM, BRAN, BNL, CUNY+)AIHARA 88B PL B209 107 H. Aihara et al. (TPC-2γ Collab.)BIRMAN 88 PRL 61 1557 A. Birman et al. (BNL, FSU, IND, MASD) JPBITYUKOV 88 PL B203 327 S.I. Bityukov et al. (SERP)MIR 88 Photon-Photon 88, 126 R. Mir (Mark III Collab.)Conferen
eALDE 87 PL B198 286 D.M. Alde et al. (LANL, BRUX, SERP, LAPP)BECKER 87 PRL 59 186 J.J. Be
ker et al. (Mark III Collab.)GIDAL 87 PRL 59 2012 G. Gidal et al. (LBL, SLAC, HARV)ANDO 86 PRL 57 1296 A. Ando et al. (KEK, KYOT, NIRS, SAGA+) IJPREEVES 86 PR D34 1960 D.F. Reeves et al. (FLOR, BNL, IND+) JPCHUNG 85 PRL 55 779 S.U. Chung et al. (BNL, FLOR, IND+) JPARMSTRONG 84 PL 146B 273 T.A. Armstrong et al. (ATHU, BARI, BIRM+) JPBITYUKOV 84B PL 144B 133 S.I. Bityukov et al. (SERP)CHAUVAT 84 PL 148B 382 P. Chauvat et al. (CERN, CLER, UCLA+)TORNQVIST 82B NP B203 268 N.A. Tornqvist (HELS)EVANGELIS... 81 NP B178 197 C. Evangelista et al. (BARI, BONN, CERN+)BROMBERG 80 PR D22 1513 C.M. Bromberg et al. (CIT, FNAL, ILLC+)DIONISI 80 NP B169 1 C. Dionisi et al. (CERN, MADR, CDEF+)GURTU 79 NP B151 181 A. Gurtu et al. (CERN, ZEEM, NIJM, OXF)STANTON 79 PRL 42 346 N.R. Stanton et al. (OSU, CARL, MCGI+) JPCORDEN 78 NP B144 253 M.J. Corden et al. (BIRM, RHEL, TELA+) JPNACASCH 78 NP B135 203 R. Na
as
h et al. (PARIS, MADR, CERN)GRASSLER 77 NP B121 189 H. Grassler et al. (AACH3, BERL, BONN+)DEFOIX 72 NP B44 125 C. Defoix et al. (CDEF, CERN)DUBOC 72 NP B46 429 J. Dubo
 et al. (PARIS, LIVP)THUN 72 PRL 28 1733 R. Thun et al. (STON, NEAS)BARDADIN-... 71 PR D4 2711 M. Bardadin-Otwinowska et al. (WARS)BOESEBECK 71 PL 34B 659 K. Boesebe
k (AACH, BERL, BONN, CERN, CRAC+)CAMPBELL 69 PRL 22 1204 J.H. Campbell et al. (PURD)LORSTAD 69 NP B14 63 B. Lorstad et al. (CDEF, CERN) JPD'ANDLAU 68 NP B5 693 C. d'Andlau et al. (CDEF, CERN, IRAD+) IJPDAHL 67 PR 163 1377 O.I. Dahl et al. (LRL) IJP



907907907907See key on page 601 Meson Parti
le Listings
η(1295), π(1300)

η(1295) IG (JPC ) = 0+(0−+)See also the mini-review under η(1405)
η(1295) MASSη(1295) MASSη(1295) MASSη(1295) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1294±4 OUR AVERAGE1294±4 OUR AVERAGE1294±4 OUR AVERAGE1294±4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.1302±9±8 20k ADAMS 01B B852 18 GeV π− p →K+K−π0 n1282±5 9082 MANAK 00A MPS 18 π− p → ηπ+π− n1299±4 2100 ALDE 97B GAM4 100 π− p → ηπ0π0 n1295±4 FUKUI 91C SPEC 8.95 π− p →

ηπ+π− n
• • • We do not use the following data for averages, �ts, limits, et
. • • •1264±8 1 AUGUSTIN 90 DM2 J/ψ → γ ηπ+π−
∼ 1275 STANTON 79 CNTR 8.4 π− p → nη2π

WEIGHTED AVERAGE
1294±4 (Error scaled by 1.6)

FUKUI 91C SPEC 0.1
ALDE 97B GAM4 1.8
MANAK 00A MPS 5.5
ADAMS 01B B852 0.5

χ2

       7.8
(Confidence Level = 0.050)

1260 1280 1300 1320 1340 1360

η(1295) mass (MeV)1PWA analysis of AUGUSTIN 92 assigns 0−+ quantum numbers to this state rather than1++ as before.
η(1295) WIDTHη(1295) WIDTHη(1295) WIDTHη(1295) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT55± 5 OUR AVERAGE55± 5 OUR AVERAGE55± 5 OUR AVERAGE55± 5 OUR AVERAGE57±23±21 20k ADAMS 01B B852 18 GeV π− p →K+K−π0 n66±13 9082 MANAK 00A MPS 18 π− p → ηπ+π− n53± 6 FUKUI 91C SPEC 8.95 π− p →

ηπ+π− n
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<40 2100 ALDE 97B GAM4 100 π− p → ηπ0π0 n44±20 2 AUGUSTIN 90 DM2 J/ψ → γ ηπ+π−
∼ 70 STANTON 79 CNTR 8.4 π− p → nη2π2PWA analysis of AUGUSTIN 92 assigns 0−+ quantum numbers to this state rather than1++ as before.

η(1295) DECAY MODESη(1295) DECAY MODESη(1295) DECAY MODESη(1295) DECAY MODESMode Fra
tion (�i /�)�1 ηπ+π− seen�2 a0(980)π seen�3 γ γ�4 ηπ0π0 seen�5 η (ππ)S-wave seen�6 ση�7 K K π

η(1295) �(i)�(γ γ)/�(total)η(1295) �(i)�(γ γ)/�(total)η(1295) �(i)�(γ γ)/�(total)η(1295) �(i)�(γ γ)/�(total)�(ηπ+π−)

× �(γ γ
)/�total �1�3/��(ηπ+π−)

× �(γ γ
)/�total �1�3/��(ηπ+π−)

× �(γ γ
)/�total �1�3/��(ηπ+π−)

× �(γ γ
)/�total �1�3/�VALUE (keV) CL% DOCUMENT ID TECN COMMENT

<0.066<0.066<0.066<0.066 95 ACCIARRI 01G L3 183{202 e+ e− →e+ e− ηπ+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.6 90 AIHARA 88C TPC e+ e− →e+ e− ηπ+π−
<0.3 ANTREASYAN 87 CBAL e+ e− → e+ e− ηππ

�(K K π
)

× �(γ γ
)/�total �7�3/��(K K π

)

× �(γ γ
)/�total �7�3/��(K K π

)

× �(γ γ
)/�total �7�3/��(K K π

)

× �(γ γ
)/�total �7�3/�VALUE (keV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.014 90 3,4 AHOHE 05 CLE2 10.6 e+ e− →e+ e−K0S K±π∓3Using η(1295) mass and width 1294 MeV and 55 MeV, respe
tively.4Assuming three-body phase-spa
e de
ay to K0S K±π∓.
η(1295) BRANCHING RATIOSη(1295) BRANCHING RATIOSη(1295) BRANCHING RATIOSη(1295) BRANCHING RATIOS�(a0(980)π)/�total �2/��(a0(980)π)/�total �2/��(a0(980)π)/�total �2/��(a0(980)π)/�total �2/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen BERTIN 97 OBLX 0.0 p p →K± (K0)π∓π+π−seen BIRMAN 88 MPS 8 π− p →K+K0π− nlarge ANDO 86 SPEC 8 π− p → ηπ+π− nlarge STANTON 79 CNTR 8.4 π− p → nη2π�(a0(980)π)/�(ηπ0π0) �2/�4�(a0(980)π)/�(ηπ0π0) �2/�4�(a0(980)π)/�(ηπ0π0) �2/�4�(a0(980)π)/�(ηπ0π0) �2/�4VALUE DOCUMENT ID TECN COMMENT0.65±0.100.65±0.100.65±0.100.65±0.10 5 ALDE 97B GAM4 100 π− p → ηπ0π0 n5Assuming that a0(980) de
ays only to ηπ.�(η (ππ)S-wave)/�(ηπ0π0) �5/�4�(η (ππ)S-wave)/�(ηπ0π0) �5/�4�(η (ππ)S-wave)/�(ηπ0π0) �5/�4�(η (ππ)S-wave)/�(ηπ0π0) �5/�4VALUE DOCUMENT ID TECN COMMENT0.35±0.100.35±0.100.35±0.100.35±0.10 ALDE 97B GAM4 100 π− p → ηπ0π0 n�(a0(980)π)/�(ση
) �2/�6�(a0(980)π)/�(ση
) �2/�6�(a0(980)π)/�(ση
) �2/�6�(a0(980)π)/�(ση
) �2/�6VALUE EVTS DOCUMENT ID TECN COMMENT0.48±0.220.48±0.220.48±0.220.48±0.22 9082 MANAK 00A MPS 18 π− p → ηπ+π− n

η(1295) REFERENCESη(1295) REFERENCESη(1295) REFERENCESη(1295) REFERENCESAHOHE 05 PR D71 072001 R. Ahohe et al. (CLEO Collab.)ACCIARRI 01G PL B501 1 M. A

iarri et al. (L3 Collab.)ADAMS 01B PL B516 264 G.S. Adams et al. (BNL E852 Collab.)MANAK 00A PR D62 012003 J.J. Manak et al. (BNL E852 Collab.)ALDE 97B PAN 60 386 D. Alde et al. (GAMS Collab.)Translated from YAF 60 458.BERTIN 97 PL B400 226 A. Bertin et al. (OBELIX Collab.)AUGUSTIN 92 PR D46 1951 J.E. Augustin, G. Cosme (DM2 Collab.)FUKUI 91C PL B267 293 S. Fukui et al. (SUGI, NAGO, KEK, KYOT+)AUGUSTIN 90 PR D42 10 J.E. Augustin et al. (DM2 Collab.)AIHARA 88C PR D38 1 H. Aihara et al. (TPC-2γ Collab.)BIRMAN 88 PRL 61 1557 A. Birman et al. (BNL, FSU, IND, MASD) JPANTREASYAN 87 PR D36 2633 D. Antreasyan et al. (Crystal Ball Collab.)ANDO 86 PRL 57 1296 A. Ando et al. (KEK, KYOT, NIRS, SAGA+) IJPSTANTON 79 PRL 42 346 N.R. Stanton et al. (OSU, CARL, MCGI+) JP
π(1300) IG (JPC ) = 1−(0−+)

π(1300) MASSπ(1300) MASSπ(1300) MASSπ(1300) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1300±100 OUR ESTIMATE1300±100 OUR ESTIMATE1300±100 OUR ESTIMATE1300±100 OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •1345± 8±10 18k 1 SCHEGELSKY 06 RVUE γ γ → π+π−π01200± 40 90k SALVINI 04 OBLX pp → 2π+2π−1343± 15±24 CHUNG 02 B852 18.3 π− p → π+π−π− p1375± 40 ABELE 01 CBAR 0.0 p d → π− 4π0 p1275± 15 BERTIN 97D OBLX 0.05 pp → 2π+2π−
∼ 1114 ABELE 96 CBAR 0.0 p p → 5π01190± 30 ZIELINSKI 84 SPEC 200 π+Z → Z3π1240± 30 BELLINI 82 SPEC 40 π−A → A3π1273± 50 2 AARON 81 RVUE1342± 20 BONESINI 81 OMEG 12 π− p → p3π
∼ 1400 DAUM 81B SPEC 63,94 π− p1From analysis of L3 data at 183{209 GeV.2Uses multi
hannel Ait
hison-Bowler model (BOWLER 75). Uses data from DAUM 80and DANKOWYCH 81.

π(1300) WIDTHπ(1300) WIDTHπ(1300) WIDTHπ(1300) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT200 to 600 OUR ESTIMATE200 to 600 OUR ESTIMATE200 to 600 OUR ESTIMATE200 to 600 OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •260± 20±30 18k 3 SCHEGELSKY 06 RVUE γ γ → π+π−π0470±120 90k SALVINI 04 OBLX pp → 2π+2π−449± 39±47 CHUNG 02 B852 18.3 π− p → π+π−π− p268± 50 ABELE 01 CBAR 0.0 p d → π− 4π0 p218±100 BERTIN 97D OBLX 0.05 pp → 2π+2π−
∼ 340 ABELE 96 CBAR 0.0 p p → 5π0



908908908908MesonParti
le Listings
π(1300), a2(1320)440± 80 ZIELINSKI 84 SPEC 200 π+Z → Z3π360±120 BELLINI 82 SPEC 40 π−A → A3π580±100 4 AARON 81 RVUE220± 70 BONESINI 81 OMEG 12 π− p → p3π
∼ 600 DAUM 81B SPEC 63,94 π− p3From analysis of L3 data at 183{209 GeV.4Uses multi
hannel Ait
hison-Bowler model (BOWLER 75). Uses data from DAUM 80and DANKOWYCH 81.

π(1300) DECAY MODESπ(1300) DECAY MODESπ(1300) DECAY MODESπ(1300) DECAY MODESMode Fra
tion (�i /�)�1 ρπ seen�2 π (ππ)S-wave seen�3 γ γ

π(1300) �(i)�(γ γ)/�(total)π(1300) �(i)�(γ γ)/�(total)π(1300) �(i)�(γ γ)/�(total)π(1300) �(i)�(γ γ)/�(total)�(ρπ
)

× �(γ γ
)/�total �1�3/��(ρπ

)

× �(γ γ
)/�total �1�3/��(ρπ

)

× �(γ γ
)/�total �1�3/��(ρπ

)

× �(γ γ
)/�total �1�3/�VALUE (keV) CL% DOCUMENT ID TECN COMMENT

<0.085<0.085<0.085<0.085 90 ACCIARRI 97T L3 e+ e− → e+ e−π+π−π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.8 95 5 SCHEGELSKY 06 RVUE γ γ → π+π−π0
<0.54 90 ALBRECHT 97B ARG e+ e− → e+ e−π+π−π05From analysis of L3 data at 183{209 GeV.

π(1300) BRANCHING RATIOSπ(1300) BRANCHING RATIOSπ(1300) BRANCHING RATIOSπ(1300) BRANCHING RATIOS�(π (ππ)S-wave)/�(ρπ
) �2/�1�(π (ππ)S-wave)/�(ρπ
) �2/�1�(π (ππ)S-wave)/�(ρπ
) �2/�1�(π (ππ)S-wave)/�(ρπ
) �2/�1VALUE CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.2 ±0.4 90k SALVINI 04 OBLX pp → 2π+2π−seen CHUNG 02 B852 18.3 π− p → π+2π− p
<0.15 90 ABELE 01 CBAR 0.0 p d → π− 4π0 p2.12 6 AARON 81 RVUE6Uses multi
hannel Ait
hison-Bowler model (BOWLER 75). Uses data from DAUM 80and DANKOWYCH 81.

π(1300) REFERENCESπ(1300) REFERENCESπ(1300) REFERENCESπ(1300) REFERENCESSCHEGELSKY 06 EPJ A27 199 V.A. S
hegelsky et al.SALVINI 04 EPJ C35 21 P. Salvini et al. (OBELIX Collab.)CHUNG 02 PR D65 072001 S.U. Chung et al. (BNL E852 Collab.)ABELE 01 EPJ C19 667 A. Abele et al. (Crystal Barrel Collab.)ACCIARRI 97T PL B413 147 M. A

iarri et al. (L3 Collab.)ALBRECHT 97B ZPHY C74 469 H. Albre
ht et al. (ARGUS Collab.)BERTIN 97D PL B414 220 A. Bertin et al. (OBELIX Collab.)ABELE 96 PL B380 453 A. Abele et al. (Crystal Barrel Collab.)ZIELINSKI 84 PR D30 1855 M. Zielinski et al. (ROCH, MINN, FNAL)BELLINI 82 PRL 48 1697 G. Bellini et al. (MILA, BGNA, JINR)AARON 81 PR D24 1207 R.A. Aaron, R.S. Longa
re (NEAS, BNL)BONESINI 81 PL 103B 75 M. Bonesini et al. (MILA, LIVP, DARE+)DANKOWY... 81 PRL 46 580 J.A. Dankowy
h et al. (TNTO, BNL, CARL+)DAUM 81B NP B182 269 C. Daum et al. (AMST, CERN, CRAC, MPIM+)DAUM 80 PL 89B 281 C. Daum et al. (AMST, CERN, CRAC, MPIM+)BOWLER 75 NP B97 227 M.G. Bowler et al. (OXFTP, DARE)a2(1320) IG (JPC ) = 1−(2 + +)a2(1320) MASSa2(1320) MASSa2(1320) MASSa2(1320) MASSVALUE (MeV) DOCUMENT ID1318.3+0.5
−0.6 OUR AVERAGE1318.3+0.5
−0.6 OUR AVERAGE1318.3+0.5
−0.6 OUR AVERAGE1318.3+0.5
−0.6 OUR AVERAGE In
ludes data from the 4 datablo
ks that follow this one.Error in
ludes s
ale fa
tor of 1.2.3π MODE3π MODE3π MODE3π MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1319.0+ 1.0
− 1.3 OUR AVERAGE1319.0+ 1.0
− 1.3 OUR AVERAGE1319.0+ 1.0
− 1.3 OUR AVERAGE1319.0+ 1.0
− 1.3 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogrambelow.1321 ± 1 +0

−7 420k ALEKSEEV 10 COMP 190 π−Pb →
π−π−π+Pb′1326 ± 2 ±2 CHUNG 02 B852 18.3 π− p →
π+π−π− p1317 ± 3 BARBERIS 98B 450 pp →pf π+π−π0 ps1323 ± 4 ±3 ACCIARRI 97T L3 e+ e− →e+ e−π+π−π01320 ± 7 ALBRECHT 97B ARG e+ e− →e+ e−π+π−π01311.3± 1.6±3.0 72.4k AMELIN 96 VES 36 π− p →
π+π−π0 n1310 ± 5 ARMSTRONG 90 OMEG 0 300.0pp →ppπ+π−π0

1323.8± 2.3 4022 AUGUSTIN 89 DM2 ± J/ψ → ρ± a∓21320.6± 3.1 3562 AUGUSTIN 89 DM2 0 J/ψ → ρ0 a021317 ± 2 25k 1 DAUM 80C SPEC − 63,94 π− p → 3πp1320 ±10 1097 1 BALTAY 78B HBC +0 15 π+ p → p4π1306 ± 8 FERRERSORIA78 OMEG − 9 π− p → p3π1318 ± 7 1.6k 1 EMMS 75 DBC 0 4 π+ n → p (3π)01315 ± 5 1 ANTIPOV 73C CNTR − 25,40 π− p →pηπ−1306 ± 9 1580 CHALOUPKA 73 HBC − 3.9 π− p
• • • We do not use the following data for averages, �ts, limits, et
. • • •1300 ± 2 ±4 18k 2 SCHEGELSKY 06 RVUE 0 γ γ → π+π−π01305 ±14 CONDO 93 SHF γ p → nπ+π+π−1310 ± 2 1 EVANGELIS... 81 OMEG − 12 π− p → 3πp1343 ±11 490 BALTAY 78B HBC 0 15 π+ p → �3π1309 ± 5 5k BINNIE 71 MMS − π− p near a2 thresh-old1299 ± 6 28k BOWEN 71 MMS − 5 π− p1300 ± 6 24k BOWEN 71 MMS + 5 π+ p1309 ± 4 17k BOWEN 71 MMS − 7 π− p1306 ± 4 941 ALSTON-... 70 HBC + 7.0 π+ p → 3πp1From a �t to JP = 2+ ρπ partial wave.2 From analysis of L3 data at 183{209 GeV.

WEIGHTED AVERAGE
1319.0+1.0-1.3 (Error scaled by 1.4)

CHALOUPKA 73 HBC 2.1
ANTIPOV 73C CNTR 0.6
EMMS 75 DBC 0.0
FERRERSORIA78 OMEG 2.7
BALTAY 78B HBC 0.0
DAUM 80C SPEC 1.0
AUGUSTIN 89 DM2 0.3
AUGUSTIN 89 DM2 4.3
ARMSTRONG 90 OMEG 3.3
AMELIN 96 VES 5.2
ALBRECHT 97B ARG 0.0
ACCIARRI 97T L3 0.6
BARBERIS 98B 0.5
CHUNG 02 B852 6.1
ALEKSEEV 10 COMP 0.4

χ2

      27.0
(Confidence Level = 0.019)

1290 1300 1310 1320 1330 1340 1350a2(1320) mass, 3π mode (MeV)K K MODEK K MODEK K MODEK K MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1318.1± 0.7 OUR AVERAGE1318.1± 0.7 OUR AVERAGE1318.1± 0.7 OUR AVERAGE1318.1± 0.7 OUR AVERAGE1319 ± 5 4700 1,2 CLELAND 82B SPEC + 50 π+ p → K0S K+ p1324 ± 6 5200 1,2 CLELAND 82B SPEC − 50 π− p → K0S K− p1320 ± 2 4000 CHABAUD 80 SPEC − 17 π−A → K0S K−A1312 ± 4 11000 CHABAUD 78 SPEC − 9.8 π− p → K−K0S p1316 ± 2 4730 CHABAUD 78 SPEC − 18.8 π− p → K−K0S p1318 ± 1 1,3 MARTIN 78D SPEC − 10 π− p → K0S K− p1320 ± 2 2724 MARGULIE 76 SPEC − 23 π− p → K−K0S p1313 ± 4 730 FOLEY 72 CNTR − 20.3 π− p → K−K0S p1319 ± 3 1500 3 GRAYER 71 ASPK − 17.2 π− p → K−K0S p
• • • We do not use the following data for averages, �ts, limits, et
. • • •1304 ±10 870 4 SCHEGELSKY 06A RVUE 0 γ γ → K0S K0S1330 ±11 1000 1,2 CLELAND 82B SPEC + 30 π+ p → K0S K+ p1324 ± 5 350 HYAMS 78 ASPK + 12.7 π+ p → K+K0S p1From a �t to JP = 2+ partial wave.2Number of events evaluated by us.3 Systemati
 error in mass s
ale subtra
ted.4 From analysis of L3 data at 91 and 183{209 GeV.
ηπ MODEηπ MODEηπ MODEηπ MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1317.7± 1.4 OUR AVERAGE1317.7± 1.4 OUR AVERAGE1317.7± 1.4 OUR AVERAGE1317.7± 1.4 OUR AVERAGE1308 ± 9 BARBERIS 00H 450 pp → pf ηπ0 ps1316 ± 9 BARBERIS 00H 450 pp →�++f ηπ− ps1317 ± 1 ±2 THOMPSON 97 MPS 18 π− p → ηπ− p1315 ± 5 ±2 1 AMSLER 94D CBAR 0.0 p p → π0π0 η1325.1± 5.1 AOYAGI 93 BKEI π− p → ηπ− p1317.7± 1.4±2.0 BELADIDZE 93 VES 37π−N → ηπ−N1323 ± 8 1000 2 KEY 73 OSPK − 6 π− p → pπ− η



909909909909See key on page 601 MesonParti
le Listingsa2(1320)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1315 ±12 3 ADOLPH 15 COMP 191 π− p → η(′) π− p1309 ± 4 ANISOVICH 09 RVUE pp, πN1324 ± 5 ARMSTRONG 93C E760 0 pp → π0 ηη → 6γ1336.2± 1.7 2561 DELFOSSE 81 SPEC + π± p → pπ± η1330.7± 2.4 1653 DELFOSSE 81 SPEC − π± p → pπ± η1324 ± 8 6200 2,4 CONFORTO 73 OSPK − 6 π− p → pMM−1The systemati
 error of 2 MeV 
orresponds to the spread of solutions.2 Error in
ludes 5 MeV systemati
 mass-s
ale error.3ADOLPH 15 value is derived from a Breit-Wigner �t with mass-dependent width takingthe ηπ and ρπ 
hannels into a

ount.4Missing mass with enri
hed MMS = ηπ−, η = 2γ.
η′π MODEη′π MODEη′π MODEη′π MODEVALUE (MeV) DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1322 ± 7 OUR AVERAGE1322 ± 7 OUR AVERAGE1322 ± 7 OUR AVERAGE1322 ± 7 OUR AVERAGE1318 ± 8 +3

−5 IVANOV 01 B852 18 π− p → η′π− p1327.0±10.7 BELADIDZE 93 VES 37π−N → η′ π−Na2(1320) WIDTHa2(1320) WIDTHa2(1320) WIDTHa2(1320) WIDTH3π MODE3π MODE3π MODE3π MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT105.0+ 1.6
− 1.9 OUR AVERAGE105.0+ 1.6
− 1.9 OUR AVERAGE105.0+ 1.6
− 1.9 OUR AVERAGE105.0+ 1.6
− 1.9 OUR AVERAGE110 ± 2 + 2

−15 420k ALEKSEEV 10 COMP 190 π−Pb →
π−π−π+Pb′108 ± 3 ±15 CHUNG 02 B852 18.3 π− p →
π+π−π− p120 ±10 BARBERIS 98B 450 pp →pf π+π−π0 ps105 ±10 ±11 ACCIARRI 97T L3 e+ e− →e+ e−π+π−π0120 ±10 ALBRECHT 97B ARG e+ e− →e+ e−π+π−π0103.0± 6.0± 3.3 72.4k AMELIN 96 VES 36 π− p →
π+π−π0 n120 ±10 ARMSTRONG 90 OMEG 0 300.0pp →ppπ+π−π0107.0± 9.7 4022 AUGUSTIN 89 DM2 ± J/ψ → ρ± a∓2118.5±12.5 3562 AUGUSTIN 89 DM2 0 J/ψ → ρ0 a0297 ± 5 1 EVANGELIS... 81 OMEG − 12 π− p → 3πp96 ± 9 25k 1 DAUM 80C SPEC − 63,94 π− p → 3πp110 ±15 1097 1 BALTAY 78B HBC +0 15 π+ p → p4π112 ±18 1.6k 1 EMMS 75 DBC 0 4 π+ n → p (3π)0122 ±14 1.2k 1,2 WAGNER 75 HBC 0 7 π+ p →�++(3π)0115 ±15 1 ANTIPOV 73C CNTR − 25,40 π− p →pηπ−99 ±15 1580 CHALOUPKA 73 HBC − 3.9 π− p105 ± 5 28k BOWEN 71 MMS − 5 π− p99 ± 5 24k BOWEN 71 MMS + 5 π+ p103 ± 5 17k BOWEN 71 MMS − 7 π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •117 ± 6 ±20 18k 3 SCHEGELSKY 06 RVUE 0 γ γ → π+π−π0120 ±40 CONDO 93 SHF γ p → nπ+π+π−115 ±14 490 BALTAY 78B HBC 0 15 π+ p → �3π72 ±16 5k BINNIE 71 MMS − π− p near a2 thresh-old79 ±12 941 ALSTON-... 70 HBC + 7.0 π+ p → 3πp1From a �t to JP = 2+ ρπ partial wave.2Width errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.3 From analysis of L3 data at 183{209 GeV.K K AND ηπ MODESK K AND ηπ MODESK K AND ηπ MODESK K AND ηπ MODESVALUE (MeV) DOCUMENT ID107 ±5 OUR ESTIMATE107 ±5 OUR ESTIMATE107 ±5 OUR ESTIMATE107 ±5 OUR ESTIMATE110.4±1.7 OUR AVERAGE110.4±1.7 OUR AVERAGE110.4±1.7 OUR AVERAGE110.4±1.7 OUR AVERAGE In
ludes data from the 2 datablo
ks that follow this one.K K MODEK K MODEK K MODEK K MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.109.8± 2.4 OUR AVERAGE109.8± 2.4 OUR AVERAGE109.8± 2.4 OUR AVERAGE109.8± 2.4 OUR AVERAGE112 ±20 4700 1,2 CLELAND 82B SPEC + 50 π+ p → K0S K+ p120 ±25 5200 1,2 CLELAND 82B SPEC − 50 π− p → K0S K− p106 ± 4 4000 CHABAUD 80 SPEC − 17 π−A → K0S K−A126 ±11 11000 CHABAUD 78 SPEC − 9.8 π− p → K−K0S p101 ± 8 4730 CHABAUD 78 SPEC − 18.8 π− p → K−K0S p113 ± 4 1,3 MARTIN 78D SPEC − 10 π− p → K0S K− p105 ± 8 2724 3 MARGULIE 76 SPEC − 23 π− p → K−K0S p113 ±19 730 FOLEY 72 CNTR − 20.3 π− p → K−K0S p123 ±13 1500 3 GRAYER 71 ASPK − 17.2 π− p → K−K0S p

• • • We do not use the following data for averages, �ts, limits, et
. • • •120 ±15 870 4 SCHEGELSKY 06A RVUE 0 γ γ → K0S K0S121 ±51 1000 1,2 CLELAND 82B SPEC + 30 π+ p → K0S K+ p110 ±18 350 HYAMS 78 ASPK + 12.7 π+ p → K+K0S p1From a �t to JP = 2+ partial wave.2Number of events evaluated by us.3Width errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.4 From analysis of L3 data at 91 and 183{209 GeV.
ηπ MODEηπ MODEηπ MODEηπ MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.111.1± 2.4 OUR AVERAGE111.1± 2.4 OUR AVERAGE111.1± 2.4 OUR AVERAGE111.1± 2.4 OUR AVERAGE115 ±20 BARBERIS 00H 450 pp → pf ηπ0 ps112 ±14 BARBERIS 00H 450 pp →�++f ηπ− ps112 ± 3 ±2 1 AMSLER 94D CBAR 0.0 p p → π0π0 η103 ± 6 ±3 BELADIDZE 93 VES 37π−N → ηπ−N112.2± 5.7 2561 DELFOSSE 81 SPEC + π± p → pπ± η116.6± 7.7 1653 DELFOSSE 81 SPEC − π± p → pπ± η108 ± 9 1000 KEY 73 OSPK − 6 π− p → pπ− η

• • • We do not use the following data for averages, �ts, limits, et
. • • •119 ±14 2 ADOLPH 15 COMP 191 π− p →
η(′) π− p110 ± 4 ANISOVICH 09 RVUE pp, πN127 ± 2 ±2 3 THOMPSON 97 MPS 18 π− p → ηπ− p118 ±10 ARMSTRONG 93C E760 0 pp → π0 ηη → 6γ104 ± 9 6200 4 CONFORTO 73 OSPK − 6 π− p → pMM−1The systemati
 error of 2 MeV 
orresponds to the spread of solutions.2ADOLPH 15 value is derived from a Breit-Wigner �t with mass-dependent width takingthe ηπ and ρπ 
hannels into a

ount.3Resolution is not unfolded.4Missing mass with enri
hed MMS = ηπ−, η = 2γ.

η′π MODEη′π MODEη′π MODEη′π MODEVALUE (MeV) DOCUMENT ID TECN COMMENT119±25 OUR AVERAGE119±25 OUR AVERAGE119±25 OUR AVERAGE119±25 OUR AVERAGE140±35±20 IVANOV 01 B852 18 π− p → η′π− p106±32 BELADIDZE 93 VES 37π−N → η′ π−Na2(1320) DECAY MODESa2(1320) DECAY MODESa2(1320) DECAY MODESa2(1320) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 3π (70.1 ±2.7 ) % S=1.2�2 ρ(770)π�3 f2(1270)π�4 ρ(1450)π�5 ηπ (14.5 ±1.2 ) %�6 ωππ (10.6 ±3.2 ) % S=1.3�7 K K ( 4.9 ±0.8 ) %�8 η′(958)π ( 5.5 ±0.9 ) × 10−3�9 π± γ ( 2.91±0.27) × 10−3�10 γ γ ( 9.4 ±0.7 ) × 10−6�11 e+ e− < 5 × 10−9 CL=90%CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 5 bran
hing ratios uses 18 measurements and one
onstraint to determine 4 parameters. The overall �t has a χ2 =9.3 for 15 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x5 10x6 −89 −46x7 −1 −2 −24x1 x5 x6a2(1320) PARTIAL WIDTHSa2(1320) PARTIAL WIDTHSa2(1320) PARTIAL WIDTHSa2(1320) PARTIAL WIDTHS�(ηπ
) �5�(ηπ
) �5�(ηπ
) �5�(ηπ
) �5VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •18.5±3.0 870 1 SCHEGELSKY 06A RVUE 0 γ γ → K0S K0S1From analysis of L3 data at 91 and 183{209 GeV, using �(a2(1320) → γ γ) = 0.91 keVand SU(3) relations.



910910910910MesonParti
le Listingsa2(1320)�(K K) �7�(K K) �7�(K K) �7�(K K) �7VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •7.0+2.0

−1.5 870 1 SCHEGELSKY 06A RVUE 0 γ γ → K0S K0S1From analysis of L3 data at 91 and 183{209 GeV, using �(a2(1320) → γ γ) = 0.91 keVand SU(3) relations.�(π± γ
) �9�(π± γ
) �9�(π± γ
) �9�(π± γ
) �9VALUE (keV) EVTS DOCUMENT ID TECN CHG COMMENT311± 25 OUR AVERAGE311± 25 OUR AVERAGE311± 25 OUR AVERAGE311± 25 OUR AVERAGE358± 6±42 1 ADOLPH 14 COMP − 190 π−Pb →

π+π−π−Pb ′284± 25±25 7.1k MOLCHANOV 01 SELX 600 π−A → π+π−π−A295± 60 CIHANGIR 82 SPEC + 200 π+A
• • • We do not use the following data for averages, �ts, limits, et
. • • •461±110 2 MAY 77 SPEC ± 9.7 γA1Primako� rea
tion using a2(1320) → 3π bran
hing ratio of 70.1%.2Assuming one-pion ex
hange.�(γ γ

) �10�(γ γ
) �10�(γ γ
) �10�(γ γ
) �10VALUE (keV) EVTS DOCUMENT ID TECN CHG COMMENT1.00±0.06 OUR AVERAGE1.00±0.06 OUR AVERAGE1.00±0.06 OUR AVERAGE1.00±0.06 OUR AVERAGE0.98±0.05±0.09 ACCIARRI 97T L3 e+ e− →e+ e−π+π−π00.96±0.03±0.13 ALBRECHT 97B ARG e+ e− →e+ e−π+π−π01.26±0.26±0.18 36 BARU 90 MD1 e+ e− →e+ e−π+π−π01.00±0.07±0.15 415 BEHREND 90C CELL 0 e+ e− →e+ e−π+π−π01.03±0.13±0.21 BUTLER 90 MRK2 e+ e− →e+ e−π+π−π01.01±0.14±0.22 85 OEST 90 JADE e+ e− → e+ e−π0 η0.90±0.27±0.15 56 1 ALTHOFF 86 TASS 0 e+ e− → e+ e− 3π1.14±0.20±0.26 2 ANTREASYAN 86 CBAL 0 e+ e− → e+ e−π0 η1.06±0.18±0.19 BERGER 84C PLUT 0 e+ e− → e+ e− 3π

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.81±0.19+0.42
−0.11 35 1 BEHREND 83B CELL 0 e+ e− → e+ e− 3π0.77±0.18±0.27 22 2 EDWARDS 82F CBAL 0 e+ e− → e+ e−π0 η1From ρπ de
ay mode.2 From ηπ0 de
ay mode.�(e+ e−) �11�(e+ e−) �11�(e+ e−) �11�(e+ e−) �11VALUE (eV) CL% DOCUMENT ID TECN COMMENT

< 0.56< 0.56< 0.56< 0.56 90 ACHASOV 00K SND e+ e− → π0π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<25 90 VOROBYEV 88 ND e+ e− → π0 ηa2(1320) �(i)�(γ γ)/�(total)a2(1320) �(i)�(γ γ)/�(total)a2(1320) �(i)�(γ γ)/�(total)a2(1320) �(i)�(γ γ)/�(total)�(3π)

× �(γ γ
)/�total �1�10/��(3π)

× �(γ γ
)/�total �1�10/��(3π)

× �(γ γ
)/�total �1�10/��(3π)

× �(γ γ
)/�total �1�10/�VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.65±0.02±0.02 18k 1 SCHEGELSKY 06 RVUE γ γ → π+π−π01From analysis of L3 data at 183{209 GeV.�(ηπ
)

× �(γ γ
)/�total �5�10/��(ηπ

)

× �(γ γ
)/�total �5�10/��(ηπ

)

× �(γ γ
)/�total �5�10/��(ηπ

)

× �(γ γ
)/�total �5�10/�VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.145+0.097
−0.034 1 UEHARA 09A BELL e+ e− → e+ e− ηπ01From the D2-wave. The fra
tion of the D0-wave is 3.4+2.3

−1.1%.�(K K)

× �(γ γ
)/�total �7�10/��(K K)

× �(γ γ
)/�total �7�10/��(K K)

× �(γ γ
)/�total �7�10/��(K K)

× �(γ γ
)/�total �7�10/�VALUE (keV) DOCUMENT ID TECN COMMENT0.126±0.007±0.0280.126±0.007±0.0280.126±0.007±0.0280.126±0.007±0.028 1 ALBRECHT 90G ARG e+ e− → e+ e−K+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.081±0.006±0.027 2 ALBRECHT 90G ARG e+ e− → e+ e−K+K−1Using an in
oherent ba
kground.2Using a 
oherent ba
kground.a2(1320) BRANCHING RATIOSa2(1320) BRANCHING RATIOSa2(1320) BRANCHING RATIOSa2(1320) BRANCHING RATIOS
[�(f2(1270)π)+�(ρ(1450)π)

]/�(ρ(770)π) (�3+�4)/�2[�(f2(1270)π)+�(ρ(1450)π)
]/�(ρ(770)π) (�3+�4)/�2[�(f2(1270)π)+�(ρ(1450)π)
]/�(ρ(770)π) (�3+�4)/�2[�(f2(1270)π)+�(ρ(1450)π)
]/�(ρ(770)π) (�3+�4)/�2VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.12<0.12<0.12<0.12 90 ABRAMOVI... 70B HBC − 3.93 π− p

�(ηπ
)/�(3π) �5/�1�(ηπ
)/�(3π) �5/�1�(ηπ
)/�(3π) �5/�1�(ηπ
)/�(3π) �5/�1VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.207±0.018 OUR FIT0.207±0.018 OUR FIT0.207±0.018 OUR FIT0.207±0.018 OUR FIT0.213±0.020 OUR AVERAGE0.213±0.020 OUR AVERAGE0.213±0.020 OUR AVERAGE0.213±0.020 OUR AVERAGE0.18 ±0.05 FORINO 76 HBC 11 π− p0.22 ±0.05 52 ANTIPOV 73 CNTR − 40 π− p0.211±0.044 149 CHALOUPKA 73 HBC − 3.9 π− p0.246±0.042 167 ALSTON-... 71 HBC + 7.0 π+ p0.25 ±0.09 15 BOECKMANN 70 HBC + 5.0 π+ p0.23 ±0.08 22 ASCOLI 68 HBC − 5 π− p0.12 ±0.08 CHUNG 68 HBC − 3.2 π− p0.22 ±0.09 CONTE 67 HBC − 11.0 π− p�(ωππ

)/�(3π) �6/�1�(ωππ
)/�(3π) �6/�1�(ωππ
)/�(3π) �6/�1�(ωππ
)/�(3π) �6/�1VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.15±0.05 OUR FIT0.15±0.05 OUR FIT0.15±0.05 OUR FIT0.15±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.15±0.05 OUR AVERAGE0.15±0.05 OUR AVERAGE0.15±0.05 OUR AVERAGE0.15±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.0.28±0.09 60 DIAZ 74 DBC 0 6 π+ n0.18±0.08 1 KARSHON 74 HBC Avg. of above two0.10±0.05 279 2 CHALOUPKA 73 HBC − 3.9 π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.29±0.08 140 1 KARSHON 74 HBC 0 4.9 π+ p0.10±0.04 60 1 KARSHON 74 HBC + 4.9 π+ p0.19±0.08 DEFOIX 73 HBC 0 0.7 p p1KARSHON 74 suggest an additional I = 0 state strongly 
oupled to ωππ whi
h 
ouldexplain dis
repan
ies in bran
hing ratios and masses. We use a 
entral value and asystemati
 spread.2De
ays to b1(1040)π, b1 → ωπ. Error in
reased to a

ount for possible systemati
errors of 
ompli
ated analysis.
WEIGHTED AVERAGE
0.15±0.05 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

CHALOUPKA 73 HBC 1.0
KARSHON 74 HBC 0.1
DIAZ 74 DBC 2.0

χ2

       3.2
(Confidence Level = 0.199)

-0.2 0 0.2 0.4 0.6 0.8�(

ωππ
)/�(3π)�(K K)/�(3π) �7/�1�(K K)/�(3π) �7/�1�(K K)/�(3π) �7/�1�(K K)/�(3π) �7/�1VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.070±0.012 OUR FIT0.070±0.012 OUR FIT0.070±0.012 OUR FIT0.070±0.012 OUR FIT0.078±0.0170.078±0.0170.078±0.0170.078±0.017 CHABAUD 78 RVUE

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.011±0.003 1 BERTIN 98B OBLX 0.0 p p → K±Ks π∓0.056±0.014 50 2 CHALOUPKA 73 HBC − 3.9 π− p0.097±0.018 113 2 ALSTON-... 71 HBC + 7.0 π+ p0.06 ±0.03 2 ABRAMOVI... 70B HBC − 3.93 π− p0.054±0.022 2 CHUNG 68 HBC − 3.2 π− p1Using 4π data from BERTIN 97D.2 In
luded in CHABAUD 78 review.�(K K)/�(ηπ
) �7/�5�(K K)/�(ηπ
) �7/�5�(K K)/�(ηπ
) �7/�5�(K K)/�(ηπ
) �7/�5VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.08±0.02 1 BERTIN 98B OBLX 0.0 p p → K±Ks π∓1Using ηππ data from AMSLER 94D.�(ηπ
)/[�(3π)+�(ηπ

)+ �(K K)
] �5/(�1+�5+�7)�(ηπ

)/[�(3π)+�(ηπ
)+ �(K K)

] �5/(�1+�5+�7)�(ηπ
)/[�(3π)+�(ηπ

)+ �(K K)
] �5/(�1+�5+�7)�(ηπ

)/[�(3π)+�(ηπ
)+ �(K K)

] �5/(�1+�5+�7)VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.162±0.012 OUR FIT0.162±0.012 OUR FIT0.162±0.012 OUR FIT0.162±0.012 OUR FIT0.140±0.028 OUR AVERAGE0.140±0.028 OUR AVERAGE0.140±0.028 OUR AVERAGE0.140±0.028 OUR AVERAGE0.13 ±0.04 ESPIGAT 72 HBC ± 0.0 p p0.15 ±0.04 34 BARNHAM 71 HBC + 3.7 π+ p



911911911911See key on page 601 Meson Parti
le Listingsa2(1320), f0(1370)�(K K)/[�(3π)+ �(ηπ
)+�(K K)

] �7/(�1+�5+�7)�(K K)/[�(3π)+ �(ηπ
)+�(K K)

] �7/(�1+�5+�7)�(K K)/[�(3π)+ �(ηπ
)+�(K K)

] �7/(�1+�5+�7)�(K K)/[�(3π)+ �(ηπ
)+�(K K)

] �7/(�1+�5+�7)VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.054±0.009 OUR FIT0.054±0.009 OUR FIT0.054±0.009 OUR FIT0.054±0.009 OUR FIT0.048±0.012 OUR AVERAGE0.048±0.012 OUR AVERAGE0.048±0.012 OUR AVERAGE0.048±0.012 OUR AVERAGE0.05 ±0.02 TOET 73 HBC + 5 π+ p0.09 ±0.04 TOET 73 HBC 0 5 π+ p0.03 ±0.02 8 1 DAMERI 72 HBC − 11 π− p0.06 ±0.03 17 BARNHAM 71 HBC + 3.7 π+ p
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.020±0.004 2 ESPIGAT 72 HBC ± 0.0 p p1Montanet agrees. Vlada.2Not averaged be
ause of dis
repan
y between masses from K K and ρπ modes.�(η′(958)π)/�total �8/��(η′(958)π)/�total �8/��(η′(958)π)/�total �8/��(η′(958)π)/�total �8/�VALUE CL% DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.006 95 ALDE 92B GAM2 38,100 π− p →
η′π0 n

<0.02 97 BARNHAM 71 HBC + 3.7 π+ p0.004±0.004 1 BOESEBECK 68 HBC + 8 π+ p1No longer valid sin
e �(K K)/�(3π) value has 
hanged (MORRISON 71).�(η′(958)π)/�(3π) �8/�1�(η′(958)π)/�(3π) �8/�1�(η′(958)π)/�(3π) �8/�1�(η′(958)π)/�(3π) �8/�1medskipVALUE CL% DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.011 90 EISENSTEIN 73 HBC − 5 π− p
<0.04 ALSTON-... 71 HBC + 7.0 π+ p0.04 +0.03

−0.04 BOECKMANN 70 HBC 0 5.0 π+ p�(η′(958)π)/�(ηπ
) �8/�5�(η′(958)π)/�(ηπ
) �8/�5�(η′(958)π)/�(ηπ
) �8/�5�(η′(958)π)/�(ηπ
) �8/�5VALUE DOCUMENT ID TECN COMMENT0.038±0.005 OUR AVERAGE0.038±0.005 OUR AVERAGE0.038±0.005 OUR AVERAGE0.038±0.005 OUR AVERAGE0.05 ±0.02 ADOLPH 15 COMP 191 π− p → η(′) π− p0.032±0.009 ABELE 97C CBAR 0.0 p p → π0π0 η′0.047±0.010±0.004 1 BELADIDZE 93 VES 37π−N → a−2 N0.034±0.008±0.005 BELADIDZE 92 VES 36π−C → a−2 C1Using B(η′ → π+π− η) = 0.441, B(η → γ γ) = 0.389 and B(η → π+π−π0) =0.236.�(π± γ

)/�total �9/��(π± γ
)/�total �9/��(π± γ
)/�total �9/��(π± γ
)/�total �9/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.005+0.005
−0.003 1 EISENBERG 72 HBC 4.3,5.25,7.5 γ p1Pion-ex
hange model used in this estimation.�(e+ e−)/�total �11/��(e+ e−)/�total �11/��(e+ e−)/�total �11/��(e+ e−)/�total �11/�VALUE (units 10−9) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6 90 ACHASOV 00K SND e+ e− → π0π0a2(1320) REFERENCESa2(1320) REFERENCESa2(1320) REFERENCESa2(1320) REFERENCESADOLPH 15 PL B740 303 M. Adolph et al. (COMPASS Collab.)ADOLPH 14 EPJ A50 79 C. Adolph et al. (COMPASS Collab.)ALEKSEEV 10 PRL 104 241803 M.G. Alekseev et al. (COMPASS Collab.)ANISOVICH 09 IJMP A24 2481 V.V. Anisovi
h, A.V. SarantsevUEHARA 09A PR D80 032001 S. Uehara et al. (BELLE Collab.)SCHEGELSKY 06 EPJ A27 199 V.A. S
hegelsky et al.SCHEGELSKY 06A EPJ A27 207 V.A. S
hegelsky et al.CHUNG 02 PR D65 072001 S.U. Chung et al. (BNL E852 Collab.)IVANOV 01 PRL 86 3977 E.I. Ivanov et al. (BNL E852 Collab.)MOLCHANOV 01 PL B521 171 V.V. Mol
hanov et al. (FNAL SELEX Collab.)ACHASOV 00K PL B492 8 M.N. A
hasov et al. (Novosibirsk SND Collab.)BARBERIS 00H PL B488 225 D. Barberis et al. (WA 102 Collab.)BARBERIS 98B PL B422 399 D. Barberis et al. (WA 102 Collab.)BERTIN 98B PL B434 180 A. Bertin et al. (OBELIX Collab.)ABELE 97C PL B404 179 A. Abele et al. (Crystal Barrel Collab.)ACCIARRI 97T PL B413 147 M. A

iarri et al. (L3 Collab.)ALBRECHT 97B ZPHY C74 469 H. Albre
ht et al. (ARGUS Collab.)THOMPSON 97 PRL 79 1630 D.R. Thompson et al. (BNL E852 Collab.)AMELIN 96 ZPHY C70 71 D.V. Amelin et al. (SERP, TBIL)AMSLER 94D PL B333 277 C. Amsler et al. (Crystal Barrel Collab.)AOYAGI 93 PL B314 246 H. Aoyagi et al. (BKEI Collab.)ARMSTRONG 93C PL B307 394 T.A. Armstrong et al. (FNAL, FERR, GENO+)BELADIDZE 93 PL B313 276 G.M. Beladidze et al. (VES Collab.)CONDO 93 PR D48 3045 G.T. Condo et al. (SLAC Hybrid Collab.)ALDE 92B ZPHY C54 549 D.M. Alde et al. (SERP, BELG, LANL, LAPP+)BELADIDZE 92 ZPHY C54 235 G.M. Beladidze et al. (VES Collab.)ALBRECHT 90G ZPHY C48 183 H. Albre
ht et al. (ARGUS Collab.)ARMSTRONG 90 ZPHY C48 213 T.A. Armstrong, M. Benayoun, W. Beus
h (WA76 Coll.)BARU 90 ZPHY C48 581 S.E. Baru et al. (MD-1 Collab.)BEHREND 90C ZPHY C46 583 H.J. Behrend et al. (CELLO Collab.)

BUTLER 90 PR D42 1368 F. Butler et al. (Mark II Collab.)OEST 90 ZPHY C47 343 T. Oest et al. (JADE Collab.)AUGUSTIN 89 NP B320 1 J.E. Augustin, G. Cosme (DM2 Collab.)VOROBYEV 88 SJNP 48 273 P.V. Vorobiev et al. (NOVO)Translated from YAF 48 436.ALTHOFF 86 ZPHY C31 537 M. Altho� et al. (TASSO Collab.)ANTREASYAN 86 PR D33 1847 D. Antreasyan et al. (Crystal Ball Collab.)BERGER 84C PL 149B 427 C. Berger et al. (PLUTO Collab.)BEHREND 83B PL 125B 518 (erratum) H.J. Behrend et al. (CELLO Collab.)CIHANGIR 82 PL 117B 123 S. Cihangir et al. (FNAL, MINN, ROCH)CLELAND 82B NP B208 228 W.E. Cleland et al. (DURH, GEVA, LAUS+)EDWARDS 82F PL 110B 82 C. Edwards et al. (CIT, HARV, PRIN+)DELFOSSE 81 NP B183 349 A. Delfosse et al. (GEVA, LAUS)EVANGELIS... 81 NP B178 197 C. Evangelista et al. (BARI, BONN, CERN+)CHABAUD 80 NP B175 189 V. Chabaud et al. (CERN, MPIM, AMST)DAUM 80C PL 89B 276 C. Daum et al. (AMST, CERN, CRAC, MPIM+) JPBALTAY 78B PR D17 62 C. Baltay et al. (COLU, BING)CHABAUD 78 NP B145 349 V. Chabaud et al. (CERN, MPIM)FERRERSORIA 78 PL 74B 287 A. Ferrer Soria et al. (ORSAY, CERN, CDEF+)HYAMS 78 NP B146 303 B.D. Hyams et al. (CERN, MPIM, ATEN)MARTIN 78D PL 74B 417 A.D. Martin et al. (DURH, GEVA) JPMAY 77 PR D16 1983 E.N. May et al. (ROCH, CORN)FORINO 76 NC 35A 465 A. Forino et al. (BGNA, FIRZ, GENO, MILA+)MARGULIE 76 PR D14 667 M. Margulies et al. (BNL, CUNY)EMMS 75 PL 58B 117 M.J. Emms et al. (BIRM, DURH, RHEL) JPWAGNER 75 PL 58B 201 F. Wagner, M. Tabak, D.M. Chew (LBL) JPDIAZ 74 PRL 32 260 J. Diaz et al. (CASE, CMU)KARSHON 74 PRL 32 852 U. Karshon et al. (REHO)ANTIPOV 73 NP B63 175 Y.M. Antipov et al. (CERN, SERP) JPANTIPOV 73C NP B63 153 Y.M. Antipov et al. (CERN, SERP) JPCHALOUPKA 73 PL 44B 211 V. Chaloupka et al. (CERN)CONFORTO 73 PL 45B 154 G. Conforto et al. (EFI, FNAL, TNTO+)DEFOIX 73 PL 43B 141 C. Defoix et al. (CDEF)EISENSTEIN 73 PR D7 278 L. Eisenstein et al. (ILL)KEY 73 PRL 30 503 A.W. Key et al. (TNTO, EFI, FNAL, WISC)TOET 73 NP B63 248 D.Z. Toet et al. (NIJM, BONN, DURH, TORI)DAMERI 72 NC 9A 1 M. Dameri et al. (GENO, MILA, SACL)EISENBERG 72 PR D5 15 Y. Eisenberg et al. (REHO, SLAC, TELA)ESPIGAT 72 NP B36 93 P. Espigat et al. (CERN, CDEF)FOLEY 72 PR D6 747 K.J. Foley et al. (BNL, CUNY)ALSTON-... 71 PL 34B 156 M. Alston-Garnjost et al. (LRL)BARNHAM 71 PRL 26 1494 K.W.J. Barnham et al. (LBL)BINNIE 71 PL 36B 257 D.M. Binnie et al. (LOIC, SHMP)BOWEN 71 PRL 26 1663 D.R. Bowen et al. (NEAS, STON)GRAYER 71 PL 34B 333 G. Grayer et al. (CERN, MPIM)ABRAMOVI... 70B NP B23 466 M. Abramovi
h et al. (CERN) JPALSTON-... 70 PL 33B 607 M. Alston-Garnjost et al. (LRL)BOECKMANN 70 NP B16 221 K. Boe
kmann et al. (BONN, DURH, NIJM+)ASCOLI 68 PRL 20 1321 G. As
oli et al. (ILL) JPBOESEBECK 68 NP B4 501 K. Boesebe
k et al. (AACH, BERL, CERN)CHUNG 68 PR 165 1491 S.U. Chung et al. (LRL)CONTE 67 NC 51A 175 F. Conte et al. (GENO, HAMB, MILA, SACL)f0(1370) IG (JPC ) = 0+(0 + +)See also the mini-reviews on s
alar mesons under f0(500) (see theindex for the page number) and on non-qq 
andidates in PDG 06,Journal of Physi
s G33G33G33G33 1 (2006).f0(1370) T-MATRIX POLE POSITIONf0(1370) T-MATRIX POLE POSITIONf0(1370) T-MATRIX POLE POSITIONf0(1370) T-MATRIX POLE POSITIONNote that � ≈ 2 Im(√spole).VALUE (MeV) DOCUMENT ID TECN COMMENT(1200{1500)−i(150{250) OUR ESTIMATE(1200{1500)−i(150{250) OUR ESTIMATE(1200{1500)−i(150{250) OUR ESTIMATE(1200{1500)−i(150{250) OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •(1290 ± 50)−i(170+20

−40) 1 ANISOVICH 09 RVUE 0.0 p p, πN(1373 ± 15)−i(137 ± 10) 2 BARGIOTTI 03 OBLX pp(1302 ± 17)−i(166 ± 18) 3 BARBERIS 00C 450 pp → pf 4πps(1312 ± 25 ± 10)−i(109 ±22 ± 15) BARBERIS 99D OMEG 450 pp → K+K−,
π+π−(1406 ± 19)−i(80 ± 6) 4 KAMINSKI 99 RVUE ππ → ππ, KK , σσ(1300 ± 20)−i(120 ± 20) ANISOVICH 98B RVUE Compilation(1290 ± 15)−i(145 ± 15) BARBERIS 97B OMEG 450 pp →pp2(π+π−)(1548 ± 40)−i(560 ± 40) BERTIN 97C OBLX 0.0 p p → π+π−π0(1380 ± 40)−i(180 ± 25) ABELE 96B CBAR 0.0 p p → π0K0LK0L(1300 ± 15)−i(115 ± 8) BUGG 96 RVUE(1330 ± 50)−i(150 ± 40) 5 AMSLER 95B CBAR pp → 3π0(1360 ± 35)−i(150{300) 5 AMSLER 95C CBAR pp → π0 ηη(1390 ± 30)−i(190 ± 40) 6 AMSLER 95D CBAR pp → 3π0, π0 ηη,
π0π0 η1346 − i249 7,8 JANSSEN 95 RVUE ππ → ππ, KK1214 − i168 8,9 TORNQVIST 95 RVUE ππ → ππ, KK , K π,
ηπ1364 − i139 AMSLER 94D CBAR pp → π0π0 η(1365+20

−55)−i(134 ± 35) ANISOVICH 94 CBAR pp → 3π0 ,π0 ηη(1340 ± 40)−i(127+30
−20) 10 BUGG 94 RVUE pp → 3π0, ηηπ0,

ηπ0π0(1430 ± 5)−i(73 ± 13) 11 KAMINSKI 94 RVUE ππ → ππ, KK1420 − i220 12 AU 87 RVUE ππ → ππ, KK1Another pole is found at (1510 ± 130) − i (800+100
−150) MeV.2Coupled 
hannel analysis of π+π−π0, K+K−π0, and K±K0S π∓.3Average between π+π− 2π0 and 2(π+π−).4T-matrix pole on sheet −−−.5 Supersedes ANISOVICH 94.6Coupled-
hannel analysis of p p → 3π0, π0 ηη, and π0π0 η on sheet IV. Demonstratesexpli
itly that f0(500) and f0(1370) are two di�erent poles.



912912912912MesonParti
le Listingsf0(1370)7Analysis of data from FALVARD 88.8The pole is on Sheet III. Demonstrates expli
itly that f0(500) and f0(1370) are twodi�erent poles.9Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA-SON 83, ASTON 88, and ARMSTRONG 91B. Coupled 
hannel analysis with 
avorsymmetry and all light two-pseudos
alars systems.10Reanalysis of ANISOVICH 94 data.11T-matrix pole on sheet III.12Analysis of data from OCHS 73,GRAYER 74, BECKER 79, and CASON 83.f0(1370) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERf0(1370) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERf0(1370) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERf0(1370) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERVALUE (MeV) DOCUMENT ID1200 to 1500 OUR ESTIMATE1200 to 1500 OUR ESTIMATE1200 to 1500 OUR ESTIMATE1200 to 1500 OUR ESTIMATE
ππ MODEππ MODEππ MODEππ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1400±40 1 AUBERT 09L BABR B± → π±π±π∓1470+ 6

− 7+ 72
−255 2 UEHARA 08A BELL 10.6 e+ e− →e+ e−π0π01259±55 2.6k BONVICINI 07 CLEO D+ → π−π+π+1309± 1± 15 3 BUGG 07A RVUE 0.0 pp → 3π01449±13 4.3k 4 GARMASH 06 BELL B+ → K+π+π−1350±50 ABLIKIM 05 BES2 J/ψ → φπ+π−1265±30+ 20
− 35 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1434±18± 9 848 AITALA 01A E791 D+s → π−π+π+1308±10 BARBERIS 99B OMEG 450 pp → ps pf π+π−1315±50 BELLAZZINI 99 GAM4 450 pp → ppπ0π01315±30 ALDE 98 GAM4 100 π− p → π0π0 n1280±55 BERTIN 98 OBLX 0.05{0.405 np →

π+π+π−1186 5,6 TORNQVIST 95 RVUE ππ → ππ, K K , K π, ηπ1472±12 ARMSTRONG 91 OMEG 300 pp → ppππ , ppK K1275±20 BREAKSTONE90 SFM 62 pp → ppπ+π−1420±20 AKESSON 86 SPEC 63 pp → ppπ+π−1256 FROGGATT 77 RVUE π+π− 
hannel1Breit-Wigner mass.2Breit-Wigner mass. May also be the f0(1500).3Reanalysis of ABELE 96C data.4Also observed by GARMASH 07 in B0 → K0S π+π− de
ays. Supersedes GARMASH 05.5Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA-SON 83, ASTON 88, and ARMSTRONG 91B. Coupled 
hannel analysis with 
avorsymmetry and all light two-pseudos
alars systems.6Also observed by ASNER 00 in τ− → π−π0π0 ντ de
aysK K MODEK K MODEK K MODEK K MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1360±31±28 430 1,2 DOBBS 15 J/ψ → γK+K−1350±48±15 168 1,2 DOBBS 15 ψ(2S) → γK+K−1440± 6 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n1391±10 TIKHOMIROV 03 SPEC 40.0 π−C → K0S K0S K0LX1440±50 BOLONKIN 88 SPEC 40 π− p → K0S K0S n1463± 9 ETKIN 82B MPS 23 π− p → n2K0S1425±15 WICKLUND 80 SPEC 6 πN → K+K−N
∼ 1300 POLYCHRO... 79 STRC 7 π− p → n2K0S1Using CLEO-
 data but not authored by the CLEO Collaboration.2 From a �t to a Breit-Wigner line shape with �xed � = 346 MeV.4π MODE 2(ππ)S+ρρ4π MODE 2(ππ)S+ρρ4π MODE 2(ππ)S+ρρ4π MODE 2(ππ)S+ρρVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1395±40 ABELE 01 CBAR 0.0 p d → π− 4π0 p1374±38 AMSLER 94 CBAR 0.0 p p → π+π− 3π01345±12 ADAMO 93 OBLX np → 3π+2π−1386±30 GASPERO 93 DBC 0.0 p n → 2π+3π−
∼ 1410 5751 1 BETTINI 66 DBC 0.0 p n → 2π+3π−1 ρρ dominant.
ηη MODEηη MODEηη MODEηη MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1262+51

−78+ 82
−103 1 UEHARA 10A BELL 10.6 e+ e− → e+ e− ηη1430 AMSLER 92 CBAR 0.0 pp → π0 ηη1220±40 ALDE 86D GAM4 100 π− p → n2η1Breit-Wigner mass. May also be the f0(1500).

COUPLED CHANNEL MODECOUPLED CHANNEL MODECOUPLED CHANNEL MODECOUPLED CHANNEL MODEVALUE (MeV) DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1306±20 1 ANISOVICH 03 RVUE1K-matrix pole from 
ombined analysis of π− p → π0π0 n, π− p → K K n,

π+π− → π+π−, p p → π0π0π0, π0 ηη, π0π0 η, π+π−π0, K+K−π0, K0S K0S π0,K+K0S π− at rest, p n → π−π−π+, K0S K−π0, K0S K0S π− at rest.f0(1370) BREIT-WIGNER WIDTHf0(1370) BREIT-WIGNER WIDTHf0(1370) BREIT-WIGNER WIDTHf0(1370) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID200 to 500 OUR ESTIMATE200 to 500 OUR ESTIMATE200 to 500 OUR ESTIMATE200 to 500 OUR ESTIMATE
ππ MODEππ MODEππ MODEππ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •300± 80 1 AUBERT 09L BABR B± → π±π±π∓90+ 2

− 1+ 50
− 22 2 UEHARA 08A BELL 10.6 e+ e− → e+ e−π0π0298± 21 2.6k BONVICINI 07 CLEO D+ → π−π+π+126± 25 4286 3 GARMASH 06 BELL B+ → K+π+π−265± 40 ABLIKIM 05 BES2 J/ψ → φπ+π−350±100+105
− 60 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−173± 32± 6 848 AITALA 01A E791 D+s → π−π+π+222± 20 BARBERIS 99B OMEG 450 pp → ps pf π+π−255± 60 BELLAZZINI 99 GAM4 450 pp → ppπ0 π0190± 50 ALDE 98 GAM4 100 π− p → π0π0 n323± 13 BERTIN 98 OBLX 0.05{0.405 np → π+π+π−350 4,5 TORNQVIST 95 RVUE ππ → ππ, KK , K π, ηπ195± 33 ARMSTRONG 91 OMEG 300 pp → ppππ , ppK K285± 60 BREAKSTONE90 SFM 62 pp → ppπ+π−460± 50 AKESSON 86 SPEC 63 pp → ppπ+π−

∼ 400 6 FROGGATT 77 RVUE π+π− 
hannel1The systemati
 errors are not reported.2Breit-Wigner width. May also be the f0(1500).3Also observed by GARMASH 07 in B0 → K0S π+π− de
ays. Supersedes GARMASH 05.4Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA-SON 83, ASTON 88, and ARMSTRONG 91B. Coupled 
hannel analysis with 
avorsymmetry and all light two-pseudos
alars systems.5Also observed by ASNER 00 in τ− → π−π0π0 ντ de
ays6Width de�ned as distan
e between 45 and 135◦ phase shift.K K MODEK K MODEK K MODEK K MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •121± 15 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n55± 26 TIKHOMIROV 03 SPEC 40.0 π−C → K0S K0S K0LX250± 80 BOLONKIN 88 SPEC 40 π− p → K0S K0S n118+138

− 16 ETKIN 82B MPS 23 π− p → n2K0S160± 30 WICKLUND 80 SPEC 6 πN → K+K−N
∼ 150 POLYCHRO... 79 STRC 7 π− p → n2K0S4π MODE 2(ππ)S+ρρ4π MODE 2(ππ)S+ρρ4π MODE 2(ππ)S+ρρ4π MODE 2(ππ)S+ρρVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •275±55 ABELE 01 CBAR 0.0 p d → π− 4π0 p375±61 AMSLER 94 CBAR 0.0 p p → π+π− 3π0398±26 ADAMO 93 OBLX np → 3π+2π−310±50 GASPERO 93 DBC 0.0 p n → 2π+3π−
∼ 90 5751 1 BETTINI 66 DBC 0.0 p n → 2π+3π−1 ρρ dominant.
ηη MODEηη MODEηη MODEηη MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •484+246

−170+246
−263 1 UEHARA 10A BELL 10.6 e+ e− → e+ e− ηη250 AMSLER 92 CBAR 0.0 pp → π0 ηη320± 40 ALDE 86D GAM4 100 π− p → n2η1Breit-Wigner width. May also be the f0(1500).COUPLED CHANNEL MODECOUPLED CHANNEL MODECOUPLED CHANNEL MODECOUPLED CHANNEL MODEVALUE (MeV) DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •147+30
−50 1 ANISOVICH 03 RVUE1K-matrix pole from 
ombined analysis of π− p → π0π0 n, π− p → K K n,
π+π− → π+π−, p p → π0π0π0, π0 ηη, π0π0 η, π+π−π0, K+K−π0, K0S K0S π0,K+K0S π− at rest, p n → π−π−π+, K0S K−π0, K0S K0S π− at rest.



913913913913See key on page 601 MesonParti
le Listingsf0(1370)f0(1370) DECAY MODESf0(1370) DECAY MODESf0(1370) DECAY MODESf0(1370) DECAY MODESMode Fra
tion (�i /�)�1 ππ seen�2 4π seen�3 4π0 seen�4 2π+2π− seen�5 π+π−2π0 seen�6 ρρ dominant�7 2(ππ)S-wave seen�8 π(1300)π seen�9 a1(1260)π seen�10 ηη seen�11 K K seen�12 K K nπ not seen�13 6π not seen�14 ωω not seen�15 γ γ seen�16 e+ e− not seenf0(1370) PARTIAL WIDTHSf0(1370) PARTIAL WIDTHSf0(1370) PARTIAL WIDTHSf0(1370) PARTIAL WIDTHS�(γ γ
) �15�(γ γ
) �15�(γ γ
) �15�(γ γ
) �15See γ γ widths under f0(500) and MORGAN 90.�(e+ e−) �16�(e+ e−) �16�(e+ e−) �16�(e+ e−) �16VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<20<20<20<20 90 VOROBYEV 88 ND e+ e− → π0π0f0(1370) �(i)�(γ γ)/�(total)f0(1370) �(i)�(γ γ)/�(total)f0(1370) �(i)�(γ γ)/�(total)f0(1370) �(i)�(γ γ)/�(total)�(ηη
)

× �(γ γ
)/�total �10�15/��(ηη

)

× �(γ γ
)/�total �10�15/��(ηη

)

× �(γ γ
)/�total �10�15/��(ηη

)

× �(γ γ
)/�total �10�15/�VALUE (eV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •121+133
− 53+169

−106 1 UEHARA 10A BELL 10.6 e+ e− → e+ e− ηη1 In
luding interferen
e with the f ′2(1525) (parameters �xed to the values from the 2008edition of this review, PDG 08) and f2(1270). May also be the f0(1500).f0(1370) BRANCHING RATIOSf0(1370) BRANCHING RATIOSf0(1370) BRANCHING RATIOSf0(1370) BRANCHING RATIOS�(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.26±0.09 BUGG 96 RVUE
<0.15 1 AMSLER 94 CBAR pp → π+π− 3π0
<0.06 GASPERO 93 DBC 0.0 p n → hadrons1Using AMSLER 95B (3π0).�(4π)/�total �2/�= (�3+�4+�5)/��(4π)/�total �2/�= (�3+�4+�5)/��(4π)/�total �2/�= (�3+�4+�5)/��(4π)/�total �2/�= (�3+�4+�5)/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>0.72 GASPERO 93 DBC 0.0 p n → hadrons�(4π0)/�(4π) �3/�2�(4π0)/�(4π) �3/�2�(4π0)/�(4π) �3/�2�(4π0)/�(4π) �3/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen ABELE 96 CBAR 0.0 p p → 5π00.068±0.005 1 GASPERO 93 DBC 0.0 p n → hadrons1Model-dependent evaluation.�(2π+2π−)/�(4π) �4/�2 =�4/(�3+�4+�5)�(2π+2π−)/�(4π) �4/�2 =�4/(�3+�4+�5)�(2π+2π−)/�(4π) �4/�2 =�4/(�3+�4+�5)�(2π+2π−)/�(4π) �4/�2 =�4/(�3+�4+�5)VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.420±0.014 1 GASPERO 93 DBC 0.0 p n → 2π+3π−1Model-dependent evaluation.�(π+π−2π0)/�(4π) �5/�2 =�5/(�3+�4+�5)�(π+π−2π0)/�(4π) �5/�2 =�5/(�3+�4+�5)�(π+π−2π0)/�(4π) �5/�2 =�5/(�3+�4+�5)�(π+π−2π0)/�(4π) �5/�2 =�5/(�3+�4+�5)VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.512±0.019 1 GASPERO 93 DBC 0.0 p n → hadrons1Model-dependent evaluation.�(ρρ

)/�(4π) �6/�2�(ρρ
)/�(4π) �6/�2�(ρρ
)/�(4π) �6/�2�(ρρ
)/�(4π) �6/�2VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.26±0.07 ABELE 01B CBAR 0.0 p d → 5πp

�(2(ππ)S-wave)/�(ππ
) �7/�1�(2(ππ)S-wave)/�(ππ
) �7/�1�(2(ππ)S-wave)/�(ππ
) �7/�1�(2(ππ)S-wave)/�(ππ
) �7/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.6±2.6 1 ABELE 01 CBAR 0.0 p d → π− 4π0 p1From the 
ombined data of ABELE 96 and ABELE 96C.�(2(ππ)S-wave)/�(4π) �7/�2�(2(ππ)S-wave)/�(4π) �7/�2�(2(ππ)S-wave)/�(4π) �7/�2�(2(ππ)S-wave)/�(4π) �7/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.51±0.09 ABELE 01B CBAR 0.0 p d → 5πp�(ρρ

)/�(2(ππ)S-wave) �6/�7�(ρρ
)/�(2(ππ)S-wave) �6/�7�(ρρ
)/�(2(ππ)S-wave) �6/�7�(ρρ
)/�(2(ππ)S-wave) �6/�7VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •large BARBERIS 00C 450 pp → pf 4πps1.6 ±0.2 AMSLER 94 CBAR pp → π+π− 3π0
∼ 0.65 GASPERO 93 DBC 0.0 p n → hadrons�(π(1300)π)/�(4π) �8/�2�(π(1300)π)/�(4π) �8/�2�(π(1300)π)/�(4π) �8/�2�(π(1300)π)/�(4π) �8/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.17±0.06 ABELE 01B CBAR 0.0 p d → 5πp�(a1(1260)π)/�(4π) �9/�2�(a1(1260)π)/�(4π) �9/�2�(a1(1260)π)/�(4π) �9/�2�(a1(1260)π)/�(4π) �9/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.06±0.02 ABELE 01B CBAR 0.0 p d → 5πp�(ηη

)/�(4π) �10/�2 =�10/(�3+�4+�5)�(ηη
)/�(4π) �10/�2 =�10/(�3+�4+�5)�(ηη
)/�(4π) �10/�2 =�10/(�3+�4+�5)�(ηη
)/�(4π) �10/�2 =�10/(�3+�4+�5)VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •(28 ±11 )× 10−3 1 ANISOVICH 02D SPEC Combined �t( 4.7± 2.0)× 10−3 BARBERIS 00E 450 pp → pf ηηps1From a 
ombined K-matrix analysis of Crystal Barrel (0. pp → π0π0π0, π0 ηη,
π0π0 η), GAMS (πp → π0π0 n, ηηn, ηη′ n), and BNL (πp → K K n) data.�(K K)/�total �11/��(K K)/�total �11/��(K K)/�total �11/��(K K)/�total �11/�VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.35±0.13 BUGG 96 RVUE�(K K)/�(ππ
) �11/�1�(K K)/�(ππ
) �11/�1�(K K)/�(ππ
) �11/�1�(K K)/�(ππ
) �11/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.08±0.08 ABLIKIM 05 BES2 J/ψ → φπ+π−, φK+K−0.91±0.20 1 BARGIOTTI 03 OBLX p p0.12±0.06 2 ANISOVICH 02D SPEC Combined �t0.46±0.15±0.11 BARBERIS 99D OMEG 450 pp → K+K−, π+π−1Coupled 
hannel analysis of π+π−π0, K+K−π0, and K±K0S π∓.2 From a 
ombined K-matrix analysis of Crystal Barrel (0. pp → π0π0π0, π0 ηη,
π0π0 η), GAMS (πp → π0π0 n, ηηn, ηη′ n), and BNL (πp → K K n) data.�(K K nπ

)/�total �12/��(K K nπ
)/�total �12/��(K K nπ
)/�total �12/��(K K nπ
)/�total �12/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.03 GASPERO 93 DBC 0.0 p n → hadrons�(6π)/�total �13/��(6π)/�total �13/��(6π)/�total �13/��(6π)/�total �13/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.22 GASPERO 93 DBC 0.0 p n → hadrons�(ωω

)/�total �14/��(ωω
)/�total �14/��(ωω
)/�total �14/��(ωω
)/�total �14/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.13 GASPERO 93 DBC 0.0 p n → hadronsf0(1370) REFERENCESf0(1370) REFERENCESf0(1370) REFERENCESf0(1370) REFERENCESDOBBS 15 PR D91 052006 S. Dobbs et al. (NWES)UEHARA 10A PR D82 114031 S. Uehara et al. (BELLE Collab.)ANISOVICH 09 IJMP A24 2481 V.V. Anisovi
h, A.V. SarantsevAUBERT 09L PR D79 072006 B. Aubert et al. (BABAR Collab.)PDG 08 PL B667 1 C. Amsler et al. (PDG Collab.)UEHARA 08A PR D78 052004 S. Uehara et al. (BELLE Collab.)BONVICINI 07 PR D76 012001 G. Bonvi
ini et al. (CLEO Collab.)BUGG 07A JP G34 151 D.V. Bugg et al.GARMASH 07 PR D75 012006 A. Garmash et al. (BELLE Collab.)GARMASH 06 PRL 96 251803 A. Garmash et al. (BELLE Collab.)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)VLADIMIRSK... 06 PAN 69 493 V.V. Vladimirsky et al. (ITEP, Mos
ow)Translated from YAF 69 515.



914914914914MesonParti
le Listingsf0(1370), h1(1380),π1(1400)ABLIKIM 05 PL B607 243 M. Ablikim et al. (BES Collab.)ABLIKIM 05Q PR D72 092002 M. Ablikim et al. (BES Collab.)GARMASH 05 PR D71 092003 A. Garmash et al. (BELLE Collab.)ANISOVICH 03 EPJ A16 229 V.V. Anisovi
h et al.BARGIOTTI 03 EPJ C26 371 M. Bargiotti et al. (OBELIX Collab.)TIKHOMIROV 03 PAN 66 828 G.D. Tikhomirov et al.Translated from YAF 66 860.ANISOVICH 02D PAN 65 1545 V.V. Anisovi
h et al.Translated from YAF 65 1583.ABELE 01 EPJ C19 667 A. Abele et al. (Crystal Barrel Collab.)ABELE 01B EPJ C21 261 A. Abele et al. (Crystal Barrel Collab.)AITALA 01A PRL 86 765 E.M. Aitala et al. (FNAL E791 Collab.)ASNER 00 PR D61 012002 D.M. Asner et al. (CLEO Collab.)BARBERIS 00C PL B471 440 D. Barberis et al. (WA 102 Collab.)BARBERIS 00E PL B479 59 D. Barberis et al. (WA 102 Collab.)BARBERIS 99B PL B453 316 D. Barberis et al. (Omega Expt.)BARBERIS 99D PL B462 462 D. Barberis et al. (Omega Expt.)BELLAZZINI 99 PL B467 296 R. Bellazzini et al.KAMINSKI 99 EPJ C9 141 R. Kaminski, L. Lesniak, B. Loiseau (CRAC, PARIN)ALDE 98 EPJ A3 361 D. Alde et al. (GAM4 Collab.)Also PAN 62 405 D. Alde et al. (GAMS Collab.)Translated from YAF 62 446.ANISOVICH 98B SPU 41 419 V.V. Anisovi
h et al.Translated from UFN 168 481.BERTIN 98 PR D57 55 A. Bertin et al. (OBELIX Collab.)BARBERIS 97B PL B413 217 D. Barberis et al. (WA 102 Collab.)BERTIN 97C PL B408 476 A. Bertin et al. (OBELIX Collab.)ABELE 96 PL B380 453 A. Abele et al. (Crystal Barrel Collab.)ABELE 96B PL B385 425 A. Abele et al. (Crystal Barrel Collab.)ABELE 96C NP A609 562 A. Abele et al. (Crystal Barrel Collab.)BUGG 96 NP B471 59 D.V. Bugg, A.V. Sarantsev, B.S. Zou (LOQM, PNPI)AMSLER 95B PL B342 433 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 95C PL B353 571 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 95D PL B355 425 C. Amsler et al. (Crystal Barrel Collab.)JANSSEN 95 PR D52 2690 G. Janssen et al. (STON, ADLD, JULI)TORNQVIST 95 ZPHY C68 647 N.A. Tornqvist (HELS)AMSLER 94 PL B322 431 C. Amsler et al. (Crystal Barrel Collab.) JPCAMSLER 94D PL B333 277 C. Amsler et al. (Crystal Barrel Collab.)ANISOVICH 94 PL B323 233 V.V. Anisovi
h et al. (Crystal Barrel Collab.) JPCBUGG 94 PR D50 4412 D.V. Bugg et al. (LOQM)KAMINSKI 94 PR D50 3145 R. Kaminski, L. Lesniak, J.P. Maillet (CRAC+)ADAMO 93 NP A558 13C A. Adamo et al. (OBELIX Collab.) JPCGASPERO 93 NP A562 407 M. Gaspero (ROMAI) JPCAMSLER 92 PL B291 347 C. Amsler et al. (Crystal Barrel Collab.)ARMSTRONG 91 ZPHY C51 351 T.A. Armstrong et al. (ATHU, BARI, BIRM+)ARMSTRONG 91B ZPHY C52 389 T.A. Armstrong et al. (ATHU, BARI, BIRM+)BREAKSTONE 90 ZPHY C48 569 A.M. Breakstone et al. (ISU, BGNA, CERN+)MORGAN 90 ZPHY C48 623 D. Morgan, M.R. Pennington (RAL, DURH)ASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)BOLONKIN 88 NP B309 426 B.V. Bolonkin et al. (ITEP, SERP)FALVARD 88 PR D38 2706 A. Falvard et al. (CLER, FRAS, LALO+)VOROBYEV 88 SJNP 48 273 P.V. Vorobiev et al. (NOVO)Translated from YAF 48 436.AU 87 PR D35 1633 K.L. Au, D. Morgan, M.R. Pennington (DURH, RAL)AKESSON 86 NP B264 154 T. Akesson et al. (Axial Field Spe
. Collab.)ALDE 86D NP B269 485 D.M. Alde et al. (BELG, LAPP, SERP, CERN+)CASON 83 PR D28 1586 N.M. Cason et al. (NDAM, ANL)ETKIN 82B PR D25 1786 A. Etkin et al. (BNL, CUNY, TUFTS, VAND)WICKLUND 80 PRL 45 1469 A.B. Wi
klund et al. (ANL)BECKER 79 NP B151 46 H. Be
ker et al. (MPIM, CERN, ZEEM, CRAC)POLYCHRO... 79 PR D19 1317 V.A. Poly
hronakos et al. (NDAM, ANL)FROGGATT 77 NP B129 89 C.D. Froggatt, J.L. Petersen (GLAS, NORD)ROSSELET 77 PR D15 574 L. Rosselet et al. (GEVA, SACL)GRAYER 74 NP B75 189 G. Grayer et al. (CERN, MPIM)HYAMS 73 NP B64 134 B.D. Hyams et al. (CERN, MPIM)OCHS 73 Thesis W. O
hs (MPIM, MUNI)BEIER 72B PRL 29 511 E.W. Beier et al. (PENN)BETTINI 66 NC 42A 695 A. Bettini et al. (PADO, PISA)h1(1380) IG (JPC ) = ?−(1 +−)OMITTED FROM SUMMARY TABLESeen in partial-wave analysis of the K K π system. Needs 
on�rma-tion. h1(1380) MASSh1(1380) MASSh1(1380) MASSh1(1380) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1407±12 OUR AVERAGE1407±12 OUR AVERAGE1407±12 OUR AVERAGE1407±12 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.1412± 4±8 ABLIKIM 15M BES3 ψ(2S) → γχc1,2 → γK∗K1440±60 ABELE 97H CBAR p p → K0LK0S π0π01380±20 ASTON 88C LASS 11 K− p → K0S K±π∓�h1(1380) WIDTHh1(1380) WIDTHh1(1380) WIDTHh1(1380) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT89±23 OUR AVERAGE89±23 OUR AVERAGE89±23 OUR AVERAGE89±23 OUR AVERAGE84±12±40 ABLIKIM 15M BES3 ψ(2S) → γχc1,2 → γK∗K170±80 ABELE 97H CBAR p p → K0LK0S π0π080±30 ASTON 88C LASS 11 K− p → K0S K±π∓�h1(1380) DECAY MODESh1(1380) DECAY MODESh1(1380) DECAY MODESh1(1380) DECAY MODESMode�1 K K∗(892)+ 
.
. h1(1380) REFERENCESh1(1380) REFERENCESh1(1380) REFERENCESh1(1380) REFERENCESABLIKIM 15M PR D91 112008 M. Ablikim et al. (BES III Collab.)ABELE 97H PL B415 280 A. Abele et al. (Crystal Barrel Collab.)ASTON 88C PL B201 573 D. Aston et al. (SLAC, NAGO, CINC, INUS)

π1(1400) IG (JPC ) = 1−(1−+)See also the mini-review under non-qq 
andidates in PDG 06, Jour-nal of Physi
s G33G33G33G33 1 (2006).
π1(1400) MASSπ1(1400) MASSπ1(1400) MASSπ1(1400) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1354 ±25 OUR AVERAGE1354 ±25 OUR AVERAGE1354 ±25 OUR AVERAGE1354 ±25 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogram below.1257 ±20 ±25 23.5k ADAMS 07B B852 18 π− p → ηπ0 n1384 ±20 ±35 90k SALVINI 04 OBLX pp → 2π+2π−1360 ±25 ABELE 99 CBAR 0.0 p p → π0π0 η1400 ±20 ±20 ABELE 98B CBAR 0.0 p n → π−π0 η1370 ±16 +50

−30 1 THOMPSON 97 MPS 18 π− p → ηπ− p
• • • We do not use the following data for averages, �ts, limits, et
. • • •1323.1± 4.6 2 AOYAGI 93 BKEI π− p → ηπ− p1406 ±20 3 ALDE 88B GAM4 0 100 π− p → ηπ0 n1Natural parity ex
hange, questioned by DZIERBA 03.2Unnatural parity ex
hange.3 Seen in the P0-wave intensity of the ηπ0 system, unnatural parity ex
hange.

WEIGHTED AVERAGE
1354±25 (Error scaled by 1.8)

THOMPSON 97 MPS 0.2
ABELE 98B CBAR 2.6
ABELE 99 CBAR 0.1
SALVINI 04 OBLX 0.5
ADAMS 07B B852 9.3

χ2

      12.6
(Confidence Level = 0.013)

1100 1200 1300 1400 1500 1600 1700

π1(1400) MASS (MeV)
π1(1400) WIDTHπ1(1400) WIDTHπ1(1400) WIDTHπ1(1400) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT330 ±35 OUR AVERAGE330 ±35 OUR AVERAGE330 ±35 OUR AVERAGE330 ±35 OUR AVERAGE354 ±64 ± 58 23.5k ADAMS 07B B852 18 π− p → ηπ0 n378 ±50 ± 50 90k SALVINI 04 OBLX pp → 2π+2π−220 ±90 ABELE 99 CBAR 0.0 p p → π0π0 η310 ±50 + 50

− 30 ABELE 98B CBAR 0.0 p n → π−π0 η385 ±40 + 65
−105 4 THOMPSON 97 MPS 18 π− p → ηπ− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •143.2±12.5 5 AOYAGI 93 BKEI π− p → ηπ− p180 ±20 6 ALDE 88B GAM4 0 100 π− p → ηπ0 n4Resolution is not unfolded, natural parity ex
hange, questioned by DZIERBA 03.5Unnatural parity ex
hange.6 Seen in the P0-wave intensity of the ηπ0 system, unnatural parity ex
hange.
π1(1400) DECAY MODESπ1(1400) DECAY MODESπ1(1400) DECAY MODESπ1(1400) DECAY MODESMode Fra
tion (�i /�)�1 ηπ0 seen�2 ηπ− seen�3 η′π

π1(1400) BRANCHING RATIOSπ1(1400) BRANCHING RATIOSπ1(1400) BRANCHING RATIOSπ1(1400) BRANCHING RATIOS�(ηπ0)/�total �1/��(ηπ0)/�total �1/��(ηπ0)/�total �1/��(ηπ0)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen PROKOSHKIN 95B GAM4 100 π− p →

ηπ0 nnot seen 7 BUGG 94 RVUE pp → η2π0not seen 8 APEL 81 NICE 0 40 π− p →
ηπ0 n7Using Crystal Barrel data.8A general �t allowing S, D, and P waves (in
luding m=0) is not done be
ause of limitedstatisti
s.
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π1(1400), η(1405)�(ηπ−)/�total �2/��(ηπ−)/�total �2/��(ηπ−)/�total �2/��(ηπ−)/�total �2/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •possibly seen BELADIDZE 93 VES 37π−N → ηπ−N�(η′π)/�(ηπ0) �3/�1�(η′π)/�(ηπ0) �3/�1�(η′π)/�(ηπ0) �3/�1�(η′π)/�(ηπ0) �3/�1VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.80 95 BOUTEMEUR 90 GAM4 100 π− p → 4γ n
π1(1400) REFERENCESπ1(1400) REFERENCESπ1(1400) REFERENCESπ1(1400) REFERENCESADAMS 07B PL B657 27 G.S. Adams et al. (BNL E852 Collab.)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)SALVINI 04 EPJ C35 21 P. Salvini et al. (OBELIX Collab.)DZIERBA 03 PR D67 094015 A.R. Dzierba et al.ABELE 99 PL B446 349 A. Abele et al. (Crystal Barrel Collab.)ABELE 98B PL B423 175 A. Abele et al. (Crystal Barrel Collab.)THOMPSON 97 PRL 79 1630 D.R. Thompson et al. (BNL E852 Collab.)PROKOSHKIN 95B PAN 58 606 Y.D. Prokoshkin, S.A. Sadovsky (SERP)Translated from YAF 58 662.BUGG 94 PR D50 4412 D.V. Bugg et al. (LOQM)AOYAGI 93 PL B314 246 H. Aoyagi et al. (BKEI Collab.)BELADIDZE 93 PL B313 276 G.M. Beladidze et al. (VES Collab.)BOUTEMEUR 90 Hadron 89 Conf. p 119 M. Boutemeur, M. Poulet (SERP, BELG, LANL+)ALDE 88B PL B205 397 D.M. Alde et al. (SERP, BELG, LANL, LAPP) IGJPCAPEL 81 NP B193 269 W.D. Apel et al. (SERP, CERN)

η(1405) IG (JPC ) = 0+(0−+)See also the η(1475).
THE PSEUDOSCALAR AND PSEUDOVECTOR
MESONS IN THE 1400 MEV REGION

Revised July 2015 by C. Amsler (University of Bern) and
A. Masoni (INFN Cagliari).

This minireview deals with some of the 0−+ and 1++ mesons

reported in the 1200–1500 MeV region, namely the η(1405),

η(1475), f1(1285) f1(1420), a1(1420) and f1(1510). The first

observation of a pseudoscalar resonance around 1400 MeV – the

η(1440) – was made in pp annihilation at rest into η(1440)π+π−,

η(1440) → KKπ [1]. This state was reported to decay into

a0(980)π and K∗(892)K with roughly equal contributions. The

η(1440) was also observed in radiative J/ψ(1S) decay into

KKπ [2–4] and γρ [5]. However, two pseudoscalars are now

reported in this mass region, the η(1405) and η(1475). The

former decays mainly through a0(980)π (or direct KKπ) and

the latter mainly to K∗(892)K.

The simultaneous observation of two pseudoscalars is re-

ported in three production mechanisms: π−p [6,7]; radiative

J/ψ(1S) decay [8,9]; and pp annihilation at rest [10–13]. All

of them give values for the masses, widths, and decay modes

that are in reasonable agreement. However, Ref. [9] favors a

state decaying into K∗(892)K at a lower mass than the state

decaying into a0(980)π. In J/ψ(1S) radiative decay, the η(1405)

decays into KKπ through a0(980)π, and hence a signal is also

expected in the ηππ mass spectrum. This was indeed observed

by MARK III in ηπ+π− [14], which reported a mass of 1400

MeV, in line with the existence of the η(1405) decaying into

a0(980)π.

BESII [15] observes an enhancement in K+K−π0 around

1.44 GeV in J/ψ(1S) decay, recoiling against an ω (but not a

φ) without resolving the presence of two states nor performing

a spin-parity analysis, due to low statistics. This state could

also be the f1(1420) (see below). On the other hand, BESII

observes η(1405) → ηππ in J/ψ(1S) decay, recoiling against an

ω [16]. A single unresolved broad peak is also observed by

BESIII in the decay ψ(2S) → ωK∗K which could be due to

η(1405), η(1475) and f1(1420) [17].

The η(1405) is also observed in pp annihilation at rest

into ηπ+π−π0π0, where it decays into ηππ [18]. The interme-

diate a0(980)π accounts for roughly half of the ηππ signal, in

agreement with MARK III [14] and DM2 [4].

However, the issue remains controversial as to whether two

pseudoscalar mesons really exist. According to Ref. [19] the

splitting of a single state could be due to nodes in the decay

amplitudes which differ in ηππ and K∗(892)K. Based on the

isospin violating decay J/ψ(1S) → γ 3π observed by BESIII

[20] the splitting could also be due to a triangular singularity

mixing ηππ and K∗(892)K [21–22]. However, in a further

paper [23], using the approach of [21], the authors concluded

that the BESIII results can be reproduced either with the

η(1405) or the η(1475), or by a mixture of these two states.

The η(1295) has been observed by four π−p experiments

[7,24–26], and evidence is reported in pp annihilation [27–29].

In J/ψ(1S) radiative decay, the η(1295) signal is evident in the

0−+ ηππ wave of the DM2 data [9]. Also BaBar [30] reports

evidence for a signal around 1295 MeV in B decays into ηππK.

Nonetheless, the existence of the η(1295) is questioned in Refs.

[19] and [31] in which the authors claim the existence of a single

pseudoscalar meson at 1440 MeV, the first radial excitation of

the η. This conclusion is mainly based on the analysis of the

annihilation p̄p → 4πη with Crystal Barrel data [32].

Considering that the η(1295) has been reported by several

experiments, using different production mechnisms, we shall

assume that this state is established. The η(1475) could then

be the first radial excitation of the η′, with the η(1295) being

the first radial excitation of the η. Ideal mixing, suggested

by the η(1295) and π(1300) mass degeneracy, would then

imply that the second isoscalar in the nonet is mainly ss, and

hence couples to K∗K, in agreement with properties of the

η(1475). Also, its width matches the expected width for the

radially excited ss state [33,34]. A study of radial excitations

of pseudoscalar mesons [35] favors the ss̄ interpretation of the

η(1475). However, due to the strong kinematical suppression

the data are not sufficient to exclude a sizeable ss̄ admixture

also in the η(1405).

The KKπ and ηππ channels were studied in γγ collisions

by L3 [36]. The analysis led to a clear η(1475) signal in KKπ,

decaying into K∗K, very well identified in the untagged data

sample, where contamination from spin 1 resonances is not

allowed. At the same time, L3 [36] did not observe the η(1405),

neither in KKπ nor in ηππ. The observation of the η(1475),

combined with the absence of an η(1405) signal, strengthens

the two-resonances hypothesis. Since gluonium production is

presumably suppressed in γγ collisions, the L3 results [36]

suggest that η(1405) has a large gluonic content (see also Refs.

[37] and [38]) .

The L3 result is somewhat in disagreement with that of

CLEO-II, which did not observe any pseudoscalar signal in

γγ → η(1475) → K0
SK±π∓ [39]. However, more data are
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required. Moreover, after the CLEO-II result, L3 performed

a further analysis with full statistics [40], confirming their

previous evidence for the η(1475). The CLEO upper limit [39]

for Γγγ(η(1475)), and the L3 results [40], are consistent with

the world average for the η(1475) width.

BaBar [30] also reports the η(1475) in B decays into

KK̄∗ recoiling against a K, but upper limits only are given for

the η(1405). As mentioned above, in B decays into ηππK the

η(1295) → ηππ is observed while only upper limits are given

for the η(1405). The f1(1420) (and f1(1285)) are not seen.

The gluonium interpretation for the η(1405) is not favored

by lattice gauge theories which predict the 0−+ state above

2 GeV [41,42] (see also the article on the “Quark model” in

this issue of the Review). However, the η(1405) is an excellent

candidate for the 0−+ glueball in the fluxtube model [43]. In

this model, the 0++ f0(1500) glueball is also naturally related

to a 0−+ glueball with mass degeneracy broken in QCD. Also,

Ref. [44] shows that the pseudoscalar glueball could lie at

a lower mass than predicted from lattice calculation. In this

model the η(1405) appears as the natural glueball candidate,

see also Refs. [45–47]. A detailed review of the experimental

situation is available in Ref. [48].

Let us now deal with the 1++ mesons. The pseudovector

nonet is believed to consist of the isovector a1(1260), the

isoscalars f1(1285) and f1(1420), and the K1A, which is a

mixture of about 50% K1(1270) and 50% K1(1400). (This last

property prevents a straightforward calculation of the nonet

mixing angle via the mass formulae.) The f1(1285) could also

be a K∗K molecule [49] or as a tetraquark state [50]

and the f1(1420) a K∗K molecule, due to the proximity of

the K∗K threshold [51]. LHCb has analyzed the decays B
0

and B
0
s → J/ψ(1S)f1(1285) and determined the nonet mixing

angle to be consistent with a mostly uu + dd structure [52]

without specifying the identity of its isoscalar partner. This is

consistent with earlier determinations assuming the f1(1420) as

the isoscalar partner [53] and the ratio of B
0
/B

0
s decay rates

excludes the tetraquark interpretation of this state [52].

The f1(1420), decaying into K∗K, was first reported in π−p

reactions at 4 GeV/c [54]. However, later analyses found that

the 1400–1500 MeV region was far more complex [55–57]. A

reanalysis of the MARK III data in radiative J/ψ(1S) decay

into KKπ [8] shows the f1(1420) decaying into K∗K. A C=+1

state is also seen in tagged γγ collisions (e.g., Ref. [58]) .

In π−p → ηππn charge-exchange reactions at 8–9 GeV/c

the ηππ mass spectrum is dominated by the η(1440) and

η(1295) [24,59], and at 100 GeV/c Ref. [25] reports the

η(1295) and η(1440) decaying into ηπ0π0 with a weak f1(1285)

signal, and no evidence for the f1(1420).

Axial (1++) mesons are not observed in pp annihilation at

rest in liquid hydrogen, which proceeds dominantly through

S-wave annihilation. However, in gaseous hydrogen, P -wave

annihilation is enhanced and, indeed, Ref. [11] reports f1(1420)

decaying into K∗K. The f1(1420), decaying into KKπ, is also

seen in pp central production, together with the f1(1285). The

latter decays via a0(980)π, and the former only via K∗K, while

the η(1440) is absent [60,61]. The K0
SK0

Sπ0 decay mode of the

f1(1420) establishes unambiguously C=+1. On the other hand,

there is no evidence for any state decaying into ηππ around

1400 MeV, and hence the ηππ mode of the f1(1420) must be

suppressed [62].

The COMPASS Collaboration has recently reported an

isovector state at 1414 MeV, the a1(1420) [63]. This relatively

narrow state (≃150 MeV) is produced by diffractive dissociation

with 190 GeV pions in πN → 3πN , decays into f0(980)π → 3π

(P-wave) and has therefore the quantum numbers (IG)JPC =

(1−)1++. The pseudovector nonet already contains the estab-

lished a1(1260) as the I = 1 state. As mentioned above, the

f1(1420) has been interpreted as a K∗K molecule [51]. The

new a1(1420) could be its isovector partner. Arguments favor-

ing the f1(1420) being a hybrid qqg meson [64] or a four-quark

state [65] were also put forward. The qq state would then

remain to be identified, with the f1(1510) (see below) as a can-

didate. However, an alternative explanation is suggested in Ref.

[66] in which the authors claim a single 1++ isovector around

1400 MeV, leading to two peaks in the 3π mass spectrum,

depending on the production mechanism, ρπ for the a1(1260)

and f0(980)π for the a1(1420).

We now turn to the experimental evidence for the f1(1510).

The f1(1510) was seen in K−p → ΛKKπ at 4 GeV/c [67],

and at 11 GeV/c [68]. Evidence is also reported in π−p at 8

GeV/c, based on the phase motion of the 1++ K∗K wave [57].

A somewhat broader 1++ signal is also observed in J/ψ(1S) →
γηπ+π− [69] as well as a small signal in J/ψ(1S) → γη′π+π−,

attributed to the f1(1510) [70].

The absence of f1(1420) in K−p [68] argues against the

f1(1420) being the ss member of the 1++ nonet. However, the

f1(1420) was reported in K−p but not in π−p [71], while

two experiments do not observe the f1(1510) in K−p [71,72].

The latter is also not seen in central collisions [61], nor

γγ collisions [73], although, surprisingly for an ss state, a

signal is reported in 4π decays [74]. These facts led to the

conclusion that f1(1510) was not well established [75].

Summarizing, there is evidence for two isovector 1++ states

in the 1400 MeV region, the a1(1260) and a1(1420), which

cannot be both qq states. These two states could stem from

the same pole, or the latter be exotic (tetraquark or hybrid)

or a molecular state. The f1(1285) and the f1(1420) are well

known but their nature (qq, tetraquark or molecular) remains

to be established. In the 0−+ sector there is evidence for two

pseudoscalars in the 1400 MeV region, the η(1405) and η(1475),

decaying into a0(980)π and K∗K, respectively. Alternatively,

these two structures could originate from a single pole. Doubts

have been expressed on the existence of the η(1295). The

f1(1510) remains to be firmly established.
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η(1405) MASSη(1405) MASSη(1405) MASSη(1405) MASSVALUE (MeV) DOCUMENT ID1408.8±1.8 OUR AVERAGE1408.8±1.8 OUR AVERAGE1408.8±1.8 OUR AVERAGE1408.8±1.8 OUR AVERAGE In
ludes data from the 2 datablo
ks that follow this one.Error in
ludes s
ale fa
tor of 2.1. See the ideogram below.
WEIGHTED AVERAGE
1408.8±1.8 (Error scaled by 2.1)

RATH 89 MPS 0.7
BAI 90C MRK3 0.6
BERTIN 95 OBLX 12.9
BERTIN 97 OBLX 0.1
CICALO 99 OBLX 0.6
ADAMS 01B B852 2.6
NICHITIU 02 OBLX
ANDO 86 SPEC 5.0
AUGUSTIN 90 DM2 3.2
FUKUI 91C SPEC 27.1
BOLTON 92B MRK3 2.2
AMSLER 95F CBAR 0.0
ALDE 97B GAM4 6.4
MANAK 00A MPS 0.6
AMSLER 04B CBAR 3.4
AMSLER 04B CBAR
ABLIKIM 11J BES3 6.4
ABLIKIM 12E BES3 0.3
ABLIKIM 12E BES3 0.0

χ2

      72.1
(Confidence Level < 0.0001)

1360 1380 1400 1420 1440 1460

η(1405) mass (MeV)
ηππ MODEηππ MODEηππ MODEηππ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1406.2± 2.3 OUR AVERAGE1406.2± 2.3 OUR AVERAGE1406.2± 2.3 OUR AVERAGE1406.2± 2.3 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2. See the ideogram below.1409.0± 1.7 743 ABLIKIM 12E BES3 J/ψ → γ (π+π−π0)1407.0± 3.5 198 ABLIKIM 12E BES3 J/ψ → γ (π0π0π0)1399.8± 2.2+2.8

−0.1 1 ABLIKIM 11J BES3 J/ψ → ω(ηπ+ π−)1392 ±14 900± 375 AMSLER 04B CBAR 0 p p → π+π−π+π− η1394 ± 8 6.6± 2.0k AMSLER 04B CBAR 0 p p → π+π−π0π0 η1404 ± 6 9082 MANAK 00A MPS 18 π− p → ηπ+π− n1424 ± 6 2200 ALDE 97B GAM4 100 π− p → ηπ0π0 n1409 ± 3 AMSLER 95F CBAR 0 p p → π+π−π0π0 η1400 ± 6 2 BOLTON 92B MRK3 J/ψ → γ ηπ+π−1388 ± 4 FUKUI 91C SPEC 8.95 π− p → ηπ+π− n1398 ± 6 261 3 AUGUSTIN 90 DM2 J/ψ → γ ηπ+π−1420 ± 5 ANDO 86 SPEC 8 π− p → ηπ+π− n
• • • We do not use the following data for averages, �ts, limits, et
. • • •



918918918918MesonParti
le Listings
η(1405)1385 ± 7 BAI 99 BES J/ψ → γ ηπ+π−

WEIGHTED AVERAGE
1406.2±2.3 (Error scaled by 2.2)

ANDO 86 SPEC 7.6
AUGUSTIN 90 DM2 1.9
FUKUI 91C SPEC 20.8
BOLTON 92B MRK3 1.1
AMSLER 95F CBAR 0.9
ALDE 97B GAM4 8.8
MANAK 00A MPS 0.1
AMSLER 04B CBAR 2.3
AMSLER 04B CBAR
ABLIKIM 11J BES3 3.3
ABLIKIM 12E BES3 0.1
ABLIKIM 12E BES3 2.7

χ2

      49.4
(Confidence Level < 0.0001)

1360 1380 1400 1420 1440 1460

η(1405) mass, ηππ mode (MeV)K K π MODE (a0(980)π or dire
t KK π)K K π MODE (a0(980)π or dire
t KK π)K K π MODE (a0(980)π or dire
t KK π)K K π MODE (a0(980)π or dire
t KK π)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1413.9± 1.7 OUR AVERAGE1413.9± 1.7 OUR AVERAGE1413.9± 1.7 OUR AVERAGE1413.9± 1.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1413 ±14 3651 4 NICHITIU 02 OBLX1416 ± 4 ±2 20k ADAMS 01B B852 18 GeV π− p → K+K−π0 n1405 ± 5 5 CICALO 99 OBLX 0 p p → K±K0S π∓π+π−1407 ± 5 5 BERTIN 97 OBLX 0 p p → K± (K0)π∓π+π−1416 ± 2 5 BERTIN 95 OBLX 0 p p → K K πππ1416 ± 8 +7
−5 700 6 BAI 90C MRK3 J/ψ → γK0S K±π∓1413 ± 5 6 RATH 89 MPS 21.4 π− p → nK0S K0S π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •1459 ± 5 7 AUGUSTIN 92 DM2 J/ψ → γK K π

ππγ MODEππγ MODEππγ MODEππγ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1390±121390±121390±121390±12 235 ± 91 AMSLER 04B CBAR 0 p p → π+π−π+π− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •1424±10±11 547 BAI 04J BES2 J/ψ → γ γπ+π−1401±18 8,9 AUGUSTIN 90 DM2 J/ψ → π+π− γ γ1432± 8 9 COFFMAN 90 MRK3 J/ψ → π+π− 2γ4π MODE4π MODE4π MODE4π MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1420±20 BUGG 95 MRK3 J/ψ → γπ+π−π+π−1489±12 3270 10 BISELLO 89B DM2 J/ψ → 4πγK K π MODE (unresolved)K K π MODE (unresolved)K K π MODE (unresolved)K K π MODE (unresolved)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1452.7± 3.3 191 11,12 ABLIKIM 13M BES3 ψ(2S) → ωK K π1437.6± 3.2 249 ± 35 11,12 ABLIKIM 08E BES2 J/ψ → ωK0S K+π− + 
.
.1445.9± 5.7 62 ± 18 11,12 ABLIKIM 08E BES2 J/ψ → ωK+K−π01442 ±10 410 11 BAI 98C BES J/ψ → γK+K−π01445 ± 8 693 11 AUGUSTIN 90 DM2 J/ψ → γK0S K±π∓1433 ± 8 296 11 AUGUSTIN 90 DM2 J/ψ → γK+K−π01413 ± 8 500 11 DUCH 89 ASTE p p → π+π−K±π∓K01453 ± 7 170 11 RATH 89 MPS 21.4 π− p → K0S K0S π0 n1419 ± 1 8800 11 BIRMAN 88 MPS 8 π− p → K+K0π− n1424 ± 3 620 11 REEVES 86 SPEC 6.6 pp → K K πX1421 ± 2 11 CHUNG 85 SPEC 8 π− p → K K πn1440 +20

−15 174 11 EDWARDS 82E CBAL J/ψ → γK+K−π01440 +10
−15 11 SCHARRE 80 MRK2 J/ψ → γK0S K±π∓1425 ± 7 800 11,13 BAILLON 67 HBC 0 pp → K K πππ1The sele
ted pro
ess is J/ψ → ωa0(980)π.2 From �t to the a0(980)π 0 −+ partial wave.3Best �t with a single Breit Wigner.4De
aying dominantly dire
tly to K+K−π0.5De
aying into (K K)Sπ, (K π)SK , and a0(980)π.6 From �t to the a0(980)π 0 −+ partial wave. Cannot rule out a a0(980)π 1 + + partialwave.7 Ex
luded from averaging be
ause averaging would be meaningless.8Best �t with a single Breit Wigner.9This peak in the γ ρ 
hannel may not be related to the η(1405).

10Estimated by us from various �ts.11These experiments identify only one pseudos
alar in the 1400{1500 range. Data 
ouldalso refer to η(1475).12 Systemati
 un
ertainty not evaluated.13 From best �t of 0−+ partial wave , 50% K∗(892)K , 50% a0(980)π.
η(1405) WIDTHη(1405) WIDTHη(1405) WIDTHη(1405) WIDTHVALUE (MeV) DOCUMENT ID51.0±2.9 OUR AVERAGE51.0±2.9 OUR AVERAGE51.0±2.9 OUR AVERAGE51.0±2.9 OUR AVERAGE In
ludes data from the 2 datablo
ks that follow this one. Er-ror in
ludes s
ale fa
tor of 1.8. See the ideogram below.

WEIGHTED AVERAGE
51.0±2.9 (Error scaled by 1.8)

RATH 89 MPS 20.9
BAI 90C MRK3
AUGUSTIN 92 DM2 7.1
BERTIN 95 OBLX 0.1
BERTIN 97 OBLX 0.3
CICALO 99 OBLX 0.1
ADAMS 01B B852 0.4
NICHITIU 02 OBLX 0.0
ANDO 86 SPEC 8.1
AUGUSTIN 90 DM2 0.0
FUKUI 91C SPEC 4.0
BOLTON 92B MRK3 0.1
AMSLER 95F CBAR 12.3
ALDE 97B GAM4 3.6
MANAK 00A MPS
AMSLER 04B CBAR 0.1
AMSLER 04B CBAR 0.1
ABLIKIM 11J BES3 0.0
ABLIKIM 12E BES3 0.1
ABLIKIM 12E BES3 0.3

χ2

      57.7
(Confidence Level < 0.0001)

0 50 100 150 200

η(1405) width (MeV)
ηππ MODEηππ MODEηππ MODEηππ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.54 ± 4 OUR AVERAGE54 ± 4 OUR AVERAGE54 ± 4 OUR AVERAGE54 ± 4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.48.3± 5.2 743 ABLIKIM 12E BES3 J/ψ → γ (π+π−π0)55.0±11.0 198 ABLIKIM 12E BES3 J/ψ → γ (π0π0π0)52.8± 7.6+0.1

−7.6 14 ABLIKIM 11J BES3 J/ψ → ω(ηπ+ π−)55 ±11 900 ± 375 AMSLER 04B CBAR 0 p p → π+π−π+π− η55 ±12 6.6 ± 2.0k AMSLER 04B CBAR 0 p p → π+π−π0π0 γ80 ±21 9082 MANAK 00A MPS 18 π− p → ηπ+π− n85 ±18 2200 ALDE 97B GAM4 100 π− p → ηπ0π0 n86 ±10 AMSLER 95F CBAR 0 p p → π+π−π0π0 η47 ±13 15 BOLTON 92B MRK3 J/ψ → γ ηπ+π−59 ± 4 FUKUI 91C SPEC 8.95 π− p → ηπ+π− n53 ±11 16 AUGUSTIN 90 DM2 J/ψ → γ ηπ+π−31 ± 7 ANDO 86 SPEC 8 π− p → ηπ+π− n
WEIGHTED AVERAGE
54±4 (Error scaled by 1.6)

ANDO 86 SPEC 11.1
AUGUSTIN 90 DM2 0.0
FUKUI 91C SPEC 1.4
BOLTON 92B MRK3 0.3
AMSLER 95F CBAR 10.0
ALDE 97B GAM4 2.9
MANAK 00A MPS 1.5
AMSLER 04B CBAR 0.0
AMSLER 04B CBAR 0.0
ABLIKIM 11J BES3 0.0
ABLIKIM 12E BES3 0.0
ABLIKIM 12E BES3 1.4

χ2

      28.6
(Confidence Level = 0.0026)

0 50 100 150 200

η(1405) width ηππ mode (MeV)



919919919919See key on page 601 MesonParti
le Listings
η(1405)K K π MODE (a0(980)π or dire
t KK π)K K π MODE (a0(980)π or dire
t KK π)K K π MODE (a0(980)π or dire
t KK π)K K π MODE (a0(980)π or dire
t KK π)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.48± 4 OUR AVERAGE48± 4 OUR AVERAGE48± 4 OUR AVERAGE48± 4 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1. See the ideogram below.51± 6 3651 17 NICHITIU 02 OBLX42±10± 9 20k ADAMS 01B B852 18 GeV π− p → K+K−π0 n50± 4 CICALO 99 OBLX 0 p p → K±K0S π∓π+π−48± 5 18 BERTIN 97 OBLX 0.0 p p → K± (K0)π∓π+π−50± 4 18 BERTIN 95 OBLX 0 p p → KK πππ75± 9 AUGUSTIN 92 DM2 J/ψ → γK K π91+67

−31+15
−38 19 BAI 90C MRK3 J/ψ → γK0S K±π∓19± 7 19 RATH 89 MPS 21.4 π− p → nK0S K0S π0

WEIGHTED AVERAGE
48±4 (Error scaled by 2.1)

RATH 89 MPS 17.5
BAI 90C MRK3
AUGUSTIN 92 DM2 8.8
BERTIN 95 OBLX 0.2
BERTIN 97 OBLX 0.0
CICALO 99 OBLX 0.2
ADAMS 01B B852 0.2
NICHITIU 02 OBLX 0.2

χ2

      27.1
(Confidence Level = 0.0001)

0 20 40 60 80 100 120

η(1405) width K K π mode (a0(980) π dominant)
ππγ MODEππγ MODEππγ MODEππγ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT64 ±1864 ±1864 ±1864 ±18 235 ± 91 AMSLER 04B CBAR 0 p p → π+π−π+π− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •101.0± 8.8±8.8 547 BAI 04J BES2 J/ψ → γ γπ+π−174 ±44 AUGUSTIN 90 DM2 J/ψ → π+π− γ γ90 ±26 20 COFFMAN 90 MRK3 J/ψ → π+π− 2γ4π MODE4π MODE4π MODE4π MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •160±30 BUGG 95 MRK3 J/ψ → γπ+π−π+π−144±13 3270 21 BISELLO 89B DM2 J/ψ → 4πγK K π MODE (unresolved)K K π MODE (unresolved)K K π MODE (unresolved)K K π MODE (unresolved)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •45.9± 8.2 191 22,23 ABLIKIM 13M BES3 ψ(2S) → ωK K π48.9± 9.0 249 ± 35 22,23 ABLIKIM 08E BES2 J/ψ → ωK0S K+π− + 
.
.34.2±18.5 62 ± 18 22,23 ABLIKIM 08E BES2 J/ψ → ωK+K−π093 ±14 296 22 AUGUSTIN 90 DM2 J/ψ → γK+K−π0105 ±10 693 22 AUGUSTIN 90 DM2 J/ψ → γK0S K±π∓62 ±16 500 22 DUCH 89 ASTE p p → K K πππ100 ±11 170 22 RATH 89 MPS 21.4 π− p → K0S K0S π0 n66 ± 2 8800 22 BIRMAN 88 MPS 8 π− p → K+K0π− n60 ±10 620 22 REEVES 86 SPEC 6.6 pp → K K πX60 ±10 22 CHUNG 85 SPEC 8 π− p → K K πn55 +20

−30 174 22 EDWARDS 82E CBAL J/ψ → γK+K−π050 +30
−20 22 SCHARRE 80 MRK2 J/ψ → γK0S K±π∓80 ±10 800 22,24 BAILLON 67 HBC 0.0 pp → K K πππ14The sele
ted pro
ess is J/ψ → ωa0(980)π.15 From �t to the a0(980)π 0 −+ partial wave.16 From ηπ+π− mass distribution - mainly a0(980)π - no spin{parity determination avail-able.17De
aying dominantly dire
tly to K+K−π0.18De
aying into (K K)Sπ, (K π)SK , and a0(980)π.19 From �t to the a0(980)π 0 −+ partial wave , but a0(980)π 1 + + 
annot be ex
luded.20This peak in the γ ρ 
hannel may not be related to the η(1405).21Estimated by us from various �ts.22These experiments identify only one pseudos
alar in the 1400{1500 range. Data 
ouldalso refer to η(1475).23 Systemati
 un
ertainty not evaluated.24 From best �t to 0−+ partial wave , 50% K∗(892)K , 50% a0(980)π.

η(1405) DECAY MODESη(1405) DECAY MODESη(1405) DECAY MODESη(1405) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 K K π seen�2 ηππ seen�3 a0(980)π seen�4 η (ππ)S-wave seen�5 f0(980)η seen�6 4π seen�7 ρρ <58 % 99.85%�8 γ γ�9 ρ0 γ seen�10 φγ�11 K∗(892)K seen
η(1405) �(i)�(γ γ)/�(total)η(1405) �(i)�(γ γ)/�(total)η(1405) �(i)�(γ γ)/�(total)η(1405) �(i)�(γ γ)/�(total)�(K K π

)

× �(γ γ
)/�total �1�8/��(K K π

)

× �(γ γ
)/�total �1�8/��(K K π

)

× �(γ γ
)/�total �1�8/��(K K π

)

× �(γ γ
)/�total �1�8/�VALUE (keV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.035 90 25,26 AHOHE 05 CLE2 10.6 e+ e− → e+ e−K0S K±π∓�(ηππ
)

× �(γ γ
)/�total �2�8/��(ηππ

)

× �(γ γ
)/�total �2�8/��(ηππ

)

× �(γ γ
)/�total �2�8/��(ηππ

)

× �(γ γ
)/�total �2�8/�VALUE (keV) CL% DOCUMENT ID TECN COMMENT

<0.095<0.095<0.095<0.095 95 ACCIARRI 01G L3 183{202 e+ e− → e+ e− ηπ+π−�(ρ0 γ
)

× �(γ γ
)/�total �9�8/��(ρ0 γ

)

× �(γ γ
)/�total �9�8/��(ρ0 γ

)

× �(γ γ
)/�total �9�8/��(ρ0 γ

)

× �(γ γ
)/�total �9�8/�VALUE (keV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.5 95 ALTHOFF 84E TASS e+ e− → e+ e−π+π− γ25Using η(1405) mass and width 1410 MeV and 51 MeV, respe
tively.26Assuming three-body phase-spa
e de
ay to K0S K±π∓.
η(1405) BRANCHING RATIOSη(1405) BRANCHING RATIOSη(1405) BRANCHING RATIOSη(1405) BRANCHING RATIOS�(ηππ

)/�(K K π
) �2/�1�(ηππ

)/�(K K π
) �2/�1�(ηππ

)/�(K K π
) �2/�1�(ηππ

)/�(K K π
) �2/�1VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.09±0.48 27 AMSLER 04B CBAR 0 pp → π+π−π+π− η

<0.5 90 EDWARDS 83B CBAL J/ψ → ηππγ

<1.1 90 SCHARRE 80 MRK2 J/ψ → ηππγ

<1.5 95 FOSTER 68B HBC 0.0 pp�(ρ0 γ
)/�(ηππ

) �9/�2�(ρ0 γ
)/�(ηππ

) �9/�2�(ρ0 γ
)/�(ηππ

) �9/�2�(ρ0 γ
)/�(ηππ

) �9/�2VALUE DOCUMENT ID TECN COMMENT0.111±0.0640.111±0.0640.111±0.0640.111±0.064 AMSLER 04B CBAR 0 p p�(a0(980)π)/�(K K π
) �3/�1�(a0(980)π)/�(K K π
) �3/�1�(a0(980)π)/�(K K π
) �3/�1�(a0(980)π)/�(K K π
) �3/�1VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 0.15 28 BERTIN 95 OBLX 0 p p → KK πππ

∼ 0.8 500 28 DUCH 89 ASTE pp → π+π−K±π∓K0
∼ 0.75 28 REEVES 86 SPEC 6.6 pp → K K πX�(a0(980)π)/�(ηππ

) �3/�2�(a0(980)π)/�(ηππ
) �3/�2�(a0(980)π)/�(ηππ
) �3/�2�(a0(980)π)/�(ηππ
) �3/�2VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.29±0.10 ABELE 98E CBAR 0 pp → ηπ0π0π00.19±0.04 2200 29 ALDE 97B GAM4 100 π− p → ηπ0π0 n0.56±0.04±0.03 29 AMSLER 95F CBAR 0 p p → π+π−π0π0 η�(a0(980)π)/�(η (ππ)S-wave) �3/�4�(a0(980)π)/�(η (ππ)S-wave) �3/�4�(a0(980)π)/�(η (ππ)S-wave) �3/�4�(a0(980)π)/�(η (ππ)S-wave) �3/�4VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.91±0.12 ANISOVICH 01 SPEC 0.0 p p → ηπ+π−π+π−0.15±0.04 9082 30 MANAK 00A MPS 18 π− p → ηπ+π− n0.70±0.12±0.20 31 BAI 99 BES J/ψ → γ ηπ+π−�(ρ0 γ

)/�(K K π
) �9/�1�(ρ0 γ

)/�(K K π
) �9/�1�(ρ0 γ

)/�(K K π
) �9/�1�(ρ0 γ

)/�(K K π
) �9/�1VALUE DOCUMENT ID TECN COMMENT0.0152±0.00380.0152±0.00380.0152±0.00380.0152±0.0038 32 COFFMAN 90 MRK3 J/ψ → γ γπ+π−�(η (ππ)S-wave)/�(ηππ

) �4/�2�(η (ππ)S-wave)/�(ηππ
) �4/�2�(η (ππ)S-wave)/�(ηππ
) �4/�2�(η (ππ)S-wave)/�(ηππ
) �4/�2VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.81±0.04 2200 ALDE 97B GAM4 100 π− p → ηπ0π0 n



920920920920MesonParti
le Listings
η(1405), f1(1420)�(f0(980)η)/�(ηππ

) �5/�2�(f0(980)η)/�(ηππ
) �5/�2�(f0(980)η)/�(ηππ
) �5/�2�(f0(980)η)/�(ηππ
) �5/�2VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.32±0.07 33 ANISOVICH 00 SPEC 0.9{1.2 pp → η3π0�(ρρ
)/�total �7/��(ρρ
)/�total �7/��(ρρ
)/�total �7/��(ρρ
)/�total �7/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.58<0.58<0.58<0.58 99.85 27,34 AMSLER 04B CBAR 0 p p�(K∗(892)K)/�(a0(980)π) �11/�3�(K∗(892)K)/�(a0(980)π) �11/�3�(K∗(892)K)/�(a0(980)π) �11/�3�(K∗(892)K)/�(a0(980)π) �11/�3VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.084±0.024 30 ADAMS 01B B852 18 GeV π− p → K+K−π0 n�(φγ

)/�(ρ0 γ
) �10/�9�(φγ

)/�(ρ0 γ
) �10/�9�(φγ

)/�(ρ0 γ
) �10/�9�(φγ

)/�(ρ0 γ
) �10/�9VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.77 95 35 BAI 04J BES2 J/ψ → γ γK+K−27Using the data of BAILLON 67 on pp → K K π.28Assuming that the a0(980) de
ays only into K K .29Assuming that the a0(980) de
ays only into ηπ.30 Statisti
al error only.31Assuming that the a0(980) de
ays only into ηπ.32Using B(J/ψ → γ η(1405) → γK K π)=4.2 × 10−3 and B(J/ψ → γ η(1405) →

γ γ ρ0)=6.4×10−5 and assuming that the γ ρ0 signal does not 
ome from the f1(1420).33Using preliminary Crystal Barrel data.34Assuming that the η(1405) de
ays are saturated by the ππη, K K π and ρρ modes.35Cal
ulated by us from B(J/ψ → η(1405)γ → φγγ) < 0.82 × 10−4 and B(J/ψ →
η(1405)γ → ρ0 γ γ) = (1.07 ± 0.17 ± 0.11)× 10−4.

η(1405) REFERENCESη(1405) REFERENCESη(1405) REFERENCESη(1405) REFERENCESABLIKIM 13M PR D87 092006 M. Ablikim et al. (BES III Collab.)ABLIKIM 12E PRL 108 182001 M. Ablikim et al. (BES III Collab.)ABLIKIM 11J PRL 107 182001 M. Ablikim et al. (BES III Collab.)ABLIKIM 08E PR D77 032005 M. Ablikim et al. (BES Collab.)AHOHE 05 PR D71 072001 R. Ahohe et al. (CLEO Collab.)AMSLER 04B EPJ C33 23 C. Amsler et al. (Crystal Barrel Collab.)BAI 04J PL B594 47 J.Z. Bai et al. (BES Collab.)NICHITIU 02 PL B545 261 F. Ni
hitiu et al. (OBELIX Collab.)ACCIARRI 01G PL B501 1 M. A

iarri et al. (L3 Collab.)ADAMS 01B PL B516 264 G.S. Adams et al. (BNL E852 Collab.)ANISOVICH 01 NP A690 567 A.V. Anisovi
h et al.ANISOVICH 00 PL B472 168 A.V. Anisovi
h et al.MANAK 00A PR D62 012003 J.J. Manak et al. (BNL E852 Collab.)BAI 99 PL B446 356 J.Z. Bai et al. (BES Collab.)CICALO 99 PL B462 453 C. Ci
alo et al. (OBELIX Collab.)ABELE 98E NP B514 45 A. Abele et al. (Crystal Barrel Collab.)BAI 98C PL B440 217 J.Z. Bai et al. (BES Collab.)ALDE 97B PAN 60 386 D. Alde et al. (GAMS Collab.)Translated from YAF 60 458.BERTIN 97 PL B400 226 A. Bertin et al. (OBELIX Collab.)AMSLER 95F PL B358 389 C. Amsler et al. (Crystal Barrel Collab.)BERTIN 95 PL B361 187 A. Bertin et al. (OBELIX Collab.)BUGG 95 PL B353 378 D.V. Bugg et al. (LOQM, PNPI, WASH)AUGUSTIN 92 PR D46 1951 J.E. Augustin, G. Cosme (DM2 Collab.)BOLTON 92B PRL 69 1328 T. Bolton et al. (Mark III Collab.)FUKUI 91C PL B267 293 S. Fukui et al. (SUGI, NAGO, KEK, KYOT+)AUGUSTIN 90 PR D42 10 J.E. Augustin et al. (DM2 Collab.)BAI 90C PRL 65 2507 Z. Bai et al. (Mark III Collab.)COFFMAN 90 PR D41 1410 D.M. Co�man et al. (Mark III Collab.)BISELLO 89B PR D39 701 G. Busetto et al. (DM2 Collab.)DUCH 89 ZPHY C45 223 K.D. Du
h et al. (ASTERIX Collab.) JPRATH 89 PR D40 693 M.G. Rath et al. (NDAM, BRAN, BNL, CUNY+)BIRMAN 88 PRL 61 1557 A. Birman et al. (BNL, FSU, IND, MASD) JPANDO 86 PRL 57 1296 A. Ando et al. (KEK, KYOT, NIRS, SAGA+) IJPREEVES 86 PR D34 1960 D.F. Reeves et al. (FLOR, BNL, IND+) JPCHUNG 85 PRL 55 779 S.U. Chung et al. (BNL, FLOR, IND+) JPALTHOFF 84E PL 147B 487 M. Altho� et al. (TASSO Collab.)EDWARDS 83B PRL 51 859 C. Edwards et al. (CIT, HARV, PRIN+)EDWARDS 82E PRL 49 259 C. Edwards et al. (CIT, HARV, PRIN+)Also PRL 50 219 C. Edwards et al. (CIT, HARV, PRIN+)SCHARRE 80 PL 97B 329 D.L. S
harre et al. (SLAC, LBL)FOSTER 68B NP B8 174 M. Foster et al. (CERN, CDEF)BAILLON 67 NC 50A 393 P.H. Baillon et al. (CERN, CDEF, IRAD)f1(1420) IG (JPC ) = 0+(1 + +)See the minireview under η(1405).f1(1420) MASSf1(1420) MASSf1(1420) MASSf1(1420) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1426.4± 0.9 OUR AVERAGE1426.4± 0.9 OUR AVERAGE1426.4± 0.9 OUR AVERAGE1426.4± 0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1434 ± 5 ± 5 133 1 ACHARD 07 L3 183{209 e+ e− →e+ e−K0S K±π∓1426 ± 6 711 ABDALLAH 03H DLPH 91.2 e+ e− →K0S K±π∓ + X1420 ±14 3651 NICHITIU 02 OBLX1428 ± 4 ± 2 20k ADAMS 01B B852 18 GeV π− p →K+K−π0 n1426 ± 1 BARBERIS 97C OMEG 450 pp →ppK0S K±π∓1425 ± 8 BERTIN 97 OBLX 0.0 p p →K± (K0)π∓π+π−1435 ± 9 PROKOSHKIN 97B GAM4 100 π− p → ηπ0π0 n

1430 ± 4 2 ARMSTRONG 92E OMEG 85,300 π+ p, pp →
π+ p , pp (K K π)1462 ±20 3 AUGUSTIN 92 DM2 J/ψ → γK K π1443 + 7

− 6 + 3
− 2 1100 BAI 90C MRK3 J/ψ → γK0S K±π∓1425 ±10 17 BEHREND 89 CELL γ γ → K0S K±π∓1442 ± 5 +10
−17 111 BECKER 87 MRK3 e+ e−, ωK K π1423 ± 4 GIDAL 87B MRK2 e+ e− →e+ e−K K π1417 ±13 13 AIHARA 86C TPC e+ e− →e+ e−K K π1422 ± 3 CHAUVAT 84 SPEC ISR 31.5 pp1440 ±10 4 BROMBERG 80 SPEC 100 π− p → KK πX1426 ± 6 221 DIONISI 80 HBC 4 π− p → K K πn1420 ±20 DAHL 67 HBC 1.6{4.2 π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •1430.8± 0.9 5 SOSA 99 SPEC pp → pslow(K0S K+π−) pfast1433.4± 0.8 5 SOSA 99 SPEC pp → pslow(K0S K−π+) pfast1429 ± 3 389 ARMSTRONG 89 OMEG 300 pp → K K πpp1425 ± 2 1520 ARMSTRONG 84 OMEG 85 π+ p, pp →(π+,p)(K K π)p
∼ 1420 BITYUKOV 84 SPEC 32 K− p →K+K−π0Y1From a �t with a width �xed at 55 MeV.2This result supersedes ARMSTRONG 84, ARMSTRONG 89.3 From �t to the K∗(892)K 1 + + partial wave.4Mass error in
reased to a

ount for a0(980) mass 
ut un
ertainties.5No systemati
 error given. f1(1420) WIDTHf1(1420) WIDTHf1(1420) WIDTHf1(1420) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT54.9± 2.6 OUR AVERAGE54.9± 2.6 OUR AVERAGE54.9± 2.6 OUR AVERAGE54.9± 2.6 OUR AVERAGE51 ±14 711 ABDALLAH 03H DLPH 91.2 e+ e− →K0S K±π∓ + X61 ± 8 3651 NICHITIU 02 OBLX38 ± 9 ±6 20k ADAMS 01B B852 18 GeV π− p →K+K−π0 n58 ± 4 BARBERIS 97C OMEG 450 pp →ppK0S K±π∓45 ±10 BERTIN 97 OBLX 0.0 p p →K± (K0)π∓π+π−90 ±25 PROKOSHKIN 97B GAM4 100 π− p → ηπ0π0 n58 ±10 6 ARMSTRONG 92E OMEG 85,300 π+ p, pp →

π+ p , pp (K K π)129 ±41 7 AUGUSTIN 92 DM2 J/ψ → γK K π68 +29
−18 +8

−9 1100 BAI 90C MRK3 J/ψ → γK0S K±π∓42 ±22 17 BEHREND 89 CELL γ γ → K0S K±π∓40 +17
−13 ±5 111 BECKER 87 MRK3 e+ e− → ωK K π35 +47
−20 13 AIHARA 86C TPC e+ e− →e+ e−K K π47 ±10 CHAUVAT 84 SPEC ISR 31.5 pp62 ±14 BROMBERG 80 SPEC 100 π− p → KK πX40 ±15 221 DIONISI 80 HBC 4 π− p → K K πn60 ±20 DAHL 67 HBC 1.6{4.2 π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •68.7± 2.9 8 SOSA 99 SPEC pp → pslow(K0S K+π−) pfast58.8± 3.3 8 SOSA 99 SPEC pp → pslow(K0S K−π+) pfast58 ± 8 389 ARMSTRONG 89 OMEG 300 pp → K K πpp62 ± 5 1520 ARMSTRONG 84 OMEG 85 π+ p, pp →(π+,p)(K K π)p
∼ 50 BITYUKOV 84 SPEC 32 K− p →K+K−π0Y6This result supersedes ARMSTRONG 84, ARMSTRONG 89.7 From �t to the K∗(892)K 1 + + partial wave.8No systemati
 error given.f1(1420) DECAY MODESf1(1420) DECAY MODESf1(1420) DECAY MODESf1(1420) DECAY MODESMode Fra
tion (�i /�)�1 K K π dominant�2 K K∗(892)+ 
.
. dominant�3 ηππ possibly seen�4 a0(980)π�5 ππρ�6 4π�7 ρ0 γ�8 φγ seen



921921921921See key on page 601 MesonParti
le Listingsf1(1420),ω(1420)f1(1420) �(i)�(γ γ)/�(total)f1(1420) �(i)�(γ γ)/�(total)f1(1420) �(i)�(γ γ)/�(total)f1(1420) �(i)�(γ γ)/�(total)�(K K π
)

× �(γ γ∗
)/�total�(K K π

)

× �(γ γ∗
)/�total�(K K π

)

× �(γ γ∗
)/�total�(K K π

)

× �(γ γ∗
)/�totalVALUE (keV) CL% EVTS DOCUMENT ID TECN COMMENT1.9±0.4 OUR AVERAGE1.9±0.4 OUR AVERAGE1.9±0.4 OUR AVERAGE1.9±0.4 OUR AVERAGE3.2±0.6±0.7 133 9,10 ACHARD 07 L3 183{209 e+ e− →e+ e−K0S K±π∓3.0±0.9±0.7 11,12 BEHREND 89 CELL e+ e− → e+ e−K0S K π2.3+1.0

−0.9±0.8 HILL 89 JADE e+ e− →e+ e−K±K0S π∓1.3±0.5±0.3 AIHARA 88B TPC e+ e− →e+ e−K±K0S π∓1.6±0.7±0.3 11,13 GIDAL 87B MRK2 e+ e− → e+ e−K K π

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<8.0 95 JENNI 83 MRK2 e+ e− → e+ e−K K π9From a �t with a width �xed at 55 MeV.10The form fa
tor parameter from the �t is 926 ± 78 MeV.11Assume a ρ-pole form fa
tor.12A φ - pole form fa
tor gives 
onsiderably smaller widths.13Published value divided by 2.f1(1420) BRANCHING RATIOSf1(1420) BRANCHING RATIOSf1(1420) BRANCHING RATIOSf1(1420) BRANCHING RATIOS�(K K∗(892)+ 
.
.)/�(K K π
) �2/�1�(K K∗(892)+ 
.
.)/�(K K π
) �2/�1�(K K∗(892)+ 
.
.)/�(K K π
) �2/�1�(K K∗(892)+ 
.
.)/�(K K π
) �2/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.76±0.06 BROMBERG 80 SPEC 100 π− p → KK πX0.86±0.12 DIONISI 80 HBC 4 π− p → K K πn�(ππρ
)/�(K K π

) �5/�1�(ππρ
)/�(K K π

) �5/�1�(ππρ
)/�(K K π

) �5/�1�(ππρ
)/�(K K π

) �5/�1VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.3 95 CORDEN 78 OMEG 12{15 π− p
<2.0 DAHL 67 HBC 1.6{4.2 π− p�(ηππ

)/�(K K π
) �3/�1�(ηππ

)/�(K K π
) �3/�1�(ηππ

)/�(K K π
) �3/�1�(ηππ

)/�(K K π
) �3/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.1<0.1<0.1<0.1 95 ARMSTRONG 91B OMEG 300 pp → ppηπ+ π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.35±0.75 KOPKE 89 MRK3 J/ψ → ωηππ (K K π)
<0.6 90 GIDAL 87 MRK2 e+ e− →e+ e− ηπ+π−
<0.5 95 CORDEN 78 OMEG 12{15 π− p1.5 ±0.8 DEFOIX 72 HBC 0.7 p p�(a0(980)π)/�(ηππ

) �4/�3�(a0(980)π)/�(ηππ
) �4/�3�(a0(980)π)/�(ηππ
) �4/�3�(a0(980)π)/�(ηππ
) �4/�3VALUE CL% DOCUMENT ID TECN COMMENT

>0.1>0.1>0.1>0.1 90 PROKOSHKIN 97B GAM4 100 π− p → ηπ0π0 n
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen in either mode ANDO 86 SPEC 8 π− pnot seen in either mode CORDEN 78 OMEG 12{15 π− p0.4±0.2 DEFOIX 72 HBC 0.7 p p → 7π�(4π)/�(K K∗(892)+ 
.
.) �6/�2�(4π)/�(K K∗(892)+ 
.
.) �6/�2�(4π)/�(K K∗(892)+ 
.
.) �6/�2�(4π)/�(K K∗(892)+ 
.
.) �6/�2VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.90 95 DIONISI 80 HBC 4 π− p�(K K π
)/[�(K K∗(892)+ 
.
.)+�(a0(980)π)

] �1/(�2+�4)�(K K π
)/[�(K K∗(892)+ 
.
.)+�(a0(980)π)

] �1/(�2+�4)�(K K π
)/[�(K K∗(892)+ 
.
.)+�(a0(980)π)

] �1/(�2+�4)�(K K π
)/[�(K K∗(892)+ 
.
.)+�(a0(980)π)

] �1/(�2+�4)VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.65±0.27 14 DIONISI 80 HBC 4 π− p14Cal
ulated using �(K K)/�(

ηπ
) = 0.24 ± 0.07 for a0(980) fra
tions.�(a0(980)π)/�(K K∗(892)+ 
.
.) �4/�2�(a0(980)π)/�(K K∗(892)+ 
.
.) �4/�2�(a0(980)π)/�(K K∗(892)+ 
.
.) �4/�2�(a0(980)π)/�(K K∗(892)+ 
.
.) �4/�2VALUE CL% DOCUMENT ID TECN COMMENT0.04±0.01±0.010.04±0.01±0.010.04±0.01±0.010.04±0.01±0.01 BARBERIS 98C OMEG 450 pp →pf f1(1420)ps

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.04 68 ARMSTRONG 84 OMEG 85 π+ p�(4π)/�(K K π
) �6/�1�(4π)/�(K K π
) �6/�1�(4π)/�(K K π
) �6/�1�(4π)/�(K K π
) �6/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.62<0.62<0.62<0.62 95 ARMSTRONG 89G OMEG 85 πp → 4πX

�(ρ0 γ
)/�total �7/��(ρ0 γ
)/�total �7/��(ρ0 γ
)/�total �7/��(ρ0 γ
)/�total �7/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.08 95 15 ARMSTRONG 92C SPEC 300 pp → ppπ+π− γ15Using the data on the K K π mode from ARMSTRONG 89.�(ρ0 γ
)/�(K K π

) �7/�1�(ρ0 γ
)/�(K K π

) �7/�1�(ρ0 γ
)/�(K K π

) �7/�1�(ρ0 γ
)/�(K K π

) �7/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.02<0.02<0.02<0.02 95 BARBERIS 98C OMEG 450 pp →pf f1(1420)ps�(φγ

)/�(K K π
) �8/�1�(φγ

)/�(K K π
) �8/�1�(φγ

)/�(K K π
) �8/�1�(φγ

)/�(K K π
) �8/�1VALUE DOCUMENT ID TECN COMMENT0.003±0.001±0.0010.003±0.001±0.0010.003±0.001±0.0010.003±0.001±0.001 BARBERIS 98C OMEG 450 pp →pf f1(1420)psf1(1420) REFERENCESf1(1420) REFERENCESf1(1420) REFERENCESf1(1420) REFERENCESACHARD 07 JHEP 0703 018 P. A
hard et al. (L3 Collab.)ABDALLAH 03H PL B569 129 J. Abdallah et al. (DELPHI Collab.)NICHITIU 02 PL B545 261 F. Ni
hitiu et al. (OBELIX Collab.)ADAMS 01B PL B516 264 G.S. Adams et al. (BNL E852 Collab.)SOSA 99 PRL 83 913 M. Sosa et al.BARBERIS 98C PL B440 225 D. Barberis et al. (WA 102 Collab.)BARBERIS 97C PL B413 225 D. Barberis et al. (WA 102 Collab.)BERTIN 97 PL B400 226 A. Bertin et al. (OBELIX Collab.)PROKOSHKIN 97B SPD 42 298 Yu.D. Prokoshkin, S.A. SadovskyTranslated from DANS 354 751.ARMSTRONG 92C ZPHY C54 371 T.A. Armstrong et al. (ATHU, BARI, BIRM+)ARMSTRONG 92E ZPHY C56 29 T.A. Armstrong et al. (ATHU, BARI, BIRM+) JPCAUGUSTIN 92 PR D46 1951 J.E. Augustin, G. Cosme (DM2 Collab.)ARMSTRONG 91B ZPHY C52 389 T.A. Armstrong et al. (ATHU, BARI, BIRM+)BAI 90C PRL 65 2507 Z. Bai et al. (Mark III Collab.)ARMSTRONG 89 PL B221 216 T.A. Armstrong et al. (CERN, CDEF, BIRM+) JPCARMSTRONG 89G ZPHY C43 55 T.A. Armstrong et al. (CERN, BIRM, BARI+)BEHREND 89 ZPHY C42 367 H.J. Behrend et al. (CELLO Collab.)HILL 89 ZPHY C42 355 P. Hill et al. (JADE Collab.) JPKOPKE 89 PRPL 174 67 L. Kopke et al. (CERN)AIHARA 88B PL B209 107 H. Aihara et al. (TPC-2γ Collab.)BECKER 87 PRL 59 186 J.J. Be
ker et al. (Mark III Collab.) JPGIDAL 87 PRL 59 2012 G. Gidal et al. (LBL, SLAC, HARV)GIDAL 87B PRL 59 2016 G. Gidal et al. (LBL, SLAC, HARV)AIHARA 86C PRL 57 2500 H. Aihara et al. (TPC-2γ Collab.) JPANDO 86 PRL 57 1296 A. Ando et al. (KEK, KYOT, NIRS, SAGA+)ARMSTRONG 84 PL 146B 273 T.A. Armstrong et al. (ATHU, BARI, BIRM+) JPBITYUKOV 84 SJNP 39 735 S. Bityukov et al. (SERP)Translated from YAF 39 1165.CHAUVAT 84 PL 148B 382 P. Chauvat et al. (CERN, CLER, UCLA+)JENNI 83 PR D27 1031 P. Jenni et al. (SLAC, LBL)BROMBERG 80 PR D22 1513 C.M. Bromberg et al. (CIT, FNAL, ILLC+)DIONISI 80 NP B169 1 C. Dionisi et al. (CERN, MADR, CDEF+) IJPCORDEN 78 NP B144 253 M.J. Corden et al. (BIRM, RHEL, TELA+)DEFOIX 72 NP B44 125 C. Defoix et al. (CDEF, CERN)DAHL 67 PR 163 1377 O.I. Dahl et al. (LRL) IJPAlso PRL 14 1074 D.H. Miller et al. (LRL, UCB)

ω(1420) IG (JPC ) = 0−(1−−)
ω(1420) MASSω(1420) MASSω(1420) MASSω(1420) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT(1400{1450) OUR ESTIMATE(1400{1450) OUR ESTIMATE(1400{1450) OUR ESTIMATE(1400{1450) OUR ESTIMATE

• • • We do not use the following data for averages, �ts, limits, et
. • • •1470± 50 13.1k 1 AULCHENKO 15A SND 1.05{1.80 e+ e− →
π+π−π01382± 23± 70 AUBERT 07AU BABR 10.6 e+ e− → ωπ+π− γ1350± 20± 20 AUBERT,B 04N BABR 10.6 e+ e− → π+π−π0 γ1400± 50±130 1.2M 2 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π01450± 10 3 HENNER 02 RVUE 1.2{2.0 e+ e− → ρπ, ωππ1373± 70 177 4 AKHMETSHIN 00D CMD2 1.2{1.38 e+ e− →
ωπ+π−1370± 25 5095 ANISOVICH 00H SPEC 0.0 pp → ωπ0π0π01400+100

−200 5 ACHASOV 98H RVUE e+ e− → π+π−π0
∼ 1400 6 ACHASOV 98H RVUE e+ e− → ωπ+π−
∼ 1460 7 ACHASOV 98H RVUE e+ e− → K+K−1440± 70 8 CLEGG 94 RVUE1419± 31 315 9 ANTONELLI 92 DM2 1.34{2.4e+ e− → ρπ1From a �t with 
ontributions from ω(782), φ(1020), ω(1420), and ω(1650).2 From the 
ombined �t of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, andACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− �nal states.Supersedes ACHASOV 99E and ACHASOV 02E.3Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and AN-TONELLI 92.4Using the data of AKHMETSHIN 00D and ANTONELLI 92. The ρπ dominan
e for theenergy dependen
e of the ω(1420) and ω(1650) width assumed.5Using data from BARKOV 87, DOLINSKY 91, and ANTONELLI 92.6Using the data from ANTONELLI 92.7Using the data from IVANOV 81 and BISELLO 88B.8 From a �t to two Breit-Wigner fun
tions and using the data of DOLINSKY 91 andANTONELLI 92.9 From a �t to two Breit-Wigner fun
tions interfering between them and with the ω,φ tailswith �xed (+,−,+) phases.



922922922922MesonParti
le Listings
ω(1420), f2(1430)

ω(1420) WIDTHω(1420) WIDTHω(1420) WIDTHω(1420) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT(180{250) OUR ESTIMATE(180{250) OUR ESTIMATE(180{250) OUR ESTIMATE(180{250) OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •880±170 13.1k 10 AULCHENKO 15A SND 1.05{1.80 e+ e− →

π+π−π0130± 50±100 AUBERT 07AU BABR 10.6 e+ e− → ωπ+π− γ450± 70± 70 AUBERT,B 04N BABR 10.6 e+ e− → π+π−π0 γ870+500
−300±450 1.2M 11 ACHASOV 03D RVUE 0.44{2.00 e+ e− →

π+π−π0199± 15 12 HENNER 02 RVUE 1.2{2.0 e+ e− → ρπ, ωππ188± 45 177 13 AKHMETSHIN 00D CMD2 1.2{1.38 e+ e− →
ωπ+π−360+100

− 60 5095 ANISOVICH 00H SPEC 0.0 pp → ωπ0π0π0240± 70 14 CLEGG 94 RVUE174± 59 315 15 ANTONELLI 92 DM2 1.34{2.4e+ e− → ρπ10From a �t with 
ontributions from ω(782), φ(1020), ω(1420), and ω(1650).11 From the 
ombined �t of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, andACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− �nal states.Supersedes ACHASOV 99E and ACHASOV 02E.12Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and AN-TONELLI 92.13Using the data of AKHMETSHIN 00D and ANTONELLI 92. The ρπ dominan
e for theenergy dependen
e of the ω(1420) and ω(1650) width assumed.14From a �t to two Breit-Wigner fun
tions and using the data of DOLINSKY 91 andANTONELLI 92.15 From a �t to two Breit-Wigner fun
tions interfering between them and with the ω,φ tailswith �xed (+,−,+) phases.
ω(1420) DECAY MODESω(1420) DECAY MODESω(1420) DECAY MODESω(1420) DECAY MODESMode Fra
tion (�i /�)�1 ρπ dominant�2 ωππ seen�3 b1(1235)π seen�4 e+ e− seen�5 π0 γ

ω(1420) �(i)�(e+ e−)/�2(total)ω(1420) �(i)�(e+ e−)/�2(total)ω(1420) �(i)�(e+ e−)/�2(total)ω(1420) �(i)�(e+ e−)/�2(total)�(ρπ
)/�total × �(e+ e−)/�total �1/�× �4/��(ρπ
)/�total × �(e+ e−)/�total �1/�× �4/��(ρπ
)/�total × �(e+ e−)/�total �1/�× �4/��(ρπ
)/�total × �(e+ e−)/�total �1/�× �4/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.73 ±0.08 13.1k 16 AULCHENKO 15A SND 1.05{1.80 e+ e− →
π+π−π00.82 ±0.05 ±0.06 AUBERT,B 04N BABR 10.6 e+ e− →
π+π−π0 γ0.65 ±0.13 ±0.21 1.2M 17,18 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π00.625±0.160 19,20 CLEGG 94 RVUE0.466±0.178 21,22 ANTONELLI 92 DM2 1.34{2.4e+ e− → ρπ16From a �t with 
ontributions from ω(782), φ(1020), ω(1420), and ω(1650).17Cal
ulated by us from the 
ross se
tion at the peak.18 From the 
ombined �t of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, andACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− �nal states.Supersedes ACHASOV 99E and ACHASOV 02E.19 From a �t to two Breit-Wigner fun
tions and using the data of DOLINSKY 91 andANTONELLI 92.20 From the partial and leptoni
 width given by the authors.21 From a �t to two Breit-Wigner fun
tions interfering between them and with the ω,φ tailswith �xed (+,−,+) phases.22 From the produ
t of the leptoni
 width and partial bran
hing ratio given by the authors.�(ωππ

)/�total × �(e+ e−)/�total �2/�× �4/��(ωππ
)/�total × �(e+ e−)/�total �2/�× �4/��(ωππ
)/�total × �(e+ e−)/�total �2/�× �4/��(ωππ
)/�total × �(e+ e−)/�total �2/�× �4/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •19.7±5.7 AUBERT 07AU BABR 10.6 e+ e− → ωπ+π− γ1.9±1.9 23 AKHMETSHIN 00D CMD2 1.2{2.4 e+ e− → ωπ+π−23Using the data of AKHMETSHIN 00D and ANTONELLI 92. The ρπ dominan
e for theenergy dependen
e of the ω(1420) and ω(1650) width assumed.�(π0 γ
)/�total × �(e+ e−)/�total �5/�× �4/��(π0 γ
)/�total × �(e+ e−)/�total �5/�× �4/��(π0 γ
)/�total × �(e+ e−)/�total �5/�× �4/��(π0 γ
)/�total × �(e+ e−)/�total �5/�× �4/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.03+0.70
−0.75 24 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → π0 γ24Using 1420 MeV and 220 MeV for the ω(1420) mass and width.

ω(1420) BRANCHING RATIOSω(1420) BRANCHING RATIOSω(1420) BRANCHING RATIOSω(1420) BRANCHING RATIOS�(ωππ
)/�total �2/��(ωππ
)/�total �2/��(ωππ
)/�total �2/��(ωππ
)/�total �2/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.301±0.029 25 HENNER 02 RVUE 1.2{2.0 e+ e− → ρπ, ωππpossibly seen AKHMETSHIN 00D CMD2 e+ e− → ωπ+π−

�(ωππ
)/�(b1(1235)π) �2/�3�(ωππ
)/�(b1(1235)π) �2/�3�(ωππ
)/�(b1(1235)π) �2/�3�(ωππ
)/�(b1(1235)π) �2/�3VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.60±0.16 5095 ANISOVICH 00H SPEC 0.0 pp → ωπ0π0π0�(ρπ
)/�total �1/��(ρπ
)/�total �1/��(ρπ
)/�total �1/��(ρπ
)/�total �1/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.699±0.029 25 HENNER 02 RVUE 1.2{2.0 e+ e− → ρπ, ωππ�(e+ e−)/�total �4/��(e+ e−)/�total �4/��(e+ e−)/�total �4/��(e+ e−)/�total �4/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 6.6 1.2M 26,27 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π023 ±1 25 HENNER 02 RVUE 1.2{2.0 e+ e− → ρπ, ωππ25Assuming that the ω(1420) de
ays into ρπ and ωππ only.26Cal
ulated by us from the 
ross se
tion at the peak.27Assuming that the ω(1420) de
ays into ρπ only.

ω(1420) REFERENCESω(1420) REFERENCESω(1420) REFERENCESω(1420) REFERENCESAULCHENKO 15A JETP 121 27 V.M. Aul
henko et al. (SND Collab.)Translated from ZETF 148 34.AUBERT 07AU PR D76 092005 B. Aubert et al. (BABAR Collab.)AKHMETSHIN 05 PL B605 26 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AUBERT,B 04N PR D70 072004 B. Aubert et al. (BABAR Collab.)ACHASOV 03D PR D68 052006 M.N. A
hasov et al. (Novosibirsk SND Collab.)ACHASOV 02E PR D66 032001 M.N. A
hasov et al. (Novosibirsk SND Collab.)HENNER 02 EPJ C26 3 V.K. Henner et al.ACHASOV 01E PR D63 072002 M.N. A
hasov et al. (Novosibirsk SND Collab.)AKHMETSHIN 00D PL B489 125 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)ANISOVICH 00H PL B485 341 A.V. Anisovi
h et al.ACHASOV 99E PL B462 365 M.N. A
hasov et al. (Novosibirsk SND Collab.)ACHASOV 98H PR D57 4334 N.N. A
hasov, A.A. KozhevnikovCLEGG 94 ZPHY C62 455 A.B. Clegg, A. Donna
hie (LANC, MCHS)ANTONELLI 92 ZPHY C56 15 A. Antonelli et al. (DM2 Collab.)DOLINSKY 91 PRPL 202 99 S.I. Dolinsky et al. (NOVO)BISELLO 88B ZPHY C39 13 D. Bisello et al. (PADO, CLER, FRAS+)BARKOV 87 JETPL 46 164 L.M. Barkov et al. (NOVO)Translated from ZETFP 46 132.CORDIER 81 PL 106B 155 A. Cordier et al. (ORSAY)IVANOV 81 PL 107B 297 P.M. Ivanov et al. (NOVO)f2(1430) IG (JPC ) = 0+(2 + +)OMITTED FROM SUMMARY TABLEThis entry lists nearby peaks observed in the D wave of the K K and
π+π− systems. Needs 
on�rmation.f2(1430) MASSf2(1430) MASSf2(1430) MASSf2(1430) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT

≈ 1430 OUR ESTIMATE≈ 1430 OUR ESTIMATE≈ 1430 OUR ESTIMATE≈ 1430 OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •1453± 4 1 VLADIMIRSK...01 SPEC 40 π− p → K0S K0S n1421± 5 AUGUSTIN 87 DM2 J/ψ → γπ+π−1480±50 AKESSON 86 SPEC pp → ppπ+π−1436+26

−16 DAUM 84 CNTR 17{18 π− p → K+K−n1412± 3 DAUM 84 CNTR 63 π− p → K0S K0S n, K+K− n1439+ 5
− 6 2 BEUSCH 67 OSPK 5,7,12 π− p → K0S K0S n1 JPC = 0 + + or 2++.2Not seen by WETZEL 76. f2(1430) WIDTHf2(1430) WIDTHf2(1430) WIDTHf2(1430) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •13± 5 3 VLADIMIRSK...01 SPEC 40 π− p → K0S K0S n30± 9 AUGUSTIN 87 DM2 J/ψ → γπ+π−150±50 AKESSON 86 SPEC pp → ppπ+π−81+56
−29 DAUM 84 CNTR 17{18 π− p → K+K−n14± 6 DAUM 84 CNTR 63 π− p → K0S K0S n, K+K− n43+17
−18 4 BEUSCH 67 OSPK 5,7,12 π− p → K0S K0S n3 JPC = 0 + + or 2++.4Not seen by WETZEL 76.



923923923923See key on page 601 MesonParti
le Listingsf2(1430), a0(1450)f2(1430) DECAY MODESf2(1430) DECAY MODESf2(1430) DECAY MODESf2(1430) DECAY MODESMode�1 K K�2 ππ f2(1430) REFERENCESf2(1430) REFERENCESf2(1430) REFERENCESf2(1430) REFERENCESVLADIMIRSK... 01 PAN 64 1895 V.V. Vladmirsky et al.Translated from YAF 64 1979.AUGUSTIN 87 ZPHY C36 369 J.E. Augustin et al. (LALO, CLER, FRAS+)AKESSON 86 NP B264 154 T. Akesson et al. (Axial Field Spe
. Collab.)DAUM 84 ZPHY C23 339 C. Daum et al. (AMST, CERN, CRAC, MPIM+) JPWETZEL 76 NP B115 208 W. Wetzel et al. (ETH, CERN, LOIC)BEUSCH 67 PL 25B 357 W. Beus
h et al. (ETH, CERN)a0(1450) IG (JPC ) = 1−(0 + +)See minireview on s
alar mesons under f0(500).a0(1450) MASSa0(1450) MASSa0(1450) MASSa0(1450) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1474 ±19 OUR AVERAGE1474 ±19 OUR AVERAGE1474 ±19 OUR AVERAGE1474 ±19 OUR AVERAGE1480 ±30 ABELE 98 CBAR 0.0 p p → K0LK±π∓1470 ±25 1 AMSLER 95D CBAR 0.0 p p → π0π0π0,
π0 ηη, π0π0 η

• • • We do not use the following data for averages, �ts, limits, et
. • • •1515 ±30 2 ANISOVICH 09 RVUE 0.0 p p, πN1316.8+ 0.7
− 1.0+24.7

− 4.6 3 UEHARA 09A BELL γ γ → π0 η1432 ±13 ±25 4 BUGG 08A RVUE pp1477 ±10 80k 5 UMAN 06 E835 5.2 p p → ηηπ01441 +40
−15 35280 2 BAKER 03 SPEC pp → ωπ+π−π01303 ±16 6 BARGIOTTI 03 OBLX pp1296 ±10 7 AMSLER 02 CBAR 0.9 p p → π0π0 η1565 ±30 7 ANISOVICH 98B RVUE Compilation1290 ±10 8 BERTIN 98B OBLX 0.0 p p → K±Ks π∓1450 ±40 AMSLER 94D CBAR 0.0 p p → π0π0 η1410 ±25 ETKIN 82C MPS 23 π− p → n2K0S

∼ 1300 MARTIN 78 SPEC 10 K± p → K0S πp1255 ± 5 9 CASON 761Coupled-
hannel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.2 From the pole position.3May be a di�erent state.4Using data from AMSLER 94D, ABELE 98, and BAKER 03. Supersedes BUGG 94.5 Statisti
al error only.6Coupled 
hannel analysis of π+π−π0, K+K−π0, and K±K0S π∓.7T-matrix pole.8Not 
on�rmed by BUGG 08A.9 Isospin 0 not ex
luded. a0(1450) WIDTHa0(1450) WIDTHa0(1450) WIDTHa0(1450) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT265 ±13 OUR AVERAGE265 ±13 OUR AVERAGE265 ±13 OUR AVERAGE265 ±13 OUR AVERAGE265 ±15 ABELE 98 CBAR 0.0 p p → K0LK±π∓265 ±30 10 AMSLER 95D CBAR 0.0 p p → π0π0π0,
π0 ηη, π0π0 η

• • • We do not use the following data for averages, �ts, limits, et
. • • •230 ±36 11 ANISOVICH 09 RVUE 0.0 p p, πN65.0+ 2.1
− 5.4+99.1

−32.6 12 UEHARA 09A BELL γ γ → π0 η196 ±10 ±10 13 BUGG 08A RVUE pp267 ±11 80k 14 UMAN 06 E835 5.2 p p → ηηπ0110 ±14 35280 11 BAKER 03 SPEC pp → ωπ+π−π092 ±16 15 BARGIOTTI 03 OBLX pp81 ±21 16 AMSLER 02 CBAR 0.9 p p → π0π0 η292 ±40 16 ANISOVICH 98B RVUE Compilation80 ± 5 17 BERTIN 98B OBLX 0.0 p p → K±Ks π∓270 ±40 AMSLER 94D CBAR 0.0 p p → π0π0 η230 ±30 ETKIN 82C MPS 23 π− p → n2K0S
∼ 250 MARTIN 78 SPEC 10 K± p → K0S πp79 ±10 18 CASON 7610Coupled-
hannel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.11 From the pole position.12May be a di�erent state.13Using data from AMSLER 94D, ABELE 98, and BAKER 03. Supersedes BUGG 94.14 Statisti
al error only.15Coupled 
hannel analysis of π+π−π0, K+K−π0, and K±K0S π∓.16T-matrix pole.17Not 
on�rmed by BUGG 08A.18 Isospin 0 not ex
luded.

a0(1450) DECAY MODESa0(1450) DECAY MODESa0(1450) DECAY MODESa0(1450) DECAY MODESMode Fra
tion (�i /�)�1 πη seen�2 πη′(958) seen�3 K K seen�4 ωππ seen�5 a0(980)ππ seen�6 γ γ seena0(1450) �(i)�(γ γ)/�(total)a0(1450) �(i)�(γ γ)/�(total)a0(1450) �(i)�(γ γ)/�(total)a0(1450) �(i)�(γ γ)/�(total)�(πη
)

× �(γ γ
)/�total �1�6/��(πη

)

× �(γ γ
)/�total �1�6/��(πη

)

× �(γ γ
)/�total �1�6/��(πη

)

× �(γ γ
)/�total �1�6/�VALUE (eV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •432±6+1073
− 256 19 UEHARA 09A BELL γ γ → π0 η19May be a di�erent state.a0(1450) BRANCHING RATIOSa0(1450) BRANCHING RATIOSa0(1450) BRANCHING RATIOSa0(1450) BRANCHING RATIOS�(πη′(958))/�(πη

) �2/�1�(πη′(958))/�(πη
) �2/�1�(πη′(958))/�(πη
) �2/�1�(πη′(958))/�(πη
) �2/�1VALUE DOCUMENT ID TECN COMMENT0.35±0.160.35±0.160.35±0.160.35±0.16 20 ABELE 98 CBAR 0.0 p p → K0LK±π∓

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.43±0.19 ABELE 97C CBAR 0.0 p p → π0π0 η′20Using π0 η from AMSLER 94D.�(K K)/�(πη
) �3/�1�(K K)/�(πη
) �3/�1�(K K)/�(πη
) �3/�1�(K K)/�(πη
) �3/�1VALUE DOCUMENT ID TECN COMMENT0.88±0.230.88±0.230.88±0.230.88±0.23 21 ABELE 98 CBAR 0.0 p p → K0LK±π∓21Using π0 η from AMSLER 94D.�(ωππ

)/�(πη
) �4/�1�(ωππ

)/�(πη
) �4/�1�(ωππ

)/�(πη
) �4/�1�(ωππ

)/�(πη
) �4/�1VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •10.7±2.3 35280 22 BAKER 03 SPEC pp → ωπ+π−π022Using results on pp → a0(1450)0π0, a0(1450) → ηπ0 from ABELE 96C and assumingthe ωρ me
hanism for the ωππ state.�(a0(980)ππ
)/�total �5/��(a0(980)ππ
)/�total �5/��(a0(980)ππ
)/�total �5/��(a0(980)ππ
)/�total �5/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen BUGG 08A RVUE pp�(a0(980)ππ
)/�(πη

) �5/�1�(a0(980)ππ
)/�(πη

) �5/�1�(a0(980)ππ
)/�(πη

) �5/�1�(a0(980)ππ
)/�(πη

) �5/�1VALUE DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

≤ 4.3 ANISOVICH 01 RVUE 0 p p → η2π+2π−�(γ γ
)/�total �6/��(γ γ
)/�total �6/��(γ γ
)/�total �6/��(γ γ
)/�total �6/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 23 UEHARA 09A BELL γ γ → π0 η23May be a di�erent state. a0(1450) REFERENCESa0(1450) REFERENCESa0(1450) REFERENCESa0(1450) REFERENCESANISOVICH 09 IJMP A24 2481 V.V. Anisovi
h, A.V. SarantsevUEHARA 09A PR D80 032001 S. Uehara et al. (BELLE Collab.)BUGG 08A PR D78 074023 D.V. Bugg (LOQM)UMAN 06 PR D73 052009 I. Uman et al. (FNAL E835)BAKER 03 PL B563 140 C.A. Baker et al.BARGIOTTI 03 EPJ C26 371 M. Bargiotti et al. (OBELIX Collab.)AMSLER 02 EPJ C23 29 C. Amsler et al.ANISOVICH 01 NP A690 567 A.V. Anisovi
h et al.ABELE 98 PR D57 3860 A. Abele et al. (Crystal Barrel Collab.)ANISOVICH 98B SPU 41 419 V.V. Anisovi
h et al.Translated from UFN 168 481.BERTIN 98B PL B434 180 A. Bertin et al. (OBELIX Collab.)ABELE 97C PL B404 179 A. Abele et al. (Crystal Barrel Collab.)ABELE 96C NP A609 562 A. Abele et al. (Crystal Barrel Collab.)AMSLER 95B PL B342 433 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 95C PL B353 571 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 95D PL B355 425 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 94D PL B333 277 C. Amsler et al. (Crystal Barrel Collab.) IGJPCBUGG 94 PR D50 4412 D.V. Bugg et al. (LOQM)ETKIN 82C PR D25 2446 A. Etkin et al. (BNL, CUNY, TUFTS, VAND)MARTIN 78 NP B134 392 A.D. Martin et al. (DURH, GEVA)CASON 76 PRL 36 1485 N.M. Cason et al. (NDAM, ANL)



924924924924MesonParti
le Listings
ρ(1450)
ρ(1450) IG (JPC ) = 1+(1−−)See our mini-review under the ρ(1700).

ρ(1450) MASSρ(1450) MASSρ(1450) MASSρ(1450) MASSVALUE (MeV) DOCUMENT ID1465±25 OUR ESTIMATE1465±25 OUR ESTIMATE1465±25 OUR ESTIMATE1465±25 OUR ESTIMATE This is only an edu
ated guess; the error given is larger thanthe error on the average of the published values.
ηρ0 MODEηρ0 MODEηρ0 MODEηρ0 MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1497±14 1 AKHMETSHIN 01B CMD2 e+ e− → ηγ1421±15 2 AKHMETSHIN 00D CMD2 e+ e− → ηπ+π−1470±20 ANTONELLI 88 DM2 e+ e− → ηπ+π−1446±10 FUKUI 88 SPEC 8.95 π− p → ηπ+π− n1Using the data of AKHMETSHIN 01B on e+ e− → ηγ, AKHMETSHIN 00D andANTONELLI 88 on e+ e− → ηπ+π−.2Using the data of ANTONELLI 88, DOLINSKY 91, and AKHMETSHIN 00D. The energy-independent width of the ρ(1450) and ρ(1700) mesons assumed.
ωπ MODEωπ MODEωπ MODEωπ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1544±22+11

−46 821 1 MATVIENKO 15 BELL B0 → D∗+ωπ−1491±19 7815 2 ACHASOV 13 SND 1.05{2.00 e+ e− →
π0π0 γ1582±17±25 2382 3 AKHMETSHIN 03B CMD2 e+ e → π0π0 γ1349±25+10

− 5 341 4 ALEXANDER 01B CLE2 B → D (∗)ωπ−1523±10 5 EDWARDS 00A CLE2 τ− → ωπ− ντ1463±25 6 CLEGG 94 RVUE1250 7 ASTON 80C OMEG 20{70 γ p → ωπ0 p1290±40 7 BARBER 80C SPEC 3{5 γ p → ωπ0 p1Using Breit-Wigner parameterization of the ρ(1450) and assuming equal probabilities ofthe ρ(1450) → ππ and ρ(1450) → ωπ de
ays.2 From a phenomenologi
al model based on ve
tor meson dominan
e with the interfering
ρ(1450) and ρ(1700) and their widths �xed at 400 and 250 MeV, respe
tively. Systemati
un
ertainty not estimated.3Using the data of AKHMETSHIN 03B and BISELLO 91B assuming the ωπ0 and π+π−mass dependen
e of the total width. ρ(1700) mass and width �xed at 1700 MeV and240 MeV, respe
tively.4Using Breit-Wigner parameterization of the ρ(1450) and assuming the ωπ− mass de-penden
e for the total width.5Mass-independent width parameterization. ρ(1700) mass and width �xed at 1700 MeVand 235 MeV respe
tively.6Using data from BISELLO 91B, DOLINSKY 86 and ALBRECHT 87L.7Not separated from b1(1235), not pure JP = 1− e�e
t.4π MODE4π MODE4π MODE4π MODEVALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1435±40 ABELE 01B CBAR 0.0 pn → 2π− 2π0π+1350±50 ACHASOV 97 RVUE e+ e− → 2(π+π−)1449± 4 1 ARMSTRONG 89E OMEG 300 pp → pp2(π+π−)1Not 
lear whether this observation has I=1 or 0.
ππ MODEππ MODEππ MODEππ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1350 ±20 +20

−30 63.5k 1 ABRAMOWICZ12 ZEUS e p → eπ+π− p1493 ±15 2 LEES 12G BABR e+ e− → π+π− γ1446 ± 7 ±28 5.4M 3,4 FUJIKAWA 08 BELL τ− → π−π0 ντ1328 ±15 5 SCHAEL 05C ALEP τ− → π−π0 ντ1406 ±15 87k 3,6 ANDERSON 00A CLE2 τ− → π−π0 ντ
∼ 1368 7 ABELE 99C CBAR 0.0 p d → π+π−π− p1348 ±33 BERTIN 98 OBLX 0.05{0.405 np → 2π+π−1411 ±14 8 ABELE 97 CBAR pn → π−π0π01370 +90

−70 ACHASOV 97 RVUE e+ e− → π+π−1359 ±40 6 BERTIN 97C OBLX 0.0 p p → π+π−π01282 ±37 BERTIN 97D OBLX 0.05 p p → 2π+2π−1424 ±25 BISELLO 89 DM2 e+ e− → π+π−1265.5±75.3 DUBNICKA 89 RVUE e+ e− → π+π−1292 ±17 9 KURDADZE 83 OLYA 0.64{1.4 e+ e− → π+π−1Using the KUHN 90 parametrization of the pion form fa
tor, negle
ting ρ−ω interferen
e.2Using the GOUNARIS 68 parametrization of the pion form fa
tor leaving the masses andwidths of the ρ(1450), ρ(1700), and ρ(2150) resonan
es as free parameters of the �t.3 From the GOUNARIS 68 parametrization of the pion form fa
tor.4 ∣

∣Fπ(0)∣∣2 �xed to 1.5 From the 
ombined �t of the τ− data from ANDERSON 00A and SCHAEL 05C ande+ e− data from the 
ompilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05.
ρ(1700) mass and width �xed at 1713 MeV and 235 MeV, respe
tively. SupersedesBARATE 97M.6 ρ(1700) mass and width �xed at 1700 MeV and 235 MeV, respe
tively.7 ρ(1700) mass and width �xed at 1780 MeV and 275 MeV respe
tively.8T-matrix pole.9Using for ρ(1700) mass and width 1600 ± 20 and 300 ± 10 MeV respe
tively.

K K MODEK K MODEK K MODEK K MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1422.8±6.5 27k 1 ABELE 99D CBAR ± 0.0 p p → K+K−π01K-matrix pole. Isospin not determined, 
ould be ω(1420).K K∗(892) + 
.
. MODEK K∗(892) + 
.
. MODEK K∗(892) + 
.
. MODEK K∗(892) + 
.
. MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1505±19±7 AUBERT 08S BABR 10.6 e+ e− → K K∗(892)γ

ρ(1450) WIDTHρ(1450) WIDTHρ(1450) WIDTHρ(1450) WIDTHVALUE (MeV) DOCUMENT ID400±60 OUR ESTIMATE400±60 OUR ESTIMATE400±60 OUR ESTIMATE400±60 OUR ESTIMATE This is only an edu
ated guess; the error given is larger thanthe error on the average of the published values.
ηρ0 MODEηρ0 MODEηρ0 MODEηρ0 MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •226±44 1 AKHMETSHIN 01B CMD2 e+ e− → ηγ211±31 2 AKHMETSHIN 00D CMD2 e+ e− → ηπ+π−230±30 ANTONELLI 88 DM2 e+ e− → ηπ+π−60±15 FUKUI 88 SPEC 8.95 π− p → ηπ+π− n1Using the data of AKHMETSHIN 01B on e+ e− → ηγ, AKHMETSHIN 00D andANTONELLI 88 on e+ e− → ηπ+π−.2Using the data of ANTONELLI 88, DOLINSKY 91, and AKHMETSHIN 00D. The energy-independent width of the ρ(1450) and ρ(1700) mesons assumed.
ωπ MODEωπ MODEωπ MODEωπ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •303+ 31

− 52+69
− 7 821 1 MATVIENKO 15 BELL B0 → D∗+ωπ−429± 42±10 2382 2 AKHMETSHIN 03B CMD2 e+ e → π0π0 γ547± 86+46
−45 341 3 ALEXANDER 01B CLE2 B → D (∗)ωπ−400± 35 4 EDWARDS 00A CLE2 τ− → ωπ− ντ311± 62 5 CLEGG 94 RVUE300 6 ASTON 80C OMEG 20{70 γ p → ωπ0 p320±100 6 BARBER 80C SPEC 3{5 γ p → ωπ0 p1Using Breit-Wigner parameterization of the ρ(1450) and assuming equal probabilities ofthe ρ(1450) → ππ and ρ(1450) → ωπ de
ays.2Using the data of AKHMETSHIN 03B and BISELLO 91B assuming the ωπ0 and π+π−mass dependen
e of the total width. ρ(1700) mass and width �xed at 1700 MeV and240 MeV, respe
tively.3Using Breit-Wigner parameterization of the ρ(1450) and assuming the ωπ− mass de-penden
e for the total width.4Mass-independent width parameterization. ρ(1700) mass and width �xed at 1700 MeVand 235 MeV respe
tively.5Using data from BISELLO 91B, DOLINSKY 86 and ALBRECHT 87L.6Not separated from b1(1235), not pure JP = 1− e�e
t.4π MODE4π MODE4π MODE4π MODEVALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •325±100 ABELE 01B CBAR 0.0 p n → 2π− 2π0π+
ππ MODEππ MODEππ MODEππ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •460±30+40

−45 63.5k 1 ABRAMOWICZ12 ZEUS e p → eπ+π− p427±31 2 LEES 12G BABR e+ e− → π+π− γ434±16±60 5.4M 3,4 FUJIKAWA 08 BELL τ− → π−π0 ντ468±41 5 SCHAEL 05C ALEP τ− → π−π0 ντ455±41 87k 3,6 ANDERSON 00A CLE2 τ− → π−π0 ντ
∼ 374 7 ABELE 99C CBAR 0.0 p d → π+π−π− p275±10 BERTIN 98 OBLX 0.05{0.405 np → π+π+π−343±20 8 ABELE 97 CBAR pn → π−π0π0310±40 6 BERTIN 97C OBLX 0.0 p p → π+π−π0236±36 BERTIN 97D OBLX 0.05 pp → 2π+2π−269±31 BISELLO 89 DM2 e+ e− → π+π−391±70 DUBNICKA 89 RVUE e+ e− → π+π−218±46 9 KURDADZE 83 OLYA 0.64{1.4 e+ e− → π+π−1Using the KUHN 90 parametrization of the pion form fa
tor, negle
ting ρ−ω interferen
e.2Using the GOUNARIS 68 parametrization of the pion form fa
tor leaving the masses andwidths of the ρ(1450), ρ(1700), and ρ(2150) resonan
es as free parameters of the �t.3 From the GOUNARIS 68 parametrization of the pion form fa
tor.4 ∣

∣Fπ(0)∣∣2 �xed to 1.5 From the 
ombined �t of the τ− data from ANDERSON 00A and SCHAEL 05C ande+ e− data from the 
ompilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05.
ρ(1700) mass and width �xed at 1713 MeV and 235 MeV, respe
tively. SupersedesBARATE 97M.6 ρ(1700) mass and width �xed at 1700 MeV and 235 MeV, respe
tively.7 ρ(1700) mass and width �xed at 1780 MeV and 275 MeV respe
tively.8T-matrix pole.9Using for ρ(1700) mass and width 1600 ± 20 and 300 ± 10 MeV respe
tively.
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ρ(1450)K K MODEK K MODEK K MODEK K MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •146.5±10.5 27k 1 ABELE 99D CBAR ± 0.0 p p → K+K−π01K-matrix pole. Isospin not determined, 
ould be ω(1420).K K∗(892) + 
.
. MODEK K∗(892) + 
.
. MODEK K∗(892) + 
.
. MODEK K∗(892) + 
.
. MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •418±25±4 AUBERT 08S BABR 10.6 e+ e− → K K∗(892)γ

ρ(1450) DECAY MODESρ(1450) DECAY MODESρ(1450) DECAY MODESρ(1450) DECAY MODESMode Fra
tion (�i /�)�1 ππ seen�2 4π seen�3 ωπ�4 a1(1260)π�5 h1(1170)π�6 π(1300)π�7 ρρ�8 ρ(ππ)S-wave�9 e+ e− seen�10 ηρ seen�11 a2(1320)π not seen�12 K K not seen�13 K K∗(892)+ 
.
. possibly seen�14 ηγ seen�15 f0(500)γ not seen�16 f0(980)γ not seen�17 f0(1370)γ not seen�18 f2(1270)γ not seen
ρ(1450) �(i)�(e+ e−)/�(total)ρ(1450) �(i)�(e+ e−)/�(total)ρ(1450) �(i)�(e+ e−)/�(total)ρ(1450) �(i)�(e+ e−)/�(total)�(ππ

)

× �(e+ e−)/�total �1�9/��(ππ
)

× �(e+ e−)/�total �1�9/��(ππ
)

× �(e+ e−)/�total �1�9/��(ππ
)

× �(e+ e−)/�total �1�9/�VALUE (keV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.12 1 DIEKMAN 88 RVUE e+ e− → π+π−0.027+0.015

−0.010 2 KURDADZE 83 OLYA 0.64{1.4 e+ e− → π+π−�(ηρ
)

× �(e+ e−)/�total �10�9/��(ηρ
)

× �(e+ e−)/�total �10�9/��(ηρ
)

× �(e+ e−)/�total �10�9/��(ηρ
)

× �(e+ e−)/�total �10�9/�VALUE (eV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •74±20 3 AKHMETSHIN 00D CMD2 e+ e− → ηπ+π−91±19 ANTONELLI 88 DM2 e+ e− → ηπ+π−�(ηγ

)

× �(e+ e−)/�total �14�9/��(ηγ
)

× �(e+ e−)/�total �14�9/��(ηγ
)

× �(e+ e−)/�total �14�9/��(ηγ
)

× �(e+ e−)/�total �14�9/�VALUE (eV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<16.4 4 AKHMETSHIN 05 CMD2 0.60-1.38 e+ e− → ηγ2.2±0.5±0.3 5 AKHMETSHIN 01B CMD2 e+ e− → ηγ�(K K∗(892)+ 
.
.) × �(e+ e−)/�total �13�9/��(K K∗(892)+ 
.
.) × �(e+ e−)/�total �13�9/��(K K∗(892)+ 
.
.) × �(e+ e−)/�total �13�9/��(K K∗(892)+ 
.
.) × �(e+ e−)/�total �13�9/�VALUE (eV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •127±15±6 AUBERT 08S BABR 10.6 e+ e− → K K∗(892)γ1Using total width = 235 MeV.2Using for ρ(1700) mass and width 1600 ± 20 and 300 ± 10 MeV respe
tively.3Using the data of ANTONELLI 88, DOLINSKY 91, and AKHMETSHIN 00D. The energy-independent width of the ρ(1450) and ρ(1700) mesons assumed.4 From 2γ de
ay mode of η using 1465 MeV and 310 MeV for the ρ(1450) mass andwidth. Re
al
ulated by us.5Using the data of AKHMETSHIN 01B on e+ e− → ηγ, AKHMETSHIN 00D andANTONELLI 88 on e+ e− → ηπ+π−. Re
al
ulated by us using width of 226 MeV.

ρ(1450) �(i)/�(total) × �(e+ e−)/�(total)ρ(1450) �(i)/�(total) × �(e+ e−)/�(total)ρ(1450) �(i)/�(total) × �(e+ e−)/�(total)ρ(1450) �(i)/�(total) × �(e+ e−)/�(total)�(ωπ
)/�total × �(e+ e−)/�total �3/�× �9/��(ωπ
)/�total × �(e+ e−)/�total �3/�× �9/��(ωπ
)/�total × �(e+ e−)/�total �3/�× �9/��(ωπ
)/�total × �(e+ e−)/�total �3/�× �9/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.3±0.4 7815 1 ACHASOV 13 SND 1.05{2.00 e+ e− → π0π0 γ�(ηρ
)/�total × �(e+ e−)/�total �10/�× �9/��(ηρ
)/�total × �(e+ e−)/�total �10/�× �9/��(ηρ
)/�total × �(e+ e−)/�total �10/�× �9/��(ηρ
)/�total × �(e+ e−)/�total �10/�× �9/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.3+1.1
−0.9±0.2 4.9k 2 AULCHENKO 15 SND 1.22{2.00 e+ e− →

ηπ+π−

�(f0(500)γ)/�total × �(e+ e−)/�total �15/�× �9/��(f0(500)γ)/�total × �(e+ e−)/�total �15/�× �9/��(f0(500)γ)/�total × �(e+ e−)/�total �15/�× �9/��(f0(500)γ)/�total × �(e+ e−)/�total �15/�× �9/�VALUE (units 10−9) CL% DOCUMENT ID TECN COMMENT
<4.0<4.0<4.0<4.0 90 ACHASOV 11 SND e+ e− → π0π0 γ�(f0(980)γ)/�total × �(e+ e−)/�total �16/�× �9/��(f0(980)γ)/�total × �(e+ e−)/�total �16/�× �9/��(f0(980)γ)/�total × �(e+ e−)/�total �16/�× �9/��(f0(980)γ)/�total × �(e+ e−)/�total �16/�× �9/�VALUE (units 10−9) CL% DOCUMENT ID TECN COMMENT
<2.6<2.6<2.6<2.6 90 ACHASOV 11 SND e+ e− → π0π0 γ�(f0(1370)γ)/�total × �(e+ e−)/�total �17/�× �9/��(f0(1370)γ)/�total × �(e+ e−)/�total �17/�× �9/��(f0(1370)γ)/�total × �(e+ e−)/�total �17/�× �9/��(f0(1370)γ)/�total × �(e+ e−)/�total �17/�× �9/�VALUE (units 10−9) CL% DOCUMENT ID TECN COMMENT
<3.5<3.5<3.5<3.5 90 ACHASOV 11 SND e+ e− → π0π0 γ�(f2(1270)γ)/�total × �(e+ e−)/�total �18/�× �9/��(f2(1270)γ)/�total × �(e+ e−)/�total �18/�× �9/��(f2(1270)γ)/�total × �(e+ e−)/�total �18/�× �9/��(f2(1270)γ)/�total × �(e+ e−)/�total �18/�× �9/�VALUE (units 10−9) CL% DOCUMENT ID TECN COMMENT
<0.8<0.8<0.8<0.8 90 3 ACHASOV 11 SND e+ e− → π0π0 γ1From a phenomenologi
al model based on ve
tor meson dominan
e with the interfering

ρ(1450) and ρ(1700) and their widths �xed at 400 and 250 MeV, respe
tively. Systemati
un
ertainty not estimated.2 From a �t to the e+ e− → ηπ+π− 
ross se
tion with ve
tor meson dominan
e modelin
luding ρ(770), ρ(1450), and ρ(1700) de
aying ex
lusively via ηρ(770). Masses andwidths of ve
tor states are �xed to PDG 14. Coupling 
onstants are assumed to be real.3Using Breit-Wigner parametrization of the ρ(1450) with mass and width of 1465 MeVand 400 MeV, respe
tively.
ρ(1450) BRANCHING RATIOSρ(1450) BRANCHING RATIOSρ(1450) BRANCHING RATIOSρ(1450) BRANCHING RATIOS�(ππ

)/�(4π) �1/�2�(ππ
)/�(4π) �1/�2�(ππ
)/�(4π) �1/�2�(ππ
)/�(4π) �1/�2VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.37±0.10 1,2 ABELE 01B CBAR 0.0 p n → 5π�(ωπ
)/�total �3/��(ωπ
)/�total �3/��(ωπ
)/�total �3/��(ωπ
)/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 821 3 MATVIENKO 15 BELL B0 → D∗+ωπ−seen 1.6k ACHASOV 12 SND e+ e− → π0π0 γ

∼ 0.21 CLEGG 94 RVUE�(ππ
)/�(ωπ

) �1/�3�(ππ
)/�(ωπ

) �1/�3�(ππ
)/�(ωπ

) �1/�3�(ππ
)/�(ωπ

) �1/�3VALUE DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 0.32 CLEGG 94 RVUE�(ωπ

)/�(4π) �3/�2�(ωπ
)/�(4π) �3/�2�(ωπ
)/�(4π) �3/�2�(ωπ
)/�(4π) �3/�2VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.14 CLEGG 88 RVUE�(a1(1260)π)/�(4π) �4/�2�(a1(1260)π)/�(4π) �4/�2�(a1(1260)π)/�(4π) �4/�2�(a1(1260)π)/�(4π) �4/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.27±0.08 1 ABELE 01B CBAR 0.0 p n → 5π�(h1(1170)π)/�(4π) �5/�2�(h1(1170)π)/�(4π) �5/�2�(h1(1170)π)/�(4π) �5/�2�(h1(1170)π)/�(4π) �5/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.08±0.04 1 ABELE 01B CBAR 0.0 p n → 5π�(π(1300)π)/�(4π) �6/�2�(π(1300)π)/�(4π) �6/�2�(π(1300)π)/�(4π) �6/�2�(π(1300)π)/�(4π) �6/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.37±0.13 1 ABELE 01B CBAR 0.0 p n → 5π�(ρρ

)/�(4π) �7/�2�(ρρ
)/�(4π) �7/�2�(ρρ
)/�(4π) �7/�2�(ρρ
)/�(4π) �7/�2VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.11±0.05 1 ABELE 01B CBAR 0.0 p n → 5π�(ρ(ππ)S-wave)/�(4π) �8/�2�(ρ(ππ)S-wave)/�(4π) �8/�2�(ρ(ππ)S-wave)/�(4π) �8/�2�(ρ(ππ)S-wave)/�(4π) �8/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.17±0.09 1 ABELE 01B CBAR 0.0 p n → 5π�(ηρ

)/�total �10/��(ηρ
)/�total �10/��(ηρ
)/�total �10/��(ηρ
)/�total �10/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 35 4 ACHASOV 14 SND 1.15{2.00 e+ e− → ηγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.04 DONNACHIE 87B RVUE



926926926926Meson Parti
le Listings
ρ(1450), η(1475)�(ηρ

)/�(ωπ
) �10/�3�(ηρ

)/�(ωπ
) �10/�3�(ηρ

)/�(ωπ
) �10/�3�(ηρ

)/�(ωπ
) �10/�3VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.081±0.020 5,6 AULCHENKO 15 SND 1.22{2.00 e+ e− → ηπ+π−
∼ 0.24 7 DONNACHIE 91 RVUE
>2 FUKUI 91 SPEC 8.95 π− p → ωπ0 n�(ππ

)/�(ηρ
) �1/�10�(ππ

)/�(ηρ
) �1/�10�(ππ

)/�(ηρ
) �1/�10�(ππ

)/�(ηρ
) �1/�10VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.3±0.4 5 AULCHENKO 15 SND 1.22{2.00 e+ e− → ηπ+π−�(a2(1320)π)/�total �11/��(a2(1320)π)/�total �11/��(a2(1320)π)/�total �11/��(a2(1320)π)/�total �11/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AMELIN 00 VES 37 π− p → ηπ+π− n�(K K)/�(ωπ

) �12/�3�(K K)/�(ωπ
) �12/�3�(K K)/�(ωπ
) �12/�3�(K K)/�(ωπ
) �12/�3VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.08 7 DONNACHIE 91 RVUE�(K K∗(892)+ 
.
.)/�total �13/��(K K∗(892)+ 
.
.)/�total �13/��(K K∗(892)+ 
.
.)/�total �13/��(K K∗(892)+ 
.
.)/�total �13/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •possibly seen COAN 04 CLEO τ− → K−π−K+ ντ�(ηγ

)/�total �14/��(ηγ
)/�total �14/��(ηγ
)/�total �14/��(ηγ
)/�total �14/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 35 4 ACHASOV 14 SND 1.15{2.00 e+ e− → ηγ1ωπ not in
luded.2Using ABELE 97.3Using Breit-Wigner parameterization of the ρ(1450) and assuming equal probabilities ofthe ρ(1450) → ππ and ρ(1450) → ωπ de
ays.4 From a phenomenologi
al model based on ve
tor meson dominan
e with ρ(1450) and

φ(1680) masses and widths from the PDG 12.5 From a �t to the e+ e− → ηπ+π− 
ross se
tion with ve
tor meson dominan
e modelin
luding ρ(770), ρ(1450), and ρ(1700) de
aying ex
lusively via ηρ(770). Masses andwidths of ve
tor states are �xed to PDG 14. Coupling 
onstants are assumed to be real.6Reports the inverse of the quoted value as 12.3 ± 3.1.7Using data from BISELLO 91B, DOLINSKY 86 and ALBRECHT 87L.
ρ(1450) REFERENCESρ(1450) REFERENCESρ(1450) REFERENCESρ(1450) REFERENCESAULCHENKO 15 PR D91 052013 V.M. Aul
henko et al. (SND Collab.)MATVIENKO 15 PR D92 012013 D. Matvienko et al. (BELLE Collab.)ACHASOV 14 PR D90 032002 M.N. A
hasov et al. (SND Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)ACHASOV 13 PR D88 054013 M.N. A
hasov et al. (SND Collab.)ABRAMOWICZ 12 EPJ C72 1869 H. Abramowi
z et al. (ZEUS Collab.)ACHASOV 12 JETPL 94 734 M.N. A
hasov et al.Translated from ZETFP 94 796.LEES 12G PR D86 032013 J.P. Lees et al. (BABAR Collab.)PDG 12 PR D86 010001 J. Beringer et al. (PDG Collab.)ACHASOV 11 JETP 113 75 M.N. A
hasov et al. (SND Collab.)Translated from ZETF 140 87.AUBERT 08S PR D77 092002 B. Aubert et al. (BABAR Collab.)FUJIKAWA 08 PR D78 072006 M. Fujikawa et al. (BELLE Collab.)AKHMETSHIN 05 PL B605 26 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)ALOISIO 05 PL B606 12 A. Aloisio et al. (KLOE Collab.)SCHAEL 05C PRPL 421 191 S. S
hael et al. (ALEPH Collab.)AKHMETSHIN 04 PL B578 285 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)COAN 04 PRL 92 232001 T.E. Coan et al. (CLEO Collab.)AKHMETSHIN 03B PL B562 173 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)ABELE 01B EPJ C21 261 A. Abele et al. (Crystal Barrel Collab.)AKHMETSHIN 01B PL B509 217 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)ALEXANDER 01B PR D64 092001 J.P. Alexander et al. (CLEO Collab.)AKHMETSHIN 00D PL B489 125 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AMELIN 00 NP A668 83 D. Amelin et al. (VES Collab.)ANDERSON 00A PR D61 112002 S. Anderson et al. (CLEO Collab.)EDWARDS 00A PR D61 072003 K.W. Edwards et al. (CLEO Collab.)ABELE 99C PL B450 275 A. Abele et al. (Crystal Barrel Collab.)ABELE 99D PL B468 178 A. Abele et al. (Crystal Barrel Collab.)BERTIN 98 PR D57 55 A. Bertin et al. (OBELIX Collab.)ABELE 97 PL B391 191 A. Abele et al. (Crystal Barrel Collab.)ACHASOV 97 PR D55 2663 N.N. A
hasov et al. (NOVM)BARATE 97M ZPHY C76 15 R. Barate et al. (ALEPH Collab.)BERTIN 97C PL B408 476 A. Bertin et al. (OBELIX Collab.)BERTIN 97D PL B414 220 A. Bertin et al. (OBELIX Collab.)CLEGG 94 ZPHY C62 455 A.B. Clegg, A. Donna
hie (LANC, MCHS)BISELLO 91B NPBPS B21 111 D. Bisello (DM2 Collab.)DOLINSKY 91 PRPL 202 99 S.I. Dolinsky et al. (NOVO)DONNACHIE 91 ZPHY C51 689 A. Donna
hie, A.B. Clegg (MCHS, LANC)FUKUI 91 PL B257 241 S. Fukui et al. (SUGI, NAGO, KEK, KYOT+)

KUHN 90 ZPHY C48 445 J.H. Kuhn et al. (MPIM)ARMSTRONG 89E PL B228 536 T.A. Armstrong, M. Benayoun (ATHU, BARI, BIRM+)BISELLO 89 PL B220 321 D. Bisello et al. (DM2 Collab.)DUBNICKA 89 JP G15 1349 S. Dubni
ka et al. (JINR, SLOV)ANTONELLI 88 PL B212 133 A. Antonelli et al. (DM2 Collab.)CLEGG 88 ZPHY C40 313 A.B. Clegg, A. Donna
hie (MCHS, LANC)DIEKMAN 88 PRPL 159 99 B. Diekmann (BONN)FUKUI 88 PL B202 441 S. Fukui et al. (SUGI, NAGO, KEK, KYOT+)ALBRECHT 87L PL B185 223 H. Albre
ht et al. (ARGUS Collab.)DONNACHIE 87B ZPHY C34 257 A. Donna
hie, A.B. Clegg (MCHS, LANC)DOLINSKY 86 PL B174 453 S.I. Dolinsky et al. (NOVO)BARKOV 85 NP B256 365 L.M. Barkov et al. (NOVO)KURDADZE 83 JETPL 37 733 L.M. Kurdadze et al. (NOVO)Translated from ZETFP 37 613.ASTON 80C PL 92B 211 D. Aston (BONN, CERN, EPOL, GLAS, LANC+)BARBER 80C ZPHY C4 169 D.P. Barber et al. (DARE, LANC, SHEF)GOUNARIS 68 PRL 21 244 G.J. Gounaris, J.J. Sakurai
η(1475) IG (JPC ) = 0+(0−+)See also the η(1405).

η(1475) MASSη(1475) MASSη(1475) MASSη(1475) MASSK K π MODE (K∗(892) K dominant)K K π MODE (K∗(892) K dominant)K K π MODE (K∗(892) K dominant)K K π MODE (K∗(892) K dominant)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1476± 4 OUR AVERAGE1476± 4 OUR AVERAGE1476± 4 OUR AVERAGE1476± 4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.1469±14±13 74 ACHARD 07 L3 183{209 e+ e− →e+ e−K0S K±π∓1460±19 3651 NICHITIU 02 OBLX1485± 8± 5 20k ADAMS 01B B852 18 GeV π− p → K+K−π0 n1500±10 CICALO 99 OBLX 0 p p → K±K0S π∓π+π−1464±10 BERTIN 97 OBLX 0 p p → K± (K0)π∓π+π−1460±10 BERTIN 95 OBLX 0 p p → K K πππ1490+14
− 8+ 3

−16 1100 BAI 90C MRK3 J/ψ → γK0S K±π∓1475± 4 RATH 89 MPS 21.4 π− p → nK0S K0S π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •1565± 8+ 0

−63 1 ABLIKIM 15T BES3 J/ψ → γK0S K0S η1421±14 AUGUSTIN 92 DM2 J/ψ → γK K π1Could also be the η(1405).
WEIGHTED AVERAGE
1476±4 (Error scaled by 1.3)

RATH 89 MPS 0.0
BAI 90C MRK3 0.7
BERTIN 95 OBLX 2.5
BERTIN 97 OBLX 1.4
CICALO 99 OBLX 5.8
ADAMS 01B B852 0.9
NICHITIU 02 OBLX 0.7
ACHARD 07 L3 0.1

χ2

      12.2
(Confidence Level = 0.094)

1420 1440 1460 1480 1500 1520 1540 1560

η(1475) mass, K K π mode (K∗(892) K dominant) (MeV)
η(1475) WIDTHη(1475) WIDTHη(1475) WIDTHη(1475) WIDTHK K π MODE (K∗(892) K dominant)K K π MODE (K∗(892) K dominant)K K π MODE (K∗(892) K dominant)K K π MODE (K∗(892) K dominant)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT85± 9 OUR AVERAGE85± 9 OUR AVERAGE85± 9 OUR AVERAGE85± 9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.67±18± 7 74 ACHARD 07 L3 183{209 e+ e− →e+ e−K0S K±π∓120±19 3651 NICHITIU 02 OBLX98±18± 3 20k ADAMS 01B B852 18 GeV π− p → K+K−π0 n100±20 CICALO 99 OBLX 0 p p → K±K0S π∓π+π−105±15 BERTIN 97 OBLX 0.0 p p → K± (K0)π∓π+π−105±15 BERTIN 95 OBLX 0 p p → K K πππ63±18 AUGUSTIN 92 DM2 J/ψ → γK K π54+37

−21+13
−24 BAI 90C MRK3 J/ψ → γK0S K±π∓51±13 RATH 89 MPS 21.4 π− p → nK0S K0S π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •54+14
−13+21

−28 1 ABLIKIM 15T BES3 J/ψ → γK0S K0S η



927927927927See key on page 601 Meson Parti
le Listings
η(1475), f0(1500)1Could also be the η(1405).

WEIGHTED AVERAGE
85±9 (Error scaled by 1.5)

RATH 89 MPS 7.0
BAI 90C MRK3 0.7
AUGUSTIN 92 DM2 1.5
BERTIN 95 OBLX 1.7
BERTIN 97 OBLX 1.7
CICALO 99 OBLX 0.5
ADAMS 01B B852 0.5
NICHITIU 02 OBLX 3.3
ACHARD 07 L3 0.9

χ2

      17.9
(Confidence Level = 0.022)

-50 0 50 100 150 200 250

η(1475) width K K π mode (K∗(892) K dominant)
η(1475) DECAY MODESη(1475) DECAY MODESη(1475) DECAY MODESη(1475) DECAY MODESMode Fra
tion (�i /�)�1 K K π dominant�2 K K∗(892)+ 
.
. seen�3 a0(980)π seen�4 γ γ seen�5 K0S K0S η possibly seen

η(1475) �(i)�(γ γ)/�(total)η(1475) �(i)�(γ γ)/�(total)η(1475) �(i)�(γ γ)/�(total)η(1475) �(i)�(γ γ)/�(total)�(K K π
)

× �(γ γ
)/�total �1�4/��(K K π

)

× �(γ γ
)/�total �1�4/��(K K π

)

× �(γ γ
)/�total �1�4/��(K K π

)

× �(γ γ
)/�total �1�4/�VALUE (keV) CL% EVTS DOCUMENT ID TECN COMMENT0.23±0.05±0.050.23±0.05±0.050.23±0.05±0.050.23±0.05±0.05 74 1 ACHARD 07 L3 183{209 e+ e− →e+ e−K0S K±π∓

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 0.089 90 2,3 AHOHE 05 CLE2 10.6 e+ e− →e+ e−K0S K±π∓1Supersedes ACCIARRI 01G. Compatible with K∗K de
ay. Using B(K0S → π+π−)=0.6895.2Using η(1475) mass of 1481 MeV and width of 48MeV. The upper limit in
reases to0.140 keV if the world average value, 87 MeV, of the width is used.3Assuming three-body phase-spa
e de
ay to K0S K±π∓.
η(1475) BRANCHING RATIOSη(1475) BRANCHING RATIOSη(1475) BRANCHING RATIOSη(1475) BRANCHING RATIOS�(K K∗(892)+ 
.
.)/�(K K π

) �2/�1�(K K∗(892)+ 
.
.)/�(K K π
) �2/�1�(K K∗(892)+ 
.
.)/�(K K π
) �2/�1�(K K∗(892)+ 
.
.)/�(K K π
) �2/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.50±0.10 1 BAILLON 67 HBC 0.0 p p → K K πππ1Data 
ould also refer to η(1405).�(K K∗(892)+ 
.
.)/[�(K K∗(892)+ 
.
.)+�(a0(980)π)
] �2/(�2+�3)�(K K∗(892)+ 
.
.)/[�(K K∗(892)+ 
.
.)+�(a0(980)π)
] �2/(�2+�3)�(K K∗(892)+ 
.
.)/[�(K K∗(892)+ 
.
.)+�(a0(980)π)
] �2/(�2+�3)�(K K∗(892)+ 
.
.)/[�(K K∗(892)+ 
.
.)+�(a0(980)π)
] �2/(�2+�3)VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.25 90 EDWARDS 82E CBAL J/ψ → K+K−π0 γ

η(1475) REFERENCESη(1475) REFERENCESη(1475) REFERENCESη(1475) REFERENCESABLIKIM 15T PRL 115 091803 M. Ablikim et al. (BES III Collab.)ACHARD 07 JHEP 0703 018 P. A
hard et al. (L3 Collab.)AHOHE 05 PR D71 072001 R. Ahohe et al. (CLEO Collab.)NICHITIU 02 PL B545 261 F. Ni
hitiu et al. (OBELIX Collab.)ACCIARRI 01G PL B501 1 M. A

iarri et al. (L3 Collab.)ADAMS 01B PL B516 264 G.S. Adams et al. (BNL E852 Collab.)CICALO 99 PL B462 453 C. Ci
alo et al. (OBELIX Collab.)BERTIN 97 PL B400 226 A. Bertin et al. (OBELIX Collab.)BERTIN 95 PL B361 187 A. Bertin et al. (OBELIX Collab.)AUGUSTIN 92 PR D46 1951 J.E. Augustin, G. Cosme (DM2 Collab.)BAI 90C PRL 65 2507 Z. Bai et al. (Mark III Collab.)RATH 89 PR D40 693 M.G. Rath et al. (NDAM, BRAN, BNL, CUNY+)EDWARDS 82E PRL 49 259 C. Edwards et al. (CIT, HARV, PRIN+)BAILLON 67 NC 50A 393 P.H. Baillon et al. (CERN, CDEF, IRAD)

f0(1500) IG (JPC ) = 0+(0 + +)See also the mini-reviews on s
alar mesons under f0(500) (see theindex for the page number) and on non-qq 
andidates in PDG 06,Journal of Physi
s G33G33G33G33 1 (2006).f0(1500) MASSf0(1500) MASSf0(1500) MASSf0(1500) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1504± 6 OUR AVERAGE1504± 6 OUR AVERAGE1504± 6 OUR AVERAGE1504± 6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.1468+14
−15+ 23

− 74 5.5k 1 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη1466± 6± 20 ABLIKIM 06V BES2 e+ e− → J/ψ → γπ+π−1515±12 2 BARBERIS 00A 450 pp → pf ηηps1511± 9 2,3 BARBERIS 00C 450 pp → pf 4πps1510± 8 2 BARBERIS 00E 450 pp → pf ηηps1522±25 BERTIN 98 OBLX 0.05{0.405 np → π+π+π−1449±20 2 BERTIN 97C OBLX 0.0 p p → π+π−π01515±20 ABELE 96B CBAR 0.0 p p → π0K0LK0L1500±15 4 AMSLER 95B CBAR 0.0 p p → 3π01505±15 5 AMSLER 95C CBAR 0.0 p p → ηηπ0
• • • We do not use the following data for averages, �ts, limits, et
. • • •1447±16± 13 163 6,7 DOBBS 15 J/ψ → γπ+π−1442± 9± 4 261 6,7 DOBBS 15 ψ(2S) → γπ+π−1486±10 2 ANISOVICH 09 RVUE 0.0 p p, πN1470±60 568 8 KLEMPT 08 E791 D+s → π−π+π+1470+ 6

− 7+ 72
−255 9 UEHARA 08A BELL 10.6 e+ e− → e+ e−π0π01495± 4 AMSLER 06 CBAR 0.9 p p → K+K−π01539±20 9.9k AUBERT 06O BABR B+ → K+K+K−1473± 5 80k 10,11 UMAN 06 E835 5.2 p p → ηηπ01478± 6 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n1493± 7 10 BINON 05 GAMS 33 π− p → ηηn1524±14 1400 12 GARMASH 05 BELL B+ → K+K+K−1489+ 8

− 4 13 ANISOVICH 03 RVUE1490±30 10 ABELE 01 CBAR 0.0 p d → π− 4π0 p1497±10 10 BARBERIS 99 OMEG 450 pp → ps pf K+K−1502±10 10 BARBERIS 99B OMEG 450 pp → ps pf π+π−1502±12± 10 14 BARBERIS 99D OMEG 450 pp → K+K−, π+π−1530±45 10 BELLAZZINI 99 GAM4 450 pp → ppπ0 π01505±18 10 FRENCH 99 300 pp → pf (K+K−)ps1447±27 15 KAMINSKI 99 RVUE ππ → ππ, KK , σσ1580±80 10 ALDE 98 GAM4 100 π− p → π0π0 n1499± 8 2 ANISOVICH 98B RVUE Compilation
∼ 1520 REYES 98 SPEC 800 pp → ps pf K0S K0S1510±20 2 BARBERIS 97B OMEG 450 pp → pp2(π+ π−)
∼ 1475 FRABETTI 97D E687 D±s → π∓π±π±

∼ 1505 ABELE 96 CBAR 0.0 p p → 5π01500± 8 2 ABELE 96C RVUE Compilation1460±20 120 10 AMELIN 96B VES 37 π−A → ηηπ−A1500± 8 BUGG 96 RVUE1500±10 16 AMSLER 95D CBAR 0.0 p p → π0π0π0, π0 ηη,
π0π0 η1445± 5 17 ANTINORI 95 OMEG 300,450 pp → pp2(π+π−)1497±30 10 ANTINORI 95 OMEG 300,450 pp → ppπ+π−

∼ 1505 BUGG 95 MRK3 J/ψ → γπ+π−π+π−1446± 5 10 ABATZIS 94 OMEG 450 pp → pp2(π+ π−)1545±25 10 AMSLER 94E CBAR 0.0 p p → π0 ηη′1520±25 2,18 ANISOVICH 94 CBAR 0.0 p p → 3π0 ,π0 ηη1505±20 2,19 BUGG 94 RVUE pp → 3π0, ηηπ0, ηπ0π01560±25 10 AMSLER 92 CBAR 0.0 p p → π0 ηη1550±45± 30 10 BELADIDZE 92C VES 36 π−Be → π− η′ ηBe1449± 4 10 ARMSTRONG 89E OMEG 300 pp → pp2(π+ π−)1610±20 10 ALDE 88 GAM4 300 π−N → π−N 2η
∼ 1525 ASTON 88D LASS 11 K− p → K0S K0S �1570±20 600 10 ALDE 87 GAM4 100 π− p → 4π0 n1575±45 20 ALDE 86D GAM4 100 π− p → 2ηn1568±33 10 BINON 84C GAM2 38 π− p → ηη′ n1592±25 10 BINON 83 GAM2 38 π− p → 2ηn1525± 5 10 GRAY 83 DBC 0.0 pN → 3π1From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.2T-matrix pole.3Average between π+π− 2π0 and 2(π+π−).4T-matrix pole, supersedes ANISOVICH 94.5T-matrix pole, supersedes ANISOVICH 94 and AMSLER 92.6Using CLEO-
 data but not authored by the CLEO Collaboration.7 From a �t to a Breit-Wigner line shape with �xed � = 109 MeV.8Reanalysis of AITALA 01A data. This state 
ould also be f0(1370).9Breit-Wigner mass. May also be the f0(1370).10Breit-Wigner mass.11 Statisti
al error only.



928928928928MesonParti
le Listingsf0(1500)12Breit-Wigner, solution 1, PWA ambiguous.13K-matrix pole from 
ombined analysis of π− p → π0π0 n, π− p → K K n,
π+π− → π+π−, p p → π0π0π0, π0 ηη, π0π0 η, π+π−π0, K+K−π0, K0S K0S π0,K+K0S π− at rest, p n → π−π−π+, K0S K−π0, K0S K0S π− at rest.14 Supersedes BARBERIS 99 and BARBERIS 99B.15T-matrix pole on sheet −−+.16T-matrix pole. Coupled-
hannel analysis of AMSLER 95B, AMSLER 95C, and AM-SLER 94D.17 Supersedes ABATZIS 94, ARMSTRONG 89E. Breit-Wigner mass.18 From a simultaneous analysis of the annihilations p p → 3π0 ,π0 ηη.19Reanalysis of ANISOVICH 94 data.20 From 
entral value and spread of two solutions. Breit-Wigner mass.

WEIGHTED AVERAGE
1504±6 (Error scaled by 1.3)

AMSLER 95C CBAR 0.0
AMSLER 95B CBAR 0.1
ABELE 96B CBAR 0.3
BERTIN 97C OBLX 7.7
BERTIN 98 OBLX 0.5
BARBERIS 00E 0.5
BARBERIS 00C 0.5
BARBERIS 00A 0.8
ABLIKIM 06V BES2 3.4
ABLIKIM 13N BES3 1.8

χ2

      15.6
(Confidence Level = 0.077)

1400 1450 1500 1550 1600 1650f0(1500) mass (MeV) f0(1500) WIDTHf0(1500) WIDTHf0(1500) WIDTHf0(1500) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT109± 7 OUR AVERAGE109± 7 OUR AVERAGE109± 7 OUR AVERAGE109± 7 OUR AVERAGE136+ 41
− 26+ 28

−100 5.5k 21 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη108+ 14
− 11± 25 ABLIKIM 06V BES2 e+ e− → J/ψ → γπ+π−110± 24 22 BARBERIS 00A 450 pp → pf ηηps102± 18 22,23 BARBERIS 00C 450 pp → pf 4πps110± 16 22 BARBERIS 00E 450 pp → pf ηηps108± 33 BERTIN 98 OBLX 0.05{0.405 np → π+π+π−114± 30 22 BERTIN 97C OBLX 0.0 p p → π+π−π0105± 15 ABELE 96B CBAR 0.0 p p → π0K0LK0L120± 25 24 AMSLER 95B CBAR 0.0 p p → 3π0120± 30 25 AMSLER 95C CBAR 0.0 p p → ηηπ0

• • • We do not use the following data for averages, �ts, limits, et
. • • •114± 10 22 ANISOVICH 09 RVUE 0.0 p p, πN90+ 2
− 1+ 50

− 22 26 UEHARA 08A BELL 10.6 e+ e− → e+ e−π0π0121± 8 AMSLER 06 CBAR 0.9 p p → K+K−π0257± 33 9.9k AUBERT 06O BABR B+ → K+K+K−108± 9 80k 27,28 UMAN 06 E835 5.2 p p → ηηπ0119± 10 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n90± 15 27 BINON 05 GAMS 33 π− p → ηηn136± 23 1400 29 GARMASH 05 BELL B+ → K+K+K−102± 10 30 ANISOVICH 03 RVUE140± 40 27 ABELE 01 CBAR 0.0 p d → π− 4π0 p104± 25 27 BARBERIS 99 OMEG 450 pp → ps pf K+K−131± 15 27 BARBERIS 99B OMEG 450 pp → ps pf π+π−98± 18± 16 31 BARBERIS 99D OMEG 450 pp → K+K−, π+π−160± 50 27 BELLAZZINI 99 GAM4 450 pp → ppπ0 π0100± 33 27 FRENCH 99 300 pp → pf (K+K−)ps108± 46 32 KAMINSKI 99 RVUE ππ → ππ, KK , σσ280±100 27 ALDE 98 GAM4 100 π− p → π0π0 n130± 20 22 ANISOVICH 98B RVUE Compilation120± 35 22 BARBERIS 97B OMEG 450 pp → pp2(π+ π−)
∼ 100 FRABETTI 97D E687 D±s → π∓π±π±

∼ 169 ABELE 96 CBAR 0.0 p p → 5π0100± 30 120 27 AMELIN 96B VES 37 π−A → ηηπ−A132± 15 BUGG 96 RVUE154± 30 33 AMSLER 95D CBAR 0.0 p p → π0π0π0, π0 ηη,
π0π0 η65± 10 34 ANTINORI 95 OMEG 300,450 pp → pp2(π+π−)199± 30 27 ANTINORI 95 OMEG 300,450 pp → ppπ+π−56± 12 27 ABATZIS 94 OMEG 450 pp → pp2(π+ π−)100± 40 27 AMSLER 94E CBAR 0.0 p p → π0 ηη′

148+ 20
− 25 22,35 ANISOVICH 94 CBAR 0.0 p p → 3π0 ,π0 ηη150± 20 22,36 BUGG 94 RVUE pp → 3π0, ηηπ0, ηπ0π0245± 50 27 AMSLER 92 CBAR 0.0 p p → π0 ηη153± 67± 50 27 BELADIDZE 92C VES 36 π−Be → π− η′ ηBe78± 18 27 ARMSTRONG 89E OMEG 300 pp → pp2(π+ π−)170± 40 27 ALDE 88 GAM4 300 π−N → π−N 2η150± 20 600 27 ALDE 87 GAM4 100 π− p → 4π0 n265± 65 37 ALDE 86D GAM4 100 π− p → 2ηn260± 60 27 BINON 84C GAM2 38 π− p → ηη′ n210± 40 27 BINON 83 GAM2 38 π− p → 2ηn101± 13 27 GRAY 83 DBC 0.0 pN → 3π21From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.22T-matrix pole.23Average between π+π− 2π0 and 2(π+π−).24T-matrix pole, supersedes ANISOVICH 94.25T-matrix pole, supersedes ANISOVICH 94 and AMSLER 92.26Breit-Wigner width. May also be the f0(1370).27Breit-Wigner width.28 Statisti
al error only.29Breit-Wigner, solution 1, PWA ambiguous.30K-matrix pole from 
ombined analysis of π− p → π0π0 n, π− p → K K n,
π+π− → π+π−, p p → π0π0π0, π0 ηη, π0π0 η, π+π−π0, K+K−π0, K0S K0S π0,K+K0S π− at rest, p n → π−π−π+, K0S K−π0, K0S K0S π− at rest.31 Supersedes BARBERIS 99 and BARBERIS 99B.32T-matrix pole on sheet −−+.33T-matrix pole. Coupled-
hannel analysis of AMSLER 95B, AMSLER 95C, and AM-SLER 94D.34 Supersedes ABATZIS 94, ARMSTRONG 89E. Breit-Wigner mass.35 From a simultaneous analysis of the annihilations p p → 3π0 ,π0 ηη.36Reanalysis of ANISOVICH 94 data.37 From 
entral value and spread of two solutions. Breit-Wigner mass.f0(1500) DECAY MODESf0(1500) DECAY MODESf0(1500) DECAY MODESf0(1500) DECAY MODESMode Fra
tion (�i /�) S
ale fa
tor�1 ππ (34.9±2.3) % 1.2�2 π+π− seen�3 2π0 seen�4 4π (49.5±3.3) % 1.2�5 4π0 seen�6 2π+2π− seen�7 2(ππ)S-wave seen�8 ρρ seen�9 π(1300)π seen�10 a1(1260)π seen�11 ηη ( 5.1±0.9) % 1.4�12 ηη′(958) ( 1.9±0.8) % 1.7�13 K K ( 8.6±1.0) % 1.1�14 γ γ not seenCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 6 bran
hing ratios uses 10 measurements and one
onstraint to determine 5 parameters. The overall �t has a χ2 =11.4 for 6 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x4 −83x11 11 −52x12 −5 −31 29x13 39 −67 33 6x1 x4 x11 x12f0(1500) �(i)�(γ γ)/�(total)f0(1500) �(i)�(γ γ)/�(total)f0(1500) �(i)�(γ γ)/�(total)f0(1500) �(i)�(γ γ)/�(total)�(ππ
)

× �(γ γ
)/�total �1�14/��(ππ

)

× �(γ γ
)/�total �1�14/��(ππ

)

× �(γ γ
)/�total �1�14/��(ππ

)

× �(γ γ
)/�total �1�14/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •33+12
− 6+1809

− 21 38 UEHARA 08A BELL 10.6 e+ e− → e+ e−π0π0not seen ACCIARRI 01H L3 γ γ → K0S K0S , Eee
m= 91,183{209 GeV
<460 95 BARATE 00E ALEP γ γ → π+π−38May also be the f0(1370). Multiplied by us by 3 to obtain the ππ value.



929929929929See key on page 601 Meson Parti
le Listingsf0(1500)f0(1500) BRANCHING RATIOSf0(1500) BRANCHING RATIOSf0(1500) BRANCHING RATIOSf0(1500) BRANCHING RATIOS�(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/�VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.454±0.104 BUGG 96 RVUE�(π+π−)/�total �2/��(π+π−)/�total �2/��(π+π−)/�total �2/��(π+π−)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen BERTIN 98 OBLX 0.05{0.405 np → π+π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •possibly seen FRABETTI 97D E687 D±s → π∓π±π±�(4π)/�(ππ

) �4/�1�(4π)/�(ππ
) �4/�1�(4π)/�(ππ
) �4/�1�(4π)/�(ππ
) �4/�1VALUE DOCUMENT ID TECN COMMENT1.42±0.18 OUR FIT1.42±0.18 OUR FIT1.42±0.18 OUR FIT1.42±0.18 OUR FIT Error in
ludes s
ale fa
tor of 1.2.1.42±0.18 OUR AVERAGE1.42±0.18 OUR AVERAGE1.42±0.18 OUR AVERAGE1.42±0.18 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1.37±0.16 BARBERIS 00D 450 pp → pf 4πps2.1 ±0.6 39 AMSLER 98 RVUE

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.1 ±0.2 40 ANISOVICH 02D SPEC Combined �t3.4 ±0.8 39 ABELE 96 CBAR 0.0 p p → 5π0�(2(ππ)S-wave)/�(ππ
) �7/�1�(2(ππ)S-wave)/�(ππ
) �7/�1�(2(ππ)S-wave)/�(ππ
) �7/�1�(2(ππ)S-wave)/�(ππ
) �7/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.42±0.26 41 ABELE 01 CBAR 0.0 p d → π− 4π0 p�(2(ππ)S-wave)/�(4π) �7/�4�(2(ππ)S-wave)/�(4π) �7/�4�(2(ππ)S-wave)/�(4π) �7/�4�(2(ππ)S-wave)/�(4π) �7/�4VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.26±0.07 ABELE 01B CBAR 0.0 p d → 5πp�(ρρ

)/�(4π) �8/�4�(ρρ
)/�(4π) �8/�4�(ρρ
)/�(4π) �8/�4�(ρρ
)/�(4π) �8/�4VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.13±0.08 ABELE 01B CBAR 0.0 p d → 5πp�(ρρ
)/�(2(ππ)S-wave) �8/�7�(ρρ
)/�(2(ππ)S-wave) �8/�7�(ρρ
)/�(2(ππ)S-wave) �8/�7�(ρρ
)/�(2(ππ)S-wave) �8/�7VALUE DOCUMENT ID COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.3±0.5 BARBERIS 00C 450 pp → pf π+π− 2π0 ps2.6±0.4 BARBERIS 00C 450 pp → pf 2(π+π−)ps�(π(1300)π)/�(4π) �9/�4�(π(1300)π)/�(4π) �9/�4�(π(1300)π)/�(4π) �9/�4�(π(1300)π)/�(4π) �9/�4VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.50±0.25 ABELE 01B CBAR 0.0 p d → 5πp�(a1(1260)π)/�(4π) �10/�4�(a1(1260)π)/�(4π) �10/�4�(a1(1260)π)/�(4π) �10/�4�(a1(1260)π)/�(4π) �10/�4VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.12±0.05 ABELE 01B CBAR 0.0 p d → 5πp�(ηη

)/�total �11/��(ηη
)/�total �11/��(ηη
)/�total �11/��(ηη
)/�total �11/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •large ALDE 88 GAM4 300 π−N → ηηπ−Nlarge BINON 83 GAM2 38 π− p → 2ηn�(ηη
)/�(ππ

) �11/�1�(ηη
)/�(ππ

) �11/�1�(ηη
)/�(ππ

) �11/�1�(ηη
)/�(ππ

) �11/�1VALUE DOCUMENT ID TECN COMMENT0.145±0.027 OUR FIT0.145±0.027 OUR FIT0.145±0.027 OUR FIT0.145±0.027 OUR FIT Error in
ludes s
ale fa
tor of 1.5.0.14 ±0.04 OUR AVERAGE0.14 ±0.04 OUR AVERAGE0.14 ±0.04 OUR AVERAGE0.14 ±0.04 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.0.080±0.033 AMSLER 02 CBAR 0.9 pp → π0 ηη, π0π0π00.18 ±0.03 BARBERIS 00E 450 pp → pf ηηps0.230±0.097 42 AMSLER 95C CBAR 0.0 pp → ηηπ0

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.11 ±0.03 40 ANISOVICH 02D SPEC Combined �t0.078±0.013 43 ABELE 96C RVUE Compilation0.157±0.060 44 AMSLER 95D CBAR 0.0 pp → π0π0π0, π0 ηη, π0π0 η

WEIGHTED AVERAGE
0.14±0.04 (Error scaled by 1.7)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

AMSLER 95C CBAR 0.9
BARBERIS 00E 1.8
AMSLER 02 CBAR 3.2

χ2

       5.9
(Confidence Level = 0.051)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6�(

ηη
)/�(

ππ
) �11/�1�(4π0)/�(ηη

) �5/�11�(4π0)/�(ηη
) �5/�11�(4π0)/�(ηη
) �5/�11�(4π0)/�(ηη
) �5/�11VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.8±0.3 ALDE 87 GAM4 100 π− p → 4π0 n�(ηη′(958))/�(ππ
) �12/�1�(ηη′(958))/�(ππ
) �12/�1�(ηη′(958))/�(ππ
) �12/�1�(ηη′(958))/�(ππ
) �12/�1VALUE DOCUMENT ID TECN COMMENT0.055±0.024 OUR FIT0.055±0.024 OUR FIT0.055±0.024 OUR FIT0.055±0.024 OUR FIT Error in
ludes s
ale fa
tor of 1.8.0.095±0.0260.095±0.0260.095±0.0260.095±0.026 BARBERIS 00A 450 pp → pf ηηps

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.005±0.003 40 ANISOVICH 02D SPEC Combined �t�(ηη′(958))/�(ηη
) �12/�11�(ηη′(958))/�(ηη
) �12/�11�(ηη′(958))/�(ηη
) �12/�11�(ηη′(958))/�(ηη
) �12/�11VALUE DOCUMENT ID TECN COMMENT0.38±0.16 OUR FIT0.38±0.16 OUR FIT0.38±0.16 OUR FIT0.38±0.16 OUR FIT Error in
ludes s
ale fa
tor of 1.9.0.29±0.100.29±0.100.29±0.100.29±0.10 45 AMSLER 95C CBAR 0.0 p p → ηηπ0

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.05±0.03 40 ANISOVICH 02D SPEC Combined �t0.84±0.23 ABELE 96C RVUE Compilation2.7 ±0.8 BINON 84C GAM2 38 π− p → ηη′ n�(K K)/�total �13/��(K K)/�total �13/��(K K)/�total �13/��(K K)/�total �13/�VALUE DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.044±0.021 BUGG 96 RVUE�(K K)/�(ππ

) �13/�1�(K K)/�(ππ
) �13/�1�(K K)/�(ππ
) �13/�1�(K K)/�(ππ
) �13/�1VALUE DOCUMENT ID TECN COMMENT0.246±0.026 OUR FIT0.246±0.026 OUR FIT0.246±0.026 OUR FIT0.246±0.026 OUR FIT0.241±0.028 OUR AVERAGE0.241±0.028 OUR AVERAGE0.241±0.028 OUR AVERAGE0.241±0.028 OUR AVERAGE0.25 ±0.03 46 BARGIOTTI 03 OBLX p p0.19 ±0.07 47 ABELE 98 CBAR 0.0 pp → K0LK±π∓

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.16 ±0.05 40 ANISOVICH 02D SPEC Combined �t0.33 ±0.03 ±0.07 BARBERIS 99D OMEG 450 pp → K+K−, π+π−0.20 ±0.08 48 ABELE 96B CBAR 0.0 pp → π0K0LK0L�(K K)/�(ηη
) �13/�11�(K K)/�(ηη
) �13/�11�(K K)/�(ηη
) �13/�11�(K K)/�(ηη
) �13/�11VALUE CL% DOCUMENT ID TECN COMMENT1.69±0.33 OUR FIT1.69±0.33 OUR FIT1.69±0.33 OUR FIT1.69±0.33 OUR FIT Error in
ludes s
ale fa
tor of 1.4.1.85±0.411.85±0.411.85±0.411.85±0.41 BARBERIS 00E 450 pp → pf ηηps

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.5 ±0.6 40 ANISOVICH 02D SPEC Combined �t
<0.4 90 49 PROKOSHKIN 91 GAM4 300 π− p → π− pηη

<0.6 50 BINON 83 GAM2 38 π− p → 2ηn39Ex
luding ρρ 
ontribution to 4π.40 From a 
ombined K-matrix analysis of Crystal Barrel (0. pp → π0π0π0, π0 ηη,
π0π0 η), GAMS (πp → π0π0 n, ηηn, ηη′ n), and BNL (πp → K K n) data.41 From the 
ombined data of ABELE 96 and ABELE 96C.42Using AMSLER 95B (3π0).



930930930930Meson Parti
le Listingsf0(1500), f1(1510)43 2π width determined to be 60 ± 12 MeV.44Coupled-
hannel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.45Using AMSLER 94E (ηη′ π0).46Coupled 
hannel analysis of π+π−π0, K+K−π0, and K±K0S π∓.47Using π0π0 from AMSLER 95B.48Using AMSLER 95B (3π0), AMSLER 94C (2π0 η) and SU(3).49Combining results of GAM4 with those of WA76 on K K 
entral produ
tion.50Using ETKIN 82B and COHEN 80.f0(1500) REFERENCESf0(1500) REFERENCESf0(1500) REFERENCESf0(1500) REFERENCESDOBBS 15 PR D91 052006 S. Dobbs et al. (NWES)ABLIKIM 13N PR D87 092009 Ablikim M. et al. (BES III Collab.)ANISOVICH 09 IJMP A24 2481 V.V. Anisovi
h, A.V. SarantsevKLEMPT 08 EPJ C55 39 E. Klempt, M. Matveev, A.V. Sarantsev (BONN+)UEHARA 08A PR D78 052004 S. Uehara et al. (BELLE Collab.)ABLIKIM 06V PL B642 441 M. Ablikim et al. (BES Collab.)AMSLER 06 PL B639 165 C. Amsler et al. (CBAR Collab.)AUBERT 06O PR D74 032003 B. Aubert et al. (BABAR Collab.)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)UMAN 06 PR D73 052009 I. Uman et al. (FNAL E835)VLADIMIRSK... 06 PAN 69 493 V.V. Vladimirsky et al. (ITEP, Mos
ow)Translated from YAF 69 515.BINON 05 PAN 68 960 F. Binon et al.Translated from YAF 68 998.GARMASH 05 PR D71 092003 A. Garmash et al. (BELLE Collab.)ANISOVICH 03 EPJ A16 229 V.V. Anisovi
h et al.BARGIOTTI 03 EPJ C26 371 M. Bargiotti et al. (OBELIX Collab.)AMSLER 02 EPJ C23 29 C. Amsler et al.ANISOVICH 02D PAN 65 1545 V.V. Anisovi
h et al.Translated from YAF 65 1583.ABELE 01 EPJ C19 667 A. Abele et al. (Crystal Barrel Collab.)ABELE 01B EPJ C21 261 A. Abele et al. (Crystal Barrel Collab.)ACCIARRI 01H PL B501 173 M. A

iarri et al. (L3 Collab.)AITALA 01A PRL 86 765 E.M. Aitala et al. (FNAL E791 Collab.)BARATE 00E PL B472 189 R. Barate et al. (ALEPH Collab.)BARBERIS 00A PL B471 429 D. Barberis et al. (WA 102 Collab.)BARBERIS 00C PL B471 440 D. Barberis et al. (WA 102 Collab.)BARBERIS 00D PL B474 423 D. Barberis et al. (WA 102 Collab.)BARBERIS 00E PL B479 59 D. Barberis et al. (WA 102 Collab.)BARBERIS 99 PL B453 305 D. Barberis et al. (Omega Expt.)BARBERIS 99B PL B453 316 D. Barberis et al. (Omega Expt.)BARBERIS 99D PL B462 462 D. Barberis et al. (Omega Expt.)BELLAZZINI 99 PL B467 296 R. Bellazzini et al.FRENCH 99 PL B460 213 B. Fren
h et al. (WA76 Collab.)KAMINSKI 99 EPJ C9 141 R. Kaminski, L. Lesniak, B. Loiseau (CRAC, PARIN)ABELE 98 PR D57 3860 A. Abele et al. (Crystal Barrel Collab.)ALDE 98 EPJ A3 361 D. Alde et al. (GAM4 Collab.)Also PAN 62 405 D. Alde et al. (GAMS Collab.)Translated from YAF 62 446.AMSLER 98 RMP 70 1293 C. AmslerANISOVICH 98B SPU 41 419 V.V. Anisovi
h et al.Translated from UFN 168 481.BERTIN 98 PR D57 55 A. Bertin et al. (OBELIX Collab.)REYES 98 PRL 81 4079 M.A. Reyes et al.BARBERIS 97B PL B413 217 D. Barberis et al. (WA 102 Collab.)BERTIN 97C PL B408 476 A. Bertin et al. (OBELIX Collab.)FRABETTI 97D PL B407 79 P.L. Frabetti et al. (FNAL E687 Collab.)ABELE 96 PL B380 453 A. Abele et al. (Crystal Barrel Collab.)ABELE 96B PL B385 425 A. Abele et al. (Crystal Barrel Collab.)ABELE 96C NP A609 562 A. Abele et al. (Crystal Barrel Collab.)AMELIN 96B PAN 59 976 D.V. Amelin et al. (SERP, TBIL)Translated from YAF 59 1021.BUGG 96 NP B471 59 D.V. Bugg, A.V. Sarantsev, B.S. Zou (LOQM, PNPI)AMSLER 95B PL B342 433 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 95C PL B353 571 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 95D PL B355 425 C. Amsler et al. (Crystal Barrel Collab.)ANTINORI 95 PL B353 589 F. Antinori et al. (ATHU, BARI, BIRM+)BUGG 95 PL B353 378 D.V. Bugg et al. (LOQM, PNPI, WASH)ABATZIS 94 PL B324 509 S. Abatzis et al. (ATHU, BARI, BIRM+)AMSLER 94C PL B327 425 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 94D PL B333 277 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 94E PL B340 259 C. Amsler et al. (Crystal Barrel Collab.)ANISOVICH 94 PL B323 233 V.V. Anisovi
h et al. (Crystal Barrel Collab.)BUGG 94 PR D50 4412 D.V. Bugg et al. (LOQM)AMSLER 92 PL B291 347 C. Amsler et al. (Crystal Barrel Collab.)BELADIDZE 92C SJNP 55 1535 G.M. Beladidze, S.I. Bityukov, G.V. Borisov (SERP+)Translated from YAF 55 2748.PROKOSHKIN 91 SPD 36 155 Y.D. Prokoshkin (GAM2, GAM4 Collab.)Translated from DANS 316 900.ARMSTRONG 89E PL B228 536 T.A. Armstrong, M. Benayoun (ATHU, BARI, BIRM+)ALDE 88 PL B201 160 D.M. Alde et al. (SERP, BELG, LANL, LAPP+)ASTON 88D NP B301 525 D. Aston et al. (SLAC, NAGO, CINC, INUS)ALDE 87 PL B198 286 D.M. Alde et al. (LANL, BRUX, SERP, LAPP)ALDE 86D NP B269 485 D.M. Alde et al. (BELG, LAPP, SERP, CERN+)BINON 84C NC 80A 363 F.G. Binon et al. (BELG, LAPP, SERP+)BINON 83 NC 78A 313 F.G. Binon et al. (BELG, LAPP, SERP+)Also SJNP 38 561 F.G. Binon et al. (BELG, LAPP, SERP+)Translated from YAF 38 934.GRAY 83 PR D27 307 L. Gray et al. (SYRA)ETKIN 82B PR D25 1786 A. Etkin et al. (BNL, CUNY, TUFTS, VAND)COHEN 80 PR D22 2595 D. Cohen et al. (ANL)f1(1510) IG (JPC ) = 0+(1 + +)OMITTED FROM SUMMARY TABLESee the minireview under η(1405).f1(1510) MASSf1(1510) MASSf1(1510) MASSf1(1510) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1518± 5 OUR AVERAGE1518± 5 OUR AVERAGE1518± 5 OUR AVERAGE1518± 5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.1530±10 ASTON 88C LASS 11 K− p → K0S K±π∓�1512± 4 600 1 BIRMAN 88 MPS 8 π− p → K+K0π− n1526± 6 271 GAVILLET 82 HBC 4.2 K− p → �K K π

• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 1525 2 BAUER 93B γ γ∗ → π+π−π0π0

1From partial wave analysis of K+K0π− state.2Not seen by AIHARA 88C in the K0S K±π∓ �nal state.
WEIGHTED AVERAGE
1518±5 (Error scaled by 1.7)

GAVILLET 82 HBC 1.9
BIRMAN 88 MPS 2.0
ASTON 88C LASS 1.5

χ2

       5.5
(Confidence Level = 0.065)

1500 1520 1540 1560 1580f1(1510) mass (MeV) f1(1510) WIDTHf1(1510) WIDTHf1(1510) WIDTHf1(1510) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT73±25 OUR AVERAGE73±25 OUR AVERAGE73±25 OUR AVERAGE73±25 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.5. See the ideogram below.100±40 ASTON 88C LASS 11 K− p → K0S K±π∓�35±15 600 3 BIRMAN 88 MPS 8 π− p → K+K0π− n107±15 271 GAVILLET 82 HBC 4.2 K− p → �K K π3From partial wave analysis of K+K0π− state.
WEIGHTED AVERAGE
73±25 (Error scaled by 2.5)

GAVILLET 82 HBC 5.2
BIRMAN 88 MPS 6.4
ASTON 88C LASS 0.5

χ2

      12.0
(Confidence Level = 0.0025)

-50 0 50 100 150 200 250f1(1510) width (MeV)f1(1510) DECAY MODESf1(1510) DECAY MODESf1(1510) DECAY MODESf1(1510) DECAY MODESMode Fra
tion (�i /�)�1 K K∗(892)+ 
.
. seen�2 π+π−η′ seenf1(1510) BRANCHING RATIOSf1(1510) BRANCHING RATIOSf1(1510) BRANCHING RATIOSf1(1510) BRANCHING RATIOS�(π+π−η′
)/�total �2/��(π+π−η′
)/�total �2/��(π+π−η′
)/�total �2/��(π+π−η′
)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 230 ABLIKIM 11C BES3 J/ψ → γπ+π− η′f1(1510) REFERENCESf1(1510) REFERENCESf1(1510) REFERENCESf1(1510) REFERENCESABLIKIM 11C PRL 106 072002 M. Ablikim et al. (BES III Collab.)BAUER 93B PR D48 3976 D.A. Bauer et al. (SLAC)AIHARA 88C PR D38 1 H. Aihara et al. (TPC-2γ Collab.)ASTON 88C PL B201 573 D. Aston et al. (SLAC, NAGO, CINC, INUS) JPBIRMAN 88 PRL 61 1557 A. Birman et al. (BNL, FSU, IND, MASD) JPGAVILLET 82 ZPHY C16 119 P. Gavillet et al. (CERN, CDEF, PADO+)



931931931931See key on page 601 MesonParti
le Listingsf ′2(1525)f ′2(1525) IG (JPC ) = 0+(2 + +)f ′2(1525) MASSf ′2(1525) MASSf ′2(1525) MASSf ′2(1525) MASSVALUE (MeV) DOCUMENT ID1525±5 OUR ESTIMATE1525±5 OUR ESTIMATE1525±5 OUR ESTIMATE1525±5 OUR ESTIMATE This is only an edu
ated guess; the error given is larger thanthe error on the average of the published values.PRODUCED BY PION BEAMPRODUCED BY PION BEAMPRODUCED BY PION BEAMPRODUCED BY PION BEAMVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1521±13 TIKHOMIROV 03 SPEC 40.0 π−C → K0S K0S K0LX1547+10

− 2 1 LONGACRE 86 MPS 22 π− p → K0S K0S n1496+ 9
− 8 2 CHABAUD 81 ASPK 6 π− p → K+K− n1497+ 8
− 9 CHABAUD 81 ASPK 18.4 π− p → K+K− n1492±29 GORLICH 80 ASPK 17 π− ppolarized → K+K− n1502±25 3 CORDEN 79 OMEG 12{15 π− p → π+π− n1480 14 CRENNELL 66 HBC 6.0 π− p → K0S K0S nPRODUCED BY K± BEAMPRODUCED BY K± BEAMPRODUCED BY K± BEAMPRODUCED BY K± BEAMVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1523.3± 1.1 OUR AVERAGE1523.3± 1.1 OUR AVERAGE1523.3± 1.1 OUR AVERAGE1523.3± 1.1 OUR AVERAGE In
ludes data from the datablo
k that follows this one.Error in
ludes s
ale fa
tor of 1.1.1526.8± 4.3 ASTON 88D LASS 11 K− p → K0S K0S �1504 ±12 BOLONKIN 86 SPEC 40 K− p → K0S K0S Y1529 ± 3 ARMSTRONG 83B OMEG 18.5 K−p → K−K+�1521 ± 6 650 AGUILAR-... 81B HBC 4.2 K− p → �K+K−1521 ± 3 572 ALHARRAN 81 HBC 8.25 K−p → �K K1522 ± 6 123 BARREIRO 77 HBC 4.15 K−p → �K0S K0S1528 ± 7 166 EVANGELIS... 77 OMEG 10 K− p → K+K− (� ,�)1527 ± 3 120 BRANDENB... 76C ASPK 13 K− p → K+K− (� ,�)1519 ± 7 100 AGUILAR-... 72B HBC 3.9,4.6 K− p → KK (� ,�)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1514 ± 8 61 BINON 07 GAMS 32.5 K−p → ηη (�/�0)1513 ±10 4 BARKOV 99 SPEC 40 K− p → K0S K0S yPRODUCED IN e+ e− ANNIHILATION AND PARTICLE DECAYSPRODUCED IN e+ e− ANNIHILATION AND PARTICLE DECAYSPRODUCED IN e+ e− ANNIHILATION AND PARTICLE DECAYSPRODUCED IN e+ e− ANNIHILATION AND PARTICLE DECAYSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1521.9+ 1.8
− 1.5 OUR AVERAGE1521.9+ 1.8
− 1.5 OUR AVERAGE1521.9+ 1.8
− 1.5 OUR AVERAGE1521.9+ 1.8
− 1.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1522.2± 2.8+ 5.3

− 2.0 AAIJ 13AN LHCB B0s → J/ψK+K−1513 ± 5 + 4
−10 5.5k 5 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη1525.3+ 1.2

− 1.4+ 3.7
− 2.1 UEHARA 13 BELL γ γ → K0S K0S1521 ± 5 ABLIKIM 05 BES2 J/ψ → φK+K−1518 ± 1 ± 3 ABE 04 BELL 10.6 e+ e− →e+ e−K+K−1519 ± 2 +15
− 5 BAI 03G BES J/ψ → γK K1523 ± 6 331 6 ACCIARRI 01H L3 91, 183{209 e+ e− →e+ e−K0S K0S1535 ± 5 ± 4 ABREU 96C DLPH Z0 → K+K− + X1516 ± 5 + 9
−15 BAI 96C BES J/ψ → γK+K−1531.6±10.0 AUGUSTIN 88 DM2 J/ψ → γK+K−1515 ± 5 7 FALVARD 88 DM2 J/ψ → φK+K−1525 ±10 ±10 BALTRUSAIT...87 MRK3 J/ψ → γK+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •1532 ± 3 ± 6 644 8,9 DOBBS 15 J/ψ → γK+K−1557 ± 9 ± 3 113 8,9 DOBBS 15 ψ(2S) → γK+K−1523 ± 5 870 10 SCHEGELSKY 06A RVUE γ γ → K0S K0S1496 ± 2 11 FALVARD 88 DM2 J/ψ → φK+K−PRODUCED IN pp ANNIHILATIONPRODUCED IN pp ANNIHILATIONPRODUCED IN pp ANNIHILATIONPRODUCED IN pp ANNIHILATIONVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1530±12 12 ANISOVICH 09 RVUE 0.0 pp, πN1513± 4 AMSLER 06 CBAR 0.9 pp → K+K−π01508± 9 13 AMSLER 02 CBAR 0.9 pp → π0 ηη, π0π0π0CENTRAL PRODUCTIONCENTRAL PRODUCTIONCENTRAL PRODUCTIONCENTRAL PRODUCTIONVALUE (MeV) DOCUMENT ID TECN COMMENT1515±151515±151515±151515±15 BARBERIS 99 OMEG 450 pp → ps pf K+K−

PRODUCED IN e p COLLISIONSPRODUCED IN e p COLLISIONSPRODUCED IN e p COLLISIONSPRODUCED IN e p COLLISIONSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1512±3+1.4
−0.51512±3+1.4
−0.51512±3+1.4
−0.51512±3+1.4
−0.5 14 CHEKANOV 08 ZEUS e p → K0S K0S X

• • • We do not use the following data for averages, �ts, limits, et
. • • •1537+9
−8 84 15 CHEKANOV 04 ZEUS e p → K0S K0S X1From a partial-wave analysis of data using a K-matrix formalism with 5 poles.2CHABAUD 81 is a reanalysis of PAWLICKI 77 data.3 From an amplitude analysis where the f ′2(1525) width and elasti
ity are in 
ompletedisagreement with the values obtained from K K 
hannel, making the solution dubious.4 Systemati
 errors not estimated.5 From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.6 Supersedes ACCIARRI 95J.7 From an analysis ignoring interferen
e with f0(1710).8Using CLEO-
 data but not authored by the CLEO Collaboration.9 From a �t to a Breit-Wigner line shape with �xed � = 73 MeV.10From analysis of L3 data at 91 and 183{209 GeV.11From an analysis in
luding interferen
e with f0(1710).12 4-poles, 5-
hannel K matrix �t.13T-matrix pole.14 In the SU(3) based model with a spe
i�
 interferen
e pattern of the f2(1270), a02(1320),and f ′2(1525) mesons in
oherently added to the f0(1710) and non-resonant ba
kground.15 Systemati
 errors not estimated.f ′2(1525) WIDTHf ′2(1525) WIDTHf ′2(1525) WIDTHf ′2(1525) WIDTHVALUE (MeV) DOCUMENT ID COMMENT73+ 6

− 5 OUR FIT73+ 6
− 5 OUR FIT73+ 6
− 5 OUR FIT73+ 6
− 5 OUR FIT76±1076±1076±1076±10 PDG 90 For �ttingPRODUCED BY PION BEAMPRODUCED BY PION BEAMPRODUCED BY PION BEAMPRODUCED BY PION BEAMVALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •102±42 TIKHOMIROV 03 SPEC 40.0 π−C → K0S K0S K0LX108+ 5
− 2 16 LONGACRE 86 MPS 22 π− p → K0S K0S n69+22
−16 17 CHABAUD 81 ASPK 6 π− p → K+K− n137+23
−21 CHABAUD 81 ASPK 18.4 π− p → K+K− n150+83
−50 GORLICH 80 ASPK 17 π− ppolarized → K+K− n165±42 18 CORDEN 79 OMEG 12{15 π− p → π+π− n92+39
−22 19 POLYCHRO... 79 STRC 7 π− p → nK0S K0SPRODUCED BY K± BEAMPRODUCED BY K± BEAMPRODUCED BY K± BEAMPRODUCED BY K± BEAMVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT81.4+ 2.2
− 1.9 OUR AVERAGE81.4+ 2.2
− 1.9 OUR AVERAGE81.4+ 2.2
− 1.9 OUR AVERAGE81.4+ 2.2
− 1.9 OUR AVERAGE In
ludes data from the datablo
k that follows this one.90 ±12 ASTON 88D LASS 11 K− p → K0S K0S �73 ±18 BOLONKIN 86 SPEC 40 K− p → K0S K0S Y83 ±15 ARMSTRONG 83B OMEG 18.5 K−p → K−K+�85 ±16 650 AGUILAR-... 81B HBC 4.2 K− p → �K+K−80 +14
−11 572 ALHARRAN 81 HBC 8.25 K−p → �K K72 ±25 166 EVANGELIS... 77 OMEG 10 K− p → K+K− (� ,�)69 ±22 100 AGUILAR-... 72B HBC 3.9,4.6 K− p → KK (� ,�)

• • • We do not use the following data for averages, �ts, limits, et
. • • •92 +25
−16 61 BINON 07 GAMS 32.5 K−p → ηη (�/�0)75 ±20 20 BARKOV 99 SPEC 40 K− p → K0S K0S y62 +19
−14 123 BARREIRO 77 HBC 4.15 K−p → �K0S K0S61 ± 8 120 BRANDENB... 76C ASPK 13 K− p → K+K− (� ,�)PRODUCED IN e+ e− ANNIHILATION AND PARTICLE DECAYSPRODUCED IN e+ e− ANNIHILATION AND PARTICLE DECAYSPRODUCED IN e+ e− ANNIHILATION AND PARTICLE DECAYSPRODUCED IN e+ e− ANNIHILATION AND PARTICLE DECAYSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.81.4+ 2.4
− 2.0 OUR AVERAGE81.4+ 2.4
− 2.0 OUR AVERAGE81.4+ 2.4
− 2.0 OUR AVERAGE81.4+ 2.4
− 2.0 OUR AVERAGE84 ± 6 +10

− 5 AAIJ 13AN LHCB B0s → J/ψK+K−75 +12
−10 +16

− 8 5.5k 21 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη82.9+ 2.1
− 2.2+ 3.3

− 2.0 UEHARA 13 BELL γ γ → K0S K0S77 ±15 ABLIKIM 05 BES2 J/ψ → φK+K−82 ± 2 ± 3 ABE 04 BELL 10.6 e+ e− →e+ e−K+K−75 ± 4 +15
− 5 BAI 03G BES J/ψ → γK K



932932932932MesonParti
le Listingsf ′2(1525)100 ±15 331 22 ACCIARRI 01H L3 91, 183{209 e+ e− →e+ e−K0S K0S60 ±20 ±19 ABREU 96C DLPH Z0 → K+K− + X60 ±23 +13
−20 BAI 96C BES J/ψ → γK+K−103 ±30 AUGUSTIN 88 DM2 J/ψ → γK+K−62 ±10 23 FALVARD 88 DM2 J/ψ → φK+K−85 ±35 BALTRUSAIT...87 MRK3 J/ψ → γK+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •104 ±10 870 24 SCHEGELSKY 06A RVUE γ γ → K0S K0S100 ± 3 25 FALVARD 88 DM2 J/ψ → φK+K−PRODUCED IN pp ANNIHILATIONPRODUCED IN pp ANNIHILATIONPRODUCED IN pp ANNIHILATIONPRODUCED IN pp ANNIHILATIONVALUE (MeV) DOCUMENT ID TECN COMMENT79± 879± 879± 879± 8 26 AMSLER 02 CBAR 0.9 pp → π0 ηη, π0π0π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •128±20 27 ANISOVICH 09 RVUE 0.0 pp, πN76± 6 AMSLER 06 CBAR 0.9 pp → K+K−π0CENTRAL PRODUCTIONCENTRAL PRODUCTIONCENTRAL PRODUCTIONCENTRAL PRODUCTIONVALUE (MeV) DOCUMENT ID TECN COMMENT70±2570±2570±2570±25 BARBERIS 99 OMEG 450 pp → ps pf K+K−PRODUCED IN e p COLLISIONSPRODUCED IN e p COLLISIONSPRODUCED IN e p COLLISIONSPRODUCED IN e p COLLISIONSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT83± 9+5

−483± 9+5
−483± 9+5
−483± 9+5
−4 28 CHEKANOV 08 ZEUS e p → K0S K0S X

• • • We do not use the following data for averages, �ts, limits, et
. • • •50+34
−22 84 29 CHEKANOV 04 ZEUS e p → K0S K0S X16From a partial-wave analysis of data using a K-matrix formalism with 5 poles.17CHABAUD 81 is a reanalysis of PAWLICKI 77 data.18 From an amplitude analysis where the f ′2(1525) width and elasti
ity are in 
ompletedisagreement with the values obtained from K K 
hannel, making the solution dubious.19 From a �t to the D with f2(1270)-f ′2(1525) interferen
e. Mass �xed at 1516 MeV.20 Systemati
 errors not estimated.21 From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.22 Supersedes ACCIARRI 95J.23 From an analysis ignoring interferen
e with f0(1710).24 From analysis of L3 data at 91 and 183{209 GeV.25From an analysis in
luding interferen
e with f0(1710).26T-matrix pole.27 4-poles, 5-
hannel K matrix �t.28 In the SU(3) based model with a spe
i�
 interferen
e pattern of the f2(1270), a02(1320),and f ′2(1525) mesons in
oherently added to the f0(1710) and non-resonant ba
kground.29 Systemati
 errors not estimated.f ′2(1525) DECAY MODESf ′2(1525) DECAY MODESf ′2(1525) DECAY MODESf ′2(1525) DECAY MODESMode Fra
tion (�i /�)�1 K K (88.7 ±2.2 ) %�2 ηη (10.4 ±2.2 ) %�3 ππ ( 8.2 ±1.5 )× 10−3�4 K K∗(892)+ 
.
.�5 πK K�6 ππη�7 π+π+π−π−�8 γ γ ( 1.10±0.14)× 10−6CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the total width, 2 partial widths, a 
ombinationof partial widths obtained from integrated 
ross se
tions, and 3bran
hing ratios uses 17 measurements and one 
onstraint to de-termine 5 parameters. The overall �t has a χ2 = 14.3 for 13degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x2 −100x3 −6 −1x8 −6 6 1� −23 23 −1 −56x1 x2 x3 x8Mode Rate (MeV)�1 K K 65 +5
−4�2 ηη 7.6 ±1.8

�3 ππ 0.60±0.12�8 γ γ ( 8.1 ±0.9 )× 10−5f ′2(1525) PARTIAL WIDTHSf ′2(1525) PARTIAL WIDTHSf ′2(1525) PARTIAL WIDTHSf ′2(1525) PARTIAL WIDTHS�(K K) �1�(K K) �1�(K K) �1�(K K) �1VALUE (MeV) DOCUMENT ID TECN COMMENT65+5
−4 OUR FIT65+5
−4 OUR FIT65+5
−4 OUR FIT65+5
−4 OUR FIT63+6
−563+6
−563+6
−563+6
−5 30 LONGACRE 86 MPS 22 π− p → K0S K0S n�(ηη

) �2�(ηη
) �2�(ηη
) �2�(ηη
) �2VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT7.6±1.8 OUR FIT7.6±1.8 OUR FIT7.6±1.8 OUR FIT7.6±1.8 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.0±0.8 870 31 SCHEGELSKY 06A RVUE γ γ → K0S K0S24 +3
−1 30 LONGACRE 86 MPS 22 π− p → K0S K0S n�(ππ

) �3�(ππ
) �3�(ππ
) �3�(ππ
) �3VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT0.60±0.12 OUR FIT0.60±0.12 OUR FIT0.60±0.12 OUR FIT0.60±0.12 OUR FIT1.4 +1.0

−0.51.4 +1.0
−0.51.4 +1.0
−0.51.4 +1.0
−0.5 30 LONGACRE 86 MPS 22 π− p → K0S K0S n

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.2 +1.0
−0.2 870 31 SCHEGELSKY 06A RVUE γ γ → K0S K0S�(γ γ
) �8�(γ γ
) �8�(γ γ
) �8�(γ γ
) �8VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.081±0.009 OUR FIT0.081±0.009 OUR FIT0.081±0.009 OUR FIT0.081±0.009 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.13 ±0.03 870 31 SCHEGELSKY 06A RVUE γ γ → K0S K0S30From a partial-wave analysis of data using a K-matrix formalism with 5 poles.31 From analysis of L3 data at 91 and 183{209 GeV, using �(f ′2(1525) → K K) = 68 MeVand SU(3) relations. f ′2(1525) �(i)�(γ γ)/�(total)f ′2(1525) �(i)�(γ γ)/�(total)f ′2(1525) �(i)�(γ γ)/�(total)f ′2(1525) �(i)�(γ γ)/�(total)�(K K)

× �(γ γ
)/�total �1�8/��(K K)

× �(γ γ
)/�total �1�8/��(K K)

× �(γ γ
)/�total �1�8/��(K K)

× �(γ γ
)/�total �1�8/�VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.072 ±0.007 OUR FIT0.072 ±0.007 OUR FIT0.072 ±0.007 OUR FIT0.072 ±0.007 OUR FIT0.072 ±0.007 OUR AVERAGE0.072 ±0.007 OUR AVERAGE0.072 ±0.007 OUR AVERAGE0.072 ±0.007 OUR AVERAGE0.048 +0.067

−0.008 +0.108
−0.012 UEHARA 13 BELL γ γ → K0S K0S0.0564±0.0048±0.0116 ABE 04 BELL 10.6 e+ e− →e+ e−K+K−0.076 ±0.006 ±0.011 331 32 ACCIARRI 01H L3 e+ e− → e+ e−K0S K0S0.067 ±0.008 ±0.015 33 ALBRECHT 90G ARG e+ e− → e+ e−K+K−0.11 +0.03

−0.02 ±0.02 BEHREND 89C CELL e+ e− → e+ e−K0S K0S0.10 +0.04
−0.03 +0.03

−0.02 BERGER 88 PLUT e+ e− → e+ e−K0S K0S0.12 ±0.07 ±0.04 33 AIHARA 86B TPC e+ e− → e+ e−K+K−0.11 ±0.02 ±0.04 33 ALTHOFF 83 TASS e+ e− → e+ e−K K
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0314±0.0050±0.0077 34 ALBRECHT 90G ARG e+ e− → e+ e−K+K−32Supersedes ACCIARRI 95J. From analysis of L3 data at 91 and 183{209 GeV,33Using an in
oherent ba
kground.34Using a 
oherent ba
kground.f ′2(1525) BRANCHING RATIOSf ′2(1525) BRANCHING RATIOSf ′2(1525) BRANCHING RATIOSf ′2(1525) BRANCHING RATIOS�(ηη

)/�total �2/��(ηη
)/�total �2/��(ηη
)/�total �2/��(ηη
)/�total �2/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen UEHARA 10A BELL 10.6 e+ e− → e+ e− ηη0.10±0.03 35 PROKOSHKIN 91 GAM4 300 π− p → π− pηη35Combining results of GAM4 with those of WA76 on K K 
entral produ
tion and resultsof CBAL, MRK3 and DM2 on J/ψ → γ ηη.�(ηη
)/�(K K) �2/�1�(ηη
)/�(K K) �2/�1�(ηη
)/�(K K) �2/�1�(ηη
)/�(K K) �2/�1VALUE CL% EVTS DOCUMENT ID TECN COMMENT0.118±0.028 OUR FIT0.118±0.028 OUR FIT0.118±0.028 OUR FIT0.118±0.028 OUR FIT0.115±0.028 OUR AVERAGE0.115±0.028 OUR AVERAGE0.115±0.028 OUR AVERAGE0.115±0.028 OUR AVERAGE0.119±0.015±0.036 61 36 BINON 07 GAMS 32.5 K− p →

ηη (�/�0)0.11 ±0.04 37 PROKOSHKIN 91 GAM4 300 π− p → π− pηη
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.14 90 BARBERIS 00E 450 pp → pf ηηps
< 0.50 BARNES 67 HBC 4.6,5.0 K− p36Using the 
ompilation of the 
ross se
tions for f ′2(1525) produ
tion in K− p 
ollisionsfrom ASTON 88D.37Combining results of GAM4 with those of WA76 on K K 
entral produ
tion and resultsof CBAL, MRK3 and DM2 on J/ψ → γ ηη.



933933933933See key on page 601 MesonParti
le Listingsf ′2(1525), f2(1565)�(ππ
)/�total �3/��(ππ
)/�total �3/��(ππ
)/�total �3/��(ππ
)/�total �3/�VALUE CL% DOCUMENT ID TECN COMMENT0.0082±0.0016 OUR FIT0.0082±0.0016 OUR FIT0.0082±0.0016 OUR FIT0.0082±0.0016 OUR FIT0.0075±0.0016 OUR AVERAGE0.0075±0.0016 OUR AVERAGE0.0075±0.0016 OUR AVERAGE0.0075±0.0016 OUR AVERAGE0.007 ±0.002 COSTA... 80 OMEG 10 π− p → K+K− n0.027 +0.071

−0.013 38 GORLICH 80 ASPK 17,18 π− p0.0075±0.0025 38,39 MARTIN 79 RVUE
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.06 95 AGUILAR-... 81B HBC 4.2 K− p → �K+K−0.19 ±0.03 CORDEN 79 OMEG 12{15 π− p → π+π− n
<0.045 95 BARREIRO 77 HBC 4.15 K− p → �K0S K0S0.012 ±0.004 38 PAWLICKI 77 SPEC 6 πN → K+K−N
<0.063 90 BRANDENB... 76C ASPK 13 K− p → K+K− (� ,�)
<0.0086 38 BEUSCH 75B OSPK 8.9 π− p → K0K0 n38Assuming that the f ′2(1525) is produ
ed by an one-pion ex
hange produ
tion me
hanism.39MARTIN 79 uses the PAWLICKI 77 data with di�erent input value of the f ′2(1525) →K K bran
hing ratio.�(ππ

)/�(KK) �3/�1�(ππ
)/�(KK) �3/�1�(ππ
)/�(KK) �3/�1�(ππ
)/�(KK) �3/�1VALUE DOCUMENT ID TECN COMMENT0.0092±0.0018 OUR FIT0.0092±0.0018 OUR FIT0.0092±0.0018 OUR FIT0.0092±0.0018 OUR FIT0.075 ±0.0350.075 ±0.0350.075 ±0.0350.075 ±0.035 AUGUSTIN 87 DM2 J/ψ → γπ+π−

[�(K K∗(892)+ 
.
.)+�(πK K)
]/�(K K) (�4+�5)/�1[�(K K∗(892)+ 
.
.)+�(πK K)
]/�(K K) (�4+�5)/�1[�(K K∗(892)+ 
.
.)+�(πK K)
]/�(K K) (�4+�5)/�1[�(K K∗(892)+ 
.
.)+�(πK K)
]/�(K K) (�4+�5)/�1VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.35 95 AGUILAR-... 72B HBC 3.9,4.6 K− p
<0.4 67 AMMAR 67 HBC�(ππη

)/�(K K) �6/�1�(ππη
)/�(K K) �6/�1�(ππη
)/�(K K) �6/�1�(ππη
)/�(K K) �6/�1VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.41 95 AGUILAR-... 72B HBC 3.9,4.6 K− p
<0.3 67 AMMAR 67 HBC�(π+π+π−π−)/�(K K) �7/�1�(π+π+π−π−)/�(K K) �7/�1�(π+π+π−π−)/�(K K) �7/�1�(π+π+π−π−)/�(K K) �7/�1VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.32 95 AGUILAR-... 72B HBC 3.9,4.6 K− pf ′2(1525) REFERENCESf ′2(1525) REFERENCESf ′2(1525) REFERENCESf ′2(1525) REFERENCESDOBBS 15 PR D91 052006 S. Dobbs et al. (NWES)AAIJ 13AN PR D87 072004 R. Aaij et al. (LHCb Collab.)ABLIKIM 13N PR D87 092009 Ablikim M. et al. (BES III Collab.)UEHARA 13 PTEP 2013 123C01 S. Uehara et al. (BELLE Collab.)UEHARA 10A PR D82 114031 S. Uehara et al. (BELLE Collab.)ANISOVICH 09 IJMP A24 2481 V.V. Anisovi
h, A.V. SarantsevCHEKANOV 08 PRL 101 112003 S. Chekanov et al. (ZEUS Collab.)BINON 07 PAN 70 1713 F. Binon et al. (GAMS Collab.)Translated from YAF 70 1758.AMSLER 06 PL B639 165 C. Amsler et al. (CBAR Collab.)SCHEGELSKY 06A EPJ A27 207 V.A. S
hegelsky et al.ABLIKIM 05 PL B607 243 M. Ablikim et al. (BES Collab.)ABE 04 EPJ C32 323 K. Abe et al. (BELLE Collab.)CHEKANOV 04 PL B578 33 S. Chekanov et al. (ZEUS Collab.)BAI 03G PR D68 052003 J.Z. Bai et al. (BES Collab.)TIKHOMIROV 03 PAN 66 828 G.D. Tikhomirov et al.Translated from YAF 66 860.AMSLER 02 EPJ C23 29 C. Amsler et al.ACCIARRI 01H PL B501 173 M. A

iarri et al. (L3 Collab.)BARBERIS 00E PL B479 59 D. Barberis et al. (WA 102 Collab.)BARBERIS 99 PL B453 305 D. Barberis et al. (Omega Expt.)BARKOV 99 JETPL 70 248 B.P. Barkov et al.Translated from ZETFP 70 242.ABREU 96C PL B379 309 P. Abreu et al. (DELPHI Collab.)BAI 96C PRL 77 3959 J.Z. Bai et al. (BES Collab.)ACCIARRI 95J PL B363 118 M. A

iarri et al. (L3 Collab.)PROKOSHKIN 91 SPD 36 155 Y.D. Prokoshkin (GAM2, GAM4 Collab.)Translated from DANS 316 900.ALBRECHT 90G ZPHY C48 183 H. Albre
ht et al. (ARGUS Collab.)PDG 90 PL B239 1 J.J. Hernandez et al. (IFIC, BOST, CIT+)BEHREND 89C ZPHY C43 91 H.J. Behrend et al. (CELLO Collab.)ASTON 88D NP B301 525 D. Aston et al. (SLAC, NAGO, CINC, INUS)AUGUSTIN 88 PRL 60 2238 J.E. Augustin et al. (DM2 Collab.)BERGER 88 ZPHY C37 329 C. Berger et al. (PLUTO Collab.)FALVARD 88 PR D38 2706 A. Falvard et al. (CLER, FRAS, LALO+)AUGUSTIN 87 ZPHY C36 369 J.E. Augustin et al. (LALO, CLER, FRAS+)BALTRUSAIT... 87 PR D35 2077 R.M. Baltrusaitis et al. (Mark III Collab.)AIHARA 86B PRL 57 404 H. Aihara et al. (TPC-2γ Collab.)BOLONKIN 86 SJNP 43 776 B.V. Bolonkin et al. (ITEP) JPTranslated from YAF 43 1211.LONGACRE 86 PL B177 223 R.S. Longa
re et al. (BNL, BRAN, CUNY+)ALTHOFF 83 PL 121B 216 M. Altho� et al. (TASSO Collab.)ARMSTRONG 83B NP B224 193 T.A. Armstrong et al. (BARI, BIRM, CERN+)AGUILAR-... 81B ZPHY C8 313 M. Aguilar-Benitez et al. (CERN, CDEF+)ALHARRAN 81 NP B191 26 S. Al-Harran et al. (BIRM, CERN, GLAS+)CHABAUD 81 APP B12 575 V. Chabaud et al. (CERN, CRAC, MPIM)COSTA... 80 NP B175 402 G. Costa de Beauregard et al. (BARI, BONN+)GORLICH 80 NP B174 16 L. Gorli
h et al. (CRAC, MPIM, CERN+)CORDEN 79 NP B157 250 M.J. Corden et al. (BIRM, RHEL, TELA+) JPMARTIN 79 NP B158 520 A.D. Martin, E.N. Ozmutlu (DURH)POLYCHRO... 79 PR D19 1317 V.A. Poly
hronakos et al. (NDAM, ANL)BARREIRO 77 NP B121 237 F. Barreiro et al. (CERN, AMST, NIJM+)EVANGELIS... 77 NP B127 384 C. Evangelista et al. (BARI, BONN, CERN+)PAWLICKI 77 PR D15 3196 A.J. Pawli
ki et al. (ANL) IJPBRANDENB... 76C NP B104 413 G.W. Brandenburg et al. (SLAC)BEUSCH 75B PL 60B 101 W. Beus
h et al. (CERN, ETH)AGUILAR-... 72B PR D6 29 M. Aguilar-Benitez et al. (BNL)AMMAR 67 PRL 19 1071 R. Ammar et al. (NWES, ANL) JPBARNES 67 PRL 19 964 V.E. Barnes et al. (BNL, SYRA) IJPCCRENNELL 66 PRL 16 1025 D.J. Crennell et al. (BNL) I

f2(1565) IG (JPC ) = 0+(2 + +)OMITTED FROM SUMMARY TABLESeen mostly in antinu
leon-nu
leon annihilation. Needs 
on�rmationin other 
hannels. f2(1565) MASSf2(1565) MASSf2(1565) MASSf2(1565) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1562±13 OUR AVERAGE1562±13 OUR AVERAGE1562±13 OUR AVERAGE1562±13 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1. See the ideogram below.1590±10 1 AMELIN 06 VES 36 π− p → ωωn1552±13 2 AMSLER 02 CBAR 0.9 pp → π0 ηη, π0π0π01550±10±20 AMELIN 00 VES 37 π− p → ηπ+π− n1575±18 BERTIN 98 OBLX 0.05{0.405 np → π+π+π−1507±15 2 BERTIN 97C OBLX 0.0 pp → π+π−π01565±20 MAY 90 ASTE 0.0 pp → π+π−π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •1560±15 3 ANISOVICH 09 RVUE 0.0 pp, πN1598±11± 9 BAKER 99B SPEC 0 pp → ωωπ01534±20 4 ABELE 96C RVUE Compilation
∼ 1552 5 AMSLER 95D CBAR 0.0 pp → π0π0π0, π0 ηη,

π0π0 η1598±72 BALOSHIN 95 SPEC 40 π−C → K0S K0S X1566+80
−50 6 ANISOVICH 94 CBAR 0.0 pp → 3π0 ,ηηπ01502± 9 ADAMO 93 OBLX np → π+π+π−1488±10 7 ARMSTRONG 93C E760 p p → π0 ηη → 6γ1508±10 7 ARMSTRONG 93D E760 p p → 3π0 → 6γ1525±10 7 ARMSTRONG 93D E760 p p → ηπ0π0 → 6γ

∼ 1504 8 WEIDENAUER 93 ASTE 0.0 pN → 3π− 2π+1540±15 7 ADAMO 92 OBLX np → π+π+π−1515±10 9 AKER 91 CBAR 0.0 pp → 3π01477± 5 BRIDGES 86C DBC 0.0 pN → 3π− 2π+1Supersedes the ωω state of BELADIDZE 92B earlier assigned to the f2(1640).2T-matrix pole.3On sheet II in a two-pole solution.4T-matrix pole, large 
oupling to ρρ and ωω, 
ould be f2(1640).5Coupled-
hannel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.6 From a simultaneous analysis of the annihilations p p → 3π0 ,π0 ηη in
luding AKER 91data.7 JP not determined, 
ould be partly f0(1500).8 JP not determined.9 Superseded by AMSLER 95B.
WEIGHTED AVERAGE
1562±13 (Error scaled by 2.1)

MAY 90 ASTE 0.0
BERTIN 97C OBLX 13.4
BERTIN 98 OBLX 0.5
AMELIN 00 VES 0.3
AMSLER 02 CBAR 0.6
AMELIN 06 VES 7.8

χ2

      22.7
(Confidence Level = 0.0004)

1450 1500 1550 1600 1650 1700f2(1565) mass (MeV) f2(1565) WIDTHf2(1565) WIDTHf2(1565) WIDTHf2(1565) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT134± 8 OUR AVERAGE134± 8 OUR AVERAGE134± 8 OUR AVERAGE134± 8 OUR AVERAGE140± 11 10 AMELIN 06 VES 36 π− p → ωωn113± 23 11 AMSLER 02 CBAR 0.9 pp → π0 ηη, π0π0π0130± 20±40 AMELIN 00 VES 37 π− p → ηπ+π− n119± 24 BERTIN 98 OBLX 0.05{0.405 np → π+π+π−130± 20 11 BERTIN 97C OBLX 0.0 pp → π+π−π0170± 40 MAY 90 ASTE 0.0 pp → π+π−π0



934934934934MesonParti
le Listingsf2(1565), ρ(1570)
• • • We do not use the following data for averages, �ts, limits, et
. • • •280± 40 12 ANISOVICH 09 RVUE 0.0 pp, πN180± 60 13 ABELE 96C RVUE Compilation
∼ 142 14 AMSLER 95D CBAR 0.0 pp → π0π0π0, π0 ηη,

π0π0 η263±101 BALOSHIN 95 SPEC 40 π−C → K0S K0S X166+ 80
− 20 15 ANISOVICH 94 CBAR 0.0 pp → 3π0 ,ηηπ0130± 10 16 ADAMO 93 OBLX np → π+π+π−148± 27 17 ARMSTRONG 93C E760 p p → π0 ηη → 6γ103± 15 17 ARMSTRONG 93D E760 p p → 3π0 → 6γ111± 10 17 ARMSTRONG 93D E760 p p → ηπ0π0 → 6γ

∼ 206 18 WEIDENAUER 93 ASTE 0.0 pN → 3π− 2π+132± 37 17 ADAMO 92 OBLX np → π+π+π−120± 10 19 AKER 91 CBAR 0.0 pp → 3π0116± 9 BRIDGES 86C DBC 0.0 pN → 3π− 2π+10Supersedes the ωω state of BELADIDZE 92B earlier assigned to the f2(1640).11T-matrix pole.12On sheet II in a two-pole solution.13T-matrix pole, large 
oupling to ρρ and ωω, 
ould be f2(1640).14Coupled-
hannel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.15 From a simultaneous analysis of the annihilations p p → 3π0 ,π0 ηη in
luding AKER 91data.16 Supersedes ADAMO 92.17 JP not determined, 
ould be partly f0(1500).18 JP not determined.19 Superseded by AMSLER 95B.f2(1565) DECAY MODESf2(1565) DECAY MODESf2(1565) DECAY MODESf2(1565) DECAY MODESMode Fra
tion (�i /�)�1 ππ seen�2 π+π− seen�3 π0π0 seen�4 ρ0 ρ0 seen�5 2π+2π− seen�6 ηη seen�7 a2(1320)π�8 ωω seen�9 K K�10 γ γ f2(1565) PARTIAL WIDTHSf2(1565) PARTIAL WIDTHSf2(1565) PARTIAL WIDTHSf2(1565) PARTIAL WIDTHS�(ηη
) �6�(ηη
) �6�(ηη
) �6�(ηη
) �6VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.2±0.3 870 20 SCHEGELSKY 06A RVUE γ γ → K0S K0S�(K K) �9�(K K) �9�(K K) �9�(K K) �9VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.0±1.0 870 20 SCHEGELSKY 06A RVUE γ γ → K0S K0S�(γ γ

) �10�(γ γ
) �10�(γ γ
) �10�(γ γ
) �10VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.70±0.14 870 20 SCHEGELSKY 06A RVUE γ γ → K0S K0S20From analysis of L3 data at 91 and 183{209 GeV, using f2(1565) mass of 1570 MeV,width of 160 MeV, �(ππ) = 25 MeV, and SU(3) relations.f2(1565) BRANCHING RATIOSf2(1565) BRANCHING RATIOSf2(1565) BRANCHING RATIOSf2(1565) BRANCHING RATIOS�(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen BAKER 99B SPEC 0 p p → ωωπ0�(π+π−)/�total �2/��(π+π−)/�total �2/��(π+π−)/�total �2/��(π+π−)/�total �2/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen BERTIN 98 OBLX 0.05{0.405 np →

π+π+π−not seen 21 ANISOVICH 94B RVUE pp → π+π−π0seen MAY 89 ASTE pp → π+π−π021ANISOVICH 94B is from a reanalysis of MAY 90.�(π0π0)/�total �3/��(π0π0)/�total �3/��(π0π0)/�total �3/��(π0π0)/�total �3/�VALUE DOCUMENT ID TECN COMMENTseen AMSLER 95B CBAR 0.0 p p → 3π0

�(π+π−)/�(ρ0ρ0) �2/�4�(π+π−)/�(ρ0ρ0) �2/�4�(π+π−)/�(ρ0ρ0) �2/�4�(π+π−)/�(ρ0ρ0) �2/�4VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.042±0.013 BRIDGES 86B DBC pN → 3π− 2π+�(ηη

)/�(π0π0) �6/�3�(ηη
)/�(π0π0) �6/�3�(ηη
)/�(π0π0) �6/�3�(ηη
)/�(π0π0) �6/�3VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.024±0.005±0.012 22 ARMSTRONG 93C E760 pp → π0 ηη → 6γ22 JP not determined, 
ould be partly f0(1500).�(ωω
)/�total �8/��(ωω
)/�total �8/��(ωω
)/�total �8/��(ωω
)/�total �8/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen BAKER 99B SPEC 0 p p → ωωπ0f2(1565) REFERENCESf2(1565) REFERENCESf2(1565) REFERENCESf2(1565) REFERENCESANISOVICH 09 IJMP A24 2481 V.V. Anisovi
h, A.V. SarantsevAMELIN 06 PAN 69 690 D.V. Amelin et al. (VES Collab.)Translated from YAF 69 715.SCHEGELSKY 06A EPJ A27 207 V.A. S
hegelsky et al.AMSLER 02 EPJ C23 29 C. Amsler et al.AMELIN 00 NP A668 83 D. Amelin et al. (VES Collab.)BAKER 99B PL B467 147 C.A. Baker et al.BERTIN 98 PR D57 55 A. Bertin et al. (OBELIX Collab.)BERTIN 97C PL B408 476 A. Bertin et al. (OBELIX Collab.)ABELE 96C NP A609 562 A. Abele et al. (Crystal Barrel Collab.)AMSLER 95B PL B342 433 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 95C PL B353 571 C. Amsler et al. (Crystal Barrel Collab.)AMSLER 95D PL B355 425 C. Amsler et al. (Crystal Barrel Collab.)BALOSHIN 95 PAN 58 46 O.N. Baloshin et al. (ITEP)Translated from YAF 58 50.AMSLER 94D PL B333 277 C. Amsler et al. (Crystal Barrel Collab.)ANISOVICH 94 PL B323 233 V.V. Anisovi
h et al. (Crystal Barrel Collab.)ANISOVICH 94B PR D50 1972 V.V. Anisovi
h et al. (LOQM)ADAMO 93 NP A558 13C A. Adamo et al. (OBELIX Collab.)ARMSTRONG 93C PL B307 394 T.A. Armstrong et al. (FNAL, FERR, GENO+)ARMSTRONG 93D PL B307 399 T.A. Armstrong et al. (FNAL, FERR, GENO+)WEIDENAUER 93 ZPHY C59 387 P. Weidenauer et al. (ASTERIX Collab.)ADAMO 92 PL B287 368 A. Adamo et al. (OBELIX Collab.)BELADIDZE 92B ZPHY C54 367 G.M. Beladidze et al. (VES Collab.)AKER 91 PL B260 249 E. Aker et al. (Crystal Barrel Collab.)MAY 90 ZPHY C46 203 B. May et al. (ASTERIX Collab.)MAY 89 PL B225 450 B. May et al. (ASTERIX Collab.) IJPBRIDGES 86B PRL 56 215 D.L. Bridges et al. (SYRA, CASE)BRIDGES 86C PRL 57 1534 D.L. Bridges et al. (SYRA)
ρ(1570) IG (JPC ) = 1+(1−−)OMITTED FROM SUMMARY TABLEMay be an OZI-violating de
ay mode of ρ(1700). See our mini-review under the ρ(1700).

ρ(1570) MASSρ(1570) MASSρ(1570) MASSρ(1570) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1570±36±621570±36±621570±36±621570±36±62 54 1 AUBERT 08S BABR 10.6 e+ e− → φπ0 γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •1480±40 2 BITYUKOV 87 SPEC 32.5 π− p → φπ0 n1From the �t with two resonan
es.2 Systemati
 errors not estimated.

ρ(1570) WIDTHρ(1570) WIDTHρ(1570) WIDTHρ(1570) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT144±75±43144±75±43144±75±43144±75±43 54 3 AUBERT 08S BABR 10.6 e+ e− → φπ0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •130±60 4 BITYUKOV 87 SPEC 32.5 π− p → φπ0 n3From the �t with two resonan
es.4 Systemati
 errors not estimated.
ρ(1570) DECAY MODESρ(1570) DECAY MODESρ(1570) DECAY MODESρ(1570) DECAY MODESMode Fra
tion (�i /�)�1 e+ e−�2 φπ not seen�3 ωπ

ρ(1570) �(i)�(e+ e−)/�(total)ρ(1570) �(i)�(e+ e−)/�(total)ρ(1570) �(i)�(e+ e−)/�(total)ρ(1570) �(i)�(e+ e−)/�(total)�(φπ
)

× �(e+ e−)/�total �2�1/��(φπ
)

× �(e+ e−)/�total �2�1/��(φπ
)

× �(e+ e−)/�total �2�1/��(φπ
)

× �(e+ e−)/�total �2�1/�VALUE (eV) CL% EVTS DOCUMENT ID TECN COMMENT3.5±0.9±0.33.5±0.9±0.33.5±0.9±0.33.5±0.9±0.3 54 5 AUBERT 08S BABR 10.6 e+ e− → φπ0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<70 90 6 AULCHENKO 87B ND e+ e− → K0S K0Lπ05From the �t with two resonan
es.6Using mass and width of BITYUKOV 87.



935935935935See key on page 601 Meson Parti
le Listings
ρ(1570), h1(1595), π1(1600)

ρ(1570) BRANCHING RATIOSρ(1570) BRANCHING RATIOSρ(1570) BRANCHING RATIOSρ(1570) BRANCHING RATIOS�(φπ
)/�total �2/��(φπ
)/�total �2/��(φπ
)/�total �2/��(φπ
)/�total �2/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen ABELE 97H CBAR pp → K0LK0S π0π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.01 7 DONNACHIE 91 RVUE7Using data from BISELLO 91B, DOLINSKY 86, and ALBRECHT 87L.�(φπ

)/�(ωπ
) �2/�3�(φπ

)/�(ωπ
) �2/�3�(φπ

)/�(ωπ
) �2/�3�(φπ

)/�(ωπ
) �2/�3VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
>0.5 95 BITYUKOV 87 SPEC 32.5 π− p → φπ0 n

ρ(1570) REFERENCESρ(1570) REFERENCESρ(1570) REFERENCESρ(1570) REFERENCESAUBERT 08S PR D77 092002 B. Aubert et al. (BABAR Collab.)ABELE 97H PL B415 280 A. Abele et al. (Crystal Barrel Collab.)BISELLO 91B NPBPS B21 111 D. Bisello (DM2 Collab.)DONNACHIE 91 ZPHY C51 689 A. Donna
hie, A.B. Clegg (MCHS, LANC)ALBRECHT 87L PL B185 223 H. Albre
ht et al. (ARGUS Collab.)AULCHENKO 87B JETPL 45 145 V.M. Aul
henko et al. (NOVO)Translated from ZETFP 45 118.BITYUKOV 87 PL B188 383 S.I. Bityukov et al. (SERP)DOLINSKY 86 PL B174 453 S.I. Dolinsky et al. (NOVO)h1(1595) IG (JPC ) = 0−(1 +−)OMITTED FROM SUMMARY TABLESeen in a partial-wave analysis of the ωη system produ
ed in therea
tion π−p → ωηn at 18 GeV/
.h1(1595) MASSh1(1595) MASSh1(1595) MASSh1(1595) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1594±15+10
−601594±15+10
−601594±15+10
−601594±15+10
−60 EUGENIO 01 SPEC 18 π− p → ωηnh1(1595) WIDTHh1(1595) WIDTHh1(1595) WIDTHh1(1595) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT384±60+ 70

−100384±60+ 70
−100384±60+ 70
−100384±60+ 70
−100 EUGENIO 01 SPEC 18 π− p → ωηnh1(1595) DECAY MODESh1(1595) DECAY MODESh1(1595) DECAY MODESh1(1595) DECAY MODESMode Fra
tion (�i /�)�1 ωη seenh1(1595) REFERENCESh1(1595) REFERENCESh1(1595) REFERENCESh1(1595) REFERENCESEUGENIO 01 PL B497 190 P. Eugenio et al.

π1(1600) IG (JPC ) = 1−(1−+)
π1(1600) MASSπ1(1600) MASSπ1(1600) MASSπ1(1600) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1662+ 8

− 9 OUR AVERAGE1662+ 8
− 9 OUR AVERAGE1662+ 8
− 9 OUR AVERAGE1662+ 8
− 9 OUR AVERAGE1660±10+ 0

−64 420k ALEKSEEV 10 COMP 190 π−Pb → π−π−π+Pb′1664± 8±10 145k 1 LU 05 B852 18 π− p → ωπ−π0 p1709±24±41 69k 2 KUHN 04 B852 18 π− p → ηπ+π−π− p1597±10+45
−10 2 IVANOV 01 B852 18 π− p → η′π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •1593± 8+29
−47 2,3 ADAMS 98B B852 18.3 π− p → π+π−π− p1May be a di�erent state: natural and unnatural parity ex
hanges.2Natural parity ex
hange.3 Superseded by DZIERBA 06 ex
luding this state in a more re�ned PWA analysis, with2.6 M events of π− p → π−π−π+ p and 3 M events of π− p → π−π0π0 p of E852data.

π1(1600) WIDTHπ1(1600) WIDTHπ1(1600) WIDTHπ1(1600) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT241±40 OUR AVERAGE241±40 OUR AVERAGE241±40 OUR AVERAGE241±40 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.269±21+ 42
− 64 420k ALEKSEEV 10 COMP 190 π−Pb → π−π−π+Pb′185±25± 28 145k 4 LU 05 B852 18 π− p → ωπ−π0 p403±80±115 69k 5 KUHN 04 B852 18 π− p → ηπ+π−π− p340±40± 50 5 IVANOV 01 B852 18 π− p → η′π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •168±20+150
− 12 5,6 ADAMS 98B B852 18.3 π− p → π+π−π− p

4May be a di�erent state: natural and unnatural parity ex
hanges.5Natural parity ex
hange.6 Superseded by DZIERBA 06 ex
luding this state in a more re�ned PWA analysis, with2.6 M events of π− p → π−π−π+ p and 3 M events of π− p → π−π0π0 p of E852data.
WEIGHTED AVERAGE
241±40 (Error scaled by 1.4)

IVANOV 01 B852 2.4
KUHN 04 B852 1.3
LU 05 B852 2.2
ALEKSEEV 10 COMP 0.2

χ2

       6.2
(Confidence Level = 0.104)

0 200 400 600 800 1000

π1(1600) width (MeV)
π1(1600) DECAY MODESπ1(1600) DECAY MODESπ1(1600) DECAY MODESπ1(1600) DECAY MODESMode Fra
tion (�i /�)�1 πππ not seen�2 ρ0π− not seen�3 f2(1270)π− not seen�4 b1(1235)π seen�5 η′(958)π− seen�6 f1(1285)π seen

π1(1600) BRANCHING RATIOSπ1(1600) BRANCHING RATIOSπ1(1600) BRANCHING RATIOSπ1(1600) BRANCHING RATIOS�(ρ0π−)/�total �2/��(ρ0π−)/�total �2/��(ρ0π−)/�total �2/��(ρ0π−)/�total �2/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen NOZAR 09 CLAS γ p → 2π+π− nnot seennot seennot seennot seen 7 DZIERBA 06 B852 18 π− p7From the PWA analysis of 2.6 M π− p → π−π−π+ p and 3 M events of π− p →
π−π0π0 p of E852 data. Supersedes ADAMS 98B.�(f2(1270)π−)/�total �3/��(f2(1270)π−)/�total �3/��(f2(1270)π−)/�total �3/��(f2(1270)π−)/�total �3/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen 8 DZIERBA 06 B852 18 π− p8From the PWA analysis of 2.6 M π− p → π−π−π+ p and 3 M events of π− p →
π−π0π0 p of E852 data. Supersedes CHUNG 02.�(b1(1235)π)/�total �4/��(b1(1235)π)/�total �4/��(b1(1235)π)/�total �4/��(b1(1235)π)/�total �4/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 35280 9 BAKER 03 SPEC pp → ωπ+π−π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 145k LU 05 B852 18 π− p → ωπ−π0 p9B((b1π)D−wave)/B((b1π)S-wave)=0.3 ± 0.1.�(η′(958)π−)/�total �5/��(η′(958)π−)/�total �5/��(η′(958)π−)/�total �5/��(η′(958)π−)/�total �5/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen IVANOV 01 B852 18 π− p → η′π− p�(f1(1285)π)/�(η′(958)π−) �6/�5�(f1(1285)π)/�(η′(958)π−) �6/�5�(f1(1285)π)/�(η′(958)π−) �6/�5�(f1(1285)π)/�(η′(958)π−) �6/�5VALUE EVTS DOCUMENT ID TECN COMMENT3.80±0.783.80±0.783.80±0.783.80±0.78 69k 10 KUHN 04 B852 18 π− p → ηπ+π−π− p10Using η′(958)π data from IVANOV 01.
π1(1600) REFERENCESπ1(1600) REFERENCESπ1(1600) REFERENCESπ1(1600) REFERENCESALEKSEEV 10 PRL 104 241803 M.G. Alekseev et al. (COMPASS Collab.)NOZAR 09 PRL 102 102002 M. Nozar et al. (JLab CLAS Collab.)DZIERBA 06 PR D73 072001 A.R. Dzierba et al. (BNL E852 Collab.)LU 05 PRL 94 032002 M. Lu et al. (BNL E852 Collab.)KUHN 04 PL B595 109 J. Kuhn et al. (BNL E852 Collab.)BAKER 03 PL B563 140 C.A. Baker et al.CHUNG 02 PR D65 072001 S.U. Chung et al. (BNL E852 Collab.)IVANOV 01 PRL 86 3977 E.I. Ivanov et al. (BNL E852 Collab.)ADAMS 98B PRL 81 5760 G.S. Adams et al. (BNL E852 Collab.)



936936936936MesonParti
le Listingsa1(1640), f2(1640)a1(1640) IG (JPC ) = 1−(1 + +)OMITTED FROM SUMMARY TABLESeen in the amplitude analysis of the 3π0 system produ
ed in pp →4π0. Possibly seen in the study of the hadroni
 stru
ture in de
ay
τ → 3πντ (ABREU 98G and ASNER 00). Needs 
on�rmation.a1(1640) MASSa1(1640) MASSa1(1640) MASSa1(1640) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1647±22 OUR AVERAGE1647±22 OUR AVERAGE1647±22 OUR AVERAGE1647±22 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.1630±20 35280 1 BAKER 03 SPEC pp → ωπ+π−π01714± 9±36 CHUNG 02 B852 18.3 π− p → π+π−π− p1640±12±30 BAKER 99 SPEC 1.94 pp → 4π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •1670±90 BELLINI 85 SPEC 40 π−A → π−π+π−A
WEIGHTED AVERAGE
1647±22 (Error scaled by 1.4)

BAKER 99 SPEC 0.1
CHUNG 02 B852 3.3
BAKER 03 SPEC 0.7

χ2

       4.0
(Confidence Level = 0.133)

1550 1600 1650 1700 1750 1800 1850 1900a1(1640) mass (MeV)1Using the a1(1260) mass and width results of BOWLER 88.a1(1640) WIDTHa1(1640) WIDTHa1(1640) WIDTHa1(1640) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT254± 27 OUR AVERAGE254± 27 OUR AVERAGE254± 27 OUR AVERAGE254± 27 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.225± 30 35280 2 BAKER 03 SPEC pp → ωπ+π−π0308± 37±62 CHUNG 02 B852 18.3 π− p → π+π−π− p300± 22±40 BAKER 99 SPEC 1.94 pp → 4π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •300±100 BELLINI 85 SPEC 40 π−A → π−π+π−A2Using the a1(1260) mass and width results of BOWLER 88.a1(1640) DECAY MODESa1(1640) DECAY MODESa1(1640) DECAY MODESa1(1640) DECAY MODESMode Fra
tion (�i /�)�1 πππ seen�2 f2(1270)π seen�3 σπ seen�4 ρπS−wave seen�5 ρπD−wave seen�6 ωππ seen�7 f1(1285)π seen�8 a1(1260)η not seena1(1640) BRANCHING RATIOSa1(1640) BRANCHING RATIOSa1(1640) BRANCHING RATIOSa1(1640) BRANCHING RATIOS�(f2(1270)π)/�(σπ

) �2/�3�(f2(1270)π)/�(σπ
) �2/�3�(f2(1270)π)/�(σπ
) �2/�3�(f2(1270)π)/�(σπ
) �2/�3VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.24±0.07 BAKER 99 SPEC 1.94 pp → 4π0�(ρπD−wave

)/�total �5/��(ρπD−wave

)/�total �5/��(ρπD−wave

)/�total �5/��(ρπD−wave

)/�total �5/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen CHUNG 02 B852 18.3 π− p → π+π−π− pseen AMELIN 95B VES 36 π−A → π+π−π−A

�(ωππ
)/�total �6/��(ωππ
)/�total �6/��(ωππ
)/�total �6/��(ωππ
)/�total �6/�VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 35280 3 BAKER 03 SPEC pp → ωπ+π−π0�(f1(1285)π)/�total �7/��(f1(1285)π)/�total �7/��(f1(1285)π)/�total �7/��(f1(1285)π)/�total �7/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen KUHN 04 B852 18 π− p → ηπ+π−π− pseen LEE 94 MPS2 18 π− p → K+K0π−π− p�(a1(1260)η)/�total �8/��(a1(1260)η)/�total �8/��(a1(1260)η)/�total �8/��(a1(1260)η)/�total �8/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen KUHN 04 B852 18 π− p → ηπ+π−π− p3Assuming the ωρ me
hanism for the ωππ state.a1(1640) REFERENCESa1(1640) REFERENCESa1(1640) REFERENCESa1(1640) REFERENCESKUHN 04 PL B595 109 J. Kuhn et al. (BNL E852 Collab.)BAKER 03 PL B563 140 C.A. Baker et al.CHUNG 02 PR D65 072001 S.U. Chung et al. (BNL E852 Collab.)ASNER 00 PR D61 012002 D.M. Asner et al. (CLEO Collab.)BAKER 99 PL B449 114 C.A. Baker et al.ABREU 98G PL B426 411 P. Abreu et al. (DELPHI Collab.)AMELIN 95B PL B356 595 D.V. Amelin et al. (SERP, TBIL)LEE 94 PL B323 227 J.H. Lee et al. (BNL, IND, KYUN, MASD+)BOWLER 88 PL B209 99 M.G. Bowler (OXF)BELLINI 85 SJNP 41 781 D. Bellini et al.Translated from YAF 41 1223.f2(1640) IG (JPC ) = 0+(2 + +)OMITTED FROM SUMMARY TABLEf2(1640) MASSf2(1640) MASSf2(1640) MASSf2(1640) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1639± 6 OUR AVERAGE1639± 6 OUR AVERAGE1639± 6 OUR AVERAGE1639± 6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1620±16 BUGG 95 MRK3 J/ψ → γπ+π−π+π−1647± 7 ADAMO 92 OBLX np → 3π+2π−1635± 7 ALDE 90 GAM2 38 π− p → ωωn
• • • We do not use the following data for averages, �ts, limits, et
. • • •1640± 5 AMSLER 06 CBAR 0.9 pp → K+K−π01659± 6 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n1643± 7 1 ALDE 89B GAM2 38 π− p → ωωn1Superseded by ALDE 90. f2(1640) WIDTHf2(1640) WIDTHf2(1640) WIDTHf2(1640) WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT99+60

−40 OUR AVERAGE99+60
−40 OUR AVERAGE99+60
−40 OUR AVERAGE99+60
−40 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.9.140+60
−20 BUGG 95 MRK3 J/ψ → γπ+π−π+π−58±20 ADAMO 92 OBLX np → 3π+2π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •44± 9 AMSLER 06 CBAR 0.9 pp → K+K−π0152±18 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n
< 70 90 ALDE 90 GAM2 38 π− p → ωωnf2(1640) DECAY MODESf2(1640) DECAY MODESf2(1640) DECAY MODESf2(1640) DECAY MODESMode Fra
tion (�i /�)�1 ωω seen�2 4π seen�3 K K seenf2(1640) BRANCHING RATIOSf2(1640) BRANCHING RATIOSf2(1640) BRANCHING RATIOSf2(1640) BRANCHING RATIOS�(K K)/�total �3/��(K K)/�total �3/��(K K)/�total �3/��(K K)/�total �3/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AMSLER 06 CBAR 0.9 p p → K+K−π0f2(1640) REFERENCESf2(1640) REFERENCESf2(1640) REFERENCESf2(1640) REFERENCESAMSLER 06 PL B639 165 C. Amsler et al. (CBAR Collab.)VLADIMIRSK... 06 PAN 69 493 V.V. Vladimirsky et al. (ITEP, Mos
ow)Translated from YAF 69 515.BUGG 95 PL B353 378 D.V. Bugg et al. (LOQM, PNPI, WASH) JPADAMO 92 PL B287 368 A. Adamo et al. (OBELIX Collab.)ALDE 90 PL B241 600 D.M. Alde et al. (SERP, BELG, LANL, LAPP+)ALDE 89B PL B216 451 D.M. Alde et al. (SERP, BELG, LANL, LAPP+) IGJPC
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η2(1645),ω(1650)

η2(1645) IG (JPC ) = 0+(2−+)
η2(1645) MASSη2(1645) MASSη2(1645) MASSη2(1645) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT1617± 5 OUR AVERAGE1617± 5 OUR AVERAGE1617± 5 OUR AVERAGE1617± 5 OUR AVERAGE1613± 8 BARBERIS 00B 450 pp → pf ηπ+π− ps1617± 8 BARBERIS 00C 450 pp → pf 4πps1620±20 BARBERIS 97B OMEG 450 pp → pp2(π+π−)1645±14±15 ADOMEIT 96 CBAR 0 1.94 p p → η3π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •1645± 6±20 ANISOVICH 00E SPEC 0.9{1.94 p p → η3π0
η2(1645) WIDTHη2(1645) WIDTHη2(1645) WIDTHη2(1645) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT181±11 OUR AVERAGE181±11 OUR AVERAGE181±11 OUR AVERAGE181±11 OUR AVERAGE185±17 BARBERIS 00B 450 pp → pf ηπ+π− ps177±18 BARBERIS 00C 450 pp → pf 4πps180±25 BARBERIS 97B OMEG 450 pp → pp2(π+π−)180+40

−21±25 ADOMEIT 96 CBAR 0 1.94 p p → η3π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •200±25 ANISOVICH 00E SPEC 0.9{1.94 p p → η3π0

η2(1645) DECAY MODESη2(1645) DECAY MODESη2(1645) DECAY MODESη2(1645) DECAY MODESMode Fra
tion (�i /�)�1 a2(1320)π seen�2 K K π seen�3 K∗K seen�4 ηπ+π− seen�5 a0(980)π seen�6 f2(1270)η not seen
η2(1645) BRANCHING RATIOSη2(1645) BRANCHING RATIOSη2(1645) BRANCHING RATIOSη2(1645) BRANCHING RATIOS�(K K π

)/�(a2(1320)π) �2/�1�(K K π
)/�(a2(1320)π) �2/�1�(K K π
)/�(a2(1320)π) �2/�1�(K K π
)/�(a2(1320)π) �2/�1VALUE DOCUMENT ID TECN COMMENT0.07±0.030.07±0.030.07±0.030.07±0.03 1 BARBERIS 97C OMEG 450 pp → ppK K π1Using 2(π+π−) data from BARBERIS 97B.�(a2(1320)π)/�(a0(980)π) �1/�5�(a2(1320)π)/�(a0(980)π) �1/�5�(a2(1320)π)/�(a0(980)π) �1/�5�(a2(1320)π)/�(a0(980)π) �1/�5VALUE DOCUMENT ID TECN COMMENT13.1±2.3 OUR AVERAGE13.1±2.3 OUR AVERAGE13.1±2.3 OUR AVERAGE13.1±2.3 OUR AVERAGE13.5±4.6 2 ANISOVICH 11 SPEC 0.9{1.94 pp13.0±2.7 BARBERIS 00B 450 pp → pf ηπ+π− ps2Reanalysis of ADOMEIT 96 and ANISOVICH 00E.�(f2(1270)η)/�total �6/��(f2(1270)η)/�total �6/��(f2(1270)η)/�total �6/��(f2(1270)η)/�total �6/�VALUE DOCUMENT ID COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen BARBERIS 00B 450 pp → pf ηπ+π− ps
η2(1645) REFERENCESη2(1645) REFERENCESη2(1645) REFERENCESη2(1645) REFERENCESANISOVICH 11 EPJ C71 1511 A.V. Anisovi
h et al. (LOQM, RAL, PNPI)ANISOVICH 00E PL B477 19 A.V. Anisovi
h et al.BARBERIS 00B PL B471 435 D. Barberis et al. (WA 102 Collab.)BARBERIS 00C PL B471 440 D. Barberis et al. (WA 102 Collab.)BARBERIS 97B PL B413 217 D. Barberis et al. (WA 102 Collab.)BARBERIS 97C PL B413 225 D. Barberis et al. (WA 102 Collab.)ADOMEIT 96 ZPHY C71 227 J. Adomeit et al. (Crystal Barrel Collab.)

ω(1650) IG (JPC ) = 0−(1−−)
ω(1650) MASSω(1650) MASSω(1650) MASSω(1650) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1670± 30 OUR ESTIMATE1670± 30 OUR ESTIMATE1670± 30 OUR ESTIMATE1670± 30 OUR ESTIMATE

• • • We do not use the following data for averages, �ts, limits, et
. • • •1680± 10 13.1k 1 AULCHENKO 15A SND 1.05{1.80 e+ e− →
π+π−π01667± 13± 6 AUBERT 07AU BABR 10.6 e+ e− → ωπ+π− γ1645± 8 13 AUBERT 06D BABR 10.6 e+ e− → ωηγ1660± 10± 2 AUBERT,B 04N BABR 10.6 e+ e− → π+π−π0 γ1770± 50±60 1.2M 2 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π01619± 5 3 HENNER 02 RVUE 1.2{2.0 e+ e− → ρπ,
ωππ1700± 20 EUGENIO 01 SPEC 18 π− p → ωηn1705± 26 612 4 AKHMETSHIN 00D CMD2 e+ e− → ωπ+π−

1820+190
−150 5 ACHASOV 98H RVUE e+ e− → π+π−π01840+100
− 70 6 ACHASOV 98H RVUE e+ e− → ωπ+π−1780+170
−300 7 ACHASOV 98H RVUE e+ e− → K+K−

∼ 2100 8 ACHASOV 98H RVUE e+ e− → K0S K±π∓1606± 9 9 CLEGG 94 RVUE1662± 13 750 10 ANTONELLI 92 DM2 1.34{2.4e+ e− → ρπ,
ωππ1670± 20 ATKINSON 83B OMEG 20{70 γ p → 3πX1657± 13 CORDIER 81 DM1 e+ e− → ω2π1679± 34 21 ESPOSITO 80 FRAM e+ e− → 3π1652± 17 COSME 79 OSPK e+ e− → 3π1From a �t with 
ontributions from ω(782), φ(1020), ω(1420), and ω(1650).2 From the 
ombined �t of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, andACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− �nal states.Supersedes ACHASOV 99E and ACHASOV 02E.3Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and AN-TONELLI 92.4Using the data of AKHMETSHIN 00D and ANTONELLI 92. The ρπ dominan
e for theenergy dependen
e of the ω(1420) and ω(1650) width assumed.5Using data from BARKOV 87, DOLINSKY 91, and ANTONELLI 92.6Using the data from ANTONELLI 92.7Using the data from IVANOV 81 and BISELLO 88B.8Using the data from BISELLO 91C.9 From a �t to two Breit-Wigner fun
tions and using the data of DOLINSKY 91 andANTONELLI 92.10 From the 
ombined �t of the ρπ and ωππ �nal states.

ω(1650) WIDTHω(1650) WIDTHω(1650) WIDTHω(1650) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT315± 35 OUR ESTIMATE315± 35 OUR ESTIMATE315± 35 OUR ESTIMATE315± 35 OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •310± 30 13.1k 11 AULCHENKO 15A SND 1.05{1.80 e+ e− →

π+π−π0222± 25± 20 AUBERT 07AU BABR 10.6 e+ e− → ωπ+π− γ114± 14 13 AUBERT 06D BABR 10.6 e+ e− → ωηγ230± 30± 20 AUBERT,B 04N BABR 10.6 e+ e− → π+π−π0 γ490+200
−150±130 1.2M 12 ACHASOV 03D RVUE 0.44{2.00 e+ e− →

π+π−π0250± 14 13 HENNER 02 RVUE 1.2{2.0 e+ e− → ρπ, ωππ250± 50 EUGENIO 01 SPEC 18 π− p → ωηn370± 25 612 14 AKHMETSHIN 00D CMD2 e+ e− → ωπ+π−113± 20 15 CLEGG 94 RVUE280± 24 750 16 ANTONELLI 92 DM2 1.34{2.4e+ e− → ρπ, ωππ160± 20 ATKINSON 83B OMEG 20{70 γ p → 3πX136± 46 CORDIER 81 DM1 e+ e− → ω2π99± 49 21 ESPOSITO 80 FRAM e+ e− → 3π42± 17 COSME 79 OSPK e+ e− → 3π11From a �t with 
ontributions from ω(782), φ(1020), ω(1420), and ω(1650).12 From the 
ombined �t of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, andACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− �nal states.Supersedes ACHASOV 99E and ACHASOV 02E.13Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and AN-TONELLI 92.14Using the data of AKHMETSHIN 00D and ANTONELLI 92. The ρπ dominan
e for theenergy dependen
e of the ω(1420) and ω(1650) width assumed.15From a �t to two Breit-Wigner fun
tions and using the data of DOLINSKY 91 andANTONELLI 92.16 From the 
ombined �t of the ρπ and ωππ �nal states.
ω(1650) DECAY MODESω(1650) DECAY MODESω(1650) DECAY MODESω(1650) DECAY MODESMode Fra
tion (�i /�)�1 ρπ seen�2 ωππ seen�3 ωη seen�4 e+ e− seen

ω(1650) �(i)�(e+ e−)/�2(total)ω(1650) �(i)�(e+ e−)/�2(total)ω(1650) �(i)�(e+ e−)/�2(total)ω(1650) �(i)�(e+ e−)/�2(total)�(ρπ
)/�total × �(e+ e−)/�total �1/�× �4/��(ρπ
)/�total × �(e+ e−)/�total �1/�× �4/��(ρπ
)/�total × �(e+ e−)/�total �1/�× �4/��(ρπ
)/�total × �(e+ e−)/�total �1/�× �4/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.56 ±0.23 13.1k 17 AULCHENKO 15A SND 1.05{1.80 e+ e− →
π+π−π01.3 ±0.1 ±0.1 AUBERT,B 04N BABR 10.6 e+ e− → π+π−π0 γ1.2 +0.4

−0.1 ±0.8 1.2M 18,19 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π00.921±0.230 20,21 CLEGG 94 RVUE0.479±0.050 750 22,23 ANTONELLI 92 DM2 1.34{2.4e+ e− → ρπ,
ωππ
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ω(1650),ω3(1670)�(ωππ

)/�total × �(e+ e−)/�total �2/�× �4/��(ωππ
)/�total × �(e+ e−)/�total �2/�× �4/��(ωππ
)/�total × �(e+ e−)/�total �2/�× �4/��(ωππ
)/�total × �(e+ e−)/�total �2/�× �4/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •7.0 ±0.5 AUBERT 07AU BABR 10.6 e+ e− → ωπ+π− γ4.1 ±0.9 ±1.3 1.2M 18,19 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π05.40±0.95 24 AKHMETSHIN 00D CMD2 1.2{1.38 e+ e− → ωπ+π−3.18±0.80 20,21 CLEGG 94 RVUE6.07±0.61 750 22,23 ANTONELLI 92 DM2 1.34{2.4 e+ e− → ρπ, ωππ�(ωη

)/�total × �(e+ e−)/�total �3/�× �4/��(ωη
)/�total × �(e+ e−)/�total �3/�× �4/��(ωη
)/�total × �(e+ e−)/�total �3/�× �4/��(ωη
)/�total × �(e+ e−)/�total �3/�× �4/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.57±0.06 13 AUBERT 06D BABR 10.6 e+ e− → ωηγ

<6 90 25 AKHMETSHIN 03B CMD2 e+ e → ηπ0 γ17From a �t with 
ontributions from ω(782), φ(1020), ω(1420), and ω(1650).18Cal
ulated by us from the 
ross se
tion at the peak.19 From the 
ombined �t of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, andACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− �nal states.Supersedes ACHASOV 99E and ACHASOV 02E.20 From a �t to two Breit-Wigner fun
tions and using the data of DOLINSKY 91 andANTONELLI 92.21 From the partial and leptoni
 width given by the authors.22 From the 
ombined �t of the ρπ and ωππ �nal states.23 From the produ
t of the leptoni
 width and partial bran
hing ratio given by the authors.24Using the data of AKHMETSHIN 00D and ANTONELLI 92. The ρπ dominan
e for theenergy dependen
e of the ω(1420) and ω(1650) width assumed.25ω(1650) mass and width �xed at 1700 MeV and 250 MeV, respe
tively.
ω(1650) BRANCHING RATIOSω(1650) BRANCHING RATIOSω(1650) BRANCHING RATIOSω(1650) BRANCHING RATIOS�(ωππ

)/�total �2/��(ωππ
)/�total �2/��(ωππ
)/�total �2/��(ωππ
)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 0.35 1.2M 26 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π00.620±0.014 27 HENNER 02 RVUE 1.2{2.0 e+ e− → ρπ, ωππ�(ρπ

)/�total �1/��(ρπ
)/�total �1/��(ρπ
)/�total �1/��(ρπ
)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 0.65 1.2M 26 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π00.380±0.014 27 HENNER 02 RVUE 1.2{2.0 e+ e− → ρπ, ωππ�(e+ e−)/�total �4/��(e+ e−)/�total �4/��(e+ e−)/�total �4/��(e+ e−)/�total �4/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 18 1.2M 27,28 ACHASOV 03D RVUE 0.44{2.00 e+ e− →
π+π−π032±1 27 HENNER 02 RVUE 1.2{2.0 e+ e− → ρπ, ωππ26From the 
ombined �t of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, andACHASOV 03D data on the π+π−π0 and ANTONELLI 92 on the ωπ+π− �nal states.Supersedes ACHASOV 99E and ACHASOV 02E.27Assuming that the ω(1650) de
ays into ρπ and ωππ only.28Cal
ulated by us from the 
ross se
tion at the peak.

ω(1650) REFERENCESω(1650) REFERENCESω(1650) REFERENCESω(1650) REFERENCESAULCHENKO 15A JETP 121 27 V.M. Aul
henko et al. (SND Collab.)Translated from ZETF 148 34.AUBERT 07AU PR D76 092005 B. Aubert et al. (BABAR Collab.)AUBERT 06D PR D73 052003 B. Aubert et al. (BABAR Collab.)AUBERT,B 04N PR D70 072004 B. Aubert et al. (BABAR Collab.)ACHASOV 03D PR D68 052006 M.N. A
hasov et al. (Novosibirsk SND Collab.)AKHMETSHIN 03B PL B562 173 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)ACHASOV 02E PR D66 032001 M.N. A
hasov et al. (Novosibirsk SND Collab.)HENNER 02 EPJ C26 3 V.K. Henner et al.ACHASOV 01E PR D63 072002 M.N. A
hasov et al. (Novosibirsk SND Collab.)EUGENIO 01 PL B497 190 P. Eugenio et al.AKHMETSHIN 00D PL B489 125 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)ACHASOV 99E PL B462 365 M.N. A
hasov et al. (Novosibirsk SND Collab.)ACHASOV 98H PR D57 4334 N.N. A
hasov, A.A. KozhevnikovCLEGG 94 ZPHY C62 455 A.B. Clegg, A. Donna
hie (LANC, MCHS)ANTONELLI 92 ZPHY C56 15 A. Antonelli et al. (DM2 Collab.)BISELLO 91C ZPHY C52 227 D. Bisello et al. (DM2 Collab.)DOLINSKY 91 PRPL 202 99 S.I. Dolinsky et al. (NOVO)BISELLO 88B ZPHY C39 13 D. Bisello et al. (PADO, CLER, FRAS+)BARKOV 87 JETPL 46 164 L.M. Barkov et al. (NOVO)Translated from ZETFP 46 132.ATKINSON 83B PL 127B 132 M. Atkinson et al. (BONN, CERN, GLAS+)CORDIER 81 PL 106B 155 A. Cordier et al. (ORSAY)IVANOV 81 PL 107B 297 P.M. Ivanov et al. (NOVO)ESPOSITO 80 LNC 28 195 B. Esposito et al. (FRAS, NAPL, PADO+)COSME 79 NP B152 215 G. Cosme et al. (IPN)

ω3(1670) IG (JPC ) = 0−(3−−)
ω3(1670) MASSω3(1670) MASSω3(1670) MASSω3(1670) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1667 ± 4 OUR AVERAGE1667 ± 4 OUR AVERAGE1667 ± 4 OUR AVERAGE1667 ± 4 OUR AVERAGE1665.3± 5.2±4.5 23400 AMELIN 96 VES 36 π− p →

π+π−π0 n1685 ±20 60 BAUBILLIER 79 HBC 8.2 K− p ba
kward1673 ±12 430 1,2 BALTAY 78E HBC 15 π+ p → �3π1650 ±12 CORDEN 78B OMEG 8{12 π− p → N 3π1669 ±11 600 2 WAGNER 75 HBC 7 π+ p → �++3π1678 ±14 500 DIAZ 74 DBC 6 π+ n → p3π01660 ±13 200 DIAZ 74 DBC 6 π+ n → pωπ0π01679 ±17 200 MATTHEWS 71D DBC 7.0 π+ n → p3π01670 ±20 KENYON 69 DBC 8 π+ n → p3π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 1700 110 1 CERRADA 77B HBC 4.2 K− p → �3π1695 ±20 BARNES 69B HBC 4.6 K− p → ω2πX1636 ±20 ARMENISE 68B DBC 5.1 π+ n → p3π01Phase rotation seen for JP = 3− ρπ wave.2 From a �t to I (JP ) = 0(3−) ρπ partial wave.
ω3(1670) WIDTHω3(1670) WIDTHω3(1670) WIDTHω3(1670) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT168±10 OUR AVERAGE168±10 OUR AVERAGE168±10 OUR AVERAGE168±10 OUR AVERAGE149±19±7 23400 AMELIN 96 VES 36 π− p →

π+π−π0 n160±80 60 3 BAUBILLIER 79 HBC 8.2 K− p ba
kward173±16 430 4,5 BALTAY 78E HBC 15 π+ p → �3π253±39 CORDEN 78B OMEG 8{12 π− p → N 3π173±28 600 3,5 WAGNER 75 HBC 7 π+ p → �++3π167±40 500 DIAZ 74 DBC 6 π+ n → p3π0122±39 200 DIAZ 74 DBC 6 π+ n → pωπ0π0155±40 200 3 MATTHEWS 71D DBC 7.0 π+ n → p3π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •90±20 BARNES 69B HBC 4.6 K− p → ω2π100±40 KENYON 69 DBC 8 π+ n → p3π0112±60 ARMENISE 68B DBC 5.1 π+ n → p3π03Width errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.4Phase rotation seen for JP = 3− ρπ wave.5 From a �t to I (JP ) = 0(3−) ρπ partial wave.

ω3(1670) DECAY MODESω3(1670) DECAY MODESω3(1670) DECAY MODESω3(1670) DECAY MODESMode Fra
tion (�i /�)�1 ρπ seen�2 ωππ seen�3 b1(1235)π possibly seen
ω3(1670) BRANCHING RATIOSω3(1670) BRANCHING RATIOSω3(1670) BRANCHING RATIOSω3(1670) BRANCHING RATIOS�(ωππ

)/�(ρπ
) �2/�1�(ωππ

)/�(ρπ
) �2/�1�(ωππ

)/�(ρπ
) �2/�1�(ωππ

)/�(ρπ
) �2/�1VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.71±0.27 100 DIAZ 74 DBC 6 π+ n → p5π0�(b1(1235)π)/�(ρπ
) �3/�1�(b1(1235)π)/�(ρπ
) �3/�1�(b1(1235)π)/�(ρπ
) �3/�1�(b1(1235)π)/�(ρπ
) �3/�1VALUE DOCUMENT ID TECN COMMENTpossibly seen DIAZ 74 DBC 6 π+ n → p5π0�(b1(1235)π)/�(ωππ

) �3/�2�(b1(1235)π)/�(ωππ
) �3/�2�(b1(1235)π)/�(ωππ
) �3/�2�(b1(1235)π)/�(ωππ
) �3/�2VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

>0.75 68 BAUBILLIER 79 HBC 8.2 K− p ba
kward
ω3(1670) REFERENCESω3(1670) REFERENCESω3(1670) REFERENCESω3(1670) REFERENCESAMELIN 96 ZPHY C70 71 D.V. Amelin et al. (SERP, TBIL)BAUBILLIER 79 PL 89B 131 M. Baubillier et al. (BIRM, CERN, GLAS+)BALTAY 78E PRL 40 87 C. Baltay, C.V. Cautis, M. Kalelkar (COLU) JPCORDEN 78B NP B138 235 M.J. Corden et al. (BIRM, RHEL, TELA+)CERRADA 77B NP B126 241 M. Cerrada et al. (AMST, CERN, NIJM+) JPWAGNER 75 PL 58B 201 F. Wagner, M. Tabak, D.M. Chew (LBL) JPDIAZ 74 PRL 32 260 J. Diaz et al. (CASE, CMU)MATTHEWS 71D PR D3 2561 J.A.J. Matthews et al. (TNTO, WISC)BARNES 69B PRL 23 142 V.E. Barnes et al. (BNL)KENYON 69 PRL 23 146 I.R. Kenyon et al. (BNL, UCND, ORNL)ARMENISE 68B PL 26B 336 N. Armenise et al. (BARI, BGNA, FIRZ+)
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π2(1670)

π2(1670) IG (JPC ) = 1−(2−+)
π2(1670) MASSπ2(1670) MASSπ2(1670) MASSπ2(1670) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1672.2± 3.0 OUR AVERAGE1672.2± 3.0 OUR AVERAGE1672.2± 3.0 OUR AVERAGE1672.2± 3.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.1658 ± 3 + 24

− 8 420k ALEKSEEV 10 COMP 190 π−Pb →
π−π−π+Pb′1749 ±10 ±100 145k LU 05 B852 18 π− p →
ωπ−π0 p1676 ± 3 ± 8 1 CHUNG 02 B852 18.3 π− p →
π+π−π− p1685 ±10 ± 30 2 BARBERIS 01 450 pp →pf 3π0 ps1687 ± 9 ± 15 AMELIN 99 VES 37 π−A →
ωπ−π0A∗1669 ± 4 BARBERIS 98B 450 pp → pf ρπps1670 ± 4 BARBERIS 98B 450 pp →pf f2(1270)πps1730 ±20 3 AMELIN 95B VES 36 π−A →
π+π−π−A1690 ±14 4 BERDNIKOV 94 VES 37 π−A →K+K−π−A1710 ±20 700 ANTIPOV 87 SIGM − 50 π−Cu →
µ+µ−π−Cu1676 ± 6 4 EVANGELIS... 81 OMEG − 12 π− p → 3πp1657 ±14 4,5 DAUM 80D SPEC − 63{94 πp → 3πX1662 ±10 2000 4 BALTAY 77 HBC + 15 π+ p → p3π

• • • We do not use the following data for averages, �ts, limits, et
. • • •1742 ±31 ± 49 ANTREASYAN 90 CBAL e+ e− →e+ e−π0π0π01624 ±21 1 BELLINI 85 SPEC 40 π−A →
π−π+π−A1622 ±35 6 BELLINI 85 SPEC 40 π−A →
π−π+π−A1693 ±28 7 BELLINI 85 SPEC 40 π−A →
π−π+π−A1710 ±20 8 DAUM 81B SPEC − 63,94 π− p1660 ±10 4 ASCOLI 73 HBC − 5{25 π− p → pπ21From f2(1270)π de
ay.2 From a �t to the invariant mass distribution.3 From a �t to JPC = 2−+ f2(1270)π, f0(1370)π waves.4 From a �t to JP = 2−S-wave f2(1270)π partial wave.5Clear phase rotation seen in 2−S, 2−P, 2−D waves. We quote 
entral value and spreadof single-resonan
e �ts to three 
hannels.6 From ρπ de
ay.7 From σπ de
ay.8 From a two-resonan
e �t to four 2−0+ waves. This should not be averaged with all thesingle resonan
e �ts.

WEIGHTED AVERAGE
1672.2±3.0 (Error scaled by 1.4)

BALTAY 77 HBC 1.0
DAUM 80D SPEC 1.2
EVANGELIS... 81 OMEG 0.4
ANTIPOV 87 SIGM 3.6
BERDNIKOV 94 VES 1.6
AMELIN 95B VES 8.4
BARBERIS 98B 0.3
BARBERIS 98B 0.6
AMELIN 99 VES 0.7
BARBERIS 01
CHUNG 02 B852 0.2
LU 05 B852
ALEKSEEV 10 COMP 0.5

χ2

      18.6
(Confidence Level = 0.046)

1600 1650 1700 1750 1800 1850

π2(1670) mass (MeV)
π2(1670) WIDTHπ2(1670) WIDTHπ2(1670) WIDTHπ2(1670) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT260± 9 OUR AVERAGE260± 9 OUR AVERAGE260± 9 OUR AVERAGE260± 9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.271± 9+ 22

− 24 420k ALEKSEEV 10 COMP 190 π−Pb →
π−π−π+Pb′408± 60±250 145k LU 05 B852 18 π− p → ωπ−π0 p254± 3± 31 9 CHUNG 02 B852 18.3 π− p →
π+π−π− p265± 30± 40 10 BARBERIS 01 450 pp → pf 3π0 ps168± 43± 53 AMELIN 99 VES 37 π−A →
ωπ−π0A∗268± 15 BARBERIS 98B 450 pp → pf ρπps

256± 15 BARBERIS 98B 450 pp →pf f2(1270)πps310± 20 11 AMELIN 95B VES 36 π−A →
π+π−π−A190± 50 12 BERDNIKOV 94 VES 37 π−A →K+K−π−A170± 80 700 ANTIPOV 87 SIGM − 50 π−Cu →
µ+µ−π−Cu260± 20 12 EVANGELIS... 81 OMEG − 12 π− p → 3πp219± 20 12,13 DAUM 80D SPEC − 63{94 πp → 3πX285± 60 2000 12 BALTAY 77 HBC + 15 π+ p → p3π

• • • We do not use the following data for averages, �ts, limits, et
. • • •236± 49± 36 ANTREASYAN 90 CBAL e+ e− →e+ e−π0π0π0304± 22 9 BELLINI 85 SPEC 40 π−A →
π−π+π−A404±108 14 BELLINI 85 SPEC 40 π−A →
π−π+π−A330± 90 15 BELLINI 85 SPEC 40 π−A →
π−π+π−A312± 50 16 DAUM 81B SPEC − 63,94 π− p270± 60 12 ASCOLI 73 HBC − 5{25 π− p → pπ29From f2(1270)π de
ay.10 From a �t to the invariant mass distribution.11 From a �t to JPC = 2−+ f2(1270)π, f0(1370)π waves.12 From a �t to JP = 2− f2(1270)π partial wave.13Clear phase rotation seen in 2−S, 2−P, 2−D waves. We quote 
entral value and spreadof single-resonan
e �ts to three 
hannels.14 From ρπ de
ay.15 From σπ de
ay.16 From a two-resonan
e �t to four 2−0+ waves. This should not be averaged with all thesingle resonan
e �ts.

π2(1670) DECAY MODESπ2(1670) DECAY MODESπ2(1670) DECAY MODESπ2(1670) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 3π (95.8±1.4) %�2 π+π−π0�3 π0π0π0�4 f2(1270)π (56.3±3.2) %�5 ρπ (31 ±4 ) %�6 σπ (10.9±3.4) %�7 π (ππ)S-wave ( 8.7±3.4) %�8 K K∗(892)+ 
.
. ( 4.2±1.4) %�9 ωρ ( 2.7±1.1) %�10 π± γ ( 7.0±1.1)× 10−4�11 γ γ < 2.8 × 10−7 90%�12 ηπ�13 π± 2π+2π−�14 ρ(1450)π < 3.6 × 10−3 97.7%�15 b1(1235)π < 1.9 × 10−3 97.7%�16 η3π�17 f1(1285)π possibly seen�18 a2(1320)π not seenCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 4 bran
hing ratios uses 6 measurements and one
onstraint to determine 4 parameters. The overall �t has a χ2 =1.9 for 3 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x5 −53x7 −29 −59x8 −8 −21 −9x4 x5 x7
π2(1670) PARTIAL WIDTHSπ2(1670) PARTIAL WIDTHSπ2(1670) PARTIAL WIDTHSπ2(1670) PARTIAL WIDTHS�(π± γ

) �10�(π± γ
) �10�(π± γ
) �10�(π± γ
) �10VALUE (keV) DOCUMENT ID TECN CHG COMMENT181±11±27181±11±27181±11±27181±11±27 17 ADOLPH 14 COMP − 190 π−Pb → π+π−π−Pb ′17Primako� rea
tion. Assumes in
oherent f2(1270)π 
ontribution to 3π �nal state anduses B(π2(1670) → f2π) = 56%.
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π2(1670), φ(1680)�(γ γ

) �11�(γ γ
) �11�(γ γ
) �11�(γ γ
) �11VALUE (keV) CL% DOCUMENT ID TECN CHG COMMENT

<0.072<0.072<0.072<0.072 90 18 ACCIARRI 97T L3 e+ e− →e+ e−π+π−π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.19 90 18 ALBRECHT 97B ARG e+ e− →e+ e−π+π−π01.41 ±0.23±0.28 ANTREASYAN 90 CBAL 0 e+ e− →e+ e−π0π0π00.8 ±0.3 ±0.12 19 BEHREND 90C CELL 0 e+ e− →e+ e−π+π−π01.3 ±0.3 ±0.2 20 BEHREND 90C CELL 0 e+ e− →e+ e−π+π−π018De
aying into f2(1270)π and ρπ.19Constru
tive interferen
e between f2(1270)π,ρπ and ba
kground.20 In
oherent Ansatz.

π2(1670) �(i)�(γ γ)/�(total)π2(1670) �(i)�(γ γ)/�(total)π2(1670) �(i)�(γ γ)/�(total)π2(1670) �(i)�(γ γ)/�(total)�(π+π−π0) × �(γ γ
)/�total �2�11/��(π+π−π0) × �(γ γ
)/�total �2�11/��(π+π−π0) × �(γ γ
)/�total �2�11/��(π+π−π0) × �(γ γ
)/�total �2�11/�VALUE (keV) CL% DOCUMENT ID TECN COMMENT

<0.1<0.1<0.1<0.1 95 21 SCHEGELSKY 06 RVUE γ γ → π+π−π021From analysis of L3 data at 183{209 GeV.
π2(1670) BRANCHING RATIOSπ2(1670) BRANCHING RATIOSπ2(1670) BRANCHING RATIOSπ2(1670) BRANCHING RATIOS�(3π)/�total �1/�= (�4+�5+�7)/��(3π)/�total �1/�= (�4+�5+�7)/��(3π)/�total �1/�= (�4+�5+�7)/��(3π)/�total �1/�= (�4+�5+�7)/�VALUE DOCUMENT ID0.958±0.014 OUR FIT0.958±0.014 OUR FIT0.958±0.014 OUR FIT0.958±0.014 OUR FIT�(π0π0π0)/�(π+π−π0) �3/�2�(π0π0π0)/�(π+π−π0) �3/�2�(π0π0π0)/�(π+π−π0) �3/�2�(π0π0π0)/�(π+π−π0) �3/�2VALUE DOCUMENT ID COMMENT0.29±0.03±0.050.29±0.03±0.050.29±0.03±0.050.29±0.03±0.05 22 BARBERIS 01 450 pp → pf 3π0 ps�(ρπ

)/0.565�(f2(1270)π) �5/0.565�4�(ρπ
)/0.565�(f2(1270)π) �5/0.565�4�(ρπ
)/0.565�(f2(1270)π) �5/0.565�4�(ρπ
)/0.565�(f2(1270)π) �5/0.565�4(With f2(1270) → π+π−.)VALUE DOCUMENT ID TECN COMMENT0.97±0.09 OUR AVERAGE0.97±0.09 OUR AVERAGE0.97±0.09 OUR AVERAGE0.97±0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.0.76±0.07±0.10 CHUNG 02 B852 18.3 π− p → π+π−π− p1.01±0.05 BARBERIS 98B 450 pp → pf π+π−π0 ps�(σπ
)/�(f2(1270)π) �6/�4�(σπ
)/�(f2(1270)π) �6/�4�(σπ
)/�(f2(1270)π) �6/�4�(σπ
)/�(f2(1270)π) �6/�4VALUE DOCUMENT ID TECN COMMENT0.19±0.06 OUR AVERAGE0.19±0.06 OUR AVERAGE0.19±0.06 OUR AVERAGE0.19±0.06 OUR AVERAGE0.17±0.02±0.07 CHUNG 02 B852 18.3 π− p → π+π−π− p0.24±0.10 23,24 BAKER 99 SPEC 1.94 p p → 4π012�(ρπ
)/�(π±π+π−) 12�5/(0.565�4+12�5+0.624�7)12�(ρπ
)/�(π±π+π−) 12�5/(0.565�4+12�5+0.624�7)12�(ρπ
)/�(π±π+π−) 12�5/(0.565�4+12�5+0.624�7)12�(ρπ
)/�(π±π+π−) 12�5/(0.565�4+12�5+0.624�7)VALUE DOCUMENT ID TECN CHG COMMENT0.29±0.04 OUR FIT0.29±0.04 OUR FIT0.29±0.04 OUR FIT0.29±0.04 OUR FIT0.29±0.050.29±0.050.29±0.050.29±0.05 25 DAUM 81B SPEC 63,94 π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.3 BARTSCH 68 HBC + 8 π+ p → 3πp0.565�(f2(1270)π)/�(π±π+π−) 0.565�4/(0.565�4+12�5+0.624�7)0.565�(f2(1270)π)/�(π±π+π−) 0.565�4/(0.565�4+12�5+0.624�7)0.565�(f2(1270)π)/�(π±π+π−) 0.565�4/(0.565�4+12�5+0.624�7)0.565�(f2(1270)π)/�(π±π+π−) 0.565�4/(0.565�4+12�5+0.624�7)(With f2(1270) → π+π−.)VALUE DOCUMENT ID TECN CHG COMMENT0.604±0.035 OUR FIT0.604±0.035 OUR FIT0.604±0.035 OUR FIT0.604±0.035 OUR FIT0.60 ±0.05 OUR AVERAGE0.60 ±0.05 OUR AVERAGE0.60 ±0.05 OUR AVERAGE0.60 ±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.61 ±0.04 25 DAUM 81B SPEC 63,94 π− p0.76 +0.24

−0.34 ARMENISE 69 DBC + 5.1 π+ d → d 3π0.35 ±0.20 BALTAY 68 HBC + 7{8.5 π+ p
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.59 BARTSCH 68 HBC + 8 π+ p → 3πp0.624�(π (ππ)S-wave)/�(π±π+π−) 0.624�7/(0.565�4+12�5+0.624�7)0.624�(π (ππ)S-wave)/�(π±π+π−) 0.624�7/(0.565�4+12�5+0.624�7)0.624�(π (ππ)S-wave)/�(π±π+π−) 0.624�7/(0.565�4+12�5+0.624�7)0.624�(π (ππ)S-wave)/�(π±π+π−) 0.624�7/(0.565�4+12�5+0.624�7)(With (ππ)S-wave → π+π−.)VALUE DOCUMENT ID TECN COMMENT0.10±0.04 OUR FIT0.10±0.04 OUR FIT0.10±0.04 OUR FIT0.10±0.04 OUR FIT0.10±0.050.10±0.050.10±0.050.10±0.05 25 DAUM 81B SPEC 63,94 π− p�(K K∗(892)+ 
.
.)/�(f2(1270)π) �8/�4�(K K∗(892)+ 
.
.)/�(f2(1270)π) �8/�4�(K K∗(892)+ 
.
.)/�(f2(1270)π) �8/�4�(K K∗(892)+ 
.
.)/�(f2(1270)π) �8/�4VALUE DOCUMENT ID TECN CHG COMMENT0.075±0.025 OUR FIT0.075±0.025 OUR FIT0.075±0.025 OUR FIT0.075±0.025 OUR FIT0.075±0.0250.075±0.0250.075±0.0250.075±0.025 26 ARMSTRONG 82B OMEG − 16 π− p → K+K−π− p�(ωρ

)/�total �9/��(ωρ
)/�total �9/��(ωρ
)/�total �9/��(ωρ
)/�total �9/�VALUE DOCUMENT ID TECN COMMENT0.027±0.004±0.0100.027±0.004±0.0100.027±0.004±0.0100.027±0.004±0.010 27 AMELIN 99 VES 37 π−A →

ωπ−π0A∗�(ηπ
)/�(π±π+π−) �12/(0.565�4+12�5+0.624�7)�(ηπ
)/�(π±π+π−) �12/(0.565�4+12�5+0.624�7)�(ηπ
)/�(π±π+π−) �12/(0.565�4+12�5+0.624�7)�(ηπ
)/�(π±π+π−) �12/(0.565�4+12�5+0.624�7)(All η de
ays.)VALUE DOCUMENT ID TECN CHG COMMENT

<0.09<0.09<0.09<0.09 BALTAY 68 HBC + 7{8.5 π+ p
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.10 CRENNELL 70 HBC − 6 π− p → f2π−N

�(π± 2π+2π−)/�(π±π+π−) �13/(0.565�4+12�5+0.624�7)�(π± 2π+2π−)/�(π±π+π−) �13/(0.565�4+12�5+0.624�7)�(π± 2π+2π−)/�(π±π+π−) �13/(0.565�4+12�5+0.624�7)�(π± 2π+2π−)/�(π±π+π−) �13/(0.565�4+12�5+0.624�7)VALUE DOCUMENT ID TECN CHG COMMENT
<0.10<0.10<0.10<0.10 CRENNELL 70 HBC − 6 π− p →f2π−N
<0.1 BALTAY 68 HBC + 7,8.5 π+ p�(ρ(1450)π)/�total �14/��(ρ(1450)π)/�total �14/��(ρ(1450)π)/�total �14/��(ρ(1450)π)/�total �14/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.0036<0.0036<0.0036<0.0036 97.7 AMELIN 99 VES 37 π−A →

ωπ−π0A∗�(b1(1235)π)/�total �15/��(b1(1235)π)/�total �15/��(b1(1235)π)/�total �15/��(b1(1235)π)/�total �15/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.0019<0.0019<0.0019<0.0019 97.7 AMELIN 99 VES 37 π−A →

ωπ−π0A∗�(f1(1285)π)/�total �17/��(f1(1285)π)/�total �17/��(f1(1285)π)/�total �17/��(f1(1285)π)/�total �17/�VALUE EVTS DOCUMENT ID TECN COMMENTpossibly seenpossibly seenpossibly seenpossibly seen 69k KUHN 04 B852 18 π− p →
ηπ+π−π− p�(a2(1320)π)/�total �18/��(a2(1320)π)/�total �18/��(a2(1320)π)/�total �18/��(a2(1320)π)/�total �18/�VALUE EVTS DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen 69k KUHN 04 B852 18 π− p →
ηπ+π−π− pD-wave/S-wave RATIO FOR π2(1670) → f2(1270)πD-wave/S-wave RATIO FOR π2(1670) → f2(1270)πD-wave/S-wave RATIO FOR π2(1670) → f2(1270)πD-wave/S-wave RATIO FOR π2(1670) → f2(1270)πVALUE DOCUMENT ID TECN COMMENT

−0.18±0.06−0.18±0.06−0.18±0.06−0.18±0.06 23 BAKER 99 SPEC 1.94 pp → 4π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.22±0.10 25 DAUM 81B SPEC 63,94 π− pF-wave/P-wave RATIO FOR π2(1670) → ρπF-wave/P-wave RATIO FOR π2(1670) → ρπF-wave/P-wave RATIO FOR π2(1670) → ρπF-wave/P-wave RATIO FOR π2(1670) → ρπVALUE DOCUMENT ID TECN COMMENT
−0.72±0.07±0.14−0.72±0.07±0.14−0.72±0.07±0.14−0.72±0.07±0.14 CHUNG 02 B852 18.3 π− p → π+π−π− p22Using BARBERIS 98B.23Using preliminary CBAR data.24With the σπ in L=2 and the f2(1270)π in L=0.25From a two-resonan
e �t to four 2−0+ waves.26 From a partial-wave analysis of K+K−π− system.27Normalized to the B(π2(1670) → f2π).

π2(1670) REFERENCESπ2(1670) REFERENCESπ2(1670) REFERENCESπ2(1670) REFERENCESADOLPH 14 EPJ A50 79 C. Adolph et al. (COMPASS Collab.)ALEKSEEV 10 PRL 104 241803 M.G. Alekseev et al. (COMPASS Collab.)SCHEGELSKY 06 EPJ A27 199 V.A. S
hegelsky et al.LU 05 PRL 94 032002 M. Lu et al. (BNL E852 Collab.)KUHN 04 PL B595 109 J. Kuhn et al. (BNL E852 Collab.)CHUNG 02 PR D65 072001 S.U. Chung et al. (BNL E852 Collab.)BARBERIS 01 PL B507 14 D. Barberis et al.AMELIN 99 PAN 62 445 D.V. Amelin et al. (VES Collab.)Translated from YAF 62 487.BAKER 99 PL B449 114 C.A. Baker et al.BARBERIS 98B PL B422 399 D. Barberis et al. (WA 102 Collab.)ACCIARRI 97T PL B413 147 M. A

iarri et al. (L3 Collab.)ALBRECHT 97B ZPHY C74 469 H. Albre
ht et al. (ARGUS Collab.)AMELIN 95B PL B356 595 D.V. Amelin et al. (SERP, TBIL)BERDNIKOV 94 PL B337 219 E.B. Berdnikov et al. (SERP, TBIL)ANTREASYAN 90 ZPHY C48 561 D. Antreasyan et al. (Crystal Ball Collab.)BEHREND 90C ZPHY C46 583 H.J. Behrend et al. (CELLO Collab.)ANTIPOV 87 EPL 4 403 Y.M. Antipov et al. (SERP, JINR, INRM+)BELLINI 85 SJNP 41 781 D. Bellini et al.Translated from YAF 41 1223.ARMSTRONG 82B NP B202 1 T.A. Armstrong, B. Ba

ari (AACH3, BARI, BONN+)DAUM 81B NP B182 269 C. Daum et al. (AMST, CERN, CRAC, MPIM+)EVANGELIS... 81 NP B178 197 C. Evangelista et al. (BARI, BONN, CERN+)Also NP B186 594 C. EvangelistaDAUM 80D PL 89B 285 C. Daum et al. (AMST, CERN, CRAC, MPIM+) JPBALTAY 77 PRL 39 591 C. Baltay, C.V. Cautis, M. Kalelkar (COLU) JPASCOLI 73 PR D7 669 G. As
oli (ILL, TNTO, GENO, HAMB, MILA+) JPCRENNELL 70 PRL 24 781 D.J. Crennell et al. (BNL)ARMENISE 69 LNC 2 501 N. Armenise et al. (BARI, BGNA, FIRZ)BALTAY 68 PRL 20 887 C. Baltay et al. (COLU, ROCH, RUTG, YALE) IBARTSCH 68 NP B7 345 J. Barts
h et al. (AACH, BERL, CERN) JP
φ(1680) IG (JPC ) = 0−(1−−)

φ(1680) MASSφ(1680) MASSφ(1680) MASSφ(1680) MASSe+ e− PRODUCTIONe+ e− PRODUCTIONe+ e− PRODUCTIONe+ e− PRODUCTIONVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1680±20 OUR ESTIMATE1680±20 OUR ESTIMATE1680±20 OUR ESTIMATE1680±20 OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •1689± 7±10 4.8k 1 SHEN 09 BELL 10.6 e+ e− → K+K−π+π− γ1709±20±43 2 AUBERT 08S BABR 10.6 e+ e− → hadrons1623±20 948 3 AKHMETSHIN 03 CMD2 1.05{1.38 e+ e− → K0LK0S
∼ 1500 4 ACHASOV 98H RVUE e+ e− → π+π−π0, ωπ+π−,K+K−
∼ 1900 5 ACHASOV 98H RVUE e+ e− → K0S K±π∓1700±20 6 CLEGG 94 RVUE e+ e− → K+K−, K0S K π1657±27 367 BISELLO 91C DM2 e+ e− → K0S K±π∓1655±17 7 BISELLO 88B DM2 e+ e− → K+K−1680±10 8 BUON 82 DM1 e+ e− → hadrons1677±12 9 MANE 82 DM1 e+ e− → K0S K π



941941941941See key on page 601 MesonParti
le Listings
φ(1680)1From a �t with two in
oherent Breit-Wigners.2 From the simultaneous �t to the K K∗(892)+ 
.
. and φη data from AUBERT 08Susing the results of AUBERT 07AK.3 From the 
ombined �t of AKHMETSHIN 03 and MANE 81 also in
luding ρ, ω, and φ.Neither isospin nor 
avor stru
ture known.4Using data from IVANOV 81, BARKOV 87, BISELLO 88B, DOLINSKY 91, and AN-TONELLI 92.5Using the data from BISELLO 91C.6Using BISELLO 88B and MANE 82 data.7 From global �t in
luding ρ, ω, φ and ρ(1700) assume mass 1570 MeV and width 510MeV for ρ radial ex
itation.8 From global �t of ρ, ω, φ and their radial ex
itations to 
hannels ωπ+π−, K+K−,K0S K0L, K0S K±π∓. Assume mass 1570 MeV and width 510 MeV for ρ radial ex
ita-tions, mass 1570 and width 500 MeV for ω radial ex
itation.9 Fit to one 
hannel only, negle
ting interferen
e with ω, ρ(1700).PHOTOPRODUCTIONPHOTOPRODUCTIONPHOTOPRODUCTIONPHOTOPRODUCTIONVALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1753± 3 10 LINK 02K FOCS 20{160 γ p → K+K− p1726±22 10 BUSENITZ 89 TPS γ p → K+K−X1760±20 10 ATKINSON 85C OMEG 20{70 γ p → K K X1690±10 10 ASTON 81F OMEG 25{70 γ p → K+K−X10We list here a state de
aying into K+K− possibly di�erent from φ(1680).pp ANNIHILATIONpp ANNIHILATIONpp ANNIHILATIONpp ANNIHILATIONVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1700±8 11 AMSLER 06 CBAR 0.9 p p → K+K−π011Could also be ρ(1700).

φ(1680) WIDTHφ(1680) WIDTHφ(1680) WIDTHφ(1680) WIDTHe+ e− PRODUCTIONe+ e− PRODUCTIONe+ e− PRODUCTIONe+ e− PRODUCTIONVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT150±50 OUR ESTIMATE150±50 OUR ESTIMATE150±50 OUR ESTIMATE150±50 OUR ESTIMATE This is only an edu
ated guess; the error given is larger thanthe error on the average of the published values.
• • • We do not use the following data for averages, �ts, limits, et
. • • •211±14± 19 4.8k 12 SHEN 09 BELL 10.6 e+ e− → K+K−π+π− γ322±77±160 13 AUBERT 08S BABR 10.6 e+ e− → hadrons139±60 948 14 AKHMETSHIN 03 CMD2 1.05{1.38 e+ e− → K0LK0S300±60 15 CLEGG 94 RVUE e+ e− → K+K−, K0S K π146±55 367 BISELLO 91C DM2 e+ e− → K0S K±π∓207±45 16 BISELLO 88B DM2 e+ e− → K+K−185±22 17 BUON 82 DM1 e+ e− → hadrons102±36 18 MANE 82 DM1 e+ e− → K0S K π12From a �t with two in
oherent Breit-Wigners.13 From the simultaneous �t to the K K∗(892)+ 
.
. and φη data from AUBERT 08Susing the results of AUBERT 07AK.14 From the 
ombined �t of AKHMETSHIN 03 and MANE 81 also in
luding ρ, ω, and φ.Neither isospin nor 
avor stru
ture known.15Using BISELLO 88B and MANE 82 data.16 From global �t in
luding ρ, ω, φ and ρ(1700)17From global �t of ρ, ω, φ and their radial ex
itations to 
hannels ωπ+π−, K+K−,K0S K0L, K0S K±π∓. Assume mass 1570 MeV and width 510 MeV for ρ radial ex
ita-tions, mass 1570 and width 500 MeV for ω radial ex
itation.18 Fit to one 
hannel only, negle
ting interferen
e with ω, ρ(1700).PHOTOPRODUCTIONPHOTOPRODUCTIONPHOTOPRODUCTIONPHOTOPRODUCTIONVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •122±63 19 LINK 02K FOCS 20{160 γ p → K+K− p121±47 19 BUSENITZ 89 TPS γ p → K+K−X80±40 19 ATKINSON 85C OMEG 20{70 γ p → K K X100±40 19 ASTON 81F OMEG 25{70 γ p → K+K−X19We list here a state de
aying into K+K− possibly di�erent from φ(1680).pp ANNIHILATIONpp ANNIHILATIONpp ANNIHILATIONpp ANNIHILATIONVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •143±24 20 AMSLER 06 CBAR 0.9 p p → K+K−π020Could also be ρ(1700).

φ(1680) DECAY MODESφ(1680) DECAY MODESφ(1680) DECAY MODESφ(1680) DECAY MODESMode Fra
tion (�i /�)�1 K K∗(892)+ 
.
. dominant�2 K0S K π seen�3 K K seen�4 K0LK0S�5 e+ e− seen

�6 ωππ not seen�7 φππ�8 K+K−π+π− seen�9 ηφ seen�10 ηγ seen�11 K+K−π0
φ(1680) �(i)�(e+ e−)/�2(total)φ(1680) �(i)�(e+ e−)/�2(total)φ(1680) �(i)�(e+ e−)/�2(total)φ(1680) �(i)�(e+ e−)/�2(total)This 
ombination of a bran
hing ratio into 
hannel (i) and bran
hing ratiointo e+ e− is dire
tly measured and obtained from the 
ross se
tion atthe peak. We list only data that have not been used to determine thebran
hing ratio into (i) or e+ e−.�(K0LK0S)/�total × �(e+ e−)/�total �4/�× �5/��(K0LK0S)/�total × �(e+ e−)/�total �4/�× �5/��(K0LK0S)/�total × �(e+ e−)/�total �4/�× �5/��(K0LK0S)/�total × �(e+ e−)/�total �4/�× �5/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.131±0.059 948 21 AKHMETSHIN 03 CMD2 1.05{1.38 e+ e− → K0LK0S21From the 
ombined �t of AKHMETSHIN 03 and MANE 81 also in
luding ρ, ω, and φ.Neither isospin nor 
avor stru
ture known. Re
al
ulated by us.�(K K∗(892)+ 
.
.)/�total × �(e+ e−)/�total �1/�× �5/��(K K∗(892)+ 
.
.)/�total × �(e+ e−)/�total �1/�× �5/��(K K∗(892)+ 
.
.)/�total × �(e+ e−)/�total �1/�× �5/��(K K∗(892)+ 
.
.)/�total × �(e+ e−)/�total �1/�× �5/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.15±0.16±0.01 22 AUBERT 08S BABR 10.6 e+ e− → K K∗(892)γ +
.
.3.29±1.57 367 23 BISELLO 91C DM2 1.35{2.40 e+ e− → K0S K±π∓22From the simultaneous �t to the K K∗(892)+ 
.
. and φη data from AUBERT 08Susing the results of AUBERT 07AK.23Re
al
ulated by us with the published value of B(K K∗(892) + 
.
.)× �(e+ e−).�(φππ

)/�total × �(e+ e−)/�total �7/�× �5/��(φππ
)/�total × �(e+ e−)/�total �7/�× �5/��(φππ
)/�total × �(e+ e−)/�total �7/�× �5/��(φππ
)/�total × �(e+ e−)/�total �7/�× �5/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.86±0.14±0.21 4.8k 24 SHEN 09 BELL 10.6 e+ e− → K+K−π+π− γ24Multiplied by 3/2 to take into a

ount the φπ0π0 mode. Using B(φ → K+K−) =(49.2 ± 0.6)%.�(ηφ
)/�total × �(e+ e−)/�total �9/�× �5/��(ηφ
)/�total × �(e+ e−)/�total �9/�× �5/��(ηφ
)/�total × �(e+ e−)/�total �9/�× �5/��(ηφ
)/�total × �(e+ e−)/�total �9/�× �5/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.43±0.10±0.09 25 AUBERT 08S BABR 10.6 e+ e− → φηγ25From the simultaneous �t to the K K∗(892)+ 
.
. and φη data from AUBERT 08Susing the results of AUBERT 07AK.
φ(1680) BRANCHING RATIOSφ(1680) BRANCHING RATIOSφ(1680) BRANCHING RATIOSφ(1680) BRANCHING RATIOS�(K K∗(892)+ 
.
.)/�(K0S K π

) �1/�2�(K K∗(892)+ 
.
.)/�(K0S K π
) �1/�2�(K K∗(892)+ 
.
.)/�(K0S K π
) �1/�2�(K K∗(892)+ 
.
.)/�(K0S K π
) �1/�2VALUE DOCUMENT ID TECN COMMENTdominant MANE 82 DM1 e+ e− → K0S K±π∓�(K K)/�(K K∗(892)+ 
.
.) �3/�1�(K K)/�(K K∗(892)+ 
.
.) �3/�1�(K K)/�(K K∗(892)+ 
.
.) �3/�1�(K K)/�(K K∗(892)+ 
.
.) �3/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.07±0.01 BUON 82 DM1 e+ e−�(ωππ
)/�(K K∗(892)+ 
.
.) �6/�1�(ωππ
)/�(K K∗(892)+ 
.
.) �6/�1�(ωππ
)/�(K K∗(892)+ 
.
.) �6/�1�(ωππ
)/�(K K∗(892)+ 
.
.) �6/�1VALUE DOCUMENT ID TECN COMMENT

<0.10<0.10<0.10<0.10 BUON 82 DM1 e+ e−�(ηφ
)/�total �9/��(ηφ
)/�total �9/��(ηφ
)/�total �9/��(ηφ
)/�total �9/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 35 26 ACHASOV 14 SND 1.15{2.00 e+ e− → ηγ26From a phenomenologi
al model based on ve
tor meson dominan
e with ρ(1450) and

φ(1680) masses and widths from the PDG 12.�(ηφ
)/�(KK∗(892)+ 
.
.) �9/�1�(ηφ
)/�(KK∗(892)+ 
.
.) �9/�1�(ηφ
)/�(KK∗(892)+ 
.
.) �9/�1�(ηφ
)/�(KK∗(892)+ 
.
.) �9/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

≈ 0.37 27 AUBERT 08S BABR 10.6 e+ e− → hadrons27From the �t in
luding data from AUBERT 07AK.�(ηγ
)/�total �10/��(ηγ
)/�total �10/��(ηγ
)/�total �10/��(ηγ
)/�total �10/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 35 28 ACHASOV 14 SND 1.15{2.00 e+ e− → ηγ28From a phenomenologi
al model based on ve
tor meson dominan
e with ρ(1450) and

φ(1680) masses and widths from the PDG 12.
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φ(1680), ρ3(1690)

φ(1680) REFERENCESφ(1680) REFERENCESφ(1680) REFERENCESφ(1680) REFERENCESACHASOV 14 PR D90 032002 M.N. A
hasov et al. (SND Collab.)PDG 12 PR D86 010001 J. Beringer et al. (PDG Collab.)SHEN 09 PR D80 031101 C.P. Shen et al. (BELLE Collab.)AUBERT 08S PR D77 092002 B. Aubert et al. (BABAR Collab.)AUBERT 07AK PR D76 012008 B. Aubert et al. (BABAR Collab.)AMSLER 06 PL B639 165 C. Amsler et al. (CBAR Collab.)AKHMETSHIN 03 PL B551 27 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)Also PAN 65 1222 E.V. Anashkin, V.M. Aul
henko, R.R. AkhmetshinTranslated from YAF 65 1255.LINK 02K PL B545 50 J.M. Link et al. (FNAL FOCUS Collab.)ACHASOV 98H PR D57 4334 N.N. A
hasov, A.A. KozhevnikovCLEGG 94 ZPHY C62 455 A.B. Clegg, A. Donna
hie (LANC, MCHS)ANTONELLI 92 ZPHY C56 15 A. Antonelli et al. (DM2 Collab.)BISELLO 91C ZPHY C52 227 D. Bisello et al. (DM2 Collab.)DOLINSKY 91 PRPL 202 99 S.I. Dolinsky et al. (NOVO)BUSENITZ 89 PR D40 1 J.K. Busenitz et al. (ILL, FNAL)BISELLO 88B ZPHY C39 13 D. Bisello et al. (PADO, CLER, FRAS+)BARKOV 87 JETPL 46 164 L.M. Barkov et al. (NOVO)Translated from ZETFP 46 132.ATKINSON 85C ZPHY C27 233 M. Atkinson et al. (BONN, CERN, GLAS+)BUON 82 PL 118B 221 J. Buon et al. (LALO, MONP)MANE 82 PL 112B 178 F. Mane et al. (LALO)ASTON 81F PL 104B 231 D. Aston (BONN, CERN, EPOL, GLAS, LANC+)IVANOV 81 PL 107B 297 P.M. Ivanov et al. (NOVO)MANE 81 PL 99B 261 F. Mane et al. (ORSAY)
ρ3(1690) IG (JPC ) = 1+(3−−)

ρ3(1690) MASSρ3(1690) MASSρ3(1690) MASSρ3(1690) MASSVALUE (MeV) DOCUMENT ID1688.8±2.1 OUR AVERAGE1688.8±2.1 OUR AVERAGE1688.8±2.1 OUR AVERAGE1688.8±2.1 OUR AVERAGE In
ludes data from the 5 datablo
ks that follow this one.2π MODE2π MODE2π MODE2π MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1686± 4 OUR AVERAGE1686± 4 OUR AVERAGE1686± 4 OUR AVERAGE1686± 4 OUR AVERAGE1677±14 EVANGELIS... 81 OMEG − 12 π− p → 2πp1679±11 476 BALTAY 78B HBC 0 15 π+ p →
π+π− n1678±12 175 1 ANTIPOV 77 CIBS 0 25 π− p → p3π1690± 7 600 1 ENGLER 74 DBC 0 6 π+ n →
π+π− p1693± 8 2 GRAYER 74 ASPK 0 17 π− p →
π+π− n1678±12 MATTHEWS 71C DBC 0 7 π+N

• • • We do not use the following data for averages, �ts, limits, et
. • • •1734±10 3 CORDEN 79 OMEG 12{15 π− p →n2π1692±12 2,4 ESTABROOKS 75 RVUE 17 π− p →
π+π− n1737±23 ARMENISE 70 DBC 0 9 π+N1650±35 122 BARTSCH 70B HBC + 8 π+ p → N 2π1687±21 STUNTEBECK 70 HDBC 0 8 π− p, 5.4 π+ d1683±13 ARMENISE 68 DBC 0 5.1 π+ d1670±30 GOLDBERG 65 HBC 0 6 π+ d, 8 π− p1Mass errors enlarged by us to �/√N; see the note with the K∗(892) mass.2Uses same data as HYAMS 75.3 From a phase shift solution 
ontaining a f ′2(1525) width two times larger than the K Kresult.4 From phase-shift analysis. Error takes a

ount of spread of di�erent phase-shift solutions.K K AND K K π MODESK K AND K K π MODESK K AND K K π MODESK K AND K K π MODESVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1696± 4 OUR AVERAGE1696± 4 OUR AVERAGE1696± 4 OUR AVERAGE1696± 4 OUR AVERAGE1699± 5 ALPER 80 CNTR 0 62 π− p →K+K− n1698±12 6k 5,6 MARTIN 78D SPEC 10 πp →K0S K− p1692± 6 BLUM 75 ASPK 0 18.4 π− p →nK+K−1690±16 ADERHOLZ 69 HBC + 8 π+ p → K K π

• • • We do not use the following data for averages, �ts, limits, et
. • • •1694± 8 7 COSTA... 80 OMEG 10 π− p →K+K− n5From a �t to JP = 3− partial wave.6 Systemati
 error on mass s
ale subtra
ted.7They 
annot distinguish between ρ3(1690) and ω3(1670).(4π)± MODE(4π)± MODE(4π)± MODE(4π)± MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1686± 5 OUR AVERAGE1686± 5 OUR AVERAGE1686± 5 OUR AVERAGE1686± 5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1694± 6 8 EVANGELIS... 81 OMEG − 12 π− p → p4π1665±15 177 BALTAY 78B HBC + 15 π+ p → p4π1670±10 THOMPSON 74 HBC + 13 π+ p1687±20 CASON 73 HBC − 8,18.5 π− p

1685±14 9 CASON 73 HBC − 8,18.5 π− p1680±40 144 BARTSCH 70B HBC + 8 π+ p → N 4π1689±20 102 9 BARTSCH 70B HBC + 8 π+ p → N 2ρ1705±21 CASO 70 HBC − 11.2 π− p →nρ2π
• • • We do not use the following data for averages, �ts, limits, et
. • • •1718±10 10 EVANGELIS... 81 OMEG − 12 π− p → p4π1673± 9 11 EVANGELIS... 81 OMEG − 12 π− p → p4π1733± 9 66 9 KLIGER 74 HBC − 4.5 π− p →p4π1630±15 HOLMES 72 HBC + 10{12 K+ p1720±15 BALTAY 68 HBC + 7, 8.5 π+ p8From ρ− ρ0 mode, not independent of the other two EVANGELISTA 81 entries.9 From ρ± ρ0 mode.10 From a2(1320)−π0 mode, not independent of the other two EVANGELISTA 81 entries.11 From a2(1320)0π− mode, not independent of the other two EVANGELISTA 81 entries.
ωπ MODEωπ MODEωπ MODEωπ MODEVALUE (MeV) DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1681± 7 OUR AVERAGE1681± 7 OUR AVERAGE1681± 7 OUR AVERAGE1681± 7 OUR AVERAGE1670±25 12 ALDE 95 GAM2 38 π− p →

ωπ0 n1690±15 EVANGELIS... 81 OMEG − 12 π− p → ωπp1666±14 GESSAROLI 77 HBC 11 π− p → ωπp1686± 9 THOMPSON 74 HBC + 13 π+ p
• • • We do not use the following data for averages, �ts, limits, et
. • • •1654±24 BARNHAM 70 HBC + 10 K+ p →

ωπX12Supersedes ALDE 92C.
ηπ+π− MODEηπ+π− MODEηπ+π− MODEηπ+π− MODE(For diÆ
ulties with MMS experiments, see the a2(1320) mini-review in the 1973edition.)VALUE (MeV) DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1682±12 OUR AVERAGE1682±12 OUR AVERAGE1682±12 OUR AVERAGE1682±12 OUR AVERAGE1685±10±20 AMELIN 00 VES 37 π− p →

ηπ+π− n1680±15 FUKUI 88 SPEC 0 8.95 π− p →
ηπ+π− n

• • • We do not use the following data for averages, �ts, limits, et
. • • •1700±47 13 ANDERSON 69 MMS − 16 π− p ba
k-ward1632±15 13,14 FOCACCI 66 MMS − 7{12 π− p →pMM1700±15 13,14 FOCACCI 66 MMS − 7{12 π− p →pMM1748±15 13,14 FOCACCI 66 MMS − 7{12 π− p →pMM13Seen in 2.5{3 GeV/
 p p. 2π+2π−, with 0, 1, 2 π+π− pairs in ρ band not seen byOREN 74 (2.3 GeV/
 p p) with more statisti
s. (Jan. 1976)14Not seen by BOWEN 72.
ρ3(1690) WIDTHρ3(1690) WIDTHρ3(1690) WIDTHρ3(1690) WIDTH2π, KK , AND KK π MODES2π, KK , AND KK π MODES2π, KK , AND KK π MODES2π, KK , AND KK π MODESVALUE (MeV) DOCUMENT ID161±10 OUR AVERAGE161±10 OUR AVERAGE161±10 OUR AVERAGE161±10 OUR AVERAGE In
ludes data from the 5 datablo
ks that follow this one. Errorin
ludes s
ale fa
tor of 1.5. See the ideogram below.

WEIGHTED AVERAGE
161±10 (Error scaled by 1.5)

FUKUI 88 SPEC 4.1
AMELIN 00 VES 1.0
GESSAROLI 77 HBC 0.0
EVANGELIS... 81 OMEG 0.2
ALDE 95 GAM2 1.1
BARTSCH 70B HBC 0.0
BARTSCH 70B HBC 0.7
CASON 73 HBC 0.0
BALTAY 78B HBC 3.4
EVANGELIS... 81 OMEG 8.3
BLUM 75 ASPK 4.9
MARTIN 78D SPEC 0.9
ARMENISE 70 DBC 0.0
MATTHEWS 71C DBC 0.0
GRAYER 74 ASPK 4.8
ENGLER 74 DBC 0.0
ANTIPOV 77 CIBS 0.0
BALTAY 78B HBC 2.2
EVANGELIS... 81 OMEG 5.3
DENNEY 83 LASS 4.2

χ2

      41.5
(Confidence Level = 0.0021)

0 100 200 300 400 500

ρ3(1690) width, 2π, K K , and K K π modes (MeV)



943943943943See key on page 601 Meson Parti
le Listings
ρ3(1690)2π MODE2π MODE2π MODE2π MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.186±14 OUR AVERAGE186±14 OUR AVERAGE186±14 OUR AVERAGE186±14 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.220±29 DENNEY 83 LASS 10 π+N246±37 EVANGELIS... 81 OMEG − 12 π− p → 2πp116±30 476 BALTAY 78B HBC 0 15 π+ p →

π+π− n162±50 175 15 ANTIPOV 77 CIBS 0 25 π− p → p3π167±40 600 ENGLER 74 DBC 0 6 π+ n →
π+π− p200±18 16 GRAYER 74 ASPK 0 17 π− p →
π+π− n156±36 MATTHEWS 71C DBC 0 7 π+N171±65 ARMENISE 70 DBC 0 9 π+ d

• • • We do not use the following data for averages, �ts, limits, et
. • • •322±35 17 CORDEN 79 OMEG 12{15 π− p →n2π240±30 16,18 ESTABROOKS 75 RVUE 17 π− p →
π+π− n180±30 122 BARTSCH 70B HBC + 8 π+ p → N 2π267+72

−46 STUNTEBECK 70 HDBC 0 8 π− p, 5.4 π+ d188±49 ARMENISE 68 DBC 0 5.1 π+ d180±40 GOLDBERG 65 HBC 0 6 π+ d, 8 π− p15Width errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.16Uses same data as HYAMS 75 and BECKER 79.17From a phase shift solution 
ontaining a f ′2(1525) width two times larger than the K Kresult.18 From phase-shift analysis. Error takes a

ount of spread of di�erent phase-shift solutions.
WEIGHTED AVERAGE
186±14 (Error scaled by 1.3)

ARMENISE 70 DBC 0.1
MATTHEWS 71C DBC 0.7
GRAYER 74 ASPK 0.6
ENGLER 74 DBC 0.2
ANTIPOV 77 CIBS 0.2
BALTAY 78B HBC 5.5
EVANGELIS... 81 OMEG 2.6
DENNEY 83 LASS 1.4

χ2

      11.3
(Confidence Level = 0.128)

0 100 200 300 400 500

ρ3(1690) width, 2π mode (MeV)K K AND K K π MODESK K AND K K π MODESK K AND K K π MODESK K AND K K π MODESVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.204±18 OUR AVERAGE204±18 OUR AVERAGE204±18 OUR AVERAGE204±18 OUR AVERAGE199±40 6000 19 MARTIN 78D SPEC 10 πp →K0S K− p205±20 BLUM 75 ASPK 0 18.4 π− p →nK+K−
• • • We do not use the following data for averages, �ts, limits, et
. • • •219± 4 ALPER 80 CNTR 0 62 π− p →K+K− n186±11 20 COSTA... 80 OMEG 10 π− p →K+K− n112±60 ADERHOLZ 69 HBC + 8 π+ p → K K π19From a �t to JP = 3− partial wave.20They 
annot distinguish between ρ3(1690) and ω3(1670).(4π)± MODE(4π)± MODE(4π)± MODE(4π)± MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.129±10 OUR AVERAGE129±10 OUR AVERAGE129±10 OUR AVERAGE129±10 OUR AVERAGE123±13 21 EVANGELIS... 81 OMEG − 12 π− p → p4π105±30 177 BALTAY 78B HBC + 15 π+ p → p4π169+70

−48 CASON 73 HBC − 8,18.5 π− p135±30 144 BARTSCH 70B HBC + 8 π+ p → N 4π160±30 102 BARTSCH 70B HBC + 8 π+ p → N 2ρ

• • • We do not use the following data for averages, �ts, limits, et
. • • •230±28 22 EVANGELIS... 81 OMEG − 12 π− p → p4π184±33 23 EVANGELIS... 81 OMEG − 12 π− p → p4π150 66 24 KLIGER 74 HBC − 4.5 π− p →p4π106±25 THOMPSON 74 HBC + 13 π+ p125+83
−35 24 CASON 73 HBC − 8,18.5 π− p130±30 HOLMES 72 HBC + 10{12 K+ p180±30 90 24 BARTSCH 70B HBC + 8 π+ p →Na2π100±35 BALTAY 68 HBC + 7, 8.5 π+ p21From ρ− ρ0 mode, not independent of the other two EVANGELISTA 81 entries.22 From a2(1320)−π0 mode, not independent of the other two EVANGELISTA 81 entries.23 From a2(1320)0π− mode, not independent of the other two EVANGELISTA 81 entries.24 From ρ± ρ0 mode.

ωπ MODEωπ MODEωπ MODEωπ MODEVALUE (MeV) DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.190±40 OUR AVERAGE190±40 OUR AVERAGE190±40 OUR AVERAGE190±40 OUR AVERAGE230±65 25 ALDE 95 GAM2 38 π− p →
ωπ0 n190±65 EVANGELIS... 81 OMEG − 12 π− p → ωπp160±56 GESSAROLI 77 HBC 11 π− p → ωπp

• • • We do not use the following data for averages, �ts, limits, et
. • • •89±25 THOMPSON 74 HBC + 13 π+ p130+73
−43 BARNHAM 70 HBC + 10 K+ p →

ωπX25Supersedes ALDE 92C.
ηπ+π− MODEηπ+π− MODEηπ+π− MODEηπ+π− MODE(For diÆ
ulties with MMS experiments, see the a2(1320) mini-review in the 1973edition.)VALUE (MeV) DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.126±40 OUR AVERAGE126±40 OUR AVERAGE126±40 OUR AVERAGE126±40 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.220±30±50 AMELIN 00 VES 37 π− p →

ηπ+π− n106±27 FUKUI 88 SPEC 0 8.95 π− p →
ηπ+π− n

• • • We do not use the following data for averages, �ts, limits, et
. • • •195 26 ANDERSON 69 MMS − 16 π− p ba
k-ward
< 21 26,27 FOCACCI 66 MMS − 7{12 π− p →pMM
< 30 26,27 FOCACCI 66 MMS − 7{12 π− p →pMM
< 38 26,27 FOCACCI 66 MMS − 7{12 π− p →pMM26Seen in 2.5{3 GeV/
 p p. 2π+2π−, with 0, 1, 2 π+π− pairs in ρ0 band not seen byOREN 74 (2.3 GeV/
 p p) with more statisti
s. (Jan. 1979)27Not seen by BOWEN 72.

ρ3(1690) DECAY MODESρ3(1690) DECAY MODESρ3(1690) DECAY MODESρ3(1690) DECAY MODESMode Fra
tion (�i /�) S
ale fa
tor�1 4π (71.1 ± 1.9 ) %�2 π±π+π−π0 (67 ±22 ) %�3 ωπ (16 ± 6 ) %�4 ππ (23.6 ± 1.3 ) %�5 K K π ( 3.8 ± 1.2 ) %�6 K K ( 1.58± 0.26) % 1.2�7 ηπ+π− seen�8 ρ(770)η seen�9 ππρ seenEx
luding 2ρ and a2(1320)π.�10 a2(1320)π seen�11 ρρ seen�12 φπ�13 ηπ�14 π± 2π+2π−π0
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le Listings
ρ3(1690) CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 5 bran
hing ratios uses 10 measurements and one
onstraint to determine 4 parameters. The overall �t has a χ2 =14.7 for 7 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x4 −77x5 −74 17x6 −15 2 0x1 x4 x5
ρ3(1690) BRANCHING RATIOSρ3(1690) BRANCHING RATIOSρ3(1690) BRANCHING RATIOSρ3(1690) BRANCHING RATIOS�(ππ

)/�total �4/��(ππ
)/�total �4/��(ππ
)/�total �4/��(ππ
)/�total �4/�VALUE DOCUMENT ID TECN CHG COMMENT0.236±0.013 OUR FIT0.236±0.013 OUR FIT0.236±0.013 OUR FIT0.236±0.013 OUR FIT0.243±0.013 OUR AVERAGE0.243±0.013 OUR AVERAGE0.243±0.013 OUR AVERAGE0.243±0.013 OUR AVERAGE0.259+0.018
−0.019 BECKER 79 ASPK 0 17 π− p polar-ized0.23 ±0.02 CORDEN 79 OMEG 12{15 π− p →n2π0.22 ±0.04 28 MATTHEWS 71C HDBC 0 7 π+ n → π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.245±0.006 29 ESTABROOKS 75 RVUE 17 π− p →
π+π− n28One-pion-ex
hange model used in this estimation.29 From phase-shift analysis of HYAMS 75 data.�(ππ

)/�(π±π+π−π0) �4/�2�(ππ
)/�(π±π+π−π0) �4/�2�(ππ
)/�(π±π+π−π0) �4/�2�(ππ
)/�(π±π+π−π0) �4/�2VALUE DOCUMENT ID TECN CHG COMMENT0.35±0.110.35±0.110.35±0.110.35±0.11 CASON 73 HBC − 8,18.5 π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.2 HOLMES 72 HBC + 10{12 K+p
<0.12 BALLAM 71B HBC − 16 π− p�(ππ

)/�(4π) �4/�1�(ππ
)/�(4π) �4/�1�(ππ
)/�(4π) �4/�1�(ππ
)/�(4π) �4/�1VALUE DOCUMENT ID TECN CHG COMMENT0.332±0.026 OUR FIT0.332±0.026 OUR FIT0.332±0.026 OUR FIT0.332±0.026 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.30 ±0.100.30 ±0.100.30 ±0.100.30 ±0.10 BALTAY 78B HBC 0 15 π+ p → p4π�(K K)/�(ππ

) �6/�4�(K K)/�(ππ
) �6/�4�(K K)/�(ππ
) �6/�4�(K K)/�(ππ
) �6/�4VALUE DOCUMENT ID TECN CHG COMMENT0.067±0.011 OUR FIT0.067±0.011 OUR FIT0.067±0.011 OUR FIT0.067±0.011 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.118+0.040

−0.032 OUR AVERAGE0.118+0.040
−0.032 OUR AVERAGE0.118+0.040
−0.032 OUR AVERAGE0.118+0.040
−0.032 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogrambelow.0.191+0.040
−0.037 GORLICH 80 ASPK 0 17,18 π− p polarized0.08 ±0.03 BARTSCH 70B HBC + 8 π+ p0.08 +0.08
−0.03 CRENNELL 68B HBC 6.0 π− p

WEIGHTED AVERAGE
0.118+0.040-0.032 (Error scaled by 1.7)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

CRENNELL 68B HBC 0.4
BARTSCH 70B HBC 1.6
GORLICH 80 ASPK 3.8

χ2

       5.9
(Confidence Level = 0.053)

-0.1 0 0.1 0.2 0.3 0.4 0.5�(K K)/�(

ππ
)�(K K π

)/�(ππ
) �5/�4�(K K π

)/�(ππ
) �5/�4�(K K π

)/�(ππ
) �5/�4�(K K π

)/�(ππ
) �5/�4VALUE DOCUMENT ID TECN CHG COMMENT0.16±0.05 OUR FIT0.16±0.05 OUR FIT0.16±0.05 OUR FIT0.16±0.05 OUR FIT0.16±0.050.16±0.050.16±0.050.16±0.05 30 BARTSCH 70B HBC + 8 π+ p30 In
reased by us to 
orrespond to B(ρ3(1690) → ππ)=0.24.

[�(ππρ
)+�(a2(1320)π)+�(ρρ

)
]/�(π±π+π−π0) (�9+�10+�11)/�2[�(ππρ

)+�(a2(1320)π)+�(ρρ
)
]/�(π±π+π−π0) (�9+�10+�11)/�2[�(ππρ

)+�(a2(1320)π)+�(ρρ
)
]/�(π±π+π−π0) (�9+�10+�11)/�2[�(ππρ

)+�(a2(1320)π)+�(ρρ
)
]/�(π±π+π−π0) (�9+�10+�11)/�2VALUE DOCUMENT ID TECN CHG COMMENT0.94±0.09 OUR AVERAGE0.94±0.09 OUR AVERAGE0.94±0.09 OUR AVERAGE0.94±0.09 OUR AVERAGE0.96±0.21 BALTAY 78B HBC + 15 π+ p → p4π0.88±0.15 BALLAM 71B HBC − 16 π− p1 ±0.15 BARTSCH 70B HBC + 8 π+ p
onsistent with 1 CASO 68 HBC − 11 π− p�(ρρ

)/�(π±π+π−π0) �11/�2�(ρρ
)/�(π±π+π−π0) �11/�2�(ρρ
)/�(π±π+π−π0) �11/�2�(ρρ
)/�(π±π+π−π0) �11/�2VALUE EVTS DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.12±0.11 BALTAY 78B HBC + 15 π+ p → p4π0.56 66 KLIGER 74 HBC − 4.5 π− p →p4π0.13±0.09 31 THOMPSON 74 HBC + 13 π+ p0.7 ±0.15 BARTSCH 70B HBC + 8 π+ p31 ρρ and a2(1320)π modes are indistinguishable.�(ρρ
)/[�(ππρ

)+ �(a2(1320)π)+�(ρρ
)
] �11/(�9+�10+�11)�(ρρ

)/[�(ππρ
)+ �(a2(1320)π)+�(ρρ

)
] �11/(�9+�10+�11)�(ρρ

)/[�(ππρ
)+ �(a2(1320)π)+�(ρρ

)
] �11/(�9+�10+�11)�(ρρ

)/[�(ππρ
)+ �(a2(1320)π)+�(ρρ

)
] �11/(�9+�10+�11)VALUE DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.48±0.16 CASO 68 HBC − 11 π− p�(a2(1320)π)/�(π±π+π−π0) �10/�2�(a2(1320)π)/�(π±π+π−π0) �10/�2�(a2(1320)π)/�(π±π+π−π0) �10/�2�(a2(1320)π)/�(π±π+π−π0) �10/�2VALUE DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.66±0.08 BALTAY 78B HBC + 15 π+ p → p4π0.36±0.14 32 THOMPSON 74 HBC + 13 π+ pnot seen CASON 73 HBC − 8,18.5 π− p0.6 ±0.15 BARTSCH 70B HBC + 8 π+ p0.6 BALTAY 68 HBC + 7,8.5 π+ p32 ρρ and a2(1320)π modes are indistinguishable.�(ωπ

)/�(π±π+π−π0) �3/�2�(ωπ
)/�(π±π+π−π0) �3/�2�(ωπ
)/�(π±π+π−π0) �3/�2�(ωπ
)/�(π±π+π−π0) �3/�2VALUE CL% DOCUMENT ID TECN CHG COMMENT0.23±0.05 OUR AVERAGE0.23±0.05 OUR AVERAGE0.23±0.05 OUR AVERAGE0.23±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.33±0.07 THOMPSON 74 HBC + 13 π+ p0.12±0.07 BALLAM 71B HBC − 16 π− p0.25±0.10 BALTAY 68 HBC + 7,8.5 π+ p0.25±0.10 JOHNSTON 68 HBC − 7.0 π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.11 95 BALTAY 78B HBC + 15 π+ p → p4π
<0.09 KLIGER 74 HBC − 4.5 π− p →p4π�(φπ

)/�(π±π+π−π0) �12/�2�(φπ
)/�(π±π+π−π0) �12/�2�(φπ
)/�(π±π+π−π0) �12/�2�(φπ
)/�(π±π+π−π0) �12/�2VALUE DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.11 BALTAY 68 HBC + 7,8.5 π+ p�(π± 2π+2π−π0)/�(π±π+π−π0) �14/�2�(π± 2π+2π−π0)/�(π±π+π−π0) �14/�2�(π± 2π+2π−π0)/�(π±π+π−π0) �14/�2�(π± 2π+2π−π0)/�(π±π+π−π0) �14/�2VALUE DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.15 BALTAY 68 HBC + 7,8.5 π+ p�(ηπ
)/�(π±π+π−π0) �13/�2�(ηπ
)/�(π±π+π−π0) �13/�2�(ηπ
)/�(π±π+π−π0) �13/�2�(ηπ
)/�(π±π+π−π0) �13/�2VALUE DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.02 THOMPSON 74 HBC + 13 π+ p�(K K)/�total �6/��(K K)/�total �6/��(K K)/�total �6/��(K K)/�total �6/�VALUE DOCUMENT ID TECN CHG COMMENT0.0158±0.0026 OUR FIT0.0158±0.0026 OUR FIT0.0158±0.0026 OUR FIT0.0158±0.0026 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.0130±0.0024 OUR AVERAGE0.0130±0.0024 OUR AVERAGE0.0130±0.0024 OUR AVERAGE0.0130±0.0024 OUR AVERAGE0.013 ±0.003 COSTA... 80 OMEG 0 10 π− p →K+K−n0.013 ±0.004 33 MARTIN 78B SPEC − 10 πp →K0S K− p33From (�4�6)1/2 = 0.056 ± 0.034 assuming B(ρ3(1690) → ππ) = 0.24.�(ωπ
)/[�(ωπ

)+�(ρρ
)
] �3/(�3+�11)�(ωπ

)/[�(ωπ
)+�(ρρ

)
] �3/(�3+�11)�(ωπ

)/[�(ωπ
)+�(ρρ

)
] �3/(�3+�11)�(ωπ

)/[�(ωπ
)+�(ρρ

)
] �3/(�3+�11)VALUE DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.22±0.08 CASON 73 HBC − 8,18.5 π− p�(ηπ+π−)/�total �7/��(ηπ+π−)/�total �7/��(ηπ+π−)/�total �7/��(ηπ+π−)/�total �7/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen FUKUI 88 SPEC 8.95 π− p →
ηπ+π− n
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ρ3(1690), ρ(1700)�(a2(1320)π)/�(ρ(770)η) �10/�8�(a2(1320)π)/�(ρ(770)η) �10/�8�(a2(1320)π)/�(ρ(770)η) �10/�8�(a2(1320)π)/�(ρ(770)η) �10/�8VALUE DOCUMENT ID TECN COMMENT5.5±2.05.5±2.05.5±2.05.5±2.0 AMELIN 00 VES 37 π− p → ηπ+π− n

ρ3(1690) REFERENCESρ3(1690) REFERENCESρ3(1690) REFERENCESρ3(1690) REFERENCESAMELIN 00 NP A668 83 D. Amelin et al. (VES Collab.)ALDE 95 ZPHY C66 379 D.M. Alde et al. (GAMS Collab.) JPALDE 92C ZPHY C54 553 D.M. Alde et al. (BELG, SERP, KEK, LANL+)FUKUI 88 PL B202 441 S. Fukui et al. (SUGI, NAGO, KEK, KYOT+)DENNEY 83 PR D28 2726 D.L. Denney et al. (IOWA, MICH)EVANGELIS... 81 NP B178 197 C. Evangelista et al. (BARI, BONN, CERN+)ALPER 80 PL 94B 422 B. Alper et al. (AMST, CERN, CRAC, MPIM+)COSTA... 80 NP B175 402 G. Costa de Beauregard et al. (BARI, BONN+)GORLICH 80 NP B174 16 L. Gorli
h et al. (CRAC, MPIM, CERN+)BECKER 79 NP B151 46 H. Be
ker et al. (MPIM, CERN, ZEEM, CRAC)CORDEN 79 NP B157 250 M.J. Corden et al. (BIRM, RHEL, TELA+) JPBALTAY 78B PR D17 62 C. Baltay et al. (COLU, BING)MARTIN 78B NP B140 158 A.D. Martin et al. (DURH, GEVA)MARTIN 78D PL 74B 417 A.D. Martin et al. (DURH, GEVA)ANTIPOV 77 NP B119 45 Y.M. Antipov et al. (SERP, GEVA)GESSAROLI 77 NP B126 382 R. Gessaroli et al. (BGNA, FIRZ, GENO+)BLUM 75 PL 57B 403 W. Blum et al. (CERN, MPIM) JPESTABROOKS 75 NP B95 322 P.G. Estabrooks, A.D. Martin (DURH)HYAMS 75 NP B100 205 B.D. Hyams et al. (CERN, MPIM)ENGLER 74 PR D10 2070 A. Engler et al. (CMU, CASE)GRAYER 74 NP B75 189 G. Grayer et al. (CERN, MPIM)KLIGER 74 SJNP 19 428 G.K. Kliger et al. (ITEP)Translated from YAF 19 839.OREN 74 NP B71 189 Y. Oren et al. (ANL, OXF)THOMPSON 74 NP B69 220 G. Thompson et al. (PURD)CASON 73 PR D7 1971 N.M. Cason et al. (NDAM)BOWEN 72 PRL 29 890 D.R. Bowen et al. (NEAS, STON)HOLMES 72 PR D6 3336 R. Holmes et al. (ROCH)BALLAM 71B PR D3 2606 J. Ballam et al. (SLAC)MATTHEWS 71C NP B33 1 J.A.J. Matthews et al. (TNTO, WISC) JPARMENISE 70 LNC 4 199 N. Armenise et al. (BARI, BGNA, FIRZ)BARNHAM 70 PRL 24 1083 K.W.J. Barnham et al. (BIRM)BARTSCH 70B NP B22 109 J. Barts
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ρ(1700) IG (JPC ) = 1+(1−−)

THE ρ(1450) AND THE ρ(1700)

Updated November 2015 by S. Eidelman (Novosibirsk), C. Han-
hart (Juelich) and G. Venanzoni (Frascati).

In our 1988 edition, we replaced the ρ(1600) entry with

two new ones, the ρ(1450) and the ρ(1700), because there was

emerging evidence that the 1600-MeV region actually contains

two ρ-like resonances. Erkal [1] had pointed out this possibility

with a theoretical analysis on the consistency of 2π and 4π

electromagnetic form factors and the ππ scattering length.

Donnachie [2], with a full analysis of data on the 2π and 4π

final states in e+e− annihilation and photoproduction reactions,

had also argued that in order to obtain a consistent picture,

two resonances were necessary. The existence of ρ(1450) was

supported by the analysis of ηρ0 mass spectra obtained in

photoproduction and e+e− annihilation [3], as well as that of

e+e− → ωπ [4].

The analysis of [2] was further extended by [5,6] to include

new data on 4π-systems produced in e+e− annihilation, and in

τ -decays (τ decays to 4π, and e+e− annihilation to 4π can be

related by the Conserved Vector Current assumption). These

systems were successfully analyzed using interfering contribu-

tions from two ρ-like states, and from the tail of the ρ(770)

decaying into two-body states. While specific conclusions on

ρ(1450) → 4π were obtained, little could be said about the

ρ(1700).

Independent evidence for two 1− states is provided by [7]

in 4π electroproduction at 〈Q2〉 = 1 (GeV/c)2, and by [8]

in a high-statistics sample of the ηππ system in π−p charge

exchange.

This scenario with two overlapping resonances is supported

by other data. Bisello [9] measured the pion form factor in the

interval 1.35–2.4 GeV, and observed a deep minimum around

1.6 GeV. The best fit was obtained with the hypothesis of

ρ-like resonances at 1420 and 1770 MeV, with widths of about

250 MeV. Antonelli [10] found that the e+e− → η π+ π− cross

section is better fitted with two fully interfering Breit-Wigners,

with parameters in fair agreement with those of [2] and [9].

These results can be considered as a confirmation of the ρ(1450).

Decisive evidence for the ππ decay mode of both ρ(1450)

and ρ(1700) comes from pp annihilation at rest [11]. It

has been shown that these resonances also possess a KK

decay mode [12–14]. High-statistics studies of the decays

τ → ππντ [15,16], and τ → 4πντ [17] also require the ρ(1450),

but are not sensitive to the ρ(1700), because it is too close to the

τ mass. A recent very-high-statistics study of the τ → ππντ

decay performed at Belle [18] reports the first observation of

both ρ(1450) and ρ(1700) in τ decays. A clear picture of

the two π+π− resonances interfering with the ρ(770) was also

reported by BaBar using the ISR method [19].

The structure of these ρ states is not yet completely clear.

Barnes [20] and Close [21] claim that ρ(1450) has a mass

consistent with radial 2S, but its decays show characteristics of

hybrids, and suggest that this state may be a 2S-hybrid mixture.

Donnachie [22] argues that hybrid states could have a 4π decay

mode dominated by the a1π. Such behavior has been observed

by [23] in e+e− → 4π in the energy range 1.05–1.38 GeV, and

by [17] in τ → 4π decays. CLEO [24] and Belle [25] observe

the ρ(1450) → ωπ decay mode in B-meson decays, however,

do not find ρ(1700) → ωπ0. A similar conclusion is made by

[26], who studied the process e+e− → ωπ0. Various decay

modes of the ρ(1450) and ρ(1700) are observed in pn and pp

annihilation [27,28], but no definite conclusions can be drawn.

More data should be collected to clarify the nature of the ρ

states, particularly in the energy range above 1.6 GeV.

We now list under a separate entry the ρ(1570), the φπ

state with JPC = 1−− earlier observed by [29] (referred to

as C(1480)) and recently confirmed by [30]. While [31]

shows that it may be a threshold effect, [5] and [32] suggest

two independent vector states with this decay mode. The

C(1480) has not been seen in the pp [33] and e+e− [34,35]

experiments. However, the sensitivity of the two latter is an

order of magnitude lower than that of [30]. Note that [30]

can not exclude that their observation is due to an OZI-

suppressed decay mode of the ρ(1700).

Several observations on the ωπ system in the 1200-MeV

region [36–42] may be interpreted in terms of either JP =

1− ρ(770) → ωπ production [43], or JP = 1+ b1(1235)

production [41,42]. We argue that no special entry for a

ρ(1250) is needed. The LASS amplitude analysis [44] showing
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evidence for ρ(1270) is preliminary and needs confirmation.

For completeness, the relevant observations are listed under the

ρ(1450).

Recently [45] reported a very broad 1−− resonance-like

K+K− state in J/ψ → K+K−π0 decays. Its pole position

corresponds to mass of 1576 MeV and width of 818 MeV.

[46–48] suggest its exotic structure (molecular or multiquark),

while [49] and [50] explain it by the interference between the

ρ(1450) and ρ(1700). We quote [45] as X(1575) in the section

“Further States.”

Evidence for ρ-like mesons decaying into 6π states was

first noted by [51] in the analysis of 6π mass spectra from

e+e− annihilation [52,53] and diffractive photoproduction [54].

Clegg [51] argued that two states at about 2.1 and 1.8 GeV

exist: while the former is a candidate for the ρ(2150), the latter

could be a manifestation of the ρ(1700) distorted by threshold

effects. BaBar reported observations of the new decay modes

of the ρ(2150) in the channels η′(958)π+π− and f1(1285)π+π−

[55]. The relativistic quark model [56] predicts the 23D1

state with JPC = 1−− at 2.15 GeV which can be identified with

the ρ(2150).

We no longer list under a separate particle ρ(1900) various

observations of irregular behavior of the cross sections near the

NN̄ threshold. Dips of various width around 1.9 GeV were re-

ported by the E687 Collaboration (a narrow one in the 3π+3π−

diffractive photoproduction [57,58]) , by the FENICE experi-

ment (a narrow structure in the R value [59]) , by BaBar in ISR

(a narrow structure in e+e− → φπ final state [60], but much

broader in e+e− → 3π+3π− and e+e− → 2(π+π−π0) [61]) ,

by CMD-3 (also a rather broad dip in e+e− → 3π+3π− [62]) .

Most probably, these structures emerge as a threshold effect

due to the opening of the NN̄ channel [63,64].
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ρ(1700) MASSρ(1700) MASSρ(1700) MASSρ(1700) MASS
ηρ0 AND π+π− MODESηρ0 AND π+π− MODESηρ0 AND π+π− MODESηρ0 AND π+π− MODESVALUE (MeV) DOCUMENT ID1720±20 OUR ESTIMATE1720±20 OUR ESTIMATE1720±20 OUR ESTIMATE1720±20 OUR ESTIMATE
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ηρ0 MODEηρ0 MODEηρ0 MODEηρ0 MODEVALUE (MeV) DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.
• • • We do not use the following data for averages, �ts, limits, et
. • • •1740±20 ANTONELLI 88 DM2 e+ e− → ηπ+π−1701±15 1 FUKUI 88 SPEC 8.95 π− p → ηπ+π− n1Assuming ρ+ f0(1370) de
ay mode interferes with a1(1260)+π ba
kground. From atwo Breit-Wigner �t.
ππ MODEππ MODEππ MODEππ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.
• • • We do not use the following data for averages, �ts, limits, et
. • • •1780 ±20 +15

−20 63.5k 2 ABRAMOWICZ12 ZEUS e p → eπ+π− p1861 ±17 3 LEES 12G BABR e+ e− → π+π− γ1728 ±17 ±89 5.4M 4,5 FUJIKAWA 08 BELL τ− → π−π0 ντ1780 +37
−29 6 ABELE 97 CBAR pn → π−π0π01719 ±15 6 BERTIN 97C OBLX 0.0 p p → π+π−π01730 ±30 CLEGG 94 RVUE e+ e− → π+π−1768 ±21 BISELLO 89 DM2 e+ e− → π+π−1745.7±91.9 DUBNICKA 89 RVUE e+ e− → π+π−1546 ±26 GESHKEN... 89 RVUE1650 7 ERKAL 85 RVUE 20{70 γ p → γπ1550 ±70 ABE 84B HYBR 20 γ p → π+π− p1590 ±20 8 ASTON 80 OMEG 20{70 γ p → p2π1600 ±10 9 ATIYA 79B SPEC 50 γC → C2π1598 +24
−22 BECKER 79 ASPK 17 π− p polarized1659 ±25 7 LANG 79 RVUE1575 7 MARTIN 78C RVUE 17 π− p → π+π− n1610 ±30 7 FROGGATT 77 RVUE 17 π− p → π+π− n1590 ±20 10 HYAMS 73 ASPK 17 π− p → π+π− n2Using the KUHN 90 parametrization of the pion form fa
tor, negle
ting ρ−ω interferen
e.3Using the GOUNARIS 68 parametrization of the pion form fa
tor leaving the masses andwidths of the ρ(1450), ρ(1700), and ρ(2150) resonan
es as free parameters of the �t.4 ∣

∣Fπ(0)∣∣2 �xed to 1.5 From the GOUNARIS 68 parametrization of the pion form fa
tor.6T-matrix pole.7 From phase shift analysis of HYAMS 73 data.8 Simple relativisti
 Breit-Wigner �t with 
onstant width.9An additional 40 MeV un
ertainty in both the mass and width is present due to the
hoi
e of the ba
kground shape.10 In
luded in BECKER 79 analysis.
πω MODEπω MODEπω MODEπω MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1708±41 7815 11 ACHASOV 13 SND 1.05{2.00 e+ e− → π0π0 γ1550 to 1620 12 ACHASOV 00I SND e+ e− → π0π0 γ1580 to 1710 13 ACHASOV 00I SND e+ e− → π0π0 γ1710±90 ACHASOV 97 RVUE e+ e− → ωπ011From a phenomenologi
al model based on ve
tor meson dominan
e with the interfering

ρ(1450) and ρ(1700) and their widths �xed at 400 and 250 MeV, respe
tively. Systemati
un
ertainty not estimated.12Taking into a

ount both ρ(1450) and ρ(1700) 
ontributions. Using the data ofACHASOV 00I on e+ e− → ωπ0 and of EDWARDS 00A on τ− → ωπ− ντ . ρ(1450)mass and width �xed at 1400 MeV and 500 MeV respe
tively.13Taking into a

ount the ρ(1700) 
ontribution only. Using the data of ACHASOV 00I one+ e− → ωπ0 and of EDWARDS 00A on τ− → ωπ− ντ .K K MODEK K MODEK K MODEK K MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1740.8±22.2 27k 14 ABELE 99D CBAR ± 0.0 p p → K+K−π01582 ±36 1600 CLELAND 82B SPEC ± 50 πp → K0S K± p14K-matrix pole. Isospin not determined, 
ould be ω(1650) or φ(1680).2 (π+π− ) MODE2 (π+π− ) MODE2 (π+π− ) MODE2 (π+π− ) MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1851+ 27

− 24 ACHASOV 97 RVUE e+ e− → 2(π+π−)1570± 20 15 CORDIER 82 DM1 e+ e− → 2(π+π−)1520± 30 16 ASTON 81E OMEG 20{70 γ p → p4π1654± 25 17 DIBIANCA 81 DBC π+ d → pp2(π+ π−)1666± 39 15 BACCI 80 FRAG e+ e− → 2(π+π−)1780 34 KILLIAN 80 SPEC 11 e− p → 2(π+π−)

1500 18 ATIYA 79B SPEC 50 γC → C4π±1570± 60 65 19 ALEXANDER 75 HBC 7.5 γ p → p4π1550± 60 16 CONVERSI 74 OSPK e+ e− → 2(π+π−)1550± 50 160 SCHACHT 74 STRC 5.5{9 γ p → p4π1450±100 340 SCHACHT 74 STRC 9{18 γ p → p4π1430± 50 400 BINGHAM 72B HBC 9.3 γ p → p4π15Simple relativisti
 Breit-Wigner �t with model dependent width.16 Simple relativisti
 Breit-Wigner �t with 
onstant width.17One peak �t result.18Parameters roughly estimated, not from a �t.19 Skew mass distribution 
ompensated by Ross-Stodolsky fa
tor.
π+π−π0π0 MODEπ+π−π0π0 MODEπ+π−π0π0 MODEπ+π−π0π0 MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1660±30 ATKINSON 85B OMEG 20{70 γ p3(π+π− ) AND 2(π+π−π0 ) MODES3(π+π− ) AND 2(π+π−π0 ) MODES3(π+π− ) AND 2(π+π−π0 ) MODES3(π+π− ) AND 2(π+π−π0 ) MODESVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1730±34 20 FRABETTI 04 E687 γ p → 3π+3π− p1783±15 CLEGG 90 RVUE e+ e− → 3(π+π−)2(π+π−π0)20From a �t with two resonan
es with the JACOB 72 
ontinuum.

ρ(1700) WIDTHρ(1700) WIDTHρ(1700) WIDTHρ(1700) WIDTH
ηρ0 AND π+π− MODESηρ0 AND π+π− MODESηρ0 AND π+π− MODESηρ0 AND π+π− MODESVALUE (MeV) DOCUMENT ID250±100 OUR ESTIMATE250±100 OUR ESTIMATE250±100 OUR ESTIMATE250±100 OUR ESTIMATE
ηρ0 MODEηρ0 MODEηρ0 MODEηρ0 MODEVALUE (MeV) DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.
• • • We do not use the following data for averages, �ts, limits, et
. • • •150±30 ANTONELLI 88 DM2 e+ e− → ηπ+π−282±44 21 FUKUI 88 SPEC 8.95 π− p → ηπ+π− n21Assuming ρ+ f0(1370) de
ay mode interferes with a1(1260)+π ba
kground. From atwo Breit-Wigner �t.
ππ MODEππ MODEππ MODEππ MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.
• • • We do not use the following data for averages, �ts, limits, et
. • • •310 ± 30 +25

−35 63.5k 22 ABRAMOWICZ12 ZEUS e p → eπ+π− p316 ± 26 23 LEES 12G BABR e+ e− → π+π− γ164 ± 21 +89
−26 5.4M 24,25 FUJIKAWA 08 BELL τ− → π−π0 ντ275 ± 45 26 ABELE 97 CBAR pn → π−π0π0310 ± 40 26 BERTIN 97C OBLX 0.0 p p → π+π−π0400 ±100 CLEGG 94 RVUE e+ e− → π+π−224 ± 22 BISELLO 89 DM2 e+ e− → π+π−242.5±163.0 DUBNICKA 89 RVUE e+ e− → π+π−620 ± 60 GESHKEN... 89 RVUE

<315 27 ERKAL 85 RVUE 20{70 γ p → γπ280 + 30
− 80 ABE 84B HYBR 20 γ p → π+π− p230 ± 80 28 ASTON 80 OMEG 20{70 γ p → p2π283 ± 14 29 ATIYA 79B SPEC 50 γC → C2π175 + 98
− 53 BECKER 79 ASPK 17 π− p polarized232 ± 34 27 LANG 79 RVUE340 27 MARTIN 78C RVUE 17 π− p → π+π− n300 ±100 27 FROGGATT 77 RVUE 17 π− p → π+π− n180 ± 50 30 HYAMS 73 ASPK 17 π− p → π+π− n22Using the KUHN 90 parametrization of the pion form fa
tor, negle
ting ρ−ω interferen
e.23Using the GOUNARIS 68 parametrization of the pion form fa
tor leaving the masses andwidths of the ρ(1450), ρ(1700), and ρ(2150) resonan
es as free parameters of the �t.24 ∣

∣Fπ(0)∣∣2 �xed to 1.25 From the GOUNARIS 68 parametrization of the pion form fa
tor.26T-matrix pole.27 From phase shift analysis of HYAMS 73 data.28 Simple relativisti
 Breit-Wigner �t with 
onstant width.29An additional 40 MeV un
ertainty in both the mass and width is present due to the
hoi
e of the ba
kground shape.30 In
luded in BECKER 79 analysis.K K MODEK K MODEK K MODEK K MODEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •187.2± 26.7 27k 31 ABELE 99D CBAR ± 0.0 p p → K+K−π0265 ±120 1600 CLELAND 82B SPEC ± 50 πp → K0S K± p31K-matrix pole. Isospin not determined, 
ould be ω(1650) or φ(1680).
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ρ(1700)2 (π+π− ) MODE2 (π+π− ) MODE2 (π+π− ) MODE2 (π+π− ) MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •510± 40 32 CORDIER 82 DM1 e+ e− → 2(π+π−)400± 50 33 ASTON 81E OMEG 20{70 γ p → p4π400±146 34 DIBIANCA 81 DBC π+ d → pp2(π+ π−)700±160 32 BACCI 80 FRAG e+ e− → 2(π+π−)100 34 KILLIAN 80 SPEC 11 e− p → 2(π+π−)600 35 ATIYA 79B SPEC 50 γC → C4π±340±160 65 36 ALEXANDER 75 HBC 7.5 γ p → p4π360±100 33 CONVERSI 74 OSPK e+ e− → 2(π+π−)400±120 160 37 SCHACHT 74 STRC 5.5{9 γ p → p4π850±200 340 37 SCHACHT 74 STRC 9{18 γ p → p4π650±100 400 BINGHAM 72B HBC 9.3 γ p → p4π32Simple relativisti
 Breit-Wigner �t with model-dependent width.33 Simple relativisti
 Breit-Wigner �t with 
onstant width.34One peak �t result.35Parameters roughly estimated, not from a �t.36 Skew mass distribution 
ompensated by Ross-Stodolsky fa
tor.37Width errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.
π+π−π0π0 MODEπ+π−π0π0 MODEπ+π−π0π0 MODEπ+π−π0π0 MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •300±50 ATKINSON 85B OMEG 20{70 γ p
ωπ0 MODEωπ0 MODEωπ0 MODEωπ0 MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •350 to 580 38 ACHASOV 00I SND e+ e− → π0π0 γ490 to 1040 39 ACHASOV 00I SND e+ e− → π0π0 γ38Taking into a

ount both ρ(1450) and ρ(1700) 
ontributions. Using the data ofACHASOV 00I on e+ e− → ωπ0 and of EDWARDS 00A on τ− → ωπ− ντ . ρ(1450)mass and width �xed at 1400 MeV and 500 MeV respe
tively.39Taking into a

ount the ρ(1700) 
ontribution only. Using the data of ACHASOV 00I one+ e− → ωπ0 and of EDWARDS 00A on τ− → ωπ− ντ .3(π+π− ) AND 2(π+π−π0 ) MODES3(π+π− ) AND 2(π+π−π0 ) MODES3(π+π− ) AND 2(π+π−π0 ) MODES3(π+π− ) AND 2(π+π−π0 ) MODESVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •315±100 40 FRABETTI 04 E687 γ p → 3π+3π− p285± 20 CLEGG 90 RVUE e+ e− → 3(π+π−)2(π+π−π0)40From a �t with two resonan
es with the JACOB 72 
ontinuum.

ρ(1700) DECAY MODESρ(1700) DECAY MODESρ(1700) DECAY MODESρ(1700) DECAY MODESMode Fra
tion (�i /�)�1 4π�2 2(π+π−) large�3 ρππ dominant�4 ρ0π+π− large�5 ρ0π0π0�6 ρ±π∓π0 large�7 a1(1260)π seen�8 h1(1170)π seen�9 π(1300)π seen�10 ρρ seen�11 π+π− seen�12 ππ seen�13 K K∗(892)+ 
.
. seen�14 ηρ seen�15 a2(1320)π not seen�16 K K seen�17 e+ e− seen�18 π0ω seen
ρ(1700) �(i)�(e+ e−)/�(total)ρ(1700) �(i)�(e+ e−)/�(total)ρ(1700) �(i)�(e+ e−)/�(total)ρ(1700) �(i)�(e+ e−)/�(total)This 
ombination of a partial width with the partial width into e+ e− andwith the total width is obtained from the 
ross-se
tion into 
hannelI ine+ e− annihilation.�(2(π+π−)) × �(e+ e−)/�total �2�17/��(2(π+π−)) × �(e+ e−)/�total �2�17/��(2(π+π−)) × �(e+ e−)/�total �2�17/��(2(π+π−)) × �(e+ e−)/�total �2�17/�VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.6 ±0.2 DELCOURT 81B DM1 e+ e− → 2(π+π−)2.83±0.42 BACCI 80 FRAG e+ e− → 2(π+π−)

�(π+π−)

× �(e+ e−)/�total �11�17/��(π+π−)

× �(e+ e−)/�total �11�17/��(π+π−)

× �(e+ e−)/�total �11�17/��(π+π−)

× �(e+ e−)/�total �11�17/�VALUE (keV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.13 41 DIEKMAN 88 RVUE e+ e− → π+π−0.029+0.016

−0.012 KURDADZE 83 OLYA 0.64{1.4 e+ e− → π+π−41Using total width = 220 MeV.�(K K∗(892)+ 
.
.) × �(e+ e−)/�total �13�17/��(K K∗(892)+ 
.
.) × �(e+ e−)/�total �13�17/��(K K∗(892)+ 
.
.) × �(e+ e−)/�total �13�17/��(K K∗(892)+ 
.
.) × �(e+ e−)/�total �13�17/�VALUE (keV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.305±0.071 42 BIZOT 80 DM1 e+ e−42Model dependent.�(ηρ

)

× �(e+ e−)/�total �14�17/��(ηρ
)

× �(e+ e−)/�total �14�17/��(ηρ
)

× �(e+ e−)/�total �14�17/��(ηρ
)

× �(e+ e−)/�total �14�17/�VALUE (eV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •7±3 ANTONELLI 88 DM2 e+ e− → ηπ+π−�(K K)

× �(e+ e−)/�total �16�17/��(K K)

× �(e+ e−)/�total �16�17/��(K K)

× �(e+ e−)/�total �16�17/��(K K)

× �(e+ e−)/�total �16�17/�VALUE (keV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.035±0.029 43 BIZOT 80 DM1 e+ e−43Model dependent.�(ρππ

)

× �(e+ e−)/�total �3�17/��(ρππ
)

× �(e+ e−)/�total �3�17/��(ρππ
)

× �(e+ e−)/�total �3�17/��(ρππ
)

× �(e+ e−)/�total �3�17/�VALUE (keV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.510±0.090 44 BIZOT 80 DM1 e+ e−44Model dependent.

ρ(1700) �(i)/�(total) × �(e+ e−)/�(total)ρ(1700) �(i)/�(total) × �(e+ e−)/�(total)ρ(1700) �(i)/�(total) × �(e+ e−)/�(total)ρ(1700) �(i)/�(total) × �(e+ e−)/�(total)�(π0ω
)/�total × �(e+ e−)/�total �18/�× �17/��(π0ω
)/�total × �(e+ e−)/�total �18/�× �17/��(π0ω
)/�total × �(e+ e−)/�total �18/�× �17/��(π0ω
)/�total × �(e+ e−)/�total �18/�× �17/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.7±0.4 7815 45 ACHASOV 13 SND 1.05{2.00 e+ e− → π0π0 γ45From a phenomenologi
al model based on ve
tor meson dominan
e with the interfering
ρ(1450) and ρ(1700) and their widths �xed at 400 and 250 MeV, respe
tively. Systemati
un
ertainty not estimated.

ρ(1700) BRANCHING RATIOSρ(1700) BRANCHING RATIOSρ(1700) BRANCHING RATIOSρ(1700) BRANCHING RATIOS�(ρππ
)/�(4π) �3/�1�(ρππ
)/�(4π) �3/�1�(ρππ
)/�(4π) �3/�1�(ρππ
)/�(4π) �3/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.28±0.06 46 ABELE 01B CBAR 0.0 p n → 5π46ωπ not in
luded.�(ρ0π+π−)/�(2(π+π−)) �4/�2�(ρ0π+π−)/�(2(π+π−)) �4/�2�(ρ0π+π−)/�(2(π+π−)) �4/�2�(ρ0π+π−)/�(2(π+π−)) �4/�2VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 1.0 DELCOURT 81B DM1 e+ e− → 2(π+π−)0.7 ±0.1 500 SCHACHT 74 STRC 5.5{18 γ p → p4π0.80 47 BINGHAM 72B HBC 9.3 γ p → p4π47The ππ system is in S-wave.�(ρ0π0π0)/�(ρ±π∓π0) �5/�6�(ρ0π0π0)/�(ρ±π∓π0) �5/�6�(ρ0π0π0)/�(ρ±π∓π0) �5/�6�(ρ0π0π0)/�(ρ±π∓π0) �5/�6VALUE DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.10 ATKINSON 85B OMEG 20{70 γ p
<0.15 ATKINSON 82 OMEG 0 20{70 γ p → p4π�(a1(1260)π)/�(4π) �7/�1�(a1(1260)π)/�(4π) �7/�1�(a1(1260)π)/�(4π) �7/�1�(a1(1260)π)/�(4π) �7/�1VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.16±0.05 48 ABELE 01B CBAR 0.0 p n → 5π48ωπ not in
luded.�(h1(1170)π)/�(4π) �8/�1�(h1(1170)π)/�(4π) �8/�1�(h1(1170)π)/�(4π) �8/�1�(h1(1170)π)/�(4π) �8/�1VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.17±0.06 49 ABELE 01B CBAR 0.0 p n → 5π49ωπ not in
luded.�(π(1300)π)/�(4π) �9/�1�(π(1300)π)/�(4π) �9/�1�(π(1300)π)/�(4π) �9/�1�(π(1300)π)/�(4π) �9/�1VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.30±0.10 50 ABELE 01B CBAR 0.0 p n → 5π50ωπ not in
luded.



949949949949See key on page 601 Meson Parti
le Listings
ρ(1700), a2(1700)�(ρρ

)/�(4π) �10/�1�(ρρ
)/�(4π) �10/�1�(ρρ
)/�(4π) �10/�1�(ρρ
)/�(4π) �10/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.09±0.03 51 ABELE 01B CBAR 0.0 p n → 5π51ωπ not in
luded.�(π+π−)/�total �11/��(π+π−)/�total �11/��(π+π−)/�total �11/��(π+π−)/�total �11/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.287+0.043

−0.042 BECKER 79 ASPK 17 π− p polarized0.15 to 0.30 52 MARTIN 78C RVUE 17 π− p → π+π− n
<0.20 53 COSTA... 77B RVUE e+ e− → 2π , 4π0.30 ±0.05 52 FROGGATT 77 RVUE 17 π− p → π+π− n
<0.15 54 EISENBERG 73 HBC 5 π+ p → �++2π0.25 ±0.05 55 HYAMS 73 ASPK 17 π− p → π+π− n52From phase shift analysis of HYAMS 73 data.53Estimate using unitarity, time reversal invarian
e, Breit-Wigner.54Estimated using one-pion-ex
hange model.55 In
luded in BECKER 79 analysis.�(π+π−)/�(2(π+π−)) �11/�2�(π+π−)/�(2(π+π−)) �11/�2�(π+π−)/�(2(π+π−)) �11/�2�(π+π−)/�(2(π+π−)) �11/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.13±0.05 ASTON 80 OMEG 20{70 γ p → p2π
<0.14 56 DAVIER 73 STRC 6{18 γ p → p4π
<0.2 57 BINGHAM 72B HBC 9.3 γ p → p2π56Upper limit is estimate.57 2σ upper limit.�(ππ

)/�(4π) �12/�1�(ππ
)/�(4π) �12/�1�(ππ
)/�(4π) �12/�1�(ππ
)/�(4π) �12/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.16±0.04 58,59 ABELE 01B CBAR 0.0 p n → 5π58Using ABELE 97.59ωπ not in
luded.�(K K∗(892)+ 
.
.)/�total �13/��(K K∗(892)+ 
.
.)/�total �13/��(K K∗(892)+ 
.
.)/�total �13/��(K K∗(892)+ 
.
.)/�total �13/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •possibly seen COAN 04 CLEO τ− → K−π−K+ ντ�(K K∗(892)+ 
.
.)/�(2(π+π−)) �13/�2�(K K∗(892)+ 
.
.)/�(2(π+π−)) �13/�2�(K K∗(892)+ 
.
.)/�(2(π+π−)) �13/�2�(K K∗(892)+ 
.
.)/�(2(π+π−)) �13/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.15±0.03 60 DELCOURT 81B DM1 e+ e− → K K π60Assuming ρ(1700) and ω radial ex
itations to be degenerate in mass.�(ηρ

)/�total �14/��(ηρ
)/�total �14/��(ηρ
)/�total �14/��(ηρ
)/�total �14/�VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •possibly seen AKHMETSHIN 00D CMD2 e+ e− → ηπ+π−
<0.04 DONNACHIE 87B RVUE
<0.02 58 ATKINSON 86B OMEG 20{70 γ p�(ηρ

)/�(2(π+π−)) �14/�2�(ηρ
)/�(2(π+π−)) �14/�2�(ηρ
)/�(2(π+π−)) �14/�2�(ηρ
)/�(2(π+π−)) �14/�2VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.123±0.027 DELCOURT 82 DM1 e+ e− → π+π−MM
∼ 0.1 ASTON 80 OMEG 20{70 γ p�(π+π−neutrals)/�(2(π+π−)) (�5+�6+0.714�14)/�2�(π+π−neutrals)/�(2(π+π−)) (�5+�6+0.714�14)/�2�(π+π−neutrals)/�(2(π+π−)) (�5+�6+0.714�14)/�2�(π+π−neutrals)/�(2(π+π−)) (�5+�6+0.714�14)/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.6±0.4 61 BALLAM 74 HBC 9.3 γ p61Upper limit. Ba
kground not subtra
ted.�(a2(1320)π)/�total �15/��(a2(1320)π)/�total �15/��(a2(1320)π)/�total �15/��(a2(1320)π)/�total �15/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AMELIN 00 VES 37 π− p → ηπ+π− n�(K K)/�(2(π+π−)) �16/�2�(K K)/�(2(π+π−)) �16/�2�(K K)/�(2(π+π−)) �16/�2�(K K)/�(2(π+π−)) �16/�2VALUE CL% DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.015±0.010 62 DELCOURT 81B DM1 e+ e− → K K
<0.04 95 BINGHAM 72B HBC 0 9.3 γ p62Assuming ρ(1700) and ω radial ex
itations to be degenerate in mass.

�(K K)/�(K K∗(892)+ 
.
.) �16/�13�(K K)/�(K K∗(892)+ 
.
.) �16/�13�(K K)/�(K K∗(892)+ 
.
.) �16/�13�(K K)/�(K K∗(892)+ 
.
.) �16/�13VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.052±0.026 BUON 82 DM1 e+ e− → hadrons�(π0ω

)/�total �18/��(π0ω
)/�total �18/��(π0ω
)/�total �18/��(π0ω
)/�total �18/�VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen MATVIENKO 15 BELL B0 → D∗+ωπ−seen 1.6k ACHASOV 12 SND e+ e− → π0π0 γnot seen 2382 AKHMETSHIN 03B CMD2 e+ e → π0π0 γseen ACHASOV 97 RVUE e+ e− → ωπ0
ρ(1700) REFERENCESρ(1700) REFERENCESρ(1700) REFERENCESρ(1700) REFERENCESMATVIENKO 15 PR D92 012013 D. Matvienko et al. (BELLE Collab.)ACHASOV 13 PR D88 054013 M.N. A
hasov et al. (SND Collab.)ABRAMOWICZ 12 EPJ C72 1869 H. Abramowi
z et al. (ZEUS Collab.)ACHASOV 12 JETPL 94 734 M.N. A
hasov et al.Translated from ZETFP 94 796.LEES 12G PR D86 032013 J.P. Lees et al. (BABAR Collab.)FUJIKAWA 08 PR D78 072006 M. Fujikawa et al. (BELLE Collab.)COAN 04 PRL 92 232001 T.E. Coan et al. (CLEO Collab.)FRABETTI 04 PL B578 290 P.L. Frabetti et al. (FNAL E687 Collab.)AKHMETSHIN 03B PL B562 173 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)ABELE 01B EPJ C21 261 A. Abele et al. (Crystal Barrel Collab.)ACHASOV 00I PL B486 29 M.N. A
hasov et al. (Novosibirsk SND Collab.)AKHMETSHIN 00D PL B489 125 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)AMELIN 00 NP A668 83 D. Amelin et al. (VES Collab.)EDWARDS 00A PR D61 072003 K.W. Edwards et al. (CLEO Collab.)ABELE 99D PL B468 178 A. Abele et al. (Crystal Barrel Collab.)ABELE 97 PL B391 191 A. Abele et al. (Crystal Barrel Collab.)ACHASOV 97 PR D55 2663 N.N. A
hasov et al. (NOVM)BERTIN 97C PL B408 476 A. Bertin et al. (OBELIX Collab.)CLEGG 94 ZPHY C62 455 A.B. Clegg, A. Donna
hie (LANC, MCHS)CLEGG 90 ZPHY C45 677 A.B. Clegg, A. Donna
hie (LANC, MCHS)KUHN 90 ZPHY C48 445 J.H. Kuhn et al. (MPIM)BISELLO 89 PL B220 321 D. Bisello et al. (DM2 Collab.)DUBNICKA 89 JP G15 1349 S. Dubni
ka et al. (JINR, SLOV)GESHKEN... 89 ZPHY C45 351 B.V. Geshkenbein (ITEP)ANTONELLI 88 PL B212 133 A. Antonelli et al. (DM2 Collab.)DIEKMAN 88 PRPL 159 99 B. Diekmann (BONN)FUKUI 88 PL B202 441 S. Fukui et al. (SUGI, NAGO, KEK, KYOT+)DONNACHIE 87B ZPHY C34 257 A. Donna
hie, A.B. Clegg (MCHS, LANC)ATKINSON 86B ZPHY C30 531 M. Atkinson et al. (BONN, CERN, GLAS+)ATKINSON 85B ZPHY C26 499 M. Atkinson et al. (BONN, CERN, GLAS+)ERKAL 85 ZPHY C29 485 C. Erkal, M.G. Olsson (WISC)ABE 84B PRL 53 751 K. Abe et al. (SLAC HFP Collab.)KURDADZE 83 JETPL 37 733 L.M. Kurdadze et al. (NOVO)Translated from ZETFP 37 613.ATKINSON 82 PL 108B 55 M. Atkinson et al. (BONN, CERN, GLAS+)BUON 82 PL 118B 221 J. Buon et al. (LALO, MONP)CLELAND 82B NP B208 228 W.E. Cleland et al. (DURH, GEVA, LAUS+)CORDIER 82 PL 109B 129 A. Cordier et al. (LALO)DELCOURT 82 PL 113B 93 B. Del
ourt et al. (LALO)ASTON 81E NP B189 15 D. Aston (BONN, CERN, EPOL, GLAS, LANC+)DELCOURT 81B Bonn Conf. 205 B. Del
ourt (ORSAY)Also PL 109B 129 A. Cordier et al. (LALO)DIBIANCA 81 PR D23 595 F.A. di Bian
a et al. (CASE, CMU)ASTON 80 PL 92B 215 D. Aston (BONN, CERN, EPOL, GLAS, LANC+)BACCI 80 PL 95B 139 C. Ba

i et al. (ROMA, FRAS)BIZOT 80 Madison Conf. 546 J.C. Bizot et al. (LALO, MONP)KILLIAN 80 PR D21 3005 T.J. Killian et al. (CORN)ATIYA 79B PRL 43 1691 M.S. Atiya et al. (COLU, ILL, FNAL)BECKER 79 NP B151 46 H. Be
ker et al. (MPIM, CERN, ZEEM, CRAC)LANG 79 PR D19 956 C.B. Lang, A. Mas-Parareda (GRAZ)MARTIN 78C ANP 114 1 A.D. Martin, M.R. Pennington (CERN)COSTA... 77B PL 71B 345 B. Costa de Beauregard, B. Pire, T.N. Truong (EPOL)FROGGATT 77 NP B129 89 C.D. Froggatt, J.L. Petersen (GLAS, NORD)ALEXANDER 75 PL 57B 487 G. Alexander et al. (TELA)BALLAM 74 NP B76 375 J. Ballam et al. (SLAC, LBL, MPIM)CONVERSI 74 PL 52B 493 M. Conversi et al. (ROMA, FRAS)SCHACHT 74 NP B81 205 P. S
ha
ht et al. (MPIM)DAVIER 73 NP B58 31 M. Davier et al. (SLAC)EISENBERG 73 PL 43B 149 Y. Eisenberg et al. (REHO)HYAMS 73 NP B64 134 B.D. Hyams et al. (CERN, MPIM)BINGHAM 72B PL 41B 635 H.H. Bingham et al. (LBL, UCB, SLAC) IGJPJACOB 72 PR D5 1847 M. Ja
ob, R. SlanskyGOUNARIS 68 PRL 21 244 G.J. Gounaris, J.J. Sakuraia2(1700) IG (JPC ) = 1−(2 + +)OMITTED FROM SUMMARY TABLEa2(1700) MASSa2(1700) MASSa2(1700) MASSa2(1700) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1732±16 OUR AVERAGE1732±16 OUR AVERAGE1732±16 OUR AVERAGE1732±16 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.1737± 5± 7 ABE 04 BELL 10.6 e+ e− →e+ e−K+K−1698±44 1 AMSLER 02 CBAR 0.9 p p → π0 ηη1660±40 ABELE 99B CBAR 1.94 pp → π0 ηη

• • • We do not use the following data for averages, �ts, limits, et
. • • •1675±25 ANISOVICH 09 RVUE 0.0 p p, πN1722± 9±15 18k 2 SCHEGELSKY 06 RVUE 0 γ γ → π+π−π01702± 7 80k 3 UMAN 06 E835 5.2 p p → ηηπ01721±13±44 145k LU 05 B852 18 π− p → ωπ−π0 p1767±14 221 4 ACCIARRI 01H L3 γ γ → K0S K0S , Eee
m=91, 183{209 GeV
∼ 1775 5 GRYGOREV 99 SPEC 40 π− p → K0S K0S n1752±21± 4 ACCIARRI 97T L3 γ γ → π+π−π0



950950950950MesonParti
le Listingsa2(1700), f0(1710)1T-matrix pole.2 From analysis of L3 data at 183{209 GeV.3 Statisti
al error only.4 Spin 2 dominant, isospin not determined, 
ould also be I=1.5Possibly two JP = 2+ resonan
es with isospins 0 and 1.a2(1700) WIDTHa2(1700) WIDTHa2(1700) WIDTHa2(1700) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT194± 40 OUR AVERAGE194± 40 OUR AVERAGE194± 40 OUR AVERAGE194± 40 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.151± 22±24 ABE 04 BELL 10.6 e+ e− →e+ e−K+K−265± 55 6 AMSLER 02 CBAR 0.9 p p → π0 ηη280± 70 ABELE 99B CBAR 1.94 pp → π0 ηη

• • • We do not use the following data for averages, �ts, limits, et
. • • •270+ 50
− 20 ANISOVICH 09 RVUE 0.0 p p, πN336± 20±20 18k 7 SCHEGELSKY 06 RVUE 0 γ γ → π+π−π0417± 19 80k 8 UMAN 06 E835 5.2 p p → ηηπ0279± 49±66 145k LU 05 B852 18 π− p → ωπ−π0 p187± 60 221 9 ACCIARRI 01H L3 γ γ → K0S K0S , Eee
m=91, 183{209 GeV150±110±34 ACCIARRI 97T L3 γ γ → π+π−π06T-matrix pole.7 From analysis of L3 data at 183{209 GeV.8 Statisti
al error only.9 Spin 2 dominant, isospin not determined, 
ould also be I=1.

WEIGHTED AVERAGE
194±40 (Error scaled by 1.6)

ABELE 99B CBAR 1.5
AMSLER 02 CBAR 1.6
ABE 04 BELL 1.8

χ2

       4.9
(Confidence Level = 0.085)

0 100 200 300 400 500 600a2(1700) width a2(1700) DECAY MODESa2(1700) DECAY MODESa2(1700) DECAY MODESa2(1700) DECAY MODESMode Fra
tion (�i /�)�1 ηπ seen�2 γ γ�3 ρπ�4 f2(1270)π�5 K K seen�6 ωπ−π0 seen�7 ωρ seena2(1700) PARTIAL WIDTHSa2(1700) PARTIAL WIDTHSa2(1700) PARTIAL WIDTHSa2(1700) PARTIAL WIDTHS�(ηπ
) �1�(ηπ
) �1�(ηπ
) �1�(ηπ
) �1VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •9.5±2.0 870 10 SCHEGELSKY 06A RVUE γ γ → K0S K0S�(γ γ
) �2�(γ γ
) �2�(γ γ
) �2�(γ γ
) �2VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.30±0.05 870 10 SCHEGELSKY 06A RVUE γ γ → K0S K0S�(K K) �5�(K K) �5�(K K) �5�(K K) �5VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.0±3.0 870 10 SCHEGELSKY 06A RVUE γ γ → K0S K0S10From analysis of L3 data at 91 and 183{209 GeV, using a2(1700) mass of 1730 MeVand width of 340 MeV, and SU(3) relations.

a2(1700) �(i)�(γ γ)/�(total)a2(1700) �(i)�(γ γ)/�(total)a2(1700) �(i)�(γ γ)/�(total)a2(1700) �(i)�(γ γ)/�(total)
[�(ρπ

)+�(f2(1270)π)
]

× �(γ γ
)/�total (�3+�4)�2/�[�(ρπ

)+�(f2(1270)π)
]

× �(γ γ
)/�total (�3+�4)�2/�[�(ρπ

)+�(f2(1270)π)
]

× �(γ γ
)/�total (�3+�4)�2/�[�(ρπ

)+�(f2(1270)π)
]

× �(γ γ
)/�total (�3+�4)�2/�VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.29±0.04±0.020.29±0.04±0.020.29±0.04±0.020.29±0.04±0.02 ACCIARRI 97T L3 γ γ → π+π−π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.37+0.12
−0.08±0.10 18k 11 SCHEGELSKY 06 RVUE γ γ → π+π−π0�(K K)

× �(γ γ
)/�total �5�2/��(K K)

× �(γ γ
)/�total �5�2/��(K K)

× �(γ γ
)/�total �5�2/��(K K)

× �(γ γ
)/�total �5�2/�VALUE (eV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •20.6± 4.2± 4.6 12 ABE 04 BELL 10.6 e+ e− → e+ e−K+K−49 ±11 ±13 13 ACCIARRI 01H L3 γ γ → K0S K0S , Eee
m= 91,183{209 GeV11From analysis of L3 data at 183{209 GeV.12Assuming spin 2.13 Spin 2 dominant, isospin not determined, 
ould also be I=1.a2(1700) BRANCHING RATIOSa2(1700) BRANCHING RATIOSa2(1700) BRANCHING RATIOSa2(1700) BRANCHING RATIOS�(ρπ
)/�(f2(1270)π) �3/�4�(ρπ
)/�(f2(1270)π) �3/�4�(ρπ
)/�(f2(1270)π) �3/�4�(ρπ
)/�(f2(1270)π) �3/�4VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.4±0.4±0.1 18k 14 SCHEGELSKY 06 RVUE γ γ → π+π−π014From analysis of L3 data at 183{209 GeV.a2(1700) REFERENCESa2(1700) REFERENCESa2(1700) REFERENCESa2(1700) REFERENCESANISOVICH 09 IJMP A24 2481 V.V. Anisovi
h, A.V. SarantsevSCHEGELSKY 06 EPJ A27 199 V.A. S
hegelsky et al.SCHEGELSKY 06A EPJ A27 207 V.A. S
hegelsky et al.UMAN 06 PR D73 052009 I. Uman et al. (FNAL E835)LU 05 PRL 94 032002 M. Lu et al. (BNL E852 Collab.)ABE 04 EPJ C32 323 K. Abe et al. (BELLE Collab.)AMSLER 02 EPJ C23 29 C. Amsler et al.ACCIARRI 01H PL B501 173 M. A

iarri et al. (L3 Collab.)ABELE 99B EPJ C8 67 A. Abele et al. (Crystal Barrel Collab.)GRYGOREV 99 PAN 62 470 V.K. Grygorev et al.Translated from YAF 62 513.ACCIARRI 97T PL B413 147 M. A

iarri et al. (L3 Collab.)f0(1710) IG (JPC ) = 0+(0 + +)See our mini-review in the 2004 edition of this Review, Physi
s Let-ters B592B592B592B592 1 (2004). See also the mini-review on s
alar mesons underf0(500) (see the index for the page number).f0(1710) MASSf0(1710) MASSf0(1710) MASSf0(1710) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1723+ 6
− 5 OUR AVERAGE1723+ 6
− 5 OUR AVERAGE1723+ 6
− 5 OUR AVERAGE1723+ 6
− 5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.1759± 6 +14

−25 5.5k 1 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη1750+ 6
− 7 +29

−18 UEHARA 13 BELL γ γ → K0S K0S1701± 5 + 9
− 2 4k 2 CHEKANOV 08 ZEUS e p → K0S K0S X1765+ 4

− 3 ±13 ABLIKIM 06V BES2 e+ e− → J/ψ → γπ+π−1760±15 +15
−10 3 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1738±30 ABLIKIM 04E BES2 J/ψ → ωK+K−1740± 4 +10
−25 4 BAI 03G BES J/ψ → γK K1740+30

−25 4 BAI 00A BES J/ψ → γ (π+π−π+π−)1698±18 5 BARBERIS 00E 450 pp → pf ηηps1710±12 ±11 6 BARBERIS 99D OMEG 450 pp → K+K−, π+π−1710±25 7 FRENCH 99 300 pp → pf (K+K−)ps1707±10 8 AUGUSTIN 88 DM2 J/ψ → γK+K−, K0S K0S1698±15 8 AUGUSTIN 87 DM2 J/ψ → γπ+π−1720±10 ±10 9 BALTRUSAIT...87 MRK3 J/ψ → γK+K−1742±15 8 WILLIAMS 84 MPSF 200 π−N → 2K0S X1670±50 BLOOM 83 CBAL J/ψ → γ 2η
• • • We do not use the following data for averages, �ts, limits, et
. • • •1744± 7 ± 5 381 10,11 DOBBS 15 J/ψ → γπ+π−1705±11 ± 5 237 10,11 DOBBS 15 ψ(2S) → γπ+π−1706± 4 ± 5 1.0k 10,11 DOBBS 15 J/ψ → γK+K−1690± 8 ± 3 349 10,11 DOBBS 15 ψ(2S) → γK+K−1750±13 AMSLER 06 CBAR 1.64 pp → K+K−π01747± 5 80k 12,13 UMAN 06 E835 5.2 p p → ηηπ01776±15 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n1790+40

−30 3 ABLIKIM 05 BES2 J/ψ → φπ+π−1670±20 12 BINON 05 GAMS 33 π− p → ηηn1726± 7 74 13 CHEKANOV 04 ZEUS e p → K0S K0S X



951951951951See key on page 601 Meson Parti
le Listingsf0(1710)1732+15 14 ANISOVICH 03 RVUE1682±16 TIKHOMIROV 03 SPEC 40.0 π−C → K0S K0S K0LX1670±26 3.6k 4,15 NICHITIU 02 OBLX1770±12 16,17 ANISOVICH 99B SPEC 0.6{1.2 pp → ηηπ01730±15 4 BARBERIS 99 OMEG 450 pp → ps pf K+K−1750±20 4 BARBERIS 99B OMEG 450 pp → ps pf π+π−1750±30 18 ANISOVICH 98B RVUE Compilation1720±39 BAI 98H BES J/ψ → γπ0π01775± 1.5 57 19 BARKOV 98 π− p → K0S K0S n1690±11 20 ABREU 96C DLPH Z0 → K+K− + X1696± 5 + 9
−34 9 BAI 96C BES J/ψ → γK+K−1781± 8 +10
−31 4 BAI 96C BES J/ψ → γK+K−1768±14 BALOSHIN 95 SPEC 40 π−C → K0S K0S X1750±15 21 BUGG 95 MRK3 J/ψ → γπ+π−π+π−1620±16 9 BUGG 95 MRK3 J/ψ → γπ+π−π+π−1748±10 8 ARMSTRONG 93C E760 pp → π0 ηη → 6γ

∼ 1750 BREAKSTONE93 SFM pp → ppπ+π−π+π−1744±15 22 ALDE 92D GAM2 38 π− p → ηηn1713±10 23 ARMSTRONG 89D OMEG 300 pp → ppK+K−1706±10 23 ARMSTRONG 89D OMEG 300 pp → ppK0S K0S1700±15 9 BOLONKIN 88 SPEC 40 π− p → K0S K0S n1720±60 4 BOLONKIN 88 SPEC 40 π− p → K0S K0S n1638±10 24 FALVARD 88 DM2 J/ψ → φK+K−, K0S K0S1690± 4 25 FALVARD 88 DM2 J/ψ → φK+K−, K0S K0S1755± 8 26 ALDE 86C GAM2 38 π− p → n2η1730+ 2
−10 27 LONGACRE 86 RVUE 22 π− p → n2K0S1650±50 BURKE 82 MRK2 J/ψ → γ 2ρ1640±50 28,29 EDWARDS 82D CBAL J/ψ → γ 2η1730±10 ±20 30 ETKIN 82C MPS 23 π− p → n2K0S1From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.2 In the SU(3) based model with a spe
i�
 interferen
e pattern of the f2(1270), a02(1320),and f ′2(1525) mesons in
oherently added to the f0(1710) and non-resonant ba
kground.3This state may be di�erent from f0(1710), see CLOSE 05.4 JP = 0+.5T-matrix pole.6 Supersedes BARBERIS 99 and BARBERIS 99B.7 JP = 0+, supersedes by ARMSTRONG 89D.8No JPC determination.9 JP = 2+.10Using CLEO-
 data but not authored by the CLEO Collaboration.11 From a �t to a Breit-Wigner line shape with �xed � = 135 MeV.12Breit-Wigner mass.13 Systemati
 errors not estimated.14K-matrix pole, assuming JP = 0+, from 
ombined analysis of π− p → π0π0 n, π− p →K K n, π+π− → π+π−, p p → π0π0π0, π0 ηη, π0π0 η, π+π−π0, K+K−π0,K0S K0S π0, K+K0S π− at rest, pn → π−π−π+, K0S K−π0, K0S K0S π− at rest.15De
aying to f0(1370)ππ.16 JP = 0+.17Not seen by AMSLER 02.18T-matrix pole, assuming JP = 0+19No JPC determination.20No JPC determination, width not determined.21 From a �t to the 0+ partial wave.22ALDE 92D 
ombines all the GAMS-2000 data.23 JP = 2+, superseded by FRENCH 99.24From an analysis ignoring interferen
e with f ′2(1525).25 From an analysis in
luding interferen
e with f ′2(1525).26 Superseded by ALDE 92D.27Uses MRK3 data. From a partial-wave analysis of data using a K-matrix formalism with5 poles, but assuming spin 2. Fit with 
onstrained inelasti
ity.28 JP = 2+ preferred.29 From �t negle
ting nearby f ′2(1525). Repla
ed by BLOOM 83.30 Superseded by LONGACRE 86.

WEIGHTED AVERAGE
1723+6-5 (Error scaled by 1.6)

BLOOM 83 CBAL
WILLIAMS 84 MPSF 1.7
BALTRUSAIT... 87 MRK3 0.0
AUGUSTIN 87 DM2 2.7
AUGUSTIN 88 DM2 2.4
FRENCH 99 0.2
BARBERIS 99D OMEG 0.6
BARBERIS 00E 1.9
BAI 00A BES 0.5
BAI 03G BES 0.6
ABLIKIM 04E BES2 0.3
ABLIKIM 05Q BES2 4.3
ABLIKIM 06V BES2 10.1
CHEKANOV 08 ZEUS 4.4
UEHARA 13 BELL 2.0
ABLIKIM 13N BES3 2.0

χ2

      33.7
(Confidence Level = 0.0023)

1600 1650 1700 1750 1800 1850 1900f0(1710) mass (MeV)

f0(1710) WIDTHf0(1710) WIDTHf0(1710) WIDTHf0(1710) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT139 ± 8 OUR AVERAGE139 ± 8 OUR AVERAGE139 ± 8 OUR AVERAGE139 ± 8 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.172 ± 10 +32
−16 5.5k 1 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη139 + 11

− 12 +96
−50 UEHARA 13 BELL γ γ → K0S K0S100 ± 24 + 7
−22 4k 2 CHEKANOV 08 ZEUS e p → K0S K0S X145 ± 8 ±69 ABLIKIM 06V BES2 e+ e− → J/ψ → γπ+π−125 ± 25 +10
−15 3 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−125 ± 20 ABLIKIM 04E BES2 J/ψ → ωK+K−166 + 5

− 8 +15
−10 4 BAI 03G BES J/ψ → γK K120 + 50

− 40 4 BAI 00A BES J/ψ → γ (π+π−π+π−)120 ± 26 5 BARBERIS 00E 450 pp → pf ηηps126 ± 16 ±18 6 BARBERIS 99D OMEG 450 pp → K+K−, π+π−105 ± 34 7 FRENCH 99 300 pp → pf (K+K−)ps166.4± 33.2 8 AUGUSTIN 88 DM2 J/ψ → γK+K−, K0S K0S136 ± 28 8 AUGUSTIN 87 DM2 J/ψ → γπ+π−130 ± 20 9 BALTRUSAIT...87 MRK3 J/ψ → γK+K−57 ± 38 10 WILLIAMS 84 MPSF 200 π−N → 2K0S X160 ± 80 BLOOM 83 CBAL J/ψ → γ 2η
• • • We do not use the following data for averages, �ts, limits, et
. • • •148 + 40

− 30 AMSLER 06 CBAR 1.64 p p → K+K−π0188 ± 13 80k 3,11 UMAN 06 E835 5.2 p p → ηηπ0250 ± 30 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n270 + 60
− 30 12 ABLIKIM 05 BES2 J/ψ → φπ+π−260 ± 50 3 BINON 05 GAMS 33 π− p → ηηn38 + 20
− 14 74 11 CHEKANOV 04 ZEUS e p → K0S K0S X144 ± 30 13,14 ANISOVICH 03 RVUE320 + 50
− 20 14,15 ANISOVICH 03 RVUE102 ± 26 TIKHOMIROV 03 SPEC 40.0 π−C → K0S K0S K0LX267 ± 44 3651 4,16 NICHITIU 02 OBLX220 ± 40 17,18 ANISOVICH 99B SPEC 0.6{1.2 pp → ηηπ0100 ± 25 4 BARBERIS 99 OMEG 450 pp → ps pf K+K−160 ± 30 4 BARBERIS 99B OMEG 450 pp → ps pf π+π−250 ±140 19 ANISOVICH 98B RVUE Compilation30 ± 7 57 20 BARKOV 98 π− p → K0S K0S n103 ± 18 +30

−11 9 BAI 96C BES J/ψ → γK+K−85 ± 24 +22
−19 4 BAI 96C BES J/ψ → γK+K−56 ± 19 BALOSHIN 95 SPEC 40 π−C → K0S K0S X160 ± 40 21 BUGG 95 MRK3 J/ψ → γπ+π−π+π−160 + 60

− 20 9 BUGG 95 MRK3 J/ψ → γπ+π−π+π−264 ± 25 8 ARMSTRONG 93C E760 pp → π0 ηη → 6γ200 to 300 BREAKSTONE93 SFM pp → ppπ+π−π+π−
< 80 90% CL 22 ALDE 92D GAM2 38 π− p → ηηN∗181 ± 30 23 ARMSTRONG 89D OMEG 300 pp → ppK+K−104 ± 30 23 ARMSTRONG 89D OMEG 300 pp → ppK0S K0S30 ± 20 9 BOLONKIN 88 SPEC 40 π− p → K0S K0S n350 ±150 4 BOLONKIN 88 SPEC 40 π− p → K0S K0S n148 ± 17 24 FALVARD 88 DM2 J/ψ → φK+K−, K0S K0S184 ± 6 25 FALVARD 88 DM2 J/ψ → φK+K−, K0S K0S122 + 74

− 15 26 LONGACRE 86 RVUE 22 π− p → n2K0S200 ±100 BURKE 82 MRK2 J/ψ → γ 2ρ220 +100
− 70 27,28 EDWARDS 82D CBAL J/ψ → γ 2η200 +156
− 9 29 ETKIN 82B MPS 23 π− p → n2K0S1From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.2 In the SU(3) based model with a spe
i�
 interferen
e pattern of the f2(1270), a02(1320),and f ′2(1525) mesons in
oherently added to the f0(1710) and non-resonant ba
kground.3Breit-Wigner width.4 JP = 0+.5T-matrix pole.6 Supersedes BARBERIS 99 and BARBERIS 99B.7 JP = 0+, supersedes by ARMSTRONG 89D.8No JPC determination.9 JP = 2+.10No JPC determination.11 Systemati
 errors not estimated.12This state may be di�erent from f0(1710), see CLOSE 05.13 (Solution I)14K-matrix pole, assuming JP = 0+, from 
ombined analysis of π− p → π0π0 n, π− p →K K n, π+π− → π+π−, p p → π0π0π0, π0 ηη, π0π0 η, π+π−π0, K+K−π0,K0S K0S π0, K+K0S π− at rest, pn → π−π−π+, K0S K−π0, K0S K0S π− at rest.



952952952952Meson Parti
le Listingsf0(1710)15 (Solution I)16De
aying to f0(1370)ππ.17 JP = 0+.18Not seen by AMSLER 02.19T-matrix pole, assuming JP = 0+20No JPC determination.21 From a �t to the 0+ partial wave.22ALDE 92D 
ombines all the GAMS-2000 data.23 JP = 2+, (0+ ex
luded).24 From an analysis ignoring interferen
e with f ′2(1525).25 From an analysis in
luding interferen
e with f ′2(1525).26Uses MRK3 data. From a partial-wave analysis of data using a K-matrix formalism with5 poles, but assuming spin 2. Fit with 
onstrained inelasti
ity.27 JP = 2+ preferred.28 From �t negle
ting nearby f ′2(1525). Repla
ed by BLOOM 83.29From an amplitude analysis of the K0S K0S system, superseded by LONGACRE 86.f0(1710) DECAY MODESf0(1710) DECAY MODESf0(1710) DECAY MODESf0(1710) DECAY MODESMode Fra
tion (�i /�)�1 K K seen�2 ηη seen�3 ππ seen�4 γ γ�5 ωω seenf0(1710) �(i)�(γ γ)/�(total)f0(1710) �(i)�(γ γ)/�(total)f0(1710) �(i)�(γ γ)/�(total)f0(1710) �(i)�(γ γ)/�(total)�(K K)

× �(γ γ
)/�total �1�4/��(K K)

× �(γ γ
)/�total �1�4/��(K K)

× �(γ γ
)/�total �1�4/��(K K)

× �(γ γ
)/�total �1�4/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT12+3

−2+227
− 812+3

−2+227
− 812+3

−2+227
− 812+3

−2+227
− 8 UEHARA 13 BELL γ γ → K0S K0S

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<480 95 ALBRECHT 90G ARG γ γ → K+K−
<110 95 1 BEHREND 89C CELL γ γ → K0S K0S
<280 95 1 ALTHOFF 85B TASS γ γ → K K π1Assuming heli
ity 2.�(ππ

)

× �(γ γ
)/�total �3�4/��(ππ

)

× �(γ γ
)/�total �3�4/��(ππ

)

× �(γ γ
)/�total �3�4/��(ππ

)

× �(γ γ
)/�total �3�4/�VALUE (keV) CL% DOCUMENT ID TECN COMMENT

<0.82<0.82<0.82<0.82 95 1 BARATE 00E ALEP γ γ → π+π−1Assuming spin 0. f0(1710) BRANCHING RATIOSf0(1710) BRANCHING RATIOSf0(1710) BRANCHING RATIOSf0(1710) BRANCHING RATIOS�(K K)/�total �1/��(K K)/�total �1/��(K K)/�total �1/��(K K)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 1004 1 DOBBS 15 J/ψ → γK+K−seen 349 1 DOBBS 15 ψ(2S) → γK+K−0.36±0.12 ALBALADEJO 08 RVUE0.38+0.09

−0.19 2 LONGACRE 86 MPS 22 π− p → n2K0S1Using CLEO-
 data but not authored by the CLEO Collaboration.2 From a partial-wave analysis of data using a K-matrix formalism with 5 poles, but as-suming spin 2. Fit with 
onstrained inelasti
ity.�(ηη
)/�total �2/��(ηη
)/�total �2/��(ηη
)/�total �2/��(ηη
)/�total �2/�VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.22±0.12 ALBALADEJO 08 RVUE0.18+0.03
−0.13 1 LONGACRE 86 RVUE1From a partial-wave analysis of data using a K-matrix formalism with 5 poles, but as-suming spin 2. Fit with 
onstrained inelasti
ity.�(ππ

)/�total �3/��(ππ
)/�total �3/��(ππ
)/�total �3/��(ππ
)/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 381 1 DOBBS 15 J/ψ → γπ+π−seen 237 1 DOBBS 15 ψ(2S) → γπ+π−not seen AMSLER 02 CBAR 0.9 p p → π0 ηη, π0π0π00.039+0.002
−0.024 2 LONGACRE 86 RVUE1Using CLEO-
 data but not authored by the CLEO Collaboration.2 From a partial-wave analysis of data using a K-matrix formalism with 5 poles, but as-suming spin 2. Fit with 
onstrained inelasti
ity.

�(ππ
)/�(KK) �3/�1�(ππ
)/�(KK) �3/�1�(ππ
)/�(KK) �3/�1�(ππ
)/�(KK) �3/�1VALUE CL% DOCUMENT ID TECN COMMENT0.41+0.11

−0.170.41+0.11
−0.170.41+0.11
−0.170.41+0.11
−0.17 ABLIKIM 06V BES2 e+ e− → J/ψ → γπ+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.32±0.14 ALBALADEJO 08 RVUE
< 0.11 95 1 ABLIKIM 04E BES2 J/ψ → ωK+K−5.8 +9.1

−5.5 2 ANISOVICH 02D SPEC Combined �t0.2 ±0.024±0.036 BARBERIS 99D OMEG 450 pp → K+K−, π+π−0.39±0.14 ARMSTRONG 91 OMEG 300 pp → ppππ , ppK K1Using data from ABLIKIM 04A.2 From a 
ombined K-matrix analysis of Crystal Barrel (0. pp → π0π0π0, π0 ηη,
π0π0 η), GAMS (πp → π0π0 n, ηηn, ηη′ n), and BNL (πp → K K n) data.�(ηη

)/�(K K) �2/�1�(ηη
)/�(K K) �2/�1�(ηη
)/�(K K) �2/�1�(ηη
)/�(K K) �2/�1VALUE CL% DOCUMENT ID TECN COMMENT0.48±0.150.48±0.150.48±0.150.48±0.15 BARBERIS 00E 450 pp → pf ηηps

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.46+0.70
−0.38 1 ANISOVICH 02D SPEC Combined �t

<0.02 90 2 PROKOSHKIN 91 GA24 300 π− p → π− pηη1From a 
ombined K-matrix analysis of Crystal Barrel (0. pp → π0π0π0, π0 ηη,
π0π0 η), GAMS (πp → π0π0 n, ηηn, ηη′ n), and BNL (πp → K K n) data.2Combining results of GAM4 with those of ARMSTRONG 89D.�(ωω

)/�total �5/��(ωω
)/�total �5/��(ωω
)/�total �5/��(ωω
)/�total �5/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 180 ABLIKIM 06H BES J/ψ → γωωf0(1710) REFERENCESf0(1710) REFERENCESf0(1710) REFERENCESf0(1710) REFERENCESDOBBS 15 PR D91 052006 S. Dobbs et al. (NWES)ABLIKIM 13N PR D87 092009 Ablikim M. et al. (BES III Collab.)UEHARA 13 PTEP 2013 123C01 S. Uehara et al. (BELLE Collab.)ALBALADEJO 08 PRL 101 252002 M. Albaladejo, J.A. OllerCHEKANOV 08 PRL 101 112003 S. Chekanov et al. (ZEUS Collab.)ABLIKIM 06H PR D73 112007 M. Ablikim et al. (BES Collab.)ABLIKIM 06V PL B642 441 M. Ablikim et al. (BES Collab.)AMSLER 06 PL B639 165 C. Amsler et al. (CBAR Collab.)UMAN 06 PR D73 052009 I. Uman et al. (FNAL E835)VLADIMIRSK... 06 PAN 69 493 V.V. Vladimirsky et al. (ITEP, Mos
ow)Translated from YAF 69 515.ABLIKIM 05 PL B607 243 M. Ablikim et al. (BES Collab.)ABLIKIM 05Q PR D72 092002 M. Ablikim et al. (BES Collab.)BINON 05 PAN 68 960 F. Binon et al.Translated from YAF 68 998.CLOSE 05 PR D71 094022 F.E. Close, Q. ZhaoABLIKIM 04A PL B598 149 M. Ablikim et al. (BES Collab.)ABLIKIM 04E PL B603 138 M. Ablikim et al. (BES Collab.)CHEKANOV 04 PL B578 33 S. Chekanov et al. (ZEUS Collab.)PDG 04 PL B592 1 S. Eidelman et al. (PDG Collab.)ANISOVICH 03 EPJ A16 229 V.V. Anisovi
h et al.BAI 03G PR D68 052003 J.Z. Bai et al. (BES Collab.)TIKHOMIROV 03 PAN 66 828 G.D. Tikhomirov et al.Translated from YAF 66 860.AMSLER 02 EPJ C23 29 C. Amsler et al.ANISOVICH 02D PAN 65 1545 V.V. Anisovi
h et al.Translated from YAF 65 1583.NICHITIU 02 PL B545 261 F. Ni
hitiu et al. (OBELIX Collab.)BAI 00A PL B472 207 J.Z. Bai et al. (BES Collab.)BARATE 00E PL B472 189 R. Barate et al. (ALEPH Collab.)BARBERIS 00E PL B479 59 D. Barberis et al. (WA 102 Collab.)ANISOVICH 99B PL B449 154 A.V. Anisovi
h et al.BARBERIS 99 PL B453 305 D. Barberis et al. (Omega Expt.)BARBERIS 99B PL B453 316 D. Barberis et al. (Omega Expt.)BARBERIS 99D PL B462 462 D. Barberis et al. (Omega Expt.)FRENCH 99 PL B460 213 B. Fren
h et al. (WA76 Collab.)ANISOVICH 98B SPU 41 419 V.V. Anisovi
h et al.Translated from UFN 168 481.BAI 98H PRL 81 1179 J.Z. Bai et al. (BES Collab.)BARKOV 98 JETPL 68 764 B.P. Barkov et al.ABREU 96C PL B379 309 P. Abreu et al. (DELPHI Collab.)BAI 96C PRL 77 3959 J.Z. Bai et al. (BES Collab.)BALOSHIN 95 PAN 58 46 O.N. Baloshin et al. (ITEP)Translated from YAF 58 50.BUGG 95 PL B353 378 D.V. Bugg et al. (LOQM, PNPI, WASH)ARMSTRONG 93C PL B307 394 T.A. Armstrong et al. (FNAL, FERR, GENO+)BREAKSTONE 93 ZPHY C58 251 A.M. Breakstone et al. (IOWA, CERN, DORT+)ALDE 92D PL B284 457 D.M. Alde et al. (GAM2 Collab.)Also SJNP 54 451 D.M. Alde et al. (GAM2 Collab.)Translated from YAF 54 745.ARMSTRONG 91 ZPHY C51 351 T.A. Armstrong et al. (ATHU, BARI, BIRM+)PROKOSHKIN 91 SPD 36 155 Y.D. Prokoshkin (GAM2, GAM4 Collab.)Translated from DANS 316 900.ALBRECHT 90G ZPHY C48 183 H. Albre
ht et al. (ARGUS Collab.)ARMSTRONG 89D PL B227 186 T.A. Armstrong, M. Benayoun (ATHU, BARI, BIRM+)BEHREND 89C ZPHY C43 91 H.J. Behrend et al. (CELLO Collab.)AUGUSTIN 88 PRL 60 2238 J.E. Augustin et al. (DM2 Collab.)BOLONKIN 88 NP B309 426 B.V. Bolonkin et al. (ITEP, SERP)FALVARD 88 PR D38 2706 A. Falvard et al. (CLER, FRAS, LALO+)AUGUSTIN 87 ZPHY C36 369 J.E. Augustin et al. (LALO, CLER, FRAS+)BALTRUSAIT... 87 PR D35 2077 R.M. Baltrusaitis et al. (Mark III Collab.)ALDE 86C PL B182 105 D.M. Alde et al. (SERP, BELG, LANL, LAPP)LONGACRE 86 PL B177 223 R.S. Longa
re et al. (BNL, BRAN, CUNY+)ALTHOFF 85B ZPHY C29 189 M. Altho� et al. (TASSO Collab.)WILLIAMS 84 PR D30 877 E.G.H. Williams et al. (VAND, NDAM, TUFTS+)BLOOM 83 ARNS 33 143 E.D. Bloom, C. Pe
k (SLAC, CIT)BURKE 82 PRL 49 632 D.L. Burke et al. (LBL, SLAC)EDWARDS 82D PRL 48 458 C. Edwards et al. (CIT, HARV, PRIN+)ETKIN 82B PR D25 1786 A. Etkin et al. (BNL, CUNY, TUFTS, VAND)ETKIN 82C PR D25 2446 A. Etkin et al. (BNL, CUNY, TUFTS, VAND)
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η(1760),π(1800)

η(1760) IG (JPC ) = 0+(0−+)OMITTED FROM SUMMARY TABLESeen by DM2 in the ρρ system (BISELLO 89B). Stru
ture inthis region has been reported before in the same system (BAL-TRUSAITIS 86B) and in the ωω system (BALTRUSAITIS 85C,BISELLO 87).
η(1760) MASSη(1760) MASSη(1760) MASSη(1760) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1751±15 OUR AVERAGE1751±15 OUR AVERAGE1751±15 OUR AVERAGE1751±15 OUR AVERAGE1768+24

−25±10 465 1 ZHANG 12A BELL e+ e− →e+ e− η′π+π−1744±10±15 1045 2 ABLIKIM 06H BES J/ψ → γωω

• • • We do not use the following data for averages, �ts, limits, et
. • • •1703+12
−11± 2 3 ZHANG 12A BELL e+ e− →e+ e− η′π+π−1760±11 320 4 BISELLO 89B DM2 J/ψ → 4πγ1From a single-resonan
e �t.2 From a partial wave analysis in
luding η(1760), f0(1710), f2(1640), and f2(1910).3 From a two-resonan
e �t.4 Estimated by us from various �ts. Systemati
 un
ertainties not estimated.

η(1760) WIDTHη(1760) WIDTHη(1760) WIDTHη(1760) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT240±30 OUR AVERAGE240±30 OUR AVERAGE240±30 OUR AVERAGE240±30 OUR AVERAGE224+62
−56±25 465 5 ZHANG 12A BELL e+ e− →e+ e− η′π+π−244+24
−21±25 1045 6 ABLIKIM 06H BES J/ψ → γωω

• • • We do not use the following data for averages, �ts, limits, et
. • • •42+36
−22±15 7 ZHANG 12A BELL e+ e− →e+ e− η′π+π−60±16 320 8 BISELLO 89B DM2 J/ψ → 4πγ5From a single-resonan
e �t.6 From a partial wave analysis in
luding η(1760), f0(1710), f2(1640), and f2(1910).7 From a two-resonan
e �t.8 Estimated by us from various �ts. Systemati
 un
ertainties not estimated.

η(1760) DECAY MODESη(1760) DECAY MODESη(1760) DECAY MODESη(1760) DECAY MODESMode Fra
tion (�i /�)�1 4π�2 2π+2π− seen�3 π+π−2π0 seen�4 ρ0 ρ0 seen�5 ρ+ρ− seen�6 2(π+π−π0)�7 ωω seen�8 η′π+π− seen�9 γ γ seen
η(1760) �(i)�(γ γ)/�(total)η(1760) �(i)�(γ γ)/�(total)η(1760) �(i)�(γ γ)/�(total)η(1760) �(i)�(γ γ)/�(total)�(η′π+π−)

× �(γ γ
)/�total �8�9/��(η′π+π−)

× �(γ γ
)/�total �8�9/��(η′π+π−)

× �(γ γ
)/�total �8�9/��(η′π+π−)

× �(γ γ
)/�total �8�9/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT28.2+ 7.9

− 7.5±3.728.2+ 7.9
− 7.5±3.728.2+ 7.9
− 7.5±3.728.2+ 7.9
− 7.5±3.7 465 9 ZHANG 12A BELL e+ e− →e+ e− η′π+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.0+ 2.0
− 1.2±0.8 52 10 ZHANG 12A BELL e+ e− →e+ e− η′π+π−18 +13
−10 ±5 315 11 ZHANG 12A BELL e+ e− →e+ e− η′π+π−9From a single-resonan
e �t.10 From a two-resonan
e �t. For 
onstru
tive interferen
e with the X (1835).11 From a two-resonan
e �t. For destru
tive interferen
e with the X (1835).

η(1760) BRANCHING RATIOSη(1760) BRANCHING RATIOSη(1760) BRANCHING RATIOSη(1760) BRANCHING RATIOS�(2π+2π−)/�total �2/��(2π+2π−)/�total �2/��(2π+2π−)/�total �2/��(2π+2π−)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen BISELLO 89B DM2 J/ψ → γ 2π+2π−�(π+π−2π0)/�total �3/��(π+π−2π0)/�total �3/��(π+π−2π0)/�total �3/��(π+π−2π0)/�total �3/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen BISELLO 89B DM2 J/ψ → γπ+π− 2π0

�(ρ0 ρ0)/�total �4/��(ρ0 ρ0)/�total �4/��(ρ0 ρ0)/�total �4/��(ρ0 ρ0)/�total �4/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen BISELLO 89B DM2 J/ψ → γ ρ0 ρ0seenseenseenseen BALTRUSAIT...86 MRK3 J/ψ → γ ρ0 ρ0�(ρ+ρ−
)/�total �5/��(ρ+ρ−
)/�total �5/��(ρ+ρ−
)/�total �5/��(ρ+ρ−
)/�total �5/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen BISELLO 89B DM2 J/ψ → γ ρ+ ρ−seenseenseenseen BALTRUSAIT...86 MRK3 J/ψ → γ ρ+ ρ−�(ωω

)/�total �7/��(ωω
)/�total �7/��(ωω
)/�total �7/��(ωω
)/�total �7/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen BISELLO 87 DM2 J/ψ → ωωseenseenseenseen BALTRUSAIT...85C MRK3 J/ψ → γωω

η(1760) REFERENCESη(1760) REFERENCESη(1760) REFERENCESη(1760) REFERENCESZHANG 12A PR D86 052002 C.C. Zhang et al. (BELLE Collab.)ABLIKIM 06H PR D73 112007 M. Ablikim et al. (BES Collab.)BISELLO 89B PR D39 701 G. Busetto et al. (DM2 Collab.)BISELLO 87 PL B192 239 D. Bisello et al. (PADO, CLER, FRAS+)BALTRUSAIT... 86 PR D33 629 R.M. Baltrusaitis et al. (Mark III Collab.)BALTRUSAIT... 86B PR D33 1222 R.M. Baltrusaitis et al. (Mark III Collab.)BALTRUSAIT... 85C PRL 55 1723 R.M. Baltrusaitis et al. (CIT, UCSC+)
π(1800) IG (JPC ) = 1−(0−+)See also minireview under non-qq 
andidates in PDG 06, Journal ofPhysi
s G33G33G33G33 1 (2006).

π(1800) MASSπ(1800) MASSπ(1800) MASSπ(1800) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1812±12 OUR AVERAGE1812±12 OUR AVERAGE1812±12 OUR AVERAGE1812±12 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3. See the ideogram below.1785± 9+12
− 6 420k ALEKSEEV 10 COMP 190 π−Pb →

π−π−π+Pb′1876±18±16 4k 1 EUGENIO 08 B852 − 18 π− p → ηηπ− p1774±18±20 2 CHUNG 02 B852 18.3 π− p →
π+π−π− p1863± 9±10 3 CHUNG 02 B852 18.3 π− p →
π+π−π− p1840±10±10 1200 AMELIN 96B VES − 37 π−A → ηηπ−A1775± 7±10 4 AMELIN 95B VES − 36 π−A → π+π−π−A1790±14 5 BERDNIKOV 94 VES − 37 π−A →K+K−π−A1873±33±20 BELADIDZE 92C VES − 36 π−Be → π− η′ ηBe1814±10±23 426 ± 57 BITYUKOV 91 VES − 36 π−C → π− ηηC1770±30 1100 BELLINI 82 SPEC − 40 π−A → 3πA

• • • We do not use the following data for averages, �ts, limits, et
. • • •1737± 5±15 AMELIN 99 VES 37 π−A → ωπ−π0A∗1From a single-pole �t.2 In the f0(980)π wave.3 In the f0(500)π wave.4 From a �t to JPC = 0−+ f0(980)π, f0(1370)π waves.5 From a �t to JPC = 0−+ K∗0(1430)K− and f0(980)π− waves.
WEIGHTED AVERAGE
1812±12 (Error scaled by 2.3)

BELLINI 82 SPEC 2.0
BITYUKOV 91 VES 0.0
BELADIDZE 92C VES 2.5
BERDNIKOV 94 VES 2.5
AMELIN 95B VES 9.1
AMELIN 96B VES 4.0
CHUNG 02 B852 14.4
CHUNG 02 B852 2.0
EUGENIO 08 B852 7.1
ALEKSEEV 10 COMP 3.2

χ2

      46.7
(Confidence Level < 0.0001)

1700 1750 1800 1850 1900 1950 2000

π(1800) mass (MeV)
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π(1800), f2(1810)

π(1800) WIDTHπ(1800) WIDTHπ(1800) WIDTHπ(1800) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT208±12 OUR AVERAGE208±12 OUR AVERAGE208±12 OUR AVERAGE208±12 OUR AVERAGE208±22+21
−37 420k ALEKSEEV 10 COMP 190 π−Pb →

π−π−π+Pb′221±26±38 4k 6 EUGENIO 08 B852 − 18 π− p → ηηπ− p223±48±50 7 CHUNG 02 B852 18.3 π− p →
π+π−π− p191±21±20 8 CHUNG 02 B852 18.3 π− p →
π+π−π− p210±30±30 1200 AMELIN 96B VES − 37 π−A → ηηπ−A190±15±15 9 AMELIN 95B VES − 36 π−A → π+π−π−A210±70 10 BERDNIKOV 94 VES − 37 π−A →K+K−π−A225±35±20 BELADIDZE 92C VES − 36 π−Be → π− η′ ηBe205±18±32 426 ± 57 BITYUKOV 91 VES − 36 π−C → π− ηηC310±50 1100 BELLINI 82 SPEC − 40 π−A → 3πA

• • • We do not use the following data for averages, �ts, limits, et
. • • •259±19± 6 AMELIN 99 VES 37 π−A → ωπ−π0A∗6From a single-pole �t.7 In the f0(980)π wave.8 In the f0(500)π wave.9 From a �t to JPC = 0−+ f0(980)π, f0(1370)π waves.10 From a �t to JPC = 0−+ K∗0(1430)K− and f0(980)π− waves.
π(1800) DECAY MODESπ(1800) DECAY MODESπ(1800) DECAY MODESπ(1800) DECAY MODESMode Fra
tion (�i /�)�1 π+π−π− seen�2 f0(500)π− seen�3 f0(980)π− seen�4 f0(1370)π− seen�5 f0(1500)π− not seen�6 ρπ− not seen�7 ηηπ− seen�8 a0(980)η seen�9 a2(1320)η not seen�10 f2(1270)π not seen�11 f0(1370)π− not seen�12 f0(1500)π− seen�13 ηη′(958)π− seen�14 K∗0(1430)K− seen�15 K∗(892)K− not seen

π(1800) BRANCHING RATIOSπ(1800) BRANCHING RATIOSπ(1800) BRANCHING RATIOSπ(1800) BRANCHING RATIOS�(f0(980)π−)/�(f0(500)π−) �3/�2�(f0(980)π−)/�(f0(500)π−) �3/�2�(f0(980)π−)/�(f0(500)π−) �3/�2�(f0(980)π−)/�(f0(500)π−) �3/�2VALUE DOCUMENT ID TECN COMMENT0.44±0.08±0.380.44±0.08±0.380.44±0.08±0.380.44±0.08±0.38 11 CHUNG 02 B852 18.3 π− p → π+π−π− p�(f0(980)π−)/�(f0(1370)π−) �3/�4�(f0(980)π−)/�(f0(1370)π−) �3/�4�(f0(980)π−)/�(f0(1370)π−) �3/�4�(f0(980)π−)/�(f0(1370)π−) �3/�4VALUE DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.7±1.3 12 AMELIN 95B VES − 36 π−A → π+π−π−A�(f0(1370)π−)/�total �4/��(f0(1370)π−)/�total �4/��(f0(1370)π−)/�total �4/��(f0(1370)π−)/�total �4/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen BELLINI 82 SPEC − 40 π−A → 3πA�(f0(1500)π−)/�total �5/��(f0(1500)π−)/�total �5/��(f0(1500)π−)/�total �5/��(f0(1500)π−)/�total �5/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen CHUNG 02 B852 18.3 π− p → π+π−π− p�(ρπ−)/�total �6/��(ρπ−)/�total �6/��(ρπ−)/�total �6/��(ρπ−)/�total �6/�VALUE DOCUMENT ID TECN CHG COMMENTnot seennot seennot seennot seen BELLINI 82 SPEC − 40 π−A → 3πA�(ρπ−)/�(f0(980)π−) �6/�3�(ρπ−)/�(f0(980)π−) �6/�3�(ρπ−)/�(f0(980)π−) �6/�3�(ρπ−)/�(f0(980)π−) �6/�3VALUE CL% DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.25 CHUNG 02 B852 18.3 π− p → π+π−π− p
<0.14 90 AMELIN 95B VES − 36 π−A → π+π−π−A�(ηηπ−)/�(π+π−π−) �7/�1�(ηηπ−)/�(π+π−π−) �7/�1�(ηηπ−)/�(π+π−π−) �7/�1�(ηηπ−)/�(π+π−π−) �7/�1VALUE EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.5±0.1 1200 12 AMELIN 96B VES − 37 π−A → ηηπ−A

�(a2(1320)η)/�total �9/��(a2(1320)η)/�total �9/��(a2(1320)η)/�total �9/��(a2(1320)η)/�total �9/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen EUGENIO 08 B852 18 π− p → ηηπ− p�(f2(1270)π)/�total �10/��(f2(1270)π)/�total �10/��(f2(1270)π)/�total �10/��(f2(1270)π)/�total �10/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen EUGENIO 08 B852 18 π− p → ηηπ− p�(f0(1370)π−)/�total �11/��(f0(1370)π−)/�total �11/��(f0(1370)π−)/�total �11/��(f0(1370)π−)/�total �11/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen EUGENIO 08 B852 18 π− p → ηηπ− p�(f0(1500)π−)/�(a0(980)η) �12/�8�(f0(1500)π−)/�(a0(980)η) �12/�8�(f0(1500)π−)/�(a0(980)η) �12/�8�(f0(1500)π−)/�(a0(980)η) �12/�8VALUE EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.48 ±0.17 4k 12,13 EUGENIO 08 B852 − 18 π− p → ηηπ− p0.030+0.014

−0.011 12 ANISOVICH 01B SPEC 0 0.6{1.94 pp → ηηπ0 π00.08 ±0.03 1200 12,14 AMELIN 96B VES − 37 π−A → ηηπ−A�(ηη′(958)π−)/�(ηηπ−) �13/�7�(ηη′(958)π−)/�(ηηπ−) �13/�7�(ηη′(958)π−)/�(ηηπ−) �13/�7�(ηη′(958)π−)/�(ηηπ−) �13/�7VALUE EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.29±0.07 12 BELADIDZE 92C VES − 36 π−Be → π− η′ ηBe0.3 ±0.1 426 ± 57 12 BITYUKOV 91 VES − 36 π−C → π− ηηC�(K∗0(1430)K−)/�total �14/��(K∗0(1430)K−)/�total �14/��(K∗0(1430)K−)/�total �14/��(K∗0(1430)K−)/�total �14/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen BERDNIKOV 94 VES − 37 π−A → K+K−π−A�(K∗(892)K−)/�total �15/��(K∗(892)K−)/�total �15/��(K∗(892)K−)/�total �15/��(K∗(892)K−)/�total �15/�VALUE DOCUMENT ID TECN CHG COMMENTnot seennot seennot seennot seen BERDNIKOV 94 VES − 37 π−A → K+K−π−A11Assuming that f0(980) de
ays only to ππ.12 Systemati
 errors not estimated.13 From a single-pole �t.14Assuming that f0(1500) de
ays only to ηη and a0(980) de
ays only to ηπ.

π(1800) REFERENCESπ(1800) REFERENCESπ(1800) REFERENCESπ(1800) REFERENCESALEKSEEV 10 PRL 104 241803 M.G. Alekseev et al. (COMPASS Collab.)EUGENIO 08 PL B660 466 P. Eugenio et al. (BNL E852 Collab.)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)CHUNG 02 PR D65 072001 S.U. Chung et al. (BNL E852 Collab.)ANISOVICH 01B PL B500 222 A.V. Anisovi
h et al.AMELIN 99 PAN 62 445 D.V. Amelin et al. (VES Collab.)Translated from YAF 62 487.AMELIN 96B PAN 59 976 D.V. Amelin et al. (SERP, TBIL) IGJPCTranslated from YAF 59 1021.AMELIN 95B PL B356 595 D.V. Amelin et al. (SERP, TBIL)BERDNIKOV 94 PL B337 219 E.B. Berdnikov et al. (SERP, TBIL)BELADIDZE 92C SJNP 55 1535 G.M. Beladidze, S.I. Bityukov, G.V. Borisov (SERP+)Translated from YAF 55 2748.BITYUKOV 91 PL B268 137 S.I. Bityukov et al. (SERP, TBIL)BELLINI 82 PRL 48 1697 G. Bellini et al. (MILA, BGNA, JINR)f2(1810) IG (JPC ) = 0+(2 + +)OMITTED FROM SUMMARY TABLENeeds 
on�rmation. f2(1810) MASSf2(1810) MASSf2(1810) MASSf2(1810) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1815±12 OUR AVERAGE1815±12 OUR AVERAGE1815±12 OUR AVERAGE1815±12 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.1822+29
−24+ 66

− 57 5.5k 1 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη1737± 9+198
− 65 2 UEHARA 10A BELL 10.6 e+ e− → e+ e− ηη1800±30 40 ALDE 88D GAM4 300 π− p → π− p4π01806±10 1600 ALDE 87 GAM4 100 π− p → 4π0 n1870±40 3 ALDE 86D GAM4 100 π− p → ηηn1857+35

−24 4 COSTA... 80 OMEG 10 π− p → K+K− n
• • • We do not use the following data for averages, �ts, limits, et
. • • •1858+18

−71 5 LONGACRE 86 RVUE Compilation1799±15 6 CASON 82 STRC 8 π+ p → �++π0π01From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.2Breit-Wigner mass.3 Seen in only one solution.4 Error in
reased by spread of two solutions. In
luded in LONGACRE 86 global analysis.5 From a partial-wave analysis of data using a K-matrix formalism with 5 poles. In
ludes
ompilation of several other experiments.6 From an amplitude analysis of the rea
tion π+π− → 2π0. The resonan
e in the 2π0�nal state is not 
on�rmed by PROKOSHKIN 97.



955955955955See key on page 601 MesonParti
le Listingsf2(1810),X (1835)
WEIGHTED AVERAGE
1815±12 (Error scaled by 1.4)

COSTA... 80 OMEG 3.1
ALDE 86D GAM4 1.9
ALDE 87 GAM4 0.8
ALDE 88D GAM4 0.2
UEHARA 10A BELL
ABLIKIM 13N BES3

χ2

       6.0
(Confidence Level = 0.111)

1700 1750 1800 1850 1900 1950 2000 2050f2(1810) mass (MeV) f2(1810) WIDTHf2(1810) WIDTHf2(1810) WIDTHf2(1810) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT197± 22 OUR AVERAGE197± 22 OUR AVERAGE197± 22 OUR AVERAGE197± 22 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.229+ 52
− 42+ 88

−155 5.5k 7 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη228+ 21
− 20+234

−153 8 UEHARA 10A BELL 10.6 e+ e− → e+ e− ηη160± 30 40 ALDE 88D GAM4 300 π− p → π− p4π0190± 20 1600 ALDE 87 GAM4 100 π− p → 4π0 n250± 30 9 ALDE 86D GAM4 100 π− p → ηηn185+102
−139 10 COSTA... 80 OMEG 10 π− p → K+K− n

• • • We do not use the following data for averages, �ts, limits, et
. • • •388+ 15
− 21 11 LONGACRE 86 RVUE Compilation280+ 42
− 35 12 CASON 82 STRC 8 π+ p → �++π0π07From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.8Breit-Wigner width.9 Seen in only one solution.10Error in
reased by spread of two solutions. In
luded in LONGACRE 86 global analysis.11 From a partial-wave analysis of data using a K-matrix formalism with 5 poles. In
ludes
ompilation of several other experiments.12 From an amplitude analysis of the rea
tion π+π− → 2π0. The resonan
e in the 2π0�nal state is not 
on�rmed by PROKOSHKIN 97.

WEIGHTED AVERAGE
197±22 (Error scaled by 1.5)

COSTA... 80 OMEG
ALDE 86D GAM4 3.1
ALDE 87 GAM4 0.1
ALDE 88D GAM4 1.6
UEHARA 10A BELL
ABLIKIM 13N BES3

χ2

       4.8
(Confidence Level = 0.092)

0 100 200 300 400 500 600f2(1810) width (MeV)f2(1810) DECAY MODESf2(1810) DECAY MODESf2(1810) DECAY MODESf2(1810) DECAY MODESMode Fra
tion (�i /�)�1 ππ�2 ηη seen�3 4π0 seen�4 K+K−�5 γ γ seen

f2(1810) �(i)�(γ γ)/�(total)f2(1810) �(i)�(γ γ)/�(total)f2(1810) �(i)�(γ γ)/�(total)f2(1810) �(i)�(γ γ)/�(total)�(ηη
)

× �(γ γ
)/�total �2�5/��(ηη

)

× �(γ γ
)/�total �2�5/��(ηη

)

× �(γ γ
)/�total �2�5/��(ηη

)

× �(γ γ
)/�total �2�5/�VALUE (eV) DOCUMENT ID TECN COMMENT5.2+0.9

−0.8+37.3
− 4.55.2+0.9

−0.8+37.3
− 4.55.2+0.9

−0.8+37.3
− 4.55.2+0.9

−0.8+37.3
− 4.5 13 UEHARA 10A BELL 10.6 e+ e− → e+ e− ηη13 In
luding interferen
e with the f ′2(1525) (parameters �xed to the values from the 2008edition of this review, PDG 08) and f2(1270). May also be the f0(1500).f2(1810) BRANCHING RATIOSf2(1810) BRANCHING RATIOSf2(1810) BRANCHING RATIOSf2(1810) BRANCHING RATIOS�(ππ

)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AMSLER 02 CBAR 0.9 pp → π0 ηη, π0π0π0not seen PROKOSHKIN 97 GAM2 38 π− p → π0π0 n0.21+0.02
−0.03 14 LONGACRE 86 RVUE Compilation0.44±0.03 15 CASON 82 STRC 8 π+ p → �++π0π014From a partial-wave analysis of data using a K-matrix formalism with 5 poles. In
ludes
ompilation of several other experiments.15 In
luded in LONGACRE 86 global analysis.�(ηη
)/�total �2/��(ηη
)/�total �2/��(ηη
)/�total �2/��(ηη
)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen ABLIKIM 13N BES3 PWA of J/ψ → γ ηη

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.008+0.028
−0.003 16 LONGACRE 86 RVUE Compilation16From a partial-wave analysis of data using a K-matrix formalism with 5 poles. In
ludes
ompilation of several other experiments.�(ππ
)/�(4π0) �1/�3�(ππ
)/�(4π0) �1/�3�(ππ
)/�(4π0) �1/�3�(ππ
)/�(4π0) �1/�3VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.75 ALDE 87 GAM4 100 π− p → 4π0 n�(4π0)/�(ηη
) �3/�2�(4π0)/�(ηη
) �3/�2�(4π0)/�(ηη
) �3/�2�(4π0)/�(ηη
) �3/�2VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.8±0.3 ALDE 87 GAM4 100 π− p → 4π0 n�(K+K−)/�total �4/��(K+K−)/�total �4/��(K+K−)/�total �4/��(K+K−)/�total �4/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.003+0.019

−0.002 17 LONGACRE 86 RVUE Compilationseen COSTA... 80 OMEG 10 π− p → K+K− n17From a partial-wave analysis of data using a K-matrix formalism with 5 poles. In
ludes
ompilation of several other experiments.f2(1810) REFERENCESf2(1810) REFERENCESf2(1810) REFERENCESf2(1810) REFERENCESABLIKIM 13N PR D87 092009 Ablikim M. et al. (BES III Collab.)UEHARA 10A PR D82 114031 S. Uehara et al. (BELLE Collab.)PDG 08 PL B667 1 C. Amsler et al. (PDG Collab.)AMSLER 02 EPJ C23 29 C. Amsler et al.PROKOSHKIN 97 SPD 42 117 Y.D. Prokoshkin et al. (SERP)Translated from DANS 353 323.ALDE 88D SJNP 47 810 D.M. Alde et al. (SERP, BELG, LANL, LAPP+)Translated from YAF 47 1273.ALDE 87 PL B198 286 D.M. Alde et al. (LANL, BRUX, SERP, LAPP)ALDE 86D NP B269 485 D.M. Alde et al. (BELG, LAPP, SERP, CERN+)LONGACRE 86 PL B177 223 R.S. Longa
re et al. (BNL, BRAN, CUNY+)CASON 82 PRL 48 1316 N.M. Cason et al. (NDAM, ANL)COSTA... 80 NP B175 402 G. Costa de Beauregard et al. (BARI, BONN+)X (1835) IG (JPC ) = ??(0−+)OMITTED FROM SUMMARY TABLECould be a superposition of two states, one with small width ap-pearing as threshold enhan
ement in pp, the other one with a largerwidth, de
aying into π+π− η′ and K0S K0S η. For the former AB-LIKIM 12D determine JPC = 0 −+.X (1835) MASSX (1835) MASSX (1835) MASSX (1835) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1835.8+ 4.0
− 3.2 OUR AVERAGE1835.8+ 4.0
− 3.2 OUR AVERAGE1835.8+ 4.0
− 3.2 OUR AVERAGE1835.8+ 4.0
− 3.2 OUR AVERAGE1844 ± 9 +16

−25 ABLIKIM 15T BES3 J/ψ → γK0S K0S η1836.5± 3.0+ 5.6
− 2.1 4265 1 ABLIKIM 11C BES3 J/ψ → γπ+π− η′1833.7± 6.1± 2.7 264 ABLIKIM 05R BES2 J/ψ → γπ+π− η′



956956956956MesonParti
le ListingsX (1835),X (1840)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1832 +19

− 5 ±26 2 ABLIKIM 12D BES3 J/ψ → γ pp1877.3± 6.3+ 3.4
− 7.4 3 ABLIKIM 11J BES3 J/ψ → ω(ηπ+ π−)1837 +10

−12 + 9
− 7 231 4,5 ALEXANDER 10 CLEO J/ψ → γ pp1831 ± 7 5,6 ABLIKIM 05R BES2 J/ψ → γ pp1859 + 3

−10 + 5
−25 5 BAI 03F BES2 J/ψ → γ pp1From a �t of the π+π− η′ mass distribution to a 
ombination of γ f1(1510), γX (1835),and two un
on�rmed states γX (2120), and γX (2370), for M(pp) < 2.8 GeV, anda

ounting for ba
kgrounds from non-η′ events and J/ψ → π0π+π− η′.2 From the �t in
luding �nal state intera
tion e�e
ts in isospin 0 S-wave a

ording toSIBIRTSEV 05A. Supersedes ABLIKIM 10G.3The sele
ted pro
ess is J/ψ → ωa0(980)π. This state may be due also to η2(1870) orto a 
ombination of X (1835) and η2(1870).4 From a �t of the pp mass distribution to a 
ombination of γX (1835), γR with M(R)= 2100 MeV and � (R) = 160 MeV, and γ pp phase spa
e, for M(pp) < 2.85 GeV.5Eviden
e for a threshold enhan
ement in the pp mass spe
trum was also reported byABE 02K, AUBERT,B 05L, and WANG 05A in B+ → ppK+, WANG 05A in B0 →ppK0S , ABE 02W in B0 → ppD0, DEL-AMO-SANCHEZ 12 in B → D(D∗)pp(π),and WEI 08 in B+ → ppπ+ de
ays. Not seen by ATHAR 06 in �(1S) → pp γ.6 From the �t in
luding �nal state intera
tion e�e
ts in isospin 0 S-wave a

ording toSIBIRTSEV 05A. Systemati
 errors not estimated.X (1835) WIDTHX (1835) WIDTHX (1835) WIDTHX (1835) WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT112 ±40 OUR AVERAGE112 ±40 OUR AVERAGE112 ±40 OUR AVERAGE112 ±40 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogram below.192 +20

−17 +62
−43 ABLIKIM 15T BES3 J/ψ → γK0S K0S η190 ± 9 +38
−36 4265 1 ABLIKIM 11C BES3 J/ψ → γπ+π− η′67.7±20.3± 7.7 264 ABLIKIM 05R BES2 J/ψ → γπ+π− η′

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 76 90 2 ABLIKIM 12D BES3 J/ψ → γ pp57 ±12 +19

− 4 3 ABLIKIM 11J BES3 J/ψ → ω(ηπ+ π−)0 +44
− 0 231 4,5 ALEXANDER 10 CLEO J/ψ → γ pp

< 153 90 5,6 ABLIKIM 05R BES2 J/ψ → γ pp
< 30 5 BAI 03F BES2 J/ψ → γ pp1From a �t of the π+π− η′ mass distribution to a 
ombination of γ f1(1510), γX (1835),and two un
on�rmed states γX (2120), and γX (2370), for M(pp) < 2.8 GeV, anda

ounting for ba
kgrounds from non-η′ events and J/ψ → π0π+π− η′.2 From the �t in
luding �nal state intera
tion e�e
ts in isospin 0 S-wave a

ording toSIBIRTSEV 05A. Supersedes ABLIKIM 10G.3The sele
ted pro
ess is J/ψ → ωa0(980)π. This state may be due also to η2(1870) orto a 
ombination of X (1835) and η2(1870).4 From a �t of the pp mass distribution to a 
ombination of γX (1835), γR with M(R)= 2100 MeV and � (R) = 160 MeV, and γ pp phase spa
e, for M(pp) < 2.85 GeV.5Eviden
e for a threshold enhan
ement in the pp mass spe
trum was also reported byABE 02K, AUBERT,B 05L, and WANG 05A in B+ → ppK+, WANG 05A in B0 →ppK0S , ABE 02W in B0 → ppD0, DEL-AMO-SANCHEZ 12 in B → D(D∗)pp(π),and WEI 08 in B+ → ppπ+ de
ays. Not seen by ATHAR 06 in �(1S) → pp γ.6 From the �t in
luding �nal state intera
tion e�e
ts in isospin 0 S-wave a

ording toSIBIRTSEV 05A. Systemati
 errors not estimated.

WEIGHTED AVERAGE
112±40 (Error scaled by 2.4)

ABLIKIM 05R BES2 4.2
ABLIKIM 11C BES3 4.4
ABLIKIM 15T BES3 3.0

χ2

      11.6
(Confidence Level = 0.0031)

0 100 200 300 400 500X (1835) WIDTH (MeV)

X (1835) DECAY MODESX (1835) DECAY MODESX (1835) DECAY MODESX (1835) DECAY MODESMode Fra
tion (�i /�)�1 pp seen�2 η′π+π− seen�3 γ γ�4 K0S K0S η seenX (1835) �(i)�(γ γ)/�(total)X (1835) �(i)�(γ γ)/�(total)X (1835) �(i)�(γ γ)/�(total)X (1835) �(i)�(γ γ)/�(total)�(η′π+π−)

× �(γ γ
)/�total �2�3/��(η′π+π−)

× �(γ γ
)/�total �2�3/��(η′π+π−)

× �(γ γ
)/�total �2�3/��(η′π+π−)

× �(γ γ
)/�total �2�3/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<35.6 90 1 ZHANG 12A BELL e+ e− → e+ e− η′π+π−
<83 90 2 ZHANG 12A BELL e+ e− → e+ e− η′π+π−1From a two-resonan
e �t and 
onstru
tive interferen
e of the η(1760) and X (1835), asigni�
an
e of 2.8 σ.2 From a two-resonan
e �t and destru
tive interferen
e of the η(1760) and X (1835), asigni�
an
e of 2.8 σ. X (1835) BRANCHING RATIOSX (1835) BRANCHING RATIOSX (1835) BRANCHING RATIOSX (1835) BRANCHING RATIOS�(pp)/�(η′π+π−) �1/�2�(pp)/�(η′π+π−) �1/�2�(pp)/�(η′π+π−) �1/�2�(pp)/�(η′π+π−) �1/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.333 ABLIKIM 05R BES2 J/ψ → γπ+π− η′�(η′π+π−)/�(K0S K0S η

) �2/�4�(η′π+π−)/�(K0S K0S η
) �2/�4�(η′π+π−)/�(K0S K0S η
) �2/�4�(η′π+π−)/�(K0S K0S η
) �2/�4VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.7±1.8 1 ABLIKIM 15T BES3 J/ψ → γK0S K0S η1Using resutls from ABLIKIM 05R.X (1835) REFERENCESX (1835) REFERENCESX (1835) REFERENCESX (1835) REFERENCESABLIKIM 15T PRL 115 091803 M. Ablikim et al. (BES III Collab.)ABLIKIM 12D PRL 108 112003 M. Ablikim et al. (BES III Collab.) JPCDEL-AMO-SA... 12 PR D85 092017 P. del Amo San
hez et al. (BABAR Collab.)ZHANG 12A PR D86 052002 C.C. Zhang et al. (BELLE Collab.)ABLIKIM 11C PRL 106 072002 M. Ablikim et al. (BES III Collab.)ABLIKIM 11J PRL 107 182001 M. Ablikim et al. (BES III Collab.)ABLIKIM 10G CPC 34 421 M. Ablikim et al. (BES III Collab.)ALEXANDER 10 PR D82 092002 J.P. Alexander et al. (CLEO Collab.)WEI 08 PL B659 80 J.-T. Wei et al. (BELLE Collab.)ATHAR 06 PR D73 032001 S.B. Athar et al. (CLEO Collab.)ABLIKIM 05R PRL 95 262001 M. Ablikim et al. (BES Collab.)AUBERT,B 05L PR D72 051101 B. Aubert et al. (BABAR Collab.)SIBIRTSEV 05A PR D71 054010 A. Sibirtsev, J. HaidenbauerWANG 05A PL B617 141 M.-Z. Wang et al. (BELLE Collab.)BAI 03F PRL 91 022001 J.Z. Bai et al. (BES II Collab.)ABE 02K PRL 88 181803 K. Abe et al. (BELLE Collab.)ABE 02W PRL 89 151802 K. Abe et al. (BELLE Collab.)X (1840) IG (JPC ) = ??(???)OMITTED FROM SUMMARY TABLEX (1840) MASSX (1840) MASSX (1840) MASSX (1840) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1842.2±4.2+7.1
−2.61842.2±4.2+7.1
−2.61842.2±4.2+7.1
−2.61842.2±4.2+7.1
−2.6 0.6k ABLIKIM 13U BES3 J/ψ → γ 3(π+π−)X (1840) WIDTHX (1840) WIDTHX (1840) WIDTHX (1840) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT83±14±1183±14±1183±14±1183±14±11 0.6k ABLIKIM 13U BES3 J/ψ → γ 3(π+π−)X (1840) DECAY MODESX (1840) DECAY MODESX (1840) DECAY MODESX (1840) DECAY MODESMode Fra
tion (�i /�)�1 3(π+π−) seenX (1840) BRANCHING RATIOSX (1840) BRANCHING RATIOSX (1840) BRANCHING RATIOSX (1840) BRANCHING RATIOS�(3(π+π−))/�total �1/��(3(π+π−))/�total �1/��(3(π+π−))/�total �1/��(3(π+π−))/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 0.6k ABLIKIM 13U BES3 J/ψ → γ 3(π+π−)X (1840) REFERENCESX (1840) REFERENCESX (1840) REFERENCESX (1840) REFERENCESABLIKIM 13U PR D88 091502 M. Ablikim et al. (BES III Collab.)



957957957957See key on page 601 MesonParti
le Listingsa1(1420),φ3(1850), η2(1870)a1(1420) IG (JPC ) = 1−(1 + +)OMITTED FROM SUMMARY TABLEa1(1420) MASSa1(1420) MASSa1(1420) MASSa1(1420) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1414+15
−131414+15
−131414+15
−131414+15
−13 1 ADOLPH 15C COMP 190 π− p → π−π+π− p1Using the isobar model and partial-wave analysis with 88 waves.a1(1420) WIDTHa1(1420) WIDTHa1(1420) WIDTHa1(1420) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT153+ 8

−23153+ 8
−23153+ 8
−23153+ 8
−23 1 ADOLPH 15C COMP 190 π− p → π−π+π− p1Using the isobar model and partial-wave analysis with 88 waves.a1(1420) DECAY MODESa1(1420) DECAY MODESa1(1420) DECAY MODESa1(1420) DECAY MODESMode Fra
tion (�i /�)�1 f0(980)π seena1(1420) BRANCHING RATIOSa1(1420) BRANCHING RATIOSa1(1420) BRANCHING RATIOSa1(1420) BRANCHING RATIOS�(f0(980)π)/�total �1/��(f0(980)π)/�total �1/��(f0(980)π)/�total �1/��(f0(980)π)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 ADOLPH 15C COMP 190 π− p → π−π+π− p1Using the isobar model and partial-wave analysis with 88 waves.a1(1420) REFERENCESa1(1420) REFERENCESa1(1420) REFERENCESa1(1420) REFERENCESADOLPH 15C PRL 115 082001 C. Adolph et al. (COMPASS Collab.)

φ3(1850) IG (JPC ) = 0−(3−−)
φ3(1850) MASSφ3(1850) MASSφ3(1850) MASSφ3(1850) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1854± 7 OUR AVERAGE1854± 7 OUR AVERAGE1854± 7 OUR AVERAGE1854± 7 OUR AVERAGE1855±10 ASTON 88E LASS 11 K− p → K−K+�,K0S K±π∓�1870+30

−20 430 ARMSTRONG 82 OMEG 18.5 K− p →K−K+�1850±10 123 ALHARRAN 81B HBC 8.25 K− p → K K �
φ3(1850) WIDTHφ3(1850) WIDTHφ3(1850) WIDTHφ3(1850) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT87+28

−23 OUR AVERAGE87+28
−23 OUR AVERAGE87+28
−23 OUR AVERAGE87+28
−23 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.64±31 ASTON 88E LASS 11 K− p → K−K+�,K0S K±π∓�160+90
−50 430 ARMSTRONG 82 OMEG 18.5 K− p →K−K+�80+40
−30 123 ALHARRAN 81B HBC 8.25 K− p → K K �

φ3(1850) DECAY MODESφ3(1850) DECAY MODESφ3(1850) DECAY MODESφ3(1850) DECAY MODESMode Fra
tion (�i /�)�1 K K seen�2 K K∗(892)+ 
.
. seen
φ3(1850) BRANCHING RATIOSφ3(1850) BRANCHING RATIOSφ3(1850) BRANCHING RATIOSφ3(1850) BRANCHING RATIOS�(K K∗(892)+ 
.
.)/�(K K) �2/�1�(K K∗(892)+ 
.
.)/�(K K) �2/�1�(K K∗(892)+ 
.
.)/�(K K) �2/�1�(K K∗(892)+ 
.
.)/�(K K) �2/�1VALUE DOCUMENT ID TECN COMMENT0.55+0.85

−0.450.55+0.85
−0.450.55+0.85
−0.450.55+0.85
−0.45 ASTON 88E LASS 11 K− p → K−K+�,K0S K±π∓�

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.8 ±0.4 ALHARRAN 81B HBC 8.25 K−p → K K π�
φ3(1850) REFERENCESφ3(1850) REFERENCESφ3(1850) REFERENCESφ3(1850) REFERENCESASTON 88E PL B208 324 D. Aston et al. (SLAC, NAGO, CINC, INUS) IGJPCARMSTRONG 82 PL 110B 77 T.A. Armstrong et al. (BARI, BIRM, CERN+) JPALHARRAN 81B PL 101B 357 S. Al-Harran et al. (BIRM, CERN, GLAS+)

η2(1870) IG (JPC ) = 0+(2−+)OMITTED FROM SUMMARY TABLENeeds 
on�rmation.
η2(1870) MASSη2(1870) MASSη2(1870) MASSη2(1870) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1842± 8 OUR AVERAGE1842± 8 OUR AVERAGE1842± 8 OUR AVERAGE1842± 8 OUR AVERAGE1835±12 BARBERIS 00B 450 pp → pf ηπ+π− ps1844±13 BARBERIS 00C 450 pp → pf 4πps1840±25 BARBERIS 97B OMEG 450 pp → pp2(π+ π−)1875±20±35 ADOMEIT 96 CBAR 1.94 p p → η3π01881±32±40 26 KARCH 92 CBAL e+ e− → e+ e− ηπ0 π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •1860± 5±15 ANISOVICH 00E SPEC 0.9{1.94 p p → η3π01840±15 BAI 99 BES J/ψ → γ ηπ+π−

η2(1870) WIDTHη2(1870) WIDTHη2(1870) WIDTHη2(1870) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT225±14 OUR AVERAGE225±14 OUR AVERAGE225±14 OUR AVERAGE225±14 OUR AVERAGE235±22 BARBERIS 00B 450 pp → pf ηπ+π− ps228±23 BARBERIS 00C 450 pp → pf 4πps200±40 BARBERIS 97B OMEG 450 pp → pp2(π+ π−)200±25±45 ADOMEIT 96 CBAR 1.94 p p → η3π0221±92±44 26 KARCH 92 CBAL e+ e− → e+ e− ηπ0 π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •250±25+50

−35 ANISOVICH 00E SPEC 0.9{1.94 p p → η3π0170±40 BAI 99 BES J/ψ → γ ηπ+π−

η2(1870) DECAY MODESη2(1870) DECAY MODESη2(1870) DECAY MODESη2(1870) DECAY MODESMode Fra
tion (�i /�)�1 ηππ�2 a2(1320)π�3 f2(1270)η�4 a0(980)π�5 γ γ seen
η2(1870) BRANCHING RATIOSη2(1870) BRANCHING RATIOSη2(1870) BRANCHING RATIOSη2(1870) BRANCHING RATIOS�(a2(1320)π)/�(f2(1270)η) �2/�3�(a2(1320)π)/�(f2(1270)η) �2/�3�(a2(1320)π)/�(f2(1270)η) �2/�3�(a2(1320)π)/�(f2(1270)η) �2/�3VALUE DOCUMENT ID TECN COMMENT1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE1.60±0.40 1 ANISOVICH 11 SPEC 0.9{1.94 pp20.4 ±6.6 BARBERIS 00B 450 pp → pf ηπ+π− ps4.1 ±2.3 ADOMEIT 96 CBAR 1.94 p p → η3π01Reanalysis of ADOMEIT 96 and ANISOVICH 00E.�(a2(1320)π)/�(a0(980)π) �2/�4�(a2(1320)π)/�(a0(980)π) �2/�4�(a2(1320)π)/�(a0(980)π) �2/�4�(a2(1320)π)/�(a0(980)π) �2/�4VALUE DOCUMENT ID COMMENT32.6±12.632.6±12.632.6±12.632.6±12.6 BARBERIS 00B 450 pp → pf ηπ+π− ps�(a0(980)π)/�(f2(1270)η) �4/�3�(a0(980)π)/�(f2(1270)η) �4/�3�(a0(980)π)/�(f2(1270)η) �4/�3�(a0(980)π)/�(f2(1270)η) �4/�3VALUE DOCUMENT ID TECN COMMENT0.48±0.450.48±0.450.48±0.450.48±0.45 2 ANISOVICH 11 SPEC 0.9{1.94 pp2Reanalysis of ADOMEIT 96 and ANISOVICH 00E.�(γ γ

)/�total �5/��(γ γ
)/�total �5/��(γ γ
)/�total �5/��(γ γ
)/�total �5/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen KARCH 92 CBAL e+ e− → e+ e− ηπ0π0

η2(1870) REFERENCESη2(1870) REFERENCESη2(1870) REFERENCESη2(1870) REFERENCESANISOVICH 11 EPJ C71 1511 A.V. Anisovi
h et al. (LOQM, RAL, PNPI)ANISOVICH 00E PL B477 19 A.V. Anisovi
h et al.BARBERIS 00B PL B471 435 D. Barberis et al. (WA 102 Collab.)BARBERIS 00C PL B471 440 D. Barberis et al. (WA 102 Collab.)BAI 99 PL B446 356 J.Z. Bai et al. (BES Collab.)BARBERIS 97B PL B413 217 D. Barberis et al. (WA 102 Collab.)ADOMEIT 96 ZPHY C71 227 J. Adomeit et al. (Crystal Barrel Collab.)KARCH 92 ZPHY C54 33 K. Kar
h et al. (Crystal Ball Collab.)



958958958958MesonParti
le Listings
π2(1880), ρ(1900), f2(1910)
π2(1880) IG (JPC ) = 1−(2−+)

π(1880) MASSπ(1880) MASSπ(1880) MASSπ(1880) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1895±16 OUR AVERAGE1895±16 OUR AVERAGE1895±16 OUR AVERAGE1895±16 OUR AVERAGE1929±24± 18 4k EUGENIO 08 B852 − 18 π− p → ηηπ− p1876±11± 67 145k LU 05 B852 − 18 π− p → ωπ−π0 p2003±88±148 69k KUHN 04 B852 − 18 π− p → ηπ+π−π− p1880±20 ANISOVICH 01B SPEC 0 0.6{1.94 pp → ηηπ0 π0
π(1880) WIDTHπ(1880) WIDTHπ(1880) WIDTHπ(1880) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT235± 34 OUR AVERAGE235± 34 OUR AVERAGE235± 34 OUR AVERAGE235± 34 OUR AVERAGE323± 87± 43 4k EUGENIO 08 B852 − 18 π− p → ηηπ− p146± 17± 62 145k LU 05 B852 − 18 π− p → ωπ−π0 p306±132±121 69k KUHN 04 B852 − 18 π− p → ηπ+π−π− p255± 45 ANISOVICH 01B SPEC 0 0.6{1.94 pp → ηηπ0 π0

π2(1880) DECAY MODESπ2(1880) DECAY MODESπ2(1880) DECAY MODESπ2(1880) DECAY MODESMode�1 ηηπ−�2 a0(980)η�3 a2(1320)η�4 f0(1500)π�5 f1(1285)π�6 ωπ−π0�(a2(1320)η)/�(f1(1285)π) �3/�5�(a2(1320)η)/�(f1(1285)π) �3/�5�(a2(1320)η)/�(f1(1285)π) �3/�5�(a2(1320)η)/�(f1(1285)π) �3/�5VALUE EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •22.7±7.3 69k KUHN 04 B852 − 18 π− p → ηπ+π−π− p�(f0(1500)π)/�(a0(980)η) �4/�2�(f0(1500)π)/�(a0(980)η) �4/�2�(f0(1500)π)/�(a0(980)η) �4/�2�(f0(1500)π)/�(a0(980)η) �4/�2VALUE DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.28+0.20

−0.15 1 ANISOVICH 01B SPEC 0 0.6{1.94 p p → ηηπ0 π01Systemati
 errors not estimated.
π2(1880) REFERENCESπ2(1880) REFERENCESπ2(1880) REFERENCESπ2(1880) REFERENCESEUGENIO 08 PL B660 466 P. Eugenio et al. (BNL E852 Collab.)LU 05 PRL 94 032002 M. Lu et al. (BNL E852 Collab.)KUHN 04 PL B595 109 J. Kuhn et al. (BNL E852 Collab.)ANISOVICH 01B PL B500 222 A.V. Anisovi
h et al.

ρ(1900) IG (JPC ) = 1+(1−−)OMITTED FROM SUMMARY TABLESee our mini-review under the ρ(1700).
ρ(1900) MASSρ(1900) MASSρ(1900) MASSρ(1900) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1909±17±25 54 1 AUBERT 08S BABR 10.6 e+ e− → φπ0 γ1880±30 AUBERT 06D BABR 10.6 e+ e− → 3π+3π− γ1860±20 AUBERT 06D BABR 10.6 e+ e− → 2(π+π−π0)γ1910±10 2,3 FRABETTI 04 E687 γ p → 3π+3π− p1870±10 ANTONELLI 96 SPEC e+ e− → hadrons1 From the �t with two resonan
es.2 From a �t with two resonan
es with the JACOB 72 
ontinuum.3 Supersedes FRABETTI 01.
ρ(1900) WIDTHρ(1900) WIDTHρ(1900) WIDTHρ(1900) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •48±17±2 54 4 AUBERT 08S BABR 10.6 e+ e− → φπ0 γ130±30 AUBERT 06D BABR 10.6 e+ e− → 3π+3π− γ160±20 AUBERT 06D BABR 10.6 e+ e− → 2(π+π−π0)γ37±13 5,6 FRABETTI 04 E687 γ p → 3π+3π− p10± 5 ANTONELLI 96 SPEC e+ e− → hadrons4 From the �t with two resonan
es.5 From a �t with two resonan
es with the JACOB 72 
ontinuum.6 Supersedes FRABETTI 01.

ρ(1900) �(i)�(e+ e−)/�2(total)ρ(1900) �(i)�(e+ e−)/�2(total)ρ(1900) �(i)�(e+ e−)/�2(total)ρ(1900) �(i)�(e+ e−)/�2(total)�(φπ
)/�total × �(e+ e−)/�total �4/�× �6/��(φπ
)/�total × �(e+ e−)/�total �4/�× �6/��(φπ
)/�total × �(e+ e−)/�total �4/�× �6/��(φπ
)/�total × �(e+ e−)/�total �4/�× �6/�VALUE (units 10−8) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.2±1.2±0.8 54 7 AUBERT 08S BABR 10.6 e+ e− → φπ0 γ7From the �t with two resonan
es.
ρ(1900) DECAY MODESρ(1900) DECAY MODESρ(1900) DECAY MODESρ(1900) DECAY MODESMode Fra
tion (�i /�)�1 6π seen�2 3π+3π− seen�3 2π+2π−2π0�4 φπ�5 hadrons seen�6 e+ e− seen�7 NN not seen

ρ(1900) BRANCHING RATIOSρ(1900) BRANCHING RATIOSρ(1900) BRANCHING RATIOSρ(1900) BRANCHING RATIOS�(6π)/�total �1/��(6π)/�total �1/��(6π)/�total �1/��(6π)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 8k AKHMETSHIN 13 CMD3 e+ e− → 3π+3π−not seen AGNELLO 02 OBLX np → 3π+2π−π0seen FRABETTI 01 E687 γ p → 3π+3π− pseen ANTONELLI 96 SPEC e+ e− → hadrons
ρ(1900) REFERENCESρ(1900) REFERENCESρ(1900) REFERENCESρ(1900) REFERENCESAKHMETSHIN 13 PL B723 82 R.R. Akhmetshin et al. (CMD-3 Collab.)AUBERT 08S PR D77 092002 B. Aubert et al. (BABAR Collab.)AUBERT 06D PR D73 052003 B. Aubert et al. (BABAR Collab.)FRABETTI 04 PL B578 290 P.L. Frabetti et al. (FNAL E687 Collab.)AGNELLO 02 PL B527 39 M. Agnello et al. (OBELIX Collab.)FRABETTI 01 PL B514 240 P.L. Frabetti et al. (FNAL E687 Collab.)ANTONELLI 96 PL B365 427 A. Antonelli et al. (FENICE Collab.)JACOB 72 PR D5 1847 M. Ja
ob, R. Slanskyf2(1910) IG (JPC ) = 0+(2 + +)OMITTED FROM SUMMARY TABLEWe list here three di�erent peaks with 
lose masses and widthsseen in the mass distributions of ωω, ηη′, and K+K− �nal states.ALDE 91B argues that they are of di�erent nature.f2(1910) MASSf2(1910) MASSf2(1910) MASSf2(1910) MASSf2(1910) ωω MODEf2(1910) ωω MODEf2(1910) ωω MODEf2(1910) ωω MODEVALUE (MeV) DOCUMENT ID TECN COMMENT1903± 9 OUR AVERAGE1903± 9 OUR AVERAGE1903± 9 OUR AVERAGE1903± 9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.1890±10 1 AMELIN 06 VES 36 π− p → ωωn1934±20 ANISOVICH 00J SPEC1897±11 BARBERIS 00F 450 pp → pf ωωps1924±14 ALDE 90 GAM2 38 π− p → ωωn1Supersedes BELADIDZE 92B.

WEIGHTED AVERAGE
1903±9 (Error scaled by 1.5)

ALDE 90 GAM2 2.2
BARBERIS 00F 0.3
ANISOVICH 00J SPEC 2.4
AMELIN 06 VES 1.7

χ2

       6.6
(Confidence Level = 0.084)

1850 1900 1950 2000 2050f2(1910) ωω MODE MASS (MeV)



959959959959See key on page 601 MesonParti
le Listingsf2(1910), a0(1950)f2(1910) ηη′ MODEf2(1910) ηη′ MODEf2(1910) ηη′ MODEf2(1910) ηη′ MODEVALUE (MeV) DOCUMENT ID TECN COMMENT1934±161934±161934±161934±16 2 BARBERIS 00A 450 pp → pf ηη′ ps
• • • We do not use the following data for averages, �ts, limits, et
. • • •1911±10 ALDE 91B GAM2 38 π− p → ηη′ n2Also 
ompatible with JPC=1−+.f2(1910) K+K− MODEf2(1910) K+K− MODEf2(1910) K+K− MODEf2(1910) K+K− MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1941±18 AMSLER 06 CBAR 1.64 pp → K+K−π0f2(1910) WIDTHf2(1910) WIDTHf2(1910) WIDTHf2(1910) WIDTHf2(1910) ωω MODEf2(1910) ωω MODEf2(1910) ωω MODEf2(1910) ωω MODEVALUE (MeV) DOCUMENT ID TECN COMMENT196±31 OUR AVERAGE196±31 OUR AVERAGE196±31 OUR AVERAGE196±31 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3. See the ideogram below.165±19 3 AMELIN 06 VES 36 π− p → ωωn271±25 ANISOVICH 00J SPEC202±32 BARBERIS 00F 450 pp → pf ωωps91±50 ALDE 90 GAM2 38 π− p → ωωn3Supersedes BELADIDZE 92B.

WEIGHTED AVERAGE
196±31 (Error scaled by 2.3)

ALDE 90 GAM2 4.4
BARBERIS 00F 0.0
ANISOVICH 00J SPEC 9.1
AMELIN 06 VES 2.6

χ2

      16.1
(Confidence Level = 0.0011)

-100 0 100 200 300 400 500f2(1910) ωω MODE WIDTH(MeV)f2(1910) ηη′ MODEf2(1910) ηη′ MODEf2(1910) ηη′ MODEf2(1910) ηη′ MODEVALUE (MeV) DOCUMENT ID TECN COMMENT141±41141±41141±41141±41 4 BARBERIS 00A 450 pp → pf ηη′ ps
• • • We do not use the following data for averages, �ts, limits, et
. • • •90±35 ALDE 91B GAM2 38 π− p → ηη′ n4Also 
ompatible with JPC=1−+.f2(1910) K+K− MODEf2(1910) K+K− MODEf2(1910) K+K− MODEf2(1910) K+K− MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •120±40 AMSLER 06 CBAR 1.64 pp → K+K−π0f2(1910) DECAY MODESf2(1910) DECAY MODESf2(1910) DECAY MODESf2(1910) DECAY MODESMode Fra
tion (�i /�)�1 π0π0�2 K+K− seen�3 K0S K0S�4 ηη seen�5 ωω seen�6 ηη′ seen�7 η′ η′�8 ρρ seen�9 a2(1320)π seen�10 f2(1270)η seenf2(1910) BRANCHING RATIOSf2(1910) BRANCHING RATIOSf2(1910) BRANCHING RATIOSf2(1910) BRANCHING RATIOS�(K+K−)/�total �2/��(K+K−)/�total �2/��(K+K−)/�total �2/��(K+K−)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AMSLER 06 CBAR 1.64 pp → K+K−π0

�(π0π0)/�(ηη′
) �1/�6�(π0π0)/�(ηη′
) �1/�6�(π0π0)/�(ηη′
) �1/�6�(π0π0)/�(ηη′
) �1/�6VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.1 ALDE 89 GAM2 38π− p → ηη′ n�(K0S K0S)/�(ηη′

) �3/�6�(K0S K0S)/�(ηη′
) �3/�6�(K0S K0S)/�(ηη′
) �3/�6�(K0S K0S)/�(ηη′
) �3/�6VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.066 90 BALOSHIN 86 SPEC 40πp → K0S K0S n�(ηη

)/�(ηη′
) �4/�6�(ηη

)/�(ηη′
) �4/�6�(ηη

)/�(ηη′
) �4/�6�(ηη

)/�(ηη′
) �4/�6VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.05 90 ALDE 91B GAM2 38 π− p → ηη′ n�(ωω

)/�(ηη′
) �5/�6�(ωω

)/�(ηη′
) �5/�6�(ωω

)/�(ηη′
) �5/�6�(ωω

)/�(ηη′
) �5/�6VALUE DOCUMENT ID COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.6±0.6 BARBERIS 00F 450 pp → pf ωωps�(η′ η′)/�total �7/��(η′ η′)/�total �7/��(η′ η′)/�total �7/��(η′ η′)/�total �7/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •probably not seen BARBERIS 00A 450 pp → pf η′ η′ pspossibly seen BELADIDZE 92D VES 37 π− p → η′ η′ n�(ρρ

)/�(ωω
) �8/�5�(ρρ

)/�(ωω
) �8/�5�(ρρ

)/�(ωω
) �8/�5�(ρρ

)/�(ωω
) �8/�5VALUE DOCUMENT ID COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.6±0.4 BARBERIS 00F 450 pp → pf ωωps�(f2(1270)η)/�(a2(1320)π) �10/�9�(f2(1270)η)/�(a2(1320)π) �10/�9�(f2(1270)η)/�(a2(1320)π) �10/�9�(f2(1270)η)/�(a2(1320)π) �10/�9VALUE DOCUMENT ID TECN COMMENT0.09±0.050.09±0.050.09±0.050.09±0.05 5 ANISOVICH 11 SPEC 0.9{1.94 pp5Reanalysis of ADOMEIT 96 and ANISOVICH 00E.f2(1910) REFERENCESf2(1910) REFERENCESf2(1910) REFERENCESf2(1910) REFERENCESANISOVICH 11 EPJ C71 1511 A.V. Anisovi
h et al. (LOQM, RAL, PNPI)AMELIN 06 PAN 69 690 D.V. Amelin et al. (VES Collab.)Translated from YAF 69 715.AMSLER 06 PL B639 165 C. Amsler et al. (CBAR Collab.)ANISOVICH 00E PL B477 19 A.V. Anisovi
h et al.ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.BARBERIS 00A PL B471 429 D. Barberis et al. (WA 102 Collab.)BARBERIS 00F PL B484 198 D. Barberis et al. (WA 102 Collab.)ADOMEIT 96 ZPHY C71 227 J. Adomeit et al. (Crystal Barrel Collab.)BELADIDZE 92B ZPHY C54 367 G.M. Beladidze et al. (VES Collab.)BELADIDZE 92D ZPHY C57 13 G.M. Beladidze et al. (VES Collab.)ALDE 91B SJNP 54 455 D.M. Alde et al. (SERP, BELG, LANL, LAPP+)Translated from YAF 54 751.Also PL B276 375 D.M. Alde et al. (BELG, SERP, KEK, LANL+)ALDE 90 PL B241 600 D.M. Alde et al. (SERP, BELG, LANL, LAPP+)ALDE 89 PL B216 447 D.M. Alde et al. (SERP, BELG, LANL, LAPP)Also SJNP 48 1035 D.M. Alde et al. (BELG, SERP, LANL, LAPP)Translated from YAF 48 1724.BALOSHIN 86 SJNP 43 959 O.N. Baloshin et al. (ITEP)Translated from YAF 43 1487.a0(1950) IG (JPC ) = 1−(0 + +)OMITTED FROM SUMMARY TABLENeeds 
on�rmation. Seen in γ γ → η
 (1S) → K K π by LEES 16Awith signi�
an
e 2.5 σ in K0S K±π∓ and 4.2 σ in K+K−π0. Spin-2explanation (a2(1950)) is not 
ompatible with data.a0(1950) MASSa0(1950) MASSa0(1950) MASSa0(1950) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1931±14±221931±14±221931±14±221931±14±22 12k 1,2 LEES 16A BABR γ γ → η
 (1S) → K K π
• • • We do not use the following data for averages, �ts, limits, et
. • • •1949±32±76 8k 1 LEES 16A BABR γ γ → η
 (1S) → K0S K±π∓1927±15±23 4k 1 LEES 16A BABR γ γ → η
 (1S) → K+K−π01From a model-independent partial wave analysis �t to a relativisti
 Breit-Wigner fun
tionwith a 
oating width.2WEighted average of the K0S K± and K+K− de
ay modes.a0(1950) WIDTHa0(1950) WIDTHa0(1950) WIDTHa0(1950) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT271±22± 29271±22± 29271±22± 29271±22± 29 12k 1,2 LEES 16A BABR γ γ → η
 (1S) → K K π
• • • We do not use the following data for averages, �ts, limits, et
. • • •265±36±110 8k 1 LEES 16A BABR γ γ → η
 (1S) → K0S K±π∓274±28± 30 4k 1 LEES 16A BABR γ γ → η
 (1S) → K+K−π01From a model-independent partial wave analysis �t to a relativisti
 Breit-Wigner fun
tionwith a 
oating mass.2Weighted average of the K0S K± and K+K− de
ay modes.



960960960960MesonParti
le Listingsa0(1950), f2(1950)a0(1950) DECAY MODESa0(1950) DECAY MODESa0(1950) DECAY MODESa0(1950) DECAY MODESMode Fra
tion (�i /�)�1 K K seena0(1950) BRANCHING RATIOSa0(1950) BRANCHING RATIOSa0(1950) BRANCHING RATIOSa0(1950) BRANCHING RATIOS�(K K)/�total �1/��(K K)/�total �1/��(K K)/�total �1/��(K K)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 12k 1 LEES 16A BABR γ γ → η
 (1S) → K K π1From a model-independent partial wave analysis.a0(1950) REFERENCESa0(1950) REFERENCESa0(1950) REFERENCESa0(1950) REFERENCESLEES 16A PR D93 012005 J.P. Lees et al. (BABAR Collab.)f2(1950) IG (JPC ) = 0+(2 + +)f2(1950) MASSf2(1950) MASSf2(1950) MASSf2(1950) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1944±12 OUR AVERAGE1944±12 OUR AVERAGE1944±12 OUR AVERAGE1944±12 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.1930±25 1 BINON 05 GAMS 33 π− p → ηηn2010±25 ANISOVICH 00J SPEC1940±50 BAI 00A BES J/ψ → γ (π+π−π+π−)1980±22 2 BARBERIS 00C 450 pp → pp4π1940±22 3 BARBERIS 00C 450 pp → pp2π2π01980±50 ANISOVICH 99B SPEC 1.35{1.94 pp → ηηπ01960±30 BARBERIS 97B OMEG 450 pp → pp2(π+π−)1918±12 ANTINORI 95 OMEG 300,450 pp → pp2(π+ π−)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2038+13

−11+12
−73 4 UEHARA 09 BELL 10.6 e+ e− → e+ e−π0π01980± 2±14 ABE 04 BELL 10.6 e+ e− → e+ e−K+K−1867±46 5 AMSLER 02 CBAR 0.9 pp → π0 ηη, π0π0π0

∼ 1990 6 OAKDEN 94 RVUE 0.36{1.55 pp → ππ1950±15 7 ASTON 91 LASS 11 K− p → �K K ππ1First solution, PWA is ambiguous.2De
aying into π+π− 2π0.3De
aying into 2(π+π−).4Taking into a

ount f4(2050).5T-matrix pole.6 From solution B of amplitude analysis of data on p p → ππ. See however KLOET 96who �t π+π− only and �nd waves only up to J = 3 to be important but not signi�
antlyresonant.7Cannot determine spin to be 2.
WEIGHTED AVERAGE
1944±12 (Error scaled by 1.5)

ANTINORI 95 OMEG 4.7
BARBERIS 97B OMEG 0.3
ANISOVICH 99B SPEC 0.5
BARBERIS 00C 0.0
BARBERIS 00C 2.7
BAI 00A BES 0.0
ANISOVICH 00J SPEC 7.0
BINON 05 GAMS 0.3

χ2

      15.5
(Confidence Level = 0.030)

1850 1900 1950 2000 2050 2100 2150f2(1950) mass (MeV) f2(1950) WIDTHf2(1950) WIDTHf2(1950) WIDTHf2(1950) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT472± 18 OUR AVERAGE472± 18 OUR AVERAGE472± 18 OUR AVERAGE472± 18 OUR AVERAGE450± 50 8 BINON 05 GAMS 33 π− p → ηηn495± 35 ANISOVICH 00J SPEC380+120
− 90 BAI 00A BES J/ψ → γ (π+π−π+π−)520± 50 9 BARBERIS 00C 450 pp → pp4π485± 55 10 BARBERIS 00C 450 pp → pp4π500±100 ANISOVICH 99B SPEC 1.35{1.94 pp → ηηπ0460± 40 BARBERIS 97B OMEG 450 pp → pp2(π+π−)390± 60 ANTINORI 95 OMEG 300,450 pp → pp2(π+ π−)

• • • We do not use the following data for averages, �ts, limits, et
. • • •441+ 27
− 25+ 28

−192 11 UEHARA 09 BELL 10.6 e+ e− → e+ e−π0π0297± 12± 6 ABE 04 BELL 10.6 e+ e− → e+ e−K+K−385± 58 12 AMSLER 02 CBAR 0.9 pp → π0 ηη, π0π0π0
∼ 100 13 OAKDEN 94 RVUE 0.36{1.55 pp → ππ250± 50 14 ASTON 91 LASS 11 K− p → �K K ππ8First solution, PWA is ambiguous.9De
aying into π+π− 2π0.10De
aying into 2(π+π−).11Taking into a

ount f4(2050).12T-matrix pole.13 From solution B of amplitude analysis of data on p p → ππ. See however KLOET 96who �t π+π− only and �nd waves only up to J = 3 to be important but not signi�
antlyresonant.14Cannot determine spin to be 2.f2(1950) DECAY MODESf2(1950) DECAY MODESf2(1950) DECAY MODESf2(1950) DECAY MODESMode Fra
tion (�i /�)�1 K∗(892)K∗(892) seen�2 ππ�3 π+π− seen�4 π0π0 seen�5 4π seen�6 π+π−π+π−�7 a2(1320)π�8 f2(1270)ππ�9 ηη seen�10 K K seen�11 γ γ seen�12 pp seenf2(1950) �(i)�(γ γ)/�(total)f2(1950) �(i)�(γ γ)/�(total)f2(1950) �(i)�(γ γ)/�(total)f2(1950) �(i)�(γ γ)/�(total)�(K K)

× �(γ γ
)/�total �10�11/��(K K)

× �(γ γ
)/�total �10�11/��(K K)

× �(γ γ
)/�total �10�11/��(K K)

× �(γ γ
)/�total �10�11/�VALUE (eV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •122±4±26 15 ABE 04 BELL 10.6 e+ e− → e+ e−K+K−15Assuming spin 2.�(ππ
)

× �(γ γ
)/�total �2�11/��(ππ

)

× �(γ γ
)/�total �2�11/��(ππ

)

× �(γ γ
)/�total �2�11/��(ππ

)

× �(γ γ
)/�total �2�11/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •162+69
−42+1137

− 204 16 UEHARA 09 BELL 10.6 e+ e− → e+ e−π0π016Taking into a

ount f4(2050).f2(1950) BRANCHING RATIOSf2(1950) BRANCHING RATIOSf2(1950) BRANCHING RATIOSf2(1950) BRANCHING RATIOS�(K∗(892)K∗(892))/�total �1/��(K∗(892)K∗(892))/�total �1/��(K∗(892)K∗(892))/�total �1/��(K∗(892)K∗(892))/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen ASTON 91 LASS 0 11 K− p → �K K ππ�(a2(1320)π)/�total �7/��(a2(1320)π)/�total �7/��(a2(1320)π)/�total �7/��(a2(1320)π)/�total �7/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen BARBERIS 00B 450 pp → pf ηπ+π− psnot seen BARBERIS 00C 450 pp → pf 4πpspossibly seen BARBERIS 97B OMEG 450 pp → pp2(π+π−)�(ηη

)/�(4π) �9/�5�(ηη
)/�(4π) �9/�5�(ηη
)/�(4π) �9/�5�(ηη
)/�(4π) �9/�5VALUE CL% DOCUMENT ID COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.0× 10−3 90 BARBERIS 00E 450 pp → pf ηηps�(ηη

)/�(π+π−) �9/�3�(ηη
)/�(π+π−) �9/�3�(ηη
)/�(π+π−) �9/�3�(ηη
)/�(π+π−) �9/�3VALUE DOCUMENT ID TECN COMMENT0.14±0.050.14±0.050.14±0.050.14±0.05 AMSLER 02 CBAR 0.9 pp → π0 ηη, π0π0π0�(pp)/�total �12/��(pp)/�total �12/��(pp)/�total �12/��(pp)/�total �12/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 111 ALEXANDER 10 CLEO ψ(2S) → γ pp



961961961961See key on page 601 Meson Parti
le Listingsf2(1950), ρ3(1990), f2(2010), f0(2020)f2(1950) REFERENCESf2(1950) REFERENCESf2(1950) REFERENCESf2(1950) REFERENCESALEXANDER 10 PR D82 092002 J.P. Alexander et al. (CLEO Collab.)UEHARA 09 PR D79 052009 S. Uehara et al. (BELLE Collab.)BINON 05 PAN 68 960 F. Binon et al.Translated from YAF 68 998.ABE 04 EPJ C32 323 K. Abe et al. (BELLE Collab.)AMSLER 02 EPJ C23 29 C. Amsler et al.ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.BAI 00A PL B472 207 J.Z. Bai et al. (BES Collab.)BARBERIS 00B PL B471 435 D. Barberis et al. (WA 102 Collab.)BARBERIS 00C PL B471 440 D. Barberis et al. (WA 102 Collab.)BARBERIS 00E PL B479 59 D. Barberis et al. (WA 102 Collab.)ANISOVICH 99B PL B449 154 A.V. Anisovi
h et al.BARBERIS 97B PL B413 217 D. Barberis et al. (WA 102 Collab.)KLOET 96 PR D53 6120 W.M. Kloet, F. Myhrer (RUTG, NORD)ANTINORI 95 PL B353 589 F. Antinori et al. (ATHU, BARI, BIRM+) JPOAKDEN 94 NP A574 731 M.N. Oakden, M.R. Pennington (DURH)ASTON 91 NPBPS B21 5 D. Aston et al. (LASS Collab.)
ρ3(1990) IG (JPC ) = 1+(3−−)OMITTED FROM SUMMARY TABLE

ρ3(1990) MASSρ3(1990) MASSρ3(1990) MASSρ3(1990) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1982±14 1 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,

ωηπ0, π+π−
∼ 2007 HASAN 94 RVUE pp → ππ1From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.

ρ3(1990) WIDTHρ3(1990) WIDTHρ3(1990) WIDTHρ3(1990) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •188±24 2 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,

ωηπ0, π+π−
∼ 287 HASAN 94 RVUE pp → ππ2From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.

ρ3(1990) REFERENCESρ3(1990) REFERENCESρ3(1990) REFERENCESρ3(1990) REFERENCESANISOVICH 02 PL B542 8 A.V. Anisovi
h et al.ANISOVICH 01D PL B508 6 A.V. Anisovi
h et al.ANISOVICH 01E PL B513 281 A.V. Anisovi
h et al.ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.HASAN 94 PL B334 215 A. Hasan, D.V. Bugg (LOQM)f2(2010) IG (JPC ) = 0+(2 + +)f2(2010) MASSf2(2010) MASSf2(2010) MASSf2(2010) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2011+ 62
− 762011+ 62
− 762011+ 62
− 762011+ 62
− 76 1 ETKIN 88 MPS 22 π− p → φφn

• • • We do not use the following data for averages, �ts, limits, et
. • • •2005± 12 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n1980± 20 2 BOLONKIN 88 SPEC 40 π− p → K0S K0S n2050+ 90
− 50 ETKIN 85 MPS 22 π− p → 2φn2120+ 20
−120 LINDENBAUM 84 RVUE2160± 50 ETKIN 82 MPS 22 π− p → 2φn1 In
ludes data of ETKIN 85. The per
entage of the resonan
e going into φφ 2 + + S2,D2, and D0 is 98+1

−3, 0+1
−0, and 2+2

−1, respe
tively.2 Statisti
ally very weak, only 1.4 s.d.f2(2010) WIDTHf2(2010) WIDTHf2(2010) WIDTHf2(2010) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT202+ 67
− 62202+ 67
− 62202+ 67
− 62202+ 67
− 62 3 ETKIN 88 MPS 22 π− p → φφn

• • • We do not use the following data for averages, �ts, limits, et
. • • •209± 32 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n145± 50 4 BOLONKIN 88 SPEC 40 π− p → K0S K0S n200+160
− 50 ETKIN 85 MPS 22 π− p → 2φn300+150
− 50 LINDENBAUM 84 RVUE310± 70 ETKIN 82 MPS 22 π− p → 2φn3 In
ludes data of ETKIN 85.4 Statisti
ally very weak, only 1.4 s.d.

f2(2010) DECAY MODESf2(2010) DECAY MODESf2(2010) DECAY MODESf2(2010) DECAY MODESMode Fra
tion (�i /�)�1 φφ seen�2 K K seenf2(2010) BRANCHING RATIOSf2(2010) BRANCHING RATIOSf2(2010) BRANCHING RATIOSf2(2010) BRANCHING RATIOS�(K K)/�total �2/��(K K)/�total �2/��(K K)/�total �2/��(K K)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen VLADIMIRSK...06 SPEC 40 π− p → K0S K0S nf2(2010) REFERENCESf2(2010) REFERENCESf2(2010) REFERENCESf2(2010) REFERENCESVLADIMIRSK... 06 PAN 69 493 V.V. Vladimirsky et al. (ITEP, Mos
ow)Translated from YAF 69 515.BOLONKIN 88 NP B309 426 B.V. Bolonkin et al. (ITEP, SERP)ETKIN 88 PL B201 568 A. Etkin et al. (BNL, CUNY)ETKIN 85 PL 165B 217 A. Etkin et al. (BNL, CUNY)LINDENBAUM 84 CNPP 13 285 S.J. Lindenbaum (CUNY)ETKIN 82 PRL 49 1620 A. Etkin et al. (BNL, CUNY)Also Brighton Conf. 351 S.J. Lindenbaum (BNL, CUNY)f0(2020) IG (JPC ) = 0+(0 + +)OMITTED FROM SUMMARY TABLENeeds 
on�rmation. f0(2020) MASSf0(2020) MASSf0(2020) MASSf0(2020) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1992±161992±161992±161992±16 1,2 BARBERIS 00C 450 pp → pf 4πps
• • • We do not use the following data for averages, �ts, limits, et
. • • •2037± 8 80k 3 UMAN 06 E835 5.2 p p → ηηπ02040±38 ANISOVICH 00J SPEC2010±60 ALDE 98 GAM4 100 π− p → π0π0 n2020±35 BARBERIS 97B OMEG 450 pp → pp2(π+ π−)1Average between π+π− 2π0 and 2(π+π−).2T-matrix pole.3 Statisti
al error only. f0(2020) WIDTHf0(2020) WIDTHf0(2020) WIDTHf0(2020) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT442± 60442± 60442± 60442± 60 4,5 BARBERIS 00C 450 pp → pf 4πps
• • • We do not use the following data for averages, �ts, limits, et
. • • •296± 17 80k 6 UMAN 06 E835 5.2 p p → ηηπ0405± 40 ANISOVICH 00J SPEC240±100 ALDE 98 GAM4 100 π− p → π0π0 n410± 50 BARBERIS 97B OMEG 450 pp → pp2(π+ π−)4Average between π+π− 2π0 and 2(π+π−).5T-matrix pole.6 Statisti
al error only. f0(2020) DECAY MODESf0(2020) DECAY MODESf0(2020) DECAY MODESf0(2020) DECAY MODESMode Fra
tion (�i /�)�1 ρππ seen�2 π0π0 seen�3 ρρ seen�4 ωω seen�5 ηη seenf0(2020) BRANCHING RATIOSf0(2020) BRANCHING RATIOSf0(2020) BRANCHING RATIOSf0(2020) BRANCHING RATIOS�(ρρ

)/�(ωω
) �3/�4�(ρρ

)/�(ωω
) �3/�4�(ρρ

)/�(ωω
) �3/�4�(ρρ

)/�(ωω
) �3/�4VALUE DOCUMENT ID COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 3 BARBERIS 00F 450 pp → pf ωωps�(ηη

)/�total �5/��(ηη
)/�total �5/��(ηη
)/�total �5/��(ηη
)/�total �5/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen UMAN 06 E835 5.2 p p → ηηπ0f0(2020) REFERENCESf0(2020) REFERENCESf0(2020) REFERENCESf0(2020) REFERENCESUMAN 06 PR D73 052009 I. Uman et al. (FNAL E835)ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.BARBERIS 00C PL B471 440 D. Barberis et al. (WA 102 Collab.)BARBERIS 00F PL B484 198 D. Barberis et al. (WA 102 Collab.)ALDE 98 EPJ A3 361 D. Alde et al. (GAM4 Collab.)Also PAN 62 405 D. Alde et al. (GAMS Collab.)Translated from YAF 62 446.BARBERIS 97B PL B413 217 D. Barberis et al. (WA 102 Collab.)



962962962962MesonParti
le Listingsa4(2040), f4(2050)a4(2040) IG (JPC ) = 1−(4 + +)a4(2040) MASSa4(2040) MASSa4(2040) MASSa4(2040) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1995+10
− 8 OUR AVERAGE1995+10
− 8 OUR AVERAGE1995+10
− 8 OUR AVERAGE1995+10
− 8 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1900+80
−20 ADOLPH 15 COMP 191 π− p → η(′) π− p1885±13+50

− 2 420k ALEKSEEV 10 COMP 190 π−Pb →
π−π−π+Pb′1985±10±13 145k LU 05 B852 18 π− p → ωπ−π0 p1996±25±43 CHUNG 02 B852 18.3 π− p → 3πp2005+25

−45 1 ANISOVICH 01F SPEC 2.0 p p → 3π0, π0 η,
π0 η′2000±40+60

−20 IVANOV 01 B852 18 π− p → η′π− p1944± 8±50 2 AMELIN 99 VES 37 π−A → ωπ−π0A∗2010±20 3 DONSKOV 96 GAM2 0 38 π− p → ηπ0 n2040±30 4 CLELAND 82B SPEC ± 50 πp → K0S K± p2030±50 5 CORDEN 78C OMEG 0 15 π− p → 3πn
• • • We do not use the following data for averages, �ts, limits, et
. • • •2004± 6 80k 6 UMAN 06 E835 5.2 p p → ηηπ01903±10 7 BALDI 78 SPEC − 10 π− p → pK0S K−1From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.2May be a di�erent state.3 From a simultaneous �t to the G+ and G0 wave intensities.4 From an amplitude analysis.5 JP = 4+ is favored, though JP = 2+ 
annot be ex
luded.6 Statisti
al error only.7 From a �t to the Y 08 moment. Limited by phase spa
e.a4(2040) WIDTHa4(2040) WIDTHa4(2040) WIDTHa4(2040) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT257+ 25

− 23 OUR AVERAGE257+ 25
− 23 OUR AVERAGE257+ 25
− 23 OUR AVERAGE257+ 25
− 23 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.300+ 80
−100 ADOLPH 15 COMP 191 π− p → η(′) π− p294± 25+46

−19 420k ALEKSEEV 10 COMP 190 π−Pb →
π−π−π+Pb′231± 30±46 145k LU 05 B852 18 π− p → ωπ−π0 p298± 81±85 CHUNG 02 B852 18.3 π− p → 3πp180± 30 1 ANISOVICH 01F SPEC 2.0 p p → 3π0, π0 η,
π0 η′350±100+70

−50 IVANOV 01 B852 18 π− p → η′π− p324± 26±75 2 AMELIN 99 VES 37 π−A → ωπ−π0A∗370± 80 3 DONSKOV 96 GAM2 0 38 π− p → ηπ0 n380±150 4 CLELAND 82B SPEC ± 50 πp → K0S K± p510±200 5 CORDEN 78C OMEG 0 15 π− p → 3πn
• • • We do not use the following data for averages, �ts, limits, et
. • • •401± 16 80k 6 UMAN 06 E835 5.2 p p → ηηπ0166± 43 7 BALDI 78 SPEC − 10 π− p → pK0S K−1From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.2May be a di�erent state.3 From a simultaneous �t to the G+ and G0 wave intensities.4 From an amplitude analysis.5 JP = 4+ is favored, though JP = 2+ 
annot be ex
luded.6 Statisti
al error only.7 From a �t to the Y 08 moment. Limited by phase spa
e.

WEIGHTED AVERAGE
257+25-23 (Error scaled by 1.3)

CORDEN 78C OMEG
CLELAND 82B SPEC 0.7
DONSKOV 96 GAM2 2.0
AMELIN 99 VES 0.7
IVANOV 01 B852 0.7
ANISOVICH 01F SPEC 6.5
CHUNG 02 B852 0.1
LU 05 B852 0.2
ALEKSEEV 10 COMP 1.4
ADOLPH 15 COMP 0.2

χ2

      12.6
(Confidence Level = 0.127)

0 200 400 600 800 1000a4(2040) MASS

a4(2040) DECAY MODESa4(2040) DECAY MODESa4(2040) DECAY MODESa4(2040) DECAY MODESMode Fra
tion (�i /�)�1 K K seen�2 π+π−π0 seen�3 ρπ seen�4 f2(1270)π seen�5 ωπ−π0 seen�6 ωρ seen�7 ηπ seen�8 η′(958)π seena4(2040) BRANCHING RATIOSa4(2040) BRANCHING RATIOSa4(2040) BRANCHING RATIOSa4(2040) BRANCHING RATIOS�(K K)/�total �1/��(K K)/�total �1/��(K K)/�total �1/��(K K)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen BALDI 78 SPEC ± 10 π− p → K0S K− p�(π+π−π0)/�total �2/��(π+π−π0)/�total �2/��(π+π−π0)/�total �2/��(π+π−π0)/�total �2/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen CORDEN 78C OMEG 0 15 π− p → 3πn�(ρπ
)/�(f2(1270)π) �3/�4�(ρπ
)/�(f2(1270)π) �3/�4�(ρπ
)/�(f2(1270)π) �3/�4�(ρπ
)/�(f2(1270)π) �3/�4VALUE DOCUMENT ID TECN COMMENT1.1±0.2±0.21.1±0.2±0.21.1±0.2±0.21.1±0.2±0.2 CHUNG 02 B852 18.3 π− p → 3πp�(ηπ
)/�total �7/��(ηπ
)/�total �7/��(ηπ
)/�total �7/��(ηπ
)/�total �7/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen DONSKOV 96 GAM2 0 38 π− p → ηπ0 n�(η′(958)π)/�(ηπ

) �8/�7�(η′(958)π)/�(ηπ
) �8/�7�(η′(958)π)/�(ηπ
) �8/�7�(η′(958)π)/�(ηπ
) �8/�7VALUE DOCUMENT ID TECN COMMENT0.23±0.070.23±0.070.23±0.070.23±0.07 ADOLPH 15 COMP 191 π− p → η(′) π− p�(ωρ

)/�total �6/��(ωρ
)/�total �6/��(ωρ
)/�total �6/��(ωρ
)/�total �6/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 145k LU 05 B852 18 π− p → ωπ−π0 pa4(2040) REFERENCESa4(2040) REFERENCESa4(2040) REFERENCESa4(2040) REFERENCESADOLPH 15 PL B740 303 M. Adolph et al. (COMPASS Collab.)ALEKSEEV 10 PRL 104 241803 M.G. Alekseev et al. (COMPASS Collab.)UMAN 06 PR D73 052009 I. Uman et al. (FNAL E835)LU 05 PRL 94 032002 M. Lu et al. (BNL E852 Collab.)CHUNG 02 PR D65 072001 S.U. Chung et al. (BNL E852 Collab.)ANISOVICH 01F PL B517 261 A.V. Anisovi
h et al.IVANOV 01 PRL 86 3977 E.I. Ivanov et al. (BNL E852 Collab.)AMELIN 99 PAN 62 445 D.V. Amelin et al. (VES Collab.)Translated from YAF 62 487.ANISOVICH 99C PL B452 173 A.V. Anisovi
h et al.ANISOVICH 99E PL B452 187 A.V. Anisovi
h et al.DONSKOV 96 PAN 59 982 S.V. Donskov et al. (GAMS Collab.) IGJPCTranslated from YAF 59 1027.CLELAND 82B NP B208 228 W.E. Cleland et al. (DURH, GEVA, LAUS+)BALDI 78 PL 74B 413 R. Baldi et al. (GEVA) JPCORDEN 78C NP B136 77 M.J. Corden et al. (BIRM, RHEL, TELA+) JPf4(2050) IG (JPC ) = 0+(4 + +)f4(2050) MASSf4(2050) MASSf4(2050) MASSf4(2050) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2018±11 OUR AVERAGE2018±11 OUR AVERAGE2018±11 OUR AVERAGE2018±11 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1. See the ideogram below.1960±15 AMELIN 06 VES 36 π− p → ωωn2005±10 1 BINON 05 GAMS 33 π− p → ηηn1998±15 ALDE 98 GAM4 100 π− p → π0π0 n2060±20 ALDE 90 GAM2 38 π− p → ωωn2038±30 AUGUSTIN 87 DM2 J/ψ → γπ+π−2086±15 BALTRUSAIT...87 MRK3 J/ψ → γπ+π−2000±60 ALDE 86D GAM4 100 π− p → n2η2020±20 40k 2 BINON 84B GAM2 38 π− p → n2π02015±28 3 CASON 82 STRC 8 π+ p → �++π0π02031+25
−36 ETKIN 82B MPS 23 π− p → n2K0S2020±30 700 APEL 75 NICE 40 π− p → n2π02050±25 BLUM 75 ASPK 18.4 π− p → nK+K−



963963963963See key on page 601 MesonParti
le Listingsf4(2050)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1966±25 4 ANISOVICH 09 RVUE 0.0 p p, πN1885+14

−13+218
− 25 5 UEHARA 09 BELL 10.6 e+ e− → e+ e−π0π02018± 6 ANISOVICH 00J SPEC 2.0 p p → ηπ0 π0, π0π0,

ηη, ηη′, ππ
∼ 2000 6 MARTIN 98 RVUE NN → ππ

∼ 2010 7 MARTIN 97 RVUE NN → ππ

∼ 2040 8 OAKDEN 94 RVUE 0.36{1.55 p p → ππ

∼ 1990 9 OAKDEN 94 RVUE 0.36{1.55 p p → ππ1978± 5 10 ALPER 80 CNTR 62 π− p → K+K− n2040±10 10 ROZANSKA 80 SPRK 18 π− p → pp n1935±13 10 CORDEN 79 OMEG 12{15 π− p → n2π1988± 7 EVANGELIS... 79B OMEG 10 π− p → K+K− n1922±14 11 ANTIPOV 77 CIBS 25 π− p → p3π1From the �rst PWA solution.2 From a partial-wave analysis of the data.3 From an amplitude analysis of the rea
tion π+π− → 2π0.4K matrix pole.5Taking into a

ount the f2(1950). Heli
ity-2 produ
tion favored.6 Energy-dependent analysis.7 Single energy analysis.8 From solution A of amplitude analysis of data on p p → ππ. See however KLOET 96who �t π+π− only and �nd waves only up to J = 3 to be important but not signi�
antlyresonant.9 From solution B of amplitude analysis of data on p p → ππ. See however KLOET 96who �t π+π− only and �nd waves only up to J = 3 to be important but not signi�
antlyresonant.10 I (JP ) = 0(4+) from amplitude analysis assuming one-pion ex
hange.11Width errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.
WEIGHTED AVERAGE
2018±11 (Error scaled by 2.1)

BLUM 75 ASPK 1.6
APEL 75 NICE 0.0
ETKIN 82B MPS 0.2
CASON 82 STRC 0.0
BINON 84B GAM2 0.0
ALDE 86D GAM4
BALTRUSAIT... 87 MRK3 20.3
AUGUSTIN 87 DM2 0.4
ALDE 90 GAM2 4.3
ALDE 98 GAM4 1.9
BINON 05 GAMS 1.8
AMELIN 06 VES 15.2

χ2

      45.6
(Confidence Level < 0.0001)

1900 1950 2000 2050 2100 2150 2200f4(2050) mass (MeV) f4(2050) WIDTHf4(2050) WIDTHf4(2050) WIDTHf4(2050) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT237± 18 OUR AVERAGE237± 18 OUR AVERAGE237± 18 OUR AVERAGE237± 18 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.290± 20 AMELIN 06 VES 36 π− p → ωωn340± 80 12 BINON 05 GAMS 33 π− p → ηηn395± 40 ALDE 98 GAM4 100 π− p → π0π0 n170± 60 ALDE 90 GAM2 38 π− p → ωωn304± 60 AUGUSTIN 87 DM2 J/ψ → γπ+π−210± 63 BALTRUSAIT...87 MRK3 J/ψ → γπ+π−400±100 ALDE 86D GAM4 100 π− p → n2η240± 40 40k 13 BINON 84B GAM2 38 π− p → n2π0190± 14 DENNEY 83 LASS 10 π+ n/

π+ p186+103
− 58 14 CASON 82 STRC 8 π+ p → �++π0π0305+ 36
−119 ETKIN 82B MPS 23 π− p → n2K0S180± 60 700 APEL 75 NICE 40 π− p → n2π0225+120
− 70 BLUM 75 ASPK 18.4 π− p → nK+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •260± 40 15 ANISOVICH 09 RVUE 0.0 p p, πN453± 20+ 31
−129 16 UEHARA 09 BELL 10.6 e+ e− → e+ e−π0π0182± 7 ANISOVICH 00J SPEC 2.0 p p → ηπ0 π0, π0π0,

ηη, ηη′, ππ
∼ 170 17 MARTIN 98 RVUE NN → ππ

∼ 200 18 MARTIN 97 RVUE NN → ππ

∼ 60 19 OAKDEN 94 RVUE 0.36{1.55 p p → ππ

∼ 80 20 OAKDEN 94 RVUE 0.36{1.55 p p → ππ243± 16 21 ALPER 80 CNTR 62 π− p → K+K− n140± 15 21 ROZANSKA 80 SPRK 18 π− p → pp n263± 57 21 CORDEN 79 OMEG 12{15 π− p → n2π100± 28 EVANGELIS... 79B OMEG 10 π− p → K+K− n107± 56 22 ANTIPOV 77 CIBS 25 π− p → p3π12From the �rst PWA solution.13 From a partial-wave analysis of the data.14 From an amplitude analysis of the rea
tion π+π− → 2π0.15K matrix pole.16Taking into a

ount the f2(1950). Heli
ity-2 produ
tion favored.17Energy-dependent analysis.18 Single energy analysis.19 From solution A of amplitude analysis of data on p p → ππ. See however KLOET 96who �t π+π− only and �nd waves only up to J = 3 to be important but not signi�
antlyresonant.20 From solution B of amplitude analysis of data on p p → ππ. See however KLOET 96who �t π+π− only and �nd waves only up to J = 3 to be important but not signi�
antlyresonant.21 I (JP ) = 0(4+) from amplitude analysis assuming one-pion ex
hange.22Width errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.
WEIGHTED AVERAGE
237±18 (Error scaled by 1.9)

BLUM 75 ASPK 0.0
APEL 75 NICE 0.9
ETKIN 82B MPS 0.6
CASON 82 STRC 0.3
DENNEY 83 LASS 11.4
BINON 84B GAM2 0.0
ALDE 86D GAM4 2.7
BALTRUSAIT... 87 MRK3 0.2
AUGUSTIN 87 DM2 1.2
ALDE 90 GAM2 1.3
ALDE 98 GAM4 15.5
BINON 05 GAMS 1.6
AMELIN 06 VES 6.9

χ2

      42.7
(Confidence Level < 0.0001)

0 100 200 300 400 500 600 700f4(2050) WIDTH f4(2050) DECAY MODESf4(2050) DECAY MODESf4(2050) DECAY MODESf4(2050) DECAY MODESMode Fra
tion (�i /�)�1 ωω seen�2 ππ (17.0±1.5) %�3 K K ( 6.8+3.4
−1.8)× 10−3�4 ηη ( 2.1±0.8)× 10−3�5 4π0 < 1.2 %�6 γ γ�7 a2(1320)π seenf4(2050) �(i)�(γ γ)/�(total)f4(2050) �(i)�(γ γ)/�(total)f4(2050) �(i)�(γ γ)/�(total)f4(2050) �(i)�(γ γ)/�(total)�(K K)

× �(γ γ
)/�total �3�6/��(K K)

× �(γ γ
)/�total �3�6/��(K K)

× �(γ γ
)/�total �3�6/��(K K)

× �(γ γ
)/�total �3�6/�VALUE (keV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.29 95 ALTHOFF 85B TASS γ γ → K K π�(ππ

)

× �(γ γ
)/�total �2�6/��(ππ

)

× �(γ γ
)/�total �2�6/��(ππ

)

× �(γ γ
)/�total �2�6/��(ππ

)

× �(γ γ
)/�total �2�6/�VALUE (eV) CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •23.1+3.6
−3.3+70.5

−15.6 23 UEHARA 09 BELL 10.6 e+ e− →e+ e−π0π0
<1100 95 13 ± 4 OEST 90 JADE e+ e− →e+ e−π0π023Taking into a

ount the f2(1950). Heli
ity-2 produ
tion favored.f4(2050) BRANCHING RATIOSf4(2050) BRANCHING RATIOSf4(2050) BRANCHING RATIOSf4(2050) BRANCHING RATIOS�(ωω

)/�total �1/��(ωω
)/�total �1/��(ωω
)/�total �1/��(ωω
)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AMELIN 06 VES 36 π− p → ωωn

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen BARBERIS 00F 450 pp → pf ωωps



964964964964Meson Parti
le Listingsf4(2050), π2(2100), f0(2100)�(ωω
)/�(ππ

) �1/�2�(ωω
)/�(ππ

) �1/�2�(ωω
)/�(ππ

) �1/�2�(ωω
)/�(ππ

) �1/�2VALUE DOCUMENT ID TECN COMMENT1.5±0.31.5±0.31.5±0.31.5±0.3 ALDE 90 GAM2 38 π− p → ωωn�(ππ
)/�total �2/��(ππ
)/�total �2/��(ππ
)/�total �2/��(ππ
)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.170±0.015 OUR AVERAGE0.170±0.015 OUR AVERAGE0.170±0.015 OUR AVERAGE0.170±0.015 OUR AVERAGE0.18 ±0.03 24 BINON 83C GAM2 38 π− p → n4γ0.16 ±0.03 24 CASON 82 STRC 8 π+ p → �++π0π00.17 ±0.02 24 CORDEN 79 OMEG 12{15 π− p → n2π24Assuming one pion ex
hange.�(K K)/�(ππ

) �3/�2�(K K)/�(ππ
) �3/�2�(K K)/�(ππ
) �3/�2�(K K)/�(ππ
) �3/�2VALUE DOCUMENT ID TECN COMMENT0.04+0.02

−0.010.04+0.02
−0.010.04+0.02
−0.010.04+0.02
−0.01 ETKIN 82B MPS 23 π− p → n2K0S�(ηη
)/�total �4/��(ηη
)/�total �4/��(ηη
)/�total �4/��(ηη
)/�total �4/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.1±0.82.1±0.82.1±0.82.1±0.8 ALDE 86D GAM4 100 π− p → n4γ�(4π0)/�total �5/��(4π0)/�total �5/��(4π0)/�total �5/��(4π0)/�total �5/�VALUE DOCUMENT ID TECN COMMENT

<0.012<0.012<0.012<0.012 ALDE 87 GAM4 100 π− p → 4π0 n�(a2(1320)π)/�total �7/��(a2(1320)π)/�total �7/��(a2(1320)π)/�total �7/��(a2(1320)π)/�total �7/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AMELIN 00 VES 37 π− p → ηπ+π− nf4(2050) REFERENCESf4(2050) REFERENCESf4(2050) REFERENCESf4(2050) REFERENCESANISOVICH 09 IJMP A24 2481 V.V. Anisovi
h, A.V. SarantsevUEHARA 09 PR D79 052009 S. Uehara et al. (BELLE Collab.)AMELIN 06 PAN 69 690 D.V. Amelin et al. (VES Collab.)Translated from YAF 69 715.BINON 05 PAN 68 960 F. Binon et al.Translated from YAF 68 998.AMELIN 00 NP A668 83 D. Amelin et al. (VES Collab.)ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.BARBERIS 00F PL B484 198 D. Barberis et al. (WA 102 Collab.)ALDE 98 EPJ A3 361 D. Alde et al. (GAM4 Collab.)Also PAN 62 405 D. Alde et al. (GAMS Collab.)Translated from YAF 62 446.MARTIN 98 PR C57 3492 B.R. Martin et al.MARTIN 97 PR C56 1114 B.R. Martin, G.C. Oades (LOUC, AARH)KLOET 96 PR D53 6120 W.M. Kloet, F. Myhrer (RUTG, NORD)OAKDEN 94 NP A574 731 M.N. Oakden, M.R. Pennington (DURH)ALDE 90 PL B241 600 D.M. Alde et al. (SERP, BELG, LANL, LAPP+)OEST 90 ZPHY C47 343 T. Oest et al. (JADE Collab.)ALDE 87 PL B198 286 D.M. Alde et al. (LANL, BRUX, SERP, LAPP)AUGUSTIN 87 ZPHY C36 369 J.E. Augustin et al. (LALO, CLER, FRAS+)BALTRUSAIT... 87 PR D35 2077 R.M. Baltrusaitis et al. (Mark III Collab.)ALDE 86D NP B269 485 D.M. Alde et al. (BELG, LAPP, SERP, CERN+)ALTHOFF 85B ZPHY C29 189 M. Altho� et al. (TASSO Collab.)BINON 84B LNC 39 41 F.G. Binon et al. (SERP, BELG, LAPP)BINON 83C SJNP 38 723 F.G. Binon et al. (SERP, BRUX+)Translated from YAF 38 1199.DENNEY 83 PR D28 2726 D.L. Denney et al. (IOWA, MICH)CASON 82 PRL 48 1316 N.M. Cason et al. (NDAM, ANL)ETKIN 82B PR D25 1786 A. Etkin et al. (BNL, CUNY, TUFTS, VAND)ALPER 80 PL 94B 422 B. Alper et al. (AMST, CERN, CRAC, MPIM+)ROZANSKA 80 NP B162 505 M. Rozanska et al. (MPIM, CERN)CORDEN 79 NP B157 250 M.J. Corden et al. (BIRM, RHEL, TELA+) JPEVANGELIS... 79B NP B154 381 C. Evangelista et al. (BARI, BONN, CERN+)ANTIPOV 77 NP B119 45 Y.M. Antipov et al. (SERP, GEVA)APEL 75 PL 57B 398 W.D. Apel et al. (KARLK, KARLE, PISA, SERP+) JPBLUM 75 PL 57B 403 W. Blum et al. (CERN, MPIM) JP
π2(2100) IG (JPC ) = 1−(2−+)OMITTED FROM SUMMARY TABLENeeds 
on�rmation.

π2(2100) MASSπ2(2100) MASSπ2(2100) MASSπ2(2100) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2090± 29 OUR AVERAGE2090± 29 OUR AVERAGE2090± 29 OUR AVERAGE2090± 29 OUR AVERAGE2090± 30 1 AMELIN 95B VES 36 π−A →
π+π−π−A2100±150 2 DAUM 81B CNTR 63,94 π− p → 3πX1From a �t to JPC = 2−+ f2(1270)π, (ππ)sπ waves.2 From a two-resonan
e �t to four 2−0+ waves.

π2(2100) WIDTHπ2(2100) WIDTHπ2(2100) WIDTHπ2(2100) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT625± 50 OUR AVERAGE625± 50 OUR AVERAGE625± 50 OUR AVERAGE625± 50 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.520±100 3 AMELIN 95B VES 36 π−A →
π+π−π−A651± 50 4 DAUM 81B CNTR 63,94 π− p → 3πX3From a �t to JPC = 2−+ f2(1270)π, (ππ)sπ waves.4 From a two-resonan
e �t to four 2−0+ waves.

π2(2100) DECAY MODESπ2(2100) DECAY MODESπ2(2100) DECAY MODESπ2(2100) DECAY MODESMode Fra
tion (�i /�)�1 3π seen�2 ρπ seen�3 f2(1270)π seen�4 (ππ)s π seen
π2(2100) BRANCHING RATIOSπ2(2100) BRANCHING RATIOSπ2(2100) BRANCHING RATIOSπ2(2100) BRANCHING RATIOS�(ρπ

)/�(3π) �2/�1�(ρπ
)/�(3π) �2/�1�(ρπ
)/�(3π) �2/�1�(ρπ
)/�(3π) �2/�1VALUE DOCUMENT ID TECN COMMENT0.19±0.050.19±0.050.19±0.050.19±0.05 5 DAUM 81B CNTR 63,94 π− p�(f2(1270)π)/�(3π) �3/�1�(f2(1270)π)/�(3π) �3/�1�(f2(1270)π)/�(3π) �3/�1�(f2(1270)π)/�(3π) �3/�1VALUE DOCUMENT ID TECN COMMENT0.36±0.090.36±0.090.36±0.090.36±0.09 5 DAUM 81B CNTR 63,94 π− p�((ππ)s π

)/�(3π) �4/�1�((ππ)s π
)/�(3π) �4/�1�((ππ)s π
)/�(3π) �4/�1�((ππ)s π
)/�(3π) �4/�1VALUE DOCUMENT ID TECN COMMENT0.45±0.070.45±0.070.45±0.070.45±0.07 5 DAUM 81B CNTR 63,94 π− pD-wave/S-wave RATIO FOR π2(2100) → f2(1270)πD-wave/S-wave RATIO FOR π2(2100) → f2(1270)πD-wave/S-wave RATIO FOR π2(2100) → f2(1270)πD-wave/S-wave RATIO FOR π2(2100) → f2(1270)πVALUE DOCUMENT ID TECN COMMENT0.39±0.230.39±0.230.39±0.230.39±0.23 5 DAUM 81B CNTR 63,94 π− p5From a two-resonan
e �t to four 2−0+ waves.

π2(2100) REFERENCESπ2(2100) REFERENCESπ2(2100) REFERENCESπ2(2100) REFERENCESAMELIN 95B PL B356 595 D.V. Amelin et al. (SERP, TBIL)DAUM 81B NP B182 269 C. Daum et al. (AMST, CERN, CRAC, MPIM+)f0(2100) IG (JPC ) = 0+(0 + +)OMITTED FROM SUMMARY TABLENeeds 
on�rmation. f0(2100) MASSf0(2100) MASSf0(2100) MASSf0(2100) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2101± 7 OUR AVERAGE2101± 7 OUR AVERAGE2101± 7 OUR AVERAGE2101± 7 OUR AVERAGE2081±13+24
−36 5.5k 1 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη2102±13 2 ANISOVICH 00J SPEC 2.0 p p → ηπ0 π0, π0π0,

ηη, ηη′, π+π−2090±30 BAI 00A BES J/ψ → γ (π+π−π+π−)2105±10 ANISOVICH 99K SPEC 0.6{1.94 p p → ηη, ηη′
• • • We do not use the following data for averages, �ts, limits, et
. • • •2090±10± 6 529 3,4 DOBBS 15 J/ψ → γπ+π−2099±17± 8 283 3,4 DOBBS 15 ψ(2S) → γπ+π−2105± 8 80k 5 UMAN 06 E835 5.2 p p → ηηπ0
∼ 2104 BUGG 95 J/ψ → γπ+π−π+π−
∼ 2122 HASAN 94 RVUE pp → ππ1From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.2 In
ludes the data of ANISOVICH 00B indi
ating to exoti
 de
ay pattern.3Using CLEO-
 data but not authored by the CLEO Collaboration.4 From a �t to a Breit-Wigner line shape with �xed � = 209 MeV.5 Statisti
al error only. f0(2100) WIDTHf0(2100) WIDTHf0(2100) WIDTHf0(2100) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT224+ 23

− 21 OUR AVERAGE224+ 23
− 21 OUR AVERAGE224+ 23
− 21 OUR AVERAGE224+ 23
− 21 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.273+ 27
− 24+70

−23 5.5k 6 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη211± 29 7 ANISOVICH 00J SPEC 2.0 p p → ηπ0 π0, π0π0,
ηη, ηη′, π+π−330±100 BAI 00A BES J/ψ → γ (π+π−π+π−)200± 25 ANISOVICH 99K SPEC 0.6{1.94 p p → ηη, ηη′

• • • We do not use the following data for averages, �ts, limits, et
. • • •236± 14 80k 8 UMAN 06 E835 5.2 p p → ηηπ0
∼ 203 BUGG 95 J/ψ → γπ+π−π+π−
∼ 273 HASAN 94 RVUE pp → ππ6From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.7 In
ludes the data of ANISOVICH 00B indi
ating to exoti
 de
ay pattern.8 Statisti
al error only.



965965965965See key on page 601 Meson Parti
le Listingsf0(2100), f2(2150)
WEIGHTED AVERAGE
224+23-21 (Error scaled by 1.3)

ANISOVICH 99K SPEC 0.9
BAI 00A BES
ANISOVICH 00J SPEC 0.2
ABLIKIM 13N BES3 2.2

χ2

       3.3
(Confidence Level = 0.192)

100 200 300 400 500 600f0(2100) WIDTH (MeV)f0(2100) REFERENCESf0(2100) REFERENCESf0(2100) REFERENCESf0(2100) REFERENCESDOBBS 15 PR D91 052006 S. Dobbs et al. (NWES)ABLIKIM 13N PR D87 092009 Ablikim M. et al. (BES III Collab.)UMAN 06 PR D73 052009 I. Uman et al. (FNAL E835)ANISOVICH 00B NP A662 319 A.V. Anisovi
h et al.ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.BAI 00A PL B472 207 J.Z. Bai et al. (BES Collab.)ANISOVICH 99K PL B468 309 A.V. Anisovi
h et al.BUGG 95 PL B353 378 D.V. Bugg et al. (LOQM, PNPI, WASH)HASAN 94 PL B334 215 A. Hasan, D.V. Bugg (LOQM)f2(2150) IG (JPC ) = 0+(2 + +)OMITTED FROM SUMMARY TABLEThis entry was previously 
alled T0.f2(2150) MASSf2(2150) MASSf2(2150) MASSf2(2150) MASSf2(2150) MASS, COMBINED MODES (MeV)f2(2150) MASS, COMBINED MODES (MeV)f2(2150) MASS, COMBINED MODES (MeV)f2(2150) MASS, COMBINED MODES (MeV)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2157±12 OUR AVERAGE2157±12 OUR AVERAGE2157±12 OUR AVERAGE2157±12 OUR AVERAGE In
ludes data from the 2 datablo
ks that follow this one.
• • • We do not use the following data for averages, �ts, limits, et
. • • •2170± 6 80k 1 UMAN 06 E835 5.2 p p → ηηπ01Statisti
al error only.
ηη MODEηη MODEηη MODEηη MODEVALUE (MeV) DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.2157±12 OUR AVERAGE2157±12 OUR AVERAGE2157±12 OUR AVERAGE2157±12 OUR AVERAGE2151±16 BARBERIS 00E 450 pp → pf ηηps2175±20 PROKOSHKIN 95D GAM4 300 π−N → π−N 2η,450 pp → pp2η2130±35 SINGOVSKI 94 GAM4 450 pp → pp2η
• • • We do not use the following data for averages, �ts, limits, et
. • • •2140±30 2 ABELE 99B CBAR2104±20 3 ARMSTRONG 93C E760 p p → π0 ηη → 6γ2Spin not determined.3No JPC determination.
ηππ MODEηππ MODEηππ MODEηππ MODEVALUE (MeV) DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.
• • • We do not use the following data for averages, �ts, limits, et
. • • •2135±20±45 4 ADOMEIT 96 CBAR 0 1.94 p p → η3π04ANISOVICH 00E re
ommends to withdraw ADOMEIT 96 that assumed a single JP =2+ resonan
e.pp → ππpp → ππpp → ππpp → ππVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 2090 5 OAKDEN 94 RVUE 0.36{1.55 p p → ππ

∼ 2120 6 OAKDEN 94 RVUE 0.36{1.55 p p → ππ

∼ 2170 7 MARTIN 80B RVUE
∼ 2150 7 MARTIN 80C RVUE
∼ 2150 8 DULUDE 78B OSPK 1{2 pp → π0π0

5OAKDEN 94 makes an amplitude analysis of LEAR data on pp → ππ using a methodbased on Barrelet zeros. This is solution A. The amplitude analysis of HASAN 94 in
ludesearlier data as well, and assume that the data 
an be parametrized in terms of towers ofnearly degenerate resonan
es on the leading Regge traje
tory. See also KLOET 96 andMARTIN 97 who make related analyses.6 From solution B of amplitude analysis of data on p p → ππ.7 I (JP ) = 0(2+) from simultaneous analysis of pp → π−π+ and π0π0.8 IG (JP ) = 0+(2+) from partial-wave amplitude analysis.S-CHANNEL pp, NN or K KS-CHANNEL pp, NN or K KS-CHANNEL pp, NN or K KS-CHANNEL pp, NN or K KVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2139+ 8

− 9 9 EVANGELIS... 97 SPEC 0.6-2.4 p p → K0S K0S
∼ 2190 9 CUTTS 78B CNTR 0.97{3 pp → NN2155±15 9,10 COUPLAND 77 CNTR 0 0.7{2.4 p p → p p2193± 2 9,11 ALSPECTOR 73 CNTR p p S 
hannel9 Isospins 0 and 1 not separated.10 From a �t to the total elasti
 
ross se
tion.11Referred to as T or T region by ALSPECTOR 73.K K MODEK K MODEK K MODEK K MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2200±13 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n2150±20 ABLIKIM 04E BES2 J/ψ → ωK+K−2130±35 BARBERIS 99 OMEG 450 pp → ps pf K+K−f2(2150) WIDTHf2(2150) WIDTHf2(2150) WIDTHf2(2150) WIDTHf2(2150) WIDTH, COMBINED MODES (MeV)f2(2150) WIDTH, COMBINED MODES (MeV)f2(2150) WIDTH, COMBINED MODES (MeV)f2(2150) WIDTH, COMBINED MODES (MeV)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT152±30 OUR AVERAGE152±30 OUR AVERAGE152±30 OUR AVERAGE152±30 OUR AVERAGE In
ludes data from the 2 datablo
ks that follow this one. Errorin
ludes s
ale fa
tor of 1.4. See the ideogram below.
• • • We do not use the following data for averages, �ts, limits, et
. • • •182±11 80k 12 UMAN 06 E835 5.2 p p → ηηπ012Statisti
al error only.

WEIGHTED AVERAGE
152±30 (Error scaled by 1.4)

SINGOVSKI 94 GAM4 0.5
PROKOSHKIN 95D GAM4 0.0
BARBERIS 00E 3.3

χ2

       3.9
(Confidence Level = 0.143)

0 100 200 300 400 500 600f2(2150) WIDTH, COMBINED MODES (MeV)
ηη MODEηη MODEηη MODEηη MODEVALUE (MeV) DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.152±30 OUR AVERAGE152±30 OUR AVERAGE152±30 OUR AVERAGE152±30 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.280±70 BARBERIS 00E 450 pp → pf ηηps150±35 PROKOSHKIN 95D GAM4 300 π−N → π−N 2η,450 pp → pp2η130±30 SINGOVSKI 94 GAM4 450 pp → pp2η
• • • We do not use the following data for averages, �ts, limits, et
. • • •310±50 13 ABELE 99B CBAR203±10 14 ARMSTRONG 93C E760 p p → π0 ηη → 6γ



966966966966Meson Parti
le Listingsf2(2150), ρ(2150)13Spin not determined.14No JPC determination.
WEIGHTED AVERAGE
152±30 (Error scaled by 1.4)

SINGOVSKI 94 GAM4 0.5
PROKOSHKIN 95D GAM4 0.0
BARBERIS 00E 3.3

χ2

       3.9
(Confidence Level = 0.143)

0 100 200 300 400 500 600f2(2150) WIDTH, ηη MODE (MeV)
ηππ MODEηππ MODEηππ MODEηππ MODEVALUE (MeV) DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.
• • • We do not use the following data for averages, �ts, limits, et
. • • •250±25±45 15 ADOMEIT 96 CBAR 0 1.94 p p → η3π015ANISOVICH 00E re
ommends to withdraw ADOMEIT 96 that assumed a single JP =2+ resonan
e.pp → ππpp → ππpp → ππpp → ππVALUE (MeV) DOCUMENT ID TECN COMMENT250 OUR ESTIMATE250 OUR ESTIMATE250 OUR ESTIMATE250 OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 70 16 OAKDEN 94 RVUE 0.36{1.55 p p → ππ

∼ 250 17 MARTIN 80B RVUE
∼ 250 17 MARTIN 80C RVUE
∼ 250 18 DULUDE 78B OSPK 1{2 pp → π0π016See however KLOET 96 who �t π+π− only and �nd waves only up to J = 3 to beimportant but not signi�
antly resonant.17 I (JP ) = 0(2+) from simultaneous analysis of pp → π−π+ and π0π0.18 IG (JP ) = 0+(2+) from partial-wave amplitude analysis.S-CHANNEL pp, NN or K KS-CHANNEL pp, NN or K KS-CHANNEL pp, NN or K KS-CHANNEL pp, NN or K KVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •56+31

−16 19 EVANGELIS... 97 SPEC 0.6-2.4 p p → K0S K0S135±75 20,21 COUPLAND 77 CNTR 0 0.7{2.4 p p → p p98± 8 21 ALSPECTOR 73 CNTR p p S 
hannel19 Isospin 0 and 2 not separated.20 From a �t to the total elasti
 
ross se
tion.21 Isospins 0 and 1 not separated.K K MODEK K MODEK K MODEK K MODEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •91±62 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n150±30 ABLIKIM 04E BES2 J/ψ → ωK+K−270±50 BARBERIS 99 OMEG 450 pp → ps pf K+K−f2(2150) DECAY MODESf2(2150) DECAY MODESf2(2150) DECAY MODESf2(2150) DECAY MODESMode Fra
tion (�i /�)�1 ππ�2 ηη seen�3 K K seen�4 f2(1270)η seen�5 a2(1320)π seen�6 pp seenf2(2150) BRANCHING RATIOSf2(2150) BRANCHING RATIOSf2(2150) BRANCHING RATIOSf2(2150) BRANCHING RATIOS�(K K)/�(ηη

) �3/�2�(K K)/�(ηη
) �3/�2�(K K)/�(ηη
) �3/�2�(K K)/�(ηη
) �3/�2VALUE CL% DOCUMENT ID TECN COMMENT1.28±0.231.28±0.231.28±0.231.28±0.23 BARBERIS 00E 450 pp → pf ηηps

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.1 95 22 PROKOSHKIN 95D GAM4 300 π−N → π−N 2η,450 pp → pp2η22Using data from ARMSTRONG 89D.

�(ππ
)/�(ηη

) �1/�2�(ππ
)/�(ηη

) �1/�2�(ππ
)/�(ηη

) �1/�2�(ππ
)/�(ηη

) �1/�2VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.33 95 23 PROKOSHKIN 95D GAM4 300 π−N → π−N 2η,450 pp → pp2η23Derived from a π0π0/ηη limit.�(f2(1270)η)/�(a2(1320)π) �4/�5�(f2(1270)η)/�(a2(1320)π) �4/�5�(f2(1270)η)/�(a2(1320)π) �4/�5�(f2(1270)η)/�(a2(1320)π) �4/�5VALUE DOCUMENT ID TECN COMMENT0.79±0.110.79±0.110.79±0.110.79±0.11 24 ADOMEIT 96 CBAR 1.94 pp → η3π024Using B(a2(1320) → ηπ) = 0.145�(pp)/�total �6/��(pp)/�total �6/��(pp)/�total �6/��(pp)/�total �6/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 73 ALEXANDER 10 CLEO ψ(2S) → γ ppf2(2150) REFERENCESf2(2150) REFERENCESf2(2150) REFERENCESf2(2150) REFERENCESALEXANDER 10 PR D82 092002 J.P. Alexander et al. (CLEO Collab.)UMAN 06 PR D73 052009 I. Uman et al. (FNAL E835)VLADIMIRSK... 06 PAN 69 493 V.V. Vladimirsky et al. (ITEP, Mos
ow)Translated from YAF 69 515.ABLIKIM 04E PL B603 138 M. Ablikim et al. (BES Collab.)ANISOVICH 00E PL B477 19 A.V. Anisovi
h et al.BARBERIS 00E PL B479 59 D. Barberis et al. (WA 102 Collab.)ABELE 99B EPJ C8 67 A. Abele et al. (Crystal Barrel Collab.)BARBERIS 99 PL B453 305 D. Barberis et al. (Omega Expt.)EVANGELIS... 97 PR D56 3803 C. Evangelista et al. (LEAR Collab.)MARTIN 97 PR C56 1114 B.R. Martin, G.C. Oades (LOUC, AARH)ADOMEIT 96 ZPHY C71 227 J. Adomeit et al. (Crystal Barrel Collab.)KLOET 96 PR D53 6120 W.M. Kloet, F. Myhrer (RUTG, NORD)PROKOSHKIN 95D SPD 40 495 Y.D. Prokoshkin (SERP) IGJPCTranslated from DANS 344 469.HASAN 94 PL B334 215 A. Hasan, D.V. Bugg (LOQM)OAKDEN 94 NP A574 731 M.N. Oakden, M.R. Pennington (DURH)SINGOVSKI 94 NC 107A 1911 A.V. Singovsky (SERP)ARMSTRONG 93C PL B307 394 T.A. Armstrong et al. (FNAL, FERR, GENO+)ARMSTRONG 89D PL B227 186 T.A. Armstrong, M. Benayoun (ATHU, BARI, BIRM+)MARTIN 80B NP B176 355 B.R. Martin, D. Morgan (LOUC, RHEL) JPMARTIN 80C NP B169 216 A.D. Martin, M.R. Pennington (DURH) JPCUTTS 78B PR D17 16 D. Cutts et al. (STON, WISC)DULUDE 78B PL 79B 335 R.S. Dulude et al. (BROW, MIT, BARI) JPCOUPLAND 77 PL 71B 460 M. Coupland et al. (LOQM, RHEL)ALSPECTOR 73 PRL 30 511 J. Alspe
tor et al. (RUTG, UPNJ)
ρ(2150) IG (JPC ) = 1+(1−−)OMITTED FROM SUMMARY TABLEThis entry was previously 
alled T1(2190). See our mini-reviewunder the ρ(1700).

ρ(2150) MASSρ(2150) MASSρ(2150) MASSρ(2150) MASSe+ e− PRODUCEDe+ e− PRODUCEDe+ e− PRODUCEDe+ e− PRODUCEDVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2254±22 1 LEES 12G BABR e+ e− → π+π− γ2150±40±50 AUBERT 07AU BABR 10.6 e+ e− → f1(1285)π+π− γ1990±80 AUBERT 07AU BABR 10.6 e+ e− → η′ π+π− γ2153±37 BIAGINI 91 RVUE e+ e− → π+π− , K+K−2110±50 2 CLEGG 90 RVUE e+ e− → 3(π+π−), 2(π+π−π0)pp → ππpp → ππpp → ππpp → ππVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 2191 HASAN 94 RVUE pp → ππ

∼ 2070 3 OAKDEN 94 RVUE 0.36{1.55 p p → ππ

∼ 2170 4 MARTIN 80B RVUE
∼ 2100 4 MARTIN 80C RVUES-CHANNEL NNS-CHANNEL NNS-CHANNEL NNS-CHANNEL NNVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2110±35 5 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0, ωηπ0, π+π−
∼ 2190 6 CUTTS 78B CNTR 0.97{3 pp → NN2155±15 6,7 COUPLAND 77 CNTR 0.7{2.4 p p → p p2193± 2 6,8 ALSPECTOR 73 CNTR p p S 
hannel2190±10 9 ABRAMS 70 CNTR S 
hannel pN



967967967967See key on page 601 MesonParti
le Listings
ρ(2150),φ(2170)

π− p → ωπ0 nπ− p → ωπ0 nπ− p → ωπ0 nπ− p → ωπ0 nVALUE (MeV) DOCUMENT ID TECN COMMENT2155±21 OUR AVERAGE2155±21 OUR AVERAGE2155±21 OUR AVERAGE2155±21 OUR AVERAGE2140±30 ALDE 95 GAM2 38 π− p → ωπ0 n2170±30 ALDE 92C GAM4 100 π− p → ωπ0 n1Using the GOUNARIS 68 parametrization of the pion form fa
tor leaving the masses andwidths of the ρ(1450), ρ(1700), and ρ(2150) resonan
es as free parameters of the �t.2 In
ludes ATKINSON 85.3 See however KLOET 96 who �t π+π− only and �nd waves only up to J = 3 to beimportant but not signi�
antly resonant.4 I (JP ) = 1(1−) from simultaneous analysis of pp → π−π+ and π0π0.5 From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.6 Isospins 0 and 1 not separated.7 From a �t to the total elasti
 
ross se
tion.8Referred to as T or T region by ALSPECTOR 73.9 Seen as bump in I = 1 state. See also COOPER 68. PEASLEE 75 
on�rm p p resultsof ABRAMS 70, no narrow stru
ture.
ρ(2150) WIDTHρ(2150) WIDTHρ(2150) WIDTHρ(2150) WIDTHe+ e− PRODUCEDe+ e− PRODUCEDe+ e− PRODUCEDe+ e− PRODUCEDVALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •109± 76 10 LEES 12G BABR e+ e− → π+π− γ350± 40±50 AUBERT 07AU BABR 10.6 e+ e− → f1(1285)π+π− γ310±140 AUBERT 07AU BABR 10.6 e+ e− → η′ π+π− γ389± 79 BIAGINI 91 RVUE e+ e− → π+π− , K+K−410±100 11 CLEGG 90 RVUE e+ e− → 3(π+π−), 2(π+π−π0)pp → ππpp → ππpp → ππpp → ππVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 296 HASAN 94 RVUE pp → ππ

∼ 40 12 OAKDEN 94 RVUE 0.36{1.55 p p → ππ

∼ 250 13 MARTIN 80B RVUE
∼ 200 13 MARTIN 80C RVUES-CHANNEL NNS-CHANNEL NNS-CHANNEL NNS-CHANNEL NNVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •230±50 14 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0, ωηπ0, π+π−135±75 15,16 COUPLAND 77 CNTR 0.7{2.4 p p → p p98± 8 16 ALSPECTOR 73 CNTR p p S 
hannel
∼ 85 17 ABRAMS 70 CNTR S 
hannel pN
π− p → ωπ0 nπ− p → ωπ0 nπ− p → ωπ0 nπ− p → ωπ0 nVALUE (MeV) DOCUMENT ID TECN COMMENT320±70320±70320±70320±70 ALDE 95 GAM2 38 π− p → ωπ0 n
• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 300 ALDE 92C GAM4 100 π− p → ωπ0 n10Using the GOUNARIS 68 parametrization of the pion form fa
tor leaving the masses andwidths of the ρ(1450), ρ(1700), and ρ(2150) resonan
es as free parameters of the �t.11 In
ludes ATKINSON 85.12 See however KLOET 96 who �t π+π− only and �nd waves only up to J = 3 to beimportant but not signi�
antly resonant.13 I (JP ) = 1(1−) from simultaneous analysis of pp → π−π+ and π0π0.14 From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.15From a �t to the total elasti
 
ross se
tion.16 Isospins 0 and 1 not separated.17 Seen as bump in I = 1 state. See also COOPER 68. PEASLEE 75 
on�rm p p resultsof ABRAMS 70, no narrow stru
ture.
ρ(2150) DECAY MODESρ(2150) DECAY MODESρ(2150) DECAY MODESρ(2150) DECAY MODESMode Fra
tion (�i /�)�1 e+ e−�2 π+π− seen�3 K+K− seen�4 3(π+π−) seen�5 2(π+π−π0) seen�6 η′π+π− seen�7 f1(1285)π+π− seen�8 ωπ0 seen�9 ωπ0 η seen�10 pp

ρ(2150) �(i)�(e+ e−)/�2(total)ρ(2150) �(i)�(e+ e−)/�2(total)ρ(2150) �(i)�(e+ e−)/�2(total)ρ(2150) �(i)�(e+ e−)/�2(total)�(f1(1285)π+π−)/�total × �(e+ e−)/�total �7/�× �1/��(f1(1285)π+π−)/�total × �(e+ e−)/�total �7/�× �1/��(f1(1285)π+π−)/�total × �(e+ e−)/�total �7/�× �1/��(f1(1285)π+π−)/�total × �(e+ e−)/�total �7/�× �1/�VALUE (units 10−7) DOCUMENT ID TECN COMMENT3.1±0.6±0.53.1±0.6±0.53.1±0.6±0.53.1±0.6±0.5 18 AUBERT 07AU BABR 10.6 e+ e− → f1(1285)π+π− γ18Cal
ulated by us from the reported value of 
ross se
tion at the peak.�(η′π+π−)/�total × �(e+ e−)/�total �6/�× �1/��(η′π+π−)/�total × �(e+ e−)/�total �6/�× �1/��(η′π+π−)/�total × �(e+ e−)/�total �6/�× �1/��(η′π+π−)/�total × �(e+ e−)/�total �6/�× �1/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.9±1.9 19 AUBERT 07AU BABR 10.6 e+ e− → η′ π+π− γ19Cal
ulated by us from the reported value of 
ross se
tion at the peak.

ρ(2150) REFERENCESρ(2150) REFERENCESρ(2150) REFERENCESρ(2150) REFERENCESLEES 12G PR D86 032013 J.P. Lees et al. (BABAR Collab.)AUBERT 07AU PR D76 092005 B. Aubert et al. (BABAR Collab.)ANISOVICH 02 PL B542 8 A.V. Anisovi
h et al.ANISOVICH 01D PL B508 6 A.V. Anisovi
h et al.ANISOVICH 01E PL B513 281 A.V. Anisovi
h et al.ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.KLOET 96 PR D53 6120 W.M. Kloet, F. Myhrer (RUTG, NORD)ALDE 95 ZPHY C66 379 D.M. Alde et al. (GAMS Collab.) JPHASAN 94 PL B334 215 A. Hasan, D.V. Bugg (LOQM)OAKDEN 94 NP A574 731 M.N. Oakden, M.R. Pennington (DURH)ALDE 92C ZPHY C54 553 D.M. Alde et al. (BELG, SERP, KEK, LANL+)BIAGINI 91 NC 104A 363 M.E. Biagini et al. (FRAS, PRAG)CLEGG 90 ZPHY C45 677 A.B. Clegg, A. Donna
hie (LANC, MCHS)ATKINSON 85 ZPHY C29 333 M. Atkinson et al. (BONN, CERN, GLAS+)MARTIN 80B NP B176 355 B.R. Martin, D. Morgan (LOUC, RHEL) JPMARTIN 80C NP B169 216 A.D. Martin, M.R. Pennington (DURH) JPCUTTS 78B PR D17 16 D. Cutts et al. (STON, WISC)COUPLAND 77 PL 71B 460 M. Coupland et al. (LOQM, RHEL)PEASLEE 75 PL 57B 189 D.C. Peaslee et al. (CANB, BARI, BROW+)ALSPECTOR 73 PRL 30 511 J. Alspe
tor et al. (RUTG, UPNJ)ABRAMS 70 PR D1 1917 R.J. Abrams et al. (BNL)COOPER 68 PRL 20 1059 W.A. Cooper et al. (ANL)GOUNARIS 68 PRL 21 244 G.J. Gounaris, J.J. Sakurai
φ(2170) IG (JPC ) = 0−(1−−)Observed by AUBERT,BE 06D in the initial-state radiation pro
esse+ e− → φ f0(980)γ.

φ(2170) MASSφ(2170) MASSφ(2170) MASSφ(2170) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2189±11 OUR AVERAGE2189±11 OUR AVERAGE2189±11 OUR AVERAGE2189±11 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogram below.2200± 6± 5 471 ABLIKIM 15H BES3 J/ψ → ηφπ+π−2186±10± 6 52 ABLIKIM 08F BES J/ψ → ηφ f0(980)2125±22±10 483 AUBERT 08S BABR 10.6 e+ e− → φηγ2175±10±15 201 1 AUBERT,BE 06D BABR 10.6 e+ e− → K+K−ππγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •2079±13+79
−28 4.8k 2 SHEN 09 BELL 10.6 e+ e− → K+K−π+π− γ2192±14 116 3 AUBERT 07AK BABR 10.6 e+ e− → K+K−π+π− γ2169±20 149 3 AUBERT 07AK BABR 10.6 e+ e− → K+K−π0π0 γ1From the φ f0(980) 
omponent.2 From a �t with two in
oherent Breit-Wigners.3 From the K+K− f0(980) 
omponent.
WEIGHTED AVERAGE
2189±11 (Error scaled by 1.8)

AUBERT,BE 06D BABR 0.6
AUBERT 08S BABR 7.1
ABLIKIM 08F BES 0.1
ABLIKIM 15H BES3 1.9

χ2

       9.7
(Confidence Level = 0.022)

2050 2100 2150 2200 2250 2300

φ(2170) MASS (MeV)



968968968968MesonParti
le Listings
φ(2170), f0(2200), fJ(2220)

φ(2170) WIDTHφ(2170) WIDTHφ(2170) WIDTHφ(2170) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT79±14 OUR AVERAGE79±14 OUR AVERAGE79±14 OUR AVERAGE79±14 OUR AVERAGE104±15±15 471 ABLIKIM 15H BES3 J/ψ → ηφπ+π−65±23±17 52 ABLIKIM 08F BES J/ψ → ηφ f0(980)61±50±13 483 AUBERT 08S BABR 10.6 e+ e− → φηγ58±16±20 201 4 AUBERT,BE 06D BABR 10.6 e+ e− → K+K−ππγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •192±23+25
−61 4.8k 5 SHEN 09 BELL 10.6 e+ e− → K+K−π+π− γ71±21 116 6 AUBERT 07AK BABR 10.6 e+ e− → K+K−π+π− γ102±27 149 6 AUBERT 07AK BABR 10.6 e+ e− → K+K−π0π0 γ4From the φ f0(980) 
omponent.5 From a �t with two in
oherent Breit-Wigners.6 From the K+K− f0(980) 
omponent.

φ(2170) DECAY MODESφ(2170) DECAY MODESφ(2170) DECAY MODESφ(2170) DECAY MODESMode Fra
tion (�i /�)�1 e+ e− seen�2 φη�3 φππ�4 φ f0(980) seen�5 K+K−π+π−�6 K+K− f0(980) → K+K−π+π− seen�7 K+K−π0π0�8 K+K− f0(980) → K+K−π0π0 seen�9 K∗0K±π∓ not seen�10 K∗(892)0K∗(892)0 not seen
φ(2170) �(i)�(e+ e−)/�(total)φ(2170) �(i)�(e+ e−)/�(total)φ(2170) �(i)�(e+ e−)/�(total)φ(2170) �(i)�(e+ e−)/�(total)�(φη

)

× �(e+ e−)/�total �2�1/��(φη
)

× �(e+ e−)/�total �2�1/��(φη
)

× �(e+ e−)/�total �2�1/��(φη
)

× �(e+ e−)/�total �2�1/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.7±0.7±1.3 483 AUBERT 08S BABR 10.6 e+ e− → φηγ�(φ f0(980)) × �(e+ e−)/�total �4�1/��(φ f0(980)) × �(e+ e−)/�total �4�1/��(φ f0(980)) × �(e+ e−)/�total �4�1/��(φ f0(980)) × �(e+ e−)/�total �4�1/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT2.5±0.8±0.42.5±0.8±0.42.5±0.8±0.42.5±0.8±0.4 201 7 AUBERT,BE 06D BABR 10.6 e+ e− → K+K−ππγ7From the φ f0(980) 
omponent.

φ(2170) �(i)�(e+ e−)/�2(total)φ(2170) �(i)�(e+ e−)/�2(total)φ(2170) �(i)�(e+ e−)/�2(total)φ(2170) �(i)�(e+ e−)/�2(total)�(φππ
)/�total × �(e+ e−)/�total �3/�× �1/��(φππ
)/�total × �(e+ e−)/�total �3/�× �1/��(φππ
)/�total × �(e+ e−)/�total �3/�× �1/��(φππ
)/�total × �(e+ e−)/�total �3/�× �1/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.65±0.15±0.18 4.8k 8 SHEN 09 BELL 10.6 e+ e− → K+K−π+π− γ8Multiplied by 3/2 to take into a

ount the φπ0π0 mode. Using B(φ → K+K−) =(49.2 ± 0.6)%.
φ(2170) BRANCHING RATIOSφ(2170) BRANCHING RATIOSφ(2170) BRANCHING RATIOSφ(2170) BRANCHING RATIOS�(K+K− f0(980)→ K+K−π+π−)/�total �6/��(K+K− f0(980)→ K+K−π+π−)/�total �6/��(K+K− f0(980)→ K+K−π+π−)/�total �6/��(K+K− f0(980)→ K+K−π+π−)/�total �6/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 07AK BABR 10.6 e+ e− → K+K−π+π− γ�(K+K− f0(980)→ K+K−π0π0)/�total �8/��(K+K− f0(980)→ K+K−π0π0)/�total �8/��(K+K− f0(980)→ K+K−π0π0)/�total �8/��(K+K− f0(980)→ K+K−π0π0)/�total �8/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 07AK BABR 10.6 e+ e− → K+K−π0π0 γ�(K∗0K±π∓)/�total �9/��(K∗0K±π∓)/�total �9/��(K∗0K±π∓)/�total �9/��(K∗0K±π∓)/�total �9/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen AUBERT 07AK BABR 10.6 GeV e+ e−�(K∗(892)0K∗(892)0)/�total �10/��(K∗(892)0K∗(892)0)/�total �10/��(K∗(892)0K∗(892)0)/�total �10/��(K∗(892)0K∗(892)0)/�total �10/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen ABLIKIM 10C BES2 J/ψ → ηK+π−K−π+

φ(2170) REFERENCESφ(2170) REFERENCESφ(2170) REFERENCESφ(2170) REFERENCESABLIKIM 15H PR D91 052017 M. Ablikim et al. (BES III Collab.)ABLIKIM 10C PL B685 27 M. Ablikim et al. (BES II Collab.)SHEN 09 PR D80 031101 C.P. Shen et al. (BELLE Collab.)ABLIKIM 08F PRL 100 102003 M. Ablikim et al. (BES Collab.)AUBERT 08S PR D77 092002 B. Aubert et al. (BABAR Collab.)AUBERT 07AK PR D76 012008 B. Aubert et al. (BABAR Collab.)AUBERT,BE 06D PR D74 091103 B. Aubert et al. (BABAR Collab.)

f0(2200) IG (JPC ) = 0+(0 + +)OMITTED FROM SUMMARY TABLESeen in K0S K0S (AUGUSTIN 88), K+K− (ABLIKIM 05Q) and
ηη (BINON 05) system. Not seen in �(1S) radiative de
ays(BARU 89). f0(2200) MASSf0(2200) MASSf0(2200) MASSf0(2200) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2189±13 OUR AVERAGE2189±13 OUR AVERAGE2189±13 OUR AVERAGE2189±13 OUR AVERAGE2170±20+10

−15 ABLIKIM 05Q BES2 ψ(2S) →
γπ+π−K+K−2210±50 1 BINON 05 GAMS 33 π− p → ηηn2197±17 2 AUGUSTIN 88 DM2 J/ψ → γK0S K0S

• • • We do not use the following data for averages, �ts, limits, et
. • • •2206±12± 8 381 3,4 DOBBS 15 J/ψ → γK+K−2188±17±16 203 3,4 DOBBS 15 ψ(2S) → γK+K−
∼ 2122 HASAN 94 RVUE pp → ππ

∼ 2321 HASAN 94 RVUE pp → ππ1First solution, PWA is ambiguous.2Cannot determine spin to be 0.3Using CLEO-
 data but not authored by the CLEO Collaboration.4 From a �t to a Breit-Wigner line shape with �xed � = 238 MeV.f0(2200) WIDTHf0(2200) WIDTHf0(2200) WIDTHf0(2200) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT238±50 OUR AVERAGE238±50 OUR AVERAGE238±50 OUR AVERAGE238±50 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.220±60+40
−45 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−380±90 5 BINON 05 GAMS 33 π− p → ηηn201±51 6 AUGUSTIN 88 DM2 J/ψ → γK0S K0S

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 273 HASAN 94 RVUE p p → ππ

∼ 223 HASAN 94 RVUE p p → ππ5First solution, PWA is ambiguous.6Cannot determine spin to be 0.f0(2200) REFERENCESf0(2200) REFERENCESf0(2200) REFERENCESf0(2200) REFERENCESDOBBS 15 PR D91 052006 S. Dobbs et al. (NWES)ABLIKIM 05Q PR D72 092002 M. Ablikim et al. (BES Collab.)BINON 05 PAN 68 960 F. Binon et al.Translated from YAF 68 998.HASAN 94 PL B334 215 A. Hasan, D.V. Bugg (LOQM)BARU 89 ZPHY C42 505 S.E. Baru et al. (NOVO)AUGUSTIN 88 PRL 60 2238 J.E. Augustin et al. (DM2 Collab.)fJ(2220) IG (JPC ) = 0+(2 + + or 4 + +)OMITTED FROM SUMMARY TABLENeeds 
on�rmation. See our mini-review in the 2004 edition of thisReview, PDG 04. fJ (2220) MASSfJ (2220) MASSfJ (2220) MASSfJ (2220) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2231.1± 3.5 OUR AVERAGE2231.1± 3.5 OUR AVERAGE2231.1± 3.5 OUR AVERAGE2231.1± 3.5 OUR AVERAGE2235 ± 4 ± 6 74 BAI 96B BES e+ e− → J/ψ → γπ+π−2230 + 6
− 7 ±16 46 BAI 96B BES e+ e− → J/ψ →

γK+K−2232 + 8
− 7 ±15 23 BAI 96B BES e+ e− → J/ψ → γK0S K0S2235 ± 4 ± 5 32 BAI 96B BES e+ e− → J/ψ → γ pp2209 +17
−15 ±10 ASTON 88F LASS 11 K− p → K+K−�2230 ±20 BOLONKIN 88 SPEC 40 π− p → K0S K0S n2220 ±10 41 1 ALDE 86B GA24 38{100 πp → nηη′2230 ± 6 ±14 93 BALTRUSAIT...86D MRK3 e+ e− → γK+K−2232 ± 7 ± 7 23 BALTRUSAIT...86D MRK3 e+ e− → γK0S K0S

• • • We do not use the following data for averages, �ts, limits, et
. • • •2223.9± 2.5 2 VLADIMIRSK...08 SPEC 40 π− p → K0S K0S n +mπ02246 ±36 BAI 98H BES J/ψ → γπ0π01ALDE 86B uses data from both the GAMS-2000 and GAMS-4000 dete
tors.2 JPC = 2 + +. Systemati
 un
ertaities not evaluated



969969969969See key on page 601 MesonParti
le ListingsfJ(2220), η(2225)fJ (2220) WIDTHfJ (2220) WIDTHfJ (2220) WIDTHfJ (2220) WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT23+ 8
− 7 OUR AVERAGE23+ 8
− 7 OUR AVERAGE23+ 8
− 7 OUR AVERAGE23+ 8
− 7 OUR AVERAGE19+ 13
− 11±12 74 BAI 96B BES e+ e− → J/ψ →

γπ+π−20+ 20
− 15±17 46 BAI 96B BES e+ e− → J/ψ →

γK+K−20+ 25
− 16±14 23 BAI 96B BES e+ e− → J/ψ →

γK0S K0S15+ 12
− 9± 9 32 BAI 96B BES e+ e− → J/ψ →

γ pp60+107
− 57 ASTON 88F LASS 11 K− p → K+K−�80± 30 BOLONKIN 88 SPEC 40 π− p → K0S K0S n26+ 20
− 16±17 93 BALTRUSAIT...86D MRK3 e+ e− → γK+K−18+ 23
− 15±10 23 BALTRUSAIT...86D MRK3 e+ e− → γK0S K0S

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.6 ± 2.5 1 VLADIMIRSK...08 SPEC 40 π− p → K0S K0S n+mπ0
<80 90 ALDE 87C GAM2 38 π− p → η′ ηn1 JPC = 2 + +. Systemati
 un
ertaities not evaluatedfJ (2220) DECAY MODESfJ (2220) DECAY MODESfJ (2220) DECAY MODESfJ (2220) DECAY MODESMode Fra
tion (�i /�)�1 ππ not seen�2 π+π− not seen�3 K K not seen�4 pp not seen�5 γ γ not seen�6 ηη′(958) seen�7 φφ not seen�8 ηη not seenfJ (2220) �(i)�(γ γ)/�(total)fJ (2220) �(i)�(γ γ)/�(total)fJ (2220) �(i)�(γ γ)/�(total)fJ (2220) �(i)�(γ γ)/�(total)�(K K)

× �(γ γ
)/�total �3�5/��(K K)

× �(γ γ
)/�total �3�5/��(K K)

× �(γ γ
)/�total �3�5/��(K K)

× �(γ γ
)/�total �3�5/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

< 1.4 95 1 ACCIARRI 01H L3 γ γ → K0S K0S , Eee
m=91, 183{209 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 5.6 95 1 GODANG 97 CLE2 γ γ → K0S K0S
< 86 95 1 ALBRECHT 90G ARG γ γ → K+K−
<1000 95 2 ALTHOFF 85B TASS γ γ, K K π�(ππ

)

× �(γ γ
)/�total �1�5/��(ππ

)

× �(γ γ
)/�total �1�5/��(ππ

)

× �(γ γ
)/�total �1�5/��(ππ

)

× �(γ γ
)/�total �1�5/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<2.5<2.5<2.5<2.5 95 ALAM 98C CLE2 γ γ → π+π−1Assuming JP = 2+.2True for JP = 0+ and JP = 2+.fJ (2220) �(i)�(pp)/�2(total)fJ (2220) �(i)�(pp)/�2(total)fJ (2220) �(i)�(pp)/�2(total)fJ (2220) �(i)�(pp)/�2(total)�(pp)/�total × �(ππ
)/�total �4/�× �1/��(pp)/�total × �(ππ
)/�total �4/�× �1/��(pp)/�total × �(ππ
)/�total �4/�× �1/��(pp)/�total × �(ππ
)/�total �4/�× �1/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<18<18<18<18 95 1 AMSLER 01 CBAR 1.4{1.5 pp → π0π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<(11{42) 99 2 HASAN 96 SPEC 1.35{1.55 pp →

π+π−�(pp)/�total × �(φφ
)/�total �4/�× �7/��(pp)/�total × �(φφ
)/�total �4/�× �7/��(pp)/�total × �(φφ
)/�total �4/�× �7/��(pp)/�total × �(φφ
)/�total �4/�× �7/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<6<6<6<6 95 3 EVANGELIS... 98 SPEC 1.1-2.0 pp → φφ�(pp)/�total × �(ηη
)/�total �4/�× �8/��(pp)/�total × �(ηη
)/�total �4/�× �8/��(pp)/�total × �(ηη
)/�total �4/�× �8/��(pp)/�total × �(ηη
)/�total �4/�× �8/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<4<4<4<4 95 1 AMSLER 01 CBAR 1.4{1.5 pp → ηη1For JP = 2+ in the mass range 2222{2240 MeV and the total width between 10 and20 MeV.2For JP = 2+ and JP = 4+ in the mass range 2220{2245 MeV and the total width of15 MeV.3 For JP = 2+, the mass of 2235 MeV and the total width of 15 MeV.

fJ (2220) BRANCHING RATIOSfJ (2220) BRANCHING RATIOSfJ (2220) BRANCHING RATIOSfJ (2220) BRANCHING RATIOS�(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/�VALUE DOCUMENT ID COMMENTnot seennot seennot seennot seen 1 DOBBS 15 J/ψ → γππnot seen 1 DOBBS 15 ψ(2S) → γππ1Using CLEO-
 data but not authored by the CLEO Collaboration.�(K K)/�total �3/��(K K)/�total �3/��(K K)/�total �3/��(K K)/�total �3/�VALUE DOCUMENT ID COMMENTnot seennot seennot seennot seen 1 DOBBS 15 J/ψ → γK Knot seen 1 DOBBS 15 ψ(2S) → γK K1Using CLEO-
 data but not authored by the CLEO Collaboration.�(ππ
)/�(KK) �1/�3�(ππ
)/�(KK) �1/�3�(ππ
)/�(KK) �1/�3�(ππ
)/�(KK) �1/�3VALUE DOCUMENT ID TECN COMMENT1.0±0.51.0±0.51.0±0.51.0±0.5 BAI 96B BES e+ e− → J/ψ → γ 2π ,K K�(pp)/�total �4/��(pp)/�total �4/��(pp)/�total �4/��(pp)/�total �4/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen 1 AUBERT 07AV BABR B → ppK(∗)not seen WANG 05A BELL B+ → ppK+
<3.0 95 2 EVANGELIS... 97 SPEC 1.96-2.40 p p → K0S K0S
<1.1 99.7 3 BARNES 93 SPEC 1.3-1.57 pp → K0S K0S
<2.6 99.7 3 BARDIN 87 CNTR 1.3-1.5 p p → K+K−
<3.6 99.7 3 SCULLI 87 CNTR 1.29-1.55 p p → K+K−1Assuming � < 30 MeV.2Assuming � ∼ 20 MeV, JP = 2+ and B(fJ (2220) → K K) = 100%.3Assuming � = 30-35 MeV, JP = 2+ and B(fJ (2220) → K K) = 100%.�(pp)/�(K K) �4/�3�(pp)/�(K K) �4/�3�(pp)/�(K K) �4/�3�(pp)/�(K K) �4/�3VALUE DOCUMENT ID TECN COMMENT0.17±0.090.17±0.090.17±0.090.17±0.09 BAI 96B BES e+ e− → J/ψ → γ pp ,K KfJ (2220) REFERENCESfJ (2220) REFERENCESfJ (2220) REFERENCESfJ (2220) REFERENCESDOBBS 15 PR D91 052006 S. Dobbs et al. (NWES)VLADIMIRSK... 08 PAN 71 2129 V.V. Vladimirsky et al. (ITEP)Translated from YAF 71 2166.AUBERT 07AV PR D76 092004 B. Aubert et al. (BABAR Collab.)WANG 05A PL B617 141 M.-Z. Wang et al. (BELLE Collab.)PDG 04 PL B592 1 S. Eidelman et al. (PDG Collab.)ACCIARRI 01H PL B501 173 M. A

iarri et al. (L3 Collab.)AMSLER 01 PL B520 175 C. Amsler et al. (Crystal Barrel Collab.)ALAM 98C PRL 81 3328 M.S. Alam et al. (CLEO Collab.)BAI 98H PRL 81 1179 J.Z. Bai et al. (BES Collab.)EVANGELIS... 98 PR D57 5370 C. Evangelista et al. (JETSET Collab.)EVANGELIS... 97 PR D56 3803 C. Evangelista et al. (LEAR Collab.)GODANG 97 PRL 79 3829 R. Godang et al. (CLEO Collab.)BAI 96B PRL 76 3502 J.Z. Bai et al. (BES Collab.)HASAN 96 PL B388 376 A. Hasan, D.V. Bugg (BRUN, LOQM)BARNES 93 PL B309 469 P.D. Barnes et al. (PS185 Collab.)ALBRECHT 90G ZPHY C48 183 H. Albre
ht et al. (ARGUS Collab.)ASTON 88F PL B215 199 D. Aston et al. (SLAC, NAGO, CINC, INUS) JPBOLONKIN 88 NP B309 426 B.V. Bolonkin et al. (ITEP, SERP)ALDE 87C SJNP 45 255 D. Alde et al.Translated from YAF 45 405.BARDIN 87 PL B195 292 G. Bardin et al. (SACL, FERR, CERN, PADO+)SCULLI 87 PRL 58 1715 J. S
ulli et al. (NYU, BNL)ALDE 86B PL B177 120 D.M. Alde et al. (SERP, BELG, LANL, LAPP)BALTRUSAIT... 86D PRL 56 107 R.M. Baltrusaitis (CIT, UCSC, ILL, SLAC+)ALTHOFF 85B ZPHY C29 189 M. Altho� et al. (TASSO Collab.)OTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSDEL-AMO-SA... 10O PRL 105 172001 P. del Amo San
hez et al. (BABAR Collab.)
η(2225) IG (JPC ) = 0+(0−+)OMITTED FROM SUMMARY TABLESeen in J/ψ → γφφ. Possibly seen in B → φφK by LEES 11A.

η(2225) MASSη(2225) MASSη(2225) MASSη(2225) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2226±16 OUR AVERAGE2226±16 OUR AVERAGE2226±16 OUR AVERAGE2226±16 OUR AVERAGE2240+30
−20+30

−20 196 ± 19 ABLIKIM 08I BES J/ψ → γK+K−K0S K0L2230±25±15 BAI 90B MRK3 J/ψ → γK+K−K+K−2214±20±13 BAI 90B MRK3 J/ψ → γK+K−K0S K0L
• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 2220 BISELLO 86B DM2 J/ψ → γK+K−K+K−



970970970970MesonParti
le Listings
η(2225), ρ3(2250), f2(2300)

η(2225) WIDTHη(2225) WIDTHη(2225) WIDTHη(2225) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT185+ 70
− 40 OUR AVERAGE185+ 70
− 40 OUR AVERAGE185+ 70
− 40 OUR AVERAGE185+ 70
− 40 OUR AVERAGE190± 30+60

−40 196 ± 19 ABLIKIM 08I BES J/ψ → γK+K−K0S K0L150+300
− 60±60 BAI 90B MRK3 J/ψ → γK+K−K+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 80 BISELLO 86B DM2 J/ψ → γK+K−K+K−

η(2225) REFERENCESη(2225) REFERENCESη(2225) REFERENCESη(2225) REFERENCESLEES 11A PR D84 012001 J.P. Lees et al. (BABAR Collab.)ABLIKIM 08I PL B662 330 M. Ablikim et al. (BES Collab.)BAI 90B PRL 65 1309 Z. Bai et al. (Mark III Collab.)BISELLO 86B PL B179 294 D. Bisello et al. (DM2 Collab.)
ρ3(2250) IG (JPC ) = 1+(3−−)OMITTED FROM SUMMARY TABLEContains results mostly from formation experiments. For further pro-du
tion experiments see the Further States entry. See also ρ(2150),f2(2150), f4(2300), ρ5(2350).

ρ3(2250) MASSρ3(2250) MASSρ3(2250) MASSρ3(2250) MASSpp → ππ or K Kpp → ππ or K Kpp → ππ or K Kpp → ππ or K KVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 2232 HASAN 94 RVUE p p → ππ

∼ 2090 1 OAKDEN 94 RVUE 0.36{1.55 pp → ππ

∼ 2250 2 MARTIN 80B RVUE
∼ 2300 2 MARTIN 80C RVUE
∼ 2140 3 CARTER 78B CNTR 0 0.7{2.4 p p → K−K+
∼ 2150 4 CARTER 77 CNTR 0 0.7{2.4 p p → ππ1See however KLOET 96 who �t π+π− only and �nd waves only up to J = 3 to beimportant but not signi�
antly resonant.2 I (JP ) = 1(3−) from simultaneous analysis of pp → π−π+ and π0π0.3 I = 0, 1. JP = 3− from Barrelet-zero analysis.4 I (JP ) = 1(3−) from amplitude analysis.S-CHANNEL NNS-CHANNEL NNS-CHANNEL NNS-CHANNEL NNVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2260±20 5 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,

ωηπ0, π+π−
∼ 2190 6 CUTTS 78B CNTR 0.97{3 pp → NN2155±15 6,7 COUPLAND 77 CNTR 0 0.7{2.4 p p → p p2193± 2 6,8 ALSPECTOR 73 CNTR p p S 
hannel2190±10 9 ABRAMS 70 CNTR S 
hannel pN5From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.6 Isospins 0 and 1 not separated.7 From a �t to the total elasti
 
ross se
tion.8Referred to as T or T region by ALSPECTOR 73.9 Seen as bump in I = 1 state. See also COOPER 68. PEASLEE 75 
on�rm p p resultsof ABRAMS 70, no narrow stru
ture.
π− p → ηπππ− p → ηπππ− p → ηπππ− p → ηππVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2290±20±30 AMELIN 00 VES 37 π− p → ηπ+π− n

ρ3(2250) WIDTHρ3(2250) WIDTHρ3(2250) WIDTHρ3(2250) WIDTHpp → ππ or K Kpp → ππ or K Kpp → ππ or K Kpp → ππ or K KVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 220 HASAN 94 RVUE p p → ππ

∼ 60 10 OAKDEN 94 RVUE 0.36{1.55 pp → ππ

∼ 250 11 MARTIN 80B RVUE
∼ 200 11 MARTIN 80C RVUE
∼ 150 12 CARTER 78B CNTR 0 0.7{2.4 p p → K−K+
∼ 200 13 CARTER 77 CNTR 0 0.7{2.4 p p → ππ10See however KLOET 96 who �t π+π− only and �nd waves only up to J = 3 to beimportant but not signi�
antly resonant.11 I (JP ) = 1(3−) from simultaneous analysis of pp → π−π+ and π0π0.12 I = 0, 1. JP = 3− from Barrelet-zero analysis.13 I (JP ) = 1(3−) from amplitude analysis.

S-CHANNEL NNS-CHANNEL NNS-CHANNEL NNS-CHANNEL NNVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •160±25 14 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,

ωηπ0, π+π−135±75 15,16 COUPLAND 77 CNTR 0 0.7{2.4 p p → p p98± 8 16 ALSPECTOR 73 CNTR p p S 
hannel
∼ 85 17 ABRAMS 70 CNTR S 
hannel pN14From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.15From a �t to the total elasti
 
ross se
tion.16 Isospins 0 and 1 not separated.17 Seen as bump in I = 1 state. See also COOPER 68. PEASLEE 75 
on�rm p p resultsof ABRAMS 70, no narrow stru
ture.
π− p → ηπππ− p → ηπππ− p → ηπππ− p → ηππVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •230±50±80 AMELIN 00 VES 37 π− p → ηπ+π− n

ρ3(2250) REFERENCESρ3(2250) REFERENCESρ3(2250) REFERENCESρ3(2250) REFERENCESANISOVICH 02 PL B542 8 A.V. Anisovi
h et al.ANISOVICH 01D PL B508 6 A.V. Anisovi
h et al.ANISOVICH 01E PL B513 281 A.V. Anisovi
h et al.AMELIN 00 NP A668 83 D. Amelin et al. (VES Collab.)ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.KLOET 96 PR D53 6120 W.M. Kloet, F. Myhrer (RUTG, NORD)HASAN 94 PL B334 215 A. Hasan, D.V. Bugg (LOQM)OAKDEN 94 NP A574 731 M.N. Oakden, M.R. Pennington (DURH)MARTIN 80B NP B176 355 B.R. Martin, D. Morgan (LOUC, RHEL) JPMARTIN 80C NP B169 216 A.D. Martin, M.R. Pennington (DURH) JPCARTER 78B NP B141 467 A.A. Carter (LOQM)CUTTS 78B PR D17 16 D. Cutts et al. (STON, WISC)CARTER 77 PL 67B 117 A.A. Carter et al. (LOQM, RHEL) JPCOUPLAND 77 PL 71B 460 M. Coupland et al. (LOQM, RHEL)PEASLEE 75 PL 57B 189 D.C. Peaslee et al. (CANB, BARI, BROW+)ALSPECTOR 73 PRL 30 511 J. Alspe
tor et al. (RUTG, UPNJ)ABRAMS 70 PR D1 1917 R.J. Abrams et al. (BNL)COOPER 68 PRL 20 1059 W.A. Cooper et al. (ANL)f2(2300) IG (JPC ) = 0+(2 + +)f2(2300) MASSf2(2300) MASSf2(2300) MASSf2(2300) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2297±282297±282297±282297±28 1 ETKIN 88 MPS 22 π− p → φφn
• • • We do not use the following data for averages, �ts, limits, et
. • • •2243+ 7

− 6+ 3
−29 UEHARA 13 BELL γ γ → K0S K0S2270±12 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n2327± 9± 6 ABE 04 BELL 10.6 e+ e− → e+ e−K+K−2231±10 BOOTH 86 OMEG 85 π−Be → 2φBe2220+90

−20 LINDENBAUM 84 RVUE2320±40 ETKIN 82 MPS 22 π− p → 2φn1 In
ludes data of ETKIN 85. The per
entage of the resonan
e going into φφ 2 + + S2,D2, and D0 is 6+15
− 5, 25+18

−14, and 69+16
−27, respe
tively.f2(2300) WIDTHf2(2300) WIDTHf2(2300) WIDTHf2(2300) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT149±41149±41149±41149±41 2 ETKIN 88 MPS 22 π− p → φφn

• • • We do not use the following data for averages, �ts, limits, et
. • • •145±12+27
−34 UEHARA 13 BELL γ γ → K0S K0S90±29 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n275±36±20 ABE 04 BELL 10.6 e+ e− → e+ e−K+K−133±50 BOOTH 86 OMEG 85 π−Be → 2φBe200±50 LINDENBAUM 84 RVUE220±70 ETKIN 82 MPS 22 π− p → 2φn2 In
ludes data of ETKIN 85.f2(2300) DECAY MODESf2(2300) DECAY MODESf2(2300) DECAY MODESf2(2300) DECAY MODESMode Fra
tion (�i /�)�1 φφ seen�2 K K seen�3 γ γ seen



971971971971See key on page 601 Meson Parti
le Listingsf2(2300), f4(2300), f0(2330)f2(2300) �(i)�(γ γ)/�(total)f2(2300) �(i)�(γ γ)/�(total)f2(2300) �(i)�(γ γ)/�(total)f2(2300) �(i)�(γ γ)/�(total)�(K K)

× �(γ γ
)/�total �2�3/��(K K)

× �(γ γ
)/�total �2�3/��(K K)

× �(γ γ
)/�total �2�3/��(K K)

× �(γ γ
)/�total �2�3/�VALUE (eV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.2+0.5
−0.4+ 1.3

− 2.2 UEHARA 13 BELL γ γ → K0S K0S44 ±6 ±12 3 ABE 04 BELL 10.6 e+ e− → e+ e−K+K−3Assuming spin 2. f2(2300) REFERENCESf2(2300) REFERENCESf2(2300) REFERENCESf2(2300) REFERENCESUEHARA 13 PTEP 2013 123C01 S. Uehara et al. (BELLE Collab.)VLADIMIRSK... 06 PAN 69 493 V.V. Vladimirsky et al. (ITEP, Mos
ow)Translated from YAF 69 515.ABE 04 EPJ C32 323 K. Abe et al. (BELLE Collab.)ETKIN 88 PL B201 568 A. Etkin et al. (BNL, CUNY)BOOTH 86 NP B273 677 P.S.L. Booth et al. (LIVP, GLAS, CERN)ETKIN 85 PL 165B 217 A. Etkin et al. (BNL, CUNY)LINDENBAUM 84 CNPP 13 285 S.J. Lindenbaum (CUNY)ETKIN 82 PRL 49 1620 A. Etkin et al. (BNL, CUNY)f4(2300) IG (JPC ) = 0+(4 + +)OMITTED FROM SUMMARY TABLEThis entry was previously 
alled U0(2350). Contains results mostlyfrom formation experiments. For further produ
tion experimentssee the Further States entry. See also ρ(2150), f2(2150), ρ3(2250),
ρ5(2350). f4(2300) MASSf4(2300) MASSf4(2300) MASSf4(2300) MASSpp → ππ or K Kpp → ππ or K Kpp → ππ or K Kpp → ππ or K KVALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 2314 HASAN 94 RVUE pp → ππ

∼ 2300 1 MARTIN 80B RVUE
∼ 2300 1 MARTIN 80C RVUE
∼ 2340 2 CARTER 78B CNTR 0.7{2.4 pp → K−K+
∼ 2330 DULUDE 78B OSPK 1{2 pp → π0π0
∼ 2310 3 CARTER 77 CNTR 0.7{2.4 pp → ππ1 I (JP ) = 0(4+) from simultaneous analysis of pp → π−π+ and π0π0.2 I (JP ) = 0(4+) from Barrelet-zero analysis.3 I (JP ) = 0(4+) from amplitude analysis.S-CHANNEL pp or NNS-CHANNEL pp or NNS-CHANNEL pp or NNS-CHANNEL pp or NNVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2283±17 4 ANISOVICH 00J SPEC
∼ 2380 5 CUTTS 78B CNTR 0.97{3 p p → NN2345±15 5,6 COUPLAND 77 CNTR 0.7{2.4 pp → pp2359± 2 5,7 ALSPECTOR 73 CNTR pp S 
hannel2375±10 ABRAMS 70 CNTR S 
hannel NN4From the 
ombined analysis of ANISOVICH 99C and ANISOVICH 99F on p p → ηπ0π0,

π0π0, ηη, ηη′, π+π−.5 Isospins 0 and 1 not separated.6 From a �t to the total elasti
 
ross se
tion.7Referred to as U or U region by ALSPECTOR 73.
π− p → ηππnπ− p → ηππnπ− p → ηππnπ− p → ηππnVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2330±20±40 AMELIN 00 VES 37 π− p → ηπ+π− npp CENTRAL PRODUCTIONpp CENTRAL PRODUCTIONpp CENTRAL PRODUCTIONpp CENTRAL PRODUCTIONVALUE (MeV) DOCUMENT ID COMMENT2320±60 OUR ESTIMATE2320±60 OUR ESTIMATE2320±60 OUR ESTIMATE2320±60 OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •2332±15 BARBERIS 00F 450 pp → pf ωωpsf4(2300) WIDTHf4(2300) WIDTHf4(2300) WIDTHf4(2300) WIDTHpp → ππ or K Kpp → ππ or K Kpp → ππ or K Kpp → ππ or K KVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 278 HASAN 94 RVUE pp → ππ

∼ 200 8 MARTIN 80C RVUE
∼ 150 9 CARTER 78B CNTR 0.7{2.4 pp → K−K+
∼ 210 10 CARTER 77 CNTR 0.7{2.4 pp → ππ8 I (JP ) = 0(4+) from simultaneous analysis of pp → π−π+ and π0π0.9 I (JP ) = 0(4+) from Barrelet-zero analysis.10 I (JP ) = 0(4+) from amplitude analysis.

S-CHANNEL pp or NNS-CHANNEL pp or NNS-CHANNEL pp or NNS-CHANNEL pp or NNVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •310± 25 11 ANISOVICH 00J SPEC135+150

− 65 12,13 COUPLAND 77 CNTR 0.7{2.4 pp → pp165+ 18
− 8 13 ALSPECTOR 73 CNTR pp S 
hannel

∼ 190 ABRAMS 70 CNTR S 
hannel NN11From the 
ombined analysis of ANISOVICH 99C and ANISOVICH 99F on p p → ηπ0π0,
π0π0, ηη, ηη′, π+π−.12 From a �t to the total elasti
 
ross se
tion.13 Isospins 0 and 1 not separated.

π− p → ηππnπ− p → ηππnπ− p → ηππnπ− p → ηππnVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •235±50±40 AMELIN 00 VES 37 π− p → ηπ+π− npp CENTRAL PRODUCTIONpp CENTRAL PRODUCTIONpp CENTRAL PRODUCTIONpp CENTRAL PRODUCTIONVALUE (MeV) DOCUMENT ID COMMENT250±80 OUR ESTIMATE250±80 OUR ESTIMATE250±80 OUR ESTIMATE250±80 OUR ESTIMATE
• • • We do not use the following data for averages, �ts, limits, et
. • • •260±57 BARBERIS 00F 450 pp → pf ωωpsf4(2300) DECAY MODESf4(2300) DECAY MODESf4(2300) DECAY MODESf4(2300) DECAY MODESMode Fra
tion (�i /�)�1 ρρ seen�2 ωω seen�3 ηππ seen�4 ππ seen�5 K K seen�6 NN seenf4(2300) BRANCHING RATIOSf4(2300) BRANCHING RATIOSf4(2300) BRANCHING RATIOSf4(2300) BRANCHING RATIOS�(ρρ

)/�(ωω
) �1/�2�(ρρ

)/�(ωω
) �1/�2�(ρρ

)/�(ωω
) �1/�2�(ρρ

)/�(ωω
) �1/�2VALUE DOCUMENT ID COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.8±0.5 BARBERIS 00F 450 pp → pf ωωpsf4(2300) REFERENCESf4(2300) REFERENCESf4(2300) REFERENCESf4(2300) REFERENCESAMELIN 00 NP A668 83 D. Amelin et al. (VES Collab.)ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.BARBERIS 00F PL B484 198 D. Barberis et al. (WA 102 Collab.)ANISOVICH 99C PL B452 173 A.V. Anisovi
h et al.ANISOVICH 99F NP A651 253 A.V. Anisovi
h et al.HASAN 94 PL B334 215 A. Hasan, D.V. Bugg (LOQM)MARTIN 80B NP B176 355 B.R. Martin, D. Morgan (LOUC, RHEL) JPMARTIN 80C NP B169 216 A.D. Martin, M.R. Pennington (DURH) JPCARTER 78B NP B141 467 A.A. Carter (LOQM)CUTTS 78B PR D17 16 D. Cutts et al. (STON, WISC)DULUDE 78B PL 79B 335 R.S. Dulude et al. (BROW, MIT, BARI) JPCARTER 77 PL 67B 117 A.A. Carter et al. (LOQM, RHEL) JPCOUPLAND 77 PL 71B 460 M. Coupland et al. (LOQM, RHEL)ALSPECTOR 73 PRL 30 511 J. Alspe
tor et al. (RUTG, UPNJ)ABRAMS 70 PR D1 1917 R.J. Abrams et al. (BNL)f0(2330) IG (JPC ) = 0+(0 + +)OMITTED FROM SUMMARY TABLEf0(2330) MASSf0(2330) MASSf0(2330) MASSf0(2330) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2314±25 1 BUGG 04A RVUE2337±14 ANISOVICH 00J SPEC 2.0 p p → ππ, ηη

∼ 2321 HASAN 94 RVUE pp → ππ1Partial wave analysis of the data on pp → �� from BARNES 00.f0(2330) WIDTHf0(2330) WIDTHf0(2330) WIDTHf0(2330) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •144±20 2 BUGG 04A RVUE217±33 ANISOVICH 00J SPEC 2.0 p p → ππ, ηη

∼ 223 HASAN 94 RVUE pp → ππ2Partial wave analysis of the data on pp → �� from BARNES 00.f0(2330) REFERENCESf0(2330) REFERENCESf0(2330) REFERENCESf0(2330) REFERENCESBUGG 04A EPJ C36 161 D.V. BuggANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.BARNES 00 PR C62 055203 P.D. Barnes et al.HASAN 94 PL B334 215 A. Hasan, D.V. Bugg (LOQM)



972972972972MesonParti
le Listingsf2(2340), ρ5(2350)f2(2340) IG (JPC ) = 0+(2 + +)f2(2340) MASSf2(2340) MASSf2(2340) MASSf2(2340) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2345+50
−40 OUR AVERAGE2345+50
−40 OUR AVERAGE2345+50
−40 OUR AVERAGE2345+50
−40 OUR AVERAGE2362+31
−30+140

− 63 5.5k 1 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη2339±55 2 ETKIN 88 MPS 22 π− p → φφn
• • • We do not use the following data for averages, �ts, limits, et
. • • •2350± 7 80k 3 UMAN 06 E835 5.2 p p → ηηπ02392±10 BOOTH 86 OMEG 85 π−Be → 2φBe2360±20 LINDENBAUM 84 RVUE1From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.2 In
ludes data of ETKIN 85. The per
entage of the resonan
e going into φφ 2 + + S2,D2, and D0 is 37 ± 19, 4+12

− 4, and 59+21
−19, respe
tively.3 Statisti
al error only. f2(2340) WIDTHf2(2340) WIDTHf2(2340) WIDTHf2(2340) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT322+ 70

− 60 OUR AVERAGE322+ 70
− 60 OUR AVERAGE322+ 70
− 60 OUR AVERAGE322+ 70
− 60 OUR AVERAGE334+ 62
− 54+165

−100 5.5k 4 ABLIKIM 13N BES3 e+ e− → J/ψ → γ ηη319+ 81
− 69 5 ETKIN 88 MPS 22 π− p → φφn

• • • We do not use the following data for averages, �ts, limits, et
. • • •218± 16 80k 6 UMAN 06 E835 5.2 p p → ηηπ0198± 50 BOOTH 86 OMEG 85 π−Be → 2φBe150+150
− 50 LINDENBAUM 84 RVUE4From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.5 In
ludes data of ETKIN 85.6 Statisti
al error only. f2(2340) DECAY MODESf2(2340) DECAY MODESf2(2340) DECAY MODESf2(2340) DECAY MODESMode Fra
tion (�i /�)�1 φφ seen�2 ηη seenf2(2340) BRANCHING RATIOSf2(2340) BRANCHING RATIOSf2(2340) BRANCHING RATIOSf2(2340) BRANCHING RATIOS�(ηη

)/�total �2/��(ηη
)/�total �2/��(ηη
)/�total �2/��(ηη
)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen UMAN 06 E835 5.2 p p → ηηπ0f2(2340) REFERENCESf2(2340) REFERENCESf2(2340) REFERENCESf2(2340) REFERENCESABLIKIM 13N PR D87 092009 Ablikim M. et al. (BES III Collab.)UMAN 06 PR D73 052009 I. Uman et al. (FNAL E835)ETKIN 88 PL B201 568 A. Etkin et al. (BNL, CUNY)BOOTH 86 NP B273 677 P.S.L. Booth et al. (LIVP, GLAS, CERN)ETKIN 85 PL 165B 217 A. Etkin et al. (BNL, CUNY)LINDENBAUM 84 CNPP 13 285 S.J. Lindenbaum (CUNY)

ρ5(2350) IG (JPC ) = 1+(5−−)OMITTED FROM SUMMARY TABLEThis entry was previously 
alled U1(2400). See also ρ(2150),f2(2150), ρ3(2250), f4(2300).
ρ5(2350) MASSρ5(2350) MASSρ5(2350) MASSρ5(2350) MASS

π− p → ωπ0 nπ− p → ωπ0 nπ− p → ωπ0 nπ− p → ωπ0 nVALUE (MeV) DOCUMENT ID TECN COMMENT2330±352330±352330±352330±35 ALDE 95 GAM2 38 π− p → ωπ0 nVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 2303 HASAN 94 RVUE p p → ππ

∼ 2300 1 MARTIN 80B RVUE
∼ 2250 1 MARTIN 80C RVUE
∼ 2500 2 CARTER 78B CNTR 0 0.7{2.4 p p → K−K+
∼ 2480 3 CARTER 77 CNTR 0 0.7{2.4 p p → ππ

S-CHANNEL NNS-CHANNEL NNS-CHANNEL NNS-CHANNEL NNVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2300±45 4 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,

ωηπ0, π+π−2295±30 ANISOVICH 00J SPEC
∼ 2380 5 CUTTS 78B CNTR 0.97{3 pp → NN2345±15 5,6 COUPLAND 77 CNTR 0 0.7{2.4 p p → p p2359± 2 5,7 ALSPECTOR 73 CNTR p p S 
hannel2350±10 8 ABRAMS 70 CNTR S 
hannel NN2360±25 9 OH 70B HDBC −0 p (pn), K∗K 2π
π− p → K+K−nπ− p → K+K−nπ− p → K+K−nπ− p → K+K−nVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2307±6 ALPER 80 CNTR 0 62 π− p → K+K− n1 I (JP ) = 1(5−) from simultaneous analysis of pp → π−π+ and π0π0.2 I = 0(1); JP = 5− from Barrelet-zero analysis.3 I (JP ) = 1(5−) from amplitude analysis.4 From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.5 Isospins 0 and 1 not separated.6 From a �t to the total elasti
 
ross se
tion.7Referred to as U or U region by ALSPECTOR 73.8 For I = 1 NN.9No eviden
e for this bump seen in the pp data of CHAPMAN 71B. Narrow state not
on�rmed by OH 73 with more data.

ρ5(2350) WIDTHρ5(2350) WIDTHρ5(2350) WIDTHρ5(2350) WIDTH
π− p → ωπ0 nπ− p → ωπ0 nπ− p → ωπ0 nπ− p → ωπ0 nVALUE (MeV) DOCUMENT ID TECN COMMENT400±100400±100400±100400±100 ALDE 95 GAM2 38 π− p → ωπ0 npp → ππ or K Kpp → ππ or K Kpp → ππ or K Kpp → ππ or K KVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 169 HASAN 94 RVUE p p → ππ

∼ 250 10 MARTIN 80B RVUE
∼ 300 10 MARTIN 80C RVUE
∼ 150 11 CARTER 78B CNTR 0 0.7{2.4 p p → K−K+
∼ 210 12 CARTER 77 CNTR 0 0.7{2.4 p p → ππS-CHANNEL NNS-CHANNEL NNS-CHANNEL NNS-CHANNEL NNVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •260± 75 13 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,

ωηπ0, π+π−235+ 65
− 40 ANISOVICH 00J SPEC135+150
− 65 14,15 COUPLAND 77 CNTR 0 0.7{2.4 p p → p p165+ 18
− 8 15 ALSPECTOR 73 CNTR p p S 
hannel

< 60 16 OH 70B HDBC −0 p (pn), K∗K 2π
∼ 140 ABRAMS 67C CNTR S 
hannel pN
π− p → K+K−nπ− p → K+K−nπ− p → K+K−nπ− p → K+K−nVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •245±20 ALPER 80 CNTR 0 62 π− p → K+K− n10 I (JP ) = 1(5−) from simultaneous analysis of pp → π−π+ and π0π0.11 I = 0(1); JP = 5− from Barrelet-zero analysis.12 I (JP ) = 1(5−) from amplitude analysis.13 From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.14From a �t to the total elasti
 
ross se
tion.15 Isospins 0 and 1 not separated.16No eviden
e for this bump seen in the pp data of CHAPMAN 71B. Narrow state not
on�rmed by OH 73 with more data.

ρ5(2350) REFERENCESρ5(2350) REFERENCESρ5(2350) REFERENCESρ5(2350) REFERENCESANISOVICH 02 PL B542 8 A.V. Anisovi
h et al.ANISOVICH 01D PL B508 6 A.V. Anisovi
h et al.ANISOVICH 01E PL B513 281 A.V. Anisovi
h et al.ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.ALDE 95 ZPHY C66 379 D.M. Alde et al. (GAMS Collab.) JPHASAN 94 PL B334 215 A. Hasan, D.V. Bugg (LOQM)ALPER 80 PL 94B 422 B. Alper et al. (AMST, CERN, CRAC, MPIM+)MARTIN 80B NP B176 355 B.R. Martin, D. Morgan (LOUC, RHEL) JPMARTIN 80C NP B169 216 A.D. Martin, M.R. Pennington (DURH) JPCARTER 78B NP B141 467 A.A. Carter (LOQM)CUTTS 78B PR D17 16 D. Cutts et al. (STON, WISC)CARTER 77 PL 67B 117 A.A. Carter et al. (LOQM, RHEL) JPCOUPLAND 77 PL 71B 460 M. Coupland et al. (LOQM, RHEL)ALSPECTOR 73 PRL 30 511 J. Alspe
tor et al. (RUTG, UPNJ)OH 73 NP B51 57 B.Y. Oh et al. (MSU)CHAPMAN 71B PR D4 1275 J.W. Chapman et al. (MICH)ABRAMS 70 PR D1 1917 R.J. Abrams et al. (BNL)OH 70B PRL 24 1257 B.Y. Oh et al. (MSU)ABRAMS 67C PRL 18 1209 R.J. Abrams et al. (BNL)



973973973973See key on page 601 MesonParti
le Listingsa6(2450), f6(2510)a6(2450) IG (JPC ) = 1−(6 + +)OMITTED FROM SUMMARY TABLENeeds 
on�rmation. a6(2450) MASSa6(2450) MASSa6(2450) MASSa6(2450) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT2450±1302450±1302450±1302450±130 1 CLELAND 82B SPEC ± 50 πp → K0S K± p1From an amplitude analysis. a6(2450) WIDTHa6(2450) WIDTHa6(2450) WIDTHa6(2450) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT400±250400±250400±250400±250 2 CLELAND 82B SPEC ± 50 πp → K0S K± p2From an amplitude analysis.a6(2450) DECAY MODESa6(2450) DECAY MODESa6(2450) DECAY MODESa6(2450) DECAY MODESMode�1 K K a6(2450) REFERENCESa6(2450) REFERENCESa6(2450) REFERENCESa6(2450) REFERENCESCLELAND 82B NP B208 228 W.E. Cleland et al. (DURH, GEVA, LAUS+)f6(2510) IG (JPC ) = 0+(6 + +)OMITTED FROM SUMMARY TABLENeeds 
on�rmation. f6(2510) MASSf6(2510) MASSf6(2510) MASSf6(2510) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2469±29 OUR AVERAGE2469±29 OUR AVERAGE2469±29 OUR AVERAGE2469±29 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.2485±40 1 ANISOVICH 00J SPEC 1.92{2.41 pp2420±30 ALDE 98 GAM4 100 π− p → π0π0 n2510±30 BINON 84B GAM2 38 π− p → n2π01From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99F, ANISOVICH 99J,ANISOVICH 99K, and ANISOVICH 00B.
WEIGHTED AVERAGE
2469±29 (Error scaled by 1.5)

BINON 84B GAM2 1.8
ALDE 98 GAM4 2.7
ANISOVICH 00J SPEC 0.2

χ2

       4.7
(Confidence Level = 0.096)

2300 2400 2500 2600 2700 2800f6(2510) MASS (MeV)f6(2510) WIDTHf6(2510) WIDTHf6(2510) WIDTHf6(2510) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT283±40 OUR AVERAGE283±40 OUR AVERAGE283±40 OUR AVERAGE283±40 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.410±90 2 ANISOVICH 00J SPEC 1.92{2.41 pp270±60 ALDE 98 GAM4 100 π− p → π0π0 n240±60 BINON 84B GAM2 38 π− p → n2π02From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99F, ANISOVICH 99J,ANISOVICH 99K, and ANISOVICH 00B.

f6(2510) DECAY MODESf6(2510) DECAY MODESf6(2510) DECAY MODESf6(2510) DECAY MODESMode Fra
tion (�i /�)�1 ππ (6.0±1.0) %f6(2510) BRANCHING RATIOSf6(2510) BRANCHING RATIOSf6(2510) BRANCHING RATIOSf6(2510) BRANCHING RATIOS�(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/��(ππ
)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.06±0.010.06±0.010.06±0.010.06±0.01 3 BINON 83C GAM2 38 π− p → n4γ3Assuming one pion ex
hange and using data of BOLOTOV 74.f6(2510) REFERENCESf6(2510) REFERENCESf6(2510) REFERENCESf6(2510) REFERENCESANISOVICH 00B NP A662 319 A.V. Anisovi
h et al.ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.ANISOVICH 99C PL B452 173 A.V. Anisovi
h et al.ANISOVICH 99F NP A651 253 A.V. Anisovi
h et al.ANISOVICH 99J PL B471 271 A.V. Anisovi
h et al.ANISOVICH 99K PL B468 309 A.V. Anisovi
h et al.ALDE 98 EPJ A3 361 D. Alde et al. (GAM4 Collab.)Also PAN 62 405 D. Alde et al. (GAMS Collab.)Translated from YAF 62 446.BINON 84B LNC 39 41 F.G. Binon et al. (SERP, BELG, LAPP) JPBINON 83C SJNP 38 723 F.G. Binon et al. (SERP, BRUX+)Translated from YAF 38 1199.BOLOTOV 74 PL 52B 489 V.N. Bolotov et al. (SERP)



974974974974MesonParti
le ListingsFurther StatesOTHER LIGHT MESONSOTHER LIGHT MESONSOTHER LIGHT MESONSOTHER LIGHT MESONSFurther StatesOMITTED FROM SUMMARY TABLEThis se
tion 
ontains states observed by a single group or statespoorly established that thus need 
on�rmation.QUANTUM NUMBERS, MASSES, WIDTHS, AND BRANCHINGRATIOSX (360)X (360)X (360)X (360) IG (JPC ) = ??(??+)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT360±7±9 64 ± 18 2.3k 1 ABRAAMYAN 09 CNTR 2.75 d C → γ γX1Not seen in pC → γ γX at 5.5 GeV/
.X (1070)X (1070)X (1070)X (1070) IG (JPC ) = ??(0 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID COMMENT1072±1 3.5 ± 0.5 2 VLADIMIRSK...08 40 π− p → K0S K0S n + mπ02Supersedes GRIGOR'EV 05.X (1110)X (1110)X (1110)X (1110) IG (JPC ) = 0+(even + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1107±4 111 ± 8 ± 15 DAFTARI 87 DBC 0. p n → ρ−π+π−f0(1200{1600)f0(1200{1600)f0(1200{1600)f0(1200{1600) IG (JPC ) = 0+(0 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1323± 8 237 ± 20 VLADIMIRSK...06 SPEC 40 π− p → K0S K0S n1480+100
−150 1030+ 80

−170 3 ANISOVICH 03 SPEC1530+ 90
−250 560 ± 40 4 ANISOVICH 03 SPEC3K-matrix pole from 
ombined analysis of π− p → π0π0 n, π− p → K K n,

π+π− → π+π−, p p → π0π0π0, π0 ηη, π0π0 η, π+π−π0, K+K−π0, K0S K0S π0,K+K0S π− at rest, p n → π−π−π+, K0S K−π0, K0S K0S π− at rest.4K-matrix pole from 
ombined analysis of π− p → π0π0 n, π− p → K K n, p p →

π0π0π0, π0 ηη, π0π0 η at rest.X (1420)X (1420)X (1420)X (1420) IG (JPC ) = 2+(0 ++)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1420±20 160 ± 10 FILIPPI 00 OBLX 0 np → π+π+π−X (1545)X (1545)X (1545)X (1545) IG (JPC ) = ??(? + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID COMMENT1545±3 6.0 ± 2.5 5 VLADIMIRSK...08 40 π− p → K0S K0S n + mπ05Supersedes VLADIMIRSKII 00.X (1575)X (1575)X (1575)X (1575) IG (JPC ) = ??(1−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1576+49
−55+98

−91 818+22
−23+ 64

−133 6 ABLIKIM 06S BES J/ψ → K+K−π06A broad peak observed at K+K− invariant mass. Mass and width above are its poleposition. The observed bran
hing ratio is B(J/ψ → X π0) B(X → K+K−) = (8.5 ±0.6+2.7
−3.6)× 10−4.X (1600)X (1600)X (1600)X (1600) IG (JPC ) = 2+(2 ++)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1600±100 400 ± 200 7 ALBRECHT 91F ARG 10.2 e+ e− → e+ e− 2(π+π−)7Our estimate.X (1650)X (1650)X (1650)X (1650) IG (JPC ) = 0−(??−)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT1652±7 <50 100 PROKOSHKIN 96 GAM2 32,38 πp → ωηnX (1730)X (1730)X (1730)X (1730) IG (JPC ) = ??(??+)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT1731.0±1.2±2.0 3.2 ± 0.8 ± 1.3 58 VLADIMIRSK...07 SPEC 40 π− p →K0S K0S XX (1750)X (1750)X (1750)X (1750) IG (JPC ) = ??(1−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1753.5±1.5±2.3 122.2 ± 6.2 ± 8.0 LINK 02K FOCS 20{160 γ p → K+K− p

B(X (1750) → K∗(892)0K0 → K±π∓K0S )/B(X (1750) → K+K−)B(X (1750) → K∗(892)0K0 → K±π∓K0S )/B(X (1750) → K+K−)B(X (1750) → K∗(892)0K0 → K±π∓K0S )/B(X (1750) → K+K−)B(X (1750) → K∗(892)0K0 → K±π∓K0S )/B(X (1750) → K+K−)VALUE CL% DOCUMENT ID TECN
<0.065 90 LINK 02K FOCSB(X (1750) → K∗(892)±K∓ → K±π∓K0S )/B(X (1750) → K+K−)B(X (1750) → K∗(892)±K∓ → K±π∓K0S )/B(X (1750) → K+K−)B(X (1750) → K∗(892)±K∓ → K±π∓K0S )/B(X (1750) → K+K−)B(X (1750) → K∗(892)±K∓ → K±π∓K0S )/B(X (1750) → K+K−)VALUE CL% DOCUMENT ID TECN
<0.183 90 LINK 02K FOCSf2(1750)f2(1750)f2(1750)f2(1750) IG (JPC ) = 0+(2 + +)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT1755±10 67 ± 12 870 8 SCHEGELSKY 06A RVUE γ γ → K0S K0S�(K K)�(K K)�(K K)�(K K)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT17±5 870 9 SCHEGELSKY 06A RVUE γ γ → K0S K0S�(γ γ)�(γ γ)�(γ γ)�(γ γ)VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.13±0.04 870 9 SCHEGELSKY 06A RVUE γ γ → K0S K0S�(ππ)�(ππ)�(ππ)�(ππ)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1.3±1.0 870 9 SCHEGELSKY 06A RVUE γ γ → K0S K0S�(ηη)�(ηη)�(ηη)�(ηη)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2.0±0.5 870 9 SCHEGELSKY 06A RVUE γ γ → K0S K0S8From analysis of L3 data at 91 and 183{209 GeV.9 From analysis of L3 data at 91 and 183{209 GeV and using SU(3) relations.X (1775)X (1775)X (1775)X (1775) IG (JPC ) = 1−(? −+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1763±20 192 ± 60 CONDO 91 SHF γ p → (pπ+)(π+π−π−)1787±18 118 ± 60 CONDO 91 SHF γ p → nπ+π+π−f0(1800)f0(1800)f0(1800)f0(1800) IG (JPC ) = 0+(0 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1795± 7+23

−20 95 ± 10+78
−82 ABLIKIM 13J BES3 J/ψ → γωφ1812+19

−26±18 105 ± 20 ± 28 10 ABLIKIM 06J BES2 J/ψ → γωφ10Not seen by LIU 09 in B± → K±ωφ.X (1850 - 3100)X (1850 - 3100)X (1850 - 3100)X (1850 - 3100) IG (JPC ) = ??(1−−)�(e+ e−)·B(X → hadrons) (eV) CL% DOCUMENT ID TECN COMMENT
<120 90 11 ANASHIN 11 KEDR e+ e− → hadrons11This limit is 
enter-of-mass energy dependent. We quote the most stringent one.X (1855)X (1855)X (1855)X (1855) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1856.6±5 20 ± 5 BRIDGES 86D SPEC 0. p d → ππNX (1870)X (1870)X (1870)X (1870) IG (JPC ) = ??(2??)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1870±40 250 ± 30 ALDE 86D GAM4 100 π− p → 2ηXa3(1875)a3(1875)a3(1875)a3(1875) IG (JPC ) = 1−(3 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1874±43±96 385 ± 121 ± 114 CHUNG 02 B852 18.3 π− p →

π+π−π− pB(a3(1875) → f2(1270)π)/B(a3(1875) → ρπ)B(a3(1875) → f2(1270)π)/B(a3(1875) → ρπ)B(a3(1875) → f2(1270)π)/B(a3(1875) → ρπ)B(a3(1875) → f2(1270)π)/B(a3(1875) → ρπ)VALUE DOCUMENT ID TECN COMMENT0.8±0.2 12 CHUNG 02 B852 18.3 π− p → π+π−π− p12Using the observable fra
tions of 50.0% ρπ, 56.5% f2π, and 11.8% ρ3π.B(a3(1875) → ρ3(1690)π)/B(a3(1875) → ρπ)B(a3(1875) → ρ3(1690)π)/B(a3(1875) → ρπ)B(a3(1875) → ρ3(1690)π)/B(a3(1875) → ρπ)B(a3(1875) → ρ3(1690)π)/B(a3(1875) → ρπ)VALUE DOCUMENT ID TECN COMMENT0.9±0.3 13 CHUNG 02 B852 18.3 π− p → π+π−π− p13Using the observable fra
tions of 50.0% ρπ, 56.5% f2π, and 11.8% ρ3π.a1(1930)a1(1930)a1(1930)a1(1930) IG (JPC ) = 1−(1 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1930+30
−70 155 ± 45 ANISOVICH 01F SPEC 2.0 pp → 3π0, π0 η, π0 η′



975975975975See key on page 601 MesonParti
le ListingsFurther StatesX (1935)X (1935)X (1935)X (1935) IG (JPC ) = 1+(1−?)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1935±20 215 ± 30 EVANGELIS... 79 OMEG 10,16 π− p → p pn
ρ2(1940)ρ2(1940)ρ2(1940)ρ2(1940) IG (JPC ) = 1+(2 −−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1940±40 155 ± 40 14 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,

ωηπ0, π+π−14From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.
ω3(1945)ω3(1945)ω3(1945)ω3(1945) IG (JPC ) = 0−(3−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1945±20 115 ± 22 15 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π015From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.a2(1950)a2(1950)a2(1950)a2(1950) IG (JPC ) = 1−(2 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1950+30

−70 180+30
−70 16 ANISOVICH 01F SPEC 1.96{2.41 pp16From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.

ω(1960)ω(1960)ω(1960)ω(1960) IG (JPC ) = 0−(1−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1960±25 195 ± 60 17 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π017From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.b1(1960)b1(1960)b1(1960)b1(1960) IG (JPC ) = 1+(1 +−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1960±35 230 ± 50 18 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,
ωηπ0, π+π−18From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.h1(1965)h1(1965)h1(1965)h1(1965) IG (JPC ) = 0−(1 +−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1965±45 345 ± 75 19 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π019From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.f1(1970)f1(1970)f1(1970)f1(1970) IG (JPC ) = 0+(1 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN1971±15 240 ± 45 ANISOVICH 00J SPECX (1970)X (1970)X (1970)X (1970) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1970±10 40 ± 20 CHLIAPNIK... 80 HBC 32 K+ p → 2K0S 2πXX (1975)X (1975)X (1975)X (1975) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT1973±15 80 30 CASO 70 HBC 11.2 π− p → ρ2π

ω2(1975)ω2(1975)ω2(1975)ω2(1975) IG (JPC ) = 0−(2−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1975±20 175 ± 25 20 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π020From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.a2(1990)a2(1990)a2(1990)a2(1990) IG (JPC ) = 1−(2 + +)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT2050±10±40 190 ± 22 ± 100 18k 21 SCHEGELSKY 06 RVUE γ γ → π+π−π02003±10±19 249 ± 23 ± 32 LU 05 B852 18 π− p →

ωπ−π0 p21From analysis of L3 data at 183{209 GeV.�(γ γ) �(π+π−π0) / �(total)�(γ γ) �(π+π−π0) / �(total)�(γ γ) �(π+π−π0) / �(total)�(γ γ) �(π+π−π0) / �(total)VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.11±0.04±0.05 18k 22 SCHEGELSKY 06 RVUE γ γ → π+π−π022From analysis of L3 data at 183{209 GeV.
ρ(2000)ρ(2000)ρ(2000)ρ(2000) IG (JPC ) = 1+(1−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2000±30 260 ± 45 23 BUGG 04C RVUE Compilation

∼ 1988 ∼ 244 HASAN 94 RVUE p p → ππ

23From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.f2(2000)f2(2000)f2(2000)f2(2000) IG (JPC ) = 0+(2 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2001±10 312 ± 32 ANISOVICH 00J SPEC
∼ 1996 ∼ 134 HASAN 94 RVUE p p → ππX (2000)X (2000)X (2000)X (2000) IG (JPC ) = 1−(??+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN CHG COMMENT1964±35 225 ± 50 24 ARMSTRONG 93D E760 p p → 3π0 → 6γ
∼ 2100 ∼ 500 24 ANTIPOV 77 CIBS − 25 π− p → pπ− ρ32214±15 355 ± 21 25 BALTAY 77 HBC 0 15 π− p → �++3π2080±40 340 ± 80 KALELKAR 75 HBC + 15 π+ p → pπ+ ρ324Cannot determine spin to be 3.25BALTAY 77 favors JP = ,3+.X (2000)X (2000)X (2000)X (2000) IG (JPC ) = ??(4 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT1998±3±5 <15 VLADIMIRSK...03 SPEC π− p → K0S K0S MM

π2(2005)π2(2005)π2(2005)π2(2005) IG (JPC ) = 1−(2−+)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT1974±14±83 341 ± 61 ± 139 145k LU 05 B852 18 π− p → ωπ−π0 p2005±15 200 ± 40 ANISOVICH 01F SPEC 2.0 p p → 3π0, π0 η,
π0 η′

η(2010)η(2010)η(2010)η(2010) IG (JPC ) = 0+(0 −+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN2010+35
−60 270 ± 60 ANISOVICH 00J SPEC
π1(2015)π1(2015)π1(2015)π1(2015) IG (JPC ) = 1−(1−+)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT2014±20±16 230 ± 32 ± 73 145k LU 05 B852 18 π− p → ωπ−π0 p2001±30±92 333 ± 52 ± 49 69k KUHN 04 B852 18 π− p → ηπ+π−π− pa0(2020)a0(2020)a0(2020)a0(2020) IG (JPC ) = 1−(0 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN2025±30 330 ± 75 ANISOVICH 99C SPECX (2020)X (2020)X (2020)X (2020) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2015±3 10 ± 4 FERRER 99 RVUE πp → pppπ (π)h3(2025)h3(2025)h3(2025)h3(2025) IG (JPC ) = 0−(3 +−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2025±20 145 ± 30 26 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π026From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.b3(2030)b3(2030)b3(2030)b3(2030) IG (JPC ) = 1+(3 +−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2032±12 117 ± 11 27 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,

ωηπ0, π+π−27From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.a2(2030)a2(2030)a2(2030)a2(2030) IG (JPC ) = 1−(2 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2030±20 205 ± 30 28 ANISOVICH 01F SPEC 1.96{2.41 pp28From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.a3(2030)a3(2030)a3(2030)a3(2030) IG (JPC ) = 1−(3 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2031±12 150 ± 18 29 ANISOVICH 01F SPEC 1.96{2.41 pp29From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.
η2(2030)η2(2030)η2(2030)η2(2030) IG (JPC ) = 0+(2 −+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN2030±5±15 205 ± 10 ± 15 ANISOVICH 00E SPEC



976976976976MesonParti
le ListingsFurther StatesB(a2π)L=0/B(a2π)L=2B(a2π)L=0/B(a2π)L=2B(a2π)L=0/B(a2π)L=2B(a2π)L=0/B(a2π)L=2VALUE DOCUMENT ID TECN COMMENT0.05±0.03 30 ANISOVICH 11 SPEC 0.9{1.94 pp30Reanalysis of ADOMEIT 96 and ANISOVICH 00E.B(a0π)/B(a2 π)L=2B(a0π)/B(a2 π)L=2B(a0π)/B(a2 π)L=2B(a0π)/B(a2 π)L=2VALUE DOCUMENT ID TECN COMMENT0.10±0.08 31 ANISOVICH 11 SPEC 0.9{1.94 pp31Reanalysis of ADOMEIT 96 and ANISOVICH 00E.B(f2 η)/B(a2 π)L=2B(f2 η)/B(a2 π)L=2B(f2 η)/B(a2 π)L=2B(f2 η)/B(a2 π)L=2VALUE DOCUMENT ID TECN COMMENT0.13±0.06 32 ANISOVICH 11 SPEC 0.9{1.94 pp32Reanalysis of ADOMEIT 96 and ANISOVICH 00E.f3(2050)f3(2050)f3(2050)f3(2050) IG (JPC ) = 0+(3 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2048±8 213 ± 34 ANISOVICH 00J SPEC 2.0 pp → ηπ0π0f0(2060)f0(2060)f0(2060)f0(2060) IG (JPC ) = 0+(0 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT
∼ 2050 ∼ 120 33 OAKDEN 94 RVUE 0.36{1.55 pp → ππ

∼ 2060 ∼ 50 33 OAKDEN 94 RVUE 0.36{1.55 pp → ππ33See SEMENOV 99 and KLOET 96.
π(2070)π(2070)π(2070)π(2070) IG (JPC ) = 1−(0 −+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2070±35 310+100

− 50 ANISOVICH 01F SPEC 2.0 pp → 3π0, π0 η, π0 η′X (2075)X (2075)X (2075)X (2075) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2075±12±5 90 ± 35 ± 9 34 ABLIKIM 04J BES2 J/ψ → K− p�34From a �t in the region Mp�−Mp−M� < 150 MeV. S-wave in the p� system preferred.A similar near-threshold enhan
ement in the p� system is observed in B+ → p�D0 byCHEN 11F.X (2080)X (2080)X (2080)X (2080) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2080±10 110 ± 20 KREYMER 80 STRC 13 π− d → pp n (ns )X (2080)X (2080)X (2080)X (2080) IG (JPC ) = ??(3−?)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2080±10 190 ± 15 ROZANSKA 80 SPRK 18 π− p → pp na1(2095)a1(2095)a1(2095)a1(2095) IG (JPC ) = 1−(1 + +)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT2096±17±121 451 ± 41 ± 81 69k KUHN 04 B852 18 π− p → ηπ+π−π− pB(a1(2095) → f1(1285)π) / B(a1(2095) → a1(1260))B(a1(2095) → f1(1285)π) / B(a1(2095) → a1(1260))B(a1(2095) → f1(1285)π) / B(a1(2095) → a1(1260))B(a1(2095) → f1(1285)π) / B(a1(2095) → a1(1260))VALUE EVTS DOCUMENT ID TECN COMMENT3.18±0.64 69k KUHN 04 B852 18 π− p → ηπ+π−π− p
η(2100)η(2100)η(2100)η(2100) IG (JPC ) = 0+(0 −+)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT2103±50 187 ± 75 586 35 BISELLO 89B DM2 J/ψ → 4πγ35ASTON 81B sees no peak, has 850 events in Ajinenko+Barth bins. ARESTOV 80 seesno peak.X (2100)X (2100)X (2100)X (2100) IG (JPC ) = ??(0??)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2100±40 250 ± 40 ALDE 86D GAM4 100 π− p → 2ηXX (2110)X (2110)X (2110)X (2110) IG (JPC ) = 1+(3−?)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2110±10 330 ± 20 EVANGELIS... 79 OMEG 10,16 π− p → ppnf2(2140)f2(2140)f2(2140)f2(2140) IG (JPC ) = 0+(2 + +)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT2141±12 49 ± 28 389 GREEN 86 MPSF 400 pA → 4K X

X (2150)X (2150)X (2150)X (2150) IG (JPC ) = ??(2+?)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2150±10 260 ± 10 ROZANSKA 80 SPRK 18 π− p → pp na2(2175)a2(2175)a2(2175)a2(2175) IG (JPC ) = 1−(2 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2175±40 310+90
−45 ANISOVICH 01F SPEC 2.0 pp → 3π0, π0 η, π0 η′

η(2190)η(2190)η(2190)η(2190) IG (JPC ) = 0+(0 −+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN2190±50 850 ± 100 BUGG 99 BES
ω2(2195)ω2(2195)ω2(2195)ω2(2195) IG (JPC ) = 0−(2−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2195±30 225 ± 40 36 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π036From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.
ω(2205)ω(2205)ω(2205)ω(2205) IG (JPC ) = 0−(1−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2205±30 350 ± 90 37 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π037From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.X (2210)X (2210)X (2210)X (2210) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2210+79

−21 203+437
− 87 EVANGELIS... 79B OMEG 10 π− p → K+K− nX (2210)X (2210)X (2210)X (2210) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2207±22 130 CASO 70 HBC 11.2 π− ph1(2215)h1(2215)h1(2215)h1(2215) IG (JPC ) = 0−(1 +−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2215±40 325 ± 55 38 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π038From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

ρ2(2225)ρ2(2225)ρ2(2225)ρ2(2225) IG (JPC ) = 1+(2 −−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2225±35 335+100
− 50 39 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,

ωηπ0, π+π−39From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.
ρ4(2230)ρ4(2230)ρ4(2230)ρ4(2230) IG (JPC ) = 1+(4 −−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2230±25 210 ± 30 40 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,

ωηπ0, π+π−40From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.b1(2240)b1(2240)b1(2240)b1(2240) IG (JPC ) = 1+(1 +−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2240±35 320 ± 85 41 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,
ωηπ0, π+π−41From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.f2(2240)f2(2240)f2(2240)f2(2240) IG (JPC ) = 0+(2 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2240±15 241 ± 30 42 ANISOVICH 00J SPEC 1.92{2.41 pp

• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 2226 ∼ 226 HASAN 94 RVUE pp → ππ42From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99F, ANISOVICH 99J,ANISOVICH 99K, and ANISOVICH 00B. See also ANISOVICH 12.b3(2245)b3(2245)b3(2245)b3(2245) IG (JPC ) = 1+(3 +−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN2245±50 320 ± 70 43 BUGG 04C RVUE
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le ListingsFurther States43From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.
η2(2250)η2(2250)η2(2250)η2(2250) IG (JPC ) = 0+(2 −+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN2248±20 280 ± 20 ANISOVICH 00I SPEC2267±14 290 ± 50 ANISOVICH 00J SPEC
π4(2250)π4(2250)π4(2250)π4(2250) IG (JPC ) = 1−(4−+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2250±15 215 ± 25 ANISOVICH 01F SPEC 2.0 pp → 3π0, π0 η, π0 η′

ω4(2250)ω4(2250)ω4(2250)ω4(2250) IG (JPC ) = 0−(4−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2250±30 150 ± 50 44 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π044From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.
ω5(2250)ω5(2250)ω5(2250)ω5(2250) IG (JPC ) = 0−(5−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN2250±70 320 ± 95 45 BUGG 04 RVUE45From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.
ω3(2255)ω3(2255)ω3(2255)ω3(2255) IG (JPC ) = 0−(3−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2255±15 175 ± 30 46 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π046From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.a4(2255)a4(2255)a4(2255)a4(2255) IG (JPC ) = 1−(4 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2237± 5 291 ± 12 UMAN 06 E835 5.2 pp → ηηπ02255±40 330+110

− 50 47 ANISOVICH 01F SPEC 1.96{2.41 pp47From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.a2(2255)a2(2255)a2(2255)a2(2255) IG (JPC ) = 1−(2 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2255±20 230 ± 15 48 ANISOVICH 01G SPEC 1.96{2.41 pp48From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99E, ANISOVICH 01F,and ANISOVICH 01G.X (2260)X (2260)X (2260)X (2260) IG (JPC ) = 0+(4+?)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2260±20 400 ± 100 EVANGELIS... 79 OMEG 10,16 π− p → ppn
ρ(2270)ρ(2270)ρ(2270)ρ(2270) IG (JPC ) = 1+(1−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2265±40 325 ± 80 49 ANISOVICH 02 SPEC 0.6{1.9 pp → ωπ0,

ωηπ0, π+π−2280±50 440 ± 110 ATKINSON 85 OMEG 20{70 γ p → pωπ+π−π049From the 
ombined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,and ANISOVICH 02.a1(2270)a1(2270)a1(2270)a1(2270) IG (JPC ) = 1−(1 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2270+55
−40 305+70

−40 ANISOVICH 01F SPEC 2.0 pp → 3π0, π0 η, π0 η′h3(2275)h3(2275)h3(2275)h3(2275) IG (JPC ) = 0−(3 +−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2275±25 190 ± 45 50 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π050From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.a3(2275)a3(2275)a3(2275)a3(2275) IG (JPC ) = 1−(3 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2275±35 350+100
− 50 51 ANISOVICH 01G SPEC 1.96{2.41 pp51From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99E, ANISOVICH 01F,and ANISOVICH 01G.

π2(2285)π2(2285)π2(2285)π2(2285) IG (JPC ) = 1−(2−+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2285±20±25 250 ± 20 ± 25 52 ANISOVICH 11 SPEC 0.9{1.94 pp

52Reanalysis of ADOMEIT 96 and ANISOVICH 00E.
ω3(2285)ω3(2285)ω3(2285)ω3(2285) IG (JPC ) = 0−(3−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2278±28 224 ± 50 53 BUGG 04A RVUE2285±60 230 ± 40 54 ANISOVICH 02B SPEC 0.6{1.9 pp → ωη, ωπ0π053Partial wave analysis of the data on pp → �� from BARNES 00.54From the 
ombined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.
ω(2290)ω(2290)ω(2290)ω(2290) IG (JPC ) = 0−(1−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN2290±20 275 ± 35 55 BUGG 04A RVUE55Partial wave analysis of the data on pp → �� from BARNES 00.f2(2295)f2(2295)f2(2295)f2(2295) IG (JPC ) = 0+(2 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2293±13 216 ± 37 56 ANISOVICH 00J SPEC 1.92{2.41 pp56From the 
ombined analysis of ANISOVICH 99C, ANISOVICH 99F, ANISOVICH 99J,ANISOVICH 99K, and ANISOVICH 00B. See also ANISOVICH 12.f3(2300)f3(2300)f3(2300)f3(2300) IG (JPC ) = 0+(3 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN2334±25 200 ± 20 57 BUGG 04A RVUE57Partial wave analysis of the data on pp → �� from BARNES 00.f1(2310)f1(2310)f1(2310)f1(2310) IG (JPC ) = 0+(1 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN2310±60 255 ± 70 ANISOVICH 00J SPEC
η(2320)η(2320)η(2320)η(2320) IG (JPC ) = 0+(0 −+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN2320±15 230 ± 35 58 ANISOVICH 00M SPEC58From the 
ombined analysis of p p → ηηη from ANISOVICH 00M and p p → ηπ0 π0from ANISOVICH 00J.
η4(2330)η4(2330)η4(2330)η4(2330) IG (JPC ) = 0+(4 −+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2328±38 240 ± 90 ANISOVICH 00J SPEC 2.0 pp → ηπ0π0
ω(2330)ω(2330)ω(2330)ω(2330) IG (JPC ) = 0−(1−−)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2330±30 435 ± 75 ATKINSON 88 OMEG 25{50 γ p → ρ± ρ0π∓X (2340)X (2340)X (2340)X (2340) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT2340±20 180 ± 60 126 59 BALTAY 75 HBC 15 π+ p → p5π59Dominant de
ay into ρ0 ρ0π+. BALTAY 78 �nds 
on�rmation in 2π+π− 2π0 eventswhi
h 
ontain ρ+ ρ0π0 and 2ρ+π−.
π(2360)π(2360)π(2360)π(2360) IG (JPC ) = 1−(0 −+)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2360±25 300+100

− 50 ANISOVICH 01F SPEC 2.0 pp → 3π0, π0 η, π0 η′X (2360)X (2360)X (2360)X (2360) IG (JPC ) = ??(4+?)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2360±10 430 ± 30 ROZANSKA 80 SPRK 18 π− p → pp nX (2440)X (2440)X (2440)X (2440) IG (JPC ) = ??(5−?)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2440±10 310 ± 20 ROZANSKA 80 SPRK 18 π− p → pp nX (2540)X (2540)X (2540)X (2540) IG (JPC ) = 0+(0 ++)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2539±14+38
−14 274+77

−61+126
−163 UEHARA 13 BELL γ γ → K0S K0S�(γ γ) × B(K K)�(γ γ) × B(K K)�(γ γ) × B(K K)�(γ γ) × B(K K)VALUE (eV) DOCUMENT ID TECN COMMENT40+9

−7+17
−40 UEHARA 13 BELL γ γ → K0S K0S
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le ListingsFurther StatesX (2632)X (2632)X (2632)X (2632) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2635.2±3.3 60 EVDOKIMOV 04 SELX X (2632) → D+s η2631.6±2.1 < 17 61 EVDOKIMOV 04 SELX X (2632) → D0K+60From a mass di�eren
e to D+s of 666.9 ± 3.3 MeV.61From a mass di�eren
e to D0 of 767.0 ± 2.0 MeV.B(X (2632) → D0K+)/B(X (2632) → D+s η)B(X (2632) → D0K+)/B(X (2632) → D+s η)B(X (2632) → D0K+)/B(X (2632) → D+s η)B(X (2632) → D0K+)/B(X (2632) → D+s η)VALUE DOCUMENT ID TECN0.14±0.06 62 EVDOKIMOV 04 SELX62Possible interpretation of this de
ay pattern is dis
ussed by YASUI 07.X (2680)X (2680)X (2680)X (2680) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2676±27 150 CASO 70 HBC 11.2 π− p → ρ−π+π− pX (2710)X (2710)X (2710)X (2710) IG (JPC ) = ??(6+?)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2710±20 170 ± 40 ROZANSKA 80 SPRK 18 π− p → pp nX (2750)X (2750)X (2750)X (2750) IG (JPC ) = ??(7−?)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT2747±32 195 ± 75 DENNEY 83 LASS 10 π+ p → K+K−π+ pf6(3100)f6(3100)f6(3100)f6(3100) IG (JPC ) = 0+(6 + +)MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT3100±100 700 ± 130 BINON 05 GAMS 33 π− p → ηηnX (3250)X (3250)X (3250)X (3250) IG (JPC ) = ??(???) 3-Body De
aysMASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT3250±8±20 45 ± 18 ALEEV 93 BIS2 X (3250) → �pK+3265±7±20 40 ± 18 ALEEV 93 BIS2 X (3250) → �pK−X (3250)X (3250)X (3250)X (3250) IG (JPC ) = ??(???) 4-Body De
aysMASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT3245±8±20 25 ± 11 ALEEV 93 BIS2 X (3250) → �pK+π±3250±9±20 50 ± 20 ALEEV 93 BIS2 X (3250) → �pK−π∓3270±8±20 25 ± 11 ALEEV 93 BIS2 X (3250) → K0S ppK±X (3350)X (3350)X (3350)X (3350) IG (JPC ) = ??(???)MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT3350+10
−20±20 70+40

−30 ± 40 50 ± 10 63 GABYSHEV 06A BELL B− → �+
 pπ−63A similar enhan
ement in the �+
 p �nal state is also reported by BABAR 
ollaborationin AUBERT 10H. REFERENCES for Further StatesREFERENCES for Further StatesREFERENCES for Further StatesREFERENCES for Further StatesABLIKIM 13J PR D87 032008 M. Ablikim et al. (BES III Collab.)UEHARA 13 PTEP 2013 123C01 S. Uehara et al. (BELLE Collab.)ANISOVICH 12 PR D85 014001 A.V. Anisovi
h et al.ANASHIN 11 PL B703 543 V.V. Anashin et al. (KEDR Collab.)ANISOVICH 11 EPJ C71 1511 A.V. Anisovi
h et al. (LOQM, RAL, PNPI)CHEN 11F PR D84 071501 P. Chen et al. (BELLE Collab.)AUBERT 10H PR D82 031102 B. AUBERT et al. (BABAR Collab.)

ABRAAMYAN 09 PR C80 034001 Kh.U. Abraamyan et al.LIU 09 PR D79 071102 C. Liu et al. (BELLE Collab.)VLADIMIRSK... 08 PAN 71 2129 V.V. Vladimirsky et al. (ITEP)Translated from YAF 71 2166.VLADIMIRSK... 07 PAN 70 1706 V. Vladimirsky et al.Translated from YAF 70 1751.YASUI 07 PR D76 034009 S. Yasui, M. OkaABLIKIM 06J PRL 96 162002 M. Ablikim et al. (BES Collab.)ABLIKIM 06S PRL 97 142002 M. Ablikim et al. (BES Collab.)GABYSHEV 06A PRL 97 242001 N. Gabyshev et al. (BELLE Collab.)SCHEGELSKY 06 EPJ A27 199 V.A. S
hegelsky et al.SCHEGELSKY 06A EPJ A27 207 V.A. S
hegelsky et al.UMAN 06 PR D73 052009 I. Uman et al. (FNAL E835)VLADIMIRSK... 06 PAN 69 493 V.V. Vladimirsky et al. (ITEP, Mos
ow)Translated from YAF 69 515.BINON 05 PAN 68 960 F. Binon et al.Translated from YAF 68 998.GRIGOR'EV 05 PAN 68 1271 V.K. Grigor'ev et al. (ITEP)Translated from YAF 68 1324.LU 05 PRL 94 032002 M. Lu et al. (BNL E852 Collab.)ABLIKIM 04J PRL 93 112002 M. Ablikim et al. (BES Collab.)BUGG 04 PL B595 556 (errat.) D.V. BuggBUGG 04A EPJ C36 161 D.V. BuggBUGG 04C PRPL 397 257 D.V. BuggEVDOKIMOV 04 PRL 93 242001 A.V. Evdokimov et al. (SELEX Collab.)KUHN 04 PL B595 109 J. Kuhn et al. (BNL E852 Collab.)ANISOVICH 03 EPJ A16 229 V.V. Anisovi
h et al.VLADIMIRSK... 03 PAN 66 700 V.V. Vladimirsky et al.Translated from YAF 66 729.ANISOVICH 02 PL B542 8 A.V. Anisovi
h et al.ANISOVICH 02B PL B542 19 A.V. Anisovi
h et al.CHUNG 02 PR D65 072001 S.U. Chung et al. (BNL E852 Collab.)LINK 02K PL B545 50 J.M. Link et al. (FNAL FOCUS Collab.)ANISOVICH 01C PL B507 23 A.V. Anisovi
h et al.ANISOVICH 01D PL B508 6 A.V. Anisovi
h et al.ANISOVICH 01E PL B513 281 A.V. Anisovi
h et al.ANISOVICH 01F PL B517 261 A.V. Anisovi
h et al.ANISOVICH 01G PL B517 273 A.V. Anisovi
h et al.ANISOVICH 00B NP A662 319 A.V. Anisovi
h et al.ANISOVICH 00D PL B476 15 A.V. Anisovi
h et al.ANISOVICH 00E PL B477 19 A.V. Anisovi
h et al.ANISOVICH 00I PL B491 40 A.V. Anisovi
h et al.ANISOVICH 00J PL B491 47 A.V. Anisovi
h et al.ANISOVICH 00M PL B496 145 A.V. Anisovi
h et al.BARNES 00 PR C62 055203 P.D. Barnes et al.FILIPPI 00 PL B495 284 A. Filippi et al. (OBELIX Experiment)VLADIMIRSKII 00 JETPL 72 486 V.V. Vladimirskii et al.Translated from ZETFP 72 698.ANISOVICH 99C PL B452 173 A.V. Anisovi
h et al.ANISOVICH 99E PL B452 187 A.V. Anisovi
h et al.ANISOVICH 99F NP A651 253 A.V. Anisovi
h et al.ANISOVICH 99J PL B471 271 A.V. Anisovi
h et al.ANISOVICH 99K PL B468 309 A.V. Anisovi
h et al.BUGG 99 PL B458 511 D.V. Bugg et al.FERRER 99 EPJ C10 249 A. Ferrer et al.SEMENOV 99 SPU 42 847 S.V. SemenovTranslated from UFN 42 937.ADOMEIT 96 ZPHY C71 227 J. Adomeit et al. (Crystal Barrel Collab.)KLOET 96 PR D53 6120 W.M. Kloet, F. Myhrer (RUTG, NORD)PROKOSHKIN 96 SPD 41 247 Y.D. Prokoshkin, V.D. Samoilenko (SERP)Translated from DANS 348 481.HASAN 94 PL B334 215 A. Hasan, D.V. Bugg (LOQM)OAKDEN 94 NP A574 731 M.N. Oakden, M.R. Pennington (DURH)ALEEV 93 PAN 56 1358 A.N. Aleev et al. (BIS-2 Collab.)Translated from YAF 56 100.ARMSTRONG 93D PL B307 399 T.A. Armstrong et al. (FNAL, FERR, GENO+)ALBRECHT 91F ZPHY C50 1 H. Albre
ht et al. (ARGUS Collab.)CONDO 91 PR D43 2787 G.T. Condo et al. (SLAC Hybrid Collab.)BISELLO 89B PR D39 701 G. Busetto et al. (DM2 Collab.)ATKINSON 88 ZPHY C38 535 M. Atkinson et al. (BONN, CERN, GLAS+)DAFTARI 87 PRL 58 859 I.K. Daftari et al. (SYRA)ALDE 86D NP B269 485 D.M. Alde et al. (BELG, LAPP, SERP, CERN+)BRIDGES 86D PL B180 313 D.L. Bridges et al. (SYRA, BNL, CASE+)GREEN 86 PRL 56 1639 D.R. Green et al. (FNAL, ARIZ, FSU+)ATKINSON 85 ZPHY C29 333 M. Atkinson et al. (BONN, CERN, GLAS+)DENNEY 83 PR D28 2726 D.L. Denney et al. (IOWA, MICH)ASTON 81B NP B189 205 D. Aston et al. (BONN, CERN, EPOL, GLAS+)ARESTOV 80 IHEP 80-165 Y.I. Arestov et al. (SERP)CHLIAPNIK... 80 ZPHY C3 285 P.V. Chliapnikov et al. (SERP, BRUX, MONS)KREYMER 80 PR D22 36 A.E. Kreymer et al. (IND, PURD, SLAC+)ROZANSKA 80 NP B162 505 M. Rozanska et al. (MPIM, CERN)EVANGELIS... 79 NP B153 253 C. Evangelista et al. (BARI, BONN, CERN+)EVANGELIS... 79B NP B154 381 C. Evangelista et al. (BARI, BONN, CERN+)BALTAY 78 PR D17 52 C. Baltay et al. (COLU, BING)ANTIPOV 77 NP B119 45 Y.M. Antipov et al. (SERP, GEVA)BALTAY 77 PRL 39 591 C. Baltay, C.V. Cautis, M. Kalelkar (COLU)BALTAY 75 PRL 35 891 C. Baltay et al. (COLU, BING)KALELKAR 75 Thesis Nevis 207 M.S. Kalelkar (COLU)CASO 70 LNC 3 707 C. Caso et al. (GENO, HAMB, MILA, SACL)
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THE CHARGED KAON MASS

Revised 1994 by T.G. Trippe (LBNL).

The average of the six charged kaon mass measurements

which we use in the Particle Listings is

mK± = 493.677± 0.013 MeV (S = 2.4) , (1)

where the error has been increased by the scale factor S.

The large scale factor indicates a serious disagreement between

different input data. The average before scaling the error is

mK± = 493.677 ± 0.005 MeV ,

χ2 = 22.9 for 5 D.F., Prob. = 0.04% , (2)

where the high χ2 and correspondingly low χ2 probability

further quantify the disagreement.

The main disagreement is between the two most recent and

precise results,

mK± =493.696 ± 0.007 MeV DENISOV 91

mK± =493.636 ± 0.011 MeV (S = 1.5) GALL 88

Average =493.679 ± 0.006 MeV

χ2 = 21.2 for 1 D.F., Prob. = 0.0004% , (3)

both of which are measurements of x-ray energies from kaonic

atoms. Comparing the average in Eq. (3) with the overall

average in Eq. (2), it is clear that DENISOV 91 and GALL 88

dominate the overall average, and that their disagreement is

responsible for most of the high χ2.

The GALL 88 measurement was made using four different

kaonic atom transitions, K− Pb (9 → 8), K− Pb (11 → 10),

K− W (9 → 8), and K− W (11 → 10). The mK± values they

obtain from each of these transitions is shown in the Particle

Listings and in Fig. 1. Their K− Pb (9 → 8) mK± is below and

somewhat inconsistent with their other three transitions. The

average of their four measurements is

mK± = 493.636 ± 0.007 ,

χ2 = 7.0 for 3 D.F., Prob. = 7.2% . (4)

This is a low but acceptable χ2 probability so, to be conserva-

tive, GALL 88 scaled up the error on their average by S=1.5 to

obtain their published error ±0.011 shown in Eq. (3) above and

used in the Particle Listings average.

WEIGHTED AVERAGE

493.664±0.011 (Error scaled by 2.5)

Values above of weighted average, error,

and scale factor are based upon the data in
this ideogram only.  They are not neces-

sarily the same as our `best' values,
obtained from a least-squares constrained fit

utilizing measurements of other (related)
quantities as additional information.

BACKENSTO... 73 0.4
CHENG 75     K Pb  13-12 0.8
CHENG 75     K Pb  12-11 3.6
CHENG 75     K Pb  11-10 0.5
CHENG 75     K Pb  10-9 0.1
CHENG 75     K Pb  9-8 1.1
BARKOV 79 0.0
LUM  81 0.2
GALL 88         K W   11-10 2.2
GALL 88         K W   9-8 0.4
GALL 88         K Pb  11-10 0.2
GALL 88         K Pb  9-8 22.6
DENISOV 91 20.5

χ2

      52.6
(Confidence Level  0.001)

493.5 493.6 493.7 493.8 493.9 494

mK± (MeV)

Figure 1: Ideogram of mK± mass measure-
ments. GALL 88 and CHENG 75 measure-
ments are shown separately for each transition
they measured.

The ideogram in Fig. 1 shows that the DENISOV 91 mea-

surement and the GALL 88 K− Pb (9 → 8) measurement yield

two well-separated peaks. One might suspect the GALL 88

K− Pb (9 → 8) measurement since it is responsible both for the

internal inconsistency in the GALL 88 measurements and the

disagreement with DENISOV 91.

Table 1: mK± averages for some combina-
tions of Fig. 1 data.

mK± (MeV) χ2 D.F. Prob. (%) Measurements used

493.664± 0.004 52.6 12 0.00005 all 13 measurements
493.690± 0.006 10.1 10 43 no K− Pb(9→8)
493.687± 0.006 14.6 11 20 no GALL 88 K− Pb(9→8)
493.642± 0.006 17.8 11 8.6 no DENISOV 91

To see if the disagreement could result from a systematic

problem with the K− Pb (9 → 8) transition, we have separated

the CHENG 75 data, which also used K− Pb, into its separate

transitions. Figure 1 shows that the CHENG 75 and GALL 88

K− Pb (9 → 8) values are consistent, suggesting the possibility

of a common effect such as contaminant nuclear γ rays near

the K− Pb (9 → 8) transition energy, although the CHENG 75

errors are too large to make a strong conclusion. The average

of all 13 measurements has a χ2 of 52.6 as shown in Fig. 1

and the first line of Table 1, yielding an unacceptable χ2

probability of 0.00005%. The second line of Table 1 excludes

both the GALL 88 and CHENG 75 measurements of the

K− Pb (9 → 8) transition and yields a χ2 probability of 43%.

The third [fourth] line of Table 1 excludes only the GALL 88

K− Pb (9 → 8) [DENISOV 91] measurement and yields a
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χ2 probability of 20% [8.6%]. Table 1 shows that removing

both measurements of the K− Pb (9 → 8) transition produces

the most consistent set of data, but that excluding only the

GALL 88 K− Pb (9 → 8) transition or DENISOV 91 also

produces acceptable probabilities.

Yu.M. Ivanov, representing DENISOV 91, has estimated

corrections needed for the older experiments because of im-

proved 192Ir and 198Au calibration γ-ray energies. He estimates

that CHENG 75 and BACKENSTOSS 73 mK± values could be

raised by about 15 keV and 22 keV, respectively. With these

estimated corrections, Table 1 becomes Table 2. The last line

of Table 2 shows that if such corrections are assumed, then

GALL 88 K− Pb (9 → 8) is inconsistent with the rest of the

data even when DENISOV 91 is excluded. Yu.M. Ivanov warns

that these are rough estimates. Accordingly, we do not use

Table 2 to reject the GALL 88 K− Pb (9 → 8) transition, but

we note that a future reanalysis of the CHENG 75 data could

be useful because it might provide supporting evidence for such

a rejection.

Table 2: mK± averages for some combina-
tions of Fig. 1 data after raising CHENG 75 and
BACKENSTOSS 73 values by 0.015 and 0.022
MeV respectively.

mK± (MeV) χ2 D.F. Prob. (%) Measurements used

493.666± 0.004 53.9 12 0.00003 all 13 measurements
493.693± 0.006 9.0 10 53 no K− Pb(9→8)
493.690± 0.006 11.5 11 40 no GALL 88 K− Pb(9→8)
493.645± 0.006 23.0 11 1.8 no DENISOV 91

The GALL 88 measurement uses a Ge semiconductor spec-

trometer which has a resolution of about 1 keV, so they run

the risk of some contaminant nuclear γ rays. Studies of γ rays

following stopped π− and Σ− absorption in nuclei (unpub-

lished) do not show any evidence for contaminants according

to GALL 88 spokesperson, B.L. Roberts. The DENISOV 91

measurement uses a crystal diffraction spectrometer with a

resolution of 6.3 eV for radiation at 22.1 keV to measure

the 4f-3d transition in K− 12C. The high resolution and the

light nucleus reduce the probability for overlap by contaminant

γ rays, compared with the measurement of GALL 88. The

DENISOV 91 measurement is supported by their high-precision

measurement of the 4d-2p transition energy in π− 12C, which is

good agreement with the calculated energy.

While we suspect that the GALL 88 K− Pb (9 → 8) mea-

surements could be the problem, we are unable to find clear

grounds for rejecting it. Therefore, we retain their measure-

ment in the average and accept the large scale factor until

further information can be obtained from new measurements

and/or from reanalysis of GALL 88 and CHENG 75 data.

We thank B.L. Roberts (Boston Univ.) and Yu.M. Ivanov

(Petersburg Nuclear Physics Inst.) for their extensive help in

understanding this problem.

K± MASSK± MASSK± MASSK± MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT493.677±0.016 OUR FIT493.677±0.016 OUR FIT493.677±0.016 OUR FIT493.677±0.016 OUR FIT Error in
ludes s
ale fa
tor of 2.8.493.677±0.013 OUR AVERAGE493.677±0.013 OUR AVERAGE493.677±0.013 OUR AVERAGE493.677±0.013 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogrambelow.493.696±0.007 1 DENISOV 91 CNTR − Kaoni
 atoms493.636±0.011 2 GALL 88 CNTR − Kaoni
 atoms493.640±0.054 LUM 81 CNTR − Kaoni
 atoms493.670±0.029 BARKOV 79 EMUL ± e+ e− → K+K−493.657±0.020 2 CHENG 75 CNTR − Kaoni
 atoms493.691±0.040 BACKENSTO...73 CNTR − Kaoni
 atoms
• • • We do not use the following data for averages, �ts, limits, et
. • • •493.631±0.007 GALL 88 CNTR − K−Pb (9→ 8)493.675±0.026 GALL 88 CNTR − K−Pb (11→ 10)493.709±0.073 GALL 88 CNTR − K−W (9→ 8)493.806±0.095 GALL 88 CNTR − K−W (11→ 10)493.640±0.022±0.008 3 CHENG 75 CNTR − K−Pb (9→ 8)493.658±0.019±0.012 3 CHENG 75 CNTR − K−Pb (10→ 9)493.638±0.035±0.016 3 CHENG 75 CNTR − K−Pb (11→ 10)493.753±0.042±0.021 3 CHENG 75 CNTR − K−Pb (12→ 11)493.742±0.081±0.027 3 CHENG 75 CNTR − K−Pb (13→ 12)1Error in
reased from 0.0059 based on the error analysis in IVANOV 92.2This value is the authors' 
ombination of all of the separate transitions listed for thispaper.3The CHENG 75 values for separate transitions were 
al
ulated from their Table 7 transi-tion energies. The �rst error in
ludes a 20% systemati
 error in the non
ir
ular 
ontam-inant shift. The se
ond error is due to a ±5 eV un
ertainty in the theoreti
al transitionenergies.

WEIGHTED AVERAGE
493.677±0.013 (Error scaled by 2.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BACKENSTO... 73 CNTR 0.1
CHENG 75 CNTR 1.0
BARKOV 79 EMUL 0.1
LUM 81 CNTR
GALL 88 CNTR 13.6
DENISOV 91 CNTR 7.7

χ2

      22.4
(Confidence Level = 0.0002)

493.55 493.6 493.65 493.7 493.75 493.8 493.85mK± (MeV) mK+ − mK−mK+ − mK−mK+ − mK−mK+ − mK−Test of CPT.VALUE (MeV) EVTS DOCUMENT ID TECN CHG
−0.032±0.090−0.032±0.090−0.032±0.090−0.032±0.090 1.5M 1 FORD 72 ASPK ±1FORD 72 uses m

π+ − m
π− = +28 ± 70 keV.K± MEAN LIFEK± MEAN LIFEK± MEAN LIFEK± MEAN LIFEVALUE (10−8 s) EVTS DOCUMENT ID TECN CHG COMMENT1.2380±0.0020 OUR FIT1.2380±0.0020 OUR FIT1.2380±0.0020 OUR FIT1.2380±0.0020 OUR FIT Error in
ludes s
ale fa
tor of 1.8.1.2379±0.0021 OUR AVERAGE1.2379±0.0021 OUR AVERAGE1.2379±0.0021 OUR AVERAGE1.2379±0.0021 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogrambelow.1.2347±0.0030 15M 1 AMBROSINO 08 KLOE ± φ → K+K−1.2451±0.0030 250k KOPTEV 95 CNTR K at rest, U target1.2368±0.0041 150k KOPTEV 95 CNTR K at rest, Cu target1.2380±0.0016 3M OTT 71 CNTR + K at rest1.2272±0.0036 LOBKOWICZ 69 CNTR + K in 
ight1.2443±0.0038 FITCH 65B CNTR + K at rest

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.2415±0.0024 400k 2 KOPTEV 95 CNTR K at rest1.221 ±0.011 FORD 67 CNTR ±1.231 ±0.011 BOYARSKI 62 CNTR +1Result obtained by averaging the de
ay length and de
ay time analyses taking 
orrelationsinto a

ount.2KOPTEV 95 report this weighted average of their U-target and Cu-target results, wherethey have weighted by 1/σ rather than 1/σ2.



981981981981See key on page 601 Meson Parti
le ListingsK±

WEIGHTED AVERAGE
1.2379±0.0021 (Error scaled by 1.9)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

FITCH 65B CNTR 2.8
LOBKOWICZ 69 CNTR 8.9
OTT 71 CNTR 0.0
KOPTEV 95 CNTR 0.1
KOPTEV 95 CNTR 5.7
AMBROSINO 08 KLOE 1.2

χ2

      18.6
(Confidence Level = 0.0022)

1.21 1.22 1.23 1.24 1.25 1.26 1.27K± mean life (10−8 s)(τK+ − τK−) / τ average(τK+ − τK−) / τ average(τK+ − τK−) / τ average(τK+ − τK−) / τ averageThis quantity is a measure of CPT invarian
e in weak intera
tions.VALUE (%) DOCUMENT ID TECN0.10 ±0.09 OUR AVERAGE0.10 ±0.09 OUR AVERAGE0.10 ±0.09 OUR AVERAGE0.10 ±0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.
−0.4 ±0.4 AMBROSINO 08 KLOE0.090±0.078 LOBKOWICZ 69 CNTR0.47 ±0.30 FORD 67 CNTR
RARE KAON DECAYS

Revised September 2015 by L. Littenberg (BNL) and G. Valen-
cia (Monash University).

A. Introduction: There are several useful reviews on rare kaon

decays and related topics [1–17]. Activity in rare kaon decays

can be divided roughly into four categories:

1. Searches for explicit violations of the Standard Model

2. Measurements of Standard Model parameters

3. Searches for direct CP violation

4. Studies of strong interactions at low energy.

The paradigm of Category 1 is the lepton flavor violating

decay KL → µe. Category 2 includes processes such as K+ →
π+νν, which is sensitive to CKM parameters. Much of the

interest in Category 3 is focused on the decays KL → π0ℓℓ,

where ℓ ≡ e, µ, ν. Category 4 includes reactions like K+ →
π+ℓ+ℓ− which constitute a testing ground for the ideas of chiral

perturbation theory. Category 4 also includes KL → π0γγ and

KL → ℓ+ℓ−γ. The former is important in understanding a CP -

conserving contribution to KL → π0ℓ+ℓ−, whereas the latter

could shed light on long distance contributions to KL → µ+µ−.

The interplay between Categories 2-4 can be illustrated in

Fig. 1. The modes K → πνν are the cleanest ones theoretically.

They can provide accurate determinations of certain CKM

parameters (shown in the figure). In combination with alternate

determinations of these parameters, they also constrain new

interactions. The modes KL → π0e+e−, KL → π0µ+µ− and

KL → µ+µ− are also sensitive to CKM parameters. However,

they suffer from a number of hadronic uncertainties that can be

addressed, at least in part, through a systematic study of the

additional modes indicated in the figure.

Figure 1: Role of rare kaon decays in deter-
mining the unitarity triangle. The solid arrows
point to auxiliary modes needed to interpret the
main results, or potential backgrounds to them.

B. Explicit violations of the Standard Model : Much ac-

tivity has focussed on searches for lepton flavor violation (LFV).

This is motivated by the fact that many extensions of the min-

imal Standard Model violate lepton flavor and by the potential

to access very high energy scales. For example, the tree-level

exchange of a LFV vector boson of mass MX that couples to left-

handed fermions with electroweak strength and without mixing

angles yields B(KL → µe) = 4.7 × 10−12(148 TeV/MX)4 [4].

This simple dimensional analysis may be used to read from Ta-

ble 1 that the reaction KL → µe is already probing scales of over

100 TeV. Table 1 summarizes the present experimental situation

vis-à-vis LFV. The decays KL → µ±e∓ and K+ → π+e∓µ±

(or KL → π0e∓µ±) provide complementary information on po-

tential family number violating interactions, since the former

is sensitive to parity-odd couplings and the latter is sensitive

to parity-even couplings. Limits on certain lepton-number vio-

lating kaon decays also exist, some recent ones being those of

Refs. [18,19,20]. Related searches in µ and τ processes are

discussed in our section “Tests of Conservation Laws.”

Table 1: Searches for lepton flavor violation in
K decay

90% CL
Mode upper limit Exp’t Yr./Ref.

K+→π+e−µ+ 1.2×10−11 BNL-865 2005/Ref. 21
K+→π+e+µ− 5.2×10−10 BNL-865 2000/Ref. 18
KL→µe 4.7×10−12 BNL-871 1998/Ref. 22
KL→π0eµ 7.6×10−11 KTeV 2008/Ref. 23
KL→π0π0eµ 1.7×10−10 KTeV 2008/Ref. 23

Physics beyond the SM is also pursued through the search

for K+ → π+X0, where X0 is a new light particle. The

searches cover both long-lived particles (e.g., hyperphoton,

axion, familon, etc.), and short lived ones that decay to muon,

electron or photon pairs. The 90% CL upper limit on K+ →
π+X0 is 7.3× 10−11 [24] for the case of massless X0; additional

results as a function of the X0 mass can be found in [37].
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Recently these limits have been reinterpreted in connection

with a dark photon [25] or dark Z [26]. Such vectors have

also been sought in their e+e− decay mode by NA48 [27].

Additional bounds for a short lived pseudoscalar X0 decaying

to muons or photons are B(KL → π0π0µ+µ−) < 1× 10−10 [28]

and B(KL → π0π0γγ) < 2.4 × 10−7 [29].

C. Measurements of Standard Model parameters:

In the SM, the decay K+ → π+νν is dominated by one-loop

diagrams with top-quark intermediate states and long-distance

contributions are known to be quite small [2,30]. This permits

a precise calculation of this rate in terms of SM parameters.

Studies of this process are thus motivated by the possibility of

detecting non-SM physics when comparing with the results of

global fits [31,32].

BNL-787 observed two candidate events [33,34] in the clean

high π+ momentum and one event [35] in the low-momentum

region. The successor experiment BNL-949 observed one more

in the high-momentum region [24] and three more in the low-

momentum region [36] yielding a branching ratio of (1.73+1.15
−1.05)×

10−10 [37]. A subsequent experiment, NA62, with a sensitivity

goal of ∼ 10−12/event was proposed [38] at CERN in 2005. It

was approved and ran with a partial detector in autumn 2012,

followed by a successful commissioning run in the fall of 2014.

The first physics run started in the summer of 2015. The NA62

experiment will be the first one performed with kaon decays

in flight. In the future, this mode may provide grounds for

precision tests of flavor dynamics [40].

The branching ratio can be written in a compact form

that exhibits the different ingredients that go into the calcula-

tion [41],

B(K+ → π+νν(γ)) = κ+(1 + ∆EM)

[(
Im(V ⋆

tsVtd)

λ5
Xt

)2

+

(
Re(V ⋆

csVcd)

λ
(Pc + δPc,u) +

Re(V ⋆
tsVtd)

λ5
Xt

)2
]

. (1)

The parameters in Eq. (1) incorporate the a priori unknown

hadronic matrix element in terms of the very well-measured Ke3

rate [2] in κ+; long distance QED corrections in ∆EM [43]; the

Inami-Lim function for the short distance top-quark contribu-

tion [44] including NLO QCD corrections [45] and the two-loop

electroweak correction [41], all in Xt; and the charm-quark con-

tributions due to short distance effects including NNLO QCD

corrections [46] and NLO electroweak corrections via Pc [47],

as well as certain long distance effects via δPc,u [48]. An in-

teresting approximate way to cast this result in terms of the

CKM parameters λ, Vcb, ρ and η (see our Section on “The

Cabibbo-Kobayashi-Maskawa mixing matrix”) [11] is:

B(K+ → π+νν) ≈ 1.6 × 10−5|Vcb|4[ση2 + (ρc − ρ)2], (2)

where ρc ≈ 1.45 and σ ≡ 1/(1 − 1
2
λ2)2. Thus, B(K+ → π+νν)

determines an ellipse in the ρ, η plane with center (ρc, 0) and

semiaxes ≈ 1

|Vcb|2
√

B(K+→π+νν)
1.6×10−5 and

1

σ|Vcb|2
√

B(K+→π+νν)
1.6×10−5 . A

recent numerical study leads to a predicted branching ratio

(7.81+0.80
−0.71 ± 0.29) × 10−11 [41], near the lower end of the mea-

surement of BNL-787 and 949. However, parametric uncertainty

in the CKM angles can result in numbers that differ from this

one by up to 10% [42].

Modes with an extra pion, K → ππνν̄, could also be used in

the extraction of CKM parameters as they are also dominated

by short distance contributions [49]. However, they occur at

much lower rates with branching rations of order 10−13, and

the current best bound from KEK-391a is B(KL → π0π0νν̄) <

8.1 × 10−7 at 90% CL [50]. There is also an older bound of

B(K+ → π+π0νν̄) < 4.3×10−5 at 90% CL [51] from BNL-787.

The decay KL → µ+µ− also has a short distance contribu-

tion sensitive to the CKM parameter ρ, given by [11]:

BSD(KL → µ+µ−) ≈ 2.7 × 10−4|Vcb|4(ρ′c − ρ)2 (3)

where ρ′c depends on the charm quark mass and is approximately

1.2. This decay, however, is dominated by a long-distance con-

tribution from a two-photon intermediate state. The absorptive

(imaginary) part of the long-distance component is determined

by the measured rate for KL → γγ to be Babs(KL → µ+µ−) =

(6.64 ± 0.07) × 10−9; and it almost completely saturates the

observed rate B(KL → µ+µ−) = (6.84 ± 0.11) × 10−9 [52].

The difference between the observed rate and the absorp-

tive component can be attributed to the (coherent) sum of

the short-distance amplitude and the real part of the long-

distance amplitude. The latter cannot be derived directly from

experiment [53], but can be estimated with certain assump-

tions [54,55].

The decay KL → e+e− is completely dominated by long

distance physics and is easier to estimate. The result, B(KL →
e+e−) ∼ 9 × 10−12 [53,56], is in good agreement with the

BNL-871 measurement, (8.7+5.7
−4.1) × 10−12 [57].

The mode KS → µ+µ− also has a short distance contri-

bution proportional to the square of the CKM parameter η̄

entering at the 10−13 level [15] as well as long distance contri-

butions which arise in this case from a two photon intermediate

state and result in a rate B(KS → µ+µ−)LD = 5.1×10−12 [15].

A 95% (90%) c.l. limit B(KS → µ+µ−) < 11(9) × 10−9 was

obtained by LHCb [58].

D. Searches for direct CP violation: The mode KL →
π0νν is dominantly CP -violating and free of hadronic uncer-

tainties [2,59,60]. In the Standard Model, this mode is domi-

nated by an intermediate top-quark state and does not suffer

from the small uncertainty associated with the charm-quark

intermediate state that affects the mode K+ → π+νν. The

branching ratio is given by Ref. 11:

B(KL → π0νν) = κL

(
Im(V ⋆

tsVtd)

λ5
Xt

)2

≈ 7.6 × 10−5|Vcb|4η2 . (4)

The hadronic matrix element can be related to that measured

in Kℓ3 decay and is parameterized in κL. A recent numerical

evaluation leads to a predicted branching ratio (2.43+0.40
−0.37 ±
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0.06) × 10−11 [41]. As noted for the charged kaon mode,

parametric uncertainty in the CKM angles can result in a

central value that differs from this one by up to almost 20% [42].

The 90% CL bound on K+ → π+νν provides a nearly model-

independent bound B(KL → π0νν) < 1.46 × 10−9 [61]. KEK-

391a, which took data in 2004 and 2005, has published a

90% CL upper bound of B(KL → π0νν) ≤ 2.6 × 10−8 [62].

The KOTO experiment at J-PARC [63], whose initial goal is

to observe it, had a short physics run in the spring of 2013,

reaching a single event sensitivity of 1.29 × 10−8 [65], and

resuming the data taking in May 2015. It was pointed out in

a recent paper that the above Grossman-Nir bound [61] on

the three body decay KL → π0νν̄ doesn’t necessarily apply to

two body decays such as KL → π0X0, so that KOTO may be

interesting for new physics searches at the current sensitivity

level [64].

There has been much theoretical work on possible contri-

butions to rare K decays beyond the SM. A comprehensive

discussion of these can be found in Refs. [14] and [66].

The decay KL → π0e+e− also has sensitivity to the CKM

parameter η through its CP -violating component. There are

both direct and indirect CP -violating amplitudes that can

interfere. The direct CP -violating amplitude is short distance

dominated and has been calculated in detail within the SM [8].

The indirect CP -violating amplitude can be inferred from a

measurement of KS → π0e+e−. The complete CP -violating

contribution to the rate can be written as [67,68]:

BCPV ≈ 10−12

[
15.7|aS|2 ± 1.4

( |Vcb|2η
10−4

)
|aS|

+ 0.12

( |Vcb|2η
10−4

)2]
(5)

where the three terms correspond to the indirect CP vi-

olation, the interference, and the direct CP violation respec-

tively. The parameter aS has been extracted by NA48 from

a measurement of the decay KS → π0e+e− with the result

|aS| = 1.06+0.26
−0.21±0.07 [69], as well as from a measurement of the

decay KS → π0µ+µ− with the result |as| = 1.54+0.40
−0.32±0.06 [70].

With current constraints on the CKM parameters, and assum-

ing a positive sign for the interference term [68,71], this

implies that BCPV(KL → π0e+e−) ≈ (3.1 ± 0.9) × 10−11,

and that the indirect CP violation is larger than the di-

rect CP violation. The complete CP violating amplitude

for the related mode KL → π0µ+µ− is predicted to be

BCPV(KL → π0µ+µ−) ≈ (1.4 ± 0.5) × 10−11 [72,15].

KL → π0e+e− also has a CP -conserving component domi-

nated by a two-photon intermediate state. This component can

be decomposed into an absorptive and a dispersive part. The

absorptive part can be extracted from the measurement of the

low mγγ region of the KL → π0γγ spectrum. The rate and

the shape of the distribution dΓ/dmγγ in KL → π0γγ are well

described in chiral perturbation theory in terms of three (a

priori) unknown parameters [73,74].

Both KTeV and NA48 have studied the mode KL → π0γγ,

reporting similar results. KTeV finds B(KL → π0γγ) = (1.29±
0.03stat ± 0.05sys) × 10−6 [75], while NA48 finds B(KL →
π0γγ) = (1.36± 0.03stat± 0.03sys ± 0.03norm)× 10−6 [76]. Both

experiments are consistent with a negligible rate in the low

mγγ region, suggesting a very small CP -conserving component

BCP(KL → π0e+e−) ∼ O(10−13) [68,74,76]. There remains

some model dependence in the estimate of the dispersive part

of the CP -conserving KL → π0e+e− [68].

The related process, KL → π0γe+e−, is potentially an

additional background in some region of phase space [77].

This process has been observed with a branching ratio of

(1.62 ± 0.14stat ± 0.09sys) × 10−8 [78].

The decay KL → γγe+e− constitutes the dominant back-

ground to KL → π0e+e−. It was first observed by BNL-845 [79],

and subsequently confirmed with a much larger sample by

KTeV [80]. It has been estimated that this background will

enter at about the 10−10 level [81,82], comparable to or

larger than the signal level. Because of this, the observation

of KL → π0e+e− at the SM level will depend on background

subtraction with good statistics. Possible alternative strategies

are discussed in Ref. 68 and references cited therein.

The 90% CL upper bound for the process KL → π0e+e−

is 2.8 × 10−10 [82]. For the closely related muonic process, the

published upper bound is B(KL → π0µ+µ−) ≤ 3.8×10−10 [83],

compared with the SM prediction of (1.5 ± 0.3) × 10−11 [72]

(assuming positive interference between the direct- and indirect-

CP violating components).

A study of KL → π0µ+µ− has indicated that it might be

possible to extract the direct CP -violating contribution by a

joint study of the Dalitz plot variables and the components

of the µ+ polarization [84]. The latter tends to be quite

substantial so that large statistics may not be necessary.

Combined information from the two KL → π0ℓ+ℓ− modes

complements the K → πνν measurements in constraining

physics beyond the SM [85].

E. Other long distance dominated modes:

The decays K+ → π+ℓ+ℓ− (ℓ = e or µ) have received con-

siderable attention. The rate and spectrum have been measured

for both the electron and muon modes [86,87,20].

The measurements have been used to exclude new physics

such as a dark photon [25]. Ref. 67 has proposed a parametriza-

tion inspired by chiral perturbation theory, which provides a

successful description of data but indicates the presence of large

corrections beyond leading order. More work is needed to fully

understand the origin of these large corrections. NA62 has now

also observed the mode K+ → π+π0e+e− [88] studied in [89].

The decay K+ → π+γγ can be predicted in terms of

one unknown parameter to leading order in χPT resulting in

a correlation between the rate and the diphoton mass spec-

trum [90]. Certain important corrections at the next order are

also known [91]. The rate was first measured by E787 [92],

more recently NA48/2 [93] has obtained a more precise result

with 6% error along with the corresponding spectrum fits. The

most recent, and precise, result is from NA62 based on a sample
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of 232 events [94] and is still insufficient to distinguish between

the leading order and next order χPT parametrizations.

Much information has been recorded by KTeV and NA48

on the rates and spectrum for the Dalitz pair conversion

modes KL → ℓ+ℓ−γ [95,96], and KL → ℓ+ℓ−ℓ′+ℓ′− for ℓ, ℓ′ =

e or µ [19,97–99]. All these results are used to test hadronic

models and could further our understanding of the long distance

component in KL → µ+µ−.

References

1. D. Bryman, Int. J. Mod. Phys. A4, 79 (1989).

2. J. Hagelin and L. Littenberg, Prog. in Part. Nucl. Phys.
23, 1 (1989).

3. L. Littenberg and G. Valencia, Ann. Rev. Nucl. and Part.
Sci. 43, 729 (1993).

4. J. Ritchie and S. Wojcicki, Rev. Mod. Phys. 65, 1149
(1993).

5. B. Winstein and L. Wolfenstein, Rev. Mod. Phys. 65, 1113
(1993).

6. G. D’Ambrosio et al., Radiative Non-Leptonic Kaon De-

cays, in The DAΦNE Physics Handbook (second edition),
eds. L. Maiani, G. Pancheri, and N. Paver (Frascati),
Vol. I, 265 (1995).

7. A. Pich, Rept. on Prog. in Phys. 58, 563 (1995).

8. G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev.
Mod. Phys. 68, 1125 (1996).

9. G. D’Ambrosio and G. Isidori, Int. J. Mod. Phys. A13, 1
(1996).

10. P. Buchholz and B. Renk Prog. in Part. Nucl. Phys. 39,
253 (1997).

11. A.J. Buras and R. Fleischer, TUM-HEP-275-97,
hep-ph/9704376, Heavy Flavours II, World Scientific, eds.
A.J. Buras and M. Lindner (1997), 65–238.

12. A.J. Buras, TUM-HEP-349-99, Lectures at Lake Louise
Winter Institute: Electroweak Physics, Lake Louise, Al-
berta, Canada, 14–20 Feb. 1999.

13. A.R. Barker and S.H. Kettell, Ann. Rev. Nucl. and Part.
Sci. 50, 249 (2000).

14. A.J. Buras, F. Schwab, and S. Uhlig, Rev. Mod. Phys. 80,
965 (2008).

15. V. Cirigliano et al., Rev. Mod. Phys. 84, 399 (2012).

16. D. Bryman et al., Ann. Rev. Nucl. and Part. Sci. 61, 331
(2011).

17. T.K. Komatsubara, Prog. in Part. Nucl. Phys. 67, 995
(2012).

18. R. Appel et al., Phys. Rev. Lett. 85, 2877 (2000).

19. A. Alavi-Harati et al., Phys. Rev. Lett. 90, 141801 (2003).

20. J.R. Batley et al., Phys. Lett. B697, 107 (2011).

21. A. Sher et al., Phys. Rev. D72, 012005 (2005).

22. D. Ambrose et al., Phys. Rev. Lett. 81, 5734 (1998).

23. E. Abouzaid et al., Phys. Rev. Lett. 100, 131803 (2008).

24. V.V. Anisimovsky et al., Phys. Rev. Lett. 93, 031801
(2004).

25. M. Pospelov, Phys. Rev. D80, 095002 (2009).

26. H. Davoudiasl, H.S. Lee, and W.J. Marciano, Phys. Rev.
D89, 095006 (2014).

27. J.R. Batley et al. [NA48/2 Collab.], Phys. Lett. B746, 178
(2015).

28. E. Abouzaid et al., Phys. Rev. Lett. 107, 201803 (2011);
see also, D.G. Phillips II, “Search for the Rare Decay
KL → π0π0µ+µ−,” University of Virginia thesis, May
2009.

29. Y.C. Tung et al., Phys. Rev. Lett. 102, 051802 (2009).

30. M. Lu and M.B. Wise, Phys. Lett. B324, 461 (1994);;
A.F. Falk, A. Lewandowski, and A.A. Petrov, Phys. Lett.
B505, 107 (2001).

31. CKMfitter Group (J. Charles et al.), Phys. Rev. D84,
033005 (2011) [arXiv:1106.4041], updated results and
plots available at: http://ckmfitter.in2p3.fr.

32. M. Bona et al. [UTfit Collab.] “Model-independent con-
straints on Delta F=2 operators and the scale of New
Physics,” arXiv:0707.0636, www.utfit.org/UTfit/.

33. S. Adler et al., Phys. Rev. Lett. 88, 041803 (2002).

34. S. Adler et al., Phys. Rev. Lett. 84, 3768 (2000).

35. S. Adler et al., Phys. Lett. B537, 237 (2002).

36. A.V. Artamonov et al., Phys. Rev. Lett. 101, 191802
(2008).

37. A.V. Artamonov et al., Phys. Rev. D79, 092004 (2009).

38. G. Anelli et al., CERN-SPSC-2005-013, 11 June 2005.

39. J. Comfort et al., FERMILAB-PROPOSAL-1021.

40. G. D’Ambrosio and G. Isidori, Phys. Lett. B530, 108
(2002).

41. J. Brod, M. Gorbahn, and E. Stamou, Phys. Rev. D83,
034030 (2011).

42. A.J. Buras, et al., JHEP 1511, 033 (2015).

43. F. Mescia and C. Smith, Phys. Rev. D76, 034017 (2007).

44. T. Inami and C.S. Lim, Prog. Theor. Phys. 65, 297 (1981);
Erratum Prog. Theor. Phys. 65, 172 (1981).

45. G. Buchalla and A.J. Buras, Nucl. Phys. B548, 309
(1999);
M. Misiak and J. Urban, Phys. Lett. B451, 161 (1999).

46. A.J. Buras et al., Phys. Rev. Lett. 95, 261805 (2005);
A.J. Buras et al., JHEP 0611, 002 (2006).

47. J. Brod and M. Gorbahn, Phys. Rev. D78, 034006 (2008).

48. G. Isidori, F. Mescia, and C. Smith, Nucl. Phys. B718,
319 (2005);
A.F. Falk, A. Lewandowski, and A.A. Petrov, Phys. Lett.
B505, 107 (2001).

49. L. Littenberg and G. Valencia, Phys. Lett. B385, 379
(1996);
C.-W. Chiang and F.J. Gilman, Phys. Rev. D62, 094026
(2000);
C.Q. Geng, I.J. Hsu, and Y.C. Lin, Phys. Rev. D50, 5744
(1994).

50. R. Ogata, et al., Phys. Rev. D84, 052009 (2011).

51. S. Adler, et al., Phys. Rev. D63, 032004 (2001).

52. D. Ambrose et al., Phys. Rev. Lett. 84, 1389 (2000).

53. G. Valencia, Nucl. Phys. B517, 339 (1998).

54. G. D’Ambrosio, G. Isidori, and J. Portoles, Phys. Lett.
B423, 385 (1998).

55. G. Isidori and R. Unterdorfer, JHEP 0401, 009 (2004).

56. D. Gomez-Dumm and A. Pich, Phys. Rev. Lett. 80, 4633
(1998).

57. D. Ambrose et al., Phys. Rev. Lett. 81, 4309 (1998).

58. R. Aaij et al., JHEP 1301, 090 (2013).



985985985985See key on page 601 MesonParti
le ListingsK±

59. L. Littenberg, Phys. Rev. D39, 3322 (1989).

60. G. Buchalla and G. Isidori, Phys. Lett. B440, 170 (1998).

61. Y. Grossman and Y. Nir, Phys. Lett. B398, 163 (1997).

62. J.K. Ahn et al., Phys. Rev. D81, 072004 (2010).

63. J. Comfort et al., “Proposal for K0
L → π0νν Experiment

at J-Parc,” J-PARC Proposal 14 (2006).

64. K. Fuyuto, W. S. Hou, and M. Kohda, Phys. Rev. Lett.
114, 171802 (2015).

65. K. Shiomi et al., arXiv:1411.4250.

66. D. Bryman et al., Int. J. Mod. Phys. A21, 487 (2006).

67. G. D’Ambrosio et al., JHEP 9808, 004 (1998);
C.O. Dib, I. Dunietz, and F.J. Gilman, Phys. Rev. D39,
2639 (1989).

68. G. Buchalla, G. D’Ambrosio, and G. Isidori, Nucl. Phys.
B672, 387 (2003).

69. J.R. Batley et al., Phys. Lett. B576, 43 (2003).

70. J.R. Batley et al., Phys. Lett. B599, 197 (2004).

71. S. Friot, D. Greynat, and E. de Rafael, Phys. Lett. B595,
301 (2004).

72. G. Isidori, C. Smith, and R. Unterdorfer, Eur. Phys. J.
C36, 57 (2004).

73. G. Ecker, A. Pich, and E. de Rafael, Phys. Lett. 237B,
481 (1990);
L. Cappiello, G. D’Ambrosio, and M. Miragliuolo, Phys.
Lett. B298, 423 (1993);
A. Cohen, G. Ecker, and A. Pich, Phys. Lett. B304, 347
(1993).

74. F. Gabbiani and G. Valencia, Phys. Rev. D66, 074006
(2002).

75. E. Abouzaid et al., Phys. Rev. D77, 112004 (2008).

76. A. Lai et al., Phys. Lett. B536, 229 (2002).

77. J. Donoghue and F. Gabbiani, Phys. Rev. D56, 1605
(1997).

78. E. Abouzaid et al., Phys. Rev. D76, 052001 (2007).

79. W.M. Morse et al., Phys. Rev. D45, 36 (1992).

80. A. Alavi-Harati et al., Phys. Rev. D64, 012003 (2001).

81. H.B. Greenlee, Phys. Rev. D42, 3724 (1990).

82. A. Alavi-Harati et al., Phys. Rev. Lett. 93, 021805 (2004).

83. A. Alavi-Harati et al., Phys. Rev. Lett. 84, 5279 (2000).

84. M.V. Diwan, H. Ma, and T.L. Trueman, Phys. Rev. D65,
054020 (2002).

85. F. Mescia, C. Smith, and S. Trine, JHEP 0608, 088
(2006).

86. R. Appel et al., Phys. Rev. Lett. 83, 4482 (1999);
J.R. Batley et al., Phys. Lett. B677, 246 (2009).

87. S.C. Adler et al., Phys. Rev. Lett. 79, 4756 (1997);
R. Appel et al., Phys. Rev. Lett. 84, 2580 (2000);
H.K. Park et al., Phys. Rev. Lett. 88, 111801 (2002).

88. R. Fantechi, Pos HQL 2012, 014 (2012).

89. L. Cappiello, et al., Eur. Phys. J. C72, 1872 (2012) [Eur.
Phys. J. C72, 2208 (2012)] [arXiv:1112.5184].

90. G. Ecker, A. Pich, and E. de Rafael, Nucl. Phys. B303,
665 (1988).

91. G. D’Ambrosio and J. Portoles, Phys. Lett. B386, 403
(1996) [Phys. Lett. B389, 770 (1996)] [Erratum-ibid. B
395, 390 (1997)] [hep-ph/9606213].

92. P. Kitching et al. [E787 Collab.], Phys. Rev. Lett. 79, 4079
(1997) [hep-ex/9708011].

93. J.R. Batley et al., Phys. Lett. B730, 141 (2014).

94. C. Lazzeroni et al., Phys. Lett. B732C, 65 (2014).

95. A. Alavi-Harati et al., Phys. Rev. Lett. 87, 071801 (2001).

96. A. Abouzaid et al., Phys. Rev. Lett. 99, 051804 (2007).

97. J.R. LaDue “Understanding Dalitz Decays of the KL

in particular the decays of KL → e+e−γ and KL →
e+e−e+e−” University of Colorado Thesis, May 2003. The
preliminary result for KL → e+e−γ in this thesis has been
superseded by the final result in [96].

98. A. Alavi-Harati et al., Phys. Rev. Lett. 86, 5425 (2001).

99. V. Fanti et al., Phys. Lett. B458, 458 (1999).K+ DECAY MODESK+ DECAY MODESK+ DECAY MODESK+ DECAY MODESK− modes are 
harge 
onjugates of the modes below. S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modes�1 e+νe ( 1.582±0.007)× 10−5�2 µ+νµ ( 63.56 ±0.11 ) % S=1.2�3 π0 e+ νe ( 5.07 ±0.04 ) % S=2.1Called K+e3.�4 π0µ+νµ ( 3.352±0.033) % S=1.9Called K+
µ3.�5 π0π0 e+ νe ( 2.55 ±0.04 )× 10−5 S=1.1�6 π+π− e+ νe ( 4.247±0.024)× 10−5�7 π+π−µ+ νµ ( 1.4 ±0.9 )× 10−5�8 π0π0π0 e+ νe < 3.5 × 10−6 CL=90%Hadroni
 modesHadroni
 modesHadroni
 modesHadroni
 modes�9 π+π0 ( 20.67 ±0.08 ) % S=1.2�10 π+π0π0 ( 1.760±0.023) % S=1.1�11 π+π+π− ( 5.583±0.024) %Leptoni
 and semileptoni
 modes with photonsLeptoni
 and semileptoni
 modes with photonsLeptoni
 and semileptoni
 modes with photonsLeptoni
 and semileptoni
 modes with photons�12 µ+νµ γ [a,b℄ ( 6.2 ±0.8 )× 10−3�13 µ+νµ γ (SD+) [
,d℄ ( 1.33 ±0.22 )× 10−5�14 µ+νµ γ (SD+INT) [
,d℄ < 2.7 × 10−5 CL=90%�15 µ+νµ γ (SD− + SD−INT) [
,d℄ < 2.6 × 10−4 CL=90%�16 e+νe γ ( 9.4 ±0.4 )× 10−6�17 π0 e+ νe γ [a,b℄ ( 2.56 ±0.16 )× 10−4�18 π0 e+ νe γ (SD) [
,d℄ < 5.3 × 10−5 CL=90%�19 π0µ+νµ γ [a,b℄ ( 1.25 ±0.25 )× 10−5�20 π0π0 e+ νe γ < 5 × 10−6 CL=90%Hadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairs�21 π+π0 γ (INT) (− 4.2 ±0.9 )× 10−6�22 π+π0 γ (DE) [a,e℄ ( 6.0 ±0.4 )× 10−6�23 π+π0π0 γ [a,b℄ ( 7.6 +6.0

−3.0 )× 10−6�24 π+π+π− γ [a,b℄ ( 1.04 ±0.31 )× 10−4�25 π+ γ γ [a℄ ( 1.01 ±0.06 )× 10−6�26 π+ 3γ [a℄ < 1.0 × 10−4 CL=90%�27 π+ e+ e− γ ( 1.19 ±0.13 )× 10−8Leptoni
 modes with ℓℓ pairsLeptoni
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urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
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le ListingsK±�38 π+ ν ν S1 ( 1.7 ±1.1 )× 10−10�39 π+π0 ν ν S1 < 4.3 × 10−5 CL=90%�40 µ−ν e+ e+ LF < 2.1 × 10−8 CL=90%�41 µ+νe LF [f ℄ < 4 × 10−3 CL=90%�42 π+µ+ e− LF < 1.3 × 10−11 CL=90%�43 π+µ− e+ LF < 5.2 × 10−10 CL=90%�44 π−µ+ e+ L < 5.0 × 10−10 CL=90%�45 π− e+ e+ L < 6.4 × 10−10 CL=90%�46 π−µ+µ+ L [f ℄ < 1.1 × 10−9 CL=90%�47 µ+νe L [f ℄ < 3.3 × 10−3 CL=90%�48 π0 e+ νe L < 3 × 10−3 CL=90%�49 π+ γ [g ℄ < 2.3 × 10−9 CL=90%[a℄ See the Parti
le Listings below for the energy limits used in this mea-surement.[b℄ Most of this radiative mode, the low-momentum γ part, is also in
ludedin the parent mode listed without γ's.[
 ℄ Stru
ture-dependent part.[d ℄ See the \Note on π± → ℓ±ν γ and K± → ℓ±ν γ Form Fa
tors" in the
π± Parti
le Listings for de�nitions and details.[e℄ Dire
t-emission bran
hing fra
tion.[f ℄ Derived from an analysis of neutrino-os
illation experiments.[g ℄ Violates angular-momentum 
onservation.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the mean life, a de
ay rate, and 15 bran
hingratios uses 35 measurements and one 
onstraint to determine 8parameters. The overall �t has a χ2 = 53.4 for 28 degrees offreedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x3 −66x4 −64 90x5 −12 −5 −5x9 −67 0 −1 −6x10 −13 −6 −5 91 −6x11 −14 −6 −6 2 −7 2� 3 1 1 0 2 0 −24x2 x3 x4 x5 x9 x10 x11Mode Rate (108 s−1) S
ale fa
tor�2 µ+νµ 0.5134 ±0.0012 1.5�3 π0 e+ νe 0.0410 ±0.0004 2.1Called K+e3.�4 π0µ+νµ 0.02707±0.00027 1.9Called K+
µ3.�5 π0π0 e+ νe (2.059 ±0.029 )× 10−5 1.1�9 π+π0 0.1670 ±0.0007 1.3�10 π+π0π0 0.01421±0.00018 1.1�11 π+π+π− 0.04510±0.00019K± DECAY RATESK± DECAY RATESK± DECAY RATESK± DECAY RATES�(µ+νµ

) �2�(µ+νµ

) �2�(µ+νµ

) �2�(µ+νµ

) �2VALUE (106 s−1) DOCUMENT ID TECN CHG51.34±0.12 OUR FIT51.34±0.12 OUR FIT51.34±0.12 OUR FIT51.34±0.12 OUR FIT Error in
ludes s
ale fa
tor of 1.5.
• • • We do not use the following data for averages, �ts, limits, et
. • • •51.2 ±0.8 FORD 67 CNTR ±�(π+π+π−) �11�(π+π+π−) �11�(π+π+π−) �11�(π+π+π−) �11VALUE (106 s−1) EVTS DOCUMENT ID TECN CHG4.510±0.019 OUR FIT4.510±0.019 OUR FIT4.510±0.019 OUR FIT4.510±0.019 OUR FIT4.511±0.0244.511±0.0244.511±0.0244.511±0.024 1 FORD 70 ASPK
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.529±0.032 3.2M 1 FORD 70 ASPK4.496±0.030 1 FORD 67 CNTR ±1First FORD 70 value is se
ond FORD 70 
ombined with FORD 67.

K+ BRANCHING RATIOSK+ BRANCHING RATIOSK+ BRANCHING RATIOSK+ BRANCHING RATIOSLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modes�(e+ νe)/�(µ+νµ

) �1/�2�(e+ νe)/�(µ+νµ

) �1/�2�(e+ νe)/�(µ+νµ

) �1/�2�(e+ νe)/�(µ+νµ

) �1/�2See the note on \De
ay Constants of Charged Pseudos
alar Mesons" in the D+sListings.VALUE (units 10−5) EVTS DOCUMENT ID TECN CHG2.488±0.009 OUR AVERAGE2.488±0.009 OUR AVERAGE2.488±0.009 OUR AVERAGE2.488±0.009 OUR AVERAGE2.488±0.007±0.007 150k 1 LAZZERONI 13 NA62 ±2.493±0.025±0.019 13.8K 2 AMBROSINO 09E KLOE ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.487±0.011±0.007 60k 3 LAZZERONI 11 NA62 +2.51 ±0.15 404 HEINTZE 76 SPEC +2.37 ±0.17 534 HEARD 75B SPEC +2.42 ±0.42 112 CLARK 72 OSPK +1LAZZERONI 13 uses full data sample 
olle
ted from 2007 to 2008. This ratio is de�nedto be fully in
lusive, in
luding internal-bremsstrahlung.2The ratio is de�ned to in
lude internal-bremsstrahlung, ignoring dire
t-emission 
ontribu-tions. AMBROSINO 09E determined the ratio from the measurement of �(K → e ν (γ),Eγ < 10 MeV) / �(K → µν (γ)). 89.8% of K → e ν (γ) events had Eγ <10 MeV.3This ratio is de�ned to be fully in
lusive, in
luding internal-bremsstrahlung.�(µ+νµ

)/�total �2/��(µ+νµ

)/�total �2/��(µ+νµ

)/�total �2/��(µ+νµ

)/�total �2/�See the note on \De
ay Constants of Charged Pseudos
alar Mesons" in the D+sListings.VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT63.56±0.11 OUR FIT63.56±0.11 OUR FIT63.56±0.11 OUR FIT63.56±0.11 OUR FIT Error in
ludes s
ale fa
tor of 1.2.63.60±0.16 OUR AVERAGE63.60±0.16 OUR AVERAGE63.60±0.16 OUR AVERAGE63.60±0.16 OUR AVERAGE63.66±0.09±0.15 865k 1 AMBROSINO 06A KLOE +63.24±0.44 62k CHIANG 72 OSPK + 1.84 GeV/
 K+1Fully in
lusive. Used tagged kaons from φ de
ays.�(π0 e+ νe)/�total �3/��(π0 e+ νe)/�total �3/��(π0 e+ νe)/�total �3/��(π0 e+ νe)/�total �3/�VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT5.07 ±0.04 OUR FIT5.07 ±0.04 OUR FIT5.07 ±0.04 OUR FIT5.07 ±0.04 OUR FIT Error in
ludes s
ale fa
tor of 2.1.4.94 ±0.05 OUR AVERAGE4.94 ±0.05 OUR AVERAGE4.94 ±0.05 OUR AVERAGE4.94 ±0.05 OUR AVERAGE4.965±0.038±0.037 1 AMBROSINO 08A KLOE ±4.86 ±0.10 3516 CHIANG 72 OSPK + 1.84 GeV/
 K+
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.7 ±0.3 429 SHAKLEE 64 HLBC +5.0 ±0.5 ROE 61 HLBC +1Depends on K+ lifetime τ . AMBROSINO 08A uses PDG 06 value of τ = (1.2385 ±0.0024) × 10−8 se
. The 
orrelation between K+e3 and K+

µ3 bran
hing fra
tion mea-surements is 62.7%.�(π0 e+ νe)/�(µ+νµ

) �3/�2�(π0 e+ νe)/�(µ+νµ

) �3/�2�(π0 e+ νe)/�(µ+νµ

) �3/�2�(π0 e+ νe)/�(µ+νµ

) �3/�2VALUE EVTS DOCUMENT ID TECN CHG0.0798±0.0008 OUR FIT0.0798±0.0008 OUR FIT0.0798±0.0008 OUR FIT0.0798±0.0008 OUR FIT Error in
ludes s
ale fa
tor of 1.9.
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.069 ±0.006 350 ZELLER 69 ASPK +0.0775±0.0033 960 BOTTERILL 68C ASPK +0.069 ±0.006 561 GARLAND 68 OSPK +0.0791±0.0054 295 1 AUERBACH 67 OSPK +1AUERBACH 67 
hanged from 0.0797 ± 0.0054. See 
omment with ratio �(

π0µ+ νµ
)/�(

µ+ νµ
). The value 0.0785 ± 0.0025 given in AUERBACH 67 is an average ofAUERBACH 67 �(

π0 e+ νe)/�(
µ+ νµ

) and CESTER 66 �(
π0 e+ νe)/[�(

µ+ νµ
) +�(

π+π0)].�(π0 e+ νe)/[�(µ+νµ

)+ �(π+π0)] �3/(�2+�9)�(π0 e+ νe)/[�(µ+νµ

)+ �(π+π0)] �3/(�2+�9)�(π0 e+ νe)/[�(µ+νµ

)+ �(π+π0)] �3/(�2+�9)�(π0 e+ νe)/[�(µ+νµ

)+ �(π+π0)] �3/(�2+�9)VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG6.02±0.06 OUR FIT6.02±0.06 OUR FIT6.02±0.06 OUR FIT6.02±0.06 OUR FIT Error in
ludes s
ale fa
tor of 2.1.6.02±0.15 OUR AVERAGE6.02±0.15 OUR AVERAGE6.02±0.15 OUR AVERAGE6.02±0.15 OUR AVERAGE6.16±0.22 5110 ESCHSTRUTH 68 OSPK +5.89±0.21 1679 CESTER 66 OSPK +
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.92±0.65 1 WEISSENBE... 76 SPEC +1Value 
al
ulated from WEISSENBERG 76 (π0 e ν), (µν), and (ππ0) values to eliminatedependen
e on our 1974 (π2π0) and (ππ+π−) fra
tions.�(π0 e+ νe)/[�(π0µ+νµ

)+ �(π+π0)+�(π+π0π0)] �3/(�4+�9+�10)�(π0 e+ νe)/[�(π0µ+νµ

)+ �(π+π0)+�(π+π0π0)] �3/(�4+�9+�10)�(π0 e+ νe)/[�(π0µ+νµ

)+ �(π+π0)+�(π+π0π0)] �3/(�4+�9+�10)�(π0 e+ νe)/[�(π0µ+νµ

)+ �(π+π0)+�(π+π0π0)] �3/(�4+�9+�10)VALUE EVTS DOCUMENT ID TECN CHG0.1967±0.0016 OUR FIT0.1967±0.0016 OUR FIT0.1967±0.0016 OUR FIT0.1967±0.0016 OUR FIT Error in
ludes s
ale fa
tor of 2.5.0.1962±0.0008±0.00350.1962±0.0008±0.00350.1962±0.0008±0.00350.1962±0.0008±0.0035 71k SHER 03 B865 +�(π0 e+ νe)/�(π+π0) �3/�9�(π0 e+ νe)/�(π+π0) �3/�9�(π0 e+ νe)/�(π+π0) �3/�9�(π0 e+ νe)/�(π+π0) �3/�9VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.2454±0.0023 OUR FIT0.2454±0.0023 OUR FIT0.2454±0.0023 OUR FIT0.2454±0.0023 OUR FIT Error in
ludes s
ale fa
tor of 2.6.0.2467±0.0011 OUR AVERAGE0.2467±0.0011 OUR AVERAGE0.2467±0.0011 OUR AVERAGE0.2467±0.0011 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.2423±0.0015±0.0037 31k UVAROV 14 ISTR − ISTRA+0.2470±0.0009±0.0004 87k BATLEY 07A NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.221 ±0.012 786 1 LUCAS 73B HBC − Dalitz pairs only1 LUCAS 73B gives N(Ke3) = 786 ± 3.1%, N(2π) = 3564 ± 3.1%. We use these valuesto obtain quoted result.



987987987987See key on page 601 MesonParti
le ListingsK±�(
π0 e+ νe)/�(

π+π+π−) �3/�11�(
π0 e+ νe)/�(

π+π+π−) �3/�11�(
π0 e+ νe)/�(

π+π+π−) �3/�11�(
π0 e+ νe)/�(

π+π+π−) �3/�11VALUE EVTS DOCUMENT ID TECN CHG0.908±0.009 OUR FIT0.908±0.009 OUR FIT0.908±0.009 OUR FIT0.908±0.009 OUR FIT Error in
ludes s
ale fa
tor of 1.6.
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.867±0.027 2768 BARMIN 87 XEBC +0.856±0.040 2827 BRAUN 75 HLBC +0.850±0.019 4385 1 HAIDT 71 HLBC +0.846±0.021 4385 1 EICHTEN 68 HLBC +0.94 ±0.09 854 BELLOTTI 67B HLBC0.90 ±0.06 230 BORREANI 64 HBC +1HAIDT 71 is a reanalysis of EICHTEN 68. Not in
luded in average be
ause of largedis
repan
y in �(π0µ+ ν)/�(π0 e+ ν) with more pre
ise results.�(

π0µ+νµ

)/�total �4/��(
π0µ+νµ

)/�total �4/��(
π0µ+νµ

)/�total �4/��(
π0µ+νµ

)/�total �4/�VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT3.352±0.033 OUR FIT3.352±0.033 OUR FIT3.352±0.033 OUR FIT3.352±0.033 OUR FIT Error in
ludes s
ale fa
tor of 1.9.3.24 ±0.04 OUR AVERAGE3.24 ±0.04 OUR AVERAGE3.24 ±0.04 OUR AVERAGE3.24 ±0.04 OUR AVERAGE3.233±0.029±0.026 1 AMBROSINO 08A KLOE ±3.33 ±0.16 2345 CHIANG 72 OSPK + 1.84 GeV/
 K+
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.8 ±0.4 2 TAYLOR 59 EMUL +1Depends on K+ lifetime τ . AMBROSINO 08A uses PDG 06 value of τ = (1.2385 ±0.0024) × 10−8 se
. The 
orrelation between K+e3 and K+

µ3 bran
hing fra
tion mea-surements is 62.7%.2Earlier experiments not averaged.�(
π0µ+νµ

)/�(
µ+νµ

) �4/�2�(
π0µ+νµ

)/�(
µ+νµ

) �4/�2�(
π0µ+νµ

)/�(
µ+νµ

) �4/�2�(
π0µ+νµ

)/�(
µ+νµ

) �4/�2VALUE EVTS DOCUMENT ID TECN CHG0.0527±0.0006 OUR FIT0.0527±0.0006 OUR FIT0.0527±0.0006 OUR FIT0.0527±0.0006 OUR FIT Error in
ludes s
ale fa
tor of 1.8.
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.054 ±0.009 240 ZELLER 69 ASPK +0.0480±0.0037 424 1 GARLAND 68 OSPK +0.0486±0.0040 307 2 AUERBACH 67 OSPK +1GARLAND 68 
hanged from 0.055 ± 0.004 in agreement with µ-spe
trum 
al
ulationof GAILLARD 70 appendix B. L.G.Pondrom, (private 
ommuni
ation 73).2AUERBACH 67 
hanged from 0.0602 ± 0.0046 by erratum whi
h brings the µ-spe
trum
al
ulation into agreement with GAILLARD 70 appendix B.�(

π0µ+νµ

)/�(
π0 e+νe) �4/�3�(

π0µ+νµ

)/�(
π0 e+νe) �4/�3�(

π0µ+νµ

)/�(
π0 e+νe) �4/�3�(

π0µ+νµ

)/�(
π0 e+νe) �4/�3VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.6608±0.0029 OUR FIT0.6608±0.0029 OUR FIT0.6608±0.0029 OUR FIT0.6608±0.0029 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.6618±0.0027 OUR AVERAGE0.6618±0.0027 OUR AVERAGE0.6618±0.0027 OUR AVERAGE0.6618±0.0027 OUR AVERAGE0.663 ±0.003 ±0.001 77k BATLEY 07A NA48 ±0.671 ±0.007 ±0.008 24k HORIE 01 SPEC0.670 ±0.014 1 HEINTZE 77 SPEC +0.667 ±0.017 5601 BOTTERILL 68B ASPK +

• • • We use the following data for averages but not for �ts. • • •0.6511±0.0064 2 AMBROSINO 08A KLOE ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.608 ±0.014 1585 3 BRAUN 75 HLBC +0.705 ±0.063 554 4 LUCAS 73B HBC − Dalitz pairs only0.698 ±0.025 3480 5 CHIANG 72 OSPK + 1.84 GeV/
 K+0.596 ±0.025 6 HAIDT 71 HLBC +0.604 ±0.022 1398 6 EICHTEN 68 HLBC0.703 ±0.056 1509 CALLAHAN 66B HLBC1HEINTZE 77 value from �t to λ0. Assumes µ-e universality.2Not used in the �t. This result enters the �t via 
orrelation of K+e3 and K+

µ3 bran
hingfra
tion measurements of AMBROSINO 08A.3BRAUN 75 value is from form fa
tor �t. Assumes µ-e universality.4 LUCAS 73B gives N(Kµ3) = 554 ± 7.6%, N(Ke3) = 786 ± 3.1%. We divide.5CHIANG 72 �(
π0µ+ νµ

)/�(
π0 e+ νe) is statisti
ally independent of CHIANG 72�(

π0µ+ νµ
)/�total and �(

π0 e+ νe)/�total.6HAIDT 71 is a reanalysis of EICHTEN 68. Not in
luded in average be
ause of largedis
repan
y with more pre
ise results.
[�(

π0µ+νµ

)+�(
π+π0)]/�total (�4+�9)/�[�(

π0µ+νµ

)+�(
π+π0)]/�total (�4+�9)/�[�(

π0µ+νµ

)+�(
π+π0)]/�total (�4+�9)/�[�(

π0µ+νµ

)+�(
π+π0)]/�total (�4+�9)/�We 
ombine these two modes for experiments measuring them in xenon bubble 
ham-ber be
ause of diÆ
ulties of separating them there.VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG24.02±0.08 OUR FIT24.02±0.08 OUR FIT24.02±0.08 OUR FIT24.02±0.08 OUR FIT Error in
ludes s
ale fa
tor of 1.2.

• • • We do not use the following data for averages, �ts, limits, et
. • • •25.4 ±0.9 886 SHAKLEE 64 HLBC +23.4 ±1.1 ROE 61 HLBC +�(
π0µ+νµ

)/�(
π+π0) �4/�9�(

π0µ+νµ

)/�(
π+π0) �4/�9�(

π0µ+νµ

)/�(
π+π0) �4/�9�(

π0µ+νµ

)/�(
π+π0) �4/�9VALUE EVTS DOCUMENT ID TECN CHG0.1637±0.0006±0.00030.1637±0.0006±0.00030.1637±0.0006±0.00030.1637±0.0006±0.0003 77k BATLEY 07A NA48 ±

�(
π0µ+νµ

)/�(
π+π+π−) �4/�11�(

π0µ+νµ

)/�(
π+π+π−) �4/�11�(

π0µ+νµ

)/�(
π+π+π−) �4/�11�(

π0µ+νµ

)/�(
π+π+π−) �4/�11VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.600±0.007 OUR FIT0.600±0.007 OUR FIT0.600±0.007 OUR FIT0.600±0.007 OUR FIT Error in
ludes s
ale fa
tor of 1.6.

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.503±0.019 1505 1 HAIDT 71 HLBC +0.510±0.017 1505 1 EICHTEN 68 HLBC +0.63 ±0.07 2845 2 BISI 65B BC + HBC+HLBC1HAIDT 71 is a reanalysis of EICHTEN 68. Not in
luded in average be
ause of largedis
repan
y in �(π0µ+ ν)/�(π0 e+ ν) with more pre
ise results.2 Error enlarged for ba
kground problems. See GAILLARD 70.�(
π0π0 e+ νe)/�total �5/��(
π0π0 e+ νe)/�total �5/��(
π0π0 e+ νe)/�total �5/��(
π0π0 e+ νe)/�total �5/�VALUE (units 10−5) EVTS DOCUMENT ID TECN CHG2.55±0.04 OUR FIT2.55±0.04 OUR FIT2.55±0.04 OUR FIT2.55±0.04 OUR FIT Error in
ludes s
ale fa
tor of 1.1.2.54±0.892.54±0.892.54±0.892.54±0.89 10 BARMIN 88B HLBC +�(
π0π0 e+ νe)/�(

π+π0π0) �5/�10�(
π0π0 e+ νe)/�(

π+π0π0) �5/�10�(
π0π0 e+ νe)/�(

π+π0π0) �5/�10�(
π0π0 e+ νe)/�(

π+π0π0) �5/�10VALUE (units 10−3) EVTS DOCUMENT ID TECN CHG1.449±0.008 OUR FIT1.449±0.008 OUR FIT1.449±0.008 OUR FIT1.449±0.008 OUR FIT1.449±0.006±0.0061.449±0.006±0.0061.449±0.006±0.0061.449±0.006±0.006 65.2k 1 BATLEY 14A NA48 ±1Data 
olle
ted in 2003{2004. This leads to the s
alar form fa
tor (1+ δEM ) fs =6.079± 0.012± 0.027± 0.046 where the last error is due to the normalizing de
ay modeun
ertainty.�(
π0π0 e+ νe)/�(

π0 e+νe) �5/�3�(
π0π0 e+ νe)/�(

π0 e+νe) �5/�3�(
π0π0 e+ νe)/�(

π0 e+νe) �5/�3�(
π0π0 e+ νe)/�(

π0 e+νe) �5/�3VALUE (units 10−4) EVTS DOCUMENT ID TECN CHG5.03±0.09 OUR FIT5.03±0.09 OUR FIT5.03±0.09 OUR FIT5.03±0.09 OUR FIT Error in
ludes s
ale fa
tor of 1.2.4.1 +1.0
−0.7 OUR AVERAGE4.1 +1.0
−0.7 OUR AVERAGE4.1 +1.0
−0.7 OUR AVERAGE4.1 +1.0
−0.7 OUR AVERAGE4.2 +1.0
−0.9 25 BOLOTOV 86B CALO −3.8 +5.0
−1.2 2 LJUNG 73 HLBC +�(

π+π− e+ νe)/�(
π+π+π−) �6/�11�(

π+π− e+ νe)/�(
π+π+π−) �6/�11�(

π+π− e+ νe)/�(
π+π+π−) �6/�11�(

π+π− e+ νe)/�(
π+π+π−) �6/�11VALUE (units 10−4) EVTS DOCUMENT ID TECN CHG7.606±0.029 OUR AVERAGE7.606±0.029 OUR AVERAGE7.606±0.029 OUR AVERAGE7.606±0.029 OUR AVERAGE7.615±0.008±0.028 1.1M 1 BATLEY 12 NA48 ±7.35 ±0.01 ±0.19 388k 2 PISLAK 01 B8657.21 ±0.32 30k ROSSELET 77 SPEC +

• • • We do not use the following data for averages, �ts, limits, et
. • • •7.36 ±0.68 500 BOURQUIN 71 ASPK7.0 ±0.9 106 SCHWEINB... 71 HLBC +5.83 ±0.63 269 ELY 69 HLBC +1BATLEY 12 uses data 
olle
ted in 2003{2004. The result is in
lusive of K± →
π+π− e± ν γ de
ays. Using PDG 12 value for �(π+π−π+)/� = (5.59± 0.04)×10−2.BATLEY 12 obtains B(π+π− e ν) = (4.257 ± 0.004 ± 0.035) × 10−5 where the syst.error is dominated by the error on the normalization mode.2PISLAK 01 reports �(π+π− e+ νe )/�total= (4.109± 0.008± 0.110)×10−5 using thePDG 00 value �(π+π+π−)/�total= (5.59 ± 0.05) × 10−2. We divide by the PDGvalue and unfold its error from the systemati
 error. PISLAK 03 and PISLAK 10A giveadditional details on the bran
hing ratio measurement and give improved errors on theS-wave π-π s
attering length: a00 = 0.235 ± 0.013 and a20 = −0.0410 ± 0.0027.�(

π+π−µ+ νµ

)/�total �7/��(
π+π−µ+ νµ

)/�total �7/��(
π+π−µ+ νµ

)/�total �7/��(
π+π−µ+ νµ

)/�total �7/�VALUE (units 10−5) EVTS DOCUMENT ID TECN CHG
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.77+0.54

−0.50 1 CLINE 65 FBC +�(
π+π−µ+ νµ

)/�(
π+π+π−) �7/�11�(

π+π−µ+ νµ

)/�(
π+π+π−) �7/�11�(

π+π−µ+ νµ

)/�(
π+π+π−) �7/�11�(

π+π−µ+ νµ

)/�(
π+π+π−) �7/�11VALUE (units 10−4) EVTS DOCUMENT ID TECN CHG2.57±1.552.57±1.552.57±1.552.57±1.55 7 BISI 67 DBC +

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 2.5 1 GREINER 64 EMUL +�(

π0π0π0 e+ νe)/�total �8/��(
π0π0π0 e+ νe)/�total �8/��(
π0π0π0 e+ νe)/�total �8/��(
π0π0π0 e+ νe)/�total �8/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN CHG

<3.5<3.5<3.5<3.5 90 0 BOLOTOV 88 SPEC −
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9 90 0 BARMIN 92 XEBC +Hadroni
 modesHadroni
 modesHadroni
 modesHadroni
 modes�(

π+π0)/�total �9/��(
π+π0)/�total �9/��(
π+π0)/�total �9/��(
π+π0)/�total �9/�VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT20.67±0.08 OUR FIT20.67±0.08 OUR FIT20.67±0.08 OUR FIT20.67±0.08 OUR FIT Error in
ludes s
ale fa
tor of 1.2.20.70±0.16 OUR AVERAGE20.70±0.16 OUR AVERAGE20.70±0.16 OUR AVERAGE20.70±0.16 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.20.65±0.05±0.08 1.4M 1 AMBROSINO 08E KLOE + φ → K+K−21.18±0.28 16k CHIANG 72 OSPK + 1.84 GeV/
 K+

• • • We do not use the following data for averages, �ts, limits, et
. • • •21.0 ±0.6 CALLAHAN 65 HLBC See �9/�111Fully in
lusive of �nal-state radiation. The bran
hing ratio is evaluated using K+ lifetime,
τ= 12.385 ns.



988988988988Meson Parti
le ListingsK±�(π+π0)/�(π+π+π−) �9/�11�(π+π0)/�(π+π+π−) �9/�11�(π+π0)/�(π+π+π−) �9/�11�(π+π0)/�(π+π+π−) �9/�11VALUE EVTS DOCUMENT ID TECN CHG3.702±0.022 OUR FIT3.702±0.022 OUR FIT3.702±0.022 OUR FIT3.702±0.022 OUR FIT Error in
ludes s
ale fa
tor of 1.1.
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.96 ±0.15 1045 CALLAHAN 66 FBC +�(π+π0)/�(µ+νµ

) �9/�2�(π+π0)/�(µ+νµ

) �9/�2�(π+π0)/�(µ+νµ

) �9/�2�(π+π0)/�(µ+νµ

) �9/�2VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.3252±0.0016 OUR FIT0.3252±0.0016 OUR FIT0.3252±0.0016 OUR FIT0.3252±0.0016 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.3325±0.0032 OUR AVERAGE0.3325±0.0032 OUR AVERAGE0.3325±0.0032 OUR AVERAGE0.3325±0.0032 OUR AVERAGE0.3329±0.0047±0.0010 45k USHER 92 SPEC + pp at rest0.3355±0.0057 1 WEISSENBE... 76 SPEC +0.3277±0.0065 4517 2 AUERBACH 67 OSPK +
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.328 ±0.005 25k 1 WEISSENBE... 74 STRC +0.305 ±0.018 1600 ZELLER 69 ASPK +1WEISSENBERG 76 revises WEISSENBERG 74.2AUERBACH 67 
hanged from 0.3253 ± 0.0065. See 
omment with ratio �(

π0µ+ νµ
)/�(

µ+ νµ
).�(π+π0π0)/�total �10/��(π+π0π0)/�total �10/��(π+π0π0)/�total �10/��(π+π0π0)/�total �10/�VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT1.760±0.023 OUR FIT1.760±0.023 OUR FIT1.760±0.023 OUR FIT1.760±0.023 OUR FIT Error in
ludes s
ale fa
tor of 1.1.1.775±0.028 OUR AVERAGE1.775±0.028 OUR AVERAGE1.775±0.028 OUR AVERAGE1.775±0.028 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1.763±0.013±0.022 ALOISIO 04A KLOE ±1.84 ±0.06 1307 CHIANG 72 OSPK + 1.84 GeV/
 K+

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.53 ±0.11 198 1 PANDOULAS 70 EMUL +1.8 ±0.2 108 SHAKLEE 64 HLBC +1.7 ±0.2 ROE 61 HLBC +1.5 ±0.2 2 TAYLOR 59 EMUL +1 In
ludes events of TAYLOR 59.2Earlier experiments not averaged.�(π+π0π0)/�(π+π0) �10/�9�(π+π0π0)/�(π+π0) �10/�9�(π+π0π0)/�(π+π0) �10/�9�(π+π0π0)/�(π+π0) �10/�9VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.0851±0.0012 OUR FIT0.0851±0.0012 OUR FIT0.0851±0.0012 OUR FIT0.0851±0.0012 OUR FIT Error in
ludes s
ale fa
tor of 1.1.
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.081 ±0.005 574 1 LUCAS 73B HBC − Dalitz pairs only1 LUCAS 73B gives N(π2π0) = 574 ± 5.9%, N(2π) = 3564 ± 3.1%. We quote0.5N(π2π0)/N(2π) where 0.5 is be
ause only Dalitz pair π0's were used.�(π+π0π0)/�(π+π+π−) �10/�11�(π+π0π0)/�(π+π+π−) �10/�11�(π+π0π0)/�(π+π+π−) �10/�11�(π+π0π0)/�(π+π+π−) �10/�11VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.315±0.004 OUR FIT0.315±0.004 OUR FIT0.315±0.004 OUR FIT0.315±0.004 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.303±0.0090.303±0.0090.303±0.0090.303±0.009 2027 BISI 65 BC + HBC+HLBC
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.393±0.099 17 YOUNG 65 EMUL +�(π+π+π−)/�total �11/��(π+π+π−)/�total �11/��(π+π+π−)/�total �11/��(π+π+π−)/�total �11/�VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT5.583±0.024 OUR FIT5.583±0.024 OUR FIT5.583±0.024 OUR FIT5.583±0.024 OUR FIT5.565±0.031±0.0255.565±0.031±0.0255.565±0.031±0.0255.565±0.031±0.025 68K 1 BABUSCI 14B KLOE +
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.56 ±0.20 2330 2 CHIANG 72 OSPK + 1.84 GeV/
 K+5.34 ±0.21 693 3 PANDOULAS 70 EMUL +5.71 ±0.15 DEMARCO 65 HBC6.0 ±0.4 44 YOUNG 65 EMUL +5.54 ±0.12 2332 CALLAHAN 64 HLBC +5.1 ±0.2 540 SHAKLEE 64 HLBC +5.7 ±0.3 ROE 61 HLBC +1 In
lusive of �nal-state radiation. Result obtained from averaging two bran
hing ratios:one from a sample with K− → µν (γ) tagging and another with K− → π−π0 (γ)tagging.2Value is not independent of CHIANG 72 �(

µ+ νµ
)/�total, �(

π+π0)/�total,�(
π+π0π0)/�total, �(

π0µ+ νµ
)/�total, and �(

π0 e+ νe )/�total.3 In
ludes events of TAYLOR 59.Leptoni
 and semileptoni
 modes with photonsLeptoni
 and semileptoni
 modes with photonsLeptoni
 and semileptoni
 modes with photonsLeptoni
 and semileptoni
 modes with photons�(µ+νµ γ
)/�total �12/��(µ+νµ γ
)/�total �12/��(µ+νµ γ
)/�total �12/��(µ+νµ γ
)/�total �12/�VALUE (units 10−3) EVTS DOCUMENT ID TECN CHG COMMENT6.2±0.8 OUR AVERAGE6.2±0.8 OUR AVERAGE6.2±0.8 OUR AVERAGE6.2±0.8 OUR AVERAGE6.6±1.5 1,2 DEMIDOV 90 XEBC P(µ) <231.5 MeV/
6.0±0.9 BARMIN 88 HLBC + P(µ) <231.5 MeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •3.5±0.8 2,3 DEMIDOV 90 XEBC E(γ) > 20 MeV3.2±0.5 57 4 BARMIN 88 HLBC + E(γ) >20 MeV5.4±0.3 5 AKIBA 85 SPEC P(µ) <231.5 MeV/


1P(µ) 
ut given in DEMIDOV 90 paper, 235.1 MeV/
, is a misprint a

ording to authors(private 
ommuni
ation).2DEMIDOV 90 quotes only inner bremsstrahlung (IB) part.3Not independent of above DEMIDOV 90 value. Cuts di�er.4Not independent of above BARMIN 88 value. Cuts di�er.5Assumes µ-e universality and uses 
onstraints from K → e ν γ.�(µ+νµ γ (SD+))/�total �13/��(µ+νµ γ (SD+))/�total �13/��(µ+νµ γ (SD+))/�total �13/��(µ+νµ γ (SD+))/�total �13/�Stru
ture-dependent part with +γ heli
ity (SD+ term). See the \Note on π± →
ℓ± ν γ and K± → ℓ± ν γ Form Fa
tors" in the π± se
tion of the Parti
le DataListings above.VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN1.33±0.12±0.181.33±0.12±0.181.33±0.12±0.181.33±0.12±0.18 2588 1 ADLER 00B B787

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.0 90 AKIBA 85 SPEC1ADLER 00B obtains the bran
hing ratio by extrapolating the measurement in the kine-mati
 region Eµ > 137 MeV, Eγ > 90 MeV to the full SD+ phase-spa
e. Also reports∣∣FV + FA

∣∣ = 0.165 ± 0.007 ± 0.011 and −0.04 < FV −FA < 0.24 at 90% CL.�(µ+νµ γ (SD+INT))/�total �14/��(µ+νµ γ (SD+INT))/�total �14/��(µ+νµ γ (SD+INT))/�total �14/��(µ+νµ γ (SD+INT))/�total �14/�Interferen
e term between internal Bremsstrahlung and SD+ term. See the \Note on
π± → ℓ± ν γ and K± → ℓ± ν γ Form Fa
tors" in the π± se
tion of the Parti
leData Listings above.VALUE (units 10−5) CL% DOCUMENT ID TECN

<2.7<2.7<2.7<2.7 90 AKIBA 85 SPEC�(µ+νµ γ (SD− +SD−INT))/�total �15/��(µ+νµ γ (SD− +SD−INT))/�total �15/��(µ+νµ γ (SD− +SD−INT))/�total �15/��(µ+νµ γ (SD− +SD−INT))/�total �15/�Sum of stru
ture-dependent part with −γ heli
ity (SD− term) and interferen
e termbetween internal Bremsstrahlung and SD− term. See the \Note on π± → ℓ± ν γ andK± → ℓ± ν γ Form Fa
tors" in the π± se
tion of the Parti
le Data Listings above.VALUE (units 10−4) CL% DOCUMENT ID TECN
<2.6<2.6<2.6<2.6 90 1 AKIBA 85 SPEC1Assumes µ-e universality and uses 
onstraints from K → e ν γ.�(e+ νe γ

)/�(µ+νµ

) �16/�2�(e+ νe γ
)/�(µ+νµ

) �16/�2�(e+ νe γ
)/�(µ+νµ

) �16/�2�(e+ νe γ
)/�(µ+νµ

) �16/�2VALUE (units 10−5) EVTS DOCUMENT ID TECN CHG COMMENT1.483±0.066±0.0131.483±0.066±0.0131.483±0.066±0.0131.483±0.066±0.013 1.4K 1 AMBROSINO 09E KLOE ± Eγ in 10{250 MeV,pe > 200 MeV/
1AMBROSINO 09E measured the di�erential width dRγ/dEγ = (1/�(K → µν))(d�(K → e ν γ)/dEγ ). Result obtained by integrating the di�erential width over Eγfrom 10 to 250 MeV.�(π0 e+ νe γ
)/�(π0 e+νe) �17/�3�(π0 e+ νe γ
)/�(π0 e+νe) �17/�3�(π0 e+ νe γ
)/�(π0 e+νe) �17/�3�(π0 e+ νe γ
)/�(π0 e+νe) �17/�3VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT0.505±0.032 OUR AVERAGE0.505±0.032 OUR AVERAGE0.505±0.032 OUR AVERAGE0.505±0.032 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.0.47 ±0.02 ±0.03 4476 1 AKIMENKO 07 ISTR − Eγ > 10 MeV, 0.6 <
os(θeγ ) < 0.90.46 ±0.08 82 2 BARMIN 91 XEBC Eγ > 10 MeV, 0.6 <
os(θeγ ) < 0.90.56 ±0.04 192 3 BOLOTOV 86B CALO − Eγ > 10 MeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.81 ±0.03 ±0.07 4476 1 AKIMENKO 07 ISTR − Eγ>10 MeV, θeγ >10◦0.63 ±0.02 ±0.03 4476 1 AKIMENKO 07 ISTR − Eγ>30 MeV, θeγ >20◦1.51 ±0.25 82 2 BARMIN 91 XEBC Eγ > 10 MeV, 
os(θeγ )
< 0.980.48 ±0.20 16 4 LJUNG 73 HLBC + Eγ > 30 MeV0.22 +0.15

−0.10 4 LJUNG 73 HLBC + Eγ > 30 MeV0.76 ±0.28 13 5 ROMANO 71 HLBC Eγ > 10 MeV0.53 ±0.22 5 ROMANO 71 HLBC + Eγ > 30 MeV1.2 ±0.8 BELLOTTI 67 HLBC Eγ > 30 MeV1AKIMENKO 07 provides values for three kinemati
 regions. For averaging, we use valuewith Eγ > 10 MeV and 0.6 < 
os(θeγ ) < 0.9.2BARMIN 91 quotes bran
hing ratio �(K → e π0 ν γ)/�all. The measured normalizationis [�(K → e π0 ν) + �(K → π+π+π−)℄. For 
omparison with other experiments weused �(K → e π0 ν)/�all = 0.0482 to 
al
ulate the values quoted here.3 
os(θeγ ) between 0.6 and 0.9.4 First LJUNG 73 value is for 
os(θeγ ) <0.9, se
ond value is for 
os(θeγ ) between 0.6and 0.9 for 
omparison with ROMANO 71.5Both ROMANO 71 values are for 
os(θeγ ) between 0.6 and 0.9. Se
ond value is for
omparison with se
ond LJUNG 73 value. We use lowest Eγ 
ut for Summary Tablevalue. See ROMANO 71 for Eγ dependen
e.



989989989989See key on page 601 MesonParti
le ListingsK±

WEIGHTED AVERAGE
0.505±0.032 (Error scaled by 1.3)

BOLOTOV 86B CALO 1.9
BARMIN 91 XEBC 0.3
AKIMENKO 07 ISTR 1.0

χ2

       3.1
(Confidence Level = 0.207)

0.2 0.3 0.4 0.5 0.6 0.7 0.8�(
π0 e+ νe γ

)/�(
π0 e+ νe) (units 10−2)�(π0 e+ νe γ (SD))/�total �18/��(π0 e+ νe γ (SD))/�total �18/��(π0 e+ νe γ (SD))/�total �18/��(π0 e+ νe γ (SD))/�total �18/�Stru
ture-dependent part.VALUE (units 10−5) CL% DOCUMENT ID TECN CHG

<5.3<5.3<5.3<5.3 90 BOLOTOV 86B CALO −�(π0µ+νµ γ
)/�total �19/��(π0µ+νµ γ
)/�total �19/��(π0µ+νµ γ
)/�total �19/��(π0µ+νµ γ
)/�total �19/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN CHG COMMENT1.25±0.25 OUR AVERAGE1.25±0.25 OUR AVERAGE1.25±0.25 OUR AVERAGE1.25±0.25 OUR AVERAGE1.10±0.32±0.05 23 1 ADLER 10 B787 30 < Eγ < 60 MeV1.46±0.22±0.32 153 2 TCHIKILEV 07 ISTR − 30 < Eγ < 60 MeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.4 ±0.5 ±0.6 125 SHIMIZU 06 K470 + Eγ > 30 MeV;�µγ >20◦
<6.1 90 0 LJUNG 73 HLBC + E(γ) >30 MeV1Value obtained from B(K+ → π0µ+ νµ γ) = (2.51 ± 0.74 ± 0.12) × 10−5 obtainedin the kinemati
 region Eγ > 20 MeV, and then theoreti
al Kµ3γ spe
trum has beenused. Also B(K+ → π0µ+ νµγ) = (1.58 ± 0.46 ± 0.08) × 10−5, for Eγ > 30 MeVand θµγ > 20◦, was determined.2Obtained from measuring B(Kµ3γ ) / B(Kµ3) and using PDG 02 value B(Kµ3) = 3.27%.B(Kµ3γ ) = (8.82 ± 0.94 ± 0.86)× 10−5 is obtained for 5 MeV < Eγ < 30 MeV.�(π0π0 e+ νe γ

)/�total �20/��(π0π0 e+ νe γ
)/�total �20/��(π0π0 e+ νe γ
)/�total �20/��(π0π0 e+ νe γ
)/�total �20/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN CHG COMMENT

<5<5<5<5 90 0 BARMIN 92 XEBC + Eγ > 10 MeVHadroni
 modes with photonsHadroni
 modes with photonsHadroni
 modes with photonsHadroni
 modes with photons�(π+π0 γ (INT))/�total �21/��(π+π0 γ (INT))/�total �21/��(π+π0 γ (INT))/�total �21/��(π+π0 γ (INT))/�total �21/�The K+ → π+π0 γ di�erential de
ay rate 
an be des
ribed in terms of T
π+ , the
harged pion kineti
 energy, and W2 = ( PK · Pγ ) ( P

π+ · Pγ ) / (mK m
π+)2;then we 
an write d2� (K+ → π+π0 γ) / (dT

π+ dW2) = d2� (K+ → π+π0 γ)IB/ (dT
π+ dW2) [1 + 2 
os(±φ + δ11 − δ20) m2

π m2K W2 XE + m4
π m4K ( X2E +X2

M
) W4℄. The IB di�erential and total bran
hing ratios are expressed in terms ofthe non-radiative experimental width � (K+ → π+π0) by Low's theorem. UsingPDG 10 B(K+ → π+π0) = 0.2066 ± 0.0008, one obtains respe
tively B(K+ →

π+π0 γ)IB (55 < T
π+ < 90 MeV)= 2.55 × 10−4 and B(K+ → π+π0 γ)IB (0

< T
π+ < 80 MeV)= 1.80× 10−4. Fitting respe
tively the pie
e proportional to W2and the pie
e proportional to W4, the interferen
e 
ontribution (INT), proportional toXE , and the dire
t 
ontribution (DE) proportional to X2

E
+ X2

M
are extra
ted.VALUE (units 10−6) EVTS DOCUMENT ID TECN CHG COMMENT

−4.24±0.63±0.70−4.24±0.63±0.70−4.24±0.63±0.70−4.24±0.63±0.70 600k 1 BATLEY 10A NA48 ± T
π+ 0{80 MeV1The 
ut on the photon energy implies W2 > 0.2. BATLEY 10A obtains the INT andDE fra
tional bran
hings with respe
t to IB from a simultaneous kinemati
al �t of INTand DE and then we use the PDG 10 value for B(K+ → π+π0) = 20.66 ± 0.08 todetermine the IB. The INT and DE 
orrelation 
oeÆ
ients −0.83. Assuming a 
onstantele
tri
 amplitude, XE , this INT value implies XE = −24 ± 6 GeV−4.�(π+π0 γ (DE))/�total �22/��(π+π0 γ (DE))/�total �22/��(π+π0 γ (DE))/�total �22/��(π+π0 γ (DE))/�total �22/�Dire
t emission (DE) part of �(

π+π0 γ
)/�total, assuming that interferen
e (INT)
omponent is zero.VALUE (units 10−6) EVTS DOCUMENT ID TECN CHG COMMENT5.99±0.27±0.255.99±0.27±0.255.99±0.27±0.255.99±0.27±0.25 600k 1 BATLEY 10A NA48 ± T

π+ 0{80 MeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.8 ±0.8 ±0.7 10k ALIEV 06 K470 + T
π+ 55{90 MeV3.7 ±3.9 ±1.0 930 UVAROV 06 ISTR − T
π− 55{90 MeV3.2 ±1.3 ±1.0 4k ALIEV 03 K470 + T
π+ 55{90 MeV6.1 ±2.5 ±1.9 4k ALIEV 03 K470 + T
π+ full range4.7 ±0.8 ±0.3 20k 2 ADLER 00C B787 + T
π+ 55{90 MeV20.5 ±4.6 +3.9

−2.3 BOLOTOV 87 WIRE − T
π− 55{90 MeV15.6 ±3.5 ±5.0 ABRAMS 72 ASPK ± T
π± 55{90 MeV1The 
ut on the photon energy implies W2 > 0.2. BATLEY 10A obtains the INT andDE fra
tional bran
hings with respe
t to IB from a simultaneous kinemati
al �t of INTand DE and then we use the PDG 10 value for B(K+ → π+π0) = 20.66 ± 0.08 todetermine the IB. The INT and DE 
orrelation 
oeÆ
ients −0.93. Assuming 
onstantele
tri
 and magneti
 amplitudes, XE and XM , these INTand DE values imply XE =

−24 ± 6 GeV−4 and XM = −254 ± 9 GeV−4.2ADLER 00C measures the INT 
omponent to be (−0.4± 1.6)% of the inner bremsstrah-lung (IB) 
omponent.�(π+π0π0 γ
)/�(π+π0π0) �23/�10�(π+π0π0 γ
)/�(π+π0π0) �23/�10�(π+π0π0 γ
)/�(π+π0π0) �23/�10�(π+π0π0 γ
)/�(π+π0π0) �23/�10VALUE (units 10−4) DOCUMENT ID TECN CHG COMMENT4.3+3.2

−1.74.3+3.2
−1.74.3+3.2
−1.74.3+3.2
−1.7 BOLOTOV 85 SPEC − E(γ) > 10 MeV�(π+π+π− γ

)/�total �24/��(π+π+π− γ
)/�total �24/��(π+π+π− γ
)/�total �24/��(π+π+π− γ
)/�total �24/�VALUE (units 10−4) EVTS DOCUMENT ID TECN CHG COMMENT1.04±0.31 OUR AVERAGE1.04±0.31 OUR AVERAGE1.04±0.31 OUR AVERAGE1.04±0.31 OUR AVERAGE1.10±0.48 7 BARMIN 89 XEBC E(γ) > 5 MeV1.0 ±0.4 STAMER 65 EMUL + E(γ) >11 MeV�(π+ γ γ

)/�total �25/��(π+ γ γ
)/�total �25/��(π+ γ γ
)/�total �25/��(π+ γ γ
)/�total �25/�VALUE (units 10−7) CL% EVTS DOCUMENT ID TECN CHG COMMENT10.1 ±0.6 OUR AVERAGE10.1 ±0.6 OUR AVERAGE10.1 ±0.6 OUR AVERAGE10.1 ±0.6 OUR AVERAGE10.03±0.51±0.24 215 1 LAZZERONI 14 NA62 ±11 ±3 ±1 31 2 KITCHING 97 B787 +

• • • We do not use the following data for averages, �ts, limits, et
. • • •9.10±0.72±0.22 149 3 BATLEY 14 NA48 ±
< 0.083 90 4 ARTAMONOV 05 B949 + Pπ > 213 MeV/

< 10 90 0 ATIYA 90B B787 + Tπ 117{127 MeV
< 84 90 0 ASANO 82 CNTR + Tπ 117{127 MeV
−420 ± 520 0 ABRAMS 77 SPEC + Tπ < 92 MeV
< 350 90 0 LJUNG 73 HLBC + 6{102, 114{127 MeV
< 500 90 0 KLEMS 71 OSPK + Tπ < 117 MeV
−100 ± 600 CHEN 68 OSPK + Tπ 60{90 MeV1LAZZERONI 14 
ombines NA62 and NA48/2 results. The result for the full kinemati
range is extrapolated from the model-independent bran
hing fra
tion (9.65 ± 0.61 ±0.14)×10−7 for (mγ γ/mK )2 > 0.2. The measured ChPT parameter 
̂ = 1.86± 0.25.2KITCHING 97 is extrapolated from their model-independent bran
hing fra
tion (6.0 ±1.5± 0.7)×10−7 for 100 MeV/
<P

π+ < 180 MeV/
 using Chiral Perturbation Theory.3BATLEY 14 uses data 
olle
ted in 2003 and 2004. Bran
hing ratio is obtained bydetermining the parameter 
̂ = 1.41 ± 0.38 ± 0.11 and integrating the O(p6) 
hiralspe
trum. A model independent value for the bran
hing ratio is also obtained (8.77 ±0.87 ± 0.17) × 10−7 for kinemati
 range (mγ γ/mK )2 > 0.2.4ARTAMONOV 05 limit assumes ChPT with 
̂= 1.8 with unitarity 
orre
tions. With 
̂=1.6 and no unitarity 
orre
tions they obtain < 2.3 × 10−8 at 90% CL. This partialbran
hing ratio is predi
ted to be 6.10× 10−9 and 0.49× 10−9 for the 
ases with andwithout unitarity 
orre
tion.�(π+ 3γ)/�total �26/��(π+ 3γ)/�total �26/��(π+ 3γ)/�total �26/��(π+ 3γ)/�total �26/�Values given here assume a phase spa
e pion energy spe
trum.VALUE (units 10−4) CL% DOCUMENT ID TECN CHG COMMENT
<1.0<1.0<1.0<1.0 90 ASANO 82 CNTR + T(π) 117{127MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.0 90 KLEMS 71 OSPK + T(π) >117 MeV�(π+ e+ e− γ

)/�total �27/��(π+ e+ e− γ
)/�total �27/��(π+ e+ e− γ
)/�total �27/��(π+ e+ e− γ
)/�total �27/�VALUE (units 10−8) EVTS DOCUMENT ID TECN COMMENT1.19±0.12±0.041.19±0.12±0.041.19±0.12±0.041.19±0.12±0.04 113 1 BATLEY 08 NA48 mee γ > 260 MeV1BATLEY 08 also reports the Chiral Perturbation Theory parameter 
̂ = 0.9 ± 0.45obtained using the shape of the e+ e− γ invariant mass spe
trum. By extrapolatingthe theoreti
al amplitude to mee γ < 260 MeV, it obtains the in
lusive B(K+ →

π+ e+ e− γ) = (1.29 ± 0.13 ± 0.03) × 10−8, where the �rst error is the 
ombinedstatisti
al and systemati
 errors and the se
ond error is from the un
ertainty in 
̂ .Leptoni
 modes with ℓℓ pairsLeptoni
 modes with ℓℓ pairsLeptoni
 modes with ℓℓ pairsLeptoni
 modes with ℓℓ pairs�(e+ νe ν ν
)/�(e+ νe) �28/�1�(e+ νe ν ν
)/�(e+ νe) �28/�1�(e+ νe ν ν
)/�(e+ νe) �28/�1�(e+ νe ν ν
)/�(e+ νe) �28/�1VALUE CL% EVTS DOCUMENT ID TECN CHG

<3.8<3.8<3.8<3.8 90 0 HEINTZE 79 SPEC +�(µ+νµ ν ν
)/�total �29/��(µ+νµ ν ν
)/�total �29/��(µ+νµ ν ν
)/�total �29/��(µ+νµ ν ν
)/�total �29/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN CHG

<6.0<6.0<6.0<6.0 90 0 1 PANG 73 CNTR +1PANG 73 assumes µ spe
trum from ν-ν intera
tion of BARDIN 70.



990990990990MesonParti
le ListingsK±�(e+ νe e+ e−)/�total �30/��(e+ νe e+ e−)/�total �30/��(e+ νe e+ e−)/�total �30/��(e+ νe e+ e−)/�total �30/�VALUE (units 10−8) EVTS DOCUMENT ID TECN CHG COMMENT2.48± 0.14±0.142.48± 0.14±0.142.48± 0.14±0.142.48± 0.14±0.14 410 POBLAGUEV 02 B865 + mee >150 MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •20 ±20 4 DIAMANT-... 76 SPEC + me+ e− >140 MeV�(

µ+νµ e+ e−)/�total �31/��(
µ+νµ e+ e−)/�total �31/��(
µ+νµ e+ e−)/�total �31/��(
µ+νµ e+ e−)/�total �31/�VALUE (units 10−8) EVTS DOCUMENT ID TECN CHG COMMENT7.06± 0.16±0.267.06± 0.16±0.267.06± 0.16±0.267.06± 0.16±0.26 2.7k POBLAGUEV 02 B865 + me e >145 MeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •100 ±30 14 DIAMANT-... 76 SPEC + me+ e− >140 MeV�(e+ νe µ+µ−)/�total �32/��(e+ νe µ+µ−)/�total �32/��(e+ νe µ+µ−)/�total �32/��(e+ νe µ+µ−)/�total �32/�VALUE (units 10−8) CL% DOCUMENT ID TECN1.72±0.451.72±0.451.72±0.451.72±0.45 MA 06 B865
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<50 90 ADLER 98 B787�(

µ+νµ µ+µ−)/�total �33/��(
µ+νµ µ+µ−)/�total �33/��(
µ+νµ µ+µ−)/�total �33/��(
µ+νµ µ+µ−)/�total �33/�VALUE (units 10−7) CL% DOCUMENT ID TECN CHG

<4.1<4.1<4.1<4.1 90 ATIYA 89 B787 +Lepton Family number (LF ), Lepton number (L), �S = �Q (SQ)Lepton Family number (LF ), Lepton number (L), �S = �Q (SQ)Lepton Family number (LF ), Lepton number (L), �S = �Q (SQ)Lepton Family number (LF ), Lepton number (L), �S = �Q (SQ)violating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modes�(
π+π+ e− νe)/�total �34/��(
π+π+ e− νe)/�total �34/��(
π+π+ e− νe)/�total �34/��(
π+π+ e− νe)/�total �34/�Test of �S = �Q rule.VALUE (units 10−7) CL% EVTS DOCUMENT ID TECN CHG

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 9.0 95 0 SCHWEINB... 71 HLBC +
< 6.9 95 0 ELY 69 HLBC +
<20. 95 BIRGE 65 FBC +�(

π+π+ e− νe)/�(
π+π− e+νe) �34/�6�(

π+π+ e− νe)/�(
π+π− e+νe) �34/�6�(

π+π+ e− νe)/�(
π+π− e+νe) �34/�6�(

π+π+ e− νe)/�(
π+π− e+νe) �34/�6Test of �S = �Q rule.VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN

< 3< 3< 3< 3 90 3 1 BLOCH 76 SPEC
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<130. 95 0 BOURQUIN 71 ASPK1BLOCH 76 quotes 3.6× 10−4 at CL = 95%, we 
onvert.�(

π+π+µ− νµ

)/�total �35/��(
π+π+µ− νµ

)/�total �35/��(
π+π+µ− νµ

)/�total �35/��(
π+π+µ− νµ

)/�total �35/�Test of �S = �Q rule.VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN CHG
<3.0<3.0<3.0<3.0 95 0 BIRGE 65 FBC +�(

π+ e+ e−)/�total �36/��(
π+ e+ e−)/�total �36/��(
π+ e+ e−)/�total �36/��(
π+ e+ e−)/�total �36/�Test for �S = 1 weak neutral 
urrent. Allowed by 
ombined �rst-order weak andele
tromagneti
 intera
tions.VALUE (units 10−7) EVTS DOCUMENT ID TECN CHG3.00±0.09 OUR AVERAGE3.00±0.09 OUR AVERAGE3.00±0.09 OUR AVERAGE3.00±0.09 OUR AVERAGE3.11±0.04±0.12 7253 1 BATLEY 09 NA48 ±2.94±0.05±0.14 10300 2 APPEL 99 SPEC +2.75±0.23±0.13 500 3 ALLIEGRO 92 SPEC +2.7 ±0.5 41 4 BLOCH 75 SPEC +1Value extrapolated from a measurement in the region z = (mee/mK )2 >0.08. BAT-LEY 09 also evaluated the shape of the form fa
tor using four di�erent theoreti
al models.2APPEL 99 establishes ve
tor nature of this de
ay and determines form fa
tor f(Z)=f0(1+δZ), Z=M2e e/m2K , δ=2.14 ± 0.13 ± 0.15.3ALLIEGRO 92 assumes a ve
tor intera
tion with a form fa
tor given by λ = 0.105 ±0.035 ± 0.015 and a 
orrelation 
oeÆ
ient of −0.82.4BLOCH 75 assumes a ve
tor intera
tion.�(
π+µ+µ−)/�total �37/��(
π+µ+µ−)/�total �37/��(
π+µ+µ−)/�total �37/��(
π+µ+µ−)/�total �37/�Test for �S = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions.VALUE (units 10−8) CL% EVTS DOCUMENT ID TECN CHG COMMENT9.4 ±0.6 OUR AVERAGE9.4 ±0.6 OUR AVERAGE9.4 ±0.6 OUR AVERAGE9.4 ±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.6. See the ideogrambelow.9.62±0.21±0.13 3120 1 BATLEY 11A NA48 ± 2003-04 data9.8 ±1.0 ±0.5 110 2 PARK 02 HYCP ±9.22±0.60±0.49 402 3 MA 00 B865 +5.0 ±0.4 ±0.9 207 4 ADLER 97C B787 +

• • • We do not use the following data for averages, �ts, limits, et
. • • •9.7 ±1.2 ±0.4 65 PARK 02 HYCP +10.0 ±1.9 ±0.7 35 PARK 02 HYCP −
<23 90 ATIYA 89 B787 +1BATLEY 11A also studies the form fa
tor f (z) dependen
e of the de
ay, des
ribed viasingle photon ex
hange: i) assuming a linear form fa
tor, f (z) = f0 (1+ δ z ), z =(Mµµ/mK )2, �nding f0 = 0.470 ± 0.040 and δ = 3.11 ± 0.57 and ii) assuming a linearform fa
tor in
luding π-π res
attering , Wππ , as in DAMBROSIO 98A, �nding f (z) =GF m2K (a+ + b+ z) + Wππ(z), a+ = −0.575 ± 0.039, b+ = −0.813 ± 0.145.

2PARK 02 \±" result 
omes from 
ombining K+ → π+µ+µ− and K− → π−µ+µ−,assuming CP is 
onserved.3MA 00 establishes ve
tor nature of this de
ay and determines form fa
tor f(z)= f0 (1+ δ z), z = (Mµµ/mK )2, δ = 2.45+1.30
−0.95.4ADLER 97C gives systemati
 error 0.7× 10−8 and theoreti
al un
ertainty 0.6× 10−8,whi
h we 
ombine in quadrature to obtain our se
ond error.

WEIGHTED AVERAGE
9.4±0.6 (Error scaled by 2.6)

ADLER 97C B787 19.5
MA 00 B865 0.0
PARK 02 HYCP 0.2
BATLEY 11A NA48 1.2

χ2

      20.9
(Confidence Level = 0.0001)

2 4 6 8 10 12 14�(
π+µ+µ−

)/�total �37/��(
π+ ν ν

)/�total �38/��(
π+ ν ν

)/�total �38/��(
π+ ν ν

)/�total �38/��(
π+ ν ν

)/�total �38/�Test for �S = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions. Bran
hing ratio values are extrapolated from the momentum or energy regionsshown in the 
omments assuming Standard Model phase spa
e ex
ept for those labeled\S
alar" or \Tensor" to indi
ate the assumed non-Standard-Model intera
tion.VALUE (units 10−9) CL% EVTS DOCUMENT ID TECN CHG COMMENT0.173+0.115
−0.1050.173+0.115
−0.1050.173+0.115
−0.1050.173+0.115
−0.105 7 1 ARTAMONOV 08 B949 + 140<Pπ <199 MeV,211<Pπ <229MeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.789+0.926
−0.510 3 2 ARTAMONOV 08 B949 + 140<Pπ <199 MeV

< 2.2 90 1 3 ADLER 04 B787 + 211<Pπ <229 MeV
< 2.7 90 ADLER 04 B787 + S
alar
< 1.8 90 ADLER 04 B787 + Tensor0.147+0.130

−0.089 3 4 ANISIMOVSK...04 B949 + 211<Pπ <229 MeV0.157+0.175
−0.082 2 ADLER 02 B787 + Pπ >211 MeV/


< 4.2 90 1 ADLER 02C B787 + 140<Pπ <195 MeV
< 4.7 90 5 ADLER 02C B787 + S
alar
< 2.5 90 5 ADLER 02C B787 + Tensor0.15 +0.34

−0.12 1 ADLER 00 B787 In ADLER 020.42 +0.97
−0.35 1 ADLER 97 B787

< 2.4 90 ADLER 96 B787
< 7.5 90 ATIYA 93 B787 + T(π) 115{127 MeV
< 5.2 90 6 ATIYA 93 B787 +
< 17 90 0 ATIYA 93B B787 + T(π) 60{100 MeV
< 34 90 ATIYA 90 B787 +
<140 90 ASANO 81B CNTR + T(π) 116{127 MeV1Value obtained 
ombining ANISIMOVSKY 04, ADLER 04, and the present ARTA-MONOV 08 results.2Observed 3 events with an estimated ba
kground of 0.93 ± 0.17+0.32

−0.24. Signal-to-ba
kground ratio for ea
h of these 3 events is 0.20, 0.42, and 0.47.3Value obtained 
ombining the previous result ADLER 02C with 1 event and the presentresult with 0 events to obtain an expe
ted ba
kground 1.22 ± 0.24 events and 1 eventobserved.4Value obtained 
ombining the previous E787 result ADLER 02 with 2 events and thepresent E949 with 1 event. The additional event has a signal-to-ba
kground ratio 0.9.Superseded by ARTAMONOV 08.5 Superseded by ADLER 04.6Combining ATIYA 93 and ATIYA 93B results. Superseded by ADLER 96.�(
π+π0 ν ν

)/�total �39/��(
π+π0 ν ν

)/�total �39/��(
π+π0 ν ν

)/�total �39/��(
π+π0 ν ν

)/�total �39/�Test for �S = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions.VALUE (units 10−5) CL% DOCUMENT ID TECN
<4.3<4.3<4.3<4.3 90 1 ADLER 01 SPEC1Sear
h region de�ned by 90 MeV/
<P

π+ <188 MeV/
 and 135 MeV<E
π0 <180 MeV.�(

µ−ν e+ e+)/�(
π+π− e+νe) �40/�6�(

µ−ν e+ e+)/�(
π+π− e+νe) �40/�6�(

µ−ν e+ e+)/�(
π+π− e+νe) �40/�6�(

µ−ν e+ e+)/�(
π+π− e+νe) �40/�6Test of lepton family number 
onservation.VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN CHG

<0.5<0.5<0.5<0.5 90 0 1 DIAMANT-... 76 SPEC +1DIAMANT-BERGER 76 quotes this result times our 1975 π+π− e ν BR ratio.



991991991991See key on page 601 Meson Parti
le ListingsK±�(µ+νe)/�total �41/��(µ+νe)/�total �41/��(µ+νe)/�total �41/��(µ+νe)/�total �41/�Forbidden by lepton family number 
onservation.VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<0.004<0.004<0.004<0.004 90 0 1 LYONS 81 HLBC 200 GeV K+ narrowband ν beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.012 90 1 COOPER 82 HLBC Wideband ν beam1COOPER 82 and LYONS 81 limits on νe observation are here interpreted as limits onlepton family number violation in the absen
e of mixing.�(π+µ+ e−)/�total �42/��(π+µ+ e−)/�total �42/��(π+µ+ e−)/�total �42/��(π+µ+ e−)/�total �42/�Test of lepton family number 
onservation.VALUE (units 10−10) CL% DOCUMENT ID TECN CHG
<0.13<0.13<0.13<0.13 90 1 SHER 05 RVUE +
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.21 90 SHER 05 B865 +
<0.39 90 APPEL 00 B865 +
<2.1 90 LEE 90 SPEC +1This result 
ombines SHER 05 1998 data, APPEL 00 1996 data, and data fromBERGMAN 97 and PISLAK 97 theses, all from BNL-E865, with LEE 90 BNL-E777data.�(π+µ− e+)/�total �43/��(π+µ− e+)/�total �43/��(π+µ− e+)/�total �43/��(π+µ− e+)/�total �43/�Test of lepton family number 
onservation.VALUE (units 10−10) CL% EVTS DOCUMENT ID TECN CHG
< 5.2< 5.2< 5.2< 5.2 90 0 APPEL 00B B865 +
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<70 90 0 1 DIAMANT-... 76 SPEC +1Measurement a
tually applies to the sum of the π+µ− e+ and π−µ+ e+ modes.�(π−µ+ e+)/�total �44/��(π−µ+ e+)/�total �44/��(π−µ+ e+)/�total �44/��(π−µ+ e+)/�total �44/�Test of total lepton number 
onservation.VALUE (units 10−10) CL% EVTS DOCUMENT ID TECN CHG
< 5.0< 5.0< 5.0< 5.0 90 0 APPEL 00B B865 +
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<70 90 0 1 DIAMANT-... 76 SPEC +1Measurement a
tually applies to the sum of the π+µ− e+ and π−µ+ e+ modes.�(π− e+ e+)/�total �45/��(π− e+ e+)/�total �45/��(π− e+ e+)/�total �45/��(π− e+ e+)/�total �45/�Test of total lepton number 
onservation.VALUE CL% EVTS DOCUMENT ID TECN CHG
<6.4× 10−10<6.4× 10−10<6.4× 10−10<6.4× 10−10 90 0 APPEL 00B B865 +
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9.2× 10−9 90 0 DIAMANT-... 76 SPEC +
<1.5× 10−5 CHANG 68 HBC −�(π−µ+µ+)/�total �46/��(π−µ+µ+)/�total �46/��(π−µ+µ+)/�total �46/��(π−µ+µ+)/�total �46/�Forbidden by total lepton number 
onservation.VALUE CL% DOCUMENT ID TECN CHG
<1.1× 10−9<1.1× 10−9<1.1× 10−9<1.1× 10−9 90 BATLEY 11A NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.0× 10−9 90 APPEL 00B B865 +
<1.5× 10−4 90 1 LITTENBERG 92 HBC1LITTENBERG 92 is from retroa
tive data analysis of CHANG 68 bubble 
hamber data.�(µ+νe)/�total �47/��(µ+νe)/�total �47/��(µ+νe)/�total �47/��(µ+νe)/�total �47/�Forbidden by total lepton number 
onservation.VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<3.3<3.3<3.3<3.3 90 1 COOPER 82 HLBC Wideband ν beam1COOPER 82 limit on νe observation is here interpreted as a limit on lepton numberviolation in the absen
e of mixing.�(π0 e+ νe)/�total �48/��(π0 e+ νe)/�total �48/��(π0 e+ νe)/�total �48/��(π0 e+ νe)/�total �48/�Forbidden by total lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<0.003<0.003<0.003<0.003 90 1 COOPER 82 HLBC Wideband ν beam1COOPER 82 limit on νe observation is here interpreted as a limit on lepton numberviolation in the absen
e of mixing.�(π+ γ

)/�total �49/��(π+ γ
)/�total �49/��(π+ γ
)/�total �49/��(π+ γ
)/�total �49/�Violates angular momentum 
onservation and gauge invarian
e. Current interest inthis de
ay is as a sear
h for non-
ommutative spa
e-time e�e
ts as dis
ussed in AR-TAMONOV 05 and for exoti
 physi
s su
h as a va
uum expe
tation value of a newve
tor �eld, non-lo
al Superstring e�e
ts, or departures from Lorentz invarian
e, asdis
ussed in ADLER 02B.VALUE (units 10−9) CL% DOCUMENT ID TECN CHG

< 2.3< 2.3< 2.3< 2.3 90 ARTAMONOV 05 B949 +
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 360 90 ADLER 02B B787 +
<1400 90 ASANO 82 CNTR +
<4000 90 1 KLEMS 71 OSPK +1Test of model of Selleri, Nuovo Cimento 60A60A60A60A 291 (1969).

CPT VIOLATION TESTS IN K± DECAYSCPT VIOLATION TESTS IN K± DECAYSCPT VIOLATION TESTS IN K± DECAYSCPT VIOLATION TESTS IN K± DECAYS� = (�(K+) − �(K−)) / (�(K+) + �(K−))�(K± → µ± νµ) RATE DIFFERENCE/SUM�(K± → µ± νµ) RATE DIFFERENCE/SUM�(K± → µ± νµ) RATE DIFFERENCE/SUM�(K± → µ± νµ) RATE DIFFERENCE/SUMVALUE (%) DOCUMENT ID TECN
−0.27±0.21−0.27±0.21−0.27±0.21−0.27±0.21 FORD 67 CNTR�(K± → π±π0) RATE DIFFERENCE/SUM�(K± → π±π0) RATE DIFFERENCE/SUM�(K± → π±π0) RATE DIFFERENCE/SUM�(K± → π±π0) RATE DIFFERENCE/SUMVALUE (%) DOCUMENT ID TECN0.4±0.60.4±0.60.4±0.60.4±0.6 HERZO 69 OSPKCP VIOLATION TESTS IN K± DECAYSCP VIOLATION TESTS IN K± DECAYSCP VIOLATION TESTS IN K± DECAYSCP VIOLATION TESTS IN K± DECAYS� = (�(K+) − �(K−)) / (�(K+) + �(K−))�(K± → π± e+ e−) RATE DIFFERENCE/SUM�(K± → π± e+ e−) RATE DIFFERENCE/SUM�(K± → π± e+ e−) RATE DIFFERENCE/SUM�(K± → π± e+ e−) RATE DIFFERENCE/SUMVALUE (units 10−2) DOCUMENT ID TECN
−2.2±1.5±0.6−2.2±1.5±0.6−2.2±1.5±0.6−2.2±1.5±0.6 1 BATLEY 09 NA481This implies an upper limit of 2.1× 10−2 at 90% CL.�(K± → π±µ+µ−) RATE DIFFERENCE/SUM�(K± → π±µ+µ−) RATE DIFFERENCE/SUM�(K± → π±µ+µ−) RATE DIFFERENCE/SUM�(K± → π±µ+µ−) RATE DIFFERENCE/SUMVALUE DOCUMENT ID TECN0.010±0.023 OUR AVERAGE0.010±0.023 OUR AVERAGE0.010±0.023 OUR AVERAGE0.010±0.023 OUR AVERAGE0.011±0.023 1 BATLEY 11A NA48
−0.02 ±0.11 ±0.04 PARK 02 HYCP1This 
orresponds to the asymmetry upper limit of < 2.9× 10−2 at 90% CL.�(K± → π±π0 γ) RATE DIFFERENCE/SUM�(K± → π±π0 γ) RATE DIFFERENCE/SUM�(K± → π±π0 γ) RATE DIFFERENCE/SUM�(K± → π±π0 γ) RATE DIFFERENCE/SUMVALUE (units 10−3) EVTS DOCUMENT ID TECN CHG COMMENT0.0± 1.2 OUR AVERAGE0.0± 1.2 OUR AVERAGE0.0± 1.2 OUR AVERAGE0.0± 1.2 OUR AVERAGE0.0± 1.0±0.6 1M 1 BATLEY 10A NA484 ±29 2461 SMITH 76 WIRE ± Eπ 55{90 MeV5 ±20 4000 ABRAMS 73B ASPK ± Eπ 51{100 MeV1This value implies the upper bound for this asymmetry 1.5× 10−3 at 90% CL.�(K± → π±π+π−) RATE DIFFERENCE/SUM�(K± → π±π+π−) RATE DIFFERENCE/SUM�(K± → π±π+π−) RATE DIFFERENCE/SUM�(K± → π±π+π−) RATE DIFFERENCE/SUMVALUE (%) EVTS DOCUMENT ID TECN CHG0.04±0.060.04±0.060.04±0.060.04±0.06 1 FORD 70 ASPK
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.01±0.08 2 SMITH 73 ASPK ±0.05±0.07 3.2M 1 FORD 70 ASPK
−0.25±0.45 FLETCHER 67 OSPK
−0.02±0.11 1 FORD 67 CNTR1First FORD 70 value is se
ond FORD 70 
ombined with FORD 67.2 SMITH 73 value of K± → π±π+π− rate di�eren
e is derived from SMITH 73 valueof K± → π± 2π0 rate di�eren
e.�(K± → π±π0π0) RATE DIFFERENCE/SUM�(K± → π±π0π0) RATE DIFFERENCE/SUM�(K± → π±π0π0) RATE DIFFERENCE/SUM�(K± → π±π0π0) RATE DIFFERENCE/SUMVALUE (%) EVTS DOCUMENT ID TECN CHG
−0.02±0.28 OUR AVERAGE−0.02±0.28 OUR AVERAGE−0.02±0.28 OUR AVERAGE−0.02±0.28 OUR AVERAGE0.04±0.29 SMITH 73 ASPK ±
−0.6 ±0.9 1802 HERZO 69 OSPKT VIOLATION TESTS IN K+ AND K− DECAYST VIOLATION TESTS IN K+ AND K− DECAYST VIOLATION TESTS IN K+ AND K− DECAYST VIOLATION TESTS IN K+ AND K− DECAYSPT in K+ → π0µ+νµPT in K+ → π0µ+νµPT in K+ → π0µ+νµPT in K+ → π0µ+νµT-violating muon polarization. Sensitive to new sour
es of CP violation beyond theStandard Model.VALUE (units 10−3) EVTS DOCUMENT ID TECN CHG
−1.7±2.3±1.1−1.7±2.3±1.1−1.7±2.3±1.1−1.7±2.3±1.1 1 ABE 04F K246 +
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−4.2±4.9±0.9 3.9M ABE 99S K246 +1 In
ludes three sets of data: 96-97 (ABE 99S), 98, and 99-00 totaling about three timesthe ABE 99S data sample. Corresponds to PT < 5.0× 10−3 at 90% CL.PT in K+ → µ+νµ γPT in K+ → µ+νµ γPT in K+ → µ+νµ γPT in K+ → µ+νµ γT-violating muon polarization. Sensitive to new sour
es of CP violation beyond theStandard Model.VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG
−0.64±1.85±0.10−0.64±1.85±0.10−0.64±1.85±0.10−0.64±1.85±0.10 114k 1 ANISIMOVSK...03 K246 +1Muons stopped and polarization measured from de
ay to positrons.Im(ξ) in K+ → π0µ+νµ DECAY (from transverse µ pol.)Im(ξ) in K+ → π0µ+νµ DECAY (from transverse µ pol.)Im(ξ) in K+ → π0µ+νµ DECAY (from transverse µ pol.)Im(ξ) in K+ → π0µ+νµ DECAY (from transverse µ pol.)Test of T reversal invarian
e.VALUE EVTS DOCUMENT ID TECN CHG COMMENT
−0.006 ±0.008 OUR AVERAGE−0.006 ±0.008 OUR AVERAGE−0.006 ±0.008 OUR AVERAGE−0.006 ±0.008 OUR AVERAGE
−0.0053±0.0071±0.0036 1 ABE 04F K246 +
−0.016 ±0.025 20M CAMPBELL 81 CNTR + Pol.
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.013 ±0.016 ±0.003 3.9M ABE 99S CNTR + pT K+ at rest1 In
ludes three sets of data: 96-97 (ABE 99S), 98, and 99-00 totaling about three timesthe ABE 99S data sample. Corresponds to Im(ξ) < 0.016 at 90% CL.
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DALITZ PLOT PARAMETERS FOR
K → 3π DECAYS

Revised 1999 by T.G. Trippe (LBNL).

The Dalitz plot distribution for K± → π±π±π∓, K± →
π0π0π±, and K0

L → π+π−π0 can be parameterized by a series

expansion such as that introduced by Weinberg [1]. We use the

form

∣∣∣M
∣∣∣
2
∝ 1 + g

(s3 − s0)

m2
π+

+ h

[
s3 − s0

m2
π+

]2

+j
(s2 − s1)

m2
π+

+ k

[
s2 − s1

m2
π+

]2

+f
(s2 − s1)

m2
π+

(s3 − s0)

m2
π+

+ · · · , (1)

where m2
π+ has been introduced to make the coefficients g, h,

j, and k dimensionless, and

si = (PK − Pi)
2 = (mK − mi)

2 − 2mKTi , i = 1, 2, 3,

s0 =
1

3

∑

i

si =
1

3
(m2

K + m2
1 + m2

2 + m2
3) .

Here the Pi are four-vectors, mi and Ti are the mass and kinetic

energy of the ith pion, and the index 3 is used for the odd pion.

The coefficient g is a measure of the slope in the variable s3

(or T3) of the Dalitz plot, while h and k measure the quadratic

dependence on s3 and (s2 − s1), respectively. The coefficient j

is related to the asymmetry of the plot and must be zero if CP

invariance holds. Note also that if CP is good, g, h, and k must

be the same for K+ → π+π+π− as for K− → π−π−π+.

Since different experiments use different forms for
∣∣∣M

∣∣∣
2
, in

order to compare the experiments we have converted to g, h,

j, and k whatever coefficients have been measured. Where such

conversions have been done, the measured coefficient ay, at, au,

or av is given in the comment at the right. For definitions of

these coefficients, details of this conversion, and discussion of

the data, see the April 1982 version of this note [2].
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∣∣matrix element∣∣2 = 1 + gu + hu2 + kv2where u = (s3 − s0) / m2

π and v = (s2 − s1) / m2
πLINEAR COEFFICIENT g FOR K± → π±π+π−LINEAR COEFFICIENT g FOR K± → π±π+π−LINEAR COEFFICIENT g FOR K± → π±π+π−LINEAR COEFFICIENT g FOR K± → π±π+π−Some experiments use Dalitz variables x and y. In the 
omments we give ay =
oeÆ
ient of y term. See note above on \Dalitz Plot Parameters for K → 3πDe
ays." For dis
ussion of the 
onversion of ay to g, see the earlier version of thesame note in the Review published in Physi
s Letters 111B111B111B111B 70 (1982).VALUE EVTS DOCUMENT ID TECN CHG COMMENT

−0.21134±0.00017−0.21134±0.00017−0.21134±0.00017−0.21134±0.00017 471M 1 BATLEY 07B NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.2221 ±0.0065 225k DEVAUX 77 SPEC + ay=.2814± .0082
−0.199 ±0.008 81k 2 LUCAS 73 HBC − ay=0.252±0.011
−0.2157 ±0.0028 750k FORD 72 ASPK + ay=.2734± .0035
−0.2186 ±0.0028 750k FORD 72 ASPK − ay=.2770± .0035
−0.200 ±0.009 39819 3 HOFFMASTER72 HLBC +
−0.196 ±0.012 17898 4 GRAUMAN 70 HLBC + ay=0.228±0.030

−0.193 ±0.010 50919 MAST 69 HBC − ay=0.244±0.013
−0.218 ±0.016 9994 5 BUTLER 68 HBC + ay=0.277±0.020
−0.190 ±0.023 5778 5,6 MOSCOSO 68 HBC − ay=0.242±0.029
−0.22 ±0.024 5428 5,6 ZINCHENKO 67 HBC + ay=0.28 ± 0.03
−0.220 ±0.035 1347 7 FERRO-LUZZI 61 HBC − ay=0.28 ± 0.0451Final state strong intera
tion and radiative 
orre
tions not in
luded in the �t.2Quadrati
 dependen
e is required by K0L experiments.3HOFFMASTER 72 in
ludes GRAUMAN 70 data.4 Emulsion data added | all events in
luded by HOFFMASTER 72.5Experiments with large errors not in
luded in average.6Also in
ludes DBC events.7No radiative 
orre
tions in
luded.QUADRATIC COEFFICIENT h FOR K± → π±π+π−QUADRATIC COEFFICIENT h FOR K± → π±π+π−QUADRATIC COEFFICIENT h FOR K± → π±π+π−QUADRATIC COEFFICIENT h FOR K± → π±π+π−VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG1.848±0.0401.848±0.0401.848±0.0401.848±0.040 471M 1 BATLEY 07B NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.06 ±1.43 225k DEVAUX 77 SPEC +1.87 ±0.62 750k FORD 72 ASPK +1.25 ±0.62 750k FORD 72 ASPK −
−0.9 ±1.4 39819 HOFFMASTER72 HLBC +
−0.1 ±1.2 50919 MAST 69 HBC −1Final state strong intera
tion and radiative 
orre
tions not in
luded in the �t.QUADRATIC COEFFICIENT k FOR K± → π±π+π−QUADRATIC COEFFICIENT k FOR K± → π±π+π−QUADRATIC COEFFICIENT k FOR K± → π±π+π−QUADRATIC COEFFICIENT k FOR K± → π±π+π−VALUE (units 10−3) EVTS DOCUMENT ID TECN CHG
− 4.63± 0.14− 4.63± 0.14− 4.63± 0.14− 4.63± 0.14 471M 1 BATLEY 07B NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−20.5 ± 3.9 225k DEVAUX 77 SPEC +
− 7.5 ± 1.9 750k FORD 72 ASPK +
− 8.3 ± 1.9 750k FORD 72 ASPK −
−10.5 ± 4.5 39819 HOFFMASTER72 HLBC +
−14 ±12 50919 MAST 69 HBC −1Final state strong intera
tion and radiative 
orre
tions not in
luded in the �t.(g+ − g−) / (g+ + g−) FOR K± → π±π+π−(g+ − g−) / (g+ + g−) FOR K± → π±π+π−(g+ − g−) / (g+ + g−) FOR K± → π±π+π−(g+ − g−) / (g+ + g−) FOR K± → π±π+π−This is a CP violating asymmetry between linear 
oeÆ
ients g+ for K+ → π+π+π−de
ay and g− for K− → π−π+π− de
ay.VALUE (units 10−4) EVTS DOCUMENT ID TECN
− 1.5± 1.5±1.6− 1.5± 1.5±1.6− 1.5± 1.5±1.6− 1.5± 1.5±1.6 3.1G 1 BATLEY 07E NA48
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.7± 2.1±2.0 1.7G 2 BATLEY 06 NA48
−70.0±53 3.2M FORD 70 ASPK1BATLEY 07E in
ludes data from BATLEY 06. Uses quadrati
 parametrization and valueg++ g− = 2g from BATLEY 07B. This measurement negle
ts any possible 
hargeasymmetries in higher order slope parameters h or k.2This measurement negle
ts any possible 
harge asymmetries in higher order slope pa-rameters h or k.LINEAR COEFFICIENT g FOR K± → π±π0π0LINEAR COEFFICIENT g FOR K± → π±π0π0LINEAR COEFFICIENT g FOR K± → π±π0π0LINEAR COEFFICIENT g FOR K± → π±π0π0Unless otherwise stated, all experiments in
lude terms quadrati
in (s3 − s0) / m2

π+ . See note above on \Dalitz Plot Parameters for K → 3π De
ays."See BATUSOV 98 for a dis
ussion of the dis
repan
y between their result and others,espe
ially BOLOTOV 86. At this time we have no way to resolve the dis
repan
y sowe depend on the large s
ale fa
tor as a warning.VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.626 ±0.007 OUR AVERAGE0.626 ±0.007 OUR AVERAGE0.626 ±0.007 OUR AVERAGE0.626 ±0.007 OUR AVERAGE0.6259±0.0043±0.0093 493k AKOPDZHAN...05B TNF ±0.627 ±0.004 ±0.010 252k 1,2 AJINENKO 03B ISTR −
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.736 ±0.014 ±0.012 33k BATUSOV 98 SPEC +0.582 ±0.021 43k BOLOTOV 86 CALO −0.670 ±0.054 3263 BRAUN 76B HLBC +0.630 ±0.038 5635 SHEAFF 75 HLBC +0.510 ±0.060 27k SMITH 75 WIRE +0.67 ±0.06 1365 AUBERT 72 HLBC +0.544 ±0.048 4048 DAVISON 69 HLBC + Also emulsion1Measured using in-
ight de
ays of the 25 GeV negative se
ondary beam.2They form new world averages g− = (0.617 ± 0.018) and g+ = (0.684 ± 0.033) whi
hgive �gτ ′ = 0.051 ± 0.028.QUADRATIC COEFFICIENT h FOR K± → π±π0π0QUADRATIC COEFFICIENT h FOR K± → π±π0π0QUADRATIC COEFFICIENT h FOR K± → π±π0π0QUADRATIC COEFFICIENT h FOR K± → π±π0π0VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.052 ±0.008 OUR AVERAGE0.052 ±0.008 OUR AVERAGE0.052 ±0.008 OUR AVERAGE0.052 ±0.008 OUR AVERAGE0.0551±0.0044±0.0086 493k AKOPDZHAN...05B TNF ±0.046 ±0.004 ±0.012 252k 1 AJINENKO 03B ISTR −
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.128 ±0.015 ±0.024 33k BATUSOV 98 SPEC +0.037 ±0.024 43k BOLOTOV 86 CALO −0.152 ±0.082 3263 BRAUN 76B HLBC +0.041 ±0.030 5635 SHEAFF 75 HLBC +0.009 ±0.040 27k SMITH 75 WIRE +
−0.01 ±0.08 1365 AUBERT 72 HLBC +0.026 ±0.050 4048 DAVISON 69 HLBC + Also emulsion1Measured using in-
ight de
ays of the 25 GeV negative se
ondary beam.
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le ListingsK±QUADRATIC COEFFICIENT k FOR K± → π±π0π0QUADRATIC COEFFICIENT k FOR K± → π±π0π0QUADRATIC COEFFICIENT k FOR K± → π±π0π0QUADRATIC COEFFICIENT k FOR K± → π±π0π0VALUE EVTS DOCUMENT ID TECN CHG0.0054±0.0035 OUR AVERAGE0.0054±0.0035 OUR AVERAGE0.0054±0.0035 OUR AVERAGE0.0054±0.0035 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.5.0.0082±0.0011±0.0014 493k AKOPDZHAN...05B TNF ±0.001 ±0.001 ±0.002 252k 1 AJINENKO 03B ISTR −
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0197±0.0045±0.0029 33k BATUSOV 98 SPEC +1Measured using in-
ight de
ays of the 25 GeV negative se
ondary beam.(g+ − g−) / (g+ + g−) FOR K± → π±π0π0(g+ − g−) / (g+ + g−) FOR K± → π±π0π0(g+ − g−) / (g+ + g−) FOR K± → π±π0π0(g+ − g−) / (g+ + g−) FOR K± → π±π0π0A nonzero value for this quantity indi
ates CP violation.VALUE (units 10−4) EVTS DOCUMENT ID TECN1.8± 1.8 OUR AVERAGE1.8± 1.8 OUR AVERAGE1.8± 1.8 OUR AVERAGE1.8± 1.8 OUR AVERAGE1.8± 1.7±0.6 91.3M 1 BATLEY 07E NA482 ±18 ±5 619k 2 AKOPDZHAN...05 TNF
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.8± 2.2±1.3 47M 3 BATLEY 06A NA481BATLEY 07E in
ludes data from BATLEY 06A. Uses quadrati
 parametrization andPDG 06 value g = 0.626 ± 0.007 to obtain g+−g− = (2.2 ± 2.1 ± 0.7) × 10−4.Negle
ts any possible 
harge asymmetries in higher order slope parameters h or k.2Asymmetry obtained assuming that g++g− = 2×0.652 (PDG 02) and that asymmetriesin h and k are zero.3 Linear and quadrati
 slopes from PDG 04 are used. Any possible 
harge asymmetries inhigher order slope parameters h or k are negle
ted.ALTERNATIVE PARAMETRIZATIONS OF K± → π±π0π0 DALITZ PLOTALTERNATIVE PARAMETRIZATIONS OF K± → π±π0π0 DALITZ PLOTALTERNATIVE PARAMETRIZATIONS OF K± → π±π0π0 DALITZ PLOTALTERNATIVE PARAMETRIZATIONS OF K± → π±π0π0 DALITZ PLOTThe following fun
tional form for the matrix element suggested by ππres
attering in K+ → π+\π+π−"→ π+π0π0 is used for this �t(CABIBBO 04A, CABIBBO 05): Matrix element = M0 + M1 where M0= 1 + (1/2)g0 u + (1/2) h′ u2 + (1/2)k0 v2 with u = (s3−s0)/(mπ+ )2,v = (s2− s1)/(mπ+)2 and where M1 takes into a

ount the non-analyti
pie
e due to pi pi res
attering amplitudes a0 and a2; The parameters g0and h′ are related to the parameters g and h of the matrix element squaredgiven in the previous se
tion by the approximations g0 ∼ gPDG andh′ ∼ hPDG − (g/2)2 and k0 ∼ kPDG.In addition, we also 
onsider the e�e
tive �eld theory framework ofCOLANGELO 06A and BISSEGGER 09 to extra
t g

BB
and h′

BB
.LINEAR COEFFICIENT g0 FOR K± → π±π0π0LINEAR COEFFICIENT g0 FOR K± → π±π0π0LINEAR COEFFICIENT g0 FOR K± → π±π0π0LINEAR COEFFICIENT g0 FOR K± → π±π0π0VALUE EVTS DOCUMENT ID TECN CHG0.6525±0.0009±0.00330.6525±0.0009±0.00330.6525±0.0009±0.00330.6525±0.0009±0.0033 60M 1 BATLEY 09A NA48 ±

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.645 ±0.004 ±0.009 23M 2 BATLEY 06B NA48 ±1This �t is obtained with the CABIBBO 05 matrix element in the 2π0 invariant masssquared range 0.074094 < m22π0 < 0.104244 GeV2. Ele
tromagneti
 
orre
tions andCHPT 
onstraints for ππ phase shifts (a0 and a2) have been used. Also measured(a0 − a2) mπ+ = 0.2646 ± 0.0021 ± 0.0023, where k0 was kept �xed in the �t at
−0.0099.2 Superseded by BATLEY 09A. This �t is obtained with the CABIBBO 05 matrix elementin the 2π0 invariant mass squared range 0.074 GeV2 < m22π0 < 0.097 GeV2, assumingk = 0 (no term proportional to (s2 − s1)2) and ex
luding the kinemati
 region aroundthe 
usp (m22π0 = (2m

π+)2 ± 0.000525 GeV2). Also π-π phase shifts a0 and a2 aremeasured: (a0 − a2)mπ+ = 0.268 ± 0.010 ± 0.004 ± 0.013(external) and a2 m
π+ =

−0.041 ± 0.022 ± 0.014.QUADRATIC COEFFICIENT h′ FOR K± → π±π0π0QUADRATIC COEFFICIENT h′ FOR K± → π±π0π0QUADRATIC COEFFICIENT h′ FOR K± → π±π0π0QUADRATIC COEFFICIENT h′ FOR K± → π±π0π0VALUE EVTS DOCUMENT ID TECN CHG
−0.0433±0.0008±0.0026−0.0433±0.0008±0.0026−0.0433±0.0008±0.0026−0.0433±0.0008±0.0026 60M 1 BATLEY 09A NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.047 ±0.012 ±0.011 23M 2 BATLEY 06B NA48 ±1This �t is obtained with the CABIBBO 05 matrix element in the 2π0 invariant masssquared range 0.074094 < m22π0 < 0.104244 GeV2. Ele
tromagneti
 
orre
tions andCHPT 
onstraints for ππ phase shifts (a0 and a2) have been used. Also measured(a0 − a2) mπ+ = 0.2646 ± 0.0021 ± 0.0023, where k0 was kept �xed in the �t at

−0.0099.2 Superseded by BATLEY 09A. This �t is obtained with the CABIBBO 05 matrix elementin the 2π0 invariant mass squared range 0.074 GeV2 < m22π0 < 0.097 GeV2, assumingk = 0 (no term proportional to (s2 − s1)2) and ex
luding the kinemati
 region aroundthe 
usp (m22π0 = (2m
π+)2 ± 0.000525 GeV2). Also π-π phase shifts a0 and a2 aremeasured: (a0 − a2)mπ+ = 0.268 ± 0.010 ± 0.004 ± 0.013(external) and a2 m

π+ =
−0.041 ± 0.022 ± 0.014.QUADRATIC COEFFICIENT k0 FOR K± → π±π0π0QUADRATIC COEFFICIENT k0 FOR K± → π±π0π0QUADRATIC COEFFICIENT k0 FOR K± → π±π0π0QUADRATIC COEFFICIENT k0 FOR K± → π±π0π0VALUE EVTS DOCUMENT ID TECN CHG0.0095±0.00017±0.000480.0095±0.00017±0.000480.0095±0.00017±0.000480.0095±0.00017±0.00048 60M 1 BATLEY 09A NA48 ±1Assumed a2 m

π+ = −0.0044 in the �t.

LINEAR COEFFICIENT gBB FOR K± → π±π0π0LINEAR COEFFICIENT gBB FOR K± → π±π0π0LINEAR COEFFICIENT gBB FOR K± → π±π0π0LINEAR COEFFICIENT gBB FOR K± → π±π0π0VALUE EVTS DOCUMENT ID TECN CHG0.6219±0.0009±0.00330.6219±0.0009±0.00330.6219±0.0009±0.00330.6219±0.0009±0.0033 60M 1 BATLEY 09A NA48 ±1This �t is obtained using parametrizations of COLANGELO 06A and BISSEGGER 09 inthe 2π0 invariant mass squared range 0.074094 < m22π0 < 0.104244 GeV2. Ele
tro-magneti
 
orre
tions and CHPT 
onstraints for ππ phase shifts (a0 and a2) have beenused. Also measured (a0 − a2) mπ+ = 0.2633 ± 0.0024 ± 0.0024, where k0 was kept�xed in the �t at 0.0085.QUADRATIC COEFFICIENT h′BB FOR K± → π±π0π0QUADRATIC COEFFICIENT h′BB FOR K± → π±π0π0QUADRATIC COEFFICIENT h′BB FOR K± → π±π0π0QUADRATIC COEFFICIENT h′BB FOR K± → π±π0π0VALUE EVTS DOCUMENT ID TECN CHG
−0.0520±0.0009±0.0026−0.0520±0.0009±0.0026−0.0520±0.0009±0.0026−0.0520±0.0009±0.0026 60M 1 BATLEY 09A NA48 ±1This �t is obtained using parametrizations of COLANGELO 06A and BISSEGGER 09 inthe 2π0 invariant mass squared range 0.074094 < m22π0 < 0.104244 GeV2. Ele
tro-magneti
 
orre
tions and CHPT 
onstraints for ππ phase shifts (a0 and a2) have beenused. Also measured (a0 − a2) mπ+ = 0.2633 ± 0.0024 ± 0.0024, where k0 was kept�xed in the �t at 0.0085.
K±

ℓ3 AND K0
ℓ3 FORM FACTORS

Updated September 2013 by T.G. Trippe (LBNL) and C.-J. Lin
(LBNL).

Assuming that only the vector current contributes to K →
πℓν decays, we write the matrix element as

M ∝ f+(t)
[
(PK + Pπ)µℓγµ(1 + γ5)ν

]

+ f−(t)
[
mℓℓ(1 + γ5)ν

]
, (1)

where PK and Pπ are the four-momenta of the K and π

mesons, mℓ is the lepton mass, and f+ and f− are dimensionless

form factors which can depend only on t = (PK − Pπ)2, the

square of the four-momentum transfer to the leptons. If time-

reversal invariance holds, f+ and f− are relatively real. Kµ3

experiments, discussed immediately below, measure f+ and f−,

while Ke3 experiments, discussed further below, are sensitive

only to f+ because the small electron mass makes the f− term

negligible.

Kµ3 Experiments. Analyses of Kµ3 data frequently assume

a linear dependence of f+ and f− on t, i.e.,

f±(t) = f±(0)
[
1 + λ±(t/m2

π+)
]

. (2)

Most Kµ3 data are adequately described by Eq. (2) for f+

and a constant f− (i.e., λ− = 0).

There are two equivalent parametrizations commonly used

in these analyses:

(1) λ+, ξ(0) parametrization. Older analyses of Kµ3 data

often introduce the ratio of the two form factors

ξ(t) = f−(t)/f+(t) . (3)

The Kµ3 decay distribution is then described by the two

parameters λ+ and ξ(0) (assuming time reversal invariance and

λ− = 0).

(2) λ+, λ0 parametrization. More recent Kµ3 analyses have

parametrized in terms of the form factors f+ and f0, which are

associated with vector and scalar exchange, respectively, to the

lepton pair. f0 is related to f+ and f− by

f0(t) = f+(t) +
[
t/(m2

K − m2
π)

]
f−(t) . (4)
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Here f0(0) must equal f+(0) unless f−(t) diverges at t = 0.

The earlier assumption that f+ is linear in t and f− is constant

leads to f0 linear in t:

f0(t) = f0(0)
[
1 + λ0(t/m2

π+)
]

. (5)

With the assumption that f0(0) = f+(0), the two parametriza-

tions, (λ+, ξ(0)) and (λ+, λ0) are equivalent as long as corre-

lation information is retained. (λ+, λ0) correlations tend to be

less strong than (λ+, ξ(0)) correlations.

Since the 2006 edition of the Review [4], we no longer quote

results in the (λ+, ξ(0)) parametrization. We have removed

many older low statistics results from the Listings. See the 2004

version of this note [5] for these older results, and the 1982

version [6] for additional discussion of the K0
µ3 parameters,

correlations, and conversion between parametrizations.

Quadratic Parametrization. More recent high-statistics ex-

periments have included a quadratic term in the expansion of

f+(t),

f+(t) = f+(0)

[
1 + λ

′

+(t/m2
π+) +

λ
′′

+

2
(t/m2

π+)2

]
. (6)

If there is a non-vanishing quadratic term, then λ+ of Eq. (2)

represents the average slope, which is then different from λ
′

+.

Our convention is to include the factor 1
2 in the quadratic

term, and to use mπ+ even for K+
e3 and K+

µ3 decays. We have

converted other’s parametrizations to match our conventions,

as noted in the beginning of the “K±
ℓ3 and K0

ℓ3 Form Factors”

sections of the Listings.

Pole Parametrization: The pole model describes the t-

dependence of f+(t) and f0(t) in terms of the exchange of

the lightest vector and scalar K∗ mesons with masses Mv and

Ms, respectively:

f+(t) = f+(0)

[
M2

v

M2
v − t

]
, f0(t) = f0(0)

[
M2

s

M2
s − t

]
. (7)

Dispersive Parametrization [7,8]. This approach uses dis-

persive techniques and the known low-energy K-π phases to

parametrize the vector and scalar form factors:

f+(t) = f+(0)exp

[
t

m2
π
(Λ+ + H(t))

]
; (8)

f0(t) = f+(0)exp

[
t

(m2
K − m2

π)
(ln[C] − G(t))

]
, (9)

where Λ+ is the slope of the vector form factor, and ln[C]=

ln[f0(m
2
K − m2

π)] is the logarithm of the scalar form factor at

the Callan-Treiman point. The functions H(t) and G(t) are

dispersive integrals.

Ke3 Experiments: Analysis of Ke3 data is simpler than that

of Kµ3 because the second term of the matrix element assuming

a pure vector current [Eq. (1) above] can be neglected. Here

f+ can be assumed to be linear in t, in which case the linear

coefficient λ+ of Eq. (2) is determined, or quadratic, in which

case the linear coefficient λ
′

+ and quadratic coefficient λ
′′

+ of

Eq. (6) are determined.

If we remove the assumption of a pure vector current, then

the matrix element for the decay, in addition to the terms in

Eq. (1), would contain

+2mK fS ℓ(1 + γ5)ν

+(2fT/mK)(PK)λ(Pπ)µ ℓ σλµ(1 + γ5)ν , (10)

where fS is the scalar form factor, and fT is the tensor form

factor. In the case of the Ke3 decays where the f− term can

be neglected, experiments have yielded limits on |fS/f+| and

|fT/f+|.
Fits for Kℓ3 Form Factors. For Ke3 data, we determine best

values for the three parametrizations: linear (λ+), quadratic

(λ
′

+, λ
′′

+) and pole (Mv). For Kµ3 data, we determine best

values for the three parametrizations: linear (λ+, λ0), quadratic

(λ
′

+, λ
′′

+, λ0) and pole (Mv, Ms). We then assume µ − e uni-

versality so that we can combine Ke3 and Kµ3 data, and again

determine best values for the three parametrizations: linear

(λ+, λ0), quadratic (λ
′

+, λ
′′

+, λ0), and pole (Mv, Ms). When

there is more than one parameter, fits are done including input

correlations. Simple averages suffice in the two Ke3 cases where

there is only one parameter: linear (λ+) and pole (Mv).

Both KTeV and KLOE see an improvement in the quality

of their fits relative to linear fits when a quadratic term is

introduced, as well as when the pole parametrization is used.

The quadratic parametrization has the disadvantage that the

quadratic parameter λ
′′

+ is highly correlated with the linear

parameter λ
′

+, in the neighborhood of 95%, and that neither

parameter is very well determined. The pole fit has the same

number of parameters as the linear fit, but yields slightly better

fit probabilities, so that it would be advisable for all experiments

to include the pole parametrization as one of their choices [9].

The “Kaon Particle Listings” show the results with and

without assuming µ-e universality. The “Meson Summary Ta-

bles” show all of the results assuming µ-e universality, but

most results not assuming µ-e universality are given only in the

Listings.
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ℓ3 FORM FACTORSK±
ℓ3 FORM FACTORSIn the form fa
tor 
omments, the following symbols are used.f+ and f− are form fa
tors for the ve
tor matrix element.fS and fT refer to the s
alar and tensor term.f0 = f+ + f− t/(m2K+ − m2

π0).t = momentum transfer to the π.
λ+ and λ0 are the linear expansion 
oeÆ
ients of f+ and f0:f+(t) = f+(0) (1 + λ+t /m2

π+)For quadrati
 expansionf+(t) = f+(0) (1 + λ′+t /m2
π+ + λ′′+2 t2/m4

π+ )as used by KTeV. If there is a non-vanishing quadrati
 term, then λ+represents an average slope, whi
h is then di�erent from λ′+.NA48 and ISTRA quadrati
 expansion 
oeÆ
ients are 
onverted with
λ′+PDG = λ+NA48 and λ′′+PDG = 2 λ′+NA48
λ′+PDG = (mπ+m

π0 )2 λ+ISTRA and
λ′′+PDG = 2 (mπ+m

π0 )4 λ′+ISTRAISTRA linear expansion 
oeÆ
ients are 
onverted with
λ+PDG = (mπ+m

π0 )2 λ+ISTRA and λ0PDG = (mπ+m
π0 )2 λ0ISTRAThe pole parametrization isf+(t) = f+(0) ( M2VM2V−t )f0(t) = f0(0) ( M2SM2S−t )where MV and MS are the ve
tor and s
alar pole masses.The following abbreviations are used:DP = Dalitz plot analysis.PI = π spe
trum analysis.MU = µ spe
trum analysis.POL= µ polarization analysis.BR = K±

µ3/K±e3 bran
hing ratio analysis.E = positron or ele
tron spe
trum analysis.RC = radiative 
orre
tions.
λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K±e3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K±e3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K±e3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K±e3 DECAY)These results are for a linear expansion only. See the next se
tion for �ts in
luding aquadrati
 term. For radiative 
orre
tion of the K±e3 Dalitz plot, see GINSBERG 67,BECHERRAWY 70, CIRIGLIANO 02, CIRIGLIANO 04, and ANDRE 07. Results la-beled OUR FIT are dis
ussed in the review \K±

ℓ3 and K0ℓ3 Form Fa
tors" above. Forearlier, lower statisti
s results, see the 2004 edition of this review, Physi
s Letters B592B592B592B5921 (2004).VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT2.97 ±0.05 OUR FIT2.97 ±0.05 OUR FIT2.97 ±0.05 OUR FIT2.97 ±0.05 OUR FIT Assuming µ-e universality2.98 ±0.05 OUR AVERAGE2.98 ±0.05 OUR AVERAGE2.98 ±0.05 OUR AVERAGE2.98 ±0.05 OUR AVERAGE3.044±0.083±0.074 1.1M AKOPDZANOV 09 TNF ±2.966±0.050±0.034 919k 1 YUSHCHENKO 04B ISTR − DP2.78 ±0.26 ±0.30 41k SHIMIZU 00 SPEC + DP2.84 ±0.27 ±0.20 32k 2 AKIMENKO 91 SPEC PI, no RC2.9 ±0.4 62k 3 BOLOTOV 88 SPEC PI, no RC
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.06 ±0.09 ±0.06 550k 1,4 AJINENKO 03C ISTR − DP2.93 ±0.15 ±0.2 130k 4 AJINENKO 02 SPEC DP1Res
aled to agree with our 
onventions as noted above.2AKIMENKO 91 state that radiative 
orre
tions would raise λ+ by 0.0013.3BOLOTOV 88 state radiative 
orre
tions of GINSBERG 67 would raise λ+ by 0.002.4 Superseded by YUSHCHENKO 04B.
λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K±

µ3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K±
µ3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K±
µ3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K±
µ3 DECAY)Results labeled OUR FIT are dis
ussed in the review \K±

ℓ3 and K0ℓ3 Form Fa
tors"above. For earlier, lower statisti
s results, see the 2004 edition of this review, Physi
sLetters B592B592B592B592 1 (2004).VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT2.97±0.05 OUR FIT2.97±0.05 OUR FIT2.97±0.05 OUR FIT2.97±0.05 OUR FIT Assuming µ-e universality2.96±0.17 OUR FIT2.96±0.17 OUR FIT2.96±0.17 OUR FIT2.96±0.17 OUR FIT Not assuming µ-e universality2.96±0.14±0.10 540k 1 YUSHCHENKO04 ISTR − DP
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.21±0.45 112k 2 AJINENKO 03 ISTR − DP1Res
aled to agree with our 
onventions as noted above.2 Superseded by YUSHCHENKO 04.
λ0 (LINEAR ENERGY DEPENDENCE OF f0 IN K±

µ3 DECAY)λ0 (LINEAR ENERGY DEPENDENCE OF f0 IN K±
µ3 DECAY)λ0 (LINEAR ENERGY DEPENDENCE OF f0 IN K±
µ3 DECAY)λ0 (LINEAR ENERGY DEPENDENCE OF f0 IN K±
µ3 DECAY)Results labeled OUR FIT are dis
ussed in the review \K±

ℓ3 and K0ℓ3 Form Fa
tors"above. For earlier, lower statisti
s results, see the 2004 edition of this review, Physi
sLetters B592B592B592B592 1 (2004).VALUE (units 10−2) dλ0/dλ+ EVTS DOCUMENT ID TECN CHG COMMENT1.95±0.12 OUR FIT1.95±0.12 OUR FIT1.95±0.12 OUR FIT1.95±0.12 OUR FIT Assuming µ-e universality1.96±0.13 OUR FIT1.96±0.13 OUR FIT1.96±0.13 OUR FIT1.96±0.13 OUR FIT Not assuming µ-e universality+1.96±0.12±0.06 −0.348 540k 1 YUSHCHENKO04 ISTR − DP

• • • We do not use the following data for averages, �ts, limits, et
. • • •+2.09±0.45 −0.46 112k 2 AJINENKO 03 ISTR − DP+1.9 ±0.64 24k 3 HORIE 01 SPEC + BR+1.9 ±1.0 +0.03 55k 4 HEINTZE 77 SPEC + BR1Res
aled to agree with our 
onventions as noted above.2 Superseded by YUSHCHENKO 04.3HORIE 01 assumes µ-e universality in K+
ℓ3 de
ay and uses SHIMIZU 00 value λ=0.0278±0.0040 from K±e3 de
ay.4HEINTZE 77 uses λ+ = 0.029 ± 0.003. dλ0/dλ+ estimated by us.

λ'+ (LINEAR K±e3 FORM FACTOR FROM QUADRATIC FIT)λ'+ (LINEAR K±e3 FORM FACTOR FROM QUADRATIC FIT)λ'+ (LINEAR K±e3 FORM FACTOR FROM QUADRATIC FIT)λ'+ (LINEAR K±e3 FORM FACTOR FROM QUADRATIC FIT)VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT2.485±0.163±0.0342.485±0.163±0.0342.485±0.163±0.0342.485±0.163±0.034 919k 1,2 YUSHCHENKO04B ISTR − DP
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.07 ±0.21 550k 1,3 AJINENKO 03C ISTR − DP1Res
aled to agree with our 
onventions as noted above.2YUSHCHENKO 04B λ′+ and λ′′+ are strongly 
orrelated with 
oeÆ
ient ρ(λ′+, λ′′+)= −0.95.3 Superseded by YUSHCHENKO 04B.
λ′′+(QUADRATIC K±e3 FORM FACTOR)λ′′+(QUADRATIC K±e3 FORM FACTOR)λ′′+(QUADRATIC K±e3 FORM FACTOR)λ′′+(QUADRATIC K±e3 FORM FACTOR)VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT0.192±0.062±0.0710.192±0.062±0.0710.192±0.062±0.0710.192±0.062±0.071 919k 1,2 YUSHCHENKO04B ISTR − DP
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.5 ±0.7 ±1.5 550k 1,3 AJINENKO 03C ISTR − DP1Res
aled to agree with our 
onventions as noted above.2YUSHCHENKO 04B λ′+ and λ′′+ are strongly 
orrelated with 
oeÆ
ient ρ(λ′+, λ′′+)= −0.95.3 Superseded by YUSHCHENKO 04B.
∣∣fS/f+∣∣ FOR K±e3 DECAY∣∣fS/f+∣∣ FOR K±e3 DECAY∣∣fS/f+∣∣ FOR K±e3 DECAY∣∣fS/f+∣∣ FOR K±e3 DECAYRatio of s
alar to f+ 
ouplings.VALUE (units 10−2) CL% EVTS DOCUMENT ID TECN CHG COMMENT
−0.3 +0.8

−0.7 OUR AVERAGE−0.3 +0.8
−0.7 OUR AVERAGE−0.3 +0.8
−0.7 OUR AVERAGE−0.3 +0.8
−0.7 OUR AVERAGE

−0.37+0.66
−0.56±0.41 919k YUSHCHENKO04B ISTR − λ′+, λ′′+, f S �t0.2 ±2.6 ±1.4 41k SHIMIZU 00 SPEC + λ+, fS , fT �t

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.2 +2.0
−2.2 ±0.3 550k 1 AJINENKO 03C ISTR − λ+, fS , fT �t

−1.9 +2.5
−1.6 130k 1 AJINENKO 02 SPEC λ+, fS �t7.0 ±1.6 ±1.6 32k AKIMENKO 91 SPEC λ+, fS , fT , φ �t0 ± 10 2827 2 BRAUN 75 HLBC +

< 13 90 4017 CHIANG 72 OSPK +14+3
−4 2707 2 STEINER 71 HLBC + λ+, fS , fT , φ �t

< 23 90 BOTTERILL 68C ASPK
< 18 90 BELLOTTI 67B HLBC
< 30 95 KALMUS 67 HLBC +1Superseded by YUSHCHENKO 04B.2 Statisti
al errors only.
∣∣fT /f+∣∣ FOR K±e3 DECAY∣∣fT /f+∣∣ FOR K±e3 DECAY∣∣fT /f+∣∣ FOR K±e3 DECAY∣∣fT /f+∣∣ FOR K±e3 DECAYRatio of tensor to f+ 
ouplings.VALUE (units 10−2) CL% EVTS DOCUMENT ID TECN CHG COMMENT
− 1.2± 2.3 OUR AVERAGE− 1.2± 2.3 OUR AVERAGE− 1.2± 2.3 OUR AVERAGE− 1.2± 2.3 OUR AVERAGE
− 1.2± 2.1± 1.1 919k YUSHCHENKO04B ISTR − λ′+,λ′′+,f T �t1 ±14 ± 9 41k SHIMIZU 00 SPEC + λ+, fS , fT �t
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.1+ 6.4

− 7.5± 2.6 550k 1 AJINENKO 03C ISTR − λ+, fS , fT �t
− 4.5+ 6.0

− 5.7 130k 1 AJINENKO 02 SPEC λ+, fT �t53 + 9
−10 ±10 32k AKIMENKO 91 SPEC λ+, fS , fT , φ �t7 ±37 2827 2 BRAUN 75 HLBC +

< 75 90 4017 CHIANG 72 OSPK +24 +16
−14 2707 2 STEINER 71 HLBC + λ+, fS , fT , φ �t

< 58 90 BOTTERILL 68C ASPK
< 58 90 BELLOTTI 67B HLBC
< 110 95 KALMUS 67 HLBC +1Superseded by YUSHCHENKO 04B.2 Statisti
al errors only.fS/f+ FOR K±

µ3 DECAYfS/f+ FOR K±
µ3 DECAYfS/f+ FOR K±
µ3 DECAYfS/f+ FOR K±
µ3 DECAYRatio of s
alar to f+ 
ouplings.VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT0.17±0.14±0.540.17±0.14±0.540.17±0.14±0.540.17±0.14±0.54 540k 1 YUSHCHENKO04 ISTR − DP

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.4 ±0.5 ±0.5 112k 2 AJINENKO 03 ISTR − DP1The se
ond error is the theoreti
al error from the un
ertainty in the 
hiral perturbationtheory predi
tion for λ0, ±0.0053, 
ombined in quadrature with the systemati
 error
±0.0009.2The se
ond error is the theoreti
al error from the un
ertainty in the 
hiral perturbationtheory predi
tion for λ0. Superseded by YUSHCHENKO 04.
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le ListingsK±fT /f+ FOR K±
µ3 DECAYfT /f+ FOR K±
µ3 DECAYfT /f+ FOR K±
µ3 DECAYfT /f+ FOR K±
µ3 DECAYRatio of tensor to f+ 
ouplings.VALUE (units 10−2) EVTS DOCUMENT ID TECN CHG COMMENT

−0.07± 0.71±0.20−0.07± 0.71±0.20−0.07± 0.71±0.20−0.07± 0.71±0.20 540k YUSHCHENKO04 ISTR − DP
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−2.1 ± 2.8 ±1.4 112k 1 AJINENKO 03 ISTR − DP2 ±12 1585 BRAUN 75 HLBC1The se
ond error is the theoreti
al error from the un
ertainty in the 
hiral perturbationtheory predi
tion for λ0. Superseded by YUSHCHENKO 04.K±

ℓ4 FORM FACTORSK±
ℓ4 FORM FACTORSK±
ℓ4 FORM FACTORSK±
ℓ4 FORM FACTORSBased on the parametrizations of AMOROS 99, the K±

ℓ4 form fa
tors 
anbe expressed asFs = fs + f ′s q2 + f ′′s q4 + f ′e Se / 4m2
πFp = fpGp = gp + g ′p q2Hp = hpwhere q2 = (Sπ / 4m2

π
) − 1, Sπ is the invariant mass squared of thedipion, and Se is the invariant mass squared of the dilepton.fs FOR K± → π+π− e± ν DECAYfs FOR K± → π+π− e± ν DECAYfs FOR K± → π+π− e± ν DECAYfs FOR K± → π+π− e± ν DECAYVALUE EVTS DOCUMENT ID TECN CHG5.712±0.032 OUR AVERAGE5.712±0.032 OUR AVERAGE5.712±0.032 OUR AVERAGE5.712±0.032 OUR AVERAGE5.705±0.003±0.035 1.1M 1 BATLEY 12 NA48 ±5.75 ±0.02 ±0.08 400k 2 PISLAK 03 B865 +1BATLEY 12 uses data 
olle
ted in 2003{2004. The result is obtained from a measure-ment of �(π+π− e ν)/�(π+ π−π+) and assumed PDG 12 value of �(π+π−π+)/� =(5.59 ± 0.04)× 10−2.2Radiative 
orre
tions in
luded. Using Roy equations and not in
luding isospin break-ing, PISLAK 03 obtains the following ππ s
attering lengths a00 = 0.228 ± 0.012 ±0.004+0.012

−0.016(theor.) and a20 = −0.0365 ± 0.0023 ± 0.0008+0.0031
−0.0026(theor.).f ′s/fs FOR K± → π+π− e± ν DECAYf ′s/fs FOR K± → π+π− e± ν DECAYf ′s/fs FOR K± → π+π− e± ν DECAYf ′s/fs FOR K± → π+π− e± ν DECAYVALUE (units 10−2) EVTS DOCUMENT ID TECN CHG15.2±0.7±0.515.2±0.7±0.515.2±0.7±0.515.2±0.7±0.5 1.13M 1 BATLEY 10C NA48 ±

• • • We do not use the following data for averages, �ts, limits, et
. • • •17.2±0.9±0.6 670k 2 BATLEY 08A NA48 ±1Radiative 
orre
tions in
luded. Using Roy equations and in
luding isospin breaking,BATLEY 10C obtains the following s
attering lengths a00 = 0.2220 ± 0.0128 ± 0.0050 ±0.0037 (theor.), a20 = −0.0432 ± 0.0086 ± 0.0034 ± 0.0028 (theor.). The 
orrelationwith f ′′s /fs = −0.954 and with f ′e/fs = 0.080. Supersedes BATLEY 08A.2Radiative 
orre
tions in
luded. Using Roy equations and not in
luding isospin breaking,BATLEY 08A obtains the following ππ s
attering length a00 = 0.233 ± 0.016 ± 0.007a20 = −0.0471 ± 0.011 ± 0.004.f ′′s /fs FOR K± → π+π− e±ν DECAYf ′′s /fs FOR K± → π+π− e±ν DECAYf ′′s /fs FOR K± → π+π− e±ν DECAYf ′′s /fs FOR K± → π+π− e±ν DECAYVALUE (units 10−2) EVTS DOCUMENT ID TECN CHG
−7.3±0.7±0.6−7.3±0.7±0.6−7.3±0.7±0.6−7.3±0.7±0.6 1.13M 1 BATLEY 10C NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−9.0±0.9±0.7 670k 2 BATLEY 08A NA48 ±1Radiative 
orre
tions in
luded. Using Roy equations and in
luding isospin breaking,BATLEY 10C obtains the following s
attering lengths a00 = 0.2220 ± 0.0128 ± 0.0050 ±0.0037 (theor.), a20 = −0.0432 ± 0.0086 ± 0.0034 ± 0.0028 (theor.). The 
orrelationwith f ′s/fs = −0.954 and with f ′e/fs = 0.019. Supersedes BATLEY 08A.2Radiative 
orre
tions in
luded. Using Roy equations and not in
luding isospin breaking,BATLEY 08A obtains the following ππ s
attering length a00 = 0.233 ± 0.016 ± 0.007a20 = −0.0471 ± 0.011 ± 0.004.f ′e/fs FOR K± → π+π− e± ν DECAYf ′e/fs FOR K± → π+π− e± ν DECAYf ′e/fs FOR K± → π+π− e± ν DECAYf ′e/fs FOR K± → π+π− e± ν DECAYVALUE (units 10−2) EVTS DOCUMENT ID TECN CHG6.8±0.6±0.76.8±0.6±0.76.8±0.6±0.76.8±0.6±0.7 1.13M 1 BATLEY 10C NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.1±0.8±0.9 670k 2 BATLEY 08A NA48 ±1Radiative 
orre
tions in
luded. Using Roy equations and in
luding isospin breaking,BATLEY 10C obtains the following s
attering lengths a00 = 0.2220 ± 0.0128 ± 0.0050 ±0.0037 (theor.), a20 = −0.0432 ± 0.0086 ± 0.0034 ± 0.0028 (theor.). The 
orrelationwith f ′s/fs = 0.080 and with f ′′s /fs = 0.019. Supersedes BATLEY 08A.2Radiative 
orre
tions in
luded. Using Roy equations and not in
luding isospin breaking,BATLEY 08A obtains the following ππ s
attering length a00 = 0.233 ± 0.016 ± 0.007a20 = −0.0471 ± 0.011 ± 0.004.

fp/fs FOR K± → π+π− e±ν DECAYfp/fs FOR K± → π+π− e±ν DECAYfp/fs FOR K± → π+π− e±ν DECAYfp/fs FOR K± → π+π− e±ν DECAYVALUE (units 10−2) EVTS DOCUMENT ID TECN CHG
−4.8±0.3±0.4−4.8±0.3±0.4−4.8±0.3±0.4−4.8±0.3±0.4 1.13M 1 BATLEY 10C NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−4.8±0.4±0.4 670k 2 BATLEY 08A NA48 ±1Radiative 
orre
tions in
luded. Using Roy equations and in
luding isospin breaking,BATLEY 10C obtains the following s
attering lengths a00 = 0.2220 ± 0.0128 ± 0.0050 ±0.0037 (theor.), a20 = −0.0432 ± 0.0086 ± 0.0034 ± 0.0028 (theor.). Supersedes BAT-LEY 08A.2Radiative 
orre
tions in
luded. Using Roy equations and not in
luding isospin breaking,BATLEY 08A obtains the following ππ s
attering length a00 = 0.233 ± 0.016 ± 0.007a20 = −0.0471 ± 0.011 ± 0.004.gp/fs FOR K± → π+π− e± ν DECAYgp/fs FOR K± → π+π− e± ν DECAYgp/fs FOR K± → π+π− e± ν DECAYgp/fs FOR K± → π+π− e± ν DECAYVALUE (units 10−2) EVTS DOCUMENT ID TECN CHG86.8±1.0±1.086.8±1.0±1.086.8±1.0±1.086.8±1.0±1.0 1.13M 1 BATLEY 10C NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •87.3±1.3±1.2 670k 2 BATLEY 08A NA48 ±80.9±0.9±1.2 400k 3 PISLAK 03 B865 ±1Radiative 
orre
tions in
luded. Using Roy equations and in
luding isospin breaking,BATLEY 10C obtains the following s
attering lengths a00 = 0.2220 ± 0.0128 ± 0.0050 ±0.0037 (theor.), a20 = −0.0432 ± 0.0086 ± 0.0034 ± 0.0028 (theor.). Supersedes BAT-LEY 08A. The 
orrelation with g ′p/fs = −0.914. Supersedes BATLEY 08A.2Radiative 
orre
tions in
luded. Using Roy equations and not in
luding isospin breaking,BATLEY 08A obtains the following ππ s
attering length a00 = 0.233 ± 0.016 ± 0.007a20 = −0.0471 ± 0.011 ± 0.004.3Radiative 
orre
tions in
luded. Using Roy equations PISLAK 03 obtains the followings
attering lengths a00 = 0.203 ± 0.033 ± 0.004, a20 = −0.055 ± 0.023 ± 0.003.g ′p/fs FOR K± → π+π− e±ν DECAYg ′p/fs FOR K± → π+π− e±ν DECAYg ′p/fs FOR K± → π+π− e±ν DECAYg ′p/fs FOR K± → π+π− e±ν DECAYVALUE (units 10−2) EVTS DOCUMENT ID TECN CHG8.9±1.7±1.38.9±1.7±1.38.9±1.7±1.38.9±1.7±1.3 1.13M 1 BATLEY 10C NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.1±2.2±1.5 670k 2 BATLEY 08A NA48 ±12.0±1.9±0.7 400k 3 PISLAK 03 B865 ±1Radiative 
orre
tions in
luded. Using Roy equations and in
luding isospin breaking,BATLEY 10C obtains the following s
attering lengths a00 = 0.2220 ± 0.0128 ± 0.0050 ±0.0037 (theor.), a20 = −0.0432 ± 0.0086 ± 0.0034 ± 0.0028 (theor.). The 
orrelationwith gp/fs = −0.914. Supersedes BATLEY 08A.2Radiative 
orre
tions in
luded. Using Roy equations and not in
luding isospin breaking,BATLEY 08A obtains the following ππ s
attering length a00 = 0.233 ± 0.016 ± 0.007a20 = −0.0471 ± 0.011 ± 0.004.3Radiative 
orre
tions in
luded. Using Roy equations PISLAK 03 obtains the followings
attering lengths a00 = 0.203 ± 0.033 ± 0.004, a20 = −0.055 ± 0.023 ± 0.003.hp/fs FOR K± → π+π− e± ν DECAYhp/fs FOR K± → π+π− e± ν DECAYhp/fs FOR K± → π+π− e± ν DECAYhp/fs FOR K± → π+π− e± ν DECAYVALUE (units 10−2) EVTS DOCUMENT ID TECN CHG
−39.8±1.5±0.8−39.8±1.5±0.8−39.8±1.5±0.8−39.8±1.5±0.8 1.13M 1 BATLEY 10C NA48 ±
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−41.1±1.9±0.8 670k 2 BATLEY 08A NA48 ±
−51.3±3.3±3.5 400k 3 PISLAK 03 B865 ±1Radiative 
orre
tions in
luded. Using Roy equations and in
luding isospin breaking,BATLEY 10C obtains the following s
attering lengths a00 = 0.2220 ± 0.0128 ± 0.0050 ±0.0037 (theor.), a20 = −0.0432 ± 0.0086 ± 0.0034 ± 0.0028 (theor.). Supersedes BAT-LEY 08A.2Radiative 
orre
tions in
luded. Using Roy equations and not in
luding isospin breaking,BATLEY 08A obtains the following ππ s
attering length a00 = 0.233 ± 0.016 ± 0.007a20 = −0.0471 ± 0.011 ± 0.004.3Radiative 
orre
tions in
luded. Using Roy equations PISLAK 03 obtains the followings
attering lengths a00 = 0.203 ± 0.033 ± 0.004, a20 = −0.055 ± 0.023 ± 0.003.DECAY FORM FACTOR FOR K± → π0π0 e±νDECAY FORM FACTOR FOR K± → π0π0 e±νDECAY FORM FACTOR FOR K± → π0π0 e±νDECAY FORM FACTOR FOR K± → π0π0 e±νGiven in BOLOTOV 86B, BARMIN 88B, and SHIMIZU 04.K± → ℓ±ν γ FORM FACTORSK± → ℓ±ν γ FORM FACTORSK± → ℓ±ν γ FORM FACTORSK± → ℓ±ν γ FORM FACTORSFor de�nitions of the axial-ve
tor FA and ve
tor FV form fa
tor, see the\Note on π± → ℓ± ν γ and K± → ℓ± ν γ Form Fa
tors" in the π±se
tion. In the kaon literature, often di�erent de�nitions aK = FA/mKand vK = FV /mK are used.FA + FV , SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FORK → e νe γ
FA + FV , SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FORK → e νe γ
FA + FV , SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FORK → e νe γ
FA + FV , SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FORK → e νe γVALUE EVTS DOCUMENT ID TECN COMMENT0.133±0.008 OUR AVERAGE0.133±0.008 OUR AVERAGE0.133±0.008 OUR AVERAGE0.133±0.008 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.0.125±0.007±0.001 1.4K 1 AMBROSINO 09E KLOE Eγ in 10{250 MeV,pe > 200 MeV/
0.147±0.011 51 2 HEINTZE 79 SPEC0.150+0.018

−0.023 56 3 HEARD 75 SPEC



997997997997See key on page 601 MesonParti
le ListingsK±1Ve
tor form fa
tor �tted with a linear fun
tion, V(x) = FV (1 + λ(1−x)), x = 2Eγ/mK .The �tted value of λ = 0.38 ± 0.20 ± 0.02 with a 
orrelation of −0.93 between (FV +FA) and λ.2HEINTZE 79 quotes absolute value of ∣∣FA + FV ∣∣ sinθ
 . We use sinθ
 = Vus = 0.2205.3HEARD 75 quotes absolute value of ∣∣FA + FV ∣∣ sinθ
 . We use sinθ
 = Vus = 0.2205.
WEIGHTED AVERAGE
0.133±0.008 (Error scaled by 1.3)

HEARD 75 SPEC 0.6
HEINTZE 79 SPEC 1.7
AMBROSINO 09E KLOE 1.2

χ2

       3.5
(Confidence Level = 0.176)

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22FA + FV , SUM OF AXIAL-VECTOR AND VECTOR FORM FACTORFOR K → e νe γFA + FV , SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FORK → µνµ γ

FA + FV , SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FORK → µνµ γ
FA + FV , SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FORK → µνµ γ

FA + FV , SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FORK → µνµ γVALUE CL% EVTS DOCUMENT ID TECN CHG0.165±0.007±0.0110.165±0.007±0.0110.165±0.007±0.0110.165±0.007±0.011 2588 1 ADLER 00B B787 +
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−1.2 to 1.1 90 DEMIDOV 90 XEBC
< 0.23 90 1 AKIBA 85 SPEC1Quotes absolute value. Sign not determined.FA − FV , DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FAC-TOR FOR K → e νe γ

FA − FV , DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FAC-TOR FOR K → e νe γ
FA − FV , DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FAC-TOR FOR K → e νe γ

FA − FV , DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FAC-TOR FOR K → e νe γVALUE CL% DOCUMENT ID TECN
<0.49<0.49<0.49<0.49 90 1 HEINTZE 79 SPEC1HEINTZE 79 quotes ∣∣FA − FV ∣∣ <

√11 ∣∣FA + FV ∣∣.FA − FV , DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FAC-TOR FOR K → µνµ γ
FA − FV , DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FAC-TOR FOR K → µνµ γ
FA − FV , DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FAC-TOR FOR K → µνµ γ
FA − FV , DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FAC-TOR FOR K → µνµ γVALUE CL% EVTS DOCUMENT ID TECN CHG
−0.24 to 0.04−0.24 to 0.04−0.24 to 0.04−0.24 to 0.04 90 2588 ADLER 00B B787 +
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−2.2 to 0.6 90 DEMIDOV 90 XEBC
−2.5 to 0.3 90 AKIBA 85 SPECK± CHARGE RADIUSK± CHARGE RADIUSK± CHARGE RADIUSK± CHARGE RADIUSVALUE (fm) DOCUMENT ID COMMENT0.560±0.031 OUR AVERAGE0.560±0.031 OUR AVERAGE0.560±0.031 OUR AVERAGE0.560±0.031 OUR AVERAGE0.580±0.040 AMENDOLIA 86B K e → K e0.530±0.050 DALLY 80 K e → K e
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.620±0.037 BLATNIK 79 VMD + dispersion relationsK+ LONGITUDINAL POLARIZATION OF EMITTED µ+K+ LONGITUDINAL POLARIZATION OF EMITTED µ+K+ LONGITUDINAL POLARIZATION OF EMITTED µ+K+ LONGITUDINAL POLARIZATION OF EMITTED µ+VALUE CL% DOCUMENT ID TECN CHG COMMENT
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ludes s
ale fa
tor of 1.2.497.607±0.007±0.015 261k 1 TOMARADZE 14 ψ(2S) → K0S X497.583±0.005±0.020 35k AMBROSINO 07B KLOE e+ e− → K0LK0S497.625±0.001±0.031 655k LAI 02 NA48 K0L beam497.661±0.033 3713 BARKOV 87B CMD e+ e− → K0LK0S497.742±0.085 780 BARKOV 85B CMD e+ e− → K0LK0S
• • • We do not use the following data for averages, �ts, limits, et
. • • •497.44 ±0.50 FITCH 67 OSPK498.9 ±0.5 4500 BALTAY 66 HBC K0 from pp497.44 ±0.33 2223 KIM 65B HBC K0 from pp498.1 ±0.4 CHRISTENS... 64 OSPK1Obtained by analyzing CLEO-
 data but not authored by the CLEO Collaboration.mK0 − mK±mK0 − mK±mK0 − mK±mK0 − mK±VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT3.934±0.020 OUR FIT3.934±0.020 OUR FIT3.934±0.020 OUR FIT3.934±0.020 OUR FIT Error in
ludes s
ale fa
tor of 1.6.
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.95 ±0.21 417 HILL 68B DBC + K+d → K0 pp3.90 ±0.25 9 BURNSTEIN 65 HBC −3.71 ±0.35 7 KIM 65B HBC − K−p → nK05.4 ±1.1 CRAWFORD 59 HBC +3.9 ±0.6 ROSENFELD 59 HBC −K0 MEAN SQUARE CHARGE RADIUSK0 MEAN SQUARE CHARGE RADIUSK0 MEAN SQUARE CHARGE RADIUSK0 MEAN SQUARE CHARGE RADIUSVALUE (fm2) EVTS DOCUMENT ID TECN COMMENT
−0.077±0.010 OUR AVERAGE−0.077±0.010 OUR AVERAGE−0.077±0.010 OUR AVERAGE−0.077±0.010 OUR AVERAGE
−0.077±0.007±0.011 5037 ABOUZAID 06 KTEV K0L → π+π− e+ e−
−0.090±0.021 LAI 03C NA48 K0L → π+π− e+ e−
−0.054±0.026 MOLZON 78 KS regen. by ele
trons
• • • We do not use the following data for averages, �ts, limits, et
. • • •
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−0.087±0.046 BLATNIK 79 VMD + dispersion rela-tions
−0.050±0.130 FOETH 69B KS regen. by ele
tronsT-VIOLATION PARAMETER IN K0-K0 MIXINGT-VIOLATION PARAMETER IN K0-K0 MIXINGT-VIOLATION PARAMETER IN K0-K0 MIXINGT-VIOLATION PARAMETER IN K0-K0 MIXINGThe asymmetry AT = �(K 0 →K0)−�(K0 →K0)�(K 0 →K0)+�(K0 →K0) must vanish ifT invarian
e holds.ASYMMETRY AT IN K0-K0 MIXINGASYMMETRY AT IN K0-K0 MIXINGASYMMETRY AT IN K0-K0 MIXINGASYMMETRY AT IN K0-K0 MIXINGVALUE (units 10−3) EVTS DOCUMENT ID TECN6.6±1.3±1.06.6±1.3±1.06.6±1.3±1.06.6±1.3±1.0 640k 1 ANGELOPO... 98E CPLR1ANGELOPOULOS 98E measures the asymmetry AT= [�(K 0t=0 →e+π− ν t=τ ) −�(K 0t=0 →e−π+ ν t=τ )℄/[�(K 0t=0 →e+π− ν t=τ ) + �(K 0t=0 →e−π+ ν t=τ )℄as a fun
tion of the neutral-kaon eigentime τ . The initial strangeness of the neutralkaon is tagged by the 
harge of the a

ompanying 
harged kaon in the rea
tions pp →K−π+K0 and pp → K+π−K0. The strangeness at the time of the de
ay is tagged bythe lepton 
harge. The reported result is the average value of AT over the interval 1τs <

τ < 20τs . From this value of AT ANGELOPOULOS 01B, assuming CPT invarian
e inthe e πν de
ay amplitude, determine the T-violating as �S=�S 
onserving parameter(for its de�nition, see Review below) 4Re(ǫ) = (6.2 ± 1.4 ± 1.0)× 10−3.
CPT INVARIANCE TESTS IN NEUTRAL KAON
DECAY

Updated October 2013 by M. Antonelli (LNF-INFN, Frascati)
and G. D’Ambrosio (INFN Sezione di Napoli).

CPT theorem is based on three assumptions: quantum

field theory, locality, and Lorentz invariance, and thus it is

a fundamental probe of our basic understanding of particle

physics. Strangeness oscillation in K0 − K
0

system, described

by the equation

i
d

dt

[
K0

K
0

]
= [M − iΓ/2]

[
K0

K
0

]
,

where M and Γ are hermitian matrices (see PDG review [1],

references [2,3], and KLOE paper [5] for notations and previous

literature), allows a very accurate test of CPT symmetry;

indeed since CPT requires M11 = M22 and Γ11 = Γ22, the mass

and width eigenstates, KS,L, have a CPT -violating piece, δ, in

addition to the usual CPT -conserving parameter ǫ:

KS,L =
1√

2
(
1 + |ǫS,L|2

)
[(

1 + ǫS,L

)
K0 ±

(
1 − ǫS,L

)
K

0
]

ǫS,L =

−iℑ (M12) −
1

2
ℑ (Γ12) ∓

1

2

[
M11 − M22 −

i

2
(Γ11 − Γ22)

]

mL − mS + i(ΓS − ΓL)/2

≡ ǫ ± δ. (1)

Using the phase convention ℑ(Γ12) = 0, we determine the

phase of ǫ to be ϕSW ≡ arctan
2(mL − mS)

ΓS − ΓL
. Imposing unitarity

to an arbitrary combination of K0 and K
0

wave functions,

we obtain the Bell-Steinberger relation [4] connecting CP and

CPT violation in the mass matrix to CP and CPT violation in

the decay; in fact, neglecting O(ǫ) corrections to the coefficient

of the CPT -violating parameter, δ, we can write [5]

[
ΓS + ΓL

ΓS − ΓL
+ i tanφSW][

ℜ(ǫ)

1 + |ǫ|2 − iℑ(δ)] =

1

ΓS − ΓL

∑

f

AL(f)A∗
S(f), (2)

Table 1: Values, errors, and correlation co-
efficients for ℜ(δ), ℑ(δ), ℜ(x−), ℑ(x+), and
AS + AL obtained from a combined fit, includ-
ing KLOE [5] and CPLEAR [14].

value Correlations coefficients

ℜ(δ) (3.0 ± 2.3) × 10−4 1

ℑ(δ) (−0.66 ± 0.65) × 10−2 − 0.21 1

ℜ(x−) (−0.30 ± 0.21) × 10−2 − 0.21 −0.60 1

ℑ(x+) (0.02 ± 0.22) × 10−2 − 0.38 −0.14 0.47 1

AS + AL (−0.40 ± 0.83) × 10−2 − 0.10 −0.63 0.99 0.43 1

where AL,S(f) ≡ A(KL,S → f). We stress that this relation

is phase-convention-independent. The advantage of the neutral

kaon system is that only a few decay modes give significant

contributions to the r.h.s. in Eq. (2); in fact, defining for the

hadronic modes

αi ≡
1

ΓS
〈AL(i)A∗

S(i)〉 = ηi B(KS → i),

i = π0π0, π+π−(γ), 3π0, π0π+π−(γ), (3)

the recent data from CPLEAR, KLOE, KTeV, and NA48 have

led to the following determinations (the analysis described in

Ref. 5 has been updated by using the recent measurements of

KL branching ratios from KTeV [6,7], NA48 [8,9], and the

results described in the CP violation in KL decays minireview,

and the recent KLOE result [10])

απ+π− = ((1.112 ± 0.010) + i(1.061 ± 0.010)) × 10−3 ,

απ0π0 = ((0.493 ± 0.005) + i(0.471 ± 0.005)) × 10−3 ,

απ+π−π0 = ((0 ± 2) + i(0 ± 2)) × 10−6,

|απ0π0π0| < 1.5 × 10−6 at 95% CL . (4)

The semileptonic contribution to the right-handed side of

Eq. (2) requires the determination of several observables: we

define [2,3]

A(K0 → π−l+ν) = A0(1 − y) ,

A(K0 → π+l−ν) = A∗
0(1 + y∗)(x+ − x−)∗ ,

A(K
0 → π+l−ν) = A∗

0(1 + y∗) ,

A(K
0 → π−l+ν) = A0(1 − y)(x+ + x−) , (5)

where x+ (x−) describes the violation of the ∆S = ∆Q

rule in CPT -conserving (violating) decay amplitudes, and y

parametrizes CPT violation for ∆S = ∆Q transitions. Tak-

ing advantage of their tagged K0(K
0
) beams, CPLEAR has

measured ℑ(x+), ℜ(x−), ℑ(δ), and ℜ(δ) [11]. These deter-

minations have been improved in Ref. 5 by including the

information AS − AL = 4[ℜ(δ) + ℜ(x−)], where AL,S are the

KL and KS semileptonic charge asymmetries, respectively, from

the PDG [12] and KLOE [13]. Here we are also including the

T -violating asymmetry measurement from CPLEAR [14].
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The value AS + AL in Table 1 can be directely included in

the semileptonic contributions to the Bell Steinberger relations

in Eq. (2)

∑

πℓν

〈AL(πℓν)A∗
S(πℓν)〉

= 2Γ(KL → πℓν)(ℜ(ǫ) −ℜ(y) − i(ℑ(x+) + ℑ(δ)))

= 2Γ(KL → πℓν)((AS + AL)/4 − i(ℑ(x+) + ℑ(δ))) . (6)

Defining

απℓν ≡ 1

ΓS

∑

πℓν

〈AL(πℓν)A∗
S(πℓν)〉 + 2i

τKS

τKL

B(KL → πℓν)ℑ(δ) ,

(7)

we find:

απℓν = ((−0.2 ± 0.5) + i(0.1 ± 0.5)) × 10−5 .

Inserting the values of the α parameters into Eq. (2), we find

ℜ(ǫ) = (161.1 ± 0.5) × 10−5,

ℑ(δ) = (−0.7 ± 1.4) × 10−5 . (8)

The complete information on Eq. (8) is given in Table 2.

Table 2: Summary of results: values, errors,
and correlation coefficients for ℜ(ǫ), ℑ(δ), ℜ(δ),
and ℜ(x−).

value Correlations coefficients

ℜ(ǫ) (161.1 ± 0.5) × 10−5 + 1

ℑ(δ) (−0.7 ± 1.4) × 10−5 + 0.09 1

ℜ(δ) (2.4 ± 2.3) × 10−4 + 0.08 −0.12 1

ℜ(x−) (−4.1 ± 1.7) × 10−3 + 0.14 0.22 −0.43 1

Now the agreement with CPT conservation, ℑ(δ) = ℜ(δ) =

ℜ(x−) = 0, is at 18% C.L.

The allowed region in the ℜ(ǫ)−ℑ(δ) plane at 68% CL and

95% C.L. is shown in the top panel of Fig. 1.

The process giving the largest contribution to the size of

the allowed region is KL → π+π−, through the uncertainty on

φ+−.

The limits on ℑ(δ) and ℜ(δ) can be used to constrain the

K0 − K
0

mass and width difference

δ =
i(mK0 − m

K
0) + 1

2(ΓK0 − Γ
K

0)

ΓS − ΓL
cos φSW eiφSW [1 + O(ǫ)] .

The allowed region in the ∆M = (mK0 − m
K

0), ∆Γ =

(ΓK0 − Γ
K

0) plane is shown in the bottom panel of Fig. 1. As

a result, we improve on the previous limits (see for instance, P.

Bloch in Ref. 12) and in the limit ΓK0 − Γ
K

0 = 0 we obtain

−4.0 × 10−19 GeV < mK0 − m
K

0

< 4.0 × 10−19GeV at 95 % C.L .

Figure 1: Top: allowed region at 68% and 95%
C.L. in the ℜ(ǫ), ℑ(δ) plane. Bottom: allowed
region at 68% and 95% C.L. in the ∆M, ∆Γ
plane.
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15. We thank M. Palutan for the collaboration in this analysis.CP-VIOLATION PARAMETERSCP-VIOLATION PARAMETERSCP-VIOLATION PARAMETERSCP-VIOLATION PARAMETERSRe(ǫ)Re(ǫ)Re(ǫ)Re(ǫ)VALUE (units 10−3) DOCUMENT ID TECN1.596±0.0131.596±0.0131.596±0.0131.596±0.013 1 AMBROSINO 06H KLOE
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.664±0.010 2 LAI 05A NA481AMBROSINO 06H uses Bell-Steinberger relations with the following measurements:B(K0L → π+π−) in AMBROSINO 06F, B(K0S → π0π0π0) in AMBROSINO 05B, theK0S -semileptoni
 
harge asymmetry in AMBROSINO 06E, and K0-semileptoni
 resultsin ANGELOPOULOS 98F.2 LAI 05A values are obtained through unitarity (Bell-Steinberger relations), improvingdetermination of η000 and 
ombining other data from PDG 04 and APOSTOLAKIS 99B.CPT-VIOLATION PARAMETERSCPT-VIOLATION PARAMETERSCPT-VIOLATION PARAMETERSCPT-VIOLATION PARAMETERSIn K0-K0 mixing, if CP-violating intera
tions in
lude a T 
onserving partthen

∣∣KS 〉 = [∣∣K1〉+(ǫ + δ)∣∣K2〉℄/√1+∣∣ǫ+δ
∣∣2

∣∣KL〉 = [∣∣K2〉+(ǫ − δ)∣∣K1〉℄/√1+∣∣ǫ−δ
∣∣2where∣∣K1〉 = [∣∣K0〉 + ∣∣K0〉℄/√2

∣∣K2〉 = [∣∣K0〉
−

∣∣K0〉℄/√2and ∣∣K0〉 = CP∣∣K0〉.The parameter δ spe
i�es the CPT-violating part.Estimates of δ are given below assuming the validity of the �S=�Q rule.See also THOMSON 95 for a test of CPT-symmetry 
onservation in K0de
ays using the Bell-Steinberger relation.REAL PART OF δREAL PART OF δREAL PART OF δREAL PART OF δA nonzero value violates CPT invarian
e.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.51± 2.252.51± 2.252.51± 2.252.51± 2.25 1 ABOUZAID 11 KTEV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.3 ± 2.7 2 AMBROSINO 06H KLOE2.4 ± 2.8 3 APOSTOLA... 99B RVUE2.9 ± 2.6 ±0.6 1.3M 4 ANGELOPO... 98F CPLR180 ±200 6481 5 DEMIDOV 95 Kℓ3 reanalysis1ABOUZAID 11 uses Bell-Steinberger relations.2AMBROSINO 06H uses Bell-Steinberger relations with the following measurements:B(K0L → π+π−) in AMBROSINO 06F, B(K0S → π0π0π0) in AMBROSINO 05B, theK0S -semileptoni
 
harge asymmetry in AMBROSINO 06E, and K0-semileptoni
 resultsin ANGELOPOULOS 98F.3APOSTOLAKIS 99B assumes only unitarity and 
ombines CPLEAR and other results.4ANGELOPOULOS 98F use �S=�Q. If �S=�Q is not assumed, they �nd Reδ=(3.0 ±3.3 ± 0.6)× 10−4.5DEMIDOV 95 reanalyzes data from HART 73 and NIEBERGALL 74.IMAGINARY PART OF δIMAGINARY PART OF δIMAGINARY PART OF δIMAGINARY PART OF δA nonzero value violates CPT invarian
e.VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT
− 1.5± 1.6− 1.5± 1.6− 1.5± 1.6− 1.5± 1.6 1 ABOUZAID 11 KTEV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.4± 2.1 2 AMBROSINO 06H KLOE
− 0.2± 2.0 3 LAI 05A NA482.4± 5.0 4 APOSTOLA... 99B RVUE
− 90 ± 290 ±100 1.3M 5 ANGELOPO... 98F CPLR2100 ±3700 6481 6 DEMIDOV 95 Kℓ3 reanalysis

1ABOUZAID 11 uses Bell-Steinberger relations.2AMBROSINO 06H uses Bell-Steinberger relations with the following measurements:B(K0L → π+π−) in AMBROSINO 06F, B(K0S → π0π0π0) in AMBROSINO 05B, theK0S -semileptoni
 
harge asymmetry in AMBROSINO 06E, and K0-semileptoni
 resultsin ANGELOPOULOS 98F.3 LAI 05A values are obtained through unitarity (Bell-Steinberger relations), improvingdetermination of η000 and 
ombining other data from PDG 04 and APOSTOLAKIS 99B.4APOSTOLAKIS 99B assumes only unitarity and 
ombines CPLEAR and other results.5 If �S=�Q is not assumed, ANGELOPOULOS 98F �nds Imδ=(−15 ± 23 ± 3)× 10−3.6DEMIDOV 95 reanalyzes data from HART 73 and NIEBERGALL 74.Re(y)Re(y)Re(y)Re(y)A non-zero value would violate CPT invarian
e in �S = �Q amplitude. Re(y) is thefollowing 
ombination of Ke3 de
ay amplitudes:Re(y) = Re( A(K0 →e−π+ νe)∗−A(K0 →e+π− νe)
A(K0 →e−π+ νe)∗+A(K0 →e+π− νe) )VALUE (units 10−3) EVTS DOCUMENT ID TECN0.4±2.50.4±2.50.4±2.50.4±2.5 13k 1 AMBROSINO 06E KLOE

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.3±3.1 2 APOSTOLA... 99B CPLR1They use the PDG 04 for the K0L semileptoni
 
harge asymmetry and PDG 04 (CPreview, CPT NOT ASSUMED) for Re(ǫ).2Constrained by Bell-Steinberger (or unitarity) relation.Re(x−)Re(x−)Re(x−)Re(x−)A non-zero value would violate CPT invarian
e in de
ay amplitudes with �S 6= �Q.x−, used here to de�ne Re(x−), and x+, used below in the �S = �Q se
tion arethe following 
ombinations of Ke3 de
ay amplitudes:x± = 12(
A(K0 →π− e+ νe)
A(K0 →π− e+ νe) ± A(K0 →π+ e− νe)∗

A(K0 →π+ e− νe)∗ ).VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT
−2.9± 2.0−2.9± 2.0−2.9± 2.0−2.9± 2.0 1 AMBROSINO 06H KLOE
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.8± 2.5 13k 2 AMBROSINO 06E KLOE
−0.5± 3.0 3 APOSTOLA... 99B CPLR Strangeness tagged2 ±13 ±3 650k ANGELOPO... 98F CPLR Strangeness tagged1AMBROSINO 06H uses Bell-Steinberger relations with the following measurements:B(K0L → π+π−) in AMBROSINO 06F, B(K0S → π0π0π0) in AMBROSINO 05B, theK0S -semileptoni
 
harge asymmetry in AMBROSINO 06E, and K0-semileptoni
 resultsin ANGELOPOULOS 98F.2Uses PDG 04 for the K0L semileptoni
 
harge asymmetry and Re(δ) from CPLEAR,ANGELOPOULOS 98F.3 Constrained by Bell-Steinberger (or unitarity) relation.

∣∣mK0 − mK0∣∣ / maverage∣∣mK0 − mK0∣∣ / maverage∣∣mK0 − mK0∣∣ / maverage∣∣mK0 − mK0∣∣ / maverageA test of CPT invarian
e. \Our Evaluation" is des
ribed in the \Tests ofConservation Laws" se
tion. It assumes CPT invarian
e in the de
ay andnegle
ts some 
ontributions from de
ay 
hannels other than ππ.VALUE CL% DOCUMENT ID TECN
<6× 10−19<6× 10−19<6× 10−19<6× 10−19 90 PDG 12
• • • We do not use the following data for averages, �ts, limits, et
. • • •(−3 ± 4)× 10−18 1 ANGELOPO... 99B RVUE1ANGELOPOULOS 99B assumes only unitarity and 
ombines CPLEAR and other results.(�K0 − �K0)/maverage(�K0 − �K0)/maverage(�K0 − �K0)/maverage(�K0 − �K0)/maverageA test of CPT invarian
e.VALUE DOCUMENT ID TECN(7.8±8.4)× 10−18(7.8±8.4)× 10−18(7.8±8.4)× 10−18(7.8±8.4)× 10−18 1 ANGELOPO... 99B RVUE1ANGELOPOULOS 99B assumes only unitarity and 
ombines CPLEAR with other results.Correlated with (mK0 − mK0) / maverage with a 
orrelation 
oeÆ
ient of −0.95.TESTS OF �S = �Q RULETESTS OF �S = �Q RULETESTS OF �S = �Q RULETESTS OF �S = �Q RULERe(x+)Re(x+)Re(x+)Re(x+)A non-zero value would violate the �S = �Q rule in CPT 
onserving transitions. x+is de�ned above in the Re(x−) se
tion.VALUE (units 10−3) EVTS DOCUMENT ID TECN
−0.9± 3.0 OUR AVERAGE−0.9± 3.0 OUR AVERAGE−0.9± 3.0 OUR AVERAGE−0.9± 3.0 OUR AVERAGE
−2 ±10 1 BATLEY 07D NA48
−0.5± 3.6 13k 2 AMBROSINO 06E KLOE
−1.8± 6.1 3 ANGELOPO... 98D CPLR1Result obtained from the measurement �(K0S → πe ν) / �(K0L → πe ν) = 0.993±0.34,negle
ting possible CPT non-invarian
e and using PDG 06 values of B(K0L → πe ν) =0.4053± 0.0015, τ L = (5.114± 0.021)×10−8 s and τS = (0.8958± 0.0005)×10−10 s.2Re(x+) 
an be shown to be equal to the following 
ombination of rates:Re(x+) = 12 �(K0S →πe ν)−�(K 0L →πe ν)�(K0S →πe ν)+�(K 0L →πe ν)whi
h is valid up to �rst order in terms violating CPT and/or the �S = �Q rule.3Obtained negle
ting CPT violating amplitudes.
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s Letters 170B170B170B170B 130 (1986).OUR FIT is des
ribed in the note on \CP violation in KL de
ays" in the K0LParti
le Listings. The result labeled \OUR FIT Assuming CPT" [\OURFIT Not assuming CPT"℄ in
ludes all measurements ex
ept those with the
omment \Not assuming CPT" [\Assuming CPT"℄. Measurements withneither 
omment do not assume CPT and enter both �ts.VALUE (10−10 s) EVTS DOCUMENT ID TECN COMMENT0.8954 ±0.0004 OUR FIT0.8954 ±0.0004 OUR FIT0.8954 ±0.0004 OUR FIT0.8954 ±0.0004 OUR FIT Error in
ludes s
ale fa
tor of 1.1. Assuming CPT0.89564±0.00033 OUR FIT0.89564±0.00033 OUR FIT0.89564±0.00033 OUR FIT0.89564±0.00033 OUR FIT Not assuming CPT0.89589±0.00070 1,2 ABOUZAID 11 KTEV Not assuming CPT0.89623±0.00047 1,3 ABOUZAID 11 KTEV Assuming CPT0.89562±0.00029±0.00043 20M 4 AMBROSINO 11 KLOE Not assuming CPT0.89598±0.00048±0.00051 16M LAI 02C NA480.8971 ±0.0021 BERTANZA 97 NA310.8941 ±0.0014 ±0.0009 SCHWINGEN...95 E773 Assuming CPT0.8929 ±0.0016 GIBBONS 93 E731 Assuming CPT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.8965 ±0.0007 5 ALAVI-HARATI03 KTEV Assuming CPT0.8958 ±0.0013 6 ALAVI-HARATI03 KTEV Not assuming CPT0.8920 ±0.0044 214k GROSSMAN 87 SPEC0.905 ±0.007 7 ARONSON 82B SPEC0.881 ±0.009 26k ARONSON 76 SPEC0.8926 ±0.0032 ±0.0002 8 CARITHERS 75 SPEC0.8937 ±0.0048 6M GEWENIGER 74B ASPK0.8958 ±0.0045 50k 9 SKJEGGEST... 72 HBC0.856 ±0.008 19994 10 DONALD 68B HBC0.872 ±0.009 20000 9,10 HILL 68 DBC1The two ABOUZAID 11 values use the same full KTeV dataset from 1996, 1997, and1999. The �rst enters the "assuming CPT" �t and the se
ond enters the "not assumingCPT" �t.2ABOUZAID 11 �t has �m, τs , φǫ, Re(ǫ′/ǫ), and Im(ǫ′/ǫ) as free parameters. SeeIm(ǫ′/ǫ) in the "K0L CP violation" se
tion for 
orrelation information.3ABOUZAID 11 �t has �m and τs free but 
onstrains φǫ to the Superweak value, i.e.assumes CPT. This τs value is 
orrelated with their �m = mK0L − mK0S measurementin the K0L listings. The 
orrelation 
oeÆ
ient ρ(τs , �m) = −0.670.4 Fit to the proper time distribution.5This ALAVI-HARATI 03 �t has �m and τs free but 
onstrains φ+− to the Super-weak value, i.e. assumes CPT. This τs value is 
orrelated with their �m = mK0L −mK0S measurement in the K0L listings. The 
orrelation 
oeÆ
ient ρ(τs ,�m) = −0.396.Superseded by ABOUZAID 11.6This ALAVI-HARATI 03 �t has �m, φ+−, and τKS free. See φ+− in the \KL CPviolation" se
tion for 
orrelation information. Superseded by ABOUZAID 11.

7ARONSON 82 �nd that K0S mean life may depend on the kaon energy.8CARITHERS 75 measures the �m dependen
e of the total de
ay rate (inverse meanlife) to be �(K0S ) = [(1.122 ± 0.004)+0.16(�m− 0.5348)/�m]1010/s, or, in terms ofmean life, CARITHERS 75 measures τs = (0.8913 ± 0.0032) − 0.238 [�m− 0.5348℄(10−10 s). We have adjusted the measurement to use our best values of (�m =0.5293 ± 0.0009) (1010 �h s−1). Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best values.9HILL 68 has been 
hanged by the authors from the published value (0.865 ± 0.009)be
ause of a 
orre
tion in the shift due to η+−. SKJEGGESTAD 72 and HILL 68 givedetailed dis
ussions of systemati
s en
ountered in this type of experiment.10Pre-1971 experiments are ex
luded from the average be
ause of disagreement with latermore pre
ise experiments. K0S DECAY MODESK0S DECAY MODESK0S DECAY MODESK0S DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelHadroni
 modesHadroni
 modesHadroni
 modesHadroni
 modes�1 π0π0 (30.69±0.05) %�2 π+π− (69.20±0.05) %�3 π+π−π0 ( 3.5 +1.1
−0.9 )× 10−7Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs�4 π+π−γ [a,b℄ ( 1.79±0.05) × 10−3�5 π+π− e+ e− ( 4.79±0.15) × 10−5�6 π0 γ γ [a℄ ( 4.9 ±1.8 ) × 10−8�7 γ γ ( 2.63±0.17) × 10−6 S=3.0Semileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modes�8 π± e∓νe [
℄ ( 7.04±0.08) × 10−4�9 π±µ∓νµ [
,d℄ ( 4.69±0.05) × 10−4CP violating (CP) and �S = 1 weak neutral 
urrent (S1) modesCP violating (CP) and �S = 1 weak neutral 
urrent (S1) modesCP violating (CP) and �S = 1 weak neutral 
urrent (S1) modesCP violating (CP) and �S = 1 weak neutral 
urrent (S1) modes�10 3π0 CP < 2.6 × 10−8 CL=90%�11 µ+µ− S1 < 9 × 10−9 CL=90%�12 e+ e− S1 < 9 × 10−9 CL=90%�13 π0 e+ e− S1 [a℄ ( 3.0 +1.5
−1.2 )× 10−9�14 π0µ+µ− S1 ( 2.9 +1.5
−1.2 )× 10−9[a℄ See the Parti
le Listings below for the energy limits used in this mea-surement.[b℄ Most of this radiative mode, the low-momentum γ part, is also in
ludedin the parent mode listed without γ's.[
 ℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.[d ℄ Not a measurement. Cal
ulated as 0.666·B(π± e∓ νe ).CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 4 bran
hing ratios uses 5 measurements and one
onstraint to determine 4 parameters. The overall �t has a χ2 =0.1 for 2 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −100x8 −6 3x9 −6 3 100x1 x2 x8 K0S DECAY RATESK0S DECAY RATESK0S DECAY RATESK0S DECAY RATES�(π± e∓νe) �8�(π± e∓νe) �8�(π± e∓νe) �8�(π± e∓νe) �8VALUE (106 s−1) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.1 ±1.6 75 1 AKHMETSHIN 99 CMD2 Tagged K0S using φ → K0LK0S7.50±0.08 2 PDG 98seen BURGUN 72 HBC K+p → K0 pπ+9.3 ±2.5 AUBERT 65 HLBC �S=�Q, CP 
ons. not as-sumed1AKHMETSHIN 99 is from a measured bran
hing ratio B(K0S → πe νe )= (7.2 ± 1.4)×10−4 and τK0S= (0.8934 ± 0.0008)×10−10 s. Not independent of measured bran
hingratio.2PDG 98 from K0L measurements, assuming that �S=�Q in K0 de
ay so that �(K0S →

π± e∓ νe )= �(K0L → π± e∓ νe ).



1003100310031003See key on page 601 Meson Parti
le ListingsK 0S�(π±µ∓νµ

) �9�(π±µ∓νµ

) �9�(π±µ∓νµ

) �9�(π±µ∓νµ

) �9VALUE (106 s−1) DOCUMENT ID
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.25±0.07 1 PDG 981PDG 98 from K0L measurements, assuming that �S=�Q in K0 de
ay so that �(K0S →

π±µ∓ νµ)= �(K0L → π±µ∓ νµ).K0S BRANCHING RATIOSK0S BRANCHING RATIOSK0S BRANCHING RATIOSK0S BRANCHING RATIOSHadroni
 modesHadroni
 modesHadroni
 modesHadroni
 modes�(π0π0)/�total �1/��(π0π0)/�total �1/��(π0π0)/�total �1/��(π0π0)/�total �1/�VALUE EVTS DOCUMENT ID TECN0.3069±0.0005 OUR FIT0.3069±0.0005 OUR FIT0.3069±0.0005 OUR FIT0.3069±0.0005 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.335 ±0.014 1066 BROWN 63 HLBC0.288 ±0.021 198 CHRETIEN 63 HLBC0.30 ±0.035 BROWN 61 HLBC�(π+π−)/�total �2/��(π+π−)/�total �2/��(π+π−)/�total �2/��(π+π−)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENT0.6920±0.0005 OUR FIT0.6920±0.0005 OUR FIT0.6920±0.0005 OUR FIT0.6920±0.0005 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.670 ±0.010 3447 DOYLE 69 HBC π− p → �K0�(π+π−)/�(π0π0) �2/�1�(π+π−)/�(π0π0) �2/�1�(π+π−)/�(π0π0) �2/�1�(π+π−)/�(π0π0) �2/�1VALUE EVTS DOCUMENT ID TECN COMMENT2.255 ±0.005 OUR FIT2.255 ±0.005 OUR FIT2.255 ±0.005 OUR FIT2.255 ±0.005 OUR FIT2.2549±0.00542.2549±0.00542.2549±0.00542.2549±0.0054 1 AMBROSINO 06C KLOE
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.2555±0.0012±0.0054 2 AMBROSINO 06C KLOE2.236 ±0.003 ±0.015 766k 2 ALOISIO 02B KLOE2.11 ±0.09 1315 EVERHART 76 WIRE π− p → �K02.169 ±0.094 16k COWELL 74 OSPK π− p → �K02.16 ±0.08 4799 HILL 73 DBC K+d → K0 pp2.22 ±0.10 3068 3 ALITTI 72 HBC K+p → π+ pK02.22 ±0.08 6380 MORSE 72B DBC K+n → K0 p2.10 ±0.11 701 4 NAGY 72 HLBC K+n → K0 p2.22 ±0.095 6150 5 BALTAY 71 HBC K p → K0 neutrals2.282 ±0.043 7944 6 MOFFETT 70 OSPK K+n → K0 p2.12 ±0.17 267 4 BOZOKI 69 HLBC2.285 ±0.055 3016 6 GOBBI 69 OSPK K+n → K0 p2.10 ±0.06 3700 MORFIN 69 HLBC K+n → K0 p1This result 
ombines AMBROSINO 06C KLOE 2001-02 data with ALOISIO 02B KLOE2000 data. K0S → π+π− fully in
lusive.2 In
ludes radiative de
ays π+π− γ.3The dire
tly measured quantity is K0S → π+π−

/all K0 = 0.345 ± 0.005.4NAGY 72 is a �nal result whi
h in
ludes BOZOKI 69.5The dire
tly measured quantity is K0S → π+π−
/all K0 = 0.345 ± 0.005.6MOFFETT 70 is a �nal result whi
h in
ludes GOBBI 69.�(π+π−π0)/�total �3/��(π+π−π0)/�total �3/��(π+π−π0)/�total �3/��(π+π−π0)/�total �3/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT3.5+1.1

−0.9 OUR AVERAGE3.5+1.1
−0.9 OUR AVERAGE3.5+1.1
−0.9 OUR AVERAGE3.5+1.1
−0.9 OUR AVERAGE4.7+2.2
−1.7+1.7

−1.5 1 BATLEY 05 NA482.5+1.3
−1.0+0.5

−0.6 500k 2 ADLER 97B CPLR4.8+2.2
−1.6±1.1 3 ZOU 96 E621

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.1+2.5
−1.9+0.5

−0.6 4 ADLER 96E CPLR Sup. by ADLER 97B3.9+5.4
−1.8+0.9

−0.7 5 THOMSON 94 E621 Sup. by ZOU 961BATLEY 05 is obtained by measuring the interferen
e parameters in KS , KL →
π+π−π0: Re(λ) = 0.038 ± 0.008 ± 0.006 and Im(λ) = −0.013 ± 0.005 ± 0.004;the 
orrelation 
oe�. between Re(λ) and Im(λ) is 0.66 (statisti
al only).2ADLER 97B �nd the CP-
onserving parameters Re(λ) = (28 ± 7 ± 3) × 10−3, Im(λ)= (−10 ± 8 ± 2) × 10−3. They estimate B(K0S → π+π−π0) from Re(λ) and theK0L de
ay parameters. See also ANGELOPOULOS 98C.3 ZOU 96 is from the the measured quantities ∣∣ρ+−0∣∣ = 0.039+0.009

−0.006 ± 0.005 and φρ= (−9 ± 18)◦.4ADLER 96E is from the measured quantities Re(λ) = 0.036 ± 0.010+0.002
−0.003 and Im(λ)
onsistent with zero. Note that the quantity λ is the same as ρ+−0 used in otherfootnotes.5THOMSON 94 
al
ulates this bran
hing ratio from their measurements ∣∣ρ+−0∣∣ =0.035+0.019

−0.011±0.004 and φρ = (−59±48)◦ where ∣∣ρ+−0∣∣eiφρ = A(K0S → π+π−π0,I = 2)/A(K0L → π+π−π0).

Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs�(π+π−γ
)/�(π+π−) �4/�2�(π+π−γ
)/�(π+π−) �4/�2�(π+π−γ
)/�(π+π−) �4/�2�(π+π−γ
)/�(π+π−) �4/�2VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.59±0.08 OUR AVERAGE2.59±0.08 OUR AVERAGE2.59±0.08 OUR AVERAGE2.59±0.08 OUR AVERAGE2.56±0.09 1286 RAMBERG 93 E731 pγ >50 MeV/
2.68±0.15 1 TAUREG 76 SPEC pγ >50 MeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •7.10±0.22 3723 RAMBERG 93 E731 pγ >20 MeV/
3.0 ±0.6 29 2 BOBISUT 74 HLBC pγ >40 MeV/
2.8 ±0.6 3 BURGUN 73 HBC pγ >50 MeV/
1TAUREG 76 �nd dire
t emission 
ontribution <0.06, CL = 90%.2BOBISUT 74 not in
luded in average be
ause pγ 
ut di�ers. Estimates dire
t emission
ontribution to be 0.5 or less, CL = 95%.3BURGUN 73 estimates that dire
t emission 
ontribution is 0.3 ± 0.6.�(π+π− e+ e−)/�total �5/��(π+π− e+ e−)/�total �5/��(π+π− e+ e−)/�total �5/��(π+π− e+ e−)/�total �5/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT4.79±0.15 OUR AVERAGE4.79±0.15 OUR AVERAGE4.79±0.15 OUR AVERAGE4.79±0.15 OUR AVERAGE4.83±0.11±0.14 23k 1 BATLEY 11 NA48 2002 data4.69±0.30 676 2 LAI 03C NA48 1998+1999 data
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.71±0.23±0.22 620 2,3 LAI 03C NA48 1999 data4.5 ±0.7 ±0.4 56 LAI 00B NA48 1998 data1BATLEY 11 reports [�(K0S → π+π− e+ e−)/�total℄ / [B(K0L → π+π−π0)℄ /[B(π0 → e+ e− γ)℄ = (3.28 ± 0.06 ± 0.04) × 10−2 whi
h we multiply by our bestvalues B(K0L → π+π−π0) = (12.54 ± 0.05)× 10−2, B(π0 → e+ e− γ) = (1.174 ±0.035) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best values. Also a limit on the absolute value of theinterferen
e between bremsstrahlung and E1 transition is given : < 4 × 10−7 at 90%C.L.2Uses normalization BR(KL → π+π−π0)*BR(π0 → e+ e−) = (1.505±0.047)×10−3from our 2000 Edition.3 Se
ond error is 0.16(syst)±0.15(norm) 
ombined in quadrature.�(π0 γ γ

)/�total �6/��(π0 γ γ
)/�total �6/��(π0 γ γ
)/�total �6/��(π0 γ γ
)/�total �6/�VALUE (units 10−8) CL% EVTS DOCUMENT ID TECN COMMENT4.9±1.6±0.94.9±1.6±0.94.9±1.6±0.94.9±1.6±0.9 17 1 LAI 04 NA48 m2

γ γ/m2K > 0.2
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<33 90 LAI 03B NA48 m2

γ γ/m2K > 0.21Spe
trum also measured and found 
onsistent with the one generated by a 
onstantmatrix element.�(γ γ
)/�total �7/��(γ γ
)/�total �7/��(γ γ
)/�total �7/��(γ γ
)/�total �7/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT2.63 ±0.17 OUR AVERAGE2.63 ±0.17 OUR AVERAGE2.63 ±0.17 OUR AVERAGE2.63 ±0.17 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.0.2.26 ±0.12 ±0.06 711 1 AMBROSINO 08C KLOE φ → K0S K0L2.713±0.063±0.005 7.5k 2 LAI 03 NA48

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.58 ±0.36 ±0.22 149 LAI 00 NA482.2 ±1.1 16 3 BARR 95B NA312.4 ±0.9 35 4 BARR 95B NA31
< 13 90 BALATS 89 SPEC2.4 ±1.2 19 BURKHARDT 87 NA31
<133 90 BARMIN 86B XEBC1AMBROSINO 08C reports (2.26± 0.12± 0.06)×10−6 from a measurement of [�(K0S →

γ γ
)/�total℄ × [B(K0S → π0π0)℄ assuming B(K0S → π0π0) = (30.69± 0.05)×10−2.2 LAI 03 reports [�(K0S → γ γ

)/�total℄ / [B(K0S → π0π0)℄ = (8.84±0.18±0.10)×10−6whi
h we multiply by our best value B(K0S → π0π0) = (30.69 ± 0.05) × 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.3BARR 95B result is 
al
ulated using B(KL → γ γ) = (5.86 ± 0.17) × 10−4.4BARR 95B quotes this as the 
ombined BARR 95B + BURKHARDT 87 result afterres
aling BURKHARDT 87 to use same bran
hing ratios and lifetimes as BARR 95B.Semileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modes�(π± e∓νe)/�total �8/��(π± e∓νe)/�total �8/��(π± e∓νe)/�total �8/��(π± e∓νe)/�total �8/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.04 ±0.08 OUR FIT7.04 ±0.08 OUR FIT7.04 ±0.08 OUR FIT7.04 ±0.08 OUR FIT7.04 ±0.08 OUR AVERAGE7.04 ±0.08 OUR AVERAGE7.04 ±0.08 OUR AVERAGE7.04 ±0.08 OUR AVERAGE7.046±0.18±0.16 1 BATLEY 07D NA48 K0 (K0)(t) → πe ν6.91 ±0.34±0.15 624 2 ALOISIO 02 KLOE Tagged K0S using φ → K0LK0S
• • • We use the following data for averages but not for �ts. • • •7.05 ±0.09 13k 3 AMBROSINO 06E KLOE Not �tted
• • • We do not use the following data for averages, �ts, limits, et
. • • •7.2 ±1.4 75 AKHMETSHIN 99 CMD2 Tagged K0S using φ → K0LK0S



1004100410041004Meson Parti
le ListingsK 0S1Re
onstru
ted from K0 (K0)(t) → πe ν distributions using PDG values of B(K0L →
πe ν) = 0.4053± 0.0015, τ L = (5.114± 0.021)×10−8 s and τS = (0.8958± 0.0005)×10−10 s.2Uses the PDG 00 value for B(K0S → π+π−).3Obtained by imposing �i B(K0S → i) = 1, where i runs over all the four bran
hing ratios
π+π−, π0π0, πe ν, and πµν. Input value of B(K0S → π+π−) / B(K0S → π0π0)from AMBROSINO 06C is used. To derive �(K0S → π+µν) / �(K0S → π+ e ν), leptonuniversality is assumed, radiative 
orre
tions from ANDRE 07 are used, and phase spa
eintegrals are taken from KTeV, ALEXOPOULOS 04A. This bran
hing fra
tion enters our�t via their �(π± e∓ νe ) / �(π+π−) bran
hing ratio measurement.�(π±µ∓νµ

)/�total �9/��(π±µ∓νµ

)/�total �9/��(π±µ∓νµ

)/�total �9/��(π±µ∓νµ

)/�total �9/�The PDG 06 value below has not been measured but is 
omputed to be 0.666 times theKS → π± e∓ νe bran
hing fra
tion. It is in
luded in the �t that 
onstrains the fourbran
hing ratios π+π−, π0π0, πe ν, and πµν to sum to 1. This treatment, used byAMBROSINO 06E, is preferable to our previous pra
ti
e of 
onstraining the π+π−and π0π0 modes to sum to 1. The 0.666 fa
tor is obtained from AMBROSINO 06Eand assumes lepton universality, radiative 
orre
tions from ANDRE 07, and phasespa
e integrals from KTeV, ALEXOPOULOS 04A.VALUE (units 10−4) DOCUMENT ID COMMENT4.69 ±0.06 OUR FIT4.69 ±0.06 OUR FIT4.69 ±0.06 OUR FIT4.69 ±0.06 OUR FIT4.691±0.001±0.0564.691±0.001±0.0564.691±0.001±0.0564.691±0.001±0.056 1 PDG 06 
al
ulated from π± e∓ νe1The PDG 06 value is 
omputed to be BPDG06(πµν) = 0.666 BFIT(πe ν). The �rsterror spe
i�es the arbitrarily small error, 0.001 × 10−4, on BPDG06(πµν) for �xedBFIT(πe ν). The se
ond error is that due to the un
ertainty in BFIT(πe ν).�(π± e∓νe)/�(π+π−) �8/�2�(π± e∓νe)/�(π+π−) �8/�2�(π± e∓νe)/�(π+π−) �8/�2�(π± e∓νe)/�(π+π−) �8/�2VALUE (units 10−4) EVTS DOCUMENT ID TECN10.18±0.12 OUR FIT10.18±0.12 OUR FIT10.18±0.12 OUR FIT10.18±0.12 OUR FIT10.19±0.11±0.0710.19±0.11±0.0710.19±0.11±0.0710.19±0.11±0.07 13k AMBROSINO 06E KLOECP violating (CP) and �S = 1 weak neutral 
urrent (S1) modesCP violating (CP) and �S = 1 weak neutral 
urrent (S1) modesCP violating (CP) and �S = 1 weak neutral 
urrent (S1) modesCP violating (CP) and �S = 1 weak neutral 
urrent (S1) modes�(3π0)/�total �10/��(3π0)/�total �10/��(3π0)/�total �10/��(3π0)/�total �10/�Violates CP 
onservation.VALUE (units 10−7) CL% EVTS DOCUMENT ID TECN COMMENT
< 0.26< 0.26< 0.26< 0.26 90 590M 1 BABUSCI 13C KLOE φ → K0LK0S
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.2 90 37.8M AMBROSINO 05B KLOE
< 7.4 90 4.9M 2 LAI 05A NA48
<140 90 7M ACHASOV 99D SND
<190 90 17300 3 ANGELOPO... 98B CPLR
<370 90 BARMIN 83 HLBC1BABUSCI 13C uses 1.7 fb−1 of data of φ → K0LK0S de
ays with K0L intera
tion inthe 
alorimeter, 
olle
ted from 2004 to 2005. No 
andidate events were found in thedata with an expe
ted ba
kground of 0.04+0.15

−0.03 events. Upper limit is obtained bynormalizing to K0S → 2π0 de
ays.2 LAI 05A value is obtained from their bound on ∣∣η000∣∣ (not assuming CPT) and B(K0L →3π0) = 0.211 ± 0.003, and PDG 04 values for K0L and K0S lifetimes. If CPT is assumedthen B(K0S → 3π0)CPT < 2.3× 10−7 at 90% CL3ANGELOPOULOS 98B is from Im(η000) = −0.05 ± 0.12 ± 0.05, assuming Re(η000)= Re(ǫ) = 1.635× 10−3 and using the value B(K0L → π0π0π0) = 0.2112 ± 0.0027.�(µ+µ−)/�total �11/��(µ+µ−)/�total �11/��(µ+µ−)/�total �11/��(µ+µ−)/�total �11/�Test for �S= 1 weak neutral 
urrent. Allowed by �rst-order weak intera
tion 
ombinedwith ele
tromagneti
 intera
tion.VALUE (units 10−9) CL% DOCUMENT ID TECN
<9<9<9<9 90 1 AAIJ 13G LHCB
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.2× 102 90 GJESDAL 73 ASPK
<7 × 103 90 HYAMS 69B OSPK1AAIJ 13G uses 1.0 fb−1 of pp 
ollisions at √

s = 7 TeV. They obtained B(K0S →
µ+µ−) < 11 × 10−9 at 95% C.L.�(e+ e−)/�total �12/��(e+ e−)/�total �12/��(e+ e−)/�total �12/��(e+ e−)/�total �12/�Test for �S= 1 weak neutral 
urrent. Allowed by �rst-order weak intera
tion 
ombinedwith ele
tromagneti
 intera
tion.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT

< 0.09< 0.09< 0.09< 0.09 90 1 AMBROSINO 09A KLOE e+ e− → φ → K0S K0L
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.4 90 ANGELOPO... 97 CPLR
< 28 90 BLICK 94 CNTR Hyperon fa
ility
<100 90 BARMIN 86 XEBC1AMBROSINO 09A reports < 0.09× 10−7 from a measurement of [�(K0S → e+ e−)/�total℄ / [B(K0S → π+π−)℄ assuming B(K0S → π+π−) = (69.20 ± 0.05)× 10−2.

�(π0 e+ e−)/�total �13/��(π0 e+ e−)/�total �13/��(π0 e+ e−)/�total �13/��(π0 e+ e−)/�total �13/�Test for �S= 1 weak neutral 
urrent. Allowed by �rst-order weak intera
tion 
ombinedwith ele
tromagneti
 intera
tion.VALUE (units 10−9) CL% EVTS DOCUMENT ID TECN COMMENT3.0+1.5
−1.2±0.23.0+1.5
−1.2±0.23.0+1.5
−1.2±0.23.0+1.5
−1.2±0.2 7 1 BATLEY 03 NA48 mee >0.165 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 140 90 LAI 01 NA48
< 1100 90 0 BARR 93B NA31
<45000 90 GIBBONS 88 E7311BATLEY 03 extrapolate also to the full kinemati
al region using a 
onstant form fa
torand a ve
tor matrix element. The resulting bran
hing ratio is (5.8+2.9

−2.4) × 10−9.�(π0µ+µ−)/�total �14/��(π0µ+µ−)/�total �14/��(π0µ+µ−)/�total �14/��(π0µ+µ−)/�total �14/�Test for �S= 1 weak neutral 
urrent. Allowed by �rst-order weak intera
tion 
ombinedwith ele
tromagneti
 intera
tion.VALUE (units 10−9) EVTS DOCUMENT ID TECN COMMENT2.9+1.5
−1.2±0.22.9+1.5
−1.2±0.22.9+1.5
−1.2±0.22.9+1.5
−1.2±0.2 6 1 BATLEY 04A NA48 NA48/1 K0S beam1Ba
kground estimate is 0.22+0.18

−0.11 events. Bran
hing ratio assumes a ve
tor matrixelement and unit form fa
tor.K0S FORM FACTORSK0S FORM FACTORSK0S FORM FACTORSK0S FORM FACTORSFor dis
ussion, see note on Kℓ3 form fa
tors in the K± se
tion of theParti
le Listings above. Be
ause the semileptoni
 bran
hing fra
tion issmaller in K0S than K0L by the ratio of the mean lives, the K0S semileptoni
form fa
tor has so far been measured only in the Ke3 mode using the linearexpansion f+(t) = f+(0) (1 + λ+t /m2
π+), whi
h gives the ve
tor formfa
tor f+(t) relative to its value at t = 0.

λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0e3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0e3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0e3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0e3 DECAY)VALUE (units 10−2) EVTS DOCUMENT ID TECN3.39±0.413.39±0.413.39±0.413.39±0.41 15k AMBROSINO 06E KLOE
CP VIOLATION IN KS → 3π

Written 1996 by T. Nakada (Paul Scherrer Institute) and
L. Wolfenstein (Carnegie-Mellon University).

The possible final states for the decay K0 → π+π−π0 have

isospin I = 0, 1, 2, and 3. The I = 0 and I = 2 states have

CP = +1 and KS can decay into them without violating CP

symmetry, but they are expected to be strongly suppressed by

centrifugal barrier effects. The I = 1 and I = 3 states, which

have no centrifugal barrier, have CP = −1 so that the KS

decay to these requires CP violation.

In order to see CP violation in KS → π+π−π0, it is

necessary to observe the interference between KS and KL

decay, which determines the amplitude ratio

η+−0 =
A(KS → π+π−π0)

A(KL → π+π−π0)
. (1)

If η+−0 is obtained from an integration over the whole Dalitz

plot, there is no contribution from the I = 0 and I = 2 final

states and a nonzero value of η+−0 is entirely due to CP

violation.

Only I = 1 and I = 3 states, which are CP = −1, are

allowed for K0 → π0π0π0 decays and the decay of KS into 3π0

is an unambiguous sign of CP violation. Similarly to η+−0, η000

is defined as

η000 =
A(KS → π0π0π0)

A(KL → π0π0π0)
. (2)

If one assumes that CPT invariance holds and that there

are no transitions to I = 3 (or to nonsymmetric I = 1 states),

it can be shown that

η+−0 = η000

= ǫ + i
Im a1

Re a1
. (3)
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With the Wu-Yang phase convention, a1 is the weak decay

amplitude for K0 into I = 1 final states; ǫ is determined from

CP violation in KL → 2π decays. The real parts of η+−0 and

η000 are equal to Re(ǫ). Since currently-known upper limits

on |η+−0| and |η000| are much larger than |ǫ|, they can be

interpreted as upper limits on Im(η+−0) and Im(η000) and so as

limits on the CP -violating phase of the decay amplitude a1.CP-VIOLATION PARAMETERS IN K0S DECAYCP-VIOLATION PARAMETERS IN K0S DECAYCP-VIOLATION PARAMETERS IN K0S DECAYCP-VIOLATION PARAMETERS IN K0S DECAYAS = [ �(K0S → π− e+νe ) - �(K0S → π+ e− νe ) ℄ / SUMAS = [ �(K0S → π− e+νe ) - �(K0S → π+ e− νe ) ℄ / SUMAS = [ �(K0S → π− e+νe ) - �(K0S → π+ e− νe ) ℄ / SUMAS = [ �(K0S → π− e+νe ) - �(K0S → π+ e− νe ) ℄ / SUMSu
h asymmetry violates CP. If CPT is assumed then AS = 2 Re(ǫ).VALUE (units 10−3) EVTS DOCUMENT ID TECN1.5±9.6±2.91.5±9.6±2.91.5±9.6±2.91.5±9.6±2.9 13k AMBROSINO 06E KLOEPARAMETERS FOR K0S → 3π DECAYPARAMETERS FOR K0S → 3π DECAYPARAMETERS FOR K0S → 3π DECAYPARAMETERS FOR K0S → 3π DECAYIm(η+−0)2 = �(K0S → π+π−π0, CP-violating) / �(K0L → π+π−π0)Im(η+−0)2 = �(K0S → π+π−π0, CP-violating) / �(K0L → π+π−π0)Im(η+−0)2 = �(K0S → π+π−π0, CP-violating) / �(K0L → π+π−π0)Im(η+−0)2 = �(K0S → π+π−π0, CP-violating) / �(K0L → π+π−π0)CPT assumed valid (i.e. Re(η+−0) ≃ 0).VALUE CL% EVTS DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.23 90 601 1 BARMIN 85 HLBC
<0.12 90 384 METCALF 72 ASPK1BARMIN 85 �nd Re(η+−0) = (0.05 ± 0.17) and Im(η+−0) = (0.15 ± 0.33). In
ludesevents of BALDO-CEOLIN 75.Im(η+−0) = Im(A(K0S → π+π−π0, CP-violating) / A(K0L → π+π−π0))Im(η+−0) = Im(A(K0S → π+π−π0, CP-violating) / A(K0L → π+π−π0))Im(η+−0) = Im(A(K0S → π+π−π0, CP-violating) / A(K0L → π+π−π0))Im(η+−0) = Im(A(K0S → π+π−π0, CP-violating) / A(K0L → π+π−π0))VALUE EVTS DOCUMENT ID TECN COMMENT
−0.002±0.009+0.002

−0.001−0.002±0.009+0.002
−0.001−0.002±0.009+0.002
−0.001−0.002±0.009+0.002
−0.001 500k 1 ADLER 97B CPLR

• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.002±0.018±0.003 137k 2 ADLER 96D CPLR Sup. by ADLER 97B
−0.015±0.017±0.025 272k 3 ZOU 94 SPEC1ADLER 97B also �nd Re(η+−0) = −0.002 ± 0.007+0.004

−0.001. See also ANGELOPOU-LOS 98C.2The ADLER 96D �t also yields Re(η+−0) = 0.006 ± 0.013 ± 0.001 with a 
orrelation+0.66 between real and imaginary parts. Their results 
orrespond to ∣∣η+−0∣∣ < 0.037with 90% CL.3ZOU 94 use theoreti
al 
onstraint Re(η+−0) = Re(ǫ) = 0.0016. Without this 
onstraintthey �nd Im(η+−0) = 0.019 ± 0.061 and Re(η+−0) = 0.019 ± 0.027.Im(η000)2 = �(K0S → 3π0) / �(K0L → 3π0)Im(η000)2 = �(K0S → 3π0) / �(K0L → 3π0)Im(η000)2 = �(K0S → 3π0) / �(K0L → 3π0)Im(η000)2 = �(K0S → 3π0) / �(K0L → 3π0)CPT assumed valid (i.e. Re(η000) ≃ 0). This limit determines bran
hing ratio�(3π0)/�total above.VALUE CL% EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.1 90 632 1 BARMIN 83 HLBC
<0.28 90 2 GJESDAL 74B SPEC Indire
t meas.1BARMIN 83 �nd Re(η000) = (−0.08±0.18) and Im(η000) = (−0.05±0.27). AssumingCPT invarian
e they obtain the limit quoted above.2GJESDAL 74B uses K2π, Kµ3, and Ke3 de
ay results, unitarity, and CPT. Cal
ulates∣∣(η000)∣∣ = 0.26 ± 0.20. We 
onvert to upper limit.Im(η000) = Im(A(K0S → π0π0π0)/A(K0L → π0π0π0))Im(η000) = Im(A(K0S → π0π0π0)/A(K0L → π0π0π0))Im(η000) = Im(A(K0S → π0π0π0)/A(K0L → π0π0π0))Im(η000) = Im(A(K0S → π0π0π0)/A(K0L → π0π0π0))K0S → π0π0π0 violates CP 
onservation, in 
ontrast to K0S → π+π−π0 whi
hhas a CP-
onserving part.VALUE EVTS DOCUMENT ID TECN COMMENT
−0.001±0.016 OUR AVERAGE−0.001±0.016 OUR AVERAGE−0.001±0.016 OUR AVERAGE−0.001±0.016 OUR AVERAGE0.000±0.009±0.013 4.9M 1 LAI 05A NA48 Assumes CPT
−0.05 ±0.12 ±0.05 17300 2 ANGELOPO... 98B CPLR Assumes CPT1 LAI 05A assumes Re(η000)=Re(ǫ)=1.66 × 10−3. The equivalent limit is∣∣η000∣∣

CPT <0.025 at 90% CL Without assuming CPT invarian
e, they obtainRe(η000)=−0.002 ± 0.011 ± 0.015 and Im(η000)=−0.003 ± 0.013 ± 0.017 with astatisti
al 
orrelation 
oeÆ
ient of 0.77 and an overall 
orrelation 
oeÆ
ient of 0.57between imaginary and real part. The equivalent limit is ∣∣η000∣∣ <0.045 at 90% CL2ANGELOPOULOS 98B assumes Re(η000) = Re(ǫ) = 1.635× 10−3. Without assumingCPT invarian
e, they obtain Re(η000) = 0.18 ± 0.14 ± 0.06 and Im(η000) = 0.15 ±0.20 ± 0.03.
∣∣η000∣∣ = ∣∣A(K0S → 3π0)/A(K0L → 3π0)∣∣∣∣η000∣∣ = ∣∣A(K0S → 3π0)/A(K0L → 3π0)∣∣∣∣η000∣∣ = ∣∣A(K0S → 3π0)/A(K0L → 3π0)∣∣∣∣η000∣∣ = ∣∣A(K0S → 3π0)/A(K0L → 3π0)∣∣A non-zero value violates CP invarian
e.VALUE CL% EVTS DOCUMENT ID TECN
<0.0088<0.0088<0.0088<0.0088 90 590M BABUSCI 13C KLOE
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.018 90 37.8M AMBROSINO 05B KLOE
<0.045 90 4.9M LAI 05A NA48

DECAY-PLANE ASYMMETRY IN π+π− e+ e− DECAYSDECAY-PLANE ASYMMETRY IN π+π− e+ e− DECAYSDECAY-PLANE ASYMMETRY IN π+π− e+ e− DECAYSDECAY-PLANE ASYMMETRY IN π+π− e+ e− DECAYSThis is the CP-violating asymmetryA= Nsinφ
osφ>0.0−Nsinφ
osφ<0.0Nsinφ
osφ>0.0+Nsinφ
osφ<0.0where φ is the angle between the e+ e− and π+π− planes in the K0Srest frame.CP asymmetry A in K0S → π+π− e+ e−CP asymmetry A in K0S → π+π− e+ e−CP asymmetry A in K0S → π+π− e+ e−CP asymmetry A in K0S → π+π− e+ e−VALUE (%) DOCUMENT ID TECN COMMENT
−0.4±0.8 OUR AVERAGE−0.4±0.8 OUR AVERAGE−0.4±0.8 OUR AVERAGE−0.4±0.8 OUR AVERAGE
−0.4±0.8 1 BATLEY 11 NA48 2002 data
−1.1±4.1 LAI 03C NA48 1998+1999 data
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.5±4.0±1.6 LAI 03C NA48 1999 data1The result is used to set the limit A < 1.5% at 90% C.L.K0S REFERENCESK0S REFERENCESK0S REFERENCESK0S REFERENCESAAIJ 13G JHEP 1301 090 R. Aaij et al. (LHCb Collab.)BABUSCI 13C PL B723 54 D. Babus
i et al. (KLOE-2 Collab.)ABOUZAID 11 PR D83 092001 E. Abouzaid et al. (FNAL KTeV Collab.)AMBROSINO 11 EPJ C71 1604 F. Ambrosino et al. (KLOE Collab.)BATLEY 11 PL B694 301 J.R. Batley et al. (CERN NA48/1 Collab.)AMBROSINO 09A PL B672 203 F. Ambrosino et al. (KLOE Collab.)AMBROSINO 08C JHEP 0805 051 F. Ambrosino et al. (KLOE Collab.)ANDRE 07 ANP 322 2518 T. Andre (EFI)BATLEY 07D PL B653 145 J.R. Batley et al. (CERN NA48 Collab.)AMBROSINO 06C EPJ C48 767 F. Ambrosino et al. (KLOE Collab.)AMBROSINO 06E PL B636 173 F. Ambrosino et al. (KLOE Collab.)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)AMBROSINO 05B PL B619 61 F. Ambrosino et al. (KLOE Collab.)BATLEY 05 PL B630 31 J.R. Batley et al. (NA48 Collab.)LAI 05A PL B610 165 A. Lai et al. (CERN NA48 Collab.)ALEXOPOU... 04A PR D70 092007 T. Alexopoulos et al. (FNAL KTeV Collab.)BATLEY 04A PL B599 197 J.R. Batley et al. (NA48 Collab.)LAI 04 PL B578 276 A. Lai et al. (CERN NA48 Collab.)PDG 04 PL B592 1 S. Eidelman et al. (PDG Collab.)ALAVI-HARATI 03 PR D67 012005 A. Alavi-Harati et al. (FNAL KTeV Collab.)Also PR D70 079904 (errat.) A. Alavi-Harati et al. (FNAL KTeV Collab.)BATLEY 03 PL B576 43 J.R. Batley et al. (CERN NA48 Collab.)LAI 03 PL B551 7 A. Lai et al. (CERN NA48 Collab.)LAI 03B PL B556 105 A. Lai et al. (CERN NA48 Collab.)LAI 03C EPJ C30 33 A. Lai et al. (CERN NA48 Collab.)ALOISIO 02 PL B535 37 A. Aloisio et al. (KLOE Collab.)ALOISIO 02B PL B538 21 A. Aloisio et al. (KLOE Collab.)LAI 02C PL B537 28 A. Lai et al. (CERN NA48 Collab.)LAI 01 PL B514 253 A. Lai et al. (CERN NA48 Collab.)LAI 00 PL B493 29 A. Lai et al. (CERN NA48 Collab.)LAI 00B PL B496 137 A. Lai et al. (CERN NA48 Collab.)PDG 00 EPJ C15 1 D.E. Groom et al. (PDG Collab.)ACHASOV 99D PL B459 674 M.N. A
hasov et al.AKHMETSHIN 99 PL B456 90 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)ANGELOPO... 98B PL B425 391 A. Angelopoulos et al. (CPLEAR Collab.)ANGELOPO... 98C EPJ C5 389 A. Angelopoulos et al. (CPLEAR Collab.)PDG 98 EPJ C3 1 C. Caso et al. (PDG Collab.)ADLER 97B PL B407 193 R. Adler et al. (CPLEAR Collab.)ANGELOPO... 97 PL B413 232 A. Angelopoulos et al. (CPLEAR Collab.)BERTANZA 97 ZPHY C73 629 L. Bertanza (PISA, CERN, EDIN, MANZ, ORSAY+)ADLER 96D PL B370 167 R. Adler et al. (CPLEAR Collab.)ADLER 96E PL B374 313 R. Adler et al. (CPLEAR Collab.)ZOU 96 PL B369 362 Y. Zou et al. (RUTG, MINN, MICH)BARR 95B PL B351 579 G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)SCHWINGEN... 95 PRL 74 4376 B. S
hwingenheuer et al. (EFI, CHIC+)BLICK 94 PL B334 234 A.M. Bli
k et al. (SERP, JINR)THOMSON 94 PL B337 411 G.B. Thomson et al. (RUTG, MINN, MICH)ZOU 94 PL B329 519 Y. Zou et al. (RUTG, MINN, MICH)BARR 93B PL B304 381 G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)GIBBONS 93 PRL 70 1199 L.K. Gibbons et al. (FNAL E731 Collab.)Also PR D55 6625 L.K. Gibbons et al. (FNAL E731 Collab.)RAMBERG 93 PRL 70 2525 E. Ramberg et al. (FNAL E731 Collab.)BALATS 89 SJNP 49 828 M.Y. Balats et al. (ITEP)Translated from YAF 49 1332.GIBBONS 88 PRL 61 2661 L.K. Gibbons et al. (FNAL E731 Collab.)BURKHARDT 87 PL B199 139 H. Burkhardt et al. (CERN, EDIN, MANZ+)GROSSMAN 87 PRL 59 18 N. Grossman et al. (MINN, MICH, RUTG)BARMIN 86 SJNP 44 622 V.V. Barmin et al. (ITEP)Translated from YAF 44 965.BARMIN 86B NC 96A 159 V.V. Barmin et al. (ITEP, PADO)PDG 86B PL 170B 130 M. Aguilar-Benitez et al. (CERN, CIT+)BARMIN 85 NC 85A 67 V.V. Barmin et al. (ITEP, PADO)Also SJNP 41 759 V.V. Barmin et al. (ITEP)Translated from YAF 41 1187.BARMIN 83 PL 128B 129 V.V. Barmin et al. (ITEP, PADO)Also SJNP 39 269 V.V. Barmin et al. (ITEP, PADO)Translated from YAF 39 428.ARONSON 82 PRL 48 1078 S.H. Aronson et al. (BNL, CHIC, STAN+)ARONSON 82B PRL 48 1306 S.H. Aronson et al. (BNL, CHIC, PURD)Also PL 116B 73 E. Fis
hba
h et al. (PURD, BNL, CHIC)Also PR D28 476 S.H. Aronson et al. (BNL, CHIC, PURD)Also PR D28 495 S.H. Aronson et al. (BNL, CHIC, PURD)ARONSON 76 NC 32A 236 S.H. Aronson et al. (WISC, EFI, UCSD+)EVERHART 76 PR D14 661 G.C. Everhart et al. (PENN)TAUREG 76 PL 65B 92 H. Taureg et al. (HEIDH, CERN, DORT)BALDO-... 75 NC 25A 688 M. Baldo-Ceolin et al. (PADO, WISC)CARITHERS 75 PRL 34 1244 W.C.J. Carithers et al. (COLU, NYU)BOBISUT 74 LNC 11 646 F. Bobisut et al. (PADO)COWELL 74 PR D10 2083 P.L. Cowell et al. (STON, COLU)GEWENIGER 74B PL 48B 487 C. Geweniger et al. (CERN, HEIDH)GJESDAL 74B PL 52B 119 S. Gjesdal et al. (CERN, HEIDH)BURGUN 73 PL 46B 481 G. Burgun et al. (SACL, CERN)GJESDAL 73 PL 44B 217 S. Gjesdal et al. (CERN, HEIDH)HILL 73 PR D8 1290 D.G. Hill et al. (BNL, CMU)ALITTI 72 PL 39B 568 J. Alitti, E. Lesquoy, A. Muller (SACL)BURGUN 72 NP B50 194 G. Burgun et al. (SACL, CERN, OSLO)METCALF 72 PL 40B 703 M. Met
alf et al. (CERN, IPN, WIEN)MORSE 72B PRL 28 388 R. Morse et al. (COLO, PRIN, UMD)NAGY 72 NP B47 94 E. Nagy, F. Telbisz, G. Vesztergombi (BUDA)Also PL 30B 498 G. Bozoki et al. (BUDA)SKJEGGEST... 72 NP B48 343 O. Skjeggestad et al. (OSLO, CERN, SACL)BALTAY 71 PRL 27 1678 C. Baltay et al. (COLU)Also Thesis Nevis 187 W.A. Cooper (COLU)



1006100610061006MesonParti
le ListingsK 0S ,K 0LMOFFETT 70 BAPS 15 512 R. Mo�ett et al. (ROCH)BOZOKI 69 PL 30B 498 G. Bozoki et al. (BUDA)DOYLE 69 Thesis UCRL 18139 J.C. Doyle (LRL)GOBBI 69 PRL 22 682 B. Gobbi et al. (ROCH)HYAMS 69B PL 29B 521 B.D. Hyams et al. (CERN, MPIM)MORFIN 69 PRL 23 660 J.G. Mor�n, D. Sin
lair (MICH)DONALD 68B PL 27B 58 R.A. Donald et al. (LIVP, CERN, IPNP+)HILL 68 PR 171 1418 D.G. Hill et al. (BNL, CMU)AUBERT 65 PL 17 59 B. Aubert et al. (EPOL, ORSAY)BROWN 63 PR 130 769 J.L. Brown et al. (LRL, MICH)CHRETIEN 63 PR 131 2208 M. Chretien et al. (BRAN, BROW, HARV+)BROWN 61 NC 19 1155 J.L. Brown et al. (MICH)BOLDT 58B PRL 1 150 E. Boldt, D.O. Caldwell, Y. Pal (MIT)OTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSLITTENBERG 93 ARNPS 43 729 L.S. Littenberg, G. Valen
ia (BNL, FNAL)Rare and Radiative Kaon De
aysBATTISTON 92 PRPL 214 293 R. Battiston et al. (PGIA, CERN, TRSTT)Status and Perspe
tives of K De
ay Physi
sTRILLING 65B UCRL 16473 G.N. Trilling (LRL)Updated from 1965 Argonne Conferen
e, page 115.CRAWFORD 62 CERN Conf. 827 F.S. Crawford (LRL)FITCH 61 NC 22 1160 V.L. Fit
h, P.A. Piroue, R.B. Perkins (PRIN+)GOOD 61 PR 124 1223 R.H. Good et al. (LRL)BIRGE 60 Ro
hester Conf. 601 R.W. Birge et al. (LRL, WISC)MULLER 60 PRL 4 418 F. Muller et al. (LRL, BNL)K 0L I (JP ) = 12 (0−)mK0L − mK0SmK0L − mK0SmK0L − mK0SmK0L − mK0SFor earlier measurements, beginning with GOOD 61 and FITCH 61, seeour 1986 edition, Physi
s Letters 170B170B170B170B 132 (1986).OUR FIT is des
ribed in the note on \CP violation in KL de
ays" in the K0LParti
le Listings. The result labeled \OUR FIT Assuming CPT" [\OURFIT Not assuming CPT"℄ in
ludes all measurements ex
ept those with the
omment \Not assuming CPT" [\Assuming CPT"℄. Measurements withneither 
omment do not assume CPT and enter both �ts.VALUE (1010 �h s−1) DOCUMENT ID TECN COMMENT0.5293 ±0.0009 OUR FIT0.5293 ±0.0009 OUR FIT0.5293 ±0.0009 OUR FIT0.5293 ±0.0009 OUR FIT Error in
ludes s
ale fa
tor of 1.3. Assuming CPT0.5289 ±0.0010 OUR FIT0.5289 ±0.0010 OUR FIT0.5289 ±0.0010 OUR FIT0.5289 ±0.0010 OUR FIT Not assuming CPT0.52797±0.00195 1,2 ABOUZAID 11 KTEV Not assuming CPT0.52699±0.00123 1,3 ABOUZAID 11 KTEV Assuming CPT0.5240 ±0.0044 ±0.0033 APOSTOLA... 99C CPLR K0-K0 to π+π−0.5297 ±0.0030 ±0.0022 4 SCHWINGEN...95 E773 20{160 GeV K beams0.5286 ±0.0028 5 GIBBONS 93 E731 Assuming CPT0.5257 ±0.0049 ±0.0021 4 GIBBONS 93C E731 Not assuming CPT0.5340 ±0.00255±0.0015 6 GEWENIGER 74C SPEC Gap method0.5334 ±0.0040 ±0.0015 6,7 GJESDAL 74 SPEC Assuming CPT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.5261 ±0.0015 8 ALAVI-HARATI03 KTEV Assuming CPT0.5288 ±0.0043 9 ALAVI-HARATI03 KTEV Not assuming CPT0.5343 ±0.0063 ±0.0025 10 ANGELOPO... 01 CPLR0.5295 ±0.0020 ±0.0003 11 ANGELOPO... 98D CPLR Assuming CPT0.5307 ±0.0013 12 ADLER 96C RVUE0.5274 ±0.0029 ±0.0005 11 ADLER 95 CPLR Sup. by ANGELOPOU-LOS 98D0.482 ±0.014 13 ARONSON 82B SPEC E=30{110 GeV0.534 ±0.007 14 CARNEGIE 71 ASPK Gap method0.542 ±0.006 14 ARONSON 70 ASPK Gap method0.542 ±0.006 CULLEN 70 CNTR1The two ABOUZAID 11 values use the same data. The �rst enters the "assuming CPT"�t and the se
ond enters the "not assuming CPT" �t.2ABOUZAID 11 �t has �m, τs , φǫ, Re(ǫ′/ǫ), and Im(ǫ′/ǫ) as free parameters. SeeIm(ǫ′/ǫ) in the "K0L CP violation" se
tion for 
orrelation information.3ABOUZAID 11 �t has �m and τs free but 
onstrains φǫ to the Superweak value, i.e.assumes CPT. See "K0S Mean Life" se
tion for 
orrelation information.4 Fits �m and φ+− simultaneously. GIBBONS 93C systemati
 error is from B.Winsteinvia private 
ommuni
ation. 20{160 GeV K beams.5GIBBONS 93 value assume φ+− = φ00 = φSW = (43.7 ± 0.2)◦, i.e. assumes CPT.20{160 GeV K beams.6These two experiments have a 
ommon systemati
 error due to the un
ertainty in themomentum s
ale, as pointed out in WAHL 89.7GJESDAL 74 uses 
harge asymmetry in K0

ℓ3 de
ays.8ALAVI-HARATI 03 �t �m and τK0S simultaneously. φ+− is 
onstrained to the Super-weak value, i.e. CPT is assumed. See \K0S Mean Life" se
tion for 
orrelation informa-tion. Superseded by ABOUZAID 11.9ALAVI-HARATI 03 �t �m, φ+−, and τKS simultaneously. See φ+− in the \KL CPviolation" se
tion for 
orrelation information. Superseded by ABOUZAID 11.10ANGELOPOULOS 01 uses strong intera
tions strangeness tagging at two di�erent times.11Uses K0e3 and K0e3 strangeness tagging at produ
tion and de
ay. Assumes CPT 
onser-vation on �S=−�Q transitions.

12ADLER 96C is the result of a �t whi
h in
ludes nearly the same data as entered into the\OUR FIT" value above.13ARONSON 82 �nd that �m may depend on the kaon energy.14ARONSON 70 and CARNEGIE 71 use K0S mean life = (0.862 ± 0.006)× 10−10 s. Wehave not attempted to adjust these values for the subsequent 
hange in the K0S meanlife or in η+−. K0L MEAN LIFEK0L MEAN LIFEK0L MEAN LIFEK0L MEAN LIFEVALUE (10−8 s) EVTS DOCUMENT ID TECN COMMENT5.116±0.021 OUR FIT5.116±0.021 OUR FIT5.116±0.021 OUR FIT5.116±0.021 OUR FIT Error in
ludes s
ale fa
tor of 1.1.5.099±0.021 OUR AVERAGE5.099±0.021 OUR AVERAGE5.099±0.021 OUR AVERAGE5.099±0.021 OUR AVERAGE5.072±0.011±0.035 13M 1 AMBROSINO 06 KLOE ∑
i Bi = 15.092±0.017±0.025 15M AMBROSINO 05C KLOE5.154±0.044 0.4M VOSBURGH 72 CNTR

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.15 ±0.14 DEVLIN 67 CNTR1AMBROSINO 06 uses φ → KLKS with KL tagged by KS → π+π−. The four majorKL BR's are measured, the small remainder (π+π−,π0π0,γ γ) is taken from PDG 04.This KLOE KL lifetime is obtained by imposing ∑
i Bi = 1. The 
orrelation matrixamong the four measured KL BR's and this KL lifetime isKe3 Kµ3 3π0 π+π−π0 τKLKe3 1 −0.25 −0.56 −0.07 0.25Kµ3 1 −0.43 −0.20 0.333π0 1 −0.39 −0.21

π+π−π0 1 −0.39
τKL 1These 
orrelations are taken into a

ount in our �t. The average of this KLOE mean lifemeasurement and the independent KLOE measurement in AMBROSINO 05C is (5.084 ±0.023) × 10−8 s. K0L DECAY MODESK0L DECAY MODESK0L DECAY MODESK0L DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelSemileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modes�1 π± e∓νe [a℄ (40.55 ±0.11 ) % S=1.7Called K0e3.�2 π±µ∓νµ [a℄ (27.04 ±0.07 ) % S=1.1Called K0
µ3.�3 (πµatom)ν ( 1.05 ±0.11 )× 10−7�4 π0π± e∓ν [a℄ ( 5.20 ±0.11 )× 10−5�5 π± e∓ν e+ e− [a℄ ( 1.26 ±0.04 )× 10−5Hadroni
 modes, in
luding Charge 
onjugation×Parity Violating (CPV) modesHadroni
 modes, in
luding Charge 
onjugation×Parity Violating (CPV) modesHadroni
 modes, in
luding Charge 
onjugation×Parity Violating (CPV) modesHadroni
 modes, in
luding Charge 
onjugation×Parity Violating (CPV) modes�6 3π0 (19.52 ±0.12 ) % S=1.6�7 π+π−π0 (12.54 ±0.05 ) %�8 π+π− CPV [b℄ ( 1.967±0.010)× 10−3 S=1.5�9 π0π0 CPV ( 8.64 ±0.06 )× 10−4 S=1.8Semileptoni
 modes with photonsSemileptoni
 modes with photonsSemileptoni
 modes with photonsSemileptoni
 modes with photons�10 π± e∓νe γ [a,
,d℄ ( 3.79 ±0.06 )× 10−3�11 π±µ∓νµ γ ( 5.65 ±0.23 )× 10−4Hadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairs�12 π0π0 γ < 2.43 × 10−7 CL=90%�13 π+π−γ [
,d℄ ( 4.15 ±0.15 )× 10−5 S=2.8�14 π+π−γ (DE) ( 2.84 ±0.11 )× 10−5 S=2.0�15 π0 2γ [
℄ ( 1.273±0.033)× 10−6�16 π0 γ e+ e− ( 1.62 ±0.17 )× 10−8Other modes with photons or ℓℓ pairsOther modes with photons or ℓℓ pairsOther modes with photons or ℓℓ pairsOther modes with photons or ℓℓ pairs�17 2γ ( 5.47 ±0.04 )× 10−4 S=1.1�18 3γ < 7.4 × 10−8 CL=90%�19 e+ e− γ ( 9.4 ±0.4 )× 10−6 S=2.0�20 µ+µ− γ ( 3.59 ±0.11 )× 10−7 S=1.3�21 e+ e− γ γ [
℄ ( 5.95 ±0.33 )× 10−7�22 µ+µ− γ γ [
℄ ( 1.0 +0.8

−0.6 )× 10−8Charge 
onjugation × Parity (CP) or Lepton Family number (LF )Charge 
onjugation × Parity (CP) or Lepton Family number (LF )Charge 
onjugation × Parity (CP) or Lepton Family number (LF )Charge 
onjugation × Parity (CP) or Lepton Family number (LF )violating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modes�23 µ+µ− S1 ( 6.84 ±0.11 )× 10−9�24 e+ e− S1 ( 9 +6
−4 )× 10−12�25 π+π− e+ e− S1 [
℄ ( 3.11 ±0.19 )× 10−7�26 π0π0 e+ e− S1 < 6.6 × 10−9 CL=90%�27 π0π0µ+µ− S1 < 9.2 × 10−11 CL=90%�28 µ+µ− e+ e− S1 ( 2.69 ±0.27 )× 10−9�29 e+ e− e+ e− S1 ( 3.56 ±0.21 )× 10−8



1007100710071007See key on page 601 MesonParti
le ListingsK 0L�30 π0µ+µ− CP,S1 [e℄ < 3.8 × 10−10 CL=90%�31 π0 e+ e− CP,S1 [e℄ < 2.8 × 10−10 CL=90%�32 π0 ν ν CP,S1 [f ℄ < 2.6 × 10−8 CL=90%�33 π0π0 ν ν S1 < 8.1 × 10−7 CL=90%�34 e±µ∓ LF [a℄ < 4.7 × 10−12 CL=90%�35 e± e±µ∓µ∓ LF [a℄ < 4.12 × 10−11 CL=90%�36 π0µ± e∓ LF [a℄ < 7.6 × 10−11 CL=90%�37 π0π0µ± e∓ LF < 1.7 × 10−10 CL=90%[a℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.[b℄ This mode in
ludes gammas from inner bremsstrahlung but not the dire
temission mode K0L → π+π− γ(DE).[
 ℄ See the Parti
le Listings below for the energy limits used in this mea-surement.[d ℄ Most of this radiative mode, the low-momentum γ part, is also in
ludedin the parent mode listed without γ's.[e℄ Allowed by higher-order ele
troweak intera
tions.[f ℄ Violates CP in leading order. Test of dire
t CP violation sin
e the in-dire
t CP-violating and CP-
onserving 
ontributions are expe
ted to besuppressed. CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the mean life and 15 bran
hing ratios uses 27 mea-surements and one 
onstraint to determine 11 parameters. Theoverall �t has a χ2 = 37.4 for 17 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients〈
δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x2 −21x6 −77 −29x7 −15 −20 −18x8 53 −11 −47 4x9 30 −23 −11 −12 64x13 6 −1 −6 0 12 8x14 6 −1 −6 0 11 7 93x17 −46 −22 64 −14 −21 8 −3 −3x19 −5 −2 7 −1 −3 −1 0 0 4� −27 −9 24 15 −13 −6 −2 −2 15 2x1 x2 x6 x7 x8 x9 x13 x14 x17 x19Mode Rate (108 s−1) S
ale fa
tor�1 π± e∓νe [a℄ 0.07927±0.00034 1.1Called K0e3.�2 π±µ∓νµ [a℄ 0.05286±0.00025 1.1Called K0
µ3.�6 3π0 0.03815±0.00030 1.5�7 π+π−π0 0.02451±0.00015�8 π+π− [b℄ (3.844 ±0.023 )× 10−4 1.2�9 π0π0 (1.690 ±0.013 )× 10−4 1.4�13 π+π−γ [
,d℄ (8.11 ±0.29 )× 10−6 2.7�14 π+π−γ (DE) (5.55 ±0.21 )× 10−6 2.0�17 2γ (1.069 ±0.010 )× 10−4 1.2�19 e+ e− γ (1.84 ±0.08 )× 10−6 1.9K0L DECAY RATESK0L DECAY RATESK0L DECAY RATESK0L DECAY RATES�(π+π−π0) �7�(π+π−π0) �7�(π+π−π0) �7�(π+π−π0) �7VALUE (106 s−1) EVTS DOCUMENT ID TECN COMMENT2.451±0.015 OUR FIT2.451±0.015 OUR FIT2.451±0.015 OUR FIT2.451±0.015 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.32 +0.13
−0.15 192 BALDO-... 75 HLBC Assumes CP2.35 ±0.20 180 1 JAMES 72 HBC Assumes CP2.71 ±0.28 99 CHO 71 DBC Assumes CP2.5 ±0.3 98 1 JAMES 71 HBC Assumes CP2.12 ±0.33 50 MEISNER 71 HBC Assumes CP2.20 ±0.35 53 WEBBER 70 HBC Assumes CP2.62 +0.28
−0.27 136 BEHR 66 HLBC Assumes CP3.26 ±0.77 18 ANDERSON 65 HBC1.4 ±0.4 14 FRANZINI 65 HBC1 JAMES 72 is a �nal measurement and in
ludes JAMES 71.

�(π± e∓νe) �1�(π± e∓νe) �1�(π± e∓νe) �1�(π± e∓νe) �1VALUE (106 s−1) EVTS DOCUMENT ID TECN COMMENT7.927±0.034 OUR FIT7.927±0.034 OUR FIT7.927±0.034 OUR FIT7.927±0.034 OUR FIT Error in
ludes s
ale fa
tor of 1.1.
• • • We do not use the following data for averages, �ts, limits, et
. • • •7.81 ±0.56 620 CHAN 71 HBC7.52 +0.85

−0.72 AUBERT 65 HLBC �S=�Q,CP assumed�(π± e∓νe)+�(π±µ∓ νµ

) (�1+�2)�(π± e∓νe)+�(π±µ∓ νµ

) (�1+�2)�(π± e∓νe)+�(π±µ∓ νµ

) (�1+�2)�(π± e∓νe)+�(π±µ∓ νµ

) (�1+�2)VALUE (106 s−1) EVTS DOCUMENT ID TECN COMMENT13.21±0.05 OUR FIT13.21±0.05 OUR FIT13.21±0.05 OUR FIT13.21±0.05 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •12.4 ±0.7 410 1 BURGUN 72 HBC K+p → K0 pπ+8.47±1.69 126 1 MANN 72 HBC K−p → nK013.1 ±1.3 252 1 WEBBER 71 HBC K−p → nK011.6 ±0.9 393 1,2 CHO 70 DBC K+n → K0 p10.3 ±0.8 335 2 HILL 67 DBC K+n → K0 p9.85+1.15

−1.05 109 1 FRANZINI 65 HBC1Assumes �S = �Q rule.2CHO 70 in
ludes events of HILL 67.K0L BRANCHING RATIOSK0L BRANCHING RATIOSK0L BRANCHING RATIOSK0L BRANCHING RATIOSSemileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modes�(π± e∓νe)/�total �1/��(π± e∓νe)/�total �1/��(π± e∓νe)/�total �1/��(π± e∓νe)/�total �1/�VALUE EVTS DOCUMENT ID TECN0.4055±0.0011 OUR FIT0.4055±0.0011 OUR FIT0.4055±0.0011 OUR FIT0.4055±0.0011 OUR FIT Error in
ludes s
ale fa
tor of 1.7.0.4047±0.0028 OUR AVERAGE0.4047±0.0028 OUR AVERAGE0.4047±0.0028 OUR AVERAGE0.4047±0.0028 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.1.0.4007±0.0005±0.0015 13M 1 AMBROSINO 06 KLOE0.4067±0.0011 2 ALEXOPOU... 04 KTEV1There are 
orrelations between these �ve KLOE measurements: B(KL → πe ν), B(KL →
πµν), B(KL → 3π0), B(KL → π+π−π0), and τKL measured in AMBROSINO 06.See the footnote for the τKL measurement for the 
orrelation matrix.2ALEXOPOULOS 04 
onstrains ∑

i Bi = 0.9993 for the six major KL bran
hing fra
tions.The 
orrelations among these bran
hing fra
tions are taken into a

ount in our �t. The
orrelation matrix isKe3 Kµ3 3π0 π+π−π0 π+π− π0π0Ke3 1Kµ3 0.15 13π0 −0.77 −0.62 1
π+π−π0 0.18 0.08 −0.54 1

π+π− 0.28 0.22 −0.48 0.49 1
π0π0 −0.72 −0.54 0.89 −0.46 −0.39 1�(π±µ∓νµ

)/�total �2/��(π±µ∓νµ

)/�total �2/��(π±µ∓νµ

)/�total �2/��(π±µ∓νµ

)/�total �2/�VALUE EVTS DOCUMENT ID TECN0.2704±0.0007 OUR FIT0.2704±0.0007 OUR FIT0.2704±0.0007 OUR FIT0.2704±0.0007 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.2700±0.0008 OUR AVERAGE0.2700±0.0008 OUR AVERAGE0.2700±0.0008 OUR AVERAGE0.2700±0.0008 OUR AVERAGE0.2698±0.0005±0.0015 13M 1 AMBROSINO 06 KLOE0.2701±0.0009 2 ALEXOPOU... 04 KTEV1There are 
orrelations between these �ve KLOE measurements: B(KL → πe ν), B(KL →
πµν), B(KL → 3π0), B(KL → π+π−π0), and τKL measured in AMBROSINO 06.See the footnote for the τKL measurement for the 
orrelation matrix.2 For 
orrelations with other ALEXOPOULOS 04 measurements, see the footnote withtheir B(KL → πe ν) measurement.

[�(π± e∓νe)+ �(π±µ∓ νµ

)]/�total (�1+�2)/�[�(π± e∓νe)+ �(π±µ∓ νµ

)]/�total (�1+�2)/�[�(π± e∓νe)+ �(π±µ∓ νµ

)]/�total (�1+�2)/�[�(π± e∓νe)+ �(π±µ∓ νµ

)]/�total (�1+�2)/�VALUE DOCUMENT ID0.6760±0.0012 OUR FIT0.6760±0.0012 OUR FIT0.6760±0.0012 OUR FIT0.6760±0.0012 OUR FIT Error in
ludes s
ale fa
tor of 1.6.�(π±µ∓νµ

)/�(π± e∓νe) �2/�1�(π±µ∓νµ

)/�(π± e∓νe) �2/�1�(π±µ∓νµ

)/�(π± e∓νe) �2/�1�(π±µ∓νµ

)/�(π± e∓νe) �2/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.6669±0.0027 OUR FIT0.6669±0.0027 OUR FIT0.6669±0.0027 OUR FIT0.6669±0.0027 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.666 ±0.004 OUR AVERAGE0.666 ±0.004 OUR AVERAGE0.666 ±0.004 OUR AVERAGE0.666 ±0.004 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.
• • • We use the following data for averages but not for �ts. • • •0.6740±0.0059 13M 1 AMBROSINO 06 KLOE Not in �t0.6640±0.0014±0.0022 394K 2 ALEXOPOU... 04 KTEV Not in �t
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.702 ±0.011 33k CHO 80 HBC0.662 ±0.037 10k WILLIAMS 74 ASPK0.741 ±0.044 6700 BRANDENB... 73 HBC0.662 ±0.030 1309 EVANS 73 HLBC0.68 ±0.08 3548 BASILE 70 OSPK0.71 ±0.05 770 BUDAGOV 68 HLBC1AMBROSINO 06 enters the �t via their separate measurements of these two modes.2ALEXOPOULOS 04 enters the �t via their separate measurements of these two modes.�((πµatom)ν)/�(π±µ∓νµ

) �3/�2�((πµatom)ν)/�(π±µ∓νµ

) �3/�2�((πµatom)ν)/�(π±µ∓νµ

) �3/�2�((πµatom)ν)/�(π±µ∓νµ

) �3/�2VALUE (units 10−7) EVTS DOCUMENT ID TECN3.90±0.393.90±0.393.90±0.393.90±0.39 155 1 ARONSON 86 SPEC
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 18 COOMBES 76 WIRE1ARONSON 86 quote theoreti
al value of (4.31 ± 0.08)× 10−7.



1008100810081008MesonParti
le ListingsK 0L�(
π0π± e∓ν

)/�total �4/��(
π0π± e∓ν

)/�total �4/��(
π0π± e∓ν

)/�total �4/��(
π0π± e∓ν

)/�total �4/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN5.20±0.11 OUR AVERAGE5.20±0.11 OUR AVERAGE5.20±0.11 OUR AVERAGE5.20±0.11 OUR AVERAGE5.21±0.07±0.09 5402 BATLEY 04 NA485.16±0.20±0.22 729 MAKOFF 93 E731
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.2 ±2.0 16 CARROLL 80C SPEC
< 220 90 1 DONALDSON 74 SPEC1DONALDSON 74 uses K0L → π+π−π0/(all K0L) de
ays = 0.126.�(

π± e∓ν e+ e−)/�(
π+π−π0) �5/�7�(

π± e∓ν e+ e−)/�(
π+π−π0) �5/�7�(

π± e∓ν e+ e−)/�(
π+π−π0) �5/�7�(

π± e∓ν e+ e−)/�(
π+π−π0) �5/�7VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT10.02±0.17±0.2910.02±0.17±0.2910.02±0.17±0.2910.02±0.17±0.29 19k 1 ABOUZAID 07C KTEV Mee> 5 MeV, E∗ee > 30 MeV1E∗ee is the energy of the e+ e− pair in the kaon rest frame. ABOUZAID 07C reports[�(K0L → π± e∓ ν e+ e−)/�(K0L → π+π−π0)℄ / [B(π0 → e+ e− γ)℄ = (8.54 ±0.07± 0.13)×10−3 whi
h we multiply by our best value B(π0 → e+ e− γ) = (1.174±0.035) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.Hadroni
 modes,Hadroni
 modes,Hadroni
 modes,Hadroni
 modes,in
luding Charge 
onjugation×Parity Violating (CPV) modesin
luding Charge 
onjugation×Parity Violating (CPV) modesin
luding Charge 
onjugation×Parity Violating (CPV) modesin
luding Charge 
onjugation×Parity Violating (CPV) modes�(3π0)/�total �6/��(3π0)/�total �6/��(3π0)/�total �6/��(3π0)/�total �6/�VALUE EVTS DOCUMENT ID TECN COMMENT0.1952±0.0012 OUR FIT0.1952±0.0012 OUR FIT0.1952±0.0012 OUR FIT0.1952±0.0012 OUR FIT Error in
ludes s
ale fa
tor of 1.6.0.1969±0.0026 OUR AVERAGE0.1969±0.0026 OUR AVERAGE0.1969±0.0026 OUR AVERAGE0.1969±0.0026 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0.

• • • We use the following data for averages but not for �ts. • • •0.1997±0.0003±0.0019 13M 1 AMBROSINO 06 KLOE Not �tted0.1945±0.0018 1 ALEXOPOU... 04 KTEV Not �tted1We ex
lude these B(KL → 3π0) measurements from our �t be
ause the authors have
onstrained KL bran
hing fra
tions to sum to one. It enters our �t via the other mea-surements from the experiment and their 
orrelations, along with our 
onstraint that the�tted bran
hing fra
tions sum to one.�(3π0)/�(
π± e∓νe) �6/�1�(3π0)/�(
π± e∓νe) �6/�1�(3π0)/�(
π± e∓νe) �6/�1�(3π0)/�(
π± e∓νe) �6/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.481 ±0.004 OUR FIT0.481 ±0.004 OUR FIT0.481 ±0.004 OUR FIT0.481 ±0.004 OUR FIT Error in
ludes s
ale fa
tor of 1.8.

• • • We use the following data for averages but not for �ts. • • •0.4782±0.0014±0.00530.4782±0.0014±0.00530.4782±0.0014±0.00530.4782±0.0014±0.0053 209K 1 ALEXOPOU... 04 KTEV Not in �t
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.545 ±0.004 ±0.009 38k KREUTZ 95 NA311This measurement enters the �t via their separate measurements of these two modes.�(3π0)/[�(

π± e∓ νe)+�(
π±µ∓νµ

)+�(
π+π−π0)] �6/(�1+�2+�7)�(3π0)/[�(

π± e∓ νe)+�(
π±µ∓νµ

)+�(
π+π−π0)] �6/(�1+�2+�7)�(3π0)/[�(

π± e∓ νe)+�(
π±µ∓νµ

)+�(
π+π−π0)] �6/(�1+�2+�7)�(3π0)/[�(

π± e∓ νe)+�(
π±µ∓νµ

)+�(
π+π−π0)] �6/(�1+�2+�7)VALUE EVTS DOCUMENT ID TECN COMMENT0.2436±0.0018 OUR FIT0.2436±0.0018 OUR FIT0.2436±0.0018 OUR FIT0.2436±0.0018 OUR FIT Error in
ludes s
ale fa
tor of 1.6.

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.251 ±0.014 549 BUDAGOV 68 HLBC ORSAY measur.0.277 ±0.021 444 BUDAGOV 68 HLBC E
ole polyte
.meas0.31 +0.07
−0.06 29 KULYUKINA 68 CC0.24 ±0.08 24 ANIKINA 64 CC�(3π0)/�(

π+π−π0) �6/�7�(3π0)/�(
π+π−π0) �6/�7�(3π0)/�(
π+π−π0) �6/�7�(3π0)/�(
π+π−π0) �6/�7VALUE EVTS DOCUMENT ID TECN COMMENT1.557±0.012 OUR FIT1.557±0.012 OUR FIT1.557±0.012 OUR FIT1.557±0.012 OUR FIT Error in
ludes s
ale fa
tor of 1.3.

• • • We use the following data for averages but not for �ts. • • •1.582±0.0271.582±0.0271.582±0.0271.582±0.027 13M 1 AMBROSINO 06 KLOE Not in �t
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.611±0.014±0.034 28k KREUTZ 95 NA311.65 ±0.07 883 BARMIN 72B HLBC Error statisti
al only1.80 ±0.13 1010 BUDAGOV 68 HLBC2.0 ±0.6 188 ALEKSANYAN 64B FBC1AMBROSINO 06 enters the �t via their separate measurements of these two modes.�(

π+π−π0)/�total �7/��(
π+π−π0)/�total �7/��(
π+π−π0)/�total �7/��(
π+π−π0)/�total �7/�VALUE EVTS DOCUMENT ID TECN0.1254±0.0005 OUR FIT0.1254±0.0005 OUR FIT0.1254±0.0005 OUR FIT0.1254±0.0005 OUR FIT0.1255±0.0006 OUR AVERAGE0.1255±0.0006 OUR AVERAGE0.1255±0.0006 OUR AVERAGE0.1255±0.0006 OUR AVERAGE0.1263±0.0004±0.0011 13M 1 AMBROSINO 06 KLOE0.1252±0.0007 2 ALEXOPOU... 04 KTEV1There are 
orrelations between these �ve KLOE measurements: B(KL → πe ν), B(KL →
πµν), B(KL → 3π0), B(KL → π+π−π0), and τKL measured in AMBROSINO 06.See the footnote for the τKL measurement for the 
orrelation matrix.2 For 
orrelations with other ALEXOPOULOS 04 measurements, see the footnote withtheir B(KL → πe ν) measurement.�(

π+π−π0)/�(
π± e∓ νe) �7/�1�(

π+π−π0)/�(
π± e∓ νe) �7/�1�(

π+π−π0)/�(
π± e∓ νe) �7/�1�(

π+π−π0)/�(
π± e∓ νe) �7/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.3092±0.0016 OUR FIT0.3092±0.0016 OUR FIT0.3092±0.0016 OUR FIT0.3092±0.0016 OUR FIT Error in
ludes s
ale fa
tor of 1.1.

• • • We use the following data for averages but not for �ts. • • •0.3078±0.0005±0.00170.3078±0.0005±0.00170.3078±0.0005±0.00170.3078±0.0005±0.0017 799K 1 ALEXOPOU... 04 KTEV Not in �t
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.336 ±0.003 ±0.007 28k KREUTZ 95 NA311This measurement enters the �t via their separate measurements for the two modes.

�(
π+π−π0)/[�(

π± e∓ νe)+�(
π±µ∓νµ

)+�(
π+π−π0)] �7/(�1+�2+�7)�(

π+π−π0)/[�(
π± e∓ νe)+�(

π±µ∓νµ

)+�(
π+π−π0)] �7/(�1+�2+�7)�(

π+π−π0)/[�(
π± e∓ νe)+�(

π±µ∓νµ

)+�(
π+π−π0)] �7/(�1+�2+�7)�(

π+π−π0)/[�(
π± e∓ νe)+�(

π±µ∓νµ

)+�(
π+π−π0)] �7/(�1+�2+�7)VALUE EVTS DOCUMENT ID TECN COMMENT0.1565±0.0006 OUR FIT0.1565±0.0006 OUR FIT0.1565±0.0006 OUR FIT0.1565±0.0006 OUR FIT Error in
ludes s
ale fa
tor of 1.1.

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.163 ±0.003 6499 CHO 77 HBC0.1605±0.0038 1590 ALEXANDER 73B HBC0.146 ±0.004 3200 BRANDENB... 73 HBC0.159 ±0.010 558 EVANS 73 HLBC0.167 ±0.016 1402 KULYUKINA 68 CC0.161 ±0.005 HOPKINS 67 HBC0.162 ±0.015 126 HAWKINS 66 HBC0.159 ±0.015 326 ASTBURY 65B CC0.178 ±0.017 566 GUIDONI 65 HBC0.144 ±0.004 1729 HOPKINS 65 HBC See HOPKINS 67�(
π+π−)/�total �8/��(
π+π−)/�total �8/��(
π+π−)/�total �8/��(
π+π−)/�total �8/�Violates CP 
onservation.VALUE (units 10−3) DOCUMENT ID TECN1.967±0.010 OUR FIT1.967±0.010 OUR FIT1.967±0.010 OUR FIT1.967±0.010 OUR FIT Error in
ludes s
ale fa
tor of 1.5.1.975±0.0121.975±0.0121.975±0.0121.975±0.012 1 ALEXOPOU... 04 KTEV1For 
orrelations with other ALEXOPOULOS 04 measurements, see the footnote withtheir B(KL → πe ν) measurement.�(
π+π−)/�(

π± e∓ νe) �8/�1�(
π+π−)/�(

π± e∓ νe) �8/�1�(
π+π−)/�(

π± e∓ νe) �8/�1�(
π+π−)/�(

π± e∓ νe) �8/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.849±0.020 OUR FIT4.849±0.020 OUR FIT4.849±0.020 OUR FIT4.849±0.020 OUR FIT Error in
ludes s
ale fa
tor of 1.1.4.840±0.020 OUR AVERAGE4.840±0.020 OUR AVERAGE4.840±0.020 OUR AVERAGE4.840±0.020 OUR AVERAGE4.826±0.022±0.016 47k 1 LAI 07 NA48
• • • We use the following data for averages but not for �ts. • • •4.856±0.017±0.023 84k 2 ALEXOPOU... 04 KTEV Not in �t1The LAI 07 
entral value of 4.835× 10−3 has been redu
ed by 0.19% to 4.826× 10−3to subtra
t the 
ontribution from the dire
t emission mode K0L → π+π− γ(DE).2This measurement enters the �t via their separate measurements for the two modes.
[�(

π+π−)+�(
π+π− γ (DE))]/�(

π±µ∓ νµ

) (�8+�14)/�2[�(
π+π−)+�(

π+π− γ (DE))]/�(
π±µ∓ νµ

) (�8+�14)/�2[�(
π+π−)+�(

π+π− γ (DE))]/�(
π±µ∓ νµ

) (�8+�14)/�2[�(
π+π−)+�(

π+π− γ (DE))]/�(
π±µ∓ νµ

) (�8+�14)/�2VALUE (units 10−3) EVTS DOCUMENT ID TECN7.38 ±0.04 OUR FIT7.38 ±0.04 OUR FIT7.38 ±0.04 OUR FIT7.38 ±0.04 OUR FIT Error in
ludes s
ale fa
tor of 1.4.7.275±0.042±0.0547.275±0.042±0.0547.275±0.042±0.0547.275±0.042±0.054 45k 1 AMBROSINO 06F KLOE1Fully in
lusive. Taking B(K0L → πµν) from KLOE, AMBROSINO 06, B(K0L →
π+π− + π+π− γ (DE)) = (1.963 ± 0.012 ± 0.017) × 10−3 is obtained.�(

π+π−)/[�(
π± e∓ νe)+�(

π±µ∓νµ

)] �8/(�1+�2)�(
π+π−)/[�(

π± e∓ νe)+�(
π±µ∓νµ

)] �8/(�1+�2)�(
π+π−)/[�(

π± e∓ νe)+�(
π±µ∓νµ

)] �8/(�1+�2)�(
π+π−)/[�(

π± e∓ νe)+�(
π±µ∓νµ

)] �8/(�1+�2)Violates CP 
onservation.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.909±0.013 OUR FIT2.909±0.013 OUR FIT2.909±0.013 OUR FIT2.909±0.013 OUR FIT Error in
ludes s
ale fa
tor of 1.3.
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.13 ±0.14 1687 COUPAL 85 SPEC η+−=2.28 ± 0.063.04 ±0.14 2703 DEVOE 77 SPEC η+−=2.25 ± 0.052.51 ±0.23 309 1 DEBOUARD 67 OSPK η+−=2.00 ± 0.092.35 ±0.19 525 1 FITCH 67 OSPK η+−=1.94 ± 0.081Old experiments ex
luded from �t. See subse
tion on η+− in se
tion on \PARAMETERSFOR K0L → 2π DECAY" below for average η+− of these experiments and for note ondis
repan
y.�(

π± e∓νe)/�(2 tra
ks) �1/(�1+�2+0.03508�6+�7+�8)�(
π± e∓νe)/�(2 tra
ks) �1/(�1+�2+0.03508�6+�7+�8)�(
π± e∓νe)/�(2 tra
ks) �1/(�1+�2+0.03508�6+�7+�8)�(
π± e∓νe)/�(2 tra
ks) �1/(�1+�2+0.03508�6+�7+�8)�(2 tra
ks) = �(π± e∓ νe ) + �(π±µ∓ νµ) + 0.03508 �(3π0) + �(π+π−π0)+ �(π+π−) where 0.03508 is the fra
tion of 3π0 events with one Dalitz de
ay (π0 →

γ e+ e−).VALUE EVTS DOCUMENT ID TECN0.5006±0.0009 OUR FIT0.5006±0.0009 OUR FIT0.5006±0.0009 OUR FIT0.5006±0.0009 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.4978±0.00350.4978±0.00350.4978±0.00350.4978±0.0035 6.8M LAI 04B NA48�(
π+π−)/[�(

π± e∓ νe)+�(
π±µ∓νµ

)+�(
π+π−π0)] �8/(�1+�2+�7)�(

π+π−)/[�(
π± e∓ νe)+�(

π±µ∓νµ

)+�(
π+π−π0)] �8/(�1+�2+�7)�(

π+π−)/[�(
π± e∓ νe)+�(

π±µ∓νµ

)+�(
π+π−π0)] �8/(�1+�2+�7)�(

π+π−)/[�(
π± e∓ νe)+�(

π±µ∓νµ

)+�(
π+π−π0)] �8/(�1+�2+�7)Violates CP 
onservation.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.454±0.011 OUR FIT2.454±0.011 OUR FIT2.454±0.011 OUR FIT2.454±0.011 OUR FIT Error in
ludes s
ale fa
tor of 1.3.

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.60 ±0.07 4200 1 MESSNER 73 ASPK η+− = 2.23 ± 0.051From same data as �(
π+π−

)/�(
π+π−π0) MESSNER 73, but with di�erent normal-ization.�(

π+π−)/�(
π+π−π0) �8/�7�(

π+π−)/�(
π+π−π0) �8/�7�(

π+π−)/�(
π+π−π0) �8/�7�(

π+π−)/�(
π+π−π0) �8/�7Violates CP 
onservation.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.568±0.010 OUR FIT1.568±0.010 OUR FIT1.568±0.010 OUR FIT1.568±0.010 OUR FIT Error in
ludes s
ale fa
tor of 1.3.

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.64 ±0.04 4200 MESSNER 73 ASPK η+− = 2.23�(
π0π0)/�total �9/��(
π0π0)/�total �9/��(
π0π0)/�total �9/��(
π0π0)/�total �9/�Violates CP 
onservation.VALUE (units 10−3) DOCUMENT ID TECN0.864±0.006 OUR FIT0.864±0.006 OUR FIT0.864±0.006 OUR FIT0.864±0.006 OUR FIT Error in
ludes s
ale fa
tor of 1.8.0.865±0.0120.865±0.0120.865±0.0120.865±0.012 1 ALEXOPOU... 04 KTEV1For 
orrelations with other ALEXOPOULOS 04 measurements, see the footnote withtheir B(KL → πe ν) measurement.



1009100910091009See key on page 601 MesonParti
le ListingsK 0L�(π0π0)/�(π+π−) �9/�8�(π0π0)/�(π+π−) �9/�8�(π0π0)/�(π+π−) �9/�8�(π0π0)/�(π+π−) �9/�8Violates CP 
onservation.VALUE DOCUMENT ID0.4395±0.0023 OUR FIT0.4395±0.0023 OUR FIT0.4395±0.0023 OUR FIT0.4395±0.0023 OUR FIT Error in
ludes s
ale fa
tor of 2.0.0.4390±0.00120.4390±0.00120.4390±0.00120.4390±0.0012 ETAFIT 16�(π0π0)/�(3π0) �9/�6�(π0π0)/�(3π0) �9/�6�(π0π0)/�(3π0) �9/�6�(π0π0)/�(3π0) �9/�6Violates CP 
onservation.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.443 ±0.004 OUR FIT0.443 ±0.004 OUR FIT0.443 ±0.004 OUR FIT0.443 ±0.004 OUR FIT Error in
ludes s
ale fa
tor of 2.1.
• • • We use the following data for averages but not for �ts. • • •0.4446±0.0016±0.00190.4446±0.0016±0.00190.4446±0.0016±0.00190.4446±0.0016±0.0019 100K 1 ALEXOPOU... 04 KTEV Not in �t
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.37 ±0.08 29 BARMIN 70 HLBC η00=2.02 ± 0.230.32 ±0.15 30 BUDAGOV 70 HLBC η00=1.9 ± 0.50.46 ±0.11 57 BANNER 69 OSPK η00=2.2 ± 0.31This measurement enters the �t via their separate measurements for the two modes.Semileptoni
 modes with photonsSemileptoni
 modes with photonsSemileptoni
 modes with photonsSemileptoni
 modes with photons�(π± e∓νe γ

)/�(π± e∓ νe) �10/�1�(π± e∓νe γ
)/�(π± e∓ νe) �10/�1�(π± e∓νe γ
)/�(π± e∓ νe) �10/�1�(π± e∓νe γ
)/�(π± e∓ νe) �10/�1VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.935±0.015 OUR AVERAGE0.935±0.015 OUR AVERAGE0.935±0.015 OUR AVERAGE0.935±0.015 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.0.924±0.023±0.016 9k 1 AMBROSINO 08F KLOE E∗

γ
>30 MeV, θ∗e γ

>20◦0.916±0.017 4309 2 ALEXOPOU... 05 KTEV E∗γ >30 MeV, θ∗e γ >20◦0.964±0.008+0.011
−0.009 19K LAI 05 NA48 E∗γ >30 MeV, θ∗e γ >20◦0.908±0.008+0.013
−0.012 15k ALAVI-HARATI01J KTEV E∗γ ≥ 30 MeV, θ∗e γ ≥ 20◦0.934±0.036+0.055
−0.039 1384 LEBER 96 NA31 E∗γ ≥ 30 MeV, θ∗e γ ≥ 20◦1Dire
t emission 
ontribution measured 〈X〉 = −2.3 ± 1.3 ± 1.4.2Also measured 
ut E∗

γ
>10 MeV, θ∗e γ

>0◦ 14221 evts: �(π± e∓ νe γ) / �(π± e∓ νe )= (4.942 ± 0.062)%.
WEIGHTED AVERAGE
0.935±0.015 (Error scaled by 1.9)

LEBER 96 NA31
ALAVI-HARATI 01J KTEV 3.2
LAI 05 NA48 5.7
ALEXOPOU... 05 KTEV 1.3
AMBROSINO 08F KLOE 0.2

χ2

      10.3
(Confidence Level = 0.016)

0.8 0.85 0.9 0.95 1 1.05 1.1�(
π± e∓ νe γ

)/�(
π± e∓νe) (units 10−2)�(π±µ∓νµ γ

)/�(π±µ∓νµ

) �11/�2�(π±µ∓νµ γ
)/�(π±µ∓νµ

) �11/�2�(π±µ∓νµ γ
)/�(π±µ∓νµ

) �11/�2�(π±µ∓νµ γ
)/�(π±µ∓νµ

) �11/�2VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.09±0.08 OUR AVERAGE2.09±0.08 OUR AVERAGE2.09±0.08 OUR AVERAGE2.09±0.08 OUR AVERAGE2.09±0.09 1 ALEXOPOU... 05 KTEV E∗
γ

> 30 MeV2.08±0.17+0.16
−0.21 252 BENDER 98 NA48 E∗γ ≥ 30 MeV1Also measured 
ut E∗γ >10 MeV, 1385 evts: �(π±µ∓ νµγ) / �(π±µ∓ νµ) = (0.530 ±0.014 ± 0.012)%.Hadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairsHadroni
 modes with photons or ℓℓ pairs�(π0π0 γ
)/�total �12/��(π0π0 γ
)/�total �12/��(π0π0 γ
)/�total �12/��(π0π0 γ
)/�total �12/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 0.243< 0.243< 0.243< 0.243 90 ABOUZAID 08B KTEV K0L → π0π0D γ, π0D → e e γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 5.6 90 BARR 94 NA31
<230 90 ROBERTS 94 E799�(π+π−γ

)/�(π+π−π0) �13/�7�(π+π−γ
)/�(π+π−π0) �13/�7�(π+π−γ
)/�(π+π−π0) �13/�7�(π+π−γ
)/�(π+π−π0) �13/�7For earlier limits see our 1992 edition Physi
al Review D45D45D45D45 S1 (1992).VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.23±0.13 516 1,2 CARROLL 80B SPEC E∗γ > 20 MeV2.33±0.23 546 1,3 CARROLL 80B SPEC3.56±0.26 1062 1,4 CARROLL 80B SPEC E∗γ > 20 MeV

1CARROLL 80B quotes B(π+π− γ) using normalization B(π+π−π0) = 0.1239. Wedivide by this value to obtain their measured �(π+π− γ) / �(π+π−π0).2 Internal Bremsstrahlung 
omponent only.3Dire
t γ emission 
omponent only.4Both IB and DE 
omponents.�(π+π−γ
)/�(π+π−) �13/�8�(π+π−γ
)/�(π+π−) �13/�8�(π+π−γ
)/�(π+π−) �13/�8�(π+π−γ
)/�(π+π−) �13/�8VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.11±0.08 OUR FIT2.11±0.08 OUR FIT2.11±0.08 OUR FIT2.11±0.08 OUR FIT Error in
ludes s
ale fa
tor of 2.9.2.11±0.08 OUR AVERAGE2.11±0.08 OUR AVERAGE2.11±0.08 OUR AVERAGE2.11±0.08 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.9.2.08±0.02±0.02 8669 1 ALAVI-HARATI01B KTEV E∗γ > 20 MeV2.30±0.07 3136 RAMBERG 93 E731 E∗

γ
> 20 MeV1ALAVI-HARATI 01B in
ludes both Dire
t Emission (DE) and Inner Bremsstrahlung (IB)pro
esses.�(π+π−γ (DE))/�(π+π−γ

) �14/�13�(π+π−γ (DE))/�(π+π−γ
) �14/�13�(π+π−γ (DE))/�(π+π−γ
) �14/�13�(π+π−γ (DE))/�(π+π−γ
) �14/�13These values assume that �(K0L → π+π− γ) = �(K0L → π+π− γ(DE)) + �(K0L →

π+π− γ(IB)), the sum of widths for the dire
t emission (DE) and inner bremsstrahlung(IE) pro
esses, with no IB-DE interferen
e. DE assumes a form fa
tor as des
ribed inRAMBERG 93.VALUE EVTS DOCUMENT ID TECN COMMENT0.684±0.009 OUR FIT0.684±0.009 OUR FIT0.684±0.009 OUR FIT0.684±0.009 OUR FIT0.684±0.009 OUR AVERAGE0.684±0.009 OUR AVERAGE0.684±0.009 OUR AVERAGE0.684±0.009 OUR AVERAGE0.689±0.021 111k ABOUZAID 06A KTEV E∗γ > 20 MeV0.683±0.011 8669 ALAVI-HARATI01B KTEV E∗γ > 20 MeV0.685±0.041 3136 RAMBERG 93 E731 E∗γ > 20 MeV�(π0 2γ)/�total �15/��(π0 2γ)/�total �15/��(π0 2γ)/�total �15/��(π0 2γ)/�total �15/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT1.273±0.033 OUR AVERAGE1.273±0.033 OUR AVERAGE1.273±0.033 OUR AVERAGE1.273±0.033 OUR AVERAGE1.28 ±0.06 ±0.01 1.4k 1 ABOUZAID 08 KTEV1.27 ±0.04 ±0.01 2.5k 2 LAI 02B NA48
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.68 ±0.07 ±0.08 884 3 ALAVI-HARATI99B KTEV1.7 ±0.2 ±0.2 63 4 BARR 92 NA311.86 ±0.60 ±0.60 60 PAPADIMITR...91 E731 mγ γ > 280 MeV
<5.1 90 PAPADIMITR...91 E731 mγ γ < 264 MeV2.1 ±0.6 14 5 BARR 90C NA31 mγ γ > 280 MeV1ABOUZAID 08 reports (1.29 ± 0.03 ± 0.05)× 10−6 from a measurement of [�(K0L →

π0 2γ)/�total℄ / [B(K0L → π0π0)℄ assuming B(K0L → π0π0) = (8.69± 0.04)×10−4,whi
h we res
ale to our best value B(K0L → π0π0) = (8.64 ± 0.06)× 10−4. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.2 LAI 02B reports [�(K0L → π0 2γ)/�total℄ / [B(K0L → π0π0)℄ = (1.467 ± 0.032 ±0.032)× 10−3 whi
h we multiply by our best value B(K0L → π0π0) = (8.64 ± 0.06)×10−4. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value. They also �nd that B(π0 2γ, mγ γ <110 MeV) <0.6× 10−8(90% CL).3ALAVI-HARATI 99B �nds that �(π0 2γ, mγ γ <240 MeV)) / �(π0 2γ) = (17.3 ± 1.3 ±1.5)%. Superseded by ABOUZAID 08.4BARR 92 �nd that �(π0 2γ, mγ γ <240 MeV)/�(π0 2γ)< 0.09 (90% CL).5BARR 90C superseded by BARR 92.�(π0 γ e+ e−)/�total �16/��(π0 γ e+ e−)/�total �16/��(π0 γ e+ e−)/�total �16/��(π0 γ e+ e−)/�total �16/�VALUE (units 10−8) CL% EVTS DOCUMENT ID TECN1.62±0.14±0.091.62±0.14±0.091.62±0.14±0.091.62±0.14±0.09 125 1 ABOUZAID 07D KTEV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.34±0.35±0.13 44 ALAVI-HARATI01E KTEV
<71 90 0 MURAKAMI 99 SPEC1ABOUZAID 07D in
ludes 1997 (ALAVI-HARATI 01E) and 1999 data. It measures theratio of B(K0L → π0 γ e+ e−) / B(K0L → π0π0D ), where π0D is the Dalitz de
aying

π0, and uses PDG 06 values B(K0L → π0π0) = (8.69 ± 0.04) × 10−4, and B(π0D →e+ e− γ) = (1.198 ± 0.032) × 10−2. Supersedes ALAVI-HARATI 01E result.Other modes with photons or ℓℓ pairsOther modes with photons or ℓℓ pairsOther modes with photons or ℓℓ pairsOther modes with photons or ℓℓ pairs�(2γ)/�total �17/��(2γ)/�total �17/��(2γ)/�total �17/��(2γ)/�total �17/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT5.47±0.04 OUR FIT5.47±0.04 OUR FIT5.47±0.04 OUR FIT5.47±0.04 OUR FIT Error in
ludes s
ale fa
tor of 1.1.
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.54±0.84 1 BANNER 72B OSPK4.5 ±1.0 23 ENSTROM 71 OSPK K0L 1.5{9 GeV/
5.0 ±1.0 2 REPELLIN 71 OSPK5.5 ±1.1 90 KUNZ 68 OSPK Norm.to 3 π(C+N)1This value uses (η00/η+−)2 = 1.05± 0.14. In general, �(2γ)/�total = [(4.32± 0.55)×10−4][(η00/η+−)2].2Assumes regeneration amplitude in 
opper at 2 GeV is 22 mb. To evaluate for a givenregeneration amplitude and error, multiply by (regeneration amplitude/22mb)2.



1010101010101010MesonParti
le ListingsK 0L�(2γ)/�(3π0) �17/�6�(2γ)/�(3π0) �17/�6�(2γ)/�(3π0) �17/�6�(2γ)/�(3π0) �17/�6VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.802±0.017 OUR FIT2.802±0.017 OUR FIT2.802±0.017 OUR FIT2.802±0.017 OUR FIT2.802±0.018 OUR AVERAGE2.802±0.018 OUR AVERAGE2.802±0.018 OUR AVERAGE2.802±0.018 OUR AVERAGE2.79 ±0.02 ±0.02 27k ADINOLFI 03 KLOE2.81 ±0.01 ±0.02 LAI 03 NA48
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.13 ±0.43 28 BARMIN 71 HLBC2.24 ±0.28 115 BANNER 69 OSPK2.5 ±0.7 16 ARNOLD 68B HLBC Va
uum de
ay�(2γ)/�(

π0π0) �17/�9�(2γ)/�(
π0π0) �17/�9�(2γ)/�(
π0π0) �17/�9�(2γ)/�(
π0π0) �17/�9VALUE EVTS DOCUMENT ID TECN0.633±0.006 OUR FIT0.633±0.006 OUR FIT0.633±0.006 OUR FIT0.633±0.006 OUR FIT Error in
ludes s
ale fa
tor of 1.4.0.632±0.004±0.0080.632±0.004±0.0080.632±0.004±0.0080.632±0.004±0.008 110k BURKHARDT 87 NA31�(3γ)/�total �18/��(3γ)/�total �18/��(3γ)/�total �18/��(3γ)/�total �18/�VALUE CL% DOCUMENT ID TECN

<7.4× 10−8<7.4× 10−8<7.4× 10−8<7.4× 10−8 90 1 TUNG 11 K391
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.4× 10−7 90 2 BARR 95C NA311TUNG 11 reports the result assuming parity violating intera
tion and using 2005 data(Run-II and III). Assuming parity 
onserving or phase spa
e intera
tion, the 90% upperlimits obtained are 7.5× 10−8 and 8.6× 10−8, respe
tively.2Assumes a phase-spa
e de
ay distribution.�(e+ e−γ

)/�total �19/��(e+ e−γ
)/�total �19/��(e+ e−γ
)/�total �19/��(e+ e−γ
)/�total �19/�VALUE (units 10−6) EVTS DOCUMENT ID TECN9.4±0.4 OUR FIT9.4±0.4 OUR FIT9.4±0.4 OUR FIT9.4±0.4 OUR FIT Error in
ludes s
ale fa
tor of 2.0.10.0±0.5 OUR AVERAGE10.0±0.5 OUR AVERAGE10.0±0.5 OUR AVERAGE10.0±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.10.6±0.2±0.4 6864 1 FANTI 99B NA489.2±0.5±0.5 1053 BARR 90B NA319.1±0.4+0.6

−0.5 919 OHL 90B B8451For FANTI 99B, the ±0.4 systemati
 error in
ludes for un
ertainties in the 
al
ulation,primarily un
ertainties in the π0 → e+ e− γ and K0L → π0π0 bran
hing ratios, eval-uated using our 1999 Web edition values.
WEIGHTED AVERAGE
10.0±0.5 (Error scaled by 1.5)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

OHL 90B B845 1.4
BARR 90B NA31 1.2
FANTI 99B NA48 2.0

χ2

       4.6
(Confidence Level = 0.099)

6 8 10 12 14 16�(e+ e− γ
)/�total (units 10−6)�(e+ e−γ

)/�(3π0) �19/�6�(e+ e−γ
)/�(3π0) �19/�6�(e+ e−γ
)/�(3π0) �19/�6�(e+ e−γ
)/�(3π0) �19/�6VALUE (units 10−5) EVTS DOCUMENT ID TECN4.82±0.21 OUR FIT4.82±0.21 OUR FIT4.82±0.21 OUR FIT4.82±0.21 OUR FIT Error in
ludes s
ale fa
tor of 2.0.4.63±0.04±0.134.63±0.04±0.134.63±0.04±0.134.63±0.04±0.13 83k 1 ABOUZAID 07B KTEV1ABOUZAID 07B reports [�(K0L → e+ e− γ

)/�(K0L → 3π0)℄ / [3�(
π0 → 2γ)/�total × �(

π0 → e+ e− γ
)/�total℄ = (1.3302 ± 0.0046 ± 0.0103) × 10−3 whi
hwe multiply by our best value 3�(

π0 → 2γ)/�total × �(
π0 → e+ e− γ

)/�total =0.0348 ± 0.0010. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(
µ+µ− γ

)/�total �20/��(
µ+µ− γ

)/�total �20/��(
µ+µ− γ

)/�total �20/��(
µ+µ− γ

)/�total �20/�VALUE (units 10−7) EVTS DOCUMENT ID TECN3.59±0.11 OUR AVERAGE3.59±0.11 OUR AVERAGE3.59±0.11 OUR AVERAGE3.59±0.11 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.3.62±0.04±0.08 9100 ALAVI-HARATI01G KTEV3.4 ±0.6 ±0.4 45 FANTI 97 NA483.23±0.23±0.19 197 SPENCER 95 E799

�(e+ e−γ γ
)/�total �21/��(e+ e−γ γ
)/�total �21/��(e+ e−γ γ
)/�total �21/��(e+ e−γ γ
)/�total �21/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT5.95±0.33 OUR AVERAGE5.95±0.33 OUR AVERAGE5.95±0.33 OUR AVERAGE5.95±0.33 OUR AVERAGE5.84±0.15±0.32 1543 ALAVI-HARATI01F KTEV E∗

γ
> 5 MeV8.0 ±1.5 +1.4

−1.2 40 SETZU 98 NA31 E∗γ > 5 MeV6.5 ±1.2 ±0.6 58 NAKAYA 94 E799 E∗γ > 5 MeV6.6 ±3.2 MORSE 92 B845 E∗γ > 5 MeV�(
µ+µ− γ γ

)/�total �22/��(
µ+µ− γ γ

)/�total �22/��(
µ+µ− γ γ

)/�total �22/��(
µ+µ− γ γ

)/�total �22/�VALUE (units 10−9) EVTS DOCUMENT ID TECN COMMENT10.4+7.5
−5.9±0.710.4+7.5
−5.9±0.710.4+7.5
−5.9±0.710.4+7.5
−5.9±0.7 4 ALAVI-HARATI00E KTEV mγ γ ≥ 1 MeV/
2Charge 
onjugation × Parity (CP) or Lepton Family number (LF )Charge 
onjugation × Parity (CP) or Lepton Family number (LF )Charge 
onjugation × Parity (CP) or Lepton Family number (LF )Charge 
onjugation × Parity (CP) or Lepton Family number (LF )violating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modesviolating modes, or �S = 1 weak neutral 
urrent (S1) modes�(

µ+µ−)/�(
π+π−) �23/�8�(

µ+µ−)/�(
π+π−) �23/�8�(

µ+µ−)/�(
π+π−) �23/�8�(

µ+µ−)/�(
π+π−) �23/�8Test for �S = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT3.48 ±0.05 OUR AVERAGE3.48 ±0.05 OUR AVERAGE3.48 ±0.05 OUR AVERAGE3.48 ±0.05 OUR AVERAGE3.474±0.057 6210 AMBROSE 00 B8713.87 ±0.30 179 1 AKAGI 95 SPEC3.38 ±0.17 707 HEINSON 95 B791

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.9 ±0.3 ±0.1 178 2 AKAGI 91B SPEC In AKAGI 953.45 ±0.18 ±0.13 368 3 HEINSON 91 SPEC In HEINSON 954.1 ±0.5 54 INAGAKI 89 SPEC In AKAGI 91B2.8 ±0.3 ±0.2 87 MATHIAZHA...89B SPEC In HEINSON 911AKAGI 95 gives this number multiplied by the PDG 1992 average for �(K0L →
π+π−)/�(total).2AKAGI 91B give this number multiplied by the 1990 PDG average for �(K0L →
π+π−)/�(total).3HEINSON 91 give �(K0L → µµ)/�total . We divide out the �(K0L → π+π−)/�totalPDG average whi
h they used.�(e+ e−)/�total �24/��(e+ e−)/�total �24/��(e+ e−)/�total �24/��(e+ e−)/�total �24/�Test for �S = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE (units 10−10) CL% EVTS DOCUMENT ID TECN0.087+0.057

−0.0410.087+0.057
−0.0410.087+0.057
−0.0410.087+0.057
−0.041 4 AMBROSE 98 B871

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.6 90 1 AKAGI 95 SPEC
<0.41 90 0 1 ARISAKA 93B B7911ARISAKA 93B in
ludes all events with <6 MeV radiated energy.�(

π+π− e+ e−)/�total �25/��(
π+π− e+ e−)/�total �25/��(
π+π− e+ e−)/�total �25/��(
π+π− e+ e−)/�total �25/�Test for �S = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE (units 10−7) CL% EVTS DOCUMENT ID TECN COMMENT3.11±0.19 OUR AVERAGE3.11±0.19 OUR AVERAGE3.11±0.19 OUR AVERAGE3.11±0.19 OUR AVERAGE3.08±0.09±0.18 1125 1 LAI 03C NA483.2 ±0.6 ±0.4 37 ADAMS 98 KTEV4.4 ±1.3 ±0.5 13 TAKEUCHI 98 SPEC

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.6 90 NOMURA 97 SPEC mee > 4 MeV1LAI 03C se
ond error is 0.15(syst)±0.10(norm) 
ombined in quadrature. The normal-ization uses BR(KL → π+π−π0) * BR(π0 → e+ e−) = (1.505 ± 0.047) × 10−3from our 2000 Edition.�(

π0π0 e+ e−)/�total �26/��(
π0π0 e+ e−)/�total �26/��(
π0π0 e+ e−)/�total �26/��(
π0π0 e+ e−)/�total �26/�Test for �S = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE (units 10−9) CL% EVTS DOCUMENT ID TECN

<6.6<6.6<6.6<6.6 90 1 ALAVI-HARATI02C E799�(
π0π0µ+µ−)/�total �27/��(
π0π0µ+µ−)/�total �27/��(
π0π0µ+µ−)/�total �27/��(
π0π0µ+µ−)/�total �27/�Test for �S = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE CL% DOCUMENT ID TECN

<9.2× 10−11<9.2× 10−11<9.2× 10−11<9.2× 10−11 90 1 ABOUZAID 11A E7991ABOUZAID 11A also reports B(K0L → π0π0X0 → π0π0µ+µ−) < 1.0× 10−10 at90% C.L., where the X0 is a possible new neutral boson that was reported by PARK 05with a mass of 214.3 ± 0.5 MeV/
2.�(
µ+µ− e+ e−)/�total �28/��(
µ+µ− e+ e−)/�total �28/��(
µ+µ− e+ e−)/�total �28/��(
µ+µ− e+ e−)/�total �28/�Test for �S = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE (units 10−9) CL% EVTS DOCUMENT ID TECN COMMENT2.69±0.27 OUR AVERAGE2.69±0.27 OUR AVERAGE2.69±0.27 OUR AVERAGE2.69±0.27 OUR AVERAGE2.69±0.24±0.12 131 1 ALAVI-HARATI03B KTEV2.9 +6.7

−2.4 1 GU 96 E799
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.62±0.40±0.17 43 ALAVI-HARATI01H KTEV Sup. by ALAVI-HARATI 03B
<4900 90 BALATS 83 SPEC1ALAVI-HARATI 03B also measures the linear slope α = −1.59 ± 0.37.



1011101110111011See key on page 601 Meson Parti
le ListingsK 0L�(e+ e− e+ e−)/�total �29/��(e+ e− e+ e−)/�total �29/��(e+ e− e+ e−)/�total �29/��(e+ e− e+ e−)/�total �29/�Test for �S = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE (units 10−8) EVTS DOCUMENT ID TECN COMMENT3.56±0.21 OUR AVERAGE3.56±0.21 OUR AVERAGE3.56±0.21 OUR AVERAGE3.56±0.21 OUR AVERAGE3.30±0.24±0.25 200 1 LAI 05B NA483.72±0.18±0.23 441 ALAVI-HARATI01D KTEV3.96±0.78±0.32 27 GU 94 E7993.07±1.25±0.26 6 VAGINS 93 B845
• • • We do not use the following data for averages, �ts, limits, et
. • • •6 ±2 ±1 18 2 AKAGI 95 SPEC mee >470 MeV7 ±3 ±2 6 2 AKAGI 95 SPEC mee >470 MeV10.4 ±3.7 ±1.1 8 3 BARR 95 NA316 ±2 ±1 18 AKAGI 93 CNTR Sup. by AKAGI 954 ±3 2 BARR 91 NA31 Sup. by BARR 951LAI 05B uses 1998 and 1999 data. Data are normalized to the observed events of K0L →

π+π−π0 (π0 into Dalitz pair) and PDG 04 values are used for B(K0L → π+π−π0)and B(π0 → e+ e− γ). The systemati
 error in
ludes a normalization error of ±0.10.2Values are for the total bran
hing fra
tion, a

eptan
e-
orre
ted for the mee 
uts shown.3Distribution of angles between two e+ e− pair planes favors CP=−1 for K0L.�(π0µ+µ−)/�total �30/��(π0µ+µ−)/�total �30/��(π0µ+µ−)/�total �30/��(π0µ+µ−)/�total �30/�Violates CP in leading order. Test for �S = 1 weak neutral 
urrent. Allowed byhigher-order ele
troweak intera
tion.VALUE (units 10−9) CL% EVTS DOCUMENT ID TECN
<0.38<0.38<0.38<0.38 90 ALAVI-HARATI00D KTEV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.1 90 0 HARRIS 93 E799�(π0 e+ e−)/�total �31/��(π0 e+ e−)/�total �31/��(π0 e+ e−)/�total �31/��(π0 e+ e−)/�total �31/�Violates CP in leading order. Dire
t and indire
t CP-violating 
ontributions are ex-pe
ted to be 
omparable and to dominate the CP-
onserving part. LAI 02B resultsuggests that CP-violation e�e
ts dominate. Test for �S = 1 weak neutral 
urrent.Allowed by higher-order ele
troweak intera
tion.VALUE (units 10−10) CL% EVTS DOCUMENT ID TECN COMMENT
< 2.8< 2.8< 2.8< 2.8 90 1 ALAVI-HARATI04A KTEV 
ombined result
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.5 90 ALAVI-HARATI04A KTEV0.0047+0.0022

−0.0018 2 LAI 02B NA48 CP-
onserving part
< 5.1 90 2 ALAVI-HARATI01 KTEV0.01 to 0.02 ALAVI-HARATI99B KTEV CP-
onserving part
< 43 90 0 HARRIS 93B E799
< 75 90 0 BARKER 90 E731
< 55 90 0 OHL 90 B845
< 400 90 BARR 88 NA31
<3200 90 JASTRZEM... 88 SPEC1Combined result of ALAVI-HARATI 04A 1999-2000 data set and ALAVI-HARATI 01 1997data set.2 LAI 02B uses the absen
e of a signal in K0L → π0 γ γ with m(γ γ)<m(π0) and their aVvalue to predi
t this value.�(π0 ν ν

)/�total �32/��(π0 ν ν
)/�total �32/��(π0 ν ν
)/�total �32/��(π0 ν ν
)/�total �32/�Violates CP in leading order. Test of dire
t CP violation sin
e the indire
t CP-violatingand CP-
onserving 
ontributions are expe
ted to be suppressed. Test of �S = 1 weakneutral 
urrent.VALUE (units 10−7) CL% DOCUMENT ID TECN

< 0.26< 0.26< 0.26< 0.26 90 1 AHN 10 K391
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.67 90 2 AHN 08 K391
< 2.1 90 3 AHN 06 K391
< 5.9 90 ALAVI-HARATI00 KTEV
< 16 90 ADAMS 99 KTEV
< 580 90 WEAVER 94 E799
<2200 90 GRAHAM 92 CNTR1Obtained 
ombining Run-2 (AHN 08) and Run-3 data.2Value obtained using data from February to April 2005.3Value obtained analyzing 10% of data of RUN 1 (performed in 2004).�(π0π0 ν ν

)/�total �33/��(π0π0 ν ν
)/�total �33/��(π0π0 ν ν
)/�total �33/��(π0π0 ν ν
)/�total �33/�VALUE CL% DOCUMENT ID TECN

<8.1× 10−7<8.1× 10−7<8.1× 10−7<8.1× 10−7 90 1 OGATA 11 K391
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.7× 10−5 90 2 NIX 07 K3911Using 2005 Run-I data. OGATA 11 also sets a limit on the K0L → π0π0X → invisibleparti
les pro
ess: the limit on the bran
hing fra
tion varied from 7.0×10−7 to 4.0×10−5for the mass of X ranging from 50 to 200 MeV/
2.2Observed 1 event with expe
ted ba
kground of 0.43± 0.35 events. NIX 07 also measuredB(K0L → π0π0P) < 1.2× 10−6 at 90% CL, where P is the pseudos
alar parti
le andmP < 100 MeV.

�(e±µ∓)/�total �34/��(e±µ∓)/�total �34/��(e±µ∓)/�total �34/��(e±µ∓)/�total �34/�Test of lepton family number 
onservation.VALUE (units 10−11) CL% EVTS DOCUMENT ID TECN
<0.47<0.47<0.47<0.47 90 AMBROSE 98B B871
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9.4 90 0 AKAGI 95 SPEC
<3.9 90 0 ARISAKA 93 B791
<3.3 90 0 1 ARISAKA 93 B7911This is the 
ombined result of ARISAKA 93 and MATHIAZHAGAN 89.�(e± e±µ∓µ∓)/�total �35/��(e± e±µ∓µ∓)/�total �35/��(e± e±µ∓µ∓)/�total �35/��(e± e±µ∓µ∓)/�total �35/�Test of lepton family number 
onservation.VALUE (units 10−11) CL% EVTS DOCUMENT ID TECN COMMENT
< 4.12< 4.12< 4.12< 4.12 90 0 ALAVI-HARATI03B KTEV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 12.3 90 0 1 ALAVI-HARATI01H KTEV Sup. by ALAVI-HARATI 03B
<610 90 0 1 GU 96 E7991Assuming uniform phase spa
e distribution.�(π0µ± e∓)/�total �36/��(π0µ± e∓)/�total �36/��(π0µ± e∓)/�total �36/��(π0µ± e∓)/�total �36/�Test of lepton family number 
onservation.VALUE (units 10−10) CL% DOCUMENT ID TECN
< 0.76< 0.76< 0.76< 0.76 90 ABOUZAID 08C KTEV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<62 90 ARISAKA 98 E799�(π0π0µ± e∓)/�total �37/��(π0π0µ± e∓)/�total �37/��(π0π0µ± e∓)/�total �37/��(π0π0µ± e∓)/�total �37/�Test of lepton family number 
onservation.VALUE (units 10−10) CL% DOCUMENT ID TECN
<1.7<1.7<1.7<1.7 90 ABOUZAID 08C KTEV
Vud, Vus, THE CABIBBO ANGLE,
AND CKM UNITARITY

Updated May 2016 by E. Blucher (Univ. of Chicago) and W.J.
Marciano (BNL)

The Cabibbo-Kobayashi-Maskawa (CKM) [1,2] three-

generation quark mixing matrix written in terms of the Wolfen-

stein parameters (λ, A, ρ, η) [3] nicely illustrates the orthonor-

mality constraint of unitarity and central role played by λ.

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





=




1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



+O(λ4) . (1)

That cornerstone is a carryover from the two-generation

Cabibbo angle, λ = sin(θCabibbo) = Vus. Its value is a criti-

cal ingredient in determinations of the other parameters and in

tests of CKM unitarity.

Until about 11 years ago, the precise value of λ was some-

what controversial, with kaon decays suggesting [4] λ ≃ 0.220,

while indirect determinations via nuclear β-decays implied a

somewhat larger λ ≃ 0.225 − 0.230. This difference resulted in

a 2 – 2.5 sigma deviation from the unitarity requirement

|Vud|2 + |Vus|2 + |Vub|2 = 1, (2)

a potential signal [5] for new physics effects. Below, we discuss

the current status of Vud, Vus, and their associated unitarity

test in Eq. (2). (Since |Vub|2 ≃ 1 × 10−5 is negligibly small,
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it is ignored in this discussion.) Eq. (2) is currently the most

stringent test of unitarity in the CKM matrix.

Vud

The value of Vud has been obtained from superallowed

nuclear, neutron, and pion decays. Currently, the most precise

determination of Vud comes from a set of superallowed nuclear

beta-decays [5] (0+ → 0+ transitions). Measuring their half-

lives, t, and Q values that give the decay rate factor, f , leads

to a precise determination of Vud via the master formula [6–10]

|Vud|2 =
2984.48(5) sec

ft(1 + ∆)
, (3)

where ∆ denotes the entire effect of electroweak radiative cor-

rections (RC), nuclear structure, and isospin violating nuclear

effects. ∆ is nucleus-dependent, ranging from about +3.0% to

+3.6% for the best measured superallowed decays.

The most recent analysis of 14 precisely measured superal-

lowed transitions by Hardy and Towner [11] gives a weighted

average of

Vud = 0.97417(5)exp.(9)nucl.dep.(18)RC (superallowed) , (4)

which, assuming unitarity, corresponds to λ = 0.2258(9). This

recent determination of Vud has shifted downward compared to

the 2014 value of 0.97425(22) primarily from improvements in

the nuclear isospin breaking corrections [11]. It is now closer to

the central value quoted in 2007.

Combined measurements of the neutron lifetime, τn, and

the ratio of axial-vector/vector couplings, gA ≡ GA/GV , via

neutron decay asymmetries can also be used to determine Vud:

|Vud|2 =
4908.7(1.9) sec

τn(1 + 3g2
A)

, (5)

where the error stems from uncertainties in the electroweak

radiative corrections [7] due to hadronic loop effects. Those

effects were updated and their error was reduced by about a

factor of 2 [8], leading to a ±0.0002 theoretical uncertainty in

Vud (common to all Vud extractions). Using the world averages

from this Review

τave
n = 880.3(1.1) sec (×1.9 PDG scale factor)

gave
A = 1.2723(23) (×2.2 PDG scale factor) (6)

leads to

Vud = 0.9758(6)τn(15)gA
(2)RC, (7)

with the error dominated by gA uncertainties. We note that the

larger gA now adopted in Eq. (6) leads to a value of Vud that is

still somewhat high, but in accord with the superallowed nuclear

beta decay result in Eq. (4). Future neutron studies [12] are

expected to resolve any current inconsistencies and significantly

reduce the uncertainties in gA and τn, potentially making them

a competetive way to determine Vud without nuclear physics

uncertainties.

The PIBETA experiment at PSI measured the very small

(O(10−8)) branching ratio for π+ → πoe+νe with about ±1/2%

precision. Their result gives [13]

Vud = 0.9749(26)

[
BR(π+ → e+νe(γ))

1.2352 × 10−4

] 1
2

(8)

which is normalized using the very precisely determined theoret-

ical prediction for BR(π+ → e+νe(γ)) = 1.2352(5) × 10−4 [6],

rather than the experimental branching ratio from this Review of

1.230(4)×10−4 which would lower the value to Vud = 0.9728(30).

Theoretical uncertainties in the pion β-decay determination are

very small; however, much higher statistics would be required

to make this approach competitive with others.

Vus

|Vus| may be determined from kaon decays, hyperon decays,

and tau decays. Previous determinations have most often used

Kℓ3 decays:

ΓKℓ3 =
G2

F M5
K

192π3 SEW (1 + δℓ
K + δSU2)C

2 |Vus|2 f2
+(0)Iℓ

K . (9)

Here, ℓ refers to either e or µ, GF is the Fermi constant, MK

is the kaon mass, SEW is the short-distance radiative correction,

δℓ
K is the mode-dependent long-distance radiative correction,

f+(0) is the calculated form factor at zero momentum transfer

for the ℓν system, and Iℓ
K is the phase-space integral, which

depends on measured semileptonic form factors. For charged

kaon decays, δSU2 is the deviation from one of the ratio of

f+(0) for the charged to neutral kaon decay; it is zero for

the neutral kaon. C2 is 1 (1/2) for neutral (charged) kaon

decays. Most early determinations of |Vus| were based soley on

K → πeν decays; K → πµν decays were not used because

of large uncertainties in Iµ
K . The experimental measurements

are the semileptonic decay widths (based on the semileptonic

branching fractions and lifetime) and form factors (allowing

calculation of the phase space integrals). Theory is needed for

SEW , δℓ
K , δSU2, and f+(0).

Many measurements during the last decade have resulted

in a significant shift in Vus. Most importantly, recent measure-

ments of the K → πeν branching fractions are significantly

different than earlier PDG averages, probably as a result of

inadequate treatment of radiation in older experiments. This

effect was first observed by BNL E865 [14] in the charged kaon

system and then by KTeV [15,16] in the neutral kaon sys-

tem; subsequent measurements were made by KLOE [17–20],

NA48 [21–23], and ISTRA+ [24]. Current averages (e.g., by

the PDG [25] or Flavianet [26]) of the semileptonic branching

fractions are based only on recent, high-statistics experiments
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where the treatment of radiation is clear. In addition to mea-

surements of branching fractions, new measurements of life-

times [27] and form factors [28–32], have resulted in improved

precision for all of the experimental inputs to Vus. Precise mea-

surements of form factors for Kµ3 decay make it possible to use

both semileptonic decay modes to extract Vus.

Following the analysis of Moulson [33] and the Flavianet

group [26], one finds, after including the isospin violating up-

down mass difference effect, the values of |Vus|f+(0) in Table 1.

The average of these measurements gives

f+(0)|Vus| = 0.2165(4). (10)

Figure 1 shows a comparison of these results with the PDG

evaluation from 2002 [34], as well as f+(0)(1−|Vud|2−|Vub|2)1/2,

the expectation for f+(0)|Vus| assuming unitarity, based on

|Vud| = 0.97417± 0.00021, and |Vub| = (4.1± 0.4)× 10−3 [35].

Lattice calculations of f+(0) have been carried out for 2,

2+1, and 2+1+1 quark flavors and range from about 0.96

to 0.97. Here, we use f+(0) = 0.9677(37), the 2015 preliminary

(2+1)-flavor FLAG average reported by Rosner, Stone, and Van

de Water in footnote 10 of their PDG review of pseudoscalar

decay constants [35], in Eq. (10), and find

|Vus| = λ = 0.2237(4)exp+RC(9)lattice (Kℓ3 Decays) . (11)

Table 1: |Vus|f+(0) from Kℓ3.

Decay Mode |Vus|f+(0)

K±e3 0.2172± 0.0008

K±µ3 0.2170± 0.0011

KLe3 0.2163± 0.0006

KLµ3 0.2166± 0.0006

KSe3 0.2155± 0.0013

Average 0.2165± 0.0004

A value of Vus can also be obtained from a comparison of the

radiative inclusive decay rates for K → µν(γ) and π → µν(γ)

combined with a lattice gauge theory calculation of fK+/fπ+

via [42]

|Vus|fK+

|Vud|fπ+

= 0.23871(20)

[
Γ(K → µν(γ))

Γ(π → µν(γ))

] 1
2

(12)

with the small error coming from electroweak radiative correc-

tions and isospin breaking effects. Employing

Γ(K → µν(γ))

Γ(π → µν(γ))
= 1.3367(29), (13)

which includes the recent update Γ(K → µν(γ)) = 5.134(11)×
107s−1 [33,43] and [35]

fK+/fπ+ = 1.1928(26) (14)

0.21 0.215 0.22 0.225
IVusI f+(0)

PDG 02
K+e3 (2016)
K+m3 (2016)

PDG 02
KLe3 (2016)
KLm3 (2016)

KSe3 (2016)

Unitarity

IVusI f+(0)

K+

KL

KS

f+(0)(1-|Vud|
2-|Vub|

2)1/2

Figure 1: Comparison of determinations of
|Vus|f+(0) from this review (labeled 2016),
from the PDG 2002, and with the predic-
tion from unitarity using |Vud| and the lat-
tice calculation of f+(0) = 0.9677(37) [35]. For
f+(0)(1−|Vud|2−|Vub|2)1/2, the inner error bars
are from the quoted uncertainty in f+(0); the
total uncertainties include the |Vud| and |Vub|
errors.

along with the value of Vud in Eq. (4) leads to

|Vus| = 0.22540(53)exp(19)RC(49)lattice (Kµ2 Decays) . (15)

Together, a weighted average of the Kℓ3 (Eq. (11)) and Kµ2

(Eq. (15)) results gives

|Vus| = 0.2248(6). (16)

It should be mentioned that hyperon decay fits suggest [45]

|Vus| = 0.2250(27) (Hyperon Decays) (17)

modulo SU(3) breaking effects that could shift that value up or

down. We note that a representative effort [46] that incorporates

SU(3) breaking found Vus = 0.226(5). Strangeness changing tau

decays, averaging both inclusive and exclusive measurements,

currently give [47]

|Vus| = 0.2202(15) (Tau Decays) , (18)

which differs by about 3 sigma from the kaon determination

discussed above, and would, if combined with Vud from super-

allowed beta decays, lead to a 2.6 sigma deviation from unitarity.

This discrepancy results mainly from the inclusive tau decay

results that rely on Finite Energy Sum Rule techniques and

assumptions. Further investigation of that approach seems to

be warranted.

Employing the values of Vud and Vus from Eq. (4) and

Eq. (16), respectively, leads to the unitarity consistency check

|Vud|2 + |Vus|2 + |Vub|2 = 0.9995(4)(3). (19)

where the first error is the uncertainty from |Vud|2 and the

second error is the uncertainty from |Vus|2.
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CKM Unitarity Constraints

The current good experimental agreement with unitarity,

|Vud|2+ |Vus|2+ |Vub|2 = 0.9995(5), provides strong confirmation

of Standard Model radiative corrections (which range between

3-4% depending on the nucleus used) at better than the 50 sigma

level [48]. In addition, it implies constraints on “New Physics”

effects at both the tree and quantum loop levels. Those effects

could be in the form of contributions to nuclear beta decays,

K decays and/or muon decays, with the last of these providing

normalization via the muon lifetime [49], which is used to

obtain the Fermi constant, Gµ = 1.1663787(6)× 10−5GeV−2.

In the following sections, we illustrate the implications of

CKM unitarity for (1) exotic muon decays [50]( beyond ordinary

muon decay µ+ → e+νeν̄µ) and (2) new heavy quark mixing

VuD [51]. Other examples in the literature [52,53] include

Zχ boson quantum loop effects, supersymmetry, leptoquarks,

compositeness etc.

Exotic Muon Decays

If additional lepton flavor violating decays such as µ+ →
e+ν̄eνµ (wrong neutrinos) occur, they would cause confusion in

searches for neutrino oscillations at, for example, muon storage

rings/neutrino factories or other neutrino sources from muon

decays. Calling the rate for all such decays Γ(exotic µ decays),

they should be subtracted before the extraction of Gµ and

normalization of the CKM matrix. Since that is not done and

unitarity works, one has (at one-sided 95% CL)

|Vud|2 + |Vus|2 + |Vub|2 = 1 − BR(exotic µ decays) ≥ 0.9987

(20)

or

BR(exotic µ decays) ≤ 0.0013 . (21)

This bound is a factor of 10 better than the direct experimental

bound on µ+ → e+ν̄eνµ.

New Heavy Quark Mixing

Heavy D quarks naturally occur in fourth quark generation

models and some heavy quark “new physics” scenarios such as

E6 grand unification. Their mixing with ordinary quarks gives

rise to Vud which is constrained by unitarity (one sided 95%

CL)

|Vud|2 + |Vus|2 + |Vub|2 = 1 − |VuD|2 ≥ 0.9987

|VuD| ≤ 0.04 . (22)

A similar constraint applies to heavy neutrino mixing and the

couplings VµN and VeN .
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∣∣matrix element∣∣2 = 1 + gu + hu2 + jv + kv2 + fuvwhere u = (s3 − s0) / m2
π and v = (s2 − s1) / m2

πLINEAR COEFFICIENT g FOR K0L → π+π−π0LINEAR COEFFICIENT g FOR K0L → π+π−π0LINEAR COEFFICIENT g FOR K0L → π+π−π0LINEAR COEFFICIENT g FOR K0L → π+π−π0VALUE EVTS DOCUMENT ID TECN COMMENT0.678 ±0.008 OUR AVERAGE0.678 ±0.008 OUR AVERAGE0.678 ±0.008 OUR AVERAGE0.678 ±0.008 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.0.6823±0.0044±0.0044 500k ANGELOPO... 98C CPLR0.681 ±0.024 6499 CHO 77 HBC0.620 ±0.023 4709 PEACH 77 HBC0.677 ±0.010 509k MESSNER 74 ASPK ay = −0.917 ± 0.013
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.69 ±0.07 192 1 BALDO-... 75 HLBC0.590 ±0.022 56k 1 BUCHANAN 75 SPEC au = −0.277 ± 0.0100.619 ±0.027 20k 1,2 BISI 74 ASPK at = −0.282 ± 0.0110.612 ±0.032 1 ALEXANDER 73B HBC0.73 ±0.04 3200 1 BRANDENB... 73 HBC0.608 ±0.043 1486 1 KRENZ 72 HLBC at = −0.277 ± 0.0180.650 ±0.012 29k 1 ALBROW 70 ASPK ay = −0.858 ± 0.0150.593 ±0.022 36k 1,3 BUCHANAN 70 SPEC au = −0.278 ± 0.0100.664 ±0.056 4400 1 SMITH 70 OSPK at = −0.306 ± 0.0240.400 ±0.045 2446 1 BASILE 68B OSPK at = −0.188 ± 0.0200.649 ±0.044 1350 1 HOPKINS 67 HBC at = −0.294 ± 0.0180.428 ±0.055 1198 1 NEFKENS 67 OSPK au = −0.204 ± 0.025

1Quadrati
 dependen
e required by some experiments. (See se
tions on \QUADRATICCOEFFICIENT h" and \QUADRATIC COEFFICIENT k" below.) Correlations preventus from averaging results of �ts not in
luding g, h, and k terms.2BISI 74 value 
omes from quadrati
 �t with quad. term 
onsistent with zero. g error isthus larger than if linear �t were used.3BUCHANAN 70 result revised by BUCHANAN 75 to in
lude radiative 
orrelations andto use more reliable K0L momentum spe
trum of se
ond experiment (had same beam).
WEIGHTED AVERAGE
0.678±0.008 (Error scaled by 1.5)

MESSNER 74 ASPK 0.0
PEACH 77 HBC 6.3
CHO 77 HBC 0.0
ANGELOPO... 98C CPLR 0.5

χ2

       6.9
(Confidence Level = 0.076)

0.55 0.6 0.65 0.7 0.75 0.8Linear 
oe�. g for K0L → π+π−π0 matrix element squaredQUADRATIC COEFFICIENT h FOR K0L → π+π−π0QUADRATIC COEFFICIENT h FOR K0L → π+π−π0QUADRATIC COEFFICIENT h FOR K0L → π+π−π0QUADRATIC COEFFICIENT h FOR K0L → π+π−π0VALUE EVTS DOCUMENT ID TECN0.076±0.006 OUR AVERAGE0.076±0.006 OUR AVERAGE0.076±0.006 OUR AVERAGE0.076±0.006 OUR AVERAGE0.061±0.004±0.015 500k ANGELOPO... 98C CPLR0.095±0.032 6499 CHO 77 HBC0.048±0.036 4709 PEACH 77 HBC0.079±0.007 509k MESSNER 74 ASPK
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.011±0.018 29k 1 ALBROW 70 ASPK0.043±0.052 4400 1 SMITH 70 OSPKSee notes in se
tion \LINEAR COEFFICIENT g FOR K0L → π+π−π0 ∣∣MATRIXELEMENT∣∣2" above.1Quadrati
 
oeÆ
ients h and k required by some experiments. (See se
tion on\QUADRATIC COEFFICIENT k" below.) Correlations prevent us from averaging re-sults of �ts not in
luding g, h, and k terms.QUADRATIC COEFFICIENT k FOR K0L → π+π−π0QUADRATIC COEFFICIENT k FOR K0L → π+π−π0QUADRATIC COEFFICIENT k FOR K0L → π+π−π0QUADRATIC COEFFICIENT k FOR K0L → π+π−π0VALUE EVTS DOCUMENT ID TECN0.0099±0.0015 OUR AVERAGE0.0099±0.0015 OUR AVERAGE0.0099±0.0015 OUR AVERAGE0.0099±0.0015 OUR AVERAGE0.0104±0.0017±0.0024 500k ANGELOPO... 98C CPLR0.024 ±0.010 6499 CHO 77 HBC
−0.008 ±0.012 4709 PEACH 77 HBC0.0097±0.0018 509k MESSNER 74 ASPKLINEAR COEFFICIENT j FOR K0L → π+π−π0 (CP-VIOLATING TERM)LINEAR COEFFICIENT j FOR K0L → π+π−π0 (CP-VIOLATING TERM)LINEAR COEFFICIENT j FOR K0L → π+π−π0 (CP-VIOLATING TERM)LINEAR COEFFICIENT j FOR K0L → π+π−π0 (CP-VIOLATING TERM)Listed in CP-violation se
tion below.QUADRATIC COEFFICIENT f FOR K0L → π+π−π0 (CP-VIOLATINGTERM)QUADRATIC COEFFICIENT f FOR K0L → π+π−π0 (CP-VIOLATINGTERM)QUADRATIC COEFFICIENT f FOR K0L → π+π−π0 (CP-VIOLATINGTERM)QUADRATIC COEFFICIENT f FOR K0L → π+π−π0 (CP-VIOLATINGTERM)Listed in CP-violation se
tion below.QUADRATIC COEFFICIENT h FOR K0L → π0π0π0QUADRATIC COEFFICIENT h FOR K0L → π0π0π0QUADRATIC COEFFICIENT h FOR K0L → π0π0π0QUADRATIC COEFFICIENT h FOR K0L → π0π0π0We do not average measurements that do not a

ount for the e�e
t of �nal stateres
attering.VALUE (units 10−3) EVTS DOCUMENT ID TECN+0.59±0.20±1.16+0.59±0.20±1.16+0.59±0.20±1.16+0.59±0.20±1.16 68M 1 ABOUZAID 08A KTEV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−6.1 ±0.9 ±0.5 14.7M 2 LAI 01B NA48
−3.3 ±1.1 ±0.7 5M 2,3 SOMALWAR 92 E7311Result obtained using CI3pI model of CABIBBO 05 to in
lude ππ res
attering e�e
ts.The systemati
 error in
ludes an external error of 1.06× 10−3 from the parametrizationinput of (a0−a2) mπ+ = 0.268 ± 0.017 from BATLEY 06B.2 LAI 01B and SOMALWAR 92 results do not in
lude ππ �nal state res
attering e�e
ts.3 SOMALWAR 92 
hose m

π+ as normalization to make it 
ompatible with the Parti
leData Group K0L → π+π−π0 de�nitions.



1016101610161016Meson Parti
le ListingsK 0L K0L FORM FACTORSK0L FORM FACTORSK0L FORM FACTORSK0L FORM FACTORSFor dis
ussion, see note on form fa
tors in the K± se
tion of the Parti
leListings above.In the form fa
tor 
omments, the following symbols are used.f+ and f− are form fa
tors for the ve
tor matrix element.fS and fT refer to the s
alar and tensor term.f0(t) = f+(t) + f−(t) t/(m2K0 − m2
π+).t = momentum transfer to the π.

λ+ and λ0 are the linear expansion 
oeÆ
ients of f+ and f0:f+(t) = f+(0) (1 + λ+t /m2
π+)For quadrati
 expansionf+(t) = f+(0) (1 + λ′+t /m2
π+ + λ′′+2 t2/m4

π+ )as used by KTeV. If there is a non-vanishing quadrati
 term, then λ+represents an average slope, whi
h is then di�erent from λ′+.NA48 (Ke3) and ISTRA quadrati
 expansion 
oeÆ
ients are 
onverted with
λ′+PDG = λ+NA48 and λ′′+PDG = 2 λ′+NA48
λ′+PDG = (mπ+m

π0 )2 λ+ISTRA and
λ′′+PDG = 2 (mπ+m

π0 )4 λ′+ISTRAISTRA linear expansion 
oeÆ
ients are 
onverted with
λ+PDG = (mπ+m

π0 )2 λ+ISTRA and λ0PDG = (mπ+m
π0 )2 λ0ISTRAThe pole parametrization isf+(t) = f+(0) ( M2VM2V−t )f0(t) = f0(0) ( M2SM2S−t )where MV and MS are the ve
tor and s
alar pole masses.The dispersive parametrization isf+(t) = f+(0) exp[ t

m2
π

(�+ + H(t)) ℄;f0(t) = f+(0) exp[ t
m2K−m2

π

(ln[C℄ − G(t)) ℄,where �+ is the slope parameter and ln[C ℄ = ln[ f0 (m2K − m2
π ) ℄is the logarithm of the s
alar form fa
tor at the Callan-Treiman point.H(t) and G(t) are dispersive integrals.The following abbreviations are used:DP = Dalitz plot analysis.PI = π spe
trum analysis.MU = µ spe
trum analysis.POL= µ polarization analysis.BR = K0

µ3/K0e3 bran
hing ratio analysis.E = positron or ele
tron spe
trum analysis.RC = radiative 
orre
tions.
λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0e3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0e3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0e3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0e3 DECAY)For radiative 
orre
tion of K0e3 DP, see GINSBERG 67, BECHERRAWY 70,CIRIGLIANO 02, CIRIGLIANO 04, and ANDRE 07. Results labeled OUR FIT aredis
ussed in the review \K±

ℓ3 and K0
ℓ3 Form Fa
tors" in the K± Listings. For earlier,lower statisti
s results, see the 2004 edition of this review, Physi
s Letters B592B592B592B592 1(2004).VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.82 ±0.04 OUR FIT2.82 ±0.04 OUR FIT2.82 ±0.04 OUR FIT2.82 ±0.04 OUR FIT Error in
ludes s
ale fa
tor of 1.1. Assuming µ-e universality2.85 ±0.04 OUR AVERAGE2.85 ±0.04 OUR AVERAGE2.85 ±0.04 OUR AVERAGE2.85 ±0.04 OUR AVERAGE2.86 ±0.05 ±0.04 2M AMBROSINO 06D KLOE2.832±0.037±0.043 1.9M ALEXOPOU... 04A KTEV PI, no µ = e2.88 ±0.04 ±0.11 5.6M 1 LAI 04C NA48 DP

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.84 ±0.07 ±0.13 5.6M 2 LAI 04C NA48 DP2.45 ±0.12 ±0.22 366k APOSTOLA... 00 CPLR DP3.06 ±0.34 74k BIRULEV 81 SPEC DP3.12 ±0.25 500k GJESDAL 76 SPEC DP2.70 ±0.28 25k BLUMENTHAL75 SPEC DP1Results from linear �t and assuming only ve
tor and axial 
ouplings.2Results from linear �t with ∣∣f S/f+∣∣ and ∣∣f T /f+∣∣ free.
λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0

µ3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0
µ3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0
µ3 DECAY)λ+ (LINEAR ENERGY DEPENDENCE OF f+ IN K0
µ3 DECAY)Results labeled OUR FIT are dis
ussed in the review \K±

ℓ3 and K0
ℓ3 Form Fa
tors"in the K± Listings. For earlier, lower statisti
s results, see the 2004 edition of thisreview, Physi
s Letters B592B592B592B592 1 (2004).VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.82 ±0.04 OUR FIT2.82 ±0.04 OUR FIT2.82 ±0.04 OUR FIT2.82 ±0.04 OUR FIT Error in
ludes s
ale fa
tor of 1.1. Assuming µ-e universality2.71 ±0.10 OUR FIT2.71 ±0.10 OUR FIT2.71 ±0.10 OUR FIT2.71 ±0.10 OUR FIT Error in
ludes s
ale fa
tor of 1.4. Not assuming µ-e universality2.67 ±0.06 ±0.08 2.3M 1 LAI 07A NA48 DP2.745±0.088±0.063 1.5M ALEXOPOU... 04A KTEV DP, no µ = e2.813±0.051 3.4M ALEXOPOU... 04A KTEV PI, DP, µ = e3.0 ±0.3 1.6M DONALDSON 74B SPEC DP

• • • We do not use the following data for averages, �ts, limits, et
. • • •

4.27 ±0.44 150k BIRULEV 81 SPEC DP1LAI 07A gives a 
orrelation −0.40 between their λ0 and λ+ measurements.
λ0 (LINEAR ENERGY DEPENDENCE OF f0 IN K0

µ3 DECAY)λ0 (LINEAR ENERGY DEPENDENCE OF f0 IN K0
µ3 DECAY)λ0 (LINEAR ENERGY DEPENDENCE OF f0 IN K0
µ3 DECAY)λ0 (LINEAR ENERGY DEPENDENCE OF f0 IN K0
µ3 DECAY)Wherever possible, we have 
onverted the above values of ξ(0) into values of λ0 usingthe asso
iated λ

µ+ and dξ(0)/dλ+. Results labeled OUR FIT are dis
ussed in thereview \K±
ℓ3 and K0

ℓ3 Form Fa
tors" in the K± Listings. For earlier, lower statisti
sresults, see the 2004 edition of this review, Physi
s Letters B592B592B592B592 1 (2004).VALUE (units 10−2) dλ0/dλ+ EVTS DOCUMENT ID TECN COMMENT1.38 ±0.18 OUR FIT1.38 ±0.18 OUR FIT1.38 ±0.18 OUR FIT1.38 ±0.18 OUR FIT Error in
ludes s
ale fa
tor of 2.2. Assuming µ-e universality1.42 ±0.23 OUR FIT1.42 ±0.23 OUR FIT1.42 ±0.23 OUR FIT1.42 ±0.23 OUR FIT Error in
ludes s
ale fa
tor of 2.8. Not assuming µ-e universal-ity1.17 ±0.07 ±0.10 2.3M 1 LAI 07A NA48 DP1.657±0.125 −0.44 1.5M 2 ALEXOPOU... 04A KTEV DP, no µ = e1.635±0.121 −0.85 3.4M 3 ALEXOPOU... 04A KTEV PI, DP, µ = e+1.9 ±0.4 −0.47 1.6M 4 DONALDSON 74B SPEC DP
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.41 ±0.67 unknown 150k 5 BIRULEV 81 SPEC DP1LAI 07A gives a 
orrelation −0.40 between their λ0 and λ+ measurements.2ALEXOPOULOS 04A gives a 
orrelation −0.38 between their λ0 and λ+ measurements.3ALEXOPOULOS 04A gives a 
orrelation −0.36 between their λ0 and λ+ measurements.4DONALDSON 74B dλ0/dλ+ obtained from �gure 18.5BIRULEV 81 gives dλ0/dλ+ = −1.5, giving an unreasonably narrow error ellipse whi
hdominates all other results. We use dλ0/dλ+ = 0.
λ′+(LINEAR K0e3 FORM FACTOR FROM QUADRATIC FIT)λ′+(LINEAR K0e3 FORM FACTOR FROM QUADRATIC FIT)λ′+(LINEAR K0e3 FORM FACTOR FROM QUADRATIC FIT)λ′+(LINEAR K0e3 FORM FACTOR FROM QUADRATIC FIT)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.40 ±0.12 OUR FIT2.40 ±0.12 OUR FIT2.40 ±0.12 OUR FIT2.40 ±0.12 OUR FIT Error in
ludes s
ale fa
tor of 1.2. Assuming µ-e universality2.49 ±0.13 OUR FIT2.49 ±0.13 OUR FIT2.49 ±0.13 OUR FIT2.49 ±0.13 OUR FIT Error in
ludes s
ale fa
tor of 1.1. Not assuming µ-e universality2.48 ±0.17 OUR AVERAGE2.48 ±0.17 OUR AVERAGE2.48 ±0.17 OUR AVERAGE2.48 ±0.17 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.2.55 ±0.15 ±0.10 2M 1 AMBROSINO 06D KLOE2.167±0.137±0.143 1.9M 2 ALEXOPOU... 04A KTEV PI, no µ = e2.80 ±0.19 ±0.15 5.6M 3 LAI 04C NA48 DP1We use AMBROSINO 06D result in the �t not assuming µ−e universality. This resultenters the �t assuming µ−e universality via AMBROSINO 07C measurement of λ′+ inKµ3 de
ays. AMBROSINO 06D gives a 
orrelation −0.95 between their λ′+ and λ′′+.2ALEXOPOULOS 04A gives a 
orrelation −0.97 between their λ′+ and λ′′+.3For LAI 04C we 
al
ulate a 
orrelation −0.88 between their λ′+ and λ′′+.

WEIGHTED AVERAGE
2.48±0.17 (Error scaled by 1.5)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

LAI 04C NA48 1.8
ALEXOPOU... 04A KTEV 2.4
AMBROSINO 06D KLOE 0.2

χ2

       4.4
(Confidence Level = 0.111)

1.5 2 2.5 3 3.5 4 4.5

λ′+(LINEAR K0e3 FORM FACTOR FROMQUADRATIC FIT) (units 10−2)
λ′′+(QUADRATIC K0e3 FORM FACTOR)λ′′+(QUADRATIC K0e3 FORM FACTOR)λ′′+(QUADRATIC K0e3 FORM FACTOR)λ′′+(QUADRATIC K0e3 FORM FACTOR)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.20 ±0.05 OUR FIT0.20 ±0.05 OUR FIT0.20 ±0.05 OUR FIT0.20 ±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.2. Assuming µ-e universality0.16 ±0.05 OUR FIT0.16 ±0.05 OUR FIT0.16 ±0.05 OUR FIT0.16 ±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.1. Not assuming µ-e universality0.17 ±0.07 OUR AVERAGE0.17 ±0.07 OUR AVERAGE0.17 ±0.07 OUR AVERAGE0.17 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.0.14 ±0.07 ±0.04 2M 1 AMBROSINO 06D KLOE0.287±0.057±0.053 1.9M 2 ALEXOPOU... 04A KTEV PI, no µ = e0.04 ±0.08 ±0.04 5.6M 3,4 LAI 04C NA48 DP1We use AMBROSINO 06D result in the �t not assuming µ−e universality. This resultenters the �t assuming µ−e universality via AMBROSINO 07C measurement of λ′′+ inKµ3 de
ays. AMBROSINO 06D gives a 
orrelation −0.95 between their λ′+ and λ′′+.2ALEXOPOULOS 04A gives a 
orrelation −0.97 between their λ′+ and λ′′+.3Values doubled to agree with PDG 
onventions des
ribed above.4 LAI 04C gives a 
orrelation −0.88 between their λ′+ and λ′′+.



1017101710171017See key on page 601 Meson Parti
le ListingsK 0L
WEIGHTED AVERAGE
0.17±0.07 (Error scaled by 1.5)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

LAI 04C NA48 2.0
ALEXOPOU... 04A KTEV 2.4
AMBROSINO 06D KLOE 0.1

χ2

       4.5
(Confidence Level = 0.105)

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

λ′′+(QUADRATIC K0e3 FORM FACTOR) (units 10−2)
λ′+(LINEAR K0

µ3 FORM FACTOR FROM QUADRATIC FIT)λ′+(LINEAR K0
µ3 FORM FACTOR FROM QUADRATIC FIT)λ′+(LINEAR K0
µ3 FORM FACTOR FROM QUADRATIC FIT)λ′+(LINEAR K0
µ3 FORM FACTOR FROM QUADRATIC FIT)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.40 ±0.12 OUR FIT2.40 ±0.12 OUR FIT2.40 ±0.12 OUR FIT2.40 ±0.12 OUR FIT Error in
ludes s
ale fa
tor of 1.2. Assuming µ-e universality1.89 ±0.24 OUR FIT1.89 ±0.24 OUR FIT1.89 ±0.24 OUR FIT1.89 ±0.24 OUR FIT Not assuming µ-e universality2.23 ±0.98 ±0.37 1.8M 1 AMBROSINO 07C KLOE no µ = e2.56 ±0.15 ±0.09 3.8M 1 AMBROSINO 07C KLOE µ = e2.05 ±0.22 ±0.24 2.3M 1 LAI 07A NA48 DP1.703±0.319±0.177 1.5M 1 ALEXOPOU... 04A KTEV DP, no µ = e2.064±0.175 3.4M 1 ALEXOPOU... 04A KTEV PI, DP, µ = e1See se
tion λ0 below for 
orrelations.

λ′′+(QUADRATIC K0
µ3 FORM FACTOR)λ′′+(QUADRATIC K0
µ3 FORM FACTOR)λ′′+(QUADRATIC K0
µ3 FORM FACTOR)λ′′+(QUADRATIC K0
µ3 FORM FACTOR)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.20 ±0.05 OUR FIT0.20 ±0.05 OUR FIT0.20 ±0.05 OUR FIT0.20 ±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.2. Assuming µ-e universality0.37 ±0.12 OUR FIT0.37 ±0.12 OUR FIT0.37 ±0.12 OUR FIT0.37 ±0.12 OUR FIT Error in
ludes s
ale fa
tor of 1.3. Not assuming µ-e universality0.48 ±0.49 ±0.16 1.8M 1 AMBROSINO 07C KLOE no µ = e0.15 ±0.07 ±0.04 3.8M 1 AMBROSINO 07C KLOE µ = e0.26 ±0.09 ±0.10 2.3M 1 LAI 07A NA48 DP0.443±0.131±0.072 1.5M 1 ALEXOPOU... 04A KTEV DP, no µ = e0.320±0.069 3.4M 1 ALEXOPOU... 04A KTEV PI, DP, µ = e1See se
tion λ0 below for 
orrelations.

λ0(LINEAR f 0 K0
µ3 FORM FACTOR FROM QUADRATIC FIT)λ0(LINEAR f 0 K0
µ3 FORM FACTOR FROM QUADRATIC FIT)λ0(LINEAR f 0 K0
µ3 FORM FACTOR FROM QUADRATIC FIT)λ0(LINEAR f 0 K0
µ3 FORM FACTOR FROM QUADRATIC FIT)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.16 ±0.09 OUR FIT1.16 ±0.09 OUR FIT1.16 ±0.09 OUR FIT1.16 ±0.09 OUR FIT Error in
ludes s
ale fa
tor of 1.2. Assuming µ-e universality1.07 ±0.14 OUR FIT1.07 ±0.14 OUR FIT1.07 ±0.14 OUR FIT1.07 ±0.14 OUR FIT Error in
ludes s
ale fa
tor of 1.3. Not assuming µ-e universality0.91 ±0.59 ±0.26 1.8M 1 AMBROSINO 07C KLOE no µ = e1.54 ±0.18 ±0.13 3.8M 2 AMBROSINO 07C KLOE µ = e0.95 ±0.11 ±0.08 2.3M 3 LAI 07A NA48 DP1.281±0.136±0.122 1.5M 4 ALEXOPOU... 04A KTEV DP, no µ = e1.372±0.131 3.4M 5 ALEXOPOU... 04A KTEV PI, DP, µ = e1AMBROSINO 07C, not assuming µ-e universality, gives a 
orrelation matrix

λ′+ λ′′+
λ′′+ −0.97 1
λ0 0.81 −0.912AMBROSINO 07C, assuming µ-e universality, gives a 
orrelation matrix

λ′+ λ′′+
λ′′+ −0.95 1
λ0 0.29 −0.383 LAI 07A gives a 
orrelation matrix

λ′+ λ′′+
λ′′+ −0.96 1
λ0 0.63 −0.734ALEXOPOULOS 04A, not assuming µ-e universality, gives a 
orrelation matrix

λ′+ λ′′+ λ0
λ′+ 1
λ′′+ −0.96 1
λ0 0.65 −0.75 15ALEXOPOULOS 04A, assuming µ-e universality, gives a 
orrelation matrix

λ′+ λ′′+ λ0
λ′+ 1
λ′′+ −0.97 1
λ0 0.34 −0.44 1

M e
V (POLE MASS FOR K0e3 DECAY)M e
V (POLE MASS FOR K0e3 DECAY)M e
V (POLE MASS FOR K0e3 DECAY)M e
V (POLE MASS FOR K0e3 DECAY)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT878 ± 6 OUR FIT878 ± 6 OUR FIT878 ± 6 OUR FIT878 ± 6 OUR FIT Error in
ludes s
ale fa
tor of 1.1. Assuming µ-e universality875 ± 5 OUR AVERAGE875 ± 5 OUR AVERAGE875 ± 5 OUR AVERAGE875 ± 5 OUR AVERAGE870 ± 6 ±7 2M AMBROSINO 06D KLOE881.03± 5.12±4.94 1.9M ALEXOPOU... 04A KTEV PI, no µ = e859 ±18 5.6M LAI 04C NA48

Mµ
V (POLE MASS FOR K0

µ3 DECAY)Mµ
V (POLE MASS FOR K0

µ3 DECAY)Mµ
V (POLE MASS FOR K0

µ3 DECAY)Mµ
V (POLE MASS FOR K0

µ3 DECAY)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT878 ± 6 OUR FIT878 ± 6 OUR FIT878 ± 6 OUR FIT878 ± 6 OUR FIT Error in
ludes s
ale fa
tor of 1.1. Assuming µ-e universality900 ±21 OUR FIT900 ±21 OUR FIT900 ±21 OUR FIT900 ±21 OUR FIT Error in
ludes s
ale fa
tor of 1.7. Not assuming µ-e universality905 ± 9 ±17 2.3M 1 LAI 07A NA48 DP889.19±12.81± 9.92 1.5M 1 ALEXOPOU... 04A KTEV DP, no µ = e882.32± 6.54 3.4M 1 ALEXOPOU... 04A KTEV PI, DP, µ = e1See se
tion M
µ
S below for 
orrelations.

M
µ
S (POLE MASS FOR K0

µ3 DECAY)M
µ
S (POLE MASS FOR K0

µ3 DECAY)M
µ
S (POLE MASS FOR K0

µ3 DECAY)M
µ
S (POLE MASS FOR K0

µ3 DECAY)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1252 ±90 OUR FIT1252 ±90 OUR FIT1252 ±90 OUR FIT1252 ±90 OUR FIT Error in
ludes s
ale fa
tor of 2.6. Assuming µ-e universality1222 ±80 OUR FIT1222 ±80 OUR FIT1222 ±80 OUR FIT1222 ±80 OUR FIT Error in
ludes s
ale fa
tor of 2.3. Not assuming µ-e universal-ity1400 ±46 ±53 2.3M 1 LAI 07A NA48 DP1167.14±28.30±31.04 1.5M 2 ALEXOPOU... 04A KTEV PI, no µ = e1173.80±39.47 3.4M 3 ALEXOPOU... 04A KTEV PI, DP, µ = e1 LAI 07A gives a 
orrelation −0.47 between their M
µ
S

and M
µ
V

measurements, notassuming µ-e universality.2ALEXOPOULOS 04A gives a 
orrelation −0.46 between their M
µ
S

and M
µ
V

and mea-surements, not assuming µ-e universality.3ALEXOPOULOS 04A gives a 
orrelation −0.40 between their M
µ
S and M

µ
V and mea-surements, assuming µ-e universality.�+ (DISPERSIVE VECTOR FORM FACTOR FOR K0

µ3 DECAY)�+ (DISPERSIVE VECTOR FORM FACTOR FOR K0
µ3 DECAY)�+ (DISPERSIVE VECTOR FORM FACTOR FOR K0
µ3 DECAY)�+ (DISPERSIVE VECTOR FORM FACTOR FOR K0
µ3 DECAY)See the review on \K±

ℓ3 and K0
ℓ3 Form Fa
tors" for details of the dispersiveparametrization.VALUE (units 10−1) EVTS DOCUMENT ID TECN COMMENT0.251 ±0.006 OUR AVERAGE0.251 ±0.006 OUR AVERAGE0.251 ±0.006 OUR AVERAGE0.251 ±0.006 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.0.2509±0.0035±0.0043 3.4M 1 ABOUZAID 10 KTEV µ = e0.257 ±0.004 ±0.004 3.8M 2 AMBROSINO 07C KLOE µ = e0.233 ±0.005 ±0.008 2.3M 3 LAI 07A NA48 DP1Obtained from a sample of 1.9 M Ke3 and 1.5 M Kµ3. The 
orrelation between �+and ln(C) is −0.269.2AMBROSINO 07C results in
lude 2M Ke3 events from AMBROSINO 06D. The 
orrela-tion between �+ and ln(C) is −0.26.3 LAI 07A gives a 
orrelation −0.44 between their �+ and ln(C) measurements.

WEIGHTED AVERAGE
0.251±0.006 (Error scaled by 1.5)

LAI 07A NA48 3.5
AMBROSINO 07C KLOE 1.2
ABOUZAID 10 KTEV 0.0

χ2

       4.8
(Confidence Level = 0.092)

0.2 0.22 0.24 0.26 0.28 0.3�+ (DISPERSIVE VECTOR FORM FACTOR FOR K0
µ3 DECAY) (units10−1)ln(C) (DISPERSIVE SCALAR FORM FACTOR FOR K0

µ3 DECAY)ln(C) (DISPERSIVE SCALAR FORM FACTOR FOR K0
µ3 DECAY)ln(C) (DISPERSIVE SCALAR FORM FACTOR FOR K0
µ3 DECAY)ln(C) (DISPERSIVE SCALAR FORM FACTOR FOR K0
µ3 DECAY)See the review on \K±

ℓ3 and K0
ℓ3 Form Fa
tors" for details of the dispersiveparametrization.VALUE (units 10−1) EVTS DOCUMENT ID TECN COMMENT1.75 ±0.18 OUR AVERAGE1.75 ±0.18 OUR AVERAGE1.75 ±0.18 OUR AVERAGE1.75 ±0.18 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0. See the ideogram below.1.915±0.078±0.094 3.4M 1 ABOUZAID 10 KTEV µ = e2.04 ±0.19 ±0.15 3.8M 2 AMBROSINO 07C KLOE µ = e1.438±0.080±0.112 2.3M 3 LAI 07A NA48 DP



1018101810181018MesonParti
le ListingsK 0L1Obtained from a sample of 1.9 M Ke3 and 1.5 M Kµ3. The 
orrelation between �+and ln(C) is −0.269.2AMBROSINO 07C results in
lude 2M Ke3 events from AMBROSINO 06D. We 
onvert(�+, �0) to (�+, ln(C)) parametrization using ln(C) = (�0 · 11.713 + 0.0398)±0.0041,where the error is due to theory parametrization of the form fa
tor. The 
orrelationbetween �+ and ln(C) is −0.26.3 LAI 07A gives a 
orrelation −0.44 between their �+ and ln(C) measurements.
WEIGHTED AVERAGE
1.75±0.18 (Error scaled by 2.0)

LAI 07A NA48 5.0
AMBROSINO 07C KLOE 1.5
ABOUZAID 10 KTEV 1.9

χ2

       8.4
(Confidence Level = 0.015)

1 1.5 2 2.5 3 3.5ln(C) (DISPERSIVE SCALAR FORM FACTOR FOR K0
µ3 DECAY) (units10−1)a1(t0, Q2) FORM FACTOR PARAMETERa1(t0, Q2) FORM FACTOR PARAMETERa1(t0, Q2) FORM FACTOR PARAMETERa1(t0, Q2) FORM FACTOR PARAMETERSee HILL 06 for a de�nition of this parameter.VALUE EVTS DOCUMENT ID TECN1.023±0.028±0.0291.023±0.028±0.0291.023±0.028±0.0291.023±0.028±0.029 2M 1 ABOUZAID 06C KTEV1Q2= 2 GeV2, t0 = 0.49 (mK − mπ)2. Correlation between a1 and a2: ρ12 = −0.064.a2(t0, Q2) FORM FACTOR PARAMETERa2(t0, Q2) FORM FACTOR PARAMETERa2(t0, Q2) FORM FACTOR PARAMETERa2(t0, Q2) FORM FACTOR PARAMETERSee HILL 06 for a de�nition of this parameter.VALUE EVTS DOCUMENT ID TECN0.75±1.58±1.470.75±1.58±1.470.75±1.58±1.470.75±1.58±1.47 2M 1 ABOUZAID 06C KTEV1Q2= 2 GeV2, t0 = 0.49 (mK − mπ)2. Correlation between a1 and a2: ρ12 = −0.064.

∣∣fS/f+∣∣ FOR K0e3 DECAY∣∣fS/f+∣∣ FOR K0e3 DECAY∣∣fS/f+∣∣ FOR K0e3 DECAY∣∣fS/f+∣∣ FOR K0e3 DECAYRatio of s
alar to f+ 
ouplings.VALUE (units 10−2) CL% EVTS DOCUMENT ID TECN COMMENT1.5+0.7
−1.0±1.21.5+0.7
−1.0±1.21.5+0.7
−1.0±1.21.5+0.7
−1.0±1.2 5.6M 1 LAI 04C NA48

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9.5 95 18k HILL 78 STRC
<7. 68 48k BIRULEV 76 SPEC See also BIRULEV 81
<4. 68 25k BLUMENTHAL75 SPEC1Results from linear �t with ∣∣f S/f+∣∣ and ∣∣f T /f+∣∣ free.
∣∣fT /f+∣∣ FOR K0e3 DECAY∣∣fT /f+∣∣ FOR K0e3 DECAY∣∣fT /f+∣∣ FOR K0e3 DECAY∣∣fT /f+∣∣ FOR K0e3 DECAYRatio of tensor to f+ 
ouplings.VALUE (units 10−2) CL% EVTS DOCUMENT ID TECN COMMENT5+3

−4±35+3
−4±35+3
−4±35+3
−4±3 5.6M 1 LAI 04C NA48

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<40. 95 18k HILL 78 STRC
<34. 68 48k BIRULEV 76 SPEC See also BIRULEV 81
<23. 68 25k BLUMENTHAL75 SPEC1Results from linear �t with ∣∣f S/f+∣∣ and ∣∣f T /f+∣∣ free.
∣∣fT /f+∣∣ FOR K0

µ3 DECAY∣∣fT /f+∣∣ FOR K0
µ3 DECAY∣∣fT /f+∣∣ FOR K0
µ3 DECAY∣∣fT /f+∣∣ FOR K0
µ3 DECAYRatio of tensor to f+ 
ouplings.VALUE (units 10−2) DOCUMENT ID TECN12.±12.12.±12.12.±12.12.±12. BIRULEV 81 SPEC

αK∗ DECAY FORM FACTOR FOR KL → ℓ+ ℓ−γ, K0L → ℓ+ ℓ− ℓ′+ ℓ′−αK∗ DECAY FORM FACTOR FOR KL → ℓ+ ℓ−γ, K0L → ℓ+ ℓ− ℓ′+ ℓ′−αK∗ DECAY FORM FACTOR FOR KL → ℓ+ ℓ−γ, K0L → ℓ+ ℓ− ℓ′+ ℓ′−αK∗ DECAY FORM FACTOR FOR KL → ℓ+ ℓ−γ, K0L → ℓ+ ℓ− ℓ′+ ℓ′−Average of all αK∗ measurements (from ea
h of three datablo
ks following this one)assuming lepton universality.VALUE DOCUMENT ID
−0.205±0.022 OUR AVERAGE−0.205±0.022 OUR AVERAGE−0.205±0.022 OUR AVERAGE−0.205±0.022 OUR AVERAGE In
ludes data from the 3 datablo
ks that follow thisone. Error in
ludes s
ale fa
tor of 1.8. See the ideogram below.

WEIGHTED AVERAGE
-0.205±0.022 (Error scaled by 1.8)

OHL 90B B845 0.6
BARR 90B NA31
FANTI 99B NA48 6.0
ABOUZAID 07B KTEV 0.0
FANTI 97 NA48
ALAVI-HARATI 01G KTEV 2.5
ALAVI-HARATI 01D KTEV

χ2

       9.2
(Confidence Level = 0.027)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

αK∗ DECAY FORM FACTOR FOR KL → ℓ+ ℓ−γ, K0L → ℓ+ ℓ− ℓ′+ ℓ′−

αK∗ DECAY FORM FACTOR FOR KL → e+ e− γαK∗ DECAY FORM FACTOR FOR KL → e+ e− γαK∗ DECAY FORM FACTOR FOR KL → e+ e− γαK∗ DECAY FORM FACTOR FOR KL → e+ e− γ
αK∗ is the 
onstant in the model of BERGSTROM 83 whi
h measures the relativestrength of the ve
tor-ve
tor transition KL → K∗γ with K∗ → ρ, ω, φ → γ∗ andthe pseudos
alar-pseudos
alar transition KL → π, η, η′ → γ γ∗.VALUE EVTS DOCUMENT ID TECNThe data in this blo
k is in
luded in the average printed for a previous datablo
k.

−0.217±0.034 OUR AVERAGE−0.217±0.034 OUR AVERAGE−0.217±0.034 OUR AVERAGE−0.217±0.034 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4.
−0.207±0.012±0.009 83k 1 ABOUZAID 07B KTEV
−0.36 ±0.06 ±0.02 6864 FANTI 99B NA48
−0.28 ±0.13 BARR 90B NA31
−0.280+0.099

−0.090 OHL 90B B8451ABOUZAID 07B measures C· αK∗ = −0.517 ± 0.030 ± 0.022. We assume C = 2.5, asin all other measurements.
αK∗ DECAY FORM FACTOR FOR KL → µ+µ−γαK∗ DECAY FORM FACTOR FOR KL → µ+µ−γαK∗ DECAY FORM FACTOR FOR KL → µ+µ−γαK∗ DECAY FORM FACTOR FOR KL → µ+µ−γ

αK∗ is the 
onstant in the model of BERGSTROM 83 des
ribed in the previousse
tion.VALUE EVTS DOCUMENT ID TECNThe data in this blo
k is in
luded in the average printed for a previous datablo
k.
−0.158±0.027 OUR AVERAGE−0.158±0.027 OUR AVERAGE−0.158±0.027 OUR AVERAGE−0.158±0.027 OUR AVERAGE
−0.160+0.026

−0.028 9100 ALAVI-HARATI01G KTEV
−0.04 +0.24

−0.21 FANTI 97 NA48
αe�K∗ DECAY FORM FACTOR FOR KL → e+ e− e+ e−αe�K∗ DECAY FORM FACTOR FOR KL → e+ e− e+ e−αe�K∗ DECAY FORM FACTOR FOR KL → e+ e− e+ e−αe�K∗ DECAY FORM FACTOR FOR KL → e+ e− e+ e−

αe�K∗ is the parameter des
ribing the relative strength of an intermediate pseu-dos
alar de
ay amplitude and a ve
tor meson de
ay amplitude in the model ofBERGSTROM 83. It takes into a

ount both the radiative e�e
ts and the formfa
tor. Sin
e there are two e+ e− pairs here 
ompared with one in e+ e− γ de
ays, afa
torized expression is used for the e+ e− e+ e− de
ay form fa
tor.VALUE EVTS DOCUMENT ID TECNThe data in this blo
k is in
luded in the average printed for a previous datablo
k.
−0.14±0.16±0.15−0.14±0.16±0.15−0.14±0.16±0.15−0.14±0.16±0.15 441 ALAVI-HARATI01D KTEV
αDIP DECAY FORM FACTOR FOR K0L → ℓ+ ℓ−γ, K0L → ℓ+ ℓ− ℓ′+ ℓ′−αDIP DECAY FORM FACTOR FOR K0L → ℓ+ ℓ−γ, K0L → ℓ+ ℓ− ℓ′+ ℓ′−αDIP DECAY FORM FACTOR FOR K0L → ℓ+ ℓ−γ, K0L → ℓ+ ℓ− ℓ′+ ℓ′−αDIP DECAY FORM FACTOR FOR K0L → ℓ+ ℓ−γ, K0L → ℓ+ ℓ− ℓ′+ ℓ′−Average of all αDIP measurements (from ea
h of three datablo
ks following this one)assuming lepton universality.VALUE DOCUMENT ID
−1.69±0.08 OUR AVERAGE−1.69±0.08 OUR AVERAGE−1.69±0.08 OUR AVERAGE−1.69±0.08 OUR AVERAGE In
ludes data from the 3 datablo
ks that follow this one.Error in
ludes s
ale fa
tor of 1.7.
αDIP DECAY FORM FACTOR FOR K0L → e+ e−γαDIP DECAY FORM FACTOR FOR K0L → e+ e−γαDIP DECAY FORM FACTOR FOR K0L → e+ e−γαDIP DECAY FORM FACTOR FOR K0L → e+ e−γ

αDIP parameter in K0L → γ∗ γ∗ form fa
tor by DAMBROSIO 98, motivated byve
tor meson dominan
e and a proper short distan
e behavior.VALUE EVTS DOCUMENT ID TECNThe data in this blo
k is in
luded in the average printed for a previous datablo
k.
−1.729±0.043±0.028−1.729±0.043±0.028−1.729±0.043±0.028−1.729±0.043±0.028 83k ABOUZAID 07B KTEV
αDIP DECAY FORM FACTOR FOR K0L → µ+µ− γαDIP DECAY FORM FACTOR FOR K0L → µ+µ− γαDIP DECAY FORM FACTOR FOR K0L → µ+µ− γαDIP DECAY FORM FACTOR FOR K0L → µ+µ− γ

αDIP is a 
onstant in the model of DAMBROSIO 98 des
ribed in the previous se
tion.VALUE EVTS DOCUMENT ID TECNThe data in this blo
k is in
luded in the average printed for a previous datablo
k.
−1.54±0.10−1.54±0.10−1.54±0.10−1.54±0.10 9100 ALAVI-HARATI01G KTEV
αDIP DECAY FORM FACTOR FOR K0L → e+ e−µ+µ−αDIP DECAY FORM FACTOR FOR K0L → e+ e−µ+µ−αDIP DECAY FORM FACTOR FOR K0L → e+ e−µ+µ−αDIP DECAY FORM FACTOR FOR K0L → e+ e−µ+µ−

αDIP is a 
onstant in the model of DAMBROSIO 98 des
ribed in the previous se
tion.VALUE EVTS DOCUMENT ID TECNThe data in this blo
k is in
luded in the average printed for a previous datablo
k.
−1.59±0.37−1.59±0.37−1.59±0.37−1.59±0.37 131 ALAVI-HARATI03B KTEV



1019101910191019See key on page 601 Meson Parti
le ListingsK 0La1/a2 FORM FACTOR FOR M1 DIRECT EMISSION AMPLITUDEa1/a2 FORM FACTOR FOR M1 DIRECT EMISSION AMPLITUDEa1/a2 FORM FACTOR FOR M1 DIRECT EMISSION AMPLITUDEa1/a2 FORM FACTOR FOR M1 DIRECT EMISSION AMPLITUDEForm fa
tor = ~gM1[1+ a1/a2(M2
ρ−M2

K
)+2MKE∗

γ

] as des
ribed in ALAVI-HARATI 00B.VALUE (GeV2) EVTS DOCUMENT ID TECN COMMENT
−0.737±0.014 OUR AVERAGE−0.737±0.014 OUR AVERAGE−0.737±0.014 OUR AVERAGE−0.737±0.014 OUR AVERAGE
−0.744±0.027±0.032 5241 1 ABOUZAID 06 KTEV π+π− e+ e−
−0.738±0.007±0.018 111k 2 ABOUZAID 06A KTEV π+π+ γ

−0.81 +0.07
−0.13 ±0.02 3 LAI 03C NA48 π+π− e+ e−

−0.737±0.026±0.022 4 ALAVI-HARATI01B π+π− γ

−0.720±0.028±0.009 1766 5 ALAVI-HARATI00B KTEV π+π− e+ e−1ABOUZAID 06 also measured ∣∣g̃M1∣∣ = 1.11 ± 0.14.2ABOUZAID 06A also measured ∣∣g̃M1∣∣ = 1.198 ± 0.035 ± 0.086.3 LAI 03C also measured g̃M1 = 0.99+0.28
−0.27 ± 0.07.4ALAVI-HARATI 01B �t gives χ2/DOF = 38.8/27. Linear and quadrati
 �ts give χ2/DOF= 43.2/27 and 37.6/26 respe
tively.5ALAVI-HARATI 00B also measured ∣∣g̃M1∣∣ = 1.35+0.20

−0.17 ± 0.04.f S DECAY FORM FACTOR FOR K0L → π±π0 e∓ νef S DECAY FORM FACTOR FOR K0L → π±π0 e∓ νef S DECAY FORM FACTOR FOR K0L → π±π0 e∓ νef S DECAY FORM FACTOR FOR K0L → π±π0 e∓ νeVALUE DOCUMENT ID TECN0.049±0.011 OUR AVERAGE0.049±0.011 OUR AVERAGE0.049±0.011 OUR AVERAGE0.049±0.011 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.0.052±0.006±0.002 BATLEY 04 NA480.010±0.016±0.017 MAKOFF 93 E731f P DECAY FORM FACTOR FOR K0L → π±π0 e∓ νef P DECAY FORM FACTOR FOR K0L → π±π0 e∓ νef P DECAY FORM FACTOR FOR K0L → π±π0 e∓ νef P DECAY FORM FACTOR FOR K0L → π±π0 e∓ νeVALUE DOCUMENT ID TECN
−0.052±0.012 OUR AVERAGE−0.052±0.012 OUR AVERAGE−0.052±0.012 OUR AVERAGE−0.052±0.012 OUR AVERAGE
−0.051±0.011±0.005 BATLEY 04 NA48
−0.079±0.049±0.022 MAKOFF 93 E731
λg DECAY FORM FACTOR FOR K0L → π±π0 e∓νeλg DECAY FORM FACTOR FOR K0L → π±π0 e∓νeλg DECAY FORM FACTOR FOR K0L → π±π0 e∓νeλg DECAY FORM FACTOR FOR K0L → π±π0 e∓νeVALUE DOCUMENT ID TECN0.085±0.020 OUR AVERAGE0.085±0.020 OUR AVERAGE0.085±0.020 OUR AVERAGE0.085±0.020 OUR AVERAGE0.087±0.019±0.006 BATLEY 04 NA480.014±0.087±0.070 MAKOFF 93 E731h DECAY FORM FACTOR FOR K0L → π±π0 e∓ νeh DECAY FORM FACTOR FOR K0L → π±π0 e∓ νeh DECAY FORM FACTOR FOR K0L → π±π0 e∓ νeh DECAY FORM FACTOR FOR K0L → π±π0 e∓ νeVALUE DOCUMENT ID TECN
−0.30±0.13 OUR AVERAGE−0.30±0.13 OUR AVERAGE−0.30±0.13 OUR AVERAGE−0.30±0.13 OUR AVERAGE
−0.32±0.12±0.07 BATLEY 04 NA48
−0.07±0.31±0.31 MAKOFF 93 E731L3 CHIRAL PERT. THEO. PARAM. FOR K0L → π±π0 e∓νeL3 CHIRAL PERT. THEO. PARAM. FOR K0L → π±π0 e∓νeL3 CHIRAL PERT. THEO. PARAM. FOR K0L → π±π0 e∓νeL3 CHIRAL PERT. THEO. PARAM. FOR K0L → π±π0 e∓νeVALUE (units 10−3) DOCUMENT ID TECN
−3.96±0.28 OUR AVERAGE−3.96±0.28 OUR AVERAGE−3.96±0.28 OUR AVERAGE−3.96±0.28 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.
−4.1 ±0.2 BATLEY 04 NA48
−3.4 ±0.4 1 MAKOFF 93 E7311MAKOFF 93 sign has been 
hanged to negative to agree with the sign 
onvention usedin BATLEY 04.aV , VECTOR MESON EXCHANGE CONTRIBUTIONaV , VECTOR MESON EXCHANGE CONTRIBUTIONaV , VECTOR MESON EXCHANGE CONTRIBUTIONaV , VECTOR MESON EXCHANGE CONTRIBUTIONVALUE EVTS DOCUMENT ID TECN COMMENT
−0.43±0.06 OUR AVERAGE−0.43±0.06 OUR AVERAGE−0.43±0.06 OUR AVERAGE−0.43±0.06 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.
−0.31±0.05±0.07 1.4k 1 ABOUZAID 08 KTEV
−0.46±0.03±0.04 LAI 02B NA48 K0L → π0 2γ
−0.67±0.21±0.12 ALAVI-HARATI01E KTEV K0L → π0 e+ e− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.72±0.05±0.06 2 ALAVI-HARATI99B KTEV K0L → π0 2γ1Using KTeV dataset 
olle
ted in 1996, 1997, and 1999.2 Superseded by ABOUZAID 08.
CP VIOLATION IN KL DECAYS

Updated April 2016 by L. Wolfenstein (Carnegie-Mellon Uni-
versity), C.-J. Lin (LBNL), and T.G. Trippe (LBNL).

The symmetries C (particle-antiparticle interchange) and

P (space inversion) hold for strong and electromagnetic inter-

actions. After the discovery of large C and P violation in the

weak interactions, it appeared that the product CP was a good

symmetry. In 1964 CP violation was observed in K0 decays at

a level given by the parameter ǫ ≈ 2.3 × 10−3.

A unified treatment of CP violation in K, D, B, and

Bs mesons is given in “CP Violation in Meson Decays” by

D. Kirkby and Y. Nir in this Review. A more detailed review

including a thorough discussion of the experimental techniques

used to determine CP violation parameters is given in a book

by K. Kleinknecht [1]. Here we give a concise summary of the

formalism needed to define the parameters of CP violation in

KL decays, and a description of our fits for the best values of

these parameters.

1. Formalism for CP violation in Kaon decay:

CP violation has been observed in the semi-leptonic decays

K0
L → π∓ℓ±ν, and in the nonleptonic decay K0

L → 2π. The

experimental numbers that have been measured are

AL =
Γ(K0

L → π−ℓ+ν) − Γ(K0
L → π+ℓ−ν)

Γ(K0
L → π−ℓ+ν) + Γ(K0

L → π+ℓ−ν)
(1a)

η+− = A(K0
L → π+π−)/A(K0

S → π+π−)

= |η+−| eiφ+− (1b)

η00 = A(K0
L → π0π0)/A(K0

S → π0π0)

= |η00| eiφ00 . (1c)

CP violation can occur either in the K0 – K
0

mixing or

in the decay amplitudes. Assuming CPT invariance, the mass

eigenstates of the K0–K0 system can be written

|KS〉 = p|K0〉 + q|K0〉 , |KL〉 = p|K0〉 − q|K0〉 . (2)

If CP invariance held, we would have q = p so that KS would

be CP -even and KL CP -odd. (We define |K0〉 as CP |K0〉).
CP violation in K0–K0 mixing is then given by the parameter

ǫ̃ where
p

q
=

(1 + ǫ̃)

(1 − ǫ̃)
. (3)

CP violation can also occur in the decay amplitudes

A(K0 → ππ(I)) = AIe
iδI , A(K0 → ππ(I)) = A∗

Ie
iδI , (4)

where I is the isospin of ππ, δI is the final-state phase shift,

and AI would be real if CP invariance held. The CP -violating

observables are usually expressed in terms of ǫ and ǫ′ defined

by

η+− = ǫ + ǫ′ , η00 = ǫ − 2ǫ′ . (5a)

One can then show [2]

ǫ = ǫ̃ + i (Im A0/Re A0) , (5b)

√
2ǫ′ = iei(δ2−δ0)(ReA2/ReA0) (Im A2/Re A2−Im A0/Re A0) ,

(5c)

AL = 2Re ǫ/(1 + |ǫ|2) ≈ 2Re ǫ . (5d)

In Eqs. (5a), small corrections [3] of order ǫ′ × Re (A2/A0) are

neglected, and Eq. (5d) assumes the ∆S = ∆Q rule.

The quantities Im A0, Im A2, and Im ǫ̃ depend on the choice

of phase convention, since one can change the phases of K0 and

K
0

by a transformation of the strange quark state |s〉 → |s〉 eiα;

of course, observables are unchanged. It is possible by a choice

of phase convention to set ImA0 or Im A2 or Im ǫ̃ to zero,

but none of these is zero with the usual phase conventions

in the Standard Model. The choice Im A0 = 0 is called the

Wu-Yang phase convention [4], in which case ǫ = ǫ̃. The value

of ǫ′ is independent of phase convention, and a nonzero value

demonstrates CP violation in the decay amplitudes, referred to
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as direct CP violation. The possibility that direct CP violation

is essentially zero, and that CP violation occurs only in the

mixing matrix, was referred to as the superweak theory [5].

By applying CPT invariance and unitarity the phase of ǫ is

given approximately by

φǫ ≈ tan−1 2(mKL
− mKS

)

ΓKS
− ΓKL

≈ 43.52 ± 0.05◦ , (6a)

while Eq. (5c) gives the phase of ǫ′ to be

φǫ′ = δ2 − δ0 +
π

2
≈ 42.3 ± 1.5◦ , (6b)

where the numerical value is based on an analysis of π–π scat-

tering using chiral perturbation theory [6]. The approximation

in Eq. (6a) depends on the assumption that direct CP violation

is very small in all K0 decays. This is expected to be good to a

few tenths of a degree, as indicated by the small value of ǫ′ and

of η+−0 and η000, the CP -violation parameters in the decays

KS → π+π−π0 [7], and KS → π0π0π0 [8]. The relation in

Eq. (6a) is exact in the superweak theory, so this is sometimes

called the superweak-phase φSW. An important point for the

analysis is that cos(φǫ′–φǫ) ≃ 1. The consequence is that only

two real quantities need be measured, the magnitude of ǫ and

the value of (ǫ′/ǫ), including its sign. The measured quantity

|η00/η+−|2 is very close to unity so that we can write

|η00/η+−|2 ≈ 1 − 6Re (ǫ′/ǫ) ≈ 1 − 6ǫ′/ǫ , (7a)

Re(ǫ′/ǫ) ≈ 1
3
(1 − |η00/η+−|) . (7b)

From the experimental measurements in this edition of the

Review, and the fits discussed in the next section, one finds

|ǫ| = (2.228 ± 0.011) × 10−3 , (8a)

φǫ = (43.5 ± 0.5)◦ , (8b)

Re(ǫ′/ǫ) ≈ ǫ′/ǫ = (1.66 ± 0.23) × 10−3 , (8c)

φ+− = (43.4 ± 0.5)◦ , (8d)

φ00–φ+− = (0.34 ± 0.32)◦ , (8e)

AL = (3.32 ± 0.06) × 10−3 . (8f)

Direct CP violation, as indicated by ǫ′/ǫ, is expected in

the Standard Model. However, the numerical value cannot be

reliably predicted because of theoretical uncertainties [9]. The

value of AL agrees with Eq. (5d). The values of φ+− and

φ00 − φ+− are used to set limits on CPT violation [see “Tests

of Conservation Laws”].

2. Fits for K0
L CP -violation parameters:

In recent years, K0
L CP -violation experiments have im-

proved our knowledge of CP -violation parameters, and their

consistency with the expectations of CPT invariance and uni-

tarity. To determine the best values of the CP -violation param-

eters in K0
L → π+π− and π0π0 decay, we make two types of

fits, one for the phases φ+− and φ00 jointly with ∆m and τ
S
,

and the other for the amplitudes |η+−| and |η00| jointly with

the K0
L → ππ branching fractions.
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Figure 1: φ+− vs ∆m for experiments which
do not assume CPT invariance. ∆m mea-
surements appear as vertical bands spanning
∆m ± 1σ, cut near the top and bottom
to aid the eye. Most φ+− measurements ap-
pear as diagonal bands spanning φ+− ± σφ.
Data are labeled by letters: “b”–FNAL KTeV,
“c”–CERN CPLEAR, “d”–FNAL E773, “e”–
FNAL E731, “f”–CERN, “g”–CERN NA31, and
are cited in Table 1. The narrow band “j” shows
φSW. The ellipse “a” shows the χ2 = 1 contour
of the fit result.

Table 1: References, Document ID’s, and
sources corresponding to the letter labels in
the figures. The data are given in the φ+− and
∆m sections of the KL Listings, and the τ

S

section of the KS Listings.

Label Source PDG Document ID Ref.

a this Review OUR FIT

b FNAL KTeV ABOUZAID 11 [10]

c CERN CPLEAR APOSTOLAKIS 99C [11]

d FNAL E773 SCHWINGENHEUER 95 [12]

e FNAL E731 GIBBONS 93,93C [13,14]

f CERN GEWENIGER 74B,74C [15,16]

g CERN NA31 CAROSI 90 [17]

h CERN NA48 LAI 02C [18]

i CERN NA31 BERTANZA 97 [19]

j this Review SUPERWEAK 16

Fits to φ+−, φ00, ∆φ, ∆m, and τ
S
data: These are joint fits

to the data on φ+−, φ00, the phase difference ∆φ = φ00 –φ+−,

the K0
L – K0

S mass difference ∆m, and the K0
S mean life τ

S
,

including the effects of correlations.
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Measurements of φ+− and φ00 are highly correlated with

∆m and τ
S
. Some measurements of τ

S
are correlated with ∆m.

The correlations are given in the footnotes of the φ+− and

φ00 sections of the K0
L Listings, and the τ

S
section of the K0

S

Listings.

In most cases, the correlations are quoted as 100%, i.e.,

with the value and error of φ+− or φ00 given at a fixed value of

∆m and τ
S
, with additional terms specifying the dependence of

the value on ∆m and τ
S
. These cases lead to diagonal bands in

Figs. 1 and 2. The KTeV experiment [10] quotes its results as

values of ∆m, τ
S
, φǫ, Re(ǫ′/ǫ), and Im(ǫ′/ǫ) with correlations,

leading to the ellipses labeled “b.” The correlations for the

KTeV measurements are given in the Im(ǫ′/ǫ) section of the

K0
L Listings. For small |ǫ′/ǫ|, φ+− ≈ φǫ + Im(ǫ′/ǫ).

The data on τ
S
, ∆m, and φ+− shown in Figs. 1 and 2 are

combined with data on φ00 and φ00 – φ+− in two fits, one

without assuming CPT , and the other with this assumption.

The results without assuming CPT are shown as ellipses labeled

“a.” These ellipses are seen to be in good agreement with the

superweak phase

φSW = tan−1

(
2∆m

∆Γ

)
= tan−1

(
2∆mτ

S
τ

L

h̄(τ
L

– τ
S
)

)
. (9)

In Figs. 1 and 2, φSW is shown as narrow bands labeled “j.”

Table 2 column 2, “Fit w/o CPT ,” gives the resulting fitted

parameters, while Table 3 gives the correlation matrix for this

fit. The white ellipses labeled “a” in Fig. 1 and Fig. 2 are the

χ2 = 1 contours for this fit.

For experiments which have dependencies on unseen fit

parameters, that is, parameters other than those shown on the

x or y axis of the figure, their band positions are evaluated

using the fit results and their band widths include the fitted

uncertainty in the unseen parameters. This is also true for the

φSW bands.

If CPT invariance and unitarity are assumed, then by

Eq. (6a), the phase of ǫ is constrained to be approximately

equal to

φSW = (43.50258± 0.00021)◦ + 54.1(∆m − 0.5289)◦

+32.0(τ
S
− 0.89564) (10)

where we have linearized the ∆m and τ
S

dependence of Eq. (9).

The error ±0.00021 is due to the uncertainty in τ
L
. Here ∆m

has units 1010 h̄ s−1 and τ
S

has units 10−10 s.

If in addition we use the observation that Re(ǫ′/ǫ) ≪ 1 and

cos(φǫ′ − φǫ) ≃ 1, as well as the numerical value of φǫ′ given in

Eq. (6b), then Eqs. (5a), which are sketched in Fig. 3, lead to

the constraint

φ00 –φ+− ≈ −3 Im

(
ǫ′

ǫ

)

≈ −3 Re

(
ǫ′

ǫ

)
tan(φǫ′ – φǫ)

≈ 0.006◦ ± 0.008◦ , (11)

so that φ+− ≈ φ00 ≈ φǫ ≈ φSW.
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Figure 2: φ+− vs τ
S
. τ

S
measurements appear

as vertical bands spanning τ
S
± 1σ, some of

which are cut near the top and bottom to aid
the eye. Most φ+− measurements appear as di-
agonal or horizontal bands spanning φ+− ± σφ.
Data are labeled by letters: “b”–FNAL KTeV,
“c”–CERN CPLEAR, “d”–FNAL E773, “e”–
FNAL E731, “f”–CERN, “g”–CERN NA31,
“h”–CERN NA48, “i”–CERN NA31, and are
cited in Table 1. The narrow band “j” shows
φSW. The ellipse “a” shows the fit result’s
χ2 = 1 contour.

Table 2: Fit results for φ+−, ∆m, τ
S
, φ00,

∆φ = φ00 − φ+−, and φǫ without and with the
CPT assumption.

Quantity(units) Fit w/o CPT Fit w/ CPT

φ+−(◦) 43.4 ± 0.5 (S=1.2) 43.51 ± 0.05 (S=1.2)

∆m(1010h̄ s−1) 0.5289 ± 0.0010 0.5293 ± 0.0009 (S=1.3)

τ
S
(10−10s) 0.89564 ± 0.00033 0.8954 ± 0.0004 (S=1.1)

φ00(
◦) 43.7 ± 0.6 (S=1.2) 43.52 ± 0.05 (S=1.3)

∆φ(◦) 0.34 ± 0.32 0.006 ± 0.014 (S=1.7)

φǫ(
◦) 43.5 ± 0.5 (S=1.3) 43.52 ± 0.05 (S=1.2)

χ2 16.4 20.0

# Deg. Free. 14 16

In the fit assuming CPT , we constrain φǫ = φSW using the

linear expression in Eq. (10), and constrain φ00 − φ+− using

Eq. (11). These constraints are inserted into the Listings with

the Document ID of SUPERWEAK 16. Some additional data

for which the authors assumed CPT are added to this fit or

substitute for other less precise data for which the authors did

not make this assumption. See the Listings for details.
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Figure 3: Sketch of Eqs. (5a). Not to scale.

The results of this fit are shown in Table 2, column 3, “Fit

w/CPT ,” and the correlation matrix is shown in Table 4. The

∆m precision is improved by the CPT assumption.

Table 3: Correlation matrix for the results of
the fit without the CPT assumption

φ+− ∆m τ
S

φ00 ∆φ φǫ

φ+− 1.000 0.596 −0.488 0.827 −0.040 0.976

∆m 0.596 1.000 −0.572 0.487 −0.035 0.580

τ
S

−0.488 −0.572 1.000 −0.423 −0.014 −0.484

φ00 0.827 0.487 −0.423 1.000 0.529 0.929

∆φ −0.040 −0.035 −0.014 0.529 1.000 0.178

φǫ 0.976 0.580 −0.484 0.929 0.178 1.000

Table 4: Correlation matrix for the results of
the fit with the CPT assumption

φ+− ∆m τ
S

φ00 ∆φ φǫ

φ+− 1.000 0.972 −0.311 0.957 −0.105 0.995

∆m 0.972 1.000 −0.509 0.958 −0.007 0.977

τ
S

−0.311 −0.509 1.000 −0.306 0.004 −0.312

φ00 0.957 0.958 −0.306 1.000 0.189 0.981

∆φ −0.105 −0.007 0.004 0.189 1.000 −0.006

φǫ 0.995 0.977 −0.312 0.981 −0.006 1.000

Fits for ǫ′/ǫ, |η+−|, |η00|, and B(KL → ππ)

We list measurements of |η+−|, |η00|, |η00/η+−|, and ǫ′/ǫ.

Independent information on |η+−| and |η00| can be obtained

from measurements of the K0
L and K0

S lifetimes (τ
L
, τ

S
), and

branching ratios (B) to ππ, using the relations

|η+−| =

[
B(K0

L → π+π−)

τ
L

τ
S

B(K0
S → π+π−)

]1/2

, (12a)

|η00| =

[
B(K0

L → π0π0)

τ
L

τ
S

B(K0
S → π0π0)

]1/2

. (12b)

For historical reasons, the branching ratio fits and the

CP -violation fits are done separately, but we want to include

the influence of |η+−|, |η00|, |η00/η+−|, and ǫ′/ǫ measurements

on B(K0
L → π+π−) and B(K0

L → π0π0) and vice versa. We

approximate a global fit to all of these measurements by first

performing two independent fits: 1) BRFIT, a fit to the K0
L

branching ratios, rates, and mean life, and 2) ETAFIT, a fit to

the |η+−|, |η00|, |η+−/η00|, and ǫ′/ǫ measurements. The results

from fit 1, along with the K0
S values from this edition, are used

to compute values of |η+−| and |η00|, which are included as

measurements in the |η00| and |η+−| sections with a document

ID of BRFIT 16. Thus, the fit values of |η+−| and |η00| given

in this edition include both the direct measurements and the

results from the branching ratio fit.

The process is reversed in order to include the di-

rect | η | measurements in the branching ratio fit. The re-

sults from fit 2 above (before including BRFIT 16 values)

are used along with the K0
L and K0

S mean lives and the

K0
S → ππ branching fractions to compute the K0

L branching

ratio Γ(K0
L → π0π0)/Γ(K0

L → π+π−). This branching ratio

value is included as a measurement in the branching ratio

section with a document ID of ETAFIT 16. Thus, the K0
L

branching ratio fit values in this edition include the results of

the direct measurement of |η00/η+−| and ǫ′/ǫ. Most individual

measurements of |η+−| and |η00| enter our fits directly via the

corresponding measurements of Γ(K0
L → π+π−)/Γ(total) and

Γ(K0
L → π0π0)/Γ(total), and those that do not have too large

errors to have any influence on the fitted values of these branch-

ing ratios. A more detailed discussion of these fits is given in

the 1990 edition of this Review [20].
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η+− = A(K0L → π+π−) / A(K0S → π+π−)
η00 = A(K0L → π0π0) / A(K0S → π0π0)The �tted values of ∣∣η+−

∣∣ and ∣∣η00∣∣ given below are the results of a �tto ∣∣η+−
∣∣, ∣∣η00∣∣, ∣∣η00/η+−

∣∣, and Re(ǫ′/ǫ). Independent information on
∣∣η+−

∣∣ and ∣∣η00∣∣ 
an be obtained from the �tted values of the K0L →
ππ and K0S → ππ bran
hing ratios and the K0L and K0S lifetimes. Thisinformation is in
luded as data in the ∣∣η+−

∣∣ and ∣∣η00∣∣ se
tions with aDo
ument ID \BRFIT." See the note \CP violation in KL de
ays" abovefor details.

∣∣η00∣∣ = ∣∣A(K0L → 2π0) / A(K0S → 2π0)∣∣∣∣η00∣∣ = ∣∣A(K0L → 2π0) / A(K0S → 2π0)∣∣∣∣η00∣∣ = ∣∣A(K0L → 2π0) / A(K0S → 2π0)∣∣∣∣η00∣∣ = ∣∣A(K0L → 2π0) / A(K0S → 2π0)∣∣VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.220±0.011 OUR FIT2.220±0.011 OUR FIT2.220±0.011 OUR FIT2.220±0.011 OUR FIT Error in
ludes s
ale fa
tor of 1.8.2.243±0.0142.243±0.0142.243±0.0142.243±0.014 BRFIT 16
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.47 ±0.31 ±0.24 ANGELOPO... 98 CPLR2.49 ±0.40 1 ADLER 96B CPLR Sup. by ANGELOPOULOS 982.33 ±0.18 CHRISTENS... 79 ASPK2.71 ±0.37 2 WOLFF 71 OSPK Cu reg., 4γ's2.95 ±0.63 2 CHOLLET 70 OSPK Cu reg., 4γ's1 Error is statisti
al only.2CHOLLET 70 gives ∣∣η00∣∣ = (1.23 ± 0.24)×(regeneration amplitude, 2 GeV/
Cu)/10000mb. WOLFF 71 gives ∣∣η00∣∣ = (1.13 ± 0.12)×(regeneration amplitude, 2GeV/
 Cu)/10000mb. We 
ompute both ∣∣η00∣∣ values for (regeneration amplitude, 2GeV/
 Cu) = 24 ± 2mb. This regeneration amplitude results from averaging overFAISSNER 69, extrapolated using opti
al-model 
al
ulations of Bohm et al., Physi
sLetters 27B27B27B27B 594 (1968) and the data of BALATS 71. (From H. Faissner, private 
om-muni
ation).
∣∣η+−

∣∣ = ∣∣A(K0L → π+π−) / A(K0S → π+π−)∣∣∣∣η+−
∣∣ = ∣∣A(K0L → π+π−) / A(K0S → π+π−)∣∣∣∣η+−
∣∣ = ∣∣A(K0L → π+π−) / A(K0S → π+π−)∣∣∣∣η+−
∣∣ = ∣∣A(K0L → π+π−) / A(K0S → π+π−)∣∣VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.232±0.011 OUR FIT2.232±0.011 OUR FIT2.232±0.011 OUR FIT2.232±0.011 OUR FIT Error in
ludes s
ale fa
tor of 1.8.2.226±0.0072.226±0.0072.226±0.0072.226±0.007 BRFIT 16

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.223±0.012 1 LAI 07 NA482.219±0.013 2 AMBROSINO 06F KLOE2.228±0.010 3 ALEXOPOU... 04 KTEV2.286±0.023±0.026 70M 4 APOSTOLA... 99C CPLR K0-K0 asymmetry2.310±0.043±0.031 5 ADLER 95B CPLR K0-K0 asymmetry2.32 ±0.14 ±0.03 105 ADLER 92B CPLR K0-K0 asymmetry2.30 ±0.035 GEWENIGER 74B ASPK1Value obtained from the NA48 measurements of �(K0L → π+π−)/�(K0L → πe νe )and τK0S and KLOE measurements of B(K0S → π+π−) and τK0L . �(K0L → π+π−)is de�ned to in
lude the inner bremsstrahlung 
omponent �(K0L → π+π− γ (IB)) butex
lude the dire
t emission 
omponent B(K0S → π+π− (DE)). Their ∣∣η+−
∣∣ valueis not dire
tly used in our �t, but enters the �t via their bran
hing ratio and lifetimemeasurements.2AMBROSINO 06F uses KLOE bran
hing ratios and τ L together with τS from PDG 04.Their ∣∣η+−

∣∣ value is not dire
tly used in our �t, but enters the �t via their bran
hingratio and lifetime measurements.3ALEXOPOULOS 04 ∣∣η+−
∣∣ uses their K0L → ππ bran
hing fra
tions, τS = (0.8963 ±0.0005)×10−10 s from the average of KTeV and NA48 τS measurements, and assumesthat �(K0S → πℓνℓ) = �(K0L → πℓνℓ) giving B(K0S → πℓνℓ) = 0.118%. Their η+−is not dire
tly used in our �t, but enters our �t via their bran
hing ratio measurements.4APOSTOLAKIS 99C report (2.264 ± 0.023 ± 0.026 + 9.1[τs − 0.8934℄) × 10−3. Weevaluate for our 2006 best value τs= (0.8958 ± 0.0005) × 10−10 s.5ADLER 95B report (2.312± 0.043± 0.030 −1[�m−0.5274℄ +9.1[τs− 0.8926℄)×10−3.We evaluate for our 1996 best values �m = (0.5304 ± 0.0014) × 10−10 �hs−1 and τs= (0.8927 ± 0.0009) × 10−10 s. Superseded by APOSTOLAKIS 99C.

∣∣ǫ
∣∣ = (2∣∣η+−

∣∣ + ∣∣η00∣∣)/3∣∣ǫ
∣∣ = (2∣∣η+−

∣∣ + ∣∣η00∣∣)/3∣∣ǫ
∣∣ = (2∣∣η+−

∣∣ + ∣∣η00∣∣)/3∣∣ǫ
∣∣ = (2∣∣η+−

∣∣ + ∣∣η00∣∣)/3This expression is a very good approximation, good to about one part in 10−4 be
auseof the small measured value of φ00 − φ+− and small theoreti
al ambiguities.VALUE (units 10−3) DOCUMENT ID2.228±0.011 OUR FIT2.228±0.011 OUR FIT2.228±0.011 OUR FIT2.228±0.011 OUR FIT Error in
ludes s
ale fa
tor of 1.8.
∣∣η00/η+−

∣∣∣∣η00/η+−
∣∣∣∣η00/η+−
∣∣∣∣η00/η+−
∣∣VALUE EVTS DOCUMENT ID TECN0.9950±0.0007 OUR FIT0.9950±0.0007 OUR FIT0.9950±0.0007 OUR FIT0.9950±0.0007 OUR FIT Error in
ludes s
ale fa
tor of 1.6.0.9930±0.0020 OUR AVERAGE0.9930±0.0020 OUR AVERAGE0.9930±0.0020 OUR AVERAGE0.9930±0.0020 OUR AVERAGE0.9931±0.0020 1,2 BARR 93D NA310.9904±0.0084±0.0036 3 WOODS 88 E731

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.9939±0.0013±0.0015 1M 1 BARR 93D NA310.9899±0.0020±0.0025 1 BURKHARDT 88 NA311This is the square root of the ratio R given by BURKHARDT 88 and BARR 93D.2This is the 
ombined results from BARR 93D and BURKHARDT 88, taking into a

ounta 
ommon systemati
 un
ertainty of 0.0014.3We 
al
ulate ∣∣η00/
η+−

∣∣ = 1−3(ǫ′/ǫ) from WOODS 88 (ǫ′/ǫ) value.Re(ǫ′/ǫ) = (1−∣∣η00/η+−
∣∣)/3Re(ǫ′/ǫ) = (1−∣∣η00/η+−
∣∣)/3Re(ǫ′/ǫ) = (1−∣∣η00/η+−
∣∣)/3Re(ǫ′/ǫ) = (1−∣∣η00/η+−
∣∣)/3We have negle
ted terms of order ω ·Re(ǫ′/ǫ), where ω = Re(A2)/Re(A0) ≃ 1/22. Ifin
luded, this 
orre
tion would lower Re(ǫ′/ǫ) by about 0.04× 10−3. See SOZZI 04.VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.66 ±0.23 OUR FIT1.66 ±0.23 OUR FIT1.66 ±0.23 OUR FIT1.66 ±0.23 OUR FIT Error in
ludes s
ale fa
tor of 1.6.1.68 ±0.20 OUR AVERAGE1.68 ±0.20 OUR AVERAGE1.68 ±0.20 OUR AVERAGE1.68 ±0.20 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogrambelow.1.92 ±0.21 1 ABOUZAID 11 KTEV Assuming CPT1.47 ±0.22 BATLEY 02 NA480.74 ±0.52 ±0.29 GIBBONS 93B E731

• • • We use the following data for averages but not for �ts. • • •2.3 ±0.65 2,3 BARR 93D NA31



1024102410241024Meson Parti
le ListingsK 0L
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.110±0.343 1,4 ABOUZAID 11 KTEV Not assuming CPT2.07 ±0.28 ALAVI-HARATI03 KTEV In ABOUZAID 111.53 ±0.26 LAI 01C NA48 In
l. in BATLEY 022.80 ±0.30 ±0.28 ALAVI-HARATI99D KTEV In ALAVI-HARATI 031.85 ±0.45 ±0.58 FANTI 99C NA48 In LAI 01C2.0 ±0.7 5 BARR 93D NA31
−0.4 ±1.4 ±0.6 PATTERSON 90 E731 in GIBBONS 93B3.3 ±1.1 5 BURKHARDT 88 NA313.2 ±2.8 ±1.2 2 WOODS 88 E7311The two ABOUZAID 11 values use the same data. The �ts are performed with andwithout CPT invarian
e requirement.2These values are derived from ∣∣η00/η+−

∣∣ measurements. They enter the average in thisse
tion but enter the �t via the ∣∣η00/η+−
∣∣ only.3This is the 
ombined results from BARR 93D and BURKHARDT 88, taking into a

ounttheir 
ommon systemati
 un
ertainty.4We use ABOUZAID 11 Re(ǫ′/ǫ) value with CPT assumption in our �ts for ∣∣η+−

∣∣, ∣∣η00∣∣,and Re(ǫ′/ǫ).5These values are derived from ∣∣η00/η+−
∣∣ measurements.

WEIGHTED AVERAGE
1.68±0.20 (Error scaled by 1.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

GIBBONS 93B E731 2.5
BARR 93D NA31 0.9
BATLEY 02 NA48 0.9
ABOUZAID 11 KTEV 1.3

χ2

       5.6
(Confidence Level = 0.132)

-1 0 1 2 3 4 5Re(ǫ′/ǫ) = (1−∣∣∣η00/η+−
∣∣∣)/3

φ+−, PHASE of η+−φ+−, PHASE of η+−φ+−, PHASE of η+−φ+−, PHASE of η+−The dependen
e of the phase on �m and τS is given for ea
h experiment in the
omments below, where �m is the K0L − K0S mass di�eren
e in units 1010 �hs−1and τs is the KS mean life in units 10−10 s. We also give the regeneration phase φfin the 
omments below.OUR FIT is des
ribed in the note on \CP violation in KL de
ays" in the K0L Parti
leListings. Most experiments in this se
tion are in
luded in both the \Not AssumingCPT" and \Assuming CPT" �ts. In the latter �t, they have little dire
t in
uen
e on
φ+− be
ause their errors are large 
ompared to that assuming CPT, but they in
uen
e�m and τs through their dependen
ies on these parameters, whi
h are given in thefootnotes.VALUE (◦) EVTS DOCUMENT ID TECN COMMENT43.51±0.05 OUR FIT43.51±0.05 OUR FIT43.51±0.05 OUR FIT43.51±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.2. Assuming CPT43.4 ±0.5 OUR FIT43.4 ±0.5 OUR FIT43.4 ±0.5 OUR FIT43.4 ±0.5 OUR FIT Error in
ludes s
ale fa
tor of 1.2. Not assuming CPT42.9 ±0.6 ±0.3 70M 1 APOSTOLA... 99C CPLR K0-K0 asymmetry42.9 ±0.8 ±0.2 2,3 SCHWINGEN...95 E773 CH1.1 regenerator41.4 ±0.9 ±0.2 3,4 GIBBONS 93 E731 B4C regenerator44.5 ±1.6 ±0.6 5 CAROSI 90 NA31 Va
uum regen.43.3 ±1.0 ±0.5 6 GEWENIGER 74B ASPK Va
uum regen.

• • • We do not use the following data for averages, �ts, limits, et
. • • •43.76±0.64 7 ABOUZAID 11 KTEV Not assuming CPT44.12±0.72±1.20 8 ALAVI-HARATI03 KTEV Not assuming CPT42.5 ±0.4 ±0.3 9,10 ADLER 96C RVUE43.4 ±1.1 ±0.3 11 ADLER 95B CPLR K0-K0 asymmetry42.3 ±4.4 ±1.4 100k 12 ADLER 92B CPLR K0-K0 asymmetry47.7 ±2.0 ±0.9 3,13 KARLSSON 90 E73144.3 ±2.8 ±0.2 14 CARITHERS 75 SPEC C regenerator1APOSTOLAKIS 99C measures φ+− = (43.19± 0.53± 0.28) + 300 [�m− 0.5301℄ (◦).We have adjusted the measurement to use our best values of (�m = 0.5293 ± 0.0009)(1010 �h s−1). Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best values.2 SCHWINGENHEUER 95 measures φ+− = (43.53± 0.76) + 173 [�m− 0.5282℄ − 275[τs − 0.8926℄ (◦). We have adjusted the measurement to use our best values of (�m =0.5293 ± 0.0009) (1010 �h s−1), (τs = 0.8954 ± 0.0004) (10−10 s). Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalues.3These experiments measure φ+−{φf and 
al
ulate the regeneration phase from thepower law momentum dependen
e of the regeneration amplitude using analyti
ity anddispersion relations. SCHWINGENHEUER 95 [GIBBONS 93℄ in
ludes a systemati
 errorof 0.35◦ [0.5◦℄ for un
ertainties in their modeling of the regeneration amplitude.

4GIBBONS 93 measures φ+− = (42.21 ± 0.9) + 189 [�m − 0.5257℄ − 460 [τs −0.8922℄ (◦). We have adjusted the measurement to use our best values of (�m =0.5293 ± 0.0009) (1010 �h s−1), (τs = 0.8954 ± 0.0004) (10−10 s). Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalues. This is a
tually reported in SCHWINGENHEUER 95, footnote 8. GIBBONS 93reports φ+− (42.2 ± 1.4)◦. They measure φ+{φf and 
al
ulate the regeneration phase
φf from the power law momentum dependen
e of the regeneration amplitude usinganalyti
ity. An error of 0.6◦ is in
luded for possible un
ertainties in the regenerationphase.5CAROSI 90 measures φ+− = (46.9 ± 1.4 ± 0.7) + 579 [�m − 0.5351℄ + 303[τs − 0.8922℄ (◦). We have adjusted the measurement to use our best values of (�m =0.5293 ± 0.0009) (1010 �h s−1), (τs = 0.8954 ± 0.0004) (10−10 s). Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalues.6GEWENIGER 74B measures φ+− = (49.4 ± 1.0) + 565 [�m− 0.540℄ (◦). We haveadjusted the measurement to use our best values of (�m = 0.5293 ± 0.0009) (1010 �hs−1). Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best values.7Not independent of other phase parameters reported in ABOUZAID 11.8ALAVI-HARATI 03 φ+− is 
orrelated with their �m = mK0L − mK0S and τKS mea-surements in the K0L and K0S se
tions respe
tively. The 
orrelation 
oeÆ
ients are
ρ(φ+−,�m)=+0.955, ρ(φ+−,τS )=−0.871, and ρ(τS ,�m)=−0.840. CPT is not as-sumed. Uses s
intillator Pb regenerator. Superseded by ABOUZAID 11.9ADLER 96C measures φ+− = (43.82 ± 0.41) + 339 [�m − 0.5307℄ − 252 [τs −0.8922℄ (◦). We have adjusted the measurement to use our best values of (�m =0.5293 ± 0.0009) (1010 �h s−1), (τs = 0.8954 ± 0.0004) (10−10 s). Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalues.10ADLER 96C is the result of a �t whi
h in
ludes nearly the same data as entered into the\OUR FIT" value in the 1996 edition of this Review (Physi
al Review D54D54D54D54 1 (1996)).11ADLER 95B measures φ+− = (42.7 ± 0.9 ± 0.6) + 316 [�m − 0.5274℄ + 30 [τs −0.8926℄ (◦). We have adjusted the measurement to use our best values of (�m =0.5293 ± 0.0009) (1010 �h s−1), (τs = 0.8954 ± 0.0004) (10−10 s). Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalues.12ADLER 92B quote separately two systemati
 errors: ±0.4 from their experiment and
±1.0 degrees due to the un
ertainty in the value of �m.13KARLSSON 90 systemati
 error does not in
lude regeneration phase un
ertainty.14CARITHERS 75 measures φ+− = (45.5 ± 2.8) + 224 [�m − 0.5348℄ (◦). We haveadjusted the measurement to use our best values of (�m = 0.5293 ± 0.0009) (1010 �hs−1). Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best values. φf = −40.9 ± 2.6◦.

φ00, PHASE OF η00φ00, PHASE OF η00φ00, PHASE OF η00φ00, PHASE OF η00See 
omment in φ+− header above for treatment of �m and τs dependen
e, as wellas for the in
lusion of data in both the \Assuming CPT" and \Not Assuming CPT"�ts.OUR FIT is des
ribed in the note on \CP violation in KL de
ays" in the K0L Parti
leListings.VALUE (◦) DOCUMENT ID TECN COMMENT43.52±0.05 OUR FIT43.52±0.05 OUR FIT43.52±0.05 OUR FIT43.52±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.3. Assuming CPT43.7 ±0.6 OUR FIT43.7 ±0.6 OUR FIT43.7 ±0.6 OUR FIT43.7 ±0.6 OUR FIT Error in
ludes s
ale fa
tor of 1.2. Not assuming CPT44.5 ±2.3 ±0.5 1 CAROSI 90 NA31
• • • We do not use the following data for averages, �ts, limits, et
. • • •44.06±0.68 2 ABOUZAID 11 KTEV Not assuming CPT41.7 ±5.9 ±0.2 3 ANGELOPO... 98 CPLR50.8 ±7.1 ±1.7 4 ADLER 96B CPLR Sup. by ANGELOPOULOS 9847.4 ±1.4 ±0.9 5 KARLSSON 90 E7311CAROSI 90 measures φ00 = (47.1 ± 2.1 ± 1.0) + 579 [�m − 0.5351℄ + 252 [τs −0.8922℄ (◦). We have adjusted the measurement to use our best values of (�m =0.5293 ± 0.0009) (1010 �h s−1), (τs = 0.8954 ± 0.0004) (10−10 s). Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalues.2Not independent of other phase parameters reported in ABOUZAID 11.3ANGELOPOULOS 98 measures φ00 = (42.0 ± 5.6 ± 1.9) + 240 [�m− 0.5307℄ (◦).We have adjusted the measurement to use our best values of (�m = 0.5293 ± 0.0009)(1010 �h s−1). Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best values. The τs dependen
e is negligible.4ADLER 96B identi�ed initial neutral kaon individually as being a K0 or a K0. Thesystemati
 un
ertainty is ±1.5◦ 
ombined in quadrature with ±0.8◦ due to �m.5KARLSSON 90 systemati
 error does not in
lude regeneration phase un
ertainty.
φǫ = (2φ+− + φ00)/3φǫ = (2φ+− + φ00)/3φǫ = (2φ+− + φ00)/3φǫ = (2φ+− + φ00)/3This expression is a very good approximation, good to about 10−3 degrees be
ause ofthe small measured values of φ00−φ+− and Re ǫ'/ǫ, and small theoreti
al ambiguities.VALUE (◦) DOCUMENT ID TECN COMMENT43.52 ±0.05 OUR FIT43.52 ±0.05 OUR FIT43.52 ±0.05 OUR FIT43.52 ±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.2. Assuming CPT43.5 ±0.5 OUR FIT43.5 ±0.5 OUR FIT43.5 ±0.5 OUR FIT43.5 ±0.5 OUR FIT Error in
ludes s
ale fa
tor of 1.3. Not assuming CPT43.5164±0.0002±0.0518 1 SUPERWEAK 16 Assuming CPT43.86 ±0.63 2 ABOUZAID 11 KTEV Not assuming CPT1SUPERWEAK 16 is a fake measurement used to impose the CPT or Superweak 
onstraint

φ+−= φSW = tan−1[2 �m�h ( τSτL
τL−τS )℄. This \measurement" is linearized using valuesnear the PDG 04 edition values of �m, τS and τL, and then adjusted to our 
urrentvalues as des
ribed in the following \measurement". SUPERWEAK 16 measures φǫ =(43.50258 ± 0.00021) + 54.1 [�m − 0.5289℄ + 32.0 [τs − 0.89564℄ (◦). We haveadjusted the measurement to use our best values of (�m = 0.5293 ± 0.0009) (1010 �hs−1), (τs = 0.8954 ± 0.0004) (10−10 s). Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best values.2ABOUZAID 11 uses the full KTeV dataset 
olle
ted in 1996, 1997, and 1999. SeeIm(ǫ′/ǫ) se
tion for 
orrelation information.



1025102510251025See key on page 601 Meson Parti
le ListingsK 0LIm(ǫ′/ǫ) = −(φ00 − φ+−)/3Im(ǫ′/ǫ) = −(φ00 − φ+−)/3Im(ǫ′/ǫ) = −(φ00 − φ+−)/3Im(ǫ′/ǫ) = −(φ00 − φ+−)/3For small ∣∣ǫ′/ǫ∣∣, Im(ǫ′/ǫ) is related to the phases of η00 and η+− by the aboveexpression.VALUE (◦) DOCUMENT ID TECN COMMENT
−0.002 ±0.005 OUR FIT−0.002 ±0.005 OUR FIT−0.002 ±0.005 OUR FIT−0.002 ±0.005 OUR FIT Error in
ludes s
ale fa
tor of 1.7. Assuming CPT
−0.11 ±0.11 OUR FIT−0.11 ±0.11 OUR FIT−0.11 ±0.11 OUR FIT−0.11 ±0.11 OUR FIT Not assuming CPT
−0.0985±0.1157−0.0985±0.1157−0.0985±0.1157−0.0985±0.1157 1 ABOUZAID 11 KTEV Not assuming CPT1ABOUZAID 11 uses the full KTeV dataset 
olle
ted in 1996, 1997, and 1999. The �t has�m, τs , φǫ, Re(ǫ′/ǫ), and Im(ǫ′/ǫ) as free parameters. The reported value of Im(ǫ′/ǫ)= (−17.20 ± 20.20) × 10−4 rad. The 
orrelation 
oeÆ
ients are ρ(φǫ, �m) = 0.828,

ρ(φǫ, τs ) = −0.765, ρ(�m, τs ) = −0.858, ρ(Im(ǫ′/ǫ), φǫ) = −0.041, ρ(Im(ǫ′/ǫ),�m) = 0.026, ρ(Im(ǫ′/ǫ), τs ) = −0.010.DECAY-PLANE ASYMMETRY IN π+π− e+ e− DECAYSDECAY-PLANE ASYMMETRY IN π+π− e+ e− DECAYSDECAY-PLANE ASYMMETRY IN π+π− e+ e− DECAYSDECAY-PLANE ASYMMETRY IN π+π− e+ e− DECAYSThis is the CP-violating asymmetryA= Nsinφ
osφ>0.0−Nsinφ
osφ<0.0Nsinφ
osφ>0.0+Nsinφ
osφ<0.0where φ is the angle between the e+ e− and π+π− planes in the K0Lrest frame.CP ASYMMETRY A in K0L → π+π− e+ e−CP ASYMMETRY A in K0L → π+π− e+ e−CP ASYMMETRY A in K0L → π+π− e+ e−CP ASYMMETRY A in K0L → π+π− e+ e−VALUE (%) DOCUMENT ID TECN13.7±1.5 OUR AVERAGE13.7±1.5 OUR AVERAGE13.7±1.5 OUR AVERAGE13.7±1.5 OUR AVERAGE13.6±1.4±1.5 ABOUZAID 06 KTEV14.2±3.0±1.9 LAI 03C NA4813.6±2.5±1.2 ALAVI-HARATI00B KTEVPARAMETERS FOR e+ e− e+ e− DECAYSPARAMETERS FOR e+ e− e+ e− DECAYSPARAMETERS FOR e+ e− e+ e− DECAYSPARAMETERS FOR e+ e− e+ e− DECAYSThese are the CP-violating parameters in the φ distribution, where φ is theangle between the planes of the two e+ e− pairs in the kaon rest frame:d�/dφ ∝ 1 +βCP 
os(2φ) + γCP sin(2φ)
βCP from K0L → e+ e− e+ e−βCP from K0L → e+ e− e+ e−βCP from K0L → e+ e− e+ e−βCP from K0L → e+ e− e+ e−VALUE EVTS DOCUMENT ID TECN COMMENT
−0.19±0.07 OUR AVERAGE−0.19±0.07 OUR AVERAGE−0.19±0.07 OUR AVERAGE−0.19±0.07 OUR AVERAGE
−0.13±0.10±0.03 200 1 LAI 05B NA48
−0.23±0.09±0.02 441 ALAVI-HARATI01D KTEV Me e >8 MeV/
21 LAI 05B obtains βCP = −0.13 ± 0.10 (stat) if γCP = 0 is assumed.
γCP from K0L → e+ e− e+ e−γCP from K0L → e+ e− e+ e−γCP from K0L → e+ e− e+ e−γCP from K0L → e+ e− e+ e−VALUE EVTS DOCUMENT ID TECN COMMENT0.01±0.11 OUR AVERAGE0.01±0.11 OUR AVERAGE0.01±0.11 OUR AVERAGE0.01±0.11 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.+0.13±0.10±0.03 200 LAI 05B NA48
−0.09±0.09±0.02 441 ALAVI-HARATI01D KTEV Me e >8 MeV/
2CHARGE ASYMMETRY IN π+π−π0 DECAYSCHARGE ASYMMETRY IN π+π−π0 DECAYSCHARGE ASYMMETRY IN π+π−π0 DECAYSCHARGE ASYMMETRY IN π+π−π0 DECAYSThese are CP-violating 
harge-asymmetry parameters, de�ned at begin-ning of se
tion \LINEAR COEFFICIENT g FOR K0L → π+π−π0 above.See also note on Dalitz plot parameters in K± se
tion and note on \CPviolation in KL de
ays" above.LINEAR COEFFICIENT j FOR K0L → π+π−π0LINEAR COEFFICIENT j FOR K0L → π+π−π0LINEAR COEFFICIENT j FOR K0L → π+π−π0LINEAR COEFFICIENT j FOR K0L → π+π−π0VALUE EVTS DOCUMENT ID TECN0.0012±0.0008 OUR AVERAGE0.0012±0.0008 OUR AVERAGE0.0012±0.0008 OUR AVERAGE0.0012±0.0008 OUR AVERAGE0.0010±0.0024±0.0030 500k ANGELOPO... 98C CPLR
−0.001 ±0.011 6499 CHO 770.001 ±0.003 4709 PEACH 770.0013±0.0009 3M SCRIBANO 700.0 ±0.017 4400 SMITH 70 OSPK0.001 ±0.004 238k BLANPIED 68QUADRATIC COEFFICIENT f FOR K0L → π+π−π0QUADRATIC COEFFICIENT f FOR K0L → π+π−π0QUADRATIC COEFFICIENT f FOR K0L → π+π−π0QUADRATIC COEFFICIENT f FOR K0L → π+π−π0VALUE EVTS DOCUMENT ID TECN0.0045±0.0024±0.00590.0045±0.0024±0.00590.0045±0.0024±0.00590.0045±0.0024±0.0059 500k ANGELOPO... 98C CPLRPARAMETERS for K0L → π+π−γ DECAYPARAMETERS for K0L → π+π−γ DECAYPARAMETERS for K0L → π+π−γ DECAYPARAMETERS for K0L → π+π−γ DECAY
∣∣η+−γ

∣∣ = ∣∣A(K0L → π+π−γ , CP violating)/A(K0S → π+π− γ)∣∣∣∣η+−γ

∣∣ = ∣∣A(K0L → π+π−γ , CP violating)/A(K0S → π+π− γ)∣∣∣∣η+−γ

∣∣ = ∣∣A(K0L → π+π−γ , CP violating)/A(K0S → π+π− γ)∣∣∣∣η+−γ

∣∣ = ∣∣A(K0L → π+π−γ , CP violating)/A(K0S → π+π− γ)∣∣VALUE (units 10−3) EVTS DOCUMENT ID TECN2.35 ±0.07 OUR AVERAGE2.35 ±0.07 OUR AVERAGE2.35 ±0.07 OUR AVERAGE2.35 ±0.07 OUR AVERAGE2.359±0.062±0.040 9045 MATTHEWS 95 E7732.15 ±0.26 ±0.20 3671 RAMBERG 93B E731

φ+−γ = phase of η+−γφ+−γ = phase of η+−γφ+−γ = phase of η+−γφ+−γ = phase of η+−γVALUE (◦) EVTS DOCUMENT ID TECN44 ± 4 OUR AVERAGE44 ± 4 OUR AVERAGE44 ± 4 OUR AVERAGE44 ± 4 OUR AVERAGE43.8± 3.5± 1.9 9045 MATTHEWS 95 E77372 ±23 ±17 3671 RAMBERG 93B E731
∣∣ǫ′+−γ

∣∣/ǫ for K0L → π+π−γ
∣∣ǫ′+−γ

∣∣/ǫ for K0L → π+π−γ
∣∣ǫ′+−γ

∣∣/ǫ for K0L → π+π−γ
∣∣ǫ′+−γ

∣∣/ǫ for K0L → π+π−γVALUE CL% EVTS DOCUMENT ID TECN
<0.3<0.3<0.3<0.3 90 3671 1 RAMBERG 93B E7311RAMBERG 93B limit on ∣∣ǫ′+−γ

∣∣/ǫ assumes than any di�eren
e between η+− and η+−γis due to dire
t CP violation.
∣∣gE1∣∣ for K0L → π+π−γ
∣∣gE1∣∣ for K0L → π+π−γ
∣∣gE1∣∣ for K0L → π+π−γ
∣∣gE1∣∣ for K0L → π+π−γThis parameter is the amplitude of the dire
t emission of a CP violating E1 ele
tri
dipole photon.VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<0.21<0.21<0.21<0.21 90 111k ABOUZAID 06A KTEV E∗γ > 20 MeVT VIOLATION TESTS IN K0L DECAYST VIOLATION TESTS IN K0L DECAYST VIOLATION TESTS IN K0L DECAYST VIOLATION TESTS IN K0L DECAYSIm(ξ) in K0

µ3 DECAY (from transverse µ pol.)Im(ξ) in K0
µ3 DECAY (from transverse µ pol.)Im(ξ) in K0
µ3 DECAY (from transverse µ pol.)Im(ξ) in K0
µ3 DECAY (from transverse µ pol.)Test of T reversal invarian
e.VALUE EVTS DOCUMENT ID TECN COMMENT

−0.007±0.026 OUR AVERAGE−0.007±0.026 OUR AVERAGE−0.007±0.026 OUR AVERAGE−0.007±0.026 OUR AVERAGE0.009±0.030 12M MORSE 80 CNTR Polarization0.35 ±0.30 207k 1 CLARK 77 SPEC POL, t=0
−0.085±0.064 2.2M 2 SANDWEISS 73 CNTR POL, t=0
−0.02 ±0.08 LONGO 69 CNTR POL, t=3.3
−0.2 ±0.6 ABRAMS 68B OSPK Polarization
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.012±0.026 SCHMIDT 79 CNTR Repl. by MORSE 801CLARK 77 value has additional ξ(0) dependen
e +0.21Re[ξ(0)].2 SANDWEISS 73 value 
orre
ted from value quoted in their paper due to new value ofRe(ξ). See footnote 4 of SCHMIDT 79.CPT-INVARIANCE TESTS IN K0L DECAYSCPT-INVARIANCE TESTS IN K0L DECAYSCPT-INVARIANCE TESTS IN K0L DECAYSCPT-INVARIANCE TESTS IN K0L DECAYSPHASE DIFFERENCE φ00 − φ+−PHASE DIFFERENCE φ00 − φ+−PHASE DIFFERENCE φ00 − φ+−PHASE DIFFERENCE φ00 − φ+−Test of CPT.OUR FIT is des
ribed in the note on \CP violation in KL de
ays" in the K0L Parti
leListings.VALUE (◦) DOCUMENT ID TECN COMMENT0.006±0.014 OUR FIT0.006±0.014 OUR FIT0.006±0.014 OUR FIT0.006±0.014 OUR FIT Error in
ludes s
ale fa
tor of 1.7. Assuming CPT0.34 ±0.32 OUR FIT0.34 ±0.32 OUR FIT0.34 ±0.32 OUR FIT0.34 ±0.32 OUR FIT Not assuming CPT0.006±0.008 1 SUPERWEAK 16 Assuming CPT
−0.30 ±0.88 2 SCHWINGEN...95 Combined E731, E773
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.30 ±0.35 3 ABOUZAID 11 KTEV Not assuming CPT0.39 ±0.22 ±0.45 4 ALAVI-HARATI03 KTEV0.62 ±0.71 ±0.75 SCHWINGEN...95 E773
−1.6 ±1.2 5 GIBBONS 93 E7310.2 ±2.6 ±1.2 6 CAROSI 90 NA31
−0.3 ±2.4 ±1.2 KARLSSON 90 E7311SUPERWEAK 16 is a fake experiment to 
onstrain φ00 − φ+− to a small value asdes
ribed in the note \CP violation in KL de
ays."2This SCHWINGENHEUER 95 values is the 
ombined result of SCHWINGENHEUER 95and GIBBONS 93, a

ounting for 
orrelated systemati
 errors.3Not independent of other phase parameters reported in ABOUZAID 11.4ALAVI-HARATI 03 �t Re(ǫ′/ǫ), Im(ǫ′/ǫ), �m, τS , and φ+− simultaneously, not as-suming CPT. Phase di�eren
e is obtained from φ00 − φ+− ≈ − 3Im(ǫ′/ǫ) for small∣∣ǫ′/ǫ∣∣. Superseded by ABOUZAID 11.5GIBBONS 93 give detailed dependen
e of systemati
 error on lifetime (see the se
tionon the K0S mean life) and mass di�eren
e (see the se
tion on mK0L − mK0S ).6CAROSI 90 is ex
luded from the �t be
ause it it is not independent of φ+− and φ00values.PHASE DIFFERENCE φ+− − φSWPHASE DIFFERENCE φ+− − φSWPHASE DIFFERENCE φ+− − φSWPHASE DIFFERENCE φ+− − φSWTest of CPT. The Superweak phase φSW ≡ tan−1 (2�m/��) where �m =mK0L −mK0S and �� = �h(τL − τS )/(τLτS ).VALUE (◦) DOCUMENT ID TECN0.61±0.62±1.010.61±0.62±1.010.61±0.62±1.010.61±0.62±1.01 1 ALAVI-HARATI03 KTEV1ALAVI-HARATI 03 �t is the same as their φ+−, τKS , �m �t, ex
ept that the parameter

φ+− − φSW is used in pla
e of φ.Re(23η+− + 13η00)−AL2Re(23η+− + 13η00)−AL2Re(23η+− + 13η00)−AL2Re(23η+− + 13η00)−AL2Test of CPTVALUE (units 10−6) DOCUMENT ID TECN COMMENT
−3±35−3±35−3±35−3±35 1 ALAVI-HARATI02 E799 Uses AL from Ke3 de
ays1ALAVI-HARATI 02 uses PDG 00 values of η+− and η00.
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∆S = ∆Q IN K0 DECAYS

The relative amount of ∆S 6= ∆Q component present is

measured by the parameter x, defined as

x = A(K
0 → π−ℓ+ν)/A(K0 → π−ℓ+ν) .

We list Re{x} and Im{x} for Ke3 and Kµ3 combined.x = A(K 0 → π− ℓ+ν)/A(K0 → π− ℓ+ν) = A(�S=−�Q)/A(�S=�Q)x = A(K 0 → π− ℓ+ν)/A(K0 → π− ℓ+ν) = A(�S=−�Q)/A(�S=�Q)x = A(K 0 → π− ℓ+ν)/A(K0 → π− ℓ+ν) = A(�S=−�Q)/A(�S=�Q)x = A(K 0 → π− ℓ+ν)/A(K0 → π− ℓ+ν) = A(�S=−�Q)/A(�S=�Q)REAL PART OF xREAL PART OF xREAL PART OF xREAL PART OF xVALUE EVTS DOCUMENT ID TECN COMMENT
−0.0018±0.0041±0.0045−0.0018±0.0041±0.0045−0.0018±0.0041±0.0045−0.0018±0.0041±0.0045 ANGELOPO... 98D CPLR Ke3 from K0
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.10 +0.18

−0.19 79 SMITH 75B WIRE π− p → K0�0.04 ±0.03 4724 NIEBERGALL 74 ASPK K+ p → K0 pπ+
−0.008 ±0.044 1757 FACKLER 73 OSPK Ke3 from K0
−0.03 ±0.07 1367 HART 73 OSPK Ke3 from K0�
−0.070 ±0.036 1079 MALLARY 73 OSPK Ke3 from K0�X0.03 ±0.06 410 1 BURGUN 72 HBC K+ p → K0 pπ+0.04 +0.10

−0.13 100 2 GRAHAM 72 OSPK Kµ3 from K0�
−0.05 ±0.09 442 2 GRAHAM 72 OSPK π− p → K0�0.26 +0.10

−0.14 126 MANN 72 HBC K− p → nK0
−0.13 ±0.11 342 2 MANTSCH 72 OSPK Ke3 from K0�0.04 +0.07

−0.08 222 1 BURGUN 71 HBC K+ p → K0 pπ+0.25 +0.07
−0.09 252 WEBBER 71 HBC K− p → nK00.12 ±0.09 215 3 CHO 70 DBC K+ d → K0 pp

−0.020 ±0.025 4 BENNETT 69 CNTR Charge asym+ Curegen.0.09 +0.14
−0.16 686 LITTENBERG 69 OSPK K+ n → K0 p0.03 ±0.03 4 BENNETT 68 CNTR0.09 +0.07
−0.09 121 JAMES 68 HBC p p0.17 +0.16
−0.35 116 FELDMAN 67B OSPK π− p → K0�0.17 ±0.10 335 3 HILL 67 DBC K+ d → K0 pp0.035 +0.11
−0.13 196 AUBERT 65 HLBC K+ 
harge ex
h.0.06 +0.18
−0.44 152 5 BALDO-... 65 HLBC K+ 
harge ex
h.

−0.08 +0.16
−0.28 109 6 FRANZINI 65 HBC p p1BURGUN 72 is a �nal result whi
h in
ludes BURGUN 71.2 First GRAHAM 72 value is se
ond GRAHAM 72 value 
ombined with MANTSCH 72.3CHO 70 is analysis of unambiguous events in new data and HILL 67.4BENNETT 69 is a reanalysis of BENNETT 68.5BALDO-CEOLIN 65 gives x and θ 
onverted by us to Re(x) and Im(x).6 FRANZINI 65 gives x and θ for Re(x) and Im(x). See SCHMIDT 67.IMAGINARY PART OF xIMAGINARY PART OF xIMAGINARY PART OF xIMAGINARY PART OF xAssumes mK0L − mK0S positive. See Listings above.VALUE EVTS DOCUMENT ID TECN COMMENT0.0012±0.0019±0.00090.0012±0.0019±0.00090.0012±0.0019±0.00090.0012±0.0019±0.0009 640k ANGELOPO... 01B CPLR Ke3 from K0

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0012±0.0019 640k 1 ANGELOPO... 98E CPLR Ke3 from K0
−0.10 +0.16

−0.19 79 SMITH 75B WIRE π− p → K0�
−0.06 ±0.05 4724 NIEBERGALL 74 ASPK K+p → K0 pπ+
−0.017 ±0.060 1757 FACKLER 73 OSPK Ke3 from K00.09 ±0.07 1367 HART 73 OSPK Ke3 from K0�0.107 +0.092

−0.074 1079 MALLARY 73 OSPK Ke3 from K0�X0.07 +0.06
−0.07 410 2 BURGUN 72 HBC K+p → K0 pπ+0.12 +0.17
−0.16 100 3 GRAHAM 72 OSPK Kµ3 from K0�0.05 ±0.13 442 3 GRAHAM 72 OSPK π− p → K0�0.21 +0.15
−0.12 126 MANN 72 HBC K−p → nK0

−0.04 ±0.16 342 3 MANTSCH 72 OSPK Ke3 from K0�0.12 +0.08
−0.09 222 2 BURGUN 71 HBC K+p → K0 pπ+0.0 ±0.08 252 WEBBER 71 HBC K−p → nK0

−0.08 ±0.07 215 4 CHO 70 DBC K+d → K0 pp
−0.11 +0.10

−0.11 686 LITTENBERG 69 OSPK K+n → K0 p+0.22 +0.37
−0.29 121 JAMES 68 HBC pp0.0 ±0.25 116 FELDMAN 67B OSPK π− p → K0�

−0.20 ±0.10 335 4 HILL 67 DBC K+d → K0 pp
−0.21 +0.11

−0.15 196 AUBERT 65 HLBC K+ 
harge ex
h.
−0.44 +0.32

−0.19 152 5 BALDO-... 65 HLBC K+ 
harge ex
h.+0.24 +0.40
−0.30 109 6 FRANZINI 65 HBC pp

1Superseded by ANGELOPOULOS 01B.2BURGUN 72 is a �nal result whi
h in
ludes BURGUN 71.3 First GRAHAM 72 value is se
ond GRAHAM 72 value 
ombined with MANTSCH 72.4 Footnote 10 of HILL 67 should read +0.58, not −0.58 (private 
ommuni
ation) CHO 70is analysis of unambiguous events in new data and HILL 67.5BALDO-CEOLIN 65 gives x and θ 
onverted by us to Re(x) and Im(x).6 FRANZINI 65 gives x and θ for Re(x) and Im(x). See SCHMIDT 67.K0L REFERENCESK0L REFERENCESK0L REFERENCESK0L REFERENCESBRFIT 16 RPP 2016 edition C.-J. Lin (PDG Collab.)ETAFIT 16 RPP 2016 edition C.-J. Lin (PDG Collab.)SUPERWEAK 16 RPP 2016 edition C.-J. Lin (PDG Collab.)ABOUZAID 11 PR D83 092001 E. Abouzaid et al. (FNAL KTeV Collab.)ABOUZAID 11A PRL 107 201803 E. Abouzaid et al. (KTeV Collab.)OGATA 11 PR D84 052009 R. Ogata et al. (KEK E391a Collab.)TUNG 11 PR D83 031101 Y.C. Tung et al. (KEK E391a Collab.)ABOUZAID 10 PR D81 052001 E. Abouzaid et al. (FNAL KTeV Collab.)AHN 10 PR D81 072004 J.K. Ahn et al. (KEK E391a Collab.)ABOUZAID 08 PR D77 112004 E. Abouzaid et al. (FNAL KTeV Collab.)ABOUZAID 08A PR D78 032009 E. Abouzaid et al. (FNAL KTeV Collab.)ABOUZAID 08B PR D78 032014 E. Abouzaid et al. (FNAL KTeV Collab.)ABOUZAID 08C PRL 100 131803 E. Abouzaid et al. (FNAL KTeV Collab.)AHN 08 PRL 100 201802 J.K. Ahn et al. (KEK E391a Collab.)AMBROSINO 08F EPJ C55 539 F. Ambrosino et al. (KLOE Collab.)ABOUZAID 07B PRL 99 051804 E. Abouzaid et al. (FNAL KTeV Collab.)ABOUZAID 07C PRL 99 081803 E. Abouzaid et al. (FNAL KTeV Collab.)ABOUZAID 07D PR D76 052001 E. Abouzaid et al. (FNAL KTeV Collab.)AMBROSINO 07C JHEP 0712 105 F. Ambrosino et al. (KLOE Collab.)ANDRE 07 ANP 322 2518 T. Andre (EFI)LAI 07 PL B645 26 A. Lai et al. (CERN NA48 Collab.)LAI 07A PL B647 341 A. Lai et al. (CERN NA48 Collab.)NIX 07 PR D76 011101 J. Nix et al. (KEK E391a Collab.)ABOUZAID 06 PRL 96 101801 E. Abouzaid et al. (KTeV Collab.)ABOUZAID 06A PR D74 032004 E. Abouzaid et al. (KTeV Collab.)Also PR D74 039905 (errat.) E. Abouzaid et al. (KTeV Collab.)ABOUZAID 06C PR D74 097101 E. Abouzaid et al. (KTeV Collab.)AHN 06 PR D74 051105 J.K. Ahn et al. (KEK E391a Collab.)Also PR D74 079901 (errat.) J.K. Ahn et al. (KEK E391a Collab.)AMBROSINO 06 PL B632 43 F. Ambrosino et al. (KLOE Collab.)AMBROSINO 06D PL B636 166 F. Ambrosino et al. (KLOE Collab.)AMBROSINO 06F PL B638 140 F. Ambrosino et al. (KLOE Collab.)BATLEY 06B PL B633 173 J.R. Batley et al. (CERN NA48/2 Collab.)HILL 06 PR D74 096006 R.J. Hill (FNAL)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)ALEXOPOU... 05 PR D71 012001 T. Alexopoulos et al. (FNAL KTeV Collab.)AMBROSINO 05C PL B626 15 F. Ambrosino et al. (KLOE Collab.)CABIBBO 05 JHEP 0503 021 N. Cabibbo, G. Isidori (CERN, ROMAI, FRAS)LAI 05 PL B605 247 A. Lai et al. (CERN NA48 Collab.)LAI 05B PL B615 31 A. Lai et al. (CERN NA48 Collab.)PARK 05 PRL 94 021801 H.K. Park et al. (FNAL HyperCP Collab.)ALAVI-HARATI 04A PRL 93 021805 A. Alavi-Harati et al. (FNAL KTeV/E799 Collab.)ALEXOPOU... 04 PR D70 092006 T. Alexopoulos et al. (FNAL KTeV Collab.)ALEXOPOU... 04A PR D70 092007 T. Alexopoulos et al. (FNAL KTeV Collab.)BATLEY 04 PL B595 75 J.R. Batley et al. (CERN NA48 Collab.)CIRIGLIANO 04 EPJ C35 53 V. Cirigliano, H. Neufeld, H. Pi
hl (CIT, VALE+)LAI 04B PL B602 41 A. Lai et al. (CERN NA48 Collab.)LAI 04C PL B604 1 A. Lai et al. (CERN NA48 Collab.)PDG 04 PL B592 1 S. Eidelman et al. (PDG Collab.)SOZZI 04 EPJ C36 37 M. Sozzi (PISA)ADINOLFI 03 PL B566 61 M. Adinol� et al. (KLOE Collab.)ALAVI-HARATI 03 PR D67 012005 A. Alavi-Harati et al. (FNAL KTeV Collab.)Also PR D70 079904 (errat.) A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 03B PRL 90 141801 A. ALavi-Harati et al. (FNAL KTeV Collab.)LAI 03 PL B551 7 A. Lai et al. (CERN NA48 Collab.)LAI 03C EPJ C30 33 A. Lai et al. (CERN NA48 Collab.)ALAVI-HARATI 02 PRL 88 181601 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 02C PRL 89 211801 A. Alavi-Harati et al. (FNAL KTeV Collab.)BATLEY 02 PL B544 97 J.R. Batley et al. (CERN NA48 Collab.)CIRIGLIANO 02 EPJ C23 121 V. Cirigliano et al. (VIEN, VALE, MARS)LAI 02B PL B536 229 A. Lai et al. (CERN NA48 Collab.)ALAVI-HARATI 01 PRL 86 397 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 01B PRL 86 761 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 01D PRL 86 5425 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 01E PRL 87 021801 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 01F PR D64 012003 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 01G PRL 87 071801 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 01H PRL 87 111802 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 01J PR D64 112004 A. Alavi-Harati et al. (FNAL KTeV Collab.)ANGELOPO... 01 PL B503 49 A. Angelopoulos et al. (CPLEAR Collab.)ANGELOPO... 01B EPJ C22 55 A. Angelopoulos et al. (CPLEAR Collab.)LAI 01B PL B515 261 A. Lai et al. (CERN NA48 Collab.)LAI 01C EPJ C22 231 A. Lai et al. (CERN NA48 Collab.)ALAVI-HARATI 00 PR D61 072006 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 00B PRL 84 408 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 00D PRL 84 5279 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 00E PR D62 112001 A. Alavi-Harati et al. (FNAL KTeV Collab.)AMBROSE 00 PRL 84 1389 D. Ambrose et al. (BNL E871 Collab.)APOSTOLA... 00 PL B473 186 A. Apostolakis et al. (CPLEAR Collab.)PDG 00 EPJ C15 1 D.E. Groom et al. (PDG Collab.)ADAMS 99 PL B447 240 J. Adams et al. (FNAL KTeV Collab.)ALAVI-HARATI 99B PRL 83 917 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 99D PRL 83 22 A. Alavi-Harati et al. (FNAL KTeV Collab.)APOSTOLA... 99C PL B458 545 A. Apostolakis et al. (CPLEAR Collab.)Also EPJ C18 41 A. Apostolakis et al. (CPLEAR Collab.)FANTI 99B PL B458 553 V. Fanti et al. (CERN NA48 Collab.)FANTI 99C PL B465 335 V. Fanti et al. (CERN NA48 Collab.)MURAKAMI 99 PL B463 333 K. Murakami et al. (KEK E162 Collab.)ADAMS 98 PRL 80 4123 J. Adams et al. (FNAL KTeV Collab.)AMBROSE 98 PRL 81 4309 D. Ambrose et al. (BNL E871 Collab.)AMBROSE 98B PRL 81 5734 D. Ambrose et al. (BNL E871 Collab.)ANGELOPO... 98 PL B420 191 A. Angelopoulos et al. (CPLEAR Collab.)ANGELOPO... 98C EPJ C5 389 A. Angelopoulos et al. (CPLEAR Collab.)ANGELOPO... 98D PL B444 38 A. Angelopoulos et al. (CPLEAR Collab.)Also EPJ C22 55 A. Angelopoulos et al. (CPLEAR Collab.)ANGELOPO... 98E PL B444 43 A. Angelopoulos et al. (CPLEAR Collab.)ARISAKA 98 PL B432 230 K. Arisaka et al. (FNAL E799 Collab.)BENDER 98 PL B418 411 M. Bender et al. (CERN NA48 Collab.)DAMBROSIO 98 PL B423 385 G. D'Ambrosio, G. Isidori, J. PortolesSETZU 98 PL B420 205 M.G. Setzu et al.TAKEUCHI 98 PL B443 409 Y. Takeu
hi et al. (KYOT, KEK, HIRO)FANTI 97 ZPHY C76 653 V. Fanti et al. (CERN NA48 Collab.)NOMURA 97 PL B408 445 T. Nomura et al. (KYOT, KEK, HIRO)ADLER 96B ZPHY C70 211 R. Adler et al. (CPLEAR Collab.)ADLER 96C PL B369 367 R. Adler et al. (CPLEAR Collab.)GU 96 PRL 76 4312 P. Gu et al. (RUTG, UCLA, EFI, COLO+)LEBER 96 PL B369 69 F. Leber et al. (MANZ, CERN, EDIN, ORSAY+)PDG 96 PR D54 1 R. M. Barnett et al. (PDG Collab.)
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le ListingsK 0LADLER 95 PL B363 237 R. Adler et al. (CPLEAR Collab.)ADLER 95B PL B363 243 R. Adler et al. (CPLEAR Collab.)AKAGI 95 PR D51 2061 T. Akagi et al. (TOHOK, TOKY, KYOT, KEK)BARR 95 ZPHY C65 361 G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)BARR 95C PL B358 399 G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)HEINSON 95 PR D51 985 A.P. Heinson et al. (BNL E791 Collab.)KREUTZ 95 ZPHY C65 67 A. Kreutz et al. (SIEG, EDIN, MANZ, ORSAY+)MATTHEWS 95 PRL 75 2803 J.N. Matthews et al. (RUTG, EFI, ELMT+)SCHWINGEN... 95 PRL 74 4376 B. S
hwingenheuer et al. (EFI, CHIC+)SPENCER 95 PRL 74 3323 M.B. Spen
er et al. (UCLA, EFI, COLO+)BARR 94 PL B328 528 G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)GU 94 PRL 72 3000 P. Gu et al. (RUTG, UCLA, EFI, COLO+)NAKAYA 94 PRL 73 2169 T. Nakaya et al. (OSAK, UCLA, EFI, COLU+)ROBERTS 94 PR D50 1874 D. Roberts et al. (UCLA, EFI, COLU+)WEAVER 94 PRL 72 3758 M. Weaver et al. (UCLA, EFI, COLU, ELMT+)AKAGI 93 PR D47 R2644 T. Akagi et al. (TOHOK, TOKY, KYOT, KEK)ARISAKA 93 PRL 70 1049 K. Arisaka et al. (BNL E791 Collab.)ARISAKA 93B PRL 71 3910 K. Arisaka et al. (BNL E791 Collab.)BARR 93D PL B317 233 G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)GIBBONS 93 PRL 70 1199 L.K. Gibbons et al. (FNAL E731 Collab.)Also PR D55 6625 L.K. Gibbons et al. (FNAL E731 Collab.)GIBBONS 93B PRL 70 1203 L.K. Gibbons et al. (FNAL E731 Collab.)GIBBONS 93C Thesis RX-1487 L.K. Gibbons (CHIC)Also PR D55 6625 L.K. Gibbons et al. (FNAL E731 Collab.)HARRIS 93 PRL 71 3914 D.A. Harris et al. (EFI, UCLA, COLO+)HARRIS 93B PRL 71 3918 D.A. Harris et al. (EFI, UCLA, COLO+)MAKOFF 93 PRL 70 1591 G. Mako� et al. (FNAL E731 Collab.)Also PRL 75 2069 (erratum) G. Mako� et al.RAMBERG 93 PRL 70 2525 E. Ramberg et al. (FNAL E731 Collab.)RAMBERG 93B PRL 70 2529 E.J. Ramberg et al. (FNAL E731 Collab.)VAGINS 93 PRL 71 35 M.R. Vagins et al. (BNL E845 Collab.)ADLER 92B PL B286 180 R. Adler et al. (CPLEAR Collab.)Also SJNP 55 840 R. Adler et al. (CPLEAR Collab.)BARR 92 PL B284 440 G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)GRAHAM 92 PL B295 169 G.E. Graham et al. (FNAL E731 Collab.)MORSE 92 PR D45 36 W.M. Morse et al. (BNL, YALE, VASS)PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+)SOMALWAR 92 PRL 68 2580 S.V. Somalwar et al. (FNAL E731 Collab.)AKAGI 91B PRL 67 2618 T. Akagi et al. (TOHOK, TOKY, KYOT, KEK)BARR 91 PL B259 389 G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)HEINSON 91 PR D44 R1 A.P. Heinson et al. (UCI, UCLA, LANL+)PAPADIMITR... 91 PR D44 R573 V. Papadimitriou et al. (FNAL E731 Collab.)BARKER 90 PR D41 3546 A.R. Barker et al. (FNAL E731 Collab.)Also PRL 61 2661 L.K. Gibbons et al. (FNAL E731 Collab.)BARR 90B PL B240 283 G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)BARR 90C PL B242 523 G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)CAROSI 90 PL B237 303 R. Carosi et al. (CERN, EDIN, MANZ, LALO+)KARLSSON 90 PRL 64 2976 M. Karlsson et al. (FNAL E731 Collab.)OHL 90 PRL 64 2755 K.E. Ohl et al. (BNL E845 Collab.)OHL 90B PRL 65 1407 K.E. Ohl et al. (BNL E845 Collab.)PATTERSON 90 PRL 64 1491 J.R. Patterson et al. (FNAL E731 Collab.)INAGAKI 89 PR D40 1712 T. Inagaki et al. (KEK, TOKY, KYOT)MATHIAZHA... 89 PRL 63 2181 C. Mathiazhagan et al. (UCI, UCLA, LANL+)MATHIAZHA... 89B PRL 63 2185 C. Mathiazhagan et al. (UCI, UCLA, LANL+)WAHL 89 CERN-EP/89-86 H. Wahl (CERN)BARR 88 PL B214 303 G.D. Barr et al. (CERN, EDIN, MANZ, LALO+)BURKHARDT 88 PL B206 169 H. Burkhardt et al. (CERN, EDIN, MANZ+)JASTRZEM... 88 PRL 61 2300 E. Jastrzembski et al. (BNL, YALE)WOODS 88 PRL 60 1695 M. Woods et al. (FNAL E731 Collab.)BURKHARDT 87 PL B199 139 H. Burkhardt et al. (CERN, EDIN, MANZ+)ARONSON 86 PR D33 3180 S.H. Aronson et al. (BNL, CHIC, STAN+)Also PRL 48 1078 S.H. Aronson et al. (BNL, CHIC, STAN+)PDG 86C PL 170B 132 M. Aguilar-Benitez et al. (CERN, CIT+)COUPAL 85 PRL 55 566 D.P. Coupal et al. (CHIC, SACL)BALATS 83 SJNP 38 556 M.Y. Balats et al. (ITEP)Translated from YAF 38 927.BERGSTROM 83 PL 131B 229 L. Bergstrom, E. Masso, P. Singer (CERN)ARONSON 82 PRL 48 1078 S.H. Aronson et al. (BNL, CHIC, STAN+)ARONSON 82B PRL 48 1306 S.H. Aronson et al. (BNL, CHIC, PURD)Also PL 116B 73 E. Fis
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alar mesons underf0(500) (see the index for the page number).K∗0(800) MASSK∗0(800) MASSK∗0(800) MASSK∗0(800) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT682 ±29 OUR AVERAGE682 ±29 OUR AVERAGE682 ±29 OUR AVERAGE682 ±29 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogram below.826 ±49 +49
−34 1338 1 ABLIKIM 11B BES2 J/ψ → K0S K0S π+π−849 ±77 +18
−14 1421 2,3 ABLIKIM 10E BES2 J/ψ → K±K0S π∓π0841 ±30 +81
−73 25k 4,5 ABLIKIM 06C BES2 J/ψ → K∗(892)0K+π−658 ±13 6 DESCOTES-G...06 RVUE πK → πK797 ±19 ±43 15k 7,8 AITALA 02 E791 D+ → K−π+π+

• • • We do not use the following data for averages, �ts, limits, et
. • • •663 ± 8 ±34 9 BUGG 10 RVUE S-matrix pole706.0± 1.8±22.8 141k 10 BONVICINI 08A CLEO D+ → K−π+π+856 ±17 ±13 54k 11 LINK 07B FOCS D+ → K−π+π+750 +30
−55 12 BUGG 06 RVUE855 ±15 0.6k 13 CAWLFIELD 06A CLEO D0 → K+K−π0694 ±53 3,14 ZHOU 06 RVUE K p → K−π+ n753 ±52 15 PELAEZ 04A RVUE K π → K π594 ±79 14 ZHENG 04 RVUE K− p → K−π+ n722 ±60 16 BUGG 03 RVUE 11 K− p → K−π+ n905 +65
−30 17 ISHIDA 97B RVUE 11 K− p → K−π+ n1The Breit-Wigner parameters from a �t with seven intermediate resonan
es. The S-matrix pole position is (764 ± 63+71

−54) − i (306 ± 149+143
− 85) MeV.2 From a �t in
luding ten additional resonan
es and energy-independent Breit-Wignerwidth.3 S-matrix pole.4 S-matrix pole. GUO 06 in a 
hiral unitary approa
h report a mass of 757 ± 33 MeV anda width of 558 ± 82 MeV.5A �t in the K∗0(800) + K∗(892) + K∗(1410) model with mass and width of the K∗0(800)from ABLIKIM 06C well des
ribes the left slope of the K0S π− invariant mass spe
trumin τ− → K0S π− ντ de
ay studied by EPIFANOV 07.6 S-matrix pole. Using Roy-Steiner equations (ROY 71) as well as unitarity, analyti
ityand 
rossing symmetry 
onstraints.7Not seen by KOPP 01 using 7070 events of D0 → K−π+π0. LINK 02E and LINK 05Ishow 
lear eviden
e for a 
onstant non-resonant s
alar amplitude rather than K∗0(800)in their high statisti
s analysis of D+ → K−π+µ+ νµ.8AUBERT 07T does not �nd eviden
e for the 
harged K∗0(800) using 11k events of D0 →K−K+π0.9 S-Matrix pole. Supersedes BUGG 06. Combined analysis of ASTON 88, ABLIKIM 06C,AITALA 06, and LINK 09 using an s-dependent width with 
ouplings to K π and K η′,and the Adler zero near thresholds.10T-matrix pole.11A Breit-Wigner mass and width.12 S-matrix pole. Reanalysis of ASTON 88, AITALA 02, and ABLIKIM 06C using for the κan s-dependent width with an Adler zero near threshold.13Breit-Wigner parameters. A signi�
ant S-wave 
an be also modeled as a non-resonant
ontribution.14Using ASTON 88.15T-matrix pole. Reanalysis of data from LINGLIN 73, ESTABROOKS 78, and ASTON 88in the unitarized ChPT model.16T-matrix pole. Reanalysis of ASTON 88 data.17Reanalysis of ASTON 88 using interfering Breit-Wigner amplitudes.
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(Confidence Level < 0.0001)

600 700 800 900 1000 1100 1200K∗0(800) MASS (MeV)K∗0(800) WIDTHK∗0(800) WIDTHK∗0(800) WIDTHK∗0(800) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT547 ± 24 OUR AVERAGE547 ± 24 OUR AVERAGE547 ± 24 OUR AVERAGE547 ± 24 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.449 ±156 +144
− 81 1338 18 ABLIKIM 11B BES2 J/ψ → K0S K0S π+π−512 ± 80 + 92
− 44 1421 19,20 ABLIKIM 10E BES2 J/ψ → K±K0S π∓π0618 ± 90 + 96
−144 25k 19,21 ABLIKIM 06C BES2 J/ψ → K∗(892)0K+π−557 ± 24 22 DESCOTES-G...06 RVUE πK → πK410 ± 43 ± 87 15k 23,24 AITALA 02 E791 D+ → K−π+π+

• • • We do not use the following data for averages, �ts, limits, et
. • • •658 ± 10 ± 44 25 BUGG 10 RVUE S-matrix pole638.8± 4.4± 40.4 141k 26 BONVICINI 08A CLEO D+ → K−π+π+464 ± 28 ± 22 54k 27 LINK 07B FOCS D+ → K−π+π+684 ±120 28 BUGG 06 RVUE251 ± 48 0.6k 29 CAWLFIELD 06A CLEO D0 → K+K−π0606 ± 59 19,30 ZHOU 06 RVUE K p → K−π+ n470 ± 66 31 PELAEZ 04A RVUE K π → K π724 ±332 30 ZHENG 04 RVUE K− p → K−π+ n772 ±100 32 BUGG 03 RVUE 11 K− p → K−π+ n545 +235
−110 33 ISHIDA 97B RVUE 11 K− p → K−π+ n18The Breit-Wigner parameters from a �t with seven intermediate resonan
es. The S-matrix pole position is (764 ± 63+71

−54) − i (306 ± 149+143
− 85) MeV.19 S-matrix pole.20 From a �t in
luding ten additional resonan
es and energy-independent Breit-Wignerwidth.21A �t in the K∗0(800) + K∗(892) + K∗(1410) model with mass and width of the K∗0(800)from ABLIKIM 06C well des
ribes the left slope of the K0S π− invariant mass spe
trumin τ− → K0S π− ντ de
ay studied by EPIFANOV 07.22 S-matrix pole. Using Roy-Steiner equations (ROY 71) as well as unitarity, analyti
ityand 
rossing symmetry 
onstraints.23Not seen by KOPP 01 using 7070 events of D0 → K−π+π0. LINK 02E and LINK 05Ishow 
lear eviden
e for a 
onstant non-resonant s
alar amplitude rather than K∗0(800)in their high statisti
s analysis of D+ → K−π+µ+ νµ.24AUBERT 07T does not �nd eviden
e for the 
harged K∗0(800) using 11k events of D0 →K−K+π0.25 S-Matrix pole. Supersedes BUGG 06. Combined analysis of ASTON 88, ABLIKIM 06C,AITALA 06, and LINK 09 using an s-dependent width with 
ouplings to K π and K η′,and the Adler zero near thresholds.26T-matrix pole.27A Breit-Wigner mass and width.28 S-matrix pole. Reanalysis of ASTON 88, AITALA 02, and ABLIKIM 06C using for the κan s-dependent width with an Adler zero near threshold.29 Statisti
al error only. A �t to the Dalitz plot in
luding the K∗0(800)±, K∗(892)±, and

φ resonan
es modeled as Breit-Wigners. A signi�
ant S-wave 
an be also modeled as anon-resonant 
ontribution.30Using ASTON 88.31T-matrix pole. Reanalysis of data from LINGLIN 73, ESTABROOKS 78, and ASTON 88in the unitarized ChPT model.32T-matrix pole. Reanalysis of ASTON 88 data.33Reanalysis of ASTON 88 using interfering Breit-Wigner amplitudes.K∗0(800) REFERENCESK∗0(800) REFERENCESK∗0(800) REFERENCESK∗0(800) REFERENCESABLIKIM 11B PL B698 183 M. Ablikim et al. (BES II Collab.)ABLIKIM 10E PL B693 88 M. Ablikim et al. (BES II Collab.)BUGG 10 PR D81 014002 D.V. Bugg (LOQM)LINK 09 PL B681 14 J.M. Link et al. (FNAL FOCUS Collab.)BONVICINI 08A PR D78 052001 G. Bonvi
ini et al. (CLEO Collab.)AUBERT 07T PR D76 011102 B. Aubert et al. (BABAR Collab.)EPIFANOV 07 PL B654 65 D. Epifanov et al. (BELLE Collab.)LINK 07B PL B653 1 J.M. Link et al. (FNAL FOCUS Collab.)
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• • • We do not use the following data for averages, �ts, limits, et
. • • •893.5 ±1.1 27k 4 ABELE 99D CBAR ± 0.0 p p → K+K−π0890.4 ±0.2 ±0.5 80±0.8k 5 BIRD 89 LASS − 11 K− p → K0π− p890.0 ±2.3 800 2,3 CLELAND 82 SPEC + 30 K+ p → K0S π+ p896.0 ±1.1 3200 2,3 CLELAND 82 SPEC + 50 K+ p → K0S π+ p893 ±1 3600 2,3 CLELAND 82 SPEC − 50 K+ p → K0S π− p896.0 ±1.9 380 DELFOSSE 81 SPEC + 50 K± p → K±π0 p886.0 ±2.3 187 DELFOSSE 81 SPEC − 50 K± p → K±π0 p894.2 ±2.0 765 2 CLARK 73 HBC − 3.13 K− p → K0π− p894.3 ±1.5 1150 2,3 CLARK 73 HBC − 3.3 K− p → K0π− p892.0 ±2.6 341 2 SCHWEING...68 HBC − 5.5 K− p → K0π− pCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74 53k 6 EPIFANOV 07 BELL τ− → K0S π− ντ
• • • We do not use the following data for averages, �ts, limits, et
. • • •892.0 ±0.5 7 BOITO 10 RVUE τ− → K0S π− ντ892.0 ±0.9 8,9 BOITO 09 RVUE τ− → K0S π− ντ895.3 ±0.2 8,10 JAMIN 08 RVUE τ− → K0S π− ντ896.4 ±0.9 11970 11 BONVICINI 02 CLEO τ− → K−π0 ντ895 ±2 12 BARATE 99R ALEP τ− → K−π0 ντNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.895.4 ±0.2 ±0.2 243k 13 DEL-AMO-SA...11I BABR D+ → K−π+ e+ νe895.7 ±0.2 ±0.3 141k 14 BONVICINI 08A CLEO D+ → K−π+π+895.41±0.32+0.35

−0.43 18k 15 LINK 05I FOCS D+ → K−π+µ+ νµ896 ±2 BARBERIS 98E OMEG 450 pp → pf ps K∗K∗895.9 ±0.5 ±0.2 ASTON 88 LASS 11 K− p → K−π+ n894.52±0.63 25k 1 ATKINSON 86 OMEG 20{70 γ p894.63±0.76 20k 1 ATKINSON 86 OMEG 20{70 γ p897 ±1 28k EVANGELIS... 80 OMEG 10 π− p → K+π− (� ,�)898.4 ±1.4 1180 AGUILAR-... 78B HBC 0.76 p p → K∓K0S π±894.9 ±1.6 WICKLUND 78 ASPK 3,4,6 K±N → (K π)0N897.6 ±0.9 BOWLER 77 DBC 5.4 K+ d → K+π− pp895.5 ±1.0 3600 MCCUBBIN 75 HBC 3.6 K− p → K−π+ n

897.1 ±0.7 22k 1 PALER 75 HBC 14.3 K−p → (K π)0 X896.0 ±0.6 10k FOX 74 RVUE 2 K− p → K−π+ n896.0 ±0.6 FOX 74 RVUE 2 K+ n → K+π− p896 ±2 16 MATISON 74 HBC 12 K+ p → K+π−�896 ±1 3186 LEWIS 73 HBC 2.1{2.7 K+ p → K ππp894.0 ±1.3 16 LINGLIN 73 HBC 2{13 K+ p →K+π−π+ p898.4 ±1.3 1700 2 BUCHNER 72 DBC 4.6 K+ n → K+π− p897.9 ±1.1 2934 2 AGUILAR-... 71B HBC 3.9,4.6 K− p → K−π+ n898.0 ±0.7 5362 2 AGUILAR-... 71B HBC 3.9,4.6 K− p →K−π+π− p895 ±1 4300 3 HABER 70 DBC 3 K−N → K−π+X893.7 ±2.0 10k DAVIS 69 HBC 12 K+ p → K+π−π+ p894.7 ±1.4 1040 2 DAUBER 67B HBC 2.0 K− p → K−π+π− p
• • • We do not use the following data for averages, �ts, limits, et
. • • •895.53±0.17 LEES 13F BABR D+ → K+K−π+894.9 ±0.5 ±0.7 14.4k 17 MITCHELL 09A CLEO D+s → K+K−π+896.2 ±0.3 20k 8 AUBERT 07AK BABR 10.6 e+ e− →K∗0K±π∓ γ900.7 ±1.1 5900 BARTH 83 HBC 70 K+ p → K+π−X

WEIGHTED AVERAGE
895.81±0.19 (Error scaled by 1.4)

DAUBER 67B HBC 0.6
DAVIS 69 HBC 1.1
HABER 70 DBC 0.7
AGUILAR-... 71B HBC 9.8
AGUILAR-... 71B HBC 3.6
BUCHNER 72 DBC 4.0
LINGLIN 73 HBC 1.9
LEWIS 73 HBC 0.0
MATISON 74 HBC 0.0
FOX 74 RVUE 0.1
FOX 74 RVUE 0.1
PALER 75 HBC 3.4
MCCUBBIN 75 HBC 0.1
BOWLER 77 DBC 4.0
WICKLUND 78 ASPK 0.3
AGUILAR-... 78B HBC 3.4
EVANGELIS... 80 OMEG 1.4
ATKINSON 86 OMEG 2.4
ATKINSON 86 OMEG 4.2
ASTON 88 LASS 0.0
BARBERIS 98E OMEG 0.0
LINK 05I FOCS 0.7
BONVICINI 08A CLEO 0.1
DEL-AMO-SA... 11I BABR 2.1

χ2

      44.1
(Confidence Level = 0.0051)

890 892 894 896 898 900 902 904K∗(892)0 mass (MeV)1 In
lusive rea
tion. Compli
ated ba
kground and phase-spa
e e�e
ts.2Mass errors enlarged by us to �/√N. See note.3Number of events in peak reevaluated by us.4K-matrix pole.5 From a partial wave amplitude analysis.6 From a �t in the K∗0(800) + K∗(892) + K∗(1410) model.7 From the pole position of the K π ve
tor form fa
tor using EPIFANOV 07 and 
onstraintsfrom Kl3 de
ays in ANTONELLI 10.8 Systemati
 un
ertainties not estimated.9 From the pole position of the K π ve
tor form fa
tor in the 
omplex s-plane and usingEPIFANOV 07 data.10Reanalysis of EPIFANOV 07 using resonan
e 
hiral theory.11Cal
ulated by us from the shift by 4.7 ± 0.9 MeV (statisti
al un
ertainty only) reportedin BONVICINI 02 with respe
t to the world average value from PDG 00.12With mass and width of the K∗(1410) �xed at 1412 MeV and 227 MeV, respe
tively.13Taking into a

ount the K∗(892)0, S-wave and P-wave (K∗(1410)0).14 From the isobar model with a 
omplex pole for the κ.15 Fit to K π mass spe
trum in
ludes a non-resonant s
alar 
omponent.16 From pole extrapolation.17This value 
omes from a �t with χ2 of 178/117.
K∗(892) MASSES AND MASS DIFFERENCES

Unrealistically small errors have been reported by some

experiments. We use simple “realistic” tests for the minimum

errors on the determination of a mass and width from a sample

of N events:

δmin(m) =
Γ√
N

, δmin(Γ) = 4
Γ√
N

. (1)



1030103010301030Meson Parti
le ListingsK ∗(892)
We consistently increase unrealistic errors before averaging. For

a detailed discussion, see the 1971 edition of this Note.mK∗(892)0 − mK∗(892)±mK∗(892)0 − mK∗(892)±mK∗(892)0 − mK∗(892)±mK∗(892)0 − mK∗(892)±VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT6.7±1.2 OUR AVERAGE6.7±1.2 OUR AVERAGE6.7±1.2 OUR AVERAGE6.7±1.2 OUR AVERAGE7.7±1.7 2980 AGUILAR-... 78B HBC ±0 0.76 pp → K∓K0S π±5.7±1.7 7338 AGUILAR-... 71B HBC −0 3.9,4.6 K− p6.3±4.1 283 18 BARASH 67B HBC 0.0 p p18Number of events in peak reevaluated by us.K∗(892) RANGE PARAMETERK∗(892) RANGE PARAMETERK∗(892) RANGE PARAMETERK∗(892) RANGE PARAMETERAll from partial wave amplitude analyses.VALUE (GeV−1) EVTS DOCUMENT ID TECN CHG COMMENT2.1 ±0.5 ±0.5 243k 19 DEL-AMO-SA...11I BABR 0 D+ → K−π+ e+ νe3.96±0.54+1.31
−0.90 18k 20 LINK 05I FOCS 0 D+ → K−π+µ+ νµ3.4 ±0.7 ASTON 88 LASS 0 11 K− p → K−π+ n

• • • We do not use the following data for averages, �ts, limits, et
. • • •12.1 ±3.2 ±3.0 BIRD 89 LASS − 11 K− p → K0π− p19Taking into a

ount the K∗(892)0, S-wave and P-wave (K∗(1410)0).20 Fit to K π mass spe
trum in
ludes a non-resonant s
alar 
omponent.K∗(892) WIDTHK∗(892) WIDTHK∗(892) WIDTHK∗(892) WIDTHCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT50.8±0.9 OUR FIT50.8±0.9 OUR FIT50.8±0.9 OUR FIT50.8±0.9 OUR FIT50.8±0.9 OUR AVERAGE50.8±0.9 OUR AVERAGE50.8±0.9 OUR AVERAGE50.8±0.9 OUR AVERAGE49 ±2 5840 BAUBILLIER 84B HBC − 8.25 K− p → K0π− p56 ±4 NAPIER 84 SPEC − 200 π− p → 2K0S X51 ±2 4100 TOAFF 81 HBC − 6.5 K− p → K0π− p50.5±5.6 AJINENKO 80 HBC + 32 K+ p → K0π+X45.8±3.6 1800 AGUILAR-... 78B HBC ± 0.76 p p → K∓K0S π±52.0±2.5 6706 21 COOPER 78 HBC ± 0.76 p p → (K π)± X52.1±2.2 9000 22 PALER 75 HBC − 14.3 K− p → (K π)−X46.3±6.7 765 21 CLARK 73 HBC − 3.13 K− p → K0π− p48.2±5.7 1150 21,23 CLARK 73 HBC − 3.3 K− p → K0π− p54.3±3.3 4404 21 AGUILAR-... 71B HBC − 3.9,4.6 K− p →(K π)− p46 ±5 1700 21,23 WOJCICKI 64 HBC − 1.7 K− p → K0π− p
• • • We do not use the following data for averages, �ts, limits, et
. • • •54.8±1.7 27k 24 ABELE 99D CBAR ± 0.0 p p → K+K−π045.2±1 ±2 79.7±0.8k 25 BIRD 89 LASS − 11 K− p → K0π− p42.8±7.1 3700 BARTH 83 HBC + 70 K+ p → K0π+X64.0±9.2 800 21,23 CLELAND 82 SPEC + 30 K+ p → K0S π+ p62.0±4.4 3200 21,23 CLELAND 82 SPEC + 50 K+ p → K0S π+ p55 ±4 3600 21,23 CLELAND 82 SPEC − 50 K+ p → K0S π− p62.6±3.8 380 DELFOSSE 81 SPEC + 50 K± p → K±π0 p50.5±3.9 187 DELFOSSE 81 SPEC − 50 K± p → K±π0 pCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT46.2±0.6±1.246.2±0.6±1.246.2±0.6±1.246.2±0.6±1.2 53k 26 EPIFANOV 07 BELL τ− → K0S π− ντ
• • • We do not use the following data for averages, �ts, limits, et
. • • •46.5±1.1 27 BOITO 10 RVUE τ− → K0S π− ντ46.2±0.4 28,29 BOITO 09 RVUE τ− → K0S π− ντ47.5±0.4 28,30 JAMIN 08 RVUE τ− → K0S π− ντ55 ±8 31 BARATE 99R ALEP τ− → K−π0 ντNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT47.4 ±0.6 OUR FIT47.4 ±0.6 OUR FIT47.4 ±0.6 OUR FIT47.4 ±0.6 OUR FIT Error in
ludes s
ale fa
tor of 2.2.47.4 ±0.6 OUR AVERAGE47.4 ±0.6 OUR AVERAGE47.4 ±0.6 OUR AVERAGE47.4 ±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0. See the ideogram below.46.5 ±0.3 ±0.2 243k 32 DEL-AMO-SA...11I BABR D+ → K−π+ e+ νe45.3 ±0.5 ±0.6 141k 33 BONVICINI 08A CLEO D+ → K−π+π+47.79±0.86+1.32

−1.06 18k 34 LINK 05I FOCS D+ → K−π+µ+ νµ54 ±3 BARBERIS 98E OMEG 450 pp → pf ps K∗K∗50.8 ±0.8 ±0.9 ASTON 88 LASS 11 K− p → K−π+ n46.5 ±4.3 5900 BARTH 83 HBC 70 K+ p → K+π−X54 ±2 28k EVANGELIS... 80 OMEG 10 π− p → K+π− (� ,�)45.9 ±4.8 1180 AGUILAR-... 78B HBC 0.76 p p → K∓K0S π±51.2 ±1.7 WICKLUND 78 ASPK 3,4,6 K±N → (K π)0N48.9 ±2.5 BOWLER 77 DBC 5.4 K+ d → K+π− pp48 +3
−2 3600 MCCUBBIN 75 HBC 3.6 K− p → K−π+ n

50.6 ±2.5 22k 22 PALER 75 HBC 14.3 K−p → (K π)0 X47 ±2 10k FOX 74 RVUE 2 K− p → K−π+ n51 ±2 FOX 74 RVUE 2 K+ n → K+π− p46.0 ±3.3 3186 21 LEWIS 73 HBC 2.1{2.7 K+ p → K ππp51.4 ±5.0 1700 21 BUCHNER 72 DBC 4.6 K+ n → K+π− p55.8 +4.2
−3.4 2934 21 AGUILAR-... 71B HBC 3.9,4.6 K− p → K−π+ n48.5 ±2.7 5362 AGUILAR-... 71B HBC 3.9,4.6 K− p →K−π+π− p54.0 ±3.3 4300 21,23 HABER 70 DBC 3 K−N → K−π+X53.2 ±2.1 10k 21 DAVIS 69 HBC 12 K+ p → K+π−π+ p44 ±5.5 1040 21 DAUBER 67B HBC 2.0 K− p → K−π+π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •44.90±0.30 LEES 13F BABR D+ → K+K−π+45.7 ±1.1 ±0.5 14.4k 35 MITCHELL 09A CLEO D+s → K+K−π+50.6 ±0.9 20k 28 AUBERT 07AK BABR 10.6 e+ e− →K∗0K±π∓ γ

WEIGHTED AVERAGE
47.4±0.6 (Error scaled by 2.0)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

DAUBER 67B HBC
DAVIS 69 HBC 7.6
HABER 70 DBC 4.0
AGUILAR-... 71B HBC 0.2
AGUILAR-... 71B HBC 6.1
BUCHNER 72 DBC
LEWIS 73 HBC 0.2
FOX 74 RVUE 3.2
FOX 74 RVUE 0.0
PALER 75 HBC 1.6
MCCUBBIN 75 HBC 0.1
BOWLER 77 DBC 0.3
WICKLUND 78 ASPK 5.0
AGUILAR-... 78B HBC
EVANGELIS... 80 OMEG 10.9
BARTH 83 HBC
ASTON 88 LASS 7.9
BARBERIS 98E OMEG 4.8
LINK 05I FOCS 0.1
BONVICINI 08A CLEO 7.3
DEL-AMO-SA... 11I BABR 6.4

χ2

      65.7
(Confidence Level < 0.0001)

40 45 50 55 60 65NEUTRAL ONLY (MeV)21Width errors enlarged by us to 4× �/√N; see note.22 In
lusive rea
tion. Compli
ated ba
kground and phase-spa
e e�e
ts.23Number of events in peak reevaluated by us.24K-matrix pole.25 From a partial wave amplitude analysis.26 From a �t in the K∗0(800) + K∗(892) + K∗(1410) model.27 From the pole position of the K π ve
tor form fa
tor using EPIFANOV 07 and 
onstraintsfrom Kl3 de
ays in ANTONELLI 10.28 Systemati
 un
ertainties not estimated.29 From the pole position of the K π ve
tor form fa
tor in the 
omplex s-plane and usingEPIFANOV 07 data.30Reanalysis of EPIFANOV 07 using resonan
e 
hiral theory.31With mass and width of the K∗(1410) �xed at 1412 MeV and 227 MeV, respe
tively.32Taking into a

ount the K∗(892)0, S-wave and P-wave (K∗(1410)0).33 From the isobar model with a 
omplex pole for the κ.34 Fit to K π mass spe
trum in
ludes a non-resonant s
alar 
omponent.35This value 
omes from a �t with χ2 of 178/117.K∗(892) DECAY MODESK∗(892) DECAY MODESK∗(892) DECAY MODESK∗(892) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 K π ∼ 100 %�2 (K π )± ( 99.901±0.009) %�3 (K π )0 ( 99.754±0.021) %�4 K0γ ( 2.46 ±0.21 )× 10−3�5 K±γ ( 9.9 ±0.9 )× 10−4�6 K ππ < 7 × 10−4 95%



1031103110311031See key on page 601 MesonParti
le ListingsK ∗(892),K1(1270)CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the total width and a partial width uses 13 mea-surements and one 
onstraint to determine 3 parameters. Theoverall �t has a χ2 = 7.8 for 11 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients〈
δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x5 −100� 19 −19x2 x5Mode Rate (MeV)�2 (K π )± 50.7 ±0.9�5 K±γ 0.050±0.005CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the total width and a partial width uses 22 mea-surements and one 
onstraint to determine 3 parameters. Theoverall �t has a χ2 = 66.8 for 20 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients〈
δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x4 −100� 15 −15x3 x4Mode Rate (MeV) S
ale fa
tor�3 (K π )0 47.3 ±0.6 2.1�4 K0γ 0.116±0.010K∗(892) PARTIAL WIDTHSK∗(892) PARTIAL WIDTHSK∗(892) PARTIAL WIDTHSK∗(892) PARTIAL WIDTHS�(K0γ
) �4�(K0γ
) �4�(K0γ
) �4�(K0γ
) �4VALUE (keV) EVTS DOCUMENT ID TECN CHG COMMENT116 ±10 OUR FIT116 ±10 OUR FIT116 ±10 OUR FIT116 ±10 OUR FIT116.5± 9.9116.5± 9.9116.5± 9.9116.5± 9.9 584 CARLSMITH 86 SPEC 0 K0LA → K0S π0A�(K±γ
) �5�(K±γ
) �5�(K±γ
) �5�(K±γ
) �5VALUE (keV) DOCUMENT ID TECN CHG COMMENT50± 5 OUR FIT50± 5 OUR FIT50± 5 OUR FIT50± 5 OUR FIT50± 5 OUR AVERAGE50± 5 OUR AVERAGE50± 5 OUR AVERAGE50± 5 OUR AVERAGE48±11 BERG 83 SPEC − 156 K−A → K πA51± 5 CHANDLEE 83 SPEC + 200 K+A → K πAK∗(892) BRANCHING RATIOSK∗(892) BRANCHING RATIOSK∗(892) BRANCHING RATIOSK∗(892) BRANCHING RATIOS�(K0γ
)/�total �4/��(K0γ
)/�total �4/��(K0γ
)/�total �4/��(K0γ
)/�total �4/�VALUE (units 10−3) DOCUMENT ID TECN CHG COMMENT2.46±0.21 OUR FIT2.46±0.21 OUR FIT2.46±0.21 OUR FIT2.46±0.21 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.5 ±0.7 CARITHERS 75B CNTR 0 8{16 K0A�(K±γ
)/�total �5/��(K±γ
)/�total �5/��(K±γ
)/�total �5/��(K±γ
)/�total �5/�VALUE (units 10−3) CL% DOCUMENT ID TECN CHG COMMENT0.99±0.09 OUR FIT0.99±0.09 OUR FIT0.99±0.09 OUR FIT0.99±0.09 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.6 95 BEMPORAD 73 CNTR + 10{16 K+A�(K ππ

)/�((K π )±) �6/�2�(K ππ
)/�((K π )±) �6/�2�(K ππ
)/�((K π )±) �6/�2�(K ππ
)/�((K π )±) �6/�2VALUE CL% DOCUMENT ID TECN CHG COMMENT

< 7× 10−4< 7× 10−4< 7× 10−4< 7× 10−4 95 JONGEJANS 78 HBC 4 K− p → pK0 2π
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<20× 10−4 WOJCICKI 64 HBC − 1.7 K− p → K0π− p

K∗(892) REFERENCESK∗(892) REFERENCESK∗(892) REFERENCESK∗(892) REFERENCESLEES 13F PR D87 052010 J.P. Lees et al. (BABAR Collab.)DEL-AMO-SA... 11I PR D83 072001 P. del Amo San
hez et al. (BABAR Collab.)ANTONELLI 10 EPJ C69 399 M. Antonelli et al. (FlaviaNet Working Group)BOITO 10 JHEP 1009 031 D.R. Boito, R. Es
ribano, M. Jamin (BARC)BOITO 09 EPJ C59 821 D.R. Boito, R. Es
ribano, M. JaminMITCHELL 09A PR D79 072008 R.E. Mit
hell et al. (CLEO Collab.)BONVICINI 08A PR D78 052001 G. Bonvi
ini et al. (CLEO Collab.)JAMIN 08 PL B664 78 M. Jamin, A. Pi
h, J. PortolesAUBERT 07AK PR D76 012008 B. Aubert et al. (BABAR Collab.)EPIFANOV 07 PL B654 65 D. Epifanov et al. (BELLE Collab.)LINK 05I PL B621 72 J.M. Link et al. (FNAL FOCUS Collab.)BONVICINI 02 PRL 88 111803 G. Bonvi
ini et al. (CLEO Collab.)PDG 00 EPJ C15 1 D.E. Groom et al. (PDG Collab.)ABELE 99D PL B468 178 A. Abele et al. (Crystal Barrel Collab.)BARATE 99R EPJ C11 599 R. Barate et al. (ALEPH Collab.)BARBERIS 98E PL B436 204 D. Barberis et al. (Omega Expt.)BIRD 89 SLAC-332 P.F. Bird (SLAC)ASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)ATKINSON 86 ZPHY C30 521 M. Atkinson et al. (BONN, CERN, GLAS+)CARLSMITH 86 PRL 56 18 D. Carlsmith et al. (EFI, SACL)BAUBILLIER 84B ZPHY C26 37 M. Baubillier et al. (BIRM, CERN, GLAS+)NAPIER 84 PL 149B 514 A. Napier et al. (TUFTS, ARIZ, FNAL, FLOR+)BARTH 83 NP B223 296 M. Barth et al. (BRUX, CERN, GENO, MONS+)BERG 83 Thesis UMI 83-21652 D.M. Berg (ROCH)CHANDLEE 83 PRL 51 168 C. Chandlee et al. (ROCH, FNAL, MINN)CLELAND 82 NP B208 189 W.E. Cleland et al. (DURH, GEVA, LAUS+)DELFOSSE 81 NP B183 349 A. Delfosse et al. (GEVA, LAUS)TOAFF 81 PR D23 1500 S. Toa� et al. (ANL, KANS)AJINENKO 80 ZPHY C5 177 I.V. Ajinenko et al. (SERP, BRUX, MONS+)EVANGELIS... 80 NP B165 383 C. Evangelista et al. (BARI, BONN, CERN+)AGUILAR-... 78B NP B141 101 M. Aguilar-Benitez et al. (MADR, TATA+)BALAND 78 NP B140 220 J.F. Baland et al. (MONS, BELG, CERN+)COOPER 78 NP B136 365 A.M. Cooper et al. (TATA, CERN, CDEF+)JONGEJANS 78 NP B139 383 B. Jongejans et al. (ZEEM, CERN, NIJM+)WICKLUND 78 PR D17 1197 A.B. Wi
klund et al. (ANL)BOWLER 77 NP B126 31 M.G. Bowler et al. (OXF)CARITHERS 75B PRL 35 349 W.C.J. Carithers et al. (ROCH, MCGI)MCCUBBIN 75 NP B86 13 N.A. M
Cubbin, L. Lyons (OXF)PALER 75 NP B96 1 K. Paler et al. (RHEL, SACL, EPOL)FOX 74 NP B80 403 G.C. Fox, M.L. Griss (CIT)MATISON 74 PR D9 1872 M.J. Matison et al. (LBL)BEMPORAD 73 NP B51 1 C. Bemporad et al. (CERN, ETH, LOIC)CLARK 73 NP B54 432 A.G. Clark, L. Lyons, D. Radoji
i
 (OXF)LEWIS 73 NP B60 283 P.H. Lewis et al. (LOWC, LOIC, CDEF)LINGLIN 73 NP B55 408 D. Linglin (CERN)BUCHNER 72 NP B45 333 K. Bu
hner et al. (MPIM, CERN, BRUX)AGUILAR-... 71B PR D4 2583 M. Aguilar-Benitez, R.L. Eisner, J.B. Kinson (BNL)HABER 70 NP B17 289 B. Haber et al. (REHO, SACL, BGNA, EPOL)CRENNELL 69D PRL 22 487 D.J. Crennell et al. (BNL)DAVIS 69 PRL 23 1071 P.J. Davis et al. (LRL)SCHWEING... 68 PR 166 1317 F. S
hweingruber et al. (ANL, NWES)BARASH 67B PR 156 1399 N. Barash et al. (COLU)BARLOW 67 NC 50A 701 J. Barlow et al. (CERN, CDEF, IRAD, LIVP)DAUBER 67B PR 153 1403 P.M. Dauber et al. (UCLA)DEBAERE 67B NC 51A 401 W. de Baere et al. (BRUX, CERN)WOJCICKI 64 PR 135 B484 S.G. Woj
i
ki (LRL)K1(1270) I (JP ) = 12 (1+)K1(1270) MASSK1(1270) MASSK1(1270) MASSK1(1270) MASSVALUE (MeV) DOCUMENT ID1272±7 OUR AVERAGE1272±7 OUR AVERAGE1272±7 OUR AVERAGE1272±7 OUR AVERAGE In
ludes data from the 2 datablo
ks that follow this one.PRODUCED BY K−, BACKWARD SCATTERING, HYPERON EXCHANGEPRODUCED BY K−, BACKWARD SCATTERING, HYPERON EXCHANGEPRODUCED BY K−, BACKWARD SCATTERING, HYPERON EXCHANGEPRODUCED BY K−, BACKWARD SCATTERING, HYPERON EXCHANGEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1275±101275±101275±101275±10 700 GAVILLET 78 HBC + 4.2 K− p → �− (K ππ)+PRODUCED BY K BEAMSPRODUCED BY K BEAMSPRODUCED BY K BEAMSPRODUCED BY K BEAMSVALUE (MeV) DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.1270±101270±101270±101270±10 1 DAUM 81C CNTR − 63 K− p → K− 2πp
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 1276 2 TORNQVIST 82B RVUE
∼ 1300 VERGEEST 79 HBC − 4.2 K− p → (K ππ)− p1289±25 3 CARNEGIE 77 ASPK ± 13 K± p → (K ππ)± p
∼ 1300 BRANDENB... 76 ASPK ± 13 K± p → (K ππ)± p
∼ 1270 OTTER 76 HBC − 10,14,16 K− p → (K ππ)− p1260 DAVIS 72 HBC + 12 K+ p1234±12 FIRESTONE 72B DBC + 12 K+ d1Well des
ribed in the 
hiral unitary approa
h of GENG 07 with two poles at 1195 and1284 MeV and widths of 246 and 146MeV, respe
tively.2 From a unitarized quark-model 
al
ulation.3 From a model-dependent �t with Gaussian ba
kground to BRANDENBURG 76 data.PRODUCED BY BEAMS OTHER THAN K MESONSPRODUCED BY BEAMS OTHER THAN K MESONSPRODUCED BY BEAMS OTHER THAN K MESONSPRODUCED BY BEAMS OTHER THAN K MESONSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1248.1± 3.3±1.41248.1± 3.3±1.41248.1± 3.3±1.41248.1± 3.3±1.4 GULER 11 BELL B+ → J/ψK+ π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •1279 ±10 25k 4 ABLIKIM 06C BES2 J/ψ → K∗(892)0K+π−1294 ±10 310 RODEBACK 81 HBC 4 π− p → �K 2π1300 40 CRENNELL 72 HBC 0 4.5 π− p → �K 2π1242 + 9

−10 5 ASTIER 69 HBC 0 p p1300 45 CRENNELL 67 HBC 0 6 π− p → �K 2π4Systemati
 errors not estimated.5This was 
alled the C meson.



1032103210321032MesonParti
le ListingsK1(1270)PRODUCED IN τ LEPTON DECAYSPRODUCED IN τ LEPTON DECAYSPRODUCED IN τ LEPTON DECAYSPRODUCED IN τ LEPTON DECAYSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1254±33±341254±33±341254±33±341254±33±34 7k ASNER 00B CLEO ± τ− → K−π+π− ντK1(1270) WIDTHK1(1270) WIDTHK1(1270) WIDTHK1(1270) WIDTHVALUE (MeV) DOCUMENT ID90±20 OUR ESTIMATE90±20 OUR ESTIMATE90±20 OUR ESTIMATE90±20 OUR ESTIMATE This is only an edu
ated guess; the error given is larger thanthe error on the average of the published values.87± 7 OUR AVERAGE87± 7 OUR AVERAGE87± 7 OUR AVERAGE87± 7 OUR AVERAGE In
ludes data from the 2 datablo
ks that follow this one.PRODUCED BY K−, BACKWARD SCATTERING, HYPERON EXCHANGEPRODUCED BY K−, BACKWARD SCATTERING, HYPERON EXCHANGEPRODUCED BY K−, BACKWARD SCATTERING, HYPERON EXCHANGEPRODUCED BY K−, BACKWARD SCATTERING, HYPERON EXCHANGEVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.75±1575±1575±1575±15 700 GAVILLET 78 HBC + 4.2 K− p → �−K ππPRODUCED BY K BEAMSPRODUCED BY K BEAMSPRODUCED BY K BEAMSPRODUCED BY K BEAMSVALUE (MeV) DOCUMENT ID TECN CHG COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.90± 890± 890± 890± 8 6 DAUM 81C CNTR − 63 K− p → K− 2πp
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 150 VERGEEST 79 HBC − 4.2 K− p → (K ππ)− p150±71 7 CARNEGIE 77 ASPK ± 13 K± p → (K ππ)± p
∼ 200 BRANDENB... 76 ASPK ± 13 K± p → (K ππ)± p120 DAVIS 72 HBC + 12 K+ p188±21 FIRESTONE 72B DBC + 12 K+ d6Well des
ribed in the 
hiral unitary approa
h of GENG 07 with two poles at 1195 and1284 MeV and widths of 246 and 146MeV, respe
tively.7 From a model-dependent �t with Gaussian ba
kground to BRANDENBURG 76 data.PRODUCED BY BEAMS OTHER THAN K MESONSPRODUCED BY BEAMS OTHER THAN K MESONSPRODUCED BY BEAMS OTHER THAN K MESONSPRODUCED BY BEAMS OTHER THAN K MESONSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT119.5± 5.2±6.7119.5± 5.2±6.7119.5± 5.2±6.7119.5± 5.2±6.7 GULER 11 BELL B+ → J/ψK+π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •131 ±21 25k 8 ABLIKIM 06C BES2 J/ψ → K∗(892)0K+π−66 ±15 310 RODEBACK 81 HBC 4 π− p → �K 2π60 40 CRENNELL 72 HBC 0 4.5 π− p → �K 2π127 + 7

−25 ASTIER 69 HBC 0 p p60 45 CRENNELL 67 HBC 0 6 π− p → �K 2π8Systemati
 errors not estimated.PRODUCED IN τ LEPTON DECAYSPRODUCED IN τ LEPTON DECAYSPRODUCED IN τ LEPTON DECAYSPRODUCED IN τ LEPTON DECAYSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT260+90
−70±80260+90
−70±80260+90
−70±80260+90
−70±80 7k ASNER 00B CLEO ± τ− →K−π+π− ντK1(1270) DECAY MODESK1(1270) DECAY MODESK1(1270) DECAY MODESK1(1270) DECAY MODESMode Fra
tion (�i /�)�1 K ρ (42 ±6 ) %�2 K∗0(1430)π (28 ±4 ) %�3 K∗(892)π (16 ±5 ) %�4 K ω (11.0±2.0) %�5 K f0(1370) ( 3.0±2.0) %�6 γK0 seenK1(1270) PARTIAL WIDTHSK1(1270) PARTIAL WIDTHSK1(1270) PARTIAL WIDTHSK1(1270) PARTIAL WIDTHS�(K ρ

) �1�(K ρ
) �1�(K ρ
) �1�(K ρ
) �1VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •57±5 MAZZUCATO 79 HBC + 4.2 K− p → �− (K ππ)+75±6 CARNEGIE 77B ASPK ± 13 K± p → (K ππ)± p�(K∗0(1430)π) �2�(K∗0(1430)π) �2�(K∗0(1430)π) �2�(K∗0(1430)π) �2VALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •26±6 CARNEGIE 77B ASPK ± 13 K± p → (K ππ)± p�(K∗(892)π) �3�(K∗(892)π) �3�(K∗(892)π) �3�(K∗(892)π) �3VALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •14±11 MAZZUCATO 79 HBC + 4.2 K− p → �− (K ππ)+2± 2 CARNEGIE 77B ASPK ± 13 K± p → (K ππ)± p�(K ω

) �4�(K ω
) �4�(K ω
) �4�(K ω
) �4VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •4±4 MAZZUCATO 79 HBC + 4.2 K− p → �− (K ππ)+24±3 CARNEGIE 77B ASPK ± 13 K± p → (K ππ)± p

�(K f0(1370)) �5�(K f0(1370)) �5�(K f0(1370)) �5�(K f0(1370)) �5VALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •22±5 CARNEGIE 77B ASPK ± 13 K± p → (K ππ)± p�(γK0) �6�(γK0) �6�(γK0) �6�(γK0) �6VALUE (keV) DOCUMENT ID TECN COMMENT73.2±6.1±28.373.2±6.1±28.373.2±6.1±28.373.2±6.1±28.3 ALAVI-HARATI02B KTEV K + A → K∗ + AK1(1270) BRANCHING RATIOSK1(1270) BRANCHING RATIOSK1(1270) BRANCHING RATIOSK1(1270) BRANCHING RATIOS�(K ρ

)/�total �1/��(K ρ
)/�total �1/��(K ρ
)/�total �1/��(K ρ
)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.42 ±0.060.42 ±0.060.42 ±0.060.42 ±0.06 9 DAUM 81C CNTR 63 K− p → K− 2πp

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.584±0.043 10 GULER 11 BELL B+ → J/ψK+π+π−dominant RODEBACK 81 HBC 4 π− p → �K 2π�(K∗0(1430)π)/�total �2/��(K∗0(1430)π)/�total �2/��(K∗0(1430)π)/�total �2/��(K∗0(1430)π)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.28 ±0.040.28 ±0.040.28 ±0.040.28 ±0.04 9 DAUM 81C CNTR 63 K− p → K− 2πp
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0201±0.0064 10 GULER 11 BELL B+ → J/ψK+π+π−�(K∗(892)π)/�total �3/��(K∗(892)π)/�total �3/��(K∗(892)π)/�total �3/��(K∗(892)π)/�total �3/�VALUE DOCUMENT ID TECN COMMENT0.16 ±0.050.16 ±0.050.16 ±0.050.16 ±0.05 9 DAUM 81C CNTR 63 K− p → K− 2πp
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.171±0.023 10 GULER 11 BELL B+ → J/ψK+π+π−�(K ω

)/�total �4/��(K ω
)/�total �4/��(K ω
)/�total �4/��(K ω
)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.11 ±0.020.11 ±0.020.11 ±0.020.11 ±0.02 9 DAUM 81C CNTR 63 K− p → K− 2πp

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.225±0.052 10 GULER 11 BELL B+ → J/ψK+π+π−�(K ω
)/�(K ρ

) �4/�1�(K ω
)/�(K ρ

) �4/�1�(K ω
)/�(K ρ

) �4/�1�(K ω
)/�(K ρ

) �4/�1VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.30 95 RODEBACK 81 HBC 4 π− p → �K 2π�(K f0(1370))/�total �5/��(K f0(1370))/�total �5/��(K f0(1370))/�total �5/��(K f0(1370))/�total �5/�VALUE DOCUMENT ID TECN COMMENT0.03±0.020.03±0.020.03±0.020.03±0.02 9 DAUM 81C CNTR 63 K− p → K− 2πpD-wave/S-wave RATIO FOR K1(1270) → K∗(892)πD-wave/S-wave RATIO FOR K1(1270) → K∗(892)πD-wave/S-wave RATIO FOR K1(1270) → K∗(892)πD-wave/S-wave RATIO FOR K1(1270) → K∗(892)πVALUE DOCUMENT ID TECN COMMENT1.0±0.71.0±0.71.0±0.71.0±0.7 9 DAUM 81C CNTR 63 K− p → K− 2πp9Average from low and high t data.10Assuming that de
ays are saturated by the K ρ, K∗0(1430)π, K∗(892)π, K ω de
aymodes and negle
ting interferen
e between them. The values B(ω → π+π−) =(1.53+0.11

−0.13)% and B(K∗0 (1430) → K π) = (93 ± 10)% are used. Systemati
 un-
ertainties not estimated. K1(1270) REFERENCESK1(1270) REFERENCESK1(1270) REFERENCESK1(1270) REFERENCESGULER 11 PR D83 032005 H. Guler et al. (BELLE Collab.)GENG 07 PR D75 014017 L.S. Geng et al.ABLIKIM 06C PL B633 681 M. Ablikim et al. (BES Collab.)ALAVI-HARATI 02B PRL 89 072001 A. Alavi-Harati et al. (FNAL KTeV Collab.)ASNER 00B PR D62 072006 D.M. Asner et al. (CLEO Collab.)TORNQVIST 82B NP B203 268 N.A. Tornqvist (HELS)DAUM 81C NP B187 1 C. Daum et al. (AMST, CERN, CRAC, MPIM+)RODEBACK 81 ZPHY C9 9 S. Rodeba
k et al. (CERN, CDEF, MADR+)MAZZUCATO 79 NP B156 532 M. Mazzu
ato et al. (CERN, ZEEM, NIJM+)VERGEEST 79 NP B158 265 J.S.M. Vergeest et al. (NIJM, AMST, CERN+)GAVILLET 78 PL 76B 517 P. Gavillet et al. (AMST, CERN, NIJM+) JPCARNEGIE 77 NP B127 509 R.K. Carnegie et al. (SLAC)CARNEGIE 77B PL 68B 287 R.K. Carnegie et al. (SLAC)BRANDENB... 76 PRL 36 703 G.W. Brandenburg et al. (SLAC) JPOTTER 76 NP B106 77 G. Otter et al. (AACH3, BERL, CERN, LOIC+) JPCRENNELL 72 PR D6 1220 D.J. Crennell et al. (BNL)DAVIS 72 PR D5 2688 P.J. Davis et al. (LBL)FIRESTONE 72B PR D5 505 A. Firestone et al. (LBL)ASTIER 69 NP B10 65 A. Astier et al. (CDEF, CERN, IPNP, LIVP) IJPCRENNELL 67 PRL 19 44 D.J. Crennell et al. (BNL) I



1033103310331033See key on page 601 MesonParti
le ListingsK1(1400),K ∗(1410)K1(1400) I (JP ) = 12 (1+)K1(1400) MASSK1(1400) MASSK1(1400) MASSK1(1400) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1403± 7 OUR AVERAGE1403± 7 OUR AVERAGE1403± 7 OUR AVERAGE1403± 7 OUR AVERAGE1463±64±68 7k ASNER 00B CLEO ± τ− → K−π+π− ντ1373±14±18 1 ASTON 87 LASS 0 11 K− p → K0π+π− n1392±18 BAUBILLIER 82B HBC 0 8.25 K−p →K0S π+π− n1410±25 DAUM 81C CNTR − 63 K− p → K− 2πp1415±15 ETKIN 80 MPS 0 6 K− p → K0π+π− n1404±10 2 CARNEGIE 77 ASPK ± 13 K± p → (K ππ)± p
• • • We do not use the following data for averages, �ts, limits, et
. • • •1418± 8 25k 3 ABLIKIM 06C BES2 J/ψ →K∗(892)0K+π−
∼ 1350 4 TORNQVIST 82B RVUE
∼ 1400 VERGEEST 79 HBC − 4.2 K− p → (K ππ)− p
∼ 1400 BRANDENB... 76 ASPK ± 13 K± p → (K ππ)± p1420 DAVIS 72 HBC + 12 K+ p1368±18 FIRESTONE 72B DBC + 12 K+ d1From partial-wave analysis of K0π+π− system.2 From a model-dependent �t with Gaussian ba
kground to BRANDENBURG 76 data.3 Systemati
 errors not estimated.4 From a unitarized quark-model 
al
ulation.K1(1400) WIDTHK1(1400) WIDTHK1(1400) WIDTHK1(1400) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT174± 13 OUR AVERAGE174± 13 OUR AVERAGE174± 13 OUR AVERAGE174± 13 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.300+370

−110±140 7k ASNER 00B CLEO ± τ− → K−π+π− ντ188± 54± 60 5 ASTON 87 LASS 0 11 K− p → K0π+π− n276± 65 BAUBILLIER 82B HBC 0 8.25 K−p →K0S π+π− n195± 25 DAUM 81C CNTR − 63 K− p → K− 2πp180± 10 ETKIN 80 MPS 0 6 K− p → K0π+π− n142± 16 6 CARNEGIE 77 ASPK ± 13 K± p → (K ππ)± p
• • • We do not use the following data for averages, �ts, limits, et
. • • •152± 16 25k 7 ABLIKIM 06C BES2 J/ψ →K∗(892)0K+π−
∼ 200 VERGEEST 79 HBC − 4.2 K− p → (K ππ)− p
∼ 160 BRANDENB... 76 ASPK ± 13 K± p → (K ππ)± p80 DAVIS 72 HBC + 12 K+ p241± 30 FIRESTONE 72B DBC + 12 K+ d5From partial-wave analysis of K0π+π− system.6 From a model-dependent �t with Gaussian ba
kground to BRANDENBURG 76 data.7 Systemati
 errors not estimated.

WEIGHTED AVERAGE
174±13 (Error scaled by 1.6)

CARNEGIE 77 ASPK 4.0
ETKIN 80 MPS 0.4
DAUM 81C CNTR 0.7
BAUBILLIER 82B HBC
ASTON 87 LASS
ASNER 00B CLEO

χ2

       5.1
(Confidence Level = 0.080)

50 100 150 200 250 300 350 400K1(1400) width (MeV)K1(1400) DECAY MODESK1(1400) DECAY MODESK1(1400) DECAY MODESK1(1400) DECAY MODESMode Fra
tion (�i /�)�1 K∗(892)π (94 ±6 ) %�2 K ρ ( 3.0±3.0) %�3 K f0(1370) ( 2.0±2.0) %�4 K ω ( 1.0±1.0) %�5 K∗0(1430)π not seen�6 γK0 seen

K1(1400) PARTIAL WIDTHSK1(1400) PARTIAL WIDTHSK1(1400) PARTIAL WIDTHSK1(1400) PARTIAL WIDTHS�(K∗(892)π) �1�(K∗(892)π) �1�(K∗(892)π) �1�(K∗(892)π) �1VALUE (MeV) DOCUMENT ID TECN CHG COMMENT117±10117±10117±10117±10 CARNEGIE 77 ASPK ± 13 K± p → (K ππ)± p�(K ρ
) �2�(K ρ
) �2�(K ρ
) �2�(K ρ
) �2VALUE (MeV) DOCUMENT ID TECN CHG COMMENT2±12±12±12±1 CARNEGIE 77 ASPK ± 13 K± p → (K ππ)± p�(K ω
) �4�(K ω
) �4�(K ω
) �4�(K ω
) �4VALUE (MeV) DOCUMENT ID TECN CHG COMMENT23±1223±1223±1223±12 CARNEGIE 77 ASPK ± 13 K± p → (K ππ)± p�(γK0) �6�(γK0) �6�(γK0) �6�(γK0) �6VALUE (keV) DOCUMENT ID TECN COMMENT280.8±23.2±40.4280.8±23.2±40.4280.8±23.2±40.4280.8±23.2±40.4 ALAVI-HARATI02B KTEV K + A → K∗ + AK1(1400) BRANCHING RATIOSK1(1400) BRANCHING RATIOSK1(1400) BRANCHING RATIOSK1(1400) BRANCHING RATIOS�(K∗(892)π)/�total �1/��(K∗(892)π)/�total �1/��(K∗(892)π)/�total �1/��(K∗(892)π)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.94±0.060.94±0.060.94±0.060.94±0.06 8 DAUM 81C CNTR 63 K− p → K− 2πp�(K ρ
)/�total �2/��(K ρ
)/�total �2/��(K ρ
)/�total �2/��(K ρ
)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.03±0.030.03±0.030.03±0.030.03±0.03 8 DAUM 81C CNTR 63 K− p → K− 2πp�(K f0(1370))/�total �3/��(K f0(1370))/�total �3/��(K f0(1370))/�total �3/��(K f0(1370))/�total �3/�VALUE DOCUMENT ID TECN COMMENT0.02±0.020.02±0.020.02±0.020.02±0.02 8 DAUM 81C CNTR 63 K− p → K− 2πp�(K ω
)/�total �4/��(K ω
)/�total �4/��(K ω
)/�total �4/��(K ω
)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.01±0.010.01±0.010.01±0.010.01±0.01 8 DAUM 81C CNTR 63 K− p → K− 2πp�(K∗0(1430)π)/�total �5/��(K∗0(1430)π)/�total �5/��(K∗0(1430)π)/�total �5/��(K∗0(1430)π)/�total �5/�VALUE DOCUMENT ID TECN COMMENTnot seen 8 DAUM 81C CNTR 63 K− p → K− 2πpD-wave/S-wave RATIO FOR K1(1400) → K∗(892)πD-wave/S-wave RATIO FOR K1(1400) → K∗(892)πD-wave/S-wave RATIO FOR K1(1400) → K∗(892)πD-wave/S-wave RATIO FOR K1(1400) → K∗(892)πVALUE DOCUMENT ID TECN COMMENT0.04±0.010.04±0.010.04±0.010.04±0.01 8 DAUM 81C CNTR 63 K− p → K− 2πp8Average from low and high t data.K1(1400) REFERENCESK1(1400) REFERENCESK1(1400) REFERENCESK1(1400) REFERENCESABLIKIM 06C PL B633 681 M. Ablikim et al. (BES Collab.)ALAVI-HARATI 02B PRL 89 072001 A. Alavi-Harati et al. (FNAL KTeV Collab.)ASNER 00B PR D62 072006 D.M. Asner et al. (CLEO Collab.)ASTON 87 NP B292 693 D. Aston et al. (SLAC, NAGO, CINC, INUS)BAUBILLIER 82B NP B202 21 M. Baubillier et al. (BIRM, CERN, GLAS+)TORNQVIST 82B NP B203 268 N.A. Tornqvist (HELS)DAUM 81C NP B187 1 C. Daum et al. (AMST, CERN, CRAC, MPIM+)ETKIN 80 PR D22 42 A. Etkin et al. (BNL, CUNY) JPVERGEEST 79 NP B158 265 J.S.M. Vergeest et al. (NIJM, AMST, CERN+)CARNEGIE 77 NP B127 509 R.K. Carnegie et al. (SLAC)BRANDENB... 76 PRL 36 703 G.W. Brandenburg et al. (SLAC) JPDAVIS 72 PR D5 2688 P.J. Davis et al. (LBL)FIRESTONE 72B PR D5 505 A. Firestone et al. (LBL)K ∗(1410) I (JP ) = 12 (1−)K∗(1410) MASSK∗(1410) MASSK∗(1410) MASSK∗(1410) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT1414±15 OUR AVERAGE1414±15 OUR AVERAGE1414±15 OUR AVERAGE1414±15 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.1380±21±19 ASTON 88 LASS 0 11 K− p → K−π+ n1420± 7±10 ASTON 87 LASS 0 11 K− p → K0π+π− n

• • • We do not use the following data for averages, �ts, limits, et
. • • •1276+72
−77 1,2 BOITO 09 RVUE τ− → K0S π− ντ1367±54 BIRD 89 LASS − 11 K− p → K0π− p1474±25 BAUBILLIER 82B HBC 0 8.25 K− p → K0 2πn1500±30 ETKIN 80 MPS 0 6 K− p → K0π+π− n1From the pole position of the K π ve
tor form fa
tor in the 
omplex s-plane and usingEPIFANOV 07 data.2 Systemati
 un
ertainties not estimated.K∗(1410) WIDTHK∗(1410) WIDTHK∗(1410) WIDTHK∗(1410) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT232± 21 OUR AVERAGE232± 21 OUR AVERAGE232± 21 OUR AVERAGE232± 21 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.176± 52±22 ASTON 88 LASS 0 11 K− p → K−π+ n240± 18±12 ASTON 87 LASS 0 11 K− p → K0π+π− n



1034103410341034Meson Parti
le ListingsK ∗(1410), K ∗0(1430)
• • • We do not use the following data for averages, �ts, limits, et
. • • •198+ 61

− 87 3,4 BOITO 09 RVUE τ− → K0S π− ντ114±101 BIRD 89 LASS − 11 K− p → K0π− p275± 65 BAUBILLIER 82B HBC 0 8.25 K− p → K0 2πn500±100 ETKIN 80 MPS 0 6 K− p → K0π+π− n3From the pole position of the K π ve
tor form fa
tor in the 
omplex s-plane and usingEPIFANOV 07 data.4 Systemati
 un
ertainties not estimated.K∗(1410) DECAY MODESK∗(1410) DECAY MODESK∗(1410) DECAY MODESK∗(1410) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 K∗(892)π > 40 % 95%�2 K π ( 6.6±1.3) %�3 K ρ < 7 % 95%�4 γK0 seenK∗(1410) PARTIAL WIDTHSK∗(1410) PARTIAL WIDTHSK∗(1410) PARTIAL WIDTHSK∗(1410) PARTIAL WIDTHS�(γK0) �4�(γK0) �4�(γK0) �4�(γK0) �4VALUE (keV) CL% DOCUMENT ID TECN COMMENT
<52.9<52.9<52.9<52.9 90 ALAVI-HARATI02B KTEV K + A → K∗ + AK∗(1410) BRANCHING RATIOSK∗(1410) BRANCHING RATIOSK∗(1410) BRANCHING RATIOSK∗(1410) BRANCHING RATIOS�(K ρ

)/�(K∗(892)π) �3/�1�(K ρ
)/�(K∗(892)π) �3/�1�(K ρ
)/�(K∗(892)π) �3/�1�(K ρ
)/�(K∗(892)π) �3/�1VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.17 95 ASTON 84 LASS 0 11 K− p → K0 2πn�(K π
)/�(K∗(892)π) �2/�1�(K π
)/�(K∗(892)π) �2/�1�(K π
)/�(K∗(892)π) �2/�1�(K π
)/�(K∗(892)π) �2/�1VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.16 95 ASTON 84 LASS 0 11 K− p → K0 2πn�(K π
)/�total �2/��(K π
)/�total �2/��(K π
)/�total �2/��(K π
)/�total �2/�VALUE DOCUMENT ID TECN CHG COMMENT0.066±0.010±0.0080.066±0.010±0.0080.066±0.010±0.0080.066±0.010±0.008 ASTON 88 LASS 0 11 K− p → K−π+ nK∗(1410) REFERENCESK∗(1410) REFERENCESK∗(1410) REFERENCESK∗(1410) REFERENCESBOITO 09 EPJ C59 821 D.R. Boito, R. Es
ribano, M. JaminEPIFANOV 07 PL B654 65 D. Epifanov et al. (BELLE Collab.)ALAVI-HARATI 02B PRL 89 072001 A. Alavi-Harati et al. (FNAL KTeV Collab.)BIRD 89 SLAC-332 P.F. Bird (SLAC)ASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)ASTON 87 NP B292 693 D. Aston et al. (SLAC, NAGO, CINC, INUS)ASTON 84 PL 149B 258 D. Aston et al. (SLAC, CARL, OTTA) JPBAUBILLIER 82B NP B202 21 M. Baubillier et al. (BIRM, CERN, GLAS+)ETKIN 80 PR D22 42 A. Etkin et al. (BNL, CUNY) JPK ∗0(1430) I (JP ) = 12 (0+)See our minireview in the 1994 edition and in this edition under thef0(500). K∗0(1430) MASSK∗0(1430) MASSK∗0(1430) MASSK∗0(1430) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1425 ±50 OUR ESTIMATE1425 ±50 OUR ESTIMATE1425 ±50 OUR ESTIMATE1425 ±50 OUR ESTIMATE

• • • We do not use the following data for averages, �ts, limits, et
. • • •1438 ± 8 ± 4 5.4k 1 LEES 14E BABR η
 (1S) → K+K− η/π01427 ± 4 ±13 2 BUGG 10 RVUE S-matrix pole1466.6± 0.7± 3.4 141k 3 BONVICINI 08A CLEO D+ → K−π+π+
∼ 1412 4 LINK 07 FOCS D+ → K−K+π+1461.0± 4.0± 2.1 54k 5 LINK 07B FOCS D+ → K−π+π+1406 ±29 6 BUGG 06 RVUE1435 ± 6 7 ZHOU 06 RVUE K p → K−π+ n1455 ±20 ±15 ABLIKIM 05Q BES2 ψ(2S) →

γπ+π−K+K−1456 ± 8 8 ZHENG 04 RVUE K−p → K−π+ n
∼ 1419 9 BUGG 03 RVUE 11 K− p → K−π+ n
∼ 1440 10 LI 03 RVUE 11 K− p → K−π+ n1459 ± 9 15k 11 AITALA 02 E791 D+ → K−π+π+
∼ 1440 12 JAMIN 00 RVUE K p → K p1436 ± 8 13 BARBERIS 98E OMEG 450 pp →pf ps K+K−π+π−1415 ±25 9 ANISOVICH 97C RVUE 11 K− p → K−π+ n
∼ 1450 14 TORNQVIST 96 RVUE ππ → ππ, KK , K π1412 ± 6 15 ASTON 88 LASS 11 K− p → K−π+ n
∼ 1430 BAUBILLIER 84B HBC 8.25 K− p → K0π− p
∼ 1425 16 ESTABROOKS 78 ASPK 13 K± p → K±π± (n ,�)
∼ 1450.0 MARTIN 78 SPEC 10 K± p → K0S πp

1Using both η → γ γ and η → π+π−π0. From a likelihood s
an in the presen
e ofseveral interfering s
alar-meson resonan
es with �xed width �(K∗0(1430)) = 210 MeV.2 S-Matrix pole. Supersedes BUGG 06. Combined analysis of ASTON 88, ABLIKIM 06C,AITALA 06, and LINK 09 using an s-dependent width with 
ouplings to K π and K η′,and the Adler zero near thresholds.3 From the isobar model with a 
omplex pole for the κ.4 From a non-parametri
 analysis.5A Breit-Wigner mass and width.6 S-matrix pole. Reanalysis of ASTON 88, AITALA 02, and ABLIKIM 06C in
luding the
κ with an s-dependent width and an Adler zero near threshold.7 S-matrix pole. Using ASTON 88 and assuming K∗0(800), K∗0(1950).8Using ASTON 88 and assuming K∗0(800).9T-matrix pole. Reanalysis of ASTON 88 data.10Breit-Wigner �t. Using ASTON 88.11Assuming a low-mass s
alar K π resonan
e, κ(800).12T-matrix pole. Using data from ESTABROOKS 78 and ASTON 88.13 JP not determined, 
ould be K∗2(1430).14T-matrix pole.15Uses a model for the ba
kground, without this ba
kground they get a mass 1340 MeV,where the phase shift passes 90◦.16Mass de�ned by pole position. From elasti
 K π partial-wave analysis.K∗0(1430) WIDTHK∗0(1430) WIDTHK∗0(1430) WIDTHK∗0(1430) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT270 ±80 OUR ESTIMATE270 ±80 OUR ESTIMATE270 ±80 OUR ESTIMATE270 ±80 OUR ESTIMATE

• • • We do not use the following data for averages, �ts, limits, et
. • • •210 ±20 ±12 5.4k 1 LEES 14E BABR η
 (1S) → K+K− η/π0270 ±10 ±40 2 BUGG 10 RVUE S-matrix pole174.2± 1.9± 3.2 141k 3 BONVICINI 08A CLEO D+ → K−π+π+
∼ 500 4 LINK 07 FOCS D+ → K−K+π+177.0± 8.0± 3.4 54k 5 LINK 07B FOCS D+ → K−π+π+350 ±40 6 BUGG 06 RVUE288 ±22 7 ZHOU 06 RVUE K p → K−π+ n270 ±45 +30

−35 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−217 ±31 8 ZHENG 04 RVUE K−p → K−π+ n
∼ 316 9 BUGG 03 RVUE 11 K− p → K−π+ n
∼ 350 10 LI 03 RVUE 11 K− p → K−π+ n175 ±17 15k 11 AITALA 02 E791 D+ → K−π+π+
∼ 300 12 JAMIN 00 RVUE K p → K p196 ±45 13 BARBERIS 98E OMEG 450 pp →pf ps K+K−π+π−330 ±50 9 ANISOVICH 97C RVUE 11 K− p → K−π+ n
∼ 320 14 TORNQVIST 96 RVUE ππ → ππ, KK , K π294 ±23 ASTON 88 LASS 11 K− p → K−π+ n
∼ 200 BAUBILLIER 84B HBC 8.25 K−p → K0π− p200 to 300 15 ESTABROOKS 78 ASPK 13 K± p → K±π± (n ,�)1Using both η → γ γ and η → π+π−π0. From a likelihood s
an in the presen
e ofseveral interfering s
alar-meson resonan
es with �xed mass M(K∗0(1430)) = 1435 MeV.2 S-Matrix pole. Supersedes BUGG 06. Combined analysis of ASTON 88, ABLIKIM 06C,AITALA 06, and LINK 09 using an s-dependent width with 
ouplings to K π and K η′,and the Adler zero near thresholds.3 From the isobar model with a 
omplex pole for the κ.4 From a non-parametri
 analysis.5A Breit-Wigner mass and width.6 S-matrix pole. Reanalysis of ASTON 88, AITALA 02, and ABLIKIM 06C in
luding the

κ with an s-dependent width and an Adler zero near threshold.7 S-matrix pole. Using ASTON 88 and assuming K∗0(800), K∗0(1950).8Using ASTON 88 and assuming K∗0(800).9T-matrix pole. Reanalysis of ASTON 88 data.10Breit-Wigner �t. Using ASTON 88.11Assuming a low-mass s
alar K π resonan
e, κ(800).12T-matrix pole. Using data from ESTABROOKS 78 and ASTON 88.13 JP not determined, 
ould be K∗2(1430).14T-matrix pole.15 From elasti
 K π partial-wave analysis.K∗0(1430) DECAY MODESK∗0(1430) DECAY MODESK∗0(1430) DECAY MODESK∗0(1430) DECAY MODESMode Fra
tion (�i /�)�1 K π (93 ±10 ) %�2 K η ( 8.6+ 2.7
− 3.4) %�3 K η′(958) seenK∗0(1430) BRANCHING RATIOSK∗0(1430) BRANCHING RATIOSK∗0(1430) BRANCHING RATIOSK∗0(1430) BRANCHING RATIOS�(K π

)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENT0.93±0.04±0.090.93±0.04±0.090.93±0.04±0.090.93±0.04±0.09 ASTON 88 LASS 0 11 K− p → K−π+ n



1035103510351035See key on page 601 MesonParti
le ListingsK ∗0(1430),K ∗2(1430)�(K η
)/�(K π

) �2/�1�(K η
)/�(K π

) �2/�1�(K η
)/�(K π

) �2/�1�(K η
)/�(K π

) �2/�1VALUE (%) EVTS DOCUMENT ID TECN COMMENT9.2±2.5+1.0
−2.59.2±2.5+1.0
−2.59.2±2.5+1.0
−2.59.2±2.5+1.0
−2.5 5.4k 1 LEES 14E BABR η
 (1S) → K+K− η/π01Using both η → γ γ and η → π+π−π0. From a Dalitz analysis in the presen
e ofseveral interfering s
alar-meson resonan
es.�(K η′(958))/�total �3/��(K η′(958))/�total �3/��(K η′(958))/�total �3/��(K η′(958))/�total �3/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen ABLIKIM 14J BES3 ψ(2S) → γK+K− η′(958)K∗0(1430) REFERENCESK∗0(1430) REFERENCESK∗0(1430) REFERENCESK∗0(1430) REFERENCESABLIKIM 14J PR D89 074030 M. Ablikim et al. (BES III Collab.)LEES 14E PR D89 112004 J.P. Lees et al. (BABAR Collab.)BUGG 10 PR D81 014002 D.V. Bugg (LOQM)LINK 09 PL B681 14 J.M. Link et al. (FNAL FOCUS Collab.)BONVICINI 08A PR D78 052001 G. Bonvi
ini et al. (CLEO Collab.)LINK 07 PL B648 156 J.M. Link et al. (FNAL FOCUS Collab.)LINK 07B PL B653 1 J.M. Link et al. (FNAL FOCUS Collab.)ABLIKIM 06C PL B633 681 M. Ablikim et al. (BES Collab.)AITALA 06 PR D73 032004 E.M. Aitala et al. (FNAL E791 Collab.)Also PR D74 059901 (errat.) E.M. Aitala et al. (FNAL E791 Collab.)BUGG 06 PL B632 471 D.V. Bugg (LOQM)ZHOU 06 NP A775 212 Z.Y. Zhou, H.Q. ZhengABLIKIM 05Q PR D72 092002 M. Ablikim et al. (BES Collab.)ZHENG 04 NP A733 235 H.Q. Zheng et al.BUGG 03 PL B572 1 D.V. BuggLI 03 PR D67 034025 L. Li, B. Zou, G. LiAITALA 02 PRL 89 121801 E.M. Aitala et al. (FNAL E791 Collab.)JAMIN 00 NP B587 331 M. Jamin et al.BARBERIS 98E PL B436 204 D. Barberis et al. (Omega Expt.)ANISOVICH 97C PL B413 137 A.V. Anisovi
h, A.V. SarantsevTORNQVIST 96 PRL 76 1575 N.A. Tornqvist, M. Roos (HELS)ASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)BAUBILLIER 84B ZPHY C26 37 M. Baubillier et al. (BIRM, CERN, GLAS+)ESTABROOKS 78 NP B133 490 P.G. Estabrooks et al. (MCGI, CARL, DURH+)MARTIN 78 NP B134 392 A.D. Martin et al. (DURH, GEVA)K ∗2(1430) I (JP ) = 12 (2+)We 
onsider that phase-shift analyses provide more reliable determi-nations of the mass and width.K∗2(1430) MASSK∗2(1430) MASSK∗2(1430) MASSK∗2(1430) MASSCHARGED ONLY, WITH FINAL STATE K πCHARGED ONLY, WITH FINAL STATE K πCHARGED ONLY, WITH FINAL STATE K πCHARGED ONLY, WITH FINAL STATE K πVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1425.6± 1.5 OUR AVERAGE1425.6± 1.5 OUR AVERAGE1425.6± 1.5 OUR AVERAGE1425.6± 1.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1420 ± 4 1587 BAUBILLIER 84B HBC − 8.25 K−p →K0π− p1436 ± 5.5 400 1,2 CLELAND 82 SPEC + 30 K+ p → K0S π+ p1430 ± 3.2 1500 1,2 CLELAND 82 SPEC + 50 K+ p → K0S π+ p1430 ± 3.2 1200 1,2 CLELAND 82 SPEC − 50 K+ p → K0S π− p1423 ± 5 935 TOAFF 81 HBC − 6.5 K− p →K0π− p1428.0± 4.6 3 MARTIN 78 SPEC + 10 K± p → K0S πp1423.8± 4.6 3 MARTIN 78 SPEC − 10 K± p → K0S πp1420.0± 3.1 1400 AGUILAR-... 71B HBC − 3.9,4.6 K− p1425 ± 8.0 225 1,2 BARNHAM 71C HBC + K+p → K0π+ p1416 ±10 220 CRENNELL 69D DBC − 3.9 K−N →K0π−N1414 ±13.0 60 1 LIND 69 HBC + 9 K+ p → K0π+ p1427 ±12 63 1 SCHWEING... 68 HBC − 5.5 K− p → K πN1423 ±11.0 39 1 BASSANO 67 HBC − 4.6{5.0 K− p →K0π− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •1423.4± 2 ±3 24809±820 4 BIRD 89 LASS − 11 K− p → K0π− pNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1432.4± 1.3 OUR AVERAGE1432.4± 1.3 OUR AVERAGE1432.4± 1.3 OUR AVERAGE1432.4± 1.3 OUR AVERAGE1431.2± 1.8± 0.7 5 ASTON 88 LASS 11 K− p → K−π+ n1434 ± 4 ± 6 5 ASTON 87 LASS 11 K− p → K0π+π− n1433 ± 6 ±10 5 ASTON 84B LASS 11 K− p → K0 2πn1471 ±12 5 BAUBILLIER 82B HBC 8.25 K−p → NK0S ππ1428 ± 3 5 ASTON 81C LASS 11 K− p → K−π+ n1434 ± 2 5 ESTABROOKS 78 ASPK 13 K± p → pK π1440 ±10 5 BOWLER 77 DBC 5.5 K+ d → K πpp
• • • We do not use the following data for averages, �ts, limits, et
. • • •1428.5± 3.9 1786±127 6 AUBERT 07AK BABR 10.6 e+ e− →K∗0K±π∓ γ1420 ± 7 300 HENDRICK 76 DBC 8.25 K+N → K+πN1421.6± 4.2 800 MCCUBBIN 75 HBC 3.6 K− p → K−π+ n1420.1± 4.3 7 LINGLIN 73 HBC 2{13 K+ p → K+π−X1419.1± 3.7 1800 AGUILAR-... 71B HBC 3.9,4.6 K− p1416 ± 6 600 CORDS 71 DBC 9 K+ n → K+π− p1421.1± 2.6 2200 DAVIS 69 HBC 12 K+ p → K+π−X

1Errors enlarged by us to �/√N; see the note with the K∗(892) mass.2Number of events in peak re-evaluated by us.3 Systemati
 error added by us.4 From a partial wave amplitude analysis.5 From phase shift or partial-wave analysis.6 Systemati
 errors not estimated.7 From pole extrapolation, using world K+ p data summary tape.K∗2(1430) WIDTHK∗2(1430) WIDTHK∗2(1430) WIDTHK∗2(1430) WIDTHCHARGED ONLY, WITH FINAL STATE K πCHARGED ONLY, WITH FINAL STATE K πCHARGED ONLY, WITH FINAL STATE K πCHARGED ONLY, WITH FINAL STATE K πVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT98.5± 2.7 OUR FIT98.5± 2.7 OUR FIT98.5± 2.7 OUR FIT98.5± 2.7 OUR FIT Error in
ludes s
ale fa
tor of 1.1.98.5± 2.9 OUR AVERAGE98.5± 2.9 OUR AVERAGE98.5± 2.9 OUR AVERAGE98.5± 2.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.109 ±22 400 8,9 CLELAND 82 SPEC + 30 K+ p → K0S π+ p124 ±12.8 1500 8,9 CLELAND 82 SPEC + 50 K+ p → K0S π+ p113 ±12.8 1200 8,9 CLELAND 82 SPEC − 50 K+ p → K0S π− p85 ±16 935 TOAFF 81 HBC − 6.5 K− p →K0π− p96.5± 3.8 MARTIN 78 SPEC + 10 K± p → K0S πp97.7± 4.0 MARTIN 78 SPEC − 10 K± p → K0S πp94.7+15.1
−12.5 1400 AGUILAR-... 71B HBC − 3.9,4.6 K− p

• • • We do not use the following data for averages, �ts, limits, et
. • • •98 ± 4 ±4 25k 10 BIRD 89 LASS − 11 K− p → K0π− pNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT109 ± 5 OUR AVERAGE109 ± 5 OUR AVERAGE109 ± 5 OUR AVERAGE109 ± 5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.116.5± 3.6± 1.7 11 ASTON 88 LASS 11 K− p → K−π+ n129 ±15 ±15 11 ASTON 87 LASS 11 K− p → K0π+π− n131 ±24 ±20 11 ASTON 84B LASS 11 K− p → K0 2πn143 ±34 11 BAUBILLIER 82B HBC 8.25 K−p → NK0S ππ98 ± 8 11 ASTON 81C LASS 11 K− p → K−π+ n140 ±30 11 ETKIN 80 SPEC 6 K− p → K0π+π− n98 ± 5 11 ESTABROOKS 78 ASPK 13 K± p → pK π

• • • We do not use the following data for averages, �ts, limits, et
. • • •113.7± 9.2 1786±127 12 AUBERT 07AK BABR 10.6 e+ e− →K∗0K±π∓ γ125 ±29 300 8 HENDRICK 76 DBC 8.25 K+N → K+πN116 ±18 800 MCCUBBIN 75 HBC 3.6 K− p → K−π+ n61 ±14 13 LINGLIN 73 HBC 2{13 K+ p → K+π−X116.6+10.3
−15.5 1800 AGUILAR-... 71B HBC 3.9,4.6 K− p144 ±24.0 600 8 CORDS 71 DBC 9 K+ n → K+π− p101 ±10 2200 DAVIS 69 HBC 12 K+ p → K+π−π+ p

WEIGHTED AVERAGE
109±5 (Error scaled by 1.9)

ESTABROOKS 78 ASPK 4.8
ETKIN 80 SPEC
ASTON 81C LASS 1.9
BAUBILLIER 82B HBC
ASTON 84B LASS
ASTON 87 LASS 0.9
ASTON 88 LASS 3.6

χ2

      11.2
(Confidence Level = 0.011)

50 100 150 200 250K∗2(1430)0 width (MeV)8Errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.9Number of events in peak re-evaluated by us.10 From a partial wave amplitude analysis.11 From phase shift or partial-wave analysis.12 Systemati
 errors not estimated.13 From pole extrapolation, using world K+ p data summary tape.K∗2(1430) DECAY MODESK∗2(1430) DECAY MODESK∗2(1430) DECAY MODESK∗2(1430) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 K π (49.9±1.2) %�2 K∗(892)π (24.7±1.5) %�3 K∗(892)ππ (13.4±2.2) %�4 K ρ ( 8.7±0.8) % S=1.2



1036103610361036MesonParti
le ListingsK ∗2(1430)�5 K ω ( 2.9±0.8) %�6 K+γ ( 2.4±0.5)× 10−3 S=1.1�7 K η ( 1.5+3.4
−1.0)× 10−3 S=1.3�8 K ωπ < 7.2 × 10−4 CL=95%�9 K0γ < 9 × 10−4 CL=90%CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the total width, a partial width, and 10 bran
hingratios uses 31 measurements and one 
onstraint to determine 8parameters. The overall �t has a χ2 = 20.2 for 24 degrees offreedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x2 −9x3 −40 −73x4 −8 36 −52x5 −11 −3 −26 −7x6 −1 −1 −1 −1 0x7 −4 −7 −5 −5 −2 0� 0 0 0 0 0 −13 0x1 x2 x3 x4 x5 x6 x7Mode Rate (MeV) S
ale fa
tor�1 K π 49.1 ±1.8�2 K∗(892)π 24.3 ±1.6�3 K∗(892)ππ 13.2 ±2.2�4 K ρ 8.5 ±0.8 1.2�5 K ω 2.9 ±0.8�6 K+γ 0.24±0.05 1.1�7 K η 0.15+0.33
−0.10 1.3K∗2(1430) PARTIAL WIDTHSK∗2(1430) PARTIAL WIDTHSK∗2(1430) PARTIAL WIDTHSK∗2(1430) PARTIAL WIDTHS�(K+γ

) �6�(K+γ
) �6�(K+γ
) �6�(K+γ
) �6VALUE (keV) DOCUMENT ID TECN CHG COMMENT241±50 OUR FIT241±50 OUR FIT241±50 OUR FIT241±50 OUR FIT Error in
ludes s
ale fa
tor of 1.1.240±45240±45240±45240±45 CIHANGIR 82 SPEC + 200 K+Z → ZK+π0,ZK0S π+�(K0γ
) �9�(K0γ
) �9�(K0γ
) �9�(K0γ
) �9VALUE (keV) CL% DOCUMENT ID TECN CHG COMMENT

< 5.4< 5.4< 5.4< 5.4 90 ALAVI-HARATI02B KTEV K + A → K∗ + A
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<84 90 CARLSMITH 87 SPEC 0 60{200 K0LA →K0S π0AK∗2(1430) BRANCHING RATIOSK∗2(1430) BRANCHING RATIOSK∗2(1430) BRANCHING RATIOSK∗2(1430) BRANCHING RATIOS�(K π

)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENT0.499±0.012 OUR FIT0.499±0.012 OUR FIT0.499±0.012 OUR FIT0.499±0.012 OUR FIT0.488±0.014 OUR AVERAGE0.488±0.014 OUR AVERAGE0.488±0.014 OUR AVERAGE0.488±0.014 OUR AVERAGE0.485±0.006±0.020 14 ASTON 88 LASS 0 11 K− p → K−π+ n0.49 ±0.02 14 ESTABROOKS 78 ASPK ± 13 K± p → pK π�(K∗(892)π)/�(K π

) �2/�1�(K∗(892)π)/�(K π
) �2/�1�(K∗(892)π)/�(K π
) �2/�1�(K∗(892)π)/�(K π
) �2/�1VALUE DOCUMENT ID TECN CHG COMMENT0.496±0.034 OUR FIT0.496±0.034 OUR FIT0.496±0.034 OUR FIT0.496±0.034 OUR FIT0.47 ±0.04 OUR AVERAGE0.47 ±0.04 OUR AVERAGE0.47 ±0.04 OUR AVERAGE0.47 ±0.04 OUR AVERAGE0.44 ±0.09 ASTON 84B LASS 0 11 K− p → K0 2πn0.62 ±0.19 LAUSCHER 75 HBC 0 10,16 K− p → K−π+ n0.54 ±0.16 DEHM 74 DBC 0 4.6 K+N0.47 ±0.08 AGUILAR-... 71B HBC 3.9,4.6 K−p0.47 ±0.10 BASSANO 67 HBC −0 4.6,5.0 K−p0.45 ±0.13 BADIER 65C HBC − 3 K− p�(K ω

)/�(K π
) �5/�1�(K ω

)/�(K π
) �5/�1�(K ω

)/�(K π
) �5/�1�(K ω

)/�(K π
) �5/�1VALUE DOCUMENT ID TECN CHG COMMENT0.059±0.017 OUR FIT0.059±0.017 OUR FIT0.059±0.017 OUR FIT0.059±0.017 OUR FIT0.070±0.035 OUR AVERAGE0.070±0.035 OUR AVERAGE0.070±0.035 OUR AVERAGE0.070±0.035 OUR AVERAGE0.05 ±0.04 AGUILAR-... 71B HBC 3.9,4.6 K−p0.13 ±0.07 BASSOMPIE... 69 HBC 0 5 K+ p

�(K ρ
)/�(K π

) �4/�1�(K ρ
)/�(K π

) �4/�1�(K ρ
)/�(K π

) �4/�1�(K ρ
)/�(K π

) �4/�1VALUE DOCUMENT ID TECN CHG COMMENT0.174±0.017 OUR FIT0.174±0.017 OUR FIT0.174±0.017 OUR FIT0.174±0.017 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.150+0.029
−0.017 OUR AVERAGE0.150+0.029
−0.017 OUR AVERAGE0.150+0.029
−0.017 OUR AVERAGE0.150+0.029
−0.017 OUR AVERAGE0.18 ±0.05 ASTON 84B LASS 0 11 K− p → K0 2πn0.02 +0.10
−0.02 DEHM 74 DBC 0 4.6 K+N0.16 ±0.05 AGUILAR-... 71B HBC 3.9,4.6 K−p0.14 ±0.10 BASSANO 67 HBC −0 4.6,5.0 K−p0.14 ±0.07 BADIER 65C HBC − 3 K− p�(K ρ
)/�(K∗(892)π) �4/�2�(K ρ
)/�(K∗(892)π) �4/�2�(K ρ
)/�(K∗(892)π) �4/�2�(K ρ
)/�(K∗(892)π) �4/�2VALUE DOCUMENT ID TECN CHG COMMENT0.350±0.031 OUR FIT0.350±0.031 OUR FIT0.350±0.031 OUR FIT0.350±0.031 OUR FIT Error in
ludes s
ale fa
tor of 1.4.0.354±0.033 OUR AVERAGE0.354±0.033 OUR AVERAGE0.354±0.033 OUR AVERAGE0.354±0.033 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.0.293±0.032±0.020 ASTON 87 LASS 0 11 K− p → K0π+π− n0.38 ±0.09 BAUBILLIER 82B HBC 0 8.25 K− p → NK0S ππ0.39 ±0.03 DAUM 81C CNTR 63 K− p → K− 2πp

WEIGHTED AVERAGE
0.354±0.033 (Error scaled by 1.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

DAUM 81C CNTR 1.4
BAUBILLIER 82B HBC 0.1
ASTON 87 LASS 2.6

χ2

       4.1
(Confidence Level = 0.126)

0.1 0.2 0.3 0.4 0.5 0.6 0.7�(K ρ
)/�(K∗(892)π)�(K ω

)/�(K∗(892)π) �5/�2�(K ω
)/�(K∗(892)π) �5/�2�(K ω
)/�(K∗(892)π) �5/�2�(K ω
)/�(K∗(892)π) �5/�2VALUE DOCUMENT ID TECN CHG COMMENT0.118±0.034 OUR FIT0.118±0.034 OUR FIT0.118±0.034 OUR FIT0.118±0.034 OUR FIT0.10 ±0.040.10 ±0.040.10 ±0.040.10 ±0.04 FIELD 67 HBC − 3.8 K− p�(K η
)/�(K∗(892)π) �7/�2�(K η
)/�(K∗(892)π) �7/�2�(K η
)/�(K∗(892)π) �7/�2�(K η
)/�(K∗(892)π) �7/�2VALUE DOCUMENT ID TECN CHG COMMENT0.006+0.014

−0.004 OUR FIT0.006+0.014
−0.004 OUR FIT0.006+0.014
−0.004 OUR FIT0.006+0.014
−0.004 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.07 ±0.040.07 ±0.040.07 ±0.040.07 ±0.04 FIELD 67 HBC − 3.8 K− p�(K η
)/�(K π

) �7/�1�(K η
)/�(K π

) �7/�1�(K η
)/�(K π

) �7/�1�(K η
)/�(K π

) �7/�1VALUE CL% DOCUMENT ID TECN CHG COMMENT0.0030+0.0070
−0.0020 OUR FIT0.0030+0.0070
−0.0020 OUR FIT0.0030+0.0070
−0.0020 OUR FIT0.0030+0.0070
−0.0020 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0 ±0.00560 ±0.00560 ±0.00560 ±0.0056 15 ASTON 88B LASS − 11 K− p → K− ηp

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.04 95 AGUILAR-... 71B HBC 3.9,4.6 K−p
<0.065 16 BASSOMPIE... 69 HBC 5.0 K+ p
<0.02 BISHOP 69 HBC 3.5 K+ p�(K∗(892)ππ

)/�total �3/��(K∗(892)ππ
)/�total �3/��(K∗(892)ππ
)/�total �3/��(K∗(892)ππ
)/�total �3/�VALUE DOCUMENT ID TECN CHG COMMENT0.134±0.022 OUR FIT0.134±0.022 OUR FIT0.134±0.022 OUR FIT0.134±0.022 OUR FIT0.12 ±0.040.12 ±0.040.12 ±0.040.12 ±0.04 17 GOLDBERG 76 HBC − 3 K− p → pK0πππ�(K∗(892)ππ
)/�(K π

) �3/�1�(K∗(892)ππ
)/�(K π

) �3/�1�(K∗(892)ππ
)/�(K π

) �3/�1�(K∗(892)ππ
)/�(K π

) �3/�1VALUE DOCUMENT ID TECN CHG COMMENT0.27±0.05 OUR FIT0.27±0.05 OUR FIT0.27±0.05 OUR FIT0.27±0.05 OUR FIT0.21±0.080.21±0.080.21±0.080.21±0.08 16,17 JONGEJANS 78 HBC − 4 K− p → pK0πππ�(K ωπ
)/�total �8/��(K ωπ
)/�total �8/��(K ωπ
)/�total �8/��(K ωπ
)/�total �8/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT

<0.72<0.72<0.72<0.72 95 0 JONGEJANS 78 HBC 4 K− p → pK0 4π14From phase shift analysis.15ASTON 88B quote < 0.0092 at CL=95%. We 
onvert this to a 
entral value and 1 sigmaerror in order to be able to use it in our 
onstrained �t.16Restated by us.17Assuming ππ system has isospin 1, whi
h is supported by the data.



1037103710371037See key on page 601 Meson Parti
le ListingsK ∗2(1430), K (1460), K2(1580), K (1630)K∗2(1430) REFERENCESK∗2(1430) REFERENCESK∗2(1430) REFERENCESK∗2(1430) REFERENCESAUBERT 07AK PR D76 012008 B. Aubert et al. (BABAR Collab.)ALAVI-HARATI 02B PRL 89 072001 A. Alavi-Harati et al. (FNAL KTeV Collab.)BIRD 89 SLAC-332 P.F. Bird (SLAC)ASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)ASTON 88B PL B201 169 D. Aston et al. (SLAC, NAGO, CINC, INUS)ASTON 87 NP B292 693 D. Aston et al. (SLAC, NAGO, CINC, INUS)CARLSMITH 87 PR D36 3502 D. Carlsmith et al. (EFI, SACL)ASTON 84B NP B247 261 D. Aston et al. (SLAC, CARL, OTTA)BAUBILLIER 84B ZPHY C26 37 M. Baubillier et al. (BIRM, CERN, GLAS+)BAUBILLIER 82B NP B202 21 M. Baubillier et al. (BIRM, CERN, GLAS+)CIHANGIR 82 PL 117B 123 S. Cihangir et al. (FNAL, MINN, ROCH)CLELAND 82 NP B208 189 W.E. Cleland et al. (DURH, GEVA, LAUS+)ASTON 81C PL 106B 235 D. Aston et al. (SLAC, CARL, OTTA) JPDAUM 81C NP B187 1 C. Daum et al. (AMST, CERN, CRAC, MPIM+)TOAFF 81 PR D23 1500 S. Toa� et al. (ANL, KANS)ETKIN 80 PR D22 42 A. Etkin et al. (BNL, CUNY) JPESTABROOKS 78 NP B133 490 P.G. Estabrooks et al. (MCGI, CARL, DURH+)Also PR D17 658 P.G. Estabrooks et al. (MCGI, CARL, DURH+)JONGEJANS 78 NP B139 383 B. Jongejans et al. (ZEEM, CERN, NIJM+)MARTIN 78 NP B134 392 A.D. Martin et al. (DURH, GEVA)BOWLER 77 NP B126 31 M.G. Bowler et al. (OXF)GOLDBERG 76 LNC 17 253 J. Goldberg (HAIF)HENDRICK 76 NP B112 189 K. Hendri
kx et al. (MONS, SACL, PARIS+)LAUSCHER 75 NP B86 189 P. Laus
her et al. (ABCLV Collab.) JPMCCUBBIN 75 NP B86 13 N.A. M
Cubbin, L. Lyons (OXF)DEHM 74 NP B75 47 G. Dehm et al. (MPIM, BRUX, MONS, CERN)LINGLIN 73 NP B55 408 D. Linglin (CERN)AGUILAR-... 71B PR D4 2583 M. Aguilar-Benitez, R.L. Eisner, J.B. Kinson (BNL)BARNHAM 71C NP B28 171 K.W.J. Barnham et al. (BIRM, GLAS)CORDS 71 PR D4 1974 D. Cords et al. (PURD, UCD, IUPU)BASSOMPIE... 69 NP B13 189 G. Bassompierre et al. (CERN, BRUX) JPBISHOP 69 NP B9 403 J.M. Bishop et al. (WISC)CRENNELL 69D PRL 22 487 D.J. Crennell et al. (BNL)DAVIS 69 PRL 23 1071 P.J. Davis et al. (LRL)LIND 69 NP B14 1 V.G. Lind et al. (LRL) JPSCHWEING... 68 PR 166 1317 F. S
hweingruber et al. (ANL, NWES)Also Thesis F.L. S
hweingruber (NWES, NWES)BASSANO 67 PRL 19 968 D. Bassano et al. (BNL, SYRA)FIELD 67 PL 24B 638 J.H. Field et al. (UCSD)BADIER 65C PL 19 612 J. Badier et al. (EPOL, SACL, AMST)K (1460) I (JP ) = 12 (0−)OMITTED FROM SUMMARY TABLEObserved in K ππ partial-wave analysis.K (1460) MASSK (1460) MASSK (1460) MASSK (1460) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 1460 DAUM 81C CNTR − 63 K− p → K− 2πp
∼ 1400 1 BRANDENB... 76B ASPK ± 13 K± p → K+2πp1Coupled mainly to K f0(1370). De
ay into K∗(892)π seen.K (1460) WIDTHK (1460) WIDTHK (1460) WIDTHK (1460) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 260 DAUM 81C CNTR − 63 K− p → K− 2πp
∼ 250 2 BRANDENB... 76B ASPK ± 13 K± p → K+2πp2Coupled mainly to K f0(1370). De
ay into K∗(892)π seen.K (1460) DECAY MODESK (1460) DECAY MODESK (1460) DECAY MODESK (1460) DECAY MODESMode Fra
tion (�i /�)�1 K∗(892)π seen�2 K ρ seen�3 K∗0(1430)π seenK (1460) PARTIAL WIDTHSK (1460) PARTIAL WIDTHSK (1460) PARTIAL WIDTHSK (1460) PARTIAL WIDTHS�(K∗(892)π) �1�(K∗(892)π) �1�(K∗(892)π) �1�(K∗(892)π) �1VALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 109 DAUM 81C CNTR 63 K− p → K− 2πp�(K ρ

) �2�(K ρ
) �2�(K ρ
) �2�(K ρ
) �2VALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 34 DAUM 81C CNTR 63 K− p → K− 2πp�(K∗0(1430)π) �3�(K∗0(1430)π) �3�(K∗0(1430)π) �3�(K∗0(1430)π) �3VALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 117 DAUM 81C CNTR 63 K− p → K− 2πpK (1460) REFERENCESK (1460) REFERENCESK (1460) REFERENCESK (1460) REFERENCESDAUM 81C NP B187 1 C. Daum et al. (AMST, CERN, CRAC, MPIM+)BRANDENB... 76B PRL 36 1239 G.W. Brandenburg et al. (SLAC) JP

K2(1580) I (JP ) = 12 (2−)OMITTED FROM SUMMARY TABLESeen in partial-wave analysis of the K−π+π− system. Needs 
on-�rmation. K2(1580) MASSK2(1580) MASSK2(1580) MASSK2(1580) MASSVALUE (MeV) DOCUMENT ID CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 1580 OTTER 79 − 10,14,16 K− pK2(1580) WIDTHK2(1580) WIDTHK2(1580) WIDTHK2(1580) WIDTHVALUE (MeV) DOCUMENT ID CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 110 OTTER 79 − 10,14,16 K− pK2(1580) DECAY MODESK2(1580) DECAY MODESK2(1580) DECAY MODESK2(1580) DECAY MODESMode Fra
tion (�i /�)�1 K∗(892)π seen�2 K∗2(1430)π possibly seenK2(1580) BRANCHING RATIOSK2(1580) BRANCHING RATIOSK2(1580) BRANCHING RATIOSK2(1580) BRANCHING RATIOS�(K∗(892)π)/�total �1/��(K∗(892)π)/�total �1/��(K∗(892)π)/�total �1/��(K∗(892)π)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen OTTER 79 HBC − 10,14,16 K−p
• • • We do not use the following data for averages, �ts, limits, et
. • • •possibly seen GULER 11 BELL B+ → J/ψK+π+π−�(K∗2(1430)π)/�total �2/��(K∗2(1430)π)/�total �2/��(K∗2(1430)π)/�total �2/��(K∗2(1430)π)/�total �2/�VALUE DOCUMENT ID TECN CHG COMMENTpossibly seenpossibly seenpossibly seenpossibly seen OTTER 79 HBC − 10,14,16 K−pK2(1580) REFERENCESK2(1580) REFERENCESK2(1580) REFERENCESK2(1580) REFERENCESGULER 11 PR D83 032005 H. Guler et al. (BELLE Collab.)OTTER 79 NP B147 1 G. Otter et al. (AACH3, BERL, CERN, LOIC+) JPK (1630) I (JP ) = 12 (??)OMITTED FROM SUMMARY TABLESeen as a narrow peak, 
ompatible with the experimental resolution,in the invariant mass of the K0S π+π− system produ
ed in π−pintera
tions at high momentum transfers.K (1630) MASSK (1630) MASSK (1630) MASSK (1630) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1629±71629±71629±71629±7 ∼ 75 KARNAUKHOV98 BC 16.0 π− p → (K0S π+π−)X+π−X0K (1630) WIDTHK (1630) WIDTHK (1630) WIDTHK (1630) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT16+19

−1616+19
−1616+19
−1616+19
−16 ∼ 75 1 KARNAUKHOV98 BC 16.0 π− p → (K0S π+π−)X+π−X01Compatible with an experimental resolution of 14 ± 1 MeV.K (1630) DECAY MODESK (1630) DECAY MODESK (1630) DECAY MODESK (1630) DECAY MODESMode�1 K0S π+π− K (1630) REFERENCESK (1630) REFERENCESK (1630) REFERENCESK (1630) REFERENCESKARNAUKHOV 98 PAN 61 203 V.M. Karnaukhov, C. Co
a, V.I. MorozTranslated from YAF 61 252.



1038103810381038MesonParti
le ListingsK1(1650),K ∗(1680),K2(1770)K1(1650) I (JP ) = 12 (1+)OMITTED FROM SUMMARY TABLEThis entry 
ontains various peaks in strange meson systems (K+φ,K ππ) reported in partial-wave analysis in the 1600{1900 mass re-gion. K1(1650) MASSK1(1650) MASSK1(1650) MASSK1(1650) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT1650±501650±501650±501650±50 FRAME 86 OMEG + 13 K+ p → φK+ p
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 1840 ARMSTRONG 83 OMEG − 18.5 K− p → 3K p
∼ 1800 DAUM 81C CNTR − 63 K− p → K− 2πpK1(1650) WIDTHK1(1650) WIDTHK1(1650) WIDTHK1(1650) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT150±50150±50150±50150±50 FRAME 86 OMEG + 13 K+ p → φK+ p
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 250 DAUM 81C CNTR − 63 K− p → K− 2πpK1(1650) DECAY MODESK1(1650) DECAY MODESK1(1650) DECAY MODESK1(1650) DECAY MODESMode�1 K ππ�2 K φ K1(1650) REFERENCESK1(1650) REFERENCESK1(1650) REFERENCESK1(1650) REFERENCESFRAME 86 NP B276 667 D. Frame et al. (GLAS)ARMSTRONG 83 NP B221 1 T.A. Armstrong et al. (BARI, BIRM, CERN+)DAUM 81C NP B187 1 C. Daum et al. (AMST, CERN, CRAC, MPIM+)K ∗(1680) I (JP ) = 12 (1−)K∗(1680) MASSK∗(1680) MASSK∗(1680) MASSK∗(1680) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT1717±27 OUR AVERAGE1717±27 OUR AVERAGE1717±27 OUR AVERAGE1717±27 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.1677±10±32 ASTON 88 LASS 0 11 K− p → K−π+ n1735±10±20 ASTON 87 LASS 0 11 K− p → K0π+π− n
• • • We do not use the following data for averages, �ts, limits, et
. • • •1678±64 BIRD 89 LASS − 11 K− p → K0π− p1800±70 ETKIN 80 MPS 0 6 K− p → K0π+π− n
∼ 1650 ESTABROOKS 78 ASPK 0 13 K± p → K±π± nK∗(1680) WIDTHK∗(1680) WIDTHK∗(1680) WIDTHK∗(1680) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT322±110 OUR AVERAGE322±110 OUR AVERAGE322±110 OUR AVERAGE322±110 OUR AVERAGE Error in
ludes s
ale fa
tor of 4.2.205± 16±34 ASTON 88 LASS 0 11 K− p → K−π+ n423± 18±30 ASTON 87 LASS 0 11 K− p → K0π+π− n
• • • We do not use the following data for averages, �ts, limits, et
. • • •454±270 BIRD 89 LASS − 11 K− p → K0π− p170± 30 ETKIN 80 MPS 0 6 K− p → K0π+π− n250 to 300 ESTABROOKS 78 ASPK 0 13 K± p → K±π± nK∗(1680) DECAY MODESK∗(1680) DECAY MODESK∗(1680) DECAY MODESK∗(1680) DECAY MODESMode Fra
tion (�i /�)�1 K π (38.7±2.5) %�2 K ρ (31.4+5.0

−2.1) %�3 K∗(892)π (29.9+2.2
−5.0) %

CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 4 bran
hing ratios uses 4 measurements and one
onstraint to determine 3 parameters. The overall �t has a χ2 =2.9 for 2 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients〈
δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −36x3 −39 −72x1 x2 K∗(1680) BRANCHING RATIOSK∗(1680) BRANCHING RATIOSK∗(1680) BRANCHING RATIOSK∗(1680) BRANCHING RATIOS�(K π

)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENT0.387±0.026 OUR FIT0.387±0.026 OUR FIT0.387±0.026 OUR FIT0.387±0.026 OUR FIT0.388±0.014±0.0220.388±0.014±0.0220.388±0.014±0.0220.388±0.014±0.022 ASTON 88 LASS 0 11 K− p → K−π+ n�(K π
)/�(K∗(892)π) �1/�3�(K π
)/�(K∗(892)π) �1/�3�(K π
)/�(K∗(892)π) �1/�3�(K π
)/�(K∗(892)π) �1/�3VALUE DOCUMENT ID TECN CHG COMMENT1.30+0.23

−0.14 OUR FIT1.30+0.23
−0.14 OUR FIT1.30+0.23
−0.14 OUR FIT1.30+0.23
−0.14 OUR FIT2.8 ±1.12.8 ±1.12.8 ±1.12.8 ±1.1 ASTON 84 LASS 0 11 K− p → K0 2πn�(K ρ

)/�(K π
) �2/�1�(K ρ

)/�(K π
) �2/�1�(K ρ

)/�(K π
) �2/�1�(K ρ

)/�(K π
) �2/�1VALUE DOCUMENT ID TECN CHG COMMENT0.81+0.14

−0.09 OUR FIT0.81+0.14
−0.09 OUR FIT0.81+0.14
−0.09 OUR FIT0.81+0.14
−0.09 OUR FIT1.2 ±0.41.2 ±0.41.2 ±0.41.2 ±0.4 ASTON 84 LASS 0 11 K− p → K0 2πn�(K ρ

)/�(K∗(892)π) �2/�3�(K ρ
)/�(K∗(892)π) �2/�3�(K ρ
)/�(K∗(892)π) �2/�3�(K ρ
)/�(K∗(892)π) �2/�3VALUE DOCUMENT ID TECN CHG COMMENT1.05+0.27

−0.11 OUR FIT1.05+0.27
−0.11 OUR FIT1.05+0.27
−0.11 OUR FIT1.05+0.27
−0.11 OUR FIT0.97±0.09+0.30

−0.100.97±0.09+0.30
−0.100.97±0.09+0.30
−0.100.97±0.09+0.30
−0.10 ASTON 87 LASS 0 11 K− p → K0π+π− nK∗(1680) REFERENCESK∗(1680) REFERENCESK∗(1680) REFERENCESK∗(1680) REFERENCESBIRD 89 SLAC-332 P.F. Bird (SLAC)ASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)ASTON 87 NP B292 693 D. Aston et al. (SLAC, NAGO, CINC, INUS)ASTON 84 PL 149B 258 D. Aston et al. (SLAC, CARL, OTTA) JPETKIN 80 PR D22 42 A. Etkin et al. (BNL, CUNY) JPESTABROOKS 78 NP B133 490 P.G. Estabrooks et al. (MCGI, CARL, DURH+) JPK2(1770) I (JP ) = 12 (2−)See our mini-review in the 2004 edition of this Review, PDG 04.K2(1770) MASSK2(1770) MASSK2(1770) MASSK2(1770) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1773± 81773± 81773± 81773± 8 1 ASTON 93 LASS 11K− p → K−ωp

• • • We do not use the following data for averages, �ts, limits, et
. • • •1743±15 TIKHOMIROV 03 SPEC 40.0 π−C →K0S K0S K0LX1810±20 FRAME 86 OMEG + 13 K+ p → φK+ p
∼ 1730 ARMSTRONG 83 OMEG − 18.5 K−p → 3K p
∼ 1780 2 DAUM 81C CNTR − 63 K− p → K− 2πp1710±15 60 CHUNG 74 HBC − 7.3 K− p → K−ωp1767± 6 BLIEDEN 72 MMS − 11{16 K−p1730±20 306 3 FIRESTONE 72B DBC + 12 K+ d1765±40 4 COLLEY 71 HBC + 10 K+ p → K 2πN1740 DENEGRI 71 DBC − 12.6 K−d → K 2πd1745±20 AGUILAR-... 70C HBC − 4.6 K− p1780±15 BARTSCH 70C HBC − 10.1 K−p1760±15 LUDLAM 70 HBC − 12.6 K−p1From a partial wave analysis of the K−ω system.2 From a partial wave analysis of the K− 2π system.3Produ
ed in 
onjun
tion with ex
ited deuteron.4 Systemati
 errors added 
orrespond to spread of di�erent �ts.K2(1770) WIDTHK2(1770) WIDTHK2(1770) WIDTHK2(1770) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT186±14186±14186±14186±14 5 ASTON 93 LASS 11K− p → K−ωp



1039103910391039See key on page 601 Meson Parti
le ListingsK2(1770), K ∗3(1780)
• • • We do not use the following data for averages, �ts, limits, et
. • • •147±70 TIKHOMIROV 03 SPEC 40.0 π−C →K0S K0S K0LX140±40 FRAME 86 OMEG + 13 K+ p → φK+ p
∼ 220 ARMSTRONG 83 OMEG − 18.5 K−p → 3K p
∼ 210 6 DAUM 81C CNTR − 63 K− p → K− 2πp110±50 60 CHUNG 74 HBC − 7.3 K− p → K−ωp100±26 BLIEDEN 72 MMS − 11{16 K− p210±30 306 7 FIRESTONE 72B DBC + 12 K+ d90±70 8 COLLEY 71 HBC + 10 K+ p → K 2πN130 DENEGRI 71 DBC − 12.6 K−d → K 2πd100±50 AGUILAR-... 70C HBC − 4.6 K− p138±40 BARTSCH 70C HBC − 10.1 K−p50+40

−20 LUDLAM 70 HBC − 12.6 K−p5From a partial wave analysis of the K−ω system.6 From a partial wave analysis of the K− 2π system.7Produ
ed in 
onjun
tion with ex
ited deuteron.8 Systemati
 errors added 
orrespond to spread of di�erent �ts.K2(1770) DECAY MODESK2(1770) DECAY MODESK2(1770) DECAY MODESK2(1770) DECAY MODESMode Fra
tion (�i /�)�1 K ππ�2 K∗2(1430)π dominant�3 K∗(892)π seen�4 K f2(1270) seen�5 K f0(980)�6 K φ seen�7 K ω seenK2(1770) BRANCHING RATIOSK2(1770) BRANCHING RATIOSK2(1770) BRANCHING RATIOSK2(1770) BRANCHING RATIOS�(K∗2(1430)π)/�(K ππ
) �2/�1�(K∗2(1430)π)/�(K ππ
) �2/�1�(K∗2(1430)π)/�(K ππ
) �2/�1�(K∗2(1430)π)/�(K ππ
) �2/�1(K∗2(1430) → K π)VALUE DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 0.03 DAUM 81C CNTR 63 K− p → K− 2πp
∼ 1.0 9 FIRESTONE 72B DBC + 12 K+ d
<1.0 COLLEY 71 HBC 10 K+ p0.2 ±0.2 AGUILAR-... 70C HBC − 4.6 K− p
<1.0 BARTSCH 70C HBC − 10.1 K− p1.0 BARBARO-... 69 HBC + 12.0 K+ p9Produ
ed in 
onjun
tion with ex
ited deuteron.�(K∗(892)π)/�(K ππ

) �3/�1�(K∗(892)π)/�(K ππ
) �3/�1�(K∗(892)π)/�(K ππ
) �3/�1�(K∗(892)π)/�(K ππ
) �3/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 0.23 DAUM 81C CNTR 63 K− p → K− 2πp�(K f2(1270))/�(K ππ

) �4/�1�(K f2(1270))/�(K ππ
) �4/�1�(K f2(1270))/�(K ππ
) �4/�1�(K f2(1270))/�(K ππ
) �4/�1(f2(1270) → ππ)VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 0.74 DAUM 81C CNTR 63 K− p → K− 2πp�(K f0(980))/�total �5/��(K f0(980))/�total �5/��(K f0(980))/�total �5/��(K f0(980))/�total �5/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •possibly seen TIKHOMIROV 03 SPEC 40.0 π−C →K0S K0S K0LX�(K φ

)/�total �6/��(K φ
)/�total �6/��(K φ
)/�total �6/��(K φ
)/�total �6/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen ARMSTRONG 83 OMEG − 18.5 K− p → K−φN�(K ω
)/�total �7/��(K ω
)/�total �7/��(K ω
)/�total �7/��(K ω
)/�total �7/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen OTTER 81 HBC ± 8.25,10,16 K± pseenseenseenseen CHUNG 74 HBC − 7.3 K− p → K−ωp

K2(1770) REFERENCESK2(1770) REFERENCESK2(1770) REFERENCESK2(1770) REFERENCESPDG 04 PL B592 1 S. Eidelman et al. (PDG Collab.)TIKHOMIROV 03 PAN 66 828 G.D. Tikhomirov et al.Translated from YAF 66 860.ASTON 93 PL B308 186 D. Aston et al. (SLAC, NAGO, CINC, INUS)FRAME 86 NP B276 667 D. Frame et al. (GLAS)ARMSTRONG 83 NP B221 1 T.A. Armstrong et al. (BARI, BIRM, CERN+)DAUM 81C NP B187 1 C. Daum et al. (AMST, CERN, CRAC, MPIM+)OTTER 81 NP B181 1 G. Otter (AACH3, BERL, LOIC, VIEN, BIRM+)CHUNG 74 PL 51B 413 S.U. Chung et al. (BNL)BLIEDEN 72 PL 39B 668 H.R. Blieden et al. (STON, NEAS)FIRESTONE 72B PR D5 505 A. Firestone et al. (LBL)COLLEY 71 NP B26 71 D.C. Colley et al. (BIRM, GLAS)DENEGRI 71 NP B28 13 D. Denegri et al. (JHU) JPAGUILAR-... 70C PRL 25 54 M. Aguilar-Benitez et al. (BNL)BARTSCH 70C PL 33B 186 J. Barts
h et al. (AACH, BERL, CERN+)LUDLAM 70 PR D2 1234 T. Ludlam, J. Sandweiss, A.J. Slaughter (YALE)BARBARO-... 69 PRL 22 1207 A. Barbaro-Galtieri et al. (LRL)K ∗3(1780) I (JP ) = 12 (3−)K∗3(1780) MASSK∗3(1780) MASSK∗3(1780) MASSK∗3(1780) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1776± 7 OUR AVERAGE1776± 7 OUR AVERAGE1776± 7 OUR AVERAGE1776± 7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1781± 8± 4 1 ASTON 88 LASS 0 11 K− p →K−π+ n1740±14±15 1 ASTON 87 LASS 0 11 K− p →K0π+π− n1779±11 2 BALDI 76 SPEC + 10 K+ p → K0π+ p1776±26 3 BRANDENB... 76D ASPK 0 13 K± p →K±π∓N
• • • We do not use the following data for averages, �ts, limits, et
. • • •1720±10±15 6111 4 BIRD 89 LASS − 11 K− p → K0π− p1749±10 ASTON 88B LASS − 11 K− p → K− ηp1780± 9 300 BAUBILLIER 84B HBC − 8.25 K−p →K0π− p1790±15 BAUBILLIER 82B HBC 0 8.25 K−p →K0S 2πN1784± 9 2060 CLELAND 82 SPEC ± 50 K+ p → K0S π± p1786±15 5 ASTON 81D LASS 0 11 K− p →K−π+ n1762± 9 190 TOAFF 81 HBC − 6.5 K− p →K0π− p1850±50 ETKIN 80 MPS 0 6 K− p →K0π+π−1812±28 BEUSCH 78 OMEG 10 K− p →K0π+π− n1786± 8 CHUNG 78 MPS 0 6 K− p → K−π+ n1From energy-independent partial-wave analysis.2 From a �t to Y 26 moment. JP = 3− found.3Con�rmed by phase shift analysis of ESTABROOKS 78, yields JP = 3−.4 From a partial wave amplitude analysis.5 From a �t to the Y 06 moment.K∗3(1780) WIDTHK∗3(1780) WIDTHK∗3(1780) WIDTHK∗3(1780) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT159±21 OUR AVERAGE159±21 OUR AVERAGE159±21 OUR AVERAGE159±21 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.203±30± 8 6 ASTON 88 LASS 0 11 K− p →K−π+ n171±42±20 6 ASTON 87 LASS 0 11 K− p →K0π+π− n135±22 7 BALDI 76 SPEC + 10 K+ p → K0π+ p
• • • We do not use the following data for averages, �ts, limits, et
. • • •187±31±20 6111 8 BIRD 89 LASS − 11 K− p → K0π− p193+51

−37 ASTON 88B LASS − 11 K− p → K− ηp99±30 300 BAUBILLIER 84B HBC − 8.25 K−p →K0π− p
∼ 130 BAUBILLIER 82B HBC 0 8.25 K−p →K0S 2πN191±24 2060 CLELAND 82 SPEC ± 50 K+ p → K0S π± p225±60 9 ASTON 81D LASS 0 11 K− p →K−π+ n
∼ 80 190 TOAFF 81 HBC − 6.5 K− p →K0π− p240±50 ETKIN 80 MPS 0 6 K− p →K0π+π−181±44 10 BEUSCH 78 OMEG 10 K− p →K0π+π− n96±31 CHUNG 78 MPS 0 6 K− p → K−π+ n270±70 11 BRANDENB... 76D ASPK 0 13 K± p →K±π∓N6From energy-independent partial-wave analysis.7 From a �t to Y 26 moment. JP = 3− found.



1040104010401040MesonParti
le ListingsK ∗3(1780),K2(1820)8From a partial wave amplitude analysis.9 From a �t to Y 06 moment.10Errors enlarged by us to 4�/√N; see the note with the K∗(892) mass.11ESTABROOKS 78 �nd that BRANDENBURG 76D data are 
onsistent with 175 MeVwidth. Not averaged.
WEIGHTED AVERAGE
159±21 (Error scaled by 1.3)

BALDI 76 SPEC 1.2
ASTON 87 LASS 0.1
ASTON 88 LASS 2.0

χ2

       3.3
(Confidence Level = 0.196)

50 100 150 200 250 300 350K∗3(1780) width (MeV)K∗3(1780) DECAY MODESK∗3(1780) DECAY MODESK∗3(1780) DECAY MODESK∗3(1780) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 K ρ (31 ± 9 ) %�2 K∗(892)π (20 ± 5 ) %�3 K π (18.8± 1.0) %�4 K η (30 ±13 ) %�5 K∗2(1430)π < 16 % 95%CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 3 bran
hing ratios uses 4 measurements and one
onstraint to determine 4 parameters. The overall �t has a χ2 =0.0 for 1 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients〈
δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 85x3 18 21x4 −98 −94 −27x1 x2 x3K∗3(1780) BRANCHING RATIOSK∗3(1780) BRANCHING RATIOSK∗3(1780) BRANCHING RATIOSK∗3(1780) BRANCHING RATIOS�(K ρ

)/�(K∗(892)π) �1/�2�(K ρ
)/�(K∗(892)π) �1/�2�(K ρ
)/�(K∗(892)π) �1/�2�(K ρ
)/�(K∗(892)π) �1/�2VALUE DOCUMENT ID TECN CHG COMMENT1.52±0.23 OUR FIT1.52±0.23 OUR FIT1.52±0.23 OUR FIT1.52±0.23 OUR FIT1.52±0.21±0.101.52±0.21±0.101.52±0.21±0.101.52±0.21±0.10 ASTON 87 LASS 0 11 K− p → K0π+π− n�(K∗(892)π)/�(K π

) �2/�3�(K∗(892)π)/�(K π
) �2/�3�(K∗(892)π)/�(K π
) �2/�3�(K∗(892)π)/�(K π
) �2/�3VALUE DOCUMENT ID TECN CHG COMMENT1.09±0.26 OUR FIT1.09±0.26 OUR FIT1.09±0.26 OUR FIT1.09±0.26 OUR FIT1.09±0.261.09±0.261.09±0.261.09±0.26 ASTON 84B LASS 0 11 K− p → K0 2πn�(K π

)/�total �3/��(K π
)/�total �3/��(K π
)/�total �3/��(K π
)/�total �3/�VALUE DOCUMENT ID TECN CHG COMMENT0.188±0.010 OUR FIT0.188±0.010 OUR FIT0.188±0.010 OUR FIT0.188±0.010 OUR FIT0.188±0.010 OUR AVERAGE0.188±0.010 OUR AVERAGE0.188±0.010 OUR AVERAGE0.188±0.010 OUR AVERAGE0.187±0.008±0.008 ASTON 88 LASS 0 11 K− p → K−π+ n0.19 ±0.02 ESTABROOKS 78 ASPK 0 13 K± p → K πN�(K η
)/�(K π

) �4/�3�(K η
)/�(K π

) �4/�3�(K η
)/�(K π

) �4/�3�(K η
)/�(K π

) �4/�3VALUE DOCUMENT ID TECN CHG COMMENT1.6 ±0.7 OUR FIT1.6 ±0.7 OUR FIT1.6 ±0.7 OUR FIT1.6 ±0.7 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.41±0.050 12 BIRD 89 LASS − 11 K− p → K0π− p0.50±0.18 ASTON 88B LASS − 11 K− p → K− ηp12This result supersedes ASTON 88B.

�(K∗2(1430)π)/�(K∗(892)π) �5/�2�(K∗2(1430)π)/�(K∗(892)π) �5/�2�(K∗2(1430)π)/�(K∗(892)π) �5/�2�(K∗2(1430)π)/�(K∗(892)π) �5/�2VALUE CL% DOCUMENT ID TECN CHG COMMENT
<0.78<0.78<0.78<0.78 95 ASTON 87 LASS 0 11 K− p →K0π+π− nK∗3(1780) REFERENCESK∗3(1780) REFERENCESK∗3(1780) REFERENCESK∗3(1780) REFERENCESBIRD 89 SLAC-332 P.F. Bird (SLAC)ASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)ASTON 88B PL B201 169 D. Aston et al. (SLAC, NAGO, CINC, INUS) JPASTON 87 NP B292 693 D. Aston et al. (SLAC, NAGO, CINC, INUS)ASTON 84B NP B247 261 D. Aston et al. (SLAC, CARL, OTTA)BAUBILLIER 84B ZPHY C26 37 M. Baubillier et al. (BIRM, CERN, GLAS+)BAUBILLIER 82B NP B202 21 M. Baubillier et al. (BIRM, CERN, GLAS+)CLELAND 82 NP B208 189 W.E. Cleland et al. (DURH, GEVA, LAUS+)ASTON 81D PL 99B 502 D. Aston et al. (SLAC, CARL, OTTA) JPTOAFF 81 PR D23 1500 S. Toa� et al. (ANL, KANS)ETKIN 80 PR D22 42 A. Etkin et al. (BNL, CUNY) JPBEUSCH 78 PL 74B 282 W. Beus
h et al. (CERN, AACH3, ETH) JPCHUNG 78 PRL 40 355 S.U. Chung et al. (BNL, BRAN, CUNY+) JPESTABROOKS 78 NP B133 490 P.G. Estabrooks et al. (MCGI, CARL, DURH+) JPAlso PR D17 658 P.G. Estabrooks et al. (MCGI, CARL, DURH+)BALDI 76 PL 63B 344 R. Baldi et al. (GEVA) JPBRANDENB... 76D PL 60B 478 G.W. Brandenburg et al. (SLAC) JPK2(1820) I (JP ) = 12 (2−)See our mini-review in the 2004 edition of this Review (PDG 04)under K2(1770). K2(1820) MASSK2(1820) MASSK2(1820) MASSK2(1820) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1816±131816±131816±131816±13 1 ASTON 93 LASS 11K− p → K−ωp
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 1840 2 DAUM 81C CNTR 63 K− p → K− 2πp1From a partial wave analysis of the K−ω system.2 From a partial wave analysis of the K− 2π system.K2(1820) WIDTHK2(1820) WIDTHK2(1820) WIDTHK2(1820) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT276±35276±35276±35276±35 3 ASTON 93 LASS 11K− p → K−ωp
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 230 4 DAUM 81C CNTR 63 K− p → K− 2πp3From a partial wave analysis of the K−ω system.4 From a partial wave analysis of the K− 2π system.K2(1820) DECAY MODESK2(1820) DECAY MODESK2(1820) DECAY MODESK2(1820) DECAY MODESMode Fra
tion (�i /�)�1 K ππ�2 K∗2(1430)π seen�3 K∗(892)π seen�4 K f2(1270) seen�5 K ω seenK2(1820) BRANCHING RATIOSK2(1820) BRANCHING RATIOSK2(1820) BRANCHING RATIOSK2(1820) BRANCHING RATIOS�(K∗2(1430)π)/�(K ππ

) �2/�1�(K∗2(1430)π)/�(K ππ
) �2/�1�(K∗2(1430)π)/�(K ππ
) �2/�1�(K∗2(1430)π)/�(K ππ
) �2/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 0.77 DAUM 81C CNTR 63K− p → K 2πp�(K∗(892)π)/�(K ππ

) �3/�1�(K∗(892)π)/�(K ππ
) �3/�1�(K∗(892)π)/�(K ππ
) �3/�1�(K∗(892)π)/�(K ππ
) �3/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 0.05 DAUM 81C CNTR 63K− p → K 2πp�(K f2(1270))/�(K ππ

) �4/�1�(K f2(1270))/�(K ππ
) �4/�1�(K f2(1270))/�(K ππ
) �4/�1�(K f2(1270))/�(K ππ
) �4/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 0.18 DAUM 81C CNTR 63K− p → K 2πpK2(1820) REFERENCESK2(1820) REFERENCESK2(1820) REFERENCESK2(1820) REFERENCESPDG 04 PL B592 1 S. Eidelman et al. (PDG Collab.)ASTON 93 PL B308 186 D. Aston et al. (SLAC, NAGO, CINC, INUS)DAUM 81C NP B187 1 C. Daum et al. (AMST, CERN, CRAC, MPIM+)



1041104110411041See key on page 601 MesonParti
le ListingsK (1830),K ∗0(1950),K ∗2(1980),K ∗4(2045)K (1830) I (JP ) = 12 (0−)OMITTED FROM SUMMARY TABLESeen in partial-wave analysis of K−φ system. Needs 
on�rmation.K (1830) MASSK (1830) MASSK (1830) MASSK (1830) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 1830 ARMSTRONG 83 OMEG − 18.5 K− p → 3K pK (1830) WIDTHK (1830) WIDTHK (1830) WIDTHK (1830) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 250 ARMSTRONG 83 OMEG − 18.5 K− p → 3K pK (1830) DECAY MODESK (1830) DECAY MODESK (1830) DECAY MODESK (1830) DECAY MODESMode�1 K φ K (1830) REFERENCESK (1830) REFERENCESK (1830) REFERENCESK (1830) REFERENCESARMSTRONG 83 NP B221 1 T.A. Armstrong et al. (BARI, BIRM, CERN+) JPK ∗0(1950) I (JP ) = 12 (0+)OMITTED FROM SUMMARY TABLESeen in partial-wave analysis of the K−π+ system. Needs 
on�r-mation. K∗0(1950) MASSK∗0(1950) MASSK∗0(1950) MASSK∗0(1950) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT1945±10±201945±10±201945±10±201945±10±20 1 ASTON 88 LASS 0 11 K− p → K−π+ n
• • • We do not use the following data for averages, �ts, limits, et
. • • •1917±12 2 ZHOU 06 RVUE K p → K−π+ n1820±40 3 ANISOVICH 97C RVUE 11 K− p → K−π+ n1We take the 
entral value of the two solutions and the larger error given.2 S-matrix pole. Using ASTON 88 and assuming K∗0(800), K∗0(1430).3T-matrix pole. Reanalysis of ASTON 88 data.K∗0(1950) WIDTHK∗0(1950) WIDTHK∗0(1950) WIDTHK∗0(1950) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT201± 34±79201± 34±79201± 34±79201± 34±79 4 ASTON 88 LASS 0 11 K− p → K−π+ n
• • • We do not use the following data for averages, �ts, limits, et
. • • •145± 38 5 ZHOU 06 RVUE K p → K−π+ n250±100 6 ANISOVICH 97C RVUE 11 K− p → K−π+ n4We take the 
entral value of the two solutions and the larger error given.5 S-matrix pole. Using ASTON 88 and assuming K∗0(800), K∗0(1430).6T-matrix pole. Reanalysis of ASTON 88 data.K∗0(1950) DECAY MODESK∗0(1950) DECAY MODESK∗0(1950) DECAY MODESK∗0(1950) DECAY MODESMode Fra
tion (�i /�)�1 K π (52±14) %K∗0(1950) BRANCHING RATIOSK∗0(1950) BRANCHING RATIOSK∗0(1950) BRANCHING RATIOSK∗0(1950) BRANCHING RATIOS�(K π

)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENT0.52±0.08±0.120.52±0.08±0.120.52±0.08±0.120.52±0.08±0.12 7 ASTON 88 LASS 0 11 K− p → K−π+ n

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 0.60 8 ZHOU 06 RVUE K p → K−π+ n7We take the 
entral value of the two solutions and the larger error given.8 S-matrix pole. Using ASTON 88 and assuming K∗0(800), K∗0(1430).K∗0(1950) REFERENCESK∗0(1950) REFERENCESK∗0(1950) REFERENCESK∗0(1950) REFERENCESZHOU 06 NP A775 212 Z.Y. Zhou, H.Q. ZhengANISOVICH 97C PL B413 137 A.V. Anisovi
h, A.V. SarantsevASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)

K ∗2(1980) I (JP ) = 12 (2+)OMITTED FROM SUMMARY TABLENeeds 
on�rmation. K∗2(1980) MASSK∗2(1980) MASSK∗2(1980) MASSK∗2(1980) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1973± 8±251973± 8±251973± 8±251973± 8±25 ASTON 87 LASS 0 11 K− p → K0π+π− n
• • • We do not use the following data for averages, �ts, limits, et
. • • •2020±20 TIKHOMIROV 03 SPEC 40.0 π−C → K0S K0S K0LX1978±40 241 ± 47 BIRD 89 LASS − 11 K− p → K0π− pK∗2(1980) WIDTHK∗2(1980) WIDTHK∗2(1980) WIDTHK∗2(1980) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT373±33±60373±33±60373±33±60373±33±60 ASTON 87 LASS 0 11 K− p → K0π+π− n
• • • We do not use the following data for averages, �ts, limits, et
. • • •180±70 TIKHOMIROV 03 SPEC 40.0 π−C → K0S K0S K0LX398±47 241 ± 47 BIRD 89 LASS − 11 K− p → K0π− pK∗2(1980) DECAY MODESK∗2(1980) DECAY MODESK∗2(1980) DECAY MODESK∗2(1980) DECAY MODESMode Fra
tion (�i /�)�1 K∗(892)π possibly seen�2 K ρ possibly seen�3 K f2(1270) possibly seenK∗2(1980) BRANCHING RATIOSK∗2(1980) BRANCHING RATIOSK∗2(1980) BRANCHING RATIOSK∗2(1980) BRANCHING RATIOS�(K∗(892)π)/�total �1/��(K∗(892)π)/�total �1/��(K∗(892)π)/�total �1/��(K∗(892)π)/�total �1/�VALUE DOCUMENT ID TECN COMMENTpossibly seenpossibly seenpossibly seenpossibly seen GULER 11 BELL B+ → J/ψK+ π+π−�(K ρ

)/�total �2/��(K ρ
)/�total �2/��(K ρ
)/�total �2/��(K ρ
)/�total �2/�VALUE DOCUMENT ID TECN COMMENTpossibly seenpossibly seenpossibly seenpossibly seen GULER 11 BELL B+ → J/ψK+ π+π−�(K ρ
)/�(K∗(892)π) �2/�1�(K ρ
)/�(K∗(892)π) �2/�1�(K ρ
)/�(K∗(892)π) �2/�1�(K ρ
)/�(K∗(892)π) �2/�1VALUE DOCUMENT ID TECN CHG COMMENT1.49±0.24±0.091.49±0.24±0.091.49±0.24±0.091.49±0.24±0.09 ASTON 87 LASS 0 11 K− p → K0π+π− n�(K f2(1270))/�total �3/��(K f2(1270))/�total �3/��(K f2(1270))/�total �3/��(K f2(1270))/�total �3/�VALUE DOCUMENT ID TECN COMMENTpossibly seenpossibly seenpossibly seenpossibly seen TIKHOMIROV 03 SPEC 40.0 π−C → K0S K0S K0LXK∗2(1980) REFERENCESK∗2(1980) REFERENCESK∗2(1980) REFERENCESK∗2(1980) REFERENCESGULER 11 PR D83 032005 H. Guler et al. (BELLE Collab.)TIKHOMIROV 03 PAN 66 828 G.D. Tikhomirov et al.Translated from YAF 66 860.BIRD 89 SLAC-332 P.F. Bird (SLAC)ASTON 87 NP B292 693 D. Aston et al. (SLAC, NAGO, CINC, INUS)K ∗4(2045) I (JP ) = 12 (4+)K∗4(2045) MASSK∗4(2045) MASSK∗4(2045) MASSK∗4(2045) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT2045± 9 OUR AVERAGE2045± 9 OUR AVERAGE2045± 9 OUR AVERAGE2045± 9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.2062± 14±13 1 ASTON 86 LASS 0 11 K− p → K−π+ n2039± 10 400 2,3 CLELAND 82 SPEC ± 50 K+ p → K0S π± p2070+100

− 40 4 ASTON 81C LASS 0 11 K− p → K−π+ n
• • • We do not use the following data for averages, �ts, limits, et
. • • •2079± 7 431 TORRES 86 MPSF 400 pA → 4K X2088± 20 650 BAUBILLIER 82 HBC − 8.25 K−p → K0S π− p2115± 46 488 CARMONY 77 HBC 0 9 K+ d → K+π 's X1From a �t to all moments.2 From a �t to 8 moments.3Number of events evaluated by us.4 From energy-independent partial-wave analysis.K∗4(2045) WIDTHK∗4(2045) WIDTHK∗4(2045) WIDTHK∗4(2045) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT198± 30 OUR AVERAGE198± 30 OUR AVERAGE198± 30 OUR AVERAGE198± 30 OUR AVERAGE221± 48±27 5 ASTON 86 LASS 0 11 K− p → K−π+ n189± 35 400 6,7 CLELAND 82 SPEC ± 50 K+ p → K0S π± p



1042104210421042MesonParti
le ListingsK ∗4(2045),K2(2250),K3(2320)
• • • We do not use the following data for averages, �ts, limits, et
. • • •61± 58 431 TORRES 86 MPSF 400 pA → 4K X170+100

− 50 650 BAUBILLIER 82 HBC − 8.25 K−p → K0S π− p240+500
−100 8 ASTON 81C LASS 0 11 K− p → K−π+ n300±200 CARMONY 77 HBC 0 9 K+ d → K+π 's X5From a �t to all moments.6 From a �t to 8 moments.7Number of events evaluated by us.8 From energy-independent partial-wave analysis.K∗4(2045) DECAY MODESK∗4(2045) DECAY MODESK∗4(2045) DECAY MODESK∗4(2045) DECAY MODESMode Fra
tion (�i /�)�1 K π (9.9±1.2) %�2 K∗(892)ππ (9 ±5 ) %�3 K∗(892)πππ (7 ±5 ) %�4 ρK π (5.7±3.2) %�5 ωK π (5.0±3.0) %�6 φK π (2.8±1.4) %�7 φK∗(892) (1.4±0.7) %K∗4(2045) BRANCHING RATIOSK∗4(2045) BRANCHING RATIOSK∗4(2045) BRANCHING RATIOSK∗4(2045) BRANCHING RATIOS�(K π

)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENT0.099±0.0120.099±0.0120.099±0.0120.099±0.012 ASTON 88 LASS 0 11 K− p → K−π+ n�(K∗(892)ππ

)/�(K π
) �2/�1�(K∗(892)ππ

)/�(K π
) �2/�1�(K∗(892)ππ

)/�(K π
) �2/�1�(K∗(892)ππ

)/�(K π
) �2/�1VALUE DOCUMENT ID TECN CHG COMMENT0.89±0.530.89±0.530.89±0.530.89±0.53 BAUBILLIER 82 HBC − 8.25 K− p → pK0S 3π�(K∗(892)πππ

)/�(K π
) �3/�1�(K∗(892)πππ

)/�(K π
) �3/�1�(K∗(892)πππ

)/�(K π
) �3/�1�(K∗(892)πππ

)/�(K π
) �3/�1VALUE DOCUMENT ID TECN CHG COMMENT0.75±0.490.75±0.490.75±0.490.75±0.49 BAUBILLIER 82 HBC − 8.25 K− p → pK0S 3π�(ρK π

)/�(K π
) �4/�1�(ρK π

)/�(K π
) �4/�1�(ρK π

)/�(K π
) �4/�1�(ρK π

)/�(K π
) �4/�1VALUE DOCUMENT ID TECN CHG COMMENT0.58±0.320.58±0.320.58±0.320.58±0.32 BAUBILLIER 82 HBC − 8.25 K− p → pK0S 3π�(ωK π

)/�(K π
) �5/�1�(ωK π

)/�(K π
) �5/�1�(ωK π

)/�(K π
) �5/�1�(ωK π

)/�(K π
) �5/�1VALUE DOCUMENT ID TECN CHG COMMENT0.50±0.300.50±0.300.50±0.300.50±0.30 BAUBILLIER 82 HBC − 8.25 K− p → pK0S 3π�(φK π

)/�total �6/��(φK π
)/�total �6/��(φK π
)/�total �6/��(φK π
)/�total �6/�VALUE DOCUMENT ID TECN COMMENT0.028±0.0140.028±0.0140.028±0.0140.028±0.014 9 TORRES 86 MPSF 400 pA → 4K X�(φK∗(892))/�total �7/��(φK∗(892))/�total �7/��(φK∗(892))/�total �7/��(φK∗(892))/�total �7/�VALUE DOCUMENT ID TECN COMMENT0.014±0.0070.014±0.0070.014±0.0070.014±0.007 9 TORRES 86 MPSF 400 pA → 4K X9Error determination is model dependent.K∗4(2045) REFERENCESK∗4(2045) REFERENCESK∗4(2045) REFERENCESK∗4(2045) REFERENCESASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)ASTON 86 PL B180 308 D. Aston et al. (SLAC, NAGO, CINC, INUS)TORRES 86 PR D34 707 S. Torres et al. (VPI, ARIZ, FNAL, FSU+)BAUBILLIER 82 PL 118B 447 M. Baubillier et al. (BIRM, CERN, GLAS+)CLELAND 82 NP B208 189 W.E. Cleland et al. (DURH, GEVA, LAUS+)ASTON 81C PL 106B 235 D. Aston et al. (SLAC, CARL, OTTA) JPCARMONY 77 PR D16 1251 D.D. Carmony et al. (PURD, UCD, IUPU)K2(2250) I (JP ) = 12 (2−)OMITTED FROM SUMMARY TABLEThis entry 
ontains various peaks in strange meson systems reportedin the 2150{2260 MeV region, as well as enhan
ements seen in theantihyperon-nu
leon system, either in the mass spe
tra or in the JP= 2− wave. K2(2250) MASSK2(2250) MASSK2(2250) MASSK2(2250) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT2247±17 OUR AVERAGE2247±17 OUR AVERAGE2247±17 OUR AVERAGE2247±17 OUR AVERAGE2200±40 1 ARMSTRONG 83C OMEG − 18 K− p → �pX2235±50 1 BAUBILLIER 81 HBC − 8 K− p → �pX2260±20 1 CLELAND 81 SPEC ± 50 K+ p → �pX

• • • We do not use the following data for averages, �ts, limits, et
. • • •2280±20 TIKHOMIROV 03 SPEC 40.0 π−C →K0S K0S K0LX2147± 4 37 CHLIAPNIK... 79 HBC + 32 K+ p → �pX2240±20 20 LISSAUER 70 HBC 9 K+ p1 JP = 2− from moments analysis.K2(2250) WIDTHK2(2250) WIDTHK2(2250) WIDTHK2(2250) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT180±30 OUR AVERAGE180±30 OUR AVERAGE180±30 OUR AVERAGE180±30 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.150±30 2 ARMSTRONG 83C OMEG − 18 K− p → �pX210±30 2 CLELAND 81 SPEC ± 50 K+ p → �pX
• • • We do not use the following data for averages, �ts, limits, et
. • • •180±60 TIKHOMIROV 03 SPEC 40.0 π−C →K0S K0S K0LX
∼ 200 2 BAUBILLIER 81 HBC − 8 K− p → �pX
∼ 40 37 CHLIAPNIK... 79 HBC + 32 K+ p → �pX80±20 20 LISSAUER 70 HBC 9 K+ p2 JP = 2− from moments analysis.K2(2250) DECAY MODESK2(2250) DECAY MODESK2(2250) DECAY MODESK2(2250) DECAY MODESMode�1 K ππ�2 K f2(1270)�3 K∗(892)f0(980)�4 p� K2(2250) REFERENCESK2(2250) REFERENCESK2(2250) REFERENCESK2(2250) REFERENCESTIKHOMIROV 03 PAN 66 828 G.D. Tikhomirov et al.Translated from YAF 66 860.ARMSTRONG 83C NP B227 365 T.A. Armstrong et al. (BARI, BIRM, CERN+)BAUBILLIER 81 NP B183 1 M. Baubillier et al. (BIRM, CERN, GLAS+) JPCLELAND 81 NP B184 1 W.E. Cleland et al. (PITT, GEVA, LAUS+) JPCHLIAPNIK... 79 NP B158 253 P.V. Chliapnikov et al. (CERN, BELG, MONS)LISSAUER 70 NP B18 491 D. Lissauer et al. (LBL)K3(2320) I (JP ) = 12 (3+)OMITTED FROM SUMMARY TABLESeen in the JP = 3+ wave of the antihyperon-nu
leon system.Needs 
on�rmation. K3(2320) MASSK3(2320) MASSK3(2320) MASSK3(2320) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT2324±24 OUR AVERAGE2324±24 OUR AVERAGE2324±24 OUR AVERAGE2324±24 OUR AVERAGE2330±40 1 ARMSTRONG 83C OMEG − 18 K− p → �pX2320±30 1 CLELAND 81 SPEC ± 50 K+ p → �pX1 JP = 3+ from moments analysis.K3(2320) WIDTHK3(2320) WIDTHK3(2320) WIDTHK3(2320) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT150±30150±30150±30150±30 2 ARMSTRONG 83C OMEG − 18 K− p → �pX
• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 250 2 CLELAND 81 SPEC ± 50 K+ p → �pX2 JP = 3+ from moments analysis.K3(2320) DECAY MODESK3(2320) DECAY MODESK3(2320) DECAY MODESK3(2320) DECAY MODESMode�1 p� K3(2320) REFERENCESK3(2320) REFERENCESK3(2320) REFERENCESK3(2320) REFERENCESARMSTRONG 83C NP B227 365 T.A. Armstrong et al. (BARI, BIRM, CERN+)CLELAND 81 NP B184 1 W.E. Cleland et al. (PITT, GEVA, LAUS+)



1043104310431043See key on page 601 MesonParti
le ListingsK ∗5(2380),K4(2500),K (3100)K ∗5(2380) I (JP ) = 12 (5−)OMITTED FROM SUMMARY TABLENeeds 
on�rmation. K∗5(2380) MASSK∗5(2380) MASSK∗5(2380) MASSK∗5(2380) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT2382±14±192382±14±192382±14±192382±14±19 1 ASTON 86 LASS 0 11 K− p → K−π+ n1From a �t to all the moments.K∗5(2380) WIDTHK∗5(2380) WIDTHK∗5(2380) WIDTHK∗5(2380) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT178±37±32178±37±32178±37±32178±37±32 2 ASTON 86 LASS 0 11 K− p → K−π+ n2From a �t to all the moments.K∗5(2380) DECAY MODESK∗5(2380) DECAY MODESK∗5(2380) DECAY MODESK∗5(2380) DECAY MODESMode Fra
tion (�i /�)�1 K π (6.1±1.2) %K∗5(2380) BRANCHING RATIOSK∗5(2380) BRANCHING RATIOSK∗5(2380) BRANCHING RATIOSK∗5(2380) BRANCHING RATIOS�(K π
)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/��(K π
)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENT0.061±0.0120.061±0.0120.061±0.0120.061±0.012 ASTON 88 LASS 0 11 K− p → K−π+ nK∗5(2380) REFERENCESK∗5(2380) REFERENCESK∗5(2380) REFERENCESK∗5(2380) REFERENCESASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)ASTON 86 PL B180 308 D. Aston et al. (SLAC, NAGO, CINC, INUS)K4(2500) I (JP ) = 12 (4−)OMITTED FROM SUMMARY TABLENeeds 
on�rmation. K4(2500) MASSK4(2500) MASSK4(2500) MASSK4(2500) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT2490±202490±202490±202490±20 1 CLELAND 81 SPEC ± 50 K+ p → �p1 JP = 4− from moments analysis.K4(2500) WIDTHK4(2500) WIDTHK4(2500) WIDTHK4(2500) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
∼ 250 2 CLELAND 81 SPEC ± 50 K+ p → �p2 JP = 4− from moments analysis.K4(2500) DECAY MODESK4(2500) DECAY MODESK4(2500) DECAY MODESK4(2500) DECAY MODESMode�1 p� K4(2500) REFERENCESK4(2500) REFERENCESK4(2500) REFERENCESK4(2500) REFERENCESCLELAND 81 NP B184 1 W.E. Cleland et al. (PITT, GEVA, LAUS+)K (3100) IG (JPC ) = ??(???)OMITTED FROM SUMMARY TABLENarrow peak observed in several (�p + pions) and (�p + pions)states in �− Be rea
tions by BOURQUIN 86 and in np and nA re-a
tions by ALEEV 93. Not seen by BOEHNLEIN 91. If due to strongde
ays, this state has exoti
 quantum numbers (B=0,Q=+1,S=−1for �pπ+π+ and I ≥ 3/2 for �pπ−). Needs 
on�rmation.K (3100) MASSK (3100) MASSK (3100) MASSK (3100) MASSVALUE (MeV) DOCUMENT ID
≈ 3100 OUR ESTIMATE≈ 3100 OUR ESTIMATE≈ 3100 OUR ESTIMATE≈ 3100 OUR ESTIMATE

3-BODY DECAYS3-BODY DECAYS3-BODY DECAYS3-BODY DECAYSVALUE (MeV) DOCUMENT ID TECN COMMENT3054±11 OUR AVERAGE3054±11 OUR AVERAGE3054±11 OUR AVERAGE3054±11 OUR AVERAGE3060± 7±20 1 ALEEV 93 BIS2 K(3100) → �pπ+3056± 7±20 1 ALEEV 93 BIS2 K(3100) → �pπ−3055± 8±20 1 ALEEV 93 BIS2 K(3100) → �pπ−3045± 8±20 1 ALEEV 93 BIS2 K(3100) → �pπ+4-BODY DECAYS4-BODY DECAYS4-BODY DECAYS4-BODY DECAYSVALUE (MeV) DOCUMENT ID TECN COMMENT3059±11 OUR AVERAGE3059±11 OUR AVERAGE3059±11 OUR AVERAGE3059±11 OUR AVERAGE3067± 6±20 1 ALEEV 93 BIS2 K(3100) → �pπ+π+3060± 8±20 1 ALEEV 93 BIS2 K(3100) → �pπ+π−3055± 7±20 1 ALEEV 93 BIS2 K(3100) → �pπ−π−3052± 8±20 1 ALEEV 93 BIS2 K(3100) → �pπ−π+
• • • We do not use the following data for averages, �ts, limits, et
. • • •3105±30 BOURQUIN 86 SPEC K(3100) → �pπ+π+3115±30 BOURQUIN 86 SPEC K(3100) → �pπ+π−5-BODY DECAYS5-BODY DECAYS5-BODY DECAYS5-BODY DECAYSVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3095±30 BOURQUIN 86 SPEC K(3100) → �pπ+π+π−1Supersedes ALEEV 90. K (3100) WIDTHK (3100) WIDTHK (3100) WIDTHK (3100) WIDTH3-BODY DECAYS3-BODY DECAYS3-BODY DECAYS3-BODY DECAYSVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •42±16 2 ALEEV 93 BIS2 K(3100) → �pπ+36±15 2 ALEEV 93 BIS2 K(3100) → �pπ−50±18 2 ALEEV 93 BIS2 K(3100) → �pπ−30±15 2 ALEEV 93 BIS2 K(3100) → �pπ+4-BODY DECAYS4-BODY DECAYS4-BODY DECAYS4-BODY DECAYSVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •22± 8 2 ALEEV 93 BIS2 K(3100) → �pπ+π+28±12 2 ALEEV 93 BIS2 K(3100) → �pπ+π−32±15 2 ALEEV 93 BIS2 K(3100) → �pπ−π−30±15 2 ALEEV 93 BIS2 K(3100) → �pπ−π+
<30 90 BOURQUIN 86 SPEC K(3100) → �pπ+π+
<80 90 BOURQUIN 86 SPEC K(3100) → �pπ+π−5-BODY DECAYS5-BODY DECAYS5-BODY DECAYS5-BODY DECAYSVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<30 90 BOURQUIN 86 SPEC K(3100) → �pπ+π+π−2Supersedes ALEEV 90. K (3100) DECAY MODESK (3100) DECAY MODESK (3100) DECAY MODESK (3100) DECAY MODESMode�1 K (3100)0 → �pπ+�2 K (3100)−− → �pπ−�3 K (3100)− → �pπ+π−�4 K (3100)+ → �pπ+π+�5 K (3100)0 → �pπ+π+π−�6 K (3100)0 → � (1385)+ p�(� (1385)+p)/�(�pπ+) �6/�1�(� (1385)+p)/�(�pπ+) �6/�1�(� (1385)+p)/�(�pπ+) �6/�1�(� (1385)+p)/�(�pπ+) �6/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.04 90 ALEEV 93 BIS2 K(3100)0 → �(1385)+ pK (3100) REFERENCESK (3100) REFERENCESK (3100) REFERENCESK (3100) REFERENCESALEEV 93 PAN 56 1358 A.N. Aleev et al. (BIS-2 Collab.)Translated from YAF 56 100.BOEHNLEIN 91 NPBPS B21 174 A. Boehnlein et al. (FLOR, BNL, IND+)ALEEV 90 ZPHY C47 533 A.N. Aleev et al. (BIS-2 Collab.)BOURQUIN 86 PL B172 113 M.H. Bourquin et al. (GEVA, RAL, HEIDP+)



1044104410441044MesonParti
le ListingsD± CHARMED MESONSCHARMED MESONSCHARMED MESONSCHARMED MESONS(C = ±1)(C = ±1)(C = ±1)(C = ±1)D+ = 
d , D0 = 
u, D0 = 
 u, D− = 
 d, similarly for D∗'sD± I (JP ) = 12 (0−)D± MASSD± MASSD± MASSD± MASSThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1869.58± 0.09 OUR FIT1869.58± 0.09 OUR FIT1869.58± 0.09 OUR FIT1869.58± 0.09 OUR FIT1869.5 ± 0.4 OUR AVERAGE1869.5 ± 0.4 OUR AVERAGE1869.5 ± 0.4 OUR AVERAGE1869.5 ± 0.4 OUR AVERAGE1869.53± 0.49±0.20 110 ± 15 ANASHIN 10A KEDR e+ e− at ψ(3770)1870.0 ± 0.5 ±1.0 317 BARLAG 90C ACCM π−Cu 230 GeV1869.4 ± 0.6 1 TRILLING 81 RVUE e+ e− 3.77 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1875 ±10 9 ADAMOVICH 87 EMUL Photoprodu
tion1860 ±16 6 ADAMOVICH 84 EMUL Photoprodu
tion1863 ± 4 DERRICK 84 HRS e+ e− 29 GeV1868.4 ± 0.5 1 SCHINDLER 81 MRK2 e+ e− 3.77 GeV1874 ± 5 GOLDHABER 77 MRK1 D0, D+ re
oil spe
tra1868.3 ± 0.9 1 PERUZZI 77 LGW e+ e− 3.77 GeV1874 ±11 PICCOLO 77 MRK1 e+ e− 4.03, 4.41 GeV1876 ±15 50 PERUZZI 76 MRK1 K∓π±π±1PERUZZI 77 and SCHINDLER 81 errors do not in
lude the 0.13% un
ertainty in theabsolute SPEAR energy 
alibration. TRILLING 81 uses the high pre
ision J/ψ(1S) and

ψ(2S) measurements of ZHOLENTZ 80 to determine this un
ertainty and 
ombines thePERUZZI 77 and SCHINDLER 81 results to obtain the value quoted.D± MEAN LIFED± MEAN LIFED± MEAN LIFED± MEAN LIFEMeasurements with an error > 100×10−15 s have been omitted from theListings.VALUE (10−15 s) EVTS DOCUMENT ID TECN COMMENT1040 ± 7 OUR AVERAGE1040 ± 7 OUR AVERAGE1040 ± 7 OUR AVERAGE1040 ± 7 OUR AVERAGE1039.4± 4.3± 7.0 110k LINK 02F FOCS γ nu
leus, ≈ 180 GeV1033.6±22.1+ 9.9
−12.7 3777 BONVICINI 99 CLEO e+ e− ≈ �(4S)1048 ±15 ±11 9k FRABETTI 94D E687 D+ → K−π+π+

• • • We do not use the following data for averages, �ts, limits, et
. • • •1075 ±40 ±18 2455 FRABETTI 91 E687 γ Be, D+ → K−π+π+1030 ±80 ±60 200 ALVAREZ 90 NA14 γ, D+ → K−π+π+1050 +77
−72 317 1 BARLAG 90C ACCM π−Cu 230 GeV1050 ±80 ±70 363 ALBRECHT 88I ARG e+ e− 10 GeV1090 ±30 ±25 2992 RAAB 88 E691 Photoprodu
tion1BARLAG 90C estimates the systemati
 error to be negligible.D+ DECAY MODESD+ DECAY MODESD+ DECAY MODESD+ DECAY MODESMost de
ay modes (other than the semileptoni
 modes) that involve a neu-tral K meson are now given as K0S modes, not as K0 modes. Nearly alwaysit is a K0S that is measured, and interferen
e between Cabibbo-allowedand doubly Cabibbo-suppressed modes 
an invalidate the assumption that2 �(K0S ) = �(K0). S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelIn
lusive modesIn
lusive modesIn
lusive modesIn
lusive modes�1 e+ semileptoni
 (16.07± 0.30) %�2 µ+anything (17.6 ± 3.2 ) %�3 K− anything (25.7 ± 1.4 ) %�4 K0 anything + K0anything (61 ± 5 ) %�5 K+ anything ( 5.9 ± 0.8 ) %�6 K∗(892)− anything ( 6 ± 5 ) %�7 K∗(892)0 anything (23 ± 5 ) %�8 K∗(892)0 anything < 6.6 % CL=90%�9 η anything ( 6.3 ± 0.7 ) %�10 η′ anything ( 1.04± 0.18) %�11 φ anything ( 1.03± 0.12) %

Leptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modes�12 e+νe < 8.8 × 10−6 CL=90%�13 µ+νµ ( 3.74± 0.17)× 10−4�14 τ+ ντ < 1.2 × 10−3 CL=90%�15 K0 e+ νe ( 8.90± 0.15) %�16 K0µ+ νµ ( 9.3 ± 0.7 ) %�17 K−π+ e+νe ( 3.91± 0.11) %�18 K∗(892)0 e+νe , K∗(892)0 →K−π+ ( 3.68± 0.10) %�19 (K−π+)S−wave e+νe ( 2.26± 0.11)× 10−3�20 K∗(1410)0 e+ νe ,K∗(1410)0 → K−π+ < 6 × 10−3 CL=90%�21 K∗2(1430)0 e+ νe ,K∗2(1430)0 → K−π+ < 5 × 10−4 CL=90%�22 K−π+ e+νe nonresonant < 7 × 10−3 CL=90%�23 K−π+µ+νµ ( 3.9 ± 0.4 ) %�24 K∗(892)0µ+νµ ,K∗(892)0 → K−π+ ( 3.52± 0.10) %�25 K−π+µ+νµ nonresonant ( 2.1 ± 0.5 )× 10−3�26 K−π+π0µ+νµ < 1.6 × 10−3 CL=90%�27 π0 e+ νe ( 4.05± 0.18)× 10−3�28 ηe+ νe ( 1.14± 0.10)× 10−3�29 ρ0 e+νe ( 2.18+ 0.17
− 0.25)× 10−3�30 ρ0µ+νµ ( 2.4 ± 0.4 )× 10−3�31 ω e+νe ( 1.69± 0.11)× 10−3�32 η′(958)e+νe ( 2.2 ± 0.5 )× 10−4�33 φe+ νe < 1.3 × 10−5 CL=90%Fra
tions of some of the following modes with resonan
es have alreadyappeared above as submodes of parti
ular 
harged-parti
le modes.�34 K∗(892)0 e+νe ( 5.52± 0.15) %�35 K∗(892)0µ+νµ ( 5.30± 0.15) %�36 K∗0(1430)0µ+ νµ < 2.5 × 10−4 CL=90%�37 K∗(1680)0µ+ νµ < 1.6 × 10−3 CL=90%Hadroni
 modes with a K or K K KHadroni
 modes with a K or K K KHadroni
 modes with a K or K K KHadroni
 modes with a K or K K K�38 K0S π+ ( 1.53± 0.06) % S=2.8�39 K0Lπ+ ( 1.46± 0.05) %�40 K−2π+ [a℄ ( 9.46± 0.24) % S=2.0�41 (K−π+)S−waveπ+ ( 7.58± 0.22) %�42 K∗0(800)0π+ , K∗0(800) →K−π+�43 K∗0(1430)0π+ ,K∗0(1430)0 → K−π+ [b℄ ( 1.26± 0.07) %�44 K∗(892)0π+ ,K∗(892)0 → K−π+ ( 1.05± 0.12) %�45 K∗(1410)0π+ , K∗0 →K−π+ not seen�46 K∗2(1430)0π+ ,K∗2(1430)0 → K−π+ [b℄ ( 2.3 ± 0.8 )× 10−4�47 K∗(1680)0π+ ,K∗(1680)0 → K−π+ [b℄ ( 2.2 ± 1.1 )× 10−4�48 K− (2π+)I=2 ( 1.47± 0.27) %�49 K−2π+ nonresonant�50 K0S π+π0 [a℄ ( 7.24± 0.17) %�51 K0S ρ+ ( 6.04+ 0.60
− 0.34) %�52 K0S ρ(1450)+, ρ+ → π+π0 ( 1.5 + 1.2
− 1.4 )× 10−3�53 K∗(892)0π+ ,K∗(892)0 → K0S π0 ( 2.59± 0.31)× 10−3�54 K∗0(1430)0π+, K∗00 →K0S π0 ( 2.7 ± 0.9 )× 10−3�55 K∗0(1680)0π+, K∗00 →K0S π0 ( 9 + 7
−10 )× 10−4�56 κ0π+, κ0 → K0S π0 ( 6 + 5
− 4 )× 10−3�57 K0S π+π0 nonresonant ( 3 ± 4 )× 10−3�58 K0S π+π0 nonresonant and

κ0π+ ( 1.35+ 0.21
− 0.40) %�59 (K0S π0)S−waveπ+ ( 1.25+ 0.27
− 0.33) %�60 K−2π+π0 [
℄ ( 6.14± 0.16) %�61 K0S 2π+π− [
℄ ( 3.05± 0.09) %



1045104510451045See key on page 601 Meson Parti
le ListingsD±�62 K−3π+π− [a℄ ( 5.8 ± 0.5 )× 10−3 S=1.1�63 K∗(892)0 2π+π− ,K∗(892)0 → K−π+ ( 1.2 ± 0.4 )× 10−3�64 K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+ ( 2.3 ± 0.4 )× 10−3�65 K∗(892)0 a1(1260)+ [d℄ ( 9.4 ± 1.9 )× 10−3�66 K∗(892)0 2π+π− no-ρ,K∗(892)0 → K−π+�67 K−ρ0 2π+ ( 1.74± 0.28)× 10−3�68 K−3π+π− nonresonant ( 4.1 ± 3.0 )× 10−4�69 K+2K0S ( 4.6 ± 2.1 )× 10−3�70 K+K−K0S π+ ( 2.3 ± 0.5 )× 10−4Pioni
 modesPioni
 modesPioni
 modesPioni
 modes�71 π+π0 ( 1.24± 0.06)× 10−3�72 2π+π− ( 3.29± 0.20)× 10−3�73 ρ0π+ ( 8.4 ± 1.5 )× 10−4�74 π+ (π+π−)S−wave ( 1.85± 0.17)× 10−3�75 σπ+ , σ → π+π− ( 1.39± 0.12)× 10−3�76 f0(980)π+ ,f0(980) → π+π−
( 1.58± 0.34)× 10−4�77 f0(1370)π+ ,f0(1370) → π+π−
( 8 ± 4 )× 10−5�78 f2(1270)π+ ,f2(1270) → π+π−
( 5.1 ± 0.9 )× 10−4�79 ρ(1450)0π+ ,

ρ(1450)0 → π+π−
< 8 × 10−5 CL=95%�80 f0(1500)π+ ,f0(1500) → π+π−
( 1.1 ± 0.4 )× 10−4�81 f0(1710)π+ ,f0(1710) → π+π−

< 5 × 10−5 CL=95%�82 f0(1790)π+ ,f0(1790) → π+π−
< 7 × 10−5 CL=95%�83 (π+π+)S−waveπ− < 1.2 × 10−4 CL=95%�84 2π+π− nonresonant < 1.2 × 10−4 CL=95%�85 π+ 2π0 ( 4.7 ± 0.4 )× 10−3�86 2π+π−π0 ( 1.17± 0.08) %�87 ηπ+ , η → π+π−π0 ( 8.0 ± 0.5 )× 10−4�88 ωπ+ , ω → π+π−π0 < 3 × 10−4 CL=90%�89 3π+2π− ( 1.67± 0.16)× 10−3Fra
tions of some of the following modes with resonan
es have alreadyappeared above as submodes of parti
ular 
harged-parti
le modes.�90 ηπ+ ( 3.66± 0.22)× 10−3�91 ηπ+π0 ( 1.38± 0.35)× 10−3�92 ωπ+ < 3.4 × 10−4 CL=90%�93 η′(958)π+ ( 4.84± 0.31)× 10−3�94 η′(958)π+π0 ( 1.6 ± 0.5 )× 10−3Hadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pair�95 K+K0S ( 2.95± 0.15)× 10−3 S=2.8�96 K+K−π+ [a℄ ( 9.96± 0.26)× 10−3 S=1.3�97 φπ+ , φ → K+K− ( 2.77+ 0.09

− 0.10)× 10−3�98 K+K∗(892)0 ,K∗(892)0 → K−π+ ( 2.56+ 0.09
− 0.15)× 10−3�99 K+K∗0(1430)0 , K∗0(1430)0 →K−π+ ( 1.9 ± 0.4 )× 10−3�100 K+K∗2(1430)0, K∗2 →K−π+ ( 1.7 + 1.3
− 0.8 )× 10−4�101 K+K∗0(800), K∗0 → K−π+ ( 7.0 + 4.0
− 2.2 )× 10−4�102 a0(1450)0π+, a00 → K+K− ( 4.6 + 7.0
− 1.9 )× 10−4�103 φ(1680)π+, φ → K+K− ( 5.1 + 4.0
− 1.9 )× 10−5�104 K+K−π+ nonresonant not seen�105 K+K0S π+π− ( 1.71± 0.18)× 10−3�106 K0S K−2π+ ( 2.34± 0.17)× 10−3�107 K+K−2π+π− ( 2.3 ± 1.2 )× 10−4A few poorly measured bran
hing fra
tions:�108 φπ+π0 ( 2.3 ± 1.0 ) %�109 φρ+ < 1.5 % CL=90%�110 K+K−π+π0 non-φ ( 1.5 + 0.7
− 0.6 ) %�111 K∗(892)+K0S ( 1.7 ± 0.8 ) %

Doubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modes�112 K+π0 ( 1.89± 0.25)× 10−4 S=1.2�113 K+η ( 1.12± 0.18)× 10−4�114 K+η′(958) ( 1.83± 0.23)× 10−4�115 K+π+π− ( 5.46± 0.25)× 10−4�116 K+ρ0 ( 2.1 ± 0.5 )× 10−4�117 K∗(892)0π+ , K∗(892)0 →K+π−
( 2.6 ± 0.4 )× 10−4�118 K+ f0(980), f0(980) →

π+π−
( 4.9 ± 2.9 )× 10−5�119 K∗2(1430)0π+ , K∗2(1430)0 →K+π−
( 4.4 ± 3.0 )× 10−5�120 K+π+π−nonresonant not seen�121 2K+K− ( 9.0 ± 2.1 )× 10−5�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, orLepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modes�122 π+ e+ e− C1 < 1.1 × 10−6 CL=90%�123 π+φ , φ → e+ e− [e℄ ( 1.7 + 1.4

− 0.9 )× 10−6�124 π+µ+µ− C1 < 7.3 × 10−8 CL=90%�125 π+φ, φ → µ+µ− [e℄ ( 1.8 ± 0.8 )× 10−6�126 ρ+µ+µ− C1 < 5.6 × 10−4 CL=90%�127 K+ e+ e− [f ℄ < 1.0 × 10−6 CL=90%�128 K+µ+µ− [f ℄ < 4.3 × 10−6 CL=90%�129 π+ e+µ− LF < 2.9 × 10−6 CL=90%�130 π+ e−µ+ LF < 3.6 × 10−6 CL=90%�131 K+ e+µ− LF < 1.2 × 10−6 CL=90%�132 K+ e−µ+ LF < 2.8 × 10−6 CL=90%�133 π− 2e+ L < 1.1 × 10−6 CL=90%�134 π− 2µ+ L < 2.2 × 10−8 CL=90%�135 π− e+µ+ L < 2.0 × 10−6 CL=90%�136 ρ−2µ+ L < 5.6 × 10−4 CL=90%�137 K−2e+ L < 9 × 10−7 CL=90%�138 K−2µ+ L < 1.0 × 10−5 CL=90%�139 K− e+µ+ L < 1.9 × 10−6 CL=90%�140 K∗(892)−2µ+ L < 8.5 × 10−4 CL=90%�141 Una

ounted de
ay modes (50.2 ± 0.9 ) % S=1.1[a℄ The bran
hing fra
tion for this mode may di�er from the sum of thesubmodes that 
ontribute to it, due to interferen
e e�e
ts. See therelevant papers.[b℄ These subfra
tions of the K−2π+ mode are un
ertain: see the Parti
leListings.[
 ℄ Submodes of the D+ → K−2π+π0 and K0S 2π+π− modes were studiedby ANJOS 92C and COFFMAN 92B, but with at most 142 events for the�rst mode and 229 for the se
ond { not enough for pre
ise results. Withnothing new for 18 years, we refer to our 2008 edition, Physi
s LettersB667B667B667B667 1 (2008), for those results.[d ℄ The unseen de
ay modes of the resonan
es are in
luded.[e℄ This is not a test for the �C=1 weak neutral 
urrent, but leads to the
π+ ℓ+ ℓ− �nal state.[f ℄ This mode is not a useful test for a �C=1 weak neutral 
urrent be
auseboth quarks must 
hange 
avor in this de
ay.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 23 bran
hing ratios uses 31 measurements andone 
onstraint to determine 15 parameters. The overall �t has a

χ2 = 33.4 for 17 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.



1046104610461046MesonParti
le ListingsD±x29 0x34 0 0x35 22 0 0x38 5 0 0 1x40 18 0 0 4 26x50 0 0 0 0 0 0x60 0 0 0 0 0 0 0x61 0 0 0 0 0 0 0 0x62 5 0 0 1 8 29 0 0 0x89 5 0 0 1 7 27 0 0 0 77x95 5 0 0 1 69 26 0 0 0 8x96 11 0 0 2 16 63 0 0 0 18x112 3 0 0 1 5 17 0 0 0 5x141 −86 −2 −17 −36 −20 −48 −20 −18 −10 −21x16 x29 x34 x35 x38 x40 x50 x60 x61 x62x95 7x96 17 16x112 5 5 11x141 −19 −19 −32 −9x89 x95 x96 x112D+ BRANCHING RATIOSD+ BRANCHING RATIOSD+ BRANCHING RATIOSD+ BRANCHING RATIOSSome now-obsolete measurements have been omitted from these Listings.
-quark de
ays
-quark de
ays
-quark de
ays
-quark de
ays�(
 → e+anything)/�(
 → anything)�(
 → e+anything)/�(
 → anything)�(
 → e+anything)/�(
 → anything)�(
 → e+anything)/�(
 → anything)For the Summary Table, we only use the average of e+ and µ+ measurements fromZ0 → 
 
 de
ays; see the se
ond data blo
k below.VALUE EVTS DOCUMENT ID TECN COMMENT0.103±0.009+0.009
−0.0080.103±0.009+0.009
−0.0080.103±0.009+0.009
−0.0080.103±0.009+0.009
−0.008 378 1 ABBIENDI 99K OPAL Z0 → 
 
1ABBIENDI 99K uses the ex
ess of right-sign over wrong-sign leptons opposite re
on-stru
ted D∗(2010)+ → D0π+ de
ays in Z0 → 
 
 .�(
 → µ+anything)/�(
 → anything)�(
 → µ+anything)/�(
 → anything)�(
 → µ+anything)/�(
 → anything)�(
 → µ+anything)/�(
 → anything)For the Summary Table, we only use the average of e+ and µ+ measurements fromZ0 → 
 
 de
ays; see the next data blo
k.VALUE EVTS DOCUMENT ID TECN COMMENT0.082±0.005 OUR AVERAGE0.082±0.005 OUR AVERAGE0.082±0.005 OUR AVERAGE0.082±0.005 OUR AVERAGE0.073±0.008±0.002 73 KAYIS-TOPAK...05 CHRS νµ emulsion0.095±0.007+0.014
−0.013 2829 ASTIER 00D NOMD νµFe → µ−µ+X0.090±0.007+0.007
−0.006 476 1 ABBIENDI 99K OPAL Z0 → 
 
0.086±0.017+0.008
−0.007 69 2 ALBRECHT 92F ARG e+ e− ≈ 10 GeV0.078±0.009±0.012 ONG 88 MRK2 e+ e− 29 GeV0.078±0.015±0.02 BARTEL 87 JADE e+ e− 34.6 GeV0.082±0.012+0.02
−0.01 ALTHOFF 84G TASS e+ e− 34.5 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.093±0.009±0.009 88 KAYIS-TOPAK...02 CHRS See KAYIS-TOPAKSU 050.089±0.018±0.025 BARTEL 85J JADE See BARTEL 871ABBIENDI 99K uses the ex
ess of right-sign over wrong-sign leptons opposite re
on-stru
ted D∗(2010)+ → D0π+ de
ays in Z0 → 
 
 .2ALBRECHT 92F uses the ex
ess of right-sign over wrong-sign leptons in a sample ofevents tagged by fully re
onstru
ted D∗(2010)+ → D0π+ de
ays.�(
 → ℓ+anything)/�(
 → anything)�(
 → ℓ+anything)/�(
 → anything)�(
 → ℓ+anything)/�(
 → anything)�(
 → ℓ+anything)/�(
 → anything)This is an average (not a sum) of e+ and µ+ measurements.VALUE EVTS DOCUMENT ID TECN COMMENT0.096 ±0.004 OUR AVERAGE0.096 ±0.004 OUR AVERAGE0.096 ±0.004 OUR AVERAGE0.096 ±0.004 OUR AVERAGE0.0958±0.0042±0.0028 1828 1 ABREU 00O DLPH Z0 → 
 
0.095 ±0.006 +0.007
−0.006 854 2 ABBIENDI 99K OPAL Z0 → 
 
1ABREU 00O uses leptons opposite fully re
onstru
ted D∗(2010)+, D+, or D0 mesons.2ABBIENDI 99K uses the ex
ess of right-sign over wrong-sign leptons opposite re
on-stru
ted D∗(2010)+ → D0π+ de
ays in Z0 → 
 
 .�(
 → D∗(2010)+ anything)/�(
 → anything)�(
 → D∗(2010)+ anything)/�(
 → anything)�(
 → D∗(2010)+anything)/�(
 → anything)�(
 → D∗(2010)+anything)/�(
 → anything)VALUE EVTS DOCUMENT ID TECN COMMENT0.255±0.015±0.0080.255±0.015±0.0080.255±0.015±0.0080.255±0.015±0.008 2371 1 ABREU 00O DLPH Z0 → 
 
1ABREU 00O uses slow pions opposite fully re
onstru
ted D∗(2010)+, D+, or D0 mesonsas a signal of D∗(2010)− produ
tion.

In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modes�(e+ semileptoni
)/�total �1/��(e+ semileptoni
)/�total �1/��(e+ semileptoni
)/�total �1/��(e+ semileptoni
)/�total �1/�The sum of our K0 e+ νe , K∗(892)0 e+ νe , π0 e+ νe , ηe+ νe , ρ0 e+ νe , and ωe+ νebran
hing fra
tions is 15.3 ± 0.4%.VALUE (%) EVTS DOCUMENT ID TECN COMMENT16.07±0.30 OUR AVERAGE16.07±0.30 OUR AVERAGE16.07±0.30 OUR AVERAGE16.07±0.30 OUR AVERAGE16.13±0.10±0.29 26.2±0.2k 1 ASNER 10 CLEO e+ e− at 3774 MeV15.2 ±0.9 ±0.8 521 ± 32 ABLIKIM 07G BES2 e+ e− ≈ ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •16.13±0.20±0.33 8798± 105 2 ADAM 06A CLEO See ASNER 1017.0 ±1.9 ±0.7 158 BALTRUSAIT...85B MRK3 e+ e− 3.77 GeV1Using the D+ and D0 lifetimes, ASNER 10 �nds that the ratio of the D+ and D0semileptoni
 widths is 0.985 ± 0.015 ± 0.024.2Using the D+ and D0 lifetimes, ADAM 06A �nds that the ratio of the D+ and D0in
lusive e+ widths is 0.985 ± 0.028 ± 0.015, 
onsistent with the isospin-invarian
epredi
tion of 1.�(µ+anything)/�total �2/��(µ+anything)/�total �2/��(µ+anything)/�total �2/��(µ+anything)/�total �2/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT17.6±2.7±1.817.6±2.7±1.817.6±2.7±1.817.6±2.7±1.8 100 ± 12 1 ABLIKIM 08L BES2 e+ e− ≈ ψ(3772)1ABLIKIM 08L �nds the ratio of D+ → µ+X and D0 → µ+X bran
hing fra
tions tobe 2.59 ± 0.70 ± 0.25, in a

ord with the ratio of D+ and D0 lifetimes, 2.54 ± 0.02.�(K− anything)/�total �3/��(K− anything)/�total �3/��(K− anything)/�total �3/��(K− anything)/�total �3/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT25.7±1.4 OUR AVERAGE25.7±1.4 OUR AVERAGE25.7±1.4 OUR AVERAGE25.7±1.4 OUR AVERAGE24.7±1.3±1.2 631 ± 33 ABLIKIM 07G BES2 e+ e− ≈ ψ(3770)27.8+3.6

−3.1 BARLAG 92C ACCM π− Cu 230 GeV27.1±2.3±2.4 COFFMAN 91 MRK3 e+ e− 3.77 GeV
[�(K0 anything)+�(K0 anything)]/�total �4/�[�(K0 anything)+�(K0 anything)]/�total �4/�[�(K0anything)+�(K0 anything)]/�total �4/�[�(K0anything)+�(K0 anything)]/�total �4/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT61 ±5 OUR AVERAGE61 ±5 OUR AVERAGE61 ±5 OUR AVERAGE61 ±5 OUR AVERAGE60.5±5.5±3.3 244 ± 22 ABLIKIM 06U BES2 e+ e− at 3773 MeV61.2±6.5±4.3 COFFMAN 91 MRK3 e+ e− 3.77 GeV�(K+anything)/�total �5/��(K+anything)/�total �5/��(K+anything)/�total �5/��(K+anything)/�total �5/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT5.9±0.8 OUR AVERAGE5.9±0.8 OUR AVERAGE5.9±0.8 OUR AVERAGE5.9±0.8 OUR AVERAGE6.1±0.9±0.4 189 ± 27 ABLIKIM 07G BES2 e+ e− ≈ ψ(3770)5.5±1.3±0.9 COFFMAN 91 MRK3 e+ e− 3.77 GeV�(K∗(892)− anything)/�total �6/��(K∗(892)− anything)/�total �6/��(K∗(892)− anything)/�total �6/��(K∗(892)− anything)/�total �6/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT5.7±5.2±0.75.7±5.2±0.75.7±5.2±0.75.7±5.2±0.7 7.2 ± 6.5 ABLIKIM 06U BES2 e+ e− at 3773 MeV�(K∗(892)0 anything)/�total �7/��(K∗(892)0 anything)/�total �7/��(K∗(892)0 anything)/�total �7/��(K∗(892)0 anything)/�total �7/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT23.2±4.5±3.023.2±4.5±3.023.2±4.5±3.023.2±4.5±3.0 189 ± 36 ABLIKIM 05P BES e+ e− ≈ 3773 MeV�(K∗(892)0 anything)/�total �8/��(K∗(892)0 anything)/�total �8/��(K∗(892)0 anything)/�total �8/��(K∗(892)0 anything)/�total �8/�VALUE (%) CL% DOCUMENT ID TECN COMMENT
<6.6<6.6<6.6<6.6 90 ABLIKIM 05P BES e+ e− ≈ 3773 MeV�(η anything)/�total �9/��(η anything)/�total �9/��(η anything)/�total �9/��(η anything)/�total �9/�This ratio in
ludes η parti
les from η′ de
ays.VALUE (%) EVTS DOCUMENT ID TECN COMMENT6.3±0.5±0.56.3±0.5±0.56.3±0.5±0.56.3±0.5±0.5 1972± 142 HUANG 06B CLEO e+ e− at ψ(3770)�(η′ anything)/�total �10/��(η′ anything)/�total �10/��(η′ anything)/�total �10/��(η′ anything)/�total �10/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.04±0.16±0.091.04±0.16±0.091.04±0.16±0.091.04±0.16±0.09 82 ± 13 HUANG 06B CLEO e+ e− at ψ(3770)�(φ anything)/�total �11/��(φ anything)/�total �11/��(φ anything)/�total �11/��(φ anything)/�total �11/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.03±0.10±0.071.03±0.10±0.071.03±0.10±0.071.03±0.10±0.07 248 ± 21 HUANG 06B CLEO e+ e− at ψ(3770)Leptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modes�(e+ νe)/�total �12/��(e+ νe)/�total �12/��(e+ νe)/�total �12/��(e+ νe)/�total �12/�VALUE CL% DOCUMENT ID TECN COMMENT
<8.8× 10−6<8.8× 10−6<8.8× 10−6<8.8× 10−6 90 EISENSTEIN 08 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.4× 10−5 90 ARTUSO 05A CLEO See EISENSTEIN 08



1047104710471047See key on page 601 MesonParti
le ListingsD±�(

µ+νµ

)/�total �13/��(

µ+νµ

)/�total �13/��(

µ+νµ

)/�total �13/��(

µ+νµ

)/�total �13/�See the note on \De
ay Constants of Charged Pseudos
alar Mesons" in the D+sListings.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.74± 0.17 OUR AVERAGE3.74± 0.17 OUR AVERAGE3.74± 0.17 OUR AVERAGE3.74± 0.17 OUR AVERAGE3.71± 0.19±0.06 409 ± 21 1 ABLIKIM 14F BES3 e+ e− at ψ(3770)3.82± 0.32±0.09 150 ± 12 2 EISENSTEIN 08 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •12.2 +11.1

− 5.3 ±1.0 3 3 ABLIKIM 05D BES e+ e− ≈ 3.773 GeV4.40± 0.66+0.09
−0.12 47 ± 7 4 ARTUSO 05A CLEO See EISENSTEIN 083.5 ± 1.4 ±0.6 7 5 BONVICINI 04A CLEO In
l. in ARTUSO 05A8 +16

− 5 +5
−2 1 6 BAI 98B BES e+ e− → D∗+D−1ABLIKIM 14F obtain ∣

∣Vcd
∣

∣ · fD+ = (45.75 ± 1.20 ± 0.39) MeV, and using ∣

∣Vcd
∣

∣ =0.22520 ± 0.00065 gets fD+ = (203.2 ± 5.3 ± 1.8) MeV.2EISENSTEIN 08, using the D+ lifetime and assuming ∣

∣V
d ∣

∣ = ∣

∣Vus ∣∣, gets fD+ =(205.8 ± 8.5 ± 2.5) MeV from this measurement.3ABLIKIM 05D �nds a ba
kground-subtra
ted 2.67 ± 1.74 D+ → µ+ νµ events, andfrom this obtains fD+ = 371+129
−119 ± 25 MeV.4ARTUSO 05A obtains fD+ = 222.6 ± 16.7+2.8

−3.4 MeV from this measurement.5BONVICINI 04A �nds eight events with an estimated ba
kground of one, and from thebran
hing fra
tion obtains fD+ = 202 ± 41 ± 17 MeV.6BAI 98B obtains fD+ = (300+180
−150+80

−40) MeV from this measurement.�(

τ+ ντ

)/�total �14/��(

τ+ ντ

)/�total �14/��(

τ+ ντ

)/�total �14/��(

τ+ ντ

)/�total �14/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−3<1.2× 10−3<1.2× 10−3<1.2× 10−3 90 EISENSTEIN 08 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.1× 10−3 90 RUBIN 06A CLEO See EISENSTEIN 08�(K0 e+ νe)/�total �15/��(K0 e+ νe)/�total �15/��(K0 e+ νe)/�total �15/��(K0 e+ νe)/�total �15/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT8.90 ±0.15 OUR AVERAGE8.90 ±0.15 OUR AVERAGE8.90 ±0.15 OUR AVERAGE8.90 ±0.15 OUR AVERAGE8.962±0.054±0.206 40k 1 ABLIKIM 15AF BES3 from D+ → KL e+ νe8.83 ±0.10 ±0.20 8.5k 2 BESSON 09 CLEO from D+ → KS e+ νe8.95 ±1.59 ±0.67 34 3 ABLIKIM 05A BES from D+ → KS e+ νe
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.53 ±0.13 ±0.23 4 DOBBS 08 CLEO See BESSON 098.71 ±0.38 ±0.37 545 HUANG 05B CLEO See DOBBS 081ABLIKIM 15AF report �(D+ → KLe+ νe )/�total = (4.481 ± 0.027 ± 0.103)%. Seealso the form-fa
tor parameters near the end of this D+ Listing.2 See the form-fa
tor parameters near the end of this D+ Listing.3The ABLIKIM 05A result together with the D0 → K− e+ νe bran
hing fra
tion ofABLIKIM 04C and Parti
le Data Group lifetimes gives �(D0 → K− e+ νe ) / �(D+ →K0 e+ νe ) = 1.08 ± 0.22 ± 0.07; isospin invarian
e predi
ts the ratio is 1.0.4DOBBS 08 establishes ∣

∣

V 
 dV 
 s ·
f π+(0)f K+(0) ∣

∣ = 0.188 ± 0.008 ± 0.002 from the D+ and D0de
ays to K e+ νe and πe+ νe . It also �nds �(D0 → K− e+ νe ) / �(D+ → K0 e+ νe )= 1.06 ± 0.02 ± 0.03; isospin invarian
e predi
ts the ratio is 1.0.�(K0µ+ νµ

)/�total �16/��(K0µ+ νµ

)/�total �16/��(K0µ+ νµ

)/�total �16/��(K0µ+ νµ

)/�total �16/�VALUE EVTS DOCUMENT ID TECN COMMENT0.093±0.007 OUR FIT0.093±0.007 OUR FIT0.093±0.007 OUR FIT0.093±0.007 OUR FIT0.103±0.023±0.0080.103±0.023±0.0080.103±0.023±0.0080.103±0.023±0.008 29 ± 6 ABLIKIM 07 BES2 e+ e− at 3773 MeV�(K0µ+ νµ

)/�(K−2π+) �16/�40�(K0µ+ νµ

)/�(K−2π+) �16/�40�(K0µ+ νµ

)/�(K−2π+) �16/�40�(K0µ+ νµ

)/�(K−2π+) �16/�40VALUE EVTS DOCUMENT ID TECN COMMENT0.99 ±0.07 OUR FIT0.99 ±0.07 OUR FIT0.99 ±0.07 OUR FIT0.99 ±0.07 OUR FIT1.019±0.076±0.0651.019±0.076±0.0651.019±0.076±0.0651.019±0.076±0.065 555 ± 39 LINK 04E FOCS γ nu
leus, Eγ ≈ 180 GeV�(K−π+ e+νe)/�total �17/��(K−π+ e+νe)/�total �17/��(K−π+ e+νe)/�total �17/��(K−π+ e+νe)/�total �17/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.50±0.75±0.27 29 ± 6 ABLIKIM 06O BES2 e+ e− at 3773 MeV3.5 +1.2

−0.7 ±0.4 14 BAI 91 MRK3 e+ e− ≈ 3.77 GeV�(K−π+ e+νe)/�(K−2π+) �17/�40�(K−π+ e+νe)/�(K−2π+) �17/�40�(K−π+ e+νe)/�(K−2π+) �17/�40�(K−π+ e+νe)/�(K−2π+) �17/�40VALUE EVTS DOCUMENT ID TECN COMMENT0.4380±0.0036±0.00420.4380±0.0036±0.00420.4380±0.0036±0.00420.4380±0.0036±0.0042 70k±363 DEL-AMO-SA...11I BABR e+ e− ≈ 10.6 GeV�(K∗(892)0 e+νe)/�total �34/��(K∗(892)0 e+νe)/�total �34/��(K∗(892)0 e+νe)/�total �34/��(K∗(892)0 e+νe)/�total �34/�Unseen de
ay modes of K∗(892)0 are in
luded. See the end of the D+ Listings formeasurements of D+ → K∗(892)0 ℓ+ νℓ form-fa
tor ratios.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.52±0.15 OUR FIT5.52±0.15 OUR FIT5.52±0.15 OUR FIT5.52±0.15 OUR FIT5.52±0.07±0.135.52±0.07±0.135.52±0.07±0.135.52±0.07±0.13 ≈ 5k BRIERE 10 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.06±1.21±0.40 28 ± 7 ABLIKIM 06O BES2 e+ e− at 3773 MeV5.56±0.27±0.23 422 ± 21 1 HUANG 05B CLEO e+ e− at ψ(3770)1HUANG 05B �nds �(D0 → K∗− e+ νe ) / �(D+ → K∗0 e+ νe ) = 0.98± 0.08± 0.04;isospin invarian
e predi
ts the ratio is 1.0.

�(K∗(892)0 e+νe)/�(K−2π+) �34/�40�(K∗(892)0 e+νe)/�(K−2π+) �34/�40�(K∗(892)0 e+νe)/�(K−2π+) �34/�40�(K∗(892)0 e+νe)/�(K−2π+) �34/�40Unseen de
ay modes of the K∗(892)0 are in
luded. See the end of the D+ Listingsfor measurements of D+ → K∗(892)0 ℓ+ νℓ form-fa
tor ratios.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.74±0.04±0.05 BRANDENB... 02 CLEO e+ e− ≈ �(4S)0.62±0.15±0.09 35 ADAMOVICH 91 OMEG π− 340 GeV0.55±0.08±0.10 880 ALBRECHT 91 ARG e+ e− ≈ 10.4 GeV0.49±0.04±0.05 ANJOS 89B E691 Photoprodu
tion�(K∗(892)0 e+νe ,K∗(892)0 → K−π+)/�(K−π+ e+νe) �18/�17�(K∗(892)0 e+νe ,K∗(892)0 → K−π+)/�(K−π+ e+νe) �18/�17�(K∗(892)0 e+νe ,K∗(892)0 → K−π+)/�(K−π+ e+νe) �18/�17�(K∗(892)0 e+νe ,K∗(892)0 → K−π+)/�(K−π+ e+νe) �18/�17VALUE (%) DOCUMENT ID TECN COMMENT94.11±0.74±0.7594.11±0.74±0.7594.11±0.74±0.7594.11±0.74±0.75 DEL-AMO-SA...11I BABR e+ e− ≈ 10.6 GeV�((K−π+)S−wave e+νe)/�(K−π+ e+ νe) �19/�17�((K−π+)S−wave e+νe)/�(K−π+ e+ νe) �19/�17�((K−π+)S−wave e+νe)/�(K−π+ e+ νe) �19/�17�((K−π+)S−wave e+νe)/�(K−π+ e+ νe) �19/�17VALUE (%) DOCUMENT ID TECN COMMENT5.79±0.16±0.155.79±0.16±0.155.79±0.16±0.155.79±0.16±0.15 DEL-AMO-SA...11I BABR e+ e− ≈ 10.6 GeV�(K∗(1410)0 e+ νe ,K∗(1410)0 → K−π+)/�total �20/��(K∗(1410)0 e+ νe ,K∗(1410)0 → K−π+)/�total �20/��(K∗(1410)0 e+ νe ,K∗(1410)0 → K−π+)/�total �20/��(K∗(1410)0 e+ νe ,K∗(1410)0 → K−π+)/�total �20/�VALUE CL% DOCUMENT ID TECN COMMENT
<6× 10−3<6× 10−3<6× 10−3<6× 10−3 90 DEL-AMO-SA...11I BABR e+ e− ≈ 10.6 GeV�(K∗2(1430)0 e+ νe ,K∗2(1430)0 → K−π+)/�total �21/��(K∗2(1430)0 e+ νe ,K∗2(1430)0 → K−π+)/�total �21/��(K∗2(1430)0 e+ νe ,K∗2(1430)0 → K−π+)/�total �21/��(K∗2(1430)0 e+ νe ,K∗2(1430)0 → K−π+)/�total �21/�VALUE CL% DOCUMENT ID TECN COMMENT
<5× 10−4<5× 10−4<5× 10−4<5× 10−4 90 DEL-AMO-SA...11I BABR e+ e− ≈ 10.6 GeV�(K−π+ e+νe nonresonant)/�total �22/��(K−π+ e+νe nonresonant)/�total �22/��(K−π+ e+νe nonresonant)/�total �22/��(K−π+ e+νe nonresonant)/�total �22/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.007<0.007<0.007<0.007 90 ANJOS 89B E691 Photoprodu
tion�(K−π+µ+νµ

)/�(K0µ+νµ

) �23/�16�(K−π+µ+νµ

)/�(K0µ+νµ

) �23/�16�(K−π+µ+νµ

)/�(K0µ+νµ

) �23/�16�(K−π+µ+νµ

)/�(K0µ+νµ

) �23/�16VALUE EVTS DOCUMENT ID TECN COMMENT0.417±0.030±0.0230.417±0.030±0.0230.417±0.030±0.0230.417±0.030±0.023 555 ± 39 LINK 04E FOCS γ nu
leus, Eγ≈ 180 GeV�(K∗(892)0µ+νµ

)/�total �35/��(K∗(892)0µ+νµ

)/�total �35/��(K∗(892)0µ+νµ

)/�total �35/��(K∗(892)0µ+νµ

)/�total �35/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.30±0.15 OUR FIT5.30±0.15 OUR FIT5.30±0.15 OUR FIT5.30±0.15 OUR FIT5.27±0.07±0.145.27±0.07±0.145.27±0.07±0.145.27±0.07±0.14 ≈ 5k BRIERE 10 CLEO e+ e− at ψ(3770)�(K∗(892)0µ+νµ

)/�(K0µ+νµ

) �35/�16�(K∗(892)0µ+νµ

)/�(K0µ+νµ

) �35/�16�(K∗(892)0µ+νµ

)/�(K0µ+νµ

) �35/�16�(K∗(892)0µ+νµ

)/�(K0µ+νµ

) �35/�16Unseen de
ay modes of the K∗(892)0 are in
luded. See the end of the D+ Listingsfor measurements of D+ → K∗(892)0 ℓ+ νℓ form-fa
tor ratios.VALUE EVTS DOCUMENT ID TECN COMMENT0.57 ±0.04 OUR FIT0.57 ±0.04 OUR FIT0.57 ±0.04 OUR FIT0.57 ±0.04 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.594±0.043±0.0330.594±0.043±0.0330.594±0.043±0.0330.594±0.043±0.033 555 ± 39 LINK 04E FOCS γ nu
leus, Eγ≈ 180 GeV�(K∗(892)0µ+νµ

)/�(K−2π+) �35/�40�(K∗(892)0µ+νµ

)/�(K−2π+) �35/�40�(K∗(892)0µ+νµ

)/�(K−2π+) �35/�40�(K∗(892)0µ+νµ

)/�(K−2π+) �35/�40Unseen de
ay modes of the K∗(892)0 are in
luded. See the end of the D+ Listingsfor measurements of D+ → K∗(892)0 ℓ+ νℓ form-fa
tor ratios.VALUE EVTS DOCUMENT ID TECN COMMENT0.561±0.022 OUR FIT0.561±0.022 OUR FIT0.561±0.022 OUR FIT0.561±0.022 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.57 ±0.06 OUR AVERAGE0.57 ±0.06 OUR AVERAGE0.57 ±0.06 OUR AVERAGE0.57 ±0.06 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.72 ±0.10 ±0.05 BRANDENB... 02 CLEO e+ e− ≈ �(4S)0.56 ±0.04 ±0.06 875 FRABETTI 93E E687 γBe Eγ ≈ 200 GeV0.46 ±0.07 ±0.08 224 KODAMA 92C E653 π− emulsion 600 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.602±0.010±0.021 12k 1 LINK 02J FOCS γ nu
leus, ≈ 180 GeV1This LINK 02J result in
ludes the e�e
ts of an interferen
e of a small S-wave K−π+amplitude with the dominant K∗0 amplitude. (The interferen
e e�e
t is reported inLINK 02E.) This result is redundant with results of LINK 04E elsewhere in these Listings.�(K−π+µ+νµ nonresonant)/�(K−π+µ+ νµ

) �25/�23�(K−π+µ+νµ nonresonant)/�(K−π+µ+ νµ

) �25/�23�(K−π+µ+νµ nonresonant)/�(K−π+µ+ νµ

) �25/�23�(K−π+µ+νµ nonresonant)/�(K−π+µ+ νµ

) �25/�23VALUE EVTS DOCUMENT ID TECN COMMENT0.0530±0.0074+0.0099
−0.00960.0530±0.0074+0.0099
−0.00960.0530±0.0074+0.0099
−0.00960.0530±0.0074+0.0099
−0.0096 14k LINK 05I FOCS γ nu
leus, Eγ ≈ 180GeV�(K−π+π0µ+νµ

)/�(K−π+µ+νµ

) �26/�23�(K−π+π0µ+νµ

)/�(K−π+µ+νµ

) �26/�23�(K−π+π0µ+νµ

)/�(K−π+µ+νµ

) �26/�23�(K−π+π0µ+νµ

)/�(K−π+µ+νµ

) �26/�23VALUE CL% DOCUMENT ID TECN COMMENT
<0.042<0.042<0.042<0.042 90 FRABETTI 93E E687 γBe Eγ ≈ 200 GeV�(K∗0(1430)0µ+ νµ

)/�(K−π+µ+νµ

) �36/�23�(K∗0(1430)0µ+ νµ

)/�(K−π+µ+νµ

) �36/�23�(K∗0(1430)0µ+ νµ

)/�(K−π+µ+νµ

) �36/�23�(K∗0(1430)0µ+ νµ

)/�(K−π+µ+νµ

) �36/�23Unseen de
ay modes of the K∗0(1430)0 are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<0.0064<0.0064<0.0064<0.0064 90 LINK 05I FOCS γ A, Eγ ≈ 180 GeV�(K∗(1680)0µ+ νµ

)/�(K−π+µ+νµ

) �37/�23�(K∗(1680)0µ+ νµ

)/�(K−π+µ+νµ

) �37/�23�(K∗(1680)0µ+ νµ

)/�(K−π+µ+νµ

) �37/�23�(K∗(1680)0µ+ νµ

)/�(K−π+µ+νµ

) �37/�23Unseen de
ay modes of the K∗(1680)0 are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<0.04<0.04<0.04<0.04 90 LINK 05I FOCS γ A, Eγ ≈ 180 GeV



1048104810481048Meson Parti
le ListingsD±�(

π0 e+ νe)/�total �27/��(

π0 e+ νe)/�total �27/��(

π0 e+ νe)/�total �27/��(

π0 e+ νe)/�total �27/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.405±0.016±0.0090.405±0.016±0.0090.405±0.016±0.0090.405±0.016±0.009 838 1 BESSON 09 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.373±0.022±0.013 2 DOBBS 08 CLEO See BESSON 090.44 ±0.06 ±0.03 63 ± 9 HUANG 05B CLEO See DOBBS 081See the form-fa
tor parameters near the end of this D+ Listing.2DOBBS 08 establishes ∣

∣

V 
 dV 
 s ·
f π+(0)f K+(0) ∣

∣ = 0.188 ± 0.008 ± 0.002 from the D+ and D0de
ays to K e+ νe and πe+ νe . It �nds �(D0 → π− e+ νe ) / �(D+ → π0 e+ νe ) =2.03 ± 0.14 ± 0.08; isospin invarian
e predi
ts the ratio is 2.0.�(

ηe+ νe)/�total �28/��(

ηe+ νe)/�total �28/��(

ηe+ νe)/�total �28/��(

ηe+ νe)/�total �28/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT11.4±0.9±0.411.4±0.9±0.411.4±0.9±0.411.4±0.9±0.4 YELTON 11 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •13.3±2.0±0.6 46 ± 8 MITCHELL 09B CLEO See YELTON 11�(

ρ0 e+νe)/�total �29/��(

ρ0 e+νe)/�total �29/��(

ρ0 e+νe)/�total �29/��(

ρ0 e+νe)/�total �29/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.18+0.17
−0.25 OUR FIT2.18+0.17
−0.25 OUR FIT2.18+0.17
−0.25 OUR FIT2.18+0.17
−0.25 OUR FIT2.17±0.12+0.12

−0.222.17±0.12+0.12
−0.222.17±0.12+0.12
−0.222.17±0.12+0.12
−0.22 447 ± 25 1 DOBBS 13 CLEO e+ e− at ψ(3770)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.1 ±0.4 ±0.1 27 ± 6 2 HUANG 05B CLEO See DOBBS 131DOBBS 13 �nds �(D0 → ρ− e+ νe ) / 2 �(D+ → ρ0 e+ νe ) = 1.03 ± 0.09+0.08
−0.02;isospin invarian
e predi
ts the ratio is 1.0.2HUANG 05B �nds �(D0 → ρ− e+ νe ) / 2 �(D+ → ρ0 e+ νe ) = 1.2+0.4

−0.3 ± 0.1;isospin invarian
e predi
ts the ratio is 1.0.�(

ρ0 e+νe)/�(K∗(892)0 e+ νe) �29/�34�(

ρ0 e+νe)/�(K∗(892)0 e+ νe) �29/�34�(

ρ0 e+νe)/�(K∗(892)0 e+ νe) �29/�34�(

ρ0 e+νe)/�(K∗(892)0 e+ νe) �29/�34VALUE EVTS DOCUMENT ID TECN COMMENT0.0396+0.0033
−0.0050 OUR FIT0.0396+0.0033
−0.0050 OUR FIT0.0396+0.0033
−0.0050 OUR FIT0.0396+0.0033
−0.0050 OUR FIT0.045 ±0.014 ±0.0090.045 ±0.014 ±0.0090.045 ±0.014 ±0.0090.045 ±0.014 ±0.009 49 1 AITALA 97 E791 π− nu
leus, 500 GeV1AITALA 97 expli
itly subtra
ts D+ → η′ e+ νe and other ba
kgrounds to get this result.�(

ρ0µ+νµ

)/�(K∗(892)0µ+ νµ

) �30/�35�(

ρ0µ+νµ

)/�(K∗(892)0µ+ νµ

) �30/�35�(

ρ0µ+νµ

)/�(K∗(892)0µ+ νµ

) �30/�35�(

ρ0µ+νµ

)/�(K∗(892)0µ+ νµ

) �30/�35VALUE EVTS DOCUMENT ID TECN COMMENT0.045±0.007 OUR AVERAGE0.045±0.007 OUR AVERAGE0.045±0.007 OUR AVERAGE0.045±0.007 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.041±0.006±0.004 320 ± 44 LINK 06B FOCS γ A, Eγ ≈ 180 GeV0.051±0.015±0.009 54 1 AITALA 97 E791 π− nu
leus, 500 GeV0.079±0.019±0.013 39 2 FRABETTI 97 E687 γ Be, Eγ ≈ 220 GeV1AITALA 97 expli
itly subtra
ts D+ → η′µ+ νµ and other ba
kgrounds to get thisresult.2Be
ause the re
onstru
tion eÆ
ien
y for photons is low, this FRABETTI 97 result alsoin
ludes any D+ → η′µ+ νµ → γ ρ0µ+ νµ events in the numerator.�(

ω e+νe)/�total �31/��(

ω e+νe)/�total �31/��(

ω e+νe)/�total �31/��(

ω e+νe)/�total �31/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.69±0.11 OUR AVERAGE1.69±0.11 OUR AVERAGE1.69±0.11 OUR AVERAGE1.69±0.11 OUR AVERAGE1.63±0.11±0.08 491 ± 32 ABLIKIM 15WBES3 292 fb−1, 3773 MeV1.82±0.18±0.07 129 ± 13 DOBBS 13 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.6 +0.7

−0.6 ±0.1 7.6+3.3
−2.7 HUANG 05B CLEO See DOBBS 13�(

η′(958)e+νe)/�total �32/��(

η′(958)e+νe)/�total �32/��(

η′(958)e+νe)/�total �32/��(

η′(958)e+νe)/�total �32/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.16±0.53±0.072.16±0.53±0.072.16±0.53±0.072.16±0.53±0.07 YELTON 11 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.5 90 MITCHELL 09B CLEO See YELTON 11�(

φe+ νe)/�total �33/��(

φe+ νe)/�total �33/��(

φe+ νe)/�total �33/��(

φe+ νe)/�total �33/�Unseen de
ay modes of the φ are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<1.3 × 10−5<1.3 × 10−5<1.3 × 10−5<1.3 × 10−5 90 ABLIKIM 15W BES3 292 fb−1, 3773 MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.9 × 10−4 90 YELTON 11 CLEO e+ e− at ψ(3770)
<1.6 × 10−4 90 MITCHELL 09B CLEO See YELTON 11
<0.0201 90 ABLIKIM 06P BES2 e+ e− at 3773 MeV
<0.0209 90 BAI 91 MRK3 e+ e− ≈ 3.77 GeVHadroni
 modes with a K or K K KHadroni
 modes with a K or K K KHadroni
 modes with a K or K K KHadroni
 modes with a K or K K K�(K0S π+)/�total �38/��(K0S π+)/�total �38/��(K0S π+)/�total �38/��(K0S π+)/�total �38/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.53 ±0.06 OUR FIT1.53 ±0.06 OUR FIT1.53 ±0.06 OUR FIT1.53 ±0.06 OUR FIT Error in
ludes s
ale fa
tor of 2.8.1.578±0.013±0.0251.578±0.013±0.0251.578±0.013±0.0251.578±0.013±0.025 BONVICINI 14 CLEO All CLEO-
 runs

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.526±0.022±0.038 1 DOBBS 07 CLEO See MENDEZ 101.55 ±0.05 ±0.06 2.2k 1 HE 05 CLEO See DOBBS 071.6 ±0.3 ±0.1 161 ADLER 88C MRK3 e+ e− 3.77 GeV1DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.�(K0S π+)/�(K−2π+) �38/�40�(K0S π+)/�(K−2π+) �38/�40�(K0S π+)/�(K−2π+) �38/�40�(K0S π+)/�(K−2π+) �38/�40VALUE EVTS DOCUMENT ID TECN COMMENT0.162 ±0.007 OUR FIT0.162 ±0.007 OUR FIT0.162 ±0.007 OUR FIT0.162 ±0.007 OUR FIT Error in
ludes s
ale fa
tor of 3.3.0.1530±0.0023±0.00160.1530±0.0023±0.00160.1530±0.0023±0.00160.1530±0.0023±0.0016 10.6k LINK 02B FOCS γ nu
leus, Eγ≈ 180 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1682±0.0012±0.0037 30k MENDEZ 10 CLEO See BONVICINI 140.174 ±0.012 ±0.011 473 1 BISHAI 97 CLEO e+ e− ≈ �(4S)0.137 ±0.015 ±0.016 264 ANJOS 90C E691 Photoprodu
tion1 See BISHAI 97 for an isospin analysis of D+ → K π amplitudes.�(K0Lπ+)/�total �39/��(K0Lπ+)/�total �39/��(K0Lπ+)/�total �39/��(K0Lπ+)/�total �39/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.460±0.040±0.0351.460±0.040±0.0351.460±0.040±0.0351.460±0.040±0.035 2023 ± 54 1 HE 08 CLEO e+ e− at ψ(3770)1The di�eren
e of CLEO D+ → K0S π+ and K0Lπ+ bran
hing fra
tions over the sum(DOBBS 07 and HE 08) is +0.022 ± 0.016 ± 0.018.�(K−2π+)/�total �40/��(K−2π+)/�total �40/��(K−2π+)/�total �40/��(K−2π+)/�total �40/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT9.46 ±0.24 OUR FIT9.46 ±0.24 OUR FIT9.46 ±0.24 OUR FIT9.46 ±0.24 OUR FIT Error in
ludes s
ale fa
tor of 2.0.9.224±0.059±0.1579.224±0.059±0.1579.224±0.059±0.1579.224±0.059±0.157 BONVICINI 14 CLEO All CLEO-
 runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.14 ±0.10 ±0.17 1 DOBBS 07 CLEO See BONVICINI 149.5 ±0.2 ±0.3 15.1k 1 HE 05 CLEO See DOBBS 079.3 ±0.6 ±0.8 1502 2 BALEST 94 CLEO e+ e− ≈ �(4S)6.4 +1.5

−1.4 3 BARLAG 92C ACCM π− Cu 230 GeV9.1 ±1.3 ±0.4 1164 ADLER 88C MRK3 e+ e− 3.77 GeV9.1 ±1.9 239 4 SCHINDLER 81 MRK2 e+ e− 3.771 GeV1DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.2BALEST 94 measures the ratio of D+ → K−π+π+ and D0 → K−π+ bran
hingfra
tions to be 2.35 ± 0.16 ± 0.16 and uses their absolute measurement of the D0 →K−π+ fra
tion (AKERIB 93).3BARLAG 92C 
omputes the bran
hing fra
tion by topologi
al normalization.4 SCHINDLER 81 (MARK-2) measures σ(e+ e− → ψ(3770)) × bran
hing fra
tion tobe 0.38 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of σ = 4.2 ± 0.6 ± 0.3 nb.
REVIEW OF MULTIBODY CHARM ANALYSES

Revised 2015 by D. M. Asner (Pacific Northwest National
Laboratory) and J. Rademacker (University of Bristol)

Kinematics & Models The differential decay rate to a point

s = (s1, . . . , sn) in n dimensional phase space can be expressed

as

dΓ = |M(s)|2
∣

∣

∣

∣

∂nφ

∂(s1 . . . sn)

∣

∣

∣

∣

dns (1)

where | ∂nφ

∂(s1 . . . sn)
| represents the density of states at s, and M

the matrix element for the decay at that point in phase space.

For two–body decays, | ∂nφ

∂(s1 . . . sn)
| is a δ function, while for

D0 decays to 3, 4, 5, . . . pseudoscalars, phase space is 2, 5, 8, . . .

dimensional, leading to a rich phenomenology. Additional pa-

rameters are required to fully describe decays with vector

particles in the initial or final state.

For the important case of a pseudoscalar decaying to 3

pseudoscalars, the decay kinematics can be described in a

two dimensional Dalitz plot [1]. The Dalitz plot of D → abc

is usually parametrized in terms of invariant–mass–squared

variables s1 = (pa +pb)
2 and s2 = (pb +pc)

2, where pa, pb, pc are

the four–momenta of particles a, b, c. In terms of these variables,

phase–space density is constant across the kinematically allowed

region, so that any structure seen in the Dalitz plot is a direct

consequence of the dynamics encoded in |M|2.
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An important difference between decays to two or three

pseudoscalars compared to decays to four or more particles is

the behavior under parity. In the former case, the operation

of parity can also be expressed as a rotation, so no parity

violating observables can be defined (unless they also violate

rotational invariance). This is not the case for decays to four or

more particles. This leads to the interesting possibility of using

parity–odd observables in four body decays for CP violation

searches, as discussed below. Another consequence of these

considerations is that four–body–decay kinematics cannot be

described unambiguously in terms of invariant–mass–squared

variables, as these are all parity even.

The matrix element M is usually modeled as a sum of

interfering decay amplitudes, each proceeding through reso-

nant two–body decays [2]. See Refs [2–4] for a review of

resonance phenomenology. In most analyses, each resonance

is described by a Breit–Wigner or Flatté lineshape, and the

model includes a non–resonant term with a constant phase

and magnitude across the Dalitz plot. This approach has well–

known theoretical limitations, such as the violation of unitarity

and analyticity, which tend to be particularly problematic for

broad, overlapping resonances. This motivates the use of more

sophisticated descriptions, especially for the broad, overlap-

ping resonances that occur typically in the S–wave compo-

nents. In charm analyses, these have included the K–matrix

approach [5,6,7] which respects unitarity; the use of LASS scat-

tering data [8]; dispersive methods [9,10]; methods based

on chiral symmetry [11,12]; and quasi model–independent

parametrizations [13,14]. An important example first analyzed

by CLEO [15,16,17] is D0 → KSπ+π−, which is a key channel

in CP violation and charm mixing analyses. Belle models this

final state as a superposition of 18 resonances (including 4 sig-

nificant doubly Cabibbo suppressed amplitudes) described by

Breit–Wigner or Flatté lineshapes, plus a non–resonant com-

ponent [18]. CDF’s analysis follows a similar approach [19].

BaBar’s model for the same decay replaces the broad ππ and

Kπ S–wave resonances and the non–resonant component with a

K–matrix description [20]. Belle’s and BaBar’s data have been

re–analyzed by [21] in a QCD factorization framework, using

line–shape parametrizations for the S [11,12] and P wave [10]

contributions (with input from τ− → KSπ−ντ data [22] for

the latter) that preserve 2–body unitarity and analyticity. The

measurements give compatible results for the components they

share. All three approaches remain within the confines of the

“isobar” framework which treats the decay as a series of in-

dependent two–body processes, ignoring long–range hadronic

effects. Dispersive techniques that account for these hadronic

effects and respect full 3 body unitarity and analyticity have

been applied to regions of the D− → K−π+π+ Dalitz plot

below the η′K threshold [23].

Limitations in the theoretical description of interfering reso-

nances are the leading source of systematic uncertainty in many

analyses. This is set to become increasingly problematic given

the statistical precision achievable with the vast charm samples

available at the B factories, LHCb, and their upgrades. Already

now, clean data samples with millions of charm events are avail-

able even in suppressed decay modes, e.g. 2.4M D0 → π−π+π0

events at LHCb [24]. In some cases, the model uncertainty can

be removed through model–independent amplitude methods,

often relying on input from the charm threshold, as discussed

below. At the same time, increasingly sophisticated models are

being developed, and applied to data.

Applications of multibody charm analyses The interfer-

ence between the decay paths via which multibody decays

proceed provides sensitivity to both relative magnitudes and

phases of the contributing decay amplitudes. It is especially

this sensitivity to phases that makes amplitude analyses such a

uniquely powerful tool for studying a wide range of phenomena.

Here we concentrate on their use for CP violation measurements

and mixing in charm, and charm inputs to CP violation analyses

in B meson decays. The properties of light–meson resonances

determined in D–meson amplitude analyses are reported in the

light–unflavored–meson section of this Review.

Time–integrated searches for CP violation in charm

Comparing the results of amplitude fits for CP–conjugate decay

modes provides a measure of CP violation. The advantage of

this approach over the model–independent searches discussed

in the next paragraph is the physical interpretation of any

CP violation observation that such a fit result would allow.

The disadvantage lies in the theoretical uncertainty intrinsic

to such analyses due to the amplitude–model dependence.

Recent CP violation searches using this method include CLEO–

c’s amplitude analysis of D0 → K+K−π+π− [25] and CDF’s

analysis of ∼ 350, 000 D0 → KSπ+π− events [19].

The most common model–independent approach for search-

ing for local CP violation across a Dalitz plot is based on

performing a χ2 comparison of the number of events in the bins

of CP–conjugate Dalitz plots. This method was pioneered by

BaBar [26] and developed further in [27,28], with recent re-

sults in D± → K+K−π± [29,30,31], D0 → KSπ+π− [19], and

D+ → π−π+π+ [32]. These techniques have been generalized

to four–body decays, and applied to D0 → K+K−π+π− and

D0 → π+π−π+π− [33]. Un–binned methods can increase the

sensitivity [34]; two different unbinned methods have been ap-

plied by LHCb to D+ → π−π+π+ [32] and D0 → π+π−π0 [24].

None of these analyses have shown evidence of CP violation.

Another model–independent approach, providing comple-

mentary information, is based on constructing observables

in four body decays that are odd under motion reversal

(“näıve T”) [35–43], which is equivalent to P for scalar par-

ticles [43]. One such observable is CT = ~pK+ · (~pπ+ × ~pπ−) in

D0→K+K−π+π−. The rate asymmetry of positive and negative

CT , AT ≡ Γ (CT > 0) − Γ (CT < 0)

Γ (CT > 0) + Γ (CT < 0)
, is a P violating param-

eter. Comparing AT with the C–conjugate asymmetry in D0

decays, ĀT , provides sensitivity to CP violation. Searches for

CP violation in this manner have been carried out by FOCUS

in D0 → K+K−π+π− [44], BaBar in D0 → K+K−π+π−,
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D+ → K+KSπ+π−, and D+
s → K+KSπ+π− [45,46], and

LHCb in D0 → K+K−π+π− [47]. In addition to a phase–

space integrated result, LHCb’s analysis is also carried out

locally in sub–regions of phase space to enhance the sensitivity

of the method. All results so far have been consistent with CP

conservation.

D mixing and CP violation Time–dependent amplitude

analyses in decays to final states that are accessible to both

D0 and D0 have unique sensitivity to mixing parameters. A

Dalitz plot analysis of a self–conjugate final state, such as

KSπ+π− and KSK+K−, allows the measurement of the phase

difference between the relevant D0 and D0 decay amplitudes,

and thus a direct measurement of the mixing parameters x, y

(rather than the decay–specific parameters x′2, y′ measured for

example in D0 → Kπ) [17]. These analyses are also sensitive

to CP violation in mixing and in the interference between

mixing and decay. These results are summarized in Ref. [48].

The important role from charm threshold data as input to such

measurements is discussed below.

Charm amplitude analyses for measuring γ/φ3 Neutral

D mesons originating from B− → DK− (which we denote with

DB−) are a superposition of D0 and D0 with a relative phase

that depends on γ/φ3:

DB− ∝ D0 + rBei(δB−γ)D0,

where δB is a CP conserving strong phase, and rB ∼ 0.1. In

the corresponding CP–conjugate expression, γ/φ3 changes sign.

An amplitude analysis of the subsequent decay of the DB±

allows an extraction of γ/φ3 [49–54]. The method generalizes

to similar B hadron decays, such as B0 → DK∗0. Measurements

based on this technique have been reported by BaBar, Belle

and LHCb using both model–dependent approaches and model–

independent ones based on CLEO–c input [18,55–61,65–67].

The most precise individual results come from the study of the

DB− → KSπ+π− and DB− → KSK+K− with an uncertainty

of approximately 15◦ [18,55,59,67].

Model independent methods for γ/φ3 and charm mixing

The theoretical uncertainty on amplitude models of multibody

D0 decays potentially limits the precision of measurements

of γ/φ3 in B± → DK± and related decay modes. Model–

independent methods to measure γ/φ3 require input related to

the relative phases of the D0 and D0 decay amplitudes across

the phase–space distribution. The same considerations apply to

measurements of D0 mixing and CP violation parameters in

time–dependent Dalitz plot analyses. The required phase infor-

mation is accessible at the charm threshold, where CLEO–c and

BES III operate [48,52,68–74]. There, D mesons originate from

the decay ψ(3770) → DD. The two D mesons are quantum–

correlated which can be used to identify decays of well–defined

D0−D0 superpositions to the final state of interest. The result-

ing interference of D0 and D0 amplitudes provides the desired

model–independent phase information. For decays to non–self–

conjugate decays such as D0 → K+π−π+π−, analysing D0−D0

superpositions provides the only way of measuring the relative

phase between the D0 and D0 amplitudes.

These analyses can be performed in sub–regions/bins of

phase space, or integrated across phase space. The relevant

result can be expressed in terms of one complex parameter

Z = Re−iδ per pair of CP–conjugate phase space bins, with

magnitude R ≤ 1. The larger R, the higher the sensitivity to

interference effects, and thus to γ/φ3. The sensitivity of the

binned analyses can be optimized by using amplitude model–

dependent information to maximize R in each bin, without

introducing a model–dependent bias in the result. CLEO–c data

have been analyzed in this way to provide binned results for the

self–conjugate decays D0 → KSππ and D0 → KSKK [75,76].

The phase–space integrated analyses for D0, D0 → KSK+π−,

K−π+π0, and K−π+π−π+ have yielded ZKSKπ = (0.73 ±
0.8)e−i(8.3◦±15.2◦), ZKππ0

= (0.82 ± 0.07)e−i(164◦
+20

◦

−14◦
), ZK3π =

(0.32+0.20
−0.28)e

−i(225◦
+21

◦

−78◦
), respectively [77,78,79]. These results

follow the usual convention for γ/φ3–related studies where

CP|D0〉 = +|D0〉, while in charm mixing measurements, one

usually takes CP|D0〉 = −|D0〉, leading to a phase–shift in δ of

π. Restricting the analysis to a bin around the K∗K resonance

in the KSKπ Dalitz plot, [77] find R = 1.00± 0.16, illustrating

the benefit in dividing phase space into bins.

The corresponding phase space–integrated input for self–

conjugate decays such as D0 → π+π−π0 takes the form of

a single real parameter, the CP–even fraction F+, defined

such that a CP even eigenstate has F+ = 1, while a CP–

odd eigenstate has F+ = 0 [72]. A recent analysis of CLEO–c

data revealed that D0 → π+π−π0 is compatible with being

completely CP–even with F+ = 1.014 ± 0.045 ± 0.022, while

D0 → K+K−π0 has F+ = 0.734 ± 0.106 ± 0.054 and D0 →
π+π−π+π− has F+ = 0.737 ± 0.028 [73].

The charm system itself provides, through mixing, a well–

defined, time–dependent superposition of D0 and D0. Using

mixing parameters measured independently as input, this can

be used to obtain the relevant information for γ/φ3 measure-

ments. This method is expected to be particularly powerful in

doubly Cabibbo–suppressed decays such as D0 → K+π−π+π−,

and when used in conjunction with information from charm

threshold [80,81].

Summary Multibody charm decays offer a rich phenomenol-

ogy, including unique sensitivity to CP violation and charm

mixing. This is a highly dynamic field with many new results

(some of which we presented here) and rapidly increasing, high

quality datasets. These datasets constitute a huge opportunity,

but also a challenge to improve the theoretical descriptions

of soft hadronic effects in multibody decays. For some mea-

surements, model–independent methods, many relying on input

from the charm threshold, provide a way of removing model–

induced uncertainties. At the same time, work is ongoing to

improve the theoretical description of multibody decays.
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81. S. Harnew and J. Rademacker, JHEP 1503, 169 (2015).�((K−π+)S−waveπ+)/�(K−2π+) �41/�40�((K−π+)S−waveπ+)/�(K−2π+) �41/�40�((K−π+)S−waveπ+)/�(K−2π+) �41/�40�((K−π+)S−waveπ+)/�(K−2π+) �41/�40This is the \�t fra
tion" from the Dalitz-plot analysis. The K−π+ S-wave in
ludesa broad s
alar κ (K∗0(800)), the K∗0(1430)0, and non-resonant ba
kground.VALUE DOCUMENT ID TECN COMMENT0.801 ±0.012 OUR AVERAGE0.801 ±0.012 OUR AVERAGE0.801 ±0.012 OUR AVERAGE0.801 ±0.012 OUR AVERAGE0.8024±0.0138±0.0043 1 LINK 09 FOCS MIPWA �t, 53k evts0.838 ±0.038 2 BONVICINI 08A CLEO QMIPWA �t, 141k evts0.786 ±0.014 ±0.018 AITALA 06 E791 Dalitz �t, 15.1k events
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.8323±0.0150±0.0008 3 LINK 07B FOCS See LINK 091This LINK 09 model-independent partial-wave analysis of the K−π+ S-wave sli
es theK−π+ mass range into 39 bins.2The BONVICINI 08A QMIPWA (quasi-model-independent partial-wave analysis) of theK−π+ S-wave amplitude sli
es the K−π+ mass range into 26 bins but keeps theBreit-Wigner K∗0(1430)0.3This LINK 07B �t uses a K matrix. The K−π+ S-wave �t fra
tion given above breaksdown into (207.3 ± 25.5 ± 12.4)% isospin-1/2 and (40.5 ± 9.6 ± 3.2)% isospin-3/2 |with large interferen
e between the two. The isospin-1/2 
omponent in
ludes the κ (orK∗0(800)0) and K∗0(1430)0.�(K∗0(800)0π+ ,K∗0(800)→ K−π+)/�(K−2π+) �42/�40�(K∗0(800)0π+ ,K∗0(800)→ K−π+)/�(K−2π+) �42/�40�(K∗0(800)0π+ ,K∗0(800)→ K−π+)/�(K−2π+) �42/�40�(K∗0(800)0π+ ,K∗0(800)→ K−π+)/�(K−2π+) �42/�40This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.478±0.121±0.053 AITALA 02 E791 See AITALA 06�(K∗(892)0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �44/�40�(K∗(892)0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �44/�40�(K∗(892)0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �44/�40�(K∗(892)0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �44/�40This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.111 ±0.012 OUR AVERAGE0.111 ±0.012 OUR AVERAGE0.111 ±0.012 OUR AVERAGE0.111 ±0.012 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.7.0.1236±0.0034±0.0034 LINK 09 FOCS MIPWA �t, 53k evts0.0988±0.0046 BONVICINI 08A CLEO QMIPWA �t, 141k evts0.119 ±0.002 ±0.020 AITALA 06 E791 Dalitz �t, 15.1k events
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1361±0.0041±0.0030 1 LINK 07B FOCS See LINK 090.123 ±0.010 ±0.009 AITALA 02 E791 See AITALA 060.137 ±0.006 ±0.009 FRABETTI 94G E687 Dalitz �t, 8800 evts0.170 ±0.009 ±0.034 ANJOS 93 E691 γBe 90{260 GeV0.14 ±0.04 ±0.04 ALVAREZ 91B NA14 Photoprodu
tion0.13 ±0.01 ±0.07 ADLER 87 MRK3 e+ e− 3.77 GeV1The statisti
al error on this LINK 07B value is 
orre
ted in LINK 09.�(K∗(1410)0π+ ,K∗0 → K−π+)/�(K−2π+) �45/�40�(K∗(1410)0π+ ,K∗0 → K−π+)/�(K−2π+) �45/�40�(K∗(1410)0π+ ,K∗0 → K−π+)/�(K−2π+) �45/�40�(K∗(1410)0π+ ,K∗0 → K−π+)/�(K−2π+) �45/�40VALUE (units 10−3) DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen LINK 09 FOCS MIPWA �t, 53k evtsnot seennot seennot seennot seen BONVICINI 08A CLEO QMIPWA �t, 141k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.8±2.1±1.7 LINK 07B FOCS See LINK 09�(K∗0(1430)0π+ ,K∗0(1430)0 → K−π+)/�(K−2π+) �43/�40�(K∗0(1430)0π+ ,K∗0(1430)0 → K−π+)/�(K−2π+) �43/�40�(K∗0(1430)0π+ ,K∗0(1430)0 → K−π+)/�(K−2π+) �43/�40�(K∗0(1430)0π+ ,K∗0(1430)0 → K−π+)/�(K−2π+) �43/�40This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.1330±0.00620.1330±0.00620.1330±0.00620.1330±0.0062 BONVICINI 08A CLEO QMIPWA �t, 141k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.125 ±0.014 ±0.005 AITALA 02 E791 See AITALA 060.284 ±0.022 ±0.059 FRABETTI 94G E687 Dalitz �t, 8800 evts0.248 ±0.019 ±0.017 ANJOS 93 E691 γBe 90{260 GeV

�(K∗2(1430)0π+ ,K∗2(1430)0 → K−π+)/�(K−2π+) �46/�40�(K∗2(1430)0π+ ,K∗2(1430)0 → K−π+)/�(K−2π+) �46/�40�(K∗2(1430)0π+ ,K∗2(1430)0 → K−π+)/�(K−2π+) �46/�40�(K∗2(1430)0π+ ,K∗2(1430)0 → K−π+)/�(K−2π+) �46/�40This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.24 ±0.08 OUR AVERAGE0.24 ±0.08 OUR AVERAGE0.24 ±0.08 OUR AVERAGE0.24 ±0.08 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2. See the ideogram below.0.58 ±0.10 ±0.06 LINK 09 FOCS MIPWA �t, 53k evts0.204±0.040 BONVICINI 08A CLEO QMIPWA �t, 141k evts0.2 ±0.1 ±0.1 AITALA 06 E791 Dalitz �t, 15.1k events
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.39 ±0.09 ±0.05 LINK 07B FOCS See LINK 090.5 ±0.1 ±0.2 AITALA 02 E791 See AITALA 06

WEIGHTED AVERAGE
0.24±0.08 (Error scaled by 2.2)

AITALA 06 E791 0.1
BONVICINI 08A CLEO 0.8
LINK 09 FOCS 8.5

χ2

       9.4
(Confidence Level = 0.0091)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2�(K∗2(1430)0π+ , K∗2(1430)0 → K−π+)/�(K− 2π+) �46/�40(units 10−2)�(K∗(1680)0π+ ,K∗(1680)0 → K−π+)/�(K−2π+) �47/�40�(K∗(1680)0π+ ,K∗(1680)0 → K−π+)/�(K−2π+) �47/�40�(K∗(1680)0π+ ,K∗(1680)0 → K−π+)/�(K−2π+) �47/�40�(K∗(1680)0π+ ,K∗(1680)0 → K−π+)/�(K−2π+) �47/�40This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.23 ±0.12 OUR AVERAGE0.23 ±0.12 OUR AVERAGE0.23 ±0.12 OUR AVERAGE0.23 ±0.12 OUR AVERAGE1.75 ±0.62 ±0.54 LINK 09 FOCS MIPWA �t, 53k evts0.196±0.118 BONVICINI 08A CLEO QMIPWA �t, 141k evts1.2 ±0.6 ±1.2 AITALA 06 E791 Dalitz �t, 15.1k events
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.90 ±0.63 ±0.43 LINK 07B FOCS See LINK 092.5 ±0.7 ±0.3 AITALA 02 E791 See AITALA 064.7 ±0.6 ±0.7 FRABETTI 94G E687 Dalitz �t, 8800 evts3.0 ±0.4 ±1.3 ANJOS 93 E691 γBe 90{260 GeV�(K− (2π+)I=2)/�(K−2π+) �48/�40�(K− (2π+)I=2)/�(K−2π+) �48/�40�(K− (2π+)I=2)/�(K−2π+) �48/�40�(K− (2π+)I=2)/�(K−2π+) �48/�40VALUE DOCUMENT ID TECN COMMENT0.155±0.0280.155±0.0280.155±0.0280.155±0.028 BONVICINI 08A CLEO QMIPWA �t, 141k evts�(K−2π+ nonresonant)/�(K−2π+) �49/�40�(K−2π+ nonresonant)/�(K−2π+) �49/�40�(K−2π+ nonresonant)/�(K−2π+) �49/�40�(K−2π+ nonresonant)/�(K−2π+) �49/�40This is the \�t fra
tion" from the Dalitz-plot analysis. Later analyses �nd little needfor this de
ay mode.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.130±0.058±0.044 AITALA 02 E791 See AITALA 060.998±0.037±0.072 FRABETTI 94G E687 Dalitz �t, 8800 evts0.838±0.088±0.275 ANJOS 93 E691 γBe 90{260 GeV0.79 ±0.07 ±0.15 ADLER 87 MRK3 e+ e− 3.77 GeV�(K0S π+π0)/�total �50/��(K0S π+π0)/�total �50/��(K0S π+π0)/�total �50/��(K0S π+π0)/�total �50/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT7.24 ±0.17 OUR FIT7.24 ±0.17 OUR FIT7.24 ±0.17 OUR FIT7.24 ±0.17 OUR FIT7.244±0.053±0.1667.244±0.053±0.1667.244±0.053±0.1667.244±0.053±0.166 BONVICINI 14 CLEO All CLEO-
 runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.99 ±0.09 ±0.25 1 DOBBS 07 CLEO See BONVICINI 147.2 ±0.2 ±0.4 5.1k 1 HE 05 CLEO See DOBBS 075.1 ±1.3 ±0.8 159 ADLER 88C MRK3 e+ e− 3.77 GeV1DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.�(K0S ρ+)/�(K0S π+π0) �51/�50�(K0S ρ+)/�(K0S π+π0) �51/�50�(K0S ρ+)/�(K0S π+π0) �51/�50�(K0S ρ+)/�(K0S π+π0) �51/�50This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT83.4±2.2+ 7.1

− 3.683.4±2.2+ 7.1
− 3.683.4±2.2+ 7.1
− 3.683.4±2.2+ 7.1
− 3.6 1 ABLIKIM 14E BES3 e+ e− at ψ(3770)

• • • We do not use the following data for averages, �ts, limits, et
. • • •68 ±8 ±12 ADLER 87 MRK3 e+ e− 3.77 GeV1Fit fra
tion from Dalitz plot analysis of 142k D+ → K0S π+π0 events.
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le ListingsD±�(K0S ρ(1450)+, ρ+ → π+π0)/�(K0S π+π0) �52/�50�(K0S ρ(1450)+, ρ+ → π+π0)/�(K0S π+π0) �52/�50�(K0S ρ(1450)+, ρ+ → π+π0)/�(K0S π+π0) �52/�50�(K0S ρ(1450)+, ρ+ → π+π0)/�(K0S π+π0) �52/�50VALUE (%) DOCUMENT ID TECN COMMENT2.1±0.3+1.6
−1.92.1±0.3+1.6
−1.92.1±0.3+1.6
−1.92.1±0.3+1.6
−1.9 ABLIKIM 14E BES3 e+ e− at ψ(3770)�(K∗(892)0π+ ,K∗(892)0 → K0S π0)/�(K0S π+π0) �53/�50�(K∗(892)0π+ ,K∗(892)0 → K0S π0)/�(K0S π+π0) �53/�50�(K∗(892)0π+ ,K∗(892)0 → K0S π0)/�(K0S π+π0) �53/�50�(K∗(892)0π+ ,K∗(892)0 → K0S π0)/�(K0S π+π0) �53/�50This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT3.58±0.17+0.39

−0.383.58±0.17+0.39
−0.383.58±0.17+0.39
−0.383.58±0.17+0.39
−0.38 1 ABLIKIM 14E BES3 e+ e− at ψ(3770)

• • • We do not use the following data for averages, �ts, limits, et
. • • •19 ±6 ±6 ADLER 87 MRK3 e+ e− 3.77 GeV1Fit fra
tion from Dalitz plot analysis of 142k D+ → K0S π+π0 events.�(K∗0(1430)0π+, K∗00 → K0S π0)/�(K0S π+π0) �54/�50�(K∗0(1430)0π+, K∗00 → K0S π0)/�(K0S π+π0) �54/�50�(K∗0(1430)0π+, K∗00 → K0S π0)/�(K0S π+π0) �54/�50�(K∗0(1430)0π+, K∗00 → K0S π0)/�(K0S π+π0) �54/�50VALUE (%) DOCUMENT ID TECN COMMENT3.7±0.6±1.13.7±0.6±1.13.7±0.6±1.13.7±0.6±1.1 ABLIKIM 14E BES3 e+ e− at ψ(3770)�(K∗0(1680)0π+, K∗00 → K0S π0)/�(K0S π+π0) �55/�50�(K∗0(1680)0π+, K∗00 → K0S π0)/�(K0S π+π0) �55/�50�(K∗0(1680)0π+, K∗00 → K0S π0)/�(K0S π+π0) �55/�50�(K∗0(1680)0π+, K∗00 → K0S π0)/�(K0S π+π0) �55/�50VALUE (%) DOCUMENT ID TECN COMMENT1.3±0.2+0.9
−1.31.3±0.2+0.9
−1.31.3±0.2+0.9
−1.31.3±0.2+0.9
−1.3 ABLIKIM 14E BES3 e+ e− at ψ(3770)�(

κ0π+, κ0 → K0S π0)/�(K0S π+π0) �56/�50�(

κ0π+, κ0 → K0S π0)/�(K0S π+π0) �56/�50�(

κ0π+, κ0 → K0S π0)/�(K0S π+π0) �56/�50�(

κ0π+, κ0 → K0S π0)/�(K0S π+π0) �56/�50VALUE (%) DOCUMENT ID TECN COMMENT7.7±1.2+6.5
−4.87.7±1.2+6.5
−4.87.7±1.2+6.5
−4.87.7±1.2+6.5
−4.8 ABLIKIM 14E BES3 e+ e− at ψ(3770)�(K0S π+π0 nonresonant)/�(K0S π+π0) �57/�50�(K0S π+π0 nonresonant)/�(K0S π+π0) �57/�50�(K0S π+π0 nonresonant)/�(K0S π+π0) �57/�50�(K0S π+π0 nonresonant)/�(K0S π+π0) �57/�50This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT4.6±0.7+5.4
−5.14.6±0.7+5.4
−5.14.6±0.7+5.4
−5.14.6±0.7+5.4
−5.1 1 ABLIKIM 14E BES3 e+ e− at ψ(3770)

• • • We do not use the following data for averages, �ts, limits, et
. • • •13 ±7 ±8 ADLER 87 MRK3 e+ e− 3.77 GeV1Fit fra
tion from Dalitz plot analysis of 142k D+ → K0S π+π0 events.�(K0S π+π0 nonresonant and κ0π+)/�(K0S π+π0) �58/�50�(K0S π+π0 nonresonant and κ0π+)/�(K0S π+π0) �58/�50�(K0S π+π0 nonresonant and κ0π+)/�(K0S π+π0) �58/�50�(K0S π+π0 nonresonant and κ0π+)/�(K0S π+π0) �58/�50VALUE (%) DOCUMENT ID TECN COMMENT18.6±1.7+2.3
−4.618.6±1.7+2.3
−4.618.6±1.7+2.3
−4.618.6±1.7+2.3
−4.6 ABLIKIM 14E BES3 e+ e− at ψ(3770)�((K0S π0)S−waveπ+)/�(K0S π+π0) �59/�50�((K0S π0)S−waveπ+)/�(K0S π+π0) �59/�50�((K0S π0)S−waveπ+)/�(K0S π+π0) �59/�50�((K0S π0)S−waveπ+)/�(K0S π+π0) �59/�50The numerator here is the 
oherent sum of the K∗0(1430)0π+, κ0π+, and nonreso-nant 
ontributions.VALUE (%) DOCUMENT ID TECN COMMENT17.3±1.4+3.4
−4.317.3±1.4+3.4
−4.317.3±1.4+3.4
−4.317.3±1.4+3.4
−4.3 ABLIKIM 14E BES3 e+ e− at ψ(3770)�(K−2π+π0)/�total �60/��(K−2π+π0)/�total �60/��(K−2π+π0)/�total �60/��(K−2π+π0)/�total �60/�See our 2008 Review (Physi
s Letters B667B667B667B667 1 (2008)) for measurements of submodesof this mode. There is nothing new sin
e 1992, and the two papers, ANJOS 92C, with91 ± 12 events above ba
kground, and COFFMAN 92B, with 142 ± 20 su
h events,
ould not determine submode fra
tions with mu
h a

ura
y.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT6.14 ±0.16 OUR FIT6.14 ±0.16 OUR FIT6.14 ±0.16 OUR FIT6.14 ±0.16 OUR FIT6.142±0.045±0.1546.142±0.045±0.1546.142±0.045±0.1546.142±0.045±0.154 BONVICINI 14 CLEO All CLEO-
 runs

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.98 ±0.08 ±0.16 1 DOBBS 07 CLEO See BONVICINI 146.0 ±0.2 ±0.2 4.8k 1 HE 05 CLEO See DOBBS 075.8 ±1.2 ±1.2 142 COFFMAN 92B MRK3 e+ e− 3.77 GeV6.3 +1.4
−1.3 ±1.2 175 BALTRUSAIT...86E MRK3 See COFFMAN 92B1DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.�(K0S 2π+π−)/�total �61/��(K0S 2π+π−)/�total �61/��(K0S 2π+π−)/�total �61/��(K0S 2π+π−)/�total �61/�See our 2008 Review (Physi
s Letters B667B667B667B667 1 (2008)) for measurements of submodesof this mode. There is nothing new sin
e 1992, and the two papers, ANJOS 92C, with229 ± 17 events above ba
kground, and COFFMAN 92B, with 209 ± 20 su
h events,
ould not determine submode fra
tions with mu
h a

ura
y.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.05 ±0.09 OUR FIT3.05 ±0.09 OUR FIT3.05 ±0.09 OUR FIT3.05 ±0.09 OUR FIT3.051±0.027±0.0823.051±0.027±0.0823.051±0.027±0.0823.051±0.027±0.082 BONVICINI 14 CLEO All CLEO-
 runs

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.122±0.046±0.096 1 DOBBS 07 CLEO See BONVICINI 143.2 ±0.1 ±0.2 3.2k 1 HE 05 CLEO See DOBBS 072.1 +1.0
−0.9 2 BARLAG 92C ACCM π− Cu 230 GeV3.3 ±0.8 ±0.2 168 ADLER 88C MRK3 e+ e− 3.77 GeV1DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.2BARLAG 92C 
omputes the bran
hing fra
tion by topologi
al normalization.

�(K−3π+π−)/�(K−2π+) �62/�40�(K−3π+π−)/�(K−2π+) �62/�40�(K−3π+π−)/�(K−2π+) �62/�40�(K−3π+π−)/�(K−2π+) �62/�40VALUE EVTS DOCUMENT ID TECN COMMENT0.061±0.005 OUR FIT0.061±0.005 OUR FIT0.061±0.005 OUR FIT0.061±0.005 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.062±0.008 OUR AVERAGE0.062±0.008 OUR AVERAGE0.062±0.008 OUR AVERAGE0.062±0.008 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.058±0.002±0.006 2923 LINK 03D FOCS γ A, Eγ ≈ 180 GeV0.077±0.008±0.010 239 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.09 ±0.01 ±0.01 113 ANJOS 90D E691 Photoprodu
tion�(K∗(892)0 2π+π− ,K∗(892)0 → K−π+)/�(K−3π+π−) �63/�62�(K∗(892)0 2π+π− ,K∗(892)0 → K−π+)/�(K−3π+π−) �63/�62�(K∗(892)0 2π+π− ,K∗(892)0 → K−π+)/�(K−3π+π−) �63/�62�(K∗(892)0 2π+π− ,K∗(892)0 → K−π+)/�(K−3π+π−) �63/�62VALUE DOCUMENT ID TECN COMMENT0.21±0.04±0.060.21±0.04±0.060.21±0.04±0.060.21±0.04±0.06 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−3π+π−) �64/�62�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−3π+π−) �64/�62�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−3π+π−) �64/�62�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−3π+π−) �64/�62VALUE DOCUMENT ID TECN COMMENT0.40±0.03±0.060.40±0.03±0.060.40±0.03±0.060.40±0.03±0.06 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �64/�40�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �64/�40�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �64/�40�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �64/�40VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.016±0.007±0.004 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV�(K∗(892)0 2π+π− no-ρ,K∗(892)0 → K−π+)/�(K−2π+) �66/�40�(K∗(892)0 2π+π− no-ρ,K∗(892)0 → K−π+)/�(K−2π+) �66/�40�(K∗(892)0 2π+π− no-ρ,K∗(892)0 → K−π+)/�(K−2π+) �66/�40�(K∗(892)0 2π+π− no-ρ,K∗(892)0 → K−π+)/�(K−2π+) �66/�40VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.032±0.010±0.008 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV�(K−ρ0 2π+)/�(K−3π+π−) �67/�62�(K−ρ0 2π+)/�(K−3π+π−) �67/�62�(K−ρ0 2π+)/�(K−3π+π−) �67/�62�(K−ρ0 2π+)/�(K−3π+π−) �67/�62VALUE DOCUMENT ID TECN COMMENT0.30±0.04±0.010.30±0.04±0.010.30±0.04±0.010.30±0.04±0.01 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(K−ρ0 2π+)/�(K−2π+) �67/�40�(K−ρ0 2π+)/�(K−2π+) �67/�40�(K−ρ0 2π+)/�(K−2π+) �67/�40�(K−ρ0 2π+)/�(K−2π+) �67/�40VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.034±0.009±0.005 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV�(K∗(892)0 a1(1260)+)/�(K−2π+) �65/�40�(K∗(892)0 a1(1260)+)/�(K−2π+) �65/�40�(K∗(892)0 a1(1260)+)/�(K−2π+) �65/�40�(K∗(892)0 a1(1260)+)/�(K−2π+) �65/�40Unseen de
ay modes of the K∗(892)0 and a1(1260)+ are in
luded.VALUE DOCUMENT ID TECN COMMENT0.099±0.008±0.0180.099±0.008±0.0180.099±0.008±0.0180.099±0.008±0.018 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(K−3π+π− nonresonant)/�(K−3π+π−) �68/�62�(K−3π+π− nonresonant)/�(K−3π+π−) �68/�62�(K−3π+π− nonresonant)/�(K−3π+π−) �68/�62�(K−3π+π− nonresonant)/�(K−3π+π−) �68/�62VALUE CL% DOCUMENT ID TECN COMMENT0.07 ±0.05±0.010.07 ±0.05±0.010.07 ±0.05±0.010.07 ±0.05±0.01 LINK 03D FOCS γ A, Eγ ≈ 180 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.026 90 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV�(K+2K0S)/�(K−2π+) �69/�40�(K+2K0S)/�(K−2π+) �69/�40�(K+2K0S)/�(K−2π+) �69/�40�(K+2K0S)/�(K−2π+) �69/�40VALUE EVTS DOCUMENT ID TECN COMMENT0.049±0.022 OUR AVERAGE0.049±0.022 OUR AVERAGE0.049±0.022 OUR AVERAGE0.049±0.022 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4.0.035±0.010±0.005 39 ± 9 ALBRECHT 94I ARG e+ e−≈ 10 GeV0.085±0.018 70 ± 12 AMMAR 91 CLEO e+ e− ≈ 10.5 GeV�(K+K−K0S π+)/�(K0S 2π+π−) �70/�61�(K+K−K0S π+)/�(K0S 2π+π−) �70/�61�(K+K−K0S π+)/�(K0S 2π+π−) �70/�61�(K+K−K0S π+)/�(K0S 2π+π−) �70/�61VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT7.7±1.5±0.97.7±1.5±0.97.7±1.5±0.97.7±1.5±0.9 35 ± 7 LINK 01C FOCS γ nu
leus, Eγ ≈ 180 GeVPioni
 modesPioni
 modesPioni
 modesPioni
 modes�(

π+π0)/�(K−2π+) �71/�40�(

π+π0)/�(K−2π+) �71/�40�(

π+π0)/�(K−2π+) �71/�40�(

π+π0)/�(K−2π+) �71/�40VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.31±0.06 OUR AVERAGE1.31±0.06 OUR AVERAGE1.31±0.06 OUR AVERAGE1.31±0.06 OUR AVERAGE1.29±0.04±0.05 2649 ± 76 MENDEZ 10 CLEO e+ e− at 3774 MeV1.33±0.11±0.09 1229 ± 99 AUBERT,B 06F BABR e+ e− ≈ �(4S)1.44±0.19±0.10 171 ± 22 ARMS 04 CLEO e+ e− ≈ 10 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.33±0.07±0.06 914 ± 46 RUBIN 06 CLEO See MENDEZ 10�(2π+π−)/�(K−2π+) �72/�40�(2π+π−)/�(K−2π+) �72/�40�(2π+π−)/�(K−2π+) �72/�40�(2π+π−)/�(K−2π+) �72/�40VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.48±0.19 OUR AVERAGE3.48±0.19 OUR AVERAGE3.48±0.19 OUR AVERAGE3.48±0.19 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.3.52±0.11±0.12 3303 ± 95 RUBIN 06 CLEO e+ e− at ψ(3770)4.1 ±1.1 ±0.3 85 ± 22 ABLIKIM 05F BES e+ e− ≈ ψ(3770)3.11±0.18+0.16

−0.26 1172 AITALA 01B E791 π− nu
leus, 500 GeV4.3 ±0.3 ±0.3 236 FRABETTI 97D E687 γ Be ≈ 200 GeV3.5 ±0.7 ±0.3 83 ANJOS 89 E691 Photoprodu
tion
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WEIGHTED AVERAGE
3.48±0.19 (Error scaled by 1.4)

ANJOS 89 E691 0.0
FRABETTI 97D E687 3.7
AITALA 01B E791 2.4
ABLIKIM 05F BES
RUBIN 06 CLEO 0.1

χ2

       6.2
(Confidence Level = 0.104)

2 3 4 5 6 7�(2π+π−
)/�(K− 2π+) (units 10−2)�(

ρ0π+)/�(2π+π−) �73/�72�(

ρ0π+)/�(2π+π−) �73/�72�(

ρ0π+)/�(2π+π−) �73/�72�(

ρ0π+)/�(2π+π−) �73/�72This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.25 ±0.04 OUR AVERAGE0.25 ±0.04 OUR AVERAGE0.25 ±0.04 OUR AVERAGE0.25 ±0.04 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogrambelow.0.200 ±0.023 ±0.009 BONVICINI 07 CLEO Dalitz �t, ≈ 2240 evts0.3082±0.0314±0.0230 LINK 04 FOCS Dalitz �t, 1527 ± 51 evts0.336 ±0.032 ±0.022 AITALA 01B E791 Dalitz �t, 1172 evts
WEIGHTED AVERAGE
0.25±0.04 (Error scaled by 2.4)

AITALA 01B E791 4.4
LINK 04 FOCS 1.9
BONVICINI 07 CLEO 4.9

χ2

      11.2
(Confidence Level = 0.0037)

0.1 0.2 0.3 0.4 0.5 0.6�(

ρ0π+)/�(2π+π−
)�(

π+ (π+π−)S−wave)/�(2π+π−) �74/�72�(

π+ (π+π−)S−wave)/�(2π+π−) �74/�72�(

π+ (π+π−)S−wave)/�(2π+π−) �74/�72�(

π+ (π+π−)S−wave)/�(2π+π−) �74/�72This is the \�t fra
tion" from the Dalitz-plot analysis. See also the next three datablo
ks.VALUE DOCUMENT ID TECN COMMENT0.5600±0.0324±0.02140.5600±0.0324±0.02140.5600±0.0324±0.02140.5600±0.0324±0.0214 1 LINK 04 FOCS Dalitz �t, 1527 ± 51evts1 LINK 04 borrows a K-matrix parametrization from ANISOVICH 03 of the full π-π S-wave isos
alar s
attering amplitude to des
ribe the π+π− S-wave 
omponent of the
π+π+π− state. The �t fra
tion given above is a sum over �ve f0 mesons, the f0(980),f0(1300), f0(1200{1600), f0(1500), and f0(1750). See LINK 04 for details and dis
us-sion.�(

σπ+ , σ → π+π−)/�(2π+π−) �75/�72�(

σπ+ , σ → π+π−)/�(2π+π−) �75/�72�(

σπ+ , σ → π+π−)/�(2π+π−) �75/�72�(

σπ+ , σ → π+π−)/�(2π+π−) �75/�72This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.422±0.027 OUR AVERAGE0.422±0.027 OUR AVERAGE0.422±0.027 OUR AVERAGE0.422±0.027 OUR AVERAGE0.418±0.014±0.025 BONVICINI 07 CLEO Dalitz �t, ≈ 2240 evts0.463±0.090±0.021 AITALA 01B E791 Dalitz �t, 1172 evts�(f0(980)π+ , f0(980)→ π+π−)/�(2π+π−) �76/�72�(f0(980)π+ , f0(980)→ π+π−)/�(2π+π−) �76/�72�(f0(980)π+ , f0(980)→ π+π−)/�(2π+π−) �76/�72�(f0(980)π+ , f0(980)→ π+π−)/�(2π+π−) �76/�72This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.048±0.010 OUR AVERAGE0.048±0.010 OUR AVERAGE0.048±0.010 OUR AVERAGE0.048±0.010 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.041±0.009±0.003 BONVICINI 07 CLEO Dalitz �t, ≈ 2240 evts0.062±0.013±0.004 AITALA 01B E791 Dalitz �t, 1172 evts�(f0(1370)π+ , f0(1370)→ π+π−)/�(2π+π−) �77/�72�(f0(1370)π+ , f0(1370)→ π+π−)/�(2π+π−) �77/�72�(f0(1370)π+ , f0(1370)→ π+π−)/�(2π+π−) �77/�72�(f0(1370)π+ , f0(1370)→ π+π−)/�(2π+π−) �77/�72This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.024±0.013 OUR AVERAGE0.024±0.013 OUR AVERAGE0.024±0.013 OUR AVERAGE0.024±0.013 OUR AVERAGE0.026±0.018±0.006 BONVICINI 07 CLEO Dalitz �t, ≈ 2240 evts0.023±0.015±0.008 AITALA 01B E791 Dalitz �t, 1172 evts

�(f2(1270)π+ , f2(1270)→ π+π−)/�(2π+π−) �78/�72�(f2(1270)π+ , f2(1270)→ π+π−)/�(2π+π−) �78/�72�(f2(1270)π+ , f2(1270)→ π+π−)/�(2π+π−) �78/�72�(f2(1270)π+ , f2(1270)→ π+π−)/�(2π+π−) �78/�72This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.154 ±0.025 OUR AVERAGE0.154 ±0.025 OUR AVERAGE0.154 ±0.025 OUR AVERAGE0.154 ±0.025 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogrambelow.0.182 ±0.026 ±0.007 BONVICINI 07 CLEO Dalitz �t, ≈ 2240 evts0.1174±0.0190±0.0029 LINK 04 FOCS Dalitz �t, 1527 ± 51evts0.194 ±0.025 ±0.004 AITALA 01B E791 Dalitz �t, 1172 evts
WEIGHTED AVERAGE
0.154±0.025 (Error scaled by 1.9)

AITALA 01B E791 2.5
LINK 04 FOCS 3.7
BONVICINI 07 CLEO 1.0

χ2

       7.2
(Confidence Level = 0.027)

0.05 0.1 0.15 0.2 0.25 0.3 0.35�(f2(1270)π+ , f2(1270) → π+π−
)/�(2π+π−

)�(

ρ(1450)0π+ , ρ(1450)0 → π+π−)/�(2π+π−) �79/�72�(

ρ(1450)0π+ , ρ(1450)0 → π+π−)/�(2π+π−) �79/�72�(

ρ(1450)0π+ , ρ(1450)0 → π+π−)/�(2π+π−) �79/�72�(

ρ(1450)0π+ , ρ(1450)0 → π+π−)/�(2π+π−) �79/�72This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE CL% DOCUMENT ID TECN COMMENT
<0.024<0.024<0.024<0.024 95 BONVICINI 07 CLEO Dalitz �t, ≈ 2240 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.007±0.007±0.003 AITALA 01B E791 Dalitz �t, 1172 evts�(f0(1500)π+ , f0(1500)→ π+π−)/�(2π+π−) �80/�72�(f0(1500)π+ , f0(1500)→ π+π−)/�(2π+π−) �80/�72�(f0(1500)π+ , f0(1500)→ π+π−)/�(2π+π−) �80/�72�(f0(1500)π+ , f0(1500)→ π+π−)/�(2π+π−) �80/�72This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.034±0.010±0.0080.034±0.010±0.0080.034±0.010±0.0080.034±0.010±0.008 BONVICINI 07 CLEO Dalitz �t, ≈ 2240 evts�(f0(1710)π+ , f0(1710)→ π+π−)/�(2π+π−) �81/�72�(f0(1710)π+ , f0(1710)→ π+π−)/�(2π+π−) �81/�72�(f0(1710)π+ , f0(1710)→ π+π−)/�(2π+π−) �81/�72�(f0(1710)π+ , f0(1710)→ π+π−)/�(2π+π−) �81/�72This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE CL% DOCUMENT ID TECN COMMENT
<0.016<0.016<0.016<0.016 95 BONVICINI 07 CLEO Dalitz �t, ≈ 2240 evts�(f0(1790)π+ , f0(1790)→ π+π−)/�(2π+π−) �82/�72�(f0(1790)π+ , f0(1790)→ π+π−)/�(2π+π−) �82/�72�(f0(1790)π+ , f0(1790)→ π+π−)/�(2π+π−) �82/�72�(f0(1790)π+ , f0(1790)→ π+π−)/�(2π+π−) �82/�72This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE CL% DOCUMENT ID TECN COMMENT
<0.02<0.02<0.02<0.02 95 BONVICINI 07 CLEO Dalitz �t, ≈ 2240 evts�((π+π+)S−waveπ−)/�(2π+π−) �83/�72�((π+π+)S−waveπ−)/�(2π+π−) �83/�72�((π+π+)S−waveπ−)/�(2π+π−) �83/�72�((π+π+)S−waveπ−)/�(2π+π−) �83/�72This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE CL% DOCUMENT ID TECN COMMENT
<0.037<0.037<0.037<0.037 95 BONVICINI 07 CLEO Dalitz �t, ≈ 2240 evts�(2π+π− nonresonant)/�(2π+π−) �84/�72�(2π+π− nonresonant)/�(2π+π−) �84/�72�(2π+π− nonresonant)/�(2π+π−) �84/�72�(2π+π− nonresonant)/�(2π+π−) �84/�72This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE CL% DOCUMENT ID TECN COMMENT
<0.035<0.035<0.035<0.035 95 BONVICINI 07 CLEO Dalitz �t, ≈ 2240 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.078±0.060±0.027 AITALA 01B E791 Dalitz �t, 1172 evts�(

π+ 2π0)/�(K−2π+) �85/�40�(

π+ 2π0)/�(K−2π+) �85/�40�(

π+ 2π0)/�(K−2π+) �85/�40�(

π+ 2π0)/�(K−2π+) �85/�40VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.0±0.3±0.35.0±0.3±0.35.0±0.3±0.35.0±0.3±0.3 1535 ± 89 RUBIN 06 CLEO e+ e− at ψ(3770)�(2π+π−π0)/�(K−2π+) �86/�40�(2π+π−π0)/�(K−2π+) �86/�40�(2π+π−π0)/�(K−2π+) �86/�40�(2π+π−π0)/�(K−2π+) �86/�40VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT12.4±0.5±0.612.4±0.5±0.612.4±0.5±0.612.4±0.5±0.6 5701 ± 205 RUBIN 06 CLEO e+ e− at ψ(3770)�(

ηπ+)/�total �90/��(

ηπ+)/�total �90/��(

ηπ+)/�total �90/��(

ηπ+)/�total �90/�Unseen de
ay modes of the η are in
luded.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •34.3±1.4±1.7 1033 ± 42 ARTUSO 08 CLEO See MENDEZ 10
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ηπ+)/�(K−2π+) �90/�40�(

ηπ+)/�(K−2π+) �90/�40�(

ηπ+)/�(K−2π+) �90/�40�(

ηπ+)/�(K−2π+) �90/�40Unseen de
ay modes of the η are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.87±0.09±0.193.87±0.09±0.193.87±0.09±0.193.87±0.09±0.19 2940 ± 68 MENDEZ 10 CLEO e+ e− at 3774 MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.81±0.26±0.21 377 ± 26 RUBIN 06 CLEO See ARTUSO 08�(

ωπ+)/�total �92/��(

ωπ+)/�total �92/��(

ωπ+)/�total �92/��(

ωπ+)/�total �92/�Unseen de
ay modes of the ω are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<3.4× 10−4<3.4× 10−4<3.4× 10−4<3.4× 10−4 90 RUBIN 06 CLEO e+ e− at ψ(3770)�(3π+2π−)/�(K−2π+) �89/�40�(3π+2π−)/�(K−2π+) �89/�40�(3π+2π−)/�(K−2π+) �89/�40�(3π+2π−)/�(K−2π+) �89/�40VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.77±0.17 OUR FIT1.77±0.17 OUR FIT1.77±0.17 OUR FIT1.77±0.17 OUR FIT1.73±0.20±0.171.73±0.20±0.171.73±0.20±0.171.73±0.20±0.17 732 ± 77 RUBIN 06 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.3 ±0.4 ±0.2 58 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV�(3π+2π−)/�(K−3π+π−) �89/�62�(3π+2π−)/�(K−3π+π−) �89/�62�(3π+2π−)/�(K−3π+π−) �89/�62�(3π+2π−)/�(K−3π+π−) �89/�62VALUE EVTS DOCUMENT ID TECN COMMENT0.289±0.019 OUR FIT0.289±0.019 OUR FIT0.289±0.019 OUR FIT0.289±0.019 OUR FIT0.290±0.017±0.0110.290±0.017±0.0110.290±0.017±0.0110.290±0.017±0.011 835 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(

ηπ+π0)/�total �91/��(

ηπ+π0)/�total �91/��(

ηπ+π0)/�total �91/��(

ηπ+π0)/�total �91/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT13.8±3.1±1.613.8±3.1±1.613.8±3.1±1.613.8±3.1±1.6 149 ± 34 ARTUSO 08 CLEO e+ e− at ψ(3770)�(

η′(958)π+)/�total �93/��(

η′(958)π+)/�total �93/��(

η′(958)π+)/�total �93/��(

η′(958)π+)/�total �93/�Unseen de
ay modes of the η′(958) are in
luded.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •44.2±2.5±2.9 352 ± 20 ARTUSO 08 CLEO See MENDEZ 10�(

η′(958)π+)/�(K−2π+) �93/�40�(

η′(958)π+)/�(K−2π+) �93/�40�(

η′(958)π+)/�(K−2π+) �93/�40�(

η′(958)π+)/�(K−2π+) �93/�40Unseen de
ay modes of the η′(958) are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.12±0.17±0.255.12±0.17±0.255.12±0.17±0.255.12±0.17±0.25 1037 ± 35 MENDEZ 10 CLEO e+ e− at 3774 MeV�(

η′(958)π+π0)/�total �94/��(

η′(958)π+π0)/�total �94/��(

η′(958)π+π0)/�total �94/��(

η′(958)π+π0)/�total �94/�Unseen de
ay modes of the η′(958) are in
luded.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT15.7±4.3±2.515.7±4.3±2.515.7±4.3±2.515.7±4.3±2.5 33 ± 9 ARTUSO 08 CLEO e+ e− at ψ(3770)Hadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pair�(K+K0S)/�total �95/��(K+K0S)/�total �95/��(K+K0S)/�total �95/��(K+K0S)/�total �95/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.14±0.09±0.08 1971 ± 51 BONVICINI 08 CLEO See MENDEZ 10�(K+K0S)/�(K0S π+) �95/�38�(K+K0S)/�(K0S π+) �95/�38�(K+K0S)/�(K0S π+) �95/�38�(K+K0S)/�(K0S π+) �95/�38VALUE EVTS DOCUMENT ID TECN COMMENT0.193 ±0.007 OUR FIT0.193 ±0.007 OUR FIT0.193 ±0.007 OUR FIT0.193 ±0.007 OUR FIT Error in
ludes s
ale fa
tor of 3.1.0.1901±0.0024 OUR AVERAGE0.1901±0.0024 OUR AVERAGE0.1901±0.0024 OUR AVERAGE0.1901±0.0024 OUR AVERAGE0.1899±0.0011±0.0022 101k±561 WON 09 BELL e+ e− at �(4S)0.1892±0.0155±0.0073 278 ± 21 ARMS 04 CLEO e+ e− ≈ 10 GeV0.1996±0.0119±0.0096 949 LINK 02B FOCS γ A, Eγ ≈ 180 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.222 ±0.037 ±0.013 63 ± 10 ABLIKIM 05F BES e+ e− ≈ ψ(3770)0.222 ±0.041 ±0.019 70 BISHAI 97 CLEO See ARMS 040.25 ±0.04 ±0.02 129 FRABETTI 95 E687 γBe Eγ ≈ 200 GeV0.271 ±0.065 ±0.039 69 ANJOS 90C E691 γBe0.317 ±0.086 ±0.048 31 BALTRUSAIT...85E MRK3 e+ e− 3.77 GeV0.25 ±0.15 6 SCHINDLER 81 MRK2 e+ e− 3.771 GeV�(K+K0S)/�(K−2π+) �95/�40�(K+K0S)/�(K−2π+) �95/�40�(K+K0S)/�(K−2π+) �95/�40�(K+K0S)/�(K−2π+) �95/�40VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.12±0.16 OUR FIT3.12±0.16 OUR FIT3.12±0.16 OUR FIT3.12±0.16 OUR FIT Error in
ludes s
ale fa
tor of 3.2.3.35±0.06±0.073.35±0.06±0.073.35±0.06±0.073.35±0.06±0.07 5161 ± 86 MENDEZ 10 CLEO e+ e− at 3774 MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.02±0.18±0.15 949 1 LINK 02B FOCS γ nu
leus, Eγ ≈ 180 GeV1This LINK 02B result is redundant with a result in the previous datablo
k.�(K+K−π+)/�total �96/��(K+K−π+)/�total �96/��(K+K−π+)/�total �96/��(K+K−π+)/�total �96/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.996±0.026 OUR FIT0.996±0.026 OUR FIT0.996±0.026 OUR FIT0.996±0.026 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.981±0.010±0.0320.981±0.010±0.0320.981±0.010±0.0320.981±0.010±0.032 BONVICINI 14 CLEO All CLEO-
 runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.935±0.017±0.024 1 DOBBS 07 CLEO See BONVICINI 140.97 ±0.04 ±0.04 1250 ± 40 1 HE 05 CLEO See DOBBS 071DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.

�(K+K−π+)/�(K−2π+) �96/�40�(K+K−π+)/�(K−2π+) �96/�40�(K+K−π+)/�(K−2π+) �96/�40�(K+K−π+)/�(K−2π+) �96/�40VALUE EVTS DOCUMENT ID TECN COMMENT0.1053±0.0024 OUR FIT0.1053±0.0024 OUR FIT0.1053±0.0024 OUR FIT0.1053±0.0024 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.1058±0.0029 OUR AVERAGE0.1058±0.0029 OUR AVERAGE0.1058±0.0029 OUR AVERAGE0.1058±0.0029 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.0.117 ±0.013 ±0.007 181 ± 20 ABLIKIM 05F BES e+ e− ≈ ψ(3770)0.107 ±0.001 ±0.002 43k AUBERT 05S BABR e+ e− ≈ �(4S)0.093 ±0.010 +0.008
−0.006 JUN 00 SELX �− nu
leus, 600 GeV0.0976±0.0042±0.0046 FRABETTI 95B E687 γ Be, Eγ ≈ 200 GeV�(

φπ+ , φ→ K+K−)/�(K+K−π+) �97/�96�(

φπ+ , φ→ K+K−)/�(K+K−π+) �97/�96�(

φπ+ , φ→ K+K−)/�(K+K−π+) �97/�96�(

φπ+ , φ→ K+K−)/�(K+K−π+) �97/�96This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT27.8±0.4+0.2
−0.527.8±0.4+0.2
−0.527.8±0.4+0.2
−0.527.8±0.4+0.2
−0.5 RUBIN 08 CLEO Dalitz �t, 19,458±163 evts

• • • We do not use the following data for averages, �ts, limits, et
. • • •29.2±3.1±3.0 FRABETTI 95B E687 Dalitz �t, 915 evts�(K+K∗(892)0 ,K∗(892)0 → K−π+)/�(K+K−π+) �98/�96�(K+K∗(892)0 ,K∗(892)0 → K−π+)/�(K+K−π+) �98/�96�(K+K∗(892)0 ,K∗(892)0 → K−π+)/�(K+K−π+) �98/�96�(K+K∗(892)0 ,K∗(892)0 → K−π+)/�(K+K−π+) �98/�96This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT25.7±0.5+0.4
−1.225.7±0.5+0.4
−1.225.7±0.5+0.4
−1.225.7±0.5+0.4
−1.2 RUBIN 08 CLEO Dalitz �t, 19,458±163 evts

• • • We do not use the following data for averages, �ts, limits, et
. • • •30.1±2.0±2.5 FRABETTI 95B E687 Dalitz �t, 915 evts�(K+K∗0(1430)0 ,K∗0(1430)0 → K−π+)/�(K+K−π+) �99/�96�(K+K∗0(1430)0 ,K∗0(1430)0 → K−π+)/�(K+K−π+) �99/�96�(K+K∗0(1430)0 ,K∗0(1430)0 → K−π+)/�(K+K−π+) �99/�96�(K+K∗0(1430)0 ,K∗0(1430)0 → K−π+)/�(K+K−π+) �99/�96This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT18.8±1.2+3.3
−3.418.8±1.2+3.3
−3.418.8±1.2+3.3
−3.418.8±1.2+3.3
−3.4 RUBIN 08 CLEO Dalitz �t, 19,458±163 evts

• • • We do not use the following data for averages, �ts, limits, et
. • • •37.0±3.5±1.8 FRABETTI 95B E687 Dalitz �t, 915 evts�(K+K∗2(1430)0, K∗2 → K−π+)/�(K+K−π+) �100/�96�(K+K∗2(1430)0, K∗2 → K−π+)/�(K+K−π+) �100/�96�(K+K∗2(1430)0, K∗2 → K−π+)/�(K+K−π+) �100/�96�(K+K∗2(1430)0, K∗2 → K−π+)/�(K+K−π+) �100/�96This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT1.7±0.4+1.2
−0.71.7±0.4+1.2
−0.71.7±0.4+1.2
−0.71.7±0.4+1.2
−0.7 RUBIN 08 CLEO Dalitz �t, 19,458±163 evts�(K+K∗0(800), K∗0 → K−π+)/�(K+K−π+) �101/�96�(K+K∗0(800), K∗0 → K−π+)/�(K+K−π+) �101/�96�(K+K∗0(800), K∗0 → K−π+)/�(K+K−π+) �101/�96�(K+K∗0(800), K∗0 → K−π+)/�(K+K−π+) �101/�96This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT7.0±0.8+3.5
−2.07.0±0.8+3.5
−2.07.0±0.8+3.5
−2.07.0±0.8+3.5
−2.0 RUBIN 08 CLEO Dalitz �t, 19,458±163 evts�(a0(1450)0π+, a00 → K+K−)/�(K+K−π+) �102/�96�(a0(1450)0π+, a00 → K+K−)/�(K+K−π+) �102/�96�(a0(1450)0π+, a00 → K+K−)/�(K+K−π+) �102/�96�(a0(1450)0π+, a00 → K+K−)/�(K+K−π+) �102/�96This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT4.6±0.6+7.2
−1.84.6±0.6+7.2
−1.84.6±0.6+7.2
−1.84.6±0.6+7.2
−1.8 RUBIN 08 CLEO Dalitz �t, 19,458±163 evts�(

φ(1680)π+, φ→ K+K−)/�(K+K−π+) �103/�96�(

φ(1680)π+, φ→ K+K−)/�(K+K−π+) �103/�96�(

φ(1680)π+, φ→ K+K−)/�(K+K−π+) �103/�96�(

φ(1680)π+, φ→ K+K−)/�(K+K−π+) �103/�96This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT0.51±0.11+0.37
−0.160.51±0.11+0.37
−0.160.51±0.11+0.37
−0.160.51±0.11+0.37
−0.16 RUBIN 08 CLEO Dalitz �t, 19,458±163 evts�(K∗(892)+K0S)/�(K0S π+) �111/�38�(K∗(892)+K0S)/�(K0S π+) �111/�38�(K∗(892)+K0S)/�(K0S π+) �111/�38�(K∗(892)+K0S)/�(K0S π+) �111/�38Unseen de
ay modes of the K∗(892)+ are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT1.1±0.3±0.41.1±0.3±0.41.1±0.3±0.41.1±0.3±0.4 67 FRABETTI 95 E687 γBe Eγ ≈ 200 GeV�(

φπ+π0)/�total �108/��(

φπ+π0)/�total �108/��(

φπ+π0)/�total �108/��(

φπ+π0)/�total �108/�Unseen de
ay modes of the φ are in
luded.VALUE DOCUMENT ID TECN COMMENT0.023±0.0100.023±0.0100.023±0.0100.023±0.010 1 BARLAG 92C ACCM π− Cu 230 GeV1BARLAG 92C 
omputes the bran
hing fra
tion using topologi
al normalization.�(

φρ+)/�(K−2π+) �109/�40�(

φρ+)/�(K−2π+) �109/�40�(

φρ+)/�(K−2π+) �109/�40�(

φρ+)/�(K−2π+) �109/�40Unseen de
ay modes of the φ are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<0.16<0.16<0.16<0.16 90 DAOUDI 92 CLEO e+ e− ≈ 10.5 GeV�(K+K−π+π0 non-φ)/�total �110/��(K+K−π+π0 non-φ)/�total �110/��(K+K−π+π0 non-φ)/�total �110/��(K+K−π+π0 non-φ)/�total �110/�VALUE DOCUMENT ID TECN COMMENT0.015+0.007

−0.0060.015+0.007
−0.0060.015+0.007
−0.0060.015+0.007
−0.006 1 BARLAG 92C ACCM π− Cu 230 GeV1BARLAG 92C 
omputes the bran
hing fra
tion using topologi
al normalization.�(K+K−π+π0 non-φ)/�(K−2π+) �110/�40�(K+K−π+π0 non-φ)/�(K−2π+) �110/�40�(K+K−π+π0 non-φ)/�(K−2π+) �110/�40�(K+K−π+π0 non-φ)/�(K−2π+) �110/�40VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.25 90 ANJOS 89E E691 Photoprodu
tion�(K+K0S π+π−)/�(K0S 2π+π−) �105/�61�(K+K0S π+π−)/�(K0S 2π+π−) �105/�61�(K+K0S π+π−)/�(K0S 2π+π−) �105/�61�(K+K0S π+π−)/�(K0S 2π+π−) �105/�61VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.62±0.39±0.405.62±0.39±0.405.62±0.39±0.405.62±0.39±0.40 469 ± 32 LINK 01C FOCS γ nu
leus, Eγ ≈ 180 GeV



1056105610561056MesonParti
le ListingsD±�(K0S K−2π+)/�(K0S 2π+π−) �106/�61�(K0S K−2π+)/�(K0S 2π+π−) �106/�61�(K0S K−2π+)/�(K0S 2π+π−) �106/�61�(K0S K−2π+)/�(K0S 2π+π−) �106/�61VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT7.68±0.41±0.327.68±0.41±0.327.68±0.41±0.327.68±0.41±0.32 670 ± 35 LINK 01C FOCS γ nu
leus, Eγ ≈ 180 GeV�(K+K−2π+π−)/�(K−3π+π−) �107/�62�(K+K−2π+π−)/�(K−3π+π−) �107/�62�(K+K−2π+π−)/�(K−3π+π−) �107/�62�(K+K−2π+π−)/�(K−3π+π−) �107/�62VALUE EVTS DOCUMENT ID TECN COMMENT0.040±0.009±0.0190.040±0.009±0.0190.040±0.009±0.0190.040±0.009±0.019 38 LINK 03D FOCS γ A, Eγ ≈ 180 GeVDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modes�(K+π0)/�total �112/��(K+π0)/�total �112/��(K+π0)/�total �112/��(K+π0)/�total �112/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.89±0.25 OUR FIT1.89±0.25 OUR FIT1.89±0.25 OUR FIT1.89±0.25 OUR FIT Error in
ludes s
ale fa
tor of 1.2.2.52±0.47±0.262.52±0.47±0.262.52±0.47±0.262.52±0.47±0.26 189 ± 37 AUBERT,B 06F BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.28±0.36±0.17 148 ± 23 DYTMAN 06 CLEO See MENDEZ 10�(K+π0)/�(K−2π+) �112/�40�(K+π0)/�(K−2π+) �112/�40�(K+π0)/�(K−2π+) �112/�40�(K+π0)/�(K−2π+) �112/�40VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.00±0.26 OUR FIT2.00±0.26 OUR FIT2.00±0.26 OUR FIT2.00±0.26 OUR FIT Error in
ludes s
ale fa
tor of 1.3.1.9 ±0.2 ±0.11.9 ±0.2 ±0.11.9 ±0.2 ±0.11.9 ±0.2 ±0.1 343 ± 37 MENDEZ 10 CLEO e+ e− at 3774 MeV�(K+η

)/�(

ηπ+) �113/�90�(K+η
)/�(

ηπ+) �113/�90�(K+η
)/�(

ηπ+) �113/�90�(K+η
)/�(

ηπ+) �113/�90VALUE (%) EVTS DOCUMENT ID TECN COMMENT3.06±0.43±0.143.06±0.43±0.143.06±0.43±0.143.06±0.43±0.14 166 ± 23 WON 11 BELL e+ e− ≈ �(4S)�(K+η
)/�(K−2π+) �113/�40�(K+η
)/�(K−2π+) �113/�40�(K+η
)/�(K−2π+) �113/�40�(K+η
)/�(K−2π+) �113/�40Unseen de
ay modes of the η are in
luded.VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.15 90 MENDEZ 10 CLEO e+ e− at 3774 MeV�(K+η′(958))/�(

η′(958)π+) �114/�93�(K+η′(958))/�(

η′(958)π+) �114/�93�(K+η′(958))/�(

η′(958)π+) �114/�93�(K+η′(958))/�(

η′(958)π+) �114/�93VALUE (%) EVTS DOCUMENT ID TECN COMMENT3.77±0.39±0.103.77±0.39±0.103.77±0.39±0.103.77±0.39±0.10 180 ± 19 WON 11 BELL e+ e− ≈ �(4S)�(K+η′(958))/�(K−2π+) �114/�40�(K+η′(958))/�(K−2π+) �114/�40�(K+η′(958))/�(K−2π+) �114/�40�(K+η′(958))/�(K−2π+) �114/�40Unseen de
ay modes of the η′(958) are in
luded.VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.20 90 MENDEZ 10 CLEO e+ e− at 3774 MeV�(K+π+π−)/�(K−2π+) �115/�40�(K+π+π−)/�(K−2π+) �115/�40�(K+π+π−)/�(K−2π+) �115/�40�(K+π+π−)/�(K−2π+) �115/�40VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT5.77±0.22 OUR AVERAGE5.77±0.22 OUR AVERAGE5.77±0.22 OUR AVERAGE5.77±0.22 OUR AVERAGE5.69±0.18±0.14 2638 ± 84 KO 09 BELL e+ e− at �(4S)6.5 ±0.8 ±0.4 189 ± 24 LINK 04F FOCS γ A, Eγ≈ 180 GeV7.7 ±1.7 ±0.8 59 ± 13 AITALA 97C E791 π− A, 500 GeV7.2 ±2.3 ±1.7 21 FRABETTI 95E E687 γBe, Eγ= 220 GeV�(K+ρ0)/�(K+π+π−) �116/�115�(K+ρ0)/�(K+π+π−) �116/�115�(K+ρ0)/�(K+π+π−) �116/�115�(K+ρ0)/�(K+π+π−) �116/�115This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.39 ±0.09 OUR AVERAGE0.39 ±0.09 OUR AVERAGE0.39 ±0.09 OUR AVERAGE0.39 ±0.09 OUR AVERAGE0.3943±0.0787±0.0815 LINK 04F FOCS Dalitz �t, 189 evts0.37 ±0.14 ±0.07 AITALA 97C E791 Dalitz �t, 59 evts�(K+ f0(980), f0(980)→ π+π−)/�(K+π+π−) �118/�115�(K+ f0(980), f0(980)→ π+π−)/�(K+π+π−) �118/�115�(K+ f0(980), f0(980)→ π+π−)/�(K+π+π−) �118/�115�(K+ f0(980), f0(980)→ π+π−)/�(K+π+π−) �118/�115This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.0892±0.0333±0.04120.0892±0.0333±0.04120.0892±0.0333±0.04120.0892±0.0333±0.0412 LINK 04F FOCS Dalitz �t, 189 evts�(K∗(892)0π+ ,K∗(892)0 → K+π−)/�(K+π+π−) �117/�115�(K∗(892)0π+ ,K∗(892)0 → K+π−)/�(K+π+π−) �117/�115�(K∗(892)0π+ ,K∗(892)0 → K+π−)/�(K+π+π−) �117/�115�(K∗(892)0π+ ,K∗(892)0 → K+π−)/�(K+π+π−) �117/�115This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.47 ±0.08 OUR AVERAGE0.47 ±0.08 OUR AVERAGE0.47 ±0.08 OUR AVERAGE0.47 ±0.08 OUR AVERAGE0.5220±0.0684±0.0638 LINK 04F FOCS Dalitz �t, 189 evts0.35 ±0.14 ±0.01 AITALA 97C E791 Dalitz �t, 59 evts�(K∗2(1430)0π+ ,K∗2(1430)0 → K+π−)/�(K+π+π−) �119/�115�(K∗2(1430)0π+ ,K∗2(1430)0 → K+π−)/�(K+π+π−) �119/�115�(K∗2(1430)0π+ ,K∗2(1430)0 → K+π−)/�(K+π+π−) �119/�115�(K∗2(1430)0π+ ,K∗2(1430)0 → K+π−)/�(K+π+π−) �119/�115This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.0803±0.0372±0.03910.0803±0.0372±0.03910.0803±0.0372±0.03910.0803±0.0372±0.0391 LINK 04F FOCS Dalitz �t, 189 evts�(K+π+π−nonresonant)/�(K+π+π−) �120/�115�(K+π+π−nonresonant)/�(K+π+π−) �120/�115�(K+π+π−nonresonant)/�(K+π+π−) �120/�115�(K+π+π−nonresonant)/�(K+π+π−) �120/�115This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.36±0.14±0.07 1 AITALA 97C E791 Dalitz �t, 59 evts1 LINK 04F, with three times as many events, �nds no need for a nonresonant amplitude.

�(2K+K−)/�(K−2π+) �121/�40�(2K+K−)/�(K−2π+) �121/�40�(2K+K−)/�(K−2π+) �121/�40�(2K+K−)/�(K−2π+) �121/�40VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT9.49±2.17±0.229.49±2.17±0.229.49±2.17±0.229.49±2.17±0.22 65 1 LINK 02I FOCS γ nu
leus, ≈ 180 GeV1LINK 02I �nds little eviden
e for φK+ or f0(980)K+ submodes.Rare or forbidden modesRare or forbidden modesRare or forbidden modesRare or forbidden modes�(

π+ e+ e−)/�total �122/��(

π+ e+ e−)/�total �122/��(

π+ e+ e−)/�total �122/��(

π+ e+ e−)/�total �122/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−6<1.1× 10−6<1.1× 10−6<1.1× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5.9× 10−6 90 1 RUBIN 10 CLEO e+ e− at ψ(3770)
<7.4× 10−6 90 HE 05A CLEO See RUBIN 10
<5.2× 10−5 90 AITALA 99G E791 π−N 500 GeV
<1.1× 10−4 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<6.6× 10−5 90 AITALA 96 E791 π−N 500 GeV
<2.5× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV
<2.6× 10−3 90 HAAS 88 CLEO e+ e− 10 GeV1This RUBIN 10 limit is for the e+ e− mass in the 
ontinuum away from the φ(1020).See the next data blo
k.�(

π+φ , φ→ e+ e−)/�total �123/��(

π+φ , φ→ e+ e−)/�total �123/��(

π+φ , φ→ e+ e−)/�total �123/��(

π+φ , φ→ e+ e−)/�total �123/�This is not a test for the �C = 1 weak neutral 
urrent, but leads to the π+ e+ e−�nal state.VALUE EVTS DOCUMENT ID TECN COMMENT(1.7+1.4
−0.9±0.1) × 10−6(1.7+1.4
−0.9±0.1) × 10−6(1.7+1.4
−0.9±0.1) × 10−6(1.7+1.4
−0.9±0.1) × 10−6 4 1 RUBIN 10 CLEO e+ e− at ψ(3770)

• • • We do not use the following data for averages, �ts, limits, et
. • • •(2.7+3.6
−1.8±0.2) × 10−6 2 HE 05A CLEO See RUBIN 101This RUBIN 10 result is 
onsistent with the known D+ → φπ+ and φ → e+ e−fra
tions.�(

π+µ+µ−)/�total �124/��(

π+µ+µ−)/�total �124/��(

π+µ+µ−)/�total �124/��(

π+µ+µ−)/�total �124/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<7.3× 10−8<7.3× 10−8<7.3× 10−8<7.3× 10−8 90 AAIJ 13AF LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.5× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
<3.9× 10−6 90 1 ABAZOV 08D D0 pp, E
m = 1.96 TeV
<8.8× 10−6 90 LINK 03F FOCS γ A, Eγ≈ 180 GeV
<1.5× 10−5 90 AITALA 99G E791 π−N 500 GeV
<8.9× 10−5 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<1.8× 10−5 90 AITALA 96 E791 π−N 500 GeV
<2.2× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV
<5.9× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV
<2.9× 10−3 90 HAAS 88 CLEO e+ e− 10 GeV1This ABAZOV 08D limit is for the µ+µ− mass in the 
ontinuum away from the φ(1020).See the next data blo
k.�(

π+φ, φ→ µ+µ−)/�total �125/��(

π+φ, φ→ µ+µ−)/�total �125/��(

π+φ, φ→ µ+µ−)/�total �125/��(

π+φ, φ→ µ+µ−)/�total �125/�This is not a test for the �C = 1 weak neutral 
urrent, but leads to the π+µ+µ−�nal state.VALUE DOCUMENT ID TECN COMMENT(1.8±0.5±0.6)× 10−6(1.8±0.5±0.6)× 10−6(1.8±0.5±0.6)× 10−6(1.8±0.5±0.6)× 10−6 1 ABAZOV 08D D0 pp, E
m = 1.96 TeV1This ABAZOV 08D value is 
onsistent with the known D+ → φπ+ and φ → µ+µ−fra
tions.�(

ρ+µ+µ−)/�total �126/��(

ρ+µ+µ−)/�total �126/��(

ρ+µ+µ−)/�total �126/��(

ρ+µ+µ−)/�total �126/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<5.6× 10−4<5.6× 10−4<5.6× 10−4<5.6× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV�(K+ e+ e−)/�total �127/��(K+ e+ e−)/�total �127/��(K+ e+ e−)/�total �127/��(K+ e+ e−)/�total �127/�Both quarks would have to 
hange 
avor for this de
ay to o

ur.VALUE CL% DOCUMENT ID TECN COMMENT
<1.0× 10−6<1.0× 10−6<1.0× 10−6<1.0× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.0× 10−6 90 RUBIN 10 CLEO e+ e− at ψ(3770)
<6.2× 10−6 90 HE 05A CLEO See RUBIN 10
<2.0× 10−4 90 AITALA 99G E791 π−N 500 GeV
<2.0× 10−4 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<4.8× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV



1057105710571057See key on page 601 MesonParti
le ListingsD±�(K+µ+µ−)/�total �128/��(K+µ+µ−)/�total �128/��(K+µ+µ−)/�total �128/��(K+µ+µ−)/�total �128/�Both quarks would have to 
hange 
avor for this de
ay to o

ur.VALUE CL% DOCUMENT ID TECN COMMENT
<4.3× 10−6<4.3× 10−6<4.3× 10−6<4.3× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9.2× 10−6 90 LINK 03F FOCS γ A, Eγ≈ 180 GeV
<4.4× 10−5 90 AITALA 99G E791 π−N 500 GeV
<9.7× 10−5 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<3.2× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV
<9.2× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV�(π+ e+µ−)/�total �129/��(π+ e+µ−)/�total �129/��(π+ e+µ−)/�total �129/��(π+ e+µ−)/�total �129/�A test of lepton-family-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<2.9× 10−6<2.9× 10−6<2.9× 10−6<2.9× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.1× 10−4 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<3.3× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV�(π+ e−µ+)/�total �130/��(π+ e−µ+)/�total �130/��(π+ e−µ+)/�total �130/��(π+ e−µ+)/�total �130/�A test of lepton-family-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<3.6× 10−6<3.6× 10−6<3.6× 10−6<3.6× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.3× 10−4 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<3.3× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV�(K+ e+µ−)/�total �131/��(K+ e+µ−)/�total �131/��(K+ e+µ−)/�total �131/��(K+ e+µ−)/�total �131/�A test of lepton-family-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−6<1.2× 10−6<1.2× 10−6<1.2× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.3× 10−4 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<3.4× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV�(K+ e−µ+)/�total �132/��(K+ e−µ+)/�total �132/��(K+ e−µ+)/�total �132/��(K+ e−µ+)/�total �132/�A test of lepton-family-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<2.8× 10−6<2.8× 10−6<2.8× 10−6<2.8× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.2× 10−4 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<3.4× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV�(π− 2e+)/�total �133/��(π− 2e+)/�total �133/��(π− 2e+)/�total �133/��(π− 2e+)/�total �133/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−6<1.1× 10−6<1.1× 10−6<1.1× 10−6 90 RUBIN 10 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.9× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
<3.6× 10−6 90 HE 05A CLEO See RUBIN 10
<9.6× 10−5 90 AITALA 99G E791 π−N 500 GeV
<1.1× 10−4 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<4.8× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV�(π− 2µ+)/�total �134/��(π− 2µ+)/�total �134/��(π− 2µ+)/�total �134/��(π− 2µ+)/�total �134/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<2.2× 10−8<2.2× 10−8<2.2× 10−8<2.2× 10−8 90 AAIJ 13AF LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2.0× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
<4.8× 10−6 90 LINK 03F FOCS γ A, Eγ≈ 180 GeV
<1.7× 10−5 90 AITALA 99G E791 π−N 500 GeV
<8.7× 10−5 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<2.2× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV
<6.8× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV�(π− e+µ+)/�total �135/��(π− e+µ+)/�total �135/��(π− e+µ+)/�total �135/��(π− e+µ+)/�total �135/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<2.0× 10−6<2.0× 10−6<2.0× 10−6<2.0× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5.0× 10−5 90 AITALA 99G E791 π−N 500 GeV
<1.1× 10−4 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<3.7× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV�(ρ−2µ+)/�total �136/��(ρ−2µ+)/�total �136/��(ρ−2µ+)/�total �136/��(ρ−2µ+)/�total �136/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<5.6× 10−4<5.6× 10−4<5.6× 10−4<5.6× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV

�(K−2e+)/�total �137/��(K−2e+)/�total �137/��(K−2e+)/�total �137/��(K−2e+)/�total �137/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<0.9× 10−6<0.9× 10−6<0.9× 10−6<0.9× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.5× 10−6 90 RUBIN 10 CLEO e+ e− at ψ(3770)
<4.5× 10−6 90 HE 05A CLEO See RUBIN 10
<1.2× 10−4 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<9.1× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV�(K−2µ+)/�total �138/��(K−2µ+)/�total �138/��(K−2µ+)/�total �138/��(K−2µ+)/�total �138/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<10 × 10−6<10 × 10−6<10 × 10−6<10 × 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.3× 10−5 90 LINK 03F FOCS γ A, Eγ≈ 180 GeV
< 1.2× 10−4 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
< 3.2× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV
< 4.3× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV�(K− e+µ+)/�total �139/��(K− e+µ+)/�total �139/��(K− e+µ+)/�total �139/��(K− e+µ+)/�total �139/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.9× 10−6<1.9× 10−6<1.9× 10−6<1.9× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.3× 10−4 90 FRABETTI 97B E687 γ Be, Eγ ≈ 220 GeV
<4.0× 10−3 90 WEIR 90B MRK2 e+ e− 29 GeV�(K∗(892)− 2µ+)/�total �140/��(K∗(892)− 2µ+)/�total �140/��(K∗(892)− 2µ+)/�total �140/��(K∗(892)− 2µ+)/�total �140/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<8.5× 10−4<8.5× 10−4<8.5× 10−4<8.5× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeVD± CP-VIOLATING DECAY-RATE ASYMMETRIESD± CP-VIOLATING DECAY-RATE ASYMMETRIESD± CP-VIOLATING DECAY-RATE ASYMMETRIESD± CP-VIOLATING DECAY-RATE ASYMMETRIESThis is the di�eren
e between D+ and D− partial widths for the de
ayto state f , divided by the sum of the widths:ACP (f )= [�(D+ → f ) − �(D− → f )℄/[�(D+ → f ) + �(D− → f )℄.ACP (µ± ν) in D+ → µ+νµ, D− → µ−νµACP (µ± ν) in D+ → µ+νµ, D− → µ−νµACP (µ± ν) in D+ → µ+νµ, D− → µ−νµACP (µ± ν) in D+ → µ+νµ, D− → µ−νµVALUE (%) DOCUMENT ID TECN COMMENT+8±8+8±8+8±8+8±8 EISENSTEIN 08 CLEO e+ e− at ψ(3770)ACP (K0L e±ν) in D+ → K0L e+νe , D− → K0L e− νeACP (K0L e±ν) in D+ → K0L e+νe , D− → K0L e− νeACP (K0L e±ν) in D+ → K0L e+νe , D− → K0L e− νeACP (K0L e±ν) in D+ → K0L e+νe , D− → K0L e− νeVALUE (%) DOCUMENT ID TECN COMMENT
−0.59±0.60±1.48−0.59±0.60±1.48−0.59±0.60±1.48−0.59±0.60±1.48 ABLIKIM 15AF BES3 e+ e− 3773 MeVACP (K0S π±) in D± → K0S π±ACP (K0S π±) in D± → K0S π±ACP (K0S π±) in D± → K0S π±ACP (K0S π±) in D± → K0S π±VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−0.41 ±0.09 OUR AVERAGE−0.41 ±0.09 OUR AVERAGE−0.41 ±0.09 OUR AVERAGE−0.41 ±0.09 OUR AVERAGE
−1.1 ±0.6 ±0.2 BONVICINI 14 CLEO All CLEO-
 runs
−0.363±0.094±0.067 1738k 1 KO 12A BELL e+ e− ≈ �(nS)
−0.44 ±0.13 ±0.10 807k DEL-AMO-SA...11H BABR e+ e− ≈ �(4S)
−1.6 ±1.5 ±0.9 10.6k 2 LINK 02B FOCS γ nu
leus, Eγ ≈ 180 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.71 ±0.19 ±0.20 KO 10 BELL See KO 12A
−1.3 ±0.7 ±0.3 30k MENDEZ 10 CLEO See BONVICINI 14
−0.6 ±1.0 ±0.3 DOBBS 07 CLEO See MENDEZ 101KO 12A �nds that after subtra
ting the 
ontribution due to K0 − K0 mixing, the CPasymmetry due to the 
hange of 
harm is (−0.024 ± 0.094 ± 0.067)%, 
onsistent withzero.2 LINK 02B measures N(D+ → K0S π+)/N(D+ → K−π+π+), the ratio of numbersof events observed, and similarly for the D−.ACP (K∓2π±) in D+ → K−2π+, D− → K+2π−ACP (K∓2π±) in D+ → K−2π+, D− → K+2π−ACP (K∓2π±) in D+ → K−2π+, D− → K+2π−ACP (K∓2π±) in D+ → K−2π+, D− → K+2π−VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−0.18±0.16 OUR AVERAGE−0.18±0.16 OUR AVERAGE−0.18±0.16 OUR AVERAGE−0.18±0.16 OUR AVERAGE
−0.16±0.15±0.09 2.3M ABAZOV 14L D0 pp, √s = 1.96 TeV
−0.3 ±0.2 ±0.4 BONVICINI 14 CLEO All CLEO-
 runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.1 ±0.4 ±0.9 231k MENDEZ 10 CLEO See BONVICINI 14
−0.5 ±0.4 ±0.9 DOBBS 07 CLEO See MENDEZ 10ACP (K∓π±π±π0) in D+ → K−π+π+π0, D− → K+π−π−π0ACP (K∓π±π±π0) in D+ → K−π+π+π0, D− → K+π−π−π0ACP (K∓π±π±π0) in D+ → K−π+π+π0, D− → K+π−π−π0ACP (K∓π±π±π0) in D+ → K−π+π+π0, D− → K+π−π−π0VALUE (%) DOCUMENT ID TECN COMMENT
−0.3±0.6±0.4−0.3±0.6±0.4−0.3±0.6±0.4−0.3±0.6±0.4 BONVICINI 14 CLEO All CLEO-
 runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.0±0.9±0.9 DOBBS 07 CLEO See BONVICINI 14ACP (K0S π±π0) in D+ → K0S π+π0, D− → K0S π−π0ACP (K0S π±π0) in D+ → K0S π+π0, D− → K0S π−π0ACP (K0S π±π0) in D+ → K0S π+π0, D− → K0S π−π0ACP (K0S π±π0) in D+ → K0S π+π0, D− → K0S π−π0VALUE (%) DOCUMENT ID TECN COMMENT
−0.1±0.7±0.2−0.1±0.7±0.2−0.1±0.7±0.2−0.1±0.7±0.2 BONVICINI 14 CLEO All CLEO-
 runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.3±0.9±0.3 DOBBS 07 CLEO See BONVICINI 14



1058105810581058Meson Parti
le ListingsD±ACP (K0S π±π+π−) in D+ → K0S π+π+π−, D− → K0S π−π−π+ACP (K0S π±π+π−) in D+ → K0S π+π+π−, D− → K0S π−π−π+ACP (K0S π±π+π−) in D+ → K0S π+π+π−, D− → K0S π−π−π+ACP (K0S π±π+π−) in D+ → K0S π+π+π−, D− → K0S π−π−π+VALUE (%) DOCUMENT ID TECN COMMENT0.0±1.2±0.30.0±1.2±0.30.0±1.2±0.30.0±1.2±0.3 BONVICINI 14 CLEO All CLEO-
 runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1±1.1±0.6 DOBBS 07 CLEO See BONVICINI 14ACP (π±π0) in D± → π±π0ACP (π±π0) in D± → π±π0ACP (π±π0) in D± → π±π0ACP (π±π0) in D± → π±π0VALUE (%) EVTS DOCUMENT ID TECN COMMENT+2.9±2.9±0.3+2.9±2.9±0.3+2.9±2.9±0.3+2.9±2.9±0.3 2.6k MENDEZ 10 CLEO e+ e− at 3774 MeVACP (π± η) in D± → π± ηACP (π± η) in D± → π± ηACP (π± η) in D± → π± ηACP (π± η) in D± → π± ηVALUE (%) EVTS DOCUMENT ID TECN COMMENT1.0 ±1.5 OUR AVERAGE1.0 ±1.5 OUR AVERAGE1.0 ±1.5 OUR AVERAGE1.0 ±1.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.+1.74±1.13±0.19 WON 11 BELL e+ e− ≈ �(4S)
−2.0 ±2.3 ±0.3 2.9k MENDEZ 10 CLEO e+ e− at 3774 MeVACP (π± η′(958)) in D± → π± η′(958)ACP (π± η′(958)) in D± → π± η′(958)ACP (π± η′(958)) in D± → π± η′(958)ACP (π± η′(958)) in D± → π± η′(958)VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−0.5 ±1.2 OUR AVERAGE−0.5 ±1.2 OUR AVERAGE−0.5 ±1.2 OUR AVERAGE−0.5 ±1.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.
−0.12±1.12±0.17 WON 11 BELL e+ e− ≈ �(4S)
−4.0 ±3.4 ±0.3 1.0k MENDEZ 10 CLEO e+ e− at 3774 MeVACP (K0 /K0K±)ACP (K0 /K0K±)ACP (K0 /K0K±)ACP (K0 /K0K±)VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.11±0.17 OUR AVERAGE0.11±0.17 OUR AVERAGE0.11±0.17 OUR AVERAGE0.11±0.17 OUR AVERAGE0.03±0.17±0.14 1.0M 1 AAIJ 14BD LHCB pp at 7, 8 TeV0.08±0.28±0.14 277k KO 13 BELL e+ e− at �(4S)0.46±0.36±0.25 159k LEES 13E BABR e+ e− at �(4S)1AAIJ 14BD reports its result as ACP (D± → K0S π±) with CP-violation e�e
ts inthe K0 − K0 system subtra
ted. It also measures ACP (D± → K0 /K0K±) +ACP (D±s → K0 /K0π±) = (0.41 ± 0.49 ± 0.26)%.ACP (K0S K±) in D± → K0S K±ACP (K0S K±) in D± → K0S K±ACP (K0S K±) in D± → K0S K±ACP (K0S K±) in D± → K0S K±VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−0.11±0.25 OUR AVERAGE−0.11±0.25 OUR AVERAGE−0.11±0.25 OUR AVERAGE−0.11±0.25 OUR AVERAGE
−0.25±0.28±0.14 277k KO 13 BELL e+ e− at �(nS)0.13±0.36±0.25 159k LEES 13E BABR e+ e− at �(4S)
−0.2 ±1.5 ±0.9 5.2k MENDEZ 10 CLEO e+ e− at 3774 MeV7.1 ±6.1 ±1.2 949 1 LINK 02B FOCS γ nu
leus, Eγ ≈ 180 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.16±0.58±0.25 KO 10 BELL e+ e− ≈ �(4S)6.9 ±6.0 ±1.5 949 2 LINK 02B FOCS γ nu
leus, Eγ ≈ 180 GeV1LINK 02B measures N(D+ → K0S K+)/N(D+ → K0S π+), the ratio of numbers ofevents observed, and similarly for the D−.2 LINK 02B measures N(D+ → K0S K+)/N(D+ → K−π+π+), the ratio of numbersof events observed, and similarly for the D−.ACP (K+K−π±) in D± → K+K−π±ACP (K+K−π±) in D± → K+K−π±ACP (K+K−π±) in D± → K+K−π±ACP (K+K−π±) in D± → K+K−π±See also AAIJ 11G for a sear
h for CP asymmetry in the D± → K+K−π± Dalitzplots using 370k de
ays and four di�erent binning s
hemes. No eviden
e for CPasymmetry was found.VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.37±0.29 OUR AVERAGE0.37±0.29 OUR AVERAGE0.37±0.29 OUR AVERAGE0.37±0.29 OUR AVERAGE0.37±0.30±0.15 224k 1 LEES 13F BABR e+ e− at �(4S)
−0.03±0.84±0.29 RUBIN 08 CLEO e+ e− at 3774 MeV1.4 ±1.0 ±0.8 43k 2 AUBERT 05S BABR e+ e− at �(4S)0.6 ±1.1 ±0.5 14k 3 LINK 00B FOCS
−1.4 ±2.9 3 AITALA 97B E791 −0.062 <ACP <+0.034 (90% CL)
−3.1 ±6.8 3 FRABETTI 94I E687 −0.14 <ACP <+0.081 (90% CL)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.1 ±0.9 ±0.4 4 BONVICINI 14 CLEO See RUBIN 08
−0.1 ±1.5 ±0.8 DOBBS 07 CLEO See BONVICINI 14 andRUBIN 081This is the integrated CP asymmetry. LEES 13F also sear
hes for CP asymmetries in fourregions of the Dalitz plots (two of whi
h are listed below); in 
omparisons of binned D+and D− Dalitz plots; in parametrized �ts to those plots, in
luding 2-body submodes;and in 
omparisons of Legendre-polynomial distributions for the K+K− and K−π+systems.2AUBERT 05S measures N(D+ → K+K−π+)/N(D+s → K+K−π+), the ratio ofthe numbers of events observed, and similarly for the D−.3 FRABETTI 94I, AITALA 98C, and LINK 00B measure N(D+ → K−K+π+)/N(D+ →K−π+π+), the ratio of numbers of events observed, and similarly for the D−.4RUBIN 08 performs a dedi
ated analysis of this de
ay mode on the same dataset, withslightly better pre
ision. We therefore take it that BONVICINI 14 does not supersedeRUBIN 08's ACP result.

ACP (K±K∗0) in D+ → K+K∗0, D− → K−K∗0ACP (K±K∗0) in D+ → K+K∗0, D− → K−K∗0ACP (K±K∗0) in D+ → K+K∗0, D− → K−K∗0ACP (K±K∗0) in D+ → K+K∗0, D− → K−K∗0VALUE (%) EVTS DOCUMENT ID TECN COMMENT
− 0.3± 0.4 OUR AVERAGE− 0.3± 0.4 OUR AVERAGE− 0.3± 0.4 OUR AVERAGE− 0.3± 0.4 OUR AVERAGE
− 0.3± 0.4±0.2 73k 1 LEES 13F BABR e+ e− at �(4S)
− 0.4± 2.0±0.6 RUBIN 08 CLEO Fit-fra
tion asymmetry+ 0.9± 1.7±0.7 11k 2 AUBERT 05S BABR e+ e− at �(4S)
− 1.0± 5.0 3 AITALA 97B E791 −0.092 <ACP <+0.072 (90% CL)
−12 ±13 3 FRABETTI 94I E687 −0.33 <ACP <+0.094 (90% CL)1This LEES 13F result is for the K∓π± mass-squared between 0.4 and 1.0 GeV2, anddoes not a
tually separate out the K∗.2AUBERT 05S measures N(D+ → K+K∗0)/N(D+s → K+K−π+), the ratio of thenumbers of events observed, and similarly for the D−.3 FRABETTI 94I and AITALA 97B measure N(D+ → K+K∗(892)0)/N(D+ →K−π+π+), the ratio of numbers of events observed, and similarly for the D−.ACP (φπ±) in D± → φπ±ACP (φπ±) in D± → φπ±ACP (φπ±) in D± → φπ±ACP (φπ±) in D± → φπ±VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.09±0.19 OUR AVERAGE0.09±0.19 OUR AVERAGE0.09±0.19 OUR AVERAGE0.09±0.19 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.
−0.04±0.14±0.14 1.58M AAIJ 13W LHCB pp at 7 TeV
−0.3 ±0.3 ±0.5 97k 1 LEES 13F BABR e+ e− at �(4S)+0.51±0.28±0.05 237k STARIC 12 BELL Mainly at �(4S)
−1.8 ±1.6 +0.2

−0.4 RUBIN 08 CLEO Fit-fra
tion asymmetry+0.2 ±1.5 ±0.6 10k 2 AUBERT 05S BABR e+ e− at �(4S)
−2.8 ±3.6 3 AITALA 97B E791 −0.087 <ACP <+0.031 (90% CL)+6.6 ±8.6 3 FRABETTI 94I E687 −0.075 <ACP <+0.21 (90% CL)1This LEES 13F result is for the K+K− mass-squared less than 1.3 GeV2 and the K∓π±mass-squared above 1.0 GeV2, and does not a
tually separate out the φ.2AUBERT 05S measures N(D+ → φπ+)/N(D+s → K+K−π+), the ratio of thenumbers of events observed, and similarly for the D−.3 FRABETTI 94I and AITALA 97B measure N(D+ → φπ+)/N(D+ → K−π+π+),the ratio of numbers of events observed, and similarly for the D−.ACP (K±K∗0(1430)0) in D+ → K+K∗0(1430)0, D− → K−K∗0(1430)0ACP (K±K∗0(1430)0) in D+ → K+K∗0(1430)0, D− → K−K∗0(1430)0ACP (K±K∗0(1430)0) in D+ → K+K∗0(1430)0, D− → K−K∗0(1430)0ACP (K±K∗0(1430)0) in D+ → K+K∗0(1430)0, D− → K−K∗0(1430)0VALUE (%) DOCUMENT ID TECN COMMENT+8±6+4

−2+8±6+4
−2+8±6+4
−2+8±6+4
−2 RUBIN 08 CLEO Fit-fra
tion asymmetryACP (K±K∗2(1430)0) in D+ → K+K∗2(1430)0, D− → K−K∗2(1430)0ACP (K±K∗2(1430)0) in D+ → K+K∗2(1430)0, D− → K−K∗2(1430)0ACP (K±K∗2(1430)0) in D+ → K+K∗2(1430)0, D− → K−K∗2(1430)0ACP (K±K∗2(1430)0) in D+ → K+K∗2(1430)0, D− → K−K∗2(1430)0VALUE (%) DOCUMENT ID TECN COMMENT+43±19+ 5
−18+43±19+ 5
−18+43±19+ 5
−18+43±19+ 5
−18 RUBIN 08 CLEO Fit-fra
tion asymmetryACP (K±K∗0(800)) in D+ → K+K∗0(800), D− → K−K∗0(800)ACP (K±K∗0(800)) in D+ → K+K∗0(800), D− → K−K∗0(800)ACP (K±K∗0(800)) in D+ → K+K∗0(800), D− → K−K∗0(800)ACP (K±K∗0(800)) in D+ → K+K∗0(800), D− → K−K∗0(800)VALUE (%) DOCUMENT ID TECN COMMENT

−12±11+14
− 6−12±11+14
− 6−12±11+14
− 6−12±11+14
− 6 RUBIN 08 CLEO Fit-fra
tion asymmetryACP (a0(1450)0π±) in D± → a0(1450)0π±ACP (a0(1450)0π±) in D± → a0(1450)0π±ACP (a0(1450)0π±) in D± → a0(1450)0π±ACP (a0(1450)0π±) in D± → a0(1450)0π±VALUE (%) DOCUMENT ID TECN COMMENT

−19±12+ 8
−11−19±12+ 8
−11−19±12+ 8
−11−19±12+ 8
−11 RUBIN 08 CLEO Fit-fra
tion asymmetryACP (φ(1680)π±) in D± → φ(1680)π±ACP (φ(1680)π±) in D± → φ(1680)π±ACP (φ(1680)π±) in D± → φ(1680)π±ACP (φ(1680)π±) in D± → φ(1680)π±VALUE (%) DOCUMENT ID TECN COMMENT

−9±22±14−9±22±14−9±22±14−9±22±14 RUBIN 08 CLEO Fit-fra
tion asymmetryACP (π+π−π±) in D± → π+π−π±ACP (π+π−π±) in D± → π+π−π±ACP (π+π−π±) in D± → π+π−π±ACP (π+π−π±) in D± → π+π−π±See also AAIJ 14C for a sear
h for CP violation in D± → π+π−π± Dalitz plotsusing model-independent binned and unbinned methods. No eviden
e was found.VALUE (%) DOCUMENT ID TECN COMMENT
−1.7±4.2−1.7±4.2−1.7±4.2−1.7±4.2 1 AITALA 97B E791 −0.086 <ACP < +0.052 (90% CL)1AITALA 97B measure N(D+ → π+π−π+)/N(D+ → K−π+π+), the ratio ofnumbers of events observed, and similarly for the D−.ACP (K0S K±π+π−) in D± → K0S K±π+π−ACP (K0S K±π+π−) in D± → K0S K±π+π−ACP (K0S K±π+π−) in D± → K0S K±π+π−ACP (K0S K±π+π−) in D± → K0S K±π+π−VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−4.2±6.4±2.2−4.2±6.4±2.2−4.2±6.4±2.2−4.2±6.4±2.2 523 ± 32 LINK 05E FOCS γ A, Eγ≈ 180 GeVACP (K±π0) in D± → K±π0ACP (K±π0) in D± → K±π0ACP (K±π0) in D± → K±π0ACP (K±π0) in D± → K±π0VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−3.5±10.7±0.9−3.5±10.7±0.9−3.5±10.7±0.9−3.5±10.7±0.9 343 ± 37 MENDEZ 10 CLEO e+ e− at 3774 MeV



1059105910591059See key on page 601 MesonParti
le ListingsD±D± χ2 TESTS OF CP-VIOLATION (CPV )D± χ2 TESTS OF CP-VIOLATION (CPV )D± χ2 TESTS OF CP-VIOLATION (CPV )D± χ2 TESTS OF CP-VIOLATION (CPV )We list model-independent sear
hes for lo
al CP violation in phase-spa
edistributions of multi-body de
ays.Most of these sear
hes divide phase spa
e (Dalitz plot for 3-body de
ays,�ve-dimensional equivalent for 4-body de
ays) into bins, and perform a χ2test 
omparing normalised yields Ni , Ni in CP-
onjugate bin pairs i : χ2 =�i (Ni − α Ni )/σ(Ni −α Ni ). The fa
tor α = (�iNi )/(�iNi ) removesthe dependen
e on phase-spa
e-integrated rate asymmetries. The result isused to obtain the probability (p-value) to obtain the measured χ2 or largerunder the assumption of CP 
onservation [AUBERT 08AO, BEDIAGA 09℄.Alternative methods obtain p-values from other test variables based onunbinned analyses [WILLIAMS 11, AAIJ 14C℄. Results 
an be 
ombinedusing Fisher's method [MOSTELLER 48℄.Lo
al CPV in D± → π+π−π±Lo
al CPV in D± → π+π−π±Lo
al CPV in D± → π+π−π±Lo
al CPV in D± → π+π−π±p-value (%) EVTS DOCUMENT ID TECN COMMENT78.178.178.178.1 3.1M 1 AAIJ 14C LHCB χ21AAIJ 14C uses binned and unbinned methods, and �nds slightly better sensitivity withthe former. We took the �rst value in the table of results for the binned method.Lo
al CPV in D± → K+K−π±Lo
al CPV in D± → K+K−π±Lo
al CPV in D± → K+K−π±Lo
al CPV in D± → K+K−π±p-value (%) EVTS DOCUMENT ID TECN COMMENT31 OUR EVALUATION31 OUR EVALUATION31 OUR EVALUATION31 OUR EVALUATION72 224k LEES 13F BABR χ212.7 370k 1 AAIJ 11G LHCB χ21AAIJ 11G publishes results for several binning s
hemes. We pi
ked the �rst value in theirtable of results.CP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSCP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSCP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSCP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSATviol (K0S K±π+π−) in D± → K0S K±π+π−ATviol (K0S K±π+π−) in D± → K0S K±π+π−ATviol (K0S K±π+π−) in D± → K0S K±π+π−ATviol (K0S K±π+π−) in D± → K0S K±π+π−CT ≡ ~pK+ · (~p
π+ × ~p

π− ) is a parity-odd 
orrelation of the K+, π+, and π−momenta for the D+. CT ≡ ~pK− · (~p
π− ×~p

π+) is the 
orresponding quantity forthe D−. ThenAT ≡ [�(CT > 0)− �(CT < 0)℄ / [�(CT > 0)+ �(CT < 0)℄, andAT ≡ [�(−CT > 0)− �(−CT < 0)℄ / [�(−CT > 0)+ �(−CT < 0)℄, andATviol ≡ 12 (AT − AT ). CT and CT are 
ommonly referred to as T-odd mo-ments, be
ause they are odd under T reversal. However, the T-
onjugate pro
essK0S K±π+π− → D± is not a

essible, while the P-
onjugate pro
ess is.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT
−12.0±10.0± 4.6−12.0±10.0± 4.6−12.0±10.0± 4.6−12.0±10.0± 4.6 21.2±0.4k LEES 11E BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •23 ±62 ±22 523 ± 32 LINK 05E FOCS γ A, Eγ≈ 180 GeVD+ → (K0 /π0 /η/ω/ρ0/K∗0 )ℓ+νℓ FORM FACTORSD+ → (K0 /π0 /η/ω/ρ0/K∗0 )ℓ+νℓ FORM FACTORSD+ → (K0 /π0 /η/ω/ρ0/K∗0 )ℓ+νℓ FORM FACTORSD+ → (K0 /π0 /η/ω/ρ0/K∗0 )ℓ+νℓ FORM FACTORSf+(0)∣∣Vcs

∣

∣ in D+ → K0 ℓ+νℓf+(0)∣∣Vcs

∣

∣ in D+ → K0 ℓ+νℓf+(0)∣∣Vcs

∣

∣ in D+ → K0 ℓ+νℓf+(0)∣∣Vcs

∣

∣ in D+ → K0 ℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT0.725±0.015 OUR AVERAGE0.725±0.015 OUR AVERAGE0.725±0.015 OUR AVERAGE0.725±0.015 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.0.737±0.006±0.009 40k 1 ABLIKIM 15AF BES3 KLe+ νe 3-parameter �t0.707±0.010±0.009 2 BESSON 09 CLEO KS e+ νe 3-parameter �t1ABLIKIM 15AF �nds 0.728 ± 0.006 ± 0.011 for a 2-parameter �t.2BESSON 09 �nds 0.716 ± 0.007 ± 0.009 for a 2-parameter �t.r1 ≡ a1/a0 in D+ → K0 ℓ+νℓr1 ≡ a1/a0 in D+ → K0 ℓ+νℓr1 ≡ a1/a0 in D+ → K0 ℓ+νℓr1 ≡ a1/a0 in D+ → K0 ℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT
−1.8 ±0.4 OUR AVERAGE−1.8 ±0.4 OUR AVERAGE−1.8 ±0.4 OUR AVERAGE−1.8 ±0.4 OUR AVERAGE
−2.23±0.42±0.53 40k 1 ABLIKIM 15AF BES3 KLe+ νe 3-parameter �t
−1.66±0.44±0.10 2 BESSON 09 CLEO KS e+ νe 3-parameter �t1ABLIKIM 15AF �nds r1 = −1.91 ± 0.33 ± 0.28 for a 2-parameter �t.2BESSON 09 �nds r1 = −2.10 ± 0.25 ± 0.08 for 2-parameter �t.r2 ≡ a2/a0 in D+ → K0 ℓ+νℓr2 ≡ a2/a0 in D+ → K0 ℓ+νℓr2 ≡ a2/a0 in D+ → K0 ℓ+νℓr2 ≡ a2/a0 in D+ → K0 ℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT
− 3±12 OUR AVERAGE− 3±12 OUR AVERAGE− 3±12 OUR AVERAGE− 3±12 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.+11± 9±9 40k ABLIKIM 15AF BES3 KLe+ νe 3-parameter �t
−14±11±1 BESSON 09 CLEO KS e+ νe 3-parameter �tf+(0)∣∣Vcd

∣

∣ in D+ → π0 ℓ+νℓf+(0)∣∣Vcd

∣

∣ in D+ → π0 ℓ+νℓf+(0)∣∣Vcd

∣

∣ in D+ → π0 ℓ+νℓf+(0)∣∣Vcd

∣

∣ in D+ → π0 ℓ+νℓVALUE DOCUMENT ID TECN COMMENT0.146±0.007±0.0020.146±0.007±0.0020.146±0.007±0.0020.146±0.007±0.002 BESSON 09 CLEO π0 e+ νe 3-parameter �tr1 ≡ a1/a0 in D+ → π0 ℓ+νℓr1 ≡ a1/a0 in D+ → π0 ℓ+νℓr1 ≡ a1/a0 in D+ → π0 ℓ+νℓr1 ≡ a1/a0 in D+ → π0 ℓ+νℓVALUE DOCUMENT ID TECN COMMENT
−1.37±0.88±0.24−1.37±0.88±0.24−1.37±0.88±0.24−1.37±0.88±0.24 BESSON 09 CLEO π0 e+ νe 3-parameter �tr2 ≡ a2/a0 in D+ → π0 ℓ+νℓr2 ≡ a2/a0 in D+ → π0 ℓ+νℓr2 ≡ a2/a0 in D+ → π0 ℓ+νℓr2 ≡ a2/a0 in D+ → π0 ℓ+νℓVALUE DOCUMENT ID TECN COMMENT
−4±5±1−4±5±1−4±5±1−4±5±1 BESSON 09 CLEO π0 e+ νe 3-parameter �t

f+(0)∣∣Vcd

∣

∣ in D+ → ηe+ νef+(0)∣∣Vcd

∣

∣ in D+ → ηe+ νef+(0)∣∣Vcd

∣

∣ in D+ → ηe+ νef+(0)∣∣Vcd

∣

∣ in D+ → ηe+ νeVALUE DOCUMENT ID TECN COMMENT0.086±0.006±0.0010.086±0.006±0.0010.086±0.006±0.0010.086±0.006±0.001 YELTON 11 CLEO z expansionr1 ≡ a1/a0 in D+ → ηe+ νer1 ≡ a1/a0 in D+ → ηe+ νer1 ≡ a1/a0 in D+ → ηe+ νer1 ≡ a1/a0 in D+ → ηe+ νeVALUE DOCUMENT ID TECN COMMENT
−1.83±2.23±0.28−1.83±2.23±0.28−1.83±2.23±0.28−1.83±2.23±0.28 YELTON 11 CLEO z expansionrv ≡ V(0)/A1(0) in D+ → ω e+νerv ≡ V(0)/A1(0) in D+ → ω e+νerv ≡ V(0)/A1(0) in D+ → ω e+νerv ≡ V(0)/A1(0) in D+ → ω e+νeVALUE DOCUMENT ID TECN COMMENT1.24±0.09±0.061.24±0.09±0.061.24±0.09±0.061.24±0.09±0.06 ABLIKIM 15W BES3 292 fb−1, 3773 MeVr2 ≡ A2(0)/A1(0) in D+ → ω e+ νer2 ≡ A2(0)/A1(0) in D+ → ω e+ νer2 ≡ A2(0)/A1(0) in D+ → ω e+ νer2 ≡ A2(0)/A1(0) in D+ → ω e+ νeVALUE DOCUMENT ID TECN COMMENT1.06±0.15±0.051.06±0.15±0.051.06±0.15±0.051.06±0.15±0.05 ABLIKIM 15W BES3 292 fb−1, 3773 MeVrv ≡ V(0)/A1(0) in D+,D0 → ρe+νerv ≡ V(0)/A1(0) in D+,D0 → ρe+νerv ≡ V(0)/A1(0) in D+,D0 → ρe+νerv ≡ V(0)/A1(0) in D+,D0 → ρe+νeVALUE DOCUMENT ID TECN COMMENT1.48±0.15±0.051.48±0.15±0.051.48±0.15±0.051.48±0.15±0.05 1 DOBBS 13 CLEO e+ e− at ψ(3770)1Uses both D+ and D0 events. Using PDG 10 values of V
d and lifetimes, DOBBS 13gets A1(0) = 0.56 ± 0.01+0.02

−0.03, A2(0) = 0.47 ± 0.06 ± 0.04, and V(0) = 0.84 ±0.09+0.05
−0.06.r2 ≡ A2(0)/A1(0) in D+,D0 → ρe+ νer2 ≡ A2(0)/A1(0) in D+,D0 → ρe+ νer2 ≡ A2(0)/A1(0) in D+,D0 → ρe+ νer2 ≡ A2(0)/A1(0) in D+,D0 → ρe+ νeVALUE DOCUMENT ID TECN COMMENT0.83±0.11±0.040.83±0.11±0.040.83±0.11±0.040.83±0.11±0.04 1 DOBBS 13 CLEO e+ e− at ψ(3770)1Uses both D+ and D0 events. Using PDG 10 values of V
d and lifetimes, DOBBS 13gets A1(0) = 0.56 ± 0.01+0.02

−0.03, A2(0) = 0.47 ± 0.06 ± 0.04, and V(0) = 0.84 ±0.09+0.05
−0.06.rv ≡ V(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓrv ≡ V(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓrv ≡ V(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓrv ≡ V(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓSee also BRIERE 10 for K∗ ℓ+ νℓ heli
ity-basis form-fa
tor measurements.VALUE EVTS DOCUMENT ID TECN COMMENT1.51 ±0.07 OUR AVERAGE1.51 ±0.07 OUR AVERAGE1.51 ±0.07 OUR AVERAGE1.51 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2. See the ideogram below.1.463±0.017±0.031 1 DEL-AMO-SA...11I BABR1.504±0.057±0.039 15k 2 LINK 02L FOCS K∗(892)0µ+ νµ1.45 ±0.23 ±0.07 763 ADAMOVICH 99 BEAT K∗(892)0µ+ νµ1.90 ±0.11 ±0.09 3000 3 AITALA 98B E791 K∗(892)0 e+ νe1.84 ±0.11 ±0.09 3034 AITALA 98F E791 K∗(892)0µ+ νµ1.74 ±0.27 ±0.28 874 FRABETTI 93E E687 K∗(892)0µ+ νµ2.00 +0.34

−0.32 ±0.16 305 KODAMA 92 E653 K∗(892)0µ+ νµ

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.0 ±0.6 ±0.3 183 ANJOS 90E E691 K∗(892)0 e+ νe1DEL-AMO-SANCHEZ 11I �nds the pole mass mA = (2.63 ± 0.10 ± 0.13) GeV (mV is�xed at 2 GeV).2 LINK 02L in
ludes the e�e
ts of interferen
e with an S-wave ba
kground. This mu
himproves the goodness of �t, but does not mu
h shift the values of the form fa
tors.3This is slightly di�erent from the AITALA 98B value: see ref. [5℄ in AITALA 98F.
WEIGHTED AVERAGE
1.51±0.07 (Error scaled by 2.2)

KODAMA 92 E653
FRABETTI 93E E687
AITALA 98F E791 5.4
AITALA 98B E791 7.5
ADAMOVICH 99 BEAT
LINK 02L FOCS 0.0
DEL-AMO-SA... 11I BABR 1.8

χ2

      14.7
(Confidence Level = 0.0021)

1 1.5 2 2.5 3rv ≡ V(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr2 ≡ A2(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr2 ≡ A2(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr2 ≡ A2(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr2 ≡ A2(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓSee also BRIERE 10 for K∗ ℓ+ νℓ heli
ity-basis form-fa
tor measurements.VALUE EVTS DOCUMENT ID TECN COMMENT0.807±0.025 OUR AVERAGE0.807±0.025 OUR AVERAGE0.807±0.025 OUR AVERAGE0.807±0.025 OUR AVERAGE0.801±0.020±0.020 1 DEL-AMO-SA...11I BABR0.875±0.049±0.064 15k 2 LINK 02L FOCS K∗(892)0µ+ νµ1.00 ±0.15 ±0.03 763 ADAMOVICH 99 BEAT K∗(892)0µ+ νµ0.71 ±0.08 ±0.09 3000 AITALA 98B E791 K∗(892)0 e+ νe



1060106010601060MesonParti
le ListingsD±0.75 ±0.08 ±0.09 3034 AITALA 98F E791 K∗(892)0µ+ νµ0.78 ±0.18 ±0.10 874 FRABETTI 93E E687 K∗(892)0µ+ νµ0.82 +0.22
−0.23 ±0.11 305 KODAMA 92 E653 K∗(892)0µ+ νµ

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0 ±0.5 ±0.2 183 ANJOS 90E E691 K∗(892)0 e+ νe1DEL-AMO-SANCHEZ 11I �nds the pole mass mA = (2.63 ± 0.10 ± 0.13) GeV (mV is�xed at 2 GeV).2 LINK 02L in
ludes the e�e
ts of interferen
e with an S-wave ba
kground. This mu
himproves the goodness of �t, but does not mu
h shift the values of the form fa
tors.r3 ≡ A3(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr3 ≡ A3(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr3 ≡ A3(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr3 ≡ A3(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓSee also BRIERE 10 for K∗ ℓ+ νℓ heli
ity-basis form-fa
tor measurements.VALUE EVTS DOCUMENT ID TECN COMMENT0.04±0.33±0.290.04±0.33±0.290.04±0.33±0.290.04±0.33±0.29 3034 AITALA 98F E791 K∗(892)0µ+ νµ�L/�T in D+ → K∗(892)0 ℓ+νℓ�L/�T in D+ → K∗(892)0 ℓ+νℓ�L/�T in D+ → K∗(892)0 ℓ+νℓ�L/�T in D+ → K∗(892)0 ℓ+νℓSee also BRIERE 10 for K∗ ℓ+ νℓ heli
ity-basis form-fa
tor measurements.VALUE EVTS DOCUMENT ID TECN COMMENT1.13±0.08 OUR AVERAGE1.13±0.08 OUR AVERAGE1.13±0.08 OUR AVERAGE1.13±0.08 OUR AVERAGE1.09±0.10±0.02 763 ADAMOVICH 99 BEAT K∗(892)0µ+ νµ1.20±0.13±0.13 874 FRABETTI 93E E687 K∗(892)0µ+ νµ1.18±0.18±0.08 305 KODAMA 92 E653 K∗(892)0µ+ νµ
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.8 +0.6

−0.4 ±0.3 183 ANJOS 90E E691 K∗(892)0 e+ νe�+/�− in D+ → K∗(892)0 ℓ+νℓ�+/�− in D+ → K∗(892)0 ℓ+νℓ�+/�− in D+ → K∗(892)0 ℓ+νℓ�+/�− in D+ → K∗(892)0 ℓ+νℓSee also BRIERE 10 for K∗ ℓ+ νℓ heli
ity-basis form-fa
tor measurements.VALUE EVTS DOCUMENT ID TECN COMMENT0.22±0.06 OUR AVERAGE0.22±0.06 OUR AVERAGE0.22±0.06 OUR AVERAGE0.22±0.06 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.0.28±0.05±0.02 763 ADAMOVICH 99 BEAT K∗(892)0µ+ νµ0.16±0.05±0.02 305 KODAMA 92 E653 K∗(892)0µ+ νµ
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.15+0.07

−0.05±0.03 183 ANJOS 90E E691 K∗(892)0 e+ νeD± REFERENCESD± REFERENCESD± REFERENCESD± REFERENCESABLIKIM 15AF PR D92 112008 M. Ablikim et al. (BES III Collab.)ABLIKIM 15W PR D92 071101 M. Ablikiim et al. (BES III Collab.)AAIJ 14BD JHEP 1410 025 R. Aaij et al. (LHCb Collab.)AAIJ 14C PL B728 585 R. Aaij et al. (LHCb Collab.)ABAZOV 14L PR D90 111102 V. M. Abazov et al. (D0 Collab.)ABLIKIM 14E PR D89 052001 M. Ablikim et al. (BES III Collab.)ABLIKIM 14F PR D89 051104 M. Ablikim et al. (BES III Collab.)BONVICINI 14 PR D89 072002 G. Bonvi
ini et al. (CLEO Collab.)AAIJ 13AF PL B724 203 R. Aaij et al. (LHCb Collab.)AAIJ 13W JHEP 1306 112 R. Aaij et al. (LHCb Collab.)DOBBS 13 PRL 110 131802 S. Dobbs et al. (CLEO Collab.)KO 13 JHEP 1302 098 B.R. Ko et al. (BELLE Collab.)LEES 13E PR D87 052012 J.P. Lees et al. (BABAR Collab.)LEES 13F PR D87 052010 J.P. Lees et al. (BABAR Collab.)KO 12A PRL 109 119903 (errat.) B.R. Ko et al. (BELLE Collab.)Also PRL 109 021601 B.R. Ko et al. (BELLE Collab.)STARIC 12 PRL 108 071801 M. Stari
 et al. (BELLE Collab.)AAIJ 11G PR D84 112008 R. Aaij et al. (LHCb Collab.)DEL-AMO-SA... 11H PR D83 071103 P. del Amo San
hez et al. (BABAR Collab.)DEL-AMO-SA... 11I PR D83 072001 P. del Amo San
hez et al. (BABAR Collab.)LEES 11E PR D84 031103 J.P. Lees et al. (BABAR Collab.)LEES 11G PR D84 072006 J.P. Lees et al. (BABAR Collab.)WILLIAMS 11 PR D84 054015 M. Williams (LOIC)WON 11 PRL 107 221801 E. Won et al. (BELLE Collab.)YELTON 11 PR D84 032001 J. Yelton et al. (CLEO Collab.)ANASHIN 10A PL B686 84 V.V. Anashin et al. (VEPP-4M KEDR Collab.)ASNER 10 PR D81 052007 D.M. Asner et al. (CLEO Collab.)BRIERE 10 PR D81 112001 R.A. Briere et al. (CLEO Collab.)KO 10 PRL 104 181602 B.R. Ko et al. (BELLE Collab.)MENDEZ 10 PR D81 052013 H. Mendez et al. (CLEO Collab.)PDG 10 JP G37 075021 K. Nakamura et al. (PDG Collab.)RUBIN 10 PR D82 092007 P. Rubin et al. (CLEO Collab.)BEDIAGA 09 PR D80 096006 I. Bediaga et al. (CBPF, NDAM)BESSON 09 PR D80 032005 D. Besson et al. (CLEO Collab.)Also PR D79 052010 J.Y. Ge et al. (CLEO Collab.)KO 09 PRL 102 221802 B.R. Ko et al. (BELLE Collab.)LINK 09 PL B681 14 J.M. Link et al. (FNAL FOCUS Collab.)MITCHELL 09B PRL 102 081801 R.E. Mit
hell et al. (CLEO Collab.)WON 09 PR D80 111101 E. Won et al. (BELLE Collab.)ABAZOV 08D PRL 100 101801 V.M. Abazov et al. (D0 Collab.)ABLIKIM 08L PL B665 16 M. Ablikim et al. (BES Collab.)ARTUSO 08 PR D77 092003 M. Artuso et al. (CLEO Collab.)AUBERT 08AO PR D78 051102 B. Aubert et al. (BABAR Collab.)BONVICINI 08 PR D77 091106 G. Bonvi
ini et al. (CLEO Collab.)BONVICINI 08A PR D78 052001 G. Bonvi
ini et al. (CLEO Collab.)DOBBS 08 PR D77 112005 S. Dobbs et al. (CLEO Collab.)Also PRL 100 251802 D. Cronin-Hennessy et al. (CLEO Collab.)EISENSTEIN 08 PR D78 052003 B.I. Eisenstein et al. (CLEO Collab.)HE 08 PRL 100 091801 Q. He et al. (CLEO Collab.)PDG 08 PL B667 1 C. Amsler et al. (PDG Collab.)RUBIN 08 PR D78 072003 P. Rubin et al. (CLEO Collab.)ABLIKIM 07 PL B644 20 M. Ablikim et al. (BES Collab.)ABLIKIM 07G PL B658 1 M. Ablikim et al. (BES Collab.)BONVICINI 07 PR D76 012001 G. Bonvi
ini et al. (CLEO Collab.)DOBBS 07 PR D76 112001 S. Dobbs et al. (CLEO Collab.)LINK 07B PL B653 1 J.M. Link et al. (FNAL FOCUS Collab.)ABLIKIM 06O EPJ C47 31 M. Ablikim et al. (BES Collab.)ABLIKIM 06P EPJ C47 39 M. Ablikim et al. (BES Collab.)ABLIKIM 06U PL B643 246 M. Ablikim et al. (BES Collab.)ADAM 06A PRL 97 251801 N.E. Adam et al. (CLEO Collab.)AITALA 06 PR D73 032004 E.M. Aitala et al. (FNAL E791 Collab.)Also PR D74 059901 (errat.) E.M. Aitala et al. (FNAL E791 Collab.)AUBERT,B 06F PR D74 011107 B. Aubert et al. (BABAR Colla.b)DYTMAN 06 PR D74 071102 S.A. Dytman et al. (CLEO Collab.)HUANG 06B PR D74 112005 G.S. Huang et al. (CLEO Collab.)

LINK 06B PL B637 32 J.M. Link et al. (FNAL FOCUS Collab.)RUBIN 06 PRL 96 081802 P. Rubin et al. (CLEO Collab.)RUBIN 06A PR D73 112005 P. Rubin et al. (CLEO Collab.)ABLIKIM 05A PL B608 24 M. Ablikim et al. (BES Collab.)ABLIKIM 05D PL B610 183 M. Ablikim et al. (BES Collab.)ABLIKIM 05F PL B622 6 M. Ablikim et al. (BES Collab.)ABLIKIM 05P PL B625 196 M. Ablikim et al. (BES Collab.)ARTUSO 05A PRL 95 251801 M. Artuso et al. (CLEO Collab.)AUBERT 05S PR D71 091101 B. Aubert et al. (BABAR Collab.)HE 05 PRL 95 121801 Q. He et al. (CLEO Collab.)Also PRL 96 199903 (errat.) Q. He et al. (CLEO Collab.)HE 05A PRL 95 221802 Q. He et al. (CLEO Collab.)HUANG 05B PRL 95 181801 G.S. Huang et al. (CLEO Collab.)KAYIS-TOPAK...05 PL B626 24 A. Kayis-Topaksu et al. (CERN CHORUS Collab.)LINK 05E PL B622 239 J.M. Link et al. (FNAL FOCUS Collab.)LINK 05I PL B621 72 J.M. Link et al. (FNAL FOCUS Collab.)ABLIKIM 04C PL B597 39 M. Ablikim et al. (BEPC BES Collab.)ARMS 04 PR D69 071102 K. Arms et al. (CLEO Collab.)BONVICINI 04A PR D70 112004 G. Bonvi
ini et al. (CLEO Collab.)LINK 04 PL B585 200 J.M. Link et al. (FNAL FOCUS Collab.)LINK 04E PL B598 33 J.M. Link et al. (FNAL FOCUS Collab.)LINK 04F PL B601 10 J.M. Link et al. (FNAL FOCUS Collab.)ANISOVICH 03 EPJ A16 229 V.V. Anisovi
h et al.LINK 03D PL B561 225 J.M. Link et al. (FNAL FOCUS Collab.)LINK 03F PL B572 21 J.M. Link et al. (FNAL FOCUS Collab.)AITALA 02 PRL 89 121801 E.M. Aitala et al. (FNAL E791 Collab.)BRANDENB... 02 PRL 89 222001 G. Brandenburg et al. (CLEO Collab.)KAYIS-TOPAK...02 PL B549 48 A. Kayis-Topaksu et al. (CERN CHORUS Collab.)LINK 02B PRL 88 041602 J.M. Link et al. (FNAL FOCUS Collab.)Also PRL 88 159903 (errat.) J.M. Link et al. (FNAL FOCUS Collab.)LINK 02E PL B535 43 J.M. Link et al. (FNAL FOCUS Collab.)LINK 02F PL B537 192 J.M. Link et al. (FNAL FOCUS Collab.)LINK 02I PL B541 227 J.M. Link et al. (FNAL FOCUS Collab.)LINK 02J PL B541 243 J.M. Link et al. (FNAL FOCUS Collab.)LINK 02L PL B544 89 J.M. Link et al. (FNAL FOCUS Collab.)AITALA 01B PRL 86 770 E.M. Aitala et al. (FNAL E791 Collab.)LINK 01C PRL 87 162001 J.M. Link et al. (FNAL FOCUS Collab.)ABREU 00O EPJ C12 209 P. Abreu et al. (DELPHI Collab.)ASTIER 00D PL B486 35 P. Astier et al. (CERN NOMAD Collab.)JUN 00 PRL 84 1857 S.Y. Jun et al. (FNAL SELEX Collab.)LINK 00B PL B491 232 J.M. Link et al. (FNAL FOCUS Collab.)Also PL B495 443 (errat.) J.M. Link et al. (FNAL FOCUS Collab.)ABBIENDI 99K EPJ C8 573 G. Abbiendi et al. (OPAL Collab.)ADAMOVICH 99 EPJ C6 35 M. Adamovi
h et al. (CERN BEATRICE Collab.)AITALA 99G PL B462 401 E.M. Aitala et al. (FNAL E791 Collab.)BONVICINI 99 PRL 82 4586 G. Bonvi
ini et al. (CLEO Collab.)AITALA 98B PRL 80 1393 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 98C PL B421 405 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 98F PL B440 435 E.M. Aitala et al. (FNAL E791 Collab.)BAI 98B PL B429 188 J.Z. Bai et al. (BEPC BES Collab.)AITALA 97 PL B397 325 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 97B PL B403 377 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 97C PL B404 187 E.M. Aitala et al. (FNAL E791 Collab.)BISHAI 97 PRL 78 3261 M. Bishai et al. (CLEO Collab.)FRABETTI 97 PL B391 235 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 97B PL B398 239 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 97C PL B401 131 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 97D PL B407 79 P.L. Frabetti et al. (FNAL E687 Collab.)AITALA 96 PRL 76 364 E.M. Aitala et al. (FNAL E791 Collab.)FRABETTI 95 PL B346 199 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 95B PL B351 591 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 95E PL B359 403 P.L. Frabetti et al. (FNAL E687 Collab.)KODAMA 95 PL B345 85 K. Kodama et al. (FNAL E653 Collab.)ALBRECHT 94I ZPHY C64 375 H. Albre
ht et al. (ARGUS Collab.)BALEST 94 PRL 72 2328 R. Balest et al. (CLEO Collab.)FRABETTI 94D PL B323 459 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 94G PL B331 217 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 94I PR D50 R2953 P.L. Frabetti et al. (FNAL E687 Collab.)AKERIB 93 PRL 71 3070 D.S. Akerib et al. (CLEO Collab.)ANJOS 93 PR D48 56 J.C. Anjos et al. (FNAL E691 Collab.)FRABETTI 93E PL B307 262 P.L. Frabetti et al. (FNAL E687 Collab.)ALBRECHT 92F PL B278 202 H. Albre
ht et al. (ARGUS Collab.)ANJOS 92C PR D46 1941 J.C. Anjos et al. (FNAL E691 Collab.)BARLAG 92C ZPHY C55 383 S. Barlag et al. (ACCMOR Collab.)Also ZPHY C48 29 S. Barlag et al. (ACCMOR Collab.)COFFMAN 92B PR D45 2196 D.M. Co�man et al. (Mark III Collab.)DAOUDI 92 PR D45 3965 M. Daoudi et al. (CLEO Collab.)KODAMA 92 PL B274 246 K. Kodama et al. (FNAL E653 Collab.)KODAMA 92C PL B286 187 K. Kodama et al. (FNAL E653 Collab.)ADAMOVICH 91 PL B268 142 M.I. Adamovi
h et al. (WA82 Collab.)ALBRECHT 91 PL B255 634 H. Albre
ht et al. (ARGUS Collab.)ALVAREZ 91B ZPHY C50 11 M.P. Alvarez et al. (CERN NA14/2 Collab.)AMMAR 91 PR D44 3383 R. Ammar et al. (CLEO Collab.)BAI 91 PRL 66 1011 Z. Bai et al. (Mark III Collab.)COFFMAN 91 PL B263 135 D.M. Co�man et al. (Mark III Collab.)FRABETTI 91 PL B263 584 P.L. Frabetti et al. (FNAL E687 Collab.)ALVAREZ 90 ZPHY C47 539 M.P. Alvarez et al. (CERN NA14/2 Collab.)ANJOS 90C PR D41 2705 J.C. Anjos et al. (FNAL E691 Collab.)ANJOS 90D PR D42 2414 J.C. Anjos et al. (FNAL E691 Collab.)ANJOS 90E PRL 65 2630 J.C. Anjos et al. (FNAL E691 Collab.)BARLAG 90C ZPHY C46 563 S. Barlag et al. (ACCMOR Collab.)WEIR 90B PR D41 1384 A.J. Weir et al. (Mark II Collab.)ANJOS 89 PRL 62 125 J.C. Anjos et al. (FNAL E691 Collab.)ANJOS 89B PRL 62 722 J.C. Anjos et al. (FNAL E691 Collab.)ANJOS 89E PL B223 267 J.C. Anjos et al. (FNAL E691 Collab.)ADLER 88C PRL 60 89 J. Adler et al. (Mark III Collab.)ALBRECHT 88I PL B210 267 H. Albre
ht et al. (ARGUS Collab.)HAAS 88 PRL 60 1614 P. Haas et al. (CLEO Collab.)ONG 88 PRL 60 2587 R.A. Ong et al. (Mark II Collab.)RAAB 88 PR D37 2391 J.R. Raab et al. (FNAL E691 Collab.)ADAMOVICH 87 EPL 4 887 M.I. Adamovi
h et al. (Photon Emulsion Collab.)ADLER 87 PL B196 107 J. Adler et al. (Mark III Collab.)BARTEL 87 ZPHY C33 339 W. Bartel et al. (JADE Collab.)BALTRUSAIT... 86E PRL 56 2140 R.M. Baltrusaitis et al. (Mark III Collab.)BALTRUSAIT... 85B PRL 54 1976 R.M. Baltrusaitis et al. (Mark III Collab.)BALTRUSAIT... 85E PRL 55 150 R.M. Baltrusaitis et al. (Mark III Collab.)BARTEL 85J PL 163B 277 W. Bartel et al. (JADE Collab.)ADAMOVICH 84 PL 140B 119 M.I. Adamovi
h et al. (CERN WA58 Collab.)ALTHOFF 84G ZPHY C22 219 M. Altho� et al. (TASSO Collab.)DERRICK 84 PRL 53 1971 M. Derri
k et al. (HRS Collab.)SCHINDLER 81 PR D24 78 R.H. S
hindler et al. (Mark II Collab.)TRILLING 81 PRPL 75 57 G.H. Trilling (LBL, UCB) JZHOLENTZ 80 PL 96B 214 A.A. Zholents et al. (NOVO)Also SJNP 34 814 A.A. Zholents et al. (NOVO)Translated from YAF 34 1471.GOLDHABER 77 PL 69B 503 G. Goldhaber et al. (Mark I Collab.)PERUZZI 77 PRL 39 1301 I. Peruzzi et al. (LGW Collab.)PICCOLO 77 PL 70B 260 M. Pi

olo et al. (Mark I Collab.)PERUZZI 76 PRL 37 569 I. Peruzzi et al. (Mark I Collab.)MOSTELLER 48 Am.Stat. 3 No.5 30 R.A. Fisher, F. Mosteller



1061106110611061See key on page 601 Meson Parti
le ListingsD±, D0OTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSRICHMAN 95 RMP 67 893 J.D. Ri
hman, P.R. Bur
hat (UCSB, STAN)ROSNER 95 CNPP 21 369 J. Rosner (CHIC)D0 I (JP ) = 12 (0−)D0 MASSD0 MASSD0 MASSD0 MASSThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.Given the re
ent addition of mu
h more pre
ise measurements, we haveomitted all those masses published up through 1990. See any Reviewbefore 2015 for those earlier results.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1864.83 ±0.05 OUR FIT1864.83 ±0.05 OUR FIT1864.83 ±0.05 OUR FIT1864.83 ±0.05 OUR FIT1864.84 ±0.05 OUR AVERAGE1864.84 ±0.05 OUR AVERAGE1864.84 ±0.05 OUR AVERAGE1864.84 ±0.05 OUR AVERAGE1864.845±0.025±0.057 63k 1 TOMARADZE 14 D0 → K− 2π+π−1864.75 ±0.15 ±0.11 AAIJ 13V LHCB D0 → K+2K−π+1864.841±0.048±0.063 4.3k 2 LEES 13S BABR e+ e− at �(4S)1865.30 ±0.33 ±0.23 0.1k ANASHIN 10A KEDR e+ e−at ψ(3770)1864.847±0.150±0.095 0.3k CAWLFIELD 07 CLEO D0 → K0S φ1Obtained by analyzing CLEO-
 data but not authored by the CLEO Collaboration. Thelargest sour
e of error in the TOMARADZE 14 value is from the un
ertainties in theK− and K0S masses. The systemati
 error given above is the addition in quadrature of
±0.022 ± 0.053 MeV, where the se
ond error is from those mass un
ertainties.2The largest sour
e of error in the LEES 13S value is from the un
ertainty of the K+mass. The quoted systemati
 error is in fa
t ±0.043 + 3 (mK+ − 493.677), in MeV.mD± − mD0mD± − mD0mD± − mD0mD± − mD0The �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) DOCUMENT ID TECN COMMENT4.75±0.08 OUR FIT4.75±0.08 OUR FIT4.75±0.08 OUR FIT4.75±0.08 OUR FIT4.76±0.12±0.074.76±0.12±0.074.76±0.12±0.074.76±0.12±0.07 AAIJ 13V LHCB D+ → K+K−π+D0 MEAN LIFED0 MEAN LIFED0 MEAN LIFED0 MEAN LIFEMeasurements with an error > 10× 10−15 s have been omitted from theaverage.VALUE (10−15 s) EVTS DOCUMENT ID TECN COMMENT410.1± 1.5 OUR AVERAGE410.1± 1.5 OUR AVERAGE410.1± 1.5 OUR AVERAGE410.1± 1.5 OUR AVERAGE409.6± 1.1± 1.5 210k LINK 02F FOCS γ nu
leus, ≈ 180 GeV407.9± 6.0± 4.3 10k KUSHNIR... 01 SELX K−π+, K−π+π+π−413 ± 3 ± 4 35k AITALA 99E E791 K−π+408.5± 4.1+ 3.5

− 3.4 25k BONVICINI 99 CLE2 e+ e− ≈ �(4S)413 ± 4 ± 3 16k FRABETTI 94D E687 K−π+, K−π+π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •424 ±11 ± 7 5118 FRABETTI 91 E687 K−π+, K−π+π+π−417 ±18 ±15 890 ALVAREZ 90 NA14 K−π+, K−π+π+π−388 +23

−21 641 1 BARLAG 90C ACCM π−Cu 230 GeV480 ±40 ±30 776 ALBRECHT 88I ARG e+ e− 10 GeV422 ± 8 ±10 4212 RAAB 88 E691 Photoprodu
tion420 ±50 90 BARLAG 87B ACCM K− and π− 200 GeV1BARLAG 90C estimate systemati
 error to be negligible.
D0–D0 MIXING

Revised August 2015 by D. M. Asner (Pacific Northwest Na-
tional Laboratory)

The detailed formalism for D0 − D0 mixing is presented in

the note on “CP Violation in Meson Decays” in this Review. For

completeness, we present an overview here. The time evolution

of the D0–D0 system is described by the Schrödinger equation

i
∂

∂t

(

D0(t)

D0(t)

)

=
(

M− i
2
Γ

)

(

D0(t)

D0(t)

)

, (1)

where the M and Γ matrices are Hermitian, and CPT invari-

ance requires that M11 = M22 ≡ M and Γ11 = Γ22 ≡ Γ. The

off-diagonal elements of these matrices describe the dispersive

and absorptive parts of the mixing.

Because CP violation is expected to be quite small here, it

is convenient to label the mass eigenstates by the CP quantum

number in the limit of CP conservation. Thus, we write

|D1,2〉 = p|D0〉 ± q|D0〉 , (2)

where
(

q

p

)2

=
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

. (3)

The normalization condition is |p|2 + |q|2 = 1. Our phase con-

vention is CP |D0〉 = +|D0〉, and the sign is chosen so that D1

has CP even, or nearly so.

The corresponding eigenvalues are

ω1,2 ≡ m1,2 − i
2
Γ1,2 =

(

M − i
2
Γ
)

± q

p

(

M12 − i
2
Γ12

)

, (4)

where m1,2 and Γ1,2 are the masses and widths of the D1,2.

We define dimensionless mixing parameters x and y by

x ≡ (m1 − m2)/Γ = ∆m/Γ (5)

and

y ≡ (Γ1 − Γ2)/2Γ = ∆Γ/2Γ , (6)

where Γ ≡ (Γ1 + Γ2)/2. If CP is conserved, then M12 and Γ12

are real, ∆m = 2M12, ∆Γ = 2Γ12, and p = q = 1/
√

2. The

signs of ∆m and ∆Γ are to be determined experimentally.

The parameters x and y are measured in several ways. The

most precise values are obtained using the time dependence of

D decays. Since D0–D0 mixing is a small effect, the identifying

tag of the initial particle as a D0 or a D0 must be extremely

accurate. The usual tag is the charge of the distinctive slow pion

in the decay sequence D∗+→D0π+ or D∗− → D0π−. In current

experiments, the probability of mistagging is about 0.1%. The

large data samples produced at the B-factories allow the produc-

tion flavor to also be determined by fully reconstructing charm

on the “other side” of the event—significantly reducing the

mistag rate [1]. Another tag of comparable accuracy is identifi-

cation of one of the D’s produced from ψ(3770)→D0D0 decays.

Although time-dependent analyses are not possible at symmet-

ric charm-threshold facilities (the D0 and D0 do not travel

far enough), the quantum-coherent C = −1 ψ(3770) → D0D0

state provides time-integrated sensitivity [2,3].

Time-Dependent Analyses: We extend the formalism of

this Review’s note on “CP Violation in Meson Decays.” In

addition to the “right-sign” instantaneous decay amplitudes

Af ≡ 〈f |H|D0〉 and Af ≡ 〈f |H|D0〉 for final states f =

K+π−, ... and their CP conjugate f = K−π+, ..., we include

“wrong-sign” amplitudes Af ≡ 〈f |H|D0〉 and Af ≡ 〈f |H|D0〉.
It is conventional to normalize the wrong-sign decay distri-

butions to the integrated rate of right-sign decays and to express

time in units of the precisely measured neutral D-meson mean

lifetime, τD0 = 1/Γ = 2/(Γ1 + Γ2). Starting from a pure |D0〉
or |D0〉 state at t = 0, the time-dependent rates of decay
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to wrong-sign final states relative to the integrated right-sign

decay rates are, to leading order:

r(t) ≡
∣

∣〈f |H|D0(t)〉
∣

∣

2

∣

∣Af

∣

∣

2 =

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2 ∣

∣

∣
g+(t) λ−1

f + g−(t)
∣

∣

∣

2
, (7)

and

r(t) ≡
∣

∣〈f |H|D0(t)〉
∣

∣

2

∣

∣

∣
Af

∣

∣

∣

2 =

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2 ∣

∣

∣
g+(t) λ

f
+ g−(t)

∣

∣

∣

2
. (8)

where

λf ≡ qAf/pAf , λf̄ ≡ qAf̄/pAf̄ , (9)

and

g±(t) =
1

2

(

e−iz1t ± e−iz2t
)

, z1,2 =
ω1,2

Γ
. (10)

Note that a change in the convention for the relative phase of

D0 and D0 would cancel between q/p and Af/Af and leave

λf unchanged. We expand r(t) and r(t) to second order in

x and y for modes in which the ratio of decay amplitudes,

RD = |Af/Af |2, is very small.

Semileptonic decays: Consider the final state f = K+ℓ−ν̄ℓ,

where Af = A
f

= 0 in the Standard Model. The final state f is

only accessible through mixing and r(t) is

r(t) = |g−(t)|2
∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

≈ e−t

4
(x2 + y2) t2

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

. (11)

For r(t) q/p is replaced by p/q. In the Standard Model, CP

violation in charm mixing is small and |q/p| ≈ 1. In the limit of

CP conservation, r(t) = r(t), and the time-integrated mixing

rate relative to the time-integrated right-sign decay rate for

semileptonic decays is

RM =

∫ ∞

0
r(t)dt =

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2
x2 + y2

2 + x2 − y2
≈ 1

2
(x2 + y2) . (12)

Table 1: Results for RM in D0 semileptonic decays.

Year Exper. Final stat. RM (×10−3) 90% C.L.

2008 Belle [4] K(∗)+e−νe 0.13±0.22±0.20 < 0.61 × 10−3

2007 BaBar [1] K(∗)+e−νe 0.04+0.70
−0.60 (−1.3, 1.2)× 10−3

2005∗ Belle [5] K(∗)+e−νe 0.02±0.47±0.14 < 1.0 × 10−3

2005 CLEO [6] K(∗)+e−νe 1.6±2.9±2.9 < 7.8 × 10−3

2004∗ BaBar [7] K(∗)+e−νe 2.3±1.2±0.4 < 4.2 × 10−3

2002∗ FOCUS [8] K+µ−νµ −0.76+0.99
−0.93 < 1.01 × 10−3

1996 E791 [9] K+ℓ−νℓ (1.1+3.0
−2.7) × 10−3 < 5.0 × 10−3

HFAG [10] 0.13 ± 0.27

*These measurements are excluded from the HFAG average.

The FOCUS result is unpublished, the statistical correlation

of the BaBar result with Ref. 1 has not been established, and

the Belle result is superseded by Ref. 4. The HFAG average

assumes reported statistical and systematic uncertainties are

uncorrelated.

Table 1 summarizes results for RM from semileptonic de-

cays; the world average from the Heavy Flavor Averaging Group

(HFAG) [10] is RM = (1.30 ± 2.69) × 10−4.

Wrong-sign decays to hadronic non-CP eigenstates:

Consider the final state f = K+π−, where Af is doubly

Cabibbo-suppressed. The ratio of decay amplitudes is

Af

Af

= −
√

RD e−iδf ,

∣

∣

∣

∣

∣

Af

Af

∣

∣

∣

∣

∣

∼ O(tan2 θc) , (13)

where RD is the doubly Cabibbo-suppressed (DCS) decay rate

relative to the Cabibbo-favored (CF) rate, δf is the strong

phase difference between DCS and CF processes, and θc is the

Cabibbo angle. The minus sign originates from the sign of Vus

relative to Vcd.

We characterize the violation of CP with the real-valued

parameters AM , AD, and φ. We adopt the parametrization

(see Refs. 11 and 12)

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

=

√

1 + AM

1 − AM
, (14)

λ−1
f ≡ pAf

qAf

= −
√

RD

(

(1 + AD)(1 − AM )

(1 − AD)(1 + AM )

)1/4

e−i(δf +φ) ,

(15)

λ
f
≡

qA
f

pAf

= −
√

RD

(

(1 − AD)(1 + AM )

(1 + AD)(1 − AM )

)1/4

e−i(δf−φ) ,

(16)

and AD is a measure of direct CP violation, while AM is a

measure of CP violation in mixing. From these relations, we

obtain
√

1 + AD

1 − AD
=

|Af/Af |
|A

f
/A

f
|

, (17)

The angle φ measures CP violation in interference between

mixing and decay. While AM is independent of the decay

process, AD and φ, in general, depend on f .

In general, λ
f

and λ−1
f are independent complex numbers.

More detail on CP violation in meson decays can be found in

Ref. 13. To leading order, for AD and AM ≪ 1,

r(t)=e−t
[

RD(1 + AD) +
√

RD(1 + AM )(1 + AD) y′−t

+
1

2
(1 + AM )RM t2

]

(18)

and

r(t) = e−t
[

RD(1 − AD) +
√

RD(1 − AM )(1 − AD) y′+t

+
1

2
(1 − AM )RM t2

]

(19)

Here

y′± ≡ y′ cos φ ± x′ sin φ

= y cos(δKπ ∓ φ) − x sin(δKπ ∓ φ) , (20)
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where

x′ ≡ x cos δKπ + y sin δKπ,

y′ ≡ y cos δKπ − x sin δKπ , (21)

and RM =
(

x2 + y2
)

/2 =
(

x′2 + y′2
)

/2 is the mixing rate

relative to the time-integrated Cabibbo-favored rate.

The three terms in Eq. (18) and Eq. (19) probe the three

fundamental types of CP violation. In the limit of CP conser-

vation, AM , AD, and φ are all zero. Then

r(t) = r(t) = e−t

(

RD +
√

RD y′t +
1

2
RM t2

)

, (22)

and the time-integrated wrong-sign rate relative to the inte-

grated right-sign rate is

R =

∫ ∞

0
r(t) dt = RD +

√

RD y′ + RM . (23)

The ratio R is the most readily accessible experimental

quantity. In Table 2 are reported the measurements of R, RD

and AD in D0 → K+π−, and their HFAG average [24] from

a general fit; that allows for both mixing and CP violation.

Typically, the fit parameters are RD, x′2, and y′. Table 3

summarizes the results for x′2 and y′. Allowing for CP violation,

the separate contributions to R can be extracted by fitting the

D0→K+π− and D0→K−π+ decay rates.

Table 2: Results for R, RD, and AD in D0→K+π−.

Year Experiment R(×10−3) RD(×10−3) AD(%)

2014 Belle [14] 3.86±0.06 3.53±0.13 —
2013 LHCb [15] — 3.57±0.07 −0.7±1.9
2013 CDF [16] 4.30±0.05 3.51±0.35 —
2012∗ LHCb [17] 4.25±0.04 3.52±0.15 —
2007∗ CDF [18] 4.15±0.10 3.04±0.55 —
2007 BaBar [19] 3.53±0.08±0.04 3.03±0.16±0.10 −2.1±5.2±1.5
2006∗ Belle [20] 3.77±0.08±0.05 3.64±0.17 2.3±4.7
2005† FOCUS [21] 4.29+0.63

−0.61±0.28 5.17+1.47
−1.58±0.76 13+33

−25
±10

2000† CLEO [22] 3.32+0.63
−0.65±0.40 4.8±1.2±0.4 −1+16

−17
±1

1998† E791 [23] 6.8+3.4
−3.3±0.7 — —

Average 3.49±0.04 [24] −0.39+1.01
−1.05 [24]

∗These measurements are excluded from the HFAG average of

RD. The CDF result is superseded by Ref. 16 and the LHCb

is superseded by Ref. 15. The LHCb result is included in the

average of R. The Belle result for R and RD is superseded by

Ref. 14.
†These measurements are excluded from the HFAG average due

to poor precision.

Extraction of the mixing parameters x and y from the

results in Table 3 requires knowledge of the relative strong phase

δKπ. An interference effect that provides useful sensitivity to

δKπ arises in the decay chain ψ(3770)→D0D0→(fCP )(K+π−),

where fCP denotes a CP -even or -odd eigenstate from D0

decay, such as K+K− or K0
Sπ0, respectively [26]. Here, the

amplitude relation

Table 3: Results on the time-dependence of r(t) in D0 → K+π−

and D0 → K−π+ decays. The Belle 2014, LHCb and CDF results
assume no CP violation. The FOCUS, CLEO, and Belle 2006
results restrict x′2 to the physical region. The confidence intervals
from FOCUS, CLEO, and BaBar are obtained from the fit, whereas
Belle uses a Feldman-Cousins method, and CDF uses a Bayesian
method.

Year Exper. y′ (%) x′ 2 (×10−3)

2014∗† Belle [14] 0.46±0.34 0.09±0.22

2013 LHCb [15] 0.48±0.10 0.055±0.049

2013 CDF [16] 0.43±0.43 0.08±0.18

2012∗ LHCb [17] 0.72±0.24 −0.09±0.13

2007∗ CDF [18] 0.85±0.76 −0.12±0.35

2007 BaBar [19] 0.97±0.44±0.31 −0.22±0.30±0.21

2006† Belle [20] −2.8 < y′ < 2.1 < 0.72 (95% C.L.)

2005∗ FOCUS [21] −11.2 < y′ < 6.7 < 8.0 (95% C.L.)

2000∗ CLEO [22] −5.8 < y′ < 1.0 < 0.81 (95% C.L.)

∗These measurements are excluded from the HFAG average.

The CDF result is superseded by Ref. 16 and the LHCb result

has been superseded by Ref. 15. The CLEO and FOCUS results

are excluded due to poor precision.
† This Belle result allows for CP violation. HFAG uses this

result for the CP -violation allowed fit. This result is not super-

seded by Ref. 14.
∗† This Belle result does not allow for CP violation. HFAG

uses this result for the CP -conserving fit. This result does not

supersede Ref. 20.

√
2 A(D± → K−π+) = A(D0 → K−π+) ± A(D0 → K−π+).

(24)

where D± denotes a CP -even or -odd eigenstate, implies that

cos δKπ =
|A(D+ → K−π+)|2 − |A(D− → K−π+)|2

2
√

RD |A(D0 → K−π+)|2 . (25)

This neglects CP violation and uses
√

RD ≪ 1.

The asymmetry of CP -tagged D decays rates to K−π+ is

denoted as

ACP
Kπ ≡ |A(D− → K−π+)|2 − |A(D+ → K−π+)|2

|A(D− → K−π+)|2 + |A(D+ → K−π+)|2 . (26)

To lowest order in the mixing parameters [2,3]

2
√

RD cos δKπ + y = (1 + R)ȦCP
Kπ (27)

where R is the time-integrated wrong-sign rate relative to the

integrated right-sign rate from Eq. (23).

For multibody final states, Eqs. (13)–(23) apply separately

to each point in phase-space. Although x and y do not vary

across the space, knowledge of the resonant substructure is

needed to extrapolate the strong phase difference δ from point

to point to determine x and y. Model-independent methods

to measure D mixing parameters require input related to the

relative phases of the D0 and D0 decay amplitudes across the
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phase-space distribution [25]. The required phase information

is accessible at the charm threshold, where CLEO-c and BESIII

operate [26,27].

A time-dependent analysis of the process D0 → K+π−π0

from BaBar [28,29] determines the relative strong phase varia-

tion across the Dalitz plot and reports x′′ = (2.61+0.57
−0.68±0.39)%,

and y′′ = (−0.06+0.55
−0.64 ± 0.34)%, where x′′ and y′′ are defined as

x′′ ≡ x cos δKππ0 + y sin δKππ0 ,

y′′ ≡ y cos δKππ0 − x sin δKππ0, (28)

in parallel to x′, y′, and δKπ of Eq. (21). Here δKππ0 is the

remaining strong phase difference between the DCS D0 →
K+ρ− and the CF D0 → K+ρ− amplitudes and does not vary

across the Dalitz plot. Both strong phases, δKπ and δKππ0,

can be determined from time-integrated CP asymmetries in

correlated D0D0 produced at the ψ(3770) [26,27].

Both the sign and magnitude of x and y without phase

or sign ambiguity may be measured using the time-dependent

resonant substructure of multibody D0 decays [30,31]. In

D0 → K0
Sπ+π−, the DCS and CF decay amplitudes populate

the same Dalitz plot, which allows direct measurement of the rel-

ative strong phases. CLEO [32], Belle [31,34], and BaBar [33]

have measured the relative phase between D0 → K∗(892)−π+

and D0 → K∗(892)+π− to be (189 ± 10 ± 3+15
− 5 )◦, (173.9 ± 0.7

(stat. only))◦, and (177.6±1.1 (stat. only))◦, respectively. These

results are close to the 180◦ expected from Cabibbo factors and

a small strong phase. Table 4 summarizes the results of a

time-dependent Dalitz-plot analyses.

Table 4: Results from time-dependent Dalitz-plot
analysis of D0 → K0

Sπ+π− (CLEO and Belle) and
D0 → K0

Sπ+π−, K0
SK+K− (BaBar). The errors are

statistical, experimental systematic, and decay-model
systematic, respectively.

No CP Violation

Year Exper. x ×10−3 y ×10−3

2014 Belle [34] 5.6 ± 1.9 +0.3
−0.9

+0.6
−0.9 3.0 ± 1.5 +0.4

−0.5
+0.3
−0.8

2010 BaBar [33] 1.6±2.3±1.2±0.8 5.7±2.0±1.3±0.7

2007 Belle [31] 8.0 ± 2.9 +0.9
−0.7

+1.0
−1.4 3.3 ± 2.4 +0.8

−1.2
+0.6
−0.8

2005 CLEO [30] 19 +32
−33 ± 4 ± 4 −14 ± 24 ± 8 ± 4

With CP Violation

Year Exper. |q/p| φ

2014 Belle [34] 0.90 +0.16
−0.15

+0.05
−0.04

+0.06
−0.05 (−6 ± 11 ± 3 +3

−4)
◦

2007 Belle [31] 0.86 +0.30
−0.29

+0.06
−0.03 ± 0.08 (−14 +16

−18
+5
−3

+2
−4)

◦

In addition, Belle [31,34] has results for both the rela-

tive phase (statistical errors only) and ratio R (central values

only) of the DCS fit fraction relative to the CF fit fractions

for K∗(892)+π−, K∗
0(1430)+π−, K∗

2(1430)+π−, K∗(1410)+π−,

and K∗(1680)+π−. Similarly, BaBar [33,35,36] has reported

central values for R for K∗(892)+π−, K∗
0(1430)+π−, and

K∗
2(1430)+π−. The systematic uncertainties on R must be eval-

uated. The large differences in R among these final states could

point to an interesting role for hadronic effects.

Decays to CP Eigenstates: When the final state f is a CP

eigenstate, there is no distinction between f and f , and Af =A
f

and A
f

= Af . We denote final states with CP eigenvalues ±1

by f± and write λ± for λf± .

The quantity y may be measured by comparing the rate for

D0 decays to non-CP eigenstates such as K−π+ with decays to

CP eigenstates such as K+K− [12]. If decays to K+K− have

a shorter effective lifetime than those to K−π+, y is positive.

In the limit of slow mixing (x, y ≪ 1) and the absence of

direct CP violation (AD = 0), but allowing for small indirect

CP violation (|AM |, |φ| ≪ 1), we can write

λ± =

∣

∣

∣

∣

q

p

∣

∣

∣

∣

e±iφ . (29)

In this scenario, to a good approximation, the decay rates for

states that are initially D0 and D0 to a CP eigenstate have

exponential time dependence:

r±(t) ∝ exp (−t/τ±) , (30)

r±(t) ∝ exp (−t/τ±) , (31)

where τ is measured in units of 1/Γ.

The effective lifetimes are given by

1/τ± = 1 ±
∣

∣

∣

∣

q

p

∣

∣

∣

∣

(y cos φ − x sin φ) , (32)

1/τ± = 1 ±
∣

∣

∣

∣

p

q

∣

∣

∣

∣

(y cos φ + x sin φ) . (33)

The effective decay rate to a CP eigenstate combining both D0

and D0 decays is

r±(t) + r±(t) ∝ e−(1±yCP )t . (34)

Here

yCP =
1

2

(
∣

∣

∣

∣

q

p

∣

∣

∣

∣

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

y cos φ − 1

2

(
∣

∣

∣

∣

q

p

∣

∣

∣

∣

−
∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

x sin φ (35)

≈ y cos φ − AMx sin φ . (36)

If CP is conserved, yCP = y.

All measurements of yCP are relative to the D0 → K−π+

decay rate. Table 5 summarizes the current status of measure-

ments. Belle [41], BaBar [42], LHCb [43], CDF [39] have

reported yCP and the decay-rate asymmetry for CP even final

states (assuming AD = 0)

AΓ =
τ+ − τ+

τ+ + τ+
=

(1/τ+) − (1/τ+)

(1/τ+) + (1/τ+)
(37)

=
1

2

(
∣

∣

∣

∣

q

p

∣

∣

∣

∣

−
∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

y cos φ − 1

2

(
∣

∣

∣

∣

q

p

∣

∣

∣

∣

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

x sin φ (38)

≈ AMy cos φ − x sin φ . (39)
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Table 5: Results for yCP from D0→K+K− and π+π−.

Year Exper. final state(s) yCP (%) AΓ(×10−3)

2015 LHCb [37] K+K−, π+π− — −1.25±0.73
2015 LHCb [37] K+K− — −1.34±0.77 +0.26

−0.34

2015 LHCb [37] π+π− — −0.092±1.45 +0.25
−0.33

2015 BES III [38] K0
Sπ0, K0

Sη, K0
Sω −2.0 ± 1.3 ± 0.7 —

K+K−, π+π−,
K0

Sπ0π0

2014 CDF [39] K+K−, π+π− — −1.12±1.2
2014 CDF [39] K+K− — −1.9±1.5±0.4
2014 CDF [39] π+π− — −0.1±1.8±0.3
2013 LHCb [40] K+K− — −0.35±0.62±0.12
2013 LHCb [40] π+π− — 0.33±1.06±0.14
2012 Belle [41] K+K−,π+π− 1.11±0.22±0.11 −0.3±2.0±0.8
2012 BaBar [42] K+K−,π+π− 0.72±0.18±0.12 0.9±2.6±0.6
2011 LHCb [43] K+K− 0.55±0.63±0.41 −5.9±5.9±2.1
2009∗ BaBar [44] K+K− 1.16±0.22±0.18 —
2009 Belle [45] K0

SK+K− 0.11±0.61±0.52 —
2008∗ BaBar [46] K+K−,π+π− 1.03±0.33±0.19 2.6±3.6±0.8
2007∗ Belle [47] K+K−,π+π− 1.31±0.32±0.25 0.1±3.0±1.5
2003∗ BaBar [48] K+K−,π+π− 0.8 ± 0.4+0.5

−0.4 —

2001 CLEO [49] K+K−,π+π− −1.2±2.5±1.4 —
2001 Belle† [50] K+K− −0.5±1.0+0.7

−0.8 —

2000 FOCUS [51] K+K− 3.42±1.39±0.74 —
1999 E791 [52] K+K− 0.8±2.9±1.0 —

HFAG [24] 0.835 ± 0.155 −0.59± 0.40

∗These measurements are excluded from the HFAG average.

The BaBar result is superseded by Ref. 42 and the Belle result

has been superseded by Ref. 41.

Table 6: Results for the difference in time-integrated CP
asymmetry ∆ACP between D0→K+K− and D0→π+π−.

Year Exper. ∆ACP (×10−3)

2014 LHCb [54] 1.4±1.6±0.8

2013 LHCb [55] −3.4±1.5±1.0

2013 CDF [56] −6.2±2.1±1.0

2012 Belle [14] −8.7±4.1±0.6

2008 BaBar [57] 2.4±6.2±2.6

HFAG [24] −2.53 ± 1.04

Belle [45] has also reported yCP for the final state K0
SK+K−

which is dominated by the CP odd final state K0
Sφ. If CP is

conserved, AΓ = 0.

Substantial work on the time-integrated CP asymmetries in

decays to CP eigenstates are summarized in this Review [53].

Table 6 summarizes the current status of measurements of

the difference in time-integrated CP asymmetry, ∆ACP =

AK −Aπ, between D0 → K−K+ and D0 → π−π+. The HFAG

fit is marginally consistent with no CP violation at the 5.1%

Confidence Level [24].

Coherent D0D0 Analyses: Measurements of RD, cos δKπ,

sin δKπ, x, and y can be determined simultaneously from

a combined fit to the time-integrated single-tag (ST) and

double-tag (DT) yields in correlated D0D0 produced at the

ψ(3770) [26,27].

Due to quantum correlations in the C = −1 and C = +1

D0D0 pairs produced in the reactions e+e− → D0D0(π0) and

e+e− → D0D0γ(π0), respectively, the time-integrated D0D0

decay rates are sensitive to interference between amplitudes

for indistinguishable final states. The size of this interference

is governed by the relevant amplitude ratios and can include

contributions from D0–D0 mixing.

The following categories of final states are considered:

f or f̄: Hadronic states accessed from either D0 or D0 de-

cay but that are not CP eigenstates. An example is K−π+,

which results from Cabibbo-favored D0 transitions or DCS D0

transitions.

ℓ+ or ℓ−: Semileptonic or purely leptonic final states, which,

in the absence of mixing, tag unambiguously the flavor of the

parent D0.

f+ or f−: CP -even and CP -odd eigenstates, respectively.

The decay rates for D0D0 pairs to all possible combinations

of the above categories of final states are calculated in Ref. 2, for

both C = −1 and C = +1, reproducing the work of Ref. 3. Such

D0D0 combinations, where both D final states are specified,

are double tags. In addition, the rates for single tags, where

either the D0 or D0 is identified and the other neutral D decays

generically are given in Ref. 2.

BESIII has reported results using 2.92 pb−1 of e+e− →
ψ(3770) data where the quantum-coherent D0D0 pairs are in

the C = −1 state. The values of yCP = (−2.0± 1.3± 0.7)% [38]

and ACP
Kπ = (12.7 ± 1.3 ± 0.7)% [61] are determined from DT

yields including a CP eigenstate vs semileptonic and vs Kπ,

respectively. For yCP , the CP eigenstates included are K−K+

(f+), π+π− (f+), K0
Sπ0π0 (f+), K0

Sπ0 (f−), K0
Sη (f−), and

K0
Sω (f−).. For ACP

Kπ , the additional CP eigenstates included

are π0π0 (f+) and ρ0π0 (f+). Using the external inputs from of

RD and y from HFAG [62] and R from PDG [63]- see Eq. (27),

they obtain cos δKπ = 1.02 ± 0.11 ± 0.06 ± 0.01 [61] where the

third uncertainty is due to the external inputs.

CLEO-c has reported results using 818 pb−1 of e+e− →
ψ(3770) data [58–60]. The values of y, RM , cos δKπ, and

sin δKπ are determined from a combined fit to the ST (hadronic

only) and DT yields. The hadronic final states included are

K−π+ (f), K+π− (f̄), K−K+ (f+), π+π− (f+), K0
Sπ0π0 (f+),

K0
Lπ0 (f+), K0

Lη (f+), K0
Lω (f+), K0

Sπ0 (f−), K0
Sη (f−), K0

Sω

(f−), and K0
Lπ0π0 (f−), and K0

Sπ+π− (mixure of f ,f̄ , f+, and

f−). The two flavored final states, K−π+ and K+π−, can be

reached via CF or DCS transitions.

Semileptonic DT yields are also included, where one D is

fully reconstructed in one of the hadronic modes listed above,

and the other D is partially reconstructed in either D → Keν

or D → Kµν. When the lepton is accompanied by a flavor

tag (D → K−π+ or K+π−), both the “right-sign” and “wrong-

sign” DT samples are used, where the electron and kaon charges

are the same and opposite, respectively.

The main results of the CLEO-c analysis are the determina-

tion of cos δKπ = 0.81+0.22
−0.18

+0.07
−0.05, sin δKπ = −0.01 ± 0.49 ± 0.04,

and World Averages for the mixing parameters from an “ex-

tended” fit that combines the CLEO-c data with previous

mixing and branching-ratio measurements [60]. These fits al-

low cos δKπ, sin δKπ and x2 to be unphysical. Constraining
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cos δKπ and sin δKπ to [−1, +1]—that is interpreting δKπ as

an angle—yields δKπ = (18 +11
−17 ± 7)◦. Note that measurements

of y (Table 4 and Table 5) and y′ (Table 3) contribute to the

determination of δKπ.

Summary of Experimental Results: Several recent results

indicate that charm mixing is at the upper end of the range of

Standard Model estimates.

For D0 → K+π− , LHCb [15,17], CDF [16], and Belle [14]

each exclude the no-mixing hypothesis by more than 5 standard

deviations.

For yCP in D0 → K+K− and π+π−, Belle [41] and

BaBar [42] find 4.5σ and 3.3σ effects. The most sensitive mea-

surement of x and y is in D0 → K0
Sπ+π− from Belle [34] and

the no mixing solution is only excluded at 2.5σ. In a similar

analysis using D0 → K0
Sπ+π− and D0 → K0

SK+K− BaBar [33]

also finds the no mixing solution excluded at 1.9σ.

The current situation would benefit from better knowledge

of the strong phase difference δKπ than provided by the current

CLEO-c [60] and BESIII [61] results. This would allow one to

unfold x and y from the D0 → K+π− measurements of x′2 and

y′, and directly compare them to the D0 → K0
Sπ+π− results.

The experimental data consistently indicate that the D0

and D0 do mix. The mixing is presumably dominated by long-

range processes. Under the assumption that the observed mixing

is due entirely to non-Standard Model processes, significant

constraints on a variety of new physics models are obtained [64].

A serious limitation to the interpretation of charm oscillations

in terms of New Physics is the theoretical uncertainty of the

Standard Model prediction. The evidence for time integrated

CP -violation, ∆ACP 6= 0 is intriguing. This result is marginally

consistent with Standard Model expectation [65–67].

HFAG Averaging of Charm Mixing Results:

The Heavy Flavor Averaging Group (HFAG) has made

a global fit to all mixing measurements to obtain values of

x, y, δKπ, δ
Kππ0, RD, AD ≡ (R+

D − R−
D)/(R+

D + R−
D), |q/p|,

Arg(q/p) ≡ φ, and the time-integrated CP asymmetries AK

and Aπ. Correlations among observables are taken into ac-

count by using the error matrices from the experiments. The

measurements of D0 → K(∗)+ℓ−ν, K+K−, π+π−, K+π−,

K+π−π0, K+π−π+π−, K0
Sπ+π−, and K0

SK+K− decays, as

well as CLEO-c and BESIII results for double-tagged branching

fractions measured at the ψ(3770) are used.

For the global fit, confidence contours in the two dimensions

(x, y) and (|q/p|, φ) are obtained by letting, for any point in

the two-dimensional plane, all other fit parameters take their

preferred values. Figures 1 and 2 show the resulting 1-to-5 σ

contours. The fits exclude the no-mixing point (x = y = 0) at

more than 11.5σ, when CP violation is allowed. The fits are

consistent with no CP violation at the 27% Confidence Level.

The parameters x and y differ from zero by 2.1σ and 6.8σ,

respectively. One-dimensional likelihood functions for parame-

ters are obtained by allowing, for any value of the parameter,

all other fit parameters to take their preferred values. The
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Figure 1: Two-dimensional 1σ-5σ contours
for (x, y) from measurements of D0 →
K(∗)+ℓν, h+h−, K+π−, K+π−π0, K+π−π+π−,
K0

Sπ+π−, and K0
SK+K− decays, and double-

tagged branching fractions measured at the
ψ(3770) resonance (from HFAG [24]) .

Table 7: HFAG Charm Mixing Averages [24].

Parameter No CP CP Violation 95% C.L. Interval

Violation Allowed

x(%) 0.49 +0.14
−0.15 0.37 ± 0.16 [0.06, 0.67]

y(%) 0.61 ± 0.08 0.66+0.07
−0.10 [0.46, 0.79]

RD(%) 0.349 ± 0.004 0.349 ± 0.004 [0.342, 0.357]

δKπ(◦) 6.9 +9.7
−11.2 11.8 +9.5

−14.7 [−21.1, 29.3]

δKππ0(◦) 18.1 +23.2
−23.8 27.3 +24.4

−25.4 [−23.3, 74.8]

AD(%) — −0.39+1.01
−1.05 [−2.4, 1.5]

|q/p| — 0.91 +0.12
−0.08 [0.77, 1.14]

φ(◦) — −9.4 +11.9
−9.8 [−28.3, 12.9]

AK — −0.15 ± 0.14 [−0.42, 0.12]

Aπ — 0.10 ± 0.15 [−0.19, 0.38]

resulting likelihood functions give central values, 68.3% C.L.

intervals, and 95% C.L. intervals as listed in Table 7. The χ2

for the HFAG fit is 69 for 45 degrees of freedom indicating some

disagreement among among the measurements included in the

combination.

From the results of the HFAG averaging, the following

can be concluded: (1) Since CP violation is small and yCP is

positive, the CP -even state is shorter-lived, as in the K0K0

system; (2) However, since x appears to be positive, the CP -

even state is heavier, unlike in the K0K0 system; (3) The strong

phase difference δKπ is consistent with the SU(3) expectation of

zero but large values are not excluded; (4) There is no evidence

yet for CP -violation in D0D0 mixing. Observing CP -violation

in mixing (|q/p| 6= 1) at the current level of sensitivity would

indicate new physics.
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Figure 2: Two-dimensional 1σ-5σ contours for
(|q/p|,Arg(q/p)) from measurements of D0 →
K(∗)+ℓν, h+h−, K+π−, K+π−π0, K+π−π+π−,
K0

Sπ+π−, and K0
SK+K− decays, and double-

tagged branching fractions measured at the
ψ(3770) resonance (from HFAG [24]) .
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∣mD01 − mD02∣∣ = x �The D01 and D02 are the mass eigenstates of the D0 meson, as des
ribedin the note on \D0-D0 Mixing,' above. The experiments usually present
x ≡ �m/�. Then �m = x � = x �h/τ .\OUR EVALUATION" 
omes from CPV allowing averages provided by theHeavy Flavor Averaging Group, see the note on \D0-D0 Mixing."VALUE (1010 �h s−1) CL% DOCUMENT ID TECN COMMENT0.95+0.41
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ale fa
tor of 1.2.1 KO 14 BELL e+ e− → �(nS)1.37±0.46+0.18

−0.28 2 PENG 14 BELL e+ e− → �(nS)3 AAIJ 13CE LHCB pp at 7, 8 TeV4 AALTONEN 13AE CDF pp at 1.96 TeV0.39±0.56±0.35 5 DEL-AMO-SA...10D BABR e+ e−, 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •6 AAIJ 13N LHCB Repl. by AAIJ 13CE6.4 +1.4

−1.7 ±1.0 7 AUBERT 09AN BABR e+ e− at 10.58 GeV
− 2 +7

−6 8 LOWREY 09 CLEO e+ e− at ψ(3770)1.98±0.73+0.32
−0.41 9 ZHANG 07B BELL Repl. by PENG 14

< 7 95 10 ZHANG 06 BELL e+ e−
−11 to +22 9 ASNER 05 CLEO e+ e− ≈ 10 GeV

< 11 90 BITENC 05 BELL
< 30 90 CAWLFIELD 05 CLEO
< 7 95 10 LI 05A BELL See ZHANG 06
< 22 95 11 LINK 05H FOCS γ nu
leus
< 23 95 AUBERT 04Q BABR
< 11 95 10 AUBERT 03Z BABR e+ e−, 10.6 GeV
< 7 95 12 GODANG 00 CLE2 e+ e−
< 32 90 13,14 AITALA 98 E791 π− nu
leus, 500 GeV
< 24 90 15 AITALA 96C E791 π− nu
leus, 500 GeV
< 21 90 14,16 ANJOS 88C E691 Photoprodu
tion1Based on 976 fb−1 of data 
olle
ted at Y (nS) resonan
es. Assumes no CP violation.Reported x ′2 = (0.09± 0.22)×10−3 and y ′ = (4.6± 3.4)×10−3, where x ′ = x 
os(δ)+ y sin(δ), y ′ = y 
os(δ) − x sin(δ) and δ is the strong phase between D0 → K+π−and D0 → K+π−.2The time-dependent Dalitz-plot analysis of D0 → K0S π+π− is emplored. De
ay-time information and interferen
e on the Dalitz plot are used to distinguish doublyCabibbo-suppressed de
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os(δ) + ysin(δ), y ′ = y 
os(δ) − x sin(δ) and δ is the strong phase between the D0 → K+π−and D0 → K+π−.4Based on 9.6 fb−1 of data 
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ted at the Tevatron. Assumes no CP violation. Reportedx ′2 = (0.08 ± 0.18) × 10−3 and y ′ = (4.3 ± 4.3) × 10−3, where x ′ = x 
os(δ) + ysin(δ), y ′ = y 
os(δ) − x sin(δ) and δ is the strong phase between the D0 → K+π−and D0 → K+π−.5DEL-AMO-SANCHEZ 10D uses 540,800±800 K0S π+π− and 79,900±300 K0S K+K−events in a time-dependent amplitude analysis of the D0 and D0 Dalitz plots. Noeviden
e was found for CP violation, and the values here assume no su
h violation.6Based on 1 fb−1 of data 
olle
ted at √s = 7 TeV in 2011. Assumes no CP violation.Reported x ′2 = (−0.9± 1.3)×10−4 and y ′ = (7.2± 2.4)×10−3, where x ′ = x 
os(δ)+ y sin(δ), y ′ = y 
os(δ) − x sin(δ) and δ is the strong phase between the D0 →K+π− and D0 → K+π−.7The AUBERT 09AN values are inferred from the bran
hing ratio �(D0 → K+π−π0 viaD0)/�(D0 → K−π+π0) given near the end of this Listings. Mixing is distinguishedfrom DCS de
ays using de
ay-time information. Interferen
e between mixing and DCSis allowed. The phase between D0 → K+π−π0 and D0 → K+π−π0 is assumed tobe small. The width di�eren
e here is y ′′, whi
h is not the same as yCP in the note onD0{D0 mixing.8 LOWREY 09 uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770). See belowfor 
oheren
e fa
tors and average relative strong phases for both D0 → K−π+π0and D0 → K−π− 2π+. A �t that in
ludes external measurements of 
harm mixingparameters gets �m = (2.34 ± 0.61) × 1010 �h s−1.9The ASNER 05 and ZHANG 07B values are from the time-dependent Dalitz-plot analysisof D0 → K0S π+π−. De
ay-time information and interferen
e on the Dalitz plot areused to distinguish doubly Cabibbo-suppressed de
ays from mixing and to measure therelative phase between D0 → K∗+π− and D0 → K∗+π−. This value allows CPviolation and is sensitive to the sign of �m.

10The AUBERT 03Z, LI 05A, and ZHANG 06 limits are inferred from the D0-D0 mixingratio �(K+π− (via D0))/�(K− π+) given near the end of this D0 Listings. De
ay-time information is used to distinguish DCS de
ays from D0-D0 mixing. The limitallows interferen
e between the DCS and mixing ratios, and also allows CP violation.AUBERT 03Z assumes the strong phase between D0 → K+π− and D0 → K+π−amplitudes is small; if an arbitrary phase is allowed, the limit degrades by 20%. TheLI 05A and ZHANG 06 limits are valid for an arbitrary strong phase.11This LINK 05H limit is inferred from the D0-D0 mixing ratio �(K+π− (viaD0))/�(K− π+) given near the end of this D0 Listings. De
ay-time information is usedto distinguish DCS de
ays from D0-D0 mixing. The limit allows interferen
e betweenthe DCS and mixing ratios, and also allows CP violation. The strong phase betweenD0 → K+π− and D0 → K+π− is assumed to be small. If an arbitrary relativestrong phase is allowed, the limit degrades by 25%.12This GODANG 00 limit is inferred from the D0-D0 mixing ratio �(K+π− (viaD0))/�(K− π+) given near the end of this D0 Listings. De
ay-time information is usedto distinguish DCS de
ays from D0-D0 mixing. The limit allows interferen
e betweenthe DCS and mixing ratios, and also allows CP violation. The strong phase betweenD0 → K+π− and D0 → K+π− is assumed to be small. If an arbitrary relativestrong phase is allowed, the limit degrades by a fa
tor of two.13AITALA 98 allows interferen
e between the doubly Cabibbo-suppressed and mixing am-plitudes, and also allows CP violation in this term, but assumes that AD=AR=0. Seethe note on \D0-D0 Mixing," above.14This limit is inferred from RM for f = K+π− and f = K+π−π+π−. See the note on\D0-D0 Mixing," above. De
ay-time information is used to distinguish doubly Cabibbo-suppressed de
ays from D0-D0 mixing.15This limit is inferred from RM for f = K+ ℓ− νℓ. See the note on \D0-D0 Mixing,"above.16ANJOS 88C assumes that y = 0. See the note on \D0-D0 Mixing," above. Withoutthis assumption, the limit degrades by about a fa
tor of two.(�D01 { �D02)/� = 2y(�D01 { �D02)/� = 2y(�D01 { �D02)/� = 2y(�D01 { �D02)/� = 2yThe D01 and D02 are the mass eigenstates of the D0 meson, as des
ribedin the note on \D0-D0 Mixing," above.Due to the strong phase di�eren
e between D0 → K+π− and D0 →K+π−, we ex
lude from the average those measurements of y ′ that areinferred from the D0-D0 mixing ratio �(K+π− via D0) / �(K+π−)given near the end of this D0 Listings.Some early results have been omitted. See our 2006 Review (Journal ofPhysi
s G33G33G33G33 1 (2006)).\OUR EVALUATION" 
omes from CPV allowing averages provided by theHeavy Flavor Averaging Group, see the note on \D0-D0 Mixing."VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.29+ 0.14
− 0.18 OUR EVALUATION1.29+ 0.14
− 0.18 OUR EVALUATION1.29+ 0.14
− 0.18 OUR EVALUATION1.29+ 0.14
− 0.18 OUR EVALUATION1.11± 0.27 OUR AVERAGE1.11± 0.27 OUR AVERAGE1.11± 0.27 OUR AVERAGE1.11± 0.27 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogrambelow.2.22± 0.44±0.18 1 STARIC 16 BELL e+ e− → �(nS)

−4.0 ± 2.6 ±1.4 2 ABLIKIM 15D BES3 e+ e− at ψ(3770)3 KO 14 BELL e+ e− → �(nS)0.60± 0.30+0.10
−0.17 4 PENG 14 BELL e+ e− → �(nS)5 AAIJ 13CE LHCB pp at 7, 8 TeV6 AALTONEN 13AE CDF pp at 1.96 TeV1.44± 0.36±0.24 7 LEES 13 BABR e+ e− → �(4S)0.55± 0.63±0.41 8 AAIJ 12K LHCB pp at 7 TeV1.14± 0.40±0.30 9 DEL-AMO-SA...10D BABR e+ e−, 10.6 GeV0.22± 1.22±1.04 10 ZUPANC 09 BELL e+ e− ≈ �(4S)

−1.0 ± 2.0 +1.4
−1.6 18k 11 ABE 02I BELL e+ e− ≈ �(4S)

−2.4 ± 5.0 ±2.8 3393 12 CSORNA 02 CLE2 e+ e− ≈ �(4S)6.84± 2.78±1.48 10k 11 LINK 00 FOCS γ nu
leus+1.6 ± 5.8 ±2.1 11 AITALA 99E E791 K−π+, K+K−
• • • We do not use the following data for averages, �ts, limits, et
. • • •13 AAIJ 13N LHCB Repl. by AAIJ 13CE2.32± 0.44±0.36 14 AUBERT 09AI BABR See LEES 13
−0.12+ 1.10

− 1.28±0.68 15 AUBERT 09AN BABR e+ e− at 10.58 GeV1.4 + 4.8
− 5.4 16 LOWREY 09 CLEO e+ e− at ψ(3770)1.70± 1.52 12.7±0.3k 17 AALTONEN 08E CDF pp, √s = 1.96 TeV2.06± 0.66±0.38 18 AUBERT 08U BABR See AUBERT 09AI1.94± 0.88±0.62 4030 ± 90 17 AUBERT 07W BABR e+ e− ≈ 10.6 GeV2.62± 0.64±0.50 160k 19 STARIC 07 BELL Repl. by STARIC 160.74± 0.50+0.20

−0.31 534k 20 ZHANG 07B BELL Repl. by PENG 14
−0.7 ± 4.9 4k±88 17,21 ZHANG 06 BELL e+ e−
−3.0 + 5.0

− 4.8 +1.6
−0.8 20 ASNER 05 CLEO e+ e− ≈ 10 GeV

−0.3 ± 5.7 17,21 LI 05A BELL See ZHANG 06
−5.2 +18.4

−16.8 17,21 LINK 05H FOCS γ nu
leus1.6 ± 0.8 +1.0
−0.8 450k 22 AUBERT 03P BABR See AUBERT 08U1.6 + 6.2

−12.8 17,21 AUBERT 03Z BABR e+ e−, 10.6 GeV
−5.0 + 2.8

− 3.2 ±0.6 17 GODANG 00 CLE2 e+ e−



1069106910691069See key on page 601 Meson Parti
le ListingsD0
WEIGHTED AVERAGE
1.11±0.27 (Error scaled by 1.4)

AITALA 99E E791
LINK 00 FOCS
CSORNA 02 CLE2
ABE 02I BELL
ZUPANC 09 BELL 0.3
DEL-AMO-SA... 10D BABR 0.0
AAIJ 12K LHCB 0.6
LEES 13 BABR 0.6
PENG 14 BELL 2.6
ABLIKIM 15D BES3
STARIC 16 BELL 5.5

χ2

       9.5
(Confidence Level = 0.091)

-6 -4 -2 0 2 4 6 8(�1 { �2)/� = 2y1An improved measurement of D0 − D0 mixing and a sear
h for CP violation in D0de
ays to CP-even �nal states K+K− and π+π− using the �nal Belle data sample of976 fb−1.2ABLIKIM 15D uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770).3Based on 976 fb−1 of data 
olle
ted at Y (nS) resonan
es. Assumes no CP violation.Reported x ′2 = (0.09± 0.22)×10−3 and y ′ = (4.6± 3.4)×10−3, where x ′ = x 
os(δ)+ y sin(δ), y ′ = y 
os(δ) − x sin(δ) and δ is the strong phase between D0 → K+π−and D0 → K+π−.4The time-dependent Dalitz-plot analysis of D0 → K0S π+π− is emplored. De
ay-time information and interferen
e on the Dalitz plot are used to distinguish doublyCabibbo-suppressed de
ays from mixing and to measure the relative phase between D0 →K∗+π− and D0 → K∗+π−. This value allows CP violation and is sensitive to thesign of �m.5Based on 3 fb−1 of data 
olle
ted at √s = 7, 8 TeV. Assumes no CP violation. Reportedx ′2 = (5.5 ± 4.9) × 10−4 and y ′ = (4.8 ± 1.0) × 10−3, where x ′ = x 
os(δ) + ysin(δ), y ′ = y 
os(δ) − x sin(δ) and δ is the strong phase between the D0 → K+π−and D0 → K+π−.6Based on 9.6 fb−1 of data 
olle
ted at the Tevatron. Assumes no CP violation. Reportedx ′2 = (0.08 ± 0.18) × 10−3 and y ′ = (4.3 ± 4.3) × 10−3, where x ′ = x 
os(δ) + ysin(δ), y ′ = y 
os(δ) − x sin(δ) and δ is the strong phase between the D0 → K+π−and D0 → K+π−.7Obtained yCP = (0.72 ± 0.18 ± 0.12)% based on three e�e
tive D0 lifetimes measuredin K∓π±, K−K+, and π−π+. We list 2yCP = ��/�.8Compared the lifetimes of D0 de
ay to the CP eigenstate K+K− with D0 de
ay to
π+K−. The values here assume no CP violation.9DEL-AMO-SANCHEZ 10D uses 540,800±800 K0S π+π− and 79,900±300 K0S K+K−events in a time-dependent amplitude analyses of the D0 and D0 Dalitz plots. Noeviden
e was found for CP violation, and the values here assume no su
h violation.10ZUPANC 09 uses a method based on measuring the mean de
ay time of D0 →K0S K+K− events for di�erent K+K− mass intervals.11 LINK 00, AITALA 99E, and ABE 02I measure the lifetime di�eren
e betweenD0 → K−K+ (CP even) de
ays and D0 → K−π+ (CPmixed) de
ays, or yCP=[�(CP+)−�(CP−)℄/[�(CP+)+�(CP−)℄. We list 2yCP=��/�.12CSORNA 02 measures the lifetime di�eren
e between D0 → K−K+ and
π−π+ (CP even) de
ays and D0 → K−π+ (CPmixed) de
ays, or yCP=[�(CP+)−�(CP−)℄/[�(CP+)+�(CP−)℄. We list 2yCP=��/�.13Based on 1 fb−1 of data 
olle
ted at √s = 7 TeV in 2011. Assumes no CP violation.Reported x ′2 = (−0.9± 1.3)×10−4 and y ′ = (7.2± 2.4)×10−3, where x ′ = x 
os(δ)+ y sin(δ), y ′ = y 
os(δ) − x sin(δ) and δ is the strong phase between the D0 →K+π− and D0 → K+π−.14This 
ombines the yCP = (τK π/τK K )−1 using untagged K−π+ and K−K+ eventsof AUBERT 09AI with the disjoint yCP using tagged K−π+, K−K+, and π−π+events of AUBERT 08U.15The AUBERT 09AN values are inferred from the bran
hing ratio �(D0 → K+π−π0 viaD0)/�(D0 → K−π+π0) given near the end of this Listings. Mixing is distinguishedfrom DCS de
ays using de
ay-time information. Interferen
e between mixing and DCSis allowed. The phase between D0 → K+π−π0 and D0 → K+π−π0 is assumed tobe small. The width di�eren
e here is y ′′, whi
h is not the same as yCP in the note onD0{D0 mixing.16 LOWREY 09 uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770). See belowfor 
oheren
e fa
tors and average relative strong phases for both D0 → K−π+π0and D0 → K−π− 2π+. A �t that in
ludes external measurements of 
harm mixingparameters gets 2y = (1.62 ± 0.32)× 10−2.17The GODANG 00, AUBERT 03Z, LINK 05H, LI 05A, ZHANG 06, AUBERT 07W,and AALTONEN 08E limits are inferred from the D0-D0 mixing ratio �(K+π− (viaD0))/�(K− π+) given near the end of this D0 Listings. De
ay-time information is usedto distinguish DCS de
ays from D0-D0 mixing. The limits allow interferen
e betweenthe DCS and mixing ratios, and all ex
ept AUBERT 07W and AALTONEN 08E also allowCP violation. The phase between D0 → K+π− and D0 → K+π− is assumed to besmall. This is a measurement of y ′ and is not the same as the yCP of our note aboveon \D0-D0 Mixing."18This value 
ombines the results of AUBERT 08U and AUBERT 03P.

19 STARIC 07 
ompares the lifetimes of D0 de
ay to the CP eigenstates K+K− and
π+π− with D0 de
ay to K−π+.20The ASNER 05 and ZHANG 07B values are from the time-dependent Dalitz-plot analysisof D0 → K0S π+π−. De
ay-time information and interferen
e on the Dalitz plot areused to distinguish doubly Cabibbo-suppressed de
ays from mixing and to measure therelative phase between D0 → K∗+π− and D0 → K∗+π−. This limit allows CPviolation.21The ranges of AUBERT 03Z, LINK 05H, LI 05A, and ZHANG 06 measurements are for95% 
on�den
e level.22AUBERT 03P measures Y ≡ 2 τ0 / (τ+ + τ−) − 1, where τ0 is the D0 → K−π+(and D0 → K+π−) lifetime, and τ+ and τ− are the D0 and D0 lifetimes to CP-evenstates (here K−K+ and π−π+). In the limit of CP 
onservation, Y = y ≡ �� / 2 � (welist 2y = ��/�). AUBERT 03P also uses τ+− τ− to get �Y = −0.008± 0.006± 0.002.

∣

∣q/p∣∣∣

∣q/p∣∣∣

∣q/p∣∣∣

∣q/p∣∣The mass eigenstates D01 and D02 are related to the C = ±1 states by ∣

∣D1,2 > =p ∣

∣D0 > + q ∣

∣D0 >. See the note on \D0{D0 Mixing" above.\OUR EVALUATION" 
omes from CPV allowing averages provided by the HeavyFlavor Averaging Group. This would in
lude as-yet-unpublished results, see the noteon \D0-D0 Mixing."VALUE DOCUMENT ID TECN COMMENT0.92+0.12
−0.09 OUR EVALUATION0.92+0.12
−0.09 OUR EVALUATION0.92+0.12
−0.09 OUR EVALUATION0.92+0.12
−0.09 OUR EVALUATION HFAG �t; see the note on \D0-D0 Mixing."0.90+0.16
−0.15+0.08

−0.060.90+0.16
−0.15+0.08

−0.060.90+0.16
−0.15+0.08

−0.060.90+0.16
−0.15+0.08

−0.06 1 PENG 14 BELL e+ e− → �(nS)2 AAIJ 13CE LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.86+0.30

−0.29+0.10
−0.08 3 ZHANG 07B BELL Repl. by PENG 141The time-dependent Dalitz-plot analysis of D0 → K0S π+π− is employed. De
ay-time information and interferen
e on the Dalitz plot are used to distinguish doublyCabibbo-suppressed de
ays from mixing and to measure the relative phase between D0 →K∗+π− and D0 → K∗+π−. This value allows CP violation and is sensitive to thesign of �m.2Based on 3 fb−1 of data 
olle
ted at √

s = 7, 8 TeV. Allowing for CP violation, thedire
t CP violation in mixing is reported 0.75 <
∣

∣q/p∣∣ < 1.24 at the 68.3% CL for theD0 → K+π− and D0 → K+π−.3The phase of p/q is (−14+16
−18± 5)◦. The ZHANG 07B value is from the time-dependentDalitz-plot analysis of D0 → K0S π+π−. De
ay-time information and interferen
e onthe Dalitz plot are used to distinguish doubly Cabibbo-suppressed de
ays from mixingand to measure the relative phase between D0 → K∗+π− and D0 → K∗+π−. Thisvalue allows CP violation.A�A�A�A� A� is the de
ay-rate asymmetry for CP-even �nal states A� = (τ+− τ+) / (τ++ τ+).See the note on \D0{D0 Mixing" above.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT

−0.125±0.526 OUR EVALUATION−0.125±0.526 OUR EVALUATION−0.125±0.526 OUR EVALUATION−0.125±0.526 OUR EVALUATION
−0.6 ±0.4 OUR AVERAGE−0.6 ±0.4 OUR AVERAGE−0.6 ±0.4 OUR AVERAGE−0.6 ±0.4 OUR AVERAGE
−0.3 ±2.0 ±0.7 1 STARIC 16 BELL e+ e− → �(nS)
−1.34 ±0.77 +0.26

−0.34 2.3M 2 AAIJ 15AA LHCB pp at 7, 8 TeV
−0.92 ±1.45 +0.25

−0.33 0.8M 3 AAIJ 15AA LHCB pp at 7, 8 TeV
−0.35 ±0.62 ±0.12 4 AAIJ 14AL LHCB pp at 7 TeV0.33 ±1.06 ±0.14 5 AAIJ 14AL LHCB pp at 7 TeV
−1.2 ±1.2 1.8M 6 AALTONEN 14Q CDF pp, √s = 1.96 TeV0.9 ±2.6 ±0.6 0.7M LEES 13 BABR e+ e− → �(4S)
−5.9 ±5.9 ±2.1 4 AAIJ 12K LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.6 ±3.6 ±0.8 AUBERT 08U BABR See LEES 130.1 ±3.0 ±2.5 STARIC 07 BELL Repl. by STARIC 168 ±6 ±2 AUBERT 03P BABR e+ e− ≈ �(4S)1An improved measurement of D0 − D0 mixing and a sear
h for CP violation in D0de
ays to CP-even �nal states K+K− and π+π− using the �nal Belle data sample of976 fb−1.2Measured using D0 → K+K− de
ays, with D0 from partially re
onstru
ted semilep-toni
 B hadron de
ays.3Measured using D0 → π+π− de
ays, with D0 from partially re
onstru
ted semileptoni
B hadron de
ays.4Measured using D∗+ → D0π+, D0 → K+K− de
ays (and 

).5Measured using D∗+ → D0π+, D0 → π+π− de
ays (and 

).6Combined result from D0 → K+K− and D0 → π+π−, with D0 from D∗+ →D0π+ (and 

).
os δ
os δ
os δ
os δ

δ is the D0 → K+π− relative strong phase.VALUE DOCUMENT ID TECN COMMENT0.97±0.11 OUR AVERAGE0.97±0.11 OUR AVERAGE0.97±0.11 OUR AVERAGE0.97±0.11 OUR AVERAGE1.02±0.11±0.06 1 ABLIKIM 14C BES3 e+ e− → D0D0, 3.77 GeV0.81+0.22
−0.18+0.07

−0.05 2 ASNER 12 CLEO e+ e− → D0D0, 3.77 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.03+0.31

−0.17±0.06 3 ASNER 08 CLEO Repl. by ASNER 12



1070107010701070MesonParti
le ListingsD01Uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770) to measure the asymmetryof the bran
hing fra
tion of D0 → K−π+ in CP-odd and CP-even eigenstates tobe (12.7 ± 1.3 ± 0.7)%. A �t that in
ludes external measurements of 
harm mixingparameters �nds the value quoted above.2Uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), where de
ay rates ofCP-tagged K π �nal states depend on the strong phases between the de
ays of D0 →K+π− and D0 → K+π−. The measurements obtained sin(δ) = −0.01± 0.41± 0.04and ∣

∣δ
∣

∣ = (10+28
−53+13

−00)◦ as well. A �t that in
ludes external measurements of 
harmmixing parameters �nds 
os(δ) = 1.15+0.19
−0.17+0.00

−0.08, sin(δ) = 0.56+0.32
−0.31+0.21

−0.20, and ∣

∣δ
∣

∣= (18+11
−17)◦.3ASNER 08 uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), where de
ayrates of CP-tagged K π �nal states depend on 
os δ be
ause of interfering amplitudes.The above measurement implies ∣

∣δ
∣

∣ < 75◦ with a 
on�den
e level of 95%. A �t thatin
ludes external measurements of 
harm mixing parameters �nds 
os δ = 1.10± 0.35±0.07. See also the note on \D0{ D0 Mixing" p. 783 in our 2008 Review (PDG 08).D0 → K−π+π0 COHERENCE FACTOR RK ππ0D0 → K−π+π0 COHERENCE FACTOR RK ππ0D0 → K−π+π0 COHERENCE FACTOR RK ππ0D0 → K−π+π0 COHERENCE FACTOR RK ππ0See the note on `D0-D0 Mixing' for the de�nition. RK ππ0 
an have any value between0 and 1. A value near 1 indi
ates the de
ay is dominated by a few intermediate stateswith limited interferen
e.VALUE DOCUMENT ID TECN COMMENT0.82±0.070.82±0.070.82±0.070.82±0.07 1 LIBBY 14 CLEO e+ e− → D0D0 at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.78+0.11

−0.25 2 LOWREY 09 CLEO Repl. by LIBBY 141Uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), where the de
ay ratesof CP-tagged K−π+π0 �nal states depend on RK ππ0 and δK ππ0 .2 LOWREY 09 uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), wherethe de
ay rates of CP-tagged K−π+π0 �nal states depend on RK ππ0 and δK ππ0 .A �t that in
ludes external measurements of 
harm mixing parameters gets RK ππ0 =0.84 ± 0.07.D0 → K−π+π0 AVERAGE RELATIVE STRONG PHASE δK ππ0D0 → K−π+π0 AVERAGE RELATIVE STRONG PHASE δK ππ0D0 → K−π+π0 AVERAGE RELATIVE STRONG PHASE δK ππ0D0 → K−π+π0 AVERAGE RELATIVE STRONG PHASE δK ππ0The quoted value of δ is based on the same sign CP phase of D0 and D0 
onvention.VALUE (◦) DOCUMENT ID TECN COMMENT164+20
−14164+20
−14164+20
−14164+20
−14 1 LIBBY 14 CLEO e+ e− → D0D0 at ψ(3770)

• • • We do not use the following data for averages, �ts, limits, et
. • • •239+32
−28 2 LOWREY 09 CLEO Repl. by LIBBY 141Uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), where the de
ay ratesof CP-tagged K−π+π0 �nal states depend on RK ππ0 and δK ππ0 .2 LOWREY 09 uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), wherethe de
ay rates of CP-tagged K−π+π0 �nal states depend on RK ππ0 and δK ππ0 .A �t that in
ludes external measurements of 
harm mixing parameters gets δK ππ0 =(227+14

−17)◦.D0 → K−π−2π+ COHERENCE FACTOR RK 3πD0 → K−π−2π+ COHERENCE FACTOR RK 3πD0 → K−π−2π+ COHERENCE FACTOR RK 3πD0 → K−π−2π+ COHERENCE FACTOR RK 3πSee the note on `D0-D0 Mixing' for the de�nition. RK 3π 
an have any value between0 and 1. A value near 1 indi
ates the de
ay is dominated by a few intermediate stateswith limited interferen
e.VALUE DOCUMENT ID TECN COMMENT0.32+0.20
−0.280.32+0.20
−0.280.32+0.20
−0.280.32+0.20
−0.28 1 LIBBY 14 CLEO e+ e− → D0D0 at ψ(3770)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.36+0.24
−0.30 2 LOWREY 09 CLEO Repl. by LIBBY 141Uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), where the de
ay ratesof CP-tagged K−π− 2π+ �nal states depend on RK 3π and δK 3π .2 LOWREY 09 uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), wherethe de
ay rates of CP-tagged K−π− 2π+ �nal states depend on RK 3π and δK 3π .A �t that in
ludes external measurements of 
harm mixing parameters gets RK 3π =0.33+0.26

−0.23.D0 → K−π−2π+ AVERAGE RELATIVE STRONG PHASE δK 3πD0 → K−π−2π+ AVERAGE RELATIVE STRONG PHASE δK 3πD0 → K−π−2π+ AVERAGE RELATIVE STRONG PHASE δK 3πD0 → K−π−2π+ AVERAGE RELATIVE STRONG PHASE δK 3πThe quoted value of δ is based on the same sign CP phase of D0 and D0 
onvention.VALUE (◦) DOCUMENT ID TECN COMMENT225+21
−78225+21
−78225+21
−78225+21
−78 1 LIBBY 14 CLEO e+ e− → D0D0 at ψ(3770)

• • • We do not use the following data for averages, �ts, limits, et
. • • •118+62
−53 2 LOWREY 09 CLEO Repl. by LIBBY 141Uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), where the de
ay ratesof CP-tagged K−π− 2π+ �nal states depend on RK 3π and δK 3π .2 LOWREY 09 uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), wherethe de
ay rates of CP-tagged K−π− 2π+ �nal states depend on RK 3π and δK 3π .A �t that in
ludes external measurements of 
harm mixing parameters gets δK 3π =(114+26

−23)◦.

D0 → K0S K+π− COHERENCE FACTOR RK0S K π
D0 → K0S K+π− COHERENCE FACTOR RK0S K πD0 → K0S K+π− COHERENCE FACTOR RK0S K π
D0 → K0S K+π− COHERENCE FACTOR RK0S K πVALUE DOCUMENT ID TECN COMMENT0.73±0.080.73±0.080.73±0.080.73±0.08 1 INSLER 12 CLEO e+ e− → D0D0 at 3.77GeV1Uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), where the signal sideD de
ays to K0S K π and the tag-side D de
ays to K π, K πππ, K ππ0.D0 → K0S K+π− AVERAGE RELATIVE STRONG PHASE δK0S K πD0 → K0S K+π− AVERAGE RELATIVE STRONG PHASE δK0S K πD0 → K0S K+π− AVERAGE RELATIVE STRONG PHASE δK0S K πD0 → K0S K+π− AVERAGE RELATIVE STRONG PHASE δK0S K πThe quoted value of δ is based on the same sign CP phase of D0 and D0 
onvention.VALUE (◦) DOCUMENT ID TECN COMMENT8.3±15.28.3±15.28.3±15.28.3±15.2 1 INSLER 12 CLEO e+ e− → D0D0 at 3.77GeV1Uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), where the signal sideD de
ays to K0S K π and the tag-side D de
ays to K π, K πππ, K ππ0.D0 → K∗K COHERENCE FACTOR RK∗KD0 → K∗K COHERENCE FACTOR RK∗KD0 → K∗K COHERENCE FACTOR RK∗KD0 → K∗K COHERENCE FACTOR RK∗KVALUE DOCUMENT ID TECN COMMENT1.00±0.161.00±0.161.00±0.161.00±0.16 1 INSLER 12 CLEO e+ e− → D0D0 at 3.77GeV1Uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), where the signal sideD de
ays to K0S K π and the tag-side D de
ays to K π, K πππ, K ππ0.D0 → K∗K AVERAGE RELATIVE STRONG PHASE δK∗KD0 → K∗K AVERAGE RELATIVE STRONG PHASE δK∗KD0 → K∗K AVERAGE RELATIVE STRONG PHASE δK∗KD0 → K∗K AVERAGE RELATIVE STRONG PHASE δK∗KThe quoted value of δ is based on the same sign CP phase of D0 and D0 
onvention.VALUE (◦) DOCUMENT ID TECN COMMENT26.5±15.826.5±15.826.5±15.826.5±15.8 1 INSLER 12 CLEO e+ e− → D0D0 at 3.77GeV1Uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), where the signal sideD de
ays to K0S K π and the tag-side D de
ays to K π, K πππ, K ππ0.D0 DECAY MODESD0 DECAY MODESD0 DECAY MODESD0 DECAY MODESMost de
ay modes (other than the semileptoni
 modes) that involve a neu-tral K meson are now given as K0S modes, not as K0 modes. Nearly alwaysit is a K0S that is measured, and interferen
e between Cabibbo-allowedand doubly Cabibbo-suppressed modes 
an invalidate the assumption that2 �(K0S ) = �(K0). S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelTopologi
al modesTopologi
al modesTopologi
al modesTopologi
al modes�1 0-prongs [a℄ (15 ± 6 ) %�2 2-prongs (70 ± 6 ) %�3 4-prongs [b℄ (14.5 ± 0.5 ) %�4 6-prongs [
℄ ( 6.4 ± 1.3 )× 10−4In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modes�5 e+ anything [d℄ ( 6.49 ± 0.11 ) %�6 µ+anything ( 6.7 ± 0.6 ) %�7 K− anything (54.7 ± 2.8 ) % S=1.3�8 K0 anything + K0anything (47 ± 4 ) %�9 K+ anything ( 3.4 ± 0.4 ) %�10 K∗(892)− anything (15 ± 9 ) %�11 K∗(892)0 anything ( 9 ± 4 ) %�12 K∗(892)+anything < 3.6 % CL=90%�13 K∗(892)0 anything ( 2.8 ± 1.3 ) %�14 η anything ( 9.5 ± 0.9 ) %�15 η′ anything ( 2.48 ± 0.27 ) %�16 φ anything ( 1.05 ± 0.11 ) %Semileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modes�17 K− ℓ+νℓ�18 K− e+νe ( 3.538± 0.033) % S=1.3�19 K−µ+νµ ( 3.33 ± 0.13 ) %�20 K∗(892)− e+ νe ( 2.16 ± 0.16 ) %�21 K∗(892)−µ+ νµ ( 1.92 ± 0.25 ) %�22 K−π0 e+νe ( 1.6 + 1.3

− 0.5 ) %�23 K0π− e+νe ( 2.7 + 0.9
− 0.7 ) %�24 K−π+π− e+ νe ( 2.8 + 1.4
− 1.1 ) × 10−4�25 K1(1270)− e+ νe ( 7.6 + 4.0
− 3.1 ) × 10−4�26 K−π+π−µ+ νµ < 1.2 × 10−3 CL=90%�27 (K∗(892)π )−µ+ νµ < 1.4 × 10−3 CL=90%�28 π− e+νe ( 2.91 ± 0.04 )× 10−3 S=1.1�29 π−µ+νµ ( 2.38 ± 0.24 )× 10−3�30 ρ− e+ νe ( 1.77 ± 0.16 )× 10−3



1071107110711071See key on page 601 MesonParti
le ListingsD0Hadroni
 modes with one KHadroni
 modes with one KHadroni
 modes with one KHadroni
 modes with one K�31 K−π+ ( 3.93 ± 0.04 ) % S=1.2�32 K+π− ( 1.398± 0.027)× 10−4�33 K0S π0 ( 1.20 ± 0.04 ) %�34 K0Lπ0 (10.0 ± 0.7 )× 10−3�35 K0S π+π− [e℄ ( 2.85 ± 0.20 ) % S=1.1�36 K0S ρ0 ( 6.4 + 0.7
− 0.8 ) × 10−3�37 K0S ω , ω → π+π− ( 2.1 ± 0.6 )× 10−4�38 K0S (π+π−)S−wave ( 3.4 ± 0.8 )× 10−3�39 K0S f0(980),f0(980) → π+π−

( 1.23 + 0.40
− 0.24 ) × 10−3�40 K0S f0(1370),f0(1370) → π+π−

( 2.8 + 0.9
− 1.3 ) × 10−3�41 K0S f2(1270),f2(1270) → π+π−

( 9 +10
− 6 ) × 10−5�42 K∗(892)−π+ ,K∗(892)− → K0S π−

( 1.68 + 0.15
− 0.18 ) %�43 K∗0(1430)−π+ ,K∗0(1430)− → K0S π−

( 2.73 + 0.40
− 0.34 ) × 10−3�44 K∗2(1430)−π+ ,K∗2(1430)− → K0S π−

( 3.4 + 1.9
− 1.0 ) × 10−4�45 K∗(1680)−π+ ,K∗(1680)− → K0S π−

( 4 ± 4 )× 10−4�46 K∗(892)+π− ,K∗(892)+ → K0S π+ [f ℄ ( 1.15 + 0.60
− 0.34 ) × 10−4�47 K∗0(1430)+π− ,K∗0(1430)+ → K0S π+ [f ℄ < 1.4 × 10−5 CL=95%�48 K∗2(1430)+π− ,K∗2(1430)+ → K0S π+ [f ℄ < 3.4 × 10−5 CL=95%�49 K0S π+π− nonresonant ( 2.6 + 6.0
− 1.6 ) × 10−4�50 K−π+π0 [e℄ (14.3 ± 0.8 ) % S=3.1�51 K−ρ+ (11.1 ± 0.9 ) %�52 K−ρ(1700)+ ,

ρ(1700)+ → π+π0 ( 8.1 ± 1.8 )× 10−3�53 K∗(892)−π+ ,K∗(892)− → K−π0 ( 2.28 + 0.40
− 0.23 ) %�54 K∗(892)0π0 ,K∗(892)0 → K−π+ ( 1.93 ± 0.26 ) %�55 K∗0(1430)−π+ ,K∗0(1430)− → K−π0 ( 4.7 ± 2.2 )× 10−3�56 K∗0(1430)0π0 ,K∗0(1430)0 → K−π+ ( 5.8 + 5.0
− 1.6 ) × 10−3�57 K∗(1680)−π+ ,K∗(1680)− → K−π0 ( 1.9 ± 0.7 )× 10−3�58 K−π+π0 nonresonant ( 1.14 + 0.50
− 0.21 ) %�59 K0S 2π0 ( 9.1 ± 1.1 )× 10−3 S=2.2�60 K0S (2π0)-S-wave ( 2.6 ± 0.7 )× 10−3�61 K∗(892)0π0 ,K∗(892)0 → K0S π0 ( 7.9 ± 0.7 )× 10−3�62 K∗(1430)0π0 , K∗0 → K0S π0 ( 4 ±23 )× 10−5�63 K∗(1680)0π0 , K∗0 → K0S π0 ( 1.0 ± 0.4 )× 10−3�64 K0S f2(1270), f2 → 2π0 ( 2.3 ± 1.1 )× 10−4�65 2K0S , one K0S → 2π0 ( 3.2 ± 1.1 )× 10−4�66 K0S 2π0 nonresonant�67 K−2π+π− [e℄ ( 8.06 ± 0.23 ) % S=1.5�68 K−π+ ρ0 total ( 6.73 ± 0.34 ) %�69 K−π+ ρ03-body ( 5.1 ± 2.3 )× 10−3�70 K∗(892)0 ρ0 ,K∗(892)0 → K−π+ ( 1.05 ± 0.23 ) %�71 K− a1(1260)+ ,a1(1260)+ → 2π+π−

( 3.6 ± 0.6 ) %�72 K∗(892)0π+π− total,K∗(892)0 → K−π+ ( 1.6 ± 0.4 ) %�73 K∗(892)0π+π−3-body,K∗(892)0 → K−π+ ( 9.9 ± 2.3 )× 10−3�74 K1(1270)−π+ ,K1(1270)− → K−π+π−
[g ℄ ( 2.9 ± 0.3 )× 10−3�75 K−2π+π− nonresonant ( 1.88 ± 0.26 ) %

�76 K0S π+π−π0 [h℄ ( 5.2 ± 0.6 ) %�77 K0S η , η → π+π−π0 ( 1.02 ± 0.09 )× 10−3�78 K0S ω , ω → π+π−π0 ( 9.9 ± 0.5 )× 10−3�79 K−π+ 2π0�80 K−2π+π−π0 ( 4.2 ± 0.4 ) %�81 K∗(892)0π+π−π0 ,K∗(892)0 → K−π+ ( 1.3 ± 0.6 ) %�82 K−π+ω , ω → π+π−π0 ( 2.7 ± 0.5 ) %�83 K∗(892)0ω ,K∗(892)0 → K−π+,
ω → π+π−π0 ( 6.5 ± 3.0 )× 10−3�84 K0S ηπ0 ( 5.5 ± 1.1 )× 10−3�85 K0S a0(980), a0(980) → ηπ0 ( 6.6 ± 2.0 )× 10−3�86 K∗(892)0 η, K∗(892)0 →K0S π0 ( 1.6 ± 0.5 )× 10−3�87 K0S 2π+2π− ( 2.71 ± 0.31 )× 10−3�88 K0S ρ0π+π− , noK∗(892)− ( 1.1 ± 0.7 )× 10−3�89 K∗(892)−2π+π− ,K∗(892)− → K0S π−, no
ρ0 ( 5 ± 8 )× 10−4�90 K∗(892)−ρ0π+ ,K∗(892)− → K0S π−

( 1.6 ± 0.6 )× 10−3�91 K0S 2π+2π−nonresonant < 1.2 × 10−3 CL=90%�92 K0π+π− 2π0 (π0)�93 K−3π+2π− ( 2.2 ± 0.6 )× 10−4Fra
tions of many of the following modes with resonan
es have alreadyappeared above as submodes of parti
ular 
harged-parti
le modes. (Modesfor whi
h there are only upper limits and K∗(892)ρ submodes only appearbelow.)�94 K0S η ( 4.85 ± 0.30 )× 10−3�95 K0S ω ( 1.11 ± 0.06 ) %�96 K0S η′(958) ( 9.5 ± 0.5 )× 10−3�97 K− a1(1260)+ ( 7.8 ± 1.1 ) %�98 K− a2(1320)+ < 2 × 10−3 CL=90%�99 K∗(892)0π+π− total ( 2.4 ± 0.5 ) %�100 K∗(892)0π+π−3-body ( 1.48 ± 0.34 ) %�101 K∗(892)0 ρ0 ( 1.57 ± 0.35 ) %�102 K∗(892)0 ρ0 transverse ( 1.7 ± 0.6 ) %�103 K∗(892)0 ρ0S-wave ( 3.0 ± 0.6 ) %�104 K∗(892)0 ρ0S-wave long. < 3 × 10−3 CL=90%�105 K∗(892)0 ρ0P-wave < 3 × 10−3 CL=90%�106 K∗(892)0 ρ0D-wave ( 2.1 ± 0.6 ) %�107 K−π+ f0(980)�108 K∗(892)0 f0(980)�109 K1(1270)−π+ [g ℄ ( 1.6 ± 0.8 ) %�110 K1(1400)−π+ < 1.2 % CL=90%�111 K∗(1410)−π+�112 K∗(892)0π+π−π0 ( 1.9 ± 0.9 ) %�113 K∗(892)0 η�114 K−π+ω ( 3.1 ± 0.6 ) %�115 K∗(892)0ω ( 1.1 ± 0.5 ) %�116 K−π+ η′(958) ( 7.5 ± 1.9 )× 10−3�117 K∗(892)0 η′(958) < 1.1 × 10−3 CL=90%Hadroni
 modes with three K 'sHadroni
 modes with three K 'sHadroni
 modes with three K 'sHadroni
 modes with three K 's�118 K0S K+K− ( 4.51 ± 0.34 )× 10−3�119 K0S a0(980)0 , a00 → K+K− ( 3.0 ± 0.4 )× 10−3�120 K− a0(980)+ , a+0 → K+K0S ( 6.0 ± 1.8 )× 10−4�121 K+a0(980)− , a−0 → K−K0S < 1.1 × 10−4 CL=95%�122 K0S f0(980), f0 → K+K− < 9 × 10−5 CL=95%�123 K0S φ , φ → K+K− ( 2.07 ± 0.16 )× 10−3�124 K0S f0(1370), f0 → K+K− ( 1.7 ± 1.1 )× 10−4�125 3K0S ( 9.2 ± 1.3 )× 10−4�126 K+2K−π+ ( 2.21 ± 0.32 )× 10−4�127 K+K−K∗(892)0 ,K∗(892)0 → K−π+ ( 4.4 ± 1.7 )× 10−5�128 K−π+φ , φ → K+K− ( 4.0 ± 1.7 )× 10−5�129 φK∗(892)0 ,
φ → K+K−,K∗(892)0 → K−π+ ( 1.06 ± 0.20 )× 10−4�130 K+2K−π+ nonresonant ( 3.3 ± 1.5 )× 10−5�131 2K0S K±π∓ ( 6.1 ± 1.3 )× 10−4



1072107210721072MesonParti
le ListingsD0 Pioni
 modesPioni
 modesPioni
 modesPioni
 modes�132 π+π− ( 1.420± 0.025)× 10−3 S=1.1�133 2π0 ( 8.25 ± 0.25 )× 10−4�134 π+π−π0 ( 1.47 ± 0.09 ) % S=3.0�135 ρ+π− ( 1.00 ± 0.06 ) %�136 ρ0π0 ( 3.82 ± 0.29 )× 10−3�137 ρ−π+ ( 5.09 ± 0.34 )× 10−3�138 ρ(1450)+π− , ρ(1450)+ →
π+π0 ( 1.6 ± 2.0 )× 10−5�139 ρ(1450)0π0 , ρ(1450)0 →
π+π−

( 4.4 ± 1.9 )× 10−5�140 ρ(1450)−π+ , ρ(1450)− →
π−π0 ( 2.6 ± 0.4 )× 10−4�141 ρ(1700)+π− , ρ(1700)+ →
π+π0 ( 6.0 ± 1.5 )× 10−4�142 ρ(1700)0π0 , ρ(1700)0 →
π+π−

( 7.4 ± 1.8 )× 10−4�143 ρ(1700)−π+ , ρ(1700)− →
π−π0 ( 4.7 ± 1.1 )× 10−4�144 f0(980)π0 , f0(980) → π+π− ( 3.7 ± 0.9 )× 10−5�145 f0(500)π0 , f0(500) → π+π− ( 1.21 ± 0.22 )× 10−4�146 (π+π−)S−waveπ0�147 f0(1370)π0 , f0(1370) →
π+π−

( 5.4 ± 2.1 )× 10−5�148 f0(1500)π0 , f0(1500) →
π+π−

( 5.7 ± 1.6 )× 10−5�149 f0(1710)π0 , f0(1710) →
π+π−

( 4.6 ± 1.6 )× 10−5�150 f2(1270)π0 , f2(1270) →
π+π−

( 1.94 ± 0.22 )× 10−4�151 π+π−π0 nonresonant ( 1.2 ± 0.4 )× 10−4�152 3π0 < 3.5 × 10−4 CL=90%�153 2π+2π− ( 7.45 ± 0.22 )× 10−3 S=1.2�154 a1(1260)+π− , a+1 →2π+π− total ( 4.47 ± 0.32 )× 10−3�155 a1(1260)+π− , a+1 →
ρ0π+ S-wave ( 3.23 ± 0.25 )× 10−3�156 a1(1260)+π− , a+1 →
ρ0π+ D-wave ( 1.9 ± 0.5 )× 10−4�157 a1(1260)+π− , a+1 → σπ+ ( 6.2 ± 0.7 )× 10−4�158 2ρ0 total ( 1.83 ± 0.13 )× 10−3�159 2ρ0 , parallel heli
ities ( 8.2 ± 3.2 )× 10−5�160 2ρ0 , perpendi
ular heli
ities ( 4.8 ± 0.6 )× 10−4�161 2ρ0 , longitudinal heli
ities ( 1.25 ± 0.10 )× 10−3�162 Resonant (π+π−)π+π−3-body total ( 1.49 ± 0.12 )× 10−3�163 σπ+π− ( 6.1 ± 0.9 )× 10−4�164 f0(980)π+π− , f0 →
π+π−

( 1.8 ± 0.5 )× 10−4�165 f2(1270)π+π− , f2 →
π+π−

( 3.7 ± 0.6 )× 10−4�166 π+π−2π0 ( 1.01 ± 0.09 ) %�167 ηπ0 [i ℄ ( 6.9 ± 0.7 )× 10−4�168 ωπ0 [i ℄ < 2.6 × 10−4 CL=90%�169 2π+2π−π0 ( 4.2 ± 0.5 )× 10−3�170 ηπ+π− [i ℄ ( 1.09 ± 0.16 )× 10−3�171 ωπ+π− [i ℄ ( 1.6 ± 0.5 )× 10−3�172 3π+3π− ( 4.2 ± 1.2 )× 10−4�173 η′(958)π0 ( 9.1 ± 1.4 )× 10−4�174 η′(958)π+π− ( 4.5 ± 1.7 )× 10−4�175 2η ( 1.70 ± 0.20 )× 10−3�176 ηη′(958) ( 1.06 ± 0.27 )× 10−3Hadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pair�177 K+K− ( 4.01 ± 0.07 )× 10−3 S=1.5�178 2K0S ( 1.8 ± 0.4 )× 10−4 S=2.5�179 K0S K−π+ ( 3.6 ± 0.5 )× 10−3 S=1.2�180 K∗(892)0K0S , K∗0 →K−π+ < 5 × 10−4 CL=90%�181 K0S K+π− ( 2.2 ± 0.4 )× 10−3 S=1.3�182 K∗(892)0K0S , K∗0 →K+π−
< 1.8 × 10−4 CL=90%�183 K+K−π0 ( 3.38 ± 0.21 )× 10−3�184 K∗(892)+K−, K∗(892)+ →K+π0 ( 1.50 ± 0.10 )× 10−3�185 K∗(892)−K+, K∗(892)− →K−π0 ( 5.4 ± 0.5 )× 10−4�186 (K+π0)S−waveK− ( 2.40 ± 0.21 )× 10−3�187 (K−π0)S−waveK+ ( 1.3 ± 0.5 )× 10−4

�188 f0(980)π0, f0 → K+K− ( 3.5 ± 0.6 )× 10−4�189 φπ0, φ → K+K− ( 6.6 ± 0.5 )× 10−4�190 K+K−π0 nonresonant�191 2K0S π0 < 5.9 × 10−4�192 K+K−π+π− ( 2.42 ± 0.12 )× 10−3�193 φ(π+π−)S−wave, φ →K+K−
( 2.50 ± 0.34 )× 10−4�194 (φρ0)S−wave, φ → K+K− ( 9.3 ± 1.2 )× 10−4�195 (φρ0)D−wave, φ → K+K− ( 8.2 ± 2.3 )× 10−5�196 (K∗0K∗0)S−wave, K∗0 →K±π∓
( 1.48 ± 0.30 )× 10−4�197 (K−π+)P−wave,(K+π−)S−wave, ( 2.6 ± 0.5 )× 10−4�198 K1(1270)+K−,K1(1270)+ → K∗0π+ ( 1.8 ± 0.5 )× 10−4�199 K1(1270)+K−,K1(1270)+ → ρ0K+ ( 1.14 ± 0.26 )× 10−4�200 K1(1270)−K+,K1(1270)− → K∗0π−
( 2.2 ± 1.2 )× 10−5�201 K1(1270)−K+,K1(1270)− → ρ0K−
( 1.45 ± 0.25 )× 10−4�202 K∗(1410)+K−,K∗(1410)+ → K∗0π+ ( 1.02 ± 0.26 )× 10−4�203 K∗(1410)−K+,K∗(1410)− → K∗0π−
( 1.14 ± 0.25 )× 10−4�204 K+K−ρ0 3-body�205 f0(980)π+π− , f0 → K+K−�206 K∗(892)0K∓π±3-body,K∗0 → K±π∓�207 K∗(892)0K∗(892)0 , K∗0 →K±π∓�208 K1(1270)±K∓ ,K1(1270)± → K±π+π−�209 K1(1400)±K∓ ,K1(1400)± → K±π+π−�210 2K0S π+π− ( 1.24 ± 0.24 )× 10−3�211 K0S K−2π+π− < 1.5 × 10−4 CL=90%�212 K+K−π+π−π0 ( 3.1 ± 2.0 )× 10−3Other K K X modes. They in
lude all de
ay modes of the φ, η, and ω.�213 φπ0�214 φη ( 1.4 ± 0.5 )× 10−4�215 φω < 2.1 × 10−3 CL=90%Radiative modesRadiative modesRadiative modesRadiative modes�216 ρ0 γ < 2.4 × 10−4 CL=90%�217 ωγ < 2.4 × 10−4 CL=90%�218 φγ ( 2.73 ± 0.35 )× 10−5�219 K∗(892)0 γ ( 3.31 ± 0.34 )× 10−4Doubly Cabibbo suppressed (DC ) modes orDoubly Cabibbo suppressed (DC ) modes orDoubly Cabibbo suppressed (DC ) modes orDoubly Cabibbo suppressed (DC ) modes or�C = 2 forbidden via mixing (C2M) modes�C = 2 forbidden via mixing (C2M) modes�C = 2 forbidden via mixing (C2M) modes�C = 2 forbidden via mixing (C2M) modes�220 K+ ℓ−νℓ via D0 < 2.2 × 10−5 CL=90%�221 K+or K∗(892)+ e−νe viaD0 < 6 × 10−5 CL=90%�222 K+π− DC ( 1.49 ± 0.07 )× 10−4 S=2.9�223 K+π− via DCS ( 1.33 ± 0.09 )× 10−4�224 K+π− via D0 < 1.6 × 10−5 CL=95%�225 K0S π+π− in D0 → D0 < 1.8 × 10−4 CL=95%�226 K∗(892)+π− ,K∗(892)+ → K0S π+ DC ( 1.15 + 0.60

− 0.34 ) × 10−4�227 K∗0(1430)+π− ,K∗0(1430)+ → K0S π+ DC < 1.4 × 10−5�228 K∗2(1430)+π− ,K∗2(1430)+ → K0S π+ DC < 3.4 × 10−5�229 K+π−π0 DC ( 3.13 ± 0.23 )× 10−4�230 K+π−π0 via D0 ( 7.5 ± 0.6 )× 10−4�231 K+π+ 2π− DC ( 2.62 ± 0.11 )× 10−4�232 K+π+ 2π− via D0 < 4 × 10−4 CL=90%�233 K+π− or K+π+ 2π− viaD0�234 µ− anything via D0 < 4 × 10−4 CL=90%



1073107310731073See key on page 601 Meson Parti
le ListingsD0�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,Lepton Family number (LF ) violating modes,Lepton Family number (LF ) violating modes,Lepton Family number (LF ) violating modes,Lepton Family number (LF ) violating modes,Lepton (L) or Baryon (B) number violating modesLepton (L) or Baryon (B) number violating modesLepton (L) or Baryon (B) number violating modesLepton (L) or Baryon (B) number violating modes�235 γ γ C1 < 2.2 × 10−6 CL=90%�236 e+ e− C1 < 7.9 × 10−8 CL=90%�237 µ+µ− C1 < 6.2 × 10−9 CL=90%�238 π0 e+ e− C1 < 4.5 × 10−5 CL=90%�239 π0µ+µ− C1 < 1.8 × 10−4 CL=90%�240 ηe+ e− C1 < 1.1 × 10−4 CL=90%�241 ηµ+µ− C1 < 5.3 × 10−4 CL=90%�242 π+π− e+ e− C1 < 3.73 × 10−4 CL=90%�243 ρ0 e+ e− C1 < 1.0 × 10−4 CL=90%�244 π+π−µ+µ− C1 < 5.5 × 10−7 CL=90%�245 ρ0µ+µ− C1 < 2.2 × 10−5 CL=90%�246 ω e+ e− C1 < 1.8 × 10−4 CL=90%�247 ωµ+µ− C1 < 8.3 × 10−4 CL=90%�248 K−K+ e+ e− C1 < 3.15 × 10−4 CL=90%�249 φe+ e− C1 < 5.2 × 10−5 CL=90%�250 K−K+µ+µ− C1 < 3.3 × 10−5 CL=90%�251 φµ+µ− C1 < 3.1 × 10−5 CL=90%�252 K0 e+ e− [j℄ < 1.1 × 10−4 CL=90%�253 K0µ+µ− [j℄ < 2.6 × 10−4 CL=90%�254 K−π+ e+ e− C1 < 3.85 × 10−4 CL=90%�255 K∗(892)0 e+ e− [j℄ < 4.7 × 10−5 CL=90%�256 K−π+µ+µ− C1 < 3.59 × 10−4 CL=90%�257 K∗(892)0µ+µ− [j℄ < 2.4 × 10−5 CL=90%�258 π+π−π0µ+µ− C1 < 8.1 × 10−4 CL=90%�259 µ± e∓ LF [k℄ < 2.6 × 10−7 CL=90%�260 π0 e±µ∓ LF [k℄ < 8.6 × 10−5 CL=90%�261 ηe±µ∓ LF [k℄ < 1.0 × 10−4 CL=90%�262 π+π− e±µ∓ LF [k℄ < 1.5 × 10−5 CL=90%�263 ρ0 e±µ∓ LF [k℄ < 4.9 × 10−5 CL=90%�264 ω e±µ∓ LF [k℄ < 1.2 × 10−4 CL=90%�265 K−K+ e±µ∓ LF [k℄ < 1.8 × 10−4 CL=90%�266 φe±µ∓ LF [k℄ < 3.4 × 10−5 CL=90%�267 K0 e±µ∓ LF [k℄ < 1.0 × 10−4 CL=90%�268 K−π+ e±µ∓ LF [k℄ < 5.53 × 10−4 CL=90%�269 K∗(892)0 e±µ∓ LF [k℄ < 8.3 × 10−5 CL=90%�270 2π−2e++ 
.
. L < 1.12 × 10−4 CL=90%�271 2π−2µ++ 
.
. L < 2.9 × 10−5 CL=90%�272 K−π− 2e++ 
.
. L < 2.06 × 10−4 CL=90%�273 K−π− 2µ++ 
.
. L < 3.9 × 10−4 CL=90%�274 2K−2e++ 
.
. L < 1.52 × 10−4 CL=90%�275 2K−2µ++ 
.
. L < 9.4 × 10−5 CL=90%�276 π−π− e+µ++ 
.
. L < 7.9 × 10−5 CL=90%�277 K−π− e+µ++ 
.
. L < 2.18 × 10−4 CL=90%�278 2K− e+µ++ 
.
. L < 5.7 × 10−5 CL=90%�279 pe− L,B [l℄ < 1.0 × 10−5 CL=90%�280 pe+ L,B [n℄ < 1.1 × 10−5 CL=90%�281 Una

ounted de
ay modes (37.5 ± 1.5 ) % S=1.3[a℄ This value is obtained by subtra
ting the bran
hing fra
tions for 2-, 4-and 6-prongs from unity.[b℄ This is the sum of our K−2π+π−, K−2π+π−π0,K0 2π+2π−, K+2K−π+, 2π+ 2π−, 2π+2π−π0, K+K−π+π−, andK+K−π+π−π0, bran
hing fra
tions.[
 ℄ This is the sum of our K−3π+2π− and 3π+3π− bran
hing fra
tions.[d ℄ The bran
hing fra
tions for the K− e+ νe , K∗(892)− e+νe , π− e+νe ,and ρ− e+ νe modes add up to 6.19 ± 0.17 %.[e℄ The bran
hing fra
tion for this mode may di�er from the sum of thesubmodes that 
ontribute to it, due to interferen
e e�e
ts. See therelevant papers.[f ℄ This is a doubly Cabibbo-suppressed mode.[g ℄ The two experiments measuring this fra
tion are in serious disagreement.See the Parti
le Listings.[h℄ Submodes of the D0 → K0S π+π−π0 mode with a K∗ and/or ρ werestudied by COFFMAN 92B, but with only 140 events. With nothing newfor 18 years, we refer to our 2008 edition, Physi
s Letters B667B667B667B667 1 (2008),for those results.[i ℄ This bran
hing fra
tion in
ludes all the de
ay modes of the resonan
e inthe �nal state.[j ℄ This mode is not a useful test for a �C=1 weak neutral 
urrent be
auseboth quarks must 
hange 
avor in this de
ay.

[k ℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.[l ℄ This limit is for either D0 or D0 to p e−.[n℄ This limit is for either D0 or D0 to p e+.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 55 bran
hing ratios uses 110 measurements andone 
onstraint to determine 31 parameters. The overall �t has a
χ2 = 108.0 for 80 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x18 0x19 20 2x20 0 0 0x28 0 1 1 0x29 3 0 17 0 0x31 3 13 16 2 4 3x33 1 4 5 2 1 1 31x35 0 1 2 15 1 0 12 15x50 0 1 1 0 0 0 4 1 1x67 1 3 3 0 1 1 22 7 3 1x76 0 1 1 6 0 0 5 6 40 0x80 0 1 1 0 0 0 8 3 1 0x94 1 2 3 0 1 0 16 5 2 1x95 0 0 0 1 0 0 1 1 5 0x96 1 2 3 3 1 0 18 8 20 1x132 2 7 9 1 3 2 57 18 7 3x133 0 1 1 0 0 0 9 3 1 0x134 0 1 1 0 0 0 5 1 1 92x153 1 3 4 0 1 1 25 8 3 1x167 0 1 2 0 0 0 9 3 1 0x173 0 1 1 0 0 0 6 2 1 0x175 0 1 1 0 0 0 9 3 1 0x176 0 1 1 0 0 0 4 1 0 0x177 2 7 9 1 2 2 55 17 7 2x178 0 1 1 1 0 0 4 2 8 0x179 0 1 1 6 0 0 6 6 38 0x181 0 1 1 5 0 0 5 5 35 0x218 0 1 1 0 0 0 8 2 1 0x222 1 3 3 0 1 1 21 7 3 1x281 −43 −5 −20 −16 −1 −5 −21 −13 −36 −62x6 x18 x19 x20 x28 x29 x31 x33 x35 x50x76 1x80 18 0x94 3 1 1x95 0 12 0 0x96 4 8 1 3 1x132 12 3 5 9 0 10x133 2 0 1 1 0 2 5x134 1 0 0 1 0 1 3 0x153 64 1 12 4 0 5 14 2 1x167 2 0 1 2 0 2 5 1 0 2x173 1 0 1 1 0 1 4 1 0 2x175 2 0 1 1 0 2 5 1 0 2x176 1 0 0 1 0 1 2 0 0 1x177 12 3 5 9 0 10 31 5 3 14x178 1 3 0 1 0 2 2 0 0 1x179 1 15 0 1 2 8 3 1 0 1x181 1 14 0 1 2 7 3 0 0 1x218 2 0 1 1 0 1 4 1 0 2x222 5 1 2 4 0 4 12 2 1 5x281 −25 −49 −31 −5 −10 −13 −12 −2 −58 −18x67 x76 x80 x94 x95 x96 x132 x133 x134 x153



1074107410741074MesonParti
le ListingsD0x173 1x175 1 1x176 0 0 0x177 5 4 5 2x178 0 0 0 0 2x179 1 0 0 0 3 3x181 0 0 0 0 3 3 83x218 1 1 1 0 7 0 0 0x222 2 1 2 1 12 1 1 1 2x281 −2 −2 −3 −3 −12 −4 −19 −17 −2 −4x167 x173 x175 x176 x177 x178 x179 x181 x218 x222CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 3 bran
hing ratios uses 3 measurements and one
onstraint to determine 4 parameters. The overall �t has a χ2 =0.0 for 0 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −100x3 −46 40x4 0 0 0x1 x2 x3D0 BRANCHING RATIOSD0 BRANCHING RATIOSD0 BRANCHING RATIOSD0 BRANCHING RATIOSSome older now obsolete results have been omitted from these Listings.Topologi
al modesTopologi
al modesTopologi
al modesTopologi
al modes�(0-prongs)/�total �1/��(0-prongs)/�total �1/��(0-prongs)/�total �1/��(0-prongs)/�total �1/�This value is obtained by subtra
ting the bran
hing fra
tions for 2-, 4-, and 6-prongsfrom unity.VALUE DOCUMENT ID0.15±0.06 OUR FIT0.15±0.06 OUR FIT0.15±0.06 OUR FIT0.15±0.06 OUR FIT�(4-prongs)/�total �3/��(4-prongs)/�total �3/��(4-prongs)/�total �3/��(4-prongs)/�total �3/�This is the sum of our K− 2π+π−, K− 2π+π−π0, K0 2π+2π−, K+2K−π+,2π+2π−, 2π+2π−π0, K+K−π+π−, and K+K−π+π−π0 bran
hing fra
tions.VALUE DOCUMENT ID0.145±0.005 OUR FIT0.145±0.005 OUR FIT0.145±0.005 OUR FIT0.145±0.005 OUR FIT0.145±0.0050.145±0.0050.145±0.0050.145±0.005 PDG 12�(4-prongs)/�(2-prongs) �3/�2�(4-prongs)/�(2-prongs) �3/�2�(4-prongs)/�(2-prongs) �3/�2�(4-prongs)/�(2-prongs) �3/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.207±0.016 OUR FIT0.207±0.016 OUR FIT0.207±0.016 OUR FIT0.207±0.016 OUR FIT0.207±0.016±0.0040.207±0.016±0.0040.207±0.016±0.0040.207±0.016±0.004 226 ONENGUT 05 CHRS νµ emulsion, Eν ≈ 27 GeV�(6-prongs)/�total �4/��(6-prongs)/�total �4/��(6-prongs)/�total �4/��(6-prongs)/�total �4/�This is the sum of our K− 3π+2π− and 3π+3π− bran
hing fra
tions.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.4± 1.3 OUR FIT6.4± 1.3 OUR FIT6.4± 1.3 OUR FIT6.4± 1.3 OUR FIT6.4± 1.36.4± 1.36.4± 1.36.4± 1.3 PDG 12
• • • We do not use the following data for averages, �ts, limits, et
. • • •12 +13

− 9 ±2 3 ONENGUT 05 CHRS νµ emulsion, Eν ≈ 27 GeVIn
lusive modesIn
lusive modesIn
lusive modesIn
lusive modes�(e+ anything)/�total �5/��(e+ anything)/�total �5/��(e+ anything)/�total �5/��(e+ anything)/�total �5/�The bran
hing fra
tions for the K− e+ νe , K∗(892)− e+ νe , π− e+ νe , and ρ− e+ νemodes add up to 6.20 ± 0.17 %.VALUE (%) EVTS DOCUMENT ID TECN COMMENT6.49±0.11 OUR AVERAGE6.49±0.11 OUR AVERAGE6.49±0.11 OUR AVERAGE6.49±0.11 OUR AVERAGE6.46±0.09±0.11 6584 ± 96 1 ASNER 10 CLEO e+ e− at 3774 MeV6.3 ±0.7 ±0.4 290 ± 32 ABLIKIM 07G BES2 e+ e− ≈ ψ(3770)6.46±0.17±0.13 2246 ± 57 ADAM 06A CLEO See ASNER 106.9 ±0.3 ±0.5 1670 ALBRECHT 96C ARG e+ e− ≈ 10 GeV6.64±0.18±0.29 4609 KUBOTA 96B CLE2 e+ e− ≈ �(4S)1Using the D+ and D0 lifetimes, ASNER 10 �nds that the ratio of the D+ and D0semileptoni
 widths is 0.985 ± 0.015 ± 0.024.�(µ+anything)/�total �6/��(µ+anything)/�total �6/��(µ+anything)/�total �6/��(µ+anything)/�total �6/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT6.7±0.6 OUR FIT6.7±0.6 OUR FIT6.7±0.6 OUR FIT6.7±0.6 OUR FIT6.4±0.8 OUR AVERAGE6.4±0.8 OUR AVERAGE6.4±0.8 OUR AVERAGE6.4±0.8 OUR AVERAGE6.8±1.5±0.8 79 ± 10 1 ABLIKIM 08L BES2 e+ e− ≈ ψ(3772)6.5±1.2±0.3 36 KAYIS-TOPAK...05 CHRS νµ emulsion6.0±0.7±1.2 310 ALBRECHT 96C ARG e+ e− ≈ 10 GeV1ABLIKIM 08L �nds the ratio of D+ → µ+X and D0 → µ+X bran
hing fra
tions tobe 2.59 ± 0.70 ± 0.25, in a

ord with the ratio of D+ and D0 lifetimes, 2.54 ± 0.02.

�(K− anything)/�total �7/��(K− anything)/�total �7/��(K− anything)/�total �7/��(K− anything)/�total �7/�VALUE EVTS DOCUMENT ID TECN COMMENT0.547±0.028 OUR AVERAGE0.547±0.028 OUR AVERAGE0.547±0.028 OUR AVERAGE0.547±0.028 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.0.578±0.016±0.032 2098 ± 59 ABLIKIM 07G BES2 e+ e− ≈ ψ(3770)0.546+0.039
−0.038 1 BARLAG 92C ACCM π− Cu 230 GeV0.609±0.032±0.052 COFFMAN 91 MRK3 e+ e− 3.77 GeV0.42 ±0.08 AGUILAR-... 87E HYBR πp, pp 360, 400 GeV0.55 ±0.11 121 SCHINDLER 81 MRK2 e+ e− 3.771 GeV0.35 ±0.10 19 VUILLEMIN 78 LGW e+ e− 3.772 GeV1BARLAG 92C 
omputes the bran
hing fra
tion using topologi
al normalization.

WEIGHTED AVERAGE
0.547±0.028 (Error scaled by 1.3)

VUILLEMIN 78 LGW 3.9
SCHINDLER 81 MRK2 0.0
AGUILAR-... 87E HYBR 2.5
COFFMAN 91 MRK3 1.0
BARLAG 92C ACCM 0.0
ABLIKIM 07G BES2 0.7

χ2

       8.2
(Confidence Level = 0.146)

0 0.2 0.4 0.6 0.8 1�(K− anything)/�total
[�(K0 anything)+�(K0 anything)]/�total �8/�[�(K0 anything)+�(K0 anything)]/�total �8/�[�(K0anything)+�(K0 anything)]/�total �8/�[�(K0anything)+�(K0 anything)]/�total �8/�VALUE EVTS DOCUMENT ID TECN COMMENT0.47 ±0.04 OUR AVERAGE0.47 ±0.04 OUR AVERAGE0.47 ±0.04 OUR AVERAGE0.47 ±0.04 OUR AVERAGE0.476±0.048±0.030 250 ± 25 ABLIKIM 06U BES2 e+ e− at 3773 MeV0.455±0.050±0.032 COFFMAN 91 MRK3 e+ e− 3.77 GeV�(K+anything)/�total �9/��(K+anything)/�total �9/��(K+anything)/�total �9/��(K+anything)/�total �9/�VALUE EVTS DOCUMENT ID TECN COMMENT0.034±0.004 OUR AVERAGE0.034±0.004 OUR AVERAGE0.034±0.004 OUR AVERAGE0.034±0.004 OUR AVERAGE0.035±0.007±0.003 119 ± 23 ABLIKIM 07G BES2 e+ e− ≈ ψ(3770)0.034+0.007

−0.005 1 BARLAG 92C ACCM π− Cu 230 GeV0.028±0.009±0.004 COFFMAN 91 MRK3 e+ e− 3.77 GeV0.03 +0.05
−0.02 AGUILAR-... 87E HYBR πp, pp 360, 400 GeV0.08 ±0.03 25 SCHINDLER 81 MRK2 e+ e− 3.771 GeV1BARLAG 92C 
omputes the bran
hing fra
tion using topologi
al normalization.�(K∗(892)− anything)/�total �10/��(K∗(892)− anything)/�total �10/��(K∗(892)− anything)/�total �10/��(K∗(892)− anything)/�total �10/�VALUE EVTS DOCUMENT ID TECN COMMENT0.153±0.083±0.0190.153±0.083±0.0190.153±0.083±0.0190.153±0.083±0.019 28 ± 15 ABLIKIM 06U BES2 e+ e− at 3773 MeV�(K∗(892)0 anything)/�total �11/��(K∗(892)0 anything)/�total �11/��(K∗(892)0 anything)/�total �11/��(K∗(892)0 anything)/�total �11/�VALUE EVTS DOCUMENT ID TECN COMMENT0.087±0.040±0.0120.087±0.040±0.0120.087±0.040±0.0120.087±0.040±0.012 96 ± 44 ABLIKIM 05P BES e+ e− ≈ 3773 MeV�(K∗(892)+ anything)/�total �12/��(K∗(892)+ anything)/�total �12/��(K∗(892)+ anything)/�total �12/��(K∗(892)+ anything)/�total �12/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.036<0.036<0.036<0.036 90 ABLIKIM 06U BES2 e+ e− at 3773 MeV�(K∗(892)0 anything)/�total �13/��(K∗(892)0 anything)/�total �13/��(K∗(892)0 anything)/�total �13/��(K∗(892)0 anything)/�total �13/�VALUE EVTS DOCUMENT ID TECN COMMENT0.028±0.012±0.0040.028±0.012±0.0040.028±0.012±0.0040.028±0.012±0.004 31 ± 12 ABLIKIM 05P BES e+ e− ≈ 3773 MeV�(η anything)/�total �14/��(η anything)/�total �14/��(η anything)/�total �14/��(η anything)/�total �14/�This ratio in
ludes η parti
les from η′ de
ays.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT9.5±0.4±0.89.5±0.4±0.89.5±0.4±0.89.5±0.4±0.8 4463± 197 HUANG 06B CLEO e+ e− at ψ(3770)�(η′ anything)/�total �15/��(η′ anything)/�total �15/��(η′ anything)/�total �15/��(η′ anything)/�total �15/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.48±0.17±0.212.48±0.17±0.212.48±0.17±0.212.48±0.17±0.21 299 ± 21 HUANG 06B CLEO e+ e− at ψ(3770)�(φ anything)/�total �16/��(φ anything)/�total �16/��(φ anything)/�total �16/��(φ anything)/�total �16/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.05±0.08±0.071.05±0.08±0.071.05±0.08±0.071.05±0.08±0.07 368 ± 24 HUANG 06B CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.71+0.76

−0.71±0.17 9 BAI 00C BES e+ e− → DD∗, D∗D∗



1075107510751075See key on page 601 MesonParti
le ListingsD0Semileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modes�(K− e+νe)/�total �18/��(K− e+νe)/�total �18/��(K− e+νe)/�total �18/��(K− e+νe)/�total �18/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.538±0.033 OUR FIT3.538±0.033 OUR FIT3.538±0.033 OUR FIT3.538±0.033 OUR FIT Error in
ludes s
ale fa
tor of 1.3.3.503±0.029 OUR AVERAGE3.503±0.029 OUR AVERAGE3.503±0.029 OUR AVERAGE3.503±0.029 OUR AVERAGE3.505±0.014±0.033 71k 1 ABLIKIM 15X BES3 2.92 fb−1, 3.773 GeV3.50 ±0.03 ±0.04 14.1k 1 BESSON 09 CLEO e+ e− at ψ(3770)3.45 ±0.10 ±0.19 1.3k 2 WIDHALM 06 BELL e+ e− ≈ �(4S)3.82 ±0.40 ±0.27 104 ABLIKIM 04C BES e+ e−, 3.773 GeV3.4 ±0.5 ±0.4 55 ADLER 89 MRK3 e+ e− 3.77 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.56 ±0.03 ±0.09 3 DOBBS 08 CLEO See BESSON 093.44 ±0.10 ±0.10 1.3k COAN 05 CLEO See DOBBS 081See the form-fa
tor parameters near the end of this D0 Listing.2The π− e+ νe and K− e+ νe results of WIDHALM 06 give ∣

∣

V 
 dV 
 s ·
f π+(0)f K+(0) ∣

∣
2 = 0.042 ±0.003 ± 0.003.3DOBBS 08 establishes ∣

∣

V 
 dV 
 s ·
f π+(0)f K+(0) ∣

∣ = 0.188 ± 0.008 ± 0.002 from the D+ and D0de
ays to K e+ νe and πe+ νe .�(K− e+νe)/�(K−π+) �18/�31�(K− e+νe)/�(K−π+) �18/�31�(K− e+νe)/�(K−π+) �18/�31�(K− e+νe)/�(K−π+) �18/�31VALUE EVTS DOCUMENT ID TECN COMMENT0.900±0.012 OUR FIT0.900±0.012 OUR FIT0.900±0.012 OUR FIT0.900±0.012 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.930±0.013 OUR AVERAGE0.930±0.013 OUR AVERAGE0.930±0.013 OUR AVERAGE0.930±0.013 OUR AVERAGE0.927±0.007±0.012 76k±323 1 AUBERT 07BG BABR e+ e− ≈ �(4S)0.978±0.027±0.044 2510 2 BEAN 93C CLE2 e+ e− ≈ �(4S)0.90 ±0.06 ±0.06 584 3 CRAWFORD 91B CLEO e+ e− ≈ 10.5 GeV0.91 ±0.07 ±0.11 250 4 ANJOS 89F E691 Photoprodu
tion1The event samples in this AUBERT 07BG result in
lude radiative photons. The D0 →K− e+ νe form fa
tor at q2 = 0 is f+(0) = 0.727 ± 0.007 ± 0.005 ± 0.007.2BEAN 93C uses K−µ+ νµ as well as K− e+ νe events and makes a small phase-spa
eadjustment to the number of the µ+ events to use them as e+ events. A pole mass of2.00 ± 0.12 ± 0.18 GeV/
2 is obtained from the q2 dependen
e of the de
ay rate.3CRAWFORD 91B uses K− e+ νe and K−µ+ νµ 
andidates to measure a pole mass of2.1+0.4
−0.2+0.3

−0.2 GeV/
2 from the q2 dependen
e of the de
ay rate.4ANJOS 89F measures a pole mass of 2.1+0.4
−0.2 ± 0.2 GeV/
2 from the q2 dependen
eof the de
ay rate.�(K−µ+νµ

)/�total �19/��(K−µ+νµ

)/�total �19/��(K−µ+νµ

)/�total �19/��(K−µ+νµ

)/�total �19/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.33±0.13 OUR FIT3.33±0.13 OUR FIT3.33±0.13 OUR FIT3.33±0.13 OUR FIT3.45±0.10±0.213.45±0.10±0.213.45±0.10±0.213.45±0.10±0.21 1249 ± 43 WIDHALM 06 BELL e+ e− ≈ �(4S)�(K−µ+νµ

)/�(K−π+) �19/�31�(K−µ+νµ

)/�(K−π+) �19/�31�(K−µ+νµ

)/�(K−π+) �19/�31�(K−µ+νµ

)/�(K−π+) �19/�31VALUE EVTS DOCUMENT ID TECN COMMENT0.848±0.033 OUR FIT0.848±0.033 OUR FIT0.848±0.033 OUR FIT0.848±0.033 OUR FIT0.84 ±0.04 OUR AVERAGE0.84 ±0.04 OUR AVERAGE0.84 ±0.04 OUR AVERAGE0.84 ±0.04 OUR AVERAGE0.852±0.034±0.028 1897 1 FRABETTI 95G E687 γBe Eγ= 220 GeV0.82 ±0.13 ±0.13 338 2 FRABETTI 93I E687 γBe Eγ= 221 GeV0.79 ±0.08 ±0.09 231 3 CRAWFORD 91B CLEO e+ e− ≈ 10.5 GeV1FRABETTI 95G extra
ts the ratio of form fa
tors f−(0)/f+(0) = −1.3+3.6
−3.4 ± 0.6, andmeasures a pole mass of 1.87+0.11

−0.08+0.07
−0.06 GeV/
2 from the q2 dependen
e of the de
ayrate.2 FRABETTI 93I measures a pole mass of 2.1+0.7

−0.3+0.7
−0.3 GeV/
2 from the q2 dependen
eof the de
ay rate.3CRAWFORD 91B measures a pole mass of 2.00 ± 0.12 ± 0.18 GeV/
2 from the q2dependen
e of the de
ay rate.�(K−µ+νµ

)/�(

µ+anything) �19/�6�(K−µ+νµ

)/�(

µ+anything) �19/�6�(K−µ+νµ

)/�(

µ+anything) �19/�6�(K−µ+νµ

)/�(

µ+anything) �19/�6VALUE EVTS DOCUMENT ID TECN COMMENT0.50 ±0.05 OUR FIT0.50 ±0.05 OUR FIT0.50 ±0.05 OUR FIT0.50 ±0.05 OUR FIT0.472±0.051±0.0400.472±0.051±0.0400.472±0.051±0.0400.472±0.051±0.040 232 KODAMA 94 E653 π− emulsion 600 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.32 ±0.05 ±0.05 124 KODAMA 91 EMUL pA 800 GeV�(K−π0 e+νe)/�total �22/��(K−π0 e+νe)/�total �22/��(K−π0 e+νe)/�total �22/��(K−π0 e+νe)/�total �22/�VALUE EVTS DOCUMENT ID TECN COMMENT0.016+0.013

−0.005±0.0020.016+0.013
−0.005±0.0020.016+0.013
−0.005±0.0020.016+0.013
−0.005±0.002 4 1 BAI 91 MRK3 e+ e− ≈ 3.77 GeV1BAI 91 �nds that a fra
tion 0.79+0.15

−0.17+0.09
−0.03 of 
ombined D+ and D0 de
ays toK πe+ νe (24 events) are K∗(892)e+ νe . BAI 91 uses 56 K− e+ νe events to measurea pole mass of 1.8 ± 0.3 ± 0.2 GeV/
2 from the q2 dependen
e of the de
ay rate.�(K0π− e+νe)/�total �23/��(K0π− e+νe)/�total �23/��(K0π− e+νe)/�total �23/��(K0π− e+νe)/�total �23/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.7 +0.9

−0.7 OUR AVERAGE2.7 +0.9
−0.7 OUR AVERAGE2.7 +0.9
−0.7 OUR AVERAGE2.7 +0.9
−0.7 OUR AVERAGE2.61±1.04±0.28 9 ± 3 ABLIKIM 06O BES2 e+ e− at 3773 MeV2.8 +1.7
−0.8 ±0.3 6 1 BAI 91 MRK3 e+ e− ≈ 3.77 GeV1BAI 91 �nds that a fra
tion 0.79+0.15

−0.17+0.09
−0.03 of 
ombined D+ and D0 de
ays toK πe+ νe (24 events) are K∗(892)e+ νe .

�(K∗(892)− e+νe)/�total �20/��(K∗(892)− e+νe)/�total �20/��(K∗(892)− e+νe)/�total �20/��(K∗(892)− e+νe)/�total �20/�Both de
ay modes of the K∗(892)− are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.16±0.16 OUR FIT2.16±0.16 OUR FIT2.16±0.16 OUR FIT2.16±0.16 OUR FIT2.16±0.15±0.082.16±0.15±0.082.16±0.15±0.082.16±0.15±0.08 219 ± 16 1 COAN 05 CLEO e+ e− at ψ(3770)1COAN 05 uses both K−π0 and K0S π− events.�(K∗(892)− e+νe)/�(K0S π+π−) �20/�35�(K∗(892)− e+νe)/�(K0S π+π−) �20/�35�(K∗(892)− e+νe)/�(K0S π+π−) �20/�35�(K∗(892)− e+νe)/�(K0S π+π−) �20/�35Unseen de
ay modes of the K∗(892)− are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.76±0.07 OUR FIT0.76±0.07 OUR FIT0.76±0.07 OUR FIT0.76±0.07 OUR FIT0.76±0.12±0.060.76±0.12±0.060.76±0.12±0.060.76±0.12±0.06 152 1 BEAN 93C CLE2 e+ e− ≈ �(4S)1BEAN 93C uses K∗−µ+ νµ as well as K∗− e+ νe events and makes a small phase-spa
eadjustment to the number of the µ+ events to use them as e+ events.�(K∗(892)−µ+νµ

)/�(K0S π+π−) �21/�35�(K∗(892)−µ+νµ

)/�(K0S π+π−) �21/�35�(K∗(892)−µ+νµ

)/�(K0S π+π−) �21/�35�(K∗(892)−µ+νµ

)/�(K0S π+π−) �21/�35Unseen de
ay modes of the K∗(892)− are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.674±0.068±0.0260.674±0.068±0.0260.674±0.068±0.0260.674±0.068±0.026 175 ± 17 1 LINK 05B FOCS γ A, Eγ ≈ 180 GeV1LINK 05B �nds that in D0 → K0π−µ+ νµ the K0π− system is 6% in S-wave.�(K−π+π− e+ νe)/�total �24/��(K−π+π− e+ νe)/�total �24/��(K−π+π− e+ νe)/�total �24/��(K−π+π− e+ νe)/�total �24/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.8+1.4
−1.1±0.32.8+1.4
−1.1±0.32.8+1.4
−1.1±0.32.8+1.4
−1.1±0.3 8 ARTUSO 07A CLEO e+ e− at �(3770)�(K1(1270)− e+ νe)/�total �25/��(K1(1270)− e+ νe)/�total �25/��(K1(1270)− e+ νe)/�total �25/��(K1(1270)− e+ νe)/�total �25/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.6+4.1
−3.0±0.97.6+4.1
−3.0±0.97.6+4.1
−3.0±0.97.6+4.1
−3.0±0.9 8 1 ARTUSO 07A CLEO e+ e− at �(3770)1This ARTUSO 07A result is 
orre
ted for all de
ay modes of the K1(1270)−.�(K−π+π−µ+ νµ

)/�(K−µ+νµ

) �26/�19�(K−π+π−µ+ νµ

)/�(K−µ+νµ

) �26/�19�(K−π+π−µ+ νµ

)/�(K−µ+νµ

) �26/�19�(K−π+π−µ+ νµ

)/�(K−µ+νµ

) �26/�19VALUE CL% DOCUMENT ID TECN COMMENT
<0.037<0.037<0.037<0.037 90 KODAMA 93B E653 π− emulsion 600 GeV�((K∗(892)π )−µ+ νµ

)/�(K−µ+νµ

) �27/�19�((K∗(892)π )−µ+ νµ

)/�(K−µ+νµ

) �27/�19�((K∗(892)π )−µ+ νµ

)/�(K−µ+νµ

) �27/�19�((K∗(892)π )−µ+ νµ

)/�(K−µ+νµ

) �27/�19VALUE CL% DOCUMENT ID TECN COMMENT
<0.043<0.043<0.043<0.043 90 1 KODAMA 93B E653 π− emulsion 600 GeV1KODAMA 93B sear
hed in K−π+π−µ+ νµ, but the limit in
ludes other (K∗(892)π )−
harge states.�(

π− e+νe)/�total �28/��(

π− e+νe)/�total �28/��(

π− e+νe)/�total �28/��(

π− e+νe)/�total �28/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.291±0.004 OUR FIT0.291±0.004 OUR FIT0.291±0.004 OUR FIT0.291±0.004 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.293±0.004 OUR AVERAGE0.293±0.004 OUR AVERAGE0.293±0.004 OUR AVERAGE0.293±0.004 OUR AVERAGE0.295±0.004±0.003 6.3k 1 ABLIKIM 15X BES3 2.92 fb−1, 3.773 GeV0.288±0.008±0.003 1.3k 1 BESSON 09 CLEO e+ e− at ψ(3770)0.279±0.027±0.016 126 2 WIDHALM 06 BELL e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.299±0.011±0.009 3 DOBBS 08 CLEO See BESSON 090.262±0.025±0.008 117 COAN 05 CLEO See DOBBS 081See the form-fa
tor parameters near the end of this D0 Listing.2The π− e+ νe and K− e+ νe results of WIDHALM 06 give ∣

∣

V 
 dV 
 s ·
f π+(0)f K+(0) ∣

∣

2 = 0.042 ±0.003 ± 0.003.3DOBBS 08 establishes ∣

∣

V 
 dV 
 s ·
f π+(0)f K+(0) ∣

∣ = 0.188 ± 0.008 ± 0.002 from the D+ and D0de
ays to K e+ νe and πe+ νe .�(

π− e+νe)/�(K− e+ νe) �28/�18�(

π− e+νe)/�(K− e+ νe) �28/�18�(

π− e+νe)/�(K− e+ νe) �28/�18�(

π− e+νe)/�(K− e+ νe) �28/�18VALUE EVTS DOCUMENT ID TECN COMMENT0.0823±0.0014 OUR FIT0.0823±0.0014 OUR FIT0.0823±0.0014 OUR FIT0.0823±0.0014 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.085 ±0.007 OUR AVERAGE0.085 ±0.007 OUR AVERAGE0.085 ±0.007 OUR AVERAGE0.085 ±0.007 OUR AVERAGE0.082 ±0.006 ±0.005 1 HUANG 05 CLEO e+ e− ≈ �(4S)0.101 ±0.020 ±0.003 91 2 FRABETTI 96B E687 γ Be, Eγ ≈ 200 GeV0.103 ±0.039 ±0.013 87 3 BUTLER 95 CLE2 < 0.156 (90% CL)1HUANG 05 uses both e and µ events, and makes a small 
orre
tion to the µevents to make them e�e
tively e events. This result gives ∣

∣

V 
 dV 
 s ·
f π+(0)f K+(0) ∣

∣

2 =0.038+0.006
−0.007+0.005

−0.003.2 FRABETTI 96B uses both e and µ events, and makes a small 
orre
tion to the µ events tomake them e�e
tively e events. This result gives ∣

∣

V 
 dV 
 s · f π+(0)f K+(0) ∣

∣

2 = 0.050±0.011±0.002.3BUTLER 95 has 87 ± 33 π− e+ νe events. The result gives ∣

∣

V 
 dV 
 s ·
f π+(0)f K+(0) ∣

∣

2 = 0.052 ±0.020 ± 0.007.



1076107610761076Meson Parti
le ListingsD0�(

π− e+νe)/�(K−π+) �28/�31�(

π− e+νe)/�(K−π+) �28/�31�(

π− e+νe)/�(K−π+) �28/�31�(

π− e+νe)/�(K−π+) �28/�31VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT7.41±0.13 OUR FIT7.41±0.13 OUR FIT7.41±0.13 OUR FIT7.41±0.13 OUR FIT Error in
ludes s
ale fa
tor of 1.1.7.02±0.17±0.237.02±0.17±0.237.02±0.17±0.237.02±0.17±0.23 375k 1 LEES 15F BABR 347 fb−1, 10.58 GeV1See the form-fa
tor parameters near the end of the D0 Listing.�(

π−µ+νµ

)/�total �29/��(

π−µ+νµ

)/�total �29/��(

π−µ+νµ

)/�total �29/��(

π−µ+νµ

)/�total �29/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.238±0.024 OUR FIT0.238±0.024 OUR FIT0.238±0.024 OUR FIT0.238±0.024 OUR FIT0.231±0.026±0.0190.231±0.026±0.0190.231±0.026±0.0190.231±0.026±0.019 106 ± 13 WIDHALM 06 BELL e+ e− ≈ �(4S)�(

π−µ+νµ

)/�(K−µ+ νµ

) �29/�19�(

π−µ+νµ

)/�(K−µ+ νµ

) �29/�19�(

π−µ+νµ

)/�(K−µ+ νµ

) �29/�19�(

π−µ+νµ

)/�(K−µ+ νµ

) �29/�19VALUE EVTS DOCUMENT ID TECN COMMENT0.071±0.007 OUR FIT0.071±0.007 OUR FIT0.071±0.007 OUR FIT0.071±0.007 OUR FIT0.074±0.008±0.0070.074±0.008±0.0070.074±0.008±0.0070.074±0.008±0.007 288 ± 29 1 LINK 05 FOCS γ A, Eγ ≈ 180 GeV1LINK 05 �nds the form-fa
tor ratio ∣

∣f π0 (0)/f K0 (0)∣∣ to be 0.85 ± 0.04 ± 0.04 ± 0.01.�(

ρ− e+ νe)/�total �30/��(

ρ− e+ νe)/�total �30/��(

ρ− e+ νe)/�total �30/��(

ρ− e+ νe)/�total �30/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.77±0.12±0.101.77±0.12±0.101.77±0.12±0.101.77±0.12±0.10 305 ± 21 1,2 DOBBS 13 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.94±0.39±0.13 31 ± 6 COAN 05 CLEO See DOBBS 131DOBBS 13 �nds �(D0 → ρ− e+ νe ) / 2 �(D+ → ρ0 e+ νe ) = 1.03 ± 0.09+0.08

−0.02;isospin invarian
e predi
ts the ratio is 1.0.2 See the D+ Listings for D → ρe+ νe form fa
tors.Hadroni
 modes with a single KHadroni
 modes with a single KHadroni
 modes with a single KHadroni
 modes with a single K�(K−π+)/�total �31/��(K−π+)/�total �31/��(K−π+)/�total �31/��(K−π+)/�total �31/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.93 ±0.04 OUR FIT3.93 ±0.04 OUR FIT3.93 ±0.04 OUR FIT3.93 ±0.04 OUR FIT Error in
ludes s
ale fa
tor of 1.2.3.93 ±0.05 OUR AVERAGE3.93 ±0.05 OUR AVERAGE3.93 ±0.05 OUR AVERAGE3.93 ±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.3.934±0.021±0.061 BONVICINI 14 CLEO All CLEO-
 runs4.007±0.037±0.072 33.8k AUBERT 08L BABR e+ e− at �(4S)3.82 ±0.07 ±0.12 1 ARTUSO 98 CLE2 CLEO average3.90 ±0.09 ±0.12 5.4k 2 BARATE 97C ALEP From Z de
ays3.41 ±0.12 ±0.28 1.2k 2 ALBRECHT 94F ARG e+ e− ≈ �(4S)3.62 ±0.34 ±0.44 2 DECAMP 91J ALEP From Z de
ays
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.891±0.035±0.069 3 DOBBS 07 CLEO See BONVICINI 143.91 ±0.08 ±0.09 10.3k 3 HE 05 CLEO See DOBBS 073.81 ±0.15 ±0.16 1.2k 4 ARTUSO 98 CLE2 e+ e− at �(4S)3.69 ±0.11 ±0.16 5 COAN 98 CLE2 See ARTUSO 984.5 ±0.6 ±0.4 6 ALBRECHT 94 ARG e+ e− ≈ �(4S)3.95 ±0.08 ±0.17 4.2k 2,7 AKERIB 93 CLE2 See ARTUSO 984.5 ±0.8 ±0.5 56 2 ABACHI 88 HRS e+ e− 29 GeV4.2 ±0.4 ±0.4 0.9k ADLER 88C MRK3 e+ e− 3.77 GeV4.1 ±0.6 0.3k 8 SCHINDLER 81 MRK2 e+ e− 3.771 GeV4.3 ±1.0 130 9 PERUZZI 77 LGW e+ e− 3.77 GeV1This 
ombines the CLEO results of ARTUSO 98, COAN 98, and AKERIB 93.2ABACHI 88, DECAMP 91J, AKERIB 93, ALBRECHT 94F, and BARATE 97C useD∗(2010)+ → D0π+ de
ays. The π+ is both slow and of low pT with respe
tto the event thrust axis or nearest jet (≈ D∗+ dire
tion). The ex
ess number of su
h

π+'s over ba
kground gives the number of D∗(2010)+ → D0π+ events, and thefra
tion with D0 → K−π+ gives the D0 → K−π+ bran
hing fra
tion.3DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.4ARTUSO 98, following ALBRECHT 94, uses D0 mesons from B0 →D∗(2010)+X ℓ− νℓ de
ays. Our average uses the CLEO average of this value withthe values of COAN 98 and AKERIB 93.5COAN 98 assumes that �(B → DX ℓ+ ν)/�(B → X ℓ+ ν) = 1.0 − 3∣∣Vub/V
 b ∣

∣

2 −0.010 ± 0.005, the last term a

ounting for B → D+s K X ℓ− ν. COAN 98 is in
ludedin the CLEO average in ARTUSO 98.6ALBRECHT 94 uses D0 mesons from B0 → D∗+ ℓ− νℓ de
ays. This is a di�erent setof events than used by ALBRECHT 94F.7This AKERIB 93 value in
ludes radiative 
orre
tions; without them, the value is 0.0391±0.0008 ± 0.0017. AKERIB 93 is in
luded in the CLEO average in ARTUSO 98.8 SCHINDLER 81 (MARK-2) measures σ(e+ e− → ψ(3770)) × bran
hing fra
tion tobe 0.24 ± 0.02 nb. We use the MARK-3 (ADLER 88C) value of σ = 5.8 ± 0.5 ± 0.6 nb.9PERUZZI 77 (MARK-1) measures σ(e+ e− → ψ(3770)) × bran
hing fra
tion to be0.25 ± 0.05 nb. We use the MARK-3 (ADLER 88C) value of σ = 5.8 ± 0.5 ± 0.6 nb.�(K+π−)/�(K−π+) �32/�31�(K+π−)/�(K−π+) �32/�31�(K+π−)/�(K−π+) �32/�31�(K+π−)/�(K−π+) �32/�31VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.56 ±0.06 OUR AVERAGE3.56 ±0.06 OUR AVERAGE3.56 ±0.06 OUR AVERAGE3.56 ±0.06 OUR AVERAGE3.53 ±0.13 1 KO 14 BELL e+ e− → �(nS)3.568±0.066 2 AAIJ 13CE LHCB pp at 7, 8 TeV3.51 ±0.35 3 AALTONEN 13AE CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.52 ±0.15 4 AAIJ 13N LHCB Repl. by AAIJ 13CE1Based on 976 fb−1 of data 
olle
ted at Y (nS) resonan
es. Assumes no CP violation.2Based on 3 fb−1 of data 
olle
ted at √s = 7, 8 TeV. Assumes no CP violation.3Based on 9.6 fb−1 of data 
olle
ted at the Tevatron. Assumes no CP violation.4Based on 1 fb−1 of data 
olle
ted at √s = 7 TeV in 2011. Assumes no CP violation.

�(K0S π0)/�total �33/��(K0S π0)/�total �33/��(K0S π0)/�total �33/��(K0S π0)/�total �33/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.240±0.017±0.056 614 HE 08 CLEO See MENDEZ 10�(K0S π0)/�(K−π+) �33/�31�(K0S π0)/�(K−π+) �33/�31�(K0S π0)/�(K−π+) �33/�31�(K0S π0)/�(K−π+) �33/�31VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.68±0.12±0.11 119 ANJOS 92B E691 γBe 80{240 GeV�(K0S π0)/[�(K−π+)+�(K+π−)

] �33/(�31+�222)�(K0S π0)/[�(K−π+)+�(K+π−)
] �33/(�31+�222)�(K0S π0)/[�(K−π+)+�(K+π−)
] �33/(�31+�222)�(K0S π0)/[�(K−π+)+�(K+π−)
] �33/(�31+�222)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT30.5±0.9 OUR FIT30.5±0.9 OUR FIT30.5±0.9 OUR FIT30.5±0.9 OUR FIT30.4±0.3±0.930.4±0.3±0.930.4±0.3±0.930.4±0.3±0.9 20k MENDEZ 10 CLEO e+ e− at 3774 MeV�(K0S π0)/�(K0S π+π−) �33/�35�(K0S π0)/�(K0S π+π−) �33/�35�(K0S π0)/�(K0S π+π−) �33/�35�(K0S π0)/�(K0S π+π−) �33/�35VALUE EVTS DOCUMENT ID TECN COMMENT0.421±0.029 OUR FIT0.421±0.029 OUR FIT0.421±0.029 OUR FIT0.421±0.029 OUR FIT0.44 ±0.02 ±0.050.44 ±0.02 ±0.050.44 ±0.02 ±0.050.44 ±0.02 ±0.05 1942 ± 64 PROCARIO 93B CLE2 e+ e− 10.36{10.7 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.34 ±0.04 ±0.02 92 1 ALBRECHT 92P ARG e+ e− ≈ 10 GeV0.36 ±0.04 ±0.08 104 KINOSHITA 91 CLEO e+ e− ∼ 10.7 GeV1This value is 
al
ulated from numbers in Table 1 of ALBRECHT 92P.�(K0Lπ0)/�total �34/��(K0Lπ0)/�total �34/��(K0Lπ0)/�total �34/��(K0Lπ0)/�total �34/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.998±0.049±0.0480.998±0.049±0.0480.998±0.049±0.0480.998±0.049±0.048 1116 1 HE 08 CLEO e+ e− at ψ(3770)1The di�eren
e of HE 08 D0 → K0S π0 and K0Lπ0 bran
hing fra
tions over the sum is0.108 ± 0.025 ± 0.024. This is 
onsistent with U-spin symmetry and the Cabibbo angle.�(K0S π+π−)/�total �35/��(K0S π+π−)/�total �35/��(K0S π+π−)/�total �35/��(K0S π+π−)/�total �35/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.52±0.20±0.25 284 ± 22 1 ALBRECHT 94F ARG e+ e− ≈ �(4S)3.2 ±0.3 ±0.5 ADLER 87 MRK3 e+ e− 3.77 GeV2.6 ±0.8 32 ± 8 2 SCHINDLER 81 MRK2 e+ e− 3.771 GeV4.0 ±1.2 28 3 PERUZZI 77 LGW e+ e− 3.77 GeV1See the footnote on the ALBRECHT 94F measurement of �(K−π+)/�total for themethod used.2 SCHINDLER 81 (MARK-2) measures σ(e+ e− → ψ(3770)) × bran
hing fra
tion tobe 0.30 ± 0.08 nb. We use the MARK-3 (ADLER 88C) value of σ = 5.8 ± 0.5 ± 0.6 nb.3PERUZZI 77 (MARK-1) measures σ(e+ e− → ψ(3770)) × bran
hing fra
tion to be0.46 ± 0.12 nb. We use the MARK-3 (ADLER 88C) value of σ = 5.8 ± 0.5 ± 0.6 nb.�(K0S π+π−)/�(K−π+) �35/�31�(K0S π+π−)/�(K−π+) �35/�31�(K0S π+π−)/�(K−π+) �35/�31�(K0S π+π−)/�(K−π+) �35/�31VALUE EVTS DOCUMENT ID TECN COMMENT0.73±0.05 OUR FIT0.73±0.05 OUR FIT0.73±0.05 OUR FIT0.73±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.81±0.05±0.080.81±0.05±0.080.81±0.05±0.080.81±0.05±0.08 856 ± 35 FRABETTI 94J E687 γBe Eγ=220 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.85±0.40 35 AVERY 80 SPEC γN → D∗+1.4 ±0.5 116 PICCOLO 77 MRK1 e+ e− 4.03, 4.41 GeV�(K0S ρ0)/�(K0S π+π−) �36/�35�(K0S ρ0)/�(K0S π+π−) �36/�35�(K0S ρ0)/�(K0S π+π−) �36/�35�(K0S ρ0)/�(K0S π+π−) �36/�35This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.224+0.017

−0.023 OUR AVERAGE0.224+0.017
−0.023 OUR AVERAGE0.224+0.017
−0.023 OUR AVERAGE0.224+0.017
−0.023 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.0.210±0.016 1 AUBERT 08AL BABR Dalitz �t, ≈ 487 k evts0.264±0.009+0.010

−0.026 MURAMATSU 02 CLE2 Dalitz �t, 5299 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.267±0.011+0.009

−0.028 ASNER 04A CLEO See MURAMATSU 020.350±0.028±0.067 FRABETTI 94G E687 Dalitz �t, 597 evts0.227±0.032±0.009 ALBRECHT 93D ARG Dalitz �t, 440 evts0.215±0.051±0.037 ANJOS 93 E691 γBe 90{260 GeV0.20 ±0.06 ±0.03 FRABETTI 92B E687 γ Be, Eγ= 221 GeV0.12 ±0.01 ±0.07 ADLER 87 MRK3 e+ e− 3.77 GeV1The error on this AUBERT 08AL value in
ludes both statisti
al and systemati
 un
er-taities; the latter dominates.�(K0S ω , ω → π+π−)/�(K0S π+π−) �37/�35�(K0S ω , ω → π+π−)/�(K0S π+π−) �37/�35�(K0S ω , ω → π+π−)/�(K0S π+π−) �37/�35�(K0S ω , ω → π+π−)/�(K0S π+π−) �37/�35This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.0073±0.0020 OUR AVERAGE0.0073±0.0020 OUR AVERAGE0.0073±0.0020 OUR AVERAGE0.0073±0.0020 OUR AVERAGE0.009 ±0.010 1 AUBERT 08AL BABR Dalitz �t, ≈ 487 k evts0.0072±0.0018+0.0010
−0.0009 MURAMATSU 02 CLE2 Dalitz �t, 5299 evts

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0081±0.0019+0.0018
−0.0010 ASNER 04A CLEO See MURAMATSU 021The error on this AUBERT 08AL value in
ludes both statisti
al and systemati
 un
er-taities; the latter dominates.



1077107710771077See key on page 601 Meson Parti
le ListingsD0�(K0S (π+π−)S−wave)/�(K0S π+π−) �38/�35�(K0S (π+π−)S−wave)/�(K0S π+π−) �38/�35�(K0S (π+π−)S−wave)/�(K0S π+π−) �38/�35�(K0S (π+π−)S−wave)/�(K0S π+π−) �38/�35This is the \�t fra
tion" from the Dalitz-plot analysis. The (π+π−)S−wave in
ludeswhat in isobar models are the f0(980) and f0(1370); see the following two data blo
ks.VALUE DOCUMENT ID TECN COMMENT0.119±0.0260.119±0.0260.119±0.0260.119±0.026 1 AUBERT 08AL BABR Dalitz �t, ≈ 487 k evts1The error on this AUBERT 08AL value in
ludes both statisti
al and systemati
 un
er-taities; the latter dominates.�(K0S f0(980), f0(980)→ π+π−)/�(K0S π+π−) �39/�35�(K0S f0(980), f0(980)→ π+π−)/�(K0S π+π−) �39/�35�(K0S f0(980), f0(980)→ π+π−)/�(K0S π+π−) �39/�35�(K0S f0(980), f0(980)→ π+π−)/�(K0S π+π−) �39/�35This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.043±0.005+0.012
−0.0060.043±0.005+0.012
−0.0060.043±0.005+0.012
−0.0060.043±0.005+0.012
−0.006 MURAMATSU 02 CLE2 Dalitz �t, 5299 evts

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.042±0.005+0.011
−0.005 ASNER 04A CLEO See MURAMATSU 020.068±0.016±0.018 FRABETTI 94G E687 Dalitz �t, 597 evts0.046±0.018±0.006 ALBRECHT 93D ARG Dalitz �t, 440 evts�(K0S f0(1370), f0(1370)→ π+π−)/�(K0S π+π−) �40/�35�(K0S f0(1370), f0(1370)→ π+π−)/�(K0S π+π−) �40/�35�(K0S f0(1370), f0(1370)→ π+π−)/�(K0S π+π−) �40/�35�(K0S f0(1370), f0(1370)→ π+π−)/�(K0S π+π−) �40/�35This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.099±0.011+0.028
−0.0440.099±0.011+0.028
−0.0440.099±0.011+0.028
−0.0440.099±0.011+0.028
−0.044 MURAMATSU 02 CLE2 Dalitz �t, 5299 evts

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.098±0.014+0.026
−0.036 ASNER 04A CLEO See MURAMATSU 020.077±0.022±0.031 FRABETTI 94G E687 Dalitz �t, 597 evts0.082±0.028±0.013 ALBRECHT 93D ARG Dalitz �t, 440 evts�(K0S f2(1270), f2(1270)→ π+π−)/�(K0S π+π−) �41/�35�(K0S f2(1270), f2(1270)→ π+π−)/�(K0S π+π−) �41/�35�(K0S f2(1270), f2(1270)→ π+π−)/�(K0S π+π−) �41/�35�(K0S f2(1270), f2(1270)→ π+π−)/�(K0S π+π−) �41/�35This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.0032+0.0035

−0.0022 OUR AVERAGE0.0032+0.0035
−0.0022 OUR AVERAGE0.0032+0.0035
−0.0022 OUR AVERAGE0.0032+0.0035
−0.0022 OUR AVERAGE0.006 ±0.007 1 AUBERT 08AL BABR Dalitz �t, ≈ 487 k evts0.0027±0.0015+0.0037

−0.0017 MURAMATSU 02 CLE2 Dalitz �t, 5299 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0036±0.0022+0.0032

−0.0019 ASNER 04A CLEO See MURAMATSU 020.037 ±0.014 ±0.017 FRABETTI 94G E687 Dalitz �t, 597 evts0.050 ±0.021 ±0.008 ALBRECHT 93D ARG Dalitz �t, 440 evts1The error on this AUBERT 08AL value in
ludes both statisti
al and systemati
 un
er-taities; the latter dominates.�(K∗(892)−π+ ,K∗(892)− → K0S π−)/�(K0S π+π−) �42/�35�(K∗(892)−π+ ,K∗(892)− → K0S π−)/�(K0S π+π−) �42/�35�(K∗(892)−π+ ,K∗(892)− → K0S π−)/�(K0S π+π−) �42/�35�(K∗(892)−π+ ,K∗(892)− → K0S π−)/�(K0S π+π−) �42/�35This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.588+0.034
−0.050 OUR AVERAGE0.588+0.034
−0.050 OUR AVERAGE0.588+0.034
−0.050 OUR AVERAGE0.588+0.034
−0.050 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0.0.557±0.028 1 AUBERT 08AL BABR Dalitz �t, ≈ 487 k evts0.657±0.013+0.018

−0.040 MURAMATSU 02 CLE2 Dalitz �t, 5299 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.663±0.013+0.024

−0.043 ASNER 04A CLEO See MURAMATSU 020.625±0.036±0.026 FRABETTI 94G E687 Dalitz �t, 597 evts0.718±0.042±0.030 ALBRECHT 93D ARG Dalitz �t, 440 evts0.480±0.097 ANJOS 93 E691 γBe 90{260 GeV0.56 ±0.04 ±0.05 ADLER 87 MRK3 e+ e− 3.77 GeV1The error on this AUBERT 08AL value in
ludes both statisti
al and systemati
 un
er-taities; the latter dominates.�(K∗0(1430)−π+ ,K∗0(1430)− → K0S π−)/�(K0S π+π−) �43/�35�(K∗0(1430)−π+ ,K∗0(1430)− → K0S π−)/�(K0S π+π−) �43/�35�(K∗0(1430)−π+ ,K∗0(1430)− → K0S π−)/�(K0S π+π−) �43/�35�(K∗0(1430)−π+ ,K∗0(1430)− → K0S π−)/�(K0S π+π−) �43/�35This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.095+0.014
−0.010 OUR AVERAGE0.095+0.014
−0.010 OUR AVERAGE0.095+0.014
−0.010 OUR AVERAGE0.095+0.014
−0.010 OUR AVERAGE0.102±0.015 1 AUBERT 08AL BABR Dalitz �t, ≈ 487 k evts0.073±0.007+0.031

−0.011 MURAMATSU 02 CLE2 Dalitz �t, 5299 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.072±0.007+0.014

−0.013 ASNER 04A CLEO See MURAMATSU 020.109±0.027±0.029 FRABETTI 94G E687 Dalitz �t, 597 evts0.129±0.034±0.021 ALBRECHT 93D ARG Dalitz �t, 440 evts1The error on this AUBERT 08AL value in
ludes both statisti
al and systemati
 un
er-taities; the latter dominates.�(K∗2(1430)−π+ ,K∗2(1430)− → K0S π−)/�(K0S π+π−) �44/�35�(K∗2(1430)−π+ ,K∗2(1430)− → K0S π−)/�(K0S π+π−) �44/�35�(K∗2(1430)−π+ ,K∗2(1430)− → K0S π−)/�(K0S π+π−) �44/�35�(K∗2(1430)−π+ ,K∗2(1430)− → K0S π−)/�(K0S π+π−) �44/�35This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.0120+0.0070
−0.0035 OUR AVERAGE0.0120+0.0070
−0.0035 OUR AVERAGE0.0120+0.0070
−0.0035 OUR AVERAGE0.0120+0.0070
−0.0035 OUR AVERAGE0.022 ±0.016 1 AUBERT 08AL BABR Dalitz �t, ≈ 487 k evts0.011 ±0.002 +0.007

−0.003 MURAMATSU 02 CLE2 Dalitz �t, 5299 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.011 ±0.002 +0.005

−0.003 ASNER 04A CLEO See MURAMATSU 021The error on this AUBERT 08AL value in
ludes both statisti
al and systemati
 un
er-taities; the latter dominates.

�(K∗(1680)−π+ ,K∗(1680)− → K0S π−)/�(K0S π+π−) �45/�35�(K∗(1680)−π+ ,K∗(1680)− → K0S π−)/�(K0S π+π−) �45/�35�(K∗(1680)−π+ ,K∗(1680)− → K0S π−)/�(K0S π+π−) �45/�35�(K∗(1680)−π+ ,K∗(1680)− → K0S π−)/�(K0S π+π−) �45/�35This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.016±0.013 OUR AVERAGE0.016±0.013 OUR AVERAGE0.016±0.013 OUR AVERAGE0.016±0.013 OUR AVERAGE0.007±0.019 1 AUBERT 08AL BABR Dalitz �t, ≈ 487 k evts0.022±0.004+0.018
−0.015 MURAMATSU 02 CLE2 Dalitz �t, 5299 evts

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.023±0.005+0.007
−0.014 ASNER 04A CLEO See MURAMATSU 021The error on this AUBERT 08AL value in
ludes both statisti
al and systemati
 un
er-taities; the latter dominates.�(K∗(892)+π− ,K∗(892)+ → K0S π+)/�(K0S π+π−) �46/�35�(K∗(892)+π− ,K∗(892)+ → K0S π+)/�(K0S π+π−) �46/�35�(K∗(892)+π− ,K∗(892)+ → K0S π+)/�(K0S π+π−) �46/�35�(K∗(892)+π− ,K∗(892)+ → K0S π+)/�(K0S π+π−) �46/�35This is the \�t fra
tion" from the Dalitz-plot analysis. This is a doubly Cabibbo-suppressed mode.VALUE (units 10−3) DOCUMENT ID TECN COMMENT4.0+2.0

−1.2 OUR AVERAGE4.0+2.0
−1.2 OUR AVERAGE4.0+2.0
−1.2 OUR AVERAGE4.0+2.0
−1.2 OUR AVERAGE4.6±2.3 1 AUBERT 08AL BABR Dalitz �t, ≈ 487 k evts3.4±1.3+4.1

−0.4 MURAMATSU 02 CLE2 Dalitz �t, 5299 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.4±1.3+3.6

−0.5 ASNER 04A CLEO See MURAMATSU 021The error on this AUBERT 08AL value in
ludes both statisti
al and systemati
 un
er-taities; the latter dominates.�(K∗0(1430)+π− ,K∗0(1430)+ → K0S π+)/�(K0S π+π−) �47/�35�(K∗0(1430)+π− ,K∗0(1430)+ → K0S π+)/�(K0S π+π−) �47/�35�(K∗0(1430)+π− ,K∗0(1430)+ → K0S π+)/�(K0S π+π−) �47/�35�(K∗0(1430)+π− ,K∗0(1430)+ → K0S π+)/�(K0S π+π−) �47/�35This is the \�t fra
tion" from the Dalitz-plot analysis. This is a doubly Cabibbo-suppressed mode.VALUE CL% DOCUMENT ID TECN COMMENT
<5× 10−4<5× 10−4<5× 10−4<5× 10−4 95 AUBERT 08AL BABR Dalitz �t, ≈ 487 k evts�(K∗2(1430)+π− ,K∗2(1430)+ → K0S π+)/�(K0S π+π−) �48/�35�(K∗2(1430)+π− ,K∗2(1430)+ → K0S π+)/�(K0S π+π−) �48/�35�(K∗2(1430)+π− ,K∗2(1430)+ → K0S π+)/�(K0S π+π−) �48/�35�(K∗2(1430)+π− ,K∗2(1430)+ → K0S π+)/�(K0S π+π−) �48/�35This is the \�t fra
tion" from the Dalitz-plot analysis. This is a doubly Cabibbo-suppressed mode.VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−3<1.2× 10−3<1.2× 10−3<1.2× 10−3 95 AUBERT 08AL BABR Dalitz �t, ≈ 487 k evts�(K0S π+π− nonresonant)/�(K0S π+π−) �49/�35�(K0S π+π− nonresonant)/�(K0S π+π−) �49/�35�(K0S π+π− nonresonant)/�(K0S π+π−) �49/�35�(K0S π+π− nonresonant)/�(K0S π+π−) �49/�35This is the \�t fra
tion" from the Dalitz-plot analysis. Neither FRABETTI 94G norALBRECHT 93D (quoted in many of the earlier submodes of K0S π+π−) sees eviden
efor a nonresonant 
omponent.VALUE DOCUMENT ID TECN COMMENT0.009±0.004+0.020

−0.0040.009±0.004+0.020
−0.0040.009±0.004+0.020
−0.0040.009±0.004+0.020
−0.004 MURAMATSU 02 CLE2 Dalitz �t, 5299 evts

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.007±0.007+0.021
−0.006 ASNER 04A CLEO See MURAMATSU 020.263±0.024±0.041 ANJOS 93 E691 γBe 90{260 GeV0.26 ±0.08 ±0.05 FRABETTI 92B E687 γ Be, Eγ= 221 GeV0.33 ±0.05 ±0.10 ADLER 87 MRK3 e+ e− 3.77 GeV�(K−π+π0)/�total �50/��(K−π+π0)/�total �50/��(K−π+π0)/�total �50/��(K−π+π0)/�total �50/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT14.3 ±0.8 OUR FIT14.3 ±0.8 OUR FIT14.3 ±0.8 OUR FIT14.3 ±0.8 OUR FIT Error in
ludes s
ale fa
tor of 3.1.14.956±0.074±0.33514.956±0.074±0.33514.956±0.074±0.33514.956±0.074±0.335 BONVICINI 14 CLEO All CLEO-
 runs

• • • We do not use the following data for averages, �ts, limits, et
. • • •14.57 ±0.12 ±0.38 1 DOBBS 07 CLEO See BONVICINI 1414.9 ±0.3 ±0.5 19k ±150 1 HE 05 CLEO See DOBBS 0713.3 ±1.2 ±1.3 931 ADLER 88C MRK3 e+ e− 3.77 GeV11.7 ±4.3 37 2 SCHINDLER 81 MRK2 e+ e− 3.771 GeV1DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.2 SCHINDLER 81 (MARK-2) measures σ(e+ e− → ψ(3770)) × bran
hing fra
tion tobe 0.68 ± 0.23 nb. We use the MARK-3 (ADLER 88C) value of σ = 5.8 ± 0.5 ± 0.6 nb.�(K−π+π0)/�(K−π+) �50/�31�(K−π+π0)/�(K−π+) �50/�31�(K−π+π0)/�(K−π+) �50/�31�(K−π+π0)/�(K−π+) �50/�31VALUE EVTS DOCUMENT ID TECN COMMENT3.63±0.22 OUR FIT3.63±0.22 OUR FIT3.63±0.22 OUR FIT3.63±0.22 OUR FIT Error in
ludes s
ale fa
tor of 3.0.3.44±0.30 OUR AVERAGE3.44±0.30 OUR AVERAGE3.44±0.30 OUR AVERAGE3.44±0.30 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.3.81±0.07±0.26 10k BARISH 96 CLE2 e+ e− ≈ �(4S)3.04±0.16±0.34 931 1 ALBRECHT 92P ARG e+ e− ≈ 10 GeV2.8 ±0.14±0.52 1050 KINOSHITA 91 CLEO e+ e− ∼ 10.7 GeV1This value is 
al
ulated from numbers in Table 1 of ALBRECHT 92P.
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le ListingsD0
WEIGHTED AVERAGE
3.44±0.30 (Error scaled by 1.5)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

KINOSHITA 91 CLEO 1.4
ALBRECHT 92P ARG 1.1
BARISH 96 CLE2 1.9

χ2

       4.4
(Confidence Level = 0.109)

1 2 3 4 5 6 7�(K−π+π0)/�(K−π+)�(K−ρ+)/�(K−π+π0) �51/�50�(K−ρ+)/�(K−π+π0) �51/�50�(K−ρ+)/�(K−π+π0) �51/�50�(K−ρ+)/�(K−π+π0) �51/�50This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.78 ±0.04 OUR AVERAGE0.78 ±0.04 OUR AVERAGE0.78 ±0.04 OUR AVERAGE0.78 ±0.04 OUR AVERAGE0.788±0.019±0.048 KOPP 01 CLE2 Dalitz �t, ≈ 7,000 evts0.765±0.041±0.054 FRABETTI 94G E687 Dalitz �t, 530 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.647±0.039±0.150 ANJOS 93 E691 γBe 90{260 GeV0.81 ±0.03 ±0.06 ADLER 87 MRK3 e+ e− 3.77 GeV�(K−ρ(1700)+ , ρ(1700)+ → π+π0)/�(K−π+π0) �52/�50�(K−ρ(1700)+ , ρ(1700)+ → π+π0)/�(K−π+π0) �52/�50�(K−ρ(1700)+ , ρ(1700)+ → π+π0)/�(K−π+π0) �52/�50�(K−ρ(1700)+ , ρ(1700)+ → π+π0)/�(K−π+π0) �52/�50This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.057±0.008±0.0090.057±0.008±0.0090.057±0.008±0.0090.057±0.008±0.009 KOPP 01 CLE2 Dalitz �t, ≈ 7,000 evts�(K∗(892)−π+ ,K∗(892)− → K−π0)/�(K−π+π0) �53/�50�(K∗(892)−π+ ,K∗(892)− → K−π0)/�(K−π+π0) �53/�50�(K∗(892)−π+ ,K∗(892)− → K−π0)/�(K−π+π0) �53/�50�(K∗(892)−π+ ,K∗(892)− → K−π0)/�(K−π+π0) �53/�50This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.160+0.025

−0.013 OUR AVERAGE0.160+0.025
−0.013 OUR AVERAGE0.160+0.025
−0.013 OUR AVERAGE0.160+0.025
−0.013 OUR AVERAGE0.161±0.007+0.027

−0.011 KOPP 01 CLE2 Dalitz �t, ≈ 7,000 evts0.148±0.028±0.049 FRABETTI 94G E687 Dalitz �t, 530 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.084±0.011±0.012 ANJOS 93 E691 γBe 90{260 GeV0.12 ±0.02 ±0.03 ADLER 87 MRK3 e+ e− 3.77 GeV�(K∗(892)0π0 ,K∗(892)0 → K−π+)/�(K−π+π0) �54/�50�(K∗(892)0π0 ,K∗(892)0 → K−π+)/�(K−π+π0) �54/�50�(K∗(892)0π0 ,K∗(892)0 → K−π+)/�(K−π+π0) �54/�50�(K∗(892)0π0 ,K∗(892)0 → K−π+)/�(K−π+π0) �54/�50This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.135±0.016 OUR AVERAGE0.135±0.016 OUR AVERAGE0.135±0.016 OUR AVERAGE0.135±0.016 OUR AVERAGE0.127±0.009±0.016 KOPP 01 CLE2 Dalitz �t, ≈ 7,000 evts0.165±0.031±0.015 FRABETTI 94G E687 Dalitz �t, 530 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.142±0.018±0.024 ANJOS 93 E691 γBe 90{260 GeV0.13 ±0.02 ±0.03 ADLER 87 MRK3 e+ e− 3.77 GeV�(K∗0(1430)−π+ ,K∗0(1430)− → K−π0)/�(K−π+π0) �55/�50�(K∗0(1430)−π+ ,K∗0(1430)− → K−π0)/�(K−π+π0) �55/�50�(K∗0(1430)−π+ ,K∗0(1430)− → K−π0)/�(K−π+π0) �55/�50�(K∗0(1430)−π+ ,K∗0(1430)− → K−π0)/�(K−π+π0) �55/�50This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.033±0.006±0.0140.033±0.006±0.0140.033±0.006±0.0140.033±0.006±0.014 KOPP 01 CLE2 Dalitz �t, ≈ 7,000 evts�(K∗0(1430)0π0 ,K∗0(1430)0 → K−π+)/�(K−π+π0) �56/�50�(K∗0(1430)0π0 ,K∗0(1430)0 → K−π+)/�(K−π+π0) �56/�50�(K∗0(1430)0π0 ,K∗0(1430)0 → K−π+)/�(K−π+π0) �56/�50�(K∗0(1430)0π0 ,K∗0(1430)0 → K−π+)/�(K−π+π0) �56/�50This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.041±0.006+0.032

−0.0090.041±0.006+0.032
−0.0090.041±0.006+0.032
−0.0090.041±0.006+0.032
−0.009 KOPP 01 CLE2 Dalitz �t, ≈ 7,000 evts�(K∗(1680)−π+ ,K∗(1680)− → K−π0)/�(K−π+π0) �57/�50�(K∗(1680)−π+ ,K∗(1680)− → K−π0)/�(K−π+π0) �57/�50�(K∗(1680)−π+ ,K∗(1680)− → K−π0)/�(K−π+π0) �57/�50�(K∗(1680)−π+ ,K∗(1680)− → K−π0)/�(K−π+π0) �57/�50This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.013±0.003±0.0040.013±0.003±0.0040.013±0.003±0.0040.013±0.003±0.004 KOPP 01 CLE2 Dalitz �t, ≈ 7,000 evts�(K−π+π0 nonresonant)/�(K−π+π0) �58/�50�(K−π+π0 nonresonant)/�(K−π+π0) �58/�50�(K−π+π0 nonresonant)/�(K−π+π0) �58/�50�(K−π+π0 nonresonant)/�(K−π+π0) �58/�50This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE EVTS DOCUMENT ID TECN COMMENT0.080+0.040

−0.014 OUR AVERAGE0.080+0.040
−0.014 OUR AVERAGE0.080+0.040
−0.014 OUR AVERAGE0.080+0.040
−0.014 OUR AVERAGE0.075±0.009+0.056

−0.011 KOPP 01 CLE2 Dalitz �t, ≈ 7,000 evts0.101±0.033±0.040 FRABETTI 94G E687 Dalitz �t, 530 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.036±0.004±0.018 ANJOS 93 E691 γBe 90{260 GeV0.09 ±0.02 ±0.04 ADLER 87 MRK3 e+ e− 3.77 GeV0.51 ±0.22 21 SUMMERS 84 E691 Photoprodu
tion

�(K0S 2π0)/�total �59/��(K0S 2π0)/�total �59/��(K0S 2π0)/�total �59/��(K0S 2π0)/�total �59/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT9.1 ±1.1 OUR AVERAGE9.1 ±1.1 OUR AVERAGE9.1 ±1.1 OUR AVERAGE9.1 ±1.1 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2.10.58±0.38±0.73 1259 LOWREY 11 CLEO e+ e− ≈ 3.77 GeV8.34±0.45±0.42 ASNER 08 CLEO e+ e− → D0D0,3.77 GeV�(K0S (2π0)-S-wave)/�(K0S 2π0) �60/�59�(K0S (2π0)-S-wave)/�(K0S 2π0) �60/�59�(K0S (2π0)-S-wave)/�(K0S 2π0) �60/�59�(K0S (2π0)-S-wave)/�(K0S 2π0) �60/�59VALUE (%) DOCUMENT ID TECN COMMENT28.9±6.3±3.128.9±6.3±3.128.9±6.3±3.128.9±6.3±3.1 LOWREY 11 CLEO Dalitz analysis, 1259 evts�(K∗(892)0π0 ,K∗(892)0 → K0S π0)/�(K0S π0) �61/�33�(K∗(892)0π0 ,K∗(892)0 → K0S π0)/�(K0S π0) �61/�33�(K∗(892)0π0 ,K∗(892)0 → K0S π0)/�(K0S π0) �61/�33�(K∗(892)0π0 ,K∗(892)0 → K0S π0)/�(K0S π0) �61/�33VALUE (%) DOCUMENT ID TECN COMMENT65.6± 5.3±2.565.6± 5.3±2.565.6± 5.3±2.565.6± 5.3±2.5 LOWREY 11 CLEO Dalitz analysis, 1259 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •55 +13

−10 ±7 PROCARIO 93B CLE2 Dalitz plot �t, 122 evts�(K∗(1430)0π0 ,K∗0 → K0S π0)/�(K0S 2π0) �62/�59�(K∗(1430)0π0 ,K∗0 → K0S π0)/�(K0S 2π0) �62/�59�(K∗(1430)0π0 ,K∗0 → K0S π0)/�(K0S 2π0) �62/�59�(K∗(1430)0π0 ,K∗0 → K0S π0)/�(K0S 2π0) �62/�59VALUE (%) DOCUMENT ID TECN COMMENT0.49±0.45±2.510.49±0.45±2.510.49±0.45±2.510.49±0.45±2.51 LOWREY 11 CLEO Dalitz analysis, 1259 evts�(K∗(1680)0π0 ,K∗0 → K0S π0)/�(K0S 2π0) �63/�59�(K∗(1680)0π0 ,K∗0 → K0S π0)/�(K0S 2π0) �63/�59�(K∗(1680)0π0 ,K∗0 → K0S π0)/�(K0S 2π0) �63/�59�(K∗(1680)0π0 ,K∗0 → K0S π0)/�(K0S 2π0) �63/�59VALUE (%) DOCUMENT ID TECN COMMENT11.2±2.7±2.511.2±2.7±2.511.2±2.7±2.511.2±2.7±2.5 LOWREY 11 CLEO Dalitz analysis, 1259 evts�(K0S f2(1270), f2 → 2π0)/�(K0S 2π0) �64/�59�(K0S f2(1270), f2 → 2π0)/�(K0S 2π0) �64/�59�(K0S f2(1270), f2 → 2π0)/�(K0S 2π0) �64/�59�(K0S f2(1270), f2 → 2π0)/�(K0S 2π0) �64/�59VALUE (%) DOCUMENT ID TECN COMMENT2.48±0.91±0.782.48±0.91±0.782.48±0.91±0.782.48±0.91±0.78 LOWREY 11 CLEO Dalitz analysis, 1259 evts�(2K0S , oneK0S → 2π0)/�(K0S 2π0) �65/�59�(2K0S , oneK0S → 2π0)/�(K0S 2π0) �65/�59�(2K0S , oneK0S → 2π0)/�(K0S 2π0) �65/�59�(2K0S , oneK0S → 2π0)/�(K0S 2π0) �65/�59VALUE (%) DOCUMENT ID TECN COMMENT3.46±0.92±0.663.46±0.92±0.663.46±0.92±0.663.46±0.92±0.66 LOWREY 11 CLEO Dalitz analysis, 1259 evts�(K0S 2π0 nonresonant)/�(K0S π0) �66/�33�(K0S 2π0 nonresonant)/�(K0S π0) �66/�33�(K0S 2π0 nonresonant)/�(K0S π0) �66/�33�(K0S 2π0 nonresonant)/�(K0S π0) �66/�33VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.37±0.08±0.04 PROCARIO 93B CLE2 Dalitz plot �t, 122 evts�(K−2π+π−)/�total �67/��(K−2π+π−)/�total �67/��(K−2π+π−)/�total �67/��(K−2π+π−)/�total �67/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT8.06 ±0.23 OUR FIT8.06 ±0.23 OUR FIT8.06 ±0.23 OUR FIT8.06 ±0.23 OUR FIT Error in
ludes s
ale fa
tor of 1.5.8.17 ±0.32 OUR AVERAGE8.17 ±0.32 OUR AVERAGE8.17 ±0.32 OUR AVERAGE8.17 ±0.32 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogrambelow.8.287±0.043±0.200 BONVICINI 14 CLEO All CLEO-
 runs7.9 ±1.5 ±0.9 1 ALBRECHT 94 ARG e+ e− ≈ �(4S)6.80 ±0.27 ±0.57 1.4k 2 ALBRECHT 94F ARG e+ e− ≈ �(4S)9.1 ±0.8 ±0.8 992 ADLER 88C MRK3 e+ e− 3.77 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.30 ±0.07 ±0.20 3 DOBBS 07 CLEO See BONVICINI 148.3 ±0.2 ±0.3 15k 3 HE 05 CLEO See DOBBS 0711.7 ±2.5 185 4 SCHINDLER 81 MRK2 e+ e− 3.771 GeV6.2 ±1.9 44 5 PERUZZI 77 LGW e+ e− 3.77 GeV1ALBRECHT 94 uses D0 mesons from B0 → D∗+ ℓ− νℓ de
ays. This is a di�erent setof events than used by ALBRECHT 94F.2 See the footnote on the ALBRECHT 94F measurement of �(K−π+)/�total for themethod used.3DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.4 SCHINDLER 81 (MARK-2) measures σ(e+ e− → ψ(3770)) × bran
hing fra
tion tobe 0.68 ± 0.11 nb. We use the MARK-3 (ADLER 88C) value of σ = 5.8 ± 0.5 ± 0.6 nb.5PERUZZI 77 (MARK-1) measures σ(e+ e− → ψ(3770)) × bran
hing fra
tion to be0.36 ± 0.10 nb. We use the MARK-3 (ADLER 88C) value of σ = 5.8 ± 0.5 ± 0.6 nb.

WEIGHTED AVERAGE
8.17±0.32 (Error scaled by 1.7)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ADLER 88C MRK3 0.7
ALBRECHT 94F ARG 4.7
ALBRECHT 94 ARG
BONVICINI 14 CLEO 0.3

χ2

       5.7
(Confidence Level = 0.057)

4 6 8 10 12 14�(K− 2π+π−
)/�total (units 10−2)



1079107910791079See key on page 601 MesonParti
le ListingsD0�(K−2π+π−)/�(K−π+) �67/�31�(K−2π+π−)/�(K−π+) �67/�31�(K−2π+π−)/�(K−π+) �67/�31�(K−2π+π−)/�(K−π+) �67/�31VALUE EVTS DOCUMENT ID TECN COMMENT2.05±0.06 OUR FIT2.05±0.06 OUR FIT2.05±0.06 OUR FIT2.05±0.06 OUR FIT Error in
ludes s
ale fa
tor of 1.4.1.97±0.09 OUR AVERAGE1.97±0.09 OUR AVERAGE1.97±0.09 OUR AVERAGE1.97±0.09 OUR AVERAGE1.94±0.07+0.09
−0.11 JUN 00 SELX �− nu
leus, 600 GeV1.7 ±0.2 ±0.2 1745 ANJOS 92C E691 γBe 90{260 GeV1.90±0.25±0.20 337 ALVAREZ 91B NA14 Photoprodu
tion2.12±0.16±0.09 BORTOLETTO88 CLEO e+ e− 10.55 GeV2.17±0.28±0.23 ALBRECHT 85F ARG e+ e− 10 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.0 ±0.9 48 BAILEY 86 ACCM π−Be �xed target2.0 ±1.0 10 BAILEY 83B SPEC π−Be → D02.2 ±0.8 214 PICCOLO 77 MRK1 e+ e− 4.03, 4.41 GeV�(K−π+ ρ0 total)/�(K−2π+π−) �68/�67�(K−π+ ρ0 total)/�(K−2π+π−) �68/�67�(K−π+ ρ0 total)/�(K−2π+π−) �68/�67�(K−π+ ρ0 total)/�(K−2π+π−) �68/�67This in
ludes K− a1(1260)+, K∗(892)0 ρ0, et
. The next entry gives the spe
i�
ally3-body fra
tion. We rely on the MARK III and E691 full amplitude analyses of theK−π+π+π− 
hannel for values of the resonant substru
ture.VALUE DOCUMENT ID TECN COMMENT0.835±0.035 OUR AVERAGE0.835±0.035 OUR AVERAGE0.835±0.035 OUR AVERAGE0.835±0.035 OUR AVERAGE0.80 ±0.03 ±0.05 ANJOS 92C E691 1745 K− 2π+π− evts0.855±0.032±0.030 COFFMAN 92B MRK3 1281 ± 45 K− 2π+π− evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.98 ±0.12 ±0.10 ALVAREZ 91B NA14 Photoprodu
tion�(K−π+ ρ03-body)/�(K−2π+π−) �69/�67�(K−π+ ρ03-body)/�(K−2π+π−) �69/�67�(K−π+ ρ03-body)/�(K−2π+π−) �69/�67�(K−π+ ρ03-body)/�(K−2π+π−) �69/�67We rely on the MARK III and E691 full amplitude analyses of the K−π+π+π−
hannel for values of the resonant substru
ture.VALUE EVTS DOCUMENT ID TECN COMMENT0.063±0.028 OUR AVERAGE0.063±0.028 OUR AVERAGE0.063±0.028 OUR AVERAGE0.063±0.028 OUR AVERAGE0.05 ±0.03 ±0.02 ANJOS 92C E691 1745 K− 2π+π− evts0.084±0.022±0.04 COFFMAN 92B MRK3 1281± 45 K− 2π+π− evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.77 ±0.06 ±0.06 1 ALVAREZ 91B NA14 Photoprodu
tion0.85 +0.11

−0.22 180 PICCOLO 77 MRK1 e+ e− 4.03, 4.41 GeV1This value is for ρ0 (K−π+)-nonresonant. ALVAREZ 91B 
annot determine what fra
-tion of this is K− a1(1260)+.�(K∗(892)0 ρ0)/�(K−2π+π−) �101/�67�(K∗(892)0 ρ0)/�(K−2π+π−) �101/�67�(K∗(892)0 ρ0)/�(K−2π+π−) �101/�67�(K∗(892)0 ρ0)/�(K−2π+π−) �101/�67Unseen de
ay modes of the K∗(892)0 are in
luded. We rely on the MARK III andE691 full amplitude analyses of the K−π+π+π− 
hannel for values of the resonantsubstru
ture.VALUE EVTS DOCUMENT ID TECN COMMENT0.195±0.03±0.030.195±0.03±0.030.195±0.03±0.030.195±0.03±0.03 ANJOS 92C E691 1745 K− 2π+π− evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.34 ±0.09±0.09 ALVAREZ 91B NA14 Photoprodu
tion0.75 ±0.3 5 BAILEY 83B SPEC πBe → D00.15 +0.16

−0.15 20 PICCOLO 77 MRK1 e+ e− 4.03, 4.41 GeV�(K∗(892)0 ρ0 transverse)/�(K−2π+π−) �102/�67�(K∗(892)0 ρ0 transverse)/�(K−2π+π−) �102/�67�(K∗(892)0 ρ0 transverse)/�(K−2π+π−) �102/�67�(K∗(892)0 ρ0 transverse)/�(K−2π+π−) �102/�67Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE DOCUMENT ID TECN COMMENT0.213±0.024±0.0750.213±0.024±0.0750.213±0.024±0.0750.213±0.024±0.075 COFFMAN 92B MRK3 1281 ± 45 K− 2π+π− evts�(K∗(892)0 ρ0S-wave)/�(K−2π+π−) �103/�67�(K∗(892)0 ρ0S-wave)/�(K−2π+π−) �103/�67�(K∗(892)0 ρ0S-wave)/�(K−2π+π−) �103/�67�(K∗(892)0 ρ0S-wave)/�(K−2π+π−) �103/�67Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE DOCUMENT ID TECN COMMENT0.375±0.045±0.060.375±0.045±0.060.375±0.045±0.060.375±0.045±0.06 ANJOS 92C E691 1745 K− 2π+π− evts�(K∗(892)0 ρ0S-wave long.)/�total �104/��(K∗(892)0 ρ0S-wave long.)/�total �104/��(K∗(892)0 ρ0S-wave long.)/�total �104/��(K∗(892)0 ρ0S-wave long.)/�total �104/�Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<0.003<0.003<0.003<0.003 90 COFFMAN 92B MRK3 1281 ± 45 K− 2π+π− evts�(K∗(892)0 ρ0P-wave)/�total �105/��(K∗(892)0 ρ0P-wave)/�total �105/��(K∗(892)0 ρ0P-wave)/�total �105/��(K∗(892)0 ρ0P-wave)/�total �105/�Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<0.003<0.003<0.003<0.003 90 COFFMAN 92B MRK3 1.3k K− 2π+π− evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.009 90 ANJOS 92C E691 1745 K− 2π+π− evts�(K∗(892)0 ρ0D-wave)/�(K−2π+π−) �106/�67�(K∗(892)0 ρ0D-wave)/�(K−2π+π−) �106/�67�(K∗(892)0 ρ0D-wave)/�(K−2π+π−) �106/�67�(K∗(892)0 ρ0D-wave)/�(K−2π+π−) �106/�67Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE DOCUMENT ID TECN COMMENT0.255±0.045±0.060.255±0.045±0.060.255±0.045±0.060.255±0.045±0.06 ANJOS 92C E691 1745 K− 2π+π− evts�(K−π+ f0(980))/�total �107/��(K−π+ f0(980))/�total �107/��(K−π+ f0(980))/�total �107/��(K−π+ f0(980))/�total �107/�VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.011 90 ANJOS 92C E691 1745 K− 2π+π− evts

�(K∗(892)0 f0(980))/�total �108/��(K∗(892)0 f0(980))/�total �108/��(K∗(892)0 f0(980))/�total �108/��(K∗(892)0 f0(980))/�total �108/�VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.007 90 ANJOS 92C E691 1745 K− 2π+π− evts�(K− a1(1260)+)/�(K−2π+π−) �97/�67�(K− a1(1260)+)/�(K−2π+π−) �97/�67�(K− a1(1260)+)/�(K−2π+π−) �97/�67�(K− a1(1260)+)/�(K−2π+π−) �97/�67Unseen de
ay modes of the a1(1260)+ are in
luded, assuming that the a1(1260)+de
ays entirely to ρπ [or at least to (ππ)I=1 π℄.VALUE DOCUMENT ID TECN COMMENT0.97 ±0.14 OUR AVERAGE0.97 ±0.14 OUR AVERAGE0.97 ±0.14 OUR AVERAGE0.97 ±0.14 OUR AVERAGE0.94 ±0.13 ±0.20 ANJOS 92C E691 1745 K− 2π+π− evts0.984±0.048±0.16 COFFMAN 92B MRK3 1281 ± 45 K− 2π+π− evts�(K− a2(1320)+)/�total �98/��(K− a2(1320)+)/�total �98/��(K− a2(1320)+)/�total �98/��(K− a2(1320)+)/�total �98/�Unseen de
ay modes of the a2(1320)+ are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<0.002<0.002<0.002<0.002 90 ANJOS 92C E691 1745 K− 2π+π− evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.006 90 COFFMAN 92B MRK3 1281 ± 45 K− 2π+π− evts�(K1(1270)−π+)/�(K−2π+π−) �109/�67�(K1(1270)−π+)/�(K−2π+π−) �109/�67�(K1(1270)−π+)/�(K−2π+π−) �109/�67�(K1(1270)−π+)/�(K−2π+π−) �109/�67Unseen de
ay modes of the K1(1270)− are in
luded. The MARK3 and E691 experi-ments disagree 
onsiderably here.VALUE CL% DOCUMENT ID TECN COMMENT0.194±0.056±0.0880.194±0.056±0.0880.194±0.056±0.0880.194±0.056±0.088 COFFMAN 92B MRK3 1281 ± 45 K− 2π+π− evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.013 90 ANJOS 92C E691 1745 K− 2π+π− evts�(K1(1400)−π+)/�total �110/��(K1(1400)−π+)/�total �110/��(K1(1400)−π+)/�total �110/��(K1(1400)−π+)/�total �110/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.012<0.012<0.012<0.012 90 COFFMAN 92B MRK3 1281 ± 45 K− 2π+π− evts�(K∗(1410)−π+)/�total �111/��(K∗(1410)−π+)/�total �111/��(K∗(1410)−π+)/�total �111/��(K∗(1410)−π+)/�total �111/�VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.012 90 COFFMAN 92B MRK3 1281 ± 45 K− 2π+π− evts�(K∗(892)0π+π− total)/�(K−2π+π−) �99/�67�(K∗(892)0π+π− total)/�(K−2π+π−) �99/�67�(K∗(892)0π+π− total)/�(K−2π+π−) �99/�67�(K∗(892)0π+π− total)/�(K−2π+π−) �99/�67This in
ludes K∗(892)0 ρ0, et
. The next entry gives the spe
i�
ally 3-body fra
tion.Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE DOCUMENT ID TECN COMMENT0.30±0.06±0.030.30±0.06±0.030.30±0.06±0.030.30±0.06±0.03 ANJOS 92C E691 1745 K− 2π+π− evts�(K∗(892)0π+π−3-body)/�(K−2π+π−) �100/�67�(K∗(892)0π+π−3-body)/�(K−2π+π−) �100/�67�(K∗(892)0π+π−3-body)/�(K−2π+π−) �100/�67�(K∗(892)0π+π−3-body)/�(K−2π+π−) �100/�67Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE DOCUMENT ID TECN COMMENT0.18 ±0.04 OUR AVERAGE0.18 ±0.04 OUR AVERAGE0.18 ±0.04 OUR AVERAGE0.18 ±0.04 OUR AVERAGE0.165±0.03 ±0.045 ANJOS 92C E691 1745 K− 2π+π− evts0.210±0.027±0.06 COFFMAN 92B MRK3 1281 ± 45 K− 2π+π− evts�(K−2π+π− nonresonant)/�(K−2π+π−) �75/�67�(K−2π+π− nonresonant)/�(K−2π+π−) �75/�67�(K−2π+π− nonresonant)/�(K−2π+π−) �75/�67�(K−2π+π− nonresonant)/�(K−2π+π−) �75/�67VALUE DOCUMENT ID TECN COMMENT0.233±0.032 OUR AVERAGE0.233±0.032 OUR AVERAGE0.233±0.032 OUR AVERAGE0.233±0.032 OUR AVERAGE0.23 ±0.02 ±0.03 ANJOS 92C E691 1745 K− 2π+π− evts0.242±0.025±0.06 COFFMAN 92B MRK3 1281 ± 45 K− 2π+π− evts�(K0S π+π−π0)/�total �76/��(K0S π+π−π0)/�total �76/��(K0S π+π−π0)/�total �76/��(K0S π+π−π0)/�total �76/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.2±0.6 OUR FIT5.2±0.6 OUR FIT5.2±0.6 OUR FIT5.2±0.6 OUR FIT5.2±1.1±1.25.2±1.1±1.25.2±1.1±1.25.2±1.1±1.2 140 COFFMAN 92B MRK3 e+ e− 3.77 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.7+1.6

−1.7 1 BARLAG 92C ACCM π− Cu 230 GeV1BARLAG 92C 
omputes the bran
hing fra
tion using topologi
al normalization.�(K0S π+π−π0)/�(K0S π+π−) �76/�35�(K0S π+π−π0)/�(K0S π+π−) �76/�35�(K0S π+π−π0)/�(K0S π+π−) �76/�35�(K0S π+π−π0)/�(K0S π+π−) �76/�35Bran
hing fra
tions for submodes of this mode with narrow resonan
es (the η, ω, η′)are fairly well determined (see below). COFFMAN 92B gives fra
tions of K∗ and ρsubmodes, but with only 140± 28 events above ba
kground 
ould not determine themwith mu
h a

ura
y. We omit those measurements here; they are in our 2008 Review(Physi
s Letters B667B667B667B667 1 (2008)).VALUE EVTS DOCUMENT ID TECN COMMENT1.84±0.20 OUR FIT1.84±0.20 OUR FIT1.84±0.20 OUR FIT1.84±0.20 OUR FIT1.86±0.23 OUR AVERAGE1.86±0.23 OUR AVERAGE1.86±0.23 OUR AVERAGE1.86±0.23 OUR AVERAGE1.80±0.20±0.21 190 1 ALBRECHT 92P ARG e+ e− ≈ 10 GeV2.8 ±0.8 ±0.8 46 ANJOS 92C E691 γBe 90{260 GeV1.85±0.26±0.30 158 KINOSHITA 91 CLEO e+ e− ∼ 10.7 GeV1This value is 
al
ulated from numbers in Table 1 of ALBRECHT 92P.�(K0S η
)/�total �94/��(K0S η
)/�total �94/��(K0S η
)/�total �94/��(K0S η
)/�total �94/�Unseen de
ay modes of the η are in
luded.VALUE (units 10−3) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.42±0.15±0.28 ASNER 08 CLEO See MENDEZ 10



1080108010801080MesonParti
le ListingsD0�(K0S η
)/[�(K−π+) +�(K+π−)

] �94/(�31+�222)�(K0S η
)/[�(K−π+) +�(K+π−)

] �94/(�31+�222)�(K0S η
)/[�(K−π+) +�(K+π−)

] �94/(�31+�222)�(K0S η
)/[�(K−π+) +�(K+π−)

] �94/(�31+�222)Unseen de
ay modes of the η are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT12.3±0.8 OUR FIT12.3±0.8 OUR FIT12.3±0.8 OUR FIT12.3±0.8 OUR FIT12.3±0.3±0.712.3±0.3±0.712.3±0.3±0.712.3±0.3±0.7 2864± 65 MENDEZ 10 CLEO e+ e− at 3774 MeV�(K0S η
)/�(K0S π0) �94/�33�(K0S η
)/�(K0S π0) �94/�33�(K0S η
)/�(K0S π0) �94/�33�(K0S η
)/�(K0S π0) �94/�33Unseen de
ay modes of the η are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.32±0.04±0.03 225 ± 30 PROCARIO 93B CLE2 η → γ γ�(K0S η
)/�(K0S π+π−) �94/�35�(K0S η
)/�(K0S π+π−) �94/�35�(K0S η
)/�(K0S π+π−) �94/�35�(K0S η
)/�(K0S π+π−) �94/�35Unseen de
ay modes of the η are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.14±0.02±0.02 80 ± 12 PROCARIO 93B CLE2 η → π+π−π0�(K0S ω
)/�total �95/��(K0S ω
)/�total �95/��(K0S ω
)/�total �95/��(K0S ω
)/�total �95/�Unseen de
ay modes of the ω are in
luded.VALUE (%) DOCUMENT ID TECN COMMENT1.11±0.06 OUR FIT1.11±0.06 OUR FIT1.11±0.06 OUR FIT1.11±0.06 OUR FIT1.12±0.04±0.051.12±0.04±0.051.12±0.04±0.051.12±0.04±0.05 ASNER 08 CLEO e+ e− → D0D0, 3.77 GeV�(K0S ω
)/�(K−π+) �95/�31�(K0S ω
)/�(K−π+) �95/�31�(K0S ω
)/�(K−π+) �95/�31�(K0S ω
)/�(K−π+) �95/�31Unseen de
ay modes of the ω are in
luded.VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.50±0.18±0.10 ALBRECHT 89D ARG e+ e− 10 GeV�(K0S ω
)/�(K0S π+π−) �95/�35�(K0S ω
)/�(K0S π+π−) �95/�35�(K0S ω
)/�(K0S π+π−) �95/�35�(K0S ω
)/�(K0S π+π−) �95/�35Unseen de
ay modes of the ω are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.389±0.033 OUR FIT0.389±0.033 OUR FIT0.389±0.033 OUR FIT0.389±0.033 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.33 ±0.09 OUR AVERAGE0.33 ±0.09 OUR AVERAGE0.33 ±0.09 OUR AVERAGE0.33 ±0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.29 ±0.08 ±0.05 16 1 ALBRECHT 92P ARG e+ e− ≈ 10 GeV0.54 ±0.14 ±0.16 40 KINOSHITA 91 CLEO e+ e− ∼ 10.7 GeV1This value is 
al
ulated from numbers in Table 1 of ALBRECHT 92P.�(K0S ω
)/�(K0S π+π−π0) �95/�76�(K0S ω
)/�(K0S π+π−π0) �95/�76�(K0S ω
)/�(K0S π+π−π0) �95/�76�(K0S ω
)/�(K0S π+π−π0) �95/�76Unseen de
ay modes of the ω are in
luded.VALUE DOCUMENT ID TECN COMMENT0.212±0.026 OUR FIT0.212±0.026 OUR FIT0.212±0.026 OUR FIT0.212±0.026 OUR FIT0.220±0.048±0.01160.220±0.048±0.01160.220±0.048±0.01160.220±0.048±0.0116 COFFMAN 92B MRK3 1281 ± 45 K− 2π+π− evts�(K0S η′(958))/[�(K−π+)+�(K+π−)

] �96/(�31+�222)�(K0S η′(958))/[�(K−π+)+�(K+π−)
] �96/(�31+�222)�(K0S η′(958))/[�(K−π+)+�(K+π−)
] �96/(�31+�222)�(K0S η′(958))/[�(K−π+)+�(K+π−)
] �96/(�31+�222)Unseen de
ay modes of the η′(958) are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT24.1±1.3 OUR FIT24.1±1.3 OUR FIT24.1±1.3 OUR FIT24.1±1.3 OUR FIT24.3±0.8±1.124.3±0.8±1.124.3±0.8±1.124.3±0.8±1.1 1321± 42 MENDEZ 10 CLEO e+ e− at 3774 MeV�(K0S η′(958))/�(K0S π+π−) �96/�35�(K0S η′(958))/�(K0S π+π−) �96/�35�(K0S η′(958))/�(K0S π+π−) �96/�35�(K0S η′(958))/�(K0S π+π−) �96/�35Unseen de
ay modes of the η′(958) are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.332±0.025 OUR FIT0.332±0.025 OUR FIT0.332±0.025 OUR FIT0.332±0.025 OUR FIT0.32 ±0.04 OUR AVERAGE0.32 ±0.04 OUR AVERAGE0.32 ±0.04 OUR AVERAGE0.32 ±0.04 OUR AVERAGE0.31 ±0.02 ±0.04 594 PROCARIO 93B CLE2 η′ → ηπ+π−, ρ0 γ0.37 ±0.13 ±0.06 18 1 ALBRECHT 92P ARG e+ e− ≈ 10 GeV1This value is 
al
ulated from numbers in Table 1 of ALBRECHT 92P.�(K−π+ 2π0)/�total �79/��(K−π+ 2π0)/�total �79/��(K−π+ 2π0)/�total �79/��(K−π+ 2π0)/�total �79/�VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.177±0.029 1 BARLAG 92C ACCM π− Cu 230 GeV0.149±0.037±0.030 24 2 ADLER 88C MRK3 e+ e− 3.77 GeV0.209+0.074
−0.043±0.012 9 1 AGUILAR-... 87F HYBR πp, pp 360, 400 GeV1AGUILAR-BENITEZ 87F and BARLAG 92C 
ompute the bran
hing fra
tion using topo-logi
al normalization. They do not distinguish the presen
e of a third π0, and thus arenot in
luded in the average.2ADLER 88C uses an absolute normalization method �nding this de
ay 
hannel oppositea dete
ted D0 → K+π− in pure DD events.�(K−2π+π−π0)/�(K−π+) �80/�31�(K−2π+π−π0)/�(K−π+) �80/�31�(K−2π+π−π0)/�(K−π+) �80/�31�(K−2π+π−π0)/�(K−π+) �80/�31VALUE EVTS DOCUMENT ID TECN COMMENT1.08±0.10 OUR FIT1.08±0.10 OUR FIT1.08±0.10 OUR FIT1.08±0.10 OUR FIT0.98±0.11±0.110.98±0.11±0.110.98±0.11±0.110.98±0.11±0.11 225 1 ALBRECHT 92P ARG e+ e− ≈ 10 GeV1This value is 
al
ulated from numbers in Table 1 of ALBRECHT 92P.�(K−2π+π−π0)/�(K−2π+π−) �80/�67�(K−2π+π−π0)/�(K−2π+π−) �80/�67�(K−2π+π−π0)/�(K−2π+π−) �80/�67�(K−2π+π−π0)/�(K−2π+π−) �80/�67VALUE EVTS DOCUMENT ID TECN COMMENT0.53±0.05 OUR FIT0.53±0.05 OUR FIT0.53±0.05 OUR FIT0.53±0.05 OUR FIT0.56±0.07 OUR AVERAGE0.56±0.07 OUR AVERAGE0.56±0.07 OUR AVERAGE0.56±0.07 OUR AVERAGE0.55±0.07+0.12

−0.09 167 KINOSHITA 91 CLEO e+ e− ∼ 10.7 GeV0.57±0.06±0.05 180 ANJOS 90D E691 Photoprodu
tion

�(K∗(892)0π+π−π0)/�(K−2π+π−π0) �112/�80�(K∗(892)0π+π−π0)/�(K−2π+π−π0) �112/�80�(K∗(892)0π+π−π0)/�(K−2π+π−π0) �112/�80�(K∗(892)0π+π−π0)/�(K−2π+π−π0) �112/�80Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE DOCUMENT ID TECN COMMENT0.45±0.15±0.150.45±0.15±0.150.45±0.15±0.150.45±0.15±0.15 ANJOS 90D E691 Photoprodu
tion�(K∗(892)0 η
)/�(K−π+) �113/�31�(K∗(892)0 η
)/�(K−π+) �113/�31�(K∗(892)0 η
)/�(K−π+) �113/�31�(K∗(892)0 η
)/�(K−π+) �113/�31Unseen de
ay modes of the K∗(892)0 and η are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.58±0.19+0.24
−0.28 46 KINOSHITA 91 CLEO e+ e− ∼ 10.7 GeV�(K∗(892)0 η

)/�(K−π+π0) �113/�50�(K∗(892)0 η
)/�(K−π+π0) �113/�50�(K∗(892)0 η
)/�(K−π+π0) �113/�50�(K∗(892)0 η
)/�(K−π+π0) �113/�50Unseen de
ay modes of the K∗(892)0 and η are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.13±0.02±0.03 214 PROCARIO 93B CLE2 K∗0 η → K−π+/γ γ�(K0S ηπ0)/�(K0S π0) �84/�33�(K0S ηπ0)/�(K0S π0) �84/�33�(K0S ηπ0)/�(K0S π0) �84/�33�(K0S ηπ0)/�(K0S π0) �84/�33VALUE EVTS DOCUMENT ID TECN COMMENT0.46±0.07±0.060.46±0.07±0.060.46±0.07±0.060.46±0.07±0.06 155 ± 22 1 RUBIN 04 CLEO e+ e− ≈ 10 GeV1The η here is dete
ted in its γ γ mode, but other η modes are in
luded in the value given.�(K0S a0(980), a0(980)→ ηπ0)/�(K0S ηπ0) �85/�84�(K0S a0(980), a0(980)→ ηπ0)/�(K0S ηπ0) �85/�84�(K0S a0(980), a0(980)→ ηπ0)/�(K0S ηπ0) �85/�84�(K0S a0(980), a0(980)→ ηπ0)/�(K0S ηπ0) �85/�84This is the \�t fra
tion" from the Dalitz-plot analysis, with interferen
e.VALUE DOCUMENT ID TECN COMMENT1.19±0.09±0.261.19±0.09±0.261.19±0.09±0.261.19±0.09±0.26 1 RUBIN 04 CLEO Dalitz �t, 155 evts1 In addition to K0S a0(980) and K∗(892)0 η modes, RUBIN 04 �nds a �t fra
tion of0.246 ± 0.092 ± 0.091 for other, undetermined modes.�(K∗(892)0 η, K∗(892)0 → K0S π0)/�(K0S ηπ0) �86/�84�(K∗(892)0 η, K∗(892)0 → K0S π0)/�(K0S ηπ0) �86/�84�(K∗(892)0 η, K∗(892)0 → K0S π0)/�(K0S ηπ0) �86/�84�(K∗(892)0 η, K∗(892)0 → K0S π0)/�(K0S ηπ0) �86/�84This is the \�t fra
tion" from the Dalitz-plot analysis, with interferen
e.VALUE DOCUMENT ID TECN COMMENT0.293±0.062±0.0350.293±0.062±0.0350.293±0.062±0.0350.293±0.062±0.035 1 RUBIN 04 CLEO Dalitz �t, 155 evts1 See the note on RUBIN 04 in the pre
eding data blo
k.�(K−π+ω
)/�(K−π+) �114/�31�(K−π+ω
)/�(K−π+) �114/�31�(K−π+ω
)/�(K−π+) �114/�31�(K−π+ω
)/�(K−π+) �114/�31Unseen de
ay modes of the ω are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.78±0.12±0.100.78±0.12±0.100.78±0.12±0.100.78±0.12±0.10 99 1 ALBRECHT 92P ARG e+ e− ≈ 10 GeV1This value is 
al
ulated from numbers in Table 1 of ALBRECHT 92P.�(K∗(892)0ω

)/�(K−π+) �115/�31�(K∗(892)0ω
)/�(K−π+) �115/�31�(K∗(892)0ω
)/�(K−π+) �115/�31�(K∗(892)0ω
)/�(K−π+) �115/�31Unseen de
ay modes of the K∗(892)0 and ω are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.28±0.11±0.040.28±0.11±0.040.28±0.11±0.040.28±0.11±0.04 17 1 ALBRECHT 92P ARG e+ e− ≈ 10 GeV1This value is 
al
ulated from numbers in Table 1 of ALBRECHT 92P.�(K−π+ η′(958))/�(K−2π+π−) �116/�67�(K−π+ η′(958))/�(K−2π+π−) �116/�67�(K−π+ η′(958))/�(K−2π+π−) �116/�67�(K−π+ η′(958))/�(K−2π+π−) �116/�67Unseen de
ay modes of the η′(958) are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.093±0.014±0.0190.093±0.014±0.0190.093±0.014±0.0190.093±0.014±0.019 286 PROCARIO 93B CLE2 η′ → ηπ+π−, ρ0 γ�(K∗(892)0 η′(958))/�(K−π+ η′(958)) �117/�116�(K∗(892)0 η′(958))/�(K−π+ η′(958)) �117/�116�(K∗(892)0 η′(958))/�(K−π+ η′(958)) �117/�116�(K∗(892)0 η′(958))/�(K−π+ η′(958)) �117/�116Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE CL% DOCUMENT ID TECN

<0.15<0.15<0.15<0.15 90 PROCARIO 93B CLE2�(K0S 2π+2π−)/�(K0S π+π−) �87/�35�(K0S 2π+2π−)/�(K0S π+π−) �87/�35�(K0S 2π+2π−)/�(K0S π+π−) �87/�35�(K0S 2π+2π−)/�(K0S π+π−) �87/�35VALUE EVTS DOCUMENT ID TECN COMMENT0.095±0.005±0.0070.095±0.005±0.0070.095±0.005±0.0070.095±0.005±0.007 1283 ± 57 LINK 04D FOCS γ A, Eγ ≈ 180 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.07 ±0.02 ±0.01 11 1 ALBRECHT 92P ARG e+ e− ≈ 10 GeV0.149±0.026 56 AMMAR 91 CLEO e+ e− ≈ 10.5 GeV0.18 ±0.07 ±0.04 6 ANJOS 90D E691 Photoprodu
tion1This value is 
al
ulated from numbers in Table 1 of ALBRECHT 92P.�(K0S ρ0π+π− , noK∗(892)−)/�(K0S 2π+ 2π−) �88/�87�(K0S ρ0π+π− , noK∗(892)−)/�(K0S 2π+ 2π−) �88/�87�(K0S ρ0π+π− , noK∗(892)−)/�(K0S 2π+ 2π−) �88/�87�(K0S ρ0π+π− , noK∗(892)−)/�(K0S 2π+ 2π−) �88/�87VALUE DOCUMENT ID TECN COMMENT0.40±0.24±0.070.40±0.24±0.070.40±0.24±0.070.40±0.24±0.07 LINK 04D FOCS γ A, Eγ ≈ 180 GeV�(K∗(892)− 2π+π− ,K∗(892)− → K0S π−, no ρ0)/�(K0S 2π+2π−) �89/�87�(K∗(892)− 2π+π− ,K∗(892)− → K0S π−, no ρ0)/�(K0S 2π+2π−) �89/�87�(K∗(892)− 2π+π− ,K∗(892)− → K0S π−, no ρ0)/�(K0S 2π+2π−) �89/�87�(K∗(892)− 2π+π− ,K∗(892)− → K0S π−, no ρ0)/�(K0S 2π+2π−) �89/�87VALUE DOCUMENT ID TECN COMMENT0.17±0.28±0.020.17±0.28±0.020.17±0.28±0.020.17±0.28±0.02 LINK 04D FOCS γ A, Eγ ≈ 180 GeV�(K∗(892)− ρ0π+ ,K∗(892)− → K0S π−)/�(K0S 2π+2π−) �90/�87�(K∗(892)− ρ0π+ ,K∗(892)− → K0S π−)/�(K0S 2π+2π−) �90/�87�(K∗(892)− ρ0π+ ,K∗(892)− → K0S π−)/�(K0S 2π+2π−) �90/�87�(K∗(892)− ρ0π+ ,K∗(892)− → K0S π−)/�(K0S 2π+2π−) �90/�87VALUE DOCUMENT ID TECN COMMENT0.60±0.21±0.090.60±0.21±0.090.60±0.21±0.090.60±0.21±0.09 LINK 04D FOCS γ A, Eγ ≈ 180 GeV�(K0S 2π+2π−nonresonant)/�(K0S 2π+2π−) �91/�87�(K0S 2π+2π−nonresonant)/�(K0S 2π+2π−) �91/�87�(K0S 2π+2π−nonresonant)/�(K0S 2π+2π−) �91/�87�(K0S 2π+2π−nonresonant)/�(K0S 2π+2π−) �91/�87VALUE CL% DOCUMENT ID TECN COMMENT
<0.46<0.46<0.46<0.46 90 LINK 04D FOCS γ A, Eγ ≈ 180 GeV



1081108110811081See key on page 601 MesonParti
le ListingsD0�(K−3π+2π−)/�(K−2π+π−) �93/�67�(K−3π+2π−)/�(K−2π+π−) �93/�67�(K−3π+2π−)/�(K−2π+π−) �93/�67�(K−3π+2π−)/�(K−2π+π−) �93/�67VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.70±0.58±0.382.70±0.58±0.382.70±0.58±0.382.70±0.58±0.38 48 ± 10 LINK 04B FOCS γA, Eγ ≈ 180 GeVHadroni
 modes with three K 'sHadroni
 modes with three K 'sHadroni
 modes with three K 'sHadroni
 modes with three K 's�(K0S K+K−)/�(K0S π+π−) �118/�35�(K0S K+K−)/�(K0S π+π−) �118/�35�(K0S K+K−)/�(K0S π+π−) �118/�35�(K0S K+K−)/�(K0S π+π−) �118/�35VALUE EVTS DOCUMENT ID TECN COMMENT0.158±0.001±0.0050.158±0.001±0.0050.158±0.001±0.0050.158±0.001±0.005 14k±116 AUBERT,B 05J BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.20 ±0.05 ±0.04 47 FRABETTI 92B E687 γ Be, Eγ= 221 GeV0.170±0.022 136 AMMAR 91 CLEO e+ e− ≈ 10.5 GeV0.24 ±0.08 BEBEK 86 CLEO e+ e− near �(4S)0.185±0.055 52 ALBRECHT 85B ARG e+ e− 10 GeV�(K0S a0(980)0 , a00 → K+K−)/�(K0S K+K−) �119/�118�(K0S a0(980)0 , a00 → K+K−)/�(K0S K+K−) �119/�118�(K0S a0(980)0 , a00 → K+K−)/�(K0S K+K−) �119/�118�(K0S a0(980)0 , a00 → K+K−)/�(K0S K+K−) �119/�118This is the \�t fra
tion" from the Dalitz-plot analysis, with interferen
e.VALUE DOCUMENT ID TECN COMMENT0.664±0.016±0.0700.664±0.016±0.0700.664±0.016±0.0700.664±0.016±0.070 AUBERT,B 05J BABR Dalitz �t, 12540± 112 evts�(K− a0(980)+ , a+0 → K+K0S)/�(K0S K+K−) �120/�118�(K− a0(980)+ , a+0 → K+K0S)/�(K0S K+K−) �120/�118�(K− a0(980)+ , a+0 → K+K0S)/�(K0S K+K−) �120/�118�(K− a0(980)+ , a+0 → K+K0S)/�(K0S K+K−) �120/�118This is the \�t fra
tion" from the Dalitz-plot analysis, with interferen
e.VALUE DOCUMENT ID TECN COMMENT0.134±0.011±0.0370.134±0.011±0.0370.134±0.011±0.0370.134±0.011±0.037 AUBERT,B 05J BABR Dalitz �t, 12540± 112 evts�(K+a0(980)− , a−0 → K−K0S)/�(K0S K+K−) �121/�118�(K+a0(980)− , a−0 → K−K0S)/�(K0S K+K−) �121/�118�(K+a0(980)− , a−0 → K−K0S)/�(K0S K+K−) �121/�118�(K+a0(980)− , a−0 → K−K0S)/�(K0S K+K−) �121/�118This is a doubly Cabibbo-suppressed mode.VALUE CL% DOCUMENT ID TECN COMMENT
<0.025<0.025<0.025<0.025 95 AUBERT,B 05J BABR Dalitz �t, 12540 ± 112evts�(K0S f0(980), f0 → K+K−)/�(K0S K+K−) �122/�118�(K0S f0(980), f0 → K+K−)/�(K0S K+K−) �122/�118�(K0S f0(980), f0 → K+K−)/�(K0S K+K−) �122/�118�(K0S f0(980), f0 → K+K−)/�(K0S K+K−) �122/�118VALUE CL% DOCUMENT ID TECN COMMENT
<0.021<0.021<0.021<0.021 95 AUBERT,B 05J BABR Dalitz �t, 12540 ± 112evts�(K0S φ , φ→ K+K−)/�(K0S K+K−) �123/�118�(K0S φ , φ→ K+K−)/�(K0S K+K−) �123/�118�(K0S φ , φ→ K+K−)/�(K0S K+K−) �123/�118�(K0S φ , φ→ K+K−)/�(K0S K+K−) �123/�118This is the \�t fra
tion" from the Dalitz-plot analysis, with interferen
e.VALUE DOCUMENT ID TECN COMMENT0.459±0.007±0.0070.459±0.007±0.0070.459±0.007±0.0070.459±0.007±0.007 AUBERT,B 05J BABR Dalitz �t, 12540± 112 evts�(K0S f0(1370), f0 → K+K−)/�(K0S K+K−) �124/�118�(K0S f0(1370), f0 → K+K−)/�(K0S K+K−) �124/�118�(K0S f0(1370), f0 → K+K−)/�(K0S K+K−) �124/�118�(K0S f0(1370), f0 → K+K−)/�(K0S K+K−) �124/�118This is the \�t fra
tion" from the Dalitz-plot analysis, with interferen
e.VALUE DOCUMENT ID TECN COMMENT0.038±0.007±0.0230.038±0.007±0.0230.038±0.007±0.0230.038±0.007±0.023 1 AUBERT,B 05J BABR Dalitz �t, 12540± 112 evts1AUBERT,B 05J 
alls the mode K0S f0(1400), but insofar as it is seen here at all, it is
ertainly the same as f0(1370).�(3K0S)/�(K0S π+π−) �125/�35�(3K0S)/�(K0S π+π−) �125/�35�(3K0S)/�(K0S π+π−) �125/�35�(3K0S)/�(K0S π+π−) �125/�35VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.2 ±0.4 OUR AVERAGE3.2 ±0.4 OUR AVERAGE3.2 ±0.4 OUR AVERAGE3.2 ±0.4 OUR AVERAGE3.58±0.54±0.52 170 ± 26 LINK 05A FOCS γBe, Eγ ≈ 180 GeV2.78±0.38±0.48 61 ASNER 96B CLE2 e+ e− ≈ �(4S)7.0 ±2.4 ±1.2 10 ± 3 FRABETTI 94J E687 γBe, Eγ=220 GeV3.2 ±1.0 22 AMMAR 91 CLEO e+ e− ≈ 10.5 GeV3.4 ±1.4 ±1.0 5 ALBRECHT 90C ARG e+ e− ≈ 10 GeV�(K+2K−π+)/�(K−2π+π−) �126/�67�(K+2K−π+)/�(K−2π+π−) �126/�67�(K+2K−π+)/�(K−2π+π−) �126/�67�(K+2K−π+)/�(K−2π+π−) �126/�67VALUE EVTS DOCUMENT ID TECN COMMENT0.0027 ±0.0004 OUR AVERAGE0.0027 ±0.0004 OUR AVERAGE0.0027 ±0.0004 OUR AVERAGE0.0027 ±0.0004 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.00257±0.00034±0.00024 143 LINK 03G FOCS γ A, Eγ ≈ 180 GeV0.0054 ±0.0016 ±0.0008 18 AITALA 01D E791 π− A, 500 GeV0.0028 ±0.0007 ±0.0001 20 FRABETTI 95C E687 γ Be, Eγ ≈ 200 GeV�(

φK∗(892)0 , φ→ K+K−,K∗(892)0 → K−π+)/�(K+2K−π+)�129/�126�(

φK∗(892)0 , φ→ K+K−,K∗(892)0 → K−π+)/�(K+2K−π+)�129/�126�(

φK∗(892)0 , φ→ K+K−,K∗(892)0 → K−π+)/�(K+2K−π+)�129/�126�(

φK∗(892)0 , φ→ K+K−,K∗(892)0 → K−π+)/�(K+2K−π+)�129/�126VALUE DOCUMENT ID TECN COMMENT0.48±0.06±0.010.48±0.06±0.010.48±0.06±0.010.48±0.06±0.01 LINK 03G FOCS γ A, Eγ ≈ 180 GeV�(K−π+φ , φ→ K+K−)/�(K+2K−π+) �128/�126�(K−π+φ , φ→ K+K−)/�(K+2K−π+) �128/�126�(K−π+φ , φ→ K+K−)/�(K+2K−π+) �128/�126�(K−π+φ , φ→ K+K−)/�(K+2K−π+) �128/�126VALUE DOCUMENT ID TECN COMMENT0.18±0.06±0.040.18±0.06±0.040.18±0.06±0.040.18±0.06±0.04 LINK 03G FOCS γ A, Eγ ≈ 180 GeV�(K+K−K∗(892)0 ,K∗(892)0 → K−π+)/�(K+2K−π+) �127/�126�(K+K−K∗(892)0 ,K∗(892)0 → K−π+)/�(K+2K−π+) �127/�126�(K+K−K∗(892)0 ,K∗(892)0 → K−π+)/�(K+2K−π+) �127/�126�(K+K−K∗(892)0 ,K∗(892)0 → K−π+)/�(K+2K−π+) �127/�126VALUE DOCUMENT ID TECN COMMENT0.20±0.07±0.020.20±0.07±0.020.20±0.07±0.020.20±0.07±0.02 LINK 03G FOCS γ A, Eγ ≈ 180 GeV�(K+2K−π+ nonresonant)/�(K+2K−π+) �130/�126�(K+2K−π+ nonresonant)/�(K+2K−π+) �130/�126�(K+2K−π+ nonresonant)/�(K+2K−π+) �130/�126�(K+2K−π+ nonresonant)/�(K+2K−π+) �130/�126VALUE DOCUMENT ID TECN COMMENT0.15±0.06±0.020.15±0.06±0.020.15±0.06±0.020.15±0.06±0.02 LINK 03G FOCS γ A, Eγ ≈ 180 GeV�(2K0S K±π∓)/�(K0S π+π−) �131/�35�(2K0S K±π∓)/�(K0S π+π−) �131/�35�(2K0S K±π∓)/�(K0S π+π−) �131/�35�(2K0S K±π∓)/�(K0S π+π−) �131/�35VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.12±0.38±0.202.12±0.38±0.202.12±0.38±0.202.12±0.38±0.20 57 ± 10 LINK 05A FOCS γ Be, Eγ ≈ 180 GeVPioni
 modesPioni
 modesPioni
 modesPioni
 modes

�(

π+π−)/�(K−π+) �132/�31�(

π+π−)/�(K−π+) �132/�31�(

π+π−)/�(K−π+) �132/�31�(

π+π−)/�(K−π+) �132/�31VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.62 ±0.05 OUR FIT3.62 ±0.05 OUR FIT3.62 ±0.05 OUR FIT3.62 ±0.05 OUR FIT3.59 ±0.06 OUR AVERAGE3.59 ±0.06 OUR AVERAGE3.59 ±0.06 OUR AVERAGE3.59 ±0.06 OUR AVERAGE3.594±0.054±0.040 7334 ± 97 ACOSTA 05C CDF pp, √s = 1.96 TeV3.53 ±0.12 ±0.06 3453 LINK 03 FOCS γ A, Eγ ≈ 180 GeV3.51 ±0.16 ±0.17 710 CSORNA 02 CLE2 e+ e− ≈ �(4S)4.0 ±0.2 ±0.3 2043 AITALA 98C E791 π− A, 500 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.62 ±0.10 ±0.08 2085 ± 54 RUBIN 06 CLEO See MENDEZ 103.4 ±0.7 ±0.1 76 ± 15 ABLIKIM 05F BES e+ e− ≈ ψ(3770)4.3 ±0.7 ±0.3 177 FRABETTI 94C E687 γBe Eγ= 220 GeV3.48 ±0.30 ±0.23 227 SELEN 93 CLE2 e+ e− ≈ �(4S)5.5 ±0.8 ±0.5 120 ANJOS 91D E691 Photoprodu
tion5.0 ±0.7 ±0.5 110 ALEXANDER 90 CLEO e+ e− 10.5{11 GeV�(

π+π−)/[�(K−π+)+ �(K+π−)
] �132/(�31+�222)�(

π+π−)/[�(K−π+)+ �(K+π−)
] �132/(�31+�222)�(

π+π−)/[�(K−π+)+ �(K+π−)
] �132/(�31+�222)�(

π+π−)/[�(K−π+)+ �(K+π−)
] �132/(�31+�222)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.60±0.05 OUR FIT3.60±0.05 OUR FIT3.60±0.05 OUR FIT3.60±0.05 OUR FIT3.70±0.06±0.093.70±0.06±0.093.70±0.06±0.093.70±0.06±0.09 6210± 93 MENDEZ 10 CLEO e+ e− at 3774 MeV�(2π0)/�total �133/��(2π0)/�total �133/��(2π0)/�total �133/��(2π0)/�total �133/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8.25±0.25 OUR FIT8.25±0.25 OUR FIT8.25±0.25 OUR FIT8.25±0.25 OUR FIT8.29±0.30 OUR AVERAGE8.29±0.30 OUR AVERAGE8.29±0.30 OUR AVERAGE8.29±0.30 OUR AVERAGE8.24±0.21±0.30 6k ABLIKIM 15F BES3 e+ e− at 3.773GeV8.4 ±0.1 ±0.5 26k LEES 12L BABR e+ e− ≈ 10.58 GeV�(2π0)/�(K−π+) �133/�31�(2π0)/�(K−π+) �133/�31�(2π0)/�(K−π+) �133/�31�(2π0)/�(K−π+) �133/�31VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.05±0.13±0.16 499 ± 32 RUBIN 06 CLEO See MENDEZ 102.2 ±0.4 ±0.4 40 SELEN 93 CLE2 e+ e− → �(4S)�(2π0)/[�(K−π+)+�(K+π−)
] �133/(�31+�222)�(2π0)/[�(K−π+)+�(K+π−)
] �133/(�31+�222)�(2π0)/[�(K−π+)+�(K+π−)
] �133/(�31+�222)�(2π0)/[�(K−π+)+�(K+π−)
] �133/(�31+�222)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.09±0.07 OUR FIT2.09±0.07 OUR FIT2.09±0.07 OUR FIT2.09±0.07 OUR FIT2.06±0.07±0.102.06±0.07±0.102.06±0.07±0.102.06±0.07±0.10 1567± 54 MENDEZ 10 CLEO e+ e− at 3774 MeV�(

π+π−π0)/�(K−π+) �134/�31�(

π+π−π0)/�(K−π+) �134/�31�(

π+π−π0)/�(K−π+) �134/�31�(

π+π−π0)/�(K−π+) �134/�31VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT37.5±2.3 OUR FIT37.5±2.3 OUR FIT37.5±2.3 OUR FIT37.5±2.3 OUR FIT Error in
ludes s
ale fa
tor of 3.0.34.4±0.5±1.234.4±0.5±1.234.4±0.5±1.234.4±0.5±1.2 11k±164 RUBIN 06 CLEO e+ e− at ψ(3770)�(

π+π−π0)/�(K−π+π0) �134/�50�(

π+π−π0)/�(K−π+π0) �134/�50�(

π+π−π0)/�(K−π+π0) �134/�50�(

π+π−π0)/�(K−π+π0) �134/�50VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT10.33±0.25 OUR FIT10.33±0.25 OUR FIT10.33±0.25 OUR FIT10.33±0.25 OUR FIT Error in
ludes s
ale fa
tor of 2.3.10.41±0.23 OUR AVERAGE10.41±0.23 OUR AVERAGE10.41±0.23 OUR AVERAGE10.41±0.23 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0.10.12±0.04±0.18 123k±490 ARINSTEIN 08 BELL e+ e− ≈ �(4S)10.59±0.06±0.13 60k±343 AUBERT,B 06X BABR e+ e− ≈ �(4S)�(

ρ+π−)/�(

π+π−π0) �135/�134�(

ρ+π−)/�(

π+π−π0) �135/�134�(

ρ+π−)/�(

π+π−π0) �135/�134�(

ρ+π−)/�(

π+π−π0) �135/�134This is the \�t fra
tion" from the Dalitz-plot analysis, with interferen
e. SeeGASPERO 08 and BHATTACHARYA 10A for isospin de
ompositions of the D0 →
π+π0π− Dalitz plot, both based on the amplitudes of AUBERT 07BJ. They quantifythe 
on
lusion that the �nal state is dominantly isospin 0.VALUE (units 10−2) DOCUMENT ID TECN COMMENT68.1±0.6 OUR AVERAGE68.1±0.6 OUR AVERAGE68.1±0.6 OUR AVERAGE68.1±0.6 OUR AVERAGE67.8±0.0±0.6 AUBERT 07BJ BABR Dalitz �t, 45k events76.3±1.9±2.5 CRONIN-HEN...05 CLEO e+ e− ≈ 10 GeV�(

ρ0π0)/�(

π+π−π0) �136/�134�(

ρ0π0)/�(

π+π−π0) �136/�134�(

ρ0π0)/�(

π+π−π0) �136/�134�(

ρ0π0)/�(

π+π−π0) �136/�134This is the \�t fra
tion" from the Dalitz-plot analysis, with interferen
e.VALUE (units 10−2) DOCUMENT ID TECN COMMENT25.9±1.1 OUR AVERAGE25.9±1.1 OUR AVERAGE25.9±1.1 OUR AVERAGE25.9±1.1 OUR AVERAGE26.2±0.5±1.1 AUBERT 07BJ BABR Dalitz �t, 45k events24.4±2.0±2.1 CRONIN-HEN...05 CLEO e+ e− ≈ 10 GeV�(

ρ−π+)/�(

π+π−π0) �137/�134�(

ρ−π+)/�(

π+π−π0) �137/�134�(

ρ−π+)/�(

π+π−π0) �137/�134�(

ρ−π+)/�(

π+π−π0) �137/�134This is the \�t fra
tion" from the Dalitz-plot analysis, with interferen
e.VALUE (units 10−2) DOCUMENT ID TECN COMMENT34.6±0.8 OUR AVERAGE34.6±0.8 OUR AVERAGE34.6±0.8 OUR AVERAGE34.6±0.8 OUR AVERAGE34.6±0.8±0.3 AUBERT 07BJ BABR Dalitz �t, 45k events34.5±2.4±1.3 CRONIN-HEN...05 CLEO e+ e− ≈ 10 GeV�(

ρ(1450)+π− , ρ(1450)+ → π+π0)/�(

π+π−π0) �138/�134�(

ρ(1450)+π− , ρ(1450)+ → π+π0)/�(

π+π−π0) �138/�134�(

ρ(1450)+π− , ρ(1450)+ → π+π0)/�(

π+π−π0) �138/�134�(

ρ(1450)+π− , ρ(1450)+ → π+π0)/�(

π+π−π0) �138/�134VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.11±0.07±0.120.11±0.07±0.120.11±0.07±0.120.11±0.07±0.12 AUBERT 07BJ BABR Dalitz �t, 45k events�(

ρ(1450)0π0 , ρ(1450)0 → π+π−)/�(

π+π−π0) �139/�134�(

ρ(1450)0π0 , ρ(1450)0 → π+π−)/�(

π+π−π0) �139/�134�(

ρ(1450)0π0 , ρ(1450)0 → π+π−)/�(

π+π−π0) �139/�134�(

ρ(1450)0π0 , ρ(1450)0 → π+π−)/�(

π+π−π0) �139/�134VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.30±0.11±0.070.30±0.11±0.070.30±0.11±0.070.30±0.11±0.07 AUBERT 07BJ BABR Dalitz �t, 45k events



1082108210821082MesonParti
le ListingsD0�(

ρ(1450)−π+ , ρ(1450)− → π−π0)/�(

π+π−π0) �140/�134�(

ρ(1450)−π+ , ρ(1450)− → π−π0)/�(

π+π−π0) �140/�134�(

ρ(1450)−π+ , ρ(1450)− → π−π0)/�(

π+π−π0) �140/�134�(

ρ(1450)−π+ , ρ(1450)− → π−π0)/�(

π+π−π0) �140/�134VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.79±0.22±0.121.79±0.22±0.121.79±0.22±0.121.79±0.22±0.12 AUBERT 07BJ BABR Dalitz �t, 45k events�(

ρ(1700)+π− , ρ(1700)+ → π+π0)/�(

π+π−π0) �141/�134�(

ρ(1700)+π− , ρ(1700)+ → π+π0)/�(

π+π−π0) �141/�134�(

ρ(1700)+π− , ρ(1700)+ → π+π0)/�(

π+π−π0) �141/�134�(

ρ(1700)+π− , ρ(1700)+ → π+π0)/�(

π+π−π0) �141/�134VALUE (units 10−2) DOCUMENT ID TECN COMMENT4.1±0.7±0.74.1±0.7±0.74.1±0.7±0.74.1±0.7±0.7 AUBERT 07BJ BABR Dalitz �t, 45k events�(

ρ(1700)0π0 , ρ(1700)0 → π+π−)/�(

π+π−π0) �142/�134�(

ρ(1700)0π0 , ρ(1700)0 → π+π−)/�(

π+π−π0) �142/�134�(

ρ(1700)0π0 , ρ(1700)0 → π+π−)/�(

π+π−π0) �142/�134�(

ρ(1700)0π0 , ρ(1700)0 → π+π−)/�(

π+π−π0) �142/�134VALUE (units 10−2) DOCUMENT ID TECN COMMENT5.0±0.6±1.05.0±0.6±1.05.0±0.6±1.05.0±0.6±1.0 AUBERT 07BJ BABR Dalitz �t, 45k events�(

ρ(1700)−π+ , ρ(1700)− → π−π0)/�(

π+π−π0) �143/�134�(

ρ(1700)−π+ , ρ(1700)− → π−π0)/�(

π+π−π0) �143/�134�(

ρ(1700)−π+ , ρ(1700)− → π−π0)/�(

π+π−π0) �143/�134�(

ρ(1700)−π+ , ρ(1700)− → π−π0)/�(

π+π−π0) �143/�134VALUE (units 10−2) DOCUMENT ID TECN COMMENT3.2±0.4±0.63.2±0.4±0.63.2±0.4±0.63.2±0.4±0.6 AUBERT 07BJ BABR Dalitz �t, 45k events�(f0(980)π0 , f0(980)→ π+π−)/�(

π+π−π0) �144/�134�(f0(980)π0 , f0(980)→ π+π−)/�(

π+π−π0) �144/�134�(f0(980)π0 , f0(980)→ π+π−)/�(

π+π−π0) �144/�134�(f0(980)π0 , f0(980)→ π+π−)/�(

π+π−π0) �144/�134VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT0.25 ±0.04±0.040.25 ±0.04±0.040.25 ±0.04±0.040.25 ±0.04±0.04 AUBERT 07BJ BABR Dalitz �t, 45k events
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.026 95 1 CRONIN-HEN...05 CLEO e+ e− ≈ 10 GeV1The CRONIN-HENNESSY 05 �t here in
ludes, in addition to the three ρπ 
harged states,only the f0(980)π0 mode. See also the next entries for limits obtained in the same wayfor the f0(500)π0 mode and for an S-wave π+π− parametrized using a K-matrix. Our

ρπ bran
hing ratios, given above, use the �t with the K-matrix S wave.�(f0(500)π0 , f0(500)→ π+π−)/�(

π+π−π0) �145/�134�(f0(500)π0 , f0(500)→ π+π−)/�(

π+π−π0) �145/�134�(f0(500)π0 , f0(500)→ π+π−)/�(

π+π−π0) �145/�134�(f0(500)π0 , f0(500)→ π+π−)/�(

π+π−π0) �145/�134The f0(500) is the σ.VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT0.82±0.10±0.100.82±0.10±0.100.82±0.10±0.100.82±0.10±0.10 AUBERT 07BJ BABR Dalitz �t, 45k events
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.21 95 1 CRONIN-HEN...05 CLEO e+ e− ≈ 10 GeV1See the note on CRONIN-HENNESSY 05 in the pro
eeding data blo
k.�((π+π−)S−waveπ0)/�(

π+π−π0) �146/�134�((π+π−)S−waveπ0)/�(

π+π−π0) �146/�134�((π+π−)S−waveπ0)/�(

π+π−π0) �146/�134�((π+π−)S−waveπ0)/�(

π+π−π0) �146/�134VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.019 95 1 CRONIN-HEN...05 CLEO e+ e− ≈ 10 GeV1See the note on CRONIN-HENNESSY 05 two data blo
ks up.�(f0(1370)π0 , f0(1370)→ π+π−)/�(

π+π−π0) �147/�134�(f0(1370)π0 , f0(1370)→ π+π−)/�(

π+π−π0) �147/�134�(f0(1370)π0 , f0(1370)→ π+π−)/�(

π+π−π0) �147/�134�(f0(1370)π0 , f0(1370)→ π+π−)/�(

π+π−π0) �147/�134VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.37±0.11±0.090.37±0.11±0.090.37±0.11±0.090.37±0.11±0.09 AUBERT 07BJ BABR Dalitz �t, 45k events�(f0(1500)π0 , f0(1500)→ π+π−)/�(

π+π−π0) �148/�134�(f0(1500)π0 , f0(1500)→ π+π−)/�(

π+π−π0) �148/�134�(f0(1500)π0 , f0(1500)→ π+π−)/�(

π+π−π0) �148/�134�(f0(1500)π0 , f0(1500)→ π+π−)/�(

π+π−π0) �148/�134VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.39±0.08±0.070.39±0.08±0.070.39±0.08±0.070.39±0.08±0.07 AUBERT 07BJ BABR Dalitz �t, 45k events�(f0(1710)π0 , f0(1710)→ π+π−)/�(

π+π−π0) �149/�134�(f0(1710)π0 , f0(1710)→ π+π−)/�(

π+π−π0) �149/�134�(f0(1710)π0 , f0(1710)→ π+π−)/�(

π+π−π0) �149/�134�(f0(1710)π0 , f0(1710)→ π+π−)/�(

π+π−π0) �149/�134VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.31±0.07±0.080.31±0.07±0.080.31±0.07±0.080.31±0.07±0.08 AUBERT 07BJ BABR Dalitz �t, 45k events�(f2(1270)π0 , f2(1270)→ π+π−)/�(

π+π−π0) �150/�134�(f2(1270)π0 , f2(1270)→ π+π−)/�(

π+π−π0) �150/�134�(f2(1270)π0 , f2(1270)→ π+π−)/�(

π+π−π0) �150/�134�(f2(1270)π0 , f2(1270)→ π+π−)/�(

π+π−π0) �150/�134VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.32±0.08±0.101.32±0.08±0.101.32±0.08±0.101.32±0.08±0.10 AUBERT 07BJ BABR Dalitz �t, 45k events�(

π+π−π0 nonresonant)/�(

π+π−π0) �151/�134�(

π+π−π0 nonresonant)/�(

π+π−π0) �151/�134�(

π+π−π0 nonresonant)/�(

π+π−π0) �151/�134�(

π+π−π0 nonresonant)/�(

π+π−π0) �151/�134VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.84±0.21±0.120.84±0.21±0.120.84±0.21±0.120.84±0.21±0.12 AUBERT 07BJ BABR Dalitz �t, 45k events�(3π0)/�total �152/��(3π0)/�total �152/��(3π0)/�total �152/��(3π0)/�total �152/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.5× 10−4<3.5× 10−4<3.5× 10−4<3.5× 10−4 90 RUBIN 06 CLEO e+ e− at ψ(3770)�(2π+2π−)/�(K−π+) �153/�31�(2π+2π−)/�(K−π+) �153/�31�(2π+2π−)/�(K−π+) �153/�31�(2π+2π−)/�(K−π+) �153/�31VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT19.0±0.6 OUR FIT19.0±0.6 OUR FIT19.0±0.6 OUR FIT19.0±0.6 OUR FIT Error in
ludes s
ale fa
tor of 1.1.19.1±0.4±0.619.1±0.4±0.619.1±0.4±0.619.1±0.4±0.6 7331 ± 130 RUBIN 06 CLEO e+ e− at ψ(3770)�(2π+2π−)/�(K−2π+π−) �153/�67�(2π+2π−)/�(K−2π+π−) �153/�67�(2π+2π−)/�(K−2π+π−) �153/�67�(2π+2π−)/�(K−2π+π−) �153/�67VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT9.24±0.23 OUR FIT9.24±0.23 OUR FIT9.24±0.23 OUR FIT9.24±0.23 OUR FIT Error in
ludes s
ale fa
tor of 1.1.9.20±0.26 OUR AVERAGE9.20±0.26 OUR AVERAGE9.20±0.26 OUR AVERAGE9.20±0.26 OUR AVERAGE9.14±0.18±0.22 6360± 115 LINK 07A FOCS γBe, Eγ ≈ 180 GeV7.9 ±1.8 ±0.5 162 ABLIKIM 05F BES e+ e− ≈ ψ(3770)9.5 ±0.7 ±0.2 814 FRABETTI 95C E687 γBe, Eγ ≈ 200 GeV10.2 ±1.3 345 AMMAR 91 CLEO e+ e− ≈ 10.5 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •11.5 ±2.3 ±1.6 64 ADAMOVICH 92 OMEG π− 340 GeV10.8 ±2.4 ±0.8 79 FRABETTI 92 E687 γBe9.6 ±1.8 ±0.7 66 ANJOS 91 E691 γBe 80{240 GeV

�(a1(1260)+π− , a+1 → 2π+π− total)/�(2π+2π−) �154/�153�(a1(1260)+π− , a+1 → 2π+π− total)/�(2π+2π−) �154/�153�(a1(1260)+π− , a+1 → 2π+π− total)/�(2π+2π−) �154/�153�(a1(1260)+π− , a+1 → 2π+π− total)/�(2π+2π−) �154/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT60.0±3.0±2.460.0±3.0±2.460.0±3.0±2.460.0±3.0±2.4 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(a1(1260)+π− , a+1 → ρ0π+ S-wave)/�(2π+2π−) �155/�153�(a1(1260)+π− , a+1 → ρ0π+ S-wave)/�(2π+2π−) �155/�153�(a1(1260)+π− , a+1 → ρ0π+ S-wave)/�(2π+2π−) �155/�153�(a1(1260)+π− , a+1 → ρ0π+ S-wave)/�(2π+2π−) �155/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT43.3±2.5±1.943.3±2.5±1.943.3±2.5±1.943.3±2.5±1.9 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(a1(1260)+π− , a+1 → ρ0π+ D-wave)/�(2π+2π−) �156/�153�(a1(1260)+π− , a+1 → ρ0π+ D-wave)/�(2π+2π−) �156/�153�(a1(1260)+π− , a+1 → ρ0π+ D-wave)/�(2π+2π−) �156/�153�(a1(1260)+π− , a+1 → ρ0π+ D-wave)/�(2π+2π−) �156/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT2.5±0.5±0.42.5±0.5±0.42.5±0.5±0.42.5±0.5±0.4 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(a1(1260)+π− , a+1 → σπ+)/�(2π+ 2π−) �157/�153�(a1(1260)+π− , a+1 → σπ+)/�(2π+ 2π−) �157/�153�(a1(1260)+π− , a+1 → σπ+)/�(2π+ 2π−) �157/�153�(a1(1260)+π− , a+1 → σπ+)/�(2π+ 2π−) �157/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT8.3±0.7±0.68.3±0.7±0.68.3±0.7±0.68.3±0.7±0.6 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(2ρ0 total)/�(2π+2π−) �158/�153�(2ρ0 total)/�(2π+2π−) �158/�153�(2ρ0 total)/�(2π+2π−) �158/�153�(2ρ0 total)/�(2π+2π−) �158/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT24.5±1.3±1.024.5±1.3±1.024.5±1.3±1.024.5±1.3±1.0 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(2ρ0 , parallel heli
ities)/�(2π+2π−) �159/�153�(2ρ0 , parallel heli
ities)/�(2π+2π−) �159/�153�(2ρ0 , parallel heli
ities)/�(2π+2π−) �159/�153�(2ρ0 , parallel heli
ities)/�(2π+2π−) �159/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.1±0.3±0.31.1±0.3±0.31.1±0.3±0.31.1±0.3±0.3 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(2ρ0 , perpendi
ular heli
ities)/�(2π+2π−) �160/�153�(2ρ0 , perpendi
ular heli
ities)/�(2π+2π−) �160/�153�(2ρ0 , perpendi
ular heli
ities)/�(2π+2π−) �160/�153�(2ρ0 , perpendi
ular heli
ities)/�(2π+2π−) �160/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT6.4±0.6±0.56.4±0.6±0.56.4±0.6±0.56.4±0.6±0.5 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(2ρ0 , longitudinal heli
ities)/�(2π+2π−) �161/�153�(2ρ0 , longitudinal heli
ities)/�(2π+2π−) �161/�153�(2ρ0 , longitudinal heli
ities)/�(2π+2π−) �161/�153�(2ρ0 , longitudinal heli
ities)/�(2π+2π−) �161/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT16.8±1.0±0.816.8±1.0±0.816.8±1.0±0.816.8±1.0±0.8 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(Resonant (π+π−)π+π− 3-body total)/�(2π+ 2π−) �162/�153�(Resonant (π+π−)π+π− 3-body total)/�(2π+ 2π−) �162/�153�(Resonant (π+π−)π+π− 3-body total)/�(2π+ 2π−) �162/�153�(Resonant (π+π−)π+π− 3-body total)/�(2π+ 2π−) �162/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT20.0±1.2±1.020.0±1.2±1.020.0±1.2±1.020.0±1.2±1.0 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(

σπ+π−)/�(2π+2π−) �163/�153�(

σπ+π−)/�(2π+2π−) �163/�153�(

σπ+π−)/�(2π+2π−) �163/�153�(

σπ+π−)/�(2π+2π−) �163/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT8.2±0.9±0.78.2±0.9±0.78.2±0.9±0.78.2±0.9±0.7 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(f0(980)π+π− , f0 → π+π−)/�(2π+ 2π−) �164/�153�(f0(980)π+π− , f0 → π+π−)/�(2π+ 2π−) �164/�153�(f0(980)π+π− , f0 → π+π−)/�(2π+ 2π−) �164/�153�(f0(980)π+π− , f0 → π+π−)/�(2π+ 2π−) �164/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT2.4±0.5±0.42.4±0.5±0.42.4±0.5±0.42.4±0.5±0.4 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(f2(1270)π+π− , f2 → π+π−)/�(2π+2π−) �165/�153�(f2(1270)π+π− , f2 → π+π−)/�(2π+2π−) �165/�153�(f2(1270)π+π− , f2 → π+π−)/�(2π+2π−) �165/�153�(f2(1270)π+π− , f2 → π+π−)/�(2π+2π−) �165/�153This is the �t fra
tion from the 
oherent amplitude analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT4.9±0.6±0.54.9±0.6±0.54.9±0.6±0.54.9±0.6±0.5 LINK 07A FOCS 4-body �t, ≈ 5.7k evts�(

π+π−2π0)/�(K−π+) �166/�31�(

π+π−2π0)/�(K−π+) �166/�31�(

π+π−2π0)/�(K−π+) �166/�31�(

π+π−2π0)/�(K−π+) �166/�31VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT25.8±1.5±1.825.8±1.5±1.825.8±1.5±1.825.8±1.5±1.8 2724 ± 166 RUBIN 06 CLEO e+ e− at ψ(3770)�(

ηπ0)/�total �167/��(

ηπ0)/�total �167/��(

ηπ0)/�total �167/��(

ηπ0)/�total �167/�Unseen de
ay modes of the η are in
luded.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.4±1.0±0.4 156 ± 24 ARTUSO 08 CLEO See MENDEZ 10�(

ηπ0)/�(K−π+) �167/�31�(

ηπ0)/�(K−π+) �167/�31�(

ηπ0)/�(K−π+) �167/�31�(

ηπ0)/�(K−π+) �167/�31Unseen de
ay modes of the η are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.47±0.34±0.11 62 ± 14 RUBIN 06 CLEO See ARTUSO 08�(

ηπ0)/[�(K−π+) +�(K+π−)
] �167/(�31+�222)�(

ηπ0)/[�(K−π+) +�(K+π−)
] �167/(�31+�222)�(

ηπ0)/[�(K−π+) +�(K+π−)
] �167/(�31+�222)�(

ηπ0)/[�(K−π+) +�(K+π−)
] �167/(�31+�222)Unseen de
ay modes of the η are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.74±0.19 OUR FIT1.74±0.19 OUR FIT1.74±0.19 OUR FIT1.74±0.19 OUR FIT1.74±0.15±0.111.74±0.15±0.111.74±0.15±0.111.74±0.15±0.11 481 ± 40 MENDEZ 10 CLEO e+ e− at 3774 MeV



1083108310831083See key on page 601 MesonParti
le ListingsD0�(ωπ0)/�total �168/��(ωπ0)/�total �168/��(ωπ0)/�total �168/��(ωπ0)/�total �168/�Unseen de
ay modes of the ω are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<2.6× 10−4<2.6× 10−4<2.6× 10−4<2.6× 10−4 90 RUBIN 06 CLEO e+ e− at ψ(3770)�(2π+2π−π0)/�(K−π+) �169/�31�(2π+2π−π0)/�(K−π+) �169/�31�(2π+2π−π0)/�(K−π+) �169/�31�(2π+2π−π0)/�(K−π+) �169/�31VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT10.7±1.2±0.510.7±1.2±0.510.7±1.2±0.510.7±1.2±0.5 1614 ± 171 RUBIN 06 CLEO e+ e− at ψ(3770)�(ηπ+π−)/�total �170/��(ηπ+π−)/�total �170/��(ηπ+π−)/�total �170/��(ηπ+π−)/�total �170/�Unseen de
ay modes of the η are in
luded.VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT10.9±1.3±0.910.9±1.3±0.910.9±1.3±0.910.9±1.3±0.9 257 ± 32 ARTUSO 08 CLEO e+ e− at ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<19 90 RUBIN 06 CLEO e+ e− at ψ(3770)�(ωπ+π−)/�(K−π+) �171/�31�(ωπ+π−)/�(K−π+) �171/�31�(ωπ+π−)/�(K−π+) �171/�31�(ωπ+π−)/�(K−π+) �171/�31Unseen de
ay modes of the ω are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT4.1±1.2±0.44.1±1.2±0.44.1±1.2±0.44.1±1.2±0.4 472 ± 132 RUBIN 06 CLEO e+ e− at ψ(3770)�(3π+3π−)/�(K−2π+π−) �172/�67�(3π+3π−)/�(K−2π+π−) �172/�67�(3π+3π−)/�(K−2π+π−) �172/�67�(3π+3π−)/�(K−2π+π−) �172/�67VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT5.23±0.59±1.355.23±0.59±1.355.23±0.59±1.355.23±0.59±1.35 149 ± 17 LINK 04B FOCS γA, Eγ ≈ 180 GeV�(3π+3π−)/�(K−3π+2π−) �172/�93�(3π+3π−)/�(K−3π+2π−) �172/�93�(3π+3π−)/�(K−3π+2π−) �172/�93�(3π+3π−)/�(K−3π+2π−) �172/�93VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.93±047±0.48 1 LINK 04B FOCS γA, Eγ ≈ 180 GeV1This LINK 04B result is not independent of other results in these Listings.�(η′(958)π0)/�total �173/��(η′(958)π0)/�total �173/��(η′(958)π0)/�total �173/��(η′(958)π0)/�total �173/�Unseen de
ay modes of the η′(958) are in
luded.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.1±1.5±0.6 50 ± 9 ARTUSO 08 CLEO See MENDEZ 10�(η′(958)π0)/[�(K−π+)+�(K+π−)

] �173/(�31+�222)�(η′(958)π0)/[�(K−π+)+�(K+π−)
] �173/(�31+�222)�(η′(958)π0)/[�(K−π+)+�(K+π−)
] �173/(�31+�222)�(η′(958)π0)/[�(K−π+)+�(K+π−)
] �173/(�31+�222)Unseen de
ay modes of the η′(958) are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.3±0.4 OUR FIT2.3±0.4 OUR FIT2.3±0.4 OUR FIT2.3±0.4 OUR FIT2.3±0.3±0.22.3±0.3±0.22.3±0.3±0.22.3±0.3±0.2 159 ± 19 MENDEZ 10 CLEO e+ e− at 3774 MeV�(η′(958)π+π−)/�total �174/��(η′(958)π+π−)/�total �174/��(η′(958)π+π−)/�total �174/��(η′(958)π+π−)/�total �174/�Unseen de
ay modes of the η′(958) are in
luded.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.5±1.6±0.54.5±1.6±0.54.5±1.6±0.54.5±1.6±0.5 21 ± 8 ARTUSO 08 CLEO e+ e− at ψ(3770)�(2η)/�total �175/��(2η)/�total �175/��(2η)/�total �175/��(2η)/�total �175/�Unseen de
ay modes of the η are in
luded.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •16.7±1.4±1.3 255 ± 22 ARTUSO 08 CLEO See MENDEZ 10�(2η)/[�(K−π+)+�(K+π−)
] �175/(�31+�222)�(2η)/[�(K−π+)+�(K+π−)
] �175/(�31+�222)�(2η)/[�(K−π+)+�(K+π−)
] �175/(�31+�222)�(2η)/[�(K−π+)+�(K+π−)
] �175/(�31+�222)Unseen de
ay modes of the η are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT4.3±0.5 OUR FIT4.3±0.5 OUR FIT4.3±0.5 OUR FIT4.3±0.5 OUR FIT4.3±0.3±0.44.3±0.3±0.44.3±0.3±0.44.3±0.3±0.4 430 ± 29 MENDEZ 10 CLEO e+ e− at 3774 MeV�(ηη′(958))/�total �176/��(ηη′(958))/�total �176/��(ηη′(958))/�total �176/��(ηη′(958))/�total �176/�Unseen de
ay modes of the η and η′(958) are in
luded.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •12.6±2.5±1.1 46 ± 9 ARTUSO 08 CLEO See MENDEZ 10�(ηη′(958))/[�(K−π+)+�(K+π−)
] �176/(�31+�222)�(ηη′(958))/[�(K−π+)+�(K+π−)
] �176/(�31+�222)�(ηη′(958))/[�(K−π+)+�(K+π−)
] �176/(�31+�222)�(ηη′(958))/[�(K−π+)+�(K+π−)
] �176/(�31+�222)Unseen de
ay modes of the η and η′(958) are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.7±0.7 OUR FIT2.7±0.7 OUR FIT2.7±0.7 OUR FIT2.7±0.7 OUR FIT2.7±0.6±0.32.7±0.6±0.32.7±0.6±0.32.7±0.6±0.3 66 ± 15 MENDEZ 10 CLEO e+ e− at 3774 MeVHadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pair�(K+K−)/�total �177/��(K+K−)/�total �177/��(K+K−)/�total �177/��(K+K−)/�total �177/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.01±0.07 OUR FIT4.01±0.07 OUR FIT4.01±0.07 OUR FIT4.01±0.07 OUR FIT Error in
ludes s
ale fa
tor of 1.5.

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.08±0.08±0.09 4746 ± 74 BONVICINI 08 CLEO See MENDEZ 10

�(K+K−)/�(K−π+) �177/�31�(K+K−)/�(K−π+) �177/�31�(K+K−)/�(K−π+) �177/�31�(K+K−)/�(K−π+) �177/�31VALUE EVTS DOCUMENT ID TECN COMMENT0.1021±0.0015 OUR FIT0.1021±0.0015 OUR FIT0.1021±0.0015 OUR FIT0.1021±0.0015 OUR FIT Error in
ludes s
ale fa
tor of 1.7.0.1010±0.0016 OUR AVERAGE0.1010±0.0016 OUR AVERAGE0.1010±0.0016 OUR AVERAGE0.1010±0.0016 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogrambelow.0.122 ±0.011 ±0.004 242 ± 20 ABLIKIM 05F BES e+ e− ≈ ψ(3770)0.0992±0.0011±0.0012 16k±200 ACOSTA 05C CDF pp, √s=1.96 TeV0.0993±0.0014±0.0014 11k LINK 03 FOCS γ nu
leus, Eγ ≈180 GeV0.1040±0.0033±0.0027 1900 CSORNA 02 CLE2 e+ e− ≈ �(4S)0.109 ±0.003 ±0.003 3317 AITALA 98C E791 π− nu
leus, 500 GeV0.116 ±0.007 ±0.007 1102 ASNER 96B CLE2 e+ e− ≈ �(4S)0.109 ±0.007 ±0.009 581 FRABETTI 94C E687 γBe Eγ= 220 GeV0.107 ±0.010 ±0.009 193 ANJOS 91D E691 Photoprodu
tion0.117 ±0.010 ±0.007 249 ALEXANDER 90 CLEO e+ e− 10.5{11 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.107 ±0.029 ±0.015 103 ADAMOVICH 92 OMEG π− 340 GeV0.138 ±0.027 ±0.010 155 FRABETTI 92 E687 γBe0.16 ±0.05 34 ALVAREZ 91B NA14 Photoprodu
tion0.10 ±0.02 ±0.01 131 ALBRECHT 90C ARG e+ e− ≈ 10 GeV0.122 ±0.018 ±0.012 118 BALTRUSAIT...85E MRK3 e+ e− 3.77 GeV0.113 ±0.030 ABRAMS 79D MRK2 e+ e− 3.77 GeV

WEIGHTED AVERAGE
0.1010±0.0016 (Error scaled by 1.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ALEXANDER 90 CLEO
ANJOS 91D E691
FRABETTI 94C E687
ASNER 96B CLE2 2.3
AITALA 98C E791 3.5
CSORNA 02 CLE2 0.5
LINK 03 FOCS 0.7
ACOSTA 05C CDF 1.2
ABLIKIM 05F BES

χ2

       8.3
(Confidence Level = 0.081)

0.09 0.1 0.11 0.12 0.13 0.14 0.15�(K+K−)/�(K−π+)�(K+K−)/[�(K−π+)+�(K+π−)
] �177/(�31+�222)�(K+K−)/[�(K−π+)+�(K+π−)
] �177/(�31+�222)�(K+K−)/[�(K−π+)+�(K+π−)
] �177/(�31+�222)�(K+K−)/[�(K−π+)+�(K+π−)
] �177/(�31+�222)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT10.18±0.15 OUR FIT10.18±0.15 OUR FIT10.18±0.15 OUR FIT10.18±0.15 OUR FIT Error in
ludes s
ale fa
tor of 1.7.10.41±0.11±0.1210.41±0.11±0.1210.41±0.11±0.1210.41±0.11±0.12 13.8k MENDEZ 10 CLEO e+ e− at 3774 MeV�(K+K−)/�(π+π−) �177/�132�(K+K−)/�(π+π−) �177/�132�(K+K−)/�(π+π−) �177/�132�(K+K−)/�(π+π−) �177/�132The unused results here are redundant with �(K+K−)/�(K−π+) and�(π+π−)/�(K−π+) measurements by the same experiments.VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.760±0.040±0.034 7334 ACOSTA 05C CDF pp, √s=1.96 TeV2.81 ±0.10 ±0.06 LINK 03 FOCS γ nu
leus, Eγ ≈ 180 GeV2.96 ±0.16 ±0.15 710 CSORNA 02 CLE2 e+ e− ≈ �(4S)2.75 ±0.15 ±0.16 AITALA 98C E791 π− nu
leus, 500 GeV2.53 ±0.46 ±0.19 FRABETTI 94C E687 γBe Eγ= 220 GeV2.23 ±0.81 ±0.46 ADAMOVICH 92 OMEG π− 340 GeV1.95 ±0.34 ±0.22 ANJOS 91D E691 Photoprodu
tion2.5 ±0.7 ALBRECHT 90C ARG e+ e− ≈ 10 GeV2.35 ±0.37 ±0.28 ALEXANDER 90 CLEO e+ e− 10.5{11 GeV�(2K0S)/�total �178/��(2K0S)/�total �178/��(2K0S)/�total �178/��(2K0S)/�total �178/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.46±0.32±0.09 68 ± 15 BONVICINI 08 CLEO See MENDEZ 10�(2K0S)/[�(K−π+)+�(K+π−)

] �178/(�31+�222)�(2K0S)/[�(K−π+)+�(K+π−)
] �178/(�31+�222)�(2K0S)/[�(K−π+)+�(K+π−)
] �178/(�31+�222)�(2K0S)/[�(K−π+)+�(K+π−)
] �178/(�31+�222)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.45±0.11 OUR FIT0.45±0.11 OUR FIT0.45±0.11 OUR FIT0.45±0.11 OUR FIT Error in
ludes s
ale fa
tor of 2.5.0.41±0.04±0.020.41±0.04±0.020.41±0.04±0.020.41±0.04±0.02 215 ± 23 MENDEZ 10 CLEO e+ e− at 3774 MeV



1084108410841084MesonParti
le ListingsD0�(2K0S)/�(K0S π+π−) �178/�35�(2K0S)/�(K0S π+π−) �178/�35�(2K0S)/�(K0S π+π−) �178/�35�(2K0S)/�(K0S π+π−) �178/�35This is the same as �(K0K0) / �(K0π+π−) be
ause D0 → K0S K0L is forbiddenby CP 
onservation.VALUE EVTS DOCUMENT ID TECN COMMENT0.0062±0.0015 OUR FIT0.0062±0.0015 OUR FIT0.0062±0.0015 OUR FIT0.0062±0.0015 OUR FIT Error in
ludes s
ale fa
tor of 2.2.0.0120±0.0022 OUR AVERAGE0.0120±0.0022 OUR AVERAGE0.0120±0.0022 OUR AVERAGE0.0120±0.0022 OUR AVERAGE0.0144±0.0032±0.0016 79 ± 17 LINK 05A FOCS γ Be, Eγ ≈ 180 GeV0.0101±0.0022±0.0016 26 ASNER 96B CLE2 e+ e− ≈ �(4S)0.039 ±0.013 ±0.013 20 ± 7 FRABETTI 94J E687 γBe Eγ=220 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.021 +0.011

−0.008 ±0.002 5 ALEXANDER 90 CLEO e+ e− 10.5{11 GeV�(K0S K−π+)/�(K−π+) �179/�31�(K0S K−π+)/�(K−π+) �179/�31�(K0S K−π+)/�(K−π+) �179/�31�(K0S K−π+)/�(K−π+) �179/�31VALUE DOCUMENT ID TECN COMMENT0.091±0.014 OUR FIT0.091±0.014 OUR FIT0.091±0.014 OUR FIT0.091±0.014 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.08 ±0.030.08 ±0.030.08 ±0.030.08 ±0.03 1 ANJOS 91 E691 γBe 80{240 GeV1The fa
tor 100 at the top of 
olumn 2 of Table I of ANJOS 91 should be omitted.�(K0S K−π+)/�(K0S π+π−) �179/�35�(K0S K−π+)/�(K0S π+π−) �179/�35�(K0S K−π+)/�(K0S π+π−) �179/�35�(K0S K−π+)/�(K0S π+π−) �179/�35VALUE EVTS DOCUMENT ID TECN COMMENT0.125±0.017 OUR FIT0.125±0.017 OUR FIT0.125±0.017 OUR FIT0.125±0.017 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.119±0.021 OUR AVERAGE0.119±0.021 OUR AVERAGE0.119±0.021 OUR AVERAGE0.119±0.021 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.108±0.019 61 AMMAR 91 CLEO e+ e− ≈ 10.5 GeV0.16 ±0.03 ±0.02 39 ALBRECHT 90C ARG e+ e− ≈ 10 GeV�(K∗(892)0K0S , K∗0 → K−π+)/�(K0S π+π−) �180/�35�(K∗(892)0K0S , K∗0 → K−π+)/�(K0S π+π−) �180/�35�(K∗(892)0K0S , K∗0 → K−π+)/�(K0S π+π−) �180/�35�(K∗(892)0K0S , K∗0 → K−π+)/�(K0S π+π−) �180/�35VALUE CL% DOCUMENT ID TECN COMMENT
<0.019<0.019<0.019<0.019 90 AMMAR 91 CLEO e+ e− ≈ 10.5 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.02 90 ALBRECHT 90C ARG e+ e− ≈ 10 GeV�(K0S K+π−)/�(K−π+) �181/�31�(K0S K+π−)/�(K−π+) �181/�31�(K0S K+π−)/�(K−π+) �181/�31�(K0S K+π−)/�(K−π+) �181/�31VALUE DOCUMENT ID TECN COMMENT0.055±0.009 OUR FIT0.055±0.009 OUR FIT0.055±0.009 OUR FIT0.055±0.009 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.05 ±0.0250.05 ±0.0250.05 ±0.0250.05 ±0.025 1 ANJOS 91 E691 γBe 80{240 GeV1The fa
tor 100 at the top of 
olumn 2 of Table I of ANJOS 91 should be omitted.�(K0S K+π−)/�(K0S π+π−) �181/�35�(K0S K+π−)/�(K0S π+π−) �181/�35�(K0S K+π−)/�(K0S π+π−) �181/�35�(K0S K+π−)/�(K0S π+π−) �181/�35VALUE EVTS DOCUMENT ID TECN COMMENT0.076±0.012 OUR FIT0.076±0.012 OUR FIT0.076±0.012 OUR FIT0.076±0.012 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.098±0.0200.098±0.0200.098±0.0200.098±0.020 55 AMMAR 91 CLEO e+ e− ≈ 10.5 GeV�(K0S K+π−)/�(K0S K−π+) �181/�179�(K0S K+π−)/�(K0S K−π+) �181/�179�(K0S K+π−)/�(K0S K−π+) �181/�179�(K0S K+π−)/�(K0S K−π+) �181/�179VALUE DOCUMENT ID TECN COMMENT0.61 ±0.06 OUR FIT0.61 ±0.06 OUR FIT0.61 ±0.06 OUR FIT0.61 ±0.06 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.592±0.044±0.0180.592±0.044±0.0180.592±0.044±0.0180.592±0.044±0.018 INSLER 12 CLEO e+ e− → D0D0 at 3.77GeV�(K∗(892)0K0S , K∗0 → K+π−)/�(K∗(892)0K0S , K∗0 → K−π+)�182/�180�(K∗(892)0K0S , K∗0 → K+π−)/�(K∗(892)0K0S , K∗0 → K−π+)�182/�180�(K∗(892)0K0S , K∗0 → K+π−)/�(K∗(892)0K0S , K∗0 → K−π+)�182/�180�(K∗(892)0K0S , K∗0 → K+π−)/�(K∗(892)0K0S , K∗0 → K−π+)�182/�180VALUE CL% DOCUMENT ID TECN COMMENT0.356±0.034±0.0070.356±0.034±0.0070.356±0.034±0.0070.356±0.034±0.007 1 INSLER 12 CLEO e+ e− → D0D0, 3.77 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.010 90 AMMAR 91 CLEO e+ e− ≈ 10.5 GeV1Uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770), where the signal sideD de
ays to K0S K π and the tag-side D de
ays to K π, K πππ, K ππ0.�(K+K−π0)/�(K−π+π0) �183/�50�(K+K−π0)/�(K−π+π0) �183/�50�(K+K−π0)/�(K−π+π0) �183/�50�(K+K−π0)/�(K−π+π0) �183/�50VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.37±0.03±0.042.37±0.03±0.042.37±0.03±0.042.37±0.03±0.04 11k±122 AUBERT,B 06X BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.95±0.26 151 ASNER 96B CLE2 e+ e− ≈ �(4S)�(K∗(892)+K−, K∗(892)+ → K+π0)/�(K+K−π0) �184/�183�(K∗(892)+K−, K∗(892)+ → K+π0)/�(K+K−π0) �184/�183�(K∗(892)+K−, K∗(892)+ → K+π0)/�(K+K−π0) �184/�183�(K∗(892)+K−, K∗(892)+ → K+π0)/�(K+K−π0) �184/�183This is the \�t fra
tion" from the Dalitz-plot analysis with interferen
e.VALUE (units 10−2) DOCUMENT ID TECN COMMENT44.4±0.8±0.644.4±0.8±0.644.4±0.8±0.644.4±0.8±0.6 AUBERT 07T BABR Dalitz �t II, 11k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •46.1±3.1 1 CAWLFIELD 06A CLEO Dalitz �t, 627 ± 30 evts1The error on this CAWLFIELD 06A result is statisti
al only.�(K∗(892)−K+, K∗(892)− → K−π0)/�(K+K−π0) �185/�183�(K∗(892)−K+, K∗(892)− → K−π0)/�(K+K−π0) �185/�183�(K∗(892)−K+, K∗(892)− → K−π0)/�(K+K−π0) �185/�183�(K∗(892)−K+, K∗(892)− → K−π0)/�(K+K−π0) �185/�183This is the \�t fra
tion" from the Dalitz-plot analysis with interferen
e.VALUE (units 10−2) DOCUMENT ID TECN COMMENT15.9±0.7±0.615.9±0.7±0.615.9±0.7±0.615.9±0.7±0.6 AUBERT 07T BABR Dalitz �t II, 11k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •12.3±2.2 1 CAWLFIELD 06A CLEO Dalitz �t, 627 ± 30 evts1The error on this CAWLFIELD 06A result is statisti
al only.

�((K+π0)S−waveK−)/�(K+K−π0) �186/�183�((K+π0)S−waveK−)/�(K+K−π0) �186/�183�((K+π0)S−waveK−)/�(K+K−π0) �186/�183�((K+π0)S−waveK−)/�(K+K−π0) �186/�183This is the \�t fra
tion" from the Dalitz-plot analysis with interferen
e.VALUE (units 10−2) DOCUMENT ID TECN COMMENT71.1±3.7±1.971.1±3.7±1.971.1±3.7±1.971.1±3.7±1.9 1 AUBERT 07T BABR Dalitz �t II, 11k evts1The only major di�eren
e between �ts I and II in the AUBERT 07T analysis is in thismode, where the �t-I fra
tion is (16.3 ± 3.4 ± 2.1)%.�((K−π0)S−waveK+)/�(K+K−π0) �187/�183�((K−π0)S−waveK+)/�(K+K−π0) �187/�183�((K−π0)S−waveK+)/�(K+K−π0) �187/�183�((K−π0)S−waveK+)/�(K+K−π0) �187/�183This is the \�t fra
tion" from the Dalitz-plot analysis with interferen
e.VALUE (units 10−2) DOCUMENT ID TECN COMMENT3.9±0.9±1.03.9±0.9±1.03.9±0.9±1.03.9±0.9±1.0 AUBERT 07T BABR Dalitz �t II, 11k evts�(f0(980)π0, f0 → K+K−)/�(K+K−π0) �188/�183�(f0(980)π0, f0 → K+K−)/�(K+K−π0) �188/�183�(f0(980)π0, f0 → K+K−)/�(K+K−π0) �188/�183�(f0(980)π0, f0 → K+K−)/�(K+K−π0) �188/�183This is the \�t fra
tion" from the Dalitz-plot analysis with interferen
e.VALUE (units 10−2) DOCUMENT ID TECN COMMENT10.5±1.1±1.210.5±1.1±1.210.5±1.1±1.210.5±1.1±1.2 1 AUBERT 07T BABR Dalitz �t II, 11k evts1When AUBERT 07T repla
e the f0(980)π0 mode with a0(980)π0, the �t fra
tion is anegligibly di�erent (11.0 ± 1.5 ± 1.2)%.�(

φπ0, φ→ K+K−)/�(K+K−π0) �189/�183�(

φπ0, φ→ K+K−)/�(K+K−π0) �189/�183�(

φπ0, φ→ K+K−)/�(K+K−π0) �189/�183�(

φπ0, φ→ K+K−)/�(K+K−π0) �189/�183This is the \�t fra
tion" from the Dalitz-plot analysis with interferen
e.VALUE (units 10−2) DOCUMENT ID TECN COMMENT19.4±0.6±0.519.4±0.6±0.519.4±0.6±0.519.4±0.6±0.5 AUBERT 07T BABR Dalitz �t II, 11k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •14.9±1.6 1 CAWLFIELD 06A CLEO Dalitz �t, 627 ± 30 evts1The error on this CAWLFIELD 06A result is statisti
al only.�(K+K−π0 nonresonant)/�(K+K−π0) �190/�183�(K+K−π0 nonresonant)/�(K+K−π0) �190/�183�(K+K−π0 nonresonant)/�(K+K−π0) �190/�183�(K+K−π0 nonresonant)/�(K+K−π0) �190/�183This is the \�t fra
tion" from the Dalitz-plot analysis with interferen
e.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.360±0.037 1 CAWLFIELD 06A CLEO Dalitz �t, 627 ± 30 evts1The error is statisti
al only. CAWLFIELD 06A also �ts the Dalitz plot repla
ing this 
atnonresonant ba
kground with broad S−wave κ± → K±π0 resonan
es. There is nosigni�
ant improvement in the �t, and K∗±K∓ and φπ0 results are not mu
h 
hanged.�(2K0S π0)/�total �191/��(2K0S π0)/�total �191/��(2K0S π0)/�total �191/��(2K0S π0)/�total �191/�VALUE DOCUMENT ID TECN COMMENT
<0.00059<0.00059<0.00059<0.00059 ASNER 96B CLE2 e+ e− ≈ �(4S)�(

φπ0)/�(K+K−) �213/�177�(

φπ0)/�(K+K−) �213/�177�(

φπ0)/�(K+K−) �213/�177�(

φπ0)/�(K+K−) �213/�177VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.194±0.006±0.009 1254 TAJIMA 04 BELL e+ e− at �(4S)�(

φη
)/�(K+K−) �214/�177�(

φη
)/�(K+K−) �214/�177�(

φη
)/�(K+K−) �214/�177�(

φη
)/�(K+K−) �214/�177VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.59±1.14±0.183.59±1.14±0.183.59±1.14±0.183.59±1.14±0.18 31 TAJIMA 04 BELL e+ e− at �(4S)�(

φω
)/�total �215/��(

φω
)/�total �215/��(

φω
)/�total �215/��(

φω
)/�total �215/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.0021<0.0021<0.0021<0.0021 90 ALBRECHT 94I ARG e+ e−≈ 10 GeV�(K+K−π+π−)/�(K−2π+π−) �192/�67�(K+K−π+π−)/�(K−2π+π−) �192/�67�(K+K−π+π−)/�(K−2π+π−) �192/�67�(K+K−π+π−)/�(K−2π+π−) �192/�67VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.00±0.13 OUR AVERAGE3.00±0.13 OUR AVERAGE3.00±0.13 OUR AVERAGE3.00±0.13 OUR AVERAGE2.95±0.11±0.08 2669 ± 101 1 LINK 05G FOCS γBe, Eγ ≈ 180 GeV3.13±0.37±0.36 136 ± 15 AITALA 98D E791 π− nu
leus, 500 GeV3.5 ±0.4 ±0.2 244 ± 26 FRABETTI 95C E687 γBe, Eγ ≈ 200 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.4 ±1.8 ±0.5 19 ± 8 ABLIKIM 05F BES e+ e− ≈ ψ(3770)4.1 ±0.7 ±0.5 114 ± 20 ALBRECHT 94I ARG e+ e−≈ 10 GeV3.14±1.0 89 ± 29 AMMAR 91 CLEO e+ e− ≈ 10.5 GeV2.8 +0.8

−0.7 ANJOS 91 E691 γBe 80{240 GeV1LINK 05G uses a smaller, 
leaner subset of 1279 ± 48 events for the amplitude analysisthat gives the results in the next data blo
ks.�(

φ(π+π−)S−wave, φ→ K+K−)/�(K+K−π+π−) �193/�192�(

φ(π+π−)S−wave, φ→ K+K−)/�(K+K−π+π−) �193/�192�(

φ(π+π−)S−wave, φ→ K+K−)/�(K+K−π+π−) �193/�192�(

φ(π+π−)S−wave, φ→ K+K−)/�(K+K−π+π−) �193/�192This is the fra
tion from a 
oherent amplitude analysis.VALUE (%) DOCUMENT ID TECN COMMENT10.3±1.0±0.810.3±1.0±0.810.3±1.0±0.810.3±1.0±0.8 ARTUSO 12 CLEO Fitting 2959 evts.
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 ±1 LINK 05G FOCS Fits 1279 ± 48 evts.�((φρ0)S−wave, φ→ K+K−)/�(K+K−π+π−) �194/�192�((φρ0)S−wave, φ→ K+K−)/�(K+K−π+π−) �194/�192�((φρ0)S−wave, φ→ K+K−)/�(K+K−π+π−) �194/�192�((φρ0)S−wave, φ→ K+K−)/�(K+K−π+π−) �194/�192This is the fra
tion from a 
oherent amplitude analysis.VALUE (%) DOCUMENT ID TECN COMMENT38.3±2.5±3.838.3±2.5±3.838.3±2.5±3.838.3±2.5±3.8 ARTUSO 12 CLEO Fitting 2959 evts.
• • • We do not use the following data for averages, �ts, limits, et
. • • •29 ±2 ±1 LINK 05G FOCS Fits 1279 ± 48 evts.



1085108510851085See key on page 601 MesonParti
le ListingsD0�((φρ0)D−wave, φ→ K+K−)/�(K+K−π+π−) �195/�192�((φρ0)D−wave, φ→ K+K−)/�(K+K−π+π−) �195/�192�((φρ0)D−wave, φ→ K+K−)/�(K+K−π+π−) �195/�192�((φρ0)D−wave, φ→ K+K−)/�(K+K−π+π−) �195/�192VALUE (%) DOCUMENT ID TECN COMMENT3.4±0.7±0.63.4±0.7±0.63.4±0.7±0.63.4±0.7±0.6 ARTUSO 12 CLEO Fitting 2959 evts.�((K∗0K∗0)S−wave, K∗0 → K±π∓)/�(K+K−π+π−) �196/�192�((K∗0K∗0)S−wave, K∗0 → K±π∓)/�(K+K−π+π−) �196/�192�((K∗0K∗0)S−wave, K∗0 → K±π∓)/�(K+K−π+π−) �196/�192�((K∗0K∗0)S−wave, K∗0 → K±π∓)/�(K+K−π+π−) �196/�192VALUE (%) DOCUMENT ID TECN COMMENT6.1±0.8±0.96.1±0.8±0.96.1±0.8±0.96.1±0.8±0.9 ARTUSO 12 CLEO Fitting 2959 evts.�((K−π+)P−wave, (K+π−)S−wave, )/�(K+K−π+π−) �197/�192�((K−π+)P−wave, (K+π−)S−wave, )/�(K+K−π+π−) �197/�192�((K−π+)P−wave, (K+π−)S−wave, )/�(K+K−π+π−) �197/�192�((K−π+)P−wave, (K+π−)S−wave, )/�(K+K−π+π−) �197/�192VALUE (%) DOCUMENT ID TECN COMMENT10.9±1.2±1.710.9±1.2±1.710.9±1.2±1.710.9±1.2±1.7 ARTUSO 12 CLEO Fitting 2959 evts.�(K1(1270)+K−, K1(1270)+ → K∗0π+)/�(K+K−π+π−) �198/�192�(K1(1270)+K−, K1(1270)+ → K∗0π+)/�(K+K−π+π−) �198/�192�(K1(1270)+K−, K1(1270)+ → K∗0π+)/�(K+K−π+π−) �198/�192�(K1(1270)+K−, K1(1270)+ → K∗0π+)/�(K+K−π+π−) �198/�192VALUE (%) DOCUMENT ID TECN COMMENT7.3±0.8±1.97.3±0.8±1.97.3±0.8±1.97.3±0.8±1.9 ARTUSO 12 CLEO Fitting 2959 evts.�(K1(1270)+K−, K1(1270)+ → ρ0K+)/�(K+K−π+π−) �199/�192�(K1(1270)+K−, K1(1270)+ → ρ0K+)/�(K+K−π+π−) �199/�192�(K1(1270)+K−, K1(1270)+ → ρ0K+)/�(K+K−π+π−) �199/�192�(K1(1270)+K−, K1(1270)+ → ρ0K+)/�(K+K−π+π−) �199/�192VALUE (%) DOCUMENT ID TECN COMMENT4.7±0.7±0.84.7±0.7±0.84.7±0.7±0.84.7±0.7±0.8 ARTUSO 12 CLEO Fitting 2959 evts.�(K1(1270)−K+, K1(1270)− → K∗0π−)/�(K+K−π+π−) �200/�192�(K1(1270)−K+, K1(1270)− → K∗0π−)/�(K+K−π+π−) �200/�192�(K1(1270)−K+, K1(1270)− → K∗0π−)/�(K+K−π+π−) �200/�192�(K1(1270)−K+, K1(1270)− → K∗0π−)/�(K+K−π+π−) �200/�192VALUE (%) DOCUMENT ID TECN COMMENT0.9±0.3±0.40.9±0.3±0.40.9±0.3±0.40.9±0.3±0.4 ARTUSO 12 CLEO Fitting 2959 evts.�(K1(1270)−K+, K1(1270)− → ρ0K−)/�(K+K−π+π−) �201/�192�(K1(1270)−K+, K1(1270)− → ρ0K−)/�(K+K−π+π−) �201/�192�(K1(1270)−K+, K1(1270)− → ρ0K−)/�(K+K−π+π−) �201/�192�(K1(1270)−K+, K1(1270)− → ρ0K−)/�(K+K−π+π−) �201/�192VALUE (%) DOCUMENT ID TECN COMMENT6.0±0.8±0.66.0±0.8±0.66.0±0.8±0.66.0±0.8±0.6 ARTUSO 12 CLEO Fitting 2959 evts.�(K∗(1410)+K−, K∗(1410)+ → K∗0π+)/�(K+K−π+π−) �202/�192�(K∗(1410)+K−, K∗(1410)+ → K∗0π+)/�(K+K−π+π−) �202/�192�(K∗(1410)+K−, K∗(1410)+ → K∗0π+)/�(K+K−π+π−) �202/�192�(K∗(1410)+K−, K∗(1410)+ → K∗0π+)/�(K+K−π+π−) �202/�192VALUE (%) DOCUMENT ID TECN COMMENT4.2±0.7±0.84.2±0.7±0.84.2±0.7±0.84.2±0.7±0.8 ARTUSO 12 CLEO Fitting 2959 evts.�(K∗(1410)−K+, K∗(1410)− → K∗0π−)/�(K+K−π+π−) �203/�192�(K∗(1410)−K+, K∗(1410)− → K∗0π−)/�(K+K−π+π−) �203/�192�(K∗(1410)−K+, K∗(1410)− → K∗0π−)/�(K+K−π+π−) �203/�192�(K∗(1410)−K+, K∗(1410)− → K∗0π−)/�(K+K−π+π−) �203/�192VALUE (%) DOCUMENT ID TECN COMMENT4.7±0.7±0.74.7±0.7±0.74.7±0.7±0.74.7±0.7±0.7 ARTUSO 12 CLEO Fitting 2959 evts.�(K+K−ρ0 3-body)/�(K+K−π+π−) �204/�192�(K+K−ρ0 3-body)/�(K+K−π+π−) �204/�192�(K+K−ρ0 3-body)/�(K+K−π+π−) �204/�192�(K+K−ρ0 3-body)/�(K+K−π+π−) �204/�192This is the fra
tion from a 
oherent amplitude analysis.VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2±2±2 LINK 05G FOCS Fits 1279 ± 48 evts.�(f0(980)π+π− , f0 → K+K−)/�(K+K−π+π−) �205/�192�(f0(980)π+π− , f0 → K+K−)/�(K+K−π+π−) �205/�192�(f0(980)π+π− , f0 → K+K−)/�(K+K−π+π−) �205/�192�(f0(980)π+π− , f0 → K+K−)/�(K+K−π+π−) �205/�192This is the fra
tion from a 
oherent amplitude analysis.VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •15±3±2 LINK 05G FOCS Fits 1279 ± 48 evts.�(K∗(892)0K∓π±3-body,K∗0 → K±π∓)/�(K+K−π+π−) �206/�192�(K∗(892)0K∓π±3-body,K∗0 → K±π∓)/�(K+K−π+π−) �206/�192�(K∗(892)0K∓π±3-body,K∗0 → K±π∓)/�(K+K−π+π−) �206/�192�(K∗(892)0K∓π±3-body,K∗0 → K±π∓)/�(K+K−π+π−) �206/�192This is the fra
tion from a 
oherent amplitude analysis.VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •11±2±1 LINK 05G FOCS Fits 1279 ± 48 evts.�(K∗(892)0K∗(892)0 ,K∗0 → K±π∓ )/�(K+K−π+π−) �207/�192�(K∗(892)0K∗(892)0 ,K∗0 → K±π∓ )/�(K+K−π+π−) �207/�192�(K∗(892)0K∗(892)0 ,K∗0 → K±π∓ )/�(K+K−π+π−) �207/�192�(K∗(892)0K∗(892)0 ,K∗0 → K±π∓ )/�(K+K−π+π−) �207/�192This is the fra
tion from a 
oherent amplitude analysis.VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3±2±1 LINK 05G FOCS Fits 1279 ± 48 evts.�(K1(1270)±K∓ ,K1(1270)± → K±π+π−)/�(K+K−π+π−) �208/�192�(K1(1270)±K∓ ,K1(1270)± → K±π+π−)/�(K+K−π+π−) �208/�192�(K1(1270)±K∓ ,K1(1270)± → K±π+π−)/�(K+K−π+π−) �208/�192�(K1(1270)±K∓ ,K1(1270)± → K±π+π−)/�(K+K−π+π−) �208/�192This is the fra
tion from a 
oherent amplitude analysis.VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •33±6±4 1 LINK 05G FOCS Fits 1279 ± 48 evts.1This LINK 05G value in
ludes K1(1270)± → ρ0K±, → K∗0(1430)0π±, andK∗(892)0π±.�(K1(1400)±K∓ ,K1(1400)± → K±π+π−)/�(K+K−π+π−) �209/�192�(K1(1400)±K∓ ,K1(1400)± → K±π+π−)/�(K+K−π+π−) �209/�192�(K1(1400)±K∓ ,K1(1400)± → K±π+π−)/�(K+K−π+π−) �209/�192�(K1(1400)±K∓ ,K1(1400)± → K±π+π−)/�(K+K−π+π−) �209/�192This is the fra
tion from a 
oherent amplitude analysis.VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •22±3±4 LINK 05G FOCS Fits 1279 ± 48 evts.�(2K0S π+π−)/�(K0S π+π−) �210/�35�(2K0S π+π−)/�(K0S π+π−) �210/�35�(2K0S π+π−)/�(K0S π+π−) �210/�35�(2K0S π+π−)/�(K0S π+π−) �210/�35VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT4.3 ±0.8 OUR AVERAGE4.3 ±0.8 OUR AVERAGE4.3 ±0.8 OUR AVERAGE4.3 ±0.8 OUR AVERAGE4.16±0.70±0.42 113 ± 21 LINK 05A FOCS γ Be, Eγ ≈ 180 GeV6.2 ±2.0 ±1.6 25 ALBRECHT 94I ARG e+ e−≈ 10 GeV�(K0S K−2π+π−)/�(K0S 2π+2π−) �211/�87�(K0S K−2π+π−)/�(K0S 2π+2π−) �211/�87�(K0S K−2π+π−)/�(K0S 2π+2π−) �211/�87�(K0S K−2π+π−)/�(K0S 2π+2π−) �211/�87VALUE CL% DOCUMENT ID TECN COMMENT
<0.054<0.054<0.054<0.054 90 LINK 04D FOCS γ A, Eγ ≈ 180 GeV

�(K+K−π+π−π0)/�total �212/��(K+K−π+π−π0)/�total �212/��(K+K−π+π−π0)/�total �212/��(K+K−π+π−π0)/�total �212/�VALUE DOCUMENT ID TECN COMMENT0.0031±0.00200.0031±0.00200.0031±0.00200.0031±0.0020 1 BARLAG 92C ACCM π− Cu 230 GeV1BARLAG 92C 
omputes the bran
hing fra
tion using topologi
al normalization.Radiative modesRadiative modesRadiative modesRadiative modes�(

ρ0 γ
)/�total �216/��(

ρ0 γ
)/�total �216/��(

ρ0 γ
)/�total �216/��(

ρ0 γ
)/�total �216/�VALUE CL% DOCUMENT ID TECN

<2.4× 10−4<2.4× 10−4<2.4× 10−4<2.4× 10−4 90 ASNER 98 CLE2�(

ωγ
)/�total �217/��(

ωγ
)/�total �217/��(

ωγ
)/�total �217/��(

ωγ
)/�total �217/�VALUE CL% DOCUMENT ID TECN

<2.4× 10−4<2.4× 10−4<2.4× 10−4<2.4× 10−4 90 ASNER 98 CLE2�(

φγ
)/�(K+K−) �218/�177�(

φγ
)/�(K+K−) �218/�177�(

φγ
)/�(K+K−) �218/�177�(

φγ
)/�(K+K−) �218/�177VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT6.8 ±0.9 OUR FIT6.8 ±0.9 OUR FIT6.8 ±0.9 OUR FIT6.8 ±0.9 OUR FIT6.31+1.70

−1.48+0.30
−0.366.31+1.70

−1.48+0.30
−0.366.31+1.70

−1.48+0.30
−0.366.31+1.70

−1.48+0.30
−0.36 28 TAJIMA 04 BELL e+ e− at �(4S)�(

φγ
)/�(K−π+) �218/�31�(

φγ
)/�(K−π+) �218/�31�(

φγ
)/�(K−π+) �218/�31�(

φγ
)/�(K−π+) �218/�31VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.0 ±0.9 OUR FIT7.0 ±0.9 OUR FIT7.0 ±0.9 OUR FIT7.0 ±0.9 OUR FIT7.15±0.78±0.697.15±0.78±0.697.15±0.78±0.697.15±0.78±0.69 243 ± 25 AUBERT 08AZ BABR e+ e−≈ 10.6 GeV�(K∗(892)0 γ

)/�(K−π+) �219/�31�(K∗(892)0 γ
)/�(K−π+) �219/�31�(K∗(892)0 γ
)/�(K−π+) �219/�31�(K∗(892)0 γ
)/�(K−π+) �219/�31VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT8.43±0.51±0.708.43±0.51±0.708.43±0.51±0.708.43±0.51±0.70 2286± 113 AUBERT 08AZ BABR e+ e−≈ 10.6 GeVDoubly Cabibbo-suppressed / Mixing modesDoubly Cabibbo-suppressed / Mixing modesDoubly Cabibbo-suppressed / Mixing modesDoubly Cabibbo-suppressed / Mixing modes�(K+ ℓ−νℓ viaD0)/�(K− ℓ+νℓ

) �220/�17�(K+ ℓ−νℓ viaD0)/�(K− ℓ+νℓ

) �220/�17�(K+ ℓ−νℓ viaD0)/�(K− ℓ+νℓ

) �220/�17�(K+ ℓ−νℓ viaD0)/�(K− ℓ+νℓ

) �220/�17This is a limit on RM without the 
ompli
ations of possible doubly Cabibbo-suppressedde
ays that o

ur when using hadroni
 modes. For the limits on ∣

∣m1 − m2∣

∣ and(�1 − �2)/� that 
ome from the best mixing limit, see near the beginning of theseD0 Listings.VALUE CL% DOCUMENT ID TECN COMMENT
< 6.1× 10−4< 6.1× 10−4< 6.1× 10−4< 6.1× 10−4 90 1 BITENC 08 BELL e+ e−, 10.58 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<50 × 10−4 90 2 AITALA 96C E791 π− nu
leus, 500 GeV1The BITENC 08 right-sign sample in
ludes about 15% of D0 → K−π0 ℓ+ νℓ and otherde
ays.2AITALA 96C uses D∗+ → D0π+ (and 
harge 
onjugate) de
ays to identify the 
harmat produ
tion and D0 → K− ℓ+ νℓ (and 
harge 
onjugate) de
ays to identify the 
harmat de
ay.�(K+orK∗(892)+ e−νe viaD0)/[�(K− e+ νe)+ �(K∗(892)− e+ νe)]�221/(�18+�20)�(K+orK∗(892)+ e−νe viaD0)/[�(K− e+ νe)+ �(K∗(892)− e+ νe)]�221/(�18+�20)�(K+orK∗(892)+ e−νe viaD0)/[�(K− e+ νe)+ �(K∗(892)− e+ νe)]�221/(�18+�20)�(K+orK∗(892)+ e−νe viaD0)/[�(K− e+ νe)+ �(K∗(892)− e+ νe)]�221/(�18+�20)This is a limit on RM without the 
ompli
ations of possible doubly Cabibbo-suppressedde
ays that o

ur when using hadroni
 modes. The experiments use D∗+ → D0π+(and 
harge 
onjugate) de
ays to identify the 
harm at produ
tion and the 
harge ofthe e to identify the 
harm at de
ay. These limits do not allow CP violation. For thelimits on ∣

∣m1 − m2∣

∣ and (�1 − �2)/� that 
ome from the best mixing limit, see nearthe beginning of these D0 Listings.VALUE CL% DOCUMENT ID TECN COMMENT
<0.001<0.001<0.001<0.001 90 BITENC 05 BELL e+ e− ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.0013 <R< +0.0012 90 AUBERT 07AB BABR e+ e− ≈ 10.58 GeV
<0.0078 90 CAWLFIELD 05 CLEO e+ e− ≈ 10.6 GeV
<0.0042 90 AUBERT,B 04Q BABR See AUBERT 07AB�(K+π−)/�(K−π+) �222/�31�(K+π−)/�(K−π+) �222/�31�(K+π−)/�(K−π+) �222/�31�(K+π−)/�(K−π+) �222/�31This is R, the time-integrated wrong-sign rate 
ompared to the right-sign rate. Seethe note on \D0-D0 Mixing," near the start of the D0 Listings.The experiments here use the 
harge of the pion in D∗(2010)± → (D0 or D0) π±de
ay to tell whether a D0 or a D0 was born. The D0 → K+π− de
ay 
ano

ur dire
tly by doubly Cabibbo-suppressed (DCS) de
ay, or indire
tly by D0 → D0mixing followed by D0 → K+π− de
ay. Some of the experiments 
an use the de
ay-time information to disentangle the two me
hanisms. Here, we list the experimentalbran
hing ratio, whi
h if there is no mixing is the DCS ratio. See the next data blo
kfor values of the DCS ratio RD , and the following data blo
k for limits on the mixingratio RM . See the se
tion on CP-violating asymmetries near the end of this D0 Listingfor values of AD , and the note on \D0-D0 Mixing" for limits on x' and y'.Some early limits have been omitted from this Listing; see our 1998 edition (TheEuropean Physi
al Journal C3C3C3C3 1 (1998)) and our 2006 edition (Journal of Physi
s G33G33G33G331 (2006)).VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.79±0.18 OUR FIT3.79±0.18 OUR FIT3.79±0.18 OUR FIT3.79±0.18 OUR FIT Error in
ludes s
ale fa
tor of 3.3.3.79±0.18 OUR AVERAGE3.79±0.18 OUR AVERAGE3.79±0.18 OUR AVERAGE3.79±0.18 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.3. See the ideogram below.4.15±0.10 12.7±0.3k 1 AALTONEN 08E CDF pp, √s = 1.96 TeV3.53±0.08±0.04 4030 ± 90 2 AUBERT 07W BABR e+ e− ≈ 10.6 GeV3.77±0.08±0.05 4024 ± 88 1 ZHANG 06 BELL e+ e−



1086108610861086Meson Parti
le ListingsD0
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.05±0.21±0.11 2.0 ± 0.1k 3 ABULENCIA 06X CDF See AALTONEN 08E3.81±0.17+0.08

−0.16 845 ± 40 2 LI 05A BELL See ZHANG 064.29+0.63
−0.61±0.27 234 4 LINK 05H FOCS γ nu
leus3.57±0.22±0.27 5 AUBERT 03Z BABR See AUBERT 07W4.04±0.85±0.25 149 6 LINK 01 FOCS γ nu
leus3.32+0.63
−0.65±0.40 45 1 GODANG 00 CLE2 e+ e−6.8 +3.4
−3.3 ±0.7 34 2 AITALA 98 E791 π− nu
l., 500 GeV1GODANG 00, ZHANG 06, and AALTONEN 08E allow CP violation.2AITALA 98, LI 05A, and AUBERT 07W assume no CP violation.3This ABULENCIA 06X result assumes no mixing.4This LINK 05H result assumes no mixing but allows CP violation. If neither mixing norCP violation is allowed, R = (4.29 ± 0.63 ± 0.28)× 10−3.5This AUBERT 03Z result allows CP violation. If CP violation is not allowed, R =0.00359 ± 0.00020 ± 0.00027.6This LINK 01 result assumes no mixing or CP violation.

WEIGHTED AVERAGE
3.79±0.18 (Error scaled by 3.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ZHANG 06 BELL 0.1
AUBERT 07W BABR 8.7
AALTONEN 08E CDF 12.7

χ2

      21.5
(Confidence Level < 0.0001)

3 3.5 4 4.5 5 5.5�(K+π−
)/�(K−π+) (units 10−3)�(K+π− via DCS)/�(K−π+) �223/�31�(K+π− via DCS)/�(K−π+) �223/�31�(K+π− via DCS)/�(K−π+) �223/�31�(K+π− via DCS)/�(K−π+) �223/�31This is RD , the doubly Cabibbo-suppressed ratio when mixing is allowed.VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT3.37± 0.21 OUR AVERAGE3.37± 0.21 OUR AVERAGE3.37± 0.21 OUR AVERAGE3.37± 0.21 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogram below.3.04± 0.55 12.7±0.3k AALTONEN 08E CDF pp, √s =1.96 TeV3.03± 0.16±0.10 4030 ± 90 1 AUBERT 07W BABR e+ e− ≈ 10.6 GeV3.64± 0.17 4024 ± 88 2 ZHANG 06 BELL e+ e−5.17+ 1.47

− 1.58±0.76 234 3 LINK 05H FOCS γ nu
leus4.8 ± 1.2 ±0.4 45 4 GODANG 00 CLE2 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.87± 0.37 845 ± 40 LI 05A BELL See ZHANG 062.3 < RD < 5.2 95 5 AUBERT 03Z BABR See AUBERT 07W9.0 +12.0

−10.9 ±4.4 34 6 AITALA 98 E791 π− nu
l., 500 GeV
WEIGHTED AVERAGE
3.37±0.21 (Error scaled by 1.8)

GODANG 00 CLE2
LINK 05H FOCS
ZHANG 06 BELL 2.5
AUBERT 07W BABR 3.3
AALTONEN 08E CDF 0.4

χ2

       6.1
(Confidence Level = 0.046)

1 2 3 4 5 6 7�(K+π− via DCS)/�(K−π+) (units 10−3)

1This AUBERT 07W result is the same whether or not CP violation is allowed.2This ZHANG 06 assumes no CP violation.3This LINK 05H result allows CP violation. Allowing mixing but not CP violation, RD =(3.81+1.67
−1.63 ± 0.92)× 10−3.4This GODANG 00 result allows CP violation.5This AUBERT 03Z result allows CP violation. If only mixing is allowed, the 95% 
on�-den
e level interval is (2.4 < RD < 4.9)× 10−3.6This AITALA 98 result assumes no CP violation.�(K+π− viaD0)/�(K−π+) �224/�31�(K+π− viaD0)/�(K−π+) �224/�31�(K+π− viaD0)/�(K−π+) �224/�31�(K+π− viaD0)/�(K−π+) �224/�31This is RM in the note on \D0-D0 Mixing" near the start of the D0 Listings. Theexperiments here (1) use the 
harge of the pion in D∗(2010)± → (D0 or D0) π±de
ay to tell whether a D0 or a D0 was born; and (2) use the de
ay-time distributionto disentangle doubly Cabibbo-suppressed de
ay and mixing. For the limits on ∣

∣m1 −m2∣

∣ and (�1 − �2)/� that 
ome from the best mixing limit, see near the beginning ofthese D0 Listings.VALUE CL% DOCUMENT ID TECN COMMENT
<0.00040<0.00040<0.00040<0.00040 95 1 ZHANG 06 BELL e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.00046 95 2 LI 05A BELL See ZHANG 06
<0.0063 95 3 LINK 05H FOCS γ nu
leus
<0.0013 95 4 AUBERT 03Z BABR e+ e−, 10.6 GeV
<0.00041 95 5 GODANG 00 CLE2 e+ e−
<0.0092 95 6 BARATE 98W ALEP e+ e− at Z0
<0.005 90 7 ANJOS 88C E691 Photoprodu
tion1This ZHANG 06 result allows CP violation, but the result does not 
hange if CP violationis not allowed.2This LI 05A result allows CP violation. The limit be
omes < 0.00042 (95% CL) if CPviolation is not allowed.3 LINK 05H obtains the same result whether or not CP violation is allowed.4This AUBERT 03Z result allows CP violation and assumes that the strong phase betweenD0 → K+π− and D0 → K+π− is small, and limits only D0 → D0 transitions viao�-shell intermediate states. The limit on transitions via on-shell intermediate states is0.0016.5This GODANG 00 result allows CP violation and assumes that the strong phase betweenD0 → K+π− and D0 → K+π− is small, and limits only D0 → D0 transitions viao�-shell intermediate states. The limit on transitions via on-shell intermediate states is0.0017.6This BARATE 98W result assumes no interferen
e between the DCS and mixing ampli-tudes (y' = 0 in the note on \D0-D0 Mixing" near the start of the D0 Listings). Wheninterferen
e is allowed, the limit degrades to 0.036 (95%CL).7This ANJOS 88C result assumes no interferen
e between the DCS and mixing amplitudes(y' = 0 in the note on \D0-D0 Mixing" near the start of the D0 Listings). Wheninterferen
e is allowed, the limit degrades to 0.019.�(K0S π+π− inD0 → D0)/�(K0S π+π−) �225/�35�(K0S π+π− inD0 → D0)/�(K0S π+π−) �225/�35�(K0S π+π− inD0 → D0)/�(K0S π+π−) �225/�35�(K0S π+π− inD0 → D0)/�(K0S π+π−) �225/�35This is RM in the note on \D0-D0 Mixing" near the start of the D0 Listings. Theexperiments here (1) use the 
harge of the pion in D∗(2010)± → (D0 or D0) π±de
ay to tell whether a D0 or a D0 was born; and (2) use the de
ay-time distributionto disentangle doubly Cabibbo-suppressed de
ay and mixing. For the limits on ∣

∣m1 −m2∣

∣ and (�1 − �2)/� that 
ome from the best mixing limit, see near the beginning ofthese D0 Listings.VALUE CL% DOCUMENT ID TECN COMMENT
<0.0063<0.0063<0.0063<0.0063 95 1 ASNER 05 CLEO e+ e− ≈ 10 GeV1This ASNER 05 limit allows CP violation. If CP violation is not allowed, the limit is0.0042 at 95% CL.�(K+π−π0)/�(K−π+π0) �229/�50�(K+π−π0)/�(K−π+π0) �229/�50�(K+π−π0)/�(K−π+π0) �229/�50�(K+π−π0)/�(K−π+π0) �229/�50The experiments here use the 
harge of the pion in D∗(2010)± → (D0 or D0) π±de
ay to tell whether a D0 or a D0 was born. The D0 → K+π−π0 de
ay 
ano

ur dire
tly by doubly Cabibbo-suppressed (DCS) de
ay, or indire
tly by D0 → D0mixing followed by D0 → K+π−π0 de
ay.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.20±0.10 OUR AVERAGE2.20±0.10 OUR AVERAGE2.20±0.10 OUR AVERAGE2.20±0.10 OUR AVERAGE2.14±0.08±0.08 763 ± 51 1 AUBERT,B 06N BABR e+ e− ≈ �(4S)2.29±0.15+0.13

−0.09 1978 ± 104 TIAN 05 BELL e+ e− ≈ �(4S)4.3 +1.1
−1.0 ±0.7 38 BRANDENB... 01 CLE2 e+ e− ≈ �(4S)1This AUBERT,B 06N result assumes no mixing.�(K+π−π0 viaD0)/�(K−π+π0) �230/�50�(K+π−π0 viaD0)/�(K−π+π0) �230/�50�(K+π−π0 viaD0)/�(K−π+π0) �230/�50�(K+π−π0 viaD0)/�(K−π+π0) �230/�50This is RM in the note on \D0-D0 Mixing" near the start of the D0 Listings. Theexperiments here (1) use the 
harge of the pion in D∗(2010)± → (D0 or D0) π±de
ay to tell whether a D0 or a D0 was born; and (2) use the de
ay-time distributionto disentangle doubly Cabibbo-suppressed de
ay and mixing. For the limits on ∣

∣m1 −m2∣

∣ and (�1 − �2)/� that 
ome from the best mixing limit, see near the beginning ofthese D0 Listings.VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT5.25+0.25
−0.31±0.125.25+0.25
−0.31±0.125.25+0.25
−0.31±0.125.25+0.25
−0.31±0.12 AUBERT 09AN BABR e+ e− at 10.58 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.54 95 1 AUBERT,B 06N BABR e+ e− ≈ �(4S)1This AUBERT,B 06N limit assumes no CP violation. The measured value 
orrespond-ing to the limit is (2.3+1.8

−1.4 ± 0.4) × 10−4. If CP violation is allowed, this be
omes(1.0+2.2
−0.7 ± 0.3)× 10−4.



1087108710871087See key on page 601 MesonParti
le ListingsD0�(K+π+ 2π−)/�(K−2π+π−) �231/�67�(K+π+ 2π−)/�(K−2π+π−) �231/�67�(K+π+ 2π−)/�(K−2π+π−) �231/�67�(K+π+ 2π−)/�(K−2π+π−) �231/�67The experiments here use the 
harge of the pion in D∗(2010)± → (D0 or D0) π±de
ay to tell whether a D0 or a D0 was born. The D0 → K+π−π+π− de
ay
an o

ur dire
tly by doubly Cabibbo-suppressed (DCS) de
ay, or indire
tly by D0 →D0 mixing followed by D0 → K+π−π+π− de
ay. Some of the experiments 
anuse the de
ay-time information to disentangle the two me
hanisms. Here, we list theexperimental bran
hing ratio, whi
h if there is no mixing is the DCS ratio; in the nextdata blo
k we give the limits on the mixing ratio.Some early limits have been omitted from this Listing; see our 1998 edition (EPJ C3C3C3C31).VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT3.25±0.11 OUR AVERAGE3.25±0.11 OUR AVERAGE3.25±0.11 OUR AVERAGE3.25±0.11 OUR AVERAGE3.24±0.08±0.07 3358 ± 79 1 WHITE 13 BELL e+ e− ≈ �(4S)4.4 +1.3
−1.2 ±0.4 54 1 DYTMAN 01 CLE2 e+ e− ≈ �(4S)2.5 +3.6
−3.4 ±0.3 2 AITALA 98 E791 π− nu
l., 500 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.20±0.18+0.18
−0.13 1721 ± 75 1 TIAN 05 BELL See WHITE 13

<18 90 1 AMMAR 91 CLEO e+ e− ≈ 10.5GeV
<18 90 3 ANJOS 88C E691 Photoprodu
tion1AMMAR 91 
annot and DYTMAN 01, TIAN 05, and WHITE 13 do not distinguishbetween doubly Cabibbo-suppressed de
ay and D0-D0 mixing.2This AITALA 98 result assumes no D0-D0 mixing (RM in the note on \D0-D0 Mix-ing"). It be
omes −0.0020+0.0117

−0.0106 ± 0.0035 when mixing is allowed and de
ay-timeinformation is used to distinguish doubly Cabibbo-suppressed de
ays from mixing.3ANJOS 88C uses de
ay-time information to distinguish doubly Cabibbo-suppressed (DCS)de
ays from D0-D0 mixing. However, the result assumes no interferen
e between theDCS and mixing amplitudes (y' = 0 in the note on \D0-D0 Mixing" near the start ofthe D0 Listings). When interferen
e is allowed, the limit degrades to 0.033.�(K+π+ 2π− viaD0)/�(K−2π+π−) �232/�67�(K+π+ 2π− viaD0)/�(K−2π+π−) �232/�67�(K+π+ 2π− viaD0)/�(K−2π+π−) �232/�67�(K+π+ 2π− viaD0)/�(K−2π+π−) �232/�67This is a D0-D0 mixing limit. The experiments here (1) use the 
harge of the pion inD∗(2010)± → (D0 or D0) π± de
ay to tell whether a D0 or a D0 was born; and(2) use the de
ay-time distribution to disentangle doubly Cabibbo-suppressed de
ayand mixing. For the limits on ∣

∣mD01 − mD02∣∣ and (�D01 − �D02)/�D0 that 
ome fromthe best mixing limit, see near the beginning of these D0 Listings.VALUE CL% DOCUMENT ID TECN COMMENT
<0.005<0.005<0.005<0.005 90 1 ANJOS 88C E691 Photoprodu
tion1ANJOS 88C uses de
ay-time information to distinguish doubly Cabibbo-suppressed (DCS)de
ays from D0-D0 mixing. However, the result assumes no interferen
e between theDCS and mixing amplitudes (y' = 0 in the note on \D0-D0 Mixing" near the start ofthe D0 Listings). When interferen
e is allowed, the limit degrades to 0.007.�(K+π− or K+π+ 2π− viaD0 )/�(K−π+ or K−2π+π−) �233/�0�(K+π− or K+π+ 2π− viaD0 )/�(K−π+ or K−2π+π−) �233/�0�(K+π− or K+π+ 2π− viaD0 )/�(K−π+ or K−2π+π−) �233/�0�(K+π− or K+π+ 2π− viaD0 )/�(K−π+ or K−2π+π−) �233/�0This is a D0-D0 mixing limit. For the limits on ∣

∣mD01 − mD02∣∣ and (�D01−�D02)/�D0that 
ome from the best mixing limit, see near the beginning of these D0 Listings.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.0085 90 1 AITALA 98 E791 π− nu
leus, 500 GeV
<0.0037 90 2 ANJOS 88C E691 Photoprodu
tion1AITALA 98 uses de
ay-time information to distinguish doubly Cabibbo-suppressed de
aysfrom D0-D0 mixing. The �t allows interferen
e between the two amplitudes, and alsoallows CP violation in this term. The 
entral value obtained is 0.0039+0.0036

−0.0032 ± 0.0016.When interferen
e is disallowed, the result be
omes 0.0021 ± 0.0009 ± 0.0002.2This 
ombines results of ANJOS 88C on K+π− and K+π−π+π− (via D0) reportedin the data blo
k above (see footnotes there). It assumes no interferen
e.�(

µ− anything viaD0)/�(

µ+anything) �234/�6�(

µ− anything viaD0)/�(

µ+anything) �234/�6�(

µ− anything via D0)/�(

µ+anything) �234/�6�(

µ− anything via D0)/�(

µ+anything) �234/�6This is a D0-D0 mixing limit. See the somewhat better limits above.VALUE CL% DOCUMENT ID TECN COMMENT
<0.0056<0.0056<0.0056<0.0056 90 LOUIS 86 SPEC π−W 225 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.012 90 BENVENUTI 85 CNTR µC, 200 GeV
<0.044 90 BODEK 82 SPEC π−, pFe → D0Rare or forbidden modesRare or forbidden modesRare or forbidden modesRare or forbidden modes�(

γ γ
)/�total �235/��(

γ γ
)/�total �235/��(

γ γ
)/�total �235/��(

γ γ
)/�total �235/�D0 → γ γ is a 
avor-
hanging neutral-
urrent de
ay, forbidden in the Standard Modelat the tree level.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 2.2< 2.2< 2.2< 2.2 90 LEES 12L BABR e+ e− ≈ 10.58 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 3.8 90 ABLIKIM 15F BES3 e+ e− at 3.773GeV
<29 90 COAN 03 CLE2 e+ e− ≈ �(4S)

�(e+ e−)/�total �236/��(e+ e−)/�total �236/��(e+ e−)/�total �236/��(e+ e−)/�total �236/�A test for the �C = 1 weak neutral 
urrent. Allowed by �rst-order weak intera
tion
ombined with ele
tromagneti
 intera
tion.VALUE CL% DOCUMENT ID TECN COMMENT
<7.9 × 10−8<7.9 × 10−8<7.9 × 10−8<7.9 × 10−8 90 PETRIC 10 BELL e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.7 × 10−7 90 LEES 12Q BABR e+ e− ≈ 10.58 GeV
<1.2 × 10−6 90 AUBERT,B 04Y BABR e+ e− ≈ �(4S)
<8.19× 10−6 90 PRIPSTEIN 00 E789 p nu
leus, 800 GeV
<6.2 × 10−6 90 AITALA 99G E791 π−N 500 GeV
<1.3 × 10−5 90 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)
<1.3 × 10−4 90 ADLER 88 MRK3 e+ e− 3.77 GeV
<1.7 × 10−4 90 ALBRECHT 88G ARG e+ e− 10 GeV
<2.2 × 10−4 90 HAAS 88 CLEO e+ e− 10 GeV�(

µ+µ−)/�total �237/��(

µ+µ−)/�total �237/��(

µ+µ−)/�total �237/��(

µ+µ−)/�total �237/�A test for the �C = 1 weak neutral 
urrent. Allowed by �rst-order weak intera
tion
ombined with ele
tromagneti
 intera
tion.VALUE CL% DOCUMENT ID TECN COMMENT
<6.2 × 10−9<6.2 × 10−9<6.2 × 10−9<6.2 × 10−9 90 AAIJ 13AI LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.6{8.1× 10−7 90 1 LEES 12Q BABR e+ e− ≈ 10.58 GeV
<2.1 × 10−7 90 AALTONEN 10X CDF pp, √s = 1.96 TeV
<1.4 × 10−7 90 PETRIC 10 BELL e+ e− ≈ �(4S)
<2.0 × 10−6 90 ABT 04 HERB pA, 920 GeV
<1.3 × 10−6 90 AUBERT,B 04Y BABR e+ e− ≈ �(4S)
<2.5 × 10−6 90 ACOSTA 03F CDF See AALTONEN 10X
<1.56× 10−5 90 PRIPSTEIN 00 E789 p nu
leus, 800 GeV
<5.2 × 10−6 90 AITALA 99G E791 π−N 500 GeV
<4.1 × 10−6 90 ADAMOVICH 97 BEAT π− Cu, W 350 GeV
<4.2 × 10−6 90 ALEXOPOU... 96 E771 p Si, 800 GeV
<3.4 × 10−5 90 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)
<7.6 × 10−6 90 ADAMOVICH 95 BEAT See ADAMOVICH 97
<4.4 × 10−5 90 KODAMA 95 E653 π− emulsion 600 GeV
<3.1 × 10−5 90 2 MISHRA 94 E789 −4.1 ± 4.8 events
<7.0 × 10−5 90 ALBRECHT 88G ARG e+ e− 10 GeV
<1.1 × 10−5 90 LOUIS 86 SPEC π−W 225 GeV
<3.4 × 10−4 90 AUBERT 85 EMC Deep inelast. µ−N1 LEES 12Q gives a 2-sided range.2Here MISHRA 94 uses \the statisti
al approa
h advo
ated by the PDG." For an alternateapproa
h, giving a limit of 9× 10−6 at 90% 
on�den
e level, see the paper.�(

π0 e+ e−)/�total �238/��(

π0 e+ e−)/�total �238/��(

π0 e+ e−)/�total �238/��(

π0 e+ e−)/�total �238/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<4.5× 10−5<4.5× 10−5<4.5× 10−5<4.5× 10−5 90 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)�(

π0µ+µ−)/�total �239/��(

π0µ+µ−)/�total �239/��(

π0µ+µ−)/�total �239/��(

π0µ+µ−)/�total �239/�A test for the �C=1 weak neutral 
urrent. Allowed by higher-order ele
troweak inter-a
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<1.8× 10−4<1.8× 10−4<1.8× 10−4<1.8× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5.4× 10−4 90 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)�(

ηe+ e−)/�total �240/��(

ηe+ e−)/�total �240/��(

ηe+ e−)/�total �240/��(

ηe+ e−)/�total �240/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−4<1.1× 10−4<1.1× 10−4<1.1× 10−4 90 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)�(

ηµ+µ−)/�total �241/��(

ηµ+µ−)/�total �241/��(

ηµ+µ−)/�total �241/��(

ηµ+µ−)/�total �241/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<5.3× 10−4<5.3× 10−4<5.3× 10−4<5.3× 10−4 90 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)�(

π+π− e+ e−)/�total �242/��(

π+π− e+ e−)/�total �242/��(

π+π− e+ e−)/�total �242/��(

π+π− e+ e−)/�total �242/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<3.73× 10−4<3.73× 10−4<3.73× 10−4<3.73× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV�(

ρ0 e+ e−)/�total �243/��(

ρ0 e+ e−)/�total �243/��(

ρ0 e+ e−)/�total �243/��(

ρ0 e+ e−)/�total �243/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<1.0 × 10−4<1.0 × 10−4<1.0 × 10−4<1.0 × 10−4 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.24× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV
<4.5 × 10−4 90 HAAS 88 CLEO e+ e− 10 GeV1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The limit 
hangesto < 1.8× 10−4 using a photon pole amplitude model.
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π+π−µ+µ−)/�total �244/��(

π+π−µ+µ−)/�total �244/��(

π+π−µ+µ−)/�total �244/��(

π+π−µ+µ−)/�total �244/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<5.5× 10−7<5.5× 10−7<5.5× 10−7<5.5× 10−7 90 1 AAIJ 14B LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.0× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV1AAIJ 14B measures this bran
hing-fra
tion limit relative to the π+π−φ, φ → µ+µ−fra
tion. The above limit ex
ludes the resonant φ, ω, and ρ regions, and then �lls thosegaps with a phase-spa
e model.�(

ρ0µ+µ−)/�total �245/��(

ρ0µ+µ−)/�total �245/��(

ρ0µ+µ−)/�total �245/��(

ρ0µ+µ−)/�total �245/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<2.2× 10−5<2.2× 10−5<2.2× 10−5<2.2× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<4.9× 10−4 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)
<2.3× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV
<8.1× 10−4 90 HAAS 88 CLEO e+ e− 10 GeV1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The limit 
hangesto < 4.5× 10−4 using a photon pole amplitude model.�(

ω e+ e−)/�total �246/��(

ω e+ e−)/�total �246/��(

ω e+ e−)/�total �246/��(

ω e+ e−)/�total �246/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<1.8× 10−4<1.8× 10−4<1.8× 10−4<1.8× 10−4 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The limit 
hangesto < 2.7× 10−4 using a photon pole amplitude model.�(

ωµ+µ−)/�total �247/��(

ωµ+µ−)/�total �247/��(

ωµ+µ−)/�total �247/��(

ωµ+µ−)/�total �247/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<8.3× 10−4<8.3× 10−4<8.3× 10−4<8.3× 10−4 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The limit 
hangesto < 6.5× 10−4 using a photon pole amplitude model.�(K−K+ e+ e−)/�total �248/��(K−K+ e+ e−)/�total �248/��(K−K+ e+ e−)/�total �248/��(K−K+ e+ e−)/�total �248/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<3.15× 10−4<3.15× 10−4<3.15× 10−4<3.15× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV�(

φe+ e−)/�total �249/��(

φe+ e−)/�total �249/��(

φe+ e−)/�total �249/��(

φe+ e−)/�total �249/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<5.2× 10−5<5.2× 10−5<5.2× 10−5<5.2× 10−5 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5.9× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The limit 
hangesto < 7.6× 10−5 using a photon pole amplitude model.�(K−K+µ+µ−)/�total �250/��(K−K+µ+µ−)/�total �250/��(K−K+µ+µ−)/�total �250/��(K−K+µ+µ−)/�total �250/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<3.3× 10−5<3.3× 10−5<3.3× 10−5<3.3× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV�(

φµ+µ−)/�total �251/��(

φµ+µ−)/�total �251/��(

φµ+µ−)/�total �251/��(

φµ+µ−)/�total �251/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<3.1× 10−5<3.1× 10−5<3.1× 10−5<3.1× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<4.1× 10−4 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The limit 
hangesto < 2.4× 10−4 using a photon pole amplitude model.�(K0 e+ e−)/�total �252/��(K0 e+ e−)/�total �252/��(K0 e+ e−)/�total �252/��(K0 e+ e−)/�total �252/�Not a useful test for �C =1 weak neutral 
urrent be
ause both quarks must 
hange
avor.VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−4<1.1× 10−4<1.1× 10−4<1.1× 10−4 90 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.7× 10−3 90 ADLER 89C MRK3 e+ e− 3.77 GeV�(K0µ+µ−)/�total �253/��(K0µ+µ−)/�total �253/��(K0µ+µ−)/�total �253/��(K0µ+µ−)/�total �253/�Not a useful test for �C =1 weak neutral 
urrent be
ause both quarks must 
hange
avor.VALUE CL% DOCUMENT ID TECN COMMENT
<2.6× 10−4<2.6× 10−4<2.6× 10−4<2.6× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.7× 10−4 90 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)

�(K−π+ e+ e−)/�total �254/��(K−π+ e+ e−)/�total �254/��(K−π+ e+ e−)/�total �254/��(K−π+ e+ e−)/�total �254/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<3.85× 10−4<3.85× 10−4<3.85× 10−4<3.85× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV�(K∗(892)0 e+ e−)/�total �255/��(K∗(892)0 e+ e−)/�total �255/��(K∗(892)0 e+ e−)/�total �255/��(K∗(892)0 e+ e−)/�total �255/�Not a useful test for �C =1 weak neutral 
urrent be
ause both quarks must 
hange
avor.VALUE CL% DOCUMENT ID TECN COMMENT
<4.7× 10−5<4.7× 10−5<4.7× 10−5<4.7× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.4× 10−4 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The limit 
hangesto < 2.0× 10−4 using a photon pole amplitude model.�(K−π+µ+µ−)/�total �256/��(K−π+µ+µ−)/�total �256/��(K−π+µ+µ−)/�total �256/��(K−π+µ+µ−)/�total �256/�A test for the �C = 1 weak neutral 
urrent. Allowed by higher-order ele
troweakintera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<3.59× 10−4<3.59× 10−4<3.59× 10−4<3.59× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV�(K∗(892)0µ+µ−)/�total �257/��(K∗(892)0µ+µ−)/�total �257/��(K∗(892)0µ+µ−)/�total �257/��(K∗(892)0µ+µ−)/�total �257/�Not a useful test for �C =1 weak neutral 
urrent be
ause both quarks must 
hange
avor.VALUE CL% DOCUMENT ID TECN COMMENT
<2.4 × 10−5<2.4 × 10−5<2.4 × 10−5<2.4 × 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.18× 10−3 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The limit 
hangesto < 1.0× 10−3 using a photon pole amplitude model.�(

π+π−π0µ+µ−)/�total �258/��(

π+π−π0µ+µ−)/�total �258/��(

π+π−π0µ+µ−)/�total �258/��(

π+π−π0µ+µ−)/�total �258/�A test for the �C=1 weak neutral 
urrent. Allowed by higher-order ele
troweak inter-a
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<8.1× 10−4<8.1× 10−4<8.1× 10−4<8.1× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV�(

µ± e∓)/�total �259/��(

µ± e∓)/�total �259/��(

µ± e∓)/�total �259/��(

µ± e∓)/�total �259/�A test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
< 2.6 × 10−7< 2.6 × 10−7< 2.6 × 10−7< 2.6 × 10−7 90 PETRIC 10 BELL e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 3.3 × 10−7 90 LEES 12Q BABR e+ e− ≈ 10.58 GeV
< 8.1 × 10−7 90 AUBERT,B 04Y BABR e+ e− ≈ �(4S)
< 1.72× 10−5 90 PRIPSTEIN 00 E789 p nu
leus, 800 GeV
< 8.1 × 10−6 90 AITALA 99G E791 π−N 500 GeV
< 1.9 × 10−5 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)
< 1.0 × 10−4 90 ALBRECHT 88G ARG e+ e− 10 GeV
< 2.7 × 10−4 90 HAAS 88 CLEO e+ e− 10 GeV
< 1.2 × 10−4 90 BECKER 87C MRK3 e+ e− 3.77 GeV
< 9 × 10−4 90 PALKA 87 SILI 200 GeV πp
<21 × 10−4 90 2 RILES 87 MRK2 e+ e− 29 GeV1This is the 
orre
ted result given in the erratum to FREYBERGER 96.2RILES 87 assumes B(D → K π) = 3.0% and has produ
tion model dependen
y.�(

π0 e±µ∓)/�total �260/��(

π0 e±µ∓)/�total �260/��(

π0 e±µ∓)/�total �260/��(

π0 e±µ∓)/�total �260/�A test of lepton family number 
onservation. The value is for the sum of the two
harge states.VALUE CL% DOCUMENT ID TECN COMMENT
<8.6× 10−5<8.6× 10−5<8.6× 10−5<8.6× 10−5 90 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)�(

ηe±µ∓)/�total �261/��(

ηe±µ∓)/�total �261/��(

ηe±µ∓)/�total �261/��(

ηe±µ∓)/�total �261/�A test of lepton family number 
onservation. The value is for the sum of the two
harge states.VALUE CL% DOCUMENT ID TECN COMMENT
<1.0× 10−4<1.0× 10−4<1.0× 10−4<1.0× 10−4 90 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)�(

π+π− e±µ∓)/�total �262/��(

π+π− e±µ∓)/�total �262/��(

π+π− e±µ∓)/�total �262/��(

π+π− e±µ∓)/�total �262/�A test of lepton family-number 
onservation. The value is for the sum of the two
harge states.VALUE CL% DOCUMENT ID TECN COMMENT
<1.5× 10−5<1.5× 10−5<1.5× 10−5<1.5× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV�(

ρ0 e±µ∓)/�total �263/��(

ρ0 e±µ∓)/�total �263/��(

ρ0 e±µ∓)/�total �263/��(

ρ0 e±µ∓)/�total �263/�A test of lepton family number 
onservation. The value is for the sum of the two
harge states.VALUE CL% DOCUMENT ID TECN COMMENT
<4.9× 10−5<4.9× 10−5<4.9× 10−5<4.9× 10−5 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.6× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The limit 
hangesto < 5.0× 10−5 using a photon pole amplitude model.
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le ListingsD0�(ω e±µ∓)/�total �264/��(ω e±µ∓)/�total �264/��(ω e±µ∓)/�total �264/��(ω e±µ∓)/�total �264/�A test of lepton family number 
onservation. The value is for the sum of the two
harge states.VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−4<1.2× 10−4<1.2× 10−4<1.2× 10−4 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The same limit isobtained using a photon pole amplitude model.�(K−K+ e±µ∓)/�total �265/��(K−K+ e±µ∓)/�total �265/��(K−K+ e±µ∓)/�total �265/��(K−K+ e±µ∓)/�total �265/�A test of lepton family-number 
onservation. The value is for the sum of the two
harge states.VALUE CL% DOCUMENT ID TECN COMMENT
<1.8× 10−4<1.8× 10−4<1.8× 10−4<1.8× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV�(φe±µ∓)/�total �266/��(φe±µ∓)/�total �266/��(φe±µ∓)/�total �266/��(φe±µ∓)/�total �266/�A test of lepton family number 
onservation. The value is for the sum of the two
harge states.VALUE CL% DOCUMENT ID TECN COMMENT
<3.4× 10−5<3.4× 10−5<3.4× 10−5<3.4× 10−5 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<4.7× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The limit 
hangesto < 3.3× 10−5 using a photon pole amplitude model.�(K0 e±µ∓)/�total �267/��(K0 e±µ∓)/�total �267/��(K0 e±µ∓)/�total �267/��(K0 e±µ∓)/�total �267/�A test of lepton family number 
onservation. The value is for the sum of the two
harge states.VALUE CL% DOCUMENT ID TECN COMMENT
<1.0× 10−4<1.0× 10−4<1.0× 10−4<1.0× 10−4 90 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)�(K−π+ e±µ∓)/�total �268/��(K−π+ e±µ∓)/�total �268/��(K−π+ e±µ∓)/�total �268/��(K−π+ e±µ∓)/�total �268/�A test of lepton family-number 
onservation. The value is for the sum of the two
harge states.VALUE CL% DOCUMENT ID TECN COMMENT
<5.53× 10−4<5.53× 10−4<5.53× 10−4<5.53× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV�(K∗(892)0 e±µ∓)/�total �269/��(K∗(892)0 e±µ∓)/�total �269/��(K∗(892)0 e±µ∓)/�total �269/��(K∗(892)0 e±µ∓)/�total �269/�A test of lepton family number 
onservation. The value is for the sum of the two
harge states.VALUE CL% DOCUMENT ID TECN COMMENT
<8.3× 10−5<8.3× 10−5<8.3× 10−5<8.3× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.0× 10−4 90 1 FREYBERGER 96 CLE2 e+ e− ≈ �(4S)1This FREYBERGER 96 limit is obtained using a phase-spa
e model. The same limit isobtained using a photon pole amplitude model.�(2π−2e++ 
.
.)/�total �270/��(2π−2e++ 
.
.)/�total �270/��(2π−2e++ 
.
.)/�total �270/��(2π−2e++ 
.
.)/�total �270/�A test of lepton-number 
onservation. The value is for the sum of the two 
hargestates.VALUE CL% DOCUMENT ID TECN COMMENT
<1.12× 10−4<1.12× 10−4<1.12× 10−4<1.12× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV�(2π−2µ++ 
.
.)/�total �271/��(2π−2µ++ 
.
.)/�total �271/��(2π−2µ++ 
.
.)/�total �271/��(2π−2µ++ 
.
.)/�total �271/�A test of lepton-number 
onservation. The value is for the sum of the two 
hargestates.VALUE CL% DOCUMENT ID TECN COMMENT
<2.9× 10−5<2.9× 10−5<2.9× 10−5<2.9× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV�(K−π− 2e++ 
.
.)/�total �272/��(K−π− 2e++ 
.
.)/�total �272/��(K−π− 2e++ 
.
.)/�total �272/��(K−π− 2e++ 
.
.)/�total �272/�A test of lepton-number 
onservation. The value is for the sum of the two 
hargestates.VALUE CL% DOCUMENT ID TECN COMMENT
<2.06× 10−4<2.06× 10−4<2.06× 10−4<2.06× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV�(K−π− 2µ++ 
.
.)/�total �273/��(K−π− 2µ++ 
.
.)/�total �273/��(K−π− 2µ++ 
.
.)/�total �273/��(K−π− 2µ++ 
.
.)/�total �273/�A test of lepton-number 
onservation. The value is for the sum of the two 
hargestates.VALUE CL% DOCUMENT ID TECN COMMENT
<3.9× 10−4<3.9× 10−4<3.9× 10−4<3.9× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV�(2K−2e++ 
.
.)/�total �274/��(2K−2e++ 
.
.)/�total �274/��(2K−2e++ 
.
.)/�total �274/��(2K−2e++ 
.
.)/�total �274/�A test of lepton-number 
onservation. The value is for the sum of the two 
hargestates.VALUE CL% DOCUMENT ID TECN COMMENT
<1.52× 10−4<1.52× 10−4<1.52× 10−4<1.52× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV�(2K−2µ++ 
.
.)/�total �275/��(2K−2µ++ 
.
.)/�total �275/��(2K−2µ++ 
.
.)/�total �275/��(2K−2µ++ 
.
.)/�total �275/�A test of lepton-number 
onservation. The value is for the sum of the two 
hargestates.VALUE CL% DOCUMENT ID TECN COMMENT
<9.4× 10−5<9.4× 10−5<9.4× 10−5<9.4× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV�(π−π− e+µ++ 
.
.)/�total �276/��(π−π− e+µ++ 
.
.)/�total �276/��(π−π− e+µ++ 
.
.)/�total �276/��(π−π− e+µ++ 
.
.)/�total �276/�A test of lepton-number 
onservation. The value is for the sum of the two 
hargestates.VALUE CL% DOCUMENT ID TECN COMMENT
<7.9× 10−5<7.9× 10−5<7.9× 10−5<7.9× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV

�(K−π− e+µ++ 
.
.)/�total �277/��(K−π− e+µ++ 
.
.)/�total �277/��(K−π− e+µ++ 
.
.)/�total �277/��(K−π− e+µ++ 
.
.)/�total �277/�A test of lepton-number 
onservation. The value is for the sum of the two 
hargestates.VALUE CL% DOCUMENT ID TECN COMMENT
<2.18× 10−4<2.18× 10−4<2.18× 10−4<2.18× 10−4 90 AITALA 01C E791 π− nu
leus, 500 GeV�(2K− e+µ++ 
.
.)/�total �278/��(2K− e+µ++ 
.
.)/�total �278/��(2K− e+µ++ 
.
.)/�total �278/��(2K− e+µ++ 
.
.)/�total �278/�A test of lepton-number 
onservation. The value is for the sum of the two 
hargestates.VALUE CL% DOCUMENT ID TECN COMMENT
<5.7× 10−5<5.7× 10−5<5.7× 10−5<5.7× 10−5 90 AITALA 01C E791 π− nu
leus, 500 GeV�(pe−)/�total �279/��(pe−)/�total �279/��(pe−)/�total �279/��(pe−)/�total �279/�A test of baryon- and lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.0× 10−5<1.0× 10−5<1.0× 10−5<1.0× 10−5 90 1 RUBIN 09 CLEO e+ e− at ψ(3770)1This RUBIN 09 limit is for either D0 → pe− or D0 → pe− de
ay.�(pe+)/�total �280/��(pe+)/�total �280/��(pe+)/�total �280/��(pe+)/�total �280/�A test of baryon- and lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−5<1.1× 10−5<1.1× 10−5<1.1× 10−5 90 1 RUBIN 09 CLEO e+ e− at ψ(3770)1This RUBIN 09 limit is for either D0 → pe+ or D0 → pe+ de
ay.D0 CP-VIOLATING DECAY-RATE ASYMMETRIESD0 CP-VIOLATING DECAY-RATE ASYMMETRIESD0 CP-VIOLATING DECAY-RATE ASYMMETRIESD0 CP-VIOLATING DECAY-RATE ASYMMETRIESThis is the di�eren
e between D0 and D0 partial widths for the de
ay tostate f , divided by the sum of the widths:ACP (f ) = [�(D0 → f ) − �(D0 → f )℄ / [�(D0 → f ) + �(D0 → f )℄.ACP (K+K−) in D0, D0 → K+K−ACP (K+K−) in D0, D0 → K+K−ACP (K+K−) in D0, D0 → K+K−ACP (K+K−) in D0, D0 → K+K−VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−0.14±0.12 OUR AVERAGE−0.14±0.12 OUR AVERAGE−0.14±0.12 OUR AVERAGE−0.14±0.12 OUR AVERAGE
−0.06±0.15±0.10 1.8M 1 AAIJ 14AK LHCB Time-integrated
−0.24±0.22±0.09 476k 1 AALTONEN 12B CDF pp, √s=1.96 TeV0.00±0.34±0.13 129k 2 AUBERT 08M BABR e+ e− ≈ 10.6 GeV
−0.43±0.30±0.11 120k 3 STARIC 08 BELL e+ e− ≈ �(4S)+2.0 ±1.2 ±0.6 4 ACOSTA 05C CDF pp, √s=1.96 TeV0.0 ±2.2 ±0.8 3023 4 CSORNA 02 CLE2 e+ e− ≈ �(4S)
−0.1 ±2.2 ±1.5 3330 4 LINK 00B FOCS
−1.0 ±4.9 ±1.2 609 4 AITALA 98C E791 −0.093 <ACP <+0.073 (90% CL)1See also "D0 CP-violating asymmetry di�eren
es" at the end of the CP-violating asym-metries.2AUBERT 08M uses 
orre
ted numbers of events dire
tly, not ratios with K∓π± events.3 STARIC 08 uses D0 → K−π+ and D0 → K+π− de
ays to 
orre
t for dete
tor-indu
ed asymmetries.4AITALA 98C, LINK 00B, CSORNA 02, and ACOSTA 05C measure N(D0 →K+K−)/N(D0 → K−π+), the ratio of numbers of events observed, and similarlyfor the D0.ACP (K0S K0S ) in D0, D0 → K0S K0SACP (K0S K0S ) in D0, D0 → K0S K0SACP (K0S K0S ) in D0, D0 → K0S K0SACP (K0S K0S ) in D0, D0 → K0S K0SVALUE (%) EVTS DOCUMENT ID TECN COMMENT
− 5 ± 5 OUR AVERAGE− 5 ± 5 OUR AVERAGE− 5 ± 5 OUR AVERAGE− 5 ± 5 OUR AVERAGE
− 2.9± 5.2±2.2 630 AAIJ 15AT LHCB pp at 7, 8 TeV
−23 ±19 65 BONVICINI 01 CLE2 e+ e− ≈ 10.6 GeVACP (π+π−) in D0, D0 → π+π−ACP (π+π−) in D0, D0 → π+π−ACP (π+π−) in D0, D0 → π+π−ACP (π+π−) in D0, D0 → π+π−VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.01±0.15 OUR AVERAGE0.01±0.15 OUR AVERAGE0.01±0.15 OUR AVERAGE0.01±0.15 OUR AVERAGE
−0.20±0.19±0.10 774k 1,2 AAIJ 14AK LHCB Time-integrated0.22±0.24±0.11 215k 1 AALTONEN 12B CDF pp, √s=1.96 TeV
−0.24±0.52±0.22 63.7k 3 AUBERT 08M BABR e+ e− ≈ 10.6 GeV0.43±0.52±0.12 51k 4 STARIC 08 BELL e+ e− ≈ �(4S)1.0 ±1.3 ±0.6 5 ACOSTA 05C CDF pp, √s=1.96 TeV1.9 ±3.2 ±0.8 1136 5 CSORNA 02 CLE2 e+ e− ≈ �(4S)4.8 ±3.9 ±2.5 1177 5 LINK 00B FOCS
−4.9 ±7.8 ±3.0 343 5 AITALA 98C E791 −0.186 <ACP <+0.088 (90% CL)1See also "D0 CP-violating asymmetry di�eren
es" at the end of the CP-violating asym-metries.2AAIJ 14AK uses �ACP (ππ, K K) and ACP (K K) reported in the same paper.3AUBERT 08M uses 
orre
ted numbers of events dire
tly, not ratios with K∓π± events.4 STARIC 08 uses D0 → K−π+ and D0 → K+π− de
ays to 
orre
t for dete
tor-indu
ed asymmetries.5AITALA 98C, LINK 00B, CSORNA 02, and ACOSTA 05C measure N(D0 →

π+π−)/N(D0 → K−π+), the ratio of numbers of events observed, and similarlyfor the D0.ACP (π0π0) in D0, D0 → π0π0ACP (π0π0) in D0, D0 → π0π0ACP (π0π0) in D0, D0 → π0π0ACP (π0π0) in D0, D0 → π0π0VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.0 ±0.6 OUR AVERAGE0.0 ±0.6 OUR AVERAGE0.0 ±0.6 OUR AVERAGE0.0 ±0.6 OUR AVERAGE
−0.03±0.64±0.10 34k NISAR 14 BELL e+ e− at/near � 's0.1 ±4.8 810 BONVICINI 01 CLE2 e+ e− ≈ 10.6 GeV
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le ListingsD0ACP (π+π−π0) in D0, D0 → π+π−π0ACP (π+π−π0) in D0, D0 → π+π−π0ACP (π+π−π0) in D0, D0 → π+π−π0ACP (π+π−π0) in D0, D0 → π+π−π0VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.3 ±0.4 OUR AVERAGE0.3 ±0.4 OUR AVERAGE0.3 ±0.4 OUR AVERAGE0.3 ±0.4 OUR AVERAGE0.43±1.30 123k±490 ARINSTEIN 08 BELL e+ e− ≈ �(4S)0.31±0.41±0.17 80 ± .3k 1 AUBERT 08AO BABR e+ e− ≈ 10.6 GeV1 +9
−7 ±5 CRONIN-HEN...05 CLEO e+ e− ≈ 10 GeV1AUBERT 08AO report their result using a di�erent sign 
onvention.ACP (ρ(770)+π− → π+π−π0) in D0 → ρ+π−, D0 → ρ−π+ACP (ρ(770)+π− → π+π−π0) in D0 → ρ+π−, D0 → ρ−π+ACP (ρ(770)+π− → π+π−π0) in D0 → ρ+π−, D0 → ρ−π+ACP (ρ(770)+π− → π+π−π0) in D0 → ρ+π−, D0 → ρ−π+VALUE (%) DOCUMENT ID TECN COMMENT+1.2±0.8±0.3+1.2±0.8±0.3+1.2±0.8±0.3+1.2±0.8±0.3 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (ρ(770)0π0 → π+π−π0) in D0, D0 → ρ0π0ACP (ρ(770)0π0 → π+π−π0) in D0, D0 → ρ0π0ACP (ρ(770)0π0 → π+π−π0) in D0, D0 → ρ0π0ACP (ρ(770)0π0 → π+π−π0) in D0, D0 → ρ0π0VALUE (%) DOCUMENT ID TECN COMMENT

−3.1±2.7±1.2−3.1±2.7±1.2−3.1±2.7±1.2−3.1±2.7±1.2 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (ρ(770)−π+ → π+π−π0) in D0 → ρ−π+, D0 → ρ+π−ACP (ρ(770)−π+ → π+π−π0) in D0 → ρ−π+, D0 → ρ+π−ACP (ρ(770)−π+ → π+π−π0) in D0 → ρ−π+, D0 → ρ+π−ACP (ρ(770)−π+ → π+π−π0) in D0 → ρ−π+, D0 → ρ+π−VALUE (%) DOCUMENT ID TECN COMMENT
−1.0±1.6±0.7−1.0±1.6±0.7−1.0±1.6±0.7−1.0±1.6±0.7 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (ρ(1450)+π− → π+π−π0) in D0 → ρ(1450)+π−, D0 → 
.
.ACP (ρ(1450)+π− → π+π−π0) in D0 → ρ(1450)+π−, D0 → 
.
.ACP (ρ(1450)+π− → π+π−π0) in D0 → ρ(1450)+π−, D0 → 
.
.ACP (ρ(1450)+π− → π+π−π0) in D0 → ρ(1450)+π−, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT0±50±500±50±500±50±500±50±50 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (ρ(1450)0π0 → π+π−π0) in D0, D0 → ρ(1450)0π0ACP (ρ(1450)0π0 → π+π−π0) in D0, D0 → ρ(1450)0π0ACP (ρ(1450)0π0 → π+π−π0) in D0, D0 → ρ(1450)0π0ACP (ρ(1450)0π0 → π+π−π0) in D0, D0 → ρ(1450)0π0VALUE (%) DOCUMENT ID TECN COMMENT
−17±33±17−17±33±17−17±33±17−17±33±17 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (ρ(1450)−π+ → π+π−π0) in D0 → ρ(1450)−π+, D0 → 
.
.ACP (ρ(1450)−π+ → π+π−π0) in D0 → ρ(1450)−π+, D0 → 
.
.ACP (ρ(1450)−π+ → π+π−π0) in D0 → ρ(1450)−π+, D0 → 
.
.ACP (ρ(1450)−π+ → π+π−π0) in D0 → ρ(1450)−π+, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT+6±8±3+6±8±3+6±8±3+6±8±3 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (ρ(1700)+π− → π+π−π0) in D0 → ρ(1700)+π−, D0 → 
.
.ACP (ρ(1700)+π− → π+π−π0) in D0 → ρ(1700)+π−, D0 → 
.
.ACP (ρ(1700)+π− → π+π−π0) in D0 → ρ(1700)+π−, D0 → 
.
.ACP (ρ(1700)+π− → π+π−π0) in D0 → ρ(1700)+π−, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT
−5±13±5−5±13±5−5±13±5−5±13±5 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (ρ(1700)0π0 → π+π−π0) in D0, D0 → ρ(1700)0π0ACP (ρ(1700)0π0 → π+π−π0) in D0, D0 → ρ(1700)0π0ACP (ρ(1700)0π0 → π+π−π0) in D0, D0 → ρ(1700)0π0ACP (ρ(1700)0π0 → π+π−π0) in D0, D0 → ρ(1700)0π0VALUE (%) DOCUMENT ID TECN COMMENT+13±8±3+13±8±3+13±8±3+13±8±3 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (ρ(1700)−π+ → π+π−π0) in D0 → ρ(1700)−π+, D0 → 
.
.ACP (ρ(1700)−π+ → π+π−π0) in D0 → ρ(1700)−π+, D0 → 
.
.ACP (ρ(1700)−π+ → π+π−π0) in D0 → ρ(1700)−π+, D0 → 
.
.ACP (ρ(1700)−π+ → π+π−π0) in D0 → ρ(1700)−π+, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT+8±10±5+8±10±5+8±10±5+8±10±5 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (f0(980)π0 → π+π−π0) in D0, D0 → f0(980)π0ACP (f0(980)π0 → π+π−π0) in D0, D0 → f0(980)π0ACP (f0(980)π0 → π+π−π0) in D0, D0 → f0(980)π0ACP (f0(980)π0 → π+π−π0) in D0, D0 → f0(980)π0VALUE (%) DOCUMENT ID TECN COMMENT0±25±250±25±250±25±250±25±25 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (f0(1370)π0 → π+π−π0) in D0, D0 → f0(1370)π0ACP (f0(1370)π0 → π+π−π0) in D0, D0 → f0(1370)π0ACP (f0(1370)π0 → π+π−π0) in D0, D0 → f0(1370)π0ACP (f0(1370)π0 → π+π−π0) in D0, D0 → f0(1370)π0VALUE (%) DOCUMENT ID TECN COMMENT+25±13±13+25±13±13+25±13±13+25±13±13 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (f0(1500)π0 → π+π−π0) in D0, D0 → f0(1500)π0ACP (f0(1500)π0 → π+π−π0) in D0, D0 → f0(1500)π0ACP (f0(1500)π0 → π+π−π0) in D0, D0 → f0(1500)π0ACP (f0(1500)π0 → π+π−π0) in D0, D0 → f0(1500)π0VALUE (%) DOCUMENT ID TECN COMMENT0±13±130±13±130±13±130±13±13 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (f0(1710)π0 → π+π−π0) in D0, D0 → f0(1710)π0ACP (f0(1710)π0 → π+π−π0) in D0, D0 → f0(1710)π0ACP (f0(1710)π0 → π+π−π0) in D0, D0 → f0(1710)π0ACP (f0(1710)π0 → π+π−π0) in D0, D0 → f0(1710)π0VALUE (%) DOCUMENT ID TECN COMMENT0±17±170±17±170±17±170±17±17 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (f2(1270)π0 → π+π−π0) in D0, D0 → f2(1270)π0ACP (f2(1270)π0 → π+π−π0) in D0, D0 → f2(1270)π0ACP (f2(1270)π0 → π+π−π0) in D0, D0 → f2(1270)π0ACP (f2(1270)π0 → π+π−π0) in D0, D0 → f2(1270)π0VALUE (%) DOCUMENT ID TECN COMMENT
−4±4±4−4±4±4−4±4±4−4±4±4 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (σ(400)π0 → π+π−π0) in D0, D0 → σ(400)π0ACP (σ(400)π0 → π+π−π0) in D0, D0 → σ(400)π0ACP (σ(400)π0 → π+π−π0) in D0, D0 → σ(400)π0ACP (σ(400)π0 → π+π−π0) in D0, D0 → σ(400)π0VALUE (%) DOCUMENT ID TECN COMMENT+6±6±6+6±6±6+6±6±6+6±6±6 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (nonresonant π+π−π0) in D0, D0 → nonresonant π+π−π0ACP (nonresonant π+π−π0) in D0, D0 → nonresonant π+π−π0ACP (nonresonant π+π−π0) in D0, D0 → nonresonant π+π−π0ACP (nonresonant π+π−π0) in D0, D0 → nonresonant π+π−π0VALUE (%) DOCUMENT ID TECN COMMENT
−13±19±13−13±19±13−13±19±13−13±19±13 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (2π+2π−) in D0, D0 → 2π+2π−ACP (2π+2π−) in D0, D0 → 2π+2π−ACP (2π+2π−) in D0, D0 → 2π+2π−ACP (2π+2π−) in D0, D0 → 2π+2π−VALUE DOCUMENT ID TECNno eviden
eno eviden
eno eviden
eno eviden
e 1 AAIJ 13BR LHCB1AAIJ 13BR sear
hed for CP violation in binned phase spa
e. No eviden
e was found.ACP (K+K−π0) in D0, D0 → K+K−π0ACP (K+K−π0) in D0, D0 → K+K−π0ACP (K+K−π0) in D0, D0 → K+K−π0ACP (K+K−π0) in D0, D0 → K+K−π0VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−1.00±1.67±0.25−1.00±1.67±0.25−1.00±1.67±0.25−1.00±1.67±0.25 11 ± 0.11k AUBERT 08AO BABR e+ e− ≈ 10.6 GeV

ACP (K∗(892)+K− → K+K−π0) in D0 → K∗(892)+K−, D0 → 
.
.ACP (K∗(892)+K− → K+K−π0) in D0 → K∗(892)+K−, D0 → 
.
.ACP (K∗(892)+K− → K+K−π0) in D0 → K∗(892)+K−, D0 → 
.
.ACP (K∗(892)+K− → K+K−π0) in D0 → K∗(892)+K−, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT
−0.9±1.2±0.4−0.9±1.2±0.4−0.9±1.2±0.4−0.9±1.2±0.4 1 AUBERT 08AO BABR Table 1, −Col.5/2×Col.21AUBERT 08AO report their result using a di�erent sign 
onvention.ACP (K∗(1410)+K− → K+K−π0) in D0 → K∗(1410)+K−, D0 → 
.
.ACP (K∗(1410)+K− → K+K−π0) in D0 → K∗(1410)+K−, D0 → 
.
.ACP (K∗(1410)+K− → K+K−π0) in D0 → K∗(1410)+K−, D0 → 
.
.ACP (K∗(1410)+K− → K+K−π0) in D0 → K∗(1410)+K−, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT
−21±23±8−21±23±8−21±23±8−21±23±8 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP ((K+π0 )S−waveK− → K+K−π0) in D0 → (K+π0 )SK−, D0 →
.
.ACP ((K+π0 )S−waveK− → K+K−π0) in D0 → (K+π0 )SK−, D0 →
.
.ACP ((K+π0 )S−waveK− → K+K−π0) in D0 → (K+π0 )SK−, D0 →
.
.ACP ((K+π0 )S−waveK− → K+K−π0) in D0 → (K+π0 )SK−, D0 →
.
.VALUE (%) DOCUMENT ID TECN COMMENT+7±15±3+7±15±3+7±15±3+7±15±3 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (φ(1020)π0 → K+K−π0) in D0, D0 → φ(1020)π0ACP (φ(1020)π0 → K+K−π0) in D0, D0 → φ(1020)π0ACP (φ(1020)π0 → K+K−π0) in D0, D0 → φ(1020)π0ACP (φ(1020)π0 → K+K−π0) in D0, D0 → φ(1020)π0VALUE (%) DOCUMENT ID TECN COMMENT+1.1±2.1±0.5+1.1±2.1±0.5+1.1±2.1±0.5+1.1±2.1±0.5 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (f0(980)π0 → K+K−π0) in D0, D0 → f0(980)π0ACP (f0(980)π0 → K+K−π0) in D0, D0 → f0(980)π0ACP (f0(980)π0 → K+K−π0) in D0, D0 → f0(980)π0ACP (f0(980)π0 → K+K−π0) in D0, D0 → f0(980)π0VALUE (%) DOCUMENT ID TECN COMMENT
−3±19±1−3±19±1−3±19±1−3±19±1 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (a0(980)0π0 → K+K−π0) in D0, D0 → a0(980)0π0ACP (a0(980)0π0 → K+K−π0) in D0, D0 → a0(980)0π0ACP (a0(980)0π0 → K+K−π0) in D0, D0 → a0(980)0π0ACP (a0(980)0π0 → K+K−π0) in D0, D0 → a0(980)0π0VALUE (%) DOCUMENT ID TECN COMMENT
−5±16±2−5±16±2−5±16±2−5±16±2 1 AUBERT 08AO BABR Table 1, −Col.5/2×Col.21This AUBERT 08AO value is obtained when the a0(980)0 repla
es the f0(980) in the �t.ACP (f ′2(1525)π0 → K+K−π0) in D0, D0 → f ′2(1525)π0ACP (f ′2(1525)π0 → K+K−π0) in D0, D0 → f ′2(1525)π0ACP (f ′2(1525)π0 → K+K−π0) in D0, D0 → f ′2(1525)π0ACP (f ′2(1525)π0 → K+K−π0) in D0, D0 → f ′2(1525)π0VALUE (%) DOCUMENT ID TECN COMMENT0±50±1500±50±1500±50±1500±50±150 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (K∗(892)−K+ → K+K−π0) in D0 → K∗(892)−K+, D0 → 
.
.ACP (K∗(892)−K+ → K+K−π0) in D0 → K∗(892)−K+, D0 → 
.
.ACP (K∗(892)−K+ → K+K−π0) in D0 → K∗(892)−K+, D0 → 
.
.ACP (K∗(892)−K+ → K+K−π0) in D0 → K∗(892)−K+, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT
−5±4±1−5±4±1−5±4±1−5±4±1 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (K∗(1410)−K+ → K+K−π0) in D0 → K∗(1410)−K+, D0 → 
.
.ACP (K∗(1410)−K+ → K+K−π0) in D0 → K∗(1410)−K+, D0 → 
.
.ACP (K∗(1410)−K+ → K+K−π0) in D0 → K∗(1410)−K+, D0 → 
.
.ACP (K∗(1410)−K+ → K+K−π0) in D0 → K∗(1410)−K+, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT
−17±28±7−17±28±7−17±28±7−17±28±7 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP ((K−π0 )S−waveK+ → K+K−π0) in D0 → (K−π0 )SK+, D0 →
.
.ACP ((K−π0 )S−waveK+ → K+K−π0) in D0 → (K−π0 )SK+, D0 →
.
.ACP ((K−π0 )S−waveK+ → K+K−π0) in D0 → (K−π0 )SK+, D0 →
.
.ACP ((K−π0 )S−waveK+ → K+K−π0) in D0 → (K−π0 )SK+, D0 →
.
.VALUE (%) DOCUMENT ID TECN COMMENT
−7±40±8−7±40±8−7±40±8−7±40±8 AUBERT 08AO BABR Table 1, −Col.5/2×Col.2ACP (K0S π0) in D0, D0 → K0S π0ACP (K0S π0) in D0, D0 → K0S π0ACP (K0S π0) in D0, D0 → K0S π0ACP (K0S π0) in D0, D0 → K0S π0VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−0.20±0.17 OUR AVERAGE−0.20±0.17 OUR AVERAGE−0.20±0.17 OUR AVERAGE−0.20±0.17 OUR AVERAGE
−0.21±0.16±0.07 467k 1 NISAR 14 BELL e+ e− at/near � 's0.1 ±1.3 9099 BONVICINI 01 CLE2 e+ e− ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.28±0.19±0.10 326k KO 11 BELL See NISAR 14
−1.8 ±3.0 BARTELT 95 CLE2 See BONVICINI 011After subtra
ting CPV in K0 − K0 mixing, NISAR 14 gets ACP = (+0.12 ± 0.16 ±0.07)%.ACP (K0S η) in D0, D0 → K0S ηACP (K0S η) in D0, D0 → K0S ηACP (K0S η) in D0, D0 → K0S ηACP (K0S η) in D0, D0 → K0S ηVALUE (%) EVTS DOCUMENT ID TECN COMMENT+0.54±0.51±0.16+0.54±0.51±0.16+0.54±0.51±0.16+0.54±0.51±0.16 46k KO 11 BELL e+ e− ≈ �(4S)ACP (K0S η′) in D0, D0 → K0S η′ACP (K0S η′) in D0, D0 → K0S η′ACP (K0S η′) in D0, D0 → K0S η′ACP (K0S η′) in D0, D0 → K0S η′VALUE (%) EVTS DOCUMENT ID TECN COMMENT+0.98±0.67±0.14+0.98±0.67±0.14+0.98±0.67±0.14+0.98±0.67±0.14 27k KO 11 BELL e+ e− ≈ �(4S)ACP (K0S φ) in D0, D0 → K0S φACP (K0S φ) in D0, D0 → K0S φACP (K0S φ) in D0, D0 → K0S φACP (K0S φ) in D0, D0 → K0S φVALUE (%) DOCUMENT ID TECN COMMENT
−2.8±9.4−2.8±9.4−2.8±9.4−2.8±9.4 BARTELT 95 CLE2 −18.2 <ACP <+12.6% (90%CL)ACP (K∓π±) in D0 → K−π+, D0 → K+π−ACP (K∓π±) in D0 → K−π+, D0 → K+π−ACP (K∓π±) in D0 → K−π+, D0 → K+π−ACP (K∓π±) in D0 → K−π+, D0 → K+π−VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.3±0.3±0.60.3±0.3±0.60.3±0.3±0.60.3±0.3±0.6 BONVICINI 14 CLEO All CLEO-
 runs
• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.5±0.4±0.9 150k MENDEZ 10 CLEO See BONVICINI 14
−0.4±0.5±0.9 DOBBS 07 CLEO See BONVICINI 14ACP (K±π∓) in D0 → K+π−, D0 → K−π+ACP (K±π∓) in D0 → K+π−, D0 → K−π+ACP (K±π∓) in D0 → K+π−, D0 → K−π+ACP (K±π∓) in D0 → K+π−, D0 → K−π+VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.0± 1.6 OUR AVERAGE0.0± 1.6 OUR AVERAGE0.0± 1.6 OUR AVERAGE0.0± 1.6 OUR AVERAGE
− 0.7± 1.9 1 AAIJ 13CE LHCB pp at 7, 8 TeV
− 2.1± 5.2±1.5 4.0k AUBERT 07W BABR e+ e− ≈ 10.6 GeV+ 2.3± 4.7 4.0k 2 ZHANG 06 BELL e+ e−+18 ±14 ±4 3 LINK 05H FOCS γ nu
leus+ 9.5± 6.1±8.3 4 AUBERT 03Z BABR e+ e−, 10.6 GeV+ 2 +19

−20 ±1 45 5 GODANG 00 CLE2 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
− 8.0± 7.7 0.8k 6 LI 05A BELL See ZHANG 06



1091109110911091See key on page 601 MesonParti
le ListingsD01Based on 3 fb−1 of data 
olle
ted at √
s = 7, 8 TeV. Allowing for CP violation, thedire
t CP-violation in mixing is reported for the D0 → K+π− and D0 → K+π−.2This ZHANG 06 result allows mixing.3This LINK 05H result assumes no mixing. If mixing is allowed, it be
omes 0.13+0.33

−0.25 ±0.10.4This AUBERT 03Z limit assumes no mixing. If mixing is allowed, the 95% 
on�den
e-level interval is (−2.8 < AD < 4.9)×10−3.5This GODANG 00 result assumes no D0-D0 mixing and be
omes −0.43 <ACP < +0.34at 95% CL. If mixing is allowd ACP = −0.01+0.16
−0.17 ± 0.01.6This LI 05A result allows mixing.ACP (K−π+) in DCP (±1) → K∓π±ACP (K−π+) in DCP (±1) → K∓π±ACP (K−π+) in DCP (±1) → K∓π±ACP (K−π+) in DCP (±1) → K∓π±ACP (K−π+) = [B(DCP (−) → K−π+ + 
.
.) − B(DCP (+) → K−π+ +
.
.)℄ / Sum.VALUE (%) DOCUMENT ID TECN COMMENT12.7±1.3±0.712.7±1.3±0.712.7±1.3±0.712.7±1.3±0.7 1 ABLIKIM 14C BES3 e+ e− → D0D0, 3.77 GeV1ABLIKIM 14C uses quantum 
orrelations in e+ e− → D0D0 at the ψ(3770) to measurethe asymmetry of the bran
hing fra
tion of D0 → K−π+ in CP-odd and CP-eveneigenstates. It then extra
ts the strong-phase di�eren
e δK π .ACP (K∓π±π0) in D0 → K−π+π0, D0 → K+π−π0ACP (K∓π±π0) in D0 → K−π+π0, D0 → K+π−π0ACP (K∓π±π0) in D0 → K−π+π0, D0 → K+π−π0ACP (K∓π±π0) in D0 → K−π+π0, D0 → K+π−π0VALUE (%) DOCUMENT ID TECN COMMENT0.1±0.5 OUR AVERAGE0.1±0.5 OUR AVERAGE0.1±0.5 OUR AVERAGE0.1±0.5 OUR AVERAGE0.1±0.3±0.4 BONVICINI 14 CLEO All CLEO-
 runs

−3.1±8.6 1 KOPP 01 CLE2 e+ e− ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.2±0.4±0.8 DOBBS 07 CLEO See BONVICINI 141KOPP 01 �ts separately the D0 and D0 Dalitz plots and then 
al
ulates the integrateddi�eren
e of normalized densities divided by the integrated sum.ACP (K±π∓π0) in D0 → K+π−π0, D0 → K−π+π0ACP (K±π∓π0) in D0 → K+π−π0, D0 → K−π+π0ACP (K±π∓π0) in D0 → K+π−π0, D0 → K−π+π0ACP (K±π∓π0) in D0 → K+π−π0, D0 → K−π+π0VALUE (%) EVTS DOCUMENT ID TECN COMMENT0 ± 5 OUR AVERAGE0 ± 5 OUR AVERAGE0 ± 5 OUR AVERAGE0 ± 5 OUR AVERAGE
−0.6± 5.3 1978 ± 104 TIAN 05 BELL e+ e− ≈ �(4S)+9 +25

−22 38 BRANDENB... 01 CLE2 e+ e− ≈ �(4S)ACP (K0S π+π−) in D0, D0 → K0S π+π−ACP (K0S π+π−) in D0, D0 → K0S π+π−ACP (K0S π+π−) in D0, D0 → K0S π+π−ACP (K0S π+π−) in D0, D0 → K0S π+π−VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−0.1 ±0.8 OUR AVERAGE−0.1 ±0.8 OUR AVERAGE−0.1 ±0.8 OUR AVERAGE−0.1 ±0.8 OUR AVERAGE
−0.05±0.57±0.54 350k 1 AALTONEN 12AD CDF
−0.9 ±2.1 +1.6

−5.7 4854 2 ASNER 04A CLEO e+ e− ≈ 10 GeV1This is the overall result of AALTONEN 12AD. Following are the 15 CP �t-fra
tionasymmetries from the amplitude analysis of the D0 and D0 → K0S π+π− Dalitz plots.2This is the overall result of ASNER 04A; CP-violating limits are also given below forea
h of the 10 resonant submodes found in an amplitude analysis of the D0 and D0 →K0S π+π− Dalitz plots.ACP (K∗(892)∓π± → K0S π+π−) in D0 → K∗−π+, D0 → K∗+π−ACP (K∗(892)∓π± → K0S π+π−) in D0 → K∗−π+, D0 → K∗+π−ACP (K∗(892)∓π± → K0S π+π−) in D0 → K∗−π+, D0 → K∗+π−ACP (K∗(892)∓π± → K0S π+π−) in D0 → K∗−π+, D0 → K∗+π−VALUE (%) DOCUMENT ID TECN COMMENT+0.36±0.33±0.40+0.36±0.33±0.40+0.36±0.33±0.40+0.36±0.33±0.40 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •+2.5 ±1.9 +3.3

−0.8 ASNER 04A CLEO Dalitz �t, 4854 evtsACP (K∗(892)±π∓ → K0S π+π−) in D0 → K∗+π−, D0 → K∗−π+ACP (K∗(892)±π∓ → K0S π+π−) in D0 → K∗+π−, D0 → K∗−π+ACP (K∗(892)±π∓ → K0S π+π−) in D0 → K∗+π−, D0 → K∗−π+ACP (K∗(892)±π∓ → K0S π+π−) in D0 → K∗+π−, D0 → K∗−π+This is a doubly Cabibbo-suppressed mode.VALUE (%) DOCUMENT ID TECN COMMENT+ 1.0± 5.7± 2.1+ 1.0± 5.7± 2.1+ 1.0± 5.7± 2.1+ 1.0± 5.7± 2.1 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−21 ±42 ±28 ASNER 04A CLEO Dalitz �t, 4854 evtsACP (K0S ρ0 → K0S π+π−) in D0 → K0ρ0, D0 → K0 ρ0ACP (K0S ρ0 → K0S π+π−) in D0 → K0ρ0, D0 → K0 ρ0ACP (K0S ρ0 → K0S π+π−) in D0 → K0ρ0, D0 → K0 ρ0ACP (K0S ρ0 → K0S π+π−) in D0 → K0ρ0, D0 → K0 ρ0VALUE (%) DOCUMENT ID TECN COMMENT
−0.05±0.50±0.08−0.05±0.50±0.08−0.05±0.50±0.08−0.05±0.50±0.08 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •+3.1 ±3.8 +2.7

−2.2 ASNER 04A CLEO Dalitz �t, 4854 evtsACP (K0S ω → K0S π+π−) in D0 → K0ω, D0 → K0ωACP (K0S ω → K0S π+π−) in D0 → K0ω, D0 → K0ωACP (K0S ω → K0S π+π−) in D0 → K0ω, D0 → K0ωACP (K0S ω → K0S π+π−) in D0 → K0ω, D0 → K0ωVALUE (%) DOCUMENT ID TECN COMMENT
−12.6± 6.0± 2.6−12.6± 6.0± 2.6−12.6± 6.0± 2.6−12.6± 6.0± 2.6 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−26 ±24 +22
− 4 ASNER 04A CLEO Dalitz �t, 4854 evtsACP (K0S f0(980) → K0S π+π−) in D0 → K0 f0(980), D0 → K0 f0(980)ACP (K0S f0(980) → K0S π+π−) in D0 → K0 f0(980), D0 → K0 f0(980)ACP (K0S f0(980) → K0S π+π−) in D0 → K0 f0(980), D0 → K0 f0(980)ACP (K0S f0(980) → K0S π+π−) in D0 → K0 f0(980), D0 → K0 f0(980)VALUE (%) DOCUMENT ID TECN COMMENT

−0.4± 2.2± 1.6−0.4± 2.2± 1.6−0.4± 2.2± 1.6−0.4± 2.2± 1.6 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−4.7±11.0+24.9
− 8.8 ASNER 04A CLEO Dalitz �t, 4854 evts

ACP (K0S f2(1270) → K0S π+π−) in D0 → K0 f2(1270), D0 → K0 f2(1270)ACP (K0S f2(1270) → K0S π+π−) in D0 → K0 f2(1270), D0 → K0 f2(1270)ACP (K0S f2(1270) → K0S π+π−) in D0 → K0 f2(1270), D0 → K0 f2(1270)ACP (K0S f2(1270) → K0S π+π−) in D0 → K0 f2(1270), D0 → K0 f2(1270)VALUE (%) DOCUMENT ID TECN COMMENT
− 4.0± 3.4± 3.0− 4.0± 3.4± 3.0− 4.0± 3.4± 3.0− 4.0± 3.4± 3.0 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •+34 ±51 +33

−79 ASNER 04A CLEO Dalitz �t, 4854 evtsACP (K0S f0(1370) → K0S π+π−) in D0 → K0 f0(1370), D0 → K0 f0(1370)ACP (K0S f0(1370) → K0S π+π−) in D0 → K0 f0(1370), D0 → K0 f0(1370)ACP (K0S f0(1370) → K0S π+π−) in D0 → K0 f0(1370), D0 → K0 f0(1370)ACP (K0S f0(1370) → K0S π+π−) in D0 → K0 f0(1370), D0 → K0 f0(1370)VALUE (%) DOCUMENT ID TECN COMMENT
− 0.5± 4.6± 7.7− 0.5± 4.6± 7.7− 0.5± 4.6± 7.7− 0.5± 4.6± 7.7 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •+18 ±10 +13

−22 ASNER 04A CLEO Dalitz �t, 4854 evtsACP (K0S ρ0(1450)) in D0 → K0 ρ0(1450), D0 → K0 ρ0(1450)ACP (K0S ρ0(1450)) in D0 → K0 ρ0(1450), D0 → K0 ρ0(1450)ACP (K0S ρ0(1450)) in D0 → K0 ρ0(1450), D0 → K0 ρ0(1450)ACP (K0S ρ0(1450)) in D0 → K0 ρ0(1450), D0 → K0 ρ0(1450)VALUE (%) DOCUMENT ID TECN COMMENT
−4.1±5.2±8.1−4.1±5.2±8.1−4.1±5.2±8.1−4.1±5.2±8.1 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evtsACP (K0S f0(600)) in D0 → K0 f0(600), D0 → K0 f0(600)ACP (K0S f0(600)) in D0 → K0 f0(600), D0 → K0 f0(600)ACP (K0S f0(600)) in D0 → K0 f0(600), D0 → K0 f0(600)ACP (K0S f0(600)) in D0 → K0 f0(600), D0 → K0 f0(600)VALUE (%) DOCUMENT ID TECN COMMENT
−2.7±2.7±3.6−2.7±2.7±3.6−2.7±2.7±3.6−2.7±2.7±3.6 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evtsACP (K∗(1410)∓π±) in D0 → K∗(1410)−π+, D0 → K∗(1410)+π−ACP (K∗(1410)∓π±) in D0 → K∗(1410)−π+, D0 → K∗(1410)+π−ACP (K∗(1410)∓π±) in D0 → K∗(1410)−π+, D0 → K∗(1410)+π−ACP (K∗(1410)∓π±) in D0 → K∗(1410)−π+, D0 → K∗(1410)+π−VALUE (%) DOCUMENT ID TECN COMMENT
−2.3±5.7±6.4−2.3±5.7±6.4−2.3±5.7±6.4−2.3±5.7±6.4 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evtsACP (K∗0(1430)∓π± → K0S π+π−) in D0 → K∗0(1430)−π+, D0 → 
.
.ACP (K∗0(1430)∓π± → K0S π+π−) in D0 → K∗0(1430)−π+, D0 → 
.
.ACP (K∗0(1430)∓π± → K0S π+π−) in D0 → K∗0(1430)−π+, D0 → 
.
.ACP (K∗0(1430)∓π± → K0S π+π−) in D0 → K∗0(1430)−π+, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT4.0± 2.4±3.84.0± 2.4±3.84.0± 2.4±3.84.0± 2.4±3.8 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.2±11.3+8.8
−5.0 ASNER 04A CLEO Dalitz �t, 4854 evtsACP (K∗0(1430)±π∓) in D0 → K∗0(1430)+π−, D0 → K∗0(1430)−π+ACP (K∗0(1430)±π∓) in D0 → K∗0(1430)+π−, D0 → K∗0(1430)−π+ACP (K∗0(1430)±π∓) in D0 → K∗0(1430)+π−, D0 → K∗0(1430)−π+ACP (K∗0(1430)±π∓) in D0 → K∗0(1430)+π−, D0 → K∗0(1430)−π+This is a doubly Cabibbo-suppressed mode.VALUE (%) DOCUMENT ID TECN COMMENT+12±11±10+12±11±10+12±11±10+12±11±10 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evtsACP (K∗2(1430)∓π± → K0S π+π−) in D0 → K∗2(1430)−π+, D0 → 
.
.ACP (K∗2(1430)∓π± → K0S π+π−) in D0 → K∗2(1430)−π+, D0 → 
.
.ACP (K∗2(1430)∓π± → K0S π+π−) in D0 → K∗2(1430)−π+, D0 → 
.
.ACP (K∗2(1430)∓π± → K0S π+π−) in D0 → K∗2(1430)−π+, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT+2.9± 4.0± 4.1+2.9± 4.0± 4.1+2.9± 4.0± 4.1+2.9± 4.0± 4.1 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evts

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−7 ±25 +13
−26 ASNER 04A CLEO Dalitz �t, 4854 evtsACP (K∗2(1430)±π∓) in D0 → K∗2(1430)+π−, D0 → K∗2(1430)−π+ACP (K∗2(1430)±π∓) in D0 → K∗2(1430)+π−, D0 → K∗2(1430)−π+ACP (K∗2(1430)±π∓) in D0 → K∗2(1430)+π−, D0 → K∗2(1430)−π+ACP (K∗2(1430)±π∓) in D0 → K∗2(1430)+π−, D0 → K∗2(1430)−π+This is a doubly Cabibbo-suppressed mode.VALUE (%) DOCUMENT ID TECN COMMENT

−10±14±29−10±14±29−10±14±29−10±14±29 AALTONEN 12AD CDF Dalitz �t, ∼ 350k evtsACP (K∗(1680)∓π± → K0S π+π−) in D0 → K∗(1680)−π+, D0 → 
.
.ACP (K∗(1680)∓π± → K0S π+π−) in D0 → K∗(1680)−π+, D0 → 
.
.ACP (K∗(1680)∓π± → K0S π+π−) in D0 → K∗(1680)−π+, D0 → 
.
.ACP (K∗(1680)∓π± → K0S π+π−) in D0 → K∗(1680)−π+, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−36±19+10
−35 ASNER 04A CLEO Dalitz �t, 4854 evtsACP (K−π+π+π−) in D0 → K−π+π+π−, D0 → K+π−π−π+ACP (K−π+π+π−) in D0 → K−π+π+π−, D0 → K+π−π−π+ACP (K−π+π+π−) in D0 → K−π+π+π−, D0 → K+π−π−π+ACP (K−π+π+π−) in D0 → K−π+π+π−, D0 → K+π−π−π+VALUE (%) DOCUMENT ID TECN COMMENT0.2±0.3±0.40.2±0.3±0.40.2±0.3±0.40.2±0.3±0.4 BONVICINI 14 CLEO All CLEO-
 runs

• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.7±0.5±0.9 DOBBS 07 CLEO See BONVICINI 14ACP (K±π∓π+π−) in D0 → K+π−π+π−, D0 → K−π+π+π−ACP (K±π∓π+π−) in D0 → K+π−π+π−, D0 → K−π+π+π−ACP (K±π∓π+π−) in D0 → K+π−π+π−, D0 → K−π+π+π−ACP (K±π∓π+π−) in D0 → K+π−π+π−, D0 → K−π+π+π−VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−1.8±4.4−1.8±4.4−1.8±4.4−1.8±4.4 1721 ± 75 TIAN 05 BELL e+ e− ≈ �(4S)ACP (K+K−π+π−) in D0 , D0 → K+K−π+π−ACP (K+K−π+π−) in D0 , D0 → K+K−π+π−ACP (K+K−π+π−) in D0 , D0 → K+K−π+π−ACP (K+K−π+π−) in D0 , D0 → K+K−π+π−See also AAIJ 13BR for a sear
h for CP violation in D0 → K+K−π+π− in binnedphase spa
e. No eviden
e of CP violation was found.VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−8.2±5.6±4.7−8.2±5.6±4.7−8.2±5.6±4.7−8.2±5.6±4.7 828 ± 46 LINK 05E FOCS γ A, Eγ≈ 180 GeVACP (K∗1(1270)+K− → K∗0π+K−) in D0 → K∗1(1270)+K−, D0 → 
.
.ACP (K∗1(1270)+K− → K∗0π+K−) in D0 → K∗1(1270)+K−, D0 → 
.
.ACP (K∗1(1270)+K− → K∗0π+K−) in D0 → K∗1(1270)+K−, D0 → 
.
.ACP (K∗1(1270)+K− → K∗0π+K−) in D0 → K∗1(1270)+K−, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT
−0.7±10.4−0.7±10.4−0.7±10.4−0.7±10.4 ARTUSO 12 CLEO Amplitude �t, 2959 evts.ACP (K∗1(1270)−K+ → K∗0π−K+) in D0 → K∗1(1270)−K+, D0 → 
.
.ACP (K∗1(1270)−K+ → K∗0π−K+) in D0 → K∗1(1270)−K+, D0 → 
.
.ACP (K∗1(1270)−K+ → K∗0π−K+) in D0 → K∗1(1270)−K+, D0 → 
.
.ACP (K∗1(1270)−K+ → K∗0π−K+) in D0 → K∗1(1270)−K+, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT
−10.0±31.5−10.0±31.5−10.0±31.5−10.0±31.5 ARTUSO 12 CLEO Amplitude �t, 2959 evts.ACP (K∗1(1270)+K− → ρ0K+K−) in D0 → K∗1(1270)+K−, D0 → 
.
.ACP (K∗1(1270)+K− → ρ0K+K−) in D0 → K∗1(1270)+K−, D0 → 
.
.ACP (K∗1(1270)+K− → ρ0K+K−) in D0 → K∗1(1270)+K−, D0 → 
.
.ACP (K∗1(1270)+K− → ρ0K+K−) in D0 → K∗1(1270)+K−, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT
−6.5±16.9−6.5±16.9−6.5±16.9−6.5±16.9 ARTUSO 12 CLEO Amplitude �t, 2959 evts.



1092109210921092Meson Parti
le ListingsD0ACP (K∗1(1270)−K+ → ρ0K−K+) in D0 → K∗1(1270)−K+, D0 → 
.
.ACP (K∗1(1270)−K+ → ρ0K−K+) in D0 → K∗1(1270)−K+, D0 → 
.
.ACP (K∗1(1270)−K+ → ρ0K−K+) in D0 → K∗1(1270)−K+, D0 → 
.
.ACP (K∗1(1270)−K+ → ρ0K−K+) in D0 → K∗1(1270)−K+, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT+9.6±12.9+9.6±12.9+9.6±12.9+9.6±12.9 ARTUSO 12 CLEO Amplitude �t, 2959 evts.ACP (K∗(1410)+K− → K∗0π+K−) in D0 → K∗(1410)+K−, D0 → 
.
.ACP (K∗(1410)+K− → K∗0π+K−) in D0 → K∗(1410)+K−, D0 → 
.
.ACP (K∗(1410)+K− → K∗0π+K−) in D0 → K∗(1410)+K−, D0 → 
.
.ACP (K∗(1410)+K− → K∗0π+K−) in D0 → K∗(1410)+K−, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT
−20.0±16.8−20.0±16.8−20.0±16.8−20.0±16.8 ARTUSO 12 CLEO Amplitude �t, 2959 evts.ACP (K∗(1410)−K+ → K∗0π−K+) in D0 → K∗(1410)−K+, D0 → 
.
.ACP (K∗(1410)−K+ → K∗0π−K+) in D0 → K∗(1410)−K+, D0 → 
.
.ACP (K∗(1410)−K+ → K∗0π−K+) in D0 → K∗(1410)−K+, D0 → 
.
.ACP (K∗(1410)−K+ → K∗0π−K+) in D0 → K∗(1410)−K+, D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT
−1.1±13.7−1.1±13.7−1.1±13.7−1.1±13.7 ARTUSO 12 CLEO Amplitude �t, 2959 evts.ACP (K∗0K∗0 S-wave) in D0, D0 → K∗0K∗0 S-waveACP (K∗0K∗0 S-wave) in D0, D0 → K∗0K∗0 S-waveACP (K∗0K∗0 S-wave) in D0, D0 → K∗0K∗0 S-waveACP (K∗0K∗0 S-wave) in D0, D0 → K∗0K∗0 S-waveVALUE (%) DOCUMENT ID TECN COMMENT+9.5±13.5+9.5±13.5+9.5±13.5+9.5±13.5 ARTUSO 12 CLEO Amplitude �t, 2959 evts.ACP (φρ0 S-wave) in D0, D0 → φρ0 S-waveACP (φρ0 S-wave) in D0, D0 → φρ0 S-waveACP (φρ0 S-wave) in D0, D0 → φρ0 S-waveACP (φρ0 S-wave) in D0, D0 → φρ0 S-waveVALUE (%) DOCUMENT ID TECN COMMENT
−2.7±5.3−2.7±5.3−2.7±5.3−2.7±5.3 ARTUSO 12 CLEO Amplitude �t, 2959 evts.ACP (φρ0 D-wave) in D0, D0 → φρ0 D-waveACP (φρ0 D-wave) in D0, D0 → φρ0 D-waveACP (φρ0 D-wave) in D0, D0 → φρ0 D-waveACP (φρ0 D-wave) in D0, D0 → φρ0 D-waveVALUE (%) DOCUMENT ID TECN COMMENT
−37.1±19.0−37.1±19.0−37.1±19.0−37.1±19.0 ARTUSO 12 CLEO Amplitude �t, 2959 evts.ACP (φ(π+π− )S−wave) in D0, D0 → φ(π+π− )S−waveACP (φ(π+π− )S−wave) in D0, D0 → φ(π+π− )S−waveACP (φ(π+π− )S−wave) in D0, D0 → φ(π+π− )S−waveACP (φ(π+π− )S−wave) in D0, D0 → φ(π+π− )S−waveVALUE (%) DOCUMENT ID TECN COMMENT
−8.6±10.4−8.6±10.4−8.6±10.4−8.6±10.4 ARTUSO 12 CLEO Amplitude �t, 2959 evts.ACP ((K−π+)P−wave (K+π−)S−wave) in D0 → (K−π+)P−wave(K+π−)S−wave , D0 → 
.
.ACP ((K−π+)P−wave (K+π−)S−wave) in D0 → (K−π+)P−wave(K+π−)S−wave , D0 → 
.
.ACP ((K−π+)P−wave (K+π−)S−wave) in D0 → (K−π+)P−wave(K+π−)S−wave , D0 → 
.
.ACP ((K−π+)P−wave (K+π−)S−wave) in D0 → (K−π+)P−wave(K+π−)S−wave , D0 → 
.
.VALUE (%) DOCUMENT ID TECN COMMENT+2.7±10.6+2.7±10.6+2.7±10.6+2.7±10.6 ARTUSO 12 CLEO Amplitude �t, 2959 evts.D0 CP-EVEN FRACTIONSD0 CP-EVEN FRACTIONSD0 CP-EVEN FRACTIONSD0 CP-EVEN FRACTIONSThe CP-even fra
tion F+, de�ned for self-
onjugate �nal states, like the
oheren
e fa
tor is useful for measuring the unitary triangle angle γ inB → DK de
ays. A purely CP-even state has F+ = 1, a CP-odd onehas F+ = 0. For details, see NAYAK 15.CP-even fra
tion in D0 → π+π−π0 de
aysCP-even fra
tion in D0 → π+π−π0 de
aysCP-even fra
tion in D0 → π+π−π0 de
aysCP-even fra
tion in D0 → π+π−π0 de
aysVALUE (%) DOCUMENT ID COMMENT97.3±1.797.3±1.797.3±1.797.3±1.7 MALDE 15 Uses CLEO data
• • • We do not use the following data for averages, �ts, limits, et
. • • •96.8±1.7±0.6 NAYAK 15 see MALDE 15CP-even fra
tion in D0 → K+K−π0 de
aysCP-even fra
tion in D0 → K+K−π0 de
aysCP-even fra
tion in D0 → K+K−π0 de
aysCP-even fra
tion in D0 → K+K−π0 de
aysVALUE (%) DOCUMENT ID COMMENT73.2±5.573.2±5.573.2±5.573.2±5.5 MALDE 15 Uses CLEO data
• • • We do not use the following data for averages, �ts, limits, et
. • • •73.1±5.8±2.1 NAYAK 15 see MALDE 15CP-even fra
tion in D0 → π+π−π+π− de
aysCP-even fra
tion in D0 → π+π−π+π− de
aysCP-even fra
tion in D0 → π+π−π+π− de
aysCP-even fra
tion in D0 → π+π−π+π− de
aysVALUE (%) DOCUMENT ID COMMENT73.7±2.873.7±2.873.7±2.873.7±2.8 MALDE 15 Uses CLEO dataD0 CP-VIOLATING ASYMMETRY DIFFERENCESD0 CP-VIOLATING ASYMMETRY DIFFERENCESD0 CP-VIOLATING ASYMMETRY DIFFERENCESD0 CP-VIOLATING ASYMMETRY DIFFERENCES�ACP = ACP (K+K−) − ACP (π+π−)�ACP = ACP (K+K−) − ACP (π+π−)�ACP = ACP (K+K−) − ACP (π+π−)�ACP = ACP (K+K−) − ACP (π+π−)CP violation in these modes 
an 
ome from the de
ay amplitudes (dire
t) and/or frommixing or interferen
e of mixing and de
ay (indire
t). The di�eren
e �ACP is primar-ily sensitive to the dire
t 
omponent, and only retains a se
ond-order dependen
e onthe indire
t 
omponent for measurements where the mean de
ay time of the K+K−and π+π− samples are not identi
al. The results below are averaged assuming theindire
t 
omponent 
an be negle
ted.VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−0.32±0.22 OUR AVERAGE−0.32±0.22 OUR AVERAGE−0.32±0.22 OUR AVERAGE−0.32±0.22 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.0.14±0.16±0.08 2.17/0.77M 1 AAIJ 14AK LHCB Time-integrated
−0.82±0.21±0.11 1 AAIJ 12G LHCB Time-integrated
−0.62±0.21±0.10 1 AALTONEN 12O CDF Time-integrated0.24±0.62±0.26 1,2 AUBERT 08M BABR Time-integrated
−0.86±0.60±0.07 120k 1 STARIC 08 BELL Time-integrated
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.49±0.30±0.14 559/222k AAIJ 13AD LHCB See AAIJ 14AK
−0.46±0.31±0.12 AALTONEN 12B CDF See AALTONEN 12O1D's from D∗'s de
ays.2Cal
ulated from the AUBERT 08M values of ACP (K+K−) and ACP (π+π−). Thesystemati
 error here 
ombines the systemati
 errors in quadrature, and therefore some-what over-estimates it.

WEIGHTED AVERAGE
-0.32±0.22 (Error scaled by 1.9)

STARIC 08 BELL 0.8
AUBERT 08M BABR 0.7
AALTONEN 12O CDF 1.6
AAIJ 12G LHCB 4.4
AAIJ 14AK LHCB 6.7

χ2

      14.2
(Confidence Level = 0.0066)

-3 -2 -1 0 1 2 3�ACP = ACP (K+K−) − ACP (π+π−) (%)D0 χ2 TESTS OF CP-VIOLATION (CPV )D0 χ2 TESTS OF CP-VIOLATION (CPV )D0 χ2 TESTS OF CP-VIOLATION (CPV )D0 χ2 TESTS OF CP-VIOLATION (CPV )We list model-independent sear
hes for lo
al CP violation in phase-spa
edistributions of multi-body de
ays.Most of these sear
hes divide phase spa
e (Dalitz plot for 3-body de
ays,�ve-dimensional equivalent for 4-body de
ays) into bins, and perform a χ2test 
omparing normalised yields Ni , Ni in CP-
onjugate bin pairs i : χ2 =�i (Ni − α Ni )/σ(Ni −α Ni ). The fa
tor α = (�iNi )/(�iNi ) removesthe dependen
e on phase-spa
e-integrated rate asymmetries. The result isused to obtain the probability (p-value) to obtain the measured χ2 or largerunder the assumption of CP 
onservation [AUBERT 08AO, BEDIAGA 09℄.Alternative methods obtain p-values from other test variables based onunbinned analyses [WILLIAMS 11, AAIJ 14C℄. Results 
an be 
ombinedusing Fisher's method [MOSTELLER 48℄.Lo
al CPV in D0, D0 → π+π−π0Lo
al CPV in D0, D0 → π+π−π0Lo
al CPV in D0, D0 → π+π−π0Lo
al CPV in D0, D0 → π+π−π0p-value (%) EVTS DOCUMENT ID TECN COMMENT4.9 OUR EVALUATION4.9 OUR EVALUATION4.9 OUR EVALUATION4.9 OUR EVALUATION2.6 566k 1 AAIJ 15A LHCB unbinned method32.8 82k AUBERT 08AO BABR χ21Unusually, AAIJ 15A assigns an un
ertainty on the p value of ±0.5%. This results fromlimited test statisti
s.Lo
al CPV in D0, D0 → π+π−π+π−Lo
al CPV in D0, D0 → π+π−π+π−Lo
al CPV in D0, D0 → π+π−π+π−Lo
al CPV in D0, D0 → π+π−π+π−p-value (%) EVTS DOCUMENT ID TECN COMMENT41414141 330k AAIJ 13BR LHCB χ2Lo
al CPV in D0, D0 → K0S π+π−Lo
al CPV in D0, D0 → K0S π+π−Lo
al CPV in D0, D0 → K0S π+π−Lo
al CPV in D0, D0 → K0S π+π−p-value (%) EVTS DOCUMENT ID TECN COMMENT96969696 350k AALTONEN 12AD CDF χ2Lo
al CPV in D0, D0 → K+K−π0Lo
al CPV in D0, D0 → K+K−π0Lo
al CPV in D0, D0 → K+K−π0Lo
al CPV in D0, D0 → K+K−π0p-value (%) EVTS DOCUMENT ID TECN COMMENT16.616.616.616.6 11k AUBERT 08AO BABR χ2Lo
al CPV in D0, D0 → K+K−π+π−Lo
al CPV in D0, D0 → K+K−π+π−Lo
al CPV in D0, D0 → K+K−π+π−Lo
al CPV in D0, D0 → K+K−π+π−p-value (%) EVTS DOCUMENT ID TECN COMMENT9.19.19.19.1 57k AAIJ 13BR LHCB χ2CP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSCP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSCP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSCP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSThe CP-sensitive P-odd (T-odd) 
orrelation in D0, D0 → K+K−π+π−de
ays. D0 and D0 are distinguished by the 
harge of the parent D∗:D∗+ → D0π+ and D∗− → D0π−.ATviol (K+K−π+π−) in D0, D0 → K+K−π+π−ATviol (K+K−π+π−) in D0, D0 → K+K−π+π−ATviol (K+K−π+π−) in D0, D0 → K+K−π+π−ATviol (K+K−π+π−) in D0, D0 → K+K−π+π−CT ≡ ~pK+ · (~p
π+ × ~p

π− ) is a parity-odd 
orrelation of the K+, π+, and π−momenta (evaluated in the D0 rest frame) for the D0. CT ≡ ~pK− · (~p
π− × ~p

π+ )is the 
orresponding quantity for the D0. ThenAT ≡ [�(CT > 0)− �(CT < 0)℄ / [�(CT > 0)+ �(CT < 0)℄, andAT ≡ [�(−CT > 0)− �(−CT < 0)℄ / [�(−CT > 0)+ �(−CT < 0)℄, andATviol ≡ 12 (AT − AT ). CT and CT are 
ommonly referred to as T-odd mo-ments, be
ause they are odd under T reversal. However, the T-
onjugate pro
essK+K−π+π− → D0 is not a

essible, while the P-
onjugate pro
ess is.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.7± 2.7 OUR AVERAGE1.7± 2.7 OUR AVERAGE1.7± 2.7 OUR AVERAGE1.7± 2.7 OUR AVERAGE1.8± 2.9± 0.4 171k AAIJ 14BC LHCB B → D0µ−X1.0± 5.1± 4.4 47k DEL-AMO-SA...10 BABR e+ e− ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •10 ±57 ±37 0.8k LINK 05E FOCS γ A, Eγ≈ 180 GeV
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le ListingsD0D0 CPT-VIOLATING DECAY-RATE ASYMMETRIESD0 CPT-VIOLATING DECAY-RATE ASYMMETRIESD0 CPT-VIOLATING DECAY-RATE ASYMMETRIESD0 CPT-VIOLATING DECAY-RATE ASYMMETRIESACPT (K∓π±) in D0 → K−π+, D0 → K+π−ACPT (K∓π±) in D0 → K−π+, D0 → K+π−ACPT (K∓π±) in D0 → K−π+, D0 → K+π−ACPT (K∓π±) in D0 → K−π+, D0 → K+π−ACPT (t) is de�ned in terms of the time-dependent de
ay probabilities P(D0 →K−π+) and P(D0 → K+π−) by ACPT (t) = (P −P)/(P + P). For small mixingparameters x ≡ �m/� and y ≡ ��/2� (as is the 
ase), and times t, ACPT (t) redu
esto [ y Re ξ - x Im ξ ℄ �t, where ξ is the CPT-violating parameter.The following is a
tually y Re ξ - x Im ξ.VALUE DOCUMENT ID TECN COMMENT0.0083±0.0065±0.00410.0083±0.0065±0.00410.0083±0.0065±0.00410.0083±0.0065±0.0041 LINK 03B FOCS γ nu
leus, Eγ ≈ 180 GeVD0 → K∗(892)− ℓ+νℓ FORM FACTORSD0 → K∗(892)− ℓ+νℓ FORM FACTORSD0 → K∗(892)− ℓ+νℓ FORM FACTORSD0 → K∗(892)− ℓ+νℓ FORM FACTORSrV ≡ V(0)/A1(0) in D0 → K∗(892)− ℓ+νℓrV ≡ V(0)/A1(0) in D0 → K∗(892)− ℓ+νℓrV ≡ V(0)/A1(0) in D0 → K∗(892)− ℓ+νℓrV ≡ V(0)/A1(0) in D0 → K∗(892)− ℓ+νℓVALUE DOCUMENT ID TECN COMMENT1.71±0.68±0.341.71±0.68±0.341.71±0.68±0.341.71±0.68±0.34 LINK 05B FOCS K∗(892)−µ+ νµr2 ≡ A2(0)/A1(0) in D0 → K∗(892)− ℓ+νℓr2 ≡ A2(0)/A1(0) in D0 → K∗(892)− ℓ+νℓr2 ≡ A2(0)/A1(0) in D0 → K∗(892)− ℓ+νℓr2 ≡ A2(0)/A1(0) in D0 → K∗(892)− ℓ+νℓVALUE DOCUMENT ID TECN COMMENT0.91±0.37±0.100.91±0.37±0.100.91±0.37±0.100.91±0.37±0.10 LINK 05B FOCS K∗(892)−µ+ νµD0 → K−/π− ℓ+νℓ FORM FACTORSD0 → K−/π− ℓ+νℓ FORM FACTORSD0 → K−/π− ℓ+νℓ FORM FACTORSD0 → K−/π− ℓ+νℓ FORM FACTORSf+(0) in D0 → K− ℓ+νℓf+(0) in D0 → K− ℓ+νℓf+(0) in D0 → K− ℓ+νℓf+(0) in D0 → K− ℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT0.736 ±0.004 OUR AVERAGE0.736 ±0.004 OUR AVERAGE0.736 ±0.004 OUR AVERAGE0.736 ±0.004 OUR AVERAGE0.7368±0.0026±0.0036 71k ABLIKIM 15X BES3 ℓ=e, 2-parameter �t0.727 ±0.007 ±0.009 AUBERT 07BG BABR ℓ=e, 2-parameter �tf+(0)∣∣Vcs

∣

∣ in D0 → K− ℓ+νℓf+(0)∣∣Vcs

∣

∣ in D0 → K− ℓ+νℓf+(0)∣∣Vcs

∣

∣ in D0 → K− ℓ+νℓf+(0)∣∣Vcs

∣

∣ in D0 → K− ℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT0.719 ±0.004 OUR AVERAGE0.719 ±0.004 OUR AVERAGE0.719 ±0.004 OUR AVERAGE0.719 ±0.004 OUR AVERAGE0.7172±0.0025±0.0035 71k 1 ABLIKIM 15X BES3 ℓ=e, 2-parameter �t0.726 ±0.008 ±0.004 BESSON 09 CLEO ℓ=e, 3-parameter �t1The 3-parameter �t yields 0.7195 ± 0.0035 ± 0.0041.r1 ≡ a1/a0 in D0 → K− ℓ+νℓr1 ≡ a1/a0 in D0 → K− ℓ+νℓr1 ≡ a1/a0 in D0 → K− ℓ+νℓr1 ≡ a1/a0 in D0 → K− ℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT
−2.40±0.16 OUR AVERAGE−2.40±0.16 OUR AVERAGE−2.40±0.16 OUR AVERAGE−2.40±0.16 OUR AVERAGE
−2.33±0.16±0.08 71k 1 ABLIKIM 15X BES3 ℓ=e, 3-parameter �t
−2.65±0.34±0.08 BESSON 09 CLEO ℓ=e, 3-parameter �t1The 2-parameter �t yields −2.23 ± 0.09 ± 0.06.r2 ≡ a2/a0 in D0 → K− ℓ+νℓr2 ≡ a2/a0 in D0 → K− ℓ+νℓr2 ≡ a2/a0 in D0 → K− ℓ+νℓr2 ≡ a2/a0 in D0 → K− ℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT5 ±4 OUR AVERAGE5 ±4 OUR AVERAGE5 ±4 OUR AVERAGE5 ±4 OUR AVERAGE3.4±3.9±2.4 71k ABLIKIM 15X BES3 ℓ=e, 3-parameter �t13 ±9 ±1 BESSON 09 CLEO ℓ=e, 3-parameter �tf+(0) in D0 → π− ℓ+νℓf+(0) in D0 → π− ℓ+νℓf+(0) in D0 → π− ℓ+νℓf+(0) in D0 → π− ℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT0.6372±0.0080±0.00440.6372±0.0080±0.00440.6372±0.0080±0.00440.6372±0.0080±0.0044 6.3k ABLIKIM 15X BES3 ℓ=e, 2-parameter �tf+(0)∣∣Vcd

∣

∣ in D0 → π− ℓ+νℓf+(0)∣∣Vcd

∣

∣ in D0 → π− ℓ+νℓf+(0)∣∣Vcd

∣

∣ in D0 → π− ℓ+νℓf+(0)∣∣Vcd

∣

∣ in D0 → π− ℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT0.1436±0.0026 OUR AVERAGE0.1436±0.0026 OUR AVERAGE0.1436±0.0026 OUR AVERAGE0.1436±0.0026 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.0.1435±0.0018±0.0009 6.3k 1 ABLIKIM 15X BES3 ℓ=e, 2-parameter �t0.1374±0.0038±0.0024 5.3k 2 LEES 15F BABR ℓ=e, 3-parameter �t0.152 ±0.005 ±0.001 BESSON 09 CLEO ℓ=e, 3-parameter �t1The 3-parameter �t yields 0.1420 ± 0.0024 ± 0.0010.2 LEES 15F reports a value 0.1374± 0.0038± 0.0022± 0.0009, where the last un
ertaintyis due to the un
ertainties of the D0 → K−π+ bran
hing fra
tion.
WEIGHTED AVERAGE
0.1436±0.0026 (Error scaled by 1.5)

BESSON 09 CLEO 2.7
LEES 15F BABR 1.9
ABLIKIM 15X BES3 0.0

χ2

       4.6
(Confidence Level = 0.099)

0.12 0.13 0.14 0.15 0.16 0.17 0.18f+(0)∣∣∣Vcd

∣

∣

∣ in D0 → π− ℓ+νℓ

r1 ≡ a1/a0 in D0 → π− ℓ+νℓr1 ≡ a1/a0 in D0 → π− ℓ+νℓr1 ≡ a1/a0 in D0 → π− ℓ+νℓr1 ≡ a1/a0 in D0 → π− ℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT
−1.97±0.28 OUR AVERAGE−1.97±0.28 OUR AVERAGE−1.97±0.28 OUR AVERAGE−1.97±0.28 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.
−1.84±0.22±0.07 6.3k 1 ABLIKIM 15X BES3 ℓ=e, 3-parameter �t
−1.31±0.70±0.43 5.3k LEES 15F BABR ℓ=e, 3-parameter �t
−2.80±0.49±0.04 BESSON 09 CLEO ℓ=e, 3-parameter �t1The 2-parameter �t yields −2.04 ± 0.08 ± 0.03.

WEIGHTED AVERAGE
-1.97±0.28 (Error scaled by 1.4)

BESSON 09 CLEO 2.8
LEES 15F BABR 0.6
ABLIKIM 15X BES3 0.3

χ2

       3.8
(Confidence Level = 0.149)

-5 -4 -3 -2 -1 0 1 2r1 ≡ a1/a0 in D0 → π− ℓ+νℓr2 ≡ a1/a0 in D0 → π− ℓ+νℓr2 ≡ a1/a0 in D0 → π− ℓ+νℓr2 ≡ a1/a0 in D0 → π− ℓ+νℓr2 ≡ a1/a0 in D0 → π− ℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT
−0.2±2.2 OUR AVERAGE−0.2±2.2 OUR AVERAGE−0.2±2.2 OUR AVERAGE−0.2±2.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.
−1.4±1.5±0.5 6.3k ABLIKIM 15X BES3 ℓ=e, 3-parameter �t
−4.2±4.0±1.9 5.3k LEES 15F BABR ℓ=e, 3-parameter �t6 ±3 ±0 BESSON 09 CLEO ℓ=e, 3-parameter �t

WEIGHTED AVERAGE
-0.2±2.2 (Error scaled by 1.7)

BESSON 09 CLEO 4.3
LEES 15F BABR 0.8
ABLIKIM 15X BES3 0.6

χ2

       5.7
(Confidence Level = 0.059)

-20 -10 0 10 20 30r2 ≡ a1/a0 in D0 → π− ℓ+ νℓD0 REFERENCESD0 REFERENCESD0 REFERENCESD0 REFERENCESSTARIC 16 PL B753 412 M. Stari
 et al. (BELLE Collab.)AAIJ 15A PL B740 158 R. Aaij et al. (LHCb Collab.)AAIJ 15AA JHEP 1504 043 R. AAij et al. (LHCb Collab.)AAIJ 15AT JHEP 1510 055 R. AAij et al. (LHCb Collab.)ABLIKIM 15D PL B744 339 M. Ablikim et al. (BES III Collab.)ABLIKIM 15F PR D91 112015 M. Ablikim et al. (BES III Collab.)ABLIKIM 15X PR D92 072012 M. Ablikiim et al. (BES III Collab.)LEES 15F PR D91 052022 J.P. Lees et al. (BABAR Collab.)MALDE 15 PL B747 9 S. Malde et al. (BRIS, CERN, MADRA, OXF+)NAYAK 15 PL B740 1 M. Nayak et al. (MADRA, OXF, CERN, CMU+)AAIJ 14AK JHEP 1407 041 R. Aaij et al. (LHCb Collab.)AAIJ 14AL PRL 112 041801 R. Aaij et al. (LHCb Collab.)AAIJ 14B PL B728 234 R. Aaij et al. (LHCb Collab.)AAIJ 14BC JHEP 1410 005 R. Aaij et al. (LHCb Collab.)AAIJ 14C PL B728 585 R. Aaij et al. (LHCb Collab.)AALTONEN 14Q PR D90 111103 T. Aaltonen et al. (CDF Collab.)ABLIKIM 14C PL B734 227 M. Ablikim et al. (BES III Collab.)BONVICINI 14 PR D89 072002 G. Bonvi
ini et al. (CLEO Collab.)KO 14 PRL 112 111801 B.R. Ko et al. (BELLE Collab.)LIBBY 14 PL B731 197 J. Libby et al. (CLEO Collab.)NISAR 14 PRL 112 211601 N.K. Nisar et al. (BELLE Collab.)PENG 14 PR D89 091103 T. Peng et al. (BELLE Collab.)TOMARADZE 14 PR D89 031501 A. Tomaradze et al. (NWES, WAYN)AAIJ 13AD PL B723 33 R. Aaij et al. (LHCb Collab.)AAIJ 13AI PL B725 15 R. Aaij et al. (LHCb Collab.)AAIJ 13BR PL B726 623 R. Aaij et al. (LHCb Collab.)AAIJ 13CE PRL 111 251801 R. Aaij et al. (LHCb Collab.)AAIJ 13N PRL 110 101802 R. Aaij et al. (LHCb Collab.)AAIJ 13V JHEP 1306 065 R. Aaij et al. (LHCb Collab.)
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le ListingsD0AALTONEN 13AE PRL 111 231802 T. Aaltonen et al. (CDF Collab.)DOBBS 13 PRL 110 131802 S. Dobbs et al. (CLEO Collab.)LEES 13 PR D87 012004 J.P. Lees et al. (BABAR Collab.)LEES 13S PR D88 071104 J.P. Lees et al. (BABAR Collab.)WHITE 13 PR D88 051101 E. White et al. (BELLE Collab.)AAIJ 12G PRL 108 111602 R. Aaij et al. (LHCb Collab.)AAIJ 12K JHEP 1204 129 R. Aaij et al. (LHCb Collab.)AALTONEN 12AD PR D86 032007 T. Aaltonen et al. (CDF Collab.)AALTONEN 12B PR D85 012009 T. Aaltonen et al. (CDF Collab.)AALTONEN 12O PRL 109 111801 T. Aaltonen et al. (CDF Collab.)ARTUSO 12 PR D85 122002 M. Artuso et al. (CLEO Collab.)ASNER 12 PR D86 112001 D.M. Asner, et al (CLEO Collab.)INSLER 12 PR D85 092016 J. Insler et al. (CLEO Collab.)LEES 12L PR D85 091107 J.P. Lees et al. (BABAR Collab.)LEES 12Q PR D86 032001 J.P. Lees et al. (BABAR Collab.)PDG 12 PR D86 010001 J. Beringer et al. (PDG Collab.)KO 11 PRL 106 211801 B.R. Ko et al. (BELLE Collab.)LOWREY 11 PR D84 092005 N. Lowrey et al. (CLEO Collab.)WILLIAMS 11 PR D84 054015 M. Williams (LOIC)AALTONEN 10X PR D82 091105 T. Aaltonen et al. (CDF Collab.)ANASHIN 10A PL B686 84 V.V. Anashin et al. (VEPP-4M KEDR Collab.)ASNER 10 PR D81 052007 D.M. Asner et al. (CLEO Collab.)BHATTACHAR...10A PR D81 096008 B. Bhatta
harya, C.-W. Chiang, J.L. Rosner (CHIC+)DEL-AMO-SA... 10 PR D81 111103 P. del Amo San
hez et al. (BABAR Collab.)DEL-AMO-SA... 10D PRL 105 081803 P. del Amo San
hez et al. (BABAR Collab.)MENDEZ 10 PR D81 052013 H. Mendez et al. (CLEO Collab.)PETRIC 10 PR D81 091102 M. Petri
 et al. (BELLE Collab.)AUBERT 09AI PR D80 071103 B. Aubert et al. (BABAR Collab.)AUBERT 09AN PRL 103 211801 B. Aubert et al. (BABAR Collab.)BEDIAGA 09 PR D80 096006 I. Bediaga et al. (CBPF, NDAM)BESSON 09 PR D80 032005 D. Besson et al. (CLEO Collab.)Also PR D79 052010 J.Y. Ge et al. (CLEO Collab.)LOWREY 09 PR D80 031105 N. Lowrey et al. (CLEO Collab.)RUBIN 09 PR D79 097101 P. Rubin et al. (CLEO Collab.)ZUPANC 09 PR D80 052006 A. Zupan
 et al. (BELLE Collab.)AALTONEN 08E PRL 100 121802 T. Aaltonen et al. (CDF Collab.)ABLIKIM 08L PL B665 16 M. Ablikim et al. (BES Collab.)ARINSTEIN 08 PL B662 102 K. Arinstein et al. (BELLE Collab.)ARTUSO 08 PR D77 092003 M. Artuso et al. (CLEO Collab.)ASNER 08 PR D78 012001 D.M. Asner et al. (CLEO Collab.)AUBERT 08AL PR D78 034023 B. Aubert et al. (BABAR Collab.)AUBERT 08AO PR D78 051102 B. Aubert et al. (BABAR Collab.)AUBERT 08AZ PR D78 071101 B. Aubert et al. (BABAR Collab.)AUBERT 08L PRL 100 051802 B. Aubert et al. (BABAR Collab.)AUBERT 08M PRL 100 061803 B. Aubert et al. (BABAR Collab.)AUBERT 08U PR D78 011105 B. Aubert et al. (BABAR Collab.)BITENC 08 PR D77 112003 U. Biten
 et al. (BELLE Collab.)BONVICINI 08 PR D77 091106 G. Bonvi
ini et al. (CLEO Collab.)DOBBS 08 PR D77 112005 S. Dobbs et al. (CLEO Collab.)Also PRL 100 251802 D. Cronin-Hennessy et al. (CLEO Collab.)GASPERO 08 PR D78 014015 M. Gaspero et al. (ROMA, CINN, TELA)HE 08 PRL 100 091801 Q. He et al. (CLEO Collab.)PDG 08 PL B667 1 C. Amsler et al. (PDG Collab.)STARIC 08 PL B670 190 M. Stari
 et al. (BELLE Collab.)ABLIKIM 07G PL B658 1 M. Ablikim et al. (BES Collab.)ARTUSO 07A PRL 99 191801 M. Artuso et al. (CLEO Collab.)AUBERT 07AB PR D76 014018 B. Aubert et al. (BABAR Collab.)AUBERT 07BG PR D76 052005 B. Aubert et al. (BABAR Collab.)AUBERT 07BJ PRL 99 251801 B. Aubert et al. (BABAR Collab.)AUBERT 07T PR D76 011102 B. Aubert et al. (BABAR Collab.)AUBERT 07W PRL 98 211802 B. Aubert et al. (BABAR Collab.)CAWLFIELD 07 PRL 98 092002 C. Cawl�eld et al. (CLEO Collab.)DOBBS 07 PR D76 112001 S. Dobbs et al. (CLEO Collab.)LINK 07A PR D75 052003 J.M. Link et al. (FNAL FOCUS Collab.)STARIC 07 PRL 98 211803 M. Stari
 et al. (BELLE Collab.)ZHANG 07B PRL 99 131803 L.M. Zhang et al. (BELLE Collab.)ABLIKIM 06O EPJ C47 31 M. Ablikim et al. (BES Collab.)ABLIKIM 06U PL B643 246 M. Ablikim et al. (BES Collab.)ABULENCIA 06X PR D74 031109 A. Abulen
ia et al. (CDF Collab.)ADAM 06A PRL 97 251801 N.E. Adam et al. (CLEO Collab.)AUBERT,B 06N PRL 97 221803 B. Aubert et al. (BABAR Collab.)AUBERT,B 06X PR D74 091102 B. Aubert et al. (BABAR Collab.)CAWLFIELD 06A PR D74 031108 C. Cawl�eld et al. (CLEO Collab.)HUANG 06B PR D74 112005 G.S. Huang et al. (CLEO Collab.)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)RUBIN 06 PRL 96 081802 P. Rubin et al. (CLEO Collab.)WIDHALM 06 PRL 97 061804 L. Widhalm et al. (BELLE Collab.)ZHANG 06 PRL 96 151801 L.M. Zhang et al. (BELLE Collab.)ABLIKIM 05F PL B622 6 M. Ablikim et al. (BES Collab.)ABLIKIM 05P PL B625 196 M. Ablikim et al. (BES Collab.)ACOSTA 05C PRL 94 122001 D. A
osta et al. (FNAL CDF Collab.)ASNER 05 PR D72 012001 D.M. Asner et al. (CLEO Collab.)AUBERT,B 05J PR D72 052008 B. Aubert et al. (BABAR Collab.)BITENC 05 PR D72 071101 U. Biten
 et al. (BELLE Collab.)CAWLFIELD 05 PR D71 077101 C. Cawl�eld et al. (CLEO Collab.)COAN 05 PRL 95 181802 T.E. Coan et al. (CLEO Collab.)CRONIN-HEN... 05 PR D72 031102 D. Cronin-Hennessy et al. (CLEO Collab.)HE 05 PRL 95 121801 Q. He et al. (CLEO Collab.)Also PRL 96 199903 (errat.) Q. He et al. (CLEO Collab.)HUANG 05 PRL 94 011802 G.S. Huang et al. (CLEO Collab.)KAYIS-TOPAK...05 PL B626 24 A. Kayis-Topaksu et al. (CERN CHORUS Collab.)LI 05A PRL 94 071801 J. Li et al. (BELLE Collab.)LINK 05 PL B607 51 J.M. Link et al. (FNAL FOCUS Collab.)LINK 05A PL B607 59 J.M. Link et al. (FNAL FOCUS Collab.)LINK 05B PL B607 67 J.M. Link et al. (FNAL FOCUS Collab.)LINK 05E PL B622 239 J.M. Link et al. (FNAL FOCUS Collab.)LINK 05G PL B610 225 J.M. Link et al. (FNAL FOCUS Collab.)LINK 05H PL B618 23 J.M. Link et al. (FNAL FOCUS Collab.)ONENGUT 05 PL B613 105 G. Onengut et al. (CERN CHORUS Collab.)TIAN 05 PRL 95 231801 X.C. Tian et al. (BELLE Collab.)ABLIKIM 04C PL B597 39 M. Ablikim et al. (BEPC BES Collab.)ABT 04 PL B596 173 I. Abt et al. (HERA B Collab.)ASNER 04A PR D70 091101 D.M. Asner et al. (CLEO Collab.)AUBERT 04Q PR D69 051101 B. Aubert et al. (BABAR Collab.)AUBERT,B 04Q PR D70 091102 B. Aubert et al. (BABAR Collab.)AUBERT,B 04Y PRL 93 191801 B. Aubert et al. (BABAR Collab)LINK 04B PL B586 21 J.M. Link et al. (FNAL FOCUS Collab.)LINK 04D PL B586 191 J.M. Link et al. (FNAL FOCUS Collab.)RUBIN 04 PRL 93 111801 P. Rubin et al. (CLEO Collab.)TAJIMA 04 PRL 92 101803 O. Tajima et al. (BELLE Collab.)ACOSTA 03F PR D68 091101 D. A
osta et al. (CDF Collab.)AUBERT 03P PRL 91 121801 B. Aubert et al. (BABAR Collab.)AUBERT 03Z PRL 91 171801 B. Aubert et al. (BABAR Collab.)COAN 03 PRL 90 101801 T.E. Coan et al. (CLEO Collab.)LINK 03 PL B555 167 J.M. Link et al. (FNAL FOCUS Collab.)LINK 03B PL B556 7 J.M. Link et al. (FNAL FOCUS Collab.)LINK 03G PL B575 190 J.M. Link et al. (FNAL FOCUS Collab.)ABE 02I PRL 88 162001 K. Abe et al. (KEK BELLE Collab.)CSORNA 02 PR D65 092001 S.E. Csorna et al. (CLEO Collab.)LINK 02F PL B537 192 J.M. Link et al. (FNAL FOCUS Collab.)MURAMATSU 02 PRL 89 251802 H. Muramatsu et al. (CLEO Collab.)Also PRL 90 059901 (errat.) H. Muramatsu et al. (CLEO Collab.)

AITALA 01C PRL 86 3969 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 01D PR D64 112003 E.M. Aitala et al. (FNAL E791 Collab.)BONVICINI 01 PR D63 071101 G. Bonvi
ini et al. (CLEO Collab.)BRANDENB... 01 PRL 87 071802 G. Brandenburg et al. (CLEO Collab.)DYTMAN 01 PR D64 111101 S.A. Dytman et al. (CLEO Collab.)KOPP 01 PR D63 092001 S. Kopp et al. (CLEO Collab.)KUSHNIR... 01 PRL 86 5243 A. Kushnirenko et al. (FNAL SELEX Collab.)LINK 01 PRL 86 2955 J.M. Link et al. (FNAL FOCUS Collab.)BAI 00C PR D62 052001 J.Z. Bai et al. (BEPC BES Collab.)GODANG 00 PRL 84 5038 R. Godang et al. (CLEO Collab.)JUN 00 PRL 84 1857 S.Y. Jun et al. (FNAL SELEX Collab.)LINK 00 PL B485 62 J.M. Link et al. (FNAL FOCUS Collab.)LINK 00B PL B491 232 J.M. Link et al. (FNAL FOCUS Collab.)Also PL B495 443 (errat.) J.M. Link et al. (FNAL FOCUS Collab.)PRIPSTEIN 00 PR D61 032005 D. Pripstein et al. (FNAL E789 Collab.)AITALA 99E PRL 83 32 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 99G PL B462 401 E.M. Aitala et al. (FNAL E791 Collab.)BONVICINI 99 PRL 82 4586 G. Bonvi
ini et al. (CLEO Collab.)AITALA 98 PR D57 13 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 98C PL B421 405 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 98D PL B423 185 E.M. Aitala et al. (FNAL E791 Collab.)ARTUSO 98 PRL 80 3193 M. Artuso et al. (CLEO Collab.)ASNER 98 PR D58 092001 D.M. Asner et al. (CLEO Collab.)BARATE 98W PL B436 211 R. Barate et al. (ALEPH Collab.)COAN 98 PRL 80 1150 T.E. Coan et al. (CLEO Collab.)PDG 98 EPJ C3 1 C. Caso et al. (PDG Collab.)ADAMOVICH 97 PL B408 469 M.I. Adamovi
h et al. (CERN BEATRICE Collab.)BARATE 97C PL B403 367 R. Barate et al. (ALEPH Collab.)AITALA 96C PRL 77 2384 E.M. Aitala et al. (FNAL E791 Collab.)ALBRECHT 96C PL B374 249 H. Albre
ht et al. (ARGUS Collab.)ALEXOPOU... 96 PRL 77 2380 T. Alexopoulos et al. (FNAL E771 Collab.)ASNER 96B PR D54 4211 D.M. Asner et al. (CLEO Collab.)BARISH 96 PL B373 334 B.C. Barish et al. (CLEO Collab.)FRABETTI 96B PL B382 312 P.L. Frabetti et al. (FNAL E687 Collab.)FREYBERGER 96 PRL 76 3065 A. Freyberger et al. (CLEO Collab.)Also PRL 77 2147 (erratum) A. Freyberger et al. (CLEO Collab.)KUBOTA 96B PR D54 2994 Y. Kubota et al. (CLEO Collab.)ADAMOVICH 95 PL B353 563 M.I. Adamovi
h et al. (CERN BEATRICE Collab.)BARTELT 95 PR D52 4860 J.E. Bartelt et al. (CLEO Collab.)BUTLER 95 PR D52 2656 F. Butler et al. (CLEO Collab.)FRABETTI 95C PL B354 486 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 95G PL B364 127 P.L. Frabetti et al. (FNAL E687 Collab.)KODAMA 95 PL B345 85 K. Kodama et al. (FNAL E653 Collab.)ALBRECHT 94 PL B324 249 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 94F PL B340 125 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 94I ZPHY C64 375 H. Albre
ht et al. (ARGUS Collab.)FRABETTI 94C PL B321 295 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 94D PL B323 459 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 94G PL B331 217 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 94J PL B340 254 P.L. Frabetti et al. (FNAL E687 Collab.)KODAMA 94 PL B336 605 K. Kodama et al. (FNAL E653 Collab.)MISHRA 94 PR D50 R9 C.S. Mishra et al. (FNAL E789 Collab.)AKERIB 93 PRL 71 3070 D.S. Akerib et al. (CLEO Collab.)ALBRECHT 93D PL B308 435 H. Albre
ht et al. (ARGUS Collab.)ANJOS 93 PR D48 56 J.C. Anjos et al. (FNAL E691 Collab.)BEAN 93C PL B317 647 A. Bean et al. (CLEO Collab.)FRABETTI 93I PL B315 203 P.L. Frabetti et al. (FNAL E687 Collab.)KODAMA 93B PL B313 260 K. Kodama et al. (FNAL E653 Collab.)PROCARIO 93B PR D48 4007 M. Pro
ario et al. (CLEO Collab.)SELEN 93 PRL 71 1973 M.A. Selen et al. (CLEO Collab.)ADAMOVICH 92 PL B280 163 M.I. Adamovi
h et al. (CERN WA82 Collab.)ALBRECHT 92P ZPHY C56 7 H. Albre
ht et al. (ARGUS Collab.)ANJOS 92B PR D46 R1 J.C. Anjos et al. (FNAL E691 Collab.)ANJOS 92C PR D46 1941 J.C. Anjos et al. (FNAL E691 Collab.)BARLAG 92C ZPHY C55 383 S. Barlag et al. (ACCMOR Collab.)Also ZPHY C48 29 S. Barlag et al. (ACCMOR Collab.)COFFMAN 92B PR D45 2196 D.M. Co�man et al. (Mark III Collab.)Also PRL 64 2615 J. Adler et al. (Mark III Collab.)FRABETTI 92 PL B281 167 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 92B PL B286 195 P.L. Frabetti et al. (FNAL E687 Collab.)ALVAREZ 91B ZPHY C50 11 M.P. Alvarez et al. (CERN NA14/2 Collab.)AMMAR 91 PR D44 3383 R. Ammar et al. (CLEO Collab.)ANJOS 91 PR D43 R635 J.C. Anjos et al. (FNAL-TPS Collab.)ANJOS 91D PR D44 R3371 J.C. Anjos et al. (FNAL-TPS Collab.)BAI 91 PRL 66 1011 Z. Bai et al. (Mark III Collab.)COFFMAN 91 PL B263 135 D.M. Co�man et al. (Mark III Collab.)CRAWFORD 91B PR D44 3394 G. Crawford et al. (CLEO Collab.)DECAMP 91J PL B266 218 D. De
amp et al. (ALEPH Collab.)FRABETTI 91 PL B263 584 P.L. Frabetti et al. (FNAL E687 Collab.)KINOSHITA 91 PR D43 2836 K. Kinoshita et al. (CLEO Collab.)KODAMA 91 PRL 66 1819 K. Kodama et al. (FNAL E653 Collab.)ALBRECHT 90C ZPHY C46 9 H. Albre
ht et al. (ARGUS Collab.)ALEXANDER 90 PRL 65 1184 J. Alexander et al. (CLEO Collab.)ALVAREZ 90 ZPHY C47 539 M.P. Alvarez et al. (CERN NA14/2 Collab.)ANJOS 90D PR D42 2414 J.C. Anjos et al. (FNAL E691 Collab.)BARLAG 90C ZPHY C46 563 S. Barlag et al. (ACCMOR Collab.)ADLER 89 PRL 62 1821 J. Adler et al. (Mark III Collab.)ADLER 89C PR D40 906 J. Adler et al. (Mark III Collab.)ALBRECHT 89D ZPHY C43 181 H. Albre
ht et al. (ARGUS Collab.)ANJOS 89F PRL 62 1587 J.C. Anjos et al. (FNAL E691 Collab.)ABACHI 88 PL B205 411 S. Aba
hi et al. (HRS Collab.)ADLER 88 PR D37 2023 J. Adler et al. (Mark III Collab.)ADLER 88C PRL 60 89 J. Adler et al. (Mark III Collab.)ALBRECHT 88G PL B209 380 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 88I PL B210 267 H. Albre
ht et al. (ARGUS Collab.)ANJOS 88C PRL 60 1239 J.C. Anjos et al. (FNAL E691 Collab.)BORTOLETTO 88 PR D37 1719 D. Bortoletto et al. (CLEO Collab.)Also PR D39 1471 (erratum) D. Bortoletto et al. (CLEO Collab.)HAAS 88 PRL 60 1614 P. Haas et al. (CLEO Collab.)RAAB 88 PR D37 2391 J.R. Raab et al. (FNAL E691 Collab.)ADLER 87 PL B196 107 J. Adler et al. (Mark III Collab.)AGUILAR-... 87E ZPHY C36 551 M. Aguilar-Benitez et al. (LEBC-EHS Collab.)Also ZPHY C40 321 M. Aguilar-Benitez et al. (LEBC-EHS Collab.)AGUILAR-... 87F ZPHY C36 559 M. Aguilar-Benitez et al. (LEBC-EHS Collab.)Also ZPHY C38 520 (erratum)M. Aguilar-Benitez et al. (LEBC-EHS Collab.)BARLAG 87B ZPHY C37 17 S. Barlag et al. (ACCMOR Collab.)BECKER 87C PL B193 147 J.J. Be
ker et al. (Mark III Collab.)Also PL B198 590 (erratum) J.J. Be
ker et al. (Mark III Collab.)PALKA 87 PL B189 238 H. Palka et al. (ACCMOR Collab.)RILES 87 PR D35 2914 K. Riles et al. (Mark II Collab.)BAILEY 86 ZPHY C30 51 R. Bailey et al. (ACCMOR Collab.)BEBEK 86 PRL 56 1893 C. Bebek et al. (CLEO Collab.)LOUIS 86 PRL 56 1027 W.C. Louis et al. (PRIN, CHIC, ISU)ALBRECHT 85B PL 158B 525 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 85F PL 150B 235 H. Albre
ht et al. (ARGUS Collab.)AUBERT 85 PL 155B 461 J.J. Aubert et al. (EMC Collab.)BALTRUSAIT... 85E PRL 55 150 R.M. Baltrusaitis et al. (Mark III Collab.)BENVENUTI 85 PL 158B 531 A.C. Benvenuti et al. (BCDMS Collab.)SUMMERS 84 PRL 52 410 D.J. Summers et al. (UCSB, CARL, COLO+)BAILEY 83B PL 132B 237 R. Bailey et al. (ACCMOR Collab.)BODEK 82 PL 113B 82 A. Bodek et al. (ROCH, CIT, CHIC, FNAL+)SCHINDLER 81 PR D24 78 R.H. S
hindler et al. (Mark II Collab.)



1095109510951095See key on page 601 MesonParti
le ListingsD0,D∗(2007)0,D∗(2010)±AVERY 80 PRL 44 1309 P. Avery et al. (ILL, FNAL, COLU)ABRAMS 79D PRL 43 481 G.S. Abrams et al. (Mark II Collab.)VUILLEMIN 78 PRL 41 1149 V. Vuillemin et al. (LGW Collab.)PERUZZI 77 PRL 39 1301 I. Peruzzi et al. (LGW Collab.)PICCOLO 77 PL 70B 260 M. Pi

olo et al. (Mark I Collab.)MOSTELLER 48 Am.Stat. 3 No.5 30 R.A. Fisher, F. MostellerOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSRICHMAN 95 RMP 67 893 J.D. Ri
hman, P.R. Bur
hat (UCSB, STAN)ROSNER 95 CNPP 21 369 J. Rosner (CHIC)D∗(2007)0 I (JP ) = 12 (1−)I, J, P need 
on�rmation.J 
onsistent with 1, value 0 ruled out (NGUYEN 77).D∗(2007)0 MASSD∗(2007)0 MASSD∗(2007)0 MASSD∗(2007)0 MASSThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) DOCUMENT ID TECN COMMENT2006.85±0.05 OUR FIT2006.85±0.05 OUR FIT2006.85±0.05 OUR FIT2006.85±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.1.
• • • We do not use the following data for averages, �ts, limits, et
. • • •2006 ±1.5 1 GOLDHABER 77 MRK1 e+ e−1From simultaneous �t to D∗(2010)+, D∗(2007)0, D+, and D0.mD∗(2007)0 − mD0mD∗(2007)0 − mD0mD∗(2007)0 − mD0mD∗(2007)0 − mD0The �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT142.016±0.030 OUR FIT142.016±0.030 OUR FIT142.016±0.030 OUR FIT142.016±0.030 OUR FIT Error in
ludes s
ale fa
tor of 1.5.142.016±0.030 OUR AVERAGE142.016±0.030 OUR AVERAGE142.016±0.030 OUR AVERAGE142.016±0.030 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.142.007±0.015±0.014 10K 2 TOMARADZE 15 CLEO e+ e− → hadrons142.2 ±0.3 ±0.2 145 ALBRECHT 95F ARG e+ e− → hadrons142.12 ±0.05 ±0.05 1176 BORTOLETTO92B CLE2 e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •142.2 ±2.0 SADROZINSKI 80 CBAL D∗0 → D0π0142.7 ±1.7 3 GOLDHABER 77 MRK1 e+ e−2Obtained by analyzing CLEO-
 data but not authored by the CLEO Collaboration . Thisvalue 
omes from the average of the results for two de
ay modes, D0 → K−π+ andD0 → K−π+π−π+.3From simultaneous �t to D∗(2010)+, D∗(2007)0, D+, and D0.D∗(2007)0 WIDTHD∗(2007)0 WIDTHD∗(2007)0 WIDTHD∗(2007)0 WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<2.1<2.1<2.1<2.1 90 4 ABACHI 88B HRS D∗0 → D+π−4Assuming mD∗0 = 2007.2 ± 2.1 MeV/
2.D∗(2007)0 DECAY MODESD∗(2007)0 DECAY MODESD∗(2007)0 DECAY MODESD∗(2007)0 DECAY MODESD∗(2007)0 modes are 
harge 
onjugates of modes below.Mode Fra
tion (�i /�)�1 D0π0 (64.7±0.9) %�2 D0 γ (35.3±0.9) %CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 2 bran
hing ratios uses 5 measurements and one
onstraint to determine 2 parameters. The overall �t has a χ2 =2.5 for 4 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −100x1 D∗(2007)0 BRANCHING RATIOSD∗(2007)0 BRANCHING RATIOSD∗(2007)0 BRANCHING RATIOSD∗(2007)0 BRANCHING RATIOS�(D0π0)/�(D0 γ
) �1/�2�(D0π0)/�(D0 γ
) �1/�2�(D0π0)/�(D0 γ
) �1/�2�(D0π0)/�(D0 γ
) �1/�2VALUE EVTS DOCUMENT ID TECN COMMENT1.83±0.07 OUR FIT1.83±0.07 OUR FIT1.83±0.07 OUR FIT1.83±0.07 OUR FIT Error in
ludes s
ale fa
tor of 1.1.1.85±0.07 OUR AVERAGE1.85±0.07 OUR AVERAGE1.85±0.07 OUR AVERAGE1.85±0.07 OUR AVERAGE1.90±0.07±0.05 4.9k ABLIKIM 15B BES3 10.6 e+ e− → hadrons1.74±0.02±0.13 AUBERT,BE 05G BABR 10.6 e+ e− → hadrons

�(D0π0)/�total �1/��(D0π0)/�total �1/��(D0π0)/�total �1/��(D0π0)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.647±0.009 OUR FIT0.647±0.009 OUR FIT0.647±0.009 OUR FIT0.647±0.009 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.655±0.008±0.005 3.2k 5 ABLIKIM 15B BES3 e+ e− → hadrons0.635±0.003±0.017 69k 5 AUBERT,BE 05G BABR 10.6 e+ e− → hadrons0.596±0.035±0.028 858 6 ALBRECHT 95F ARG e+ e− → hadrons0.636±0.023±0.033 1097 6 BUTLER 92 CLE2 e+ e− → hadrons�(D0 γ

)/�total �2/��(D0 γ
)/�total �2/��(D0 γ
)/�total �2/��(D0 γ
)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENT0.353±0.009 OUR FIT0.353±0.009 OUR FIT0.353±0.009 OUR FIT0.353±0.009 OUR FIT0.381±0.029 OUR AVERAGE0.381±0.029 OUR AVERAGE0.381±0.029 OUR AVERAGE0.381±0.029 OUR AVERAGE0.404±0.035±0.028 456 6 ALBRECHT 95F ARG e+ e− → hadrons0.364±0.023±0.033 621 6 BUTLER 92 CLE2 e+ e− → hadrons0.37 ±0.08 ±0.08 ADLER 88D MRK3 e+ e−

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.345±0.008±0.005 1.8k 5 ABLIKIM 15B BES3 e+ e− → hadrons0.365±0.003±0.017 68k 5 AUBERT,BE 05G BABR 10.6 e+ e− → hadrons0.47 ±0.23 LOW 87 HRS 29 GeV e+ e−0.53 ±0.13 BARTEL 85G JADE e+ e−, hadrons0.47 ±0.12 COLES 82 MRK2 e+ e−0.45 ±0.15 GOLDHABER 77 MRK1 e+ e−5Derived from the ratio �(D0π0) / �(D0 γ) assuming that the bran
hing fra
tions ofD∗0 → D0π0 and D∗0 → D0 γ de
ays sum to 100%6The BUTLER 92 and ALBRECHT 95F bran
hing ratios are not independent, they havebeen 
onstrained by the authors to sum to 100%.D∗(2007)0 REFERENCESD∗(2007)0 REFERENCESD∗(2007)0 REFERENCESD∗(2007)0 REFERENCESABLIKIM 15B PR D91 031101 M. Ablikim et al. (BES III Collab.)TOMARADZE 15 PR D91 011102 A. Tomaradze et al. (NWES)AUBERT,BE 05G PR D72 091101 B. Aubert et al. (BABAR Collab.)ALBRECHT 95F ZPHY C66 63 H. Albre
ht et al. (ARGUS Collab.)BORTOLETTO 92B PRL 69 2046 D. Bortoletto et al. (CLEO Collab.)BUTLER 92 PRL 69 2041 F. Butler et al. (CLEO Collab.)ABACHI 88B PL B212 533 S. Aba
hi et al. (ANL, IND, MICH, PURD+)ADLER 88D PL B208 152 J. Adler et al. (Mark III Collab.)LOW 87 PL B183 232 E.H. Low et al. (HRS Collab.)BARTEL 85G PL 161B 197 W. Bartel et al. (JADE Collab.)COLES 82 PR D26 2190 M.W. Coles et al. (LBL, SLAC)SADROZINSKI 80 Madison Conf. 681 H.F.W. Sadrozinski et al. (PRIN, CIT+)GOLDHABER 77 PL 69B 503 G. Goldhaber et al. (Mark I Collab.)NGUYEN 77 PRL 39 262 H.K. Nguyen et al. (LBL, SLAC) JD∗(2010)± I (JP ) = 12 (1−)I, J, P need 
on�rmation.D∗(2010)± MASSD∗(2010)± MASSD∗(2010)± MASSD∗(2010)± MASSThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) DOCUMENT ID TECN CHG COMMENT2010.26±0.05 OUR FIT2010.26±0.05 OUR FIT2010.26±0.05 OUR FIT2010.26±0.05 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2008 ±3 1 GOLDHABER 77 MRK1 ± e+ e−2008.6 ±1.0 2 PERUZZI 77 LGW ± e+ e−1From simultaneous �t to D∗(2010)+, D∗(2007)0, D+, and D0; not independent ofFELDMAN 77B mass di�eren
e below.2PERUZZI 77 mass not independent of FELDMAN 77B mass di�eren
e below and PE-RUZZI 77 D0 mass value. mD∗(2010)+ − mD+mD∗(2010)+ − mD+mD∗(2010)+ − mD+mD∗(2010)+ − mD+The �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT140.68±0.08 OUR FIT140.68±0.08 OUR FIT140.68±0.08 OUR FIT140.68±0.08 OUR FIT140.64±0.08±0.06140.64±0.08±0.06140.64±0.08±0.06140.64±0.08±0.06 620 BORTOLETTO92B CLE2 e+ e− → hadronsmD∗(2010)+ − mD0mD∗(2010)+ − mD0mD∗(2010)+ − mD0mD∗(2010)+ − mD0The �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT145.4257±0.0017 OUR FIT145.4257±0.0017 OUR FIT145.4257±0.0017 OUR FIT145.4257±0.0017 OUR FIT145.4258±0.0020 OUR AVERAGE145.4258±0.0020 OUR AVERAGE145.4258±0.0020 OUR AVERAGE145.4258±0.0020 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.145.4259±0.0004±0.0017 312.8k LEES 13X BABR D∗± → D0π± →(K π,K 3π)π±145.412 ±0.002 ±0.012 ANASTASSOV 02 CLE2 D∗± → D0π± →(K π) π±145.54 ±0.08 611 3 ADINOLFI 99 BEAT D∗± → D0π±145.45 ±0.02 3 BREITWEG 99 ZEUS D∗± → D0π± →(K π)π±



1096109610961096MesonParti
le ListingsD∗(2010)±,D∗0(2400)0145.42 ±0.05 3 BREITWEG 99 ZEUS D∗± → D0π± →(K− 3π)π±145.5 ±0.15 103 4 ADLOFF 97B H1 D∗± → D0π±145.44 ±0.08 152 4 BREITWEG 97 ZEUS D∗± → D0π±,D0 → K− 3π145.42 ±0.11 199 4 BREITWEG 97 ZEUS D∗± → D0π±,D0 → K−π+145.4 ±0.2 48 4 DERRICK 95 ZEUS D∗± → D0π±145.39 ±0.06 ±0.03 BARLAG 92B ACCM π− 230 GeV145.5 ±0.2 115 4 ALEXANDER 91B OPAL D∗± → D0π±145.30 ±0.06 4 DECAMP 91J ALEP D∗± → D0π±145.40 ±0.05 ±0.10 ABACHI 88B HRS D∗± → D0π±145.46 ±0.07 ±0.03 ALBRECHT 85F ARG D∗± → D0π+145.5 ±0.3 28 BAILEY 83 SPEC D∗± → D0π±145.5 ±0.3 60 FITCH 81 SPEC π−A145.3 ±0.5 30 FELDMAN 77B MRK1 D∗+ → D0π+
• • • We do not use the following data for averages, �ts, limits, et
. • • •145.4256±0.0006±0.0017 138.5k LEES 13X BABR D∗± → D0π± →(K−π+)π±145.4266±0.0005±0.0019 174.3k LEES 13X BABR D∗± → D0π± →(K− 2π+π−)π±145.44 ±0.09 122 4 BREITWEG 97B ZEUS D∗± → D0π±,D0 → K−π+145.8 ±1.5 16 AHLEN 83 HRS D∗+ → D0π+145.1 ±1.8 12 BAILEY 83 SPEC D∗± → D0π±145.1 ±0.5 14 BAILEY 83 SPEC D∗± → D0π±145.5 ±0.5 14 YELTON 82 MRK2 29 e+ e− →K−π+
∼ 145.5 AVERY 80 SPEC γA145.2 ±0.6 2 BLIETSCHAU 79 BEBC ν p3Statisti
al errors only.4 Systemati
 error not evaluated.mD∗(2010)+ − mD∗(2007)0mD∗(2010)+ − mD∗(2007)0mD∗(2010)+ − mD∗(2007)0mD∗(2010)+ − mD∗(2007)0VALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.6±1.8 5 PERUZZI 77 LGW e+ e−5Not independent of FELDMAN 77B mass di�eren
e above, PERUZZI 77 D0 mass, andGOLDHABER 77 D∗(2007)0 mass.D∗(2010)± WIDTHD∗(2010)± WIDTHD∗(2010)± WIDTHD∗(2010)± WIDTHVALUE (keV) CL% EVTS DOCUMENT ID TECN COMMENT83.4±1.8 OUR AVERAGE83.4±1.8 OUR AVERAGE83.4±1.8 OUR AVERAGE83.4±1.8 OUR AVERAGE83.3±1.2± 1.4 312.8k 6 LEES 13X BABR D∗± → D0π± →(K π,K 3π)π±96 ±4 ±22 6 ANASTASSOV 02 CLE2 D∗± → D0π± →(K π) π±
• • • We do not use the following data for averages, �ts, limits, et
. • • •83.4±1.7± 1.5 138.5k 6 LEES 13X BABR D∗± → D0π± →(K−π+)π±83.2±1.5± 2.6 174.3k 6 LEES 13X BABR D∗± → D0π± →(K− 2π+π−)π±
<131 90 110 BARLAG 92B ACCM π− 230 GeV6 Ignoring the ele
tromagneti
 
ontribution from D∗± → D± γ.D∗(2010)± DECAY MODESD∗(2010)± DECAY MODESD∗(2010)± DECAY MODESD∗(2010)± DECAY MODESD∗(2010)− modes are 
harge 
onjugates of the modes below.Mode Fra
tion (�i /�)�1 D0π+ (67.7±0.5) %�2 D+π0 (30.7±0.5) %�3 D+ γ ( 1.6±0.4) %CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 3 bran
hing ratios uses 6 measurements and one
onstraint to determine 3 parameters. The overall �t has a χ2 =0.3 for 4 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −62x3 −43 −44x1 x2

D∗(2010)+ BRANCHING RATIOSD∗(2010)+ BRANCHING RATIOSD∗(2010)+ BRANCHING RATIOSD∗(2010)+ BRANCHING RATIOS�(D0π+)/�total �1/��(D0π+)/�total �1/��(D0π+)/�total �1/��(D0π+)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.677 ±0.005 OUR FIT0.677 ±0.005 OUR FIT0.677 ±0.005 OUR FIT0.677 ±0.005 OUR FIT0.677 ±0.006 OUR AVERAGE0.677 ±0.006 OUR AVERAGE0.677 ±0.006 OUR AVERAGE0.677 ±0.006 OUR AVERAGE0.6759±0.0029±0.0064 7,8,9 BARTELT 98 CLE2 e+ e−0.688 ±0.024 ±0.013 ALBRECHT 95F ARG e+ e− → hadrons0.681 ±0.010 ±0.013 7 BUTLER 92 CLE2 e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.57 ±0.04 ±0.04 ADLER 88D MRK3 e+ e−0.44 ±0.10 COLES 82 MRK2 e+ e−0.6 ±0.15 9 GOLDHABER 77 MRK1 e+ e−�(D+π0)/�total �2/��(D+π0)/�total �2/��(D+π0)/�total �2/��(D+π0)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENT0.307 ±0.005 OUR FIT0.307 ±0.005 OUR FIT0.307 ±0.005 OUR FIT0.307 ±0.005 OUR FIT0.3073±0.0013±0.00620.3073±0.0013±0.00620.3073±0.0013±0.00620.3073±0.0013±0.0062 7,8,9 BARTELT 98 CLE2 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.312 ±0.011 ±0.008 1404 ALBRECHT 95F ARG e+ e− → hadrons0.308 ±0.004 ±0.008 410 7 BUTLER 92 CLE2 e+ e− → hadrons0.26 ±0.02 ±0.02 ADLER 88D MRK3 e+ e−0.34 ±0.07 COLES 82 MRK2 e+ e−�(D+ γ

)/�total �3/��(D+ γ
)/�total �3/��(D+ γ
)/�total �3/��(D+ γ
)/�total �3/�VALUE CL% EVTS DOCUMENT ID TECN COMMENT0.016 ±0.004 OUR FIT0.016 ±0.004 OUR FIT0.016 ±0.004 OUR FIT0.016 ±0.004 OUR FIT0.016 ±0.005 OUR AVERAGE0.016 ±0.005 OUR AVERAGE0.016 ±0.005 OUR AVERAGE0.016 ±0.005 OUR AVERAGE0.0168±0.0042±0.0029 7,8 BARTELT 98 CLE2 e+ e−0.011 ±0.014 ±0.016 12 7 BUTLER 92 CLE2 e+ e− →hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.052 90 ALBRECHT 95F ARG e+ e− →hadrons0.17 ±0.05 ±0.05 ADLER 88D MRK3 e+ e−0.22 ±0.12 10 COLES 82 MRK2 e+ e−7The bran
hing ratios are not independent, they have been 
onstrained by the authors tosum to 100%.8 Systemati
 error in
ludes theoreti
al error on the predi
tion of the ratio of hadroni
modes.9Assuming that isospin is 
onserved in the de
ay.10Not independent of �(D0π+)/�total and �(D+π0)/�total measurement.D∗(2010)± REFERENCESD∗(2010)± REFERENCESD∗(2010)± REFERENCESD∗(2010)± REFERENCESLEES 13X PRL 111 111801 J.P. Lees et al. (BABAR Collab.)Also PR D88 052003 J.P. Lees et al. (BABAR Collab.)Also PR D88 079902 (errat.) J.P. Lees et al. (BABAR Collab.)ANASTASSOV 02 PR D65 032003 A. Anastassov et al. (CLEO Collab.)ADINOLFI 99 NP B547 3 M. Adinol� et al. (Beatri
e Collab.)BREITWEG 99 EPJ C6 67 J. Breitweg et al. (ZEUS Collab.)BARTELT 98 PRL 80 3919 J. Bartelt et al. (CLEO Collab.)ADLOFF 97B ZPHY C72 593 C. Adlo� et al. (H1 Collab.)BREITWEG 97 PL B401 192 J. Breitweg et al. (ZEUS Collab.)BREITWEG 97B PL B407 402 J. Breitweg et al. (ZEUS Collab.)ALBRECHT 95F ZPHY C66 63 H. Albre
ht et al. (ARGUS Collab.)DERRICK 95 PL B349 225 M. Derri
k et al. (ZEUS Collab.)BARLAG 92B PL B278 480 S. Barlag et al. (ACCMOR Collab.)BORTOLETTO 92B PRL 69 2046 D. Bortoletto et al. (CLEO Collab.)BUTLER 92 PRL 69 2041 F. Butler et al. (CLEO Collab.)ALEXANDER 91B PL B262 341 G. Alexander et al. (OPAL Collab.)DECAMP 91J PL B266 218 D. De
amp et al. (ALEPH Collab.)ABACHI 88B PL B212 533 S. Aba
hi et al. (ANL, IND, MICH, PURD+)ADLER 88D PL B208 152 J. Adler et al. (Mark III Collab.)ALBRECHT 85F PL 150B 235 H. Albre
ht et al. (ARGUS Collab.)AHLEN 83 PRL 51 1147 S.P. Ahlen et al. (ANL, IND, LBL+)BAILEY 83 PL 132B 230 R. Bailey et al. (AMST, BRIS, CERN, CRAC+)COLES 82 PR D26 2190 M.W. Coles et al. (LBL, SLAC)YELTON 82 PRL 49 430 J.M. Yelton et al. (SLAC, LBL, UCB+)FITCH 81 PRL 46 761 V.L. Fit
h et al. (PRIN, SACL, TORI+)AVERY 80 PRL 44 1309 P. Avery et al. (ILL, FNAL, COLU)BLIETSCHAU 79 PL 86B 108 J. Bliets
hau et al. (AACH3, BONN, CERN+)FELDMAN 77B PRL 38 1313 G.J. Feldman et al. (Mark I Collab.)GOLDHABER 77 PL 69B 503 G. Goldhaber et al. (Mark I Collab.)PERUZZI 77 PRL 39 1301 I. Peruzzi et al. (LGW Collab.)D∗0(2400)0 I (JP ) = 12 (0+)JP = 0+ assignment favored (ABE 04D).D∗0(2400)0 MASSD∗0(2400)0 MASSD∗0(2400)0 MASSD∗0(2400)0 MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2318±29 OUR AVERAGE2318±29 OUR AVERAGE2318±29 OUR AVERAGE2318±29 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.2297± 8±20 3.4k AUBERT 09AB BABR B− → D+π−π−2308±17±32 ABE 04D BELL B− → D+π−π−2407±21±35 9.8k LINK 04A FOCS γ A



1097109710971097See key on page 601 MesonParti
le ListingsD∗0(2400)0,D∗0(2400)±,D1(2420)0
WEIGHTED AVERAGE
2318±29 (Error scaled by 1.7)

LINK 04A FOCS 4.7
ABE 04D BELL 0.1
AUBERT 09AB BABR 1.0

χ2

       5.8
(Confidence Level = 0.056)

2200 2300 2400 2500 2600 2700D∗0(2400)0 MASS (MeV)D∗0(2400)0 WIDTHD∗0(2400)0 WIDTHD∗0(2400)0 WIDTHD∗0(2400)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT267±40 OUR AVERAGE267±40 OUR AVERAGE267±40 OUR AVERAGE267±40 OUR AVERAGE273±12±48 3.4k AUBERT 09AB BABR B− → D+π−π−276±21±63 ABE 04D BELL B− → D+π−π−240±55±59 9.8k LINK 04A FOCS γ AD∗0(2400)0 DECAY MODESD∗0(2400)0 DECAY MODESD∗0(2400)0 DECAY MODESD∗0(2400)0 DECAY MODESMode Fra
tion (�i /�)�1 D+π− seenD∗0(2400)0 REFERENCESD∗0(2400)0 REFERENCESD∗0(2400)0 REFERENCESD∗0(2400)0 REFERENCESAUBERT 09AB PR D79 112004 B. Aubert et al. (BABAR Collab.)ABE 04D PR D69 112002 K. Abe et al. (BELLE Collab.)LINK 04A PL B586 11 J.M. Link et al. (FOCUS Collab.)D∗0(2400)± I (JP ) = 12 (0+)OMITTED FROM SUMMARY TABLEJ, P need 
on�rmation.D∗0(2400)± MASSD∗0(2400)± MASSD∗0(2400)± MASSD∗0(2400)± MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2351± 7 OUR AVERAGE2351± 7 OUR AVERAGE2351± 7 OUR AVERAGE2351± 7 OUR AVERAGE2360±15±30 1 AAIJ 15X LHCB B0 → D0K+π−2349± 6± 4 2 AAIJ 15Y LHCB B0 → D0π+π−2403±14±35 18.8k LINK 04A FOCS γ A
• • • We do not use the following data for averages, �ts, limits, et
. • • •2354± 7±11 3 AAIJ 15Y LHCB B0 → D0π+π−1From the Dalitz plot analysis in
luding various K∗ and D∗∗ mesons as well as broadstru
tures in the K π S-wave and the Dπ S- and P-waves.2Modeling the π+π− S-wave with the Isobar formalism.3Modeling the π+π− S-wave with the K-matrix formalism.D∗0(2400)± WIDTHD∗0(2400)± WIDTHD∗0(2400)± WIDTHD∗0(2400)± WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT230±17 OUR AVERAGE230±17 OUR AVERAGE230±17 OUR AVERAGE230±17 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.255±26±51 1 AAIJ 15X LHCB B0 → D0K+π−217±13±13 2 AAIJ 15Y LHCB B0 → D0π+π−283±24±34 18.8k LINK 04A FOCS γ A
• • • We do not use the following data for averages, �ts, limits, et
. • • •230±15±21 3 AAIJ 15Y LHCB B0 → D0π+π−1From the Dalitz plot analysis in
luding various K∗ and D∗∗ mesons as well as broadstru
tures in the K π S-wave and the Dπ S- and P-waves.2Modeling the π+π− S-wave with the Isobar formalism.3Modeling the π+π− S-wave with the K-matrix formalism.D∗0(2400)± DECAY MODESD∗0(2400)± DECAY MODESD∗0(2400)± DECAY MODESD∗0(2400)± DECAY MODESMode Fra
tion (�i /�)�1 D0π+ seen

D∗0(2400)± REFERENCESD∗0(2400)± REFERENCESD∗0(2400)± REFERENCESD∗0(2400)± REFERENCESAAIJ 15X PR D92 012012 R. Aaij et al. (LHCb Collab.)AAIJ 15Y PR D92 032002 R. Aaij et al. (LHCb Collab.)LINK 04A PL B586 11 J.M. Link et al. (FOCUS Collab.)D1(2420)0 I (JP ) = 12 (1+)I needs 
on�rmation.D1(2420)0 MASSD1(2420)0 MASSD1(2420)0 MASSD1(2420)0 MASSThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2420.8±0.5 OUR FIT2420.8±0.5 OUR FIT2420.8±0.5 OUR FIT2420.8±0.5 OUR FIT Error in
ludes s
ale fa
tor of 1.3.2420.5±0.6 OUR AVERAGE2420.5±0.6 OUR AVERAGE2420.5±0.6 OUR AVERAGE2420.5±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.2419.6±0.1±0.7 210k AAIJ 13CC LHCB pp → D∗+π−X2423.1±1.5+0.4
−1.0 2.7k 1 ABRAMOWICZ13 ZEUS e± p → D(∗)+π−X2420.1±0.1±0.8 103k DEL-AMO-SA...10P BABR e+ e− → D∗+π−X2426 ±3 ±1 151 ABE 05A BELL B− → D0π+π−π−2421.4±1.5±0.9 2 ABE 04D BELL B− → D∗+π−π−2421 +1

−2 ±2 286 AVERY 94C CLE2 e+ e− → D∗+π−X2422 ±2 ±2 51 FRABETTI 94B E687 γBe → D∗+π−X2428 ±3 ±2 279 AVERY 90 CLEO e+ e− → D∗+π−X2414 ±2 ±5 171 ALBRECHT 89H ARG e+ e− → D∗+π−X2428 ±8 ±5 171 ANJOS 89C TPS γN → D∗+π−X
• • • We do not use the following data for averages, �ts, limits, et
. • • •2420.5±2.1±0.9 3110± 340 3 CHEKANOV 09 ZEUS e± p → D∗+π−X2421.7±0.7±0.6 7.5k ABULENCIA 06A CDF 1900 pp → D∗+π−X2425 ±3 235 4 ABREU 98M DLPH e+ e−1From the 
ombined �t of the M(D+π−) and M(D∗+π−) distributions. and AD2 �xedto the theoreti
al predi
tion of −1.2 Fit in
ludes the 
ontribution from D∗1(2430)0.3Cal
ulated using the mass di�eren
e m(D01) − m(D∗+)PDG reported below andm(D∗+)PDG = 2010.27 ± 0.17 MeV. The 0.17 MeV un
ertainty of the PDG massvalue should be added to the experimental un
ertainty of 0.9 MeV.4No systemati
 error given.

WEIGHTED AVERAGE
2420.5±0.6 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ANJOS 89C TPS
ALBRECHT 89H ARG
AVERY 90 CLEO 4.3
FRABETTI 94B E687 0.3
AVERY 94C CLE2 0.0
ABE 04D BELL 0.3
ABE 05A BELL 3.0
DEL-AMO-SA... 10P BABR 0.2
ABRAMOWICZ 13 ZEUS 2.1
AAIJ 13CC LHCB 1.6

χ2

      11.9
(Confidence Level = 0.104)

2410 2415 2420 2425 2430 2435 2440D1(2420)0 mass (MeV) mD01 − mD∗+mD01 − mD∗+mD01 − mD∗+mD01 − mD∗+The �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE EVTS DOCUMENT ID TECN COMMENT410.6±0.5 OUR FIT410.6±0.5 OUR FIT410.6±0.5 OUR FIT410.6±0.5 OUR FIT Error in
ludes s
ale fa
tor of 1.3.411.5±0.8 OUR AVERAGE411.5±0.8 OUR AVERAGE411.5±0.8 OUR AVERAGE411.5±0.8 OUR AVERAGE410.2±2.1±0.9 3110± 340 CHEKANOV 09 ZEUS e± p → D∗+π−X411.7±0.7±0.4 7.5k ABULENCIA 06A CDF 1900 pp → D∗+π−X



1098109810981098MesonParti
le ListingsD1(2420)0,D1(2420)±D1(2420)0 WIDTHD1(2420)0 WIDTHD1(2420)0 WIDTHD1(2420)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT31.7± 2.5 OUR AVERAGE31.7± 2.5 OUR AVERAGE31.7± 2.5 OUR AVERAGE31.7± 2.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.5. See the ideogram below.35.2± 0.4± 0.9 210k AAIJ 13CC LHCB pp → D∗+π−X38.8± 5.0+ 1.9
− 5.4 2.7k 1 ABRAMOWICZ13 ZEUS e± p → D(∗)+π−X31.4± 0.5± 1.3 103k DEL-AMO-SA...10P BABR e+ e− → D∗+π−X20.0± 1.7± 1.3 7.5k ABULENCIA 06A CDF 1900 pp → D∗+π−X24 ± 7 ± 8 151 ABE 05A BELL B− → D0π+π−π−23.7± 2.7± 4.0 2 ABE 04D BELL B− → D∗+π−π−20 + 6

− 5 ± 3 286 AVERY 94C CLE2 e+ e− → D∗+π−X15 ± 8 ± 4 51 FRABETTI 94B E687 γBe → D∗+π−X23 + 8
− 6 +10

− 3 279 AVERY 90 CLEO e+ e− → D∗+π−X13 ± 6 +10
− 5 171 ALBRECHT 89H ARG e+ e− → D∗+π−X

• • • We do not use the following data for averages, �ts, limits, et
. • • •53.2± 7.2+ 3.3
− 4.9 3110± 340 CHEKANOV 09 ZEUS e± p → D∗+π−X58 ±14 ±10 171 ANJOS 89C TPS γN → D∗+π−X1From the 
ombined �t of the M(D+π−) and M(D∗+π−) distributions. and AD2 �xedto the theoreti
al predi
tion of −1.2 Fit in
ludes the 
ontribution from D∗1(2430)0.

WEIGHTED AVERAGE
31.7±2.5 (Error scaled by 3.5)

ALBRECHT 89H ARG
AVERY 90 CLEO
FRABETTI 94B E687
AVERY 94C CLE2 3.0
ABE 04D BELL 2.7
ABE 05A BELL
ABULENCIA 06A CDF 29.8
DEL-AMO-SA... 10P BABR 0.0
ABRAMOWICZ 13 ZEUS
AAIJ 13CC LHCB 12.8

χ2

      48.4
(Confidence Level < 0.0001)

0 10 20 30 40 50 60D1(2420)0 WIDTH (MeV)D1(2420)0 DECAY MODESD1(2420)0 DECAY MODESD1(2420)0 DECAY MODESD1(2420)0 DECAY MODESD1(2420)0 modes are 
harge 
onjugates of modes below.Mode Fra
tion (�i /�)�1 D∗(2010)+π− seen�2 D0π+π− seen�3 D0 ρ0�4 D0 f0(500)�5 D∗0(2400)+π−�6 D+π− not seen�7 D∗0π+π− not seenD1(2420)0 BRANCHING RATIOSD1(2420)0 BRANCHING RATIOSD1(2420)0 BRANCHING RATIOSD1(2420)0 BRANCHING RATIOS�(D∗(2010)+π−)/�total �1/��(D∗(2010)+π−)/�total �1/��(D∗(2010)+π−)/�total �1/��(D∗(2010)+π−)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen ACKERSTAFF 97W OPAL e+ e− → D∗+π−Xseenseenseenseen AVERY 90 CLEO e+ e− → D∗+π−Xseenseenseenseen ALBRECHT 89H ARG e+ e− → D∗π−Xseenseenseenseen ANJOS 89C TPS γN → D∗+π−X�(D+π−)/�(D∗(2010)+π−) �6/�1�(D+π−)/�(D∗(2010)+π−) �6/�1�(D+π−)/�(D∗(2010)+π−) �6/�1�(D+π−)/�(D∗(2010)+π−) �6/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.24<0.24<0.24<0.24 90 AVERY 90 CLEO e+ e− → D+π−XD1(2420)0 POLARIZATION AMPLITUDE AD1D1(2420)0 POLARIZATION AMPLITUDE AD1D1(2420)0 POLARIZATION AMPLITUDE AD1D1(2420)0 POLARIZATION AMPLITUDE AD1A polarization amplitude AD1 is a parameter that depends on the initialpolarization of the D1 and is sensitive to a possible S-wave 
ontributionto its de
ay. For D1 de
ays the heli
ity angle, θh, distribution varies like1 + AD1
os2θh, where θh is the angle in the D∗ rest frame between thetwo pions emitted by the D1 → D∗π and the D∗ → Dπ.

Unpolarized D1 de
aying purely via D-wave is predi
ted to give AD1 = 3.VALUE EVTS DOCUMENT ID TECN COMMENT5.73±0.25 OUR AVERAGE5.73±0.25 OUR AVERAGE5.73±0.25 OUR AVERAGE5.73±0.25 OUR AVERAGE7.8 +6.7
−2.7 +4.6

−1.8 2.7k 1 ABRAMOWICZ13 ZEUS e± p → D(∗)+π−X5.72±0.25 103k DEL-AMO-SA...10P BABR e+ e− → D∗+π−X5.9 +3.0
−1.7 +2.4

−1.0 CHEKANOV 09 ZEUS e± p → D∗+π−X
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.30±0.48 210k 2 AAIJ 13CC LHCB pp → D∗+π−X3.8 ±0.6 ±0.8 3 AUBERT 09Y BABR B+ → D01 ℓ+ νℓ2.74+1.40

−0.93 4 AVERY 94C CLE2 e+ e− → D∗+π−X1From the 
ombined �t of the M(D+π−) and M(D∗+π−) distributions. and AD2 �xedto the theoreti
al predi
tion of −1. A pure D-wave not ex
luded although some S-wavemixing possible.2 Systemati
 un
ertainty not estimated. Resonan
e parameters �xed.3Assuming �(�(4S) → B+B−) / �(�(4S) → B0B0) = 1.065 ± 0.026 and equalpartial widths and heli
ity angle distributions for 
harged and neutral D1 mesons.4 Systemati
 un
ertainties not estimated.D1(2420)0 REFERENCESD1(2420)0 REFERENCESD1(2420)0 REFERENCESD1(2420)0 REFERENCESAAIJ 13CC JHEP 1309 145 R. Aaij et al. (LHCb Collab.)ABRAMOWICZ 13 NP B866 229 H. Abramowi
z et al. (ZEUS Collab.)DEL-AMO-SA... 10P PR D82 111101 P. del Amo San
hez et al. (BABAR Collab.)AUBERT 09Y PRL 103 051803 B. Aubert et al. (BABAR Collab.)CHEKANOV 09 EPJ C60 25 S. Chekanov et al. (ZEUS Collab.)ABULENCIA 06A PR D73 051104 A. Abulen
ia et al. (CDF Collab.)ABE 05A PRL 94 221805 K. Abe et al. (BELLE Collab.)ABE 04D PR D69 112002 K. Abe et al. (BELLE Collab.)ABREU 98M PL B426 231 P. Abreu et al. (DELPHI Collab.)ACKERSTAFF 97W ZPHY C76 425 K. A
kersta� et al. (OPAL Collab.)AVERY 94C PL B331 236 P. Avery et al. (CLEO Collab.)FRABETTI 94B PRL 72 324 P.L. Frabetti et al. (FNAL E687 Collab.)AVERY 90 PR D41 774 P. Avery, D. Besson (CLEO Collab.)ALBRECHT 89H PL B232 398 H. Albre
ht et al. (ARGUS Collab.) JPANJOS 89C PRL 62 1717 J.C. Anjos et al. (FNAL E691 Collab.)D1(2420)± I (JP ) = 12 (??)I needs 
on�rmation.OMITTED FROM SUMMARY TABLESeen in D∗(2007)0π+. JP = 0+ ruled out.D1(2420)± MASSD1(2420)± MASSD1(2420)± MASSD1(2420)± MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2423.2±2.4 OUR AVERAGE2423.2±2.4 OUR AVERAGE2423.2±2.4 OUR AVERAGE2423.2±2.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.2421.9±4.7+3.4
−1.2 759 1 ABRAMOWICZ13 ZEUS e± p → D(∗)0π+X2421 ±2 ±1 124 ABE 05A BELL B0 → D+π+π−π−2425 ±2 ±2 146 BERGFELD 94B CLE2 e+ e− → D∗0π+X2443 ±7 ±5 190 ANJOS 89C TPS γN → D0π+X01From the �t of the M(D0π+) distribution. The widths of the D+1 and D∗+2 are �xedto 25 MeV and 37 MeV, and AD1 and AD2 are �xed to the theoreti
al predi
tions of 3and −1, respe
tively.

WEIGHTED AVERAGE
2423.2±2.4 (Error scaled by 1.5)

ANJOS 89C TPS 5.3
BERGFELD 94B CLE2 0.4
ABE 05A BELL 1.0
ABRAMOWICZ 13 ZEUS 0.1

χ2

       6.7
(Confidence Level = 0.081)

2410 2420 2430 2440 2450 2460 2470D1(2420)± MASS (MeV)mD∗1(2420)± − mD∗1(2420)0mD∗1(2420)± − mD∗1(2420)0mD∗1(2420)± − mD∗1(2420)0mD∗1(2420)± − mD∗1(2420)0VALUE (MeV) DOCUMENT ID TECN COMMENT4+2
−3±34+2
−3±34+2
−3±34+2
−3±3 BERGFELD 94B CLE2 e+ e− → hadrons



1099109910991099See key on page 601 Meson Parti
le ListingsD1(2420)±, D1(2430)0, D∗2(2460)0D1(2420)± WIDTHD1(2420)± WIDTHD1(2420)± WIDTHD1(2420)± WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT25± 6 OUR AVERAGE25± 6 OUR AVERAGE25± 6 OUR AVERAGE25± 6 OUR AVERAGE21± 5±8 124 ABE 05A BELL B0 → D+π+π−π−26+ 8
− 7±4 146 BERGFELD 94B CLE2 e+ e− → D∗0π+X41±19±8 190 ANJOS 89C TPS γN → D0π+X0D1(2420)± DECAY MODESD1(2420)± DECAY MODESD1(2420)± DECAY MODESD1(2420)± DECAY MODESD∗1(2420)− modes are 
harge 
onjugates of modes below.Mode Fra
tion (�i /�)�1 D∗(2007)0π+ seen�2 D+π+π− seen�3 D+ ρ0�4 D+ f0(500)�5 D∗0(2400)0π+�6 D0π+ not seen�7 D∗+π+π− not seenD1(2420)± BRANCHING RATIOSD1(2420)± BRANCHING RATIOSD1(2420)± BRANCHING RATIOSD1(2420)± BRANCHING RATIOS�(D∗(2007)0π+)/�total �1/��(D∗(2007)0π+)/�total �1/��(D∗(2007)0π+)/�total �1/��(D∗(2007)0π+)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen ANJOS 89C TPS γN → D0π+X0�(D0π+)/�(D∗(2007)0π+) �6/�1�(D0π+)/�(D∗(2007)0π+) �6/�1�(D0π+)/�(D∗(2007)0π+) �6/�1�(D0π+)/�(D∗(2007)0π+) �6/�1VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.18 90 BERGFELD 94B CLE2 e+ e− → hadronsD1(2420)± POLARIZATION AMPLITUDE AD1D1(2420)± POLARIZATION AMPLITUDE AD1D1(2420)± POLARIZATION AMPLITUDE AD1D1(2420)± POLARIZATION AMPLITUDE AD1A polarization amplitude AD1 is a parameter that depends on the initialpolarization of the D1 and is sensitive to a possible S-wave 
ontributionto its de
ay. For D1 de
ays the heli
ity angle, θh, distribution varies like1 + AD1
os2θh, where θh is the angle in the D∗ rest frame between thetwo pions emitted by the D1 → D∗π and the D∗ → Dπ.Unpolarized D1 de
aying purely via D-wave is predi
ted to give AD1 = 3.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.8±0.6±0.8 2 AUBERT 09Y BABR B0 → D−1 ℓ+νℓ2Assuming �(�(4S) → B+B−) / �(�(4S) → B0B0) = 1.065 ± 0.026 and equalpartial widths and heli
ity angle distributions for 
harged and neutral D1 mesons.D1(2420)± REFERENCESD1(2420)± REFERENCESD1(2420)± REFERENCESD1(2420)± REFERENCESABRAMOWICZ 13 NP B866 229 H. Abramowi
z et al. (ZEUS Collab.)AUBERT 09Y PRL 103 051803 B. Aubert et al. (BABAR Collab.)ABE 05A PRL 94 221805 K. Abe et al. (BELLE Collab.)BERGFELD 94B PL B340 194 T. Bergfeld et al. (CLEO Collab.)ANJOS 89C PRL 62 1717 J.C. Anjos et al. (FNAL E691 Collab.)D1(2430)0 I (JP ) = 12 (1+)OMITTED FROM SUMMARY TABLEJ = 1+ assignment favored (ABE 04D).D1(2430)0 MASSD1(2430)0 MASSD1(2430)0 MASSD1(2430)0 MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2427±26±252427±26±252427±26±252427±26±25 ABE 04D BELL B− → D∗+π−π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •2477±28 1 AUBERT 06L BABR B0 → D∗+ωπ−1Systemati
 errors not estimated.D1(2430)0 WIDTHD1(2430)0 WIDTHD1(2430)0 WIDTHD1(2430)0 WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT384+107

− 75±74384+107
− 75±74384+107
− 75±74384+107
− 75±74 ABE 04D BELL B− → D∗+π−π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •266± 97 2 AUBERT 06L BABR B0 → D∗+ωπ−2Systemati
 errors not estimated.

D1(2430)0 DECAY MODESD1(2430)0 DECAY MODESD1(2430)0 DECAY MODESD1(2430)0 DECAY MODESMode Fra
tion (�i /�)�1 D∗(2010)+π− seenD1(2430)0 REFERENCESD1(2430)0 REFERENCESD1(2430)0 REFERENCESD1(2430)0 REFERENCESAUBERT 06L PR D74 012001 B. Aubert et al. (BABAR Collab.)ABE 04D PR D69 112002 K. Abe et al. (BELLE Collab.)D∗2(2460)0 I (JP ) = 12 (2+)JP = 2+ assignment strongly favored (ALBRECHT 89B, AL-BRECHT 89H), natural parity 
on�rmed by the heli
ity analysis(DEL-AMO-SANCHEZ 10P). AAIJ 13CC 
on�rms JP = 2+ andnatural parity. D∗2(2460)0 MASSD∗2(2460)0 MASSD∗2(2460)0 MASSD∗2(2460)0 MASSThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2460.57±0.15 OUR FIT2460.57±0.15 OUR FIT2460.57±0.15 OUR FIT2460.57±0.15 OUR FIT Error in
ludes s
ale fa
tor of 1.1.2460.47±0.21 OUR AVERAGE2460.47±0.21 OUR AVERAGE2460.47±0.21 OUR AVERAGE2460.47±0.21 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogrambelow.2460.4 ±0.4 ±1.2 82k AAIJ 13CC LHCB pp → D∗+π−X2460.4 ±0.1 ±0.1 675k AAIJ 13CC LHCB pp → D+π−X2462.5 ±2.4 +1.3
−1.1 2.3k 1 ABRAMOWICZ13 ZEUS e± p → D(∗)+π−X2462.2 ±0.1 ±0.8 243k DEL-AMO-SA...10P BABR e+ e− → D+π−X2460.4 ±1.2 ±2.2 3.4k AUBERT 09AB BABR B− → D+π−π−2461.6 ±2.1 ±3.3 2 ABE 04D BELL B− → D+π−π−2464.5 ±1.1 ±1.9 5.8k 2 LINK 04A FOCS γ A2465 ±3 ±3 486 AVERY 94C CLE2 e+ e− → D+π−X2453 ±3 ±2 128 FRABETTI 94B E687 γBe → D+π−X2461 ±3 ±1 440 AVERY 90 CLEO e+ e− → D∗+π−X2455 ±3 ±5 337 ALBRECHT 89B ARG e+ e− → D+π−X2459 ±3 ±2 153 ANJOS 89C TPS γN → D+π−X

• • • We do not use the following data for averages, �ts, limits, et
. • • •2469.1 ±3.7 +1.2
−1.3 1.5k 3 CHEKANOV 09 ZEUS e± p → D(∗)+π−X2463.3 ±0.6 ±0.8 20k ABULENCIA 06A CDF 1900 pp → D+π−X2461 ±6 126 4 ABREU 98M DLPH e+ e−2466 ±7 1 ASRATYAN 95 BEBC 53,40 ν (ν) → pX ,d X1From the 
ombined �t of the M(D+π−) and M(D∗+π−) distributions. and AD2 �xedto the theoreti
al predi
tion of −1.2 Fit in
ludes the 
ontribution from D∗0(2400)0.3Cal
ulated using the mass di�eren
e m(D∗02 ) − m(D∗+)PDG reported below andm(D∗+)PDG = 2010.27 ± 0.17 MeV. The 0.17 MeV un
ertainty of the PDG massvalue should be added to the experimental un
ertainty of +1.2

−1.3 MeV.4No systemati
 error given.
WEIGHTED AVERAGE
2460.47±0.21 (Error scaled by 1.6)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ANJOS 89C TPS
ALBRECHT 89B ARG
AVERY 90 CLEO
FRABETTI 94B E687
AVERY 94C CLE2
LINK 04A FOCS
ABE 04D BELL
AUBERT 09AB BABR
DEL-AMO-SA... 10P BABR 4.6
ABRAMOWICZ 13 ZEUS
AAIJ 13CC LHCB 0.2
AAIJ 13CC LHCB 0.0

χ2

       4.8
(Confidence Level = 0.089)

2458 2460 2462 2464 2466 2468D∗2(2460)0 mass (MeV)



1100110011001100MesonParti
le ListingsD∗2(2460)0 mD∗02 − mD+mD∗02 − mD+mD∗02 − mD+mD∗02 − mD+The �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT590.98±0.18 OUR FIT590.98±0.18 OUR FIT590.98±0.18 OUR FIT590.98±0.18 OUR FIT Error in
ludes s
ale fa
tor of 1.1.593.9 ±0.6 ±0.5593.9 ±0.6 ±0.5593.9 ±0.6 ±0.5593.9 ±0.6 ±0.5 20k ABULENCIA 06A CDF 1900 pp → D+π−XmD∗02 − mD∗+mD∗02 − mD∗+mD∗02 − mD∗+mD∗02 − mD∗+The �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT450.31±0.16 OUR FIT450.31±0.16 OUR FIT450.31±0.16 OUR FIT450.31±0.16 OUR FIT Error in
ludes s
ale fa
tor of 1.1.458.8 ±3.7 +1.2
−1.3458.8 ±3.7 +1.2
−1.3458.8 ±3.7 +1.2
−1.3458.8 ±3.7 +1.2
−1.3 1560± 230 CHEKANOV 09 ZEUS e± p → D(∗)+π−XD∗2(2460)0 WIDTHD∗2(2460)0 WIDTHD∗2(2460)0 WIDTHD∗2(2460)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT47.7± 1.3 OUR AVERAGE47.7± 1.3 OUR AVERAGE47.7± 1.3 OUR AVERAGE47.7± 1.3 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0. See the ideogram below.43.2± 1.2± 3.0 82k AAIJ 13CC LHCB pp → D∗+π−X45.6± 0.4± 1.1 675k AAIJ 13CC LHCB pp → D+π−X46.6± 8.1+ 5.9

− 3.8 2.3k 5 ABRAMOWICZ13 ZEUS e± p → D(∗)+π−X50.5± 0.6± 0.7 243k DEL-AMO-SA...10P BABR e+ e− → D+π−X41.8± 2.5± 2.9 3.4k AUBERT 09AB BABR B− → D+π−π−49.2± 2.3± 1.3 20k ABULENCIA 06A CDF 1900 pp → D+π−X45.6± 4.4± 6.7 6 ABE 04D BELL B− → D+π−π−38.7± 5.3± 2.9 5.8k 6 LINK 04A FOCS γ A28 + 8
− 7 ± 6 486 AVERY 94C CLE2 e+ e− → D+π−X25 ±10 ± 5 128 FRABETTI 94B E687 γBe → D+π−X20 + 9
−12 + 9

−10 440 AVERY 90 CLEO e+ e− → D∗+π−X15 +13
−10 + 5

−10 337 ALBRECHT 89B ARG e+ e− → D+π−X20 ±10 ± 5 153 ANJOS 89C TPS γN → D+π−X5From the 
ombined �t of the M(D+π−) and M(D∗+π−) distributions. and AD2 �xedto the theoreti
al predi
tion of −1.6 Fit in
ludes the 
ontribution from D∗0(2400)0.
WEIGHTED AVERAGE
47.7±1.3 (Error scaled by 2.0)

ANJOS 89C TPS
ALBRECHT 89B ARG
AVERY 90 CLEO
FRABETTI 94B E687
AVERY 94C CLE2
LINK 04A FOCS 2.2
ABE 04D BELL
ABULENCIA 06A CDF 0.3
AUBERT 09AB BABR 2.3
DEL-AMO-SA... 10P BABR 9.5
ABRAMOWICZ 13 ZEUS
AAIJ 13CC LHCB 3.1
AAIJ 13CC LHCB 1.9

χ2

      19.4
(Confidence Level = 0.0016)

10 20 30 40 50 60 70D∗2(2460)0 WIDTH (MeV)D∗2(2460)0 DECAY MODESD∗2(2460)0 DECAY MODESD∗2(2460)0 DECAY MODESD∗2(2460)0 DECAY MODESD∗2(2460)0 modes are 
harge 
onjugates of modes below.Mode Fra
tion (�i /�)�1 D+π− seen�2 D∗(2010)+π− seen�3 D0π+π− not seen�4 D∗0π+π− not seen

D∗2(2460)0 BRANCHING RATIOSD∗2(2460)0 BRANCHING RATIOSD∗2(2460)0 BRANCHING RATIOSD∗2(2460)0 BRANCHING RATIOS�(D+π−)/�total �1/��(D+π−)/�total �1/��(D+π−)/�total �1/��(D+π−)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 3.4k AUBERT 09AB BABR B− → D+π−π−seenseenseenseen 337 ALBRECHT 89B ARG e+ e− → D+π−Xseenseenseenseen ANJOS 89C TPS γN → D+π−X�(D∗(2010)+π−)/�total �2/��(D∗(2010)+π−)/�total �2/��(D∗(2010)+π−)/�total �2/��(D∗(2010)+π−)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen ACKERSTAFF 97W OPAL e+ e− → D∗+π−Xseenseenseenseen AVERY 90 CLEO e+ e− → D∗+π−Xseenseenseenseen ALBRECHT 89H ARG e+ e− → D∗π−X�(D+π−)/�(D∗(2010)+π−) �1/�2�(D+π−)/�(D∗(2010)+π−) �1/�2�(D+π−)/�(D∗(2010)+π−) �1/�2�(D+π−)/�(D∗(2010)+π−) �1/�2VALUE EVTS DOCUMENT ID TECN COMMENT1.54±0.15 OUR AVERAGE1.54±0.15 OUR AVERAGE1.54±0.15 OUR AVERAGE1.54±0.15 OUR AVERAGE1.4 ±0.3 ±0.3 2.3k 7 ABRAMOWICZ13 ZEUS e± p → D(∗)+π−X1.47±0.03±0.16 379k DEL-AMO-SA...10P BABR e+ e− →D(∗)+π−X2.8 ±0.8 +0.5
−0.6 1560± 230 CHEKANOV 09 ZEUS e± p → D(∗)+π−X2.2 ±0.7 ±0.6 AVERY 94C CLE2 e+ e− → D∗+π−X2.3 ±0.8 AVERY 90 CLEO e+ e−3.0 ±1.1 ±1.5 ALBRECHT 89H ARG e+ e− → D∗π−X

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.9 ±0.5 ABE 04D BELL B− → D(∗)+π−π−7From the 
ombined �t of the M(D+π−) and M(D∗+π−) distributions. and AD2 �xedto the theoreti
al predi
tion of −1.�(D+π−)/[�(D+π−)+�(D∗(2010)+π−)
] �1/(�1+�2)�(D+π−)/[�(D+π−)+�(D∗(2010)+π−)
] �1/(�1+�2)�(D+π−)/[�(D+π−)+�(D∗(2010)+π−)
] �1/(�1+�2)�(D+π−)/[�(D+π−)+�(D∗(2010)+π−)
] �1/(�1+�2)VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.62±0.03±0.02 8414 8 AUBERT 09Y BABR B+ → D∗02 ℓ+ νℓ8Assuming �(�(4S) → B+B−) / �(�(4S) → B0B0) = 1.065 ± 0.026 and equalpartial widths for 
harged and neutral D∗2 mesons.D∗2(2460)0 POLARIZATION AMPLITUDE AD2D∗2(2460)0 POLARIZATION AMPLITUDE AD2D∗2(2460)0 POLARIZATION AMPLITUDE AD2D∗2(2460)0 POLARIZATION AMPLITUDE AD2A polarization amplitude AD2 is a parameter that depends on the initialpolarization of the D2. For D2 de
ays the heli
ity angle, θH , distributionvaries like 1 + AD2 
os2(θH ), where θH is the angle in the D∗ rest framebetween the two pions emitted by the D2 → D∗π and D∗ → Dπ.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−1.16±0.35 2.3k 9 ABRAMOWICZ13 ZEUS e± p → D(∗)+π−X
onsistent with −1 243k DEL-AMO-SA...10P BABR e+ e− → D+π−X
−0.74+0.49

−0.38 10 AVERY 94C CLE2 e+ e− → D∗+π−X9From the 
ombined �t of the M(D+π−) and M(D∗+π−) distributions.10 Systemati
 un
ertainties not estimated.D∗2(2460)0 REFERENCESD∗2(2460)0 REFERENCESD∗2(2460)0 REFERENCESD∗2(2460)0 REFERENCESAAIJ 13CC JHEP 1309 145 R. Aaij et al. (LHCb Collab.)ABRAMOWICZ 13 NP B866 229 H. Abramowi
z et al. (ZEUS Collab.)DEL-AMO-SA... 10P PR D82 111101 P. del Amo San
hez et al. (BABAR Collab.)AUBERT 09AB PR D79 112004 B. Aubert et al. (BABAR Collab.)AUBERT 09Y PRL 103 051803 B. Aubert et al. (BABAR Collab.)CHEKANOV 09 EPJ C60 25 S. Chekanov et al. (ZEUS Collab.)ABULENCIA 06A PR D73 051104 A. Abulen
ia et al. (CDF Collab.)ABE 04D PR D69 112002 K. Abe et al. (BELLE Collab.)LINK 04A PL B586 11 J.M. Link et al. (FOCUS Collab.)ABREU 98M PL B426 231 P. Abreu et al. (DELPHI Collab.)ACKERSTAFF 97W ZPHY C76 425 K. A
kersta� et al. (OPAL Collab.)ASRATYAN 95 ZPHY C68 43 A.E. Asratyan et al. (BIRM, BELG, CERN+)AVERY 94C PL B331 236 P. Avery et al. (CLEO Collab.)FRABETTI 94B PRL 72 324 P.L. Frabetti et al. (FNAL E687 Collab.)AVERY 90 PR D41 774 P. Avery, D. Besson (CLEO Collab.)ALBRECHT 89B PL B221 422 H. Albre
ht et al. (ARGUS Collab.) JPALBRECHT 89H PL B232 398 H. Albre
ht et al. (ARGUS Collab.) JPANJOS 89C PRL 62 1717 J.C. Anjos et al. (FNAL E691 Collab.)



1101110111011101See key on page 601 Meson Parti
le ListingsD∗2(2460)±, D(2550)0D∗2(2460)± I (JP ) = 12 (2+)JP = 2+ assignment strongly favored(ALBRECHT 89B).D∗2(2460)± MASSD∗2(2460)± MASSD∗2(2460)± MASSD∗2(2460)± MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2465.4±1.3 OUR AVERAGE2465.4±1.3 OUR AVERAGE2465.4±1.3 OUR AVERAGE2465.4±1.3 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.1. See the ideogram below.2465.6±1.8±1.3 1 AAIJ 15X LHCB B0 → D0K+π−2468.6±0.6±0.3 2 AAIJ 15Y LHCB B0 → D0π+π−2463.1±0.2±0.6 342k AAIJ 13CC LHCB pp → D0π+X2460.6±4.4+3.6
−0.8 1371 3 ABRAMOWICZ13 ZEUS e± p → D(∗)0π+X2465.4±0.2±1.1 111k 4 DEL-AMO-SA...10P BABR e+ e− → D0π+X2465.7±1.8+1.4
−4.8 2909 KUZMIN 07 BELL e+ e− → hadrons2463 ±3 ±3 310 BERGFELD 94B CLE2 e+ e− → D0π+X2453 ±3 ±2 185 FRABETTI 94B E687 γBe → D0π+X2469 ±4 ±6 ALBRECHT 89F ARG e+ e− → D0π+X

• • • We do not use the following data for averages, �ts, limits, et
. • • •2468.1±0.6±0.5 5 AAIJ 15Y LHCB B0 → D0π+π−2467.6±1.5±0.8 3.5k 6 LINK 04A FOCS γ A1From the Dalitz plot analysis in
luding various K∗ and D∗∗ mesons as well as broadstru
tures in the K π S-wave and the Dπ S- and P-waves.2Modeling the π+π− S-wave with the Isobar formalism.3 From the �t of the M(D0π+) distribution. The widths of the D+1 and D∗+2 are �xedto 25 MeV and 37 MeV, and AD1 and AD2 are �xed to the theoreti
al predi
tions of 3and −1, respe
tively.4At a �xed width of 50.5 MeV.5Modeling the π+π− S-wave with the K-matrix formalism.6 Fit in
ludes the 
ontribution from D∗0(2400)±. Not independent of the 
orrespondingmass di�eren
e measurement, (mD∗2(2460)± ) − (mD∗2(2460)0).
WEIGHTED AVERAGE
2465.4±1.3 (Error scaled by 3.1)

ALBRECHT 89F ARG
FRABETTI 94B E687 11.9
BERGFELD 94B CLE2
KUZMIN 07 BELL 0.0
DEL-AMO-SA... 10P BABR 0.0
ABRAMOWICZ 13 ZEUS
AAIJ 13CC LHCB 13.7
AAIJ 15Y LHCB 22.1
AAIJ 15X LHCB 0.0

χ2

      47.8
(Confidence Level < 0.0001)

2445 2450 2455 2460 2465 2470 2475 2480D∗2(2460)± mass (MeV)mD∗2(2460)± − mD∗2(2460)0mD∗2(2460)± − mD∗2(2460)0mD∗2(2460)± − mD∗2(2460)0mD∗2(2460)± − mD∗2(2460)0VALUE (MeV) DOCUMENT ID TECN COMMENT2.4±1.7 OUR AVERAGE2.4±1.7 OUR AVERAGE2.4±1.7 OUR AVERAGE2.4±1.7 OUR AVERAGE3.1±1.9±0.9 LINK 04A FOCS γ A
− 2 ±4 ±4 BERGFELD 94B CLE2 e+ e− → hadrons0 ±4 FRABETTI 94B E687 γBe → DπX14 ±5 ±8 ALBRECHT 89F ARG e+ e− → D0π+XD∗2(2460)±WIDTHD∗2(2460)±WIDTHD∗2(2460)±WIDTHD∗2(2460)±WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT46.7± 1.2 OUR AVERAGE46.7± 1.2 OUR AVERAGE46.7± 1.2 OUR AVERAGE46.7± 1.2 OUR AVERAGE46.0± 3.4±3.2 1 AAIJ 15X LHCB B0 → D0K+π−47.3± 1.5±0.7 2 AAIJ 15Y LHCB B0 → D0π+π−48.6± 1.3±1.9 342k AAIJ 13CC LHCB pp → D0π+X49.7± 3.8±6.4 2909 KUZMIN 07 BELL e+ e− → hadrons34.1± 6.5±4.2 3.5k 3 LINK 04A FOCS γ A27 +11

− 8 ±5 310 BERGFELD 94B CLE2 e+ e− → D0π+X23 ± 9 ±5 185 FRABETTI 94B E687 γBe → D0π+X
• • • We do not use the following data for averages, �ts, limits, et
. • • •46.0± 1.4±1.8 4 AAIJ 15Y LHCB B0 → D0π+π−1From the Dalitz plot analysis in
luding various K∗ and D∗∗ mesons as well as broadstru
tures in the K π S-wave and the Dπ S- and P-waves.2Modeling the π+π− S-wave with the Isobar formalism.3 Fit in
ludes the 
ontribution from D∗0(2400)±.4Modeling the π+π− S-wave with the K-matrix formalism.

D∗2(2460)± DECAY MODESD∗2(2460)± DECAY MODESD∗2(2460)± DECAY MODESD∗2(2460)± DECAY MODESD∗2(2460)− modes are 
harge 
onjugates of modes below.Mode Fra
tion (�i /�)�1 D0π+ seen�2 D∗0π+ seen�3 D+π+π− not seen�4 D∗+π+π− not seenD∗2(2460)± BRANCHING RATIOSD∗2(2460)± BRANCHING RATIOSD∗2(2460)± BRANCHING RATIOSD∗2(2460)± BRANCHING RATIOS�(D0π+)/�total �1/��(D0π+)/�total �1/��(D0π+)/�total �1/��(D0π+)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen ALBRECHT 89F ARG e+ e− → D0π+X�(D0π+)/�(D∗0π+) �1/�2�(D0π+)/�(D∗0π+) �1/�2�(D0π+)/�(D∗0π+) �1/�2�(D0π+)/�(D∗0π+) �1/�2VALUE EVTS DOCUMENT ID TECN COMMENT1.2±0.4 OUR AVERAGE1.2±0.4 OUR AVERAGE1.2±0.4 OUR AVERAGE1.2±0.4 OUR AVERAGE1.1±0.4+0.3
−0.2 1371 1 ABRAMOWICZ13 ZEUS e± p → D(∗)0π+X1.9±1.1±0.3 BERGFELD 94B CLE2 e+ e− → hadrons1 From the �t of the M(D0π+) distribution. The widths of the D+1 and D∗+2 are �xedto 25 MeV and 37 MeV, and AD1 and AD2 are �xed to the theoreti
al predi
tions of 3and −1, respe
tively.�(D0π+)/[�(D0π+)+�(D∗0π+)

] �1/(�1+�2)�(D0π+)/[�(D0π+)+�(D∗0π+)
] �1/(�1+�2)�(D0π+)/[�(D0π+)+�(D∗0π+)
] �1/(�1+�2)�(D0π+)/[�(D0π+)+�(D∗0π+)
] �1/(�1+�2)VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.62±0.03±0.02 3361 1 AUBERT 09Y BABR B0 → D∗+2 ℓ− νℓ1Assuming �(�(4S) → B+B−) / �(�(4S) → B0B0) = 1.065 ± 0.026 and equalpartial widths for 
harged and neutral D∗2 mesons.D∗2(2460)± REFERENCESD∗2(2460)± REFERENCESD∗2(2460)± REFERENCESD∗2(2460)± REFERENCESAAIJ 15X PR D92 012012 R. Aaij et al. (LHCb Collab.)AAIJ 15Y PR D92 032002 R. Aaij et al. (LHCb Collab.)AAIJ 13CC JHEP 1309 145 R. Aaij et al. (LHCb Collab.)ABRAMOWICZ 13 NP B866 229 H. Abramowi
z et al. (ZEUS Collab.)DEL-AMO-SA... 10P PR D82 111101 P. del Amo San
hez et al. (BABAR Collab.)AUBERT 09Y PRL 103 051803 B. Aubert et al. (BABAR Collab.)KUZMIN 07 PR D76 012006 A. Kuzmin et al. (BELLE Collab.)LINK 04A PL B586 11 J.M. Link et al. (FOCUS Collab.)BERGFELD 94B PL B340 194 T. Bergfeld et al. (CLEO Collab.)FRABETTI 94B PRL 72 324 P.L. Frabetti et al. (FNAL E687 Collab.)ALBRECHT 89B PL B221 422 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 89F PL B231 208 H. Albre
ht et al. (ARGUS Collab.)D(2550)0 I (JP ) = 12 (??)OMITTED FROM SUMMARY TABLEUnnatural parity a

ording to the heli
ity analysis of DEL-AMO-SANCHEZ 10P and AAIJ 13CC. DEL-AMO-SANCHEZ 10P suggestsJP = 0−. D(2550)0 MASSD(2550)0 MASSD(2550)0 MASSD(2550)0 MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2564 ±20 OUR AVERAGE2564 ±20 OUR AVERAGE2564 ±20 OUR AVERAGE2564 ±20 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.9.2579.5± 3.4±5.5 60k AAIJ 13CC LHCB pp → D∗+π−X2539.4± 4.5±6.8 34k DEL-AMO-SA...10P BABR e+ e− → D∗+π−XD(2550)0 WIDTHD(2550)0 WIDTHD(2550)0 WIDTHD(2550)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT135 ±17 OUR AVERAGE135 ±17 OUR AVERAGE135 ±17 OUR AVERAGE135 ±17 OUR AVERAGE177.5±17.8±46.0 60k AAIJ 13CC LHCB pp → D∗+π−X130 ±12 ±13 34k DEL-AMO-SA...10P BABR e+ e− → D∗+π−XD(2550)0 DECAY MODESD(2550)0 DECAY MODESD(2550)0 DECAY MODESD(2550)0 DECAY MODESMode Fra
tion (�i /�)�1 D∗+π− seenD(2550)0 POLARIZATION AMPLITUDE ADJD(2550)0 POLARIZATION AMPLITUDE ADJD(2550)0 POLARIZATION AMPLITUDE ADJD(2550)0 POLARIZATION AMPLITUDE ADJA polarization amplitude ADJ is a parameter that depends on the initialpolarization of the DJ . For DJ de
ays the heli
ity angle, θH , distributionvaries like 1 + ADJ 
os2(θH ), where θH is the angle in the DJ rest framebetween the two pions emitted in the DJ → D∗π and D∗ → Dπ de
ays.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.2±1.3 60k 1 AAIJ 13CC LHCB pp → D∗+π−X



1102110211021102MesonParti
le ListingsD(2550)0,D∗J(2600),D∗(2640)±,D(2740)01Systemati
 un
ertainty not estimated.D(2550)0 REFERENCESD(2550)0 REFERENCESD(2550)0 REFERENCESD(2550)0 REFERENCESAAIJ 13CC JHEP 1309 145 R. Aaij et al. (LHCb Collab.)DEL-AMO-SA... 10P PR D82 111101 P. del Amo San
hez et al. (BABAR Collab.)D∗J(2600)was D(2600), I (JP ) = 12 (??)OMITTED FROM SUMMARY TABLEJP 
onsistent with natural parity (DEL-AMO-SANCHEZ 10P,AAIJ 13CC). D∗J (2600) MASSD∗J (2600) MASSD∗J (2600) MASSD∗J (2600) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT2622 ±12 OUR AVERAGE2622 ±12 OUR AVERAGE2622 ±12 OUR AVERAGE2622 ±12 OUR AVERAGE Error in
ludes s
ale fa
tor of 4.7. See the ideogram below.2649.2± 3.5±3.5 51k AAIJ 13CC LHCB pp → D∗+π−X2608.7± 2.4±2.5 26k DEL-AMO-SA...10P BABR 0 e+ e− → D+π−X2621.3± 3.7±4.2 13k 1 DEL-AMO-SA...10P BABR + e+ e− → D0π+X1At a �xed width of 93 MeV.
WEIGHTED AVERAGE
2622±12 (Error scaled by 4.7)

DEL-AMO-SA... 10P BABR 0.0
DEL-AMO-SA... 10P BABR 14.4
AAIJ 13CC LHCB 30.5

χ2

      44.9
(Confidence Level < 0.0001)

2580 2600 2620 2640 2660 2680 2700D∗J(2600) MASS (MeV)D∗J (2600) WIDTHD∗J (2600) WIDTHD∗J (2600) WIDTHD∗J (2600) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT104 ±20 OUR AVERAGE104 ±20 OUR AVERAGE104 ±20 OUR AVERAGE104 ±20 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.140.2±17.1±18.6 51k AAIJ 13CC LHCB pp → D∗+π−X93 ± 6 ±13 26k DEL-AMO-SA...10P BABR e+ e− → D+π−XD∗J (2600) DECAY MODESD∗J (2600) DECAY MODESD∗J (2600) DECAY MODESD∗J (2600) DECAY MODESMode Fra
tion (�i /�)�1 D π seen�2 D+π− seen�3 D0π± seen�4 D∗π seen�5 D∗+π− seenD∗J (2600) BRANCHING RATIOSD∗J (2600) BRANCHING RATIOSD∗J (2600) BRANCHING RATIOSD∗J (2600) BRANCHING RATIOS�(D+π−)/�(D∗+π−) �2/�5�(D+π−)/�(D∗+π−) �2/�5�(D+π−)/�(D∗+π−) �2/�5�(D+π−)/�(D∗+π−) �2/�5VALUE EVTS DOCUMENT ID TECN COMMENT0.32±0.02±0.090.32±0.02±0.090.32±0.02±0.090.32±0.02±0.09 76k DEL-AMO-SA...10P BABR e+ e− →D(∗)+ π−XD∗J (2600) REFERENCESD∗J (2600) REFERENCESD∗J (2600) REFERENCESD∗J (2600) REFERENCESAAIJ 13CC JHEP 1309 145 R. Aaij et al. (LHCb Collab.)DEL-AMO-SA... 10P PR D82 111101 P. del Amo San
hez et al. (BABAR Collab.)

D∗(2640)± I (JP ) = 12 (??)OMITTED FROM SUMMARY TABLESeen in Z de
ays by ABREU 98M. Not seen by ABBIENDI 01N andCHEKANOV 09. Needs 
on�rmation.D∗(2640)± MASSD∗(2640)± MASSD∗(2640)± MASSD∗(2640)± MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2637±2±62637±2±62637±2±62637±2±6 66 ± 14 ABREU 98M DLPH e+ e− →D∗+π+π−XD∗(2640)± WIDTHD∗(2640)± WIDTHD∗(2640)± WIDTHD∗(2640)± WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<15<15<15<15 95 ABREU 98M DLPH e+ e− →D∗+π+π−XD∗(2640)+ DECAY MODESD∗(2640)+ DECAY MODESD∗(2640)+ DECAY MODESD∗(2640)+ DECAY MODESD∗(2640)− modes are 
harge 
onjugates of modes below.Mode Fra
tion (�i /�)�1 D∗(2010)+π+π− seenD∗(2640)± REFERENCESD∗(2640)± REFERENCESD∗(2640)± REFERENCESD∗(2640)± REFERENCESCHEKANOV 09 EPJ C60 25 S. Chekanov et al. (ZEUS Collab.)ABBIENDI 01N EPJ C20 445 G. Abbiendi et al. (OPAL Collab.)ABREU 98M PL B426 231 P. Abreu et al. (DELPHI Collab.)D(2740)0 I (JP ) = 12 (??)OMITTED FROM SUMMARY TABLEJP 
onsistent with unnatural parity (AAIJ 13CC).D(2740)0 MASSD(2740)0 MASSD(2740)0 MASSD(2740)0 MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2737.0±3.5±11.22737.0±3.5±11.22737.0±3.5±11.22737.0±3.5±11.2 7.7k AAIJ 13CC LHCB pp → D∗+π−XD(2740)0 WIDTHD(2740)0 WIDTHD(2740)0 WIDTHD(2740)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT73.2±13.4±25.073.2±13.4±25.073.2±13.4±25.073.2±13.4±25.0 7.7k AAIJ 13CC LHCB pp → D∗+π−XD(2740)0 DECAY MODESD(2740)0 DECAY MODESD(2740)0 DECAY MODESD(2740)0 DECAY MODESMode Fra
tion (�i /�)�1 D∗+π− seenD(2740)0 POLARIZATION AMPLITUDE ADJD(2740)0 POLARIZATION AMPLITUDE ADJD(2740)0 POLARIZATION AMPLITUDE ADJD(2740)0 POLARIZATION AMPLITUDE ADJA polarization amplitude ADJ is a parameter that depends on the initialpolarization of the DJ . For DJ de
ays the heli
ity angle, θH , distributionvaries like 1 + ADJ 
os2(θH ), where θH is the angle in the DJ rest framebetween the two pions emitted in the DJ → D∗π and D∗ → Dπ de
ays.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.1±2.2 7.7k 1 AAIJ 13CC LHCB pp → D∗+π−X1Systemati
 un
ertainty not estimated.D(2740)0 REFERENCESD(2740)0 REFERENCESD(2740)0 REFERENCESD(2740)0 REFERENCESAAIJ 13CC JHEP 1309 145 R. Aaij et al. (LHCb Collab.)



1103110311031103See key on page 601 MesonParti
le ListingsD(2750),D(3000)0D(2750) I (JP ) = 12 (3−)OMITTED FROM SUMMARY TABLEJP determined by AAIJ 15Y from the Dalitz plot analysis of B0 →D0π+π− de
ays. JP 
onsistent with natural parity (AAIJ 13CC).D(2750) MASSD(2750) MASSD(2750) MASSD(2750) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT2763 ± 4 OUR AVERAGE2763 ± 4 OUR AVERAGE2763 ± 4 OUR AVERAGE2763 ± 4 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3. See the ideogram below.2798 ± 7 ± 7 1 AAIJ 15Y LHCB B0 → D0π+π−2761.1± 5.1± 6.5 14k AAIJ 13CC LHCB 0 pp → D∗+π−X2760.1± 1.1± 3.7 56k AAIJ 13CC LHCB 0 pp → D+π−X2771.7± 1.7± 3.8 20k AAIJ 13CC LHCB + pp → D0π+X2752.4± 1.7± 2.7 23.5k 2 DEL-AMO-SA...10P BABR 0 e+ e− →D∗+π−X2763.3± 2.3± 2.3 11.3k 2 DEL-AMO-SA...10P BABR 0 e+ e− → D+π−X2769.7± 3.8± 1.5 5.7k 2,3 DEL-AMO-SA...10P BABR + e+ e− → D0π+X
• • • We do not use the following data for averages, �ts, limits, et
. • • •2802 ±11 ±10 4 AAIJ 15Y LHCB B0 → D0π+π−1Modeling the π+π− S-wave with the Isobar formalism.2The states observed in the D∗π and Dπ �nal states are not ne
essarily the same.3At a �xed width of 60.9 MeV.4Modeling the π+π− S-wave with the K-matrix formalism.

WEIGHTED AVERAGE
2763±4 (Error scaled by 2.3)

DEL-AMO-SA... 10P BABR 2.6
DEL-AMO-SA... 10P BABR 0.0
DEL-AMO-SA... 10P BABR 11.2
AAIJ 13CC LHCB 4.3
AAIJ 13CC LHCB 0.6
AAIJ 13CC LHCB 0.1
AAIJ 15Y LHCB 12.5

χ2

      31.2
(Confidence Level < 0.0001)

2740 2760 2780 2800 2820 2840D(2750) MASS (MeV)D(2750) WIDTHD(2750) WIDTHD(2750) WIDTHD(2750) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT65 ± 5 OUR AVERAGE65 ± 5 OUR AVERAGE65 ± 5 OUR AVERAGE65 ± 5 OUR AVERAGE105 ±18 ±24 5 AAIJ 15Y LHCB B0 → D0π+π−74.4± 3.4±37.0 14k AAIJ 13CC LHCB 0 pp → D∗+π−X74.4± 3.4±19.1 56k AAIJ 13CC LHCB 0 pp → D+π−X66.7± 6.6±10.5 20k AAIJ 13CC LHCB + pp → D0π+X71 ± 6 ±11 23.5k 6 DEL-AMO-SA...10P BABR e+ e− →D∗+π−X60.9± 5.1± 3.6 11.3k 6 DEL-AMO-SA...10P BABR e+ e− → D+π−X
• • • We do not use the following data for averages, �ts, limits, et
. • • •154 ±27 ±16 7 AAIJ 15Y LHCB B0 → D0π+π−5Modeling the π+π− S-wave with the Isobar formalism.6The states observed in the D∗π and Dπ �nal states are not ne
essarily the same.7Modeling the π+π− S-wave with the K-matrix formalism.D(2750) DECAY MODESD(2750) DECAY MODESD(2750) DECAY MODESD(2750) DECAY MODESMode Fra
tion (�i /�)�1 D π seen�2 D+π− seen�3 D0π± seen�4 D∗π seen�5 D∗+π− seen

D(2750) BRANCHING RATIOSD(2750) BRANCHING RATIOSD(2750) BRANCHING RATIOSD(2750) BRANCHING RATIOS�(D+π−)/�(D∗+π−) �2/�5�(D+π−)/�(D∗+π−) �2/�5�(D+π−)/�(D∗+π−) �2/�5�(D+π−)/�(D∗+π−) �2/�5VALUE EVTS DOCUMENT ID TECN COMMENT0.42±0.05±0.110.42±0.05±0.110.42±0.05±0.110.42±0.05±0.11 34.8k 8 DEL-AMO-SA...10P BABR e+ e− →D(∗)+π−X8The states observed in the D∗π and Dπ �nal states are not ne
essarily the same.D(2750) POLARIZATION AMPLITUDE ADD(2750) POLARIZATION AMPLITUDE ADD(2750) POLARIZATION AMPLITUDE ADD(2750) POLARIZATION AMPLITUDE ADA polarization amplitude AD is a parameter that depends on the initialpolarization of the D(2750). For D(2750) de
ays the heli
ity angle, θH ,distribution varies like 1 + AD 
os(θH ), where θH is the angle in the D∗rest frame between the two pions emitted by the D(2750) → D∗π andD∗ → Dπ.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.33±0.28 23.5k 9 DEL-AMO-SA...10P BABR e+ e− → D∗+π−X9Systemati
 un
ertainties not estimated. The states observed in the D∗π and Dπ �nalstates are not ne
essarily the same.D(2750) REFERENCESD(2750) REFERENCESD(2750) REFERENCESD(2750) REFERENCESAAIJ 15Y PR D92 032002 R. Aaij et al. (LHCb Collab.) JPAAIJ 13CC JHEP 1309 145 R. Aaij et al. (LHCb Collab.)DEL-AMO-SA... 10P PR D82 111101 P. del Amo San
hez et al. (BABAR Collab.)D(3000)0 I (JP ) = 12 (??)OMITTED FROM SUMMARY TABLEBoth natural- and unnatural-parity 
omponents observed dependingon the de
ay mode (AAIJ 13CC).D(3000)0 MASSD(3000)0 MASSD(3000)0 MASSD(3000)0 MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2971.8±8.7 9.5k 1,2 AAIJ 13CC LHCB pp → D∗+π−X3008.1±4.0 17.6k 1,3 AAIJ 13CC LHCB pp → D+π−X1Systemati
 un
ertainty not estimated.2Unnatural parity preferred.3Natural parity state. A state D(3000)+ is possibly seen in D0π+ �nal state.D(3000)0 WIDTHD(3000)0 WIDTHD(3000)0 WIDTHD(3000)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •188.1±44.8 9.5k 4,5 AAIJ 13CC LHCB pp → D∗+π−X110.5±11.5 17.6k 4,6 AAIJ 13CC LHCB pp → D+π−X4Systemati
 un
ertainty not estimated.5Unnatural parity preferred.6Natural parity state. A state D(3000)+ is possibly seen in D0π+ �nal state.D(3000)0 DECAY MODESD(3000)0 DECAY MODESD(3000)0 DECAY MODESD(3000)0 DECAY MODESMode Fra
tion (�i /�)�1 D∗+π− seenD(3000)0 POLARIZATION AMPLITUDE ADJD(3000)0 POLARIZATION AMPLITUDE ADJD(3000)0 POLARIZATION AMPLITUDE ADJD(3000)0 POLARIZATION AMPLITUDE ADJA polarization amplitude ADJ is a parameter that depends on the initialpolarization of the DJ . For DJ de
ays the heli
ity angle, θH , distributionvaries like 1 + ADJ 
os2(θH ), where θH is the angle in the DJ rest framebetween the two pions emitted in the DJ → D∗π and D∗ → Dπ de
ays.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.5±0.9 9.5k 7 AAIJ 13CC LHCB pp → D∗+π−X7Systemati
 un
ertainty not estimated.D(3000)0 REFERENCESD(3000)0 REFERENCESD(3000)0 REFERENCESD(3000)0 REFERENCESAAIJ 13CC JHEP 1309 145 R. Aaij et al. (LHCb Collab.)



1104110411041104MesonParti
le ListingsD±sCHARMED, STRANGE MESONSCHARMED, STRANGE MESONSCHARMED, STRANGE MESONSCHARMED, STRANGE MESONS(C = S = ±1)(C = S = ±1)(C = S = ±1)(C = S = ±1)D+s = 
s , D−s = 
 s, similarly for D∗s 'sD±s I (JP ) = 0(0−)The angular distributions of the de
ays of the φ and K∗(892)0 inthe φπ+ and K+K∗(892)0 modes strongly indi
ate that the spinis zero. The parity given is that expe
ted of a 
 s ground state.D±s MASSD±s MASSD±s MASSD±s MASSThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements. Measurementsof the D±s mass with an error greater than 10 MeV are omitted from the�t and average. A number of early measurements have been omittedaltogether.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1968.27± 0.10 OUR FIT1968.27± 0.10 OUR FIT1968.27± 0.10 OUR FIT1968.27± 0.10 OUR FIT1969.0 ± 1.4 OUR AVERAGE1969.0 ± 1.4 OUR AVERAGE1969.0 ± 1.4 OUR AVERAGE1969.0 ± 1.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.1967.0 ± 1.0 ± 1.0 54 BARLAG 90C ACCM π−Cu 230 GeV1969.3 ± 1.4 ± 1.4 ALBRECHT 88 ARG e+ e− 9.4{10.6 GeV1972.7 ± 1.5 ± 1.0 21 BECKER 87B SILI 200 GeV π,K ,p1972.4 ± 3.7 ± 3.7 27 BLAYLOCK 87 MRK3 e+ e− 4.14 GeV1963 ± 3 ± 3 30 DERRICK 85B HRS e+ e− 29 GeV1970 ± 5 ± 5 104 CHEN 83C CLEO e+ e− 10.5 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1968.3 ± 0.7 ± 0.7 290 1 ANJOS 88 E691 Photoprodu
tion1980 ±15 6 USHIDA 86 EMUL ν wideband1973.6 ± 2.6 ± 3.0 163 ALBRECHT 85D ARG e+ e− 10 GeV1948 ±28 ±10 65 AIHARA 84D TPC e+ e− 29 GeV1975 ± 9 ±10 49 ALTHOFF 84 TASS e+ e− 14{25 GeV1975 ± 4 3 BAILEY 84 ACCM hadron+Be → φπ+X1ANJOS 88 enters the �t via mD±s − mD± (see below).

WEIGHTED AVERAGE
1969.0±1.4 (Error scaled by 1.5)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

CHEN 83C CLEO
DERRICK 85B HRS 2.0
BLAYLOCK 87 MRK3 0.4
BECKER 87B SILI 4.2
ALBRECHT 88 ARG 0.0
BARLAG 90C ACCM 2.0

χ2

       8.7
(Confidence Level = 0.070)

1950 1960 1970 1980 1990 2000D±s mass (MeV) mD±s − mD±mD±s − mD±mD±s − mD±mD±s − mD±The �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT98.69±0.05 OUR FIT98.69±0.05 OUR FIT98.69±0.05 OUR FIT98.69±0.05 OUR FIT98.69±0.05 OUR AVERAGE98.69±0.05 OUR AVERAGE98.69±0.05 OUR AVERAGE98.69±0.05 OUR AVERAGE98.68±0.03±0.04 AAIJ 13V LHCB D+s → K+K−π+99.41±0.38±0.21 ACOSTA 03D CDF2 pp, √s= 1.96 TeV98.4 ±0.1 ±0.3 48k AUBERT 02G BABR e+ e− ≈ �(4S)99.5 ±0.6 ±0.3 BROWN 94 CLE2 e+ e− ≈ �(4S)98.5 ±1.5 555 CHEN 89 CLEO e+ e− 10.5 GeV99.0 ±0.8 290 ANJOS 88 E691 Photoprodu
tion

D±s MEAN LIFED±s MEAN LIFED±s MEAN LIFED±s MEAN LIFEMeasurements with an error greater than 100 × 10−15 s or with fewerthan 100 events have been omitted from the Listings.VALUE (10−15 s) EVTS DOCUMENT ID TECN COMMENT500 ± 7 OUR AVERAGE500 ± 7 OUR AVERAGE500 ± 7 OUR AVERAGE500 ± 7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.507.4± 5.5± 5.1 13.6k LINK 05J FOCS �π+ and K∗0K+472.5±17.2± 6.6 760 IORI 01 SELX 600 GeV �−, π−, p518 ±14 ± 7 1662 AITALA 99 E791 π− nu
leus, 500 GeV486.3±15.0+ 4.9
− 5.1 2167 1 BONVICINI 99 CLE2 e+ e− ≈ �(4S)475 ±20 ± 7 900 FRABETTI 93F E687 γBe, φπ+500 ±60 ±30 104 FRABETTI 90 E687 γBe, φπ+470 ±40 ±20 228 RAAB 88 E691 Photoprodu
tion1BONVICINI 99 obtains 1.19 ± 0.04 for the ratio of D+s to D0 lifetimes.

WEIGHTED AVERAGE
500±7 (Error scaled by 1.3)

RAAB 88 E691
FRABETTI 90 E687
FRABETTI 93F E687 1.4
BONVICINI 99 CLE2 0.8
AITALA 99 E791 1.3
IORI 01 SELX 2.2
LINK 05J FOCS 1.0

χ2

       6.7
(Confidence Level = 0.154)

400 450 500 550 600 650D±s mean life (10−15 s)D+s DECAY MODESD+s DECAY MODESD+s DECAY MODESD+s DECAY MODESUnless otherwise noted, the bran
hing fra
tions for modes with a resonan
ein the �nal state in
lude all the de
ay modes of the resonan
e. D−s modesare 
harge 
onjugates of the modes below. S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelIn
lusive modesIn
lusive modesIn
lusive modesIn
lusive modes�1 e+ semileptoni
 [a℄ ( 6.5 ±0.4 ) %�2 π+ anything (119.3 ±1.4 ) %�3 π− anything ( 43.2 ±0.9 ) %�4 π0 anything (123 ±7 ) %�5 K− anything ( 18.7 ±0.5 ) %�6 K+ anything ( 28.9 ±0.7 ) %�7 K0S anything ( 19.0 ±1.1 ) %�8 η anything [b℄ ( 29.9 ±2.8 ) %�9 ω anything ( 6.1 ±1.4 ) %�10 η′ anything [
℄ ( 10.3 ±1.4 ) % S=1.1�11 f0(980) anything, f0 → π+π− < 1.3 % CL=90%�12 φ anything ( 15.7 ±1.0 ) %�13 K+K− anything ( 15.8 ±0.7 ) %�14 K0S K+ anything ( 5.8 ±0.5 ) %�15 K0S K− anything ( 1.9 ±0.4 ) %�16 2K0S anything ( 1.70±0.32) %�17 2K+anything < 2.6 × 10−3 CL=90%�18 2K−anything < 6 × 10−4 CL=90%Leptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modesLeptoni
 and semileptoni
 modes�19 e+νe < 8.3 × 10−5 CL=90%�20 µ+νµ ( 5.56±0.25)× 10−3�21 τ+ ντ ( 5.55±0.24) %�22 K+K− e+νe |�23 φe+ νe [d℄ ( 2.39±0.23) % S=1.8�24 ηe+ νe + η′(958)e+ νe [d℄ ( 2.96±0.29) %�25 ηe+ νe [d℄ ( 2.28±0.24) %�26 η′(958)e+νe [d℄ ( 6.8 ±1.6 )× 10−3�27 ω e+νe [e℄ < 2.0 × 10−3 CL=90%�28 K0 e+ νe ( 3.9 ±0.9 )× 10−3�29 K∗(892)0 e+νe [d℄ ( 1.8 ±0.4 )× 10−3�30 f0(980)e+ νe , f0 → π+π−
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 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pair�31 K+K0S ( 1.50±0.05) %�32 K+K0 ( 2.95±0.14) %�33 K+K−π+ [f ℄ ( 5.45±0.17) % S=1.2�34 φπ+ [d,g ℄ ( 4.5 ±0.4 ) %�35 φπ+, φ → K+K− [g ℄ ( 2.27±0.08) %�36 K+K∗(892)0 , K∗0 →K−π+ ( 2.61±0.09) %�37 f0(980)π+ , f0 → K+K− ( 1.15±0.32) %�38 f0(1370)π+ , f0 → K+K− ( 7 ±5 )× 10−4�39 f0(1710)π+ , f0 → K+K− ( 6.7 ±2.9 )× 10−4�40 K+K∗0(1430)0 , K∗0 →K−π+ ( 1.9 ±0.4 )× 10−3�41 K+K0S π0 ( 1.52±0.22) %�42 2K0S π+ ( 7.7 ±0.6 )× 10−3�43 K0K0π+ |�44 K∗(892)+K0 [d℄ ( 5.4 ±1.2 ) %�45 K+K−π+π0 ( 6.3 ±0.6 ) %�46 φρ+ [d℄ ( 8.4 +1.9
−2.3 ) %�47 K0S K−2π+ ( 1.67±0.10) %�48 K∗(892)+K∗(892)0 [d℄ ( 7.2 ±2.6 ) %�49 K+K0S π+π− ( 1.03±0.10) %�50 K+K−2π+π− ( 8.7 ±1.5 )× 10−3�51 φ2π+π− [d℄ ( 1.21±0.16) %�52 K+K−ρ0π+non-φ < 2.6 × 10−4 CL=90%�53 φρ0π+, φ → K+K− ( 6.5 ±1.3 )× 10−3�54 φa1(1260)+, φ →K+K−, a+1 → ρ0π+ ( 7.5 ±1.2 )× 10−3�55 K+K−2π+π− nonresonant ( 9 ±7 )× 10−4�56 2K0S 2π+π− ( 9 ±4 )× 10−4Hadroni
 modes without K 'sHadroni
 modes without K 'sHadroni
 modes without K 'sHadroni
 modes without K 's�57 π+π0 < 3.5 × 10−4 CL=90%�58 2π+π− ( 1.09±0.05) % S=1.1�59 ρ0π+ ( 2.0 ±1.2 )× 10−4�60 π+ (π+π−)S−wave [h℄ ( 9.1 ±0.4 )× 10−3�61 f0(980)π+ , f0 → π+π−�62 f0(1370)π+ , f0 → π+π−�63 f0(1500)π+ , f0 → π+π−�64 f2(1270)π+ , f2 → π+π− ( 1.10±0.20)× 10−3�65 ρ(1450)0π+ , ρ0 → π+π− ( 3.0 ±2.0 )× 10−4�66 π+ 2π0 ( 6.5 ±1.3 )× 10−3�67 2π+π−π0 |�68 ηπ+ [d℄ ( 1.70±0.09) % S=1.1�69 ωπ+ [d℄ ( 2.4 ±0.6 )× 10−3�70 3π+2π− ( 8.0 ±0.8 )× 10−3�71 2π+π− 2π0 |�72 ηρ+ [d℄ ( 8.9 ±0.8 ) %�73 ηπ+π0 ( 9.2 ±1.2 ) %�74 ωπ+π0 [d℄ ( 2.8 ±0.7 ) %�75 3π+2π−π0 ( 4.9 ±3.2 ) %�76 ω2π+π− [d℄ ( 1.6 ±0.5 ) %�77 η′(958)π+ [
,d℄ ( 3.94±0.25) %�78 3π+2π−2π0 |�79 ωηπ+ [d℄ < 2.13 % CL=90%�80 η′(958)ρ+ [
,d℄ ( 5.8 ±1.5 ) %�81 η′(958)π+π0 ( 5.6 ±0.8 ) %�82 η′(958)π+π0 nonresonant < 5.1 % CL=90%Modes with one or three K 'sModes with one or three K 'sModes with one or three K 'sModes with one or three K 's�83 K+π0 ( 6.3 ±2.1 )× 10−4�84 K0S π+ ( 1.22±0.06)× 10−3�85 K+η [d℄ ( 1.77±0.35)× 10−3�86 K+ω [d℄ < 2.4 × 10−3 CL=90%�87 K+η′(958) [d℄ ( 1.8 ±0.6 )× 10−3�88 K+π+π− ( 6.6 ±0.4 )× 10−3�89 K+ρ0 ( 2.5 ±0.4 )× 10−3�90 K+ρ(1450)0 , ρ0 → π+π− ( 7.0 ±2.4 )× 10−4�91 K∗(892)0π+ , K∗0 → K+π− ( 1.42±0.24)× 10−3�92 K∗(1410)0π+ , K∗0 →K+π−

( 1.24±0.29)× 10−3�93 K∗(1430)0π+ , K∗0 →K+π−
( 5.0 ±3.5 )× 10−4�94 K+π+π−nonresonant ( 1.04±0.34)× 10−3�95 K0π+π0 ( 1.00±0.18) %

�96 K0S 2π+π− ( 3.0 ±1.1 )× 10−3�97 K+ωπ0 [d℄ < 8.2 × 10−3 CL=90%�98 K+ωπ+π− [d℄ < 5.4 × 10−3 CL=90%�99 K+ωη [d℄ < 7.9 × 10−3 CL=90%�100 2K+K− ( 2.18±0.21)× 10−4�101 φK+ , φ → K+K− ( 8.9 ±2.0 )× 10−5Doubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modes�102 2K+π− ( 1.27±0.13)× 10−4�103 K+K∗(892)0 , K∗0 →K+π−
( 6.0 ±3.4 )× 10−5Baryon-antibaryon modeBaryon-antibaryon modeBaryon-antibaryon modeBaryon-antibaryon mode�104 pn ( 1.3 ±0.4 )× 10−3�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,�C = 1 weak neutral 
urrent (C1) modes,Lepton family number (LF), orLepton family number (LF), orLepton family number (LF), orLepton family number (LF), orLepton number (L) violating modesLepton number (L) violating modesLepton number (L) violating modesLepton number (L) violating modes�105 π+ e+ e− [i ℄ < 1.3 × 10−5 CL=90%�106 π+φ, φ → e+ e− [j℄ ( 6 +8

−4 )× 10−6�107 π+µ+µ− [i ℄ < 4.1 × 10−7 CL=90%�108 K+ e+ e− C1 < 3.7 × 10−6 CL=90%�109 K+µ+µ− C1 < 2.1 × 10−5 CL=90%�110 K∗(892)+µ+µ− C1 < 1.4 × 10−3 CL=90%�111 π+ e+µ− LF < 1.2 × 10−5 CL=90%�112 π+ e−µ+ LF < 2.0 × 10−5 CL=90%�113 K+ e+µ− LF < 1.4 × 10−5 CL=90%�114 K+ e−µ+ LF < 9.7 × 10−6 CL=90%�115 π− 2e+ L < 4.1 × 10−6 CL=90%�116 π− 2µ+ L < 1.2 × 10−7 CL=90%�117 π− e+µ+ L < 8.4 × 10−6 CL=90%�118 K−2e+ L < 5.2 × 10−6 CL=90%�119 K−2µ+ L < 1.3 × 10−5 CL=90%�120 K− e+µ+ L < 6.1 × 10−6 CL=90%�121 K∗(892)−2µ+ L < 1.4 × 10−3 CL=90%[a℄ This is the purely e+ semileptoni
 bran
hing fra
tion: the e+ fra
tionfrom τ+ de
ays has been subtra
ted o�. The sum of our (non-τ) e+ex
lusive fra
tions | an e+νe with an η, η′, φ, K0, K∗0, or f0(980) |is 7.0 ± 0.4 %[b℄ This fra
tion in
ludes η from η′ de
ays.[
 ℄ Two times (to in
lude µ de
ays) the η′ e+ νe bran
hing fra
tion, plus the
η′π+, η′ρ+, and η′K+ fra
tions, is (18.6 ± 2.3)%, whi
h 
onsiderablyex
eeds the in
lusive η′ fra
tion of (11.7± 1.8)%. Our best guess is thatthe η′ρ+ fra
tion, (12.5 ± 2.2)%, is too large.[d ℄ This bran
hing fra
tion in
ludes all the de
ay modes of the �nal-stateresonan
e.[e℄ A test for uu or dd 
ontent in the D+s . Neither Cabibbo-favored norCabibbo-suppressed de
ays 
an 
ontribute, and ω−φ mixing is an unlikelyexplanation for any fra
tion above about 2× 10−4.[f ℄ The bran
hing fra
tion for this mode may di�er from the sum of thesubmodes that 
ontribute to it, due to interferen
e e�e
ts. See therelevant papers.[g ℄ We de
ouple the D+s → φπ+ bran
hing fra
tion obtained from massproje
tions (and used to get some of the other bran
hing fra
tions) fromthe D+s → φπ+, φ → K+K− bran
hing fra
tion obtained from theDalitz-plot analysis of D+s → K+K−π+. That is, the ratio of these twobran
hing fra
tions is not exa
tly the φ → K+K− bran
hing fra
tion0.491.[h℄ This is the average of a model-independent and a K-matrix parametriza-tion of the π+π− S-wave and is a sum over several f0 mesons.[i ℄ This mode is not a useful test for a �C=1 weak neutral 
urrent be
auseboth quarks must 
hange 
avor in this de
ay.[j ℄ This is not a test for the �C=1 weak neutral 
urrent, but leads to the
π+ ℓ+ ℓ− �nal state.
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le ListingsD±s CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 14 bran
hing ratios uses 18 measurements andone 
onstraint to determine 12 parameters. The overall �t has a
χ2 = 8.1 for 7 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x25 0x26 0 0x31 0 0 0x33 0 0 0 56x45 0 0 0 15 27x47 0 0 0 35 34 11x58 0 0 0 36 55 16 22x68 0 0 0 16 1 −2 7 −1x69 0 0 0 2 0 0 1 0 11x88 0 0 0 21 20 3 12 10 11 1x23 x25 x26 x31 x33 x45 x47 x58 x68 x69
D+

s BRANCHING FRACTIONS

Updated November 2015 by J.L. Rosner (University of Chicago)
and C.G. Wohl (LBNL).

Figure 1 shows a partial breakdown of the D+
s branching

fractions. The rest of this note is about how the figure was

constructed. The values shown make heavy use of CLEO mea-

surements of inclusive branching fractions [1]. For references

to other data cited in the following, see the Listings.

Modes with leptons: The bottom (19.9 ± 0.9)% of Fig. 1

shows the fractions for the modes that include leptons. Mea-

sured Xe+νe semileptonic fractions have been doubled to in-

clude the Xµ+νµ fractions. The sum of the exclusive Xe+νe

fractions is (6.9 ± 0.4)%, consistent with an inclusive semilep-

tonic measurement of (6.5 ± 0.4)%. There seems to be little

missing here.

Inclusive hadronic KK fractions: The Cabibbo-favored

c → s decay in D+
s decay produces a final state with both an

s and an s̄; and thus modes with a KK pair or with an η,

ω, η′, or φ predominate (as may already be seen in Fig. 1 in

the semileptonic fractions). We consider the KK modes first. A

complete picture of the exclusive KK charge modes is not yet

possible, because branching fractions for many of those modes

have not yet been measured. However, CLEO has measured

the inclusive K+, K−, K0
S, K+K−, K+K0

S, K−K0
S, and 2K0

S

fractions (these include modes with leptons) [1]. And each of

these inclusive fractions with a K0
S is equal to the corresponding

fraction with a K0
L: f(K+K0

L) = f(K+K0
S), f(2K0

L) = f(2K0
S),

etc. Therefore, of all inclusive fractions pairing a K+, K0
S, or

K0
L with a K−, K0

S, or K0
L, we know all but f(K0

SK0
L).

We can get that fraction. The total K0
S fraction is

f(K0
S) = f(K+K0

S) + f(K−K0
S) + 2f(2K0

S) + f(K0
SK0

L)

+ f(single K0
S) ,

where f(single K0
S) is the sum of the branching fractions for

modes such as K0
Sπ+2π0 with a K0

S and no second K. The

K0
Sπ+2π0 mode is in fact the only unmeasured single-K0

S mode
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Figure 1: A partial breakdown of D+
s branch-

ing fractions. The hadronic bins in the left col-
umn show inclusive fractions. Shading within a
bin shows how much of the inclusive fraction is
not yet accounted for by adding up all the rele-
vant exclusive fractions. The inclusive hadronic
φ fraction is spread over three bins, in propor-
tion to its decay fractions into K+K−, K0

SK0
L,

and no-KK̄ modes.

(throughout, we shall assume that fractions for modes with a

K or KK and more than three pions are negligible), and we

shall take its fraction to be the same as for the K0
S2π+π−

mode, (0.30± 0.11)%. Any reasonable deviation from this value

would be too small to matter much in the following. Adding

the several small single-K0
S branching fractions, including those

from semileptonic modes, we get f(single K0
S) = (1.65±0.26)%.

Using this, we have:

f(K0
SK0

L) = f(K0
S) − f(K+K0

S) − f(K−K0
S)

− 2f(2K0
S) − f(single K0

S)

= (19.0 ± 1.1) − (5.8 ± 0.5) − (1.9 ± 0.4)
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− 2 × (1.7 ± 0.3) − (1.7 ± 0.3)

= (6.2 ± 1.4)% .

Here and below we treat the errors as uncorrelated, although

often they are not. However, our main aim is to get numbers

for Fig. 1; errors are secondary.

There is a check on our result: The φ inclusive branching

fraction is (15.7 ± 1.0)%, of which 34%, or (5.34 ± 0.34)% of

D+
s decays, produces a K0

SK0
L. Our f(K0

SK0
L) = (6.2 ± 1.4)%

has to be at least this large—and it is.

We now have all the inclusive KK fractions. We use

f(K+K
0
) = 2 f(K+K0

S), and likewise for f(K−K0). For

K+K− and K0
SK0

L, we subtract off the contributions from

φℓ+ν decay to get the purely hadronic KK inclusive fractions:

f(K+K−, hadronic) = (15.8 ± 0.7) − (2.44 ± 0.14)

= (13.4 ± 0.7)%

f(K+K
0
, hadronic) = (11.6 ± 1.0)%

f(K−K0, hadronic) = (3.8 ± 0.8)%

f(2K0
S + 2K0

L, hadronic) = (3.4 ± 0.64)%

f(K0
SK0

L, hadronic) = (6.2 ± 1.4) − (1.70 ± 0.10)

= (4.5 ± 1.4)% .

The fractions are shown in Fig. 1. They total (36.7 ± 2.1)% of

D+
s decays.

We can add more information to the figure by summing up

measured branching fractions for exclusive modes within each

bin:

K+K− modes—The sum of measured K+K−π+,

K+K−π+π0, and K+K−2π+π− branching fractions is (12.6 ±

0.6)%. That leaves (0.8 ± 0.9)% for the K+K−π+2π0 mode,

which is the only other K+K− mode with three or fewer pions.

In Fig. 1, this unmeasured part of the K+K− bin is shaded.

K+K
0
modes—Two times the sum of the measured K+K0

S,

K+K0
Sπ0, and K+K0

Sπ+π− branching fractions is (8.1± 0.5)%.

This leaves (3.5 ± 1.1)% for the unmeasured K+K
0

modes

(there are three such modes with three or fewer pions). This is

shaded in the figure.

K−K0 modes—Twice the K−K0
S2π+ fraction is (3.34 ±

0.20)%, which leaves about (0.5 ± 0.8)% for K−K02π+π0, the

only other K−K0 mode with three or fewer pions.

2K0
S + 2K0

L modes—The 2K0
Sπ+ and 2K0

S2π+π− fractions

sum to (0.86 ± 0.07)%; this times two (for the corresponding

2K0
L modes) is (1.72 ± 0.14)%. This leaves about (1.7 ± 0.7)%

for other 2K0
S + 2K0

L modes.

K0
SK0

L modes—Most of the K0
SK0

L fraction is accounted for

by φ decays (see below).

Inclusive hadronic η, ω, η′, and φ fractions: These

are easier. We start with the inclusive branching fractions, and

then, to avoid double counting, subtract: (1) fractions for modes

with leptons; (2) η mesons that are included in the inclusive η′

fraction; and (3) K+K− and K0
SK0

L from φ decays:

f(η hadronic) = f(η inclusive) − 0.65 f(η′ inclusive)

−f(ηℓ+ν) = (17.0 ± 3.1)%

f(ω hadronic) = f(ω inclusive) − 0.0275 f(η′ inclusive)

= (5.8 ± 1.4)%

f(η′ hadronic) = f(η′ inclusive) − f(η′ℓ+ν)

= (9.7 ± 1.9)%

f(φ hadronic, 6→ KK) = 0.17
[

f(φ inclusive) − f(φℓ+ν)
]

= (1.8 ± 0.2)% .

The factors 0.65, 0.0275, and 0.17 are the η′ → η, η′ → ω, and

φ 6→ KK branching fractions. Figure 1 shows the results; the

sum is (34.2± 3.9)%, which is about equal to the hadronic KK

total.

Note that the bin marked φ near the top of Fig. 1 includes

neither the φℓ+ν decays nor the 83% of other φ decays that

produce a KK pair. There is twice as much φ in the K0
SK0

L

bin, and nearly three times as much in the K+K− bin. These

contributions are indicated in those bins.

Again, we can show how much of each bin is accounted for

by measured exclusive branching fractions:

η modes—The sum of ηπ+, ηρ+, and ηK+ branching

fractions is (11.1 ± 1.2)%, which leaves a good part of the

inclusive hadronic η fraction, (17.0 ± 3.1)%, to be accounted

for. This is shaded in the figure.

ω modes—The sum of ωπ+, ωπ+π0, and ω2π+π− fractions

is (4.6±0.9)%, which is nearly as large as the inclusive hadronic

ω fraction, (5.8 ± 1.4)%.

η′ modes—The sum of η′π+, η′ρ+, and η′K+ fractions

is (9.7 ± 1.9)%, which agrees with the inclusive hadronic η′

fraction, (9.7±1.9)%. (An old measurement of the η′ρ+ fraction,

(12.5 ± 2.2)%, has been abandoned [2].)

Cabibbo-suppressed modes: The sum of the fractions for

modes with a KK̄, η, ω, η′, or leptons is (90.8 ± 4.5)%.

The remaining (9.2 ± 4.5)% is to Cabibbo-suppressed modes,

mainly single-K+pions and multiple-pion modes (see below).

However, it should be noted that some small parts of the modes

already discussed are Cabibbo-suppressed. For example, the

(1.10±0.24)% of D+
s decays to K0ℓν or K∗0ℓν is already in the

Xℓν bin in Fig. 1. And the inclusive measurements of η, ω, and

η′ fractions do not distinguish between (and therefore include

both) Cabibbo-allowed and -suppressed modes. We shall not

try to make a separation here.

K0 + pions—Above, we found that f(single K0
S) = (1.65±

0.26)%. Subtracting leptonic fractions with a K0
S leaves (1.22±

0.28)%. The hadronic single-K0 fraction is twice this, (2.44 ±

0.56)%. The sum of measured K0π+, K0π+π0, and K02π+π−

fractions is (1.84 ± 0.28)%.

K+ + pions—The K+π0 and K+π+π− fractions sum to

(0.72 ± 0.05)%. Much of the K+nπ modes, where n ≥ 3, is
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already in the η, ω, and η′ bins, and the rest is not measured.

The total K+ fraction wanted here is probably in the 1-to-2%

range.

Multi-pions—The 2π+π−, π+2π0, and 3π+2π− fractions

total (2.54 ± 0.16)%. Modes not measured might double this.

The sum of the actually measured fractions is (5.1± 0.3)%,

which is not inconsistent with the Cabibbo-suppressed total of

(9.2 ± 4.5)%.

A model: With CLEO about to publish inclusive branching

fractions [1], Gronau and Rosner predicted those fractions using

a “statistical isospin”model [3]. Consider, say, the D+
s → KKπ

charge modes: the K+K−π+ branching fraction is measured,

the K+K
0
π0 and K0K

0
π+ fractions are not. The statistical

isospin model assumes that all the independent isospin am-

plitudes for D+
s → KKπ decay are equal in magnitude and

incoherent in phase—in which case, the ratio of the three frac-

tions here is 3:3:2. (Actually, use was also made of the fact that

D+
s → KKπ decay is dominated by φπ+, K+K

∗0
, and K∗+K

0

submodes; but the estimated charge-mode ratios were not far

from 3:3:2.) A different, quark-antiquark pair-production model

was used to estimate systematic uncertainties.

In this way, unmeasured exclusive fractions were calculated

from measured exclusive fractions (the latter were taken from

the 2008 Review, and so did not benefit from recent results). In

the hadronic sector, the measured total of 59.4% of D+
s decays

led to an estimated total of 24.2% for unmeasured modes.

Weighted counts of π+, K0
S, etc., were then made to get the

inclusive fractions.

Of interest here is that the sum of all the exclusive

fractions—a way-stop in getting the inclusive values—was a

nearly correct 103%. In the absence of complete measurements,

the model is a way to, in effect, average over ignorance. It

probably works better summed over a number of charge-mode

sets than in detail. It is known to sometimes give incorrect

results when there are sufficient measurements to test it.
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LEPTONIC DECAYS OF CHARGED PSEUDO-

SCALAR MESONS

Revised March 2016 by J. Rosner (Univ. Chicago), S. Stone
(Syracuse Univ.), and R. Van de Water (FNAL).

We review the physics of purely leptonic decays of π±, K±,

D±, D±
s , and B± pseudoscalar mesons. The measured decay

rates are related to the product of the relevant weak-interaction-

based CKM matrix element of the constituent quarks and a

strong interaction parameter related to the overlap of the quark

and antiquark wave-functions in the meson, called the decay

constant fP . The leptonic decay constants for π±, K±, D±,

D±
s , and B± mesons can be obtained with controlled theoretical

uncertainties and high precision from ab initio lattice-QCD

simulations. The combination of experimental leptonic decay-

rate measurements and theoretical decay-constant calculations

enables the determination of several elements of the CKM

matrix within the standard model. These determinations are

competitive with those obtained from semileptonic decays, and

also complementary because they are sensitive to axial-vector

(as opposed to vector) quark flavor-changing currents. They

can also be used to test the unitarity of the first and second

rows of the CKM matrix. Conversely, taking the CKM elements

predicted by unitarity, one can infer “experimental” values for

fP that can be compared with theory. These provide tests of

lattice-QCD methods, provided new-physics contributions to

leptonic decays are negligible at the current level of precision.

This review was prepared for the Particle Data Group’s 2016

edition, updating the versions in Refs. 1–3.

I. INTRODUCTION

Charged mesons formed from a quark and an antiquark can

decay to a charged lepton pair when these objects annihilate

via a virtual W boson. Fig. 1 illustrates this process for the

purely leptonic decay of a D+ meson.

Figure 1: The annihilation process for pure
D+ leptonic decays in the Standard Model.

Similar quark-antiquark annihilations via a virtual W+ to

the ℓ+ν final states occur for the π+, K+, D+
s , and B+ mesons.

(Whenever psuedoscalar-meson charges are specified in this

article, use of the charge-conjugate particles and corresponding

decays are also implied.) Let P be any of these pseudoscalar

mesons. To lowest order, the decay width is

Γ(P → ℓν) =
G2

F

8π
f2
P m2

ℓMP

(

1 −
m2

ℓ

M2
P

)2

|Vq1q2|
2 . (1)

Here MP is the P mass, mℓ is the ℓ mass, Vq1q2 is the

Cabibbo-Kobayashi-Maskawa (CKM) matrix element between

the constituent quarks q1q̄2 in P , and GF is the Fermi coupling

constant. The decay constant fP is proportional to the matrix

element of the axial current between the one-P -meson state and

the vacuum:

〈0|q̄1γµγ5q2|P (p)〉 = ipµfP , (2)

and can be thought of as the “wavefunction overlap” of the

quark and antiquark. In this article we use the convention in

which fπ ≈ 130 MeV.

The decay P± starts with a spin-0 meson, and ends up with

a left-handed neutrino or right-handed antineutrino. By angular

momentum conservation, the ℓ± must then also be left-handed

or right-handed, respectively. In the mℓ = 0 limit, the decay is

forbidden, and can only occur as a result of the finite ℓ mass.

This helicity suppression is the origin of the m2
ℓ dependence

of the decay width. Radiative corrections are needed when the

final charged particle is an electron or muon; for the τ they

are greatly suppressed due to the large lepton mass, and hence

negligible.

Measurements of purely leptonic decay branching fractions

and lifetimes allow an experimental determination of the prod-

uct |Vq1q2 | fP . If the decay constant fP is known to sufficient

precision from theory, one can obtain the corresponding CKM

element within the standard model. If, on the other hand, one

takes the value of |Vq1q2 | assuming CKM unitarity, one can infer

an “experimental measurement” of the decay constant that can

then be compared with theory.

The importance of measuring Γ(P → ℓν) depends on the

particle being considered. Leptonic decays of charged pseu-

doscalar mesons occur at tree level within the standard model.

Thus one does not expect large new-physics contributions to

measurements of Γ(P → ℓν) for the lighter mesons P = π+, K+,

and these processes in principle provide clean standard-model

determinations of Vud and Vus. The situation is different for

leptonic decays of charm and bottom mesons. The presence

of new heavy particles such as charged Higgs bosons or lep-

toquarks could lead to observable effects in Γ(P → ℓν) for

P = D+
(s)

, B+ [4–8]. Thus the determination of |Vub| from

B+ → τν decay, in particular, should be considered a probe of

new physics. More generally, the ratio of leptonic decays to τν

over µν final states probes lepton universality [4,9].

The determinations of CKM elements from leptonic de-

cays of charged pseudoscalar mesons provide complementary
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information to those from other decay processes. The decay

P → ℓν proceeds in the standard model via the axial-vector

current q̄1γµγ5q2, whereas semileptonic pseudoscalar meson de-

cays P1 → P2ℓν proceed via the vector current q̄1γµq2. Thus

the comparison of determinations of |Vq1q2 | from leptonic and

semileptonic decays tests the V − A structure of the standard-

model electroweak charged-current interaction. More generally,

a small right-handed admixture to the standard-model weak

current would lead to discrepancies between |Vq1q2 | obtained

from leptonic pseudoscalar-meson decays, exclusive semilep-

tonic pseudoscalar-meson decays, exclusive semileptonic baryon

decays, and inclusive semileptonic decays [10,11].

Both measurements of the decay rates Γ(P → ℓν) and

theoretical calculations of the decay constants fP for P =

π+, K+, D+
(s) from numerical lattice-QCD simulations are now

quite precise. As a result, the elements of the first row of the

CKM matrix |Vud| and |Vus| can be obtained to sub-percent

precision from π+ → ℓν and K+ → ℓν, where the limiting error

is from theory. The elements of the second row of the CKM

matrix |Vcd(s)| can be obtained from leptonic decays of charged

pseudoscalar mesons to few-percent precision, where here the

limiting error is from experiment. These enable stringent tests

of the unitarity of the first and second rows of the CKM matrix.

This review is organized as follows. Because the experi-

mental and theoretical issues associated with measurements of

pions and kaons, charmed mesons, and bottom mesons differ, we

discuss each one separately. We begin with the pion and kaon

system in Sec. II. First, in Sec. II.A we review current measure-

ments of the experimental decay rates. We provide tables of

branching-ratio measurements and determinations of the prod-

uct |Vud(s)|fπ+(K+), as well as average values for these quantities

including correlations and other effects needed to combine re-

sults. Then, in Sec. II.B we summarize the status of theoretical

calculations of the decay constants. We provide tables of recent

lattice-QCD results for fπ+, fK+, and their ratio from simula-

tions including dynamical u, d, s, and (in some cases c) quarks,

and present averages for each of these quantities including corre-

lations and strong SU(2)-isospin corrections as needed. We note

that, for the leptonic decay constants in Sec. II.B, Sec. III.B,

and Sec. IV.B, when available we use preliminary averages from

the Flavor Lattice Averaging Group [12,13] that update the

determinations in Ref. 14 to include results that have appeared

since their most recent review, which dates from 2013. We next

discuss the charmed meson system in Sec. III, again review-

ing current experimental rate measurements in Sec. III.A and

theoretical decay-constant calculations in Sec. III.B. Last, we

discuss the bottom meson system in Sec. IV, following the same

organization as the two previous sections.

After having established the status of both experimental

measurements and theoretical calculations of leptonic charged

pseudoscalar-meson decays, we discuss some implications for

phenomenology in Sec. V. We combine the average B(P → ℓν)

with the average fP to obtain the relevant CKM elements from

leptonic decays, and then compare them with determinations

from other processes. We also use the CKM elements obtained

from leptonic decays to test the unitarity of the first and sec-

ond rows of the CKM matrix. Further, as in previous reviews,

we combine the experimental B(P → ℓν)s with the associated

CKM elements obtained from CKM unitarity to infer “exper-

imental” values for the decay constants; the comparison with

theory provides a test of lattice and other QCD approaches

assuming that new-physics contributions to these processes are

not significant.

II. PIONS AND KAONS

A. Experimental rate measurements

The leading-order expression for Γ(P → ℓν) in Eq. (1) is

modified by radiative corrections arising from diagrams involv-

ing photons, in some cases with additional quark loops. These

electroweak and “hadronic” contributions can be combined into

an overall factor that multiplies the rate in the presence of only

the strong interaction (Γ(0)) as follows (cf. Refs. 15,16, and

references therein):

Γ(P → ℓν) = Γ(0)
[

1 +
α

π
CP

]

, (3)

where CP differs for P = π, K. The inclusion of these cor-

rections is numerically important given the level of precision

achieved on the experimental measurements of the π± → µ±ν

and K± → µ±ν decay widths. The explicit expression for

the term in brackets above including all known electroweak

and hadronic contributions is given in Eq. (114) of Ref. 17.

It includes the universal short-distance electroweak correction

obtained by Sirlin [18], the universal long-distance correc-

tion for a point-like meson from Kinoshita [19], and correc-

tions that depend on the hadronic structure [20]. We evaluate

δP ≡ (α/π)CP using the latest experimentally-measured meson

and lepton masses and coupling constants from the Parti-

cle Data Group [3], and taking the low-energy constants

(LECs) that parameterize the hadronic contributions from

Refs. 17,21,22. The finite non-logarithmic parts of the LECs

were estimated within the large-NC approximation assuming

that contributions from the lowest-lying resonances dominate.

We therefore conservatively assign a 100% uncertainty to the

LECs, which leads to a ±0.9 error in Cπ,K .1 We obtain the

following correction factors to the individual charged pion and

kaon decay widths:

δπ = 0.0176(21) and δK = 0.0107(21) . (4)

1 This uncertainty on Cπ,K is smaller than the error estimated

by Marciano and Sirlin in Ref. 23, which predates the calcula-

tions of the hadronic-structure contributions in Refs. 17, 20–22.

The hadronic LECs incorporate the large short-distance elec-

troweak logarithm discussed in Ref. 23, and their dependence

on the chiral renormalization scale cancels the scale-dependence

induced by chiral loops, thereby removing the dominant scale

uncertainty of the Marciano–Sirlin analysis [23].
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The error on the ratio of kaon-to-pion leptonic decay widths is

under better theoretical control because the hadronic contribu-

tions from low-energy constants estimated within the large-Nc

framework cancel at lowest order in the chiral expansion. For

the ratio, we use the correction factor

δK/π = −0.0069(17) , (5)

where we take the estimated error due to higher-order correc-

tions in the chiral expansion from Ref. 24.

The sum of branching fractions for π− → µ−ν̄ and π− →

µ−ν̄γ is 99.98770(4)% [3]. The two modes are difficult to

separate experimentally, so we use this sum. Together with

the lifetime 26.033(5) ns [3] this implies Γ(π− → µ−ν̄[γ]) =

3.8408(7)× 107 s−1. The right-hand side of Eq. (1) is modified

by the factor 1.0176 ± 0.0021 mentioned above to include

photon emission and radiative corrections [23,25]. The decay

rate together with the masses from the 2014 PDG review [3]

gives

fπ−|Vud| = (127.13± 0.02 ± 0.13) MeV , (6)

where the errors are from the experimental rate measurement

and the radiative correction factor δπ in Eq. (4), respectively.

The uncertainty is dominated by that from theoretical estimate

of the hadronic structure-dependent radiative corrections, which

include next-to-leading order contributions of O(e2p2
π,K) in

chiral perturbation theory [17].

The data on Kµ2 decays have been updated recently through

a global fit to branching ratios and lifetime measurements [26]:

B(K− → µ−ν̄[γ]) = 63.58(11)% and τK± = 12.384(15) ns. The

improvement in the branching ratio is primarily due to a new

measurement of B(K± → π±π+π−) from KLOE-2 [27], which

is correlated with B(K±
µ2) through the constraint that the sum

of individual branching ratios must equal unity. The sum of

branching fractions for K− → µ−ν̄ and K− → µ−ν̄γ and the

lifetime imply Γ(K− → µ−ν̄[γ]) = 5.134(11) × 107 s−1. Again

taking the 2014 PDG masses [3], this decay rate implies

fK+ |Vus| = (35.09 ± 0.04 ± 0.04) MeV , (7)

where the errors are from the experimental rate measurement

and the radiative correction factor δK , respectively.

Short-distance radiative corrections cancel in the ratio of

pion-to-kaon decay rates [28]:

ΓKℓ2[γ]

Γπℓ2[γ]

=
|V 2

us|f
2
K−

|Vud|2f
2
π−

mK(1 − m2
ℓ/m2

K)2

mπ(1 − m2
ℓ/m2

π)2
(1 + δK/π) , (8)

where δK/π is given in Eq. (5). The left-hand side of Eq. (8) is

1.3367(28), yielding

|Vus|fK−

|Vud|fπ−

= 0.27599± 0.00029± 0.00024 , (9)

where the first uncertainty is due to the branching fractions

and the second is due to δK/π. Here the estimated error on the

hadronic structure-dependent radiative corrections is commen-

surate with the experimental error.

In summary, the main experimental results pertaining to

charged pion and kaon leptonic decays are

|Vud|fπ− = (127.13± 0.02 ± 0.13) MeV , (10)

|Vus|fK+ = (35.09 ± 0.04 ± 0.04) MeV , (11)

|Vus|fK+

|Vud|fπ−

= 0.27599 ± 0.00029 ± 0.00024 , (12)

where the errors are from the experimental uncertainties in

the branching fractions and the theoretical uncertainties in the

radiative correction factors δP , respectively.

B. Theoretical decay-constant calculations

Table 1 presents recent lattice-QCD calculations of the

charged pion and kaon decay constants and their ratio from sim-

ulations with three (Nf = 2+1) or four flavors (Nf = 2+1+1)

of dynamical quarks. The results have been obtained using sev-

eral independent sets of gauge-field configurations, and a variety

of lattice fermion actions that are sensitive to different system-

atic uncertainties.2 The lattice-QCD uncertainties on both the

individual decay constants and their ratio have now reached

sub-percent precision. The SU(3)-breaking ratio fK+/fπ+ can

be obtained with especially small errors because statistical er-

rors associated with the Monte Carlo simulations are correlated

between the numerator and denominator, as are some system-

atics. The good agreement between these largely independent

determinations indicates that the lattice-QCD uncertainties are

controlled and that the associated error estimates are reliable.3

Table 1 also shows the 2015 preliminary three- and four-

flavor averages for the pion and kaon decay constants and their

ratio from the Flavour Lattice Averaging Group (FLAG) [12,13]

in the lines labeled “FLAG 15 average.” These preliminary

updates of the 2013 FLAG averages [14] include only those

results from Table 1 that are published in refereed journals,

or that are straightforward conference updates of published

analyses. In the (2+1+1)-flavor averages, the statistical errors

of HPQCD and Fermilab/MILC were conservatively treated

as 100% correlated because the calculations employed some of

the same gauge-field configurations. The errors have also been

increased by the
√

χ2/dof to reflect a slight tension between

the results. There are no four-flavor lattice-QCD results for the

pion decay constant in Table 1 because all of the calculations

listed use the quantity fπ+ to fix the absolute lattice scale

needed to convert from lattice-spacing units to GeV [31–33].

2 See the PDG mini-review on “Lattice Quantum Chromo-

dynamics” [29] for a general review of numerical lattice-QCD

simulations. Details on the different methods used in mod-

ern lattice-QCD calculations are provided in Appendix A of the

FLAG “Review of lattice results concerning low energy particle

physics” [14].
3 The recent review [30] summarizes the large body of evi-

dence validating the methods employed in modern lattice-QCD

simulations.
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Table 1: Recent lattice-QCD results for fπ+, fK+ , and their ratio.

The upper and lower panels show (2 + 1 + 1)-flavor and (2 + 1)-flavor

determinations, respectively. When two errors are shown, they are

statistical and systematic, respectively. Results for fπ and fK in the

isospin-symmetric limit mu = md are noted with an “∗”; they are

corrected for isospin breaking via Eq. (13)–Eq. (15) before computing

the averages. Unpublished results noted with a “†” or “‡” are not

included in the averages.

Reference Nf fπ+(MeV) fK+(MeV) fK+/fπ+

ETM 14 [31] § 2+1+1 – 154.4(1.5)(1.3) 1.184(12)(11)

Fermilab/MILC 14 [32] § 2+1+1 – 155.92(13)(+42
−34) 1.1956(10)(+26

−18)

HPQCD 13 [33] § 2+1+1 – 155.37(20)(28) 1.1916(15)(16)

FLAG 15 average [12,13] ¶ 2+1+1 – 155.6(0.4) 1.193(3)

RBC/UKQCD 14 [34] ∗,† 2+1 130.19(89) 155.51(83) 1.1945(45)
RBC/UKQCD 12 [35] ∗ 2+1 127(3)(3) 152(3)(2) 1.199(12)(14)

Laiho & Van de Water 11 [36] ‡ 2+1 130.53(87)(210) 156.8(1.0)(1.7) 1.202(11)(9)(2)(5)
MILC 10 [37] 2+1 129.2(0.4)(1.4) 156.1(4)(+6

−9) 1.197(2)(+3
−7)

BMW 10 [38] ∗ 2+1 – – 1.192(7)(6)
HPQCD/UKQCD 07 [39] ∗ 2+1 132(2) 157(2) 1.189(2)(7)

FLAG 15 average [12,13] ¶ 2+1 130.2(1.4) 155.9(0.9) 1.192(5)

Our average Both 130.2(1.7) 155.6(0.4) 1.1928(26)

§ PDG 2014 value of fπ+ = 130.41(21) MeV used to set absolute lattice scale.
¶ Preliminary numbers shown here may change if further new lattice-QCD calculations are published before
the deadline for inclusion in the final 2015 FLAG review.
† Preprint submitted to Phys. Rev. D. Published RBC/UKQCD 12 results included in Nf = 2 + 1 average.
‡ Lattice 2011 conference proceedings.

All of the results in Table 1 were obtained using isospin-

symmetric gauge-field configurations, i.e., the dynamical up

and down quarks have the same mass. Most calculations of

pion and kaon decay constants now include the dominant effect

of nondegenerate up- and down-quark masses by evaluating the

masses of the constituent light (valence) quarks in the pion

at the physical up- and down-quark masses, respectively, and

evaluating the mass of the valence light quark in the kaon at

the physical mu. Those results obtained with degenerate up and

down valence quarks are corrected for isospin breaking using

chiral perturbation theory (χPT) before being averaged. The

isospin-breaking corrections at next-to-leading order in χPT

can be parameterized as [24,40]

fπ = fπ+ , (13)

fK = fK+

(

1 − δSU(2)/2
)

, (14)

fK

fπ
=

1
√

δSU(2) + 1

fK+

fπ+
(15)

where the expression for δSU(2) in terms of the quark masses,

meson masses, and decay constants, is given in Eq. (37) of

Ref. 14. Numerically, values of δSU(2) ≈ −0.004 were employed

by FLAG to obtain the (2+1)-flavor averages in Table 1,

but some direct lattice-QCD calculations of δSU(2) give larger

values [31,33,41] and further studies are needed.

To obtain the best decay-constant values for comparison

with experimental rate measurements and other phenomeno-

logical applications, we combine the available (2 + 1)- and

(2 + 1 + 1)-flavor lattice-QCD results, first accounting for the

omission of charm sea quarks in the three-flavor simulations.

The error introduced by omitting charm sea quarks can be

roughly estimated by expanding the charm-quark determi-

nant in powers of 1/mc [42]; the resulting leading contri-

bution is of order αs

(

ΛQCD/2mc

)2
[43]. Taking the MS values

mc(mc) = 1.275 GeV, ΛQCD ∼ 340 MeV from FLAG [14], and

α(mc) ∼ 0.4, leads to an estimate of about 0.7% for the con-

tribution to the decay constants from charm sea quarks. The

charm sea-quark contribution to ratios of decay constants is

expected to be further suppressed by the SU(3)-breaking factor

(ms − md)/ΛQCD, and hence about 0.2%.

We can compare these power-counting estimates of charm

sea-quark contributions to the observed differences between

the (2+1)- and (2+1+1)-flavor lattice-QCD averages for kaon,

D(s)-meson, and B(s)-decay constants and ratios in Table 1,

Table 4, and Table 6. Of these, the kaon decay constants have

been calculated most precisely, and the and three- and four-

flavor averages for fK+ and fK+/fπ+ agree within sub-percent

errors. Within present uncertainties, however, effects of this
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size in pseudoscalar-meson decay constants cannot be ruled

out. Therefore, to be conservative, in this review we add in

quadrature additional systematic errors of 0.7% and 0.2% to all

(2+1)-flavor decay-constant and decay-constant-ratio averages,

respectively, to account for the omission of charm sea quarks.

Numerically, this increases the errors by at most about 50%

for fK+ and less for all other decay constants and ratios,

indicating that the published (2+1)-flavor lattice-QCD results

and uncertainties are reliable.

Our final preferred theoretical values for the charged pion

and kaon decay constants are

Our averages : fπ+ = 130.2(1.7) MeV ,

fK+ = 155.6(0.4) MeV ,

fK+

fπ+
= 1.1928(26) , (16)

where fπ+ is simply the (2+1)-flavor FLAG average with

the error increased by the estimated 0.7% charm sea-quark

contribution. For fK+ and fK+/fπ+, we take a simple weighted

average of the (2+1)- and (2+1+1)-flavor FLAG values, because

they are each obtained from a sufficient number of independent

calculations that we do not expect there to be significant

correlations. In practice, the addition of the charm sea-quark

error has a tiny impact on our final values in Eq. (16), increasing

the uncertainty on fπ+ by 0.3 MeV, and the central value for

fK+/fπ+ by one in the last digit.

III. CHARMED MESONS

A. Experimental rate measurements

Measurements have been made for D+ → µ+ν, D+
s → µ+ν,

and D+
s → τ+ν. Only an upper limit has been determined for

D+ → τ+ν. Both CLEO-c and BES have made measurements

of D+ decay using e+e− collisions at the ψ(3770) resonant

energy where D−D+ pairs are copiously produced. They fully

reconstruct one of the D’s, say the D−. Counting the number

of these events provides the normalization for the branching

fraction measurement. They then find a candidate µ+, and

then form the missing-mass squared, MM2 = (ECM − ED−)2−
(−→pCM −−→pD− −−→pµ+

)2
, taking into account their knowledge of

the center-of-mass energy, ECM, and momentum, pCM, that

equals zero in e+e− collisions. A peak at zero MM2 inplies the

existence of a missing neutrino and hence the µ+ν decay of

the D+. CLEO-c does not explicitly identify the muon, so their

data consists of a combination of µ+ν and τ+ν, τ+ → π+ν

events. This permits them to do two fits: in one they fit for

the individual components, and in the other they fix the

ratio of τ+ν/µ+ν events to be that given by the standard-

model expectation. Thus, the latter measurement should be

used for standard-model comparisons and the other for new-

physics searches. Our average uses the fixed ratio value. The

measurements are shown in Table 2.

Table 2: Experimental results for B(D+ → µ+ν), B(D+ →
τ+ν), and |Vcd|fD+. Numbers for |Vcd|fD+ have been ex-
tracted using updated values for masses (see text). Radiative
corrections are included. Systematic uncertainties arising from
the D+ lifetime and mass are included. For the average µ+ν
number we use the CLEO-c result for µ+ν+ + τ+ν.

Experiment Mode B |Vcd|fD+ (MeV)

CLEO-c [44,45] µ+ν (3.93 ± 0.35 ± 0.09) × 10−4 47.07 ± 2.10 ± 0.57

CLEO-c [44,45] µ+ν + τ+ν (3.82 ± 0.32 ± 0.09) × 10−4 46.41 ± 1.94 ± 0.57

BES [46] µ+ν (3.71 ± 0.19 ± 0.06) × 10−4 45.73 ± 1.17 ± 0.38

Our average Lines 2+3 (3.74 ± 0.17) × 10−4 45.91 ± 1.05

CLEO-c [47,48] τ+ν < 1.2 × 10−3

To extract the value of |Vcd|fD+ we use the well-measured

D+ lifetime of 1.040(7) ps. The µ+ν results include a 1%

correction (lowering) of the rate due to the presence of the

radiative µ+νγ final state based on the estimate by Dobrescu

and Kronfeld [8].

We now discuss the D+
s . Measurements of the leptonic de-

cay rate have been made by several groups and are listed in

Table 3 [47–53]. We exclude older values obtained by nor-

malizing to D+
s decay modes that are not well defined. Many

measurements, for example, used the φπ+ mode. This decay

is a subset of the D+
s → K+K−π+ channel which has inter-

ferences from other modes populating the K+K− mass region

near the φ, the most prominent of which is the f0(980). Thus

the extraction of the effective φπ+ rate is sensitive to the mass

resolution of the experiment and the cuts used to define the φ

mass region [54]. 4

To find decays in the µ+ν signal channels, CLEO, BaBar

and Belle rely on fully reconstructing all the final state particles

except for neutrinos and using a missing-mass technique to

infer the existence of the neutrino. CLEO uses e+e− → DsD
∗
s

collisions at 4170 MeV, while Babar and Belle use e+e− →

DKnπD∗
s collisions at energies near the Υ(4S). CLEO does

a similar analysis as was done for the D+ above. Babar and

Belle do a similar MM2 calculation by using the reconstructed

hadrons, the photon from the D∗+
s decay and a detected µ+.

To get the normalization they do a MM2 fit without the µ+

and use the signal at the D+
s mass squared to determine the

total D+
s yield.

When selecting the τ+ → π+ν̄ and τ+ → ρ+ν̄ decay

modes, CLEO uses both the calculation of the missing mass

and the fact that there should be no extra energy in the

event beyond that deposited by the measured tagged D−
s and

the τ+ decay products. The τ+ → e+νν̄ mode, however, uses

only extra energy. Babar and Belle also use the extra energy to

discriminate signal from background in their τ+ν measurements.

4 We have not included the BaBar result for B(D+
s → µ+ν)

reported in Ref. 55 because this measurement determined the

ratio of the leptonic decay rate to the hadronic decay rate

Γ(D+
s → ℓ+ν)/Γ(D+

s → φπ+).
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Table 3: Experimental results for B(D+

s → µ+ν), B(D+
s →

τ+ν), and |Vcs|fD+
s
. Numbers for |Vcs|fD+

s
have been extracted

using updated values for masses (see text). The systematic un-

certainty for correlated error on the D+
s lifetime is included.

The mass uncertainties are also common, but negligible. Com-

mon systematic errors in each experiment have been taken into

account in the averages.

Experiment Mode B(%) |Vcs|fD+
s

(MeV)

CLEO-c [47,48] µ+ν 0.565 ± 0.045 ± 0.017 250.8 ± 10.0 ± 4.2
BaBara [53] µ+ν 0.602 ± 0.038 ± 0.034 258.9 ± 8.2 ± 7.5
Belle [49] µ+ν 0.531 ± 0.028 ± 0.020 243.1 ± 6.4 ± 4.9

Our average µ+ν 0.556 ± 0.024 248.8 ± 5.8

CLEO-c [47,48] τ+ν (π+ν) 6.42 ± 0.81 ± 0.18 270.8 ± 17.1 ± 4.2
CLEO-c [50] τ+ν (ρ+ν) 5.52 ± 0.57 ± 0.21 251.1 ± 13.0 ± 5.1
CLEO-c [51,52] τ+ν (e+νν) 5.30 ± 0.47 ± 0.22 246.1 ± 10.9 ± 5.4
BaBar [53] τ+ν (e+(µ+)νν) 5.00 ± 0.35 ± 0.49 239.0 ± 8.4 ± 11.9
Belle [49] τ+ν (π+ν) 6.04 ± 0.43+0.46

−0.40 262.7 ± 9.3+10.2
−8.9

Belle [49] τ+ν (e+νν) 5.37 ± 0.33+0.35
−0.31 247.7 ± 7.6+8.3

−7.4

Belle [49] τ+ν (µ+νν) 5.86 ± 0.37+0.34
−0.59 258.7 ± 8.2+7.7

−13.2

Our average τ+ν 5.56 ± 0.22 252.1 ± 5.2

Our average µ+ν + τ+ν 250.9 ± 4.0

aWe do not use a previous unpublished BaBar result from a subsample of data that
uses a different technique for obtaining the branching fraction normalization [56].

We extract the decay constant times the CKM factor from

the measured branching ratios using the D+
s mass of 1.96830(11)

GeV, the τ+ mass of 1.77682(16) GeV, and a D+
s lifetime of

0.500(7) ps [3]. CLEO has included the radiative correction

of 1% in the µ+ν rate listed in the Table [8] (the τ+ν rates

need not be corrected). Other theoretical calculations show that

the γµ+ν rate is a factor of 40–100 below the µ+ν rate for

charm [57–66]. As this is a small effect we do not attempt to

correct the other measurements. The values for fD+
s
|Vcs| are in

good agreement for the two decay modes. Our average value

including both the µ+ν and τ+ν final states is 250.9±4.0 MeV.

B. Theoretical decay-constant calculations

Table 4 presents recent theoretical calculations of the

charged D+- and Ds-meson decay constants and their ratio.

The upper two panels show results from lattice-QCD simula-

tions with three (Nf = 2 + 1) or four flavors (Nf = 2 + 1 + 1)

of dynamical quarks. Although there are fewer available results

than for the pion and kaon sector, both fD+ and fDs have

been obtained using multiple sets of gauge-field configurations

with different lattice fermion actions, providing independent

confirmation. For comparison, the bottom panel of Table 4

shows non-lattice determinations from QCD sum rules and the

light-front quark model; only results which include uncertainty

estimates are shown. The lattice and non-lattice results agree,

but the uncertainties on D+
(s)

-meson decay constants from lat-

tice QCD have now reached significantly greater precision than

those from other approaches.

The lattice-QCD results in Table 4 were all obtained using

isospin-symmetric gauge-field configurations. The two calcula-

tions by the Fermilab Lattice and MILC Collaborations [69,32],

however, include the dominant strong isospin-breaking con-

tribution by evaluating the mass of the valence light quark

in the D+-meson decay constant at the physical down-quark

mass. Reference 32 provides a determination of the size of this

correction,

fD+ − fD = 0.47(1)(+25
−6 ) MeV , (17)

where fD is the value of the D-meson decay constant evaluated

at the average up-down quark mass. Eq. (17) implies that the

correction to the SU(3)f -breaking ratio is

fDs

fD+
−

fDs

fD
= −0.0026 , (18)

taking the central values for fD+ and fDs from the same

work. Because the errors on the calculations listed in Table 4

that neglect isospin breaking are still about 5–8 × larger

than the sizes of the shifts in Eqs. (17)–(18), we do not

correct any results a posteriori for this effect in the current

review. Nevertheless, we strongly encourage future lattice-QCD

publications to present results for both the D+- and D0-meson

decay constants. Including the effect of isospin breaking will be

essential once lattice-QCD calculations of fD and fDs/fD reach

the level of precision in Eqs. (17)–(18).

We average the lattice-QCD results in Table 4 accounting

for possible correlations between them following the approach

established by Laiho et al. [77]. Whenever we have reason to

believe that a source of uncertainty is correlated between two
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Table 4: Recent theoretical determinations of fD+, fDs, and

their ratio. The upper panels show results from lattice-QCD

simulations with (2 + 1 + 1) and (2 + 1) dynamical quark fla-

vors, respectively. Statistical and systematic errors are quoted

separately. Lattice-QCD results for fD and fDs/fD in the

isospin-symmetric limit mu = md are noted with an “∗”. The

bottom panel shows estimates from QCD sum rules (QCD SR)

and the light-front quark model (LFQM). These are not used

to obtain our preferred decay-constant values.

Reference Method Nf fD+(MeV) fDs(MeV) fDs/fD+

ETM 14 [31] ∗ LQCD 2+1+1 207.4(3.7)(0.9) 247.2(3.9)(1.4) 1.192(19)(11)
Fermilab/MILC 14 [32] LQCD 2+1+1 212.6(0.4)(+1.0

−1.2) 249.0(0.3)(+1.1
−1.5) 1.1712(10)(+29

−32)

Average LQCD 2+1+1 212.2(1.5) 248.8(1.3) 1.172(3)

χQCD 14 [67] ∗ LQCD 2+1 – 254(2)(4) –
HPQCD 12 [68] ∗ LQCD 2+1 208.3(1.0)(3.3) – 1.187(4)(12)
Fermilab/MILC 11 [69] LQCD 2+1 218.9(9.2)(6.6) 260.1(8.9)(6.1) 1.188(14)(21)
HPQCD 10 [70] ∗ LQCD 2+1 – 248.0(1.4)(2.1) –

Average LQCD 2+1 209.2(3.3) 249.8(2.3) 1.187(12)

Our average LQCD Both 211.9(1.1) 249.0(1.2) 1.173(3)

Wang 15 [71] § QCD SR 208(10) 240(10) 1.15(6)

Gelhausen 13 [72] QCD SR 201
(

+12
−13

)

238
(

+13
−23

)

1.15
(

+0.04
−0.05

)

Narison 12 [73] QCD SR 204(6) 246(6) 1.21(4)
Lucha 11 [74] QCD SR 206.2(8.9) 245.3(16.3) 1.193(26)

Hwang 09 [75] LFQM – 264.5(17.5)¶ 1.29(7)

§ Obtained using mMS
c ; results using mpole

c are also given in the paper.
¶ Obtained by combining PDG value fD = 205.8(8.9) MeV [76] with fDs/fD from this work.

results, we conservatively take the correlation to be 100%

when calculating the average. We then construct the correlation

matrix for the set of lattice-QCD results using the prescription

of Schmelling [78].

We first separately average the three- and four-flavor results

for the charged D+
(s)-meson decay constants and their ratio.

There have been no new three-flavor lattice-QCD calculations

of fD+ or fD+
s
/fD+ since 2013, so we take the (2+1)-flavor

averages from FLAG [14]. In this average, the statistical

errors were treated as 100% correlated between the results

of Fermilab/MILC [69] and HPQCD [68] because the calcu-

lations employed some of the same ensembles of gauge-field

configurations. For fDs, we average the (2+1)-flavor results

given in Table 4, again treating the Fermilab/MILC [69] and

HPQCD [70] statistical errors as correlated, and taking the

χQCD result [67] to be independent. For the (2 + 1 + 1)-flavor

D(s)-meson decay constants, we take a simple weighted average

of the ETM [31] and Fermilab/MILC 14 results [32] in Table 4.

We expect them to be independent because the calculations use

different light-quark and gluon actions and different treatments

of the chiral-continuum extrapolation. Our separate three- and

four-flavor averages are listed in the lines labeled “Average” in

Table 4, where the errors on the (2+1)-flavor fDs and

(2+1+1)-flavor fD averages have been rescaled by the factors
√

(χ2/dof) = 1.1 and
√

(χ2/dof) = 1.3, respectively.5

To obtain the single-best values of the D+
(s)

-meson decay

constants for phenomenology applications, we combine the

available (2 + 1)- and (2 + 1 + 1)-flavor lattice-QCD results,

which are compatible within the current level of precision. We

account for the omission of charm sea-quark contributions in

the three-flavor calculations by adding to the errors on the

(2+1)-flavor averages in Table 4 our power-counting estimates

of charm sea-quark errors from Sec. II.B. Because the estimated

charm sea-quark errors of 0.7% for decay constants and 0.2%

for decay-constant ratios are less than those on the (2+1)-flavor

averages, adding them in quadrature has a small impact on the

total uncertainties. The error increase is at most about 25%

for fDs , and below 10% for both fD+ and fDs/fD+. Our final

preferred theoretical values for the charged D+
(s)-meson decay

constants are given by the weighted average of the entries in

the two lines labeled “Average” in Table 4, after including the

additional charm sea-quark errors in the (2+1)-flavor entries:

Our averages : fD+ = 211.9(1.1) MeV ,

5 After this article was submitted for review, preliminary

(2+1)- and (2+1+1)-flavor FLAG averages for fD, fDs , and

fDs/fD were presented in Ref. 79 that are identical to our sep-

arate averages in Table 4.
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fDs = 249.0(1.2) MeV ,

fDs

fD+
= 1.173(3) . (19)

In practice, the errors on the (2+1+1)-flavor averages are so

much smaller than on the (2+1)-flavor averages that the combi-

nation in Eq. (19) is almost identical to the (2+1+1)-flavor av-

erage in Table 4. The most precise result from Fermilab/MILC,

in particular, has a large weight in the average.

IV. BOTTOM MESONS

A. Experimental rate measurements

The Belle and BaBar collaborations have found evidence

for B− → τ−ν decay in e+e− → B−B+ collisions at the Υ(4S)

energy. The analysis relies on reconstructing a hadronic or semi-

leptonic B decay tag, finding a τ candidate in the remaining

track and photon candidates, and examining the extra energy

in the event which should be close to zero for a real τ− decay

to e−νν̄ or µ−νν̄ opposite a B+ tag. While the BaBar results

have remained unchanged, Belle reanalyzed both samples of

their data. The branching fraction using hadronic tags changed

from 1.79 +0.56+0.46
−0.49−0.51 × 10−4 [80] to 0.72+0.27

−0.25 ± 0.11× 10−4 [81],

while the corresponding change using semileptonic tags was from

1.54+0.38+0.29
−0.37−0.31 to 1.25± 0.28± 0.27. These changes demonstrate

the difficulty of the analysis. The results are listed in Table 5.

There are large backgrounds under the signals in all cases.

The systematic errors are also quite large. Thus, the signifi-

cances are not that large. Belle quotes 4.6σ for their combined

hadronic and semileptonic tags, while BaBar quotes 3.3σ and

2.3 σ, for hadronic and semileptonic tags. Greater precision

is necessary to determine if any effects beyond the Standard

Model are present.

Table 5: Experimental results for B(B− → τ−ν) and
|Vub|fB+.

Experiment Tag B (units of 10−4) |Vub|fB+ (MeV)

Belle [81] Hadronic 0.72+0.27
−0.25 ± 0.11

Belle [82] Semileptonic 1.25 ± 0.28 ± 0.27
Belle [82] Average 0.91 ± 0.22 0.72 ± 0.09

BaBar [83] Hadronic 1.83 +0.53
−0.49 ± 0.24

BaBar [84] Semileptonic 1.7 ± 0.8 ± 0.2
BaBar [83] Average 1.79 ± 0.48 1.01 ± 0.14

Our average 1.06 ± 0.20 0.77 ± 0.07

To extract the value of |Vub|fB+ we use the PDG 2014 value

of the B+ lifetime of 1.638 ± 0.004 ps, and the τ+ and B+

masses of 1.77684 and 5.27926 GeV, respectively.

B. Theoretical decay-constant calculations

Table 6 and Table 7 present theoretical calculations of the

B+-, B0-, and Bs-meson decay constants and their ratios. (The

decay constants of the neutral B0 and Bs mesons enter the

rates for the rare leptonic decays Bd,s → µ+µ−.) The upper

two panels show results from lattice-QCD simulations with three

(Nf = 2+1) or four flavors (Nf = 2+1+1) of dynamical quarks.

For all decay constants, calculations using different gauge-

field configurations, light-quark actions, and b-quark actions

provide independent confirmation. For comparison, the bottom

panel of Table 6 shows non-lattice determinations of the B(s)-

meson decay constants which include error estimates. These

are consistent with the lattice values, but with much larger

uncertainties.

The lattice-QCD results in Table 6 and Table 7 were

all obtained using isospin-symmetric gauge-field configurations.

The most recent calculations of fB+ by the HPQCD, Fermi-

lab/MILC, and RBC/UKQCD Collaborations [69,86,88], how-

ever, include the dominant effect of nondegenerate up- and

down-quark masses by evaluating the decay constant with

the valence light-quark mass fixed to the physical up-quark

mass. HPQCD and RBC/UKQCD also calculate fB0 by fix-

ing the valence light-quark mass equal to the physical down-

quark mass [86,88]; they find differences between the B+-

and B0-meson decay constants of fB0 − fB+ ≈ 4 MeV and

fBs/fB+ − fBs/fB0 ≈ 0.025. Inspection of Table 6 and Table 7

shows that these differences are comparable to the error on the

HPQCD 12 result for fB [89], and to the errors on the Fermi-

lab/MILC, HPQCD 12, and ETM results for fBs/fB [69,89,85],

none of which account for isospin breaking. Therefore, to enable

comparison with experimental measurements, in this review we

correct those lattice-QCD results for B-meson decay constants

obtained with degenerate up and down valence quarks a posteri-

ori for isospin breaking before computing our averages. For the

correction factors, we use the differences obtained empirically

by HPQCD in Ref. 86 6

fB+ − fB = −1.9(5) MeV , (20)

fBs

fB+
−

fBs

fB
= 0.012(4) , (21)

fB0 − fB = 1.7(5) MeV , (22)

fBs

fB0
−

fBs

fB
= −0.011(4) . (23)

The isospin-breaking correction factors in Eqs. (20)–(23) are

well determined because of cancellations between correlated

errors in the differences.

We first average the published (2+1)-flavor lattice-QCD

results for the charged and neutral B(s)-meson decay constants

and their ratios in Table 6 and Table 7, accounting for possibly

correlated uncertainties. We treat the statistical errors as corre-

lated between the calculations of Aoki et al. and RBC/UKQCD

because they employ the same gauge-field

6 The correlated uncertainties were provided by HPQCD via

private communication.
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Table 6: Recent theoretical determinations of fB+, fBs, and

their ratio. The upper panels show results from lattice-QCD

simulations with (2+1+1) and (2+1) dynamical quark flavors,

respectively. For some of the lattice-QCD results, statistical and

systematic errors are quoted separately. Lattice-QCD results

for fB and fBs/fB in the isospin-symmetric limit mu = md

are noted with an “∗”; they are corrected by the factors in

Eq. (20) and Eq. (21), respectively, before computing the av-

erages. Preliminary conference results noted with a “†” are not

included in the averages. The bottom panel shows estimates

from QCD sum rules and the light-front quark model, which

are not used to obtain our preferred decay-constant values.

Reference Method Nf fB+(MeV) fBs(MeV) fBs/fB+

ETM 13 [85] ∗,† LQCD 2+1+1 196(9) 235(9) 1.201(25)
HPQCD 13 [86] LQCD 2+1+1 184(4) 224(5) 1.217(8)

Average LQCD 2+1+1 184(4) 224(5) 1.217(8)

Aoki 14 [87] ∗,‡ LQCD 2+1 218.8(6.5)(30.8) 263.5(4.8)(36.7) 1.193(20)(44)
RBC/UKQCD 14 [88] LQCD 2+1 195.6(6.4)(13.3) 235.4(5.2)(11.1) 1.223(14)(70)
HPQCD 12 [89] ∗ LQCD 2+1 191(1)(8) 228(3)(10) 1.188(12)(13)
HPQCD 12 [89] ∗ LQCD 2+1 189(3)(3)⋆ – –
HPQCD 11 [90] LQCD 2+1 – 225(3)(3) –
Fermilab/MILC 11 [69] LQCD 2+1 196.9(5.5)(7.0) 242.0(5.1)(8.0) 1.229(13)(23)

Average LQCD 2+1 189.9(4.2) 228.6(3.8) 1.210(15)

Our average LQCD Both 187.1(4.2) 227.2(3.4) 1.215(7)

Wang 15 [71] § QCD SR 194(15) 231(16) 1.19(10)
Baker 13 [91] QCD SR 186(14) 222 (12) 1.19(4)
Lucha 13 [92] QCD SR 192.0(14.6) 228.0(19.8) 1.184(24)
Gelhausen 13 [72] QCD SR 207

(

+17
−9

)

242
(

+17
−12

)

1.17
(

+3
−4

)

Narison 12 [73] QCD SR 206(7) 234(5) 1.14(3)

Hwang 09 [75] LFQM – 270.0(42.8)¶ 1.32(8)

† Lattice 2013 conference proceedings.
‡ Obtained with static b quarks (i.e. mb → ∞).
⋆ Obtained by combining fBs from HPQCD 11 with fBs/fB from this work. Approximate statistical
(systematic) error obtained from quadrature sum of individual statistical (systematic) errors.
§ Obtained using mMS

b ; results using mpole
b are also given in the paper.

¶ Obtained by combining PDG value fB = 204(31) MeV [76] with fBs/fB from this work.

configurations 7 [87,88]. We also treat the statistical errors as

correlated between the HPQCD and Fermilab/MILC calcu-

lations because they analyze an overlapping set of gauge-field

configurations [69,89,90]. For fBs , we include HPQCD’s results

from both 2011 [90] and 2012 [89], which were obtained using

different b-quark actions, but on some of the same gauge-field

configurations. HPQCD 11 and 12 also use the same determi-

nation of the absolute lattice scale, which is the second-largest

7 There may be mild correlations between some sub-dominant

systematic errors of Aoki et al. and RBC/UKQCD, who use the

same determinations of the absolute lattice scale and the phys-

ical light- and strange-quark masses from Ref. 93, and who use

the same power-counting estimates for the light-quark and gluon

discretization errors. The effects of any correlations between

these systematics, however, would be too small to impact the

numerical values of the averages.

source of systematic uncertainty in both calculations. We there-

fore treat the statistical and scale errors as correlated between

HPQCD’s (2+1)-flavor fBs results. HPQCD also presents two

results for fB in Ref. 89. The more precise value is obtained

by combining the ratio fBs/fB from this work with fBs from

Ref. 90, but an associated error budget is not provided. Be-

cause this would be needed to estimate correlations between the

two fB determinations, we include only HPQCD’s more precise

(2+1)-flavor result for fB in our average. Our separate three-

and four-flavor averages for the B+-, B0-, and Bs-meson decay

constants and ratios are listed in the lines labeled “Average”

in Table 6 and Table 7, where the error on the (2+1)-flavor

fBs average has been rescaled by the factor
√

(χ2/dof) = 1.2

to account for the tension among results. Our (2+1+1)-flavor

“averages” are identical to the “HPQCD 13” entries in Table 6
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and Table 7, whcih are the only published four-flavor results

available.

Table 7: Recent lattice-QCD determinations of fB0 and
fBs/fB0. Results obtained in the isospin-symmetric limit
mu = md are noted with an “∗”, while those for the B+-

meson are noted with an “§”. Although the quoted results are
identical to those in Table 6, they are corrected by different
factors in Eq. (20)–Eq. (23) before computing the averages.
Other labels and descriptions are the same as in Table 6.

Reference Method Nf fB0(MeV) fBs
/fB0

ETM 13 [85] ∗,† LQCD 2+1+1 196(9) 1.201(25)

HPQCD 13 [86] LQCD 2+1+1 188(4) 1.194(7)

Average LQCD 2+1+1 188(4) 1.194(7)

Aoki 14 [87] ∗,‡ LQCD 2+1 218.8(6.5)(30.8) 1.193(20)(44)

RBC/UKQCD 14 [88] LQCD 2+1 199.5(6.2)(12.6) 1.197(13)(49)

HPQCD 12 [89] ∗ LQCD 2+1 191(1)(8) 1.188(12)(13)

HPQCD 12 [89] ∗ LQCD 2+1 189(3)(3)⋆ –

Fermilab/MILC 11§ [69] LQCD 2+1 196.9(5.5)(7.0) 1.229(13)(23)

Average LQCD 2+1 193.6(4.2) 1.187(15)

Our average LQCD Both 190.9(4.1) 1.192(6)

† Lattice 2013 conference proceedings.
‡ Obtained with static b quarks (i.e., mb → ∞).
⋆ Obtained by combining fBs

from HPQCD 11 with fBs
/fB from this work.

Approximate statistical (systematic) error obtained from quadrature sum of
individual statistical (systematic) errors.

To obtain the single-best values of the B(s)-meson decay con-

stants for phenomenology applications, we combine the available

(2 + 1)- and (2 + 1 + 1)-flavor lattice-QCD results, which are

compatible within the current level of precision. Because the

four-flavor “average” is obtained from only a single result, we

do not simply combine the two lines labeled “Average” in Ta-

ble 6 and Table 7, which would weight the four-flavor result too

heavily. Instead, we form a single average including the pub-

lished (2+1)-flavor results and the (2+1+1)-flavor result from

HPQCD 13. We account for the omission of charm sea-quark

contributions in the three-flavor calculations by adding to the

errors on the (2+1)-flavor averages in Table 6 and Table 7

our power-counting estimates of charm sea-quark errors from

Sec. II.B, taking charm sea-quark error to be 100% correlated

between the three-flavor results. Because the estimated charm

sea-quark errors of 0.7% for decay constants and 0.2% for

decay-constant ratios are much less than those on the (2+1)-

flavor averages, adding them in quadrature has a tiny impact

on the total uncertainties. The largest observed change is an

0.3 MeV increase on the error fBs from HPQCD 11, and most

are negligible. In the combined three- and four-flavor average

we also consider correlations between the results of HPQCD

12 and HPQCD 13 because, although they employ different

gauge-field configurations, they both use NRQCD for the b-

quark action and the bottom-light axial-vector current.8 We

8 HPQCD 13 uses a 1-loop radiatively improved b-quark ac-

tion, whereas HPQCD 12 uses tree-level action coefficients.

take both the operator-matching and relativistic errors, which

are the dominant uncertainties in the decay constants, to be

correlated between the two calculations. Our final preferred

theoretical values for the charged B+ and neutral B0
(s)-meson

decay constants and their ratio are

Our averages : fB+ = 187.1(4.2) MeV ,

fBs = 227.2(3.4) MeV ,
fBs

fB+
= 1.215(7) , (24)

fB0 = 190.9(4.1) MeV ,
fBs

fB0
= 1.192(6) . (25)

The errors on f+
B , f0

B, and fBs after combining the three- and

four-flavor results are only slightly smaller than those of the

separate averages due to the correlations assumed.

V. PHENOMENOLOGICAL IMPLICATIONS

A. |Vud|, |Vus|, and status of first-row unitarity

Using the average values for fπ+|Vud|, fK+|Vus|, and their

ratio from Eq. (10)–Eq. (12) and for fπ+, fK+, and their ratio

from Eq. (16), we obtain the following determinations of the

CKM matrix elements |Vud|, |Vus|, and their ratio from leptonic

decays within the standard model:

|Vud| = 0.9764(2)(127)(10) , |Vus| = 0.2255(3)(6)(3),

|Vus|

|Vud|
= 0.2314(2)(5)(2) , (26)

where the errors are from the experimental branching frac-

tion(s), the pseudoscalar decay constant(s), and radiative cor-

rections, respectively. These results enable a precise test of the

unitarity of the first row of the CKM matrix from leptonic

decays alone (the contribution from |Vub| is negligible). Using

the values of |Vud| and |Vus| from Eq. (26), we find

|Vud|
2 + |Vus|

2 + |Vub|
2 − 1 = 0.004(25) , (27)

which is consistent with three-generation unitarity at the sub-

percent level.

The determinations of |Vud| and |Vus| from leptonic decays

in Eq. (26) can be compared to those obtained from other

processes. The result above for |Vud| agrees with the deter-

mination from superallowed β-decay, |Vud| = 0.97417(21) [94],

but has an error more than fifty times larger that is primar-

ily due to the uncertainty in the theoretical determination of

fπ+. The CKM element |Vus| can be determined from semilep-

tonic K+ → π0ℓ+ν decay. Here experimental measurements

provide a value for the product fKπ
+ (0)|Vus|, where fKπ

+ (0) is

the form-factor at zero four-momentum transfer between the

initial state kaon and the final state pion. Taking the most

recent experimental determination of |Vus|f
Kπ
+ (0) = 0.2165(4)

Both include the same contributions to the currents at one loop,

but renormalization details differ.
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from Moulson [26] 9 and the preliminary 2015 (2+1+1)-flavor

FLAG average for f+(0)Kπ = 0.9704(24)(22) [12,13] 10 gives

|Vus| = 0.22310(74)thy(41)exp from Kℓ3 decay. The determina-

tions of |Vus| from leptonic and semileptonic kaon decays are

both quite precise (with the error from leptonic decay being

about 20% smaller), but the central values differ by 2.2σ. Fi-

nally, the combination of the ratio |Vus|/|Vud| from leptonic

decays [Eq. (26)] with |Vud| from β decay implies an alter-

native determination of |Vus| = 0.2254(6) which agrees with

the value from leptonic kaon decay, but disagrees with the

Kℓ3-decay result at the 2.2σ level. Collectively, these results

indicate that that there is some tension between theoretical

calculations and/or measurements of leptonic pion and kaon

decays, semileptonic kaon decays, and superallowed β-decay.

Although this may be due to the presence of new physics, it is

also important to revisit the quoted uncertainties on both the

theoretical and experimental inputs.

Finally, we combine the experimental measurements of

fπ+|Vud|, fK+ |Vus| from leptonic pseudoscalar-meson decays in

Eq. (10) and Eq. (11) with determinations of the CKM elements

from other decays or unitarity to infer “experimental” values

for the decay constants. Assuming that there are no significant

new-physics contributions to any of the input processes, the

comparison of these results with theoretical calculations of the

decay constants enables a test of lattice-QCD methods. Taking

|Vud| from superallowed β-decay [100] leads to

f“exp”
π− = 130.50(1)(3)(13) MeV , (28)

where the uncertainties are from the errors on Γ, |Vud|, and

higher-order corrections, respectively. This agrees with the the-

oretical value fπ+ = 130.2(1.7) MeV in Eq. (16) obtained from

an average of recent (2+1)-flavor lattice-QCD results [39,37,35].

We take the value |Vus| = 0.22534(65) from the most recent

global unitarity-triangle fit of the UTfit Collaboration [101]

because there is tension between the values of |Vus| obtained

from leptonic and semileptonic kaon decays. This implies

f“exp”
K− = 155.72(17)(45)(16) MeV (29)

where the uncertainties are from the errors on Γ, |Vus|, and

higher-order corrections, respectively. This agrees with the the-

oretical value fK+ = 155.6(0.4) MeV in Eq. (16) obtained

from an average of recent three and four-flavor lattice-QCD

results [31–33,35,37,39].

9 This is an update of the 2010 Flavianet review [28]

that includes new measurements of the Ks lifetime [95,96],

Re(ǫ′/ǫ) [96], and B(K± → π±π+π−) [27]. The latter mea-

surement is the primary source of the reduced error on B(Kℓ3),

via the constraint that the sum of all branching ratios must

equal unity.
10 This result comes from the calculation of FNAL/MILC in

Ref. 97. For comparison, the 2015 preliminary (2+1)-flavor

FLAG average based on the calculations of FNAL/MILC [98]

and RBC/UKQCD [99] is f+(0)Kπ = 0.9677(37) .

B. |Vcd|, |Vcs|, and status of second-row unitarity

Using the average values for |Vcd|fD+ and |Vcs|fD+
s

from

Table 2 and Table 3, and for fD+ and fD+
s

from Eq. (19),

we obtain the following determinations of the CKM matrix

elements |Vcd| and |Vcs|, and from leptonic decays within the

standard model:

|Vcd| = 0.217(5)(1) and |Vcs| = 1.007(16)(5) , (30)

where the errors are from experiment and theory, respectively,

and are currently limited by the measured uncertainties on the

decay rates. The central value of |Vcs| is greater than one, but

is compatible with unity within the error. The above results

for |Vcd| and |Vcs| do not include higher-order electroweak and

hadronic corrections to the rate, in analogy to Eq. (3). These

corrections have not been computed for D+
(s)-meson leptonic

decays, but are estimated to be about to be about 1–2% for

charged pion and kaon decays (see Sec. II.A). Now that the

uncertainties on |Vcd| and |Vcs| from leptonic decays are at this

level, we hope that the needed theoretical calculations will be

undertaken.

The CKM elements |Vcd| and |Vcs| can also be obtained

from semileptonic D+ → π0ℓ+ν and D+
s → K0ℓ+ν decays,

respectively. Here experimental measurements determine the

product of the form factor times the CKM element, and

theory provides the value for the form factor at zero four-

momentum transfer between the initial D(s) meson and the

final pion or kaon. We combine the latest experimental aver-

ages for fDπ
+ (0)|Vcd| = 0.1425(19) and fDsK

+ (0)|Vcs| = 0.728(5)

from the Heavy Flavor Averaging Group (HFAG) [102] with

the zero-momentum-transfer form factors fDπ
+ (0) = 0.666(29)

and fDsK
+ (0) = 0.747(19) calculated in (2+1)-flavor lat-

tice QCD by the HPQCD Collaboration [103,104] to obtain

|Vcd| = 0.2140(97) and |Vcs| = 0.9746(257) from semileptonic

D(s)-meson decays. The values of |Vcd| from leptonic and

semileptonic decays agree, while those for |Vcs| are compati-

ble at the 1.1σ level. The determinations of |Vcd| and |Vcs| from

leptonic decays in Eq. (30), however, are 2.0× and 1.6× more

precise than those from semileptonic decays, respectively.

The results for |Vcd| and |Vcs| from Eq. (30) enable a test of

the unitarity of the second row of the CKM matrix. We obtain

|Vcd|
2 + |Vcs|

2 + |Vcb|
2 − 1 = 0.064(36) , (31)

which is in slight tension with three-generation unitarity at

the 2σ level. Because the contribution to Eq. (31) from |Vcb|

is so small, we obtain the same result taking |Vcb|
incl. × 103 =

42.21(78) from inclusive B → Xcℓν decay [105] or |Vcb|
excl. ×

103 = 39.04(75) from exclusive B → D∗ℓν decay at zero

recoil [106].

We can also combine the experimental measurements of

fD+ |Vcd| = 45.91(1.05) MeV and fD+
s
|Vcs| = 250.9(4.0) MeV

from leptonic pseudoscalar-meson decays from Table 2 and Ta-

ble 3 with determinations of |Vcd| and |Vcs| from CKM unitarity

to infer “experimental” values for the decay constants within
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the standard model. For this purpose, we obtain the values of

|Vcd| and |Vcs| by relating them to other CKM elements using

the Wolfenstein parameterization [107]. We take |Vcd| to equal

the value of |Vus| minus the leading correction [108]:

|Vcd| = |Vus|

∣

∣

∣

∣

−1 +
|Vcb|

2

2
(1 − 2(ρ + iη))

∣

∣

∣

∣

(32)

= |Vus|

(

[

−1 + (1 − 2ρ)
|Vcb|

2

2

]2

+ η2|Vcb|
4

)1/2

. (33)

Using |Vus|=0.2255(3)(6)(3) from leptonic kaon decay, Eq. (26),

inclusive |Vcb| as above, and (ρ, η) = (0.136(24), 0.361(14)) from

CKM unitarity [101] |Vcd| =0.2254(7). We take |Vcs| = |Vud| −

|Vcb|
2/2 [108], using |Vud| = 0.97417(21) from β decay [94],

giving |Vcs| = 0.9733(2). Given these choices, we find

f “exp”
D+ = 203.7(4.7)(0.6) MeV and

f “exp”

D+
s

= 257.8(4.1)(0.1) MeV , (34)

where the uncertainties are from the errors on Γ and |Vus|

(or |Vud|), respectively. These disagree with the theoretical

values fD+ = 211.9(1.1) MeV and fD+
s

= 249.0(1.2) MeV in

Eq. (19) obtained from averaging recently published three and

four-flavor lattice-QCD results at the 1.7σ and 2.0σ levels,

respectively. The significances of the tensions are sensitive,

however, to the choices made for |Vus| and |Vud|. Thus resolving

the inconsistencies between determinations of elements of the

first row of the CKM matrix discussed previously in Sec. V.A

may also reduce the mild tensions observed here.

C. |Vub| and other applications

Using the average value for |Vub|fB+ from Table 5, and for

fB+ from Eq. (24), we obtain the following determination of

the CKM matrix element |Vub| from leptonic decays within the

standard model:

|Vub| = 4.12(37)(9)× 10−3 , (35)

where the errors are from experiment and theory, respectively.

We note, however, that decays involving the third generation of

quarks and leptons may be particularly sensitive to new physics

associated with electroweak symmetry breaking due to their

larger masses [4,6], so Eq. (35) is more likely to be influenced

by new physics than the determinations of the elements of

the first and second rows of the CKM matrix in the previous

sections.

The CKM element |Vub| can also be obtained from semilep-

tonic B-meson decays. Over the past several years there has

remained a persistent 2-3σ tension between the determinations

of |Vub| from exclusive B → πℓν decay and from inclusive

B → Xuℓν decay, where Xu denotes all hadrons which con-

tain a constituent up quark [3,102,109–111]. The currently

most precise determination of |Vub|
excl = 3.72(16) × 10−3 is

obtained from a joint z-fit of the vector and scalar form

factors fBπ
+ (q2) and fBπ

0 (q2) calculated in (2+1)-flavor lat-

tice QCD by the FNAL/MILC Collaboration [112] and ex-

perimental measurements of the differential decay rate from

BaBar [113,114] and Belle [115,116]. On the other hand,

the most recent PDG average of inclusive determinations ob-

tained using the theoretical frameworks in Refs. 117–119 is

|Vub|
incl = 4.49(16)

(

+16
−18

)

× 10−3 [120]. The result for |Vub|

from leptonic B → τν decay in Eq. (35) is compatible with

determinations from both exclusive and inclusive semileptonic

B-meson decays.

The CKM element |Vub| can now also be obtained from

semileptonic Λb decays. Specifically, the recent LHCb mea-

surement of the ratio of decay rates for Λb → pℓν over

Λb → Λcℓν [121], when combined with the ratio of form factors

from (2+1)-flavor lattice QCD [122], enables the first determi-

nation of the ratio of CKM elements |Vub|/|Vcb| = 0.083(4)(4)

from baryonic decay. Taking |Vcb|
incl = 42.21(78) × 10−3 [105]

for the denominator,11 we obtain |Vub| = 3.50(17)(17)(6)×10−3

from exclusive Λb semileptonic decays, where the errors are

from experiment, the form factors, and |Vcb|, respectively. The

result for |Vub| from leptonic B → τν decay in Eq. (35) is 1.4σ

higher than the determination from b-baryon decays.

Given these results, the “Vub” puzzle still stands, and

the determination from leptonic B+-meson decay is not yet

sufficiently precise to weigh in on the discrepancy. New and

improved experimental measurements and theoretical calcula-

tions of other b → u flavor-changing processes, however, are

providing additional information and sharpening the picture of

the various tensions. Further, the error on |Vub| from B → τν

decay will shrink once improved rate measurements from the

Belle II experiment are available.

Finally, we can combine the experimental measurement of

|Vub|fB+ from leptonic B+-meson decays in Table 5 with a de-

termination of the CKM element |Vub| from elsewhere to infer an

“experimental” values for fB+ within the standard model. This,

of course, assumes that there are no significant new-physics con-

tributions to B+ → τν, which may turn out not to be the case.

Further, one does not know a priori what value to take for |Vub|

given the inconsistencies between the various determinations

discussed above. We therefore take the PDG weighted average

of the determinations from inclusive and exclusive semileptonic

B-meson decays |Vub|
excl+incl = 4.09(39) × 10−3 [120], where

11 This differs from the choice for |Vcb| made by LHCb [121],

who use the determination from exclusive B → D(∗)ℓν decays

at zero recoil [123]. The Belle Experiment recently obtained a

new measurement of the B → Dℓν differential decay rate [124]

and determination of |Vcb| = 40.83(1.13) × 10−3. They find

that the inclusion of experimental and theoretical nonzero-recoil

information increases the value for |Vcb| compared to when only

zero-recoil information is used, and leads to agreement with the

inclusive result.
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the error has been rescaled by the

√

χ2/dof = 2.6 to account

for the disagreement. Using this result we obtain

f“exp”
B+ = 188(17)(18) MeV , (36)

where the uncertainties are from the errors on Γ and |Vub|,

respectively. This agrees within large uncertainties with the

theoretical value fB+ = 187.1(4.2) MeV in Eq. (24) obtained

from an average of recent three and four-flavor lattice-QCD

results [69,86,88,89].
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le ListingsD±s�(e+ νe)/�total �19/��(e+ νe)/�total �19/��(e+ νe)/�total �19/��(e+ νe)/�total �19/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.83× 10−4<0.83× 10−4<0.83× 10−4<0.83× 10−4 90 1 ZUPANC 13 BELL e+ e− at�(4S),�(5S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.3 × 10−4 90 DEL-AMO-SA...10J BABR e+ e−, 10.58 GeV
<1.2 × 10−4 90 ALEXANDER 09 CLEO e+ e− at 4170 MeV
<1.3 × 10−4 90 PEDLAR 07A CLEO See ALEXANDER 091ZUPANC 13 also gives the limit as < 1.0× 10−4 at 95% CL.�(µ+νµ

)/�total �20/��(µ+νµ

)/�total �20/��(µ+νµ

)/�total �20/��(µ+νµ

)/�total �20/�See the note on \De
ay Constants of Charged Pseudos
alar Mesons" above.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT5.56±0.25 OUR AVERAGE5.56±0.25 OUR AVERAGE5.56±0.25 OUR AVERAGE5.56±0.25 OUR AVERAGE5.31±0.28±0.20 492 ± 26 1 ZUPANC 13 BELL e+ e− at�(4S),�(5S)6.02±0.38±0.34 275 ± 17 2 DEL-AMO-SA...10J BABR e+ e−, 10.58 GeV5.65±0.45±0.17 235 ± 14 ALEXANDER 09 CLEO e+ e− at 4170 MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.44±0.76±0.57 169 ± 18 3 WIDHALM 08 BELL See ZUPANC 135.94±0.66±0.31 88 4 PEDLAR 07A CLEO See ALEXANDER 096.8 ±1.1 ±1.8 553 5 HEISTER 02I ALEP Z de
ays1ZUPANC 13 uses both µ+ ν and τ+ ν events to get fDs = (255.5 ± 4.2 ± 5.1) MeV.2DEL-AMO-SANCHEZ 10J uses µ+ νµ and τ+ ντ events together to get fDs = (258.6±6.4 ± 7.5) MeV.3WIDHALM 08 gets fDs= (275 ± 16 ± 12) MeV from the bran
hing fra
tion.4PEDLAR 07A also �ts µ+ and τ+ events together and gets an e�e
tive µ+ νµ bran
hingfra
tion of (6.38 ± 0.59 ± 0.33)× 10−35This HEISTER 02I result is not a
tually an independent measurement of the absolute

µ+ νµ bran
hing fra
tion, but is in fa
t based on our φπ+ bran
hing fra
tion of 3.6 ±0.9%, so it 
annot be in
luded in our overall �t. HEISTER 02I 
ombines its D+s →
τ+ ντ and µ+ νµ bran
hing fra
tions to get fDs= (285 ± 19 ± 40) MeV.�(µ+νµ

)/�(φπ+) �20/�34�(µ+νµ

)/�(φπ+) �20/�34�(µ+νµ

)/�(φπ+) �20/�34�(µ+νµ

)/�(φπ+) �20/�34See the note on \De
ay Constants of Charged Pseudos
alar Mesons" above.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.143±0.018±0.006 489 ± 55 1 AUBERT 07V BABR e+ e− ≈ �(4S)0.23 ±0.06 ±0.04 18 2 ALEXANDROV 00 BEAT π− nu
leus, 350 GeV0.173±0.023±0.035 182 3 CHADHA 98 CLE2 e+ e− ≈ �(4S)0.245±0.052±0.074 39 4 ACOSTA 94 CLE2 See CHADHA 981AUBERT 07V gets fD+s = (283 ± 17 ± 16) MeV, using �(D+s → φπ+)/�(total) =(4.71 ± 0.46)%.2ALEXANDROV 00 uses f 2D/f 2Ds = 0.82 ± 0.09 from a latti
e-gauge-theory 
al
ulationto get the relative numbers of D+ → µ+ νµ and D+s → µ+ νµ events. The presentresult leads to fDs= (323 ± 44 ± 36) MeV.3CHADHA 98 obtains fDs = (280 ± 19 ± 28 ± 34) MeV from this measurement, using�(D+s → φπ+)/�(total) = 0.036 ± 0.009.4ACOSTA 94 obtains fDs = (344 ± 37 ± 52 ± 42) MeV from this measurement, using�(D+s → φπ+)/�(total) = 0.037 ± 0.009.�(τ+ ντ

)/�total �21/��(τ+ ντ

)/�total �21/��(τ+ ντ

)/�total �21/��(τ+ ντ

)/�total �21/�See the note on \De
ay Constants of Charged Pseudos
alar Mesons" above.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.55±0.24 OUR AVERAGE5.55±0.24 OUR AVERAGE5.55±0.24 OUR AVERAGE5.55±0.24 OUR AVERAGE5.70±0.21+0.31
−0.30 2.2k 1 ZUPANC 13 BELL e+ e− at �(4S), �(5S)4.96±0.37±0.57 748 ± 53 2 DEL-AMO-SA...10J BABR e− νe ντ , µ− νµντ6.42±0.81±0.18 126 ± 16 3 ALEXANDER 09 CLEO τ+ → π+ ντ5.52±0.57±0.21 155 ± 17 3 NAIK 09A CLEO τ+ → ρ+ ντ5.30±0.47±0.22 181 ± 16 3 ONYISI 09 CLEO τ+ → e+ νe ντ

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.17±0.71±0.34 102 4 ECKLUND 08 CLEO See ONYISI 098.0 ±1.3 ±0.4 47 4 PEDLAR 07A CLEO See ALEXANDER 095.79±0.77±1.84 881 5 HEISTER 02I ALEP Z de
ays7.0 ±2.1 ±2.0 22 6 ABBIENDI 01L OPAL D∗+s → γD+s from Z 's7.4 ±2.8 ±2.4 16 7 ACCIARRI 97F L3 D∗+s → γD+s from Z 's1 ZUPANC 13 uses both µ+ ν and τ+ ν events to get fDs = (255.5 ± 4.2 ± 5.1) MeV.2DEL-AMO-SANCHEZ 10J (with a small 
orre
tion; see LEES 15D) uses µ+ νµ and
τ+ ντ events together to get fDs = (259.9 ± 6.6 ± 7.6) MeV.3ALEXANDER 09, NAIK 09A, and ONYISI 09 use di�erent τ de
ay modes and are inde-pendent. The three papers 
ombined give fDs = (259.7 ± 7.8 ± 3.4) MeV.4ECKLUND 08 and PEDLAR 07A are independent: ECKLUND 08 uses τ+ → e+ νe ντevents, PEDLAR 07A uses τ+ → π+ ντ events.5HEISTER 02I 
ombines its D+s → τ+ ντ and µ+ νµ bran
hing fra
tions to get fDs=(285 ± 19 ± 40) MeV.6This ABBIENDI 01L value gives a de
ay 
onstant fDs of (286 ± 44 ± 41) MeV.7The se
ond ACCIARRI 97F error here 
ombines in quadrature systemati
 (0.016) andnormalization (0.018) errors. The bran
hing fra
tion gives fDs = (309 ± 58 ± 33 ± 38)MeV.

�(τ+ ντ

)/�(µ+νµ

) �21/�20�(τ+ ντ

)/�(µ+νµ

) �21/�20�(τ+ ντ

)/�(µ+νµ

) �21/�20�(τ+ ντ

)/�(µ+νµ

) �21/�20VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •10.73±0.69+0.56

−0.53 2.2k/492 1 ZUPANC 13 BELL e+ e− at�(4S),�(5S)11.0 ±1.4 ±0.6 102 2 ECKLUND 08 CLEO See ONYISI 091This ZUPANC 13 ratio is not independent of the separate τ ν and µν fra
tions listedabove.2This ECKLUND 08 value also uses results from PEDLAR 07A, and it is not independentof other results in these Listings. Combined with earlier CLEO results, the de
ay 
onstantfDs is 274 ± 10 ± 5 MeV.�(K+K− e+νe)/�(K+K−π+) �22/�33�(K+K− e+νe)/�(K+K−π+) �22/�33�(K+K− e+νe)/�(K+K−π+) �22/�33�(K+K− e+νe)/�(K+K−π+) �22/�33VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.558±0.007±0.016 1 AUBERT 08AN BABR e+ e− at �(4S)1This AUBERT 08AN ratio is only for the K+K− mass in the range 1.01{to{1.03 GeVin the numerator and 1.0095{to{1.0295 GeV in the denominator.�(φe+ νe)/�total �23/��(φe+ νe)/�total �23/��(φe+ νe)/�total �23/��(φe+ νe)/�total �23/�See the end of the D+s Listings for measurements of D+s → φe+ νe form fa
tors.Unseen de
ay modes of the φ are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.39±0.23 OUR FIT2.39±0.23 OUR FIT2.39±0.23 OUR FIT2.39±0.23 OUR FIT Error in
ludes s
ale fa
tor of 1.8.2.39±0.23 OUR AVERAGE2.39±0.23 OUR AVERAGE2.39±0.23 OUR AVERAGE2.39±0.23 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.2.14±0.17±0.08 207 HIETALA 15 Uses CLEO data2.61±0.03±0.17 25k AUBERT 08AN BABR e+ e− at �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.36±0.23±0.13 106 ECKLUND 09 CLEO See HIETALA 152.29±0.37±0.11 45 YELTON 09 CLEO See ECKLUND 09�(φe+ νe)/�(φπ+) �23/�34�(φe+ νe)/�(φπ+) �23/�34�(φe+ νe)/�(φπ+) �23/�34�(φe+ νe)/�(φπ+) �23/�34As noted in the 
omment 
olumn, most of these measurements use φµ+ νµ events inaddition to or instead of φe+ νe events.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.540±0.033±0.048 793 LINK 02J FOCS Uses φµ+ νµ0.54 ±0.05 ±0.04 367 BUTLER 94 CLE2 Uses φe+ νe and φµ+ νµ0.58 ±0.17 ±0.07 97 FRABETTI 93G E687 Uses φµ+ νµ0.57 ±0.15 ±0.15 104 ALBRECHT 91 ARG Uses φe+ νe0.49 ±0.10 +0.10

−0.14 54 ALEXANDER 90B CLEO Uses φe+ νe and φµ+ νµ�(ηe+ νe)/�total �25/��(ηe+ νe)/�total �25/��(ηe+ νe)/�total �25/��(ηe+ νe)/�total �25/�Unseen de
ay modes of the η are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.28±0.24 OUR FIT2.28±0.24 OUR FIT2.28±0.24 OUR FIT2.28±0.24 OUR FIT2.28±0.14±0.192.28±0.14±0.192.28±0.14±0.192.28±0.14±0.19 358 HIETALA 15 Uses CLEO data
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.48±0.29±0.13 82 YELTON 09 CLEO See HIETALA 15�(ηe+ νe)/�(φe+ νe) �25/�23�(ηe+ νe)/�(φe+ νe) �25/�23�(ηe+ νe)/�(φe+ νe) �25/�23�(ηe+ νe)/�(φe+ νe) �25/�23Unseen de
ay modes of the η and the φ are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.95±0.14 OUR FIT0.95±0.14 OUR FIT0.95±0.14 OUR FIT0.95±0.14 OUR FIT Error in
ludes s
ale fa
tor of 1.2.
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.24±0.12±0.15 440 1 BRANDENB... 95 CLE2 See HIETALA 151BRANDENBURG 95 uses both e+ and µ+ events and makes a phase-spa
e adjustmentto use the µ+ events as e+ events.�(η′(958)e+νe)/�total �26/��(η′(958)e+νe)/�total �26/��(η′(958)e+νe)/�total �26/��(η′(958)e+νe)/�total �26/�Unseen de
ay modes of the η′(958) are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.68±0.16 OUR FIT0.68±0.16 OUR FIT0.68±0.16 OUR FIT0.68±0.16 OUR FIT0.68±0.15±0.060.68±0.15±0.060.68±0.15±0.060.68±0.15±0.06 20 HIETALA 15 Uses CLEO data
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.91±0.33±0.05 7.5 YELTON 09 CLEO See HIETALA 15�(η′(958)e+νe)/�(φe+ νe) �26/�23�(η′(958)e+νe)/�(φe+ νe) �26/�23�(η′(958)e+νe)/�(φe+ νe) �26/�23�(η′(958)e+νe)/�(φe+ νe) �26/�23Unseen de
ay modes of the resonan
es are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.28±0.07 OUR FIT0.28±0.07 OUR FIT0.28±0.07 OUR FIT0.28±0.07 OUR FIT Error in
ludes s
ale fa
tor of 1.1.
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.43±0.11±0.07 29 1 BRANDENB... 95 CLE2 See HIETALA 151BRANDENBURG 95 uses both e+ and µ+ events and makes a phase-spa
e adjustmentto use the µ+ events as e+ events.
[�(ηe+ νe)+�(η′(958)e+ νe)]/�(φe+ νe) �24/�23 = (�25+�26)/�23[�(ηe+ νe)+�(η′(958)e+ νe)]/�(φe+ νe) �24/�23 = (�25+�26)/�23[�(ηe+ νe)+�(η′(958)e+ νe)]/�(φe+ νe) �24/�23 = (�25+�26)/�23[�(ηe+ νe)+�(η′(958)e+ νe)]/�(φe+ νe) �24/�23 = (�25+�26)/�23Unseen de
ay modes of the resonan
es are in
luded.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.67±0.17±0.17 1 BRANDENB... 95 CLE2 See HIETALA 151This BRANDENBURG 95 data is redundant with data in previous blo
ks.
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ω e+νe)/�total �27/��(

ω e+νe)/�total �27/��(

ω e+νe)/�total �27/��(

ω e+νe)/�total �27/�A test for uu or dd 
ontent in the D+s . Neither Cabibbo-favored nor Cabibbo-suppressed de
ays 
an 
ontribute, and ω − φ mixing is an unlikely explanation forany fra
tion above about 2× 10−4.VALUE (%) CL% DOCUMENT ID TECN COMMENT
<0.20<0.20<0.20<0.20 90 MARTIN 11 CLEO e+ e− at 4170 MeV�(K0 e+ νe)/�total �28/��(K0 e+ νe)/�total �28/��(K0 e+ νe)/�total �28/��(K0 e+ νe)/�total �28/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.39±0.08±0.030.39±0.08±0.030.39±0.08±0.030.39±0.08±0.03 42 HIETALA 15 Uses CLEO data
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.37±0.10±0.02 14 YELTON 09 CLEO See HIETALA 15�(K∗(892)0 e+νe)/�total �29/��(K∗(892)0 e+νe)/�total �29/��(K∗(892)0 e+νe)/�total �29/��(K∗(892)0 e+νe)/�total �29/�Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.18±0.04±0.010.18±0.04±0.010.18±0.04±0.010.18±0.04±0.01 32 HIETALA 15 Uses CLEO data
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.18±0.07±0.01 7.5 YELTON 09 CLEO See HIETALA 15�(f0(980)e+ νe , f0 → π+π−)/�total �30/��(f0(980)e+ νe , f0 → π+π−)/�total �30/��(f0(980)e+ νe , f0 → π+π−)/�total �30/��(f0(980)e+ νe , f0 → π+π−)/�total �30/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.13±0.03±0.01 42 1 HIETALA 15 Uses CLEO data0.20±0.03±0.01 44 ECKLUND 09 CLEO See HIETALA 150.13±0.04±0.01 13 YELTON 09 CLEO See ECKLUND 091HIETALA 15 uses a tighter 
ut on the re
onstru
ted π+π− mass (±60 MeV aroundthe f 0) than ECKLUND 09. It �nds that applying the same tight 
ut to both analysesgives 
onsistent results.Hadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pairHadroni
 modes with a K K pair�(K+K0S)/�total �31/��(K+K0S)/�total �31/��(K+K0S)/�total �31/��(K+K0S)/�total �31/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.50±0.05 OUR FIT1.50±0.05 OUR FIT1.50±0.05 OUR FIT1.50±0.05 OUR FIT1.52±0.05±0.031.52±0.05±0.031.52±0.05±0.031.52±0.05±0.03 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.49±0.07±0.05 1 ALEXANDER 08 CLEO See ONYISI 131ALEXANDER 08 uses single- and double-tagged events in an overall �t.�(K+K0)/�total �32/��(K+K0)/�total �32/��(K+K0)/�total �32/��(K+K0)/�total �32/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.95±0.11±0.092.95±0.11±0.092.95±0.11±0.092.95±0.11±0.09 2.0k 1 ZUPANC 13 BELL e+ e− at�(4S),�(5S)1ZUPANC 13 �nds the K0 from its missing-mass squared, not from K0S → π+π−.The DCS (D+s → K+K0) 
ontribution to this fra
tion is estimated to be an order ofmagnitude below the statisti
al un
ertainty.�(K+K−π+)/�total �33/��(K+K−π+)/�total �33/��(K+K−π+)/�total �33/��(K+K−π+)/�total �33/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.45±0.17 OUR FIT5.45±0.17 OUR FIT5.45±0.17 OUR FIT5.45±0.17 OUR FIT Error in
ludes s
ale fa
tor of 1.2.5.44±0.18 OUR AVERAGE5.44±0.18 OUR AVERAGE5.44±0.18 OUR AVERAGE5.44±0.18 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.5.55±0.14±0.13 ONYISI 13 CLEO e+ e− at 4.17 GeV5.06±0.15±0.21 4.1k ZUPANC 13 BELL e+ e− at �(4S),�(5S)5.78±0.20±0.30 DEL-AMO-SA...10J BABR e+ e−, 10.58 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.50±0.23±0.16 1 ALEXANDER 08 CLEO See ONYISI 131ALEXANDER 08 uses single- and double-tagged events in an overall �t.

WEIGHTED AVERAGE
5.44±0.18 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

DEL-AMO-SA... 10J BABR 0.9
ZUPANC 13 BELL 2.2
ONYISI 13 CLEO 0.3

χ2

       3.4
(Confidence Level = 0.184)

4 4.5 5 5.5 6 6.5 7 7.5�(K+K−π+)/�total (units 10−2)

�(

φπ+)/�total �34/��(

φπ+)/�total �34/��(

φπ+)/�total �34/��(

φπ+)/�total �34/�The results here are model-independent. For earlier, model-dependent results, see ourPDG 06 edition. We de
ouple the D+s → φπ+ bran
hing fra
tion obtained frommass proje
tions (and used to get some of the other bran
hing fra
tions) from theD+s → φπ+, φ → K+K− bran
hing fra
tion obtained from the Dalitz-plot analysisof D+s → K+K−π+. That is, the ratio of these two bran
hing fra
tions is notexa
tly the φ → K+K− bran
hing fra
tion 0.491.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT4.5 ±0.4 OUR AVERAGE4.5 ±0.4 OUR AVERAGE4.5 ±0.4 OUR AVERAGE4.5 ±0.4 OUR AVERAGE4.62±0.36±0.51 1 AUBERT 06N BABR e+ e− at �(4S)4.81±0.52±0.38 212 ± 19 2 AUBERT 05V BABR e+ e− ≈ �(4S)3.59±0.77±0.48 3 ARTUSO 96 CLE2 e+ e− at �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.9 +5.1

−1.9 +1.8
−1.1 4 BAI 95C BES e+ e− 4.03 GeV1This AUBERT 06N measurement uses B0 → D(∗)−s D(∗)+ and B− → D(∗)−s D(∗)0de
ays, in
luding some from other papers. However, the result is independent ofAUBERT 05V.2AUBERT 05V uses the ratio of B0 → D∗−D∗+s events seen in two di�erent ways, inboth of whi
h the D∗− → D0π− de
ay is fully re
onstru
ted: (1) The D∗+s → D+s γ,D+s → φπ+ de
ay is fully re
onstru
ted. (2) The number of events in the D+s peak inthe missing mass spe
trum against the D∗−γ is measured.3ARTUSO 96 uses partially re
onstru
ted B0 → D∗+D∗−s de
ays to get a model-independent value for �(D−s → φπ−)/�(D0 → K−π+) of 0.92 ± 0.20 ± 0.11.4BAI 95C uses e+ e− → D+s D−s events in whi
h one or both of the D±s are observed toobtain the �rst model-independent measurement of the D+s → φπ+ bran
hing fra
tion,without assumptions about σ(D±s ). However, with only two \doubly-tagged" events, thestatisti
al error is very large.�(

φπ+, φ→ K+K−)/�(K+K−π+) �35/�33�(

φπ+, φ→ K+K−)/�(K+K−π+) �35/�33�(

φπ+, φ→ K+K−)/�(K+K−π+) �35/�33�(

φπ+, φ→ K+K−)/�(K+K−π+) �35/�33This is the \�t fra
tion" from the Dalitz-plot analysis. We de
ouple the D+s → φπ+bran
hing fra
tion obtained from mass proje
tions (and used to get some of the otherbran
hing fra
tions) from the D+s → φπ+, φ → K+K− bran
hing fra
tion obtainedfrom the Dalitz-plot analysis of D+s → K+K−π+. That is, the ratio of these twobran
hing fra
tions is not exa
tly the φ → K+K− bran
hing fra
tion 0.491.VALUE (%) DOCUMENT ID TECN COMMENT41.6±0.8 OUR AVERAGE41.6±0.8 OUR AVERAGE41.6±0.8 OUR AVERAGE41.6±0.8 OUR AVERAGE41.4±0.8±0.5 DEL-AMO-SA...11G BABR Dalitz �t, 96k±369 evts42.2±1.6±0.3 MITCHELL 09A CLEO Dalitz �t, 12k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •39.6±3.3±4.7 FRABETTI 95B E687 Dalitz �t, 701 evts�(K+K∗(892)0 ,K∗0 → K−π+)/�(K+K−π+) �36/�33�(K+K∗(892)0 ,K∗0 → K−π+)/�(K+K−π+) �36/�33�(K+K∗(892)0 ,K∗0 → K−π+)/�(K+K−π+) �36/�33�(K+K∗(892)0 ,K∗0 → K−π+)/�(K+K−π+) �36/�33This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT47.8±0.6 OUR AVERAGE47.8±0.6 OUR AVERAGE47.8±0.6 OUR AVERAGE47.8±0.6 OUR AVERAGE47.9±0.5±0.5 DEL-AMO-SA...11G BABR Dalitz �t, 96k±369 evts47.4±1.5±0.4 MITCHELL 09A CLEO Dalitz �t, 12k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •47.8±4.6±4.0 FRABETTI 95B E687 Dalitz �t, 701 evts�(f0(980)π+ , f0 → K+K−)/�(K+K−π+) �37/�33�(f0(980)π+ , f0 → K+K−)/�(K+K−π+) �37/�33�(f0(980)π+ , f0 → K+K−)/�(K+K−π+) �37/�33�(f0(980)π+ , f0 → K+K−)/�(K+K−π+) �37/�33This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT21 ±6 OUR AVERAGE21 ±6 OUR AVERAGE21 ±6 OUR AVERAGE21 ±6 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.5.16.4±0.7±2.0 DEL-AMO-SA...11G BABR Dalitz �t, 96k±369 evts28.2±1.9±1.8 MITCHELL 09A CLEO Dalitz �t, 12k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •11.0±3.5±2.6 FRABETTI 95B E687 Dalitz �t, 701 evts�(f0(1370)π+ , f0 → K+K−)/�(K+K−π+) �38/�33�(f0(1370)π+ , f0 → K+K−)/�(K+K−π+) �38/�33�(f0(1370)π+ , f0 → K+K−)/�(K+K−π+) �38/�33�(f0(1370)π+ , f0 → K+K−)/�(K+K−π+) �38/�33This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT1.3±0.8 OUR AVERAGE1.3±0.8 OUR AVERAGE1.3±0.8 OUR AVERAGE1.3±0.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.9.1.1±0.1±0.2 DEL-AMO-SA...11G BABR Dalitz �t, 96k±369 evts4.3±0.6±0.5 MITCHELL 09A CLEO Dalitz �t, 12k evts�(f0(1710)π+ , f0 → K+K−)/�(K+K−π+) �39/�33�(f0(1710)π+ , f0 → K+K−)/�(K+K−π+) �39/�33�(f0(1710)π+ , f0 → K+K−)/�(K+K−π+) �39/�33�(f0(1710)π+ , f0 → K+K−)/�(K+K−π+) �39/�33This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT1.2±0.5 OUR AVERAGE1.2±0.5 OUR AVERAGE1.2±0.5 OUR AVERAGE1.2±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.8.1.1±0.1±0.1 DEL-AMO-SA...11G BABR Dalitz �t, 96k±369 evts3.4±0.5±0.3 MITCHELL 09A CLEO Dalitz �t, 12k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.4±2.3±3.5 FRABETTI 95B E687 Dalitz �t, 701 evts�(K+K∗0(1430)0 ,K∗0 → K−π+)/�(K+K−π+) �40/�33�(K+K∗0(1430)0 ,K∗0 → K−π+)/�(K+K−π+) �40/�33�(K+K∗0(1430)0 ,K∗0 → K−π+)/�(K+K−π+) �40/�33�(K+K∗0(1430)0 ,K∗0 → K−π+)/�(K+K−π+) �40/�33This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT3.4±0.7 OUR AVERAGE3.4±0.7 OUR AVERAGE3.4±0.7 OUR AVERAGE3.4±0.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.2.4±0.3±1.0 DEL-AMO-SA...11G BABR Dalitz �t, 96k±369 evts3.9±0.5±0.5 MITCHELL 09A CLEO Dalitz �t, 12k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.3±3.2±3.2 FRABETTI 95B E687 Dalitz �t, 701 evts
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le ListingsD±s�(K+K0S π0)/�total �41/��(K+K0S π0)/�total �41/��(K+K0S π0)/�total �41/��(K+K0S π0)/�total �41/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.52±0.09±0.201.52±0.09±0.201.52±0.09±0.201.52±0.09±0.20 ONYISI 13 CLEO e+ e− at 4.17 GeV�(2K0S π+)/�total �42/��(2K0S π+)/�total �42/��(2K0S π+)/�total �42/��(2K0S π+)/�total �42/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.77±0.05±0.030.77±0.05±0.030.77±0.05±0.030.77±0.05±0.03 ONYISI 13 CLEO e+ e− at 4.17 GeV�(K∗(892)+K0)/�(

φπ+) �44/�34�(K∗(892)+K0)/�(

φπ+) �44/�34�(K∗(892)+K0)/�(

φπ+) �44/�34�(K∗(892)+K0)/�(

φπ+) �44/�34Unseen de
ay modes of the resonan
es are in
luded.VALUE DOCUMENT ID TECN COMMENT1.20±0.21±0.131.20±0.21±0.131.20±0.21±0.131.20±0.21±0.13 CHEN 89 CLEO e+ e− 10 GeV�(K+K−π+π0)/�total �45/��(K+K−π+π0)/�total �45/��(K+K−π+π0)/�total �45/��(K+K−π+π0)/�total �45/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT6.3 ±0.6 OUR FIT6.3 ±0.6 OUR FIT6.3 ±0.6 OUR FIT6.3 ±0.6 OUR FIT6.37±0.21±0.566.37±0.21±0.566.37±0.21±0.566.37±0.21±0.56 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.65±0.29±0.40 1 ALEXANDER 08 CLEO See ONYISI 131ALEXANDER 08 uses single- and double-tagged events in an overall �t.�(

φρ+)/�(

φπ+) �46/�34�(

φρ+)/�(

φπ+) �46/�34�(

φρ+)/�(

φπ+) �46/�34�(

φρ+)/�(

φπ+) �46/�34VALUE EVTS DOCUMENT ID TECN COMMENT1.86±0.26+0.29
−0.401.86±0.26+0.29
−0.401.86±0.26+0.29
−0.401.86±0.26+0.29
−0.40 253 AVERY 92 CLE2 e+ e− ≃ 10.5 GeV�(K0S K−2π+)/�total �47/��(K0S K−2π+)/�total �47/��(K0S K−2π+)/�total �47/��(K0S K−2π+)/�total �47/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.67±0.10 OUR FIT1.67±0.10 OUR FIT1.67±0.10 OUR FIT1.67±0.10 OUR FIT1.69±0.07±0.081.69±0.07±0.081.69±0.07±0.081.69±0.07±0.08 ONYISI 13 CLEO e+ e− at 4.17 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.64±0.10±0.07 1 ALEXANDER 08 CLEO See ONYISI 131ALEXANDER 08 uses single- and double-tagged events in an overall �t.�(K∗(892)+K∗(892)0)/�(

φπ+) �48/�34�(K∗(892)+K∗(892)0)/�(

φπ+) �48/�34�(K∗(892)+K∗(892)0)/�(

φπ+) �48/�34�(K∗(892)+K∗(892)0)/�(

φπ+) �48/�34Unseen de
ay modes of the resonan
es are in
luded.VALUE DOCUMENT ID TECN COMMENT1.6±0.4±0.41.6±0.4±0.41.6±0.4±0.41.6±0.4±0.4 ALBRECHT 92B ARG e+ e− ≃ 10.4 GeV�(K+K0S π+π−)/�total �49/��(K+K0S π+π−)/�total �49/��(K+K0S π+π−)/�total �49/��(K+K0S π+π−)/�total �49/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.03±0.06±0.081.03±0.06±0.081.03±0.06±0.081.03±0.06±0.08 ONYISI 13 CLEO e+ e− at 4.17 GeV�(K+K0S π+π−)/�(K0S K−2π+) �49/�47�(K+K0S π+π−)/�(K0S K−2π+) �49/�47�(K+K0S π+π−)/�(K0S K−2π+) �49/�47�(K+K0S π+π−)/�(K0S K−2π+) �49/�47VALUE EVTS DOCUMENT ID TECN COMMENT0.586±0.052±0.0430.586±0.052±0.0430.586±0.052±0.0430.586±0.052±0.043 476 LINK 01C FOCS γ A, Eγ ≈ 180 GeV�(K+K−2π+π−)/�(K+K−π+) �50/�33�(K+K−2π+π−)/�(K+K−π+) �50/�33�(K+K−2π+π−)/�(K+K−π+) �50/�33�(K+K−2π+π−)/�(K+K−π+) �50/�33VALUE EVTS DOCUMENT ID TECN COMMENT0.160±0.027 OUR AVERAGE0.160±0.027 OUR AVERAGE0.160±0.027 OUR AVERAGE0.160±0.027 OUR AVERAGE0.150±0.019±0.025 240 LINK 03D FOCS γ A, Eγ ≈ 180 GeV0.188±0.036±0.040 75 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV�(

φ2π+π−)/�(

φπ+) �51/�34�(

φ2π+π−)/�(

φπ+) �51/�34�(

φ2π+π−)/�(

φπ+) �51/�34�(

φ2π+π−)/�(

φπ+) �51/�34VALUE EVTS DOCUMENT ID TECN COMMENT0.269±0.027 OUR AVERAGE0.269±0.027 OUR AVERAGE0.269±0.027 OUR AVERAGE0.269±0.027 OUR AVERAGE0.249±0.024±0.021 136 LINK 03D FOCS γ A, Eγ ≈ 180 GeV0.28 ±0.06 ±0.01 40 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV0.58 ±0.21 ±0.10 21 FRABETTI 92 E687 γBe0.42 ±0.13 ±0.07 19 ANJOS 88 E691 Photoprodu
tion1.11 ±0.37 ±0.28 62 ALBRECHT 85D ARG e+ e− 10 GeV�(K+K−ρ0π+non-φ)/�(K+K−2π+π−) �52/�50�(K+K−ρ0π+non-φ)/�(K+K−2π+π−) �52/�50�(K+K−ρ0π+non-φ)/�(K+K−2π+π−) �52/�50�(K+K−ρ0π+non-φ)/�(K+K−2π+π−) �52/�50VALUE CL% DOCUMENT ID TECN COMMENT
<0.03<0.03<0.03<0.03 90 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(

φρ0π+, φ→ K+K−)/�(K+K−2π+π−) �53/�50�(

φρ0π+, φ→ K+K−)/�(K+K−2π+π−) �53/�50�(

φρ0π+, φ→ K+K−)/�(K+K−2π+π−) �53/�50�(

φρ0π+, φ→ K+K−)/�(K+K−2π+π−) �53/�50VALUE DOCUMENT ID TECN COMMENT0.75±0.06±0.040.75±0.06±0.040.75±0.06±0.040.75±0.06±0.04 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(

φa1(1260)+, φ→ K+K−, a+1 → ρ0π+)/�(K+K−π+) �54/�33�(

φa1(1260)+, φ→ K+K−, a+1 → ρ0π+)/�(K+K−π+) �54/�33�(

φa1(1260)+, φ→ K+K−, a+1 → ρ0π+)/�(K+K−π+) �54/�33�(

φa1(1260)+, φ→ K+K−, a+1 → ρ0π+)/�(K+K−π+) �54/�33VALUE DOCUMENT ID TECN COMMENT0.137±0.019±0.0110.137±0.019±0.0110.137±0.019±0.0110.137±0.019±0.011 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(K+K−2π+π− nonresonant)/�(K+K−2π+π−) �55/�50�(K+K−2π+π− nonresonant)/�(K+K−2π+π−) �55/�50�(K+K−2π+π− nonresonant)/�(K+K−2π+π−) �55/�50�(K+K−2π+π− nonresonant)/�(K+K−2π+π−) �55/�50VALUE DOCUMENT ID TECN COMMENT0.10±0.06±0.050.10±0.06±0.050.10±0.06±0.050.10±0.06±0.05 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(2K0S 2π+π−)/�(K0S K−2π+) �56/�47�(2K0S 2π+π−)/�(K0S K−2π+) �56/�47�(2K0S 2π+π−)/�(K0S K−2π+) �56/�47�(2K0S 2π+π−)/�(K0S K−2π+) �56/�47VALUE EVTS DOCUMENT ID TECN COMMENT0.051±0.015±0.0150.051±0.015±0.0150.051±0.015±0.0150.051±0.015±0.015 37 ± 10 LINK 04D FOCS γ A, Eγ ≈ 180 GeV

Pioni
 modesPioni
 modesPioni
 modesPioni
 modes�(

π+π0)/�(K+K0S) �57/�31�(

π+π0)/�(K+K0S) �57/�31�(

π+π0)/�(K+K0S) �57/�31�(

π+π0)/�(K+K0S) �57/�31VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT
<2.3<2.3<2.3<2.3 90 MENDEZ 10 CLEO e+ e− at 4170 MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.1 90 ADAMS 07A CLEO See MENDEZ 10�(2π+π−)/�total �58/��(2π+π−)/�total �58/��(2π+π−)/�total �58/��(2π+π−)/�total �58/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.09±0.05 OUR FIT1.09±0.05 OUR FIT1.09±0.05 OUR FIT1.09±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.1.1.11±0.04±0.041.11±0.04±0.041.11±0.04±0.041.11±0.04±0.04 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.11±0.07±0.04 1 ALEXANDER 08 CLEO See ONYISI 131ALEXANDER 08 uses single- and double-tagged events in an overall �t.�(2π+π−)/�(K+K−π+) �58/�33�(2π+π−)/�(K+K−π+) �58/�33�(2π+π−)/�(K+K−π+) �58/�33�(2π+π−)/�(K+K−π+) �58/�33VALUE EVTS DOCUMENT ID TECN COMMENT0.201±0.007 OUR FIT0.201±0.007 OUR FIT0.201±0.007 OUR FIT0.201±0.007 OUR FIT0.199±0.004±0.0090.199±0.004±0.0090.199±0.004±0.0090.199±0.004±0.009 ≈ 10.5k AUBERT 09O BABR e+ e− ≈ 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.265±0.041±0.031 98 FRABETTI 97D E687 γ Be ≈ 200 GeV�(

ρ0π+)/�(2π+π−) �59/�58�(

ρ0π+)/�(2π+π−) �59/�58�(

ρ0π+)/�(2π+π−) �59/�58�(

ρ0π+)/�(2π+π−) �59/�58VALUE CL% DOCUMENT ID TECN COMMENT0.018±0.005±0.0100.018±0.005±0.0100.018±0.005±0.0100.018±0.005±0.010 AUBERT 09O BABR Dalitz �t, ≈ 10.5k evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen LINK 04 FOCS Dalitz �t, 1475 ± 50 evts0.058±0.023±0.037 AITALA 01A E791 Dalitz �t, 848 evts
<0.073 90 FRABETTI 97D E687 γ Be ≈ 200 GeV�(

π+ (π+π−)S−wave)/�(2π+π−) �60/�58�(

π+ (π+π−)S−wave)/�(2π+π−) �60/�58�(

π+ (π+π−)S−wave)/�(2π+π−) �60/�58�(

π+ (π+π−)S−wave)/�(2π+π−) �60/�58This is the \�t fra
tion" from the Dalitz-plot analysis. See also KLEMPT 08, whi
huses 568 D+s → 3π de
ays (over 280 ba
kground events) from FNAL E791 to studyvarious parametrizations of the de
ay amplitudes. The emphasis there is more onS-wave ππ de
ay produ
ts | 20 di�erent solutions are given | than on D+s �tfra
tions.VALUE DOCUMENT ID TECN COMMENT0.833 ±0.020 OUR AVERAGE0.833 ±0.020 OUR AVERAGE0.833 ±0.020 OUR AVERAGE0.833 ±0.020 OUR AVERAGE0.830 ±0.009 ±0.019 1 AUBERT 09O BABR Dalitz �t, ≈ 10.5k evts0.8704±0.0560±0.0438 2 LINK 04 FOCS Dalitz �t, 1475 ± 50 evts1AUBERT 09O gives the amplitude and phase of the π+π− S-wave in 29 π+π−invariant-mass bins.2 LINK 04 borrows a K-matrix parametrization from ANISOVICH 03 of the full π-π S-wave isos
alar s
attering amplitude to des
ribe the π+π− S-wave 
omponent of the
π+π+π− state. The �t fra
tion given above is a sum over �ve f0 mesons, the f0(980),f0(1300), f0(1200{1600), f0(1500), and f0(1750). See LINK 04 for details and dis
us-sion.�(f0(980)π+ , f0 → π+π−)/�(2π+π−) �61/�58�(f0(980)π+ , f0 → π+π−)/�(2π+π−) �61/�58�(f0(980)π+ , f0 → π+π−)/�(2π+π−) �61/�58�(f0(980)π+ , f0 → π+π−)/�(2π+π−) �61/�58This is the \�t fra
tion" from the Dalitz-plot analysis. See above for the full

π+(π+π−)S−wave �t fra
tion.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.565±0.043±0.047 AITALA 01A E791 Dalitz �t, 848 evts1.074±0.140±0.043 FRABETTI 97D E687 γ Be ≈ 200 GeV�(f0(1370)π+ , f0 → π+π−)/�(2π+π−) �62/�58�(f0(1370)π+ , f0 → π+π−)/�(2π+π−) �62/�58�(f0(1370)π+ , f0 → π+π−)/�(2π+π−) �62/�58�(f0(1370)π+ , f0 → π+π−)/�(2π+π−) �62/�58This is the \�t fra
tion" from the Dalitz-plot analysis. See above for the full

π+(π+π−)S−wave �t fra
tion.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.324±0.077±0.017 AITALA 01A E791 Dalitz �t, 848 evts�(f0(1500)π+ , f0 → π+π−)/�(2π+π−) �63/�58�(f0(1500)π+ , f0 → π+π−)/�(2π+π−) �63/�58�(f0(1500)π+ , f0 → π+π−)/�(2π+π−) �63/�58�(f0(1500)π+ , f0 → π+π−)/�(2π+π−) �63/�58This is the \�t fra
tion" from the Dalitz-plot analysis. See above for the full

π+(π+π−)S−wave �t fra
tion.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.274±0.114±0.019 1 FRABETTI 97D E687 γ Be ≈ 200 GeV1FRABETTI 97D 
alls this mode S(1475)π+, but �nds the mass and width of this S(1475)to be in ex
ellent agreement with those of the f0(1500).�(f2(1270)π+ , f2 → π+π−)/�(2π+π−) �64/�58�(f2(1270)π+ , f2 → π+π−)/�(2π+π−) �64/�58�(f2(1270)π+ , f2 → π+π−)/�(2π+π−) �64/�58�(f2(1270)π+ , f2 → π+π−)/�(2π+π−) �64/�58This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.101 ±0.018 OUR AVERAGE0.101 ±0.018 OUR AVERAGE0.101 ±0.018 OUR AVERAGE0.101 ±0.018 OUR AVERAGE0.101 ±0.015 ±0.011 AUBERT 09O BABR Dalitz �t, ≈ 10.5k evts0.0974±0.0449±0.0294 LINK 04 FOCS Dalitz �t, 1475 ± 50 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.197 ±0.033 ±0.006 AITALA 01A E791 Dalitz �t, 848 evts0.123 ±0.056 ±0.018 FRABETTI 97D E687 γ Be ≈ 200 GeV



1126112611261126MesonParti
le ListingsD±s�(

ρ(1450)0π+ , ρ0 → π+π−)/�(2π+π−) �65/�58�(

ρ(1450)0π+ , ρ0 → π+π−)/�(2π+π−) �65/�58�(

ρ(1450)0π+ , ρ0 → π+π−)/�(2π+π−) �65/�58�(

ρ(1450)0π+ , ρ0 → π+π−)/�(2π+π−) �65/�58This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.027 ±0.018 OUR AVERAGE0.027 ±0.018 OUR AVERAGE0.027 ±0.018 OUR AVERAGE0.027 ±0.018 OUR AVERAGE0.023 ±0.008 ±0.017 AUBERT 09O BABR Dalitz �t, ≈ 10.5k evts0.0656±0.0343±0.0440 LINK 04 FOCS Dalitz �t, 1475 ± 50 evts
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.044 ±0.021 ±0.002 AITALA 01A E791 Dalitz �t, 848 evts�(

π+ 2π0)/�total �66/��(

π+ 2π0)/�total �66/��(

π+ 2π0)/�total �66/��(

π+ 2π0)/�total �66/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.65±0.13±0.030.65±0.13±0.030.65±0.13±0.030.65±0.13±0.03 72 ± 16 NAIK 09A CLEO e+ e− at 4170 MeV�(2π+π−π0)/�(

φπ+) �67/�34�(2π+π−π0)/�(

φπ+) �67/�34�(2π+π−π0)/�(

φπ+) �67/�34�(2π+π−π0)/�(

φπ+) �67/�34VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.3 90 ANJOS 89E E691 Photoprodu
tion�(

ηπ+)/�total �68/��(

ηπ+)/�total �68/��(

ηπ+)/�total �68/��(

ηπ+)/�total �68/�Unseen de
ay modes of the η are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.70±0.09 OUR FIT1.70±0.09 OUR FIT1.70±0.09 OUR FIT1.70±0.09 OUR FIT Error in
ludes s
ale fa
tor of 1.1.1.71±0.08 OUR AVERAGE1.71±0.08 OUR AVERAGE1.71±0.08 OUR AVERAGE1.71±0.08 OUR AVERAGE1.67±0.08±0.06 ONYISI 13 CLEO e+ e− at 4.17 GeV1.82±0.14±0.07 0.8k ZUPANC 13 BELL e+ e− at �(4S),�(5S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.58±0.11±0.18 1 ALEXANDER 08 CLEO See ONYISI 131ALEXANDER 08 uses single- and double-tagged events in an overall �t.�(

ηπ+)/�(K+K0S) �68/�31�(

ηπ+)/�(K+K0S) �68/�31�(

ηπ+)/�(K+K0S) �68/�31�(

ηπ+)/�(K+K0S) �68/�31Unseen de
ay modes of the η are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT1.13 ±0.07 OUR FIT1.13 ±0.07 OUR FIT1.13 ±0.07 OUR FIT1.13 ±0.07 OUR FIT Error in
ludes s
ale fa
tor of 1.1.
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.236±0.043±0.063 2587 ± 89 MENDEZ 10 CLEO See ONYISI 13�(

ηπ+)/�(

φπ+) �68/�34�(

ηπ+)/�(

φπ+) �68/�34�(

ηπ+)/�(

φπ+) �68/�34�(

ηπ+)/�(

φπ+) �68/�34Unseen de
ay modes of the resonan
es are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.48±0.03±0.04 920 JESSOP 98 CLE2 e+ e− ≈ �(4S)0.54±0.09±0.06 165 ALEXANDER 92 CLE2 See JESSOP 98�(

ωπ+)/�total �69/��(

ωπ+)/�total �69/��(

ωπ+)/�total �69/��(

ωπ+)/�total �69/�Unseen de
ay modes of the ω are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.24±0.06 OUR FIT0.24±0.06 OUR FIT0.24±0.06 OUR FIT0.24±0.06 OUR FIT0.21±0.09±0.010.21±0.09±0.010.21±0.09±0.010.21±0.09±0.01 6 ± 2.4 GE 09A CLEO e+ e− at 4170 MeV�(

ωπ+)/�(

ηπ+) �69/�68�(

ωπ+)/�(

ηπ+) �69/�68�(

ωπ+)/�(

ηπ+) �69/�68�(

ωπ+)/�(

ηπ+) �69/�68Unseen de
ay modes of the resonan
es are in
luded.VALUE DOCUMENT ID TECN COMMENT0.14±0.04 OUR FIT0.14±0.04 OUR FIT0.14±0.04 OUR FIT0.14±0.04 OUR FIT0.16±0.04±0.030.16±0.04±0.030.16±0.04±0.030.16±0.04±0.03 BALEST 97 CLE2 e+ e− ≈ �(4S)�(3π+2π−)/�(K+K−π+) �70/�33�(3π+2π−)/�(K+K−π+) �70/�33�(3π+2π−)/�(K+K−π+) �70/�33�(3π+2π−)/�(K+K−π+) �70/�33VALUE EVTS DOCUMENT ID TECN COMMENT0.146±0.014 OUR AVERAGE0.146±0.014 OUR AVERAGE0.146±0.014 OUR AVERAGE0.146±0.014 OUR AVERAGE0.145±0.011±0.010 671 LINK 03D FOCS γ A, Eγ ≈ 180 GeV0.158±0.042±0.031 37 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV�(

ηρ+)/�total �72/��(

ηρ+)/�total �72/��(

ηρ+)/�total �72/��(

ηρ+)/�total �72/�Unseen de
ay modes of the η are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT8.9±0.6±0.58.9±0.6±0.58.9±0.6±0.58.9±0.6±0.5 328 ± 22 NAIK 09A CLEO η → 2γ�(

ηρ+)/�(

φπ+) �72/�34�(

ηρ+)/�(

φπ+) �72/�34�(

ηρ+)/�(

φπ+) �72/�34�(

ηρ+)/�(

φπ+) �72/�34Unseen de
ay modes of the resonan
es are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.98±0.20±0.39 447 JESSOP 98 CLE2 e+ e− ≈ �(4S)2.86±0.38+0.36

−0.38 217 AVERY 92 CLE2 See JESSOP 98�(

ηπ+π0)/�total �73/��(

ηπ+π0)/�total �73/��(

ηπ+π0)/�total �73/��(

ηπ+π0)/�total �73/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT9.2±0.4±1.19.2±0.4±1.19.2±0.4±1.19.2±0.4±1.1 ONYISI 13 CLEO e+ e− at 4.17 GeV�(

ωπ+π0)/�total �74/��(

ωπ+π0)/�total �74/��(

ωπ+π0)/�total �74/��(

ωπ+π0)/�total �74/�Unseen de
ay modes of the ω are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.78±0.65±0.252.78±0.65±0.252.78±0.65±0.252.78±0.65±0.25 34± 7.9 GE 09A CLEO e+ e− at 4170 MeV

�(3π+2π−π0)/�total �75/��(3π+2π−π0)/�total �75/��(3π+2π−π0)/�total �75/��(3π+2π−π0)/�total �75/�VALUE DOCUMENT ID TECN COMMENT0.049+0.033
−0.0300.049+0.033
−0.0300.049+0.033
−0.0300.049+0.033
−0.030 BARLAG 92C ACCM π− 230 GeV�(

ω2π+π−)/�total �76/��(

ω2π+π−)/�total �76/��(

ω2π+π−)/�total �76/��(

ω2π+π−)/�total �76/�Unseen de
ay modes of the ω are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.58±0.45±0.091.58±0.45±0.091.58±0.45±0.091.58±0.45±0.09 29± 8.2 GE 09A CLEO e+ e− at 4170 MeV�(

η′(958)π+)/�total �77/��(

η′(958)π+)/�total �77/��(

η′(958)π+)/�total �77/��(

η′(958)π+)/�total �77/�Unseen de
ay modes of the η′(958) are in
luded.VALUE (units 10−2) DOCUMENT ID TECN COMMENT3.94±0.15±0.203.94±0.15±0.203.94±0.15±0.203.94±0.15±0.20 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.77±0.25±0.30 1 ALEXANDER 08 CLEO See ONYISI 131ALEXANDER 08 uses single- and double-tagged events in an overall �t.�(

η′(958)π+)/�(K+K0S) �77/�31�(

η′(958)π+)/�(K+K0S) �77/�31�(

η′(958)π+)/�(K+K0S) �77/�31�(

η′(958)π+)/�(K+K0S) �77/�31Unseen de
ay modes of the η′(958) are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.654±0.088±0.139 1436 ± 47 MENDEZ 10 CLEO See ONYISI 13�(

η′(958)π+)/�(

φπ+) �77/�34�(

η′(958)π+)/�(

φπ+) �77/�34�(

η′(958)π+)/�(

φπ+) �77/�34�(

η′(958)π+)/�(

φπ+) �77/�34Unseen de
ay modes of the resonan
es are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.03±0.06±0.07 537 JESSOP 98 CLE2 e+ e− ≈ �(4S)1.20±0.15±0.11 281 ALEXANDER 92 CLE2 See JESSOP 982.5 ±1.0 +1.5

−0.4 22 ALVAREZ 91 NA14 Photoprodu
tion2.5 ±0.5 ±0.3 215 ALBRECHT 90D ARG e+ e− ≈ 10.4 GeV�(

ωηπ+)/�total �79/��(

ωηπ+)/�total �79/��(

ωηπ+)/�total �79/��(

ωηπ+)/�total �79/�Unseen de
ay modes of the ω and η are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<2.13× 10−2<2.13× 10−2<2.13× 10−2<2.13× 10−2 90 GE 09A CLEO e+ e− at 4170 MeV�(

η′(958)ρ+)/�total �80/��(

η′(958)ρ+)/�total �80/��(

η′(958)ρ+)/�total �80/��(

η′(958)ρ+)/�total �80/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT5.8±1.4±0.45.8±1.4±0.45.8±1.4±0.45.8±1.4±0.4 ABLIKIM 15Z BES3 482 pb−1, 4009 MeV�(

η′(958)ρ+)/�(

φπ+) �80/�34�(

η′(958)ρ+)/�(

φπ+) �80/�34�(

η′(958)ρ+)/�(

φπ+) �80/�34�(

η′(958)ρ+)/�(

φπ+) �80/�34Unseen de
ay modes of the resonan
es are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT2.78±0.28±0.302.78±0.28±0.302.78±0.28±0.302.78±0.28±0.30 137 JESSOP 98 CLE2 e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.44±0.62+0.44

−0.46 68 AVERY 92 CLE2 See JESSOP 98�(

η′(958)π+π0)/�total �81/��(

η′(958)π+π0)/�total �81/��(

η′(958)π+π0)/�total �81/��(

η′(958)π+π0)/�total �81/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT5.6±0.5±0.65.6±0.5±0.65.6±0.5±0.65.6±0.5±0.6 ONYISI 13 CLEO e+ e− at 4.17 GeV�(

η′(958)π+π0 nonresonant)/�total �82/��(

η′(958)π+π0 nonresonant)/�total �82/��(

η′(958)π+π0 nonresonant)/�total �82/��(

η′(958)π+π0 nonresonant)/�total �82/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.1× 10−2<5.1× 10−2<5.1× 10−2<5.1× 10−2 90 ABLIKIM 15Z BES3 482 pb−1, 4009 MeVModes with one or three K 'sModes with one or three K 'sModes with one or three K 'sModes with one or three K 's�(K+π0)/�(K+K0S) �83/�31�(K+π0)/�(K+K0S) �83/�31�(K+π0)/�(K+K0S) �83/�31�(K+π0)/�(K+K0S) �83/�31VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT4.2±1.4±0.24.2±1.4±0.24.2±1.4±0.24.2±1.4±0.2 202 ± 70 MENDEZ 10 CLEO e+ e− at 4170 MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.5±1.3±0.7 141 ± 34 ADAMS 07A CLEO See MENDEZ 10�(K0S π+)/�(K+K0S) �84/�31�(K0S π+)/�(K+K0S) �84/�31�(K0S π+)/�(K+K0S) �84/�31�(K0S π+)/�(K+K0S) �84/�31VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT8.12±0.28 OUR AVERAGE8.12±0.28 OUR AVERAGE8.12±0.28 OUR AVERAGE8.12±0.28 OUR AVERAGE8.5 ±0.7 ±0.2 393 ± 33 MENDEZ 10 CLEO e+ e− at 4170 MeV8.03±0.24±0.19 17.6k±481 WON 09 BELL e+ e− at �(4S)10.4 ±2.4 ±1.4 113 ± 26 LINK 08 FOCS γ A, Eγ≈ 180 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.2 ±0.9 ±0.2 206 ± 22 ADAMS 07A CLEO See MENDEZ 10�(K+η

)/�(K+K0S) �85/�31�(K+η
)/�(K+K0S) �85/�31�(K+η
)/�(K+K0S) �85/�31�(K+η
)/�(K+K0S) �85/�31Unseen de
ay modes of the η are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT11.8±2.2±0.611.8±2.2±0.611.8±2.2±0.611.8±2.2±0.6 222 ± 41 MENDEZ 10 CLEO e+ e− at 4170 MeV



1127112711271127See key on page 601 MesonParti
le ListingsD±s�(K+η
)/�(

ηπ+) �85/�68�(K+η
)/�(

ηπ+) �85/�68�(K+η
)/�(

ηπ+) �85/�68�(K+η
)/�(

ηπ+) �85/�68VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.9±1.5±0.4 113 ± 18 ADAMS 07A CLEO See MENDEZ 10�(K+ω

)/�total �86/��(K+ω
)/�total �86/��(K+ω
)/�total �86/��(K+ω
)/�total �86/�Unseen de
ay modes of the ω are in
luded.VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT

<0.24<0.24<0.24<0.24 90 GE 09A CLEO e+ e− at 4170 MeV�(K+η′(958))/�(K+K0S) �87/�31�(K+η′(958))/�(K+K0S) �87/�31�(K+η′(958))/�(K+K0S) �87/�31�(K+η′(958))/�(K+K0S) �87/�31Unseen de
ay modes of the η′(958) are in
luded.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT11.8±3.6±0.711.8±3.6±0.711.8±3.6±0.711.8±3.6±0.7 56 ± 17 MENDEZ 10 CLEO e+ e− at 4170 MeV�(K+η′(958))/�(

η′(958)π+) �87/�77�(K+η′(958))/�(

η′(958)π+) �87/�77�(K+η′(958))/�(

η′(958)π+) �87/�77�(K+η′(958))/�(

η′(958)π+) �87/�77VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.2±1.3±0.3 28 ± 9 ADAMS 07A CLEO See MENDEZ 10�(K+π+π−)/�total �88/��(K+π+π−)/�total �88/��(K+π+π−)/�total �88/��(K+π+π−)/�total �88/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.66 ±0.04 OUR FIT0.66 ±0.04 OUR FIT0.66 ±0.04 OUR FIT0.66 ±0.04 OUR FIT0.654±0.033±0.0250.654±0.033±0.0250.654±0.033±0.0250.654±0.033±0.025 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.69 ±0.05 ±0.03 1 ALEXANDER 08 CLEO See ONYISI 131ALEXANDER 08 uses single- and double-tagged events in an overall �t.�(K+π+π−)/�(K+K−π+) �88/�33�(K+π+π−)/�(K+K−π+) �88/�33�(K+π+π−)/�(K+K−π+) �88/�33�(K+π+π−)/�(K+K−π+) �88/�33VALUE EVTS DOCUMENT ID TECN COMMENT0.120±0.007 OUR FIT0.120±0.007 OUR FIT0.120±0.007 OUR FIT0.120±0.007 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.127±0.007±0.0140.127±0.007±0.0140.127±0.007±0.0140.127±0.007±0.014 567 ± 31 LINK 04F FOCS γ A, Eγ ≈ 180 GeV�(K+ρ0)/�(K+π+π−) �89/�88�(K+ρ0)/�(K+π+π−) �89/�88�(K+ρ0)/�(K+π+π−) �89/�88�(K+ρ0)/�(K+π+π−) �89/�88This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.3883±0.0531±0.02610.3883±0.0531±0.02610.3883±0.0531±0.02610.3883±0.0531±0.0261 LINK 04F FOCS Dalitz �t, 567 evts�(K+ρ(1450)0 , ρ0 → π+π−)/�(K+π+π−) �90/�88�(K+ρ(1450)0 , ρ0 → π+π−)/�(K+π+π−) �90/�88�(K+ρ(1450)0 , ρ0 → π+π−)/�(K+π+π−) �90/�88�(K+ρ(1450)0 , ρ0 → π+π−)/�(K+π+π−) �90/�88This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.1062±0.0351±0.01040.1062±0.0351±0.01040.1062±0.0351±0.01040.1062±0.0351±0.0104 LINK 04F FOCS Dalitz �t, 567 evts�(K∗(892)0π+ ,K∗0 → K+π−)/�(K+π+π−) �91/�88�(K∗(892)0π+ ,K∗0 → K+π−)/�(K+π+π−) �91/�88�(K∗(892)0π+ ,K∗0 → K+π−)/�(K+π+π−) �91/�88�(K∗(892)0π+ ,K∗0 → K+π−)/�(K+π+π−) �91/�88This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.2164±0.0321±0.01140.2164±0.0321±0.01140.2164±0.0321±0.01140.2164±0.0321±0.0114 LINK 04F FOCS Dalitz �t, 567 evts�(K∗(1410)0π+ ,K∗0 → K+π−)/�(K+π+π−) �92/�88�(K∗(1410)0π+ ,K∗0 → K+π−)/�(K+π+π−) �92/�88�(K∗(1410)0π+ ,K∗0 → K+π−)/�(K+π+π−) �92/�88�(K∗(1410)0π+ ,K∗0 → K+π−)/�(K+π+π−) �92/�88This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.1882±0.0403±0.01220.1882±0.0403±0.01220.1882±0.0403±0.01220.1882±0.0403±0.0122 LINK 04F FOCS Dalitz �t, 567 evts�(K∗(1430)0π+ ,K∗0 → K+π−)/�(K+π+π−) �93/�88�(K∗(1430)0π+ ,K∗0 → K+π−)/�(K+π+π−) �93/�88�(K∗(1430)0π+ ,K∗0 → K+π−)/�(K+π+π−) �93/�88�(K∗(1430)0π+ ,K∗0 → K+π−)/�(K+π+π−) �93/�88This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.0765±0.0500±0.01700.0765±0.0500±0.01700.0765±0.0500±0.01700.0765±0.0500±0.0170 LINK 04F FOCS Dalitz �t, 567 evts�(K+π+π−nonresonant)/�(K+π+π−) �94/�88�(K+π+π−nonresonant)/�(K+π+π−) �94/�88�(K+π+π−nonresonant)/�(K+π+π−) �94/�88�(K+π+π−nonresonant)/�(K+π+π−) �94/�88This is the \�t fra
tion" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.1588±0.0492±0.01530.1588±0.0492±0.01530.1588±0.0492±0.01530.1588±0.0492±0.0153 LINK 04F FOCS Dalitz �t, 567 evts�(K0π+π0)/�total �95/��(K0π+π0)/�total �95/��(K0π+π0)/�total �95/��(K0π+π0)/�total �95/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.00±0.18±0.041.00±0.18±0.041.00±0.18±0.041.00±0.18±0.04 44 ± 8 NAIK 09A CLEO e+ e− at 4170 MeV�(K0S 2π+π−)/�(K0S K−2π+) �96/�47�(K0S 2π+π−)/�(K0S K−2π+) �96/�47�(K0S 2π+π−)/�(K0S K−2π+) �96/�47�(K0S 2π+π−)/�(K0S K−2π+) �96/�47VALUE EVTS DOCUMENT ID TECN COMMENT0.18±0.04±0.050.18±0.04±0.050.18±0.04±0.050.18±0.04±0.05 179 ± 36 LINK 08 FOCS γ A, Eγ≈ 180 GeV�(K+ωπ0)/�total �97/��(K+ωπ0)/�total �97/��(K+ωπ0)/�total �97/��(K+ωπ0)/�total �97/�Unseen de
ay modes of the ω are in
luded.VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT
<0.82<0.82<0.82<0.82 90 GE 09A CLEO e+ e− at 4170 MeV�(K+ωπ+π−)/�total �98/��(K+ωπ+π−)/�total �98/��(K+ωπ+π−)/�total �98/��(K+ωπ+π−)/�total �98/�Unseen de
ay modes of the ω are in
luded.VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT
<0.54<0.54<0.54<0.54 90 GE 09A CLEO e+ e− at 4170 MeV�(K+ωη

)/�total �99/��(K+ωη
)/�total �99/��(K+ωη
)/�total �99/��(K+ωη
)/�total �99/�Unseen de
ay modes of the ω and η are in
luded.VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT

<0.79<0.79<0.79<0.79 90 GE 09A CLEO e+ e− at 4170 MeV

�(2K+K−)/�(K+K−π+) �100/�33�(2K+K−)/�(K+K−π+) �100/�33�(2K+K−)/�(K+K−π+) �100/�33�(2K+K−)/�(K+K−π+) �100/�33VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.0 ±0.3 ±0.24.0 ±0.3 ±0.24.0 ±0.3 ±0.24.0 ±0.3 ±0.2 748 ± 60 DEL-AMO-SA...11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.95±2.12+2.24

−2.31 31 LINK 02I FOCS γ A, ≈ 180 GeV�(

φK+ , φ→ K+K−)/�(2K+K−) �101/�100�(

φK+ , φ→ K+K−)/�(2K+K−) �101/�100�(

φK+ , φ→ K+K−)/�(2K+K−) �101/�100�(

φK+ , φ→ K+K−)/�(2K+K−) �101/�100VALUE DOCUMENT ID TECN COMMENT0.41±0.08±0.030.41±0.08±0.030.41±0.08±0.030.41±0.08±0.03 DEL-AMO-SA...11G BABR e+ e− ≈ �(4S)Doubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modes�(2K+π−)/�(K+K−π+) �102/�33�(2K+π−)/�(K+K−π+) �102/�33�(2K+π−)/�(K+K−π+) �102/�33�(2K+π−)/�(K+K−π+) �102/�33VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.33±0.23 OUR AVERAGE2.33±0.23 OUR AVERAGE2.33±0.23 OUR AVERAGE2.33±0.23 OUR AVERAGE2.3 ±0.3 ±0.2 356 ± 52 DEL-AMO-SA...11G BABR e+ e− ≈ �(4S)2.29±0.28±0.12 281 ± 34 KO 09 BELL e+ e− at �(4S)5.2 ±1.7 ±1.1 27 ± 9 LINK 05K FOCS <0.78%, CL = 90%�(K+K∗(892)0 ,K∗0→ K+π−)/�(2K+π−) �103/�102�(K+K∗(892)0 ,K∗0→ K+π−)/�(2K+π−) �103/�102�(K+K∗(892)0 ,K∗0→ K+π−)/�(2K+π−) �103/�102�(K+K∗(892)0 ,K∗0→ K+π−)/�(2K+π−) �103/�102VALUE DOCUMENT ID TECN COMMENT0.47±0.22±0.150.47±0.22±0.150.47±0.22±0.150.47±0.22±0.15 DEL-AMO-SA...11G BABR e+ e− ≈ �(4S)Baryon-antibaryon modeBaryon-antibaryon modeBaryon-antibaryon modeBaryon-antibaryon mode�(pn)/�total �104/��(pn)/�total �104/��(pn)/�total �104/��(pn)/�total �104/�This is the only baryoni
 mode allowed kinemati
ally.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.30±0.36+0.12
−0.161.30±0.36+0.12
−0.161.30±0.36+0.12
−0.161.30±0.36+0.12
−0.16 13.0± 3.6 ATHAR 08 CLEO e+ e−, E
m ≈ 4170 MeVRare or forbidden modesRare or forbidden modesRare or forbidden modesRare or forbidden modes�(

π+ e+ e−)/�total �105/��(

π+ e+ e−)/�total �105/��(

π+ e+ e−)/�total �105/��(

π+ e+ e−)/�total �105/�This mode is not a useful test for a �C=1 weak neutral 
urrent be
ause both quarksmust 
hange 
avor in this de
ay.VALUE CL% DOCUMENT ID TECN COMMENT
<13 × 10−6<13 × 10−6<13 × 10−6<13 × 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 2.2× 10−5 90 1 RUBIN 10 CLEO e+ e− at 4170 MeV
<27 × 10−5 90 AITALA 99G E791 π−N 500 GeV1This RUBIN 10 limit is for the e+ e− mass in the 
ontinuum away from the φ(1020).See the next data blo
k.�(

π+φ, φ→ e+ e−)/�total �106/��(

π+φ, φ→ e+ e−)/�total �106/��(

π+φ, φ→ e+ e−)/�total �106/��(

π+φ, φ→ e+ e−)/�total �106/�This is not a test for the �C = 1 weak neutral 
urrent, but leads to the π+ e+ e−�nal state.VALUE EVTS DOCUMENT ID TECN COMMENT(6+8
−4±1)× 10−6(6+8
−4±1)× 10−6(6+8
−4±1)× 10−6(6+8
−4±1)× 10−6 3 RUBIN 10 CLEO e+ e− at 4170 MeV�(

π+µ+µ−)/�total �107/��(

π+µ+µ−)/�total �107/��(

π+µ+µ−)/�total �107/��(

π+µ+µ−)/�total �107/�This mode is not a useful test for a �C=1 weak neutral 
urrent be
ause both quarksmust 
hange 
avor in this de
ay.VALUE CL% DOCUMENT ID TECN COMMENT
<4.1× 10−7<4.1× 10−7<4.1× 10−7<4.1× 10−7 90 AAIJ 13AF LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.3× 10−5 90 LEES 11G BABR e+ e− ≈ �(4S)
<2.6× 10−5 90 LINK 03F FOCS γ A, Eγ≈ 180 GeV
<1.4× 10−4 90 AITALA 99G E791 π−N 500 GeV
<4.3× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV�(K+ e+ e−)/�total �108/��(K+ e+ e−)/�total �108/��(K+ e+ e−)/�total �108/��(K+ e+ e−)/�total �108/�A test for the �C=1 weak neutral 
urrent. Allowed by higher-order ele
troweak inter-a
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<3.7× 10−6<3.7× 10−6<3.7× 10−6<3.7× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5.2× 10−5 90 RUBIN 10 CLEO e+ e− at 4170 MeV
<1.6× 10−3 90 AITALA 99G E791 π−N 500 GeV�(K+µ+µ−)/�total �109/��(K+µ+µ−)/�total �109/��(K+µ+µ−)/�total �109/��(K+µ+µ−)/�total �109/�A test for the �C=1 weak neutral 
urrent. Allowed by higher-order ele
troweak inter-a
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<21 × 10−6<21 × 10−6<21 × 10−6<21 × 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.6× 10−5 90 LINK 03F FOCS γ A, Eγ≈ 180 GeV
< 1.4× 10−4 90 AITALA 99G E791 π−N 500 GeV
< 5.9× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV�(K∗(892)+µ+µ−)/�total �110/��(K∗(892)+µ+µ−)/�total �110/��(K∗(892)+µ+µ−)/�total �110/��(K∗(892)+µ+µ−)/�total �110/�A test for the �C=1 weak neutral 
urrent. Allowed by higher-order ele
troweak inter-a
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<1.4× 10−3<1.4× 10−3<1.4× 10−3<1.4× 10−3 90 KODAMA 95 E653 π− emulsion 600 GeV



1128112811281128MesonParti
le ListingsD±s�(π+ e+µ−)/�total �111/��(π+ e+µ−)/�total �111/��(π+ e+µ−)/�total �111/��(π+ e+µ−)/�total �111/�A test of lepton-family-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<12× 10−6<12× 10−6<12× 10−6<12× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)�(π+ e−µ+)/�total �112/��(π+ e−µ+)/�total �112/��(π+ e−µ+)/�total �112/��(π+ e−µ+)/�total �112/�A test of lepton-family-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<20× 10−6<20× 10−6<20× 10−6<20× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)�(K+ e+µ−)/�total �113/��(K+ e+µ−)/�total �113/��(K+ e+µ−)/�total �113/��(K+ e+µ−)/�total �113/�A test of lepton-family-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<14× 10−6<14× 10−6<14× 10−6<14× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)�(K+ e−µ+)/�total �114/��(K+ e−µ+)/�total �114/��(K+ e−µ+)/�total �114/��(K+ e−µ+)/�total �114/�A test of lepton-family-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<9.7× 10−6<9.7× 10−6<9.7× 10−6<9.7× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)�(π− 2e+)/�total �115/��(π− 2e+)/�total �115/��(π− 2e+)/�total �115/��(π− 2e+)/�total �115/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
< 4.1× 10−6< 4.1× 10−6< 4.1× 10−6< 4.1× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1.8× 10−5 90 RUBIN 10 CLEO e+ e− at 4170 MeV
<69 × 10−5 90 AITALA 99G E791 π−N 500 GeV�(π− 2µ+)/�total �116/��(π− 2µ+)/�total �116/��(π− 2µ+)/�total �116/��(π− 2µ+)/�total �116/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−7<1.2× 10−7<1.2× 10−7<1.2× 10−7 90 AAIJ 13AF LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.4× 10−5 90 LEES 11G BABR e+ e− ≈ �(4S)
<2.9× 10−5 90 LINK 03F FOCS γ A, Eγ≈ 180 GeV
<8.2× 10−5 90 AITALA 99G E791 π−N 500 GeV
<4.3× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV�(π− e+µ+)/�total �117/��(π− e+µ+)/�total �117/��(π− e+µ+)/�total �117/��(π− e+µ+)/�total �117/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<8.4× 10−6<8.4× 10−6<8.4× 10−6<8.4× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<7.3× 10−4 90 AITALA 99G E791 π−N 500 GeV�(K−2e+)/�total �118/��(K−2e+)/�total �118/��(K−2e+)/�total �118/��(K−2e+)/�total �118/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
< 5.2× 10−6< 5.2× 10−6< 5.2× 10−6< 5.2× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1.7× 10−5 90 RUBIN 10 CLEO e+ e− at 4170 MeV
<63 × 10−5 90 AITALA 99G E791 π−N 500 GeV�(K−2µ+)/�total �119/��(K−2µ+)/�total �119/��(K−2µ+)/�total �119/��(K−2µ+)/�total �119/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.3× 10−5<1.3× 10−5<1.3× 10−5<1.3× 10−5 90 LEES 11G BABR e+ e− ≈ �(4S)
<1.3× 10−5<1.3× 10−5<1.3× 10−5<1.3× 10−5 90 LINK 03F FOCS γ A, Eγ≈ 180 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.8× 10−4 90 AITALA 99G E791 π−N 500 GeV
<5.9× 10−4 90 KODAMA 95 E653 π− emulsion 600 GeV�(K− e+µ+)/�total �120/��(K− e+µ+)/�total �120/��(K− e+µ+)/�total �120/��(K− e+µ+)/�total �120/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<6.1× 10−6<6.1× 10−6<6.1× 10−6<6.1× 10−6 90 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.8× 10−4 90 AITALA 99G E791 π−N 500 GeV�(K∗(892)− 2µ+)/�total �121/��(K∗(892)− 2µ+)/�total �121/��(K∗(892)− 2µ+)/�total �121/��(K∗(892)− 2µ+)/�total �121/�A test of lepton-number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.4× 10−3<1.4× 10−3<1.4× 10−3<1.4× 10−3 90 KODAMA 95 E653 π− emulsion 600 GeVD+s −D−s CP-VIOLATING DECAY-RATE ASYMMETRIESD+s −D−s CP-VIOLATING DECAY-RATE ASYMMETRIESD+s −D−s CP-VIOLATING DECAY-RATE ASYMMETRIESD+s −D−s CP-VIOLATING DECAY-RATE ASYMMETRIESThis is the di�eren
e between D+s and D−s partial widths for the de
ayto state f , divided by the sum of the widths:ACP (f )= [�(D+s → f ) − �(D−s → f )℄ / [�(D+s → f )+�(D−s → f )℄.ACP (µ± ν) in D+s → µ+ν, D−s → µ− νµACP (µ± ν) in D+s → µ+ν, D−s → µ− νµACP (µ± ν) in D+s → µ+ν, D−s → µ− νµACP (µ± ν) in D+s → µ+ν, D−s → µ− νµVALUE (%) DOCUMENT ID TECN COMMENT4.8±6.14.8±6.14.8±6.14.8±6.1 ALEXANDER 09 CLEO e+ e− at 4170 MeV

ACP (K±K0S ) in D±s → K±K0SACP (K±K0S ) in D±s → K±K0SACP (K±K0S ) in D±s → K±K0SACP (K±K0S ) in D±s → K±K0SVALUE (%) EVTS DOCUMENT ID TECN COMMENT0.08±0.26 OUR AVERAGE0.08±0.26 OUR AVERAGE0.08±0.26 OUR AVERAGE0.08±0.26 OUR AVERAGE
−0.05±0.23±0.24 288k 1 LEES 13E BABR e+ e− at �(4S)2.6 ±1.5 ±0.6 ONYISI 13 CLEO e+ e− at 4.17 GeV0.12±0.36±0.22 KO 10 BELL e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.7 ±1.8 ±0.9 4.0k MENDEZ 10 CLEO See ONYISI 134.9 ±2.1 ±0.9 ALEXANDER 08 CLEO See MENDEZ 101LEES 13E �nds that after subtra
ting the 
ontribution due to K0 −K0 mixing, the CPasymmetry is (+0.28 ± 0.23 ± 0.24)%.ACP (K+K−π±) in D±s → K+K−π±ACP (K+K−π±) in D±s → K+K−π±ACP (K+K−π±) in D±s → K+K−π±ACP (K+K−π±) in D±s → K+K−π±VALUE (%) DOCUMENT ID TECN COMMENT
−0.5±0.8±0.4−0.5±0.8±0.4−0.5±0.8±0.4−0.5±0.8±0.4 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.3±1.1±0.8 ALEXANDER 08 CLEO See ONYISI 13ACP (φπ±) in D±s → φπ±ACP (φπ±) in D±s → φπ±ACP (φπ±) in D±s → φπ±ACP (φπ±) in D±s → φπ±VALUE (%) DOCUMENT ID TECN COMMENT
−0.38±0.26±0.08−0.38±0.26±0.08−0.38±0.26±0.08−0.38±0.26±0.08 ABAZOV 14B D0 pp at 1.96 TeVACP (K±K0S π0) in D±s → K±K0S π0ACP (K±K0S π0) in D±s → K±K0S π0ACP (K±K0S π0) in D±s → K±K0S π0ACP (K±K0S π0) in D±s → K±K0S π0VALUE (%) DOCUMENT ID TECN COMMENT
−1.6±6.0±1.1−1.6±6.0±1.1−1.6±6.0±1.1−1.6±6.0±1.1 ONYISI 13 CLEO e+ e− at 4.17 GeVACP (2K0S π±) in D±s → 2K0S π±ACP (2K0S π±) in D±s → 2K0S π±ACP (2K0S π±) in D±s → 2K0S π±ACP (2K0S π±) in D±s → 2K0S π±VALUE (%) DOCUMENT ID TECN COMMENT3.1±5.2±0.63.1±5.2±0.63.1±5.2±0.63.1±5.2±0.6 ONYISI 13 CLEO e+ e− at 4.17 GeVACP (K+K−π±π0) in D±s → K+K−π±π0ACP (K+K−π±π0) in D±s → K+K−π±π0ACP (K+K−π±π0) in D±s → K+K−π±π0ACP (K+K−π±π0) in D±s → K+K−π±π0VALUE (%) DOCUMENT ID TECN COMMENT0.0±2.7±1.20.0±2.7±1.20.0±2.7±1.20.0±2.7±1.2 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−5.9±4.2±1.2 ALEXANDER 08 CLEO See ONYISI 13ACP (K±K0S π+π−) in D±s → K±K0S π+π−ACP (K±K0S π+π−) in D±s → K±K0S π+π−ACP (K±K0S π+π−) in D±s → K±K0S π+π−ACP (K±K0S π+π−) in D±s → K±K0S π+π−VALUE (%) DOCUMENT ID TECN COMMENT
−5.7±5.3±0.9−5.7±5.3±0.9−5.7±5.3±0.9−5.7±5.3±0.9 ONYISI 13 CLEO e+ e− at 4.17 GeVACP (K0S K∓2π±) in D+s → K0S K∓2π±ACP (K0S K∓2π±) in D+s → K0S K∓2π±ACP (K0S K∓2π±) in D+s → K0S K∓2π±ACP (K0S K∓2π±) in D+s → K0S K∓2π±VALUE (%) DOCUMENT ID TECN COMMENT4.1±2.7±0.94.1±2.7±0.94.1±2.7±0.94.1±2.7±0.9 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.7±3.6±1.1 ALEXANDER 08 CLEO See ONYISI 13ACP (π+π−π±) in D±s → π+π−π±ACP (π+π−π±) in D±s → π+π−π±ACP (π+π−π±) in D±s → π+π−π±ACP (π+π−π±) in D±s → π+π−π±VALUE (%) DOCUMENT ID TECN COMMENT
−0.7±3.0±0.6−0.7±3.0±0.6−0.7±3.0±0.6−0.7±3.0±0.6 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.0±4.6±0.7 ALEXANDER 08 CLEO See ONYISI 13ACP (π± η) in D±s → π±ηACP (π± η) in D±s → π±ηACP (π± η) in D±s → π±ηACP (π± η) in D±s → π±ηVALUE (%) EVTS DOCUMENT ID TECN COMMENT1.1±3.0±0.81.1±3.0±0.81.1±3.0±0.81.1±3.0±0.8 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−4.6±2.9±0.3 2.5k MENDEZ 10 CLEO See ONYISI 13
−8.2±5.2±0.8 ALEXANDER 08 CLEO See MENDEZ 10ACP (π± η′) in D±s → π± η′ACP (π± η′) in D±s → π± η′ACP (π± η′) in D±s → π± η′ACP (π± η′) in D±s → π± η′VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−2.2±2.2±0.6−2.2±2.2±0.6−2.2±2.2±0.6−2.2±2.2±0.6 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−6.1±3.0±0.3 1.4k MENDEZ 10 CLEO See ONYISI 13
−5.5±3.7±1.2 ALEXANDER 08 CLEO See MENDEZ 10ACP (ηπ±π0) in D±s → ηπ±π0ACP (ηπ±π0) in D±s → ηπ±π0ACP (ηπ±π0) in D±s → ηπ±π0ACP (ηπ±π0) in D±s → ηπ±π0VALUE (%) DOCUMENT ID TECN COMMENT
−0.5±3.9±2.0−0.5±3.9±2.0−0.5±3.9±2.0−0.5±3.9±2.0 ONYISI 13 CLEO e+ e− at 4.17 GeVACP (η′π±π0) in D±s → η′π±π0ACP (η′π±π0) in D±s → η′π±π0ACP (η′π±π0) in D±s → η′π±π0ACP (η′π±π0) in D±s → η′π±π0VALUE (%) DOCUMENT ID TECN COMMENT
−0.4±7.4±1.9−0.4±7.4±1.9−0.4±7.4±1.9−0.4±7.4±1.9 ONYISI 13 CLEO e+ e− at 4.17 GeVACP (K±π0) in D±s → K±π0ACP (K±π0) in D±s → K±π0ACP (K±π0) in D±s → K±π0ACP (K±π0) in D±s → K±π0VALUE (%) EVTS DOCUMENT ID TECN COMMENT
−26.6±23.8±0.9−26.6±23.8±0.9−26.6±23.8±0.9−26.6±23.8±0.9 202 ± 70 MENDEZ 10 CLEO e+ e− at 4170 MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2 ±29 ADAMS 07A CLEO See MENDEZ 10



1129112911291129See key on page 601 MesonParti
le ListingsD±sACP (K0 /K0π±)ACP (K0 /K0π±)ACP (K0 /K0π±)ACP (K0 /K0π±)VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.4 ±0.5 OUR AVERAGE0.4 ±0.5 OUR AVERAGE0.4 ±0.5 OUR AVERAGE0.4 ±0.5 OUR AVERAGE0.38±0.46±0.17 121k 1 AAIJ 14BD LHCB pp at 7, 8 TeV0.3 ±2.0 ±0.3 14k LEES 13E BABR e+ e− at �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.61±0.83±0.14 26k AAIJ 13W LHCB See AAIJ 14BD1AAIJ 14BD reports its result as ACP (D±s → K0S K±) with CP-violation e�e
ts inthe K0 − K0 system subtra
ted. It also measures ACP (D± → K0 /K0K±) +ACP (D±s → K0 /K0π±) = (0.41 ± 0.49 ± 0.26)%.ACP (K0S π±) in D±s → K0S π±ACP (K0S π±) in D±s → K0S π±ACP (K0S π±) in D±s → K0S π±ACP (K0S π±) in D±s → K0S π±VALUE (%) EVTS DOCUMENT ID TECN COMMENT3.1 ± 2.6 OUR AVERAGE3.1 ± 2.6 OUR AVERAGE3.1 ± 2.6 OUR AVERAGE3.1 ± 2.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.0.6 ± 2.0 ±0.3 14k LEES 13E BABR e+ e− at �(4S)5.45± 2.50±0.33 KO 10 BELL e+ e− ≈ �(4S)16.3 ± 7.3 ±0.3 0.4k MENDEZ 10 CLEO e+ e− at 4170 MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •27 ±11 ADAMS 07A CLEO See MENDEZ 10

WEIGHTED AVERAGE
3.1±2.6 (Error scaled by 1.7)

MENDEZ 10 CLEO 3.3
KO 10 BELL 0.9
LEES 13E BABR 1.5

χ2

       5.7
(Confidence Level = 0.059)

-10 0 10 20 30 40 50ACP (K0S π±) in D±s → K0S π± (%)ACP (K±π+π−) in D±s → K±π+π−ACP (K±π+π−) in D±s → K±π+π−ACP (K±π+π−) in D±s → K±π+π−ACP (K±π+π−) in D±s → K±π+π−VALUE (%) DOCUMENT ID TECN COMMENT4.5±4.8±0.64.5±4.8±0.64.5±4.8±0.64.5±4.8±0.6 ONYISI 13 CLEO e+ e− at 4.17 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •11.2±7.0±0.9 ALEXANDER 08 CLEO See ONYISI 13ACP (K±η) in D±s → K±ηACP (K±η) in D±s → K±ηACP (K±η) in D±s → K±ηACP (K±η) in D±s → K±ηVALUE (%) EVTS DOCUMENT ID TECN COMMENT9.3±15.2±0.99.3±15.2±0.99.3±15.2±0.99.3±15.2±0.9 222 ± 41 MENDEZ 10 CLEO e+ e− at 4170 MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−20 ±18 ADAMS 07A CLEO See MENDEZ 10ACP (K±η′(958)) in D±s → K±η′(958)ACP (K±η′(958)) in D±s → K±η′(958)ACP (K±η′(958)) in D±s → K±η′(958)ACP (K±η′(958)) in D±s → K±η′(958)VALUE (%) EVTS DOCUMENT ID TECN COMMENT6.0±18.9±0.96.0±18.9±0.96.0±18.9±0.96.0±18.9±0.9 56 ± 17 MENDEZ 10 CLEO e+ e− at 4170 MeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−17 ±37 ADAMS 07A CLEO See MENDEZ 10CP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSCP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSCP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSCP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTSATviol (K0S K±π+π−) in D±s → K0S K±π+π−ATviol (K0S K±π+π−) in D±s → K0S K±π+π−ATviol (K0S K±π+π−) in D±s → K0S K±π+π−ATviol (K0S K±π+π−) in D±s → K0S K±π+π−CT ≡ ~pK+ · (~p

π+ × ~p
π− ) is a parity-odd 
orrelation of the K+, π+, and π−momenta for the D+s . CT ≡ ~pK− · (~p

π− ×~p
π+) is the 
orresponding quantity forthe D−s . ThenAT ≡ [�(CT > 0)− �(CT < 0)℄ / [�(CT > 0)+ �(CT < 0)℄, andAT ≡ [�(−CT > 0)− �(−CT < 0)℄ / [�(−CT > 0)+ �(−CT < 0)℄, andATviol ≡ 12 (AT − AT ). CT and CT are 
ommonly referred to as T-odd mo-ments, be
ause they are odd under T reversal. However, the T-
onjugate pro
essK0S K±π+π− → D±s is not a

essible, while the P-
onjugate pro
ess is.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT

−13.6± 7.7± 3.4−13.6± 7.7± 3.4−13.6± 7.7± 3.4−13.6± 7.7± 3.4 29.8±0.3k LEES 11E BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−36 ±67 ±23 508 ± 34 LINK 05E FOCS γ A, Eγ ≈ 180 GeV

D+s → φℓ+ νℓ FORM FACTORSD+s → φℓ+ νℓ FORM FACTORSD+s → φℓ+ νℓ FORM FACTORSD+s → φℓ+ νℓ FORM FACTORSr2 ≡ A2(0)/A1(0) in D+s → φℓ+ νℓr2 ≡ A2(0)/A1(0) in D+s → φℓ+ νℓr2 ≡ A2(0)/A1(0) in D+s → φℓ+ νℓr2 ≡ A2(0)/A1(0) in D+s → φℓ+ νℓVALUE EVTS DOCUMENT ID TECN COMMENT0.84 ±0.11 OUR AVERAGE0.84 ±0.11 OUR AVERAGE0.84 ±0.11 OUR AVERAGE0.84 ±0.11 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4.0.816±0.036±0.030 25±0.5k 1 AUBERT 08AN BABR φe+ νe0.713±0.202±0.284 793 LINK 04C FOCS φµ+ νµ1.57 ±0.25 ±0.19 271 AITALA 99D E791 φe+ νe , φµ+ νµ1.4 ±0.5 ±0.3 308 AVERY 94B CLE2 φe+ νe1.1 ±0.8 ±0.1 90 FRABETTI 94F E687 φµ+ νµ2.1 +0.6
−0.5 ±0.2 19 KODAMA 93 E653 φµ+ νµ1To 
ompare with previous measurements, this AUBERT 08AN value is from a �t that �xesthe pole masses at mA = 2.5 GeV/
2 and mV = 2.1 GeV/
2. A simultaneous �t to r2,rv, r0 (a signi�
ant s-wave 
ontribution) and mA, gives r2 = 0.763 ± 0.071 ± 0.065.rv ≡ V(0)/A1(0) in D+s → φℓ+ νℓrv ≡ V(0)/A1(0) in D+s → φℓ+ νℓrv ≡ V(0)/A1(0) in D+s → φℓ+ νℓrv ≡ V(0)/A1(0) in D+s → φℓ+ νℓVALUE EVTS DOCUMENT ID TECN COMMENT1.80 ±0.08 OUR AVERAGE1.80 ±0.08 OUR AVERAGE1.80 ±0.08 OUR AVERAGE1.80 ±0.08 OUR AVERAGE1.807±0.046±0.065 25±0.5k 1 AUBERT 08AN BABR φe+ νe1.549±0.250±0.148 793 LINK 04C FOCS φµ+ νµ2.27 ±0.35 ±0.22 271 AITALA 99D E791 φe+ νe , φµ+ νµ0.9 ±0.6 ±0.3 308 AVERY 94B CLE2 φe+ νe1.8 ±0.9 ±0.2 90 FRABETTI 94F E687 φµ+ νµ2.3 +1.1
−0.9 ±0.4 19 KODAMA 93 E653 φµ+ νµ1To 
ompare with previous measurements, this AUBERT 08AN value is from a �t that �xesthe pole masses at mA = 2.5 GeV/
2 and mV = 2.1 GeV/
2. A simultaneous �t to r2,rv, r0 (a signi�
ant s-wave 
ontribution) and mA, gives rv = 1.849 ± 0.060 ± 0.095.�L/�T in D+s → φℓ+νℓ�L/�T in D+s → φℓ+νℓ�L/�T in D+s → φℓ+νℓ�L/�T in D+s → φℓ+νℓVALUE EVTS DOCUMENT ID TECN COMMENT0.72±0.18 OUR AVERAGE0.72±0.18 OUR AVERAGE0.72±0.18 OUR AVERAGE0.72±0.18 OUR AVERAGE1.0 ±0.3 ±0.2 308 AVERY 94B CLE2 φe+ νe1.0 ±0.5 ±0.1 90 1 FRABETTI 94F E687 φµ+ νµ0.54±0.21±0.10 19 1 KODAMA 93 E653 φµ+ νµ1FRABETTI 94F and KODAMA 93 evaluate �L/�T for a lepton mass of zero.D±s REFERENCESD±s REFERENCESD±s REFERENCESD±s REFERENCESABLIKIM 15Z PL B750 466 M. Ablikim et al. (BES III Collab.)HIETALA 15 PR D92 012009 J. Hietala et al. (MINN, LUTH, OXF)LEES 15D PR D91 019901 (errat.) J.P. Lees et al. (BABAR Collab.)AAIJ 14BD JHEP 1410 025 R. Aaij et al. (LHCb Collab.)ABAZOV 14B PRL 112 111804 V.M. Abazov et al. (D0 Collab.)AAIJ 13AF PL B724 203 R. Aaij et al. (LHCb Collab.)AAIJ 13V JHEP 1306 065 R. Aaij et al. (LHCb Collab.)AAIJ 13W JHEP 1306 112 R. Aaij et al. (LHCb Collab.)LEES 13E PR D87 052012 J.P. Lees et al. (BABAR Collab.)ONYISI 13 PR D88 032009 P.U.E. Onyisi et al. (CLEO Collab.)ZUPANC 13 JHEP 1309 139 A. Zupan
 et al. (BELLE Collab.)DEL-AMO-SA... 11G PR D83 052001 P. del Amo San
hez et al. (BABAR Collab.)LEES 11E PR D84 031103 J.P. Lees et al. (BABAR Collab.)LEES 11G PR D84 072006 J.P. Lees et al. (BABAR Collab.)MARTIN 11 PR D84 012005 L. Martin et al. (CLEO Collab.)ASNER 10 PR D81 052007 D.M. Asner et al. (CLEO Collab.)DEL-AMO-SA... 10J PR D82 091103 P. del Amo San
hez et al. (BABAR Collab.)Also PR D91 019901 (errat.) J.P. Lees et al. (BABAR Collab.)KO 10 PRL 104 181602 B.R. Ko et al. (BELLE Collab.)MENDEZ 10 PR D81 052013 H. Mendez et al. (CLEO Collab.)RUBIN 10 PR D82 092007 P. Rubin et al. (CLEO Collab.)ALEXANDER 09 PR D79 052001 J.P. Alexander et al. (CLEO Collab.)AUBERT 09O PR D79 032003 B. Aubert et al. (BABAR Collab.)DOBBS 09 PR D79 112008 S. Dobbs et al. (CLEO Collab.)ECKLUND 09 PR D80 052009 K.M. E
klund et al. (CLEO Collab.)GE 09A PR D80 051102 J.Y. Ge et al. (CLEO Collab.)KO 09 PRL 102 221802 B.R. Ko et al. (BELLE Collab.)MITCHELL 09A PR D79 072008 R.E. Mit
hell et al. (CLEO Collab.)NAIK 09A PR D80 112004 P. Naik et al. (CLEO Collab.)ONYISI 09 PR D79 052002 P.U.E. Onyisi et al. (CLEO Collab.)WON 09 PR D80 111101 E. Won et al. (BELLE Collab.)YELTON 09 PR D80 052007 J. Yelton et al. (CLEO Collab.)ALEXANDER 08 PRL 100 161804 J.P. Alexander et al. (CLEO Collab.)ATHAR 08 PRL 100 181802 S.B. Athar et al. (CLEO Collab.)AUBERT 08AN PR D78 051101 B. Aubert et al. (BABAR Collab.)ECKLUND 08 PRL 100 161801 K.M. E
klund et al. (CLEO Collab.)KLEMPT 08 EPJ C55 39 E. Klempt, M. Matveev, A.V. Sarantsev (BONN+)LINK 08 PL B660 147 J.M. Link et al. (FNAL FOCUS Collab.)WIDHALM 08 PRL 100 241801 L. Widhalm et al. (BELLE Collab.)ADAMS 07A PRL 99 191805 G.S. Adams et al. (CLEO Collab.)AUBERT 07V PRL 98 141801 B. Aubert et al. (BABAR Collab.)PEDLAR 07A PR D76 072002 T.K. Pedlar et al. (CLEO Collab.)Also PRL 99 071802 M. Artuso et al. (CLEO Collab.)AUBERT 06N PR D74 031103 B. Aubert et al. (BABAR Collab.)HUANG 06B PR D74 112005 G.S. Huang et al. (CLEO Collab.)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.)LINK 05E PL B622 239 J.M. Link et al. (FNAL FOCUS Collab.)LINK 05J PRL 95 052003 J.M. Link et al. (FNAL FOCUS Collab.)LINK 05K PL B624 166 J.M. Link et al. (FNAL FOCUS Collab.)LINK 04 PL B585 200 J.M. Link et al. (FNAL FOCUS Collab.)LINK 04C PL B586 183 J.M. Link et al. (FNAL FOCUS Collab.)LINK 04D PL B586 191 J.M. Link et al. (FNAL FOCUS Collab.)LINK 04F PL B601 10 J.M. Link et al. (FNAL FOCUS Collab.)ACOSTA 03D PR D68 072004 D. A
osta et al. (FNAL CDF-II Collab.)ANISOVICH 03 EPJ A16 229 V.V. Anisovi
h et al.LINK 03D PL B561 225 J.M. Link et al. (FNAL FOCUS Collab.)LINK 03F PL B572 21 J.M. Link et al. (FNAL FOCUS Collab.)AUBERT 02G PR D65 091104 B. Aubert et al. (BABAR Collab.)HEISTER 02I PL B528 1 A. Heister et al. (ALEPH Collab.)LINK 02I PL B541 227 J.M. Link et al. (FNAL FOCUS Collab.)



1130113011301130MesonParti
le ListingsD±s ,D∗±sLINK 02J PL B541 243 J.M. Link et al. (FNAL FOCUS Collab.)ABBIENDI 01L PL B516 236 G. Abbiendi et al. (OPAL Collab.)AITALA 01A PRL 86 765 E.M. Aitala et al. (FNAL E791 Collab.)IORI 01 PL B523 22 M. Iori et al. (FNAL SELEX Collab.)LINK 01C PRL 87 162001 J.M. Link et al. (FNAL FOCUS Collab.)ALEXANDROV 00 PL B478 31 Y. Alexandrov et al. (CERN BEATRICE Collab.)AITALA 99 PL B445 449 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 99D PL B450 294 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 99G PL B462 401 E.M. Aitala et al. (FNAL E791 Collab.)BONVICINI 99 PRL 82 4586 G. Bonvi
ini et al. (CLEO Collab.)CHADHA 98 PR D58 032002 M. Chada et al. (CLEO Collab.)JESSOP 98 PR D58 052002 C.P. Jessop et al. (CLEO Collab.)ACCIARRI 97F PL B396 327 M. A

iarri et al. (L3 Collab.)BALEST 97 PRL 79 1436 R. Balest et al. (CLEO Collab.)FRABETTI 97C PL B401 131 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 97D PL B407 79 P.L. Frabetti et al. (FNAL E687 Collab.)ARTUSO 96 PL B378 364 M. Artuso et al. (CLEO Collab.)BAI 95C PR D52 3781 J.Z. Bai et al. (BES Collab.)BRANDENB... 95 PRL 75 3804 G.W. Brandenburg et al. (CLEO Collab.)FRABETTI 95B PL B351 591 P.L. Frabetti et al. (FNAL E687 Collab.)KODAMA 95 PL B345 85 K. Kodama et al. (FNAL E653 Collab.)ACOSTA 94 PR D49 5690 D. A
osta et al. (CLEO Collab.)AVERY 94B PL B337 405 P. Avery et al. (CLEO Collab.)BROWN 94 PR D50 1884 D. Brown et al. (CLEO Collab.)BUTLER 94 PL B324 255 F. Butler et al. (CLEO Collab.)FRABETTI 94F PL B328 187 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 93F PRL 71 827 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 93G PL B313 253 P.L. Frabetti et al. (FNAL E687 Collab.)KODAMA 93 PL B309 483 K. Kodama et al. (FNAL E653 Collab.)ALBRECHT 92B ZPHY C53 361 H. Albre
ht et al. (ARGUS Collab.)ALEXANDER 92 PRL 68 1275 J. Alexander et al. (CLEO Collab.)AVERY 92 PRL 68 1279 P. Avery et al. (CLEO Collab.)BARLAG 92C ZPHY C55 383 S. Barlag et al. (ACCMOR Collab.)Also ZPHY C48 29 S. Barlag et al. (ACCMOR Collab.)FRABETTI 92 PL B281 167 P.L. Frabetti et al. (FNAL E687 Collab.)ALBRECHT 91 PL B255 634 H. Albre
ht et al. (ARGUS Collab.)ALVAREZ 91 PL B255 639 M.P. Alvarez et al. (CERN NA14/2 Collab.)ALBRECHT 90D PL B245 315 H. Albre
ht et al. (ARGUS Collab.)ALEXANDER 90B PRL 65 1531 J. Alexander et al. (CLEO Collab.)BARLAG 90C ZPHY C46 563 S. Barlag et al. (ACCMOR Collab.)FRABETTI 90 PL B251 639 P.L. Frabetti et al. (FNAL E687 Collab.)ANJOS 89E PL B223 267 J.C. Anjos et al. (FNAL E691 Collab.)CHEN 89 PL B226 192 W.Y. Chen et al. (CLEO Collab.)ALBRECHT 88 PL B207 349 H. Albre
ht et al. (ARGUS Collab.)ANJOS 88 PRL 60 897 J.C. Anjos et al. (FNAL E691 Collab.)RAAB 88 PR D37 2391 J.R. Raab et al. (FNAL E691 Collab.)BECKER 87B PL B184 277 H. Be
ker et al. (NA11 and NA32 Collabs.)BLAYLOCK 87 PRL 58 2171 G.T. Blaylo
k et al. (Mark III Collab.)USHIDA 86 PRL 56 1767 N. Ushida et al. (FNAL E531 Collab.)ALBRECHT 85D PL 153B 343 H. Albre
ht et al. (ARGUS Collab.)DERRICK 85B PRL 54 2568 M. Derri
k et al. (HRS Collab.)AIHARA 84D PRL 53 2465 H. Aihara et al. (TPC Collab.)ALTHOFF 84 PL 136B 130 M. Altho� et al. (TASSO Collab.)BAILEY 84 PL 139B 320 R. Bailey et al. (ACCMOR Collab.)CHEN 83C PRL 51 634 A. Chen et al. (CLEO Collab.)OTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSRICHMAN 95 RMP 67 893 J.D. Ri
hman, P.R. Bur
hat (UCSB, STAN)D∗±s I (JP ) = 0(??)JP is natural, width and de
ay modes 
onsistent with 1−.D∗±s MASSD∗±s MASSD∗±s MASSD∗±s MASSThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) DOCUMENT ID TECN COMMENT2112.1±0.4 OUR FIT2112.1±0.4 OUR FIT2112.1±0.4 OUR FIT2112.1±0.4 OUR FIT2106.6±2.1±2.72106.6±2.1±2.72106.6±2.1±2.72106.6±2.1±2.7 1 BLAYLOCK 87 MRK3 e+ e− → D±s γX1Assuming D±s mass = 1968.7 ± 0.9 MeV.mD∗±s − mD±smD∗±s − mD±smD∗±s − mD±smD∗±s − mD±sThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT143.8 ± 0.4 OUR FIT143.8 ± 0.4 OUR FIT143.8 ± 0.4 OUR FIT143.8 ± 0.4 OUR FIT143.9 ± 0.4 OUR AVERAGE143.9 ± 0.4 OUR AVERAGE143.9 ± 0.4 OUR AVERAGE143.9 ± 0.4 OUR AVERAGE143.76± 0.39±0.40 GRONBERG 95 CLE2 e+ e−144.22± 0.47±0.37 BROWN 94 CLE2 e+ e−142.5 ± 0.8 ±1.5 2 ALBRECHT 88 ARG e+ e− → D±s γX139.5 ± 8.3 ±9.7 60 AIHARA 84D TPC e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •143.0 ±18.0 8 ASRATYAN 85 HLBC FNAL 15-ft, ν-2H110 ±46 BRANDELIK 79 DASP e+ e− → D±s γX2Result in
ludes data of ALBRECHT 84B.D∗±s WIDTHD∗±s WIDTHD∗±s WIDTHD∗±s WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
< 1.9< 1.9< 1.9< 1.9 90 GRONBERG 95 CLE2 e+ e−
< 4.5 90 ALBRECHT 88 ARG Eee
m = 10.2 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 4.9 90 BROWN 94 CLE2 e+ e−
<22 90 BLAYLOCK 87 MRK3 e+ e− → D±s γXD∗+s DECAY MODESD∗+s DECAY MODESD∗+s DECAY MODESD∗+s DECAY MODESD∗−s modes are 
harge 
onjugates of the modes below.Mode Fra
tion (�i /�)�1 D+s γ (93.5±0.7) %�2 D+s π0 ( 5.8±0.7) %�3 D+s e+ e− ( 6.7±1.6)× 10−3CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 2 bran
hing ratios uses 3 measurements and one
onstraint to determine 3 parameters. The overall �t has a χ2 =0.0 for 1 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −97x3 −19 −4x1 x2 D∗+s BRANCHING RATIOSD∗+s BRANCHING RATIOSD∗+s BRANCHING RATIOSD∗+s BRANCHING RATIOS�(D+s γ
)/�total �1/��(D+s γ
)/�total �1/��(D+s γ
)/�total �1/��(D+s γ
)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.935±0.007 OUR FIT0.935±0.007 OUR FIT0.935±0.007 OUR FIT0.935±0.007 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen ASRATYAN 91 HLBC νµNeseen ALBRECHT 88 ARG e+ e− → D±s γXseen AIHARA 84Dseen ALBRECHT 84Bseen BRANDELIK 79�(D+s π0)/�(D+s γ
) �2/�1�(D+s π0)/�(D+s γ
) �2/�1�(D+s π0)/�(D+s γ
) �2/�1�(D+s π0)/�(D+s γ
) �2/�1VALUE DOCUMENT ID TECN COMMENT0.062±0.008 OUR FIT0.062±0.008 OUR FIT0.062±0.008 OUR FIT0.062±0.008 OUR FIT0.062±0.008 OUR AVERAGE0.062±0.008 OUR AVERAGE0.062±0.008 OUR AVERAGE0.062±0.008 OUR AVERAGE0.062±0.005±0.006 AUBERT,BE 05G BABR 10.6 e+ e− → hadrons0.062+0.020

−0.018±0.022 GRONBERG 95 CLE2 e+ e−�(D+s e+ e−)/�(D+s γ
) �3/�1�(D+s e+ e−)/�(D+s γ
) �3/�1�(D+s e+ e−)/�(D+s γ
) �3/�1�(D+s e+ e−)/�(D+s γ
) �3/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT7.2±1.7 OUR FIT7.2±1.7 OUR FIT7.2±1.7 OUR FIT7.2±1.7 OUR FIT7.2+1.5

−1.3±1.07.2+1.5
−1.3±1.07.2+1.5
−1.3±1.07.2+1.5
−1.3±1.0 38 CRONIN-HEN...12 CLEO 4.17 e+ e− → hadronsD∗±s REFERENCESD∗±s REFERENCESD∗±s REFERENCESD∗±s REFERENCESCRONIN-HEN... 12 PR D86 072005 D. Cronin-Hennessey et al. (CLEO Collab.)AUBERT,BE 05G PR D72 091101 B. Aubert et al. (BABAR Collab.)GRONBERG 95 PRL 75 3232 J. Gronberg et al. (CLEO Collab.)BROWN 94 PR D50 1884 D. Brown et al. (CLEO Collab.)ASRATYAN 91 PL B257 525 A.E. Asratyan et al. (ITEP, BELG, SACL+)ALBRECHT 88 PL B207 349 H. Albre
ht et al. (ARGUS Collab.)BLAYLOCK 87 PRL 58 2171 G.T. Blaylo
k et al. (Mark III Collab.)ASRATYAN 85 PL 156B 441 A.E. Asratyan et al. (ITEP, SERP)AIHARA 84D PRL 53 2465 H. Aihara et al. (TPC Collab.)ALBRECHT 84B PL 146B 111 H. Albre
ht et al. (ARGUS Collab.)BRANDELIK 79 PL 80B 412 R. Brandelik et al. (DASP Collab.)



1131113111311131See key on page 601 MesonParti
le ListingsD∗s0(2317)±,Ds1(2460)±D∗s0(2317)± I (JP ) = 0(0+)J, P need 
on�rmation.AUBERT 06P and CHOI 15A do not observe neutral and doubly
harged partners of the D∗s0(2317)+.D∗s0(2317)± MASSD∗s0(2317)± MASSD∗s0(2317)± MASSD∗s0(2317)± MASSThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2317.7±0.6 OUR FIT2317.7±0.6 OUR FIT2317.7±0.6 OUR FIT2317.7±0.6 OUR FIT Error in
ludes s
ale fa
tor of 1.1.2318.0±1.0 OUR AVERAGE2318.0±1.0 OUR AVERAGE2318.0±1.0 OUR AVERAGE2318.0±1.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.2319.6±0.2±1.4 3180 AUBERT 06P BABR 10.6 e+ e− → D+s π0X2317.3±0.4±0.8 1022 1 AUBERT 04E BABR 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •2317.2±1.3 88 2 AUBERT,B 04S BABR B → D(∗)s0 (2317)+D(∗)2317.2±0.5±0.9 761 3 MIKAMI 04 BELL 10.6 e+ e−2316.8±0.4±3.0 1267 ± 53 3,4 AUBERT 03G BABR 10.6 e+ e−2317.6±1.3 273 ± 33 3,5 AUBERT 03G BABR 10.6 e+ e−2319.8±2.1±2.0 24 3 KROKOVNY 03B BELL 10.6 e+ e−1Supersedes AUBERT 03G.2 Systemati
 errors not evaluated.3Not independent of the 
orresponding mD∗s0(2317) − mDs .4 From D+s → K+K−π+ de
ay.5 From D+s → K+K−π+π0 de
ay.mD∗s0(2317)± − mD±smD∗s0(2317)± − mD±smD∗s0(2317)± − mD±smD∗s0(2317)± − mD±sThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT349.4±0.6 OUR FIT349.4±0.6 OUR FIT349.4±0.6 OUR FIT349.4±0.6 OUR FIT Error in
ludes s
ale fa
tor of 1.1.349.2±0.7 OUR AVERAGE349.2±0.7 OUR AVERAGE349.2±0.7 OUR AVERAGE349.2±0.7 OUR AVERAGE348.7±0.5±0.7 761 MIKAMI 04 BELL 10.6 e+ e−350.0±1.2±1.0 135 BESSON 03 CLE2 10.6 e+ e−351.3±2.1±1.9 24 6 KROKOVNY 03B BELL 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •349.6±0.4±3.0 1267 7,8 AUBERT 03G BABR 10.6 e+ e−350.2±1.3 273 9,10 AUBERT 03G BABR 10.6 e+ e−6Re
al
ulated by us using mD+s = 1968.5 ± 0.6 MeV.7 From D+s → K+K−π+ de
ay.8Re
al
ulated by us using mD+s = 1967.20 ± 0.03 MeV.9 From D+s → K+K−π+π0 de
ay.10Re
al
ulated by us using mD+s = 1967.4 ± 0.2 MeV. Systemati
 errors not estimated.D∗s0(2317)± WIDTHD∗s0(2317)± WIDTHD∗s0(2317)± WIDTHD∗s0(2317)± WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT
< 3.8< 3.8< 3.8< 3.8 95 3180 AUBERT 06P BABR 10.6 e+ e− → D+s π0X
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.6 90 761 MIKAMI 04 BELL 10.6 e+ e−
<10 AUBERT 03G BABR 10.6 e+ e−
< 7 90 135 BESSON 03 CLE2 10.6 e+ e−D∗s0(2317)± DECAY MODESD∗s0(2317)± DECAY MODESD∗s0(2317)± DECAY MODESD∗s0(2317)± DECAY MODESD∗s0(2317)− modes are 
harge 
onjugates of modes below.Mode Fra
tion (�i /�)�1 D+s π0 seen�2 D+s γ�3 D∗s (2112)+ γ�4 D+s γ γ�5 D∗s (2112)+π0�6 D+s π+π−�7 D+s π0π0 not seenD∗s0(2317)± BRANCHING RATIOSD∗s0(2317)± BRANCHING RATIOSD∗s0(2317)± BRANCHING RATIOSD∗s0(2317)± BRANCHING RATIOS�(D+s π0)/�total �1/��(D+s π0)/�total �1/��(D+s π0)/�total �1/��(D+s π0)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 1540 ± 62 AUBERT 03G BABR 10.6 e+ e−

�(D+s γ
)/�(D+s π0) �2/�1�(D+s γ
)/�(D+s π0) �2/�1�(D+s γ
)/�(D+s π0) �2/�1�(D+s γ
)/�(D+s π0) �2/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.05<0.05<0.05<0.05 90 MIKAMI 04 BELL 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.14 95 AUBERT 06P BABR 10.6 e+ e−
<0.052 90 BESSON 03 CLE2 10.6 e+ e−�(D∗s (2112)+ γ

)/�(D+s π0) �3/�1�(D∗s (2112)+ γ
)/�(D+s π0) �3/�1�(D∗s (2112)+ γ
)/�(D+s π0) �3/�1�(D∗s (2112)+ γ
)/�(D+s π0) �3/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.059<0.059<0.059<0.059 90 BESSON 03 CLE2 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.16 95 AUBERT 06P BABR 10.6 e+ e−
<0.18 90 MIKAMI 04 BELL 10.6 e+ e−�(D+s γ γ

)/�(D+s π0) �4/�1�(D+s γ γ
)/�(D+s π0) �4/�1�(D+s γ γ
)/�(D+s π0) �4/�1�(D+s γ γ
)/�(D+s π0) �4/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.18<0.18<0.18<0.18 95 AUBERT 06P BABR 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AUBERT 03G BABR 10.6 e+ e−�(D∗s (2112)+π0)/�(D+s π0) �5/�1�(D∗s (2112)+π0)/�(D+s π0) �5/�1�(D∗s (2112)+π0)/�(D+s π0) �5/�1�(D∗s (2112)+π0)/�(D+s π0) �5/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.11<0.11<0.11<0.11 90 BESSON 03 CLE2 10.6 e+ e−�(D+s π+π−)/�(D+s π0) �6/�1�(D+s π+π−)/�(D+s π0) �6/�1�(D+s π+π−)/�(D+s π0) �6/�1�(D+s π+π−)/�(D+s π0) �6/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.004<0.004<0.004<0.004 90 MIKAMI 04 BELL 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.005 95 AUBERT 06P BABR 10.6 e+ e−
<0.019 90 BESSON 03 CLE2 10.6 e+ e−�(D+s π0π0)/�(D+s π0) �7/�1�(D+s π0π0)/�(D+s π0) �7/�1�(D+s π0π0)/�(D+s π0) �7/�1�(D+s π0π0)/�(D+s π0) �7/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.25<0.25<0.25<0.25 95 AUBERT 06P BABR 10.6 e+ e−D∗s0(2317)± REFERENCESD∗s0(2317)± REFERENCESD∗s0(2317)± REFERENCESD∗s0(2317)± REFERENCESCHOI 15A PR D91 092011 S.-K. Choi et al. (BELLE Collab.)AUBERT 06P PR D74 032007 B. Aubert et al. (BABAR Collab.)AUBERT 04E PR D69 031101 B. Aubert et al. (BABAR Collab.)AUBERT,B 04S PRL 93 181801 B. Aubert et al. (BABAR Collab.)MIKAMI 04 PRL 92 012002 Y. Mikami et al. (BELLE Collab.)AUBERT 03G PRL 90 242001 B. Aubert et al. (BABAR Collab.)BESSON 03 PR D68 032002 D. Besson et al. (CLEO Collab.)KROKOVNY 03B PRL 91 262002 P. Krokovny et al. (BELLE Collab.)Ds1(2460)± I (JP ) = 0(1+)Ds1(2460)± MASSDs1(2460)± MASSDs1(2460)± MASSDs1(2460)± MASSThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2459.5±0.6 OUR FIT2459.5±0.6 OUR FIT2459.5±0.6 OUR FIT2459.5±0.6 OUR FIT Error in
ludes s
ale fa
tor of 1.1.2459.6±0.9 OUR AVERAGE2459.6±0.9 OUR AVERAGE2459.6±0.9 OUR AVERAGE2459.6±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.2460.1±0.2±0.8 1 AUBERT 06P BABR 10.6 e+ e−2458.0±1.0±1.0 195 AUBERT 04E BABR 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •2459.5±1.2±3.7 920 AUBERT 06P BABR 10.6 e+ e− → D+s γX2458.6±1.0±2.5 560 AUBERT 06P BABR 10.6 e+ e− → D+s π0 γX2460.2±0.2±0.8 123 AUBERT 06P BABR 10.6 e+ e− → D+s π+π−X2458.9±1.5 112 2 AUBERT,B 04S BABR B → Ds1(2460)+D(∗)2461.1±1.6 139 3 AUBERT,B 04S BABR B → Ds1(2460)+D(∗)2456.5±1.3±1.3 126 4,5 MIKAMI 04 BELL 10.6 e+ e−2459.5±1.3±2.0 152 6,7 MIKAMI 04 BELL 10.6 e+ e−2459.9±0.9±1.6 60 6,7 MIKAMI 04 BELL 10.6 e+ e−2459.2±1.6±2.0 57 KROKOVNY 03B BELL 10.6 e+ e−1The average of the values obtained from the D+s γ, D+s π0 γ,D+s π+π− �nal state.2 Systemati
 errors not evaluated. From the de
ay to D∗+s π0.3 Systemati
 errors not evaluated. From the de
ay to D+s γ.4Not independent of the 
orresponding mDs1(2460)± − mD∗±s .5Using mD∗+s = 2112.4 ± 0.7 MeV.6Not independent of the 
orresponding mDs1(2460)± − mD±s .7Using mD+s = 1968.5 ± 0.6 MeV.



1132113211321132MesonParti
le ListingsDs1(2460)± mDs1(2460)± − mD∗±smDs1(2460)± − mD∗±smDs1(2460)± − mD∗±smDs1(2460)± − mD∗±sThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT347.3±0.7 OUR FIT347.3±0.7 OUR FIT347.3±0.7 OUR FIT347.3±0.7 OUR FIT Error in
ludes s
ale fa
tor of 1.2.347.1±2.2 OUR AVERAGE347.1±2.2 OUR AVERAGE347.1±2.2 OUR AVERAGE347.1±2.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.344.1±1.3±1.1 126 MIKAMI 04 BELL 10.6 e+ e−351.2±1.7±1.0 41 BESSON 03 CLE2 10.6 e+ e−346.8±1.6±1.9 57 8 KROKOVNY 03B BELL 10.6 e+ e−8Re
al
ulated by us using mD∗+s = 2112.4 ± 0.7 MeV.
WEIGHTED AVERAGE
347.1±2.2 (Error scaled by 1.9)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

KROKOVNY 03B BELL 0.0
BESSON 03 CLE2 4.4
MIKAMI 04 BELL 3.0

χ2

       7.4
(Confidence Level = 0.024)

335 340 345 350 355 360 365mDs1(2460)± − mD∗±smDs1(2460)± − mD±smDs1(2460)± − mD±smDs1(2460)± − mD±smDs1(2460)± − mD±sThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT491.2±0.6 OUR FIT491.2±0.6 OUR FIT491.2±0.6 OUR FIT491.2±0.6 OUR FIT Error in
ludes s
ale fa
tor of 1.1.491.3±1.4 OUR AVERAGE491.3±1.4 OUR AVERAGE491.3±1.4 OUR AVERAGE491.3±1.4 OUR AVERAGE491.0±1.3±1.9 152 9 MIKAMI 04 BELL 10.6 e+ e−491.4±0.9±1.5 60 10 MIKAMI 04 BELL 10.6 e+ e−9From the de
ay to D±s γ.10 From the de
ay to D±s π+π−.Ds1(2460)± WIDTHDs1(2460)± WIDTHDs1(2460)± WIDTHDs1(2460)± WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT
< 3.5< 3.5< 3.5< 3.5 95 123 AUBERT 06P BABR 10.6 e+ e− → D+s π+π−X
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 6.3 95 560 AUBERT 06P BABR 10.6 e+ e− → D+s π0 γX
<10 195 AUBERT 04E BABR 10.6 e+ e−
< 5.5 90 126 MIKAMI 04 BELL 10.6 e+ e−
< 7 90 41 BESSON 03 CLE2 10.6 e+ e−Ds1(2460)+ DECAY MODESDs1(2460)+ DECAY MODESDs1(2460)+ DECAY MODESDs1(2460)+ DECAY MODESDs1(2460)− modes are 
harge 
onjugates of the modes below. S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 D∗+s π0 (48 ±11 ) %�2 D+s γ (18 ± 4 ) %�3 D+s π+π− ( 4.3± 1.3) % S=1.1�4 D∗+s γ < 8 % CL=90%�5 D∗s0(2317)+ γ ( 3.7+ 5.0

− 2.4) %�6 D+s π0�7 D+s π0π0�8 D+s γ γ

CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 7 bran
hing ratios uses 8 measurements and one
onstraint to determine 5 parameters. The overall �t has a χ2 =3.4 for 4 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 80x3 68 62x5 −3 25 26x1 x2 x3Ds1(2460)± BRANCHING RATIOSDs1(2460)± BRANCHING RATIOSDs1(2460)± BRANCHING RATIOSDs1(2460)± BRANCHING RATIOS�(D∗+s π0)/�total �1/��(D∗+s π0)/�total �1/��(D∗+s π0)/�total �1/��(D∗+s π0)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.48±0.11 OUR FIT0.48±0.11 OUR FIT0.48±0.11 OUR FIT0.48±0.11 OUR FIT0.56±0.13±0.090.56±0.13±0.090.56±0.13±0.090.56±0.13±0.09 11 AUBERT 06N BABR B → Ds1(2460)−D(∗)
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 41 BESSON 03 CLE2 10.6 e+ e−11Evaluated in AUBERT 06N in
luding measurements from AUBERT,B 04S.�(D+s γ

)/�total �2/��(D+s γ
)/�total �2/��(D+s γ
)/�total �2/��(D+s γ
)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.18±0.04 OUR FIT0.18±0.04 OUR FIT0.18±0.04 OUR FIT0.18±0.04 OUR FIT0.16±0.04±0.030.16±0.04±0.030.16±0.04±0.030.16±0.04±0.03 12 AUBERT 06N BABR B → Ds1(2460)−D(∗)12Evaluated in AUBERT 06N in
luding measurements from AUBERT,B 04S.�(D+s γ
)/�(D∗+s π0) �2/�1�(D+s γ
)/�(D∗+s π0) �2/�1�(D+s γ
)/�(D∗+s π0) �2/�1�(D+s γ
)/�(D∗+s π0) �2/�1VALUE CL% EVTS DOCUMENT ID TECN COMMENT0.38 ±0.05 OUR FIT0.38 ±0.05 OUR FIT0.38 ±0.05 OUR FIT0.38 ±0.05 OUR FIT0.44 ±0.09 OUR AVERAGE0.44 ±0.09 OUR AVERAGE0.44 ±0.09 OUR AVERAGE0.44 ±0.09 OUR AVERAGE0.55 ±0.13 ±0.08 152 MIKAMI 04 BELL 10.6 e+ e−0.38 ±0.11 ±0.04 38 KROKOVNY 03B BELL 10.6 e+ e−

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.274±0.045±0.020 251 13 AUBERT,B 04S BABR B →Ds1(2460)+D(∗)
< 0.49 90 BESSON 03 CLE2 10.6 e+ e−13Used by AUBERT 06N in their measurement of B(D∗−s π0) and B(D−s γ).�(D+s π+π−)/�(D∗+s π0) �3/�1�(D+s π+π−)/�(D∗+s π0) �3/�1�(D+s π+π−)/�(D∗+s π0) �3/�1�(D+s π+π−)/�(D∗+s π0) �3/�1VALUE CL% EVTS DOCUMENT ID TECN COMMENT0.090±0.020 OUR FIT0.090±0.020 OUR FIT0.090±0.020 OUR FIT0.090±0.020 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.14 ±0.04 ±0.020.14 ±0.04 ±0.020.14 ±0.04 ±0.020.14 ±0.04 ±0.02 60 MIKAMI 04 BELL 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.08 90 BESSON 03 CLE2 10.6 e+ e−�(D∗+s γ
)/�(D∗+s π0) �4/�1�(D∗+s γ
)/�(D∗+s π0) �4/�1�(D∗+s γ
)/�(D∗+s π0) �4/�1�(D∗+s γ
)/�(D∗+s π0) �4/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.16<0.16<0.16<0.16 90 BESSON 03 CLE2 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.31 90 MIKAMI 04 BELL 10.6 e+ e−�(D∗s0(2317)+ γ
)/�(D∗+s π0) �5/�1�(D∗s0(2317)+ γ
)/�(D∗+s π0) �5/�1�(D∗s0(2317)+ γ
)/�(D∗+s π0) �5/�1�(D∗s0(2317)+ γ
)/�(D∗+s π0) �5/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.22<0.22<0.22<0.22 95 AUBERT 04E BABR 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.58 90 BESSON 03 CLE2 10.6 e+ e−�(D∗+s π0)/[�(D∗+s π0)+ �(D∗s0(2317)+γ
)
] �1/(�1+�5)�(D∗+s π0)/[�(D∗+s π0)+ �(D∗s0(2317)+γ

)
] �1/(�1+�5)�(D∗+s π0)/[�(D∗+s π0)+ �(D∗s0(2317)+γ

)
] �1/(�1+�5)�(D∗+s π0)/[�(D∗+s π0)+ �(D∗s0(2317)+γ

)
] �1/(�1+�5)VALUE DOCUMENT ID TECN COMMENT0.93±0.09 OUR FIT0.93±0.09 OUR FIT0.93±0.09 OUR FIT0.93±0.09 OUR FIT0.97±0.09±0.050.97±0.09±0.050.97±0.09±0.050.97±0.09±0.05 AUBERT 06P BABR 10.6 e+ e−�(D+s γ

)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �2/(�1+�5)�(D+s γ

)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �2/(�1+�5)�(D+s γ

)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �2/(�1+�5)�(D+s γ

)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �2/(�1+�5)VALUE DOCUMENT ID TECN COMMENT0.35 ±0.04 OUR FIT0.35 ±0.04 OUR FIT0.35 ±0.04 OUR FIT0.35 ±0.04 OUR FIT0.337±0.036±0.0380.337±0.036±0.0380.337±0.036±0.0380.337±0.036±0.038 AUBERT 06P BABR 10.6 e+ e−�(D+s π+π−)/[�(D∗+s π0)+�(D∗s0(2317)+γ

)
] �3/(�1+�5)�(D+s π+π−)/[�(D∗+s π0)+�(D∗s0(2317)+γ

)
] �3/(�1+�5)�(D+s π+π−)/[�(D∗+s π0)+�(D∗s0(2317)+γ

)
] �3/(�1+�5)�(D+s π+π−)/[�(D∗+s π0)+�(D∗s0(2317)+γ

)
] �3/(�1+�5)VALUE DOCUMENT ID TECN COMMENT0.083±0.017 OUR FIT0.083±0.017 OUR FIT0.083±0.017 OUR FIT0.083±0.017 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.077±0.013±0.0080.077±0.013±0.0080.077±0.013±0.0080.077±0.013±0.008 AUBERT 06P BABR 10.6 e+ e−�(D∗+s γ

)/[�(D∗+s π0)+�(D∗s0(2317)+γ
)
] �4/(�1+�5)�(D∗+s γ

)/[�(D∗+s π0)+�(D∗s0(2317)+γ
)
] �4/(�1+�5)�(D∗+s γ

)/[�(D∗+s π0)+�(D∗s0(2317)+γ
)
] �4/(�1+�5)�(D∗+s γ

)/[�(D∗+s π0)+�(D∗s0(2317)+γ
)
] �4/(�1+�5)VALUE CL% DOCUMENT ID TECN COMMENT

<0.24<0.24<0.24<0.24 95 AUBERT 06P BABR 10.6 e+ e−



1133113311331133See key on page 601 MesonParti
le ListingsDs1(2460)±,Ds1(2536)±�(D∗s0(2317)+ γ
)/[�(D∗+s π0)+�(D∗s0(2317)+ γ

)
] �5/(�1+�5)�(D∗s0(2317)+ γ

)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �5/(�1+�5)�(D∗s0(2317)+ γ

)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �5/(�1+�5)�(D∗s0(2317)+ γ

)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �5/(�1+�5)VALUE CL% DOCUMENT ID TECN COMMENT

<0.25<0.25<0.25<0.25 95 AUBERT 06P BABR 10.6 e+ e−�(D+s π0)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �6/(�1+�5)�(D+s π0)/[�(D∗+s π0)+�(D∗s0(2317)+ γ

)
] �6/(�1+�5)�(D+s π0)/[�(D∗+s π0)+�(D∗s0(2317)+ γ

)
] �6/(�1+�5)�(D+s π0)/[�(D∗+s π0)+�(D∗s0(2317)+ γ

)
] �6/(�1+�5)VALUE CL% DOCUMENT ID TECN COMMENT

<0.042<0.042<0.042<0.042 95 AUBERT 06P BABR 10.6 e+ e−�(D+s π0π0)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �7/(�1+�5)�(D+s π0π0)/[�(D∗+s π0)+�(D∗s0(2317)+ γ

)
] �7/(�1+�5)�(D+s π0π0)/[�(D∗+s π0)+�(D∗s0(2317)+ γ

)
] �7/(�1+�5)�(D+s π0π0)/[�(D∗+s π0)+�(D∗s0(2317)+ γ

)
] �7/(�1+�5)VALUE CL% DOCUMENT ID TECN COMMENT

<0.68<0.68<0.68<0.68 95 AUBERT 06P BABR 10.6 e+ e−�(D+s γ γ
)/[�(D∗+s π0)+�(D∗s0(2317)+ γ

)
] �8/(�1+�5)�(D+s γ γ

)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �8/(�1+�5)�(D+s γ γ

)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �8/(�1+�5)�(D+s γ γ

)/[�(D∗+s π0)+�(D∗s0(2317)+ γ
)
] �8/(�1+�5)VALUE CL% DOCUMENT ID TECN COMMENT

<0.33<0.33<0.33<0.33 95 AUBERT 06P BABR 10.6 e+ e−Ds1(2460)± REFERENCESDs1(2460)± REFERENCESDs1(2460)± REFERENCESDs1(2460)± REFERENCESAUBERT 06N PR D74 031103 B. Aubert et al. (BABAR Collab.)AUBERT 06P PR D74 032007 B. Aubert et al. (BABAR Collab.)AUBERT 04E PR D69 031101 B. Aubert et al. (BABAR Collab.)AUBERT,B 04S PRL 93 181801 B. Aubert et al. (BABAR Collab.)MIKAMI 04 PRL 92 012002 Y. Mikami et al. (BELLE Collab.)BESSON 03 PR D68 032002 D. Besson et al. (CLEO Collab.)KROKOVNY 03B PRL 91 262002 P. Krokovny et al. (BELLE Collab.)Ds1(2536)± I (JP ) = 0(1+)J, P need 
on�rmation.Seen in D∗(2010)+K0, D∗(2007)0K+, and D+s π+π−. Not seenin D+K0 or D0K+. JP = 1+ assignment strongly favored.Ds1(2536)± MASSDs1(2536)± MASSDs1(2536)± MASSDs1(2536)± MASSThe �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2535.10±0.06 OUR FIT2535.10±0.06 OUR FIT2535.10±0.06 OUR FIT2535.10±0.06 OUR FIT2535.18±0.24 OUR AVERAGE2535.18±0.24 OUR AVERAGE2535.18±0.24 OUR AVERAGE2535.18±0.24 OUR AVERAGE2535.7 ±0.6 ±0.5 46 ± 9 1 ABAZOV 09G D0 B0s → D−s1µ+ νµX2534.78±0.31±0.40 182 AUBERT 08B BABR B → D(∗)D∗K2534.6 ±0.3 ±0.7 193 AUBERT 06P BABR 10.6 e+ e− →D+s π+π−X2535.3 ±0.7 92 2 HEISTER 02B ALEP e+ e− → D∗+K0X ,D∗0K+X2534.2 ±1.2 9 ASRATYAN 94 BEBC νN →D∗K0X,D∗0K±X2535 ±0.6 ±1 75 FRABETTI 94B E687 γBe → D∗+K0X,D∗0K+X2535.3 ±0.2 ±0.5 134 ALEXANDER 93 CLE2 e+ e− → D∗0K+X2534.8 ±0.6 ±0.6 44 ALEXANDER 93 CLE2 e+ e− → D∗+K0X2535.2 ±0.5 ±1.5 28 ALBRECHT 92R ARG 10.4 e+ e− →D∗0K+X2536.6 ±0.7 ±0.4 AVERY 90 CLEO e+ e− → D∗+K0X2535.9 ±0.6 ±2.0 ALBRECHT 89E ARG D∗s1 → D∗(2010)K0
• • • We do not use the following data for averages, �ts, limits, et
. • • •2534.1 ±0.6 116 3 AUSHEV 11 BELL B → Ds1(2536)+D(∗)2535.08±0.01±0.15 8038 4 LEES 11B BABR 10.6 e+ e− →D∗+K0S X2535.57+0.44

−0.41±0.10 236 ± 30 5 CHEKANOV 09 ZEUS e± p → D∗+K0S X ,D∗0K+X2535 ± 28 6 ASRATYAN 88 HLBC νN → Ds γ γX1Using the D∗(2010)± mass of 2010.0 ± 0.4 MeV from PDG 06.2Cal
ulated using m(D∗(2010)±) = 2010.0 ± 0.5 MeV, m(D∗(2007)0) = 2006.7 ± 0.5MeV, and the mass di�eren
e below.3 Systemati
 un
ertainties not evaluated.4Cal
ulated using the mass di�eren
e m(D+s1)− m(D∗+)PDG below and m(D∗+)PDG= 2010.25 ± 0.14 MeV. Assuming S-wave de
ay of the Ds1(2536) to D∗+K0S , using aBreit-Wigner line shape 
orresponding to L=0.5Cal
ulated using the mass di�eren
e m(D+s1) − m(D∗+)PDG reported below andm(D∗+)PDG = 2010.27 ± 0.17 MeV.6Not seen in D∗K . mDs1(2536)± − mD∗s (2111)mDs1(2536)± − mD∗s (2111)mDs1(2536)± − mD∗s (2111)mDs1(2536)± − mD∗s (2111)The �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) DOCUMENT ID TECN COMMENT423.0± 0.4 OUR FIT423.0± 0.4 OUR FIT423.0± 0.4 OUR FIT423.0± 0.4 OUR FIT424 ±28424 ±28424 ±28424 ±28 ASRATYAN 88 HLBC D∗±s γ

mDs1(2536)± − mD∗(2010)±mDs1(2536)± − mD∗(2010)±mDs1(2536)± − mD∗(2010)±mDs1(2536)± − mD∗(2010)±The �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT524.84±0.04 OUR FIT524.84±0.04 OUR FIT524.84±0.04 OUR FIT524.84±0.04 OUR FIT524.84±0.04 OUR AVERAGE524.84±0.04 OUR AVERAGE524.84±0.04 OUR AVERAGE524.84±0.04 OUR AVERAGE524.83±0.01±0.04 8038 7 LEES 11B BABR 10.6 e+ e− → D∗+K0S X525.30+0.44
−0.41±0.10 236 ± 30 CHEKANOV 09 ZEUS e± p → D∗+K0S X ,D∗0K+X525.3 ±0.6 ±0.1 41 HEISTER 02B ALEP e+ e− → D∗+K0X7Assuming S-wave de
ay of the Ds1(2536) to D∗+K0S , using a Breit-Wigner line shape
orresponding to L=0. mDs1(2536)± − mD∗(2007)0mDs1(2536)± − mD∗(2007)0mDs1(2536)± − mD∗(2007)0mDs1(2536)± − mD∗(2007)0The �t in
ludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT528.25±0.05 OUR FIT528.25±0.05 OUR FIT528.25±0.05 OUR FIT528.25±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.1.528.1 ±1.5 OUR AVERAGE528.1 ±1.5 OUR AVERAGE528.1 ±1.5 OUR AVERAGE528.1 ±1.5 OUR AVERAGE528.7 ±1.9 ±0.5 51 HEISTER 02B ALEP e+ e− → D∗0K+X527.3 ±2.2 29 ACKERSTAFF 97W OPAL e+ e− → D∗0K+XDs1(2536)± WIDTHDs1(2536)± WIDTHDs1(2536)± WIDTHDs1(2536)± WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT0.92±0.03±0.040.92±0.03±0.040.92±0.03±0.040.92±0.03±0.04 8038 8 LEES 11B BABR 10.6 e+ e− → D∗+K0S X

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.75±0.23 116 9 AUSHEV 11 BELL B → Ds1(2536)+D(∗)
< 2.5 95 193 AUBERT 06P BABR 10.6 e+ e− →D+s π+π−X
< 3.2 90 75 FRABETTI 94B E687 γBe → D∗+K0X,D∗0K+X
< 2.3 90 ALEXANDER 93 CLEO e+ e− → D∗0K+X
< 3.9 90 ALBRECHT 92R ARG 10.4 e+ e− → D∗0K+X
< 5.44 90 AVERY 90 CLEO e+ e− → D∗+K0X
< 4.6 90 ALBRECHT 89E ARG D∗s1 → D∗(2010)K08Assuming S-wave de
ay of the Ds1(2536) to D∗+K0S , using a Breit-Wigner line shape
orresponding to L=0.9 Systemati
 un
ertainties not evaluated.Ds1(2536)+ DECAY MODESDs1(2536)+ DECAY MODESDs1(2536)+ DECAY MODESDs1(2536)+ DECAY MODESDs1(2536)− modes are 
harge 
onjugates of the modes below.Mode Fra
tion (�i /�) Con�den
e level�1 D∗(2010)+K0 0.85 ±0.12�2 (D∗(2010)+K0)S−wave 0.61 ±0.09�3 (D∗(2010)+K0)D−wave�4 D+π−K+ 0.028±0.005�5 D∗(2007)0K+ DEFINED AS 1DEFINED AS 1DEFINED AS 1DEFINED AS 1�6 D+K0 <0.34 90%�7 D0K+ <0.12 90%�8 D∗+s γ possibly seen�9 D+s π+π− seenDs1(2536)+ BRANCHING RATIOSDs1(2536)+ BRANCHING RATIOSDs1(2536)+ BRANCHING RATIOSDs1(2536)+ BRANCHING RATIOS�(D∗(2007)0K+)/�(D∗(2010)+K0) �5/�1�(D∗(2007)0K+)/�(D∗(2010)+K0) �5/�1�(D∗(2007)0K+)/�(D∗(2010)+K0) �5/�1�(D∗(2007)0K+)/�(D∗(2010)+K0) �5/�1VALUE EVTS DOCUMENT ID TECN COMMENT1.18±0.16 OUR AVERAGE1.18±0.16 OUR AVERAGE1.18±0.16 OUR AVERAGE1.18±0.16 OUR AVERAGE0.88±0.24±0.08 116 AUSHEV 11 BELL B → Ds1(2536)+D(∗)2.3 ±0.6 ±0.3 236 ± 30 CHEKANOV 09 ZEUS e± p → D∗+K0S X ,D∗0K+X1.32±0.47±0.23 92 10 HEISTER 02B ALEP e+ e− → D∗+K0X ,D∗0K+X1.9 +1.1

−0.9 ±0.4 35 10 ACKERSTAFF 97W OPAL e+ e− → D∗0K+X,D∗+K0X1.1 ±0.3 ALEXANDER 93 CLEO e+ e− →D∗0K+X,D∗+K0X1.4 ±0.3 ±0.2 11 ALBRECHT 92R ARG 10.4 e+ e− →D∗0K+X,D∗+K0X10Ratio of the produ
tion rates measured in Z0 de
ays.11Evaluated by us from published in
lusive 
ross-se
tions.�((D∗(2010)+K0)S−wave

)/�(D∗(2010)+K0) �2/�1�((D∗(2010)+K0)S−wave

)/�(D∗(2010)+K0) �2/�1�((D∗(2010)+K0)S−wave

)/�(D∗(2010)+K0) �2/�1�((D∗(2010)+K0)S−wave

)/�(D∗(2010)+K0) �2/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.72±0.05±0.010.72±0.05±0.010.72±0.05±0.010.72±0.05±0.01 5485 BALAGURA 08 BELL 10.6 e+ e− → D∗+K0X



1134113411341134MesonParti
le ListingsDs1(2536)±,Ds2(2573)�(D+π−K+)/�(D∗(2010)+K0) �4/�1�(D+π−K+)/�(D∗(2010)+K0) �4/�1�(D+π−K+)/�(D∗(2010)+K0) �4/�1�(D+π−K+)/�(D∗(2010)+K0) �4/�1VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.27±0.18±0.373.27±0.18±0.373.27±0.18±0.373.27±0.18±0.37 1264 BALAGURA 08 BELL 10.6 e+ e− → D+π−K+X�(D+K0)/�(D∗(2010)+K0) �6/�1�(D+K0)/�(D∗(2010)+K0) �6/�1�(D+K0)/�(D∗(2010)+K0) �6/�1�(D+K0)/�(D∗(2010)+K0) �6/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.40<0.40<0.40<0.40 90 ALEXANDER 93 CLEO e+ e− → D∗+K0X
<0.43 90 ALBRECHT 89E ARG D∗s1 → D∗(2010)K0�(D0K+)/�(D∗(2007)0K+) �7/�5�(D0K+)/�(D∗(2007)0K+) �7/�5�(D0K+)/�(D∗(2007)0K+) �7/�5�(D0K+)/�(D∗(2007)0K+) �7/�5VALUE CL% DOCUMENT ID TECN COMMENT
<0.12<0.12<0.12<0.12 90 ALEXANDER 93 CLEO e+ e− → D∗0K+X�(D∗+s γ

)/�total �8/��(D∗+s γ
)/�total �8/��(D∗+s γ
)/�total �8/��(D∗+s γ
)/�total �8/�VALUE DOCUMENT ID TECN COMMENTpossibly seenpossibly seenpossibly seenpossibly seen ASRATYAN 88 HLBC νN → Ds γ γX�(D∗+s γ
)/�(D∗(2007)0K+) �8/�5�(D∗+s γ
)/�(D∗(2007)0K+) �8/�5�(D∗+s γ
)/�(D∗(2007)0K+) �8/�5�(D∗+s γ
)/�(D∗(2007)0K+) �8/�5VALUE CL% DOCUMENT ID TECN COMMENT

<0.42<0.42<0.42<0.42 90 ALEXANDER 93 CLEO e+ e− → D∗0K+X�(D+s π+π−)/�total �9/��(D+s π+π−)/�total �9/��(D+s π+π−)/�total �9/��(D+s π+π−)/�total �9/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 06P BABR 10.6 e+ e− → D+s π+π−XDs1(2536)± REFERENCESDs1(2536)± REFERENCESDs1(2536)± REFERENCESDs1(2536)± REFERENCESAUSHEV 11 PR D83 051102 T. Aushev et al. (BELLE Collab.)LEES 11B PR D83 072003 J.P. Lees et al. (BABAR Collab.)ABAZOV 09G PRL 102 051801 V.M. Abazov et al. (D0 Collab.)CHEKANOV 09 EPJ C60 25 S. Chekanov et al. (ZEUS Collab.)AUBERT 08B PR D77 011102 B. Aubert et al. (BABAR Collab.)BALAGURA 08 PR D77 032001 V. Balagura et al. (BELLE Collab.)AUBERT 06P PR D74 032007 B. Aubert et al. (BABAR Collab.)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)HEISTER 02B PL B526 34 A. Heister et al. (ALEPH Collab.)ACKERSTAFF 97W ZPHY C76 425 K. A
kersta� et al. (OPAL Collab.)ASRATYAN 94 ZPHY C61 563 A.E. Asratyan et al. (BIRM, BELG, CERN+)FRABETTI 94B PRL 72 324 P.L. Frabetti et al. (FNAL E687 Collab.)ALEXANDER 93 PL B303 377 J. Alexander et al. (CLEO Collab.)ALBRECHT 92R PL B297 425 H. Albre
ht et al. (ARGUS Collab.)AVERY 90 PR D41 774 P. Avery, D. Besson (CLEO Collab.)ALBRECHT 89E PL B230 162 H. Albre
ht et al. (ARGUS Collab.)ASRATYAN 88 ZPHY C40 483 A.E. Asratyan et al. (ITEP, SERP)D∗s2(2573) I (JP ) = 0(2+)JP is natural, width and de
ay modes 
onsistent with 2+.AAIJ 14BJ 
on�rms JP = 2+.D∗s2(2573) MASSD∗s2(2573) MASSD∗s2(2573) MASSD∗s2(2573) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2569.1 ±0.8 OUR AVERAGE2569.1 ±0.8 OUR AVERAGE2569.1 ±0.8 OUR AVERAGE2569.1 ±0.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogrambelow.2568.39±0.29±0.26 AAIJ 14AWLHCB B0
s → D0K−π+2569.4 ±1.6 ±0.5 82 AAIJ 11A LHCB Bs → D∗s2(2573)µνX2572.2 ±0.3 ±1.0 AUBERT,BE 06E BABR e+ e− → DK X2574.5 ±3.3 ±1.6 ALBRECHT 96 ARG e+ e− → D0K+X2573.2 +1.7

−1.6 ±0.9 217 KUBOTA 94 CLE2 e+ e−∼ 10.5 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2570.0 ±4.3 25 1 EVDOKIMOV 04 SELX 600 �−A → D0K+X2568.6 ±3.2 64 2 HEISTER 02B ALEP e+ e− → D0K+X1Not independent of the mass di�eren
e below.2Cal
ulated using mD0= 1864.5 ± 0.5 MeV and the mass di�eren
e below.

WEIGHTED AVERAGE
2569.1±0.8 (Error scaled by 2.4)

KUBOTA 94 CLE2 5.0
ALBRECHT 96 ARG
AUBERT,BE 06E BABR 8.9
AAIJ 11A LHCB 0.0
AAIJ 14AW LHCB 3.2

χ2

      17.1
(Confidence Level = 0.0007)

2565 2570 2575 2580 2585D∗s2(2573) MASS (MeV)mD∗s2(2573) − mD0mD∗s2(2573) − mD0mD∗s2(2573) − mD0mD∗s2(2573) − mD0VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT704 ±3 ±1704 ±3 ±1704 ±3 ±1704 ±3 ±1 64 HEISTER 02B ALEP e+ e− → D0K+X
• • • We do not use the following data for averages, �ts, limits, et
. • • •705.4±4.3 25 1 EVDOKIMOV 04 SELX 600 �−A → D0K+X1Systemati
 errors not estimated.D∗s2(2573) WIDTHD∗s2(2573) WIDTHD∗s2(2573) WIDTHD∗s2(2573) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT16.9±0.8 OUR AVERAGE16.9±0.8 OUR AVERAGE16.9±0.8 OUR AVERAGE16.9±0.8 OUR AVERAGE16.9±0.5±0.6 AAIJ 14AWLHCB B0

s → D0K−π+12.1±4.5±1.6 82 AAIJ 11A LHCB Bs → D∗s2(2573)µνX27.1±0.6±5.6 AUBERT,BE 06E BABR e+ e− → DK X10.4±8.3±3.0 ALBRECHT 96 ARG e+ e− → D0K+X16 +5
−4 ±3 217 KUBOTA 94 CLE2 e+ e−∼ 10.5 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •14 +9
−6 25 1 EVDOKIMOV 04 SELX 600 �−A → D0K+X1Systemati
 errors not estimated.D∗s2(2573)+ DECAY MODESD∗s2(2573)+ DECAY MODESD∗s2(2573)+ DECAY MODESD∗s2(2573)+ DECAY MODESD∗s2(2573)− modes are 
harge 
onjugates of the modes below.Mode Fra
tion (�i /�)�1 D0K+ seen�2 D∗(2007)0K+ not seenD∗s2(2573)+ BRANCHING RATIOSD∗s2(2573)+ BRANCHING RATIOSD∗s2(2573)+ BRANCHING RATIOSD∗s2(2573)+ BRANCHING RATIOS�(D0K+)/�total �1/��(D0K+)/�total �1/��(D0K+)/�total �1/��(D0K+)/�total �1/�VALUE EVTS DOCUMENT ID TECN CHG COMMENTseenseenseenseen 217 KUBOTA 94 CLE2 ± e+ e−∼ 10.5 GeV�(D∗(2007)0K+)/�(D0K+) �2/�1�(D∗(2007)0K+)/�(D0K+) �2/�1�(D∗(2007)0K+)/�(D0K+) �2/�1�(D∗(2007)0K+)/�(D0K+) �2/�1VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.33<0.33<0.33<0.33 90 KUBOTA 94 CLE2 + e+ e−∼ 10.5 GeVD∗s2(2573) REFERENCESD∗s2(2573) REFERENCESD∗s2(2573) REFERENCESD∗s2(2573) REFERENCESAAIJ 14AW PRL 113 162001 R. Aaij et al. (LHCb Collab.)AAIJ 14BJ PRL 113 242002 R. Aaij et al. (LHCb Collab.) JPAAIJ 11A PL B698 14 R. Aaij et al. (LHCb Collab.)AUBERT,BE 06E PRL 97 222001 B. Aubert et al. (BABAR Collab.)EVDOKIMOV 04 PRL 93 242001 A.V. Evdokimov et al. (SELEX Collab.)HEISTER 02B PL B526 34 A. Heister et al. (ALEPH Collab.)ALBRECHT 96 ZPHY C69 405 H. Albre
ht et al. (ARGUS Collab.)KUBOTA 94 PRL 72 1972 Y. Kubota et al. (CLEO Collab.)



1135113511351135See key on page 601 MesonParti
le ListingsD∗s1(2700)±,D∗s1(2860)±D∗s1(2700)± I (JP ) = 0(1−)D∗s1(2700)+ MASSD∗s1(2700)+ MASSD∗s1(2700)+ MASSD∗s1(2700)+ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2708.3+ 4.0
− 3.4 OUR AVERAGE2708.3+ 4.0
− 3.4 OUR AVERAGE2708.3+ 4.0
− 3.4 OUR AVERAGE2708.3+ 4.0
− 3.4 OUR AVERAGE2699 +14
− 7 1 LEES 15C BABR B → DD0K+2709.2± 1.9± 4.5 52k 2 AAIJ 12AU LHCB pp → (DK)+X at 7 TeV2710 ± 2 +12

− 7 10.4k 3 AUBERT 09AR BABR e+ e− → D(∗)K X2708 ± 9 +11
−10 182 BRODZICKA 08 BELL B+ → D0D0K+

• • • We do not use the following data for averages, �ts, limits, et
. • • •2694 ± 8 +13
− 3 LEES 15C BABR B0 → D−D0K+2707 ± 8 ± 8 LEES 15C BABR B+ → D0D0K+2688 ± 4 ± 3 4 AUBERT,BE 06E BABR 10.6 e+ e− → DK X1From a 
ombined analysis of B0 → D−D0K+and B+ → D0D0K+.2From the 
ombined �t of the D+K0S and D0K+ modes in the model in
luding theD∗s2(2573)+, D∗s1(2700)+ and spin-0 D∗

sJ (2860)+.3 From simultaneous �ts to the two DK mass spe
tra and to the total D∗K mass spe
-trum.4 Superseded by AUBERT 09AR.D∗s1(2700)+ WIDTHD∗s1(2700)+ WIDTHD∗s1(2700)+ WIDTHD∗s1(2700)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT120 ±11 OUR AVERAGE120 ±11 OUR AVERAGE120 ±11 OUR AVERAGE120 ±11 OUR AVERAGE127 +24
−19 5 LEES 15C BABR B → DD0K+115.8± 7.3±12.1 52k 6 AAIJ 12AU LHCB pp → (DK)+X at 7 TeV149 ± 7 +39

−52 10.4k 7 AUBERT 09AR BABR e+ e− → D(∗)K X108 ±23 +36
−31 182 BRODZICKA 08 BELL B+ → D0D0K+

• • • We do not use the following data for averages, �ts, limits, et
. • • •145 ±24 +22
−14 LEES 15C BABR B0 → D−D0K+113 ±21 +20
−16 LEES 15C BABR B+ → D0D0K+112 ± 7 ±36 8 AUBERT,BE 06E BABR 10.6 e+ e− → DK X5From a 
ombined analysis of B0 → D−D0K+and B+ → D0D0K+.6From the 
ombined �t of the D+K0S and D0K+ modes in the model in
luding theD∗s2(2573)+, D∗s1(2700)+ and spin-0 D∗

sJ
(2860)+.7 From simultaneous �ts to the two DK mass spe
tra and to the total D∗K mass spe
-trum.8 Superseded by AUBERT 09AR.D∗s1(2700)± DECAY MODESD∗s1(2700)± DECAY MODESD∗s1(2700)± DECAY MODESD∗s1(2700)± DECAY MODESMode�1 DK�2 D0K+�3 D+K0S�4 D∗K�5 D∗0K+�6 D∗+K0S D∗s1(2700)± BRANCHING RATIOSD∗s1(2700)± BRANCHING RATIOSD∗s1(2700)± BRANCHING RATIOSD∗s1(2700)± BRANCHING RATIOS�(D∗K)/�(DK) �4/�1�(D∗K)/�(DK) �4/�1�(D∗K)/�(DK) �4/�1�(D∗K)/�(DK) �4/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.91±0.13±0.120.91±0.13±0.120.91±0.13±0.120.91±0.13±0.12 10.4k 9 AUBERT 09AR BABR e+ e− → D(∗)K X9From the average of the 
orresponding ratios with D(∗)0K+ and D(∗)+K0S .�(D∗0K+)/�(D0K+) �5/�2�(D∗0K+)/�(D0K+) �5/�2�(D∗0K+)/�(D0K+) �5/�2�(D∗0K+)/�(D0K+) �5/�2VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.88±0.14±0.14 7716 10 AUBERT 09AR BABR e+ e− → D(∗)K X10From the D∗0K+ and D0K+, where D∗0 → D0π0.�(D∗+K0S)/�(D+K0S) �6/�3�(D∗+K0S)/�(D+K0S) �6/�3�(D∗+K0S)/�(D+K0S) �6/�3�(D∗+K0S)/�(D+K0S) �6/�3VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.14±0.39±0.23 2700 11 AUBERT 09AR BABR e+ e− → D(∗)K X11From the D∗+K0S and D+K0S , where D∗+ → D+π0.

D∗s1(2700)± REFERENCESD∗s1(2700)± REFERENCESD∗s1(2700)± REFERENCESD∗s1(2700)± REFERENCESLEES 15C PR D91 052002 J.P. Lees et al. (BABAR Collab.)AAIJ 12AU JHEP 1210 151 R. Aaij et al. (LHCb Collab.)AUBERT 09AR PR D80 092003 B. Aubert et al. (BABAR Collab.)BRODZICKA 08 PRL 100 092001 J. Brodzi
ka et al. (BELLE Collab.)AUBERT,BE 06E PRL 97 222001 B. Aubert et al. (BABAR Collab.)D∗s1(2860)± I (JP ) = 0(1−)OMITTED FROM SUMMARY TABLEJP 
onsitent with 1− from angular analysis of AAIJ 14AW. Observedby AUBERT,BE 06E and AUBERT 09AR in in
lusive produ
tion ofDK and D∗K in e+ e− annihilation.D∗s1(2860)+ MASSD∗s1(2860)+ MASSD∗s1(2860)+ MASSD∗s1(2860)+ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2859 ±12 ±242859 ±12 ±242859 ±12 ±242859 ±12 ±24 1 AAIJ 14AWLHCB B0
s → D0K−π+

• • • We do not use the following data for averages, �ts, limits, et
. • • •2866.1± 1.0± 6.3 36k 2,3 AAIJ 12AU LHCB pp → (DK)+X at 7 TeV2862 ± 2 + 5
− 2 3122 3,4 AUBERT 09AR BABR e+ e− → D(∗)K X2856.6± 1.5± 5.0 5 AUBERT,BE 06E BABR e+ e− → DK X1Separated from the spin-3 
omponent D∗s3(2860)− by a �t of the heli
ity angle of theD0K− system, with a statisti
al signi�
an
e of the spin-3 and spin-1 
omponents inex
ess of 10 σ.2 From the 
ombined �t of the D+K0S and D0K+ modes in the model in
luding theD∗s2(2573)+, D∗s1(2700)+ and spin-0 D∗

sJ
(2860)+.3Possible 
ontribution from the D∗s3(2860) state.4 From simultaneous �ts to the two DK mass spe
tra and to the total D∗K mass spe
-trum.5 Superseded by AUBERT 09AR.D∗s1(2860)+ WIDTHD∗s1(2860)+ WIDTHD∗s1(2860)+ WIDTHD∗s1(2860)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT159 ±23 ±77159 ±23 ±77159 ±23 ±77159 ±23 ±77 1 AAIJ 14AWLHCB B0

s → D0K−π+
• • • We do not use the following data for averages, �ts, limits, et
. • • •69.9± 3.2± 6.6 36k 2,3 AAIJ 12AU LHCB pp → (DK)+X at 7 TeV48 ± 3 ± 6 3122 3,4 AUBERT 09AR BABR e+ e− → D(∗)K X47 ± 7 ±10 5 AUBERT,BE 06E BABR e+ e− → DK X1Separated from the spin-3 
omponent D∗s3(2860)− by a �t of the heli
ity angle of theD0K− system, with a statisti
al signi�
an
e of the spin-3 and spin-1 
omponents inex
ess of 10 σ.2 From the 
ombined �t of the D+K0S and D0K+ modes in the model in
luding theD∗s2(2573)+, D∗s1(2700)+ and spin-0 D∗

sJ
(2860)+.3Possible 
ontribution from the D∗s3(2860) state.4 From simultaneous �ts to the two DK mass spe
tra and to the total D∗K mass spe
-trum.5 Superseded by AUBERT 09AR.D∗s1(2860)± DECAY MODESD∗s1(2860)± DECAY MODESD∗s1(2860)± DECAY MODESD∗s1(2860)± DECAY MODESMode�1 DK�2 D0K+�3 D+K0S�4 D∗K�5 D∗0K+�6 D∗+K0S D∗s1(2860)± BRANCHING RATIOSD∗s1(2860)± BRANCHING RATIOSD∗s1(2860)± BRANCHING RATIOSD∗s1(2860)± BRANCHING RATIOS�(D∗K)/�(DK) �4/�1�(D∗K)/�(DK) �4/�1�(D∗K)/�(DK) �4/�1�(D∗K)/�(DK) �4/�1VALUE EVTS DOCUMENT ID TECN COMMENT1.10±0.15±0.191.10±0.15±0.191.10±0.15±0.191.10±0.15±0.19 3122 1 AUBERT 09AR BABR e+ e− → D(∗)K X1From the average of the 
orresponding ratios with D(∗)0K+ and D(∗)+K0S .�(D∗0K+)/�(D0K+) �5/�2�(D∗0K+)/�(D0K+) �5/�2�(D∗0K+)/�(D0K+) �5/�2�(D∗0K+)/�(D0K+) �5/�2VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.04±0.17±0.20 2241 1 AUBERT 09AR BABR e+ e− → D(∗)K X1From the D∗0K+ and D0K+, where D∗0 → D0π0.



1136113611361136MesonParti
le ListingsD∗s1(2860)±,DsJ(3040)±�(D∗+K0S)/�(D+K0S) �6/�3�(D∗+K0S)/�(D+K0S) �6/�3�(D∗+K0S)/�(D+K0S) �6/�3�(D∗+K0S)/�(D+K0S) �6/�3VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.38±0.35±0.49 881 1 AUBERT 09AR BABR e+ e− → D(∗)K X1From the D∗+K0S and D+K0S , where D∗+ → D+π0.D∗s1(2860)± REFERENCESD∗s1(2860)± REFERENCESD∗s1(2860)± REFERENCESD∗s1(2860)± REFERENCESAAIJ 14AW PRL 113 162001 R. Aaij et al. (LHCb Collab.) JPAAIJ 12AU JHEP 1210 151 R. Aaij et al. (LHCb Collab.)AUBERT 09AR PR D80 092003 B. Aubert et al. (BABAR Collab.)AUBERT,BE 06E PRL 97 222001 B. Aubert et al. (BABAR Collab.)D∗s3(2860)± I (JP ) = 0(3−)OMITTED FROM SUMMARY TABLEJP 
onsitent with 3− from angular analysis of AAIJ 14AW.D∗s3(2860)+ MASSD∗s3(2860)+ MASSD∗s3(2860)+ MASSD∗s3(2860)+ MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2860.5±2.6±6.52860.5±2.6±6.52860.5±2.6±6.52860.5±2.6±6.5 1 AAIJ 14AWLHCB B0s → D0K−π+1Separated from the spin-1 
omponent D∗s1(2860)− by a �t of the heli
ity angle of theD0K− system, with a statisti
al signi�
an
e of the spin-3 and spin-1 
omponents inex
ess of 10 σ. D∗s3(2860)+ WIDTHD∗s3(2860)+ WIDTHD∗s3(2860)+ WIDTHD∗s3(2860)+ WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT53±7±753±7±753±7±753±7±7 1 AAIJ 14AWLHCB B0s → D0K−π+1Separated from the spin-1 
omponent D∗s1(2860)− by a �t of the heli
ity angle of theD0K− system, with a statisti
al signi�
an
e of the spin-3 and spin-1 
omponents inex
ess of 10 σ. D∗s3(2860)± REFERENCESD∗s3(2860)± REFERENCESD∗s3(2860)± REFERENCESD∗s3(2860)± REFERENCESAAIJ 14AW PRL 113 162001 R. Aaij et al. (LHCb Collab.) JP

DsJ(3040)± I (JP ) = 0(??)OMITTED FROM SUMMARY TABLEObserved by AUBERT 09AR in in
lusive produ
tion of D∗K ine+ e− annihilation. DsJ (3040)+ MASSDsJ (3040)+ MASSDsJ (3040)+ MASSDsJ (3040)+ MASSVALUE (MeV) DOCUMENT ID TECN COMMENT3044±8+30
− 53044±8+30
− 53044±8+30
− 53044±8+30
− 5 AUBERT 09AR BABR e+ e− → D∗K XDsJ (3040)+ WIDTHDsJ (3040)+ WIDTHDsJ (3040)+ WIDTHDsJ (3040)+ WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT239±35+46
−42239±35+46
−42239±35+46
−42239±35+46
−42 AUBERT 09AR BABR e+ e− → D∗K XDsJ(3040)± DECAY MODESDsJ(3040)± DECAY MODESDsJ(3040)± DECAY MODESDsJ(3040)± DECAY MODESMode�1 D∗K�2 D∗0K+�3 D∗+K0S DsJ (3040)± REFERENCESDsJ (3040)± REFERENCESDsJ (3040)± REFERENCESDsJ (3040)± REFERENCESAUBERT 09AR PR D80 092003 B. Aubert et al. (BABAR Collab.)OTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSSUN 09 PR D80 074037 Z.-F. Sun, X. Lin



1137113711371137See key on page 601 Meson Parti
le ListingsB Meson Produ
tion and De
ay, b-
avored hadronsBOTTOM MESONSBOTTOM MESONSBOTTOM MESONSBOTTOM MESONS(B = ±1)(B = ±1)(B = ±1)(B = ±1)B+ = ub, B0 = db, B0 = d b, B− = ub, similarly for B∗'sB-parti
le organization
Many measurements of B de
ays involve admixtures of B hadrons. Previously wearbitrarily in
luded su
h admixtures in the B± se
tion, but be
ause of their impor-tan
e we have 
reated two new se
tions: \B±/B0 Admixture" for �(4S) results and\B±/B0/B0s /b-baryon Admixture" for results at higher energies. Most in
lusive de-
ay bran
hing fra
tions and χb at high energy are found in the Admixture se
tions.B0-B0 mixing data are found in the B0 se
tion, while B0s -B0s mixing data and B-Bmixing data for a B0/B0s admixture are found in the B0s se
tion. CP-violation dataare found in the B±, B0, and B± B0 Admixture se
tions. b-baryons are found nearthe end of the Baryon se
tion. Re
ently, we also 
reated a new se
tion: \V
 b andVub CKM Matrix Elements."The organization of the B se
tions is now as follows, where bullets indi
ate parti
lese
tions and bra
kets indi
ate reviews.[Produ
tion and De
ay of b-
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PRODUCTION AND DECAY OF b-FLAVORED

HADRONS

Updated May 2016 by P. Eerola (U. of Helsinki, Helsinki,
Finland), M. Kreps (U. of Warwick, Coventry, UK) and Y.
Kwon (Yonsei U., Seoul, Korea).

The b quark belongs to the third generation of quarks and

is the weak–doublet partner of the t quark. The existence of

the third–generation quark doublet was proposed in 1973 by

Kobayashi and Maskawa [1] in their model of the quark mixing

matrix (“CKM” matrix), and confirmed four years later by

the first observation of a bb meson [2]. In the KM model,

CP violation is explained within the Standard Model (SM) by

an irreducible phase of the 3 × 3 unitary matrix. The regular

pattern of the three lepton and quark families is one of the most

intriguing puzzles in particle physics. The existence of families

gives rise to many of the free parameters in the SM, including

the fermion masses, and the elements of the CKM matrix.

Since the b quark is the lighter element of the third–

generation quark doublet, the decays of b-flavored hadrons

occur via generation-changing processes through this matrix.

Because of this, and the fact that the CKM matrix is close to a

3×3 unit matrix, many interesting features such as loop and box

diagrams, flavor oscillations, as well as large CP asymmetries,

can be observed in the weak decays of b-flavored hadrons.

The CKM matrix is parameterized by three real parameters

and one complex phase. This complex phase can become a

source of CP violation in B meson decays. A crucial milestone

was the first observation of CP violation in the B meson

system in 2001, by the BaBar [3] and Belle [4] collaborations.

They measured a large value for the parameter sin 2β (=

sin 2φ1) [5], almost four decades after the discovery of a small

CP asymmetry in neutral kaons. A more detailed discussion of

the CKM matrix and CP violation can be found elsewhere in

this Review [6,7].

Recent developments in the physics of b-hadrons include

the significant improvement in experimental determination of

the CKM angle γ, the increased information on Bs, Bc and Λb

decays, the precise determination of Λb lifetime, the wealth of

information in the B0 → K∗0(892)ℓ+ℓ− decays and after many

years of search, the observation of Bs → µ+µ− decays along

with ever increasing precision on the CKM matrix parameters.
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The structure of this mini-review is organized as follows.

After a brief description of theory and terminology, we dis-

cuss b-quark production and current results on spectroscopy

and lifetimes of b-flavored hadrons. We then discuss some ba-

sic properties of B-meson decays, followed by summaries of

hadronic, rare, and electroweak penguin decays of B-mesons.

There are separate mini-reviews for BB mixing [8] and the ex-

traction of the CKM matrix elements Vcb and Vub from B-meson

decays [9] in this Review.

Theory and terminology: The ground states of b-flavored

hadrons decay via weak interactions. In most hadrons, the b-

quark is accompanied by light-partner quarks (d, u, or s), and

the decay modes are well described by the decay of the b quark

(spectator model) [10]. The dominant decay mode of a b quark

is b → cW ∗− (referred to as a “tree” or “spectator” decay),

where the virtual W materializes either into a pair of leptons

ℓν̄ (“semileptonic decay”), or into a pair of quarks which then

hadronizes. The decays in which the spectator quark combines

with one of the quarks from W ∗ to form one of the final

state hadrons are suppressed by a factor ∼ (1/3)2, because

the colors of the two quarks from different sources must match

(“color–suppression”).

Many aspects of B decays can be understood through the

Heavy Quark Effective Theory (HQET) [11]. This has been

particularly successful for semileptonic decays. For further dis-

cussion of HQET, see for instance Ref. 12. For hadronic decays,

one typically uses effective Hamiltonian calculations that rely on

a perturbative expansion with Wilson coefficients. In addition,

some form of the factorization hypothesis is commonly used,

where, in analogy with semileptonic decays, two-body hadronic

decays of B mesons are expressed as the product of two inde-

pendent hadronic currents, one describing the formation of a

charm meson (in case of the dominant b → cW ∗− decays), and

the other the hadronization of the remaining ud (or cs) system

from the virtual W−. Qualitatively, for a B decay with a large

energy release, the ud pair (produced as a color singlet) travels

fast enough to leave the interaction region without influencing

the charm meson. This is known to work well for the dominant

spectator decays [13]. There are several common implementa-

tions of these ideas for hadronic B decays, the most common of

which are QCD factorization (QCDF) [14], perturbative QCD

(pQCD) [15], and soft collinear effective theory (SCET) [16].

The transition b → u is suppressed by |Vub/Vcb|2 ∼ (0.1)2

relative to b → c transitions. The transition b → s is a flavor-

changing neutral-current (FCNC) process, and although not

allowed in the SM as a tree-process, can occur via more complex

loop diagrams (denoted “penguin” decays). The rates for such

processes are comparable or larger than CKM-suppressed b → u

processes. Penguin processes involving b → d transitions are

also possible, and have been observed [17,18]. Other decay

processes discussed in this Review include W–exchange (a W is

exchanged between initial–state quarks), penguin annihilation

(the gluon from a penguin loop attaches to the spectator quark,

similar to an exchange diagram), and pure–annihilation (the

initial quarks annihilate to a virtual W , which then decays).

Production and spectroscopy: The bound states of a b

antiquark and a u, d, s, or c quark are referred to as the

Bu (B+), Bd (B0), Bs, and Bc mesons, respectively. The Bc

is the heaviest of the ground–state b-flavored mesons, and

the most difficult to produce: it was observed for the first

time in the semileptonic mode by CDF in 1998 [19], but

its mass was accurately determined only in 2006, from the

fully reconstructed mode B+
c → J/ψπ+ [20]. One of the best

determination up to date uses B+
c → J/ψD+

s decay and yields

m(B+
c ) = 6276.28 ± 1.44 ± 0.36 MeV/c2 [21]. As this decay

has very low energy release, it allows to decrease systematic

uncertainty and thus offers prospects for future increase in

precision.

The first excited meson is called the B∗ meson, while B∗∗

is the generic name for the four orbitally excited (L = 1)

B-meson states that correspond to the P -wave mesons in

the charm system, D∗∗. Excited states of the Bs meson are

similarly named B∗
s and B∗∗

s . Of the possible bound bb states,

the Υ series (S-wave) and the χb (P-wave) are well studied.

The pseudoscalar ground state ηb also has been observed by

BaBar [22]( and confirmed by CLEO [23]) , indirectly through

the decay Υ(3S) → γηb. See Ref. 24 for classification and

naming of these and other states.

Experimental studies of b decays have been performed in

e+e− collisions at the Υ(4S) (ARGUS, CLEO, Belle, BaBar)

and Υ(5S) (CLEO, Belle) resonances, as well as at higher

energies, at the Z resonance (SLC, LEP), in pp̄ (Tevatron) and

pp collisions (LHC). The e+e− → bb production cross-section

at the Z, Υ(4S), and Υ(5S) resonances are about 6.6 nb,

1.1 nb, and 0.3 nb respectively. High-energy hadron collisions

produce b-flavored hadrons of all species with much larger

cross-sections: σ(pp → bX, |η| < 1) ∼ 30 µb at the Tevatron

(
√

s = 1.96 TeV), and even higher at the energies of the LHC

pp collider (at
√

s = 7 TeV, at the LHCb experiment with

pseudorapidity acceptance 2 < η < 5 visible b-hadron cross

section is ∼ 100 µb).

BaBar and Belle have accumulated respectively 560 fb−1

and 1020 fb−1 of data, of which 433 fb−1 and 710 fb−1 re-

spectively are at the Υ(4S) resonance; CDF and D0 have

accumulated by the end of their running about 10 fb−1 each.

At the LHC, CMS and ATLAS have collected 5 fb−1 (20 fb−1)

of data at
√

s = 7 (8) TeV respectively and LHCb has collected

about 1 fb−1 and 2 fb−1 at the two energies. Further data was

collected at
√

13 TeV, but amount is limited at the moment.

These numbers indicate that the majority of b-quarks have

been produced in hadron collisions, but the large backgrounds

cause the hadron collider experiments to have lower selection

efficiency. While traditionally only the few decay modes for

which triggering and reconstruction are easiest have been stud-

ied in hadron collisions, with current experiments at hadron

colliders much more is possible. This is due to triggers based
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on the tracking first introduced in CDF and further improved

by LHCb. LHCb experiment has also reasonable capability for

detection of neutral pions and photons. While both e+e− and

hadron colliders have their own strengths and weaknesses, in the

domain of decays which involve neutrinos, e+e− experiments

are in significant advantage.

In hadron collisions, most production happens as bb pairs, ei-

ther via s-channel production or gluon–splitting, with a smaller

fraction of single b-quarks produced by flavor excitation. The

total b-production cross section is an interesting test of our

understanding of QCD processes. For many years, experimental

measurements have been several times higher than predictions.

With improved measurements [25], more accurate input pa-

rameters, and more advanced calculations [26], the discrepancy

between theory and data diminished and there is now good

agreement between measurements and predictions.

Each quark of a bb pair produced in hadron collisions

hadronizes separately and incoherently from the other, but

it is still possible, although difficult, to obtain a statistical

indication of the charge of a produced b/b quark (“flavor tag”

or “charge tag”) from the accompanying particles produced in

the hadronization process, or from the decay products of the

other quark. The momentum spectrum of produced b-quarks

typically peaks near the b-quark mass, and extends to much

higher momenta, dropping by about a decade for every ten GeV.

This implies typical decay lengths of the order of a millimeter;

the resolution for the decay vertex must be more precise than

this to resolve the fast oscillations of Bs mesons.

In e+e− colliders, since the B mesons are very slow in the

Υ(4S) rest frame, asymmetric beam energies are used to boost

the decay products to improve the precision of time-dependent

measurements that are crucial for the study of CP violation. At

KEKB, the boost is βγ = 0.43, and the typical B-meson decay

length is dilated from ≈ 20 µm to ≈ 200 µm. PEP-II used a

slightly larger boost, βγ = 0.55. The two B mesons produced

in Υ(4S) decay are in a coherent quantum state, which makes it

easier than in hadron collisions to infer the charge state of one

B meson from observation of the other; however, the coherence

also requires determination of the decay time of both mesons,

rather than just one, in order to perform time–dependent CP–

violation measurements. For Bs, which can be produced at

Υ(5S) the situation is less favourable, as boost is not high

enough to provide sufficient time resolution to resolve the fast

Bs oscillations.

For the measurement of branching fractions, the initial

composition of the data sample must be known. The Υ(4S)

resonance decays predominantly to B0B
0

and B+B−; the

current experimental upper limit for non-BB decays of the

Υ(4S) is less than 4% at the 95% confidence level (CL) [27].

The only known modes of this category are decays to lower Υ

states and a pion pair, observed with branching fractions of

order 10−4 [28]. The ratio f+/f0 of the fractions of charged to

neutral B productions from Υ(4S) decays has been measured

by CLEO, BaBar, and Belle in various ways. They typically

use pairs of isospin-related decays of B+ and B0, such that

it can be assumed that Γ(B+ → x+) = Γ(B0 → x0). In this

way, the ratio of the number of events observed in these

modes is proportional to (f+τ+)/(f0τ0) [29,30]. BaBar has also

performed an independent measurement of f0 with a different

method that does not require isospin symmetry or the value of

the lifetime ratio, based on the number of events with one or

two reconstructed B0 → D∗−ℓ+ν decays [31]. The combined

result, from the current average of τ+/τ0, is f+/f0 = 1.059 ±
0.027 [32]. Though the current 2.4σ discrepancy with equal

production of B+B− and B0B
0

pairs is somewhat larger than

previous averages, we still assume f+/f0 = 1 in this mini-review

except where explicitly stated otherwise. This assumption is

also supported by the near equality of the B+ and B0 masses:

our fit of CLEO, ARGUS, CDF, and LHCb measurements

yields m(B0) = 5279.61 ± 0.16 MeV/c2, m(B+) = 5279.29 ±
0.15 MeV/c2, and m(B0) − m(B+) = 0.32 ± 0.06 MeV/c2.

CLEO and Belle have also collected some data at the Υ(5S)

resonance [33,34]. Belle has accumulated more than 120 fb−1

at this resonance. This resonance does not provide the simple

final states like the Υ(4S): there are seven possible final states

with a pair of non-strange B mesons and three with a pair of

strange B mesons (B∗
sB

∗
s, B∗

sBs, and BsBs). The fraction of

events with a pair of Bs mesons over the total number of events

with a pair of b-flavored hadrons has been measured to be

fs[Υ(5S)] = 0.200+0.030
−0.031, of which 90% is B∗

s B̄∗
s events. A few

branching fractions of the Bs have been measured in this way;

if the precision of fs were improved, they would become the

most accurate. Belle has observed a few new Bs modes that are

difficult to reconstruct in hadron colliders and the most precise

mass measurement of the B∗
s meson has been obtained [34].

However, the small boost of Bs mesons produced in this way

prevents resolution of their fast oscillations for time-dependent

measurements; these are only accessible in hadron collisions or

at the Z peak.

In high-energy collisions, the produced b or b̄ quarks can

hadronize with different probabilities into the full spectrum

of b-hadrons, either in their ground or excited states. Table 1

shows the measured fractions fd, fu, fs, and fbaryon of B0,

B+, B0
s , and b baryons, respectively, in an unbiased sample

of weakly decaying b hadrons produced at the Z resonance

or in pp collisions [32]. The results were obtained from a fit

where the sum of the fractions were constrained to equal 1.0,

neglecting production of Bc mesons. The observed yields of

Bc mesons at the Tevatron [19] yields fc = 0.2%, in agreement

with expectations [35], and well below the current experimental

uncertainties in the other fractions.

For rather long time, the average of fractions in pp col-

lisions and in Z decay was used as it was assumed that the

hadronization is identical in the two environments. It was clear

that this assumption dost not have to hold in principle, be-

cause of the different momentum distributions of the b-quark

in these processes; the sample used in the pp measurements

has momenta close to the b mass, rather than mZ/2. But
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Table 1: Fragmentation fractions of b quarks
into weakly-decaying b-hadron species in Z → bb
decay, in pp collisions at

√
s = 1.96 TeV.

b hadron Fraction at Z[%] Fraction at pp [%]

B+, B0 40.7 ± 0.7 34.4 ± 2.1

Bs 10.0 ± 0.8 11.5 ± 1.3

b baryons 8.5 ± 1.1 19.7 ± 4.6

in the absence of any significant evidence there was also no

strong reason against the average. Some discrepancies were ob-

served, but as picture was also obscured by 1.8σ discrepancy

in the average time-integrated mixing probability parameter

χ̄ = fdχd + fsχs between LEP and Tevatron [8], they were

not directly attributed to breakdown of the assumption that

hadronization is identical. The first indication that fraction for

b-baryons depends on the momentum and thus environment

came from CDF [36], but available precision did not allow

for firm conclusion. The final evidence for non-universality of

hadronization fractions came from LHCb, where strong depen-

dence on the transverse momentum was observed for the Λb

fraction [37].

Excited B-meson states have been observed by CLEO,

LEP, CUSB, D0, and CDF. The current world average of the

B∗–B mass difference is 45.78±0.35 MeV/c2. Evidence for B∗∗

(L=1) production has been initially obtained at LEP [38], as

a broad resonance in the mass of an inclusively reconstructed

bottom hadron candidate combined with a charged pion from

the primary vertex. Detailed results from exclusive modes have

been obtained at the Tevatron, allowing separation of the

narrow states B1 and B∗
2 and also a measurement of the B∗

2

width [39].

Also the narrow B∗∗
s states, first sighted by OPAL as a

single broad enhancement in the B+K mass spectrum [40],

have now been clearly observed and separately measured at the

hadron colliders [41,42]. The measured masses are m(Bs1) =

5828.7 ± 0.4 MeV/c2 and m(B∗
s2) = 5839.96± 0.2 MeV/c2.

Baryon states containing a b quark are labeled according to

the same scheme used for non-b baryons, with the addition of

a b subscript [24]. For many years, the only well-established b

baryon was the Λ0
b (quark composition udb), with only indirect

evidence for Ξb (dsb) production from LEP [43]. This situation

has changed dramatically in the past few years due to the

large samples being accumulated at the Tevatron and LHCb.

Clear signals of four strongly–decaying baryon states, Σ+
b , Σ∗+

b

(uub), Σ−
b , Σ∗−

b (ddb) have been obtained by CDF in Λ0
bπ

± final

states [44]. The strange bottom baryon Ξ±
b was observed in the

exclusive mode Ξ±
b → J/ψΞ± by D0 [45], and CDF [46]. More

recently CDF has also observed the Ξb in the Ξcπ final state [47].

The relative production of Ξb and Λb baryons has been found

to be consistent with the Bs to Bd production ratio [45].

Observation of the doubly–strange bottom baryon Ω−
b has been

published by both D0 [48] and CDF [49]. However the masses

measured by the two experiments show a large discrepancy. The

resolution is provided by LHCb which measures the Ω−
b mass

consistent with CDF [50]. The CMS experiment added to the

list also neutral spin-3/2 Ξ∗
b [51]. The masses of all these new

baryons have been measured to a precision of a few MeV/c2,

and found to be in agreement with predictions from HQET.

While many exotic states were seen in the charm sector,

in bottom sector there are fewer seen and none in the direct

production. In the recent analysis D0 Collaboration claimed

narrow state X(5568) decaying into B0
sπ

± final state [52].

While this would be interesting addition to the observed states

as first exotic state with open heavy flavour quantum numbers,

preliminary analysis from LHCb yields negative result [53].

While two experiments have different initial state, it would be

unusual if X(5568) can be effectively produced in high energy

pp̄ collisions but not in pp collisions.

Lifetimes: Precise lifetimes are key in extracting the weak

parameters that are important for understanding the role of

the CKM matrix in CP violation, such as the determination of

Vcb and BsBs mixing parameters. In the naive spectator model,

the heavy quark can decay only via the external spectator

mechanism, and thus, the lifetimes of all mesons and baryons

containing b quarks would be equal. Non–spectator effects, such

as the interference between contributing amplitudes, modify

this simple picture and give rise to a lifetime hierarchy for

b-flavored hadrons similar to the one in the charm sector.

However, since the lifetime differences are expected to scale as

1/m2
Q, where mQ is the mass of the heavy quark, the variations

in the b system are expected to be only 10% or less [54]. We

expect:

τ(B+) ≥ τ(B0) ≈ τ(Bs) > τ(Λ0
b) ≫ τ(B+

c ) . (1)

For the B+
c , both quarks decay weakly, so the lifetime is much

shorter.

Measurements of the lifetimes of the different b-flavored

hadrons thus provide a means to determine the importance of

non-spectator mechanisms in the b sector. Over the past decade,

the precision of silicon vertex detectors and the increasing

availability of fully–reconstructed samples has resulted in much-

reduced statistical and systematic uncertainties (∼1%). The

averaging of precision results from different experiments is

a complex task that requires careful treatment of correlated

systematic uncertainties; the world averages given in Table 2

have been determined by the Heavy Flavor Averaging Group

(HFAG) [32].

The short B+
c lifetime is in good agreement with predic-

tions [55]. With large samples of B+
c mesons at the LHCb preci-

sion on the lifetimes should significantly improve. The measure-

ment using semileptonic decays gives τB+
c

= 0.509±0.008±0.012

ps [56] while using decays B+
c → J/ψπ+ yields τB+

c
=

0.5134 ± 0.0110 ± 0.0057 ps [57]. Each of these is more precise



1141114111411141See key on page 601 Meson Parti
le Listingsb-
avored hadrons
Table 2: Summary of inclusive and exclusive
world-average b-hadron lifetime measurements.
For the two Bs averages, see text below.

Particle Lifetime [ps]

B+ 1.638 ± 0.004
B0 1.520 ± 0.004
Bs (flavor-specific) 1.511 ± 0.014
Bs (1/Γs) 1.510 ± 0.005
B+

c 0.507 ± 0.009
Λ0

b 1.466 ± 0.010
Ξ−

b 1.560 ± 0.040
Ξ0

b 1.464 ± 0.031
Ω−

b 1.57+0.23
−0.20

than the combination of all previous experiments. For preci-

sion comparisons with theory, lifetime ratios are more sensitive.

Experimentally we find:

τB+

τB0
= 1.076 ± 0.004 ,

τBs

τB0
= 0.994 ± 0.004 ,

τΛb

τB0
= 0.965 ± 0.007 ,

while theory makes the following predictions [54,58]

τB+

τB0
= 1.06 ± 0.02 ,

τBs

τB0
= 1.00 ± 0.01 ,

τΛb

τB0
= 0.88 ± 0.05.

The ratio of B+ to B0 lifetimes has a precision of better than

1%, and is significantly different from 1.0, in agreement with

predictions [54]. The ratio of Bs to B0 lifetimes is expected

to be very close to 1.0. While early measurements were in mild

tension with theory, the high precision measurements using

fully reconstructed decays and clear definition of lifetime (see

below) are in good agreement with theory [59,60,61]. The Λb

lifetime has a history of discrepancies. Predictions were higher

than data before the introduction of higher-order effects lowered

them. The first indication that early measurements of the Λb

are on low side came from the CDF data [62,63]. The recent

measurements from LHC experiments [64,65,66,67] significantly

improve precision and favour higher lifetime, much closer to the

lifetime of B0 meson. The most precise measurement of the Λb

lifetime performed by LHCb uses Λb → J/ψpK− decays and

finds τΛb
= 1.479±0.009±0.010 ps [66]. With new results, the

discrepancy between theory and experiment on the Λb lifetime

can be considered resolved.

Neutral B mesons are two-component systems similar to

neutral kaons, with a light (L) and a heavy (H) mass eigenstate,

and independent decay widths ΓL and ΓH . The SM predicts

a non-zero width difference ∆Γ = ΓL − ΓH > 0 for both Bs

and Bd. For Bd, ∆Γd/Γd is expected to be ∼0.2%. Analysis

of BaBar and DELPHI data on CP -specific modes of the B0

yield a combined result: ∆Γd/Γd = 0.015±0.018 [32]. Recently

LHCb determined value of ∆Γd/Γd = −0.044±0.025±0.011 [67],

which is based on the comparison of lifetimes in the

B0 → J/ψK∗0(892) and B0 → J/ψKS decays. Average in-

cluding all measurements yields ∆Γd/Γd = −0.003±0.015. The

issue is much more interesting for the Bs, since the SM expecta-

tion for ∆Γs/Γs is of order 10%. This potentially non-negligible

difference requires care when defining the Bs lifetime. As indi-

cated in Table 2, two different lifetimes are defined for the Bs

meson: one is defined as 1/Γs, where Γs is the average width

of the two mass eigenstates (ΓL + ΓH)/2; the other is obtained

from “flavor-specific” (e.g., semileptonic) decays and depends

both on Γs and ∆Γs. Experimentally, the quantity ∆Γs can be

accessed by measuring lifetimes in decays into CP eigenstates,

which in the SM are expected to be close approximations to

the mass eigenstates. This has been done with the J/ψφ mode,

where the two CP eigenstates are distinguished by angular dis-

tributions, and in Bs → K+K− or Bs → J/ψf0(980) which are

CP -eigenstates. The current experimental information is domi-

nated by measurements on the J/ψφ mode performed by CDF,

D0, ATLAS and LHCb experiments. By appropriately combin-

ing all published measurements of J/ψφ lifetimes, flavor-specific

lifetimes and effective lifetimes in CP eigenstates, the HFAG

group obtains a world-average ∆Γs/Γs = 0.124±0.011 [32]; the

latest theoretical predictions yield ∆Γs/Γs = 0.133± 0.032 [68],

in agreement with measurements within the uncertainties. The

constraint from measurements of lifetimes in CP eigenstates is

based on the notion of effective lifetime introduced in Ref. [69].

In this class, measurements in decays Bs → J/ψf0(980) [70],

Bs → K+K− [71] decays are used currently. From the theoret-

ical point of view, the best quantity to use is ∆Γs/∆Ms, which

is much less affected by hadronic uncertainties [68]. Exploiting

the accurate measurement of ∆Ms available [72], this can be

turned into a SM prediction with an uncertainty of only 20%:

∆Γs/Γs = 0.137 ± 0.027. This is likely to be of importance

in future comparisons, as the experimental precision improves

with the growth of LHC samples. Historically, branching frac-

tion of the decay Bs → D
(∗)+
s D

(∗)−
s was used to set an bound

on ∆Γs/Γs, but the method is highly model–dependent and

with increased precision of direct determinations it stops to be

useful.

The width difference ∆Γs is connected to the Bs mixing

phase φs by ∆Γs = Γ12 cos φs, where Γ12 is the off–diagonal

element of the decay matrix [6,8,68]. The early measurements

by CDF [73] and D0 [74] have produced CL contours in

the (φs, ∆Γs) plane, and both observed a mild deviation, in

the same direction, from the expectation of the SM of the

phase φs near ∆Γs = 0. The possibility of a large value of

φs has attracted significant interest, as it would be very clean

evidence for the existence of new sources of CP violation beyond

the SM. However the latest measurements from CDF [59],

D0 [75], ATLAS [76], CMS [77] and LHCb [78], which provide

significant improvements over initial measurements, show good

agreement with the SM. While most experiments use up to now

only Bs → J/ψφ decay, LHCb also exploits Bs → J/ψπ+π−

decays, which are experimentally determined to be pure CP -odd

and therefore in Bs → J/ψπ+π− decays no angular analysis is

needed. It should be noted that in pure Bs → J/ψφ decay, there

is a two-fold ambiguity in the sign of ∆Γs and φs. This can be
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resolved using the interference between the decays to J/ψφ and

J/ψK+K−, where K+K− is in relative S-wave state. This has

been used by LHCb experiment to determine the sign of ∆Γs

to be positive [79] in accordance with SM. The world average

value of the CP violating phase is φs = −0.013 ± 0.037 [32]

without any tension with the SM.

B meson decay properties: Semileptonic B decays B →
Xcℓν and B → Xuℓν provide an excellent way to measure the

magnitude of the CKM elements |Vcb| and |Vub| respectively,

because the strong interaction effects are much simplified due to

the two leptons in the final state. Both exclusive and inclusive

decays can be used with dominant uncertainties being comple-

mentary. For exclusive decay analysis, knowledge of the form

factors for the exclusive hadronic system Xc(u) is required. For

inclusive analysis, it is usually necessary to restrict the avail-

able phase-space of the decay products to suppress backgrounds;

subsequently uncertainties are introduced in the extrapolation

to the full phase-space. Moreover, restriction to a small corner

of the phase-space may result in breakdown of the operator-

product expansion scheme, thus making theoretical calculations

unreliable. One of the recent unexpected results was determina-

tion of |Vub| using Λ0
b → pµ−ν̄µ decays by LHCb [80]. A more

detailed discussion of B semileptonic decays and the extraction

of |Vcb| and |Vub| is given elsewhere in this Review [9].

On the other hand, hadronic decays of B are complicated

because of strong interaction effects caused by the surrounding

cloud of light quarks and gluons. While this complicates the

extraction of CKM matrix elements, it also provides a great

opportunity to study perturbative and non-perturbative QCD,

hadronization, and Final State Interaction (FSI) effects. Pure–

penguin decays were first established by the observation of B →
K∗γ [81]. Some observed decay modes such as B0 → D−

s K+,

may be interpreted as evidence of a W -exchange process [82].

The evidence for the decay B+ → τ+ν from Belle [83] and

BaBar [84] is the first sign of a pure annihilation decay. There

is growing evidence that penguin annihilation processes may

be important in decays with two vector mesons in the final

state [85].

Hadronic decays: Most of the hadronic B decays involve

b → c transition at the quark level, resulting in a charmed

hadron or charmonium in the final state. Other types of

hadronic decays are very rare and will be discussed separately

in the next section. The experimental results on hadronic B

decays have steadily improved over the past few years, and the

measurements have reached sufficient precision to challenge our

understanding of the dynamics of these decays. With the good

neutral particle detection and hadron identification capabilities

of B-factory detectors, a substantial fraction of hadronic B

decay events can be fully reconstructed. Because of the kine-

matic constraint of Υ(4S), the energy sum of the final-state

particles of a B meson decay is always equal to one half of the

total energy in the center of mass frame. As a result, the two

variables, ∆E (energy difference) and MB (B candidate mass

with a beam-energy constraint) are very effective for suppress-

ing combinatorial background both from Υ(4S) and e+e− → qq̄

continuum events. In particular, the energy-constraint in MB

improves the signal resolution by almost an order of magnitude.

The kinematically clean environment of B meson decays

provides an excellent opportunity to search for new states. For

instance, quark-level b → cc̄s decays have been used to search

for new charmonium and charm-strange mesons and study their

properties in detail. In 2003, BaBar discovered a new narrow

charm-strange state D∗
sJ (2317) [86], and CLEO observed

a similar state DsJ(2460) [87]. The properties of these new

states were studied in the B meson decays, B → DD∗
sJ (2317)

and B → DDsJ (2460) by Belle [88]. Further studies of D
(∗)
sJ

meson production in B decays have been made by Belle [89]

and BaBar [90]. Now these charm-strange meson states are

identified as D∗
s0(2317) and Ds1(2460), respectively.

More recently, Belle observed a new DsJ meson produced in

B+ → D̄0DsJ → D̄0D0K+ [91]. Combined with a subsequent

measurement by BaBar [92], the mass and width of this state

are determined to be 2709+9
−6 MeV/c2 and 125±30 MeV, respec-

tively. An analysis of the helicity angle distribution determines

its spin-parity to be 1−.

A variety of exotic particles have been discovered in B

decays. Belle found the X(3872) state [93], which is confirmed

by CDF [94] and BaBar [95]. Analyzing their full Υ(4S) data

sample, Belle finds a new upper limit on the width of X(3872)

to be ΓX(3872) < 1.2 MeV [96], improving on the existing limit

by nearly a factor of 2. Radiative decays of X(3872) can play

a crucial role in understanding the nature of the particle. For

example, in the molecular model the decay of X(3872) to ψ′γ

is expected to be highly suppressed in comparison to the decay

to J/ψγ [97]. BaBar has seen the evidence for the decay to

J/ψγ [98]. The ratio R ≡ B(X(3872) → ψ′γ)/B(X(3872) →
J/ψγ) is measured to be 3.4 ± 1.4 by BaBar [99], while Belle

obtains R < 2.1 at 90% CL [100].

Belle has observed a near-threshold enhancement in the

J/ψω invariant mass for B → J/ψωK decays [101]. BaBar

has studied B → J/ψπ+π−K, finding an excess of J/ψπ+π−

events with a mass just above 4.2 GeV/c2; this is con-

sistent with the Y (4260) that was observed by BaBar in

ISR (Initial State Radiation) events [102]. A Belle study of

B → ψ′Kπ± [103] finds a state called X(4430)± that de-

cays to ψ′π±. This state was searched for by BaBar with

similar sensitivity but was not found [104]. The high statis-

tics study by LHCb experiment confirmed existence of the

X(4430)± in decays B → ψ′Kπ± [105]. Moreover the LHCb

experiment demonstrated X(4430)± resonances character by

study of the phase motion and saw evidence for another state.

Since it is charged, it could not be a charmonium state. In a

Dalitz plot analysis of B
0 → χc1K

−π+, Belle has observed two

resonance-like structures in the χc1π
+ mass distribution [106],

labelled as X(4050)± and X(4250)± in this Review, while no

evidence is found by BaBar in a search with similar sensitiv-

ity [107]. Another charge state was seen by Belle in the decay
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B0 → J/ψK−π+ [108]. In the amplitude analysis of the de-

cay Λ0
b → J/ψpK− LHCb experiment also demonstrated that

charged states in charmonium region are produced also with

non-zero baryon number by observing state decaying to J/ψp

final state [109].

The hadronic decays B
0 → D(∗)0h0, where h0 stands for

light neutral mesons such as π0, η(′), ρ0, ω, proceed through

color-suppressed diagrams, hence they provide useful tests on

the factorization models. Both Belle and BaBar have made

comprehensive measurements of such color-suppressed hadronic

decays of B
0

[110].

Information on Bs and Λb decays is limited, though im-

proving with recent studies of large samples at the Teva-

tron and LHC experiments. Recent additions are decays of

Bs → J/ψf0(980) [70,111], Bs → J/ψf ′
2(1525) [112], and

Λb → Λcπ
+π−π− [113]. For the latter, not only the total rate

is measured, but also structure involving decays through excited

Λc and Σc baryons.

There have been hundreds of publications on hadronic B

decays to open-charm and charmonium final states mostly from

the B-factory experiments. These results are nicely summarized

in a recent report by HFAG [32].

Rare B decays: All B-meson decays that do not occur

through the b → c transition are usually called rare B decays.

These include both semileptonic and hadronic b → u decays

that are suppressed at leading order by the small CKM matrix

element Vub, as well as higher-order b → s(d) processes such as

electroweak and gluonic penguin decays.

Charmless B meson decays into two-body hadronic final

states such as B → ππ and Kπ are experimentally clean, and

provide good opportunities to probe new physics and search for

indirect and direct CP violations. Since the final state particles

in these decays tend to have larger momenta than average

B decay products, the event environment is cleaner than for

b → c decays. Branching fractions are typically around 10−5.

Over the past decade, many such modes have been observed by

BaBar, Belle, and CLEO. More recently, comparable samples

of the modes with all charged final particles have been recon-

structed in pp̄ collisions by CDF and pp collisions by LHCb by

triggering on the impact parameter of the charged tracks. This

has also allowed observation of charmless decays of the Bs, in

final states such as φφ [114], K+K− [115], and K−π+ [116],

and of charmless decays of the Λ0
b baryon [116]. Charmless

Bs modes are related to corresponding B0 modes by U-spin

symmetry, and are determined by similar amplitudes. Combin-

ing the observables from Bs and B0 modes is a further way

of eliminating hadronic uncertainties and extracting relevant

CKM information [117].

Because of relatively high-momenta for final state particles,

the dominant source of background in e+e− collisions is qq̄

continuum events; sophisticated background suppression tech-

niques exploiting event shape variables are essential for these

analyses. In hadron collisions, the dominant background comes

from QCD or partially reconstructed heavy flavors, and is sim-

ilarly suppressed by a combination of kinematic and isolation

requirements. The results are in general consistent among the

experiments.

BaBar [118] and Belle [119] have observed the decays

B+ → K
0
K+ and B0 → K0K

0
. The world-average branching

fractions are B(B0 → K0K
0
) = (0.96+0.20

−0.18)×10−6 and B(B+ →
K

0
K+) = (1.36± 0.27)× 10−6. These are the first observations

of hadronic b → d transitions, with significance > 5σ for all

four measurements. CP asymmetries have even been measured

for these modes, though with large errors.

Most rare decay modes including B0 → K+π− have contri-

butions from both b → u tree and b → sg penguin processes.

If the size of the two contributions are comparable, the in-

terference between them may result in direct CP violation,

seen experimentally as a charge asymmetry in the decay rate

measurement. BaBar [120], Belle [121], and CDF [115] have

measured the direct CP violating asymmetry in B0 → K+π−

decays. The BaBar and Belle measurements constitute obser-

vation of direct CP violation with a significance of more than

5σ. The world average for this quantity is now rather precise,

−0.098 ± 0.013. There are sum rules [122] that relate the de-

cay rates and decay-rate asymmetries between the four Kπ

charge states. The experimental measurements of the other

three modes are not yet precise enough to test these sum rules.

There is now evidence for direct CP violation in three

other decays: B+ → ρ0K+ [123], B+ → ηK+ [124], and

B0 → ηK∗0 [125]. The significance is typically 3–4σ, though

the significance for the B+ → ηK+ decay is now nearly 5σ

with the recent Belle measurement [124]. In at least the first

two cases, a large direct CP violation might be expected since

the penguin amplitude is suppressed so the tree and penguin

amplitudes may have comparable magnitudes.

The decay B0 → π+π− can be used to extract the CKM

angle α. This is complicated by the presence of significant

contributions from penguin diagrams. An isospin analysis [126]

can be used to untangle the penguin complications. The decay

B0 → π0π0, which is now measured by both BaBar and

Belle [127], is crucial in this analysis. Unfortunately the amount

of penguin pollution in the B → ππ system is rather large. In

the past few years, measurements in the B0 → ρρ system have

produced more precise values of α, since penguin amplitudes are

generally smaller for decays with vector mesons. An important

ingredient in the analysis is the B0 → ρ0ρ0 branching fraction.

The average of measurements from BaBar and Belle [128]

yields a branching fraction of (0.73± 0.28)× 10−6. This is only

3% of the ρ+ρ− branching fraction, much smaller than the

corresponding ratio (∼ 10%) in the ππ system.

The decay B → a1π has been seen by BaBar. An analysis

of the time evolution of this decay [129] together with mea-

surements of other related decays has been used to measure

the CKM angle α [130] in agreement with the more precise

measurements from the ρρ system.
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Since B → ρρ has two vector mesons in the final state, the

CP eigenvalue of the final state depends on the longitudinal

polarization fraction fL for the decay. Therefore, a measurement

of fL is needed to extract the CKM angle α. Both BaBar and

Belle have measured fL for the decays ρ+ρ− [131] and ρ+ρ0 [132]

and in both cases the measurements show fL > 0.9, making a

complete angular analysis unnecessary.

By analyzing the angular distributions of the B decays

to two vector mesons, we can learn a lot about both weak-

and strong-interaction dynamics in B decays. Decays that are

penguin-dominated surprisingly have values of fL near 0.5.

The list of such decays has now grown to include B → φK∗,

B → ρK∗, and B → ωK∗. The reasons for this ”polarization

puzzle” are not fully understood. A detailed description of the

angular analysis of B decays to two vector mesons can be found

in a separate mini-review [133] in this Review .

There has been substantial progress in measurements of

many other rare-B decays. The decay B → η′K stood out

as the largest rare-B decay for many years. The reasons for

the large rate are now largely understood [14,134]. However,

there are now measurements of several 3-body or quasi-3-body

modes with similarly large branching fractions. States seen so

far include Kππ (three charge states) [135], KKK (four charge

states) [136], and K∗ππ (two charged states) [137]. Many of

these analyses now include Dalitz plot treatments with many

intermediate resonances. There has also been an observation

of the decay B+ → K+K−π+ by BaBar [138], noteworthy

because an even number of kaons is typically indicative of

suppressed b → d transitions as discussed above.

Belle [83] and BaBar [84] have found evidence for B+ →
τ+ν; the average branching fraction is (1.14 ± 0.27) × 10−4.

This is somewhat larger than, though consistent with, the value

expected in the SM. This is the first observation of a pure

annihilation decay. A substantial region of parameter space of

charged Higgs mass vs. tanβ is excluded by the measurements

of this mode.

Electroweak penguin decays: More than 20 years have

passed since the CLEO experiment first observed an exclu-

sive radiative b → sγ transition, B → K∗(892)γ [81], thus

providing the first evidence for the one-loop FCNC electro-

magnetic penguin decay. Using much larger data samples, both

Belle and BaBar have updated this analysis [139] with an av-

erage branching fraction B(B0 → K∗0γ) = (43.3 ± 1.5) × 10−6,

and have added several new decay modes such as B → K1γ,

K∗
2(1430)γ, etc. [140]. With a sample of 24 fb−1 at Υ(5S),

Belle observed the radiative penguin decay of Bs → φγ [141].

The decay Bs → φγ was also seen at LHCb with higher

statistics [142]. The two measurements give average branching

fraction of (36 ± 4) × 10−6.

Compared to b → sγ, the b → dγ transitions such as

B → ργ, are suppressed by the small CKM element Vtd. Both

Belle and BaBar have observed these decays [17,18]. The world

average B(B → (ρ, ω)γ) = (1.30 ± 0.23) × 10−6. This can be

used to calculate |Vtd/Vts| [143]; the measured values are

0.233+0.033
−0.032 from BaBar [18] and 0.195+0.025

−0.024 from Belle [17].

The observed radiative penguin branching fractions can

constrain a large class of SM extensions [144]. However, due to

the uncertainties in the hadronization, only the inclusive b → sγ

rate can be reliably compared with theoretical calculations. This

rate can be measured from the endpoint of the inclusive photon

spectrum in B decay. By combining the measurements of B →
Xsγ from CLEO, BaBar, and Belle experiments [145,146,147],

HFAG obtains the new average: B(B → Xsγ) = (3.43 ± 0.21 ±
0.07) × 10−4 [32] for Eγ ≥ 1.6 GeV, which averages over B+

and B0. Consistent but less precise results have been reported

by ALEPH for inclusive b–hadrons produced at the Z, which

includes also small fraction of Bs and Λb hadrons. The measured

branching fraction can be compared to theoretical calculations.

Recent calculations of B(b → sγ) at NNLO level predict the

values of (3.15±0.23)×10−4 [148] and (2.98±0.26)×10−4 [149],

where the latter is calculated requiring Eγ ≥ 1.6 GeV.

The CP asymmetry in b → sγ is extensively studied the-

oretically both in the SM and beyond [150]. According to the

SM, the CP asymmetry in b → sγ is smaller than 1%, but

some non-SM models allow significantly larger CP asymme-

try (∼ 10%) without altering the inclusive branching fraction.

The current world average is ACP = −0.008 ± 0.029, again

dominated by BaBar and Belle [151,146]. In addition to the

CP asymmetry, BaBar also measured the isospin asymmetry

∆0− = −0.01± 0.06 in b → sγ measured using sum of exclusive

decays [152]. Alternative measurement using full reconstruc-

tion of the companion B in the hadronic decay modes yields

consistent, but less precise result [153].

In addition, all three experiments have measured the in-

clusive photon energy spectrum for b → sγ, and by analyzing

the shape of the spectrum they obtain the first and sec-

ond moments for photon energies. Belle has measured these

moments covering the widest range in the photon energy

(1.7 < Eγ < 2.8 GeV) [147]. The measurement by BaBar

has slightly smaller range with lower limit at 1.8 GeV [154].

These results can be used to extract non-perturbative HQET

parameters that are needed for precise determination of the

CKM matrix element Vub.

Additional information on FCNC processes can be obtained

from b → sℓ+ℓ− decays, which are mediated by electroweak

penguin and W -box diagrams. Measurements at Belle and

BaBar suffered from low statistics and therefore they typi-

cally provide average between charged and neutral B mesons

as well as between e+e− and µ+µ− finals states [155,156].

The total branching fraction measured at B-factories for

B → Kℓ+ℓ− is (0.45± 0.04)× 10−6 and for B → K∗(892)ℓ+ℓ−

is (1.05± 0.10)× 10−6. Measurements at B-factories were com-

plemented by CDF [157], which used only muons in the final

state. While precision at CDF was similar to B-factories, it

had access also to Bs → φµ+µ− and Λb → Λµ+µ− decays,

which were observed for the first time [157,158] and confirmed

by LHCb [159,160,161]. B-factory experiments also measured
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the branching fractions for inclusive B → Xsℓ

+ℓ− decays [162],

with an average of (3.66+0.76
−0.77) × 10−6 [163]. In b → sℓ+ℓ−

decays, the angular analysis provides several interesting observ-

ables, which can be studied as function of dilepton invariant

mass squared, q2. While first measurements were done by Belle,

Babar and CDF, real advance of these measurements came

with LHC experiments, where samples available are signifi-

cantly larger than before. The best known of angular observ-

ables is forward-backward asymmetry, which was measured in

B → K∗(892)ℓ+ℓ− by several experiments having access to the

decay [155,164,165,166,167,168] with most precise measurement

coming from LHCb [169]. Measurements of the CP asymme-

tries [156,170,171], the isospin asymmetry [155,156,172] and

several other angular observables [167,173] are possible in this

class of decays. While most of the measurements agree with

the SM, the differential branching fractions, isospin asymmetry

in B → Kµ+µ− and the other angular observable P ′
5 [174]

measured by the LHCb exhibit small tension with the SM ex-

pectation. Although initially the angular analyses were mainly

concentrating on the decay B → K∗(892)ℓ+ℓ−, with large-

statistics samples available at LHC, angular analyses of the

B → Kµ+µ− [175], Bs → φµ+µ− [159] and Λ0
b → Λµ+µ− [161]

decays were also performed, with the results being consistent

with the SM.

With the data samples available at LHC, lepton universality

in b → sℓ+ℓ− can be tested. While in the standard model decays

to eletron-positron and muon pairs are expected to be same

up to small corrections due to different masses of leptons, in

extensions of the SM this does not have to hold. With this aim

the angular analysis of B0 → K∗0e+e− decays was performed

by LHCb at low dilepton invariant masses [176]. Most notable

result on lepton universality test is the ratio of branching

fractions between B+ → K+µ+µ− and B+ → K+e+e− at

LHCb, which shows 2.6σ discrepancy with the SM [177].

Finally the decays B0
(s) → e+e− and µ+µ− are interesting

since they only proceed at second order in weak interactions in

the SM, but may have large contributions from supersymmetric

loops, proportional to (tanβ)6. First limits were published 30

years ago and since then experiments at Tevatron, B-factories

and LHC gradually improved those and effectively excluded

whole models of new physics and significantly constrained

allowed parameter space of others. For the decays to µ+µ−,

Tevatron experiments pushed the limits down to roughly factor

of 5-10 above the SM expectation [178,179]. The long journey

in the search for these decays culminated in 2012, when first

evidence for Bs → µ+µ− decay was seen [180]. Currently

LHCb [181] and CMS [182] observe this decay with significance

between 4 and 5 standard deviations. The measured branching

fraction is (2.9+1.1
−1.0) × 10−9 at LHCb and (3.0+1.0

−0.9) × 10−9

at CMS, both in agreement with the SM expectation. The

combination of the data from CMS and LHCb yields branching

fraction (2.8+0.7
−0.6) × 10−9 for Bs → µ+µ− decay [183]. The

statistical significance of the combined signal is 6.2σ. For the

B0 → µ+µ− decay, combined analysis of CMS and LHCb

data gives branching fraction (3.9+1.6
−1.4) × 10−10 and statistical

significance of 3.2σ. The measured branching fraction for Bs is

compatible at 1.2σ with the SM. For the B0, the measurement

is about 2.2σ above the SM prediction. Recently ATLAS [184]

reported a study of B0 → µ+µ− and B0
s → µ+µ− decays. For

B0 an upper limit on B(B0 → µ+µ−) < 4.2×10−10 is set at 95%

C.L. For B0
s the result is B(B0

s → µ+µ−) = (0.9+1.1
−0.8) × 10−9.

An upper limit B(B0
s → µ+µ−) < 3.0 × 10−9 at 95% CL,

lower than the SM prediction, and in agreement with the

measurement of CMS and LHCb. The limits for the e+e−

modes are: < 2.8 × 10−7 and < 8.3 × 10−8, respectively, for

Bs and B0 [185]. The searches were also performed for lepton

flavour violating decays to two leptons with best limits in e±µ∓

channel, where limits are < 3.7× 10−9 for B0 and < 1.4× 10−8

for Bs, at 95% confidence level [186].

Summary and Outlook: The study of B mesons continues

to be one of the most productive fields in particle physics. With

the two asymmetric B-factory experiments Belle and BaBar,

we now have a combined data sample of well over 1 ab−1.

CP violation has been firmly established in many decays of B

mesons. Evidence for direct CP violation has been observed.

Many rare decays resulting from hadronic b → u transitions and

b → s(d) penguin decays have been observed, and the emerging

pattern is still full of surprises. Despite the remarkable successes

of the B-factory experiments, many fundamental questions in

the flavor sector remain unanswered.

At Fermilab, CDF and D0 each has accumulated about

10 fb−1, which is the equivalent of about 1012 b-hadrons pro-

duced. In spite of the low trigger efficiency of hadronic exper-

iments, a selection of modes have been reconstructed in large

quantities, giving a start to a program of studies on Bs and

b-flavored baryons, in which a first major step has been the

determination of the Bs oscillation frequency.

As Tevatron and B-factories stop their taking data, the

new experiments at the LHC have become very active. The

LHC accelerator performed very well in 2011 and 2012. The

general purpose experiments ATLAS and CMS collected about

25 fb−1 while LHCb collected about 3 fb−1. After two years

of consolidation, the LHC restarted in 2015 and experiments

expect to double their b-hadrons samples during 2016. LHCb,

which is almost fully dedicated to the studies of b- and c-

hadrons, has a data sample that is for many decays larger

than the sum of all previous experiments. Of particular note is

that after many years of search for the decay Bs → µ+µ− the

LHCb and CMS experiments finally observed this decay in the

combined analysis of their data [183].

In addition, the preparation of the next generation high-

luminosity B-factory at KEK is in its final stages with first

physics data taking expected in 2017. The aim to increase

sample to ∼ 50 ab−1 will make it possible to explore the

indirect evidence of new physics beyond the SM in the heavy-

flavor particles (b, c, and τ), in a way that is complementary

to the LHC. In the same time, LHCb Collaboration is working
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on the upgrade of its detector, which should be installed in

2018 and 2019. Aim of the upgrade is to increase flexibility of

trigger, which will allow to significantly increase instantaneous

luminosity and possibly integrate about 50 fb−1 of data.

These experiments promise a rich spectrum of rare and

precise measurements that have the potential to fundamen-

tally affect our understanding of the SM and CP -violating

phenomena.
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A NOTE ON HFAG ACTIVITIES

Revised September 2015 by T. Gershon (University of Warwick)
and A.J. Schwartz (University of Cincinnati)

The Heavy Flavor Averaging Group (HFAG) is an interna-

tional collaboration of physicists from experiments measuring

properties of heavy flavored particles. HFAG calculates for the

HEP community world average values of quantities such as

lifetimes, branching fractions, form factors, mixing parameters,

and CP -violating asymmetries. Most parameters concern de-

cays of B and D mesons and τ leptons, and many are related

to elements of the Cabibbo-Kobayashi-Maskawa (CKM) quark

mixing matrix [1,2].

HFAG was originally formed in 2002 to continue the activi-

ties of the LEP Heavy Flavor Steering group. Since its inception

a wide range of results have become available from increasingly

larger data sets, and consequently HFAG has expanded to

include seven subgroups. These are as follows:

• b-hadron lifetimes and oscillations, including param-

eters of CP violation in b mixing;

• decay-time-dependent CP violation in B decays,

and angles of the CKM Unitarity Triangle;

• semileptonic decays of b-hadrons (B → Xℓν,

ℓ = e, µ, τ), including determinations of the CKM

matrix elements |Vcb| and |Vub|;
• b-hadron decays to hadronic final states containing

c-quarks (open charm and charmonium);

• (rarer) b-hadron decays to final states not contain-

ing c-quarks, including fully hadronic, semileptonic

(B → Xℓℓ, Xνν̄), leptonic, and radiative decays;
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• c-hadron physics including branching fractions, CP -

and T -violating asymmetries, D0–D̄0 mixing, semi-

leptonic decays, and properties of excited D states;

• τ -lepton physics including lepton universality tests,

determination of the CKM matrix element |Vus|,
and searches for lepton flavor violation.

Each subgroup has one or two conveners and typically a half-

dozen members representing experiments currently or recently

making measurements in that area. Most groups contain rep-

resentatives from the Belle, BaBar, and LHCb experiments,

while some groups contain representatives or contacts from

the BESIII, CLEO(c), CDF and DØ experiments. Members of

HFAG are appointed by their respective experimental collabora-

tions. There are two co-leaders of HFAG; these were originally

appointed by the managements of the BaBar and Belle col-

laborations and are now appointed by the managements of

Belle/Belle II and LHCb.

The averaging procedures used by HFAG are similar to

those of the PDG [3], but there are some differences. When

calculating world averages, common input parameters used in

the different analyses are adjusted (rescaled) to common values.

Close communication between representatives of the experi-

ments and HFAG members performing averaging calculations

help ensure that measurement uncertainties, known correla-

tions, and systematic effects are properly accounted for. The

confidence level of the fit is provided to indicate the consistency

of the measurements included in the average. In the case of

obtaining a world average with a small confidence level, i.e., a

large χ2 per degree of freedom, HFAG does not usually scale

the resulting uncertainty as the PDG does. Rather, the sys-

tematic uncertainties of each input measurement are reviewed

with experts from the experiments to better understand the

discrepancy. Unless inconsistencies between the measurements

are found, no correction is made to the calculated uncertainty.

If special treatment is necessary to calculate an average, or in

case an approximation used in an average calculation might not

be sufficiently accurate (e.g., assuming Gaussian errors when

the likelihood function indicates non-Gaussian behavior), a note

is included to describe this treatment.

In general, HFAG uses all publicly available results that

have written documentation such as a journal publication,

preprint or conference note. These include preliminary results

presented at conferences or workshops. However, preliminary

results that remain unpublished for an extended period of time,

or for which no publication is planned, are not included. A

special subset of HFAG world averages are included in the PDG

Listings. For these averages, the standard fitting procedures are

performed but only input measurements that are published or

accepted for publication are used. The averages provided by

HFAG are listed by the PDG as “OUR EVALUATION” with a

corresponding note.

All HFAG world averages and listings of all input measure-

ments are documented in an approximately biennial preprint

posted to the arXiv preprint server; the most recent version is

Ref. 4. The latest results and plots are posted on an extensive

set of webpages that are updated several times per year; these

are available at

http://www.slac.stanford.edu/xorg/hfag .
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tions.See also the B±/B0 ADMIXTURE and B±/B0/B0s /b-baryon AD-MIXTURE se
tions. B± MASSB± MASSB± MASSB± MASSThe �t uses mB+ , (mB0 − mB+), and mB0 to determine mB+ , mB0 ,and the mass di�eren
e.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT5279.31±0.15 OUR FIT5279.31±0.15 OUR FIT5279.31±0.15 OUR FIT5279.31±0.15 OUR FIT Error in
ludes s
ale fa
tor of 1.1.5279.25±0.26 OUR AVERAGE5279.25±0.26 OUR AVERAGE5279.25±0.26 OUR AVERAGE5279.25±0.26 OUR AVERAGE5279.38±0.11±0.33 1 AAIJ 12E LHCB pp at 7 TeV5279.10±0.41±0.36 2 ACOSTA 06 CDF pp at 1.96 TeV5279.1 ±0.4 ±0.4 526 3 CSORNA 00 CLE2 e+ e− → �(4S)5279.1 ±1.7 ±1.4 147 ABE 96B CDF pp at 1.8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •5278.8 ±0.54±2.0 362 ALAM 94 CLE2 e+ e− → �(4S)5278.3 ±0.4 ±2.0 BORTOLETTO92 CLEO e+ e− → �(4S)5280.5 ±1.0 ±2.0 4 ALBRECHT 90J ARG e+ e− → �(4S)5275.8 ±1.3 ±3.0 32 ALBRECHT 87C ARG e+ e− → �(4S)5278.2 ±1.8 ±3.0 12 5 ALBRECHT 87D ARG e+ e− → �(4S)5278.6 ±0.8 ±2.0 BEBEK 87 CLEO e+ e− → �(4S)1Uses B+ → J/ψK+ fully re
onstru
ted de
ays.2Uses ex
lusively re
onstru
ted �nal states 
ontaining a J/ψ → µ+µ− de
ays.3CSORNA 00 uses fully re
onstru
ted 526 B+ → J/ψ (′)K+ events and invariant masseswithout beam 
onstraint.4ALBRECHT 90J assumes 10580 for �(4S) mass. Supersedes ALBRECHT 87C andALBRECHT 87D.5 Found using fully re
onstru
ted de
ays with J/ψ(1S). ALBRECHT 87D assumem�(4S)= 10577 MeV. B± MEAN LIFEB± MEAN LIFEB± MEAN LIFEB± MEAN LIFESee B±/B0/B0s /b-baryon ADMIXTURE se
tion for data on B-hadronmean life averaged over spe
ies of bottom parti
les.\OUR EVALUATION" is an average using res
aled values of thedata listed below. The average and res
aling were performed bythe Heavy Flavor Averaging Group (HFAG) and are des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/. The averaging/res
aling pro-
edure takes into a

ount 
orrelations between the measurements andasymmetri
 lifetime errors.VALUE (10−12 s) EVTS DOCUMENT ID TECN COMMENT1.638±0.004 OUR EVALUATION1.638±0.004 OUR EVALUATION1.638±0.004 OUR EVALUATION1.638±0.004 OUR EVALUATION1.637±0.004±0.003 AAIJ 14E LHCB pp at 7 TeV1.639±0.009±0.009 1 AALTONEN 11 CDF pp at 1.96 TeV1.663±0.023±0.015 2 AALTONEN 11B CDF pp at 1.96 TeV1.635±0.011±0.011 3 ABE 05B BELL e+ e− → �(4S)1.624±0.014±0.018 4 ABDALLAH 04E DLPH e+ e− → Z1.636±0.058±0.025 5 ACOSTA 02C CDF pp at 1.8 TeV1.673±0.032±0.023 6 AUBERT 01F BABR e+ e− → �(4S)1.648±0.049±0.035 7 BARATE 00R ALEP e+ e− → Z
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le ListingsB±1.643±0.037±0.025 8 ABBIENDI 99J OPAL e+ e− → Z1.637±0.058+0.045
−0.043 7 ABE 98Q CDF pp at 1.8 TeV1.66 ±0.06 ±0.03 8 ACCIARRI 98S L3 e+ e− → Z1.66 ±0.06 ±0.05 8 ABE 97J SLD e+ e− → Z1.58 +0.21

−0.18 +0.04
−0.03 94 5 BUSKULIC 96J ALEP e+ e− → Z1.61 ±0.16 ±0.12 7,9 ABREU 95Q DLPH e+ e− → Z1.72 ±0.08 ±0.06 10 ADAM 95 DLPH e+ e− → Z1.52 ±0.14 ±0.09 7 AKERS 95T OPAL e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.695±0.026±0.015 6 ABE 02H BELL Repl. by ABE 05B1.68 ±0.07 ±0.02 5 ABE 98B CDF Repl. by ACOSTA 02C1.56 ±0.13 ±0.06 7 ABE 96C CDF Repl. by ABE 98Q1.58 ±0.09 ±0.03 11 BUSKULIC 96J ALEP e+ e− → Z1.58 ±0.09 ±0.04 7 BUSKULIC 96J ALEP Repl. by BARATE 00R1.70 ±0.09 12 ADAM 95 DLPH e+ e− → Z1.61 ±0.16 ±0.05 148 5 ABE 94D CDF Repl. by ABE 98B1.30 +0.33
−0.29 ±0.16 92 7 ABREU 93D DLPH Sup. by ABREU 95Q1.56 ±0.19 ±0.13 134 10 ABREU 93G DLPH Sup. by ADAM 951.51 +0.30
−0.28 +0.12

−0.14 59 7 ACTON 93C OPAL Sup. by AKERS 95T1.47 +0.22
−0.19 +0.15

−0.14 77 7 BUSKULIC 93D ALEP Sup. by BUSKULIC 96J1Measured mean life using fully re
onstru
ted de
ays (J/ψK(∗)).2Measured using B− → D0π− with D0 → K−π+ events that were sele
ted using asili
on vertex trigger.3Measurement performed using a 
ombined �t of CP-violation, mixing and lifetimes.4Measurement performed using an in
lusive re
onstru
tion and B 
avor identi�
ationte
hnique.5Measured mean life using fully re
onstru
ted de
ays.6 Events are sele
ted in whi
h one B meson is fully re
onstru
ted while the se
ond B mesonis re
onstru
ted in
lusively.7Data analyzed using D /D∗ ℓX event verti
es.8Data analyzed using 
harge of se
ondary vertex.9ABREU 95Q assumes B(B0 → D∗∗− ℓ+ νℓ) = 3.2 ± 1.7%.10Data analyzed using vertex-
harge te
hnique to tag B 
harge.11Combined result of D/D∗ ℓX analysis and fully re
onstru
ted B analysis.12Combined ABREU 95Q and ADAM 95 result.
τB+/τB−τB+/τB−τB+/τB−τB+/τB−VALUE DOCUMENT ID TECN COMMENT1.002±0.004±0.0021.002±0.004±0.0021.002±0.004±0.0021.002±0.004±0.002 1 AAIJ 14E LHCB pp at 7 TeV1Measured using B± → J/ψK± de
ays.B+ DECAY MODESB+ DECAY MODESB+ DECAY MODESB+ DECAY MODESB− modes are 
harge 
onjugates of the modes below. Modes whi
h do notidentify the 
harge state of the B are listed in the B±/B0 ADMIXTUREse
tion.The bran
hing fra
tions listed below assume 50% B0B0 and 50% B+B−produ
tion at the �(4S). We have attempted to bring older measurementsup to date by res
aling their assumed �(4S) produ
tion ratio to 50:50and their assumed D, Ds , D∗, and ψ bran
hing ratios to 
urrent valueswhenever this would a�e
t our averages and best limits signi�
antly.Indentation is used to indi
ate a sub
hannel of a previous rea
tion. Allresonant sub
hannels have been 
orre
ted for resonan
e bran
hing fra
-tions to the �nal state so the sum of the sub
hannel bran
hing fra
tions
an ex
eed that of the �nal state.For in
lusive bran
hing fra
tions, e.g., B → D± anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one. S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modes�1 ℓ+νℓ anything [a℄ ( 10.99 ± 0.28 ) %�2 e+νe X
 ( 10.8 ± 0.4 ) %�3 D ℓ+νℓ anything ( 9.8 ± 0.7 ) %�4 D0 ℓ+νℓ [a℄ ( 2.27 ± 0.11 ) %�5 D0 τ+ ντ ( 7.7 ± 2.5 )× 10−3�6 D∗(2007)0 ℓ+νℓ [a℄ ( 5.69 ± 0.19 ) %�7 D∗(2007)0 τ+ ντ ( 1.88 ± 0.20 ) %�8 D−π+ ℓ+νℓ ( 4.2 ± 0.5 )× 10−3�9 D∗0(2420)0 ℓ+νℓ, D∗00 →D−π+ ( 2.5 ± 0.5 )× 10−3�10 D∗2(2460)0 ℓ+νℓ, D∗02 →D−π+ ( 1.53 ± 0.16 )× 10−3�11 D(∗) nπℓ+ νℓ (n ≥ 1) ( 1.87 ± 0.26 ) %�12 D∗−π+ ℓ+νℓ ( 6.1 ± 0.6 )× 10−3�13 D1(2420)0 ℓ+νℓ, D01 →D∗−π+ ( 3.03 ± 0.20 )× 10−3

�14 D ′1(2430)0 ℓ+νℓ, D ′01 →D∗−π+ ( 2.7 ± 0.6 )× 10−3�15 D∗2(2460)0 ℓ+νℓ, D∗02 →D∗−π+ ( 1.01 ± 0.24 )× 10−3 S=2.0�16 D0π+π− ℓ+νℓ ( 1.6 ± 0.4 )× 10−3�17 D∗0π+π− ℓ+νℓ ( 8 ± 5 )× 10−4�18 D(∗)−s K+ ℓ+νℓ ( 6.1 ± 1.0 )× 10−4�19 D−s K+ ℓ+νℓ ( 3.0 + 1.4
− 1.2 )× 10−4�20 D∗−s K+ ℓ+νℓ ( 2.9 ± 1.9 )× 10−4�21 π0 ℓ+νℓ ( 7.80 ± 0.27 )× 10−5�22 π0 e+ νe�23 ηℓ+νℓ ( 3.8 ± 0.6 )× 10−5�24 η′ ℓ+νℓ ( 2.3 ± 0.8 )× 10−5�25 ωℓ+νℓ [a℄ ( 1.19 ± 0.09 )× 10−4�26 ωµ+νµ�27 ρ0 ℓ+νℓ [a℄ ( 1.58 ± 0.11 )× 10−4�28 pp ℓ+νℓ ( 5.8 + 2.6
− 2.3 )× 10−6�29 ppµ+νµ < 8.5 × 10−6 CL=90%�30 ppe+νe ( 8.2 + 4.0
− 3.3 )× 10−6�31 e+νe < 9.8 × 10−7 CL=90%�32 µ+νµ < 1.0 × 10−6 CL=90%�33 τ+ ντ ( 1.09 ± 0.24 )× 10−4 S=1.2�34 ℓ+νℓγ < 3.5 × 10−6 CL=90%�35 e+νe γ < 6.1 × 10−6 CL=90%�36 µ+νµ γ < 3.4 × 10−6 CL=90%In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modes�37 D0X ( 8.6 ± 0.7 ) %�38 D0X ( 79 ± 4 ) %�39 D+X ( 2.5 ± 0.5 ) %�40 D−X ( 9.9 ± 1.2 ) %�41 D+s X ( 7.9 + 1.4
− 1.3 ) %�42 D−s X ( 1.10 + 0.40
− 0.32 ) %�43 �+
 X ( 2.1 + 0.9
− 0.6 ) %�44 �−
 X ( 2.8 + 1.1
− 0.9 ) %�45 
 X ( 97 ± 4 ) %�46 
 X ( 23.4 + 2.2
− 1.8 ) %�47 
 /
 X (120 ± 6 ) %D, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modes�48 D0π+ ( 4.80 ± 0.15 )× 10−3�49 DCP(+1)π+ [b℄ ( 2.19 ± 0.24 )× 10−3�50 DCP(−1)π+ [b℄ ( 2.1 ± 0.4 )× 10−3�51 D0 ρ+ ( 1.34 ± 0.18 ) %�52 D0K+ ( 3.69 ± 0.17 )× 10−4�53 DCP(+1)K+ [b℄ ( 1.91 ± 0.14 )× 10−4�54 DCP(−1)K+ [b℄ ( 1.99 ± 0.19 )× 10−4�55 [K−π+ ℄DK+ [
℄ < 2.8 × 10−7 CL=90%�56 [K+π− ℄DK+ [
℄ < 1.8 × 10−5 CL=90%�57 [K−π+π0 ℄DK+ seen�58 [K+π−π0 ℄DK+ seen�59 [K−π+π+π− ℄DK+ seen�60 [K+π−π+π− ℄DK+ seen�61 [K−π+ ℄DK∗(892)+ [
℄�62 [K+π− ℄DK∗(892)+ [
℄�63 [K−π+ ℄D π+ [
℄ ( 6.3 ± 1.1 )× 10−7�64 [K+π− ℄D π+ ( 1.68 ± 0.31 )× 10−4�65 [K−π+π0 ℄D π+ seen�66 [K+π−π0 ℄D π+ seen�67 [K−π+π+π− ℄D π+ seen�68 [K+π−π+π− ℄D π+ seen�69 [K−π+ ℄(D π)π+�70 [K+π− ℄(D π)π+�71 [K−π+ ℄(D γ)π+�72 [K+π− ℄(D γ)π+�73 [K−π+ ℄(D π)K+�74 [K+π− ℄(D π)K+�75 [K−π+ ℄(D γ)K+�76 [K+π− ℄(D γ)K+
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le ListingsB±�77 [π+π−π0 ℄DK− ( 4.6 ± 0.9 )× 10−6�78 [K0S K+π− ℄DK+ seen�79 [K0S K−π+ ℄DK+ seen�80 [K∗(892)+K− ℄DK+ seen�81 [K0S K−π+ ℄D π+ seen�82 [K∗(892)+K− ℄D π+ seen�83 [K0S K+π− ℄D π+ seen�84 [K∗(892)−K+ ℄D π+ seen�85 [K+K−π0 ℄DK+�86 [K+K−π0 ℄D π+�87 [π+π−π0 ℄DK+�88 [π+π−π0 ℄D π+�89 D0K∗(892)+ ( 5.3 ± 0.4 )× 10−4�90 DCP (−1)K∗(892)+ [b℄ ( 2.7 ± 0.8 )× 10−4�91 DCP (+1)K∗(892)+ [b℄ ( 5.8 ± 1.1 )× 10−4�92 D0K+π+π− ( 5.4 ± 2.2 )× 10−4�93 [K+π− ℄DK+π−π+�94 [K−π+ ℄DK+π−π+�95 DCP (+1)K+π−π+�96 D0K+K0 ( 5.5 ± 1.6 )× 10−4�97 D0K+K∗(892)0 ( 7.5 ± 1.7 )× 10−4�98 D0π+π+π− ( 5.7 ± 2.2 )× 10−3 S=3.6�99 [K−π+ ℄D π+π−π+�100 D0π+π+π− nonresonant ( 5 ± 4 )× 10−3�101 D0π+ ρ0 ( 4.2 ± 3.0 )× 10−3�102 D0 a1(1260)+ ( 4 ± 4 )× 10−3�103 D0ωπ+ ( 4.1 ± 0.9 )× 10−3�104 D∗(2010)−π+π+ ( 1.35 ± 0.22 )× 10−3�105 D1(2420)0π+, D01 →D∗(2010)−π+ ( 5.3 ± 2.3 )× 10−4�106 D−π+π+ ( 1.07 ± 0.05 )× 10−3�107 D−K+π+ ( 7.7 ± 0.5 )× 10−5�108 D∗0(2400)0K+, D∗00 →D−π+ ( 6.1 ± 2.4 )× 10−4�109 D∗1(2760)0K+, D∗01 →D−π+ ( 3.6 ± 1.2 )× 10−4�110 D∗2(2460)0K+, D∗02 →D−π+ ( 2.32 ± 0.23 )× 10−3�111 D+K0 < 2.9 × 10−6 CL=90%�112 D+K∗0 < 1.8 × 10−6 CL=90%�113 D+K∗0 < 1.4 × 10−6 CL=90%�114 D∗(2007)0π+ ( 5.18 ± 0.26 )× 10−3�115 D∗0
CP (+1)π+ [d℄ ( 2.9 ± 0.7 )× 10−3�116 D∗0
CP (−1)π+ [d℄ ( 2.6 ± 1.0 )× 10−3�117 D∗(2007)0ωπ+ ( 4.5 ± 1.2 )× 10−3�118 D∗(2007)0 ρ+ ( 9.8 ± 1.7 )× 10−3�119 D∗(2007)0K+ ( 4.20 ± 0.34 )× 10−4�120 D∗0
CP (+1)K+ [d℄ ( 2.8 ± 0.4 )× 10−4�121 D∗0
CP (−1)K+ [d℄ ( 2.31 ± 0.33 )× 10−4�122 D∗(2007)0K∗(892)+ ( 8.1 ± 1.4 )× 10−4�123 D∗(2007)0K+K0 < 1.06 × 10−3 CL=90%�124 D∗(2007)0K+K∗(892)0 ( 1.5 ± 0.4 )× 10−3�125 D∗(2007)0π+π+π− ( 1.03 ± 0.12 ) %�126 D∗(2007)0 a1(1260)+ ( 1.9 ± 0.5 ) %�127 D∗(2007)0π−π+π+π0 ( 1.8 ± 0.4 ) %�128 D∗0 3π+2π− ( 5.7 ± 1.2 )× 10−3�129 D∗(2010)+π0 < 3.6 × 10−6�130 D∗(2010)+K0 < 9.0 × 10−6 CL=90%�131 D∗(2010)−π+π+π0 ( 1.5 ± 0.7 ) %�132 D∗(2010)−π+π+π+π− ( 2.6 ± 0.4 )× 10−3�133 D∗∗0π+ [e℄ ( 5.9 ± 1.3 )× 10−3�134 D∗1(2420)0π+ ( 1.5 ± 0.6 )× 10−3 S=1.3�135 D1(2420)0π+× B(D01 →D0π+π−) ( 2.5 + 1.6

− 1.4 )× 10−4 S=4.0�136 D1(2420)0π+× B(D01 →D0π+π− (nonresonant)) ( 2.3 ± 1.0 )× 10−4�137 D∗2(2462)0π+
× B(D∗2(2462)0 → D−π+) ( 3.5 ± 0.4 )× 10−4�138 D∗2(2462)0π+×B(D∗02 →D0π−π+) ( 2.3 ± 1.1 )× 10−4�139 D∗2(2462)0π+×B(D∗02 →D0π−π+ (nonresonant)) < 1.7 × 10−4 CL=90%

�140 D∗2(2462)0π+×B(D∗02 →D∗(2010)−π+) ( 2.2 ± 1.1 )× 10−4�141 D∗0(2400)0π+
× B(D∗0(2400)0 → D−π+) ( 6.4 ± 1.4 )× 10−4�142 D1(2421)0π+
× B(D1(2421)0 → D∗−π+) ( 6.8 ± 1.5 )× 10−4�143 D∗2(2462)0π+
× B(D∗2(2462)0 → D∗−π+) ( 1.8 ± 0.5 )× 10−4�144 D ′1(2427)0π+
× B(D ′1(2427)0 → D∗−π+) ( 5.0 ± 1.2 )× 10−4�145 D1(2420)0π+×B(D01 →D∗0π+π−) < 6 × 10−6 CL=90%�146 D∗1(2420)0 ρ+ < 1.4 × 10−3 CL=90%�147 D∗2(2460)0π+ < 1.3 × 10−3 CL=90%�148 D∗2(2460)0π+×B(D∗02 →D∗0π+π−) < 2.2 × 10−5 CL=90%�149 D∗2(2460)0 ρ+ < 4.7 × 10−3 CL=90%�150 D0D+s ( 9.0 ± 0.9 )× 10−3�151 D∗s0(2317)+D0, D∗+s0 →D+s π0 ( 7.9 + 1.5

− 1.3 )× 10−4�152 Ds0(2317)+D0×B(Ds0(2317)+ → D∗+s γ) < 7.6 × 10−4 CL=90%�153 Ds0(2317)+D∗(2007)0×B(Ds0(2317)+ → D+s π0) ( 9 ± 7 )× 10−4�154 DsJ (2457)+D0 ( 3.1 + 1.0
− 0.9 )× 10−3�155 DsJ (2457)+D0×B(DsJ (2457)+ → D+s γ) ( 4.6 + 1.3
− 1.1 )× 10−4�156 DsJ (2457)+D0×B(DsJ (2457)+ →D+s π+π−) < 2.2 × 10−4 CL=90%�157 DsJ (2457)+D0×B(DsJ (2457)+ → D+s π0) < 2.7 × 10−4 CL=90%�158 DsJ (2457)+D0×B(DsJ (2457)+ → D∗+s γ) < 9.8 × 10−4 CL=90%�159 DsJ (2457)+D∗(2007)0 ( 1.20 ± 0.30 ) %�160 DsJ (2457)+D∗(2007)0×B(DsJ (2457)+ → D+s γ) ( 1.4 + 0.7
− 0.6 )× 10−3�161 D0Ds1(2536)+×B(Ds1(2536)+ →D∗(2007)0K+ +D∗(2010)+K0) ( 4.0 ± 1.0 )× 10−4�162 D0Ds1(2536)+×B(Ds1(2536)+ →D∗(2007)0K+) ( 2.2 ± 0.7 )× 10−4�163 D∗(2007)0Ds1(2536)+×B(Ds1(2536)+ →D∗(2007)0K+) ( 5.5 ± 1.6 )× 10−4�164 D0Ds1(2536)+×B(Ds1(2536)+ → D∗+K0) ( 2.3 ± 1.1 )× 10−4�165 D0DsJ (2700)+×B(DsJ (2700)+ → D0K+) ( 5.6 ± 1.8 )× 10−4 S=1.7�166 D∗0Ds1(2536)+, D+s1 →D∗+K0 ( 3.9 ± 2.6 )× 10−4�167 D0DsJ (2573)+, D+

sJ →D0K+ ( 8 ±15 )× 10−6�168 D∗0DsJ (2573), D+
sJ → D0K+ < 2 × 10−4 CL=90%�169 D∗(2007)0DsJ (2573), D+

sJ →D0K+ < 5 × 10−4 CL=90%�170 D0D∗+s ( 7.6 ± 1.6 )× 10−3�171 D∗(2007)0D+s ( 8.2 ± 1.7 )× 10−3�172 D∗(2007)0D∗+s ( 1.71 ± 0.24 ) %�173 D(∗)+s D∗∗0 ( 2.7 ± 1.2 ) %�174 D∗(2007)0D∗(2010)+ ( 8.1 ± 1.7 )× 10−4�175 D0D∗(2010)+ +D∗(2007)0D+ < 1.30 % CL=90%�176 D0D∗(2010)+ ( 3.9 ± 0.5 )× 10−4�177 D0D+ ( 3.8 ± 0.4 )× 10−4�178 D0D+K0 ( 1.55 ± 0.21 )× 10−3�179 D+D∗(2007)0 ( 6.3 ± 1.7 )× 10−4�180 D∗(2007)0D+K0 ( 2.1 ± 0.5 )× 10−3
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le ListingsB±�181 D0D∗(2010)+K0 ( 3.8 ± 0.4 )× 10−3�182 D∗(2007)0D∗(2010)+K0 ( 9.2 ± 1.2 )× 10−3�183 D0D0K+ ( 1.45 ± 0.33 )× 10−3 S=2.6�184 D∗(2007)0D0K+ ( 2.26 ± 0.23 )× 10−3�185 D0D∗(2007)0K+ ( 6.3 ± 0.5 )× 10−3�186 D∗(2007)0D∗(2007)0K+ ( 1.12 ± 0.13 ) %�187 D−D+K+ ( 2.2 ± 0.7 )× 10−4�188 D−D∗(2010)+K+ ( 6.3 ± 1.1 )× 10−4�189 D∗(2010)−D+K+ ( 6.0 ± 1.3 )× 10−4�190 D∗(2010)−D∗(2010)+K+ ( 1.32 ± 0.18 )× 10−3�191 (D+D∗ )(D+D∗ )K ( 4.05 ± 0.30 ) %�192 D+s π0 ( 1.6 ± 0.5 )× 10−5�193 D∗+s π0 < 2.6 × 10−4 CL=90%�194 D+s η < 4 × 10−4 CL=90%�195 D∗+s η < 6 × 10−4 CL=90%�196 D+s ρ0 < 3.0 × 10−4 CL=90%�197 D∗+s ρ0 < 4 × 10−4 CL=90%�198 D+s ω < 4 × 10−4 CL=90%�199 D∗+s ω < 6 × 10−4 CL=90%�200 D+s a1(1260)0 < 1.8 × 10−3 CL=90%�201 D∗+s a1(1260)0 < 1.3 × 10−3 CL=90%�202 D+s φ ( 1.7 + 1.2
− 0.7 )× 10−6�203 D∗+s φ < 1.2 × 10−5 CL=90%�204 D+s K0 < 8 × 10−4 CL=90%�205 D∗+s K0 < 9 × 10−4 CL=90%�206 D+s K∗(892)0 < 4.4 × 10−6 CL=90%�207 D+s K∗0 < 3.5 × 10−6 CL=90%�208 D∗+s K∗(892)0 < 3.5 × 10−4 CL=90%�209 D−s π+K+ ( 1.80 ± 0.22 )× 10−4�210 D∗−s π+K+ ( 1.45 ± 0.24 )× 10−4�211 D−s π+K∗(892)+ < 5 × 10−3 CL=90%�212 D∗−s π+K∗(892)+ < 7 × 10−3 CL=90%�213 D−s K+K+ ( 9.7 ± 2.1 )× 10−6�214 D∗−s K+K+ < 1.5 × 10−5 CL=90%Charmonium modesCharmonium modesCharmonium modesCharmonium modes�215 η
 K+ ( 9.6 ± 1.1 )× 10−4�216 η
 K+, η
 → K0S K∓π± ( 2.7 ± 0.6 )× 10−5�217 η
 K∗(892)+ ( 1.0 + 0.5
− 0.4 )× 10−3�218 η
 K+π+π− < 3.9 × 10−4 CL=90%�219 η
 K+ω(782) < 5.3 × 10−4 CL=90%�220 η
 K+η < 2.2 × 10−4 CL=90%�221 η
 K+π0 < 6.2 × 10−5 CL=90%�222 η
 (2S)K+ ( 3.4 ± 1.8 )× 10−4�223 η
 (2S)K+, η
 → pp < 1.06 × 10−7 CL=95%�224 η
 (2S)K+, η
 → K0S K∓π± ( 3.4 + 2.3
− 1.6 )× 10−6�225 h
 (1P)K+, h
 → J/ψπ+π− < 3.4 × 10−6 CL=90%�226 X (3730)0K+, X 0 → η
 η < 4.6 × 10−5 CL=90%�227 X (3730)0K+, X 0 → η
 π0 < 5.7 × 10−6 CL=90%�228 X (3872)K+ < 3.2 × 10−4 CL=90%�229 X (3872)K+, X → pp < 1.7 × 10−8 CL=95%�230 X (3872)K+, X →J/ψπ+π−

( 8.6 ± 0.8 )× 10−6�231 X (3872)K+, X → J/ψγ ( 2.1 ± 0.4 )× 10−6 S=1.1�232 X (3872)K+, X → ψ(2S)γ ( 4 ± 4 )× 10−6 S=2.5�233 X (3872)K+, X →J/ψ(1S)η < 7.7 × 10−6 CL=90%�234 X (3872)K+, X → D0D0 < 6.0 × 10−5 CL=90%�235 X (3872)K+, X → D+D− < 4.0 × 10−5 CL=90%�236 X (3872)K+, X → D0D0π0 ( 1.0 ± 0.4 )× 10−4�237 X (3872)K+, X → D∗0D0 ( 8.5 ± 2.6 )× 10−5 S=1.4�238 X (3872)0K+, X 0 →
η
 π+π−

< 3.0 × 10−5 CL=90%�239 X (3872)0K+, X 0 →
η
 ω(782) < 6.9 × 10−5 CL=90%�240 X (3915)0K+, X 0 → η
 η < 3.3 × 10−5 CL=90%�241 X (3915)0K+, X 0 → η
 π0 < 1.8 × 10−5 CL=90%�242 X (4014)0K+, X 0 → η
 η < 3.9 × 10−5 CL=90%�243 X (4014)0K+, X 0 → η
 π0 < 1.2 × 10−5 CL=90%�244 X (3900)0K+, X 0 → η
 π+π− < 4.7 × 10−5 CL=90%�245 X (4020)0K+, X 0 → η
 π+π− < 1.6 × 10−5 CL=90%

�246 X (3872)K∗(892)+, X →J/ψγ
< 4.8 × 10−6 CL=90%�247 X (3872)K∗(892)+, X →

ψ(2S)γ < 2.8 × 10−5 CL=90%�248 X (3872)+K0, X+ →J/ψ(1S)π+π0 [f ℄ < 6.1 × 10−6 CL=90%�249 X (3872)K0π+, X →J/ψ(1S)π+π−
( 1.06 ± 0.31 )× 10−5�250 X (4430)+K0, X+ → J/ψπ+ < 1.5 × 10−5 CL=95%�251 X (4430)+K0, X+ →

ψ(2S)π+ < 4.7 × 10−5 CL=95%�252 X (4260)0K+, X 0 →J/ψπ+π−
< 2.9 × 10−5 CL=95%�253 X (3915)K+, X → J/ψγ < 1.4 × 10−5 CL=90%�254 X (3930)0K+, X 0 → J/ψγ < 2.5 × 10−6 CL=90%�255 J/ψ(1S)K+ ( 1.026± 0.031)× 10−3�256 J/ψ(1S)K0π+�257 J/ψ(1S)K+π+π− ( 8.1 ± 1.3 )× 10−4 S=2.5�258 J/ψ(1S)K+K−K+ ( 3.37 ± 0.29 )× 10−5�259 X (3915)K+, X → pp < 7.1 × 10−8 CL=95%�260 J/ψ(1S)K∗(892)+ ( 1.43 ± 0.08 )× 10−3�261 J/ψ(1S)K (1270)+ ( 1.8 ± 0.5 )× 10−3�262 J/ψ(1S)K (1400)+ < 5 × 10−4 CL=90%�263 J/ψ(1S)ηK+ ( 1.24 ± 0.14 )× 10−4�264 X c−odd(3872)K+,X c−odd → J/ψη
< 3.8 × 10−6 CL=90%�265 ψ(4160)K+, ψ → J/ψη < 7.4 × 10−6 CL=90%�266 J/ψ(1S)η′K+ < 8.8 × 10−5 CL=90%�267 J/ψ(1S)φK+ ( 5.0 ± 0.4 )× 10−5�268 X (4140)K+, X →J/ψ(1S)φ ( 10 ± 4 )× 10−6�269 X (4274)K+, X →J/ψ(1S)φ < 4 × 10−6 CL=90%�270 J/ψ(1S)ωK+ ( 3.20 + 0.60

− 0.32 )× 10−4�271 X (3872)K+, X → J/ψω ( 6.0 ± 2.2 )× 10−6�272 X (3915)K+, X → J/ψω ( 3.0 + 0.9
− 0.7 )× 10−5�273 J/ψ(1S)π+ ( 4.1 ± 0.4 )× 10−5 S=2.6�274 J/ψ(1S)ρ+ ( 5.0 ± 0.8 )× 10−5�275 J/ψ(1S)π+π0 nonresonant < 7.3 × 10−6 CL=90%�276 J/ψ(1S)a1(1260)+ < 1.2 × 10−3 CL=90%�277 J/ψppπ+ < 5.0 × 10−7 CL=90%�278 J/ψ(1S)p� ( 1.18 ± 0.31 )× 10−5�279 J/ψ(1S)�0p < 1.1 × 10−5 CL=90%�280 J/ψ(1S)D+ < 1.2 × 10−4 CL=90%�281 J/ψ(1S)D0π+ < 2.5 × 10−5 CL=90%�282 ψ(2S)π+ ( 2.44 ± 0.30 )× 10−5�283 ψ(2S)K+ ( 6.26 ± 0.24 )× 10−4�284 ψ(2S)K∗(892)+ ( 6.7 ± 1.4 )× 10−4 S=1.3�285 ψ(2S)K0π+�286 ψ(2S)K+π+π− ( 4.3 ± 0.5 )× 10−4�287 ψ(3770)K+ ( 4.9 ± 1.3 )× 10−4�288 ψ(3770)K+,ψ → D0D0 ( 1.5 ± 0.5 )× 10−4 S=1.4�289 ψ(3770)K+,ψ → D+D− ( 9.4 ± 3.5 )× 10−5�290 ψ(4040)K+ < 1.3 × 10−4 CL=90%�291 ψ(4160)K+ ( 5.1 ± 2.7 )× 10−4�292 ψ(4160)K+, ψ → D0D0 ( 8 ± 5 )× 10−5�293 χ
0π+, χ
0 → π+π− < 1 × 10−7 CL=90%�294 χ
0(1P)K+ ( 1.50 + 0.15
− 0.14 )× 10−4�295 χ
0K∗(892)+ < 2.1 × 10−4 CL=90%�296 χ
2π+, χ
2 → π+π− < 1 × 10−7 CL=90%�297 χ
2K+ ( 1.1 ± 0.4 )× 10−5�298 χ
2K∗(892)+ < 1.2 × 10−4 CL=90%�299 χ
1(1P)π+ ( 2.2 ± 0.5 )× 10−5�300 χ
1(1P)K+ ( 4.79 ± 0.23 )× 10−4�301 χ
1(1P)K0π+�302 χ
1(1P)K∗(892)+ ( 3.0 ± 0.6 )× 10−4 S=1.1�303 h
 (1P)K+ < 3.8 × 10−5 CL=90%�304 h
 (1P)K+, h
 → pp < 6.4 × 10−8 CL=95%K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modes�305 K0π+ ( 2.37 ± 0.08 )× 10−5�306 K+π0 ( 1.29 ± 0.05 )× 10−5�307 η′K+ ( 7.06 ± 0.25 )× 10−5�308 η′K∗(892)+ ( 4.8 + 1.8
− 1.6 )× 10−6
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le ListingsB±�309 η′K∗0(1430)+ ( 5.2 ± 2.1 )× 10−6�310 η′K∗2(1430)+ ( 2.8 ± 0.5 )× 10−5�311 ηK+ ( 2.4 ± 0.4 )× 10−6 S=1.7�312 ηK∗(892)+ ( 1.93 ± 0.16 )× 10−5�313 ηK∗0(1430)+ ( 1.8 ± 0.4 )× 10−5�314 ηK∗2(1430)+ ( 9.1 ± 3.0 )× 10−6�315 η(1295)K+× B(η(1295) →
ηππ) ( 2.9 + 0.8

− 0.7 )× 10−6�316 η(1405)K+× B(η(1405) →
ηππ) < 1.3 × 10−6 CL=90%�317 η(1405)K+× B(η(1405) →K∗K ) < 1.2 × 10−6 CL=90%�318 η(1475)K+× B(η(1475) →K∗K ) ( 1.38 + 0.21

− 0.18 )× 10−5�319 f1(1285)K+ < 2.0 × 10−6 CL=90%�320 f1(1420)K+× B(f1(1420) →
ηππ) < 2.9 × 10−6 CL=90%�321 f1(1420)K+× B(f1(1420) →K∗K ) < 4.1 × 10−6 CL=90%�322 φ(1680)K+× B(φ(1680) →K∗K ) < 3.4 × 10−6 CL=90%�323 f0(1500)K+ ( 3.7 ± 2.2 )× 10−6�324 ωK+ ( 6.5 ± 0.4 )× 10−6�325 ωK∗(892)+ < 7.4 × 10−6 CL=90%�326 ω (Kπ)∗+0 ( 2.8 ± 0.4 )× 10−5�327 ωK∗0(1430)+ ( 2.4 ± 0.5 )× 10−5�328 ωK∗2(1430)+ ( 2.1 ± 0.4 )× 10−5�329 a0(980)+K0×B(a0(980)+ →
ηπ+) < 3.9 × 10−6 CL=90%�330 a0(980)0K+×B(a0(980)0 →
ηπ0) < 2.5 × 10−6 CL=90%�331 K∗(892)0π+ ( 1.01 ± 0.09 )× 10−5�332 K∗(892)+π0 ( 8.2 ± 1.9 )× 10−6�333 K+π−π+ ( 5.10 ± 0.29 )× 10−5�334 K+π−π+nonresonant ( 1.63 + 0.21

− 0.15 )× 10−5�335 ω(782)K+ ( 6 ± 9 )× 10−6�336 K+ f0(980)× B(f0(980) →
π+π−) ( 9.4 + 1.0

− 1.2 )× 10−6�337 f2(1270)0K+ ( 1.07 ± 0.27 )× 10−6�338 f0(1370)0K+×B(f0(1370)0 → π+π−) < 1.07 × 10−5 CL=90%�339 ρ0(1450)K+× B(ρ0(1450) →
π+π−) < 1.17 × 10−5 CL=90%�340 f ′2(1525)K+× B(f ′2(1525) →
π+π−) < 3.4 × 10−6 CL=90%�341 K+ρ0 ( 3.7 ± 0.5 )× 10−6�342 K∗0(1430)0π+ ( 4.5 + 0.9

− 0.7 )× 10−5 S=1.5�343 K∗2(1430)0π+ ( 5.6 + 2.2
− 1.5 )× 10−6�344 K∗(1410)0π+ < 4.5 × 10−5 CL=90%�345 K∗(1680)0π+ < 1.2 × 10−5 CL=90%�346 K+π0π0 ( 1.62 ± 0.19 )× 10−5�347 f0(980)K+× B(f0 → π0π0) ( 2.8 ± 0.8 )× 10−6�348 K−π+π+ < 9.5 × 10−7 CL=90%�349 K−π+π+nonresonant < 5.6 × 10−5 CL=90%�350 K1(1270)0π+ < 4.0 × 10−5 CL=90%�351 K1(1400)0π+ < 3.9 × 10−5 CL=90%�352 K0π+π0 < 6.6 × 10−5 CL=90%�353 K0ρ+ ( 8.0 ± 1.5 )× 10−6�354 K∗(892)+π+π− ( 7.5 ± 1.0 )× 10−5�355 K∗(892)+ρ0 ( 4.6 ± 1.1 )× 10−6�356 K∗(892)+ f0(980) ( 4.2 ± 0.7 )× 10−6�357 a+1 K0 ( 3.5 ± 0.7 )× 10−5�358 b+1 K0× B(b+1 → ωπ+) ( 9.6 ± 1.9 )× 10−6�359 K∗(892)0 ρ+ ( 9.2 ± 1.5 )× 10−6�360 K1(1400)+ρ0 < 7.8 × 10−4 CL=90%�361 K∗2(1430)+ρ0 < 1.5 × 10−3 CL=90%�362 b01K+× B(b01 → ωπ0) ( 9.1 ± 2.0 )× 10−6�363 b+1 K∗0× B(b+1 → ωπ+) < 5.9 × 10−6 CL=90%�364 b01K∗+× B(b01 → ωπ0) < 6.7 × 10−6 CL=90%�365 K+K0 ( 1.31 ± 0.17 )× 10−6 S=1.2�366 K0K+π0 < 2.4 × 10−5 CL=90%

�367 K+K0S K0S ( 1.08 ± 0.06 )× 10−5�368 f0(980)K+, f0 → K0S K0S ( 1.47 ± 0.33 )× 10−5�369 f0(1710)K+, f0 → K0S K0S ( 4.8 + 4.0
− 2.6 )× 10−7�370 K+K0S K0S nonresonant ( 2.0 ± 0.4 )× 10−5�371 K0S K0S π+ < 5.1 × 10−7 CL=90%�372 K+K−π+ ( 5.0 ± 0.7 )× 10−6�373 K+K−π+ nonresonant < 7.5 × 10−5 CL=90%�374 K+K∗(892)0 < 1.1 × 10−6 CL=90%�375 K+K∗0(1430)0 < 2.2 × 10−6 CL=90%�376 K+K+π− < 1.6 × 10−7 CL=90%�377 K+K+π− nonresonant < 8.79 × 10−5 CL=90%�378 f ′2(1525)K+ ( 1.8 ± 0.5 )× 10−6 S=1.1�379 K+ fJ (2220)�380 K∗+π+K− < 1.18 × 10−5 CL=90%�381 K∗(892)+K∗(892)0 ( 9.1 ± 2.9 )× 10−7�382 K∗+K+π− < 6.1 × 10−6 CL=90%�383 K+K−K+ ( 3.40 ± 0.14 )× 10−5 S=1.4�384 K+φ ( 8.8 + 0.7
− 0.6 )× 10−6 S=1.1�385 f0(980)K+× B(f0(980) →K+K−) ( 9.4 ± 3.2 )× 10−6�386 a2(1320)K+× B(a2(1320) →K+K−) < 1.1 × 10−6 CL=90%�387 X0(1550)K+×B(X0(1550) → K+K−) ( 4.3 ± 0.7 )× 10−6�388 φ(1680)K+× B(φ(1680) →K+K−) < 8 × 10−7 CL=90%�389 f0(1710)K+× B(f0(1710) →K+K−) ( 1.1 ± 0.6 )× 10−6�390 K+K−K+nonresonant ( 2.38 + 0.28
− 0.50 )× 10−5�391 K∗(892)+K+K− ( 3.6 ± 0.5 )× 10−5�392 K∗(892)+φ ( 10.0 ± 2.0 )× 10−6 S=1.7�393 φ(Kπ)∗+0 ( 8.3 ± 1.6 )× 10−6�394 φK1(1270)+ ( 6.1 ± 1.9 )× 10−6�395 φK1(1400)+ < 3.2 × 10−6 CL=90%�396 φK∗(1410)+ < 4.3 × 10−6 CL=90%�397 φK∗0(1430)+ ( 7.0 ± 1.6 )× 10−6�398 φK∗2(1430)+ ( 8.4 ± 2.1 )× 10−6�399 φK∗2(1770)+ < 1.50 × 10−5 CL=90%�400 φK∗2(1820)+ < 1.63 × 10−5 CL=90%�401 a+1 K∗0 < 3.6 × 10−6 CL=90%�402 K+φφ ( 5.0 ± 1.2 )× 10−6 S=2.3�403 η′ η′K+ < 2.5 × 10−5 CL=90%�404 ωφK+ < 1.9 × 10−6 CL=90%�405 X (1812)K+× B(X → ωφ) < 3.2 × 10−7 CL=90%�406 K∗(892)+γ ( 4.21 ± 0.18 )× 10−5�407 K1(1270)+γ ( 4.3 ± 1.3 )× 10−5�408 ηK+γ ( 7.9 ± 0.9 )× 10−6�409 η′K+γ ( 2.9 + 1.0
− 0.9 )× 10−6�410 φK+ γ ( 2.7 ± 0.4 )× 10−6 S=1.2�411 K+π−π+γ ( 2.76 ± 0.22 )× 10−5 S=1.2�412 K∗(892)0π+ γ ( 2.0 + 0.7
− 0.6 )× 10−5�413 K+ρ0 γ < 2.0 × 10−5 CL=90%�414 K+π−π+γ nonresonant < 9.2 × 10−6 CL=90%�415 K0π+π0 γ ( 4.6 ± 0.5 )× 10−5�416 K1(1400)+γ < 1.5 × 10−5 CL=90%�417 K∗2(1430)+γ ( 1.4 ± 0.4 )× 10−5�418 K∗(1680)+γ < 1.9 × 10−3 CL=90%�419 K∗3(1780)+γ < 3.9 × 10−5 CL=90%�420 K∗4(2045)+γ < 9.9 × 10−3 CL=90%Light un
avored meson modesLight un
avored meson modesLight un
avored meson modesLight un
avored meson modes�421 ρ+γ ( 9.8 ± 2.5 )× 10−7�422 π+π0 ( 5.5 ± 0.4 )× 10−6 S=1.2�423 π+π+π− ( 1.52 ± 0.14 )× 10−5�424 ρ0π+ ( 8.3 ± 1.2 )× 10−6�425 π+ f0(980), f0 → π+π− < 1.5 × 10−6 CL=90%�426 π+ f2(1270) ( 1.6 + 0.7
− 0.4 )× 10−6�427 ρ(1450)0π+, ρ0 → π+π− ( 1.4 + 0.6
− 0.9 )× 10−6�428 f0(1370)π+, f0 → π+π− < 4.0 × 10−6 CL=90%�429 f0(500)π+, f0 → π+π− < 4.1 × 10−6 CL=90%
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le ListingsB±�430 π+π−π+ nonresonant ( 5.3 + 1.5
− 1.1 )× 10−6�431 π+π0π0 < 8.9 × 10−4 CL=90%�432 ρ+π0 ( 1.09 ± 0.14 )× 10−5�433 π+π−π+π0 < 4.0 × 10−3 CL=90%�434 ρ+ρ0 ( 2.40 ± 0.19 )× 10−5�435 ρ+ f0(980), f0 → π+π− < 2.0 × 10−6 CL=90%�436 a1(1260)+π0 ( 2.6 ± 0.7 )× 10−5�437 a1(1260)0π+ ( 2.0 ± 0.6 )× 10−5�438 ωπ+ ( 6.9 ± 0.5 )× 10−6�439 ωρ+ ( 1.59 ± 0.21 )× 10−5�440 ηπ+ ( 4.02 ± 0.27 )× 10−6�441 ηρ+ ( 7.0 ± 2.9 )× 10−6 S=2.8�442 η′π+ ( 2.7 ± 0.9 )× 10−6 S=1.9�443 η′ρ+ ( 9.7 ± 2.2 )× 10−6�444 φπ+ < 1.5 × 10−7 CL=90%�445 φρ+ < 3.0 × 10−6 CL=90%�446 a0(980)0π+, a00 → ηπ0 < 5.8 × 10−6 CL=90%�447 a0(980)+π0, a+0 → ηπ+ < 1.4 × 10−6 CL=90%�448 π+π+π+π−π− < 8.6 × 10−4 CL=90%�449 ρ0 a1(1260)+ < 6.2 × 10−4 CL=90%�450 ρ0 a2(1320)+ < 7.2 × 10−4 CL=90%�451 b01π+, b01 → ωπ0 ( 6.7 ± 2.0 )× 10−6�452 b+1 π0, b+1 → ωπ+ < 3.3 × 10−6 CL=90%�453 π+π+π+π−π−π0 < 6.3 × 10−3 CL=90%�454 b+1 ρ0, b+1 → ωπ+ < 5.2 × 10−6 CL=90%�455 a1(1260)+a1(1260)0 < 1.3 % CL=90%�456 b01 ρ+, b01 → ωπ0 < 3.3 × 10−6 CL=90%Charged parti
le (h±) modesCharged parti
le (h±) modesCharged parti
le (h±) modesCharged parti
le (h±) modesh± = K± or π±�457 h+π0 ( 1.6 + 0.7
− 0.6 )× 10−5�458 ωh+ ( 1.38 + 0.27
− 0.24 )× 10−5�459 h+X 0 (Familon) < 4.9 × 10−5 CL=90%Baryon modesBaryon modesBaryon modesBaryon modes�460 ppπ+ ( 1.62 ± 0.20 )× 10−6�461 ppπ+nonresonant < 5.3 × 10−5 CL=90%�462 ppπ+π+π−�463 ppK+ ( 5.9 ± 0.5 )× 10−6 S=1.5�464 �(1710)++ p, �++ →pK+ [g ℄ < 9.1 × 10−8 CL=90%�465 fJ (2220)K+, fJ → pp [g ℄ < 4.1 × 10−7 CL=90%�466 p�(1520) ( 3.1 ± 0.6 )× 10−7�467 ppK+nonresonant < 8.9 × 10−5 CL=90%�468 ppK∗(892)+ ( 3.6 + 0.8
− 0.7 )× 10−6�469 fJ (2220)K∗+, fJ → pp < 7.7 × 10−7 CL=90%�470 p� < 3.2 × 10−7 CL=90%�471 p�γ ( 2.4 + 0.5
− 0.4 )× 10−6�472 p�π0 ( 3.0 + 0.7
− 0.6 )× 10−6�473 p� (1385)0 < 4.7 × 10−7 CL=90%�474 �+� < 8.2 × 10−7 CL=90%�475 p� γ < 4.6 × 10−6 CL=90%�476 p�π+π− ( 5.9 ± 1.1 )× 10−6�477 p�ρ0 ( 4.8 ± 0.9 )× 10−6�478 p�f2(1270) ( 2.0 ± 0.8 )× 10−6�479 ��π+ < 9.4 × 10−7 CL=90%�480 ��K+ ( 3.4 ± 0.6 )× 10−6�481 ��K∗+ ( 2.2 + 1.2
− 0.9 )× 10−6�482 �0 p < 1.38 × 10−6 CL=90%�483 �++p < 1.4 × 10−7 CL=90%�484 D+ pp < 1.5 × 10−5 CL=90%�485 D∗(2010)+ pp < 1.5 × 10−5 CL=90%�486 D0 ppπ+ ( 3.72 ± 0.27 )× 10−4�487 D∗0ppπ+ ( 3.73 ± 0.32 )× 10−4�488 D− ppπ+π− ( 1.66 ± 0.30 )× 10−4�489 D∗−ppπ+π− ( 1.86 ± 0.25 )× 10−4�490 p�0D0 ( 1.43 ± 0.32 )× 10−5�491 p�0D∗(2007)0 < 5 × 10−5 CL=90%�492 �−
 pπ+ ( 2.2 ± 0.4 )× 10−4 S=2.2�493 �−
 �(1232)++ < 1.9 × 10−5 CL=90%

�494 �−
 �X (1600)++ ( 4.6 ± 0.9 )× 10−5�495 �−
 �X (2420)++ ( 3.7 ± 0.8 )× 10−5�496 (�−
 p)sπ+ [h℄ ( 3.1 ± 0.7 )× 10−5�497 � 
 (2520)0 p < 3 × 10−6 CL=90%�498 � 
 (2800)0 p ( 2.6 ± 0.9 )× 10−5�499 �−
 pπ+π0 ( 1.8 ± 0.6 )× 10−3�500 �−
 pπ+π+π− ( 2.2 ± 0.7 )× 10−3�501 �−
 pπ+π+π−π0 < 1.34 % CL=90%�502 �+
 �−
 K+ ( 6.9 ± 2.2 )× 10−4�503 � 
 (2455)0 p ( 2.9 ± 0.7 )× 10−5�504 � 
 (2455)0 pπ0 ( 3.5 ± 1.1 )× 10−4�505 � 
 (2455)0 pπ−π+ ( 3.5 ± 1.0 )× 10−4�506 � 
 (2455)−− pπ+π+ ( 2.34 ± 0.20 )× 10−4�507 �
 (2593)−/�
 (2625)− pπ+ < 1.9 × 10−4 CL=90%�508 � 0
 �+
 , � 0
 → �+π− ( 2.4 ± 0.9 )× 10−5 S=1.4�509 � 0
 �+
 , � 0
 → �K+π− ( 2.1 ± 0.9 )× 10−5 S=1.5Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)violating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modes�510 π+ ℓ+ ℓ− B1 < 4.9 × 10−8 CL=90%�511 π+ e+ e− B1 < 8.0 × 10−8 CL=90%�512 π+µ+µ− B1 ( 1.79 ± 0.23 )× 10−8�513 π+ ν ν B1 < 9.8 × 10−5 CL=90%�514 K+ ℓ+ ℓ− B1 [a℄ ( 4.51 ± 0.23 )× 10−7 S=1.1�515 K+ e+ e− B1 ( 5.5 ± 0.7 )× 10−7�516 K+µ+µ− B1 ( 4.43 ± 0.24 )× 10−7 S=1.2�517 K+ν ν B1 < 1.6 × 10−5 CL=90%�518 ρ+ν ν B1 < 2.13 × 10−4 CL=90%�519 K∗(892)+ ℓ+ ℓ− B1 [a℄ ( 1.01 ± 0.11 )× 10−6 S=1.1�520 K∗(892)+ e+ e− B1 ( 1.55 + 0.40
− 0.31 )× 10−6�521 K∗(892)+µ+µ− B1 ( 9.6 ± 1.0 )× 10−7�522 K∗(892)+ν ν B1 < 4.0 × 10−5 CL=90%�523 K+π+π−µ+µ− B1 ( 4.4 ± 0.4 )× 10−7�524 φK+µ+µ− B1 ( 7.9 + 2.1
− 1.7 )× 10−8�525 π+ e+µ− LF < 6.4 × 10−3 CL=90%�526 π+ e−µ+ LF < 6.4 × 10−3 CL=90%�527 π+ e±µ∓ LF < 1.7 × 10−7 CL=90%�528 π+ e+ τ− LF < 7.4 × 10−5 CL=90%�529 π+ e− τ+ LF < 2.0 × 10−5 CL=90%�530 π+ e± τ∓ LF < 7.5 × 10−5 CL=90%�531 π+µ+ τ− LF < 6.2 × 10−5 CL=90%�532 π+µ− τ+ LF < 4.5 × 10−5 CL=90%�533 π+µ± τ∓ LF < 7.2 × 10−5 CL=90%�534 K+ e+µ− LF < 9.1 × 10−8 CL=90%�535 K+ e−µ+ LF < 1.3 × 10−7 CL=90%�536 K+ e±µ∓ LF < 9.1 × 10−8 CL=90%�537 K+ e+ τ− LF < 4.3 × 10−5 CL=90%�538 K+ e− τ+ LF < 1.5 × 10−5 CL=90%�539 K+ e± τ∓ LF < 3.0 × 10−5 CL=90%�540 K+µ+ τ− LF < 4.5 × 10−5 CL=90%�541 K+µ− τ+ LF < 2.8 × 10−5 CL=90%�542 K+µ± τ∓ LF < 4.8 × 10−5 CL=90%�543 K∗(892)+ e+µ− LF < 1.3 × 10−6 CL=90%�544 K∗(892)+ e−µ+ LF < 9.9 × 10−7 CL=90%�545 K∗(892)+ e±µ∓ LF < 1.4 × 10−6 CL=90%�546 π− e+ e+ L < 2.3 × 10−8 CL=90%�547 π−µ+µ+ L < 4.0 × 10−9 CL=95%�548 π− e+µ+ L < 1.5 × 10−7 CL=90%�549 ρ− e+ e+ L < 1.7 × 10−7 CL=90%�550 ρ−µ+µ+ L < 4.2 × 10−7 CL=90%�551 ρ− e+µ+ L < 4.7 × 10−7 CL=90%�552 K− e+ e+ L < 3.0 × 10−8 CL=90%�553 K−µ+µ+ L < 4.1 × 10−8 CL=90%�554 K− e+µ+ L < 1.6 × 10−7 CL=90%�555 K∗(892)− e+ e+ L < 4.0 × 10−7 CL=90%�556 K∗(892)−µ+µ+ L < 5.9 × 10−7 CL=90%�557 K∗(892)− e+µ+ L < 3.0 × 10−7 CL=90%�558 D− e+ e+ L < 2.6 × 10−6 CL=90%�559 D− e+µ+ L < 1.8 × 10−6 CL=90%�560 D−µ+µ+ L < 6.9 × 10−7 CL=95%�561 D∗−µ+µ+ L < 2.4 × 10−6 CL=95%�562 D−s µ+µ+ L < 5.8 × 10−7 CL=95%�563 D0π−µ+µ+ L < 1.5 × 10−6 CL=95%



1156115611561156Meson Parti
le ListingsB±�564 �0µ+ L,B < 6 × 10−8 CL=90%�565 �0 e+ L,B < 3.2 × 10−8 CL=90%�566 �0µ+ L,B < 6 × 10−8 CL=90%�567 �0 e+ L,B < 8 × 10−8 CL=90%[a℄ An ℓ indi
ates an e or a µ mode, not a sum over these modes.[b℄ An CP(±1) indi
ates the CP=+1 and CP=−1 eigenstates of the D0-D0system.[
 ℄ D denotes D0 or D0.[d ℄ D∗0
CP+ de
ays into D0π0 with the D0 re
onstru
ted in CP-even eigen-states K+K− and π+π−.[e℄ D∗∗ represents an ex
ited state with mass 2.2 < M < 2.8 GeV/
2.[f ℄ X (3872)+ is a hypotheti
al 
harged partner of the X (3872).[g ℄ �(1710)++ is a possible narrow pentaquark state and G (2220) is apossible glueball resonan
e.[h℄ (�−
 p)s denotes a low-mass enhan
ement near 3.35 GeV/
2.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 3 bran
hing ratios uses 6 measurements and one
onstraint to determine 3 parameters. The overall �t has a χ2 =3.7 for 4 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x365 10x305 CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 18 bran
hing ratios uses 53 measurements andone 
onstraint to determine 12 parameters. The overall �t has a
χ2 = 49.2 for 42 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x7 33x48 0 0x98 0 0 8x135 0 0 1 13x255 0 0 0 0 0x260 0 0 0 0 0 0x273 0 0 0 0 0 28 0x283 0 0 0 0 0 58 0 16x516 0 0 0 0 0 14 0 4 8x521 0 0 0 0 0 0 5 0 0 0x6 x7 x48 x98 x135 x255 x260 x273 x283 x516B+ BRANCHING RATIOSB+ BRANCHING RATIOSB+ BRANCHING RATIOSB+ BRANCHING RATIOS�(ℓ+νℓ anything)/�total �1/��(ℓ+νℓ anything)/�total �1/��(ℓ+νℓ anything)/�total �1/��(ℓ+νℓ anything)/�total �1/�\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE (units 10−2) DOCUMENT ID TECN COMMENT10.99±0.28 OUR EVALUATION10.99±0.28 OUR EVALUATION10.99±0.28 OUR EVALUATION10.99±0.28 OUR EVALUATION10.76±0.32 OUR AVERAGE10.76±0.32 OUR AVERAGE10.76±0.32 OUR AVERAGE10.76±0.32 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.11.17±0.25±0.28 1 URQUIJO 07 BELL e+ e− → �(4S)10.28±0.26±0.39 2 AUBERT,B 06Y BABR e+ e− → �(4S)10.25±0.57±0.65 3 ARTUSO 97 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •11.15±0.26±0.41 4 OKABE 05 BELL Repl. by URQUIJO 0710.1 ±1.8 ±1.5 ATHANAS 94 CLE2 Sup. by ARTUSO 971URQUIJO 07 report a measurement of (10.34 ± 023 ± 0.25)% for the partial bran
hingfra
tion of B+ → e+ νe X
 de
ay with ele
tron energy above 0.6 GeV. We 
onvertedthe result to B+ → e+ νe X bran
hing fra
tion.2The measurements are obtained for 
harged and neutral B mesons partial rates of semi-leptoni
 de
ay to ele
trons with momentum above 0.6 GeV/
 in the B rest frame. Thebest pre
ision on the ratio is a
hieved for a momentum threshold of 1.0 GeV: B(B+ →e+ νe X ) / B(B0 → e+ νe X ) = 1.074 ± 0.041 ± 0.026.

3ARTUSO 97 uses partial re
onstru
tion of B → D∗ ℓνℓ and in
lusive semileptoni
bran
hing ratio from BARISH 96B (0.1049 ± 0.0017 ± 0.0043).4The measurements are obtained for 
harged and neutral B mesons partial rates of semi-leptoni
 de
ay to ele
trons with momentum above 0.6 GeV/
 in the B rest frame, andtheir ratio of B(B+ → e+ νe X )/B(B0 → e+ νe X ) = 1.08 ± 0.05 ± 0.02.�(e+ νe X
)/�total �2/��(e+ νe X
)/�total �2/��(e+ νe X
)/�total �2/��(e+ νe X
)/�total �2/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT10.79±0.25±0.2710.79±0.25±0.2710.79±0.25±0.2710.79±0.25±0.27 1 URQUIJO 07 BELL e+ e− → �(4S)1Measure the independent B+ and B0 partial bran
hing fra
tions with ele
tron thresholdenergies of 0.4 GeV.�(D0 ℓ+νℓ

)/�total �4/��(D0 ℓ+νℓ

)/�total �4/��(D0 ℓ+νℓ

)/�total �4/��(D0 ℓ+νℓ

)/�total �4/�\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.
ℓ = e or µ, not sum over e and µ modes.VALUE DOCUMENT ID TECN COMMENT0.0227±0.0011 OUR EVALUATION0.0227±0.0011 OUR EVALUATION0.0227±0.0011 OUR EVALUATION0.0227±0.0011 OUR EVALUATION0.0229±0.0008 OUR AVERAGE0.0229±0.0008 OUR AVERAGE0.0229±0.0008 OUR AVERAGE0.0229±0.0008 OUR AVERAGE0.0229±0.0008±0.0009 1 AUBERT 10 BABR e+ e− → �(4S)0.0234±0.0003±0.0013 AUBERT 09A BABR e+ e− → �(4S)0.0221±0.0013±0.0019 2 BARTELT 99 CLE2 e+ e− → �(4S)0.016 ±0.006 ±0.003 3 FULTON 91 CLEO e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0233±0.0009±0.0009 1 AUBERT 08Q BABR Repl. by AUBERT 09A0.0194±0.0015±0.0034 4 ATHANAS 97 CLE2 Repl. by BARTELT 991Uses a fully re
onstru
ted B meson as a tag on the re
oil side.2Assumes equal produ
tion of B+ and B0 at the �(4S).3 FULTON 91 assumes equal produ
tion of B0B0 and B+B− at the �(4S).4ATHANAS 97 uses missing energy and missing momentum to re
onstru
t neutrino.�(D0 ℓ+νℓ

)/�(ℓ+νℓ anything) �4/�1�(D0 ℓ+νℓ

)/�(ℓ+νℓ anything) �4/�1�(D0 ℓ+νℓ

)/�(ℓ+νℓ anything) �4/�1�(D0 ℓ+νℓ

)/�(ℓ+νℓ anything) �4/�1VALUE DOCUMENT ID TECN COMMENT0.255±0.009±0.0090.255±0.009±0.0090.255±0.009±0.0090.255±0.009±0.009 1 AUBERT 10 BABR e+ e− → �(4S)1Uses a fully re
onstru
ted B meson on the re
oil side.�(D0 ℓ+νℓ

)/�(D ℓ+νℓ anything) �4/�3�(D0 ℓ+νℓ

)/�(D ℓ+νℓ anything) �4/�3�(D0 ℓ+νℓ

)/�(D ℓ+νℓ anything) �4/�3�(D0 ℓ+νℓ

)/�(D ℓ+νℓ anything) �4/�3VALUE DOCUMENT ID TECN COMMENT0.227±0.014±0.0160.227±0.014±0.0160.227±0.014±0.0160.227±0.014±0.016 1 AUBERT 07AN BABR e+ e− → �(4S)1Uses a fully re
onstru
ted B meson on the re
oil side.�(D0 τ+ ντ

)/�total �5/��(D0 τ+ ντ

)/�total �5/��(D0 τ+ ντ

)/�total �5/��(D0 τ+ ντ

)/�total �5/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.77±0.22±0.120.77±0.22±0.120.77±0.22±0.120.77±0.22±0.12 1 BOZEK 10 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.67±0.37±0.13 2 AUBERT 08N BABR Repl. by AUBERT 09S1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D0 τ+ ντ

)/�(D0 ℓ+νℓ

) �5/�4�(D0 τ+ ντ

)/�(D0 ℓ+νℓ

) �5/�4�(D0 τ+ ντ

)/�(D0 ℓ+νℓ

) �5/�4�(D0 τ+ ντ

)/�(D0 ℓ+νℓ

) �5/�4VALUE DOCUMENT ID TECN COMMENT0.429±0.082±0.0520.429±0.082±0.0520.429±0.082±0.0520.429±0.082±0.052 1,2 LEES 12D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.314±0.170±0.049 1 AUBERT 09S BABR Repl. by LEES 12D1Uses a fully re
onstru
ted B meson as a tag on the re
oil side.2Uses τ+ → e+ νe ντ and τ+ → µ+ νµντ and e+ or µ+ as ℓ+.�(D∗(2007)0 ℓ+νℓ

)/�total �6/��(D∗(2007)0 ℓ+νℓ

)/�total �6/��(D∗(2007)0 ℓ+νℓ

)/�total �6/��(D∗(2007)0 ℓ+νℓ

)/�total �6/�\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.
ℓ = e or µ, not sum over e and µ modes.VALUE EVTS DOCUMENT ID TECN COMMENT0.0569±0.0019 OUR EVALUATION0.0569±0.0019 OUR EVALUATION0.0569±0.0019 OUR EVALUATION0.0569±0.0019 OUR EVALUATION0.0560±0.0026 OUR FIT0.0560±0.0026 OUR FIT0.0560±0.0026 OUR FIT0.0560±0.0026 OUR FIT Error in
ludes s
ale fa
tor of 1.5.0.0558±0.0026 OUR AVERAGE0.0558±0.0026 OUR AVERAGE0.0558±0.0026 OUR AVERAGE0.0558±0.0026 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.0.0540±0.0002±0.0021 AUBERT 09A BABR e+ e− → �(4S)0.0556±0.0008±0.0041 1 AUBERT 08AT BABR e+ e− → �(4S)0.0650±0.0020±0.0043 2 ADAM 03 CLE2 e+ e− → �(4S)0.066 ±0.016 ±0.015 3 ALBRECHT 92C ARG e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0583±0.0015±0.0030 4 AUBERT 08Q BABR Repl. by AUBERT 09A0.0650±0.0020±0.0043 5 BRIERE 02 CLE2 e+ e− → �(4S)0.0513±0.0054±0.0064 302 6 BARISH 95 CLE2 Repl. by ADAM 03seen 398 7 SANGHERA 93 CLE2 e+ e− → �(4S)0.041 ±0.008 +0.008
−0.009 8 FULTON 91 CLEO e+ e− → �(4S)0.070 ±0.018 ±0.014 9 ANTREASYAN 90B CBAL e+ e− → �(4S)



1157115711571157See key on page 601 Meson Parti
le ListingsB±1Measured using the dependen
e of B− → D∗0 e− νe de
ay di�erential rate and theform fa
tor des
ription by CAPRINI 98.2 Simultaneous measurements of both B0 → D∗(2010)− ℓν and B+ → D(2007)0 ℓν.3ALBRECHT 92C reports 0.058±0.014±0.013. We res
ale using the method des
ribed inSTONE 94 but with the updated PDG 94 B(D0 → K−π+). Assumes equal produ
tionof B0B0 and B+B− at the �(4S).4Uses a fully re
onstru
ted B meson as a tag on the re
oil side.5The results are based on the same analysis and data sample reported in ADAM 03.6BARISH 95 use B(D0 → K−π+) = (3.91 ± 0.08 ± 0.17)% and B(D∗0 → D0π0)= (63.6 ± 2.3 ± 3.3)%.7Combining D∗0 ℓ+ νℓ and D∗− ℓ+ νℓ SANGHERA 93 test V−A stru
ture and �t thede
ay angular distributions to obtain AFB = 3/4∗(�− − �+)/� = 0.14 ± 0.06 ± 0.03.Assuming a value of V
b , they measure V, A1, and A2, the three form fa
tors for theD∗ ℓνℓ de
ay, where results are slightly dependent on model assumptions.8Assumes equal produ
tion of B0B0 and B+B− at the �(4S). Un
orre
ted for D andD∗ bran
hing ratio assumptions.9ANTREASYAN 90B is average over B and D∗(2010) 
harge states.
WEIGHTED AVERAGE
0.0558±0.0026 (Error scaled by 1.5)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ALBRECHT 92C ARG
ADAM 03 CLE2 3.7
AUBERT 08AT BABR 0.0
AUBERT 09A BABR 0.8

χ2

       4.5
(Confidence Level = 0.106)

0.04 0.05 0.06 0.07 0.08 0.09�(D∗(2007)0 ℓ+νℓ

)/�total �6/��(D∗(2007)0 ℓ+νℓ

)/�(D ℓ+νℓ anything) �6/�3�(D∗(2007)0 ℓ+νℓ

)/�(D ℓ+νℓ anything) �6/�3�(D∗(2007)0 ℓ+νℓ

)/�(D ℓ+νℓ anything) �6/�3�(D∗(2007)0 ℓ+νℓ

)/�(D ℓ+νℓ anything) �6/�3VALUE DOCUMENT ID TECN COMMENT0.582±0.018±0.0300.582±0.018±0.0300.582±0.018±0.0300.582±0.018±0.030 1 AUBERT 07AN BABR e+ e− → �(4S)1Uses a fully re
onstru
ted B meson on the re
oil side.�(D∗(2007)0 τ+ ντ

)/�total �7/��(D∗(2007)0 τ+ ντ

)/�total �7/��(D∗(2007)0 τ+ ντ

)/�total �7/��(D∗(2007)0 τ+ ντ

)/�total �7/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.88±0.20 OUR FIT1.88±0.20 OUR FIT1.88±0.20 OUR FIT1.88±0.20 OUR FIT2.12+0.28
−0.27±0.292.12+0.28
−0.27±0.292.12+0.28
−0.27±0.292.12+0.28
−0.27±0.29 1 BOZEK 10 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.25±0.48±0.28 2 AUBERT 08N BABR Repl. by AUBERT 09S1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D∗(2007)0 τ+ ντ

)/�(D∗(2007)0 ℓ+νℓ

) �7/�6�(D∗(2007)0 τ+ ντ

)/�(D∗(2007)0 ℓ+νℓ

) �7/�6�(D∗(2007)0 τ+ ντ

)/�(D∗(2007)0 ℓ+νℓ

) �7/�6�(D∗(2007)0 τ+ ντ

)/�(D∗(2007)0 ℓ+νℓ

) �7/�6VALUE DOCUMENT ID TECN COMMENT0.335±0.034 OUR FIT0.335±0.034 OUR FIT0.335±0.034 OUR FIT0.335±0.034 OUR FIT0.322±0.032±0.0220.322±0.032±0.0220.322±0.032±0.0220.322±0.032±0.022 1,2 LEES 12D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.346±0.073±0.034 1 AUBERT 09S BABR Repl. by LEES 12D1Uses a fully re
onstru
ted B meson as a tag on the re
oil side.2Uses τ+ → e+ νe ντ and τ+ → µ+ νµντ and e+ or µ+ as ℓ+.�(D−π+ ℓ+νℓ

)/�total �8/��(D−π+ ℓ+νℓ

)/�total �8/��(D−π+ ℓ+νℓ

)/�total �8/��(D−π+ ℓ+νℓ

)/�total �8/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT4.2±0.5 OUR AVERAGE4.2±0.5 OUR AVERAGE4.2±0.5 OUR AVERAGE4.2±0.5 OUR AVERAGE4.2±0.6±0.3 1 AUBERT 08Q BABR e+ e− → �(4S)4.2±0.6±0.2 1,2 LIVENTSEV 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.5±0.9±0.3 3 LIVENTSEV 05 BELL Repl. by LIVENTSEV 081Uses a fully re
onstru
ted B meson as a tag on the re
oil side.2 LIVENTSEV 08 reports (4.0 ± 0.4 ± 0.6) × 10−3 from a measurement of [�(B+ →D−π+ ℓ+ νℓ

)/�total℄ / [B(B+ → D0 ℓ+ νℓ)℄ assuming B(B+ → D0 ℓ+ νℓ) = (2.15±0.22)×10−2, whi
h we res
ale to our best value B(B+ → D0 ℓ+ νℓ) = (2.27± 0.11)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.3 LIVENTSEV 05 reports [�(B+ → D−π+ ℓ+ νℓ
)/�total℄ / [B(B0 → D− ℓ+ νℓ)℄= 0.25 ± 0.03 ± 0.03 whi
h we multiply by our best value B(B0 → D− ℓ+ νℓ) =(2.19 ± 0.12)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.

�(D∗0(2420)0 ℓ+νℓ, D∗00 → D−π+)/�total �9/��(D∗0(2420)0 ℓ+νℓ, D∗00 → D−π+)/�total �9/��(D∗0(2420)0 ℓ+νℓ, D∗00 → D−π+)/�total �9/��(D∗0(2420)0 ℓ+νℓ, D∗00 → D−π+)/�total �9/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.5±0.5 OUR AVERAGE2.5±0.5 OUR AVERAGE2.5±0.5 OUR AVERAGE2.5±0.5 OUR AVERAGE2.6±0.5±0.4 1 AUBERT 08BL BABR e+ e− → �(4S)2.4±0.4±0.6 1 LIVENTSEV 08 BELL e+ e− → �(4S)1Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D∗2(2460)0 ℓ+νℓ, D∗02 → D−π+)/�total �10/��(D∗2(2460)0 ℓ+νℓ, D∗02 → D−π+)/�total �10/��(D∗2(2460)0 ℓ+νℓ, D∗02 → D−π+)/�total �10/��(D∗2(2460)0 ℓ+νℓ, D∗02 → D−π+)/�total �10/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.53±0.16 OUR AVERAGE1.53±0.16 OUR AVERAGE1.53±0.16 OUR AVERAGE1.53±0.16 OUR AVERAGE1.42±0.15±0.15 1 AUBERT 09Y BABR e+ e− → �(4S)1.5 ±0.2 ±0.2 2 AUBERT 08BL BABR e+ e− → �(4S)2.2 ±0.3 ±0.4 2 LIVENTSEV 08 BELL e+ e− → �(4S)1Uses a simultaneous �t of all B semileptoni
 de
ays without full re
onstru
tion of events.AUBERT 09Y reports B(B+ → D∗2(2460)0 ℓ+ νℓ) · B(D∗2(2460)0 → D(∗)−π+) =(2.29±0.23±0.21)×10−3 and the authors have provided us the individual measurement.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D(∗) nπℓ+ νℓ (n ≥ 1))/�(D ℓ+νℓ anything) �11/�3�(D(∗) nπℓ+ νℓ (n ≥ 1))/�(D ℓ+νℓ anything) �11/�3�(D(∗) nπℓ+ νℓ (n ≥ 1))/�(D ℓ+νℓ anything) �11/�3�(D(∗) nπℓ+ νℓ (n ≥ 1))/�(D ℓ+νℓ anything) �11/�3VALUE DOCUMENT ID TECN COMMENT0.191±0.013±0.0190.191±0.013±0.0190.191±0.013±0.0190.191±0.013±0.019 1 AUBERT 07AN BABR e+ e− → �(4S)1Uses a fully re
onstru
ted B meson on the re
oil side.�(D∗−π+ ℓ+νℓ

)/�total �12/��(D∗−π+ ℓ+νℓ

)/�total �12/��(D∗−π+ ℓ+νℓ

)/�total �12/��(D∗−π+ ℓ+νℓ

)/�total �12/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT6.1±0.6 OUR AVERAGE6.1±0.6 OUR AVERAGE6.1±0.6 OUR AVERAGE6.1±0.6 OUR AVERAGE5.9±0.5±0.4 1 AUBERT 08Q BABR e+ e− → �(4S)6.8±1.1±0.3 1,2 LIVENTSEV 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.9±1.4±0.1 3,4 LIVENTSEV 05 BELL Repl. by LIVENTSEV 081Uses a fully re
onstru
ted B meson as a tag on the re
oil side.2 LIVENTSEV 08 reports (6.4 ± 0.8 ± 0.9) × 10−3 from a measurement of [�(B+ →D∗−π+ ℓ+ νℓ

)/�total℄ / [B(B+ → D0 ℓ+ νℓ)℄ assuming B(B+ → D0 ℓ+νℓ) =(2.15 ± 0.22) × 10−2, whi
h we res
ale to our best value B(B+ → D0 ℓ+ νℓ) =(2.27 ± 0.11)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3 Ex
ludes D∗+ 
ontribution to Dπ modes.4 LIVENTSEV 05 reports [�(B+ → D∗−π+ ℓ+ νℓ
)/�total℄ / [B(B0 → D∗(2010)− ℓ+ νℓ)℄ = 0.12 ± 0.02 ± 0.02 whi
h we multiply byour best value B(B0 → D∗(2010)− ℓ+ νℓ) = (4.93 ± 0.11) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.�(D1(2420)0 ℓ+νℓ, D01 → D∗−π+)/�total �13/��(D1(2420)0 ℓ+νℓ, D01 → D∗−π+)/�total �13/��(D1(2420)0 ℓ+νℓ, D01 → D∗−π+)/�total �13/��(D1(2420)0 ℓ+νℓ, D01 → D∗−π+)/�total �13/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.03±0.20 OUR AVERAGE3.03±0.20 OUR AVERAGE3.03±0.20 OUR AVERAGE3.03±0.20 OUR AVERAGE2.97±0.17±0.17 1 AUBERT 09Y BABR e+ e− → �(4S)2.9 ±0.3 ±0.3 2 AUBERT 08BL BABR e+ e− → �(4S)4.2 ±0.7 ±0.7 2 LIVENTSEV 08 BELL e+ e− → �(4S)3.73±0.85±0.57 3 ANASTASSOV 98 CLE2 e+ e− → �(4S)1Uses a simultaneous measurement of all B semileptoni
 de
ays without full re
onstru
tionof events.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.3Assumes equal produ
tion of B+ and B0 at the �(4S).�(D ′1(2430)0 ℓ+νℓ, D ′01 → D∗−π+)/�total �14/��(D ′1(2430)0 ℓ+νℓ, D ′01 → D∗−π+)/�total �14/��(D ′1(2430)0 ℓ+νℓ, D ′01 → D∗−π+)/�total �14/��(D ′1(2430)0 ℓ+νℓ, D ′01 → D∗−π+)/�total �14/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT2.7±0.4±0.52.7±0.4±0.52.7±0.4±0.52.7±0.4±0.5 1 AUBERT 08BL BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.7 90 1 LIVENTSEV 08 BELL e+ e− → �(4S)1Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D∗2(2460)0 ℓ+νℓ, D∗02 → D∗−π+)/�total �15/��(D∗2(2460)0 ℓ+νℓ, D∗02 → D∗−π+)/�total �15/��(D∗2(2460)0 ℓ+νℓ, D∗02 → D∗−π+)/�total �15/��(D∗2(2460)0 ℓ+νℓ, D∗02 → D∗−π+)/�total �15/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT1.01±0.24 OUR AVERAGE1.01±0.24 OUR AVERAGE1.01±0.24 OUR AVERAGE1.01±0.24 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0.0.87±0.11±0.07 1 AUBERT 09Y BABR e+ e− → �(4S)1.5 ±0.2 ±0.2 2 AUBERT 08BL BABR e+ e− → �(4S)1.8 ±0.6 ±0.3 2 LIVENTSEV 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.6 90 3 ANASTASSOV 98 CLE2 e+ e− → �(4S)1Uses a simultaneous �t of all B semileptoni
 de
ays without full re
onstru
tion of events.AUBERT 09Y reports B(B+ → D∗2(2460)0 ℓ+ νℓ) · B(D∗2(2460)0 → D(∗)−π+) =(2.29±0.23±0.21)×10−3 and the authors have provided us the individual measurement.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.3Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0π+π− ℓ+νℓ

)/�(D0 ℓ+νℓ

) �16/�4�(D0π+π− ℓ+νℓ

)/�(D0 ℓ+νℓ

) �16/�4�(D0π+π− ℓ+νℓ

)/�(D0 ℓ+νℓ

) �16/�4�(D0π+π− ℓ+νℓ

)/�(D0 ℓ+νℓ

) �16/�4VALUE (units 10−2) DOCUMENT ID TECN COMMENT7.1±1.3±0.87.1±1.3±0.87.1±1.3±0.87.1±1.3±0.8 1 LEES 16 BABR e+ e− → �(4S)1Measurement used ele
trons and muons as leptons.



1158115811581158Meson Parti
le ListingsB±�(D∗0π+π− ℓ+νℓ

)/�(D∗(2007)0 ℓ+νℓ

) �17/�6�(D∗0π+π− ℓ+νℓ

)/�(D∗(2007)0 ℓ+νℓ

) �17/�6�(D∗0π+π− ℓ+νℓ

)/�(D∗(2007)0 ℓ+νℓ

) �17/�6�(D∗0π+π− ℓ+νℓ

)/�(D∗(2007)0 ℓ+νℓ

) �17/�6VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.4±0.7±0.41.4±0.7±0.41.4±0.7±0.41.4±0.7±0.4 1 LEES 16 BABR e+ e− → �(4S)1Measurement used ele
trons and muons as leptons.�(D(∗)−s K+ ℓ+νℓ

)/�total �18/��(D(∗)−s K+ ℓ+νℓ

)/�total �18/��(D(∗)−s K+ ℓ+νℓ

)/�total �18/��(D(∗)−s K+ ℓ+νℓ

)/�total �18/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.1 ±1.0 OUR AVERAGE6.1 ±1.0 OUR AVERAGE6.1 ±1.0 OUR AVERAGE6.1 ±1.0 OUR AVERAGE5.9 ±1.2 ±1.5 1 STYPULA 12 BELL e+ e− → �(4S)6.13+1.04
−1.03±0.67 1 DEL-AMO-SA...11L BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−s K+ ℓ+νℓ

)/�total �19/��(D−s K+ ℓ+νℓ

)/�total �19/��(D−s K+ ℓ+νℓ

)/�total �19/��(D−s K+ ℓ+νℓ

)/�total �19/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.0±0.9+1.1
−0.83.0±0.9+1.1
−0.83.0±0.9+1.1
−0.83.0±0.9+1.1
−0.8 1 STYPULA 12 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗−s K+ ℓ+νℓ

)/�total �20/��(D∗−s K+ ℓ+νℓ

)/�total �20/��(D∗−s K+ ℓ+νℓ

)/�total �20/��(D∗−s K+ ℓ+νℓ

)/�total �20/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.9±1.6+1.1
−1.02.9±1.6+1.1
−1.02.9±1.6+1.1
−1.02.9±1.6+1.1
−1.0 1,2 STYPULA 12 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2 STYPULA 12 provides also an upper limit of 0.56 × 10−3 at 90% CL for the samedata. Also measures bran
hing fra
tion of the 
ombined modes of D−s K+ ℓ+ νℓ andD∗−s K+ ℓ+ νℓ as B(B+ → D(∗)−s K+ ℓ+ νℓ) = (5.9 ± 1.2 ± 1.5) × 10−4.�(

π0 ℓ+νℓ

)/�total �21/��(

π0 ℓ+νℓ

)/�total �21/��(

π0 ℓ+νℓ

)/�total �21/��(

π0 ℓ+νℓ

)/�total �21/�\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.780±0.027 OUR EVALUATION0.780±0.027 OUR EVALUATION0.780±0.027 OUR EVALUATION0.780±0.027 OUR EVALUATION0.748±0.029 OUR AVERAGE0.748±0.029 OUR AVERAGE0.748±0.029 OUR AVERAGE0.748±0.029 OUR AVERAGE0.80 ±0.08 ±0.04 1 SIBIDANOV 13 BELL e+ e− → �(4S)0.77 ±0.04 ±0.03 2 LEES 12AA BABR e+ e− → �(4S)0.705±0.025±0.035 3 DEL-AMO-SA...11C BABR e+ e− → �(4S)0.82 ±0.09 ±0.05 3 AUBERT 08AV BABR e+ e− → �(4S)0.77 ±0.14 ±0.08 4 HOKUUE 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.74 ±0.05 ±0.10 5 AUBERT,B 05O BABR Repl. by DEL-AMO-SANCHEZ 11C1The signal events are tagged by a se
ond B meson re
onstru
ted in the fully hadroni
de
ays.2Uses loose neutrino re
onstru
tion te
hnique. Assumes B(Y (4S) → B+B−) = (51.6±0.6)% and B(Y (4S) → B0B0) = (48.4 ± 0.6)%.3Using the isospin symmetry relation, B+ and B0 bran
hing fra
tions are 
ombined.4The signal events are tagged by a se
ond B meson re
onstru
ted in the semileptoni
mode B → D(∗) ℓνℓ.5B+ and B0 de
ays 
ombined assuming isospin symmetry. Systemati
 errors in
lude bothexperimental and form-fa
tor un
ertainties.�(

π0 e+ νe)/�total �22/��(

π0 e+ νe)/�total �22/��(

π0 e+ νe)/�total �22/��(

π0 e+ νe)/�total �22/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.9±0.2±0.2 1 ALEXANDER 96T CLE2 e+ e− → �(4S)
<22 90 ANTREASYAN 90B CBAL e+ e− → �(4S)1Derived based in the reported B0 result by assuming isospin symmetry: �(B0 →

π− ℓ+ ν)= 2�(B+ → π0 ℓ+ ν).�(

ηℓ+νℓ

)/�total �23/��(

ηℓ+νℓ

)/�total �23/��(

ηℓ+νℓ

)/�total �23/��(

ηℓ+νℓ

)/�total �23/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT0.38±0.06 OUR AVERAGE0.38±0.06 OUR AVERAGE0.38±0.06 OUR AVERAGE0.38±0.06 OUR AVERAGE0.38±0.05±0.05 1 LEES 12AA BABR e+ e− → �(4S)0.31±0.06±0.08 1 AUBERT 09Q BABR e+ e− → �(4S)0.64±0.20±0.03 2 AUBERT 08AV BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.36±0.05±0.04 1 DEL-AMO-SA...11F BABR Repl. by LEES 12AA
<1.01 90 3 ADAM 07 CLE2 e+ e− → �(4S)0.84±0.31±0.18 4 ATHAR 03 CLE2 Repl. by ADAM 071Uses loose neutrino re
onstru
tion te
hnique. Assumes B(�(4S) → B+B−) = (51.6±0.6)% and B(�(4S) → B0B0) = (48.4 ± 0.6)%.2Assumes equal produ
tion of B+ and B0 at the �(4S).3The B0 and B+ results are 
ombined assuming the isospin, B lifetimes, and relative
harged/neutral B produ
tion at the �(4S).4ATHAR 03 reports systemati
 errors 0.16 ± 0.09, whi
h are experimental systemati
 andsystemati
 due to model dependen
e. We 
ombine these in quadrature.

�(

η′ ℓ+νℓ

)/�total �24/��(

η′ ℓ+νℓ

)/�total �24/��(

η′ ℓ+νℓ

)/�total �24/��(

η′ ℓ+νℓ

)/�total �24/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.23±0.08 OUR AVERAGE0.23±0.08 OUR AVERAGE0.23±0.08 OUR AVERAGE0.23±0.08 OUR AVERAGE0.24±0.08±0.03 1 LEES 12AA BABR e+ e− → �(4S)0.04±0.22+0.05
−0.02 2 AUBERT 08AV BABR e+ e− → �(4S)2.66±0.80±0.56 3 ADAM 07 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.24±0.08±0.03 1 DEL-AMO-SA...11F BABR Repl. by LEES 12AA1Uses loose neutrino re
onstru
tion te
hnique. Assumes B(Y (4S) → B+B−) = (51.6±0.6)% and B(Y (4S) → B0B0) = (48.4 ± 0.6)%.2Assumes equal produ
tion of B+ and B0 at the �(4S).3The B0 and B+ results are 
ombined assuming the isospin, B lifetimes, and rela-tive 
harged/neutral B produ
tion at the �(4S). Corresponds to 90% CL interval(1.20{4.46)× 10−4.�(

ωℓ+νℓ

)/�total �25/��(

ωℓ+νℓ

)/�total �25/��(

ωℓ+νℓ

)/�total �25/��(

ωℓ+νℓ

)/�total �25/�
ℓ = e or µ, not sum over e and µ modes.VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.19±0.09 OUR AVERAGE1.19±0.09 OUR AVERAGE1.19±0.09 OUR AVERAGE1.19±0.09 OUR AVERAGE1.21±0.14±0.08 1,2 LEES 13A BABR e+ e− → �(4S)1.35±0.21±0.11 3 LEES 13T BABR e+ e− → �(4S)1.07±0.16±0.07 4 SIBIDANOV 13 BELL e+ e− → �(4S)1.19±0.16±0.09 2,5 LEES 12AA BABR e+ e− → �(4S)1.3 ±0.4 ±0.4 6 SCHWANDA 04 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.14±0.16±0.08 2 AUBERT 09Q BABR Repl. by LEES 13A
<2.1 90 7 BEAN 93B CLE2 e+ e− → �(4S)1 LEES 13A reports (1.21 ± 0.14 ± 0.08) × 10−4 from a measurement of [�(B+ →

ωℓ+ νℓ
)/�total℄ × [B(ω(782) → π+π−π0)℄ assuming B(ω(782) → π+π−π0) =(89.2 ± 0.7)× 10−2.2Uses B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) → B0B0) = (48.4± 0.6)%.3Uses semileptoni
 tagging. Assumes B(ω → π+π−π0) = (89.2 ± 0.7)% and thatthe produ
tion ratio of B+B− to B0B0 from �(4S) is 1.056 ± 0.028. The partialbran
hing fra
tions in three bins of q2 are also reported.4The signal events are tagged by a se
ond B meson re
onstru
ted in the fully hadroni
de
ays.5Uses loose neutrino re
onstru
tion te
hnique.6Assumes equal produ
tion of B+ and B0 at the �(4S).7BEAN 93B limit set using ISGW Model. Using isospin and the quark model to 
ombine�(ρ0 ℓ+ νℓ) and �(ρ− ℓ+ νℓ) with this result, they obtain a limit <(1.6{2.7)× 10−4 at90% CL for B+ → ωℓ+ νℓ. The range 
orresponds to the ISGW, WSB, and KS models.An upper limit on ∣

∣Vub/V
b ∣

∣ < 0.8{0.13 at 90% CL is derived as well.�(

ωµ+νµ

)/�total �26/��(

ωµ+νµ

)/�total �26/��(

ωµ+νµ

)/�total �26/��(

ωµ+νµ

)/�total �26/�VALUE DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 1 ALBRECHT 91C ARG1 In ALBRECHT 91C, one event is fully re
onstru
ted providing eviden
e for the b → utransition.�(

ρ0 ℓ+νℓ

)/�total �27/��(

ρ0 ℓ+νℓ

)/�total �27/��(

ρ0 ℓ+νℓ

)/�total �27/��(

ρ0 ℓ+νℓ

)/�total �27/�
ℓ = e or µ, not sum over e and µ modes.\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurementsand asymmetri
 lifetime errors.VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.58±0.11 OUR EVALUATION1.58±0.11 OUR EVALUATION1.58±0.11 OUR EVALUATION1.58±0.11 OUR EVALUATION1.42±0.23 OUR AVERAGE1.42±0.23 OUR AVERAGE1.42±0.23 OUR AVERAGE1.42±0.23 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogram below.1.83±0.10±0.10 1 SIBIDANOV 13 BELL e+ e− → �(4S)0.94±0.08±0.14 2 DEL-AMO-SA...11C BABR e+ e− → �(4S)1.33±0.23±0.18 3 HOKUUE 07 BELL e+ e− → �(4S)1.34±0.15+0.28

−0.32 4 BEHRENS 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.16±0.11±0.30 2 AUBERT,B 05O BABR Repl. by DEL-AMO-SANCHEZ 11C1.40±0.21+0.32

−0.33 4 BEHRENS 00 CLE2 e+ e− → �(4S)1.2 ±0.2 +0.3
−0.4 4 ALEXANDER 96T CLE2 e+ e− → �(4S)

<2.1 90 5 BEAN 93B CLE2 e+ e− → �(4S)1The signal events are tagged by a se
ond B meson re
onstru
ted in the fully hadroni
de
ays.2B+ and B0 de
ays 
ombined assuming isospin symmetry. Systemati
 errors in
lude bothexperimental and form-fa
tor un
ertainties.3The signal events are tagged by a se
ond B meson re
onstru
ted in the semileptoni
mode B → D(∗) ℓνℓ.4Derived based in the reported B0 result by assuming isospin symmetry: �(B0 →
ρ− ℓ+ ν)= 2�(B+ → ρ0 ℓ+ ν)≈ 2�(B+ → ωℓ+ ν).5BEAN 93B limit set using ISGW Model. Using isospin and the quark model to 
ombine�(ω0 ℓ+ νℓ) and �(ρ− ℓ+ νℓ) with this result, they obtain a limit <(1.6{2.7) × 10−4



1159115911591159See key on page 601 MesonParti
le ListingsB±at 90% CL for B+ → ρ0 ℓ+νℓ. The range 
orresponds to the ISGW, WSB, and KSmodels. An upper limit on ∣

∣Vub/V
b ∣

∣ < 0.8{0.13 at 90% CL is derived as well.
WEIGHTED AVERAGE
1.42±0.23 (Error scaled by 2.4)

BEHRENS 00 CLE2 0.1
HOKUUE 07 BELL 0.1
DEL-AMO-SA... 11C BABR 8.9
SIBIDANOV 13 BELL 8.3

χ2

      17.4
(Confidence Level = 0.0006)

0 0.5 1 1.5 2 2.5 3�(

ρ0 ℓ+ νℓ

)/�total (units 10−4)�(pp ℓ+νℓ

)/�total �28/��(pp ℓ+νℓ

)/�total �28/��(pp ℓ+νℓ

)/�total �28/��(pp ℓ+νℓ

)/�total �28/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT5.8+2.4
−2.1±0.95.8+2.4
−2.1±0.95.8+2.4
−2.1±0.95.8+2.4
−2.1±0.9 1 TIEN 14 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(ppµ+νµ

)/�total �29/��(ppµ+νµ

)/�total �29/��(ppµ+νµ

)/�total �29/��(ppµ+νµ

)/�total �29/�VALUE CL% DOCUMENT ID TECN COMMENT
<8.5× 10−6<8.5× 10−6<8.5× 10−6<8.5× 10−6 90 1 TIEN 14 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(ppe+νe)/�total �30/��(ppe+νe)/�total �30/��(ppe+νe)/�total �30/��(ppe+νe)/�total �30/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT8.2+3.7

−3.2±0.68.2+3.7
−3.2±0.68.2+3.7
−3.2±0.68.2+3.7
−3.2±0.6 1 TIEN 14 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5200 90 2 ADAM 03B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Based on phase-spa
e model; if V−A model is used, the 90% CL upper limit be
omes

< 1.2× 10−3.�(e+ νe)/�total �31/��(e+ νe)/�total �31/��(e+ νe)/�total �31/��(e+ νe)/�total �31/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 0.98< 0.98< 0.98< 0.98 90 1 SATOYAMA 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.5 90 2 YOOK 15 BELL e+ e− → �(4S)
< 8 90 1 AUBERT 10E BABR e+ e− → �(4S)
< 1.9 90 1 AUBERT 09V BABR e+ e− → �(4S)
< 5.2 90 1 AUBERT 08AD BABR e+ e− → �(4S)
<15 90 ARTUSO 95 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes B(�(4S) → B+B−) = 0.513 ± 0.006 .�(µ+νµ

)/�total �32/��(µ+νµ

)/�total �32/��(µ+νµ

)/�total �32/��(µ+νµ

)/�total �32/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 1.0< 1.0< 1.0< 1.0 90 1 AUBERT 09V BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 2.7 90 2 YOOK 15 BELL e+ e− → �(4S)
<11 90 1 AUBERT 10E BABR e+ e− → �(4S)
< 5.6 90 1 AUBERT 08AD BABR e+ e− → �(4S)
< 1.7 90 1 SATOYAMA 07 BELL e+ e− → �(4S)
< 6.6 90 AUBERT 04O BABR Repl. by AUBERT 09V
<21 90 ARTUSO 95 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes B(�(4S) → B+B−) = 0.513 ± 0.006.�(τ+ ντ

)/�total �33/��(τ+ ντ

)/�total �33/��(τ+ ντ

)/�total �33/��(τ+ ντ

)/�total �33/�See the note on \De
ay Constants of Charged Pseudos
alar Mesons" in the D+sListings.VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.09±0.24 OUR AVERAGE1.09±0.24 OUR AVERAGE1.09±0.24 OUR AVERAGE1.09±0.24 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1.25±0.28±0.27 1,2 KRONENBIT... 15 BELL e+ e− → �(4S)0.72+0.27
−0.25±0.11 3 HARA 13 BELL e+ e− → �(4S)1.83+0.53
−0.49±0.24 2,4 LEES 13K BABR e+ e− → �(4S)1.7 ±0.8 ±0.2 2,5 AUBERT 10E BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.54+0.38
−0.37+0.29

−0.31 2,6 HARA 10 BELL Repl. by KRONENBIT-TER 151.8 +0.9
−0.8 ±0.45 2,7 AUBERT 08D BABR Repl. by LEES 13K0.9 ±0.6 ±0.1 2,5 AUBERT 07AL BABR Repl. by AUBERT 10E

< 2.6 90 2 AUBERT 06K BABR e+ e− → �(4S)1.79+0.56
−0.49+0.46

−0.51 2,7 IKADO 06 BELL Repl. by HARA 13
< 4.2 90 2 AUBERT,B 05B BABR Repl. by AUBERT 06K
< 8.3 90 8 BARATE 01E ALEP e+ e− → Z
< 8.4 90 2 BROWDER 01 CLE2 e+ e− → �(4S)
< 5.7 90 9 ACCIARRI 97F L3 e+ e− → Z
<104 90 10 ALBRECHT 95D ARG e+ e− → �(4S)
< 22 90 ARTUSO 95 CLE2 e+ e− → �(4S)
< 18 90 11 BUSKULIC 95 ALEP e+ e− → Z1Requires one re
onstru
ted semileptoni
 B de
ay B− → D(∗)0 ℓ− νℓ in the re
oil.2Assumes equal produ
tion of B+ and B0 at the �(4S).3The authors 
ombine their result with that from HARA 10 obtaining B(B− →

τ− ντ )=(0.96 ± 0.26)× 10−4 and deriving fB ∣

∣Vub ∣

∣=(7.4 ± 0.8 ± 0.5)× 10−4 GeV.4Requires a fully re
onstru
ted hadroni
 B-de
ay in the re
oil. Reports that this result
ombined with AUBERT 10E value gives B(B− → τ− ντ ) = (1.79 ± 0.48) × 10−4.5Requires one re
onstru
ted semileptoni
 B de
ay B− → D0 ℓ− νℓX in the re
oil.6Requires one re
onstru
ted semileptoni
 B de
ay B− → D(∗)0 ℓ− νℓX in the re
oil.7The analysis is based on a sample of events with one fully re
onstru
ted tag B in ahadroni
 de
ay mode B− → D(∗)0X−.8The energy-
ow and b-tagging algorithms were used.9ACCIARRI 97F uses missing-energy te
hnique and f (b → B−) = (38.2 ± 2.5)%.10ALBRECHT 95D uses full re
onstru
tion of one B de
ay as tag.11BUSKULIC 95 uses same missing-energy te
hnique as in b → τ+ ντ X, but analysis isrestri
ted to endpoint region of missing-energy distribution.�(ℓ+νℓγ
)/�total �34/��(ℓ+νℓγ
)/�total �34/��(ℓ+νℓγ
)/�total �34/��(ℓ+νℓγ
)/�total �34/�VALUE CL% DOCUMENT ID TECN COMMENT

< 3.5× 10−6< 3.5× 10−6< 3.5× 10−6< 3.5× 10−6 90 1 HELLER 15 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<15.6× 10−6 90 1 AUBERT 09AT BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(e+ νe γ

)/�total �35/��(e+ νe γ
)/�total �35/��(e+ νe γ
)/�total �35/��(e+ νe γ
)/�total �35/�VALUE CL% DOCUMENT ID TECN COMMENT

< 6.1× 10−6< 6.1× 10−6< 6.1× 10−6< 6.1× 10−6 90 1 HELLER 15 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 17 × 10−6 90 1 AUBERT 09AT BABR e+ e− → �(4S)
<200 × 10−6 90 2 BROWDER 97 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2BROWDER 97 uses the hermiti
ity of the CLEO II dete
tor to re
onstru
t the neutrinoenergy and momentum.�(µ+νµ γ

)/�total �36/��(µ+νµ γ
)/�total �36/��(µ+νµ γ
)/�total �36/��(µ+νµ γ
)/�total �36/�VALUE CL% DOCUMENT ID TECN COMMENT

< 3.4× 10−6< 3.4× 10−6< 3.4× 10−6< 3.4× 10−6 90 1 HELLER 15 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<24 × 10−6 90 1,2 AUBERT 09AT BABR e+ e− → �(4S)
<52 × 10−6 90 3 BROWDER 97 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Note that the value given by Aubert 2009 is 24 E-6 in the paper abstra
t, and 26 E-6 inthe paper itself (Table I).3BROWDER 97 uses the hermiti
ity of the CLEO II dete
tor to re
onstru
t the neutrinoenergy and momentum.�(D0X)/�total �37/��(D0X)/�total �37/��(D0X)/�total �37/��(D0X)/�total �37/�VALUE DOCUMENT ID TECN COMMENT0.086±0.006±0.0040.086±0.006±0.0040.086±0.006±0.0040.086±0.006±0.004 1 AUBERT 07N BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.098±0.009±0.006 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D0X)/�total �38/��(D0X)/�total �38/��(D0X)/�total �38/��(D0X)/�total �38/�VALUE DOCUMENT ID TECN COMMENT0.786±0.016+0.034

−0.0330.786±0.016+0.034
−0.0330.786±0.016+0.034
−0.0330.786±0.016+0.034
−0.033 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.793±0.025+0.045
−0.044 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.



1160116011601160MesonParti
le ListingsB±�(D0X)/[�(D0X)+�(D0X)
] �37/(�37+�38)�(D0X)/[�(D0X)+�(D0X)
] �37/(�37+�38)�(D0X)/[�(D0X)+�(D0X)
] �37/(�37+�38)�(D0X)/[�(D0X)+�(D0X)
] �37/(�37+�38)VALUE DOCUMENT ID TECN COMMENT0.098±0.007±0.0010.098±0.007±0.0010.098±0.007±0.0010.098±0.007±0.001 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.110±0.010±0.003 AUBERT,BE 04B BABR Repl. by AUBERT 07N�(D+X)/�total �39/��(D+X)/�total �39/��(D+X)/�total �39/��(D+X)/�total �39/�VALUE DOCUMENT ID TECN COMMENT0.025±0.005±0.0020.025±0.005±0.0020.025±0.005±0.0020.025±0.005±0.002 1 AUBERT 07N BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.038±0.009±0.005 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D−X)/�total �40/��(D−X)/�total �40/��(D−X)/�total �40/��(D−X)/�total �40/�VALUE DOCUMENT ID TECN COMMENT0.099±0.008±0.0090.099±0.008±0.0090.099±0.008±0.0090.099±0.008±0.009 1 AUBERT 07N BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.098±0.012±0.014 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D+X)/[�(D+X)+�(D−X)

] �39/(�39+�40)�(D+X)/[�(D+X)+�(D−X)
] �39/(�39+�40)�(D+X)/[�(D+X)+�(D−X)
] �39/(�39+�40)�(D+X)/[�(D+X)+�(D−X)
] �39/(�39+�40)VALUE DOCUMENT ID TECN COMMENT0.204±0.035±0.0010.204±0.035±0.0010.204±0.035±0.0010.204±0.035±0.001 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.278±0.052±0.009 AUBERT,BE 04B BABR Repl. by AUBERT 07N�(D+s X)/�total �41/��(D+s X)/�total �41/��(D+s X)/�total �41/��(D+s X)/�total �41/�VALUE DOCUMENT ID TECN COMMENT0.079±0.006+0.013
−0.0110.079±0.006+0.013
−0.0110.079±0.006+0.013
−0.0110.079±0.006+0.013
−0.011 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.143±0.016+0.051
−0.034 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D−s X)/�total �42/��(D−s X)/�total �42/��(D−s X)/�total �42/��(D−s X)/�total �42/�VALUE CL% DOCUMENT ID TECN COMMENT0.011+0.004

−0.003+0.002
−0.0010.011+0.004

−0.003+0.002
−0.0010.011+0.004

−0.003+0.002
−0.0010.011+0.004

−0.003+0.002
−0.001 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.022 90 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D+s X)/[�(D+s X)+�(D−s X)

] �41/(�41+�42)�(D+s X)/[�(D+s X)+�(D−s X)
] �41/(�41+�42)�(D+s X)/[�(D+s X)+�(D−s X)
] �41/(�41+�42)�(D+s X)/[�(D+s X)+�(D−s X)
] �41/(�41+�42)VALUE DOCUMENT ID TECN COMMENT0.884±0.038±0.0020.884±0.038±0.0020.884±0.038±0.0020.884±0.038±0.002 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.966±0.039±0.012 AUBERT,BE 04B BABR Repl. by AUBERT 07N�(D−s X)/[�(D+s X)+�(D−s X)
] �42/(�41+�42)�(D−s X)/[�(D+s X)+�(D−s X)
] �42/(�41+�42)�(D−s X)/[�(D+s X)+�(D−s X)
] �42/(�41+�42)�(D−s X)/[�(D+s X)+�(D−s X)
] �42/(�41+�42)VALUE CL% DOCUMENT ID TECN COMMENT

<0.126<0.126<0.126<0.126 90 AUBERT,BE 04B BABR e+ e− → �(4S)�(�+
 X)/�total �43/��(�+
 X)/�total �43/��(�+
 X)/�total �43/��(�+
 X)/�total �43/�VALUE DOCUMENT ID TECN COMMENT0.021±0.005+0.008
−0.0040.021±0.005+0.008
−0.0040.021±0.005+0.008
−0.0040.021±0.005+0.008
−0.004 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.029±0.008+0.011
−0.007 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(�−
 X)/�total �44/��(�−
 X)/�total �44/��(�−
 X)/�total �44/��(�−
 X)/�total �44/�VALUE DOCUMENT ID TECN COMMENT0.028±0.005+0.010
−0.0070.028±0.005+0.010
−0.0070.028±0.005+0.010
−0.0070.028±0.005+0.010
−0.007 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.035±0.008+0.013
−0.009 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.

�(�+
 X)/[�(�+
 X)+�(�−
 X)
] �43/(�43+�44)�(�+
 X)/[�(�+
 X)+�(�−
 X)
] �43/(�43+�44)�(�+
 X)/[�(�+
 X)+�(�−
 X)
] �43/(�43+�44)�(�+
 X)/[�(�+
 X)+�(�−
 X)
] �43/(�43+�44)VALUE DOCUMENT ID TECN COMMENT0.427±0.071±0.0010.427±0.071±0.0010.427±0.071±0.0010.427±0.071±0.001 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.452±0.090±0.003 AUBERT,BE 04B BABR Repl. by AUBERT 07N�(
 X)/�total �45/��(
 X)/�total �45/��(
 X)/�total �45/��(
 X)/�total �45/�VALUE DOCUMENT ID TECN COMMENT0.968±0.019+0.041
−0.0390.968±0.019+0.041
−0.0390.968±0.019+0.041
−0.0390.968±0.019+0.041
−0.039 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.983±0.030+0.054
−0.051 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(
 X)/�total �46/��(
 X)/�total �46/��(
 X)/�total �46/��(
 X)/�total �46/�VALUE DOCUMENT ID TECN COMMENT0.234±0.012+0.018
−0.0140.234±0.012+0.018
−0.0140.234±0.012+0.018
−0.0140.234±0.012+0.018
−0.014 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.330±0.022+0.055
−0.037 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(
 /
 X)/�total �47/��(
 /
 X)/�total �47/��(
 /
 X)/�total �47/��(
 /
 X)/�total �47/�VALUE DOCUMENT ID TECN COMMENT1.202±0.023+0.053
−0.0491.202±0.023+0.053
−0.0491.202±0.023+0.053
−0.0491.202±0.023+0.053
−0.049 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.313±0.037+0.088
−0.075 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D0π+)/�total �48/��(D0π+)/�total �48/��(D0π+)/�total �48/��(D0π+)/�total �48/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.80±0.15 OUR FIT4.80±0.15 OUR FIT4.80±0.15 OUR FIT4.80±0.15 OUR FIT4.83±0.15 OUR AVERAGE4.83±0.15 OUR AVERAGE4.83±0.15 OUR AVERAGE4.83±0.15 OUR AVERAGE4.90±0.07±0.22 1 AUBERT 07H BABR e+ e− → �(4S)5.0 ±0.6 ±0.3 2 ABULENCIA 06J CDF pp at 1.96 TeV4.49±0.21±0.23 3 AUBERT,BE 06J BABR e+ e− → �(4S)4.97±0.12±0.29 1,4 AHMED 02B CLE2 e+ e− → �(4S)5.0 ±0.7 ±0.6 54 5 BORTOLETTO92 CLEO e+ e− → �(4S)5.4 +1.8

−1.5 +1.2
−0.9 14 6 BEBEK 87 CLEO e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.70±0.26±0.05 7 AUBERT,B 04P BABR Repl. by AUBERT 07H5.5 ±0.4 ±0.5 304 8 ALAM 94 CLE2 Repl. by AHMED 02B2.0 ±0.8 ±0.6 12 5 ALBRECHT 90J ARG e+ e− → �(4S)1.9 ±1.0 ±0.6 7 9 ALBRECHT 88K ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ABULENCIA 06J reports [�(B+ → D0π+)/�total℄ / [B(B0 → D−π+)℄ = 1.97 ±0.10 ± 0.21 whi
h we multiply by our best value B(B0 → D−π+) = (2.52 ± 0.13)×10−3. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.3Uses a missing-mass method. Does not depend on D bran
hing fra
tions or B+/B0produ
tion rates.4AHMED 02B reports an additional un
ertainty on the bran
hing ratios to a

ount for4.5% un
ertainty on relative produ
tion of B0 and B+, whi
h is not in
luded here.5Assumes equal produ
tion of B+ and B0 at the �(4S) and uses the Mark III bran
hingfra
tions for the D.6BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions asnoted for BORTOLETTO 92.7AUBERT,B 04P reports [�(B+ → D0π+)/�total℄ × [B(D0 → K−π+)℄ = (1.846 ±0.032 ± 0.097)× 10−4 whi
h we divide by our best value B(D0 → K−π+) = (3.93 ±0.04) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.8ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIabsolute B(D0 → K−π+) and the PDG 1992 B(D0 → K−π+π0)/B(D0 → K−π+)and B(D0 → K− 2π+π−)/B(D0 → K−π+).9ALBRECHT 88K assumes B0B0:B+B− ratio is 45:55. Superseded by ALBRECHT 90J.�(D0 ρ+)/�total �51/��(D0 ρ+)/�total �51/��(D0 ρ+)/�total �51/��(D0 ρ+)/�total �51/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0134±0.0018 OUR AVERAGE0.0134±0.0018 OUR AVERAGE0.0134±0.0018 OUR AVERAGE0.0134±0.0018 OUR AVERAGE0.0135±0.0012±0.0015 212 1 ALAM 94 CLE2 e+ e− → �(4S)0.013 ±0.004 ±0.004 19 2 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.021 ±0.008 ±0.009 10 3 ALBRECHT 88K ARG e+ e− → �(4S)1ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIabsolute B(D0 → K−π+) and the PDG 1992 B(D0 → K−π+π0)/B(D0 → K−π+)and B(D0 → K− 2π+π−)/B(D0 → K−π+).2Assumes equal produ
tion of B+ and B0 at the �(4S) and uses the Mark III bran
hingfra
tions for the D.3ALBRECHT 88K assumes B0B0:B+B− ratio is 45:55.



1161116111611161See key on page 601 MesonParti
le ListingsB±�(D0K+)/�(D0π+) �52/�48�(D0K+)/�(D0π+) �52/�48�(D0K+)/�(D0π+) �52/�48�(D0K+)/�(D0π+) �52/�48VALUE (units 10−2) DOCUMENT ID TECN COMMENT7.69±0.25 OUR AVERAGE7.69±0.25 OUR AVERAGE7.69±0.25 OUR AVERAGE7.69±0.25 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.7.71±0.17±0.26 1 AAIJ 13AE LHCB pp at 7 TeV7.74±0.12±0.19 AAIJ 12M LHCB pp at 7 TeV6.77±0.23±0.30 HORII 08 BELL e+ e− → �(4S)8.31±0.35±0.20 AUBERT 04N BABR e+ e− → �(4S)9.9 +1.4
−1.2 +0.7

−0.6 BORNHEIM 03 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.4 ±0.9 ±0.7 ABE 03D BELL Repl. by SWAIN 037.7 ±0.5 ±0.6 SWAIN 03 BELL Repl. by HORII 087.9 ±0.9 ±0.6 ABE 01I BELL Repl. by ABE 03D5.5 ±1.4 ±0.5 ATHANAS 98 CLE2 Repl. by BORNHEIM 031Uses B± → [K±π∓π+π− ℄D h± mode.

WEIGHTED AVERAGE
7.69±0.25 (Error scaled by 1.7)

BORNHEIM 03 CLE2
AUBERT 04N BABR 2.4
HORII 08 BELL 5.9
AAIJ 12M LHCB 0.1
AAIJ 13AE LHCB 0.0

χ2

       8.3
(Confidence Level = 0.040)

4 6 8 10 12 14�(D0K+)/�(D0π+) (units 10−2)�(DCP(+1)K+)/�(DCP(+1)π+) �53/�49�(DCP(+1)K+)/�(DCP(+1)π+) �53/�49�(DCP(+1)K+)/�(DCP(+1)π+) �53/�49�(DCP(+1)K+)/�(DCP(+1)π+) �53/�49VALUE DOCUMENT ID TECN COMMENT0.087±0.007 OUR AVERAGE0.087±0.007 OUR AVERAGE0.087±0.007 OUR AVERAGE0.087±0.007 OUR AVERAGE0.087±0.008±0.003 1,2 ABE 06 BELL e+ e− → �(4S)0.088±0.016±0.005 3 AUBERT 04N BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.125±0.036±0.010 3 ABE 03D BELL Repl. by SWAIN 030.093±0.018±0.008 3 SWAIN 03 BELL Repl. by ABE 061Reports a double ratio of B(B+ → DCP (+1)K+)/B(B+ → DCP (+1)π+) andB(B+ → D0K+)/B(B+ → D0π+), 1.13 ± 0.16 ± 0.08. We multiply by our bestvalue of B(B+ → D0K+)/B(B+ → D0π+) = 0.083 ± 0.006. Our �rst error is theirexperiment's error and the se
ond error is systemati
 error from using our best value.2ABE 06 reports [�(B+ → DCP(+1)K+)/�(B+ → DCP(+1)π+)℄ / [�(B+ →D0K+)/�(B+ → D0π+)℄ = 1.13 ± 0.06 ± 0.08 whi
h we multiply by our best value�(B+ → D0K+)/�(B+ → D0π+) = 0.0769 ± 0.0025. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.3CP=+1 eigenstate of D0D0 system is re
onstru
ted via K+K− and π+π−.�(DCP(+1)K+)/�(D0K+) �53/�52�(DCP(+1)K+)/�(D0K+) �53/�52�(DCP(+1)K+)/�(D0K+) �53/�52�(DCP(+1)K+)/�(D0K+) �53/�52VALUE DOCUMENT ID TECN COMMENT0.518±0.029 OUR AVERAGE0.518±0.029 OUR AVERAGE0.518±0.029 OUR AVERAGE0.518±0.029 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.0.504±0.019±0.006 1 AAIJ 12M LHCB pp at 7 TeV0.65 ±0.12 ±0.06 2 AALTONEN 10A CDF pp at 1.96 TeV0.590±0.045±0.025 3 DEL-AMO-SA...10G BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.53 ±0.05 ±0.025 AUBERT 08AA BABR Repl. by DEL-AMO-SANCHEZ 10G0.45 ±0.06 ±0.02 AUBERT 06J BABR Repl. by AUBERT 08AA1AAIJ 12M reports RCP+ = 1.007 ± 0.038 ± 0.012 whi
h we have divided by 2.2Reports RCP+ = 2 (B(B− → DCP (+1)K−) + B(B+ → DCP (+1)K+)) /(B(B− → D0K−) + B(B+ → D0K+)) = 1.30 ± 0.24 ± 0.12 that we have di-vided by 2.3Reports RCP+ = 1.18 ± 0.09 ± 0.05 that we have divided by 2.�(DCP(−1)K+)/�(DCP(−1)π+) �54/�50�(DCP(−1)K+)/�(DCP(−1)π+) �54/�50�(DCP(−1)K+)/�(DCP(−1)π+) �54/�50�(DCP(−1)K+)/�(DCP(−1)π+) �54/�50VALUE DOCUMENT ID TECN COMMENT0.097±0.016±0.0070.097±0.016±0.0070.097±0.016±0.0070.097±0.016±0.007 1 ABE 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.119±0.028±0.006 2 ABE 03D BELL Repl. by SWAIN 030.108±0.019±0.007 2 SWAIN 03 BELL Repl. by ABE 06

1Reports a double ratio of B(B+ → DCP (−1)K+)/B(B+ → DCP (−1)π+) andB(B+ → D0K+)/B(B+ → D0π+), 1.17 ± 0.14 ± 0.14. We multiply by our bestvalue of B(B+ → D0K+)/B(B+ → D0π+) = 0.083 ± 0.006. Our �rst error is theirexperiment's error and the se
ond error is systemati
 error from using our best value.2CP=−1 eigenstate of D0D0 system is re
onstru
ted via K0S π0, K0S ω, K0S φ, K0S η,and K0S η′.�(DCP(−1)K+)/�(D0K+) �54/�52�(DCP(−1)K+)/�(D0K+) �54/�52�(DCP(−1)K+)/�(D0K+) �54/�52�(DCP(−1)K+)/�(D0K+) �54/�52VALUE DOCUMENT ID TECN COMMENT0.54 ±0.04±0.020.54 ±0.04±0.020.54 ±0.04±0.020.54 ±0.04±0.02 1 DEL-AMO-SA...10G BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.515±0.05±0.025 AUBERT 08AA BABR Repl. by DEL-AMO-SANCHEZ 10G0.43 ±0.05±0.02 AUBERT 06J BABR Repl. by AUBERT 08AA1Reports RCP+ = 1.07 ± 0.08 ± 0.04 that we have divided by 2.�([K−π+ ℄DK+)/�total �55/��([K−π+ ℄DK+)/�total �55/��([K−π+ ℄DK+)/�total �55/��([K−π+ ℄DK+)/�total �55/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.8× 10−7<2.8× 10−7<2.8× 10−7<2.8× 10−7 90 HORII 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.3× 10−7 90 SAIGO 05 BELL e+ e− → �(4S)�([K−π+ ℄DK+)/�([K+π− ℄D K+) �55/�56�([K−π+ ℄DK+)/�([K+π− ℄D K+) �55/�56�([K−π+ ℄DK+)/�([K+π− ℄D K+) �55/�56�([K−π+ ℄DK+)/�([K+π− ℄D K+) �55/�56VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT15.3±1.7 OUR AVERAGE15.3±1.7 OUR AVERAGE15.3±1.7 OUR AVERAGE15.3±1.7 OUR AVERAGE15.2±2.0±0.4 AAIJ 12M LHCB pp at 7 TeV22.0±8.6±2.6 1 AALTONEN 11AJ CDF pp at 1.96 TeV16.3+4.4

−4.1+0.7
−1.3 HORII 11 BELL e+ e− → �(4S)11 ±6 ±2 DEL-AMO-SA...10H BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •7.8+6.2
−5.7+2.0

−2.8 HORII 08 BELL Repl. by HORII 11
<29 90 2 AUBERT 05G BABR Repl. by DEL-AMO-SANCHEZ 10H
<44 90 3 SAIGO 05 BELL e+ e− → �(4S)
<26 90 4 AUBERT,B 04L BABR Repl. by AUBERT 05G1AALTONEN 11AJ also measures the ratio separately for B+ (R+(K)) and B− (R−(K))and obtains: R+(K) = (42.6± 13.7± 2.8)×10−3, R−(K) = (3.8± 10.3± 2.7)×10−3.2AUBERT 05G extra
t a 
onstraint on the magnitude of the ratio of amplitudes ∣

∣A(B+ →D0K+) / A(B+ → D0K+)∣∣ < 0.23 at 90% CL (Bayesian). Similar measurementsfrom B+ → D∗0K+ are also reported.3 SAIGO 05 extra
t a 
onstraint on the magnitude of the ratio of amplitudes ∣

∣A(B+ →D0K+) / A(B+ → D0K+)∣∣ < 0.27 at 90% CL.4AUBERT,B 04L extra
t a 
onstraint on the magnitude of the ratio of amplitudes
∣

∣A(B+ → D0K+)/A(B+ → D0K+)∣∣ < 0.22 at 90% CL.�([K−π+π0 ℄DK+)/�([K+π−π0 ℄D K+) �57/�58�([K−π+π0 ℄DK+)/�([K+π−π0 ℄D K+) �57/�58�([K−π+π0 ℄DK+)/�([K+π−π0 ℄D K+) �57/�58�([K−π+π0 ℄DK+)/�([K+π−π0 ℄D K+) �57/�58VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT16 ±4 OUR AVERAGE16 ±4 OUR AVERAGE16 ±4 OUR AVERAGE16 ±4 OUR AVERAGE14.0±4.7±2.1 1 AAIJ 15W LHCB pp at 7, 8 TeV19.8±6.2±2.4 NAYAK 13 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<21 90 2 LEES 11D BABR e+ e− → �(4S)
<39 95 3 AUBERT 07BN BABR Repl. by LEES 11D1Uses D0 → K−π+π0 for the favored mode, and D0 → K+π−π0 for the suppressedmode.2 Extra
ts a 
onstraint on the magnitude of the ratio of amplitudes ∣

∣A(B+ → D0K+)/A(B+ → D0K+)∣∣ < 0.13 at 95% CL.3Extra
ts a 
onstraint on the magnitude of the ratio of amplitudes ∣

∣A(B+ → D0K+)/A(B+ → D0K+)∣∣ < 0.19 at 95% CL.�([K−π+π+π− ℄DK+)/�([K+π−π+π− ℄DK+) �59/�60�([K−π+π+π− ℄DK+)/�([K+π−π+π− ℄DK+) �59/�60�([K−π+π+π− ℄DK+)/�([K+π−π+π− ℄DK+) �59/�60�([K−π+π+π− ℄DK+)/�([K+π−π+π− ℄DK+) �59/�60VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.24±0.271.24±0.271.24±0.271.24±0.27 AAIJ 13AE LHCB pp at 7 TeV�([K−π+ ℄DK∗(892)+)/�([K+π− ℄DK∗(892)+) �61/�62�([K−π+ ℄DK∗(892)+)/�([K+π− ℄DK∗(892)+) �61/�62�([K−π+ ℄DK∗(892)+)/�([K+π− ℄DK∗(892)+) �61/�62�([K−π+ ℄DK∗(892)+)/�([K+π− ℄DK∗(892)+) �61/�62VALUE DOCUMENT ID TECN COMMENT0.066±0.031±0.0100.066±0.031±0.0100.066±0.031±0.0100.066±0.031±0.010 AUBERT 09AJ BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.046±0.031±0.008 AUBERT,B 05V BABR Repl. by AUBERT 09AJ�([K−π+ ℄D π+)/�total �63/��([K−π+ ℄D π+)/�total �63/��([K−π+ ℄D π+)/�total �63/��([K−π+ ℄D π+)/�total �63/�VALUE (units 10−7) DOCUMENT ID TECN COMMENT6.29+1.02

−0.98+0.37
−0.486.29+1.02

−0.98+0.37
−0.486.29+1.02

−0.98+0.37
−0.486.29+1.02

−0.98+0.37
−0.48 HORII 08 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.6 +1.9
−1.7 ±0.5 SAIGO 05 BELL Repl. by HORII 08



1162116211621162Meson Parti
le ListingsB±�([K−π+ ℄D π+)/�([K+π− ℄D π+) �63/�64�([K−π+ ℄D π+)/�([K+π− ℄D π+) �63/�64�([K−π+ ℄D π+)/�([K+π− ℄D π+) �63/�64�([K−π+ ℄D π+)/�([K+π− ℄D π+) �63/�64VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.75±0.26 OUR AVERAGE3.75±0.26 OUR AVERAGE3.75±0.26 OUR AVERAGE3.75±0.26 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.4.10±0.25±0.05 AAIJ 12M LHCB pp at 7 TeV2.8 ±0.7 ±0.4 1 AALTONEN 11AJ CDF pp at 1.96 TeV3.28+0.38
−0.36+0.12

−0.18 HORII 11 BELL e+ e− → �(4S)3.3 ±0.6 ±0.4 DEL-AMO-SA...10H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.40+0.55

−0.53+0.15
−0.22 HORII 08 BELL Repl. by HORII 113.5 +1.0

−0.9 ±0.2 SAIGO 05 BELL Repl. by HORII 081AALTONEN 11AJ also measures the ratio separately for B+ (R+(π)) and B− (R−(π))and obtains: R+(π) = (2.4 ± 1.0 ± 0.4)× 10−3, R−(K) = (3.1 ± 1.1 ± 0.4)× 10−3.
WEIGHTED AVERAGE
3.75±0.26 (Error scaled by 1.3)

DEL-AMO-SA... 10H BABR 0.4
HORII 11 BELL 1.4
AALTONEN 11AJ CDF 1.4
AAIJ 12M LHCB 1.8

χ2

       5.1
(Confidence Level = 0.168)

1 2 3 4 5 6 7�([K−π+ ℄D π+)/�([K+π− ℄D π+) (units 10−3)�([K−π+π0 ℄D π+)/�([K+π−π0 ℄D π+) �65/�66�([K−π+π0 ℄D π+)/�([K+π−π0 ℄D π+) �65/�66�([K−π+π0 ℄D π+)/�([K+π−π0 ℄D π+) �65/�66�([K−π+π0 ℄D π+)/�([K+π−π0 ℄D π+) �65/�66VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE2.35±0.49±0.06 1 AAIJ 15W LHCB pp at 7, 8 TeV1.89±0.54+0.22
−0.25 NAYAK 13 BELL e+ e− → �(4S)1Uses D0 → K−π+π0 for the favored mode, and D0 → K+π−π0 for the suppressedmode.�([K−π+π+π− ℄D π+)/�([K+π−π+π− ℄D π+) �67/�68�([K−π+π+π− ℄D π+)/�([K+π−π+π− ℄D π+) �67/�68�([K−π+π+π− ℄D π+)/�([K+π−π+π− ℄D π+) �67/�68�([K−π+π+π− ℄D π+)/�([K+π−π+π− ℄D π+) �67/�68VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.7±0.43.7±0.43.7±0.43.7±0.4 AAIJ 13AE LHCB pp at 7 TeV�([K−π+ ℄(D π)π+)/�([K+π− ℄(D π)π+) �69/�70�([K−π+ ℄(D π)π+)/�([K+π− ℄(D π)π+) �69/�70�([K−π+ ℄(D π)π+)/�([K+π− ℄(D π)π+) �69/�70�([K−π+ ℄(D π)π+)/�([K+π− ℄(D π)π+) �69/�70VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.2±0.9±0.83.2±0.9±0.83.2±0.9±0.83.2±0.9±0.8 DEL-AMO-SA...10H BABR e+ e− → �(4S)�([K−π+ ℄(D γ)π+)/�([K+π− ℄(D γ)π+) �71/�72�([K−π+ ℄(D γ)π+)/�([K+π− ℄(D γ)π+) �71/�72�([K−π+ ℄(D γ)π+)/�([K+π− ℄(D γ)π+) �71/�72�([K−π+ ℄(D γ)π+)/�([K+π− ℄(D γ)π+) �71/�72VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.7±1.4±2.22.7±1.4±2.22.7±1.4±2.22.7±1.4±2.2 DEL-AMO-SA...10H BABR e+ e− → �(4S)�([K−π+ ℄(D π)K+)/�([K+π− ℄(D π)K+) �73/�74�([K−π+ ℄(D π)K+)/�([K+π− ℄(D π)K+) �73/�74�([K−π+ ℄(D π)K+)/�([K+π− ℄(D π)K+) �73/�74�([K−π+ ℄(D π)K+)/�([K+π− ℄(D π)K+) �73/�74VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.8±0.9±0.41.8±0.9±0.41.8±0.9±0.41.8±0.9±0.4 DEL-AMO-SA...10H BABR e+ e− → �(4S)�([K−π+ ℄(D γ)K+)/�([K+π− ℄(D γ)K+) �75/�76�([K−π+ ℄(D γ)K+)/�([K+π− ℄(D γ)K+) �75/�76�([K−π+ ℄(D γ)K+)/�([K+π− ℄(D γ)K+) �75/�76�([K−π+ ℄(D γ)K+)/�([K+π− ℄(D γ)K+) �75/�76VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.3±1.4±0.81.3±1.4±0.81.3±1.4±0.81.3±1.4±0.8 DEL-AMO-SA...10H BABR e+ e− → �(4S)�([π+π−π0 ℄DK−)/�total �77/��([π+π−π0 ℄DK−)/�total �77/��([π+π−π0 ℄DK−)/�total �77/��([π+π−π0 ℄DK−)/�total �77/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT4.6±0.8±0.44.6±0.8±0.44.6±0.8±0.44.6±0.8±0.4 1 AUBERT 07BJ BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.5±1.0±0.7 1 AUBERT,B 05T BABR Repl. by AUBERT 07BJ1Assumes equal produ
tion of B+ and B0 at the �(4S).�([K0S K+π− ℄DK+)/�([K0S K+π− ℄D π+) �78/�83�([K0S K+π− ℄DK+)/�([K0S K+π− ℄D π+) �78/�83�([K0S K+π− ℄DK+)/�([K0S K+π− ℄D π+) �78/�83�([K0S K+π− ℄DK+)/�([K0S K+π− ℄D π+) �78/�83VALUE DOCUMENT ID TECN COMMENT0.092±0.009±0.0040.092±0.009±0.0040.092±0.009±0.0040.092±0.009±0.004 1 AAIJ 14V LHCB pp at 7, 8 TeV1The anaysis uses all of D → K0S K π Dalitz de
ays.

�([K0S K−π+ ℄DK+)/�([K0S K−π+ ℄D π+) �79/�81�([K0S K−π+ ℄DK+)/�([K0S K−π+ ℄D π+) �79/�81�([K0S K−π+ ℄DK+)/�([K0S K−π+ ℄D π+) �79/�81�([K0S K−π+ ℄DK+)/�([K0S K−π+ ℄D π+) �79/�81VALUE DOCUMENT ID TECN COMMENT0.066±0.009±0.0020.066±0.009±0.0020.066±0.009±0.0020.066±0.009±0.002 1 AAIJ 14V LHCB pp at 7, 8 TeV1The anaysis uses all of D → K0S K π Dalitz de
ays.�([K0S K−π+ ℄DK+)/�([K0S K+π− ℄D π+) �79/�83�([K0S K−π+ ℄DK+)/�([K0S K+π− ℄D π+) �79/�83�([K0S K−π+ ℄DK+)/�([K0S K+π− ℄D π+) �79/�83�([K0S K−π+ ℄DK+)/�([K0S K+π− ℄D π+) �79/�83VALUE DOCUMENT ID TECN COMMENT0.084±0.011±0.0030.084±0.011±0.0030.084±0.011±0.0030.084±0.011±0.003 1 AAIJ 14V LHCB pp at 7, 8 TeV1The Analysis uses D → K∗(892)K → K0S K π de
ays.�([K∗(892)+K− ℄DK+)/�([K∗(892)−K+ ℄D π+) �80/�84�([K∗(892)+K− ℄DK+)/�([K∗(892)−K+ ℄D π+) �80/�84�([K∗(892)+K− ℄DK+)/�([K∗(892)−K+ ℄D π+) �80/�84�([K∗(892)+K− ℄DK+)/�([K∗(892)−K+ ℄D π+) �80/�84VALUE DOCUMENT ID TECN COMMENT0.056±0.013±0.0020.056±0.013±0.0020.056±0.013±0.0020.056±0.013±0.002 1 AAIJ 14V LHCB pp at 7, 8 TeV1The Analysis uses D → K∗(892)K → K0S K π de
ays.�([K+K−π0 ℄DK+)/�([K+K−π0 ℄D π+) �85/�86�([K+K−π0 ℄DK+)/�([K+K−π0 ℄D π+) �85/�86�([K+K−π0 ℄DK+)/�([K+K−π0 ℄D π+) �85/�86�([K+K−π0 ℄DK+)/�([K+K−π0 ℄D π+) �85/�86VALUE DOCUMENT ID TECN COMMENT0.95±0.22±0.050.95±0.22±0.050.95±0.22±0.050.95±0.22±0.05 1 AAIJ 15W LHCB pp at 7, 8 TeV1Uses D → K+K−π0 mode.�([π+π−π0 ℄DK+)/�([π+π−π0 ℄D π+) �87/�88�([π+π−π0 ℄DK+)/�([π+π−π0 ℄D π+) �87/�88�([π+π−π0 ℄DK+)/�([π+π−π0 ℄D π+) �87/�88�([π+π−π0 ℄DK+)/�([π+π−π0 ℄D π+) �87/�88VALUE DOCUMENT ID TECN COMMENT0.98±0.11±0.050.98±0.11±0.050.98±0.11±0.050.98±0.11±0.05 1 AAIJ 15W LHCB pp at 7, 8 TeV1Uses D → π+π−π0 mode.�([K0S K+π− ℄D π+)/�([K0S K−π+ ℄D π+) �83/�81�([K0S K+π− ℄D π+)/�([K0S K−π+ ℄D π+) �83/�81�([K0S K+π− ℄D π+)/�([K0S K−π+ ℄D π+) �83/�81�([K0S K+π− ℄D π+)/�([K0S K−π+ ℄D π+) �83/�81VALUE DOCUMENT ID TECN COMMENT1.528±0.058±0.0251.528±0.058±0.0251.528±0.058±0.0251.528±0.058±0.025 1 AAIJ 14V LHCB pp at 7, 8 TeV1The anaysis uses all of D → K0S K π Dalitz de
ays.�([K∗(892)−K+ ℄D π+)/�([K∗(892)+K− ℄D π+) �84/�82�([K∗(892)−K+ ℄D π+)/�([K∗(892)+K− ℄D π+) �84/�82�([K∗(892)−K+ ℄D π+)/�([K∗(892)+K− ℄D π+) �84/�82�([K∗(892)−K+ ℄D π+)/�([K∗(892)+K− ℄D π+) �84/�82VALUE DOCUMENT ID TECN COMMENT2.57±0.13±0.062.57±0.13±0.062.57±0.13±0.062.57±0.13±0.06 1 AAIJ 14V LHCB pp at 7, 8 TeV1The Analysis uses D → K∗(892)K → K0S K π de
ays.�(D0K∗(892)+)/�total �89/��(D0K∗(892)+)/�total �89/��(D0K∗(892)+)/�total �89/��(D0K∗(892)+)/�total �89/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.3 ±0.4 OUR AVERAGE5.3 ±0.4 OUR AVERAGE5.3 ±0.4 OUR AVERAGE5.3 ±0.4 OUR AVERAGE5.29±0.30±0.34 1 AUBERT 06Z BABR e+ e− → �(4S)6.1 ±1.6 ±1.7 1 MAHAPATRA 02 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.3 ±0.7 ±0.5 1 AUBERT 04Q BABR Repl. by AUBERT 06Z1Assumes equal produ
tion of B+ and B0 at the �(4S).�(DCP (−1)K∗(892)+)/�(D0K∗(892)+) �90/�89�(DCP (−1)K∗(892)+)/�(D0K∗(892)+) �90/�89�(DCP (−1)K∗(892)+)/�(D0K∗(892)+) �90/�89�(DCP (−1)K∗(892)+)/�(D0K∗(892)+) �90/�89VALUE DOCUMENT ID TECN COMMENT0.515±0.135±0.0650.515±0.135±0.0650.515±0.135±0.0650.515±0.135±0.065 1 AUBERT 09AJ BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.325±0.13 ±0.04 2 AUBERT,B 05U BABR Repl. by AUBERT 09AJ1The authors report RCP−= 1.03 ± 0.27 ± 0.13 whi
h is, assuming CP 
onservation,twi
e the value of the quoted above bran
hing ratio,2The authors report RCP−= 0.65 ± 0.26 ± 0.08 whi
h is, assuming CP 
onservation,twi
e the value of the quoted above bran
hing ratio.�(DCP (+1)K∗(892)+)/�(D0K∗(892)+) �91/�89�(DCP (+1)K∗(892)+)/�(D0K∗(892)+) �91/�89�(DCP (+1)K∗(892)+)/�(D0K∗(892)+) �91/�89�(DCP (+1)K∗(892)+)/�(D0K∗(892)+) �91/�89VALUE DOCUMENT ID TECN COMMENT1.085±0.175±0.0451.085±0.175±0.0451.085±0.175±0.0451.085±0.175±0.045 1 AUBERT 09AJ BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.98 ±0.20 ±0.055 2 AUBERT,B 05U BABR Repl. by AUBERT 09AJ1The authors report RCP+= 2.17 ± 0.35 ± 0.09 whi
h is, assuming CP 
onservation,twi
e the value of the quoted above bran
hing ratio,2The authors report RCP+= 1.96 ± 0.40 ± 0.11 whi
h is, assuming CP 
onservation,twi
e the value of the quoted above bran
hing ratio.�(D0K+π+π−)/�(D0π+π+π−) �92/�98�(D0K+π+π−)/�(D0π+π+π−) �92/�98�(D0K+π+π−)/�(D0π+π+π−) �92/�98�(D0K+π+π−)/�(D0π+π+π−) �92/�98VALUE (units 10−2) DOCUMENT ID TECN COMMENT9.4±1.3±0.99.4±1.3±0.99.4±1.3±0.99.4±1.3±0.9 AAIJ 12T LHCB pp at 7 TeV�(DCP (+1)K+π−π+)/�([K+π− ℄DK+π−π+) �95/�93�(DCP (+1)K+π−π+)/�([K+π− ℄DK+π−π+) �95/�93�(DCP (+1)K+π−π+)/�([K+π− ℄DK+π−π+) �95/�93�(DCP (+1)K+π−π+)/�([K+π− ℄DK+π−π+) �95/�93VALUE DOCUMENT ID TECN COMMENT1.040±0.0641.040±0.0641.040±0.0641.040±0.064 AAIJ 15BC LHCB pp at 7, 8 TeV�([K−π+ ℄DK+π−π+)/�([K+π− ℄DK+π−π+) �94/�93�([K−π+ ℄DK+π−π+)/�([K+π− ℄DK+π−π+) �94/�93�([K−π+ ℄DK+π−π+)/�([K+π− ℄DK+π−π+) �94/�93�([K−π+ ℄DK+π−π+)/�([K+π− ℄DK+π−π+) �94/�93VALUE (units 10−4) DOCUMENT ID TECN COMMENT85+36

−3385+36
−3385+36
−3385+36
−33 AAIJ 15BC LHCB pp at 7, 8 TeV



1163116311631163See key on page 601 Meson Parti
le ListingsB±�(D0K+K0)/�total �96/��(D0K+K0)/�total �96/��(D0K+K0)/�total �96/��(D0K+K0)/�total �96/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.5±1.4±0.85.5±1.4±0.85.5±1.4±0.85.5±1.4±0.8 1 DRUTSKOY 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0K+K∗(892)0)/�total �97/��(D0K+K∗(892)0)/�total �97/��(D0K+K∗(892)0)/�total �97/��(D0K+K∗(892)0)/�total �97/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT7.5±1.3±1.17.5±1.3±1.17.5±1.3±1.17.5±1.3±1.1 1 DRUTSKOY 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0π+π+π−)/�total �98/��(D0π+π+π−)/�total �98/��(D0π+π+π−)/�total �98/��(D0π+π+π−)/�total �98/�VALUE DOCUMENT ID TECN COMMENT0.0057±0.0022 OUR FIT0.0057±0.0022 OUR FIT0.0057±0.0022 OUR FIT0.0057±0.0022 OUR FIT Error in
ludes s
ale fa
tor of 3.6.0.0115±0.0029±0.00210.0115±0.0029±0.00210.0115±0.0029±0.00210.0115±0.0029±0.0021 1 BORTOLETTO92 CLEO e+ e− → �(4S)1BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D.�(D0π+π+π−)/�(D0π+) �98/�48�(D0π+π+π−)/�(D0π+) �98/�48�(D0π+π+π−)/�(D0π+) �98/�48�(D0π+π+π−)/�(D0π+) �98/�48VALUE DOCUMENT ID TECN COMMENT1.2 ±0.4 OUR FIT1.2 ±0.4 OUR FIT1.2 ±0.4 OUR FIT1.2 ±0.4 OUR FIT Error in
ludes s
ale fa
tor of 3.8.1.27±0.06±0.111.27±0.06±0.111.27±0.06±0.111.27±0.06±0.11 AAIJ 11E LHCB pp at 7 TeV�([K−π+ ℄D π+π−π+)/�([K+π− ℄DK+π−π+) �99/�93�([K−π+ ℄D π+π−π+)/�([K+π− ℄DK+π−π+) �99/�93�([K−π+ ℄D π+π−π+)/�([K+π− ℄DK+π−π+) �99/�93�([K−π+ ℄D π+π−π+)/�([K+π− ℄DK+π−π+) �99/�93VALUE (units 10−4) DOCUMENT ID TECN COMMENT42.7±5.642.7±5.642.7±5.642.7±5.6 AAIJ 15BC LHCB pp at 7, 8 TeV�(D0π+π+π− nonresonant)/�total �100/��(D0π+π+π− nonresonant)/�total �100/��(D0π+π+π− nonresonant)/�total �100/��(D0π+π+π− nonresonant)/�total �100/�VALUE DOCUMENT ID TECN COMMENT0.0051±0.0034±0.00230.0051±0.0034±0.00230.0051±0.0034±0.00230.0051±0.0034±0.0023 1 BORTOLETTO92 CLEO e+ e− → �(4S)1BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D.�(D0π+ ρ0)/�total �101/��(D0π+ ρ0)/�total �101/��(D0π+ ρ0)/�total �101/��(D0π+ ρ0)/�total �101/�VALUE DOCUMENT ID TECN COMMENT0.0042±0.0023±0.00200.0042±0.0023±0.00200.0042±0.0023±0.00200.0042±0.0023±0.0020 1 BORTOLETTO92 CLEO e+ e− → �(4S)1BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D.�(D0 a1(1260)+)/�total �102/��(D0 a1(1260)+)/�total �102/��(D0 a1(1260)+)/�total �102/��(D0 a1(1260)+)/�total �102/�VALUE DOCUMENT ID TECN COMMENT0.0045±0.0019±0.00310.0045±0.0019±0.00310.0045±0.0019±0.00310.0045±0.0019±0.0031 1 BORTOLETTO92 CLEO e+ e− → �(4S)1BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D.�(D0ωπ+)/�total �103/��(D0ωπ+)/�total �103/��(D0ωπ+)/�total �103/��(D0ωπ+)/�total �103/�VALUE DOCUMENT ID TECN COMMENT0.0041±0.0007±0.00060.0041±0.0007±0.00060.0041±0.0007±0.00060.0041±0.0007±0.0006 1 ALEXANDER 01B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S). The signal is 
onsistent withall observed ωπ+ having pro
eeded through the ρ′+ resonan
e at mass 1349 ± 25+10
− 5MeV and width 547 ± 86+46

−45 MeV.�(D∗(2010)−π+π+)/�total �104/��(D∗(2010)−π+π+)/�total �104/��(D∗(2010)−π+π+)/�total �104/��(D∗(2010)−π+π+)/�total �104/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT1.35±0.22 OUR AVERAGE1.35±0.22 OUR AVERAGE1.35±0.22 OUR AVERAGE1.35±0.22 OUR AVERAGE1.25±0.08±0.22 1 ABE 04D BELL e+ e− → �(4S)1.9 ±0.7 ±0.3 14 2 ALAM 94 CLE2 e+ e− → �(4S)2.6 ±1.4 ±0.7 11 3 ALBRECHT 90J ARG e+ e− → �(4S)2.4 +1.7
−1.6 +1.0

−0.6 3 4 BEBEK 87 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4. 90 5 BORTOLETTO92 CLEO e+ e− → �(4S)5. ±2. ±3. 7 6 ALBRECHT 87C ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2010)+ → D0π+) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).3Assumes equal produ
tion of B+ and B0 at the �(4S) and uses the Mark III bran
hingfra
tions for the D.4BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions asnoted for BORTOLETTO 92.5BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D and D∗(2010). The authors also �nd the produ
tbran
hing fra
tion into D∗∗π followed by D∗∗ → D∗(2010)π to be 0.0014+0.0008

−0.0006 ±0.0003 where D∗∗ represents all orbitally ex
ited D mesons.6ALBRECHT 87C use PDG 86 bran
hing ratios for D and D∗(2010) and assumeB(�(4S) → B+B−) = 55% and B(�(4S) → B0B0) = 45%. Superseded by AL-BRECHT 90J.

�(D1(2420)0π+, D01 → D∗(2010)−π+)/�(D0π+π+π−) �105/�98�(D1(2420)0π+, D01 → D∗(2010)−π+)/�(D0π+π+π−) �105/�98�(D1(2420)0π+, D01 → D∗(2010)−π+)/�(D0π+π+π−) �105/�98�(D1(2420)0π+, D01 → D∗(2010)−π+)/�(D0π+π+π−) �105/�98VALUE (units 10−2) DOCUMENT ID TECN COMMENT9.3±1.6±0.99.3±1.6±0.99.3±1.6±0.99.3±1.6±0.9 1 AAIJ 11E LHCB pp at 7 TeV1AAIJ 11E reports (9.3 ± 1.6 ± 0.9) × 10−2 from a measurement of [�(B+ →D1(2420)0π+, D01 → D∗(2010)−π+)/�(B+ → D0π+π+π−
)℄ ×[B(D∗(2010)+ → D0π+)℄ assuming B(D∗(2010)+ → D0π+) = (67.7±0.5)×10−2.�(D−π+π+)/�total �106/��(D−π+π+)/�total �106/��(D−π+π+)/�total �106/��(D−π+π+)/�total �106/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT1.07±0.05 OUR AVERAGE1.07±0.05 OUR AVERAGE1.07±0.05 OUR AVERAGE1.07±0.05 OUR AVERAGE1.08±0.03±0.05 1 AUBERT 09AB BABR e+ e− → �(4S)1.02±0.04±0.15 1 ABE 04D BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.4 90 2 ALAM 94 CLE2 e+ e− → �(4S)
<7 90 3 BORTOLETTO92 CLEO e+ e− → �(4S)2.5 +4.1

−2.3 +2.4
−0.8 1 4 BEBEK 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the Mark IIIB(D+ → K− 2π+).3BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D. The produ
t bran
hing fra
tion into D∗0(2340)πfollowed by D∗0(2340) → Dπ is < 0.005 at 90%CL and into D∗2(2460) followed byD∗2(2460) → Dπ is < 0.004 at 90%CL.4BEBEK 87 assume the �(4S) de
ays 43% to B0B0. B(D− → K+π−π−) = (9.1 ±1.3 ± 0.4)% is assumed.�(D−K+π+)/�(D−π+π+) �107/�106�(D−K+π+)/�(D−π+π+) �107/�106�(D−K+π+)/�(D−π+π+) �107/�106�(D−K+π+)/�(D−π+π+) �107/�106VALUE (units 10−2) DOCUMENT ID TECN COMMENT7.20±0.19±0.217.20±0.19±0.217.20±0.19±0.217.20±0.19±0.21 AAIJ 15V LHCB pp at 7, 8 TeV�(D∗0(2400)0K+, D∗00 → D−π+)/�total �108/��(D∗0(2400)0K+, D∗00 → D−π+)/�total �108/��(D∗0(2400)0K+, D∗00 → D−π+)/�total �108/��(D∗0(2400)0K+, D∗00 → D−π+)/�total �108/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.1±1.9±1.56.1±1.9±1.56.1±1.9±1.56.1±1.9±1.5 1 AAIJ 15V LHCB pp at 7, 8 TeV1Performs the amplitude analysis by �tting the square-Dalitz-plot distribution.�(D∗1(2760)0K+, D∗01 → D−π+)/�total �109/��(D∗1(2760)0K+, D∗01 → D−π+)/�total �109/��(D∗1(2760)0K+, D∗01 → D−π+)/�total �109/��(D∗1(2760)0K+, D∗01 → D−π+)/�total �109/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.6±0.9±0.83.6±0.9±0.83.6±0.9±0.83.6±0.9±0.8 1 AAIJ 15V LHCB pp at 7, 8 TeV1Performs the amplitude analysis by �tting the square-Dalitz-plot distribution.�(D∗2(2460)0K+, D∗02 → D−π+)/�total �110/��(D∗2(2460)0K+, D∗02 → D−π+)/�total �110/��(D∗2(2460)0K+, D∗02 → D−π+)/�total �110/��(D∗2(2460)0K+, D∗02 → D−π+)/�total �110/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT23.2±1.1±2.023.2±1.1±2.023.2±1.1±2.023.2±1.1±2.0 1 AAIJ 15V LHCB pp at 7, 8 TeV1Performs the amplitude analysis by �tting the square-Dalitz-plot distribution.�(D+K0)/�total �111/��(D+K0)/�total �111/��(D+K0)/�total �111/��(D+K0)/�total �111/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<2.9<2.9<2.9<2.9 90 1 DEL-AMO-SA...10K BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.0 90 1 AUBERT,B 05E BABR Repl. by DEL-AMO-SANCHEZ 10K1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D+K∗0)/�total �112/��(D+K∗0)/�total �112/��(D+K∗0)/�total �112/��(D+K∗0)/�total �112/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.8<1.8<1.8<1.8 90 AAIJ 13R LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.0 90 1 DEL-AMO-SA...10K BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D+K∗0)/�total �113/��(D+K∗0)/�total �113/��(D+K∗0)/�total �113/��(D+K∗0)/�total �113/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.4<1.4<1.4<1.4 90 AAIJ 13R LHCB pp at 7 TeV�(D∗(2007)0π+)/�total �114/��(D∗(2007)0π+)/�total �114/��(D∗(2007)0π+)/�total �114/��(D∗(2007)0π+)/�total �114/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT5.18±0.26 OUR AVERAGE5.18±0.26 OUR AVERAGE5.18±0.26 OUR AVERAGE5.18±0.26 OUR AVERAGE5.52±0.17±0.42 1 AUBERT 07H BABR e+ e− → �(4S)5.5 ±0.4 ±0.2 2,3 AUBERT,BE 06J BABR e+ e− → �(4S)4.34±0.47±0.18 4 BRANDENB... 98 CLE2 e+ e− → �(4S)5.2 ±0.7 ±0.7 71 5 ALAM 94 CLE2 e+ e− → �(4S)7.2 ±1.8 ±1.6 6 BORTOLETTO92 CLEO e+ e− → �(4S)4.0 ±1.4 ±1.2 9 6 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.7 ±4.4 7 BEBEK 87 CLEO e+ e− → �(4S)



1164116411641164MesonParti
le ListingsB±1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT,BE 06J reports [�(B+ → D∗(2007)0π+)/�total℄ / [B(B+ → D0π+)℄= 1.14 ± 0.07 ± 0.04 whi
h we multiply by our best value B(B+ → D0π+) =(4.80 ± 0.15)× 10−3. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3Uses a missing-mass method. Does not depend on D bran
hing fra
tions or B+/B0produ
tion rates.4BRANDENBURG 98 assume equal produ
tion of B+ and B0 at �(4S) and use the D∗re
onstru
tion te
hnique. The �rst error is their experiment's error and the se
ond erroris the systemati
 error from the PDG 96 value of B(D∗ → Dπ).5ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2007)0 → D0π0) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).6Assumes equal produ
tion of B+ and B0 at the �(4S) and uses Mark III bran
hingfra
tions for the D and D∗(2010).7This is a derived bran
hing ratio, using the in
lusive pion spe
trum and other two-bodyB de
ays. BEBEK 87 assume the �(4S) de
ays 43% to B0B0.�(D∗(2007)0ωπ+)/�total �117/��(D∗(2007)0ωπ+)/�total �117/��(D∗(2007)0ωπ+)/�total �117/��(D∗(2007)0ωπ+)/�total �117/�VALUE DOCUMENT ID TECN COMMENT0.0045±0.0010±0.00070.0045±0.0010±0.00070.0045±0.0010±0.00070.0045±0.0010±0.0007 1 ALEXANDER 01B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S). The signal is 
onsistent withall observed ωπ+ having pro
eeded through the ρ′+ resonan
e at mass 1349 ± 25+10
− 5MeV and width 547 ± 86+46

−45 MeV.�(D∗(2007)0 ρ+)/�total �118/��(D∗(2007)0 ρ+)/�total �118/��(D∗(2007)0 ρ+)/�total �118/��(D∗(2007)0 ρ+)/�total �118/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0098±0.0017 OUR AVERAGE0.0098±0.0017 OUR AVERAGE0.0098±0.0017 OUR AVERAGE0.0098±0.0017 OUR AVERAGE0.0098±0.0006±0.0017 1 CSORNA 03 CLE2 e+ e− → �(4S)0.010 ±0.006 ±0.004 7 2 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0168±0.0021±0.0028 86 3 ALAM 94 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ at the �(4S) resonan
e. The se
ond error
ombines the systemati
 and theoreti
al un
ertainties in quadrature. CSORNA 03 in-
ludes data used in ALAM 94. A full angular �t to three 
omplex heli
ity amplitudes isperformed.2Assumes equal produ
tion of B+ and B0 at the �(4S) and uses Mark III bran
hingfra
tions for the D and D∗(2010).3ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2007)0 → D0π0) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+). Thenonresonant π+π0 
ontribution under the ρ+ is negligible.�(D∗(2007)0K+)/�total �119/��(D∗(2007)0K+)/�total �119/��(D∗(2007)0K+)/�total �119/��(D∗(2007)0K+)/�total �119/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.20±0.34 OUR AVERAGE4.20±0.34 OUR AVERAGE4.20±0.34 OUR AVERAGE4.20±0.34 OUR AVERAGE4.21+0.30

−0.26±0.21 1 AUBERT 05N BABR e+ e− → �(4S)4.0 ±1.1 ±0.2 2 ABE 01I BELL e+ e− → �(4S)1AUBERT 05N reports [�(B+ → D∗(2007)0K+)/�total℄ / [B(B+ → D∗(2007)0π+)℄= 0.0813 ± 0.0040+0.0042
−0.0031 whi
h we multiply by our best value B(B+ →D∗(2007)0π+) = (5.18 ± 0.26) × 10−3. Our �rst error is their experiment's errorand our se
ond error is the systemati
 error from using our best value.2ABE 01I reports [�(B+ → D∗(2007)0K+)/�total℄ / [B(B+ → D∗(2007)0π+)℄ =0.078 ± 0.019 ± 0.009 whi
h we multiply by our best value B(B+ → D∗(2007)0π+)= (5.18 ± 0.26)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(D∗0

CP (+1)K+)/�total �120/��(D∗0
CP (+1)K+)/�total �120/��(D∗0
CP (+1)K+)/�total �120/��(D∗0
CP (+1)K+)/�total �120/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.75±0.29+0.23

−0.222.75±0.29+0.23
−0.222.75±0.29+0.23
−0.222.75±0.29+0.23
−0.22 1 AUBERT 08BF BABR e+ e− → �(4S)1AUBERT 08BF reports [�(B+ → D∗0

CP (+1)K+)/�total℄ / [B(B+ → D∗(2007)0K+)℄= 0.655± 0.065± 0.020 whi
h we multiply by our best value B(B+ → D∗(2007)0K+)= (4.20 ± 0.34)× 10−4. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(D∗0
CP (+1)K+)/�(D∗0

CP (+1)π+) �120/�115�(D∗0
CP (+1)K+)/�(D∗0

CP (+1)π+) �120/�115�(D∗0
CP (+1)K+)/�(D∗0

CP (+1)π+) �120/�115�(D∗0
CP (+1)K+)/�(D∗0

CP (+1)π+) �120/�115VALUE DOCUMENT ID TECN COMMENT0.095±0.017 OUR AVERAGE0.095±0.017 OUR AVERAGE0.095±0.017 OUR AVERAGE0.095±0.017 OUR AVERAGE0.11 ±0.02 ±0.02 1 ABE 06 BELL e+ e− → �(4S)0.086±0.021±0.007 2 AUBERT 05N BABR e+ e− → �(4S)1Reports a double ratio of B(B+ → D∗0
CP (+1)K+)/B(B+ → D∗0

CP (+1)π+) andB(B+ → D∗0K+)/B(B+ → D∗0π+), 1.41 ± 0.25 ± 0.06. We multiply by our bestvalue of B(B+ → D∗0K+)/B(B+ → D∗0π+) = 0.080 ± 0.011. Our �rst erroris their experiment's error and the se
ond error is systemati
 error from using our bestvalue.2Uses D∗0 → D0π0 with D0 re
onstru
ted in the CP-even eigenstates K+K− and
π+π−.

�(D∗0
CP (−1)K+)/�total �121/��(D∗0
CP (−1)K+)/�total �121/��(D∗0
CP (−1)K+)/�total �121/��(D∗0
CP (−1)K+)/�total �121/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.31±0.27+0.20

−0.182.31±0.27+0.20
−0.182.31±0.27+0.20
−0.182.31±0.27+0.20
−0.18 1 AUBERT 08BF BABR e+ e− → �(4S)1AUBERT 08BF reports [�(B+ → D∗0

CP (−1)K+)/�total℄ / [B(B+ → D∗(2007)0K+)℄= 0.55 ± 0.06 ± 0.02 whi
h we multiply by our best value B(B+ → D∗(2007)0K+)= (4.20 ± 0.34)× 10−4. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(D∗0
CP (−1)K+)/�(D∗0

CP (−1)π+) �121/�116�(D∗0
CP (−1)K+)/�(D∗0

CP (−1)π+) �121/�116�(D∗0
CP (−1)K+)/�(D∗0

CP (−1)π+) �121/�116�(D∗0
CP (−1)K+)/�(D∗0

CP (−1)π+) �121/�116VALUE DOCUMENT ID TECN COMMENT0.09±0.03±0.010.09±0.03±0.010.09±0.03±0.010.09±0.03±0.01 1 ABE 06 BELL e+ e− → �(4S)1Reports a double ratio of B(B+ → (D∗
CP (−1))0K+)/B(B+ → (D∗

CP (−1))0π+)and B(B+ → D∗0K+)/B(B+ → D∗0π+), 1.15 ± 0.31 ± 0.12. We multiply by ourbest value of B(B+ → D∗0K+)/B(B+ → D∗0π+) = 0.080 ± 0.011. Our �rst erroris their experiment's error and the se
ond error is systemati
 error from using our bestvalue.�(D∗(2007)0K∗(892)+)/�total �122/��(D∗(2007)0K∗(892)+)/�total �122/��(D∗(2007)0K∗(892)+)/�total �122/��(D∗(2007)0K∗(892)+)/�total �122/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT8.1±1.4 OUR AVERAGE8.1±1.4 OUR AVERAGE8.1±1.4 OUR AVERAGE8.1±1.4 OUR AVERAGE8.3±1.1±1.0 1 AUBERT 04K BABR e+ e− → �(4S)7.2±2.2±2.6 2 MAHAPATRA 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B+ and B0 at the �(4S) and an unpolarized �nal state.�(D∗(2007)0K+K0)/�total �123/��(D∗(2007)0K+K0)/�total �123/��(D∗(2007)0K+K0)/�total �123/��(D∗(2007)0K+K0)/�total �123/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<10.6<10.6<10.6<10.6 90 1 DRUTSKOY 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2007)0K+K∗(892)0)/�total �124/��(D∗(2007)0K+K∗(892)0)/�total �124/��(D∗(2007)0K+K∗(892)0)/�total �124/��(D∗(2007)0K+K∗(892)0)/�total �124/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT15.3±3.1±2.915.3±3.1±2.915.3±3.1±2.915.3±3.1±2.9 1 DRUTSKOY 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2007)0π+π+π−)/�total �125/��(D∗(2007)0π+π+π−)/�total �125/��(D∗(2007)0π+π+π−)/�total �125/��(D∗(2007)0π+π+π−)/�total �125/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.03 ±0.12 OUR AVERAGE1.03 ±0.12 OUR AVERAGE1.03 ±0.12 OUR AVERAGE1.03 ±0.12 OUR AVERAGE1.055±0.047±0.129 1 MAJUMDER 04 BELL e+ e− → �(4S)0.94 ±0.20 ±0.17 48 2,3 ALAM 94 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2007)0 → D0π0) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).3The three pion mass is required to be between 1.0 and 1.6 GeV 
onsistent with an a1meson. (If this 
hannel is dominated by a+1 , the bran
hing ratio for D∗0 a+1 is twi
ethat for D∗0π+π+π−.)�(D∗(2007)0 a1(1260)+)/�total �126/��(D∗(2007)0 a1(1260)+)/�total �126/��(D∗(2007)0 a1(1260)+)/�total �126/��(D∗(2007)0 a1(1260)+)/�total �126/�VALUE DOCUMENT ID TECN COMMENT0.0188±0.0040±0.00340.0188±0.0040±0.00340.0188±0.0040±0.00340.0188±0.0040±0.0034 1,2 ALAM 94 CLE2 e+ e− → �(4S)1ALAM 94 value is twi
e their �(D∗(2007)0π+π+π−)/�total value based on theirobservation that the three pions are dominantly in the a1(1260) mass range 1.0 to 1.6GeV.2ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2007)0 → D0π0) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).�(D∗(2007)0π−π+π+π0)/�total �127/��(D∗(2007)0π−π+π+π0)/�total �127/��(D∗(2007)0π−π+π+π0)/�total �127/��(D∗(2007)0π−π+π+π0)/�total �127/�VALUE DOCUMENT ID TECN COMMENT0.0180±0.0024±0.00270.0180±0.0024±0.00270.0180±0.0024±0.00270.0180±0.0024±0.0027 1 ALEXANDER 01B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S). The signal is 
onsistent withall observed ωπ+ having pro
eeded through the ρ′+ resonan
e at mass 1349 ± 25+10

− 5MeV and width 547 ± 86+46
−45 MeV.�(D∗0 3π+2π−)/�total �128/��(D∗0 3π+2π−)/�total �128/��(D∗0 3π+2π−)/�total �128/��(D∗0 3π+2π−)/�total �128/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT5.67±0.91±0.855.67±0.91±0.855.67±0.91±0.855.67±0.91±0.85 1 MAJUMDER 04 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)+π0)/�total �129/��(D∗(2010)+π0)/�total �129/��(D∗(2010)+π0)/�total �129/��(D∗(2010)+π0)/�total �129/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.6× 10−6<3.6× 10−6<3.6× 10−6<3.6× 10−6 1 IWABUCHI 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.7× 10−4 90 2 BRANDENB... 98 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2BRANDENBURG 98 assume equal produ
tion of B+ and B0 at �(4S) and use theD∗ partial re
onstru
tion te
hnique. The �rst error is their experiment's error and these
ond error is the systemati
 error from the PDG 96 value of B(D∗ → Dπ).



1165116511651165See key on page 601 MesonParti
le ListingsB±�(D∗(2010)+K0)/�total �130/��(D∗(2010)+K0)/�total �130/��(D∗(2010)+K0)/�total �130/��(D∗(2010)+K0)/�total �130/�VALUE CL% DOCUMENT ID TECN COMMENT
<9.0× 10−6<9.0× 10−6<9.0× 10−6<9.0× 10−6 90 1 AUBERT,B 05E BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9.5× 10−5 90 1 GRITSAN 01 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−π+π+π0)/�total �131/��(D∗(2010)−π+π+π0)/�total �131/��(D∗(2010)−π+π+π0)/�total �131/��(D∗(2010)−π+π+π0)/�total �131/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0152±0.0071±0.00010.0152±0.0071±0.00010.0152±0.0071±0.00010.0152±0.0071±0.0001 26 1 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.043 ±0.013 ±0.026 24 2 ALBRECHT 87C ARG e+ e− → �(4S)1ALBRECHT 90J reports 0.018 ± 0.007 ± 0.005 from a measurement of[�(B+ → D∗(2010)−π+π+π0)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assum-ing B(D∗(2010)+ → D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best valueB(D∗(2010)+ → D0π+) = (67.7 ± 0.5)× 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value. Assumesequal produ
tion of B+ and B0 at the �(4S) and uses Mark III bran
hing fra
tions forthe D.2ALBRECHT 87C use PDG 86 bran
hing ratios for D and D∗(2010) and assumeB(�(4S) → B+B−) = 55% and B(�(4S) → B0B0) = 45%. Superseded by AL-BRECHT 90J.�(D∗(2010)−π+π+π+π−)/�total �132/��(D∗(2010)−π+π+π+π−)/�total �132/��(D∗(2010)−π+π+π+π−)/�total �132/��(D∗(2010)−π+π+π+π−)/�total �132/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT2.56±0.26±0.332.56±0.26±0.332.56±0.26±0.332.56±0.26±0.33 1 MAJUMDER 04 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<10 90 2 ALBRECHT 90J ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B+ and B0 at the �(4S) and uses Mark III bran
hingfra
tions for the D and D∗(2010).�(D∗∗0π+)/�total �133/��(D∗∗0π+)/�total �133/��(D∗∗0π+)/�total �133/��(D∗∗0π+)/�total �133/�D∗∗0 represents an ex
ited state with mass 2.2 < M < 2.8 GeV/
2.VALUE (units 10−3) DOCUMENT ID TECN COMMENT5.9±1.3±0.25.9±1.3±0.25.9±1.3±0.25.9±1.3±0.2 1,2 AUBERT,BE 06J BABR e+ e− → �(4S)1AUBERT,BE 06J reports [�(B+ → D∗∗0π+)/�total℄ / [B(B+ → D0π+)℄ = 1.22 ±0.13 ± 0.23 whi
h we multiply by our best value B(B+ → D0π+) = (4.80 ± 0.15)×10−3. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.2Uses a missing-mass method. Does not depend on D bran
hing fra
tions or B+/B0produ
tion rates.�(D∗1(2420)0π+)/�total �134/��(D∗1(2420)0π+)/�total �134/��(D∗1(2420)0π+)/�total �134/��(D∗1(2420)0π+)/�total �134/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0015±0.0006 OUR AVERAGE0.0015±0.0006 OUR AVERAGE0.0015±0.0006 OUR AVERAGE0.0015±0.0006 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.0011±0.0005±0.0002 8 1 ALAM 94 CLE2 e+ e− → �(4S)0.0025±0.0007±0.0006 2 ALBRECHT 94D ARG e+ e− → �(4S)1ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2010)+ → D0π+) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and assuming B(D1(2420)0 → D∗(2010)+π−) = 67%.2ALBRECHT 94D assume equal produ
tion of B+ and B0 at the �(4S) and use theCLEO II B(D∗(2010)+ → D0π+) assuming B(D1(2420)0 → D∗(2010)+π−) =67%.�(D1(2420)0π+×B(D01 → D0π+π−) )/�total �135/��(D1(2420)0π+×B(D01 → D0π+π−) )/�total �135/��(D1(2420)0π+×B(D01 → D0π+π−) )/�total �135/��(D1(2420)0π+×B(D01 → D0π+π−) )/�total �135/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.5 +1.6

−1.4 OUR FIT2.5 +1.6
−1.4 OUR FIT2.5 +1.6
−1.4 OUR FIT2.5 +1.6
−1.4 OUR FIT Error in
ludes s
ale fa
tor of 4.0.1.85±0.29+0.35

−0.551.85±0.29+0.35
−0.551.85±0.29+0.35
−0.551.85±0.29+0.35
−0.55 1 ABE 05A BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D1(2420)0π+×B(D01 → D0π+π−) )/�(D0π+π+π−) �135/�98�(D1(2420)0π+×B(D01 → D0π+π−) )/�(D0π+π+π−) �135/�98�(D1(2420)0π+×B(D01 → D0π+π−) )/�(D0π+π+π−) �135/�98�(D1(2420)0π+×B(D01 → D0π+π−) )/�(D0π+π+π−) �135/�98VALUE (units 10−2) DOCUMENT ID TECN COMMENT4.4+3.3

−2.6 OUR FIT4.4+3.3
−2.6 OUR FIT4.4+3.3
−2.6 OUR FIT4.4+3.3
−2.6 OUR FIT Error in
ludes s
ale fa
tor of 4.0.10.3±1.5±0.910.3±1.5±0.910.3±1.5±0.910.3±1.5±0.9 AAIJ 11E LHCB pp at 7 TeV�(D1(2420)0π+×B(D01 → D0π+π− (nonresonant)))/�(D0π+π+π−)�136/�98�(D1(2420)0π+×B(D01 → D0π+π− (nonresonant)))/�(D0π+π+π−)�136/�98�(D1(2420)0π+×B(D01 → D0π+π− (nonresonant)))/�(D0π+π+π−)�136/�98�(D1(2420)0π+×B(D01 → D0π+π− (nonresonant)))/�(D0π+π+π−)�136/�98VALUE (units 10−2) DOCUMENT ID TECN COMMENT4.0±0.7±0.54.0±0.7±0.54.0±0.7±0.54.0±0.7±0.5 1 AAIJ 11E LHCB pp at 7 TeV1Ex
ludes de
ays where D1(2420)0 → D ∗ (2010)−π+.�(D∗2(2462)0π+ × B(D∗2(2462)0 → D−π+))/�total �137/��(D∗2(2462)0π+ × B(D∗2(2462)0 → D−π+))/�total �137/��(D∗2(2462)0π+ × B(D∗2(2462)0 → D−π+))/�total �137/��(D∗2(2462)0π+ × B(D∗2(2462)0 → D−π+))/�total �137/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.5±0.4 OUR AVERAGE3.5±0.4 OUR AVERAGE3.5±0.4 OUR AVERAGE3.5±0.4 OUR AVERAGE3.5±0.2±0.4 1 AUBERT 09AB BABR e+ e− → �(4S)3.4±0.3±0.72 1 ABE 04D BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

�(D∗2(2462)0π+×B(D∗02 → D0π−π+))/�(D0π+π+π−) �138/�98�(D∗2(2462)0π+×B(D∗02 → D0π−π+))/�(D0π+π+π−) �138/�98�(D∗2(2462)0π+×B(D∗02 → D0π−π+))/�(D0π+π+π−) �138/�98�(D∗2(2462)0π+×B(D∗02 → D0π−π+))/�(D0π+π+π−) �138/�98VALUE (units 10−2) DOCUMENT ID TECN COMMENT4.0±1.0±0.44.0±1.0±0.44.0±1.0±0.44.0±1.0±0.4 AAIJ 11E LHCB pp at 7 TeV�(D∗2(2462)0π+×B(D∗02 → D0π−π+ (nonresonant)))/�(D0π+π+π−)�139/�98�(D∗2(2462)0π+×B(D∗02 → D0π−π+ (nonresonant)))/�(D0π+π+π−)�139/�98�(D∗2(2462)0π+×B(D∗02 → D0π−π+ (nonresonant)))/�(D0π+π+π−)�139/�98�(D∗2(2462)0π+×B(D∗02 → D0π−π+ (nonresonant)))/�(D0π+π+π−)�139/�98VALUE CL% DOCUMENT ID TECN COMMENT
<3.0× 10−2<3.0× 10−2<3.0× 10−2<3.0× 10−2 90 1 AAIJ 11E LHCB pp at 7 TeV1Ex
ludes de
ays where D∗2(2462)0 → D∗(2010)−π+.�(D∗2(2462)0π+×B(D∗02 → D∗(2010)−π+))/�(D0π+π+π−) �140/�98�(D∗2(2462)0π+×B(D∗02 → D∗(2010)−π+))/�(D0π+π+π−) �140/�98�(D∗2(2462)0π+×B(D∗02 → D∗(2010)−π+))/�(D0π+π+π−) �140/�98�(D∗2(2462)0π+×B(D∗02 → D∗(2010)−π+))/�(D0π+π+π−) �140/�98VALUE (units 10−2) DOCUMENT ID TECN COMMENT3.9±1.2±0.43.9±1.2±0.43.9±1.2±0.43.9±1.2±0.4 1 AAIJ 11E LHCB pp at 7 TeV1Uses B(D∗(2010)+ → D0π+) = (67.7 +- 0.5)%.�(D∗0(2400)0π+ × B(D∗0(2400)0 → D−π+))/�total �141/��(D∗0(2400)0π+ × B(D∗0(2400)0 → D−π+))/�total �141/��(D∗0(2400)0π+ × B(D∗0(2400)0 → D−π+))/�total �141/��(D∗0(2400)0π+ × B(D∗0(2400)0 → D−π+))/�total �141/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.4±1.4 OUR AVERAGE6.4±1.4 OUR AVERAGE6.4±1.4 OUR AVERAGE6.4±1.4 OUR AVERAGE6.8±0.3±2.0 1 AUBERT 09AB BABR e+ e− → �(4S)6.1±0.6±1.8 1 ABE 04D BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D1(2421)0π+ × B(D1(2421)0 → D∗−π+))/�total �142/��(D1(2421)0π+ × B(D1(2421)0 → D∗−π+))/�total �142/��(D1(2421)0π+ × B(D1(2421)0 → D∗−π+))/�total �142/��(D1(2421)0π+ × B(D1(2421)0 → D∗−π+))/�total �142/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.8±0.7±1.36.8±0.7±1.36.8±0.7±1.36.8±0.7±1.3 1 ABE 04D BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗2(2462)0π+ × B(D∗2(2462)0 → D∗−π+))/�total �143/��(D∗2(2462)0π+ × B(D∗2(2462)0 → D∗−π+))/�total �143/��(D∗2(2462)0π+ × B(D∗2(2462)0 → D∗−π+))/�total �143/��(D∗2(2462)0π+ × B(D∗2(2462)0 → D∗−π+))/�total �143/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.8±0.3±0.41.8±0.3±0.41.8±0.3±0.41.8±0.3±0.4 1 ABE 04D BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D ′1(2427)0π+ × B(D ′1(2427)0 → D∗−π+))/�total �144/��(D ′1(2427)0π+ × B(D ′1(2427)0 → D∗−π+))/�total �144/��(D ′1(2427)0π+ × B(D ′1(2427)0 → D∗−π+))/�total �144/��(D ′1(2427)0π+ × B(D ′1(2427)0 → D∗−π+))/�total �144/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.0±0.4±1.15.0±0.4±1.15.0±0.4±1.15.0±0.4±1.1 1 ABE 04D BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D1(2420)0π+×B(D01 → D∗0π+π−) )/�total �145/��(D1(2420)0π+×B(D01 → D∗0π+π−) )/�total �145/��(D1(2420)0π+×B(D01 → D∗0π+π−) )/�total �145/��(D1(2420)0π+×B(D01 → D∗0π+π−) )/�total �145/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.06<0.06<0.06<0.06 90 1 ABE 05A BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗1(2420)0 ρ+)/�total �146/��(D∗1(2420)0 ρ+)/�total �146/��(D∗1(2420)0 ρ+)/�total �146/��(D∗1(2420)0 ρ+)/�total �146/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.0014<0.0014<0.0014<0.0014 90 1 ALAM 94 CLE2 e+ e− → �(4S)1ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2010)+ → D0π+) assuming B(D1(2420)0 → D∗(2010)+π−) = 67%.�(D∗2(2460)0π+)/�total �147/��(D∗2(2460)0π+)/�total �147/��(D∗2(2460)0π+)/�total �147/��(D∗2(2460)0π+)/�total �147/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.0013<0.0013<0.0013<0.0013 90 1 ALAM 94 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.0028 90 2 ALAM 94 CLE2 e+ e− → �(4S)
<0.0023 90 3 ALBRECHT 94D ARG e+ e− → �(4S)1ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the Mark IIIB(D+ → K− 2π+) and B(D∗2(2460)0 → D+π−) = 30%.2ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the Mark IIIB(D+ → K− 2π+), the CLEO II B(D∗(2010)+ → D0π+) and B(D∗2(2460)0 →D∗(2010)+π−) = 20%.3ALBRECHT 94D assume equal produ
tion of B+ and B0 at the �(4S) and use theCLEO II B(D∗(2010)+ → D0π+) and B(D∗2(2460)0 → D∗(2010)+π−) = 30%.�(D∗2(2460)0π+×B(D∗02 → D∗0π+π−) )/�total �148/��(D∗2(2460)0π+×B(D∗02 → D∗0π+π−) )/�total �148/��(D∗2(2460)0π+×B(D∗02 → D∗0π+π−) )/�total �148/��(D∗2(2460)0π+×B(D∗02 → D∗0π+π−) )/�total �148/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.22<0.22<0.22<0.22 90 1 ABE 05A BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗2(2460)0 ρ+)/�total �149/��(D∗2(2460)0 ρ+)/�total �149/��(D∗2(2460)0 ρ+)/�total �149/��(D∗2(2460)0 ρ+)/�total �149/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.0047<0.0047<0.0047<0.0047 90 1 ALAM 94 CLE2 e+ e− → �(4S)
<0.005 90 2 ALAM 94 CLE2 e+ e− → �(4S)1ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the Mark IIIB(D+ → K− 2π+) and B(D∗2(2460)0 → D+π−) = 30%.2ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the Mark IIIB(D+ → K− 2π+), the CLEO II B(D∗(2010)+ → D0π+) and B(D∗2(2460)0 →D∗(2010)+π−) = 20%.



1166116611661166MesonParti
le ListingsB±�(D0D+s )/�total �150/��(D0D+s )/�total �150/��(D0D+s )/�total �150/��(D0D+s )/�total �150/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT9.0±0.9 OUR AVERAGE9.0±0.9 OUR AVERAGE9.0±0.9 OUR AVERAGE9.0±0.9 OUR AVERAGE8.6±0.2±1.1 1 AAIJ 13AP LHCB pp at 7 TeV9.5±2.0±0.8 2 AUBERT 06N BABR e+ e− → �(4S)9.8±2.6±0.9 3 GIBAUT 96 CLE2 e+ e− → �(4S)14 ±8 ±1 4 ALBRECHT 92G ARG e+ e− → �(4S)13 ±6 ±1 5 BORTOLETTO90 CLEO e+ e− → �(4S)1Uses B(B0 → D−D+s ) = (7.2 ± 0.8)× 10−3.2AUBERT 06N reports (0.92 ± 0.14 ± 0.18) × 10−2 from a measurement of [�(B+ →D0D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.0462 ± 0.0062,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.3GIBAUT 96 reports 0.0126 ± 0.0022 ± 0.0025 from a measurement of [�(B+ →D0D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.035, whi
hwe res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.4ALBRECHT 92G reports 0.024 ± 0.012 ± 0.004 from a measurement of [�(B+ →D0D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h weres
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4)× 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.Assumes PDG 1990 D0 bran
hing ratios, e.g., B(D0 → K−π+) = 3.71 ± 0.25%.5BORTOLETTO 90 reports 0.029 ± 0.013 from a measurement of [�(B+ → D0D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.02, whi
h we res
ale to ourbest value B(D+s → φπ+) = (4.5 ± 0.4)× 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(D∗s0(2317)+D0, D∗+s0 → D+s π0)/�total �151/��(D∗s0(2317)+D0, D∗+s0 → D+s π0)/�total �151/��(D∗s0(2317)+D0, D∗+s0 → D+s π0)/�total �151/��(D∗s0(2317)+D0, D∗+s0 → D+s π0)/�total �151/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.79+0.15
−0.13 OUR AVERAGE0.79+0.15
−0.13 OUR AVERAGE0.79+0.15
−0.13 OUR AVERAGE0.79+0.15
−0.13 OUR AVERAGE0.79+0.17
−0.16±0.02 1,2 CHOI 15A BELL e+ e− → �(4S)0.80+0.35
−0.21±0.07 2,3 AUBERT,B 04S BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.65+0.26
−0.24±0.06 2,4 KROKOVNY 03B BELL Repl. by CHOI 15A1CHOI 15A reports (8.0+1.3

−1.2 ± 1.1 ± 0.4) × 10−4 from a measurement of [�(B+ →D∗s0(2317)+D0, D∗+s0 → D+s π0)/�total℄ × [B(D+s → K+K−π+)℄ assumingB(D+s → K+K−π+) = (5.39 ± 0.21) × 10−2, whi
h we res
ale to our best valueB(D+s → K+K−π+) = (5.45 ± 0.17) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3AUBERT,B 04S reports (1.0 ± 0.3+0.4
−0.2) × 10−3 from a measurement of [�(B+ →D∗s0(2317)+D0, D∗+s0 → D+s π0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s →

φπ+) = 0.036 ± 0.009, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ±0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.4KROKOVNY 03B reports (0.81+0.30
−0.27 ± 0.24)×10−3 from a measurement of [�(B+ →D∗s0(2317)+D0, D∗+s0 → D+s π0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s →

φπ+) = 0.036 ± 0.009, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ±0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(Ds0(2317)+D0×B(Ds0(2317)+ → D∗+s γ))/�total �152/��(Ds0(2317)+D0×B(Ds0(2317)+ → D∗+s γ))/�total �152/��(Ds0(2317)+D0×B(Ds0(2317)+ → D∗+s γ))/�total �152/��(Ds0(2317)+D0×B(Ds0(2317)+ → D∗+s γ))/�total �152/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.76<0.76<0.76<0.76 90 1 KROKOVNY 03B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(Ds0(2317)+D∗(2007)0×B(Ds0(2317)+ → D+s π0))/�total �153/��(Ds0(2317)+D∗(2007)0×B(Ds0(2317)+ → D+s π0))/�total �153/��(Ds0(2317)+D∗(2007)0×B(Ds0(2317)+ → D+s π0))/�total �153/��(Ds0(2317)+D∗(2007)0×B(Ds0(2317)+ → D+s π0))/�total �153/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.9±0.6+0.4

−0.30.9±0.6+0.4
−0.30.9±0.6+0.4
−0.30.9±0.6+0.4
−0.3 1 AUBERT,B 04S BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(DsJ (2457)+D0)/�total �154/��(DsJ (2457)+D0)/�total �154/��(DsJ (2457)+D0)/�total �154/��(DsJ (2457)+D0)/�total �154/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.1+1.0

−0.9 OUR AVERAGE3.1+1.0
−0.9 OUR AVERAGE3.1+1.0
−0.9 OUR AVERAGE3.1+1.0
−0.9 OUR AVERAGE4.3±1.6±1.3 1 AUBERT 06N BABR e+ e− → �(4S)4.6+1.8
−1.6±1.0 2,3 AUBERT,B 04S BABR e+ e− → �(4S)2.1+1.1
−0.9±0.5 2,4 KROKOVNY 03B BELL e+ e− → �(4S)

1Uses a missing-mass method in the events that one of the B mesons is fully re
onstru
ted.2Assumes equal produ
tion of B+ and B0 at the �(4S).3AUBERT,B 04S reports [�(B+ → DsJ (2457)+D0)/�total℄ × [B(Ds1(2460)+ →D∗+s π0)℄ = (2.2+0.8
−0.7±0.3)×10−3 whi
h we divide by our best value B(Ds1(2460)+ →D∗+s π0) = (48 ± 11)× 10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.4KROKOVNY 03B reports [�(B+ → DsJ (2457)+D0)/�total℄ × [B(Ds1(2460)+ →D∗+s π0)℄ = (1.0+0.5
−0.4±0.1)×10−3 whi
h we divide by our best value B(Ds1(2460)+ →D∗+s π0) = (48 ± 11)× 10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.�(DsJ (2457)+D0× B(DsJ (2457)+ → D+s γ))/�total �155/��(DsJ (2457)+D0× B(DsJ (2457)+ → D+s γ))/�total �155/��(DsJ (2457)+D0× B(DsJ (2457)+ → D+s γ))/�total �155/��(DsJ (2457)+D0× B(DsJ (2457)+ → D+s γ))/�total �155/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.46+0.13

−0.11 OUR AVERAGE0.46+0.13
−0.11 OUR AVERAGE0.46+0.13
−0.11 OUR AVERAGE0.46+0.13
−0.11 OUR AVERAGE0.48+0.19
−0.13±0.04 1,2 AUBERT,B 04S BABR e+ e− → �(4S)0.45+0.15
−0.14±0.04 1,3 KROKOVNY 03B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT,B 04S reports (0.6 ± 0.2+0.2

−0.1) × 10−3 from a measurement of [�(B+ →DsJ (2457)+D0× B(DsJ (2457)+ → D+s γ))/�total℄ × [B(D+s → φπ+)℄ assumingB(D+s → φπ+) = 0.036 ± 0.009, whi
h we res
ale to our best value B(D+s → φπ+)= (4.5 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3KROKOVNY 03B reports (0.56+0.16
−0.15 ± 0.17)×10−3 from a measurement of [�(B+ →DsJ (2457)+D0× B(DsJ (2457)+ → D+s γ))/�total℄ × [B(D+s → φπ+)℄ assumingB(D+s → φπ+) = 0.036 ± 0.009, whi
h we res
ale to our best value B(D+s → φπ+)= (4.5 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(DsJ (2457)+D0× B(DsJ (2457)+ → D+s π+π−))/�total �156/��(DsJ (2457)+D0× B(DsJ (2457)+ → D+s π+π−))/�total �156/��(DsJ (2457)+D0× B(DsJ (2457)+ → D+s π+π−))/�total �156/��(DsJ (2457)+D0× B(DsJ (2457)+ → D+s π+π−))/�total �156/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.22<0.22<0.22<0.22 90 1 KROKOVNY 03B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(DsJ (2457)+D0× B(DsJ (2457)+ → D+s π0))/�total �157/��(DsJ (2457)+D0× B(DsJ (2457)+ → D+s π0))/�total �157/��(DsJ (2457)+D0× B(DsJ (2457)+ → D+s π0))/�total �157/��(DsJ (2457)+D0× B(DsJ (2457)+ → D+s π0))/�total �157/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.27<0.27<0.27<0.27 90 1 KROKOVNY 03B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(DsJ (2457)+D0× B(DsJ (2457)+ → D∗+s γ))/�total �158/��(DsJ (2457)+D0× B(DsJ (2457)+ → D∗+s γ))/�total �158/��(DsJ (2457)+D0× B(DsJ (2457)+ → D∗+s γ))/�total �158/��(DsJ (2457)+D0× B(DsJ (2457)+ → D∗+s γ))/�total �158/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.98<0.98<0.98<0.98 90 1 KROKOVNY 03B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(DsJ (2457)+D∗(2007)0)/�total �159/��(DsJ (2457)+D∗(2007)0)/�total �159/��(DsJ (2457)+D∗(2007)0)/�total �159/��(DsJ (2457)+D∗(2007)0)/�total �159/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT12.0±3.0 OUR AVERAGE12.0±3.0 OUR AVERAGE12.0±3.0 OUR AVERAGE12.0±3.0 OUR AVERAGE11.2±2.6±2.0 1 AUBERT 06N BABR e+ e− → �(4S)16 +8

−6 ±4 2,3 AUBERT,B 04S BABR e+ e− → �(4S)1Uses a missing-mass method in the events that one of the B mesons is fully re
onstru
ted.2AUBERT,B 04S reports [�(B+ → DsJ (2457)+D∗(2007)0)/�total℄ ×[B(Ds1(2460)+ → D∗+s π0)℄ = (7.6 ± 1.7+3.2
−2.4) × 10−3 whi
h we divide by ourbest value B(Ds1(2460)+ → D∗+s π0) = (48 ± 11) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.3Assumes equal produ
tion of B+ and B0 at the �(4S).�(DsJ (2457)+D∗(2007)0×B(DsJ (2457)+ → D+s γ))/�total �160/��(DsJ (2457)+D∗(2007)0×B(DsJ (2457)+ → D+s γ))/�total �160/��(DsJ (2457)+D∗(2007)0×B(DsJ (2457)+ → D+s γ))/�total �160/��(DsJ (2457)+D∗(2007)0×B(DsJ (2457)+ → D+s γ))/�total �160/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.4±0.4+0.6

−0.41.4±0.4+0.6
−0.41.4±0.4+0.6
−0.41.4±0.4+0.6
−0.4 1 AUBERT,B 04S BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+))/�total �162/��(D0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+))/�total �162/��(D0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+))/�total �162/��(D0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+))/�total �162/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.16±0.52±0.452.16±0.52±0.452.16±0.52±0.452.16±0.52±0.45 1 AUBERT 08B BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2 90 AUBERT 03X BABR Repl. by AUBERT 08B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+ +D∗(2010)+K0))/�total �161/��(D0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+ +D∗(2010)+K0))/�total �161/��(D0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+ +D∗(2010)+K0))/�total �161/��(D0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+ +D∗(2010)+K0))/�total �161/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.97±0.85±0.563.97±0.85±0.563.97±0.85±0.563.97±0.85±0.56 1,2 AUSHEV 11 BELL e+ e− → �(4S)1Uses �(D∗(2007)0 → D0π0) / �(D∗(2007)0 → D0 γ) = 1.74 ± 0.13 and�(Ds1(2536)+ → D∗(2007)0K+) / �(Ds1(2536)+ → D∗(2010)+K0) = 1.36± 0.2.2Assumes equal produ
tion of B+ and B0 at the �(4S).



1167116711671167See key on page 601 MesonParti
le ListingsB±�(D∗(2007)0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+))/�total �163/��(D∗(2007)0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+))/�total �163/��(D∗(2007)0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+))/�total �163/��(D∗(2007)0Ds1(2536)+×B(Ds1(2536)+ → D∗(2007)0K+))/�total �163/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT5.46±1.17±1.045.46±1.17±1.045.46±1.17±1.045.46±1.17±1.04 1 AUBERT 08B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7 90 AUBERT 03X BABR Repl. by AUBERT 08B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0Ds1(2536)+×B(Ds1(2536)+ → D∗+K0))/�total �164/��(D0Ds1(2536)+×B(Ds1(2536)+ → D∗+K0))/�total �164/��(D0Ds1(2536)+×B(Ds1(2536)+ → D∗+K0))/�total �164/��(D0Ds1(2536)+×B(Ds1(2536)+ → D∗+K0))/�total �164/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.30±0.98±0.432.30±0.98±0.432.30±0.98±0.432.30±0.98±0.43 1 AUBERT 08B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0DsJ (2700)+× B(DsJ (2700)+ → D0K+))/�total �165/��(D0DsJ (2700)+× B(DsJ (2700)+ → D0K+))/�total �165/��(D0DsJ (2700)+× B(DsJ (2700)+ → D0K+))/�total �165/��(D0DsJ (2700)+× B(DsJ (2700)+ → D0K+))/�total �165/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.6 ±1.8 OUR AVERAGE5.6 ±1.8 OUR AVERAGE5.6 ±1.8 OUR AVERAGE5.6 ±1.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.5.02±0.71±0.93 1 LEES 15C BABR e+ e− → �(4S)11.3 ±2.2 +1.4

−2.8 1 BRODZICKA 08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗0Ds1(2536)+, D+s1 → D∗+K0)/�total �166/��(D∗0Ds1(2536)+, D+s1 → D∗+K0)/�total �166/��(D∗0Ds1(2536)+, D+s1 → D∗+K0)/�total �166/��(D∗0Ds1(2536)+, D+s1 → D∗+K0)/�total �166/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.92±2.46±0.833.92±2.46±0.833.92±2.46±0.833.92±2.46±0.83 1 AUBERT 08B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0DsJ (2573)+, D+
sJ → D0K+)/�total �167/��(D0DsJ (2573)+, D+
sJ → D0K+)/�total �167/��(D0DsJ (2573)+, D+
sJ → D0K+)/�total �167/��(D0DsJ (2573)+, D+
sJ → D0K+)/�total �167/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.08±0.14±0.050.08±0.14±0.050.08±0.14±0.050.08±0.14±0.05 1 LEES 15C BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗0DsJ (2573), D+

sJ → D0K+)/�total �168/��(D∗0DsJ (2573), D+
sJ → D0K+)/�total �168/��(D∗0DsJ (2573), D+
sJ → D0K+)/�total �168/��(D∗0DsJ (2573), D+
sJ → D0K+)/�total �168/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<2<2<2<2 90 AUBERT 03X BABR e+ e− → �(4S)�(D∗(2007)0DsJ (2573), D+
sJ → D0K+)/�total �169/��(D∗(2007)0DsJ (2573), D+
sJ → D0K+)/�total �169/��(D∗(2007)0DsJ (2573), D+
sJ → D0K+)/�total �169/��(D∗(2007)0DsJ (2573), D+
sJ → D0K+)/�total �169/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<5<5<5<5 90 AUBERT 03X BABR e+ e− → �(4S)�(D0D∗+s )/�total �170/��(D0D∗+s )/�total �170/��(D0D∗+s )/�total �170/��(D0D∗+s )/�total �170/�VALUE DOCUMENT ID TECN COMMENT0.0076±0.0016 OUR AVERAGE0.0076±0.0016 OUR AVERAGE0.0076±0.0016 OUR AVERAGE0.0076±0.0016 OUR AVERAGE0.0079±0.0017±0.0007 1 AUBERT 06N BABR e+ e− → �(4S)0.0068±0.0025±0.0006 2 GIBAUT 96 CLE2 e+ e− → �(4S)0.010 ±0.007 ±0.001 3 ALBRECHT 92G ARG e+ e− → �(4S)1AUBERT 06N reports (0.77 ± 0.15 ± 0.13) × 10−2 from a measurement of [�(B+ →D0D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.0462 ± 0.0062,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.2GIBAUT 96 reports 0.0087 ± 0.0027 ± 0.0017 from a measurement of [�(B+ →D0D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.035, whi
hwe res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.3ALBRECHT 92G reports 0.016 ± 0.012 ± 0.003 from a measurement of [�(B+ →D0D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h weres
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4)× 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.Assumes PDG 1990 D0 bran
hing ratios, e.g., B(D0 → K−π+) = 3.71 ± 0.25%.�(D∗(2007)0D+s )/�total �171/��(D∗(2007)0D+s )/�total �171/��(D∗(2007)0D+s )/�total �171/��(D∗(2007)0D+s )/�total �171/�VALUE DOCUMENT ID TECN COMMENT0.0082±0.0017 OUR AVERAGE0.0082±0.0017 OUR AVERAGE0.0082±0.0017 OUR AVERAGE0.0082±0.0017 OUR AVERAGE0.0078±0.0018±0.0007 1 AUBERT 06N BABR e+ e− → �(4S)0.011 ±0.004 ±0.001 2 GIBAUT 96 CLE2 e+ e− → �(4S)0.008 ±0.006 ±0.001 3 ALBRECHT 92G ARG e+ e− → �(4S)1AUBERT 06N reports (0.76 ± 0.15 ± 0.13) × 10−2 from a measurement of [�(B+ →D∗(2007)0D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.0462 ±0.0062, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.2GIBAUT 96 reports 0.0140 ± 0.0043 ± 0.0035 from a measurement of [�(B+ →D∗(2007)0D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.035,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.3ALBRECHT 92G reports 0.013 ± 0.009 ± 0.002 from a measurement of [�(B+ →D∗(2007)0D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,

whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value. Assumes PDG 1990 D0 and D∗(2007)0 bran
hing ratios, e.g., B(D0 →K−π+) = 3.71 ± 0.25% and B(D∗(2007)0 → D0π0) = 55 ± 6%.�(D∗(2007)0D∗+s )/�total �172/��(D∗(2007)0D∗+s )/�total �172/��(D∗(2007)0D∗+s )/�total �172/��(D∗(2007)0D∗+s )/�total �172/�VALUE DOCUMENT ID TECN COMMENT0.0171±0.0024 OUR AVERAGE0.0171±0.0024 OUR AVERAGE0.0171±0.0024 OUR AVERAGE0.0171±0.0024 OUR AVERAGE0.0167±0.0019±0.0015 1 AUBERT 06N BABR e+ e− → �(4S)0.024 ±0.009 ±0.002 2 GIBAUT 96 CLE2 e+ e− → �(4S)0.019 ±0.010 ±0.002 3 ALBRECHT 92G ARG e+ e− → �(4S)1AUBERT 06N reports (1.62 ± 0.22 ± 0.18) × 10−2 from a measurement of [�(B+ →D∗(2007)0D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.0462 ±0.0062, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.2GIBAUT 96 reports 0.0310 ± 0.0088 ± 0.0065 from a measurement of [�(B+ →D∗(2007)0D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.035,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.3ALBRECHT 92G reports 0.031 ± 0.016 ± 0.005 from a measurement of [�(B+ →D∗(2007)0D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value. Assumes PDG 1990 D0 and D∗(2007)0 bran
hing ratios, e.g., B(D0 →K−π+) = 3.71 ± 0.25% and B(D∗(2007)0 → D0π0) = 55 ± 6%.�(D(∗)+s D∗∗0)/�total �173/��(D(∗)+s D∗∗0)/�total �173/��(D(∗)+s D∗∗0)/�total �173/��(D(∗)+s D∗∗0)/�total �173/�VALUE DOCUMENT ID TECN COMMENT(2.73±0.93±0.68)× 10−2(2.73±0.93±0.68)× 10−2(2.73±0.93±0.68)× 10−2(2.73±0.93±0.68)× 10−2 1 AHMED 00B CLE2 e+ e− → �(4S)1AHMED 00B reports their experiment's un
ertainties (±0.78 ± 0.48 ± 0.68)%, wherethe �rst error is statisti
al, the se
ond is systemati
, and the third is the un
ertainty inthe Ds → φπ bran
hing fra
tion. We 
ombine the �rst two in quadrature.�(D∗(2007)0D∗(2010)+)/�total �174/��(D∗(2007)0D∗(2010)+)/�total �174/��(D∗(2007)0D∗(2010)+)/�total �174/��(D∗(2007)0D∗(2010)+)/�total �174/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT8.1±1.2±1.28.1±1.2±1.28.1±1.2±1.28.1±1.2±1.2 1 AUBERT,B 06A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<110 90 BARATE 98Q ALEP e+ e− → Z1Assumes equal produ
tion of B+ and B0 at the �(4S).
[�(D0D∗(2010)+)+�(D∗(2007)0D+)

]/�total �175/�[�(D0D∗(2010)+)+�(D∗(2007)0D+)
]/�total �175/�[�(D0D∗(2010)+)+�(D∗(2007)0D+)
]/�total �175/�[�(D0D∗(2010)+)+�(D∗(2007)0D+)
]/�total �175/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<130<130<130<130 90 BARATE 98Q ALEP e+ e− → Z�(D0D∗(2010)+)/�total �176/��(D0D∗(2010)+)/�total �176/��(D0D∗(2010)+)/�total �176/��(D0D∗(2010)+)/�total �176/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.9 ±0.5 OUR AVERAGE3.9 ±0.5 OUR AVERAGE3.9 ±0.5 OUR AVERAGE3.9 ±0.5 OUR AVERAGE3.6 ±0.5 ±0.4 1 AUBERT,B 06A BABR e+ e− → �(4S)4.57±0.71±0.56 1 MAJUMDER 05 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0D+)/�total �177/��(D0D+)/�total �177/��(D0D+)/�total �177/��(D0D+)/�total �177/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT3.8 ±0.4 OUR AVERAGE3.8 ±0.4 OUR AVERAGE3.8 ±0.4 OUR AVERAGE3.8 ±0.4 OUR AVERAGE3.85±0.31±0.38 1 ADACHI 08 BELL e+ e− → �(4S)3.8 ±0.6 ±0.5 1 AUBERT,B 06A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.83±0.78±0.58 1 MAJUMDER 05 BELL Repl. by ADACHI 08
<67 90 BARATE 98Q ALEP e+ e− → Z1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0D+K0)/�total �178/��(D0D+K0)/�total �178/��(D0D+K0)/�total �178/��(D0D+K0)/�total �178/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT1.55±0.17±0.131.55±0.17±0.131.55±0.17±0.131.55±0.17±0.13 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.8 90 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D+D∗(2007)0)/�total �179/��(D+D∗(2007)0)/�total �179/��(D+D∗(2007)0)/�total �179/��(D+D∗(2007)0)/�total �179/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.3±1.4±1.06.3±1.4±1.06.3±1.4±1.06.3±1.4±1.0 1 AUBERT,B 06A BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).



1168116811681168Meson Parti
le ListingsB±�(D∗(2007)0D+K0)/�total �180/��(D∗(2007)0D+K0)/�total �180/��(D∗(2007)0D+K0)/�total �180/��(D∗(2007)0D+K0)/�total �180/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT2.06±0.38±0.302.06±0.38±0.302.06±0.38±0.302.06±0.38±0.30 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.1 90 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0D∗(2010)+K0)/�total �181/��(D0D∗(2010)+K0)/�total �181/��(D0D∗(2010)+K0)/�total �181/��(D0D∗(2010)+K0)/�total �181/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.81±0.31±0.233.81±0.31±0.233.81±0.31±0.233.81±0.31±0.23 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.2 +1.0

−0.9 ±0.7 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2007)0D∗(2010)+K0)/�total �182/��(D∗(2007)0D∗(2010)+K0)/�total �182/��(D∗(2007)0D∗(2010)+K0)/�total �182/��(D∗(2007)0D∗(2010)+K0)/�total �182/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT9.17±0.83±0.909.17±0.83±0.909.17±0.83±0.909.17±0.83±0.90 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •7.8 +2.3

−2.1 ±1.4 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0D0K+)/�total �183/��(D0D0K+)/�total �183/��(D0D0K+)/�total �183/��(D0D0K+)/�total �183/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.45±0.33 OUR AVERAGE1.45±0.33 OUR AVERAGE1.45±0.33 OUR AVERAGE1.45±0.33 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.6.1.31±0.07±0.12 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)2.22±0.22+0.26
−0.24 1 BRODZICKA 08 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.17±0.21±0.15 1 CHISTOV 04 BELL Repl. by BRODZICKA 081.9 ±0.3 ±0.3 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2007)0D0K+)/�total �184/��(D∗(2007)0D0K+)/�total �184/��(D∗(2007)0D0K+)/�total �184/��(D∗(2007)0D0K+)/�total �184/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT2.26±0.16±0.172.26±0.16±0.172.26±0.16±0.172.26±0.16±0.17 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.8 90 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0D∗(2007)0K+)/�total �185/��(D0D∗(2007)0K+)/�total �185/��(D0D∗(2007)0K+)/�total �185/��(D0D∗(2007)0K+)/�total �185/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT6.32±0.19±0.456.32±0.19±0.456.32±0.19±0.456.32±0.19±0.45 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.7 ±0.7 ±0.7 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2007)0D∗(2007)0K+)/�total �186/��(D∗(2007)0D∗(2007)0K+)/�total �186/��(D∗(2007)0D∗(2007)0K+)/�total �186/��(D∗(2007)0D∗(2007)0K+)/�total �186/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT11.23±0.36±1.2611.23±0.36±1.2611.23±0.36±1.2611.23±0.36±1.26 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.3 +1.1

−1.0 ±1.2 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−D+K+)/�total �187/��(D−D+K+)/�total �187/��(D−D+K+)/�total �187/��(D−D+K+)/�total �187/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT0.22±0.05±0.050.22±0.05±0.050.22±0.05±0.050.22±0.05±0.05 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.90 90 1 CHISTOV 04 BELL e+ e− → �(4S)
<0.4 90 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−D∗(2010)+K+)/�total �188/��(D−D∗(2010)+K+)/�total �188/��(D−D∗(2010)+K+)/�total �188/��(D−D∗(2010)+K+)/�total �188/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT0.63±0.09±0.060.63±0.09±0.060.63±0.09±0.060.63±0.09±0.06 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.7 90 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).

�(D∗(2010)−D+K+)/�total �189/��(D∗(2010)−D+K+)/�total �189/��(D∗(2010)−D+K+)/�total �189/��(D∗(2010)−D+K+)/�total �189/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.60±0.10±0.080.60±0.10±0.080.60±0.10±0.080.60±0.10±0.08 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.5 ±0.3 ±0.2 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−D∗(2010)+K+)/�total �190/��(D∗(2010)−D∗(2010)+K+)/�total �190/��(D∗(2010)−D∗(2010)+K+)/�total �190/��(D∗(2010)−D∗(2010)+K+)/�total �190/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT1.32±0.13±0.121.32±0.13±0.121.32±0.13±0.121.32±0.13±0.12 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.8 90 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�((D+D∗ )(D+D∗ )K)/�total �191/��((D+D∗ )(D+D∗ )K)/�total �191/��((D+D∗ )(D+D∗ )K)/�total �191/��((D+D∗ )(D+D∗ )K)/�total �191/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT4.05±0.11±0.284.05±0.11±0.284.05±0.11±0.284.05±0.11±0.28 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.5 ±0.3 ±0.5 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D+s π0)/�total �192/��(D+s π0)/�total �192/��(D+s π0)/�total �192/��(D+s π0)/�total �192/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT1.6+0.6

−0.5±0.11.6+0.6
−0.5±0.11.6+0.6
−0.5±0.11.6+0.6
−0.5±0.1 1 AUBERT 07M BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<16 90 2 ALEXANDER 93B CLE2 e+ e− → �(4S)1AUBERT 07M reports [�(B+ → D+s π0)/�total℄ × [B(D+s → φπ+)℄ =(7.0+2.4

−2.1+0.6
−0.8) × 10−7 whi
h we divide by our best value B(D+s → φπ+) =(4.5 ± 0.4) × 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2ALEXANDER 93B reports < 2.0 × 10−4 from a measurement of [�(B+ → D+s π0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.

[�(D+s π0)+�(D∗+s π0)]/�total (�192+�193)/�[�(D+s π0)+�(D∗+s π0)]/�total (�192+�193)/�[�(D+s π0)+�(D∗+s π0)]/�total (�192+�193)/�[�(D+s π0)+�(D∗+s π0)]/�total (�192+�193)/�VALUE CL% DOCUMENT ID TECN COMMENT
<5× 10−4<5× 10−4<5× 10−4<5× 10−4 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 0.9× 10−3 from a measurement of [[�(B+ → D+s π0) +�(B+ → D∗+s π0)

]/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D∗+s π0)/�total �193/��(D∗+s π0)/�total �193/��(D∗+s π0)/�total �193/��(D∗+s π0)/�total �193/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.6× 10−4<2.6× 10−4<2.6× 10−4<2.6× 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)1ALEXANDER 93B reports < 3.2× 10−4 from a measurement of [�(B+ → D∗+s π0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D+s η

)/�total �194/��(D+s η
)/�total �194/��(D+s η
)/�total �194/��(D+s η
)/�total �194/�VALUE CL% DOCUMENT ID TECN COMMENT

<4× 10−4<4× 10−4<4× 10−4<4× 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)1ALEXANDER 93B reports < 4.6 × 10−4 from a measurement of [�(B+ → D+s η
)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D∗+s η

)/�total �195/��(D∗+s η
)/�total �195/��(D∗+s η
)/�total �195/��(D∗+s η
)/�total �195/�VALUE CL% DOCUMENT ID TECN COMMENT

<6× 10−4<6× 10−4<6× 10−4<6× 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)1ALEXANDER 93B reports < 7.5 × 10−4 from a measurement of [�(B+ → D∗+s η
)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D+s ρ0)/�total �196/��(D+s ρ0)/�total �196/��(D+s ρ0)/�total �196/��(D+s ρ0)/�total �196/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.0× 10−4<3.0× 10−4<3.0× 10−4<3.0× 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)1ALEXANDER 93B reports < 3.7 × 10−4 from a measurement of [�(B+ → D+s ρ0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.
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[�(D+s ρ0)+ �(D+s K∗(892)0)]/�total (�196+�206)/�[�(D+s ρ0)+ �(D+s K∗(892)0)]/�total (�196+�206)/�[�(D+s ρ0)+ �(D+s K∗(892)0)]/�total (�196+�206)/�[�(D+s ρ0)+ �(D+s K∗(892)0)]/�total (�196+�206)/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.0× 10−3<2.0× 10−3<2.0× 10−3<2.0× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 3.4× 10−3 from a measurement of [[�(B+ → D+s ρ0) +�(B+ → D+s K∗(892)0)

]/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) =0.027, whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D∗+s ρ0)/�total �197/��(D∗+s ρ0)/�total �197/��(D∗+s ρ0)/�total �197/��(D∗+s ρ0)/�total �197/�VALUE CL% DOCUMENT ID TECN COMMENT
<4× 10−4<4× 10−4<4× 10−4<4× 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)1ALEXANDER 93B reports < 4.8× 10−4 from a measurement of [�(B+ → D∗+s ρ0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.
[�(D∗+s ρ0)+�(D∗+s K∗(892)0)]/�total (�197+�208)/�[�(D∗+s ρ0)+�(D∗+s K∗(892)0)]/�total (�197+�208)/�[�(D∗+s ρ0)+�(D∗+s K∗(892)0)]/�total (�197+�208)/�[�(D∗+s ρ0)+�(D∗+s K∗(892)0)]/�total (�197+�208)/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−3<1.2× 10−3<1.2× 10−3<1.2× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 2.0× 10−3 from a measurement of [[�(B+ → D∗+s ρ0) +�(B+ → D∗+s K∗(892)0)

]/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+)= 0.027, whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D+s ω
)/�total �198/��(D+s ω
)/�total �198/��(D+s ω
)/�total �198/��(D+s ω
)/�total �198/�VALUE CL% DOCUMENT ID TECN COMMENT

<4 × 10−4<4 × 10−4<4 × 10−4<4 × 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.0× 10−3 90 2 ALBRECHT 93E ARG e+ e− → �(4S)1ALEXANDER 93B reports < 4.8 × 10−4 from a measurement of [�(B+ → D+s ω

)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.2ALBRECHT 93E reports < 3.4 × 10−3 from a measurement of [�(B+ → D+s ω
)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D∗+s ω

)/�total �199/��(D∗+s ω
)/�total �199/��(D∗+s ω
)/�total �199/��(D∗+s ω
)/�total �199/�VALUE CL% DOCUMENT ID TECN COMMENT

<6 × 10−4<6 × 10−4<6 × 10−4<6 × 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.1× 10−3 90 2 ALBRECHT 93E ARG e+ e− → �(4S)1ALEXANDER 93B reports < 6.8 × 10−4 from a measurement of [�(B+ → D∗+s ω

)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.2ALBRECHT 93E reports < 1.9 × 10−3 from a measurement of [�(B+ → D∗+s ω
)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D+s a1(1260)0)/�total �200/��(D+s a1(1260)0)/�total �200/��(D+s a1(1260)0)/�total �200/��(D+s a1(1260)0)/�total �200/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.8× 10−3<1.8× 10−3<1.8× 10−3<1.8× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 3.0 × 10−3 from a measurement of [�(B+ →D+s a1(1260)0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D∗+s a1(1260)0)/�total �201/��(D∗+s a1(1260)0)/�total �201/��(D∗+s a1(1260)0)/�total �201/��(D∗+s a1(1260)0)/�total �201/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.3× 10−3<1.3× 10−3<1.3× 10−3<1.3× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 2.2 × 10−3 from a measurement of [�(B+ →D∗+s a1(1260)0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D+s φ

)/�total �202/��(D+s φ
)/�total �202/��(D+s φ
)/�total �202/��(D+s φ
)/�total �202/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.7+1.1
−0.7±0.21.7+1.1
−0.7±0.21.7+1.1
−0.7±0.21.7+1.1
−0.7±0.2 1 AAIJ 13R LHCB pp at 7 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.9 90 2 AUBERT 06F BABR e+ e− → �(4S)
<1000 90 3 ALBRECHT 93E ARG e+ e− → �(4S)
< 260 90 4 ALEXANDER 93B CLE2 e+ e− → �(4S)

1AAIJ 13R reports (1.87+1.25
−0.73 ± 0.19 ± 0.32)× 10−6 from a measurement of [�(B+ →D+s φ

)/�total℄ / [B(B+ → D0D+s )℄ assuming B(B+ → D0D+s ) = (10.0 ± 1.7) ×10−3, whi
h we res
ale to our best value B(B+ → D0D+s ) = (9.0 ± 0.9) × 10−3.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3ALBRECHT 93E reports < 1.7×10−3 from a measurement of [�(B+ → D+s φ
)/�total℄

× [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale to our bestvalue B(D+s → φπ+) = 4.5× 10−2.4ALEXANDER 93B reports < 3.1 × 10−4 from a measurement of [�(B+ → D+s φ
)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D∗+s φ

)/�total �203/��(D∗+s φ
)/�total �203/��(D∗+s φ
)/�total �203/��(D∗+s φ
)/�total �203/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.2× 10−5<1.2× 10−5<1.2× 10−5<1.2× 10−5 90 1 AUBERT 06F BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.3× 10−3 90 2 ALBRECHT 93E ARG e+ e− → �(4S)
<3.5× 10−4 90 3 ALEXANDER 93B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 93E reports < 2.1 × 10−3 from a measurement of [�(B+ → D∗+s φ

)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.3ALEXANDER 93B reports < 4.2 × 10−4 from a measurement of [�(B+ → D∗+s φ
)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D+s K0)/�total �204/��(D+s K0)/�total �204/��(D+s K0)/�total �204/��(D+s K0)/�total �204/�VALUE CL% DOCUMENT ID TECN COMMENT

<8 × 10−4<8 × 10−4<8 × 10−4<8 × 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.5× 10−3 90 2 ALBRECHT 93E ARG e+ e− → �(4S)1ALEXANDER 93B reports < 10.3× 10−4 from a measurement of [�(B+ → D+s K0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.2ALBRECHT 93E reports < 2.5 × 10−3 from a measurement of [�(B+ → D+s K0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D∗+s K0)/�total �205/��(D∗+s K0)/�total �205/��(D∗+s K0)/�total �205/��(D∗+s K0)/�total �205/�VALUE CL% DOCUMENT ID TECN COMMENT
<9 × 10−4<9 × 10−4<9 × 10−4<9 × 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.9× 10−3 90 2 ALBRECHT 93E ARG e+ e− → �(4S)1ALEXANDER 93B reports < 10.9×10−4 from a measurement of [�(B+ → D∗+s K0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.2ALBRECHT 93E reports < 3.1 × 10−3 from a measurement of [�(B+ → D∗+s K0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D+s K∗(892)0)/�total �206/��(D+s K∗(892)0)/�total �206/��(D+s K∗(892)0)/�total �206/��(D+s K∗(892)0)/�total �206/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.4× 10−6<4.4× 10−6<4.4× 10−6<4.4× 10−6 90 AAIJ 13R LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4 × 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)1ALEXANDER 93B reports < 4.4 × 10−4 from a measurement of [�(B+ →D+s K∗(892)0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
hwe res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D+s K∗0)/�total �207/��(D+s K∗0)/�total �207/��(D+s K∗0)/�total �207/��(D+s K∗0)/�total �207/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<3.5<3.5<3.5<3.5 90 AAIJ 13R LHCB pp at 7 TeV�(D∗+s K∗(892)0)/�total �208/��(D∗+s K∗(892)0)/�total �208/��(D∗+s K∗(892)0)/�total �208/��(D∗+s K∗(892)0)/�total �208/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.5× 10−4<3.5× 10−4<3.5× 10−4<3.5× 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)1ALEXANDER 93B reports < 4.3 × 10−4 from a measurement of [�(B+ →D∗+s K∗(892)0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.
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le ListingsB±�(D−s π+K+)/�total �209/��(D−s π+K+)/�total �209/��(D−s π+K+)/�total �209/��(D−s π+K+)/�total �209/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.80±0.22 OUR AVERAGE1.80±0.22 OUR AVERAGE1.80±0.22 OUR AVERAGE1.80±0.22 OUR AVERAGE1.71+0.08
−0.07±0.25 1 WIECHCZYN...09 BELL e+ e− → �(4S)2.02±0.13±0.38 1 AUBERT 08G BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7 90 2 ALBRECHT 93E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 93E reports < 1.1×10−3 from a measurement of [�(B+ → D−s π+K+)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D∗−s π+K+)/�total �210/��(D∗−s π+K+)/�total �210/��(D∗−s π+K+)/�total �210/��(D∗−s π+K+)/�total �210/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.45±0.24 OUR AVERAGE1.45±0.24 OUR AVERAGE1.45±0.24 OUR AVERAGE1.45±0.24 OUR AVERAGE1.31+0.13

−0.12±0.28 1 WIECHCZYN...09 BELL e+ e− → �(4S)1.67±0.16±0.35 1 AUBERT 08G BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<10 90 2 ALBRECHT 93E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 93E reports < 1.6×10−3 from a measurement of [�(B+ → D∗−s π+K+)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D−s π+K∗(892)+)/�total �211/��(D−s π+K∗(892)+)/�total �211/��(D−s π+K∗(892)+)/�total �211/��(D−s π+K∗(892)+)/�total �211/�VALUE CL% DOCUMENT ID TECN COMMENT
<5× 10−3<5× 10−3<5× 10−3<5× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 8.6 × 10−3 from a measurement of [�(B+ →D−s π+K∗(892)+)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D∗−s π+K∗(892)+)/�total �212/��(D∗−s π+K∗(892)+)/�total �212/��(D∗−s π+K∗(892)+)/�total �212/��(D∗−s π+K∗(892)+)/�total �212/�VALUE CL% DOCUMENT ID TECN COMMENT
<7× 10−3<7× 10−3<7× 10−3<7× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 1.1 × 10−2 from a measurement of [�(B+ →D∗−s π+K∗(892)+)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D−s K+K+)/�total �213/��(D−s K+K+)/�total �213/��(D−s K+K+)/�total �213/��(D−s K+K+)/�total �213/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT0.97±0.21 OUR AVERAGE0.97±0.21 OUR AVERAGE0.97±0.21 OUR AVERAGE0.97±0.21 OUR AVERAGE0.93±0.22±0.10 1 WIECHCZYN...15 BELL e+ e− → �(4S)1.1 ±0.4 ±0.2 1 AUBERT 08G BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−s K+K+)/�(D−s π+K+) �213/�209�(D−s K+K+)/�(D−s π+K+) �213/�209�(D−s K+K+)/�(D−s π+K+) �213/�209�(D−s K+K+)/�(D−s π+K+) �213/�209VALUE DOCUMENT ID TECN COMMENT0.054±0.013±0.0060.054±0.013±0.0060.054±0.013±0.0060.054±0.013±0.006 WIECHCZYN...15 BELL e+ e− → �(4S)�(D∗−s K+K+)/�total �214/��(D∗−s K+K+)/�total �214/��(D∗−s K+K+)/�total �214/��(D∗−s K+K+)/�total �214/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.15<0.15<0.15<0.15 90 1 AUBERT 08G BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η
 K+)/�total �215/��(

η
 K+)/�total �215/��(

η
 K+)/�total �215/��(

η
 K+)/�total �215/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.96±0.11 OUR AVERAGE0.96±0.11 OUR AVERAGE0.96±0.11 OUR AVERAGE0.96±0.11 OUR AVERAGE0.87±0.15 1,2 AUBERT 06E BABR e+ e− → �(4S)1.20+0.24
−0.19±0.13 3 AUBERT,B 05L BABR e+ e− → �(4S)1.25±0.14+0.39

−0.40 4 FANG 03 BELL e+ e− → �(4S)0.69+0.26
−0.21±0.22 5 EDWARDS 01 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.02±0.12±0.07 2,6 AUBERT,B 04B BABR e+ e− → �(4S)1Perform measurements of absolute bran
hing fra
tions using a missing mass te
hnique.2The ratio of B(B± → K± η
 ) B(η
 → K K π) = (7.4 ± 0.5 ± 0.7) × 10−5 re-ported in AUBERT,B 04B and B(B± → K± η
 ) = (8.7 ± 1.5) × 10−3 reported inAUBERT 06E 
ontribute to the determination of B(η
 → K K π), whi
h is used byothers for normalization.3AUBERT,B 05L reports [�(B+ → η
 K+)/�total℄ × [B(η
 (1S) → pp)℄ = (1.8+0.3
−0.2±0.2)×10−6 whi
h we divide by our best value B(η
 (1S) → pp) = (1.50± 0.16)×10−3.Our �rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.4Assumes equal produ
tion of B+ and B0 at the �(4S).

5 EDWARDS 01 assumes equal produ
tion of B0 and B+ at the �(4S). The 
orrelatedun
ertainties (28.3)% from B(J/ψ(1S) → γ η
 ) in those modes have been a

ountedfor.6AUBERT,B 04B reports [�(B+ → η
 K+)/�total℄ × [B(η
 (1S) → K K π)℄ = (0.074±0.005 ± 0.007) × 10−3 whi
h we divide by our best value B(η
 (1S) → K K π) =(7.3 ± 0.5) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(B+ → η
 K+)/�total × �(

η
 (1S)→ γ γ
)/�total �215/�× �η
 (1S)47 /�η
 (1S)�(B+ → η
 K+)/�total × �(

η
 (1S)→ γ γ
)/�total �215/�× �η
 (1S)47 /�η
 (1S)�(B+ → η
 K+)/�total × �(

η
 (1S)→ γ γ
)/�total �215/�× �η
 (1S)47 /�η
 (1S)�(B+ → η
 K+)/�total × �(

η
 (1S)→ γ γ
)/�total �215/�× �η
 (1S)47 /�η
 (1S)VALUE (units 10−6) DOCUMENT ID TECN COMMENT0.22+0.09

−0.07+0.04
−0.020.22+0.09

−0.07+0.04
−0.020.22+0.09

−0.07+0.04
−0.020.22+0.09

−0.07+0.04
−0.02 1 WICHT 08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η
 K+, η
 → K0S K∓π±)/�total �216/��(

η
 K+, η
 → K0S K∓π±)/�total �216/��(

η
 K+, η
 → K0S K∓π±)/�total �216/��(

η
 K+, η
 → K0S K∓π±)/�total �216/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT26.7±1.4+5.7
−5.526.7±1.4+5.7
−5.526.7±1.4+5.7
−5.526.7±1.4+5.7
−5.5 1,2 VINOKUROVA 11 BELL e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ from Upsilon(4S) de
ays.2VINOKUROVA 11 reports (26.7 ± 1.4+2.9

−2.6 ± 4.9)× 10−6, where the �rst un
ertaintyis statisti
al, the se
ond is due to systemati
s, and the third 
omes from interferen
e of
η
 (1S) → K0S K±π∓ with nonresonant K0S K±π∓. We 
ombined both systemati
un
ertainties to single values.�(

η
 K∗(892)+)/�total �217/��(

η
 K∗(892)+)/�total �217/��(

η
 K∗(892)+)/�total �217/��(

η
 K∗(892)+)/�total �217/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.0+0.5
−0.4±0.11.0+0.5
−0.4±0.11.0+0.5
−0.4±0.11.0+0.5
−0.4±0.1 1,2 AUBERT 07AV BABR e+ e− → �(4S)1AUBERT 07AV reports [�(B+ → η
 K∗(892)+)/�total℄ × [B(η
 (1S) → pp)℄ =(1.57+0.56

−0.46+0.45
−0.36) × 10−6 whi
h we divide by our best value B(η
 (1S) → pp) =(1.50 ± 0.16)× 10−3. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η
 K+π+π−)/�total �218/��(

η
 K+π+π−)/�total �218/��(

η
 K+π+π−)/�total �218/��(

η
 K+π+π−)/�total �218/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.9× 10−4<3.9× 10−4<3.9× 10−4<3.9× 10−4 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(

η
 K+ω(782))/�total �219/��(

η
 K+ω(782))/�total �219/��(

η
 K+ω(782))/�total �219/��(

η
 K+ω(782))/�total �219/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.3× 10−4<5.3× 10−4<5.3× 10−4<5.3× 10−4 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(

η
 K+η
)/�total �220/��(

η
 K+η
)/�total �220/��(

η
 K+η
)/�total �220/��(

η
 K+η
)/�total �220/�VALUE CL% DOCUMENT ID TECN COMMENT

<2.2× 10−4<2.2× 10−4<2.2× 10−4<2.2× 10−4 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(

η
 K+π0)/�total �221/��(

η
 K+π0)/�total �221/��(

η
 K+π0)/�total �221/��(

η
 K+π0)/�total �221/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.2× 10−5<6.2× 10−5<6.2× 10−5<6.2× 10−5 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(

η
 (2S)K+)/�total �222/��(

η
 (2S)K+)/�total �222/��(

η
 (2S)K+)/�total �222/��(

η
 (2S)K+)/�total �222/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.4±1.8±0.33.4±1.8±0.33.4±1.8±0.33.4±1.8±0.3 1 AUBERT 06E BABR e+ e− → �(4S)1Perform measurements of absolute bran
hing fra
tions using a missing mass te
hnique.�(

η
 (2S)K+, η
 → pp)/�total �223/��(

η
 (2S)K+, η
 → pp)/�total �223/��(

η
 (2S)K+, η
 → pp)/�total �223/��(

η
 (2S)K+, η
 → pp)/�total �223/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.06× 10−7<1.06× 10−7<1.06× 10−7<1.06× 10−7 95 1 AAIJ 13S LHCB pp at 7 TeV1Measured relative to B+ → J/ψK+ de
ay with 
harmonia re
onstru
ted in pp �nalstate and using B(B+ → J/ψK+) = (1.013 ± 0.034)× 10−3 and B(J/ψ → pp) =(2.17 ± 0.07)× 10−3.�(B+ → h
 (1P)K+)/�total × �(h
 (1P)→ η
 (1S)γ)/�total�303/�× �h
 (1P)4 /�h
 (1P)�(B+ → h
 (1P)K+)/�total × �(h
 (1P)→ η
 (1S)γ)/�total�303/�× �h
 (1P)4 /�h
 (1P)�(B+ → h
 (1P)K+)/�total × �(h
 (1P)→ η
 (1S)γ)/�total�303/�× �h
 (1P)4 /�h
 (1P)�(B+ → h
 (1P)K+)/�total × �(h
 (1P)→ η
 (1S)γ)/�total�303/�× �h
 (1P)4 /�h
 (1P)VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.48<0.48<0.48<0.48 90 1 AUBERT 08AB BABR e+ e− → �(4S)1Uses the produ
tion ratio of (B+B−)/(B0B0) = 1.026 ± 0.032 at �(4S).�(B+ → η
 (2S)K+)/�total × �(

η
 (2S)→ γ γ
)/�total�222/�× �η
 (2S)15 /�η
 (2S)�(B+ → η
 (2S)K+)/�total × �(

η
 (2S)→ γ γ
)/�total�222/�× �η
 (2S)15 /�η
 (2S)�(B+ → η
 (2S)K+)/�total × �(

η
 (2S)→ γ γ
)/�total�222/�× �η
 (2S)15 /�η
 (2S)�(B+ → η
 (2S)K+)/�total × �(

η
 (2S)→ γ γ
)/�total�222/�× �η
 (2S)15 /�η
 (2S)VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<0.18<0.18<0.18<0.18 90 1 WICHT 08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η
 (2S)K+, η
 → K0S K∓π±)/�total �224/��(

η
 (2S)K+, η
 → K0S K∓π±)/�total �224/��(

η
 (2S)K+, η
 → K0S K∓π±)/�total �224/��(

η
 (2S)K+, η
 → K0S K∓π±)/�total �224/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT3.4+2.2
−1.5+0.5

−0.43.4+2.2
−1.5+0.5

−0.43.4+2.2
−1.5+0.5

−0.43.4+2.2
−1.5+0.5

−0.4 1,2 VINOKUROVA 11 BELL e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ from Upsilon(4S) de
ays.2The �rst un
ertainty in
ludes both statisti
al and interferen
e e�e
ts while the se
ond isdue to systemati
s.



1171117111711171See key on page 601 MesonParti
le ListingsB±�(J/ψ(1S)K+)/�total �255/��(J/ψ(1S)K+)/�total �255/��(J/ψ(1S)K+)/�total �255/��(J/ψ(1S)K+)/�total �255/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT10.26± 0.31 OUR FIT10.26± 0.31 OUR FIT10.26± 0.31 OUR FIT10.26± 0.31 OUR FIT10.24± 0.35 OUR AVERAGE10.24± 0.35 OUR AVERAGE10.24± 0.35 OUR AVERAGE10.24± 0.35 OUR AVERAGE8.1 ± 1.3 ±0.7 1 AUBERT 06E BABR e+ e− → �(4S)10.61± 0.15±0.48 2 AUBERT 05J BABR e+ e− → �(4S)10.4 ± 1.1 ±0.1 3 AUBERT,B 05L BABR e+ e− → �(4S)10.1 ± 0.2 ±0.7 2 ABE 03B BELL e+ e− → �(4S)10.2 ± 0.8 ±0.7 2 JESSOP 97 CLE2 e+ e− → �(4S)9.24± 3.04±0.05 4 BORTOLETTO92 CLEO e+ e− → �(4S)8.09± 3.50±0.04 6 5 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •10.1 ± 0.3 ±0.5 2 AUBERT 02 BABR Repl. by AUBERT 05J11.0 ± 1.5 ±0.9 59 2 ALAM 94 CLE2 Repl. by JESSOP 9722 ±10 ±2 BUSKULIC 92G ALEP e+ e− → Z7 ± 4 3 6 ALBRECHT 87D ARG e+ e− → �(4S)10 ± 7 ±2 3 7 BEBEK 87 CLEO e+ e− → �(4S)9 ± 5 3 8 ALAM 86 CLEO e+ e− → �(4S)1Perform measurements of absolute bran
hing fra
tions using a missing mass te
hnique.2Assumes equal produ
tion of B+ and B0 at the �(4S).3AUBERT,B 05L reports [�(B+ → J/ψ(1S)K+)/�total℄ × [B(J/ψ(1S) → pp)℄ =(2.2 ± 0.2 ± 0.1) × 10−6 whi
h we divide by our best value B(J/ψ(1S) → pp) =(2.120 ± 0.029)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.4BORTOLETTO 92 reports (8 ± 2 ± 2) × 10−4 from a measurement of [�(B+ →J/ψ(1S)K+)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) → e+ e−) =0.069 ± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) = (5.971 ±0.032) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value. Assumes equal produ
tion of B+ and B0 atthe �(4S).5ALBRECHT 90J reports (7 ± 3 ± 1) × 10−4 from a measurement of [�(B+ →J/ψ(1S)K+)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) → e+ e−)= 0.069 ± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) =(5.971 ± 0.032) × 10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value. Assumes equal produ
tion of B+and B0 at the �(4S).6ALBRECHT 87D assume B+B−/B0B0 ratio is 55/45. Superseded by ALBRECHT 90J.7BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions asnoted for BORTOLETTO 92.8ALAM 86 assumes B±/B0 ratio is 60/40.�(

η
 K+)/�(J/ψ(1S)K+) �215/�255�(

η
 K+)/�(J/ψ(1S)K+) �215/�255�(

η
 K+)/�(J/ψ(1S)K+) �215/�255�(

η
 K+)/�(J/ψ(1S)K+) �215/�255VALUE DOCUMENT ID TECN COMMENT0.84±0.10 OUR AVERAGE0.84±0.10 OUR AVERAGE0.84±0.10 OUR AVERAGE0.84±0.10 OUR AVERAGE0.82±0.06±0.09 1 AAIJ 13S LHCB pp at 7 TeV1.33±0.10±0.43 2 AUBERT,B 04B BABR e+ e− → �(4S)1AAIJ 13S reports [�(B+ → η
 K+)/�(B+ → J/ψ(1S)K+)℄ × [B(η
 (1S) → pp)℄
/ [B(J/ψ(1S) → pp)℄ = 0.578 ± 0.035 ± 0.026 whi
h we multiply or divide by ourbest values B(η
 (1S) → pp) = (1.50 ± 0.16)×10−3, B(J/ψ(1S) → pp) = (2.120 ±0.029) × 10−3. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best values.2Uses BABAR measurement of B(B+ → J/ψK+) = (10.1 ± 0.3 ± 0.5)× 10−4.�(B+ → J/ψ(1S)K+)/�total × �(J/ψ(1S)→ γ γ

)/�total�255/�× �J/ψ(1S)222 /�J/ψ(1S)�(B+ → J/ψ(1S)K+)/�total × �(J/ψ(1S)→ γ γ
)/�total�255/�× �J/ψ(1S)222 /�J/ψ(1S)�(B+ → J/ψ(1S)K+)/�total × �(J/ψ(1S)→ γ γ
)/�total�255/�× �J/ψ(1S)222 /�J/ψ(1S)�(B+ → J/ψ(1S)K+)/�total × �(J/ψ(1S)→ γ γ
)/�total�255/�× �J/ψ(1S)222 /�J/ψ(1S)VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<0.16<0.16<0.16<0.16 90 1 WICHT 08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)K+π+π−)/�total �257/��(J/ψ(1S)K+π+π−)/�total �257/��(J/ψ(1S)K+π+π−)/�total �257/��(J/ψ(1S)K+π+π−)/�total �257/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT0.81 ±0.13 OUR AVERAGE0.81 ±0.13 OUR AVERAGE0.81 ±0.13 OUR AVERAGE0.81 ±0.13 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.5. See the ideogrambelow.0.716±0.010±0.060 1 GULER 11 BELL e+ e− → �(4S)1.16 ±0.07 ±0.09 1 AUBERT 05R BABR e+ e− → �(4S)0.69 ±0.18 ±0.12 2 ACOSTA 02F CDF pp 1.8 TeV1.39 ±0.81 ±0.01 3 BORTOLETTO92 CLEO e+ e− → �(4S)1.39 ±0.91 ±0.01 6 4 ALBRECHT 87D ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.8 90 5 ALBRECHT 90J ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ACOSTA 02F uses as referen
e of B(B → J/ψ(1S)K+) = (10.1 ± 0.6)× 10−4. These
ond error in
ludes the systemati
 error and the un
ertainties of the bran
hing ratio.3BORTOLETTO 92 reports (1.2 ± 0.6 ± 0.4)× 10−3 from a measurement of [�(B+ →J/ψ(1S)K+π+π−

)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) →e+ e−) = 0.069 ± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) =(5.971 ± 0.032)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S).4ALBRECHT 87D reports (1.2 ± 0.8) × 10−3 from a measurement of [�(B+ →J/ψ(1S)K+π+π−
)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) →e+ e−) = 0.069 ± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) =(5.971± 0.032)×10−2. Our �rst error is their experiment's error and our se
ond error is

the systemati
 error from using our best value. They a
tually report 0.0011 ± 0.0007 as-suming B+B−/B0B0 ratio is 55/45. We res
ale to 50/50. Analysis expli
itly removesB+ → ψ(2S)K+.5ALBRECHT 90J reports < 1.6 × 10−3 from a measurement of [�(B+ →J/ψ(1S)K+π+π−
)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) →e+ e−) = 0.069, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) =5.971 × 10−2. Assumes equal produ
tion of B+ and B0 at the �(4S).

WEIGHTED AVERAGE
0.81±0.13 (Error scaled by 2.5)

ALBRECHT 87D ARG
BORTOLETTO 92 CLEO
ACOSTA 02F CDF 0.3
AUBERT 05R BABR 9.4
GULER 11 BELL 2.5

χ2

      12.1
(Confidence Level = 0.0023)

0 0.5 1 1.5 2 2.5�(J/ψ(1S)K+π+π−
)/�total (units 10−3)�(J/ψ(1S)K+K−K+)/�total �258/��(J/ψ(1S)K+K−K+)/�total �258/��(J/ψ(1S)K+K−K+)/�total �258/��(J/ψ(1S)K+K−K+)/�total �258/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT33.7±2.5±1.433.7±2.5±1.433.7±2.5±1.433.7±2.5±1.4 LEES 15 BABR e+ e− → �(4S)�(h
 (1P)K+, h
 → J/ψπ+π−)/�total �225/��(h
 (1P)K+, h
 → J/ψπ+π−)/�total �225/��(h
 (1P)K+, h
 → J/ψπ+π−)/�total �225/��(h
 (1P)K+, h
 → J/ψπ+π−)/�total �225/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.4× 10−6<3.4× 10−6<3.4× 10−6<3.4× 10−6 90 1 AUBERT 05R BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3730)0K+, X 0 → η
 η
)/�total �226/��(X (3730)0K+, X 0 → η
 η
)/�total �226/��(X (3730)0K+, X 0 → η
 η
)/�total �226/��(X (3730)0K+, X 0 → η
 η
)/�total �226/�VALUE CL% DOCUMENT ID TECN COMMENT

<4.6× 10−5<4.6× 10−5<4.6× 10−5<4.6× 10−5 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(X (3730)0K+, X 0 → η
 π0)/�total �227/��(X (3730)0K+, X 0 → η
 π0)/�total �227/��(X (3730)0K+, X 0 → η
 π0)/�total �227/��(X (3730)0K+, X 0 → η
 π0)/�total �227/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.7× 10−6<5.7× 10−6<5.7× 10−6<5.7× 10−6 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(X (3872)K+)/�total �228/��(X (3872)K+)/�total �228/��(X (3872)K+)/�total �228/��(X (3872)K+)/�total �228/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.2× 10−4<3.2× 10−4<3.2× 10−4<3.2× 10−4 90 1 AUBERT 06E BABR e+ e− → �(4S)1Perform measurements of absolute bran
hing fra
tions using a missing mass te
hnique.�(B+ → X (3872)K+)/�total × �(X (3872)→ γ γ

)/�total�228/�× �X (3872)7 /�X (3872)�(B+ → X (3872)K+)/�total × �(X (3872)→ γ γ
)/�total�228/�× �X (3872)7 /�X (3872)�(B+ → X (3872)K+)/�total × �(X (3872)→ γ γ
)/�total�228/�× �X (3872)7 /�X (3872)�(B+ → X (3872)K+)/�total × �(X (3872)→ γ γ
)/�total�228/�× �X (3872)7 /�X (3872)VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<0.24<0.24<0.24<0.24 90 1 WICHT 08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3872)K+, X → J/ψπ+π−)/�total �230/��(X (3872)K+, X → J/ψπ+π−)/�total �230/��(X (3872)K+, X → J/ψπ+π−)/�total �230/��(X (3872)K+, X → J/ψπ+π−)/�total �230/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT8.6 ±0.8 OUR AVERAGE8.6 ±0.8 OUR AVERAGE8.6 ±0.8 OUR AVERAGE8.6 ±0.8 OUR AVERAGE8.63±0.82±0.52 1 CHOI 11 BELL e+ e− → �(4S)8.4 ±1.5 ±0.7 1 AUBERT 08Y BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •10.1 ±2.5 ±1.0 1 AUBERT 06 BABR Repl. by AUBERT 08Y12.8 ±4.1 1 AUBERT 05R BABR Repl. by AUBERT 0612.5 ±2.8 ±0.5 2 CHOI 03 BELL Repl. by CHOI 111Assumes equal produ
tion of B+ and B0 at the �(4S).2CHOI 03 reports [�(B+ → X (3872)K+, X → J/ψπ+π−

)/�total℄ / [B(B+ →
ψ(2S)K+)℄ = 0.0200 ± 0.0038 ± 0.0023 whi
h we multiply by our best value B(B+ →
ψ(2S)K+) = (6.26 ± 0.24)× 10−4. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(X (3872)K+, X → J/ψγ

)/�total �231/��(X (3872)K+, X → J/ψγ
)/�total �231/��(X (3872)K+, X → J/ψγ
)/�total �231/��(X (3872)K+, X → J/ψγ
)/�total �231/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.1 ±0.4 OUR AVERAGE2.1 ±0.4 OUR AVERAGE2.1 ±0.4 OUR AVERAGE2.1 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1.78+0.48

−0.44±0.12 1 BHARDWAJ 11 BELL e+ e− → �(4S)2.8 ±0.8 ±0.1 2 AUBERT 09B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.3 ±1.0 ±0.3 1 AUBERT,BE 06M BABR Repl. by AUBERT 09B



1172117211721172Meson Parti
le ListingsB±1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) → B0B0) = (48.4± 0.6)%.�(X (3872)K∗(892)+, X → J/ψγ
)/�total �246/��(X (3872)K∗(892)+, X → J/ψγ
)/�total �246/��(X (3872)K∗(892)+, X → J/ψγ
)/�total �246/��(X (3872)K∗(892)+, X → J/ψγ
)/�total �246/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<4.8<4.8<4.8<4.8 90 1 AUBERT 09B BABR e+ e− → �(4S)1Uses B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) → B0B0) = (48.4± 0.6)%.�(X (3872)K+, X → ψ(2S)γ)/�total �232/��(X (3872)K+, X → ψ(2S)γ)/�total �232/��(X (3872)K+, X → ψ(2S)γ)/�total �232/��(X (3872)K+, X → ψ(2S)γ)/�total �232/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT4 ±4 OUR AVERAGE4 ±4 OUR AVERAGE4 ±4 OUR AVERAGE4 ±4 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.5.0.83+1.98
−1.83±0.44 1,2 BHARDWAJ 11 BELL e+ e− → �(4S)9.5 ±2.7 ±0.6 3 AUBERT 09B BABR e+ e− → �(4S)1BHARDWAJ 11 measurement is equivalent to a limit of < 3.45× 10−6 at 90% CL.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Uses B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) → B0B0) = (48.4± 0.6)%.�(X (3872)K∗(892)+, X → ψ(2S)γ)/�total �247/��(X (3872)K∗(892)+, X → ψ(2S)γ)/�total �247/��(X (3872)K∗(892)+, X → ψ(2S)γ)/�total �247/��(X (3872)K∗(892)+, X → ψ(2S)γ)/�total �247/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<28<28<28<28 90 1 AUBERT 09B BABR e+ e− → �(4S)1Uses B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) → B0B0) = (48.4± 0.6)%.�(X (3872)K+, X → D0D0)/�total �234/��(X (3872)K+, X → D0D0)/�total �234/��(X (3872)K+, X → D0D0)/�total �234/��(X (3872)K+, X → D0D0)/�total �234/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.0× 10−5<6.0× 10−5<6.0× 10−5<6.0× 10−5 90 1 CHISTOV 04 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3872)K+, X → D+D−)/�total �235/��(X (3872)K+, X → D+D−)/�total �235/��(X (3872)K+, X → D+D−)/�total �235/��(X (3872)K+, X → D+D−)/�total �235/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.0× 10−5<4.0× 10−5<4.0× 10−5<4.0× 10−5 90 1 CHISTOV 04 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3872)K+, X → D0D0π0)/�total �236/��(X (3872)K+, X → D0D0π0)/�total �236/��(X (3872)K+, X → D0D0π0)/�total �236/��(X (3872)K+, X → D0D0π0)/�total �236/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.02±0.31+0.21

−0.291.02±0.31+0.21
−0.291.02±0.31+0.21
−0.291.02±0.31+0.21
−0.29 1 GOKHROO 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.6 90 2 CHISTOV 04 BELL Repl. by GOKHROO 061Measure the near-threshold enhan
ements in the (D0D0π0) system at a mass 3875.2 ±0.7+0.3

−1.6 ± 0.8 MeV/
2.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3872)K+, X → D∗0D0)/�total �237/��(X (3872)K+, X → D∗0D0)/�total �237/��(X (3872)K+, X → D∗0D0)/�total �237/��(X (3872)K+, X → D∗0D0)/�total �237/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.85±0.26 OUR AVERAGE0.85±0.26 OUR AVERAGE0.85±0.26 OUR AVERAGE0.85±0.26 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.0.77±0.16±0.10 1 AUSHEV 10 BELL e+ e− → �(4S)1.67±0.36±0.47 1 AUBERT 08B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3872)0K+, X 0 → η
 π+π−)/�total �238/��(X (3872)0K+, X 0 → η
 π+π−)/�total �238/��(X (3872)0K+, X 0 → η
 π+π−)/�total �238/��(X (3872)0K+, X 0 → η
 π+π−)/�total �238/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.0× 10−5<3.0× 10−5<3.0× 10−5<3.0× 10−5 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(X (3872)0K+, X 0 → η
 ω(782))/�total �239/��(X (3872)0K+, X 0 → η
 ω(782))/�total �239/��(X (3872)0K+, X 0 → η
 ω(782))/�total �239/��(X (3872)0K+, X 0 → η
 ω(782))/�total �239/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.9× 10−5<6.9× 10−5<6.9× 10−5<6.9× 10−5 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(X (3915)0K+, X 0 → η
 η

)/�total �240/��(X (3915)0K+, X 0 → η
 η
)/�total �240/��(X (3915)0K+, X 0 → η
 η
)/�total �240/��(X (3915)0K+, X 0 → η
 η
)/�total �240/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.3× 10−5<3.3× 10−5<3.3× 10−5<3.3× 10−5 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(X (3915)0K+, X 0 → η
 π0)/�total �241/��(X (3915)0K+, X 0 → η
 π0)/�total �241/��(X (3915)0K+, X 0 → η
 π0)/�total �241/��(X (3915)0K+, X 0 → η
 π0)/�total �241/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.8× 10−5<1.8× 10−5<1.8× 10−5<1.8× 10−5 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(X (4014)0K+, X 0 → η
 η

)/�total �242/��(X (4014)0K+, X 0 → η
 η
)/�total �242/��(X (4014)0K+, X 0 → η
 η
)/�total �242/��(X (4014)0K+, X 0 → η
 η
)/�total �242/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.9× 10−5<3.9× 10−5<3.9× 10−5<3.9× 10−5 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(X (4014)0K+, X 0 → η
 π0)/�total �243/��(X (4014)0K+, X 0 → η
 π0)/�total �243/��(X (4014)0K+, X 0 → η
 π0)/�total �243/��(X (4014)0K+, X 0 → η
 π0)/�total �243/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−5<1.2× 10−5<1.2× 10−5<1.2× 10−5 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(X (3900)0K+, X 0 → η
 π+π−)/�total �244/��(X (3900)0K+, X 0 → η
 π+π−)/�total �244/��(X (3900)0K+, X 0 → η
 π+π−)/�total �244/��(X (3900)0K+, X 0 → η
 π+π−)/�total �244/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.7× 10−5<4.7× 10−5<4.7× 10−5<4.7× 10−5 90 VINOKUROVA 15 BELL e+ e− → �(4S)�(X (4020)0K+, X 0 → η
 π+π−)/�total �245/��(X (4020)0K+, X 0 → η
 π+π−)/�total �245/��(X (4020)0K+, X 0 → η
 π+π−)/�total �245/��(X (4020)0K+, X 0 → η
 π+π−)/�total �245/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.6× 10−5<1.6× 10−5<1.6× 10−5<1.6× 10−5 90 VINOKUROVA 15 BELL e+ e− → �(4S)

�(X (3872)K+, X → J/ψ(1S)η)/�total �233/��(X (3872)K+, X → J/ψ(1S)η)/�total �233/��(X (3872)K+, X → J/ψ(1S)η)/�total �233/��(X (3872)K+, X → J/ψ(1S)η)/�total �233/�VALUE CL% DOCUMENT ID TECN COMMENT
<7.7× 10−6<7.7× 10−6<7.7× 10−6<7.7× 10−6 90 1 AUBERT 04Y BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3872)+K0, X+ → J/ψ(1S)π+π0)/�total �248/��(X (3872)+K0, X+ → J/ψ(1S)π+π0)/�total �248/��(X (3872)+K0, X+ → J/ψ(1S)π+π0)/�total �248/��(X (3872)+K0, X+ → J/ψ(1S)π+π0)/�total �248/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 6.1< 6.1< 6.1< 6.1 90 1,2 CHOI 11 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<22 90 3 AUBERT 05B BABR e+ e− → �(4S)1Assumes π+π0 originates from ρ+.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Assumes equal produ
tion of B+ and B0 at the �(4S). The isove
tor-X hypothesis isex
luded with a likelihood test at 1× 10−4 level.�(X (3872)K0π+, X → J/ψ(1S)π+π−)/�total �249/��(X (3872)K0π+, X → J/ψ(1S)π+π−)/�total �249/��(X (3872)K0π+, X → J/ψ(1S)π+π−)/�total �249/��(X (3872)K0π+, X → J/ψ(1S)π+π−)/�total �249/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT10.6±3.0±0.910.6±3.0±0.910.6±3.0±0.910.6±3.0±0.9 BALA 15 BELL e+ e− → �(4S)�(X (4430)+K0, X+ → J/ψπ+)/�total �250/��(X (4430)+K0, X+ → J/ψπ+)/�total �250/��(X (4430)+K0, X+ → J/ψπ+)/�total �250/��(X (4430)+K0, X+ → J/ψπ+)/�total �250/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.5<1.5<1.5<1.5 95 1 AUBERT 09AA BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (4430)+K0, X+ → ψ(2S)π+)/�total �251/��(X (4430)+K0, X+ → ψ(2S)π+)/�total �251/��(X (4430)+K0, X+ → ψ(2S)π+)/�total �251/��(X (4430)+K0, X+ → ψ(2S)π+)/�total �251/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<4.7<4.7<4.7<4.7 95 1 AUBERT 09AA BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (4260)0K+, X 0 → J/ψπ+π−)/�total �252/��(X (4260)0K+, X 0 → J/ψπ+π−)/�total �252/��(X (4260)0K+, X 0 → J/ψπ+π−)/�total �252/��(X (4260)0K+, X 0 → J/ψπ+π−)/�total �252/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<29<29<29<29 95 1 AUBERT 06 BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3915)K+, X → J/ψγ

)/�total �253/��(X (3915)K+, X → J/ψγ
)/�total �253/��(X (3915)K+, X → J/ψγ
)/�total �253/��(X (3915)K+, X → J/ψγ
)/�total �253/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<14<14<14<14 90 1 AUBERT,BE 06M BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3930)0K+, X 0 → J/ψγ
)/�total �254/��(X (3930)0K+, X 0 → J/ψγ
)/�total �254/��(X (3930)0K+, X 0 → J/ψγ
)/�total �254/��(X (3930)0K+, X 0 → J/ψγ
)/�total �254/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<2.5<2.5<2.5<2.5 90 1 AUBERT,BE 06M BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)K0π+)/�total �256/��(J/ψ(1S)K0π+)/�total �256/��(J/ψ(1S)K0π+)/�total �256/��(J/ψ(1S)K0π+)/�total �256/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.101±0.021 1 AUBERT 09AA BABR e+ e− → �(4S)1Does not report systemati
 un
ertainties.�(J/ψ(1S)K∗(892)+)/�total �260/��(J/ψ(1S)K∗(892)+)/�total �260/��(J/ψ(1S)K∗(892)+)/�total �260/��(J/ψ(1S)K∗(892)+)/�total �260/�For polarization information see the Listings at the end of the \B0 Bran
hing Ratios"se
tion.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.43 ±0.08 OUR FIT1.43 ±0.08 OUR FIT1.43 ±0.08 OUR FIT1.43 ±0.08 OUR FIT1.43 ±0.08 OUR AVERAGE1.43 ±0.08 OUR AVERAGE1.43 ±0.08 OUR AVERAGE1.43 ±0.08 OUR AVERAGE1.78 +0.36

−0.32 ±0.02 1,2 AUBERT 07AV BABR e+ e− → �(4S)1.454±0.047±0.097 2 AUBERT 05J BABR e+ e− → �(4S)1.28 ±0.07 ±0.14 2 ABE 02N BELL e+ e− → �(4S)1.41 ±0.23 ±0.24 2 JESSOP 97 CLE2 e+ e− → �(4S)1.58 ±0.47 ±0.27 3 ABE 96H CDF pp at 1.8 TeV1.50 ±1.08 ±0.01 4 BORTOLETTO92 CLEO e+ e− → �(4S)1.85 ±1.30 ±0.01 2 5 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.37 ±0.09 ±0.11 2 AUBERT 02 BABR Repl. byAUBERT 05J1.78 ±0.51 ±0.23 13 2 ALAM 94 CLE2 Sup. by JESSOP 971AUBERT 07AV reports [�(B+ → J/ψ(1S)K∗(892)+)/�total℄ × [B(J/ψ(1S) → pp)℄= (3.78+0.72

−0.64+0.28
−0.23)× 10−6 whi
h we divide by our best value B(J/ψ(1S) → pp) =(2.120 ± 0.029)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3ABE 96H assumes that B(B+ → J/ψK+) = (1.02 ± 0.14) × 10−3.4BORTOLETTO 92 reports (1.3 ± 0.9 ± 0.3)× 10−3 from a measurement of [�(B+ →J/ψ(1S)K∗(892)+)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) →e+ e−) = 0.069 ± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) =(5.971 ± 0.032)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S).



1173117311731173See key on page 601 MesonParti
le ListingsB±5ALBRECHT 90J reports (1.6 ± 1.1 ± 0.3) × 10−3 from a measurement of [�(B+ →J/ψ(1S)K∗(892)+)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) →e+ e−) = 0.069 ± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) =(5.971 ± 0.032)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S).�(J/ψ(1S)K∗(892)+)/�(J/ψ(1S)K+) �260/�255�(J/ψ(1S)K∗(892)+)/�(J/ψ(1S)K+) �260/�255�(J/ψ(1S)K∗(892)+)/�(J/ψ(1S)K+) �260/�255�(J/ψ(1S)K∗(892)+)/�(J/ψ(1S)K+) �260/�255VALUE DOCUMENT ID TECN COMMENT1.39±0.09 OUR AVERAGE1.39±0.09 OUR AVERAGE1.39±0.09 OUR AVERAGE1.39±0.09 OUR AVERAGE1.37±0.05±0.08 AUBERT 05J BABR e+ e− → �(4S)1.45±0.20±0.17 1 JESSOP 97 CLE2 e+ e− → �(4S)1.92±0.60±0.17 ABE 96Q CDF pp
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.37±0.10±0.08 2 AUBERT 02 BABR Repl. by AUBERT 05J1 JESSOP 97 assumes equal produ
tion of B+ and B0 at the �(4S). The measurementis a
tually measured as an average over kaon 
harged and neutral states.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)K (1270)+)/�total �261/��(J/ψ(1S)K (1270)+)/�total �261/��(J/ψ(1S)K (1270)+)/�total �261/��(J/ψ(1S)K (1270)+)/�total �261/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.80±0.34±0.391.80±0.34±0.391.80±0.34±0.391.80±0.34±0.39 1 ABE 01L BELL e+ e− → �(4S)1Uses the PDG value of B(B+ → J/ψ(1S)K+) = (1.00 ± 0.10)× 10−3.�(J/ψ(1S)K (1400)+)/�(J/ψ(1S)K (1270)+) �262/�261�(J/ψ(1S)K (1400)+)/�(J/ψ(1S)K (1270)+) �262/�261�(J/ψ(1S)K (1400)+)/�(J/ψ(1S)K (1270)+) �262/�261�(J/ψ(1S)K (1400)+)/�(J/ψ(1S)K (1270)+) �262/�261VALUE CL% DOCUMENT ID TECN COMMENT
<0.30<0.30<0.30<0.30 90 ABE 01L BELL e+ e− → �(4S)�(J/ψ(1S)ηK+)/�total �263/��(J/ψ(1S)ηK+)/�total �263/��(J/ψ(1S)ηK+)/�total �263/��(J/ψ(1S)ηK+)/�total �263/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT12.4±1.4 OUR AVERAGE12.4±1.4 OUR AVERAGE12.4±1.4 OUR AVERAGE12.4±1.4 OUR AVERAGE12.7±1.1±1.1 1 IWASHITA 14 BELL e+ e− → �(4S)10.8±2.3±2.4 1 AUBERT 04Y BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X c−odd(3872)K+, X c−odd → J/ψη

)/�total �264/��(X c−odd(3872)K+, X c−odd → J/ψη
)/�total �264/��(X c−odd(3872)K+, X c−odd → J/ψη
)/�total �264/��(X c−odd(3872)K+, X c−odd → J/ψη
)/�total �264/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.8× 10−6<3.8× 10−6<3.8× 10−6<3.8× 10−6 90 IWASHITA 14 BELL e+ e− → �(4S)�(

ψ(4160)K+, ψ → J/ψη
)/�total �265/��(

ψ(4160)K+, ψ → J/ψη
)/�total �265/��(

ψ(4160)K+, ψ → J/ψη
)/�total �265/��(

ψ(4160)K+, ψ → J/ψη
)/�total �265/�VALUE CL% DOCUMENT ID TECN COMMENT

<7.4× 10−6<7.4× 10−6<7.4× 10−6<7.4× 10−6 90 IWASHITA 14 BELL e+ e− → �(4S)�(J/ψ(1S)η′K+)/�total �266/��(J/ψ(1S)η′K+)/�total �266/��(J/ψ(1S)η′K+)/�total �266/��(J/ψ(1S)η′K+)/�total �266/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<8.8<8.8<8.8<8.8 90 1 XIE 07 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)φK+)/�total �267/��(J/ψ(1S)φK+)/�total �267/��(J/ψ(1S)φK+)/�total �267/��(J/ψ(1S)φK+)/�total �267/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT5.0 ±0.4 OUR AVERAGE5.0 ±0.4 OUR AVERAGE5.0 ±0.4 OUR AVERAGE5.0 ±0.4 OUR AVERAGE5.00±0.37±0.15 LEES 15 BABR e+ e− → �(4S)4.4 ±1.4 ±0.5 1 AUBERT 03O BABR e+ e− → �(4S)8.8 +3.5

−3.0 ±1.3 2 ANASTASSOV 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ANASTASSOV 00 �nds 10 events on a ba
kground of 0.5± 0.2. Assumes equal produ
-tion of B0 and B+ at the �(4S), a uniform Dalitz plot distribution, isotropi
 J/ψ(1S)and φ de
ays, and B(B+ → J/ψ(1S)φK+)= B(B0 → J/ψ(1S)φK0).�(X (4140)K+, X → J/ψ(1S)φ)/�(J/ψ(1S)φK+) �268/�267�(X (4140)K+, X → J/ψ(1S)φ)/�(J/ψ(1S)φK+) �268/�267�(X (4140)K+, X → J/ψ(1S)φ)/�(J/ψ(1S)φK+) �268/�267�(X (4140)K+, X → J/ψ(1S)φ)/�(J/ψ(1S)φK+) �268/�267VALUE CL% DOCUMENT ID TECN COMMENT0.19 ±0.07±0.040.19 ±0.07±0.040.19 ±0.07±0.040.19 ±0.07±0.04 1 ABAZOV 14A D0 pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.133 90 LEES 15 BABR e+ e− → �(4S)
<0.07 90 2 AAIJ 12AA LHCB pp at 7 TeV1Reported a threshold enhan
ement in the J/ψφ mass distribution 
onsistent with theX (4140) state with a statisti
al signi�
an
e of 3.1 standard deviations.2Bran
hing fra
tions are normalized to 382 ± 22 events of B+ → J/ψφK+.�(X (4274)K+, X → J/ψ(1S)φ)/�(J/ψ(1S)φK+) �269/�267�(X (4274)K+, X → J/ψ(1S)φ)/�(J/ψ(1S)φK+) �269/�267�(X (4274)K+, X → J/ψ(1S)φ)/�(J/ψ(1S)φK+) �269/�267�(X (4274)K+, X → J/ψ(1S)φ)/�(J/ψ(1S)φK+) �269/�267VALUE CL% DOCUMENT ID TECN COMMENT
<0.08<0.08<0.08<0.08 90 1 AAIJ 12AA LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.181 90 LEES 15 BABR e+ e− → �(4S)1Bran
hing fra
tions are normalized to 382 ± 22 events of B+ → J/ψφK+.

�(J/ψ(1S)ωK+)/�total �270/��(J/ψ(1S)ωK+)/�total �270/��(J/ψ(1S)ωK+)/�total �270/��(J/ψ(1S)ωK+)/�total �270/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.2±0.1+0.6
−0.33.2±0.1+0.6
−0.33.2±0.1+0.6
−0.33.2±0.1+0.6
−0.3 1 DEL-AMO-SA...10B BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.5±0.2±0.4 1 AUBERT 08W BABR Repl. by DEL-AMO-SANCHEZ 10B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3872)K+, X → J/ψω
)/�total �271/��(X (3872)K+, X → J/ψω
)/�total �271/��(X (3872)K+, X → J/ψω
)/�total �271/��(X (3872)K+, X → J/ψω
)/�total �271/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT6±2±16±2±16±2±16±2±1 1 DEL-AMO-SA...10B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3872)K+, X → pp)/�total �229/��(X (3872)K+, X → pp)/�total �229/��(X (3872)K+, X → pp)/�total �229/��(X (3872)K+, X → pp)/�total �229/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.7× 10−8<1.7× 10−8<1.7× 10−8<1.7× 10−8 95 1 AAIJ 13S LHCB pp at 7 TeV1Measured relative to B+ → J/ψK+ de
ay with 
harmonia re
onstru
ted in pp �nalstate and using B(B+ → J/ψK+) = (1.013 ± 0.034)× 10−3 and B(J/ψ → pp) =(2.17 ± 0.07)× 10−3.�(X (3915)K+, X → J/ψω
)/�total �272/��(X (3915)K+, X → J/ψω
)/�total �272/��(X (3915)K+, X → J/ψω
)/�total �272/��(X (3915)K+, X → J/ψω
)/�total �272/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT3.0+0.7

−0.6+0.5
−0.33.0+0.7

−0.6+0.5
−0.33.0+0.7

−0.6+0.5
−0.33.0+0.7

−0.6+0.5
−0.3 1 DEL-AMO-SA...10B BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.9+1.0
−0.9±0.5 1 AUBERT 08W BABR Repl. by DEL-AMO-SANCHEZ 10B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3915)K+, X → pp)/�total �259/��(X (3915)K+, X → pp)/�total �259/��(X (3915)K+, X → pp)/�total �259/��(X (3915)K+, X → pp)/�total �259/�VALUE CL% DOCUMENT ID TECN COMMENT

<7.1× 10−8<7.1× 10−8<7.1× 10−8<7.1× 10−8 95 1 AAIJ 13S LHCB pp at 7 TeV1Measured relative to B+ → J/ψK+ de
ay with 
harmonia re
onstru
ted in pp �nalstate and using B(B+ → J/ψK+) = (1.013 ± 0.034)× 10−3 and B(J/ψ → pp) =(2.17 ± 0.07)× 10−3.�(J/ψ(1S)π+)/�total �273/��(J/ψ(1S)π+)/�total �273/��(J/ψ(1S)π+)/�total �273/��(J/ψ(1S)π+)/�total �273/�VALUE DOCUMENT ID TECN COMMENT(4.1±0.4 )× 10−5 OUR FIT(4.1±0.4 )× 10−5 OUR FIT(4.1±0.4 )× 10−5 OUR FIT(4.1±0.4 )× 10−5 OUR FIT Error in
ludes s
ale fa
tor of 2.6.(3.8±0.6±0.3)× 10−5(3.8±0.6±0.3)× 10−5(3.8±0.6±0.3)× 10−5(3.8±0.6±0.3)× 10−5 1 ABE 03B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)π+)/�(J/ψ(1S)K+) �273/�255�(J/ψ(1S)π+)/�(J/ψ(1S)K+) �273/�255�(J/ψ(1S)π+)/�(J/ψ(1S)K+) �273/�255�(J/ψ(1S)π+)/�(J/ψ(1S)K+) �273/�255VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT4.0 ±0.4 OUR FIT4.0 ±0.4 OUR FIT4.0 ±0.4 OUR FIT4.0 ±0.4 OUR FIT Error in
ludes s
ale fa
tor of 3.3.4.0 ±0.4 OUR AVERAGE4.0 ±0.4 OUR AVERAGE4.0 ±0.4 OUR AVERAGE4.0 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.2.3.83±0.11±0.07 AAIJ 12AC LHCB pp at 7 TeV4.86±0.82±0.15 ABULENCIA 09 CDF pp at 1.96 TeV5.37±0.45±0.11 AUBERT 04P BABR e+ e− → �(4S)5.0 +1.9
−1.7 ±0.1 ABE 96R CDF pp 1.8 TeV5.2 ±2.4 BISHAI 96 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.91±0.78±0.19 AUBERT 02F BABR Repl. by AUBERT 04P4.3 ±2.3 5 1 ALEXANDER 95 CLE2 Sup. by BISHAI 961Assumes equal produ
tion of B+B− and B0B0 on �(4S).�(J/ψ(1S)ρ+)/�total �274/��(J/ψ(1S)ρ+)/�total �274/��(J/ψ(1S)ρ+)/�total �274/��(J/ψ(1S)ρ+)/�total �274/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT5.0±0.7±0.35.0±0.7±0.35.0±0.7±0.35.0±0.7±0.3 1 AUBERT 07AC BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<77 90 BISHAI 96 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)π+π0 nonresonant)/�total �275/��(J/ψ(1S)π+π0 nonresonant)/�total �275/��(J/ψ(1S)π+π0 nonresonant)/�total �275/��(J/ψ(1S)π+π0 nonresonant)/�total �275/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<0.73<0.73<0.73<0.73 90 1 AUBERT 07AC BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)a1(1260)+)/�total �276/��(J/ψ(1S)a1(1260)+)/�total �276/��(J/ψ(1S)a1(1260)+)/�total �276/��(J/ψ(1S)a1(1260)+)/�total �276/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−3<1.2× 10−3<1.2× 10−3<1.2× 10−3 90 BISHAI 96 CLE2 e+ e− → �(4S)�(J/ψppπ+)/�total �277/��(J/ψppπ+)/�total �277/��(J/ψppπ+)/�total �277/��(J/ψppπ+)/�total �277/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.0× 10−7<5.0× 10−7<5.0× 10−7<5.0× 10−7 90 1 AAIJ 13Z LHCB pp at 7 TeV1Uses B(B0s → J/ψ(1S)π+π−) = (1.98 ± 0.20)× 10−4.



1174117411741174MesonParti
le ListingsB±�(J/ψ(1S)p�)/�total �278/��(J/ψ(1S)p�)/�total �278/��(J/ψ(1S)p�)/�total �278/��(J/ψ(1S)p�)/�total �278/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT11.8±3.1 OUR AVERAGE11.8±3.1 OUR AVERAGE11.8±3.1 OUR AVERAGE11.8±3.1 OUR AVERAGE11.7±2.8+1.8
−2.3 1 XIE 05 BELL e+ e− → �(4S)12 +9

−6 1 AUBERT 03K BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<41 90 ZANG 04 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)�0p)/�total �279/��(J/ψ(1S)�0p)/�total �279/��(J/ψ(1S)�0p)/�total �279/��(J/ψ(1S)�0p)/�total �279/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−5<1.1× 10−5<1.1× 10−5<1.1× 10−5 90 1 XIE 05 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)D+)/�total �280/��(J/ψ(1S)D+)/�total �280/��(J/ψ(1S)D+)/�total �280/��(J/ψ(1S)D+)/�total �280/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<12<12<12<12 90 1 AUBERT 05U BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)D0π+)/�total �281/��(J/ψ(1S)D0π+)/�total �281/��(J/ψ(1S)D0π+)/�total �281/��(J/ψ(1S)D0π+)/�total �281/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<2.5<2.5<2.5<2.5 90 1 ZHANG 05B BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.2 90 1 AUBERT 05R BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(2S)π+)/�total �282/��(

ψ(2S)π+)/�total �282/��(

ψ(2S)π+)/�total �282/��(

ψ(2S)π+)/�total �282/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.44±0.22±0.202.44±0.22±0.202.44±0.22±0.202.44±0.22±0.20 1 BHARDWAJ 08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(2S)π+)/�(

ψ(2S)K+) �282/�283�(

ψ(2S)π+)/�(

ψ(2S)K+) �282/�283�(

ψ(2S)π+)/�(

ψ(2S)K+) �282/�283�(

ψ(2S)π+)/�(

ψ(2S)K+) �282/�283VALUE (units 10−2) DOCUMENT ID TECN COMMENT3.97±0.29 OUR AVERAGE3.97±0.29 OUR AVERAGE3.97±0.29 OUR AVERAGE3.97±0.29 OUR AVERAGE3.95±0.40±0.12 AAIJ 12AC LHCB pp at 7 TeV3.99±0.36±0.17 BHARDWAJ 08 BELL e+ e− → �(4S)�(

ψ(2S)K+)/�total �283/��(

ψ(2S)K+)/�total �283/��(

ψ(2S)K+)/�total �283/��(

ψ(2S)K+)/�total �283/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.26± 0.24 OUR FIT6.26± 0.24 OUR FIT6.26± 0.24 OUR FIT6.26± 0.24 OUR FIT6.5 ± 0.4 OUR AVERAGE6.5 ± 0.4 OUR AVERAGE6.5 ± 0.4 OUR AVERAGE6.5 ± 0.4 OUR AVERAGE6.65± 0.17±0.55 1 GULER 11 BELL e+ e− → �(4S)4.9 ± 1.6 ±0.4 2 AUBERT 06E BABR e+ e− → �(4S)6.17± 0.32±0.44 1 AUBERT 05J BABR e+ e− → �(4S)7.8 ± 0.7 ±0.9 1 RICHICHI 01 CLE2 e+ e− → �(4S)18 ± 8 ±4 5 1 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.9 ± 0.6 1 ABE 03B BELL Repl. by GULER 116.4 ± 0.5 ±0.8 1 AUBERT 02 BABR Repl. by AUBERT 05J6.1 ± 2.3 ±0.9 7 1 ALAM 94 CLE2 Repl. by RICHICHI 01
<5 at 90% CL 1 BORTOLETTO 92 CLEO e+ e− → �(4S)22 ±17 3 3 ALBRECHT 87D ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Perform measurements of absolute bran
hing fra
tions using a missing mass te
hnique.3ALBRECHT 87D assume B+B−/B0B0 ratio is 55/45. Superseded by ALBRECHT 90J.�(

ψ(2S)K+)/�(J/ψ(1S)K+) �283/�255�(

ψ(2S)K+)/�(J/ψ(1S)K+) �283/�255�(

ψ(2S)K+)/�(J/ψ(1S)K+) �283/�255�(

ψ(2S)K+)/�(J/ψ(1S)K+) �283/�255VALUE DOCUMENT ID TECN COMMENT0.610±0.019 OUR FIT0.610±0.019 OUR FIT0.610±0.019 OUR FIT0.610±0.019 OUR FIT0.603±0.021 OUR AVERAGE0.603±0.021 OUR AVERAGE0.603±0.021 OUR AVERAGE0.603±0.021 OUR AVERAGE0.59 ±0.11 ±0.02 1 AAIJ 13S LHCB pp at 7 TeV0.604±0.018±0.013 2,3 AAIJ 12L LHCB pp at 7 TeV0.63 ±0.05 ±0.08 ABAZOV 09Y D0 pp at 1.96 TeV0.558±0.082±0.056 ABE 98O CDF pp 1.8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.64 ±0.06 ±0.07 4 AUBERT 02 BABR e+ e− → �(4S)1AAIJ 13S reports [�(B+ → ψ(2S)K+)/�(B+ → J/ψ(1S)K+)℄ × [B(ψ(2S) →pp)℄ / [B(J/ψ(1S) → pp)℄ = 0.080 ± 0.012 ± 0.009 whi
h we multiply or divideby our best values B(ψ(2S) → pp) = (2.88 ± 0.09) × 10−4, B(J/ψ(1S) → pp) =(2.120 ± 0.029)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best values.2AAIJ 12L reports 0.594 ± 0.006 ± 0.016 ± 0.015 from a measurement of [�(B+ →

ψ(2S)K+)/�(B+ → J/ψ(1S)K+)℄ × [B(J/ψ(1S) → e+ e−)℄ / [B(ψ(2S) →e+ e−)℄ assuming B(J/ψ(1S) → e+ e−) = (5.94± 0.06)×10−2,B(ψ(2S) → e+ e−)= (7.72 ± 0.17) × 10−3, whi
h we res
ale to our best values B(J/ψ(1S) → e+ e−)= (5.971 ± 0.032) × 10−2, B(ψ(2S) → e+ e−) = (7.89 ± 0.17) × 10−3. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best values.3Assumes B(J/ψ → µ+µ−) / B(ψ(2S) → µ+µ−) = B(J/ψ → e+ e−) / B(ψ(2S) →e+ e−) = 7.69 ± 0.19.4Assumes equal produ
tion of B+ and B0 at the �(4S).

�(

ψ(2S)K∗(892)+)/�total �284/��(

ψ(2S)K∗(892)+)/�total �284/��(

ψ(2S)K∗(892)+)/�total �284/��(

ψ(2S)K∗(892)+)/�total �284/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT6.7 ±1.4 OUR AVERAGE6.7 ±1.4 OUR AVERAGE6.7 ±1.4 OUR AVERAGE6.7 ±1.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.5.92±0.85±0.89 1 AUBERT 05J BABR e+ e− → �(4S)9.2 ±1.9 ±1.2 1 RICHICHI 01 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<30 90 1 ALAM 94 CLE2 Repl. by RICHICHI 01
<35 90 1 BORTOLETTO92 CLEO e+ e− → �(4S)
<49 90 1 ALBRECHT 90J ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(2S)K∗(892)+)/�(

ψ(2S)K+) �284/�283�(

ψ(2S)K∗(892)+)/�(

ψ(2S)K+) �284/�283�(

ψ(2S)K∗(892)+)/�(

ψ(2S)K+) �284/�283�(

ψ(2S)K∗(892)+)/�(

ψ(2S)K+) �284/�283VALUE DOCUMENT ID TECN COMMENT0.96±0.15±0.090.96±0.15±0.090.96±0.15±0.090.96±0.15±0.09 AUBERT 05J BABR e+ e− → �(4S)�(

ψ(2S)K0π+)/�total �285/��(

ψ(2S)K0π+)/�total �285/��(

ψ(2S)K0π+)/�total �285/��(

ψ(2S)K0π+)/�total �285/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.588±0.034 1 AUBERT 09AA BABR e+ e− → �(4S)1Does not report systemati
 un
ertainties.�(

ψ(2S)K+π+π−)/�total �286/��(

ψ(2S)K+π+π−)/�total �286/��(

ψ(2S)K+π+π−)/�total �286/��(

ψ(2S)K+π+π−)/�total �286/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.3 ± 0.5 OUR AVERAGE4.3 ± 0.5 OUR AVERAGE4.3 ± 0.5 OUR AVERAGE4.3 ± 0.5 OUR AVERAGE4.31± 0.20±0.50 1 GULER 11 BELL e+ e− → �(4S)19 ±11 ±4 3 1 ALBRECHT 90J ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(3770)K+)/�total �287/��(

ψ(3770)K+)/�total �287/��(

ψ(3770)K+)/�total �287/��(

ψ(3770)K+)/�total �287/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.49±0.13 OUR AVERAGE0.49±0.13 OUR AVERAGE0.49±0.13 OUR AVERAGE0.49±0.13 OUR AVERAGE3.5 ±2.5 ±0.3 1 AUBERT 06E BABR e+ e− → �(4S)0.48±0.11±0.07 2 CHISTOV 04 BELL e+ e− → �(4S)1Perform measurements of absolute bran
hing fra
tions using a missing mass te
hnique.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(3770)K+,ψ → D0D0)/�total �288/��(

ψ(3770)K+,ψ → D0D0)/�total �288/��(

ψ(3770)K+,ψ → D0D0)/�total �288/��(

ψ(3770)K+,ψ → D0D0)/�total �288/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.5 ±0.5 OUR AVERAGE1.5 ±0.5 OUR AVERAGE1.5 ±0.5 OUR AVERAGE1.5 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.1.18±0.41±0.15 1 LEES 15C BABR e+ e− → �(4S)2.2 ±0.5 ±0.3 1 BRODZICKA 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.41±0.30±0.22 1 AUBERT 08B BABR Repl. by LEES 15C3.4 ±0.8 ±0.5 1 CHISTOV 04 BELL Repl. by BRODZICKA 081Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(3770)K+,ψ → D+D−)/�total �289/��(

ψ(3770)K+,ψ → D+D−)/�total �289/��(

ψ(3770)K+,ψ → D+D−)/�total �289/��(

ψ(3770)K+,ψ → D+D−)/�total �289/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.94±0.35 OUR AVERAGE0.94±0.35 OUR AVERAGE0.94±0.35 OUR AVERAGE0.94±0.35 OUR AVERAGE0.84±0.32±0.21 1 AUBERT 08B BABR e+ e− → �(4S)1.4 ±0.8 ±0.2 1 CHISTOV 04 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(4040)K+)/�total �290/��(

ψ(4040)K+)/�total �290/��(

ψ(4040)K+)/�total �290/��(

ψ(4040)K+)/�total �290/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.3× 10−4<1.3× 10−4<1.3× 10−4<1.3× 10−4 90 AAIJ 13BC LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.0× 10−3 90 1 IWASHITA 14 BELL e+ e− → �(4S)1 IWASHITA 14 reports [�(B+ → ψ(4040)K+)/�total℄ × [B(ψ(4040) → J/ψη)℄ <15.5 × 10−6 whi
h we divide by our best value B(ψ(4040) → J/ψη) = 5.2× 10−3.�(

ψ(4160)K+)/�total �291/��(

ψ(4160)K+)/�total �291/��(

ψ(4160)K+)/�total �291/��(

ψ(4160)K+)/�total �291/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.1+1.3
−1.2+2.5

−2.45.1+1.3
−1.2+2.5

−2.45.1+1.3
−1.2+2.5

−2.45.1+1.3
−1.2+2.5

−2.4 1 AAIJ 13BC LHCB pp at 7, 8 TeV1AAIJ 13BC reports [�(B+ → ψ(4160)K+)℄/�total℄ × B(ψ(4160) → µ+µ−) =(3.5+0.9
−0.8) × 10−9 whi
h we devide by our best value B(ψ(4160) → e+ e−) =(6.9 ± 3.3) × 10−6 assuming lepton universality. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(

ψ(4160)K+, ψ → D0D0)/�total �292/��(

ψ(4160)K+, ψ → D0D0)/�total �292/��(

ψ(4160)K+, ψ → D0D0)/�total �292/��(

ψ(4160)K+, ψ → D0D0)/�total �292/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.84±0.41±0.330.84±0.41±0.330.84±0.41±0.330.84±0.41±0.33 1 LEES 15C BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
0π+, χ
0 → π+π−)/�total �293/��(

χ
0π+, χ
0 → π+π−)/�total �293/��(

χ
0π+, χ
0 → π+π−)/�total �293/��(

χ
0π+, χ
0 → π+π−)/�total �293/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.1<0.1<0.1<0.1 90 1 AUBERT 09L BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.3 90 1 AUBERT,B 05G BABR Repl. by AUBERT 09L1Assumes equal produ
tion of B+ and B0 at the �(4S).



1175117511751175See key on page 601 MesonParti
le ListingsB±�(

χ
0(1P)K+)/�total �294/��(

χ
0(1P)K+)/�total �294/��(

χ
0(1P)K+)/�total �294/��(

χ
0(1P)K+)/�total �294/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.50+0.15
−0.14 OUR AVERAGE1.50+0.15
−0.14 OUR AVERAGE1.50+0.15
−0.14 OUR AVERAGE1.50+0.15
−0.14 OUR AVERAGE1.84±0.25±0.14 1,2 LEES 12O BABR e+ e− → �(4S)1.68±0.32±0.16 1,3 LEES 12O BABR e+ e− → �(4S)1.8 ±0.9 ±0.1 4 LEES 11I BABR e+ e− → �(4S)1.26+0.28
−0.25±0.05 1,5 AUBERT 08AI BABR e+ e− → �(4S)4.8 ±2.2 ±0.2 6 AUBERT,BE 06M BABR e+ e− → �(4S)1.12±0.12+0.30

−0.20 1 GARMASH 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.7 95 7 AAIJ 13S LHCB pp at 7 TeV
<5 90 1,8 WICHT 08 BELL e+ e− → �(4S)
<1.8 90 9 AUBERT 06E BABR e+ e− → �(4S)1.84±0.32±0.31 1,10 AUBERT 06O BABR Repl. by LEES 12O
<8.9 90 1 AUBERT 05K BABR e+ e− → �(4S)1.39±0.49±0.11 11 AUBERT,B 05N BABR Repl. by AUBERT 08AI1.96±0.35+2.00

−0.42 1 GARMASH 05 BELL Repl. by GARMASH 062.7 ±0.7 12 AUBERT 04T BABR Repl. by AUBERT,B 04P3.0 ±0.8 ±0.3 13 AUBERT,B 04P BABR Repl. by AUBERT,B 05N6.0 +2.1
−1.8 ±1.1 14 ABE 02B BELL Repl. by GARMASH 05

<4.8 90 15 EDWARDS 01 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Measured in the B+ → K+K−K+ de
ay.3Measured in the B+ → K+K0S K0S de
ay.4 LEES 11I reports [�(B+ → χ
0(1P)K+)/�total℄ × [B(χ
0(1P) → ππ)℄ = (1.53 ±0.66 ± 0.27)× 10−6 whi
h we divide by our best value B(χ
0(1P) → ππ) = (8.33 ±0.35) × 10−3. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.5AUBERT 08AI reports (0.70 ± 0.10+0.12
−0.10)×10−6 for B(B+ → χ
0K+) × B(χ
0 →

π+π−). We 
ompute B(B+ → χ
0K+) using the PDG value B(χ
0 → ππ)=(8.33±0.35)× 10−3 and 2/3 for the π+π− fra
tion. Our �rst error is their experiment's errorand the se
ond error is systemati
 error from using our best value.6AUBERT,BE 06M reports [�(B+ → χ
0(1P)K+)/�total℄ × [B(χ
0(1P) →
γ J/ψ(1S))℄ = (6.1± 2.6± 1.1)×10−6 whi
h we divide by our best value B(χ
0(1P) →
γ J/ψ(1S)) = (1.27 ± 0.06)× 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. The signi�
an
e of theobserved signal is 2.4 σ.7AAIJ 13S reports [�(B+ → χ
0(1P)K+)/�total℄ × [B(χ
0(1P) → pp)℄ < 6×10−8whi
h we divide by our best value B(χ
0(1P) → pp) = 2.25× 10−4.8WICHT 08 reports [�(B+ → χ
0(1P)K+)/�total℄ × [B(χ
0(1P) → γ γ)℄ < 0.11×10−6 whi
h we divide by our best value B(χ
0(1P) → γ γ) = 2.23× 10−4.9Perform measurements of absolute bran
hing fra
tions using a missing mass te
hnique.10Measured in the B+ → K+K−K+ de
ay.11AUBERT,B 05N reports (0.66 ± 0.22 ± 0.08)×10−6 for B(B+ → χ0
 K+) × B(χ0
 →
π+π−). We 
ompute B(B+ → χ0
 K+) using the PDG value B(χ0
 → π+π−) =(7.1 ± 0.6)× 10−3 and 2/3 for the π+π− fra
tion.12The measurement performed using de
ay 
hannels χ
0 → π+π− and χ
0 → K+K−.The ratio of the bran
hing ratios for these 
hannels is found to be 
onsistent with worldaverage.13AUBERT 04P reports B(B+ → χ
0K+)×B(χ
0 → π+π−) = (1.5±0.4±0.1)×10−6and used PDG value of B(χ
0 → ππ) = (7.4 ± 0.8) × 10−3 and Clebsh-Gordan
oeÆ
ient to 
ompute B(B±− >χ
0K+).14ABE 02B measures the ratio of B(B+ → χ
0K+)/B(B+ → J/ψ(1S)K+) = 0.60+0.21− 0.18± 0.05± 0.08, where the third error is due to the un
ertainty in the B(χ
0 →
π+π−), and uses B(B+ → J/ψ(1S)K+) = (10.0 ± 1.0)× 10−4 to obtain the result.15EDWARDS 01 assumes equal produ
tion of B0 and B+ at the �(4S). The 
orrelatedun
ertainties (28.3)% from B(J/ψ(1S) → γ η
 ) in those modes have been a

ountedfor.�(

χ
0K∗(892)+)/�total �295/��(

χ
0K∗(892)+)/�total �295/��(

χ
0K∗(892)+)/�total �295/��(

χ
0K∗(892)+)/�total �295/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 2.1< 2.1< 2.1< 2.1 90 1 AUBERT 08BD BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<28.6 90 1 AUBERT 05K BABR Repl. by AUBERT 08BD1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
2π+, χ
2 → π+π−)/�total �296/��(

χ
2π+, χ
2 → π+π−)/�total �296/��(

χ
2π+, χ
2 → π+π−)/�total �296/��(

χ
2π+, χ
2 → π+π−)/�total �296/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.1<0.1<0.1<0.1 90 1 AUBERT 09L BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
2K+)/�total �297/��(

χ
2K+)/�total �297/��(

χ
2K+)/�total �297/��(

χ
2K+)/�total �297/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT1.11+0.36
−0.34±0.091.11+0.36
−0.34±0.091.11+0.36
−0.34±0.091.11+0.36
−0.34±0.09 1 BHARDWAJ 11 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.8 90 2 AUBERT 09B BABR e+ e− → �(4S)
<20 90 3 AUBERT 06E BABR e+ e− → �(4S)
< 2.9 90 1 SONI 06 BELL Repl. by BHARDWAJ 11
< 3.0 90 1 AUBERT 05K BABR Repl. by AUBERT 06E

1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses χc1,2 → J/ψγ. Assumes B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) →B0B0) = (48.4 ± 0.6)%.3Perform measurements of absolute bran
hing fra
tions using a missing mass te
hnique.�(B+ → χ
2K+)/�total × �(

χ
2(1P)→ γ γ
)/�total�297/�× �χ
2(1P)79 /�χ
2(1P)�(B+ → χ
2K+)/�total × �(

χ
2(1P)→ γ γ
)/�total�297/�× �χ
2(1P)79 /�χ
2(1P)�(B+ → χ
2K+)/�total × �(

χ
2(1P)→ γ γ
)/�total�297/�× �χ
2(1P)79 /�χ
2(1P)�(B+ → χ
2K+)/�total × �(

χ
2(1P)→ γ γ
)/�total�297/�× �χ
2(1P)79 /�χ
2(1P)VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<0.09<0.09<0.09<0.09 90 1 WICHT 08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
2K∗(892)+)/�total �298/��(

χ
2K∗(892)+)/�total �298/��(

χ
2K∗(892)+)/�total �298/��(

χ
2K∗(892)+)/�total �298/�VALUE CL% DOCUMENT ID TECN COMMENT
<12 × 10−5<12 × 10−5<12 × 10−5<12 × 10−5 90 1 AUBERT 09B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<12.7× 10−5 90 2 SONI 06 BELL e+ e− → �(4S)
< 1.2× 10−5 90 2 AUBERT 05K BABR Repl. by AUBERT 09B1Uses χc1,2 → J/ψγ. Assumes B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) →B0B0) = (48.4 ± 0.6)%.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
1(1P)π+)/�total �299/��(

χ
1(1P)π+)/�total �299/��(

χ
1(1P)π+)/�total �299/��(

χ
1(1P)π+)/�total �299/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.2±0.4±0.32.2±0.4±0.32.2±0.4±0.32.2±0.4±0.3 1 KUMAR 06 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
1(1P)K+)/�total �300/��(

χ
1(1P)K+)/�total �300/��(

χ
1(1P)K+)/�total �300/��(

χ
1(1P)K+)/�total �300/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.79± 0.23 OUR AVERAGE4.79± 0.23 OUR AVERAGE4.79± 0.23 OUR AVERAGE4.79± 0.23 OUR AVERAGE4.94± 0.11±0.33 1 BHARDWAJ 11 BELL e+ e− → �(4S)4.5 ± 0.1 ±0.3 2 AUBERT 09B BABR e+ e− → �(4S)8.1 ± 1.4 ±0.7 3 AUBERT 06E BABR e+ e− → �(4S)15.5 ± 5.4 ±2.0 4 ACOSTA 02F CDF pp 1.8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.2 ± 0.4 ±0.2 5 AUBERT,BE 06M BABR Repl. by AUBERT 09B4.49± 0.19±0.53 1 SONI 06 BELL Repl. by BHARDWAJ 115.79± 0.26±0.65 1 AUBERT 05J BABR Repl. by AUBERT,BE 06M6.0 ± 0.9 ±0.2 6 AUBERT 02 BABR Repl. by AUBERT 05J9.7 ± 4.0 ±0.9 6 1 ALAM 94 CLE2 e+ e− → �(4S)19 ±13 ±6 7 ALBRECHT 92E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses χc1,2 → J/ψγ. Assumes B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) →B0B0) = (48.4 ± 0.6)%.3Perform measurements of absolute bran
hing fra
tions using a missing mass te
hnique.4ACOSTA 02F uses as referen
e of B(B → J/ψ(1S)K+) = (10.1 ± 0.6)× 10−4. These
ond error in
ludes the systemati
 error and the un
ertainties of the bran
hing ratio.5AUBERT,BE 06M reports [�(B+ → χ
1(1P)K+)/�total℄ × [B(χ
1(1P) →

γ J/ψ(1S))℄ = (1.76 ± 0.07 ± 0.12) × 10−4 whi
h we divide by our best valueB(χ
1(1P) → γ J/ψ(1S)) = (33.9 ± 1.2)× 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.6AUBERT 02 reports (7.5 ± 0.9 ± 0.8) × 10−4 from a measurement of [�(B+ →
χ
1(1P)K+)/�total℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assuming B(χ
1(1P) →
γ J/ψ(1S)) = 0.273 ± 0.016, whi
h we res
ale to our best value B(χ
1(1P) →
γ J/ψ(1S)) = (33.9 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. Assumes equal produ
tionof B+ and B0 at the �(4S).7ALBRECHT 92E assumes no χ
2(1P) produ
tion and B(�(4S) → B+B−) = 50%.�(

χ
1(1P)K+)/�(J/ψ(1S)K+) �300/�255�(

χ
1(1P)K+)/�(J/ψ(1S)K+) �300/�255�(

χ
1(1P)K+)/�(J/ψ(1S)K+) �300/�255�(

χ
1(1P)K+)/�(J/ψ(1S)K+) �300/�255VALUE DOCUMENT ID TECN COMMENT0.60±0.07±0.020.60±0.07±0.020.60±0.07±0.020.60±0.07±0.02 1 AUBERT 02 BABR e+ e− → �(4S)1AUBERT 02 reports 0.75±0.08±0.05 from a measurement of [�(B+ → χ
1(1P)K+)/�(B+ → J/ψ(1S)K+)℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assuming B(χ
1(1P) →
γ J/ψ(1S)) = 0.273 ± 0.016, whi
h we res
ale to our best value B(χ
1(1P) →
γ J/ψ(1S)) = (33.9 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. Assumes equal produ
tionof B+ and B0 at the �(4S).�(

χ
1(1P)π+)/�(

χ
1(1P)K+) �299/�300�(

χ
1(1P)π+)/�(

χ
1(1P)K+) �299/�300�(

χ
1(1P)π+)/�(

χ
1(1P)K+) �299/�300�(

χ
1(1P)π+)/�(

χ
1(1P)K+) �299/�300VALUE DOCUMENT ID TECN COMMENT0.043±0.008±0.0030.043±0.008±0.0030.043±0.008±0.0030.043±0.008±0.003 1 KUMAR 06 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
1(1P)K0π+)/�(J/ψ(1S)K0π+) �301/�256�(

χ
1(1P)K0π+)/�(J/ψ(1S)K0π+) �301/�256�(

χ
1(1P)K0π+)/�(J/ψ(1S)K0π+) �301/�256�(

χ
1(1P)K0π+)/�(J/ψ(1S)K0π+) �301/�256VALUE DOCUMENT ID TECN COMMENT0.508±0.030±0.0180.508±0.030±0.0180.508±0.030±0.0180.508±0.030±0.018 1 LEES 12B BABR e+ e− → �(4S)1 LEES 12B reports 0.501 ± 0.024 ± 0.028 from a measurement of [�(B+ →
χ
1(1P)K0π+)/�(B+ → J/ψ(1S)K0π+)℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assumingB(χ
1(1P) → γ J/ψ(1S)) = (34.4 ± 1.5)× 10−2, whi
h we res
ale to our best valueB(χ
1(1P) → γ J/ψ(1S)) = (33.9 ± 1.2)× 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.



1176117611761176MesonParti
le ListingsB±�(

χ
1(1P)K∗(892)+)/�total �302/��(

χ
1(1P)K∗(892)+)/�total �302/��(

χ
1(1P)K∗(892)+)/�total �302/��(

χ
1(1P)K∗(892)+)/�total �302/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT3.0 ±0.6 OUR AVERAGE3.0 ±0.6 OUR AVERAGE3.0 ±0.6 OUR AVERAGE3.0 ±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.2.6 ±0.5 ±0.4 1 AUBERT 09B BABR e+ e− → �(4S)4.05±0.59±0.95 2 SONI 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.94±0.95±0.98 2 AUBERT 05J BABR Repl. by AUBERT 09B
<21 90 2 ALAM 94 CLE2 e+ e− → �(4S)1Uses χc1,2 → J/ψγ. Assumes B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) →B0B0) = (48.4 ± 0.6)%.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
1(1P)K∗(892)+)/�(

χ
1(1P)K+) �302/�300�(

χ
1(1P)K∗(892)+)/�(

χ
1(1P)K+) �302/�300�(

χ
1(1P)K∗(892)+)/�(

χ
1(1P)K+) �302/�300�(

χ
1(1P)K∗(892)+)/�(

χ
1(1P)K+) �302/�300VALUE DOCUMENT ID TECN COMMENT0.51±0.17±0.160.51±0.17±0.160.51±0.17±0.160.51±0.17±0.16 AUBERT 05J BABR e+ e− → �(4S)�(h
 (1P)K+)/�total �303/��(h
 (1P)K+)/�total �303/��(h
 (1P)K+)/�total �303/��(h
 (1P)K+)/�total �303/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<3.8<3.8<3.8<3.8 90 1 FANG 06 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S) and B(h
 → η
 γ) = 50%.�(h
 (1P)K+, h
 → pp)/�total �304/��(h
 (1P)K+, h
 → pp)/�total �304/��(h
 (1P)K+, h
 → pp)/�total �304/��(h
 (1P)K+, h
 → pp)/�total �304/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.4× 10−8<6.4× 10−8<6.4× 10−8<6.4× 10−8 95 1 AAIJ 13S LHCB pp at 7 TeV1Measured relative to B+ → J/ψK+ de
ay with 
harmonia re
onstru
ted in pp �nalstate and using B(B+ → J/ψK+) = (1.013 ± 0.034)× 10−3 and B(J/ψ → pp) =(2.17 ± 0.07)× 10−3.�(K0π+)/�total �305/��(K0π+)/�total �305/��(K0π+)/�total �305/��(K0π+)/�total �305/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT23.7 ± 0.8 OUR FIT23.7 ± 0.8 OUR FIT23.7 ± 0.8 OUR FIT23.7 ± 0.8 OUR FIT23.8 ± 0.7 OUR AVERAGE23.8 ± 0.7 OUR AVERAGE23.8 ± 0.7 OUR AVERAGE23.8 ± 0.7 OUR AVERAGE23.97± 0.53±0.71 1 DUH 13 BELL e+ e− → �(4S)23.9 ± 1.1 ±1.0 1 AUBERT,BE 06C BABR e+ e− → �(4S)18.8 + 3.7

− 3.3 +2.1
−1.8 1 BORNHEIM 03 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •22.8 + 0.8
− 0.7 ±1.3 1 LIN 07 BELL Repl. by DUH 1326.0 ± 1.3 ±1.0 1 AUBERT,BE 05E BABR Repl. by AUBERT,BE 06C22.3 ± 1.7 ±1.1 1 AUBERT 04M BABR Repl. by AUBERT,BE 05E22.0 ± 1.9 ±1.1 1 CHAO 04 BELL Repl. by LIN 0719.4 + 3.1
− 3.0 ±1.6 1 CASEY 02 BELL Repl. by CHAO 0413.7 + 5.7
− 4.8 +1.9

−1.8 1 ABE 01H BELL Repl. by CASEY 0218.2 + 3.3
− 3.0 ±2.0 1 AUBERT 01E BABR Repl. by AUBERT 04M18.2 + 4.6
− 4.0 ±1.6 1 CRONIN-HEN...00 CLE2 Repl. by BORNHEIM 0323 +11
−10 ±3.6 GODANG 98 CLE2 Repl. by CRONIN-HENNESSY 00

< 48 90 ASNER 96 CLE2 Repl. by GODANG 98
<190 90 ALBRECHT 91B ARG e+ e− → �(4S)
<100 90 2 AVERY 89B CLEO e+ e− → �(4S)
<680 90 AVERY 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AVERY 89B reports < 9×10−5 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.�(K+π0)/�total �306/��(K+π0)/�total �306/��(K+π0)/�total �306/��(K+π0)/�total �306/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT12.9 ±0.5 OUR AVERAGE12.9 ±0.5 OUR AVERAGE12.9 ±0.5 OUR AVERAGE12.9 ±0.5 OUR AVERAGE12.62±0.31±0.56 1 DUH 13 BELL e+ e− → �(4S)13.6 ±0.6 ±0.7 1 AUBERT 07BC BABR e+ e− → �(4S)12.9 +2.4

−2.2 +1.2
−1.1 1 BORNHEIM 03 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •12.4 ±0.5 ±0.6 1 LIN 07A BELL Repl. by DUH 1312.0 ±0.7 ±0.6 1 AUBERT 05L BABR Repl. by AUBERT 07BC12.0 ±1.3 +1.3
−0.9 1 CHAO 04 BELL Repl. by LIN 07A12.8 +1.2

−1.1 ±1.0 1 AUBERT 03L BABR Repl. by AUBERT 05L13.0 +2.5
−2.4 ±1.3 1 CASEY 02 BELL Repl. by CHAO 0416.3 +3.5
−3.3 +1.6

−1.8 1 ABE 01H BELL Repl. by CASEY 0210.8 +2.1
−1.9 ±1.0 1 AUBERT 01E BABR Repl. by AUBERT 03L11.6 +3.0
−2.7 +1.4

−1.3 1 CRONIN-HEN...00 CLE2 Repl. by BORNHEIM 03
<16 90 GODANG 98 CLE2 Repl. by CRONIN-HENNESSY 00
<14 90 ASNER 96 CLE2 Repl. by GODANG 981Assumes equal produ
tion of B+ and B0 at the �(4S).

�(K+π0)/�(K0π+) �306/�305�(K+π0)/�(K0π+) �306/�305�(K+π0)/�(K0π+) �306/�305�(K+π0)/�(K0π+) �306/�305VALUE DOCUMENT ID TECN COMMENT0.54±0.03±0.040.54±0.03±0.040.54±0.03±0.040.54±0.03±0.04 LIN 07A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.38+0.98

−1.10+0.39
−0.26 ABE 01H BELL Repl. by LIN 07A�(

η′K+)/�total �307/��(

η′K+)/�total �307/��(

η′K+)/�total �307/��(

η′K+)/�total �307/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT70.6± 2.5 OUR AVERAGE70.6± 2.5 OUR AVERAGE70.6± 2.5 OUR AVERAGE70.6± 2.5 OUR AVERAGE71.5± 1.3±3.2 1 AUBERT 09AV BABR e+ e− → �(4S)63 +10
− 9 ±2 1,2 WICHT 08 BELL e+ e− → �(4S)69.2± 2.2±3.7 1 SCHUEMANN 06 BELL e+ e− → �(4S)80 +10
− 9 ±7 1 RICHICHI 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •70.0± 1.5±2.8 1 AUBERT 07AE BABR Repl. by AUBERT 09AV68.9± 2.0±3.2 1 AUBERT 05M BABR Repl. by AUBERT 07AE76.9± 3.5±4.4 1 AUBERT 03W BABR Repl. by AUBERT 05M79 +12
−11 ±9 1 ABE 01M BELL Repl. by SCHUEMANN 0670 ± 8 ±5 1 AUBERT 01G BABR Repl. by AUBERT 03W65 +15
−14 ±9 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).2WICHT 08 reports [�(B+ → η′K+)/�total℄ × [B(η′(958) → γ γ)℄ =(1.40+0.16

−0.15+0.15
−0.12) × 10−6 whi
h we divide by our best value B(η′(958) → γ γ) =(2.21 ± 0.08)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(

η′K∗(892)+)/�total �308/��(

η′K∗(892)+)/�total �308/��(

η′K∗(892)+)/�total �308/��(

η′K∗(892)+)/�total �308/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT4.8+1.6
−1.4±0.84.8+1.6
−1.4±0.84.8+1.6
−1.4±0.84.8+1.6
−1.4±0.8 1 DEL-AMO-SA...10A BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.9+1.9
−1.7±0.8 1 AUBERT 07E BABR Repl. by DEL-AMO-SANCHEZ 10A

< 2.9 90 1 SCHUEMANN 07 BELL e+ e− → �(4S)
<14 90 1 AUBERT,B 04D BABR Repl. by AUBERT 07E
<35 90 1 RICHICHI 00 CLE2 e+ e− → �(4S)
<13 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η′K∗0(1430)+)/�total �309/��(

η′K∗0(1430)+)/�total �309/��(

η′K∗0(1430)+)/�total �309/��(

η′K∗0(1430)+)/�total �309/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT5.2±1.9±1.05.2±1.9±1.05.2±1.9±1.05.2±1.9±1.0 1 DEL-AMO-SA...10A BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η′K∗2(1430)+)/�total �310/��(

η′K∗2(1430)+)/�total �310/��(

η′K∗2(1430)+)/�total �310/��(

η′K∗2(1430)+)/�total �310/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT28.0+4.6
−4.3±2.628.0+4.6
−4.3±2.628.0+4.6
−4.3±2.628.0+4.6
−4.3±2.6 1 DEL-AMO-SA...10A BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ηK+)/�total �311/��(

ηK+)/�total �311/��(

ηK+)/�total �311/��(

ηK+)/�total �311/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.4 ±0.4 OUR AVERAGE2.4 ±0.4 OUR AVERAGE2.4 ±0.4 OUR AVERAGE2.4 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.2.12±0.23±0.11 1 HOI 12 BELL e+ e− → �(4S)2.94+0.39
−0.34±0.21 1 AUBERT 09AV BABR e+ e− → �(4S)2.2 +2.8
−2.2 1 RICHICHI 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.21+0.48
−0.42±0.01 1,2 WICHT 08 BELL Repl. by HOI 123.7 ±0.4 ±0.1 1 AUBERT 07AE BABR Repl. by AUBERT 09AV1.9 ±0.3 +0.2

−0.1 1 CHANG 07B BELL Repl. by HOI 123.3 ±0.6 ±0.3 1 AUBERT,B 05K BABR Repl. by AUBERT 07AE2.1 ±0.6 ±0.2 1 CHANG 05A BELL Repl. by CHANG 07B3.4 ±0.8 ±0.2 1 AUBERT 04H BABR Repl. by AUBERT,B 05K
<14 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).2WICHT 08 reports [�(B+ → ηK+)/�total℄ × [B(η → 2γ)℄ = (0.87+0.16

−0.15+0.10
−0.07)×10−6 whi
h we divide by our best value B(η → 2γ) = (39.41 ± 0.20) × 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.�(

ηK∗(892)+)/�total �312/��(

ηK∗(892)+)/�total �312/��(

ηK∗(892)+)/�total �312/��(

ηK∗(892)+)/�total �312/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT19.3±1.6 OUR AVERAGE19.3±1.6 OUR AVERAGE19.3±1.6 OUR AVERAGE19.3±1.6 OUR AVERAGE19.3+2.0
−1.9±1.5 1 WANG 07B BELL e+ e− → �(4S)18.9±1.8±1.3 1 AUBERT,B 06H BABR e+ e− → �(4S)26.4+9.6
−8.2±3.3 1 RICHICHI 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •



1177117711771177See key on page 601 Meson Parti
le ListingsB±25.6±4.0±2.4 1 AUBERT,B 04D BABR Repl. byAUBERT,B 06H
<30 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ηK∗0(1430)+)/�total �313/��(

ηK∗0(1430)+)/�total �313/��(

ηK∗0(1430)+)/�total �313/��(

ηK∗0(1430)+)/�total �313/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT18.2±2.6±2.618.2±2.6±2.618.2±2.6±2.618.2±2.6±2.6 1 AUBERT,B 06H BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ηK∗2(1430)+)/�total �314/��(

ηK∗2(1430)+)/�total �314/��(

ηK∗2(1430)+)/�total �314/��(

ηK∗2(1430)+)/�total �314/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT9.1±2.7±1.49.1±2.7±1.49.1±2.7±1.49.1±2.7±1.4 1 AUBERT,B 06H BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η(1295)K+×B(η(1295)→ ηππ) )/�total �315/��(

η(1295)K+×B(η(1295)→ ηππ) )/�total �315/��(

η(1295)K+×B(η(1295)→ ηππ) )/�total �315/��(

η(1295)K+×B(η(1295)→ ηππ) )/�total �315/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.9+0.8
−0.7±0.22.9+0.8
−0.7±0.22.9+0.8
−0.7±0.22.9+0.8
−0.7±0.2 1 AUBERT 08X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η(1405)K+×B(η(1405)→ ηππ) )/�total �316/��(

η(1405)K+×B(η(1405)→ ηππ) )/�total �316/��(

η(1405)K+×B(η(1405)→ ηππ) )/�total �316/��(

η(1405)K+×B(η(1405)→ ηππ) )/�total �316/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.3<1.3<1.3<1.3 90 1 AUBERT 08X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η(1405)K+×B(η(1405)→ K∗K ) )/�total �317/��(

η(1405)K+×B(η(1405)→ K∗K ) )/�total �317/��(

η(1405)K+×B(η(1405)→ K∗K ) )/�total �317/��(

η(1405)K+×B(η(1405)→ K∗K ) )/�total �317/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.2<1.2<1.2<1.2 90 1 AUBERT 08X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η(1475)K+×B(η(1475)→ K∗K ) )/�total �318/��(

η(1475)K+×B(η(1475)→ K∗K ) )/�total �318/��(

η(1475)K+×B(η(1475)→ K∗K ) )/�total �318/��(

η(1475)K+×B(η(1475)→ K∗K ) )/�total �318/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT13.8+1.8
−1.7+1.0

−0.613.8+1.8
−1.7+1.0

−0.613.8+1.8
−1.7+1.0

−0.613.8+1.8
−1.7+1.0

−0.6 1 AUBERT 08X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f1(1285)K+)/�total �319/��(f1(1285)K+)/�total �319/��(f1(1285)K+)/�total �319/��(f1(1285)K+)/�total �319/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<2.0<2.0<2.0<2.0 90 1 AUBERT 08X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f1(1420)K+×B(f1(1420)→ ηππ) )/�total �320/��(f1(1420)K+×B(f1(1420)→ ηππ) )/�total �320/��(f1(1420)K+×B(f1(1420)→ ηππ) )/�total �320/��(f1(1420)K+×B(f1(1420)→ ηππ) )/�total �320/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<2.9<2.9<2.9<2.9 90 1 AUBERT 08X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f1(1420)K+×B(f1(1420)→ K∗K ) )/�total �321/��(f1(1420)K+×B(f1(1420)→ K∗K ) )/�total �321/��(f1(1420)K+×B(f1(1420)→ K∗K ) )/�total �321/��(f1(1420)K+×B(f1(1420)→ K∗K ) )/�total �321/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<4.1<4.1<4.1<4.1 90 1 AUBERT 08X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φ(1680)K+× B(φ(1680)→ K∗K ) )/�total �322/��(

φ(1680)K+× B(φ(1680)→ K∗K ) )/�total �322/��(

φ(1680)K+× B(φ(1680)→ K∗K ) )/�total �322/��(

φ(1680)K+× B(φ(1680)→ K∗K ) )/�total �322/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<3.4<3.4<3.4<3.4 90 1 AUBERT 08X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f0(1500)K+)/�total �323/��(f0(1500)K+)/�total �323/��(f0(1500)K+)/�total �323/��(f0(1500)K+)/�total �323/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT3.7± 2.2 OUR AVERAGE3.7± 2.2 OUR AVERAGE3.7± 2.2 OUR AVERAGE3.7± 2.2 OUR AVERAGE17 ± 4 ±12 1 LEES 12O BABR e+ e− → �(4S)20 ±10 ±27 2 LEES 12O BABR e+ e− → �(4S)3.1+ 2.2

− 2.3± 0.2 3,4 AUBERT 08AI BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<19 90 4,5 AUBERT,B 05N BABR Repl. by AUBERT 08AI1Measured in the B+ → K+K−K+ de
ay.2Measured in the B+ → K+K0S K0S de
ay.3AUBERT 08AI reports B(B+ → f0(1500)K+) · B(f0(1500) → π+π−) = (0.73 ±0.21+0.47

−0.48) × 10−6. We divide this result by our best value of B(f0(1500) → ππ)= (34.9 ± 2.3) × 10−2 multiplied by 2/3 to a

ount for the π+π− fra
tion. Our�rst quoted un
ertainty is the 
ombined experiment's un
ertainty and our se
ond is thesystemati
 un
ertainty from using out best value.4Assumes equal produ
tion of B+ and B0 at the �(4S).5AUBERT,B 05N reports B(B+ → f0(1500)K+) · B(f0(1500) → π+π−) < 4.4×10−6.We divide this result by our best value of B(f0(1500) → ππ) = (34.9 ± 2.3) × 10−2multiplied by 2/3 to a

ount for the π+π− fra
tion. Our �rst quoted un
ertainty is the
ombined experiment's un
ertainty and our se
ond is the systemati
 un
ertainty fromusing out best value.

�(

ωK+)/�total �324/��(

ωK+)/�total �324/��(

ωK+)/�total �324/��(

ωK+)/�total �324/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT6.5±0.4 OUR AVERAGE6.5±0.4 OUR AVERAGE6.5±0.4 OUR AVERAGE6.5±0.4 OUR AVERAGE6.8±0.4±0.4 1 CHOBANOVA 14 BELL e+ e− → �(4S)6.3±0.5±0.3 1 AUBERT 07AE BABR e+ e− → �(4S)3.2+2.4
−1.9±0.8 1 JESSOP 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.1±0.6±0.4 1 AUBERT,B 06E BABR AUBERT 07AE8.1±0.6±0.6 1 JEN 06 BELL Repl. by CHOBANOVA 144.8±0.8±0.4 1 AUBERT 04H BABR Repl. by AUBERT,B 06E6.5+1.3
−1.2±0.6 1 WANG 04A BELL Repl. by JEN 069.2+2.6
−2.3±1.0 1 LU 02 BELL Repl. by WANG 04A

<4 90 1 AUBERT 01G BABR e+ e− → �(4S)1.5+7
−6 ±2 1 BERGFELD 98 CLE2 Repl. by JESSOP 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωK∗(892)+)/�total �325/��(

ωK∗(892)+)/�total �325/��(

ωK∗(892)+)/�total �325/��(

ωK∗(892)+)/�total �325/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 7.4< 7.4< 7.4< 7.4 90 1 AUBERT 09H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.4 90 1 AUBERT,B 06T BABR Repl. by AUBERT 09H
< 7.4 90 1 AUBERT 05O BABR Repl. by AUBERT,B 06T
<87 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ω (Kπ)∗+0 )/�total �326/��(

ω (Kπ)∗+0 )/�total �326/��(

ω (Kπ)∗+0 )/�total �326/��(

ω (Kπ)∗+0 )/�total �326/�(Kπ)∗+0 is the total S-wave 
omposed of K∗0(1430) and nonresonant that are des
ribedusing LASS shape.VALUE (units 10−6) DOCUMENT ID TECN COMMENT27.5±3.0±2.627.5±3.0±2.627.5±3.0±2.627.5±3.0±2.6 1 AUBERT 09H BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωK∗0(1430)+)/�total �327/��(

ωK∗0(1430)+)/�total �327/��(

ωK∗0(1430)+)/�total �327/��(

ωK∗0(1430)+)/�total �327/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT24.0±2.6±4.424.0±2.6±4.424.0±2.6±4.424.0±2.6±4.4 1 AUBERT 09H BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωK∗2(1430)+)/�total �328/��(

ωK∗2(1430)+)/�total �328/��(

ωK∗2(1430)+)/�total �328/��(

ωK∗2(1430)+)/�total �328/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT21.5±3.6±2.421.5±3.6±2.421.5±3.6±2.421.5±3.6±2.4 1 AUBERT 09H BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(a0(980)0K+×B(a0(980)0 → ηπ0) )/�total �330/��(a0(980)0K+×B(a0(980)0 → ηπ0) )/�total �330/��(a0(980)0K+×B(a0(980)0 → ηπ0) )/�total �330/��(a0(980)0K+×B(a0(980)0 → ηπ0) )/�total �330/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<2.5<2.5<2.5<2.5 90 1 AUBERT,BE 04 BABR e+ e− → �(4S)1Assumes equal produ
tion of 
harged and neutral B mesons from �(4S) de
ays.�(a0(980)+K0×B(a0(980)+ → ηπ+) )/�total �329/��(a0(980)+K0×B(a0(980)+ → ηπ+) )/�total �329/��(a0(980)+K0×B(a0(980)+ → ηπ+) )/�total �329/��(a0(980)+K0×B(a0(980)+ → ηπ+) )/�total �329/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<3.9<3.9<3.9<3.9 90 1 AUBERT,BE 04 BABR e+ e− → �(4S)1Assumes equal produ
tion of 
harged and neutral B mesons from �(4S) de
ays.�(K∗(892)0π+)/�total �331/��(K∗(892)0π+)/�total �331/��(K∗(892)0π+)/�total �331/��(K∗(892)0π+)/�total �331/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT10.1 ±0.9 OUR AVERAGE10.1 ±0.9 OUR AVERAGE10.1 ±0.9 OUR AVERAGE10.1 ±0.9 OUR AVERAGE10.8 ±0.6 +1.2

−1.4 1 AUBERT 08AI BABR e+ e− → �(4S)9.67±0.64+0.81
−0.89 1 GARMASH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •13.5 ±1.2 +0.8
−0.9 1 AUBERT,B 05N BABR Repl. by AUBERT 08AI9.8 ±0.9 +1.1
−1.2 1 GARMASH 05 BELL Repl. by GARMASH 0615.5 ±1.8 +1.5
−4.0 1,2 AUBERT,B 04P BABR Repl. by AUBERT,B 05N19.4 +4.2

−3.9 +4.1
−7.1 3 GARMASH 02 BELL Repl. by GARMASH 05

<119 90 4 ABE 00C SLD e+ e− → Z
< 16 90 1 JESSOP 00 CLE2 e+ e− → �(4S)
<390 90 5 ADAM 96D DLPH e+ e− → Z
< 41 90 ASNER 96 CLE2 Repl. by JESSOP 00
<480 90 5 ABREU 95N DLPH Sup. by ADAM 96D
<170 90 ALBRECHT 91B ARG e+ e− → �(4S)
<150 90 6 AVERY 89B CLEO e+ e− → �(4S)
<260 90 AVERY 87 CLEO e+ e− → �(4S)



1178117811781178MesonParti
le ListingsB±1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 04P also report a bran
hing ratio for B+ → "higher K∗ resonan
es" π+,
K∗ → K+π−, (25.1 ± 2.0+11.0

− 5.7) × 10−6.3Uses a referen
e de
ay mode B+ → D0π+ and D0 → K+π− with B(B+ →D0π+)·B(D0 → K+π−) = (20.3 ± 2.0) × 10−5.4ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8
−2.2)% and fBs=(10.5+1.8

−2.2)%.5Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.6AVERY 89B reports < 1.3 × 10−4 assuming the �(4S) de
ays 43% to B0B0. Weres
ale to 50%.�(K∗(892)+π0)/�total �332/��(K∗(892)+π0)/�total �332/��(K∗(892)+π0)/�total �332/��(K∗(892)+π0)/�total �332/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT8.2±1.5±1.18.2±1.5±1.18.2±1.5±1.18.2±1.5±1.1 1 LEES 11I BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.9±2.0±1.3 1 AUBERT 05X BABR Repl. by LEES 11I
<31 90 1 JESSOP 00 CLE2 e+ e− → �(4S)
<99 90 ASNER 96 CLE2 Repl. by JESSOP 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+π−π+)/�total �333/��(K+π−π+)/�total �333/��(K+π−π+)/�total �333/��(K+π−π+)/�total �333/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT51.0±2.9 OUR AVERAGE51.0±2.9 OUR AVERAGE51.0±2.9 OUR AVERAGE51.0±2.9 OUR AVERAGE54.4±1.1±4.6 1 AUBERT 08AI BABR e+ e− → �(4S)48.8±1.1±3.6 1 GARMASH 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •64.1±2.4±4.0 1 AUBERT,B 05N BABR Repl. by AUBERT 08AI46.6±2.1±4.3 1 GARMASH 05 BELL Repl. by GARMASH 0653.6±3.1±5.1 1 GARMASH 04 BELL Repl. by GARMASH 0559.1±3.8±3.2 2 AUBERT 03M BABR Repl. by AUBERT,B 05N55.6±5.8±7.7 3 GARMASH 02 BELL Repl. by GARMASH 041Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B0 and B+ at the �(4S); 
harm and 
harmonium 
ontri-butions are subtra
ted, otherwise no assumptions about intermediate resonan
es.3Uses a referen
e de
ay mode B+ → D0π+ and D0 → K+π− with B(B+ →D0π+)·B(D0 → K+π−) = (20.3 ± 2.0) × 10−5.�(K+π−π+nonresonant)/�total �334/��(K+π−π+nonresonant)/�total �334/��(K+π−π+nonresonant)/�total �334/��(K+π−π+nonresonant)/�total �334/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT16.3+2.1

−1.5 OUR AVERAGE16.3+2.1
−1.5 OUR AVERAGE16.3+2.1
−1.5 OUR AVERAGE16.3+2.1
−1.5 OUR AVERAGE9.3±1.0+ 6.9

− 1.7 1,2 AUBERT 08AI BABR e+ e− → �(4S)16.9±1.3+ 1.7
− 1.6 1 GARMASH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.9±0.6+ 0.8
− 0.5 1 AUBERT,B 05N BABR Repl. by AUBERT 08AI17.3±1.7+17.2
− 8.0 1 GARMASH 05 BELL Repl. by GARMASH 06

< 17 90 1 AUBERT,B 04P BABR Repl. by AUBERT,B 05N
<330 90 3 ADAM 96D DLPH e+ e− → Z
< 28 90 BERGFELD 96B CLE2 e+ e− → �(4S)
<400 90 3 ABREU 95N DLPH Sup. by ADAM 96D
<330 90 ALBRECHT 91E ARG e+ e− → �(4S)
<190 90 4 AVERY 89B CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Cal
ulate the total nonresonant 
ontribution by 
ombining the S-wave 
omposed ofK∗0(1430) and nonresonant that are des
ribed using LASS shape.3Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.4AVERY 89B reports < 1.7 × 10−4 assuming the �(4S) de
ays 43% to B0B0. Weres
ale to 50%.�(

ω(782)K+)/�total �335/��(

ω(782)K+)/�total �335/��(

ω(782)K+)/�total �335/��(

ω(782)K+)/�total �335/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT5.9+8.8
−9.0+0.5

−0.45.9+8.8
−9.0+0.5

−0.45.9+8.8
−9.0+0.5

−0.45.9+8.8
−9.0+0.5

−0.4 1,2 AUBERT 08AI BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 08AI reports [�(B+ → ω(782)K+)/�total℄ × [B(ω(782) → π+π−)℄ =(0.09 ± 0.13+0.036
−0.045)× 10−6 whi
h we divide by our best value B(ω(782) → π+π−)= (1.53+0.11

−0.13)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(K+ f0(980)×B(f0(980)→ π+π−))/�total �336/��(K+ f0(980)×B(f0(980)→ π+π−))/�total �336/��(K+ f0(980)×B(f0(980)→ π+π−))/�total �336/��(K+ f0(980)×B(f0(980)→ π+π−))/�total �336/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT9.4 +1.0
−1.2 OUR AVERAGE9.4 +1.0
−1.2 OUR AVERAGE9.4 +1.0
−1.2 OUR AVERAGE9.4 +1.0
−1.2 OUR AVERAGE10.3 ±0.5 +2.0

−1.4 1 AUBERT 08AI BABR e+ e− → �(4S)8.78±0.82+0.85
−1.76 1 GARMASH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •9.47±0.97+0.62
−0.88 1 AUBERT,B 05N BABR Repl. by AUBERT 08AI7.55±1.24+1.63
−1.18 1 GARMASH 05 BELL Repl. by GARMASH 069.2 ±1.2 +2.1
−2.6 2 AUBERT,B 04P BABR Repl. by AUBERT,B 05N9.6 +2.5

−2.3 +3.7
−1.7 3 GARMASH 02 BELL Repl. by GARMASH 05

<80 90 4 AVERY 89B CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT,B 04P also reports B(B+ → "higher f 0 resonan
es" π+, f (980)0 → π+π−)= (3.2 ± 1.2+6.0
−2.9)× 10−6.3Uses a referen
e de
ay mode B+ → D0π+ and D0 → K+π− with B(B+ →D0π+)×B(D0 → K+π−) = (20.3 ± 2.0) × 10−5. Only 
harged pions from thef0(980) are used.4AVERY 89B reports < 7×10−5 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.�(f2(1270)0K+)/�total �337/��(f2(1270)0K+)/�total �337/��(f2(1270)0K+)/�total �337/��(f2(1270)0K+)/�total �337/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.07±0.27 OUR AVERAGE1.07±0.27 OUR AVERAGE1.07±0.27 OUR AVERAGE1.07±0.27 OUR AVERAGE0.89+0.38

−0.33+0.01
−0.03 1,2 AUBERT 08AI BABR e+ e− → �(4S)1.33±0.30+0.23
−0.34 1 GARMASH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<16 90 3 AUBERT,B 05N BABR Repl. by AUBERT 08AI
< 2.3 90 4 GARMASH 05 BELL Repl. by GARMASH 061Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 08AI reports (0.50±0.15+0.15

−0.11)×10−6 for B(B+ → f2(1270)K+)× B(f2 →
π+π−). We 
ompute B(B+ → f2(1270)K+) using the PDG value B(f2(1270) →
ππ)=(84.2+2.9

−0.9) × 10−2 and 2/3 for the π+π− fra
tion. Our �rst error is theirexperiment's error and the se
ond error is systemati
 error from using our best value.3AUBERT,B 05N reports 8.9 × 10−6 at 90% CL for B(B+ → f2(1270)K+) ×B(f2(1270) → π+π−). We res
aled it using the PDG value B(f2(1270) → ππ)= 84.7% and 2/3 for the π+π− fra
tion.4GARMASH 05 reports 1.3 × 10−6 at 90% CL for B(B+ → f2(1270)K+) ×B(f2(1270) → π+π−). We res
aled it using the PDG value B(f2(1270) → ππ)= 84.7% and 2/3 for the π+π− fra
tion.�(f0(1370)0K+×B(f0(1370)0 → π+π−))/�total �338/��(f0(1370)0K+×B(f0(1370)0 → π+π−))/�total �338/��(f0(1370)0K+×B(f0(1370)0 → π+π−))/�total �338/��(f0(1370)0K+×B(f0(1370)0 → π+π−))/�total �338/�VALUE CL% DOCUMENT ID TECN COMMENT
<10.7× 10−6<10.7× 10−6<10.7× 10−6<10.7× 10−6 90 1 AUBERT,B 05N BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ρ0(1450)K+×B(ρ0(1450)→ π+π−))/�total �339/��(

ρ0(1450)K+×B(ρ0(1450)→ π+π−))/�total �339/��(

ρ0(1450)K+×B(ρ0(1450)→ π+π−))/�total �339/��(

ρ0(1450)K+×B(ρ0(1450)→ π+π−))/�total �339/�VALUE CL% DOCUMENT ID TECN COMMENT
<11.7× 10−6<11.7× 10−6<11.7× 10−6<11.7× 10−6 90 1 AUBERT,B 05N BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f ′2(1525)K+×B(f ′2(1525)→ π+π−))/�total �340/��(f ′2(1525)K+×B(f ′2(1525)→ π+π−))/�total �340/��(f ′2(1525)K+×B(f ′2(1525)→ π+π−))/�total �340/��(f ′2(1525)K+×B(f ′2(1525)→ π+π−))/�total �340/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.4× 10−6<3.4× 10−6<3.4× 10−6<3.4× 10−6 90 1 AUBERT,B 05N BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+ρ0)/�total �341/��(K+ρ0)/�total �341/��(K+ρ0)/�total �341/��(K+ρ0)/�total �341/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT3.7 ±0.5 OUR AVERAGE3.7 ±0.5 OUR AVERAGE3.7 ±0.5 OUR AVERAGE3.7 ±0.5 OUR AVERAGE3.56±0.45+0.57

−0.46 1 AUBERT 08AI BABR e+ e− → �(4S)3.89±0.47+0.43
−0.41 1 GARMASH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.07±0.75+0.55
−0.88 1 AUBERT,B 05N BABR Repl. by AUBERT 08AI4.78±0.75+1.01
−0.97 1 GARMASH 05 BELL Repl. by GARMASH 06

< 6.2 90 2 AUBERT,B 04P BABR Repl. by AUBERT,B 05N
< 12 90 3 GARMASH 02 BELL e+ e− → �(4S)
< 86 90 4 ABE 00C SLD e+ e− → Z
< 17 90 1 JESSOP 00 CLE2 e+ e− → �(4S)
<120 90 5 ADAM 96D DLPH e+ e− → Z
< 19 90 ASNER 96 CLE2 Repl. by JESSOP 00
<190 90 5 ABREU 95N DLPH Sup. by ADAM 96D
<180 90 ALBRECHT 91B ARG e+ e− → �(4S)
< 80 90 6 AVERY 89B CLEO e+ e− → �(4S)
<260 90 AVERY 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 04P reports a 
entral value of (3.9± 1.2+1.3

−3.5)×10−6 for this bran
hing ratio.3Uses a referen
e de
ay mode B+ → D0π+ and D0 → K+π− with B(B+ →D0π+)·B(D0 → K+π−) = (20.3 ± 2.0) × 10−5.4ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8
−2.2)% and fBs=(10.5+1.8

−2.2)%.5Assumes produ
tion fra
tions fB0 = fB− = 0.39 and fBs = 0.12.6AVERY 89B reports < 7×10−5 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.



1179117911791179See key on page 601 MesonParti
le ListingsB±�(K∗0(1430)0π+)/�total �342/��(K∗0(1430)0π+)/�total �342/��(K∗0(1430)0π+)/�total �342/��(K∗0(1430)0π+)/�total �342/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT45 +9
−7 OUR AVERAGE45 +9
−7 OUR AVERAGE45 +9
−7 OUR AVERAGE45 +9
−7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.32.0±1.2+10.8

− 6.0 1 AUBERT 08AI BABR e+ e− → �(4S)51.6±1.7+ 7.0
− 7.5 1 GARMASH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •44.4±2.2± 5.3 1,2 AUBERT,B 05N BABR Repl. by AUBERT 08AI45.0±2.9+15.0
−10.7 1 GARMASH 05 BELL Repl. by GARMASH 061Assumes equal produ
tion of B+ and B0 at the �(4S).2 See erratum: AUBERT,BE 06A.�(K∗2(1430)0π+)/�total �343/��(K∗2(1430)0π+)/�total �343/��(K∗2(1430)0π+)/�total �343/��(K∗2(1430)0π+)/�total �343/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT5.6+2.2

−1.5±0.15.6+2.2
−1.5±0.15.6+2.2
−1.5±0.15.6+2.2
−1.5±0.1 1,2 AUBERT 08AI BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 23 90 3 AUBERT,B 05N BABR Repl. by AUBERT 08AI
< 6.9 90 4 GARMASH 05 BELL e+ e− → �(4S)
<680 90 ALBRECHT 91B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 08AI reports (1.85 ± 0.41+0.61

−0.29) × 10−6 for B(B+ → K∗2(1430)0π+) ×B(K∗2(1430)0 → K+π−). We 
ompute B(B+ → K∗2(1430)0π+) using the PDGvalue B(K∗2(1430)0 → K π)=(49.9 ± 1.2) × 10−2 and 2/3 for the K+π− fra
tion.Our �rst error is their experiment's error and the se
ond error is systemati
 error fromusing our best value.3AUBERT,B 05N reports 7.7 × 10−6 at 90% CL for B(B+ → K∗2(1430)0π+) ×B(K∗2(1430)0 → K+π−). We res
aled it using the PDG value B(K∗2(1430)0 →K π) = 49.9% and 2/3 for the K+π− fra
tion.4GARMASH 05 reports 2.3 × 10−6 at 90% CL for B(B+ → K∗2(1430)0π+) ×B(K∗2(1430)0 → K+π−). We res
aled it using the PDG value B(K∗2(1430)0 →K π) = 49.9% and 2/3 for the K+π− mode.�(K∗(1410)0π+)/�total �344/��(K∗(1410)0π+)/�total �344/��(K∗(1410)0π+)/�total �344/��(K∗(1410)0π+)/�total �344/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<45<45<45<45 90 1 GARMASH 05 BELL e+ e− → �(4S)1GARMASH 05 reports 2.0 × 10−6 at 90% CL for B(B+ → K∗(1410)0π+) ×B(K∗(1410)0 → K+π−). We res
aled it using the PDG value B(K∗(1410)0 →K π) = 6.6% and 2/3 for the K+π− mode.�(K∗(1680)0π+)/�total �345/��(K∗(1680)0π+)/�total �345/��(K∗(1680)0π+)/�total �345/��(K∗(1680)0π+)/�total �345/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<12<12<12<12 90 1 GARMASH 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<15 90 2 AUBERT,B 05N BABR e+ e− → �(4S)1GARMASH 05 reports 3.1 × 10−6 at 90% CL for B(B+ → K∗(1680)0π+) ×B(K∗(1680)0 → K+π−). We res
aled it using the PDG value B(K∗(1680)0 →K π) = 38.7% and 2/3 for the K+π− mode.2AUBERT,B 05N reports 3.8 × 10−6 at 90% CL for B(B+ → K∗(1680)0π+) ×B(K∗(1680)0 → K+π−). We res
aled it using the PDG value B(K∗(1680)0 →K π) = 38.7% and 2/3 for the K+π− fra
tion.�(K+π0π0)/�total �346/��(K+π0π0)/�total �346/��(K+π0π0)/�total �346/��(K+π0π0)/�total �346/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT16.2±1.2±1.516.2±1.2±1.516.2±1.2±1.516.2±1.2±1.5 1 LEES 11I BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f0(980)K+×B(f0 → π0π0))/�total �347/��(f0(980)K+×B(f0 → π0π0))/�total �347/��(f0(980)K+×B(f0 → π0π0))/�total �347/��(f0(980)K+×B(f0 → π0π0))/�total �347/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.8±0.6±0.52.8±0.6±0.52.8±0.6±0.52.8±0.6±0.5 1 LEES 11I BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K−π+π+)/�total �348/��(K−π+π+)/�total �348/��(K−π+π+)/�total �348/��(K−π+π+)/�total �348/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.95<0.95<0.95<0.95 90 1 AUBERT 08BE BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.5 90 1 GARMASH 04 BELL e+ e− → �(4S)
<1.8 90 2 AUBERT 03M BABR Repl. by AUBERT 08BE
<7.0 90 3 GARMASH 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B0 and B+ at the �(4S); 
harm and 
harmonium 
ontri-butions are subtra
ted, otherwise no assumptions about intermediate resonan
es.3Uses a referen
e de
ay mode B+ → D0π+ and D0 → K+π− with B(B+ →D0π+)·B(D0 → K+π−) = (20.3 ± 2.0) × 10−5.�(K−π+π+nonresonant)/�total �349/��(K−π+π+nonresonant)/�total �349/��(K−π+π+nonresonant)/�total �349/��(K−π+π+nonresonant)/�total �349/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<56<56<56<56 90 BERGFELD 96B CLE2 e+ e− → �(4S)

�(K1(1270)0π+)/�total �350/��(K1(1270)0π+)/�total �350/��(K1(1270)0π+)/�total �350/��(K1(1270)0π+)/�total �350/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.0× 10−5<4.0× 10−5<4.0× 10−5<4.0× 10−5 90 1 AUBERT 10D BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K1(1400)0π+)/�total �351/��(K1(1400)0π+)/�total �351/��(K1(1400)0π+)/�total �351/��(K1(1400)0π+)/�total �351/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.9× 10−5<3.9× 10−5<3.9× 10−5<3.9× 10−5 90 1 AUBERT 10D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.6× 10−3 90 ALBRECHT 91B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0π+π0)/�total �352/��(K0π+π0)/�total �352/��(K0π+π0)/�total �352/��(K0π+π0)/�total �352/�VALUE CL% DOCUMENT ID TECN COMMENT
<66× 10−6<66× 10−6<66× 10−6<66× 10−6 90 1 ECKHART 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0ρ+)/�total �353/��(K0ρ+)/�total �353/��(K0ρ+)/�total �353/��(K0ρ+)/�total �353/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT8.0+1.4

−1.3±0.68.0+1.4
−1.3±0.68.0+1.4
−1.3±0.68.0+1.4
−1.3±0.6 AUBERT 07Z BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<48 90 ASNER 96 CLE2 e+ e− → �(4S)�(K∗(892)+π+π−)/�total �354/��(K∗(892)+π+π−)/�total �354/��(K∗(892)+π+π−)/�total �354/��(K∗(892)+π+π−)/�total �354/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT75.3±6.0±8.175.3±6.0±8.175.3±6.0±8.175.3±6.0±8.1 1 AUBERT,B 06U BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1100 90 ALBRECHT 91E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)+ ρ0)/�total �355/��(K∗(892)+ ρ0)/�total �355/��(K∗(892)+ ρ0)/�total �355/��(K∗(892)+ ρ0)/�total �355/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT4.6±1.0±0.44.6±1.0±0.44.6±1.0±0.44.6±1.0±0.4 1 DEL-AMO-SA...11D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 6.1 90 1 AUBERT,B 06G BABR Repl. by DEL-AMO-SANCHEZ 11D10.6+3.0

−2.6±2.4 1 AUBERT 03V BABR Repl. by AUBERT,B 06G
< 74 90 2 GODANG 02 CLE2 e+ e− → �(4S)
<900 90 ALBRECHT 91B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes a heli
ity 00 
on�guration. For a heli
ity 11 
on�guration, the limit de
reasesto 4.9× 10−5.�(K∗(892)+ f0(980))/�total �356/��(K∗(892)+ f0(980))/�total �356/��(K∗(892)+ f0(980))/�total �356/��(K∗(892)+ f0(980))/�total �356/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT4.2±0.6±0.34.2±0.6±0.34.2±0.6±0.34.2±0.6±0.3 1 DEL-AMO-SA...11D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.2±1.2±0.5 1 AUBERT,B 06G BABR Repl. by DEL-AMO-SANCHEZ 11D1Assumes equal produ
tion of B+ and B0 at the �(4S).�(a+1 K0)/�total �357/��(a+1 K0)/�total �357/��(a+1 K0)/�total �357/��(a+1 K0)/�total �357/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT34.9±5.0±4.434.9±5.0±4.434.9±5.0±4.434.9±5.0±4.4 1,2 AUBERT 08F BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes a±1 de
ays only to 3π and B(a±1 → π±π∓π±) = 0.5.�(b+1 K0×B(b+1 → ωπ+) )/�total �358/��(b+1 K0×B(b+1 → ωπ+) )/�total �358/��(b+1 K0×B(b+1 → ωπ+) )/�total �358/��(b+1 K0×B(b+1 → ωπ+) )/�total �358/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT9.6±1.7±0.99.6±1.7±0.99.6±1.7±0.99.6±1.7±0.9 1 AUBERT 08AG BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)0 ρ+)/�total �359/��(K∗(892)0 ρ+)/�total �359/��(K∗(892)0 ρ+)/�total �359/��(K∗(892)0 ρ+)/�total �359/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT9.2±1.5 OUR AVERAGE9.2±1.5 OUR AVERAGE9.2±1.5 OUR AVERAGE9.2±1.5 OUR AVERAGE9.6±1.7±1.5 1 AUBERT,B 06G BABR e+ e− → �(4S)8.9±1.7±1.2 1 ZHANG 05D BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K1(1400)+ρ0)/�total �360/��(K1(1400)+ρ0)/�total �360/��(K1(1400)+ρ0)/�total �360/��(K1(1400)+ρ0)/�total �360/�VALUE CL% DOCUMENT ID TECN COMMENT
<7.8× 10−4<7.8× 10−4<7.8× 10−4<7.8× 10−4 90 ALBRECHT 91B ARG e+ e− → �(4S)�(K∗2(1430)+ρ0)/�total �361/��(K∗2(1430)+ρ0)/�total �361/��(K∗2(1430)+ρ0)/�total �361/��(K∗2(1430)+ρ0)/�total �361/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.5× 10−3<1.5× 10−3<1.5× 10−3<1.5× 10−3 90 ALBRECHT 91B ARG e+ e− → �(4S)



1180118011801180MesonParti
le ListingsB±�(b01K+×B(b01 → ωπ0) )/�total �362/��(b01K+×B(b01 → ωπ0) )/�total �362/��(b01K+×B(b01 → ωπ0) )/�total �362/��(b01K+×B(b01 → ωπ0) )/�total �362/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT9.1±1.7±1.09.1±1.7±1.09.1±1.7±1.09.1±1.7±1.0 1 AUBERT 07BI BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(b+1 K∗0×B(b+1 → ωπ+) )/�total �363/��(b+1 K∗0×B(b+1 → ωπ+) )/�total �363/��(b+1 K∗0×B(b+1 → ωπ+) )/�total �363/��(b+1 K∗0×B(b+1 → ωπ+) )/�total �363/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.9× 10−6<5.9× 10−6<5.9× 10−6<5.9× 10−6 90 1 AUBERT 09AF BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(b01K∗+×B(b01 → ωπ0) )/�total �364/��(b01K∗+×B(b01 → ωπ0) )/�total �364/��(b01K∗+×B(b01 → ωπ0) )/�total �364/��(b01K∗+×B(b01 → ωπ0) )/�total �364/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.7× 10−6<6.7× 10−6<6.7× 10−6<6.7× 10−6 90 1 AUBERT 09AF BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+K0)/�total �365/��(K+K0)/�total �365/��(K+K0)/�total �365/��(K+K0)/�total �365/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.31±0.17 OUR FIT1.31±0.17 OUR FIT1.31±0.17 OUR FIT1.31±0.17 OUR FIT Error in
ludes s
ale fa
tor of 1.2.1.19±0.18 OUR AVERAGE1.19±0.18 OUR AVERAGE1.19±0.18 OUR AVERAGE1.19±0.18 OUR AVERAGE1.11±0.19±0.05 1 DUH 13 BELL e+ e− → �(4S)1.61±0.44±0.09 1 AUBERT,BE 06C BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.22+0.32

−0.28+0.13
−0.16 1 LIN 07 BELL Repl. by DUH 131.0 ±0.4 ±0.1 1 ABE 05G BELL Repl. by LIN 071.5 ±0.5 ±0.1 1 AUBERT,BE 05E BABR Repl. by AUBERT,BE 06C

< 2.5 90 1 AUBERT 04M BABR Repl. by AUBERT,BE 05E
< 3.3 90 1 CHAO 04 BELL e+ e− → �(4S)
< 3.3 90 1 BORNHEIM 03 CLE2 e+ e− → �(4S)
< 2.0 90 1 CASEY 02 BELL Repl. by CHAO 04
< 5.0 90 1 ABE 01H BELL e+ e− → �(4S)
< 2.4 90 1 AUBERT 01E BABR e+ e− → �(4S)
< 5.1 90 1 CRONIN-HEN...00 CLE2 e+ e− → �(4S)
<21 90 GODANG 98 CLE2 Repl. by CRONIN-HENNESSY 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+K0)/�(K0π+) �365/�305�(K+K0)/�(K0π+) �365/�305�(K+K0)/�(K0π+) �365/�305�(K+K0)/�(K0π+) �365/�305VALUE DOCUMENT ID TECN COMMENT0.055±0.007 OUR FIT0.055±0.007 OUR FIT0.055±0.007 OUR FIT0.055±0.007 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.064±0.009±0.0040.064±0.009±0.0040.064±0.009±0.0040.064±0.009±0.004 AAIJ 13BS LHCB pp at 7 TeV�(K0K+π0)/�total �366/��(K0K+π0)/�total �366/��(K0K+π0)/�total �366/��(K0K+π0)/�total �366/�VALUE CL% DOCUMENT ID TECN COMMENT
<24× 10−6<24× 10−6<24× 10−6<24× 10−6 90 1 ECKHART 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+K0S K0S)/�total �367/��(K+K0S K0S)/�total �367/��(K+K0S K0S)/�total �367/��(K+K0S K0S)/�total �367/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT10.8±0.6 OUR AVERAGE10.8±0.6 OUR AVERAGE10.8±0.6 OUR AVERAGE10.8±0.6 OUR AVERAGE10.6±0.5±0.3 1,2 LEES 12O BABR e+ e− → �(4S)13.4±1.9±1.5 1 GARMASH 04 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •10.7±1.2±1.0 1 AUBERT,B 04V BABR Repl. by LEES 12O1Assumes equal produ
tion of B+ and B0 at the �(4S).2All intermediate 
harmonium and 
harm resonan
es are removed, ex
ept of χ
0.�(f0(980)K+, f0 → K0S K0S)/�total �368/��(f0(980)K+, f0 → K0S K0S)/�total �368/��(f0(980)K+, f0 → K0S K0S)/�total �368/��(f0(980)K+, f0 → K0S K0S)/�total �368/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT14.7±2.8±1.814.7±2.8±1.814.7±2.8±1.814.7±2.8±1.8 1 LEES 12O BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f0(1710)K+, f0 → K0S K0S)/�total �369/��(f0(1710)K+, f0 → K0S K0S)/�total �369/��(f0(1710)K+, f0 → K0S K0S)/�total �369/��(f0(1710)K+, f0 → K0S K0S)/�total �369/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT0.48+0.40

−0.24±0.110.48+0.40
−0.24±0.110.48+0.40
−0.24±0.110.48+0.40
−0.24±0.11 1 LEES 12O BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+K0S K0S nonresonant)/�total �370/��(K+K0S K0S nonresonant)/�total �370/��(K+K0S K0S nonresonant)/�total �370/��(K+K0S K0S nonresonant)/�total �370/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT19.8±3.7±2.519.8±3.7±2.519.8±3.7±2.519.8±3.7±2.5 1 LEES 12O BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0S K0S π+)/�total �371/��(K0S K0S π+)/�total �371/��(K0S K0S π+)/�total �371/��(K0S K0S π+)/�total �371/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<0.51<0.51<0.51<0.51 90 1 AUBERT 09J BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.2 90 1 GARMASH 04 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

�(K+K−π+)/�total �372/��(K+K−π+)/�total �372/��(K+K−π+)/�total �372/��(K+K−π+)/�total �372/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT5.0±0.5±0.55.0±0.5±0.55.0±0.5±0.55.0±0.5±0.5 1 AUBERT 07BB BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<13 90 1 GARMASH 04 BELL e+ e− → �(4S)
< 6.3 90 1,2 AUBERT 03M BABR Repl. by AUBERT 07BB
<12 90 3 GARMASH 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Charm and 
harmonium 
ontributions are subtra
ted, otherwise no assumptions aboutintermediate resonan
es.3Uses a referen
e de
ay mode B+ → D0π+ and D0 → K+π− with B(B+ →D0π+)·B(D0 → K+π−) = (20.3 ± 2.0) × 10−5.�(K+K−π+ nonresonant)/�total �373/��(K+K−π+ nonresonant)/�total �373/��(K+K−π+ nonresonant)/�total �373/��(K+K−π+ nonresonant)/�total �373/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<75<75<75<75 90 BERGFELD 96B CLE2 e+ e− → �(4S)�(K+K∗(892)0)/�total �374/��(K+K∗(892)0)/�total �374/��(K+K∗(892)0)/�total �374/��(K+K∗(892)0)/�total �374/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 1.1< 1.1< 1.1< 1.1 90 1 AUBERT 07AR BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<129 90 ABBIENDI 00B OPAL e+ e− → Z
<138 90 2 ABE 00C SLD e+ e− → Z
< 5.3 90 1 JESSOP 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.�(K+K∗0(1430)0)/�total �375/��(K+K∗0(1430)0)/�total �375/��(K+K∗0(1430)0)/�total �375/��(K+K∗0(1430)0)/�total �375/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<2.2<2.2<2.2<2.2 90 1 AUBERT 07AR BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+K+π−)/�total �376/��(K+K+π−)/�total �376/��(K+K+π−)/�total �376/��(K+K+π−)/�total �376/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.6× 10−7<1.6× 10−7<1.6× 10−7<1.6× 10−7 90 1 AUBERT 08BE BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.4× 10−6 90 1 GARMASH 04 BELL e+ e− → �(4S)
<1.3× 10−6 90 2 AUBERT 03M BABR Repl. by AUBERT 08BE
<3.2× 10−6 90 3 GARMASH 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B0 and B+ at the �(4S); 
harm and 
harmonium 
ontri-butions are subtra
ted, otherwise no assumptions about intermediate resonan
es.3Uses a referen
e de
ay mode B+ → D0π+ and D0 → K+π− with B(B+ →D0π+)·B(D0 → K+π−) = (20.3 ± 2.0) × 10−5.�(K+K+π− nonresonant)/�total �377/��(K+K+π− nonresonant)/�total �377/��(K+K+π− nonresonant)/�total �377/��(K+K+π− nonresonant)/�total �377/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<87.9<87.9<87.9<87.9 90 ABBIENDI 00B OPAL e+ e− → Z�(f ′2(1525)K+)/�total �378/��(f ′2(1525)K+)/�total �378/��(f ′2(1525)K+)/�total �378/��(f ′2(1525)K+)/�total �378/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.8 ±0.5 OUR AVERAGE1.8 ±0.5 OUR AVERAGE1.8 ±0.5 OUR AVERAGE1.8 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1.56±0.36±0.30 1,2 LEES 12O BABR e+ e− → �(4S)2.8 ±0.9 +0.5

−0.4 1,3 LEES 12O BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8 90 1,4 GARMASH 05 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Measured in the B+ → K+K−K+ de
ay.3Measured in the B+ → K+K0S K0S de
ay.4GARMASH 05 reports B(B+ → f ′2(1525)K+) · B(f ′2(1525) → K+K−) < 4.9×10−6at 90% CL. We divide this result by our best value of B(f ′2(1525) → K K) = 88.7×10−2multiplied by 2/3 to a

ount for the K+K− fra
tion.�(K+ fJ (2220))/�total �379/��(K+ fJ (2220))/�total �379/��(K+ fJ (2220))/�total �379/��(K+ fJ (2220))/�total �379/�VALUE (units 10−6) DOCUMENT ID TECN COMMENTnot seen 1 HUANG 03 BELL e+ e− → �(4S)1No eviden
e is found for su
h de
ay and set alimit on B(B+ → fJ (2220))×B(fJ (2220) → φφ) < 1.2 × 10−6 at 90%CL wherethe fJ (2220) is a possible glueball state.�(K∗+π+K−)/�total �380/��(K∗+π+K−)/�total �380/��(K∗+π+K−)/�total �380/��(K∗+π+K−)/�total �380/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<11.8<11.8<11.8<11.8 90 1 AUBERT,B 06U BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).



1181118111811181See key on page 601 MesonParti
le ListingsB±�(K∗(892)+K∗(892)0)/�total �381/��(K∗(892)+K∗(892)0)/�total �381/��(K∗(892)+K∗(892)0)/�total �381/��(K∗(892)+K∗(892)0)/�total �381/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT0.91±0.29 OUR AVERAGE0.91±0.29 OUR AVERAGE0.91±0.29 OUR AVERAGE0.91±0.29 OUR AVERAGE0.77+0.35
−0.30±0.12 1 GOH 15 BELL e+ e− → �(4S)1.2 ±0.5 ±0.1 2 AUBERT 09F BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<71 90 3 GODANG 02 CLE2 e+ e− → �(4S)1 Signal signi�
an
e is 2.7 standard deviations. This measurement 
orresponds to an upperlimit of < 1.31 × 10−6 at 90% CL.2 Signal signi
an
e is 3.7 standard deviations.3Assumes a heli
ity 00 
on�guration. For a heli
ity 11 
on�guration, the limit de
reasesto 4.8× 10−5.�(K∗+K+π−)/�total �382/��(K∗+K+π−)/�total �382/��(K∗+K+π−)/�total �382/��(K∗+K+π−)/�total �382/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<6.1<6.1<6.1<6.1 90 1 AUBERT,B 06U BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+K−K+)/�total �383/��(K+K−K+)/�total �383/��(K+K−K+)/�total �383/��(K+K−K+)/�total �383/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT34.0±1.4 OUR AVERAGE34.0±1.4 OUR AVERAGE34.0±1.4 OUR AVERAGE34.0±1.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.34.6±0.6±0.9 1,2 LEES 12O BABR e+ e− → �(4S)30.6±1.2±2.3 1 GARMASH 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •35.2±0.9±1.6 1 AUBERT 06O BABR Repl. by LEES 12O32.8±1.8±2.8 1 GARMASH 04 BELL Repl. by GARMASH 0529.6±2.1±1.6 3 AUBERT 03M BABR Repl. by AUBERT 06O35.3±3.7±4.5 4 GARMASH 02 BELL Repl. by GARMASH 04
<200 90 5 ADAM 96D DLPH e+ e− → Z
<320 90 5 ABREU 95N DLPH Sup. by ADAM 96D
<350 90 ALBRECHT 91E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2All intermediate 
harmonium and 
harm resonan
es are removed, ex
ept of χ
0.3Assumes equal produ
tion of B0 and B+ at the �(4S); 
harm and 
harmonium 
ontri-butions are subtra
ted, otherwise no assumptions about intermediate resonan
es.4Uses a referen
e de
ay mode B+ → D0π+ and D0 → K+π− with B(B+ →D0π+)·B(D0 → K+π−) = (20.3 ± 2.0) × 10−5.5Assumes B0 and B− produ
tion fra
tions of 0.39, and Bs produ
tion fra
tion of 0.12.�(K+φ

)/�total �384/��(K+φ
)/�total �384/��(K+φ
)/�total �384/��(K+φ
)/�total �384/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT8.8 +0.7
−0.6 OUR AVERAGE8.8 +0.7
−0.6 OUR AVERAGE8.8 +0.7
−0.6 OUR AVERAGE8.8 +0.7
−0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.9.2 ±0.4 +0.7

−0.5 1 LEES 12O BABR e+ e− → �(4S)7.6 ±1.3 ±0.6 2 ACOSTA 05J CDF pp at 1.96 TeV9.60±0.92+1.05
−0.85 1 GARMASH 05 BELL e+ e− → �(4S)5.5 +2.1

−1.8 ±0.6 1 BRIERE 01 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.4 ±0.7 ±0.7 1 AUBERT 06O BABR Repl. by LEES 12O10.0 +0.9

−0.8 ±0.5 1 AUBERT 04A BABR Repl. by AUBERT 06O9.4 ±1.1 ±0.7 1 CHEN 03B BELL Repl. by GARMASH 0514.6 +3.0
−2.8 ±2.0 3 GARMASH 02 BELL Repl. by CHEN 03B7.7 +1.6
−1.4 ±0.8 1 AUBERT 01D BABR e+ e− → �(4S)

<144 90 4 ABE 00C SLD e+ e− → Z
< 5 90 1 BERGFELD 98 CLE2
<280 90 5 ADAM 96D DLPH e+ e− → Z
< 12 90 ASNER 96 CLE2 e+ e− → �(4S)
<440 90 6 ABREU 95N DLPH Sup. by ADAM 96D
<180 90 ALBRECHT 91B ARG e+ e− → �(4S)
< 90 90 7 AVERY 89B CLEO e+ e− → �(4S)
<210 90 AVERY 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses B(B+ → J/ψK+) = (1.00 ± 0.04)× 10−3 and B(J/ψ → µ+µ−) = 0.0588 ±0.0010.3Uses a referen
e de
ay mode B+ → D0π+ and D0 → K+π− with B(B+ →D0π+)·B(D0 → K+π−) = (20.3 ± 2.0) × 10−5.4ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.5ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12.6Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.7AVERY 89B reports < 8×10−5 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.�(f0(980)K+×B(f0(980)→ K+K−) )/�total �385/��(f0(980)K+×B(f0(980)→ K+K−) )/�total �385/��(f0(980)K+×B(f0(980)→ K+K−) )/�total �385/��(f0(980)K+×B(f0(980)→ K+K−) )/�total �385/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT9.4±1.6±2.89.4±1.6±2.89.4±1.6±2.89.4±1.6±2.8 1 LEES 12O BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.5±2.5±1.6 1 AUBERT 06O BABR e+ e− → �(4S)
<2.9 90 1 GARMASH 05 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

�(a2(1320)K+×B(a2(1320)→ K+K−) )/�total �386/��(a2(1320)K+×B(a2(1320)→ K+K−) )/�total �386/��(a2(1320)K+×B(a2(1320)→ K+K−) )/�total �386/��(a2(1320)K+×B(a2(1320)→ K+K−) )/�total �386/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−6<1.1× 10−6<1.1× 10−6<1.1× 10−6 90 1 GARMASH 05 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X0(1550)K+×B(X0(1550)→ K+K−) )/�total �387/��(X0(1550)K+×B(X0(1550)→ K+K−) )/�total �387/��(X0(1550)K+×B(X0(1550)→ K+K−) )/�total �387/��(X0(1550)K+×B(X0(1550)→ K+K−) )/�total �387/�X0(1550) is a possible spin zero state near 1.55 GeV/
2 invariant mass of K+K−.VALUE (units 10−6) DOCUMENT ID TECN COMMENT4.3±0.6±0.34.3±0.6±0.34.3±0.6±0.34.3±0.6±0.3 1 AUBERT 06O BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φ(1680)K+× B(φ(1680)→ K+K−) )/�total �388/��(

φ(1680)K+× B(φ(1680)→ K+K−) )/�total �388/��(

φ(1680)K+× B(φ(1680)→ K+K−) )/�total �388/��(

φ(1680)K+× B(φ(1680)→ K+K−) )/�total �388/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.8× 10−6<0.8× 10−6<0.8× 10−6<0.8× 10−6 90 1 GARMASH 05 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f0(1710)K+×B(f0(1710)→ K+K−) )/�total �389/��(f0(1710)K+×B(f0(1710)→ K+K−) )/�total �389/��(f0(1710)K+×B(f0(1710)→ K+K−) )/�total �389/��(f0(1710)K+×B(f0(1710)→ K+K−) )/�total �389/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT1.12±0.25±0.501.12±0.25±0.501.12±0.25±0.501.12±0.25±0.50 1 LEES 12O BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.7 ±1.0 ±0.3 1 AUBERT 06O BABR Repl. by LEES 12O1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+K−K+nonresonant)/�total �390/��(K+K−K+nonresonant)/�total �390/��(K+K−K+nonresonant)/�total �390/��(K+K−K+nonresonant)/�total �390/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT23.8+2.8

−5.0 OUR AVERAGE23.8+2.8
−5.0 OUR AVERAGE23.8+2.8
−5.0 OUR AVERAGE23.8+2.8
−5.0 OUR AVERAGE22.8±2.7±7.6 1 LEES 12O BABR e+ e− → �(4S)24.0±1.5+2.6

−6.0 1 GARMASH 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •50.0±6.0±4.0 1 AUBERT 06O BABR Repl. by LEES 12O
<38 90 BERGFELD 96B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)+K+K−)/�total �391/��(K∗(892)+K+K−)/�total �391/��(K∗(892)+K+K−)/�total �391/��(K∗(892)+K+K−)/�total �391/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT36.2±3.3±3.636.2±3.3±3.636.2±3.3±3.636.2±3.3±3.6 1 AUBERT,B 06U BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1600 90 ALBRECHT 91E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)+φ

)/�total �392/��(K∗(892)+φ
)/�total �392/��(K∗(892)+φ
)/�total �392/��(K∗(892)+φ
)/�total �392/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT10.0±2.0 OUR AVERAGE10.0±2.0 OUR AVERAGE10.0±2.0 OUR AVERAGE10.0±2.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.11.2±1.0±0.9 1 AUBERT 07BA BABR e+ e− → �(4S)6.7+2.1

−1.9+0.7
−1.0 1 CHEN 03B BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •12.7+2.2
−2.0±1.1 1 AUBERT 03V BABR Repl. by AUBERT 07BA9.7+4.2
−3.4±1.7 1 AUBERT 01D BABR Repl. by AUBERT 03V

< 22.5 90 1 BRIERE 01 CLE2 e+ e− → �(4S)
< 41 90 1 BERGFELD 98 CLE2
< 70 90 ASNER 96 CLE2 e+ e− → �(4S)
<1300 90 ALBRECHT 91B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φ(Kπ)∗+0 )/�total �393/��(

φ(Kπ)∗+0 )/�total �393/��(

φ(Kπ)∗+0 )/�total �393/��(

φ(Kπ)∗+0 )/�total �393/�(Kπ)∗+0 is the total S-wave 
omposed of K∗0(1430) and nonresonant that are des
ribedusing LASS shape.VALUE (units 10−6) DOCUMENT ID TECN COMMENT8.3±1.4±0.88.3±1.4±0.88.3±1.4±0.88.3±1.4±0.8 1 AUBERT 08BI BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φK1(1270)+)/�total �394/��(

φK1(1270)+)/�total �394/��(

φK1(1270)+)/�total �394/��(

φK1(1270)+)/�total �394/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT6.1±1.6±1.16.1±1.6±1.16.1±1.6±1.16.1±1.6±1.1 1 AUBERT 08BI BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φK1(1400)+)/�total �395/��(

φK1(1400)+)/�total �395/��(

φK1(1400)+)/�total �395/��(

φK1(1400)+)/�total �395/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 3.2< 3.2< 3.2< 3.2 90 1 AUBERT 08BI BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1100 90 ALBRECHT 91B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).
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φK∗(1410)+)/�total �396/��(

φK∗(1410)+)/�total �396/��(

φK∗(1410)+)/�total �396/��(

φK∗(1410)+)/�total �396/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<4.3<4.3<4.3<4.3 90 1 AUBERT 08BI BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φK∗0(1430)+)/�total �397/��(

φK∗0(1430)+)/�total �397/��(

φK∗0(1430)+)/�total �397/��(

φK∗0(1430)+)/�total �397/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT7.0±1.3±0.97.0±1.3±0.97.0±1.3±0.97.0±1.3±0.9 1 AUBERT 08BI BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φK∗2(1430)+)/�total �398/��(

φK∗2(1430)+)/�total �398/��(

φK∗2(1430)+)/�total �398/��(

φK∗2(1430)+)/�total �398/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT8.4±1.8±1.08.4±1.8±1.08.4±1.8±1.08.4±1.8±1.0 1 AUBERT 08BI BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3400 90 ALBRECHT 91B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φK∗2(1770)+)/�total �399/��(

φK∗2(1770)+)/�total �399/��(

φK∗2(1770)+)/�total �399/��(

φK∗2(1770)+)/�total �399/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<15.0<15.0<15.0<15.0 90 1 AUBERT 08BI BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φK∗2(1820)+)/�total �400/��(

φK∗2(1820)+)/�total �400/��(

φK∗2(1820)+)/�total �400/��(

φK∗2(1820)+)/�total �400/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<16.3<16.3<16.3<16.3 90 1 AUBERT 08BI BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(a+1 K∗0)/�total �401/��(a+1 K∗0)/�total �401/��(a+1 K∗0)/�total �401/��(a+1 K∗0)/�total �401/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<3.6<3.6<3.6<3.6 90 1,2 DEL-AMO-SA...10I BABR e+ e− → �(4S)1Assumes B(a±1 → π±π∓π±) = 0.52Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+φφ

)/�total �402/��(K+φφ
)/�total �402/��(K+φφ
)/�total �402/��(K+φφ
)/�total �402/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT5.0±1.2 OUR AVERAGE5.0±1.2 OUR AVERAGE5.0±1.2 OUR AVERAGE5.0±1.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3.5.6±0.5±0.3 1 LEES 11A BABR e+ e− → �(4S)2.6+1.1

−0.9±0.3 1 HUANG 03 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •7.5±1.0±0.7 1 AUBERT,BE 06H BABR Repl. by LEES 11A1Assumes equal produ
tion of B0 and B+ at the �(4S) and for a φφ invariant massbelow 2.85 GeV/
2.�(

η′ η′K+)/�total �403/��(

η′ η′K+)/�total �403/��(

η′ η′K+)/�total �403/��(

η′ η′K+)/�total �403/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<25<25<25<25 90 1 AUBERT,B 06P BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωφK+)/�total �404/��(

ωφK+)/�total �404/��(

ωφK+)/�total �404/��(

ωφK+)/�total �404/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.9<1.9<1.9<1.9 90 1 LIU 09 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (1812)K+× B(X → ωφ) )/�total �405/��(X (1812)K+× B(X → ωφ) )/�total �405/��(X (1812)K+× B(X → ωφ) )/�total �405/��(X (1812)K+× B(X → ωφ) )/�total �405/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.32<0.32<0.32<0.32 90 1 LIU 09 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)+ γ

)/�total �406/��(K∗(892)+ γ
)/�total �406/��(K∗(892)+ γ
)/�total �406/��(K∗(892)+ γ
)/�total �406/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT4.21±0.18 OUR AVERAGE4.21±0.18 OUR AVERAGE4.21±0.18 OUR AVERAGE4.21±0.18 OUR AVERAGE4.22±0.14±0.16 1 AUBERT 09AO BABR e+ e− → �(4S)4.25±0.31±0.24 2 NAKAO 04 BELL e+ e− → �(4S)3.76+0.89

−0.83±0.28 2 COAN 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.87±0.28±0.26 3 AUBERT,BE 04A BABR Repl. by AUBERT 09AO3.83±0.62±0.22 2 AUBERT 02C BABR Repl. by AUBERT,BE 04A5.7 ±3.1 ±1.1 4 AMMAR 93 CLE2 Repl. by COAN 00
< 55 90 5 ALBRECHT 89G ARG e+ e− → �(4S)
< 55 90 5 AVERY 89B CLEO e+ e− → �(4S)
<180 90 AVERY 87 CLEO e+ e− → �(4S)1Uses B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) → B0B0) = (48.4± 0.6)%.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Uses the produ
tion ratio of 
harged and neutral B from �(4S) de
ays R+/0 = 1.006±0.048.4AMMAR 93 observed 4.1 ± 2.3 events above ba
kground.5Assumes the �(4S) de
ays 43% to B0B0.

�(K1(1270)+γ
)/�total �407/��(K1(1270)+γ
)/�total �407/��(K1(1270)+γ
)/�total �407/��(K1(1270)+γ
)/�total �407/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT4.3±0.9±0.94.3±0.9±0.94.3±0.9±0.94.3±0.9±0.9 1 YANG 05 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 9.9 90 1 NISHIDA 02 BELL Repl. by YANG 05
<730 90 2 ALBRECHT 89G ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 89G reports < 0.0066 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(

ηK+γ
)/�total �408/��(

ηK+γ
)/�total �408/��(

ηK+γ
)/�total �408/��(

ηK+γ
)/�total �408/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT7.9±0.9 OUR AVERAGE7.9±0.9 OUR AVERAGE7.9±0.9 OUR AVERAGE7.9±0.9 OUR AVERAGE7.7±1.0±0.4 1,2 AUBERT 09 BABR e+ e− → �(4S)8.4±1.5+1.2
−0.9 2,3 NISHIDA 05 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •10.0±1.3±0.5 1,2 AUBERT,B 06M BABR Repl. by AUBERT 091mηK < 3.25 GeV/
2.2Assumes equal produ
tion of B+ and B0 at the �(4S).3mηK < 2.4 GeV/
2�(

η′K+γ
)/�total �409/��(

η′K+γ
)/�total �409/��(

η′K+γ
)/�total �409/��(

η′K+γ
)/�total �409/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.9+1.0

−0.9 OUR AVERAGE2.9+1.0
−0.9 OUR AVERAGE2.9+1.0
−0.9 OUR AVERAGE2.9+1.0
−0.9 OUR AVERAGE3.6±1.2±0.4 1,2 WEDD 10 BELL e+ e− → �(4S)1.9+1.5
−1.2±0.1 1,3 AUBERT,B 06M BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2m

η′K < 3.4 GeV/
2.3 Set the upper limit of 4.2× 10−6 at 90% CL with m
η′K < 3.25 GeV/
2.�(

φK+ γ
)/�total �410/��(

φK+ γ
)/�total �410/��(

φK+ γ
)/�total �410/��(

φK+ γ
)/�total �410/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.7 ±0.4 OUR AVERAGE2.7 ±0.4 OUR AVERAGE2.7 ±0.4 OUR AVERAGE2.7 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.2.48±0.30±0.24 1 SAHOO 11A BELL e+ e− → �(4S)3.5 ±0.6 ±0.4 1 AUBERT 07Q BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.4 ±0.9 ±0.4 1 DRUTSKOY 04 BELL Repl. by SAHOO 11A1Assumes equal produ
tion of B+ and B0 at �(4S).�(K+π−π+γ
)/�total �411/��(K+π−π+γ
)/�total �411/��(K+π−π+γ
)/�total �411/��(K+π−π+γ
)/�total �411/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.76±0.22 OUR AVERAGE2.76±0.22 OUR AVERAGE2.76±0.22 OUR AVERAGE2.76±0.22 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.2.95±0.13±0.20 1,2 AUBERT 07R BABR e+ e− → �(4S)2.50±0.18±0.22 2,3 YANG 05 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.4 ±0.5 +0.4
−0.2 2,4 NISHIDA 02 BELL Repl. by YANG 051MK ππ < 1.8 GeV/
2.2Assumes equal produ
tion of B+ and B0 at the �(4S).3MK ππ < 2.0 GeV/
2.4MK ππ < 2.4 GeV/
2.�(K∗(892)0π+ γ

)/�total �412/��(K∗(892)0π+ γ
)/�total �412/��(K∗(892)0π+ γ
)/�total �412/��(K∗(892)0π+ γ
)/�total �412/�VALUE DOCUMENT ID TECN COMMENT(2.0+0.7

−0.6±0.2) × 10−5(2.0+0.7
−0.6±0.2) × 10−5(2.0+0.7
−0.6±0.2) × 10−5(2.0+0.7
−0.6±0.2) × 10−5 1,2 NISHIDA 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2MK ππ < 2.4 GeV/
2.�(K+ρ0 γ

)/�total �413/��(K+ρ0 γ
)/�total �413/��(K+ρ0 γ
)/�total �413/��(K+ρ0 γ
)/�total �413/�VALUE CL% DOCUMENT ID TECN COMMENT

<2.0× 10−5<2.0× 10−5<2.0× 10−5<2.0× 10−5 90 1,2 NISHIDA 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2MK ππ < 2.4 GeV/
2.�(K+π−π+γ nonresonant)/�total �414/��(K+π−π+γ nonresonant)/�total �414/��(K+π−π+γ nonresonant)/�total �414/��(K+π−π+γ nonresonant)/�total �414/�VALUE CL% DOCUMENT ID TECN COMMENT
<9.2× 10−6<9.2× 10−6<9.2× 10−6<9.2× 10−6 90 1,2 NISHIDA 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2MK ππ < 2.4 GeV/
2.�(K0π+π0 γ

)/�total �415/��(K0π+π0 γ
)/�total �415/��(K0π+π0 γ
)/�total �415/��(K0π+π0 γ
)/�total �415/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.56±0.42±0.314.56±0.42±0.314.56±0.42±0.314.56±0.42±0.31 1,2 AUBERT 07R BABR e+ e− → �(4S)1MK ππ < 1.8 GeV/
2.2Assumes equal produ
tion of B+ and B0 at the �(4S).



1183118311831183See key on page 601 MesonParti
le ListingsB±�(K1(1400)+γ
)/�total �416/��(K1(1400)+γ
)/�total �416/��(K1(1400)+γ
)/�total �416/��(K1(1400)+γ
)/�total �416/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

< 1.5< 1.5< 1.5< 1.5 90 1 YANG 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 5.0 90 1 NISHIDA 02 BELL Repl. by YANG 05
<220 90 2 ALBRECHT 89G ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 89G reports < 0.0020 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(K∗2(1430)+γ

)/�total �417/��(K∗2(1430)+γ
)/�total �417/��(K∗2(1430)+γ
)/�total �417/��(K∗2(1430)+γ
)/�total �417/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT1.45±0.40±0.151.45±0.40±0.151.45±0.40±0.151.45±0.40±0.15 1 AUBERT,B 04U BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<140 90 2 ALBRECHT 89G ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 89G reports < 0.0013 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(K∗(1680)+γ

)/�total �418/��(K∗(1680)+γ
)/�total �418/��(K∗(1680)+γ
)/�total �418/��(K∗(1680)+γ
)/�total �418/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.0019<0.0019<0.0019<0.0019 90 1 ALBRECHT 89G ARG e+ e− → �(4S)1ALBRECHT 89G reports < 0.0017 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(K∗3(1780)+γ
)/�total �419/��(K∗3(1780)+γ
)/�total �419/��(K∗3(1780)+γ
)/�total �419/��(K∗3(1780)+γ
)/�total �419/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 39< 39< 39< 39 90 1,2 NISHIDA 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5500 90 3 ALBRECHT 89G ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses B(K∗3(1780) → ηK) = 0.11+0.05

−0.04.3ALBRECHT 89G reports < 0.005 assuming the �(4S) de
ays 45% to B0B0. We res
aleto 50%.�(K∗4(2045)+γ
)/�total �420/��(K∗4(2045)+γ
)/�total �420/��(K∗4(2045)+γ
)/�total �420/��(K∗4(2045)+γ
)/�total �420/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.0099<0.0099<0.0099<0.0099 90 1 ALBRECHT 89G ARG e+ e− → �(4S)1ALBRECHT 89G reports < 0.0090 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(

ρ+γ
)/�total �421/��(

ρ+γ
)/�total �421/��(

ρ+γ
)/�total �421/��(

ρ+γ
)/�total �421/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT0.98±0.25 OUR AVERAGE0.98±0.25 OUR AVERAGE0.98±0.25 OUR AVERAGE0.98±0.25 OUR AVERAGE1.20+0.42
−0.37±0.20 1 AUBERT 08BH BABR e+ e− → �(4S)0.87+0.29
−0.27+0.09

−0.11 1 TANIGUCHI 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.10+0.37

−0.33±0.09 1 AUBERT 07L BABR Repl. by AUBERT 08BH0.55+0.42
−0.36+0.09

−0.08 1 MOHAPATRA 06 BELL Repl. by TANIGUCHI 080.9 +0.6
−0.5 ±0.1 90 1 AUBERT 05 BABR Repl. by AUBERT 07L

< 2.2 90 1 MOHAPATRA 05 BELL e+ e− → �(4S)
< 2.1 90 1 AUBERT 04C BABR e+ e− → �(4S)
<13 90 1,2 COAN 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at �(4S).2No eviden
e for a nonresonant K πγ 
ontamination was seen; the 
entral value assumesno 
ontamination.�(

π+π0)/�total �422/��(

π+π0)/�total �422/��(

π+π0)/�total �422/��(

π+π0)/�total �422/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT5.5 ±0.4 OUR AVERAGE5.5 ±0.4 OUR AVERAGE5.5 ±0.4 OUR AVERAGE5.5 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.5.86±0.26±0.38 1 DUH 13 BELL e+ e− → �(4S)5.02±0.46±0.29 1 AUBERT 07BC BABR e+ e− → �(4S)4.6 +1.8
−1.6 +0.6

−0.7 1 BORNHEIM 03 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.5 ±0.4 ±0.4 1 LIN 07A BELL Repl. by DUH 135.8 ±0.6 ±0.4 1 AUBERT 05L BABR Repl. by AUBERT 07BC5.0 ±1.2 ±0.5 1 CHAO 04 BELL Repl. by LIN 07A5.5 +1.0

−1.9 ±0.6 1 AUBERT 03L BABR Repl. by AUBERT 05L7.4 +2.3
−2.2 ±0.9 1 CASEY 02 BELL Repl. by CHAO 04

< 13.4 90 1 ABE 01H BELL e+ e− → �(4S)
< 9.6 90 1 AUBERT 01E BABR e+ e− → �(4S)
< 12.7 90 1 CRONIN-HEN...00 CLE2 e+ e− → �(4S)
< 20 90 GODANG 98 CLE2 Repl. by CRONIN-HENNESSY 00
< 17 90 ASNER 96 CLE2 Repl. by GODANG 98
< 240 90 1 ALBRECHT 90B ARG e+ e− → �(4S)
<2300 90 2 BEBEK 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2BEBEK 87 assume the �(4S) de
ays 43% to B0B0.

�(

π+π0)/�(K0π+) �422/�305�(

π+π0)/�(K0π+) �422/�305�(

π+π0)/�(K0π+) �422/�305�(

π+π0)/�(K0π+) �422/�305VALUE DOCUMENT ID TECN COMMENT0.285±0.02±0.020.285±0.02±0.020.285±0.02±0.020.285±0.02±0.02 LIN 07A BELL e+ e− → �(4S)�(

π+π+π−)/�total �423/��(

π+π+π−)/�total �423/��(

π+π+π−)/�total �423/��(

π+π+π−)/�total �423/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT15.2±0.6+1.3
−1.215.2±0.6+1.3
−1.215.2±0.6+1.3
−1.215.2±0.6+1.3
−1.2 1 AUBERT 09L BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •16.2±1.2±0.9 1 AUBERT,B 05G BABR Repl. by AUBERT 09L10.9±3.3±1.6 1 AUBERT 03M BABR Repl. by AUBERT 05G
<130 90 2 ADAM 96D DLPH e+ e− → Z
<220 90 3 ABREU 95N DLPH Sup. by ADAM 96D
<450 90 4 ALBRECHT 90B ARG e+ e− → �(4S)
<190 90 5 BORTOLETTO89 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ at the �(4S); 
harm and 
harmonium 
ontri-butions are subtra
ted, otherwise no assumptions about intermediate resonan
es.2ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12.3Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.4ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).5BORTOLETTO 89 reports < 1.7 × 10−4 assuming the �(4S) de
ays 43% to B0B0.We res
ale to 50%.�(

ρ0π+)/�total �424/��(

ρ0π+)/�total �424/��(

ρ0π+)/�total �424/��(

ρ0π+)/�total �424/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT8.3±1.2 OUR AVERAGE8.3±1.2 OUR AVERAGE8.3±1.2 OUR AVERAGE8.3±1.2 OUR AVERAGE8.1±0.7+1.3
−1.6 1 AUBERT 09L BABR e+ e− → �(4S)8.0+2.3

−2.0±0.7 1 GORDON 02 BELL e+ e− → �(4S)10.4+3.3
−3.4±2.1 1 JESSOP 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.8±1.0+0.6
−0.9 1 AUBERT,B 05G BABR Repl. by AUBERT 09L9.5±1.1±0.9 1 AUBERT 04Z BABR Repl. by AUBERT 05G

< 83 90 2 ABE 00C SLD e+ e− → Z
<160 90 3 ADAM 96D DLPH e+ e− → Z
< 43 90 ASNER 96 CLE2 Repl. by JESSOP 00
<260 90 4 ABREU 95N DLPH Sup. by ADAM 96D
<150 90 1 ALBRECHT 90B ARG e+ e− → �(4S)
<170 90 5 BORTOLETTO89 CLEO e+ e− → �(4S)
<230 90 5 BEBEK 87 CLEO e+ e− → �(4S)
<600 90 GILES 84 CLEO Repl. by BEBEK 871Assumes equal produ
tion of B+ and B0 at the �(4S).2ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.3ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12.4Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.5Papers assume the �(4S) de
ays 43% to B0B0. We res
ale to 50%.

[�(K∗(892)0π+)+�(

ρ0π+)
]/�total (�331+�424)/�[�(K∗(892)0π+)+�(

ρ0π+)
]/�total (�331+�424)/�[�(K∗(892)0π+)+�(

ρ0π+)
]/�total (�331+�424)/�[�(K∗(892)0π+)+�(

ρ0π+)
]/�total (�331+�424)/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT170+120

− 80±20170+120
− 80±20170+120
− 80±20170+120
− 80±20 1 ADAM 96D DLPH e+ e− → Z1ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12.�(

π+ f0(980), f0 → π+π−)/�total �425/��(

π+ f0(980), f0 → π+π−)/�total �425/��(

π+ f0(980), f0 → π+π−)/�total �425/��(

π+ f0(980), f0 → π+π−)/�total �425/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 1.5< 1.5< 1.5< 1.5 90 1 AUBERT 09L BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.0 90 1 AUBERT,B 05G BABR Repl. by AUBERT 09L
<140 90 2 BORTOLETTO89 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2BORTOLETTO 89 reports < 1.2 × 10−4 assuming the �(4S) de
ays 43% to B0B0.We res
ale to 50%.�(

π+ f2(1270))/�total �426/��(

π+ f2(1270))/�total �426/��(

π+ f2(1270))/�total �426/��(

π+ f2(1270))/�total �426/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.60+0.67
−0.44+0.02

−0.061.60+0.67
−0.44+0.02

−0.061.60+0.67
−0.44+0.02

−0.061.60+0.67
−0.44+0.02

−0.06 1,2 AUBERT 09L BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.10±1.28+0.04

−0.14 2,3 AUBERT,B 05G BABR Repl. by AUBERT 09L
<240 90 4 BORTOLETTO89 CLEO e+ e− → �(4S)1AUBERT 09L reports [�(B+ → π+ f2(1270))/�total℄ × [B(f2(1270) → π+π−)℄ =(0.9± 0.2± 0.1+0.3

−0.1)×10−6 whi
h we divide by our best value B(f2(1270) → π+π−)= (56.2+1.9
−0.6)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3AUBERT,B 05G reports [�(B+ → π+ f2(1270))/�total℄ × [B(f2(1270) → π+π−)℄= (2.3 ± 0.6 ± 0.4)× 10−6 whi
h we divide by our best value B(f2(1270) → π+π−)= (56.2+1.9
−0.6)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.4BORTOLETTO 89 reports < 2.1 × 10−4 assuming the �(4S) de
ays 43% to B0B0.We res
ale to 50%.



1184118411841184MesonParti
le ListingsB±�(

ρ(1450)0π+, ρ0 → π+π−)/�total �427/��(

ρ(1450)0π+, ρ0 → π+π−)/�total �427/��(

ρ(1450)0π+, ρ0 → π+π−)/�total �427/��(

ρ(1450)0π+, ρ0 → π+π−)/�total �427/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.4±0.4+0.5
−0.81.4±0.4+0.5
−0.81.4±0.4+0.5
−0.81.4±0.4+0.5
−0.8 1 AUBERT 09L BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.3 90 1 AUBERT,B 05G BABR Repl. by AUBERT 09L1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f0(1370)π+, f0 → π+π−)/�total �428/��(f0(1370)π+, f0 → π+π−)/�total �428/��(f0(1370)π+, f0 → π+π−)/�total �428/��(f0(1370)π+, f0 → π+π−)/�total �428/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<4.0<4.0<4.0<4.0 90 1 AUBERT 09L BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.0 90 1 AUBERT,B 05G BABR Repl. by AUBERT 09L1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f0(500)π+, f0 → π+π−)/�total �429/��(f0(500)π+, f0 → π+π−)/�total �429/��(f0(500)π+, f0 → π+π−)/�total �429/��(f0(500)π+, f0 → π+π−)/�total �429/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<4.1<4.1<4.1<4.1 90 1 AUBERT,B 05G BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π+π−π+ nonresonant)/�total �430/��(

π+π−π+ nonresonant)/�total �430/��(

π+π−π+ nonresonant)/�total �430/��(

π+π−π+ nonresonant)/�total �430/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT5.3±0.7+1.3
−0.85.3±0.7+1.3
−0.85.3±0.7+1.3
−0.85.3±0.7+1.3
−0.8 1 AUBERT 09L BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.6 90 1 AUBERT,B 05G BABR Repl. by AUBERT 09L
<41 90 BERGFELD 96B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π+π0π0)/�total �431/��(

π+π0π0)/�total �431/��(

π+π0π0)/�total �431/��(

π+π0π0)/�total �431/�VALUE CL% DOCUMENT ID TECN COMMENT
<8.9× 10−4<8.9× 10−4<8.9× 10−4<8.9× 10−4 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(

ρ+π0)/�total �432/��(

ρ+π0)/�total �432/��(

ρ+π0)/�total �432/��(

ρ+π0)/�total �432/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT10.9±1.4 OUR AVERAGE10.9±1.4 OUR AVERAGE10.9±1.4 OUR AVERAGE10.9±1.4 OUR AVERAGE10.2±1.4±0.9 1 AUBERT 07X BABR e+ e− → �(4S)13.2±2.3+1.4
−1.9 1 ZHANG 05A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •10.9±1.9±1.9 1 AUBERT 04Z BABR Repl. by AUBERT 07X
< 43 90 1,2 JESSOP 00 CLE2 e+ e− → �(4S)
< 77 90 ASNER 96 CLE2 Repl. by JESSOP 00
<550 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes no nonresonant 
ontributions of B+ → π+π0π0.�(

π+π−π+π0)/�total �433/��(

π+π−π+π0)/�total �433/��(

π+π−π+π0)/�total �433/��(

π+π−π+π0)/�total �433/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.0× 10−3<4.0× 10−3<4.0× 10−3<4.0× 10−3 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(

ρ+ρ0)/�total �434/��(

ρ+ρ0)/�total �434/��(

ρ+ρ0)/�total �434/��(

ρ+ρ0)/�total �434/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT24.0±1.9 OUR AVERAGE24.0±1.9 OUR AVERAGE24.0±1.9 OUR AVERAGE24.0±1.9 OUR AVERAGE23.7±1.4±1.4 1 AUBERT 09G BABR e+ e− → �(4S)31.7±7.1+3.8
−6.7 1,2 ZHANG 03B BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •16.8±2.2±2.3 1 AUBERT,BE 06G BABR Repl. by AUBERT 09G22.5+5.7
−5.4±5.8 1 AUBERT 03V BABR Repl. by AUBERT,BE 06G

< 1000 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2The systemati
 error in
ludes the error asso
iated with the heli
ity-mix un
ertainty.�(

ρ+ f0(980), f0 → π+π−)/�total �435/��(

ρ+ f0(980), f0 → π+π−)/�total �435/��(

ρ+ f0(980), f0 → π+π−)/�total �435/��(

ρ+ f0(980), f0 → π+π−)/�total �435/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<2.0<2.0<2.0<2.0 90 1 AUBERT 09G BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.9 90 1 AUBERT,BE 06G BABR Repl. by AUBERT 09G1Assumes equal produ
tion of B+ and B0 at the �(4S).�(a1(1260)+π0)/�total �436/��(a1(1260)+π0)/�total �436/��(a1(1260)+π0)/�total �436/��(a1(1260)+π0)/�total �436/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT26.4±5.4±4.126.4±5.4±4.126.4±5.4±4.126.4±5.4±4.1 1,2 AUBERT 07BL BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1700 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes a+1 de
ays only to 3π and B(a+1 → π±π∓π+) = 0.5.

�(a1(1260)0π+)/�total �437/��(a1(1260)0π+)/�total �437/��(a1(1260)0π+)/�total �437/��(a1(1260)0π+)/�total �437/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT20.4±4.7±3.420.4±4.7±3.420.4±4.7±3.420.4±4.7±3.4 1,2 AUBERT 07BL BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<900 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes a01 de
ays only to 3π and B(a+1 → π±π∓π0) = 1.0.�(

ωπ+)/�total �438/��(

ωπ+)/�total �438/��(

ωπ+)/�total �438/��(

ωπ+)/�total �438/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT6.9±0.5 OUR AVERAGE6.9±0.5 OUR AVERAGE6.9±0.5 OUR AVERAGE6.9±0.5 OUR AVERAGE6.7±0.5±0.4 1 AUBERT 07AE BABR e+ e− → �(4S)6.9±0.6±0.5 1 JEN 06 BELL e+ e− → �(4S)11.3+3.3
−2.9±1.4 1 JESSOP 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.1±0.7±0.4 1 AUBERT,B 06E BABR Repl. by AUBERT 07AE5.5±0.9±0.5 1 AUBERT 04H BABR Repl. by AUBERT,B 06E5.7+1.4
−1.3±0.6 1 WANG 04A BELL Repl. by JEN 064.2+2.0
−1.8±0.5 1 LU 02 BELL Repl. by WANG 04A6.6+2.1
−1.8±0.7 1 AUBERT 01G BABR Repl. by AUBERT 04H

< 23 90 1 BERGFELD 98 CLE2 Repl. by JESSOP 00
<400 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωρ+)/�total �439/��(

ωρ+)/�total �439/��(

ωρ+)/�total �439/��(

ωρ+)/�total �439/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT15.9±1.6±1.415.9±1.6±1.415.9±1.6±1.415.9±1.6±1.4 1 AUBERT 09H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •10.6±2.1+1.6

−1.0 1 AUBERT,B 06T BABR Repl. by AUBERT 09H12.6+3.7
−3.3±1.6 1 AUBERT 05O BABR Repl. by AUBERT,B 06T

<61 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ηπ+)/�total �440/��(

ηπ+)/�total �440/��(

ηπ+)/�total �440/��(

ηπ+)/�total �440/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT4.02±0.27 OUR AVERAGE4.02±0.27 OUR AVERAGE4.02±0.27 OUR AVERAGE4.02±0.27 OUR AVERAGE4.07±0.26±0.21 1 HOI 12 BELL e+ e− → �(4S)4.00±0.40±0.24 1 AUBERT 09AV BABR e+ e− → �(4S)1.2 +2.8
−1.2 1 RICHICHI 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.0 ±0.5 ±0.3 1 AUBERT 07AE BABR Repl. by AUBERT 09AV4.2 ±0.4 ±0.2 1 CHANG 07B BELL Repl. by HOI 125.1 ±0.6 ±0.3 1 AUBERT,B 05K BABR Repl. by AUBERT 07AE4.8 ±0.7 ±0.3 1 CHANG 05A BELL Repl. by CHANG 07B5.3 ±1.0 ±0.3 1 AUBERT 04H BABR Repl. by AUBERT,B 05K
< 15 90 BEHRENS 98 CLE2 Repl. by RICHICHI 00
<700 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ηρ+)/�total �441/��(

ηρ+)/�total �441/��(

ηρ+)/�total �441/��(

ηρ+)/�total �441/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT7.0±2.9 OUR AVERAGE7.0±2.9 OUR AVERAGE7.0±2.9 OUR AVERAGE7.0±2.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.8.9.9±1.2±0.8 1 AUBERT 08AH BABR e+ e− → �(4S)4.1+1.4
−1.3±0.4 1 WANG 07B BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.4±1.9±1.1 1 AUBERT,B 05K BABR Repl. by AUBERT 08AH
<14 90 1 AUBERT,B 04D BABR Repl. byAUBERT,B 05K
<15 90 1 RICHICHI 00 CLE2 e+ e− → �(4S)
<32 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η′π+)/�total �442/��(

η′π+)/�total �442/��(

η′π+)/�total �442/��(

η′π+)/�total �442/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.7 ±0.9 OUR AVERAGE2.7 ±0.9 OUR AVERAGE2.7 ±0.9 OUR AVERAGE2.7 ±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.3.5 ±0.6 ±0.2 1 AUBERT 09AV BABR e+ e− → �(4S)1.76+0.67
−0.62+0.15

−0.14 1 SCHUEMANN 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.9 ±0.7 ±0.3 1 AUBERT 07AE BABR Repl. by AUBERT 09AV4.0 ±0.8 ±0.4 1 AUBERT,B 05K BABR Repl. by AUBERT 07AE
< 4.5 90 1 AUBERT 04H BABR Repl. by AUBERT,B 05K
< 7.0 90 1 ABE 01M BELL e+ e− → �(4S)
<12 90 1 AUBERT 01G BABR e+ e− → �(4S)
<12 90 1 RICHICHI 00 CLE2 e+ e− → �(4S)
<31 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).
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η′ρ+)/�total �443/��(

η′ρ+)/�total �443/��(

η′ρ+)/�total �443/��(

η′ρ+)/�total �443/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT9.7+1.9
−1.8±1.19.7+1.9
−1.8±1.19.7+1.9
−1.8±1.19.7+1.9
−1.8±1.1 1 DEL-AMO-SA...10A BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.7+3.1
−2.8+2.3

−1.3 1 AUBERT 07E BABR Repl. by DEL-AMO-SANCHEZ 10A
< 5.8 90 1 SCHUEMANN 07 BELL e+ e− → �(4S)
<22 90 1 AUBERT,B 04D BABR Repl. by AUBERT 07E
<33 90 1 RICHICHI 00 CLE2 e+ e− → �(4S)
<47 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φπ+)/�total �444/��(

φπ+)/�total �444/��(

φπ+)/�total �444/��(

φπ+)/�total �444/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
< 1.5< 1.5< 1.5< 1.5 90 1 AAIJ 14A LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.3 90 2 KIM 12A BELL e+ e− → �(4S)
< 2.4 90 2 AUBERT,B 06C BABR e+ e− → �(4S)
< 4.1 90 2 AUBERT 04A BABR Repl. by AUBERT,B 06C
< 14 90 2 AUBERT 01D BABR e+ e− → �(4S)
<1530 90 3 ABE 00C SLD e+ e− → Z
< 50 90 2 BERGFELD 98 CLE21Measures B(B+ → φπ+)/B(B+ → φK+)< 0.018 at 90% C.L. and assumes B(B+ →

φK+) = (8.8+0.7
−0.6)× 10−6.2Assumes equal produ
tion of B+ and B0 at the �(4S).3ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.�(

φρ+)/�total �445/��(

φρ+)/�total �445/��(

φρ+)/�total �445/��(

φρ+)/�total �445/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 3.0< 3.0< 3.0< 3.0 90 1 AUBERT 08BK BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<16 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(a0(980)0π+, a00 → ηπ0)/�total �446/��(a0(980)0π+, a00 → ηπ0)/�total �446/��(a0(980)0π+, a00 → ηπ0)/�total �446/��(a0(980)0π+, a00 → ηπ0)/�total �446/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<5.8<5.8<5.8<5.8 90 1 AUBERT,BE 04 BABR e+ e− → �(4S)1Assumes equal produ
tion of 
harged and neutral B mesons from �(4S) de
ays.�(a0(980)+π0, a+0 → ηπ+)/�total �447/��(a0(980)+π0, a+0 → ηπ+)/�total �447/��(a0(980)+π0, a+0 → ηπ+)/�total �447/��(a0(980)+π0, a+0 → ηπ+)/�total �447/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.4<1.4<1.4<1.4 90 1 AUBERT 08A BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π+π+π+π−π−)/�total �448/��(

π+π+π+π−π−)/�total �448/��(

π+π+π+π−π−)/�total �448/��(

π+π+π+π−π−)/�total �448/�VALUE CL% DOCUMENT ID TECN COMMENT
<8.6× 10−4<8.6× 10−4<8.6× 10−4<8.6× 10−4 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(

ρ0 a1(1260)+)/�total �449/��(

ρ0 a1(1260)+)/�total �449/��(

ρ0 a1(1260)+)/�total �449/��(

ρ0 a1(1260)+)/�total �449/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.2× 10−4<6.2× 10−4<6.2× 10−4<6.2× 10−4 90 1 BORTOLETTO89 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.0× 10−4 90 2 ALBRECHT 90B ARG e+ e− → �(4S)
<3.2× 10−3 90 1 BEBEK 87 CLEO e+ e− → �(4S)1BORTOLETTO 89 reports < 5.4 × 10−4 assuming the �(4S) de
ays 43% to B0B0.We res
ale to 50%.2ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(

ρ0 a2(1320)+)/�total �450/��(

ρ0 a2(1320)+)/�total �450/��(

ρ0 a2(1320)+)/�total �450/��(

ρ0 a2(1320)+)/�total �450/�VALUE CL% DOCUMENT ID TECN COMMENT
<7.2× 10−4<7.2× 10−4<7.2× 10−4<7.2× 10−4 90 1 BORTOLETTO89 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.6× 10−3 90 2 BEBEK 87 CLEO e+ e− → �(4S)1BORTOLETTO 89 reports < 6.3 × 10−4 assuming the �(4S) de
ays 43% to B0B0.We res
ale to 50%.2BEBEK 87reports < 2.3×10−3 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.�(b01π+, b01 → ωπ0)/�total �451/��(b01π+, b01 → ωπ0)/�total �451/��(b01π+, b01 → ωπ0)/�total �451/��(b01π+, b01 → ωπ0)/�total �451/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT6.7±1.7±1.06.7±1.7±1.06.7±1.7±1.06.7±1.7±1.0 1 AUBERT 07BI BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(b+1 π0, b+1 → ωπ+)/�total �452/��(b+1 π0, b+1 → ωπ+)/�total �452/��(b+1 π0, b+1 → ωπ+)/�total �452/��(b+1 π0, b+1 → ωπ+)/�total �452/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<3.3<3.3<3.3<3.3 90 1 AUBERT 08AG BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

�(

π+π+π+π−π−π0)/�total �453/��(

π+π+π+π−π−π0)/�total �453/��(

π+π+π+π−π−π0)/�total �453/��(

π+π+π+π−π−π0)/�total �453/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.3× 10−3<6.3× 10−3<6.3× 10−3<6.3× 10−3 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(b+1 ρ0, b+1 → ωπ+)/�total �454/��(b+1 ρ0, b+1 → ωπ+)/�total �454/��(b+1 ρ0, b+1 → ωπ+)/�total �454/��(b+1 ρ0, b+1 → ωπ+)/�total �454/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.2× 10−6<5.2× 10−6<5.2× 10−6<5.2× 10−6 90 1 AUBERT 09AF BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(b01 ρ+, b01 → ωπ0)/�total �456/��(b01 ρ+, b01 → ωπ0)/�total �456/��(b01 ρ+, b01 → ωπ0)/�total �456/��(b01 ρ+, b01 → ωπ0)/�total �456/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.3× 10−6<3.3× 10−6<3.3× 10−6<3.3× 10−6 90 1 AUBERT 09AF BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(a1(1260)+a1(1260)0)/�total �455/��(a1(1260)+a1(1260)0)/�total �455/��(a1(1260)+a1(1260)0)/�total �455/��(a1(1260)+a1(1260)0)/�total �455/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.3× 10−2<1.3× 10−2<1.3× 10−2<1.3× 10−2 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(h+π0)/�total �457/��(h+π0)/�total �457/��(h+π0)/�total �457/��(h+π0)/�total �457/�h+ = K+ or π+VALUE (units 10−6) DOCUMENT ID TECN COMMENT16+6
−5±3.616+6
−5±3.616+6
−5±3.616+6
−5±3.6 GODANG 98 CLE2 e+ e− → �(4S)�(

ωh+)/�total �458/��(

ωh+)/�total �458/��(

ωh+)/�total �458/��(

ωh+)/�total �458/�h+ = K+ or π+VALUE (units 10−6) DOCUMENT ID TECN COMMENT13.8+2.7
−2.4 OUR AVERAGE13.8+2.7
−2.4 OUR AVERAGE13.8+2.7
−2.4 OUR AVERAGE13.8+2.7
−2.4 OUR AVERAGE13.4+3.3
−2.9±1.1 1 LU 02 BELL e+ e− → �(4S)14.3+3.6
−3.2±2.0 1 JESSOP 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •25 +8
−7 ±3 1 BERGFELD 98 CLE2 Repl. by JESSOP 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(h+X 0 (Familon))/�total �459/��(h+X 0 (Familon))/�total �459/��(h+X 0 (Familon))/�total �459/��(h+X 0 (Familon))/�total �459/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<49<49<49<49 90 1 AMMAR 01B CLE2 e+ e− → �(4S)1AMMAR 01B sear
hed for the two-body de
ay of the B meson to a massless neutralfeebly-intera
ting parti
le X0 su
h as the familon, the Nambu-Goldstone boson asso
i-ated with a spontaneously broken global family symmetry.�(ppπ+)/�total �460/��(ppπ+)/�total �460/��(ppπ+)/�total �460/��(ppπ+)/�total �460/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.62± 0.20 OUR AVERAGE1.62± 0.20 OUR AVERAGE1.62± 0.20 OUR AVERAGE1.62± 0.20 OUR AVERAGE1.60+ 0.22
− 0.19± 0.12 1,2,3 WEI 08 BELL e+ e− → �(4S)1.69± 0.29± 0.26 1 AUBERT 07AV BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.07± 0.11± 0.11 4 AAIJ 14AF LHCB pp at 7, 8 TeV3.06+ 0.73
− 0.62± 0.37 1,3 WANG 04 BELL Repl. by WEI 08

< 3.7 90 1,2 ABE 02K BELL Repl. by WANG 04
<500 90 5 ABREU 95N DLPH Repl. by ADAM 96D
<160 90 6 BEBEK 89 CLEO e+ e− → �(4S)570 ±150 ±210 7 ALBRECHT 88F ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2 Expli
itly vetoes resonant produ
tion of pp from Charmonium states.3Also provides results with mpp < 2.85 GeV/
2 and angular asymmetry of pp system.4Requires mpp < 2.85 GeV/
2.5Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.6BEBEK 89 reports < 1.4×10−4 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.7ALBRECHT 88F reports (5.2 ± 1.4 ± 1.9)× 10−4 assuming the �(4S) de
ays 45% toB0B0. We res
ale to 50%.�(ppπ+nonresonant)/�total �461/��(ppπ+nonresonant)/�total �461/��(ppπ+nonresonant)/�total �461/��(ppπ+nonresonant)/�total �461/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<53<53<53<53 90 BERGFELD 96B CLE2 e+ e− → �(4S)�(ppπ+π+π−)/�total �462/��(ppπ+π+π−)/�total �462/��(ppπ+π+π−)/�total �462/��(ppπ+π+π−)/�total �462/�VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.2× 10−4 90 1 ALBRECHT 88F ARG e+ e− → �(4S)1ALBRECHT 88F reports < 4.7× 10−4 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.
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le ListingsB±�(ppK+)/�total �463/��(ppK+)/�total �463/��(ppK+)/�total �463/��(ppK+)/�total �463/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT5.9 ±0.5 OUR AVERAGE5.9 ±0.5 OUR AVERAGE5.9 ±0.5 OUR AVERAGE5.9 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.5.54+0.27
−0.25±0.36 1,2,3 WEI 08 BELL e+ e− → �(4S)6.7 ±0.5 ±0.4 1,3 AUBERT,B 05L BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.59+0.38
−0.34±0.50 1,2,3 WANG 05A BELL Repl. by WEI 085.66+0.67
−0.57±0.62 1,2,3 WANG 04 BELL Repl. by WANG 05A4.3 +1.1
−0.9 ±0.5 1,2 ABE 02K BELL Repl. by WANG 041Assumes equal produ
tion of B+ and B0 at the �(4S).2 Expli
itly vetoes resonant produ
tion of pp from Charmonium states.3Provides also results with mpp < 2.85 GeV/
2 and angular asymmetry of pp system.�(ppK+)/�(J/ψ(1S)K+) �463/�255�(ppK+)/�(J/ψ(1S)K+) �463/�255�(ppK+)/�(J/ψ(1S)K+) �463/�255�(ppK+)/�(J/ψ(1S)K+) �463/�255VALUE DOCUMENT ID TECN COMMENT0.0104±0.0005±0.00010.0104±0.0005±0.00010.0104±0.0005±0.00010.0104±0.0005±0.0001 1,2 AAIJ 13S LHCB pp at 7 TeV1AAIJ 13S reports [�(B+ → ppK+)/�(B+ → J/ψ(1S)K+)℄ / [B(J/ψ(1S) → pp)℄= 4.91 ± 0.19 ± 0.14 whi
h we multiply by our best value B(J/ψ(1S) → pp) =(2.120 ± 0.029)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Measurement in
ludes 
ontribution where pp is produ
ed in 
harmonia de
ays.�(�(1710)++ p, �++ → pK+)/�total �464/��(�(1710)++ p, �++ → pK+)/�total �464/��(�(1710)++ p, �++ → pK+)/�total �464/��(�(1710)++ p, �++ → pK+)/�total �464/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<0.091<0.091<0.091<0.091 90 1 WANG 05A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.1 90 1,2 AUBERT,B 05L BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Provides upper limits depending on the pentaquark masses between 1.43 to 2.0 GeV/
2.�(fJ (2220)K+, fJ → pp)/�total �465/��(fJ (2220)K+, fJ → pp)/�total �465/��(fJ (2220)K+, fJ → pp)/�total �465/��(fJ (2220)K+, fJ → pp)/�total �465/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.41<0.41<0.41<0.41 90 1 WANG 05A BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(p�(1520))/�total �466/��(p�(1520))/�total �466/��(p�(1520))/�total �466/��(p�(1520))/�total �466/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT3.15±0.48±0.273.15±0.48±0.273.15±0.48±0.273.15±0.48±0.27 1 AAIJ 14AF LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.9 +1.0

−0.9 ±0.3 1 AAIJ 13AU LHCB Repl. by AAIJ 14AF
<15 90 2 AUBERT,B 05L BABR e+ e− → �(4S)1Uses B(B+ → J/ψK+) = (1.016 ± 0.033)×10−3, B(J/ψ → pp) = (2.17 ± 0.07)×10−3 and B(�(1520) → K− p) = 0.234 ± 0.016.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(ppK+nonresonant)/�total �467/��(ppK+nonresonant)/�total �467/��(ppK+nonresonant)/�total �467/��(ppK+nonresonant)/�total �467/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<89<89<89<89 90 BERGFELD 96B CLE2 e+ e− → �(4S)�(ppK∗(892)+)/�total �468/��(ppK∗(892)+)/�total �468/��(ppK∗(892)+)/�total �468/��(ppK∗(892)+)/�total �468/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT3.6 +0.8

−0.7 OUR AVERAGE3.6 +0.8
−0.7 OUR AVERAGE3.6 +0.8
−0.7 OUR AVERAGE3.6 +0.8
−0.7 OUR AVERAGE3.38+0.73
−0.60±0.39 1,2 CHEN 08C BELL e+ e− → �(4S)5.3 ±1.5 ±1.3 2 AUBERT 07AV BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •10.3 +3.6
−2.8 +1.3

−1.7 2,3 WANG 04 BELL Repl. by CHEN 08C1Expli
itly vetoes resonant produ
tion of pp from 
harmonium states.2Assumes equal produ
tion of B+ and B0 at the �(4S).3 Expli
itly vetoes resonant produ
tion of pp from 
harmonium states. The bran
hingfra
tion for Mpp < 2.85 GeV/
2 is also reported.�(fJ (2220)K∗+, fJ → pp)/�total �469/��(fJ (2220)K∗+, fJ → pp)/�total �469/��(fJ (2220)K∗+, fJ → pp)/�total �469/��(fJ (2220)K∗+, fJ → pp)/�total �469/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.77<0.77<0.77<0.77 90 1 AUBERT 07AV BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(p�)/�total �470/��(p�)/�total �470/��(p�)/�total �470/��(p�)/�total �470/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 0.32< 0.32< 0.32< 0.32 90 1 TSAI 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.49 90 1 CHANG 05 BELL Repl. by TSAI 07
< 1.5 90 1 BORNHEIM 03 CLE2 e+ e− → �(4S)
< 2.2 90 1 ABE 02O BELL e+ e− → �(4S)
< 2.6 90 1 COAN 99 CLE2 e+ e− → �(4S)
<60 90 2 AVERY 89B CLEO e+ e− → �(4S)
<93 90 3 ALBRECHT 88F ARG e+ e− → �(4S)

1Assumes equal produ
tion of B+ and B0 at the �(4S).2AVERY 89B reports < 5×10−5 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.3ALBRECHT 88F reports < 8.5× 10−5 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(p�γ
)/�total �471/��(p�γ
)/�total �471/��(p�γ
)/�total �471/��(p�γ
)/�total �471/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.45+0.44

−0.38±0.222.45+0.44
−0.38±0.222.45+0.44
−0.38±0.222.45+0.44
−0.38±0.22 1 WANG 07C BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.16+0.58
−0.53±0.20 1 LEE 05 BELL Repl. by WANG 07C

<3.9 90 2 EDWARDS 03 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Corresponds to Eγ > 1.5 GeV. The limit 
hanges to 3.3× 10−6 for Eγ > 2.0 GeV.�(p�π0)/�total �472/��(p�π0)/�total �472/��(p�π0)/�total �472/��(p�π0)/�total �472/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT3.00+0.61
−0.53±0.333.00+0.61
−0.53±0.333.00+0.61
−0.53±0.333.00+0.61
−0.53±0.33 1 WANG 07C BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(p� (1385)0)/�total �473/��(p� (1385)0)/�total �473/��(p� (1385)0)/�total �473/��(p� (1385)0)/�total �473/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<0.47<0.47<0.47<0.47 90 1 WANG 07C BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(�+�)/�total �474/��(�+�)/�total �474/��(�+�)/�total �474/��(�+�)/�total �474/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.82<0.82<0.82<0.82 90 1 WANG 07C BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(p� γ

)/�total �475/��(p� γ
)/�total �475/��(p� γ
)/�total �475/��(p� γ
)/�total �475/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<4.6<4.6<4.6<4.6 90 1 LEE 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.9 90 2 EDWARDS 03 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Corresponds to Eγ > 1.5 GeV. The limit 
hanges to 6.4× 10−6 for Eγ > 2.0 GeV.�(p�π+π−)/�total �476/��(p�π+π−)/�total �476/��(p�π+π−)/�total �476/��(p�π+π−)/�total �476/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT5.92+0.88

−0.84±0.695.92+0.88
−0.84±0.695.92+0.88
−0.84±0.695.92+0.88
−0.84±0.69 1 CHEN 09C BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<200 90 2 ALBRECHT 88F ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 88F reports < 1.8× 10−4 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(p�ρ0)/�total �477/��(p�ρ0)/�total �477/��(p�ρ0)/�total �477/��(p�ρ0)/�total �477/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT4.78+0.67

−0.64±0.604.78+0.67
−0.64±0.604.78+0.67
−0.64±0.604.78+0.67
−0.64±0.60 1 CHEN 09C BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(p�f2(1270))/�total �478/��(p�f2(1270))/�total �478/��(p�f2(1270))/�total �478/��(p�f2(1270))/�total �478/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.03+0.77
−0.72±0.272.03+0.77
−0.72±0.272.03+0.77
−0.72±0.272.03+0.77
−0.72±0.27 1 CHEN 09C BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(��π+)/�total �479/��(��π+)/�total �479/��(��π+)/�total �479/��(��π+)/�total �479/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<0.94<0.94<0.94<0.94 90 1,2 CHANG 09 BELL Repl. by CHANG 09
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.8 90 2 LEE 04 BELL e+ e− → �(4S)1 For m�� < 2.85 GeV/
2.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(��K+)/�total �480/��(��K+)/�total �480/��(��K+)/�total �480/��(��K+)/�total �480/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT3.38+0.41

−0.36±0.413.38+0.41
−0.36±0.413.38+0.41
−0.36±0.413.38+0.41
−0.36±0.41 1,2 CHANG 09 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.91+0.9
−0.70±0.38 2 LEE 04 BELL Repl. by CHANG 091Ex
luding 
harmonium events in 2.85< m�� < 3.128 GeV/
2 and 3.315< m�� <3.735 GeV/
2. Measurements in various m�� bins are also reported.2Assumes equal produ
tion of B+ and B0 at the �(4S).



1187118711871187See key on page 601 MesonParti
le ListingsB±�(��K∗+)/�total �481/��(��K∗+)/�total �481/��(��K∗+)/�total �481/��(��K∗+)/�total �481/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.19+1.13
−0.88±0.332.19+1.13
−0.88±0.332.19+1.13
−0.88±0.332.19+1.13
−0.88±0.33 1,2 CHANG 09 BELL e+ e− → �(4S)1 For m�� < 2.85 GeV/
2.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(�0 p)/�total �482/��(�0 p)/�total �482/��(�0 p)/�total �482/��(�0 p)/�total �482/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 1.38< 1.38< 1.38< 1.38 90 1 WEI 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<380 90 2 BORTOLETTO89 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2BORTOLETTO 89 reports < 3.3 × 10−4 assuming the �(4S) de
ays 43% to B0B0.We res
ale to 50%.�(�++p)/�total �483/��(�++p)/�total �483/��(�++p)/�total �483/��(�++p)/�total �483/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 0.14< 0.14< 0.14< 0.14 90 1 WEI 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<150 90 2 BORTOLETTO89 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2BORTOLETTO 89 reports < 1.3 × 10−4 assuming the �(4S) de
ays 43% to B0B0.We res
ale to 50%.�(D+ pp)/�total �484/��(D+ pp)/�total �484/��(D+ pp)/�total �484/��(D+ pp)/�total �484/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.5× 10−5<1.5× 10−5<1.5× 10−5<1.5× 10−5 90 1 ABE 02W BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)+ pp)/�total �485/��(D∗(2010)+ pp)/�total �485/��(D∗(2010)+ pp)/�total �485/��(D∗(2010)+ pp)/�total �485/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.5× 10−5<1.5× 10−5<1.5× 10−5<1.5× 10−5 90 1 ABE 02W BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0 ppπ+)/�total �486/��(D0 ppπ+)/�total �486/��(D0 ppπ+)/�total �486/��(D0 ppπ+)/�total �486/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.72±0.11±0.253.72±0.11±0.253.72±0.11±0.253.72±0.11±0.25 1,2 DEL-AMO-SA...12 BABR e+ e− → �(4S)1Uses the values of D and D∗ bran
hing fra
tions from PDG 08.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗0ppπ+)/�total �487/��(D∗0ppπ+)/�total �487/��(D∗0ppπ+)/�total �487/��(D∗0ppπ+)/�total �487/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.73±0.17±0.273.73±0.17±0.273.73±0.17±0.273.73±0.17±0.27 1,2 DEL-AMO-SA...12 BABR e+ e− → �(4S)1Uses the values of D and D∗ bran
hing fra
tions from PDG 08.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D− ppπ+π−)/�total �488/��(D− ppπ+π−)/�total �488/��(D− ppπ+π−)/�total �488/��(D− ppπ+π−)/�total �488/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.66±0.13±0.271.66±0.13±0.271.66±0.13±0.271.66±0.13±0.27 1,2 DEL-AMO-SA...12 BABR e+ e− → �(4S)1Uses the values of D and D∗ bran
hing fra
tions from PDG 08.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗−ppπ+π−)/�total �489/��(D∗−ppπ+π−)/�total �489/��(D∗−ppπ+π−)/�total �489/��(D∗−ppπ+π−)/�total �489/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.86±0.16±0.191.86±0.16±0.191.86±0.16±0.191.86±0.16±0.19 1,2 DEL-AMO-SA...12 BABR e+ e− → �(4S)1Uses the values of D and D∗ bran
hing fra
tions from PDG 08.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(p�0D0)/�total �490/��(p�0D0)/�total �490/��(p�0D0)/�total �490/��(p�0D0)/�total �490/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.43+0.28

−0.25±0.181.43+0.28
−0.25±0.181.43+0.28
−0.25±0.181.43+0.28
−0.25±0.18 1,2 CHEN 11F BELL e+ e− → �(4S)1Uses B(� → pπ−) = 63.9 ± 0.5%, B(D0 → K−π+) = 3.89 ± 0.05%, and B(D0 →K−π+π0) = 13.9 ± 0.5%.2Assumes equal produ
tion of B0 and B+ from Upsilon(4S) de
ays.�(p�0D∗(2007)0)/�total �491/��(p�0D∗(2007)0)/�total �491/��(p�0D∗(2007)0)/�total �491/��(p�0D∗(2007)0)/�total �491/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<5<5<5<5 90 1,2,3 CHEN 11F BELL e+ e− → �(4S)1CHEN 11F reports < 4.8× 10−5 from a measurement of [�(B+ → p�0D∗(2007)0)/�total℄ / [B(D∗(2007)0 → D0π0)℄ assuming B(D∗(2007)0 → D0π0) = (61.9±2.9)×10−2, whi
h we res
ale to our best value B(D∗(2007)0 → D0π0) = 64.7 × 10−2.2Uses B(� → pπ−) = 63.9 ± 0.5% and B(D0 → K−π+) = 3.89 ± 0.05%.3Assumes equal produ
tion of B0 and B+ from Upsilon(4S) de
ays.

�(�−
 pπ+)/�total �492/��(�−
 pπ+)/�total �492/��(�−
 pπ+)/�total �492/��(�−
 pπ+)/�total �492/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2. See the ideogram below.2.68±0.15±0.14 1,2 AUBERT 08BN BABR e+ e− → �(4S)1.58±0.20±0.08 1,3 GABYSHEV 06A BELL e+ e− → �(4S)1.9 ±0.5 ±0.1 1,4 DYTMAN 02 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.5 ±0.4 ±0.1 1,5 GABYSHEV 02 BELL Repl. by GABYSHEV 06A6.2 +2.3

−2.0 ±1.6 1,6 FU 97 CLE2 Repl. by DYTMAN 021Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 08BN reports (3.4 ± 0.1 ± 0.9) × 10−4 from a measurement of [�(B+ →�−
 pπ+)/�total℄× [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = (5.0±1.3)×10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)×10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.3GABYSHEV 06A reports (2.01± 0.15± 0.20)×10−4 from a measurement of [�(B+ →�−
 pπ+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = 0.05, whi
hwe res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.4DYTMAN 02 reports (2.4+0.63
−0.62)×10−4 from a measurement of [�(B+ → �−
 pπ+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = 0.05, whi
h we res
aleto our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.5GABYSHEV 02 reports (1.87+0.51

−0.49) × 10−4 from a measurement of [�(B+ →�−
 pπ+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = 0.05,whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.6 FU 97 uses PDG 96 values of �
 bran
hing fra
tion.
WEIGHTED AVERAGE
2.2±0.4 (Error scaled by 2.2)

DYTMAN 02 CLE2 0.2
GABYSHEV 06A BELL 5.6
AUBERT 08BN BABR 4.2

χ2

      10.0
(Confidence Level = 0.0067)

0 1 2 3 4 5�(�−
 pπ+)/�total (units 10−4)�(�−
 �(1232)++)/�total �493/��(�−
 �(1232)++)/�total �493/��(�−
 �(1232)++)/�total �493/��(�−
 �(1232)++)/�total �493/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.9<1.9<1.9<1.9 90 GABYSHEV 06A BELL e+ e− → �(4S)�(�−
 �X (1600)++)/�total �494/��(�−
 �X (1600)++)/�total �494/��(�−
 �X (1600)++)/�total �494/��(�−
 �X (1600)++)/�total �494/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.6±0.9±0.24.6±0.9±0.24.6±0.9±0.24.6±0.9±0.2 1 GABYSHEV 06A BELL e+ e− → �(4S)1GABYSHEV 06A reports (5.9 ± 1.0 ± 0.6) × 10−5 from a measurement of [�(B+ →�−
 �X (1600)++)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) =0.05, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.�(�−
 �X (2420)++)/�total �495/��(�−
 �X (2420)++)/�total �495/��(�−
 �X (2420)++)/�total �495/��(�−
 �X (2420)++)/�total �495/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT3.7±0.8±0.23.7±0.8±0.23.7±0.8±0.23.7±0.8±0.2 1 GABYSHEV 06A BELL e+ e− → �(4S)1GABYSHEV 06A reports (4.7+1.0

−0.9 ± 0.4) × 10−5 from a measurement of [�(B+ →�−
 �X (2420)++)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) =0.05, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.



1188118811881188Meson Parti
le ListingsB±�((�−
 p)sπ+)/�total �496/��((�−
 p)sπ+)/�total �496/��((�−
 p)sπ+)/�total �496/��((�−
 p)sπ+)/�total �496/�(�−
 p)s denotes a low-mass enhan
ement near 3.35 GeV/
2.VALUE (units 10−5) DOCUMENT ID TECN COMMENT3.1+0.7
−0.6±0.23.1+0.7
−0.6±0.23.1+0.7
−0.6±0.23.1+0.7
−0.6±0.2 1 GABYSHEV 06A BELL e+ e− → �(4S)1GABYSHEV 06A reports (3.9+0.8

−0.7 ± 0.4) × 10−5 from a measurement of [�(B+ →(�−
 p)s π+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = 0.05,whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.�(� 
 (2520)0 p)/�total �497/��(� 
 (2520)0 p)/�total �497/��(� 
 (2520)0 p)/�total �497/��(� 
 (2520)0 p)/�total �497/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<0.3<0.3<0.3<0.3 90 1,2 AUBERT 08BN BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.7 90 1,2 GABYSHEV 06A BELL e+ e− → �(4S)
<4.6 90 1,2 GABYSHEV 02 BELL Repl. by GABYSHEV 06A1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses the value for �
 → pK−π+ bran
hing ratio (5.0 ± 1.3)%.�(� 
 (2520)0 p)/�(�−
 pπ+) �497/�492�(� 
 (2520)0 p)/�(�−
 pπ+) �497/�492�(� 
 (2520)0 p)/�(�−
 pπ+) �497/�492�(� 
 (2520)0 p)/�(�−
 pπ+) �497/�492VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<9<9<9<9 90 AUBERT 08BN BABR e+ e− → �(4S)�(� 
 (2800)0 p)/�total �498/��(� 
 (2800)0 p)/�total �498/��(� 
 (2800)0 p)/�total �498/��(� 
 (2800)0 p)/�total �498/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.6±0.7±0.42.6±0.7±0.42.6±0.7±0.42.6±0.7±0.4 1 AUBERT 08BN BABR e+ e− → �(4S)1AUBERT 08BN reports [�(B+ → �
 (2800)0 p)/�total℄ / [B(B+ → �−
 pπ+)℄ =0.117 ± 0.023 ± 0.024 whi
h we multiply by our best value B(B+ → �−
 pπ+) =(2.2 ± 0.4) × 10−4. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(�−
 pπ+π0)/�total �499/��(�−
 pπ+π0)/�total �499/��(�−
 pπ+π0)/�total �499/��(�−
 pπ+π0)/�total �499/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT1.81±0.29+0.52

−0.501.81±0.29+0.52
−0.501.81±0.29+0.52
−0.501.81±0.29+0.52
−0.50 1,2 DYTMAN 02 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.12 90 3 FU 97 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2DYTMAN 02 measurement uses B(�−
 → pK+π−) = 5.0 ± 1.3%. The se
ond errorin
ludes the systemati
 and the un
ertainty of the bran
hing ratio.3 FU 97 uses PDG 96 values of �
 bran
hing ratio.�(�−
 pπ+π+π−)/�total �500/��(�−
 pπ+π+π−)/�total �500/��(�−
 pπ+π+π−)/�total �500/��(�−
 pπ+π+π−)/�total �500/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT2.25±0.25+0.63

−0.612.25±0.25+0.63
−0.612.25±0.25+0.63
−0.612.25±0.25+0.63
−0.61 1,2 DYTMAN 02 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.46 90 3 FU 97 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2DYTMAN 02 measurement uses B(�−
 → pK+π−) = 5.0 ± 1.3%. The se
ond errorin
ludes the systemati
 and the un
ertainty of the bran
hing ratio.3 FU 97 uses PDG 96 values of �
 bran
hing ratio.�(�−
 pπ+π+π−π0)/�total �501/��(�−
 pπ+π+π−π0)/�total �501/��(�−
 pπ+π+π−π0)/�total �501/��(�−
 pπ+π+π−π0)/�total �501/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.34× 10−2<1.34× 10−2<1.34× 10−2<1.34× 10−2 90 1 FU 97 CLE2 e+ e− → �(4S)1 FU 97 uses PDG 96 values of �
 bran
hing ratio.�(�+
 �−
 K+)/�total �502/��(�+
 �−
 K+)/�total �502/��(�+
 �−
 K+)/�total �502/��(�+
 �−
 K+)/�total �502/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.9±2.2 OUR AVERAGE6.9±2.2 OUR AVERAGE6.9±2.2 OUR AVERAGE6.9±2.2 OUR AVERAGE9.0±4.4±0.5 1,2 AUBERT 08H BABR e+ e− → �(4S)6.2+2.5

−2.4±0.3 2,3 GABYSHEV 06 BELL e+ e− → �(4S)1AUBERT 08H reports (1.14 ± 0.15 ± 0.62) × 10−3 from a measurement of [�(B+ →�+
 �−
 K+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = (5.0 ±1.3)×10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3GABYSHEV 06 reports (7.9+1.0
−0.9 ± 3.6) × 10−4 from a measurement of [�(B+ →�+
 �−
 K+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = (5.0 ±1.3)×10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.

�(� 
 (2455)0 p)/�total �503/��(� 
 (2455)0 p)/�total �503/��(� 
 (2455)0 p)/�total �503/��(� 
 (2455)0 p)/�total �503/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT2.9±0.6+0.2
−0.12.9±0.6+0.2
−0.12.9±0.6+0.2
−0.12.9±0.6+0.2
−0.1 1,2 GABYSHEV 06A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8 90 1,3 DYTMAN 02 CLE2 e+ e− → �(4S)
<9.3 90 1,4 GABYSHEV 02 BELL Repl. by GABYSHEV 06A1Assumes equal produ
tion of B+ and B0 at the �(4S).2GABYSHEV 06A reports (3.7 ± 0.7 ± 0.4) × 10−5 from a measurement of [�(B+ →�
 (2455)0 p)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = 0.05,whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.3DYTMAN 02 measurement uses B(�−
 → pK+π−) = 5.0 ± 1.3%. The se
ond errorin
ludes the systemati
 and the un
ertainty of the bran
hing ratio.4Uses the value for �
 → pK−π+ bran
hing ratio (5.0 ± 1.3)%.�(� 
 (2455)0 p)/�(�−
 pπ+) �503/�492�(� 
 (2455)0 p)/�(�−
 pπ+) �503/�492�(� 
 (2455)0 p)/�(�−
 pπ+) �503/�492�(� 
 (2455)0 p)/�(�−
 pπ+) �503/�492VALUE DOCUMENT ID TECN COMMENT0.123±0.012±0.0080.123±0.012±0.0080.123±0.012±0.0080.123±0.012±0.008 1 AUBERT 08BN BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(� 
 (2455)0 pπ0)/�total �504/��(� 
 (2455)0 pπ0)/�total �504/��(� 
 (2455)0 pπ0)/�total �504/��(� 
 (2455)0 pπ0)/�total �504/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.5±1.1±0.23.5±1.1±0.23.5±1.1±0.23.5±1.1±0.2 1,2 DYTMAN 02 CLE2 e+ e− → �(4S)1DYTMAN 02 reports (4.4 ± 1.4) × 10−4 from a measurement of [�(B+ →�
 (2455)0 pπ0)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) =0.05, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(� 
 (2455)0 pπ−π+)/�total �505/��(� 
 (2455)0 pπ−π+)/�total �505/��(� 
 (2455)0 pπ−π+)/�total �505/��(� 
 (2455)0 pπ−π+)/�total �505/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.5±1.0±0.23.5±1.0±0.23.5±1.0±0.23.5±1.0±0.2 1,2 DYTMAN 02 CLE2 e+ e− → �(4S)1DYTMAN 02 reports (4.4 ± 1.3) × 10−4 from a measurement of [�(B+ →�
 (2455)0 pπ−π+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) =0.05, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(� 
 (2455)−− pπ+π+)/�total �506/��(� 
 (2455)−− pπ+π+)/�total �506/��(� 
 (2455)−− pπ+π+)/�total �506/��(� 
 (2455)−− pπ+π+)/�total �506/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.34±0.20 OUR AVERAGE2.34±0.20 OUR AVERAGE2.34±0.20 OUR AVERAGE2.34±0.20 OUR AVERAGE2.35±0.16+0.13

−0.12 1,2 LEES 12Z BABR e+ e− → �(4S)2.2 ±0.8 ±0.1 1,3 DYTMAN 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2 LEES 12Z reports (2.98± 0.16± 0.15± 0.77)×10−4 from a measurement of [�(B+ →�
 (2455)−− pπ+π+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+)= (5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3DYTMAN 02 reports (2.8 ± 0.9 ± 0.5 ± 0.7)× 10−4 from a measurement of [�(B+ →�
 (2455)−− pπ+π+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+)= (5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(�
 (2593)−/�
 (2625)− pπ+)/�total �507/��(�
 (2593)−/�
 (2625)− pπ+)/�total �507/��(�
 (2593)−/�
 (2625)− pπ+)/�total �507/��(�
 (2593)−/�
 (2625)− pπ+)/�total �507/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.9× 10−4<1.9× 10−4<1.9× 10−4<1.9× 10−4 90 1,2 DYTMAN 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2DYTMAN 02 measurement uses B(�−
 → pK+π−) = 5.0 ± 1.3%. The se
ond errorin
ludes the systemati
 and the un
ertainty of the bran
hing ratio.�(� 0
 �+
 , � 0
 → �+π−)/�total �508/��(� 0
 �+
 , � 0
 → �+π−)/�total �508/��(� 0
 �+
 , � 0
 → �+π−)/�total �508/��(� 0
 �+
 , � 0
 → �+π−)/�total �508/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.4±0.9 OUR AVERAGE2.4±0.9 OUR AVERAGE2.4±0.9 OUR AVERAGE2.4±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.2.0±0.7±0.1 1,2 AUBERT 08H BABR e+ e− → �(4S)4.4+1.8

−1.5±0.2 2,3 CHISTOV 06A BELL e+ e− → �(4S)1AUBERT 08H reports (2.51 ± 0.89 ± 0.61) × 10−5 from a measurement of [�(B+ →�0
 �+
 , �0
 → �+π−
)/�total℄× [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+)= (5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).
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le ListingsB±3CHISTOV 06A reports (5.6+1.9
−1.5 ± 1.9) × 10−5 from a measurement of [�(B+ →�0
 �+
 , �0
 → �+π−

)/�total℄× [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+)= (5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(� 0
 �+
 , � 0
 → �K+π−)/�total �509/��(� 0
 �+
 , � 0
 → �K+π−)/�total �509/��(� 0
 �+
 , � 0
 → �K+π−)/�total �509/��(� 0
 �+
 , � 0
 → �K+π−)/�total �509/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.1±0.9 OUR AVERAGE2.1±0.9 OUR AVERAGE2.1±0.9 OUR AVERAGE2.1±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.1.3±0.8±0.1 1,2 AUBERT 08H BABR e+ e− → �(4S)3.1+1.1
−0.9±0.2 2,3 CHISTOV 06A BELL e+ e− → �(4S)1AUBERT 08H reports (1.70 ± 0.93 ± 0.53) × 10−5 from a measurement of [�(B+ →�0
 �+
 , �0
 → �K+π−

)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 →pK−π+) = (5.0± 1.3)×10−2, whi
h we res
ale to our best value B(�+
 → pK−π+)= (6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3CHISTOV 06A reports (4.0+1.1
−0.9±1.3)×10−5 from a measurement of [�(B+ → �0
 �+
 ,�0
 → �K+π−

)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+)= (5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(

π+ ℓ+ ℓ−
)/�total �510/��(

π+ ℓ+ ℓ−
)/�total �510/��(

π+ ℓ+ ℓ−
)/�total �510/��(

π+ ℓ+ ℓ−
)/�total �510/�VALUE CL% DOCUMENT ID TECN COMMENT

<4.9× 10−8<4.9× 10−8<4.9× 10−8<4.9× 10−8 90 1 WEI 08A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.6× 10−8 90 1 LEES 13M BABR e+ e− → �(4S)
<1.2× 10−7 90 1 AUBERT 07AG BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π+ e+ e−)/�total �511/��(

π+ e+ e−)/�total �511/��(

π+ e+ e−)/�total �511/��(

π+ e+ e−)/�total �511/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
< 8.0× 10−8< 8.0× 10−8< 8.0× 10−8< 8.0× 10−8 90 1 WEI 08A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<12.5× 10−8 90 1 LEES 13M BABR e+ e− → �(4S)
<18 × 10−8 90 1 AUBERT 07AG BABR e+ e− → �(4S)
< 3.9× 10−3 90 2 WEIR 90B MRK2 e+ e− 29 GeV1Assumes equal produ
tion of B+ and B0 at the �(4S).2WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.�(

π+µ+µ−)/�total �512/��(

π+µ+µ−)/�total �512/��(

π+µ+µ−)/�total �512/��(

π+µ+µ−)/�total �512/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−8) CL% DOCUMENT ID TECN COMMENT1.79±0.22±0.051.79±0.22±0.051.79±0.22±0.051.79±0.22±0.05 1 AAIJ 15AR LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 5.5 90 2 LEES 13M BABR e+ e− → �(4S)2.3 ±0.6 ±0.1 AAIJ 12AY LHCB Repl. by AAIJ 15AR
< 6.9 90 2 WEI 08A BELL e+ e− → �(4S)
<28 90 2 AUBERT 07AG BABR e+ e− → �(4S)1AAIJ 15AR reports (1.83 ± 0.24 ± 0.05) × 10−8 from a measurement of [�(B+ →

π+µ+µ−
)/�total℄ / [B(B+ → J/ψ(1S)K+)℄ / [B(J/ψ(1S) → µ+µ−)℄ assumingB(B+ → J/ψ(1S)K+) = (1.05 ± 0.05)× 10−3,B(J/ψ(1S) → µ+µ−) = (5.961 ±0.033)×10−2, whi
h we res
ale to our best values B(B+ → J/ψ(1S)K+) = (1.026±0.031) × 10−3, B(J/ψ(1S) → µ+µ−) = (5.961 ± 0.033) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalues.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π+µ+µ−)/�(K+µ+µ−) �512/�516�(

π+µ+µ−)/�(K+µ+µ−) �512/�516�(

π+µ+µ−)/�(K+µ+µ−) �512/�516�(

π+µ+µ−)/�(K+µ+µ−) �512/�516VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.053±0.014±0.001 AAIJ 12AY LHCB Repl. by AAIJ 15AR�(

π+ ν ν
)/�total �513/��(

π+ ν ν
)/�total �513/��(

π+ ν ν
)/�total �513/��(

π+ ν ν
)/�total �513/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE CL% DOCUMENT ID TECN COMMENT

<9.8× 10−5<9.8× 10−5<9.8× 10−5<9.8× 10−5 90 1 LUTZ 13 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.7× 10−4 90 1 CHEN 07D BELL e+ e− → �(4S)
<1.0× 10−4 90 1 AUBERT 05H BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

�(K+ ℓ+ ℓ−
)/�total �514/��(K+ ℓ+ ℓ−
)/�total �514/��(K+ ℓ+ ℓ−
)/�total �514/��(K+ ℓ+ ℓ−
)/�total �514/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−7) DOCUMENT ID TECN COMMENT4.51±0.23 OUR AVERAGE4.51±0.23 OUR AVERAGE4.51±0.23 OUR AVERAGE4.51±0.23 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.4.36±0.15±0.18 1 AAIJ 13H LHCB pp at 7 TeV4.8 ±0.9 ±0.2 2 AUBERT 09T BABR e+ e− → �(4S)5.3 +0.6

−0.5 ±0.3 2 WEI 09A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.8 +0.9

−0.8 ±0.2 2 AUBERT,B 06J BABR Repl. by AUBERT 09T5.3 +1.1
−1.0 ±0.3 2 ISHIKAWA 03 BELL Repl. by WEI 09A1Uses B(B+ → J/ψK+ → µ+µ−K+) = (6.01 ± 0.21) × 10−5.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+ e+ e−)/�total �515/��(K+ e+ e−)/�total �515/��(K+ e+ e−)/�total �515/��(K+ e+ e−)/�total �515/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT5.5±0.7 OUR AVERAGE5.5±0.7 OUR AVERAGE5.5±0.7 OUR AVERAGE5.5±0.7 OUR AVERAGE5.1+1.2

−1.1±0.2 1 AUBERT 09T BABR e+ e− → �(4S)5.7+0.9
−0.8±0.3 1 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.2+1.2
−1.1±0.2 1 AUBERT,B 06J BABR Repl. by AUBERT 09T10.5+2.5
−2.2±0.7 1 AUBERT 03U BABR Repl. by AUBERT,B 06J6.3+1.9
−1.7±0.3 2 ISHIKAWA 03 BELL Repl. by WEI 09A

< 14 90 1 ABE 02 BELL e+ e− → �(4S)
< 9 90 1 AUBERT 02L BABR e+ e− → �(4S)
< 24 90 3 ANDERSON 01B CLE2 e+ e− → �(4S)
< 990 90 4 ALBRECHT 91E ARG e+ e− → �(4S)
<68000 90 5 WEIR 90B MRK2 e+ e− 29 GeV
< 600 90 6 AVERY 89B CLEO e+ e− → �(4S)
< 2500 90 7 AVERY 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B0 and B+ at �(4S). The se
ond error is a total ofsystemati
 un
ertainties in
luding model dependen
e.3The result is for di-lepton masses above 0.5 GeV.4ALBRECHT 91E reports < 9.0× 10−5 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.5WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.6AVERY 89B reports < 5×10−5 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.7AVERY 87 reports < 2.1×10−4 assuming the �(4S) de
ays 40% to B0B0. We res
aleto 50%.�(K+µ+µ−)/�total �516/��(K+µ+µ−)/�total �516/��(K+µ+µ−)/�total �516/��(K+µ+µ−)/�total �516/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT4.43±0.24 OUR FIT4.43±0.24 OUR FIT4.43±0.24 OUR FIT4.43±0.24 OUR FIT Error in
ludes s
ale fa
tor of 1.2.4.36±0.27 OUR AVERAGE4.36±0.27 OUR AVERAGE4.36±0.27 OUR AVERAGE4.36±0.27 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.4.29±0.07±0.21 1 AAIJ 14M LHCB pp at 7, 8 TeV4.1 +1.6

−1.5 ±0.2 2 AUBERT 09T BABR e+ e− → �(4S)5.3 +0.8
−0.7 ±0.3 2 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.36±0.15±0.18 3 AAIJ 13H LHCB Repl. by AAIJ 14M3.1 +1.5
−1.2 ±0.3 2 AUBERT,B 06J BABR Repl. by AUBERT 09T0.7 +1.9
−1.1 ±0.2 2 AUBERT 03U BABR Repl. by AUBERT,B 06J4.5 +1.4
−1.2 ±0.3 4 ISHIKAWA 03 BELL Repl. by WEI 09A9.8 +4.6
−3.6 ±1.6 2 ABE 02 BELL Repl. by ISHIKAWA 03

< 12 90 2 AUBERT 02L BABR e+ e− → �(4S)
< 36.8 90 5 ANDERSON 01B CLE2 e+ e− → �(4S)
< 52 90 6 AFFOLDER 99B CDF pp at 1.8 TeV
< 100 90 7 ABE 96L CDF Repl. by AFFOLDER 99B
< 2400 90 8 ALBRECHT 91E ARG e+ e− → �(4S)
<64000 90 9 WEIR 90B MRK2 e+ e− 29 GeV
< 1700 90 10 AVERY 89B CLEO e+ e− → �(4S)
< 3800 90 11 AVERY 87 CLEO e+ e− → �(4S)1Uses B(B+ → J/ψ(1S)K+) = (0.998 ± 0.014 ± 0.040) × 10−3 for normalization.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Uses B(B+ → J/ψK+ → µ+µ−K+) = (6.01 ± 0.21) × 10−5.4Assumes equal produ
tion of B0 and B+ at �(4S). The se
ond error is a total ofsystemati
 un
ertainties in
luding model dependen
e.5The result is for di-lepton masses above 0.5 GeV.6AFFOLDER 99B measured relative to B+ → J/ψ(1S)K+.7ABE 96L measured relative to B+ → J/ψ(1S)K+ using PDG 94 bran
hing ratios.8ALBRECHT 91E reports < 2.2× 10−4 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.9WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.10AVERY 89B reports < 1.5 × 10−4 assuming the �(4S) de
ays 43% to B0B0. Weres
ale to 50%.11AVERY 87 reports < 3.2×10−4 assuming the �(4S) de
ays 40% to B0B0. We res
aleto 50%.



1190119011901190Meson Parti
le ListingsB±�(K+µ+µ−)/�(J/ψ(1S)K+) �516/�255�(K+µ+µ−)/�(J/ψ(1S)K+) �516/�255�(K+µ+µ−)/�(J/ψ(1S)K+) �516/�255�(K+µ+µ−)/�(J/ψ(1S)K+) �516/�255VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.431±0.025 OUR FIT0.431±0.025 OUR FIT0.431±0.025 OUR FIT0.431±0.025 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.46 ±0.04 ±0.020.46 ±0.04 ±0.020.46 ±0.04 ±0.020.46 ±0.04 ±0.02 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.38 ±0.05 ±0.02 AALTONEN 11L CDF Repl. by AALTONEN 11AI0.59 ±0.15 ±0.03 AALTONEN 09B CDF Repl. by AALTONEN 11L�(K+ν ν

)/�total �517/��(K+ν ν
)/�total �517/��(K+ν ν
)/�total �517/��(K+ν ν
)/�total �517/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE CL% DOCUMENT ID TECN COMMENT

<1.6× 10−5<1.6× 10−5<1.6× 10−5<1.6× 10−5 90 1,2 LEES 13I BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.5× 10−5 90 1 LUTZ 13 BELL e+ e− → �(4S)
<1.3× 10−5 90 1 DEL-AMO-SA...10Q BABR Repl. by LEES 13I
<1.4× 10−5 90 1 CHEN 07D BELL e+ e− → �(4S)
<5.2× 10−5 90 1 AUBERT 05H BABR e+ e− → �(4S)
<2.4× 10−4 90 1 BROWDER 01 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Also reported a limit < 3.7 × 10−5 at 90% CL obtained using a fully re
onstru
tedhadroni
 B-tag evnets.�(

ρ+ν ν
)/�total �518/��(

ρ+ν ν
)/�total �518/��(

ρ+ν ν
)/�total �518/��(

ρ+ν ν
)/�total �518/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE CL% DOCUMENT ID TECN COMMENT

<2.13× 10−4<2.13× 10−4<2.13× 10−4<2.13× 10−4 90 1 LUTZ 13 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.5 × 10−4 90 1 CHEN 07D BELL Repl. by LUTZ 131Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)+ ℓ+ ℓ−

)/�total �519/��(K∗(892)+ ℓ+ ℓ−
)/�total �519/��(K∗(892)+ ℓ+ ℓ−
)/�total �519/��(K∗(892)+ ℓ+ ℓ−
)/�total �519/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT10.1 ±1.1 OUR AVERAGE10.1 ±1.1 OUR AVERAGE10.1 ±1.1 OUR AVERAGE10.1 ±1.1 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.9.24±0.93±0.67 AAIJ 14M LHCB pp at 7, 8 TeV14.0 +4.0

−3.7 ±0.9 1 AUBERT 09T BABR e+ e− → �(4S)12.4 +2.3
−2.1 ±1.3 1 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •11.6 ±1.9 2 AAIJ 12AH LHCB Repl. by AAIJ 14M7.3 +5.0
−4.2 ±2.1 1 AUBERT,B 06J BABR Repl. by AUBERT 09T

<22 90 1 ISHIKAWA 03 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Measured in B+ → K∗(892)+µ+µ− de
ays.�(K∗(892)+ e+ e−)/�total �520/��(K∗(892)+ e+ e−)/�total �520/��(K∗(892)+ e+ e−)/�total �520/��(K∗(892)+ e+ e−)/�total �520/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT15.5+ 4.0
− 3.1 OUR AVERAGE15.5+ 4.0
− 3.1 OUR AVERAGE15.5+ 4.0
− 3.1 OUR AVERAGE15.5+ 4.0
− 3.1 OUR AVERAGE13.8+ 4.7
− 4.2±0.8 1 AUBERT 09T BABR e+ e− → �(4S)17.3+ 5.0
− 4.2±2.0 1 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •7.5+ 7.6
− 6.5±3.8 1 AUBERT,B 06J BABR Repl. by AUBERT 09T2.0+13.4
− 8.7±2.8 1 AUBERT 03U BABR e+ e− → �(4S)

< 46 90 2 ISHIKAWA 03 BELL e+ e− → �(4S)
< 89 90 1 ABE 02 BELL Repl. by ISHIKAWA 03
< 95 90 1 AUBERT 02L BABR e+ e− → �(4S)
<6900 90 3 ALBRECHT 91E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B0 and B+ at �(4S). The se
ond error is a total ofsystemati
 un
ertainties in
luding model dependen
e.3ALBRECHT 91E reports < 6.3× 10−4 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(K∗(892)+µ+µ−)/�total �521/��(K∗(892)+µ+µ−)/�total �521/��(K∗(892)+µ+µ−)/�total �521/��(K∗(892)+µ+µ−)/�total �521/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT9.6 ± 1.0 OUR FIT9.6 ± 1.0 OUR FIT9.6 ± 1.0 OUR FIT9.6 ± 1.0 OUR FIT9.6 ± 1.1 OUR AVERAGE9.6 ± 1.1 OUR AVERAGE9.6 ± 1.1 OUR AVERAGE9.6 ± 1.1 OUR AVERAGE9.24± 0.93±0.67 1 AAIJ 14M LHCB pp at 7, 8 TeV14.6 + 7.9

− 7.5 ±1.2 2 AUBERT 09T BABR e+ e− → �(4S)11.1 + 3.2
− 2.7 ±1.0 2 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •11.6 ± 1.9 AAIJ 12AH LHCB Repl. by AAIJ 14M9.7 + 9.4
− 6.9 ±1.4 2 AUBERT,B 06J BABR Repl. by AUBERT 09T30.7 +25.8
−17.8 ±4.2 2 AUBERT 03U BABR e+ e− → �(4S)6.5 + 6.9
− 5.3 +1.5

−1.6 3 ISHIKAWA 03 BELL Repl. by WEI 09A
< 39 90 2 ABE 02 BELL Repl. by ISHIKAWA 03
<170 90 2 AUBERT 02L BABR e+ e− → �(4S)1Uses B(B+ → J/ψ(1S)K∗(892)+) = (1.431±0.027±0.090)×10−3 for normalization.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Assumes equal produ
tion of B0 and B+ at �(4S). The se
ond error is a total ofsystemati
 un
ertainties in
luding model dependen
e. The 90% C.L. upper limit is 2.2×10−6.�(K∗(892)+µ+µ−)/�(J/ψ(1S)K∗(892)+) �521/�260�(K∗(892)+µ+µ−)/�(J/ψ(1S)K∗(892)+) �521/�260�(K∗(892)+µ+µ−)/�(J/ψ(1S)K∗(892)+) �521/�260�(K∗(892)+µ+µ−)/�(J/ψ(1S)K∗(892)+) �521/�260VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.67±0.08 OUR FIT0.67±0.08 OUR FIT0.67±0.08 OUR FIT0.67±0.08 OUR FIT0.67±0.22±0.040.67±0.22±0.040.67±0.22±0.040.67±0.22±0.04 AALTONEN 11AI CDF pp at 1.96 TeV�(K∗(892)+ ν ν

)/�total �522/��(K∗(892)+ ν ν
)/�total �522/��(K∗(892)+ ν ν
)/�total �522/��(K∗(892)+ ν ν
)/�total �522/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE CL% DOCUMENT ID TECN COMMENT

<4.0× 10−5<4.0× 10−5<4.0× 10−5<4.0× 10−5 90 1 LUTZ 13 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.4× 10−5 90 1,2 LEES 13I BABR e+ e− → �(4S)
<8 × 10−5 90 AUBERT 08BC BABR Repl. by LEES 13I
<1.4× 10−4 90 1 CHEN 07D BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Also reported a limit < 11.6 × 10−5 at 90% CL obtained using a fully re
onstru
tedhadroni
 B-tag evnets.�(K+π+π−µ+µ−)/�(

ψ(2S)K+) �523/�283�(K+π+π−µ+µ−)/�(

ψ(2S)K+) �523/�283�(K+π+π−µ+µ−)/�(

ψ(2S)K+) �523/�283�(K+π+π−µ+µ−)/�(

ψ(2S)K+) �523/�283VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.95+0.46
−0.43±0.346.95+0.46
−0.43±0.346.95+0.46
−0.43±0.346.95+0.46
−0.43±0.34 AAIJ 14AZ LHCB pp at 7, 8 TeV�(

φK+µ+µ−)/�(J/ψ(1S)φK+) �524/�267�(

φK+µ+µ−)/�(J/ψ(1S)φK+) �524/�267�(

φK+µ+µ−)/�(J/ψ(1S)φK+) �524/�267�(

φK+µ+µ−)/�(J/ψ(1S)φK+) �524/�267VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.58+0.36
−0.32+0.19

−0.071.58+0.36
−0.32+0.19

−0.071.58+0.36
−0.32+0.19

−0.071.58+0.36
−0.32+0.19

−0.07 AAIJ 14AZ LHCB pp at 7, 8 TeV�(

π+ e+µ−)/�total �525/��(

π+ e+µ−)/�total �525/��(

π+ e+µ−)/�total �525/��(

π+ e+µ−)/�total �525/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<0.0064<0.0064<0.0064<0.0064 90 1 WEIR 90B MRK2 e+ e− 29 GeV1WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.�(

π+ e−µ+)/�total �526/��(

π+ e−µ+)/�total �526/��(

π+ e−µ+)/�total �526/��(

π+ e−µ+)/�total �526/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<0.0064<0.0064<0.0064<0.0064 90 1 WEIR 90B MRK2 e+ e− 29 GeV1WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.�(

π+ e±µ∓)/�total �527/��(

π+ e±µ∓)/�total �527/��(

π+ e±µ∓)/�total �527/��(

π+ e±µ∓)/�total �527/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.7× 10−7<1.7× 10−7<1.7× 10−7<1.7× 10−7 90 1 AUBERT 07AG BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π+ e+ τ−
)/�total �528/��(

π+ e+ τ−
)/�total �528/��(

π+ e+ τ−
)/�total �528/��(

π+ e+ τ−
)/�total �528/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<74<74<74<74 90 1 LEES 12P BABR e+ e− → �(4S)1Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.�(

π+ e− τ+)/�total �529/��(

π+ e− τ+)/�total �529/��(

π+ e− τ+)/�total �529/��(

π+ e− τ+)/�total �529/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<20<20<20<20 90 1 LEES 12P BABR e+ e− → �(4S)1Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.�(

π+ e± τ∓
)/�total �530/��(

π+ e± τ∓
)/�total �530/��(

π+ e± τ∓
)/�total �530/��(

π+ e± τ∓
)/�total �530/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<75<75<75<75 90 1,2 LEES 12P BABR e+ e− → �(4S)1Assumes B(B+ → h+ ℓ+ τ−) = B(B+ → h+ ℓ− τ+).2Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.�(

π+µ+ τ−
)/�total �531/��(

π+µ+ τ−
)/�total �531/��(

π+µ+ τ−
)/�total �531/��(

π+µ+ τ−
)/�total �531/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<62<62<62<62 90 1 LEES 12P BABR e+ e− → �(4S)1Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.
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π+µ− τ+)/�total �532/��(

π+µ− τ+)/�total �532/��(

π+µ− τ+)/�total �532/��(

π+µ− τ+)/�total �532/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<45<45<45<45 90 1 LEES 12P BABR e+ e− → �(4S)1Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.�(

π+µ± τ∓
)/�total �533/��(

π+µ± τ∓
)/�total �533/��(

π+µ± τ∓
)/�total �533/��(

π+µ± τ∓
)/�total �533/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<72<72<72<72 90 1,2 LEES 12P BABR e+ e− → �(4S)1Assumes B(B+ → h+ ℓ+ τ−) = B(B+ → h+ ℓ− τ+).2Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.�(K+ e+µ−)/�total �534/��(K+ e+µ−)/�total �534/��(K+ e+µ−)/�total �534/��(K+ e+µ−)/�total �534/�Test of lepton family number 
onservation.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
<0.91<0.91<0.91<0.91 90 1 AUBERT,B 06J BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8 90 1 AUBERT 02L BABR Repl. byAUBERT,B 06J
<6.4 × 104 90 2 WEIR 90B MRK2 e+ e− 29 GeV1Assumes equal produ
tion of B+ and B0 at the �(4S).2WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.�(K+ e−µ+)/�total �535/��(K+ e−µ+)/�total �535/��(K+ e−µ+)/�total �535/��(K+ e−µ+)/�total �535/�Test of lepton family number 
onservation.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
<1.3<1.3<1.3<1.3 90 1 AUBERT,B 06J BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.4× 104 90 2 WEIR 90B MRK2 e+ e− 29 GeV1Assumes equal produ
tion of B+ and B0 at the �(4S).2WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.�(K+ e±µ∓)/�total �536/��(K+ e±µ∓)/�total �536/��(K+ e±µ∓)/�total �536/��(K+ e±µ∓)/�total �536/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
<0.91<0.91<0.91<0.91 90 1 AUBERT,B 06J BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+ e+ τ−

)/�total �537/��(K+ e+ τ−
)/�total �537/��(K+ e+ τ−
)/�total �537/��(K+ e+ τ−
)/�total �537/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<43<43<43<43 90 1 LEES 12P BABR e+ e− → �(4S)1Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.�(K+ e− τ+)/�total �538/��(K+ e− τ+)/�total �538/��(K+ e− τ+)/�total �538/��(K+ e− τ+)/�total �538/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<15<15<15<15 90 1 LEES 12P BABR e+ e− → �(4S)1Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.�(K+ e± τ∓

)/�total �539/��(K+ e± τ∓
)/�total �539/��(K+ e± τ∓
)/�total �539/��(K+ e± τ∓
)/�total �539/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<30<30<30<30 90 1,2 LEES 12P BABR e+ e− → �(4S)1Assumes B(B+ → h+ ℓ+ τ−) = B(B+ → h+ ℓ− τ+).2Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.�(K+µ+ τ−
)/�total �540/��(K+µ+ τ−
)/�total �540/��(K+µ+ τ−
)/�total �540/��(K+µ+ τ−
)/�total �540/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<45<45<45<45 90 1 LEES 12P BABR e+ e− → �(4S)1Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.�(K+µ− τ+)/�total �541/��(K+µ− τ+)/�total �541/��(K+µ− τ+)/�total �541/��(K+µ− τ+)/�total �541/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<28<28<28<28 90 1 LEES 12P BABR e+ e− → �(4S)1Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.�(K+µ± τ∓

)/�total �542/��(K+µ± τ∓
)/�total �542/��(K+µ± τ∓
)/�total �542/��(K+µ± τ∓
)/�total �542/�Test of lepton family number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<48<48<48<48 90 1,2 LEES 12P BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<77 90 1 AUBERT 07AZ BABR Repl. by LEES 12P1Uses a fully re
onstru
ted hadroni
 B de
ay as a tag on the re
oil side.2Assumes B(B+ → h+ ℓ+ τ−) = B(B+ → h+ ℓ− τ+).�(K∗(892)+ e+µ−)/�total �543/��(K∗(892)+ e+µ−)/�total �543/��(K∗(892)+ e+µ−)/�total �543/��(K∗(892)+ e+µ−)/�total �543/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
<13<13<13<13 90 1 AUBERT,B 06J BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

�(K∗(892)+ e−µ+)/�total �544/��(K∗(892)+ e−µ+)/�total �544/��(K∗(892)+ e−µ+)/�total �544/��(K∗(892)+ e−µ+)/�total �544/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
<9.9<9.9<9.9<9.9 90 1 AUBERT,B 06J BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)+ e±µ∓)/�total �545/��(K∗(892)+ e±µ∓)/�total �545/��(K∗(892)+ e±µ∓)/�total �545/��(K∗(892)+ e±µ∓)/�total �545/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.4× 10−6<1.4× 10−6<1.4× 10−6<1.4× 10−6 90 1 AUBERT,B 06J BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.9× 10−6 90 1 AUBERT 02L BABR Repl. byAUBERT,B 06J1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π− e+ e+)/�total �546/��(

π− e+ e+)/�total �546/��(

π− e+ e+)/�total �546/��(

π− e+ e+)/�total �546/�Test of total lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<2.3 × 10−8<2.3 × 10−8<2.3 × 10−8<2.3 × 10−8 90 1 LEES 12J BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.6 × 10−6 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)
<0.0039 90 2 WEIR 90B MRK2 e+ e− 29 GeV1Assumes equal produ
tion of B+ and B0 at the �(4S).2WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.�(

π−µ+µ+)/�total �547/��(

π−µ+µ+)/�total �547/��(

π−µ+µ+)/�total �547/��(

π−µ+µ+)/�total �547/�Test of total lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
< 4.0× 10−9< 4.0× 10−9< 4.0× 10−9< 4.0× 10−9 95 1 AAIJ 14AC LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.3× 10−8 95 2 AAIJ 12AD LHCB Repl. by AAIJ 14AC
< 4.4× 10−8 90 AAIJ 12C LHCB pp at 7 TeV
<10.7× 10−8 90 3 LEES 12J BABR e+ e− → �(4S)
< 1.4× 10−6 90 3 EDWARDS 02B CLE2 e+ e− → �(4S)
< 9.1× 10−3 90 4 WEIR 90B MRK2 e+ e− 29 GeV1Uses B+ → J/ψK+, J/ψ → µ+µ− mode for normalization. Obtains neutrino-mass-dependent upper limits in the range 0.4{4.0 × 10−9. This limit is appli
able forMajorana neutrino lifetime < 1 ps.2Uses B+ → J/ψK+, J/ψ → µ+µ− mode for normalization. Obtains neutrino-mass-dependent upper limits in the range 0.4{1.0× 10−8.3Assumes equal produ
tion of B+ and B0 at the �(4S).4WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.�(

π− e+µ+)/�total �548/��(

π− e+µ+)/�total �548/��(

π− e+µ+)/�total �548/��(

π− e+µ+)/�total �548/�Test of total lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.5 × 10−7<1.5 × 10−7<1.5 × 10−7<1.5 × 10−7 90 1 LEES 14A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.3 × 10−6 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)
<0.0064 90 2 WEIR 90B MRK2 e+ e− 29 GeV1Assumes equal produ
tion of B+ and B0 at the �(4S).2WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.�(

ρ− e+ e+)/�total �549/��(

ρ− e+ e+)/�total �549/��(

ρ− e+ e+)/�total �549/��(

ρ− e+ e+)/�total �549/�Test of total lepton number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.17<0.17<0.17<0.17 90 1 LEES 14A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.6 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ρ−µ+µ+)/�total �550/��(

ρ−µ+µ+)/�total �550/��(

ρ−µ+µ+)/�total �550/��(

ρ−µ+µ+)/�total �550/�Test of total lepton number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.42<0.42<0.42<0.42 90 LEES 14A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.0 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ρ− e+µ+)/�total �551/��(

ρ− e+µ+)/�total �551/��(

ρ− e+µ+)/�total �551/��(

ρ− e+µ+)/�total �551/�Test of total lepton number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.47<0.47<0.47<0.47 90 1 LEES 14A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.3 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).
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le ListingsB±�(K− e+ e+)/�total �552/��(K− e+ e+)/�total �552/��(K− e+ e+)/�total �552/��(K− e+ e+)/�total �552/�Test of total lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<3.0 × 10−8<3.0 × 10−8<3.0 × 10−8<3.0 × 10−8 90 1 LEES 12J BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.0 × 10−6 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)
<0.0039 90 2 WEIR 90B MRK2 e+ e− 29 GeV1Assumes equal produ
tion of B+ and B0 at the �(4S).2WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.�(K−µ+µ+)/�total �553/��(K−µ+µ+)/�total �553/��(K−µ+µ+)/�total �553/��(K−µ+µ+)/�total �553/�Test of total lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<4.1× 10−8<4.1× 10−8<4.1× 10−8<4.1× 10−8 90 AAIJ 12C LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.7× 10−8 90 1 LEES 12J BABR e+ e− → �(4S)
<1.8× 10−6 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)
<9.1× 10−3 90 2 WEIR 90B MRK2 e+ e− 29 GeV1Assumes equal produ
tion of B+ and B0 at the �(4S).2WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.�(K− e+µ+)/�total �554/��(K− e+µ+)/�total �554/��(K− e+µ+)/�total �554/��(K− e+µ+)/�total �554/�Test of total lepton number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.6 × 10−7<1.6 × 10−7<1.6 × 10−7<1.6 × 10−7 90 1 LEES 14A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.0 × 10−6 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)
<0.0064 90 2 WEIR 90B MRK2 e+ e− 29 GeV1Assumes equal produ
tion of B+ and B0 at the �(4S).2WEIR 90B assumes B+ produ
tion 
ross se
tion from LUND.�(K∗(892)− e+ e+)/�total �555/��(K∗(892)− e+ e+)/�total �555/��(K∗(892)− e+ e+)/�total �555/��(K∗(892)− e+ e+)/�total �555/�Test of total lepton number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.40<0.40<0.40<0.40 90 1 LEES 14A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.8 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)−µ+µ+)/�total �556/��(K∗(892)−µ+µ+)/�total �556/��(K∗(892)−µ+µ+)/�total �556/��(K∗(892)−µ+µ+)/�total �556/�Test of total lepton number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.59<0.59<0.59<0.59 90 1 LEES 14A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8.3 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)− e+µ+)/�total �557/��(K∗(892)− e+µ+)/�total �557/��(K∗(892)− e+µ+)/�total �557/��(K∗(892)− e+µ+)/�total �557/�Test of total lepton number 
onservation.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.30<0.30<0.30<0.30 90 1 LEES 14A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.4 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D− e+ e+)/�total �558/��(D− e+ e+)/�total �558/��(D− e+ e+)/�total �558/��(D− e+ e+)/�total �558/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.6× 10−6<2.6× 10−6<2.6× 10−6<2.6× 10−6 90 1 LEES 14A BABR e+ e− → �(4S)
<2.6× 10−6<2.6× 10−6<2.6× 10−6<2.6× 10−6 90 1,2 SEON 11 BELL e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ from Upsilon(4S) de
ays.2Uses D− → K+π−π− mode and 3-body phase-spa
e hypothesis for the signal de
ays.�(D− e+µ+)/�total �559/��(D− e+µ+)/�total �559/��(D− e+µ+)/�total �559/��(D− e+µ+)/�total �559/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.8× 10−6<1.8× 10−6<1.8× 10−6<1.8× 10−6 90 1,2 SEON 11 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.1× 10−6 90 1 LEES 14A BABR e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ from Upsilon(4S) de
ays.2Uses D− → K+π−π− mode and 3-body phase-spa
e hypothesis for the signal de
ays.�(D−µ+µ+)/�total �560/��(D−µ+µ+)/�total �560/��(D−µ+µ+)/�total �560/��(D−µ+µ+)/�total �560/�VALUE CL% DOCUMENT ID TECN COMMENT
< 6.9× 10−7< 6.9× 10−7< 6.9× 10−7< 6.9× 10−7 95 1 AAIJ 12AD LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<17 × 10−7 90 2 LEES 14A BABR e+ e− → �(4S)
< 1.1× 10−6 90 2,3 SEON 11 BELL e+ e− → �(4S)1Uses B+ → ψ(2S)K+, ψ(2S) → J/ψπ+π− mode for normalization.2Assumes equal produ
tion of B0 and B+ from Upsilon(4S) de
ays.3Uses D− → K+π−π− mode and 3-body phase-spa
e hypothesis for the signal de
ays.

�(D∗−µ+µ+)/�total �561/��(D∗−µ+µ+)/�total �561/��(D∗−µ+µ+)/�total �561/��(D∗−µ+µ+)/�total �561/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.4× 10−6<2.4× 10−6<2.4× 10−6<2.4× 10−6 95 1 AAIJ 12AD LHCB pp at 7 TeV1Uses B+ → ψ(2S)K+, ψ(2S) → J/ψπ+π− mode for normalization.�(D−s µ+µ+)/�total �562/��(D−s µ+µ+)/�total �562/��(D−s µ+µ+)/�total �562/��(D−s µ+µ+)/�total �562/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.8× 10−7<5.8× 10−7<5.8× 10−7<5.8× 10−7 95 1 AAIJ 12AD LHCB pp at 7 TeV1Uses B+ → ψ(2S)K+, ψ(2S) → J/ψπ+π− mode for normalization. Obtainsneutrino-mass-dependent upper limits in the range 1.5{8.0× 10−7.�(D0π−µ+µ+)/�total �563/��(D0π−µ+µ+)/�total �563/��(D0π−µ+µ+)/�total �563/��(D0π−µ+µ+)/�total �563/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.5× 10−6<1.5× 10−6<1.5× 10−6<1.5× 10−6 95 1 AAIJ 12AD LHCB pp at 7 TeV1Uses B+ → ψ(2S)K+, ψ(2S) → J/ψπ+π− mode for normalization. Obtainsneutrino-mass-dependent upper limits in the range 0.3{1.5× 10−6.�(�0µ+)/�total �564/��(�0µ+)/�total �564/��(�0µ+)/�total �564/��(�0µ+)/�total �564/�VALUE CL% DOCUMENT ID TECN COMMENT
<6× 10−8<6× 10−8<6× 10−8<6× 10−8 90 1,2 DEL-AMO-SA...11K BABR e+ e− → �(4S)1DEL-AMO-SANCHEZ 11K reports < 6.1 × 10−8 from a measurement of [�(B+ →�0µ+)/�total℄ × [B(� → pπ−)℄ assuming B(� → pπ−) = (63.9 ± 0.5)× 10−2.2Uses B(�(4S) → B0B0) = (51.6± 0.6)% and B(�(4S) → B+B−) = (48.4± 0.6)%.�(�0 e+)/�total �565/��(�0 e+)/�total �565/��(�0 e+)/�total �565/��(�0 e+)/�total �565/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.2× 10−8<3.2× 10−8<3.2× 10−8<3.2× 10−8 90 1,2 DEL-AMO-SA...11K BABR e+ e− → �(4S)1DEL-AMO-SANCHEZ 11K reports < 3.2 × 10−8 from a measurement of [�(B+ →�0 e+)/�total℄ × [B(� → pπ−)℄ assuming B(� → pπ−) = (63.9 ± 0.5) × 10−2.2Uses B(�(4S) → B0B0) = (51.6± 0.6)% and B(�(4S) → B+B−) = (48.4± 0.6)%.�(�0µ+)/�total �566/��(�0µ+)/�total �566/��(�0µ+)/�total �566/��(�0µ+)/�total �566/�VALUE CL% DOCUMENT ID TECN COMMENT
<6× 10−8<6× 10−8<6× 10−8<6× 10−8 90 1,2 DEL-AMO-SA...11K BABR e+ e− → �(4S)1DEL-AMO-SANCHEZ 11K reports < 6.2 × 10−8 from a measurement of [�(B+ →�0µ+)/�total℄ × [B(� → pπ−)℄ assuming B(� → pπ−) = (63.9 ± 0.5)× 10−2.2Uses B(�(4S) → B0B0) = (51.6± 0.6)% and B(�(4S) → B+B−) = (48.4± 0.6)%.�(�0 e+)/�total �567/��(�0 e+)/�total �567/��(�0 e+)/�total �567/��(�0 e+)/�total �567/�VALUE CL% DOCUMENT ID TECN COMMENT
<8× 10−8<8× 10−8<8× 10−8<8× 10−8 90 1,2 DEL-AMO-SA...11K BABR e+ e− → �(4S)1DEL-AMO-SANCHEZ 11K reports < 8.1 × 10−8 from a measurement of [�(B+ →�0 e+)/�total℄ × [B(� → pπ−)℄ assuming B(� → pπ−) = (63.9 ± 0.5) × 10−2.2Uses B(�(4S) → B0B0) = (51.6± 0.6)% and B(�(4S) → B+B−) = (48.4± 0.6)%.POLARIZATION IN B+ DECAYPOLARIZATION IN B+ DECAYPOLARIZATION IN B+ DECAYPOLARIZATION IN B+ DECAYIn de
ays involving two ve
tor mesons, one 
an distinguish among thestates in whi
h meson polarizations are both longitudinal (L) or both aretransverse and parallel (‖) or perpendi
ular (⊥) to ea
h other with theparameters �L/�, �⊥/�, and the relative phases φ‖ and φ⊥. See thede�nitions in the note on \Polarization in B De
ays" review in the B0Parti
le Listings.�L/� in B+ → D∗0ρ+�L/� in B+ → D∗0ρ+�L/� in B+ → D∗0ρ+�L/� in B+ → D∗0ρ+VALUE DOCUMENT ID TECN COMMENT0.892±0.018±0.0160.892±0.018±0.0160.892±0.018±0.0160.892±0.018±0.016 CSORNA 03 CLE2 e+ e− → �(4S)�L/� in B+ → D∗0K∗+�L/� in B+ → D∗0K∗+�L/� in B+ → D∗0K∗+�L/� in B+ → D∗0K∗+VALUE DOCUMENT ID TECN COMMENT0.86±0.06±0.030.86±0.06±0.030.86±0.06±0.030.86±0.06±0.03 AUBERT 04K BABR e+ e− → �(4S)�L/� in B+ → J/ψK∗+�L/� in B+ → J/ψK∗+�L/� in B+ → J/ψK∗+�L/� in B+ → J/ψK∗+VALUE DOCUMENT ID TECN COMMENT0.604±0.015±0.0180.604±0.015±0.0180.604±0.015±0.0180.604±0.015±0.018 ITOH 05 BELL e+ e− → �(4S)�⊥/� in B+ → J/ψK∗+�⊥/� in B+ → J/ψK∗+�⊥/� in B+ → J/ψK∗+�⊥/� in B+ → J/ψK∗+VALUE DOCUMENT ID TECN COMMENT0.180±0.014±0.0100.180±0.014±0.0100.180±0.014±0.0100.180±0.014±0.010 ITOH 05 BELL e+ e− → �(4S)�L/� in B+ → ωK∗+�L/� in B+ → ωK∗+�L/� in B+ → ωK∗+�L/� in B+ → ωK∗+VALUE DOCUMENT ID TECN COMMENT0.41±0.18±0.050.41±0.18±0.050.41±0.18±0.050.41±0.18±0.05 AUBERT 09H BABR e+ e− → �(4S)�L/� in B+ → ωK∗2(1430)+�L/� in B+ → ωK∗2(1430)+�L/� in B+ → ωK∗2(1430)+�L/� in B+ → ωK∗2(1430)+VALUE DOCUMENT ID TECN COMMENT0.56±0.10±0.040.56±0.10±0.040.56±0.10±0.040.56±0.10±0.04 AUBERT 09H BABR e+ e− → �(4S)
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le ListingsB±�L/� in B+ → K∗+K∗0�L/� in B+ → K∗+K∗0�L/� in B+ → K∗+K∗0�L/� in B+ → K∗+K∗0VALUE DOCUMENT ID TECN COMMENT0.82+0.15
−0.21 OUR AVERAGE0.82+0.15
−0.21 OUR AVERAGE0.82+0.15
−0.21 OUR AVERAGE0.82+0.15
−0.21 OUR AVERAGE1.06±0.30±0.14 1 GOH 15 BELL e+ e− → �(4S)0.75+0.16
−0.26±0.03 2,3 AUBERT 09F BABR e+ e− → �(4S)1 Signal signi�
an
e 2.7 standard deviations.2 Signal signi�
an
e 3.7 standard deviations.3Assumes equal produ
tion of B+ and B0 at the �(4S).�L/� in B+ → φK∗(892)+�L/� in B+ → φK∗(892)+�L/� in B+ → φK∗(892)+�L/� in B+ → φK∗(892)+VALUE DOCUMENT ID TECN COMMENT0.50±0.05 OUR AVERAGE0.50±0.05 OUR AVERAGE0.50±0.05 OUR AVERAGE0.50±0.05 OUR AVERAGE0.49±0.05±0.03 AUBERT 07BA BABR e+ e− → �(4S)0.52±0.08±0.03 CHEN 05A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.46±0.12±0.03 AUBERT 03V BABR Repl. by AUBERT 07BA�⊥/� in B+ → φK∗+�⊥/� in B+ → φK∗+�⊥/� in B+ → φK∗+�⊥/� in B+ → φK∗+VALUE DOCUMENT ID TECN COMMENT0.20±0.05 OUR AVERAGE0.20±0.05 OUR AVERAGE0.20±0.05 OUR AVERAGE0.20±0.05 OUR AVERAGE0.21±0.05±0.02 AUBERT 07BA BABR e+ e− → �(4S)0.19±0.08±0.02 CHEN 05A BELL e+ e− → �(4S)
φ‖ in B+ → φK∗+φ‖ in B+ → φK∗+φ‖ in B+ → φK∗+φ‖ in B+ → φK∗+VALUE (◦) DOCUMENT ID TECN COMMENT2.34±0.18 OUR AVERAGE2.34±0.18 OUR AVERAGE2.34±0.18 OUR AVERAGE2.34±0.18 OUR AVERAGE2.47±0.20±0.07 AUBERT 07BA BABR e+ e− → �(4S)2.10±0.28±0.04 CHEN 05A BELL e+ e− → �(4S)
φ⊥ in B+ → φK∗+φ⊥ in B+ → φK∗+φ⊥ in B+ → φK∗+φ⊥ in B+ → φK∗+VALUE (◦) DOCUMENT ID TECN COMMENT2.58±0.17 OUR AVERAGE2.58±0.17 OUR AVERAGE2.58±0.17 OUR AVERAGE2.58±0.17 OUR AVERAGE2.69±0.20±0.03 AUBERT 07BA BABR e+ e− → �(4S)2.31±0.30±0.07 CHEN 05A BELL e+ e− → �(4S)
δ0(B+ → φK∗+)δ0(B+ → φK∗+)δ0(B+ → φK∗+)δ0(B+ → φK∗+)VALUE (rad) DOCUMENT ID TECN COMMENT3.07±0.18±0.063.07±0.18±0.063.07±0.18±0.063.07±0.18±0.06 AUBERT 07BA BABR e+ e− → �(4S)A0CP (B+ → φK∗+)A0CP (B+ → φK∗+)A0CP (B+ → φK∗+)A0CP (B+ → φK∗+)VALUE DOCUMENT ID TECN COMMENT0.17±0.11±0.020.17±0.11±0.020.17±0.11±0.020.17±0.11±0.02 AUBERT 07BA BABR e+ e− → �(4S)A⊥

CP (B+ → φK∗+)A⊥
CP (B+ → φK∗+)A⊥
CP (B+ → φK∗+)A⊥
CP (B+ → φK∗+)VALUE DOCUMENT ID TECN COMMENT0.22±0.24±0.080.22±0.24±0.080.22±0.24±0.080.22±0.24±0.08 AUBERT 07BA BABR e+ e− → �(4S)�φ‖(B+ → φK∗+)�φ‖(B+ → φK∗+)�φ‖(B+ → φK∗+)�φ‖(B+ → φK∗+)VALUE (rad) DOCUMENT ID TECN COMMENT0.07±0.20±0.050.07±0.20±0.050.07±0.20±0.050.07±0.20±0.05 AUBERT 07BA BABR e+ e− → �(4S)�φ⊥(B+ → φK∗+)�φ⊥(B+ → φK∗+)�φ⊥(B+ → φK∗+)�φ⊥(B+ → φK∗+)VALUE (rad) DOCUMENT ID TECN COMMENT0.19±0.20±0.070.19±0.20±0.070.19±0.20±0.070.19±0.20±0.07 AUBERT 07BA BABR e+ e− → �(4S)�δ0(B+ → φK∗+)�δ0(B+ → φK∗+)�δ0(B+ → φK∗+)�δ0(B+ → φK∗+)VALUE (rad) DOCUMENT ID TECN COMMENT0.20±0.18±0.030.20±0.18±0.030.20±0.18±0.030.20±0.18±0.03 AUBERT 07BA BABR e+ e− → �(4S)�L/� in B+ → φK1(1270)+�L/� in B+ → φK1(1270)+�L/� in B+ → φK1(1270)+�L/� in B+ → φK1(1270)+VALUE DOCUMENT ID TECN COMMENT0.46+0.12

−0.13+0.06
−0.070.46+0.12

−0.13+0.06
−0.070.46+0.12

−0.13+0.06
−0.070.46+0.12

−0.13+0.06
−0.07 AUBERT 08BI BABR e+ e− → �(4S)�L/� in B+ → φK∗2(1430)+�L/� in B+ → φK∗2(1430)+�L/� in B+ → φK∗2(1430)+�L/� in B+ → φK∗2(1430)+VALUE DOCUMENT ID TECN COMMENT0.80+0.09

−0.10±0.030.80+0.09
−0.10±0.030.80+0.09
−0.10±0.030.80+0.09
−0.10±0.03 AUBERT 08BI BABR e+ e− → �(4S)

δ0(B+ → φK∗2(1430)+)δ0(B+ → φK∗2(1430)+)δ0(B+ → φK∗2(1430)+)δ0(B+ → φK∗2(1430)+)VALUE (rad) DOCUMENT ID TECN COMMENT3.59±0.19±0.123.59±0.19±0.123.59±0.19±0.123.59±0.19±0.12 AUBERT 08BI BABR e+ e− → �(4S)�δ0(B+ → φK∗2(1430)+)�δ0(B+ → φK∗2(1430)+)�δ0(B+ → φK∗2(1430)+)�δ0(B+ → φK∗2(1430)+)VALUE (rad) DOCUMENT ID TECN COMMENT
−0.05±0.19±0.06−0.05±0.19±0.06−0.05±0.19±0.06−0.05±0.19±0.06 AUBERT 08BI BABR e+ e− → �(4S)�L/� in B+ → ρ0K∗(892)+�L/� in B+ → ρ0K∗(892)+�L/� in B+ → ρ0K∗(892)+�L/� in B+ → ρ0K∗(892)+VALUE DOCUMENT ID TECN COMMENT0.78±0.12±0.030.78±0.12±0.030.78±0.12±0.030.78±0.12±0.03 DEL-AMO-SA...11D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.96+0.04

−0.15±0.04 AUBERT 03V BABR Repl. by DEL-AMO-SANCHEZ 11D

�L/�(B+ → K∗(892)0 ρ+)�L/�(B+ → K∗(892)0 ρ+)�L/�(B+ → K∗(892)0 ρ+)�L/�(B+ → K∗(892)0 ρ+)VALUE DOCUMENT ID TECN COMMENT0.48±0.08 OUR AVERAGE0.48±0.08 OUR AVERAGE0.48±0.08 OUR AVERAGE0.48±0.08 OUR AVERAGE0.52±0.10±0.04 AUBERT,B 06G BABR e+ e− → �(4S)0.43±0.11+0.05
−0.02 ZHANG 05D BELL e+ e− → �(4S)�L/� in B+ → ρ+ρ0�L/� in B+ → ρ+ρ0�L/� in B+ → ρ+ρ0�L/� in B+ → ρ+ρ0VALUE DOCUMENT ID TECN COMMENT0.950±0.016 OUR AVERAGE0.950±0.016 OUR AVERAGE0.950±0.016 OUR AVERAGE0.950±0.016 OUR AVERAGE0.950±0.015±0.006 AUBERT 09G BABR e+ e− → �(4S)0.948±0.106±0.021 ZHANG 03B BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.905±0.042+0.023
−0.027 AUBERT,BE 06G BABR Repl. by AUBERT 09G0.97 +0.03

−0.07 ±0.04 AUBERT 03V BABR Repl. by AUBERT,BE 06G�L/� in B+ → ωρ+�L/� in B+ → ωρ+�L/� in B+ → ωρ+�L/� in B+ → ωρ+VALUE DOCUMENT ID TECN COMMENT0.90±0.05±0.030.90±0.05±0.030.90±0.05±0.030.90±0.05±0.03 AUBERT 09H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.82±0.11±0.02 AUBERT,B 06T BABR Repl. by AUBERT 09H0.88+0.12

−0.15±0.03 AUBERT 05O BABR Repl. by AUBERT,B 06T�L/� in B+ → ppK∗(892)+�L/� in B+ → ppK∗(892)+�L/� in B+ → ppK∗(892)+�L/� in B+ → ppK∗(892)+VALUE DOCUMENT ID TECN COMMENT0.32±0.17±0.090.32±0.17±0.090.32±0.17±0.090.32±0.17±0.09 CHEN 08C BELL e+ e− → �(4S)CP VIOLATIONCP VIOLATIONCP VIOLATIONCP VIOLATIONACP is de�ned as
B(B− →f )−B(B+ →f )
B(B− →f )+B(B+ →f ) ,the CP-violation 
harge asymmetry of ex
lusive B− and B+ de
ay.ACP (B+ → J/ψ(1S)K+)ACP (B+ → J/ψ(1S)K+)ACP (B+ → J/ψ(1S)K+)ACP (B+ → J/ψ(1S)K+)VALUE DOCUMENT ID TECN COMMENT0.003 ±0.006 OUR AVERAGE0.003 ±0.006 OUR AVERAGE0.003 ±0.006 OUR AVERAGE0.003 ±0.006 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogrambelow.0.0059±0.0036±0.0007 ABAZOV 13M D0 pp at 1.96 TeV

−0.0076±0.0050±0.0022 SAKAI 10 BELL e+ e− → �(4S)0.09 ±0.07 ±0.02 1 WEI 08 BELL e+ e− → �(4S)0.030 ±0.014 ±0.010 2 AUBERT 05J BABR e+ e− → �(4S)0.018 ±0.043 ±0.004 3 BONVICINI 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0075±0.0061±0.0030 4 ABAZOV 08O D0 Repl. by ABAZOV 13M0.03 ±0.015 ±0.006 AUBERT 04P BABR Repl. by AUBERT 05J
−0.026 ±0.022 ±0.017 ABE 03B BELL Repl. by SAKAI 100.003 ±0.030 ±0.004 AUBERT 02F BABR Repl. by AUBERT 04P1Uses B+ → J/ψK+, where J/ψ → pp.2The result reported 
orresponds to −ACP .3A +0.3% 
orre
tion is applied due to a slightly higher re
onstru
tion eÆ
ien
y for thepositive kaons.4Uses J/ψ → µ+µ− de
ay.

WEIGHTED AVERAGE
0.003±0.006 (Error scaled by 1.8)

BONVICINI 00 CLE2
AUBERT 05J BABR 2.5
WEI 08 BELL
SAKAI 10 BELL 3.6
ABAZOV 13M D0 0.7

χ2

       6.8
(Confidence Level = 0.033)

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1ACP (B+ → J/ψ(1S)K+)



1194119411941194Meson Parti
le ListingsB±ACP (B+ → J/ψ(1S)π+)ACP (B+ → J/ψ(1S)π+)ACP (B+ → J/ψ(1S)π+)ACP (B+ → J/ψ(1S)π+)VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.1± 2.8 OUR AVERAGE0.1± 2.8 OUR AVERAGE0.1± 2.8 OUR AVERAGE0.1± 2.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.
− 4.2± 4.4±0.9 ABAZOV 13M D0 pp at 1.96 TeV0.5± 2.7±1.1 1 AAIJ 12AC LHCB pp at 7 TeV12.3± 8.5±0.4 AUBERT 04P BABR e+ e− → �(4S)
− 2.3±16.4±1.5 ABE 03B BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
− 9 ± 8 ±3 2 ABAZOV 08O D0 Repl. by ABAZOV 13M1 ±22 ±1 AUBERT 02F BABR Repl. by AUBERT 04P1Uses ACP (B+ → J/ψK+) = 0.001 ± 0.007 to extra
t produ
tion asymmetry.2Uses J/ψ → µ+µ− de
ay.ACP (B+ → J/ψρ+)ACP (B+ → J/ψρ+)ACP (B+ → J/ψρ+)ACP (B+ → J/ψρ+)VALUE DOCUMENT ID TECN COMMENT
−0.11±0.12±0.08−0.11±0.12±0.08−0.11±0.12±0.08−0.11±0.12±0.08 AUBERT 07AC BABR e+ e− → �(4S)ACP (B+ → J/ψK∗(892)+)ACP (B+ → J/ψK∗(892)+)ACP (B+ → J/ψK∗(892)+)ACP (B+ → J/ψK∗(892)+)VALUE DOCUMENT ID TECN COMMENT
−0.048±0.029±0.016−0.048±0.029±0.016−0.048±0.029±0.016−0.048±0.029±0.016 1 AUBERT 05J BABR e+ e− → �(4S)1The result reported 
orresponds to −ACP .ACP (B+ → η
 K+)ACP (B+ → η
 K+)ACP (B+ → η
 K+)ACP (B+ → η
 K+)VALUE DOCUMENT ID TECN COMMENT0.01 ±0.07 OUR AVERAGE0.01 ±0.07 OUR AVERAGE0.01 ±0.07 OUR AVERAGE0.01 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2.0.040±0.034±0.004 1 AAIJ 14AF LHCB pp at 7, 8 TeV
−0.16 ±0.08 ±0.02 1 WEI 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.046±0.057±0.007 1 AAIJ 13AU LHCB Repl. by AAIJ 14AF1Uses B+ → η
 K+, where η
 → pp.ACP (B+ → ψ(2S)π+)ACP (B+ → ψ(2S)π+)ACP (B+ → ψ(2S)π+)ACP (B+ → ψ(2S)π+)VALUE DOCUMENT ID TECN COMMENT0.03 ±0.06 OUR AVERAGE0.03 ±0.06 OUR AVERAGE0.03 ±0.06 OUR AVERAGE0.03 ±0.06 OUR AVERAGE0.048±0.090±0.011 1 AAIJ 12AC LHCB pp at 7 TeV0.022±0.085±0.016 BHARDWAJ 08 BELL e+ e− → �(4S)1Uses ACP (B+ → J/ψK+) = 0.001 ± 0.007 to extra
t produ
tion asymmetry.ACP (B+ → ψ(2S)K+)ACP (B+ → ψ(2S)K+)ACP (B+ → ψ(2S)K+)ACP (B+ → ψ(2S)K+)VALUE DOCUMENT ID TECN COMMENT0.012±0.020 OUR AVERAGE0.012±0.020 OUR AVERAGE0.012±0.020 OUR AVERAGE0.012±0.020 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.0.092±0.058±0.004 1 AAIJ 14AF LHCB pp at 7, 8 TeV0.024±0.014±0.008 2 AAIJ 12AC LHCB pp at 7 TeV0.052±0.059±0.020 AUBERT 05J BABR e+ e− → �(4S)
−0.042±0.020±0.017 ABE 03B BELL e+ e− → �(4S)0.02 ±0.091±0.01 3 BONVICINI 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.002±0.123±0.012 1,2 AAIJ 13AU LHCB Repl. by AAIJ 14AF1Uses ψ(2S) → pp de
ays.2Uses ACP (B+ → J/ψK+) = 0.001 ± 0.007 to extra
t produ
tion asymmetry.3A +0.3% 
orre
tion is applied due to a slightly higher re
onstru
tion eÆ
ien
y for thepositive kaons.

WEIGHTED AVERAGE
0.012±0.020 (Error scaled by 1.5)

BONVICINI 00 CLE2
ABE 03B BELL 4.3
AUBERT 05J BABR 0.4
AAIJ 12AC LHCB 0.5
AAIJ 14AF LHCB 1.9

χ2

       7.1
(Confidence Level = 0.069)

-0.2 -0.1 0 0.1 0.2 0.3 0.4ACP (B+ → ψ(2S)K+)ACP (B+ → ψ(2S)K∗(892)+)ACP (B+ → ψ(2S)K∗(892)+)ACP (B+ → ψ(2S)K∗(892)+)ACP (B+ → ψ(2S)K∗(892)+)VALUE DOCUMENT ID TECN COMMENT0.077±0.207±0.0510.077±0.207±0.0510.077±0.207±0.0510.077±0.207±0.051 1 AUBERT 05J BABR e+ e− → �(4S)1The result reported 
orresponds to −ACP .

ACP (B+ → χ
1(1P)π+)ACP (B+ → χ
1(1P)π+)ACP (B+ → χ
1(1P)π+)ACP (B+ → χ
1(1P)π+)VALUE DOCUMENT ID TECN COMMENT0.07±0.18±0.020.07±0.18±0.020.07±0.18±0.020.07±0.18±0.02 KUMAR 06 BELL e+ e− → �(4S)ACP (B+ → χ
0K+)ACP (B+ → χ
0K+)ACP (B+ → χ
0K+)ACP (B+ → χ
0K+)VALUE DOCUMENT ID TECN COMMENT
−0.20 ±0.18 OUR AVERAGE−0.20 ±0.18 OUR AVERAGE−0.20 ±0.18 OUR AVERAGE−0.20 ±0.18 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.
−0.96 ±0.37±0.04 LEES 11I BABR e+ e− → �(4S)
−0.14 ±0.15+0.03

−0.06 AUBERT 08AI BABR e+ e− → �(4S)
−0.065±0.20+0.035

−0.024 GARMASH 06 BELL e+ e− → �(4S)
WEIGHTED AVERAGE
-0.20±0.18 (Error scaled by 1.5)

GARMASH 06 BELL 0.4
AUBERT 08AI BABR 0.1
LEES 11I BABR 4.2

χ2

       4.8
(Confidence Level = 0.093)

-2 -1.5 -1 -0.5 0 0.5 1ACP (B+ → χ
0K+)ACP (B+ → χ
1K+)ACP (B+ → χ
1K+)ACP (B+ → χ
1K+)ACP (B+ → χ
1K+)VALUE DOCUMENT ID TECN COMMENT
−0.009±0.033 OUR AVERAGE−0.009±0.033 OUR AVERAGE−0.009±0.033 OUR AVERAGE−0.009±0.033 OUR AVERAGE
−0.01 ±0.03 ±0.02 KUMAR 06 BELL e+ e− → �(4S)
−0.003±0.076±0.017 1 AUBERT 05J BABR e+ e− → �(4S)1The result reported 
orresponds to −ACP .ACP (B+ → χ
1K∗(892)+)ACP (B+ → χ
1K∗(892)+)ACP (B+ → χ
1K∗(892)+)ACP (B+ → χ
1K∗(892)+)VALUE DOCUMENT ID TECN COMMENT0.471±0.378±0.2680.471±0.378±0.2680.471±0.378±0.2680.471±0.378±0.268 1 AUBERT 05J BABR e+ e− → �(4S)1The result reported 
orresponds to −ACP .ACP (B+ → D0π+)ACP (B+ → D0π+)ACP (B+ → D0π+)ACP (B+ → D0π+)VALUE DOCUMENT ID TECN COMMENT
−0.007±0.007 OUR AVERAGE−0.007±0.007 OUR AVERAGE−0.007±0.007 OUR AVERAGE−0.007±0.007 OUR AVERAGE
−0.006±0.005±0.010 1 AAIJ 13AE LHCB pp at 7 TeV
−0.008±0.008 ABE 06 BELL e+ e− → �(4S)1Uses B± → [K±π∓π+π− ℄D h± mode.ACP (B+ → DCP (+1)π+)ACP (B+ → DCP (+1)π+)ACP (B+ → DCP (+1)π+)ACP (B+ → DCP (+1)π+)VALUE DOCUMENT ID TECN COMMENT0.035±0.0240.035±0.0240.035±0.0240.035±0.024 ABE 06 BELL e+ e− → �(4S)ACP (B+ → DCP (−1)π+)ACP (B+ → DCP (−1)π+)ACP (B+ → DCP (−1)π+)ACP (B+ → DCP (−1)π+)VALUE DOCUMENT ID TECN COMMENT0.017±0.0260.017±0.0260.017±0.0260.017±0.026 ABE 06 BELL e+ e− → �(4S)ACP ([K∓π±π+π− ℄D π+)ACP ([K∓π±π+π− ℄D π+)ACP ([K∓π±π+π− ℄D π+)ACP ([K∓π±π+π− ℄D π+)VALUE DOCUMENT ID TECN COMMENT0.13±0.100.13±0.100.13±0.100.13±0.10 AAIJ 13AE LHCB pp at 7 TeVACP (B+ → D0K+)ACP (B+ → D0K+)ACP (B+ → D0K+)ACP (B+ → D0K+)VALUE DOCUMENT ID TECN COMMENT0.007±0.025 OUR AVERAGE0.007±0.025 OUR AVERAGE0.007±0.025 OUR AVERAGE0.007±0.025 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.0.010±0.026±0.005 1 AAIJ 15W LHCB pp at 7, 8 TeV
−0.029±0.020±0.018 2 AAIJ 13AE LHCB pp at 7 TeV0.066±0.036 ABE 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.003±0.080±0.037 3 ABE 03D BELL Repl. by SWAIN 030.04 ±0.06 ±0.03 4 SWAIN 03 BELL Repl. by ABE 06



1195119511951195See key on page 601 MesonParti
le ListingsB±1Uses D0 → K−π+π0 for the favored mode, and D0 → K+π−π0 for the suppressedmode.2Uses B± → [K±π∓π+π− ℄D h± mode.3Corresponds to 90% 
on�den
e range −0.15 <ACP < 0.16.4Corresponds to 90% 
on�den
e range −0.07 <ACP < 0.15.
WEIGHTED AVERAGE
0.007±0.025 (Error scaled by 1.5)

ABE 06 BELL 2.7
AAIJ 13AE LHCB 1.8
AAIJ 15W LHCB 0.0

χ2

       4.5
(Confidence Level = 0.106)

-0.2 -0.1 0 0.1 0.2 0.3ACP (B+ → D0K+)ACP ([K∓π±π+π− ℄DK+)ACP ([K∓π±π+π− ℄DK+)ACP ([K∓π±π+π− ℄DK+)ACP ([K∓π±π+π− ℄DK+)VALUE DOCUMENT ID TECN COMMENT
−0.42±0.22−0.42±0.22−0.42±0.22−0.42±0.22 AAIJ 13AE LHCB pp at 7 TeVrB(B+ → D0K+)rB(B+ → D0K+)rB(B+ → D0K+)rB(B+ → D0K+)rB and δB are the amplitude ratio and relative strong phase between the amplitudesof A(B+ → D0K+) and A(B+ → D0K+),VALUE CL% DOCUMENT ID TECN COMMENT0.095±0.008 OUR AVERAGE0.095±0.008 OUR AVERAGE0.095±0.008 OUR AVERAGE0.095±0.008 OUR AVERAGE0.080+0.019

−0.021 1 AAIJ 14BA LHCB pp at 7, 8 TeV0.097±0.011 2 AAIJ 13AE LHCB pp at 7 TeV0.092+0.013
−0.012 3 LEES 13B BABR e+ e− → �(4S)0.160+0.040
−0.038+0.051

−0.015 4 POLUEKTOV 10 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.06 ±0.04 5 AAIJ 14BE LHCB Repl. by AAIJ 14BA0.07 ±0.04 6,7 AAIJ 12AQ LHCB pp at 7 TeV0.145±0.030±0.015 7,8 AIHARA 12 BELL e+ e− → �(4S)
<0.13 90 9 LEES 11D BABR e+ e− → �(4S)0.096±0.029±0.006 10 DEL-AMO-SA...10F BABR Repl. by LEES 13B0.095+0.051

−0.041 11 DEL-AMO-SA...10H BABR Repl. by LEES 13B0.086±0.032±0.015 12 AUBERT 08AL BABR Repl. by DEL-AMO-SANCHEZ 10F
<0.19 90 HORII 08 BELL e+ e− → �(4S)0.159+0.054

−0.050±0.050 13 POLUEKTOV 06 BELL Repl. by POLUEKTOV 100.12 ±0.08 ±0.05 14 AUBERT,B 05Y BABR Repl. by AUBERT 08AL1Uses binned Dalitz plot analysis of B+ → DK+ de
ays, with D → K0S π+π− andD → K0S K+K−. Strong phase measurements from CLEO-
 (LIBBY 10) of the Dde
ay over the Dalitz plot are used as input.2Uses B± → [K±π∓π+π− ℄D h± mode.3Reports 
ombination of published measurements using GGSZ, GLW, and ADS methods.4Uses Dalitz plot analysis of D0 → K0S π+π− de
ays from B+ → D0K+ modes. The
orresponding two standard deviation interval is 0.084 < rB < 0.239.5AAIJ 14BE uses model-dependent analysis of D → K0S π+π− amplitudes. The modelis the same as in DEL-AMO-SANCHEZ 10F.6Reports 
ombined statisti
al and systemati
 un
ertainties.7Uses binned Dalitz plot of D0 → K0S π+π− de
ays from B+ → D0K+. Measurementof strong phases in D0 → K0S π+π− Dalitz plot from LIBBY 10 is used as input.8We 
ombined the systemati
s in quadrature. The authors report separately the 
ontri-bution to the systemati
 un
ertainty due to the un
ertainty on the bin-averaged strongphase di�eren
e between D0 and D0 amplitudes.9Uses de
ays of neutral D to K−π+π0.10Uses Dalitz plot analysis of D0 → K0S π+π−, K0S K+K− de
ays from B+ →D(∗)K(∗)+ modes. The 
orresponding two standard deviation interval is 0.037 <rB <0.155.11Uses the Cabibbo suppressed de
ay of B+ → DK+ followed by D → K−π+.12Uses Dalitz plot analysis of D0 → K0S π+π− and D0 → K0S K+K− de
ays 
omingfrom B± → D(∗)K(∗)± modes.13Uses a Dalitz plot analysis of the D0 → K0S π+π− de
ays; Combines the DK+, D∗K+and DK∗+ modes.14Uses a Dalitz analysis of neutral D de
ays to K0S π+π− in the pro
esses B± →D(∗)K±, D∗ → Dπ0, D γ.

δB(B+ → D0K+)δB(B+ → D0K+)δB(B+ → D0K+)δB(B+ → D0K+)VALUE (◦) DOCUMENT ID TECN COMMENT123 ±10 OUR AVERAGE123 ±10 OUR AVERAGE123 ±10 OUR AVERAGE123 ±10 OUR AVERAGE134 +14
−15 1 AAIJ 14BA LHCB pp at 7, 8 TeV105 +16
−17 2 LEES 13B BABR e+ e− → �(4S)136.7+13.0
−15.8±23.2 3 POLUEKTOV 10 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •115 +41
−51 4 AAIJ 14BE LHCB Repl. by AAIJ 14BA137 +35
−46 5,6 AAIJ 12AQ LHCB pp at 7 TeV129.9±15.0± 6.0 6,7 AIHARA 12 BELL e+ e− → �(4S)119 +19
−20 ± 4 8 DEL-AMO-SA...10F BABR Repl. by LEES 13B109 +27
−30 ± 8 9 AUBERT 08AL BABR Repl. by DEL-AMO-SANCHEZ 10F145.7+19.0
−19.7±23.1 10 POLUEKTOV 06 BELL Repl. by POLUEKTOV 10104 ±45 +23

−32 11 AUBERT,B 05Y BABR Repl. by AUBERT 08AL1Uses binned Dalitz plot analysis of B+ → DK+ de
ays, with D → K0S π+π− andD → K0S K+K−. Strong phase measurements from CLEO-
 (LIBBY 10) of the Dde
ay over the Dalitz plot are used as input.2Reports 
ombination of published measurements using GGSZ, GLW, and ADS methods.3Uses Dalitz plot analysis of D0 → K0S π+π− de
ays from B+ → D0K+ modes. The
orresponding two standard deviation interval is 102.2◦ < δB < 162.3◦.4AAIJ 14BE uses model-dependent analysis of D → K0S π+π− amplitudes. The modelis the same as in DEL-AMO-SANCHEZ 10F.5Reports 
ombined statisti
al and systemati
 un
ertainties.6Uses binned Dalitz plot of D0 → K0S π+π− de
ays from B+ → D0K+. Measurementof strong phases in D0 → K0S π+π− Dalitz plot from LIBBY 10 is used as input.7We 
ombined the systemati
s in quadrature. The authors report separately the 
ontri-bution to the systemati
 un
ertainty due to the un
ertainty on the bin-averaged strongphase di�eren
e between D0 and D0 amplitudes.8Uses Dalitz plot analysis of D0 → K0S π+π−, K0S K+K− de
ays from B+ →D(∗)K(∗)+ modes. The 
orresponding two standard deviation interval is 75◦ <
δB <157◦.9Uses Dalitz plot analysis of D0 → K0S π+π− and D0 → K0S K+K− de
ays 
omingfrom B± → D(∗)K(∗)± modes.10Uses a Dalitz plot analysis of the D0 → K0S π+π− de
ays; Combines the DK+, D∗K+and DK∗+ modes.11Uses a Dalitz analysis of neutral D de
ays to K0S π+π− in the pro
esses B± →D(∗)K±, D∗ → Dπ0, D γ.rB(B+ → D0K∗+)rB(B+ → D0K∗+)rB(B+ → D0K∗+)rB(B+ → D0K∗+)rB and δB are the amplitude ratio and relative strong phase between the amplitudesof ACP (B+ → D0K∗+) and ACP (B+ → D0K∗+),VALUE DOCUMENT ID TECN COMMENT0.17 ±0.11 OUR AVERAGE0.17 ±0.11 OUR AVERAGE0.17 ±0.11 OUR AVERAGE0.17 ±0.11 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3.0.143+0.048
−0.049 1 LEES 13B BABR e+ e− → �(4S)0.564+0.216
−0.155±0.093 2 POLUEKTOV 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.166+0.073
−0.069 3 DEL-AMO-SA...10F BABR Repl. by LEES 13B0.31 ±0.07 4 AUBERT 09AJ BABR Repl. by LEES 13B0.181+0.088
−0.108±0.042 5 AUBERT 08AL BABR Repl. by AUBERT 09AJ1Reports 
ombination of published measurements using GGSZ, GLW, and ADS methods.2Uses a Dalitz plot analysis of the D0 → K0S π+π− de
ays; Combines the DK+, D∗K+and DK∗+ modes.3DEL-AMO-SANCHEZ 10F reports rB · k = 0.149+0.066

−0.062 for k = 0.9.4Obtained by 
ombining the GLW and ADS methods. The 2-sigma range 
orresponds to[0.17, 0.43℄.5Uses Dalitz plot analysis of D0 → K0S π+π− and D0 → K0S K+K− de
ays 
omingfrom B± → D(∗)K(∗)± modes.
δB(B+ → D0K∗+)δB(B+ → D0K∗+)δB(B+ → D0K∗+)δB(B+ → D0K∗+)VALUE (◦) DOCUMENT ID TECN COMMENT155 ±70 OUR AVERAGE155 ±70 OUR AVERAGE155 ±70 OUR AVERAGE155 ±70 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0.101 ±43 1 LEES 13B BABR e+ e− → �(4S)242.6+20.2

−23.2±49.4 2 POLUEKTOV 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •111 ±32 DEL-AMO-SA...10F BABR Repl. by LEES 13B104 +39

−37 ±18 3 AUBERT 08AL BABR Repl. by LEES 13B1Reports 
ombination of published measurements using GGSZ, GLW, and ADS methods.2Uses a Dalitz plot analysis of the D0 → K0S π+π− de
ays; Combines the DK+, D∗K+and DK∗+ modes.3Uses Dalitz plot analysis of D0 → K0S π+π− and D0 → K0S K+K− de
ays 
omingfrom B± → D(∗)K(∗)± modes.



1196119611961196Meson Parti
le ListingsB±ACP (B+ → [K−π+ ℄D K+)ACP (B+ → [K−π+ ℄D K+)ACP (B+ → [K−π+ ℄D K+)ACP (B+ → [K−π+ ℄D K+)VALUE DOCUMENT ID TECN COMMENT
−0.58±0.21 OUR AVERAGE−0.58±0.21 OUR AVERAGE−0.58±0.21 OUR AVERAGE−0.58±0.21 OUR AVERAGE
−0.82±0.44±0.09 AALTONEN 11AJ CDF pp at 1.96 TeV
−0.39+0.26

−0.28+0.04
−0.03 HORII 11 BELL e+ e− → �(4S)

−0.86±0.47+0.12
−0.16 DEL-AMO-SA...10H BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.1 +0.8
−1.0 ±0.4 HORII 08 BELL Repl. by HORII 11+0.88+0.77
−0.62±0.06 SAIGO 05 BELL Repl. by HORII 08ACP (B+ → [K−π+π0 ℄DK+)ACP (B+ → [K−π+π0 ℄DK+)ACP (B+ → [K−π+π0 ℄DK+)ACP (B+ → [K−π+π0 ℄DK+)VALUE DOCUMENT ID TECN COMMENT0.07±0.30 OUR AVERAGE0.07±0.30 OUR AVERAGE0.07±0.30 OUR AVERAGE0.07±0.30 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.

−0.20±0.27±0.04 1 AAIJ 15W LHCB pp at 7, 8 TeV0.41±0.30±0.05 NAYAK 13 BELL e+ e− → �(4S)1Uses D0 → K−π+π0 for the favored mode, and D0 → K+π−π0 for the suppressedmode.ACP (B+ → [K+K−π0 ℄DK+)ACP (B+ → [K+K−π0 ℄DK+)ACP (B+ → [K+K−π0 ℄DK+)ACP (B+ → [K+K−π0 ℄DK+)VALUE DOCUMENT ID TECN COMMENT0.30±0.20±0.020.30±0.20±0.020.30±0.20±0.020.30±0.20±0.02 1 AAIJ 15W LHCB pp at 7, 8 TeV1Uses D → K+K−π0 mode.ACP (B+ → [π+π−π0 ℄D K+)ACP (B+ → [π+π−π0 ℄D K+)ACP (B+ → [π+π−π0 ℄D K+)ACP (B+ → [π+π−π0 ℄D K+)VALUE DOCUMENT ID TECN COMMENT0.054±0.091±0.0110.054±0.091±0.0110.054±0.091±0.0110.054±0.091±0.011 1 AAIJ 15W LHCB pp at 7, 8 TeV1Uses D → π+π−π0 mode.ACP (B+ → [K−π+ ℄D K∗(892)+)ACP (B+ → [K−π+ ℄D K∗(892)+)ACP (B+ → [K−π+ ℄D K∗(892)+)ACP (B+ → [K−π+ ℄D K∗(892)+)VALUE DOCUMENT ID TECN COMMENT
−0.34±0.43±0.16−0.34±0.43±0.16−0.34±0.43±0.16−0.34±0.43±0.16 AUBERT 09AJ BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.22±0.61±0.17 AUBERT,B 05V BABR Repl. by AUBERT 09AJACP (B+ → [K−π+ ℄D π+)ACP (B+ → [K−π+ ℄D π+)ACP (B+ → [K−π+ ℄D π+)ACP (B+ → [K−π+ ℄D π+)VALUE DOCUMENT ID TECN COMMENT0.00±0.09 OUR AVERAGE0.00±0.09 OUR AVERAGE0.00±0.09 OUR AVERAGE0.00±0.09 OUR AVERAGE0.13±0.25±0.02 AALTONEN 11AJ CDF pp at 1.96 TeV
−0.04±0.11+0.02

−0.01 HORII 11 BELL e+ e− → �(4S)0.03±0.17±0.04 DEL-AMO-SA... 10H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.02+0.15
−0.16±0.04 HORII 08 BELL Repl. by HORII 11+0.30+0.29
−0.25±0.06 SAIGO 05 BELL Repl. by HORII 08ACP (B+ → [K−π+π0 ℄D π+)ACP (B+ → [K−π+π0 ℄D π+)ACP (B+ → [K−π+π0 ℄D π+)ACP (B+ → [K−π+π0 ℄D π+)VALUE DOCUMENT ID TECN COMMENT0.35 ±0.16 OUR AVERAGE0.35 ±0.16 OUR AVERAGE0.35 ±0.16 OUR AVERAGE0.35 ±0.16 OUR AVERAGE0.438±0.190±0.011 1 AAIJ 15W LHCB pp at 7, 8 TeV0.16 ±0.27 +0.03

−0.04 NAYAK 13 BELL e+ e− → �(4S)1Uses D0 → K−π+π0 for the favored mode, and D0 → K+π−π0 for the suppressedmode.ACP (B+ → [K+K−π0 ℄D π+)ACP (B+ → [K+K−π0 ℄D π+)ACP (B+ → [K+K−π0 ℄D π+)ACP (B+ → [K+K−π0 ℄D π+)VALUE DOCUMENT ID TECN COMMENT
−0.030±0.040±0.005−0.030±0.040±0.005−0.030±0.040±0.005−0.030±0.040±0.005 1 AAIJ 15W LHCB pp at 7, 8 TeV1Uses D → K+K− mode.ACP (B+ → [π+π−π0 ℄D π+)ACP (B+ → [π+π−π0 ℄D π+)ACP (B+ → [π+π−π0 ℄D π+)ACP (B+ → [π+π−π0 ℄D π+)VALUE DOCUMENT ID TECN COMMENT
−0.016±0.020±0.004−0.016±0.020±0.004−0.016±0.020±0.004−0.016±0.020±0.004 1 AAIJ 15W LHCB pp at 7, 8 TeV1Uses D → π+π− mode.ACP (B+ → [K−π+ ℄(D π)π+)ACP (B+ → [K−π+ ℄(D π)π+)ACP (B+ → [K−π+ ℄(D π)π+)ACP (B+ → [K−π+ ℄(D π)π+)VALUE DOCUMENT ID TECN COMMENT
−0.09±0.27±0.05−0.09±0.27±0.05−0.09±0.27±0.05−0.09±0.27±0.05 DEL-AMO-SA...10H BABR e+ e− → �(4S)ACP (B+ → [K−π+ ℄(D γ)π+)ACP (B+ → [K−π+ ℄(D γ)π+)ACP (B+ → [K−π+ ℄(D γ)π+)ACP (B+ → [K−π+ ℄(D γ)π+)VALUE DOCUMENT ID TECN COMMENT
−0.65±0.55±0.22−0.65±0.55±0.22−0.65±0.55±0.22−0.65±0.55±0.22 DEL-AMO-SA...10H BABR e+ e− → �(4S)ACP (B+ → [K−π+ ℄(D π)K+)ACP (B+ → [K−π+ ℄(D π)K+)ACP (B+ → [K−π+ ℄(D π)K+)ACP (B+ → [K−π+ ℄(D π)K+)VALUE DOCUMENT ID TECN COMMENT0.77±0.35±0.120.77±0.35±0.120.77±0.35±0.120.77±0.35±0.12 DEL-AMO-SA...10H BABR e+ e− → �(4S)ACP (B+ → [K−π+ ℄(D γ)K+)ACP (B+ → [K−π+ ℄(D γ)K+)ACP (B+ → [K−π+ ℄(D γ)K+)ACP (B+ → [K−π+ ℄(D γ)K+)VALUE DOCUMENT ID TECN COMMENT0.36±0.94+0.25

−0.410.36±0.94+0.25
−0.410.36±0.94+0.25
−0.410.36±0.94+0.25
−0.41 DEL-AMO-SA...10H BABR e+ e− → �(4S)

ACP (B+ → [π+π−π0 ℄D K+)ACP (B+ → [π+π−π0 ℄D K+)ACP (B+ → [π+π−π0 ℄D K+)ACP (B+ → [π+π−π0 ℄D K+)VALUE DOCUMENT ID TECN COMMENT
−0.02±0.15±0.03−0.02±0.15±0.03−0.02±0.15±0.03−0.02±0.15±0.03 1 AUBERT 07BJ BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.02±0.16±0.03 AUBERT,B 05T BABR Repl. by AUBERT 07BJ1Uses a Dalitz plot analysis of D0 → π+π−π0. Also reports the one-sigma regions:0.06 < rB < 0.78, −30◦ < γ < 76◦, and −27◦ < δ < 78◦.ACP (B+ → [K0S K+π− ℄DK+)ACP (B+ → [K0S K+π− ℄DK+)ACP (B+ → [K0S K+π− ℄DK+)ACP (B+ → [K0S K+π− ℄DK+)VALUE DOCUMENT ID TECN COMMENT0.040±0.091±0.0180.040±0.091±0.0180.040±0.091±0.0180.040±0.091±0.018 1 AAIJ 14V LHCB pp at 7, 8 TeV1The anaysis uses all of D → K0S K π Dalitz de
ays.ACP (B+ → [K0S K−π+ ℄DK+)ACP (B+ → [K0S K−π+ ℄DK+)ACP (B+ → [K0S K−π+ ℄DK+)ACP (B+ → [K0S K−π+ ℄DK+)VALUE DOCUMENT ID TECN COMMENT0.233±0.129±0.0240.233±0.129±0.0240.233±0.129±0.0240.233±0.129±0.024 1 AAIJ 14V LHCB pp at 7, 8 TeV1The anaysis uses all of D → K0S K π Dalitz de
ays.ACP (B+ → [K0S K−π+ ℄D π+)ACP (B+ → [K0S K−π+ ℄D π+)ACP (B+ → [K0S K−π+ ℄D π+)ACP (B+ → [K0S K−π+ ℄D π+)VALUE DOCUMENT ID TECN COMMENT
−0.052±0.029±0.017−0.052±0.029±0.017−0.052±0.029±0.017−0.052±0.029±0.017 1 AAIJ 14V LHCB pp at 7, 8 TeV1The anaysis uses all of D → K0S K π Dalitz de
ays.ACP (B+ → [K0S K+π− ℄D π+)ACP (B+ → [K0S K+π− ℄D π+)ACP (B+ → [K0S K+π− ℄D π+)ACP (B+ → [K0S K+π− ℄D π+)VALUE DOCUMENT ID TECN COMMENT
−0.025±0.024±0.010−0.025±0.024±0.010−0.025±0.024±0.010−0.025±0.024±0.010 1 AAIJ 14V LHCB pp at 7, 8 TeV1The anaysis uses all of D → K0S K π Dalitz de
ays.ACP (B+ → [K∗(892)−K+ ℄DK+)ACP (B+ → [K∗(892)−K+ ℄DK+)ACP (B+ → [K∗(892)−K+ ℄DK+)ACP (B+ → [K∗(892)−K+ ℄DK+)VALUE DOCUMENT ID TECN COMMENT0.026±0.109±0.0290.026±0.109±0.0290.026±0.109±0.0290.026±0.109±0.029 1 AAIJ 14V LHCB pp at 7, 8 TeV1The Analysis uses D → K∗(892)K → K0S K π de
ays.ACP (B+ → [K∗(892)+K− ℄DK+)ACP (B+ → [K∗(892)+K− ℄DK+)ACP (B+ → [K∗(892)+K− ℄DK+)ACP (B+ → [K∗(892)+K− ℄DK+)VALUE DOCUMENT ID TECN COMMENT0.336±0.208±0.0260.336±0.208±0.0260.336±0.208±0.0260.336±0.208±0.026 1 AAIJ 14V LHCB pp at 7, 8 TeV1The Analysis uses D → K∗(892)K → K0S K π de
ays.ACP (B+ → [K∗(892)+K− ℄D π+)ACP (B+ → [K∗(892)+K− ℄D π+)ACP (B+ → [K∗(892)+K− ℄D π+)ACP (B+ → [K∗(892)+K− ℄D π+)VALUE DOCUMENT ID TECN COMMENT
−0.054±0.043±0.017−0.054±0.043±0.017−0.054±0.043±0.017−0.054±0.043±0.017 1 AAIJ 14V LHCB pp at 7, 8 TeV1The Analysis uses D → K∗(892)K → K0S K π de
ays.ACP (B+ → [K∗(892)−K+ ℄D π+)ACP (B+ → [K∗(892)−K+ ℄D π+)ACP (B+ → [K∗(892)−K+ ℄D π+)ACP (B+ → [K∗(892)−K+ ℄D π+)VALUE DOCUMENT ID TECN COMMENT
−0.012±0.028±0.010−0.012±0.028±0.010−0.012±0.028±0.010−0.012±0.028±0.010 1 AAIJ 14V LHCB pp at 7, 8 TeV1The Analysis uses D → K∗(892)K → K0S K π de
ays.ACP (B+ → DCP (+1)K+)ACP (B+ → DCP (+1)K+)ACP (B+ → DCP (+1)K+)ACP (B+ → DCP (+1)K+)VALUE DOCUMENT ID TECN COMMENT0.170±0.033 OUR AVERAGE0.170±0.033 OUR AVERAGE0.170±0.033 OUR AVERAGE0.170±0.033 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.145±0.032±0.010 1 AAIJ 12M LHCB pp at 7 TeV0.39 ±0.17 ±0.04 AALTONEN 10A CDF pp at 1.96 TeV0.25 ±0.06 ±0.02 2 DEL-AMO-SA...10G BABR e+ e− → �(4S)0.06 ±0.14 ±0.05 ABE 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.27 ±0.09 ±0.04 AUBERT 08AA BABR Repl. by DEL-AMO-SANCHEZ 10G0.35 ±0.13 ±0.04 AUBERT 06J BABR Repl. by AUBERT 08AA0.07 ±0.17 ±0.06 AUBERT 04N BABR Repl. by AUBERT 06J0.29 ±0.26 ±0.05 3 ABE 03D BELL Repl. by SWAIN 030.06 ±0.19 ±0.04 4 SWAIN 03 BELL Repl. by ABE 061AAIJ 12M reports an eviden
e of dire
t CP violation in B± → DK± de
ays with atotal signi�
an
e of 5.8 σ.2Reports the �rst eviden
e for dire
t CP violation in B → DK de
ays with 3.6 standarddeviations.3Corresponds to 90% 
on�den
e range −0.14 <ACP < 0.73.4Corresponds to 90% 
on�den
e range −0.26 <ACP < 0.38.AADS(B+ → DK+)AADS(B+ → DK+)AADS(B+ → DK+)AADS(B+ → DK+)AADS(B+ → DK+) = (R−

K
−R+

K
)(R−

K
+R+

K
) whereR−

K
= �(B− → [K+π− ℄DK−) / �(B− → [K−π+℄DK−) andR+K = �(B+ → [K−π+℄DK+) / �(B+ → [K+π− ℄DK+)VALUE DOCUMENT ID TECN COMMENT

−0.52±0.15±0.02−0.52±0.15±0.02−0.52±0.15±0.02−0.52±0.15±0.02 AAIJ 12M LHCB pp at 7 TeV



1197119711971197See key on page 601 MesonParti
le ListingsB±AADS(B+ → D π+)AADS(B+ → D π+)AADS(B+ → D π+)AADS(B+ → D π+)AADS(B+ → Dπ+) = (R−
π
−R+

π
)(R−

π
+R+

π
) whereR−

π
= �(B− → [K+π− ℄D π−) / �(B− → [K−π+℄D π−) andR+

π
= �(B+ → [K−π+℄D π+) / �(B+ → [K+π− ℄D π+)VALUE DOCUMENT ID TECN COMMENT0.143±0.062±0.0110.143±0.062±0.0110.143±0.062±0.0110.143±0.062±0.011 AAIJ 12M LHCB pp at 7 TeVAADS(B+ → [K−π+ ℄DK+π−π+)AADS(B+ → [K−π+ ℄DK+π−π+)AADS(B+ → [K−π+ ℄DK+π−π+)AADS(B+ → [K−π+ ℄DK+π−π+)VALUE DOCUMENT ID TECN COMMENT

−0.33+0.36
−0.34−0.33+0.36
−0.34−0.33+0.36
−0.34−0.33+0.36
−0.34 AAIJ 15BC LHCB pp at 7, 8 TeVAADS(B+ → [K−π+ ℄D π+π−π+)AADS(B+ → [K−π+ ℄D π+π−π+)AADS(B+ → [K−π+ ℄D π+π−π+)AADS(B+ → [K−π+ ℄D π+π−π+)VALUE DOCUMENT ID TECN COMMENT

−0.013±0.087−0.013±0.087−0.013±0.087−0.013±0.087 AAIJ 15BC LHCB pp at 7, 8 TeVACP (B+ → DCP (−1)K+)ACP (B+ → DCP (−1)K+)ACP (B+ → DCP (−1)K+)ACP (B+ → DCP (−1)K+)VALUE DOCUMENT ID TECN COMMENT
−0.10±0.07 OUR AVERAGE−0.10±0.07 OUR AVERAGE−0.10±0.07 OUR AVERAGE−0.10±0.07 OUR AVERAGE
−0.09±0.07±0.02 DEL-AMO-SA...10G BABR e+ e− → �(4S)
−0.12±0.14±0.05 ABE 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.09±0.09±0.02 AUBERT 08AA BABR Repl. by DEL-AMO-SANCHEZ 10G
−0.06±0.13±0.04 AUBERT 06J BABR Repl. by AUBERT 08AA
−0.22±0.24±0.04 1 ABE 03D BELL Repl. by SWAIN 03
−0.19±0.17±0.05 2 SWAIN 03 BELL Repl. by ABE 061Corresponds to 90% 
on�den
e range −0.62 <ACP < 0.18.2Corresponds to 90% 
on�den
e range −0.47 <ACP < 0.11.ACP (B+ → [K+K− ℄DK+π−π+)ACP (B+ → [K+K− ℄DK+π−π+)ACP (B+ → [K+K− ℄DK+π−π+)ACP (B+ → [K+K− ℄DK+π−π+)VALUE DOCUMENT ID TECN COMMENT
−0.045±0.064±0.011−0.045±0.064±0.011−0.045±0.064±0.011−0.045±0.064±0.011 AAIJ 15BC LHCB pp at 7, 8 TeVACP (B+ → [π+π− ℄DK+π−π+)ACP (B+ → [π+π− ℄DK+π−π+)ACP (B+ → [π+π− ℄DK+π−π+)ACP (B+ → [π+π− ℄DK+π−π+)VALUE DOCUMENT ID TECN COMMENT
−0.054±0.101±0.011−0.054±0.101±0.011−0.054±0.101±0.011−0.054±0.101±0.011 AAIJ 15BC LHCB pp at 7, 8 TeVACP (B+ → [K−π+ ℄DK+π−π+)ACP (B+ → [K−π+ ℄DK+π−π+)ACP (B+ → [K−π+ ℄DK+π−π+)ACP (B+ → [K−π+ ℄DK+π−π+)VALUE DOCUMENT ID TECN COMMENT0.013±0.019±0.0130.013±0.019±0.0130.013±0.019±0.0130.013±0.019±0.013 AAIJ 15BC LHCB pp at 7, 8 TeVACP (B+ → [K+K− ℄D π+π−π+)ACP (B+ → [K+K− ℄D π+π−π+)ACP (B+ → [K+K− ℄D π+π−π+)ACP (B+ → [K+K− ℄D π+π−π+)VALUE DOCUMENT ID TECN COMMENT
−0.019±0.011±0.010−0.019±0.011±0.010−0.019±0.011±0.010−0.019±0.011±0.010 AAIJ 15BC LHCB pp at 7, 8 TeVACP (B+ → [π+π− ℄D π+π−π+)ACP (B+ → [π+π− ℄D π+π−π+)ACP (B+ → [π+π− ℄D π+π−π+)ACP (B+ → [π+π− ℄D π+π−π+)VALUE DOCUMENT ID TECN COMMENT
−0.013±0.016±0.010−0.013±0.016±0.010−0.013±0.016±0.010−0.013±0.016±0.010 AAIJ 15BC LHCB pp at 7, 8 TeVACP (B+ → [K−π+ ℄D π+π−π+)ACP (B+ → [K−π+ ℄D π+π−π+)ACP (B+ → [K−π+ ℄D π+π−π+)ACP (B+ → [K−π+ ℄D π+π−π+)VALUE DOCUMENT ID TECN COMMENT
−0.002±0.003±0.011−0.002±0.003±0.011−0.002±0.003±0.011−0.002±0.003±0.011 AAIJ 15BC LHCB pp at 7, 8 TeVACP (B+ → D∗0π+)ACP (B+ → D∗0π+)ACP (B+ → D∗0π+)ACP (B+ → D∗0π+)VALUE DOCUMENT ID TECN COMMENT
−0.014±0.015−0.014±0.015−0.014±0.015−0.014±0.015 ABE 06 BELL e+ e− → �(4S)ACP (B+ → (D∗

CP (+1))0π+)ACP (B+ → (D∗
CP (+1))0π+)ACP (B+ → (D∗
CP (+1))0π+)ACP (B+ → (D∗
CP (+1))0π+)VALUE DOCUMENT ID TECN COMMENT

−0.021±0.045−0.021±0.045−0.021±0.045−0.021±0.045 ABE 06 BELL e+ e− → �(4S)ACP (B+ → (D∗
CP (−1))0π+)ACP (B+ → (D∗
CP (−1))0π+)ACP (B+ → (D∗
CP (−1))0π+)ACP (B+ → (D∗
CP (−1))0π+)VALUE DOCUMENT ID TECN COMMENT

−0.090±0.051−0.090±0.051−0.090±0.051−0.090±0.051 ABE 06 BELL e+ e− → �(4S)ACP (B+ → D∗0K+)ACP (B+ → D∗0K+)ACP (B+ → D∗0K+)ACP (B+ → D∗0K+)VALUE DOCUMENT ID TECN COMMENT
−0.07 ±0.04 OUR AVERAGE−0.07 ±0.04 OUR AVERAGE−0.07 ±0.04 OUR AVERAGE−0.07 ±0.04 OUR AVERAGE
−0.06 ±0.04 ±0.01 AUBERT 08BF BABR e+ e− → �(4S)
−0.089±0.086 ABE 06 BELL e+ e− → �(4S)r∗B(B+ → D∗0K+)r∗B(B+ → D∗0K+)r∗B(B+ → D∗0K+)r∗B(B+ → D∗0K+)r∗B and δ∗B are the amplitude ratio and relative strong phase between the amplitudesof A(B+ → D∗0K+) and A(B+ → D∗0K+),VALUE DOCUMENT ID TECN COMMENT0.114+0.023

−0.040 OUR AVERAGE0.114+0.023
−0.040 OUR AVERAGE0.114+0.023
−0.040 OUR AVERAGE0.114+0.023
−0.040 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.106+0.019
−0.036 1 LEES 13B BABR e+ e− → �(4S)0.196+0.072
−0.069+0.064

−0.017 2 POLUEKTOV 10 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.133+0.042
−0.039±0.013 3 DEL-AMO-SA...10F BABR Repl. by LEES 13B0.096+0.035
−0.051 4 DEL-AMO-SA...10H BABR Repl. by LEES 13B0.135±0.050±0.012 5 AUBERT 08AL BABR Repl. by DEL-AMO-SANCHEZ 10F0.175+0.108
−0.099±0.050 6 POLUEKTOV 06 BELL Repl. by POLUEKTOV 100.17 ±0.10 ±0.04 7 AUBERT,B 05Y BABR Repl. by AUBERT 08AL1Reports 
ombination of published measurements using GGSZ, GLW, and ADS methods.2Uses Dalitz plot analysis of D0 → K0S π+π− de
ays from B+ → D∗0K+ modes.The 
orresponding two standard deviation interval is 0.061 < r∗B < 0.271.3Uses Dalitz plot analysis of D0 → K0S π+π−, K0S K+K− de
ays from B+ →D(∗)K(∗)+ modes. The 
orresponding two standard deviation interval is 0.049 <

r∗B <0.215.4Uses the Cabibbo suppressed de
ay of B+ → D∗K+ followed by D∗ → Dπ0 or D γ,and D → K−π+.5Uses Dalitz plot analysis of D0 → K0S π+π− and D0 → K0S K+K− de
ays 
omingfrom B± → D(∗)K(∗)± modes.6Uses a Dalitz plot analysis of the D0 → K0S π+π− de
ays; Combines the DK+, D∗K+and DK∗+ modes.7Uses a Dalitz analysis of neutral D de
ays to K0S π+π− in the pro
esses B± →D(∗)K±, D∗ → Dπ0, D γ.
δ∗B(B+ → D∗0K+)δ∗B(B+ → D∗0K+)δ∗B(B+ → D∗0K+)δ∗B(B+ → D∗0K+)VALUE (◦) DOCUMENT ID TECN COMMENT310 +22

−28 OUR AVERAGE310 +22
−28 OUR AVERAGE310 +22
−28 OUR AVERAGE310 +22
−28 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.294 +21
−31 1 LEES 13B BABR e+ e− → �(4S)341.9+18.0
−19.6±23.1 2 POLUEKTOV 10 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •278 ±21 ± 6 3 DEL-AMO-SA...10F BABR Repl. by LEES 13B297 +27
−29 ± 6.4 4 AUBERT 08AL BABR Repl. by DEL-AMO-SANCHEZ 10F302.0+33.8
−35.1±23.7 5 POLUEKTOV 06 BELL Repl. by POLUEKTOV 10296 ±41 +20

−19 6 AUBERT,B 05Y BABR Repl. by AUBERT 08AL1Reports 
ombination of published measurements using GGSZ, GLW, and ADS methods.We added 360◦ to the value of (−66+21
−31)◦ quoted by LEES 13B.2Uses Dalitz plot analysis of D0 → K0S π+π− de
ays from B+ → D∗K+ modes. The
orresponding two standard deviation interval is 296.5◦ < δ∗B < 382.7◦.3Uses Dalitz plot analysis of D0 → K0S π+π−, K0S K+K− de
ays from B+ →D(∗)K(∗)+ modes. The 
orresponding two standard deviation interval is 236◦ <

δ∗B <322◦.4Uses Dalitz plot analysis of D0 → K0S π+π− and D0 → K0S K+K− de
ays 
omingfrom B± → D(∗)K(∗)± modes.5Uses a Dalitz plot analysis of the D0 → K0S π+π− de
ays; Combines the DK+, D∗K+and DK∗+ modes.6Uses a Dalitz analysis of neutral D de
ays to K0S π+π− in the pro
esses B± →D(∗)K±, D∗ → Dπ0, D γ.ACP (B+ → D∗0
CP (+1)K+)ACP (B+ → D∗0
CP (+1)K+)ACP (B+ → D∗0
CP (+1)K+)ACP (B+ → D∗0
CP (+1)K+)VALUE DOCUMENT ID TECN COMMENT

−0.12±0.08 OUR AVERAGE−0.12±0.08 OUR AVERAGE−0.12±0.08 OUR AVERAGE−0.12±0.08 OUR AVERAGE
−0.11±0.09±0.01 AUBERT 08BF BABR e+ e− → �(4S)
−0.20±0.22±0.04 ABE 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.10±0.23+0.03
−0.04 AUBERT 05N BABR Repl. by AUBERT 08BFACP (B+ → D∗

CP (−1)K+)ACP (B+ → D∗
CP (−1)K+)ACP (B+ → D∗
CP (−1)K+)ACP (B+ → D∗
CP (−1)K+)VALUE DOCUMENT ID TECN COMMENT0.07±0.10 OUR AVERAGE0.07±0.10 OUR AVERAGE0.07±0.10 OUR AVERAGE0.07±0.10 OUR AVERAGE+0.06±0.10±0.02 AUBERT 08BF BABR e+ e− → �(4S)+0.13±0.30±0.08 ABE 06 BELL e+ e− → �(4S)ACP (B+ → DCP (+1)K∗(892)+)ACP (B+ → DCP (+1)K∗(892)+)ACP (B+ → DCP (+1)K∗(892)+)ACP (B+ → DCP (+1)K∗(892)+)VALUE DOCUMENT ID TECN COMMENT+0.09±0.13±0.06+0.09±0.13±0.06+0.09±0.13±0.06+0.09±0.13±0.06 AUBERT 09AJ BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.08±0.19±0.08 AUBERT,B 05U BABR Repl. by AUBERT 09AJACP (B+ → DCP (−1)K∗(892)+)ACP (B+ → DCP (−1)K∗(892)+)ACP (B+ → DCP (−1)K∗(892)+)ACP (B+ → DCP (−1)K∗(892)+)VALUE DOCUMENT ID TECN COMMENT
−0.23±0.21±0.07−0.23±0.21±0.07−0.23±0.21±0.07−0.23±0.21±0.07 AUBERT 09AJ BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.26±0.40±0.12 AUBERT,B 05U BABR Repl. by AUBERT 09AJ



1198119811981198MesonParti
le ListingsB±ACP (B+ → D+s φ)ACP (B+ → D+s φ)ACP (B+ → D+s φ)ACP (B+ → D+s φ)VALUE DOCUMENT ID TECN COMMENT
−0.01±0.41±0.03−0.01±0.41±0.03−0.01±0.41±0.03−0.01±0.41±0.03 AAIJ 13R LHCB pp at 7 TeVACP (B+ → D∗+D∗0)ACP (B+ → D∗+D∗0)ACP (B+ → D∗+D∗0)ACP (B+ → D∗+D∗0)VALUE DOCUMENT ID TECN COMMENT
−0.15±0.11±0.02−0.15±0.11±0.02−0.15±0.11±0.02−0.15±0.11±0.02 AUBERT,B 06A BABR e+ e− → �(4S)ACP (B+ → D∗+D0)ACP (B+ → D∗+D0)ACP (B+ → D∗+D0)ACP (B+ → D∗+D0)VALUE DOCUMENT ID TECN COMMENT
−0.06±0.13±0.02−0.06±0.13±0.02−0.06±0.13±0.02−0.06±0.13±0.02 AUBERT,B 06A BABR e+ e− → �(4S)ACP (B+ → D+D∗0)ACP (B+ → D+D∗0)ACP (B+ → D+D∗0)ACP (B+ → D+D∗0)VALUE DOCUMENT ID TECN COMMENT0.13±0.18±0.040.13±0.18±0.040.13±0.18±0.040.13±0.18±0.04 AUBERT,B 06A BABR e+ e− → �(4S)ACP (B+ → D+D0)ACP (B+ → D+D0)ACP (B+ → D+D0)ACP (B+ → D+D0)VALUE DOCUMENT ID TECN COMMENT
−0.03±0.07 OUR AVERAGE−0.03±0.07 OUR AVERAGE−0.03±0.07 OUR AVERAGE−0.03±0.07 OUR AVERAGE0.00±0.08±0.02 ADACHI 08 BELL e+ e− → �(4S)
−0.13±0.14±0.02 AUBERT,B 06A BABR e+ e− → �(4S)ACP (B+ → K0S π+)ACP (B+ → K0S π+)ACP (B+ → K0S π+)ACP (B+ → K0S π+)VALUE DOCUMENT ID TECN COMMENT
−0.017±0.016 OUR AVERAGE−0.017±0.016 OUR AVERAGE−0.017±0.016 OUR AVERAGE−0.017±0.016 OUR AVERAGE
−0.022±0.025±0.010 AAIJ 13BS LHCB pp at 7 TeV
−0.011±0.021±0.006 DUH 13 BELL e+ e− → �(4S)
−0.029±0.039±0.010 1 AUBERT,BE 06C BABR e+ e− → �(4S)0.18 ±0.24 2 CHEN 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.03 ±0.03 ±0.01 LIN 07 BELL Repl. by DUH 13
−0.09 ±0.05 ±0.01 3 AUBERT,BE 05E BABR Repl. by AUBERT,BE 06C0.05 ±0.05 ±0.01 4 CHAO 05A BELL Repl. by LIN 07
−0.05 ±0.08 ±0.01 5 AUBERT 04M BABR Repl. by AUBERT,BE 05E0.07 +0.09

−0.08 +0.01
−0.03 6 UNNO 03 BELL Repl. by CHAO 05A0.46 ±0.15 ±0.02 7 CASEY 02 BELL Repl. by UNNO 030.098+0.430

−0.343+0.020
−0.063 8 ABE 01K BELL Repl. by CASEY 02

−0.21 ±0.18 ±0.03 9 AUBERT 01E BABR Repl. by AUBERT 04M1Corresponds to 90% 
on�den
e range −0.092 < ACP < 0.036.2Corresponds to 90% 
on�den
e range −0.22 < ACP < 0.56.3Corresponds to 90% 
on�den
e range −0.16 < ACP < −0.02.4Corresponds to 90% 
on�den
e range −0.04 < ACP < 0.13.5Corresponds to 90% 
on�den
e range −0.18 < ACP < 0.08.6Corresponds to 90% 
on�den
e range −0.10 < ACP < +0.22.7Corresponds to 90% 
on�den
e range +0.19 < ACP < +0.72.8Corresponds to 90% 
on�den
e range −0.53 < ACP < 0.82.9Corresponds to 90% 
on�den
e range −0.51 < ACP < 0.09.ACP (B+ → K+π0)ACP (B+ → K+π0)ACP (B+ → K+π0)ACP (B+ → K+π0)VALUE DOCUMENT ID TECN COMMENT0.037±0.021 OUR AVERAGE0.037±0.021 OUR AVERAGE0.037±0.021 OUR AVERAGE0.037±0.021 OUR AVERAGE0.043±0.024±0.002 DUH 13 BELL e+ e− → �(4S)0.030±0.039±0.010 AUBERT 07BC BABR e+ e− → �(4S)
−0.29 ±0.23 1 CHEN 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.07 ±0.03 ±0.01 LIN 08 BELL Repl. by DUH 130.06 ±0.06 ±0.01 2 AUBERT 05L BABR Repl. by AUBERT 07BC0.06 ±0.06 ±0.02 2 CHAO 05A BELL Repl. by CHAO 04B0.04 ±0.05 ±0.02 3 CHAO 04B BELL Repl. by LIN 08
−0.09 ±0.09 ±0.01 4 AUBERT 03L BABR Repl. by AUBERT 05L
−0.02 ±0.19 ±0.02 5 CASEY 02 BELL Repl. by CHAO 04B
−0.059+0.222

−0.196+0.055
−0.017 6 ABE 01K BELL Repl. by CASEY 020.00 ±0.18 ±0.04 7 AUBERT 01E BABR Repl. by AUBERT 03L1Corresponds to 90% 
on�den
e range −0.67 <ACP < 0.09.2Corresponds to a 90% CL interval of −0.06 < ACP < 0.18.3Corresponds to 90% CL interval of −0.05 < ACP < 0.13.4Corresponds to 90% 
on�den
e range −0.24 <ACP < 0.06.5Corresponds to 90% 
on�den
e range −0.35 <ACP < +0.30.6Corresponds to 90% 
on�den
e range −0.40 <ACP < 0.36.7Corresponds to 90% 
on�den
e range −0.30 <ACP < +0.30.ACP (B+ → η′K+)ACP (B+ → η′K+)ACP (B+ → η′K+)ACP (B+ → η′K+)VALUE DOCUMENT ID TECN COMMENT0.004±0.011 OUR AVERAGE0.004±0.011 OUR AVERAGE0.004±0.011 OUR AVERAGE0.004±0.011 OUR AVERAGE

−0.002±0.012±0.006 1 AAIJ 15O LHCB pp at 7, 8 TeV0.008+0.017
−0.018±0.009 AUBERT 09AV BABR e+ e− → �(4S)0.028±0.028±0.021 SCHUEMANN 06 BELL e+ e− → �(4S)0.03 ±0.12 2 CHEN 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.010±0.022±0.006 AUBERT 07AE BABR Repl. by AUBERT 09AV0.033±0.028±0.005 3 AUBERT 05M BABR Repl. by AUBERT 07AE0.037±0.045±0.011 4 AUBERT 03W BABR Repl. by AUBERT 05M
−0.11 ±0.11 ±0.02 5 AUBERT 02E BABR Repl. by AUBERT 05M
−0.015±0.070±0.009 6 CHEN 02B BELL Repl. by SCHUEMANN 060.06 ±0.15 ±0.01 7 ABE 01M BELL Repl. by CHEN 02B1Obtained using ACP (B± → J/ψK±) = (0.3 ± 0.6) × 10−2.2Corresponds to 90% 
on�den
e range −0.17 <ACP < 0.23.3Corresponds to 90% 
on�den
e range −0.012 < ACP <0.078.4Corresponds to 90% 
on�den
e range −0.04 <ACP < 0.11.5Corresponds to 90% 
on�den
e range −0.28 <ACP < 0.07.6Corresponds to 90% 
on�den
e range −0.13 <ACP < 0.10.7Corresponds to 90% 
on�den
e range −0.20 <ACP < 0.32.ACP (B+ → η′K∗(892)+)ACP (B+ → η′K∗(892)+)ACP (B+ → η′K∗(892)+)ACP (B+ → η′K∗(892)+)VALUE DOCUMENT ID TECN COMMENT
−0.26±0.27±0.02−0.26±0.27±0.02−0.26±0.27±0.02−0.26±0.27±0.02 DEL-AMO-SA...10A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.30+0.33
−0.37±0.02 1 AUBERT 07E BABR Repl. by DEL-AMO-SANCHEZ 10A1Reports ACP with the opposite sign 
onvention.ACP (B+ → η′K∗0(1430)+)ACP (B+ → η′K∗0(1430)+)ACP (B+ → η′K∗0(1430)+)ACP (B+ → η′K∗0(1430)+)VALUE DOCUMENT ID TECN COMMENT0.06±0.20±0.020.06±0.20±0.020.06±0.20±0.020.06±0.20±0.02 DEL-AMO-SA...10A BABR e+ e− → �(4S)ACP (B+ → η′K∗2(1430)+)ACP (B+ → η′K∗2(1430)+)ACP (B+ → η′K∗2(1430)+)ACP (B+ → η′K∗2(1430)+)VALUE DOCUMENT ID TECN COMMENT0.15±0.13±0.020.15±0.13±0.020.15±0.13±0.020.15±0.13±0.02 DEL-AMO-SA...10A BABR e+ e− → �(4S)ACP (B+ → ηK+)ACP (B+ → ηK+)ACP (B+ → ηK+)ACP (B+ → ηK+)VALUE DOCUMENT ID TECN COMMENT

−0.37±0.08 OUR AVERAGE−0.37±0.08 OUR AVERAGE−0.37±0.08 OUR AVERAGE−0.37±0.08 OUR AVERAGE
−0.38±0.11±0.01 HOI 12 BELL e+ e− → �(4S)
−0.36±0.11±0.03 AUBERT 09AV BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.22±0.11±0.01 AUBERT 07AE BABR Repl. by AUBERT 09AV
−0.39±0.16±0.03 CHANG 07B BELL Repl. by HOI 12
−0.20±0.15±0.01 AUBERT,B 05K BABR Repl. by AUBERT 07AE
−0.49±0.31±0.07 CHANG 05A BELL Repl. by CHANG 07B
−0.52±0.24±0.01 AUBERT 04H BABR Repl. by AUBERT,B 05KACP (B+ → ηK∗(892)+)ACP (B+ → ηK∗(892)+)ACP (B+ → ηK∗(892)+)ACP (B+ → ηK∗(892)+)VALUE DOCUMENT ID TECN COMMENT0.02±0.06 OUR AVERAGE0.02±0.06 OUR AVERAGE0.02±0.06 OUR AVERAGE0.02±0.06 OUR AVERAGE0.03±0.10±0.01 WANG 07B BELL e+ e− → �(4S)0.01±0.08±0.02 AUBERT,B 06H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.13±0.14±0.02 AUBERT,B 04D BABR Repl. by AUBERT,B 06HACP (B+ → ηK∗0(1430)+)ACP (B+ → ηK∗0(1430)+)ACP (B+ → ηK∗0(1430)+)ACP (B+ → ηK∗0(1430)+)VALUE DOCUMENT ID TECN COMMENT0.05±0.13±0.020.05±0.13±0.020.05±0.13±0.020.05±0.13±0.02 AUBERT,B 06H BABR e+ e− → �(4S)ACP (B+ → ηK∗2(1430)+)ACP (B+ → ηK∗2(1430)+)ACP (B+ → ηK∗2(1430)+)ACP (B+ → ηK∗2(1430)+)VALUE DOCUMENT ID TECN COMMENT
−0.45±0.30±0.02−0.45±0.30±0.02−0.45±0.30±0.02−0.45±0.30±0.02 AUBERT,B 06H BABR e+ e− → �(4S)ACP (B+ → ωK+)ACP (B+ → ωK+)ACP (B+ → ωK+)ACP (B+ → ωK+)VALUE DOCUMENT ID TECN COMMENT
−0.02±0.04 OUR AVERAGE−0.02±0.04 OUR AVERAGE−0.02±0.04 OUR AVERAGE−0.02±0.04 OUR AVERAGE
−0.03±0.04±0.01 CHOBANOVA 14 BELL e+ e− → �(4S)
−0.01±0.07±0.01 AUBERT 07AE BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.05±0.09±0.01 AUBERT,B 06E BABR Repl. by AUBERT 07AE0.05+0.08

−0.07±0.01 JEN 06 BELL Repl. by CHOBANOVA 14
−0.09±0.17±0.01 AUBERT 04H BABR Repl. by AUBERT,B 06E0.06+0.21

−0.18±0.01 1 WANG 04A BELL Repl. by JEN 06
−0.21±0.28±0.03 2 LU 02 BELL Repl. by WANG 04A1Corresponds to 90% CL interval 0.15< ACP <0.902Corresponds to 90% 
on�den
e range −0.70 <ACP < +0.38.ACP (B+ → ωK∗+)ACP (B+ → ωK∗+)ACP (B+ → ωK∗+)ACP (B+ → ωK∗+)VALUE DOCUMENT ID TECN COMMENT+0.29±0.35±0.02+0.29±0.35±0.02+0.29±0.35±0.02+0.29±0.35±0.02 AUBERT 09H BABR e+ e− → �(4S)ACP (B+ → ω (Kπ)∗+0 )ACP (B+ → ω (Kπ)∗+0 )ACP (B+ → ω (Kπ)∗+0 )ACP (B+ → ω (Kπ)∗+0 )VALUE DOCUMENT ID TECN COMMENT
−0.10±0.09±0.02−0.10±0.09±0.02−0.10±0.09±0.02−0.10±0.09±0.02 AUBERT 09H BABR e+ e− → �(4S)



1199119911991199See key on page 601 MesonParti
le ListingsB±ACP (B+ → ωK∗2(1430)+)ACP (B+ → ωK∗2(1430)+)ACP (B+ → ωK∗2(1430)+)ACP (B+ → ωK∗2(1430)+)VALUE DOCUMENT ID TECN COMMENT+0.14±0.15±0.02+0.14±0.15±0.02+0.14±0.15±0.02+0.14±0.15±0.02 AUBERT 09H BABR e+ e− → �(4S)ACP (B+ → K∗0π+)ACP (B+ → K∗0π+)ACP (B+ → K∗0π+)ACP (B+ → K∗0π+)VALUE DOCUMENT ID TECN COMMENT
−0.04 ±0.09 OUR AVERAGE−0.04 ±0.09 OUR AVERAGE−0.04 ±0.09 OUR AVERAGE−0.04 ±0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1.0.032±0.052+0.016

−0.013 AUBERT 08AI BABR e+ e− → �(4S)
−0.149±0.064±0.022 GARMASH 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.068±0.078+0.070

−0.067 AUBERT,B 05N BABR Repl. by AUBERT 08AIACP (B+ → K∗(892)+π0)ACP (B+ → K∗(892)+π0)ACP (B+ → K∗(892)+π0)ACP (B+ → K∗(892)+π0)VALUE DOCUMENT ID TECN COMMENT
−0.06±0.24±0.04−0.06±0.24±0.04−0.06±0.24±0.04−0.06±0.24±0.04 LEES 11I BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.04±0.29±0.05 AUBERT 05X BABR Repl. by LEES 11IACP (B+ → K+π−π+)ACP (B+ → K+π−π+)ACP (B+ → K+π−π+)ACP (B+ → K+π−π+)VALUE DOCUMENT ID TECN COMMENT0.027±0.008 OUR AVERAGE0.027±0.008 OUR AVERAGE0.027±0.008 OUR AVERAGE0.027±0.008 OUR AVERAGE0.025±0.004±0.008 1 AAIJ 14BO LHCB pp at 7, 8 TeV0.028±0.020±0.023 AUBERT 08AI BABR e+ e− → �(4S)0.049±0.026±0.020 GARMASH 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.032±0.008±0.008 AAIJ 13AZ LHCB Repl. by AAIJ 14BO
−0.013±0.037±0.011 AUBERT,B 05N BABR Repl. by AUBERT 08AI0.01 ±0.07 ±0.03 AUBERT 03M BABR Repl. by AUBERT,B 05N1AAIJ 14BO reports also CP asymmetries in restri
ted regions of phase spa
e.ACP (B+ → K+K−K+nonresonant)ACP (B+ → K+K−K+nonresonant)ACP (B+ → K+K−K+nonresonant)ACP (B+ → K+K−K+nonresonant)VALUE DOCUMENT ID TECN COMMENT0.060±0.044±0.0190.060±0.044±0.0190.060±0.044±0.0190.060±0.044±0.019 LEES 12O BABR e+ e− → �(4S)ACP (B+ → f (980)0K+)ACP (B+ → f (980)0K+)ACP (B+ → f (980)0K+)ACP (B+ → f (980)0K+)VALUE DOCUMENT ID TECN COMMENT
−0.08±0.08±0.04−0.08±0.08±0.04−0.08±0.08±0.04−0.08±0.08±0.04 1 LEES 12O BABR e+ e− → �(4S)1Measured in the B+ → K+K−K+ de
ay.ACP (B+ → f2(1270)K+)ACP (B+ → f2(1270)K+)ACP (B+ → f2(1270)K+)ACP (B+ → f2(1270)K+)VALUE DOCUMENT ID TECN COMMENT
−0.68+0.19

−0.17 OUR AVERAGE−0.68+0.19
−0.17 OUR AVERAGE−0.68+0.19
−0.17 OUR AVERAGE−0.68+0.19
−0.17 OUR AVERAGE

−0.85±0.22+0.26
−0.13 AUBERT 08AI BABR e+ e− → �(4S)

−0.59±0.22±0.036 GARMASH 06 BELL e+ e− → �(4S)ACP (B+ → f0(1500)K+)ACP (B+ → f0(1500)K+)ACP (B+ → f0(1500)K+)ACP (B+ → f0(1500)K+)VALUE DOCUMENT ID TECN COMMENT0.28±0.26+0.15
−0.140.28±0.26+0.15
−0.140.28±0.26+0.15
−0.140.28±0.26+0.15
−0.14 AUBERT 08AI BABR e+ e− → �(4S)ACP (B+ → f ′2(1525)0K+)ACP (B+ → f ′2(1525)0K+)ACP (B+ → f ′2(1525)0K+)ACP (B+ → f ′2(1525)0K+)VALUE DOCUMENT ID TECN COMMENT

−0.08 +0.05
−0.04 OUR AVERAGE−0.08 +0.05
−0.04 OUR AVERAGE−0.08 +0.05
−0.04 OUR AVERAGE−0.08 +0.05
−0.04 OUR AVERAGE0.18 ±0.18 ±0.04 1 LEES 11I BABR e+ e− → �(4S)

−0.106±0.050+0.036
−0.015 AUBERT 08AI BABR e+ e− → �(4S)

−0.077±0.065+0.046
−0.026 GARMASH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.14 ±0.10 ±0.04 2 LEES 12O BABR e+ e− → �(4S)
−0.31 ±0.25 ±0.08 3 AUBERT 06O BABR Repl. by LEES 12O0.088±0.095+0.097

−0.056 AUBERT,B 05N BABR Repl. by AUBERT 08AI1Measured in B+ → f0K+ with f0 → π0π0 de
ay.2Measured in the B+ → K+K−K+ de
ay assuming ACP (B+ → f ′2(1525)0K+) =ACP (B+ → f0(1500)0K+) = ACP (B+ → f0(1710)0K+)3Measured in the B+ → K+K−K+ de
ay.ACP (B+ → ρ0K+)ACP (B+ → ρ0K+)ACP (B+ → ρ0K+)ACP (B+ → ρ0K+)VALUE DOCUMENT ID TECN COMMENT0.37±0.10 OUR AVERAGE0.37±0.10 OUR AVERAGE0.37±0.10 OUR AVERAGE0.37±0.10 OUR AVERAGE0.44±0.10+0.06
−0.14 AUBERT 08AI BABR e+ e− → �(4S)0.30±0.11+0.11
−0.04 GARMASH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.32±0.13+0.10
−0.08 AUBERT,B 05N BABR Repl. by AUBERT 08AI

ACP (B+ → K∗0(1430)0π+)ACP (B+ → K∗0(1430)0π+)ACP (B+ → K∗0(1430)0π+)ACP (B+ → K∗0(1430)0π+)VALUE DOCUMENT ID TECN COMMENT0.055±0.033 OUR AVERAGE0.055±0.033 OUR AVERAGE0.055±0.033 OUR AVERAGE0.055±0.033 OUR AVERAGE0.032±0.035+0.034
−0.028 AUBERT 08AI BABR e+ e− → �(4S)0.076±0.038+0.028
−0.022 GARMASH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.064±0.032+0.023
−0.026 AUBERT,B 05N BABR Repl. by AUBERT 08AIACP (B+ → K∗2(1430)0π+)ACP (B+ → K∗2(1430)0π+)ACP (B+ → K∗2(1430)0π+)ACP (B+ → K∗2(1430)0π+)VALUE DOCUMENT ID TECN COMMENT0.05±0.23+0.18

−0.080.05±0.23+0.18
−0.080.05±0.23+0.18
−0.080.05±0.23+0.18
−0.08 AUBERT 08AI BABR e+ e− → �(4S)ACP (B+ → K+π0π0)ACP (B+ → K+π0π0)ACP (B+ → K+π0π0)ACP (B+ → K+π0π0)VALUE DOCUMENT ID TECN COMMENT

−0.06±0.06±0.04−0.06±0.06±0.04−0.06±0.06±0.04−0.06±0.06±0.04 LEES 11I BABR e+ e− → �(4S)ACP (B+ → K0ρ+)ACP (B+ → K0ρ+)ACP (B+ → K0ρ+)ACP (B+ → K0ρ+)VALUE DOCUMENT ID TECN COMMENT
−0.12±0.17±0.02−0.12±0.17±0.02−0.12±0.17±0.02−0.12±0.17±0.02 AUBERT 07Z BABR e+ e− → �(4S)ACP (B+ → K∗+π+π−)ACP (B+ → K∗+π+π−)ACP (B+ → K∗+π+π−)ACP (B+ → K∗+π+π−)VALUE DOCUMENT ID TECN COMMENT0.07±0.07±0.040.07±0.07±0.040.07±0.07±0.040.07±0.07±0.04 AUBERT,B 06U BABR e+ e− → �(4S)ACP (B+ → ρ0K∗(892)+)ACP (B+ → ρ0K∗(892)+)ACP (B+ → ρ0K∗(892)+)ACP (B+ → ρ0K∗(892)+)VALUE DOCUMENT ID TECN COMMENT0.31±0.13±0.030.31±0.13±0.030.31±0.13±0.030.31±0.13±0.03 DEL-AMO-SA...11D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.20+0.32

−0.29±0.04 AUBERT 03V BABR Repl. by DEL-AMO-SANCHEZ 11DACP (B+ → K∗(892)+ f0(980))ACP (B+ → K∗(892)+ f0(980))ACP (B+ → K∗(892)+ f0(980))ACP (B+ → K∗(892)+ f0(980))VALUE DOCUMENT ID TECN COMMENT
−0.15±0.12±0.03−0.15±0.12±0.03−0.15±0.12±0.03−0.15±0.12±0.03 DEL-AMO-SA...11D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.34±0.21±0.03 AUBERT,B 06G BABR Repl. by DEL-AMO-SANCHEZ 11DACP (B+ → a+1 K0)ACP (B+ → a+1 K0)ACP (B+ → a+1 K0)ACP (B+ → a+1 K0)VALUE DOCUMENT ID TECN COMMENT+0.12±0.11±0.02+0.12±0.11±0.02+0.12±0.11±0.02+0.12±0.11±0.02 AUBERT 08F BABR e+ e− → �(4S)ACP (B+ → b+1 K0)ACP (B+ → b+1 K0)ACP (B+ → b+1 K0)ACP (B+ → b+1 K0)VALUE DOCUMENT ID TECN COMMENT
−0.03±0.15±0.02−0.03±0.15±0.02−0.03±0.15±0.02−0.03±0.15±0.02 AUBERT 08AG BABR e+ e− → �(4S)ACP (B+ → K∗(892)0 ρ+)ACP (B+ → K∗(892)0 ρ+)ACP (B+ → K∗(892)0 ρ+)ACP (B+ → K∗(892)0 ρ+)VALUE DOCUMENT ID TECN COMMENT
−0.01±0.16±0.02−0.01±0.16±0.02−0.01±0.16±0.02−0.01±0.16±0.02 AUBERT,B 06G BABR e+ e− → �(4S)ACP (B+ → b01K+)ACP (B+ → b01K+)ACP (B+ → b01K+)ACP (B+ → b01K+)VALUE DOCUMENT ID TECN COMMENT
−0.46±0.20±0.02−0.46±0.20±0.02−0.46±0.20±0.02−0.46±0.20±0.02 AUBERT 07BI BABR e+ e− → �(4S)ACP (B+ → K0K+)ACP (B+ → K0K+)ACP (B+ → K0K+)ACP (B+ → K0K+)VALUE DOCUMENT ID TECN COMMENT0.04 ±0.14 OUR AVERAGE0.04 ±0.14 OUR AVERAGE0.04 ±0.14 OUR AVERAGE0.04 ±0.14 OUR AVERAGE0.014±0.168±0.002 DUH 13 BELL e+ e− → �(4S)0.10 ±0.26 ±0.03 1 AUBERT,BE 06C BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.13 +0.23

−0.24 ±0.02 LIN 07 BELL Repl. by DUH 130.15 ±0.33 ±0.03 2 AUBERT,BE 05E BABR Repl. by AUBERT,BE 06C1Corresponds to 90% 
on�den
e range −0.31 < ACP < 0.54.2Corresponds to 90% 
on�den
e range −0.43 < ACP < 0.68.ACP (B+ → K0S K+)ACP (B+ → K0S K+)ACP (B+ → K0S K+)ACP (B+ → K0S K+)VALUE DOCUMENT ID TECN COMMENT
−0.21±0.14±0.01−0.21±0.14±0.01−0.21±0.14±0.01−0.21±0.14±0.01 AAIJ 13BS LHCB pp at 7 TeVACP (B+ → K+K0S K0S )ACP (B+ → K+K0S K0S )ACP (B+ → K+K0S K0S )ACP (B+ → K+K0S K0S )VALUE DOCUMENT ID TECN COMMENT0.04+0.04

−0.05±0.020.04+0.04
−0.05±0.020.04+0.04
−0.05±0.020.04+0.04
−0.05±0.02 LEES 12O BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.04±0.11±0.02 1 AUBERT,B 04V BABR Repl. by LEES 12O1Corresponds to 90% 
on�den
e range −0.23 < ACP < 0.15.



1200120012001200MesonParti
le ListingsB±ACP (B+ → K+K−π+)ACP (B+ → K+K−π+)ACP (B+ → K+K−π+)ACP (B+ → K+K−π+)VALUE DOCUMENT ID TECN COMMENT
−0.118±0.022 OUR AVERAGE−0.118±0.022 OUR AVERAGE−0.118±0.022 OUR AVERAGE−0.118±0.022 OUR AVERAGE
−0.123±0.017±0.014 1 AAIJ 14BO LHCB pp at 7, 8 TeV0.00 ±0.10 ±0.03 AUBERT 07BB BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.141±0.040±0.019 2 AAIJ 14 LHCB Repl. by AAIJ 14BO1AAIJ 14BO reports also CP asymmetries in restri
ted regions of phase spa
e.2AAIJ 14 reports ACP (B+ → K+K−π+) = −0.648 ± 0.070 ± 0.013 ± 0.007 in theDalitz plot region of m2K+K− < 1.5 GeV2/
4. The third un
ertainty is due to the CPasymmetry of the B± → J/ψK± referen
e mode un
ertainty.ACP (B+ → K+K−K+)ACP (B+ → K+K−K+)ACP (B+ → K+K−K+)ACP (B+ → K+K−K+)VALUE DOCUMENT ID TECN COMMENT
−0.033±0.008 OUR AVERAGE−0.033±0.008 OUR AVERAGE−0.033±0.008 OUR AVERAGE−0.033±0.008 OUR AVERAGE
−0.036±0.004±0.007 1 AAIJ 14BO LHCB pp at 7, 8 TeV
−0.017+0.019

−0.014±0.014 2 LEES 12O BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.043±0.009±0.008 AAIJ 13AZ LHCB Repl. by AAIJ 14BO
−0.017±0.026±0.015 AUBERT 06O BABR Repl. by LEES 12O0.02 ±0.07 ±0.03 AUBERT 03M BABR Repl. by AUBERT 06O1AAIJ 14BO reports also CP asymmetries in restri
ted regions of phase spa
e.2All intermediate 
harmonium and 
harm resonan
es are removed, ex
ept of χ
0.ACP (B+ → φK+)ACP (B+ → φK+)ACP (B+ → φK+)ACP (B+ → φK+)VALUE DOCUMENT ID TECN COMMENT0.024±0.028 OUR AVERAGE0.024±0.028 OUR AVERAGE0.024±0.028 OUR AVERAGE0.024±0.028 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3.0.017±0.011±0.006 1 AAIJ 15O LHCB pp at 7, 8 TeV0.128±0.044±0.013 LEES 12O BABR e+ e− → �(4S)
−0.07 ±0.17 +0.03

−0.02 ACOSTA 05J CDF pp at 1.96 TeV0.01 ±0.12 ±0.05 2 CHEN 03B BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.022±0.021±0.009 AAIJ 14A LHCB Repl. by AAIJ 15O0.00 ±0.08 ±0.02 AUBERT 06O BABR Repl. by LEES 12O0.04 ±0.09 ±0.01 3 AUBERT 04A BABR Repl. by AUBERT 06O
−0.05 ±0.20 ±0.03 4 AUBERT 02E BABR e+ e− → �(4S)1Obtained using ACP (B± → J/ψK±) = (0.3 ± 0.6) × 10−2.2Corresponds to 90% 
on�den
e range −0.20 <ACP < 0.22.3Corresponds to 90% 
on�den
e range −0.10 <ACP < 0.18.4Corresponds to 90% 
on�den
e range −0.37 <ACP < 0.28.ACP (B+ → X0(1550)K+)ACP (B+ → X0(1550)K+)ACP (B+ → X0(1550)K+)ACP (B+ → X0(1550)K+)VALUE DOCUMENT ID TECN COMMENT
−0.04±0.07±0.02−0.04±0.07±0.02−0.04±0.07±0.02−0.04±0.07±0.02 1 AUBERT 06O BABR e+ e− → �(4S)1Measured in the B+ → K+K−K+ de
ay.ACP (B+ → K∗+K+K−)ACP (B+ → K∗+K+K−)ACP (B+ → K∗+K+K−)ACP (B+ → K∗+K+K−)VALUE DOCUMENT ID TECN COMMENT0.11±0.08±0.030.11±0.08±0.030.11±0.08±0.030.11±0.08±0.03 AUBERT,B 06U BABR e+ e− → �(4S)ACP (B+ → φK∗(892)+)ACP (B+ → φK∗(892)+)ACP (B+ → φK∗(892)+)ACP (B+ → φK∗(892)+)VALUE DOCUMENT ID TECN COMMENT
−0.01±0.08 OUR AVERAGE−0.01±0.08 OUR AVERAGE−0.01±0.08 OUR AVERAGE−0.01±0.08 OUR AVERAGE0.00±0.09±0.04 AUBERT 07BA BABR e+ e− → �(4S)
−0.02±0.14±0.03 1 CHEN 05A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.16±0.17±0.03 AUBERT 03V BABR Repl. by AUBERT 07BA
−0.13±0.29+0.08

−0.11 2 CHEN 03B BELL Repl. by CHEN 05A
−0.43+0.36

−0.30±0.06 3 AUBERT 02E BABR Repl. by AUBERT 03V1Corresponds to 90% 
on�den
e range −0.25 <ACP < 0.22.2Corresponds to 90% 
on�den
e range −0.64 <ACP < 0.36.3Corresponds to 90% 
on�den
e range −0.88 <ACP < 0.18.ACP (B+ → φ(Kπ)∗+0 )ACP (B+ → φ(Kπ)∗+0 )ACP (B+ → φ(Kπ)∗+0 )ACP (B+ → φ(Kπ)∗+0 )VALUE DOCUMENT ID TECN COMMENT0.04±0.15±0.040.04±0.15±0.040.04±0.15±0.040.04±0.15±0.04 AUBERT 08BI BABR e+ e− → �(4S)ACP (B+ → φK1(1270)+)ACP (B+ → φK1(1270)+)ACP (B+ → φK1(1270)+)ACP (B+ → φK1(1270)+)VALUE DOCUMENT ID TECN COMMENT0.15±0.19±0.050.15±0.19±0.050.15±0.19±0.050.15±0.19±0.05 AUBERT 08BI BABR e+ e− → �(4S)ACP (B+ → φK∗2(1430)+)ACP (B+ → φK∗2(1430)+)ACP (B+ → φK∗2(1430)+)ACP (B+ → φK∗2(1430)+)VALUE DOCUMENT ID TECN COMMENT
−0.23±0.19±0.06−0.23±0.19±0.06−0.23±0.19±0.06−0.23±0.19±0.06 AUBERT 08BI BABR e+ e− → �(4S)ACP (B+ → K+φφ)ACP (B+ → K+φφ)ACP (B+ → K+φφ)ACP (B+ → K+φφ)VALUE DOCUMENT ID TECN COMMENT
−0.10±0.08±0.02−0.10±0.08±0.02−0.10±0.08±0.02−0.10±0.08±0.02 1 LEES 11A BABR e+ e− → �(4S)1mφφ < 2.85 GeV/
2.

ACP (B+ → K+[φφ℄η
 )ACP (B+ → K+[φφ℄η
 )ACP (B+ → K+[φφ℄η
 )ACP (B+ → K+[φφ℄η
 )VALUE DOCUMENT ID TECN COMMENT0.09±0.10±0.020.09±0.10±0.020.09±0.10±0.020.09±0.10±0.02 1 LEES 11A BABR e+ e− → �(4S)1mφφ is 
onsistent with η
 mass [2.94, 3.02℄ GeV/
2.ACP (B+ → K∗(892)+γ)ACP (B+ → K∗(892)+γ)ACP (B+ → K∗(892)+γ)ACP (B+ → K∗(892)+γ)VALUE DOCUMENT ID TECN COMMENT+0.018±0.028±0.007+0.018±0.028±0.007+0.018±0.028±0.007+0.018±0.028±0.007 AUBERT 09AO BABR e+ e− → �(4S)ACP (B+ → ηK+γ)ACP (B+ → ηK+γ)ACP (B+ → ηK+γ)ACP (B+ → ηK+γ)VALUE DOCUMENT ID TECN COMMENT
−0.12±0.07 OUR AVERAGE−0.12±0.07 OUR AVERAGE−0.12±0.07 OUR AVERAGE−0.12±0.07 OUR AVERAGE
−0.09±0.10±0.01 1 AUBERT 09 BABR e+ e− → �(4S)
−0.16±0.09±0.06 2 NISHIDA 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.09±0.12±0.01 1 AUBERT,B 06M BABR Repl. by AUBERT 091mηK < 3.25 GeV/
2.2mηK < 2.4 GeV/
2ACP (B+ → φK+γ)ACP (B+ → φK+γ)ACP (B+ → φK+γ)ACP (B+ → φK+γ)VALUE DOCUMENT ID TECN COMMENT
−0.13±0.11 OUR AVERAGE−0.13±0.11 OUR AVERAGE−0.13±0.11 OUR AVERAGE−0.13±0.11 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.
−0.03±0.11±0.08 SAHOO 11A BELL e+ e− → �(4S)
−0.26±0.14±0.05 AUBERT 07Q BABR e+ e− → �(4S)ACP (B+ → ρ+γ)ACP (B+ → ρ+γ)ACP (B+ → ρ+γ)ACP (B+ → ρ+γ)VALUE DOCUMENT ID TECN COMMENT
−0.11±0.32±0.09−0.11±0.32±0.09−0.11±0.32±0.09−0.11±0.32±0.09 TANIGUCHI 08 BELL e+ e− → �(4S)ACP (B+ → π+π0)ACP (B+ → π+π0)ACP (B+ → π+π0)ACP (B+ → π+π0)VALUE DOCUMENT ID TECN COMMENT0.03 ±0.04 OUR AVERAGE0.03 ±0.04 OUR AVERAGE0.03 ±0.04 OUR AVERAGE0.03 ±0.04 OUR AVERAGE0.025±0.043±0.007 DUH 13 BELL e+ e− → �(4S)0.03 ±0.08 ±0.01 AUBERT 07BC BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.07 ±0.06 ±0.01 LIN 08 BELL Repl. by DUH 13
−0.01 ±0.10 ±0.02 1 AUBERT 05L BABR Repl. by AUBERT 07BC0.00 ±0.10 ±0.02 2 CHAO 05A BELL Repl. by CHAO 04B
−0.02 ±0.10 ±0.01 3 CHAO 04B BELL Repl. by LIN 08
−0.03 +0.18

−0.17 ±0.02 4 AUBERT 03L BABR Repl. by AUBERT 05L0.30 ±0.30 +0.06
−0.04 5 CASEY 02 BELL Repl. by CHAO 04B1Corresponds to a 90% CL interval of −0.19 < ACP < 0.21.2Corresponds to a 90% CL interval of −0.17 < ACP < 0.16.3This 
orresponds to 90% CL interval of −0.18 < ACP < 0.14.4Corresponds to 90% 
on�den
e range −0.32 <ACP < 0.27.5Corresponds to 90% 
on�den
e range −0.23 <ACP < +0.86.ACP (B+ → π+π−π+)ACP (B+ → π+π−π+)ACP (B+ → π+π−π+)ACP (B+ → π+π−π+)VALUE DOCUMENT ID TECN COMMENT0.057±0.013 OUR AVERAGE0.057±0.013 OUR AVERAGE0.057±0.013 OUR AVERAGE0.057±0.013 OUR AVERAGE0.058±0.008±0.011 1 AAIJ 14BO LHCB pp at 7, 8 TeV0.032±0.044+0.040
−0.037 AUBERT 09L BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.117±0.021±0.011 2 AAIJ 14 LHCB Repl. by AAIJ 14BO
−0.007±0.077±0.025 AUBERT,B 05G BABR Repl. by AUBERT 09L
−0.39 ±0.33 ±0.12 AUBERT 03M BABR Repl. by AUBERT 05G1AAIJ 14BO reports also CP asymmetries in restri
ted regions of phase spa
e.2AAIJ 14 reports ACP (B+ → π+π−π+) = 0.584± 0.082± 0.027± 0.007 in the Dalitzplot region ofm2

π+π− > 15 GeV2/
4 orm2
π+π− < 0.4 GeV2/
4. The third un
ertaintyis due to the CP asymmetry of the B± → J/ψK± referen
e mode un
ertainty.ACP (B+ → ρ0π+)ACP (B+ → ρ0π+)ACP (B+ → ρ0π+)ACP (B+ → ρ0π+)VALUE DOCUMENT ID TECN COMMENT0.18 ±0.07 +0.05

−0.150.18 ±0.07 +0.05
−0.150.18 ±0.07 +0.05
−0.150.18 ±0.07 +0.05
−0.15 AUBERT 09L BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.074±0.120+0.035
−0.055 AUBERT,B 05G BABR Repl. by AUBERT 09L

−0.19 ±0.11 ±0.02 AUBERT 04Z BABR Repl. by AUBERT,B 05GACP (B+ → f2(1270)π+)ACP (B+ → f2(1270)π+)ACP (B+ → f2(1270)π+)ACP (B+ → f2(1270)π+)VALUE DOCUMENT ID TECN COMMENT0.41 ±0.25 +0.18
−0.150.41 ±0.25 +0.18
−0.150.41 ±0.25 +0.18
−0.150.41 ±0.25 +0.18
−0.15 AUBERT 09L BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.004±0.247+0.028
−0.032 AUBERT,B 05G BABR Repl. by AUBERT 09LACP (B+ → ρ0(1450)π+)ACP (B+ → ρ0(1450)π+)ACP (B+ → ρ0(1450)π+)ACP (B+ → ρ0(1450)π+)VALUE DOCUMENT ID TECN COMMENT

−0.06±0.28+0.23
−0.40−0.06±0.28+0.23
−0.40−0.06±0.28+0.23
−0.40−0.06±0.28+0.23
−0.40 AUBERT 09L BABR e+ e− → �(4S)



1201120112011201See key on page 601 MesonParti
le ListingsB±ACP (B+ → f0(1370)π+)ACP (B+ → f0(1370)π+)ACP (B+ → f0(1370)π+)ACP (B+ → f0(1370)π+)VALUE DOCUMENT ID TECN COMMENT0.72±0.15±0.160.72±0.15±0.160.72±0.15±0.160.72±0.15±0.16 AUBERT 09L BABR e+ e− → �(4S)ACP (B+ → π+π−π+ nonresonant)ACP (B+ → π+π−π+ nonresonant)ACP (B+ → π+π−π+ nonresonant)ACP (B+ → π+π−π+ nonresonant)VALUE DOCUMENT ID TECN COMMENT
−0.14±0.14+0.18

−0.08−0.14±0.14+0.18
−0.08−0.14±0.14+0.18
−0.08−0.14±0.14+0.18
−0.08 AUBERT 09L BABR e+ e− → �(4S)ACP (B+ → ρ+π0)ACP (B+ → ρ+π0)ACP (B+ → ρ+π0)ACP (B+ → ρ+π0)VALUE DOCUMENT ID TECN COMMENT0.02±0.11 OUR AVERAGE0.02±0.11 OUR AVERAGE0.02±0.11 OUR AVERAGE0.02±0.11 OUR AVERAGE

−0.01±0.13±0.02 AUBERT 07X BABR e+ e− → �(4S)0.06±0.17+0.04
−0.05 ZHANG 05A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.24±0.16±0.06 AUBERT 04Z BABR Repl. by AUBERT 07XACP (B+ → ρ+ρ0)ACP (B+ → ρ+ρ0)ACP (B+ → ρ+ρ0)ACP (B+ → ρ+ρ0)VALUE DOCUMENT ID TECN COMMENT
−0.05 ±0.05 OUR AVERAGE−0.05 ±0.05 OUR AVERAGE−0.05 ±0.05 OUR AVERAGE−0.05 ±0.05 OUR AVERAGE
−0.054±0.055±0.010 AUBERT 09G BABR e+ e− → �(4S)0.00 ±0.22 ±0.03 ZHANG 03B BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.12 ±0.13 ±0.10 AUBERT,BE 06G BABR Repl. by AUBERT 09G
−0.19 ±0.23 ±0.03 AUBERT 03V BABR Repl. by AUBERT,BE 06GACP (B+ → ωπ+)ACP (B+ → ωπ+)ACP (B+ → ωπ+)ACP (B+ → ωπ+)VALUE DOCUMENT ID TECN COMMENT
−0.04±0.06 OUR AVERAGE−0.04±0.06 OUR AVERAGE−0.04±0.06 OUR AVERAGE−0.04±0.06 OUR AVERAGE
−0.02±0.08±0.01 AUBERT 07AE BABR e+ e− → �(4S)
−0.02±0.09±0.01 JEN 06 BELL e+ e− → �(4S)
−0.34±0.25 1 CHEN 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.01±0.10±0.01 AUBERT,B 06E BABR Repl. by AUBERT 07AE0.03±0.16±0.01 AUBERT 04H BABR Repl. by AUBERT,B 06E0.50+0.23

−0.20±0.02 2 WANG 04A BELL Repl. by JEN 06
−0.01+0.29

−0.31±0.03 3 AUBERT 02E BABR Repl. by AUBERT 04H1Corresponds to 90% 
on�den
e range −0.75 <ACP < 0.07.2Corresponds to 90% CL interval -0.25< ACP <0.413Corresponds to 90% 
on�den
e range −0.50 <ACP < 0.46.ACP (B+ → ωρ+)ACP (B+ → ωρ+)ACP (B+ → ωρ+)ACP (B+ → ωρ+)VALUE DOCUMENT ID TECN COMMENT
−0.20±0.09±0.02−0.20±0.09±0.02−0.20±0.09±0.02−0.20±0.09±0.02 AUBERT 09H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.04±0.18±0.02 AUBERT,B 06T BABR Repl. by AUBERT 09H0.05±0.26±0.02 AUBERT 05O BABR Repl. by AUBERT,B 06TACP (B+ → ηπ+)ACP (B+ → ηπ+)ACP (B+ → ηπ+)ACP (B+ → ηπ+)VALUE DOCUMENT ID TECN COMMENT
−0.14±0.07 OUR AVERAGE−0.14±0.07 OUR AVERAGE−0.14±0.07 OUR AVERAGE−0.14±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.
−0.19±0.06±0.01 HOI 12 BELL e+ e− → �(4S)
−0.03±0.09±0.03 AUBERT 09AV BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.08±0.10±0.01 AUBERT 07AE BABR Repl. by AUBERT 09AV
−0.23±0.09±0.02 CHANG 07B BELL Repl. by HOI 12
−0.13±0.12±0.01 AUBERT,B 05K BABR Repl. by AUBERT 07AE0.07±0.15±0.03 CHANG 05A BELL Repl. by CHANG 07B
−0.44±0.18±0.01 AUBERT 04H BABR Repl. by AUBERT,B 05KACP (B+ → ηρ+)ACP (B+ → ηρ+)ACP (B+ → ηρ+)ACP (B+ → ηρ+)VALUE DOCUMENT ID TECN COMMENT0.11±0.11 OUR AVERAGE0.11±0.11 OUR AVERAGE0.11±0.11 OUR AVERAGE0.11±0.11 OUR AVERAGE0.13±0.11±0.02 AUBERT 08AH BABR e+ e− → �(4S)
−0.04+0.34

−0.32±0.01 WANG 07B BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.02±0.18±0.02 AUBERT,B 05K BABR Repl. by AUBERT 08AHACP (B+ → η′π+)ACP (B+ → η′π+)ACP (B+ → η′π+)ACP (B+ → η′π+)VALUE DOCUMENT ID TECN COMMENT0.06±0.16 OUR AVERAGE0.06±0.16 OUR AVERAGE0.06±0.16 OUR AVERAGE0.06±0.16 OUR AVERAGE0.03±0.17±0.02 AUBERT 09AV BABR e+ e− → �(4S)0.20+0.37

−0.36±0.04 SCHUEMANN 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.21±0.17±0.01 AUBERT 07AE BABR Repl. by AUBERT 09AV0.14±0.16±0.01 AUBERT,B 05K BABR Repl. by AUBERT 07AE

ACP (B+ → η′ρ+)ACP (B+ → η′ρ+)ACP (B+ → η′ρ+)ACP (B+ → η′ρ+)VALUE DOCUMENT ID TECN COMMENT0.26±0.17±0.020.26±0.17±0.020.26±0.17±0.020.26±0.17±0.02 DEL-AMO-SA...10A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.04±0.28±0.02 1 AUBERT 07E BABR Repl. by DEL-AMO-SANCHEZ 10A1Reports ACP with the opposite sign 
onvention.ACP (B+ → b01π+)ACP (B+ → b01π+)ACP (B+ → b01π+)ACP (B+ → b01π+)VALUE DOCUMENT ID TECN COMMENT+0.05±0.16±0.02+0.05±0.16±0.02+0.05±0.16±0.02+0.05±0.16±0.02 AUBERT 07BI BABR e+ e− → �(4S)ACP (B+ → ppπ+)ACP (B+ → ppπ+)ACP (B+ → ppπ+)ACP (B+ → ppπ+)VALUE DOCUMENT ID TECN COMMENT0.00±0.04 OUR AVERAGE0.00±0.04 OUR AVERAGE0.00±0.04 OUR AVERAGE0.00±0.04 OUR AVERAGE
−0.02±0.05±0.02 1 WEI 08 BELL e+ e− → �(4S)+0.04±0.07±0.04 AUBERT 07AV BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.16±0.22±0.01 WANG 04 BELL Repl. by WEI 081Requires mpp < 2.85 GeV/
2.ACP (B+ → ppK+)ACP (B+ → ppK+)ACP (B+ → ppK+)ACP (B+ → ppK+)VALUE DOCUMENT ID TECN COMMENT0.00 ±0.04 OUR AVERAGE0.00 ±0.04 OUR AVERAGE0.00 ±0.04 OUR AVERAGE0.00 ±0.04 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2.0.021±0.020±0.004 1 AAIJ 14AF LHCB pp at 7, 8 TeV
−0.17 ±0.10 ±0.02 1 WEI 08 BELL e+ e− → �(4S)
−0.16 +0.07

−0.08 ±0.04 1 AUBERT,B 05L BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.047±0.036±0.007 1 AAIJ 13AU LHCB Repl. by AAIJ 14AF
−0.05 ±0.11 ±0.01 WANG 04 BELL Repl. by WEI 081Requires mpp < 2.85 GeV/
2.ACP (B+ → ppK∗(892)+)ACP (B+ → ppK∗(892)+)ACP (B+ → ppK∗(892)+)ACP (B+ → ppK∗(892)+)VALUE DOCUMENT ID TECN COMMENT0.21±0.16 OUR AVERAGE0.21±0.16 OUR AVERAGE0.21±0.16 OUR AVERAGE0.21±0.16 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.
−0.01±0.19±0.02 CHEN 08C BELL e+ e− → �(4S)+0.32±0.13±0.05 AUBERT 07AV BABR e+ e− → �(4S)ACP (B+ → p�γ)ACP (B+ → p�γ)ACP (B+ → p�γ)ACP (B+ → p�γ)VALUE DOCUMENT ID TECN COMMENT+0.17±0.16±0.05+0.17±0.16±0.05+0.17±0.16±0.05+0.17±0.16±0.05 WANG 07C BELL e+ e− → �(4S)ACP (B+ → p�π0)ACP (B+ → p�π0)ACP (B+ → p�π0)ACP (B+ → p�π0)VALUE DOCUMENT ID TECN COMMENT+0.01±0.17±0.04+0.01±0.17±0.04+0.01±0.17±0.04+0.01±0.17±0.04 WANG 07C BELL e+ e− → �(4S)ACP (B+ → K+ ℓ+ ℓ−)ACP (B+ → K+ ℓ+ ℓ−)ACP (B+ → K+ ℓ+ ℓ−)ACP (B+ → K+ ℓ+ ℓ−)VALUE DOCUMENT ID TECN COMMENT
−0.02±0.08 OUR AVERAGE−0.02±0.08 OUR AVERAGE−0.02±0.08 OUR AVERAGE−0.02±0.08 OUR AVERAGE
−0.03±0.14±0.01 1 LEES 12S BABR e+ e− → �(4S)
−0.18±0.18±0.01 AUBERT 09T BABR e+ e− → �(4S)+0.04±0.10±0.02 WEI 09A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.07±0.22±0.02 AUBERT,B 06J BABR Repl. by AUBERT 09T1Measured in the union of 0.10 < q2 < 8.12 GeV2/
4 and q2 > 10.11 GeV2/
4.LEES 12S reports also individual measurements ACP (B+ → K+ ℓ+ ℓ−) = 0.02 ±0.18 ± 0.01 for 0.10 < q2 < 8.12 GeV2/
4 and ACP (B+ → K+ ℓ+ ℓ−) =

−0.06+0.22
−0.21 ± 0.01 for q2 > 10.11 GeV2/
4.ACP (B+ → K+ e+ e−)ACP (B+ → K+ e+ e−)ACP (B+ → K+ e+ e−)ACP (B+ → K+ e+ e−)VALUE DOCUMENT ID TECN COMMENT+0.14±0.14±0.03+0.14±0.14±0.03+0.14±0.14±0.03+0.14±0.14±0.03 WEI 09A BELL e+ e− → �(4S)ACP (B+ → K+µ+µ−)ACP (B+ → K+µ+µ−)ACP (B+ → K+µ+µ−)ACP (B+ → K+µ+µ−)VALUE DOCUMENT ID TECN COMMENT0.011±0.017 OUR AVERAGE0.011±0.017 OUR AVERAGE0.011±0.017 OUR AVERAGE0.011±0.017 OUR AVERAGE0.012±0.017±0.001 AAIJ 14AN LHCB pp at 7, 8 TeV

−0.05 ±0.13 ±0.03 WEI 09A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.000±0.033±0.009 AAIJ 13BN LHCB Repl. by AAIJ 14ANACP (B+ → π+µ+µ−)ACP (B+ → π+µ+µ−)ACP (B+ → π+µ+µ−)ACP (B+ → π+µ+µ−)VALUE DOCUMENT ID TECN COMMENT
−0.11±0.12±0.01−0.11±0.12±0.01−0.11±0.12±0.01−0.11±0.12±0.01 AAIJ 15AR LHCB pp at 7, 8 TeVACP (B+ → K∗+ ℓ+ ℓ−)ACP (B+ → K∗+ ℓ+ ℓ−)ACP (B+ → K∗+ ℓ+ ℓ−)ACP (B+ → K∗+ ℓ+ ℓ−)VALUE DOCUMENT ID TECN COMMENT
−0.09±0.14 OUR AVERAGE−0.09±0.14 OUR AVERAGE−0.09±0.14 OUR AVERAGE−0.09±0.14 OUR AVERAGE0.01+0.26

−0.24±0.02 AUBERT 09T BABR e+ e− → �(4S)
−0.13+0.17

−0.16±0.01 WEI 09A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.03±0.23±0.03 AUBERT,B 06J BABR Repl. by AUBERT 09T



1202120212021202MesonParti
le ListingsB±ACP (B+ → K∗ e+ e−)ACP (B+ → K∗ e+ e−)ACP (B+ → K∗ e+ e−)ACP (B+ → K∗ e+ e−)VALUE DOCUMENT ID TECN COMMENT
−0.14+0.23

−0.22±0.02−0.14+0.23
−0.22±0.02−0.14+0.23
−0.22±0.02−0.14+0.23
−0.22±0.02 WEI 09A BELL e+ e− → �(4S)ACP (B+ → K∗µ+µ−)ACP (B+ → K∗µ+µ−)ACP (B+ → K∗µ+µ−)ACP (B+ → K∗µ+µ−)VALUE DOCUMENT ID TECN COMMENT

−0.12±0.24±0.02−0.12±0.24±0.02−0.12±0.24±0.02−0.12±0.24±0.02 WEI 09A BELL e+ e− → �(4S)
γ(B+ → D(∗)0K (∗)+)γ(B+ → D(∗)0K (∗)+)γ(B+ → D(∗)0K (∗)+)γ(B+ → D(∗)0K (∗)+)For angle γ(φ3) of the CKM unitarity triangle, see the review on \CP Violation" inthe Reviews se
tion.VALUE (◦) CL% DOCUMENT ID TECN COMMENT70 ± 9 OUR AVERAGE70 ± 9 OUR AVERAGE70 ± 9 OUR AVERAGE70 ± 9 OUR AVERAGE62 +15

−14 1 AAIJ 14BA LHCB pp at 7, 8 TeV69 +17
−16 2 LEES 13B BABR e+ e− → �(4S)78.4+10.8
−11.6± 9.6 3 POLUEKTOV 10 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •84 +49
−42 4 AAIJ 14BE LHCB Repl. by AAIJ 14BA72.6+ 9.7
−17.2 5 AAIJ 13AK LHCB pp at 7 TeV44 +43
−38 6,7 AAIJ 12AQ LHCB Repl. by AAIJ 13AK77.3+15.1
−14.9± 5.9 7,8 AIHARA 12 BELL e+ e− → �(4S)68 ±14 ± 5 9 DEL-AMO-SA...10F BABR Repl. by LEES 13B7 to 173 95 10 DEL-AMO-SA...10G BABR e+ e− → �(4S)76 +22
−23 ± 7.1 11 AUBERT 08AL BABR Repl. by DEL-AMO-SANCHEZ 10F53 +15
−18 ±10 12 POLUEKTOV 06 BELL Repl. by POLUEKTOV 1070 ±31 +18

−15 13 AUBERT,B 05Y BABR Repl. by AUBERT 08AL77 +17
−19 ±17 14 POLUEKTOV 04 BELL Repl. by POLUEKTOV 061Uses binned Dalitz plot analysis of B+ → DK+ de
ays, with D → K0S π+π− andD → K0S K+K−. Strong phase measurements from CLEO-
 (LIBBY 10) of the Dde
ay over the Dalitz plot are used as input. Solution that satis�es 0 < γ < 180 is
hosen.2Reports 
ombination of published measurements using GGSZ, GLW, and ADS methods.Reports also 2σ range of 41{102◦ and a 5.9σ signi�
an
e for γ(B+ → D(∗)0K(∗)+)
6= 0 hypothesis.3Uses Dalitz plot analysis of D0 → K0S π+π− de
ays from B+ → D(∗)K+ modes.The 
orresponding two standard deviation interval for γ is 54.2◦ < γ < 100.5◦. CP
onservation in the 
ombined result is ruled out with a signi�
an
e of 3.5 standarddeviations.4AAIJ 14BE uses model-dependent analysis of D → K0S π+π− amplitudes. The modelis the same as in DEL-AMO-SANCHEZ 10F.5 Presents a 
on�den
e region 55.4◦ < γ < 82.3◦ at 68% CL with best �t value 72.6◦and in
ludes both statisti
al and systemati
 un
ertainties. The 
orresponding 95% CLis 40.2 ◦ < γ < 92.7◦. The value is determined from 
ombination of measuremetsusing D meson de
aying to K+K−, π+π−, K±π∓, K0S π+π−, K0S K+K−, andK±π∓π±π∓. Combines B± → DK± and B± → Dπ±.6Reports 
ombined statisti
al and systemati
 un
ertainties.7Uses binned Dalitz plot of D0 → K0S π+π− de
ays from B+ → D0K+. Measurementof strong phases in D0 → K0S π+π− Dalitz plot from LIBBY 10 is used as input.8We 
ombined the systemati
s in quadrature. The authors report separately the 
ontri-bution to the systemati
 un
ertainty due to the un
ertainty on the bin-averaged strongphase di�eren
e between D0 and D0 amplitudes.9Uses Dalitz plot analysis of D0 → K0S π+π−, K0S K+K− de
ays from B+ →D(∗)K+, DK∗+ modes. The 
orresponding two standard deviation interval for γ is39◦ < γ < 98◦. CP 
onservation in the 
ombined result is ruled out with a signi�
an
eof 3.5 standard deviations.10Reports 
on�den
e intervals for the CKM angle γ from the measured values of the GLWparameters using B± → DK± de
ays with D mesons de
aying to non-CP(K π), CP-even (K+K−, π+π−), and CP-odd (K0S π0, K0S ω) states.11Uses Dalitz plot analysis of D0 → K0S π+π− and D0 → K0S K+K− de
ays 
omingfrom B± → D(∗)K(∗)± modes. The 
orresponding two standard deviation interval is29◦ < γ < 122◦.12Uses a Dalitz plot analysis of the D0 → K0S π+π− de
ays; Combines the DK+, D∗K+and DK∗+ modes. The 
orresponding two standard deviations interval for gamma is8◦ < γ < 111◦.13Uses a Dalitz plot analysis of neutral D → K0S π+π− de
ays 
oming from B± →DK± and B± → D∗0K± followed by D∗0 → Dπ0, D γ. The 
orresponding twostandard deviations interval for gamma is 12◦ < γ < 137◦. AUBERT,B 05Y alsoreports the amplitude ratios and the strong phases.14Uses a Dalitz plot analysis of the 3-body D → K0S π+π− de
ays 
oming from B± →DK± and B± → D∗K± followed by D∗ → Dπ0; here we use D to denote that theneutral D meson produ
ed in the de
ay is an admixture of D0 and D0. The 
orrespondingtwo standard deviations interval for γ is 26◦ < γ < 126◦ . POLUEKTOV 04 also reportsthe amplitude ratios and the strong phases.

γ(B+ → DK+π−π+, D π+π−π+)γ(B+ → DK+π−π+, D π+π−π+)γ(B+ → DK+π−π+, D π+π−π+)γ(B+ → DK+π−π+, D π+π−π+)VALUE (◦) DOCUMENT ID TECN COMMENT74+20
−1974+20
−1974+20
−1974+20
−19 AAIJ 15BC LHCB pp at 7, 8 TeV

PARTIAL BRANCHING FRACTIONSPARTIAL BRANCHING FRACTIONSPARTIAL BRANCHING FRACTIONSPARTIAL BRANCHING FRACTIONSB(B+ → K∗+ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.4 ±0.5 OUR AVERAGE1.4 ±0.5 OUR AVERAGE1.4 ±0.5 OUR AVERAGE1.4 ±0.5 OUR AVERAGE1.37+0.60
−0.58 AAIJ 12AH LHCB pp at 7 TeV1.30±0.98±0.14 AALTONEN 11AI CDF pp at 1.96 TeVB(B+ → K∗+ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.1 ±0.5 OUR AVERAGE1.1 ±0.5 OUR AVERAGE1.1 ±0.5 OUR AVERAGE1.1 ±0.5 OUR AVERAGE1.24+0.60
−0.55 AAIJ 12AH LHCB pp at 7 TeV0.71±1.00±0.15 AALTONEN 11AI CDF pp at 1.96 TeVB(B+ → K∗+ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT2.4 +0.8
−0.7 OUR AVERAGE2.4 +0.8
−0.7 OUR AVERAGE2.4 +0.8
−0.7 OUR AVERAGE2.4 +0.8
−0.7 OUR AVERAGE2.50+0.88
−0.74 AAIJ 12AH LHCB pp at 7 TeV1.71±1.58±0.49 AALTONEN 11AI CDF pp at 1.96 TeVB(B+ → K∗+ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT2.1 ±0.6 OUR AVERAGE2.1 ±0.6 OUR AVERAGE2.1 ±0.6 OUR AVERAGE2.1 ±0.6 OUR AVERAGE2.13+0.72
−0.66 AAIJ 12AH LHCB pp at 7 TeV1.97±0.99±0.22 AALTONEN 11AI CDF pp at 1.96 TeVB(B+ → K∗+ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.86+0.40
−0.32 OUR AVERAGE0.86+0.40
−0.32 OUR AVERAGE0.86+0.40
−0.32 OUR AVERAGE0.86+0.40
−0.32 OUR AVERAGE1.00+0.47
−0.38 AAIJ 12AH LHCB pp at 7 TeV0.52±0.61±0.09 AALTONEN 11AI CDF pp at 1.96 TeVB(B+ → K∗+ ℓ+ ℓ−) (15.0 < q2 < 19.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (15.0 < q2 < 19.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (15.0 < q2 < 19.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (15.0 < q2 < 19.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.58+0.32
−0.29±0.111.58+0.32
−0.29±0.111.58+0.32
−0.29±0.111.58+0.32
−0.29±0.11 1 AAIJ 14M LHCB pp at 7, 8 TeV1Uses B(B+ → J/ψ(1S)K∗(892)+) = (1.431±0.027±0.090)×10−3 for normalizationand µ+µ− as a lepton pair.B(B+ → K∗+ ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE1.25±0.46 AAIJ 12AH LHCB pp at 7 TeV1.57±0.96±0.17 AALTONEN 11AI CDF pp at 1.96 TeVB(B+ → K∗+ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.8 ±0.4 OUR AVERAGE1.8 ±0.4 OUR AVERAGE1.8 ±0.4 OUR AVERAGE1.8 ±0.4 OUR AVERAGE1.79+0.41
−0.37±0.13 1 AAIJ 14M LHCB pp at 7, 8 TeV2.57±1.61±0.40 AALTONEN 11AI CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.90+0.90
−0.85 AAIJ 12AH LHCB Repl. by AAIJ 14M1Uses B(B+ → J/ψ(1S)K∗(892)+) = (1.431±0.027±0.090)×10−3 for normalizationand µ+µ− as a lepton pair. Measured in 1.1 < q2 < 6.0 GeV2/
4.B(B+ → K∗+ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B+ → K∗+ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT2.01±1.39±0.272.01±1.39±0.272.01±1.39±0.272.01±1.39±0.27 AALTONEN 11AI CDF pp at 1.96 TeVB(B+ → K+ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.51 ±0.08 OUR AVERAGE0.51 ±0.08 OUR AVERAGE0.51 ±0.08 OUR AVERAGE0.51 ±0.08 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.0.556±0.053±0.027 1 AAIJ 13H LHCB pp at 7 TeV0.36 ±0.11 ±0.03 AALTONEN 11AI CDF pp at 1.96 TeV1Measured in 0.05 < q2 < 2.0 GeV2/
4 range.B(B+ → K+ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.60 ±0.07 OUR AVERAGE0.60 ±0.07 OUR AVERAGE0.60 ±0.07 OUR AVERAGE0.60 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.573±0.053±0.023 AAIJ 13H LHCB pp at 7 TeV0.80 ±0.15 ±0.05 AALTONEN 11AI CDF pp at 1.96 TeVB(B+ → K+ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.03 ±0.07 OUR AVERAGE1.03 ±0.07 OUR AVERAGE1.03 ±0.07 OUR AVERAGE1.03 ±0.07 OUR AVERAGE1.003±0.070±0.039 AAIJ 13H LHCB pp at 7 TeV1.18 ±0.19 ±0.09 AALTONEN 11AI CDF pp at 1.96 TeV



1203120312031203See key on page 601 MesonParti
le ListingsB±B(B+ → K+ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.58 ±0.05 OUR AVERAGE0.58 ±0.05 OUR AVERAGE0.58 ±0.05 OUR AVERAGE0.58 ±0.05 OUR AVERAGE0.565±0.050±0.022 AAIJ 13H LHCB pp at 7 TeV0.68 ±0.12 ±0.05 AALTONEN 11AI CDF pp at 1.96 TeVB(B+ → K+ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.40 ±0.05 OUR AVERAGE0.40 ±0.05 OUR AVERAGE0.40 ±0.05 OUR AVERAGE0.40 ±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.0.377±0.036±0.015 AAIJ 13H LHCB pp at 7 TeV0.53 ±0.10 ±0.03 AALTONEN 11AI CDF pp at 1.96 TeVB(B+ → K+ ℓ+ ℓ−) (16.0 < q2 < 18.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (16.0 < q2 < 18.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (16.0 < q2 < 18.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (16.0 < q2 < 18.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.354±0.036±0.0180.354±0.036±0.0180.354±0.036±0.0180.354±0.036±0.018 AAIJ 13H LHCB pp at 7 TeVB(B+ → K+ ℓ+ ℓ−) (18.0 < q2 < 22.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (18.0 < q2 < 22.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (18.0 < q2 < 22.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (18.0 < q2 < 22.0 GeV2/
4)FH is a fra
tional 
ontribution of (pseudo) s
alar and tensor amplitudes to the de
aywidth in the massless muon approximation.VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.312±0.040±0.0160.312±0.040±0.0160.312±0.040±0.0160.312±0.040±0.016 AAIJ 13H LHCB pp at 7 TeVB(B+ → K+ ℓ+ ℓ−) (15.0 < q2 < 22.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (15.0 < q2 < 22.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (15.0 < q2 < 22.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (15.0 < q2 < 22.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.85±0.03±0.040.85±0.03±0.040.85±0.03±0.040.85±0.03±0.04 1 AAIJ 14M LHCB pp at 7, 8 TeV1Uses B(B+ → J/ψ(1S)K+) = (0.998 ± 0.014 ± 0.040)× 10−3 for normalization and
µ+µ− as a lepton pair.B(B+ → K+ ℓ+ ℓ−) (16.0 < q2 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (16.0 < q2 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (16.0 < q2 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (16.0 < q2 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.48±0.11±0.030.48±0.11±0.030.48±0.11±0.030.48±0.11±0.03 AALTONEN 11AI CDF pp at 1.96 TeVB(B+ → K+ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.26 ±0.10 OUR AVERAGE1.26 ±0.10 OUR AVERAGE1.26 ±0.10 OUR AVERAGE1.26 ±0.10 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.1.56 +0.19
−0.15 +0.06

−0.04 1 AAIJ 14AR LHCB pp at 7, 8 TeV1.19 ±0.034±0.059 2 AAIJ 14M LHCB pp at 7, 8 TeV1.41 ±0.20 ±0.10 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.205±0.085±0.070 AAIJ 13H LHCB Repl. by AAIJ 14M1Measured by taking the ratio of the bran
hing fra
tion from B+ → K+ e+ e− andB+ → J/ψ (e+ e−)K+ de
ays and multiplying it by the measured value of B+ →J/ψK+ and J/ψ → e+ e− as in PDG 12 update. The bran
hing fra
tion of B+ →K+ e+ e− is determined in the region 1< q2 < 6 GeV2/
4.2Uses B(B+ → J/ψ(1S)K+) = (0.998 ± 0.014 ± 0.040)× 10−3 for normalization and

µ+µ− for leptons. Measured for 1.1 < q2 < 6.0 GeV2/
4.
WEIGHTED AVERAGE
1.26±0.10 (Error scaled by 1.6)

AALTONEN 11AI CDF 0.4
AAIJ 14M LHCB 1.1
AAIJ 14AR LHCB 3.7

χ2

       5.2
(Confidence Level = 0.073)

0.5 1 1.5 2 2.5 3B(B+ → K+ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4) (units 10−7)B(B+ → K+µ+µ−) / B(B+ → K+ e+ e−) (1.0 < q2 < 6.0 GeV2/
4)B(B+ → K+µ+µ−) / B(B+ → K+ e+ e−) (1.0 < q2 < 6.0 GeV2/
4)B(B+ → K+µ+µ−) / B(B+ → K+ e+ e−) (1.0 < q2 < 6.0 GeV2/
4)B(B+ → K+µ+µ−) / B(B+ → K+ e+ e−) (1.0 < q2 < 6.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.745+0.090
−0.074±0.0360.745+0.090
−0.074±0.0360.745+0.090
−0.074±0.0360.745+0.090
−0.074±0.036 1 AAIJ 14AR LHCB pp at 7, 8 TeV1The ratio is determined using the ratio of the relative bran
hing fra
tions of the de
aysB+ → K+ ℓ+ ℓ− and B+ → J/ψ(→ ℓ+ ℓ−)K+, with ℓ = e, µ.B(B+ → K+ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B+ → K+ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.13±0.19±0.081.13±0.19±0.081.13±0.19±0.081.13±0.19±0.08 AALTONEN 11AI CDF pp at 1.96 TeV

B(B+ → K+π+π−µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)B(B+ → K+π+π−µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)B(B+ → K+π+π−µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)B(B+ → K+π+π−µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.38+0.15
−0.14±0.081.38+0.15
−0.14±0.081.38+0.15
−0.14±0.081.38+0.15
−0.14±0.08 AAIJ 14AZ LHCB pp at 7, 8 TeVB(B+ → K+π+π−µ+µ−) (0.10 < q2 < 2.00 GeV2/
4)B(B+ → K+π+π−µ+µ−) (0.10 < q2 < 2.00 GeV2/
4)B(B+ → K+π+π−µ+µ−) (0.10 < q2 < 2.00 GeV2/
4)B(B+ → K+π+π−µ+µ−) (0.10 < q2 < 2.00 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.33+0.13
−0.12±0.091.33+0.13
−0.12±0.091.33+0.13
−0.12±0.091.33+0.13
−0.12±0.09 AAIJ 14AZ LHCB pp at 7, 8 TeVB(B+ → K+π+π−µ+µ−) (2.00 < q2 < 4.30 GeV2/
4)B(B+ → K+π+π−µ+µ−) (2.00 < q2 < 4.30 GeV2/
4)B(B+ → K+π+π−µ+µ−) (2.00 < q2 < 4.30 GeV2/
4)B(B+ → K+π+π−µ+µ−) (2.00 < q2 < 4.30 GeV2/
4)VALUE (units 10−8) DOCUMENT ID TECN COMMENT5.38+0.94
−0.87±0.355.38+0.94
−0.87±0.355.38+0.94
−0.87±0.355.38+0.94
−0.87±0.35 AAIJ 14AZ LHCB pp at 7, 8 TeVB(B+ → K+π+π−µ+µ−) (4.30 < q2 < 8.68 GeV2/
4)B(B+ → K+π+π−µ+µ−) (4.30 < q2 < 8.68 GeV2/
4)B(B+ → K+π+π−µ+µ−) (4.30 < q2 < 8.68 GeV2/
4)B(B+ → K+π+π−µ+µ−) (4.30 < q2 < 8.68 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.01+0.12
−0.13±0.091.01+0.12
−0.13±0.091.01+0.12
−0.13±0.091.01+0.12
−0.13±0.09 AAIJ 14AZ LHCB pp at 7, 8 TeVB(B+ → K+π+π−µ+µ−) (10.09 < q2 < 12.86 GeV2/
4)B(B+ → K+π+π−µ+µ−) (10.09 < q2 < 12.86 GeV2/
4)B(B+ → K+π+π−µ+µ−) (10.09 < q2 < 12.86 GeV2/
4)B(B+ → K+π+π−µ+µ−) (10.09 < q2 < 12.86 GeV2/
4)VALUE (units 10−8) DOCUMENT ID TECN COMMENT5.07+0.94
−0.89±0.475.07+0.94
−0.89±0.475.07+0.94
−0.89±0.475.07+0.94
−0.89±0.47 AAIJ 14AZ LHCB pp at 7, 8 TeVB(B+ → K+π+π−µ+µ−) (14.18 < q2 < 19.00 GeV2/
4)B(B+ → K+π+π−µ+µ−) (14.18 < q2 < 19.00 GeV2/
4)B(B+ → K+π+π−µ+µ−) (14.18 < q2 < 19.00 GeV2/
4)B(B+ → K+π+π−µ+µ−) (14.18 < q2 < 19.00 GeV2/
4)VALUE (units 10−8) DOCUMENT ID TECN COMMENT0.48+0.39
−0.29±0.050.48+0.39
−0.29±0.050.48+0.39
−0.29±0.050.48+0.39
−0.29±0.05 AAIJ 14AZ LHCB pp at 7, 8 TeVB(B+ → π+µ+µ−)/B(B+ → K+µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)B(B+ → π+µ+µ−)/B(B+ → K+µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)B(B+ → π+µ+µ−)/B(B+ → K+µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)B(B+ → π+µ+µ−)/B(B+ → K+µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)VALUE (units 10−2) DOCUMENT ID TECN COMMENT3.8±0.9±0.13.8±0.9±0.13.8±0.9±0.13.8±0.9±0.1 AAIJ 15AR LHCB pp at 7, 8 TeVB(B+ → π+µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)B(B+ → π+µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)B(B+ → π+µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)B(B+ → π+µ+µ−) (1.00 < q2 < 6.00 GeV2/
4)VALUE (units 10−9) DOCUMENT ID TECN COMMENT4.55+1.05
−1.00±0.154.55+1.05
−1.00±0.154.55+1.05
−1.00±0.154.55+1.05
−1.00±0.15 AAIJ 15AR LHCB pp at 7, 8 TeVB(B+ → π+µ+µ−) (15.00 < q2 < 22.00 GeV2/
4)B(B+ → π+µ+µ−) (15.00 < q2 < 22.00 GeV2/
4)B(B+ → π+µ+µ−) (15.00 < q2 < 22.00 GeV2/
4)B(B+ → π+µ+µ−) (15.00 < q2 < 22.00 GeV2/
4)VALUE (units 10−9) DOCUMENT ID TECN COMMENT3.29+0.84
−0.70±0.073.29+0.84
−0.70±0.073.29+0.84
−0.70±0.073.29+0.84
−0.70±0.07 AAIJ 15AR LHCB pp at 7, 8 TeVB(B+ → π+µ+µ−)/B(B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)B(B+ → π+µ+µ−)/B(B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)B(B+ → π+µ+µ−)/B(B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)B(B+ → π+µ+µ−)/B(B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)VALUE (units 10−2) DOCUMENT ID TECN COMMENT3.7±0.8±0.13.7±0.8±0.13.7±0.8±0.13.7±0.8±0.1 AAIJ 15AR LHCB pp at 7, 8 TeVAFB(B+ → K+µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)AFB(B+ → K+µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)AFB(B+ → K+µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)AFB(B+ → K+µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)AFB is the forward-ba
kward angular asymmetry of the lepton pair in B →K(∗) ℓ+ ℓ− de
ay as de�ned in B+, B0 admixture parti
le listings.VALUE DOCUMENT ID TECN COMMENT0.005±0.015±0.0100.005±0.015±0.0100.005±0.015±0.0100.005±0.015±0.010 1 AAIJ 14O LHCB pp at 7,8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.02 +0.05
−0.03 +0.02

−0.01 AAIJ 13H LHCB Repl. by AAIJ 14O1AAIJ 14O reports 68% C.L. interval, whi
h we en
ode as midpoint with un
ertainty ashalf of the width of interval.AFB(B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)AFB(B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)AFB(B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)AFB(B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT
−0.015±0.015±0.01−0.015±0.015±0.01−0.015±0.015±0.01−0.015±0.015±0.01 1 AAIJ 14O LHCB pp at 7, 8 TeV1AAIJ 14O reports 68% C.L. interval, whi
h we en
ode as midpoint with un
ertainty ashalf of the width of interval.FH (B+ → K+µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)FH (B+ → K+µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)FH (B+ → K+µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)FH (B+ → K+µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)FH is a fra
tional 
ontribution of (pseudo) s
alar and tensor amplitudes to the de
aywidth in the massless muon approximation.VALUE DOCUMENT ID TECN COMMENT0.03±0.03±0.020.03±0.03±0.020.03±0.03±0.020.03±0.03±0.02 1 AAIJ 14O LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.05+0.08

−0.05+0.04
−0.02 AAIJ 13H LHCB Repl. by AAIJ 14O1AAIJ 14O reports 68% C.L. interval, whi
h we en
ode as midpoint with un
ertainty ashalf of the width of interval.FH (B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)FH (B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)FH (B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)FH (B+ → K+µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)FH is a fra
tional 
ontribution of (pseudo) s
alar and tensor amplitudes to the de
aywidth in the massless muon approximation.VALUE DOCUMENT ID TECN COMMENT0.035±0.035±0.020.035±0.035±0.020.035±0.035±0.020.035±0.035±0.02 1 AAIJ 14O LHCB pp at 7, 8 TeV1AAIJ 14O reports 68% C.L. interval, whi
h we en
ode as midpoint with un
ertainty ashalf of the width of interval.
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kward assymmetry is de�ned as AFB = [ N(qFB >0) − N(qFB < 0)℄ / [N(qFB > 0) + N(qFB < 0) ℄, where qFB= − qB · sgn(ηB ) with qB as the B hadron ele
tri
 
harge, ηB as itspseudorapidity, and sgn(ηB ) as a sign fun
tion of ηB .AFB(B± → J/ψK±)AFB(B± → J/ψK±)AFB(B± → J/ψK±)AFB(B± → J/ψK±)VALUE (units 10−2) DOCUMENT ID TECN COMMENT
−0.24±0.41±0.19−0.24±0.41±0.19−0.24±0.41±0.19−0.24±0.41±0.19 ABAZOV 15 D0 pp at 1.96 TeVB± REFERENCESB± REFERENCESB± REFERENCESB± REFERENCESLEES 16 PRL 116 041801 J.P. Lees et al. (BABAR Collab.)AAIJ 15AR JHEP 1510 034 R. Aaij et al. (LHCb Collab.)AAIJ 15BC PR D92 112005 R. Aaij et al. (LHCb Collab.)AAIJ 15O PRL 115 051801 R. Aaij et al. (LHCb Collab.)AAIJ 15V PR D91 092002 R. Aaij et al. (LHCb Collab.)AAIJ 15W PR D91 112014 R. Aaij et al. (LHCb Collab.)ABAZOV 15 PRL 114 051803 V.M. Abazov et al. (D0 Collab.)BALA 15 PR D91 051101 A. Bala et al. (BELLE Collab.)CHOI 15A PR D91 092011 S.-K. Choi et al. (BELLE Collab.)GOH 15 PR D91 071101 Y.M. Goh et al. (BELLE Collab.)HELLER 15 PR D91 112009 A. Heller et al. (BELLE Collab.)KRONENBIT... 15 PR D92 051102 B. Kronenbitter et al. (BELLE Collab.)LEES 15 PR D91 012003 J.P. Lees et al. (BABAR Collab.)LEES 15C PR D91 052002 J.P. Lees et al. (BABAR Collab.)VINOKUROVA 15 JHEP 1506 132 A. Vinokurova et al. (BELLE Collab.)WIECHCZYN... 15 PR D91 032008 J. Wie
h
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le Listings.B0 MASSB0 MASSB0 MASSB0 MASSThe �t uses mB+ , (mB0 − mB+), and mB0 to determine mB+ , mB0 ,and the mass di�eren
e.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT5279.62±0.15 OUR FIT5279.62±0.15 OUR FIT5279.62±0.15 OUR FIT5279.62±0.15 OUR FIT Error in
ludes s
ale fa
tor of 1.1.5279.55±0.26 OUR AVERAGE5279.55±0.26 OUR AVERAGE5279.55±0.26 OUR AVERAGE5279.55±0.26 OUR AVERAGE5279.6 ±0.2 ±1.0 1 AAD 13U ATLS pp at 7 TeV5279.58±0.15±0.28 2 AAIJ 12E LHCB pp at 7 TeV5279.63±0.53±0.33 3 ACOSTA 06 CDF pp at 1.96 TeV5279.1 ±0.7 ±0.3 135 4 CSORNA 00 CLE2 e+ e− → �(4S)5281.3 ±2.2 ±1.4 51 ABE 96B CDF pp at 1.8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •5279.2 ±0.54±2.0 340 ALAM 94 CLE2 e+ e− → �(4S)5278.0 ±0.4 ±2.0 BORTOLETTO92 CLEO e+ e− → �(4S)5279.6 ±0.7 ±2.0 40 5 ALBRECHT 90J ARG e+ e− → �(4S)5278.2 ±1.0 ±3.0 40 ALBRECHT 87C ARG e+ e− → �(4S)5279.5 ±1.6 ±3.0 7 6 ALBRECHT 87D ARG e+ e− → �(4S)5280.6 ±0.8 ±2.0 BEBEK 87 CLEO e+ e− → �(4S)1Measured with B0d → J/ψ(µ+ µ−) K0S (π+π−) de
ays.2Uses B0 → J/ψK0 fully re
onstru
ted de
ays.3Uses ex
lusively re
onstru
ted �nal states 
ontaining a J/ψ → µ+µ− de
ays.4CSORNA 00 uses fully re
onstru
ted 135 B0 → J/ψ (′)K0S events and invariant masseswithout beam 
onstraint.5ALBRECHT 90J assumes 10580 for �(4S) mass. Supersedes ALBRECHT 87C andALBRECHT 87D.6 Found using fully re
onstru
ted de
ays with J/ψ. ALBRECHT 87D assume m�(4S) =10577 MeV. mB0 − mB+mB0 − mB+mB0 − mB+mB0 − mB+VALUE (MeV) DOCUMENT ID TECN COMMENT0.31±0.06 OUR FIT0.31±0.06 OUR FIT0.31±0.06 OUR FIT0.31±0.06 OUR FIT0.32±0.05 OUR AVERAGE0.32±0.05 OUR AVERAGE0.32±0.05 OUR AVERAGE0.32±0.05 OUR AVERAGE0.20±0.17±0.11 1 AAIJ 12E LHCB pp at 7 TeV0.33±0.05±0.03 2 AUBERT 08AF BABR e+ e− → �(4S)0.53±0.67±0.14 3 ACOSTA 06 CDF pp at 1.96 TeV0.41±0.25±0.19 ALAM 94 CLE2 e+ e− → �(4S)
−0.4 ±0.6 ±0.5 BORTOLETTO92 CLEO e+ e− → �(4S)
−0.9 ±1.2 ±0.5 ALBRECHT 90J ARG e+ e− → �(4S)2.0 ±1.1 ±0.3 4 BEBEK 87 CLEO e+ e− → �(4S)1Uses ex
lusively re
onstru
ted �nal states 
ontaining a J/ψ → µ+µ− de
ay.2Uses the B-momentum distributions in the e+ e− rest frame.3Uses ex
lusively re
onstru
ted �nal states 
ontaining a J/ψ → µ+µ− de
ays.4BEBEK 87 a
tually measure the di�eren
e between half of E
m and the B± or B0mass, so the mB0 − mB± is more a

urate. Assume m�(4S) = 10580 MeV.mB0H − mB0LmB0H − mB0LmB0H − mB0LmB0H − mB0LSee the B0-B0 MIXING PARAMETERS se
tion near the end of these B0Listings. B0 MEAN LIFEB0 MEAN LIFEB0 MEAN LIFEB0 MEAN LIFESee B±/B0/B0s /b-baryon ADMIXTURE se
tion for data on B-hadronmean life averaged over spe
ies of bottom parti
les.\OUR EVALUATION" is an average using res
aled values of thedata listed below. The average and res
aling were performed bythe Heavy Flavor Averaging Group (HFAG) and are des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/. The averaging/res
aling pro-
edure takes into a

ount 
orrelations between the measurements andasymmetri
 lifetime errors.VALUE (10−12 s) EVTS DOCUMENT ID TECN COMMENT1.520±0.004 OUR EVALUATION1.520±0.004 OUR EVALUATION1.520±0.004 OUR EVALUATION1.520±0.004 OUR EVALUATION1.534±0.019±0.021 1 ABAZOV 15A D0 pp at 1.96 TeV1.499±0.013±0.005 2 AAIJ 14E LHCB pp at 7 TeV1.524±0.006±0.004 3 AAIJ 14E LHCB pp at 7 TeV1.524±0.011±0.004 4 AAIJ 14R LHCB pp at 7 TeV1.509±0.012±0.018 5 AAD 13U ATLS pp at 7 TeV1.508±0.025±0.043 2 ABAZOV 12U D0 pp at 1.96 TeV1.507±0.010±0.008 6 AALTONEN 11 CDF pp at 1.96 TeV1.414±0.018±0.034 7 ABAZOV 09E D0 pp at 1.96 TeV1.504±0.013+0.018

−0.013 8 AUBERT 06G BABR e+ e− → �(4S)1.534±0.008±0.010 9 ABE 05B BELL e+ e− → �(4S)1.531±0.021±0.031 10 ABDALLAH 04E DLPH e+ e− → Z1.523+0.024
−0.023±0.022 11 AUBERT 03C BABR e+ e− → �(4S)1.533±0.034±0.038 12 AUBERT 03H BABR e+ e− → �(4S)1.497±0.073±0.032 13 ACOSTA 02C CDF pp at 1.8 TeV1.529±0.012±0.029 14 AUBERT 02H BABR e+ e− → �(4S)1.546±0.032±0.022 15 AUBERT 01F BABR e+ e− → �(4S)1.541±0.028±0.023 14 ABBIENDI,G 00B OPAL e+ e− → Z1.518±0.053±0.034 16 BARATE 00R ALEP e+ e− → Z1.523±0.057±0.053 17 ABBIENDI 99J OPAL e+ e− → Z1.474±0.039+0.052

−0.051 16 ABE 98Q CDF pp at 1.8 TeV1.52 ±0.06 ±0.04 17 ACCIARRI 98S L3 e+ e− → Z1.64 ±0.08 ±0.08 17 ABE 97J SLD e+ e− → Z1.532±0.041±0.040 18 ABREU 97F DLPH e+ e− → Z1.25 +0.15
−0.13 ±0.05 121 13 BUSKULIC 96J ALEP e+ e− → Z1.49 +0.17
−0.15 +0.08

−0.06 19 BUSKULIC 96J ALEP e+ e− → Z1.61 +0.14
−0.13 ±0.08 16,20 ABREU 95Q DLPH e+ e− → Z1.63 ±0.14 ±0.13 21 ADAM 95 DLPH e+ e− → Z1.53 ±0.12 ±0.08 16,22 AKERS 95T OPAL e+ e− → Z



1207120712071207See key on page 601 MesonParti
le ListingsB0
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.501+0.078

−0.074±0.050 2 ABAZOV 07S D0 Repl. by ABAZOV 12U1.524±0.030±0.016 2 ABULENCIA 07A CDF Repl. by AALTONEN 111.473+0.052
−0.050±0.023 7 ABAZOV 05B D0 Repl. by ABAZOV 05W1.40 +0.11
−0.10 ±0.03 2 ABAZOV 05C D0 Repl. by ABAZOV 07S1.530±0.043±0.023 7 ABAZOV 05W D0 Repl. by ABAZOV 09E1.54 ±0.05 ±0.02 23 ACOSTA 05 CDF Repl. by AALTONEN 111.554±0.030±0.019 15 ABE 02H BELL Repl. by ABE 05B1.58 ±0.09 ±0.02 13 ABE 98B CDF Repl. by ACOSTA 02C1.54 ±0.08 ±0.06 16 ABE 96C CDF Repl. by ABE 98Q1.55 ±0.06 ±0.03 24 BUSKULIC 96J ALEP e+ e− → Z1.61 ±0.07 ±0.04 16 BUSKULIC 96J ALEP Repl. by BARATE 00R1.62 ±0.12 25 ADAM 95 DLPH e+ e− → Z1.57 ±0.18 ±0.08 121 13 ABE 94D CDF Repl. by ABE 98B1.17 +0.29
−0.23 ±0.16 96 16 ABREU 93D DLPH Sup. by ABREU 95Q1.55 ±0.25 ±0.18 76 21 ABREU 93G DLPH Sup. by ADAM 951.51 +0.24
−0.23 +0.12

−0.14 78 16 ACTON 93C OPAL Sup. by AKERS 95T1.52 +0.20
−0.18 +0.07

−0.13 77 16 BUSKULIC 93D ALEP Sup. by BUSKULIC 96J1.20 +0.52
−0.36 +0.16

−0.14 15 26 WAGNER 90 MRK2 Eee
m= 29 GeV0.82 +0.57
−0.37 ±0.27 27 AVERILL 89 HRS Eee
m= 29 GeV1Measured using B0 → D−µ+ νX de
ays.2Measured mean life using B0 → J/ψK0S de
ays.3Measured using B0 → J/ψK∗0 de
ays.4Measured using B0 → K+π− de
ays.5Measured with B0d → J/ψ(µ+ µ−) K0S (π+π−) de
ays.6Measured mean life using fully re
onstru
ted de
ays (J/ψK(∗)).7Measured mean life using B0 → J/ψK∗0 de
ays.8Measured using a simultaneous �t of the B0 lifetime and B0B0 os
illation frequen
y�md in the partially re
onstru
ted B0 → D∗− ℓν de
ays.9Measurement performed using a 
ombined �t of CP-violation, mixing and lifetimes.10Measurement performed using an in
lusive re
onstru
tion and B 
avor identi�
ationte
hnique.11AUBERT 03C uses a sample of approximately 14,000 ex
lusively re
onstru
ted B0 →D∗(2010)− ℓν and simultaneously measures the lifetime and os
illation frequen
y.12Measurement performed with de
ays B0 → D∗−π+ and B0 → D∗− ρ+ using apartial re
onstru
tion te
hnique.13Measured mean life using fully re
onstru
ted de
ays.14Data analyzed using partially re
onstru
ted B0 → D∗+ ℓ− ν de
ays.15Events are sele
ted in whi
h one B meson is fully re
onstru
ted while the se
ond B mesonis re
onstru
ted in
lusively.16Data analyzed using D /D∗ ℓX event verti
es.17Data analyzed using 
harge of se
ondary vertex.18Data analyzed using in
lusive D/D∗ ℓX .19Measured mean life using partially re
onstru
ted D∗−π+X verti
es.20ABREU 95Q assumes B(B0 → D∗∗− ℓ+ νℓ) = 3.2 ± 1.7%.21Data analyzed using vertex-
harge te
hnique to tag B 
harge.22AKERS 95T assumes B(B0 → Ds (∗)D0 (∗)) = 5.0 ± 0.9% to �nd B+/B0 yield.23Measured using the time-dependent angular analysis of B0d → J/ψK∗0 de
ays.24Combined result of D/D∗ ℓx analysis, fully re
onstru
ted B analysis, and partially re
on-stru
ted D∗−π+X analysis.25Combined ABREU 95Q and ADAM 95 result.26WAGNER 90 tagged B0 mesons by their de
ays into D∗− e+ ν and D∗−µ+ ν wherethe D∗− is tagged by its de
ay into π−D0.27AVERILL 89 is an estimate of the B0 mean lifetime assuming that B0 → D∗++ Xalways.

τB0/τB0τB0/τB0τB0/τB0τB0/τB0VALUE DOCUMENT ID TECN COMMENT1.000±0.008±0.0091.000±0.008±0.0091.000±0.008±0.0091.000±0.008±0.009 1 AAIJ 14E LHCB pp at 7 TeV1Measured using B0 → J/ψK∗0 de
ays.MEAN LIFE RATIO τB+/τB0MEAN LIFE RATIO τB+/τB0MEAN LIFE RATIO τB+/τB0MEAN LIFE RATIO τB+/τB0
τB+/τB0 (dire
t measurements)τB+/τB0 (dire
t measurements)τB+/τB0 (dire
t measurements)τB+/τB0 (dire
t measurements)\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurementsand asymmetri
 lifetime errors.VALUE EVTS DOCUMENT ID TECN COMMENT1.076±0.004 OUR EVALUATION1.076±0.004 OUR EVALUATION1.076±0.004 OUR EVALUATION1.076±0.004 OUR EVALUATION1.074±0.005±0.003 1 AAIJ 14E LHCB pp at 7 TeV1.088±0.009±0.004 2 AALTONEN 11 CDF pp at 1.96 TeV1.080±0.016±0.014 3 ABAZOV 05D D0 pp at 1.96 TeV1.066±0.008±0.008 4 ABE 05B BELL e+ e− → �(4S)1.060±0.021±0.024 5 ABDALLAH 04E DLPH e+ e− → Z1.093±0.066±0.028 6 ACOSTA 02C CDF pp at 1.8 TeV1.082±0.026±0.012 7 AUBERT 01F BABR e+ e− → �(4S)1.085±0.059±0.018 3 BARATE 00R ALEP e+ e− → Z

1.079±0.064±0.041 8 ABBIENDI 99J OPAL e+ e− → Z1.110±0.056+0.033
−0.030 3 ABE 98Q CDF pp at 1.8 TeV1.09 ±0.07 ±0.03 8 ACCIARRI 98S L3 e+ e− → Z1.01 ±0.07 ±0.06 8 ABE 97J SLD e+ e− → Z1.27 +0.23

−0.19 +0.03
−0.02 6 BUSKULIC 96J ALEP e+ e− → Z1.00 +0.17

−0.15 ±0.10 3,9 ABREU 95Q DLPH e+ e− → Z1.06 +0.13
−0.11 ±0.10 10 ADAM 95 DLPH e+ e− → Z0.99 ±0.14 +0.05

−0.04 3,11 AKERS 95T OPAL e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.091±0.023±0.014 7 ABE 02H BELL Repl. by ABE 05B1.06 ±0.07 ±0.02 6 ABE 98B CDF Repl. by ACOSTA 02C1.01 ±0.11 ±0.02 3 ABE 96C CDF Repl. by ABE 98Q1.03 ±0.08 ±0.02 12 BUSKULIC 96J ALEP e+ e− → Z0.98 ±0.08 ±0.03 3 BUSKULIC 96J ALEP Repl. by BARATE 00R1.02 ±0.16 ±0.05 269 6 ABE 94D CDF Repl. by ABE 98B1.11 +0.51

−0.39 ±0.11 188 3 ABREU 93D DLPH Sup. by ABREU 95Q1.01 +0.29
−0.22 ±0.12 253 10 ABREU 93G DLPH Sup. by ADAM 951.0 +0.33
−0.25 ±0.08 130 ACTON 93C OPAL Sup. by AKERS 95T0.96 +0.19
−0.15 +0.18

−0.12 154 3 BUSKULIC 93D ALEP Sup. by BUSKULIC 96J1Measured using B → J/ψK(∗) de
ays.2Measured mean life using fully re
onstru
ted de
ays (J/ψK(∗)).3Data analyzed using D /D∗µX verti
es.4Measurement performed using a 
ombined �t of CP-violation, mixing and lifetimes.5Measurement performed using an in
lusive re
onstru
tion and B 
avor identi�
ationte
hnique.6Measured using fully re
onstru
ted de
ays.7 Events are sele
ted in whi
h one B meson is fully re
onstru
ted while the se
ond B mesonis re
onstru
ted in
lusively.8Data analyzed using 
harge of se
ondary vertex.9ABREU 95Q assumes B(B0 → D∗∗− ℓ+ νℓ) = 3.2 ± 1.7%.10Data analyzed using vertex-
harge te
hnique to tag B 
harge.11AKERS 95T assumes B(B0 → Ds (∗)D0 (∗)) = 5.0 ± 0.9% to �nd B+/B0 yield.12Combined result of D/D∗ ℓX analysis and fully re
onstru
ted B analysis.
τB+/τB0 (inferred from bran
hing fra
tions)τB+/τB0 (inferred from bran
hing fra
tions)τB+/τB0 (inferred from bran
hing fra
tions)τB+/τB0 (inferred from bran
hing fra
tions)These measurements are inferred from the bran
hing fra
tions for semileptoni
 de
ayor other spe
tator-dominated de
ays by assuming that the rates for su
h de
ays areequal for B0 and B+. We do not use measurements whi
h assume equal produ
tionof B0 and B+ be
ause of the large un
ertainty in the produ
tion ratio.\OUR EVALUATION" has been obtained by the Heavy Flavor Averaging Group(HFAG) by taking into a

ount 
orrelations between measurements.VALUE CL% EVTS DOCUMENT ID TECN COMMENT1.076±0.034 OUR EVALUATION1.076±0.034 OUR EVALUATION1.076±0.034 OUR EVALUATION1.076±0.034 OUR EVALUATION1.07 ±0.04 OUR AVERAGE1.07 ±0.04 OUR AVERAGE1.07 ±0.04 OUR AVERAGE1.07 ±0.04 OUR AVERAGE1.07 ±0.04 ±0.03 URQUIJO 07 BELL e+ e− → �(4S)1.067±0.041±0.033 AUBERT,B 06Y BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.95 +0.117

−0.080±0.091 1 ARTUSO 97 CLE2 e+ e− → �(4S)1.15 ±0.17 ±0.06 2 JESSOP 97 CLE2 e+ e− → �(4S)0.93 ±0.18 ±0.12 3 ATHANAS 94 CLE2 Sup. by ARTUSO 970.91 ±0.27 ±0.21 4 ALBRECHT 92C ARG e+ e− → �(4S)1.0 ±0.4 29 4,5 ALBRECHT 92G ARG e+ e− → �(4S)0.89 ±0.19 ±0.13 4 FULTON 91 CLEO e+ e− → �(4S)1.00 ±0.23 ±0.14 4 ALBRECHT 89L ARG e+ e− → �(4S)0.49 to 2.3 90 6 BEAN 87B CLEO e+ e− → �(4S)1ARTUSO 97 uses partial re
onstru
tion of B → D∗ ℓνℓ and independent of B0 andB+ produ
tion fra
tion.2Assumes equal produ
tion of B+ and B0 at the �(4S).3ATHANAS 94 uses events tagged by fully re
onstru
ted B− de
ays and partially or fullyre
onstru
ted B0 de
ays.4Assumes equal produ
tion of B0 and B+.5ALBRECHT 92G data analyzed using B → Ds D, Ds D∗, D∗s D, D∗s D∗ events.6BEAN 87B assume the fra
tion of B0B0 events at the �(4S) is 0.41.sgn(Re(λCP )) ��B0d / �B0dsgn(Re(λCP )) ��B0d / �B0dsgn(Re(λCP )) ��B0d / �B0dsgn(Re(λCP )) ��B0d / �B0d�B0d and ��B0d are the de
ay rate average and di�eren
e between twoB0d CP eigenstates (light − heavy). The λCP 
hara
terizes B0 and B0de
ays to states of 
harmonium plus K0L, see the review on \CP Violation"in the reviews se
tion.\OUR EVALUATION" has been obtained by the Heavy Flavor AveragingGroup (HFAG) by taking into a

ount 
orrelations between measurements.VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT
− 0.3 ±1.5 OUR EVALUATION− 0.3 ±1.5 OUR EVALUATION− 0.3 ±1.5 OUR EVALUATION− 0.3 ±1.5 OUR EVALUATION
− 0.4 ±2.0 OUR AVERAGE− 0.4 ±2.0 OUR AVERAGE− 0.4 ±2.0 OUR AVERAGE− 0.4 ±2.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogrambelow.
− 4.4 ±2.5 ±1.1 1 AAIJ 14E LHCB pp at 7 TeV1.7 ±1.8 ±1.1 2 HIGUCHI 12 BELL e+ e− → �(4S)0.8 ±3.7 ±1.8 3 AUBERT,B 04C BABR e+ e− → �(4S)



1208120812081208MesonParti
le ListingsB0
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.50±1.38 ABAZOV 14 D0 pp at 1.96 TeV
< 18 95 4 ABDALLAH 03B DLPH e+ e− → Z
< 80 95 5 BEHRENS 00B CLE2 e+ e− → �(4S)1Measured using the e�e
tive lifetimes of B0 → J/ψK0S and B0 → J/ψK∗0 de
ays.2Reports −��d /�d using B0 → J/ψK0S , J/ψK0L, D−π+, D∗−π+, D∗− ρ+, andD∗− ℓ+ ν de
ays.3Corresponds to 90% 
on�den
e range [−0.084, 0.068℄.4Using the measured τB0=1.55 ± 0.03 ps.5BEHRENS 00B uses high-momentum lepton tags and partially re
onstru
ted B0 →D∗+π−, ρ− de
ays to determine the 
avor of the B meson. Assumes �md=0.478 ±0.018 ps−1 and τB0=1.548 ± 0.032 ps.

WEIGHTED AVERAGE
-0.4±2.0 (Error scaled by 1.3)

AUBERT,B 04C BABR 0.1
HIGUCHI 12 BELL 1.0
AAIJ 14E LHCB 2.2

χ2

       3.2
(Confidence Level = 0.200)

-15 -10 -5 0 5 10 15 20sgn(Re(λCP )) ��B0d / �B0d (units 10−2)B0 DECAY MODESB0 DECAY MODESB0 DECAY MODESB0 DECAY MODESB0 modes are 
harge 
onjugates of the modes below. Rea
tions indi
atethe weak de
ay vertex and do not in
lude mixing. Modes whi
h do notidentify the 
harge state of the B are listed in the B±/B0 ADMIXTUREse
tion.The bran
hing fra
tions listed below assume 50% B0B0 and 50% B+B−produ
tion at the �(4S). We have attempted to bring older measurementsup to date by res
aling their assumed �(4S) produ
tion ratio to 50:50and their assumed D, Ds , D∗, and ψ bran
hing ratios to 
urrent valueswhenever this would a�e
t our averages and best limits signi�
antly.Indentation is used to indi
ate a sub
hannel of a previous rea
tion. Allresonant sub
hannels have been 
orre
ted for resonan
e bran
hing fra
-tions to the �nal state so the sum of the sub
hannel bran
hing fra
tions
an ex
eed that of the �nal state.For in
lusive bran
hing fra
tions, e.g., B → D± anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one. S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 ℓ+νℓ anything [a℄ ( 10.33± 0.28) %�2 e+νe X
 ( 10.1 ± 0.4 ) %�3 D ℓ+νℓ anything ( 9.2 ± 0.8 ) %�4 D− ℓ+νℓ [a℄ ( 2.19± 0.12) %�5 D− τ+ ντ ( 1.03± 0.22) %�6 D∗(2010)− ℓ+νℓ [a℄ ( 4.93± 0.11) %�7 D∗(2010)− τ+ ντ ( 1.78± 0.17) % S=1.1�8 D0π− ℓ+νℓ ( 4.3 ± 0.6 )× 10−3�9 D∗0(2400)− ℓ+νℓ, D∗−0 →D0π−
( 3.0 ± 1.2 )× 10−3 S=1.8�10 D∗2(2460)− ℓ+νℓ, D∗−2 →D0π−
( 1.21± 0.33)× 10−3 S=1.8�11 D(∗) nπℓ+ νℓ (n ≥ 1) ( 2.3 ± 0.5 ) %�12 D∗0π− ℓ+νℓ ( 4.9 ± 0.8 )× 10−3�13 D1(2420)− ℓ+νℓ, D−1 →D∗0π−
( 2.80± 0.28)× 10−3�14 D ′1(2430)− ℓ+νℓ, D ′−1 →D∗0π−
( 3.1 ± 0.9 )× 10−3�15 D∗2(2460)− ℓ+νℓ, D∗−2 →D∗0π−
( 6.8 ± 1.2 )× 10−4

�16 D−π+π− ℓ+νℓ ( 1.3 ± 0.5 )× 10−3�17 D∗−π+π− ℓ+νℓ ( 1.4 ± 0.5 )× 10−3�18 ρ− ℓ+νℓ [a℄ ( 2.94± 0.21)× 10−4�19 π− ℓ+νℓ [a℄ ( 1.45± 0.05)× 10−4�20 π−µ+νµ�21 π− τ+ ντ < 2.5 × 10−4 CL=90%In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modes�22 K± anything ( 78 ± 8 ) %�23 D0X ( 8.1 ± 1.5 ) %�24 D0X ( 47.4 ± 2.8 ) %�25 D+X < 3.9 % CL=90%�26 D−X ( 36.9 ± 3.3 ) %�27 D+s X ( 10.3 + 2.1
− 1.8 ) %�28 D−s X < 2.6 % CL=90%�29 �+
 X < 3.1 % CL=90%�30 �−
 X ( 5.0 + 2.1
− 1.5 ) %�31 
 X ( 95 ± 5 ) %�32 
 X ( 24.6 ± 3.1 ) %�33 
 
 X (119 ± 6 ) %D, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modes�34 D−π+ ( 2.52± 0.13)× 10−3 S=1.1�35 D− ρ+ ( 7.5 ± 1.2 )× 10−3�36 D−K0π+ ( 4.9 ± 0.9 )× 10−4�37 D−K∗(892)+ ( 4.5 ± 0.7 )× 10−4�38 D−ωπ+ ( 2.8 ± 0.6 )× 10−3�39 D−K+ ( 1.86± 0.20)× 10−4�40 D−K+π+π− ( 3.5 ± 0.8 )× 10−4�41 D−K+K0 < 3.1 × 10−4 CL=90%�42 D−K+K∗(892)0 ( 8.8 ± 1.9 )× 10−4�43 D0π+π− ( 8.8 ± 0.5 )× 10−4�44 D∗(2010)−π+ ( 2.74± 0.13)× 10−3�45 D0K+K− ( 4.9 ± 1.2 )× 10−5�46 D−π+π+π− ( 6.0 ± 0.7 )× 10−3 S=1.1�47 (D−π+π+π− ) nonresonant ( 3.9 ± 1.9 )× 10−3�48 D−π+ρ0 ( 1.1 ± 1.0 )× 10−3�49 D− a1(1260)+ ( 6.0 ± 3.3 )× 10−3�50 D∗(2010)−π+π0 ( 1.5 ± 0.5 ) %�51 D∗(2010)− ρ+ ( 2.2 + 1.8
− 2.7 )× 10−3 S=5.2�52 D∗(2010)−K+ ( 2.12± 0.15)× 10−4�53 D∗(2010)−K0π+ ( 3.0 ± 0.8 )× 10−4�54 D∗(2010)−K∗(892)+ ( 3.3 ± 0.6 )× 10−4�55 D∗(2010)−K+K0 < 4.7 × 10−4 CL=90%�56 D∗(2010)−K+K∗(892)0 ( 1.29± 0.33)× 10−3�57 D∗(2010)−π+π+π− ( 7.0 ± 0.8 )× 10−3 S=1.3�58 (D∗(2010)−π+π+π− ) non-resonant ( 0.0 ± 2.5 )× 10−3�59 D∗(2010)−π+ρ0 ( 5.7 ± 3.2 )× 10−3�60 D∗(2010)− a1(1260)+ ( 1.30± 0.27) %�61 D1(2420)0π−π+, D01 →D∗−π+ ( 1.4 ± 0.4 )× 10−4�62 D∗(2010)−K+π−π+ ( 4.5 ± 0.7 )× 10−4�63 D∗(2010)−π+π+π−π0 ( 1.76± 0.27) %�64 D∗− 3π+2π− ( 4.7 ± 0.9 )× 10−3�65 D∗(2010)−ωπ+ ( 2.46± 0.18)× 10−3 S=1.2�66 D1(2430)0ω, D01 → D∗−π+ ( 2.7 + 0.8
− 0.4 )× 10−4�67 D∗− ρ(1450)+ ( 1.07+ 0.40
− 0.34)× 10−3�68 D1(2420)0ω ( 7.0 ± 2.2 )× 10−5�69 D∗2(2460)0ω ( 4.0 ± 1.4 )× 10−5�70 D∗−b1(1235)−, b−1 → ωπ− < 7 × 10−5 CL=90%�71 D∗∗−π+ [b℄ ( 1.9 ± 0.9 )× 10−3�72 D1(2420)−π+, D−1 →D−π+π−

( 9.9 + 2.0
− 2.5 )× 10−5�73 D1(2420)−π+, D−1 →D∗−π+π−

< 3.3 × 10−5 CL=90%�74 D∗2(2460)−π+, (D∗2)− →D0π−
( 2.38± 0.16)× 10−4�75 D∗0(2400)−π+, (D∗0)− →D0π−
( 7.6 ± 0.8 )× 10−5�76 D∗2(2460)−π+, (D∗2)− →D∗−π+π−

< 2.4 × 10−5 CL=90%�77 D∗2(2460)− ρ+ < 4.9 × 10−3 CL=90%
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le ListingsB0�78 D0D0 ( 1.4 ± 0.7 )× 10−5�79 D∗0D0 < 2.9 × 10−4 CL=90%�80 D−D+ ( 2.11± 0.18)× 10−4�81 D±D∗∓ (CP-averaged) ( 6.1 ± 0.6 )× 10−4�82 D−D+s ( 7.2 ± 0.8 )× 10−3�83 D∗(2010)−D+s ( 8.0 ± 1.1 )× 10−3�84 D−D∗+s ( 7.4 ± 1.6 )× 10−3�85 D∗(2010)−D∗+s ( 1.77± 0.14) %�86 Ds0(2317)−K+, D−s0 →D−s π0 ( 4.2 ± 1.4 )× 10−5�87 Ds0(2317)−π+, D−s0 → D−s π0 < 2.5 × 10−5 CL=90%�88 DsJ (2457)−K+, D−
sJ →D−s π0 < 9.4 × 10−6 CL=90%�89 DsJ (2457)−π+, D−
sJ →D−s π0 < 4.0 × 10−6 CL=90%�90 D−s D+s < 3.6 × 10−5 CL=90%�91 D∗−s D+s < 1.3 × 10−4 CL=90%�92 D∗−s D∗+s < 2.4 × 10−4 CL=90%�93 D∗s0(2317)+D−, D∗+s0 →D+s π0 ( 1.04± 0.17)× 10−3 S=1.1�94 Ds0(2317)+D−, D+s0 → D∗+s γ < 9.5 × 10−4 CL=90%�95 Ds0(2317)+D∗(2010)−, D+s0 →D+s π0 ( 1.5 ± 0.6 )× 10−3�96 DsJ (2457)+D− ( 3.5 ± 1.1 )× 10−3�97 DsJ (2457)+D−, D+
sJ → D+s γ ( 6.5 + 1.7

− 1.4 )× 10−4�98 DsJ (2457)+D−, D+
sJ →D∗+s γ

< 6.0 × 10−4 CL=90%�99 DsJ (2457)+D−, D+
sJ →D+s π+π−

< 2.0 × 10−4 CL=90%�100 DsJ (2457)+D−, D+
sJ →D+s π0 < 3.6 × 10−4 CL=90%�101 D∗(2010)−DsJ(2457)+ ( 9.3 ± 2.2 )× 10−3�102 DsJ (2457)+D∗(2010), D+

sJ →D+s γ

( 2.3 + 0.9
− 0.7 )× 10−3�103 D−Ds1(2536)+, D+s1 →D∗0K+ + D∗+K0 ( 2.8 ± 0.7 )× 10−4�104 D−Ds1(2536)+, D+s1 →D∗0K+ ( 1.7 ± 0.6 )× 10−4�105 D−Ds1(2536)+, D+s1 →D∗+K0 ( 2.6 ± 1.1 )× 10−4�106 D∗(2010)−Ds1(2536)+, D+s1 →D∗0K+ + D∗+K0 ( 5.0 ± 1.4 )× 10−4�107 D∗(2010)−Ds1(2536)+,D+s1 → D∗0K+ ( 3.3 ± 1.1 )× 10−4�108 D∗−Ds1(2536)+, D+s1 →D∗+K0 ( 5.0 ± 1.7 )× 10−4�109 D−DsJ(2573)+, D+

sJ →D0K+ ( 3.4 ± 1.8 )× 10−5�110 D∗(2010)−DsJ(2573)+,D+
sJ → D0K+ < 2 × 10−4 CL=90%�111 D−DsJ(2700)+, D+

sJ →D0K+ ( 7.1 ± 1.2 )× 10−4�112 D+π− ( 7.4 ± 1.3 )× 10−7�113 D+s π− ( 2.16± 0.26)× 10−5�114 D∗+s π− ( 2.1 ± 0.4 )× 10−5 S=1.4�115 D+s ρ− < 2.4 × 10−5 CL=90%�116 D∗+s ρ− ( 4.1 ± 1.3 )× 10−5�117 D+s a−0 < 1.9 × 10−5 CL=90%�118 D∗+s a−0 < 3.6 × 10−5 CL=90%�119 D+s a1(1260)− < 2.1 × 10−3 CL=90%�120 D∗+s a1(1260)− < 1.7 × 10−3 CL=90%�121 D+s a−2 < 1.9 × 10−4 CL=90%�122 D∗+s a−2 < 2.0 × 10−4 CL=90%�123 D−s K+ ( 2.7 ± 0.5 )× 10−5 S=2.7�124 D∗−s K+ ( 2.19± 0.30)× 10−5�125 D−s K∗(892)+ ( 3.5 ± 1.0 )× 10−5�126 D∗−s K∗(892)+ ( 3.2 + 1.5
− 1.3 )× 10−5�127 D−s π+K0 ( 9.7 ± 1.4 )× 10−5

�128 D∗−s π+K0 < 1.10 × 10−4 CL=90%�129 D−s K+π+π− ( 1.7 ± 0.5 )× 10−4�130 D−s π+K∗(892)0 < 3.0 × 10−3 CL=90%�131 D∗−s π+K∗(892)0 < 1.6 × 10−3 CL=90%�132 D0K0 ( 5.2 ± 0.7 )× 10−5�133 D0K+π− ( 8.8 ± 1.7 )× 10−5�134 D0K∗(892)0 ( 4.5 ± 0.6 )× 10−5�135 D0K∗(1410)0 < 6.7 × 10−5 CL=90%�136 D0K∗0(1430)0 ( 7 ± 7 )× 10−6�137 D0K∗2(1430)0 ( 2.1 ± 0.9 )× 10−5�138 D∗0(2400)−, D∗−0 → D0π− ( 1.9 ± 0.9 )× 10−5�139 D∗2(2460)−K+, D∗−2 →D0π−
( 2.03± 0.35)× 10−5�140 D∗3(2760)−K+, D∗−3 →D0π−

< 1.0 × 10−6 CL=90%�141 D0K+π− non-resonant < 3.7 × 10−5 CL=90%�142 [K+K− ℄DK∗(892)0 ( 4.7 ± 0.9 )× 10−5�143 [π+π− ℄DK∗(892)0 ( 5.5 ± 1.4 )× 10−5�144 D0π0 ( 2.63± 0.14)× 10−4�145 D0 ρ0 ( 3.21± 0.21)× 10−4�146 D0 f2 ( 1.56± 0.21)× 10−4�147 D0 η ( 2.36± 0.32)× 10−4 S=2.5�148 D0 η′ ( 1.38± 0.16)× 10−4 S=1.3�149 D0ω ( 2.54± 0.16)× 10−4�150 D0φ < 1.16 × 10−5 CL=90%�151 D0K+π− ( 5.3 ± 3.2 )× 10−6�152 D0K∗(892)0 < 1.1 × 10−5 CL=90%�153 D∗0γ < 2.5 × 10−5 CL=90%�154 D∗(2007)0π0 ( 2.2 ± 0.6 )× 10−4 S=2.6�155 D∗(2007)0 ρ0 < 5.1 × 10−4 CL=90%�156 D∗(2007)0 η ( 2.3 ± 0.6 )× 10−4 S=2.8�157 D∗(2007)0 η′ ( 1.40± 0.22)× 10−4�158 D∗(2007)0π+π− ( 6.2 ± 2.2 )× 10−4�159 D∗(2007)0K0 ( 3.6 ± 1.2 )× 10−5�160 D∗(2007)0K∗(892)0 < 6.9 × 10−5 CL=90%�161 D∗(2007)0K∗(892)0 < 4.0 × 10−5 CL=90%�162 D∗(2007)0π+π+π−π− ( 2.7 ± 0.5 )× 10−3�163 D∗(2010)+D∗(2010)− ( 8.0 ± 0.6 )× 10−4�164 D∗(2007)0ω ( 3.6 ± 1.1 )× 10−4 S=3.1�165 D∗(2010)+D− ( 6.1 ± 1.5 )× 10−4 S=1.6�166 D∗(2007)0D∗(2007)0 < 9 × 10−5 CL=90%�167 D−D0K+ ( 1.07± 0.11)× 10−3�168 D−D∗(2007)0K+ ( 3.5 ± 0.4 )× 10−3�169 D∗(2010)−D0K+ ( 2.47± 0.21)× 10−3�170 D∗(2010)−D∗(2007)0K+ ( 1.06± 0.09) %�171 D−D+K0 ( 7.5 ± 1.7 )× 10−4�172 D∗(2010)−D+K0 +D−D∗(2010)+K0 ( 6.4 ± 0.5 )× 10−3�173 D∗(2010)−D∗(2010)+K0 ( 8.1 ± 0.7 )× 10−3�174 D∗−Ds1(2536)+, D+s1 →D∗+K0 ( 8.0 ± 2.4 )× 10−4�175 D0D0K0 ( 2.7 ± 1.1 )× 10−4�176 D0D∗(2007)0K0 +D∗(2007)0D0K0 ( 1.1 ± 0.5 )× 10−3�177 D∗(2007)0D∗(2007)0K0 ( 2.4 ± 0.9 )× 10−3�178 (D+D∗ )(D+D∗ )K ( 3.68± 0.26) %Charmonium modesCharmonium modesCharmonium modesCharmonium modes�179 η
 K0 ( 8.0 ± 1.2 )× 10−4�180 η
 K∗(892)0 ( 6.3 ± 0.9 )× 10−4�181 η
 (2S)K∗0 < 3.9 × 10−4 CL=90%�182 h
 (1P)K∗0 < 4 × 10−4 CL=90%�183 J/ψ(1S)K0 ( 8.73± 0.32)× 10−4�184 J/ψ(1S)K+π− ( 1.15± 0.05)× 10−3�185 J/ψ(1S)K∗(892)0 ( 1.28± 0.05)× 10−3�186 J/ψ(1S)ηK0S ( 5.4 ± 0.9 )× 10−5�187 J/ψ(1S)η′K0S < 2.5 × 10−5 CL=90%�188 J/ψ(1S)φK0 ( 4.9 ± 1.0 )× 10−5 S=1.3�189 J/ψ(1S)ωK0 ( 2.3 ± 0.4 )× 10−4�190 X (3872)K0, X → J/ψω ( 6.0 ± 3.2 )× 10−6�191 X (3915), X → J/ψω ( 2.1 ± 0.9 )× 10−5�192 J/ψ(1S)K (1270)0 ( 1.3 ± 0.5 )× 10−3�193 J/ψ(1S)π0 ( 1.76± 0.16)× 10−5 S=1.1�194 J/ψ(1S)η ( 1.08± 0.24)× 10−5 S=1.5�195 J/ψ(1S)π+π− ( 4.03± 0.18)× 10−5
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le ListingsB0�196 J/ψ(1S)π+π− nonresonant < 1.2 × 10−5 CL=90%�197 J/ψ(1S) f0(500), f0 → ππ ( 8.1 + 1.1
− 0.9 )× 10−6�198 J/ψ(1S) f2 ( 3.3 + 0.5
− 0.6 )× 10−6 S=1.6�199 J/ψ(1S)ρ0 ( 2.54± 0.14)× 10−5�200 J/ψ(1S) f0(980), f0 →

π+π−
< 1.1 × 10−6 CL=90%�201 J/ψ(1S)ρ(1450)0, ρ0 → ππ ( 3.0 + 1.6

− 0.7 )× 10−6�202 J/ψρ(1700)0, ρ0 → π+π− ( 2.0 ± 1.3 )× 10−6�203 J/ψ(1S)ω ( 1.8 + 0.7
− 0.5 )× 10−5�204 J/ψ(1S)K+K− ( 2.6 ± 0.4 )× 10−6�205 J/ψ(1S)a0(980), a0 →K+K−

( 4.7 ± 3.4 )× 10−7�206 J/ψ(1S)φ < 1.9 × 10−7 CL=90%�207 J/ψ(1S)η′(958) ( 7.6 ± 2.4 )× 10−6�208 J/ψ(1S)K0π+π− ( 4.4 ± 0.4 )× 10−4�209 J/ψ(1S)K0K−π++ 
.
. < 2.1 × 10−5 CL=90%�210 J/ψ(1S)K0K+K− ( 2.5 ± 0.7 )× 10−5 S=1.8�211 J/ψ(1S)K0K±π∓�212 J/ψ(1S)K0ρ0 ( 5.4 ± 3.0 )× 10−4�213 J/ψ(1S)K∗(892)+π− ( 8 ± 4 )× 10−4�214 J/ψ(1S)π+π−π+π− ( 1.45± 0.13)× 10−5�215 J/ψ(1S) f1(1285) ( 8.4 ± 2.1 )× 10−6�216 J/ψ(1S)K∗(892)0π+π− ( 6.6 ± 2.2 )× 10−4�217 X (3872)−K+ < 5 × 10−4 CL=90%�218 X (3872)−K+, X (3872)− →J/ψ(1S)π−π0 [
℄ < 4.2 × 10−6 CL=90%�219 X (3872)K0, X → J/ψπ+π− ( 4.3 ± 1.3 )× 10−6�220 X (3872)K0, X → J/ψγ < 2.4 × 10−6 CL=90%�221 X (3872)K∗(892)0, X → J/ψγ < 2.8 × 10−6 CL=90%�222 X (3872)K0, X → ψ(2S)γ < 6.62 × 10−6 CL=90%�223 X (3872)K∗(892)0, X →
ψ(2S)γ < 4.4 × 10−6 CL=90%�224 X (3872)K0, X → D0D0π0 ( 1.7 ± 0.8 )× 10−4�225 X (3872)K0, X → D∗0D0 ( 1.2 ± 0.4 )× 10−4�226 X (3872)K+π−, X →J/ψπ+π−

( 7.9 ± 1.4 )× 10−6�227 X (3872)K∗(982)0, X →J/ψπ+π−
( 4.0 ± 1.5 )× 10−6�228 X (4430)±K∓, X± →

ψ(2S)π±
( 6.0 + 3.0

− 2.4 )× 10−5�229 X (4430)±K∓, X± → J/ψπ± ( 5.4 + 4.0
− 1.2 )× 10−6�230 X (3900)±K∓, X± → J/ψπ± < 9 × 10−7�231 X (4200)±K∓, X± → J/ψπ± ( 2.2 + 1.3
− 0.8 )× 10−5�232 J/ψ(1S)pp < 5.2 × 10−7 CL=90%�233 J/ψ(1S)γ < 1.5 × 10−6 CL=90%�234 J/ψ(1S)D0 < 1.3 × 10−5 CL=90%�235 ψ(2S)π0 ( 1.17± 0.19)× 10−5�236 ψ(2S)K0 ( 5.8 ± 0.5 )× 10−4�237 ψ(3770)K0, ψ → D0D0 < 1.23 × 10−4 CL=90%�238 ψ(3770)K0, ψ → D−D+ < 1.88 × 10−4 CL=90%�239 ψ(2S)π+π− ( 2.3 ± 0.4 )× 10−5�240 ψ(2S)K+π− ( 5.8 ± 0.4 )× 10−4�241 ψ(2S)K∗(892)0 ( 5.9 ± 0.4 )× 10−4�242 χ
0K0 ( 1.47± 0.27)× 10−4�243 χ
0K∗(892)0 ( 1.7 ± 0.4 )× 10−4�244 χ
2K0 < 1.5 × 10−5 CL=90%�245 χ
2K∗(892)0 ( 4.9 ± 1.2 )× 10−5 S=1.1�246 χ
1π0 ( 1.12± 0.28)× 10−5�247 χ
1K0 ( 3.93± 0.27)× 10−4�248 χ
1K−π+ ( 3.8 ± 0.4 )× 10−4�249 χ
1K∗(892)0 ( 2.39± 0.19)× 10−4 S=1.2�250 X (4051)+K−, X+ →

χ
1π+ ( 3.0 + 4.0
− 1.8 )× 10−5�251 X (4248)+K−, X+ →

χ
1π+ ( 4.0 +20.0
− 1.0 )× 10−5K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modes�252 K+π− ( 1.96± 0.05)× 10−5�253 K0π0 ( 9.9 ± 0.5 )× 10−6�254 η′K0 ( 6.6 ± 0.4 )× 10−5 S=1.4�255 η′K∗(892)0 ( 2.8 ± 0.6 )× 10−6�256 η′K∗0(1430)0 ( 6.3 ± 1.6 )× 10−6

�257 η′K∗2(1430)0 ( 1.37± 0.32)× 10−5�258 ηK0 ( 1.23+ 0.27
− 0.24)× 10−6�259 ηK∗(892)0 ( 1.59± 0.10)× 10−5�260 ηK∗0(1430)0 ( 1.10± 0.22)× 10−5�261 ηK∗2(1430)0 ( 9.6 ± 2.1 )× 10−6�262 ωK0 ( 4.8 ± 0.4 )× 10−6�263 a0(980)0K0, a00 → ηπ0 < 7.8 × 10−6 CL=90%�264 b01K0, b01 → ωπ0 < 7.8 × 10−6 CL=90%�265 a0(980)±K∓, a±0 → ηπ± < 1.9 × 10−6 CL=90%�266 b−1 K+, b−1 → ωπ− ( 7.4 ± 1.4 )× 10−6�267 b01K∗0, b01 → ωπ0 < 8.0 × 10−6 CL=90%�268 b−1 K∗+, b−1 → ωπ− < 5.0 × 10−6 CL=90%�269 a0(1450)±K∓, a±0 → ηπ± < 3.1 × 10−6 CL=90%�270 K0S X 0 (Familon) < 5.3 × 10−5 CL=90%�271 ωK∗(892)0 ( 2.0 ± 0.5 )× 10−6�272 ω (Kπ)∗00 ( 1.84± 0.25)× 10−5�273 ωK∗0(1430)0 ( 1.60± 0.34)× 10−5�274 ωK∗2(1430)0 ( 1.01± 0.23)× 10−5�275 ωK+π− nonresonant ( 5.1 ± 1.0 )× 10−6�276 K+π−π0 ( 3.78± 0.32)× 10−5�277 K+ρ− ( 7.0 ± 0.9 )× 10−6�278 K+ρ(1450)− ( 2.4 ± 1.2 )× 10−6�279 K+ρ(1700)− ( 6 ± 7 )× 10−7�280 (K+π−π0 ) non-resonant ( 2.8 ± 0.6 )× 10−6�281 (Kπ)∗+0 π−, (Kπ)∗+0 →K+π0 ( 3.4 ± 0.5 )× 10−5�282 (Kπ)∗00 π0, (Kπ)∗00 →K+π−

( 8.6 ± 1.7 )× 10−6�283 K∗2(1430)0π0 < 4.0 × 10−6 CL=90%�284 K∗(1680)0π0 < 7.5 × 10−6 CL=90%�285 K∗0x π0 [d℄ ( 6.1 ± 1.6 )× 10−6�286 K0π+π− ( 5.20± 0.24)× 10−5 S=1.3�287 K0π+π− non-resonant ( 1.47+ 0.40
− 0.26)× 10−5 S=2.1�288 K0ρ0 ( 4.7 ± 0.6 )× 10−6�289 K∗(892)+π− ( 8.4 ± 0.8 )× 10−6�290 K∗0(1430)+π− ( 3.3 ± 0.7 )× 10−5 S=2.0�291 K∗+x π− [d℄ ( 5.1 ± 1.6 )× 10−6�292 K∗(1410)+π−, K∗+ →K0π+ < 3.8 × 10−6 CL=90%�293 f0(980)K0, f0 → π+π− ( 7.0 ± 0.9 )× 10−6�294 f2(1270)K0 ( 2.7 + 1.3
− 1.2 )× 10−6�295 fx (1300)K0, fx → π+π− ( 1.8 ± 0.7 )× 10−6�296 K∗(892)0π0 ( 3.3 ± 0.6 )× 10−6�297 K∗2(1430)+π− < 6 × 10−6 CL=90%�298 K∗(1680)+π− < 1.0 × 10−5 CL=90%�299 K+π−π+π− [e℄ < 2.3 × 10−4 CL=90%�300 ρ0K+π− ( 2.8 ± 0.7 )× 10−6�301 f0(980)K+π−, f0 → ππ ( 1.4 + 0.5
− 0.6 )× 10−6�302 K+π−π+π− nonresonant < 2.1 × 10−6 CL=90%�303 K∗(892)0π+π− ( 5.5 ± 0.5 )× 10−5�304 K∗(892)0 ρ0 ( 3.9 ± 1.3 )× 10−6 S=1.9�305 K∗(892)0 f0(980), f0 → ππ ( 3.9 + 2.1
− 1.8 )× 10−6 S=3.9�306 K1(1270)+π− < 3.0 × 10−5 CL=90%�307 K1(1400)+π− < 2.7 × 10−5 CL=90%�308 a1(1260)−K+ [e℄ ( 1.6 ± 0.4 )× 10−5�309 K∗(892)+ρ− ( 1.03± 0.26)× 10−5�310 K∗0(1430)+ρ− ( 2.8 ± 1.2 )× 10−5�311 K1(1400)0ρ0 < 3.0 × 10−3 CL=90%�312 K∗0(1430)0ρ0 ( 2.7 ± 0.6 )× 10−5�313 K∗0(1430)0 f0(980), f0 → ππ ( 2.7 ± 0.9 )× 10−6�314 K∗2(1430)0 f0(980), f0 → ππ ( 8.6 ± 2.0 )× 10−6�315 K+K− ( 1.3 ± 0.5 )× 10−7�316 K0K0 ( 1.21± 0.16)× 10−6�317 K0K−π+ ( 6.5 ± 0.8 )× 10−6�318 K∗(892)±K∓ < 4 × 10−7 CL=90%�319 K∗0K0 + K∗0K0 < 9.6 × 10−7 CL=90%�320 K+K−π0 ( 2.2 ± 0.6 )× 10−6�321 K0S K0S π0 < 9 × 10−7 CL=90%�322 K0S K0S η < 1.0 × 10−6 CL=90%�323 K0S K0S η′ < 2.0 × 10−6 CL=90%
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le ListingsB0�324 K0K+K− ( 2.49± 0.31)× 10−5 S=3.0�325 K0φ ( 7.3 ± 0.7 )× 10−6�326 f0(980)K0, f0 → K+K− ( 7.0 + 3.5
− 3.0 )× 10−6�327 f0(1500)K0 ( 1.3 + 0.7
− 0.5 )× 10−5�328 f ′2(1525)0K0 ( 3 + 5
− 4 )× 10−7�329 f0(1710)K0, f0 → K+K− ( 4.4 ± 0.9 )× 10−6�330 K0K+K−nonresonant ( 3.3 ± 1.0 )× 10−5�331 K0S K0S K0S ( 6.0 ± 0.5 )× 10−6 S=1.1�332 f0(980)K0, f0 → K0S K0S ( 2.7 ± 1.8 )× 10−6�333 f0(1710)K0, f0 → K0S K0S ( 5.0 + 5.0
− 2.6 )× 10−7�334 f0(2010)K0, f0 → K0S K0S ( 5 ± 6 )× 10−7�335 K0S K0S K0S nonresonant ( 1.33± 0.31)× 10−5�336 K0S K0S K0L < 1.6 × 10−5 CL=90%�337 K∗(892)0K+K− ( 2.75± 0.26)× 10−5�338 K∗(892)0φ ( 1.00± 0.05)× 10−5�339 K+K−π+π−nonresonant < 7.17 × 10−5 CL=90%�340 K∗(892)0K−π+ ( 4.5 ± 1.3 )× 10−6�341 K∗(892)0K∗(892)0 ( 8 ± 5 )× 10−7 S=2.2�342 K+K+π−π−nonresonant < 6.0 × 10−6 CL=90%�343 K∗(892)0K+π− < 2.2 × 10−6 CL=90%�344 K∗(892)0K∗(892)0 < 2 × 10−7 CL=90%�345 K∗(892)+K∗(892)− < 2.0 × 10−6 CL=90%�346 K1(1400)0φ < 5.0 × 10−3 CL=90%�347 φ(K π)∗00 ( 4.3 ± 0.4 )× 10−6�348 φ(K π)∗00 (1.60<mK π <2.15) [f ℄ < 1.7 × 10−6 CL=90%�349 K∗0(1430)0K−π+ < 3.18 × 10−5 CL=90%�350 K∗0(1430)0K∗(892)0 < 3.3 × 10−6 CL=90%�351 K∗0(1430)0K∗0(1430)0 < 8.4 × 10−6 CL=90%�352 K∗0(1430)0φ ( 3.9 ± 0.8 )× 10−6�353 K∗0(1430)0K∗(892)0 < 1.7 × 10−6 CL=90%�354 K∗0(1430)0K∗0(1430)0 < 4.7 × 10−6 CL=90%�355 K∗(1680)0φ < 3.5 × 10−6 CL=90%�356 K∗(1780)0φ < 2.7 × 10−6 CL=90%�357 K∗(2045)0φ < 1.53 × 10−5 CL=90%�358 K∗2(1430)0ρ0 < 1.1 × 10−3 CL=90%�359 K∗2(1430)0φ ( 6.8 ± 0.9 )× 10−6 S=1.2�360 K0φφ ( 4.5 ± 0.9 )× 10−6�361 η′ η′K0 < 3.1 × 10−5 CL=90%�362 ηK0 γ ( 7.6 ± 1.8 )× 10−6�363 η′K0γ < 6.4 × 10−6 CL=90%�364 K0φγ ( 2.7 ± 0.7 )× 10−6�365 K+π− γ ( 4.6 ± 1.4 )× 10−6�366 K∗(892)0 γ ( 4.33± 0.15)× 10−5�367 K∗(1410)γ < 1.3 × 10−4 CL=90%�368 K+π− γ nonresonant < 2.6 × 10−6 CL=90%�369 K∗(892)0X (214), X → µ+µ− [g ℄ < 2.26 × 10−8 CL=90%�370 K0π+π− γ ( 1.95± 0.22)× 10−5�371 K+π−π0 γ ( 4.1 ± 0.4 )× 10−5�372 K1(1270)0γ < 5.8 × 10−5 CL=90%�373 K1(1400)0γ < 1.2 × 10−5 CL=90%�374 K∗2(1430)0γ ( 1.24± 0.24)× 10−5�375 K∗(1680)0γ < 2.0 × 10−3 CL=90%�376 K∗3(1780)0γ < 8.3 × 10−5 CL=90%�377 K∗4(2045)0γ < 4.3 × 10−3 CL=90%Light un
avored meson modesLight un
avored meson modesLight un
avored meson modesLight un
avored meson modes�378 ρ0 γ ( 8.6 ± 1.5 )× 10−7�379 ρ0X (214), X → µ+µ− [g ℄ < 1.73 × 10−8 CL=90%�380 ωγ ( 4.4 + 1.8
− 1.6 )× 10−7�381 φγ < 8.5 × 10−7 CL=90%�382 π+π− ( 5.12± 0.19)× 10−6�383 π0π0 ( 1.91± 0.22)× 10−6�384 ηπ0 ( 4.1 ± 1.7 )× 10−7�385 ηη < 1.0 × 10−6 CL=90%�386 η′π0 ( 1.2 ± 0.6 )× 10−6 S=1.7�387 η′ η′ < 1.7 × 10−6 CL=90%�388 η′ η < 1.2 × 10−6 CL=90%�389 η′ρ0 < 1.3 × 10−6 CL=90%�390 η′ f0(980), f0 → π+π− < 9 × 10−7 CL=90%�391 ηρ0 < 1.5 × 10−6 CL=90%�392 η f0(980), f0 → π+π− < 4 × 10−7 CL=90%

�393 ωη ( 9.4 + 4.0
− 3.1 )× 10−7�394 ωη′ ( 1.0 + 0.5
− 0.4 )× 10−6�395 ωρ0 < 1.6 × 10−6 CL=90%�396 ω f0(980), f0 → π+π− < 1.5 × 10−6 CL=90%�397 ωω ( 1.2 ± 0.4 )× 10−6�398 φπ0 < 1.5 × 10−7 CL=90%�399 φη < 5 × 10−7 CL=90%�400 φη′ < 5 × 10−7 CL=90%�401 φρ0 < 3.3 × 10−7 CL=90%�402 φ f0(980), f0 → π+π− < 3.8 × 10−7 CL=90%�403 φω < 7 × 10−7 CL=90%�404 φφ < 2.8 × 10−8 CL=90%�405 a0(980)±π∓, a±0 → ηπ± < 3.1 × 10−6 CL=90%�406 a0(1450)±π∓, a±0 → ηπ± < 2.3 × 10−6 CL=90%�407 π+π−π0 < 7.2 × 10−4 CL=90%�408 ρ0π0 ( 2.0 ± 0.5 )× 10−6�409 ρ∓π± [h℄ ( 2.30± 0.23)× 10−5�410 π+π−π+π− < 1.12 × 10−5 CL=90%�411 ρ0π+π− < 8.8 × 10−6 CL=90%�412 ρ0 ρ0 ( 9.6 ± 1.5 )× 10−7�413 f0(980)π+π−, f0 →

π+π−
< 3.0 × 10−6 CL=90%�414 ρ0 f0(980), f0 → π+π− ( 7.8 ± 2.5 )× 10−7�415 f0(980)f0(980), f0 → π+π−,f0 → π+π−
< 1.9 × 10−7 CL=90%�416 f0(980)f0(980), f0 → π+π−,f0 → K+K−
< 2.3 × 10−7 CL=90%�417 a1(1260)∓π± [h℄ ( 2.6 ± 0.5 )× 10−5 S=1.9�418 a2(1320)∓π± [h℄ < 6.3 × 10−6 CL=90%�419 π+π−π0π0 < 3.1 × 10−3 CL=90%�420 ρ+ρ− ( 2.77± 0.19)× 10−5�421 a1(1260)0π0 < 1.1 × 10−3 CL=90%�422 ωπ0 < 5 × 10−7 CL=90%�423 π+π+π−π−π0 < 9.0 × 10−3 CL=90%�424 a1(1260)+ρ− < 6.1 × 10−5 CL=90%�425 a1(1260)0 ρ0 < 2.4 × 10−3 CL=90%�426 b∓1 π±, b∓1 → ωπ∓ ( 1.09± 0.15)× 10−5�427 b01π0, b01 → ωπ0 < 1.9 × 10−6 CL=90%�428 b−1 ρ+, b−1 → ωπ− < 1.4 × 10−6 CL=90%�429 b01 ρ0, b01 → ωπ0 < 3.4 × 10−6 CL=90%�430 π+π+π+π−π−π− < 3.0 × 10−3 CL=90%�431 a1(1260)+a1(1260)−, a+1 →2π+π−, a−1 → 2π−π+ ( 1.18± 0.31)× 10−5�432 π+π+π+π−π−π−π0 < 1.1 % CL=90%Baryon modesBaryon modesBaryon modesBaryon modes�433 pp ( 1.5 + 0.7

− 0.5 )× 10−8�434 ppπ+π− < 2.5 × 10−4 CL=90%�435 ppK0 ( 2.66± 0.32)× 10−6�436 �(1540)+ p, �+ → pK0S [i ℄ < 5 × 10−8 CL=90%�437 fJ (2220)K0, fJ → pp < 4.5 × 10−7 CL=90%�438 ppK∗(892)0 ( 1.24+ 0.28
− 0.25)× 10−6�439 fJ (2220)K∗0, fJ → pp < 1.5 × 10−7 CL=90%�440 p�π− ( 3.14± 0.29)× 10−6�441 p�π−γ < 6.5 × 10−7 CL=90%�442 p� (1385)− < 2.6 × 10−7 CL=90%�443 �0� < 9.3 × 10−7 CL=90%�444 p�K− < 8.2 × 10−7 CL=90%�445 p�D− ( 2.5 ± 0.4 )× 10−5�446 p�D∗− ( 3.4 ± 0.8 )× 10−5�447 p�0π− < 3.8 × 10−6 CL=90%�448 �� < 3.2 × 10−7 CL=90%�449 ��K0 ( 4.8 + 1.0
− 0.9 )× 10−6�450 ��K∗0 ( 2.5 + 0.9
− 0.8 )× 10−6�451 ��D0 ( 1.00+ 0.30
− 0.26)× 10−5�452 D0�0�+ 
.
. < 3.1 × 10−5 CL=90%�453 �0�0 < 1.5 × 10−3 CL=90%�454 �++�−− < 1.1 × 10−4 CL=90%�455 D0 pp ( 1.04± 0.07)× 10−4�456 D−s �p ( 2.8 ± 0.9 )× 10−5�457 D∗(2007)0 pp ( 9.9 ± 1.1 )× 10−5



1212121212121212Meson Parti
le ListingsB0�458 D∗(2010)− pn ( 1.4 ± 0.4 )× 10−3�459 D− ppπ+ ( 3.32± 0.31)× 10−4�460 D∗(2010)− ppπ+ ( 4.7 ± 0.5 )× 10−4 S=1.2�461 D0 ppπ+π− ( 3.0 ± 0.5 )× 10−4�462 D∗0ppπ+π− ( 1.9 ± 0.5 )× 10−4�463 �
 pπ+, �
 → D−p < 9 × 10−6 CL=90%�464 �
 pπ+, �
 → D∗−p < 1.4 × 10−5 CL=90%�465 �−−
 �++ < 8 × 10−4 CL=90%�466 �−
 pπ+π− ( 1.01± 0.14)× 10−3 S=1.3�467 �−
 p ( 1.52± 0.18)× 10−5�468 �−
 pπ0 ( 1.53± 0.18)× 10−4�469 �
 (2455)− p < 2.4 × 10−5�470 �−
 pπ+π−π0 < 5.07 × 10−3 CL=90%�471 �−
 pπ+π−π+π− < 2.74 × 10−3 CL=90%�472 �−
 pπ+π− (nonresonant) ( 5.4 ± 1.0 )× 10−4 S=1.3�473 � 
 (2520)−− pπ+ ( 1.01± 0.18)× 10−4�474 � 
 (2520)0 pπ− < 3.1 × 10−5 CL=90%�475 � 
 (2455)0 pπ− ( 1.07± 0.16)× 10−4�476 � 
 (2455)0N0, N0 →pπ−
( 6.3 ± 1.6 )× 10−5�477 � 
 (2455)−− pπ+ ( 1.81± 0.24)× 10−4�478 �−
 pK+π− ( 3.4 ± 0.7 )× 10−5�479 � 
 (2455)−− pK+, �−−
 →�−
 π−
( 8.7 ± 2.5 )× 10−6�480 �−
 pK∗(892)0 < 2.42 × 10−5 CL=90%�481 �−
 pK+K− ( 2.0 ± 0.4 )× 10−5�482 �−
 pφ < 9 × 10−6 CL=90%�483 �−
 ppp < 2.8 × 10−6�484 �−
 �K+ ( 4.8 ± 1.1 )× 10−5�485 �−
 �+
 < 1.6 × 10−5 CL=95%�486 �
 (2593)− / �
 (2625)−p < 1.1 × 10−4 CL=90%�487 �−
 �+
 , �−
 → �+π−π− ( 1.7 ± 1.8 )× 10−5 S=2.2�488 �+
 �−
 K0 ( 4.3 ± 2.2 )× 10−4Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)Lepton Family number (LF ) or Lepton number (L) or Baryon number (B)violating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modesviolating modes, or/and �B = 1 weak neutral 
urrent (B1) modes�489 γ γ B1 < 3.2 × 10−7 CL=90%�490 e+ e− B1 < 8.3 × 10−8 CL=90%�491 e+ e− γ B1 < 1.2 × 10−7 CL=90%�492 µ+µ− B1 ( 3.9 + 1.6

− 1.4 )× 10−10�493 µ+µ− γ B1 < 1.6 × 10−7 CL=90%�494 µ+µ−µ+µ− B1 < 5.3 × 10−9 CL=90%�495 S P , S → µ+µ−,P → µ+µ−
B1 [j℄ < 5.1 × 10−9 CL=90%�496 τ+ τ− B1 < 4.1 × 10−3 CL=90%�497 π0 ℓ+ ℓ− B1 < 5.3 × 10−8 CL=90%�498 π0 e+ e− B1 < 8.4 × 10−8 CL=90%�499 π0µ+µ− B1 < 6.9 × 10−8 CL=90%�500 ηℓ+ ℓ− B1 < 6.4 × 10−8 CL=90%�501 ηe+ e− B1 < 1.08 × 10−7 CL=90%�502 ηµ+µ− B1 < 1.12 × 10−7 CL=90%�503 π0 ν ν B1 < 6.9 × 10−5 CL=90%�504 K0 ℓ+ ℓ− B1 [a℄ ( 3.1 + 0.8

− 0.7 )× 10−7�505 K0 e+ e− B1 ( 1.6 + 1.0
− 0.8 )× 10−7�506 K0µ+µ− B1 ( 3.39± 0.34)× 10−7�507 K0ν ν B1 < 4.9 × 10−5 CL=90%�508 ρ0 ν ν B1 < 2.08 × 10−4 CL=90%�509 K∗(892)0 ℓ+ ℓ− B1 [a℄ ( 9.9 + 1.2
− 1.1 )× 10−7�510 K∗(892)0 e+ e− B1 ( 1.03+ 0.19
− 0.17)× 10−6�511 K∗(892)0µ+µ− B1 ( 1.02± 0.09)× 10−6�512 K∗(892)0χ, χ →

µ+µ−�513 π+π−µ+µ− ( 2.1 ± 0.5 )× 10−8�514 K∗(892)0 ν ν B1 < 5.5 × 10−5 CL=90%�515 φν ν B1 < 1.27 × 10−4 CL=90%�516 e±µ∓ LF [h℄ < 2.8 × 10−9 CL=90%�517 π0 e±µ∓ LF < 1.4 × 10−7 CL=90%�518 K0 e±µ∓ LF < 2.7 × 10−7 CL=90%�519 K∗(892)0 e+µ− LF < 5.3 × 10−7 CL=90%�520 K∗(892)0 e−µ+ LF < 3.4 × 10−7 CL=90%

�521 K∗(892)0 e±µ∓ LF < 5.8 × 10−7 CL=90%�522 e± τ∓ LF [h℄ < 2.8 × 10−5 CL=90%�523 µ± τ∓ LF [h℄ < 2.2 × 10−5 CL=90%�524 invisible B1 < 2.4 × 10−5 CL=90%�525 ν ν γ B1 < 1.7 × 10−5 CL=90%�526 �+
 µ− L,B < 1.4 × 10−6 CL=90%�527 �+
 e− L,B < 4 × 10−6 CL=90%[a℄ An ℓ indi
ates an e or a µ mode, not a sum over these modes.[b℄ D∗∗ represents an ex
ited state with mass 2.2 < M < 2.8 GeV/
2.[
 ℄ X (3872)+ is a hypotheti
al 
harged partner of the X (3872).[d ℄ Stands for the possible 
andidates of K∗(1410), K∗0(1430) andK∗2(1430).[e℄ B0 and B0s 
ontributions not separated. Limit is on weighted average ofthe two de
ay rates.[f ℄ This de
ay refers to the 
oherent sum of resonant and nonresonant JP= 0+ K π 
omponents with 1.60 < mK π < 2.15 GeV/
2.[g ℄ X (214) is a hypotheti
al parti
le of mass 214 MeV/
2 reported by theHyperCP experiment, Physi
al Review Letters 94949494 021801 (2005)[h℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.[i ℄ �(1540)+ denotes a possible narrow pentaquark state.[j ℄ Here S and P are the hypotheti
al s
alar and pseudos
alar parti
les withmasses of 2.5 GeV/
2 and 214.3 MeV/
2, respe
tively.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 34 bran
hing ratios uses 83 measurements andone 
onstraint to determine 22 parameters. The overall �t has a
χ2 = 70.5 for 62 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x7 47x34 0 0x46 0 0 43x72 0 0 6 13x123 0 0 10 4 1x183 0 0 0 0 0 0x185 0 0 0 0 0 0 0x236 0 0 0 0 0 0 0 0x241 0 0 0 0 0 0 0 0 19x245 0 0 0 0 0 0 0 6 0 0x249 0 0 0 0 0 0 0 29 0 0x252 0 0 0 0 0 0 0 0 0 0x286 0 0 0 0 0 0 0 0 0 0x317 0 0 0 0 0 0 0 0 0 0x324 0 0 0 0 0 0 0 0 0 0x338 0 0 0 0 0 0 0 0 0 0x382 0 0 0 0 0 0 0 0 0 0x412 0 0 0 0 0 0 0 0 0 0x506 0 0 0 0 0 0 4 0 0 0x511 0 0 0 0 0 0 0 27 0 0x6 x7 x34 x46 x72 x123 x183 x185 x236 x241x249 22x252 0 0x286 0 0 0x317 0 0 0 24x324 0 0 0 11 3x338 0 0 0 0 0 0x382 0 0 27 0 0 0 0x412 0 0 0 0 0 0 20 0x506 0 0 0 0 0 0 0 0 0x511 2 8 0 0 0 0 0 0 0 0x245 x249 x252 x286 x317 x324 x338 x382 x412 x506



1213121312131213See key on page 601 Meson Parti
le ListingsB0B0 BRANCHING RATIOSB0 BRANCHING RATIOSB0 BRANCHING RATIOSB0 BRANCHING RATIOSFor bran
hing ratios in whi
h the 
harge of the de
aying B is not deter-mined, see the B± se
tion.�(ℓ+νℓ anything)/�total �1/��(ℓ+νℓ anything)/�total �1/��(ℓ+νℓ anything)/�total �1/��(ℓ+νℓ anything)/�total �1/�\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE (units 10−2) DOCUMENT ID TECN COMMENT10.33±0.28 OUR EVALUATION10.33±0.28 OUR EVALUATION10.33±0.28 OUR EVALUATION10.33±0.28 OUR EVALUATION10.14±0.30 OUR AVERAGE10.14±0.30 OUR AVERAGE10.14±0.30 OUR AVERAGE10.14±0.30 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.10.46±0.30±0.23 1 URQUIJO 07 BELL e+ e− → �(4S)9.64±0.27±0.33 2 AUBERT,B 06Y BABR e+ e− → �(4S)10.78±0.60±0.69 3 ARTUSO 97 CLE2 e+ e− → �(4S)9.3 ±1.1 ±1.5 ALBRECHT 94 ARG e+ e− → �(4S)9.9 ±3.0 ±0.9 HENDERSON 92 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •10.32±0.36±0.35 4 OKABE 05 BELL Repl. by URQUIJO 0710.9 ±0.7 ±1.1 ATHANAS 94 CLE2 Sup. by ARTUSO 971URQUIJO 07 report a measurement of (9.80 ± 0.29 ± 0.21)% for the partial bran
hingfra
tion of B → e νe X
 de
ay with ele
tron energy above 0.6 GeV. We 
onverted theresult to B → e νe X bran
hing fra
tion.2The measurements are obtained for 
harged and neutral B mesons partial rates of semi-leptoni
 de
ay to ele
trons with momentum above 0.6 GeV/
 in the B rest frame. Thebest pre
ision on the ratio is a
hieved for a momentum threshold of 1.0 GeV: B(B+ →e+ νe X ) / B(B0 → e+ νe X ) = 1.074 ± 0.041 ± 0.026.3ARTUSO 97 uses partial re
onstru
tion of B → D∗ ℓνℓ and in
lusive semileptoni
bran
hing ratio from BARISH 96B (0.1049 ± 0.0017 ± 0.0043).4The measurements are obtained for 
harged and neutral B mesons partial rates of semi-leptoni
 de
ay to ele
trons with momentum above 0.6 GeV/
 in the B rest frame, andtheir ratio of B(B+ → e+ νe X )/B(B0 → e+ νe X ) = 1.08 ± 0.05 ± 0.02.�(e+ νe X
)/�total �2/��(e+ νe X
)/�total �2/��(e+ νe X
)/�total �2/��(e+ νe X
)/�total �2/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT10.08±0.30±0.2210.08±0.30±0.2210.08±0.30±0.2210.08±0.30±0.22 1 URQUIJO 07 BELL e+ e− → �(4S)1Measure the independent B+ and B0 partial bran
hing fra
tions with ele
tron thresholdenergies of 0.4 GeV.�(D− ℓ+νℓ

)/�total �4/��(D− ℓ+νℓ

)/�total �4/��(D− ℓ+νℓ

)/�total �4/��(D− ℓ+νℓ

)/�total �4/�
ℓ denotes e or µ, not the sum.\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE DOCUMENT ID TECN COMMENT0.0219±0.0012 OUR EVALUATION0.0219±0.0012 OUR EVALUATION0.0219±0.0012 OUR EVALUATION0.0219±0.0012 OUR EVALUATION0.0225±0.0008 OUR AVERAGE0.0225±0.0008 OUR AVERAGE0.0225±0.0008 OUR AVERAGE0.0225±0.0008 OUR AVERAGE0.0231±0.0003±0.0011 1 GLATTAUER 16 BELL e+ e− → �(4S)0.0221±0.0011±0.0011 2 AUBERT 10 BABR e+ e− → �(4S)0.0209±0.0013±0.0018 3 BARTELT 99 CLE2 e+ e− → �(4S)0.0235±0.0020±0.0044 4 BUSKULIC 97 ALEP e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0221±0.0011±0.0012 2 AUBERT 08Q BABR Repl. by AUBERT 100.0213±0.0012±0.0039 ABE 02E BELL Repl. by GLATTAUER 160.0187±0.0015±0.0032 5 ATHANAS 97 CLE2 Repl. by BARTELT 990.018 ±0.006 ±0.003 6 FULTON 91 CLEO e+ e− → �(4S)0.020 ±0.007 ±0.006 7 ALBRECHT 89J ARG e+ e− → �(4S)1Uses a fully re
onstru
ted B meson as a tag on the re
oil side while the other, on thesignal side, is partially re
onstru
ted from B → D ℓν.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.3Assumes equal produ
tion of B+ and B0 at the �(4S).4BUSKULIC 97 assumes fra
tion (B+) = fra
tion (B0) = (37.8 ± 2.2)% and PDG 96values for B lifetime and bran
hing ratio of D∗ and D de
ays.5ATHANAS 97 uses missing energy and missing momentum to re
onstru
t neutrino.6 FULTON 91 assumes assuming equal produ
tion of B0 and B+ at the �(4S) and usesMark III D and D∗ bran
hing ratios.7ALBRECHT 89J reports 0.018 ± 0.006 ± 0.005. We res
ale using the method des
ribedin STONE 94 but with the updated PDG 94 B(D0 → K−π+).�(D− ℓ+νℓ

)/�(ℓ+νℓ anything) �4/�1�(D− ℓ+νℓ

)/�(ℓ+νℓ anything) �4/�1�(D− ℓ+νℓ

)/�(ℓ+νℓ anything) �4/�1�(D− ℓ+νℓ

)/�(ℓ+νℓ anything) �4/�1VALUE DOCUMENT ID TECN COMMENT0.230±0.011±0.0110.230±0.011±0.0110.230±0.011±0.0110.230±0.011±0.011 1 AUBERT 10 BABR e+ e− → �(4S)1Uses a fully re
onstru
ted B meson on the re
oil side.�(D− ℓ+νℓ

)/�(D ℓ+νℓ anything) �4/�3�(D− ℓ+νℓ

)/�(D ℓ+νℓ anything) �4/�3�(D− ℓ+νℓ

)/�(D ℓ+νℓ anything) �4/�3�(D− ℓ+νℓ

)/�(D ℓ+νℓ anything) �4/�3VALUE DOCUMENT ID TECN COMMENT0.215±0.016±0.0130.215±0.016±0.0130.215±0.016±0.0130.215±0.016±0.013 1 AUBERT 07AN BABR e+ e− → �(4S)1Uses a fully re
onstru
ted B meson on the re
oil side.

�(D− τ+ ντ

)/�total �5/��(D− τ+ ντ

)/�total �5/��(D− τ+ ντ

)/�total �5/��(D− τ+ ντ

)/�total �5/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.04±0.35±0.18 1 AUBERT 08N BABR Repl. by AUBERT 09S1Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D− τ+ ντ

)/�(D− ℓ+νℓ

) �5/�4�(D− τ+ ντ

)/�(D− ℓ+νℓ

) �5/�4�(D− τ+ ντ

)/�(D− ℓ+νℓ

) �5/�4�(D− τ+ ντ

)/�(D− ℓ+νℓ

) �5/�4VALUE DOCUMENT ID TECN COMMENT0.469±0.084±0.0530.469±0.084±0.0530.469±0.084±0.0530.469±0.084±0.053 1,2 LEES 12D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.489±0.165±0.069 1 AUBERT 09S BABR Repl. by LEES 12D1Uses a fully re
onstru
ted B meson as a tag on the re
oil side.2Uses τ+ → e+ νe ντ and τ+ → µ+ νµντ and e+ or µ+ as ℓ+.�(D∗(2010)− ℓ+νℓ

)/�total �6/��(D∗(2010)− ℓ+νℓ

)/�total �6/��(D∗(2010)− ℓ+νℓ

)/�total �6/��(D∗(2010)− ℓ+νℓ

)/�total �6/�\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE EVTS DOCUMENT ID TECN COMMENT0.0493±0.0011 OUR EVALUATION0.0493±0.0011 OUR EVALUATION0.0493±0.0011 OUR EVALUATION0.0493±0.0011 OUR EVALUATION0.0510±0.0023 OUR FIT0.0510±0.0023 OUR FIT0.0510±0.0023 OUR FIT0.0510±0.0023 OUR FIT Error in
ludes s
ale fa
tor of 1.6.0.0509±0.0022 OUR AVERAGE0.0509±0.0022 OUR AVERAGE0.0509±0.0022 OUR AVERAGE0.0509±0.0022 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogrambelow.0.0458±0.0003±0.0026 1 DUNGEL 10 BELL e+ e− → �(4S)0.0549±0.0016±0.0025 2 AUBERT 08Q BABR e+ e− → �(4S)0.0469±0.0004±0.0034 3 AUBERT 08R BABR e+ e− → �(4S)0.0590±0.0022±0.0050 4 ABDALLAH 04D DLPH e+ e− → Z00.0609±0.0019±0.0040 5 ADAM 03 CLE2 e+ e− → �(4S)0.0470±0.0013+0.0036
−0.0031 6 ABREU 01H DLPH e+ e− → Z0.0526±0.0020±0.0046 7 ABBIENDI 00Q OPAL e+ e− → Z0.0553±0.0026±0.0052 8 BUSKULIC 97 ALEP e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0490±0.0007+0.0036
−0.0035 4 AUBERT 05E BABR Repl. by AUBERT 08R0.0539±0.0011±0.0034 9 ABDALLAH 04D DLPH e+ e− → Z00.0459±0.0023±0.0040 10 ABE 02F BELL Repl. by DUNGEL 100.0609±0.0019±0.0040 11 BRIERE 02 CLE2 e+ e− → �(4S)0.0508±0.0021±0.0066 12 ACKERSTAFF 97G OPAL Repl. by ABBI-ENDI 00Q0.0552±0.0017±0.0068 13 ABREU 96P DLPH Repl. by ABREU 01H0.0449±0.0032±0.0039 376 14 BARISH 95 CLE2 Repl. by ADAM 030.0518±0.0030±0.0062 410 15 BUSKULIC 95N ALEP Sup. by BUSKULIC 970.045 ±0.003 ±0.004 16 ALBRECHT 94 ARG e+ e− → �(4S)0.047 ±0.005 ±0.005 235 17 ALBRECHT 93 ARG e+ e− → �(4S)seen 398 18 SANGHERA 93 CLE2 e+ e− → �(4S)0.070 ±0.018 ±0.014 19 ANTREASYAN 90B CBAL e+ e− → �(4S)20 ALBRECHT 89C ARG e+ e− → �(4S)0.060 ±0.010 ±0.014 21 ALBRECHT 89J ARG e+ e− → �(4S)0.040 ±0.004 ±0.006 22 BORTOLETTO89B CLEO e+ e− → �(4S)0.070 ±0.012 ±0.019 47 23 ALBRECHT 87J ARG e+ e− → �(4S)1Uses fully re
onstru
ted D∗− ℓ+ ν events (ℓ = e or µ).2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.3Measured using fully re
onstru
ted D∗ sample and a simultaneous �t to the Caprini-Lellou
h-Neubert form fa
tor parameters: ρ2 = 1.191± 0.048± 0.028, R1(1) = 1.429±0.061 ± 0.044, and R2(1) = 0.827 ± 0.038 ± 0.022.4Measured using fully re
onstru
ted D∗ sample.5Uses the 
ombined �t of both B0 → D∗(2010)− ℓν and B+ → D(2007)0 ℓν samples.6ABREU 01H measured using about 5000 partial re
onstru
ted D∗ sample.7ABBIENDI 00Q assumes the fra
tion B(b → B0)= (39.7+1.8

−2.2)%. This result is anaverage of two methods using ex
lusive and partial D∗ re
onstru
tion.8BUSKULIC 97 assumes fra
tion (B+) = fra
tion (B0) = (37.8 ± 2.2)% and PDG 96values for B lifetime and D∗ and D bran
hing fra
tions.9Combines with previous partial re
onstru
ted D∗ measurement.10Assumes equal produ
tion of B+ and B0 at the �(4S).11The results are based on the same analysis and data sample reported in ADAM 03.12ACKERSTAFF 97G assumes fra
tion (B+) = fra
tion (B0) = (37.8±2.2)% and PDG 96values for B lifetime and bran
hing ratio of D∗ and D de
ays.13ABREU 96P result is the average of two methods using ex
lusive and partial D∗ re
on-stru
tion.14BARISH 95 use B(D0 → K−π+) = (3.91 ± 0.08 ± 0.17)% and B(D∗+ → D0π+)= (68.1 ± 1.0 ± 1.3)%.15BUSKULIC 95N assumes fra
tion (B+) = fra
tion (B0) = 38.2 ± 1.3 ± 2.2% and τB0= 1.58 ± 0.06 ps. �(D∗− ℓ+ νℓ)/total = [5.18− 0.13(fra
tion(B0)−38.2)−1.5(τB0 −1.58)℄%.16ALBRECHT 94 assumes B(D∗+ → D0π+) = 68.1 ± 1.0 ± 1.3%. Uses partial re
on-stru
tion of D∗+ and is independent of D0 bran
hing ratios.17ALBRECHT 93 reports 0.052 ± 0.005 ± 0.006. We res
ale using the method des
ribedin STONE 94 but with the updated PDG 94 B(D0 → K−π+). We have taken theiraverage e and µ value. They also obtain α= 2∗�0/(�− + �+)−1 = 1.1 ± 0.4 ± 0.2,AAF = 3/4∗(�− − �+)/� = 0.2 ± 0.08 ± 0.06 and a value of ∣

∣V
b ∣

∣ = 0.036{0.045depending on model assumptions.18Combining D∗0 ℓ+ νℓ and D∗− ℓ+ νℓ SANGHERA 93 test V−A stru
ture and �t thede
ay angular distributions to obtain AFB = 3/4∗(�− − �+)/� = 0.14 ± 0.06 ± 0.03.



1214121412141214Meson Parti
le ListingsB0Assuming a value of V
b , they measure V, A1, and A2, the three form fa
tors for theD∗ ℓνℓ de
ay, where results are slightly dependent on model assumptions.19ANTREASYAN 90B is average over B and D∗(2010) 
harge states.20The measurement of ALBRECHT 89C suggests a D∗ polarization γL/γT of 0.85± 0.45.or α = 0.7 ± 0.9.21ALBRECHT 89J is ALBRECHT 87J value res
aled using B(D∗(2010)− → D0π−) =0.57 ± 0.04 ± 0.04. Superseded by ALBRECHT 93.22We have taken average of the the BORTOLETTO 89B values for ele
trons and muons,0.046 ± 0.005 ± 0.007. We res
ale using the method des
ribed in STONE 94 but withthe updated PDG 94 B(D0 → K−π+). The measurement suggests a D∗ polarizationparameter value α = 0.65 ± 0.66 ± 0.25.23ALBRECHT 87J assume µ-e universality, the B(�(4S) → B0B0) = 0.45, the B(D0 →K−π+) = (0.042 ± 0.004 ± 0.004), and the B(D∗(2010)− → D0π−) = 0.49 ± 0.08.Superseded by ALBRECHT 89J.
WEIGHTED AVERAGE
0.0509±0.0022 (Error scaled by 1.6)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BUSKULIC 97 ALEP
ABBIENDI 00Q OPAL 0.0
ABREU 01H DLPH 0.7
ADAM 03 CLE2 5.1
ABDALLAH 04D DLPH 2.2
AUBERT 08R BABR 1.4
AUBERT 08Q BABR 1.8
DUNGEL 10 BELL 3.9

χ2

      15.0
(Confidence Level = 0.020)

0.03 0.04 0.05 0.06 0.07 0.08 0.09�(D∗(2010)− ℓ+ νℓ

)/�total�(D∗(2010)− ℓ+νℓ

)/�(D ℓ+νℓ anything) �6/�3�(D∗(2010)− ℓ+νℓ

)/�(D ℓ+νℓ anything) �6/�3�(D∗(2010)− ℓ+νℓ

)/�(D ℓ+νℓ anything) �6/�3�(D∗(2010)− ℓ+νℓ

)/�(D ℓ+νℓ anything) �6/�3VALUE DOCUMENT ID TECN COMMENT0.537±0.031±0.0360.537±0.031±0.0360.537±0.031±0.0360.537±0.031±0.036 1 AUBERT 07AN BABR e+ e− → �(4S)1Uses a fully re
onstru
ted B meson on the re
oil side.�(D∗(2010)− τ+ ντ

)/�total �7/��(D∗(2010)− τ+ ντ

)/�total �7/��(D∗(2010)− τ+ ντ

)/�total �7/��(D∗(2010)− τ+ ντ

)/�total �7/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.78±0.17 OUR FIT1.78±0.17 OUR FIT1.78±0.17 OUR FIT1.78±0.17 OUR FIT Error in
ludes s
ale fa
tor of 1.1.2.02+0.40
−0.37±0.372.02+0.40
−0.37±0.372.02+0.40
−0.37±0.372.02+0.40
−0.37±0.37 1 MATYJA 07 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.11±0.51±0.06 2 AUBERT 08N BABR Repl. by AUBERT 09S1Observed in the re
oil of the a

ompanying B meson.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D∗(2010)− τ+ ντ

)/�(D∗(2010)− ℓ+νℓ

) �7/�6�(D∗(2010)− τ+ ντ

)/�(D∗(2010)− ℓ+νℓ

) �7/�6�(D∗(2010)− τ+ ντ

)/�(D∗(2010)− ℓ+νℓ

) �7/�6�(D∗(2010)− τ+ ντ

)/�(D∗(2010)− ℓ+νℓ

) �7/�6VALUE DOCUMENT ID TECN COMMENT0.349±0.030 OUR FIT0.349±0.030 OUR FIT0.349±0.030 OUR FIT0.349±0.030 OUR FIT0.345±0.030 OUR AVERAGE0.345±0.030 OUR AVERAGE0.345±0.030 OUR AVERAGE0.345±0.030 OUR AVERAGE0.336±0.027±0.030 1 AAIJ 15Q LHCB pp at 7, 8 TeV0.355±0.039±0.021 2,3 LEES 12D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.207±0.095±0.008 2 AUBERT 09S BABR Repl. by LEES 12D1Uses τ+ → µ+ νµντ and µ+ as ℓ+.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.3Uses τ+ → e+ νe ντ and τ+ → µ+ νµντ and e+ or µ+ as ℓ+.�(D0π− ℓ+νℓ

)/�total �8/��(D0π− ℓ+νℓ

)/�total �8/��(D0π− ℓ+νℓ

)/�total �8/��(D0π− ℓ+νℓ

)/�total �8/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT4.3±0.6 OUR AVERAGE4.3±0.6 OUR AVERAGE4.3±0.6 OUR AVERAGE4.3±0.6 OUR AVERAGE4.3±0.8±0.3 1 AUBERT 08Q BABR e+ e− → �(4S)4.3±0.9±0.2 1,2 LIVENTSEV 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.4±1.0±0.2 3 LIVENTSEV 05 BELL Repl. by LIVENTSEV 081Uses a fully re
onstru
ted B meson as a tag on the re
oil side.2 LIVENTSEV 08 reports (4.2 ± 0.7 ± 0.6) × 10−3 from a measurement of [�(B0 →D0π− ℓ+ νℓ

)/�total℄ / [B(B0 → D− ℓ+ νℓ)℄ assuming B(B0 → D− ℓ+ νℓ) = (2.12±0.20)×10−2, whi
h we res
ale to our best value B(B0 → D− ℓ+ νℓ) = (2.19± 0.12)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.3 LIVENTSEV 05 reports [�(B0 → D0π− ℓ+ νℓ
)/�total℄ / [B(B+ → D0 ℓ+ νℓ)℄ =0.15 ± 0.03 ± 0.03 whi
h we multiply by our best value B(B+ → D0 ℓ+ νℓ) = (2.27 ±0.11) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.

�(D∗0(2400)− ℓ+νℓ, D∗−0 → D0π−)/�total �9/��(D∗0(2400)− ℓ+νℓ, D∗−0 → D0π−)/�total �9/��(D∗0(2400)− ℓ+νℓ, D∗−0 → D0π−)/�total �9/��(D∗0(2400)− ℓ+νℓ, D∗−0 → D0π−)/�total �9/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.0±1.2 OUR AVERAGE3.0±1.2 OUR AVERAGE3.0±1.2 OUR AVERAGE3.0±1.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.4.4±0.8±0.6 1 AUBERT 08BL BABR e+ e− → �(4S)2.0±0.7±0.5 1 LIVENTSEV 08 BELL e+ e− → �(4S)1Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D∗2(2460)− ℓ+νℓ, D∗−2 → D0π−)/�total �10/��(D∗2(2460)− ℓ+νℓ, D∗−2 → D0π−)/�total �10/��(D∗2(2460)− ℓ+νℓ, D∗−2 → D0π−)/�total �10/��(D∗2(2460)− ℓ+νℓ, D∗−2 → D0π−)/�total �10/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.21±0.33 OUR AVERAGE1.21±0.33 OUR AVERAGE1.21±0.33 OUR AVERAGE1.21±0.33 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.1.10±0.17±0.08 1 AUBERT 09Y BABR e+ e− → �(4S)2.2 ±0.4 ±0.4 2 LIVENTSEV 08 BELL e+ e− → �(4S)1Uses a simultaneous �t of all B semileptoni
 de
ays without full re
onstru
tion of events.AUBERT 09Y reports B(B0 → D∗2(2460)− ℓ+ νℓ) · B(D∗2(2460)− → D(∗)0 π−) =(1.77±0.26±0.11)×10−3 and the authors have provided us the individual measurement.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D(∗) nπℓ+ νℓ (n ≥ 1))/�(D ℓ+νℓ anything) �11/�3�(D(∗) nπℓ+ νℓ (n ≥ 1))/�(D ℓ+νℓ anything) �11/�3�(D(∗) nπℓ+ νℓ (n ≥ 1))/�(D ℓ+νℓ anything) �11/�3�(D(∗) nπℓ+ νℓ (n ≥ 1))/�(D ℓ+νℓ anything) �11/�3VALUE DOCUMENT ID TECN COMMENT0.248±0.032±0.0300.248±0.032±0.0300.248±0.032±0.0300.248±0.032±0.030 1 AUBERT 07AN BABR e+ e− → �(4S)1Uses a fully re
onstru
ted B meson on the re
oil side.�(D∗0π− ℓ+νℓ

)/�total �12/��(D∗0π− ℓ+νℓ

)/�total �12/��(D∗0π− ℓ+νℓ

)/�total �12/��(D∗0π− ℓ+νℓ

)/�total �12/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT4.9±0.8 OUR AVERAGE4.9±0.8 OUR AVERAGE4.9±0.8 OUR AVERAGE4.9±0.8 OUR AVERAGE4.8±0.8±0.4 1 AUBERT 08Q BABR e+ e− → �(4S)5.8±2.3±0.3 1,2 LIVENTSEV 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.7±1.3±0.2 3,4 LIVENTSEV 05 BELL Repl. by LIVENTSEV 081Uses a fully re
onstru
ted B meson as a tag on the re
oil side.2 LIVENTSEV 08 reports (5.6 ± 2.1 ± 0.8) × 10−3 from a measurement of [�(B0 →D∗0π− ℓ+ νℓ

)/�total℄ / [B(B0 → D− ℓ+ νℓ)℄ assuming B(B0 → D− ℓ+ νℓ) = (2.12±0.20)×10−2, whi
h we res
ale to our best value B(B0 → D− ℓ+ νℓ) = (2.19± 0.12)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.3 Ex
ludes D∗+ 
ontribution to Dπ modes.4 LIVENTSEV 05 reports [�(B0 → D∗0π− ℓ+ νℓ
)/�total℄ / [B(B+ → D∗(2007)0 ℓ+ νℓ)℄ = 0.10 ± 0.02 ± 0.01 whi
h we multiply byour best value B(B+ → D∗(2007)0 ℓ+ νℓ) = (5.69 ± 0.19) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.�(D1(2420)− ℓ+νℓ, D−1 → D∗0π−)/�total �13/��(D1(2420)− ℓ+νℓ, D−1 → D∗0π−)/�total �13/��(D1(2420)− ℓ+νℓ, D−1 → D∗0π−)/�total �13/��(D1(2420)− ℓ+νℓ, D−1 → D∗0π−)/�total �13/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.80±0.28 OUR AVERAGE2.80±0.28 OUR AVERAGE2.80±0.28 OUR AVERAGE2.80±0.28 OUR AVERAGE2.78±0.24±0.25 1 AUBERT 09Y BABR e+ e− → �(4S)2.7 ±0.4 ±0.3 2 AUBERT 08BL BABR e+ e− → �(4S)5.4 ±1.9 ±0.9 2 LIVENTSEV 08 BELL e+ e− → �(4S)1Uses a simultaneous measurement of all B semileptoni
 de
ays without full re
onstru
tionof events.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D ′1(2430)− ℓ+νℓ, D ′−1 → D∗0π−)/�total �14/��(D ′1(2430)− ℓ+νℓ, D ′−1 → D∗0π−)/�total �14/��(D ′1(2430)− ℓ+νℓ, D ′−1 → D∗0π−)/�total �14/��(D ′1(2430)− ℓ+νℓ, D ′−1 → D∗0π−)/�total �14/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT3.1±0.7±0.53.1±0.7±0.53.1±0.7±0.53.1±0.7±0.5 1 AUBERT 08BL BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.0 90 1 LIVENTSEV 08 BELL e+ e− → �(4S)1Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D∗2(2460)− ℓ+νℓ, D∗−2 → D∗0π−)/�total �15/��(D∗2(2460)− ℓ+νℓ, D∗−2 → D∗0π−)/�total �15/��(D∗2(2460)− ℓ+νℓ, D∗−2 → D∗0π−)/�total �15/��(D∗2(2460)− ℓ+νℓ, D∗−2 → D∗0π−)/�total �15/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT0.68±0.12 OUR AVERAGE0.68±0.12 OUR AVERAGE0.68±0.12 OUR AVERAGE0.68±0.12 OUR AVERAGE0.67±0.12±0.05 1 AUBERT 09Y BABR e+ e− → �(4S)0.7 ±0.2 ±0.2 2 AUBERT 08BL BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.0 90 2 LIVENTSEV 08 BELL e+ e− → �(4S)1Uses a simultaneous �t of all B semileptoni
 de
ays without full re
onstru
tion of events.AUBERT 09Y reports B(B0 → D∗2(2460)− ℓ+ νℓ) · B(D∗2(2460)− → D(∗)0 π−) =(1.77±0.26±0.11)×10−3 and the authors have provided us the individual measurement.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D−π+π− ℓ+νℓ

)/�(D− ℓ+νℓ

) �16/�4�(D−π+π− ℓ+νℓ

)/�(D− ℓ+νℓ

) �16/�4�(D−π+π− ℓ+νℓ

)/�(D− ℓ+νℓ

) �16/�4�(D−π+π− ℓ+νℓ

)/�(D− ℓ+νℓ

) �16/�4VALUE (units 10−2) DOCUMENT ID TECN COMMENT5.8±1.8±1.25.8±1.8±1.25.8±1.8±1.25.8±1.8±1.2 1 LEES 16 BABR e+ e− → �(4S)1Measurement used ele
trons and muons as leptons.



1215121512151215See key on page 601 MesonParti
le ListingsB0�(D∗−π+π− ℓ+νℓ

)/�(D∗(2010)− ℓ+νℓ

) �17/�6�(D∗−π+π− ℓ+νℓ

)/�(D∗(2010)− ℓ+νℓ

) �17/�6�(D∗−π+π− ℓ+νℓ

)/�(D∗(2010)− ℓ+νℓ

) �17/�6�(D∗−π+π− ℓ+νℓ

)/�(D∗(2010)− ℓ+νℓ

) �17/�6VALUE (units 10−2) DOCUMENT ID TECN COMMENT2.8±0.8±0.62.8±0.8±0.62.8±0.8±0.62.8±0.8±0.6 1 LEES 16 BABR e+ e− → �(4S)1Measurement used ele
trons and muons as leptons.�(

ρ− ℓ+νℓ

)/�total �18/��(

ρ− ℓ+νℓ

)/�total �18/��(

ρ− ℓ+νℓ

)/�total �18/��(

ρ− ℓ+νℓ

)/�total �18/�
ℓ = e or µ, not sum over e and µ modes.\OUR EVALUATION" has been obtained by the Heavy Flavor Averaging Group(HFAG) by in
luding both B0 and B+ de
ays. The average assumes equality ofthe semileptoni
 de
ay width for these isospin 
onjugate states.VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.94±0.11±0.18 OUR EVALUATION2.94±0.11±0.18 OUR EVALUATION2.94±0.11±0.18 OUR EVALUATION2.94±0.11±0.18 OUR EVALUATION2.45±0.32 OUR AVERAGE2.45±0.32 OUR AVERAGE2.45±0.32 OUR AVERAGE2.45±0.32 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.3.22±0.27±0.24 1 SIBIDANOV 13 BELL e+ e− → �(4S)1.75±0.15±0.27 2 DEL-AMO-SA...11C BABR e+ e− → �(4S)2.93±0.37±0.37 3 ADAM 07 CLE2 e+ e− → �(4S)2.17±0.54±0.32 4 HOKUUE 07 BELL e+ e− → �(4S)2.57±0.29+0.53

−0.62 5 BEHRENS 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.14±0.21±0.56 2 AUBERT,B 05O BABR Repl. by DEL-AMO-SANCHEZ 11C2.17±0.34+0.62

−0.68 6 ATHAR 03 CLE2 Repl. by ADAM 073.29±0.42±0.72 7 AUBERT 03E BABR Repl. by AUBERT,B 05O2.69±0.41+0.61
−0.64 8 BEHRENS 00 CLE2 e+ e− → �(4S)2.5 ±0.4 +0.7
−0.9 9 ALEXANDER 96T CLE2 Repl. by BEHRENS 00

<4.1 90 10 BEAN 93B CLE2 e+ e− → �(4S)1The signal events are tagged by a se
ond B meson re
onstru
ted in the fully hadroni
de
ays.2B+ and B0 de
ays 
ombined assuming isospin symmetry. Systemati
 errors in
lude bothexperimental and form-fa
tor un
ertainties.3The B0 and B+ results are 
ombined assuming the isospin, B lifetimes, and relative
harged/neutral B produ
tion at the �(4S).4The signal events are tagged by a se
ond B meson re
onstru
ted in the semileptoni
mode B → D(∗) ℓνℓ.5Averaging with ALEXANDER 96T results in
luding experimental and theoreti
al 
orre-lations 
onsidered, BEHRENS 00 reports systemati
 errors +0.33
−0.46 ± 0.41, where these
ond error is theoreti
al model dependen
e. We 
ombine these in quadrature.6ATHAR 03 reports systemati
 errors +0.47

−0.50 ± 0.41 ± 0.01, whi
h are experimentalsystemati
, systemati
 due to residual form-fa
tor un
ertainties in the signal, and sys-temati
 due to residual form-fa
tor un
ertainties in the 
ross-feed modes, respe
tively.We 
ombine these in quadrature.7Uses isospin 
onstraints and extrapolation to all ele
tron energies a

ording to �ve di�er-ent form-fa
tor 
al
ulations. The se
ond error 
ombines the systemati
 and theoreti
alun
ertainties in quadrature.8BEHRENS 00 reports +0.35
−0.40 ± 0.50, where the se
ond error is the theoreti
al modeldependen
e. We 
ombine these in quadrature. B+ and B0 de
ays 
ombined usingisospin symmetry: �(B0 → ρ− ℓ+ ν)=2�(B+ → ρ0 ℓ+ ν)≈ 2�(B+ → ωℓ+ ν). Noeviden
e for ωℓν is reported.9ALEXANDER 96T reports +0.5

−0.7 ± 0.5 where the se
ond error is the theoreti
al modeldependen
e. We 
ombine these in quadrature. B+ and B0 de
ays 
ombined usingisospin symmetry: �(B0 → ρ− ℓ+ ν) =2�(B+ → ρ0 ℓ+ ν) ≈ 2�(B+ → ωℓ+ ν). Noeviden
e for ωℓν is reported.10BEAN 93B limit set using ISGW Model. Using isospin and the quark model to 
ombine�(ρ0 ℓ+ νℓ) and �(ωℓ+ νℓ) with this result, they obtain a limit <(1.6{2.7) × 10−4 at90% CL for B+ → (ωor ρ0)ℓ+ νℓ. The range 
orresponds to the ISGW, WSB, andKS models. An upper limit on ∣

∣Vub/V
b ∣

∣ < 0.08{0.13 at 90% CL is derived as well.
WEIGHTED AVERAGE
2.45±0.32 (Error scaled by 1.6)

BEHRENS 00 CLE2 0.0
HOKUUE 07 BELL 0.2
ADAM 07 CLE2 0.9
DEL-AMO-SA... 11C BABR 5.1
SIBIDANOV 13 BELL 4.6

χ2

      10.8
(Confidence Level = 0.029)

0 1 2 3 4 5 6�(

ρ− ℓ+νℓ

)/�total (units 10−4)

�(

π− ℓ+νℓ

)/�total �19/��(

π− ℓ+νℓ

)/�total �19/��(

π− ℓ+νℓ

)/�total �19/��(

π− ℓ+νℓ

)/�total �19/�\OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFAG) andthe pro
edure is des
ribed at http://www.sla
.stanford.edu/xorg/hfag/.VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.45±0.05 OUR EVALUATION1.45±0.05 OUR EVALUATION1.45±0.05 OUR EVALUATION1.45±0.05 OUR EVALUATION1.46±0.04 OUR AVERAGE1.46±0.04 OUR AVERAGE1.46±0.04 OUR AVERAGE1.46±0.04 OUR AVERAGE1.49±0.09±0.07 1 SIBIDANOV 13 BELL e+ e− → �(4S)1.47±0.05±0.06 2,3 LEES 12AA BABR e+ e− → �(4S)1.41±0.05±0.07 4 DEL-AMO-SA...11C BABR e+ e− → �(4S)1.49±0.04±0.07 2 HA 11 BELL e+ e− → �(4S)1.54±0.17±0.09 4 AUBERT 08AV BABR e+ e− → �(4S)1.37±0.15±0.11 5,6 ADAM 07 CLE2 e+ e− → �(4S)1.38±0.19±0.14 7 HOKUUE 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.42±0.05±0.08 2 DEL-AMO-SA...11F BABR Repl. by LEES 12AA1.46±0.07±0.08 8 AUBERT 07J BABR Repl. by DEL-AMO-SANCHEZ 11F1.33±0.17±0.11 9 AUBERT,B 06K BABR Repl. by AUBERT 08AV1.38±0.10±0.18 10 AUBERT,B 05O BABR Repl. by DEL-AMO-SANCHEZ 11C1.33±0.18±0.13 11 ATHAR 03 CLE2 Repl. by ADAM 071.8 ±0.4 ±0.4 12 ALEXANDER 96T CLE2 Repl. by ATHAR 031The signal events are tagged by a se
ond B meson re
onstru
ted in the fully hadroni
de
ays.2Uses loose neutrino re
onstru
tion te
hnique. Assumes B(�(4S) → B+B−) = (51.6±0.6)% and B(�(4S) → B0B0) = (48.4 ± 0.6)%.3Reports also a bran
hing fra
tion value B(B0 → π− ℓ+ ν) = (1.45±0.04±0.06)×10−4from the de
ays of B+ and B0 that are 
ombined using the isospin symmetry relation.4Using the isospin symmetry relation, B+ and B0 bran
hing fra
tions are 
ombined.5The B0 and B+ results are 
ombined assuming the isospin, B lifetimes, and relative
harged/neutral B produ
tion at the �(4S).6Also report the rate for q2 > 16 GeV2 of (0.41 ± 0.08 ± 0.04)× 10−4 from whi
h theyobtain ∣

∣Vub ∣

∣ = 3.6 ± 0.4 ± 0.2+0.6
−0.4 (last error is from theory).7The signal events are tagged by a se
ond B meson re
onstru
ted in the semileptoni
mode B → D(∗) ℓνℓ.8The analysis uses events in whi
h the signal B de
ays are re
onstru
ted with an innovativeloose neutrino re
onstru
tion te
hnique.9The signals are tagged by a se
ond B meson re
onstru
ted in a semileptoni
 or hadroni
de
ay. The B0 and B+ results are 
ombined assuming the isospin symmetry.10B+ and B0 de
ays 
ombined assuming isospin symmetry. Systemati
 errors in
lude bothexperimental and form-fa
tor un
ertainties.11ATHAR 03 reports systemati
 errors 0.11± 0.01± 0.07, whi
h are experimental system-ati
, systemati
 due to residual form-fa
tor un
ertainties in the signal, and systemati
 dueto residual form-fa
tor un
ertainties in the 
ross-feed modes, respe
tively. We 
ombinethese in quadrature.12ALEXANDER 96T gives systemati
 errors ±0.3 ± 0.2 where the se
ond error re
e
tsthe estimated model dependen
e. We 
ombine these in quadrature. Assumes isospinsymmetry: �(B0 → π− ℓ+ ν) = 2× �(B+ → π0 ℓ+ ν).�(

π−µ+νµ

)/�total �20/��(

π−µ+νµ

)/�total �20/��(

π−µ+νµ

)/�total �20/��(

π−µ+νµ

)/�total �20/�VALUE DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 1 ALBRECHT 91C ARG1 In ALBRECHT 91C, one event is fully re
onstru
ted providing eviden
e for the b → utransition.�(

π− τ+ ντ

)/�total �21/��(

π− τ+ ντ

)/�total �21/��(

π− τ+ ντ

)/�total �21/��(

π− τ+ ντ

)/�total �21/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.5× 10−4<2.5× 10−4<2.5× 10−4<2.5× 10−4 90 1 HAMER 16 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K± anything)/�total �22/��(K± anything)/�total �22/��(K± anything)/�total �22/��(K± anything)/�total �22/�VALUE DOCUMENT ID TECN COMMENT0.78±0.080.78±0.080.78±0.080.78±0.08 1 ALBRECHT 96D ARG e+ e− → �(4S)1Average multipli
ity.�(D0X)/�total �23/��(D0X)/�total �23/��(D0X)/�total �23/��(D0X)/�total �23/�VALUE DOCUMENT ID TECN COMMENT0.081±0.014±0.0050.081±0.014±0.0050.081±0.014±0.0050.081±0.014±0.005 1 AUBERT 07N BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.063±0.019±0.005 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D0X)/�total �24/��(D0X)/�total �24/��(D0X)/�total �24/��(D0X)/�total �24/�VALUE DOCUMENT ID TECN COMMENT0.474±0.020+0.020

−0.0190.474±0.020+0.020
−0.0190.474±0.020+0.020
−0.0190.474±0.020+0.020
−0.019 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.511±0.031±0.028 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.



1216121612161216MesonParti
le ListingsB0�(D0X)/[�(D0X)+�(D0X)
] �23/(�23+�24)�(D0X)/[�(D0X)+�(D0X)
] �23/(�23+�24)�(D0X)/[�(D0X)+�(D0X)
] �23/(�23+�24)�(D0X)/[�(D0X)+�(D0X)
] �23/(�23+�24)VALUE DOCUMENT ID TECN COMMENT0.146±0.022±0.0060.146±0.022±0.0060.146±0.022±0.0060.146±0.022±0.006 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.110±0.031±0.008 AUBERT,BE 04B BABR Repl. by AUBERT 07N�(D+X)/�total �25/��(D+X)/�total �25/��(D+X)/�total �25/��(D+X)/�total �25/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.039<0.039<0.039<0.039 90 1 AUBERT 07N BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.051 90 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D−X)/�total �26/��(D−X)/�total �26/��(D−X)/�total �26/��(D−X)/�total �26/�VALUE DOCUMENT ID TECN COMMENT0.369±0.016+0.030

−0.0270.369±0.016+0.030
−0.0270.369±0.016+0.030
−0.0270.369±0.016+0.030
−0.027 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.397±0.030+0.040
−0.038 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D+X)/[�(D+X)+�(D−X)

] �25/(�25+�26)�(D+X)/[�(D+X)+�(D−X)
] �25/(�25+�26)�(D+X)/[�(D+X)+�(D−X)
] �25/(�25+�26)�(D+X)/[�(D+X)+�(D−X)
] �25/(�25+�26)VALUE DOCUMENT ID TECN COMMENT0.058±0.028±0.0060.058±0.028±0.0060.058±0.028±0.0060.058±0.028±0.006 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.055±0.040±0.006 AUBERT,BE 04B BABR Repl. by AUBERT 07N�(D+s X)/�total �27/��(D+s X)/�total �27/��(D+s X)/�total �27/��(D+s X)/�total �27/�VALUE DOCUMENT ID TECN COMMENT0.103±0.012+0.017
−0.0140.103±0.012+0.017
−0.0140.103±0.012+0.017
−0.0140.103±0.012+0.017
−0.014 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.109±0.021+0.039
−0.024 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D−s X)/�total �28/��(D−s X)/�total �28/��(D−s X)/�total �28/��(D−s X)/�total �28/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.026<0.026<0.026<0.026 90 1 AUBERT 07N BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.087 90 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D+s X)/[�(D+s X)+�(D−s X)

] �27/(�27+�28)�(D+s X)/[�(D+s X)+�(D−s X)
] �27/(�27+�28)�(D+s X)/[�(D+s X)+�(D−s X)
] �27/(�27+�28)�(D+s X)/[�(D+s X)+�(D−s X)
] �27/(�27+�28)VALUE DOCUMENT ID TECN COMMENT0.879±0.066±0.0050.879±0.066±0.0050.879±0.066±0.0050.879±0.066±0.005 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.733±0.092±0.010 AUBERT,BE 04B BABR Repl. by AUBERT 07N�(�+
 X)/�total �29/��(�+
 X)/�total �29/��(�+
 X)/�total �29/��(�+
 X)/�total �29/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.031<0.031<0.031<0.031 90 1 AUBERT 07N BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.038 90 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(�−
 X)/�total �30/��(�−
 X)/�total �30/��(�−
 X)/�total �30/��(�−
 X)/�total �30/�VALUE DOCUMENT ID TECN COMMENT0.05 ±0.010+0.019

−0.0110.05 ±0.010+0.019
−0.0110.05 ±0.010+0.019
−0.0110.05 ±0.010+0.019
−0.011 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.049±0.017+0.018
−0.011 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(�+
 X)/[�(�+
 X)+�(�−
 X)

] �29/(�29+�30)�(�+
 X)/[�(�+
 X)+�(�−
 X)
] �29/(�29+�30)�(�+
 X)/[�(�+
 X)+�(�−
 X)
] �29/(�29+�30)�(�+
 X)/[�(�+
 X)+�(�−
 X)
] �29/(�29+�30)VALUE DOCUMENT ID TECN COMMENT0.243+0.119

−0.121±0.0030.243+0.119
−0.121±0.0030.243+0.119
−0.121±0.0030.243+0.119
−0.121±0.003 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.286±0.142±0.007 AUBERT,BE 04B BABR Repl. by AUBERT 07N

�(
 X)/�total �31/��(
 X)/�total �31/��(
 X)/�total �31/��(
 X)/�total �31/�VALUE DOCUMENT ID TECN COMMENT0.947±0.030+0.045
−0.0400.947±0.030+0.045
−0.0400.947±0.030+0.045
−0.0400.947±0.030+0.045
−0.040 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.039±0.051+0.063
−0.058 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(
 X)/�total �32/��(
 X)/�total �32/��(
 X)/�total �32/��(
 X)/�total �32/�VALUE DOCUMENT ID TECN COMMENT0.246±0.024+0.021
−0.0170.246±0.024+0.021
−0.0170.246±0.024+0.021
−0.0170.246±0.024+0.021
−0.017 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.237±0.036+0.041
−0.027 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(
 
 X)/�total �33/��(
 
 X)/�total �33/��(
 
 X)/�total �33/��(
 
 X)/�total �33/�VALUE DOCUMENT ID TECN COMMENT1.193±0.030+0.053
−0.0491.193±0.030+0.053
−0.0491.193±0.030+0.053
−0.0491.193±0.030+0.053
−0.049 1 AUBERT 07N BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.276±0.062+0.088
−0.074 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N1Events are sele
ted by 
ompletely re
onstru
ting one B and sear
hing for a re
onstru
ted
harmed parti
le in the rest of the event. The last error in
ludes systemati
 and 
harmbran
hing ratio un
ertainties.�(D−π+)/�total �34/��(D−π+)/�total �34/��(D−π+)/�total �34/��(D−π+)/�total �34/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.52±0.13 OUR FIT2.52±0.13 OUR FIT2.52±0.13 OUR FIT2.52±0.13 OUR FIT Error in
ludes s
ale fa
tor of 1.1.2.68±0.13 OUR AVERAGE2.68±0.13 OUR AVERAGE2.68±0.13 OUR AVERAGE2.68±0.13 OUR AVERAGE2.55±0.05±0.16 1 AUBERT 07H BABR e+ e− → �(4S)3.03±0.23±0.23 2 AUBERT,BE 06J BABR e+ e− → �(4S)2.68±0.12±0.24 1,3 AHMED 02B CLE2 e+ e− → �(4S)2.7 ±0.6 ±0.5 4 BORTOLETTO92 CLEO e+ e− → �(4S)4.8 ±1.1 ±1.1 22 5 ALBRECHT 90J ARG e+ e− → �(4S)5.1 +2.8

−2.5 +1.3
−1.2 4 6 BEBEK 87 CLEO e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.79±0.20±0.11 1,7 AUBERT,B 04O BABR Repl. by AUBERT 07H2.8 ±0.4 ±0.1 81 8 ALAM 94 CLE2 Repl. by AHMED 02B3.1 ±1.3 ±1.0 7 5 ALBRECHT 88K ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses a missing-mass method. Does not depend on D bran
hing fra
tions or B+/B0produ
tion rates.3AHMED 02B reports an additional un
ertainty on the bran
hing ratios to a

ount for4.5% un
ertainty on relative produ
tion of B0 and B+, whi
h is not in
luded here.4BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D.5ALBRECHT 88K assumes B0B0:B+B− produ
tion ratio is 45:55. Superseded by AL-BRECHT 90J whi
h assumes 50:50.6BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions asnoted for BORTOLETTO 92.7AUBERT,B 04O reports [�(B0 → D−π+)/�total℄ × [B(D+ → K0S π+)℄ = (42.7 ±2.1 ± 2.2) × 10−6 whi
h we divide by our best value B(D+ → K0S π+) = (1.53 ±0.06) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.8ALAM 94 reports [�(B0 → D−π+)/�total℄ × [B(D+ → K− 2π+)℄ = (0.265 ±0.032 ± 0.023) × 10−3 whi
h we divide by our best value B(D+ → K− 2π+) =(9.46 ± 0.24) × 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S).�(D− ℓ+νℓ

)/�(D−π+) �4/�34�(D− ℓ+νℓ

)/�(D−π+) �4/�34�(D− ℓ+νℓ

)/�(D−π+) �4/�34�(D− ℓ+νℓ

)/�(D−π+) �4/�34VALUE DOCUMENT ID TECN COMMENT9.9±1.0±0.99.9±1.0±0.99.9±1.0±0.99.9±1.0±0.9 AALTONEN 09E CDF pp at 1.96 TeV�(D− ρ+)/�total �35/��(D− ρ+)/�total �35/��(D− ρ+)/�total �35/��(D− ρ+)/�total �35/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0075±0.0012 OUR AVERAGE0.0075±0.0012 OUR AVERAGE0.0075±0.0012 OUR AVERAGE0.0075±0.0012 OUR AVERAGE0.0074±0.0013±0.0002 79 1 ALAM 94 CLE2 e+ e− → �(4S)0.009 ±0.005 ±0.003 9 2 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.022 ±0.012 ±0.009 6 2 ALBRECHT 88K ARG e+ e− → �(4S)1ALAM 94 reports [�(B0 → D− ρ+)/�total℄ × [B(D+ → K− 2π+)℄ = 0.000704 ±0.000096 ± 0.000070 whi
h we divide by our best value B(D+ → K− 2π+) = (9.46 ±0.24) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value. Assumes equal produ
tion of B+ and B0 atthe �(4S).2ALBRECHT 88K assumes B0B0:B+B− produ
tion ratio is 45:55. Superseded by AL-BRECHT 90J whi
h assumes 50:50.



1217121712171217See key on page 601 Meson Parti
le ListingsB0�(D−K0π+)/�total �36/��(D−K0π+)/�total �36/��(D−K0π+)/�total �36/��(D−K0π+)/�total �36/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.9±0.7±0.54.9±0.7±0.54.9±0.7±0.54.9±0.7±0.5 1 AUBERT,BE 05B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−K∗(892)+)/�total �37/��(D−K∗(892)+)/�total �37/��(D−K∗(892)+)/�total �37/��(D−K∗(892)+)/�total �37/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.5±0.7 OUR AVERAGE4.5±0.7 OUR AVERAGE4.5±0.7 OUR AVERAGE4.5±0.7 OUR AVERAGE4.6±0.6±0.5 1 AUBERT,BE 05B BABR e+ e− → �(4S)3.7±1.5±1.0 1 MAHAPATRA 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−ωπ+)/�total �38/��(D−ωπ+)/�total �38/��(D−ωπ+)/�total �38/��(D−ωπ+)/�total �38/�VALUE DOCUMENT ID TECN COMMENT0.0028±0.0005±0.00040.0028±0.0005±0.00040.0028±0.0005±0.00040.0028±0.0005±0.0004 1 ALEXANDER 01B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S). The signal is 
onsistent withall observed ωπ+ having pro
eeded through the ρ′+ resonan
e at mass 1349 ± 25+10
− 5MeV and width 547 ± 86+46

−45 MeV.�(D−K+)/�total �39/��(D−K+)/�total �39/��(D−K+)/�total �39/��(D−K+)/�total �39/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.86±0.20 OUR AVERAGE1.86±0.20 OUR AVERAGE1.86±0.20 OUR AVERAGE1.86±0.20 OUR AVERAGE1.89±0.19±0.10 1 AAIJ 11F LHCB pp at 7 TeV1.7 ±0.4 ±0.1 2 ABE 01I BELL e+ e− → �(4S)1AAIJ 11F reports (2.01 ± 0.18 ± 0.14) × 10−4 from a measurement of [�(B0 →D−K+)/�total℄ / [B(B0 → D−π+)℄ assuming B(B0 → D−π+) = (2.68 ± 0.13)×10−3, whi
h we res
ale to our best value B(B0 → D−π+) = (2.52 ± 0.13) × 10−3.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.2ABE 01I reports [�(B0 → D−K+)/�total℄ / [B(B0 → D−π+)℄ = (6.8± 1.5± 0.7)×10−2 whi
h we multiply by our best value B(B0 → D−π+) = (2.52 ± 0.13)× 10−3.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.�(D−K+)/�(D−π+) �39/�34�(D−K+)/�(D−π+) �39/�34�(D−K+)/�(D−π+) �39/�34�(D−K+)/�(D−π+) �39/�34VALUE (units 10−2) DOCUMENT ID TECN COMMENT8.22±0.11±0.258.22±0.11±0.258.22±0.11±0.258.22±0.11±0.25 AAIJ 13P LHCB pp at 7 TeV�(D−K+π+π−)/�(D−π+π+π−) �40/�46�(D−K+π+π−)/�(D−π+π+π−) �40/�46�(D−K+π+π−)/�(D−π+π+π−) �40/�46�(D−K+π+π−)/�(D−π+π+π−) �40/�46VALUE (units 10−2) DOCUMENT ID TECN COMMENT5.9±1.1±0.55.9±1.1±0.55.9±1.1±0.55.9±1.1±0.5 AAIJ 12T LHCB pp at 7 TeV�(D−K+K0)/�total �41/��(D−K+K0)/�total �41/��(D−K+K0)/�total �41/��(D−K+K0)/�total �41/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<3.1<3.1<3.1<3.1 90 1 DRUTSKOY 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−K+K∗(892)0)/�total �42/��(D−K+K∗(892)0)/�total �42/��(D−K+K∗(892)0)/�total �42/��(D−K+K∗(892)0)/�total �42/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT8.8±1.1±1.58.8±1.1±1.58.8±1.1±1.58.8±1.1±1.5 1 DRUTSKOY 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0π+π−)/�total �43/��(D0π+π−)/�total �43/��(D0π+π−)/�total �43/��(D0π+π−)/�total �43/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT8.8 ±0.5 OUR AVERAGE8.8 ±0.5 OUR AVERAGE8.8 ±0.5 OUR AVERAGE8.8 ±0.5 OUR AVERAGE8.95±0.15±0.52 1 AAIJ 15Y LHCB pp at 7, 8 TeV8.4 ±0.4 ±0.8 2 KUZMIN 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.0 ±0.6 ±1.5 2,3 SATPATHY 03 BELL Repl. by KUZMIN 07
< 16 90 2 ALAM 94 CLE2 e+ e− → �(4S)
< 70 90 4 BORTOLETTO92 CLEO e+ e− → �(4S)
<340 90 5 BEBEK 87 CLEO e+ e− → �(4S)700 ± 500 5 6 BEHRENDS 83 CLEO e+ e− → �(4S)1The se
ond un
ertainty 
ombines in quadrature all systemati
 un
ertainties quoted inthe paper. AAIJ 15Y reports B(B0 → D0π+π−) = (8.46 ± 0.14 ± 0.49) × 10−4 inthe kinemati
 region m(D0π±) > 2.1 GeV whi
h we 
orre
ted to the full phase-spa
edividing by 0.945 from Belle.2Assumes equal produ
tion of B+ and B0 at the �(4S).3No assumption about the intermediate me
hanism is made in the analysis.4BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D. The produ
t bran
hing fra
tion into D∗0(2340)πfollowed by D∗0(2340) → D0π is < 0.0001 at 90% CL and into D∗2(2460) followed byD∗2(2460) → D0π is < 0.0004 at 90% CL.5BEBEK 87 assume the �(4S) de
ays 43% to B0B0. We res
ale to 50%. B(D0 →K−π+) = (4.2 ± 0.4 ± 0.4)% and B(D0 → K−π+π+π−) = (9.1 ± 0.8 ± 0.8)%were used.6Corre
ted by us using assumptions: B(D0 → K−π+) = (0.042 ± 0.006)and B(�(4S) → B0B0) = 50%. The produ
t bran
hing ratio is B(B0 →D0π+π−)B(D0 → K+π−) = (0.39 ± 0.26)× 10−2.

�(D∗(2010)−π+)/�total �44/��(D∗(2010)−π+)/�total �44/��(D∗(2010)−π+)/�total �44/��(D∗(2010)−π+)/�total �44/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.74±0.13 OUR AVERAGE2.74±0.13 OUR AVERAGE2.74±0.13 OUR AVERAGE2.74±0.13 OUR AVERAGE2.79±0.08±0.17 1 AUBERT 07H BABR e+ e− → �(4S)2.50±0.34±0.13 2,3 AUBERT,BE 06J BABR e+ e− → �(4S)2.81±0.24±0.05 4 BRANDENB... 98 CLE2 e+ e− → �(4S)2.6 ±0.3 ±0.4 82 5 ALAM 94 CLE2 e+ e− → �(4S)3.37±0.96±0.02 6 BORTOLETTO92 CLEO e+ e− → �(4S)2.36±0.88±0.02 12 7 ALBRECHT 90J ARG e+ e− → �(4S)2.36+1.50
−1.10±0.02 5 8 BEBEK 87 CLEO e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •10 ±4 ±1 8 9 AKERS 94J OPAL e+ e− → Z2.7 ±1.4 ±1.0 5 10 ALBRECHT 87C ARG e+ e− → �(4S)3.5 ±2 ±2 11 ALBRECHT 86F ARG e+ e− → �(4S)17 ±5 ±5 41 12 GILES 84 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT,BE 06J reports [�(B0 → D∗(2010)−π+)/�total℄ / [B(B0 → D−π+)℄= 0.99 ± 0.11 ± 0.08 whi
h we multiply by our best value B(B0 → D−π+) =(2.52 ± 0.13)× 10−3. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3Uses a missing-mass method. Does not depend on D bran
hing fra
tions or B+/B0produ
tion rates.4BRANDENBURG 98 assume equal produ
tion of B+ and B0 at �(4S) and use the D∗re
onstru
tion te
hnique. The �rst error is their experiment's error and the se
ond erroris the systemati
 error from the PDG 96 value of B(D∗ → Dπ).5ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2010)+ → D0π+) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).6BORTOLETTO 92 reports (4.0 ± 1.0 ± 0.7)× 10−3 from a measurement of [�(B0 →D∗(2010)−π+)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assuming B(D∗(2010)+ →D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best value B(D∗(2010)+ → D0π+)= (67.7 ± 0.5)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S) and uses Mark III bran
hing fra
tions for the D.7ALBRECHT 90J reports (2.8 ± 0.9 ± 0.6) × 10−3 from a measurement of [�(B0 →D∗(2010)−π+)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assuming B(D∗(2010)+ →D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best value B(D∗(2010)+ → D0π+)= (67.7 ± 0.5)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S) and uses Mark III bran
hing fra
tions for the D.8BEBEK 87 reports (2.8+1.5
−1.2+1.0

−0.6) × 10−3 from a measurement of [�(B0 →D∗(2010)−π+)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assuming B(D∗(2010)+ →D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best value B(D∗(2010)+ → D0π+)= (67.7 ± 0.5)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Updated in BERKELMAN 91 to usesame assumptions as noted for BORTOLETTO 92 and ALBRECHT 90J.9Assumes B(Z → bb) = 0.217 and 38% Bd produ
tion fra
tion.10ALBRECHT 87C use PDG 86 bran
hing ratios for D and D∗(2010) and assumeB(�(4S) → B+B−) = 55% and B(�(4S) → B0B0) = 45%. Superseded by AL-BRECHT 90J.11ALBRECHT 86F uses pseudomass that is independent of D0 and D+ bran
hing ratios.12Assumes B(D∗(2010)+ → D0π+) = 0.60+0.08
−0.15. Assumes B(�(4S) → B0B0) =0.40 ± 0.02 Does not depend on D bran
hing ratios.�(D∗(2010)− ℓ+νℓ

)/�(D∗(2010)−π+) �6/�44�(D∗(2010)− ℓ+νℓ

)/�(D∗(2010)−π+) �6/�44�(D∗(2010)− ℓ+νℓ

)/�(D∗(2010)−π+) �6/�44�(D∗(2010)− ℓ+νℓ

)/�(D∗(2010)−π+) �6/�44VALUE DOCUMENT ID TECN COMMENT16.5±2.3±1.116.5±2.3±1.116.5±2.3±1.116.5±2.3±1.1 AALTONEN 09E CDF pp at 1.96 TeV�(D0K+K−)/�(D0π+π−) �45/�43�(D0K+K−)/�(D0π+π−) �45/�43�(D0K+K−)/�(D0π+π−) �45/�43�(D0K+K−)/�(D0π+π−) �45/�43VALUE DOCUMENT ID TECN COMMENT0.056±0.011±0.0070.056±0.011±0.0070.056±0.011±0.0070.056±0.011±0.007 AAIJ 12AMLHCB pp at 7 TeV�(D−π+π+π−)/�total �46/��(D−π+π+π−)/�total �46/��(D−π+π+π−)/�total �46/��(D−π+π+π−)/�total �46/�VALUE DOCUMENT ID TECN COMMENT0.0060±0.0007 OUR FIT0.0060±0.0007 OUR FIT0.0060±0.0007 OUR FIT0.0060±0.0007 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.0080±0.0021±0.00140.0080±0.0021±0.00140.0080±0.0021±0.00140.0080±0.0021±0.0014 1 BORTOLETTO92 CLEO e+ e− → �(4S)1BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D.�(D−π+π+π−)/�(D−π+) �46/�34�(D−π+π+π−)/�(D−π+) �46/�34�(D−π+π+π−)/�(D−π+) �46/�34�(D−π+π+π−)/�(D−π+) �46/�34VALUE DOCUMENT ID TECN COMMENT2.39±0.23 OUR FIT2.39±0.23 OUR FIT2.39±0.23 OUR FIT2.39±0.23 OUR FIT2.38±0.11±0.212.38±0.11±0.212.38±0.11±0.212.38±0.11±0.21 AAIJ 11E LHCB pp at 7 TeV�((D−π+π+π− ) nonresonant)/�total �47/��((D−π+π+π− ) nonresonant)/�total �47/��((D−π+π+π− ) nonresonant)/�total �47/��((D−π+π+π− ) nonresonant)/�total �47/�VALUE DOCUMENT ID TECN COMMENT0.0039±0.0014±0.00130.0039±0.0014±0.00130.0039±0.0014±0.00130.0039±0.0014±0.0013 1 BORTOLETTO92 CLEO e+ e− → �(4S)1BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D.



1218121812181218MesonParti
le ListingsB0�(D−π+ρ0)/�total �48/��(D−π+ρ0)/�total �48/��(D−π+ρ0)/�total �48/��(D−π+ρ0)/�total �48/�VALUE DOCUMENT ID TECN COMMENT0.0011±0.0009±0.00040.0011±0.0009±0.00040.0011±0.0009±0.00040.0011±0.0009±0.0004 1 BORTOLETTO92 CLEO e+ e− → �(4S)1BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D.�(D− a1(1260)+)/�total �49/��(D− a1(1260)+)/�total �49/��(D− a1(1260)+)/�total �49/��(D− a1(1260)+)/�total �49/�VALUE DOCUMENT ID TECN COMMENT0.0060±0.0022±0.00240.0060±0.0022±0.00240.0060±0.0022±0.00240.0060±0.0022±0.0024 1 BORTOLETTO92 CLEO e+ e− → �(4S)1BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D.�(D∗(2010)−π+π0)/�total �50/��(D∗(2010)−π+π0)/�total �50/��(D∗(2010)−π+π0)/�total �50/��(D∗(2010)−π+π0)/�total �50/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0152±0.0052±0.00010.0152±0.0052±0.00010.0152±0.0052±0.00010.0152±0.0052±0.0001 51 1 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.015 ±0.008 ±0.008 8 2 ALBRECHT 87C ARG e+ e− → �(4S)1ALBRECHT 90J reports 0.018 ± 0.004 ± 0.005 from a measurement of [�(B0 →D∗(2010)−π+π0)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assuming B(D∗(2010)+ →D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best value B(D∗(2010)+ → D0π+)= (67.7 ± 0.5)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S) and uses Mark III bran
hing fra
tions for the D.2ALBRECHT 87C use PDG 86 bran
hing ratios for D and D∗(2010) and assumeB(�(4S) → B+B−) = 55% and B(�(4S) → B0B0) = 45%. Superseded by AL-BRECHT 90J.�(D∗(2010)− ρ+)/�total �51/��(D∗(2010)− ρ+)/�total �51/��(D∗(2010)− ρ+)/�total �51/��(D∗(2010)− ρ+)/�total �51/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.2 + 1.8

− 2.7 OUR AVERAGE2.2 + 1.8
− 2.7 OUR AVERAGE2.2 + 1.8
− 2.7 OUR AVERAGE2.2 + 1.8
− 2.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 5.2.1.48± 0.27+ 0.26

− 0.57 1,2 MATVIENKO 15 BELL e+ e− → �(4S)6.8 ± 0.3 ± 0.9 1,3 CSORNA 03 CLE2 e+ e− → �(4S)16.0 ±11.3 ± 0.1 4 BORTOLETTO92 CLEO e+ e− → �(4S)5.89± 3.52± 0.04 19 5 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •7.4 ± 1.0 ± 1.4 76 6,7 ALAM 94 CLE2 e+ e− → �(4S)81 ±29 +59

−24 19 8 CHEN 85 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ at the �(4S) resonan
e.2The se
ond un
ertainty 
ombines in quadrature the systemati
 and model un
ertainties.3The se
ond error 
ombines the systemati
 and theoreti
al un
ertainties in quadrature.CSORNA 03 in
ludes data used in ALAM 94. A full angular �t to three 
omplex heli
ityamplitudes is performed.4BORTOLETTO 92 reports 0.019 ± 0.008 ± 0.011 from a measurement of [�(B0 →D∗(2010)− ρ+)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assuming B(D∗(2010)+ →D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best value B(D∗(2010)+ → D0π+)= (67.7 ± 0.5)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S) and uses Mark III bran
hing fra
tions for the D.5ALBRECHT 90J reports 0.007 ± 0.003 ± 0.003 from a measurement of [�(B0 →D∗(2010)− ρ+)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assuming B(D∗(2010)+ →D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best value B(D∗(2010)+ → D0π+)= (67.7 ± 0.5)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S) and uses Mark III bran
hing fra
tions for the D.6ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2010)+ → D0π+) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).7This de
ay is nearly 
ompletely longitudinally polarized, �L/� = (93 ± 5 ± 5)%, asexpe
ted from the fa
torization hypothesis (ROSNER 90). The nonresonant π+π0
ontribution under the ρ+ is less than 9% at 90% CL.8Uses B(D∗ → D0π+) = 0.6± 0.15 and B(�(4S) → B0B0) = 0.4. Does not dependon D bran
hing ratios.�(D∗(2010)−K+)/�total �52/��(D∗(2010)−K+)/�total �52/��(D∗(2010)−K+)/�total �52/��(D∗(2010)−K+)/�total �52/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.12±0.15 OUR AVERAGE2.12±0.15 OUR AVERAGE2.12±0.15 OUR AVERAGE2.12±0.15 OUR AVERAGE2.13±0.12±0.10 1 AUBERT 06A BABR e+ e− → �(4S)2.0 ±0.4 ±0.1 2 ABE 01I BELL e+ e− → �(4S)1AUBERT 06A reports [�(B0 → D∗(2010)−K+)/�total℄ / [B(B0 → D∗(2010)−π+)℄= 0.0776 ± 0.0034 ± 0.0029 whi
h we multiply by our best value B(B0 →D∗(2010)−π+) = (2.74 ± 0.13) × 10−3. Our �rst error is their experiment's errorand our se
ond error is the systemati
 error from using our best value.2ABE 01I reports [�(B0 → D∗(2010)−K+)/�total℄ / [B(B0 → D∗(2010)−π+)℄ =0.074 ± 0.015 ± 0.006 whi
h we multiply by our best value B(B0 → D∗(2010)−π+)= (2.74 ± 0.13)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(D∗(2010)−K+)/�(D∗(2010)−π+) �52/�44�(D∗(2010)−K+)/�(D∗(2010)−π+) �52/�44�(D∗(2010)−K+)/�(D∗(2010)−π+) �52/�44�(D∗(2010)−K+)/�(D∗(2010)−π+) �52/�44VALUE DOCUMENT ID TECN COMMENT(7.76±0.34±0.26)× 10−2(7.76±0.34±0.26)× 10−2(7.76±0.34±0.26)× 10−2(7.76±0.34±0.26)× 10−2 AAIJ 13AO LHCB pp at 7 TeV

�(D∗(2010)−K0π+)/�total �53/��(D∗(2010)−K0π+)/�total �53/��(D∗(2010)−K0π+)/�total �53/��(D∗(2010)−K0π+)/�total �53/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.0±0.7±0.33.0±0.7±0.33.0±0.7±0.33.0±0.7±0.3 1 AUBERT,BE 05B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−K∗(892)+)/�total �54/��(D∗(2010)−K∗(892)+)/�total �54/��(D∗(2010)−K∗(892)+)/�total �54/��(D∗(2010)−K∗(892)+)/�total �54/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.3±0.6 OUR AVERAGE3.3±0.6 OUR AVERAGE3.3±0.6 OUR AVERAGE3.3±0.6 OUR AVERAGE3.2±0.6±0.3 1 AUBERT,BE 05B BABR e+ e− → �(4S)3.8±1.3±0.8 2 MAHAPATRA 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B+ and B0 at the �(4S) and an unpolarized �nal state.�(D∗(2010)−K+K0)/�total �55/��(D∗(2010)−K+K0)/�total �55/��(D∗(2010)−K+K0)/�total �55/��(D∗(2010)−K+K0)/�total �55/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<4.7<4.7<4.7<4.7 90 1 DRUTSKOY 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−K+K∗(892)0)/�total �56/��(D∗(2010)−K+K∗(892)0)/�total �56/��(D∗(2010)−K+K∗(892)0)/�total �56/��(D∗(2010)−K+K∗(892)0)/�total �56/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT12.9±2.2±2.512.9±2.2±2.512.9±2.2±2.512.9±2.2±2.5 1 DRUTSKOY 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−π+π+π−)/�total �57/��(D∗(2010)−π+π+π−)/�total �57/��(D∗(2010)−π+π+π−)/�total �57/��(D∗(2010)−π+π+π−)/�total �57/�VALUE CL% DOCUMENT ID TECN COMMENT0.0070 ±0.0008 OUR AVERAGE0.0070 ±0.0008 OUR AVERAGE0.0070 ±0.0008 OUR AVERAGE0.0070 ±0.0008 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogrambelow.0.00681±0.00023±0.00072 1 MAJUMDER 04 BELL e+ e− → �(4S)0.0063 ±0.0010 ±0.0011 2,3 ALAM 94 CLE2 e+ e− → �(4S)0.0134 ±0.0036 ±0.0001 4 BORTOLETTO92 CLEO e+ e− → �(4S)0.0101 ±0.0041 ±0.0001 5 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.033 ±0.009 ±0.016 6 ALBRECHT 87C ARG e+ e− → �(4S)
<0.042 90 7 BEBEK 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2010)+ → D0π+) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).3The three pion mass is required to be between 1.0 and 1.6 GeV 
onsistent with an a1meson. (If this 
hannel is dominated by a+1 , the bran
hing ratio for D∗− a+1 is twi
ethat for D∗−π+π+π−.)4BORTOLETTO 92 reports 0.0159 ± 0.0028 ± 0.0037 from a measurement of[�(B0 → D∗(2010)−π+π+π−

)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assum-ing B(D∗(2010)+ → D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best valueB(D∗(2010)+ → D0π+) = (67.7 ± 0.5)× 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value. Assumesequal produ
tion of B+ and B0 at the �(4S) and uses Mark III bran
hing fra
tions forthe D.5ALBRECHT 90J reports 0.012 ± 0.003 ± 0.004 from a measurement of[�(B0 → D∗(2010)−π+π+π−
)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assum-ing B(D∗(2010)+ → D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best valueB(D∗(2010)+ → D0π+) = (67.7 ± 0.5)× 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value. Assumesequal produ
tion of B+ and B0 at the �(4S) and uses Mark III bran
hing fra
tions forthe D.6ALBRECHT 87C use PDG 86 bran
hing ratios for D and D∗(2010) and assumeB(�(4S) → B+B−) = 55% and B(�(4S) → B0B0) = 45%. Superseded by AL-BRECHT 90J.7BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions asnoted for BORTOLETTO 92.

WEIGHTED AVERAGE
0.0070±0.0008 (Error scaled by 1.3)

ALBRECHT 90J ARG
BORTOLETTO 92 CLEO 3.1
ALAM 94 CLE2 0.2
MAJUMDER 04 BELL 0.1

χ2

       3.4
(Confidence Level = 0.187)

0 0.005 0.01 0.015 0.02 0.025�(D∗(2010)−π+π+π−
)/�total



1219121912191219See key on page 601 MesonParti
le ListingsB0�((D∗(2010)−π+π+π− ) nonresonant)/�total �58/��((D∗(2010)−π+π+π− ) nonresonant)/�total �58/��((D∗(2010)−π+π+π− ) nonresonant)/�total �58/��((D∗(2010)−π+π+π− ) nonresonant)/�total �58/�VALUE DOCUMENT ID TECN COMMENT0.0000±0.0019±0.00160.0000±0.0019±0.00160.0000±0.0019±0.00160.0000±0.0019±0.0016 1 BORTOLETTO92 CLEO e+ e− → �(4S)1BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D and D∗(2010).�(D∗(2010)−π+ρ0)/�total �59/��(D∗(2010)−π+ρ0)/�total �59/��(D∗(2010)−π+ρ0)/�total �59/��(D∗(2010)−π+ρ0)/�total �59/�VALUE DOCUMENT ID TECN COMMENT0.00573±0.00317±0.000040.00573±0.00317±0.000040.00573±0.00317±0.000040.00573±0.00317±0.00004 1 BORTOLETTO92 CLEO e+ e− → �(4S)1BORTOLETTO 92 reports 0.0068 ± 0.0032 ± 0.0021 from a measurement of [�(B0 →D∗(2010)−π+ ρ0)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assuming B(D∗(2010)+ →D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best value B(D∗(2010)+ → D0π+)= (67.7 ± 0.5)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S) and uses Mark III bran
hing fra
tions for the D.�(D∗(2010)− a1(1260)+)/�total �60/��(D∗(2010)− a1(1260)+)/�total �60/��(D∗(2010)− a1(1260)+)/�total �60/��(D∗(2010)− a1(1260)+)/�total �60/�VALUE DOCUMENT ID TECN COMMENT0.0130±0.0027 OUR AVERAGE0.0130±0.0027 OUR AVERAGE0.0130±0.0027 OUR AVERAGE0.0130±0.0027 OUR AVERAGE0.0126±0.0020±0.0022 1,2 ALAM 94 CLE2 e+ e− → �(4S)0.0152±0.0070±0.0001 3 BORTOLETTO92 CLEO e+ e− → �(4S)1ALAM 94 value is twi
e their �(D∗(2010)−π+π+π−)/�total value based on theirobservation that the three pions are dominantly in the a1(1260) mass range 1.0 to 1.6GeV.2ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2010)+ → D0π+) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).3BORTOLETTO 92 reports 0.018 ± 0.006 ± 0.006 from a measurement of[�(B0 → D∗(2010)− a1(1260)+)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assum-ing B(D∗(2010)+ → D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best valueB(D∗(2010)+ → D0π+) = (67.7 ± 0.5)× 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value. Assumesequal produ
tion of B+ and B0 at the �(4S) and uses Mark III bran
hing fra
tions forthe D.�(D1(2420)0π−π+, D01 → D∗−π+)/�(D∗(2010)−π+π+π−) �61/�57�(D1(2420)0π−π+, D01 → D∗−π+)/�(D∗(2010)−π+π+π−) �61/�57�(D1(2420)0π−π+, D01 → D∗−π+)/�(D∗(2010)−π+π+π−) �61/�57�(D1(2420)0π−π+, D01 → D∗−π+)/�(D∗(2010)−π+π+π−) �61/�57VALUE DOCUMENT ID TECN COMMENT(2.04±0.42±0.22)× 10−2(2.04±0.42±0.22)× 10−2(2.04±0.42±0.22)× 10−2(2.04±0.42±0.22)× 10−2 AAIJ 13AO LHCB pp at 7 TeV�(D∗(2010)−K+π−π+)/�(D∗(2010)−π+π+π−) �62/�57�(D∗(2010)−K+π−π+)/�(D∗(2010)−π+π+π−) �62/�57�(D∗(2010)−K+π−π+)/�(D∗(2010)−π+π+π−) �62/�57�(D∗(2010)−K+π−π+)/�(D∗(2010)−π+π+π−) �62/�57VALUE DOCUMENT ID TECN COMMENT(6.47±0.37±0.35)× 10−2(6.47±0.37±0.35)× 10−2(6.47±0.37±0.35)× 10−2(6.47±0.37±0.35)× 10−2 AAIJ 13AO LHCB pp at 7 TeV�(D∗(2010)−π+π+π−π0)/�total �63/��(D∗(2010)−π+π+π−π0)/�total �63/��(D∗(2010)−π+π+π−π0)/�total �63/��(D∗(2010)−π+π+π−π0)/�total �63/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0176±0.0027 OUR AVERAGE0.0176±0.0027 OUR AVERAGE0.0176±0.0027 OUR AVERAGE0.0176±0.0027 OUR AVERAGE0.0172±0.0014±0.0024 1 ALEXANDER 01B CLE2 e+ e− → �(4S)0.0345±0.0181±0.0003 28 2 ALBRECHT 90J ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S). The signal is 
onsistent withall observed ωπ+ having pro
eeded through the ρ′+ resonan
e at mass 1349 ± 25+10
− 5MeV and width 547 ± 86+46

−45 MeV.2ALBRECHT 90J reports 0.041 ± 0.015 ± 0.016 from a measurement of[�(B0 → D∗(2010)−π+π+π−π0)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assum-ing B(D∗(2010)+ → D0π+) = 0.57 ± 0.06, whi
h we res
ale to our best valueB(D∗(2010)+ → D0π+) = (67.7 ± 0.5)× 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value. Assumesequal produ
tion of B+ and B0 at the �(4S) and uses Mark III bran
hing fra
tions forthe D.�(D∗− 3π+2π−)/�total �64/��(D∗− 3π+2π−)/�total �64/��(D∗− 3π+2π−)/�total �64/��(D∗− 3π+2π−)/�total �64/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT4.72±0.59±0.714.72±0.59±0.714.72±0.59±0.714.72±0.59±0.71 1 MAJUMDER 04 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−ωπ+)/�total �65/��(D∗(2010)−ωπ+)/�total �65/��(D∗(2010)−ωπ+)/�total �65/��(D∗(2010)−ωπ+)/�total �65/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.46±0.18 OUR AVERAGE2.46±0.18 OUR AVERAGE2.46±0.18 OUR AVERAGE2.46±0.18 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.2.31±0.11±0.14 1 MATVIENKO 15 BELL e+ e− → �(4S)2.88±0.21±0.31 1 AUBERT 06L BABR e+ e− → �(4S)2.9 ±0.3 ±0.4 1,2 ALEXANDER 01B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2The signal is 
onsistent with all observed ωπ+ having pro
eeded through the ρ′+ reso-nan
e at mass 1349 ± 25+10
− 5 MeV and width 547 ± 86+46

−45 MeV.�(D1(2430)0ω, D01 → D∗−π+)/�total �66/��(D1(2430)0ω, D01 → D∗−π+)/�total �66/��(D1(2430)0ω, D01 → D∗−π+)/�total �66/��(D1(2430)0ω, D01 → D∗−π+)/�total �66/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.7+0.8
−0.4 OUR AVERAGE2.7+0.8
−0.4 OUR AVERAGE2.7+0.8
−0.4 OUR AVERAGE2.7+0.8
−0.4 OUR AVERAGE2.5±0.4+0.8

−0.2 1,2 MATVIENKO 15 BELL e+ e− → �(4S)4.1±1.2±1.1 3 AUBERT 06L BABR e+ e− → �(4S)

1Assumes equal produ
tion of B+ and B0.2The measurement is obtained by amplitude analysis of B0 → D∗−ωπ+. The se
ondun
ertainty 
ombines in quadrature experimental systemati
 and model un
ertainties.3Obtained by �tting the events with 
os θD∗ < 0.5 and s
aling up the result by a fa
torof 4/3. No interferen
e e�e
ts between B0 → D′1ω and D∗ωπ are assumed.�(D∗− ρ(1450)+)/�total �67/��(D∗− ρ(1450)+)/�total �67/��(D∗− ρ(1450)+)/�total �67/��(D∗− ρ(1450)+)/�total �67/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.07+0.15
−0.31+0.40

−0.131.07+0.15
−0.31+0.40

−0.131.07+0.15
−0.31+0.40

−0.131.07+0.15
−0.31+0.40

−0.13 1,2 MATVIENKO 15 BELL e+ e− → �(4S)1Obtained by amplitude analysis of B0 → D∗−ωπ+. The se
ond un
ertainty 
ombinesin qudrature experimental systemati
 and model un
ertainties.2Assumes equal produ
tion of B0 and B+ at �(4S).�(D1(2420)0ω
)/�total �68/��(D1(2420)0ω
)/�total �68/��(D1(2420)0ω
)/�total �68/��(D1(2420)0ω
)/�total �68/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.7±0.2±0.10.7±0.2±0.10.7±0.2±0.10.7±0.2±0.1 1,2 MATVIENKO 15 BELL e+ e− → �(4S)1Obtained by amplitude analysis of B0 → D∗−ωπ+. The se
ond un
ertainty 
ombinesin qudrature experimental systemati
 and model un
ertainties.2Assumes equal produ
tion of B0 and B+ at �(4S).�(D∗2(2460)0ω
)/�total �69/��(D∗2(2460)0ω
)/�total �69/��(D∗2(2460)0ω
)/�total �69/��(D∗2(2460)0ω
)/�total �69/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.4±0.1±0.10.4±0.1±0.10.4±0.1±0.10.4±0.1±0.1 1,2 MATVIENKO 15 BELL e+ e− → �(4S)1Obtained by amplitude analysis of B0 → D∗−ωπ+. The se
ond un
ertainty 
ombinesin qudrature experimental systemati
 and model un
ertainties.2Assumes equal produ
tion of B0 and B+ at �(4S).�(D∗−b1(1235)−, b−1 → ωπ−)/�total �70/��(D∗−b1(1235)−, b−1 → ωπ−)/�total �70/��(D∗−b1(1235)−, b−1 → ωπ−)/�total �70/��(D∗−b1(1235)−, b−1 → ωπ−)/�total �70/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.7× 10−4<0.7× 10−4<0.7× 10−4<0.7× 10−4 90 1 MATVIENKO 15 BELL e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ at �(4S).�(D∗∗−π+)/�total �71/��(D∗∗−π+)/�total �71/��(D∗∗−π+)/�total �71/��(D∗∗−π+)/�total �71/�D∗∗− represents an ex
ited state with mass 2.2 < M < 2.8 GeV/
2.VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.9±0.9±0.11.9±0.9±0.11.9±0.9±0.11.9±0.9±0.1 1,2 AUBERT,BE 06J BABR e+ e− → �(4S)1AUBERT,BE 06J reports [�(B0 → D∗∗−π+)/�total℄ / [B(B0 → D−π+)℄ = 0.77 ±0.22 ± 0.29 whi
h we multiply by our best value B(B0 → D−π+) = (2.52 ± 0.13)×10−3. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.2Uses a missing-mass method. Does not depend on D bran
hing fra
tions or B+/B0produ
tion rates.�(D1(2420)−π+, D−1 → D−π+π−)/�total �72/��(D1(2420)−π+, D−1 → D−π+π−)/�total �72/��(D1(2420)−π+, D−1 → D−π+π−)/�total �72/��(D1(2420)−π+, D−1 → D−π+π−)/�total �72/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.99+0.20
−0.25 OUR FIT0.99+0.20
−0.25 OUR FIT0.99+0.20
−0.25 OUR FIT0.99+0.20
−0.25 OUR FIT0.89±0.15+0.17

−0.320.89±0.15+0.17
−0.320.89±0.15+0.17
−0.320.89±0.15+0.17
−0.32 1 ABE 05A BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D1(2420)−π+, D−1 → D−π+π−)/�(D−π+π+π−) �72/�46�(D1(2420)−π+, D−1 → D−π+π−)/�(D−π+π+π−) �72/�46�(D1(2420)−π+, D−1 → D−π+π−)/�(D−π+π+π−) �72/�46�(D1(2420)−π+, D−1 → D−π+π−)/�(D−π+π+π−) �72/�46VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.65+0.35

−0.40 OUR FIT1.65+0.35
−0.40 OUR FIT1.65+0.35
−0.40 OUR FIT1.65+0.35
−0.40 OUR FIT2.1 ±0.5 +0.3

−0.52.1 ±0.5 +0.3
−0.52.1 ±0.5 +0.3
−0.52.1 ±0.5 +0.3
−0.5 AAIJ 11E LHCB pp at 7 TeV�(D1(2420)−π+, D−1 → D∗−π+π−)/�total �73/��(D1(2420)−π+, D−1 → D∗−π+π−)/�total �73/��(D1(2420)−π+, D−1 → D∗−π+π−)/�total �73/��(D1(2420)−π+, D−1 → D∗−π+π−)/�total �73/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<0.33<0.33<0.33<0.33 90 1 ABE 05A BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−π+π+π−)/�(D∗(2010)−π+) �57/�44�(D∗(2010)−π+π+π−)/�(D∗(2010)−π+) �57/�44�(D∗(2010)−π+π+π−)/�(D∗(2010)−π+) �57/�44�(D∗(2010)−π+π+π−)/�(D∗(2010)−π+) �57/�44VALUE DOCUMENT ID TECN COMMENT2.64±0.04±0.132.64±0.04±0.132.64±0.04±0.132.64±0.04±0.13 AAIJ 13AO LHCB pp at 7 TeV�(D∗2(2460)−π+, (D∗2)− → D0π−)/�total �74/��(D∗2(2460)−π+, (D∗2)− → D0π−)/�total �74/��(D∗2(2460)−π+, (D∗2)− → D0π−)/�total �74/��(D∗2(2460)−π+, (D∗2)− → D0π−)/�total �74/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.38±0.16 OUR AVERAGE2.38±0.16 OUR AVERAGE2.38±0.16 OUR AVERAGE2.38±0.16 OUR AVERAGE2.44±0.07±0.16 1 AAIJ 15Y LHCB pp at 7, 8 TeV2.15±0.17±0.31 2,3 KUZMIN 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<14.7 90 2 ALAM 94 CLE2 e+ e− → �(4S)1Result obtained using the isobar formalism. The se
ond un
ertainty 
ombines in quadra-ture all systemati
 un
ertainties quoted in the paper.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Our se
ond un
ertainty 
ombines systemati
s and model errors quoted in the paper.



1220122012201220MesonParti
le ListingsB0�(D∗0(2400)−π+, (D∗0)− → D0π−)/�total �75/��(D∗0(2400)−π+, (D∗0)− → D0π−)/�total �75/��(D∗0(2400)−π+, (D∗0)− → D0π−)/�total �75/��(D∗0(2400)−π+, (D∗0)− → D0π−)/�total �75/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.76±0.08 OUR AVERAGE0.76±0.08 OUR AVERAGE0.76±0.08 OUR AVERAGE0.76±0.08 OUR AVERAGE0.77±0.05±0.06 1 AAIJ 15Y LHCB pp at 7, 8 TeV0.60±0.13±0.27 2,3 KUZMIN 07 BELL e+ e− → �(4S)1Result obtained using the isobar formalism. The se
ond un
ertainty 
ombines in quadra-ture all systemati
 un
ertainties quoted in the paper.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Our se
ond un
ertainty 
ombines systemati
s and model errors quoted in the paper.�(

D∗2(2460)−π+, (D∗2)− → D∗−π+π−)/�total �76/��(

D∗2(2460)−π+, (D∗2)− → D∗−π+π−)/�total �76/��(

D∗2(2460)−π+, (D∗2)− → D∗−π+π−)/�total �76/��(

D∗2(2460)−π+, (D∗2)− → D∗−π+π−)/�total �76/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.24<0.24<0.24<0.24 90 1 ABE 05A BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗2(2460)− ρ+)/�total �77/��(D∗2(2460)− ρ+)/�total �77/��(D∗2(2460)− ρ+)/�total �77/��(D∗2(2460)− ρ+)/�total �77/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.0049<0.0049<0.0049<0.0049 90 1 ALAM 94 CLE2 e+ e− → �(4S)1ALAM 94 assumes equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIabsolute B(D0 → K−π+) and B(D∗2(2460)+ → D0π+) = 30%.�(D0D0)/�total �78/��(D0D0)/�total �78/��(D0D0)/�total �78/��(D0D0)/�total �78/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT0.14±0.06±0.030.14±0.06±0.030.14±0.06±0.030.14±0.06±0.03 1 AAIJ 13AP LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.43 90 2 ADACHI 08 BELL e+ e− → �(4S)
<0.6 90 2 AUBERT,B 06A BABR e+ e− → �(4S)1Uses B(B0 → D−D+) = (2.11 ± 0.31) × 10−4 and B(B+ → D0D+s ) = (10.1 ±1.7) × 10−3.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗0D0)/�total �79/��(D∗0D0)/�total �79/��(D∗0D0)/�total �79/��(D∗0D0)/�total �79/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<2.9<2.9<2.9<2.9 90 1 AUBERT,B 06A BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−D+)/�total �80/��(D−D+)/�total �80/��(D−D+)/�total �80/��(D−D+)/�total �80/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.11±0.18 OUR AVERAGE2.11±0.18 OUR AVERAGE2.11±0.18 OUR AVERAGE2.11±0.18 OUR AVERAGE2.12±0.16±0.18 1 ROHRKEN 12 BELL e+ e− → �(4S)1.97±0.20±0.20 1 FRATINA 07 BELL e+ e− → �(4S)2.8 ±0.4 ±0.5 1 AUBERT,B 06A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.91±0.51±0.30 1 MAJUMDER 05 BELL Repl. by FRATINA 07
< 9.4 90 1 LIPELES 00 CLE2 e+ e− → �(4S)
<59 90 BARATE 98Q ALEP e+ e− → Z
<12 90 ASNER 97 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D±D∗∓ (CP-averaged))/�total �81/��(D±D∗∓ (CP-averaged))/�total �81/��(D±D∗∓ (CP-averaged))/�total �81/��(D±D∗∓ (CP-averaged))/�total �81/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.14±0.29±0.506.14±0.29±0.506.14±0.29±0.506.14±0.29±0.50 1 ROHRKEN 12 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−D+s )/�total �82/��(D−D+s )/�total �82/��(D−D+s )/�total �82/��(D−D+s )/�total �82/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0072±0.0008 OUR AVERAGE0.0072±0.0008 OUR AVERAGE0.0072±0.0008 OUR AVERAGE0.0072±0.0008 OUR AVERAGE0.0073±0.0004±0.0007 1 ZUPANC 07 BELL e+ e− → �(4S)0.0066±0.0014±0.0006 2 AUBERT 06N BABR e+ e− → �(4S)0.0068±0.0024±0.0006 3 GIBAUT 96 CLE2 e+ e− → �(4S)0.010 ±0.009 ±0.001 4 ALBRECHT 92G ARG e+ e− → �(4S)0.0053±0.0030±0.0005 5 BORTOLETTO92 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.012 ±0.007 3 6 BORTOLETTO90 CLEO e+ e− → �(4S)1ZUPANC 07 reports (7.5±0.2±1.1)×10−3 from a measurement of [�(B0 → D−D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = (4.4 ± 0.6)× 10−2, whi
hwe res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.2AUBERT 06N reports (0.64 ± 0.13 ± 0.10) × 10−2 from a measurement of [�(B0 →D−D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.0462 ± 0.0062,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.3GIBAUT 96 reports 0.0087 ± 0.0024 ± 0.0020 from a measurement of [�(B0 →D−D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.035, whi
hwe res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.

4ALBRECHT 92G reports 0.017 ± 0.013 ± 0.006 from a measurement of [�(B0 →D−D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
hwe res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rst erroris their experiment's error and our se
ond error is the systemati
 error from using ourbest value. Assumes PDG 1990 D+ bran
hing ratios, e.g., B(D+ → K− 2π+) =7.7 ± 1.0%.5BORTOLETTO 92 reports 0.0080 ± 0.0045 ± 0.0030 from a measurement of [�(B0 →D−D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.030 ± 0.011,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value. Assumes equal produ
tion of B+ and B0 at the �(4S) and uses Mark IIIbran
hing fra
tions for the D.6BORTOLETTO 90 assume B(Ds → φπ+) = 2%. Superseded by BORTOLETTO 92.�(D∗(2010)−D+s )/�total �83/��(D∗(2010)−D+s )/�total �83/��(D∗(2010)−D+s )/�total �83/��(D∗(2010)−D+s )/�total �83/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0080±0.0011 OUR AVERAGE0.0080±0.0011 OUR AVERAGE0.0080±0.0011 OUR AVERAGE0.0080±0.0011 OUR AVERAGE0.0073±0.0013±0.0007 1 AUBERT 06N BABR e+ e− → �(4S)0.0083±0.0015±0.0007 2 AUBERT 03I BABR e+ e− → �(4S)0.0088±0.0017±0.0008 3 AHMED 00B CLE2 e+ e− → �(4S)0.008 ±0.006 ±0.001 4 ALBRECHT 92G ARG e+ e− → �(4S)0.011 ±0.006 ±0.001 5 BORTOLETTO92 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0072±0.0022±0.0006 6 GIBAUT 96 CLE2 Repl. by AHMED 00B0.024 ±0.014 3 7 BORTOLETTO90 CLEO e+ e− → �(4S)1AUBERT 06N reports (0.71 ± 0.13 ± 0.09) × 10−2 from a measurement of [�(B0 →D∗(2010)−D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.0462 ±0.0062, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.2AUBERT 03I reports 0.0103 ± 0.0014 ± 0.0013 from a measurement of [�(B0 →D∗(2010)−D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.036,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.3AHMED 00B reports 0.0110 ± 0.0018 ± 0.0011 from a measurement of [�(B0 →D∗(2010)−D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.036,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.4ALBRECHT 92G reports 0.014 ± 0.010 ± 0.003 from a measurement of [�(B0 →D∗(2010)−D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value. Assumes PDG 1990 D+ and D∗(2010)+ bran
hing ratios, e.g., B(D0 →K−π+) = 3.71 ± 0.25%, B(D+ → K− 2π+) = 7.1 ± 1.0%, and B(D∗(2010)+ →D0π+) = 55 ± 4%.5BORTOLETTO 92 reports 0.016 ± 0.009 ± 0.006 from a measurement of [�(B0 →D∗(2010)−D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.030 ±0.011, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value. Assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D and D∗(2010).6GIBAUT 96 reports 0.0093 ± 0.0023 ± 0.0016 from a measurement of [�(B0 →D∗(2010)−D+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.035,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.7BORTOLETTO 90 assume B(Ds → φπ+) = 2%. Superseded by BORTOLETTO 92.�(D−D∗+s )/�total �84/��(D−D∗+s )/�total �84/��(D−D∗+s )/�total �84/��(D−D∗+s )/�total �84/�VALUE DOCUMENT ID TECN COMMENT0.0074±0.0016 OUR AVERAGE0.0074±0.0016 OUR AVERAGE0.0074±0.0016 OUR AVERAGE0.0074±0.0016 OUR AVERAGE0.0071±0.0016±0.0006 1 AUBERT 06N BABR e+ e− → �(4S)0.0078±0.0032±0.0007 2 GIBAUT 96 CLE2 e+ e− → �(4S)0.016 ±0.012 ±0.001 3 ALBRECHT 92G ARG e+ e− → �(4S)1AUBERT 06N reports (0.69 ± 0.16 ± 0.09) × 10−2 from a measurement of [�(B0 →D−D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.0462 ± 0.0062,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.2GIBAUT 96 reports 0.0100 ± 0.0035 ± 0.0022 from a measurement of [�(B0 →D−D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.035, whi
hwe res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.3ALBRECHT 92G reports 0.027 ± 0.017 ± 0.009 from a measurement of [�(B0 →D−D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
hwe res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rst erroris their experiment's error and our se
ond error is the systemati
 error from using ourbest value. Assumes PDG 1990 D+ bran
hing ratios, e.g., B(D+ → K− 2π+) =7.7 ± 1.0%.



1221122112211221See key on page 601 MesonParti
le ListingsB0�(D∗(2010)−D∗+s )/�total �85/��(D∗(2010)−D∗+s )/�total �85/��(D∗(2010)−D∗+s )/�total �85/��(D∗(2010)−D∗+s )/�total �85/�VALUE DOCUMENT ID TECN COMMENT0.0177±0.0014 OUR AVERAGE0.0177±0.0014 OUR AVERAGE0.0177±0.0014 OUR AVERAGE0.0177±0.0014 OUR AVERAGE0.0173±0.0018±0.0015 1 AUBERT 06N BABR e+ e− → �(4S)0.0188±0.0009±0.0017 2 AUBERT 05V BABR e+ e− → �(4S)0.0158±0.0027±0.0014 3 AUBERT 03I BABR e+ e− → �(4S)0.015 ±0.004 ±0.001 4 AHMED 00B CLE2 e+ e− → �(4S)0.016 ±0.009 ±0.001 5 ALBRECHT 92G ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.016 ±0.005 ±0.001 6 GIBAUT 96 CLE2 Repl. by AHMED 00B1AUBERT 06N reports (1.68 ± 0.21 ± 0.19) × 10−2 from a measurement of [�(B0 →D∗(2010)−D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.0462 ±0.0062, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.2A partial re
onstru
tion te
hnique is used and the result is independent of the parti
le de-
ay rate of D+S meson. It also provides a model-independent determination of B(D+S →

φπ+) = (4.81 ± 0.52 ± 0.38)%.3AUBERT 03I reports 0.0197 ± 0.0015 ± 0.0030 from a measurement of [�(B0 →D∗(2010)−D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.036,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.4AHMED 00B reports 0.0182 ± 0.0037 ± 0.0025 from a measurement of [�(B0 →D∗(2010)−D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.036,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.5ALBRECHT 92G reports 0.026 ± 0.014 ± 0.006 from a measurement of [�(B0 →D∗(2010)−D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value. Assumes PDG 1990 D+ and D∗(2010)+ bran
hing ratios, e.g., B(D0 →K−π+) = 3.71 ± 0.25%, B(D+ → K− 2π+) = 7.1 ± 1.0%, and B(D∗(2010)+ →D0π+) = 55 ± 4%.6GIBAUT 96 reports 0.0203 ± 0.0050 ± 0.0036 from a measurement of [�(B0 →D∗(2010)−D∗+s )/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.035,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.
[�(D∗(2010)−D+s )+ �(D∗(2010)−D∗+s )

]/�total (�83+�85)/�[�(D∗(2010)−D+s )+ �(D∗(2010)−D∗+s )
]/�total (�83+�85)/�[�(D∗(2010)−D+s )+ �(D∗(2010)−D∗+s )
]/�total (�83+�85)/�[�(D∗(2010)−D+s )+ �(D∗(2010)−D∗+s )
]/�total (�83+�85)/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.5 ±0.4 OUR AVERAGE2.5 ±0.4 OUR AVERAGE2.5 ±0.4 OUR AVERAGE2.5 ±0.4 OUR AVERAGE2.40±0.35±0.22 1 AUBERT 03I BABR e+ e− → �(4S)3.3 ±0.9 ±0.3 22 2 BORTOLETTO90 CLEO e+ e− → �(4S)1AUBERT 03I reports (3.00 ± 0.19 ± 0.39) × 10−2 from a measurement of [[�(B0 →D∗(2010)−D+s ) + �(B0 → D∗(2010)−D∗+s )

]/�total℄ × [B(D+s → φπ+)℄ assumingB(D+s → φπ+) = 0.036, whi
h we res
ale to our best value B(D+s → φπ+) =(4.5 ± 0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2BORTOLETTO 90 reports (7.5 ± 2.0) × 10−2 from a measurement of [[�(B0 →D∗(2010)−D+s ) + �(B0 → D∗(2010)−D∗+s )

]/�total℄ × [B(D+s → φπ+)℄ assumingB(D+s → φπ+) = 0.02, whi
h we res
ale to our best value B(D+s → φπ+) =(4.5 ± 0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(Ds0(2317)−K+, D−s0 → D−s π0)/�total �86/��(Ds0(2317)−K+, D−s0 → D−s π0)/�total �86/��(Ds0(2317)−K+, D−s0 → D−s π0)/�total �86/��(Ds0(2317)−K+, D−s0 → D−s π0)/�total �86/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.2+1.4
−1.3±0.44.2+1.4
−1.3±0.44.2+1.4
−1.3±0.44.2+1.4
−1.3±0.4 1 DRUTSKOY 05 BELL e+ e− → �(4S)1DRUTSKOY 05 reports (5.3+1.5

−1.3 ± 1.6) × 10−5 from a measurement of [�(B0 →Ds0(2317)−K+, D−s0 → D−s π0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s →
φπ+) = 0.036 ± 0.009, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ±0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(Ds0(2317)−π+, D−s0 → D−s π0)/�total �87/��(Ds0(2317)−π+, D−s0 → D−s π0)/�total �87/��(Ds0(2317)−π+, D−s0 → D−s π0)/�total �87/��(Ds0(2317)−π+, D−s0 → D−s π0)/�total �87/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<2.5<2.5<2.5<2.5 90 1 DRUTSKOY 05 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(DsJ (2457)−K+, D−
sJ → D−s π0)/�total �88/��(DsJ (2457)−K+, D−
sJ → D−s π0)/�total �88/��(DsJ (2457)−K+, D−
sJ → D−s π0)/�total �88/��(DsJ (2457)−K+, D−
sJ → D−s π0)/�total �88/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<0.94<0.94<0.94<0.94 90 1 DRUTSKOY 05 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

�(DsJ (2457)−π+, D−
sJ → D−s π0)/�total �89/��(DsJ (2457)−π+, D−
sJ → D−s π0)/�total �89/��(DsJ (2457)−π+, D−
sJ → D−s π0)/�total �89/��(DsJ (2457)−π+, D−
sJ → D−s π0)/�total �89/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<0.40<0.40<0.40<0.40 90 1 DRUTSKOY 05 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−s D+s )/�total �90/��(D−s D+s )/�total �90/��(D−s D+s )/�total �90/��(D−s D+s )/�total �90/�VALUE CL% DOCUMENT ID TECN COMMENT
< 3.6× 10−5< 3.6× 10−5< 3.6× 10−5< 3.6× 10−5 90 1 ZUPANC 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<10 × 10−5 90 1 AUBERT,BE 05F BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗−s D+s )/�total �91/��(D∗−s D+s )/�total �91/��(D∗−s D+s )/�total �91/��(D∗−s D+s )/�total �91/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.3× 10−4<1.3× 10−4<1.3× 10−4<1.3× 10−4 90 1 AUBERT,BE 05F BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗−s D∗+s )/�total �92/��(D∗−s D∗+s )/�total �92/��(D∗−s D∗+s )/�total �92/��(D∗−s D∗+s )/�total �92/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.4× 10−4<2.4× 10−4<2.4× 10−4<2.4× 10−4 90 1 AUBERT,BE 05F BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗s0(2317)+D−, D∗+s0 → D+s π0)/�total �93/��(D∗s0(2317)+D−, D∗+s0 → D+s π0)/�total �93/��(D∗s0(2317)+D−, D∗+s0 → D+s π0)/�total �93/��(D∗s0(2317)+D−, D∗+s0 → D+s π0)/�total �93/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.04±0.17 OUR AVERAGE1.04±0.17 OUR AVERAGE1.04±0.17 OUR AVERAGE1.04±0.17 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.97+0.16

−0.15±0.04 1,2 CHOI 15A BELL e+ e− → �(4S)1.4 +0.5
−0.4 ±0.1 2,3 AUBERT,B 04S BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.69+0.29
−0.24±0.06 2,4 KROKOVNY 03B BELL Repl. by CHOI 15A1CHOI 15A reports (10.2+1.3

−1.2 ± 1.0 ± 0.4) × 10−4 from a measurement of [�(B0 →D∗s0(2317)+D−, D∗+s0 → D+s π0)/�total℄ × [B(D+s → K+K−π+)℄ × [B(D+ →K− 2π+)℄ assuming B(D+s → K+K−π+) = (5.39 ± 0.21) × 10−2,B(D+ →K− 2π+) = (9.13 ± 0.19) × 10−2, whi
h we res
ale to our best values B(D+s →K+K−π+) = (5.45 ± 0.17) × 10−2, B(D+ → K− 2π+) = (9.46 ± 0.24) × 10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best values.2Assumes equal produ
tion of B+ and B0 at the �(4S).3AUBERT,B 04S reports (1.8 ± 0.4+0.7
−0.5) × 10−3 from a measurement of [�(B0 →D∗s0(2317)+D−, D∗+s0 → D+s π0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s →

φπ+) = 0.036 ± 0.009, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ±0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.4KROKOVNY 03B reports (0.86+0.33
−0.26 ± 0.26)×10−3 from a measurement of [�(B0 →D∗s0(2317)+D−, D∗+s0 → D+s π0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s →

φπ+) = 0.036 ± 0.009, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ±0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(Ds0(2317)+D−, D+s0 → D∗+s γ
)/�total �94/��(Ds0(2317)+D−, D+s0 → D∗+s γ
)/�total �94/��(Ds0(2317)+D−, D+s0 → D∗+s γ
)/�total �94/��(Ds0(2317)+D−, D+s0 → D∗+s γ
)/�total �94/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.95<0.95<0.95<0.95 90 1 KROKOVNY 03B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(Ds0(2317)+D∗(2010)−, D+s0 → D+s π0)/�total �95/��(Ds0(2317)+D∗(2010)−, D+s0 → D+s π0)/�total �95/��(Ds0(2317)+D∗(2010)−, D+s0 → D+s π0)/�total �95/��(Ds0(2317)+D∗(2010)−, D+s0 → D+s π0)/�total �95/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.5±0.4+0.5
−0.41.5±0.4+0.5
−0.41.5±0.4+0.5
−0.41.5±0.4+0.5
−0.4 1 AUBERT,B 04S BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(DsJ (2457)+D−)/�total �96/��(DsJ (2457)+D−)/�total �96/��(DsJ (2457)+D−)/�total �96/��(DsJ (2457)+D−)/�total �96/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.5±1.1 OUR AVERAGE3.5±1.1 OUR AVERAGE3.5±1.1 OUR AVERAGE3.5±1.1 OUR AVERAGE2.6±1.5±0.7 1 AUBERT 06N BABR e+ e− → �(4S)4.8+2.2

−1.6±1.1 2,3 AUBERT,B 04S BABR e+ e− → �(4S)3.9+1.5
−1.3±0.9 2,4 KROKOVNY 03B BELL e+ e− → �(4S)1Uses a missing-mass method in the events that one of the B mesons is fully re
onstru
ted.2Assumes equal produ
tion of B+ and B0 at the �(4S).3AUBERT,B 04S reports [�(B0 → DsJ (2457)+D−)/�total℄ × [B(Ds1(2460)+ →D∗+s π0)℄ = (2.3+1.0

−0.7±0.3)×10−3 whi
h we divide by our best value B(Ds1(2460)+ →D∗+s π0) = (48 ± 11)× 10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.4KROKOVNY 03B reports [�(B0 → DsJ (2457)+D−)/�total℄ × [B(Ds1(2460)+ →D∗+s π0)℄ = (1.9+0.7
−0.6±0.2)×10−3 whi
h we divide by our best value B(Ds1(2460)+ →D∗+s π0) = (48 ± 11)× 10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.



1222122212221222Meson Parti
le ListingsB0�(DsJ (2457)+D−, D+
sJ → D+s γ

)/�total �97/��(DsJ (2457)+D−, D+
sJ → D+s γ

)/�total �97/��(DsJ (2457)+D−, D+
sJ → D+s γ

)/�total �97/��(DsJ (2457)+D−, D+
sJ → D+s γ

)/�total �97/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.65+0.17
−0.14 OUR AVERAGE0.65+0.17
−0.14 OUR AVERAGE0.65+0.17
−0.14 OUR AVERAGE0.65+0.17
−0.14 OUR AVERAGE0.64+0.24
−0.16±0.06 1,2 AUBERT,B 04S BABR e+ e− → �(4S)0.66+0.21
−0.19±0.06 1,3 KROKOVNY 03B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT,B 04S reports (0.8 ± 0.2+0.3

−0.2) × 10−3 from a measurement of [�(B0 →DsJ (2457)+D−, D+sJ → D+s γ
)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s →

φπ+) = 0.036 ± 0.009, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ±0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.3KROKOVNY 03B reports (0.82+0.22
−0.19 ± 0.25)×10−3 from a measurement of [�(B0 →DsJ (2457)+D−, D+

sJ
→ D+s γ

)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s →
φπ+) = 0.036 ± 0.009, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ±0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(DsJ (2457)+D−, D+

sJ → D∗+s γ
)/�total �98/��(DsJ (2457)+D−, D+

sJ → D∗+s γ
)/�total �98/��(DsJ (2457)+D−, D+

sJ → D∗+s γ
)/�total �98/��(DsJ (2457)+D−, D+

sJ → D∗+s γ
)/�total �98/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.60<0.60<0.60<0.60 90 1 KROKOVNY 03B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(DsJ (2457)+D−, D+
sJ → D+s π+π−)/�total �99/��(DsJ (2457)+D−, D+
sJ → D+s π+π−)/�total �99/��(DsJ (2457)+D−, D+
sJ → D+s π+π−)/�total �99/��(DsJ (2457)+D−, D+
sJ → D+s π+π−)/�total �99/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.20<0.20<0.20<0.20 90 1 KROKOVNY 03B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(DsJ (2457)+D−, D+
sJ → D+s π0)/�total �100/��(DsJ (2457)+D−, D+
sJ → D+s π0)/�total �100/��(DsJ (2457)+D−, D+
sJ → D+s π0)/�total �100/��(DsJ (2457)+D−, D+
sJ → D+s π0)/�total �100/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.36<0.36<0.36<0.36 90 1 KROKOVNY 03B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−DsJ(2457)+)/�total �101/��(D∗(2010)−DsJ(2457)+)/�total �101/��(D∗(2010)−DsJ(2457)+)/�total �101/��(D∗(2010)−DsJ(2457)+)/�total �101/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT9.3±2.2 OUR AVERAGE9.3±2.2 OUR AVERAGE9.3±2.2 OUR AVERAGE9.3±2.2 OUR AVERAGE8.8±2.0±1.4 1 AUBERT 06N BABR e+ e− → �(4S)11 +5
−4 ±3 2,3 AUBERT,B 04S BABR e+ e− → �(4S)1Uses a missing-mass method in the events that one of the B mesons is fully re
onstru
ted.2AUBERT,B 04S reports [�(B0 → D∗(2010)−DsJ (2457)+)/�total℄ ×[B(Ds1(2460)+ → D∗+s π0)℄ = (5.5 ± 1.2+2.2

−1.6) × 10−3 whi
h we divide by ourbest value B(Ds1(2460)+ → D∗+s π0) = (48 ± 11) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.3Assumes equal produ
tion of B+ and B0 at the �(4S).�(DsJ (2457)+D∗(2010), D+
sJ → D+s γ

)/�total �102/��(DsJ (2457)+D∗(2010), D+
sJ → D+s γ

)/�total �102/��(DsJ (2457)+D∗(2010), D+
sJ → D+s γ

)/�total �102/��(DsJ (2457)+D∗(2010), D+
sJ → D+s γ

)/�total �102/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.3±0.3+0.9
−0.62.3±0.3+0.9
−0.62.3±0.3+0.9
−0.62.3±0.3+0.9
−0.6 1 AUBERT,B 04S BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

[�(D−Ds1(2536)+, D+s1 → D∗0K+)+�(D∗+K0)]/�total�103/�= (�104+�105)/�[�(D−Ds1(2536)+, D+s1 → D∗0K+)+�(D∗+K0)]/�total�103/�= (�104+�105)/�[�(D−Ds1(2536)+, D+s1 → D∗0K+)+�(D∗+K0)]/�total�103/�= (�104+�105)/�[�(D−Ds1(2536)+, D+s1 → D∗0K+)+�(D∗+K0)]/�total�103/�= (�104+�105)/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.75±0.62±0.362.75±0.62±0.362.75±0.62±0.362.75±0.62±0.36 1,2 AUSHEV 11 BELL e+ e− → �(4S)1Uses �(D∗(2007)0 → D0π0) / �(D∗(2007)0 → D0 γ) = 1.74 ± 0.13 and�(Ds1(2536)+ → D∗(2007)0K+) / �(Ds1(2536)+ → D∗(2010)+K0) = 1.36± 0.2.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−Ds1(2536)+, D+s1 → D∗0K+)/�total �104/��(D−Ds1(2536)+, D+s1 → D∗0K+)/�total �104/��(D−Ds1(2536)+, D+s1 → D∗0K+)/�total �104/��(D−Ds1(2536)+, D+s1 → D∗0K+)/�total �104/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.71±0.48±0.321.71±0.48±0.321.71±0.48±0.321.71±0.48±0.32 1 AUBERT 08B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5 90 AUBERT 03X BABR Repl. by AUBERT 08B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−Ds1(2536)+, D+s1 → D∗+K0)/�total �105/��(D−Ds1(2536)+, D+s1 → D∗+K0)/�total �105/��(D−Ds1(2536)+, D+s1 → D∗+K0)/�total �105/��(D−Ds1(2536)+, D+s1 → D∗+K0)/�total �105/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.61±1.03±0.312.61±1.03±0.312.61±1.03±0.312.61±1.03±0.31 1 AUBERT 08B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

[�(D∗(2010)−Ds1(2536)+, D+s1 → D∗0K+)+�(D∗+K0)]/�total�106/�= (�107+�108)/�[�(D∗(2010)−Ds1(2536)+, D+s1 → D∗0K+)+�(D∗+K0)]/�total�106/�= (�107+�108)/�[�(D∗(2010)−Ds1(2536)+, D+s1 → D∗0K+)+�(D∗+K0)]/�total�106/�= (�107+�108)/�[�(D∗(2010)−Ds1(2536)+, D+s1 → D∗0K+)+�(D∗+K0)]/�total�106/�= (�107+�108)/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.01±1.21±0.705.01±1.21±0.705.01±1.21±0.705.01±1.21±0.70 1,2 AUSHEV 11 BELL e+ e− → �(4S)1Uses �(D∗(2007)0 → D0π0) / �(D∗(2007)0 → D0 γ) = 1.74 ± 0.13 and�(Ds1(2536)+ → D∗(2007)0K+) / �(Ds1(2536)+ → D∗(2010)+K0) = 1.36± 0.2.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−Ds1(2536)+, D+s1 → D∗0K+)/�total �107/��(D∗(2010)−Ds1(2536)+, D+s1 → D∗0K+)/�total �107/��(D∗(2010)−Ds1(2536)+, D+s1 → D∗0K+)/�total �107/��(D∗(2010)−Ds1(2536)+, D+s1 → D∗0K+)/�total �107/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT3.32±0.88±0.663.32±0.88±0.663.32±0.88±0.663.32±0.88±0.66 1 AUBERT 08B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7 90 AUBERT 03X BABR Repl. by AUBERT 08B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗−Ds1(2536)+, D+s1 → D∗+K0)/�total �108/��(D∗−Ds1(2536)+, D+s1 → D∗+K0)/�total �108/��(D∗−Ds1(2536)+, D+s1 → D∗+K0)/�total �108/��(D∗−Ds1(2536)+, D+s1 → D∗+K0)/�total �108/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.00±1.51±0.675.00±1.51±0.675.00±1.51±0.675.00±1.51±0.67 1 AUBERT 08B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−DsJ(2573)+, D+

sJ → D0K+)/�total �109/��(D−DsJ(2573)+, D+
sJ → D0K+)/�total �109/��(D−DsJ(2573)+, D+
sJ → D0K+)/�total �109/��(D−DsJ(2573)+, D+
sJ → D0K+)/�total �109/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT3.4±1.7±0.53.4±1.7±0.53.4±1.7±0.53.4±1.7±0.5 1 LEES 15C BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<10 90 AUBERT 03X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−DsJ(2573)+, D+

sJ → D0K+)/�total �110/��(D∗(2010)−DsJ(2573)+, D+
sJ → D0K+)/�total �110/��(D∗(2010)−DsJ(2573)+, D+
sJ → D0K+)/�total �110/��(D∗(2010)−DsJ(2573)+, D+
sJ → D0K+)/�total �110/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<2<2<2<2 90 AUBERT 03X BABR e+ e− → �(4S)�(D−DsJ(2700)+, D+
sJ → D0K+)/�total �111/��(D−DsJ(2700)+, D+
sJ → D0K+)/�total �111/��(D−DsJ(2700)+, D+
sJ → D0K+)/�total �111/��(D−DsJ(2700)+, D+
sJ → D0K+)/�total �111/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT7.14±0.96±0.697.14±0.96±0.697.14±0.96±0.697.14±0.96±0.69 1 LEES 15C BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D+π−)/�total �112/��(D+π−)/�total �112/��(D+π−)/�total �112/��(D+π−)/�total �112/�VALUE (units 10−7) DOCUMENT ID TECN COMMENT7.4±1.2±0.47.4±1.2±0.47.4±1.2±0.47.4±1.2±0.4 1,2 DAS 10 BELL e+ e− → �(4S)1DAS 10 reports [�(B0 → D+π−

)/�total℄ / [B(B0 → D−π+)℄ = (2.92 ± 0.38 ±0.31)×10−4 whi
h we multiply by our best value B(B0 → D−π+) = (2.52 ± 0.13)×10−3. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.2Derived using tan(θC ) fD/fDs √

B(B0 →D+s π−)/B(B0 →D−π+) by assuming the
avor SU(3) symmetry, where θC is the Cabibbo angle, fD (fDs ) is the D (Ds ) mesonde
ay 
onstant.�(D+s π−)/�total �113/��(D+s π−)/�total �113/��(D+s π−)/�total �113/��(D+s π−)/�total �113/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT21.6±2.6 OUR AVERAGE21.6±2.6 OUR AVERAGE21.6±2.6 OUR AVERAGE21.6±2.6 OUR AVERAGE19.9±2.6±1.8 1 DAS 10 BELL e+ e− → �(4S)25 ±4 ±2 1 AUBERT 08AJ BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •14.0±3.5±1.3 2 AUBERT 07K BABR Repl. by AUBERT 08AJ25 ±9 ±2 3 AUBERT 03D BABR Repl. by AUBERT 07K19 +9

−7 ±2 4 KROKOVNY 02 BELL Repl. by DAS 10
< 220 90 5 ALEXANDER 93B CLE2 e+ e− → �(4S)
<1300 90 6 BORTOLETTO90 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 07K reports [�(B0 → D+s π−

)/�total℄ × [B(D+s → φπ+)℄ = (0.63± 0.15±0.05)×10−6 whi
h we divide by our best value B(D+s → φπ+) = (4.5± 0.4)×10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.3AUBERT 03D reports [�(B0 → D+s π−
)/�total℄ × [B(D+s → φπ+)℄ = (1.13± 0.33±0.21)×10−6 whi
h we divide by our best value B(D+s → φπ+) = (4.5± 0.4)×10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.4KROKOVNY 02 reports [�(B0 → D+s π−

)/�total℄ × [B(D+s → φπ+)℄ =(0.86+0.37
−0.30 ± 0.11) × 10−6 whi
h we divide by our best value B(D+s → φπ+) =(4.5 ± 0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.5ALEXANDER 93B reports < 270 × 10−6 from a measurement of [�(B0 → D+s π−

)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.6BORTOLETTO 90 assume B(Ds → φπ+) = 2%.



1223122312231223See key on page 601 MesonParti
le ListingsB0
[�(D+s π−)+ �(D−s K+)

]/�total (�113+�123)/�[�(D+s π−)+ �(D−s K+)
]/�total (�113+�123)/�[�(D+s π−)+ �(D−s K+)
]/�total (�113+�123)/�[�(D+s π−)+ �(D−s K+)
]/�total (�113+�123)/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.0× 10−3<1.0× 10−3<1.0× 10−3<1.0× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 1.7× 10−3 from a measurement of [[�(B0 → D+s π−
) +�(B0 → D−s K+)

]/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D∗+s π−)/�total �114/��(D∗+s π−)/�total �114/��(D∗+s π−)/�total �114/��(D∗+s π−)/�total �114/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT2.1 ±0.4 OUR AVERAGE2.1 ±0.4 OUR AVERAGE2.1 ±0.4 OUR AVERAGE2.1 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.1.75±0.34±0.20 1 JOSHI 10 BELL e+ e− → �(4S)2.6 +0.5
−0.4 ±0.2 1 AUBERT 08AJ BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.9 ±0.7 ±0.3 2 AUBERT 07K BABR Repl. by AUBERT 08AJ
< 4.1 90 AUBERT 03D BABR Repl. by AUBERT 07K
<40 90 3 ALEXANDER 93B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 07K reports [�(B0 → D∗+s π−

)/�total℄ × [B(D+s → φπ+)℄ = (1.32±0.27±0.15)×10−6 whi
h we divide by our best value B(D+s → φπ+) = (4.5± 0.4)×10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.3ALEXANDER 93B reports < 44× 10−5 from a measurement of [�(B0 → D∗+s π−
)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.

[�(D∗+s π−)+�(D∗−s K+)
]/�total (�114+�124)/�[�(D∗+s π−)+�(D∗−s K+)
]/�total (�114+�124)/�[�(D∗+s π−)+�(D∗−s K+)
]/�total (�114+�124)/�[�(D∗+s π−)+�(D∗−s K+)
]/�total (�114+�124)/�VALUE CL% DOCUMENT ID TECN COMMENT

<7× 10−4<7× 10−4<7× 10−4<7× 10−4 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 1.2× 10−3 from a measurement of [[�(B0 → D∗+s π−
) +�(B0 → D∗−s K+)

]/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D+s ρ−
)/�total �115/��(D+s ρ−
)/�total �115/��(D+s ρ−
)/�total �115/��(D+s ρ−
)/�total �115/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

< 2.4< 2.4< 2.4< 2.4 90 1 AUBERT 08AJ BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<130 90 2 ALBRECHT 93E ARG e+ e− → �(4S)
< 50 90 3 ALEXANDER 93B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 93E reports < 2.2 × 10−3 from a measurement of [�(B0 → D+s ρ−

)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.3ALEXANDER 93B reports < 6.6 × 10−4 from a measurement of [�(B0 → D+s ρ−
)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D∗+s ρ−

)/�total �116/��(D∗+s ρ−
)/�total �116/��(D∗+s ρ−
)/�total �116/��(D∗+s ρ−
)/�total �116/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT4.1+1.3

−1.2±0.44.1+1.3
−1.2±0.44.1+1.3
−1.2±0.44.1+1.3
−1.2±0.4 1 AUBERT 08AJ BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<150 90 2 ALBRECHT 93E ARG e+ e− → �(4S)
< 60 90 3 ALEXANDER 93B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 93E reports < 2.5 × 10−3 from a measurement of [�(B0 → D∗+s ρ−

)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.3ALEXANDER 93B reports < 7.4× 10−4 from a measurement of [�(B0 → D∗+s ρ−
)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D+s a−0 )/�total �117/��(D+s a−0 )/�total �117/��(D+s a−0 )/�total �117/��(D+s a−0 )/�total �117/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<1.9<1.9<1.9<1.9 90 1 AUBERT 06X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗+s a−0 )/�total �118/��(D∗+s a−0 )/�total �118/��(D∗+s a−0 )/�total �118/��(D∗+s a−0 )/�total �118/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<3.6<3.6<3.6<3.6 90 1 AUBERT 06X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

�(D+s a1(1260)−)/�total �119/��(D+s a1(1260)−)/�total �119/��(D+s a1(1260)−)/�total �119/��(D+s a1(1260)−)/�total �119/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.1× 10−3<2.1× 10−3<2.1× 10−3<2.1× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 3.5 × 10−3 from a measurement of [�(B0 →D+s a1(1260)−)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D∗+s a1(1260)−)/�total �120/��(D∗+s a1(1260)−)/�total �120/��(D∗+s a1(1260)−)/�total �120/��(D∗+s a1(1260)−)/�total �120/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.7× 10−3<1.7× 10−3<1.7× 10−3<1.7× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 2.9 × 10−3 from a measurement of [�(B0 →D∗+s a1(1260)−)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D+s a−2 )/�total �121/��(D+s a−2 )/�total �121/��(D+s a−2 )/�total �121/��(D+s a−2 )/�total �121/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<19<19<19<19 90 1 AUBERT 06X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗+s a−2 )/�total �122/��(D∗+s a−2 )/�total �122/��(D∗+s a−2 )/�total �122/��(D∗+s a−2 )/�total �122/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<20<20<20<20 90 1 AUBERT 06X BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−s K+)/�total �123/��(D−s K+)/�total �123/��(D−s K+)/�total �123/��(D−s K+)/�total �123/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT27 ± 5 OUR FIT27 ± 5 OUR FIT27 ± 5 OUR FIT27 ± 5 OUR FIT Error in
ludes s
ale fa
tor of 2.7.22 ± 5 OUR AVERAGE22 ± 5 OUR AVERAGE22 ± 5 OUR AVERAGE22 ± 5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.19.1± 2.4±1.7 1 DAS 10 BELL e+ e− → �(4S)29 ± 4 ±2 1 AUBERT 08AJ BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •27 ± 5 ±2 2 AUBERT 07K BABR Repl. by AUBERT 08AJ26 ±10 ±2 3 AUBERT 03D BABR Repl. by AUBERT 07K36 +11

−10 ±3 4 KROKOVNY 02 BELL Repl. by DAS 10
< 190 90 5 ALEXANDER 93B CLE2 e+ e− → �(4S)
<1300 90 6 BORTOLETTO90 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 07K reports [�(B0 → D−s K+)/�total℄ × [B(D+s → φπ+)℄ = (1.21± 0.17±0.11)×10−6 whi
h we divide by our best value B(D+s → φπ+) = (4.5± 0.4)×10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.3AUBERT 03D reports [�(B0 → D−s K+)/�total℄ × [B(D+s → φπ+)℄ = (1.16±0.36±0.24)×10−6 whi
h we divide by our best value B(D+s → φπ+) = (4.5± 0.4)×10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.4KROKOVNY 02 reports [�(B0 → D−s K+)/�total℄ × [B(D+s → φπ+)℄ =(1.61+0.45

−0.38 ± 0.21) × 10−6 whi
h we divide by our best value B(D+s → φπ+) =(4.5 ± 0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.5ALEXANDER 93B reports < 230 × 10−6 from a measurement of [�(B0 → D−s K+)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.6BORTOLETTO 90 assume B(Ds → φπ+) = 2%.�(D∗−s K+)/�total �124/��(D∗−s K+)/�total �124/��(D∗−s K+)/�total �124/��(D∗−s K+)/�total �124/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT2.19±0.30 OUR AVERAGE2.19±0.30 OUR AVERAGE2.19±0.30 OUR AVERAGE2.19±0.30 OUR AVERAGE2.02±0.33±0.22 1 JOSHI 10 BELL e+ e− → �(4S)2.4 ±0.4 ±0.2 1 AUBERT 08AJ BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.2 ±0.6 ±0.2 2 AUBERT 07K BABR Repl. by AUBERT 08AJ
< 2.5 90 AUBERT 03D BABR Repl. by AUBERT 07K
<14 90 3 ALEXANDER 93B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 07K reports [�(B0 → D∗−s K+)/�total℄× [B(D+s → φπ+)℄ = (0.97±0.24±0.12)×10−6 whi
h we divide by our best value B(D+s → φπ+) = (4.5± 0.4)×10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.3ALEXANDER 93B reports < 17× 10−5 from a measurement of [�(B0 → D∗−s K+)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D−s K+)/�(D−π+) �123/�34�(D−s K+)/�(D−π+) �123/�34�(D−s K+)/�(D−π+) �123/�34�(D−s K+)/�(D−π+) �123/�34VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.09±0.19 OUR FIT1.09±0.19 OUR FIT1.09±0.19 OUR FIT1.09±0.19 OUR FIT Error in
ludes s
ale fa
tor of 2.6.1.29±0.05±0.081.29±0.05±0.081.29±0.05±0.081.29±0.05±0.08 AAIJ 15AC LHCB pp at 7, 8 TeV



1224122412241224Meson Parti
le ListingsB0�(D−s K∗(892)+)/�total �125/��(D−s K∗(892)+)/�total �125/��(D−s K∗(892)+)/�total �125/��(D−s K∗(892)+)/�total �125/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT3.5+1.0
−0.9±0.43.5+1.0
−0.9±0.43.5+1.0
−0.9±0.43.5+1.0
−0.9±0.4 1 AUBERT 08AJ BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<280 90 2 ALBRECHT 93E ARG e+ e− → �(4S)
< 80 90 3 ALEXANDER 93B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 93E reports < 4.6 × 10−3 from a measurement of [�(B0 →D−s K∗(892)+)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.3ALEXANDER 93B reports < 9.7 × 10−4 from a measurement of [�(B0 →D−s K∗(892)+)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D∗−s K∗(892)+)/�total �126/��(D∗−s K∗(892)+)/�total �126/��(D∗−s K∗(892)+)/�total �126/��(D∗−s K∗(892)+)/�total �126/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT3.2+1.4

−1.2±0.43.2+1.4
−1.2±0.43.2+1.4
−1.2±0.43.2+1.4
−1.2±0.4 1 AUBERT 08AJ BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<350 90 2 ALBRECHT 93E ARG e+ e− → �(4S)
< 90 90 3 ALEXANDER 93B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 93E reports < 5.8 × 10−3 from a measurement of [�(B0 →D∗−s K∗(892)+)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.3ALEXANDER 93B reports < 11.0 × 10−4 from a measurement of [�(B0 →D∗−s K∗(892)+)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D−s π+K0)/�total �127/��(D−s π+K0)/�total �127/��(D−s π+K0)/�total �127/��(D−s π+K0)/�total �127/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT0.97±0.14 OUR AVERAGE0.97±0.14 OUR AVERAGE0.97±0.14 OUR AVERAGE0.97±0.14 OUR AVERAGE0.94±0.12±0.10 1 WIECHCZYN...15 BELL e+ e− → �(4S)1.10±0.26±0.20 1 AUBERT 08G BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<40 90 2 ALBRECHT 93E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 93E reports < 7.3× 10−3 from a measurement of [�(B0 → D−s π+K0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D∗−s π+K0)/�total �128/��(D∗−s π+K0)/�total �128/��(D∗−s π+K0)/�total �128/��(D∗−s π+K0)/�total �128/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 1.10< 1.10< 1.10< 1.10 90 1 AUBERT 08G BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<25 90 2 ALBRECHT 93E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 93E reports < 4.2×10−3 from a measurement of [�(B0 → D∗−s π+K0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D−s K+π+π−)/�total �129/��(D−s K+π+π−)/�total �129/��(D−s K+π+π−)/�total �129/��(D−s K+π+π−)/�total �129/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.73±0.32±0.351.73±0.32±0.351.73±0.32±0.351.73±0.32±0.35 1 AAIJ 12AX LHCB pp at 7 TeV1AAIJ 12AX reports [�(B0 → D−s K+π+π−

)/�total℄ / [B(B0s → D−s K+π+π−)℄ =0.54 ± 0.07 ± 0.07 whi
h we multiply by our best value B(B0s → D−s K+π+π−) =(3.2 ± 0.6) × 10−4. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(D−s π+K∗(892)0)/�total �130/��(D−s π+K∗(892)0)/�total �130/��(D−s π+K∗(892)0)/�total �130/��(D−s π+K∗(892)0)/�total �130/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.0× 10−3<3.0× 10−3<3.0× 10−3<3.0× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 5.0 × 10−3 from a measurement of [�(B0 →D−s π+K∗(892)0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.�(D∗−s π+K∗(892)0)/�total �131/��(D∗−s π+K∗(892)0)/�total �131/��(D∗−s π+K∗(892)0)/�total �131/��(D∗−s π+K∗(892)0)/�total �131/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.6× 10−3<1.6× 10−3<1.6× 10−3<1.6× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 2.7 × 10−3 from a measurement of [�(B0 →D∗−s π+K∗(892)0)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5× 10−2.

�(D0K0)/�total �132/��(D0K0)/�total �132/��(D0K0)/�total �132/��(D0K0)/�total �132/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT5.2±0.7 OUR AVERAGE5.2±0.7 OUR AVERAGE5.2±0.7 OUR AVERAGE5.2±0.7 OUR AVERAGE5.3±0.7±0.3 1 AUBERT,B 06L BABR e+ e− → �(4S)5.0+1.3
−1.2±0.6 1 KROKOVNY 03 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0K+π−)/�total �133/��(D0K+π−)/�total �133/��(D0K+π−)/�total �133/��(D0K+π−)/�total �133/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT88±15±988±15±988±15±988±15±9 1 AUBERT 06A BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0K+π−)/�(D0π+π−) �133/�43�(D0K+π−)/�(D0π+π−) �133/�43�(D0K+π−)/�(D0π+π−) �133/�43�(D0K+π−)/�(D0π+π−) �133/�43VALUE DOCUMENT ID TECN COMMENT0.106±0.007±0.0080.106±0.007±0.0080.106±0.007±0.0080.106±0.007±0.008 AAIJ 13AQ LHCB pp at 7 TeV�(D0K∗(892)0)/�total �134/��(D0K∗(892)0)/�total �134/��(D0K∗(892)0)/�total �134/��(D0K∗(892)0)/�total �134/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.5±0.6 OUR AVERAGE4.5±0.6 OUR AVERAGE4.5±0.6 OUR AVERAGE4.5±0.6 OUR AVERAGE5.4±0.3±1.1 1,2 AAIJ 15X LHCB pp at 7, 8 TeV4.0±0.7±0.3 3 AUBERT,B 06L BABR e+ e− → �(4S)4.8+1.1
−1.0±0.5 3 KROKOVNY 03 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.7±0.9±0.6 3 AUBERT 06A BABR Repl. by AUBERT,B 06L1AAIJ 15X reports (5.13 ± 0.20 ± 0.15 ± 0.24 ± 0.60) × 10−5 from a measurementof [�(B0 → D0K∗(892)0)/�total℄ × [B(B0 → D0K+π−)℄ assuming B(B0 →D0K+π−) = (9.2 ± 0.6 ± 0.7 ± 0.6) × 10−5, whi
h we res
ale to our best valueB(B0 → D0K+π−) = (8.8 ± 1.7)× 10−5. Our �rst error is their experiment's errorand our se
ond error is the systemati
 error from using our best value.2Measured via amplitude analysis of B0 → D0K+π−, whi
h ex
ludes 
ontribution fromde
ay via D∗(2010)− resonan
e.3Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0K∗(1410)0)/�total �135/��(D0K∗(1410)0)/�total �135/��(D0K∗(1410)0)/�total �135/��(D0K∗(1410)0)/�total �135/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.7× 10−5<6.7× 10−5<6.7× 10−5<6.7× 10−5 90 1 AAIJ 15X LHCB pp at 7, 8 TeV1Measured via amplitude analysis of B0 → D0K+π−, whi
h ex
ludes 
ontribution fromde
ay via D∗(2010)− resonan
e.�(D0K∗0(1430)0)/�total �136/��(D0K∗0(1430)0)/�total �136/��(D0K∗0(1430)0)/�total �136/��(D0K∗0(1430)0)/�total �136/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT0.7±0.7±0.10.7±0.7±0.10.7±0.7±0.10.7±0.7±0.1 1,2 AAIJ 15X LHCB pp at 7, 8 TeV1AAIJ 15X reports (0.71 ± 0.27 ± 0.33 ± 0.47 ± 0.08) × 10−5 from a measurementof [�(B0 → D0K∗0(1430)0)/�total℄ × [B(B0 → D0K+π−)℄ assuming B(B0 →D0K+π−) = (9.2 ± 0.6 ± 0.7 ± 0.6) × 10−5, whi
h we res
ale to our best valueB(B0 → D0K+π−) = (8.8 ± 1.7)× 10−5. Our �rst error is their experiment's errorand our se
ond error is the systemati
 error from using our best value.2Measured via amplitude analysis of B0 → D0K+π−, whi
h ex
ludes 
ontribution fromde
ay via D∗(2010)− resonan
e.�(D0K∗2(1430)0)/�total �137/��(D0K∗2(1430)0)/�total �137/��(D0K∗2(1430)0)/�total �137/��(D0K∗2(1430)0)/�total �137/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.1±0.8±0.42.1±0.8±0.42.1±0.8±0.42.1±0.8±0.4 1,2 AAIJ 15X LHCB pp at 7, 8 TeV1AAIJ 15X reports (2.04 ± 0.45 ± 0.30 ± 0.54 ± 0.25) × 10−5 from a measurementof [�(B0 → D0K∗2(1430)0)/�total℄ × [B(B0 → D0K+π−)℄ assuming B(B0 →D0K+π−) = (9.2 ± 0.6 ± 0.7 ± 0.6) × 10−5, whi
h we res
ale to our best valueB(B0 → D0K+π−) = (8.8 ± 1.7)× 10−5. Our �rst error is their experiment's errorand our se
ond error is the systemati
 error from using our best value.2Measured via amplitude analysis of B0 → D0K+π−, whi
h ex
ludes 
ontribution fromde
ay via D∗(2010)− resonan
e.�(D∗0(2400)−, D∗−0 → D0π−)/�total �138/��(D∗0(2400)−, D∗−0 → D0π−)/�total �138/��(D∗0(2400)−, D∗−0 → D0π−)/�total �138/��(D∗0(2400)−, D∗−0 → D0π−)/�total �138/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.9±0.8±0.41.9±0.8±0.41.9±0.8±0.41.9±0.8±0.4 1,2 AAIJ 15X LHCB pp at 7, 8 TeV1AAIJ 15X reports (1.77 ± 0.26 ± 0.19 ± 0.67 ± 0.20) × 10−5 from a measurement of[�(B0 → D∗0(2400)−, D∗−0 → D0π−

)/�total℄ × [B(B0 → D0K+π−)℄ assumingB(B0 → D0K+π−) = (9.2 ± 0.6 ± 0.7 ± 0.6)× 10−5, whi
h we res
ale to our bestvalue B(B0 → D0K+π−) = (8.8 ± 1.7)× 10−5. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.2Measured via amplitude analysis of B0 → D0K+π−, whi
h ex
ludes 
ontribution fromde
ay via D∗(2010)− resonan
e.�(D∗2(2460)−K+, D∗−2 → D0π−)/�total �139/��(D∗2(2460)−K+, D∗−2 → D0π−)/�total �139/��(D∗2(2460)−K+, D∗−2 → D0π−)/�total �139/��(D∗2(2460)−K+, D∗−2 → D0π−)/�total �139/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT20.3±3.5 OUR AVERAGE20.3±3.5 OUR AVERAGE20.3±3.5 OUR AVERAGE20.3±3.5 OUR AVERAGE22 ±2 ±4 1,2 AAIJ 15X LHCB pp at 7, 8 TeV18.3±4.0±3.1 3 AUBERT 06A BABR e+ e− → �(4S)



1225122512251225See key on page 601 MesonParti
le ListingsB01AAIJ 15X reports (2.12 ± 0.10 ± 0.11 ± 0.11 ± 0.25) × 10−5 from a measurementof [�(B0 → D∗2(2460)−K+, D∗−2 → D0π−
)/�total℄ × [B(B0 → D0K+π−)℄assuming B(B0 → D0K+π−) = (9.2 ± 0.6 ± 0.7 ± 0.6) × 10−5, whi
h we res
aleto our best value B(B0 → D0K+π−) = (8.8 ± 1.7) × 10−5. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.2Measured via amplitude analysis of B0 → D0K+π−, whi
h ex
ludes 
ontribution fromde
ay via D∗(2010)− resonan
e.3Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗3(2760)−K+, D∗−3 → D0π−)/�total �140/��(D∗3(2760)−K+, D∗−3 → D0π−)/�total �140/��(D∗3(2760)−K+, D∗−3 → D0π−)/�total �140/��(D∗3(2760)−K+, D∗−3 → D0π−)/�total �140/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.10× 10−5<0.10× 10−5<0.10× 10−5<0.10× 10−5 90 1 AAIJ 15X LHCB pp at 7, 8 TeV1Measured via amplitude analysis of B0 → D0K+π−, whi
h ex
ludes 
ontribution fromde
ay via D∗(2010)− resonan
e.�(D0K+π− non-resonant)/�total �141/��(D0K+π− non-resonant)/�total �141/��(D0K+π− non-resonant)/�total �141/��(D0K+π− non-resonant)/�total �141/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<37<37<37<37 90 1 AUBERT 06A BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�([K+K− ℄DK∗(892)0)/�(D0K∗(892)0) �142/�134�([K+K− ℄DK∗(892)0)/�(D0K∗(892)0) �142/�134�([K+K− ℄DK∗(892)0)/�(D0K∗(892)0) �142/�134�([K+K− ℄DK∗(892)0)/�(D0K∗(892)0) �142/�134VALUE DOCUMENT ID TECN COMMENT1.05+0.17

−0.15±0.041.05+0.17
−0.15±0.041.05+0.17
−0.15±0.041.05+0.17
−0.15±0.04 AAIJ 14BN LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.36+0.37
−0.32±0.07 AAIJ 13L LHCB Repl. by AAIJ 14BN�([π+π− ℄DK∗(892)0)/�(D0K∗(892)0) �143/�134�([π+π− ℄DK∗(892)0)/�(D0K∗(892)0) �143/�134�([π+π− ℄DK∗(892)0)/�(D0K∗(892)0) �143/�134�([π+π− ℄DK∗(892)0)/�(D0K∗(892)0) �143/�134VALUE DOCUMENT ID TECN COMMENT1.21+0.28
−0.25±0.051.21+0.28
−0.25±0.051.21+0.28
−0.25±0.051.21+0.28
−0.25±0.05 AAIJ 14BN LHCB pp at 7, 8 TeV�(D0π0)/�total �144/��(D0π0)/�total �144/��(D0π0)/�total �144/��(D0π0)/�total �144/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.63±0.14 OUR AVERAGE2.63±0.14 OUR AVERAGE2.63±0.14 OUR AVERAGE2.63±0.14 OUR AVERAGE2.69±0.09±0.13 1 LEES 11M BABR e+ e− → �(4S)2.25±0.14±0.35 1 BLYTH 06 BELL e+ e− → �(4S)2.74+0.36

−0.32±0.55 1 COAN 02 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.9 ±0.2 ±0.3 1 AUBERT 04B BABR Repl. by LEES 11M3.1 ±0.4 ±0.5 1 ABE 02J BELL Repl. by BLYTH 06
<1.2 90 2 NEMATI 98 CLE2 Repl. by COAN 02
<4.8 90 3 ALAM 94 CLE2 Repl. by NEMATI 981Assumes equal produ
tion of B+ and B0 at the �(4S).2NEMATI 98 assumes equal produ
tion of B+ and B0 at the �(4S) and use the PDG 96values for D0, D∗0, η, η′, and ω bran
hing fra
tions.3ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIabsolute B(D0 → K−π+) and the PDG 1992 B(D0 → K−π+π0)/B(D0 → K−π+)and B(D0 → K− 2π+π−)/B(D0 → K−π+).�(D0 ρ0)/�total �145/��(D0 ρ0)/�total �145/��(D0 ρ0)/�total �145/��(D0 ρ0)/�total �145/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT3.21±0.21 OUR AVERAGE3.21±0.21 OUR AVERAGE3.21±0.21 OUR AVERAGE3.21±0.21 OUR AVERAGE3.21±0.10±0.21 1 AAIJ 15Y LHCB pp at 7, 8 TeV3.19±0.20±0.45 2,3 KUZMIN 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.9 ±1.0 ±0.4 2 SATPATHY 03 BELL Repl. by KUZMIN 07
< 3.9 90 4 NEMATI 98 CLE2 e+ e− → �(4S)
< 5.5 90 5 ALAM 94 CLE2 Repl. by NEMATI 98
< 6.0 90 6 BORTOLETTO92 CLEO e+ e− → �(4S)
<27.0 90 7 ALBRECHT 88K ARG e+ e− → �(4S)1Measured using isobar formalism in the de
ay 
hain B0 → D0 ρ(770), ρ → π+π−assuming B(ρ(770) → π+π−) = 1. The se
ond un
ertainty 
ombines in quadratureall systemati
 un
ertainties quoted in the paper.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Our se
ond un
ertainty 
ombines systemati
s and model errors quoted in the paper.4NEMATI 98 assumes equal produ
tion of B+ and B0 at the �(4S) and use the PDG 96values for D0, D∗0, η, η′, and ω bran
hing fra
tions.5ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIabsolute B(D0 → K−π+) and the PDG 1992 B(D0 → K−π+π0)/B(D0 → K−π+)and B(D0 → K− 2π+π−)/B(D0 → K−π+).6BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S) and usesMark III bran
hing fra
tions for the D.7ALBRECHT 88K reports < 0.003 assuming B0B0:B+B− produ
tion ratio is 45:55.We res
ale to 50%.

�(D0 f2)/�total �146/��(D0 f2)/�total �146/��(D0 f2)/�total �146/��(D0 f2)/�total �146/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.56±0.21 OUR AVERAGE1.56±0.21 OUR AVERAGE1.56±0.21 OUR AVERAGE1.56±0.21 OUR AVERAGE1.68±0.11±0.21 1 AAIJ 15Y LHCB pp at 7, 8 TeV1.20±0.18±0.38 2,3 KUZMIN 07 BELL e+ e− → �(4S)1Result obtained using the isobar formalism. The se
ond un
ertainty 
ombines in quadra-ture all systemati
 un
ertainties quoted in the paper. Measured in the de
ay 
hain B0 →D0 f2(1270), f2 → π+π−.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Our se
ond un
ertainty 
ombines systemati
s and model errors quoted in the paper.�(D0 η
)/�total �147/��(D0 η
)/�total �147/��(D0 η
)/�total �147/��(D0 η
)/�total �147/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.36±0.32 OUR AVERAGE2.36±0.32 OUR AVERAGE2.36±0.32 OUR AVERAGE2.36±0.32 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.5.2.53±0.09±0.11 1 LEES 11M BABR e+ e− → �(4S)1.77±0.16±0.21 1 BLYTH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.5 ±0.2 ±0.3 1 AUBERT 04B BABR Repl. by LEES 11M1.4 +0.5
−0.4 ±0.3 1 ABE 02J BELL Repl. by BLYTH 06

<1.3 90 2 NEMATI 98 CLE2 e+ e− → �(4S)
<6.8 90 3 ALAM 94 CLE2 Repl. by NEMATI 981Assumes equal produ
tion of B+ and B0 at the �(4S).2NEMATI 98 assumes equal produ
tion of B+ and B0 at the �(4S) and use the PDG 96values for D0, D∗0, η, η′, and ω bran
hing fra
tions.3ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIabsolute B(D0 → K−π+) and the PDG 1992 B(D0 → K−π+π0)/B(D0 → K−π+)and B(D0 → K− 2π+π−)/B(D0 → K−π+).�(D0 η′

)/�total �148/��(D0 η′
)/�total �148/��(D0 η′
)/�total �148/��(D0 η′
)/�total �148/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.38±0.16 OUR AVERAGE1.38±0.16 OUR AVERAGE1.38±0.16 OUR AVERAGE1.38±0.16 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.1.48±0.13±0.07 1 LEES 11M BABR e+ e− → �(4S)1.14±0.20+0.10

−0.13 1 SCHUMANN 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.7 ±0.4 ±0.2 1 AUBERT 04B BABR Repl. by LEES 11M
<9.4 90 2 NEMATI 98 CLE2 e+ e− → �(4S)
<8.6 90 3 ALAM 94 CLE2 Repl. by NEMATI 981Assumes equal produ
tion of B+ and B0 at the �(4S).2NEMATI 98 assumes equal produ
tion of B+ and B0 at the �(4S) and use the PDG 96values for D0, D∗0, η, η′, and ω bran
hing fra
tions.3ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIabsolute B(D0 → K−π+) and the PDG 1992 B(D0 → K−π+π0)/B(D0 → K−π+)and B(D0 → K− 2π+π−)/B(D0 → K−π+).�(D0 η′

)/�(D0 η
) �148/�147�(D0 η′

)/�(D0 η
) �148/�147�(D0 η′

)/�(D0 η
) �148/�147�(D0 η′

)/�(D0 η
) �148/�147VALUE DOCUMENT ID TECN COMMENT0.54±0.07±0.010.54±0.07±0.010.54±0.07±0.010.54±0.07±0.01 LEES 11M BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.7 ±0.2 ±0.1 AUBERT 04B BABR Repl. by LEES 11M�(D0ω
)/�total �149/��(D0ω
)/�total �149/��(D0ω
)/�total �149/��(D0ω
)/�total �149/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.54±0.16 OUR AVERAGE2.54±0.16 OUR AVERAGE2.54±0.16 OUR AVERAGE2.54±0.16 OUR AVERAGE2.75±0.72±0.35 1 AAIJ 15Y LHCB pp at 7, 8 TeV2.57±0.11±0.14 2 LEES 11M BABR e+ e− → �(4S)2.37±0.23±0.28 2 BLYTH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.0 ±0.3 ±0.4 2 AUBERT 04B BABR Repl. by LEES 11M1.8 ±0.5 +0.4
−0.3 2 ABE 02J BELL Repl. by BLYTH 06

<5.1 90 3 NEMATI 98 CLE2 e+ e− → �(4S)
<6.3 90 4 ALAM 94 CLE2 Repl. by NEMATI 981Result obtained using the isobar model. The se
ond un
ertainty 
ombines in quadratureall systemati
 un
ertainties quoted in the paper.2Assumes equal produ
tion of B+ and B0 at the �(4S).3NEMATI 98 assumes equal produ
tion of B+ and B0 at the �(4S) and use the PDG 96values for D0, D∗0, η, η′, and ω bran
hing fra
tions.4ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIabsolute B(D0 → K−π+) and the PDG 1992 B(D0 → K−π+π0)/B(D0 → K−π+)and B(D0 → K− 2π+π−)/B(D0 → K−π+).�(D0φ

)/�total �150/��(D0φ
)/�total �150/��(D0φ
)/�total �150/��(D0φ
)/�total �150/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<11.6<11.6<11.6<11.6 90 1 AUBERT 07AO BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0K+π−)/�total �151/��(D0K+π−)/�total �151/��(D0K+π−)/�total �151/��(D0K+π−)/�total �151/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<19 90 1 AUBERT 06A BABR Repl. by AUBERT 09AE1Assumes equal produ
tion of B+ and B0 at the �(4S).



1226122612261226MesonParti
le ListingsB0�(D0K+π−)/�(D0K+π−) �151/�133�(D0K+π−)/�(D0K+π−) �151/�133�(D0K+π−)/�(D0K+π−) �151/�133�(D0K+π−)/�(D0K+π−) �151/�133VALUE DOCUMENT ID TECN COMMENT0.060±0.034 OUR AVERAGE0.060±0.034 OUR AVERAGE0.060±0.034 OUR AVERAGE0.060±0.034 OUR AVERAGE0.045+0.056
−0.050+0.028

−0.018 1,2 NEGISHI 12 BELL e+ e− → �(4S)0.068±0.042 3 AUBERT 09AE BABR e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ at �(4S).2Uses D0 → K−π+mode. Restri
ts K+π− mass within ±50 MeV of the nominal K∗0mass. Corresponds to the upper limit, < 0.16 at 95% CL.3Reports a signal at the level of 2.5 standard deviations after 
ombining results fromD0 → K+π−, K+π−π0, and K+π−π+π−.�(D0K∗(892)0)/�total �152/��(D0K∗(892)0)/�total �152/��(D0K∗(892)0)/�total �152/��(D0K∗(892)0)/�total �152/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.1<1.1<1.1<1.1 90 1 AUBERT,B 06L BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.8 90 1 KROKOVNY 03 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗0γ

)/�total �153/��(D∗0γ
)/�total �153/��(D∗0γ
)/�total �153/��(D∗0γ
)/�total �153/�VALUE CL% DOCUMENT ID TECN COMMENT

<2.5× 10−5<2.5× 10−5<2.5× 10−5<2.5× 10−5 90 1 AUBERT,B 05Q BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.0× 10−5 90 1 ARTUSO 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2007)0π0)/�total �154/��(D∗(2007)0π0)/�total �154/��(D∗(2007)0π0)/�total �154/��(D∗(2007)0π0)/�total �154/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.2 ±0.6 OUR AVERAGE2.2 ±0.6 OUR AVERAGE2.2 ±0.6 OUR AVERAGE2.2 ±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.6. See the ideogram below.3.05±0.14±0.28 1 LEES 11M BABR e+ e− → �(4S)1.39±0.18±0.26 1 BLYTH 06 BELL e+ e− → �(4S)2.20+0.59

−0.52±0.79 1 COAN 02 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.9 ±0.4 ±0.5 1 AUBERT 04B BABR Repl. by LEES 11M2.7 +0.8

−0.7 +0.5
−0.6 1 ABE 02J BELL Repl. by BLYTH 06

<4.4 90 2 NEMATI 98 CLE2 Repl. by COAN 02
<9.7 90 3 ALAM 94 CLE2 Repl. by NEMATI 981Assumes equal produ
tion of B+ and B0 at the �(4S).2NEMATI 98 assumes equal produ
tion of B+ and B0 at the �(4S) and use the PDG 96values for D0, D∗0, η, η′, and ω bran
hing fra
tions.3ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2007)0 → D0π0) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).

WEIGHTED AVERAGE
2.2±0.6 (Error scaled by 2.6)

COAN 02 CLE2 0.0
BLYTH 06 BELL 7.0
LEES 11M BABR 6.9

χ2

      13.9
(Confidence Level = 0.0010)

0 1 2 3 4 5 6�(D∗(2007)0π0)/�total (units 10−4)�(D0π0)/�(D∗(2007)0π0) �144/�154�(D0π0)/�(D∗(2007)0π0) �144/�154�(D0π0)/�(D∗(2007)0π0) �144/�154�(D0π0)/�(D∗(2007)0π0) �144/�154VALUE DOCUMENT ID TECN COMMENT0.90±0.08 OUR AVERAGE0.90±0.08 OUR AVERAGE0.90±0.08 OUR AVERAGE0.90±0.08 OUR AVERAGE0.88±0.05±0.06 LEES 11M BABR e+ e− → �(4S)1.62±0.23±0.35 BLYTH 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.0 ±0.1 ±0.2 AUBERT 04B BABR Repl. by LEES 11M

�(D∗(2007)0 ρ0)/�total �155/��(D∗(2007)0 ρ0)/�total �155/��(D∗(2007)0 ρ0)/�total �155/��(D∗(2007)0 ρ0)/�total �155/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.1 × 10−4<5.1 × 10−4<5.1 × 10−4<5.1 × 10−4 90 1 SATPATHY 03 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.00056 90 2 NEMATI 98 CLE2 e+ e− → �(4S)
<0.00117 90 3 ALAM 94 CLE2 Repl. by NEMATI 981Assumes equal produ
tion of B+ and B0 at the �(4S).2NEMATI 98 assumes equal produ
tion of B+ and B0 at the �(4S) and use the PDG 96values for D0, D∗0, η, η′, and ω bran
hing fra
tions.3ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2007)0 → D0π0) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).�(D∗(2007)0 η

)/�total �156/��(D∗(2007)0 η
)/�total �156/��(D∗(2007)0 η
)/�total �156/��(D∗(2007)0 η
)/�total �156/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.3 ±0.6 OUR AVERAGE2.3 ±0.6 OUR AVERAGE2.3 ±0.6 OUR AVERAGE2.3 ±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.8.2.69±0.14±0.23 1 LEES 11M BABR e+ e− → �(4S)1.40±0.28±0.26 1 BLYTH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.6 ±0.4 ±0.4 1 AUBERT 04B BABR Repl. by LEES 11M
<4.6 90 1 ABE 02J BELL e+ e− → �(4S)
<2.6 90 2 NEMATI 98 CLE2 e+ e− → �(4S)
<6.9 90 3 ALAM 94 CLE2 Repl. by NEMATI 981Assumes equal produ
tion of B+ and B0 at the �(4S).2NEMATI 98 assumes equal produ
tion of B+ and B0 at the �(4S) and use the PDG 96values for D0, D∗0, η, η′, and ω bran
hing fra
tions.3ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2007)0 → D0π0) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).�(D0 η

)/�(D∗(2007)0 η
) �147/�156�(D0 η

)/�(D∗(2007)0 η
) �147/�156�(D0 η

)/�(D∗(2007)0 η
) �147/�156�(D0 η

)/�(D∗(2007)0 η
) �147/�156VALUE DOCUMENT ID TECN COMMENT0.99±0.10 OUR AVERAGE0.99±0.10 OUR AVERAGE0.99±0.10 OUR AVERAGE0.99±0.10 OUR AVERAGE0.97±0.07±0.07 LEES 11M BABR e+ e− → �(4S)1.27±0.29±0.25 BLYTH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.9 ±0.2 ±0.1 AUBERT 04B BABR Repl. by LEES 11M�(D∗(2007)0 η′
)/�(D∗(2007)0 η

) �157/�156�(D∗(2007)0 η′
)/�(D∗(2007)0 η

) �157/�156�(D∗(2007)0 η′
)/�(D∗(2007)0 η

) �157/�156�(D∗(2007)0 η′
)/�(D∗(2007)0 η

) �157/�156VALUE DOCUMENT ID TECN COMMENT0.61±0.14±0.020.61±0.14±0.020.61±0.14±0.020.61±0.14±0.02 LEES 11M BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.5 ±0.3 ±0.1 AUBERT 04B BABR Repl. by LEES 11M�(D∗(2007)0 η′

)/�total �157/��(D∗(2007)0 η′
)/�total �157/��(D∗(2007)0 η′
)/�total �157/��(D∗(2007)0 η′
)/�total �157/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.40±0.22 OUR AVERAGE1.40±0.22 OUR AVERAGE1.40±0.22 OUR AVERAGE1.40±0.22 OUR AVERAGE1.48±0.22±0.13 1 LEES 11M BABR e+ e− → �(4S)1.21±0.34±0.22 1 SCHUMANN 05 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.3 ±0.7 ±0.2 1,2 AUBERT 04B BABR Repl. by LEES 11M
<14 90 BRANDENB... 98 CLE2 e+ e− → �(4S)
<19 90 3 NEMATI 98 CLE2 e+ e− → �(4S)
<27 90 4 ALAM 94 CLE2 Repl. by NEMATI 981Assumes equal produ
tion of B+ and B0 at the �(4S).2Reports an upper limit < 2.6× 10−4 at 90% CL.3NEMATI 98 assumes equal produ
tion of B+ and B0 at the �(4S) and use the PDG 96values for D0, D∗0, η, η′, and ω bran
hing fra
tions.4ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2007)0 → D0π0) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).�(D0 η′

)/�(D∗(2007)0 η′
) �148/�157�(D0 η′

)/�(D∗(2007)0 η′
) �148/�157�(D0 η′

)/�(D∗(2007)0 η′
) �148/�157�(D0 η′

)/�(D∗(2007)0 η′
) �148/�157VALUE DOCUMENT ID TECN COMMENT0.96±0.18±0.060.96±0.18±0.060.96±0.18±0.060.96±0.18±0.06 LEES 11M BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.3 ±0.8 ±0.2 AUBERT 04B BABR Repl. by LEES 11M�(D∗(2007)0π+π−)/�total �158/��(D∗(2007)0π+π−)/�total �158/��(D∗(2007)0π+π−)/�total �158/��(D∗(2007)0π+π−)/�total �158/�VALUE DOCUMENT ID TECN COMMENT(6.2±1.2±1.8)× 10−4(6.2±1.2±1.8)× 10−4(6.2±1.2±1.8)× 10−4(6.2±1.2±1.8)× 10−4 1,2 SATPATHY 03 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2No assumption about the intermediate me
hanism is made in the analysis.�(D∗(2007)0K0)/�total �159/��(D∗(2007)0K0)/�total �159/��(D∗(2007)0K0)/�total �159/��(D∗(2007)0K0)/�total �159/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT3.6±1.2±0.33.6±1.2±0.33.6±1.2±0.33.6±1.2±0.3 1 AUBERT,B 06L BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.6 90 1 KROKOVNY 03 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).



1227122712271227See key on page 601 MesonParti
le ListingsB0�(D∗(2007)0K∗(892)0)/�total �160/��(D∗(2007)0K∗(892)0)/�total �160/��(D∗(2007)0K∗(892)0)/�total �160/��(D∗(2007)0K∗(892)0)/�total �160/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.9× 10−5<6.9× 10−5<6.9× 10−5<6.9× 10−5 90 1 KROKOVNY 03 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2007)0K∗(892)0)/�total �161/��(D∗(2007)0K∗(892)0)/�total �161/��(D∗(2007)0K∗(892)0)/�total �161/��(D∗(2007)0K∗(892)0)/�total �161/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.0× 10−5<4.0× 10−5<4.0× 10−5<4.0× 10−5 90 1 KROKOVNY 03 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2007)0π+π+π−π−)/�total �162/��(D∗(2007)0π+π+π−π−)/�total �162/��(D∗(2007)0π+π+π−π−)/�total �162/��(D∗(2007)0π+π+π−π−)/�total �162/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.7 ±0.5 OUR AVERAGE2.7 ±0.5 OUR AVERAGE2.7 ±0.5 OUR AVERAGE2.7 ±0.5 OUR AVERAGE2.60±0.47±0.37 1 MAJUMDER 04 BELL e+ e− → �(4S)3.0 ±0.7 ±0.6 1 EDWARDS 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2007)0π+π+π−π−)/�(D∗(2010)−π+π+π−π0) �162/�63�(D∗(2007)0π+π+π−π−)/�(D∗(2010)−π+π+π−π0) �162/�63�(D∗(2007)0π+π+π−π−)/�(D∗(2010)−π+π+π−π0) �162/�63�(D∗(2007)0π+π+π−π−)/�(D∗(2010)−π+π+π−π0) �162/�63VALUE DOCUMENT ID TECN COMMENT0.17±0.04±0.020.17±0.04±0.020.17±0.04±0.020.17±0.04±0.02 1 EDWARDS 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)+D∗(2010)−)/�total �163/��(D∗(2010)+D∗(2010)−)/�total �163/��(D∗(2010)+D∗(2010)−)/�total �163/��(D∗(2010)+D∗(2010)−)/�total �163/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT8.0 ±0.6 OUR AVERAGE8.0 ±0.6 OUR AVERAGE8.0 ±0.6 OUR AVERAGE8.0 ±0.6 OUR AVERAGE7.82±0.38±0.63 1 KRONENBIT... 12 BELL e+ e− → �(4S)8.1 ±0.6 ±1.0 1 AUBERT,B 06A BABR e+ e− → �(4S)9.9 +4.2

−3.3 ±1.2 1 LIPELES 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.1 ±0.8 ±1.1 1 MIYAKE 05 BELL Repl. by KRONENBIT-TER 128.3 ±1.6 ±1.2 1,2 AUBERT 02M BABR Repl. by AUBERT,B 06B6.2 +4.0

−2.9 ±1.0 3 ARTUSO 99 CLE2 Repl. by LIPELES 00
<61 90 4 BARATE 98Q ALEP e+ e− → Z
<22 90 5 ASNER 97 CLE2 Repl. by ARTUSO 991Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 02M also assumes the measured CP-odd fra
tion of the �nal states is 0.22 ±0.18 ± 0.03.3ARTUSO 99 uses B(�(4S) → B0B0)=(48 ± 4)%.4BARATE 98Q (ALEPH) observes 2 events with an expe
ted ba
kground of 0.10 ± 0.03whi
h 
orresponds to a bran
hing ratio of (2.3+1.9

−1.2 ± 0.4) × 10−3.5ASNER 97 at CLEO observes 1 event with an expe
ted ba
kground of 0.022 ± 0.011.This 
orresponds to a bran
hing ratio of (5.3+7.1
−3.7 ± 1.0)× 10−4.�(D∗(2007)0ω

)/�total �164/��(D∗(2007)0ω
)/�total �164/��(D∗(2007)0ω
)/�total �164/��(D∗(2007)0ω
)/�total �164/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT3.6 ±1.1 OUR AVERAGE3.6 ±1.1 OUR AVERAGE3.6 ±1.1 OUR AVERAGE3.6 ±1.1 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.1.4.55±0.24±0.39 1 LEES 11M BABR e+ e− → �(4S)2.29±0.39±0.40 1 BLYTH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.2 ±0.7 ±0.9 90 1 AUBERT 04B BABR Repl. by LEES 11M
< 7.9 90 1 ABE 02J BELL e+ e− → �(4S)
< 7.4 90 2 NEMATI 98 CLE2 e+ e− → �(4S)
<21 90 3 ALAM 94 CLE2 Repl. by NEMATI 981Assumes equal produ
tion of B+ and B0 at the �(4S).2NEMATI 98 assumes equal produ
tion of B+ and B0 at the �(4S) and use the PDG 96values for D0, D∗0, η, η′, and ω bran
hing fra
tions.3ALAM 94 assume equal produ
tion of B+ and B0 at the �(4S) and use the CLEO IIB(D∗(2007)0 → D0π0) and absolute B(D0 → K−π+) and the PDG 1992 B(D0 →K−π+π0)/B(D0 → K−π+) and B(D0 → K− 2π+π−)/B(D0 → K−π+).�(D0ω

)/�(D∗(2007)0ω
) �149/�164�(D0ω

)/�(D∗(2007)0ω
) �149/�164�(D0ω

)/�(D∗(2007)0ω
) �149/�164�(D0ω

)/�(D∗(2007)0ω
) �149/�164VALUE DOCUMENT ID TECN COMMENT0.58±0.06 OUR AVERAGE0.58±0.06 OUR AVERAGE0.58±0.06 OUR AVERAGE0.58±0.06 OUR AVERAGE0.56±0.04±0.04 LEES 11M BABR e+ e− → �(4S)1.04±0.20±0.17 BLYTH 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.7 ±0.1 ±0.1 AUBERT 04B BABR Repl. by LEES 11M�(D∗(2010)+D−)/�total �165/��(D∗(2010)+D−)/�total �165/��(D∗(2010)+D−)/�total �165/��(D∗(2010)+D−)/�total �165/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT6.1±1.5 OUR AVERAGE6.1±1.5 OUR AVERAGE6.1±1.5 OUR AVERAGE6.1±1.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.5.7±0.7±0.7 1 AUBERT,B 06A BABR e+ e− → �(4S)11.7±2.6+2.2
−2.5 1,2 ABE 02Q BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.8±1.0±1.3 1 AUBERT 03J BABR Repl. by AUBERT,B 06B14.8±3.8+2.8
−3.1 1,3 ABE 02Q BELL e+ e− → �(4S)

< 6.3 90 1 LIPELES 00 CLE2 e+ e− → �(4S)
<56 90 BARATE 98Q ALEP e+ e− → Z
<18 90 ASNER 97 CLE2 e+ e− → �(4S)

1Assumes equal produ
tion of B+ and B0 at the �(4S).2The measurement is performed using fully re
onstru
ted D∗ and D+ de
ays.3The measurement is performed using a partial re
onstru
tion te
hnique for the D∗ andfully re
onstru
ted D+ de
ays as a 
ross 
he
k.�(D∗(2007)0D∗(2007)0)/�total �166/��(D∗(2007)0D∗(2007)0)/�total �166/��(D∗(2007)0D∗(2007)0)/�total �166/��(D∗(2007)0D∗(2007)0)/�total �166/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 0.9< 0.9< 0.9< 0.9 90 1 AUBERT,B 06A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<270 90 BARATE 98Q ALEP e+ e− → Z1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−D0K+)/�total �167/��(D−D0K+)/�total �167/��(D−D0K+)/�total �167/��(D−D0K+)/�total �167/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.07±0.07±0.091.07±0.07±0.091.07±0.07±0.091.07±0.07±0.09 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.7 ±0.3 ±0.3 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−D∗(2007)0K+)/�total �168/��(D−D∗(2007)0K+)/�total �168/��(D−D∗(2007)0K+)/�total �168/��(D−D∗(2007)0K+)/�total �168/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.46±0.18±0.373.46±0.18±0.373.46±0.18±0.373.46±0.18±0.37 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.6 ±0.7 ±0.7 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−D0K+)/�total �169/��(D∗(2010)−D0K+)/�total �169/��(D∗(2010)−D0K+)/�total �169/��(D∗(2010)−D0K+)/�total �169/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.47±0.10±0.182.47±0.10±0.182.47±0.10±0.182.47±0.10±0.18 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.1 +0.4

−0.3 ±0.4 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−D∗(2007)0K+)/�total �170/��(D∗(2010)−D∗(2007)0K+)/�total �170/��(D∗(2010)−D∗(2007)0K+)/�total �170/��(D∗(2010)−D∗(2007)0K+)/�total �170/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT10.6±0.33±0.8610.6±0.33±0.8610.6±0.33±0.8610.6±0.33±0.86 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •11.8±1.0 ±1.7 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−D+K0)/�total �171/��(D−D+K0)/�total �171/��(D−D+K0)/�total �171/��(D−D+K0)/�total �171/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT0.75±0.12±0.120.75±0.12±0.120.75±0.12±0.120.75±0.12±0.12 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.7 90 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).
[�(D∗(2010)−D+K0)+�(D−D∗(2010)+K0)]/�total �172/�[�(D∗(2010)−D+K0)+�(D−D∗(2010)+K0)]/�total �172/�[�(D∗(2010)−D+K0)+�(D−D∗(2010)+K0)]/�total �172/�[�(D∗(2010)−D+K0)+�(D−D∗(2010)+K0)]/�total �172/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT6.41±0.36±0.396.41±0.36±0.396.41±0.36±0.396.41±0.36±0.39 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.5 ±1.2 ±1.0 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)−D∗(2010)+K0)/�total �173/��(D∗(2010)−D∗(2010)+K0)/�total �173/��(D∗(2010)−D∗(2010)+K0)/�total �173/��(D∗(2010)−D∗(2010)+K0)/�total �173/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT8.1 ±0.7 OUR AVERAGE8.1 ±0.7 OUR AVERAGE8.1 ±0.7 OUR AVERAGE8.1 ±0.7 OUR AVERAGE8.26±0.43±0.67 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)6.8 ±0.8 ±1.4 1,2 DALSENO 07 BELL e+ e− → �(4S)8.8 ±0.8 ±1.4 1,2 AUBERT,B 06Q BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.8 +1.5

−1.4 ±1.3 1 AUBERT 03X BABR Repl. by AUBERT,B 06Q1Assumes equal produ
tion of B+ and B0 at the �(4S).2The result is res
aled by a fa
tor of 2 to 
onvert from K0S to K0.�(D∗−Ds1(2536)+, D+s1 → D∗+K0)/�total �174/��(D∗−Ds1(2536)+, D+s1 → D∗+K0)/�total �174/��(D∗−Ds1(2536)+, D+s1 → D∗+K0)/�total �174/��(D∗−Ds1(2536)+, D+s1 → D∗+K0)/�total �174/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT8.0±2.4 OUR AVERAGE8.0±2.4 OUR AVERAGE8.0±2.4 OUR AVERAGE8.0±2.4 OUR AVERAGE7.6+4.8
−4.2+1.6

−1.4 1,2 DALSENO 07 BELL e+ e− → �(4S)8.2±2.6±1.2 1,2 AUBERT,B 06Q BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2The result is res
aled by a fa
tor of 2 to 
onvert from K0S to K0.



1228122812281228MesonParti
le ListingsB0�(D0D0K0)/�total �175/��(D0D0K0)/�total �175/��(D0D0K0)/�total �175/��(D0D0K0)/�total �175/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT0.27±0.10±0.050.27±0.10±0.050.27±0.10±0.050.27±0.10±0.05 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.4 90 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).
[�(D0D∗(2007)0K0)+�(D∗(2007)0D0K0)]/�total �176/�[�(D0D∗(2007)0K0)+�(D∗(2007)0D0K0)]/�total �176/�[�(D0D∗(2007)0K0)+�(D∗(2007)0D0K0)]/�total �176/�[�(D0D∗(2007)0K0)+�(D∗(2007)0D0K0)]/�total �176/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT1.08±0.32±0.361.08±0.32±0.361.08±0.32±0.361.08±0.32±0.36 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.7 90 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2007)0D∗(2007)0K0)/�total �177/��(D∗(2007)0D∗(2007)0K0)/�total �177/��(D∗(2007)0D∗(2007)0K0)/�total �177/��(D∗(2007)0D∗(2007)0K0)/�total �177/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT2.40±0.55±0.672.40±0.55±0.672.40±0.55±0.672.40±0.55±0.67 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.6 90 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�((D+D∗ )(D+D∗ )K)/�total �178/��((D+D∗ )(D+D∗ )K)/�total �178/��((D+D∗ )(D+D∗ )K)/�total �178/��((D+D∗ )(D+D∗ )K)/�total �178/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT3.68±0.10±0.243.68±0.10±0.243.68±0.10±0.243.68±0.10±0.24 1 DEL-AMO-SA...11B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.3 ±0.3 ±0.6 1 AUBERT 03X BABR Repl. by DEL-AMO-SANCHEZ 11B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(η
 K0)/�total �179/��(η
 K0)/�total �179/��(η
 K0)/�total �179/��(η
 K0)/�total �179/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.80±0.12 OUR AVERAGE0.80±0.12 OUR AVERAGE0.80±0.12 OUR AVERAGE0.80±0.12 OUR AVERAGE0.55+0.19

−0.18±0.06 1,2 AUBERT 07AV BABR e+ e− → �(4S)0.89±0.15±0.06 1,3 AUBERT,B 04B BABR e+ e− → �(4S)1.23±0.23+0.40
−0.41 1 FANG 03 BELL e+ e− → �(4S)1.09+0.55

−0.42±0.33 4 EDWARDS 01 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 07AV reports [�(B0 → η
 K0)/�total℄ × [B(η
 (1S) → pp)℄ = (0.83+0.28
−0.26±0.05)×10−6 whi
h we divide by our best value B(η
 (1S)→ pp) = (1.50±0.16)×10−3.Our �rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.3AUBERT,B 04B reports [�(B0 → η
 K0)/�total℄ × [B(η
 (1S) → K K π)℄ = (0.0648±0.0085 ± 0.0071) × 10−3 whi
h we divide by our best value B(η
 (1S) → K K π) =(7.3 ± 0.5) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.4 EDWARDS 01 assumes equal produ
tion of B0 and B+ at the �(4S). The 
orrelatedun
ertainties (28.3)% from B(J/ψ(1S) → γ η
 ) in those modes have been a

ountedfor.�(η
 K0)/�(J/ψ(1S)K0) �179/�183�(η
 K0)/�(J/ψ(1S)K0) �179/�183�(η
 K0)/�(J/ψ(1S)K0) �179/�183�(η
 K0)/�(J/ψ(1S)K0) �179/�183VALUE DOCUMENT ID TECN COMMENT1.39±0.20±0.451.39±0.20±0.451.39±0.20±0.451.39±0.20±0.45 1 AUBERT,B 04B BABR e+ e− → �(4S)1Uses BABAR measurement of B(B0 → J/ψK0) = (8.5 ± 0.5 ± 0.6) × 10−4.�(η
 K∗(892)0)/�total �180/��(η
 K∗(892)0)/�total �180/��(η
 K∗(892)0)/�total �180/��(η
 K∗(892)0)/�total �180/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.63±0.09 OUR AVERAGE0.63±0.09 OUR AVERAGE0.63±0.09 OUR AVERAGE0.63±0.09 OUR AVERAGE0.59±0.07±0.07 1,2 AUBERT 08AB BABR e+ e− → �(4S)0.69+0.21

−0.20±0.07 3,4 AUBERT 07AV BABR e+ e− → �(4S)1.62±0.32+0.55
−0.60 4 FANG 03 BELL e+ e− → �(4S)1AUBERT 08AB reports [�(B0 → η
 K∗(892)0)/�total℄ / [B(B+ → η
 K+)℄ = 0.62±0.06± 0.05 whi
h we multiply by our best value B(B+ → η
 K+) = (9.6± 1.1)×10−4.Our �rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.2Uses the produ
tion ratio of (B+B−)/(B0B0) = 1.026 ± 0.032 at �(4S).3AUBERT 07AV reports [�(B0 → η
 K∗(892)0)/�total℄ × [B(η
 (1S) → pp)℄ =(1.03+0.27

−0.24 ± 0.17) × 10−6 whi
h we divide by our best value B(η
 (1S) → pp)= (1.50 ± 0.16)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.4Assumes equal produ
tion of B+ and B0 at the �(4S).�(η
 (2S)K∗0)/�total �181/��(η
 (2S)K∗0)/�total �181/��(η
 (2S)K∗0)/�total �181/��(η
 (2S)K∗0)/�total �181/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<3.9<3.9<3.9<3.9 90 1 AUBERT 08AB BABR e+ e− → �(4S)1Uses the produ
tion ratio of (B+B−)/(B0B0) = 1.026 ± 0.032 at �(4S).

�(B0 → h
 (1P)K∗0)/�total × �(h
 (1P)→ η
 (1S)γ)/�total�182/�× �h
 (1P)4 /�h
 (1P)�(B0 → h
 (1P)K∗0)/�total × �(h
 (1P)→ η
 (1S)γ)/�total�182/�× �h
 (1P)4 /�h
 (1P)�(B0 → h
 (1P)K∗0)/�total × �(h
 (1P)→ η
 (1S)γ)/�total�182/�× �h
 (1P)4 /�h
 (1P)�(B0 → h
 (1P)K∗0)/�total × �(h
 (1P)→ η
 (1S)γ)/�total�182/�× �h
 (1P)4 /�h
 (1P)VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<2.2<2.2<2.2<2.2 90 1 AUBERT 08AB BABR e+ e− → �(4S)1Uses the produ
tion ratio of (B+B−)/(B0B0) = 1.026 ± 0.032 at �(4S).�(η
 K∗(892)0)/�(η
 K0) �180/�179�(η
 K∗(892)0)/�(η
 K0) �180/�179�(η
 K∗(892)0)/�(η
 K0) �180/�179�(η
 K∗(892)0)/�(η
 K0) �180/�179VALUE DOCUMENT ID TECN COMMENT1.33±0.36+0.24

−0.331.33±0.36+0.24
−0.331.33±0.36+0.24
−0.331.33±0.36+0.24
−0.33 FANG 03 BELL e+ e− → �(4S)�(J/ψ(1S)K0)/�total �183/��(J/ψ(1S)K0)/�total �183/��(J/ψ(1S)K0)/�total �183/��(J/ψ(1S)K0)/�total �183/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT8.73±0.32 OUR FIT8.73±0.32 OUR FIT8.73±0.32 OUR FIT8.73±0.32 OUR FIT8.72±0.32 OUR AVERAGE8.72±0.32 OUR AVERAGE8.72±0.32 OUR AVERAGE8.72±0.32 OUR AVERAGE8.8 +1.4

−1.3 ±0.1 1,2 AUBERT 07AV BABR e+ e− → �(4S)8.69±0.22±0.30 2 AUBERT 05J BABR e+ e− → �(4S)7.9 ±0.4 ±0.9 2 ABE 03B BELL e+ e− → �(4S)9.5 ±0.8 ±0.6 2 AVERY 00 CLE2 e+ e− → �(4S)11.5 ±2.3 ±1.7 3 ABE 96H CDF pp at 1.8 TeV6.93±4.07±0.04 4 BORTOLETTO92 CLEO e+ e− → �(4S)9.24±7.21±0.05 2 5 ALBRECHT 90J ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.3 ±0.4 ±0.5 2 AUBERT 02 BABR Repl. by AUBERT 05J8.5 +1.4

−1.2 ±0.6 2 JESSOP 97 CLE2 Repl. by AVERY 007.5 ±2.4 ±0.8 10 4 ALAM 94 CLE2 Sup. by JESSOP 97
<50 90 ALAM 86 CLEO e+ e− → �(4S)1AUBERT 07AV reports [�(B0 → J/ψ(1S)K0)/�total℄ × [B(J/ψ(1S) → pp)℄ =(1.87+0.28

−0.26 ± 0.07) × 10−6 whi
h we divide by our best value B(J/ψ(1S) → pp) =(2.120 ± 0.029)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3ABE 96H assumes that B(B+ → J/ψK+) = (1.02 ± 0.14) × 10−3.4BORTOLETTO 92 reports (6 ± 3 ± 2) × 10−4 from a measurement of [�(B0 →J/ψ(1S)K0)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) → e+ e−) =0.069 ± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) = (5.971 ±0.032) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value. Assumes equal produ
tion of B+ and B0 atthe �(4S).5ALBRECHT 90J reports (8 ± 6 ± 2) × 10−4 from a measurement of [�(B0 →J/ψ(1S)K0)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) → e+ e−)= 0.069 ± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) =(5.971 ± 0.032) × 10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value. Assumes equal produ
tion of B+and B0 at the �(4S).�(J/ψ(1S)K+π−)/�total �184/��(J/ψ(1S)K+π−)/�total �184/��(J/ψ(1S)K+π−)/�total �184/��(J/ψ(1S)K+π−)/�total �184/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT1.15 ±0.05 OUR AVERAGE1.15 ±0.05 OUR AVERAGE1.15 ±0.05 OUR AVERAGE1.15 ±0.05 OUR AVERAGE1.15 ±0.01 ±0.05 CHILIKIN 14 BELL B0 → J/ψK−π+1.16 ±0.56 ±0.01 1 BORTOLETTO92 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.079±0.011 2 AUBERT 09AA BABR e+ e− → �(4S)
<1.3 90 3 ALBRECHT 87D ARG e+ e− → �(4S)
<6.3 90 GILES 84 CLEO e+ e− → �(4S)1BORTOLETTO 92 reports (1.0 ± 0.4 ± 0.3)× 10−3 from a measurement of [�(B0 →J/ψ(1S)K+π−

)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) → e+ e−)= 0.069± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) = (5.971 ±0.032) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value. Assumes equal produ
tion of B+ and B0 atthe �(4S).2Does not report systemati
 un
ertainties.3ALBRECHT 87D assume B+B−/B0B0 ratio is 55/45. K π system is spe
i�
ally se-le
ted as nonresonant.�(J/ψ(1S)K∗(892)0)/�total �185/��(J/ψ(1S)K∗(892)0)/�total �185/��(J/ψ(1S)K∗(892)0)/�total �185/��(J/ψ(1S)K∗(892)0)/�total �185/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.28 ±0.05 OUR FIT1.28 ±0.05 OUR FIT1.28 ±0.05 OUR FIT1.28 ±0.05 OUR FIT1.28 ±0.05 OUR AVERAGE1.28 ±0.05 OUR AVERAGE1.28 ±0.05 OUR AVERAGE1.28 ±0.05 OUR AVERAGE1.19 ±0.01 ±0.08 CHILIKIN 14 BELL B0 → J/ψK−π+1.33 +0.22
−0.21 ±0.02 1,2 AUBERT 07AV BABR e+ e− → �(4S)1.309±0.026±0.077 2 AUBERT 05J BABR e+ e− → �(4S)1.29 ±0.05 ±0.13 2 ABE 02N BELL e+ e− → �(4S)1.74 ±0.20 ±0.18 3 ABE 98O CDF pp 1.8 TeV1.32 ±0.17 ±0.17 4 JESSOP 97 CLE2 e+ e− → �(4S)1.27 ±0.65 ±0.01 5 BORTOLETTO92 CLEO e+ e− → �(4S)1.27 ±0.60 ±0.01 6 6 ALBRECHT 90J ARG e+ e− → �(4S)4.04 ±1.81 ±0.02 5 7 BEBEK 87 CLEO e+ e− → �(4S)



1229122912291229See key on page 601 MesonParti
le ListingsB0
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.24 ±0.05 ±0.09 2 AUBERT 02 BABR Repl. by AUBERT 05J1.36 ±0.27 ±0.22 8 ABE 96H CDF Sup. by ABE 98O1.69 ±0.31 ±0.18 29 9 ALAM 94 CLE2 Sup. by JESSOP 9710 ALBRECHT 94G ARG e+ e− → �(4S)4.0 ±0.30 11 ALBAJAR 91E UA1 Epp
m= 630 GeV3.3 ±0.18 5 12 ALBRECHT 87D ARG e+ e− → �(4S)4.1 ±0.18 5 13 ALAM 86 CLEO Repl. by BEBEK 871AUBERT 07AV reports [�(B0 → J/ψ(1S)K∗(892)0)/�total℄ × [B(J/ψ(1S) → pp)℄= (2.82+0.30

−0.28+0.36
−0.35)× 10−6 whi
h we divide by our best value B(J/ψ(1S) → pp) =(2.120 ± 0.029)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3ABE 98O reports [B(B0 → J/ψ(1S)K∗(892)0)℄/[B(B+ → J/ψ(1S)K+)℄ =1.76 ±0.14± 0.15. We multiply by our best value B(B+ → J/ψ(1S)K+)=(9.9± 1.0)×10−4.Our �rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.4Assumes equal produ
tion of B+ and B0 at the �(4S).5BORTOLETTO 92 reports (1.1 ± 0.5 ± 0.3)× 10−3 from a measurement of [�(B0 →J/ψ(1S)K∗(892)0)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) →e+ e−) = 0.069 ± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) =(5.971 ± 0.032)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S).6ALBRECHT 90J reports (1.1 ± 0.5 ± 0.2) × 10−3 from a measurement of [�(B0 →J/ψ(1S)K∗(892)0)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) →e+ e−) = 0.069 ± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) =(5.971 ± 0.032)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Assumes equal produ
tion of B+ andB0 at the �(4S).7BEBEK 87 reports (3.5 ± 1.6 ± 0.3) × 10−3 from a measurement of [�(B0 →J/ψ(1S)K∗(892)0)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) →e+ e−) = 0.069 ± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) =(5.971 ± 0.032)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Updated in BORTOLETTO 92 to usethe same assumptions.8ABE 96H assumes that B(B+ → J/ψK+) = (1.02 ± 0.14) × 10−3.9The neutral and 
harged B events together are predominantly longitudinally polarized,�L/� =0.080 ± 0.08 ± 0.05. This 
an be 
ompared with a predi
tion using HQET, 0.73(KRAMER 92). This polarization indi
ates that the B → ψK∗ de
ay is dominated bythe CP = −1 CP eigenstate. Assumes equal produ
tion of B+ and B0 at the �(4S).10ALBRECHT 94Gmeasures the polarization in the ve
tor-ve
tor de
ay to be predominantlylongitudinal, �T /� = 0.03± 0.16± 0.15 making the neutral de
ay a CP eigenstate whenthe K∗0 de
ays through K0S π0.11ALBAJAR 91E assumes B0d produ
tion fra
tion of 36%.12ALBRECHT 87D assume B+B−/B0B0 ratio is 55/45. Superseded by ALBRECHT 90J.13ALAM 86 assumes B±/B0 ratio is 60/40. The observation of the de
ay B+ →J/ψK∗(892)+ (HAAS 85) has been retra
ted in this paper.�(J/ψ(1S)K∗(892)0)/�(J/ψ(1S)K0) �185/�183�(J/ψ(1S)K∗(892)0)/�(J/ψ(1S)K0) �185/�183�(J/ψ(1S)K∗(892)0)/�(J/ψ(1S)K0) �185/�183�(J/ψ(1S)K∗(892)0)/�(J/ψ(1S)K0) �185/�183VALUE DOCUMENT ID TECN COMMENT1.50±0.09 OUR AVERAGE1.50±0.09 OUR AVERAGE1.50±0.09 OUR AVERAGE1.50±0.09 OUR AVERAGE1.51±0.05±0.08 AUBERT 05J BABR e+ e− → �(4S)1.39±0.36±0.10 ABE 96Q CDF pp

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.49±0.10±0.08 1 AUBERT 02 BABR Repl. by AUBERT 05J1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)ηK0S)/�total �186/��(J/ψ(1S)ηK0S)/�total �186/��(J/ψ(1S)ηK0S)/�total �186/��(J/ψ(1S)ηK0S)/�total �186/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT5.4 ±0.9 OUR AVERAGE5.4 ±0.9 OUR AVERAGE5.4 ±0.9 OUR AVERAGE5.4 ±0.9 OUR AVERAGE5.22±0.78±0.49 1 IWASHITA 14 BELL e+ e− → �(4S)8.4 ±2.6 ±2.7 1 AUBERT 04Y BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)η′K0S)/�total �187/��(J/ψ(1S)η′K0S)/�total �187/��(J/ψ(1S)η′K0S)/�total �187/��(J/ψ(1S)η′K0S)/�total �187/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<2.5<2.5<2.5<2.5 90 1 XIE 07 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)ωK0)/�total �189/��(J/ψ(1S)ωK0)/�total �189/��(J/ψ(1S)ωK0)/�total �189/��(J/ψ(1S)ωK0)/�total �189/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.3±0.3±0.32.3±0.3±0.32.3±0.3±0.32.3±0.3±0.3 1 DEL-AMO-SA...10B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.1±0.6±0.3 1 AUBERT 08W BABR Repl. by DEL-AMO-SANCHEZ 10B1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3872)K0, X → J/ψω

)/�total �190/��(X (3872)K0, X → J/ψω
)/�total �190/��(X (3872)K0, X → J/ψω
)/�total �190/��(X (3872)K0, X → J/ψω
)/�total �190/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT6±3±16±3±16±3±16±3±1 1 DEL-AMO-SA...10B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

�(X (3915), X → J/ψω
)/�total �191/��(X (3915), X → J/ψω
)/�total �191/��(X (3915), X → J/ψω
)/�total �191/��(X (3915), X → J/ψω
)/�total �191/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.1±0.9±0.32.1±0.9±0.32.1±0.9±0.32.1±0.9±0.3 1 DEL-AMO-SA...10B BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.3+1.3
−1.1±0.2 1,2 AUBERT 08W BABR Repl. by DEL-AMO-SANCHEZ 10B1Assumes equal produ
tion of B+ and B0 at the �(4S).2Corresponds to upper limit of 3.9× 10−5 at 90% CL.�(J/ψ(1S)φK0)/�total �188/��(J/ψ(1S)φK0)/�total �188/��(J/ψ(1S)φK0)/�total �188/��(J/ψ(1S)φK0)/�total �188/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.9 ±1.0 OUR AVERAGE4.9 ±1.0 OUR AVERAGE4.9 ±1.0 OUR AVERAGE4.9 ±1.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.4.43±0.76±0.19 LEES 15 BABR e+ e− → �(4S)10.2 ±3.8 ±1.0 1 AUBERT 03O BABR e+ e− → �(4S)8.8 +3.5

−3.0 ±1.3 2 ANASTASSOV 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ANASTASSOV 00 �nds 10 events on a ba
kground of 0.5± 0.2. Assumes equal produ
-tion of B0 and B+ at the �(4S), a uniform Dalitz plot distribution, isotropi
 J/ψ(1S)and φ de
ays, and B(B+ → J/ψ(1S)φK+)= B(B0 → J/ψ(1S)φK0).�(J/ψ(1S)K (1270)0)/�total �192/��(J/ψ(1S)K (1270)0)/�total �192/��(J/ψ(1S)K (1270)0)/�total �192/��(J/ψ(1S)K (1270)0)/�total �192/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.30±0.34±0.321.30±0.34±0.321.30±0.34±0.321.30±0.34±0.32 1 ABE 01L BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S) and uses the PDG value ofB(B+ → J/ψ(1S)K+) = (1.00 ± 0.10) × 10−3.�(J/ψ(1S)π0)/�total �193/��(J/ψ(1S)π0)/�total �193/��(J/ψ(1S)π0)/�total �193/��(J/ψ(1S)π0)/�total �193/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT1.76±0.16 OUR AVERAGE1.76±0.16 OUR AVERAGE1.76±0.16 OUR AVERAGE1.76±0.16 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1.69±0.14±0.07 1 AUBERT 08AU BABR e+ e− → �(4S)2.3 ±0.5 ±0.2 1 ABE 03B BELL e+ e− → �(4S)2.5 +1.1
−0.9 ±0.2 1 AVERY 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.94±0.22±0.17 1 AUBERT,B 06B BABR Repl. by AUBERT 08AU2.0 ±0.6 ±0.2 1 AUBERT 02 BABR Repl. by AUBERT,B 06B
< 32 90 2 ACCIARRI 97C L3
< 5.8 90 BISHAI 96 CLE2 Sup. by AVERY 00
<690 90 1 ALEXANDER 95 CLE2 Sup. by BISHAI 961Assumes equal produ
tion of B+ and B0 at the �(4S).2ACCIARRI 97C assumes B0 produ
tion fra
tion (39.5 ± 4.0%) and Bs (12.0 ± 3.0%).�(J/ψ(1S)η)/�total �194/��(J/ψ(1S)η)/�total �194/��(J/ψ(1S)η)/�total �194/��(J/ψ(1S)η)/�total �194/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT10.8±2.4 OUR AVERAGE10.8±2.4 OUR AVERAGE10.8±2.4 OUR AVERAGE10.8±2.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.7.3±2.5±1.3 1 AAIJ 15D LHCB pp at 7, 8 TeV12.3+1.8

−1.7±0.7 2,3 CHANG 12 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.5±1.7±0.8 3 CHANG 07A BELL Repl. by CHANG 12
< 27 90 3 AUBERT 03O BABR e+ e− → �(4S)
<1200 90 4 ACCIARRI 97C L31AAIJ 15D reports [�(B0 → J/ψ(1S)η)/�total℄ / [B(B0s → J/ψ(1S)η)℄ = (1.85 ±0.61 ± 0.14) × 10−2 whi
h we multiply by our best value B(B0s → J/ψ(1S)η) =(3.9 ± 0.7) × 10−4. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Re
onstru
ts η in γ γ and π+π−π0 de
ays.3Assumes equal produ
tion of B+ and B0 at the �(4S).4ACCIARRI 97C assumes B0 produ
tion fra
tion (39.5 ± 4.0%) and Bs (12.0 ± 3.0%).�(J/ψ(1S)π+π−)/�total �195/��(J/ψ(1S)π+π−)/�total �195/��(J/ψ(1S)π+π−)/�total �195/��(J/ψ(1S)π+π−)/�total �195/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.03±0.18 OUR AVERAGE4.03±0.18 OUR AVERAGE4.03±0.18 OUR AVERAGE4.03±0.18 OUR AVERAGE4.00±0.14±0.12 1,2 AAIJ 13M LHCB pp at 7 TeV4.6 ±0.7 ±0.6 3 AUBERT 03B BABR e+ e− → �(4S)1AAIJ 13M reports (3.97 ± 0.09 ± 0.11 ± 0.16)×10−5 from a measurement of [�(B0 →J/ψ(1S)π+π−

)/�total℄ / [B(B+ → J/ψ(1S)K+)℄ assuming B(B+ → J/ψ(1S)K+)= (1.018 ± 0.042)× 10−3, whi
h we res
ale to our best value B(B+ → J/ψ(1S)K+)= (1.026 ± 0.031) × 10−3. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.2AAIJ 13M does not report 
orrelations between various measurements of the J/ψππ�nal state.3Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)π+π− nonresonant)/�total �196/��(J/ψ(1S)π+π− nonresonant)/�total �196/��(J/ψ(1S)π+π− nonresonant)/�total �196/��(J/ψ(1S)π+π− nonresonant)/�total �196/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.2<1.2<1.2<1.2 90 1 AUBERT 07AC BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).



1230123012301230Meson Parti
le ListingsB0�(J/ψ(1S) f0(500), f0 → ππ
)/�total �197/��(J/ψ(1S) f0(500), f0 → ππ
)/�total �197/��(J/ψ(1S) f0(500), f0 → ππ
)/�total �197/��(J/ψ(1S) f0(500), f0 → ππ
)/�total �197/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT8.1+1.1

−0.9 OUR AVERAGE8.1+1.1
−0.9 OUR AVERAGE8.1+1.1
−0.9 OUR AVERAGE8.1+1.1
−0.9 OUR AVERAGE8.8±0.5+1.1

−1.5 1 AAIJ 14X LHCB pp at 7, 8 TeV6.5+2.5
−1.1±0.3 2,3 AAIJ 13M LHCB pp at 7 TeV1AAIJ 14X uses Dalitz plot analysis of B0 → J/ψπ+π−.2AAIJ 13M reports (6.4 ± 0.8+2.4

−0.8) × 10−6 from a measurement of [�(B0 →J/ψ(1S) f0(500), f0 → ππ
)/�total℄ / [B(B0 → J/ψ(1S)π+π−)℄ assuming B(B0 →J/ψ(1S)π+π−) = (3.97 ± 0.09 ± 0.11 ± 0.16)× 10−5, whi
h we res
ale to our bestvalue B(B0 → J/ψ(1S)π+π−) = (4.03 ± 0.18) × 10−5. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.3AAIJ 13M does not report 
orrelations between various measurements of the J/ψππ�nal state. Measured in Dalitz plot like analysis of B0 → J/ψπ+ π−.�(J/ψ(1S) f2)/�total �198/��(J/ψ(1S) f2)/�total �198/��(J/ψ(1S) f2)/�total �198/��(J/ψ(1S) f2)/�total �198/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT0.33+0.05

−0.06 OUR AVERAGE0.33+0.05
−0.06 OUR AVERAGE0.33+0.05
−0.06 OUR AVERAGE0.33+0.05
−0.06 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.0.30±0.03+0.02

−0.03 1 AAIJ 14X LHCB pp at 7, 8 TeV0.42±0.06±0.02 2,3 AAIJ 13M LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.5 90 4,5 AUBERT 07AC BABR e+ e− → �(4S)1AAIJ 14X uses Dalitz plot analysis of B0 → J/ψπ+π−.2AAIJ 13M reports [�(B0 → J/ψ(1S) f2)/�total℄ × [B(f2(1270) → ππ)℄ = (3.5± 0.4±0.4) × 10−6 from a measurement of [�(B0 → J/ψ(1S) f2)/�total℄ × [B(f2(1270) →

ππ)℄ / [B(B0 → J/ψ(1S)π+π−)℄ assuming B(B0 → J/ψ(1S)π+π−) = (3.97 ±0.09 ± 0.11 ± 0.16) × 10−5, whi
h we res
ale to our best values B(f2(1270) → ππ)= (84.2+2.9
−0.9)× 10−2, B(B0 → J/ψ(1S)π+π−) = (4.03 ± 0.18)× 10−5. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best values.3AAIJ 13M does not report 
orrelations between various measurements of the J/ψππ�nal state. Measured in Dalitz plot like analysis of B0 → J/ψπ+ π−.4AUBERT 07AC reports [�(B0 → J/ψ(1S) f2)/�total℄ × [B(f2(1270) → ππ)℄ < 0.46×10−5 whi
h we divide by our best value B(f2(1270) → ππ) = 84.2× 10−2.5Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)ρ0)/�total �199/��(J/ψ(1S)ρ0)/�total �199/��(J/ψ(1S)ρ0)/�total �199/��(J/ψ(1S)ρ0)/�total �199/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT2.54±0.14 OUR AVERAGE2.54±0.14 OUR AVERAGE2.54±0.14 OUR AVERAGE2.54±0.14 OUR AVERAGE2.50±0.10+0.18

−0.15 1 AAIJ 14X LHCB pp at 7, 8 TeV2.52+0.22
−0.23±0.11 2,3 AAIJ 13M LHCB pp at 7 TeV2.7 ±0.3 ±0.2 4 AUBERT 07AC BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.6 ±0.6 ±0.4 4 AUBERT 03B BABR Repl. by AUBERT 07AC
<25 90 BISHAI 96 CLE2 e+ e− → �(4S)1AAIJ 14X uses Dalitz plot analysis of B0 → J/ψπ+π−. We assume B(ρ(770)0 →

π+π−) = 100%.2AAIJ 13M reports (2.49+0.20
−0.13+0.16

−0.23) × 10−5from a measurement of [�(B0 → J/ψ(1S)ρ0)/�total℄ / [B(B0 → J/ψ(1S)π+π−)℄assuming B(B0 → J/ψ(1S)π+π−) = (3.97 ± 0.09 ± 0.11 ± 0.16)× 10−5, whi
h weres
ale to our best value B(B0 → J/ψ(1S)π+π−) = (4.03 ± 0.18)× 10−5. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.3AAIJ 13M does not report 
orrelations between various measurements of the J/ψππ �nalstate. Measured in Dalitz plot like analysis of B0 → J/ψπ+π−. Assumes B(ρ(770)0 →
ππ) = 100%.4Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S) f0(980), f0 → π+π−)/�total �200/��(J/ψ(1S) f0(980), f0 → π+π−)/�total �200/��(J/ψ(1S) f0(980), f0 → π+π−)/�total �200/��(J/ψ(1S) f0(980), f0 → π+π−)/�total �200/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.1× 10−6<1.1× 10−6<1.1× 10−6<1.1× 10−6 90 1 AAIJ 13M LHCB pp at 7 TeV1AAIJ 13M does not provide 
orrelations between various measurements of the J/ψπ+π−�nal state. The measurements were obtained from a Dalitz plot like analysis ofB0 → J/ψπ+π−. Also reports �(J/ψ(1S) f0(980), f0 → π+π−
)/�total =(6.1+3.1

−2.0+1.7
−1.4)× 10−6.�(J/ψ(1S)ρ(1450)0, ρ0 → ππ

)/�total �201/��(J/ψ(1S)ρ(1450)0, ρ0 → ππ
)/�total �201/��(J/ψ(1S)ρ(1450)0, ρ0 → ππ
)/�total �201/��(J/ψ(1S)ρ(1450)0, ρ0 → ππ
)/�total �201/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT3.0+1.6

−0.7 OUR AVERAGE3.0+1.6
−0.7 OUR AVERAGE3.0+1.6
−0.7 OUR AVERAGE3.0+1.6
−0.7 OUR AVERAGE4.6±1.1±1.9 1 AAIJ 14X LHCB pp at 7, 8 TeV2.1+2.4
−0.7±0.1 2,3 AAIJ 13M LHCB pp at 7 TeV1AAIJ 14X uses Dalitz plot analysis of B0 → J/ψπ+π−.2AAIJ 13M reports (2.1+1.0

−0.6+2.2
−0.4) × 10−6 from a measurement of [�(B0 →J/ψ(1S)ρ(1450)0, ρ0 → ππ

)/�total℄ / [B(B0 → J/ψ(1S)π+π−)℄ assumingB(B0 → J/ψ(1S)π+π−) = (3.97 ± 0.09 ± 0.11 ± 0.16) × 10−5, whi
h we res
ale

to our best value B(B0 → J/ψ(1S)π+π−) = (4.03 ± 0.18)× 10−5. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.3AAIJ 13M does not report 
orrelations between various measurements of the J/ψππ�nal state. Measured in Dalitz plot like analysis of B0 → J/ψπ+ π−.�(J/ψρ(1700)0, ρ0 → π+π−)/�total �202/��(J/ψρ(1700)0, ρ0 → π+π−)/�total �202/��(J/ψρ(1700)0, ρ0 → π+π−)/�total �202/��(J/ψρ(1700)0, ρ0 → π+π−)/�total �202/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.0±0.5±1.22.0±0.5±1.22.0±0.5±1.22.0±0.5±1.2 1 AAIJ 14X LHCB pp at 7, 8 TeV1AAIJ 14X uses Dalitz plot analysis of B0 → J/ψπ+π−.�(J/ψ(1S)ω)/�total �203/��(J/ψ(1S)ω)/�total �203/��(J/ψ(1S)ω)/�total �203/��(J/ψ(1S)ω)/�total �203/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT1.8+0.7
−0.5±0.11.8+0.7
−0.5±0.11.8+0.7
−0.5±0.11.8+0.7
−0.5±0.1 1 AAIJ 14X LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<27 90 BISHAI 96 CLE2 e+ e− → �(4S)1AAIJ 14X reports [�(B0 → J/ψ(1S)ω

)/�total℄ × [B(ω(782) → π+π−)℄ =(2.7+0.8
−0.6+0.7

−0.5) × 10−7 whi
h we divide by our best value B(ω(782) → π+π−) =(1.53+0.11
−0.13) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(J/ψ(1S)ω)/�(J/ψ(1S)ρ0) �203/�199�(J/ψ(1S)ω)/�(J/ψ(1S)ρ0) �203/�199�(J/ψ(1S)ω)/�(J/ψ(1S)ρ0) �203/�199�(J/ψ(1S)ω)/�(J/ψ(1S)ρ0) �203/�199VALUE DOCUMENT ID TECN COMMENT0.61+0.24

−0.14+0.31
−0.160.61+0.24

−0.14+0.31
−0.160.61+0.24

−0.14+0.31
−0.160.61+0.24

−0.14+0.31
−0.16 1,2 AAIJ 13M LHCB pp at 7 TeV1AAIJ 13M reports 0.61+0.24

−0.14+0.31
−0.16 from a measurement of [�(B0 → J/ψ(1S)ω

)/�(B0 → J/ψ(1S)ρ0)℄ × [B(ω(782) → π+π−)℄ assuming B(ω(782) → π+π−) =(1.53+0.11
−0.13)× 10−2.2AAIJ 13M does not report 
orrelations between various measurements of the J/ψππ �nalstate. Measured in Dalitz plot like analysis of B0 → J/ψπ+π−. Assumes B(ρ(770)0 →

ππ) = 100%.�(J/ψ(1S)ω)/�(J/ψ(1S)ρ0) �203/�199�(J/ψ(1S)ω)/�(J/ψ(1S)ρ0) �203/�199�(J/ψ(1S)ω)/�(J/ψ(1S)ρ0) �203/�199�(J/ψ(1S)ω)/�(J/ψ(1S)ρ0) �203/�199VALUE DOCUMENT ID TECN COMMENT0.89±0.19+0.07
−0.130.89±0.19+0.07
−0.130.89±0.19+0.07
−0.130.89±0.19+0.07
−0.13 AAIJ 13A LHCB pp at 7 TeV�(J/ψ(1S)K+K−)/�total �204/��(J/ψ(1S)K+K−)/�total �204/��(J/ψ(1S)K+K−)/�total �204/��(J/ψ(1S)K+K−)/�total �204/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.55±0.35±0.082.55±0.35±0.082.55±0.35±0.082.55±0.35±0.08 1 AAIJ 13BT LHCB pp at 7 TeV1AAIJ 13BT reports (2.53 ± 0.31 ± 0.19) × 10−6 from a measurement of[�(B0 → J/ψ(1S)K+K−)/�total℄ / [B(B+ → J/ψ(1S)K+)℄ assuming B(B+ →J/ψ(1S)K+) = (1.018 ± 0.042)× 10−3, whi
h we res
ale to our best value B(B+ →J/ψ(1S)K+) = (1.026 ± 0.031)× 10−3. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.�(J/ψ(1S)a0(980), a0 → K+K−)/�total �205/��(J/ψ(1S)a0(980), a0 → K+K−)/�total �205/��(J/ψ(1S)a0(980), a0 → K+K−)/�total �205/��(J/ψ(1S)a0(980), a0 → K+K−)/�total �205/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT0.470±0.331±0.0720.470±0.331±0.0720.470±0.331±0.0720.470±0.331±0.072 1 AAIJ 13BT LHCB pp at 7 TeV1AAIJ 13BT uses B(B0 → J/ψK+K−) = (2.53 ± 0.31 ± 0.19) × 10−6 to derive thisresult. It also reports the equivalent upper limit of < 9.0× 10−7 at 90% CL.�(J/ψ(1S)φ)/�total �206/��(J/ψ(1S)φ)/�total �206/��(J/ψ(1S)φ)/�total �206/��(J/ψ(1S)φ)/�total �206/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<0.19<0.19<0.19<0.19 90 1 AAIJ 13BT LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.01 90 LEES 15 BABR e+ e− → �(4S)
<0.94 90 2 LIU 08I BELL e+ e− → �(4S)
<9.2 90 2 AUBERT 03O BABR e+ e− → �(4S)1AAIJ 13BT uses B(B0 → J/ψ(1S)K+K−) = (2.53± 0.31± 0.19)×10−6 and B(φ →K+K−) = (48.9 ± 0.5)% to obtain this result.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)η′(958))/�total �207/��(J/ψ(1S)η′(958))/�total �207/��(J/ψ(1S)η′(958))/�total �207/��(J/ψ(1S)η′(958))/�total �207/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT7.6±2.2+0.9

−1.07.6±2.2+0.9
−1.07.6±2.2+0.9
−1.07.6±2.2+0.9
−1.0 1 AAIJ 15D LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 7.4 90 2,3 CHANG 12 BELL e+ e− → �(4S)
<63 90 3 AUBERT 03O BABR e+ e− → �(4S)1AAIJ 15D reports [�(B0 → J/ψ(1S)η′(958))/�total℄ / [B(B0s → J/ψ(1S)η′)℄ =(2.28 ± 0.65 ± 0.16)×10−2 whi
h we multiply by our best value B(B0s → J/ψ(1S)η′)= (3.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Re
onstru
ts η′(985) in ηπ+π− and ρ(770)0 γ de
ays.3Assumes equal produ
tion of B+ and B0 at the �(4S).



1231123112311231See key on page 601 MesonParti
le ListingsB0�(J/ψ(1S)η)/�(J/ψ(1S)η′(958)) �194/�207�(J/ψ(1S)η)/�(J/ψ(1S)η′(958)) �194/�207�(J/ψ(1S)η)/�(J/ψ(1S)η′(958)) �194/�207�(J/ψ(1S)η)/�(J/ψ(1S)η′(958)) �194/�207VALUE DOCUMENT ID TECN COMMENT1.111±0.475±0.0621.111±0.475±0.0621.111±0.475±0.0621.111±0.475±0.062 1 AAIJ 15D LHCB pp at 7, 8 TeV1Uses J/ψ → µ+µ−, η′ → ρ0 γ, and η′ → ηπ+π− de
ays.�(J/ψ(1S)K0π+π−)/�(J/ψ(1S)K0) �208/�183�(J/ψ(1S)K0π+π−)/�(J/ψ(1S)K0) �208/�183�(J/ψ(1S)K0π+π−)/�(J/ψ(1S)K0) �208/�183�(J/ψ(1S)K0π+π−)/�(J/ψ(1S)K0) �208/�183VALUE DOCUMENT ID TECN COMMENT0.50 ±0.04 OUR AVERAGE0.50 ±0.04 OUR AVERAGE0.50 ±0.04 OUR AVERAGE0.50 ±0.04 OUR AVERAGE0.493±0.034±0.027 AAIJ 14L LHCB pp at 7 TeV1.24 ±0.40 ±0.15 AFFOLDER 02B CDF pp 1.8 TeV�(J/ψ(1S)K0K+K−)/�total �210/��(J/ψ(1S)K0K+K−)/�total �210/��(J/ψ(1S)K0K+K−)/�total �210/��(J/ψ(1S)K0K+K−)/�total �210/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT25 ±7 OUR AVERAGE25 ±7 OUR AVERAGE25 ±7 OUR AVERAGE25 ±7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.34.9±6.7±1.5 LEES 15 BABR e+ e− → �(4S)20.2±4.3±1.9 1 AAIJ 14L LHCB pp at 7 TeV1Measured with B(B0 → J/ψK0S K+K−) / B(B0 → J/ψK0S ) using PDG 12 for theinvolved bran
hing fra
tions.�(J/ψ(1S)K0K−π++ 
.
.)/�total �209/��(J/ψ(1S)K0K−π++ 
.
.)/�total �209/��(J/ψ(1S)K0K−π++ 
.
.)/�total �209/��(J/ψ(1S)K0K−π++ 
.
.)/�total �209/�VALUE CL% DOCUMENT ID TECN COMMENT
<21× 10−6<21× 10−6<21× 10−6<21× 10−6 90 1 AAIJ 14L LHCB pp at 7 TeV1Measured with B(B0 → J/ψK0S K±π∓) / B(B0 → J/ψK0S π+π−) using PDG 12values for the involved bran
hing fra
tions.�(J/ψ(1S)K0ρ0)/�total �212/��(J/ψ(1S)K0ρ0)/�total �212/��(J/ψ(1S)K0ρ0)/�total �212/��(J/ψ(1S)K0ρ0)/�total �212/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.4±2.9±0.95.4±2.9±0.95.4±2.9±0.95.4±2.9±0.9 1 AFFOLDER 02B CDF pp 1.8 TeV1Uses B0 → J/ψ(1S)K0S de
ay as a referen
e and B(B0 → J/ψ(1S)K0)= 8.3×10−4.�(J/ψ(1S)K∗(892)+π−)/�total �213/��(J/ψ(1S)K∗(892)+π−)/�total �213/��(J/ψ(1S)K∗(892)+π−)/�total �213/��(J/ψ(1S)K∗(892)+π−)/�total �213/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT7.7±4.1±1.37.7±4.1±1.37.7±4.1±1.37.7±4.1±1.3 1 AFFOLDER 02B CDF pp 1.8 TeV1Uses B0 → J/ψ(1S)K0S de
ay as a referen
e and B(B0 → J/ψ(1S)K0)= 8.3×10−4.�(J/ψ(1S)π+π−π+π−)/�(J/ψ(1S)π+π−) �214/�195�(J/ψ(1S)π+π−π+π−)/�(J/ψ(1S)π+π−) �214/�195�(J/ψ(1S)π+π−π+π−)/�(J/ψ(1S)π+π−) �214/�195�(J/ψ(1S)π+π−π+π−)/�(J/ψ(1S)π+π−) �214/�195VALUE DOCUMENT ID TECN COMMENT0.361±0.017±0.0210.361±0.017±0.0210.361±0.017±0.0210.361±0.017±0.021 1 AAIJ 14Y LHCB pp at 7, 8 TeV1Ex
ludes 
ontributions from ψ(2S) and X (3872) de
aying to J/ψ(1S)π+π−.�(J/ψ(1S) f1(1285))/�total �215/��(J/ψ(1S) f1(1285))/�total �215/��(J/ψ(1S) f1(1285))/�total �215/��(J/ψ(1S) f1(1285))/�total �215/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT8.4±1.9+0.8

−0.78.4±1.9+0.8
−0.78.4±1.9+0.8
−0.78.4±1.9+0.8
−0.7 1 AAIJ 14Y LHCB pp at 7, 8 TeV1AAIJ 14Y reports (8.37 ± 1.95+0.71

−0.66 ± 0.35)× 10−6 from a measurement of [�(B0 →J/ψ(1S) f1(1285))/�total℄ × [B(f1(1285) → 2π+2π−)℄ assuming B(f1(1285) →2π+2π−) = 0.11+0.007
−0.006.�(J/ψ(1S)K∗(892)0π+π−)/�total �216/��(J/ψ(1S)K∗(892)0π+π−)/�total �216/��(J/ψ(1S)K∗(892)0π+π−)/�total �216/��(J/ψ(1S)K∗(892)0π+π−)/�total �216/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.6±1.9±1.16.6±1.9±1.16.6±1.9±1.16.6±1.9±1.1 1 AFFOLDER 02B CDF pp 1.8 TeV1Uses B0 → J/ψ(1S)K∗(892)0 de
ay as a referen
e and B(B0 → J/ψ(1S)K0)=12.4 × 10−4.�(X (3872)−K+)/�total �217/��(X (3872)−K+)/�total �217/��(X (3872)−K+)/�total �217/��(X (3872)−K+)/�total �217/�VALUE CL% DOCUMENT ID TECN COMMENT

<5× 10−4<5× 10−4<5× 10−4<5× 10−4 90 1 AUBERT 06E BABR e+ e− → �(4S)1Perform measurements of absolute bran
hing fra
tions using a missing mass te
hnique.�(X (3872)−K+, X (3872)− → J/ψ(1S)π−π0)/�total �218/��(X (3872)−K+, X (3872)− → J/ψ(1S)π−π0)/�total �218/��(X (3872)−K+, X (3872)− → J/ψ(1S)π−π0)/�total �218/��(X (3872)−K+, X (3872)− → J/ψ(1S)π−π0)/�total �218/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<4.2<4.2<4.2<4.2 90 1,2 CHOI 11 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.4 90 2,3 AUBERT 05B BABR e+ e− → �(4S)1Assumes π+π0 originates from ρ+.2Assumes equal produ
tion of B+ and B0 at the �(4S).3The isove
tor-X hypothesis is ex
luded with a likelihood test at 1× 10−4 level.�(X (3872)K0, X → J/ψπ+π−)/�total �219/��(X (3872)K0, X → J/ψπ+π−)/�total �219/��(X (3872)K0, X → J/ψπ+π−)/�total �219/��(X (3872)K0, X → J/ψπ+π−)/�total �219/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT4.3±1.2±0.44.3±1.2±0.44.3±1.2±0.44.3±1.2±0.4 1,2 CHOI 11 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 6.0 90 2 AUBERT 08Y BABR e+ e− → �(4S)
<10.3 90 2,3 AUBERT 06 BABR Repl. by AUBERT 08Y1CHOI 11 reports [�(B0 → X (3872)K0, X → J/ψπ+π−

)/�total℄ / [B(B+ →X (3872)K+, X → J/ψπ+π−)℄ = 0.50 ± 0.14 ± 0.04 whi
h we multiply by our bestvalue B(B+ → X (3872)K+, X → J/ψπ+π−) = (8.6 ± 0.8) × 10−6. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3The lower limit is also given to be 1.34 × 10−6 at 90% CL.

�(X (3872)K0, X → J/ψγ
)/�total �220/��(X (3872)K0, X → J/ψγ
)/�total �220/��(X (3872)K0, X → J/ψγ
)/�total �220/��(X (3872)K0, X → J/ψγ
)/�total �220/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<2.4<2.4<2.4<2.4 90 1 BHARDWAJ 11 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.9 90 2 AUBERT 09B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) → B0B0) = (48.4± 0.6)%.�(X (3872)K∗(892)0, X → J/ψγ

)/�total �221/��(X (3872)K∗(892)0, X → J/ψγ
)/�total �221/��(X (3872)K∗(892)0, X → J/ψγ
)/�total �221/��(X (3872)K∗(892)0, X → J/ψγ
)/�total �221/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<2.8<2.8<2.8<2.8 90 1 AUBERT 09B BABR e+ e− → �(4S)1Uses B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) → B0B0) = (48.4± 0.6)%.�(X (3872)K0, X → ψ(2S)γ)/�total �222/��(X (3872)K0, X → ψ(2S)γ)/�total �222/��(X (3872)K0, X → ψ(2S)γ)/�total �222/��(X (3872)K0, X → ψ(2S)γ)/�total �222/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 6.62< 6.62< 6.62< 6.62 90 1 BHARDWAJ 11 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<19 90 2 AUBERT 09B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) → B0B0) = (48.4± 0.6)%.�(X (3872)K∗(892)0, X → ψ(2S)γ)/�total �223/��(X (3872)K∗(892)0, X → ψ(2S)γ)/�total �223/��(X (3872)K∗(892)0, X → ψ(2S)γ)/�total �223/��(X (3872)K∗(892)0, X → ψ(2S)γ)/�total �223/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<4.4<4.4<4.4<4.4 90 1 AUBERT 09B BABR e+ e− → �(4S)1Uses B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) → B0B0) = (48.4± 0.6)%.�(X (3872)K0, X → D0D0π0)/�total �224/��(X (3872)K0, X → D0D0π0)/�total �224/��(X (3872)K0, X → D0D0π0)/�total �224/��(X (3872)K0, X → D0D0π0)/�total �224/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.66±0.70+0.32

−0.371.66±0.70+0.32
−0.371.66±0.70+0.32
−0.371.66±0.70+0.32
−0.37 1 GOKHROO 06 BELL e+ e− → �(4S)1Measure the near-threshold enhan
ements in the (D0D0π0) system at a mass 3875.2 ±0.7+0.3

−1.6 ± 0.8 MeV/
2.�(X (3872)K0, X → D∗0D0)/�total �225/��(X (3872)K0, X → D∗0D0)/�total �225/��(X (3872)K0, X → D∗0D0)/�total �225/��(X (3872)K0, X → D∗0D0)/�total �225/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.2 ±0.4 OUR AVERAGE1.2 ±0.4 OUR AVERAGE1.2 ±0.4 OUR AVERAGE1.2 ±0.4 OUR AVERAGE0.97±0.46±0.13 1 AUSHEV 10 BELL e+ e− → �(4S)2.22±1.05±0.42 1,2 AUBERT 08B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2This result is equivalent to the the 90% CL upper limit of 4.37× 10−4�(X (3872)K+π−, X → J/ψπ+π−)/�total �226/��(X (3872)K+π−, X → J/ψπ+π−)/�total �226/��(X (3872)K+π−, X → J/ψπ+π−)/�total �226/��(X (3872)K+π−, X → J/ψπ+π−)/�total �226/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT7.9±1.3±0.47.9±1.3±0.47.9±1.3±0.47.9±1.3±0.4 1 BALA 15 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3872)K∗(982)0, X → J/ψπ+π−)/�total �227/��(X (3872)K∗(982)0, X → J/ψπ+π−)/�total �227/��(X (3872)K∗(982)0, X → J/ψπ+π−)/�total �227/��(X (3872)K∗(982)0, X → J/ψπ+π−)/�total �227/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT4.0±1.5±0.34.0±1.5±0.34.0±1.5±0.34.0±1.5±0.3 BALA 15 BELL e+ e− → �(4S)�(X (4430)±K∓, X± → ψ(2S)π±)/�total �228/��(X (4430)±K∓, X± → ψ(2S)π±)/�total �228/��(X (4430)±K∓, X± → ψ(2S)π±)/�total �228/��(X (4430)±K∓, X± → ψ(2S)π±)/�total �228/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT6.0+1.7
−2.0+2.5

−1.46.0+1.7
−2.0+2.5

−1.46.0+1.7
−2.0+2.5

−1.46.0+1.7
−2.0+2.5

−1.4 CHILIKIN 13 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.1 95 1 AUBERT 09AA BABR e+ e− → �(4S)3.2+1.8

−0.9+5.3
−1.6 1 MIZUK 09 BELL e+ e− → �(4S)4.1±1.0±1.4 1,2 CHOI 08 BELL Repl. by MIZUK 091Assumes equal produ
tion of B+ and B0 at the �(4S).2 Establishes the X (4430)+ with a signi�
an
e of 6.5 sigma. Needs 
on�rmation.�(X (4430)±K∓, X± → J/ψπ±)/�total �229/��(X (4430)±K∓, X± → J/ψπ±)/�total �229/��(X (4430)±K∓, X± → J/ψπ±)/�total �229/��(X (4430)±K∓, X± → J/ψπ±)/�total �229/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT5.4+4.0

−1.0+1.1
−0.65.4+4.0

−1.0+1.1
−0.65.4+4.0

−1.0+1.1
−0.65.4+4.0

−1.0+1.1
−0.6 CHILIKIN 14 BELL B0 → J/ψK−π+

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4 95 1 AUBERT 09AA BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(X (3900)±K∓, X± → J/ψπ±)/�total �230/��(X (3900)±K∓, X± → J/ψπ±)/�total �230/��(X (3900)±K∓, X± → J/ψπ±)/�total �230/��(X (3900)±K∓, X± → J/ψπ±)/�total �230/�VALUE DOCUMENT ID TECN COMMENT
<9× 10−7<9× 10−7<9× 10−7<9× 10−7 CHILIKIN 14 BELL B0 → J/ψK−π+�(X (4200)±K∓, X± → J/ψπ±)/�total �231/��(X (4200)±K∓, X± → J/ψπ±)/�total �231/��(X (4200)±K∓, X± → J/ψπ±)/�total �231/��(X (4200)±K∓, X± → J/ψπ±)/�total �231/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.2+0.7

−0.5+1.1
−0.62.2+0.7

−0.5+1.1
−0.62.2+0.7

−0.5+1.1
−0.62.2+0.7

−0.5+1.1
−0.6 CHILIKIN 14 BELL B0 → J/ψK−π+



1232123212321232MesonParti
le ListingsB0�(J/ψ(1S)pp)/�total �232/��(J/ψ(1S)pp)/�total �232/��(J/ψ(1S)pp)/�total �232/��(J/ψ(1S)pp)/�total �232/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.2× 10−7<5.2× 10−7<5.2× 10−7<5.2× 10−7 90 1 AAIJ 13Z LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8.3× 10−7 90 2 XIE 05 BELL e+ e− → �(4S)
<1.9× 10−6 90 2 AUBERT 03K BABR e+ e− → �(4S)1Uses B(B0s → J/ψ(1S)π+π−) = (1.98 ± 0.20)× 10−4.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)γ)/�total �233/��(J/ψ(1S)γ)/�total �233/��(J/ψ(1S)γ)/�total �233/��(J/ψ(1S)γ)/�total �233/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.5<1.5<1.5<1.5 90 1 AAIJ 15BB LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.6 90 2 AUBERT,B 04T BABR e+ e− → �(4S)1Bran
hing fra
tions of normalization modes B0 → J/ψγX taken from PDG 14. Usesfs/fd = 0.259 ± 0.015.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(J/ψ(1S)D0)/�total �234/��(J/ψ(1S)D0)/�total �234/��(J/ψ(1S)D0)/�total �234/��(J/ψ(1S)D0)/�total �234/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.3<1.3<1.3<1.3 90 1 AUBERT 05U BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.0 90 1 ZHANG 05B BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(2S)K0)/�total �236/��(

ψ(2S)K0)/�total �236/��(

ψ(2S)K0)/�total �236/��(

ψ(2S)K0)/�total �236/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT5.8 ±0.5 OUR FIT5.8 ±0.5 OUR FIT5.8 ±0.5 OUR FIT5.8 ±0.5 OUR FIT5.8 ±0.5 OUR AVERAGE5.8 ±0.5 OUR AVERAGE5.8 ±0.5 OUR AVERAGE5.8 ±0.5 OUR AVERAGE4.7 ±0.7 ±0.7 1 AAIJ 14L LHCB pp at 7 TeV6.46±0.65±0.51 2 AUBERT 05J BABR e+ e− → �(4S)6.7 ±1.1 2 ABE 03B BELL e+ e− → �(4S)5.0 ±1.1 ±0.6 2 RICHICHI 01 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.9 ±1.1 ±1.1 2 AUBERT 02 BABR Repl. by AUBERT 05J
< 8 90 2 ALAM 94 CLE2 e+ e− → �(4S)
<15 90 2 BORTOLETTO92 CLEO e+ e− → �(4S)
<28 90 2 ALBRECHT 90J ARG e+ e− → �(4S)1Measured with B(B0 → ψ(2S)K0S ) × B(ψ(2S) → J/ψπ+ π−) / B(B0 → J/ψK0S )using PDG 12 values for the involved bran
hing fra
tions.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(2S)π0)/�total �235/��(

ψ(2S)π0)/�total �235/��(

ψ(2S)π0)/�total �235/��(

ψ(2S)π0)/�total �235/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.17±0.17±0.081.17±0.17±0.081.17±0.17±0.081.17±0.17±0.08 1 CHOBANOVA 16 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(2S)K0)/�(J/ψ(1S)K0) �236/�183�(

ψ(2S)K0)/�(J/ψ(1S)K0) �236/�183�(

ψ(2S)K0)/�(J/ψ(1S)K0) �236/�183�(

ψ(2S)K0)/�(J/ψ(1S)K0) �236/�183VALUE DOCUMENT ID TECN COMMENT0.82±0.13±0.120.82±0.13±0.120.82±0.13±0.120.82±0.13±0.12 1 AUBERT 02 BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(3770)K0, ψ → D0D0)/�total �237/��(

ψ(3770)K0, ψ → D0D0)/�total �237/��(

ψ(3770)K0, ψ → D0D0)/�total �237/��(

ψ(3770)K0, ψ → D0D0)/�total �237/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.23<1.23<1.23<1.23 90 1 AUBERT 08B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(3770)K0, ψ → D−D+)/�total �238/��(

ψ(3770)K0, ψ → D−D+)/�total �238/��(

ψ(3770)K0, ψ → D−D+)/�total �238/��(

ψ(3770)K0, ψ → D−D+)/�total �238/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.88<1.88<1.88<1.88 90 1 AUBERT 08B BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ψ(2S)π+π−)/�(J/ψ(1S)π+π−) �239/�195�(

ψ(2S)π+π−)/�(J/ψ(1S)π+π−) �239/�195�(

ψ(2S)π+π−)/�(J/ψ(1S)π+π−) �239/�195�(

ψ(2S)π+π−)/�(J/ψ(1S)π+π−) �239/�195VALUE DOCUMENT ID TECN COMMENT0.56±0.07±0.050.56±0.07±0.050.56±0.07±0.050.56±0.07±0.05 1 AAIJ 13AA LHCB pp at 7 TeV1Assuming lepton universality for dimuon de
ay modes of J/ψ and ψ(2S) mesons, theratio B(J/ψ → µ+µ−)/B(ψ(2S) → µ+µ−) = B(J/ψ → e+ e−)/B(ψ(2S) →e+ e−) = 7.69 ± 0.19 was used.�(

ψ(2S)K+π−)/�total �240/��(

ψ(2S)K+π−)/�total �240/��(

ψ(2S)K+π−)/�total �240/��(

ψ(2S)K+π−)/�total �240/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT5.80±0.395.80±0.395.80±0.395.80±0.39 1,2 CHILIKIN 13 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.57±0.16 3 AUBERT 09AA BABR e+ e− → �(4S)5.68±0.13±0.42 2 MIZUK 09 BELL e+ e− → �(4S)
<10 90 2 ALBRECHT 90J ARG e+ e− → �(4S)1Combines measurements with ψ(2S) → ℓ+ ℓ− with measurement from MIZUK 09 whi
huses ψ(2S) → J/ψπ+π−.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Does not report systemati
 un
ertainties.

�(

ψ(2S)K∗(892)0)/�total �241/��(

ψ(2S)K∗(892)0)/�total �241/��(

ψ(2S)K∗(892)0)/�total �241/��(

ψ(2S)K∗(892)0)/�total �241/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT5.9 ±0.4 OUR FIT5.9 ±0.4 OUR FIT5.9 ±0.4 OUR FIT5.9 ±0.4 OUR FIT6.0 +0.5
−0.7 OUR AVERAGE6.0 +0.5
−0.7 OUR AVERAGE6.0 +0.5
−0.7 OUR AVERAGE6.0 +0.5
−0.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.5.55+0.22
−0.23+0.41

−0.84 1 CHILIKIN 13 BELL e+ e− → �(4S)6.49±0.59±0.97 1 AUBERT 05J BABR e+ e− → �(4S)7.6 ±1.1 ±1.0 1 RICHICHI 01 CLE2 e+ e− → �(4S)9.0 ±2.2 ±0.9 2 ABE 98O CDF pp 1.8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.52+0.35

−0.32+0.53
−0.58 1 MIZUK 09 BELL e+ e− → �(4S)

<19 90 1 ALAM 94 CLE2 Repl. by RICHICHI 0114 ±8 ±4 1 BORTOLETTO92 CLEO e+ e− → �(4S)
<23 90 1 ALBRECHT 90J ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ABE 98O reports [B(B0 → ψ(2S)K∗(892)0)℄/[B(B+ → J/ψ(1S)K+)℄ =0.908 ±0.194±0.10. We multiply by our best value B(B+ → J/ψ(1S)K+)=(9.9±1.0)×10−4.Our �rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.�(

ψ(2S)K∗(892)0)/�(

ψ(2S)K0) �241/�236�(

ψ(2S)K∗(892)0)/�(

ψ(2S)K0) �241/�236�(

ψ(2S)K∗(892)0)/�(

ψ(2S)K0) �241/�236�(

ψ(2S)K∗(892)0)/�(

ψ(2S)K0) �241/�236VALUE DOCUMENT ID TECN COMMENT1.02±0.10 OUR FIT1.02±0.10 OUR FIT1.02±0.10 OUR FIT1.02±0.10 OUR FIT1.00±0.14±0.091.00±0.14±0.091.00±0.14±0.091.00±0.14±0.09 AUBERT 05J BABR e+ e− → �(4S)�(

ψ(2S)K∗(892)0)/�(J/ψ(1S)K∗(892)0) �241/�185�(

ψ(2S)K∗(892)0)/�(J/ψ(1S)K∗(892)0) �241/�185�(

ψ(2S)K∗(892)0)/�(J/ψ(1S)K∗(892)0) �241/�185�(

ψ(2S)K∗(892)0)/�(J/ψ(1S)K∗(892)0) �241/�185VALUE DOCUMENT ID TECN COMMENT0.484±0.018±0.0110.484±0.018±0.0110.484±0.018±0.0110.484±0.018±0.011 1,2 AAIJ 12L LHCB pp at 7 TeV1AAIJ 12L reports 0.476 ± 0.014 ± 0.010 ± 0.012 from a measurement of [�(B0 →
ψ(2S)K∗(892)0)/�(B0 → J/ψ(1S)K∗(892)0)℄ × [B(J/ψ(1S) → e+ e−)℄ /[B(ψ(2S) → e+ e−)℄ assuming B(J/ψ(1S) → e+ e−) = (5.94 ± 0.06) ×10−2,B(ψ(2S) → e+ e−) = (7.72 ± 0.17) × 10−3, whi
h we res
ale to our bestvalues B(J/ψ(1S) → e+ e−) = (5.971 ± 0.032) × 10−2, B(ψ(2S) → e+ e−) =(7.89 ± 0.17)× 10−3. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best values.2Assumes B(J/ψ → µ+µ−) / B(ψ(2S) → µ+µ−) = B(J/ψ → e+ e−) / B(ψ(2S) →e+ e−) = 7.69 ± 0.19.�(

χ
0K0)/�total �242/��(

χ
0K0)/�total �242/��(

χ
0K0)/�total �242/��(

χ
0K0)/�total �242/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT147± 27 OUR AVERAGE147± 27 OUR AVERAGE147± 27 OUR AVERAGE147± 27 OUR AVERAGE149+105
− 87± 8 1,2 LEES 12I BABR e+ e− → �(4S)148± 30±13 1,3 LEES 12O BABR e+ e− → �(4S)142+ 55
− 44±22 1,4 AUBERT 09AU BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 113 90 4 GARMASH 07 BELL e+ e− → �(4S)
<1240 90 1 AUBERT 05K BABR e+ e− → �(4S)
< 500 90 5 EDWARDS 01 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2 LEES 12I reports [�(B0 → χ
0K0)/�total℄ × [B(χ
0(1P) → K0S K0S )℄ =(0.46+0.25

−0.17 ± 0.21)× 10−6 whi
h we divide by our best value B(χ
0(1P) → K0S K0S )= (3.10 ± 0.18)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.3Measured in the B0 → K0S K+K− de
ay.4Uses Dalitz plot analysis of the B0 → K0π+π− �nal state de
ays.5 EDWARDS 01 assumes equal produ
tion of B0 and B+ at the �(4S). The 
orrelatedun
ertainties (28.3)% from B(J/ψ(1S) → γ η
 ) in those modes have been a

ountedfor.�(

χ
0K∗(892)0)/�total �243/��(

χ
0K∗(892)0)/�total �243/��(

χ
0K∗(892)0)/�total �243/��(

χ
0K∗(892)0)/�total �243/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.7±0.3±0.21.7±0.3±0.21.7±0.3±0.21.7±0.3±0.2 1 AUBERT 08BD BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.7 90 1 AUBERT 05K BABR Repl. by AUBERT 08BD1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
2K0)/�total �244/��(

χ
2K0)/�total �244/��(

χ
2K0)/�total �244/��(

χ
2K0)/�total �244/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.5× 10−5<1.5× 10−5<1.5× 10−5<1.5× 10−5 90 1 BHARDWAJ 11 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.8× 10−5 90 2 AUBERT 09B BABR e+ e− → �(4S)
<2.6× 10−5 90 1 SONI 06 BELL Repl. by BHARDWAJ 11
<4.1× 10−5 90 1 AUBERT 05K BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses χc1,2 → J/ψγ. Assumes B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) →B0B0) = (48.4 ± 0.6)%.



1233123312331233See key on page 601 Meson Parti
le ListingsB0�(

χ
2K∗(892)0)/�total �245/��(

χ
2K∗(892)0)/�total �245/��(

χ
2K∗(892)0)/�total �245/��(

χ
2K∗(892)0)/�total �245/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT4.9±1.2 OUR FIT4.9±1.2 OUR FIT4.9±1.2 OUR FIT4.9±1.2 OUR FIT Error in
ludes s
ale fa
tor of 1.1.6.6±1.8±0.56.6±1.8±0.56.6±1.8±0.56.6±1.8±0.5 1 AUBERT 09B BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.1 90 2 SONI 06 BELL e+ e− → �(4S)
<3.6 90 2 AUBERT 05K BABR Repl. by AUBERT 09B1Uses χc1,2 → J/ψγ. Assumes B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) →B0B0) = (48.4 ± 0.6)%.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
2K∗(892)0)/�(

χ
1K∗(892)0) �245/�249�(

χ
2K∗(892)0)/�(

χ
1K∗(892)0) �245/�249�(

χ
2K∗(892)0)/�(

χ
1K∗(892)0) �245/�249�(

χ
2K∗(892)0)/�(

χ
1K∗(892)0) �245/�249VALUE (units 10−2) DOCUMENT ID TECN COMMENT20 ±5 OUR FIT20 ±5 OUR FIT20 ±5 OUR FIT20 ±5 OUR FIT Error in
ludes s
ale fa
tor of 1.1.17.1±5.0±2.017.1±5.0±2.017.1±5.0±2.017.1±5.0±2.0 1 AAIJ 13AC LHCB pp at 7 TeV1Uses B(χ
1 → J/ψγ)/B(χ
2 → J/ψγ) = 1.76 ± 0.11.�(

χ
1π0)/�total �246/��(

χ
1π0)/�total �246/��(

χ
1π0)/�total �246/��(

χ
1π0)/�total �246/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.12±0.25±0.121.12±0.25±0.121.12±0.25±0.121.12±0.25±0.12 1 KUMAR 08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
1K0)/�total �247/��(

χ
1K0)/�total �247/��(

χ
1K0)/�total �247/��(

χ
1K0)/�total �247/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT3.93±0.27 OUR AVERAGE3.93±0.27 OUR AVERAGE3.93±0.27 OUR AVERAGE3.93±0.27 OUR AVERAGE3.78+0.17
−0.16±0.33 1 BHARDWAJ 11 BELL e+ e− → �(4S)4.2 ±0.3 ±0.3 2 AUBERT 09B BABR e+ e− → �(4S)3.1 +1.6
−1.1 ±0.1 3 AVERY 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.51±0.33±0.45 1 SONI 06 BELL Repl. by BHARDWAJ 114.53±0.41±0.51 1 AUBERT 05J BABR Repl. by AUBERT 09B4.3 ±1.4 ±0.2 4 AUBERT 02 BABR Repl. by AUBERT 05J
<27 90 1 ALAM 94 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses χc1,2 → J/ψγ. Assumes B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) →B0B0) = (48.4 ± 0.6)%.3AVERY 00 reports (3.9+1.9

−1.3 ± 0.4)×10−4 from a measurement of [�(B0 → χ
1K0)/�total℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assuming B(χ
1(1P) → γ J/ψ(1S)) = 0.273 ±0.016, whi
h we res
ale to our best value B(χ
1(1P) → γ J/ψ(1S)) = (33.9 ± 1.2)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value. Assumes equal produ
tion of B+ and B0 at the �(4S).4AUBERT 02 reports (5.4±1.4±1.1)×10−4 from a measurement of [�(B0 → χ
1K0)/�total℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assuming B(χ
1(1P) → γ J/ψ(1S)) = 0.273 ±0.016, whi
h we res
ale to our best value B(χ
1(1P) → γ J/ψ(1S)) = (33.9 ± 1.2)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value. Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
1K0)/�(J/ψ(1S)K0) �247/�183�(

χ
1K0)/�(J/ψ(1S)K0) �247/�183�(

χ
1K0)/�(J/ψ(1S)K0) �247/�183�(

χ
1K0)/�(J/ψ(1S)K0) �247/�183VALUE DOCUMENT ID TECN COMMENT0.53±0.16±0.020.53±0.16±0.020.53±0.16±0.020.53±0.16±0.02 1 AUBERT 02 BABR e+ e− → �(4S)1AUBERT 02 reports 0.66 ± 0.11 ± 0.17 from a measurement of [�(B0 → χ
1K0)/�(B0 → J/ψ(1S)K0)℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assuming B(χ
1(1P) →
γ J/ψ(1S)) = 0.273 ± 0.016, whi
h we res
ale to our best value B(χ
1(1P) →
γ J/ψ(1S)) = (33.9 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. Assumes equal produ
tionof B+ and B0 at the �(4S).�(

χ
1K−π+)/�total �248/��(

χ
1K−π+)/�total �248/��(

χ
1K−π+)/�total �248/��(

χ
1K−π+)/�total �248/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.83±0.10±0.393.83±0.10±0.393.83±0.10±0.393.83±0.10±0.39 1 MIZUK 08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
1K−π+)/�(J/ψ(1S)K+π−) �248/�184�(

χ
1K−π+)/�(J/ψ(1S)K+π−) �248/�184�(

χ
1K−π+)/�(J/ψ(1S)K+π−) �248/�184�(

χ
1K−π+)/�(J/ψ(1S)K+π−) �248/�184VALUE DOCUMENT ID TECN0.480±0.021±0.0170.480±0.021±0.0170.480±0.021±0.0170.480±0.021±0.017 1 LEES 12B BABR1LEES 12B reports 0.474±0.013±0.026 from a measurement of [�(B0 → χ
1K−π+)/�(B0 → J/ψ(1S)K+π−
)℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assuming B(χ
1(1P) →

γ J/ψ(1S)) = (34.4 ± 1.5) × 10−2, whi
h we res
ale to our best value B(χ
1(1P) →
γ J/ψ(1S)) = (33.9 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(

χ
1K∗(892)0)/�total �249/��(

χ
1K∗(892)0)/�total �249/��(

χ
1K∗(892)0)/�total �249/��(

χ
1K∗(892)0)/�total �249/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.39±0.19 OUR FIT2.39±0.19 OUR FIT2.39±0.19 OUR FIT2.39±0.19 OUR FIT Error in
ludes s
ale fa
tor of 1.2.2.22+0.40
−0.31 OUR AVERAGE2.22+0.40
−0.31 OUR AVERAGE2.22+0.40
−0.31 OUR AVERAGE2.22+0.40
−0.31 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.2.5 ±0.2 ±0.2 1 AUBERT 09B BABR e+ e− → �(4S)1.73+0.15
−0.12+0.34

−0.22 2 MIZUK 08 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.14±0.34±0.72 2 SONI 06 BELL Repl. by MIZUK 083.27±0.42±0.64 2 AUBERT 05J BABR Repl. by AUBERT 09B3.9 ±1.3 ±0.1 3 AUBERT 02 BABR Repl. by AUBERT 05J
<21 90 4 ALAM 94 CLE2 e+ e− → �(4S)1Uses χc1,2 → J/ψγ. Assumes B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) →B0B0) = (48.4 ± 0.6)%.2Assumes equal produ
tion of B+ and B0 at the �(4S).3AUBERT 02 reports (4.8 ± 1.4 ± 0.9) × 10−4 from a measurement of [�(B0 →

χ
1K∗(892)0)/�total℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assuming B(χ
1(1P) →
γ J/ψ(1S)) = 0.273 ± 0.016, whi
h we res
ale to our best value B(χ
1(1P) →
γ J/ψ(1S)) = (33.9 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. Assumes equal produ
tionof B+ and B0 at the �(4S).4BORTOLETTO 92 assumes equal produ
tion of B+ and B0 at the �(4S).�(

χ
1K∗(892)0)/�(J/ψ(1S)K∗(892)0) �249/�185�(

χ
1K∗(892)0)/�(J/ψ(1S)K∗(892)0) �249/�185�(

χ
1K∗(892)0)/�(J/ψ(1S)K∗(892)0) �249/�185�(

χ
1K∗(892)0)/�(J/ψ(1S)K∗(892)0) �249/�185VALUE (units 10−2) DOCUMENT ID TECN COMMENT18.7±1.5 OUR FIT18.7±1.5 OUR FIT18.7±1.5 OUR FIT18.7±1.5 OUR FIT Error in
ludes s
ale fa
tor of 1.1.19.8±1.1±1.519.8±1.1±1.519.8±1.1±1.519.8±1.1±1.5 1 AAIJ 13AC LHCB pp at 7 TeV1Uses B(χ
1 → J/ψγ) = (34.4 ± 1.5)%.�(X (4051)+K−, X+ → χ
1π+)/�total �250/��(X (4051)+K−, X+ → χ
1π+)/�total �250/��(X (4051)+K−, X+ → χ
1π+)/�total �250/��(X (4051)+K−, X+ → χ
1π+)/�total �250/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT3.0+1.5
−0.8+3.7

−1.63.0+1.5
−0.8+3.7

−1.63.0+1.5
−0.8+3.7

−1.63.0+1.5
−0.8+3.7

−1.6 1 MIZUK 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.8 90 1,2 LEES 12B BABR1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses χ
1 → J/ψγ mode. Uses χ
1 → J/ψγ mode. Finds a good des
ription of thedata without this B0 → X (4051)+K− de
ay mode in a �t.�(X (4248)+K−, X+ → χ
1π+)/�total �251/��(X (4248)+K−, X+ → χ
1π+)/�total �251/��(X (4248)+K−, X+ → χ
1π+)/�total �251/��(X (4248)+K−, X+ → χ
1π+)/�total �251/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT4.0+2.3

−0.9+19.7
− 0.54.0+2.3

−0.9+19.7
− 0.54.0+2.3

−0.9+19.7
− 0.54.0+2.3

−0.9+19.7
− 0.5 1 MIZUK 08 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.0 90 1,2 LEES 12B BABR1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses χ
1 → J/ψγ mode. Finds a good des
ription of the data without this B0 →X (4248)+K− de
ay mode in a �t.�(

χ
1K∗(892)0)/�(

χ
1K0) �249/�247�(

χ
1K∗(892)0)/�(

χ
1K0) �249/�247�(

χ
1K∗(892)0)/�(

χ
1K0) �249/�247�(

χ
1K∗(892)0)/�(

χ
1K0) �249/�247VALUE DOCUMENT ID TECN COMMENT0.72±0.11±0.120.72±0.11±0.120.72±0.11±0.120.72±0.11±0.12 AUBERT 05J BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.89±0.34±0.17 1 AUBERT 02 BABR Repl. by AUBERT 05J1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+π−)/�total �252/��(K+π−)/�total �252/��(K+π−)/�total �252/��(K+π−)/�total �252/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT19.6 ± 0.5 OUR FIT19.6 ± 0.5 OUR FIT19.6 ± 0.5 OUR FIT19.6 ± 0.5 OUR FIT19.6 ± 0.5 OUR AVERAGE19.6 ± 0.5 OUR AVERAGE19.6 ± 0.5 OUR AVERAGE19.6 ± 0.5 OUR AVERAGE20.00± 0.34±0.60 1 DUH 13 BELL e+ e− → �(4S)19.1 ± 0.6 ±0.6 1 AUBERT 07B BABR e+ e− → �(4S)18.0 + 2.3

− 2.1 +1.2
−0.9 1 BORNHEIM 03 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •19.9 ± 0.4 ±0.8 1 LIN 07A BELL Repl. by DUH 1318.5 ± 1.0 ±0.7 1 CHAO 04 BELL Repl. by LIN 07A17.9 ± 0.9 ±0.7 1 AUBERT 02Q BABR Repl. by AUBERT 07B22.5 ± 1.9 ±1.8 1 CASEY 02 BELL Repl. by CHAO 0419.3 + 3.4
− 3.2 +1.5

−0.6 1 ABE 01H BELL Repl. by CASEY 0216.7 ± 1.6 ±1.3 1 AUBERT 01E BABR Repl. by AUBERT 02Q
< 66 90 2 ABE 00C SLD e+ e− → Z17.2 + 2.5

− 2.4 ±1.2 1 CRONIN-HEN...00 CLE2 Repl. by BORNHEIM 0315 + 5.
− 4 ±1.4 GODANG 98 CLE2 Repl. by CRONIN-HENNESSY 0024 +17
−11 ±2 3 ADAM 96D DLPH e+ e− → Z

< 17 90 ASNER 96 CLE2 Sup. by ADAM 96D
< 30 90 4 BUSKULIC 96V ALEP e+ e− → Z
< 90 90 5 ABREU 95N DLPH Sup. by ADAM 96D
< 81 90 6 AKERS 94L OPAL e+ e− → Z
< 26 90 7 BATTLE 93 CLE2 e+ e− → �(4S)
<180 90 ALBRECHT 91B ARG e+ e− → �(4S)
< 90 90 8 AVERY 89B CLEO e+ e− → �(4S)
<320 90 AVERY 87 CLEO e+ e− → �(4S)



1234123412341234Meson Parti
le ListingsB01Assumes equal produ
tion of B+ and B0 at the �(4S).2ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8
−2.2)% and fBs=(10.5+1.8

−2.2)%.3ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12. Contributions from B0 andBs de
ays 
annot be separated. Limits are given for the weighted average of the de
ayrates for the two neutral B mesons.4BUSKULIC 96V assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons.5Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.Contributions from B0 and B0s de
ays 
annot be separated. Limits are given for theweighted average of the de
ay rates for the two neutral B mesons.6Assumes B(Z → bb) = 0.217 and B0d (B0s ) fra
tion 39.5% (12%).7BATTLE 93 assumes equal produ
tion of B0B0 and B+B− at �(4S).8Assumes the �(4S) de
ays 43% to B0B0.�(K+π−)/�(K0π0) �252/�253�(K+π−)/�(K0π0) �252/�253�(K+π−)/�(K0π0) �252/�253�(K+π−)/�(K0π0) �252/�253VALUE DOCUMENT ID TECN COMMENT2.16±0.16±0.162.16±0.16±0.162.16±0.16±0.162.16±0.16±0.16 LIN 07A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.20+0.50

−0.58+0.22
−0.32 1 ABE 01H BELL Repl. by LIN 07A1Assumes equal produ
tion of B+ and B0 at the �(4S).

[�(K+π−)+�(π+π−)
]/�total (�252+�382)/�[�(K+π−)+�(π+π−)
]/�total (�252+�382)/�[�(K+π−)+�(π+π−)
]/�total (�252+�382)/�[�(K+π−)+�(π+π−)
]/�total (�252+�382)/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT19± 6 OUR AVERAGE19± 6 OUR AVERAGE19± 6 OUR AVERAGE19± 6 OUR AVERAGE28+15

−10±20 1 ADAM 96D DLPH e+ e− → Z18+ 6
− 5+ 3

− 4 17.2 ASNER 96 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •24+ 8

− 7± 2 2 BATTLE 93 CLE2 e+ e− → �(4S)1ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12. Contributions from B0 andBs de
ays 
annot be separated. Limits are given for the weighted average of the de
ayrates for the two neutral B mesons.2BATTLE 93 assumes equal produ
tion of B0B0 and B+B− at �(4S).�(K0π0)/�total �253/��(K0π0)/�total �253/��(K0π0)/�total �253/��(K0π0)/�total �253/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT9.9 ±0.5 OUR AVERAGE9.9 ±0.5 OUR AVERAGE9.9 ±0.5 OUR AVERAGE9.9 ±0.5 OUR AVERAGE9.68±0.46±0.50 1 DUH 13 BELL e+ e− → �(4S)10.1 ±0.6 ±0.4 1 LEES 13D BABR e+ e− → �(4S)12.8 +4.0
−3.3 +1.7

−1.4 1 BORNHEIM 03 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •8.7 ±0.5 ±0.6 1 FUJIKAWA 10A BELL Repl. by DUH 1310.3 ±0.7 ±0.6 1 AUBERT 08E BABR Repl. by LEES 13D9.2 ±0.7 ±0.6 1 LIN 07A BELL Repl. by FUJIKAWA 10A11.4 ±0.9 ±0.6 1 AUBERT 05Y BABR Repl. by AUBERT 08E11.4 ±1.7 ±0.8 1 AUBERT 04M BABR Repl. by AUBERT 05Y11.7 ±2.3 +1.2

−1.3 1 CHAO 04 BELL Repl. by LIN 07A8.0 +3.3
−3.1 ±1.6 1 CASEY 02 BELL Repl. by CHAO 0416.0 +7.2
−5.9 +2.5

−2.7 1 ABE 01H BELL Repl. by CASEY 028.2 +3.1
−2.7 ±1.2 1 AUBERT 01E BABR Repl. by AUBERT 04M14.6 +5.9
−5.1 +2.4

−3.3 1 CRONIN-HEN...00 CLE2 Repl. by BORNHEIM 03
<41 90 GODANG 98 CLE2 Repl. by CRONIN-HENNESSY 00
<40 90 ASNER 96 CLE2 Rep. by GODANG 981Assumes equal produ
tion of B+ and B0 at the �(4S).�(η′K0)/�total �254/��(η′K0)/�total �254/��(η′K0)/�total �254/��(η′K0)/�total �254/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT66 ± 4 OUR AVERAGE66 ± 4 OUR AVERAGE66 ± 4 OUR AVERAGE66 ± 4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.68.5± 2.2±3.1 1 AUBERT 09AV BABR e+ e− → �(4S)58.9+ 3.6

− 3.5±4.3 1 SCHUEMANN 06 BELL e+ e− → �(4S)89 +18
−16 ±9 1 RICHICHI 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •66.6± 2.6±2.8 1 AUBERT 07AE BABR Repl. by AUBERT 09AV67.4± 3.3±3.2 1 AUBERT 05M BABR AUBERT 07AE60.6± 5.6±4.6 1 AUBERT 03W BABR Repl. by AUBERT 05M55 +19
−16 ±8 1 ABE 01M BELL Repl. by SCHUEMANN 0642 +13
−11 ±4 1 AUBERT 01G BABR Repl. by AUBERT 03W47 +27
−20 ±9 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).

�(η′K∗(892)0)/�total �255/��(η′K∗(892)0)/�total �255/��(η′K∗(892)0)/�total �255/��(η′K∗(892)0)/�total �255/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.8±0.6 OUR AVERAGE2.8±0.6 OUR AVERAGE2.8±0.6 OUR AVERAGE2.8±0.6 OUR AVERAGE2.6±0.7±0.2 1 SATO 14 BELL e+ e− → �(4S)3.1+0.9
−0.8±0.3 1 DEL-AMO-SA...10A BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.8±1.1±0.5 1 AUBERT 07E BABR Repl. by DEL-AMO-SANCHEZ 10A
< 2.6 90 1 SCHUEMANN 07 BELL e+ e− → �(4S)
< 7.6 90 1 AUBERT,B 04D BABR Repl. by AUBERT 07E
<24 90 1 RICHICHI 00 CLE2 e+ e− → �(4S)
<39 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(η′K∗0(1430)0)/�total �256/��(η′K∗0(1430)0)/�total �256/��(η′K∗0(1430)0)/�total �256/��(η′K∗0(1430)0)/�total �256/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT6.3±1.3±0.96.3±1.3±0.96.3±1.3±0.96.3±1.3±0.9 1 DEL-AMO-SA...10A BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(η′K∗2(1430)0)/�total �257/��(η′K∗2(1430)0)/�total �257/��(η′K∗2(1430)0)/�total �257/��(η′K∗2(1430)0)/�total �257/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT13.7+3.0

−2.9±1.213.7+3.0
−2.9±1.213.7+3.0
−2.9±1.213.7+3.0
−2.9±1.2 1 DEL-AMO-SA...10A BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(ηK0)/�total �258/��(ηK0)/�total �258/��(ηK0)/�total �258/��(ηK0)/�total �258/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.23+0.27

−0.24 OUR AVERAGE1.23+0.27
−0.24 OUR AVERAGE1.23+0.27
−0.24 OUR AVERAGE1.23+0.27
−0.24 OUR AVERAGE1.27+0.33
−0.29±0.08 1 HOI 12 BELL e+ e− → �(4S)1.15+0.43
−0.38±0.09 1 AUBERT 09AV BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.9 90 1 CHANG 07B BELL Repl. by HOI 12
< 2.9 90 1 AUBERT,B 06V BABR e+ e− → �(4S)
< 2.5 90 1 AUBERT,B 05K BABR e+ e− → �(4S)
< 2.0 90 1 CHANG 05A BELL Repl. by CHANG 07B
< 5.2 90 1 AUBERT 04H BABR Repl. by AUBERT,B 05K
< 9.3 90 1 RICHICHI 00 CLE2 e+ e− → �(4S)
<33 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(ηK∗(892)0)/�total �259/��(ηK∗(892)0)/�total �259/��(ηK∗(892)0)/�total �259/��(ηK∗(892)0)/�total �259/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT15.9±1.0 OUR AVERAGE15.9±1.0 OUR AVERAGE15.9±1.0 OUR AVERAGE15.9±1.0 OUR AVERAGE15.2±1.2±1.0 1 WANG 07B BELL e+ e− → �(4S)16.5±1.1±0.8 1 AUBERT,B 06H BABR e+ e− → �(4S)13.8+5.5

−4.6±1.6 1 RICHICHI 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •18.6±2.3±1.2 1 AUBERT,B 04D BABR Repl. by AUBERT,B 06H
<30 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(ηK∗0(1430)0)/�total �260/��(ηK∗0(1430)0)/�total �260/��(ηK∗0(1430)0)/�total �260/��(ηK∗0(1430)0)/�total �260/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT11.0±1.6±1.511.0±1.6±1.511.0±1.6±1.511.0±1.6±1.5 1 AUBERT,B 06H BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(ηK∗2(1430)0)/�total �261/��(ηK∗2(1430)0)/�total �261/��(ηK∗2(1430)0)/�total �261/��(ηK∗2(1430)0)/�total �261/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT9.6±1.8±1.19.6±1.8±1.19.6±1.8±1.19.6±1.8±1.1 1 AUBERT,B 06H BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(ωK0)/�total �262/��(ωK0)/�total �262/��(ωK0)/�total �262/��(ωK0)/�total �262/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT4.8±0.4 OUR AVERAGE4.8±0.4 OUR AVERAGE4.8±0.4 OUR AVERAGE4.8±0.4 OUR AVERAGE4.5±0.4±0.3 1 CHOBANOVA 14 BELL e+ e− → �(4S)5.4±0.8±0.3 1 AUBERT 07AE BABR e+ e− → �(4S)10.0+5.4

−4.2±1.4 1 JESSOP 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.2±1.0±0.4 1 AUBERT,B 06E BABR Repl. by AUBERT 07AE4.4+0.8

−0.7±0.4 1 JEN 06 BELL Repl. by CHOBANOVA 145.9+1.6
−1.3±0.5 1 AUBERT 04H BABR Repl. by AUBERT,B 06E4.0+1.9
−1.6±0.5 1 WANG 04A BELL Repl. by JEN 06

<13 90 1 AUBERT 01G BABR Repl. by AUBERT 04H
<57 90 1 BERGFELD 98 CLE2 Repl. by JESSOP 001Assumes equal produ
tion of B+ and B0 at the �(4S).



1235123512351235See key on page 601 MesonParti
le ListingsB0�(a0(980)0K0, a00 → ηπ0)/�total �263/��(a0(980)0K0, a00 → ηπ0)/�total �263/��(a0(980)0K0, a00 → ηπ0)/�total �263/��(a0(980)0K0, a00 → ηπ0)/�total �263/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<7.8<7.8<7.8<7.8 90 1 AUBERT,BE 04 BABR e+ e− → �(4S)1Assumes equal produ
tion of 
harged and neutral B mesons at �(4S).�(b01K0, b01 → ωπ0)/�total �264/��(b01K0, b01 → ωπ0)/�total �264/��(b01K0, b01 → ωπ0)/�total �264/��(b01K0, b01 → ωπ0)/�total �264/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<7.8<7.8<7.8<7.8 90 1 AUBERT 08AG BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(a0(980)±K∓, a±0 → ηπ±)/�total �265/��(a0(980)±K∓, a±0 → ηπ±)/�total �265/��(a0(980)±K∓, a±0 → ηπ±)/�total �265/��(a0(980)±K∓, a±0 → ηπ±)/�total �265/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.9<1.9<1.9<1.9 90 1 AUBERT 07Y BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.1 90 1 AUBERT,BE 04 BABR Repl. by AUBERT 07Y1Assumes equal produ
tion of B+ and B0 at the �(4S).�(b−1 K+, b−1 → ωπ−)/�total �266/��(b−1 K+, b−1 → ωπ−)/�total �266/��(b−1 K+, b−1 → ωπ−)/�total �266/��(b−1 K+, b−1 → ωπ−)/�total �266/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT7.4±1.0±1.07.4±1.0±1.07.4±1.0±1.07.4±1.0±1.0 1 AUBERT 07BI BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(b01K∗0, b01 → ωπ0)/�total �267/��(b01K∗0, b01 → ωπ0)/�total �267/��(b01K∗0, b01 → ωπ0)/�total �267/��(b01K∗0, b01 → ωπ0)/�total �267/�VALUE CL% DOCUMENT ID TECN COMMENT
<8.0× 10−6<8.0× 10−6<8.0× 10−6<8.0× 10−6 90 1 AUBERT 09AF BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(b−1 K∗+, b−1 → ωπ−)/�total �268/��(b−1 K∗+, b−1 → ωπ−)/�total �268/��(b−1 K∗+, b−1 → ωπ−)/�total �268/��(b−1 K∗+, b−1 → ωπ−)/�total �268/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.0× 10−6<5.0× 10−6<5.0× 10−6<5.0× 10−6 90 1 AUBERT 09AF BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(a0(1450)±K∓, a±0 → ηπ±)/�total �269/��(a0(1450)±K∓, a±0 → ηπ±)/�total �269/��(a0(1450)±K∓, a±0 → ηπ±)/�total �269/��(a0(1450)±K∓, a±0 → ηπ±)/�total �269/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<3.1<3.1<3.1<3.1 90 1 AUBERT 07Y BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0S X 0 (Familon))/�total �270/��(K0S X 0 (Familon))/�total �270/��(K0S X 0 (Familon))/�total �270/��(K0S X 0 (Familon))/�total �270/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<53<53<53<53 90 1 AMMAR 01B CLE2 e+ e− → �(4S)1AMMAR 01B sear
hed for the two-body de
ay of the B meson to a massless neutralfeebly-intera
ting parti
le X0 su
h as the familon, the Nambu-Goldstone boson asso
i-ated with a spontaneously broken global family symmetry.�(

ωK∗(892)0)/�total �271/��(

ωK∗(892)0)/�total �271/��(

ωK∗(892)0)/�total �271/��(

ωK∗(892)0)/�total �271/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.0±0.5 OUR AVERAGE2.0±0.5 OUR AVERAGE2.0±0.5 OUR AVERAGE2.0±0.5 OUR AVERAGE2.2±0.6±0.2 1 AUBERT 09H BABR e+ e− → �(4S)1.8±0.7±0.3 1 GOLDENZWE...08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.2 90 1 AUBERT,B 06T BABR Repl. by AUBERT 09H
< 6.0 90 1 AUBERT 05O BABR Repl. by AUBERT,B 06T
<23 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ω (Kπ)∗00 )/�total �272/��(

ω (Kπ)∗00 )/�total �272/��(

ω (Kπ)∗00 )/�total �272/��(

ω (Kπ)∗00 )/�total �272/�(Kπ)∗00 is the total S-wave 
omposed of K∗0(1430) and nonresonant that are des
ribedusing LASS shape.VALUE (units 10−6) DOCUMENT ID TECN COMMENT18.4±1.8±1.718.4±1.8±1.718.4±1.8±1.718.4±1.8±1.7 1 AUBERT 09H BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωK∗0(1430)0)/�total �273/��(

ωK∗0(1430)0)/�total �273/��(

ωK∗0(1430)0)/�total �273/��(

ωK∗0(1430)0)/�total �273/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT16.0±1.6±3.016.0±1.6±3.016.0±1.6±3.016.0±1.6±3.0 1 AUBERT 09H BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωK∗2(1430)0)/�total �274/��(

ωK∗2(1430)0)/�total �274/��(

ωK∗2(1430)0)/�total �274/��(

ωK∗2(1430)0)/�total �274/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT10.1±2.0±1.110.1±2.0±1.110.1±2.0±1.110.1±2.0±1.1 1 AUBERT 09H BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωK+π− nonresonant)/�total �275/��(

ωK+π− nonresonant)/�total �275/��(

ωK+π− nonresonant)/�total �275/��(

ωK+π− nonresonant)/�total �275/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT5.1±0.7±0.75.1±0.7±0.75.1±0.7±0.75.1±0.7±0.7 1,2 GOLDENZWE...08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2 For the K π mass range 0.755{1.250 GeV/
2, ex
luding K∗(892).

�(K+π−π0)/�total �276/��(K+π−π0)/�total �276/��(K+π−π0)/�total �276/��(K+π−π0)/�total �276/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT37.8±3.2 OUR AVERAGE37.8±3.2 OUR AVERAGE37.8±3.2 OUR AVERAGE37.8±3.2 OUR AVERAGE38.5±1.0±3.9 1,2 LEES 11 BABR e+ e− → �(4S)36.6+4.2
−4.3±3.0 1 CHANG 04 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •35.7+2.6
−1.5±2.2 1 AUBERT 08AQ BABR Repl. by LEES 11

<40 90 1 ECKHART 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.�(K+ρ−
)/�total �277/��(K+ρ−
)/�total �277/��(K+ρ−
)/�total �277/��(K+ρ−
)/�total �277/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT7.0±0.9 OUR AVERAGE7.0±0.9 OUR AVERAGE7.0±0.9 OUR AVERAGE7.0±0.9 OUR AVERAGE6.6±0.5±0.8 1,2 LEES 11 BABR e+ e− → �(4S)15.1+3.4

−3.3+2.4
−2.6 1 CHANG 04 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.0+0.8
−1.3±0.6 1 AUBERT 08AQ BABR Repl. by LEES 117.3+1.3
−1.2±1.3 1 AUBERT 03T BABR Repl. by AUBERT 08AQ

<32 90 1 JESSOP 00 CLE2 e+ e− → �(4S)
<35 90 ASNER 96 CLE2 Repl. by JESSOP 001Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.�(K+ρ(1450)−)/�total �278/��(K+ρ(1450)−)/�total �278/��(K+ρ(1450)−)/�total �278/��(K+ρ(1450)−)/�total �278/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.4±1.0±0.62.4±1.0±0.62.4±1.0±0.62.4±1.0±0.6 1,2 LEES 11 BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.1 90 1 AUBERT 08AQ BABR Repl. by LEES 111Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.�(K+ρ(1700)−)/�total �279/��(K+ρ(1700)−)/�total �279/��(K+ρ(1700)−)/�total �279/��(K+ρ(1700)−)/�total �279/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT0.6±0.6±0.40.6±0.6±0.40.6±0.6±0.40.6±0.6±0.4 1,2 LEES 11 BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.1 90 1 AUBERT 08AQ BABR Repl. by LEES 111Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.�((K+π−π0 ) non-resonant)/�total �280/��((K+π−π0 ) non-resonant)/�total �280/��((K+π−π0 ) non-resonant)/�total �280/��((K+π−π0 ) non-resonant)/�total �280/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.8±0.5±0.42.8±0.5±0.42.8±0.5±0.42.8±0.5±0.4 1,2 LEES 11 BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.4±0.9±0.5 1 AUBERT 08AQ BABR Repl. by LEES 11
<9.4 90 1 CHANG 04 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of B0 → K+π−π0 de
ays. The quoted value is only for the
at part of the non-resonant 
omponent.�((Kπ)∗+0 π−, (Kπ)∗+0 → K+π0)/�total �281/��((Kπ)∗+0 π−, (Kπ)∗+0 → K+π0)/�total �281/��((Kπ)∗+0 π−, (Kπ)∗+0 → K+π0)/�total �281/��((Kπ)∗+0 π−, (Kπ)∗+0 → K+π0)/�total �281/�(Kπ)∗+0 is the total S-wave 
omposed of K∗0(1430) and nonresonant that are des
ribedusing LASS shape.VALUE (units 10−6) DOCUMENT ID TECN COMMENT34.2±2.4±4.134.2±2.4±4.134.2±2.4±4.134.2±2.4±4.1 1,2 LEES 11 BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.4+1.1

−1.3+2.3
−2.1 1 AUBERT 08AQ BABR Repl. by LEES 111Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.�((Kπ)∗00 π0, (Kπ)∗00 → K+π−)/�total �282/��((Kπ)∗00 π0, (Kπ)∗00 → K+π−)/�total �282/��((Kπ)∗00 π0, (Kπ)∗00 → K+π−)/�total �282/��((Kπ)∗00 π0, (Kπ)∗00 → K+π−)/�total �282/�(Kπ)∗00 is the total S-wave 
omposed of K∗0(1430) and nonresonant that are des
ribedusing LASS shape.VALUE (units 10−6) DOCUMENT ID TECN COMMENT8.6±1.1±1.38.6±1.1±1.38.6±1.1±1.38.6±1.1±1.3 1,2 LEES 11 BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.7+1.1
−0.9+2.8

−2.6 1 AUBERT 08AQ BABR Repl. by LEES 111Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.�(K∗2(1430)0π0)/�total �283/��(K∗2(1430)0π0)/�total �283/��(K∗2(1430)0π0)/�total �283/��(K∗2(1430)0π0)/�total �283/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<4.0<4.0<4.0<4.0 90 1 AUBERT 08AQ BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).



1236123612361236Meson Parti
le ListingsB0�(K∗(1680)0π0)/�total �284/��(K∗(1680)0π0)/�total �284/��(K∗(1680)0π0)/�total �284/��(K∗(1680)0π0)/�total �284/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<7.5<7.5<7.5<7.5 90 1 AUBERT 08AQ BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗0x π0)/�total �285/��(K∗0x π0)/�total �285/��(K∗0x π0)/�total �285/��(K∗0x π0)/�total �285/�K∗0x stands for the possible 
andidates of K∗(1410), K∗0(1430) and K∗2(1430).VALUE (units 10−6) DOCUMENT ID TECN COMMENT6.1+1.6

−1.5+0.5
−0.66.1+1.6

−1.5+0.5
−0.66.1+1.6

−1.5+0.5
−0.66.1+1.6

−1.5+0.5
−0.6 1 CHANG 04 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0π+π−)/�total �286/��(K0π+π−)/�total �286/��(K0π+π−)/�total �286/��(K0π+π−)/�total �286/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT52.0± 2.4 OUR FIT52.0± 2.4 OUR FIT52.0± 2.4 OUR FIT52.0± 2.4 OUR FIT Error in
ludes s
ale fa
tor of 1.3.49.6± 2.0 OUR AVERAGE49.6± 2.0 OUR AVERAGE49.6± 2.0 OUR AVERAGE49.6± 2.0 OUR AVERAGE50.2± 1.5±1.8 1 AUBERT 09AU BABR e+ e− → �(4S)47.5± 2.4±3.7 2 GARMASH 07 BELL e+ e− → �(4S)50 +10
− 9 ±7 1 ECKHART 02 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •43.0± 2.3±2.3 1 AUBERT 06I BABR Repl. by AUBERT 09AU43.7± 3.8±3.4 1 AUBERT,B 04O BABR Repl. by AUBERT 06I45.4± 5.2±5.9 1 GARMASH 04 BELL Repl. by GARMASH 07
<440 90 ALBRECHT 91E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of the B0 → K0π+π− �nal state de
ays.�(K0π+π− non-resonant)/�total �287/��(K0π+π− non-resonant)/�total �287/��(K0π+π− non-resonant)/�total �287/��(K0π+π− non-resonant)/�total �287/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT14.7+4.0

−2.6 OUR AVERAGE14.7+4.0
−2.6 OUR AVERAGE14.7+4.0
−2.6 OUR AVERAGE14.7+4.0
−2.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1.11.1+2.5
−1.0±0.9 1 AUBERT 09AU BABR e+ e− → �(4S)19.9±2.5+1.7

−2.0 2 GARMASH 07 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of the B0 → K0π+π− �nal state de
ays.�(K0ρ0)/�total �288/��(K0ρ0)/�total �288/��(K0ρ0)/�total �288/��(K0ρ0)/�total �288/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT4.7±0.6 OUR AVERAGE4.7±0.6 OUR AVERAGE4.7±0.6 OUR AVERAGE4.7±0.6 OUR AVERAGE4.4+0.7
−0.6±0.3 1 AUBERT 09AU BABR e+ e− → �(4S)6.1±1.0+1.1

−1.2 2 GARMASH 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.9±0.8±0.9 1 AUBERT 07F BABR Repl. by AUBERT 09AU
< 39 90 ASNER 96 CLEO e+ e− → �(4S)
< 320 90 ALBRECHT 91B ARG e+ e− → �(4S)
< 500 90 3 AVERY 89B CLEO e+ e− → �(4S)
<64000 90 4 AVERY 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of the B0 → K0π+π− �nal state de
ays.3AVERY 89B reports < 5.8 × 10−4 assuming the �(4S) de
ays 43% to B0B0. Weres
ale to 50%.4AVERY 87 reports < 0.08 assuming the �(4S) de
ays 40% to B0B0. We res
ale to50%.�(K∗(892)+π−)/�total �289/��(K∗(892)+π−)/�total �289/��(K∗(892)+π−)/�total �289/��(K∗(892)+π−)/�total �289/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT8.4±0.8 OUR AVERAGE8.4±0.8 OUR AVERAGE8.4±0.8 OUR AVERAGE8.4±0.8 OUR AVERAGE8.0±1.1±0.8 1,2 LEES 11 BABR e+ e− → �(4S)8.3+0.9

−0.8±0.8 2,3 AUBERT 09AU BABR e+ e− → �(4S)8.4±1.1+1.0
−0.9 3 GARMASH 07 BELL e+ e− → �(4S)16 +6

−5 ±2 2 ECKHART 02 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •12.6+2.7

−1.6±0.9 1,2 AUBERT 08AQ BABR Repl. by LEES 1111.0±1.5±0.71 2 AUBERT 06I BABR Repl. byAUBERT 09AU12.9±2.4±1.4 2 AUBERT,B 04O BABR Repl. by AUBERT 06I14.8+4.6
−4.4+2.8

−1.3 2 CHANG 04 BELL Repl. by GARMASH 07
< 72 90 ASNER 96 CLE2 e+ e− → �(4S)
<620 90 ALBRECHT 91B ARG e+ e− → �(4S)
<380 90 4 AVERY 89B CLEO e+ e− → �(4S)
<560 90 5 AVERY 87 CLEO e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Uses Dalitz plot analysis of the B0 → K0π+π− �nal state de
ays.4AVERY 89B reports < 4.4 × 10−4 assuming the �(4S) de
ays 43% to B0B0. Weres
ale to 50%.5AVERY 87 reports < 7× 10−4 assuming the �(4S) de
ays 40% to B0B0. We res
aleto 50%.

�(K∗0(1430)+π−)/�total �290/��(K∗0(1430)+π−)/�total �290/��(K∗0(1430)+π−)/�total �290/��(K∗0(1430)+π−)/�total �290/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT33 ±7 OUR AVERAGE33 ±7 OUR AVERAGE33 ±7 OUR AVERAGE33 ±7 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0.29.9+2.3
−1.7±3.6 1,2 AUBERT 09AU BABR e+ e− → �(4S)49.7±3.8+6.8

−8.2 2 GARMASH 07 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of the B0 → K0π+π− �nal state de
ays.�(K∗+x π−)/�total �291/��(K∗+x π−)/�total �291/��(K∗+x π−)/�total �291/��(K∗+x π−)/�total �291/�K∗+x stands for the possible 
andidates of K∗(1410), K∗0(1430) and K∗2(1430).VALUE (units 10−6) DOCUMENT ID TECN COMMENT5.1±1.5+0.6
−0.75.1±1.5+0.6
−0.75.1±1.5+0.6
−0.75.1±1.5+0.6
−0.7 1 CHANG 04 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(1410)+π−, K∗+→ K0π+)/�total �292/��(K∗(1410)+π−, K∗+→ K0π+)/�total �292/��(K∗(1410)+π−, K∗+→ K0π+)/�total �292/��(K∗(1410)+π−, K∗+→ K0π+)/�total �292/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<3.8<3.8<3.8<3.8 90 1 GARMASH 07 BELL e+ e− → �(4S)1Uses Dalitz plot analysis of the B0 → K0π+π− �nal state de
ays.�(f0(980)K0, f0 → π+π−)/�total �293/��(f0(980)K0, f0 → π+π−)/�total �293/��(f0(980)K0, f0 → π+π−)/�total �293/��(f0(980)K0, f0 → π+π−)/�total �293/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT7.0±0.9 OUR AVERAGE7.0±0.9 OUR AVERAGE7.0±0.9 OUR AVERAGE7.0±0.9 OUR AVERAGE6.9±0.8±0.6 1 AUBERT 09AU BABR e+ e− → �(4S)7.6±1.7+0.9
−1.3 2 GARMASH 07 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.5±0.7±0.6 1 AUBERT 06I BABR Repl. by AUBERT 09AU
<360 90 3 AVERY 89B CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of the B0 → K0π+π− �nal state de
ays.3AVERY 89B reports < 4.2 × 10−4 assuming the �(4S) de
ays 43% to B0B0. Weres
ale to 50%.�(f2(1270)K0)/�total �294/��(f2(1270)K0)/�total �294/��(f2(1270)K0)/�total �294/��(f2(1270)K0)/�total �294/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.7+1.0

−0.8±0.92.7+1.0
−0.8±0.92.7+1.0
−0.8±0.92.7+1.0
−0.8±0.9 1 AUBERT 09AU BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.5 90 2 GARMASH 07 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2GARMASH 07 reports B(B0 → f2(1270)K0)×B(f2(1270) → π+π−) < 1.4× 10−6using Dalitz plot analysis. We 
ompute B(B0 → f2(1270)K0) using the PDG valueB(f2(1270) → ππ) = 84.2× 10−2 and 2/3 for the π+π− fra
tion.�(fx (1300)K0, fx → π+π−)/�total �295/��(fx (1300)K0, fx → π+π−)/�total �295/��(fx (1300)K0, fx → π+π−)/�total �295/��(fx (1300)K0, fx → π+π−)/�total �295/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT1.81+0.55

−0.45±0.481.81+0.55
−0.45±0.481.81+0.55
−0.45±0.481.81+0.55
−0.45±0.48 1 AUBERT 09AU BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)0π0)/�total �296/��(K∗(892)0π0)/�total �296/��(K∗(892)0π0)/�total �296/��(K∗(892)0π0)/�total �296/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT3.3±0.5±0.43.3±0.5±0.43.3±0.5±0.43.3±0.5±0.4 1,2 LEES 11 BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.6±0.7±0.4 1,2 AUBERT 08AQ BABR Repl. by LEES 11
< 3.5 90 2 CHANG 04 BELL e+ e− → �(4S)
< 3.6 90 JESSOP 00 CLE2 e+ e− → �(4S)
<28 90 ASNER 96 CLE2 Repl. by JESSOP 001Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗2(1430)+π−)/�total �297/��(K∗2(1430)+π−)/�total �297/��(K∗2(1430)+π−)/�total �297/��(K∗2(1430)+π−)/�total �297/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 6< 6< 6< 6 90 1 GARMASH 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 16.2 90 2,3 AUBERT 08AQ BABR e+ e− → �(4S)
< 18 90 3 GARMASH 04 BELL Repl. by GARMASH 07
<2600 90 ALBRECHT 91B ARG e+ e− → �(4S)1GARMASH 07 reports B(B0 → K∗2(1430)+π−)×B(K∗+2 → K0π+) < 2.1 × 10−6using Dalitz plot analysis. We 
ompute B(B0 → K∗2(1430)+π−) using the PDG valueB(K∗2(1430) → K π) = 49.9× 10−2 and 2/3 for the K0π+ fra
tion.2Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.3Assumes equal produ
tion of B+ and B0 at the �(4S).



1237123712371237See key on page 601 MesonParti
le ListingsB0�(K∗(1680)+π−)/�total �298/��(K∗(1680)+π−)/�total �298/��(K∗(1680)+π−)/�total �298/��(K∗(1680)+π−)/�total �298/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<10<10<10<10 90 1 GARMASH 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<25 90 2,3 AUBERT 08AQ BABR e+ e− → �(4S)1GARMASH 07 reports B(B0 → K∗(1680)+π−)×B(K∗+ → K0π+) < 2.6 × 10−6using Dalitz plot analysis. We 
ompute B(B0 → K∗(1680)+π−) using the PDG valueB(K∗(1680) → K π)=38.7 × 10−2 and 2/3 for the K0π+ fra
tion.2Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.3Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+π−π+π−)/�total �299/��(K+π−π+π−)/�total �299/��(K+π−π+π−)/�total �299/��(K+π−π+π−)/�total �299/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.3× 10−4<2.3× 10−4<2.3× 10−4<2.3× 10−4 90 1 ADAM 96D DLPH e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.1× 10−4 90 2 ABREU 95N DLPH Sup. by ADAM 96D1ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12. Contributions from B0 andBs de
ays 
annot be separated. Limits are given for the weighted average of the de
ayrates for the two neutral B mesons.2Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.Contributions from B0 and B0s de
ays 
annot be separated. Limits are given for theweighted average of the de
ay rates for the two neutral B mesons.�(

ρ0K+π−)/�total �300/��(

ρ0K+π−)/�total �300/��(

ρ0K+π−)/�total �300/��(

ρ0K+π−)/�total �300/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.8±0.5±0.52.8±0.5±0.52.8±0.5±0.52.8±0.5±0.5 1,2 KYEONG 09 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Required 0.75 < mK+π− < 1.20 GeV/
2.�(f0(980)K+π−, f0 → ππ
)/�total �301/��(f0(980)K+π−, f0 → ππ
)/�total �301/��(f0(980)K+π−, f0 → ππ
)/�total �301/��(f0(980)K+π−, f0 → ππ
)/�total �301/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT1.4±0.4+0.3

−0.41.4±0.4+0.3
−0.41.4±0.4+0.3
−0.41.4±0.4+0.3
−0.4 1,2 KYEONG 09 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Required 0.75 < mK+K− < 1.2 GeV/
2.�(K+π−π+π− nonresonant)/�total �302/��(K+π−π+π− nonresonant)/�total �302/��(K+π−π+π− nonresonant)/�total �302/��(K+π−π+π− nonresonant)/�total �302/�VALUE CL% DOCUMENT ID TECN COMMENT

<2.1× 10−6<2.1× 10−6<2.1× 10−6<2.1× 10−6 90 1,2 KYEONG 09 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Required 0.55 < m
π+π− < 1.42 and 0.75 < mK+π− < 1.20 GeV/
2.�(K∗(892)0π+π−)/�total �303/��(K∗(892)0π+π−)/�total �303/��(K∗(892)0π+π−)/�total �303/��(K∗(892)0π+π−)/�total �303/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT54.5±2.9±4.354.5±2.9±4.354.5±2.9±4.354.5±2.9±4.3 1 AUBERT 07AS BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.5+1.1
−1.0+0.9

−1.6 1,2 KYEONG 09 BELL e+ e− → �(4S)
<1400 90 ALBRECHT 91E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Required 0.55 < m

π+π− < 1.42 GeV/
2.�(K∗(892)0 ρ0)/�total �304/��(K∗(892)0 ρ0)/�total �304/��(K∗(892)0 ρ0)/�total �304/��(K∗(892)0 ρ0)/�total �304/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT3.9±1.3 OUR AVERAGE3.9±1.3 OUR AVERAGE3.9±1.3 OUR AVERAGE3.9±1.3 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.5.1±0.6+0.6
−0.8 1 LEES 12K BABR e+ e− → �(4S)2.1+0.8

−0.7+0.9
−0.5 1 KYEONG 09 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.6±0.9±1.3 1 AUBERT,B 06G BABR Repl. by LEES 12K
< 34 90 2 GODANG 02 CLE2 e+ e− → �(4S)
<286 90 3 ABE 00C SLD e+ e− → Z
<460 90 ALBRECHT 91B ARG e+ e− → �(4S)
<580 90 4 AVERY 89B CLEO e+ e− → �(4S)
<960 90 5 AVERY 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes a heli
ity 00 
on�guration. For a heli
ity 11 
on�guration, the limit de
reasesto 2.4× 10−5.3ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.4AVERY 89B reports < 6.7 × 10−4 assuming the �(4S) de
ays 43% to B0B0. Weres
ale to 50%.5AVERY 87 reports < 1.2×10−3 assuming the �(4S) de
ays 40% to B0B0. We res
aleto 50%.

�(K∗(892)0 f0(980), f0 → ππ
)/�total �305/��(K∗(892)0 f0(980), f0 → ππ
)/�total �305/��(K∗(892)0 f0(980), f0 → ππ
)/�total �305/��(K∗(892)0 f0(980), f0 → ππ
)/�total �305/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT3.9+2.1

−1.8 OUR AVERAGE3.9+2.1
−1.8 OUR AVERAGE3.9+2.1
−1.8 OUR AVERAGE3.9+2.1
−1.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.9.5.7±0.6±0.4 1 LEES 12K BABR e+ e− → �(4S)1.4+0.6
−0.5+0.6

−0.4 1,2 KYEONG 09 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.3 90 1 AUBERT,B 06G BABR e+ e− → �(4S)
<170 90 3 AVERY 89B CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2The upper limit is 2.2× 10−6 at 90% CL.3AVERY 89B reports < 2.0 × 10−4 assuming the �(4S) de
ays 43% to B0B0. Weres
ale to 50%.�(K1(1270)+π−)/�total �306/��(K1(1270)+π−)/�total �306/��(K1(1270)+π−)/�total �306/��(K1(1270)+π−)/�total �306/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.0× 10−5<3.0× 10−5<3.0× 10−5<3.0× 10−5 90 1 AUBERT 10D BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K1(1400)+π−)/�total �307/��(K1(1400)+π−)/�total �307/��(K1(1400)+π−)/�total �307/��(K1(1400)+π−)/�total �307/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.7× 10−5<2.7× 10−5<2.7× 10−5<2.7× 10−5 90 1 AUBERT 10D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.1× 10−3 90 ALBRECHT 91B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(a1(1260)−K+)/�total �308/��(a1(1260)−K+)/�total �308/��(a1(1260)−K+)/�total �308/��(a1(1260)−K+)/�total �308/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT16.3±2.9±2.316.3±2.9±2.316.3±2.9±2.316.3±2.9±2.3 1,2 AUBERT 08F BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<230 90 3 ADAM 96D DLPH e+ e− → Z
<390 90 4 ABREU 95N DLPH Sup. by ADAM 96D1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes a±1 de
ays only to 3π and B(a±1 → π±π∓π±) = 0.5.3ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12. Contributions from B0 andBs de
ays 
annot be separated. Limits are given for the weighted average of the de
ayrates for the two neutral B mesons.4Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.Contributions from B0 and B0s de
ays 
annot be separated. Limits are given for theweighted average of the de
ay rates for the two neutral B mesons.�(K∗(892)+ ρ−

)/�total �309/��(K∗(892)+ ρ−
)/�total �309/��(K∗(892)+ ρ−
)/�total �309/��(K∗(892)+ ρ−
)/�total �309/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT10.3±2.3±1.310.3±2.3±1.310.3±2.3±1.310.3±2.3±1.3 1 LEES 12K BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<12.0 90 1 AUBERT,B 06G BABR Repl. by LEES 12K1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗0(1430)+ρ−

)/�total �310/��(K∗0(1430)+ρ−
)/�total �310/��(K∗0(1430)+ρ−
)/�total �310/��(K∗0(1430)+ρ−
)/�total �310/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT28±10±628±10±628±10±628±10±6 1 LEES 12K BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K1(1400)0ρ0)/�total �311/��(K1(1400)0ρ0)/�total �311/��(K1(1400)0ρ0)/�total �311/��(K1(1400)0ρ0)/�total �311/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.0× 10−3<3.0× 10−3<3.0× 10−3<3.0× 10−3 90 ALBRECHT 91B ARG e+ e− → �(4S)�(K∗0(1430)0ρ0)/�total �312/��(K∗0(1430)0ρ0)/�total �312/��(K∗0(1430)0ρ0)/�total �312/��(K∗0(1430)0ρ0)/�total �312/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT27±4±427±4±427±4±427±4±4 1 LEES 12K BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗0(1430)0 f0(980), f0 → ππ
)/�total �313/��(K∗0(1430)0 f0(980), f0 → ππ
)/�total �313/��(K∗0(1430)0 f0(980), f0 → ππ
)/�total �313/��(K∗0(1430)0 f0(980), f0 → ππ
)/�total �313/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.7±0.7±0.62.7±0.7±0.62.7±0.7±0.62.7±0.7±0.6 1 LEES 12K BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗2(1430)0 f0(980), f0 → ππ
)/�total �314/��(K∗2(1430)0 f0(980), f0 → ππ
)/�total �314/��(K∗2(1430)0 f0(980), f0 → ππ
)/�total �314/��(K∗2(1430)0 f0(980), f0 → ππ
)/�total �314/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT8.6±1.7±1.08.6±1.7±1.08.6±1.7±1.08.6±1.7±1.0 1 LEES 12K BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).



1238123812381238Meson Parti
le ListingsB0�(K+K−)/�total �315/��(K+K−)/�total �315/��(K+K−)/�total �315/��(K+K−)/�total �315/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT0.13±0.05 OUR AVERAGE0.13±0.05 OUR AVERAGE0.13±0.05 OUR AVERAGE0.13±0.05 OUR AVERAGE0.10±0.08±0.04 1,2 DUH 13 BELL e+ e− → �(4S)0.12+0.08
−0.07±0.01 3 AAIJ 12AR LHCB pp at 7 TeV0.23±0.10±0.10 4 AALTONEN 12L CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.7 90 5 AALTONEN 09C CDF Repl. by AALTONEN 12L
< 0.5 90 2 AUBERT 07B BABR e+ e− → �(4S)
< 0.41 90 2 LIN 07 BELL Repl. by DUH 13
< 1.8 90 6 ABULENCIA,A 06D CDF Repl. by AALTONEN 09C
< 0.37 90 ABE 05G BELL Repl. by LIN 07
< 0.7 90 CHAO 04 BELL e+ e− → �(4S)
< 0.8 90 2 BORNHEIM 03 CLE2 e+ e− → �(4S)
< 0.6 90 2 AUBERT 02Q BABR e+ e− → �(4S)
< 0.9 90 2 CASEY 02 BELL e+ e− → �(4S)
< 2.7 90 2 ABE 01H BELL e+ e− → �(4S)
< 2.5 90 2 AUBERT 01E BABR e+ e− → �(4S)
< 66 90 7 ABE 00C SLD e+ e− → Z
< 1.9 90 2 CRONIN-HEN...00 CLE2 e+ e− → �(4S)
< 4.3 90 GODANG 98 CLE2 Repl. by CRONIN-HENNESSY 00
< 46 8 ADAM 96D DLPH e+ e− → Z
< 4 90 ASNER 96 CLE2 Repl. by GODANG 98
< 18 90 9 BUSKULIC 96V ALEP e+ e− → Z
<120 90 10 ABREU 95N DLPH Sup. by ADAM 96D
< 7 90 2 BATTLE 93 CLE2 e+ e− → �(4S)1DUH 13 reports also for the same data B(B0 → K+K−) < 0.20× 10−6 at 90% CL.2Assumes equal produ
tion of B+ and B0 at the �(4S).3AAIJ 12AR reports [�(B0 → K+K−)/�total℄ / [B(B0s → K+K−)℄ / [�(b → B0s )/�(b → B0)℄ = 0.018+0.008

−0.007 ± 0.009 whi
h we multiply by our best values B(B0s →K+K−) = (2.52 ± 0.17) × 10−5, �(b → B0s )/�(b → B0) = 0.256 ± 0.014. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best values.4Reported a 
entral value of (0.23 ± 0.10 ± 0.10) × 10−6 using B(B0 → K+π−) =(19.4 ± 0.6)× 10−6.5Obtains this result from B(K+K−)/B(K+π−) = 0.020 ± 0.008 ± 0.006, assumingB(B0 → K+π−) = (19.4 ± 0.6)× 10−6.6ABULENCIA,A 06D obtains this from �(K+K−)/�(K+ π−) < 0.10 at 90% CL, as-suming B(B0 → K+π−) = (18.9 ± 0.7) × 10−6.7ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8
−2.2)% and fBs=(10.5+1.8

−2.2)%.8ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12. Contributions from B0 andBs de
ays 
annot be separated. Limits are given for the weighted average of the de
ayrates for the two neutral B mesons.9BUSKULIC 96V assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons.10Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.Contributions from B0 and B0s de
ays 
annot be separated. Limits are given for theweighted average of the de
ay rates for the two neutral B mesons.�(K0K0)/�total �316/��(K0K0)/�total �316/��(K0K0)/�total �316/��(K0K0)/�total �316/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.21±0.16 OUR AVERAGE1.21±0.16 OUR AVERAGE1.21±0.16 OUR AVERAGE1.21±0.16 OUR AVERAGE1.26±0.19±0.05 1 DUH 13 BELL e+ e− → �(4S)1.08±0.28±0.11 1 AUBERT,BE 06C BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.87+0.25

−0.20±0.09 1 LIN 07 BELL Repl. by DUH 130.8 ±0.3 ±0.9 1 ABE 05G BELL Repl. by LIN 071.19+0.40
−0.35±0.13 1 AUBERT,BE 05E BABR Repl. by AUBERT,BE 06C

< 1.8 90 1 AUBERT 04M BABR e+ e− → �(4S)
< 1.5 90 1 CHAO 04 BELL Repl. by ABE 05G
< 3.3 90 1 BORNHEIM 03 CLE2 e+ e− → �(4S)
< 4.1 90 1 CASEY 02 BELL e+ e− → �(4S)
<17 90 GODANG 98 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0K−π+)/�total �317/��(K0K−π+)/�total �317/��(K0K−π+)/�total �317/��(K0K−π+)/�total �317/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT6.5±0.8 OUR FIT6.5±0.8 OUR FIT6.5±0.8 OUR FIT6.5±0.8 OUR FIT6.4±1.0±0.66.4±1.0±0.66.4±1.0±0.66.4±1.0±0.6 1 DEL-AMO-SA...10E BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<18 90 1 GARMASH 04 BELL e+ e− → �(4S)
<21 90 1 ECKHART 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)±K∓)/�total �318/��(K∗(892)±K∓)/�total �318/��(K∗(892)±K∓)/�total �318/��(K∗(892)±K∓)/�total �318/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.4× 10−6<0.4× 10−6<0.4× 10−6<0.4× 10−6 90 AAIJ 14BMLHCB pp at 7 TeV

�(K0K−π+)/�(K0π+π−) �317/�286�(K0K−π+)/�(K0π+π−) �317/�286�(K0K−π+)/�(K0π+π−) �317/�286�(K0K−π+)/�(K0π+π−) �317/�286VALUE DOCUMENT ID TECN COMMENT0.126±0.015 OUR FIT0.126±0.015 OUR FIT0.126±0.015 OUR FIT0.126±0.015 OUR FIT0.128±0.017±0.0090.128±0.017±0.0090.128±0.017±0.0090.128±0.017±0.009 AAIJ 13BP LHCB pp at 7 TeV
[�(K∗0K0)+�(K∗0K0)]/�total �319/�[�(K∗0K0)+�(K∗0K0)]/�total �319/�[�(K∗0K0)+�(K∗0K0)]/�total �319/�[�(K∗0K0)+�(K∗0K0)]/�total �319/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.96<0.96<0.96<0.96 90 1 AAIJ 16 LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.9 90 2 AUBERT,BE 06N BABR e+ e− → �(4S)1Assumes B(B0 → K0π+π−) = (4.96 ± 0.20)× 10−5.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+K−π0)/�total �320/��(K+K−π0)/�total �320/��(K+K−π0)/�total �320/��(K+K−π0)/�total �320/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.17±0.60±0.242.17±0.60±0.242.17±0.60±0.242.17±0.60±0.24 1 GAUR 13 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<19 90 1 ECKHART 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0S K0S π0)/�total �321/��(K0S K0S π0)/�total �321/��(K0S K0S π0)/�total �321/��(K0S K0S π0)/�total �321/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.9× 10−6<0.9× 10−6<0.9× 10−6<0.9× 10−6 90 1 AUBERT 09AD BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0S K0S η

)/�total �322/��(K0S K0S η
)/�total �322/��(K0S K0S η
)/�total �322/��(K0S K0S η
)/�total �322/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.0× 10−6<1.0× 10−6<1.0× 10−6<1.0× 10−6 90 1 AUBERT 09AD BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0S K0S η′
)/�total �323/��(K0S K0S η′
)/�total �323/��(K0S K0S η′
)/�total �323/��(K0S K0S η′
)/�total �323/�VALUE CL% DOCUMENT ID TECN COMMENT

<2.0× 10−6<2.0× 10−6<2.0× 10−6<2.0× 10−6 90 1 AUBERT 09AD BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0K+K−)/�total �324/��(K0K+K−)/�total �324/��(K0K+K−)/�total �324/��(K0K+K−)/�total �324/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT24.9±3.1 OUR FIT24.9±3.1 OUR FIT24.9±3.1 OUR FIT24.9±3.1 OUR FIT Error in
ludes s
ale fa
tor of 3.0.26.6±1.2 OUR AVERAGE26.6±1.2 OUR AVERAGE26.6±1.2 OUR AVERAGE26.6±1.2 OUR AVERAGE26.5±0.9±0.8 1,2 LEES 12O BABR e+ e− → �(4S)28.3±3.3±4.0 1 GARMASH 04 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •23.8±2.0±1.6 1 AUBERT,B 04V BABR Repl. by LEES 12O
<1300 90 ALBRECHT 91E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2All intermediate 
harmonium and 
harm resonan
es are removed, ex
ept of χ
0.�(K0K+K−)/�(K0π+π−) �324/�286�(K0K+K−)/�(K0π+π−) �324/�286�(K0K+K−)/�(K0π+π−) �324/�286�(K0K+K−)/�(K0π+π−) �324/�286VALUE DOCUMENT ID TECN COMMENT0.48 ±0.06 OUR FIT0.48 ±0.06 OUR FIT0.48 ±0.06 OUR FIT0.48 ±0.06 OUR FIT Error in
ludes s
ale fa
tor of 2.7.0.385±0.031±0.0230.385±0.031±0.0230.385±0.031±0.0230.385±0.031±0.023 AAIJ 13BP LHCB pp at 7 TeV�(K0φ

)/�total �325/��(K0φ
)/�total �325/��(K0φ
)/�total �325/��(K0φ
)/�total �325/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT7.3±0.7 OUR AVERAGE7.3±0.7 OUR AVERAGE7.3±0.7 OUR AVERAGE7.3±0.7 OUR AVERAGE7.1±0.6+0.4

−0.3 1 LEES 12O BABR e+ e− → �(4S)9.0+2.2
−1.8±0.7 1 CHEN 03B BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.4+1.5
−1.3±0.5 1 AUBERT 04A BABR Repl. by LEES 12O8.1+3.1
−2.5±0.8 1 AUBERT 01D BABR e+ e− → �(4S)

< 12.3 90 1 BRIERE 01 CLE2 e+ e− → �(4S)
< 31 90 1 BERGFELD 98 CLE2
< 88 90 ASNER 96 CLE2 e+ e− → �(4S)
< 720 90 ALBRECHT 91B ARG e+ e− → �(4S)
< 420 90 2 AVERY 89B CLEO e+ e− → �(4S)
<1000 90 3 AVERY 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2AVERY 89B reports < 4.9 × 10−4 assuming the �(4S) de
ays 43% to B0B0. Weres
ale to 50%.3AVERY 87 reports < 1.3×10−3 assuming the �(4S) de
ays 40% to B0B0. We res
aleto 50%.�(f0(980)K0, f0 → K+K−)/�total �326/��(f0(980)K0, f0 → K+K−)/�total �326/��(f0(980)K0, f0 → K+K−)/�total �326/��(f0(980)K0, f0 → K+K−)/�total �326/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT7.0+2.6

−1.8±2.47.0+2.6
−1.8±2.47.0+2.6
−1.8±2.47.0+2.6
−1.8±2.4 1 LEES 12O BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).



1239123912391239See key on page 601 MesonParti
le ListingsB0�(f0(1500)K0)/�total �327/��(f0(1500)K0)/�total �327/��(f0(1500)K0)/�total �327/��(f0(1500)K0)/�total �327/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT13.3+5.8
−4.4±3.213.3+5.8
−4.4±3.213.3+5.8
−4.4±3.213.3+5.8
−4.4±3.2 1 LEES 12O BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f ′2(1525)0K0)/�total �328/��(f ′2(1525)0K0)/�total �328/��(f ′2(1525)0K0)/�total �328/��(f ′2(1525)0K0)/�total �328/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT0.29+0.27
−0.18±0.360.29+0.27
−0.18±0.360.29+0.27
−0.18±0.360.29+0.27
−0.18±0.36 1 LEES 12O BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f0(1710)K0, f0 → K+K−)/�total �329/��(f0(1710)K0, f0 → K+K−)/�total �329/��(f0(1710)K0, f0 → K+K−)/�total �329/��(f0(1710)K0, f0 → K+K−)/�total �329/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT4.4±0.7±0.54.4±0.7±0.54.4±0.7±0.54.4±0.7±0.5 1 LEES 12O BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0K+K−nonresonant)/�total �330/��(K0K+K−nonresonant)/�total �330/��(K0K+K−nonresonant)/�total �330/��(K0K+K−nonresonant)/�total �330/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT33±5±933±5±933±5±933±5±9 1 LEES 12O BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0S K0S K0S)/�total �331/��(K0S K0S K0S)/�total �331/��(K0S K0S K0S)/�total �331/��(K0S K0S K0S)/�total �331/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT6.0 ±0.5 OUR AVERAGE6.0 ±0.5 OUR AVERAGE6.0 ±0.5 OUR AVERAGE6.0 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.6.19±0.48±0.19 1 LEES 12I BABR e+ e− → �(4S)4.2 +1.6
−1.3 ±0.8 1 GARMASH 04 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.9 +0.9
−0.8 ±0.6 1 AUBERT,B 05 BABR Repl. by LEES 12I1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f0(980)K0, f0 → K0S K0S)/�total �332/��(f0(980)K0, f0 → K0S K0S)/�total �332/��(f0(980)K0, f0 → K0S K0S)/�total �332/��(f0(980)K0, f0 → K0S K0S)/�total �332/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.7+1.3

−1.2±1.32.7+1.3
−1.2±1.32.7+1.3
−1.2±1.32.7+1.3
−1.2±1.3 1,2 LEES 12I BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of the B0 → K0S K0S K0S de
ay.�(f0(1710)K0, f0 → K0S K0S)/�total �333/��(f0(1710)K0, f0 → K0S K0S)/�total �333/��(f0(1710)K0, f0 → K0S K0S)/�total �333/��(f0(1710)K0, f0 → K0S K0S)/�total �333/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT0.50+0.46
−0.24±0.110.50+0.46
−0.24±0.110.50+0.46
−0.24±0.110.50+0.46
−0.24±0.11 1,2 LEES 12I BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of the B0 → K0S K0S K0S de
ay.�(f0(2010)K0, f0 → K0S K0S)/�total �334/��(f0(2010)K0, f0 → K0S K0S)/�total �334/��(f0(2010)K0, f0 → K0S K0S)/�total �334/��(f0(2010)K0, f0 → K0S K0S)/�total �334/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT0.54+0.21
−0.20±0.520.54+0.21
−0.20±0.520.54+0.21
−0.20±0.520.54+0.21
−0.20±0.52 1,2 LEES 12I BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of the B0 → K0S K0S K0S de
ay.�(K0S K0S K0S nonresonant)/�total �335/��(K0S K0S K0S nonresonant)/�total �335/��(K0S K0S K0S nonresonant)/�total �335/��(K0S K0S K0S nonresonant)/�total �335/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT13.3+2.2
−2.3±2.213.3+2.2
−2.3±2.213.3+2.2
−2.3±2.213.3+2.2
−2.3±2.2 1,2 LEES 12I BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses Dalitz plot analysis of the B0 → K0S K0S K0S de
ay.�(K0S K0S K0L)/�total �336/��(K0S K0S K0L)/�total �336/��(K0S K0S K0L)/�total �336/��(K0S K0S K0L)/�total �336/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<16<16<16<16 90 1 AUBERT,B 06R BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)0K+K−)/�total �337/��(K∗(892)0K+K−)/�total �337/��(K∗(892)0K+K−)/�total �337/��(K∗(892)0K+K−)/�total �337/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT27.5±1.3±2.227.5±1.3±2.227.5±1.3±2.227.5±1.3±2.2 1 AUBERT 07AS BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<610 90 ALBRECHT 91E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)0φ

)/�total �338/��(K∗(892)0φ
)/�total �338/��(K∗(892)0φ
)/�total �338/��(K∗(892)0φ
)/�total �338/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT10.0±0.5 OUR FIT10.0±0.5 OUR FIT10.0±0.5 OUR FIT10.0±0.5 OUR FIT10.0±0.5 OUR AVERAGE10.0±0.5 OUR AVERAGE10.0±0.5 OUR AVERAGE10.0±0.5 OUR AVERAGE10.4±0.5±0.6 1 PRIM 13 BELL e+ e− → �(4S)9.7±0.5±0.5 1 AUBERT 08BG BABR e+ e− → �(4S)11.5+4.5

−3.7+1.8
−1.7 1 BRIERE 01 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •9.2±0.7±0.6 1 AUBERT 07D BABR Repl. by AUBERT 08BG9.2±0.9±0.5 1 AUBERT,B 04W BABR Repl. by AUBERT 07D11.2±1.3±0.8 1 AUBERT 03V BABR Repl. by AUBERT,B 04W10.0+1.6
−1.5+0.7

−0.8 1 CHEN 03B BELL Repl. by PRIM 138.7+2.5
−2.1±1.1 1 AUBERT 01D BABR Repl. by AUBERT 03V

<384 90 2 ABE 00C SLD e+ e− → Z
< 21 90 1 BERGFELD 98 CLE2
< 43 90 ASNER 96 CLE2 e+ e− → �(4S)
<320 90 ALBRECHT 91B ARG e+ e− → �(4S)
<380 90 3 AVERY 89B CLEO e+ e− → �(4S)
<380 90 4 AVERY 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.3AVERY 89B reports < 4.4 × 10−4 assuming the �(4S) de
ays 43% to B0B0. Weres
ale to 50%.4AVERY 87 reports < 4.7×10−4 assuming the �(4S) de
ays 40% to B0B0. We res
aleto 50%.�(K+K−π+π−nonresonant)/�total �339/��(K+K−π+π−nonresonant)/�total �339/��(K+K−π+π−nonresonant)/�total �339/��(K+K−π+π−nonresonant)/�total �339/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<71.7<71.7<71.7<71.7 90 1,2 CHIANG 10 BELL e+ e− → �(4S)1Measured in the range 0.7< mK π < 1.7 and 
orre
ted using PS assumption for the fullK π mass range.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)0K−π+)/�total �340/��(K∗(892)0K−π+)/�total �340/��(K∗(892)0K−π+)/�total �340/��(K∗(892)0K−π+)/�total �340/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT4.5 ±1.3 OUR AVERAGE4.5 ±1.3 OUR AVERAGE4.5 ±1.3 OUR AVERAGE4.5 ±1.3 OUR AVERAGE2.11+5.63
−5.26+4.85

−4.75 1,2 CHIANG 10 BELL e+ e− → �(4S)4.6 ±1.1 ±0.8 2 AUBERT 07AS BABR e+ e− → �(4S)1Measured in the range 0.7< mK π < 1.7 and 
orre
ted using PS assumption for the fullK π mass range. The quoted result is equivalent to the upper limit of < 13.9× 10−6 at90% CL.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)0K∗(892)0)/�total �341/��(K∗(892)0K∗(892)0)/�total �341/��(K∗(892)0K∗(892)0)/�total �341/��(K∗(892)0K∗(892)0)/�total �341/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT0.8 ±0.5 OUR AVERAGE0.8 ±0.5 OUR AVERAGE0.8 ±0.5 OUR AVERAGE0.8 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2.0.26+0.33
−0.29+0.10

−0.08 1,2 CHIANG 10 BELL e+ e− → �(4S)1.28+0.35
−0.30±0.11 2 AUBERT 08I BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 22 90 3 GODANG 02 CLE2 e+ e− → �(4S)
<469 90 4 ABE 00C SLD e+ e− → Z1Measured in the range 0.7< mK π < 1.7 and 
orre
ted using PS assumption for the fullK π mass range. The quoted result is equivalent to the upper limit of < 0.8× 10−6 at90% CL.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Assumes a heli
ity 00 
on�guration. For a heli
ity 11 
on�guration, the limit de
reasesto 1.9× 10−5.4ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.�(K+K+π−π−nonresonant)/�total �342/��(K+K+π−π−nonresonant)/�total �342/��(K+K+π−π−nonresonant)/�total �342/��(K+K+π−π−nonresonant)/�total �342/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<6.0<6.0<6.0<6.0 90 1 CHIANG 10 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)0K+π−)/�total �343/��(K∗(892)0K+π−)/�total �343/��(K∗(892)0K+π−)/�total �343/��(K∗(892)0K+π−)/�total �343/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<2.2<2.2<2.2<2.2 90 1 AUBERT 07AS BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.6 90 1 CHIANG 10 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)0K∗(892)0)/�total �344/��(K∗(892)0K∗(892)0)/�total �344/��(K∗(892)0K∗(892)0)/�total �344/��(K∗(892)0K∗(892)0)/�total �344/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 0.2< 0.2< 0.2< 0.2 90 1 CHIANG 10 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.41 90 1 AUBERT 08I BABR e+ e− → �(4S)
<37 90 2 GODANG 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes a heli
ity 00 
on�guration. For a heli
ity 11 
on�guration, the limit de
reasesto 2.9× 10−5.



1240124012401240MesonParti
le ListingsB0�(K∗(892)+K∗(892)−)/�total �345/��(K∗(892)+K∗(892)−)/�total �345/��(K∗(892)+K∗(892)−)/�total �345/��(K∗(892)+K∗(892)−)/�total �345/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 2.0< 2.0< 2.0< 2.0 90 1 AUBERT 08AP BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<141 90 2 GODANG 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes a heli
ity 00 
on�guration. For a heli
ity 11 
on�guration, the limit de
reasesto 8.9× 10−5.�(K1(1400)0φ

)/�total �346/��(K1(1400)0φ
)/�total �346/��(K1(1400)0φ
)/�total �346/��(K1(1400)0φ
)/�total �346/�VALUE CL% DOCUMENT ID TECN COMMENT

<5.0× 10−3<5.0× 10−3<5.0× 10−3<5.0× 10−3 90 ALBRECHT 91B ARG e+ e− → �(4S)�(

φ(K π)∗00 )/�total �347/��(

φ(K π)∗00 )/�total �347/��(

φ(K π)∗00 )/�total �347/��(

φ(K π)∗00 )/�total �347/�This de
ay refers to the 
oherent sum of resonant and nonresonant JP = 0+ K π
omponents with 1.13 < mK π < 1.53 GeV/
2.VALUE (units 10−6) DOCUMENT ID TECN COMMENT4.3±0.4 OUR AVERAGE4.3±0.4 OUR AVERAGE4.3±0.4 OUR AVERAGE4.3±0.4 OUR AVERAGE4.3±0.4±0.4 1 PRIM 13 BELL e+ e− → �(4S)4.3±0.6±0.4 1 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.0±0.8±0.3 1 AUBERT 07D BABR Repl. by AUBERT 08BG1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φ(K π)∗00 (1.60<mK π <2.15))/�total �348/��(

φ(K π)∗00 (1.60<mK π <2.15))/�total �348/��(

φ(K π)∗00 (1.60<mK π <2.15))/�total �348/��(

φ(K π)∗00 (1.60<mK π <2.15))/�total �348/�This de
ay refers to the 
oherent sum of resonant and nonresonant JP = 0+ K π
omponents with 1.60 < mK π < 2.15 GeV/
2.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.7<1.7<1.7<1.7 90 1 AUBERT 07AO BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗0(1430)0K−π+)/�total �349/��(K∗0(1430)0K−π+)/�total �349/��(K∗0(1430)0K−π+)/�total �349/��(K∗0(1430)0K−π+)/�total �349/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<31.8<31.8<31.8<31.8 90 1,2 CHIANG 10 BELL e+ e− → �(4S)1Measured in the range 0.7< mK π < 1.7 and 
orre
ted using PS assumption for the fullK π mass range.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗0(1430)0K∗(892)0)/�total �350/��(K∗0(1430)0K∗(892)0)/�total �350/��(K∗0(1430)0K∗(892)0)/�total �350/��(K∗0(1430)0K∗(892)0)/�total �350/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<3.3<3.3<3.3<3.3 90 1,2 CHIANG 10 BELL e+ e− → �(4S)1Measured in the range 0.7< mK π < 1.7 and 
orre
ted using PS assumption for the fullK π mass range.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗0(1430)0K∗0(1430)0)/�total �351/��(K∗0(1430)0K∗0(1430)0)/�total �351/��(K∗0(1430)0K∗0(1430)0)/�total �351/��(K∗0(1430)0K∗0(1430)0)/�total �351/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<8.4<8.4<8.4<8.4 90 1,2 CHIANG 10 BELL e+ e− → �(4S)1Measured in the range 0.7< mK π < 1.7 and 
orre
ted using PS assumption for the fullK π mass range.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗0(1430)0φ

)/�total �352/��(K∗0(1430)0φ
)/�total �352/��(K∗0(1430)0φ
)/�total �352/��(K∗0(1430)0φ
)/�total �352/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT3.9±0.5±0.63.9±0.5±0.63.9±0.5±0.63.9±0.5±0.6 1 AUBERT 08BG BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.6±0.7±0.6 1 AUBERT 07D BABR Repl. by AUBERT 08BGseen 2 AUBERT,B 04W BABR Repl. by AUBERT 07D1Assumes equal produ
tion of B+ and B0 at the �(4S).2Observed 181 ± 17 events with statisti
al signi�
an
e greater than 10 σ.�(K∗0(1430)0K∗(892)0)/�total �353/��(K∗0(1430)0K∗(892)0)/�total �353/��(K∗0(1430)0K∗(892)0)/�total �353/��(K∗0(1430)0K∗(892)0)/�total �353/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.7<1.7<1.7<1.7 90 1 CHIANG 10 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗0(1430)0K∗0(1430)0)/�total �354/��(K∗0(1430)0K∗0(1430)0)/�total �354/��(K∗0(1430)0K∗0(1430)0)/�total �354/��(K∗0(1430)0K∗0(1430)0)/�total �354/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<4.7<4.7<4.7<4.7 90 1 CHIANG 10 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(1680)0φ

)/�total �355/��(K∗(1680)0φ
)/�total �355/��(K∗(1680)0φ
)/�total �355/��(K∗(1680)0φ
)/�total �355/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<3.5<3.5<3.5<3.5 90 1 AUBERT 07AO BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(1780)0φ
)/�total �356/��(K∗(1780)0φ
)/�total �356/��(K∗(1780)0φ
)/�total �356/��(K∗(1780)0φ
)/�total �356/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<2.7<2.7<2.7<2.7 90 1 AUBERT 07AO BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).

�(K∗(2045)0φ
)/�total �357/��(K∗(2045)0φ
)/�total �357/��(K∗(2045)0φ
)/�total �357/��(K∗(2045)0φ
)/�total �357/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<15.3<15.3<15.3<15.3 90 1 AUBERT 07AO BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗2(1430)0ρ0)/�total �358/��(K∗2(1430)0ρ0)/�total �358/��(K∗2(1430)0ρ0)/�total �358/��(K∗2(1430)0ρ0)/�total �358/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.1× 103<1.1× 103<1.1× 103<1.1× 103 90 ALBRECHT 91B ARG e+ e− → �(4S)�(K∗2(1430)0φ

)/�total �359/��(K∗2(1430)0φ
)/�total �359/��(K∗2(1430)0φ
)/�total �359/��(K∗2(1430)0φ
)/�total �359/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT6.8±0.9 OUR AVERAGE6.8±0.9 OUR AVERAGE6.8±0.9 OUR AVERAGE6.8±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.5.5+0.9

−0.7±1.0 1 PRIM 13 BELL e+ e− → �(4S)7.5±0.9±0.5 1 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •7.8±1.1±0.6 1 AUBERT 07D BABR Repl. by AUBERT 08BGseen 2 AUBERT,B 04W BABR Repl. by AUBERT 07D
<1400 90 ALBRECHT 91B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2The angular distribution of B → φK∗(1430) provides eviden
e with statisti
al signi�-
an
e of 3.2 σ.�(K0φφ

)/�total �360/��(K0φφ
)/�total �360/��(K0φφ
)/�total �360/��(K0φφ
)/�total �360/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT4.5±0.8±0.34.5±0.8±0.34.5±0.8±0.34.5±0.8±0.3 1 LEES 11A BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.1+1.7
−1.4±0.4 1 AUBERT,BE 06H BABR Repl. by LEES 11A1Assumes equal produ
tion of B0 and B+ at the �(4S) and for a φφ invariant massbelow 2.85 GeV/
2.�(

η′ η′K0)/�total �361/��(

η′ η′K0)/�total �361/��(

η′ η′K0)/�total �361/��(

η′ η′K0)/�total �361/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<31<31<31<31 90 1 AUBERT,B 06P BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ηK0 γ
)/�total �362/��(

ηK0 γ
)/�total �362/��(

ηK0 γ
)/�total �362/��(

ηK0 γ
)/�total �362/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT7.6±1.8 OUR AVERAGE7.6±1.8 OUR AVERAGE7.6±1.8 OUR AVERAGE7.6±1.8 OUR AVERAGE7.1+2.1

−2.0±0.4 1,2 AUBERT 09 BABR e+ e− → �(4S)8.7+3.1
−2.7+1.9

−1.6 2,3 NISHIDA 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •11.3+2.8

−1.6±0.6 1,2 AUBERT,B 06M BABR Repl. by AUBERT 091mηK < 3.25 GeV/
2.2Assumes equal produ
tion of B+ and B0 at the �(4S).3mηK < 2.4 GeV/
2�(

η′K0γ
)/�total �363/��(

η′K0γ
)/�total �363/��(

η′K0γ
)/�total �363/��(

η′K0γ
)/�total �363/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<6.4<6.4<6.4<6.4 90 1,2 WEDD 10 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.6 90 1,3 AUBERT,B 06M BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2m

η′K < 3.4 GeV/
2.3m
η′K < 3.25 GeV/
2.�(K0φγ

)/�total �364/��(K0φγ
)/�total �364/��(K0φγ
)/�total �364/��(K0φγ
)/�total �364/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.74±0.60±0.322.74±0.60±0.322.74±0.60±0.322.74±0.60±0.32 1 SAHOO 11A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.7 90 1 AUBERT 07Q BABR e+ e− → �(4S)
<8.3 90 1 DRUTSKOY 04 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at �(4S).�(K+π− γ

)/�total �365/��(K+π− γ
)/�total �365/��(K+π− γ
)/�total �365/��(K+π− γ
)/�total �365/�VALUE DOCUMENT ID TECN COMMENT(4.6+1.3

−1.2+0.5
−0.7)× 10−6(4.6+1.3

−1.2+0.5
−0.7)× 10−6(4.6+1.3

−1.2+0.5
−0.7)× 10−6(4.6+1.3

−1.2+0.5
−0.7)× 10−6 1,2 NISHIDA 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2 1.25 GeV/
2 <MK π < 1.6 GeV/
2�(K∗(892)0 γ

)/�total �366/��(K∗(892)0 γ
)/�total �366/��(K∗(892)0 γ
)/�total �366/��(K∗(892)0 γ
)/�total �366/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT43.3± 1.5 OUR AVERAGE43.3± 1.5 OUR AVERAGE43.3± 1.5 OUR AVERAGE43.3± 1.5 OUR AVERAGE44.7± 1.0±1.6 1 AUBERT 09AO BABR e+ e− → �(4S)40.1± 2.1±1.7 2 NAKAO 04 BELL e+ e− → �(4S)45.5+ 7.2

− 6.8±3.4 3 COAN 00 CLE2 e+ e− → �(4S)



1241124112411241See key on page 601 MesonParti
le ListingsB0
• • • We do not use the following data for averages, �ts, limits, et
. • • •39.2± 2.0±2.4 4 AUBERT,BE 04A BABR Repl. by AUBERT 09AO
< 110 90 ACOSTA 02G CDF pp at 1.8 TeV42.3± 4.0±2.2 2 AUBERT 02C BABR Repl. by AUBERT,BE 04A
< 210 90 5 ADAM 96D DLPH e+ e− → Z40 ±17 ±8 6 AMMAR 93 CLE2 Repl. by COAN 00
< 420 90 ALBRECHT 89G ARG e+ e− → �(4S)
< 240 90 7 AVERY 89B CLEO e+ e− → �(4S)
<2100 90 AVERY 87 CLEO e+ e− → �(4S)1Uses B(�(4S) → B+B−) = (51.6± 0.6)% and B(�(4S) → B0B0) = (48.4± 0.6)%.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Assumes equal produ
tion of B+ and B0 at the �(4S). No eviden
e for a nonresonantK πγ 
ontamination was seen; the 
entral value assumes no 
ontamination.4Uses the produ
tion ratio of 
harged and neutral B from �(4S) de
ays R+/0 = 1.006±0.048.5ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12.6AMMAR 93 observed 6.6 ± 2.8 events above ba
kground.7AVERY 89B reports < 2.8 × 10−4 assuming the �(4S) de
ays 43% to B0B0. Weres
ale to 50%.�(K∗(1410)γ)/�total �367/��(K∗(1410)γ)/�total �367/��(K∗(1410)γ)/�total �367/��(K∗(1410)γ)/�total �367/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.3× 10−4<1.3× 10−4<1.3× 10−4<1.3× 10−4 90 1 NISHIDA 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K+π− γ nonresonant)/�total �368/��(K+π− γ nonresonant)/�total �368/��(K+π− γ nonresonant)/�total �368/��(K+π− γ nonresonant)/�total �368/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.6× 10−6<2.6× 10−6<2.6× 10−6<2.6× 10−6 90 1,2 NISHIDA 02 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2 1.25 GeV/
2 <MK π < 1.6 GeV/
2�(K∗(892)0X (214), X → µ+µ−)/�total �369/��(K∗(892)0X (214), X → µ+µ−)/�total �369/��(K∗(892)0X (214), X → µ+µ−)/�total �369/��(K∗(892)0X (214), X → µ+µ−)/�total �369/�X (214) is a hypotheti
al parti
le of mass 214 MeV/
2 reported by the HyperCPexperiment (PARK 05)VALUE (units 10−8) CL% DOCUMENT ID TECN COMMENT
<2.26<2.26<2.26<2.26 90 1,2 HYUN 10 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Based on s
alar nature of X parti
le. With a ve
tor X assumption, the upper limit is2.27 × 10−8.�(K0π+π− γ

)/�total �370/��(K0π+π− γ
)/�total �370/��(K0π+π− γ
)/�total �370/��(K0π+π− γ
)/�total �370/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.95±0.22 OUR AVERAGE1.95±0.22 OUR AVERAGE1.95±0.22 OUR AVERAGE1.95±0.22 OUR AVERAGE1.85±0.21±0.12 1,2 AUBERT 07R BABR e+ e− → �(4S)2.40±0.4 ±0.3 2,3 YANG 05 BELL e+ e− → �(4S)1MK ππ < 1.8 GeV/
2.2Assumes equal produ
tion of B+ and B0 at the �(4S).3MK ππ < 2.0 GeV/
2.�(K+π−π0 γ
)/�total �371/��(K+π−π0 γ
)/�total �371/��(K+π−π0 γ
)/�total �371/��(K+π−π0 γ
)/�total �371/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.07±0.22±0.314.07±0.22±0.314.07±0.22±0.314.07±0.22±0.31 1,2 AUBERT 07R BABR e+ e− → �(4S)1MK ππ < 1.8 GeV/
2.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(K1(1270)0γ
)/�total �372/��(K1(1270)0γ
)/�total �372/��(K1(1270)0γ
)/�total �372/��(K1(1270)0γ
)/�total �372/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

< 5.8< 5.8< 5.8< 5.8 90 1 YANG 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<700 90 2 ALBRECHT 89G ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 89G reports < 0.0078 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(K1(1400)0γ

)/�total �373/��(K1(1400)0γ
)/�total �373/��(K1(1400)0γ
)/�total �373/��(K1(1400)0γ
)/�total �373/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

< 1.2< 1.2< 1.2< 1.2 90 1 YANG 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<430 90 2 ALBRECHT 89G ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 89G reports < 0.0048 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(K∗2(1430)0γ

)/�total �374/��(K∗2(1430)0γ
)/�total �374/��(K∗2(1430)0γ
)/�total �374/��(K∗2(1430)0γ
)/�total �374/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT1.24±0.24 OUR AVERAGE1.24±0.24 OUR AVERAGE1.24±0.24 OUR AVERAGE1.24±0.24 OUR AVERAGE1.22±0.25±0.10 1 AUBERT,B 04U BABR e+ e− → �(4S)1.3 ±0.5 ±0.1 1 NISHIDA 02 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<40 90 2 ALBRECHT 89G ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 89G reports < 4.4× 10−4 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.

�(K∗(1680)0γ
)/�total �375/��(K∗(1680)0γ
)/�total �375/��(K∗(1680)0γ
)/�total �375/��(K∗(1680)0γ
)/�total �375/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.0020<0.0020<0.0020<0.0020 90 1 ALBRECHT 89G ARG e+ e− → �(4S)1ALBRECHT 89G reports < 0.0022 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(K∗3(1780)0γ
)/�total �376/��(K∗3(1780)0γ
)/�total �376/��(K∗3(1780)0γ
)/�total �376/��(K∗3(1780)0γ
)/�total �376/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 83< 83< 83< 83 90 1,2 NISHIDA 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<10000 90 3 ALBRECHT 89G ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses B(K∗3(1780) → ηK) = 0.11+0.05

−0.04.3ALBRECHT 89G reports < 0.011 assuming the �(4S) de
ays 45% to B0B0. We res
aleto 50%.�(K∗4(2045)0γ
)/�total �377/��(K∗4(2045)0γ
)/�total �377/��(K∗4(2045)0γ
)/�total �377/��(K∗4(2045)0γ
)/�total �377/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.0043<0.0043<0.0043<0.0043 90 1 ALBRECHT 89G ARG e+ e− → �(4S)1ALBRECHT 89G reports < 0.0048 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(

ρ0 γ
)/�total �378/��(

ρ0 γ
)/�total �378/��(

ρ0 γ
)/�total �378/��(

ρ0 γ
)/�total �378/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT0.86±0.15 OUR AVERAGE0.86±0.15 OUR AVERAGE0.86±0.15 OUR AVERAGE0.86±0.15 OUR AVERAGE0.97+0.24
−0.22±0.06 1 AUBERT 08BH BABR e+ e− → �(4S)0.78+0.17
−0.16+0.09

−0.10 1 TANIGUCHI 08 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.79+0.22

−0.20±0.06 1 AUBERT 07L BABR Repl. by AUBERT 08BH1.25+0.37
−0.33+0.07

−0.06 1 MOHAPATRA 06 BELL Repl. by TANIGUCHI 080.0 ±0.2 ±0.1 90 1 AUBERT 05 BABR Repl. by AUBERT 07L
< 0.8 90 1 MOHAPATRA 05 BELL e+ e− → �(4S)
< 1.2 90 1 AUBERT 04C BABR e+ e− → �(4S)
<17 90 1 COAN 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ρ0X (214), X → µ+µ−)/�total �379/��(

ρ0X (214), X → µ+µ−)/�total �379/��(

ρ0X (214), X → µ+µ−)/�total �379/��(

ρ0X (214), X → µ+µ−)/�total �379/�X (214) is a hypotheti
al parti
le of mass 214 MeV/
2 reported by the HyperCPexperiment (PARK 05)VALUE (units 10−8) CL% DOCUMENT ID TECN COMMENT
<1.73<1.73<1.73<1.73 90 1,2 HYUN 10 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2The result is the same for a s
alar or ve
tor X parti
le.�(

ρ0 γ
)/�(K∗(892)0 γ

) �378/�366�(

ρ0 γ
)/�(K∗(892)0 γ

) �378/�366�(

ρ0 γ
)/�(K∗(892)0 γ

) �378/�366�(

ρ0 γ
)/�(K∗(892)0 γ

) �378/�366VALUE (units 10−2) DOCUMENT ID TECN COMMENT2.06+0.45
−0.43+0.14

−0.162.06+0.45
−0.43+0.14

−0.162.06+0.45
−0.43+0.14

−0.162.06+0.45
−0.43+0.14

−0.16 TANIGUCHI 08 BELL e+ e− → �(4S)�(

ωγ
)/�total �380/��(

ωγ
)/�total �380/��(

ωγ
)/�total �380/��(

ωγ
)/�total �380/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT0.44+0.18
−0.16 OUR AVERAGE0.44+0.18
−0.16 OUR AVERAGE0.44+0.18
−0.16 OUR AVERAGE0.44+0.18
−0.16 OUR AVERAGE0.50+0.27
−0.23±0.09 1 AUBERT 08BH BABR e+ e− → �(4S)0.40+0.19
−0.17±0.13 1 TANIGUCHI 08 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.40+0.24
−0.20±0.05 1 AUBERT 07L BABR Repl. by AUBERT 08BH0.56+0.34
−0.27+0.05

−0.10 1 MOHAPATRA 06 BELL Repl. by TANIGUCHI 08
<1.0 90 1 AUBERT 05 BABR Repl. by AUBERT 07L
<0.8 90 1 MOHAPATRA 05 BELL Repl. by MOHAPATRA 06
<1.0 90 1 AUBERT 04C BABR e+ e− → �(4S)
<9.2 90 1 COAN 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φγ
)/�total �381/��(

φγ
)/�total �381/��(

φγ
)/�total �381/��(

φγ
)/�total �381/�VALUE CL% DOCUMENT ID TECN COMMENT

<8.5 × 10−7<8.5 × 10−7<8.5 × 10−7<8.5 × 10−7 90 1 AUBERT,BE 05C BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.33× 10−5 90 1 COAN 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).
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π+π−)/�total �382/��(

π+π−)/�total �382/��(

π+π−)/�total �382/��(

π+π−)/�total �382/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT5.12±0.19 OUR FIT5.12±0.19 OUR FIT5.12±0.19 OUR FIT5.12±0.19 OUR FIT5.13±0.24 OUR AVERAGE5.13±0.24 OUR AVERAGE5.13±0.24 OUR AVERAGE5.13±0.24 OUR AVERAGE5.04±0.21±0.18 1 DUH 13 BELL e+ e− → �(4S)5.5 ±0.4 ±0.3 1 AUBERT 07B BABR e+ e− → �(4S)4.5 +1.4
−1.2 +0.5

−0.4 1 BORNHEIM 03 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.1 ±0.2 ±0.2 1 LIN 07A BELL Repl. by DUH 134.4 ±0.6 ±0.3 1 CHAO 04 BELL Repl. by LIN 07A4.7 ±0.6 ±0.2 1 AUBERT 02Q BABR Repl. by AUBERT 07B5.4 ±1.2 ±0.5 1 CASEY 02 BELL Repl. by CHAO 045.6 +2.3

−2.0 +0.4
−0.5 1 ABE 01H BELL Repl. by CASEY 024.1 ±1.0 ±0.7 1 AUBERT 01E BABR Repl. by AUBERT 02Q

< 67 90 2 ABE 00C SLD e+ e− → Z4.3 +1.6
−1.4 ±0.5 1 CRONIN-HEN...00 CLE2 Repl. by BORNHEIM 03

< 15 90 GODANG 98 CLE2 Repl. by CRONIN-HENNESSY 00
< 45 90 3 ADAM 96D DLPH e+ e− → Z
< 20 90 ASNER 96 CLE2 Repl. by GODANG 98
< 41 90 4 BUSKULIC 96V ALEP e+ e− → Z
< 55 90 5 ABREU 95N DLPH Sup. by ADAM 96D
< 47 90 6 AKERS 94L OPAL e+ e− → Z
< 29 90 1 BATTLE 93 CLE2 e+ e− → �(4S)
<130 90 1 ALBRECHT 90B ARG e+ e− → �(4S)
< 77 90 7 BORTOLETTO89 CLEO e+ e− → �(4S)
<260 90 7 BEBEK 87 CLEO e+ e− → �(4S)
<500 90 GILES 84 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.3ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12.4BUSKULIC 96V assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons.5Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.6Assumes B(Z → bb) = 0.217 and B0d (B0s ) fra
tion 39.5% (12%).7Paper assumes the �(4S) de
ays 43% to B0B0. We res
ale to 50%.�(

π+π−)/�(K+π−) �382/�252�(

π+π−)/�(K+π−) �382/�252�(

π+π−)/�(K+π−) �382/�252�(

π+π−)/�(K+π−) �382/�252VALUE DOCUMENT ID TECN COMMENT0.261±0.010 OUR FIT0.261±0.010 OUR FIT0.261±0.010 OUR FIT0.261±0.010 OUR FIT0.261±0.015 OUR AVERAGE0.261±0.015 OUR AVERAGE0.261±0.015 OUR AVERAGE0.261±0.015 OUR AVERAGE0.262±0.009±0.017 AAIJ 12AR LHCB pp at 7 TeV0.259±0.017±0.016 AALTONEN 11N CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.21 ±0.05 ±0.03 ABULENCIA,A 06D CDF Repl. by AALTONEN 11N�(

π0π0)/�total �383/��(

π0π0)/�total �383/��(

π0π0)/�total �383/��(

π0π0)/�total �383/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.91±0.22 OUR AVERAGE1.91±0.22 OUR AVERAGE1.91±0.22 OUR AVERAGE1.91±0.22 OUR AVERAGE1.83±0.21±0.13 1 LEES 13D BABR e+ e− → �(4S)2.3 +0.4
−0.5 +0.2

−0.3 1 CHAO 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.47±0.25±0.12 1 AUBERT 07BC BABR Repl. by LEES 13D1.17±0.32±0.10 1 AUBERT 05L BABR Repl. by AUBERT 07BC
< 3.6 90 1 AUBERT 03L BABR e+ e− → �(4S)2.1 ±0.6 ±0.3 1 AUBERT 03S BABR Repl. by AUBERT 05L
< 4.4 90 1 BORNHEIM 03 CLE2 e+ e− → �(4S)1.7 ±0.6 ±0.2 1 LEE 03 BELL Repl. by CHAO 05
< 5.7 90 1 ASNER 02 CLE2 e+ e− → �(4S)
< 6.4 90 1 CASEY 02 BELL e+ e− → �(4S)
< 9.3 90 GODANG 98 CLE2 Repl. by ASNER 02
< 9.1 90 ASNER 96 CLE2 Repl. by GODANG 98
<60 90 2 ACCIARRI 95H L3 e+ e− → Z1Assumes equal produ
tion of B+ and B0 at the �(4S).2ACCIARRI 95H assumes fB0 = 39.5 ± 4.0 and fBs = 12.0 ± 3.0%.�(

ηπ0)/�total �384/��(

ηπ0)/�total �384/��(

ηπ0)/�total �384/��(

ηπ0)/�total �384/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT0.41+0.17
−0.15+0.05

−0.070.41+0.17
−0.15+0.05

−0.070.41+0.17
−0.15+0.05

−0.070.41+0.17
−0.15+0.05

−0.07 1,2 PAL 15 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.5 90 2 AUBERT 08AH BABR e+ e− → �(4S)
< 1.3 90 2 AUBERT 06W BABR Repl. by AUBERT 08AH
< 2.5 90 2 CHANG 05A BELL Repl. by PAL 15
< 2.5 90 2 AUBERT,B 04D BABR Repl. by AUBERT 06W
< 2.9 90 2 RICHICHI 00 CLE2 e+ e− → �(4S)
< 8 90 BEHRENS 98 CLE2 Repl. by RICHICHI 00
< 250 90 3 ACCIARRI 95H L3 e+ e− → Z
<1800 90 2 ALBRECHT 90B ARG e+ e− → �(4S)

1PAL 15 signal signi�
an
e is 3.0 standard deviations. The measurement 
orresponds to90% CL upper limit of < 6.5× 10−7.2Assumes equal produ
tion of B+ and B0 at the �(4S).3ACCIARRI 95H assumes fB0 = 39.5 ± 4.0 and fBs = 12.0 ± 3.0%.�(

ηη
)/�total �385/��(

ηη
)/�total �385/��(

ηη
)/�total �385/��(

ηη
)/�total �385/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 1.0< 1.0< 1.0< 1.0 90 1 AUBERT 09AV BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.8 90 1 AUBERT,B 06V BABR Repl. by AUBERT 09AV
< 2.0 90 1 CHANG 05A BELL e+ e− → �(4S)
< 2.8 90 1 AUBERT,B 04X BABR e+ e− → �(4S)
< 18 90 BEHRENS 98 CLE2 e+ e− → �(4S)
<410 90 2 ACCIARRI 95H L3 e+ e− → Z1Assumes equal produ
tion of B+ and B0 at the �(4S).2ACCIARRI 95H assumes fB0 = 39.5 ± 4.0 and fBs = 12.0 ± 3.0%.�(

η′π0)/�total �386/��(

η′π0)/�total �386/��(

η′π0)/�total �386/��(

η′π0)/�total �386/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.2±0.6 OUR AVERAGE1.2±0.6 OUR AVERAGE1.2±0.6 OUR AVERAGE1.2±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.0.9±0.4±0.1 1 AUBERT 08AH BABR e+ e− → �(4S)2.8±1.0±0.3 1 SCHUEMANN 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.8+0.8

−0.6±0.1 1 AUBERT 06W BABR Repl. by AUBERT 08AH1.0+1.4
−1.0±0.8 90 1 AUBERT,B 04D BABR Repl. by AUBERT 06W

< 5.7 90 1 RICHICHI 00 CLE2 e+ e− → �(4S)
<11 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η′ η′
)/�total �387/��(

η′ η′
)/�total �387/��(

η′ η′
)/�total �387/��(

η′ η′
)/�total �387/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 1.7< 1.7< 1.7< 1.7 90 1 AUBERT 09AV BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 6.5 90 1 SCHUEMANN 07 BELL e+ e− → �(4S)
< 2.4 90 1 AUBERT,B 06V BABR Repl. by AUBERT 09AV
<10 90 1 AUBERT,B 04X BABR Repl. by AUBERT,B 06V
<47 90 BEHRENS 98 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η′ η
)/�total �388/��(

η′ η
)/�total �388/��(

η′ η
)/�total �388/��(

η′ η
)/�total �388/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 1.2< 1.2< 1.2< 1.2 90 1 AUBERT 08AH BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.5 90 1 SCHUEMANN 07 BELL e+ e− → �(4S)
< 1.7 90 1 AUBERT 06W BABR Repl. by AUBERT 08AH
< 4.6 90 1 AUBERT,B 04X BABR e+ e− → �(4S)
<27 90 BEHRENS 98 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η′ρ0)/�total �389/��(

η′ρ0)/�total �389/��(

η′ρ0)/�total �389/��(

η′ρ0)/�total �389/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 1.3< 1.3< 1.3< 1.3 90 1 SCHUEMANN 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 2.8 90 1 DEL-AMO-SA...10A BABR e+ e− → �(4S)
< 3.7 90 AUBERT 07E BABR Repl. by DEL-AMO-SANCHEZ 10A
< 4.3 90 1 AUBERT,B 04D BABR Repl. by AUBERT 07E
<12 90 1 RICHICHI 00 CLE2 e+ e− → �(4S)
<23 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).�(

η′ f0(980), f0 → π+π−)/�total �390/��(

η′ f0(980), f0 → π+π−)/�total �390/��(

η′ f0(980), f0 → π+π−)/�total �390/��(

η′ f0(980), f0 → π+π−)/�total �390/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.9<0.9<0.9<0.9 90 1 DEL-AMO-SA...10A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.5 90 AUBERT 07E BABR Repl. by DEL-AMO-SANCHEZ 10A1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ηρ0)/�total �391/��(

ηρ0)/�total �391/��(

ηρ0)/�total �391/��(

ηρ0)/�total �391/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 1.5< 1.5< 1.5< 1.5 90 1 AUBERT 07Y BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.9 90 1 WANG 07B BELL e+ e− → �(4S)
< 1.5 90 1 AUBERT,B 04D BABR Repl. by AUBERT 07Y
<10 90 1 RICHICHI 00 CLE2 e+ e− → �(4S)
<13 90 BEHRENS 98 CLE2 Repl. by RICHICHI 001Assumes equal produ
tion of B+ and B0 at the �(4S).
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le ListingsB0�(

η f0(980), f0 → π+π−)/�total �392/��(

η f0(980), f0 → π+π−)/�total �392/��(

η f0(980), f0 → π+π−)/�total �392/��(

η f0(980), f0 → π+π−)/�total �392/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.4<0.4<0.4<0.4 90 1 AUBERT 07Y BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωη
)/�total �393/��(

ωη
)/�total �393/��(

ωη
)/�total �393/��(

ωη
)/�total �393/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT0.94+0.35
−0.30±0.090.94+0.35
−0.30±0.090.94+0.35
−0.30±0.090.94+0.35
−0.30±0.09 1 AUBERT 09AV BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.9 90 1 AUBERT,B 05K BABR Repl. by AUBERT 09AV4.0 +1.3

−1.2 ±0.4 1 AUBERT,B 04X BABR Repl. by AUBERT,B 05K
<12 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωη′
)/�total �394/��(

ωη′
)/�total �394/��(

ωη′
)/�total �394/��(

ωη′
)/�total �394/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.01+0.46
−0.38±0.091.01+0.46
−0.38±0.091.01+0.46
−0.38±0.091.01+0.46
−0.38±0.09 1 AUBERT 09AV BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 2.2 90 1 SCHUEMANN 07 BELL e+ e− → �(4S)
< 2.8 90 1 AUBERT,B 04X BABR e+ e− → �(4S)
<60 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωρ0)/�total �395/��(

ωρ0)/�total �395/��(

ωρ0)/�total �395/��(

ωρ0)/�total �395/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 1.6< 1.6< 1.6< 1.6 90 1 AUBERT 09H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.5 90 1 AUBERT,B 06T BABR Repl. by AUBERT 09H
< 3.3 90 1 AUBERT 05O BABR Repl. by AUBERT,B 06T
<11 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ω f0(980), f0 → π+π−)/�total �396/��(

ω f0(980), f0 → π+π−)/�total �396/��(

ω f0(980), f0 → π+π−)/�total �396/��(

ω f0(980), f0 → π+π−)/�total �396/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.5<1.5<1.5<1.5 90 1 AUBERT 09H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.5 90 1 AUBERT,B 06T BABR Repl. by AUBERT 09H1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ωω
)/�total �397/��(

ωω
)/�total �397/��(

ωω
)/�total �397/��(

ωω
)/�total �397/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.2±0.3+0.3

−0.21.2±0.3+0.3
−0.21.2±0.3+0.3
−0.21.2±0.3+0.3
−0.2 1 LEES 14 BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.0 90 1 AUBERT,B 06T BABR Repl. by LEES 14
<19 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φπ0)/�total �398/��(

φπ0)/�total �398/��(

φπ0)/�total �398/��(

φπ0)/�total �398/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.15<0.15<0.15<0.15 90 1 KIM 12A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.28 90 1 AUBERT,B 06C BABR e+ e− → �(4S)
<1.0 90 1 AUBERT,B 04D BABR Repl. by AUBERT,B 06C
<5 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φη
)/�total �399/��(

φη
)/�total �399/��(

φη
)/�total �399/��(

φη
)/�total �399/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<0.5<0.5<0.5<0.5 90 1 AUBERT 09AV BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.6 90 1 AUBERT,B 06V BABR Repl. by AUBERT 09AV
<1.0 90 1 AUBERT,B 04X BABR Repl. by AUBERT,B 06V
<9 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φη′
)/�total �400/��(

φη′
)/�total �400/��(

φη′
)/�total �400/��(

φη′
)/�total �400/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 0.5< 0.5< 0.5< 0.5 90 1 SCHUEMANN 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.1 90 1 AUBERT 09AV BABR e+ e− → �(4S)
< 1.0 90 1 AUBERT,B 06V BABR Repl. by AUBERT 09AV
< 4.5 90 1 AUBERT,B 04X BABR Repl. by AUBERT,B 06V
<31 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).

�(

φρ0)/�total �401/��(

φρ0)/�total �401/��(

φρ0)/�total �401/��(

φρ0)/�total �401/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 0.33< 0.33< 0.33< 0.33 90 1 AUBERT 08BK BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<156 90 2 ABE 00C SLD e+ e− → Z
< 13 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).2ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.�(

φ f0(980), f0 → π+π−)/�total �402/��(

φ f0(980), f0 → π+π−)/�total �402/��(

φ f0(980), f0 → π+π−)/�total �402/��(

φ f0(980), f0 → π+π−)/�total �402/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.38<0.38<0.38<0.38 90 1 AUBERT 08BK BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φω
)/�total �403/��(

φω
)/�total �403/��(

φω
)/�total �403/��(

φω
)/�total �403/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 0.7< 0.7< 0.7< 0.7 90 1 LEES 14 BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.2 90 1 AUBERT,B 06T BABR Repl. by LEES 14
<21 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(

φφ
)/�total �404/��(

φφ
)/�total �404/��(

φφ
)/�total �404/��(

φφ
)/�total �404/�VALUE CL% DOCUMENT ID TECN COMMENT

<2.8 × 10−8<2.8 × 10−8<2.8 × 10−8<2.8 × 10−8 90 AAIJ 15AS LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2 × 10−7 90 1 AUBERT 08BK BABR e+ e− → �(4S)
<1.5 × 10−6 90 1 AUBERT,B 04X BABR Repl. by AUBERT 08BK
<3.21× 10−4 90 2 ABE 00C SLD e+ e− → Z
<1.2 × 10−5 90 1 BERGFELD 98 CLE2
<3.9 × 10−5 90 ASNER 96 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.�(a0(980)±π∓, a±0 → ηπ±)/�total �405/��(a0(980)±π∓, a±0 → ηπ±)/�total �405/��(a0(980)±π∓, a±0 → ηπ±)/�total �405/��(a0(980)±π∓, a±0 → ηπ±)/�total �405/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<3.1<3.1<3.1<3.1 90 1 AUBERT 07Y BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.1 90 1 AUBERT,BE 04 BABR Repl. by AUBERT 07Y1Assumes equal produ
tion of B+ and B0 at the �(4S).�(a0(1450)±π∓, a±0 → ηπ±)/�total �406/��(a0(1450)±π∓, a±0 → ηπ±)/�total �406/��(a0(1450)±π∓, a±0 → ηπ±)/�total �406/��(a0(1450)±π∓, a±0 → ηπ±)/�total �406/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<2.3<2.3<2.3<2.3 90 1 AUBERT 07Y BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π+π−π0)/�total �407/��(

π+π−π0)/�total �407/��(

π+π−π0)/�total �407/��(

π+π−π0)/�total �407/�VALUE CL% DOCUMENT ID TECN COMMENT
<7.2× 10−4<7.2× 10−4<7.2× 10−4<7.2× 10−4 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(

ρ0π0)/�total �408/��(

ρ0π0)/�total �408/��(

ρ0π0)/�total �408/��(

ρ0π0)/�total �408/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.0 ±0.5 OUR AVERAGE2.0 ±0.5 OUR AVERAGE2.0 ±0.5 OUR AVERAGE2.0 ±0.5 OUR AVERAGE3.0 ±0.5 ±0.7 1,2 KUSAKA 08 BELL e+ e− → �(4S)1.4 ±0.6 ±0.3 1 AUBERT 04Z BABR e+ e− → �(4S)1.6 +2.0
−1.4 ±0.8 1 JESSOP 00 CLEO e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.12+0.88
−0.82+0.60

−0.76 1 DRAGIC 06 BELL Repl. by KUSAKA 085.1 ±1.6 ±0.9 DRAGIC 04 BELL Repl. by DRAGIC 06
< 5.3 90 1 GORDON 02 BELL Repl. by DRAGIC 04
< 24 90 ASNER 96 CLEO Repl. by JESSOP 00
<400 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2This is the �rst measurement that ex
ludes 
ontributions from ρ(1450) and ρ(1570)resonan
es.�(

ρ∓π±)/�total �409/��(

ρ∓π±)/�total �409/��(

ρ∓π±)/�total �409/��(

ρ∓π±)/�total �409/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT23.0±2.3 OUR AVERAGE23.0±2.3 OUR AVERAGE23.0±2.3 OUR AVERAGE23.0±2.3 OUR AVERAGE22.6±1.1±4.4 1,2 KUSAKA 08 BELL e+ e− → �(4S)22.6±1.8±2.2 1 AUBERT 03T BABR e+ e− → �(4S)27.6+8.4
−7.4±4.2 1 JESSOP 00 CLE2 e+ e− → �(4S)
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• • • We do not use the following data for averages, �ts, limits, et
. • • •20.8+6.0

−6.3+2.8
−3.1 1 GORDON 02 BELL Repl. by KUSAKA 08

< 88 90 ASNER 96 CLE2 Repl. by JESSOP 00
< 520 90 1 ALBRECHT 90B ARG e+ e− → �(4S)
<5200 90 3 BEBEK 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2This is the �rst measurement that ex
ludes 
ontributions from ρ(1450) and ρ(1570)resonan
es.3BEBEK 87 reports < 6.1×10−3 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.�(

π+π−π+π−)/�total �410/��(

π+π−π+π−)/�total �410/��(

π+π−π+π−)/�total �410/��(

π+π−π+π−)/�total �410/�VALUE CL% DOCUMENT ID TECN COMMENT
<11.2× 10−6<11.2× 10−6<11.2× 10−6<11.2× 10−6 90 1 VANHOEFER 14 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<23.1× 10−6 90 1 AUBERT 08BB BABR e+ e− → �(4S)
<19.3× 10−6 90 1 CHIANG 08 BELL Repl. by VANHOEFER 14
< 2.3× 10−4 90 2 ADAM 96D DLPH e+ e− → Z
< 2.8× 10−4 90 3 ABREU 95N DLPH Sup. by ADAM 96D
< 6.7× 10−4 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12.3Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.�(

ρ0π+π−)/�total �411/��(

ρ0π+π−)/�total �411/��(

ρ0π+π−)/�total �411/��(

ρ0π+π−)/�total �411/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 8.8< 8.8< 8.8< 8.8 90 1 AUBERT 08BB BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<12.0 90 1 VANHOEFER 14 BELL e+ e− → �(4S)
<12.0 90 1 CHIANG 08 BELL Repl. by VANHOEFER 141Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ρ0 ρ0)/�total �412/��(

ρ0 ρ0)/�total �412/��(

ρ0 ρ0)/�total �412/��(

ρ0 ρ0)/�total �412/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT0.96±0.15 OUR FIT0.96±0.15 OUR FIT0.96±0.15 OUR FIT0.96±0.15 OUR FIT0.97±0.24 OUR AVERAGE0.97±0.24 OUR AVERAGE0.97±0.24 OUR AVERAGE0.97±0.24 OUR AVERAGE1.02±0.30±0.15 1,2 VANHOEFER 14 BELL e+ e− → �(4S)0.92±0.32±0.14 2 AUBERT 08BB BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.4 ±0.4 +0.2

−0.3 2 CHIANG 08 BELL Repl. by VANHOEFER 141.07±0.33±0.19 2 AUBERT 07G BABR Repl. by AUBERT 08BB
< 1.1 90 2 AUBERT 05I BABR Repl. by AUBERT 07G
< 2.1 90 2 AUBERT 03V BABR Repl. by AUBERT 05I
< 18 90 3 GODANG 02 CLE2 e+ e− → �(4S)
<136 90 4 ABE 00C SLD e+ e− → Z
<280 90 2 ALBRECHT 90B ARG e+ e− → �(4S)
<290 90 5 BORTOLETTO89 CLEO e+ e− → �(4S)
<430 90 5 BEBEK 87 CLEO e+ e− → �(4S)1 Signal signi�
an
e 3.4 standard deviations.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Assumes a heli
ity 00 
on�guration. For a heli
ity 11 
on�guration, the limit de
reasesto 1.4× 10−5.4ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.5Paper assumes the �(4S) de
ays 43% to B0B0. We res
ale to 50%.�(

ρ0 ρ0)/�(K∗(892)0φ
) �412/�338�(

ρ0 ρ0)/�(K∗(892)0φ
) �412/�338�(

ρ0 ρ0)/�(K∗(892)0φ
) �412/�338�(

ρ0 ρ0)/�(K∗(892)0φ
) �412/�338VALUE (units 10−2) DOCUMENT ID TECN COMMENT9.5±1.5 OUR FIT9.5±1.5 OUR FIT9.5±1.5 OUR FIT9.5±1.5 OUR FIT9.4±1.7±0.99.4±1.7±0.99.4±1.7±0.99.4±1.7±0.9 AAIJ 15T LHCB pp at 7, 8 TeV�(f0(980)π+π−, f0 → π+π−)/�total �413/��(f0(980)π+π−, f0 → π+π−)/�total �413/��(f0(980)π+π−, f0 → π+π−)/�total �413/��(f0(980)π+π−, f0 → π+π−)/�total �413/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.0× 10−6<3.0× 10−6<3.0× 10−6<3.0× 10−6 90 1 VANHOEFER 14 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.8× 10−6 90 1 CHIANG 08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ρ0 f0(980), f0 → π+π−)/�total �414/��(

ρ0 f0(980), f0 → π+π−)/�total �414/��(

ρ0 f0(980), f0 → π+π−)/�total �414/��(

ρ0 f0(980), f0 → π+π−)/�total �414/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT7.8±2.2±1.17.8±2.2±1.17.8±2.2±1.17.8±2.2±1.1 1,2 VANHOEFER 14 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8.1 90 AAIJ 15T LHCB pp at 7, 8 TeV
<4.0 90 2 AUBERT 08BB BABR e+ e− → �(4S)
<3 90 2 CHIANG 08 BELL Repl. by VANHOEFER 14
<5.3 90 2 AUBERT 07G BABR Repl. by AUBERT 08BB1Signal signi�
an
e of 3.1 standard deviations.2Assumes equal produ
tion of B+ and B0 at the �(4S).

�(f0(980)f0(980), f0 → π+π−, f0 → π+π−)/�total �415/��(f0(980)f0(980), f0 → π+π−, f0 → π+π−)/�total �415/��(f0(980)f0(980), f0 → π+π−, f0 → π+π−)/�total �415/��(f0(980)f0(980), f0 → π+π−, f0 → π+π−)/�total �415/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.19<0.19<0.19<0.19 90 1 AUBERT 08BB BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.2 90 1 VANHOEFER 14 BELL e+ e− → �(4S)
<0.1 90 1 CHIANG 08 BELL Repl. by VANHOEFER 14
<0.16 90 1 AUBERT 07G BABR Repl. by AUBERT 08BB1Assumes equal produ
tion of B+ and B0 at the �(4S).�(f0(980)f0(980), f0 → π+π−, f0 → K+K−)/�total �416/��(f0(980)f0(980), f0 → π+π−, f0 → K+K−)/�total �416/��(f0(980)f0(980), f0 → π+π−, f0 → K+K−)/�total �416/��(f0(980)f0(980), f0 → π+π−, f0 → K+K−)/�total �416/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.23<0.23<0.23<0.23 90 1 AUBERT 08BK BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(a1(1260)∓π±)/�total �417/��(a1(1260)∓π±)/�total �417/��(a1(1260)∓π±)/�total �417/��(a1(1260)∓π±)/�total �417/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT26 ±5 OUR AVERAGE26 ±5 OUR AVERAGE26 ±5 OUR AVERAGE26 ±5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.22.2±2.0±2.8 1,2 DALSENO 12 BELL e+ e− → �(4S)33.2±3.8±3.0 2,3 AUBERT 06V BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 630 90 2 ALBRECHT 90B ARG e+ e− → �(4S)
< 490 90 4 BORTOLETTO89 CLEO e+ e− → �(4S)
<1000 90 4 BEBEK 87 CLEO e+ e− → �(4S)1DALSENO 12 reports B(B0 → a±1 π∓) B(a±1 → π±π+π−) = (11.1 ± 1.0 ± 1.4)×10−6 whi
h we res
aled assuming a1(1260) de
ays only to 3π and B(a±1 → π±π+π−)= 0.5.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Assumes a1(1260) de
ays only to 3π and B(a±1 → π±π∓π±) = 0.5.4Paper assumes the �(4S) de
ays 43% to B0B0. We res
ale to 50%.�(a2(1320)∓π±)/�total �418/��(a2(1320)∓π±)/�total �418/��(a2(1320)∓π±)/�total �418/��(a2(1320)∓π±)/�total �418/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.3× 10−6<6.3× 10−6<6.3× 10−6<6.3× 10−6 90 1 DALSENO 12 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.0× 10−4 90 2 BORTOLETTO89 CLEO e+ e− → �(4S)
<1.4× 10−3 90 2 BEBEK 87 CLEO e+ e− → �(4S)1DALSENO 12 reports B(B0 → a±2 π∓) B(a±2 → π±π+π−) < 2.2 × 10−6 whi
hwe res
aled using B(a±2 → π±π+π−) = 1/2 B(a±2 → 3π) = 0.35 ± 0.013.2Paper assumes the �(4S) de
ays 43% to B0B0. We res
ale to 50%.�(

π+π−π0π0)/�total �419/��(

π+π−π0π0)/�total �419/��(

π+π−π0π0)/�total �419/��(

π+π−π0π0)/�total �419/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.1× 10−3<3.1× 10−3<3.1× 10−3<3.1× 10−3 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(

ρ+ρ−
)/�total �420/��(

ρ+ρ−
)/�total �420/��(

ρ+ρ−
)/�total �420/��(

ρ+ρ−
)/�total �420/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT27.7±1.9 OUR AVERAGE27.7±1.9 OUR AVERAGE27.7±1.9 OUR AVERAGE27.7±1.9 OUR AVERAGE28.3±1.5±1.5 1 VANHOEFER 16 BELL e+ e− → �(4S)25.5±2.1+3.6

−3.9 1 AUBERT 07BF BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •22.8±3.8+2.3

−2.6 1 SOMOV 06 BELL Repl. by VANHOEFER 1625 +7
−6 +5

−6 1 AUBERT 04G BABR Repl. by AUBERT,B 04R30 ±4 ±5 1,2 AUBERT,B 04R BABR Repl. by AUBERT 07BF
<2200 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2The quoted result is obtained after 
ombining with AUBERT 04G result by AUBERT 04Ralone gives (33 ± 4 ± 5)× 10−6.�(a1(1260)0π0)/�total �421/��(a1(1260)0π0)/�total �421/��(a1(1260)0π0)/�total �421/��(a1(1260)0π0)/�total �421/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−3<1.1× 10−3<1.1× 10−3<1.1× 10−3 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(

ωπ0)/�total �422/��(

ωπ0)/�total �422/��(

ωπ0)/�total �422/��(

ωπ0)/�total �422/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 0.5< 0.5< 0.5< 0.5 90 1 AUBERT 08AH BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 2.0 90 1 JEN 06 BELL e+ e− → �(4S)
< 1.2 90 1 AUBERT,B 04D BABR Repl. by AUBERT 08AH
< 1.9 90 1 WANG 04A BELL e+ e− → �(4S)
< 3 90 1 AUBERT 01G BABR e+ e− → �(4S)
< 5.5 90 1 JESSOP 00 CLE2 e+ e− → �(4S)
< 14 90 1 BERGFELD 98 CLE2 Repl. by JESSOP 00
<460 90 2 ALBRECHT 90B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).



1245124512451245See key on page 601 Meson Parti
le ListingsB0�(

π+π+π−π−π0)/�total �423/��(

π+π+π−π−π0)/�total �423/��(

π+π+π−π−π0)/�total �423/��(

π+π+π−π−π0)/�total �423/�VALUE CL% DOCUMENT ID TECN COMMENT
<9.0× 10−3<9.0× 10−3<9.0× 10−3<9.0× 10−3 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(a1(1260)+ρ−

)/�total �424/��(a1(1260)+ρ−
)/�total �424/��(a1(1260)+ρ−
)/�total �424/��(a1(1260)+ρ−
)/�total �424/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 61< 61< 61< 61 90 1,2 AUBERT,B 06O BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3400 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes a1(1260) de
ays only to 3π and B(a±1 → π±π∓π±) = 0.5.�(a1(1260)0 ρ0)/�total �425/��(a1(1260)0 ρ0)/�total �425/��(a1(1260)0 ρ0)/�total �425/��(a1(1260)0 ρ0)/�total �425/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.4× 10−3<2.4× 10−3<2.4× 10−3<2.4× 10−3 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(b∓1 π±, b∓1 → ωπ∓)/�total �426/��(b∓1 π±, b∓1 → ωπ∓)/�total �426/��(b∓1 π±, b∓1 → ωπ∓)/�total �426/��(b∓1 π±, b∓1 → ωπ∓)/�total �426/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT10.9±1.2±0.910.9±1.2±0.910.9±1.2±0.910.9±1.2±0.9 1 AUBERT 07BI BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(b01π0, b01 → ωπ0)/�total �427/��(b01π0, b01 → ωπ0)/�total �427/��(b01π0, b01 → ωπ0)/�total �427/��(b01π0, b01 → ωπ0)/�total �427/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.9<1.9<1.9<1.9 90 1 AUBERT 08AG BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(b−1 ρ+, b−1 → ωπ−)/�total �428/��(b−1 ρ+, b−1 → ωπ−)/�total �428/��(b−1 ρ+, b−1 → ωπ−)/�total �428/��(b−1 ρ+, b−1 → ωπ−)/�total �428/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.4× 10−6<1.4× 10−6<1.4× 10−6<1.4× 10−6 90 1 AUBERT 09AF BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(b01 ρ0, b01 → ωπ0)/�total �429/��(b01 ρ0, b01 → ωπ0)/�total �429/��(b01 ρ0, b01 → ωπ0)/�total �429/��(b01 ρ0, b01 → ωπ0)/�total �429/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.4× 10−6<3.4× 10−6<3.4× 10−6<3.4× 10−6 90 1 AUBERT 09AF BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π+π+π+π−π−π−)/�total �430/��(

π+π+π+π−π−π−)/�total �430/��(

π+π+π+π−π−π−)/�total �430/��(

π+π+π+π−π−π−)/�total �430/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.0× 10−3<3.0× 10−3<3.0× 10−3<3.0× 10−3 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(a1(1260)+a1(1260)−, a+1 → 2π+π−, a−1 → 2π−π+)/�total �431/��(a1(1260)+a1(1260)−, a+1 → 2π+π−, a−1 → 2π−π+)/�total �431/��(a1(1260)+a1(1260)−, a+1 → 2π+π−, a−1 → 2π−π+)/�total �431/��(a1(1260)+a1(1260)−, a+1 → 2π+π−, a−1 → 2π−π+)/�total �431/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT11.8±2.6±1.611.8±2.6±1.611.8±2.6±1.611.8±2.6±1.6 1 AUBERT 09AL BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6000 90 1 ALBRECHT 90B ARG e+ e− → �(4S)
<2800 90 2 BORTOLETTO89 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B0B0 and B+B− at �(4S).2BORTOLETTO 89 reports < 3.2 × 10−3 assuming the �(4S) de
ays 43% to B0B0.We res
ale to 50%.�(

π+π+π+π−π−π−π0)/�total �432/��(

π+π+π+π−π−π−π0)/�total �432/��(

π+π+π+π−π−π−π0)/�total �432/��(

π+π+π+π−π−π−π0)/�total �432/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−2<1.1× 10−2<1.1× 10−2<1.1× 10−2 90 1 ALBRECHT 90B ARG e+ e− → �(4S)1ALBRECHT 90B limit assumes equal produ
tion of B0B0 and B+B− at �(4S).�(pp)/�total �433/��(pp)/�total �433/��(pp)/�total �433/��(pp)/�total �433/�VALUE (units 10−8) CL% DOCUMENT ID TECN COMMENT1.47+0.62

−0.51+0.35
−0.141.47+0.62

−0.51+0.35
−0.141.47+0.62

−0.51+0.35
−0.141.47+0.62

−0.51+0.35
−0.14 1 AAIJ 13BQ LHCB pp at 7 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 11 90 2 TSAI 07 BELL e+ e− → �(4S)
< 41 90 2 CHANG 05 BELL e+ e− → �(4S)
< 27 90 2 AUBERT 04U BABR e+ e− → �(4S)
< 140 90 2 BORNHEIM 03 CLE2 e+ e− → �(4S)
< 120 90 2 ABE 02O BELL e+ e− → �(4S)
< 700 90 2 COAN 99 CLE2 e+ e− → �(4S)
< 1800 90 3 BUSKULIC 96V ALEP e+ e− → Z
<35000 90 4 ABREU 95N DLPH Sup. by ADAM 96D
< 3400 90 5 BORTOLETTO89 CLEO e+ e− → �(4S)
<12000 90 6 ALBRECHT 88F ARG e+ e− → �(4S)
<17000 90 5 BEBEK 87 CLEO e+ e− → �(4S)1Uses normalization mode B(B0 → K+π−) = (19.55 ± 0.54)× 10−6.2Assumes equal produ
tion of B+ and B0 at the �(4S).3BUSKULIC 96V assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons.4Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.5Paper assumes the �(4S) de
ays 43% to B0B0. We res
ale to 50%.6ALBRECHT 88F reports < 1.3× 10−4 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.

�(ppπ+π−)/�total �434/��(ppπ+π−)/�total �434/��(ppπ+π−)/�total �434/��(ppπ+π−)/�total �434/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<2.5<2.5<2.5<2.5 90 1 BEBEK 89 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9.5 90 2 ABREU 95N DLPH Sup. by ADAM 96D5.4±1.8±2.0 3 ALBRECHT 88F ARG e+ e− → �(4S)1BEBEK 89 reports < 2.9×10−4 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.2Assumes a B0, B− produ
tion fra
tion of 0.39 and a Bs produ
tion fra
tion of 0.12.3ALBRECHT 88F reports 6.0 ± 2.0 ± 2.2 assuming the �(4S) de
ays 45% to B0B0.We res
ale to 50%.�(ppK0)/�total �435/��(ppK0)/�total �435/��(ppK0)/�total �435/��(ppK0)/�total �435/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT2.66±0.32 OUR AVERAGE2.66±0.32 OUR AVERAGE2.66±0.32 OUR AVERAGE2.66±0.32 OUR AVERAGE2.51+0.35

−0.29±0.21 1,2 CHEN 08C BELL e+ e− → �(4S)3.0 ±0.5 ±0.3 2 AUBERT 07AV BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.40+0.64

−0.44±0.28 2,3,4 WANG 05A BELL Repl. by CHEN 08C1.88+0.77
−0.60±0.23 2,3,5 WANG 04 BELL Repl. by WANG 05A

<7.2 90 2,3 ABE 02K BELL Repl. by WANG 041Expli
itly vetoes resonant produ
tion of pp from 
harmonium states.2Assumes equal produ
tion of B+ and B0 at the �(4S).3 Expli
itly vetoes resonant produ
tion of pp from 
harmonium states and pK0 produ
tionfrom �
 .4 Provides also results with Mpp < 2.85 GeV/
2 and angular asymmetry of pp system.5The bran
hing fra
tion for Mpp < 2.85 is also reported.�(�(1540)+ p, �+ → pK0S)/�total �436/��(�(1540)+ p, �+ → pK0S)/�total �436/��(�(1540)+ p, �+ → pK0S)/�total �436/��(�(1540)+ p, �+ → pK0S)/�total �436/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.05<0.05<0.05<0.05 90 1 AUBERT 07AV BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.23 90 1 WANG 05A BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(fJ (2220)K0, fJ → pp)/�total �437/��(fJ (2220)K0, fJ → pp)/�total �437/��(fJ (2220)K0, fJ → pp)/�total �437/��(fJ (2220)K0, fJ → pp)/�total �437/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.45<0.45<0.45<0.45 90 1 AUBERT 07AV BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(ppK∗(892)0)/�total �438/��(ppK∗(892)0)/�total �438/��(ppK∗(892)0)/�total �438/��(ppK∗(892)0)/�total �438/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.24+0.28

−0.25 OUR AVERAGE1.24+0.28
−0.25 OUR AVERAGE1.24+0.28
−0.25 OUR AVERAGE1.24+0.28
−0.25 OUR AVERAGE1.18+0.29
−0.25±0.11 1,2 CHEN 08C BELL e+ e− → �(4S)1.47±0.45±0.40 2 AUBERT 07AV BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.6 90 2 WANG 04 BELL e+ e− → �(4S)1 Expli
itly vetoes resonant produ
tion of pp from 
harmonium states.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(fJ (2220)K∗0, fJ → pp)/�total �439/��(fJ (2220)K∗0, fJ → pp)/�total �439/��(fJ (2220)K∗0, fJ → pp)/�total �439/��(fJ (2220)K∗0, fJ → pp)/�total �439/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.15<0.15<0.15<0.15 90 1 AUBERT 07AV BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(p�π−)/�total �440/��(p�π−)/�total �440/��(p�π−)/�total �440/��(p�π−)/�total �440/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT3.14±0.29 OUR AVERAGE3.14±0.29 OUR AVERAGE3.14±0.29 OUR AVERAGE3.14±0.29 OUR AVERAGE3.07±0.31±0.23 1 AUBERT 09AC BABR e+ e− → �(4S)3.23+0.33

−0.29±0.29 1 WANG 07C BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.62+0.44

−0.40±0.31 1,2 WANG 05A BELL Repl. by WANG 07C3.97+1.00
−0.80±0.56 1 WANG 03 BELL Repl. by WANG 05A

< 13 90 1 COAN 99 CLE2 e+ e− → �(4S)
<180 90 3 ALBRECHT 88F ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Provides also results with Mpp < 2.85 GeV/
2 and angular asymmetry of p� system.3ALBRECHT 88F reports < 2.0× 10−4 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.�(p�π− γ

)/�total �441/��(p�π− γ
)/�total �441/��(p�π− γ
)/�total �441/��(p�π− γ
)/�total �441/�VALUE CL% DOCUMENT ID TECN COMMENT

<6.5× 10−7<6.5× 10−7<6.5× 10−7<6.5× 10−7 90 1 LAI 14 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).



1246124612461246MesonParti
le ListingsB0�(p� (1385)−)/�total �442/��(p� (1385)−)/�total �442/��(p� (1385)−)/�total �442/��(p� (1385)−)/�total �442/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.26<0.26<0.26<0.26 90 1 WANG 07C BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(�0�)/�total �443/��(�0�)/�total �443/��(�0�)/�total �443/��(�0�)/�total �443/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.93<0.93<0.93<0.93 90 1 WANG 07C BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(p�K−)/�total �444/��(p�K−)/�total �444/��(p�K−)/�total �444/��(p�K−)/�total �444/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.82<0.82<0.82<0.82 90 1 WANG 03 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(p�D−)/�total �445/��(p�D−)/�total �445/��(p�D−)/�total �445/��(p�D−)/�total �445/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT25.1±2.6±3.525.1±2.6±3.525.1±2.6±3.525.1±2.6±3.5 1 CHANG 15 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(p�D∗−)/�total �446/��(p�D∗−)/�total �446/��(p�D∗−)/�total �446/��(p�D∗−)/�total �446/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT33.6±6.3±4.433.6±6.3±4.433.6±6.3±4.433.6±6.3±4.4 1 CHANG 15 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(p�0π−)/�total �447/��(p�0π−)/�total �447/��(p�0π−)/�total �447/��(p�0π−)/�total �447/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.8× 10−6<3.8× 10−6<3.8× 10−6<3.8× 10−6 90 1 WANG 03 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(��)/�total �448/��(��)/�total �448/��(��)/�total �448/��(��)/�total �448/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.32<0.32<0.32<0.32 90 1 TSAI 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.69 90 1 CHANG 05 BELL Repl. by TSAI 07
<1.2 90 1 BORNHEIM 03 CLE2 e+ e− → �(4S)
<1.0 90 1 ABE 02O BELL Repl. by CHANG 05
<3.9 90 1 COAN 99 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(��K0)/�total �449/��(��K0)/�total �449/��(��K0)/�total �449/��(��K0)/�total �449/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT4.76+0.84

−0.68±0.614.76+0.84
−0.68±0.614.76+0.84
−0.68±0.614.76+0.84
−0.68±0.61 1,2 CHANG 09 BELL e+ e− → �(4S)1 Ex
luding 
harmonium events in 2.85 < m�� < 3.128 GeV/
2 and 3.315 < m�� <3.735 GeV/
2. Measurements in various m�� bins are also reported.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(��K∗0)/�total �450/��(��K∗0)/�total �450/��(��K∗0)/�total �450/��(��K∗0)/�total �450/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.46+0.87
−0.72±0.342.46+0.87
−0.72±0.342.46+0.87
−0.72±0.342.46+0.87
−0.72±0.34 1,2 CHANG 09 BELL e+ e− → �(4S)1 Ex
luding 
harmonium events in 2.85 < m�� < 3.128 GeV/
2 and 3.315 < m�� <3.735 GeV/
2. Measurements in various m�� bins are also reported.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(��D0)/�total �451/��(��D0)/�total �451/��(��D0)/�total �451/��(��D0)/�total �451/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.00+0.30
−0.26 OUR AVERAGE1.00+0.30
−0.26 OUR AVERAGE1.00+0.30
−0.26 OUR AVERAGE1.00+0.30
−0.26 OUR AVERAGE0.98+0.29
−0.26±0.19 1,2 LEES 14B BABR e+ e− → �(4S)1.05+0.57
−0.44±0.14 2 CHANG 09 BELL e+ e− → �(4S)1 Eviden
e for 3.4 st. dev. signal signi�
an
e.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0�0�+ 
.
.)/�total �452/��(D0�0�+ 
.
.)/�total �452/��(D0�0�+ 
.
.)/�total �452/��(D0�0�+ 
.
.)/�total �452/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.1× 10−5<3.1× 10−5<3.1× 10−5<3.1× 10−5 90 1,2 LEES 14B BABR e+ e− → �(4S)1Here �0 → �γ.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(�0�0)/�total �453/��(�0�0)/�total �453/��(�0�0)/�total �453/��(�0�0)/�total �453/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.0015<0.0015<0.0015<0.0015 90 1 BORTOLETTO89 CLEO e+ e− → �(4S)1BORTOLETTO 89 reports < 0.0018 assuming �(4S) de
ays 43% to B0B0. We res
aleto 50%.

�(�++�−−)/�total �454/��(�++�−−)/�total �454/��(�++�−−)/�total �454/��(�++�−−)/�total �454/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−4<1.1× 10−4<1.1× 10−4<1.1× 10−4 90 1 BORTOLETTO89 CLEO e+ e− → �(4S)1BORTOLETTO 89 reports < 1.3 × 10−4 assuming �(4S) de
ays 43% to B0B0. Weres
ale to 50%.�(D0 pp)/�total �455/��(D0 pp)/�total �455/��(D0 pp)/�total �455/��(D0 pp)/�total �455/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.04±0.07 OUR AVERAGE1.04±0.07 OUR AVERAGE1.04±0.07 OUR AVERAGE1.04±0.07 OUR AVERAGE1.02±0.04±0.06 1,2 DEL-AMO-SA...12 BABR e+ e− → �(4S)1.18±0.15±0.16 2 ABE 02W BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.13±0.06±0.08 2 AUBERT,B 06S BABR Repl. by DEL-AMO-SANCHEZ 121Uses the values of D and D∗ bran
hing fra
tions from PDG 08.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D−s �p)/�total �456/��(D−s �p)/�total �456/��(D−s �p)/�total �456/��(D−s �p)/�total �456/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.8±0.8±0.32.8±0.8±0.32.8±0.8±0.32.8±0.8±0.3 1,2 MEDVEDEVA 07 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2MEDVEDEVA 07 reports (2.9±0.7±0.5±0.4)×10−5 from a measurement of [�(B0 →D−s �p)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = (4.4± 0.6)×10−2,whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.�(D∗(2007)0 pp)/�total �457/��(D∗(2007)0 pp)/�total �457/��(D∗(2007)0 pp)/�total �457/��(D∗(2007)0 pp)/�total �457/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.99±0.11 OUR AVERAGE0.99±0.11 OUR AVERAGE0.99±0.11 OUR AVERAGE0.99±0.11 OUR AVERAGE0.97±0.07±0.09 1,2 DEL-AMO-SA...12 BABR e+ e− → �(4S)1.20+0.33

−0.29±0.21 2 ABE 02W BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.01±0.10±0.09 2 AUBERT,B 06S BABR Repl. by DEL-AMO-SANCHEZ 121Uses the values of D and D∗ bran
hing fra
tions from PDG 08.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)− pn)/�total �458/��(D∗(2010)− pn)/�total �458/��(D∗(2010)− pn)/�total �458/��(D∗(2010)− pn)/�total �458/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT14.5+3.4

−3.0±2.714.5+3.4
−3.0±2.714.5+3.4
−3.0±2.714.5+3.4
−3.0±2.7 1 ANDERSON 01 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(D− ppπ+)/�total �459/��(D− ppπ+)/�total �459/��(D− ppπ+)/�total �459/��(D− ppπ+)/�total �459/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.32±0.10±0.293.32±0.10±0.293.32±0.10±0.293.32±0.10±0.29 1,2 DEL-AMO-SA...12 BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.38±0.14±0.29 2 AUBERT,B 06S BABR Repl. by DEL-AMO-SANCHEZ 121Uses the values of D and D∗ bran
hing fra
tions from PDG 08.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗(2010)− ppπ+)/�total �460/��(D∗(2010)− ppπ+)/�total �460/��(D∗(2010)− ppπ+)/�total �460/��(D∗(2010)− ppπ+)/�total �460/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.7 ±0.5 OUR AVERAGE4.7 ±0.5 OUR AVERAGE4.7 ±0.5 OUR AVERAGE4.7 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.4.55±0.16±0.39 1,2 DEL-AMO-SA...12 BABR e+ e− → �(4S)6.5 +1.3
−1.2 ±1.0 2 ANDERSON 01 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.81±0.22±0.44 2 AUBERT,B 06S BABR Repl. by DEL-AMO-SANCHEZ 121Uses the values of D and D∗ bran
hing fra
tions from PDG 08.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D0 ppπ+π−)/�total �461/��(D0 ppπ+π−)/�total �461/��(D0 ppπ+π−)/�total �461/��(D0 ppπ+π−)/�total �461/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.99±0.21±0.452.99±0.21±0.452.99±0.21±0.452.99±0.21±0.45 1,2 DEL-AMO-SA...12 BABR e+ e− → �(4S)1Uses the values of D and D∗ bran
hing fra
tions from PDG 08.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(D∗0ppπ+π−)/�total �462/��(D∗0ppπ+π−)/�total �462/��(D∗0ppπ+π−)/�total �462/��(D∗0ppπ+π−)/�total �462/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.91±0.36±0.291.91±0.36±0.291.91±0.36±0.291.91±0.36±0.29 1,2 DEL-AMO-SA...12 BABR e+ e− → �(4S)1Uses the values of D and D∗ bran
hing fra
tions from PDG 08.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(�
 pπ+, �
 → D− p)/�total �463/��(�
 pπ+, �
 → D− p)/�total �463/��(�
 pπ+, �
 → D− p)/�total �463/��(�
 pπ+, �
 → D− p)/�total �463/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<9<9<9<9 90 1 AUBERT,B 06S BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).
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 pπ+, �
 → D∗−p)/�total �464/��(�
 pπ+, �
 → D∗−p)/�total �464/��(�
 pπ+, �
 → D∗−p)/�total �464/��(�
 pπ+, �
 → D∗−p)/�total �464/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<14<14<14<14 90 1 AUBERT,B 06S BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(�−−
 �++)/�total �465/��(�−−
 �++)/�total �465/��(�−−
 �++)/�total �465/��(�−−
 �++)/�total �465/�VALUE CL% DOCUMENT ID TECN COMMENT
<8× 10−4<8× 10−4<8× 10−4<8× 10−4 90 1 PROCARIO 94 CLE2 e+ e− → �(4S)1PROCARIO 94 reports < 0.0012 from a measurement of [�(B0 → �−−
 �++)/�total℄

× [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = 0.043, whi
h we res
ale toour best value B(�+
 → pK−π+) = 6.35× 10−2.�(�−
 pπ+π−)/�total �466/��(�−
 pπ+π−)/�total �466/��(�−
 pπ+π−)/�total �466/��(�−
 pπ+π−)/�total �466/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.01±0.14 OUR AVERAGE1.01±0.14 OUR AVERAGE1.01±0.14 OUR AVERAGE1.01±0.14 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.1.23±0.05±0.33 1,2 LEES 13H BABR e+ e− → �(4S)0.88±0.11+0.05
−0.04 1,3 PARK 07 BELL e+ e− → �(4S)1.31+0.21

−0.20±0.07 4 DYTMAN 02 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.87±0.16+0.05

−0.04 5 GABYSHEV 02 BELL Repl. by PARK 071.33+0.46
−0.42±0.37 6 FU 97 CLE2 Repl. by DYTMAN 021Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses �+
 → pK−π+ mode. The se
ond error in
ludes the un
ertainty of the bran
hingfra
tion of the �
 de
ay, B(�+
 → pK−π+) = (5.0 ± 1.3)%.3PARK 07 reports (11.2 ± 0.5 ± 3.2) × 10−4 from a measurement of [�(B0 →�−
 pπ+π−

)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) =(5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33) × 10−2. Our �rst error is their experiment's error and our se
ond er-ror is the systemati
 error from using our best value.4DYTMAN 02 reports (1.67+0.27
−0.25) × 10−3 from a measurement of [�(B0 →�−
 pπ+π−

)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = 0.05,whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.5GABYSHEV 02 reports (1.1 ± 0.2) × 10−3 from a measurement of [�(B0 →�−
 pπ+π−
)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = 0.05,whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.6 FU 97 uses PDG 96 values of �
 bran
hing fra
tion.

WEIGHTED AVERAGE
1.01±0.14 (Error scaled by 1.3)

DYTMAN 02 CLE2 1.9
PARK 07 BELL 1.0
LEES 13H BABR 0.4

χ2

       3.3
(Confidence Level = 0.188)

0 0.5 1 1.5 2 2.5 3�(�−
 pπ+π−
)/�total (units 10−3)�(�−
 p)/�total �467/��(�−
 p)/�total �467/��(�−
 p)/�total �467/��(�−
 p)/�total �467/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT1.52±0.18 OUR AVERAGE1.52±0.18 OUR AVERAGE1.52±0.18 OUR AVERAGE1.52±0.18 OUR AVERAGE1.49±0.16±0.08 1,2 AUBERT 08BN BABR e+ e− → �(4S)2.19+0.56

−0.49±0.65 1,3 GABYSHEV 03 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.10+0.67

−0.55+0.77
−0.46 1,4 AUBERT 07AV BABR Repl. by AUBERT 08BN

< 9 90 1,5 DYTMAN 02 CLE2 e+ e− → �(4S)
< 3.1 90 1,4 GABYSHEV 02 BELL e+ e− → �(4S)
<21 90 6 FU 97 CLE2 e+ e− → �(4S)

1Assumes equal produ
tion of B+ and B0 at the �(4S).2AUBERT 08BN reports (1.89 ± 0.21 ± 0.49)× 10−5 from a measurement of [�(B0 →�−
 p)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = (5.0 ± 1.3)×10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)×10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.3The se
ond error for GABYSHEV 03 in
ludes the systemati
 and the error of �
 →pK+π− de
ay bran
hing fra
tion.4Uses the value for �
 → pK−π+ bran
hing ratio (5.0 ± 1.3)%.5DYTMAN 02 measurement uses B(�−
 → pK+π−) = 5.0 ± 1.3%. The se
ond errorin
ludes the systemati
 and the un
ertainty of the bran
hing ratio.6 FU 97 uses PDG 96 values of �
 bran
hing ratio.�(�−
 pπ0)/�total �468/��(�−
 pπ0)/�total �468/��(�−
 pπ0)/�total �468/��(�−
 pπ0)/�total �468/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.53±0.17±0.081.53±0.17±0.081.53±0.17±0.081.53±0.17±0.08 1,2 AUBERT 10H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.9 90 3 FU 97 CLE2 e+ e− → �(4S)1AUBERT 10H reports (1.94 ± 0.17 ± 0.52) × 10−4 from a measurement of [�(B0 →�−
 pπ0)/�total℄× [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = (5.0±1.3)×10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)×10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3 FU 97 uses PDG 96 values of �
 bran
hing ratio.�(�−
 pK+K−)/�total �481/��(�−
 pK+K−)/�total �481/��(�−
 pK+K−)/�total �481/��(�−
 pK+K−)/�total �481/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.97±0.35+0.11

−0.101.97±0.35+0.11
−0.101.97±0.35+0.11
−0.101.97±0.35+0.11
−0.10 1,2 LEES 15B BABR e+ e− → �(4S)1 LEES 15B reports [�(B0 → �−
 pK+K−)/�total℄ × [B(�+
 → pK−π+)℄ = (12.5 ±2.0 ± 1.0) × 10−7 whi
h we divide by our best value B(�+
 → pK−π+) = (6.35 ±0.33) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(�−
 pφ
)/�total �482/��(�−
 pφ
)/�total �482/��(�−
 pφ
)/�total �482/��(�−
 pφ
)/�total �482/�VALUE CL% DOCUMENT ID TECN COMMENT

<9× 10−6<9× 10−6<9× 10−6<9× 10−6 90 1,2 LEES 15B BABR e+ e− → �(4S)1 LEES 15B reports < 1.2 × 10−5 from a measurement of [�(B0 → �−
 pφ
)/�total℄ ×[B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = (5.0 ± 1.3)× 10−2, whi
h weres
ale to our best value B(�+
 → pK−π+) = 6.35× 10−2.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(�
 (2455)− p)/�total �469/��(�
 (2455)− p)/�total �469/��(�
 (2455)− p)/�total �469/��(�
 (2455)− p)/�total �469/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT

<24<24<24<24 1,2 AUBERT 10H BABR e+ e− → �(4S)1AUBERT 10H reports [�(B0 → �
 (2455)− p)/�total℄ × [B(�+
 → pK−π+)℄ <1.5× 10−6 whi
h we divide by our best value B(�+
 → pK−π+) = 6.35× 10−2.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(�−
 pπ+π−π0)/�total �470/��(�−
 pπ+π−π0)/�total �470/��(�−
 pπ+π−π0)/�total �470/��(�−
 pπ+π−π0)/�total �470/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.07× 10−3<5.07× 10−3<5.07× 10−3<5.07× 10−3 90 1 FU 97 CLE2 e+ e− → �(4S)1 FU 97 uses PDG 96 values of �
 bran
hing ratio.�(�−
 pπ+π−π+π−)/�total �471/��(�−
 pπ+π−π+π−)/�total �471/��(�−
 pπ+π−π+π−)/�total �471/��(�−
 pπ+π−π+π−)/�total �471/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.74× 10−3<2.74× 10−3<2.74× 10−3<2.74× 10−3 90 1 FU 97 CLE2 e+ e− → �(4S)1 FU 97 uses PDG 96 values of �
 bran
hing ratio.�(�−
 pπ+π− (nonresonant))/�total �472/��(�−
 pπ+π− (nonresonant))/�total �472/��(�−
 pπ+π− (nonresonant))/�total �472/��(�−
 pπ+π− (nonresonant))/�total �472/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.4±1.0 OUR AVERAGE5.4±1.0 OUR AVERAGE5.4±1.0 OUR AVERAGE5.4±1.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.7.9±0.4±2.0 1,2 LEES 13H BABR e+ e− → �(4S)5.0±0.8±0.3 1,3 PARK 07 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses �+
 → pK−π+ mode. The se
ond error in
ludes the un
ertainty of the bran
hingfra
tion of the �
 de
ay, B(�+
 → pK−π+) = (5.0 ± 1.3)%.3PARK 07 reports (6.4 ± 0.4 ± 1.9) × 10−4 from a measurement of [�(B0 →�−
 pπ+π− (nonresonant))/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 →pK−π+) = (5.0± 1.3)×10−2, whi
h we res
ale to our best value B(�+
 → pK−π+)= (6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.
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 (2520)−− pπ+)/�total �473/��(� 
 (2520)−− pπ+)/�total �473/��(� 
 (2520)−− pπ+)/�total �473/��(� 
 (2520)−− pπ+)/�total �473/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.01±0.18 OUR AVERAGE1.01±0.18 OUR AVERAGE1.01±0.18 OUR AVERAGE1.01±0.18 OUR AVERAGE1.15±0.10±0.30 1,2 LEES 13H BABR e+ e− → �(4S)0.94±0.21±0.05 1,3 PARK 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.3 ±0.5 ±0.1 4 GABYSHEV 02 BELL Repl. by PARK 071Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses �+
 → pK−π+ mode. The se
ond error in
ludes the un
ertainty of the bran
hingfra
tion of the �
 de
ay, B(�+
 → pK−π+) = (5.0 ± 1.3)%.3PARK 07 reports (1.2 ± 0.1 ± 0.4) × 10−4 from a measurement of [�(B0 →�
 (2520)−− pπ+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+)= (5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.4GABYSHEV 02 reports (1.63+0.64

−0.58) × 10−4 from a measurement of [�(B0 →�
 (2520)−− pπ+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) =0.05, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.�(� 
 (2520)0 pπ−)/�total �474/��(� 
 (2520)0 pπ−)/�total �474/��(� 
 (2520)0 pπ−)/�total �474/��(� 
 (2520)0 pπ−)/�total �474/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.31× 10−4<0.31× 10−4<0.31× 10−4<0.31× 10−4 90 1,2 LEES 13H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.38× 10−4 90 1 PARK 07 BELL e+ e− → �(4S)
<1.21× 10−4 90 1,2 GABYSHEV 02 BELL Repl. by PARK 071Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses the value for �
 → pK−π+ bran
hing ratio (5.0 ± 1.3)%.�(� 
 (2455)0N0, N0 → pπ−)/�total �476/��(� 
 (2455)0N0, N0 → pπ−)/�total �476/��(� 
 (2455)0N0, N0 → pπ−)/�total �476/��(� 
 (2455)0N0, N0 → pπ−)/�total �476/�N0 is the N(1440) P11 or N(1535) S11 or an admixture of the two baryoni
 states.VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.63±0.16±0.030.63±0.16±0.030.63±0.16±0.030.63±0.16±0.03 1,2 KIM 08 BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2KIM 08 reports (0.80 ± 0.15 ± 0.25) × 10−4 from a measurement of [�(B0 →�
 (2455)0N0, N0 → pπ−

)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 →pK−π+) = (5.0± 1.3)×10−2, whi
h we res
ale to our best value B(�+
 → pK−π+)= (6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(� 
 (2455)0 pπ−)/�total �475/��(� 
 (2455)0 pπ−)/�total �475/��(� 
 (2455)0 pπ−)/�total �475/��(� 
 (2455)0 pπ−)/�total �475/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT1.07±0.16 OUR AVERAGE1.07±0.16 OUR AVERAGE1.07±0.16 OUR AVERAGE1.07±0.16 OUR AVERAGE0.91±0.07±0.24 1,2 LEES 13H BABR e+ e− → �(4S)1.10±0.20±0.06 1,3 PARK 07 BELL e+ e− → �(4S)1.7 ±0.6 ±0.1 4 DYTMAN 02 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.38+0.36

−0.32±0.02 90 5 GABYSHEV 02 BELL Repl. by PARK 071Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses �+
 → pK−π+ mode. The se
ond error in
ludes the un
ertainty of the bran
hingfra
tion of the �
 de
ay, B(�+
 → pK−π+) = (5.0 ± 1.3)%.3PARK 07 reports (1.4 ± 0.2 ± 0.4) × 10−4 from a measurement of [�(B0 →�
 (2455)0 pπ−
)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+)= (5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.4DYTMAN 02 reports (2.2 ± 0.7) × 10−4 from a measurement of [�(B0 →�
 (2455)0 pπ−
)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) =0.05, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.5GABYSHEV 02 reports (0.48+0.46

−0.41) × 10−4 from a measurement of [�(B0 →�
 (2455)0 pπ−
)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) =0.05, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.�(� 
 (2455)−− pπ+)/�total �477/��(� 
 (2455)−− pπ+)/�total �477/��(� 
 (2455)−− pπ+)/�total �477/��(� 
 (2455)−− pπ+)/�total �477/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.81±0.24 OUR AVERAGE1.81±0.24 OUR AVERAGE1.81±0.24 OUR AVERAGE1.81±0.24 OUR AVERAGE2.13±0.10±0.56 1,2 LEES 13H BABR e+ e− → �(4S)1.65±0.25+0.09

−0.08 1,3 PARK 07 BELL e+ e− → �(4S)2.9 ±0.9 +0.2
−0.1 4 DYTMAN 02 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.9 +0.6
−0.5 ±0.1 5 GABYSHEV 02 BELL Repl. by PARK 07

1Assumes equal produ
tion of B+ and B0 at the �(4S).2Uses �+
 → pK−π+ mode. The se
ond error in
ludes the un
ertainty of the bran
hingfra
tion of the �
 de
ay, B(�+
 → pK−π+) = (5.0 ± 1.3)%.3PARK 07 reports (2.1 ± 0.2 ± 0.6) × 10−4 from a measurement of [�(B0 →�
 (2455)−− pπ+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+)= (5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.4DYTMAN 02 reports (3.7 ± 1.1) × 10−4 from a measurement of [�(B0 →�
 (2455)−− pπ+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) =0.05, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.5GABYSHEV 02 reports (2.38+0.75
−0.69) × 10−4 from a measurement of [�(B0 →�
 (2455)−− pπ+)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) =0.05, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.�(�−
 pK+π−)/�total �478/��(�−
 pK+π−)/�total �478/��(�−
 pK+π−)/�total �478/��(�−
 pK+π−)/�total �478/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT3.4±0.7±0.23.4±0.7±0.23.4±0.7±0.23.4±0.7±0.2 1,2 AUBERT 09AG BABR e+ e− → �(4S)1AUBERT 09AG reports (4.33 ± 0.82 ± 0.33 ± 1.13) × 10−5 from a measurement of[�(B0 → �−
 pK+π−

)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+)= (5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(� 
 (2455)−− pK+, �−−
 → �−
 π−)/�total �479/��(� 
 (2455)−− pK+, �−−
 → �−
 π−)/�total �479/��(� 
 (2455)−− pK+, �−−
 → �−
 π−)/�total �479/��(� 
 (2455)−− pK+, �−−
 → �−
 π−)/�total �479/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT0.87±0.25+0.05
−0.040.87±0.25+0.05
−0.040.87±0.25+0.05
−0.040.87±0.25+0.05
−0.04 1,2 AUBERT 09AG BABR e+ e− → �(4S)1AUBERT 09AG reports (1.11 ± 0.30 ± 0.09 ± 0.29) × 10−5 from a measurement of[�(B0 → �
 (2455)−− pK+, �−−
 → �−
 π−

)/�total℄ × [B(�+
 → pK−π+)℄assuming B(�+
 → pK−π+) = (5.0± 1.3)×10−2, whi
h we res
ale to our best valueB(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2. Our �rst error is their experiment's errorand our se
ond error is the systemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(�−
 pK∗(892)0)/�total �480/��(�−
 pK∗(892)0)/�total �480/��(�−
 pK∗(892)0)/�total �480/��(�−
 pK∗(892)0)/�total �480/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<2.42<2.42<2.42<2.42 90 1 AUBERT 09AG BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(�−
 ppp)/�total �483/��(�−
 ppp)/�total �483/��(�−
 ppp)/�total �483/��(�−
 ppp)/�total �483/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT
<2.8<2.8<2.8<2.8 1 LEES 14C BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S) and B(�+
 → pK−π+) =0.050 ± 0.013.�(�−
 �K+)/�total �484/��(�−
 �K+)/�total �484/��(�−
 �K+)/�total �484/��(�−
 �K+)/�total �484/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.8±1.1+0.2

−0.34.8±1.1+0.2
−0.34.8±1.1+0.2
−0.34.8±1.1+0.2
−0.3 1,2 LEES 11F BABR e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ from Upsilon(4S) de
ays.2 LEES 11F reports (3.8 ± 0.8 ± 0.2 ± 1.0) × 10−5 from a measurement of [�(B0 →�−
 �K+)/�total℄ / [B(�+
 → pK−π+)℄ / [B(� → pπ−)℄ assuming B(�+
 →pK−π+) = (5.0 ± 1.3) × 10−2,B(� → pπ−) = (63.9 ± 0.5) × 10−2, whi
h weres
ale to our best values B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2, B(� → pπ−)= (63.9 ± 0.5) × 10−2. Our �rst error is their experiment's error and our se
ond er-ror is the systemati
 error from using our best values. The reported un
ertainties arestatisti
al, systemati
, and �−
 bran
hing fra
tion un
ertainty.�(�−
 �+
 )/�total �485/��(�−
 �+
 )/�total �485/��(�−
 �+
 )/�total �485/��(�−
 �+
 )/�total �485/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<1.6<1.6<1.6<1.6 95 1 AAIJ 14AA LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.2 90 2 UCHIDA 08 BELL e+ e− → �(4S)1Uses B(B0 → D+D−s ) = (7.2 ± 0.8)× 10−3.2Assumes equal produ
tion of B+ and B0 at the �(4S).�(�
 (2593)− / �
 (2625)−p)/�total �486/��(�
 (2593)− / �
 (2625)−p)/�total �486/��(�
 (2593)− / �
 (2625)−p)/�total �486/��(�
 (2593)− / �
 (2625)−p)/�total �486/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−4<1.1× 10−4<1.1× 10−4<1.1× 10−4 90 1,2 DYTMAN 02 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2DYTMAN 02 measurement uses B(�−
 → pK+π−) = 5.0 ± 1.3%. The se
ond errorin
ludes the systemati
 and the un
ertainty of the bran
hing ratio.



1249124912491249See key on page 601 MesonParti
le ListingsB0�(�−
 �+
 , �−
 → �+π−π−)/�total �487/��(�−
 �+
 , �−
 → �+π−π−)/�total �487/��(�−
 �+
 , �−
 → �+π−π−)/�total �487/��(�−
 �+
 , �−
 → �+π−π−)/�total �487/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.7±1.8 OUR AVERAGE1.7±1.8 OUR AVERAGE1.7±1.8 OUR AVERAGE1.7±1.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2.1.2±0.9±0.1 1,2 AUBERT 08H BABR e+ e− → �(4S)7.3+3.3
−2.7±0.4 2,3 CHISTOV 06A BELL e+ e− → �(4S)1AUBERT 08H reports (1.5 ± 1.07 ± 0.44) × 10−5 from a measurement of [�(B0 →�−
 �+
 , �−
 → �+π−π−

)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 →pK−π+) = (5.0± 1.3)×10−2, whi
h we res
ale to our best value B(�+
 → pK−π+)= (6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3CHISTOV 06A reports (9.3+3.7
−2.8±3.1)×10−5 from a measurement of [�(B0 → �−
 �+
 ,�−
 → �+π−π−

)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+)= (5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(�+
 �−
 K0)/�total �488/��(�+
 �−
 K0)/�total �488/��(�+
 �−
 K0)/�total �488/��(�+
 �−
 K0)/�total �488/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.3±2.2 OUR AVERAGE4.3±2.2 OUR AVERAGE4.3±2.2 OUR AVERAGE4.3±2.2 OUR AVERAGE3.0±2.8±0.2 1,2 AUBERT 08H BABR e+ e− → �(4S)6.2+3.7
−3.5±0.3 2,3 GABYSHEV 06 BELL e+ e− → �(4S)1AUBERT 08H reports (0.38 ± 0.31 ± 0.21) × 10−3 from a measurement of [�(B0 →�+
 �−
 K0)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = (5.0 ±1.3)×10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.2Assumes equal produ
tion of B+ and B0 at the �(4S).3GABYSHEV 06 reports (7.9+2.9

−2.3 ± 4.3) × 10−4 from a measurement of [�(B0 →�+
 �−
 K0)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = (5.0 ±1.3)×10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.�(

γ γ
)/�total �489/��(

γ γ
)/�total �489/��(

γ γ
)/�total �489/��(

γ γ
)/�total �489/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE CL% DOCUMENT ID TECN COMMENT

<3.2× 10−7<3.2× 10−7<3.2× 10−7<3.2× 10−7 90 1 DEL-AMO-SA...11A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.2× 10−7 90 1 VILLA 06 BELL e+ e− → �(4S)
<1.7× 10−6 90 1 AUBERT 01I BABR e+ e− → �(4S)
<3.9× 10−5 90 2 ACCIARRI 95I L3 e+ e− → Z1Assumes equal produ
tion of B+ and B0 at the �(4S).2ACCIARRI 95I assumes fB0 = 39.5 ± 4.0 and fBs = 12.0 ± 3.0%.�(e+ e−)/�total �490/��(e+ e−)/�total �490/��(e+ e−)/�total �490/��(e+ e−)/�total �490/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
< 8.3× 10−8< 8.3× 10−8< 8.3× 10−8< 8.3× 10−8 90 AALTONEN 09P CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<11.3× 10−8 90 1 AUBERT 08P BABR e+ e− → �(4S)
< 6.1× 10−8 90 1 AUBERT 05W BABR Repl. by AUBERT 08P
< 1.9× 10−7 90 1 CHANG 03 BELL e+ e− → �(4S)
< 8.3× 10−7 90 1 BERGFELD 00B CLE2 e+ e− → �(4S)
< 1.4× 10−5 90 2 ACCIARRI 97B L3 e+ e− → Z
< 5.9× 10−6 90 AMMAR 94 CLE2 Repl. by BERGFELD 00B
< 2.6× 10−5 90 3 AVERY 89B CLEO e+ e− → �(4S)
< 7.6× 10−5 90 4 ALBRECHT 87D ARG e+ e− → �(4S)
< 6.4× 10−5 90 5 AVERY 87 CLEO e+ e− → �(4S)
< 3 × 10−4 90 GILES 84 CLEO Repl. by AVERY 871Assumes equal produ
tion of B+ and B0 at the �(4S).2ACCIARRI 97B assume PDG 96 produ
tion fra
tions for B+, B0, Bs , and �b .3AVERY 89B reports < 3×10−5 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.4ALBRECHT 87D reports < 8.5× 10−5 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.5AVERY 87 reports < 8× 10−5 assuming the �(4S) de
ays 40% to B0B0. We res
aleto 50%.�(e+ e−γ

)/�total �491/��(e+ e−γ
)/�total �491/��(e+ e−γ
)/�total �491/��(e+ e−γ
)/�total �491/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE CL% DOCUMENT ID TECN COMMENT

<1.2× 10−7<1.2× 10−7<1.2× 10−7<1.2× 10−7 90 AUBERT 08C BABR e+ e− → �(4S)�(

µ+µ−)/�total �492/��(

µ+µ−)/�total �492/��(

µ+µ−)/�total �492/��(

µ+µ−)/�total �492/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−9) CL% DOCUMENT ID TECN COMMENT0.39+0.16
−0.140.39+0.16
−0.140.39+0.16
−0.140.39+0.16
−0.14 1 KHACHATRY...15BE LHC pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.80 90 2 AAIJ 13B LHCB Repl. by AAIJ 13BA
< 0.63 90 3 AAIJ 13BA LHCB Repl. by KHACHA-TRYAN 15BE
< 3.8 90 4 AALTONEN 13F CDF pp at 1.96 TeV
< 0.92 90 5 CHATRCHYAN13AWCMS pp at 7, 8 TeV
< 2.6 90 2 AAIJ 12A LHCB Repl. by AAIJ 12W
< 0.81 90 6 AAIJ 12W LHCB Repl. by AAIJ 13B
< 1.4 90 6 CHATRCHYAN12A CMS pp at 7 TeV
< 12 90 7 AAIJ 11B LHCB Repl. by AAIJ 12A
< 5.0 90 6 AALTONEN 11AG CDF pp at 1.96 TeV
< 3.7 90 6 CHATRCHYAN11T CMS Repl. by CHATRCHYAN 12A
< 15 90 8 AALTONEN 08I CDF Repl. by AALTONEN 11AG
< 52 90 9 AUBERT 08P BABR e+ e− → �(4S)
< 39 90 10 ABULENCIA 05 CDF Repl. by AALTONEN 08I
< 83 90 9 AUBERT 05W BABR e+ e− → �(4S)
< 150 90 11 ACOSTA 04D CDF pp at 1.96 TeV
< 160 90 9 CHANG 03 BELL e+ e− → �(4S)
< 610 90 9 BERGFELD 00B CLE2 e+ e− → �(4S)
< 40000 90 ABBOTT 98B D0 pp 1.8 TeV
< 680 90 12 ABE 98 CDF pp at 1.8 TeV
< 10000 90 13 ACCIARRI 97B L3 e+ e− → Z
< 1600 90 14 ABE 96L CDF Repl. by ABE 98
< 5900 90 AMMAR 94 CLE2 e+ e− → �(4S)
< 8300 90 15 ALBAJAR 91C UA1 Epp
m= 630 GeV
< 12000 90 16 ALBAJAR 91C UA1 Epp
m= 630 GeV
< 43000 90 17 AVERY 89B CLEO e+ e− → �(4S)
< 45000 90 18 ALBRECHT 87D ARG e+ e− → �(4S)
< 77000 90 19 AVERY 87 CLEO e+ e− → �(4S)
<200000 90 GILES 84 CLEO Repl. by AVERY 871Derived from the 
ombined �t to CMS and LHCb data. Un
ertainty in
ludes bothstatisti
al and systemati
 
omponent. Also reports B(B0 → µ+µ−)/B(Bs → µ+µ−)= 0.14+0.08

−0.06.2Uses B(B+ → J/ψK+ → µ+µ−K+) = (6.01± 0.21)×10−5 and B(B0 → K+π−)= (1.94 ± 0.06) × 10−5 for normalization.3Reports also a limit of < 7.4 × 10−10 at 95% CL. Uses normalization modes B+ →J/ψK+ → µ+µ−K+ and B0 → K+π−.4Uses normalization mode B(B+ → J/ψK+) = (10.22 ± 0.35)× 10−4.5Uses B(B+ → J/ψK+ → µ+µ−K+) = (6.0 ± 0.2)× 10−5 for normalization.6Uses B(B+ → J/ψK+→ µ+µ−K+) = (6.01 ± 0.21)× 10−5.7Uses B produ
tion ratio f(b → B+)/f(b → B0s ) = 3.71± 0.47 and three normalizationmodes.8Uses B(B+ → J/ψK+) B(J/ψ → µ+µ−) = (5.94 ± 0.21)× 10−5.9Assumes equal produ
tion of B+ and B0 at the �(4S).10Uses B(B+ → J/ψK+) B(J/ψ → µ+µ−) = (5.88 ± 0.26)× 10−5.11Assumes produ
tion 
ross-se
tion σ(Bs )/σ(B+) = 0.100/0.391 and the CDF measuredvalue of σ(B+) = 3.6 ± 0.6 µb.12ABE 98 assumes produ
tion of σ(B0) = σ(B+) and σ(Bs )/σ(B0) = 1/3. They nor-malize to their measured σ(B0,pT (B)> 6,∣∣y∣∣ < 1.0) = 2.39 ± 0.32 ± 0.44 µb.13ACCIARRI 97B assume PDG 96 produ
tion fra
tions for B+, B0, Bs , and �b .14ABE 96L assumes equal B0 and B+ produ
tion. They normalize to their measured
σ(B+, pT (B)> 6 GeV/
, ∣

∣y∣∣ < 1) = 2.39 ± 0.54 µb.15B0 and B0s are not separated.16Obtained from unseparated B0 and B0s measurement by assuming a B0:B0s ratio 2:1.17AVERY 89B reports < 5×10−3 assuming the �(4S) de
ays 43% to B0B0. We res
aleto 50%.18ALBRECHT 87D reports < 5 × 10−5 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.19AVERY 87 reports < 9× 10−5 assuming the �(4S) de
ays 40% to B0B0. We res
aleto 50%.�(

µ+µ− γ
)/�total �493/��(

µ+µ− γ
)/�total �493/��(

µ+µ− γ
)/�total �493/��(

µ+µ− γ
)/�total �493/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE CL% DOCUMENT ID TECN COMMENT

<1.6× 10−7<1.6× 10−7<1.6× 10−7<1.6× 10−7 90 AUBERT 08C BABR e+ e− → �(4S)�(

τ+ τ−
)/�total �496/��(

τ+ τ−
)/�total �496/��(

τ+ τ−
)/�total �496/��(

τ+ τ−
)/�total �496/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE CL% DOCUMENT ID TECN COMMENT

<4.1× 10−3<4.1× 10−3<4.1× 10−3<4.1× 10−3 90 1 AUBERT 06S BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

µ+µ−µ+µ−)/�total �494/��(

µ+µ−µ+µ−)/�total �494/��(

µ+µ−µ+µ−)/�total �494/��(

µ+µ−µ+µ−)/�total �494/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.3× 10−9<5.3× 10−9<5.3× 10−9<5.3× 10−9 90 1 AAIJ 13AWLHCB pp at 7 TeV1Also reports a limit of < 6.6× 10−9 at 95% CL.�(S P , S → µ+µ−, P → µ+µ−)/�total �495/��(S P , S → µ+µ−, P → µ+µ−)/�total �495/��(S P , S → µ+µ−, P → µ+µ−)/�total �495/��(S P , S → µ+µ−, P → µ+µ−)/�total �495/�Here S and P are the hypotheti
al s
alar and pseudos
alar parti
les with masses of2.5 GeV/
2 and 214.3 MeV/
2, respe
tively.VALUE CL% DOCUMENT ID TECN COMMENT
<5.1× 10−9<5.1× 10−9<5.1× 10−9<5.1× 10−9 90 1 AAIJ 13AWLHCB pp at 7 TeV1Also reports a limit of < 6.3× 10−9 at 95% CL.



1250125012501250MesonParti
le ListingsB0�(

π0 ℓ+ ℓ−
)/�total �497/��(

π0 ℓ+ ℓ−
)/�total �497/��(

π0 ℓ+ ℓ−
)/�total �497/��(

π0 ℓ+ ℓ−
)/�total �497/�VALUE CL% DOCUMENT ID TECN COMMENT

<5.3× 10−8<5.3× 10−8<5.3× 10−8<5.3× 10−8 90 1 LEES 13M BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.5× 10−7 90 1 WEI 08A BELL e+ e− → �(4S)
<1.2× 10−7 90 1 AUBERT 07AG BABR Repl. by LEES 13M1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π0 ν ν
)/�total �503/��(

π0 ν ν
)/�total �503/��(

π0 ν ν
)/�total �503/��(

π0 ν ν
)/�total �503/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE CL% DOCUMENT ID TECN COMMENT

<6.9× 10−5<6.9× 10−5<6.9× 10−5<6.9× 10−5 90 1 LUTZ 13 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.2× 10−4 90 1 CHEN 07D BELL Repl. by LUTZ 131Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π0 e+ e−)/�total �498/��(

π0 e+ e−)/�total �498/��(

π0 e+ e−)/�total �498/��(

π0 e+ e−)/�total �498/�VALUE CL% DOCUMENT ID TECN COMMENT
<8.4× 10−8<8.4× 10−8<8.4× 10−8<8.4× 10−8 90 1 LEES 13M BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.3× 10−7 90 1 WEI 08A BELL e+ e− → �(4S)
<1.4× 10−7 90 1 AUBERT 07AG BABR Repl. by LEES 13M1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π0µ+µ−)/�total �499/��(

π0µ+µ−)/�total �499/��(

π0µ+µ−)/�total �499/��(

π0µ+µ−)/�total �499/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.9× 10−8<6.9× 10−8<6.9× 10−8<6.9× 10−8 90 1 LEES 13M BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.8× 10−7 90 1 WEI 08A BELL e+ e− → �(4S)
<5.1× 10−7 90 1 AUBERT 07AG BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ηℓ+ ℓ−
)/�total �500/��(

ηℓ+ ℓ−
)/�total �500/��(

ηℓ+ ℓ−
)/�total �500/��(

ηℓ+ ℓ−
)/�total �500/�VALUE CL% DOCUMENT ID TECN COMMENT

<6.4× 10−8<6.4× 10−8<6.4× 10−8<6.4× 10−8 90 1 LEES 13M BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ηe+ e−)/�total �501/��(

ηe+ e−)/�total �501/��(

ηe+ e−)/�total �501/��(

ηe+ e−)/�total �501/�VALUE CL% DOCUMENT ID TECN COMMENT
<10.8× 10−8<10.8× 10−8<10.8× 10−8<10.8× 10−8 90 1 LEES 13M BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

ηµ+µ−)/�total �502/��(

ηµ+µ−)/�total �502/��(

ηµ+µ−)/�total �502/��(

ηµ+µ−)/�total �502/�VALUE CL% DOCUMENT ID TECN COMMENT
<11.2× 10−8<11.2× 10−8<11.2× 10−8<11.2× 10−8 90 1 LEES 13M BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0 ℓ+ ℓ−

)/�total �504/��(K0 ℓ+ ℓ−
)/�total �504/��(K0 ℓ+ ℓ−
)/�total �504/��(K0 ℓ+ ℓ−
)/�total �504/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT3.1+0.8

−0.7 OUR AVERAGE3.1+0.8
−0.7 OUR AVERAGE3.1+0.8
−0.7 OUR AVERAGE3.1+0.8
−0.7 OUR AVERAGE2.1+1.5
−1.3±0.2 1 AUBERT 09T BABR e+ e− → �(4S)3.4+0.9
−0.8±0.2 1 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.9+1.6
−1.3±0.3 1 AUBERT,B 06J BABR Repl. by AUBERT 09T

<6.8 90 1 ISHIKAWA 03 BELL e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ at �(4S).�(K0 e+ e−)/�total �505/��(K0 e+ e−)/�total �505/��(K0 e+ e−)/�total �505/��(K0 e+ e−)/�total �505/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT1.6+1.0
−0.8 OUR AVERAGE1.6+1.0
−0.8 OUR AVERAGE1.6+1.0
−0.8 OUR AVERAGE1.6+1.0
−0.8 OUR AVERAGE0.8+1.5
−1.2±0.1 1 AUBERT 09T BABR e+ e− → �(4S)2.0+1.4
−1.0±0.1 1 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.3+1.6
−1.1±0.2 1 AUBERT,B 06J BABR Repl. by AUBERT 09T

− 2.1+2.3
−1.6±0.8 1 AUBERT 03U BABR e+ e− → �(4S)

< 5.4 90 2 ISHIKAWA 03 BELL e+ e− → �(4S)
< 27 90 1 ABE 02 BELL Repl. by ISHIKAWA 03
< 38 90 1 AUBERT 02L BABR e+ e− → �(4S)
< 84.5 90 3 ANDERSON 01B CLE2 e+ e− → �(4S)
< 3000 90 ALBRECHT 91E ARG e+ e− → �(4S)
< 5200 90 4 AVERY 87 CLEO e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B0 and B+ at �(4S).3The result is for di-lepton masses above 0.5 GeV.4AVERY 87 reports < 6.5×10−4 assuming the �(4S) de
ays 40% to B0B0. We res
aleto 50%.

�(K0ν ν
)/�total �507/��(K0ν ν
)/�total �507/��(K0ν ν
)/�total �507/��(K0ν ν
)/�total �507/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE CL% DOCUMENT ID TECN COMMENT

< 4.9× 10−5< 4.9× 10−5< 4.9× 10−5< 4.9× 10−5 90 1,2 LEES 13I BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<19.4× 10−5 90 1 LUTZ 13 BELL e+ e− → �(4S)
< 5.6× 10−5 90 1 DEL-AMO-SA...10Q BABR Repl. by LEES 13I
< 1.6× 10−4 90 1 CHEN 07D BELL e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Also reported a limit < 8.1 × 10−5 at 90% CL obtained using a fully re
onstru
tedhadroni
 B-tag evnets.�(

ρ0 ν ν
)/�total �508/��(

ρ0 ν ν
)/�total �508/��(

ρ0 ν ν
)/�total �508/��(

ρ0 ν ν
)/�total �508/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE CL% DOCUMENT ID TECN COMMENT

<2.08× 10−4<2.08× 10−4<2.08× 10−4<2.08× 10−4 90 1 LUTZ 13 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.4 × 10−4 90 1 CHEN 07D BELL Repl. by LUTZ 131Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0µ+µ−)/�total �506/��(K0µ+µ−)/�total �506/��(K0µ+µ−)/�total �506/��(K0µ+µ−)/�total �506/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT3.39±0.34 OUR FIT3.39±0.34 OUR FIT3.39±0.34 OUR FIT3.39±0.34 OUR FIT3.4 ±0.4 OUR AVERAGE3.4 ±0.4 OUR AVERAGE3.4 ±0.4 OUR AVERAGE3.4 ±0.4 OUR AVERAGE3.27±0.34±0.17 1 AAIJ 14M LHCB pp at 7, 8 TeV4.9 +2.9

−2.5 ±0.3 2 AUBERT 09T BABR e+ e− → �(4S)4.4 +1.3
−1.1 ±0.3 2 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.1 +0.7
−0.6 AAIJ 12AH LHCB Repl. by AAIJ 14M5.9 +3.3
−2.6 ±0.7 2 AUBERT,B 06J BABR Repl. by AUBERT 09T1.63+0.82
−0.63±0.14 2 AUBERT 03U BABR Repl. by AUBERT,B 06J5.6 +2.9
−2.3 ±0.5 3 ISHIKAWA 03 BELL Repl. by WEI 09A

<33 90 2 ABE 02 BELL Repl. by ISHIKAWA 03
<36 90 AUBERT 02L BABR e+ e− → �(4S)
<66.4 90 4 ANDERSON 01B CLE2 e+ e− → �(4S)
<5200 90 ALBRECHT 91E ARG e+ e− → �(4S)
<3600 90 5 AVERY 87 CLEO e+ e− → �(4S)1Uses B(B0 → J/ψ(1S)K0) = (0.928 ± 0.013 ± 0.037) × 10−3 for normalization.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Assumes equal produ
tion of B0 and B+ at �(4S). The se
ond error is a total ofsystemati
 un
ertainties in
luding model dependen
e.4The result is for di-lepton masses above 0.5 GeV.5AVERY 87 reports < 4.5×10−4 assuming the �(4S) de
ays 40% to B0B0. We res
aleto 50%.�(K0µ+µ−)/�(J/ψ(1S)K0) �506/�183�(K0µ+µ−)/�(J/ψ(1S)K0) �506/�183�(K0µ+µ−)/�(J/ψ(1S)K0) �506/�183�(K0µ+µ−)/�(J/ψ(1S)K0) �506/�183VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.39±0.04 OUR FIT0.39±0.04 OUR FIT0.39±0.04 OUR FIT0.39±0.04 OUR FIT0.37±0.12±0.020.37±0.12±0.020.37±0.12±0.020.37±0.12±0.02 AALTONEN 11AI CDF pp at 1.96 TeV�(K∗(892)0 ℓ+ ℓ−

)/�total �509/��(K∗(892)0 ℓ+ ℓ−
)/�total �509/��(K∗(892)0 ℓ+ ℓ−
)/�total �509/��(K∗(892)0 ℓ+ ℓ−
)/�total �509/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−7) DOCUMENT ID TECN COMMENT9.9+1.2

−1.1 OUR AVERAGE9.9+1.2
−1.1 OUR AVERAGE9.9+1.2
−1.1 OUR AVERAGE9.9+1.2
−1.1 OUR AVERAGE10.3+2.2
−2.1±0.7 1 AUBERT 09T BABR e+ e− → �(4S)9.7+1.3
−1.1±0.7 1 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.1+2.1
−1.9±0.9 1 AUBERT,B 06J BABR Repl. by AUBERT 09T11.7+3.0
−2.7±0.9 1 ISHIKAWA 03 BELL Repl. by WEI 09A1Assumes equal produ
tion of B0 and B+ at �(4S).�(K∗(892)0 e+ e−)/�total �510/��(K∗(892)0 e+ e−)/�total �510/��(K∗(892)0 e+ e−)/�total �510/��(K∗(892)0 e+ e−)/�total �510/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT10.3+1.9

−1.7 OUR AVERAGE10.3+1.9
−1.7 OUR AVERAGE10.3+1.9
−1.7 OUR AVERAGE10.3+1.9
−1.7 OUR AVERAGE8.6+2.6
−2.4±0.5 1 AUBERT 09T BABR e+ e− → �(4S)11.8+2.7
−2.2±0.9 1 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •10.4+3.3
−2.9±1.1 1 AUBERT,B 06J BABR Repl. by AUBERT 09T11.1+5.6
−4.7±1.1 1 AUBERT 03U BABR e+ e− → �(4S)

< 24 90 2 ISHIKAWA 03 BELL e+ e− → �(4S)
< 64 90 1 ABE 02 BELL Repl. by ISHIKAWA 03
< 67 90 1 AUBERT 02L BABR e+ e− → �(4S)
<2900 90 ALBRECHT 91E ARG e+ e− → �(4S)



1251125112511251See key on page 601 MesonParti
le ListingsB01Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B0 and B+ at �(4S).�(K∗(892)0µ+µ−)/�total �511/��(K∗(892)0µ+µ−)/�total �511/��(K∗(892)0µ+µ−)/�total �511/��(K∗(892)0µ+µ−)/�total �511/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT10.2±0.9 OUR FIT10.2±0.9 OUR FIT10.2±0.9 OUR FIT10.2±0.9 OUR FIT11.1+1.8
−1.4 OUR AVERAGE11.1+1.8
−1.4 OUR AVERAGE11.1+1.8
−1.4 OUR AVERAGE11.1+1.8
−1.4 OUR AVERAGE13.5+4.0
−3.7±1.0 1 AUBERT 09T BABR e+ e− → �(4S)10.6+1.9
−1.4±0.7 1 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.7+3.8
−3.3±1.2 1 AUBERT,B 06J BABR Repl. by AUBERT 09T8.6+7.9
−5.8±1.1 1 AUBERT 03U BABR Repl. by AUBERT,B 06J13.3+4.2
−3.7±1.1 2 ISHIKAWA 03 BELL Repl. by WEI 09A

< 42 90 1 ABE 02 BELL e+ e− → �(4S)
< 33 90 AUBERT 02L BABR e+ e− → �(4S)
< 40 90 3 AFFOLDER 99B CDF pp at 1.8 TeV
< 250 90 4 ABE 96L CDF Repl. by AFFOLDER 99B
< 230 90 5 ALBAJAR 91C UA1 Epp
m= 630 GeV
<3400 90 ALBRECHT 91E ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B0 and B+ at �(4S). The se
ond error is a total ofsystemati
 un
ertainties in
luding model dependen
e.3AFFOLDER 99B measured relative to B0 → J/ψ(1S)K∗(892)0.4ABE 96L measured relative to B0 → J/ψ(1S)K∗(892)0 using PDG 94 bran
hing ratios.5ALBAJAR 91C assumes 36% of b quarks give B0 mesons.�(K∗(892)0µ+µ−)/�(J/ψ(1S)K∗(892)0) �511/�185�(K∗(892)0µ+µ−)/�(J/ψ(1S)K∗(892)0) �511/�185�(K∗(892)0µ+µ−)/�(J/ψ(1S)K∗(892)0) �511/�185�(K∗(892)0µ+µ−)/�(J/ψ(1S)K∗(892)0) �511/�185VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.80±0.07 OUR FIT0.80±0.07 OUR FIT0.80±0.07 OUR FIT0.80±0.07 OUR FIT0.77±0.08±0.030.77±0.08±0.030.77±0.08±0.030.77±0.08±0.03 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.80±0.10±0.06 AALTONEN 11L CDF Repl. by AALTONEN 11AI0.61±0.23±0.07 AALTONEN 09B CDF Repl. by AALTONEN 11L�(K∗(892)0χ, χ→ µ+µ−)/�total �512/��(K∗(892)0χ, χ→ µ+µ−)/�total �512/��(K∗(892)0χ, χ→ µ+µ−)/�total �512/��(K∗(892)0χ, χ→ µ+µ−)/�total �512/�VALUE CL% DOCUMENT ID TECN COMMENT
< ∼ 10−9< ∼ 10−9< ∼ 10−9< ∼ 10−9 95 1 AAIJ 15AZ LHCB pp at 7, 8 TeV1The limt is obtained as a fun
tion of di-muon mass. A normalizing mode bran
hingfra
tion value of B(B0 → K∗0µ+µ−) = (1.6 ± 0.3)× 10−7 is used.�(

π+π−µ+µ−)/�total �513/��(

π+π−µ+µ−)/�total �513/��(

π+π−µ+µ−)/�total �513/��(

π+π−µ+µ−)/�total �513/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT2.1±0.5±0.12.1±0.5±0.12.1±0.5±0.12.1±0.5±0.1 1 AAIJ 15S LHCB pp at 7, 8 TeV1AAIJ 15S reports (2.11 ± 0.51 ± 0.15 ± 0.16) × 10−8 from a measurement of[�(B0 → π+π−µ+µ−
)/�total℄ / [B(B0 → J/ψ(1S)K∗(892)0)℄ assuming B(B0 →J/ψ(1S)K∗(892)0) = (1.3 ± 0.1)× 10−3, whi
h we res
ale to our best value B(B0 →J/ψ(1S)K∗(892)0) = (1.28 ± 0.05)× 10−3. Our �rst error is their experiment's errorand our se
ond error is the systemati
 error from using our best value.�(K∗(892)0 ν ν

)/�total �514/��(K∗(892)0 ν ν
)/�total �514/��(K∗(892)0 ν ν
)/�total �514/��(K∗(892)0 ν ν
)/�total �514/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE CL% DOCUMENT ID TECN COMMENT

<5.5× 10−5<5.5× 10−5<5.5× 10−5<5.5× 10−5 90 1 LUTZ 13 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.2× 10−4 90 1,2 LEES 13I BABR e+ e− → �(4S)
<1.2× 10−4 90 AUBERT 08BC BABR Repl. by LEES 13I
<3.4× 10−4 90 1 CHEN 07D BELL e+ e− → �(4S)
<1.0× 10−3 90 3 ADAM 96D DLPH e+ e− → Z1Assumes equal produ
tion of B+ and B0 at the �(4S).2Also reported a limit < 9.3 × 10−5 at 90% CL obtained using a fully re
onstru
tedhadroni
 B-tag evnets.3ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12.�(

φν ν
)/�total �515/��(

φν ν
)/�total �515/��(

φν ν
)/�total �515/��(

φν ν
)/�total �515/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tion.VALUE CL% DOCUMENT ID TECN COMMENT

<1.27× 10−4<1.27× 10−4<1.27× 10−4<1.27× 10−4 90 1 LUTZ 13 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.8 × 10−5 90 1 CHEN 07D BELL Repl. by LUTZ 131Assumes equal produ
tion of B+ and B0 at the �(4S).�(e±µ∓)/�total �516/��(e±µ∓)/�total �516/��(e±µ∓)/�total �516/��(e±µ∓)/�total �516/�Test of lepton family number 
onservation. Allowed by higher-order ele
troweak inter-a
tions.VALUE CL% DOCUMENT ID TECN COMMENT
< 2.8× 10−9< 2.8× 10−9< 2.8× 10−9< 2.8× 10−9 90 1 AAIJ 13BMLHCB pp at 7 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 6.4× 10−8 90 AALTONEN 09P CDF pp at 1.96 TeV
< 9.2× 10−8 90 2 AUBERT 08P BABR e+ e− → �(4S)
< 1.8× 10−7 90 2 AUBERT 05W BABR e+ e− → �(4S)
< 1.7× 10−7 90 2 CHANG 03 BELL e+ e− → �(4S)
<15 × 10−7 90 2 BERGFELD 00B CLE2 e+ e− → �(4S)
< 3.5× 10−6 90 ABE 98V CDF pp at 1.8 TeV
< 1.6× 10−5 90 3 ACCIARRI 97B L3 e+ e− → Z
< 5.9× 10−6 90 AMMAR 94 CLE2 e+ e− → �(4S)
< 3.4× 10−5 90 4 AVERY 89B CLEO e+ e− → �(4S)
< 4.5× 10−5 90 5 ALBRECHT 87D ARG e+ e− → �(4S)
< 7.7× 10−5 90 6 AVERY 87 CLEO e+ e− → �(4S)
< 3 × 10−4 90 GILES 84 CLEO Repl. by AVERY 871Uses normalization mode B(B0 → K+π−) = (19.4 ± 0.6) × 10−6.2Assumes equal produ
tion of B+ and B0 at the �(4S).3ACCIARRI 97B assume PDG 96 produ
tion fra
tions for B+, B0, Bs , and �b .4 Paper assumes the �(4S) de
ays 43% to B0B0. We res
ale to 50%.5ALBRECHT 87D reports < 5 × 10−5 assuming the �(4S) de
ays 45% to B0B0. Weres
ale to 50%.6AVERY 87 reports < 9× 10−5 assuming the �(4S) de
ays 40% to B0B0. We res
aleto 50%.�(

π0 e±µ∓)/�total �517/��(

π0 e±µ∓)/�total �517/��(

π0 e±µ∓)/�total �517/��(

π0 e±µ∓)/�total �517/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.4× 10−7<1.4× 10−7<1.4× 10−7<1.4× 10−7 90 1 AUBERT 07AG BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K0 e±µ∓)/�total �518/��(K0 e±µ∓)/�total �518/��(K0 e±µ∓)/�total �518/��(K0 e±µ∓)/�total �518/�Test of lepton family number 
onservation.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
< 2.7< 2.7< 2.7< 2.7 90 1 AUBERT,B 06J BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<40 90 1 AUBERT 02L BABR Repl. by AUBERT,B 06J1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)0 e+µ−)/�total �519/��(K∗(892)0 e+µ−)/�total �519/��(K∗(892)0 e+µ−)/�total �519/��(K∗(892)0 e+µ−)/�total �519/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
<5.3<5.3<5.3<5.3 90 1 AUBERT,B 06J BABR e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ at �(4S).�(K∗(892)0 e−µ+)/�total �520/��(K∗(892)0 e−µ+)/�total �520/��(K∗(892)0 e−µ+)/�total �520/��(K∗(892)0 e−µ+)/�total �520/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
<3.4<3.4<3.4<3.4 90 1 AUBERT,B 06J BABR e+ e− → �(4S)1Assumes equal produ
tion of B0 and B+ at �(4S).�(K∗(892)0 e±µ∓)/�total �521/��(K∗(892)0 e±µ∓)/�total �521/��(K∗(892)0 e±µ∓)/�total �521/��(K∗(892)0 e±µ∓)/�total �521/�Test of lepton family number 
onservation.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
< 5.8< 5.8< 5.8< 5.8 90 1 AUBERT,B 06J BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<34 90 1 AUBERT 02L BABR Repl. by AUBERT,B 06J1Assumes equal produ
tion of B+ and B0 at the �(4S).�(e± τ∓

)/�total �522/��(e± τ∓
)/�total �522/��(e± τ∓
)/�total �522/��(e± τ∓
)/�total �522/�Test of lepton family number 
onservation. Allowed by higher-order ele
troweak inter-a
tions.VALUE CL% DOCUMENT ID TECN COMMENT

<2.8× 10−5<2.8× 10−5<2.8× 10−5<2.8× 10−5 90 1 AUBERT 08AD BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.1× 10−4 90 BORNHEIM 04 CLE2 e+ e− → �(4S)
<5.3× 10−4 90 AMMAR 94 CLE2 Repl. by BORNHEIM 041Assumes equal produ
tion of B+ and B0 at the �(4S).�(

µ± τ∓
)/�total �523/��(

µ± τ∓
)/�total �523/��(

µ± τ∓
)/�total �523/��(

µ± τ∓
)/�total �523/�Test of lepton family number 
onservation. Allowed by higher-order ele
troweak inter-a
tions.VALUE CL% DOCUMENT ID TECN COMMENT

<2.2× 10−5<2.2× 10−5<2.2× 10−5<2.2× 10−5 90 1 AUBERT 08AD BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.8× 10−5 90 BORNHEIM 04 CLE2 e+ e− → �(4S)
<8.3× 10−4 90 AMMAR 94 CLE2 Repl. by BORNHEIM 041Assumes equal produ
tion of B+ and B0 at the �(4S).�(invisible)/�total �524/��(invisible)/�total �524/��(invisible)/�total �524/��(invisible)/�total �524/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
< 2.4< 2.4< 2.4< 2.4 90 1 LEES 12T BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<13 90 2 HSU 12 BELL e+ e− → �(4S)
<22 90 1 AUBERT,B 04J BABR e+ e− → �(4S)1Uses the fully re
onstru
ted B0 → D (∗)− ℓ+ νℓ events as a tag.2 Identi�ed by fully re
onstru
ting a hadroni
 de
ay of the a

ompanying B meson andrequiring no other parti
les in the event.
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)/�total �525/��(ν ν γ
)/�total �525/��(ν ν γ
)/�total �525/��(ν ν γ
)/�total �525/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<1.7<1.7<1.7<1.7 90 1 LEES 12T BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.7 90 1 AUBERT,B 04J BABR Repl. by LEES 12T1Uses the fully re
onstru
ted B0 → D (∗)− ℓ+ νℓ events as a tag.�(�+
 µ−)/�total �526/��(�+
 µ−)/�total �526/��(�+
 µ−)/�total �526/��(�+
 µ−)/�total �526/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.4× 10−6<1.4× 10−6<1.4× 10−6<1.4× 10−6 90 1,2 DEL-AMO-SA...11K BABR e+ e− → �(4S)1DEL-AMO-SANCHEZ 11K reports < 180 × 10−8 from a measurement of [�(B0 →�+
 µ−

)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = (5.0 ±1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) = 6.35 × 10−2.2Uses B(�(4S) → B0B0) = (51.6± 0.6)% and B(�(4S) → B+B−) = (48.4± 0.6)%.�(�+
 e−)/�total �527/��(�+
 e−)/�total �527/��(�+
 e−)/�total �527/��(�+
 e−)/�total �527/�VALUE CL% DOCUMENT ID TECN COMMENT
<4× 10−6<4× 10−6<4× 10−6<4× 10−6 90 1,2 DEL-AMO-SA...11K BABR e+ e− → �(4S)1DEL-AMO-SANCHEZ 11K reports < 520 × 10−8 from a measurement of [�(B0 →�+
 e−)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = (5.0 ±1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) = 6.35 × 10−2.2Uses B(�(4S) → B0B0) = (51.6± 0.6)% and B(�(4S) → B+B−) = (48.4± 0.6)%.B0s CROSS-PARTICLE BRANCHING RATIOSB0s CROSS-PARTICLE BRANCHING RATIOSB0s CROSS-PARTICLE BRANCHING RATIOSB0s CROSS-PARTICLE BRANCHING RATIOS�([K+K− ℄DK∗(892)0)/�total × B(B0s → [K+K− ℄DK∗(892)0) �142/�× B�([K+K− ℄DK∗(892)0)/�total × B(B0s → [K+K− ℄DK∗(892)0) �142/�× B�([K+K− ℄DK∗(892)0)/�total × B(B0s → [K+K− ℄DK∗(892)0) �142/�× B�([K+K− ℄DK∗(892)0)/�total × B(B0s → [K+K− ℄DK∗(892)0) �142/�× BVALUE DOCUMENT ID TECN COMMENT0.10±0.02±0.010.10±0.02±0.010.10±0.02±0.010.10±0.02±0.01 AAIJ 14BN LHCB pp at 7, 8 TeV�([π+π− ℄DK∗(892)0)/�total ×B(B0s → [π+π− ℄DK∗(892)0) �143/�× B�([π+π− ℄DK∗(892)0)/�total ×B(B0s → [π+π− ℄DK∗(892)0) �143/�× B�([π+π− ℄DK∗(892)0)/�total ×B(B0s → [π+π− ℄DK∗(892)0) �143/�× B�([π+π− ℄DK∗(892)0)/�total ×B(B0s → [π+π− ℄DK∗(892)0) �143/�× BVALUE DOCUMENT ID TECN COMMENT0.15±0.04±0.010.15±0.04±0.010.15±0.04±0.010.15±0.04±0.01 AAIJ 14BN LHCB pp at 7, 8 TeV
POLARIZATION IN B DECAYS

Revised August 2015 by A.V.Gritsan (Johns Hopkins Univer-
sity).

We review the notation used in polarization measurements

in particle production and decay, with a particular emphasis on

the B decays and the CP -violating observables in polarization

measurements. We look at several examples of vector-vector

and vector-tensor B meson decays, while more details about

the theory and experimental results in B decays can be found

in a separate mini-review [1] in this Review.

Figure 1 illustrates angular observables in an example of

the sequential process ab → X → P1P2 → (p11p12)(p21p22) [2].

The angular distributions are of particular interest because

they are sensitive to spin correlations and reveal properties of

particles and their interactions, such as quantum numbers and

couplings. In the case of a spin-zero particle X , such as B

meson or a Higgs boson, there are no spin correlations in the

production mechanism and the decay chain is to be analyzed.

The angular distribution of decay products can be expressed as

a function of three helicity angles which describe the alignment

of the particles in the decay chain. The analyzer of the B-

daughter polarization is normally chosen for two-body decays,

as the direction of the daughters in the center-of-mass of the

parent (e.g., ρ → 2π) [3], and for three-body decays as the

normal to the decay plane (e.g., ω → 3π) [4]. An equivalent

set of transversity angles is sometimes used in polarization

analyses [5]. The differential decay width depends on complex

amplitudes Aλ1λ2
, corresponding to the X-daughter helicity

states λi.

Figure 1: Definition of the production and
helicity angles in the sequential process ab →
X → P1P2 → (p11p12)(p21p22). The three helic-
ity angles include θ1 and θ2, defined in the rest
frame of the two daughters P1 and P2, and Φ,
defined in the X frame as the angle between the
two decay planes. The two production angles θ∗

and Ψ are defined in the X frame, where Ψ is
the angle between the production plane and the
average of the two decay planes.

In the case of a spin-zero B-meson decay, its daughter

helicities are constrained to λ1 = λ2 = λ. Therefore we simplify

amplitude notation as Aλ. Moreover, most B-decay polarization

analyses are limited to the case when the spin of one of the

B-meson daughters is 1. In that case, there are only three

independent amplitudes corresponding to λ = 0 or ±1 [6],

where the last two can be expressed in terms of parity-even and

parity-odd amplitudes A‖,⊥ = (A+1 ± A−1)/
√

2. The overall

decay amplitude involves three complex terms proportional to

the above amplitudes and the Wigner d functions of helicity

angles. The exact angular dependence would depend on the

quantum numbers of the B-meson daughters and of their

decay products, and can be found in the literature [6,7]. The

differential decay rate would involve six real quantities αi,

including interference terms,

dΓ

Γ d cos θ1 d cos θ2 dΦ
=

∑

i

αi fi (cos θ1, cos θ2, Φ) , (1)

where each fi (cos θ1, cos θ2, Φ) has unique angular dependence

specific to particle quantum numbers, and the αi parameters

are defined as:

α1 =
|A0|2

Σ|Aλ|2
= fL , (2)

α2 =
|A‖|2 + |A⊥|2

Σ|Aλ|2
= (1 − fL) , (3)

α3 =
|A‖|2 − |A⊥|2

Σ|Aλ|2
= (1 − fL − 2 f⊥) , (4)
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α4 =

ℑm(A⊥A∗
‖)

Σ|Aλ|2
=

√

f⊥(1−fL−f⊥) sin(φ⊥−φ‖) , (5)

α5 =
ℜe(A‖A

∗
0)

Σ|Aλ|2
=

√

fL (1 − fL − f⊥) cos(φ‖) , (6)

α6 =
ℑm(A⊥A∗

0)

Σ|Aλ|2
=

√

f⊥ fL sin(φ⊥) , (7)

where the amplitudes have been expressed with the help of

polarization parameters fL, f⊥, φ‖, and φ⊥ defined in Table 1.

Note that the terms proportional to ℜe(A⊥A∗
‖), ℑm(A‖A

∗
0),

and ℜe(A⊥A∗
0) are absent in Eqs. (2-7). However, these terms

may appear for some three-body decays of a B-meson daughter,

see Ref. 7.

Table 1: Rate, polarization, and CP -
asymmetry parameters defined for the B-meson
decays to mesons with non-zero spin. Numeri-
cal examples are shown for the average of the
B0 → ϕK∗(892)0 decay measurements obtained
from BABAR [8], Belle [9], and LHCb [10].
The first six parameters are defined under the
assumption of no CP violation in decay, while
they are averaged between the B and B pa-
rameters in general. The last six parameters
involve differences between the B and B me-
son decay parameters. The phase convention δ0

is chosen with respect to a single A00 ampli-
tude from a reference B decay mode, which is
B0 → ϕK∗

0 (1430)0 for numerical results.

parameter definition average

B Γ/Γtotal (10.1+0.6
−0.5) × 10−6

fL |A0|2/Σ|Aλ|2 0.497 ± 0.017

f⊥ |A⊥|2/Σ|Aλ|2 0.225 ± 0.015

φ‖ − π arg(A‖/A0) − π −0.712 ± 0.058

φ⊥ − π arg(A⊥/A0) − π −0.615 ± 0.056

δ0 − π arg(A00/A0) − π −0.26 ± 0.10

ACP (Γ̄ − Γ)/(Γ̄ + Γ) −0.003 ± 0.038

A0
CP (f̄L − fL)/(f̄L + fL) −0.007 ± 0.030

A⊥
CP (f̄⊥ − f⊥)/(f̄⊥ + f⊥) −0.014 ± 0.057

∆φ‖ (φ̄‖ − φ‖)/2 +0.051 ± 0.053

∆φ⊥ (φ̄⊥ − φ⊥ − π)/2 +0.075 ± 0.050

∆δ0 (δ̄0 − δ0)/2 +0.13 ± 0.08

Overall, six real parameters describe three complex ampli-

tudes A0, A‖, and A⊥. These could be chosen to be the four

polarization parameters fL, f⊥, φ‖, and φ⊥, one overall size

normalization, such as decay rate Γ, or branching fraction B,

and one overall phase δ0. The phase convention is arbitrary for

an isolated B decay mode. However, for several B decays, the

relative phase could produce meaningful and observable effects

through interference with other B decays with the same final

states, such as for B → V K∗
J with J = 0, 1, 2, 3, 4, ... The phase

could be referenced to the single B → V K∗
0 amplitude A00

in such a case, as shown in Table 1. Here V stands for any

spin-one vector meson.

Moreover, CP violation can be tested in the angular dis-

tribution of the decay as the difference between the B and B.

Each of the six real parameters describing the three complex

amplitudes would have a counterpart CP -asymmetry term, cor-

responding to three direct-CP asymmetries in three amplitudes,

and three CP -violating phase differences, equivalent to the

phase measurements from the mixing-induced CP asymmetries

in the time evolution of B-decays [1]. In Table 1 and Ref. 11,

these are chosen to be the direct-CP asymmetries in the overall

decay rate ACP , in the fL fraction A0
CP , and in the f⊥ fraction

A⊥
CP , and three weak phase differences:

∆φ‖ =
1

2
arg(Ā‖A0/A‖Ā0) , (8)

∆φ⊥ =
1

2
arg(Ā⊥A0/A⊥Ā0) −

π

2
, (9)

∆δ0 =
1

2
arg(Ā00A0/A00Ā0) . (10)

The π
2 term in Eq. (9) reflects the fact that A⊥ and Ā⊥

differ in phase by π if CP is conserved. The two parameters

∆φ‖ and ∆φ⊥ are equivalent to triple-product asymmetries

constructed from the vectors describing the decay angular

distribution [12]. The CP -violating phase difference in the

reference decay mode [11] is, in the Wolfenstein CKM quark-

mixing phase convention,

∆φ00 =
1

2
arg(A00/Ā00) . (11)

This can be measured only together with the mixing-induced

phase difference for some of the neutral B-meson decays similar

to other mixing-induced CP asymmetry measurements [1].

It may not always be possible to have a phase-reference

decay mode which would define δ0 and ∆δ0 parameters. In that

case, it may be possible to define the phase difference directly

similarly to Eq. (11):

∆φ0 =
1

2
arg(A0/Ā0) . (12)

One can measure the angles of the CKM unitarity triangle,

assuming Standard Model contributions to the ∆φ0 and B-

mixing phases. Examples include measurements of β = φ1 with

B → J/ψK∗ and α = φ2 with B → ρρ.

Most of the B decays that arise from tree-level b → c

transitions have the amplitude hierarchy |A0| > |A+| > |A−|
which is expected from analyses based on quark-helicity conser-

vation [13]. The larger the mass of the vector-meson daughters,

the weaker the inequality. The B meson decays to heavy vector

particles with charm, such as B → J/ψK∗, ψ(2S)K∗, χc1K
∗,

D∗ρ, D∗K∗, D∗D∗, and D∗D∗
s , show a substantial fraction

of the amplitudes corresponding to transverse polarization of

the vector mesons (A±1), in agreement with the factorization

prediction. The detailed amplitude analysis of the B → J/ψK∗

decays has been performed by the BABAR [14], Belle [15],

CDF [16], CLEO [17], D0 [18], and LHCb [19] collaborations.

Most analyses are performed under the assumption of the ab-

sence of direct CP violation. The parameter values are given in
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the particle listing of this Review. The difference between the

strong phases φ‖ and φ⊥ deviates significantly from zero. The

recent measurements [14,15] of CP -violating terms similar to

those in B → ϕK∗ [11] shown in Table 1 are consistent with

zero.

In addition, the mixing-induced CP -violating asymmetry is

measured in the B0 → J/ψK∗0 decay [1,14,15] where angular

analysis allows one to separate CP -eigenstate amplitudes. This

allows one to resolve the sign ambiguity of the cos 2β (cos 2φ1)

term that appears in the time-dependent angular distribution

due to interference of parity-even and parity-odd terms. This

analysis relies on the knowledge of discrete ambiguities in the

strong phases φ‖ and φ⊥, as discussed below. The BABAR

experiment used a method based on the dependence on the Kπ

invariant mass of the interference between the S- and P -waves

to resolve the discrete ambiguity in the determination of the

strong phases (φ‖, φ⊥) in B → J/ψK∗ decays [14]. The result

is in agreement with the amplitude hierarchy expectation [13].

The CDF [20], D0 [21], and LHCb [22,23] experiments have

studied the B0
s → J/ψϕ, J/ψ(K+K−), J/ψ(π+π−) decays and

provided the lifetime, polarization, and phase measurements.

The amplitude hierarchy |A0| ≫ |A+| ≫ |A−| was ex-

pected in B decays to light vector particles in both pen-

guin transitions [24,25] and tree-level transitions [13]. There

is confirmation by the BABAR and Belle experiments of pre-

dominantly longitudinal polarization in the tree-level b → u

transition, such as B0 → ρ+ρ− [26], B+ → ρ0ρ+ [27], and

B+ → ωρ+ [28]; this is consistent with the analysis of the

quark helicity conservation [13]. Because the longitudinal am-

plitude dominates the decay, a detailed amplitude analysis

is not possible with current B samples, and limits on the

transverse amplitude fraction are obtained. The small branch-

ing fractions of B0 → ρ0ρ0, ωρ0, ωω [30,31,32,28] indicate that

b → d penguin pollution is small in the charmless, strange-

less vector-vector B decays. There is a measurement of large

longitudinal polarization in B0 → ρ0ρ0 [30,31,32] decays. The

fraction of transverse polarization is large in decays to heavier

mesons such as B0 → a1(1260)+a1(1260)− [29].

The interest in the polarization and CP -asymmetry mea-

surements in penguin transition, such as b → s decays

B → ϕK∗, ρK∗, ωK∗, or B0
s → ϕϕ, K∗K∗, and b → d

decay B → K∗K̄∗, is motivated by their potential sensitivity

to physics beyond the Standard Model. The decay amplitudes

for B → ϕK∗ have been measured by the BABAR, Belle, and

LHCb experiments [11,9,33,34,10]. The fractions of longitudi-

nal polarization are fL = 0.50 ± 0.05 for the B+ → ϕK∗+

decay and fL = 0.497± 0.017 for the B0 → ϕK∗0 decay. These

indicate significant departure from the naive expectation of

predominant longitudinal polarization, suggesting other contri-

butions to the decay amplitude, previously neglected, either

within the Standard Model, such as penguin annihilation [35]

or QCD rescattering [36], or from physics beyond the Standard

Model [37]. The complete set of twelve amplitude parameters

measured in the B0 → ϕK∗0 decay is given in Table 1. Several

other parameters could be constructed from the above twelve

parameters, as suggested in Ref. 38.

The discrete ambiguity in the phase (φ‖, φ⊥, ∆φ‖, ∆φ⊥)

measurements has been resolved by BABAR in favor of |A+| ≫
|A−| through interference between the S- and P -waves of

Kπ. The search for vector-tensor and vector-axialvector B →
ϕK

(∗)
J decays with J = 1, 2, 3, 4 revealed a large fraction of

longitudinal polarization in the decay B → ϕK∗
2 (1430) with

fL = 0.90+0.06
−0.07 [11,39], but large contribution of transverse

amplitude in B → ϕK1(1270) with fL = 0.46+0.13
−0.15 [40].

Like B → ϕK∗, the decays B → ρK∗ and B → ωK∗ may

be sensitive to New Physics. Measurements of the longitudi-

nal polarization fraction in B+ → ρ0K∗0, B+ → ρ+K∗0 [41]

and in both vector-vector and vector-tensor final states of

B → ωK∗
J [28] reveal a large fraction of transverse polariza-

tion, indicating an anomaly similar to B → ϕK∗ except for

a different pattern in vector-tensor final states. A large trans-

verse polarization is also observed in the B0
s → ϕϕ decay by

CDF [42] and LHCb [43], B0
s → K∗0K̄∗0 decays by LHCb [44],

and B0
s → ϕK∗0 decays by LHCb [45]. At the same time,

measurement of the polarization in the b → d penguin decays

B → K∗K̄∗ indicates a large fraction of longitudinal polar-

ization [46]. The polarization pattern in penguin-dominated

B-meson decays is not fully understood [35,36,37].

The three-body semileptonic B-meson decays, such as B →
V ℓ1ℓ2, share many features with the two-body B → V V decays.

Their differential decay width can be parameterized with the

two helicity angles defined in the V and (ℓ1ℓ2) frames and with

the azimuthal angle, as defined in Fig. 1. However, since the

(ℓ1ℓ2) pair does not come from an on-shell particle, the angular

distribution is unique to each point in the dilepton mass

mℓℓ spectrum. The polarization measurements as a function of

mℓℓ provide complementary information on physics beyond the

Standard Model, as discussed for B → K∗ℓ+ℓ− and Bs →
φℓ+ℓ− decays in Ref. 47. The current data in these modes have

been analyzed by the BABAR, Belle, CDF, LHCb, and CMS

experiments [48,49].

The examples of the angular distributions and observables

in B → K∗ℓ+ℓ− are discussed in Ref. 47. Typically two angular

observables have been measured in this decay in certain ranges

of the dilepton mass mℓℓ [48]. One parameter is the fraction

of longitudinal polarization FL, which is determined by the K∗

angular distribution and is similar to fL defined for exclusive

two-body decays. The other parameter is the forward-backward

asymmetry of the lepton pair AFB, which is the asymmetry of

the decay rate with positive and negative values of cos θ1.

In summary, there has been considerable recent interest in

the polarization measurements of B-meson decays because they

reveal both weak- and strong-interaction dynamics [35–37,50].

New measurements will further elucidate the pattern of spin

alignment measurements in rare B decays, and further test the

Standard Model and strong interaction dynamics, including the

non-factorizable contributions to the B-decay amplitudes.
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ays involving two ve
tor mesons, one 
an distinguish among thestates in whi
h meson polarizations are both longitudinal (L) or both aretransverse and parallel (‖) or perpendi
ular (⊥) to ea
h other with theparameters �L/�, �⊥/�, and the relative phases φ‖ and φ⊥. See thede�nitions in the note on \Polarization in B De
ays" review in the B0Parti
le Listings.�L/� in B0 → J/ψ(1S)K∗(892)0�L/� in B0 → J/ψ(1S)K∗(892)0�L/� in B0 → J/ψ(1S)K∗(892)0�L/� in B0 → J/ψ(1S)K∗(892)0VALUE EVTS DOCUMENT ID TECN COMMENT0.571±0.007 OUR AVERAGE0.571±0.007 OUR AVERAGE0.571±0.007 OUR AVERAGE0.571±0.007 OUR AVERAGE0.572±0.006±0.014 1 AAIJ 13AT LHCB pp at 7 TeV0.587±0.011±0.013 2 ABAZOV 09E D0 pp at 1.96 TeV0.556±0.009±0.010 3 AUBERT 07ADBABR e+ e− → �(4S)0.562±0.026±0.018 ACOSTA 05 CDF pp at 1.96 TeV0.574±0.012±0.009 ITOH 05 BELL e+ e− → �(4S)0.59 ±0.06 ±0.01 4 AFFOLDER 00N CDF pp at 1.8 TeV0.52 ±0.07 ±0.04 5 JESSOP 97 CLE2 e+ e− → �(4S)0.65 ±0.10 ±0.04 65 ABE 95Z CDF pp at 1.8 TeV0.97 ±0.16 ±0.15 13 6 ALBRECHT 94G ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.566±0.012±0.005 3 AUBERT 05P BABR Repl. by AUBERT 07AD0.62 ±0.02 ±0.03 7 ABE 02N BELL Repl. by ITOH 050.597±0.028±0.024 8 AUBERT 01H BABR Repl. by AUBERT 07AD0.80 ±0.08 ±0.05 42 6 ALAM 94 CLE2 Sup. by JESSOP 971AAIJ 13AT obtains �‖/� = 0.227 ± 0.004 ± 0.011. The relation 1 = ( �L + �⊥ +�‖)/� is used to obtain �L/�.2Measured the angular and lifetime parameters for the time-dependent angular untaggedde
ays B0d → J/ψK∗0 and B0s → J/ψφ.3Obtained by 
ombining the B0 and B+ modes.4AFFOLDER 00N measurements are based on 190 B0 
andidates obtained from a datasample of 89 pb−1. The P-wave fra
tion is found to be 0.13+0.12

−0.09 ± 0.06.5 JESSOP 97 is the average over a mixture of B0 and B+ de
ays. The P-wave fra
tionis found to be 0.16 ± 0.08 ± 0.04.6Averaged over an admixture of B0 and B+ de
ays.7Averaged over an admixture of B0 and B+ de
ays and the Pwave fra
tion is (19 ± 2 ±3)%.8Averaged over an admixture of B0 and B− de
ays and the P wave fra
tion is (16.0 ±3.2 ± 1.4)× 10−2.�⊥/� in B0 → J/ψK∗0�⊥/� in B0 → J/ψK∗0�⊥/� in B0 → J/ψK∗0�⊥/� in B0 → J/ψK∗0VALUE DOCUMENT ID TECN COMMENT0.211±0.008 OUR AVERAGE0.211±0.008 OUR AVERAGE0.211±0.008 OUR AVERAGE0.211±0.008 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.0.201±0.004±0.008 AAIJ 13AT LHCB pp at 7 TeV0.230±0.013±0.025 1 ABAZOV 09E D0 pp at 1.96 TeV0.233±0.010±0.005 2 AUBERT 07AD BABR e+ e− → �(4S)0.215±0.032±0.006 ACOSTA 05 CDF pp at 1.96 TeV0.195±0.012±0.008 ITOH 05 BELL e+ e− → �(4S)1Measured the angular and lifetime parameters for the time-dependent angular untaggedde
ays B0d → J/ψK∗0 and B0s → J/ψφ.2Obtained by 
ombining the B0 and B+ modes.
WEIGHTED AVERAGE
0.211±0.008 (Error scaled by 1.3)

ITOH 05 BELL 1.2
ACOSTA 05 CDF 0.0
AUBERT 07AD BABR 3.8
ABAZOV 09E D0 0.4
AAIJ 13AT LHCB 1.3

χ2

       6.8
(Confidence Level = 0.146)

0.15 0.2 0.25 0.3 0.35�⊥/� in B0 → J/ψK∗0

φ‖ in B0 → J/ψK∗0φ‖ in B0 → J/ψK∗0φ‖ in B0 → J/ψK∗0φ‖ in B0 → J/ψK∗0VALUE (rad) DOCUMENT ID TECN COMMENT
−2.92±0.04 OUR AVERAGE−2.92±0.04 OUR AVERAGE−2.92±0.04 OUR AVERAGE−2.92±0.04 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.
−2.94±0.02±0.03 AAIJ 13AT LHCB pp at 7 TeV
−2.69±0.08±0.11 1 ABAZOV 09E D0 pp at 1.96 TeV
−2.93±0.08±0.04 2 AUBERT 07AD BABR e+ e− → �(4S)1Obtained φ‖ as δ2 − δ1, assuming they are un
orrelated.2Obtained by 
ombining the B0 and B+ modes.

WEIGHTED AVERAGE
-2.92±0.04 (Error scaled by 1.3)

AUBERT 07AD BABR 0.0
ABAZOV 09E D0 3.0
AAIJ 13AT LHCB 0.2

χ2

       3.2
(Confidence Level = 0.206)

-3.2 -3 -2.8 -2.6 -2.4 -2.2

φ‖ in B0 → J/ψK∗0 (rad)
φ⊥ in B0 → J/ψK∗0φ⊥ in B0 → J/ψK∗0φ⊥ in B0 → J/ψK∗0φ⊥ in B0 → J/ψK∗0VALUE (rad) DOCUMENT ID TECN COMMENT2.96±0.05 OUR AVERAGE2.96±0.05 OUR AVERAGE2.96±0.05 OUR AVERAGE2.96±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2. See the ideogram below.2.94±0.02±0.02 AAIJ 13AT LHCB pp at 7 TeV3.21±0.06±0.06 ABAZOV 09E D0 pp at 1.96 TeV2.91±0.05±0.03 1 AUBERT 07AD BABR e+ e− → �(4S)1Obtained by 
ombining the B0 and B+ modes.

WEIGHTED AVERAGE
2.96±0.05 (Error scaled by 2.2)

AUBERT 07AD BABR 0.6
ABAZOV 09E D0 8.9
AAIJ 13AT LHCB 0.4

χ2

       9.9
(Confidence Level = 0.0071)

2.6 2.8 3 3.2 3.4 3.6

φ⊥ in B0 → J/ψK∗0 (rad)�L/� in B0 → ψ(2S)K∗(892)0�L/� in B0 → ψ(2S)K∗(892)0�L/� in B0 → ψ(2S)K∗(892)0�L/� in B0 → ψ(2S)K∗(892)0VALUE DOCUMENT ID TECN COMMENT0.463+0.028
−0.040 OUR AVERAGE0.463+0.028
−0.040 OUR AVERAGE0.463+0.028
−0.040 OUR AVERAGE0.463+0.028
−0.040 OUR AVERAGE0.455+0.031
−0.029+0.014

−0.049 CHILIKIN 13 BELL e+ e− → �(4S)0.48 ±0.05 ±0.02 1 AUBERT 07AD BABR e+ e− → �(4S)0.45 ±0.11 ±0.04 2 RICHICHI 01 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.448+0.040

−0.027+0.040
−0.053 MIZUK 09 BELL e+ e− → �(4S)1Obtained by 
ombining the B0 and B+ modes.2Averages between 
harged and neutral B mesons.
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le ListingsB0�⊥/� in B0 → ψ(2S)K∗0�⊥/� in B0 → ψ(2S)K∗0�⊥/� in B0 → ψ(2S)K∗0�⊥/� in B0 → ψ(2S)K∗0VALUE DOCUMENT ID TECN COMMENT0.30±0.06±0.020.30±0.06±0.020.30±0.06±0.020.30±0.06±0.02 1 AUBERT 07AD BABR e+ e− → �(4S)1Obtained by 
ombining the B0 and B+ modes.
φ‖ in B0 → ψ(2S)K∗0φ‖ in B0 → ψ(2S)K∗0φ‖ in B0 → ψ(2S)K∗0φ‖ in B0 → ψ(2S)K∗0VALUE (rad) DOCUMENT ID TECN COMMENT
−2.8±0.4±0.1−2.8±0.4±0.1−2.8±0.4±0.1−2.8±0.4±0.1 1 AUBERT 07AD BABR e+ e− → �(4S)1Obtained by 
ombining the B0 and B+ modes.
φ⊥ in B0 → ψ(2S)K∗0φ⊥ in B0 → ψ(2S)K∗0φ⊥ in B0 → ψ(2S)K∗0φ⊥ in B0 → ψ(2S)K∗0VALUE (rad) DOCUMENT ID TECN COMMENT2.8±0.3±0.12.8±0.3±0.12.8±0.3±0.12.8±0.3±0.1 1 AUBERT 07AD BABR e+ e− → �(4S)1Obtained by 
ombining the B0 and B+ modes.�L/� in B0 → χ
1K∗(892)0�L/� in B0 → χ
1K∗(892)0�L/� in B0 → χ
1K∗(892)0�L/� in B0 → χ
1K∗(892)0VALUE DOCUMENT ID TECN COMMENT0.83 +0.06

−0.08 OUR AVERAGE0.83 +0.06
−0.08 OUR AVERAGE0.83 +0.06
−0.08 OUR AVERAGE0.83 +0.06
−0.08 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.947+0.038
−0.048+0.046

−0.099 MIZUK 08 BELL e+ e− → �(4S)0.77 ±0.07 ±0.04 1 AUBERT 07AD BABR e+ e− → �(4S)1Obtained by 
ombining the B0 and B+ modes.�⊥/� in B0 → χ
1K∗(892)0�⊥/� in B0 → χ
1K∗(892)0�⊥/� in B0 → χ
1K∗(892)0�⊥/� in B0 → χ
1K∗(892)0VALUE DOCUMENT ID TECN COMMENT0.03±0.04±0.020.03±0.04±0.020.03±0.04±0.020.03±0.04±0.02 1 AUBERT 07AD BABR e+ e− → �(4S)1Obtained by 
ombining the B0 and B+ modes.
φ‖ in B0 → χ
1K∗(892)0φ‖ in B0 → χ
1K∗(892)0φ‖ in B0 → χ
1K∗(892)0φ‖ in B0 → χ
1K∗(892)0VALUE (rad) DOCUMENT ID TECN COMMENT0.0±0.3±0.10.0±0.3±0.10.0±0.3±0.10.0±0.3±0.1 1 AUBERT 07AD BABR e+ e− → �(4S)1Obtained by 
ombining the B0 and B+ modes.�L/� in B0 → D∗+s D∗−�L/� in B0 → D∗+s D∗−�L/� in B0 → D∗+s D∗−�L/� in B0 → D∗+s D∗−VALUE DOCUMENT ID TECN COMMENT0.52 ±0.05 OUR AVERAGE0.52 ±0.05 OUR AVERAGE0.52 ±0.05 OUR AVERAGE0.52 ±0.05 OUR AVERAGE0.519±0.050±0.028 1 AUBERT 03I BABR e+ e− → �(4S)0.506±0.139±0.036 AHMED 00B CLE2 e+ e− → �(4S)1Measurement performed using partial re
onstru
tion of D∗− de
ay.�L/� in B0 → D∗− ρ+�L/� in B0 → D∗− ρ+�L/� in B0 → D∗− ρ+�L/� in B0 → D∗− ρ+VALUE EVTS DOCUMENT ID TECN COMMENT0.885±0.016±0.0120.885±0.016±0.0120.885±0.016±0.0120.885±0.016±0.012 CSORNA 03 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.93 ±0.05 ±0.05 76 ALAM 94 CLE2 e+ e− → �(4S)�L/� in B0 → D∗+s ρ−�L/� in B0 → D∗+s ρ−�L/� in B0 → D∗+s ρ−�L/� in B0 → D∗+s ρ−VALUE DOCUMENT ID TECN COMMENT0.84+0.26

−0.28±0.130.84+0.26
−0.28±0.130.84+0.26
−0.28±0.130.84+0.26
−0.28±0.13 1 AUBERT 08AJ BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�L/� in B0 → D∗+s K∗−�L/� in B0 → D∗+s K∗−�L/� in B0 → D∗+s K∗−�L/� in B0 → D∗+s K∗−VALUE DOCUMENT ID TECN COMMENT0.92+0.37
−0.31±0.070.92+0.37
−0.31±0.070.92+0.37
−0.31±0.070.92+0.37
−0.31±0.07 1 AUBERT 08AJ BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�L/� in B0 → D∗+D∗−�L/� in B0 → D∗+D∗−�L/� in B0 → D∗+D∗−�L/� in B0 → D∗+D∗−VALUE DOCUMENT ID TECN COMMENT0.624±0.029±0.0110.624±0.029±0.0110.624±0.029±0.0110.624±0.029±0.011 KRONENBIT... 12 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.57 ±0.08 ±0.02 MIYAKE 05 BELL Repl. by KRONENBITTER 12�⊥/� in B0 → D∗+D∗−�⊥/� in B0 → D∗+D∗−�⊥/� in B0 → D∗+D∗−�⊥/� in B0 → D∗+D∗−VALUE DOCUMENT ID TECN COMMENT0.147±0.019 OUR AVERAGE0.147±0.019 OUR AVERAGE0.147±0.019 OUR AVERAGE0.147±0.019 OUR AVERAGE0.138±0.024±0.006 KRONENBIT... 12 BELL e+ e− → �(4S)0.158±0.028±0.006 AUBERT 09C BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.125±0.043±0.023 VERVINK 09 BELL Repl. by KRONENBITTER 120.143±0.034±0.008 AUBERT 07BOBABR Repl. by AUBERT 09C0.125±0.044±0.007 AUBERT,BE 05A BABR Repl. by AUBERT 07BO0.19 ±0.08 ±0.01 MIYAKE 05 BELL Repl. by VERVINK 090.063±0.055±0.009 AUBERT 03Q BABR Repl. by AUBERT,BE 05A�L/� in B0 → D∗0ω�L/� in B0 → D∗0ω�L/� in B0 → D∗0ω�L/� in B0 → D∗0ωVALUE DOCUMENT ID TECN COMMENT0.665±0.047±0.0150.665±0.047±0.0150.665±0.047±0.0150.665±0.047±0.015 LEES 11M BABR e+ e− → �(4S)

�L/� in B0 → D1(2430)0ω�L/� in B0 → D1(2430)0ω�L/� in B0 → D1(2430)0ω�L/� in B0 → D1(2430)0ωVALUE (%) DOCUMENT ID TECN COMMENT63.0±9.1+6.5
−6.063.0±9.1+6.5
−6.063.0±9.1+6.5
−6.063.0±9.1+6.5
−6.0 1,2 MATVIENKO 15 BELL e+ e− → �(4S)1Obtained by amplitude analysis of B0 → D∗−ωπ+. The se
ond un
ertainty 
ombinesin qudrature experimental systemati
 and model un
ertainties.2Assumes equal produ
tion of B0 and B+ at �(4S).�L/� in B0 → D1(2420)0ω�L/� in B0 → D1(2420)0ω�L/� in B0 → D1(2420)0ω�L/� in B0 → D1(2420)0ωVALUE (%) DOCUMENT ID TECN COMMENT67.1±11.7+2.3
−5.067.1±11.7+2.3
−5.067.1±11.7+2.3
−5.067.1±11.7+2.3
−5.0 1,2 MATVIENKO 15 BELL e+ e− → �(4S)1Obtained by amplitude analysis of B0 → D∗−ωπ+. The se
ond un
ertainty 
ombinesin qudrature experimental systemati
 and model un
ertainties.2Assumes equal produ
tion of B0 and B+ at �(4S).�L/� in B0 → D∗2(2460)0ω�L/� in B0 → D∗2(2460)0ω�L/� in B0 → D∗2(2460)0ω�L/� in B0 → D∗2(2460)0ωVALUE (%) DOCUMENT ID TECN COMMENT76.0+18.3

− 8.5+3.5
−2.876.0+18.3

− 8.5+3.5
−2.876.0+18.3

− 8.5+3.5
−2.876.0+18.3

− 8.5+3.5
−2.8 1,2 MATVIENKO 15 BELL e+ e− → �(4S)1Obtained by amplitude analysis of B0 → D∗−ωπ+. The se
ond un
ertainty 
ombinesin qudrature experimental systemati
 and model un
ertainties.2Assumes equal produ
tion of B0 and B+ at �(4S).�L/� in B0 → D∗−ωπ+�L/� in B0 → D∗−ωπ+�L/� in B0 → D∗−ωπ+�L/� in B0 → D∗−ωπ+VALUE DOCUMENT ID TECN COMMENT0.654±0.042±0.0160.654±0.042±0.0160.654±0.042±0.0160.654±0.042±0.016 1 AUBERT 06L BABR e+ e− → �(4S)1 Invariant mass of the [ωπ ℄ system is restri
ted in the region 1.1 and 1.9 GeV.�L/� in B0 → ωK∗0�L/� in B0 → ωK∗0�L/� in B0 → ωK∗0�L/� in B0 → ωK∗0VALUE DOCUMENT ID TECN COMMENT0.69±0.13 OUR AVERAGE0.69±0.13 OUR AVERAGE0.69±0.13 OUR AVERAGE0.69±0.13 OUR AVERAGE0.72±0.14±0.02 AUBERT 09H BABR e+ e− → �(4S)0.56±0.29+0.18
−0.08 GOLDENZWE...08 BELL e+ e− → �(4S)�L/� in B0 → ωK∗2(1430)0�L/� in B0 → ωK∗2(1430)0�L/� in B0 → ωK∗2(1430)0�L/� in B0 → ωK∗2(1430)0VALUE DOCUMENT ID TECN COMMENT0.45±0.12±0.020.45±0.12±0.020.45±0.12±0.020.45±0.12±0.02 AUBERT 09H BABR e+ e− → �(4S)�L/� in B0 → K∗0K∗0�L/� in B0 → K∗0K∗0�L/� in B0 → K∗0K∗0�L/� in B0 → K∗0K∗0VALUE DOCUMENT ID TECN COMMENT0.80+0.10

−0.12±0.060.80+0.10
−0.12±0.060.80+0.10
−0.12±0.060.80+0.10
−0.12±0.06 AUBERT 08I BABR e+ e− → �(4S)�L/� in B0 → φK∗(892)0�L/� in B0 → φK∗(892)0�L/� in B0 → φK∗(892)0�L/� in B0 → φK∗(892)0VALUE DOCUMENT ID TECN COMMENT0.497±0.017 OUR AVERAGE0.497±0.017 OUR AVERAGE0.497±0.017 OUR AVERAGE0.497±0.017 OUR AVERAGE0.497±0.019±0.015 AAIJ 14AMLHCB pp at 7 TeV0.499±0.030±0.018 PRIM 13 BELL e+ e− → �(4S)0.494±0.034±0.013 AUBERT 08BG BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.506±0.040±0.015 AUBERT 07D BABR Repl. by AUBERT 08BG0.45 ±0.05 ±0.02 CHEN 05A BELL Repl. by PRIM 130.52 ±0.05 ±0.02 1 AUBERT,B 04W BABR Repl. by AUBERT 07D0.65 ±0.07 ±0.02 AUBERT 03V BABR Repl. by AUBERT,B 04W0.41 ±0.10 ±0.04 CHEN 03B BELL Repl. by CHEN 05A1AUBERT,B 04W also measures the fra
tion of parity-odd transverse 
ontribution f⊥ =0.22± 0.05± 0.02 and the phases of the parity-even and parity-odd transverse amplitudesrelative to the longitudinal amplitude.�⊥/� in B0 → φK∗(892)0�⊥/� in B0 → φK∗(892)0�⊥/� in B0 → φK∗(892)0�⊥/� in B0 → φK∗(892)0VALUE DOCUMENT ID TECN COMMENT0.224±0.015 OUR AVERAGE0.224±0.015 OUR AVERAGE0.224±0.015 OUR AVERAGE0.224±0.015 OUR AVERAGE0.221±0.016±0.013 AAIJ 14AMLHCB pp at 7 TeV0.238±0.026±0.008 PRIM 13 BELL e+ e− → �(4S)0.212±0.032±0.013 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.227±0.038±0.013 AUBERT 07D BABR Repl. by AUBERT 08BG0.31 +0.06

−0.05 ±0.02 1 CHEN 05A BELL Repl. by PRIM 130.22 ±0.05 ±0.02 AUBERT,B 04W BABR Repl. by AUBERT 07D1This quantity was re
al
ulated by the BELLE authors from numbers in the original paper.
φ‖ in B0 → φK∗(892)0φ‖ in B0 → φK∗(892)0φ‖ in B0 → φK∗(892)0φ‖ in B0 → φK∗(892)0VALUE (rad) DOCUMENT ID TECN COMMENT2.43 ±0.11 OUR AVERAGE2.43 ±0.11 OUR AVERAGE2.43 ±0.11 OUR AVERAGE2.43 ±0.11 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogram below.2.562±0.069±0.040 AAIJ 14AMLHCB pp at 7 TeV2.23 ±0.10 ±0.02 PRIM 13 BELL e+ e− → �(4S)2.40 ±0.13 ±0.08 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.31 ±0.14 ±0.08 AUBERT 07D BABR Repl. by AUBERT 08BG2.40 +0.28

−0.24 ±0.07 1 CHEN 05A BELL Repl. by PRIM 132.34 +0.23
−0.20 ±0.05 AUBERT,B 04W BABR Repl. by AUBERT 07D



1258125812581258MesonParti
le ListingsB01This quantity was re
al
ulated by the BELLE authors from numbers in the original paper.
WEIGHTED AVERAGE
2.43±0.11 (Error scaled by 1.8)

AUBERT 08BG BABR 0.0
PRIM 13 BELL 3.9
AAIJ 14AM LHCB 2.7

χ2

       6.6
(Confidence Level = 0.036)

1.8 2 2.2 2.4 2.6 2.8 3 3.2

φ‖ in B0 → φK∗(892)0 (rad)
φ⊥ in B0 → φK∗(892)0φ⊥ in B0 → φK∗(892)0φ⊥ in B0 → φK∗(892)0φ⊥ in B0 → φK∗(892)0VALUE (rad) DOCUMENT ID TECN COMMENT2.53 ±0.09 OUR AVERAGE2.53 ±0.09 OUR AVERAGE2.53 ±0.09 OUR AVERAGE2.53 ±0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.2.633±0.062±0.037 AAIJ 14AMLHCB pp at 7 TeV2.37 ±0.10 ±0.04 PRIM 13 BELL e+ e− → �(4S)2.35 ±0.13 ±0.09 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.24 ±0.15 ±0.09 AUBERT 07D BABR Repl. by AUBERT 08BG2.51 ±0.25 ±0.06 1 CHEN 05A BELL Repl. by PRIM 132.47 ±0.25 ±0.05 AUBERT,B 04W BABR Repl. by AUBERT 07D1This quantity was re
al
ulated by the BELLE authors from numbers in the original paper.

WEIGHTED AVERAGE
2.53±0.09 (Error scaled by 1.7)

AUBERT 08BG BABR 1.2
PRIM 13 BELL 2.1
AAIJ 14AM LHCB 2.2

χ2

       5.5
(Confidence Level = 0.063)

1.8 2 2.2 2.4 2.6 2.8 3 3.2

φ⊥ in B0 → φK∗(892)0 (rad)
δ0(B0 → φK∗(892)0)δ0(B0 → φK∗(892)0)δ0(B0 → φK∗(892)0)δ0(B0 → φK∗(892)0)VALUE (rad) DOCUMENT ID TECN COMMENT2.88±0.10 OUR AVERAGE2.88±0.10 OUR AVERAGE2.88±0.10 OUR AVERAGE2.88±0.10 OUR AVERAGE2.91±0.10±0.08 PRIM 13 BELL e+ e− → �(4S)2.82±0.15±0.09 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.78±0.17±0.09 AUBERT 07D BABR Repl. by AUBERT 08BGA0CP in B0 → φK∗(892)0A0CP in B0 → φK∗(892)0A0CP in B0 → φK∗(892)0A0CP in B0 → φK∗(892)0VALUE DOCUMENT ID TECN COMMENT
−0.007±0.030 OUR AVERAGE−0.007±0.030 OUR AVERAGE−0.007±0.030 OUR AVERAGE−0.007±0.030 OUR AVERAGE
−0.003±0.038±0.005 AAIJ 14AMLHCB pp at 7 TeV
−0.030±0.061±0.007 PRIM 13 BELL e+ e− → �(4S)0.01 ±0.07 ±0.02 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.03 ±0.08 ±0.02 AUBERT 07D BABR Repl. by AUBERT 08BG0.13 ±0.12 ±0.04 1 CHEN 05A BELL Repl. by PRIM 13
−0.06 ±0.10 ±0.01 AUBERT,B 04W BABR Repl. by AUBERT 07D1This quantity was re
al
ulated by the BELLE authors from numbers in the original paper.

A⊥CP in B0 → φK∗(892)0A⊥CP in B0 → φK∗(892)0A⊥CP in B0 → φK∗(892)0A⊥CP in B0 → φK∗(892)0VALUE DOCUMENT ID TECN COMMENT
−0.02 ±0.06 OUR AVERAGE−0.02 ±0.06 OUR AVERAGE−0.02 ±0.06 OUR AVERAGE−0.02 ±0.06 OUR AVERAGE0.047±0.074±0.009 AAIJ 14AMLHCB pp at 7 TeV
−0.14 ±0.11 ±0.01 PRIM 13 BELL e+ e− → �(4S)
−0.04 ±0.15 ±0.06 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.03 ±0.16 ±0.05 AUBERT 07D BABR Repl. by AUBERT 08BG
−0.20 ±0.18 ±0.04 1 CHEN 05A BELL Repl. by PRIM 13
−0.10 ±0.24 ±0.05 AUBERT,B 04W BABR Repl. by AUBERT 07D1This quantity was re
al
ulated by the BELLE authors from numbers in the original paper.�φ‖ in B0 → φK∗(892)0�φ‖ in B0 → φK∗(892)0�φ‖ in B0 → φK∗(892)0�φ‖ in B0 → φK∗(892)0VALUE (rad) DOCUMENT ID TECN COMMENT0.05 ±0.05 OUR AVERAGE0.05 ±0.05 OUR AVERAGE0.05 ±0.05 OUR AVERAGE0.05 ±0.05 OUR AVERAGE0.045±0.069±0.015 AAIJ 14AMLHCB pp at 7 TeV
−0.02 ±0.10 ±0.01 PRIM 13 BELL e+ e− → �(4S)0.22 ±0.12 ±0.08 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.24 ±0.14 ±0.08 AUBERT 07D BABR Repl. by AUBERT 08BG
−0.32 ±0.27 ±0.07 1 CHEN 05A BELL Repl. by PRIM 130.27 +0.20

−0.23 ±0.05 AUBERT,B 04W BABR Repl. by AUBERT 07D1This quantity was re
al
ulated by the BELLE authors from numbers in the original paper.�φ⊥ in B0 → φK∗(892)0�φ⊥ in B0 → φK∗(892)0�φ⊥ in B0 → φK∗(892)0�φ⊥ in B0 → φK∗(892)0VALUE (rad) DOCUMENT ID TECN COMMENT0.08 ±0.05 OUR AVERAGE0.08 ±0.05 OUR AVERAGE0.08 ±0.05 OUR AVERAGE0.08 ±0.05 OUR AVERAGE0.062±0.062±0.005 AAIJ 14AMLHCB pp at 7 TeV0.05 ±0.10 ±0.02 PRIM 13 BELL e+ e− → �(4S)0.21 ±0.13 ±0.08 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.19 ±0.15 ±0.08 AUBERT 07D BABR Repl. by AUBERT 08BG
−0.30 ±0.25 ±0.06 1 CHEN 05A BELL Repl. by PRIM 130.36 ±0.25 ±0.05 AUBERT,B 04W BABR Repl. by AUBERT 07D1This quantity was re
al
ulated by the BELLE authors from numbers in the original paper.�δ0(B0 → φK∗(892)0)�δ0(B0 → φK∗(892)0)�δ0(B0 → φK∗(892)0)�δ0(B0 → φK∗(892)0)VALUE (rad) DOCUMENT ID TECN COMMENT0.13±0.09 OUR AVERAGE0.13±0.09 OUR AVERAGE0.13±0.09 OUR AVERAGE0.13±0.09 OUR AVERAGE0.08±0.10±0.01 PRIM 13 BELL e+ e− → �(4S)0.27±0.14±0.08 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.21±0.17±0.08 AUBERT 07D BABR Repl. by AUBERT 08BG�φ00(B0 → φK∗0(1430)0)�φ00(B0 → φK∗0(1430)0)�φ00(B0 → φK∗0(1430)0)�φ00(B0 → φK∗0(1430)0)VALUE (rad) DOCUMENT ID TECN COMMENT0.28±0.42±0.040.28±0.42±0.040.28±0.42±0.040.28±0.42±0.04 AUBERT 08BG BABR e+ e− → �(4S)�L/� in B0 → φK∗2(1430)0�L/� in B0 → φK∗2(1430)0�L/� in B0 → φK∗2(1430)0�L/� in B0 → φK∗2(1430)0VALUE DOCUMENT ID TECN COMMENT0.913+0.028

−0.050 OUR AVERAGE0.913+0.028
−0.050 OUR AVERAGE0.913+0.028
−0.050 OUR AVERAGE0.913+0.028
−0.050 OUR AVERAGE0.918+0.029
−0.060±0.012 PRIM 13 BELL e+ e− → �(4S)0.901+0.046
−0.058±0.037 AUBERT 08BG BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.853+0.061
−0.069±0.036 AUBERT 07D BABR Repl. by AUBERT 08BG�⊥/� in B0 → φK∗2(1430)0�⊥/� in B0 → φK∗2(1430)0�⊥/� in B0 → φK∗2(1430)0�⊥/� in B0 → φK∗2(1430)0VALUE DOCUMENT ID TECN COMMENT0.027+0.031
−0.025 OUR AVERAGE0.027+0.031
−0.025 OUR AVERAGE0.027+0.031
−0.025 OUR AVERAGE0.027+0.031
−0.025 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.056+0.050
−0.035±0.009 PRIM 13 BELL e+ e− → �(4S)0.002+0.018
−0.002±0.031 AUBERT 08BG BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.045+0.049
−0.040±0.013 AUBERT 07D BABR Repl. by AUBERT 08BG

φ‖ in B0 → φK∗2(1430)0φ‖ in B0 → φK∗2(1430)0φ‖ in B0 → φK∗2(1430)0φ‖ in B0 → φK∗2(1430)0VALUE (rad) DOCUMENT ID TECN COMMENT4.0 ±0.4 OUR AVERAGE4.0 ±0.4 OUR AVERAGE4.0 ±0.4 OUR AVERAGE4.0 ±0.4 OUR AVERAGE3.76±2.88±1.32 PRIM 13 BELL e+ e− → �(4S)3.96±0.38±0.06 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.90±0.39±0.06 AUBERT 07D BABR Repl. by AUBERT 08BG
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φ⊥ in B0 → φK∗2(1430)0φ⊥ in B0 → φK∗2(1430)0φ⊥ in B0 → φK∗2(1430)0φ⊥ in B0 → φK∗2(1430)0VALUE (rad) DOCUMENT ID TECN COMMENT4.45+0.43

−0.38±0.134.45+0.43
−0.38±0.134.45+0.43
−0.38±0.134.45+0.43
−0.38±0.13 PRIM 13 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.72+0.55
−0.87±0.11 AUBERT 07D BABR Repl. by AUBERT 08BG

δ0(B0 → φK∗2(1430)0)δ0(B0 → φK∗2(1430)0)δ0(B0 → φK∗2(1430)0)δ0(B0 → φK∗2(1430)0)VALUE (rad) DOCUMENT ID TECN COMMENT3.46±0.14 OUR AVERAGE3.46±0.14 OUR AVERAGE3.46±0.14 OUR AVERAGE3.46±0.14 OUR AVERAGE3.53±0.11±0.19 PRIM 13 BELL e+ e− → �(4S)3.41±0.13±0.13 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.54+0.12

−0.14±0.06 AUBERT 07D BABR Repl. by AUBERT 08BGA0CP in B0 → φK∗2(1430)0A0CP in B0 → φK∗2(1430)0A0CP in B0 → φK∗2(1430)0A0CP in B0 → φK∗2(1430)0VALUE DOCUMENT ID TECN COMMENT
−0.03 ±0.04 OUR AVERAGE−0.03 ±0.04 OUR AVERAGE−0.03 ±0.04 OUR AVERAGE−0.03 ±0.04 OUR AVERAGE
−0.016+0.066

−0.051±0.008 PRIM 13 BELL e+ e− → �(4S)
−0.05 ±0.06 ±0.01 AUBERT 08BG BABR e+ e− → �(4S)A⊥

CP in B0 → φK∗2(1430)0A⊥
CP in B0 → φK∗2(1430)0A⊥
CP in B0 → φK∗2(1430)0A⊥
CP in B0 → φK∗2(1430)0VALUE DOCUMENT ID TECN COMMENT

−0.01+0.85
−0.67±0.09−0.01+0.85
−0.67±0.09−0.01+0.85
−0.67±0.09−0.01+0.85
−0.67±0.09 PRIM 13 BELL e+ e− → �(4S)�φ‖(B0 → φK∗2(1430)0)�φ‖(B0 → φK∗2(1430)0)�φ‖(B0 → φK∗2(1430)0)�φ‖(B0 → φK∗2(1430)0)VALUE (rad) DOCUMENT ID TECN COMMENT

−0.9 ±0.4 OUR AVERAGE−0.9 ±0.4 OUR AVERAGE−0.9 ±0.4 OUR AVERAGE−0.9 ±0.4 OUR AVERAGE
−0.02±1.08±1.01 PRIM 13 BELL e+ e− → �(4S)
−1.00±0.38±0.09 AUBERT 08BG BABR e+ e− → �(4S)�φ⊥(B0 → φK∗2(1430)0)�φ⊥(B0 → φK∗2(1430)0)�φ⊥(B0 → φK∗2(1430)0)�φ⊥(B0 → φK∗2(1430)0)VALUE DOCUMENT ID TECN COMMENT
−0.19±0.42±0.11−0.19±0.42±0.11−0.19±0.42±0.11−0.19±0.42±0.11 PRIM 13 BELL e+ e− → �(4S)�δ0 in B0 → φK∗2(1430)0�δ0 in B0 → φK∗2(1430)0�δ0 in B0 → φK∗2(1430)0�δ0 in B0 → φK∗2(1430)0VALUE (rad) DOCUMENT ID TECN COMMENT0.08±0.09 OUR AVERAGE0.08±0.09 OUR AVERAGE0.08±0.09 OUR AVERAGE0.08±0.09 OUR AVERAGE0.06±0.11±0.02 PRIM 13 BELL e+ e− → �(4S)0.11±0.13±0.06 AUBERT 08BG BABR e+ e− → �(4S)�L/� in B0 → K∗(892)0ρ0�L/� in B0 → K∗(892)0ρ0�L/� in B0 → K∗(892)0ρ0�L/� in B0 → K∗(892)0ρ0VALUE DOCUMENT ID TECN COMMENT0.40±0.08±0.110.40±0.08±0.110.40±0.08±0.110.40±0.08±0.11 LEES 12K BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.57±0.09±0.08 AUBERT,B 06G BABR Repl. by LEES 12K�L/� in B0 → K∗+ρ−�L/� in B0 → K∗+ρ−�L/� in B0 → K∗+ρ−�L/� in B0 → K∗+ρ−VALUE DOCUMENT ID TECN COMMENT0.38±0.13±0.030.38±0.13±0.030.38±0.13±0.030.38±0.13±0.03 LEES 12K BABR e+ e− → �(4S)�L/� in B0 → ρ+ρ−�L/� in B0 → ρ+ρ−�L/� in B0 → ρ+ρ−�L/� in B0 → ρ+ρ−VALUE DOCUMENT ID TECN COMMENT0.990+0.021

−0.019 OUR AVERAGE0.990+0.021
−0.019 OUR AVERAGE0.990+0.021
−0.019 OUR AVERAGE0.990+0.021
−0.019 OUR AVERAGE0.988±0.012±0.023 VANHOEFER 16 BELL e+ e− → �(4S)0.992±0.024+0.026

−0.013 AUBERT 07BF BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.941+0.034

−0.040±0.030 SOMOV 06 BELL Repl. by VANHOEFER 160.978±0.014+0.021
−0.029 AUBERT,B 05C BABR Repl. by AUBERT 07BF0.98 +0.02

−0.08 ±0.03 AUBERT 04G BABR Repl. by AUBERT,B 04R0.99 ±0.03 +0.04
−0.03 AUBERT,B 04R BABR Repl. by AUBERT,B 05C�L/� in B0 → ρ0 ρ0�L/� in B0 → ρ0 ρ0�L/� in B0 → ρ0 ρ0�L/� in B0 → ρ0 ρ0VALUE DOCUMENT ID TECN COMMENT0.71 +0.08

−0.09 OUR AVERAGE0.71 +0.08
−0.09 OUR AVERAGE0.71 +0.08
−0.09 OUR AVERAGE0.71 +0.08
−0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogrambelow.0.745+0.048
−0.058±0.034 AAIJ 15T LHCB pp at 7, 8 TeV0.21 +0.18
−0.22 ±0.15 VANHOEFER 14 BELL e+ e− → �(4S)0.75 +0.11
−0.14 ±0.05 AUBERT 08BB BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.87 ±0.13 ±0.04 AUBERT 07G BABR Repl. by AUBERT 08BB

WEIGHTED AVERAGE
0.71+0.08-0.09 (Error scaled by 1.6)

AUBERT 08BB BABR 0.1
VANHOEFER 14 BELL 4.6
AAIJ 15T LHCB 0.2

χ2

       4.9
(Confidence Level = 0.085)

-0.5 0 0.5 1 1.5 2�L/� in B0 → ρ0 ρ0�L/� in B0 → a1(1260)+ a1(1260)−�L/� in B0 → a1(1260)+ a1(1260)−�L/� in B0 → a1(1260)+ a1(1260)−�L/� in B0 → a1(1260)+ a1(1260)−VALUE DOCUMENT ID TECN COMMENT0.31±0.22±0.100.31±0.22±0.100.31±0.22±0.100.31±0.22±0.10 AUBERT 09AL BABR e+ e− → �(4S)�L/� in B0 → ppK∗(892)0�L/� in B0 → ppK∗(892)0�L/� in B0 → ppK∗(892)0�L/� in B0 → ppK∗(892)0VALUE DOCUMENT ID TECN COMMENT1.01±0.13±0.031.01±0.13±0.031.01±0.13±0.031.01±0.13±0.03 CHEN 08C BELL e+ e− → �(4S)�L/� in B0 → ��K∗(892)0�L/� in B0 → ��K∗(892)0�L/� in B0 → ��K∗(892)0�L/� in B0 → ��K∗(892)0VALUE DOCUMENT ID TECN COMMENT0.60±0.22±0.080.60±0.22±0.080.60±0.22±0.080.60±0.22±0.08 CHANG 09 BELL e+ e− → �(4S)�L/� in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)�L/� in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)�L/� in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)�L/� in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.16±0.06±0.030.16±0.06±0.030.16±0.06±0.030.16±0.06±0.03 AAIJ 15Z LHCB pp at 7, 8 TeVA(2)T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)A(2)T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)A(2)T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)A(2)T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT
−0.23±0.23±0.05−0.23±0.23±0.05−0.23±0.23±0.05−0.23±0.23±0.05 AAIJ 15Z LHCB pp at 7, 8 TeVAIm

T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)AIm
T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)AIm
T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)AIm
T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.14±0.22±0.050.14±0.22±0.050.14±0.22±0.050.14±0.22±0.05 AAIJ 15Z LHCB pp at 7, 8 TeVARe
T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)ARe
T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)ARe
T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)ARe
T in B0 → K∗(892)0 e+ e− (0.002 < q2 < 1.120 GeV2/
4)Related to AFB , FL by ARe

T = (4/3) AFB / (1 − FL).VALUE DOCUMENT ID TECN COMMENT0.10±0.18±0.050.10±0.18±0.050.10±0.18±0.050.10±0.18±0.05 AAIJ 15Z LHCB pp at 7, 8 TeV
B0–B0 MIXING

Updated April 2016 by O. Schneider (Ecole Polytechnique
Fédérale de Lausanne).

There are two neutral B0–B0 meson systems, B0
d–B

0
d and

B0
s–B

0
s (generically denoted B0

q–B
0
q, q = s, d), which exhibit

particle-antiparticle mixing [1]. This mixing phenomenon is

described in Ref. 2. In the following, we adopt the notation

introduced in Ref. 2, and assume CPT conservation throughout.

In each system, the light (L) and heavy (H) mass eigenstates,

|BL,H〉 = p|B0
q〉 ± q|B0

q〉 , (1)

have a mass difference ∆mq = mH − mL > 0, and a total

decay width difference ∆Γq = ΓL − ΓH. In the absence of CP

violation in the mixing, |q/p| = 1, these differences are given by

∆mq = 2|M12| and |∆Γq| = 2|Γ12|, where M12 and Γ12 are the

off-diagonal elements of the mass and decay matrices [2]. The

evolution of a pure |B0
q〉 or |B0

q〉 state at t = 0 is given by

|B0
q(t)〉 =g+(t) |B0

q〉 +
q

p
g−(t) |B0

q〉 , (2)

|B0
q(t)〉 =g+(t) |B0

q〉 +
p

q
g−(t) |B0

q〉 , (3)



1260126012601260Meson Parti
le ListingsB0
which means that the flavor states remain unchanged (+) or

oscillate into each other (−) with time-dependent probabilities

proportional to

|g±(t)|2 =
e−Γqt

2

[

cosh

(

∆Γq

2
t

)

± cos(∆mq t)

]

, (4)

where Γq = (ΓH + ΓL)/2. In the absence of CP violation, the

time-integrated mixing probability
∫

|g−(t)|2 dt/(
∫

|g−(t)|2 dt +
∫

|g+(t)|2 dt) is given by

χq =
x2

q + y2
q

2(x2
q + 1)

, where xq =
∆mq

Γq
, yq =

∆Γq

2Γq
. (5)

q

b
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q
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Figure 1: Dominant box diagrams for the B0
q→B0

q transitions
(q = d or s). Similar diagrams exist where one or both t quarks
are replaced with c or u quarks.

Standard Model predictions and phenomenology

In the Standard Model, the transitions B0
q→B0

q and B0
q→B0

q

are due to the weak interaction. They are described, at the

lowest order, by box diagrams involving two W bosons and two

up-type quarks (see Fig. 1), as is the case for K0–K0 mixing.

However, the long range interactions arising from intermediate

virtual states are negligible for the neutral B meson systems,

because the large B mass is off the region of hadronic resonances.

The calculation of the dispersive and absorptive parts of the

box diagrams yields the following predictions for the off-diagonal

element of the mass and decay matrices [3],

M12 = −
G2

F m2
W ηBmBqBBqf

2
Bq

12π2
S0(m

2
t/m2

W ) (V ∗
tqVtb)

2 , (6)

Γ12 =
G2

F m2
bη

′
BmBqBBqf

2
Bq

8π

×
[

(V ∗
tqVtb)

2 + V ∗
tqVtbV

∗
cqVcb O

(

m2
c

m2
b

)

+ (V ∗
cqVcb)

2 O
(

m4
c

m4
b

)]

, (7)

where GF is the Fermi constant, mW the W boson mass,

and mi the mass of quark i; mBq , fBq and BBq are the B0
q

mass, weak decay constant and bag parameter, respectively.

The known function S0(xt) can be approximated very well by

0.784 x0.76
t [4], and Vij are the elements of the CKM matrix [5].

The QCD corrections ηB and η′B are of order unity. The only

non-negligible contributions to M12 are from box diagrams

involving two top quarks. The phases of M12 and Γ12 satisfy

φM − φΓ = π + O
(

m2
c

m2
b

)

, (8)

implying that the mass eigenstates have mass and width differ-

ences of opposite signs. This means that, like in the K0–K0 sys-

tem, the heavy state is expected to have a smaller decay width

than that of the light state: ΓH < ΓL. Hence, ∆Γ = ΓL − ΓH is

expected to be positive in the Standard Model.

Furthermore, the quantity

∣

∣

∣

∣

Γ12

M12

∣

∣

∣

∣

≃ 3π

2

m2
b

m2
W

1

S0(m
2
t /m2

W )
∼ O

(

m2
b

m2
t

)

(9)

is small, and a power expansion of |q/p|2 yields

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

= 1 +

∣

∣

∣

∣

Γ12

M12

∣

∣

∣

∣

sin(φM − φΓ) + O
(

∣

∣

∣

∣

Γ12

M12

∣

∣

∣

∣

2
)

. (10)

Therefore, considering both Eqs. (8) and (9), the CP -violating

parameter

1 −
∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

≃ Im

(

Γ12

M12

)

(11)

is expected to be very small: ∼ O(10−3) for the B0
d–B

0
d

system and .O(10−4) for the B0
s–B

0
s system [6].

In the approximation of negligible CP violation in mixing,

the ratio ∆Γq/∆mq is equal to the small quantity |Γ12/M12| of

Eq. (9); it is hence independent of CKM matrix elements, i.e.,

the same for the B0
d–B

0
d and B0

s–B
0
s systems. Calculations [7]

yield ∼ 5×10−3 with a ∼ 20% uncertainty. Given the published

experimental knowledge [8] on the mixing parameter xq

{

xd = 0.775 ± 0.006 (B0
d–B

0
d system)

xs = 26.81 ± 0.10 (B0
s–B

0
s system)

, (12)

the Standard Model thus predicts that ∆Γd/Γd is very small

(below 1%), but ∆Γs/Γs considerably larger (∼ 10%). These

width differences are caused by the existence of final states

to which both the B0
q and B0

q mesons can decay. Such decays

involve b → ccq quark-level transitions, which are Cabibbo-

suppressed if q = d and Cabibbo-allowed if q = s.

A complete set of Standard Model predictions for all mixing

parameters in both the B0
d–B

0
d and B0

s–B
0
s systems can be

found in Ref. 9.

Experimental issues and methods for oscillation anal-

yses

Time-integrated measurements of B0–B0 mixing were pub-

lished for the first time in 1987 by UA1 [10] and ARGUS [11],

and since then by many other experiments. These measurements

are typically based on counting same-sign and opposite-sign lep-

ton pairs from the semileptonic decay of the produced bb pairs.

Such analyses cannot easily separate the contributions from the

different b-hadron species, therefore, the clean environment of

Υ(4S) machines (where only B0
d and charged Bu mesons are

produced) is in principle best suited to measure χd.

However, better sensitivity is obtained from time-dependent

analyses aiming at the direct measurement of the oscillation

frequencies ∆md and ∆ms, from the proper time distributions of
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d or B0
s candidates identified through their decay in (mostly)

flavor-specific modes, and suitably tagged as mixed or unmixed.

This is particularly true for the B0
s–B

0
s system, where the large

value of xs implies maximal mixing, i.e., χs ≃ 1/2. In such

analyses, the B0
d or B0

s mesons are either fully reconstructed,

partially reconstructed from a charm meson, selected from a

lepton with the characteristics of a b → ℓ− decay, or selected

from a reconstructed displaced vertex. At high-energy colliders

(LEP, SLC, Tevatron, LHC), the proper time t =
mB

p
L is

measured from the distance L between the production vertex

and the B decay vertex, and from an estimate of the B

momentum p. At asymmetric B factories (KEKB, PEP-II),

producing e+e− → Υ(4S) → B0
dB

0
d events with a boost βγ

(= 0.425, 0.55), the proper time difference between the two B

candidates is estimated as ∆t ≃ ∆z

βγc
, where ∆z is the spatial

separation between the two B decay vertices along the boost

direction. In all cases, the good resolution needed on the vertex

positions is obtained with silicon detectors.

The average statistical significance S of a B0
d or B0

s oscilla-

tion signal can be approximated as [12]

S ≈
√

N/2 fsig (1 − 2η) e−(∆mσt)
2/2 , (13)

where N is the number of selected and tagged candidates, fsig

is the fraction of signal in that sample, η is the total mistag

probability, and σt is the resolution on proper time (or proper

time difference). The quantity S decreases very quickly as ∆m

increases; this dependence is controlled by σt, which is therefore

a critical parameter for ∆ms analyses. At high-energy colliders,

the proper time resolution σt ∼
mB

〈p〉 σL⊕t
σp

p
includes a constant

contribution due to the decay length resolution σL (typically

0.04–0.3 ps), and a term due to the relative momentum resolu-

tion σp/p (typically 10–20% for partially reconstructed decays),

which increases with proper time. At B factories, the boost

of the B mesons is estimated from the known beam energies,

and the term due to the spatial resolution dominates (typically

1–1.5 ps because of the much smaller B boost).

In order to tag a B candidate as mixed or unmixed, it is

necessary to determine its flavor both in the initial state and in

the final state. The initial and final state mistag probabilities, ηi

and ηf , degrade S by a total factor (1−2η) = (1−2ηi)(1−2ηf ).

In lepton-based analyses, the final state is tagged by the charge

of the lepton from b → ℓ− decays; the largest contribution

to ηf is then due to b → c → ℓ− decays. Alternatively, the

charge of a reconstructed charm meson (D∗− from B0
d or D−

s

from B0
s), or that of a kaon hypothesized to come from a

b → c → s decay [13], can be used. For fully-inclusive analyses

based on topological vertexing, final-state tagging techniques

include jet-charge [14] and charge-dipole [15,16] methods. At

high-energy colliders, the methods to tag the initial state (i.e.,

the state at production), can be divided into two groups: the

ones that tag the initial charge of the b quark contained in

the B candidate itself (same-side tag), and the ones that tag

the initial charge of the other b quark produced in the event

(opposite-side tag). On the same side, the sign of a charged

pion, kaon or proton from the primary vertex is correlated

with the production state of the B0
d or B0

s if that particle is a

decay product of a B∗∗ state or the first in the fragmentation

chain [17,18]. Jet- and vertex-charge techniques work on both

sides and on the opposite side, respectively. Finally, the charge

of a lepton from b → ℓ−, of a kaon from b → c → s or of a

charm hadron from b → c [19] can be used as opposite side

tags, keeping in mind that their performance is degraded due

to integrated mixing. At SLC, the beam polarization produced

a sizeable forward-backward asymmetry in the Z → bb decays,

and provided another very interesting and effective initial state

tag based on the polar angle of the B candidate [15]. Initial

state tags have also been combined to reach ηi ∼ 26% at

LEP [18,20], or even 22% at SLD [15] with full efficiency. In the

case ηf = 0, this corresponds to an effective tagging efficiency

Q = ǫD2 = ǫ(1 − 2η)2, where ǫ is the tagging efficiency, in the

range 23− 31%. The equivalent figure achieved by CDF during

Tevatron Run I was ∼ 3.5% [21], reflecting the fact that tagging

is more difficult at hadron colliders. The CDF and DØ analyses

of Tevatron Run II data reached ǫD2 = (1.8 ± 0.1)% [22]

and (2.5 ± 0.2)% [23] for opposite-side tagging, while same-

side kaon tagging (for B0
s analyses) contributed an additional

3.7− 4.8% at CDF [22], and pushed the combined performance

to (4.7 ± 0.5)% at DØ [24]. LHCb, operating in the forward

region at the LHC where the environment is different in terms

of track multiplicity and b-hadron production kinematics, has

reported ǫD2 = (2.10 ± 0.25)% [25] for opposite-side tagging

and (1.80 ± 0.26)% [26] for same-side kaon tagging, with a

combined figure ranging typically between (3.73 ± 0.15)% [27]

and (5.33 ± 0.25)% [28] depending on the mode in which the

tagged meson is reconstructed.

At B factories, the flavor of a B0
d meson at production

cannot be determined, since the two neutral B mesons produced

in a Υ(4S) decay evolve in a coherent P -wave state where they

keep opposite flavors at any time. However, as soon as one

of them decays, the other follows a time-evolution given by

Eqs. (2) or (3), where t is replaced with ∆t (which will take

negative values half of the time). Hence, the “initial state” tag

of a B can be taken as the final-state tag of the other B.

Effective tagging efficiencies of 30% are achieved by BaBar and

Belle [29], using different techniques including b → ℓ− and

b → c → s tags. It is worth noting that, in this case, mixing of

the other B (i.e., the coherent mixing occurring before the first

B decay) does not contribute to the mistag probability.

Before the experimental observation of a decay-width differ-

ence, oscillation analyses typically neglected ∆Γ in Eq. (4), and

described the physics with the functions Γe−Γt(1±cos(∆mt))/2

(high-energy colliders) or Γe−Γ|∆t|(1±cos(∆m∆t))/4 (asymmet-

ric Υ(4S) machines). As can be seen from Eq. (4), a non-zero

value of ∆Γ would effectively reduce the oscillation amplitude

with a small time-dependent factor that would be very diffi-

cult to distinguish from time resolution effects. Measurements
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of ∆m are usually extracted from the data using a maximum

likelihood fit.

∆md and ∆Γd measurements

Many B0
d–B

0
d oscillations analyses have been published [30]

by the ALEPH [31], DELPHI [16,32], L3 [33], OPAL [34,35]

BaBar [36], Belle [37], CDF [17], DØ [23], and LHCb [38–40]

collaborations. Although a variety of different techniques have

been used, the individual ∆md results obtained at LEP and

Tevatron have remarkably similar precision. Their average is

compatible with the recent and more precise measurements

from the asymmetric B factories and the LHC. The system-

atic uncertainties are not negligible; they are often dominated

by sample composition, mistag probability, or b-hadron life-

time contributions. Before being combined, the measurements

are adjusted on the basis of a common set of input val-

ues, including the b-hadron lifetimes and fractions published

in this Review. Some measurements are statistically corre-

lated. Systematic correlations arise both from common physics

sources (fragmentation fractions, lifetimes, branching ratios of

b hadrons), and from purely experimental or algorithmic effects

(efficiency, resolution, tagging, background description). Com-

bining all published [16,17,23,31–40] or recently submitted [41]

measurements and accounting for all identified correlations

yields ∆md = 0.5065± 0.0016(stat)± 0.0011(syst) ps−1 [8],

a result dominated by the new LHCb measurement with

B0 → D(∗)−µ+νµX decays [41].

On the other hand, ARGUS and CLEO have published

time-integrated measurements [42–44], which average to

χd = 0.182 ± 0.015. Following Ref. 44, the width difference

∆Γd could in principle be extracted from the measured value

of Γd and the above averages for ∆md and χd (see Eq. (5)),

provided that ∆Γd has a negligible impact on the ∆md mea-

surements. However, direct time-dependent studies published

by DELPHI [16], BaBar [45], Belle [46] and LHCb [47] provide

stronger constraints, which can be combined to yield [8]

∆Γd/Γd = −0.003 ± 0.015 . (14)

Assuming ∆Γd = 0 and no CP violation in mixing, and

using the measured B0
d lifetime of 1.520 ± 0.004 ps, the ∆md

and χd results are combined to yield the world average [48]

∆md = 0.5064± 0.0019 ps−1 (15)

or, equivalently,

χd = 0.1860 ± 0.0011 . (16)

This ∆md value provides an estimate of 2|M12|, and can

be used with Eq. (6) to extract |Vtd| within the Standard

Model [49]. The main experimental uncertainties on the result

come from mt and ∆md, but are completely negligible with

respect to the uncertainty due to the hadronic matrix element

fBd

√

BBd
= 216 ± 15 MeV [50] obtained from unquenched

lattice QCD calculations.
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Figure 2: Proper time distribution of B0
s → D−

s π+ candi-
dates tagged as mixed (red) or unmixed (blue) in the LHCb
experiment, displaying B0

s–B
0
s oscillations (from Ref. [51]) .

∆ms and ∆Γs measurements

After many years of intense search at LEP and SLC, B0
s–B

0
s

oscillations were first observed in 2006 by CDF using 1 fb−1

of Tevatron Run II data [22]. More recently LHCb observed

B0
s–B

0
s oscillations independently with B0

s → D−
s π+ [38,51],

B0
s → D−

s µ+νX [40] and even B0
s → J/ψK+K− [27] decays,

using between 1 and 3 fb−1 of data collected at the LHC until

the end of 2012. Taking systematic correlations into account, the

average of all published measurements of ∆ms [22,27,38,40,51]

is

∆ms = 17.757 ± 0.020(stat) ± 0.007(syst) ps−1 , (17)

dominated by LHCb (see Fig. 2) and still statistically limited.

The information on |Vts| obtained in the framework of the

Standard Model is hampered by the hadronic uncertainty, as

in the B0
d case. However, several uncertainties cancel in the

frequency ratio

∆ms

∆md
=

mBs

mBd

ξ2

∣

∣

∣

∣

Vts

Vtd

∣

∣

∣

∣

2

, (18)

where ξ = (fBs

√

BBs)/(fBd

√

BBd
) = 1.268± 0.063 is an SU(3)

flavor-symmetry breaking factor obtained from unquenched

lattice QCD calculations [50]. Using the measurements of

Eqs. (15) and (17), one can extract

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

= 0.2159± 0.0004(exp) ± 0.0107(lattice) , (19)

in good agreement with (but much more precise than) the value

obtained from the ratio of the b → dγ and b → sγ transition

rates observed at the B factories [49].

The CKM matrix can be constrained using experimental

results on observables such as ∆md, ∆ms, |Vub/Vcb|, ǫK , and

sin(2β) together with theoretical inputs and unitarity condi-

tions [49,52,53]. The constraint from our knowledge on the

ratio ∆ms/∆md is more effective in limiting the position of the

apex of the CKM unitarity triangle than the one obtained from

the ∆md measurements alone, due to the reduced hadronic un-

certainty in Eq. (18). We also note that the measured value of

∆ms is consistent with the Standard Model prediction obtained
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from CKM fits where no experimental information on ∆ms is

used, e.g., 17.5 ± 1.1 ps−1 [52] or 16.73 +0.82
−0.57 ps−1 [53].

Information on ∆Γs can be obtained from the study of

the proper time distribution of untagged B0
s samples [54]. In

the case of an inclusive B0
s selection [55], or a flavor-specific

(semileptonic or hadronic) B0
s decay selection [20,56,57], both

the short- and long-lived components are present, and the

proper time distribution is a superposition of two exponentials

with decay constants ΓL,H = Γs ± ∆Γs/2. In principle, this

provides sensitivity to both Γs and (∆Γs/Γs)
2. Ignoring ∆Γs

and fitting for a single exponential leads to an estimate of Γs

with a relative bias proportional to (∆Γs/Γs)
2. An alternative

approach, which is directly sensitive to first order in ∆Γs/Γs,

is to determine the effective lifetime of untagged B0
s candidates

decaying to pure CP eigenstates; measurements exist for B0
s →

K+K− [58], B0
s → D+

s D−
s [57], B0

s → J/ψf0(980) [59],

B0
s → J/ψπ+π− [60] and B0

s → J/ψK0
S [61]. The extraction

of 1/Γs and ∆Γs from such measurements, discussed in detail

in Ref. [62], requires additional information in the form of

theoretical assumptions or external inputs on weak phases and

hadronic parameters. In what follows, the effective lifetimes

from the above decays to pure CP eigenstates will be assumed

to be dominated by a single weak phase.

The best sensitivity to 1/Γs and ∆Γs is achieved by the

time-dependent measurements of the B0
s → J/ψφ (or more gen-

erally B0
s → J/ψK+K−) decay rates performed at CDF [63],

DØ [64], ATLAS [65,66], CMS [67] and LHCb [27], where

the CP -even and CP -odd amplitudes are separated statistically

through a full angular analysis. The LHCb collaboration ana-

lyzes the B0
s → J/ψK+K− decay considering that the K+K−

system can be in a P-wave or S-wave state, and measures the

dependence of the strong phase difference between the P-wave

and S-wave amplitudes as a function of the K+K− invari-

ant mass [27,68]; this allows the unambiguous determination

of the sign of ∆Γs, which is found to be positive. All these

studies use both untagged and tagged B0
s candidates and are

optimized for the measurement of the CP -violating phase φs,

defined as the weak phase difference between the B0
s–B

0
s mix-

ing amplitude and the b → cc̄s decay amplitude. As reported

below in Eq. (28), the current experimental average of φs is

consistent with zero. Assuming no CP violation (i.e., φs = 0)

a combination [8] of the published B0
s → J/ψφ, J/ψK+K−

analyses [27,63–65] and of the published effective lifetime mea-

surements with flavor-specific [20,56,57] and pure CP [57–61]

final states yields

∆Γs = +0.082 ± 0.007 ps−1 and 1/Γs = 1.510 ± 0.005 ps ,

(20)

or, equivalently,

1/ΓL = 1.422 ± 0.008 ps and 1/ΓH = 1.610 ± 0.012 ps ,

(21)

in good agreement with the Standard Model prediction ∆Γs =

0.088 ± 0.020 ps−1 [9].

Table 1: χ and b-hadron fractions (see text).

in Z decays [8] at Tevatron [8] at LHC [80,82]

χ 0.1259 ± 0.0042 0.147 ± 0.011

fu = fd 0.407 ± 0.007 0.344 ± 0.021

fs 0.100 ± 0.008 0.115 ± 0.013

fbaryon 0.085 ± 0.011 0.197 ± 0.046

fs/fd 0.246 ± 0.023 0.334 ± 0.041 0.249 ± 0.014

Estimates of ∆Γs/Γs obtained from measurements of the

B0
s → D

(∗)+
s D

(∗)−
s branching fractions are not included in the

average, since they are based on the questionable [7] assumption

that these decays account for all CP -even final states.

Average b-hadron mixing probability and b-hadron pro-

duction fractions at high energy

Mixing measurements can significantly improve our knowl-

edge on the fractions fu, fd, fs, and fbaryon, defined as the

fractions of Bu, B0
d, B0

s, and b-baryons in an unbiased sample of

weakly decaying b hadrons produced in high-energy collisions.

Indeed, time-integrated mixing analyses using lepton pairs from

bb events at high energy measure the quantity

χ = f ′
d χd + f ′

s χs , (22)

where f ′
d and f ′

s are the fractions of B0
d and B0

s hadrons in

a sample of semileptonic b-hadron decays. Assuming that all

b hadrons have the same semileptonic decay width implies

f ′
q = fq/(Γqτb) (q = s, d), where τb is the average b-hadron

lifetime. Hence χ measurements performed at LEP [69] and

Tevatron [70,71], together with the χd average of Eq. (16)

and the very good approximation χs = 1/2 (in fact χs =

0.499308 ± 0.000005 from Eqs. (5), (17) and (20)), provide

constraints on the fractions fd and fs.

The LEP experiments have measured B(b̄ → B0
s)×B(B0

s →
D−

s ℓ+νℓX) [72], B(b → Λ0
b) × B(Λ0

b → Λ+
c ℓ−νℓX) [73], and

B(b → Ξ−
b ) × B(Ξ−

b → Ξ−ℓ−νℓX) [74] from partially recon-

structed final states including a lepton, fbaryon from protons

identified in b events [75], and the production rate of charged

b hadrons [76]. The b-hadron fraction ratios measured at CDF

are based on double semileptonic K∗µµ and φµµ final states [77]

and lepton-charm final states [78]; in addition CDF and DØ

have both measured strange b-baryon production [79]. On the

other hand, fraction ratios have been studied by LHCb using

fully reconstructed hadronic B0
s and B0

d decays [80], as well

as semileptonic decays [81]. ATLAS has measured fs/fd using

B0
s → J/ψφ and B0 → J/ψK∗0 decays [82]. Both CDF and

LHCb observe that the ratio fΛ0
b
/(fu + fd) decreases with the

transverse momentum of the lepton+charm system, indicating

that the b-hadron fractions are not the same in different en-

vironments. We therefore provide sets of fractions separately

for LEP and Tevatron (and no complete set for LHC, where

strange b-baryon production has not been measured yet). A

combination of all the available information under the con-

straints fu = fd, fu + fd + fs + fbaryon = 1, and Eq. (22), yields

the averages shown in the first two columns of Table 1.
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CP -violation studies

Evidence for CP violation in B0
q–B

0
q mixing has been

searched for, both with flavor-specific and inclusive B0
q decays,

in samples where the initial flavor state is tagged, usually

with a lepton from the other b-hadron in the event. In the

case of semileptonic (or other flavor-specific) decays, where the

final-state tag is also available, the following asymmetry [2]

Aq
SL =

N(B0
q(t) → ℓ+νℓX) − N(B0

q(t) → ℓ−νℓX)

N(B0
q(t) → ℓ+νℓX) + N(B0

q(t) → ℓ−νℓX)
≃ 1 − |q/p|2q

(23)

has been measured either in time-integrated analyses at CLEO

[44,83], BaBar [84], CDF [85], DØ [86–88] and LHCb [89], or

in time-dependent analyses at LEP [35,90], BaBar [45,91]

and Belle [92]. In the inclusive case, also investigated at

LEP [90,93], no final-state tag is used, and the asymmetry [94]

N(B0
q(t) → all) − N(B0

q(t) → all)

N(B0
q(t) → all) + N(B0

q(t) → all)

≃ Aq
SL

[

sin2

(

∆mq t

2

)

− xq

2
sin(∆mq t)

]

(24)

must be measured as a function of the proper time to ex-

tract information on CP violation. In addition LHCb has

studied the time dependence of the charge asymmetry of

B0 → D(∗)−µ+νµX decays without tagging the initial state [95],

which would be equal to

N(D(∗)−µ+νµX) − N(D(∗)+µ−ν̄µX)

N(D(∗)−µ+νµX) + N(D(∗)+µ−ν̄µX)
= Ad

SL
1 − cos(∆md t)

2
(25)

in absence of detection and production asymmetries.

The DØ collaboration measures a like-sign dimuon charge

asymmetry in semileptonic b decays that deviates by 2.8 σ from

the tiny Standard Model prediction and concludes, from a more

refined analysis in bins of muon impact parameters, that the

overall discrepancy is at the level of 3.6 σ [86]. In all other

cases, asymmetries compatible with zero (and the Standard

Model [9]) have been found, with a precision limited by the

available statistics. Several of the analyses at high energy don’t

disentangle the B0
d and B0

s contributions, and either quote a

mean asymmetry or a measurement of Ad
SL assuming As

SL = 0:

we no longer include these in the average. An exception is the

latest dimuon DØ analysis [86], which separates the two con-

tributions by exploiting their dependence on the muon impact

parameter cut. The resulting measurements of Ad
SL and As

SL

are then both compatible with the Standard Model. They are

also correlated. We therefore perform a two-dimensional aver-

age of the measurements of Refs. [44,45,83,84,86–89,91,92,95]

and obtain [8]

Ad
SL = −0.0015 ± 0.0017 , or |q/p|d = 1.0007 ± 0.0009 , (26)

As
SL = −0.0075 ± 0.0041 , or |q/p|s = 1.0038 ± 0.0021 , (27)

with a correlation coefficient of −0.16 between Ad
SL and As

SL.

These results show no evidence of CP violation and don’t

constrain yet the Standard Model.
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Figure 3: 68% CL contours in the (φs, ∆Γs) plane, showing
the measurements from CDF [63], DØ [64], ATLAS [65,66],
CMS [67] and LHCb [27,28,96], with their combination [8].
The thin rectangle represents the Standard Model predictions
of φs [53] and ∆Γs [9].

CP violation induced by B0
s–B

0
s mixing in b → cc̄s decays

has been a field of very active study in the past few years.

In addition to the previously mentioned B0
s → J/ψφ and

B0
s → J/ψK+K− studies, the decay modes B0

s → J/ψπ+π−

(including B0
s → J/ψf0(980)) [96] and B0

s → D+
s D−

s [28] have

also been analyzed by LHCb to measure φs, without the need

for an angular analysis. The J/ψπ+π− final state has been

shown indeed to be (very close to) a pure CP -odd state [97].

A two-dimensional fit [8] of all these results [27,28,63–67,96] in

the (φs, ∆Γs) plane, shown on Fig. 3, yields [48]

φs = −0.033 ± 0.033 . (28)

This is consistent with the Standard Model prediction for

φs, which is equal to −2βs = −2 arg(−(VtsV
∗
tb)/(VcsV

∗
cb)) =

−0.0376 +0.0008
−0.0007 [53], assuming negligible Penguin pollution.

Summary

B0–B0 mixing has been and still is a field of intense study.

The mass differences in the B0
d–B

0
d and B0

s–B
0
s systems are now

known to relative precisions of 0.38% and 0.12%, respectively.

The non-zero decay width difference in the B0
s–B

0
s system is well

established, with a relative difference of ∆Γs/Γs = (12.4±1.1)%,

meaning that the heavy state of the B0
s–B

0
s system lives ∼ 13%

longer than the light state. In contrast, the relative decay width

difference in the B0
d–B

0
d system, ∆Γd/Γd = (−0.3 ± 1.5)%, is

still consistent with zero. CP violation in mixing has not been

observed yet, with precisions on the semileptonic asymmetries

below 0.5%. An impressive progress has been achieved in the

measurement of the mixing-induced phase φs in B0
s decays

proceeding through the b → cc̄s transition, with an uncertainty

of 33 mrad. Despite these significant improvements, all observa-

tions remain consistent with the Standard Model expectations.

However, the measurements where New Physics might show

up are still statistically limited. More results are awaited from

the LHC experiments and Belle II, with promising prospects

for the investigation of the CP -violating phase arg(−M12/Γ12)

and an improved determination of φs.
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Mixing studies have clearly reached the stage of precision

measurements, where much effort is needed, both on the ex-

perimental and theoretical sides, in particular to further reduce

the hadronic uncertainties of lattice QCD calculations. In the

long term, a stringent check of the consistency of the B0
d and

B0
s mixing amplitudes (magnitudes and phases) with all other

measured flavor-physics observables will be possible within the

Standard Model, leading to very tight limits on (or otherwise a

long-awaited surprize about) New Physics.
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orre
ted in BEAN 87B from r
< 0.30 to r < 0.37. We 
onverted this limit to χ.

�mB0 = mB0H − mB0L�mB0 = mB0H − mB0L�mB0 = mB0H − mB0L�mB0 = mB0H − mB0L�mB0 is a measure of 2π times the B0-B0 os
illation frequen
y in time-dependentmixing experiments.The se
ond \OUR EVALUATION" is an average using res
aled values of the datalisted below. The average and res
aling were performed by the Heavy Flavor Aver-aging Group (HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/.The averaging/res
aling pro
edure takes into a

ount 
orrelations between the mea-surements.The �rst \OUR EVALUATION", also provided by the HFAG, in
ludes �md 
al
ulatedfrom χd measured at �(4S).VALUE (1012 �h s−1) DOCUMENT ID TECN COMMENT0.5096±0.0034 OUR EVALUATION0.5096±0.0034 OUR EVALUATION0.5096±0.0034 OUR EVALUATION0.5096±0.0034 OUR EVALUATION First0.5098±0.0035 OUR EVALUATION0.5098±0.0035 OUR EVALUATION0.5098±0.0035 OUR EVALUATION0.5098±0.0035 OUR EVALUATION Se
ond0.503 ±0.011 ±0.013 AAIJ 13CF LHCB pp at 7 TeV0.5156±0.0051±0.0033 1 AAIJ 13F LHCB pp at 7 TeV0.499 ±0.032 ±0.003 2 AAIJ 12I LHCB pp at 7 TeV0.506 ±0.020 ±0.016 3 ABAZOV 06W D0 pp at 1.96 TeV0.511 ±0.007 +0.007
−0.006 4 AUBERT 06G BABR e+ e− → �(4S)0.511 ±0.005 ±0.006 5 ABE 05B BELL e+ e− → �(4S)0.531 ±0.025 ±0.007 6 ABDALLAH 03B DLPH e+ e− → Z0.492 ±0.018 ±0.013 7 AUBERT 03C BABR e+ e− → �(4S)0.503 ±0.008 ±0.010 8 HASTINGS 03 BELL e+ e− → �(4S)0.509 ±0.017 ±0.020 9 ZHENG 03 BELL e+ e− → �(4S)0.516 ±0.016 ±0.010 10 AUBERT 02I BABR e+ e− → �(4S)0.493 ±0.012 ±0.009 11 AUBERT 02J BABR e+ e− → �(4S)0.497 ±0.024 ±0.025 12 ABBIENDI,G 00B OPAL e+ e− → Z0.503 ±0.064 ±0.071 13 ABE 99K CDF pp at 1.8 TeV0.500 ±0.052 ±0.043 14 ABE 99Q CDF pp at 1.8 TeV0.516 ±0.099 +0.029
−0.035 15 AFFOLDER 99C CDF pp at 1.8 TeV0.471 +0.078

−0.068 +0.033
−0.034 16 ABE 98C CDF pp at 1.8 TeV0.458 ±0.046 ±0.032 17 ACCIARRI 98D L3 e+ e− → Z0.437 ±0.043 ±0.044 18 ACCIARRI 98D L3 e+ e− → Z0.472 ±0.049 ±0.053 19 ACCIARRI 98D L3 e+ e− → Z0.523 ±0.072 ±0.043 20 ABREU 97N DLPH e+ e− → Z0.493 ±0.042 ±0.027 18 ABREU 97N DLPH e+ e− → Z0.499 ±0.053 ±0.015 21 ABREU 97N DLPH e+ e− → Z0.480 ±0.040 ±0.051 17 ABREU 97N DLPH e+ e− → Z0.444 ±0.029 +0.020
−0.017 18 ACKERSTAFF 97U OPAL e+ e− → Z0.430 ±0.043 +0.028
−0.030 17 ACKERSTAFF 97V OPAL e+ e− → Z0.482 ±0.044 ±0.024 22 BUSKULIC 97D ALEP e+ e− → Z0.404 ±0.045 ±0.027 18 BUSKULIC 97D ALEP e+ e− → Z0.452 ±0.039 ±0.044 17 BUSKULIC 97D ALEP e+ e− → Z0.539 ±0.060 ±0.024 23 ALEXANDER 96V OPAL e+ e− → Z0.567 ±0.089 +0.029
−0.023 24 ALEXANDER 96V OPAL e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.516 ±0.016 ±0.010 25 AUBERT 02N BABR e+ e− → �(4S)0.494 ±0.012 ±0.015 26 HARA 02 BELL Repl. by ABE 05B0.528 ±0.017 ±0.011 27 TOMURA 02 BELL Repl. by ABE 05B0.463 ±0.008 ±0.016 11 ABE 01D BELL Repl. by HASTINGS 030.444 ±0.028 ±0.028 28 ACCIARRI 98D L3 e+ e− → Z0.497 ±0.035 29 ABREU 97N DLPH e+ e− → Z0.467 ±0.022 +0.017
−0.015 30 ACKERSTAFF 97V OPAL e+ e− → Z0.446 ±0.032 31 BUSKULIC 97D ALEP e+ e− → Z0.531 +0.050

−0.046 ±0.078 32 ABREU 96Q DLPH Sup. by ABREU 97N0.496 +0.055
−0.051 ±0.043 17 ACCIARRI 96E L3 Repl. by ACCIARRI 98D0.548 ±0.050 +0.023

−0.019 33 ALEXANDER 96V OPAL e+ e− → Z0.496 ±0.046 34 AKERS 95J OPAL Repl. by ACKERSTAFF 97V0.462 +0.040
−0.053 +0.052

−0.035 17 AKERS 95J OPAL Repl. by ACKERSTAFF 97V0.50 ±0.12 ±0.06 20 ABREU 94M DLPH Sup. by ABREU 97N0.508 ±0.075 ±0.025 23 AKERS 94C OPAL Repl. by ALEXANDER 96V0.57 ±0.11 ±0.02 24 AKERS 94H OPAL Repl. by ALEXANDER 96V0.50 +0.07
−0.06 +0.11

−0.10 17 BUSKULIC 94B ALEP Sup. by BUSKULIC 97D0.52 +0.10
−0.11 +0.04

−0.03 24 BUSKULIC 93K ALEP Sup. by BUSKULIC 97D1Measured using B0 → D−π+ and B0 → J/ψK∗(892)0 de
ays.2Measured using B0 → D−π+.3Uses opposite-side 
avor-tagging with B → D(∗)µνµX events.4Measured using a simultaneous �t of the B0 lifetime and B0B0 os
illation frequen
y�md in the partially re
onstru
ted B0 → D∗− ℓν de
ays.5Measurement performed using a 
ombined �t of CP-violation, mixing and lifetimes.6 Events with a high transverse momentum lepton were removed and an in
lusively re
on-stru
ted vertex was required.7AUBERT 03C uses a sample of approximately 14,000 ex
lusively re
onstru
ted B0 →D∗(2010)− ℓν and simultaneously measures the lifetime and os
illation frequen
y.



1268126812681268Meson Parti
le ListingsB08HASTINGS 03 measurement based on the time evolution of dilepton events. It alsoreports f+/f0 = 1.01 ± 0.03 ± 0.09 and CPT violation parameters in B0-B0 mixing.9ZHENG 03 data analyzed using partially re
onstru
ted B0 → D∗−π+ de
ay and a
avor tag based on the 
harge of the lepton from the a

ompanying B de
ay.10Uses a tagged sample of fully-re
onstru
ted neutral B de
ays at �(4S).11Measured based on the time evolution of dilepton events in �(4S) de
ays.12Data analyzed using partially re
onstru
ted B0 → D∗+ ℓ− ν de
ay and a 
ombinationof 
avor tags from the rest of the event.13Uses di-muon events.14Uses jet-
harge and lepton-
avor tagging.15Uses ℓ−D∗+−ℓ events.16Uses π-B in the same side.17Uses ℓ-ℓ.18Uses ℓ-Qhem.19Uses ℓ-ℓ with impa
t parameters.20Uses D∗±-Qhem.21Uses π±s ℓ-Qhem.22Uses D∗±-ℓ/Qhem.23Uses D∗± ℓ-Qhem.24Uses D∗±-ℓ.25AUBERT 02N result based on the same analysis and data sample reported inAUBERT 02I.26Uses a tagged sample of B0 de
ays re
onstru
ted in the mode B0 → D∗ ℓν.27Uses a tagged sample of fully-re
onstru
ted hadroni
 B0 de
ays at �(4S).28ACCIARRI 98D 
ombines results from ℓ-ℓ, ℓ-Qhem, and ℓ-ℓ with impa
t parameters.29ABREU 97N 
ombines results from D∗±-Qhem, ℓ-Qhem, π±s ℓ-Qhem, and ℓ-ℓ.30ACKERSTAFF 97V 
ombines results from ℓ-ℓ, ℓ-Qhem, D∗-ℓ, and D∗±-Qhem.31BUSKULIC 97D 
ombines results from D∗±-ℓ/Qhem, ℓ-Qhem, and ℓ-ℓ.32ABREU 96Q analysis performed using lepton, kaon, and jet-
harge tags.33ALEXANDER 96V 
ombines results from D∗±-ℓ and D∗± ℓ-Qhem.34AKERS 95J 
ombines results from 
harge measurement, D∗± ℓ-Qhem and ℓ-ℓ.xd = �mB0/�B0xd = �mB0/�B0xd = �mB0/�B0xd = �mB0/�B0The se
ond \OUR EVALUATION" is an average using res
aled values of the datalisted below. The average and res
aling were performed by the Heavy Flavor Aver-aging Group (HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/.The averaging/res
aling pro
edure takes into a

ount 
orrelations between the mea-surements.The �rst \OUR EVALUATION", also provided by the HFAG, in
ludes χd measuredat �(4S).VALUE DOCUMENT ID0.775±0.006 OUR EVALUATION0.775±0.006 OUR EVALUATION0.775±0.006 OUR EVALUATION0.775±0.006 OUR EVALUATION First0.775±0.006 OUR EVALUATION0.775±0.006 OUR EVALUATION0.775±0.006 OUR EVALUATION0.775±0.006 OUR EVALUATION Se
ondRe(λCP /
∣

∣λCP

∣

∣

) Re(z)Re(λCP /
∣

∣λCP

∣

∣

) Re(z)Re(λCP /
∣

∣λCP

∣

∣

) Re(z)Re(λCP /
∣

∣λCP

∣

∣

) Re(z)The λCP 
hara
terizes B0 and B0 de
ays to states of 
harmonium plus K0L. Param-eter z is used to des
ribe CPT violation in mixing, see the review on \CP Violation"in the reviews se
tion.VALUE DOCUMENT ID TECN COMMENT0.014±0.035±0.0340.014±0.035±0.0340.014±0.035±0.0340.014±0.035±0.034 1 AUBERT,B 04C BABR e+ e− → �(4S)1Corresponds to 90% 
on�den
e range [−0.072, 0.101℄.�� Re(z)�� Re(z)�� Re(z)�� Re(z)VALUE DOCUMENT ID TECN COMMENT
−0.0071±0.0039±0.0020−0.0071±0.0039±0.0020−0.0071±0.0039±0.0020−0.0071±0.0039±0.0020 AUBERT 06T BABR e+ e− → �(4S)Re(z)Re(z)Re(z)Re(z)VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.9± 3.7±3.31.9± 3.7±3.31.9± 3.7±3.31.9± 3.7±3.3 1 HIGUCHI 12 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0 ±12 ±1 2 HASTINGS 03 BELL Repl. by HIGUCHI 121Measured using B0 → J/ψK0S , J/ψK0L, D−π+, D∗−π+, D∗− ρ+, and D∗− ℓ+ νde
ays.2Measured using in
lusive dilepton events from B0 de
ay.Im(z)Im(z)Im(z)Im(z)VALUE (units 10−2) DOCUMENT ID TECN COMMENT
−0.8 ±0.4 OUR AVERAGE−0.8 ±0.4 OUR AVERAGE−0.8 ±0.4 OUR AVERAGE−0.8 ±0.4 OUR AVERAGE
−0.57±0.33±0.33 1 HIGUCHI 12 BELL e+ e− → �(4S)
−1.39±0.73±0.32 2 AUBERT 06T BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.8 ±2.9 ±2.5 3 AUBERT,B 04C BABR Repl. by AUBERT 06T
−3 ±1 ±3 4 HASTINGS 03 BELL Repl. by HIGUCHI 121Measured using B0 → J/ψK0S , J/ψK0L, D−π+, D∗−π+, D∗− ρ+, and D∗− ℓ+ νde
ays.2Assuming �� = 0, the result be
omes Im(z) = −0.0037 ± 0.0046.3Corresponds to 90% 
on�den
e range [−0.028, 0.104℄.4Measured using in
lusive dilepton events from B0 de
ay.

CP VIOLATION PARAMETERSCP VIOLATION PARAMETERSCP VIOLATION PARAMETERSCP VIOLATION PARAMETERSRe(ǫB0)/(1+∣

∣ǫB0∣∣2)Re(ǫB0)/(1+∣

∣ǫB0∣∣2)Re(ǫB0)/(1+∣

∣ǫB0∣∣2)Re(ǫB0)/(1+∣

∣ǫB0∣∣2)CP impurity in B0d system. It is obtained from either aℓℓ, the 
harge asymmetry inlike-sign dilepton events or a
 p , the time-dependent asymmetry of in
lusive B0 andB0 de
ays.The se
ond \OUR EVALUATION" is an average using res
aled values of the datalisted below. The average and res
aling were performed by the Heavy Flavor Aver-aging Group (HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/.The averaging/res
aling pro
edure takes into a

ount 
orrelations between the mea-surements. It assumes there is no CP violation in Bs mixing.The �rst \OUR EVALUATION", also provided by the HFAG, uses the measurementsfrom B-fa
tories only.VALUE (units 10−3) DOCUMENT ID TECN COMMENT
− 0.4 ± 0.4 OUR EVALUATION− 0.4 ± 0.4 OUR EVALUATION− 0.4 ± 0.4 OUR EVALUATION− 0.4 ± 0.4 OUR EVALUATION �rst eval
− 0.2 ± 0.5 OUR EVALUATION− 0.2 ± 0.5 OUR EVALUATION− 0.2 ± 0.5 OUR EVALUATION− 0.2 ± 0.5 OUR EVALUATION se
ond eval
− 0.1 ± 0.4 OUR AVERAGE− 0.1 ± 0.4 OUR AVERAGE− 0.1 ± 0.4 OUR AVERAGE− 0.1 ± 0.4 OUR AVERAGE
− 0.05 ± 0.48 ±0.75 1 AAIJ 15F LHCB pp at 7, 8 TeV
− 0.975± 0.875±0.475 2 LEES 15A BABR e+ e− → �(4S)1.55 ± 1.05 3 ABAZOV 14 D0 pp at 1.96 TeV0.15 ± 0.42 +0.94

−0.81 4 LEES 13N BABR e+ e− → �(4S)
− 1.7 ± 1.1 ±0.4 5 ABAZOV 12AC D0 pp at 1.96 TeV0.4 ± 1.3 ±0.9 6 AUBERT 06T BABR e+ e− → �(4S)
− 0.3 ± 2.0 ±2.1 7 NAKANO 06 BELL e+ e− → �(4S)
− 3.2 ± 6.5 8 BARATE 01D ALEP e+ e− → Z3.5 ±10.3 ±1.5 9 JAFFE 01 CLE2 e+ e− → �(4S)1.2 ±13.8 ±3.2 10 ABBIENDI 99J OPAL e+ e− → Z2 ± 7 ±3 11 ACKERSTAFF 97U OPAL e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •
− 0.3 ± 1.3 12 ABAZOV 11U D0 Repl. by ABAZOV 14
− 2.3 ± 1.1 ±0.8 13 ABAZOV 06S D0 Repl. by ABAZOV 11U
−14.7 ± 6.7 ±5.7 14 AUBERT,B 04C BABR Repl. by AUBERT 06T1.2 ± 2.9 ±3.6 2 AUBERT 02K BABR Repl. by LEES 15A4 ±18 ±3 15 BEHRENS 00B CLE2 Repl. by JAFFE 01

< 45 16 BARTELT 93 CLE2 e+ e− → �(4S)1AAIJ 15F uses semileptoni
 B0 de
ays in the in
lusive �nal states D−µ+ and D∗−µ+,where the D− meson de
ays into the K+π−π− �nal state, and the D∗− meson intothe D0(→ K+π−)π− �nal state. Reports Ad
SL = (−0.02 ± 0.19 ± 0.30)%, whi
hequals to 4Re(ǫB0 )/(1+∣

∣ǫB0 ∣

∣

2).2Uses the 
harge asymmetry in like-sign dilepton events. LEES 15A reports Ad
SL =(−3.9 ± 3.5 ± 1.9)× 10−3.3ABAZOV 14 uses the dimuon 
harge asymmetry with di�erent impa
t parameters fromwhi
h it reports Ad

SL = (−0.62 ± 0.42) × 10−2.4Uses B0 → D∗−X ℓ+ νℓ and a kaon-tagged sample whi
h yields measurement of Ad
SL =(0.06±0.17+0.38

−0.32)%, 
orresponding to �CP = 1−∣

∣q/p∣∣ = (0.29±0.84+1.88
−1.61)×10−3.5ABAZOV 12AC uses B0 → D−µ+X and B0 → D∗(2010)−µ+X de
ays without initialstate 
avor tagging whi
h yields measurement of Ad

SL
= (6.8 ± 4.5 ± 1.4)× 10−3.6AUBERT 06T reports ∣

∣q/p∣∣−1=(−0.8±2.7±1.9)×10−3. We 
onvert to (1−∣

∣q/p∣∣2)/4.7Uses the 
harge asymmetry in like-sign dilepton events and reports ∣

∣q/p∣∣ = 1.0005 ±0.0040 ± 0.0043.8BARATE 01D measured by investigating time-dependent asymmetries in semileptoni
and fully in
lusive B0d de
ays.9 JAFFE 01 �nds aℓℓ = 0.013 ± 0.050 ± 0.005 and 
ombines with the previousBEHRENS 00B independent measurement.10Data analyzed using the time-dependent asymmetry of in
lusive B0 de
ay. The pro-du
tion 
avor of B0 mesons is determined using both the jet 
harge and the 
harge ofse
ondary vertex in the opposite hemisphere.11ACKERSTAFF 97U assumes CPT and is based on measuring the 
harge asymmetry in asample of B0 de
ays de�ned by lepton and Qhem tags. If CPT is not invoked, Re(ǫB ) =
−0.006 ± 0.010 ± 0.006 is found. The indire
t CPT violation parameter is determinedto Im(δB) = −0.020 ± 0.016 ± 0.006.12ABAZOV 11U uses the dimuon 
harge asymmetry with di�erent impa
t parameters fromwhi
h it reports Ad

SL = (−1.2 ± 5.2)× 10−3.13Uses the dimuon 
harge asymmetry.14AUBERT 04C reports ∣

∣q/p∣∣ = 1.029±0.013±0.011 and we 
onverted it to (1- ∣

∣q/p∣∣2)/4.15BEHRENS 00B uses high-momentum lepton tags and partially re
onstru
ted B0 →D∗+π−, ρ− de
ays to determine the 
avor of the B meson.16BARTELT 93 �nds aℓℓ = 0.031 ± 0.096 ± 0.032 whi
h 
orresponds to ∣

∣aℓℓ
∣

∣ < 0.18,whi
h yields the above ∣

∣Re(ǫB0)/(1+∣

∣ǫB0 ∣

∣

2)∣∣.AT/CPAT/CPAT/CPAT/CPAT/CP is de�ned asP(B0 →B0)−P(B0 →B0)P(B0 →B0)+P(B0 →B0) ,the CPT invariant asymmetry between the os
illation probabilities P(B0 → B0) andP(B0 → B0).VALUE DOCUMENT ID TECN COMMENT0.005±0.012±0.0140.005±0.012±0.0140.005±0.012±0.0140.005±0.012±0.014 1 AUBERT 02K BABR e+ e− → �(4S)1AUBERT 02K uses the 
harge asymmetry in like-sign dilepton events.



1269126912691269See key on page 601 Meson Parti
le ListingsB0ACP (B0 → D∗(2010)+D−)ACP (B0 → D∗(2010)+D−)ACP (B0 → D∗(2010)+D−)ACP (B0 → D∗(2010)+D−)ACP is de�ned as
B(B0 →f )−B(B0 →f )
B(B0 →f )+B(B0 →f ) ,the CP-violation 
harge asymmetry of ex
lusive B0 and B0 de
ay.VALUE DOCUMENT ID TECN COMMENT0.037±0.034 OUR AVERAGE0.037±0.034 OUR AVERAGE0.037±0.034 OUR AVERAGE0.037±0.034 OUR AVERAGE0.06 ±0.05 ±0.02 ROHRKEN 12 BELL e+ e− → �(4S)0.008±0.048±0.013 AUBERT 09C BABR e+ e− → �(4S)0.07 ±0.08 ±0.04 1 AUSHEV 04 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.12 ±0.06 ±0.02 AUBERT 07AI BABR Repl. by AUBERT 09C
−0.03 ±0.10 ±0.02 AUBERT,B 06A BABR Repl. by AUBERT 07AI
−0.03 ±0.11 ±0.05 AUBERT 03J BABR Repl. by AUBERT,B 06B1Combines results from fully and partially re
onstru
ted B0 → D∗±D∓ de
ays.ACP (B0 → [K+K− ℄DK∗(892)0)ACP (B0 → [K+K− ℄DK∗(892)0)ACP (B0 → [K+K− ℄DK∗(892)0)ACP (B0 → [K+K− ℄DK∗(892)0)VALUE DOCUMENT ID TECN COMMENT
−0.20±0.15±0.02−0.20±0.15±0.02−0.20±0.15±0.02−0.20±0.15±0.02 AAIJ 14BN LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.45±0.23±0.02 AAIJ 13L LHCB Repl. by AAIJ 14BNACP (B0 → [K+π− ℄DK∗(892)0)ACP (B0 → [K+π− ℄DK∗(892)0)ACP (B0 → [K+π− ℄DK∗(892)0)ACP (B0 → [K+π− ℄DK∗(892)0)VALUE DOCUMENT ID TECN COMMENT
−0.03±0.04±0.02−0.03±0.04±0.02−0.03±0.04±0.02−0.03±0.04±0.02 AAIJ 14BN LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.08±0.08±0.01 AAIJ 13L LHCB Repl. by AAIJ 14BNR+d = �(B0 → [π+K− ℄DK∗0) / �(B0 → [π−K+ ℄DK∗0)R+d = �(B0 → [π+K− ℄DK∗0) / �(B0 → [π−K+ ℄DK∗0)R+d = �(B0 → [π+K− ℄DK∗0) / �(B0 → [π−K+ ℄DK∗0)R+d = �(B0 → [π+K− ℄DK∗0) / �(B0 → [π−K+ ℄DK∗0)VALUE DOCUMENT ID TECN COMMENT0.06±0.03±0.010.06±0.03±0.010.06±0.03±0.010.06±0.03±0.01 AAIJ 14BN LHCB pp at 7, 8 TeVR−d = �(B0 → [π−K+ ℄DK∗0) / �(B0 → [π+K− ℄DK∗0)R−d = �(B0 → [π−K+ ℄DK∗0) / �(B0 → [π+K− ℄DK∗0)R−d = �(B0 → [π−K+ ℄DK∗0) / �(B0 → [π+K− ℄DK∗0)R−d = �(B0 → [π−K+ ℄DK∗0) / �(B0 → [π+K− ℄DK∗0)VALUE DOCUMENT ID TECN COMMENT0.06±0.03±0.010.06±0.03±0.010.06±0.03±0.010.06±0.03±0.01 AAIJ 14BN LHCB pp at 7, 8 TeVACP (B0 → [π+π− ℄DK∗(892)0)ACP (B0 → [π+π− ℄DK∗(892)0)ACP (B0 → [π+π− ℄DK∗(892)0)ACP (B0 → [π+π− ℄DK∗(892)0)VALUE DOCUMENT ID TECN COMMENT
−0.09±0.22±0.02−0.09±0.22±0.02−0.09±0.22±0.02−0.09±0.22±0.02 AAIJ 14BN LHCB pp at 7, 8 TeVACP (B0 → K+π−)ACP (B0 → K+π−)ACP (B0 → K+π−)ACP (B0 → K+π−)VALUE DOCUMENT ID TECN COMMENT
−0.082±0.006 OUR AVERAGE−0.082±0.006 OUR AVERAGE−0.082±0.006 OUR AVERAGE−0.082±0.006 OUR AVERAGE
−0.083±0.013±0.004 AALTONEN 14P CDF pp at 1.96 TeV
−0.080±0.007±0.003 AAIJ 13AX LHCB pp at 7 TeV
−0.069±0.014±0.007 DUH 13 BELL e+ e− → �(4S)
−0.107±0.016+0.006

−0.004 LEES 13D BABR e+ e− → �(4S)
−0.086±0.023±0.009 AALTONEN 11N CDF pp at 1.96 TeV
−0.04 ±0.16 1 CHEN 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.088±0.011±0.008 AAIJ 12V LHCB Repl. by AAIJ 13AX
−0.094±0.018±0.008 LIN 08 BELL Repl. by DUH 13
−0.107±0.018+0.007

−0.004 AUBERT 07AF BABR Repl. by LEES 13D
−0.013±0.078±0.012 ABULENCIA,A 06D CDF Repl. by AALTONEN 11N
−0.088±0.035±0.013 2 CHAO 05A BELL Repl. by CHAO 04B
−0.133±0.030±0.009 3 AUBERT,B 04K BABR Repl. by AUBERT 07AF
−0.101±0.025±0.005 4 CHAO 04B BELL Repl. by LIN 08
−0.07 ±0.08 ±0.02 5 AUBERT 02D BABR Repl. by AUBERT 02Q
−0.102±0.050±0.016 6 AUBERT 02Q BABR Repl. by AUBERT,B 04K
−0.06 ±0.09 +0.01

−0.02 7 CASEY 02 BELL Repl. by CHAO 04B0.044+0.186
−0.167+0.018

−0.021 8 ABE 01K BELL Repl. by CASEY 02
−0.19 ±0.10 ±0.03 9 AUBERT 01E BABR Repl. by AUBERT 02Q1Corresponds to 90% 
on�den
e range −0.30 <ACP < 0.22.2Corresponds to a 90% CL interval of −0.15 < ACP < −0.03.3Based on a total signal yield of N(K−π+) + N(K+π−) = 1606 ± 51 events.4CHAO 04B reports signi�
an
e of 3.9 standard deviation for deviation of ACP from zero.5Corresponds to 90% 
on�den
e range −0.21 <ACP < 0.07.6Corresponds to 90% 
on�den
e range −0.188 <ACP < −0.016.7Corresponds to 90% 
on�den
e range −0.21 <ACP < +0.09.8Corresponds to 90% 
on�den
e range −0.25 <ACP < 0.37.9Corresponds to 90% 
on�den
e range −0.35 <ACP < −0.03.ACP (B0 → η′K∗(892)0)ACP (B0 → η′K∗(892)0)ACP (B0 → η′K∗(892)0)ACP (B0 → η′K∗(892)0)VALUE DOCUMENT ID TECN COMMENT
−0.07±0.18 OUR AVERAGE−0.07±0.18 OUR AVERAGE−0.07±0.18 OUR AVERAGE−0.07±0.18 OUR AVERAGE
−0.22±0.29±0.07 SATO 14 BELL e+ e− → �(4S)0.02±0.23±0.02 DEL-AMO-SA...10A BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.08±0.25±0.02 1 AUBERT 07E BABR Repl. by DEL-AMO-SANCHEZ 10A1Reports ACP with the opposite sign 
onvention.

ACP (B0 → η′K∗0(1430)0)ACP (B0 → η′K∗0(1430)0)ACP (B0 → η′K∗0(1430)0)ACP (B0 → η′K∗0(1430)0)VALUE DOCUMENT ID TECN COMMENT
−0.19±0.17±0.02−0.19±0.17±0.02−0.19±0.17±0.02−0.19±0.17±0.02 DEL-AMO-SA...10A BABR e+ e− → �(4S)ACP (B0 → η′K∗2(1430)0)ACP (B0 → η′K∗2(1430)0)ACP (B0 → η′K∗2(1430)0)ACP (B0 → η′K∗2(1430)0)VALUE DOCUMENT ID TECN COMMENT0.14±0.18±0.020.14±0.18±0.020.14±0.18±0.020.14±0.18±0.02 DEL-AMO-SA...10A BABR e+ e− → �(4S)ACP (B0 → ηK∗(892)0)ACP (B0 → ηK∗(892)0)ACP (B0 → ηK∗(892)0)ACP (B0 → ηK∗(892)0)VALUE DOCUMENT ID TECN COMMENT0.19±0.05 OUR AVERAGE0.19±0.05 OUR AVERAGE0.19±0.05 OUR AVERAGE0.19±0.05 OUR AVERAGE0.17±0.08±0.01 WANG 07B BELL e+ e− → �(4S)0.21±0.06±0.02 AUBERT,B 06H BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.02±0.11±0.02 AUBERT,B 04D BABR Repl. by AUBERT,B 06HACP (B0 → ηK∗0(1430)0)ACP (B0 → ηK∗0(1430)0)ACP (B0 → ηK∗0(1430)0)ACP (B0 → ηK∗0(1430)0)VALUE DOCUMENT ID TECN COMMENT0.06±0.13±0.020.06±0.13±0.020.06±0.13±0.020.06±0.13±0.02 AUBERT,B 06H BABR e+ e− → �(4S)ACP (B0 → ηK∗2(1430)0)ACP (B0 → ηK∗2(1430)0)ACP (B0 → ηK∗2(1430)0)ACP (B0 → ηK∗2(1430)0)VALUE DOCUMENT ID TECN COMMENT
−0.07±0.19±0.02−0.07±0.19±0.02−0.07±0.19±0.02−0.07±0.19±0.02 AUBERT,B 06H BABR e+ e− → �(4S)ACP (B0 → b1K+)ACP (B0 → b1K+)ACP (B0 → b1K+)ACP (B0 → b1K+)VALUE DOCUMENT ID TECN COMMENT
−0.07±0.12±0.02−0.07±0.12±0.02−0.07±0.12±0.02−0.07±0.12±0.02 AUBERT 07BI BABR e+ e− → �(4S)ACP (B0 → ωK∗0)ACP (B0 → ωK∗0)ACP (B0 → ωK∗0)ACP (B0 → ωK∗0)VALUE DOCUMENT ID TECN COMMENT0.45±0.25±0.020.45±0.25±0.020.45±0.25±0.020.45±0.25±0.02 AUBERT 09H BABR e+ e− → �(4S)ACP (B0 → ω (Kπ)∗00 )ACP (B0 → ω (Kπ)∗00 )ACP (B0 → ω (Kπ)∗00 )ACP (B0 → ω (Kπ)∗00 )VALUE DOCUMENT ID TECN COMMENT
−0.07±0.09±0.02−0.07±0.09±0.02−0.07±0.09±0.02−0.07±0.09±0.02 AUBERT 09H BABR e+ e− → �(4S)ACP (B0 → ωK∗2(1430)0)ACP (B0 → ωK∗2(1430)0)ACP (B0 → ωK∗2(1430)0)ACP (B0 → ωK∗2(1430)0)VALUE DOCUMENT ID TECN COMMENT
−0.37±0.17±0.02−0.37±0.17±0.02−0.37±0.17±0.02−0.37±0.17±0.02 AUBERT 09H BABR e+ e− → �(4S)ACP (B0 → K+π−π0)ACP (B0 → K+π−π0)ACP (B0 → K+π−π0)ACP (B0 → K+π−π0)VALUE (units 10−2) DOCUMENT ID TECN COMMENT0 ± 6 OUR AVERAGE0 ± 6 OUR AVERAGE0 ± 6 OUR AVERAGE0 ± 6 OUR AVERAGE
−3.0+ 4.5

− 5.1±5.5 1 AUBERT 08AQ BABR e+ e− → �(4S)7 ±11 ±1 2 CHANG 04 BELL e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.2Corresponds to 90% 
on�den
e range −0.12 < ACP < 0.26.ACP (B0 → ρ−K+)ACP (B0 → ρ−K+)ACP (B0 → ρ−K+)ACP (B0 → ρ−K+)VALUE DOCUMENT ID TECN COMMENT0.20±0.11 OUR AVERAGE0.20±0.11 OUR AVERAGE0.20±0.11 OUR AVERAGE0.20±0.11 OUR AVERAGE0.20±0.09±0.08 1 LEES 11 BABR e+ e− → �(4S)0.22+0.22
−0.23+0.06

−0.02 2 CHANG 04 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.11+0.14

−0.15±0.07 1 AUBERT 08AQ BABR Repl. by LEES 11
−0.28±0.17±0.08 3 AUBERT 03T BABR Repl. by AUBERT 08AQ1Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.2Corresponds to 90% 
on�den
e range −0.18 < ACP < 0.64.3The result reported 
orresponds to −ACP .ACP (B0 → ρ(1450)−K+)ACP (B0 → ρ(1450)−K+)ACP (B0 → ρ(1450)−K+)ACP (B0 → ρ(1450)−K+)VALUE DOCUMENT ID TECN COMMENT
−0.10±0.32±0.09−0.10±0.32±0.09−0.10±0.32±0.09−0.10±0.32±0.09 1 LEES 11 BABR e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.ACP (B0 → ρ(1700)−K+)ACP (B0 → ρ(1700)−K+)ACP (B0 → ρ(1700)−K+)ACP (B0 → ρ(1700)−K+)VALUE DOCUMENT ID TECN COMMENT
−0.36±0.57±0.23−0.36±0.57±0.23−0.36±0.57±0.23−0.36±0.57±0.23 1 LEES 11 BABR e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.ACP (B0 → K+π−π0 nonresonant)ACP (B0 → K+π−π0 nonresonant)ACP (B0 → K+π−π0 nonresonant)ACP (B0 → K+π−π0 nonresonant)VALUE DOCUMENT ID TECN COMMENT0.10±0.16±0.080.10±0.16±0.080.10±0.16±0.080.10±0.16±0.08 1 LEES 11 BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.23+0.19

−0.27+0.11
−0.10 1 AUBERT 08AQ BABR Repl. by LEES 111Uses Dalitz plot analysis of B0 → K+π−π0 de
ays. The quoted value is only for the
at part of the non-resonant 
omponent.
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le ListingsB0ACP (B0 → K0π+π−)ACP (B0 → K0π+π−)ACP (B0 → K0π+π−)ACP (B0 → K0π+π−)VALUE DOCUMENT ID TECN COMMENT
−0.01±0.05±0.01−0.01±0.05±0.01−0.01±0.05±0.01−0.01±0.05±0.01 1 AUBERT 09AU BABR e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.ACP (B0 → K∗(892)+π−)ACP (B0 → K∗(892)+π−)ACP (B0 → K∗(892)+π−)ACP (B0 → K∗(892)+π−)VALUE DOCUMENT ID TECN COMMENT
−0.22±0.06 OUR AVERAGE−0.22±0.06 OUR AVERAGE−0.22±0.06 OUR AVERAGE−0.22±0.06 OUR AVERAGE
−0.29±0.11±0.02 1 LEES 11 BABR e+ e− → �(4S)
−0.21±0.10±0.02 2,3 AUBERT 09AU BABR e+ e− → �(4S)
−0.21±0.11±0.07 4 DALSENO 09 BELL e+ e− → �(4S)0.26+0.33

−0.34+0.10
−0.08 5 EISENSTEIN 03 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.19+0.20
−0.15±0.04 1 AUBERT 08AQ BABR Repl. by LEES 11

−0.11±0.14±0.05 2 AUBERT 06I BABR Repl. by AUBERT 09AU0.23±0.18+0.09
−0.06 AUBERT,B 04O BABR Repl. by AUBERT 06I1Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.2Uses Dalitz plot analysis of B0 → K0π+π− de
ays.3The �rst of two equivalent solutions is used.4Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two 
onsistentsolutions that may be preferred.5Corresponds to 90% 
on�den
e range −0.31 <ACP < 0.78.ACP (B0 → (Kπ)∗+0 π−)ACP (B0 → (Kπ)∗+0 π−)ACP (B0 → (Kπ)∗+0 π−)ACP (B0 → (Kπ)∗+0 π−)VALUE DOCUMENT ID TECN COMMENT0.09±0.07 OUR AVERAGE0.09±0.07 OUR AVERAGE0.09±0.07 OUR AVERAGE0.09±0.07 OUR AVERAGE0.07±0.14±0.01 1 LEES 11 BABR e+ e− → �(4S)0.09±0.07±0.03 2 AUBERT 09AU BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.17+0.11
−0.16±0.22 1 AUBERT 08AQ BABR Repl. by LEES 111Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.2Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.ACP (B0 → (Kπ)∗00 π0)ACP (B0 → (Kπ)∗00 π0)ACP (B0 → (Kπ)∗00 π0)ACP (B0 → (Kπ)∗00 π0)VALUE DOCUMENT ID TECN COMMENT

−0.15±0.10±0.04−0.15±0.10±0.04−0.15±0.10±0.04−0.15±0.10±0.04 1 LEES 11 BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.22±0.12+0.30
−0.29 1 AUBERT 08AQ BABR Repl. by LEES 111Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.ACP (B0 → K∗0π0)ACP (B0 → K∗0π0)ACP (B0 → K∗0π0)ACP (B0 → K∗0π0)VALUE DOCUMENT ID TECN COMMENT

−0.15±0.12±0.04−0.15±0.12±0.04−0.15±0.12±0.04−0.15±0.12±0.04 1 LEES 11 BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.09+0.21
−0.24±0.09 1 AUBERT 08AQ BABR Repl. by LEES 111Uses Dalitz plot analysis of B0 → K+π−π0 de
ays.ACP (B0 → K∗(892)0π+π−)ACP (B0 → K∗(892)0π+π−)ACP (B0 → K∗(892)0π+π−)ACP (B0 → K∗(892)0π+π−)VALUE DOCUMENT ID TECN COMMENT0.07±0.04±0.030.07±0.04±0.030.07±0.04±0.030.07±0.04±0.03 AUBERT 07AS BABR e+ e− → �(4S)ACP (B0 → K∗(892)0 ρ0)ACP (B0 → K∗(892)0 ρ0)ACP (B0 → K∗(892)0 ρ0)ACP (B0 → K∗(892)0 ρ0)VALUE DOCUMENT ID TECN COMMENT

−0.06±0.09±0.02−0.06±0.09±0.02−0.06±0.09±0.02−0.06±0.09±0.02 LEES 12K BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.09±0.19±0.02 AUBERT,B 06G BABR Repl. by LEES 12KACP (B0 → K∗0 f0(980))ACP (B0 → K∗0 f0(980))ACP (B0 → K∗0 f0(980))ACP (B0 → K∗0 f0(980))VALUE DOCUMENT ID TECN COMMENT0.07±0.10±0.020.07±0.10±0.020.07±0.10±0.020.07±0.10±0.02 LEES 12K BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.17±0.28±0.02 AUBERT,B 06G BABR Repl. by LEES 12KACP (B0 → K∗+ρ−)ACP (B0 → K∗+ρ−)ACP (B0 → K∗+ρ−)ACP (B0 → K∗+ρ−)VALUE DOCUMENT ID TECN COMMENT0.21±0.15±0.020.21±0.15±0.020.21±0.15±0.020.21±0.15±0.02 LEES 12K BABR e+ e− → �(4S)ACP (B0 → K∗(892)0K+K−)ACP (B0 → K∗(892)0K+K−)ACP (B0 → K∗(892)0K+K−)ACP (B0 → K∗(892)0K+K−)VALUE DOCUMENT ID TECN COMMENT0.01±0.05±0.020.01±0.05±0.020.01±0.05±0.020.01±0.05±0.02 AUBERT 07AS BABR e+ e− → �(4S)ACP (B0 → a−1 K+)ACP (B0 → a−1 K+)ACP (B0 → a−1 K+)ACP (B0 → a−1 K+)VALUE DOCUMENT ID TECN COMMENT
−0.16±0.12±0.01−0.16±0.12±0.01−0.16±0.12±0.01−0.16±0.12±0.01 AUBERT 08F BABR e+ e− → �(4S)ACP (B0 → K0K0)ACP (B0 → K0K0)ACP (B0 → K0K0)ACP (B0 → K0K0)VALUE DOCUMENT ID TECN COMMENT
−0.58+0.73

−0.66±0.04−0.58+0.73
−0.66±0.04−0.58+0.73
−0.66±0.04−0.58+0.73
−0.66±0.04 LIN 07 BELL e+ e− → �(4S)

ACP (B0 → K∗(892)0φ)ACP (B0 → K∗(892)0φ)ACP (B0 → K∗(892)0φ)ACP (B0 → K∗(892)0φ)VALUE DOCUMENT ID TECN COMMENT0.00 ±0.04 OUR AVERAGE0.00 ±0.04 OUR AVERAGE0.00 ±0.04 OUR AVERAGE0.00 ±0.04 OUR AVERAGE
−0.007±0.048±0.021 PRIM 13 BELL e+ e− → �(4S)0.01 ±0.06 ±0.03 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.03 ±0.07 ±0.03 AUBERT 07D BABR Repl. by AUBERT 08BG0.02 ±0.09 ±0.02 1 CHEN 05A BELL Repl. by PRIM 13
−0.01 ±0.09 ±0.02 AUBERT,B 04W BABR Repl. by AUBERT 07D0.04 ±0.12 ±0.02 AUBERT 03V BABR Repl. by AUBERT 04W0.07 ±0.15 +0.05

−0.03 2 CHEN 03B BELL Repl. by CHEN 05A0.00 ±0.27 ±0.03 3 AUBERT 02E BABR Repl. by AUBERT 03V1Corresponds to 90% 
on�den
e range −0.14 <ACP < 0.17.2Corresponds to 90% 
on�den
e range −0.18 <ACP < 0.33.3Corresponds to 90% 
on�den
e range −0.44 <ACP < 0.44.ACP (B0 → K∗(892)0K−π+)ACP (B0 → K∗(892)0K−π+)ACP (B0 → K∗(892)0K−π+)ACP (B0 → K∗(892)0K−π+)VALUE DOCUMENT ID TECN COMMENT0.22±0.33±0.200.22±0.33±0.200.22±0.33±0.200.22±0.33±0.20 AUBERT 07AS BABR e+ e− → �(4S)ACP (B0 → φ(K π)∗00 )ACP (B0 → φ(K π)∗00 )ACP (B0 → φ(K π)∗00 )ACP (B0 → φ(K π)∗00 )VALUE DOCUMENT ID TECN COMMENT0.12 ±0.08 OUR AVERAGE0.12 ±0.08 OUR AVERAGE0.12 ±0.08 OUR AVERAGE0.12 ±0.08 OUR AVERAGE0.093±0.094±0.017 PRIM 13 BELL e+ e− → �(4S)0.20 ±0.14 ±0.06 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.17 ±0.15 ±0.03 AUBERT 07D BABR Repl. by AUBERT 08BGACP (B0 → φK∗2(1430)0)ACP (B0 → φK∗2(1430)0)ACP (B0 → φK∗2(1430)0)ACP (B0 → φK∗2(1430)0)VALUE DOCUMENT ID TECN COMMENT
−0.11 ±0.10 OUR AVERAGE−0.11 ±0.10 OUR AVERAGE−0.11 ±0.10 OUR AVERAGE−0.11 ±0.10 OUR AVERAGE
−0.155+0.152

−0.133±0.033 PRIM 13 BELL e+ e− → �(4S)
−0.08 ±0.12 ±0.05 AUBERT 08BG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.12 ±0.14 ±0.04 AUBERT 07D BABR Repl. by AUBERT 08BGACP (B0 → K∗(892)0 γ)ACP (B0 → K∗(892)0 γ)ACP (B0 → K∗(892)0 γ)ACP (B0 → K∗(892)0 γ)VALUE DOCUMENT ID TECN COMMENT
−0.002±0.015 OUR AVERAGE−0.002±0.015 OUR AVERAGE−0.002±0.015 OUR AVERAGE−0.002±0.015 OUR AVERAGE0.008±0.017±0.009 AAIJ 13 LHCB pp at 7 TeV
−0.016±0.022±0.007 AUBERT 09AO BABR e+ e− → �(4S)ACP (B0 → K∗2(1430)0γ)ACP (B0 → K∗2(1430)0γ)ACP (B0 → K∗2(1430)0γ)ACP (B0 → K∗2(1430)0γ)VALUE DOCUMENT ID TECN COMMENT
−0.08±0.15±0.01−0.08±0.15±0.01−0.08±0.15±0.01−0.08±0.15±0.01 AUBERT,B 04U BABR e+ e− → �(4S)ACP (B0 → ρ+π−)ACP (B0 → ρ+π−)ACP (B0 → ρ+π−)ACP (B0 → ρ+π−)VALUE DOCUMENT ID TECN COMMENT0.13±0.06 OUR AVERAGE0.13±0.06 OUR AVERAGE0.13±0.06 OUR AVERAGE0.13±0.06 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.09+0.05

−0.06±0.04 1 LEES 13J BABR e+ e− → �(4S)0.21±0.08±0.04 1 KUSAKA 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.03±0.07±0.04 AUBERT 07AA BABR Repl. by LEES 13J
−0.02±0.16+0.05

−0.02 WANG 05 BELL Repl. by KUSAKA 07
−0.18±0.08±0.03 AUBERT 03T BABR Repl. by AUBERT 07AA1Uses time-dependent Dalitz plot analysis of B0 → π+π−π0 de
ays.ACP (B0 → ρ−π+)ACP (B0 → ρ−π+)ACP (B0 → ρ−π+)ACP (B0 → ρ−π+)VALUE DOCUMENT ID TECN COMMENT
−0.08±0.08 OUR AVERAGE−0.08±0.08 OUR AVERAGE−0.08±0.08 OUR AVERAGE−0.08±0.08 OUR AVERAGE
−0.12±0.08+0.04

−0.05 1 LEES 13J BABR e+ e− → �(4S)0.08±0.16±0.11 1 KUSAKA 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.37±0.16+0.09
−0.10 AUBERT 07AA BABR Repl. by LEES 13J

−0.53±0.29+0.09
−0.04 WANG 05 BELL Repl. by KUSAKA 071Uses time-dependent Dalitz plot analysis of B0 → π+π−π0 de
ays.
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le ListingsB0ACP (B0 → a1(1260)±π∓)ACP (B0 → a1(1260)±π∓)ACP (B0 → a1(1260)±π∓)ACP (B0 → a1(1260)±π∓)VALUE DOCUMENT ID TECN COMMENT
−0.07±0.06 OUR AVERAGE−0.07±0.06 OUR AVERAGE−0.07±0.06 OUR AVERAGE−0.07±0.06 OUR AVERAGE
−0.06±0.05±0.07 DALSENO 12 BELL e+ e− → �(4S)
−0.07±0.07±0.02 AUBERT 07O BABR e+ e− → �(4S)ACP (B0 → b−1 π+)ACP (B0 → b−1 π+)ACP (B0 → b−1 π+)ACP (B0 → b−1 π+)VALUE DOCUMENT ID TECN COMMENT
−0.05±0.10±0.02−0.05±0.10±0.02−0.05±0.10±0.02−0.05±0.10±0.02 AUBERT 07BI BABR e+ e− → �(4S)ACP (B0 → ppK∗(892)0)ACP (B0 → ppK∗(892)0)ACP (B0 → ppK∗(892)0)ACP (B0 → ppK∗(892)0)VALUE DOCUMENT ID TECN COMMENT0.05±0.12 OUR AVERAGE0.05±0.12 OUR AVERAGE0.05±0.12 OUR AVERAGE0.05±0.12 OUR AVERAGE
−0.08±0.20±0.02 CHEN 08C BELL e+ e− → �(4S)0.11±0.13±0.06 AUBERT 07AV BABR e+ e− → �(4S)ACP (B0 → p�π−)ACP (B0 → p�π−)ACP (B0 → p�π−)ACP (B0 → p�π−)VALUE DOCUMENT ID TECN COMMENT0.04±0.07 OUR AVERAGE0.04±0.07 OUR AVERAGE0.04±0.07 OUR AVERAGE0.04±0.07 OUR AVERAGE0.10±0.10±0.02 AUBERT 09AC BABR e+ e− → �(4S)
−0.02±0.10±0.03 WANG 07C BELL e+ e− → �(4S)ACP (B0 → K∗0 ℓ+ ℓ−)ACP (B0 → K∗0 ℓ+ ℓ−)ACP (B0 → K∗0 ℓ+ ℓ−)ACP (B0 → K∗0 ℓ+ ℓ−)VALUE DOCUMENT ID TECN COMMENT
−0.05±0.10 OUR AVERAGE−0.05±0.10 OUR AVERAGE−0.05±0.10 OUR AVERAGE−0.05±0.10 OUR AVERAGE0.02±0.20±0.02 AUBERT 09T BABR e+ e− → �(4S)
−0.08±0.12±0.02 WEI 09A BELL e+ e− → �(4S)ACP (B0 → K∗0 e+ e−)ACP (B0 → K∗0 e+ e−)ACP (B0 → K∗0 e+ e−)ACP (B0 → K∗0 e+ e−)VALUE DOCUMENT ID TECN COMMENT
−0.21±0.19±0.02−0.21±0.19±0.02−0.21±0.19±0.02−0.21±0.19±0.02 WEI 09A BELL e+ e− → �(4S)ACP (B0 → K∗0µ+µ−)ACP (B0 → K∗0µ+µ−)ACP (B0 → K∗0µ+µ−)ACP (B0 → K∗0µ+µ−)VALUE DOCUMENT ID TECN COMMENT
−0.034±0.024 OUR AVERAGE−0.034±0.024 OUR AVERAGE−0.034±0.024 OUR AVERAGE−0.034±0.024 OUR AVERAGE
−0.035±0.024±0.003 AAIJ 14AN LHCB pp at 7, 8 TeV0.00 ±0.15 ±0.03 WEI 09A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.072±0.040±0.005 AAIJ 13E LHCB Repl. by AAIJ 14ANCD∗(2010)−D+ (B0 → D∗(2010)−D+)CD∗(2010)−D+ (B0 → D∗(2010)−D+)CD∗(2010)−D+ (B0 → D∗(2010)−D+)CD∗(2010)−D+ (B0 → D∗(2010)−D+)VALUE DOCUMENT ID TECN COMMENT
−0.01±0.11 OUR AVERAGE−0.01±0.11 OUR AVERAGE−0.01±0.11 OUR AVERAGE−0.01±0.11 OUR AVERAGE
−0.13±0.16±0.05 1 ROHRKEN 12 BELL e+ e− → �(4S)0.00±0.17±0.03 AUBERT 09C BABR e+ e− → �(4S)0.23±0.25±0.06 2 AUSHEV 04 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.23±0.15±0.04 AUBERT 07AI BABR Repl. by AUBERT 09C0.17±0.24±0.04 AUBERT,B 05Z BABR Repl. by AUBERT 07AI
−0.22±0.37±0.10 AUBERT 03J BABR Repl. by AUBERT,B 05Z1ROHRKEN 12 reports the measurements of C = −0.01 ± 0.11 ± 0.04 and �C =0.12 ± 0.11 ± 0.03 su
h that CD∗(2010)−D+ = C − �C .2Combines results from fully and partially re
onstru
ted B0 → D∗±D∓ de
ays.SD∗(2010)−D+ (B0 → D∗(2010)−D+)SD∗(2010)−D+ (B0 → D∗(2010)−D+)SD∗(2010)−D+ (B0 → D∗(2010)−D+)SD∗(2010)−D+ (B0 → D∗(2010)−D+)VALUE DOCUMENT ID TECN COMMENT
−0.72±0.15 OUR AVERAGE−0.72±0.15 OUR AVERAGE−0.72±0.15 OUR AVERAGE−0.72±0.15 OUR AVERAGE
−0.65±0.22±0.07 1 ROHRKEN 12 BELL e+ e− → �(4S)
−0.73±0.23±0.050 AUBERT 09C BABR e+ e− → �(4S)
−0.96±0.43±0.12 2 AUSHEV 04 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.44±0.22±0.06 AUBERT 07AI BABR Repl. by AUBERT 09C
−0.29±0.33±0.07 AUBERT,B 05Z BABR Repl. by AUBERT 07AI
−0.24±0.69±0.12 AUBERT 03J BABR Repl. by AUBERT,B 05Z1ROHRKEN 12 reports the measurements of S = −0.78 ± 0.15 ± 0.05 and �S =

−0.13 ± 0.15 ± 0.04 su
h that SD∗(2010)+D− = S − �S.2Combines results from fully and partially re
onstru
ted B0 → D∗±D∓ de
ays.CD∗(2010)+D− (B0 → D∗(2010)+D−)CD∗(2010)+D− (B0 → D∗(2010)+D−)CD∗(2010)+D− (B0 → D∗(2010)+D−)CD∗(2010)+D− (B0 → D∗(2010)+D−)VALUE DOCUMENT ID TECN COMMENT0.00±0.13 OUR AVERAGE0.00±0.13 OUR AVERAGE0.00±0.13 OUR AVERAGE0.00±0.13 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.0.11±0.14±0.06 1 ROHRKEN 12 BELL e+ e− → �(4S)0.08±0.17±0.04 AUBERT 09C BABR e+ e− → �(4S)
−0.37±0.22±0.06 2 AUSHEV 04 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.18±0.15±0.04 AUBERT 07AI BABR Repl. by AUBERT 09C0.09±0.25±0.06 AUBERT,B 05Z BABR Repl. by AUBERT 07AI
−0.47±0.40±0.12 AUBERT 03J BABR Repl. by AUBERT,B 05Z

1ROHRKEN 12 reports the measurements of C = −0.01 ± 0.11 ± 0.04 and �C =0.12 ± 0.11 ± 0.03 su
h that CD∗(2010)+D− = C + �C .2Combines results from fully and partially re
onstru
ted B0 → D∗±D∓ de
ays.
WEIGHTED AVERAGE
0.00±0.13 (Error scaled by 1.3)

AUSHEV 04 BELL 2.7
AUBERT 09C BABR 0.2
ROHRKEN 12 BELL 0.5

χ2

       3.4
(Confidence Level = 0.186)

-1 -0.5 0 0.5 1 1.5CD∗(2010)+D− (B0 → D∗(2010)+D−)SD∗(2010)+D− (B0 → D∗(2010)+D−)SD∗(2010)+D− (B0 → D∗(2010)+D−)SD∗(2010)+D− (B0 → D∗(2010)+D−)SD∗(2010)+D− (B0 → D∗(2010)+D−)VALUE DOCUMENT ID TECN COMMENT
−0.73±0.14 OUR AVERAGE−0.73±0.14 OUR AVERAGE−0.73±0.14 OUR AVERAGE−0.73±0.14 OUR AVERAGE
−0.90±0.21±0.07 1 ROHRKEN 12 BELL e+ e− → �(4S)
−0.62±0.21±0.03 AUBERT 09C BABR e+ e− → �(4S)
−0.55±0.39±0.12 2 AUSHEV 04 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.79±0.21±0.06 AUBERT 07AI BABR Repl. by AUBERT 09C
−0.54±0.35±0.07 AUBERT,B 05Z BABR Repl. by AUBERT 07AI
−0.82±0.75±0.14 AUBERT 03J BABR Repl. by AUBERT,B 05Z1ROHRKEN 12 reports the measurements of S = −0.78 ± 0.15 ± 0.05 and �S =

−0.13 ± 0.15 ± 0.04 su
h that SD∗(2010)+D− = S + �S.2Combines results from fully and partially re
onstru
ted B0 → D∗±D∓ de
ays.CD∗+D∗− (B0 → D∗+D∗−)CD∗+D∗− (B0 → D∗+D∗−)CD∗+D∗− (B0 → D∗+D∗−)CD∗+D∗− (B0 → D∗+D∗−)VALUE DOCUMENT ID TECN COMMENT0.01±0.09 OUR AVERAGE0.01±0.09 OUR AVERAGE0.01±0.09 OUR AVERAGE0.01±0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.
−0.15±0.08±0.04 1,2 KRONENBIT... 12 BELL e+ e− → �(4S)+0.15±0.09±0.04 3 LEES 12AF BABR e+ e− → �(4S)0.05±0.09±0.02 AUBERT 09C BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.15±0.13±0.04 2 VERVINK 09 BELL Repl. by KRONENBITTER 12
−0.02±0.11±0.02 1 AUBERT 07BOBABR Repl. by AUBERT 09C0.26±0.26±0.06 2 MIYAKE 05 BELL Repl. by VERVINK 090.28±0.23±0.02 4 AUBERT 03Q BABR Repl. by AUBERT 07BO1Assumes both CP-even and CP-odd states having the CP asymmetry.2Belle Collab. quotes AD∗+D∗− whi
h is equal to −CD∗+D∗− .3Measured partially re
onstru
ted 
andidates when one D0 meson is not ex
pli
itely re-
onstru
ted. Analysis does not separate CP-even and CP-odd 
omponent.4AUBERT 03Q reports ∣

∣λ
∣

∣=0.75 ± 0.19 ± 0.02 and Im(λ)=0.05 ± 0.29 ± 0.10. We
onvert them to S and C parameters taking into a

ount 
orrelations.
WEIGHTED AVERAGE
0.01±0.09 (Error scaled by 1.6)

AUBERT 09C BABR 0.2
LEES 12AF BABR 2.1
KRONENBIT... 12 BELL 3.1

χ2

       5.4
(Confidence Level = 0.067)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8CD∗+D∗− (B0 → D∗+D∗−)



1272127212721272MesonParti
le ListingsB0SD∗+D∗− (B0 → D∗+D∗−)SD∗+D∗− (B0 → D∗+D∗−)SD∗+D∗− (B0 → D∗+D∗−)SD∗+D∗− (B0 → D∗+D∗−)VALUE DOCUMENT ID TECN COMMENT
−0.59±0.14 OUR AVERAGE−0.59±0.14 OUR AVERAGE−0.59±0.14 OUR AVERAGE−0.59±0.14 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogram below.
−0.79±0.13±0.03 1 KRONENBIT... 12 BELL e+ e− → �(4S)
−0.34±0.12±0.05 2 LEES 12AF BABR e+ e− → �(4S)
−0.70±0.16±0.03 1 AUBERT 09C BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.96±0.25+0.13
−0.16 VERVINK 09 BELL Repl. by KRONENBITTER 12

−0.66±0.19±0.04 1 AUBERT 07BOBABR Repl. by AUBERT 09C
−0.75±0.56±0.12 MIYAKE 05 BELL Repl. by VERVINK 090.06±0.37±0.13 3 AUBERT 03Q BABR Repl. by AUBERT 07BO1Assumes both CP-even and CP-odd states having the CP asymmetry.2Measured partially re
onstru
ted 
andidates when one D0 meson is not ex
pli
itely re-
onstru
ted. Analysis does not separate CP-even and CP-odd 
omponent.3AUBERT 03Q reports ∣

∣λ
∣

∣=0.75 ± 0.19 ± 0.02 and Im(λ)=0.05 ± 0.29 ± 0.10. We
onvert them to S and C parameters taking into a

ount 
orrelations.
WEIGHTED AVERAGE
-0.59±0.14 (Error scaled by 1.8)

AUBERT 09C BABR 0.4
LEES 12AF BABR 3.8
KRONENBIT... 12 BELL 2.2

χ2

       6.4
(Confidence Level = 0.041)

-1.5 -1 -0.5 0 0.5 1SD∗+D∗− (B0 → D∗+D∗−)C+ (B0 → D∗+D∗−)C+ (B0 → D∗+D∗−)C+ (B0 → D∗+D∗−)C+ (B0 → D∗+D∗−)See the note in the Cππ datablo
k, but for CP even �nal state.VALUE DOCUMENT ID TECN COMMENT0.00±0.10 OUR AVERAGE0.00±0.10 OUR AVERAGE0.00±0.10 OUR AVERAGE0.00±0.10 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.
−0.18±0.10±0.05 1 KRONENBIT... 12 BELL e+ e− → �(4S)+0.15±0.09±0.04 2 LEES 12AF BABR e+ e− → �(4S)0.00±0.12±0.02 AUBERT 09C BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.05±0.14±0.02 AUBERT 07BOBABR Repl. by AUBERT 09C0.06±0.17±0.03 3 AUBERT,BE 05A BABR Repl. by AUBERT 07BO1Belle Collab. quotes AD∗+D∗− whi
h is equal to −CD∗+D∗− .2Measured partially re
onstru
ted 
andidates when one D0 meson is not ex
pli
itely re-
onstru
ted. Extra
ted under assumption of equal C+ and C−.3AUBERT,BE 05A reports a CP-odd fra
tion R⊥ = 0.125 ± 0.044 ± 0.007.

WEIGHTED AVERAGE
0.00±0.10 (Error scaled by 1.6)

AUBERT 09C BABR 0.0
LEES 12AF BABR 2.2
KRONENBIT... 12 BELL 2.7

χ2

       4.9
(Confidence Level = 0.086)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8C+ (B0 → D∗+D∗−)

S+ (B0 → D∗+D∗−)S+ (B0 → D∗+D∗−)S+ (B0 → D∗+D∗−)S+ (B0 → D∗+D∗−)See the note in the Sππ datablo
k, but for CP even �nal state.VALUE DOCUMENT ID TECN COMMENT
−0.73±0.09 OUR AVERAGE−0.73±0.09 OUR AVERAGE−0.73±0.09 OUR AVERAGE−0.73±0.09 OUR AVERAGE
−0.81±0.13±0.03 KRONENBIT... 12 BELL e+ e− → �(4S)
−0.49±0.18±0.08 1 LEES 12AF BABR e+ e− → �(4S)
−0.76±0.16±0.04 AUBERT 09C BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.72±0.19±0.05 AUBERT 07BOBABR Repl. by AUBERT 09C
−0.75±0.25±0.03 2 AUBERT,BE 05A BABR Repl. by AUBERT 07BO1Measured partially re
onstru
ted 
andidates when one D0 meson is not ex
pli
itely re
on-stru
ted. Analysis does not separate CP-even and CP-odd 
omponent. Value is obtainedfrom S = −0.34 ± 0.12 ± 0.05 using S = S+ (1 − 2 R⊥) with R⊥ = 0.158 ± 0.029.2AUBERT,BE 05A reports a CP-odd fra
tion R⊥ = 0.125 ± 0.044 ± 0.007.C− (B0 → D∗+D∗−)C− (B0 → D∗+D∗−)C− (B0 → D∗+D∗−)C− (B0 → D∗+D∗−)See the note in the Cππ datablo
k, but for CP odd �nal state.VALUE DOCUMENT ID TECN COMMENT0.19±0.31 OUR AVERAGE0.19±0.31 OUR AVERAGE0.19±0.31 OUR AVERAGE0.19±0.31 OUR AVERAGE0.05±0.39±0.08 1 KRONENBIT... 12 BELL e+ e− → �(4S)0.41±0.49±0.08 AUBERT 09C BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.23±0.67±0.10 AUBERT 07BOBABR Repl. by AUBERT 09C
−0.20±0.96±0.11 2 AUBERT,BE 05A BABR Repl. by AUBERT 07BO1Belle Collab. quotes AD∗+D∗− whi
h is equal to −CD∗+D∗− .2AUBERT,BE 05A reports a CP-odd fra
tion R⊥ = 0.125 ± 0.044 ± 0.007.S− (B0 → D∗+D∗−)S− (B0 → D∗+D∗−)S− (B0 → D∗+D∗−)S− (B0 → D∗+D∗−)See the note in the Sππ datablo
k, but for CP odd �nal state.VALUE DOCUMENT ID TECN COMMENT0.1 ±1.6 OUR AVERAGE0.1 ±1.6 OUR AVERAGE0.1 ±1.6 OUR AVERAGE0.1 ±1.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.5.1.52±0.62±0.12 KRONENBIT... 12 BELL e+ e− → �(4S)
−1.80±0.70±0.16 AUBERT 09C BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−1.83±1.04±0.23 AUBERT 07BOBABR Repl. by AUBERT 09C
−1.75±1.78±0.22 1 AUBERT,BE 05A BABR Repl. by AUBERT 07BO1AUBERT,BE 05A reports a CP-odd fra
tion R⊥ = 0.125 ± 0.044 ± 0.007.C (B0 → D∗(2010)+D∗(2010)−K0S )C (B0 → D∗(2010)+D∗(2010)−K0S )C (B0 → D∗(2010)+D∗(2010)−K0S )C (B0 → D∗(2010)+D∗(2010)−K0S )VALUE DOCUMENT ID TECN COMMENT0.01±0.28±0.090.01±0.28±0.090.01±0.28±0.090.01±0.28±0.09 1 DALSENO 07 BELL e+ e− → �(4S)1Reports value of A whi
h is equal to −C.S (B0 → D∗(2010)+D∗(2010)−K0S )S (B0 → D∗(2010)+D∗(2010)−K0S )S (B0 → D∗(2010)+D∗(2010)−K0S )S (B0 → D∗(2010)+D∗(2010)−K0S )VALUE DOCUMENT ID TECN COMMENT0.06+0.45

−0.44±0.060.06+0.45
−0.44±0.060.06+0.45
−0.44±0.060.06+0.45
−0.44±0.06 1 DALSENO 07 BELL e+ e− → �(4S)1This value in
ludes an unknown CP dilution fa
tor D due to possible 
ontributions fromintermediate resonan
es and di�erent partial waves.CD+D− (B0 → D+D−)CD+D− (B0 → D+D−)CD+D− (B0 → D+D−)CD+D− (B0 → D+D−)VALUE DOCUMENT ID TECN COMMENT

−0.46±0.21 OUR AVERAGE−0.46±0.21 OUR AVERAGE−0.46±0.21 OUR AVERAGE−0.46±0.21 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogram below.
−0.43±0.16±0.05 ROHRKEN 12 BELL e+ e− → �(4S)
−0.07±0.23±0.03 AUBERT 09C BABR e+ e− → �(4S)
−0.91±0.23±0.06 1 FRATINA 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.11±0.22±0.07 AUBERT 07AI BABR Repl. by AUBERT 09C0.11±0.35±0.06 AUBERT,B 05Z BABR Repl. by AUBERT 07AI1The paper reports A, whi
h is equal to −C.

WEIGHTED AVERAGE
-0.46±0.21 (Error scaled by 1.8)

FRATINA 07 BELL 3.7
AUBERT 09C BABR 2.8
ROHRKEN 12 BELL 0.0

χ2

       6.4
(Confidence Level = 0.040)

-2 -1.5 -1 -0.5 0 0.5 1 1.5CD+D− (B0 → D+D−)



1273127312731273See key on page 601 MesonParti
le ListingsB0SD+D− (B0 → D+D−)SD+D− (B0 → D+D−)SD+D− (B0 → D+D−)SD+D− (B0 → D+D−)VALUE DOCUMENT ID TECN COMMENT
−0.99+0.17

−0.14 OUR AVERAGE−0.99+0.17
−0.14 OUR AVERAGE−0.99+0.17
−0.14 OUR AVERAGE−0.99+0.17
−0.14 OUR AVERAGE

−1.06+0.21
−0.14±0.08 ROHRKEN 12 BELL e+ e− → �(4S)

−0.63±0.36±0.05 AUBERT 09C BABR e+ e− → �(4S)
−1.13±0.37±0.09 FRATINA 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.54±0.34±0.06 AUBERT 07AI BABR Repl. by AUBERT 09C
−0.29±0.63±0.06 AUBERT,B 05Z BABR Repl. by AUBERT 07AICJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)CJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)CJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)CJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)VALUE DOCUMENT ID TECN COMMENT
−0.13±0.13 OUR AVERAGE−0.13±0.13 OUR AVERAGE−0.13±0.13 OUR AVERAGE−0.13±0.13 OUR AVERAGE
−0.20±0.19±0.03 AUBERT 08AU BABR e+ e− → �(4S)
−0.08±0.16±0.05 1 LEE 08A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.21±0.26±0.06 AUBERT,B 06B BABR Repl. by AUBERT 08AU0.01±0.29±0.03 1 KATAOKA 04 BELL Repl. by LEE 08A0.38±0.41±0.09 AUBERT 03N BABR Repl. by AUBERT,B 06B1BELLE Collab. quotes AJ/ψπ0 whi
h is equal to −CJ/ψπ0 .SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)VALUE DOCUMENT ID TECN COMMENT
−0.94±0.29 OUR AVERAGE−0.94±0.29 OUR AVERAGE−0.94±0.29 OUR AVERAGE−0.94±0.29 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.
−1.23±0.21±0.04 AUBERT 08AU BABR e+ e− → �(4S)
−0.65±0.21±0.05 LEE 08A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.68±0.30±0.04 AUBERT,B 06B BABR Repl. by AUBERT 08AU
−0.72±0.42±0.09 KATAOKA 04 BELL Repl. by LEE 08A0.05±0.49±0.16 AUBERT 03N BABR Repl. by AUBERT,B 06BC(B0 → J/ψ(1S)ρ0)C(B0 → J/ψ(1S)ρ0)C(B0 → J/ψ(1S)ρ0)C(B0 → J/ψ(1S)ρ0)VALUE DOCUMENT ID TECN COMMENT
−0.063±0.056+0.019

−0.014−0.063±0.056+0.019
−0.014−0.063±0.056+0.019
−0.014−0.063±0.056+0.019
−0.014 1 AAIJ 15J LHCB pp at 7, 8 TeV1Time-dependent CP violation is measured in the B0 → J/ψρ0 and was used to limitthe size of penguin amplitude 
ontributions to φs in B0s → J/ψφ de
ays to be between[−1.05◦, 1.18◦℄ at 95% 
on�den
e level.S(B0 → J/ψ(1S)ρ0)S(B0 → J/ψ(1S)ρ0)S(B0 → J/ψ(1S)ρ0)S(B0 → J/ψ(1S)ρ0)VALUE DOCUMENT ID TECN COMMENT

−0.66+0.13
−0.12+0.09

−0.03−0.66+0.13
−0.12+0.09

−0.03−0.66+0.13
−0.12+0.09

−0.03−0.66+0.13
−0.12+0.09

−0.03 1 AAIJ 15J LHCB pp at 7, 8 TeV1Time-dependent CP violation is measured in the B0 → J/ψρ0 and was used to limitthe size of penguin amplitude 
ontributions to φs in B0s → J/ψφ de
ays to be between[−1.05◦, 1.18◦℄ at 95% 
on�den
e level.CD(∗)
CP

h0 (B0 → D(∗)
CP h0)CD(∗)

CP
h0 (B0 → D(∗)

CP h0)CD(∗)
CP

h0 (B0 → D(∗)
CP h0)CD(∗)

CP
h0 (B0 → D(∗)

CP h0)VALUE DOCUMENT ID TECN COMMENT
−0.02±0.07±0.03−0.02±0.07±0.03−0.02±0.07±0.03−0.02±0.07±0.03 1 ABDESSALAM 15 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.23±0.16±0.04 AUBERT 07AJ BABR Repl. by ABDESSALAM 151BABAR and BELLE 
ombined analysis uses CP-eigenstate de
ay modes D0 → K+K−,K0S π0, K0S ω, and h0 = π0, η, ω.SD(∗)

CP
h0 (B0 → D(∗)

CP h0)SD(∗)
CP

h0 (B0 → D(∗)
CP h0)SD(∗)

CP
h0 (B0 → D(∗)

CP h0)SD(∗)
CP

h0 (B0 → D(∗)
CP h0)VALUE DOCUMENT ID TECN COMMENT

−0.66±0.10±0.06−0.66±0.10±0.06−0.66±0.10±0.06−0.66±0.10±0.06 1 ABDESSALAM 15 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.56±0.23±0.05 AUBERT 07AJ BABR Repl. by ABDESSALAM 151BABAR and BELLE 
ombined analysis uses CP-eigenstate de
ay modes D0 → K+K−,K0S π0, K0S ω, and h0 = π0, η, ω.CK0π0 (B0 → K0π0)CK0π0 (B0 → K0π0)CK0π0 (B0 → K0π0)CK0π0 (B0 → K0π0)VALUE DOCUMENT ID TECN COMMENT0.00±0.13 OUR AVERAGE0.00±0.13 OUR AVERAGE0.00±0.13 OUR AVERAGE0.00±0.13 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.
−0.14±0.13±0.06 1 FUJIKAWA 10A BELL e+ e− → �(4S)0.13±0.13±0.03 AUBERT 09I BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.24±0.15±0.03 AUBERT 08E BABR Repl. by AUBERT 09I0.05±0.14±0.05 1 CHAO 07 BELL Repl. by FUJIKAWA 10A0.06±0.18±0.03 AUBERT 05Y BABR Repl. by AUBERT 08E
−0.16±0.29±0.05 1,2 CHAO 05A BELL Repl. by CHEN 05B0.11±0.20±0.09 1 CHEN 05B BELL Repl. by CHAO 07
−0.03±0.36±0.11 1 AUBERT 04M BABR Repl. by AUBERT,B 04M0.40+0.27

−0.28±0.09 3 AUBERT,B 04M BABR Repl. by AUBERT 05Y1Reports A whi
h is equal to −C.2 Corresponds to a 90% CL interval of −0.33 < ACP < 0.64.3Based on a total signal yield of 122 ± 16 events.

SK0π0 (B0 → K0π0)SK0π0 (B0 → K0π0)SK0π0 (B0 → K0π0)SK0π0 (B0 → K0π0)VALUE DOCUMENT ID TECN COMMENT0.58±0.17 OUR AVERAGE0.58±0.17 OUR AVERAGE0.58±0.17 OUR AVERAGE0.58±0.17 OUR AVERAGE0.67±0.31±0.08 FUJIKAWA 10A BELL e+ e− → �(4S)0.55±0.20±0.03 AUBERT 09I BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.40±0.23±0.03 AUBERT 08E BABR Repl. by AUBERT 09I0.33±0.35±0.08 CHAO 07 BELL Repl. by FUJIKAWA 10A0.35+0.30

−0.33±0.04 AUBERT 05Y BABR Repl. by AUBERT 08E0.32±0.61±0.13 CHEN 05B BELL Repl. by CHAO 070.48+0.38
−0.47±0.06 1 AUBERT,B 04M BABR Repl. by AUBERT 05Y1Based on a total signal yield of 122 ± 16 events.C

η′(958)K0S (B0 → η′(958)K0S )C
η′(958)K0S (B0 → η′(958)K0S )C
η′(958)K0S (B0 → η′(958)K0S )C
η′(958)K0S (B0 → η′(958)K0S )See updated measurements in C

η′K0VALUE DOCUMENT ID TECN COMMENT
−0.04±0.20 OUR AVERAGE−0.04±0.20 OUR AVERAGE−0.04±0.20 OUR AVERAGE−0.04±0.20 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.5.
−0.21±0.10±0.02 AUBERT 05M BABR e+ e− → �(4S)0.19±0.11±0.05 1 CHEN 05B BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.26±0.22±0.03 1 ABE 03C BELL Repl. by ABE 03H0.01±0.16±0.04 1 ABE 03H BELL Repl. by CHEN 05B0.10±0.22±0.04 AUBERT 03W BABR Repl. by AUBERT 05M
−0.13±0.32+0.06

−0.09 1 CHEN 02B BELL Repl. by ABE 03C1BELLE Collab. quotes A
η′(958)K0S whi
h is equal to −C

η′(958)K0S .S
η′(958)K0S (B0 → η′(958)K0S )S
η′(958)K0S (B0 → η′(958)K0S )S
η′(958)K0S (B0 → η′(958)K0S )S
η′(958)K0S (B0 → η′(958)K0S )See updated measurements in S

η′K0VALUE DOCUMENT ID TECN COMMENT0.43±0.17 OUR AVERAGE0.43±0.17 OUR AVERAGE0.43±0.17 OUR AVERAGE0.43±0.17 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.0.30±0.14±0.02 AUBERT 05M BABR e+ e− → �(4S)0.65±0.18±0.04 CHEN 05B BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.71±0.37+0.05

−0.06 ABE 03C BELL Repl. by ABE 03H0.43±0.27±0.05 ABE 03H BELL Repl. by CHEN 05B0.02±0.34±0.03 AUBERT 03W BABR Repl. by AUBERT 05M0.28±0.55+0.07
−0.08 CHEN 02B BELL Repl. by ABE 03CCη′K0 (B0 → η′K0)Cη′K0 (B0 → η′K0)Cη′K0 (B0 → η′K0)Cη′K0 (B0 → η′K0)VALUE DOCUMENT ID TECN COMMENT

−0.06±0.04 OUR AVERAGE−0.06±0.04 OUR AVERAGE−0.06±0.04 OUR AVERAGE−0.06±0.04 OUR AVERAGE
−0.03±0.05±0.04 1 SANTELJ 14 BELL e+ e− → �(4S)
−0.08±0.06±0.02 AUBERT 09I BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.16±0.07±0.03 2 AUBERT 07A BABR Repl. by AUBERT 09I0.01±0.07±0.05 1,2 CHEN 07 BELL Repl. by SANTELJ 141The paper reports A, whi
h is equal to −C.2The mixing-indu
ed CP violation is reported with a signi�
an
e of more than 5 standarddeviations in this b → s penguin dominated mode.Sη′K0 (B0 → η′K0)Sη′K0 (B0 → η′K0)Sη′K0 (B0 → η′K0)Sη′K0 (B0 → η′K0)VALUE DOCUMENT ID TECN COMMENT0.63±0.06 OUR AVERAGE0.63±0.06 OUR AVERAGE0.63±0.06 OUR AVERAGE0.63±0.06 OUR AVERAGE0.68±0.07±0.03 SANTELJ 14 BELL e+ e− → �(4S)0.57±0.08±0.02 AUBERT 09I BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.58±0.10±0.03 1 AUBERT 07A BABR Repl. by AUBERT 09I0.64±0.10±0.04 1 CHEN 07 BELL Repl. by SANTELJ 141The mixing-indu
ed CP violation is reported with a signi�
an
e of more than 5 standarddeviations in this b → s penguin dominated mode.C

ωK0S (B0 → ωK0S )C
ωK0S (B0 → ωK0S )C
ωK0S (B0 → ωK0S )C
ωK0S (B0 → ωK0S )VALUE DOCUMENT ID TECN COMMENT0.0 ±0.4 OUR AVERAGE0.0 ±0.4 OUR AVERAGE0.0 ±0.4 OUR AVERAGE0.0 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.0.0.36±0.19±0.05 1 CHOBANOVA 14 BELL e+ e− → �(4S)

−0.52+0.22
−0.20±0.03 AUBERT 09I BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.09±0.29±0.06 1 CHAO 07 BELL Repl. by CHOBANOVA 14
−0.55+0.28

−0.26±0.03 AUBERT,B 06E BABR Repl. by AUBERT 09I
−0.27±0.48±0.15 1 CHEN 05B BELL Repl. by CHAO 071Belle Collab. quotes A

ωK0S whi
h is equal to −C
ωK0S .



1274127412741274MesonParti
le ListingsB0S
ωK0S (B0 → ωK0S )S
ωK0S (B0 → ωK0S )S
ωK0S (B0 → ωK0S )S
ωK0S (B0 → ωK0S )VALUE DOCUMENT ID TECN COMMENT0.70±0.21 OUR AVERAGE0.70±0.21 OUR AVERAGE0.70±0.21 OUR AVERAGE0.70±0.21 OUR AVERAGE0.91±0.32±0.05 CHOBANOVA 14 BELL e+ e− → �(4S)0.55+0.26

−0.29±0.02 AUBERT 09I BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.11±0.46±0.07 CHAO 07 BELL Repl. by CHOBANOVA 140.51+0.35

−0.39±0.02 AUBERT,B 06E BABR Repl. by AUBERT 09I0.76±0.65+0.13
−0.16 CHEN 05B BELL Repl. by CHAO 07C (B0 → K0S π0π0)C (B0 → K0S π0π0)C (B0 → K0S π0π0)C (B0 → K0S π0π0)VALUE DOCUMENT ID TECN COMMENT0.23±0.52±0.130.23±0.52±0.130.23±0.52±0.130.23±0.52±0.13 AUBERT 07AQ BABR e+ e− → �(4S)S (B0 → K0S π0π0)S (B0 → K0S π0π0)S (B0 → K0S π0π0)S (B0 → K0S π0π0)VALUE DOCUMENT ID TECN COMMENT0.72±0.71±0.080.72±0.71±0.080.72±0.71±0.080.72±0.71±0.08 AUBERT 07AQ BABR e+ e− → �(4S)C

ρ0K0S (B0 → ρ0K0S )C
ρ0K0S (B0 → ρ0K0S )C
ρ0K0S (B0 → ρ0K0S )C
ρ0K0S (B0 → ρ0K0S )VALUE DOCUMENT ID TECN COMMENT

−0.04±0.20 OUR AVERAGE−0.04±0.20 OUR AVERAGE−0.04±0.20 OUR AVERAGE−0.04±0.20 OUR AVERAGE
−0.05±0.26±0.10 1 AUBERT 09AU BABR e+ e− → �(4S)
−0.03+0.24

−0.23±0.15 2,3 DALSENO 09 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.64±0.41±0.20 AUBERT 07F BABR Repl. by AUBERT 09AU1Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.2Quotes A

ρ0 (KS)0 whi
h is equal to −C
ρ0K0S .3Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two 
onsistentsolutions that may be preferred.S

ρ0K0S (B0 → ρ0K0S )S
ρ0K0S (B0 → ρ0K0S )S
ρ0K0S (B0 → ρ0K0S )S
ρ0K0S (B0 → ρ0K0S )VALUE DOCUMENT ID TECN COMMENT0.50+0.17

−0.21 OUR AVERAGE0.50+0.17
−0.21 OUR AVERAGE0.50+0.17
−0.21 OUR AVERAGE0.50+0.17
−0.21 OUR AVERAGE0.35+0.26
−0.31±0.07 1 AUBERT 09AU BABR e+ e− → �(4S)0.64+0.19
−0.25±0.13 2 DALSENO 09 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.20±0.52±0.24 AUBERT 07F BABR Repl. by AUBERT 09AU1Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.2Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two 
onsistentsolutions that may be preferred.Cf0(980)K0S (B0 → f0(980)K0S )Cf0(980)K0S (B0 → f0(980)K0S )Cf0(980)K0S (B0 → f0(980)K0S )Cf0(980)K0S (B0 → f0(980)K0S )VALUE DOCUMENT ID TECN COMMENT0.29±0.20 OUR AVERAGE0.29±0.20 OUR AVERAGE0.29±0.20 OUR AVERAGE0.29±0.20 OUR AVERAGE0.28±0.24±0.09 1 LEES 12O BABR e+ e− → �(4S)0.30±0.29±0.14 2,3 NAKAHAMA 10 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.08±0.19±0.05 4 AUBERT 09AU BABR Repl. by LEES 12O0.06±0.17±0.11 2,5 DALSENO 09 BELL Repl. by NAKAHAMA 10
−0.41±0.23±0.07 2 AUBERT 07AX BABR Repl. by AUBERT 09AU0.15±0.15±0.07 2 CHAO 07 BELL Repl. by DALSENO 090.39±0.27±0.09 2 CHEN 05B BELL Repl. by CHAO 071Uses Dalitz plot analysis of the B0 → K0S K+K− de
ay.2Quotes Af0(980)K0S whi
h is equal to −Cf0(980)K0S .3Uses Dalitz plot analysis of B0 → K0S K+K− de
ays and the �rst of four 
onsistentsolutions that may be preferred.4Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.5Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two 
onsistentsolutions that may be preferred.Sf0(980)K0S (B0 → f0(980)K0S )Sf0(980)K0S (B0 → f0(980)K0S )Sf0(980)K0S (B0 → f0(980)K0S )Sf0(980)K0S (B0 → f0(980)K0S )VALUE DOCUMENT ID TECN COMMENT
−0.50±0.16 OUR AVERAGE−0.50±0.16 OUR AVERAGE−0.50±0.16 OUR AVERAGE−0.50±0.16 OUR AVERAGE
−0.55±0.18±0.12 1 LEES 12O BABR e+ e− → �(4S)
−0.43+0.22

−0.20±0.14 2 DALSENO 09 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.96+0.21
−0.04±0.04 3 AUBERT 09AU BABR Repl. by LEES 12O

−0.25±0.26±0.10 4 AUBERT 07AX BABR Repl. by AUBERT 09AU0.18±0.23±0.11 CHAO 07 BELL Repl. by DALSENO 090.47±0.41±0.08 CHEN 05B BELL Repl. by CHAO 071Uses Dalitz plot analysis of the B0 → K0S K+K− de
ay.2Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two 
onsistentsolutions that may be preferred.3Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.4Reports βeff . We quote S obtained from epaps: E-PRLTAO-99-076741.

Sf2(1270)K0S (B0 → f2(1270)K0S )Sf2(1270)K0S (B0 → f2(1270)K0S )Sf2(1270)K0S (B0 → f2(1270)K0S )Sf2(1270)K0S (B0 → f2(1270)K0S )VALUE DOCUMENT ID TECN COMMENT
−0.48±0.52±0.12−0.48±0.52±0.12−0.48±0.52±0.12−0.48±0.52±0.12 1 AUBERT 09AU BABR e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.Cf2(1270)K0S (B0 → f2(1270)K0S )Cf2(1270)K0S (B0 → f2(1270)K0S )Cf2(1270)K0S (B0 → f2(1270)K0S )Cf2(1270)K0S (B0 → f2(1270)K0S )VALUE DOCUMENT ID TECN COMMENT0.28+0.35

−0.40±0.110.28+0.35
−0.40±0.110.28+0.35
−0.40±0.110.28+0.35
−0.40±0.11 1 AUBERT 09AU BABR e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.Sfx (1300)K0S (B0 → fx (1300)K0S )Sfx (1300)K0S (B0 → fx (1300)K0S )Sfx (1300)K0S (B0 → fx (1300)K0S )Sfx (1300)K0S (B0 → fx (1300)K0S )VALUE DOCUMENT ID TECN COMMENT

−0.20±0.52±0.10−0.20±0.52±0.10−0.20±0.52±0.10−0.20±0.52±0.10 1 AUBERT 09AU BABR e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.Cfx (1300)K0S (B0 → fx (1300)K0S)Cfx (1300)K0S (B0 → fx (1300)K0S)Cfx (1300)K0S (B0 → fx (1300)K0S)Cfx (1300)K0S (B0 → fx (1300)K0S)VALUE DOCUMENT ID TECN COMMENT0.13+0.33
−0.35±0.100.13+0.33
−0.35±0.100.13+0.33
−0.35±0.100.13+0.33
−0.35±0.10 1 AUBERT 09AU BABR e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.SK0π+ π− (B0 → K0π+π− nonresonant)SK0π+ π− (B0 → K0π+π− nonresonant)SK0π+ π− (B0 → K0π+π− nonresonant)SK0π+ π− (B0 → K0π+π− nonresonant)VALUE DOCUMENT ID TECN COMMENT

−0.01±0.31±0.10−0.01±0.31±0.10−0.01±0.31±0.10−0.01±0.31±0.10 1 AUBERT 09AU BABR e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.CK0π+π− (B0 → K0π+π− nonresonant)CK0π+π− (B0 → K0π+π− nonresonant)CK0π+π− (B0 → K0π+π− nonresonant)CK0π+π− (B0 → K0π+π− nonresonant)VALUE DOCUMENT ID TECN COMMENT0.01±0.25±0.080.01±0.25±0.080.01±0.25±0.080.01±0.25±0.08 1 AUBERT 09AU BABR e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.CK0S K0S (B0 → K0S K0S )CK0S K0S (B0 → K0S K0S )CK0S K0S (B0 → K0S K0S )CK0S K0S (B0 → K0S K0S )VALUE DOCUMENT ID TECN COMMENT0.0 ±0.4 OUR AVERAGE0.0 ±0.4 OUR AVERAGE0.0 ±0.4 OUR AVERAGE0.0 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.0.38±0.38±0.05 1 NAKAHAMA 08 BELL e+ e− → �(4S)
−0.40±0.41±0.06 AUBERT,BE 06C BABR e+ e− → �(4S)1Reports AK0S K0S whi
h equals to −CK0S K0S .SK0S K0S (B0 → K0S K0S )SK0S K0S (B0 → K0S K0S )SK0S K0S (B0 → K0S K0S )SK0S K0S (B0 → K0S K0S )VALUE DOCUMENT ID TECN COMMENT
−0.8 ±0.5 OUR AVERAGE−0.8 ±0.5 OUR AVERAGE−0.8 ±0.5 OUR AVERAGE−0.8 ±0.5 OUR AVERAGE
−0.38+0.69

−0.77±0.09 NAKAHAMA 08 BELL e+ e− → �(4S)
−1.28+0.80

−0.73+0.11
−0.16 AUBERT,BE 06C BABR e+ e− → �(4S)CK+K−K0S (B0 → K+K−K0S nonresonant)CK+K−K0S (B0 → K+K−K0S nonresonant)CK+K−K0S (B0 → K+K−K0S nonresonant)CK+K−K0S (B0 → K+K−K0S nonresonant)VALUE DOCUMENT ID TECN COMMENT0.06 ±0.08 OUR AVERAGE0.06 ±0.08 OUR AVERAGE0.06 ±0.08 OUR AVERAGE0.06 ±0.08 OUR AVERAGE0.02 ±0.09 ±0.03 1,2 LEES 12O BABR e+ e− → �(4S)0.14 ±0.11 ±0.09 3,4 NAKAHAMA 10 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.054±0.102±0.060 3,5 AUBERT 07AX BABR Repl. by LEES 12O0.09 ±0.10 ±0.05 3,5 CHAO 07 BELL Repl. by NAKAHAMA 100.10 ±0.14 ±0.04 5 AUBERT 05T BABR Repl. by AUBERT 07AX0.09 ±0.12 ±0.07 3 CHEN 05B BELL Repl. by CHAO 07
−0.10 ±0.19 ±0.10 5 AUBERT,B 04V BABR Repl. by AUBERT 05T0.40 ±0.33 +0.28

−0.10 3 ABE 03C BELL Repl. by ABE 03H0.17 ±0.16 ±0.04 3,5 ABE 03H BELL Repl. by CHEN 05B1Uses Dalitz plot analysis of the B0 → K0S K+K− de
ay.2This measurement is performed on all the isobar 
omponents, ex
luding φK0S andf0(980)K0S .3Quotes AK+K−K0S whi
h is equal to −CK+K−K0S .4Uses Dalitz plot analysis of B0 → K0S K+K− de
ays and the �rst of four 
onsistentsolutions that may be preferred.5 Ex
ludes the events from B0 → φK0S de
ay. The results are derived from a 
ombinedsample of K+K−K0S and K+K−K0L de
ays.



1275127512751275See key on page 601 MesonParti
le ListingsB0SK+K−K0S (B0 → K+K−K0S nonresonant)SK+K−K0S (B0 → K+K−K0S nonresonant)SK+K−K0S (B0 → K+K−K0S nonresonant)SK+K−K0S (B0 → K+K−K0S nonresonant)VALUE DOCUMENT ID TECN COMMENT
−0.66 ±0.11 OUR AVERAGE−0.66 ±0.11 OUR AVERAGE−0.66 ±0.11 OUR AVERAGE−0.66 ±0.11 OUR AVERAGE
−0.65 ±0.12 ±0.03 1,2 LEES 12O BABR e+ e− → �(4S)
−0.68 ±0.15 +0.21

−0.13 3 CHAO 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.764±0.111+0.071
−0.040 3,4 AUBERT 07AX BABR Repl. by LEES 12O

−0.42 ±0.17 ±0.03 3,5 AUBERT 05T BABR Repl. by AUBERT 07AX
−0.49 ±0.18 ±0.04 CHEN 05B BELL Repl. by CHAO 07
−0.56 ±0.25 ±0.04 3,6 AUBERT,B 04V BABR Repl. by AUBERT 05T
−0.49 ±0.43 ±0.11 ABE 03C BELL Repl. by ABE 03H
−0.51 ±0.26 ±0.05 3,7 ABE 03H BELL Repl. by CHEN 05B1Uses Dalitz plot analysis of the B0 → K0S K+K− de
ay.2This measurement is performed on all the isobar 
omponents, ex
luding φK0S andf0(980)K0S . Note that the nonresonant 
omponent is not a CP eigenstate.3 Ex
ludes events from B0 → φK0S de
ay. The results are derived from a 
ombinedsample of K+K−K0S and K+K−K0L de
ays.4Reports βeff . We quote S obtained from epaps: E-PRLTAO-99-076741.5The measured CP-even �nal states fra
tion is 0.89 ± 0.08 ± 0.06.6The measured CP-even �nal states fra
tion is 0.98 ± 0.15 ± 0.04.7The measured CP-even �nal states fra
tion is 1.03 ± 0.15 ± 0.05.CK+K−K0S (B0 → K+K−K0S in
lusive)CK+K−K0S (B0 → K+K−K0S in
lusive)CK+K−K0S (B0 → K+K−K0S in
lusive)CK+K−K0S (B0 → K+K−K0S in
lusive)VALUE DOCUMENT ID TECN COMMENT0.015±0.077±0.0530.015±0.077±0.0530.015±0.077±0.0530.015±0.077±0.053 1,2 AUBERT 07AX BABR e+ e− → �(4S)1Measured using full Dalitz plot �t in
luding φ 
omponent.2The results are derived from a 
ombined sample of K+K−K0S and K+K−K0L de
ays.SK+K−K0S (B0 → K+K−K0S in
lusive)SK+K−K0S (B0 → K+K−K0S in
lusive)SK+K−K0S (B0 → K+K−K0S in
lusive)SK+K−K0S (B0 → K+K−K0S in
lusive)VALUE DOCUMENT ID TECN COMMENT
−0.647±0.116±0.040−0.647±0.116±0.040−0.647±0.116±0.040−0.647±0.116±0.040 1 AUBERT 07AX BABR e+ e− → �(4S)1Measured using full Dalitz plot �t in
luding φ 
omponent.C

φK0S (B0 → φK0S )C
φK0S (B0 → φK0S )C
φK0S (B0 → φK0S )C
φK0S (B0 → φK0S )VALUE DOCUMENT ID TECN COMMENT0.01±0.14 OUR AVERAGE0.01±0.14 OUR AVERAGE0.01±0.14 OUR AVERAGE0.01±0.14 OUR AVERAGE0.05±0.18±0.05 1 LEES 12O BABR e+ e− → �(4S)

−0.04±0.20±0.10 2,3 NAKAHAMA 10 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.08±0.18±0.04 2,4 AUBERT 07AX BABR Repl. by LEES 12O
−0.07±0.15±0.05 2,4 CHEN 07 BELL Repl. by NAKAHAMA 100.00±0.23±0.05 4 AUBERT 05T BABR Repl. by AUBERT 07AX
−0.08±0.22±0.09 2,4 CHEN 05B BELL Repl. by CHEN 070.01±0.33±0.10 4 AUBERT,B 04G BABR Repl. by AUBERT 05T0.56±0.41±0.16 2 ABE 03C BELL Repl. by ABE 03H0.15±0.29±0.07 2 ABE 03H BELL Repl. by CHEN 05B1Uses Dalitz plot analysis of the B0 → K0S K+K− de
ay.2Quotes A

φK0S whi
h is equal to −C
φK0S .3Uses Dalitz plot analysis of B0 → K0S K+K− de
ays and the �rst of four 
onsistentsolutions that may be preferred.4Result 
ombines B-meson �nal states φK0S and φK0L by assuming S

φK0S = −S
φK0LS

φK0S (B0 → φK0S )S
φK0S (B0 → φK0S )S
φK0S (B0 → φK0S )S
φK0S (B0 → φK0S )VALUE DOCUMENT ID TECN COMMENT0.59±0.14 OUR AVERAGE0.59±0.14 OUR AVERAGE0.59±0.14 OUR AVERAGE0.59±0.14 OUR AVERAGE0.66±0.17±0.07 1 LEES 12O BABR e+ e− → �(4S)0.50±0.21±0.06 2 CHEN 07 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.21±0.26±0.11 2,3 AUBERT 07AX BABR Repl. by LEES 12O0.50±0.25+0.07
−0.04 2 AUBERT 05T BABR Repl. by AUBERT 07AX0.08±0.33±0.09 2 CHEN 05B BELL Repl. by CHEN 070.47±0.34+0.08
−0.06 2 AUBERT,B 04G BABR Repl. by AUBERT 05T

−0.73±0.64±0.22 ABE 03C BELL Repl. by ABE 03H
−0.96±0.50+0.09

−0.11 ABE 03H BELL Repl. by CHEN 05B1Uses Dalitz plot analysis of the B0 → K0S K+K− de
ay.2Result 
ombines B-meson �nal states φK0S and φK0L by assuming S
φK0S = −S

φK0L3Reports βeff . We quote S obtained from epaps: E-PRLTAO-99-076741.CKS KS KS (B0 → KS KS KS )CKS KS KS (B0 → KS KS KS )CKS KS KS (B0 → KS KS KS )CKS KS KS (B0 → KS KS KS )VALUE DOCUMENT ID TECN COMMENT
−0.23±0.14 OUR AVERAGE−0.23±0.14 OUR AVERAGE−0.23±0.14 OUR AVERAGE−0.23±0.14 OUR AVERAGE
−0.17±0.18±0.04 LEES 12I BABR e+ e− → �(4S)
−0.31±0.20±0.07 1 CHEN 07 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.02±0.21±0.05 AUBERT 07AT BABR Repl. by LEES 12I
−0.34+0.28

−0.25±0.05 AUBERT,B 05 BABR Repl. by AUBERT 07AT
−0.54±0.34±0.09 1 SUMISAWA 05 BELL Repl. by CHEN 071Belle Collab. quotes AKS KS KS whi
h is equal to −CKS KS KS .SKS KS KS (B0 → KS KS KS )SKS KS KS (B0 → KS KS KS )SKS KS KS (B0 → KS KS KS )SKS KS KS (B0 → KS KS KS )VALUE DOCUMENT ID TECN COMMENT
−0.5 ±0.6 OUR AVERAGE−0.5 ±0.6 OUR AVERAGE−0.5 ±0.6 OUR AVERAGE−0.5 ±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.0.
−0.94+0.24

−0.21±0.06 LEES 12I BABR e+ e− → �(4S)0.30±0.32±0.08 CHEN 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.71±0.24±0.04 AUBERT 07AT BABR Repl. by LEES 12I
−0.71+0.38

−0.32±0.04 AUBERT,B 05 BABR Repl. by AUBERT 07AT1.26±0.68±0.20 SUMISAWA 05 BELL Repl. by CHEN 07.CK0S π0 γ
(B0 → K0S π0 γ)CK0S π0 γ
(B0 → K0S π0 γ)CK0S π0 γ
(B0 → K0S π0 γ)CK0S π0 γ
(B0 → K0S π0 γ)VALUE DOCUMENT ID TECN COMMENT0.36±0.33±0.040.36±0.33±0.040.36±0.33±0.040.36±0.33±0.04 1 AUBERT 08BA BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.20±0.20±0.06 2,3 USHIRODA 06 BELL e+ e− → �(4S)
−1.0 ±0.5 ±0.2 1 AUBERT,B 05P BABR Repl. by AUBERT 08BA
−0.03±0.34±0.11 3 USHIRODA 05 BELL Repl. by USHIRODA 061Requires 1.1 < MK0S π0 < 1.8 GeV/
2.2Requires MK0S π0 < 1.8 GeV/
2.3Reports AK0S π0 γ

, whi
h is −CK0S π0 γ
.SK0S π0 γ

(B0 → K0S π0 γ)SK0S π0 γ
(B0 → K0S π0 γ)SK0S π0 γ
(B0 → K0S π0 γ)SK0S π0 γ
(B0 → K0S π0 γ)VALUE DOCUMENT ID TECN COMMENT

−0.78±0.59±0.09−0.78±0.59±0.09−0.78±0.59±0.09−0.78±0.59±0.09 1 AUBERT 08BA BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.10±0.31±0.07 2 USHIRODA 06 BELL e+ e− → �(4S)0.9 ±1.0 ±0.2 1 AUBERT,B 05P BABR Repl. by AUBERT 08BA
−0.58+0.46

−0.38±0.11 USHIRODA 05 BELL Repl. by USHIRODA 061Requires 1.1 < MK0S π0 < 1.8 GeV/
2.2Requires MK0S π0 < 1.8 GeV/
2.CK∗(892)0 γ (B0 → K∗(892)0 γ)CK∗(892)0 γ (B0 → K∗(892)0 γ)CK∗(892)0 γ (B0 → K∗(892)0 γ)CK∗(892)0 γ (B0 → K∗(892)0 γ)VALUE DOCUMENT ID TECN COMMENT
−0.04±0.16 OUR AVERAGE−0.04±0.16 OUR AVERAGE−0.04±0.16 OUR AVERAGE−0.04±0.16 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.
−0.14±0.16±0.03 1 AUBERT 08BA BABR e+ e− → �(4S)0.20±0.24±0.05 1,2 USHIRODA 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.40±0.23±0.03 AUBERT,B 05P BABR Repl. by AUBERT 08BA
−0.57±0.32±0.09 3 AUBERT,B 04Z BABR Repl. by AUBERT,B 05P1Requires 0.8 < MK0S π0 < 1.0 GeV/
2.2Reports value of A whi
h is equal to −C.3Based on a total signal of 105 ± 14 events with K∗(892)0 → K0S π0 only.SK∗(892)0 γ (B0 → K∗(892)0 γ)SK∗(892)0 γ (B0 → K∗(892)0 γ)SK∗(892)0 γ (B0 → K∗(892)0 γ)SK∗(892)0 γ (B0 → K∗(892)0 γ)VALUE DOCUMENT ID TECN COMMENT
−0.15±0.22 OUR AVERAGE−0.15±0.22 OUR AVERAGE−0.15±0.22 OUR AVERAGE−0.15±0.22 OUR AVERAGE
−0.03±0.29±0.03 1 AUBERT 08BA BABR e+ e− → �(4S)
−0.32+0.36

−0.33±0.05 1 USHIRODA 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.21±0.40±0.05 AUBERT,B 05P BABR Repl. by AUBERT 08BA
−0.79+0.63

−0.50±0.10 2 USHIRODA 05 BELL Repl. by USHIRODA 060.25±0.63±0.14 3 AUBERT,B 04Z BABR Repl. by AUBERT,B 05P1Requires 0.8 < MK0S π0 < 1.0 GeV/
2.2Assumes C(B0 → K∗(892)0 γ) = 0.3Based on a total signal of 105 ± 14 events with K∗(892)0 → K0S π0 only.CηK0 γ (B0 → ηK0 γ)CηK0 γ (B0 → ηK0 γ)CηK0 γ (B0 → ηK0 γ)CηK0 γ (B0 → ηK0 γ)VALUE DOCUMENT ID TECN COMMENT
−0.32+0.40

−0.39±0.07−0.32+0.40
−0.39±0.07−0.32+0.40
−0.39±0.07−0.32+0.40
−0.39±0.07 1 AUBERT 09 BABR e+ e− → �(4S)1mηK < 3.25 GeV/
2.SηK0 γ (B0 → ηK0 γ)SηK0 γ (B0 → ηK0 γ)SηK0 γ (B0 → ηK0 γ)SηK0 γ (B0 → ηK0 γ)VALUE DOCUMENT ID TECN COMMENT

−0.18+0.49
−0.46±0.12−0.18+0.49
−0.46±0.12−0.18+0.49
−0.46±0.12−0.18+0.49
−0.46±0.12 1 AUBERT 09 BABR e+ e− → �(4S)1mηK < 3.25 GeV/
2.



1276127612761276MesonParti
le ListingsB0CK0φγ (B0 → K0φγ)CK0φγ (B0 → K0φγ)CK0φγ (B0 → K0φγ)CK0φγ (B0 → K0φγ)VALUE DOCUMENT ID TECN COMMENT
−0.35±0.58+0.10

−0.23−0.35±0.58+0.10
−0.23−0.35±0.58+0.10
−0.23−0.35±0.58+0.10
−0.23 1 SAHOO 11A BELL e+ e− → �(4S)1Reports value of A, whi
h is equal to −C.SK0φγ (B0 → K0φγ)SK0φγ (B0 → K0φγ)SK0φγ (B0 → K0φγ)SK0φγ (B0 → K0φγ)VALUE DOCUMENT ID TECN COMMENT0.74+0.72

−1.05+0.10
−0.240.74+0.72

−1.05+0.10
−0.240.74+0.72

−1.05+0.10
−0.240.74+0.72

−1.05+0.10
−0.24 SAHOO 11A BELL e+ e− → �(4S)C(B0 → K0S ρ0 γ)C(B0 → K0S ρ0 γ)C(B0 → K0S ρ0 γ)C(B0 → K0S ρ0 γ)VALUE DOCUMENT ID TECN COMMENT

−0.05±0.18±0.06−0.05±0.18±0.06−0.05±0.18±0.06−0.05±0.18±0.06 1,2 LI 08F BELL e+ e− → �(4S)1Requires MK0S π+π− < 1.8 GeV/
2 and 0.6 < M
π+π− < 0.9 GeV/
2 .2Reports value of Ae� whi
h is equal to −C, and in
ludes the non-resonant π+π−
ontribution in the ρ0 region.S(B0 → K0S ρ0 γ)S(B0 → K0S ρ0 γ)S(B0 → K0S ρ0 γ)S(B0 → K0S ρ0 γ)VALUE DOCUMENT ID TECN COMMENT0.11±0.33+0.05

−0.090.11±0.33+0.05
−0.090.11±0.33+0.05
−0.090.11±0.33+0.05
−0.09 1 LI 08F BELL e+ e− → �(4S)1Requires MK0S π+π− < 1.8 GeV/
2.C (B0 → ρ0γ)C (B0 → ρ0γ)C (B0 → ρ0γ)C (B0 → ρ0γ)VALUE DOCUMENT ID TECN COMMENT0.44±0.49±0.140.44±0.49±0.140.44±0.49±0.140.44±0.49±0.14 1 USHIRODA 08 BELL e+ e− → �(4S)1Reports value of A whi
h is equal to −C.S (B0 → ρ0γ)S (B0 → ρ0γ)S (B0 → ρ0γ)S (B0 → ρ0γ)VALUE DOCUMENT ID TECN COMMENT

−0.83±0.65±0.18−0.83±0.65±0.18−0.83±0.65±0.18−0.83±0.65±0.18 USHIRODA 08 BELL e+ e− → �(4S)Cππ (B0 → π+π−)Cππ (B0 → π+π−)Cππ (B0 → π+π−)Cππ (B0 → π+π−)Cππ is de�ned as (1−∣

∣λ
∣

∣

2)/(1+∣

∣λ
∣

∣

2), where the quantity λ=q/p Af /Af is a phase
onvention independent observable quantity for the �nal state f . For details, see thereview on \CP Violation" in the Reviews se
tion.VALUE DOCUMENT ID TECN COMMENT
−0.31±0.05 OUR AVERAGE−0.31±0.05 OUR AVERAGE−0.31±0.05 OUR AVERAGE−0.31±0.05 OUR AVERAGE
−0.38±0.15±0.02 AAIJ 13BO LHCB pp at 7 TeV
−0.33±0.06±0.03 1 DALSENO 13 BELL e+ e− → �(4S)
−0.25±0.08±0.02 LEES 13D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.21±0.09±0.02 AUBERT 07AF BABR Repl. by LEES 13D
−0.55±0.08±0.05 1 ISHINO 07 BELL Repl. by DALSENO 13
−0.56±0.12±0.06 1 ABE 05D BELL Repl. by ISHINO 07
−0.09±0.15±0.04 AUBERT,BE 05 BABR Repl. by AUBERT 07AF
−0.58±0.15±0.07 1 ABE 04E BELL Repl. by ABE 05D
−0.77±0.27±0.08 1 ABE 03G BELL Repl. by ABE 04E.
−0.94+0.31

−0.25±0.09 1 ABE 02M BELL Repl. by ABE 03G
−0.25+0.45

−0.47±0.14 2 AUBERT 02D BABR Repl. by AUBERT 02Q
−0.30±0.25±0.04 3 AUBERT 02Q BABR Repl. by AUBERT,BE 051Paper reports Aππ whi
h equals to −Cππ .2 Corresponds to 90% 
on�den
e range −1.0 <Cππ < 0.47.3Corresponds to 90% 
on�den
e range −0.72 <Cππ < 0.12.Sππ (B0 → π+π−)Sππ (B0 → π+π−)Sππ (B0 → π+π−)Sππ (B0 → π+π−)Sππ = 2Imλ/(1+∣

∣λ
∣

∣
2), see the note in the Cππ datablo
k above.VALUE DOCUMENT ID TECN COMMENT

−0.67±0.06 OUR AVERAGE−0.67±0.06 OUR AVERAGE−0.67±0.06 OUR AVERAGE−0.67±0.06 OUR AVERAGE
−0.71±0.13±0.02 AAIJ 13BO LHCB pp at 7 TeV
−0.64±0.08±0.03 1 DALSENO 13 BELL e+ e− → �(4S)
−0.68±0.10±0.03 LEES 13D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.60±0.11±0.03 AUBERT 07AF BABR Repl. by LEES 13D
−0.61±0.10±0.04 ISHINO 07 BELL Repl. by DALSENO 13
−0.67±0.16±0.06 2 ABE 05D BELL Repl. by ISHINO 07
−0.30±0.17±0.03 AUBERT,BE 05 BABR Repl. by AUBERT 07AF
−1.00±0.21±0.07 3 ABE 04E BELL Repl. by ABE 05D
−1.23±0.41+0.08

−0.07 ABE 03G BELL Repl. by ABE 04E.
−1.21+0.38

−0.27+0.16
−0.13 ABE 02M BELL Repl. by ABE 03G0.03+0.52

−0.56±0.11 4 AUBERT 02D BABR Repl. by AUBERT 02Q0.02±0.34±0.05 5 AUBERT 02Q BABR Repl. by AUBERT,BE 051An isospin analysis using other BELLE measurements, disfavors the region of 23.8◦ <
φ2 < 66.8◦ at 68% CL.2Rule out the CP-
onserving 
ase, Cππ = Sππ = 0, at the 5.4 sigma level.3Rule out the CP-
onserving 
ase, Cππ = Sππ = 0, at the 5.2 sigma level.4Corresponds to 90% 
on�den
e range −0.89 <Sππ < 0.85.5Corresponds to 90% 
on�den
e range −0.54 <Sππ < 0.58.

Cπ0π0(B0 → π0π0)Cπ0π0(B0 → π0π0)Cπ0π0(B0 → π0π0)Cπ0π0(B0 → π0π0)VALUE DOCUMENT ID TECN COMMENT
−0.43±0.24 OUR AVERAGE−0.43±0.24 OUR AVERAGE−0.43±0.24 OUR AVERAGE−0.43±0.24 OUR AVERAGE
−0.43±0.26±0.05 LEES 13D BABR e+ e− → �(4S)
−0.44+0.52

−0.53±0.17 1 CHAO 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.49±0.35±0.05 AUBERT 07BC BABR Repl. by LEES 13D
−0.12±0.56±0.06 2 AUBERT 05L BABR Repl. by AUBERT 07BC1BELLE Collab. quotes A

π0π0 whi
h is equal to −C
π0π0 .2 Corresponds to a 90% CL interval of −0.88 < ACP < 0.64.Cρπ (B0 → ρ+π−)Cρπ (B0 → ρ+π−)Cρπ (B0 → ρ+π−)Cρπ (B0 → ρ+π−)VALUE DOCUMENT ID TECN COMMENT

−0.03 ±0.07 OUR AVERAGE−0.03 ±0.07 OUR AVERAGE−0.03 ±0.07 OUR AVERAGE−0.03 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.016±0.059±0.036 1 LEES 13J BABR e+ e− → �(4S)
−0.13 ±0.09 ±0.05 1 KUSAKA 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.15 ±0.09 ±0.05 AUBERT 07AA BABR Repl. by LEES 13J0.25 ±0.17 +0.02

−0.06 WANG 05 BELL Repl. by KUSAKA 070.36 ±0.18 ±0.04 AUBERT 03T BABR Repl. by AUBERT 07AA1Uses time-dependent Dalitz plot analysis of B0 → π+π−π0 de
ays.Sρπ (B0 → ρ+π−)Sρπ (B0 → ρ+π−)Sρπ (B0 → ρ+π−)Sρπ (B0 → ρ+π−)VALUE DOCUMENT ID TECN COMMENT0.05 ±0.07 OUR AVERAGE0.05 ±0.07 OUR AVERAGE0.05 ±0.07 OUR AVERAGE0.05 ±0.07 OUR AVERAGE0.053±0.081±0.034 1 LEES 13J BABR e+ e− → �(4S)0.06 ±0.13 ±0.05 1 KUSAKA 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.03 ±0.11 ±0.04 AUBERT 07AA BABR Repl. by LEES 13J
−0.28 ±0.23 +0.10

−0.08 WANG 05 BELL Repl. by KUSAKA 070.19 ±0.24 ±0.03 AUBERT 03T BABR Repl. by AUBERT 07AA1Uses time-dependent Dalitz plot analysis of B0 → π+π−π0 de
ays.�Cρπ (B0 → ρ+π−)�Cρπ (B0 → ρ+π−)�Cρπ (B0 → ρ+π−)�Cρπ (B0 → ρ+π−)�Cρπ des
ribes the asymmetry between the rates �(B0 → ρ+π−) + �(B0 →
ρ−π+) and �(B0 → ρ−π+) + �(B0 → ρ+π−).VALUE DOCUMENT ID TECN COMMENT0.27 ±0.06 OUR AVERAGE0.27 ±0.06 OUR AVERAGE0.27 ±0.06 OUR AVERAGE0.27 ±0.06 OUR AVERAGE0.234±0.061±0.048 1 LEES 13J BABR e+ e− → �(4S)0.36 ±0.10 ±0.05 1 KUSAKA 07 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.39 ±0.09 ±0.09 AUBERT 07AA BABR Repl. by LEES 13J0.38 ±0.18 +0.02
−0.04 WANG 05 BELL Repl. by KUSAKA 070.28 +0.18

−0.19 ±0.04 AUBERT 03T BABR Repl. by AUBERT 07AA1Uses time-dependent Dalitz plot analysis of B0 → π+π−π0 de
ays.�Sρπ (B0 → ρ+π−)�Sρπ (B0 → ρ+π−)�Sρπ (B0 → ρ+π−)�Sρπ (B0 → ρ+π−)�Sρπ is related to the strong phase di�eren
e between the amplitudes 
ontributingto B0 → ρ+π−.VALUE DOCUMENT ID TECN COMMENT0.01 ±0.08 OUR AVERAGE0.01 ±0.08 OUR AVERAGE0.01 ±0.08 OUR AVERAGE0.01 ±0.08 OUR AVERAGE0.054±0.082±0.039 1 LEES 13J BABR e+ e− → �(4S)
−0.08 ±0.13 ±0.05 1 KUSAKA 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.01 ±0.14 ±0.06 AUBERT 07AA BABR Repl. by LEES 13J
−0.30 ±0.24 ±0.09 WANG 05 BELL Repl. by KUSAKA 070.15 ±0.25 ±0.03 AUBERT 03T BABR Repl. by AUBERT 07AA1Uses time-dependent Dalitz plot analysis of B0 → π+π−π0 de
ays.Cρ0π0 (B0 → ρ0π0)Cρ0π0 (B0 → ρ0π0)Cρ0π0 (B0 → ρ0π0)Cρ0π0 (B0 → ρ0π0)VALUE DOCUMENT ID TECN COMMENT0.27±0.24 OUR AVERAGE0.27±0.24 OUR AVERAGE0.27±0.24 OUR AVERAGE0.27±0.24 OUR AVERAGE0.19±0.23±0.15 1 LEES 13J BABR e+ e− → �(4S)0.49±0.36±0.28 1,2 KUSAKA 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.10±0.40±0.53 AUBERT 07AA BABR Repl. by LEES 13J0.53+0.67

−0.84+0.10
−0.15 2 DRAGIC 06 BELL Repl. by KUSAKA 071Uses time-dependent Dalitz plot analysis of B0 → π+π−π0 de
ays.2Quotes A
ρ0π0 whi
h is equal to −C

ρ0π0 .Sρ0π0 (B0 → ρ0π0)Sρ0π0 (B0 → ρ0π0)Sρ0π0 (B0 → ρ0π0)Sρ0π0 (B0 → ρ0π0)VALUE DOCUMENT ID TECN COMMENT
−0.23±0.34 OUR AVERAGE−0.23±0.34 OUR AVERAGE−0.23±0.34 OUR AVERAGE−0.23±0.34 OUR AVERAGE
−0.37±0.34±0.20 1 LEES 13J BABR e+ e− → �(4S)0.17±0.57±0.35 1 KUSAKA 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.04±0.44±0.18 AUBERT 07AA BABR Repl. by LEES 13J1Uses time-dependent Dalitz plot analysis of B0 → π+π−π0 de
ays.



1277127712771277See key on page 601 MesonParti
le ListingsB0Ca1π (B0 → a1(1260)+π−)Ca1π (B0 → a1(1260)+π−)Ca1π (B0 → a1(1260)+π−)Ca1π (B0 → a1(1260)+π−)VALUE DOCUMENT ID TECN COMMENT
−0.05±0.11 OUR AVERAGE−0.05±0.11 OUR AVERAGE−0.05±0.11 OUR AVERAGE−0.05±0.11 OUR AVERAGE
−0.01±0.11±0.09 DALSENO 12 BELL e+ e− → �(4S)
−0.10±0.15±0.09 AUBERT 07O BABR e+ e− → �(4S)Sa1π (B0 → a1(1260)+π−)Sa1π (B0 → a1(1260)+π−)Sa1π (B0 → a1(1260)+π−)Sa1π (B0 → a1(1260)+π−)VALUE DOCUMENT ID TECN COMMENT
−0.2 ±0.4 OUR AVERAGE−0.2 ±0.4 OUR AVERAGE−0.2 ±0.4 OUR AVERAGE−0.2 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.2.
−0.51±0.14±0.08 DALSENO 12 BELL e+ e− → �(4S)0.37±0.21±0.07 AUBERT 07O BABR e+ e− → �(4S)�Ca1π (B0 → a1(1260)+π−)�Ca1π (B0 → a1(1260)+π−)�Ca1π (B0 → a1(1260)+π−)�Ca1π (B0 → a1(1260)+π−)�Ca1π des
ribes the asymmetry between the rates �(B0 → a+1 π−) + �(B0 →a−1 π+) and �(B0 → a−1 π+) + �(B0 → a+1 π−).VALUE DOCUMENT ID TECN COMMENT0.43±0.14 OUR AVERAGE0.43±0.14 OUR AVERAGE0.43±0.14 OUR AVERAGE0.43±0.14 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.54±0.11±0.07 DALSENO 12 BELL e+ e− → �(4S)0.26±0.15±0.07 AUBERT 07O BABR e+ e− → �(4S)�Sa1π (B0 → a1(1260)+π−)�Sa1π (B0 → a1(1260)+π−)�Sa1π (B0 → a1(1260)+π−)�Sa1π (B0 → a1(1260)+π−)�Sa1π is related to the strong phase di�eren
e between the amplitudes 
ontributingto B0 → a1π de
ays.VALUE DOCUMENT ID TECN COMMENT
−0.11±0.12 OUR AVERAGE−0.11±0.12 OUR AVERAGE−0.11±0.12 OUR AVERAGE−0.11±0.12 OUR AVERAGE
−0.09±0.14±0.06 DALSENO 12 BELL e+ e− → �(4S)
−0.14±0.21±0.06 AUBERT 07O BABR e+ e− → �(4S)C (B0 → b−1 K+)C (B0 → b−1 K+)C (B0 → b−1 K+)C (B0 → b−1 K+)VALUE DOCUMENT ID TECN COMMENT
−0.22±0.23±0.05−0.22±0.23±0.05−0.22±0.23±0.05−0.22±0.23±0.05 AUBERT 07BI BABR e+ e− → �(4S)�C (B0 → b−1 π+)�C (B0 → b−1 π+)�C (B0 → b−1 π+)�C (B0 → b−1 π+)VALUE DOCUMENT ID TECN COMMENT
−1.04±0.23±0.08−1.04±0.23±0.08−1.04±0.23±0.08−1.04±0.23±0.08 AUBERT 07BI BABR e+ e− → �(4S)Cρ0ρ0 (B0 → ρ0ρ0)Cρ0ρ0 (B0 → ρ0ρ0)Cρ0ρ0 (B0 → ρ0ρ0)Cρ0ρ0 (B0 → ρ0ρ0)VALUE DOCUMENT ID TECN COMMENT0.2±0.8±0.30.2±0.8±0.30.2±0.8±0.30.2±0.8±0.3 AUBERT 08BB BABR e+ e− → �(4S)Sρ0ρ0 (B0 → ρ0 ρ0)Sρ0ρ0 (B0 → ρ0 ρ0)Sρ0ρ0 (B0 → ρ0 ρ0)Sρ0ρ0 (B0 → ρ0 ρ0)VALUE DOCUMENT ID TECN COMMENT0.3±0.7±0.20.3±0.7±0.20.3±0.7±0.20.3±0.7±0.2 AUBERT 08BB BABR e+ e− → �(4S)Cρρ (B0 → ρ+ ρ−)Cρρ (B0 → ρ+ ρ−)Cρρ (B0 → ρ+ ρ−)Cρρ (B0 → ρ+ ρ−)VALUE DOCUMENT ID TECN COMMENT0.00±0.09 OUR AVERAGE0.00±0.09 OUR AVERAGE0.00±0.09 OUR AVERAGE0.00±0.09 OUR AVERAGE0.00±0.10±0.06 1 VANHOEFER 16 BELL e+ e− → �(4S)0.01±0.15±0.06 AUBERT 07BF BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.16±0.21±0.08 1 SOMOV 07 BELL Repl. by VANHOEFER 16
−0.00±0.30±0.09 1 SOMOV 06 BELL Repl. by SOMOV 07
−0.03±0.18±0.09 AUBERT,B 05C BABR Repl. by AUBERT 07BF
−0.17±0.27±0.14 AUBERT,B 04R BABR Repl. by AUBERT,B 05C1BELLE Collab. quotes ACP whi
h is equal to −C.Sρρ (B0 → ρ+ρ−)Sρρ (B0 → ρ+ρ−)Sρρ (B0 → ρ+ρ−)Sρρ (B0 → ρ+ρ−)VALUE DOCUMENT ID TECN COMMENT
−0.14±0.13 OUR AVERAGE−0.14±0.13 OUR AVERAGE−0.14±0.13 OUR AVERAGE−0.14±0.13 OUR AVERAGE
−0.13±0.15±0.05 VANHOEFER 16 BELL e+ e− → �(4S)
−0.17±0.20+0.05

−0.06 AUBERT 07BF BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.19±0.30±0.08 SOMOV 07 BELL Repl. by VANHOEFER 160.08±0.41±0.09 SOMOV 06 BELL Repl. by SOMOV 07
−0.33±0.24+0.08

−0.14 AUBERT,B 05C BABR Repl. by AUBERT 07BF
−0.42±0.42±0.14 AUBERT,B 04R BABR Repl. by AUBERT,B 05C
∣

∣λ
∣

∣ (B0 → J/ψK∗(892)0)∣

∣λ
∣

∣ (B0 → J/ψK∗(892)0)∣

∣λ
∣

∣ (B0 → J/ψK∗(892)0)∣

∣λ
∣

∣ (B0 → J/ψK∗(892)0)VALUE CL% DOCUMENT ID TECN COMMENT
<0.25<0.25<0.25<0.25 95 1 AUBERT,B 04H BABR e+ e− → �(4S)1Uses the measured 
osine 
oeÆ
ients C and C and assumes ∣

∣q/p∣∣ = 1.
os 2β (B0 → J/ψK∗(892)0)
os 2β (B0 → J/ψK∗(892)0)
os 2β (B0 → J/ψK∗(892)0)
os 2β (B0 → J/ψK∗(892)0)
β (φ1) is one of the angles of CMK unitarity triangle, see the review on \CP" Violationin the Reviews se
tion.VALUE DOCUMENT ID TECN COMMENT1.7 +0.7

−0.9 OUR AVERAGE1.7 +0.7
−0.9 OUR AVERAGE1.7 +0.7
−0.9 OUR AVERAGE1.7 +0.7
−0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.2.72+0.50
−0.79±0.27 1 AUBERT 05P BABR e+ e− → �(4S)0.87±0.74±0.12 2 ITOH 05 BELL e+ e− → �(4S)1The measurement is obtained when sin 2β is �xed to 0.726 and the sign of 
os 2β ispositive with 86% 
on�den
e level.2The measurement is obtained with sin 2β �xed to 0.731.


os 2β (B0 → [K0S π+π− ℄D(∗) h0)
os 2β (B0 → [K0S π+π− ℄D(∗) h0)
os 2β (B0 → [K0S π+π− ℄D(∗) h0)
os 2β (B0 → [K0S π+π− ℄D(∗) h0)VALUE DOCUMENT ID TECN COMMENT1.0 +0.6
−0.7 OUR AVERAGE1.0 +0.6
−0.7 OUR AVERAGE1.0 +0.6
−0.7 OUR AVERAGE1.0 +0.6
−0.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.0.42±0.49±0.16 1 AUBERT 07BH BABR e+ e− → �(4S)1.87+0.40
−0.53+0.22

−0.32 2 KROKOVNY 06 BELL e+ e− → �(4S)1AUBERT 07BH evaluates the likelihoods for the positive and negative solutions assumingsin(2 βeff ) = 0.678. It quotes L+ / (L++ L−) = 0.86 
orresponding to a likelihoodratio of L+/L− = 6.14 in favor of the positive solution.2KROKOVNY 06 evaluates the likelihoods for the positive and negative solutions assumingsin(2 βeff ) = 0.689. It quotes L+ / (L++ L−) = 0.983 
orresponding to a likelihoodratio of L+/L− = 57.8 in favor of the positive solution.(S+ + S−)/2 (B0 → D∗−π+)(S+ + S−)/2 (B0 → D∗−π+)(S+ + S−)/2 (B0 → D∗−π+)(S+ + S−)/2 (B0 → D∗−π+)S± = − 2Im(λ±)1+∣

∣λ±
∣

∣2 where λ+ and λ− are de�ned in the Cππ datablo
k above forB0 → D∗−π+ and B0 → D∗+π−.VALUE DOCUMENT ID TECN COMMENT
−0.039±0.011 OUR AVERAGE−0.039±0.011 OUR AVERAGE−0.039±0.011 OUR AVERAGE−0.039±0.011 OUR AVERAGE
−0.046±0.013±0.015 1 BAHINIPATI 11 BELL e+ e− → �(4S)
−0.040±0.023±0.010 2 AUBERT 06Y BABR e+ e− → �(4S)
−0.034±0.014±0.009 1 AUBERT 05Z BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.039±0.020±0.013 3 RONGA 06 BELL Repl. by BAHINIPATI 11
−0.030±0.028±0.018 1 GERSHON 05 BELL Repl. by RONGA 06
−0.068±0.038±0.020 2 AUBERT 04V BABR Repl. by AUBERT 06Y
−0.063±0.024±0.014 1 AUBERT 04W BABR Repl. by AUBERT 05Z0.060±0.040±0.019 2 SARANGI 04 BELL Repl. by RONGA 061Uses partially re
onstru
ted B0 → D∗±π∓ de
ays.2Uses fully re
onstru
ted B0 → D∗±π∓ de
ays.3Combines the results from fully re
onstru
ted and partially re
onstru
ted D∗π events bytaking weighted averages. Assumes that systemati
 errors from physi
s parameters and�t biases in the two measurements are 100% 
orrelated.(S− − S+)/2 (B0 → D∗−π+)(S− − S+)/2 (B0 → D∗−π+)(S− − S+)/2 (B0 → D∗−π+)(S− − S+)/2 (B0 → D∗−π+)VALUE DOCUMENT ID TECN COMMENT
−0.009±0.015 OUR AVERAGE−0.009±0.015 OUR AVERAGE−0.009±0.015 OUR AVERAGE−0.009±0.015 OUR AVERAGE
−0.015±0.013±0.015 1 BAHINIPATI 11 BELL e+ e− → �(4S)0.049±0.042±0.015 2 AUBERT 06Y BABR e+ e− → �(4S)
−0.019±0.022±0.013 1 AUBERT 05Z BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.011±0.020±0.013 3 RONGA 06 BELL Repl. by BAHINIPATI 11
−0.005±0.028±0.018 1 GERSHON 05 BELL Repl. by RONGA 060.031±0.070±0.033 2 AUBERT 04V BABR Repl. by AUBERT 06Y
−0.004±0.037±0.014 1 AUBERT 04W BABR Repl. by AUBERT 05Z0.049±0.040±0.019 2 SARANGI 04 BELL Repl. by RONGA 061Uses partially re
onstru
ted B0 → D∗±π∓ de
ays.2Uses fully re
onstru
ted B0 → D∗±π∓ de
ays.3Combines the results from fully re
onstru
ted and partially re
onstru
ted D∗π events bytaking weighted averages. Assumes that systemati
 errors from physi
s parameters and�t biases in the two measurements are 100% 
orrelated.(S+ + S−)/2 (B0 → D−π+)(S+ + S−)/2 (B0 → D−π+)(S+ + S−)/2 (B0 → D−π+)(S+ + S−)/2 (B0 → D−π+)VALUE DOCUMENT ID TECN COMMENT
−0.046±0.023 OUR AVERAGE−0.046±0.023 OUR AVERAGE−0.046±0.023 OUR AVERAGE−0.046±0.023 OUR AVERAGE
−0.010±0.023±0.07 1 AUBERT 06Y BABR e+ e− → �(4S)
−0.050±0.021±0.012 2 RONGA 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.022±0.038±0.020 1 AUBERT 04V BABR Repl. by AUBERT 06Y
−0.062±0.037±0.018 1 SARANGI 04 BELL Repl. by RONGA 061Uses fully re
onstru
ted B0 → D±π∓ de
ays.2Combines the results from fully re
onstru
ted and partially re
onstru
ted Dπ events bytaking weighted averages. Assumes that systemati
 errors from physi
s parameters and�t biases in the two measurements are 100% 
orrelated.(S− − S+)/2 (B0 → D−π+)(S− − S+)/2 (B0 → D−π+)(S− − S+)/2 (B0 → D−π+)(S− − S+)/2 (B0 → D−π+)VALUE DOCUMENT ID TECN COMMENT
−0.022±0.021 OUR AVERAGE−0.022±0.021 OUR AVERAGE−0.022±0.021 OUR AVERAGE−0.022±0.021 OUR AVERAGE
−0.033±0.042±0.012 1 AUBERT 06Y BABR e+ e− → �(4S)
−0.019±0.021±0.012 2 RONGA 06 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.025±0.068±0.033 1 AUBERT 04V BABR Repl. by AUBERT 06Y
−0.025±0.037±0.018 1 SARANGI 04 BELL Repl. by RONGA 061Uses fully re
onstru
ted B0 → D±π∓ de
ays.2Combines the results from fully re
onstru
ted and partially re
onstru
ted Dπ events bytaking weighted averages. Assumes that systemati
 errors from physi
s parameters and�t biases in the two measurements are 100% 
orrelated.(S+ + S−)/2 (B0 → D− ρ+)(S+ + S−)/2 (B0 → D− ρ+)(S+ + S−)/2 (B0 → D− ρ+)(S+ + S−)/2 (B0 → D− ρ+)VALUE DOCUMENT ID TECN COMMENT
−0.024±0.031±0.009−0.024±0.031±0.009−0.024±0.031±0.009−0.024±0.031±0.009 1 AUBERT 06Y BABR e+ e− → �(4S)1Uses fully re
onstru
ted B0 → D− ρ+ de
ays.



1278127812781278Meson Parti
le ListingsB0(S− − S+)/2 (B0 → D− ρ+)(S− − S+)/2 (B0 → D− ρ+)(S− − S+)/2 (B0 → D− ρ+)(S− − S+)/2 (B0 → D− ρ+)VALUE DOCUMENT ID TECN COMMENT
−0.098±0.055±0.018−0.098±0.055±0.018−0.098±0.055±0.018−0.098±0.055±0.018 1 AUBERT 06Y BABR e+ e− → �(4S)1Uses fully re
onstru
ted B0 → D− ρ+ de
ays.C

η
 K0S (B0 → η
 K0S)C
η
 K0S (B0 → η
 K0S)C
η
 K0S (B0 → η
 K0S)C
η
 K0S (B0 → η
 K0S)VALUE DOCUMENT ID TECN COMMENT0.080±0.124±0.0290.080±0.124±0.0290.080±0.124±0.0290.080±0.124±0.029 AUBERT 09K BABR e+ e− → �(4S)S
η
 K0S (B0 → η
 K0S)S
η
 K0S (B0 → η
 K0S)S
η
 K0S (B0 → η
 K0S)S
η
 K0S (B0 → η
 K0S)VALUE DOCUMENT ID TECN COMMENT0.925±0.160±0.0570.925±0.160±0.0570.925±0.160±0.0570.925±0.160±0.057 AUBERT 09K BABR e+ e− → �(4S)C
 
 K (∗)0 (B0 → 
 
 K (∗)0)C
 
 K (∗)0 (B0 → 
 
 K (∗)0)C
 
 K (∗)0 (B0 → 
 
 K (∗)0)C
 
 K (∗)0 (B0 → 
 
 K (∗)0)\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.5± 1.7 OUR EVALUATION0.5± 1.7 OUR EVALUATION0.5± 1.7 OUR EVALUATION0.5± 1.7 OUR EVALUATION0.5± 1.6 OUR AVERAGE0.5± 1.6 OUR AVERAGE0.5± 1.6 OUR AVERAGE0.5± 1.6 OUR AVERAGE

− 0.6± 1.6±1.2 1 ADACHI 12A BELL e+ e− → �(4S)
−29 +53

−44 ±6 2 AUBERT 09AU BABR e+ e− → �(4S)2.4± 2.0±1.6 3 AUBERT 09K BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
− 4 ± 7 ±5 4 SAHOO 08 BELL Repl. by ADACHI 12A4.9± 2.3±1.8 3 AUBERT 07AY BABR Repl. by AUBERT 09K
− 1.8± 2.1±1.4 5 CHEN 07 BELL Repl. by ADACHI 12A
− 0.7± 4.1±3.3 6 ABE 05B BELL Repl. by CHEN 075.1± 3.2±1.4 7 AUBERT 05F BABR Repl. by AUBERT 07AY5.1± 5.1±2.6 8 ABE 02Z BELL Repl. by ABE 05B5.3± 5.4±3.2 9 AUBERT 02P BABR Repl. by AUBERT 05F1Measurement based on B0 → J/ψK0S , B0 → ψ(2S)K0S , B0 → J/ψK0L, and B0 →

χ
1(1P)K0S de
ays.2Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.3Measurement based on B0 → 
 
 K(∗)0 de
ays.4Reports value of A of B0 → ψ(2S)K0 whi
h is equal to −C.5Reports value of A of B0 → J/ψK0 whi
h is equal to −C.6Measurement based on 152 × 106 BB pairs.7Measurement based on 227 × 106 BB pairs.8Measured with both ηf = ±1 samples.9Measured with the high purity of ηf = −1 samples.sin(2β)sin(2β)sin(2β)sin(2β)For a dis
ussion of CP violation, see the review on \CP Violation" in the Reviewsse
tion. sin(2β) is a measure of the CP-violating amplitude in the B0d → J/ψ(1S)K0S .\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE DOCUMENT ID TECN COMMENT0.679±0.020 OUR EVALUATION0.679±0.020 OUR EVALUATION0.679±0.020 OUR EVALUATION0.679±0.020 OUR EVALUATION0.677±0.020 OUR AVERAGE0.677±0.020 OUR AVERAGE0.677±0.020 OUR AVERAGE0.677±0.020 OUR AVERAGE0.667±0.023±0.012 1 ADACHI 12A BELL e+ e− → �(4S)0.57 ±0.58 ±0.06 2 SATO 12 BELL e+ e− → �(5S)0.69 ±0.52 ±0.08 3 AUBERT 09AU BABR e+ e− → �(4S)0.687±0.028±0.012 4 AUBERT 09K BABR e+ e− → �(4S)1.56 ±0.42 ±0.21 5 AUBERT 04R BABR e+ e− → �(4S)0.79 +0.41
−0.44 6 AFFOLDER 00C CDF pp at 1.8 TeV0.84 +0.82
−1.04 ±0.16 7 BARATE 00Q ALEP e+ e− → Z3.2 +1.8
−2.0 ±0.5 8 ACKERSTAFF 98Z OPAL e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.72 ±0.09 ±0.03 9 SAHOO 08 BELL Repl. by ADACHI 12A0.714±0.032±0.018 4 AUBERT 07AY BABR Repl. by AUBERT 09K0.642±0.031±0.017 CHEN 07 BELL Repl. by ADACHI 12A0.728±0.056±0.023 10 ABE 05B BELL Repl. by CHEN 070.722±0.040±0.023 11 AUBERT 05F BABR Repl. by AUBERT 07AY0.99 ±0.14 ±0.06 12 ABE 02U BELL e+ e− → �(4S)0.719±0.074±0.035 13 ABE 02Z BELL Repl. by ABE 05B0.59 ±0.14 ±0.05 14 AUBERT 02N BABR e+ e− → �(4S)0.741±0.067±0.034 15 AUBERT 02P BABR Repl. by AUBERT 05F0.58 +0.32
−0.34 +0.09

−0.10 ABASHIAN 01 BELL Repl. by ABE 01G0.99 ±0.14 ±0.06 16 ABE 01G BELL Repl. by ABE 02Z0.34 ±0.20 ±0.05 AUBERT 01 BABR Repl. by AUBERT 01B0.59 ±0.14 ±0.05 16 AUBERT 01B BABR Repl. by AUBERT 02P1.8 ±1.1 ±0.3 17 ABE 98U CDF Repl. by AFFOLDER 00C1Measurement based on B0 → J/ψK0S , B0 → ψ(2S)K0S , B0 → J/ψK0L, and B0 →
χ
1(1P)K0S de
ays.

2 SATO 12 uses 121 fb−1 data 
olle
ted on Y (5S) resonan
e. Uses the "B − π tagging"where B π+ and Bπ− tagged J/ψK0S events are 
ompared.3Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions.4Measurement based on B0 → 
 
 K(∗)0 de
ays.5Measurement in whi
h the J/ψ de
ays to hadrons or to muons that do not satisfy thestandard identi�
ation 
riteria.6AFFOLDER 00C uses about 400 B0 → J/ψ(1S)K0S events. The produ
tion 
avor ofB0 was determined using three tagging algorithms: a same-side tag, a jet-
harge tag,and a soft-lepton tag.7BARATE 00Q uses 23 
andidates for B0 → J/ψ(1S)K0S de
ays. A 
ombination ofjet-
harge, vertex-
harge, and same-side tagging te
hniques were used to determine theB0 produ
tion 
avor.8ACKERSTAFF 98Z uses 24 
andidates for B0d → J/ψ(1S)K0S de
ay. A 
ombinationof jet-
harge and vertex-
harge te
hniques were used to tag the B0d produ
tion 
avor.9Based on B0 → ψ(2S)K0S de
ays.10Measurement based on 152 × 106 BB pairs.11Measurement based on 227 × 106 BB pairs.12ABE 02U result is based on the same analysis and data sample reported in ABE 01G.13ABE 02Z result is based on 85 × 106 BB pairs.14AUBERT 02N result based on the same analysis and data sample reported inAUBERT 01B.15AUBERT 02P result is based on 88 × 106 BB pairs.16 First observation of CP violation in B0 meson system.17ABE 98U uses 198 ± 17 B0d → J/ψ(1S)K0 events. The produ
tion 
avor of B0 wasdetermined using the same side tagging te
hnique.CJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)CJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)CJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)CJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.5±2.0 OUR EVALUATION0.5±2.0 OUR EVALUATION0.5±2.0 OUR EVALUATION0.5±2.0 OUR EVALUATION
− 0.9±1.7 OUR AVERAGE− 0.9±1.7 OUR AVERAGE− 0.9±1.7 OUR AVERAGE− 0.9±1.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.
− 3.8±3.2±0.5 1 AAIJ 15N LHCB pp at 7, 8 TeV1.5±2.1+2.3

−4.5 2,3 ADACHI 12A BELL e+ e− → �(4S)
−10.4±5.5+2.7

−4.7 3,4 ADACHI 12A BELL e+ e− → �(4S)
− 1.9±2.6+4.1

−1.7 3,5 ADACHI 12A BELL e+ e− → �(4S)8.9±7.6±2.0 4 AUBERT 09K BABR e+ e− → �(4S)1.6±2.3±1.8 AUBERT 09K BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3 ±9 ±1 6 AAIJ 13K LHCB Repl. by AAIJ 15N
− 4 ±7 ±5 3,4 SAHOO 08 BELL Repl. by ADACHI 12A
− 1.8±2.1±1.4 3 CHEN 07 BELL Repl. by ADACHI 12A1AAIJ 15N uses 41,560 
avor-tagged Bd → J/ψK0S events from 3 fb−1 of integratedluminosity. Provides the 
orrelation 
oeÆ
ient ρ = 0.483 between the statisti
al un
er-tainties of and measurements.2Uses B0 → J/ψK0S de
ays.3The paper reports A, whi
h is equal to −C.4Uses B0 → ψ(2S)K0S de
ays.5Uses B0 → J/ψK0L de
ays.6AAIJ 13K uses 8200 
avor-tagged Bd → J/ψK0S events from 1 fb−1 of integratedluminosity. Provides the 
orrelation 
oeÆ
ient ρ = 0.42 between the statisti
al un
er-tainties of SJ/ψ(nS)K0 (B0 → J/ψ(nS)K0) and CJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)measurements.SJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)SJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)SJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)SJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE DOCUMENT ID TECN COMMENT0.676±0.021 OUR EVALUATION0.676±0.021 OUR EVALUATION0.676±0.021 OUR EVALUATION0.676±0.021 OUR EVALUATION0.687±0.021 OUR AVERAGE0.687±0.021 OUR AVERAGE0.687±0.021 OUR AVERAGE0.687±0.021 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.731±0.035±0.020 1 AAIJ 15N LHCB pp at 7, 8 TeV0.670±0.029±0.013 2 ADACHI 12A BELL e+ e− → �(4S)0.738±0.079±0.036 3 ADACHI 12A BELL e+ e− → �(4S)0.642±0.047±0.021 4 ADACHI 12A BELL e+ e− → �(4S)0.57 ±0.58 ±0.06 5 SATO 12 BELL e+ e− → �(5S)0.897±0.100±0.036 3 AUBERT 09K BABR e+ e− → �(4S)0.666±0.031±0.013 AUBERT 09K BABR e+ e− → �(4S)0.79 +0.41

−0.44 6 AFFOLDER 00C CDF pp at 1.8 TeV0.84 +0.82
−1.04 ±0.16 7 BARATE 00Q ALEP e+ e− → Z3.2 +1.8
−2.0 ±0.5 8 ACKERSTAFF 98Z OPAL e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.73 ±0.07 ±0.04 9 AAIJ 13K LHCB Repl. by AAIJ 15N0.650±0.029±0.018 10 SAHOO 08 BELL Repl. by ADACHI 12A0.72 ±0.09 ±0.03 3 SAHOO 08 BELL Repl. by ADACHI 12A0.642±0.031±0.017 CHEN 07 BELL Repl. by ADACHI 12A



1279127912791279See key on page 601 MesonParti
le ListingsB01AAIJ 15N uses 41,560 
avor-tagged Bd → J/ψK0S events from 3 fb−1 of integratedluminosity. Provides the 
orrelation 
oeÆ
ient ρ = 0.483 between the statisti
al un
er-tainties of and measurements.2Uses B0 → J/ψK0S de
ays.3Based on B0 → ψ(2S)K0S de
ays.4Uses B0 → J/ψK0L de
ays.5 SATO 12 uses 121 fb−1 data 
olle
ted at �(5S) resonan
e. Uses the "B − π tagging"where B π+ and Bπ− tagged J/ψK0S events are 
ompared.6AFFOLDER 00C uses about 400 B0 → J/ψ(1S)K0S events. The produ
tion 
avor ofB0 was determined using three tagging algorithms: a same-side tag, a jet-
harge tag,and a soft-lepton tag.7BARATE 00Q uses 23 
andidates for B0 → J/ψ(1S)K0S de
ays. A 
ombination ofjet-
harge, vertex-
harge, and same-side tagging te
hniques were used to determine theB0 produ
tion 
avor.8ACKERSTAFF 98Z uses 24 
andidates for B0d → J/ψ(1S)K0S de
ay. A 
ombinationof jet-
harge and vertex-
harge te
hniques were used to tag the B0d produ
tion 
avor.9AAIJ 13K uses 8200 
avor-tagged Bd → J/ψK0S events from 1 fb−1 of integratedluminosity. Provides the 
orrelation 
oeÆ
ient ρ = 0.42 between the statisti
al un
er-tainties of SJ/ψ(nS)K0 (B0 → J/ψ(nS)K0) and CJ/ψ(nS)K0 (B0 → J/ψ(nS)K0)measurements.10Combined result of CHEN 07 and SAHOO 08.CJ/ψK∗0 (B0 → J/ψK∗0)CJ/ψK∗0 (B0 → J/ψK∗0)CJ/ψK∗0 (B0 → J/ψK∗0)CJ/ψK∗0 (B0 → J/ψK∗0)VALUE DOCUMENT ID TECN COMMENT0.025±0.083±0.0540.025±0.083±0.0540.025±0.083±0.0540.025±0.083±0.054 1 AUBERT 09K BABR e+ e− → �(4S)1Based on B0 → J/ψK∗0, K∗0 → K0S π0.SJ/ψK∗0 (B0 → J/ψK∗0)SJ/ψK∗0 (B0 → J/ψK∗0)SJ/ψK∗0 (B0 → J/ψK∗0)SJ/ψK∗0 (B0 → J/ψK∗0)VALUE DOCUMENT ID TECN COMMENT0.601±0.239±0.0870.601±0.239±0.0870.601±0.239±0.0870.601±0.239±0.087 1,2 AUBERT 09K BABR e+ e− → �(4S)1Based on B0 → J/ψK∗0, K∗0 → K0S π0.2This SJ/ψK∗0 value has been 
orre
ted for the dilution of the sin(�M �t) 
oeÆ
ientof the CP asymmetry by a fa
tor of 1−R⊥, whi
h arises from the mixture of CP-evenand CP-odd B de
ay amplitudes.C
χ
0K0S (B0 → χ
0K0S )C
χ
0K0S (B0 → χ
0K0S )C
χ
0K0S (B0 → χ
0K0S )C
χ
0K0S (B0 → χ
0K0S )VALUE DOCUMENT ID TECN COMMENT

−0.29+0.53
−0.44±0.06−0.29+0.53
−0.44±0.06−0.29+0.53
−0.44±0.06−0.29+0.53
−0.44±0.06 1 AUBERT 09AU BABR e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.S

χ
0K0S (B0 → χ
0K0S )S
χ
0K0S (B0 → χ
0K0S )S
χ
0K0S (B0 → χ
0K0S )S
χ
0K0S (B0 → χ
0K0S )VALUE DOCUMENT ID TECN COMMENT

−0.69±0.52±0.08−0.69±0.52±0.08−0.69±0.52±0.08−0.69±0.52±0.08 1 AUBERT 09AU BABR e+ e− → �(4S)1Uses Dalitz plot analysis of B0 → K0π+π− de
ays and the �rst of two equivalentsolutions is used.C
χ
1K0S (B0 → χ
1K0S )C
χ
1K0S (B0 → χ
1K0S )C
χ
1K0S (B0 → χ
1K0S )C
χ
1K0S (B0 → χ
1K0S )VALUE DOCUMENT ID TECN COMMENT0.06 ±0.07 OUR AVERAGE0.06 ±0.07 OUR AVERAGE0.06 ±0.07 OUR AVERAGE0.06 ±0.07 OUR AVERAGE0.017±0.083+0.026

−0.046 ADACHI 12A BELL e+ e− → �(4S)0.129±0.109±0.025 AUBERT 09K BABR e+ e− → �(4S)S
χ
1K0S (B0 → χ
1K0S )S
χ
1K0S (B0 → χ
1K0S )S
χ
1K0S (B0 → χ
1K0S )S
χ
1K0S (B0 → χ
1K0S )VALUE DOCUMENT ID TECN COMMENT0.63 ±0.10 OUR AVERAGE0.63 ±0.10 OUR AVERAGE0.63 ±0.10 OUR AVERAGE0.63 ±0.10 OUR AVERAGE0.640±0.117±0.040 ADACHI 12A BELL e+ e− → �(4S)0.614±0.160±0.040 AUBERT 09K BABR e+ e− → �(4S)sin(2βe� )(B0 → φK0)sin(2βe� )(B0 → φK0)sin(2βe� )(B0 → φK0)sin(2βe� )(B0 → φK0)VALUE DOCUMENT ID TECN COMMENT0.22±0.27±0.120.22±0.27±0.120.22±0.27±0.120.22±0.27±0.12 AUBERT 07AX BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.50±0.25+0.07
−0.04 1 AUBERT 05T BABR Repl. by AUBERT 07AX1Obtained by 
onstraining C = 0.sin(2βe� )(B0 → φK∗0 (1430)0)sin(2βe� )(B0 → φK∗0 (1430)0)sin(2βe� )(B0 → φK∗0 (1430)0)sin(2βe� )(B0 → φK∗0 (1430)0)VALUE DOCUMENT ID TECN COMMENT0.97+0.03

−0.520.97+0.03
−0.520.97+0.03
−0.520.97+0.03
−0.52 1 AUBERT 08BG BABR e+ e− → �(4S)1Measured using the CP-violation phase di�eren
e �φ00 between the B and B de
ayamplitude.sin(2βe� )(B0 → K+K−K0S )sin(2βe� )(B0 → K+K−K0S )sin(2βe� )(B0 → K+K−K0S )sin(2βe� )(B0 → K+K−K0S )VALUE DOCUMENT ID TECN COMMENT0.77±0.11+0.07

−0.040.77±0.11+0.07
−0.040.77±0.11+0.07
−0.040.77±0.11+0.07
−0.04 AUBERT 07AX BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.55±0.22±0.12 1 AUBERT 05T BABR Repl. by AUBERT 07AX1Obtained by 
onstraining C = 0.

sin(2βe� )(B0 → [K0S π+π− ℄D(∗) h0)sin(2βe� )(B0 → [K0S π+π− ℄D(∗) h0)sin(2βe� )(B0 → [K0S π+π− ℄D(∗) h0)sin(2βe� )(B0 → [K0S π+π− ℄D(∗) h0)VALUE DOCUMENT ID TECN COMMENT0.45±0.28 OUR AVERAGE0.45±0.28 OUR AVERAGE0.45±0.28 OUR AVERAGE0.45±0.28 OUR AVERAGE0.29±0.34±0.06 AUBERT 07BH BABR e+ e− → �(4S)0.78±0.44±0.22 KROKOVNY 06 BELL e+ e− → �(4S)2βe�(B0 → J/ψρ0)2βe�(B0 → J/ψρ0)2βe�(B0 → J/ψρ0)2βe�(B0 → J/ψρ0)VALUE (◦) DOCUMENT ID TECN COMMENT41.7±9.6+2.8
−6.341.7±9.6+2.8
−6.341.7±9.6+2.8
−6.341.7±9.6+2.8
−6.3 AAIJ 15J LHCB pp at 7, 8 TeV

∣

∣λ
∣

∣ (B0 → [K0S π+π− ℄D(∗) h0)∣

∣λ
∣

∣ (B0 → [K0S π+π− ℄D(∗) h0)∣

∣λ
∣

∣ (B0 → [K0S π+π− ℄D(∗) h0)∣

∣λ
∣

∣ (B0 → [K0S π+π− ℄D(∗) h0)VALUE DOCUMENT ID TECN COMMENT1.01±0.08±0.021.01±0.08±0.021.01±0.08±0.021.01±0.08±0.02 AUBERT 07BH BABR e+ e− → �(4S)
∣

∣sin(2β + γ)∣∣∣

∣sin(2β + γ)∣∣∣

∣sin(2β + γ)∣∣∣

∣sin(2β + γ)∣∣
β (φ1) and γ (φ3) are angles of CKM unitarity triangle, see the review on \CPViolation" in the Reviews se
tion.VALUE CL% DOCUMENT ID TECN COMMENT

>0.40>0.40>0.40>0.40 90 1 AUBERT 06Y BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>0.13 95 2 RONGA 06 BELL e+ e− → �(4S)
>0.07 95 2 RONGA 06 BELL e+ e− → �(4S)
>0.35 90 3 AUBERT 05Z BABR e+ e− → �(4S)
>0.69 68 4 AUBERT 04V BABR e+ e− → �(4S)
>0.58 95 5 AUBERT 04W BABR Repl. by AUBERT 05Z1Uses fully re
onstru
ted B0 → D(∗)±π∓ and D± ρ∓ de
ays and some theoreti
alassumptions.2Combines the results from fully re
onstru
ted and partially re
onstru
ted D(∗)π eventsby taking weighted averages. Assumes that systemati
 errors from physi
s parametersand �t biases in the two measurements are 100% 
orrelated.3Uses partially re
onstru
ted B0 → D∗±π∓ de
ays and some theoreti
al assumptions.4Uses fully re
onstru
ted B0 → D(∗)±π∓ de
ays and some theoreti
al assumptions,su
h as the SU(3) symmetry relation.5Combining this measurement with the results from AUBERT 04V for fully re
onstru
tedB0 → D(∗)±π∓ and some theoreti
al assumptions, su
h as the SU(3) symmetryrelation.2 β + γ2 β + γ2 β + γ2 β + γVALUE (◦) DOCUMENT ID TECN COMMENT83±53±2083±53±2083±53±2083±53±20 1 AUBERT 08AC BABR e+ e− → �(4S)1Used a time-dependent Dalitz-plot analysis of B0 → D∓K0π± assuming the ratio ofthe b → u and b → 
 de
ay amplitudes to be 0.3.
γ(B0 → D0K∗0)γ(B0 → D0K∗0)γ(B0 → D0K∗0)γ(B0 → D0K∗0)VALUE (◦) DOCUMENT ID TECN COMMENT162±56162±56162±56162±56 1 AUBERT 09R BABR e+ e− → �(4S)1Uses Dalitz plot analysis of D0 → K0S π+π− de
ays 
oming from B0 → D0K∗0modes. The 
orresponding 95% CL interval is 77◦ < γ < 247◦. A 180 degree ambiguityis implied.
αααα For angle α(φ2) of the CKM unitarity triangle, see the review on \CP violation" inthe reviews se
tion.VALUE (◦) DOCUMENT ID TECN COMMENT93 ± 5 OUR AVERAGE93 ± 5 OUR AVERAGE93 ± 5 OUR AVERAGE93 ± 5 OUR AVERAGE93.7±10.6 1 VANHOEFER 16 BELL e+ e− → �(4S)92.4+ 6.0

− 6.5 1 AUBERT 09G BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •84.9±13.5 1 VANHOEFER 14 BELL Repl. by VANHOEFER 1679 ± 7 ±11 2 AUBERT 10D BABR e+ e− → �(4S)78.6± 7.3 3 AUBERT 07O BABR e+ e− → �(4S)88 ±17 4 SOMOV 06 BELL Repl. by VANHOEFER 14100 ±13 5 AUBERT,B 05C BABR Repl. by AUBERT 09G102 +16

−12 ±14 6 AUBERT,B 04R BABR Repl. by AUBERT,B 05C1Based on an isospin analysis of the B → ρρ system.2Obtained using the time dependent analysis of B0 → a1(1260)±π∓ and bran
hingfra
tion measurements of B → a1(1260)K and B → K1π. Uses SU(3) 
avor relations.3The angle αe� is obtained using the measured CP parameters of B0 → a1(1260)±π∓and 
hoosing one of the four solutions that is 
ompatible with the result of SM-based�ts.4Obtained using isospin relation and sele
ting a solution 
losest to the CKM best �taverage; the 90% CL allowed interval is 59◦ < φ2 ( ≡ α) < 115◦.5Obtained using isospin relation and sele
ting a solution 
losest to the CKM best �taverage; 90% CL allowed interval is 79◦ < α < 123◦.6Obtained from the measured CP parameters of the longitudinal polarization by sele
tingthe solution 
losest to the CKM best �t 
entral value of α = 95◦ { 98◦.



1280128012801280MesonParti
le ListingsB0 T and CPT VIOLATION PARAMETERST and CPT VIOLATION PARAMETERST and CPT VIOLATION PARAMETERST and CPT VIOLATION PARAMETERSMeasured values of the T-, CP-, and CPT-asymmetry parameters, de�nedas the di�eren
es in S±
α,β

and C±
α,β

between symmetry-transformed tran-sitions. The indi
es α = ℓ+, ℓ− and β = K0S , K0L stand for re
onstru
tedthe 
avor �nal state and the CP �nal states from �(4S) de
ay. The sign
± indi
ates whether the de
ay to the 
avor �nal state α o

urs before orafter the de
ay to the CP �nal state.�S+T (S−
ℓ−,K0S − S+

ℓ+,K0S )�S+T (S−
ℓ−,K0S − S+

ℓ+,K0S )�S+T (S−
ℓ−,K0S − S+

ℓ+,K0S )�S+T (S−
ℓ−,K0S − S+

ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT
−1.37±0.14±0.06−1.37±0.14±0.06−1.37±0.14±0.06−1.37±0.14±0.06 LEES 12W BABR e+ e− → �(4S)�S−T (S+

ℓ−,K0S − S−
ℓ+,K0S )�S−T (S+

ℓ−,K0S − S−
ℓ+,K0S )�S−T (S+

ℓ−,K0S − S−
ℓ+,K0S )�S−T (S+

ℓ−,K0S − S−
ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT1.17±0.18±0.111.17±0.18±0.111.17±0.18±0.111.17±0.18±0.11 LEES 12W BABR e+ e− → �(4S)�C+T (C−

ℓ−,K0S − C+
ℓ+,K0S )�C+T (C−

ℓ−,K0S − C+
ℓ+,K0S )�C+T (C−

ℓ−,K0S − C+
ℓ+,K0S )�C+T (C−

ℓ−,K0S − C+
ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT0.10±0.14±0.080.10±0.14±0.080.10±0.14±0.080.10±0.14±0.08 LEES 12W BABR e+ e− → �(4S)�C−T (C+

ℓ−,K0S − C−
ℓ+,K0S )�C−T (C+

ℓ−,K0S − C−
ℓ+,K0S )�C−T (C+

ℓ−,K0S − C−
ℓ+,K0S )�C−T (C+

ℓ−,K0S − C−
ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT0.04±0.14±0.080.04±0.14±0.080.04±0.14±0.080.04±0.14±0.08 LEES 12W BABR e+ e− → �(4S)�S+CP (S+

ℓ−,K0S − S+
ℓ+,K0S )�S+CP (S+

ℓ−,K0S − S+
ℓ+,K0S )�S+CP (S+

ℓ−,K0S − S+
ℓ+,K0S )�S+CP (S+

ℓ−,K0S − S+
ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT

−1.30±0.11±0.07−1.30±0.11±0.07−1.30±0.11±0.07−1.30±0.11±0.07 LEES 12W BABR e+ e− → �(4S)�S−CP (S−
ℓ−,K0S − S−

ℓ+,K0S )�S−CP (S−
ℓ−,K0S − S−

ℓ+,K0S )�S−CP (S−
ℓ−,K0S − S−

ℓ+,K0S )�S−CP (S−
ℓ−,K0S − S−

ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT1.33±0.12±0.061.33±0.12±0.061.33±0.12±0.061.33±0.12±0.06 LEES 12W BABR e+ e− → �(4S)�C+
CP (C+

ℓ−,K0S − C+
ℓ+,K0S )�C+

CP (C+
ℓ−,K0S − C+

ℓ+,K0S )�C+
CP (C+

ℓ−,K0S − C+
ℓ+,K0S )�C+

CP (C+
ℓ−,K0S − C+

ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT0.07±0.09±0.030.07±0.09±0.030.07±0.09±0.030.07±0.09±0.03 LEES 12W BABR e+ e− → �(4S)�C−
CP (C−

ℓ−,K0S − C−
ℓ+,K0S )�C−

CP (C−
ℓ−,K0S − C−

ℓ+,K0S )�C−
CP (C−

ℓ−,K0S − C−
ℓ+,K0S )�C−

CP (C−
ℓ−,K0S − C−

ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT0.08±0.10±0.040.08±0.10±0.040.08±0.10±0.040.08±0.10±0.04 LEES 12W BABR e+ e− → �(4S)�S+CPT (S−
ℓ+,K0S − S+

ℓ+,K0S )�S+CPT (S−
ℓ+,K0S − S+

ℓ+,K0S )�S+CPT (S−
ℓ+,K0S − S+

ℓ+,K0S )�S+CPT (S−
ℓ+,K0S − S+

ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT0.16±0.21±0.090.16±0.21±0.090.16±0.21±0.090.16±0.21±0.09 LEES 12W BABR e+ e− → �(4S)�S−CPT (S+
ℓ+,K0S − S−

ℓ+,K0S )�S−CPT (S+
ℓ+,K0S − S−

ℓ+,K0S )�S−CPT (S+
ℓ+,K0S − S−

ℓ+,K0S )�S−CPT (S+
ℓ+,K0S − S−

ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT
−0.03±0.13±0.06−0.03±0.13±0.06−0.03±0.13±0.06−0.03±0.13±0.06 LEES 12W BABR e+ e− → �(4S)�C+

CPT (C−
ℓ+,K0S − C+

ℓ+,K0S )�C+
CPT (C−

ℓ+,K0S − C+
ℓ+,K0S )�C+

CPT (C−
ℓ+,K0S − C+

ℓ+,K0S )�C+
CPT (C−

ℓ+,K0S − C+
ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT0.14±0.15±0.070.14±0.15±0.070.14±0.15±0.070.14±0.15±0.07 LEES 12W BABR e+ e− → �(4S)�C−

CPT (C+
ℓ+,K0S − C−

ℓ+,K0S )�C−
CPT (C+

ℓ+,K0S − C−
ℓ+,K0S )�C−

CPT (C+
ℓ+,K0S − C−

ℓ+,K0S )�C−
CPT (C+

ℓ+,K0S − C−
ℓ+,K0S )VALUE DOCUMENT ID TECN COMMENT0.03±0.12±0.080.03±0.12±0.080.03±0.12±0.080.03±0.12±0.08 LEES 12W BABR e+ e− → �(4S)B0 → D∗− ℓ+νℓ FORM FACTORSB0 → D∗− ℓ+νℓ FORM FACTORSB0 → D∗− ℓ+νℓ FORM FACTORSB0 → D∗− ℓ+νℓ FORM FACTORSR1 (form fa
tor ratio ∼ V/A1)VALUE DOCUMENT ID TECN COMMENT1.41 ±0.04 OUR AVERAGE1.41 ±0.04 OUR AVERAGE1.41 ±0.04 OUR AVERAGE1.41 ±0.04 OUR AVERAGE1.401±0.034±0.018 1 DUNGEL 10 BELL e+ e− → �(4S)1.56 ±0.07 ±0.15 AUBERT 09A BABR e+ e− → �(4S)1.18 ±0.30 ±0.12 DUBOSCQ 96 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.429±0.061±0.044 AUBERT 08R BABR Repl. by AUBERT 09A1.396±0.060±0.044 AUBERT,B 06Z BABR Repl. by AUBERT 08R1Uses fully re
onstru
ted D∗− ℓ+ ν events (ℓ = e or µ).R2 (form fa
tor ratio ∼ A2/A1)VALUE DOCUMENT ID TECN COMMENT0.85 ±0.05 OUR AVERAGE0.85 ±0.05 OUR AVERAGE0.85 ±0.05 OUR AVERAGE0.85 ±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.0.864±0.024±0.008 1 DUNGEL 10 BELL e+ e− → �(4S)0.66 ±0.05 ±0.09 AUBERT 09A BABR e+ e− → �(4S)0.71 ±0.22 ±0.07 DUBOSCQ 96 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.827±0.038±0.022 AUBERT 08R BABR Repl. by AUBERT 09A0.885±0.040±0.026 AUBERT,B 06Z BABR Repl. by AUBERT 08R1Uses fully re
onstru
ted D∗− ℓ+ ν events (ℓ = e or µ).

ρ2A1 (form fa
tor slope)VALUE DOCUMENT ID TECN COMMENT1.204±0.031 OUR AVERAGE1.204±0.031 OUR AVERAGE1.204±0.031 OUR AVERAGE1.204±0.031 OUR AVERAGE1.214±0.034±0.009 1 DUNGEL 10 BELL e+ e− → �(4S)1.22 ±0.02 ±0.07 AUBERT 09A BABR e+ e− → �(4S)0.91 ±0.15 ±0.06 DUBOSCQ 96 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.191±0.048±0.028 AUBERT 08R BABR Repl. by AUBERT 09A1.145±0.059±0.046 AUBERT,B 06Z BABR Repl. by AUBERT 08R1Uses fully re
onstru
ted D∗− ℓ+ ν events (ℓ = e or µ).PARTIAL BRANCHING FRACTIONS IN B0 → K (∗)0 ℓ+ ℓ−PARTIAL BRANCHING FRACTIONS IN B0 → K (∗)0 ℓ+ ℓ−PARTIAL BRANCHING FRACTIONS IN B0 → K (∗)0 ℓ+ ℓ−PARTIAL BRANCHING FRACTIONS IN B0 → K (∗)0 ℓ+ ℓ−B(B0 → K∗0 e+ e−) (0.0009 < q2 < 1.0 GeV2/
4)B(B0 → K∗0 e+ e−) (0.0009 < q2 < 1.0 GeV2/
4)B(B0 → K∗0 e+ e−) (0.0009 < q2 < 1.0 GeV2/
4)B(B0 → K∗0 e+ e−) (0.0009 < q2 < 1.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT3.1+0.9

−0.8+0.2
−0.3±0.23.1+0.9

−0.8+0.2
−0.3±0.23.1+0.9

−0.8+0.2
−0.3±0.23.1+0.9

−0.8+0.2
−0.3±0.2 1 AAIJ 13U LHCB pp at 7 TeV1The last un
ertainty is due to un
ertainties of B(B0 → J/ψK∗0) and B(J/ψ → e+ e−)bran
hing fra
tion measurements.B(B0 → K∗0 ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.24+0.23

−0.27 OUR AVERAGE1.24+0.23
−0.27 OUR AVERAGE1.24+0.23
−0.27 OUR AVERAGE1.24+0.23
−0.27 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.1.14±0.11+0.11

−0.15 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−1.80±0.36±0.11 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.48+0.14

−0.12±0.04 1 CHATRCHYAN13BL CMS pp at 7 TeV1.16±0.23±0.11 AAIJ 12U LHCB Repl. by AAIJ 13Y1CHATRCHYAN 13BL uses, for this bin, 1.0 < q2 < 2.0 GeV2/
4.B(B0 → K∗0 ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.76 ±0.07 OUR AVERAGE0.76 ±0.07 OUR AVERAGE0.76 ±0.07 OUR AVERAGE0.76 ±0.07 OUR AVERAGE0.759±0.115±0.046 KHACHATRY...16D CMS pp at 8 TeV0.69 ±0.07 ±0.09 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.87 ±0.16 ±0.07 CHATRCHYAN13BL CMS pp at 7 TeV0.84 ±0.28 ±0.06 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.78 ±0.21 ±0.05 AAIJ 12U LHCB Repl. by AAIJ 13YB(B0 → K∗0 ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.87±0.21 OUR AVERAGE1.87±0.21 OUR AVERAGE1.87±0.21 OUR AVERAGE1.87±0.21 OUR AVERAGE2.15±0.18+0.22

−0.28 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−1.62±0.31±0.18 CHATRCHYAN13BL CMS pp at 7 TeV1.73±0.43±0.15 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.02±0.35±0.22 AAIJ 12U LHCB Repl. by AAIJ 13YB(B0 → K∗0 ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.49±0.15 OUR AVERAGE1.49±0.15 OUR AVERAGE1.49±0.15 OUR AVERAGE1.49±0.15 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.1.72±0.11±0.14 KHACHATRY...16D CMS pp at 8 TeV1.19±0.11+0.14

−0.17 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−1.50±0.25±0.25 CHATRCHYAN13BL CMS pp at 7 TeV1.77±0.36±0.12 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.52±0.25±0.19 AAIJ 12U LHCB Repl. by AAIJ 13Y

WEIGHTED AVERAGE
1.49±0.15 (Error scaled by 1.3)

AALTONEN 11AI CDF 0.6
CHATRCHYAN 13BL CMS 0.0
AAIJ 13Y LHCB 2.8
KHACHATRY... 16D CMS 1.7

χ2

       5.1
(Confidence Level = 0.168)

0.5 1 1.5 2 2.5 3 3.5B(B0 → K∗0 ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4) (units 10−7)



1281128112811281See key on page 601 MesonParti
le ListingsB0B(B0 → K∗0 ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.09±0.10 OUR AVERAGE1.09±0.10 OUR AVERAGE1.09±0.10 OUR AVERAGE1.09±0.10 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1.22±0.11±0.09 KHACHATRY...16D CMS pp at 8 TeV1.02±0.11+0.11
−0.15 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.84+0.16

−0.15±0.09 CHATRCHYAN13BL CMS pp at 7 TeV1.34±0.26±0.08 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.15±0.20±0.09 AAIJ 12U LHCB Repl. by AAIJ 13YB(B0 → K∗0 ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.27±0.09 OUR AVERAGE1.27±0.09 OUR AVERAGE1.27±0.09 OUR AVERAGE1.27±0.09 OUR AVERAGE1.26±0.09±0.09 KHACHATRY...16D CMS pp at 8 TeV1.23±0.12+0.15

−0.18 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−1.56±0.18±0.15 CHATRCHYAN13BL CMS pp at 7 TeV0.97±0.26±0.07 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.50±0.24±0.15 AAIJ 12U LHCB Repl. by AAIJ 13YB(B0 → K∗0 ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.78±0.15 OUR AVERAGE1.78±0.15 OUR AVERAGE1.78±0.15 OUR AVERAGE1.78±0.15 OUR AVERAGE1.90±0.20 KHACHATRY...16D CMS pp at 7, 8 TeV1.70±0.15+0.20

−0.25 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−1.42±0.41±0.12 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.20±0.30±0.20 CHATRCHYAN13BL CMS Repl. by KHACHATRYAN 16D2.10±0.30±0.15 AAIJ 12U LHCB Repl. by AAIJ 13YB(B0 → K∗0 ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B0 → K∗0 ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT2.60±0.45±0.172.60±0.45±0.172.60±0.45±0.172.60±0.45±0.17 AALTONEN 11AI CDF pp at 1.96 TeVB(B0 → K0 ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.24+0.22

−0.20 OUR AVERAGE0.24+0.22
−0.20 OUR AVERAGE0.24+0.22
−0.20 OUR AVERAGE0.24+0.22
−0.20 OUR AVERAGE0.21+0.27
−0.23 AAIJ 12AH LHCB pp at 7 TeV0.31±0.37±0.02 AALTONEN 11AI CDF pp at 1.96 TeVB(B0 → K0 ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.24+0.35
−0.30 OUR AVERAGE0.24+0.35
−0.30 OUR AVERAGE0.24+0.35
−0.30 OUR AVERAGE0.24+0.35
−0.30 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.0.07+0.25
−0.21 AAIJ 12AH LHCB pp at 7 TeV0.93±0.49±0.07 AALTONEN 11AI CDF pp at 1.96 TeVB(B0 → K0 ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.08±0.27 OUR AVERAGE1.08±0.27 OUR AVERAGE1.08±0.27 OUR AVERAGE1.08±0.27 OUR AVERAGE1.23±0.31 AAIJ 12AH LHCB pp at 7 TeV0.66±0.51±0.05 AALTONEN 11AI CDF pp at 1.96 TeVB(B0 → K0 ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.27±0.27 OUR AVERAGE0.27±0.27 OUR AVERAGE0.27±0.27 OUR AVERAGE0.27±0.27 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.0.50+0.22
−0.19 AAIJ 12AH LHCB pp at 7 TeV

−0.03±0.22±0.01 AALTONEN 11AI CDF pp at 1.96 TeVB(B0 → K0 ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.29+0.21
−0.15 OUR AVERAGE0.29+0.21
−0.15 OUR AVERAGE0.29+0.21
−0.15 OUR AVERAGE0.29+0.21
−0.15 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.0.20+0.13
−0.09 AAIJ 12AH LHCB pp at 7 TeV0.73±0.26±0.06 AALTONEN 11AI CDF pp at 1.96 TeV

B(B0 → K0 ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.31+0.16
−0.12 OUR AVERAGE0.31+0.16
−0.12 OUR AVERAGE0.31+0.16
−0.12 OUR AVERAGE0.31+0.16
−0.12 OUR AVERAGE0.35+0.21
−0.14 AAIJ 12AH LHCB pp at 7 TeV0.21±0.18±0.16 AALTONEN 11AI CDF pp at 1.96 TeVB(B0 → K0 ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.92 ±0.16 OUR AVERAGE0.92 ±0.16 OUR AVERAGE0.92 ±0.16 OUR AVERAGE0.92 ±0.16 OUR AVERAGE0.916+0.172
−0.157±0.004 1 AAIJ 14M LHCB pp at 7, 8 TeV0.98 ±0.61 ±0.08 AALTONEN 11AI CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.65 +0.45
−0.35 AAIJ 12AH LHCB Repl. by AAIJ 14M1Uses B(B0 → J/ψ(1S)K0) = (0.928 ± 0.013 ± 0.037)× 10−3 for normalisation and

µ+µ− as a lepton pair. Measured in 1.1 < q2 < 6.0 GeV2/
4.B(B0 → K0 ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.27±0.62±0.101.27±0.62±0.101.27±0.62±0.101.27±0.62±0.10 AALTONEN 11AI CDF pp at 1.96 TeVB(B0 → K0 ℓ+ ℓ−) (15.0 < q2 < 22.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (15.0 < q2 < 22.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (15.0 < q2 < 22.0 GeV2/
4)B(B0 → K0 ℓ+ ℓ−) (15.0 < q2 < 22.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.67+0.11
−0.11±0.040.67+0.11
−0.11±0.040.67+0.11
−0.11±0.040.67+0.11
−0.11±0.04 1 AAIJ 14M LHCB pp at 7, 8 TeV1Uses B(B0 → J/ψ(1S)K0) = (0.928 ± 0.013 ± 0.037)× 10−3 for normalisation and
µ+µ− as a lepton pair.FH (B0 → K0µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)FH (B0 → K0µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)FH (B0 → K0µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)FH (B0 → K0µ+µ−) (1.1 < q2 < 6.0 GeV2/
4)FH is a fra
tional 
ontribution of (pseudo) s
alar and tensor amplitudes to the de
aywidth in the massless muon approximation.VALUE DOCUMENT ID TECN COMMENT0.78±0.46±0.090.78±0.46±0.090.78±0.46±0.090.78±0.46±0.09 1 AAIJ 14O LHCB pp at 7, 8 TeV1AAIJ 14O reports 68% C.L. interval, whi
h we en
ode as midpoint with un
ertainty ashalf of the width of interval.FH (B0 → K0µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)FH (B0 → K0µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)FH (B0 → K0µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)FH (B0 → K0µ+µ−) (15.0 < q2 < 22.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.34±0.25±0.030.34±0.25±0.030.34±0.25±0.030.34±0.25±0.03 1 AAIJ 14O LHCB pp at 7, 8 TeV1AAIJ 14O reports 68% C.L. interval, whi
h we en
ode as midpoint with un
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lusive bran
hing fra
tions, e.g., B → D± anything, the treatmentof multiple D's in the �nal state must be de�ned. One possibility wouldbe to 
ount the number of events with one-or-more D's and divide bythe total number of B's. Another possibility would be to 
ount the to-tal number of D's and divide by the total number of B's, whi
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al if onlyone D is allowed in the �nal state. Even though the \one-or-more" def-inition seems sensible, for pra
ti
al reasons in
lusive bran
hing fra
tionsare almost always measured using the multipli
ity de�nition. For heavy�nal state parti
les, authors 
all their results in
lusive bran
hing fra
tionswhile for light parti
les some authors 
all their results multipli
ities. In theB se
tions, we list all results as in
lusive bran
hing fra
tions, adopting amultipli
ity de�nition. This means that in
lusive bran
hing fra
tions 
anex
eed 100% and that in
lusive partial widths 
an ex
eed total widths,just as in
lusive 
ross se
tions 
an ex
eed total 
ross se
tion.B modes are 
harge 
onjugates of the modes below. Rea
tions indi
atethe weak de
ay vertex and do not in
lude mixing. S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modes�1 e+νe anything [a℄�2 µ+νµ anything [a℄�3 ℓ+νℓ anything [a,b℄ ( 10.86 ± 0.16 ) %�4 D− ℓ+νℓ anything [b℄ ( 2.8 ± 0.9 ) %�5 D0 ℓ+νℓ anything [b℄ ( 7.3 ± 1.5 ) %�6 D ℓ+νℓ ( 2.42 ± 0.12 ) %�7 D∗− ℓ+νℓ anything [
℄ ( 6.7 ± 1.3 )× 10−3�8 D∗0 ℓ+νℓ anything�9 D∗ ℓ+νℓ [d℄ ( 4.95 ± 0.11 ) %�10 D∗∗ ℓ+νℓ [b,e℄ ( 2.7 ± 0.7 ) %�11 D1(2420)ℓ+νℓ anything ( 3.8 ± 1.3 )× 10−3 S=2.4�12 D πℓ+νℓ anything +D∗πℓ+ νℓ anything ( 2.6 ± 0.5 ) % S=1.5�13 D πℓ+νℓ anything ( 1.5 ± 0.6 ) %�14 D∗πℓ+ νℓ anything ( 1.9 ± 0.4 ) %

�15 D∗2(2460)ℓ+νℓ anything ( 4.4 ± 1.6 )× 10−3�16 D∗−π+ ℓ+νℓ anything ( 1.00 ± 0.34 ) %�17 D π+π− ℓ+νℓ ( 1.62 ± 0.32 )× 10−3�18 D∗π+π− ℓ+νℓ ( 9.4 ± 3.2 )× 10−4�19 D−s ℓ+νℓ anything [b℄ < 7 × 10−3 CL=90%�20 D−s ℓ+νℓK+anything [b℄ < 5 × 10−3 CL=90%�21 D−s ℓ+νℓK0anything [b℄ < 7 × 10−3 CL=90%�22 X
 ℓ+νℓ ( 10.65 ± 0.16 ) %�23 Xu ℓ+νℓ ( 2.14 ± 0.31 )× 10−3�24 K+ ℓ+νℓ anything [b℄ ( 6.3 ± 0.6 ) %�25 K− ℓ+νℓ anything [b℄ ( 10 ± 4 )× 10−3�26 K0/K0 ℓ+νℓ anything [b℄ ( 4.6 ± 0.5 ) %�27 D τ+ ντ ( 9.8 ± 1.3 )× 10−3�28 D∗ τ+ ντ ( 1.58 ± 0.12 ) %D, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modes�29 D± anything ( 22.9 ± 1.3 ) %�30 D0 /D0 anything ( 61.8 ± 2.9 ) % S=1.3�31 D∗(2010)± anything ( 22.5 ± 1.5 ) %�32 D∗(2007)0 anything ( 26.0 ± 2.7 ) %�33 D±s anything [f ℄ ( 8.3 ± 0.8 ) %�34 D∗±s anything ( 6.3 ± 1.0 ) %�35 D∗±s D (∗) ( 3.4 ± 0.6 ) %�36 DDs0(2317) seen�37 DDsJ(2457) seen�38 D (∗)D (∗)K0 + D (∗)D (∗)K± [f,g ℄ ( 7.1 + 2.7
− 1.7 ) %�39 b → 
 
 s ( 22 ± 4 ) %�40 Ds (∗)D (∗) [f,g ℄ ( 3.9 ± 0.4 ) %�41 D∗D∗(2010)± [f ℄ < 5.9 × 10−3 CL=90%�42 DD∗(2010)± + D∗D± [f ℄ < 5.5 × 10−3 CL=90%�43 DD± [f ℄ < 3.1 × 10−3 CL=90%�44 Ds (∗)±D (∗)X (nπ±) [f,g ℄ ( 9 + 5
− 4 ) %�45 D∗(2010)γ < 1.1 × 10−3 CL=90%�46 D+s π− , D∗+s π− , D+s ρ− ,D∗+s ρ− , D+s π0 , D∗+s π0 ,D+s η , D∗+s η , D+s ρ0 ,D∗+s ρ0 , D+s ω , D∗+s ω

[f ℄ < 4 × 10−4 CL=90%�47 Ds1(2536)+ anything < 9.5 × 10−3 CL=90%Charmonium modesCharmonium modesCharmonium modesCharmonium modes�48 J/ψ(1S)anything ( 1.094± 0.032) % S=1.1�49 J/ψ(1S)(dire
t) anything ( 7.8 ± 0.4 )× 10−3 S=1.1�50 ψ(2S)anything ( 3.07 ± 0.21 )× 10−3�51 χ
1(1P)anything ( 3.86 ± 0.27 )× 10−3�52 χ
1(1P)(dire
t) anything ( 3.24 ± 0.25 )× 10−3�53 χ
2(1P)anything ( 1.4 ± 0.4 )× 10−3 S=1.9�54 χ
2(1P)(dire
t) anything ( 1.65 ± 0.31 )× 10−3�55 η
 (1S)anything < 9 × 10−3 CL=90%�56 K X (3872), X → D0D0π0 ( 1.2 ± 0.4 )× 10−4�57 K X (3872), X → D∗0D0 ( 8.0 ± 2.2 )× 10−5�58 K X (3940), X → D∗0D0 < 6.7 × 10−5 CL=90%�59 K X (3915), X → ωJ/ψ [h℄ ( 7.1 ± 3.4 )× 10−5K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modes�60 K± anything [f ℄ ( 78.9 ± 2.5 ) %�61 K+anything ( 66 ± 5 ) %�62 K− anything ( 13 ± 4 ) %�63 K0/K0 anything [f ℄ ( 64 ± 4 ) %�64 K∗(892)± anything ( 18 ± 6 ) %�65 K∗(892)0 /K∗(892)0 anything [f ℄ ( 14.6 ± 2.6 ) %�66 K∗(892)γ ( 4.2 ± 0.6 )× 10−5�67 ηK γ ( 8.5 + 1.8
− 1.6 )× 10−6�68 K1(1400)γ < 1.27 × 10−4 CL=90%�69 K∗2(1430)γ ( 1.7 + 0.6
− 0.5 )× 10−5�70 K2(1770)γ < 1.2 × 10−3 CL=90%�71 K∗3(1780)γ < 3.7 × 10−5 CL=90%�72 K∗4(2045)γ < 1.0 × 10−3 CL=90%�73 K η′(958) ( 8.3 ± 1.1 )× 10−5�74 K∗(892)η′(958) ( 4.1 ± 1.1 )× 10−6�75 K η < 5.2 × 10−6 CL=90%�76 K∗(892)η ( 1.8 ± 0.5 )× 10−5



1286128612861286Meson Parti
le ListingsB±/B0 ADMIXTURE�77 K φφ ( 2.3 ± 0.9 )× 10−6�78 b → s γ ( 3.49 ± 0.19 )× 10−4�79 b → d γ ( 9.2 ± 3.0 )× 10−6�80 b → s gluon < 6.8 % CL=90%�81 η anything ( 2.6 + 0.5
− 0.8 )× 10−4�82 η′ anything ( 4.2 ± 0.9 )× 10−4�83 K+gluon (
harmless) < 1.87 × 10−4 CL=90%�84 K0gluon (
harmless) ( 1.9 ± 0.7 )× 10−4Light un
avored meson modesLight un
avored meson modesLight un
avored meson modesLight un
avored meson modes�85 ργ ( 1.39 ± 0.25 )× 10−6 S=1.2�86 ρ/ωγ ( 1.30 ± 0.23 )× 10−6 S=1.2�87 π± anything [f,i ℄ ( 358 ± 7 ) %�88 π0 anything ( 235 ±11 ) %�89 η anything ( 17.6 ± 1.6 ) %�90 ρ0 anything ( 21 ± 5 ) %�91 ω anything < 81 % CL=90%�92 φ anything ( 3.43 ± 0.12 ) %�93 φK∗(892) < 2.2 × 10−5 CL=90%�94 b → d gluon�95 π+ gluon (
harmless) ( 3.7 ± 0.8 )× 10−4Baryon modesBaryon modesBaryon modesBaryon modes�96 �+
 / �−
 anything ( 3.5 ± 0.4 ) %�97 �+
 anything < 1.3 % CL=90%�98 �−
 anything < 7 % CL=90%�99 �−
 ℓ+ anything < 9 × 10−4 CL=90%�100 �−
 e+ anything < 1.8 × 10−3 CL=90%�101 �−
 µ+anything < − 1.4 × 10−3 CL=90%�102 �−
 p anything ( 2.02 ± 0.33 ) %�103 �−
 pe+νe < 8 × 10−4 CL=90%�104 �−−
 anything ( 3.3 ± 1.7 )× 10−3�105 �−
 anything < 8 × 10−3 CL=90%�106 �0
 anything ( 3.6 ± 1.7 )× 10−3�107 �0
 N (N = p or n) < 1.2 × 10−3 CL=90%�108 � 0
 anything, � 0
 → �−π+ ( 1.93 ± 0.30 )× 10−4 S=1.1�109 �+
 , �+
 → �−π+π+ ( 4.5 + 1.3
− 1.2 )× 10−4�110 p/p anything [f ℄ ( 8.0 ± 0.4 ) %�111 p/p (dire
t) anything [f ℄ ( 5.5 ± 0.5 ) %�112 pe+νe anything < 5.9 × 10−4 CL=90%�113 �/� anything [f ℄ ( 4.0 ± 0.5 ) %�114 � anything seen�115 � anything seen�116 �−/�+anything [f ℄ ( 2.7 ± 0.6 )× 10−3�117 baryons anything ( 6.8 ± 0.6 ) %�118 pp anything ( 2.47 ± 0.23 ) %�119 �p/�p anything [f ℄ ( 2.5 ± 0.4 ) %�120 �� anything < 5 × 10−3 CL=90%Lepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes or�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�121 s e+ e− B1 ( 6.7 ± 1.7 )× 10−6 S=2.0�122 sµ+µ− B1 ( 4.3 ± 1.0 )× 10−6�123 s ℓ+ ℓ− B1 [b℄ ( 5.8 ± 1.3 )× 10−6 S=1.8�124 πℓ+ ℓ− B1 < 5.9 × 10−8 CL=90%�125 πe+ e− B1 < 1.10 × 10−7 CL=90%�126 πµ+µ− B1 < 5.0 × 10−8 CL=90%�127 K e+ e− B1 ( 4.4 ± 0.6 )× 10−7�128 K∗(892)e+ e− B1 ( 1.19 ± 0.20 )× 10−6 S=1.2�129 K µ+µ− B1 ( 4.4 ± 0.4 )× 10−7�130 K∗(892)µ+µ− B1 ( 1.06 ± 0.09 )× 10−6�131 K ℓ+ ℓ− B1 ( 4.8 ± 0.4 )× 10−7�132 K∗(892)ℓ+ ℓ− B1 ( 1.05 ± 0.10 )× 10−6�133 K ν ν B1 < 1.7 × 10−5 CL=90%�134 K∗ν ν B1 < 7.6 × 10−5 CL=90%�135 s e±µ∓ LF [f ℄ < 2.2 × 10−5 CL=90%�136 πe±µ∓ LF < 9.2 × 10−8 CL=90%�137 ρe±µ∓ LF < 3.2 × 10−6 CL=90%�138 K e±µ∓ LF < 3.8 × 10−8 CL=90%�139 K∗(892)e±µ∓ LF < 5.1 × 10−7 CL=90%[a℄ These values are model dependent.[b℄ An ℓ indi
ates an e or a µ mode, not a sum over these modes.[
 ℄ Here \anything" means at least one parti
le observed.

[d ℄ This is a B(B0 → D∗− ℓ+νℓ) value.[e℄ D∗∗ stands for the sum of the D(1 1P1), D(1 3P0), D(1 3P1), D(1 3P2),D(2 1S0), and D(2 1S1) resonan
es.[f ℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.[g ℄ D(∗)D(∗) stands for the sum of D∗D∗, D∗D, DD∗, and DD.[h℄ X (3915) denotes a near-threshold enhan
ement in the ωJ/ψ mass spe
-trum.[i ℄ In
lusive bran
hing fra
tions have a multipli
ity de�nition and 
an begreater than 100%.B±/B0 ADMIXTURE BRANCHING RATIOSB±/B0 ADMIXTURE BRANCHING RATIOSB±/B0 ADMIXTURE BRANCHING RATIOSB±/B0 ADMIXTURE BRANCHING RATIOS�(ℓ+νℓ anything)/�total �3/��(ℓ+νℓ anything)/�total �3/��(ℓ+νℓ anything)/�total �3/��(ℓ+νℓ anything)/�total �3/�These bran
hing fra
tion values are model dependent.\OUR EVALUATION" assumes lepton universality and is an average usingres
aled values of the data listed below. The average and res
aling were per-formed by the Heavy Flavor Averaging Group (HFAG) and are des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/. The averaging/res
aling pro
edure takesinto a

ount 
orrelations between the measurements.VALUE DOCUMENT ID TECN COMMENT0.1086±0.0016 OUR EVALUATION0.1086±0.0016 OUR EVALUATION0.1086±0.0016 OUR EVALUATION0.1086±0.0016 OUR EVALUATION0.1044±0.0025 OUR AVERAGE0.1044±0.0025 OUR AVERAGE0.1044±0.0025 OUR AVERAGE0.1044±0.0025 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.0.1028±0.0018±0.0024 1 URQUIJO 07 BELL e+ e− → �(4S)0.0996±0.0019±0.0032 2 AUBERT,B 06Y BABR e+ e− → �(4S)0.1091±0.0009±0.0024 3 MAHMOOD 04 CLEO e+ e− → �(4S)0.097 ±0.005 ±0.004 4 ALBRECHT 93H ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1085±0.0021±0.0036 5 OKABE 05 BELL Repl. by URQUIJO 070.1083±0.0016±0.0006 6 AUBERT 04X BABR Repl. by AUBERT,B 06Y0.1036±0.0006±0.0023 7 AUBERT,B 04A BABR e+ e− → �(4S)0.1087±0.0018±0.0030 8 AUBERT 03 BABR Repl. by AUBERT 04X0.109 ±0.0012±0.0049 9 ABE 02Y BELL Repl. by OKABE 050.1049±0.0017±0.0043 10 BARISH 96B CLE2 Repl. by MAHMOOD 040.108 ±0.002 ±0.0056 11 HENDERSON 92 CLEO e+ e− → �(4S)0.100 ±0.004 ±0.003 12 YANAGISAWA 91 CSB2 e+ e− → �(4S)0.103 ±0.006 ±0.002 13 ALBRECHT 90H ARG Dire
t e at �(4S)0.100 ±0.006 ±0.002 14 ALBRECHT 90H ARG Dire
t µ at �(4S)0.117 ±0.004 ±0.010 15 WACHS 89 CBAL Dire
t e at �(4S)0.120 ±0.007 ±0.005 CHEN 84 CLEO Dire
t e at �(4S)0.108 ±0.006 ±0.01 CHEN 84 CLEO Dire
t µ at �(4S)0.112 ±0.009 ±0.01 LEVMAN 84 CUSB Dire
t µ at �(4S)0.132 ±0.008 ±0.014 16 KLOPFEN... 83B CUSB Dire
t e at �(4S)1URQUIJO 07 report a measurement of (10.07 ± 0.18 ± 0.21)% for the partial bran
hingfra
tion of B → e νe X
 de
ay with ele
tron energy above 0.6 GeV. We 
onverted theresult to B → e νe X bran
hing fra
tion.2The measurements are obtained for 
harged and neutral B mesons partial rates of semi-leptoni
 de
ay to ele
trons with momentum above 0.6 GeV/
 in the B rest frame. Thebest pre
ision on the ratio is a
hieved for a momentum threshold of 1.0 GeV: B(B+ →e+ νe X ) / B(B0 → e+ νe X ) = 1.074 ± 0.041 ± 0.026.3Uses 
harge and angular 
orrelations in �(4S) events with a high-momentum lepton andan additional ele
tron.4ALBRECHT 93H analysis performed using tagged semileptoni
 de
ays of the B. Thiste
hnique is almost model independent for the lepton bran
hing ratio.5The measurements are obtained for 
harged and neutral B mesons partial rates of semi-leptoni
 de
ay to ele
trons with momentum above 0.6 GeV/
 in the B rest frame, andtheir ratio of B(B+ → e+ νe X )/B(B0 → e+ νe X ) = 1.08 ± 0.05 ± 0.02.6The semileptoni
 bran
hing ratio, ∣

∣V
b ∣

∣ and other heavy-quark parameters are deter-mined from a simultaneous �t to moments of the hadroni
-mass and lepton-energy dis-tribution.7Uses the high-momentum lepton tag method and requires the ele
tron energy above 0.6GeV.8Uses the high-momentum lepton tag method. They also report ∣

∣V
 b ∣

∣ = 0.0423 ±0.0007(exp) ±0.0020(theo.).9Uses the high-momentum lepton tag method. ABE 02Y also reports ∣

∣V
 b ∣

∣ = 0.0408 ±0.0010(exp) ±0.0025(theo.). The se
ond error is due to un
ertainties of theoreti
alinputs.10BARISH 96B analysis performed using tagged semileptoni
 de
ays of the B. This te
h-nique is almost model independent for the lepton bran
hing ratio.11HENDERSON 92 measurement employs e and µ. The systemati
 error 
ontains 0.004 inquadrature from model dependen
e. The authors average a variation of the Isgur, S
ora,Grinstein, and Wise model with that of the Altarelli-Cabibbo-Corb�o-Maiani-Martinellimodel for semileptoni
 de
ays to 
orre
t the a

eptan
e.12YANAGISAWA 91 also measures an average semileptoni
 bran
hing ratio at the �(5S)of 9.6{10.5% depending on assumptions about the relative produ
tion of di�erent Bmeson spe
ies.13ALBRECHT 90H uses the model of ALTARELLI 82 to 
orre
t over all lepton momenta.0.099 ± 0.006 is obtained using ISGUR 89B.14ALBRECHT 90H uses the model of ALTARELLI 82 to 
orre
t over all lepton momenta.0.097 ± 0.006 is obtained using ISGUR 89B.15Using data above p(e) = 2.4 GeV, WACHS 89 determine σ(B → e ν up)/σ(B →e ν 
harm) < 0.065 at 90% CL.16Ratio σ(b → e ν up)/σ(b → e ν 
harm) <0.055 at CL = 90%.



1287128712871287See key on page 601 Meson Parti
le ListingsB±/B0 ADMIXTURE
WEIGHTED AVERAGE
0.1044±0.0025 (Error scaled by 1.5)

ALBRECHT 93H ARG 1.4
MAHMOOD 04 CLEO 3.3
AUBERT,B 06Y BABR 1.7
URQUIJO 07 BELL 0.3

χ2

       6.6
(Confidence Level = 0.084)

0.08 0.09 0.1 0.11 0.12 0.13�(

ℓ+νℓ anything)/�total�(D− ℓ+νℓ anything)/�(

ℓ+νℓ anything) �4/�3�(D− ℓ+νℓ anything)/�(

ℓ+νℓ anything) �4/�3�(D− ℓ+νℓ anything)/�(

ℓ+νℓ anything) �4/�3�(D− ℓ+νℓ anything)/�(

ℓ+νℓ anything) �4/�3
ℓ = e or µ.VALUE DOCUMENT ID TECN COMMENT0.26±0.07±0.040.26±0.07±0.040.26±0.07±0.040.26±0.07±0.04 1 FULTON 91 CLEO e+ e− → �(4S)1 FULTON 91 uses B(D+ → K−π+π+) = (9.1±1.3±0.4)% as measured by MARK III.�(D0 ℓ+νℓ anything)/�(

ℓ+νℓ anything) �5/�3�(D0 ℓ+νℓ anything)/�(

ℓ+νℓ anything) �5/�3�(D0 ℓ+νℓ anything)/�(

ℓ+νℓ anything) �5/�3�(D0 ℓ+νℓ anything)/�(

ℓ+νℓ anything) �5/�3
ℓ = e or µ.VALUE DOCUMENT ID TECN COMMENT0.67±0.09±0.100.67±0.09±0.100.67±0.09±0.100.67±0.09±0.10 1 FULTON 91 CLEO e+ e− → �(4S)1 FULTON 91 uses B(D0 → K−π+) = (4.2 ± 0.4 ± 0.4)% as measured by MARK III.�(D ℓ+νℓ

)/�(

ℓ+νℓ anything) �6/�3�(D ℓ+νℓ

)/�(

ℓ+νℓ anything) �6/�3�(D ℓ+νℓ

)/�(

ℓ+νℓ anything) �6/�3�(D ℓ+νℓ

)/�(

ℓ+νℓ anything) �6/�3VALUE DOCUMENT ID TECN COMMENT0.223±0.006±0.0090.223±0.006±0.0090.223±0.006±0.0090.223±0.006±0.009 1 AUBERT 10 BABR e+ e− → �(4S)1Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�(D∗− ℓ+νℓ anything)/�total �7/��(D∗− ℓ+νℓ anything)/�total �7/��(D∗− ℓ+νℓ anything)/�total �7/��(D∗− ℓ+νℓ anything)/�total �7/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.67±0.08±0.100.67±0.08±0.100.67±0.08±0.100.67±0.08±0.10 ABDALLAH 04D DLPH e+ e− → Z0
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.6 ±0.3 ±0.1 1 BARISH 95 CLE2 e+ e− → �(4S)1BARISH 95 use B(D0 → K−π+) = (3.91 ± 0.08 ± 0.17)% and B(D∗+ → D0π+)= (68.1 ± 1.0 ± 1.3)%.�(D∗0 ℓ+νℓ anything)/�total �8/��(D∗0 ℓ+νℓ anything)/�total �8/��(D∗0 ℓ+νℓ anything)/�total �8/��(D∗0 ℓ+νℓ anything)/�total �8/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.6±0.6±0.1 1 BARISH 95 CLE2 e+ e− → �(4S)1BARISH 95 use B(D0 → K−π+) = (3.91 ± 0.08 ± 0.17)%, B(D∗+ → D0π+) =(68.1 ± 1.0 ± 1.3)%, B(D∗0 → D0π0) = (63.6 ± 2.3 ± 3.3)%.�(D∗∗ ℓ+νℓ

)/�total �10/��(D∗∗ ℓ+νℓ

)/�total �10/��(D∗∗ ℓ+νℓ

)/�total �10/��(D∗∗ ℓ+νℓ

)/�total �10/�D∗∗ stands for the sum of the D(1 1P1), D(1 3P0), D(1 3P1), D(1 3P2), D(2 1S0),and D(2 1S1) resonan
es. ℓ = e or µ, not sum over e and µ modes.VALUE CL% EVTS DOCUMENT ID TECN COMMENT0.027±0.005±0.0050.027±0.005±0.0050.027±0.005±0.0050.027±0.005±0.005 63 1 ALBRECHT 93 ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.028 95 2 BARISH 95 CLE2 e+ e− → �(4S)1ALBRECHT 93 assumes the GISW model to 
orre
t for unseen modes. Using the BHKTmodel, the result be
omes 0.023 ± 0.006 ± 0.004. Assumes B(D∗+ → D0π+) =68.1%, B(D0 → K−π+) = 3.65%, B(D0 → K−π+π−π+) = 7.5%. We havetaken their average e and µ value.2BARISH 95 use B(D0 → K−π+) = (3.91 ± 0.08 ± 0.17)%, assume all nonresonant
hannels are zero, and use GISW model for relative abundan
es of D∗∗ states.�(D1(2420)ℓ+νℓ anything)/�total �11/��(D1(2420)ℓ+νℓ anything)/�total �11/��(D1(2420)ℓ+νℓ anything)/�total �11/��(D1(2420)ℓ+νℓ anything)/�total �11/�VALUE DOCUMENT ID TECN COMMENT0.0038±0.0013 OUR AVERAGE0.0038±0.0013 OUR AVERAGE0.0038±0.0013 OUR AVERAGE0.0038±0.0013 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4.0.0033±0.0006 1 ABAZOV 05O D0 pp at 1.96 TeV0.0074±0.0016 2 BUSKULIC 97B ALEP e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 3 BUSKULIC 95B ALEP Repl. byBUSKULIC 97B1Assumes B(D1 → D∗π) = 1, B(D1 → D∗π±) = 2/3, and B(b → B) =0.397.2BUSKULIC 97B assumes B(D1(2420) → D∗π) = 1, B(D1(2420) → D∗π±) = 2/3,and B(b → B) = 0.378 ± 0.022.3BUSKULIC 95B reports fB × B(B → D1(2420)0 ℓ+ νℓ anything) × B(D1(2420)0 →D∗(2010)−π+) = (2.04 ± 0.58 ± 0.34)10−3, where fB is the produ
tion fra
tion fora single B 
harge state.

[�(Dπℓ+ νℓ anything) +�(D∗πℓ+ νℓ anything)]/�total �12/�[�(Dπℓ+ νℓ anything) +�(D∗πℓ+ νℓ anything)]/�total �12/�[�(Dπℓ+ νℓ anything) +�(D∗πℓ+ νℓ anything)]/�total �12/�[�(Dπℓ+ νℓ anything) +�(D∗πℓ+ νℓ anything)]/�total �12/�VALUE DOCUMENT ID TECN COMMENT0.026 ±0.005 OUR AVERAGE0.026 ±0.005 OUR AVERAGE0.026 ±0.005 OUR AVERAGE0.026 ±0.005 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.0.0340±0.0052±0.0032 1 ABREU 00R DLPH e+ e− → Z0.0226±0.0029±0.0033 2 BUSKULIC 97B ALEP e+ e− → Z1Assumes no 
ontribution from Bs and b baryons. Further assumes 
ontributions fromsingle pion (D π and D∗π) states only, allowing isospin 
onservation to relate the relative
π0 and π+ rates.2BUSKULIC 97B assumes B(b → B) = 0.378 ± 0.022 and uses isospin invarian
e byassuming that all observed D0π+, D∗0π+, D+π−, and D∗+π− are from D∗∗ states.A 
orre
tion has been applied to a

ount for the produ
tion of B0s and �0b .�(D πℓ+νℓ anything)/�total �13/��(D πℓ+νℓ anything)/�total �13/��(D πℓ+νℓ anything)/�total �13/��(D πℓ+νℓ anything)/�total �13/�VALUE DOCUMENT ID TECN COMMENT0.0154±0.00610.0154±0.00610.0154±0.00610.0154±0.0061 ABREU 00R DLPH e+ e− → Z�(D∗πℓ+ νℓ anything)/�total �14/��(D∗πℓ+ νℓ anything)/�total �14/��(D∗πℓ+ νℓ anything)/�total �14/��(D∗πℓ+ νℓ anything)/�total �14/�VALUE DOCUMENT ID TECN COMMENT0.0186±0.00380.0186±0.00380.0186±0.00380.0186±0.0038 ABREU 00R DLPH e+ e− → Z�(D∗2(2460)ℓ+νℓ anything)/�total �15/��(D∗2(2460)ℓ+νℓ anything)/�total �15/��(D∗2(2460)ℓ+νℓ anything)/�total �15/��(D∗2(2460)ℓ+νℓ anything)/�total �15/�VALUE CL% DOCUMENT ID TECN COMMENT0.0044±0.00160.0044±0.00160.0044±0.00160.0044±0.0016 1 ABAZOV 05O D0 pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.0065 95 2 BUSKULIC 97B ALEP e+ e− → Znot seen 3 BUSKULIC 95B ALEP e+ e− → Z1Assumes B(D∗2 → D∗π±) = 0.30 ± 0.06 and B(b → B) =0.397.2A revised number based on BUSKULIC 97B whi
h assumes B(D∗2(2460) → D∗π±) =0.20 and B(b → B) = 0.378 ± 0.022.3BUSKULIC 95B reports fB × B(B → D∗2(2460)0 ℓ+ νℓ anything) × B(D∗2(2460)0 →D∗(2010)−π+) ≤ 0.81× 10−3 at CL=95%, where fB is the produ
tion fra
tion for asingle B 
harge state.�(B →D∗2(2460) ℓ+ νℓ anything)×B(D∗2(2460) →D∗− π+)�(B →D1(2420) ℓ+ νℓ anything)×B(D1(2420) →D∗− π+)�(B →D∗2(2460) ℓ+ νℓ anything)×B(D∗2(2460) →D∗− π+)�(B →D1(2420) ℓ+ νℓ anything)×B(D1(2420) →D∗− π+)�(B →D∗2(2460) ℓ+ νℓ anything)×B(D∗2(2460) →D∗− π+)�(B →D1(2420) ℓ+ νℓ anything)×B(D1(2420) →D∗− π+)�(B →D∗2(2460) ℓ+ νℓ anything)×B(D∗2(2460) →D∗− π+)�(B →D1(2420) ℓ+ νℓ anything)×B(D1(2420) →D∗− π+)VALUE DOCUMENT ID TECN COMMENT0.39±0.09±0.120.39±0.09±0.120.39±0.09±0.120.39±0.09±0.12 ABAZOV 05O D0 pp at 1.96 TeV�(D∗−π+ ℓ+νℓ anything)/�total �16/��(D∗−π+ ℓ+νℓ anything)/�total �16/��(D∗−π+ ℓ+νℓ anything)/�total �16/��(D∗−π+ ℓ+νℓ anything)/�total �16/�In
ludes resonant and nonresonant 
ontributions.VALUE (units 10−3) DOCUMENT ID TECN COMMENT10.0±2.7±2.110.0±2.7±2.110.0±2.7±2.110.0±2.7±2.1 1 BUSKULIC 95B ALEP e+ e− → Z1BUSKULIC 95B reports fB × B(B → D∗(2010)−π+ ℓ+ νℓ anything) = (3.7 ± 1.0 ±0.7)10−3. Above value assumes fB = 0.37 ± 0.03.�(D π+π− ℓ+νℓ

)/�(D ℓ+νℓ

) �17/�6�(D π+π− ℓ+νℓ

)/�(D ℓ+νℓ

) �17/�6�(D π+π− ℓ+νℓ

)/�(D ℓ+νℓ

) �17/�6�(D π+π− ℓ+νℓ

)/�(D ℓ+νℓ

) �17/�6VALUE (units 10−2) DOCUMENT ID TECN COMMENT6.7±1.0±0.86.7±1.0±0.86.7±1.0±0.86.7±1.0±0.8 1 LEES 16 BABR e+ e− → �(4S)1Measurement used ele
trons and muons as leptons.�(D∗π+π− ℓ+νℓ

)/�(D∗ ℓ+νℓ

) �18/�9�(D∗π+π− ℓ+νℓ

)/�(D∗ ℓ+νℓ

) �18/�9�(D∗π+π− ℓ+νℓ

)/�(D∗ ℓ+νℓ

) �18/�9�(D∗π+π− ℓ+νℓ

)/�(D∗ ℓ+νℓ

) �18/�9VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.9±0.5±0.41.9±0.5±0.41.9±0.5±0.41.9±0.5±0.4 1 LEES 16 BABR e+ e− → �(4S)1Measurement used ele
trons and muons as leptons.�(D−s ℓ+νℓ anything)/�total �19/��(D−s ℓ+νℓ anything)/�total �19/��(D−s ℓ+νℓ anything)/�total �19/��(D−s ℓ+νℓ anything)/�total �19/�VALUE CL% DOCUMENT ID TECN COMMENT
<7× 10−3<7× 10−3<7× 10−3<7× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 0.012 from a measurement of [�(B → D−s ℓ+ νℓ anything)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale toour best value B(D+s → φπ+) = 4.5× 10−2.�(D−s ℓ+νℓK+ anything)/�total �20/��(D−s ℓ+νℓK+ anything)/�total �20/��(D−s ℓ+νℓK+anything)/�total �20/��(D−s ℓ+νℓK+anything)/�total �20/�VALUE CL% DOCUMENT ID TECN COMMENT
<5× 10−3<5× 10−3<5× 10−3<5× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93Ereports < 0.008 from a measurement of [�(B → D−s ℓ+ νℓK+anything)/�total℄ ×[B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.027, whi
h we res
ale to our bestvalue B(D+s → φπ+) = 4.5× 10−2.�(D−s ℓ+νℓK0 anything)/�total �21/��(D−s ℓ+νℓK0 anything)/�total �21/��(D−s ℓ+νℓK0anything)/�total �21/��(D−s ℓ+νℓK0anything)/�total �21/�VALUE CL% DOCUMENT ID TECN COMMENT
<7× 10−3<7× 10−3<7× 10−3<7× 10−3 90 1 ALBRECHT 93E ARG e+ e− → �(4S)1ALBRECHT 93E reports < 0.012 froma measurement of [�(B → D−s ℓ+ νℓK0 anything)/�total℄ × [B(D+s → φπ+)℄ as-suming B(D+s → φπ+) = 0.027, whi
h we res
ale to our best value B(D+s → φπ+)= 4.5× 10−2.



1288128812881288MesonParti
le ListingsB±/B0ADMIXTURE�(X
 ℓ+νℓ

)/�total �22/��(X
 ℓ+νℓ

)/�total �22/��(X
 ℓ+νℓ

)/�total �22/��(X
 ℓ+νℓ

)/�total �22/�\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE DOCUMENT ID TECN COMMENT0.1065±0.0016 OUR EVALUATION0.1065±0.0016 OUR EVALUATION0.1065±0.0016 OUR EVALUATION0.1065±0.0016 OUR EVALUATION0.1058±0.0015 OUR AVERAGE0.1058±0.0015 OUR AVERAGE0.1058±0.0015 OUR AVERAGE0.1058±0.0015 OUR AVERAGE0.1064±0.0017±0.0006 1 AUBERT 10A BABR e+ e− → �(4S)0.1044±0.0019±0.0022 2 URQUIJO 07 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1061±0.0016±0.0006 3 AUBERT 04X BABR Repl. by AUBERT 10A1Obtained from a 
ombined �t to the moments of observed spe
tra in in
lusive B →X
 ℓ+ νℓ de
ay.2Measured the independent B+ and B0 partial bran
hing fra
tions with ele
tron energyabove 0.4 GeV.3The semileptoni
 bran
hing ratio, ∣

∣V
b ∣

∣ and other heavy-quark parameters are deter-mined from a simultaneous �t to moments of the hadroni
-mass and lepton-energy dis-tribution.�(Xu ℓ+νℓ

)/�total �23/��(Xu ℓ+νℓ

)/�total �23/��(Xu ℓ+νℓ

)/�total �23/��(Xu ℓ+νℓ

)/�total �23/�\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.14 ±0.31 OUR EVALUATION2.14 ±0.31 OUR EVALUATION2.14 ±0.31 OUR EVALUATION2.14 ±0.31 OUR EVALUATION2.01 ±0.15 ±0.25 1 LEES 12R BABR e+ e− → �(4S)2.27 ±0.26 +0.37
−0.33 2 AUBERT 06H BABR e+ e− → �(4S)2.53 ±0.24 ±0.24 3 AUBERT,B 05X BABR e+ e− → �(4S)2.80 ±0.52 ±0.41 4 LIMOSANI 05 BELL e+ e− → �(4S)1.77 ±0.29 ±0.38 5 BORNHEIM 02 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.963±0.173±0.159 6 URQUIJO 10 BELL e+ e− → �(4S)1.18 ±0.09 ±0.07 7 AUBERT 08AS BABR Repl. by LEES 12R2.24 ±0.27 ±0.47 8,9 AUBERT 04I BABR Repl. by AUBERT,B 05X1Measures several partial bran
hing fra
tions in di�erent phase spa
e regions. The mostpre
ise result on the full bran
hing fra
tion is obtained in the region for lepton momentumin B rest frame p∗ℓ > 1 GeV/
, where the measured partial bran
hing fra
tion is �B= (1.80 ± 0.13 ± 0.15)× 10−3. The a

eptan
e in that region is reported in a private
ommuni
ation by the Authors to be 0.894. The 
orresponding ∣

∣Vub
∣

∣ from the BLNPmethod is (4.28 ± 0.15 ± 0.18 ± 0.19)× 10−3, where the last un
ertainty 
omes fromtheoreti
al predi
tion.2Obtained from the partial rate �B = (0.572 ± 0.041 ± 0.065)× 10−3 for the ele
tronmomentum interval of 2.0{2.6 GeV/
 based on BLNP method.3Determined from the partial rate �B = (4.41±0.42±0.42)×10−4 measured for ele
tronenergy > 2 GeV and hadroni
 mass squared < 3.5 GeV2, and 
al
ulated a

eptan
e 0.174in that region. The Vub is measured as (4.41 ± 0.30+0.65
−0.47 ± 0.28) × 10−3.4Uses ele
trons in the momentum interval 1.9{2.6 GeV/
 in the 
enter-of-mass frame.The Vub is found to be (5.08 ± 0.47+0.49

−0.48) × 10−3.5BORNHEIM 02 uses the observed yield of leptons from semileptoni
 B de
ays in theend-point momentum interval 2.2{2.6 GeV/
 with re
ent CLEO-2 data on B → Xs γ.The Vub is found to be (4.08 ± 0.34 ± 0.53) × 10−3.6Uses a multivariate analysis method and requires lepton momentum in the B rest frame,p∗Bl > 1.0 GeV/
.7Measures several partial bran
hing fra
tions in di�erent phase spa
e regions. The mostpre
ise result is obtained in the region for hadroni
 mass MX < 1.55 GeV/
2, and is�B = (1.18 ± 0.09 ± 0.07)× 10−3. The 
orresponding ∣

∣Vub ∣

∣ from the BLNP methodis (4.27 ± 0.16 ± 0.13 ± 0.30) × 10−3, where the last un
ertainty 
omes from thetheoreti
al predi
tion of the partial rate in the given phase-spa
e region.8Used BaBar measurement of Semileptoni
 bran
hing fra
tion B(B → X ℓνℓ) = (10.87±0.18 ± 0.30)% to 
onvert the ratio of rates to bran
hing fra
tion.9The third error in
ludes the systemati
s and theoreti
al errors summed in quadrature.�(Xu ℓ+νℓ

)/�(

ℓ+νℓ anything) �23/�3�(Xu ℓ+νℓ

)/�(

ℓ+νℓ anything) �23/�3�(Xu ℓ+νℓ

)/�(

ℓ+νℓ anything) �23/�3�(Xu ℓ+νℓ

)/�(

ℓ+νℓ anything) �23/�3
ℓ denotes e or µ, not the sum. These experiments measure this ratio in very limitedmomentum intervals.VALUE (units 10−2) CL% EVTS DOCUMENT ID TECN COMMENT2.06±0.25±0.422.06±0.25±0.422.06±0.25±0.422.06±0.25±0.42 1 AUBERT 04I BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2 ALBRECHT 94C ARG e+ e− → �(4S)107 3 BARTELT 93B CLE2 e+ e− → �(4S)77 4 ALBRECHT 91C ARG e+ e− → �(4S)41 5 ALBRECHT 90 ARG e+ e− → �(4S)76 6 FULTON 90 CLEO e+ e− → �(4S)
<4.0 90 7 BEHRENDS 87 CLEO e+ e− → �(4S)
<4.0 90 CHEN 84 CLEO Dire
t e at �(4S)
<5.5 90 KLOPFEN... 83B CUSB Dire
t e at �(4S)1The third error in
ludes the systemati
s and theoreti
al errors summed in quadrature.

2ALBRECHT 94C �nd �(b → 
)/�(b → all) = 0.99 ± 0.02 ± 0.04.3BARTELT 93B (CLEO II) measures an ex
ess of 107 ± 15 ± 11 leptons in the leptonmomentum interval 2.3{2.6 GeV/
 whi
h is attributed to b → u ℓνℓ. This 
orresponds toa model-dependent partial bran
hing ratio �Bub between (1.15 ± 0.16± 0.15)×10−4,as evaluated using the KS model (KOERNER 88), and (1.54 ± 0.22 ± 0.20) × 10−4using the ACCMM model (ARTUSO 93). The 
orresponding values of ∣

∣Vub ∣

∣/∣∣V
 b ∣

∣ are0.056 ± 0.006 and 0.076 ± 0.008, respe
tively.4ALBRECHT 91C result supersedes ALBRECHT 90. Two events are fully re
onstru
tedproviding eviden
e for the b → u transition. Using the model of ALTARELLI 82, theyobtain ∣

∣Vub/V
 b ∣

∣ = 0.11± 0.012 from 77 leptons in the 2.3{2.6 GeV momentum range.5ALBRECHT 90 observes 41 ± 10 ex
ess e and µ (lepton) events in the momentuminterval p = 2.3{2.6 GeV signaling the presen
e of the b → u transition. The events
orrespond to a model-dependent measurement of ∣

∣Vub/V
 b ∣

∣ = 0.10 ± 0.01.6 FULTON 90 observe 76 ± 20 ex
ess e and µ (lepton) events in the momentum intervalp = 2.4{2.6 GeV signaling the presen
e of the b → u transition. The average bran
hingratio, (1.8 ± 0.4 ± 0.3) × 10−4, 
orresponds to a model-dependent measurement ofapproximately ∣

∣Vub/V
 b ∣

∣ = 0.1 using B(b → 
 ℓν) = 10.2 ± 0.2 ± 0.7%.7The quoted possible limits range from 0.018 to 0.04 for the ratio, depending on whi
hmodel or momentum range is 
hosen. We sele
t the most 
onservative limit they have
al
ulated. This 
orresponds to a limit on ∣

∣Vub ∣

∣/∣∣V
 b ∣

∣ < 0.20. While the endpointte
hnique employed is more robust than their previous results in CHEN 84, these resultsdo not provide a numeri
al improvement in the limit.�(K+ ℓ+νℓ anything)/�(

ℓ+νℓ anything) �24/�3�(K+ ℓ+νℓ anything)/�(

ℓ+νℓ anything) �24/�3�(K+ ℓ+νℓ anything)/�(

ℓ+νℓ anything) �24/�3�(K+ ℓ+νℓ anything)/�(

ℓ+νℓ anything) �24/�3
ℓ denotes e or µ, not the sum.VALUE DOCUMENT ID TECN COMMENT0.58 ±0.05 OUR AVERAGE0.58 ±0.05 OUR AVERAGE0.58 ±0.05 OUR AVERAGE0.58 ±0.05 OUR AVERAGE0.594±0.021±0.056 ALBRECHT 94C ARG e+ e− → �(4S)0.54 ±0.07 ±0.06 1 ALAM 87B CLEO e+ e− → �(4S)1ALAM 87B measurement relies on lepton-kaon 
orrelations.�(K− ℓ+νℓ anything)/�(

ℓ+νℓ anything) �25/�3�(K− ℓ+νℓ anything)/�(

ℓ+νℓ anything) �25/�3�(K− ℓ+νℓ anything)/�(

ℓ+νℓ anything) �25/�3�(K− ℓ+νℓ anything)/�(

ℓ+νℓ anything) �25/�3
ℓ denotes e or µ, not the sum.VALUE DOCUMENT ID TECN COMMENT0.092±0.035 OUR AVERAGE0.092±0.035 OUR AVERAGE0.092±0.035 OUR AVERAGE0.092±0.035 OUR AVERAGE0.086±0.011±0.044 ALBRECHT 94C ARG e+ e− → �(4S)0.10 ±0.05 ±0.02 1 ALAM 87B CLEO e+ e− → �(4S)1ALAM 87B measurement relies on lepton-kaon 
orrelations.�(K0/K0 ℓ+νℓ anything)/�(

ℓ+νℓ anything) �26/�3�(K0/K0 ℓ+νℓ anything)/�(

ℓ+νℓ anything) �26/�3�(K0/K0 ℓ+νℓ anything)/�(

ℓ+νℓ anything) �26/�3�(K0/K0 ℓ+νℓ anything)/�(

ℓ+νℓ anything) �26/�3
ℓ denotes e or µ, not the sum. Sum over K0 and K0 states.VALUE DOCUMENT ID TECN COMMENT0.42 ±0.05 OUR AVERAGE0.42 ±0.05 OUR AVERAGE0.42 ±0.05 OUR AVERAGE0.42 ±0.05 OUR AVERAGE0.452±0.038±0.056 1 ALBRECHT 94C ARG e+ e− → �(4S)0.39 ±0.06 ±0.04 2 ALAM 87B CLEO e+ e− → �(4S)1ALBRECHT 94C assume a K0/K0 multipli
ity twi
e that of K0S .2ALAM 87B measurement relies on lepton-kaon 
orrelations.�(D τ+ ντ

)/�(D ℓ+νℓ

) �27/�6�(D τ+ ντ

)/�(D ℓ+νℓ

) �27/�6�(D τ+ ντ

)/�(D ℓ+νℓ

) �27/�6�(D τ+ ντ

)/�(D ℓ+νℓ

) �27/�6VALUE (units 10−2) DOCUMENT ID TECN COMMENT41 ± 5 OUR AVERAGE41 ± 5 OUR AVERAGE41 ± 5 OUR AVERAGE41 ± 5 OUR AVERAGE37.5 ± 6.4±2.6 1,2 HUSCHLE 15 BELL e+ e− → �(4S)44.0 ± 5.8±4.2 1,2 LEES 12D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.16±11.7±5.2 1 AUBERT 08N BABR Repl. by LEES 12D1Uses a fully re
onstru
ted B meson as a tag on the re
oil side.2Uses τ+ → e+ νe ντ and τ+ → µ+ νµντ and e+ or µ+ as ℓ+. Obtained fromsimultaneous �t to B+ and B0 assuming isospin symmetry.�(D∗ τ+ ντ

)/�(D∗ ℓ+νℓ

) �28/�9�(D∗ τ+ ντ

)/�(D∗ ℓ+νℓ

) �28/�9�(D∗ τ+ ντ

)/�(D∗ ℓ+νℓ

) �28/�9�(D∗ τ+ ντ

)/�(D∗ ℓ+νℓ

) �28/�9VALUE (units 10−2) DOCUMENT ID TECN COMMENT31.8±2.4 OUR AVERAGE31.8±2.4 OUR AVERAGE31.8±2.4 OUR AVERAGE31.8±2.4 OUR AVERAGE29.3±3.8±1.5 1 HUSCHLE 15 BELL e+ e− → �(4S)33.2±2.4±1.8 1 LEES 12D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •29.7±5.6±1.8 2 AUBERT 08N BABR Repl. by LEES 12D1Uses τ+ → e+ νe ντ and τ+ → µ+ νµντ and e+ or µ+ as ℓ+. Obtained fromsimultaneous �t to B+ and B0 assuming isospin symmetry. Uses a fully re
onstru
tedB meson as a tag on the re
oil side.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side. The results are normalizedto the B+ de
ay rate.
〈n
〉〈n
〉〈n
〉〈n
〉VALUE DOCUMENT ID TECN COMMENT1.10±0.051.10±0.051.10±0.051.10±0.05 1 GIBBONS 97B CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.98±0.16±0.12 2 ALAM 87B CLEO e+ e− → �(4S)



1289128912891289See key on page 601 Meson Parti
le ListingsB±/B0 ADMIXTURE1GIBBONS 97B from 
harm 
ounting using B(D+s → φπ) = 0.036± 0.009 and B(�+
 →pK−π+) = 0.044 ± 0.006.2 From the di�eren
e between K− and K+ widths. ALAM 87B measurement relies onlepton-kaon 
orrelations. It does not 
onsider the possibility of BB mixing. We havethus removed it from the average.�(D± anything)/�total �29/��(D± anything)/�total �29/��(D± anything)/�total �29/��(D± anything)/�total �29/�VALUE EVTS DOCUMENT ID TECN COMMENT0.229±0.013 OUR AVERAGE0.229±0.013 OUR AVERAGE0.229±0.013 OUR AVERAGE0.229±0.013 OUR AVERAGE0.228±0.012±0.006 1 GIBBONS 97B CLE2 e+ e− → �(4S)0.24 ±0.04 ±0.01 2 BORTOLETTO92 CLEO e+ e− → �(4S)0.22 ±0.05 ±0.01 3 ALBRECHT 91H ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.20 ±0.05 ±0.01 20k 4 BORTOLETTO87 CLEO Sup. by BORTOLETTO 921GIBBONS 97B reports [�(B → D± anything)/�total℄ × [B(D+ → K− 2π+)℄ =0.0216 ± 0.0008 ± 0.00082 whi
h we divide by our best value B(D+ → K− 2π+) =(9.46 ± 0.24)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2BORTOLETTO 92 reports [�(B → D± anything)/�total℄ × [B(D+ → K− 2π+)℄ =0.0226 ± 0.0030 ± 0.0018 whi
h we divide by our best value B(D+ → K− 2π+) =(9.46 ± 0.24)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3ALBRECHT 91H reports [�(B → D± anything)/�total℄ × [B(D+ → K− 2π+)℄ =0.0209 ± 0.0027 ± 0.0040 whi
h we divide by our best value B(D+ → K− 2π+) =(9.46 ± 0.24)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.4BORTOLETTO 87 reports [�(B → D± anything)/�total℄ × [B(D+ → K− 2π+)℄= 0.019 ± 0.004 ± 0.002 whi
h we divide by our best value B(D+ → K−2π+) =(9.46 ± 0.24)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(D0 /D0 anything)/�total �30/��(D0 /D0 anything)/�total �30/��(D0 /D0 anything)/�total �30/��(D0 /D0 anything)/�total �30/�VALUE EVTS DOCUMENT ID TECN COMMENT0.618±0.029 OUR AVERAGE0.618±0.029 OUR AVERAGE0.618±0.029 OUR AVERAGE0.618±0.029 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.0.639±0.024+0.006

−0.007 1 GIBBONS 97B CLE2 e+ e− → �(4S)0.59 ±0.05 ±0.01 2 BORTOLETTO92 CLEO e+ e− → �(4S)0.494±0.074±0.005 3 ALBRECHT 91H ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.53 ±0.07 ±0.01 21k 4 BORTOLETTO87 CLEO e+ e− → �(4S)0.61 ±0.18 ±0.01 5 GREEN 83 CLEO Repl. by BORTOLETTO 871GIBBONS 97B reports [�(B → D0 /D0 anything)/�total℄ × [B(D0 → K−π+)℄ =0.0251 ± 0.0006 ± 0.00075 whi
h we divide by our best value B(D0 → K−π+) =(3.93 ± 0.04)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2BORTOLETTO 92 reports [�(B → D0 /D0 anything)/�total℄ × [B(D0 → K−π+)℄= 0.0233 ± 0.0012 ± 0.0014 whi
h we divide by our best value B(D0 → K−π+) =(3.93 ± 0.04)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3ALBRECHT 91H reports [�(B → D0 /D0 anything)/�total℄ × [B(D0 → K−π+)℄= 0.0194 ± 0.0015 ± 0.0025 whi
h we divide by our best value B(D0 → K−π+) =(3.93 ± 0.04)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.4BORTOLETTO 87 reports [�(B → D0 /D0 anything)/�total℄ × [B(D0 → K−π+)℄= 0.0210 ± 0.0015 ± 0.0021 whi
h we divide by our best value B(D0 → K−π+) =(3.93 ± 0.04)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.5GREEN 83 reports [�(B → D0 /D0 anything)/�total℄ × [B(D0 → K−π+)℄ = 0.024±0.006 ± 0.004 whi
h we divide by our best value B(D0 → K−π+) = (3.93 ± 0.04)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.

WEIGHTED AVERAGE
0.618±0.029 (Error scaled by 1.3)

ALBRECHT 91H ARG 2.6
BORTOLETTO 92 CLEO 0.3
GIBBONS 97B CLE2 0.6

χ2

       3.5
(Confidence Level = 0.175)

0.3 0.4 0.5 0.6 0.7 0.8 0.9�(D0/D0 anything)/�total

�(D∗(2010)± anything)/�total �31/��(D∗(2010)± anything)/�total �31/��(D∗(2010)± anything)/�total �31/��(D∗(2010)± anything)/�total �31/�VALUE EVTS DOCUMENT ID TECN COMMENT0.225±0.015 OUR AVERAGE0.225±0.015 OUR AVERAGE0.225±0.015 OUR AVERAGE0.225±0.015 OUR AVERAGE0.247±0.019±0.01 1 GIBBONS 97B CLE2 e+ e− → �(4S)0.205±0.019±0.007 2 ALBRECHT 96D ARG e+ e− → �(4S)0.230±0.028±0.009 3 BORTOLETTO92 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.283±0.053±0.002 4 ALBRECHT 91H ARG Sup. by ALBRECHT 96D0.22 ±0.04 +0.07

−0.04 5200 5 BORTOLETTO87 CLEO e+ e− → �(4S)0.27 ±0.06 +0.08
−0.06 510 6 CSORNA 85 CLEO Repl. by BORTOLETTO 871GIBBONS 97B reports B(B → D∗(2010)+anything) = 0.239 ± 0.015 ± 0.014 ± 0.009using CLEO measured D and D∗ bran
hing fra
tions. We res
ale to our PDG 96 valuesof D and D∗ bran
hing ratios. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.2ALBRECHT 96D reports B(B → D∗(2010)+anything) 0.196 ± 0.019 using CLEOmeasured B(D∗(2010)+ → D0π+) = 0.681 ± 0.01 ± 0.013, B(D0 → K−π+) =0.0401± 0.0014, B(D0 → K−π+π+π−) = 0.081± 0.005., We res
ale to our PDG 96values of D and D∗ bran
hing ratios. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.3BORTOLETTO 92 reports B(B → D∗(2010)+anything) = 0.25 ± 0.03 ± 0.04 usingMARK II B(D∗(2010)+ → D0π+) = 0.57 ± 0.06 and B(D0 → K−π+) = 0.042 ±0.008. We res
ale to our PDG 96 values of D and D∗ bran
hing ratios. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.4ALBRECHT 91H reports 0.348 ± 0.060 ± 0.035 from a measurement of[�(B → D∗(2010)± anything)/�total℄ × [B(D∗(2010)+ → D0π+)℄ assumingB(D∗(2010)+ → D0π+) = 0.55 ± 0.04, whi
h we res
ale to our best valueB(D∗(2010)+ → D0π+) = (67.7 ± 0.5) × 10−2. Our �rst error is their experi-ment's error and our se
ond error is the systemati
 error from using our best value. Usesthe PDG 90 B(D0 → K−π+) =0.0371 ± 0.0025.5BORTOLETTO 87 uses old MARK III (BALTRUSAITIS 86E) bran
hing ratios B(D0 →K−π+) = 0.056 ± 0.004 ± 0.003 and also assumes B(D∗(2010)+ → D0π+) =0.60+0.08

−0.15. The produ
t bran
hing ratio for B(B → D∗(2010)+) B(D∗(2010)+ →D0π+) is 0.13 ± 0.02 ± 0.012. Superseded by BORTOLETTO 92.6V−A momentum spe
trum used to extrapolate below p = 1 GeV. We 
orre
t the valueassuming B(D0 → K−π+) = 0.042±0.006 and B(D∗+ → D0π+) = 0.6+0.08
−0.15. Theprodu
t bran
hing fra
tion is B(B → D∗+X)·B(D∗+ → π+D0)·B(D0 → K−π+)= (68 ± 15 ± 9)× 10−4.�(D∗(2007)0 anything)/�total �32/��(D∗(2007)0 anything)/�total �32/��(D∗(2007)0 anything)/�total �32/��(D∗(2007)0 anything)/�total �32/�VALUE DOCUMENT ID TECN COMMENT0.260±0.023±0.0150.260±0.023±0.0150.260±0.023±0.0150.260±0.023±0.015 1 GIBBONS 97B CLE2 e+ e− → �(4S)1GIBBONS 97B reports B(B → D∗(2007)0 anything) 0.247 ± 0.012 ± 0.018 ± 0.018using CLEO measured D and D∗ bran
hing fra
tions. We res
ale to our PDG 96 valuesof D and D∗ bran
hing ratios. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.�(D±s anything)/�total �33/��(D±s anything)/�total �33/��(D±s anything)/�total �33/��(D±s anything)/�total �33/�VALUE EVTS DOCUMENT ID TECN COMMENT0.083±0.008 OUR AVERAGE0.083±0.008 OUR AVERAGE0.083±0.008 OUR AVERAGE0.083±0.008 OUR AVERAGE0.089±0.010±0.008 1 ARTUSO 05B CLE2 e+ e− → �(5S)0.087±0.005±0.008 2 AUBERT 02G BABR e+ e− → �(4S)0.065±0.011±0.006 3 ALBRECHT 92G ARG e+ e− → �(4S)0.068±0.010±0.006 257 4 BORTOLETTO90 CLEO e+ e− → �(4S)0.085±0.022±0.008 5 HAAS 86 CLEO e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.094±0.007±0.008 6 GIBAUT 96 CLE2 Repl. by ARTUSO 05B0.094±0.024±0.008 7 ALBRECHT 87H ARG e+ e− → �(4S)1ARTUSO 05B reports 0.0905 ± 0.0025 ± 0.0140 from a measurement of [�(B →D±s anything)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = (4.4 ± 0.5)×10−2, whi
h we res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.2AUBERT 02G reports [�(B → D±s anything)/�total℄ × [B(D+s → φπ+)℄ = 0.00393±0.00007 ± 0.00021 whi
h we divide by our best value B(D+s → φπ+) = (4.5 ± 0.4)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.3ALBRECHT 92G reports [�(B → D±s anything)/�total℄ × [B(D+s → φπ+)℄ =0.00292 ± 0.00039 ± 0.00031 whi
h we divide by our best value B(D+s → φπ+)= (4.5 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.4BORTOLETTO 90 reports [�(B → D±s anything)/�total℄ × [B(D+s → φπ+)℄ =0.00306 ± 0.00047 whi
h we divide by our best value B(D+s → φπ+) = (4.5 ± 0.4)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.5HAAS 86 reports [�(B → D±s anything)/�total℄× [B(D+s → φπ+)℄ = 0.0038±0.0010whi
h we divide by our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value. 64 ± 22% de
ays are 2-body.6GIBAUT 96 reports 0.1211 ± 0.0039 ± 0.0088 from a measurement of [�(B →D±s anything)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.035, whi
h
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ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.7ALBRECHT 87H reports [�(B → D±s anything)/�total℄× [B(D+s → φπ+)℄ = 0.0042±0.0009±0.0006 whi
h we divide by our best value B(D+s → φπ+) = (4.5±0.4)×10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value. 46 ± 16% of B → Ds X de
ays are 2-body. Superseded byALBRECHT 92G.�(D∗±s anything)/�total �34/��(D∗±s anything)/�total �34/��(D∗±s anything)/�total �34/��(D∗±s anything)/�total �34/�VALUE DOCUMENT ID TECN COMMENT0.063±0.009±0.0060.063±0.009±0.0060.063±0.009±0.0060.063±0.009±0.006 1 AUBERT 02G BABR e+ e− → �(4S)1AUBERT 02G reports [�(B → D∗±s anything)/�total℄ × [B(D+s → φπ+)℄ = 0.00284±0.00029 ± 0.00025 whi
h we divide by our best value B(D+s → φπ+) = (4.5 ± 0.4)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.�(D∗±s D (∗))/�(D∗±s anything) �35/�34�(D∗±s D (∗))/�(D∗±s anything) �35/�34�(D∗±s D (∗))/�(D∗±s anything) �35/�34�(D∗±s D (∗))/�(D∗±s anything) �35/�34Sum over modesVALUE DOCUMENT ID TECN COMMENT0.533±0.037±0.0370.533±0.037±0.0370.533±0.037±0.0370.533±0.037±0.037 AUBERT 02G BABR e+ e− → �(4S)�(DDs0(2317))/�total �36/��(DDs0(2317))/�total �36/��(DDs0(2317))/�total �36/��(DDs0(2317))/�total �36/�VALUE DOCUMENT ID TECN COMMENTseen 1 KROKOVNY 03B BELL e+ e− → �(4S)1The produ
t bran
hing ratio for B(B → DDs0(2317)+)×B(Ds0(2317)+ → Ds π0)is measured to be (8.5+2.1
−1.9 ± 2.6) × 10−4.�(DDsJ(2457))/�total �37/��(DDsJ(2457))/�total �37/��(DDsJ(2457))/�total �37/��(DDsJ(2457))/�total �37/�VALUE DOCUMENT ID TECN COMMENTseen 1 KROKOVNY 03B BELL e+ e− → �(4S)1The produ
t bran
hing ratio for B(B → DDsJ (2457)+)×B(DsJ (2457)+ →D∗+s π0 ,D+s γ) are measured to be (17.8+4.5

−3.9 ± 5.3) × 10−4 and (6.7+1.3
−1.2 ± 2.0)×10−4, respe
tively.

[�(D (∗)D (∗)K0) +�(D (∗)D (∗)K±)
]/�total �38/�[�(D (∗)D (∗)K0) +�(D (∗)D (∗)K±)
]/�total �38/�[�(D (∗)D (∗)K0) +�(D (∗)D (∗)K±)
]/�total �38/�[�(D (∗)D (∗)K0) +�(D (∗)D (∗)K±)
]/�total �38/�VALUE DOCUMENT ID TECN COMMENT0.071+0.025

−0.015+0.010
−0.0090.071+0.025

−0.015+0.010
−0.0090.071+0.025

−0.015+0.010
−0.0090.071+0.025

−0.015+0.010
−0.009 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.�(b→ 
 
 s)/�total �39/��(b→ 
 
 s)/�total �39/��(b→ 
 
 s)/�total �39/��(b→ 
 
 s)/�total �39/�VALUE DOCUMENT ID TECN COMMENT0.219±0.0370.219±0.0370.219±0.0370.219±0.037 1 COAN 98 CLE2 e+ e− → �(4S)1COAN 98 uses D-ℓ 
orrelation.�(Ds (∗)D (∗))/�(D±s anything) �40/�33�(Ds (∗)D (∗))/�(D±s anything) �40/�33�(Ds (∗)D (∗))/�(D±s anything) �40/�33�(Ds (∗)D (∗))/�(D±s anything) �40/�33Sum over modes.VALUE DOCUMENT ID TECN COMMENT0.469±0.017 OUR AVERAGE0.469±0.017 OUR AVERAGE0.469±0.017 OUR AVERAGE0.469±0.017 OUR AVERAGE0.464±0.013±0.015 AUBERT 02G BABR e+ e− → �(4S)0.56 +0.21

−0.15 +0.09
−0.08 1 BARATE 98Q ALEP e+ e− → Z0.457±0.019±0.037 GIBAUT 96 CLE2 e+ e− → �(4S)0.58 ±0.07 ±0.09 ALBRECHT 92G ARG e+ e− → �(4S)0.56 ±0.10 BORTOLETTO90 CLEO e+ e− → �(4S)1BARATE 98Q measures B(B → Ds (∗)D (∗)) = 0.056+0.021

−0.015+0.009
−0.008+0.019

−0.011, wherethe third error results from the un
ertainty on the di�erent D bran
hing ratios and isdominated by the un
ertainty on B(D+s → φπ+). We divide B(B → Ds (∗)D (∗)) byour best value of B(B → Ds anything)= 0.1 ± 0.025.�(D∗D∗(2010)±)/�total �41/��(D∗D∗(2010)±)/�total �41/��(D∗D∗(2010)±)/�total �41/��(D∗D∗(2010)±)/�total �41/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.9× 10−3<5.9× 10−3<5.9× 10−3<5.9× 10−3 90 BARATE 98Q ALEP e+ e− → Z
[�(DD∗(2010)±)+ �(D∗D±)

]/�total �42/�[�(DD∗(2010)±)+ �(D∗D±)
]/�total �42/�[�(DD∗(2010)±)+ �(D∗D±)
]/�total �42/�[�(DD∗(2010)±)+ �(D∗D±)
]/�total �42/�VALUE CL% DOCUMENT ID TECN COMMENT

<5.5× 10−3<5.5× 10−3<5.5× 10−3<5.5× 10−3 90 BARATE 98Q ALEP e+ e− → Z�(DD±)/�total �43/��(DD±)/�total �43/��(DD±)/�total �43/��(DD±)/�total �43/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.1× 10−3<3.1× 10−3<3.1× 10−3<3.1× 10−3 90 BARATE 98Q ALEP e+ e− → Z�(Ds (∗)±D (∗)X (nπ±))/�total �44/��(Ds (∗)±D (∗)X (nπ±))/�total �44/��(Ds (∗)±D (∗)X (nπ±))/�total �44/��(Ds (∗)±D (∗)X (nπ±))/�total �44/�VALUE DOCUMENT ID TECN COMMENT0.094+0.040

−0.031+0.034
−0.0240.094+0.040

−0.031+0.034
−0.0240.094+0.040

−0.031+0.034
−0.0240.094+0.040

−0.031+0.034
−0.024 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.

�(D∗(2010)γ)/�total �45/��(D∗(2010)γ)/�total �45/��(D∗(2010)γ)/�total �45/��(D∗(2010)γ)/�total �45/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−3<1.1× 10−3<1.1× 10−3<1.1× 10−3 90 1 LESIAK 92 CBAL e+ e− → �(4S)1 LESIAK 92 set a limit on the in
lusive pro
ess B(b → s γ) < 2.8 × 10−3 at 90% CLfor the range of masses of 892{2045 MeV, independent of assumptions about s-quarkhadronization.�(D+s π− , D∗+s π− , D+s ρ− , D∗+s ρ− , D+s π0 , D∗+s π0 , D+s η , D∗+s η , D+s ρ0 ,D∗+s ρ0 , D+s ω , D∗+s ω

)/�total �46/��(D+s π− , D∗+s π− , D+s ρ− , D∗+s ρ− , D+s π0 , D∗+s π0 , D+s η , D∗+s η , D+s ρ0 ,D∗+s ρ0 , D+s ω , D∗+s ω
)/�total �46/��(D+s π− , D∗+s π− , D+s ρ− , D∗+s ρ− , D+s π0 , D∗+s π0 , D+s η , D∗+s η , D+s ρ0 ,D∗+s ρ0 , D+s ω , D∗+s ω
)/�total �46/��(D+s π− , D∗+s π− , D+s ρ− , D∗+s ρ− , D+s π0 , D∗+s π0 , D+s η , D∗+s η , D+s ρ0 ,D∗+s ρ0 , D+s ω , D∗+s ω
)/�total �46/�Sum over modes.VALUE CL% DOCUMENT ID TECN COMMENT

<4× 10−4<4× 10−4<4× 10−4<4× 10−4 90 1 ALEXANDER 93B CLE2 e+ e− → �(4S)1ALEXANDER 93B reports < 4.8 × 10−4 from a measurement of [�(B → D+s π− ,D∗+s π− , D+s ρ− , D∗+s ρ− , D+s π0 , D∗+s π0 , D+s η , D∗+s η , D+s ρ0 , D∗+s ρ0 ,D+s ω , D∗+s ω
)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.037,whi
h we res
ale to our best value B(D+s → φπ+) = 4.5×10−2. This bran
hing ratiolimit provides a model-dependent upper limit ∣

∣Vub ∣

∣/∣∣V
 b ∣

∣ < 0.16 at CL=90%.�(Ds1(2536)+anything)/�total �47/��(Ds1(2536)+anything)/�total �47/��(Ds1(2536)+anything)/�total �47/��(Ds1(2536)+anything)/�total �47/�Ds1(2536)+ is the narrow P-wave D+s meson with JP = 1+.VALUE CL% DOCUMENT ID TECN COMMENT
<0.0095<0.0095<0.0095<0.0095 90 1 BISHAI 98 CLE2 e+ e− → �(4S)1Assuming fa
torization, the de
ay 
onstant fD+s1 is at least a fa
tor of 2.5 times smallerthan fD+s .�(J/ψ(1S)anything)/�total �48/��(J/ψ(1S)anything)/�total �48/��(J/ψ(1S)anything)/�total �48/��(J/ψ(1S)anything)/�total �48/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.094±0.032 OUR AVERAGE1.094±0.032 OUR AVERAGE1.094±0.032 OUR AVERAGE1.094±0.032 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1.057±0.012±0.040 1 AUBERT 03F BABR e+ e− → �(4S)1.121±0.013±0.042 ANDERSON 02 CLE2 e+ e− → �(4S)1.29 ±0.45 ±0.01 27 2 MASCHMANN 90 CBAL e+ e− → �(4S)1.24 ±0.27 ±0.01 120 3 ALBRECHT 87D ARG e+ e− → �(4S)1.35 ±0.24 ±0.01 52 4 ALAM 86 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.12 ±0.06 ±0.01 1489 5 BALEST 95B CLE2 e+ e− → �(4S)1.4 +0.6

−0.5 7 6 ALBRECHT 85H ARG e+ e− → �(4S)1.1 ±0.21 ±0.23 46 7 HAAS 85 CLEO Repl. by ALAM 861AUBERT 03F also reports the momentum distribution and heli
ity of J/ψ → ℓ+ ℓ− inthe �(4S) 
enter-of-mass frame.2MASCHMANN 90 reports (1.12 ± 0.33 ± 0.25)×10−2 from a measurement of [�(B →J/ψ(1S) anything)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) → e+ e−)= 0.069± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) = (5.971 ±0.032) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.3ALBRECHT 87D reports (1.07 ± 0.16 ± 0.22)× 10−2 from a measurement of [�(B →J/ψ(1S) anything)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) → e+ e−)= 0.069± 0.009, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) = (5.971 ±0.032) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value. ALBRECHT 87D �nd the bran
hing ratio forJ/ψ not from ψ(2S) to be 0.0081 ± 0.0023.4ALAM 86 reports (1.09 ± 0.16 ± 0.21) × 10−2 from a measurement of [�(B →J/ψ(1S) anything)/�total℄ × [B(J/ψ(1S) → µ+µ−)℄ assuming B(J/ψ(1S) →
µ+µ−) = 0.074 ± 0.012, whi
h we res
ale to our best value B(J/ψ(1S) → µ+µ−) =(5.961 ± 0.033)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.5BALEST 95B reports (1.12 ± 0.04 ± 0.06) × 10−2 from a measurement of [�(B →J/ψ(1S) anything)/�total℄ × [B(J/ψ(1S) → e+ e−)℄ assuming B(J/ψ(1S) → e+ e−)= 0.0599 ± 0.0025, whi
h we res
ale to our best value B(J/ψ(1S) → e+ e−) =(5.971 ± 0.032)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. They measure J/ψ(1S) → e+ e−and µ+µ− and use PDG 1994 values for the bran
hing fra
tions. The res
aling is thesame for either mode so we use e+ e−.6 Statisti
al and systemati
 errors were added in quadrature. ALBRECHT 85H also reporta CL = 90% limit of 0.007 for B → J/ψ(1S)+ X where mX <1 GeV.7Dimuon and diele
tron events used.�(J/ψ(1S)(dire
t) anything)/�total �49/��(J/ψ(1S)(dire
t) anything)/�total �49/��(J/ψ(1S)(dire
t) anything)/�total �49/��(J/ψ(1S)(dire
t) anything)/�total �49/�VALUE DOCUMENT ID TECN COMMENT0.0078 ±0.0004 OUR AVERAGE0.0078 ±0.0004 OUR AVERAGE0.0078 ±0.0004 OUR AVERAGE0.0078 ±0.0004 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.00740±0.00023±0.00043 1 AUBERT 03F BABR e+ e− → �(4S)0.00813±0.00017±0.00037 2 ANDERSON 02 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0080 ±0.0008 3 BALEST 95B CLE2 e+ e− → �(4S)1AUBERT 03F also reports the heli
ity of J/ψ → ℓ+ ℓ− produ
ed dire
tly in B de
ay.2Also reports the measurement of J/ψ → ℓ+ ℓ− polarization produ
ed dire
tly from Bde
ay.3BALEST 95B assume PDG 1994 values for sub mode bran
hing ratios. J/ψ(1S) mesonsare re
onstru
ted in J/ψ(1S) → e+ e− and J/ψ(1S) → µ+µ−. The B → J/ψ(1S)Xbran
hing ratio 
ontains J/ψ(1S) mesons dire
tly from B de
ays and also from feeddownthrough ψ(2S) → J/ψ(1S), χ
1(1P) → J/ψ(1S), or χ
2(1P) → J/ψ(1S). Usingthe measured in
lusive rates, BALEST 95B 
orre
ts for the feeddown and �nds the B →J/ψ(1S) (dire
t) X bran
hing ratio.
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ψ(2S)anything)/�total �50/��(

ψ(2S)anything)/�total �50/��(

ψ(2S)anything)/�total �50/��(

ψ(2S)anything)/�total �50/�VALUE EVTS DOCUMENT ID TECN COMMENT0.00307±0.00021 OUR AVERAGE0.00307±0.00021 OUR AVERAGE0.00307±0.00021 OUR AVERAGE0.00307±0.00021 OUR AVERAGE0.00297±0.00020±0.00020 AUBERT 03F BABR e+ e− → �(4S)0.00316±0.00014±0.00028 1 ANDERSON 02 CLE2 e+ e− → �(4S)0.0046 ±0.0017 ±0.0011 8 ALBRECHT 87D ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0034 ±0.0004 ±0.0003 240 2 BALEST 95B CLE2 e+ e− → �(4S)1Also reports the measurement of ψ(2S) → ℓ+ ℓ− polarization produ
ed dire
tly fromB de
ay.2BALEST 95B assume PDG 1994 values for sub mode bran
hing ratios. They �nd B(B →

ψ(2S)X, ψ(2S) → ℓ+ ℓ−) = 0.30 ± 0.05 ± 0.04 and B(B → ψ(2S)X, ψ(2S) →J/ψ(1S)π+π−) = 0.37±0.05±0.05. Weighted average is quoted for B(B → ψ(2S)X).�(

χ
1(1P)anything)/�total �51/��(

χ
1(1P)anything)/�total �51/��(

χ
1(1P)anything)/�total �51/��(

χ
1(1P)anything)/�total �51/�VALUE EVTS DOCUMENT ID TECN COMMENT0.00386±0.00027 OUR AVERAGE0.00386±0.00027 OUR AVERAGE0.00386±0.00027 OUR AVERAGE0.00386±0.00027 OUR AVERAGE0.00367±0.00035±0.00044 AUBERT 03F BABR e+ e− → �(4S)0.00363±0.00022±0.00034 1 ABE 02L BELL e+ e− → �(4S)0.00435±0.00029±0.00040 ANDERSON 02 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0033 ±0.0004 ±0.0001 2 CHEN 01 CLE2 e+ e− → �(4S)0.0040 ±0.0006 ±0.0004 112 3 BALEST 95B CLE2 Repl. by CHEN 010.0105 ±0.0035 ±0.0025 4 ALBRECHT 92E ARG e+ e− → �(4S)1ABE 02L uses PDG 01 values for B(J/ψ(1S) → ℓ+ ℓ−) and B(χc1,c2 → J/ψ(1S)γ).2CHEN 01 reports 0.00414 ± 0.00031 ± 0.00040 from a measurement of [�(B →

χ
1(1P)anything)/�total℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assuming B(χ
1(1P) →
γ J/ψ(1S)) = 0.273 ± 0.016, whi
h we res
ale to our best value B(χ
1(1P) →
γ J/ψ(1S)) = (33.9 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. Assumes equal produ
tionof B+ and B0 at the �(4S).3BALEST 95B assume B(χ
1(1P) → J/ψ(1S)γ) = (27.3± 1.6)×10−2, the PDG 1994value. Fit to ψ-photon invariant mass distribution allows for a χ
1(1P) and a χ
2(1P)
omponent.4ALBRECHT 92E assumes no χ
2(1P) produ
tion.�(

χ
1(1P)(dire
t) anything)/�total �52/��(

χ
1(1P)(dire
t) anything)/�total �52/��(

χ
1(1P)(dire
t) anything)/�total �52/��(

χ
1(1P)(dire
t) anything)/�total �52/�VALUE DOCUMENT ID TECN COMMENT0.00324±0.00025 OUR AVERAGE0.00324±0.00025 OUR AVERAGE0.00324±0.00025 OUR AVERAGE0.00324±0.00025 OUR AVERAGE0.00341±0.00035±0.00042 AUBERT 03F BABR e+ e− → �(4S)0.00332±0.00022±0.00034 1 ABE 02L BELL e+ e− → �(4S)0.0031 ±0.0004 ±0.0001 2 CHEN 01 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0037 ±0.0007 3 BALEST 95B CLE2 Repl. by CHEN 011ABE 02L uses PDG 01 values for B(J/ψ(1S) → ℓ+ ℓ−) and B(χc1,c2 → J/ψ(1S)γ).2CHEN 01 reports 0.00383 ± 0.00031 ± 0.00040 from a measurement of [�(B →

χ
1(1P) (dire
t) anything)/�total℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assumingB(χ
1(1P) → γ J/ψ(1S)) = 0.273 ± 0.016, whi
h we res
ale to our best valueB(χ
1(1P) → γ J/ψ(1S)) = (33.9 ± 1.2) × 10−2. Our �rst error is their experi-ment's error and our se
ond error is the systemati
 error from using our best value.Assumes equal produ
tion of B+ and B0 at the �(4S).3BALEST 95B assume PDG 1994 values. J/ψ(1S) mesons are re
onstru
ted in the e+ e−and µ+µ− modes. The B → χ
1(1P)X bran
hing ratio 
ontains χ
1(1P) mesonsdire
tly from B de
ays and also from feeddown through ψ(2S) → χ
1(1P)γ. Usingthe measured in
lusive rates, BALEST 95B 
orre
ts for the feeddown and �nds the B →
χ
1(1P) (dire
t) X bran
hing ratio.�(

χ
2(1P)anything)/�total �53/��(

χ
2(1P)anything)/�total �53/��(

χ
2(1P)anything)/�total �53/��(

χ
2(1P)anything)/�total �53/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT14 ±4 OUR AVERAGE14 ±4 OUR AVERAGE14 ±4 OUR AVERAGE14 ±4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.21.0±4.5±3.1 AUBERT 03F BABR e+ e− → �(4S)18.0+2.3
−2.8±2.6 1 ABE 02L BELL e+ e− → �(4S)6.9±3.5±0.3 2 CHEN 01 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<38 90 35 3 BALEST 95B CLE2 Repl. by CHEN 011ABE 02L uses PDG 01 values for B(J/ψ(1S) → ℓ+ ℓ−) and B(χc1,c2 → J/ψ(1S)γ).2CHEN 01 reports (9.8 ± 4.8 ± 1.5) × 10−4 from a measurement of [�(B →

χ
2(1P)anything)/�total℄ × [B(χ
2(1P) → γ J/ψ(1S))℄ assuming B(χ
2(1P) →
γ J/ψ(1S)) = 0.135 ± 0.011, whi
h we res
ale to our best value B(χ
2(1P) →
γ J/ψ(1S)) = (19.2 ± 0.7) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. Assumes equal produ
tionof B+ and B0 at the �(4S).3BALEST 95B assume B(χ
2(1P) → J/ψ(1S)γ) = (13.5± 1.1)×10−2, the PDG 1994value. J/ψ(1S) mesons are re
onstru
ted in the e+ e− and µ+µ− modes, and PDG1994 bran
hing fra
tions are used. If interpreted as signal, the 35± 13 events 
orrespondto B(B → χ
2(1P)X) =(0.25 ± 0.10 ± 0.03)× 10−2.

WEIGHTED AVERAGE
14±4 (Error scaled by 1.9)

CHEN 01 CLE2 3.7
ABE 02L BELL 1.3
AUBERT 03F BABR 1.8

χ2

       6.9
(Confidence Level = 0.033)

-10 0 10 20 30 40 50�(

χ
2(1P)anything)/�total �53/��(

χ
2(1P)(dire
t) anything)/�total �54/��(

χ
2(1P)(dire
t) anything)/�total �54/��(

χ
2(1P)(dire
t) anything)/�total �54/��(

χ
2(1P)(dire
t) anything)/�total �54/�VALUE DOCUMENT ID TECN COMMENT0.00165±0.00031 OUR AVERAGE0.00165±0.00031 OUR AVERAGE0.00165±0.00031 OUR AVERAGE0.00165±0.00031 OUR AVERAGE0.00190±0.00045±0.00029 AUBERT 03F BABR e+ e− → �(4S)0.00153+0.00023
−0.00028±0.00027 1 ABE 02L BELL e+ e− → �(4S)1ABE 02L uses PDG 01 values for B(J/ψ(1S) → ℓ+ ℓ−) and B(χc1,c2 → J/ψ(1S)γ).�(

η
 (1S)anything)/�total �55/��(

η
 (1S)anything)/�total �55/��(

η
 (1S)anything)/�total �55/��(

η
 (1S)anything)/�total �55/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.009<0.009<0.009<0.009 90 1 BALEST 95B CLE2 e+ e− → �(4S)1BALEST 95B assume PDG 1994 values for sub mode bran
hing ratios. J/ψ(1S) mesonsare re
onstru
ted in J/ψ(1S) → e+ e− and J/ψ(1S) → µ+µ−. Sear
h region 2960

<mη
(1S) <3010 MeV/
2.�(K X (3872), X → D0D0π0)/�total �56/��(K X (3872), X → D0D0π0)/�total �56/��(K X (3872), X → D0D0π0)/�total �56/��(K X (3872), X → D0D0π0)/�total �56/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.22±0.31+0.23
−0.301.22±0.31+0.23
−0.301.22±0.31+0.23
−0.301.22±0.31+0.23
−0.30 1 GOKHROO 06 BELL e+ e− → �(4S)1Measure the near-threshold enhan
ements in the (D0D0π0) system at a mass 3875.2 ±0.7+0.3

−1.6 ± 0.8 MeV/
2.�(K X (3872), X → D∗0D0)/�total �57/��(K X (3872), X → D∗0D0)/�total �57/��(K X (3872), X → D∗0D0)/�total �57/��(K X (3872), X → D∗0D0)/�total �57/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.80±0.20±0.100.80±0.20±0.100.80±0.20±0.100.80±0.20±0.10 AUSHEV 10 BELL e+ e− → �(4S)�(K X (3940), X → D∗0D0)/�total �58/��(K X (3940), X → D∗0D0)/�total �58/��(K X (3940), X → D∗0D0)/�total �58/��(K X (3940), X → D∗0D0)/�total �58/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.67<0.67<0.67<0.67 90 AUSHEV 10 BELL e+ e− → �(4S)�(K X (3915), X → ωJ/ψ

)/�total �59/��(K X (3915), X → ωJ/ψ
)/�total �59/��(K X (3915), X → ωJ/ψ
)/�total �59/��(K X (3915), X → ωJ/ψ
)/�total �59/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT7.1±1.3±3.17.1±1.3±3.17.1±1.3±3.17.1±1.3±3.1 1 CHOI 05 BELL e+ e− → �(4S)1CHOI 05 reports the observation of a near-threshold enhan
ement in the ωJ/ψ massspe
trum in ex
lusive B → K ωJ/ψ. The new state, denoted as X (3915), is measuredto have a mass of 3943 ± 11 ± 13 GeV/
2 and a width � = 87 ± 22 ± 26 MeV.�(K± anything)/�total �60/��(K± anything)/�total �60/��(K± anything)/�total �60/��(K± anything)/�total �60/�VALUE DOCUMENT ID TECN COMMENT0.789±0.025 OUR AVERAGE0.789±0.025 OUR AVERAGE0.789±0.025 OUR AVERAGE0.789±0.025 OUR AVERAGE0.82 ±0.01 ±0.05 ALBRECHT 94C ARG e+ e− → �(4S)0.775±0.015±0.025 1 ALBRECHT 93I ARG e+ e− → �(4S)0.85 ±0.07 ±0.09 ALAM 87B CLEO e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 2 BRODY 82 CLEO e+ e− → �(4S)seen 3 GIANNINI 82 CUSB e+ e− → �(4S)1ALBRECHT 93I value is not independent of the sum of B → K+anything and B →K− anything ALBRECHT 94C values.2Assuming �(4S) → BB , a total of 3.38 ± 0.34 ± 0.68 kaons per �(4S) de
ay is found(the se
ond error is systemati
). In the 
ontext of the standard B-de
ay model, thisleads to a value for (b-quark → 
-quark)/(b-quark → all) of 1.09 ± 0.33 ± 0.13.3GIANNINI 82 at CESR-CUSB observed 1.58 ± 0.35 K0 per hadroni
 event mu
h higherthan 0.82 ± 0.10 below threshold. Consistent with predominant b → 
X de
ay.



1292129212921292Meson Parti
le ListingsB±/B0 ADMIXTURE�(K+anything)/�total �61/��(K+anything)/�total �61/��(K+anything)/�total �61/��(K+anything)/�total �61/�VALUE DOCUMENT ID TECN COMMENT0.66 ±0.050.66 ±0.050.66 ±0.050.66 ±0.05 1 ALBRECHT 94C ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.620±0.013±0.038 2 ALBRECHT 94C ARG e+ e− → �(4S)0.66 ±0.05 ±0.07 2 ALAM 87B CLEO e+ e− → �(4S)1Measurement relies on lepton-kaon 
orrelations. It is for the weak de
ay vertex and doesnot in
lude mixing of the neutral B meson. Mixing e�e
ts were 
orre
ted for by assuminga mixing parameter r of (18.1 ± 4.3)%.2Measurement relies on lepton-kaon 
orrelations. It in
ludes produ
tion through mixingof the neutral B meson.�(K− anything)/�total �62/��(K− anything)/�total �62/��(K− anything)/�total �62/��(K− anything)/�total �62/�VALUE DOCUMENT ID TECN COMMENT0.13 ±0.040.13 ±0.040.13 ±0.040.13 ±0.04 1 ALBRECHT 94C ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.165±0.011±0.036 2 ALBRECHT 94C ARG e+ e− → �(4S)0.19 ±0.05 ±0.02 2 ALAM 87B CLEO e+ e− → �(4S)1Measurement relies on lepton-kaon 
orrelations. It is for the weak de
ay vertex and doesnot in
lude mixing of the neutral B meson. Mixing e�e
ts were 
orre
ted for by assuminga mixing parameter r of (18.1 ± 4.3)%.2Measurement relies on lepton-kaon 
orrelations. It in
ludes produ
tion through mixingof the neutral B meson.�(K0/K0 anything)/�total �63/��(K0/K0 anything)/�total �63/��(K0/K0 anything)/�total �63/��(K0/K0 anything)/�total �63/�VALUE DOCUMENT ID TECN COMMENT0.64 ±0.04 OUR AVERAGE0.64 ±0.04 OUR AVERAGE0.64 ±0.04 OUR AVERAGE0.64 ±0.04 OUR AVERAGE0.642±0.010±0.042 1 ALBRECHT 94C ARG e+ e− → �(4S)0.63 ±0.06 ±0.06 ALAM 87B CLEO e+ e− → �(4S)1ALBRECHT 94C assume a K0/K0 multipli
ity twi
e that of K0S .�(K∗(892)± anything)/�total �64/��(K∗(892)± anything)/�total �64/��(K∗(892)± anything)/�total �64/��(K∗(892)± anything)/�total �64/�VALUE DOCUMENT ID TECN COMMENT0.182±0.054±0.0240.182±0.054±0.0240.182±0.054±0.0240.182±0.054±0.024 ALBRECHT 94J ARG e+ e− → �(4S)�(K∗(892)0 /K∗(892)0 anything)/�total �65/��(K∗(892)0 /K∗(892)0 anything)/�total �65/��(K∗(892)0 /K∗(892)0 anything)/�total �65/��(K∗(892)0 /K∗(892)0 anything)/�total �65/�VALUE DOCUMENT ID TECN COMMENT0.146±0.016±0.0200.146±0.016±0.0200.146±0.016±0.0200.146±0.016±0.020 ALBRECHT 94J ARG e+ e− → �(4S)�(K∗(892)γ)/�total �66/��(K∗(892)γ)/�total �66/��(K∗(892)γ)/�total �66/��(K∗(892)γ)/�total �66/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT4.24±0.54±0.324.24±0.54±0.324.24±0.54±0.324.24±0.54±0.32 1 COAN 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<150 90 2 LESIAK 92 CBAL e+ e− → �(4S)
< 24 90 ALBRECHT 88H ARG e+ e− → �(4S)1An average of B(B+ → K∗(892)+ γ) and B(B0 → K∗(892)0 γ) measurements re-ported in COAN 00 by assuming full 
orrelated systemati
 errors.2 LESIAK 92 set a limit on the in
lusive pro
ess B(b → s γ) < 2.8 × 10−3 at 90% CLfor the range of masses of 892{2045 MeV, independent of assumptions about s-quarkhadronization.�(

ηK γ
)/�total �67/��(

ηK γ
)/�total �67/��(

ηK γ
)/�total �67/��(

ηK γ
)/�total �67/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT8.5±1.3+1.2
−0.98.5±1.3+1.2
−0.98.5±1.3+1.2
−0.98.5±1.3+1.2
−0.9 1 NISHIDA 05 BELL e+ e− → �(4S)1mηK < 2.4 GeV/
2�(K1(1400)γ)/�total �68/��(K1(1400)γ)/�total �68/��(K1(1400)γ)/�total �68/��(K1(1400)γ)/�total �68/�VALUE CL% DOCUMENT ID TECN COMMENT

<12.7× 10−5<12.7× 10−5<12.7× 10−5<12.7× 10−5 90 1 COAN 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.6× 10−3 90 2 LESIAK 92 CBAL e+ e− → �(4S)
< 4.1× 10−4 90 ALBRECHT 88H ARG e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2 LESIAK 92 set a limit on the in
lusive pro
ess B(b → s γ) < 2.8 × 10−3 at 90% CLfor the range of masses of 892{2045 MeV, independent of assumptions about s-quarkhadronization.�(K∗2(1430)γ)/�total �69/��(K∗2(1430)γ)/�total �69/��(K∗2(1430)γ)/�total �69/��(K∗2(1430)γ)/�total �69/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT1.66+0.59

−0.53±0.131.66+0.59
−0.53±0.131.66+0.59
−0.53±0.131.66+0.59
−0.53±0.13 1 COAN 00 CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<83 90 ALBRECHT 88H ARG e+ e− → �(4S)1COAN 00 obtains a �tted signal yield of 15.9+5.7

−5.2 events. A sear
h for 
ontamination byK∗(1410) yielded a rate 
onsistent with 0; the 
entral value assumes no 
ontamination.�(K2(1770)γ)/�total �70/��(K2(1770)γ)/�total �70/��(K2(1770)γ)/�total �70/��(K2(1770)γ)/�total �70/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−3<1.2× 10−3<1.2× 10−3<1.2× 10−3 90 1 LESIAK 92 CBAL e+ e− → �(4S)1 LESIAK 92 set a limit on the in
lusive pro
ess B(b → s γ) < 2.8 × 10−3 at 90% CLfor the range of masses of 892{2045 MeV, independent of assumptions about s-quarkhadronization.

�(K∗3(1780)γ)/�total �71/��(K∗3(1780)γ)/�total �71/��(K∗3(1780)γ)/�total �71/��(K∗3(1780)γ)/�total �71/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.7× 10−5<3.7× 10−5<3.7× 10−5<3.7× 10−5 90 1 NISHIDA 05 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.0× 10−3 90 ALBRECHT 88H ARG e+ e− → �(4S)1Uses B(K∗3(1780) → ηK) = 0.11+0.05

−0.04.�(K∗4(2045)γ)/�total �72/��(K∗4(2045)γ)/�total �72/��(K∗4(2045)γ)/�total �72/��(K∗4(2045)γ)/�total �72/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.0× 10−3<1.0× 10−3<1.0× 10−3<1.0× 10−3 90 1 LESIAK 92 CBAL e+ e− → �(4S)1 LESIAK 92 set a limit on the in
lusive pro
ess B(b → s γ) < 2.8 × 10−3 at 90% CLfor the range of masses of 892{2045 MeV, independent of assumptions about s-quarkhadronization.�(K η′(958))/�total �73/��(K η′(958))/�total �73/��(K η′(958))/�total �73/��(K η′(958))/�total �73/�VALUE DOCUMENT ID TECN COMMENT(8.3+0.9

−0.8±0.7) × 10−5(8.3+0.9
−0.8±0.7) × 10−5(8.3+0.9
−0.8±0.7) × 10−5(8.3+0.9
−0.8±0.7) × 10−5 1 RICHICHI 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)η′(958))/�total �74/��(K∗(892)η′(958))/�total �74/��(K∗(892)η′(958))/�total �74/��(K∗(892)η′(958))/�total �74/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT4.1+1.0

−0.9±0.54.1+1.0
−0.9±0.54.1+1.0
−0.9±0.54.1+1.0
−0.9±0.5 1 AUBERT 07E BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<22 90 1 RICHICHI 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K η

)/�total �75/��(K η
)/�total �75/��(K η
)/�total �75/��(K η
)/�total �75/�VALUE CL% DOCUMENT ID TECN COMMENT

<5.2× 10−6<5.2× 10−6<5.2× 10−6<5.2× 10−6 90 1 RICHICHI 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)η)/�total �76/��(K∗(892)η)/�total �76/��(K∗(892)η)/�total �76/��(K∗(892)η)/�total �76/�VALUE DOCUMENT ID TECN COMMENT(1.80+0.49
−0.43±0.18)× 10−5(1.80+0.49
−0.43±0.18)× 10−5(1.80+0.49
−0.43±0.18)× 10−5(1.80+0.49
−0.43±0.18)× 10−5 1 RICHICHI 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K φφ

)/�total �77/��(K φφ
)/�total �77/��(K φφ
)/�total �77/��(K φφ
)/�total �77/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT2.3+0.9

−0.8±0.32.3+0.9
−0.8±0.32.3+0.9
−0.8±0.32.3+0.9
−0.8±0.3 1 HUANG 03 BELL e+ e− → �(4S)1Assumes equal produ
tion of 
harged and neutral B meson pairs and isospin symmetry.�(b→ s γ

)/�total �78/��(b→ s γ
)/�total �78/��(b→ s γ
)/�total �78/��(b→ s γ
)/�total �78/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.49±0.19 OUR AVERAGE3.49±0.19 OUR AVERAGE3.49±0.19 OUR AVERAGE3.49±0.19 OUR AVERAGE3.75±0.18±0.35 1,2 SAITO 15 BELL e+ e− → �(4S)3.52±0.20±0.51 1,3 LEES 12U BABR e+ e− → �(4S)3.32±0.16±0.31 1,4 LEES 12V BABR e+ e− → �(4S)3.47±0.15±0.40 1,5 LIMOSANI 09 BELL e+ e− → �(4S)3.90±0.91±0.64 1,6 AUBERT 08O BABR e+ e− → �(4S)3.29±0.44±0.29 1,7 CHEN 01C CLE2 e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.30±0.08±0.30 8 DEL-AMO-SA...10M BABR e+ e− → �(4S)4.3 ±0.3 ±0.7 9 AUBERT 09U BABR Repl. by DEL-AMO-SANCHEZ 10M3.92±0.31±0.47 1,10 AUBERT,BE 06B BABR Repl. by LEES 12V3.49±0.20+0.59
−0.46 1,11 AUBERT,B 05R BABR Repl. by LEES 12U3.50±0.32±0.31 1,12 KOPPENBURG04 BELL Repl. by LIMOSANI 093.36±0.53+0.65
−0.68 13 ABE 01F BELL Repl. by SAITO 152.32±0.57±0.35 ALAM 95 CLE2 Repl. by CHEN 01C1We extrapolate the measured value to Eγ > 1.6 GeV using the method of BUCH-MUELLER 06 (average of three theoreti
al models).2 SAITO 15 measured (3.51 ± 0.17 ± 0.33)× 10−4 using a sum-of-ex
lusive approa
h inwhi
h 38 of the hadroni
 �nal states with mXs < 2.8 GeV/
2 are re
onstru
ted. The
ut of minimum photon energy is Eγ > 1.9 GeV.3Reports (3.29 ± 0.19 ± 0.48)× 10−4 for Eγ > 1.9 GeV.4Reports (3.21 ± 0.15 ± 0.29 ± 0.08) × 10−4 for 1.8 < Eγ < 2.8 GeV, where thelast systemati
 un
ertainty is for model dependen
y. Results with other 
uto�s are alsoreported.5The measurement reported is (3.45 ± 0.15 ± 0.40) × 10−4 for Eγ > 1.7 GeV.6Uses a fully re
onstru
ted B meson as a tag on the re
oil side. The measurement reportedis (3.66 ± 0.85 ± 0.60) × 10−4 for Eγ > 1.9 GeV.7The measurement reported is (3.21 ± 0.43+0.32

−0.29)× 10−4 for Eγ > 2.0 GeV.8Measured using sums of seven ex
lusive �nal states B → Xd(s) γ where Xd(s) is anonstrange (strange) 
harmless hadroni
 system in mass range 0.5{2.0 GeV/
2.9Measured using sums of seven ex
lusive �nal states B → Xd(s) γ where Xd(s) is anonstrange (strange) 
harmless hadroni
 system in mass range 0.6{1.8 GeV/
2.10The measurement reported is (3.67 ± 0.29 ± 0.45) × 10−4 for Eγ > 1.9 GeV.



1293129312931293See key on page 601 Meson Parti
le ListingsB±/B0 ADMIXTURE11The measurement reported is (3.27 ± 0.18+0.55
−0.42)× 10−4 for Eγ > 1.9 GeV.12The measurement reported is (3.55 ± 0.32 ± 0.32) × 10−4 for Eγ > 1.8 GeV.13ABE 01F reports their systemati
 errors (±0.42+0.50

−0.54)× 10−4, where the se
ond erroris due to the theoreti
al un
ertainty. We 
ombine them in quadrature.�(b→ d γ
)/�total �79/��(b→ d γ
)/�total �79/��(b→ d γ
)/�total �79/��(b→ d γ
)/�total �79/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT9.2±2.0±2.39.2±2.0±2.39.2±2.0±2.39.2±2.0±2.3 1 DEL-AMO-SA...10M BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •14 ±5 ±4 2 AUBERT 09U BABR Repl. by DEL-AMO-SANCHEZ 10M1Measured using sums of seven ex
lusive �nal states B → Xd(s) γ where Xd(s) is anonstrange (strange) 
harmless hadroni
 system in mass range 0.5{2.0 GeV/
2.2Measured using sums of seven ex
lusive �nal states B → Xd(s) γ where Xd(s) is anonstrange (strange) 
harmless hadroni
 system in mass range 0.6{1.8 GeV/
2.�(b→ d γ
)/�(b→ s γ

) �79/�78�(b→ d γ
)/�(b→ s γ

) �79/�78�(b→ d γ
)/�(b→ s γ

) �79/�78�(b→ d γ
)/�(b→ s γ

) �79/�78VALUE DOCUMENT ID TECN COMMENT0.040±0.009±0.0100.040±0.009±0.0100.040±0.009±0.0100.040±0.009±0.010 1 DEL-AMO-SA...10M BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.033±0.013±0.009 2 AUBERT 09U BABR Repl. by DEL-AMO-SANCHEZ 10M1Measured using sums of seven ex
lusive �nal states B → Xd(s) γ where Xd(s) is anonstrange (strange) 
harmless hadroni
 system in mass range 0.5{2.0 GeV/
2.2Measured using sums of seven ex
lusive �nal states B → Xd(s) γ where Xd(s) is anonstrange (strange) 
harmless hadroni
 system in mass range 0.6{1.8 GeV/
2.�(b→ s gluon)/�total �80/��(b→ s gluon)/�total �80/��(b→ s gluon)/�total �80/��(b→ s gluon)/�total �80/�VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<0.068<0.068<0.068<0.068 90 1 COAN 98 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.08 2 2 ALBRECHT 95D ARG e+ e− → �(4S)1COAN 98 uses D-ℓ 
orrelation.2ALBRECHT 95D use full re
onstru
tion of one B de
ay as tag. Two 
andidate eventsfor 
harmless B de
ay 
an be interpreted as either b → s gluon or b → u transition.If interpreted as b → s gluon they �nd a bran
hing ratio of ∼ 0.026 or the upper limitquoted above. Result is highly model dependent.�(

η anything)/�total �81/��(

η anything)/�total �81/��(

η anything)/�total �81/��(

η anything)/�total �81/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.61±0.30+0.44
−0.742.61±0.30+0.44
−0.742.61±0.30+0.44
−0.742.61±0.30+0.44
−0.74 1 NISHIMURA 10 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.69±0.29+0.36
−0.62 2 NISHIMURA 10 BELL e+ e− → �(4S)

<4.4 90 3 BROWDER 98 CLE2 e+ e− → �(4S)1Uses B → ηXs with 0.4 < mXs < 2.6 GeV/
2.2Uses B → ηXs with 1.8 < mXs < 2.6 GeV/
2.3BROWDER 98 sear
h for high momentum B → ηXs between 2.1 and 2.7 GeV/
.�(

η′ anything)/�total �82/��(

η′ anything)/�total �82/��(

η′ anything)/�total �82/��(

η′ anything)/�total �82/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.2±0.9 OUR AVERAGE4.2±0.9 OUR AVERAGE4.2±0.9 OUR AVERAGE4.2±0.9 OUR AVERAGE3.9±0.8±0.9 1 AUBERT,B 04F BABR e+ e− → �(4S)4.6±1.1±0.6 2 BONVICINI 03 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.2±1.6+1.3

−2.0 3 BROWDER 98 CLE2 e+ e− → �(4S)1AUBERT,B 04F reports bran
hing ratio B → η′Xs for high momentum η′ between2.0 and 2.7 GeV/
 in the �(4S) 
enter-of-mass frame. Xs represents a re
oil system
onsisting of a kaon and zero to four pions.2BONVICINI 03 observed a signal of 61.2 ± 13.9 events in B → η′Xnc produ
tion forhigh momentum η′ between 2.0 and 2.7 GeV/
 in the �(4S) 
enter-of-mass frame. TheXnc denotes \
harmless" hadroni
 states re
oiling against η′. The se
ond error 
ombinessystemati
 and ba
kground subtra
tion un
ertainties in quadrature.3BROWDER 98 observed a signal of 39.0 ± 11.6 events in high momentum B → η′Xsprodu
tion between 2.0 and 2.7 GeV/
. The bran
hing fra
tion is based on the inter-pretation of b → s g , where the last error in
ludes additional un
ertainties due to the
olor-suppressed b → ba
kgrounds.�(K+gluon (
harmless))/�total �83/��(K+gluon (
harmless))/�total �83/��(K+gluon (
harmless))/�total �83/��(K+gluon (
harmless))/�total �83/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.87<1.87<1.87<1.87 90 1 DEL-AMO-SA...11 BABR e+ e− → �(4S)1B → K+X with mX < 1.69 GeV/
2.�(K0gluon (
harmless))/�total �84/��(K0gluon (
harmless))/�total �84/��(K0gluon (
harmless))/�total �84/��(K0gluon (
harmless))/�total �84/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.95+0.51

−0.45±0.501.95+0.51
−0.45±0.501.95+0.51
−0.45±0.501.95+0.51
−0.45±0.50 1 DEL-AMO-SA...11 BABR e+ e− → �(4S)1B → K0X with mX < 1.69 GeV/
2.

�(

ργ
)/�total �85/��(

ργ
)/�total �85/��(

ργ
)/�total �85/��(

ργ
)/�total �85/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.39±0.25 OUR AVERAGE1.39±0.25 OUR AVERAGE1.39±0.25 OUR AVERAGE1.39±0.25 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1.73+0.34
−0.32±0.17 1,2 AUBERT 08BH BABR e+ e− → �(4S)1.21+0.24
−0.22±0.12 1,2 TANIGUCHI 08 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.36+0.29
−0.27±0.10 1,3 AUBERT 07L BABR Repl. by AUBERT 08BH

< 1.9 90 1,3 AUBERT 04C BABR Repl. by AUBERT 07L
<14 90 1,4 COAN 00 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes �(B → ργ) = �(B+ → ρ+ γ) = 2 �(B0 → ρ0 γ) and uses lifetime ratio of

τB+/τB0 = 1.071 ± 0.009.3Assumes �(B → ργ) = �(B+ → ρ+ γ) = 2 �(B0 → ρ0 γ) and uses lifetime ratio of
τB+/τB0 = 1.083 ± 0.017.4COAN 00 reports B(B → ργ)/B(B → K∗(892)γ) < 0.32 at 90%CL and s
aled bythe 
entral value of B(B → K∗(892)γ)=(4.24 ± 0.54 ± 0.32) × 10−5.�(

ργ
)/�(K∗(892)γ) �85/�66�(

ργ
)/�(K∗(892)γ) �85/�66�(

ργ
)/�(K∗(892)γ) �85/�66�(

ργ
)/�(K∗(892)γ) �85/�66VALUE (units 10−2) DOCUMENT ID TECN COMMENT3.02+0.60

−0.55+0.26
−0.283.02+0.60

−0.55+0.26
−0.283.02+0.60

−0.55+0.26
−0.283.02+0.60

−0.55+0.26
−0.28 TANIGUCHI 08 BELL e+ e− → �(4S)�(

ρ/ωγ
)/�total �86/��(

ρ/ωγ
)/�total �86/��(

ρ/ωγ
)/�total �86/��(

ρ/ωγ
)/�total �86/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.30±0.23 OUR AVERAGE1.30±0.23 OUR AVERAGE1.30±0.23 OUR AVERAGE1.30±0.23 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1.63+0.30

−0.28±0.16 1,2,3 AUBERT 08BH BABR e+ e− → �(4S)1.14±0.20+0.10
−0.12 1,3 TANIGUCHI 08 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.25+0.25
−0.24±0.09 4 AUBERT 07L BABR Repl. by AUBERT 08BH1.32+0.34
−0.31+0.10

−0.09 4 MOHAPATRA 06 BELL Repl. by TANIGUCHI 080.6 ±0.3 ±0.1 4 AUBERT 05 BABR Repl. by AUBERT 07L
<1.4 90 4 MOHAPATRA 05 BELL e+ e− → �(4S)1Assumes �(B → ργ) = �(B+ → ρ+ γ) = 2 �(B0 → ρ0 γ) and uses lifetime ratio of

τB+/τB0 = 1.071 ± 0.009.2Also reports ∣

∣V td /V ts ∣∣ = 0.233+0.025
−0.024+0.022

−0.021.3Assumes equal produ
tion of B+ and B0 at the �(4S).4Assumes �(B → ργ) = �(B+ → ρ+ γ) = 2 �(B0 → ρ0 γ) and uses lifetime ratio of
τB+/τB0 = 1.083 ± 0.017.�(

ρ/ωγ
)/�(K∗(892)γ) �86/�66�(

ρ/ωγ
)/�(K∗(892)γ) �86/�66�(

ρ/ωγ
)/�(K∗(892)γ) �86/�66�(

ρ/ωγ
)/�(K∗(892)γ) �86/�66VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT2.84±0.50+0.27

−0.292.84±0.50+0.27
−0.292.84±0.50+0.27
−0.292.84±0.50+0.27
−0.29 1 TANIGUCHI 08 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.5 90 MOHAPATRA 05 BELL Repl. by TANIGUCHI 081Also reports ∣

∣V td /V ts ∣

∣= 0.195+0.020
−0.019 ± 0.015.�(

π± anything)/�total �87/��(

π± anything)/�total �87/��(

π± anything)/�total �87/��(

π± anything)/�total �87/�VALUE DOCUMENT ID TECN COMMENT3.585±0.025±0.0703.585±0.025±0.0703.585±0.025±0.0703.585±0.025±0.070 1 ALBRECHT 93I ARG e+ e− → �(4S)1ALBRECHT 93 ex
ludes π± from K0S and � de
ays. If in
luded, they �nd 4.105 ±0.025 ± 0.080.�(

π0 anything)/�total �88/��(

π0 anything)/�total �88/��(

π0 anything)/�total �88/��(

π0 anything)/�total �88/�VALUE DOCUMENT ID TECN COMMENT2.35±0.02±0.112.35±0.02±0.112.35±0.02±0.112.35±0.02±0.11 1 ABE 01J BELL e+ e → �(4S)1 From fully in
lusive π0 yield with no 
orre
tions from de
ays of K0S or other parti
les.�(

η anything)/�total �89/��(

η anything)/�total �89/��(

η anything)/�total �89/��(

η anything)/�total �89/�VALUE DOCUMENT ID TECN COMMENT0.176±0.011±0.0120.176±0.011±0.0120.176±0.011±0.0120.176±0.011±0.012 KUBOTA 96 CLE2 e+ e− → �(4S)�(

ρ0 anything)/�total �90/��(

ρ0 anything)/�total �90/��(

ρ0 anything)/�total �90/��(

ρ0 anything)/�total �90/�VALUE DOCUMENT ID TECN COMMENT0.208±0.042±0.0320.208±0.042±0.0320.208±0.042±0.0320.208±0.042±0.032 ALBRECHT 94J ARG e+ e− → �(4S)�(

ω anything)/�total �91/��(

ω anything)/�total �91/��(

ω anything)/�total �91/��(

ω anything)/�total �91/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.81<0.81<0.81<0.81 90 ALBRECHT 94J ARG e+ e− → �(4S)�(

φ anything)/�total �92/��(

φ anything)/�total �92/��(

φ anything)/�total �92/��(

φ anything)/�total �92/�VALUE DOCUMENT ID TECN COMMENT0.0343±0.0012 OUR AVERAGE0.0343±0.0012 OUR AVERAGE0.0343±0.0012 OUR AVERAGE0.0343±0.0012 OUR AVERAGE0.0353±0.0005±0.0030 HUANG 07 CLEO e+ e− → �(4S)0.0341±0.0006±0.0012 AUBERT 04S BABR e+ e− → �(4S)0.0390±0.0030±0.0035 ALBRECHT 94J ARG e+ e− → �(4S)0.023 ±0.006 ±0.005 BORTOLETTO86 CLEO e+ e− → �(4S)



1294129412941294MesonParti
le ListingsB±/B0ADMIXTURE�(

φK∗(892))/�total �93/��(

φK∗(892))/�total �93/��(

φK∗(892))/�total �93/��(

φK∗(892))/�total �93/�VALUE CL% DOCUMENT ID TECN
<2.2× 10−5<2.2× 10−5<2.2× 10−5<2.2× 10−5 90 1 BERGFELD 98 CLE21Assumes equal produ
tion of B+ and B0 at the �(4S).�(

π+ gluon (
harmless))/�total �95/��(

π+ gluon (
harmless))/�total �95/��(

π+ gluon (
harmless))/�total �95/��(

π+ gluon (
harmless))/�total �95/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.72+0.50
−0.47±0.593.72+0.50
−0.47±0.593.72+0.50
−0.47±0.593.72+0.50
−0.47±0.59 1 DEL-AMO-SA...11 BABR e+ e− → �(4S)1B → π+X with mX < 1.71 GeV/
2.�(�+
 / �−
 anything)/�total �96/��(�+
 / �−
 anything)/�total �96/��(�+
 / �−
 anything)/�total �96/��(�+
 / �−
 anything)/�total �96/�VALUE (%) CL% DOCUMENT ID TECN COMMENT3.54±0.32+0.19

−0.183.54±0.32+0.19
−0.183.54±0.32+0.19
−0.183.54±0.32+0.19
−0.18 1 AUBERT 07C BABR e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.4 ±0.8 ±0.8 2 CRAWFORD 92 CLEO e+ e− → �(4S)14 ±9 3 ALBRECHT 88E ARG e+ e− → �(4S)
<11.2 90 4 ALAM 87 CLEO e+ e− → �(4S)1AUBERT 07C reports 0.045 ± 0.003 ± 0.012 from a measurement of [�(B →�+
 / �−
 anything)/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+)= (5.0 ± 1.3) × 10−2, whi
h we res
ale to our best value B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2CRAWFORD 92 result derived from lepton baryon 
orrelations. Assumes all 
harmedbaryons in B0 and B± de
ay are �
 .3ALBRECHT 88E measured B(B → �+
 X)·B(�+
 → pK−π+) = (0.30± 0.12± 0.06)%and used B(�+
 → pK−π+) = (2.2±1.0)% from ABRAMS 80 to obtain above number.4Assuming all baryons result from 
harmed baryons, ALAM 86 
on
lude the bran
hingfra
tion is 7.4 ± 2.9%. The limit given above is model independent.�(�+
 anything)/�(�−
 anything) �97/�98�(�+
 anything)/�(�−
 anything) �97/�98�(�+
 anything)/�(�−
 anything) �97/�98�(�+
 anything)/�(�−
 anything) �97/�98VALUE DOCUMENT ID TECN COMMENT0.19±0.13±0.040.19±0.13±0.040.19±0.13±0.040.19±0.13±0.04 1 AMMAR 97 CLE2 e+ e− → �(4S)1AMMAR 97 uses a high-momentum lepton tag (Pℓ > 1.4 GeV/
2).�(�−
 µ+anything)/�(�−
 anything) �101/�98�(�−
 µ+anything)/�(�−
 anything) �101/�98�(�−
 µ+anything)/�(�−
 anything) �101/�98�(�−
 µ+anything)/�(�−
 anything) �101/�98VALUE (units 10−2) DOCUMENT ID TECN COMMENT
−2.0±2.0±1.9−2.0±2.0±1.9−2.0±2.0±1.9−2.0±2.0±1.9 LEES 12 BABR e+ e− → �(4S)�(�−
 ℓ+anything)/�(�+
 / �−
 anything) �99/�96�(�−
 ℓ+anything)/�(�+
 / �−
 anything) �99/�96�(�−
 ℓ+anything)/�(�+
 / �−
 anything) �99/�96�(�−
 ℓ+anything)/�(�+
 / �−
 anything) �99/�96VALUE CL% DOCUMENT ID TECN COMMENT
<2.5× 10−2<2.5× 10−2<2.5× 10−2<2.5× 10−2 90 1 LEES 12 BABR e+ e− → �(4S)1 LEES 12 quotes also the measurement �(B → �−
 ℓ+anything)/�(B →�+
 / �−
 anything) = (1.2 ± 0.7 ± 0.4)× 10−2.�(�−
 e+ anything)/�(�+
 / �−
 anything) �100/�96�(�−
 e+ anything)/�(�+
 / �−
 anything) �100/�96�(�−
 e+ anything)/�(�+
 / �−
 anything) �100/�96�(�−
 e+ anything)/�(�+
 / �−
 anything) �100/�96VALUE CL% DOCUMENT ID TECN COMMENT
<0.05<0.05<0.05<0.05 90 1 BONVICINI 98 CLE2 e+ e− → �(4S)1BONVICINI 98 uses the ele
tron with momentum above 0.6 GeV/
.�(�−
 e+ anything)/�(�−
 anything) �100/�98�(�−
 e+ anything)/�(�−
 anything) �100/�98�(�−
 e+ anything)/�(�−
 anything) �100/�98�(�−
 e+ anything)/�(�−
 anything) �100/�98VALUE (units 10−2) DOCUMENT ID TECN COMMENT2.5±1.1±0.62.5±1.1±0.62.5±1.1±0.62.5±1.1±0.6 1 LEES 12 BABR e+ e− → �(4S)1Uses the full re
onstru
tion of the re
oiling B in a hadroni
 de
ay as a tag.�(�−
 ℓ+anything)/�(�−
 anything) �99/�98�(�−
 ℓ+anything)/�(�−
 anything) �99/�98�(�−
 ℓ+anything)/�(�−
 anything) �99/�98�(�−
 ℓ+anything)/�(�−
 anything) �99/�98VALUE CL% DOCUMENT ID TECN COMMENT
<3.5× 10−2<3.5× 10−2<3.5× 10−2<3.5× 10−2 90 1 LEES 12 BABR e+ e− → �(4S)1 LEES 12 quotes also the measurement �(B → �−
 ℓ+anything)/�(B → �−
 anything)= (1.7 ± 1.0 ± 0.6)× 10−2.�(�−
 p anything)/�(�+
 / �−
 anything) �102/�96�(�−
 p anything)/�(�+
 / �−
 anything) �102/�96�(�−
 p anything)/�(�+
 / �−
 anything) �102/�96�(�−
 p anything)/�(�+
 / �−
 anything) �102/�96VALUE DOCUMENT ID TECN COMMENT0.57±0.05±0.050.57±0.05±0.050.57±0.05±0.050.57±0.05±0.05 BONVICINI 98 CLE2 e+ e− → �(4S)�(�−
 pe+νe)/�(�−
 p anything) �103/�102�(�−
 pe+νe)/�(�−
 p anything) �103/�102�(�−
 pe+νe)/�(�−
 p anything) �103/�102�(�−
 pe+νe)/�(�−
 p anything) �103/�102VALUE CL% DOCUMENT ID TECN COMMENT
<0.04<0.04<0.04<0.04 90 1 BONVICINI 98 CLE2 e+ e− → �(4S)1BONVICINI 98 uses the ele
tron with momentum above 0.6 GeV/
.�(�−−
 anything)/�total �104/��(�−−
 anything)/�total �104/��(�−−
 anything)/�total �104/��(�−−
 anything)/�total �104/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0033±0.0017±0.00020.0033±0.0017±0.00020.0033±0.0017±0.00020.0033±0.0017±0.0002 77 1 PROCARIO 94 CLE2 e+ e− → �(4S)1PROCARIO 94 reports [�(B → �−−
 anything)/�total℄ × [B(�+
 → pK−π+)℄ =0.00021 ± 0.00008 ± 0.00007 whi
h we divide by our best value B(�+
 → pK−π+)= (6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.

�(�−
 anything)/�total �105/��(�−
 anything)/�total �105/��(�−
 anything)/�total �105/��(�−
 anything)/�total �105/�VALUE CL% DOCUMENT ID TECN COMMENT
<8× 10−3<8× 10−3<8× 10−3<8× 10−3 90 1 PROCARIO 94 CLE2 e+ e− → �(4S)1PROCARIO 94 reports [�(B → �−
 anything)/�total℄ × [B(�+
 → pK−π+)℄ <0.00048 whi
h we divide by our best value B(�+
 → pK−π+) = 6.35× 10−2.�(�0
 anything)/�total �106/��(�0
 anything)/�total �106/��(�0
 anything)/�total �106/��(�0
 anything)/�total �106/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0036±0.0017±0.00020.0036±0.0017±0.00020.0036±0.0017±0.00020.0036±0.0017±0.0002 76 1 PROCARIO 94 CLE2 e+ e− → �(4S)1PROCARIO 94 reports [�(B → �0
 anything)/�total℄ × [B(�+
 → pK−π+)℄ =0.00023 ± 0.00008 ± 0.00007 whi
h we divide by our best value B(�+
 → pK−π+)= (6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(�0
 N (N = p or n))/�total �107/��(�0
 N (N = p or n))/�total �107/��(�0
 N (N = p or n))/�total �107/��(�0
 N (N = p or n))/�total �107/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−3<1.2× 10−3<1.2× 10−3<1.2× 10−3 90 1 PROCARIO 94 CLE2 e+ e− → �(4S)1PROCARIO 94 reports < 0.0017 from a measurement of [�(B → �0
 N (N = p orn))/�total℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = 0.043, whi
h weres
ale to our best value B(�+
 → pK−π+) = 6.35× 10−2.�(� 0
 anything, � 0
 → �−π+)/�total �108/��(� 0
 anything, � 0
 → �−π+)/�total �108/��(� 0
 anything, � 0
 → �−π+)/�total �108/��(� 0
 anything, � 0
 → �−π+)/�total �108/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.193±0.030 OUR AVERAGE0.193±0.030 OUR AVERAGE0.193±0.030 OUR AVERAGE0.193±0.030 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.211±0.019±0.025 1 AUBERT,B 05M BABR e+ e− → �(4S)0.144±0.048±0.021 2 BARISH 97 CLE2 e+ e− → �(4S)1The yield is obtained by requiring the momentum P < 2.15 GeV/
.2BARISH 97 �nd 79 ± 27 �0
 events.�(�+
 , �+
 → �−π+π+)/�total �109/��(�+
 , �+
 → �−π+π+)/�total �109/��(�+
 , �+
 → �−π+π+)/�total �109/��(�+
 , �+
 → �−π+π+)/�total �109/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.453±0.096+0.085

−0.0650.453±0.096+0.085
−0.0650.453±0.096+0.085
−0.0650.453±0.096+0.085
−0.065 1 BARISH 97 CLE2 e+ e− → �(4S)1BARISH 97 �nd 125 ± 28 �+
 events.�(p/p anything)/�total �110/��(p/p anything)/�total �110/��(p/p anything)/�total �110/��(p/p anything)/�total �110/�In
ludes p and p from � and � de
ay.VALUE EVTS DOCUMENT ID TECN COMMENT0.080±0.004 OUR AVERAGE0.080±0.004 OUR AVERAGE0.080±0.004 OUR AVERAGE0.080±0.004 OUR AVERAGE0.080±0.005±0.005 ALBRECHT 93I ARG e+ e− → �(4S)0.080±0.005±0.003 CRAWFORD 92 CLEO e+ e− → �(4S)0.082±0.005+0.013

−0.010 2163 1 ALBRECHT 89K ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>0.021 2 ALAM 83B CLEO e+ e− → �(4S)1ALBRECHT 89K in
lude dire
t and nondire
t protons.2ALAM 83B reported their result as > 0.036 ± 0.006 ± 0.009. Data are 
onsistent withequal yields of p and p. Using assumed yields below 
ut, B(B → p+ X) = 0.03 notin
luding protons from � de
ays.�(p/p (dire
t) anything)/�total �111/��(p/p (dire
t) anything)/�total �111/��(p/p (dire
t) anything)/�total �111/��(p/p (dire
t) anything)/�total �111/�VALUE EVTS DOCUMENT ID TECN COMMENT0.055±0.005 OUR AVERAGE0.055±0.005 OUR AVERAGE0.055±0.005 OUR AVERAGE0.055±0.005 OUR AVERAGE0.055±0.005±0.0035 ALBRECHT 93I ARG e+ e− → �(4S)0.056±0.006±0.005 CRAWFORD 92 CLEO e+ e− → �(4S)0.055±0.016 1220 1 ALBRECHT 89K ARG e+ e− → �(4S)1ALBRECHT 89K subtra
t 
ontribution of � de
ay from the in
lusive proton yield.�(pe+νe anything)/�total �112/��(pe+νe anything)/�total �112/��(pe+νe anything)/�total �112/��(pe+νe anything)/�total �112/�VALUE CL% DOCUMENT ID TECN COMMENT
< 5.9× 10−4< 5.9× 10−4< 5.9× 10−4< 5.9× 10−4 90 1 ADAM 03B CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<16 × 10−4 90 ALBRECHT 90H ARG e+ e− → �(4S)1Based on V−A model.�(�/� anything)/�total �113/��(�/� anything)/�total �113/��(�/� anything)/�total �113/��(�/� anything)/�total �113/�VALUE EVTS DOCUMENT ID TECN COMMENT0.040±0.005 OUR AVERAGE0.040±0.005 OUR AVERAGE0.040±0.005 OUR AVERAGE0.040±0.005 OUR AVERAGE0.038±0.004±0.006 2998 CRAWFORD 92 CLEO e+ e− → �(4S)0.042±0.005±0.006 943 ALBRECHT 89K ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.022±0.003±0.0022 1 ACKERSTAFF 97N OPAL e+ e− → Z
>0.011 2 ALAM 83B CLEO e+ e− → �(4S)1ACKERSTAFF 97N assumes B(b → B) = 0.868± 0.041, i.e., an admixture of B0, B±,and Bs .2ALAM 83B reported their result as > 0.022 ± 0.007 ± 0.004. Values are for(B(�X)+B(�X))/2. Data are 
onsistent with equal yields of p and p. Using assumedyields below 
ut, B(B → �X) = 0.03.



1295129512951295See key on page 601 MesonParti
le ListingsB±/B0ADMIXTURE�(� anything)/�(� anything) �114/�115�(� anything)/�(� anything) �114/�115�(� anything)/�(� anything) �114/�115�(� anything)/�(� anything) �114/�115VALUE DOCUMENT ID TECN COMMENT0.43±0.09±0.070.43±0.09±0.070.43±0.09±0.070.43±0.09±0.07 1 AMMAR 97 CLE2 e+ e− → �(4S)1AMMAR 97 uses a high-momentum lepton tag (Pℓ > 1.4 GeV/
2).�(�−/�+anything)/�total �116/��(�−/�+anything)/�total �116/��(�−/�+anything)/�total �116/��(�−/�+anything)/�total �116/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0027±0.0006 OUR AVERAGE0.0027±0.0006 OUR AVERAGE0.0027±0.0006 OUR AVERAGE0.0027±0.0006 OUR AVERAGE0.0027±0.0005±0.0004 147 CRAWFORD 92 CLEO e+ e− → �(4S)0.0028±0.0014 54 ALBRECHT 89K ARG e+ e− → �(4S)�(baryons anything)/�total �117/��(baryons anything)/�total �117/��(baryons anything)/�total �117/��(baryons anything)/�total �117/�VALUE DOCUMENT ID TECN COMMENT0.068±0.005±0.0030.068±0.005±0.0030.068±0.005±0.0030.068±0.005±0.003 1 ALBRECHT 92O ARG e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.076±0.014 2 ALBRECHT 89K ARG e+ e− → �(4S)1ALBRECHT 92O result is from simultaneous analysis of p and � yields, pp and �p 
orre-lations, and various lepton-baryon and lepton-baryon-antibaryon 
orrelations. SupersedesALBRECHT 89K.2ALBRECHT 89K obtain this result by adding their their measurements (5.5 ± 1.6)% fordire
t protons and (4.2 ± 0.5 ± 0.6)% for in
lusive � produ
tion. They then assume(5.5 ± 1.6)% for neutron produ
tion and add it in also. Sin
e ea
h B de
ay has twobaryons, they divide by 2 to obtain (7.6 ± 1.4)%.�(pp anything)/�total �118/��(pp anything)/�total �118/��(pp anything)/�total �118/��(pp anything)/�total �118/�In
ludes p and p from � and � de
ay.VALUE EVTS DOCUMENT ID TECN COMMENT0.0247±0.0023 OUR AVERAGE0.0247±0.0023 OUR AVERAGE0.0247±0.0023 OUR AVERAGE0.0247±0.0023 OUR AVERAGE0.024 ±0.001 ±0.004 CRAWFORD 92 CLEO e+ e− → �(4S)0.025 ±0.002 ±0.002 918 ALBRECHT 89K ARG e+ e− → �(4S)�(pp anything)/�(p/p anything) �118/�110�(pp anything)/�(p/p anything) �118/�110�(pp anything)/�(p/p anything) �118/�110�(pp anything)/�(p/p anything) �118/�110In
ludes p and p from � and � de
ay.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.30±0.02±0.05 1 CRAWFORD 92 CLEO e+ e− → �(4S)1CRAWFORD 92 value is not independent of their �(pp anything)/�total value.�(�p/�p anything)/�total �119/��(�p/�p anything)/�total �119/��(�p/�p anything)/�total �119/��(�p/�p anything)/�total �119/�In
ludes p and p from � and � de
ay.VALUE EVTS DOCUMENT ID TECN COMMENT0.025±0.004 OUR AVERAGE0.025±0.004 OUR AVERAGE0.025±0.004 OUR AVERAGE0.025±0.004 OUR AVERAGE0.029±0.005±0.005 CRAWFORD 92 CLEO e+ e− → �(4S)0.023±0.004±0.003 165 ALBRECHT 89K ARG e+ e− → �(4S)�(�p/�p anything)/�(�/� anything) �119/�113�(�p/�p anything)/�(�/� anything) �119/�113�(�p/�p anything)/�(�/� anything) �119/�113�(�p/�p anything)/�(�/� anything) �119/�113In
ludes p and p from � and � de
ay.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.76±0.11±0.08 1 CRAWFORD 92 CLEO e+ e− → �(4S)1CRAWFORD 92 value is not independent of their[�(�p anything)+�(�panything)℄/�total value.�(�� anything)/�total �120/��(�� anything)/�total �120/��(�� anything)/�total �120/��(�� anything)/�total �120/�VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<0.005<0.005<0.005<0.005 90 CRAWFORD 92 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.0088 90 12 ALBRECHT 89K ARG e+ e− → �(4S)�(�� anything)/�(�/� anything) �120/�113�(�� anything)/�(�/� anything) �120/�113�(�� anything)/�(�/� anything) �120/�113�(�� anything)/�(�/� anything) �120/�113VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.13 90 1 CRAWFORD 92 CLEO e+ e− → �(4S)1CRAWFORD 92 value is not independent of their �(��anything)/�total value.�(s e+ e−)/�total �121/��(s e+ e−)/�total �121/��(s e+ e−)/�total �121/��(s e+ e−)/�total �121/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT6.7 ±1.7 OUR AVERAGE6.7 ±1.7 OUR AVERAGE6.7 ±1.7 OUR AVERAGE6.7 ±1.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0.7.69+0.82

−0.77+0.71
−0.60 1 LEES 14D BABR e+ e− → �(4S)4.04±1.30+0.87
−0.83 2 IWASAKI 05 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.0 ±1.7 ±1.3 2 AUBERT,B 04I BABR Repl. by LEES 14D5.0 ±2.3 +1.3
−1.1 2 KANEKO 03 BELL Repl. by IWASAKI 05

< 57 90 GLENN 98 CLEO e+ e− → �(4S)
<50000 90 BEBEK 81 CLEO e+ e− → �(4S)1Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S , K0S π0, K0S π+, K0S π+π0, and K0S π + π− 
orre
ted for unob-served modes.2Requires M

ℓ+ ℓ− > 0.2 GeV/
2.

�(sµ+µ−)/�total �122/��(sµ+µ−)/�total �122/��(sµ+µ−)/�total �122/��(sµ+µ−)/�total �122/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT4.3 ±1.0 OUR AVERAGE4.3 ±1.0 OUR AVERAGE4.3 ±1.0 OUR AVERAGE4.3 ±1.0 OUR AVERAGE4.41+1.31
−1.17+0.63

−0.50 1 LEES 14D BABR e+ e− → �(4S)4.13±1.05+0.85
−0.81 2 IWASAKI 05 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.0 ±2.8 ±1.2 AUBERT,B 04I BABR Repl. by LEES 14D7.9 ±2.1 +2.1
−1.5 KANEKO 03 BELL Repl. by IWASAKI 05

< 58 90 GLENN 98 CLEO e+ e− → �(4S)
<17000 90 CHADWICK 81 CLEO e+ e− → �(4S)1Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S , K0S π0, K0S π+, K0S π+π0, and K0S π + π− 
orre
ted for unob-served modes.2Requires M

ℓ+ ℓ− > 0.2 GeV/
2.
[�(s e+ e−) +�(sµ+µ−)

]/�total (�121+�122)/�[�(s e+ e−) +�(sµ+µ−)
]/�total (�121+�122)/�[�(s e+ e−) +�(sµ+µ−)
]/�total (�121+�122)/�[�(s e+ e−) +�(sµ+µ−)
]/�total (�121+�122)/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions.VALUE CL% DOCUMENT ID TECN COMMENT

<4.2 × 10−5<4.2 × 10−5<4.2 × 10−5<4.2 × 10−5 90 GLENN 98 CLEO e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.0024 90 1 BEAN 87 CLEO Repl. by GLENN 98
<0.0062 90 2 AVERY 84 CLEO Repl. by BEAN 871BEAN 87 reports [(µ+µ−)+(e+ e−)]/2 and we 
onverted it.2Determine ratio of B+ to B0 semileptoni
 de
ays to be in the range 0.25{2.9.�(s ℓ+ ℓ−

)/�total �123/��(s ℓ+ ℓ−
)/�total �123/��(s ℓ+ ℓ−
)/�total �123/��(s ℓ+ ℓ−
)/�total �123/�Test for �B = 1 weak neutral 
urrent.VALUE (units 10−6) DOCUMENT ID TECN COMMENT5.8 ±1.3 OUR AVERAGE5.8 ±1.3 OUR AVERAGE5.8 ±1.3 OUR AVERAGE5.8 ±1.3 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.6.73+0.70

−0.64+0.60
−0.56 1 LEES 14D BABR e+ e− → �(4S)4.11±0.83+0.85
−0.81 2 IWASAKI 05 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.6 ±1.5 ±1.3 3 AUBERT,B 04I BABR Repl. by LEES 14D6.1 ±1.4 +1.4
−1.1 3 KANEKO 03 BELL Repl. by IWASAKI 051Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S , K0S π0, K0S π+, K0S π+π0, and K0S π + π− 
orre
ted for unob-served modes.2Requires M

ℓ+ ℓ− > 0.2 GeV/
2.3Requires Me+ e− > 0.2 GeV/
2.�(

πℓ+ ℓ−
)/�total �124/��(

πℓ+ ℓ−
)/�total �124/��(

πℓ+ ℓ−
)/�total �124/��(

πℓ+ ℓ−
)/�total �124/�VALUE CL% DOCUMENT ID TECN COMMENT

<5.9× 10−8<5.9× 10−8<5.9× 10−8<5.9× 10−8 90 1 LEES 13M BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6.2× 10−8 90 1 WEI 08A BELL e+ e− → �(4S)
<9.1× 10−8 90 1 AUBERT 07AG BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

πe+ e−)/�total �125/��(

πe+ e−)/�total �125/��(

πe+ e−)/�total �125/��(

πe+ e−)/�total �125/�VALUE CL% DOCUMENT ID TECN COMMENT
<11.0× 10−8<11.0× 10−8<11.0× 10−8<11.0× 10−8 90 1 LEES 13M BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(

πµ+µ−)/�total �126/��(

πµ+µ−)/�total �126/��(

πµ+µ−)/�total �126/��(

πµ+µ−)/�total �126/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.0× 10−8<5.0× 10−8<5.0× 10−8<5.0× 10−8 90 1 LEES 13M BABR e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K e+ e−)/�total �127/��(K e+ e−)/�total �127/��(K e+ e−)/�total �127/��(K e+ e−)/�total �127/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT4.4±0.6 OUR AVERAGE4.4±0.6 OUR AVERAGE4.4±0.6 OUR AVERAGE4.4±0.6 OUR AVERAGE3.9+0.9

−0.8±0.2 1 AUBERT 09T BABR e+ e− → �(4S)4.8+0.8
−0.7±0.3 1 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.3+0.9
−0.8±0.2 1 AUBERT,B 06J BABR Repl. by AUBERT 09T7.4+1.8
−1.6±0.5 1 AUBERT 03U BABR Repl. by AUBERT,B 06J4.8+1.5
−1.3±0.3 1,2 ISHIKAWA 03 BELL Repl. by WEI 09A

<13 90 ABE 02 BELL Repl. by ISHIKAWA 031Assumes equal produ
tion of B+ and B0 at the �(4S).2The se
ond error is a total of systemati
 un
ertainties in
luding model dependen
e.



1296129612961296MesonParti
le ListingsB±/B0ADMIXTURE�(K∗(892)e+ e−)/�total �128/��(K∗(892)e+ e−)/�total �128/��(K∗(892)e+ e−)/�total �128/��(K∗(892)e+ e−)/�total �128/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT11.9±2.0 OUR AVERAGE11.9±2.0 OUR AVERAGE11.9±2.0 OUR AVERAGE11.9±2.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.9.9+2.3
−2.1±0.6 1 AUBERT 09T BABR e+ e− → �(4S)13.9+2.3
−2.0±1.2 1 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •9.7+3.0
−2.7±1.4 1 AUBERT,B 06J BABR Repl. by AUBERT 09T9.8+5.0
−4.2±1.1 1 AUBERT 03U BABR Repl. by AUBERT,B 06J14.9+5.2
−4.6+1.2

−1.3 2 ISHIKAWA 03 BELL Repl. by WEI 09A
<56 90 ABE 02 BELL Repl. by ISHIKAWA 031Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B0 and B+ at �(4S). The se
ond error is a total ofsystemati
 un
ertainties in
luding model dependen
e.�(K µ+µ−)/�total �129/��(K µ+µ−)/�total �129/��(K µ+µ−)/�total �129/��(K µ+µ−)/�total �129/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions.VALUE (units 10−7) DOCUMENT ID TECN COMMENT4.4±0.4 OUR AVERAGE4.4±0.4 OUR AVERAGE4.4±0.4 OUR AVERAGE4.4±0.4 OUR AVERAGE4.2±0.4±0.2 AALTONEN 11AI CDF pp at 1.96 TeV4.1+1.3

−1.2±0.2 1 AUBERT 09T BABR e+ e− → �(4S)5.0±0.6±0.3 1 WEI 09A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.5+1.3

−1.1±0.3 1 AUBERT,B 06J BABR Repl. by AUBERT 09T4.5+2.3
−1.9±0.4 1 AUBERT 03U BABR Repl. by AUBERT,B 06J4.8+1.2
−1.1±0.4 1,2 ISHIKAWA 03 BELL Repl. by WEI 09A9.9+4.0
−3.2+1.3

−1.0 ABE 02 BELL Repl. by ISHIKAWA 031Assumes equal produ
tion of B+ and B0 at the �(4S).2The se
ond error is a total of systemati
 un
ertainties in
luding model dependen
e.�(K µ+µ−)/�(K e+ e−) �129/�127�(K µ+µ−)/�(K e+ e−) �129/�127�(K µ+µ−)/�(K e+ e−) �129/�127�(K µ+µ−)/�(K e+ e−) �129/�127VALUE DOCUMENT ID TECN COMMENT1.01±0.15 OUR AVERAGE1.01±0.15 OUR AVERAGE1.01±0.15 OUR AVERAGE1.01±0.15 OUR AVERAGE1.00+0.31
−0.25±0.07 1 LEES 12S BABR e+ e− → �(4S)0.96+0.44
−0.34±0.05 AUBERT 09T BABR e+ e− → �(4S)1.03±0.19±0.06 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.06±0.48±0.08 AUBERT,B 06J BABR Repl. by AUBERT 09T1Measured in the union of 0.10 < q2 < 8.12 GeV2/
4 and q2 > 10.11 GeV2/
4.LEES 12S reports also individual measurements �(B → K µ+µ−
)/�(B → K e+ e−)= 0.74+0.40

−0.31 ± 0.06 for 0.10 < q2 < 8.12 GeV2/
4 and �(B → K µ+µ−
)/�(B →K e+ e−) = 1.43+0.65

−0.44 ± 0.12 for q2 > 10.11 GeV2/
4.�(K∗(892)µ+µ−)/�total �130/��(K∗(892)µ+µ−)/�total �130/��(K∗(892)µ+µ−)/�total �130/��(K∗(892)µ+µ−)/�total �130/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT10.6±0.9 OUR AVERAGE10.6±0.9 OUR AVERAGE10.6±0.9 OUR AVERAGE10.6±0.9 OUR AVERAGE10.1±1.0±0.5 AALTONEN 11AI CDF pp at 1.96 TeV13.5+3.5
−3.3±1.0 1 AUBERT 09T BABR e+ e− → �(4S)11.0+1.6
−1.4±0.8 1 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.8+3.5
−3.0±1.2 1 AUBERT,B 06J BABR Repl. by AUBERT 09T12.7+7.6
−6.1±1.6 1 AUBERT 03U BABR Repl. by AUBERT,B 06J11.7+3.6
−3.1±1.0 2 ISHIKAWA 03 BELL Repl. by WEI 09A

<31 90 ABE 02 BELL Repl. by ISHIKAWA 031Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes equal produ
tion of B0 and B+ at �(4S). The se
ond error is a total ofsystemati
 un
ertainties in
luding model dependen
e.�(K∗(892)µ+µ−)/�(K∗(892)e+ e−) �130/�128�(K∗(892)µ+µ−)/�(K∗(892)e+ e−) �130/�128�(K∗(892)µ+µ−)/�(K∗(892)e+ e−) �130/�128�(K∗(892)µ+µ−)/�(K∗(892)e+ e−) �130/�128VALUE DOCUMENT ID TECN COMMENT0.98±0.15 OUR AVERAGE0.98±0.15 OUR AVERAGE0.98±0.15 OUR AVERAGE0.98±0.15 OUR AVERAGE1.13+0.34
−0.26±0.10 1 LEES 12S BABR e+ e− → �(4S)1.37+0.53
−0.40±0.09 AUBERT 09T BABR e+ e− → �(4S)0.83±0.17±0.08 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.91±0.45±0.06 AUBERT,B 06J BABR Repl. by AUBERT 09T

1Measured in the union of 0.10 < q2 < 8.12 GeV2/
4 and q2 > 10.11 GeV2/
4.LEES 12S reports also individual measurements �(B → K∗(892)µ+µ−
)/�(B →K∗(892)e+ e−) = 1.06+0.48

−0.33 ± 0.08 for 0.10 < q2 < 8.12 GeV2/
4 and �(B →K∗(892)µ+µ−
)/�(B → K∗(892)e+ e−) = 1.18+0.55

−0.37 ± 0.11 for q2 > 10.11GeV2/
4.�(K ℓ+ ℓ−
)/�total �131/��(K ℓ+ ℓ−
)/�total �131/��(K ℓ+ ℓ−
)/�total �131/��(K ℓ+ ℓ−
)/�total �131/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT4.8±0.4 OUR AVERAGE4.8±0.4 OUR AVERAGE4.8±0.4 OUR AVERAGE4.8±0.4 OUR AVERAGE4.7±0.6±0.2 LEES 12S BABR e+ e− → �(4S)4.8+0.5

−0.4±0.3 WEI 09A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.9±0.7±0.2 1 AUBERT 09T BABR Repl. by LEES 12S3.4±0.7±0.2 1 AUBERT,B 06J BABR Repl. by AUBERT 09T6.5+1.4

−1.3±0.4 2 AUBERT 03U BABR Repl. by AUBERT,B 06J4.8+1.0
−0.9±0.3 3 ISHIKAWA 03 BELL Repl. by WEI 09A7.5+2.5
−2.1±0.6 4 ABE 02 BELL Repl. by ISHIKAWA 03

< 5.1 90 1 AUBERT 02L BABR e+ e− → �(4S)
<17 90 5 ANDERSON 01B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes all four B → K ℓ+ ℓ− modes having equal partial widths in the �t.3Assumes equal produ
tion rate for 
harge and neutral B meson pairs, isospin invarian
e,lepton universality for B → K ℓ+ ℓ−, and B(B → K∗(892)µ+µ−) = 1.33. The se
onderror is total systemati
 un
ertainties in
luding model dependen
e.4Assumes lepton universality.5The result is for di-lepton masses above 0.5 GeV.�(K∗(892)ℓ+ ℓ−

)/�total �132/��(K∗(892)ℓ+ ℓ−
)/�total �132/��(K∗(892)ℓ+ ℓ−
)/�total �132/��(K∗(892)ℓ+ ℓ−
)/�total �132/�Test for �B = 1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
-tions.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT10.5±1.0 OUR AVERAGE10.5±1.0 OUR AVERAGE10.5±1.0 OUR AVERAGE10.5±1.0 OUR AVERAGE10.2+1.4

−1.3±0.5 LEES 12S BABR e+ e− → �(4S)10.7+1.1
−1.0±0.9 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •11.1+1.9
−1.8±0.7 1 AUBERT 09T BABR Repl. by LEES 12S7.8+1.9
−1.7±1.1 1 AUBERT,B 06J BABR Repl. by AUBERT 09T8.8+3.3
−2.9±1.0 2 AUBERT 03U BABR Repl. by AUBERT,B 06J11.5+2.6
−2.4±0.8 3 ISHIKAWA 03 BELL Repl. by WEI 09A

<31 90 1,4 AUBERT 02L BABR Repl. by AUBERT 03U
<33 90 5 ANDERSON 01B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).2Assumes the partial width ratio of ele
tron and muon modes to be �(B →K∗(892)e+ e−)/�(B → K∗(892)µ+µ−) = 1.33.3Assumes equal produ
tion rate for 
harge and neutral B meson pairs, isospin invarian
e,lepton universality for B → K ℓ+ ℓ−, and B(B → K∗(892)µ+µ−) = 1.33. The se
onderror is total systemati
 un
ertainties in
luding model dependen
e.4 For averaging K∗(892)µ+µ− and K∗(892)e+ e− modes, AUBERT 02L assumedB(B → K∗(892)e+ e−)/B(B → K∗(892)µ+µ−) = 1.2.5The result is for di-lepton masses above 0.5 GeV.�(K ν ν

)/�total �133/��(K ν ν
)/�total �133/��(K ν ν
)/�total �133/��(K ν ν
)/�total �133/�Test for �B =1 weak neutral 
urrent.VALUE CL% DOCUMENT ID TECN COMMENT

<1.7× 10−5<1.7× 10−5<1.7× 10−5<1.7× 10−5 90 1,2 LEES 13I BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.4× 10−5 90 1 DEL-AMO-SA...10Q BABR Repl. by LEES 13I1Assumes equal produ
tion of B+ and B0 at the �(4S).2Also reported a limit < 3.2 × 10−5 at 90% CL obtained using a fully re
onstru
tedhadroni
 B-tag evnets.�(K∗ν ν

)/�total �134/��(K∗ν ν
)/�total �134/��(K∗ν ν
)/�total �134/��(K∗ν ν
)/�total �134/�Test for �B =1 weak neutral 
urrent.VALUE CL% DOCUMENT ID TECN COMMENT

<7.6× 10−5<7.6× 10−5<7.6× 10−5<7.6× 10−5 90 1,2 LEES 13I BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8 × 10−5 90 AUBERT 08BC BABR Repl. by LEES 13I1Assumes equal produ
tion of B+ and B0 at the �(4S).2Also reported a limit < 7.9 × 10−5 at 90% CL obtained using a fully re
onstru
tedhadroni
 B-tag evnets.�(s e±µ∓)/�total �135/��(s e±µ∓)/�total �135/��(s e±µ∓)/�total �135/��(s e±µ∓)/�total �135/�Test for lepton family number 
onservation. Allowed by higher-order ele
troweak in-tera
tions.VALUE CL% DOCUMENT ID TECN COMMENT
<2.2× 10−5<2.2× 10−5<2.2× 10−5<2.2× 10−5 90 GLENN 98 CLEO e+ e− → �(4S)



1297129712971297See key on page 601 MesonParti
le ListingsB±/B0ADMIXTURE�(πe±µ∓)/�total �136/��(πe±µ∓)/�total �136/��(πe±µ∓)/�total �136/��(πe±µ∓)/�total �136/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<9.2× 10−8<9.2× 10−8<9.2× 10−8<9.2× 10−8 90 1 AUBERT 07AG BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.6× 10−6 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(ρe±µ∓)/�total �137/��(ρe±µ∓)/�total �137/��(ρe±µ∓)/�total �137/��(ρe±µ∓)/�total �137/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<3.2× 10−6<3.2× 10−6<3.2× 10−6<3.2× 10−6 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K e±µ∓)/�total �138/��(K e±µ∓)/�total �138/��(K e±µ∓)/�total �138/��(K e±µ∓)/�total �138/�Test of lepton family number 
onservation.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
< 0.38< 0.38< 0.38< 0.38 90 1 AUBERT,B 06J BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<16 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).�(K∗(892)e±µ∓)/�total �139/��(K∗(892)e±µ∓)/�total �139/��(K∗(892)e±µ∓)/�total �139/��(K∗(892)e±µ∓)/�total �139/�Test of lepton family number 
onservation.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
< 5.1< 5.1< 5.1< 5.1 90 1 AUBERT,B 06J BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<62 90 1 EDWARDS 02B CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S).CP VIOLATIONCP VIOLATIONCP VIOLATIONCP VIOLATIONACP is de�ned as

B(B →f )−B(B →f )
B(B →f )+B(B →f ) ,the CP-violation 
harge asymmetry of in
lusive B± and B0 de
ay.ACP (B → K∗(892)γ)ACP (B → K∗(892)γ)ACP (B → K∗(892)γ)ACP (B → K∗(892)γ)VALUE DOCUMENT ID TECN COMMENT

−0.003±0.017 OUR AVERAGE−0.003±0.017 OUR AVERAGE−0.003±0.017 OUR AVERAGE−0.003±0.017 OUR AVERAGE
−0.003±0.017±0.007 1 AUBERT 09AO BABR e+ e− → �(4S)
−0.015±0.044±0.012 2 NAKAO 04 BELL e+ e− → �(4S)+0.08 ±0.13 ±0.03 2 COAN 00 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.013±0.036±0.010 3 AUBERT,BE 04A BABR Repl. by AUBERT 09AO
−0.044±0.076±0.012 4 AUBERT 02C BABR Repl. by AUBERT,BE 04A1Corresponds to a 90% CL interval −0.033 < ACP < 0.028.2Assumes equal produ
tion of B+ and B0 at the �(4S).3Corresponds to a 90% CL allowed region, −0.074 < ACP < 0.049.4A 90% CL range is −0.170 <ACP < 0.082.ACP (b → s γ)ACP (b → s γ)ACP (b → s γ)ACP (b → s γ)VALUE DOCUMENT ID TECN COMMENT0.015±0.020 OUR AVERAGE0.015±0.020 OUR AVERAGE0.015±0.020 OUR AVERAGE0.015±0.020 OUR AVERAGE0.017±0.019±0.010 1 LEES 14K BABR e+ e− → �(4S)0.002±0.050±0.030 2 NISHIDA 04 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.011±0.030±0.014 3 AUBERT 08BJ BABR Repl. by LEES 14K0.025±0.050±0.015 4 AUBERT,B 04E BABR Repl. by AUBERT 08BJ1Measured with 16 ex
lusively re
onstru
ted B → Xs γ de
ays with 0.6 < mXs < 2.0GeV/
2 (ten 
harged and six neutral self-tagging B modes).2This measurement is performed in
lusively for re
oil mass Xs less than 2.1 GeV, whi
h
orresponds to −0.093 < ACP < 0.096 at 90% CL.3Uses a sum of ex
lusively re
onstru
ted B → Xs de
ay modes, with Xs mass between0.6 and 2.8 GeV/
2.4Corresponds to −0.06 < ACP < 0.11 at 90% CL.ACP (b → (s + d)γ)ACP (b → (s + d)γ)ACP (b → (s + d)γ)ACP (b → (s + d)γ)VALUE DOCUMENT ID TECN COMMENT0.010±0.031 OUR AVERAGE0.010±0.031 OUR AVERAGE0.010±0.031 OUR AVERAGE0.010±0.031 OUR AVERAGE0.022±0.039±0.009 1 PESANTEZ 15 BELL e+ e− → �(4S)0.057±0.060±0.018 LEES 12V BABR e+ e− → �(4S)
−0.10 ±0.18 ±0.05 2 AUBERT 08O BABR e+ e− → �(4S)
−0.110±0.115±0.017 AUBERT,BE 06B BABR e+ e− → �(4S)
−0.079±0.108±0.022 3 COAN 01 CLE2 e+ e− → �(4S)1Assumes equal produ
tion of B+ and B0 at the �(4S). Uses an opposite side leptontag. Requires 
enter-of-mass frame Eγ > 2.1 GeV.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side. Requires Eγ > 2.2 GeV.3Corresponds to −0.27 <ACP < 0.10 at 90% CL.

ACP (B → Xs ℓ+ ℓ−)ACP (B → Xs ℓ+ ℓ−)ACP (B → Xs ℓ+ ℓ−)ACP (B → Xs ℓ+ ℓ−)VALUE DOCUMENT ID TECN COMMENT0.04±0.11±0.010.04±0.11±0.010.04±0.11±0.010.04±0.11±0.01 1 LEES 14D BABR e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.22±0.26±0.02 2 AUBERT,B 04I BABR Repl. by LEES 14D1Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S π+, and K0S π+π0.2The �nal state 
avor is determined by the kaon and pion 
harges where modes with Xs= K0S , K0S π0 or K0S π+π− are not used.ACP (B → Xs ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)ACP (B → Xs ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)ACP (B → Xs ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)ACP (B → Xs ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT
−0.06±0.22±0.01−0.06±0.22±0.01−0.06±0.22±0.01−0.06±0.22±0.01 1 LEES 14D BABR e+ e− → �(4S)1Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S π+, and K0S π+π0.ACP (B → Xs ℓ+ ℓ−) (10.1 < q2 < 12.9 or q2 > 14.2 GeV2/
4)ACP (B → Xs ℓ+ ℓ−) (10.1 < q2 < 12.9 or q2 > 14.2 GeV2/
4)ACP (B → Xs ℓ+ ℓ−) (10.1 < q2 < 12.9 or q2 > 14.2 GeV2/
4)ACP (B → Xs ℓ+ ℓ−) (10.1 < q2 < 12.9 or q2 > 14.2 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.19+0.18

−0.17±0.010.19+0.18
−0.17±0.010.19+0.18
−0.17±0.010.19+0.18
−0.17±0.01 1 LEES 14D BABR e+ e− → �(4S)1Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S π+, and K0S π + (pi−)0.ACP (B → K∗ e+ e−)ACP (B → K∗ e+ e−)ACP (B → K∗ e+ e−)ACP (B → K∗ e+ e−)VALUE DOCUMENT ID TECN COMMENT

−0.18±0.15±0.01−0.18±0.15±0.01−0.18±0.15±0.01−0.18±0.15±0.01 WEI 09A BELL e+ e− → �(4S)ACP (B → K∗µ+µ−)ACP (B → K∗µ+µ−)ACP (B → K∗µ+µ−)ACP (B → K∗µ+µ−)VALUE DOCUMENT ID TECN COMMENT
−0.03±0.13±0.02−0.03±0.13±0.02−0.03±0.13±0.02−0.03±0.13±0.02 WEI 09A BELL e+ e− → �(4S)ACP (B → K∗ ℓ+ ℓ−)ACP (B → K∗ ℓ+ ℓ−)ACP (B → K∗ ℓ+ ℓ−)ACP (B → K∗ ℓ+ ℓ−)VALUE DOCUMENT ID TECN COMMENT
−0.04±0.07 OUR AVERAGE−0.04±0.07 OUR AVERAGE−0.04±0.07 OUR AVERAGE−0.04±0.07 OUR AVERAGE0.03±0.13±0.01 1 LEES 12S BABR e+ e− → �(4S)+0.01+0.16

−0.15±0.01 AUBERT 09T BABR e+ e− → �(4S)
−0.10±0.10±0.01 WEI 09A BELL e+ e− → �(4S)1Measured in the union of 0.10 < q2 < 8.12 GeV2/
4 and q2 > 10.11 GeV2/
4.LEES 12S reports also individual measurements ACP (B → K∗ ℓ+ ℓ−) =−0.13+0.18

−0.19±0.01 for 0.10 < q2 < 8.12 GeV2/
4 and ACP (B → K∗ ℓ+ ℓ−) = 0.16+0.18
−0.19 ± 0.01for q2 > 10.11 GeV2/
4.ACP (B → ηanything)ACP (B → ηanything)ACP (B → ηanything)ACP (B → ηanything)VALUE DOCUMENT ID TECN COMMENT

−0.13±0.04+0.02
−0.03−0.13±0.04+0.02
−0.03−0.13±0.04+0.02
−0.03−0.13±0.04+0.02
−0.03 1 NISHIMURA 10 BELL e+ e− → �(4S)1Uses B → ηXs with 0.4 < mXs < 2.6 GeV/
2.�ACP (Xs γ) = ACP (B± → Xs γ) − ACP (B0 → Xs γ)�ACP (Xs γ) = ACP (B± → Xs γ) − ACP (B0 → Xs γ)�ACP (Xs γ) = ACP (B± → Xs γ) − ACP (B0 → Xs γ)�ACP (Xs γ) = ACP (B± → Xs γ) − ACP (B0 → Xs γ)This is the isospin di�eren
e of the CP asymmetries.VALUE DOCUMENT ID TECN COMMENT0.050±0.039±0.0150.050±0.039±0.0150.050±0.039±0.0150.050±0.039±0.015 1 LEES 14K BABR e+ e− → �(4S)1Measured with 16 ex
lusively re
onstru
ted B → Xs γ de
ays with 0.6 < mXs < 2.0GeV/
2 (ten 
harged and six neutral self-tagging B modes).POLARIZATION IN B DECAYPOLARIZATION IN B DECAYPOLARIZATION IN B DECAYPOLARIZATION IN B DECAYIn de
ays involving two ve
tor mesons, one 
an distinguish among thestates in whi
h meson polarizations are both longitudinal (L) or both aretransverse and parallel (‖) or perpendi
ular (⊥) to ea
h other with theparameters �L/�, �⊥/�, and the relative phases φ‖ and φ⊥. See thede�nitions in the note on \Polarization in B De
ays" review in the B0Parti
le Listings.FL(B → K∗ ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.63+0.18

−0.19±0.050.63+0.18
−0.19±0.050.63+0.18
−0.19±0.050.63+0.18
−0.19±0.05 1 AUBERT,B 06J BABR e+ e− → �(4S)1Results with di�erent q2 
uts are also reported.FL(B → K∗ ℓ+ ℓ−) (mℓℓ < 2.5 GeV/
2)FL(B → K∗ ℓ+ ℓ−) (mℓℓ < 2.5 GeV/
2)FL(B → K∗ ℓ+ ℓ−) (mℓℓ < 2.5 GeV/
2)FL(B → K∗ ℓ+ ℓ−) (mℓℓ < 2.5 GeV/
2)VALUE DOCUMENT ID TECN COMMENT0.35±0.16±0.040.35±0.16±0.040.35±0.16±0.040.35±0.16±0.04 AUBERT 09N BABR e+ e− → �(4S)



1298129812981298MesonParti
le ListingsB±/B0ADMIXTUREFL(B → K∗ ℓ+ ℓ−) (mℓℓ > 3.2 GeV/
2)FL(B → K∗ ℓ+ ℓ−) (mℓℓ > 3.2 GeV/
2)FL(B → K∗ ℓ+ ℓ−) (mℓℓ > 3.2 GeV/
2)FL(B → K∗ ℓ+ ℓ−) (mℓℓ > 3.2 GeV/
2)VALUE DOCUMENT ID TECN COMMENT0.71+0.20
−0.22±0.040.71+0.20
−0.22±0.040.71+0.20
−0.22±0.040.71+0.20
−0.22±0.04 AUBERT 09N BABR e+ e− → �(4S)FL(B → K∗ ℓ+ ℓ−) (0.10 < q2 < 0.98 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (0.10 < q2 < 0.98 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (0.10 < q2 < 0.98 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (0.10 < q2 < 0.98 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.263+0.045
−0.044±0.0170.263+0.045
−0.044±0.0170.263+0.045
−0.044±0.0170.263+0.045
−0.044±0.017 AAIJ 16B LHCB pp at 7, 8 TeVFL(B → K∗ ℓ+ ℓ−) (1.1 < q2 < 2.5 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (1.1 < q2 < 2.5 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (1.1 < q2 < 2.5 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (1.1 < q2 < 2.5 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.660+0.083
−0.077±0.0220.660+0.083
−0.077±0.0220.660+0.083
−0.077±0.0220.660+0.083
−0.077±0.022 AAIJ 16B LHCB pp at 7, 8 TeVFL(B → K∗ ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.34+0.08

−0.07 OUR AVERAGE0.34+0.08
−0.07 OUR AVERAGE0.34+0.08
−0.07 OUR AVERAGE0.34+0.08
−0.07 OUR AVERAGE0.37+0.10
−0.09+0.04

−0.03 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.30±0.16±0.02 AALTONEN 12I CDF pp at 1.96 TeV0.29+0.21
−0.18±0.02 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.60+0.00
−0.28±0.19 1 CHATRCHYAN13BL CMS pp at 7 TeV0.00+0.13
−0.00±0.02 AAIJ 12U LHCB Repl. by AAIJ 13Y0.53+0.32
−0.34±0.07 AALTONEN 11L CDF Repl. by AALTONEN 12I1CHATRCHYAN 13BL uses, for this bin, 1.0 < q2 < 2.0 GeV2/
4.FL(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.77 ±0.05 OUR AVERAGE0.77 ±0.05 OUR AVERAGE0.77 ±0.05 OUR AVERAGE0.77 ±0.05 OUR AVERAGE0.876+0.109
−0.097±0.017 1 AAIJ 16B LHCB pp at 7, 8 TeV0.80 ±0.08 ±0.06 KHACHATRY...16D CMS pp at 8 TeV0.74 +0.10
−0.09 +0.02

−0.03 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.65 ±0.17 ±0.03 CHATRCHYAN13BL CMS pp at 7 TeV0.37 +0.25
−0.24 ±0.10 AALTONEN 12I CDF pp at 1.96 TeV0.71 ±0.24 ±0.05 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.77 ±0.15 ±0.03 AAIJ 12U LHCB Repl. by AAIJ 13Y0.40 +0.32
−0.33 ±0.08 AALTONEN 11L CDF Repl. by AALTONEN 12I1Measured in 2.5 < q2 < 4.0 GeV2/
4.FL(B → K∗ ℓ+ ℓ−) (4.0 < q2 < 6.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (4.0 < q2 < 6.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (4.0 < q2 < 6.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (4.0 < q2 < 6.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.611+0.052
−0.053±0.0170.611+0.052
−0.053±0.0170.611+0.052
−0.053±0.0170.611+0.052
−0.053±0.017 AAIJ 16B LHCB pp at 7, 8 TeVFL(B → K∗ ℓ+ ℓ−) (6.0 < q2 < 8.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (6.0 < q2 < 8.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (6.0 < q2 < 8.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (6.0 < q2 < 8.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.579±0.046±0.0150.579±0.046±0.0150.579±0.046±0.0150.579±0.046±0.015 AAIJ 16B LHCB pp at 7, 8 TeVFL(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.64±0.06 OUR AVERAGE0.64±0.06 OUR AVERAGE0.64±0.06 OUR AVERAGE0.64±0.06 OUR AVERAGE0.57±0.07±0.03 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.81+0.13

−0.12±0.05 CHATRCHYAN13BL CMS pp at 7 TeV0.68+0.15
−0.17±0.09 AALTONEN 12I CDF pp at 1.96 TeV0.64+0.23
−0.24±0.07 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.60+0.06
−0.07±0.01 AAIJ 12U LHCB Repl. by AAIJ 13Y0.82+0.19
−0.23±0.07 AALTONEN 11L CDF Repl. by AALTONEN 12IFL(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.448±0.033 OUR AVERAGE0.448±0.033 OUR AVERAGE0.448±0.033 OUR AVERAGE0.448±0.033 OUR AVERAGE0.493+0.049
−0.047±0.013 1 AAIJ 16B LHCB pp at 7, 8 TeV0.39 ±0.05 ±0.04 KHACHATRY...16D CMS pp at 8 TeV0.48 +0.08
−0.09 ±0.03 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.45 +0.10
−0.11 ±0.04 CHATRCHYAN13BL CMS pp at 7 TeV0.47 ±0.14 ±0.03 AALTONEN 12I CDF pp at 1.96 TeV0.17 +0.17
−0.15 ±0.03 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.41 ±0.11 ±0.03 AAIJ 12U LHCB Repl. by AAIJ 13Y0.31 +0.19
−0.18 ±0.02 AALTONEN 11L CDF Repl. by AALTONEN 12I1Measured in 11.0 < q2 < 12.5 GeV2/
4.

FL(B → K∗ ℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.349±0.039±0.0090.349±0.039±0.0090.349±0.039±0.0090.349±0.039±0.009 AAIJ 16B LHCB pp at 7, 8 TeVFL(B → K∗ ℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.354+0.049
−0.048±0.0250.354+0.049
−0.048±0.0250.354+0.049
−0.048±0.0250.354+0.049
−0.048±0.025 AAIJ 16B LHCB pp at 7, 8 TeVFL(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.40±0.06 OUR AVERAGE0.40±0.06 OUR AVERAGE0.40±0.06 OUR AVERAGE0.40±0.06 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.0.48+0.05
−0.06±0.04 KHACHATRY...16D CMS pp at 8 TeV0.33+0.08
−0.07+0.02

−0.03 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.53±0.12±0.03 CHATRCHYAN13BL CMS pp at 7 TeV0.29+0.14
−0.13±0.05 AALTONEN 12I CDF pp at 1.96 TeV

−0.15+0.27
−0.23±0.07 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.37±0.09±0.05 AAIJ 12U LHCB Repl. by AAIJ 13Y0.55+0.17
−0.18±0.02 AALTONEN 11L CDF Repl. by AALTONEN 12I

WEIGHTED AVERAGE
0.40±0.06 (Error scaled by 1.4)

WEI 09A BELL 3.9
AALTONEN 12I CDF 0.6
CHATRCHYAN 13BL CMS 1.1
AAIJ 13Y LHCB 0.8
KHACHATRY... 16D CMS 1.1

χ2

       7.5
(Confidence Level = 0.112)

-1 -0.5 0 0.5 1 1.5FL(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.353±0.024 OUR AVERAGE0.353±0.024 OUR AVERAGE0.353±0.024 OUR AVERAGE0.353±0.024 OUR AVERAGE0.344+0.028
−0.030±0.008 1 AAIJ 16B LHCB pp at 7, 8 TeV0.38 +0.05
−0.06 ±0.04 KHACHATRY...16D CMS pp at 8 TeV0.38 +0.09
−0.07 ±0.03 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.44 ±0.07 ±0.03 CHATRCHYAN13BL CMS pp at 7 TeV0.20 +0.19
−0.17 ±0.05 AALTONEN 12I CDF pp at 1.96 TeV0.12 +0.15
−0.13 ±0.02 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.26 +0.10
−0.08 ±0.03 AAIJ 12U LHCB Repl. by AAIJ 13Y0.09 +0.18
−0.14 ±0.03 AALTONEN 11L CDF Repl. by AALTONEN 12I1Measured in 15.0 < q2 < 19.0 GeV2/
4.FL(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.692±0.030 OUR AVERAGE0.692±0.030 OUR AVERAGE0.692±0.030 OUR AVERAGE0.692±0.030 OUR AVERAGE0.690+0.035
−0.036±0.017 1 AAIJ 16B LHCB pp at 7, 8 TeV0.72 ±0.06 KHACHATRY...16D CMS pp at 7, 8 TeV0.65 +0.08
−0.07 ±0.03 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.69 +0.19
−0.21 ±0.08 AALTONEN 12I CDF pp at 1.96 TeV0.67 ±0.23 ±0.05 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.68 ±0.10 ±0.02 CHATRCHYAN13BL CMS Repl. by KHACHATRYAN 16D0.55 ±0.10 ±0.03 AAIJ 12U LHCB Repl. by AAIJ 13Y0.50 +0.27
−0.30 ±0.03 AALTONEN 11L CDF Repl. by AALTONEN 12I1Measured in 1.1 < q2 < 6.0 GeV2/
4.



1299129912991299See key on page 601 MesonParti
le ListingsB±/B0ADMIXTUREFL(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)FL(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.33+0.14
−0.13±0.030.33+0.14
−0.13±0.030.33+0.14
−0.13±0.030.33+0.14
−0.13±0.03 AALTONEN 12I CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.47+0.23
−0.24±0.03 AALTONEN 11L CDF Repl. by AALTONEN 12IPARTIAL BRANCHING FRACTIONS IN B → K (∗) ℓ+ ℓ−PARTIAL BRANCHING FRACTIONS IN B → K (∗) ℓ+ ℓ−PARTIAL BRANCHING FRACTIONS IN B → K (∗) ℓ+ ℓ−PARTIAL BRANCHING FRACTIONS IN B → K (∗) ℓ+ ℓ−B(B → K∗ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.68±0.23 OUR AVERAGE1.68±0.23 OUR AVERAGE1.68±0.23 OUR AVERAGE1.68±0.23 OUR AVERAGE1.89+0.52
−0.46±0.06 1 LEES 12S BABR e+ e− → �(4S)1.73±0.33±0.10 AALTONEN 11AI CDF pp at 1.96 TeV1.46+0.40
−0.35±0.11 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.98±0.40±0.09 AALTONEN 11L CDF Repl. by AALTONEN 11AI1The value reported here from LEES 12S refers to 0.1 < q2 < 2.0 GeV2/
2.B(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.87±0.17 OUR AVERAGE0.87±0.17 OUR AVERAGE0.87±0.17 OUR AVERAGE0.87±0.17 OUR AVERAGE0.95+0.35
−0.30±0.04 LEES 12S BABR e+ e− → �(4S)0.82±0.26±0.06 AALTONEN 11AI CDF pp at 1.96 TeV0.86+0.31
−0.27±0.07 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.00±0.38±0.09 AALTONEN 11L CDF Repl. by AALTONEN 11AIB(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.67±0.29 OUR AVERAGE1.67±0.29 OUR AVERAGE1.67±0.29 OUR AVERAGE1.67±0.29 OUR AVERAGE1.82+0.56
−0.52±0.09 1 LEES 12S BABR e+ e− → �(4S)1.72±0.41±0.14 AALTONEN 11AI CDF pp at 1.96 TeV1.37+0.47
−0.42±0.39 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.69±0.57±0.15 AALTONEN 11L CDF Repl. by AALTONEN 11AI1The value reported here from LEES 12S refers to 4.3 < q2 < 8.12 GeV2/
2.B(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.93±0.25 OUR AVERAGE1.93±0.25 OUR AVERAGE1.93±0.25 OUR AVERAGE1.93±0.25 OUR AVERAGE1.86+0.52
−0.48±0.10 1 LEES 12S BABR e+ e− → �(4S)1.77±0.34±0.11 AALTONEN 11AI CDF pp at 1.96 TeV2.24+0.44
−0.40±0.19 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.97±0.47±0.17 AALTONEN 11L CDF Repl. by AALTONEN 11AI1The value reported here from LEES 12S refers to 10.11 < q2 < 12.89 GeV2/
2.B(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.21±0.17 OUR AVERAGE1.21±0.17 OUR AVERAGE1.21±0.17 OUR AVERAGE1.21±0.17 OUR AVERAGE1.46+0.41
−0.36±0.06 1 LEES 12S BABR e+ e− → �(4S)1.21±0.24±0.07 AALTONEN 11AI CDF pp at 1.96 TeV1.05+0.29
−0.26±0.08 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.51±0.36±0.13 AALTONEN 11L CDF Repl. by AALTONEN 11AI1The value reported here from LEES 12S refers to 14.21 < q2 < 16.0 GeV2/
2.B(B → K∗ ℓ+ ℓ−) (16.0 < q2 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (16.0 < q2 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (16.0 < q2 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (16.0 < q2 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3. See the ideogram below.1.02+0.47
−0.42±0.06 LEES 12S BABR e+ e− → �(4S)0.88±0.22±0.05 AALTONEN 11AI CDF pp at 1.96 TeV2.04+0.27
−0.24±0.16 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.35±0.37±0.12 AALTONEN 11L CDF Repl. by AALTONEN 11AI

WEIGHTED AVERAGE
1.3±0.4 (Error scaled by 2.3)

WEI 09A BELL 6.9
AALTONEN 11AI CDF 3.2
LEES 12S BABR 0.3

χ2

      10.4
(Confidence Level = 0.0055)

-1 0 1 2 3 4B(B → K∗ ℓ+ ℓ−) (16.0 < q2 GeV2/
4) (units 10−7)B(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.64±0.26 OUR AVERAGE1.64±0.26 OUR AVERAGE1.64±0.26 OUR AVERAGE1.64±0.26 OUR AVERAGE2.05+0.53
−0.48±0.07 LEES 12S BABR e+ e− → �(4S)1.48±0.39±0.12 AALTONEN 11AI CDF pp at 1.96 TeV1.49+0.45
−0.40±0.12 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.60±0.54±0.14 AALTONEN 11L CDF Repl. by AALTONEN 11AIB(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT2.53±0.43±0.152.53±0.43±0.152.53±0.43±0.152.53±0.43±0.15 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.98±0.55±0.18 AALTONEN 11L CDF Repl. by AALTONEN 11AIB(B → K ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B → K ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B → K ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)B(B → K ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.51±0.16 OUR AVERAGE0.51±0.16 OUR AVERAGE0.51±0.16 OUR AVERAGE0.51±0.16 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.0.71+0.20

−0.18±0.02 1 LEES 12S BABR e+ e− → �(4S)0.33±0.10±0.02 AALTONEN 11AI CDF pp at 1.96 TeV0.81+0.18
−0.16±0.05 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.38±0.16±0.03 AALTONEN 11L CDF Repl. by AALTONEN 11AI1The value reported here from LEES 12S refers to 0.1 < q2 < 2.0 GeV2/
2.
WEIGHTED AVERAGE
0.51±0.16 (Error scaled by 1.9)

WEI 09A BELL 3.3
AALTONEN 11AI CDF 3.0
LEES 12S BABR 1.3

χ2

       7.5
(Confidence Level = 0.023)

0 0.5 1 1.5 2B(B → K ℓ+ ℓ−) (q2 < 2.0 GeV2/
4) (units 10−7)B(B → K ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B → K ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B → K ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)B(B → K ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.57+0.10
−0.09 OUR AVERAGE0.57+0.10
−0.09 OUR AVERAGE0.57+0.10
−0.09 OUR AVERAGE0.57+0.10
−0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.49+0.15
−0.13±0.01 LEES 12S BABR e+ e− → �(4S)0.77±0.14±0.05 AALTONEN 11AI CDF pp at 1.96 TeV0.46+0.14
−0.12±0.03 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.58±0.19±0.04 AALTONEN 11L CDF Repl. by AALTONEN 11AI



1300130013001300Meson Parti
le ListingsB±/B0 ADMIXTUREB(B → K ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B → K ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B → K ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)B(B → K ℓ+ ℓ−) (4.3 < q2 < 8.68 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.00±0.11 OUR AVERAGE1.00±0.11 OUR AVERAGE1.00±0.11 OUR AVERAGE1.00±0.11 OUR AVERAGE0.94+0.20
−0.19±0.02 1 LEES 12S BABR e+ e− → �(4S)1.05±0.17±0.07 AALTONEN 11AI CDF pp at 1.96 TeV1.00+0.19
−0.18±0.06 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.93±0.25±0.06 AALTONEN 11L CDF Repl. by AALTONEN 11AI1The value reported here from LEES 12S refers to 4.3 < q2 < 8.12 GeV2/
2.B(B → K ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B → K ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B → K ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)B(B → K ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.57±0.11 OUR AVERAGE0.57±0.11 OUR AVERAGE0.57±0.11 OUR AVERAGE0.57±0.11 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.0.90+0.20
−0.19±0.04 1 LEES 12S BABR e+ e− → �(4S)0.48±0.10±0.03 AALTONEN 11AI CDF pp at 1.96 TeV0.55+0.16
−0.14±0.03 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.72±0.17±0.05 AALTONEN 11L CDF Repl. by AALTONEN 11AI1The value reported here from LEES 12S refers to 10.11 < q2 < 12.89 GeV2/
2.
WEIGHTED AVERAGE
0.57±0.11 (Error scaled by 1.4)

WEI 09A BELL 0.0
AALTONEN 11AI CDF 0.7
LEES 12S BABR 2.9

χ2

       3.6
(Confidence Level = 0.161)

0 0.5 1 1.5 2B(B → K ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4) (units 10−7)B(B → K ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B → K ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B → K ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)B(B → K ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.49±0.07 OUR AVERAGE0.49±0.07 OUR AVERAGE0.49±0.07 OUR AVERAGE0.49±0.07 OUR AVERAGE0.49+0.15
−0.14±0.02 1 LEES 12S BABR e+ e− → �(4S)0.52±0.09±0.03 AALTONEN 11AI CDF pp at 1.96 TeV0.38+0.19
−0.12±0.02 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.38±0.12±0.03 AALTONEN 11L CDF Repl. by AALTONEN 11AI1The value reported here from LEES 12S refers to 14.21 < q2 < 16.0 GeV2/
2.B(B → K ℓ+ ℓ−) (16.0 < q2 GeV2/
4)B(B → K ℓ+ ℓ−) (16.0 < q2 GeV2/
4)B(B → K ℓ+ ℓ−) (16.0 < q2 GeV2/
4)B(B → K ℓ+ ℓ−) (16.0 < q2 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.52±0.16 OUR AVERAGE0.52±0.16 OUR AVERAGE0.52±0.16 OUR AVERAGE0.52±0.16 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1. See the ideogram below.0.67+0.23
−0.21±0.05 LEES 12S BABR e+ e− → �(4S)0.38±0.09±0.02 AALTONEN 11AI CDF pp at 1.96 TeV0.98+0.20
−0.18±0.06 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.35±0.13±0.02 AALTONEN 11L CDF Repl. by AALTONEN 11AI

WEIGHTED AVERAGE
0.52±0.16 (Error scaled by 2.1)

WEI 09A BELL 6.0
AALTONEN 11AI CDF 2.2
LEES 12S BABR 0.5

χ2

       8.7
(Confidence Level = 0.013)

0 0.5 1 1.5 2B(B → K ℓ+ ℓ−) (16.0 < q2 GeV2/
4) (units 10−7)B(B → K ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → K ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → K ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → K ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.33±0.13 OUR AVERAGE1.33±0.13 OUR AVERAGE1.33±0.13 OUR AVERAGE1.33±0.13 OUR AVERAGE1.36+0.27
−0.24±0.03 LEES 12S BABR e+ e− → �(4S)1.29±0.18±0.08 AALTONEN 11AI CDF pp at 1.96 TeV1.36+0.23
−0.21±0.08 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.01±0.26±0.07 AALTONEN 11L CDF Repl. by AALTONEN 11AIB(B → K ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B → K ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B → K ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(B → K ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.07±0.17±0.071.07±0.17±0.071.07±0.17±0.071.07±0.17±0.07 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.96±0.25±0.06 AALTONEN 11L CDF Repl. by AALTONEN 11AIB(B → Xs ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → Xs ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → Xs ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → Xs ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−6) DOCUMENT ID TECN COMMENT1.60+0.41

−0.39+0.25
−0.221.60+0.41

−0.39+0.25
−0.221.60+0.41

−0.39+0.25
−0.221.60+0.41

−0.39+0.25
−0.22 1 LEES 14D BABR e+ e− → �(4S)1Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S , K0S π0, K0S π+, K0S π+π0, and K0S π + π− 
orre
ted for unob-served modes.B(B → Xs e+ e−) (1.0 < q2 < 6.0 GeV2/
4)B(B → Xs e+ e−) (1.0 < q2 < 6.0 GeV2/
4)B(B → Xs e+ e−) (1.0 < q2 < 6.0 GeV2/
4)B(B → Xs e+ e−) (1.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−6) DOCUMENT ID TECN COMMENT1.93+0.47

−0.45+0.28
−0.241.93+0.47

−0.45+0.28
−0.241.93+0.47

−0.45+0.28
−0.241.93+0.47

−0.45+0.28
−0.24 1 LEES 14D BABR e+ e− → �(4S)1Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S , K0S π0, K0S π+, K0S π+π0, and K0S π + π− 
orre
ted for unob-served modes.B(B → Xs µ+µ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → Xs µ+µ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → Xs µ+µ−) (1.0 < q2 < 6.0 GeV2/
4)B(B → Xs µ+µ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−6) DOCUMENT ID TECN COMMENT0.66+0.82

−0.76+0.31
−0.250.66+0.82

−0.76+0.31
−0.250.66+0.82

−0.76+0.31
−0.250.66+0.82

−0.76+0.31
−0.25 1 LEES 14D BABR e+ e− → �(4S)1Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S , K0S π0, K0S π+, K0S π+π0, and K0S π + π− 
orre
ted for unob-served modes.B(B → Xs ℓ+ ℓ−) (14.2 < q2 GeV2/
4)B(B → Xs ℓ+ ℓ−) (14.2 < q2 GeV2/
4)B(B → Xs ℓ+ ℓ−) (14.2 < q2 GeV2/
4)B(B → Xs ℓ+ ℓ−) (14.2 < q2 GeV2/
4)VALUE (units 10−6) DOCUMENT ID TECN COMMENT0.57+0.16

−0.15+0.03
−0.020.57+0.16

−0.15+0.03
−0.020.57+0.16

−0.15+0.03
−0.020.57+0.16

−0.15+0.03
−0.02 1 LEES 14D BABR e+ e− → �(4S)1Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S , K0S π0, K0S π+, K0S π+π0, and K0S π + π− 
orre
ted for unob-served modes.B(B → Xs e+ e−) (14.2 < q2 GeV2/
4)B(B → Xs e+ e−) (14.2 < q2 GeV2/
4)B(B → Xs e+ e−) (14.2 < q2 GeV2/
4)B(B → Xs e+ e−) (14.2 < q2 GeV2/
4)VALUE (units 10−6) DOCUMENT ID TECN COMMENT0.56+0.19

−0.18+0.03
−0.030.56+0.19

−0.18+0.03
−0.030.56+0.19

−0.18+0.03
−0.030.56+0.19

−0.18+0.03
−0.03 1 LEES 14D BABR e+ e− → �(4S)1Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S , K0S π0, K0S π+, K0S π+π0, and K0S π + π− 
orre
ted for unob-served modes.



1301130113011301See key on page 601 MesonParti
le ListingsB±/B0ADMIXTUREB(B → Xs µ+µ−) (14.2 < q2 GeV2/
4)B(B → Xs µ+µ−) (14.2 < q2 GeV2/
4)B(B → Xs µ+µ−) (14.2 < q2 GeV2/
4)B(B → Xs µ+µ−) (14.2 < q2 GeV2/
4)VALUE (units 10−6) DOCUMENT ID TECN COMMENT0.60+0.31
−0.29+0.05

−0.040.60+0.31
−0.29+0.05

−0.040.60+0.31
−0.29+0.05

−0.040.60+0.31
−0.29+0.05

−0.04 1 LEES 14D BABR e+ e− → �(4S)1Measured from sum of ex
lusive modes through K+, K+π0, K+π−, K+π−π0,K+π−π+, K0S , K0S π0, K0S π+, K0S π+π0, and K0S π + π− 
orre
ted for unob-served modes.LEPTON (HADRON) FORWARD-BACKWARD ASYMMETRYLEPTON (HADRON) FORWARD-BACKWARD ASYMMETRYLEPTON (HADRON) FORWARD-BACKWARD ASYMMETRYLEPTON (HADRON) FORWARD-BACKWARD ASYMMETRYIN B → K (∗) ℓ+ ℓ− (B → K /πh+ h−) DECAYIN B → K (∗) ℓ+ ℓ− (B → K /πh+ h−) DECAYIN B → K (∗) ℓ+ ℓ− (B → K /πh+ h−) DECAYIN B → K (∗) ℓ+ ℓ− (B → K /πh+ h−) DECAYThe forward-ba
kward angular asymmetry of the lepton pair in B →K(∗) ℓ+ ℓ− (B → K /πh+ h−) de
ay is de�ned asAFB(s) = N(cosθ>0)−N(cosθ<0)
N(cosθ>0)+N(cosθ<0) ,where s=q2/m2B , and θ is the angle of the ℓ− (h−) with respe
t tothe 
ight dire
tion of the B meson, measured in the dilepton (dihadron)rest frame. In addition, the fra
tion of longitudinal polarization FL ofthe K∗ and FS , the relative 
ontribution from s
alar and pseudos
alarpenguin amplitudes in B → K ℓ+ ℓ−, 
an be measured from the angulardistribution of its de
ay produ
ts.AFB(B → K∗ ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)VALUE CL% DOCUMENT ID TECN COMMENT0.50±0.15±0.020.50±0.15±0.020.50±0.15±0.020.50±0.15±0.02 1 ISHIKAWA 06 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
>0.55 95 2 AUBERT,B 06J BABR e+ e− → �(4S)1Using an unbinned max. likelihood �ts to the Mbc distribution in �ve q2 bins for 
os θ >0and 
os θ <0.2Results with di�erent q2 
uts are also reported.AFB(B → K∗ ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT
−0.01±0.14 OUR AVERAGE−0.01±0.14 OUR AVERAGE−0.01±0.14 OUR AVERAGE−0.01±0.14 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.
−0.02±0.12±0.01 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−

−0.35+0.26
−0.23±0.10 AALTONEN 12I CDF pp at 1.96 TeV0.47+0.26
−0.32±0.03 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.29+0.37
−0.00±0.18 1 CHATRCHYAN13BL CMS pp at 7 TeV

−0.15±0.20±0.06 AAIJ 12U LHCB Repl. by AAIJ 13Y0.13+1.65
−0.75±0.25 AALTONEN 11L CDF Repl. by AALTONEN 12I1CHATRCHYAN 13BL uses, for this bin, 1.0 < q2 < 2.0 GeV2/
4.

WEIGHTED AVERAGE
-0.01±0.14 (Error scaled by 1.4)

WEI 09A BELL 2.3
AALTONEN 12I CDF 1.5
AAIJ 13Y LHCB 0.0

χ2

       3.7
(Confidence Level = 0.155)

-1 -0.5 0 0.5 1 1.5 2AFB(B → K∗ ℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (mℓℓ < 2.5 GeV/
2)AFB(B → K∗ ℓ+ ℓ−) (mℓℓ < 2.5 GeV/
2)AFB(B → K∗ ℓ+ ℓ−) (mℓℓ < 2.5 GeV/
2)AFB(B → K∗ ℓ+ ℓ−) (mℓℓ < 2.5 GeV/
2)VALUE DOCUMENT ID TECN COMMENT0.24+0.18
−0.23±0.050.24+0.18
−0.23±0.050.24+0.18
−0.23±0.050.24+0.18
−0.23±0.05 AUBERT 09N BABR e+ e− → �(4S)AFB(B → K∗ ℓ+ ℓ−) (mℓℓ > 3.2 GeV/
2)AFB(B → K∗ ℓ+ ℓ−) (mℓℓ > 3.2 GeV/
2)AFB(B → K∗ ℓ+ ℓ−) (mℓℓ > 3.2 GeV/
2)AFB(B → K∗ ℓ+ ℓ−) (mℓℓ > 3.2 GeV/
2)VALUE DOCUMENT ID TECN COMMENT0.76+0.52
−0.32±0.070.76+0.52
−0.32±0.070.76+0.52
−0.32±0.070.76+0.52
−0.32±0.07 AUBERT 09N BABR e+ e− → �(4S)AFB(B → K∗ ℓ+ ℓ−) (0.10 < q2 < 0.98 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (0.10 < q2 < 0.98 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (0.10 < q2 < 0.98 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (0.10 < q2 < 0.98 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT

−0.003+0.058
−0.057±0.009−0.003+0.058
−0.057±0.009−0.003+0.058
−0.057±0.009−0.003+0.058
−0.057±0.009 AAIJ 16B LHCB pp at 7, 8 TeV

AFB(B → K∗ ℓ+ ℓ−) (1.1 < q2 < 2.5 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (1.1 < q2 < 2.5 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (1.1 < q2 < 2.5 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (1.1 < q2 < 2.5 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT
−0.191+0.068

−0.080±0.012−0.191+0.068
−0.080±0.012−0.191+0.068
−0.080±0.012−0.191+0.068
−0.080±0.012 AAIJ 16B LHCB pp at 7, 8 TeVAFB(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT

−0.14 ±0.05 OUR AVERAGE−0.14 ±0.05 OUR AVERAGE−0.14 ±0.05 OUR AVERAGE−0.14 ±0.05 OUR AVERAGE
−0.118+0.082

−0.090±0.007 1 AAIJ 16B LHCB pp at 7, 8 TeV
−0.12 +0.15

−0.17 ±0.05 KHACHATRY...16D CMS pp at 8 TeV
−0.20 ±0.08 ±0.01 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−
−0.07 ±0.20 ±0.02 CHATRCHYAN13BL CMS pp at 7 TeV0.29 +0.32

−0.35 ±0.15 AALTONEN 12I CDF pp at 1.96 TeV0.11 +0.31
−0.36 ±0.07 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.05 +0.16
−0.20 ±0.04 AAIJ 12U LHCB Repl. by AAIJ 13Y0.19 +0.40
−0.41 ±0.14 AALTONEN 11L CDF Repl. by AALTONEN 12I1Measured in 2.5 < q2 < 4.0 GeV2/
4.AFB(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT

−0.08+0.21
−0.20±0.05−0.08+0.21
−0.20±0.05−0.08+0.21
−0.20±0.05−0.08+0.21
−0.20±0.05 AALTONEN 12I CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.21+0.31
−0.33±0.05 AALTONEN 11L CDF Repl. by AALTONEN 12IAFB(B → K∗ ℓ+ ℓ−) (4.0 < q2 < 6.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (4.0 < q2 < 6.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (4.0 < q2 < 6.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (4.0 < q2 < 6.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.025+0.051
−0.052±0.0040.025+0.051
−0.052±0.0040.025+0.051
−0.052±0.0040.025+0.051
−0.052±0.004 AAIJ 16B LHCB pp at 7, 8 TeVAFB(B → K∗ ℓ+ ℓ−) (6.0 < q2 < 8.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (6.0 < q2 < 8.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (6.0 < q2 < 8.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (6.0 < q2 < 8.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.152+0.041
−0.040±0.0080.152+0.041
−0.040±0.0080.152+0.041
−0.040±0.0080.152+0.041
−0.040±0.008 AAIJ 16B LHCB pp at 7, 8 TeVAFB(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT

−0.092±0.027 OUR AVERAGE−0.092±0.027 OUR AVERAGE−0.092±0.027 OUR AVERAGE−0.092±0.027 OUR AVERAGE
−0.075+0.032

−0.034±0.007 1 AAIJ 16B LHCB pp at 7, 8 TeV
−0.12 ±0.08 KHACHATRY...16D CMS pp at 7, 8 TeV
−0.17 ±0.06 ±0.01 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.29 +0.20

−0.23 ±0.07 AALTONEN 12I CDF pp at 1.96 TeV0.26 +0.27
−0.30 ±0.07 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.07 ±0.12 ±0.01 CHATRCHYAN13BL CMS Repl. by KHACHA-TRYAN 16D
−0.06 +0.13

−0.14 ±0.07 AAIJ 12U LHCB Repl. by AAIJ 13Y0.43 +0.36
−0.37 ±0.06 AALTONEN 11L CDF Repl. by AALTONEN 12I1Measured in 1.1 < q2 < 6.0 GeV2/
4.AFB(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.13+0.06

−0.05 OUR AVERAGE0.13+0.06
−0.05 OUR AVERAGE0.13+0.06
−0.05 OUR AVERAGE0.13+0.06
−0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.16+0.06
−0.05±0.01 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−

−0.01±0.11±0.03 CHATRCHYAN13BL CMS pp at 7 TeV0.01±0.20±0.09 AALTONEN 12I CDF pp at 1.96 TeV0.45+0.15
−0.21±0.15 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.27+0.06
−0.08±0.02 AAIJ 12U LHCB Repl. by AAIJ 13Y

−0.06+0.30
−0.28±0.05 AALTONEN 11L CDF Repl. by AALTONEN 12IAFB(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.02 ±0.13 OUR AVERAGE0.02 ±0.13 OUR AVERAGE0.02 ±0.13 OUR AVERAGE0.02 ±0.13 OUR AVERAGE Error in
ludes s
ale fa
tor of 4.5. See the ideogrambelow.

−0.318+0.044
−0.040±0.009 1 AAIJ 16B LHCB pp at 7, 8 TeV0.16 ±0.06 ±0.01 KHACHATRY...16D CMS pp at 8 TeV0.28 +0.07
−0.06 ±0.02 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.40 ±0.08 ±0.05 CHATRCHYAN13BL CMS pp at 7 TeV0.38 +0.16
−0.19 ±0.09 AALTONEN 12I CDF pp at 1.96 TeV0.43 +0.18
−0.20 ±0.03 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •



1302130213021302MesonParti
le ListingsB±/B0ADMIXTURE0.27 +0.11
−0.13 ±0.02 AAIJ 12U LHCB Repl. by AAIJ 13Y0.66 +0.23
−0.20 ±0.07 AALTONEN 11L CDF Repl. by AALTONEN 12I1Measured in 11.0 < q2 < 12.5 GeV2/
4.

WEIGHTED AVERAGE
0.02±0.13 (Error scaled by 4.5)

WEI 09A BELL 4.2
AALTONEN 12I CDF 3.0
CHATRCHYAN 13BL CMS 16.5
AAIJ 13Y LHCB 17.3
KHACHATRY... 16D CMS 5.6
AAIJ 16B LHCB 55.5

χ2

     102.1
(Confidence Level < 0.0001)

-0.5 0 0.5 1 1.5AFB(B → K∗ ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.43+0.05
−0.06 OUR AVERAGE0.43+0.05
−0.06 OUR AVERAGE0.43+0.05
−0.06 OUR AVERAGE0.43+0.05
−0.06 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.0.39+0.04
−0.06±0.01 KHACHATRY...16D CMS pp at 8 TeV0.51+0.07
−0.05±0.02 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.29±0.09±0.05 CHATRCHYAN13BL CMS pp at 7 TeV0.44+0.18
−0.21±0.10 AALTONEN 12I CDF pp at 1.96 TeV0.70+0.16
−0.22±0.10 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.47+0.06
−0.08±0.03 AAIJ 12U LHCB Repl. by AAIJ 13Y0.42±0.16±0.09 AALTONEN 11L CDF Repl. by AALTONEN 12I

WEIGHTED AVERAGE
0.43+0.05-0.06 (Error scaled by 1.6)

WEI 09A BELL
AALTONEN 12I CDF
CHATRCHYAN 13BL CMS 1.8
AAIJ 13Y LHCB 2.4
KHACHATRY... 16D CMS 0.8

χ2

       4.9
(Confidence Level = 0.086)

-0.5 0 0.5 1 1.5 2AFB(B → K∗ ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.411+0.41
−0.037±0.0080.411+0.41
−0.037±0.0080.411+0.41
−0.037±0.0080.411+0.41
−0.037±0.008 AAIJ 16B LHCB pp at 7, 8 TeVAFB(B → K∗ ℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.305+0.049
−0.048±0.0130.305+0.049
−0.048±0.0130.305+0.049
−0.048±0.0130.305+0.049
−0.048±0.013 AAIJ 16B LHCB pp at 7, 8 TeV

AFB(B → K∗ ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)AFB(B → K∗ ℓ+ ℓ−) (16.0 < q2 < 19.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.367±0.024 OUR AVERAGE0.367±0.024 OUR AVERAGE0.367±0.024 OUR AVERAGE0.367±0.024 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.355±0.027±0.009 1 AAIJ 16B LHCB pp at 7, 8 TeV0.35 ±0.07 ±0.01 KHACHATRY...16D CMS pp at 8 TeV0.30 ±0.08 +0.01
−0.02 AAIJ 13Y LHCB pp at 7 TeV, K∗0µ+µ−0.41 ±0.05 ±0.03 CHATRCHYAN13BL CMS pp at 7 TeV0.65 +0.17

−0.18 ±0.16 AALTONEN 12I CDF pp at 1.96 TeV0.66 +0.11
−0.16 ±0.04 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.16 +0.11
−0.13 ±0.06 AAIJ 12U LHCB Repl. by AAIJ 13Y0.70 +0.16
−0.25 ±0.10 AALTONEN 11L CDF Repl. by AALTONEN 12I1Measured in 15.0 < q2 < 19.0 GeV2/
4.AFB(B → K ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)AFB(B → K ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)AFB(B → K ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)AFB(B → K ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.11±0.12 OUR AVERAGE0.11±0.12 OUR AVERAGE0.11±0.12 OUR AVERAGE0.11±0.12 OUR AVERAGE0.15+0.21

−0.23±0.08 1 AUBERT,B 06J BABR e+ e− → �(4S)0.10±0.14±0.01 2 ISHIKAWA 06 BELL e+ e− → �(4S)1Results with di�erent q2 
uts are also reported.2Using an unbinned max. likelihood �ts to the Mbc distribution in �ve q2 bins for 
os θ >0and 
os θ <0.AFB(B → K ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (q2 < 2.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.00+0.06
−0.05 OUR AVERAGE0.00+0.06
−0.05 OUR AVERAGE0.00+0.06
−0.05 OUR AVERAGE0.00+0.06
−0.05 OUR AVERAGE0.00+0.06
−0.05+0.03

−0.01 AAIJ 13H LHCB pp at 7 TeV0.13+0.42
−0.43±0.07 AALTONEN 12I CDF pp at 1.96 TeV0.06+0.32
−0.35±0.02 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.15+0.46
−0.39±0.08 AALTONEN 11L CDF Repl. by AALTONEN 12IAFB(B → K ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)AFB(B → K ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)AFB(B → K ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)AFB(B → K ℓ+ ℓ−) (2.0 < q2 < 4.3 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.09+0.10
−0.07 OUR AVERAGE0.09+0.10
−0.07 OUR AVERAGE0.09+0.10
−0.07 OUR AVERAGE0.09+0.10
−0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.0.07+0.08
−0.05+0.02

−0.01 AAIJ 13H LHCB pp at 7 TeV0.32+0.15
−0.16±0.05 AALTONEN 12I CDF pp at 1.96 TeV

−0.43+0.38
−0.40±0.09 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.72+0.40
−0.35±0.07 AALTONEN 11L CDF Repl. by AALTONEN 12IAFB(B → K ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)AFB(B → K ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)AFB(B → K ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)AFB(B → K ℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.31±0.16±0.040.31±0.16±0.040.31±0.16±0.040.31±0.16±0.04 AALTONEN 12I CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.36+0.24
−0.26±0.06 AALTONEN 11L CDF Repl. by AALTONEN 12IAFB(B → K ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.034+0.040

−0.029 OUR AVERAGE0.034+0.040
−0.029 OUR AVERAGE0.034+0.040
−0.029 OUR AVERAGE0.034+0.040
−0.029 OUR AVERAGE0.02 +0.05
−0.03 +0.02

−0.01 AAIJ 13H LHCB pp at 7 TeV0.13 ±0.09 ±0.02 AALTONEN 12I CDF pp at 1.96 TeV
−0.04 +0.13

−0.16 ±0.05 WEI 09A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.08 +0.27

−0.22 ±0.07 AALTONEN 11L CDF Repl. by AALTONEN 12IAFB(B → K ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)AFB(B → K ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)AFB(B → K ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)AFB(B → K ℓ+ ℓ−) (4.3 < q2 < 8.6 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT
−0.04+0.04

−0.05 OUR AVERAGE−0.04+0.04
−0.05 OUR AVERAGE−0.04+0.04
−0.05 OUR AVERAGE−0.04+0.04
−0.05 OUR AVERAGE

−0.02+0.03
−0.05±0.03 AAIJ 13H LHCB pp at 7 TeV0.01+0.13
−0.10±0.01 AALTONEN 12I CDF pp at 1.96 TeV

−0.20+0.12
−0.14±0.03 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.20+0.17
−0.28±0.03 AALTONEN 11L CDF Repl. by AALTONEN 12I



1303130313031303See key on page 601 MesonParti
le ListingsB±/B0ADMIXTUREAFB(B → K ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)AFB(B → K ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)AFB(B → K ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)AFB(B → K ℓ+ ℓ−) (10.09 < q2 < 12.86 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT
−0.05±0.06 OUR AVERAGE−0.05±0.06 OUR AVERAGE−0.05±0.06 OUR AVERAGE−0.05±0.06 OUR AVERAGE
−0.03±0.07±0.01 AAIJ 13H LHCB pp at 7 TeV
−0.03+0.11

−0.10±0.04 AALTONEN 12I CDF pp at 1.96 TeV
−0.21+0.17

−0.15±0.06 WEI 09A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.10+0.17
−0.15±0.07 AALTONEN 11L CDF Repl. by AALTONEN 12IAFB(B → K ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (14.18 < q2 < 16.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT

−0.02+0.07
−0.05 OUR AVERAGE−0.02+0.07
−0.05 OUR AVERAGE−0.02+0.07
−0.05 OUR AVERAGE−0.02+0.07
−0.05 OUR AVERAGE

−0.01+0.12
−0.06±0.01 AAIJ 13H LHCB pp at 7 TeV

−0.05+0.09
−0.11±0.03 AALTONEN 12I CDF pp at 1.96 TeV0.04+0.32
−0.26±0.05 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.03+0.49
−0.16±0.04 AALTONEN 11L CDF Repl. by AALTONEN 12IAFB(B → K ℓ+ ℓ−) (16.0 < q2 < 18.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (16.0 < q2 < 18.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (16.0 < q2 < 18.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (16.0 < q2 < 18.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT

−0.09+0.07
−0.09+0.02

−0.01−0.09+0.07
−0.09+0.02

−0.01−0.09+0.07
−0.09+0.02

−0.01−0.09+0.07
−0.09+0.02

−0.01 AAIJ 13H LHCB pp at 7 TeVAFB(B → K ℓ+ ℓ−) (18.0 < q2 < 22.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (18.0 < q2 < 22.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (18.0 < q2 < 22.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (18.0 < q2 < 22.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.02±0.11±0.010.02±0.11±0.010.02±0.11±0.010.02±0.11±0.01 AAIJ 13H LHCB pp at 7 TeVAFB(B → K ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)AFB(B → K ℓ+ ℓ−) (q2 > 16.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.04+0.09
−0.07 OUR AVERAGE0.04+0.09
−0.07 OUR AVERAGE0.04+0.09
−0.07 OUR AVERAGE0.04+0.09
−0.07 OUR AVERAGE0.09+0.17
−0.13±0.03 AALTONEN 12I CDF pp at 1.96 TeV0.02+0.11
−0.08±0.02 WEI 09A BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.07+0.30
−0.23±0.02 AALTONEN 11L CDF Repl. by AALTONEN 12IFS(B → K ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)FS(B → K ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)FS(B → K ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)FS(B → K ℓ+ ℓ−) (q2 > 0.1 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.81+0.58
−0.61±0.460.81+0.58
−0.61±0.460.81+0.58
−0.61±0.460.81+0.58
−0.61±0.46 1 AUBERT,B 06J BABR e+ e− → �(4S)1Results with di�erent q2 
uts are also reported.AFB(B → K pp) (mp p < 2.85 GeV/
2)AFB(B → K pp) (mp p < 2.85 GeV/
2)AFB(B → K pp) (mp p < 2.85 GeV/
2)AFB(B → K pp) (mp p < 2.85 GeV/
2)VALUE DOCUMENT ID TECN COMMENT0.495±0.012±0.0070.495±0.012±0.0070.495±0.012±0.0070.495±0.012±0.007 1 AAIJ 14AF LHCB pp at 7, 8 TeV1Measured in B+ → K+ pp de
ays.AFB(B → πpp) (mp p < 2.85 GeV/
2)AFB(B → πpp) (mp p < 2.85 GeV/
2)AFB(B → πpp) (mp p < 2.85 GeV/
2)AFB(B → πpp) (mp p < 2.85 GeV/
2)VALUE DOCUMENT ID TECN COMMENT

−0.409±0.033±0.006−0.409±0.033±0.006−0.409±0.033±0.006−0.409±0.033±0.006 1 AAIJ 14AF LHCB pp at 7, 8 TeV1Measured in B+ → π+ pp de
ays.ISOSPIN ASYMMETRYISOSPIN ASYMMETRYISOSPIN ASYMMETRYISOSPIN ASYMMETRY�0− is de�ned as �(B0 →fd )−�(B− →fu)�(B0 →fd )+�(B− →fu) ,the isospin asymmetry of in
lusive neutral and 
harged B de
ay.�0−(B(B → Xs γ))�0−(B(B → Xs γ))�0−(B(B → Xs γ))�0−(B(B → Xs γ))VALUE DOCUMENT ID TECN COMMENT
−0.01 ±0.06 OUR AVERAGE−0.01 ±0.06 OUR AVERAGE−0.01 ±0.06 OUR AVERAGE−0.01 ±0.06 OUR AVERAGE
−0.06 ±0.15 ±0.07 1,2 AUBERT 08O BABR e+ e− → �(4S)
−0.006±0.058±0.026 AUBERT,B 05R BABR e+ e− → �(4S)1The result is for Eγ > 2.2 GeV.2Uses a fully re
onstru
ted B meson as a tag on the re
oil side.�0+(B → K∗(892)γ)�0+(B → K∗(892)γ)�0+(B → K∗(892)γ)�0+(B → K∗(892)γ)�0+ des
ribes the isospin asymmetry between �(B0 → K∗(892)0 γ) and �(B+ →K∗(892)+ γ).VALUE DOCUMENT ID TECN COMMENT0.052±0.026 OUR AVERAGE0.052±0.026 OUR AVERAGE0.052±0.026 OUR AVERAGE0.052±0.026 OUR AVERAGE0.066±0.021±0.022 1 AUBERT 09AO BABR e+ e− → �(4S)0.012±0.044±0.026 NAKAO 04 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.050±0.045±0.037 2 AUBERT,BE 04A BABR Repl. by AUBERT 09AO

1Uses the produ
tion ratio of 
harged and neutral B from �(4S) de
ays and the lifetimeratio τB+/τB0 = 1.071 ± 0.009. The 90% CL interval is 0.017< �0+ < 0.1162Uses the produ
tion ratio of 
harged and neutral B from �(4S) de
ays R+/0 = 1.006±0.048 and the lifetime ratio of τB+ / τB0 = 1.083 ± 0.017. The 90% CL interval is
−0.046 < �0+ < 0.146.�ργ = �(B+ → ρ+γ) / (2 · �(B0 → ρ0γ) ) − 1�ργ = �(B+ → ρ+γ) / (2 · �(B0 → ρ0γ) ) − 1�ργ = �(B+ → ρ+γ) / (2 · �(B0 → ρ0γ) ) − 1�ργ = �(B+ → ρ+γ) / (2 · �(B0 → ρ0γ) ) − 1VALUE DOCUMENT ID TECN COMMENT

−0.46±0.17 OUR AVERAGE−0.46±0.17 OUR AVERAGE−0.46±0.17 OUR AVERAGE−0.46±0.17 OUR AVERAGE
−0.43+0.25

−0.22±0.10 AUBERT 08BH BABR e+ e− → �(4S)
−0.48+0.21

−0.19+0.08
−0.09 TANIGUCHI 08 BELL e+ e− → �(4S)�0−(B(B → K ℓ+ ℓ−))�0−(B(B → K ℓ+ ℓ−))�0−(B(B → K ℓ+ ℓ−))�0−(B(B → K ℓ+ ℓ−))VALUE DOCUMENT ID TECN COMMENT

−0.13±0.06 OUR AVERAGE−0.13±0.06 OUR AVERAGE−0.13±0.06 OUR AVERAGE−0.13±0.06 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.
−0.10+0.08

−0.09±0.02 1 AAIJ 14M LHCB pp at 7, 8 TeV
−0.09+0.08

−0.08±0.02 2 AAIJ 14M LHCB pp at 7, 8 TeV
−0.58+0.29

−0.37±0.02 3 LEES 12S BABR e+ e− → �(4S)
−0.31+0.17

−0.14±0.08 4 WEI 09A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.35+0.23
−0.27 5 AAIJ 12AH LHCB Repl. by AAIJ 14M

−1.43+0.56
−0.85±0.05 6,7 AUBERT 09T BABR Repl. by LEES 12S1For 1.1 < q2 < 6.0 GeV2/
4 using µ+µ− as a lepton pair and assuming isospinsymmetry for the B → J/ψ(1S)K . Measurements in other q2 bins are also reported.2 For 15.0 < q2 < 19.0 GeV2/
4 using µ+µ− as a lepton pair and assuming isospinsymmetry for the B → J/ψ(1S)K . Measurements in other q2 bins are also reported.3 For 0.10 < q2 < 8.12 GeV2/
4. Measurements in other q2 bins are also reported.4 For q2 < 8.68 GeV2/
4.5 For 1 < q2 < 6 GeV2/
4.6 For 0.1 < m2

ℓ+ ℓ−
< 7.02 GeV2/
4.7Assumes equal produ
tion of B+ and B0 at the �(4S).�0−(B(B → K∗ ℓ+ ℓ−))�0−(B(B → K∗ ℓ+ ℓ−))�0−(B(B → K∗ ℓ+ ℓ−))�0−(B(B → K∗ ℓ+ ℓ−))VALUE DOCUMENT ID TECN COMMENT

−0.03+0.08
−0.07 OUR AVERAGE−0.03+0.08
−0.07 OUR AVERAGE−0.03+0.08
−0.07 OUR AVERAGE−0.03+0.08
−0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.00+0.12
−0.10±0.02 1 AAIJ 14M LHCB pp at 7, 8 TeV0.06+0.10
−0.09±0.02 2 AAIJ 14M LHCB pp at 7, 8 TeV

−0.25+0.20
−0.17±0.03 3 LEES 12S BABR e+ e− → �(4S)

−0.29±0.16±0.09 4 WEI 09A BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.15±0.16 5 AAIJ 12AH LHCB Repl. by AAIJ 14M
−0.56+0.17

−0.15±0.03 6,7 AUBERT 09T BABR Repl. by LEES 12S1For 1.1 < q2 < 6.0 GeV2/
4 using µ+µ− as a lepton pair and assuming isospinsymmetry for the B(B → J/ψ(1S)K∗(892)). Measurements in other q2 bins are alsoreported.2 For 15.0 < q2 < 22.0 GeV2/
4 using µ+µ− as a lepton pair and assuming isospinsymmetry for the B(B → J/ψ(1S)K∗(892)). Measurements in other q2 bins are alsoreported.3 For 0.10 < q2 < 8.12 GeV2/
4. Measurements in other q2 bins are also reported.4 For q2 < 8.68 GeV2/
4.5 For 1 < q2 < 6 GeV2/
4.6 For 0.1 < m2
ℓ+ ℓ−

< 7.02 GeV2/
4.7Assumes equal produ
tion of B+ and B0 at the �(4S).�0−(B(B → K (∗) ℓ+ ℓ−))�0−(B(B → K (∗) ℓ+ ℓ−))�0−(B(B → K (∗) ℓ+ ℓ−))�0−(B(B → K (∗) ℓ+ ℓ−))VALUE DOCUMENT ID TECN COMMENT
−0.45±0.17 OUR AVERAGE−0.45±0.17 OUR AVERAGE−0.45±0.17 OUR AVERAGE−0.45±0.17 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.
−0.64+0.15

−0.14±0.03 1,2 AUBERT 09T BABR e+ e− → �(4S)
−0.30+0.12

−0.11±0.08 3 WEI 09A BELL e+ e− → �(4S)1 For 0.1 < m2
ℓ+ ℓ−

< 7.02 GeV2/
4.2Assumes equal produ
tion of B+ and B0 at the �(4S).3 For q2 < 8.68 GeV2/
2.B → X
 ℓν HADRONIC MASS MOMENTSB → X
 ℓν HADRONIC MASS MOMENTSB → X
 ℓν HADRONIC MASS MOMENTSB → X
 ℓν HADRONIC MASS MOMENTS
〈M2X {M2D〉 (First Moments)〈M2X {M2D〉 (First Moments)〈M2X {M2D〉 (First Moments)〈M2X {M2D〉 (First Moments)VALUE (GeV2) DOCUMENT ID TECN COMMENT0.36 ±0.08 OUR AVERAGE0.36 ±0.08 OUR AVERAGE0.36 ±0.08 OUR AVERAGE0.36 ±0.08 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.0.467±0.038±0.068 1 ACOSTA 05F CDF pp at 1.96 TeV0.293±0.012±0.058 2 CSORNA 04 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.251±0.023±0.062 3 CRONIN-HEN...01B CLE2 e+ e− → �(4S)1Moments are measured with a minimum lepton momentum of 0.7 GeV/
 in the B restframe;2Uses minimum lepton energy of 1.5 GeV and also reports moments with Eℓ > 1.0 GeV.3The leptons are required to have Pℓ > 1.5 GeV/
.



1304130413041304MesonParti
le ListingsB±/B0 ADMIXTURE
〈M2X 〉 (First Moments)〈M2X 〉 (First Moments)〈M2X 〉 (First Moments)〈M2X 〉 (First Moments)VALUE (GeV2) DOCUMENT ID TECN COMMENT4.156±0.029 OUR AVERAGE4.156±0.029 OUR AVERAGE4.156±0.029 OUR AVERAGE4.156±0.029 OUR AVERAGE4.144±0.028±0.022 1 SCHWANDA 07 BELL e+ e− → �(4S)4.18 ±0.04 ±0.03 1 AUBERT,B 04 BABR e+ e− → �(4S)1The leptons are required to have Eℓ > 1.5 GeV/
.
〈(M2X {M2X )2〉 (Se
ond Moments)〈(M2X {M2X )2〉 (Se
ond Moments)〈(M2X {M2X )2〉 (Se
ond Moments)〈(M2X {M2X )2〉 (Se
ond Moments)VALUE (GeV4) DOCUMENT ID TECN COMMENT0.55 ±0.08 OUR AVERAGE0.55 ±0.08 OUR AVERAGE0.55 ±0.08 OUR AVERAGE0.55 ±0.08 OUR AVERAGE0.515±0.061±0.064 1 SCHWANDA 07 BELL e+ e− → �(4S)0.629±0.031±0.143 2 CSORNA 04 CLE2 e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.05 ±0.26 ±0.13 3 ACOSTA 05F CDF pp at 1.96 TeV0.576±0.048±0.168 1 CRONIN-HEN...01B CLE2 e+ e− → �(4S)1The leptons are required to have Eℓ > 1.5 GeV/
.2Uses minimum lepton energy of 1.5 GeV and also reports moments with Eℓ > 1.0 GeV.3Moments are measured with a minimum lepton momentum of 0.7 GeV/
 in the B restframe;
〈(M2X {M2D)2〉 (Se
ond Moments)〈(M2X {M2D)2〉 (Se
ond Moments)〈(M2X {M2D)2〉 (Se
ond Moments)〈(M2X {M2D)2〉 (Se
ond Moments)VALUE (GeV4) DOCUMENT ID TECN COMMENT0.639±0.056±0.1780.639±0.056±0.1780.639±0.056±0.1780.639±0.056±0.178 1 CRONIN-HEN...01B CLE2 e+ e− → �(4S)1The leptons are required to have Eℓ > 1.5 GeV/
.B → X
 ℓν LEPTON MOMENTUM MOMENTSB → X
 ℓν LEPTON MOMENTUM MOMENTSB → X
 ℓν LEPTON MOMENTUM MOMENTSB → X
 ℓν LEPTON MOMENTUM MOMENTSR0 (�El>1.7GeV / �El>1.5GeV )R0 (�El>1.7GeV / �El>1.5GeV )R0 (�El>1.7GeV / �El>1.5GeV )R0 (�El>1.7GeV / �El>1.5GeV )VALUE DOCUMENT ID TECN COMMENT0.6187±0.0014±0.00160.6187±0.0014±0.00160.6187±0.0014±0.00160.6187±0.0014±0.0016 1 MAHMOOD 03 CLE2 e+ e− → �(4S)1The leptons are required to have El >1.5 GeV in the B rest frame.R1 (〈El

〉

El>1.5GeV )R1 (〈El

〉

El>1.5GeV )R1 (〈El

〉

El>1.5GeV )R1 (〈El

〉

El>1.5GeV )VALUE DOCUMENT ID TECN COMMENT1.7797±0.0018 OUR AVERAGE1.7797±0.0018 OUR AVERAGE1.7797±0.0018 OUR AVERAGE1.7797±0.0018 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogrambelow.1.7743±0.0019±0.0014 1 AUBERT,B 04A BABR e+ e− → �(4S)1.7792±0.0021±0.0027 2 MAHMOOD 04 CLEO e+ e− → �(4S)1.7810±0.0007±0.0009 3 MAHMOOD 03 CLE2 e+ e− → �(4S)1The leptons are required to have El > 1.5 GeV in the B rest frame. The result withEl > 0.6 GeV is also given.2Uses Ee > 1.5 GeV and also reports moments with other minimum minimum Ee 
on-ditions, as low as Ee > 0.6 GeV.3The leptons are required to have El >1.5 GeV in the B rest frame.
WEIGHTED AVERAGE
1.7797±0.0018 (Error scaled by 1.8)

MAHMOOD 03 CLE2 1.3
MAHMOOD 04 CLEO 0.0
AUBERT,B 04A BABR 5.2

χ2

       6.6
(Confidence Level = 0.038)

1.765 1.77 1.775 1.78 1.785 1.79 1.795R1 (〈El

〉

El>1.5GeV )R2 (〈E2l − E2l 〉El>1.5GeV )R2 (〈E2l − E2l 〉El>1.5GeV )R2 (〈E2l − E2l 〉El>1.5GeV )R2 (〈E2l − E2l 〉El>1.5GeV )VALUE (10−3 GeV2) DOCUMENT ID TECN COMMENT30.8±0.8 OUR AVERAGE30.8±0.8 OUR AVERAGE30.8±0.8 OUR AVERAGE30.8±0.8 OUR AVERAGE30.3±0.9±0.5 1 AUBERT,B 04A BABR e+ e− → �(4S)31.6±0.8±1.0 2 MAHMOOD 04 CLEO e+ e− → �(4S)1The leptons are required to have El > 1.5 GeV in the B rest frame. The result withEl > 0.6 GeV is also given.2Uses Ee > 1.5 GeV and also reports moments with other minimum minimum Ee 
on-ditions, as low as Ee > 0.6 GeV.

R3 (〈E3l − E3l 〉El>1.5GeV )R3 (〈E3l − E3l 〉El>1.5GeV )R3 (〈E3l − E3l 〉El>1.5GeV )R3 (〈E3l − E3l 〉El>1.5GeV )VALUE (10−3 GeV3) DOCUMENT ID TECN COMMENT2.12±0.47±0.202.12±0.47±0.202.12±0.47±0.202.12±0.47±0.20 1 AUBERT,B 04A BABR e+ e− → �(4S)1The leptons are required to have El > 1.5 GeV in the B rest frame. The result withEl > 0.6 GeV is also given.B → Xs γ PHOTON ENERGY MOMENTSB → Xs γ PHOTON ENERGY MOMENTSB → Xs γ PHOTON ENERGY MOMENTSB → Xs γ PHOTON ENERGY MOMENTS
〈Eγ

〉
〈Eγ

〉
〈Eγ

〉
〈Eγ

〉VALUE (GeV) DOCUMENT ID TECN COMMENT2.314±0.011 OUR AVERAGE2.314±0.011 OUR AVERAGE2.314±0.011 OUR AVERAGE2.314±0.011 OUR AVERAGE2.346±0.018+0.027
−0.022 1,2 LEES 12U BABR e+ e− → �(4S)2.304±0.014±0.017 2,3 LEES 12V BABR e+ e− → �(4S)2.311±0.009±0.015 3 LIMOSANI 09 BELL e+ e− → �(4S)2.289±0.058±0.027 3,4 AUBERT 08O BABR e+ e− → �(4S)2.309±0.023±0.023 2,3 SCHWANDA 08 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.288±0.025±0.023 3 AUBERT,BE 06B BABR Repl. by LEES 12V1 LEES 12U uses Eγ > 1.897 GeV to 
al
ulate the moments; the moments are used to 
al-
ulate the HQET parameters mb = 4.579+0.032
−0.029 GeV/
2 and µ2π = 0.257+0.034

−0.039 GeV2in the shape fun
tion model. The same HQET parameters are also determined in thekineti
 model.2Results for di�erent Eγ threshold values are also measured.3The result is for Eγ > 1.9 GeV.4Uses a fully re
onstru
ted B meson as a tag on the re
oil side.
〈E2γ〉

−
〈Eγ

〉2〈E2γ〉

−
〈Eγ

〉2〈E2γ〉

−
〈Eγ

〉2〈E2γ〉

−
〈Eγ

〉2VALUE (10−2 GeV2) DOCUMENT ID TECN COMMENT3.03±0.25 OUR AVERAGE3.03±0.25 OUR AVERAGE3.03±0.25 OUR AVERAGE3.03±0.25 OUR AVERAGE2.11±0.57+0.55
−0.69 1,2 LEES 12U BABR e+ e− → �(4S)3.62±0.33±0.33 2,3 LEES 12V BABR e+ e− → �(4S)3.02±0.19±0.30 3 LIMOSANI 09 BELL e+ e− → �(4S)3.34±1.24±0.62 3,4 AUBERT 08O BABR e+ e− → �(4S)2.17±0.60±0.55 2,3 SCHWANDA 08 BELL e+ e− → �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.28±0.40±0.43 3 AUBERT,BE 06B BABR Repl. by LEES 12V1 LEES 12U uses Eγ > 1.897 GeV to 
al
ulate the moments; the moments are used to 
al-
ulate the HQET parameters mb = 4.579+0.032
−0.029 GeV/
2 and µ2π = 0.257+0.034

−0.039 GeV2in the shape fun
tion model. The same HQET parameters are also determined in thekineti
 model.2Results for di�erent Eγ threshold values are also measured.3The result is for Eγ > 1.9 GeV.4Uses a fully re
onstru
ted B meson as a tag on the re
oil side.B±/B0 ADMIXTURE REFERENCESB±/B0 ADMIXTURE REFERENCESB±/B0 ADMIXTURE REFERENCESB±/B0 ADMIXTURE REFERENCESAAIJ 16B JHEP 1602 104 R. Aaij et al. (LHCb Collab.)KHACHATRY... 16D PL B753 424 V. Kha
hatryan et al. (CMS Collab.)LEES 16 PRL 116 041801 J.P. Lees et al. (BABAR Collab.)HUSCHLE 15 PR D92 072014 M. Hus
hle et al. (BELLE Collab.)PESANTEZ 15 PRL 114 151601 L. Pesantez et al. (BELLE Collab.)SAITO 15 PR D91 052004 T. Saito et al. (BELLE Collab.)AAIJ 14AF PRL 113 141801 R. Aaij et al. (LHCb Collab.)AAIJ 14M JHEP 1406 133 R. Aaij et al. (LHCb Collab.)LEES 14D PRL 112 211802 J.P. Lees et al. (BABAR Collab.)LEES 14K PR D90 092001 J.P. Lees et al. (BABAR Collab.)AAIJ 13H JHEP 1302 105 R. Aaij et al. (LHCb Collab.)AAIJ 13Y JHEP 1308 131 R. Aaij et al. (LHCb Collab.)CHATRCHYAN 13BL PL B727 77 S. Chatr
hyan et al. (CMS Collab.)LEES 13I PR D87 112005 J.P. Lees et al. (BABAR Collab.)LEES 13M PR D88 032012 J.P. Lees et al. (BABAR Collab.)AAIJ 12AH JHEP 1207 133 R. Aaij et al. (LHCb Collab.)AAIJ 12U PRL 108 181806 R. Aaij et al. (LHCb Collab.)AALTONEN 12I PRL 108 081807 T. Aaltonen et al. (CDF Collab.)LEES 12 PR D85 011102 J.P. Lees et al. (BABAR Collab.)LEES 12D PRL 109 101802 J.P. Lees et al. (BABAR Collab.)Also PR D88 072012 J.P. Lees et al. (BABAR Collab.)LEES 12R PR D86 032004 J.P. Lees et al. (BABAR Collab.)LEES 12S PR D86 032012 J.P. Lees et al. (BABAR Collab.)LEES 12U PR D86 052012 J.P. Lees et al. (BABAR Collab.)LEES 12V PRL 109 191801 J.P. Lees (BABAR Collab.)Also PR D86 112008 J.P. Lees et al. (BABAR Collab.)AALTONEN 11AI PRL 107 201802 T. Aaltonen et al. (CDF Collab.)AALTONEN 11L PRL 106 161801 T. Aaltonen et al. (CDF Collab.)DEL-AMO-SA... 11 PR D83 031103 P. del Amo San
hez et al. (BABAR Collab.)AUBERT 10 PRL 104 011802 B. Aubert et al. (BABAR Collab.)AUBERT 10A PR D81 032003 B. Aubert et al. (BABAR Collab.)AUSHEV 10 PR D81 031103 T. Aushev et al. (BELLE Collab.)DEL-AMO-SA... 10M PR D82 051101 P. del Amo San
hez et al. (BABAR Collab.)DEL-AMO-SA... 10Q PR D82 112002 P. del Amo San
hez et al. (BABAR Collab.)NISHIMURA 10 PRL 105 191803 K. Nishimura et al. (BELLE Collab.)URQUIJO 10 PRL 104 021801 P. Urquijo et al. (BELLE Collab.)AUBERT 09AO PRL 103 211802 B. Aubert et al. (BABAR Collab.)AUBERT 09N PR D79 031102 B. Aubert et al. (BABAR Collab.)AUBERT 09T PRL 102 091803 B. Aubert et al. (BABAR Collab.)Also EPAPS Do
ument No. E-PRLTAO-102-060910 (BABAR Collab.)AUBERT 09U PRL 102 161803 B. Aubert et al. (BABAR Collab.)LIMOSANI 09 PRL 103 241801 A. Limosani et al. (BELLE Collab.)WEI 09A PRL 103 171801 J.-T. Wei et al. (BELLE Collab.)Also EPAPS Supplement EPAPS appendix.pdf (BELLE Collab.)AUBERT 08AS PRL 100 171802 B. Aubert et al. (BABAR Collab.)AUBERT 08BC PR D78 072007 B. Aubert et al. (BABAR Collab.)AUBERT 08BH PR D78 112001 B. Aubert et al. (BABAR Collab.)AUBERT 08BJ PRL 101 171804 B. Aubert et al. (BABAR Collab.)AUBERT 08N PRL 100 021801 B. Aubert et al. (BABAR Collab.)Also PR D79 092002 B. Aubert et al. (BABAR Collab.)
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le ListingsB±/B0ADMIXTURE,B±/B0/B0s/b-baryonADMIXTUREAUBERT 08O PR D77 051103 B. Aubert et al. (BABAR Collab.)SCHWANDA 08 PR D78 032016 C. S
hwanda et al. (BELLE Collab.)TANIGUCHI 08 PRL 101 111801 N. Tanigu
hi et al. (BELLE Collab.)WEI 08A PR D78 011101 J.-T. Wei et al. (BELLE Collab.)AUBERT 07AG PRL 99 051801 B. Aubert et al. (BABAR Collab.)AUBERT 07C PR D75 012003 B. Aubert et al. (BABAR Collab.)AUBERT 07E PRL 98 051802 B. Aubert et al. (BABAR Collab.)AUBERT 07L PRL 98 151802 B. Aubert et al. (BABAR Collab.)HUANG 07 PR D75 012002 G.S. Huang et al. (CLEO Collab.)SCHWANDA 07 PR D75 032005 C. S
hwanda et al. (BELLE Collab.)URQUIJO 07 PR D75 032001 P. Urquijo et al. (BELLE Collab.)AUBERT 06H PR D73 012006 B. Aubert et al. (BABAR Collab.)AUBERT,B 06J PR D73 092001 B. Aubert et al. (BABAR Collab.)AUBERT,B 06Y PR D74 091105 B. Aubert et al. (BABAR Collab.)AUBERT,BE 06B PRL 97 171803 B. Aubert et al. (BABAR Collab.)BUCHMUEL... 06 PR D73 073008 O.L. Bu
hmueller, H.U. Fla
her (RHBL)GOKHROO 06 PRL 97 162002 G. Gokhroo et al. (BELLE Collab.)ISHIKAWA 06 PRL 96 251801 A. Ishikawa et al. (BELLE Collab.)MOHAPATRA 06 PRL 96 221601 D. Mohapatra et al. (BELLE Collab.)ABAZOV 05O PRL 95 171803 V.M. Abazov et al. (D0 Collab.)ACOSTA 05F PR D71 051103 D. A
osta et al. (CDF Collab.)ARTUSO 05B PRL 95 261801 M. Artuso et al. (CLEO Collab.)AUBERT 05 PRL 94 011801 B. Aubert et al. (BABAR Collab.)AUBERT,B 05M PRL 95 142003 B. Aubert et al. (BABAR Collab.)AUBERT,B 05R PR D72 052004 B. Aubert et al. (BABAR Collab.)AUBERT,B 05X PRL 95 111801 B. Aubert et al. (BABAR Collab.)Also PRL 97 019903 (errat.) B. Aubert et al. (BABAR Collab.)CHOI 05 PRL 94 182002 S.-K. Choi et al. (BELLE Collab.)IWASAKI 05 PR D72 092005 M. Iwasaki et al. (BELLE Collab.)LIMOSANI 05 PL B621 28 A. Limosani et al. (BELLE Collab.)MOHAPATRA 05 PR D72 011101 D. Mohapatra et al. (BELLE Collab.)NISHIDA 05 PL B610 23 S. Nishida et al. (BELLE Collab.)OKABE 05 PL B614 27 T. Okabe et al. (BELLE Collab.)ABDALLAH 04D EPJ C33 213 J. Abdallah et al. (DELPHI Collab.)AUBERT 04C PRL 92 111801 B. Aubert et al. (BABAR Collab.)AUBERT 04I PRL 92 071802 B. Aubert et al. (BABAR Collab.)AUBERT 04S PR D69 052005 B. Aubert et al. (BABAR Collab.)AUBERT 04X PRL 93 011803 B. Aubert et al. (BABAR Collab.)AUBERT,B 04 PR D69 111103 B. Aubert et al. (BABAR Collab.)AUBERT,B 04A PR D69 111104 B. Aubert et al. (BABAR Collab.)AUBERT,B 04E PRL 93 021804 B. Aubert et al. (BABAR Collab.)AUBERT,B 04F PRL 93 061801 B. Aubert et al. (BABAR Collab.)AUBERT,B 04I PRL 93 081802 B. Aubert et al. (BABAR Collab.)AUBERT,BE 04A PR D70 112006 B. Aubert et al. (BABAR Collab.)CSORNA 04 PR D70 032002 S.E. Csorna et al. (CLEO Collab.)KOPPENBURG 04 PRL 93 061803 P. Koppenburg et al. (BELLE Collab.)MAHMOOD 04 PR D70 032003 A.H. Mahmodd et al. (CLEO Collab.)NAKAO 04 PR D69 112001 M. Nakao et al. (BELLE Collab.)NISHIDA 04 PRL 93 031803 S. Nishida et al. (BELLE Collab.)ADAM 03B PR D68 012004 N.E. Adam et al. (CLEO Collab.)AUBERT 03 PR D67 031101 B. Aubert et al. (BABAR Collab.)AUBERT 03F PR D67 032002 B. Aubert et al. (BABAR Collab.)AUBERT 03U PRL 91 221802 B. Aubert et al. (BABAR Collab.)BONVICINI 03 PR D68 011101 G. Bonvi
ini et al. (CLEO Collab.)HUANG 03 PRL 91 241802 H.-C. Huang et al. (BELLE Collab.)ISHIKAWA 03 PRL 91 261601 A. Ishikawa et al. (BELLE Collab.)KANEKO 03 PRL 90 021801 J. Kaneko et al. (BELLE Collab.)KROKOVNY 03B PRL 91 262002 P. Krokovny et al. (BELLE Collab.)MAHMOOD 03 PR D67 072001 A.H. Mahmood et al. (CLEO Collab.)ABE 02 PRL 88 021801 K. Abe et al. (BELLE Collab.)ABE 02L PRL 89 011803 K. Abe et al. (BELLE Collab.)ABE 02Y PL B547 181 K. Abe et al. (BELLE Collab.)ANDERSON 02 PRL 89 282001 S. Anderson et al. (CLEO Collab.)AUBERT 02C PRL 88 101805 B. Aubert et al. (BABAR Collab.)AUBERT 02G PR D65 091104 B. Aubert et al. (BABAR Collab.)AUBERT 02L PRL 88 241801 B. Aubert et al. (BABAR Collab.)BORNHEIM 02 PRL 88 231803 A. Bornheim et al. (CLEO Collab.)EDWARDS 02B PR D65 111102 K.W. Edwards et al. (CLEO Collab.)ABE 01F PL B511 151 K. Abe et al. (BELLE Collab.)ABE 01J PR D64 072001 K. Abe et al. (BELLE Collab.)ANDERSON 01B PRL 87 181803 S. Anderson et al. (CLEO Collab.)CHEN 01 PR D63 031102 S. Chen et al. (CLEO Collab.)CHEN 01C PRL 87 251807 S. Chen et al. (CLEO Collab.)COAN 01 PRL 86 5661 T.E. Coan et al. (CLEO Collab.)CRONIN-HEN... 01B PRL 87 251808 D. Cronin-Hennessy et al. (CLEO Collab.)PDG 01 UnoÆ
ial 2001 WWW editionABREU 00R PL B475 407 P. Abreu et al. (DELPHI Collab.)COAN 00 PRL 84 5283 T.E. Coan et al. (CLEO Collab.)RICHICHI 00 PRL 85 520 S.J. Ri
hi
hi et al. (CLEO Collab.)BARATE 98Q EPJ C4 387 R. Barate et al. (ALEPH Collab.)BERGFELD 98 PRL 81 272 T. Bergfeld et al. (CLEO Collab.)BISHAI 98 PR D57 3847 M. Bishai et al. (CLEO Collab.)BONVICINI 98 PR D57 6604 G. Bonvi
ini et al. (CLEO Collab.)BROWDER 98 PRL 81 1786 T.E. Browder et al. (CLEO Collab.)COAN 98 PRL 80 1150 T.E. Coan et al. (CLEO Collab.)GLENN 98 PRL 80 2289 S. Glenn et al. (CLEO Collab.)ACKERSTAFF 97N ZPHY C74 423 K. A
kersta� et al. (OPAL Collab.)AMMAR 97 PR D55 13 R. Ammar et al. (CLEO Collab.)BARISH 97 PRL 79 3599 B. Barish et al. (CLEO Collab.)BUSKULIC 97B ZPHY C73 601 D. Buskuli
 et al. (ALEPH Collab.)GIBBONS 97B PR D56 3783 L. Gibbons et al. (CLEO Collab.)ALBRECHT 96D PL B374 256 H. Albre
ht et al. (ARGUS Collab.)BARISH 96B PRL 76 1570 B.C. Barish et al. (CLEO Collab.)GIBAUT 96 PR D53 4734 D. Gibaut et al. (CLEO Collab.)KUBOTA 96 PR D53 6033 Y. Kubota et al. (CLEO Collab.)PDG 96 PR D54 1 R. M. Barnett et al. (PDG Collab.)ALAM 95 PRL 74 2885 M.S. Alam et al. (CLEO Collab.)ALBRECHT 95D PL B353 554 H. Albre
ht et al. (ARGUS Collab.)BALEST 95B PR D52 2661 R. Balest et al. (CLEO Collab.)BARISH 95 PR D51 1014 B.C. Barish et al. (CLEO Collab.)BUSKULIC 95B PL B345 103 D. Buskuli
 et al. (ALEPH Collab.)ALBRECHT 94C ZPHY C62 371 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 94J ZPHY C61 1 H. Albre
ht et al. (ARGUS Collab.)PROCARIO 94 PRL 73 1472 M. Pro
ario et al. (CLEO Collab.)ALBRECHT 93 ZPHY C57 533 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 93E ZPHY C60 11 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 93H PL B318 397 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 93I ZPHY C58 191 H. Albre
ht et al. (ARGUS Collab.)ALEXANDER 93B PL B319 365 J. Alexander et al. (CLEO Collab.)ARTUSO 93 PL B311 307 M. Artuso (SYRA)BARTELT 93B PRL 71 4111 J.E. Bartelt et al. (CLEO Collab.)ALBRECHT 92E PL B277 209 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 92G ZPHY C54 1 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 92O ZPHY C56 1 H. Albre
ht et al. (ARGUS Collab.)BORTOLETTO 92 PR D45 21 D. Bortoletto et al. (CLEO Collab.)CRAWFORD 92 PR D45 752 G. Crawford et al. (CLEO Collab.)HENDERSON 92 PR D45 2212 S. Henderson et al. (CLEO Collab.)LESIAK 92 ZPHY C55 33 T. Lesiak et al. (Crystal Ball Collab.)ALBRECHT 91C PL B255 297 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 91H ZPHY C52 353 H. Albre
ht et al. (ARGUS Collab.)FULTON 91 PR D43 651 R. Fulton et al. (CLEO Collab.)YANAGISAWA 91 PRL 66 2436 C. Yanagisawa et al. (CUSB II Collab.)

ALBRECHT 90 PL B234 409 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 90H PL B249 359 H. Albre
ht et al. (ARGUS Collab.)BORTOLETTO 90 PRL 64 2117 D. Bortoletto et al. (CLEO Collab.)Also PR D45 21 D. Bortoletto et al. (CLEO Collab.)FULTON 90 PRL 64 16 R. Fulton et al. (CLEO Collab.)MASCHMANN 90 ZPHY C46 555 W.S. Mas
hmann et al. (Crystal Ball Collab.)PDG 90 PL B239 1 J.J. Hernandez et al. (IFIC, BOST, CIT+)ALBRECHT 89K ZPHY C42 519 H. Albre
ht et al. (ARGUS Collab.)ISGUR 89B PR D39 799 N. Isgur et al. (TNTO, CIT)WACHS 89 ZPHY C42 33 K. Wa
hs et al. (Crystal Ball Collab.)ALBRECHT 88E PL B210 263 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 88H PL B210 258 H. Albre
ht et al. (ARGUS Collab.)KOERNER 88 ZPHY C38 511 J.G. Korner, G.A. S
huler (MANZ, DESY)ALAM 87 PRL 59 22 M.S. Alam et al. (CLEO Collab.)ALAM 87B PRL 58 1814 M.S. Alam et al. (CLEO Collab.)ALBRECHT 87D PL B199 451 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 87H PL B187 425 H. Albre
ht et al. (ARGUS Collab.)BEAN 87 PR D35 3533 A. Bean et al. (CLEO Collab.)BEHRENDS 87 PRL 59 407 S. Behrends et al. (CLEO Collab.)BORTOLETTO 87 PR D35 19 D. Bortoletto et al. (CLEO Collab.)ALAM 86 PR D34 3279 M.S. Alam et al. (CLEO Collab.)BALTRUSAIT... 86E PRL 56 2140 R.M. Baltrusaitis et al. (Mark III Collab.)BORTOLETTO 86 PRL 56 800 D. Bortoletto et al. (CLEO Collab.)HAAS 86 PRL 56 2781 J. Haas et al. (CLEO Collab.)ALBRECHT 85H PL 162B 395 H. Albre
ht et al. (ARGUS Collab.)CSORNA 85 PRL 54 1894 S.E. Csorna et al. (CLEO Collab.)HAAS 85 PRL 55 1248 J. Haas et al. (CLEO Collab.)AVERY 84 PRL 53 1309 P. Avery et al. (CLEO Collab.)CHEN 84 PRL 52 1084 A. Chen et al. (CLEO Collab.)LEVMAN 84 PL 141B 271 G.M. Levman et al. (CUSB Collab.)ALAM 83B PRL 51 1143 M.S. Alam et al. (CLEO Collab.)GREEN 83 PRL 51 347 J. Green et al. (CLEO Collab.)KLOPFEN... 83B PL 130B 444 C. Klopfenstein et al. (CUSB Collab.)ALTARELLI 82 NP B208 365 G. Altarelli et al. (ROMA, INFN, FRAS)BRODY 82 PRL 48 1070 A.D. Brody et al. (CLEO Collab.)GIANNINI 82 NP B206 1 G. Giannini et al. (CUSB Collab.)BEBEK 81 PRL 46 84 C. Bebek et al. (CLEO Collab.)CHADWICK 81 PRL 46 88 K. Chadwi
k et al. (CLEO Collab.)ABRAMS 80 PRL 44 10 G.S. Abrams et al. (SLAC, LBL)B±/B0/B0s/b-baryon ADMIXTUREB±/B0/B0s/b-baryon ADMIXTURE MEAN LIFEB±/B0/B0s/b-baryon ADMIXTURE MEAN LIFEB±/B0/B0s/b-baryon ADMIXTURE MEAN LIFEB±/B0/B0s/b-baryon ADMIXTURE MEAN LIFEEa
h measurement of the B mean life is an average over an admixtureof various bottom mesons and baryons whi
h de
ay weakly. Di�erentte
hniques emphasize di�erent admixtures of produ
ed parti
les, whi
h
ould result in a di�erent B mean life.\OUR EVALUATION" is an average using res
aled values of thedata listed below. The average and res
aling were performed bythe Heavy Flavor Averaging Group (HFAG) and are des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/. This is a weighted average ofthe lifetimes of the �ve main b-hadron spe
ies (B+, B0, B0sH , B0sL, and�b) that assumes the produ
tion fra
tions in Z de
ays (given at the endof this se
tion) and equal produ
tion fra
tions of B0sH and B0sL mesons.VALUE (10−12 s) EVTS DOCUMENT ID TECN COMMENT1.566±0.003 OUR EVALUATION1.566±0.003 OUR EVALUATION1.566±0.003 OUR EVALUATION1.566±0.003 OUR EVALUATION
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.570±0.005±0.008 1 ABDALLAH 04E DLPH e+ e− → Z1.533±0.015+0.035

−0.031 2 ABE 98B CDF pp at 1.8 TeV1.549±0.009±0.015 3 ACCIARRI 98 L3 e+ e− → Z1.611±0.010±0.027 4 ACKERSTAFF 97F OPAL e+ e− → Z1.582±0.011±0.027 4 ABREU 96E DLPH e+ e− → Z1.575±0.010±0.026 5 ABREU 96E DLPH e+ e− → Z1.533±0.013±0.022 19.8k 6 BUSKULIC 96F ALEP e+ e− → Z1.564±0.030±0.036 7 ABE,K 95B SLD e+ e− → Z1.542±0.021±0.045 8 ABREU 94L DLPH e+ e− → Z1.50 +0.24
−0.21 ±0.03 9 ABREU 94P DLPH e+ e− → Z1.46 ±0.06 ±0.06 5344 10 ABE 93J CDF Repl. by ABE 98B1.23 +0.14
−0.13 ±0.15 188 11 ABREU 93D DLPH Sup. by ABREU 94L1.49 ±0.11 ±0.12 253 12 ABREU 93G DLPH Sup. by ABREU 94L1.51 +0.16
−0.14 ±0.11 130 13 ACTON 93C OPAL e+ e− → Z1.523±0.034±0.038 5372 14 ACTON 93L OPAL e+ e− → Z1.535±0.035±0.028 7357 14 ADRIANI 93K L3 Repl. by ACCIARRI 981.511±0.022±0.078 15 BUSKULIC 93O ALEP e+ e− → Z1.28 ±0.10 16 ABREU 92 DLPH Sup. by ABREU 94L1.37 ±0.07 ±0.06 1354 17 ACTON 92 OPAL Sup. by ACTON 93L1.49 ±0.03 ±0.06 18 BUSKULIC 92F ALEP Sup. by BUSKULIC 96F1.35 +0.19
−0.17 ±0.05 19 BUSKULIC 92G ALEP e+ e− → Z1.32 ±0.08 ±0.09 1386 20 ADEVA 91H L3 Sup. by ADRIANI 93K1.32 +0.31
−0.25 ±0.15 37 21 ALEXANDER 91G OPAL e+ e− → Z1.29 ±0.06 ±0.10 2973 22 DECAMP 91C ALEP Sup. by BUSKULIC 92F1.36 +0.25
−0.23 23 HAGEMANN 90 JADE Eee
m= 35 GeV1.13 ±0.15 24 LYONS 90 RVUE1.35 ±0.10 ±0.24 BRAUNSCH... 89B TASS Eee
m= 35 GeV



1306130613061306MesonParti
le ListingsB±/B0/B0s/b-baryon ADMIXTURE0.98 ±0.12 ±0.13 ONG 89 MRK2 Eee
m= 29 GeV1.17 +0.27
−0.22 +0.17

−0.16 KLEM 88 DLCO Eee
m= 29 GeV1.29 ±0.20 ±0.21 25 ASH 87 MAC Eee
m= 29 GeV1.02 +0.42
−0.39 301 26 BROM 87 HRS Eee
m= 29 GeV1Measurement performed using an in
lusive re
onstru
tion and B 
avor identi�
ationte
hnique.2Measured using in
lusive J/ψ(1S) → µ+µ− vertex.3ACCIARRI 98 uses in
lusively re
onstru
ted se
ondary vertex and lepton impa
t param-eter.4ACKERSTAFF 97F uses in
lusively re
onstru
ted se
ondary verti
es.5Combines ABREU 96E se
ondary vertex result with ABREU 94L impa
t parameter result.6BUSKULIC 96F analyzed using 3D impa
t parameter.7ABE,K 95B uses an in
lusive topologi
al te
hnique.8ABREU 94L uses 
harged parti
le impa
t parameters. Their result from in
lusively re-
onstru
ted se
ondary verti
es is superseded by ABREU 96E.9 From proper time distribution of b → J/ψ(1S) anything.10ABE 93J analyzed using J/ψ(1S) → µµ verti
es.11ABREU 93D data analyzed using D /D∗ ℓanything event verti
es.12ABREU 93G data analyzed using 
harged and neutral verti
es.13ACTON 93C analysed using D /D∗ ℓanything event verti
es.14ACTON 93L and ADRIANI 93K analyzed using lepton (e and µ) impa
t parameter at Z .15BUSKULIC 93O analyzed using dipole method.16ABREU 92 is 
ombined result of muon and hadron impa
t parameter analyses. Hadrontra
ks gave (12.7 ± 0.4± 1.2)×10−13 s for an admixture of B spe
ies weighted by pro-du
tion fra
tion and mean 
harge multipli
ity, while muon tra
ks gave (13.0±1.0±0.8)×10−13 s for an admixture weighted by produ
tion fra
tion and semileptoni
 bran
hingfra
tion.17ACTON 92 is 
ombined result of muon and ele
tron impa
t parameter analyses.18BUSKULIC 92F uses the lepton impa
t parameter distribution for data from the 1991run.19BUSKULIC 92G use J/ψ(1S) tags to measure the average b lifetime. This is 
omparableto other methods only if the J/ψ(1S) bran
hing fra
tions of the di�erent b-
avoredhadrons are in the same ratio.20Using Z → e+X or µ+X, ADEVA 91H determined the average lifetime for an admixtureof B hadrons from the impa
t parameter distribution of the lepton.21Using Z → J/ψ(1S)X, J/ψ(1S) → ℓ+ ℓ−, ALEXANDER 91G determined the averagelifetime for an admixture of B hadrons from the de
ay point of the J/ψ(1S).22Using Z → eX or µX, DECAMP 91C determines the average lifetime for an admixtureof B hadrons from the signed impa
t parameter distribution of the lepton.23HAGEMANN 90 uses ele
trons and muons in an impa
t parameter analysis.24 LYONS 90 
ombine the results of the B lifetime measurements of ONG 89, BRAUN-SCHWEIG 89B, KLEM 88, and ASH 87, and JADE data by private 
ommuni
ation.They use statisti
al te
hniques whi
h in
lude variation of the error with the mean life,and possible 
orrelations between the systemati
 errors. This result is not independentof the measured results used in our average.25We have 
ombined an overall s
ale error of 15% in quadrature with the systemati
 errorof ±0.7 to obtain ±2.1 systemati
 error.26 Statisti
al and systemati
 errors were 
ombined by BROM 87.CHARGED b-HADRON ADMIXTURE MEAN LIFECHARGED b-HADRON ADMIXTURE MEAN LIFECHARGED b-HADRON ADMIXTURE MEAN LIFECHARGED b-HADRON ADMIXTURE MEAN LIFEVALUE (10−12 s) DOCUMENT ID TECN COMMENT1.72±0.08±0.061.72±0.08±0.061.72±0.08±0.061.72±0.08±0.06 1 ADAM 95 DLPH e+ e− → Z1ADAM 95 data analyzed using vertex-
harge te
hnique to tag b-hadron 
harge.NEUTRAL b-HADRON ADMIXTURE MEAN LIFENEUTRAL b-HADRON ADMIXTURE MEAN LIFENEUTRAL b-HADRON ADMIXTURE MEAN LIFENEUTRAL b-HADRON ADMIXTURE MEAN LIFEVALUE (10−12 s) DOCUMENT ID TECN COMMENT1.58±0.11±0.091.58±0.11±0.091.58±0.11±0.091.58±0.11±0.09 1 ADAM 95 DLPH e+ e− → Z1ADAM 95 data analyzed using vertex-
harge te
hnique to tag b-hadron 
harge.MEAN LIFE RATIO τ 
harged b−hadron/τ neutral b−hadronMEAN LIFE RATIO τ 
harged b−hadron/τ neutral b−hadronMEAN LIFE RATIO τ 
harged b−hadron/τ neutral b−hadronMEAN LIFE RATIO τ 
harged b−hadron/τ neutral b−hadronVALUE DOCUMENT ID TECN COMMENT1.09+0.11

−0.10±0.081.09+0.11
−0.10±0.081.09+0.11
−0.10±0.081.09+0.11
−0.10±0.08 1 ADAM 95 DLPH e+ e− → Z1ADAM 95 data analyzed using vertex-
harge te
hnique to tag b-hadron 
harge.
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∣/τ b,b∣

∣�τ b∣

∣/τ b,b
τ b,b and ∣

∣�τ b ∣

∣ are the mean life average and di�eren
e between b andb hadrons.VALUE DOCUMENT ID TECN COMMENT
−0.001±0.012±0.008−0.001±0.012±0.008−0.001±0.012±0.008−0.001±0.012±0.008 1 ABBIENDI 99J OPAL e+ e− → Z1Data analyzed using both the jet 
harge and the 
harge of se
ondary vertex in theopposite hemisphere.

b PRODUCTION FRACTIONS AND DECAY MODESb PRODUCTION FRACTIONS AND DECAY MODESb PRODUCTION FRACTIONS AND DECAY MODESb PRODUCTION FRACTIONS AND DECAY MODESThe bran
hing fra
tion measurements are for an admixture of B mesonsand baryons at energies above the �(4S). Only the highest energy results(LHC, LEP, Tevatron, SppS) are used in the bran
hing fra
tion averages.In the following, we assume that the produ
tion fra
tions are the same atthe LHC, LEP, and at the Tevatron.For in
lusive bran
hing fra
tions, e.g., B → D± anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one.The modes below are listed for a b initial state. bmodes are their 
harge
onjugates. Rea
tions indi
ate the weak de
ay vertex and do not in
ludemixing. S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelPRODUCTION FRACTIONSPRODUCTION FRACTIONSPRODUCTION FRACTIONSPRODUCTION FRACTIONSThe produ
tion fra
tions for weakly de
aying b-hadrons at high energyhave been 
al
ulated from the best values of mean lives, mixing parame-ters, and bran
hing fra
tions in this edition by the Heavy Flavor AveragingGroup (HFAG) as des
ribed in the note \B0-B0 Mixing" in the B0 Parti
leListings. The produ
tion fra
tions in b-hadroni
 Z de
ay or pp 
ollisionsat the Tevatron are also listed at the end of the se
tion. Values assumeB(b → B+) = B(b → B0)B(b → B+) + B(b → B0) +B(b → B0s ) + B(b → b -baryon) = 100%.The 
orrelation 
oeÆ
ients between produ
tion fra
tions are also re-ported:
or(B0s , b-baryon) = −0.240
or(B0s , B±=B0) = −0.161
or(b-baryon, B±=B0) = −0.920.The notation for produ
tion fra
tions varies in the literature (fd , dB0 ,f (b → B0), Br(b → B0)). We use our own bran
hing fra
tion notationhere, B(b → B0).Note these produ
tion fra
tions are b-hadronization fra
tions, not the 
on-ventional bran
hing fra
tions of b-quark to a B-hadron, whi
h may have
onsiderable dependen
e on the initial and �nal state kinemati
 and pro-du
tion environment.�1 B+ ( 40.4 ± 0.6 ) %�2 B0 ( 40.4 ± 0.6 ) %�3 B0s ( 10.3 ± 0.5 ) %�4 b -baryon ( 8.9 ± 1.3 ) %DECAY MODESDECAY MODESDECAY MODESDECAY MODESSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modesSemileptoni
 and leptoni
 modes�5 ν anything ( 23.1 ± 1.5 ) %�6 ℓ+νℓ anything [a℄ ( 10.69± 0.22) %�7 e+νe anything ( 10.86± 0.35) %�8 µ+νµ anything ( 10.95+ 0.29
− 0.25) %�9 D− ℓ+νℓ anything [a℄ ( 2.2 ± 0.4 ) % S=1.9�10 D−π+ ℓ+νℓ anything ( 4.9 ± 1.9 )× 10−3�11 D−π− ℓ+νℓ anything ( 2.6 ± 1.6 )× 10−3�12 D0 ℓ+νℓ anything [a℄ ( 6.81± 0.34) %�13 D0π− ℓ+νℓ anything ( 1.07± 0.27) %�14 D0π+ ℓ+νℓ anything ( 2.3 ± 1.6 )× 10−3�15 D∗− ℓ+νℓ anything [a℄ ( 2.75± 0.19) %�16 D∗−π− ℓ+νℓ anything ( 6 ± 7 )× 10−4�17 D∗−π+ ℓ+νℓ anything ( 4.8 ± 1.0 )× 10−3�18 D0j ℓ+νℓ anything ×B(D0j → D∗+π−) [a,b℄ ( 2.6 ± 0.9 )× 10−3�19 D−j ℓ+νℓ anything ×B(D−j → D0π−) [a,b℄ ( 7.0 ± 2.3 )× 10−3�20 D∗2(2460)0 ℓ+νℓ anything

× B(D∗2(2460)0 →D∗−π+) < 1.4 × 10−3 CL=90%�21 D∗2(2460)− ℓ+νℓ anything
× B(D∗2(2460)− →D0π−) ( 4.2 + 1.5

− 1.8 )× 10−3�22 D∗2(2460)0 ℓ+νℓ anything
× B(D∗2(2460)0 →D−π+) ( 1.6 ± 0.8 )× 10−3



1307130713071307See key on page 601 Meson Parti
le ListingsB±/B0/B0s/b-baryon ADMIXTURE�23 
harmless ℓνℓ [a℄ ( 1.7 ± 0.5 )× 10−3�24 τ+ ντ anything ( 2.41± 0.23) %�25 D∗− τ ντ anything ( 9 ± 4 )× 10−3�26 
 → ℓ−νℓ anything [a℄ ( 8.02± 0.19) %�27 
 → ℓ+ν anything ( 1.6 + 0.4
− 0.5 ) %Charmed meson and baryon modesCharmed meson and baryon modesCharmed meson and baryon modesCharmed meson and baryon modes�28 D0 anything ( 59.0 ± 2.9 ) %�29 D0D±s anything [
℄ ( 9.1 + 4.0
− 2.8 ) %�30 D∓D±s anything [
℄ ( 4.0 + 2.3
− 1.8 ) %�31 D0D0 anything [
℄ ( 5.1 + 2.0
− 1.8 ) %�32 D0D± anything [
℄ ( 2.7 + 1.8
− 1.6 ) %�33 D±D∓ anything [
℄ < 9 × 10−3 CL=90%�34 D0 anything�35 D+ anything�36 D− anything ( 22.5 ± 1.7 ) %�37 D∗(2010)+ anything ( 17.3 ± 2.0 ) %�38 D1(2420)0 anything ( 5.0 ± 1.5 ) %�39 D∗(2010)∓D±s anything [
℄ ( 3.3 + 1.6
− 1.3 ) %�40 D0D∗(2010)± anything [
℄ ( 3.0 + 1.1
− 0.9 ) %�41 D∗(2010)±D∓ anything [
℄ ( 2.5 + 1.2
− 1.0 ) %�42 D∗(2010)±D∗(2010)∓ anything [
℄ ( 1.2 ± 0.4 ) %�43 DD anything ( 10 +11
−10 ) %�44 D∗2(2460)0 anything ( 4.7 ± 2.7 ) %�45 D−s anything ( 14.7 ± 2.1 ) %�46 D+s anything ( 10.1 ± 3.1 ) %�47 �+
 anything ( 7.6 ± 1.1 ) %�48 
 /
 anything [d℄ (116.2 ± 3.2 ) %Charmonium modesCharmonium modesCharmonium modesCharmonium modes�49 J/ψ(1S)anything ( 1.16± 0.10) %�50 ψ(2S)anything ( 2.83± 0.29)× 10−3�51 χ
1(1P)anything ( 1.4 ± 0.4 ) %K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modes�52 s γ ( 3.1 ± 1.1 )× 10−4�53 s ν ν B1 < 6.4 × 10−4 CL=90%�54 K± anything ( 74 ± 6 ) %�55 K0S anything ( 29.0 ± 2.9 ) %Pion modesPion modesPion modesPion modes�56 π± anything (397 ±21 ) %�57 π0 anything [d℄ (278 ±60 ) %�58 φanything ( 2.82± 0.23) %Baryon modesBaryon modesBaryon modesBaryon modes�59 p/panything ( 13.1 ± 1.1 ) %�60 �/�anything ( 5.9 ± 0.6 ) %�61 b -baryon anything ( 10.2 ± 2.8 ) %Other modesOther modesOther modesOther modes�62 
harged anything [d℄ (497 ± 7 ) %�63 hadron+ hadron− ( 1.7 + 1.0
− 0.7 )× 10−5�64 
harmless ( 7 ±21 )× 10−3�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�65 e+ e− anything B1�66 µ+µ− anything B1 < 3.2 × 10−4 CL=90%�67 ν ν anything B1[a℄ An ℓ indi
ates an e or a µ mode, not a sum over these modes.[b℄ Dj represents an unresolved mixture of pseudos
alar and tensor D∗∗ (P-wave) states.[
 ℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.[d ℄ In
lusive bran
hing fra
tions have a multipli
ity de�nition and 
an begreater than 100%.

B±/B0/B0s/b-baryon ADMIXTURE BRANCHING RATIOSB±/B0/B0s/b-baryon ADMIXTURE BRANCHING RATIOSB±/B0/B0s/b-baryon ADMIXTURE BRANCHING RATIOSB±/B0/B0s/b-baryon ADMIXTURE BRANCHING RATIOS�(B+)/�total �1/��(B+)/�total �1/��(B+)/�total �1/��(B+)/�total �1/�\OUR EVALUATION" is an average using res
aled values of the data listed belowand from the best values of mean lives, mixing parameters, and bran
hing fra
-tions in this edition by the Heavy Flavor Averaging Group (HFAG) as des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/.VALUE DOCUMENT ID TECN COMMENT0.405 ±0.006 OUR EVALUATION0.405 ±0.006 OUR EVALUATION0.405 ±0.006 OUR EVALUATION0.405 ±0.006 OUR EVALUATION0.4099±0.0082±0.01110.4099±0.0082±0.01110.4099±0.0082±0.01110.4099±0.0082±0.0111 1 ABDALLAH 03K DLPH e+ e− → Z1The analysis is based on a neural network, to estimate the 
harge of the weakly-de
ayingb hadron by distinguishing its de
ay produ
ts from parti
les produ
ed at the primaryvertex.�(B+)/�(B0) �1/�2�(B+)/�(B0) �1/�2�(B+)/�(B0) �1/�2�(B+)/�(B0) �1/�2VALUE DOCUMENT ID TECN COMMENT1.054±0.018+0.062
−0.0741.054±0.018+0.062
−0.0741.054±0.018+0.062
−0.0741.054±0.018+0.062
−0.074 AALTONEN 08N CDF pp at 1.96 TeV�(B0s )/[�(B+)+�(B0)] �3/(�1+�2)�(B0s )/[�(B+)+�(B0)] �3/(�1+�2)�(B0s )/[�(B+)+�(B0)] �3/(�1+�2)�(B0s )/[�(B+)+�(B0)] �3/(�1+�2)VALUE DOCUMENT ID TECN COMMENT0.130 ±0.008 OUR EVALUATION0.130 ±0.008 OUR EVALUATION0.130 ±0.008 OUR EVALUATION0.130 ±0.008 OUR EVALUATION0.134 ±0.008 OUR AVERAGE0.134 ±0.008 OUR AVERAGE0.134 ±0.008 OUR AVERAGE0.134 ±0.008 OUR AVERAGE0.134 ±0.004 +0.011

−0.010 1 AAIJ 12J LHCB pp at 7 TeV0.1265±0.0085±0.0131 2 AAIJ 11F LHCB pp at 7 TeV0.128 +0.011
−0.010 ±0.011 3 AALTONEN 08N CDF pp at 1.96 TeV0.213 ±0.068 4 AFFOLDER 00E CDF pp at 1.8 TeV0.21 ±0.036 +0.038

−0.030 5 ABE 99P CDF pp at 1.8 TeV1Measured using b-hadron semileptoni
 de
ays and assuming isospin symmetry.2AAIJ 11F measured fs/fd = 0.253 ± 0.017 ± 0.017 ± 0.020, where the errors arestatisti
al, systemati
, and theoreti
al. We divide their value by 2. Our se
ond error
ombines systemati
 and theoreti
al un
ertainties.3AALTONEN 08N reports [�(b → B0s )/[�(b → B+) + �(b → B0)

]℄ × [B(D+s →
φπ+)℄ = (5.76 ± 0.18+0.45

−0.42) × 10−3 whi
h we divide by our best value B(D+s →
φπ+) = (4.5 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.4AFFOLDER 00E uses several ele
tron-
harm �nal states in b → 
 e−X.5ABE 99P uses the numbers of K∗(892)0, K∗(892)+, and φ(1020) events produ
ed inasso
iation with the double semileptoni
 de
ays b → 
 µ−X with 
 → s µ+X.�(B0s )/�(B0) �3/�2�(B0s )/�(B0) �3/�2�(B0s )/�(B0) �3/�2�(B0s )/�(B0) �3/�2VALUE DOCUMENT ID TECN COMMENT0.256±0.014 OUR EVALUATION0.256±0.014 OUR EVALUATION0.256±0.014 OUR EVALUATION0.256±0.014 OUR EVALUATION0.239±0.016 OUR AVERAGE0.239±0.016 OUR AVERAGE0.239±0.016 OUR AVERAGE0.239±0.016 OUR AVERAGE0.240±0.004±0.020 1 AAD 15CMATLS pp at 7 TeV0.238±0.004±0.015±0.021 2 AAIJ 13P LHCB pp at 7 TeV1The measurement is derived from the observed B0s → J/ψφ and B0d → J/ψK∗0 yieldsand a re
ent theory predi
tion of B(B0s → J/ψφ)/B(B0d → J/ψK∗0). The se
ondun
ertainty 
ombines in quadrature systemati
 and theoreti
al un
ertainties.2AAIJ 13P studies also separately the pT (B) and η(B) dependen
y of �(b → B0s )/�(b →B0), �nding fs/fd (pT )= (0.256 ± 0.020) + (−2.0 ± 0.6) 10−3 /GeV/
 (pT −

〈pT 〉)and fs/fd (η)= (0.256± 0.020) + (0.005 ± 0.006) (η−〈

η
〉), where 〈pT 〉 = 10.4 GeV/
and 〈

η
〉 = 3.28.�(b -baryon)/[�(B+)+ �(B0)] �4/(�1+�2)�(b -baryon)/[�(B+)+ �(B0)] �4/(�1+�2)�(b -baryon)/[�(B+)+ �(B0)] �4/(�1+�2)�(b -baryon)/[�(B+)+ �(B0)] �4/(�1+�2)VALUE DOCUMENT ID TECN COMMENT0.105±0.015 OUR EVALUATION0.105±0.015 OUR EVALUATION0.105±0.015 OUR EVALUATION0.105±0.015 OUR EVALUATION0.27 +0.06

−0.05 OUR AVERAGE0.27 +0.06
−0.05 OUR AVERAGE0.27 +0.06
−0.05 OUR AVERAGE0.27 +0.06
−0.05 OUR AVERAGE0.305±0.010±0.081 1 AAIJ 12J LHCB pp at 7 TeV0.31 ±0.11 +0.12

−0.08 2 AALTONEN 09E CDF pp at 1.8 TeV0.22 +0.08
−0.07 ±0.01 3 AALTONEN 08N CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.118±0.042 4 AFFOLDER 00E CDF pp at 1.8 TeV1Measured the ratio to be (0.404 ± 0.017 ± 0.027 ± 0.105) × [1 − (0.031 ± 0.004 ±0.003)×PT ℄ using b-hadron semileptoni
 de
ays where the PT is the momentum of
harmed hadron-muon pair in GeV/
. We quote their weighted average value where these
ond error 
ombines systemati
 and the error on B(�+
 → pK−π+).2Errata to the measurement reported in AFFOLDER 00E using the pT spe
tra from fullyre
onstru
ted B0 and �b de
ays.3AALTONEN 08N reports [�(b → b -baryon)/[�(b → B+) + �(b → B0)

]℄× [B(�+
 →pK−π+)℄ = (14.1 ± 0.6+5.3
−4.4) × 10−3 whi
h we divide by our best value B(�+
 →pK−π+) = (6.35 ± 0.33) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.4AFFOLDER 00E uses several ele
tron-
harm �nal states in b → 
 e−X.



1308130813081308MesonParti
le ListingsB±/B0/B0s/b-baryonADMIXTURE�(

ν anything)/�total �5/��(

ν anything)/�total �5/��(

ν anything)/�total �5/��(

ν anything)/�total �5/�VALUE DOCUMENT ID TECN COMMENT0.2308±0.0077±0.01240.2308±0.0077±0.01240.2308±0.0077±0.01240.2308±0.0077±0.0124 1,2 ACCIARRI 96C L3 e+ e− → Z1ACCIARRI 96C assumes relative b semileptoni
 de
ay rates e:µ:τ of 1:1:0.25. Based onmissing-energy spe
trum.2Assumes Standard Model value for RB .�(

ℓ+νℓ anything)/�total �6/��(

ℓ+νℓ anything)/�total �6/��(

ℓ+νℓ anything)/�total �6/��(

ℓ+νℓ anything)/�total �6/�\OUR EVALUATION" is an average of the data listed below, ex
luding all asymmetrymeasurements, performed by the LEP Ele
troweak Working Group as des
ribed in the\Note on the Z boson" in the Z Parti
le Listings.VALUE DOCUMENT ID TECN COMMENT0.1069±0.0022 OUR EVALUATION0.1069±0.0022 OUR EVALUATION0.1069±0.0022 OUR EVALUATION0.1069±0.0022 OUR EVALUATION0.1064±0.0016 OUR AVERAGE0.1064±0.0016 OUR AVERAGE0.1064±0.0016 OUR AVERAGE0.1064±0.0016 OUR AVERAGE0.1070±0.0010±0.0035 1 HEISTER 02G ALEP e+ e− → Z0.1070±0.0008+0.0037
−0.0049 2 ABREU 01L DLPH e+ e− → Z0.1083±0.0010+0.0028
−0.0024 3 ABBIENDI 00E OPAL e+ e− → Z0.1016±0.0013±0.0030 4 ACCIARRI 00 L3 e+ e− → Z0.1085±0.0012±0.0047 5,6 ACCIARRI 96C L3 e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1106±0.0039±0.0022 7 ABREU 95D DLPH e+ e− → Z0.114 ±0.003 ±0.004 8 BUSKULIC 94G ALEP e+ e− → Z0.100 ±0.007 ±0.007 9 ABREU 93C DLPH e+ e− → Z0.105 ±0.006 ±0.005 10 AKERS 93B OPAL Repl. by ABBI-ENDI 00E1Uses the 
ombination of lepton transverse momentum spe
trum and the 
orrelationbetween the 
harge of the lepton and opposite jet 
harge. The �rst error is statisti
 andthe se
ond error is the total systemati
 error in
luding the modeling.2The experimental systemati
 and model un
ertainties are 
ombined in quadrature.3ABBIENDI 00E result is determined by 
omparing the distribution of several kinemati
variables of leptoni
 events in a lifetime tagged Z → bb sample using arti�
ial neuralnetwork te
hniques. The �rst error is statisti
; the se
ond error is the total systemati
error.4ACCIARRI 00 result obtained from a 
ombined �t of Rb= �(Z → bb)/�(Z → hadrons)and B(b → ℓνX), using double-tagging method.5ACCIARRI 96C result obtained by a �t to the single lepton spe
trum.6Assumes Standard Model value for RB .7ABREU 95D give systemati
 errors ±0.0019 (model) and 0.0012 (R
 ). We 
ombinethese in quadrature.8BUSKULIC 94G uses e and µ events. This value is from a global �t to the lepton p andpT (relative to jet) spe
tra whi
h also determines the b and 
 produ
tion fra
tions, thefragmentation fun
tions, and the forward-ba
kward asymmetries. This bran
hing ratiodepends primarily on the ratio of dileptons to single leptons at high pT , but the lowerpT portion of the lepton spe
trum is in
luded in the global �t to redu
e the modeldependen
e. The model dependen
e is ±0.0026 and is in
luded in the systemati
 error.9ABREU 93C event 
ount in
ludes e e events. Combining e e, µµ, and eµ events, theyobtain 0.100 ± 0.007 ± 0.007.10AKERS 93B analysis performed using single and dilepton events.�(e+ νe anything)/�total �7/��(e+ νe anything)/�total �7/��(e+ νe anything)/�total �7/��(e+ νe anything)/�total �7/�VALUE EVTS DOCUMENT ID TECN COMMENT0.1086±0.0035 OUR AVERAGE0.1086±0.0035 OUR AVERAGE0.1086±0.0035 OUR AVERAGE0.1086±0.0035 OUR AVERAGE0.1078±0.0008+0.0050
−0.0046 1 ABBIENDI 00E OPAL e+ e− → Z0.1089±0.0020±0.0051 2,3 ACCIARRI 96C L3 e+ e− → Z0.107 ±0.015 ±0.007 260 4 ABREU 93C DLPH e+ e− → Z0.138 ±0.032 ±0.008 5 ADEVA 91C L3 e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.086 ±0.027 ±0.008 6 ABE 93E VNS Eee
m= 58 GeV0.109 +0.014
−0.013 ±0.0055 2719 7 AKERS 93B OPAL Repl. by ABBI-ENDI 00E0.111 ±0.028 ±0.026 BEHREND 90D CELL Eee
m= 43 GeV0.150 ±0.011 ±0.022 BEHREND 90D CELL Eee
m= 35 GeV0.112 ±0.009 ±0.011 ONG 88 MRK2 Eee
m= 29 GeV0.149 +0.022
−0.019 PAL 86 DLCO Eee
m= 29 GeV0.110 ±0.018 ±0.010 AIHARA 85 TPC Eee
m= 29 GeV0.111 ±0.034 ±0.040 ALTHOFF 84J TASS Eee
m= 34.6 GeV0.146 ±0.028 KOOP 84 DLCO Repl. by PAL 860.116 ±0.021 ±0.017 NELSON 83 MRK2 Eee
m= 29 GeV1ABBIENDI 00E result is determined by 
omparing the distribution of several kinemati
variables of leptoni
 events in a lifetime tagged Z → bb sample using arti�
ial neuralnetwork te
hniques. The �rst error is statisti
; the se
ond error is the total systemati
error.2ACCIARRI 96C result obtained by a �t to the single lepton spe
trum.3Assumes Standard Model value for RB .4ABREU 93C event 
ount in
ludes e e events. Combining e e, µµ, and eµ events, theyobtain 0.100 ± 0.007 ± 0.007.5ADEVA 91C measure the average B(b → eX) bran
hing ratio using single and doubletagged b enhan
ed Z events. Combining e and µ results, they obtain 0.113 ± 0.010 ±0.006. Constraining the initial number of b quarks by the Standard Model predi
tion(378 ± 3 MeV) for the de
ay of the Z into bb, the ele
tron result gives 0.112 ± 0.004 ±0.008. They obtain 0.119 ± 0.003 ± 0.006 when e and µ results are 
ombined. Used tomeasure the bb width itself, this ele
tron result gives 370 ± 12 ± 24 MeV and 
ombinedwith the muon result gives 385 ± 7 ± 22 MeV.6ABE 93E experiment also measures forward-ba
kward asymmetries and fragmentationfun
tions for b and 
.7AKERS 93B analysis performed using single and dilepton events.

�(

µ+νµ anything)/�total �8/��(

µ+νµ anything)/�total �8/��(

µ+νµ anything)/�total �8/��(

µ+νµ anything)/�total �8/�VALUE EVTS DOCUMENT ID TECN COMMENT0.1095+0.0029
−0.0025 OUR AVERAGE0.1095+0.0029
−0.0025 OUR AVERAGE0.1095+0.0029
−0.0025 OUR AVERAGE0.1095+0.0029
−0.0025 OUR AVERAGE0.1096±0.0008+0.0034

−0.0027 1 ABBIENDI 00E OPAL e+ e− → Z0.1082±0.0015±0.0059 2,3 ACCIARRI 96C L3 e+ e− → Z0.110 ±0.012 ±0.007 656 4 ABREU 93C DLPH e+ e− → Z0.113 ±0.012 ±0.006 5 ADEVA 91C L3 e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.122 ±0.006 ±0.007 3 UENO 96 AMY e+ e− at 57.9 GeV0.101 +0.010

−0.009 ±0.0055 4248 6 AKERS 93B OPAL Repl. by ABBI-ENDI 00E0.104 ±0.023 ±0.016 BEHREND 90D CELL Eee
m= 43 GeV0.148 ±0.010 ±0.016 BEHREND 90D CELL Eee
m= 35 GeV0.118 ±0.012 ±0.010 ONG 88 MRK2 Eee
m= 29 GeV0.117 ±0.016 ±0.015 BARTEL 87 JADE Eee
m= 34.6 GeV0.114 ±0.018 ±0.025 BARTEL 85J JADE Repl. by BARTEL 870.117 ±0.028 ±0.010 ALTHOFF 84G TASS Eee
m= 34.5 GeV0.105 ±0.015 ±0.013 ADEVA 83B MRKJ Eee
m= 33{38.5 GeV0.155 +0.054
−0.029 FERNANDEZ 83D MAC Eee
m= 29 GeV1ABBIENDI 00E result is determined by 
omparing the distribution of several kinemati
variables of leptoni
 events in a lifetime tagged Z → bb sample using arti�
ial neuralnetwork te
hniques. The �rst error is statisti
; the se
ond error is the total systemati
error.2ACCIARRI 96C result obtained by a �t to the single lepton spe
trum.3Assumes Standard Model value for RB .4ABREU 93C event 
ount in
ludes µµ events. Combining e e, µµ, and e µ events, theyobtain 0.100 ± 0.007 ± 0.007.5ADEVA 91C measure the average B(b → eX) bran
hing ratio using single and doubletagged b enhan
ed Z events. Combining e and µ results, they obtain 0.113 ± 0.010 ±0.006. Constraining the initial number of b quarks by the Standard Model predi
tion(378±3 MeV) for the de
ay of the Z into bb, the muon result gives 0.123±0.003±0.006.They obtain 0.119± 0.003± 0.006 when e and µ results are 
ombined. Used to measurethe bb width itself, this muon result gives 394 ± 9 ± 22 MeV and 
ombined with theele
tron result gives 385 ± 7 ± 22 MeV.6AKERS 93B analysis performed using single and dilepton events.�(D− ℓ+νℓ anything)/�total �9/��(D− ℓ+νℓ anything)/�total �9/��(D− ℓ+νℓ anything)/�total �9/��(D− ℓ+νℓ anything)/�total �9/�VALUE DOCUMENT ID TECN COMMENT0.022 ±0.004 OUR AVERAGE0.022 ±0.004 OUR AVERAGE0.022 ±0.004 OUR AVERAGE0.022 ±0.004 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.0.0272±0.0028±0.0018 1 ABREU 00R DLPH e+ e− → Z0.0192±0.0025±0.0005 2 AKERS 95Q OPAL e+ e− → Z1ABREU 00R reports their experiment's un
ertainties ±0.0019 ± 0.0016 ± 0.0018, wherethe �rst error is statisti
al, the se
ond is systemati
, and the third is the un
ertainty dueto the D bran
hing fra
tion. We 
ombine �rst two in quadrature.2AKERS 95Q reports [�(b → D− ℓ+ νℓ anything)/�total℄ × [B(D+ → K− 2π+)℄ =(1.82 ± 0.20 ± 0.12)× 10−3 whi
h we divide by our best value B(D+ → K− 2π+) =(9.46 ± 0.24)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(D−π+ ℓ+νℓ anything)/�total �10/��(D−π+ ℓ+νℓ anything)/�total �10/��(D−π+ ℓ+νℓ anything)/�total �10/��(D−π+ ℓ+νℓ anything)/�total �10/�VALUE DOCUMENT ID TECN COMMENT0.0049±0.0018±0.00070.0049±0.0018±0.00070.0049±0.0018±0.00070.0049±0.0018±0.0007 ABREU 00R DLPH e+ e− → Z�(D−π− ℓ+νℓ anything)/�total �11/��(D−π− ℓ+νℓ anything)/�total �11/��(D−π− ℓ+νℓ anything)/�total �11/��(D−π− ℓ+νℓ anything)/�total �11/�VALUE DOCUMENT ID TECN COMMENT0.0026±0.0015±0.00040.0026±0.0015±0.00040.0026±0.0015±0.00040.0026±0.0015±0.0004 ABREU 00R DLPH e+ e− → Z�(D0 ℓ+νℓ anything)/�total �12/��(D0 ℓ+νℓ anything)/�total �12/��(D0 ℓ+νℓ anything)/�total �12/��(D0 ℓ+νℓ anything)/�total �12/�VALUE DOCUMENT ID TECN COMMENT0.0681±0.0034 OUR AVERAGE0.0681±0.0034 OUR AVERAGE0.0681±0.0034 OUR AVERAGE0.0681±0.0034 OUR AVERAGE0.0704±0.0040±0.0017 1 ABREU 00R DLPH e+ e− → Z0.064 ±0.006 ±0.001 2 AKERS 95Q OPAL e+ e− → Z1ABREU 00R reports their experiment's un
ertainties ±0.0034 ± 0.0036 ± 0.0017, wherethe �rst error is statisti
al, the se
ond is systemati
, and the third is the un
ertainty dueto the D bran
hing fra
tion. We 
ombine �rst two in quadrature.2AKERS 95Q reports [�(b → D0 ℓ+ νℓ anything)/�total℄ × [B(D0 → K−π+)℄ =(2.52 ± 0.14 ± 0.17) × 10−3 whi
h we divide by our best value B(D0 → K−π+) =(3.93 ± 0.04)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(D0π− ℓ+νℓ anything)/�total �13/��(D0π− ℓ+νℓ anything)/�total �13/��(D0π− ℓ+νℓ anything)/�total �13/��(D0π− ℓ+νℓ anything)/�total �13/�VALUE DOCUMENT ID TECN COMMENT0.0107±0.0025±0.00110.0107±0.0025±0.00110.0107±0.0025±0.00110.0107±0.0025±0.0011 ABREU 00R DLPH e+ e− → Z�(D0π+ ℓ+νℓ anything)/�total �14/��(D0π+ ℓ+νℓ anything)/�total �14/��(D0π+ ℓ+νℓ anything)/�total �14/��(D0π+ ℓ+νℓ anything)/�total �14/�VALUE DOCUMENT ID TECN COMMENT0.0023±0.0015±0.00040.0023±0.0015±0.00040.0023±0.0015±0.00040.0023±0.0015±0.0004 ABREU 00R DLPH e+ e− → Z



1309130913091309See key on page 601 MesonParti
le ListingsB±/B0/B0s/b-baryonADMIXTURE�(D∗− ℓ+νℓ anything)/�total �15/��(D∗− ℓ+νℓ anything)/�total �15/��(D∗− ℓ+νℓ anything)/�total �15/��(D∗− ℓ+νℓ anything)/�total �15/�VALUE DOCUMENT ID TECN COMMENT0.0275±0.0019 OUR AVERAGE0.0275±0.0019 OUR AVERAGE0.0275±0.0019 OUR AVERAGE0.0275±0.0019 OUR AVERAGE0.0275±0.0021±0.0009 1 ABREU 00R DLPH e+ e− → Z0.0276±0.0027±0.0011 2 AKERS 95Q OPAL e+ e− → Z1ABREU 00R reports their experiment's un
ertainties ±0.0017 ± 0.0013 ± 0.0009, wherethe �rst error is statisti
al, the se
ond is systemati
, and the third is the un
ertainty dueto the D bran
hing fra
tion. We 
ombine �rst two in quadrature.2AKERS 95Q reports [B(b → D∗ ℓ+ νℓX) × B(D∗+ → D0π+) × B(D0 → K−π+)℄= ((7.53 ± 0.47 ± 0.56) × 10−4) and uses B(D∗+ → D0π+) = 0.681 ± 0.013 andB(D0 → K−π+) = 0.0401 ± 0.0014 to obtain the above result. The �rst error is theexperiments error and the se
ond error is the systemati
 error from the D∗+ and D0bran
hing ratios.�(D∗−π− ℓ+νℓ anything)/�total �16/��(D∗−π− ℓ+νℓ anything)/�total �16/��(D∗−π− ℓ+νℓ anything)/�total �16/��(D∗−π− ℓ+νℓ anything)/�total �16/�VALUE DOCUMENT ID TECN COMMENT0.0006±0.0007±0.00020.0006±0.0007±0.00020.0006±0.0007±0.00020.0006±0.0007±0.0002 ABREU 00R DLPH e+ e− → Z�(D∗−π+ ℓ+νℓ anything)/�total �17/��(D∗−π+ ℓ+νℓ anything)/�total �17/��(D∗−π+ ℓ+νℓ anything)/�total �17/��(D∗−π+ ℓ+νℓ anything)/�total �17/�VALUE DOCUMENT ID TECN COMMENT0.0048±0.0009±0.00050.0048±0.0009±0.00050.0048±0.0009±0.00050.0048±0.0009±0.0005 ABREU 00R DLPH e+ e− → Z�(D0j ℓ+νℓ anything×B(D0j → D∗+π−))/�total �18/��(D0j ℓ+νℓ anything×B(D0j → D∗+π−))/�total �18/��(D0j ℓ+νℓ anything×B(D0j → D∗+π−))/�total �18/��(D0j ℓ+νℓ anything×B(D0j → D∗+π−))/�total �18/�Dj represents an unresolved mixture of pseudos
alar and tensor D∗∗ (P-wave) states.VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.64±0.79±0.392.64±0.79±0.392.64±0.79±0.392.64±0.79±0.39 ABBIENDI 03M OPAL e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.1 ±1.3 ±1.3 AKERS 95Q OPAL Repl. by ABBI-ENDI 03M�(D−j ℓ+νℓ anything×B(D−j → D0π−))/�total �19/��(D−j ℓ+νℓ anything×B(D−j → D0π−))/�total �19/��(D−j ℓ+νℓ anything×B(D−j → D0π−))/�total �19/��(D−j ℓ+νℓ anything×B(D−j → D0π−))/�total �19/�Dj represents an unresolved mixture of pseudos
alar and tensor D∗∗ (P-wave) states.VALUE (units 10−3) DOCUMENT ID TECN COMMENT7.0±1.9+1.2

−1.37.0±1.9+1.2
−1.37.0±1.9+1.2
−1.37.0±1.9+1.2
−1.3 AKERS 95Q OPAL e+ e− → Z�(D∗2(2460)0 ℓ+νℓ anything×B(D∗2(2460)0 → D∗−π+))/�total �20/��(D∗2(2460)0 ℓ+νℓ anything×B(D∗2(2460)0 → D∗−π+))/�total �20/��(D∗2(2460)0 ℓ+νℓ anything×B(D∗2(2460)0 → D∗−π+))/�total �20/��(D∗2(2460)0 ℓ+νℓ anything×B(D∗2(2460)0 → D∗−π+))/�total �20/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<1.4<1.4<1.4<1.4 90 ABBIENDI 03M OPAL e+ e− → Z�(D∗2(2460)− ℓ+νℓ anything×B(D∗2(2460)− → D0π−))/�total �21/��(D∗2(2460)− ℓ+νℓ anything×B(D∗2(2460)− → D0π−))/�total �21/��(D∗2(2460)− ℓ+νℓ anything×B(D∗2(2460)− → D0π−))/�total �21/��(D∗2(2460)− ℓ+νℓ anything×B(D∗2(2460)− → D0π−))/�total �21/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT4.2±1.3+0.7
−1.24.2±1.3+0.7
−1.24.2±1.3+0.7
−1.24.2±1.3+0.7
−1.2 AKERS 95Q OPAL e+ e− → Z�(D∗2(2460)0 ℓ+νℓ anything×B(D∗2(2460)0 → D−π+))/�total �22/��(D∗2(2460)0 ℓ+νℓ anything×B(D∗2(2460)0 → D−π+))/�total �22/��(D∗2(2460)0 ℓ+νℓ anything×B(D∗2(2460)0 → D−π+))/�total �22/��(D∗2(2460)0 ℓ+νℓ anything×B(D∗2(2460)0 → D−π+))/�total �22/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.6±0.7±0.31.6±0.7±0.31.6±0.7±0.31.6±0.7±0.3 AKERS 95Q OPAL e+ e− → Z�(
harmless ℓνℓ

)/�total �23/��(
harmless ℓνℓ

)/�total �23/��(
harmless ℓνℓ

)/�total �23/��(
harmless ℓνℓ

)/�total �23/�\OUR EVALUATION" is an average of the data listed below performed by the LEPHeavy Flavour Steering Group. The averaging pro
edure takes into a

ount 
orrela-tions between the measurements.VALUE DOCUMENT ID TECN COMMENT0.00171±0.00052 OUR EVALUATION0.00171±0.00052 OUR EVALUATION0.00171±0.00052 OUR EVALUATION0.00171±0.00052 OUR EVALUATION0.0017 ±0.0004 OUR AVERAGE0.0017 ±0.0004 OUR AVERAGE0.0017 ±0.0004 OUR AVERAGE0.0017 ±0.0004 OUR AVERAGE0.00163±0.00053+0.00055
−0.00062 1 ABBIENDI 01R OPAL e+ e− → Z0.00157±0.00035±0.00055 2 ABREU 00D DLPH e+ e− → Z0.00173±0.00055±0.00055 3 BARATE 99G ALEP e+ e− → Z0.0033 ±0.0010 ±0.0017 4 ACCIARRI 98K L3 e+ e− → Z1Obtained from the best �t of the MC simulated events to the data based on the b →Xu ℓν neutral network output distributions.2ABREU 00D result obtained from a �t to the numbers of de
ays in b → u enri
hed anddepleted samples and their lepton spe
tra, and assuming ∣

∣V
 b ∣

∣= 0.0384 ± 0.0033 and
τb= 1.564 ± 0.014 ps.3Uses lifetime tagged bb sample.4ACCIARRI 98K assumes Rb= 0.2174 ± 0.0009 at Z de
ay.�(

τ+ ντ anything)/�total �24/��(

τ+ ντ anything)/�total �24/��(

τ+ ντ anything)/�total �24/��(

τ+ ντ anything)/�total �24/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.41±0.23 OUR AVERAGE2.41±0.23 OUR AVERAGE2.41±0.23 OUR AVERAGE2.41±0.23 OUR AVERAGE2.78±0.18±0.51 1 ABBIENDI 01Q OPAL e+ e− → Z2.43±0.20±0.25 2 BARATE 01E ALEP e+ e− → Z2.19±0.24±0.39 3 ABREU 00C DLPH e+ e− → Z1.7 ±0.5 ±1.1 4,5 ACCIARRI 96C L3 e+ e− → Z2.4 ±0.7 ±0.8 1032 6 ACCIARRI 94C L3 e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.75±0.30±0.37 405 7 BUSKULIC 95 ALEP Repl. by BARATE 01E4.08±0.76±0.62 BUSKULIC 93B ALEP Repl. by BUSKULIC 951ABBIENDI 01Q uses a missing energy te
hnique.2The energy-
ow and b-tagging algorithms were used.3Uses the missing energy in Z → bb de
ays without identifying leptons.4ACCIARRI 96C result obtained from missing energy spe
trum.5Assumes Standard Model value for RB .6This is a dire
t result using tagged bb events at the Z , but spe
ies are not separated.7BUSKULIC 95 uses missing-energy te
hnique.

�(D∗− τ ντ anything)/�total �25/��(D∗− τ ντ anything)/�total �25/��(D∗− τ ντ anything)/�total �25/��(D∗− τ ντ anything)/�total �25/�VALUE DOCUMENT ID TECN COMMENT(0.88±0.31±0.28)× 10−2(0.88±0.31±0.28)× 10−2(0.88±0.31±0.28)× 10−2(0.88±0.31±0.28)× 10−2 1 BARATE 01E ALEP e+ e− → Z1The energy-
ow and b-tagging algorithms were used.�(b → 
 → ℓ−νℓ anything)/�total �26/��(b → 
 → ℓ−νℓ anything)/�total �26/��(b → 
 → ℓ−νℓ anything)/�total �26/��(b → 
 → ℓ−νℓ anything)/�total �26/�\OUR EVALUATION" is an average of the data listed below, ex
luding all asymmetrymeasurements, performed by the LEP Ele
troweak Working Group as des
ribed in the\Note on the Z boson" in the Z Parti
le Listings.VALUE DOCUMENT ID TECN COMMENT0.0802±0.0019 OUR EVALUATION0.0802±0.0019 OUR EVALUATION0.0802±0.0019 OUR EVALUATION0.0802±0.0019 OUR EVALUATION0.0817±0.0020 OUR AVERAGE0.0817±0.0020 OUR AVERAGE0.0817±0.0020 OUR AVERAGE0.0817±0.0020 OUR AVERAGE0.0818±0.0015+0.0024
−0.0026 1 HEISTER 02G ALEP e+ e− → Z0.0798±0.0022+0.0025
−0.0029 2 ABREU 01L DLPH e+ e− → Z0.0840±0.0016+0.0039
−0.0036 3 ABBIENDI 00E OPAL e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0770±0.0097±0.0046 4 ABREU 95D DLPH e+ e− → Z0.082 ±0.003 ±0.012 5 BUSKULIC 94G ALEP e+ e− → Z0.077 ±0.004 ±0.007 6 AKERS 93B OPAL Repl. by ABBI-ENDI 00E1Uses the 
ombination of lepton transverse momentum spe
trum and the 
orrelationbetween the 
harge of the lepton and opposite jet 
harge. The �rst error is statisti
 andthe se
ond error is the total systemati
 error in
luding the modeling.2The experimental systemati
 and model un
ertainties are 
ombined in quadrature.3ABBIENDI 00E result is determined by 
omparing the distribution of several kinemati
variables of leptoni
 events in a lifetime tagged Z → bb sample using arti�
ial neuralnetwork te
hniques. The �rst error is statisti
; the se
ond error is the total systemati
error.4ABREU 95D give systemati
 errors ±0.0033 (model) and 0.0032 (R
 ). We 
ombinethese in quadrature. This result is from the same global �t as their �(b → ℓ+ νℓX)data.5BUSKULIC 94G uses e and µ events. This value is from the same global �t as their�(b → ℓ+ νℓ anything)/�total data.6AKERS 93B analysis performed using single and dilepton events.�(
 → ℓ+ν anything)/�total �27/��(
 → ℓ+ν anything)/�total �27/��(
 → ℓ+ν anything)/�total �27/��(
 → ℓ+ν anything)/�total �27/�VALUE DOCUMENT ID TECN COMMENT0.0161±0.0020+0.0034
−0.00470.0161±0.0020+0.0034
−0.00470.0161±0.0020+0.0034
−0.00470.0161±0.0020+0.0034
−0.0047 1 ABREU 01L DLPH e+ e− → Z1The experimental systemati
 and model un
ertainties are 
ombined in quadrature.�(D0 anything)/�total �28/��(D0 anything)/�total �28/��(D0 anything)/�total �28/��(D0 anything)/�total �28/�VALUE DOCUMENT ID TECN COMMENT0.590±0.028±0.0060.590±0.028±0.0060.590±0.028±0.0060.590±0.028±0.006 1 BUSKULIC 96Y ALEP e+ e− → Z1BUSKULIC 96Y reports 0.605 ± 0.024 ± 0.016 from a measurement of [�(b →D0 anything)/�total℄ × [B(D0 → K−π+)℄ assuming B(D0 → K−π+) = 0.0383,whi
h we res
ale to our best value B(D0 → K−π+) = (3.93 ± 0.04) × 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.�(D0D±s anything)/�total �29/��(D0D±s anything)/�total �29/��(D0D±s anything)/�total �29/��(D0D±s anything)/�total �29/�VALUE DOCUMENT ID TECN COMMENT0.091+0.020

−0.018+0.034
−0.0220.091+0.020

−0.018+0.034
−0.0220.091+0.020

−0.018+0.034
−0.0220.091+0.020

−0.018+0.034
−0.022 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.�(D∓D±s anything)/�total �30/��(D∓D±s anything)/�total �30/��(D∓D±s anything)/�total �30/��(D∓D±s anything)/�total �30/�VALUE DOCUMENT ID TECN COMMENT0.040+0.017

−0.014+0.016
−0.0110.040+0.017

−0.014+0.016
−0.0110.040+0.017

−0.014+0.016
−0.0110.040+0.017

−0.014+0.016
−0.011 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.

[�(D0D±s anything) +�(D∓D±s anything)]/�total (�29+�30)/�[�(D0D±s anything) +�(D∓D±s anything)]/�total (�29+�30)/�[�(D0D±s anything) +�(D∓D±s anything)]/�total (�29+�30)/�[�(D0D±s anything) +�(D∓D±s anything)]/�total (�29+�30)/�VALUE DOCUMENT ID TECN COMMENT0.131+0.026
−0.022+0.048

−0.0310.131+0.026
−0.022+0.048

−0.0310.131+0.026
−0.022+0.048

−0.0310.131+0.026
−0.022+0.048

−0.031 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.�(D0D0 anything)/�total �31/��(D0D0 anything)/�total �31/��(D0D0 anything)/�total �31/��(D0D0 anything)/�total �31/�VALUE DOCUMENT ID TECN COMMENT0.051+0.016
−0.014+0.012

−0.0110.051+0.016
−0.014+0.012

−0.0110.051+0.016
−0.014+0.012

−0.0110.051+0.016
−0.014+0.012

−0.011 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.�(D0D± anything)/�total �32/��(D0D± anything)/�total �32/��(D0D± anything)/�total �32/��(D0D± anything)/�total �32/�VALUE DOCUMENT ID TECN COMMENT0.027+0.015
−0.013+0.010

−0.0090.027+0.015
−0.013+0.010

−0.0090.027+0.015
−0.013+0.010

−0.0090.027+0.015
−0.013+0.010

−0.009 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.
[�(D0D0 anything) +�(D0D± anything)]/�total (�31+�32)/�[�(D0D0 anything) +�(D0D± anything)]/�total (�31+�32)/�[�(D0D0 anything) +�(D0D± anything)]/�total (�31+�32)/�[�(D0D0 anything) +�(D0D± anything)]/�total (�31+�32)/�VALUE DOCUMENT ID TECN COMMENT0.078+0.020

−0.018+0.018
−0.0160.078+0.020

−0.018+0.018
−0.0160.078+0.020

−0.018+0.018
−0.0160.078+0.020

−0.018+0.018
−0.016 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.



1310131013101310Meson Parti
le ListingsB±/B0/B0s/b-baryon ADMIXTURE�(D±D∓ anything)/�total �33/��(D±D∓ anything)/�total �33/��(D±D∓ anything)/�total �33/��(D±D∓ anything)/�total �33/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.009<0.009<0.009<0.009 90 BARATE 98Q ALEP e+ e− → Z
[�(D0 anything) +�(D+anything)]/�total (�34+�35)/�[�(D0 anything) +�(D+anything)]/�total (�34+�35)/�[�(D0 anything) +�(D+anything)]/�total (�34+�35)/�[�(D0 anything) +�(D+anything)]/�total (�34+�35)/�VALUE DOCUMENT ID TECN COMMENT0.093±0.017±0.0140.093±0.017±0.0140.093±0.017±0.0140.093±0.017±0.014 1 ABDALLAH 03E DLPH e+ e− → Z1The se
ond error is the total of systemati
 un
ertainties in
luding the bran
hing fra
tionsused in the measurement.�(D− anything)/�total �36/��(D− anything)/�total �36/��(D− anything)/�total �36/��(D− anything)/�total �36/�VALUE DOCUMENT ID TECN COMMENT0.225±0.016±0.0060.225±0.016±0.0060.225±0.016±0.0060.225±0.016±0.006 1 BUSKULIC 96Y ALEP e+ e− → Z1BUSKULIC 96Y reports 0.234 ± 0.013 ± 0.010 from a measurement of [�(b →D− anything)/�total℄ × [B(D+ → K− 2π+)℄ assuming B(D+ → K− 2π+) = 0.091,whi
h we res
ale to our best value B(D+ → K− 2π+) = (9.46 ± 0.24) × 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.�(D∗(2010)+ anything)/�total �37/��(D∗(2010)+ anything)/�total �37/��(D∗(2010)+ anything)/�total �37/��(D∗(2010)+ anything)/�total �37/�VALUE DOCUMENT ID TECN COMMENT0.173±0.016±0.0120.173±0.016±0.0120.173±0.016±0.0120.173±0.016±0.012 1 ACKERSTAFF 98E OPAL e+ e− → Z1Uses lepton tags to sele
t Z → bb events.�(D1(2420)0 anything)/�total �38/��(D1(2420)0 anything)/�total �38/��(D1(2420)0 anything)/�total �38/��(D1(2420)0 anything)/�total �38/�VALUE DOCUMENT ID TECN COMMENT0.050±0.014±0.0060.050±0.014±0.0060.050±0.014±0.0060.050±0.014±0.006 1 ACKERSTAFF 97W OPAL e+ e− → Z1ACKERSTAFF 97W assumes B(D∗2(2460)0 → D∗+π−) = 0.21 ± 0.04 and�bb/�hadrons = 0.216 at Z de
ay.�(D∗(2010)∓D±s anything)/�total �39/��(D∗(2010)∓D±s anything)/�total �39/��(D∗(2010)∓D±s anything)/�total �39/��(D∗(2010)∓D±s anything)/�total �39/�VALUE DOCUMENT ID TECN COMMENT0.033+0.010

−0.009+0.012
−0.0090.033+0.010

−0.009+0.012
−0.0090.033+0.010

−0.009+0.012
−0.0090.033+0.010

−0.009+0.012
−0.009 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.�(D0D∗(2010)± anything)/�total �40/��(D0D∗(2010)± anything)/�total �40/��(D0D∗(2010)± anything)/�total �40/��(D0D∗(2010)± anything)/�total �40/�VALUE DOCUMENT ID TECN COMMENT0.030+0.009

−0.008+0.007
−0.0050.030+0.009

−0.008+0.007
−0.0050.030+0.009

−0.008+0.007
−0.0050.030+0.009

−0.008+0.007
−0.005 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.�(D∗(2010)±D∓ anything)/�total �41/��(D∗(2010)±D∓ anything)/�total �41/��(D∗(2010)±D∓ anything)/�total �41/��(D∗(2010)±D∓ anything)/�total �41/�VALUE DOCUMENT ID TECN COMMENT0.025+0.010

−0.009+0.006
−0.0050.025+0.010

−0.009+0.006
−0.0050.025+0.010

−0.009+0.006
−0.0050.025+0.010

−0.009+0.006
−0.005 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.�(D∗(2010)±D∗(2010)∓ anything)/�total �42/��(D∗(2010)±D∗(2010)∓ anything)/�total �42/��(D∗(2010)±D∗(2010)∓ anything)/�total �42/��(D∗(2010)±D∗(2010)∓ anything)/�total �42/�VALUE DOCUMENT ID TECN COMMENT0.012+0.004

−0.003±0.0020.012+0.004
−0.003±0.0020.012+0.004
−0.003±0.0020.012+0.004
−0.003±0.002 1 BARATE 98Q ALEP e+ e− → Z1The systemati
 error in
ludes the un
ertainties due to the 
harm bran
hing ratios.�(DD anything)/�total �43/��(DD anything)/�total �43/��(DD anything)/�total �43/��(DD anything)/�total �43/�VALUE DOCUMENT ID TECN COMMENT0.10±0.032+0.107

−0.0950.10±0.032+0.107
−0.0950.10±0.032+0.107
−0.0950.10±0.032+0.107
−0.095 1 ABBIENDI 04I OPAL e+ e− → Z1Measurement performed using an in
lusive identi�
ation of B mesons and the D 
andi-dates.�(D∗2(2460)0 anything)/�total �44/��(D∗2(2460)0 anything)/�total �44/��(D∗2(2460)0 anything)/�total �44/��(D∗2(2460)0 anything)/�total �44/�VALUE DOCUMENT ID TECN COMMENT0.047±0.024±0.0130.047±0.024±0.0130.047±0.024±0.0130.047±0.024±0.013 1 ACKERSTAFF 97W OPAL e+ e− → Z1ACKERSTAFF 97W assumes B(D∗2(2460)0 → D∗+π−) = 0.21 ± 0.04 and�bb/�hadrons = 0.216 at Z de
ay.�(D−s anything)/�total �45/��(D−s anything)/�total �45/��(D−s anything)/�total �45/��(D−s anything)/�total �45/�VALUE DOCUMENT ID TECN COMMENT0.147±0.017±0.0130.147±0.017±0.0130.147±0.017±0.0130.147±0.017±0.013 1 BUSKULIC 96Y ALEP e+ e− → Z1BUSKULIC 96Y reports 0.183 ± 0.019 ± 0.009 from a measurement of [�(b →D−s anything)/�total℄ × [B(D+s → φπ+)℄ assuming B(D+s → φπ+) = 0.036, whi
hwe res
ale to our best value B(D+s → φπ+) = (4.5 ± 0.4) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.�(D+s anything)/�total �46/��(D+s anything)/�total �46/��(D+s anything)/�total �46/��(D+s anything)/�total �46/�VALUE DOCUMENT ID TECN COMMENT0.101±0.010±0.0290.101±0.010±0.0290.101±0.010±0.0290.101±0.010±0.029 1 ABDALLAH 03E DLPH e+ e− → Z1The se
ond error is the total of systemati
 un
ertainties in
luding the bran
hing fra
tionsused in the measurement.

�(b → �+
 anything)/�total �47/��(b → �+
 anything)/�total �47/��(b → �+
 anything)/�total �47/��(b → �+
 anything)/�total �47/�VALUE DOCUMENT ID TECN COMMENT0.076±0.011±0.0040.076±0.011±0.0040.076±0.011±0.0040.076±0.011±0.004 1 BUSKULIC 96Y ALEP e+ e− → Z1BUSKULIC 96Y reports 0.110 ± 0.014 ± 0.006 from a measurement of [�(b →�+
 anything)/�total ℄ × [B(�+
 → pK−π+)℄ assuming B(�+
 → pK−π+) = 0.044,whi
h we res
ale to our best value B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.�(
 /
 anything)/�total �48/��(
 /
 anything)/�total �48/��(
 /
 anything)/�total �48/��(
 /
 anything)/�total �48/�VALUE DOCUMENT ID TECN COMMENT1.162±0.032 OUR AVERAGE1.162±0.032 OUR AVERAGE1.162±0.032 OUR AVERAGE1.162±0.032 OUR AVERAGE1.12 +0.11
−0.10 1 ABBIENDI 04I OPAL e+ e− → Z1.166±0.031±0.080 2 ABREU 00 DLPH e+ e− → Z1.147±0.041 3 ABREU 98D DLPH e+ e− → Z1.230±0.036±0.065 4 BUSKULIC 96Y ALEP e+ e− → Z1Measurement performed using an in
lusive identi�
ation of B mesons and the D 
andi-dates.2 Evaluated via summation of ex
lusive and in
lusive 
hannels.3ABREU 98D results are extra
ted from a �t to the b-tagging probability distributionbased on the impa
t parameter.4BUSKULIC 96Y assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons, andPDG 96 bran
hing ratios for 
harm de
ays. This is sum of their in
lusive D0, D−, Ds ,and �
 bran
hing ratios, 
orre
ted to in
lude in
lusive �
 and 
harmonium.�(J/ψ(1S)anything)/�total �49/��(J/ψ(1S)anything)/�total �49/��(J/ψ(1S)anything)/�total �49/��(J/ψ(1S)anything)/�total �49/�VALUE (units 10−2) CL% EVTS DOCUMENT ID TECN COMMENT1.16±0.10 OUR AVERAGE1.16±0.10 OUR AVERAGE1.16±0.10 OUR AVERAGE1.16±0.10 OUR AVERAGE1.12±0.12±0.10 1 ABREU 94P DLPH e+ e− → Z1.16±0.16±0.14 121 2 ADRIANI 93J L3 e+ e− → Z1.21±0.13±0.08 BUSKULIC 92G ALEP e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.3 ±0.2 ±0.2 3 ADRIANI 92 L3 e+ e− → Z
<4.9 90 MATTEUZZI 83 MRK2 Eee
m= 29 GeV1ABREU 94P is an in
lusive measurement from b de
ays at the Z . Uses J/ψ(1S) →e+ e− and µ+µ− 
hannels. Assumes �(Z → bb)/�hadron=0.22.2ADRIANI 93J is an in
lusive measurement from b de
ays at the Z . Uses J/ψ(1S) →

µ+µ− and J/ψ(1S) → e+ e− 
hannels.3ADRIANI 92 measurement is an in
lusive result for B(Z → J/ψ(1S)X) = (4.1 ± 0.7 ±0.3)× 10−3 whi
h is used to extra
t the b-hadron 
ontribution to J/ψ(1S) produ
tion.�(

ψ(2S)anything)/�total �50/��(

ψ(2S)anything)/�total �50/��(

ψ(2S)anything)/�total �50/��(

ψ(2S)anything)/�total �50/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0048±0.0022±0.0010 1 ABREU 94P DLPH e+ e− → Z1ABREU 94P is an in
lusive measurement from b de
ays at the Z . Uses ψ(2S) →J/ψ(1S)π+π−, J/ψ(1S) → µ+µ− 
hannels. Assumes �(Z → bb)/�hadron=0.22.�(

ψ(2S)anything)/�(J/ψ(1S)anything) �50/�49�(

ψ(2S)anything)/�(J/ψ(1S)anything) �50/�49�(

ψ(2S)anything)/�(J/ψ(1S)anything) �50/�49�(

ψ(2S)anything)/�(J/ψ(1S)anything) �50/�49VALUE DOCUMENT ID TECN COMMENT0.243±0.014 OUR AVERAGE0.243±0.014 OUR AVERAGE0.243±0.014 OUR AVERAGE0.243±0.014 OUR AVERAGE0.239±0.015±0.005 1,2 AAIJ 12BD LHCB pp at 7 TeV0.259±0.015±0.028 3,4 CHATRCHYAN12AK CMS pp at 7 TeV1AAIJ 12BD reports 0.235 ± 0.005 ± 0.015 from a measurement of [�(b →
ψ(2S)anything)/�(b → J/ψ(1S)anything)℄ × [B(J/ψ(1S) → µ+µ−)℄ / [B(ψ(2S) →e+ e−)℄ assuming B(J/ψ(1S) → µ+µ−) = (5.93± 0.06)×10−2,B(ψ(2S) → e+ e−)= (7.72 ± 0.17) × 10−3, whi
h we res
ale to our best values B(J/ψ(1S) → µ+µ−)= (5.961 ± 0.033) × 10−2, B(ψ(2S) → e+ e−) = (7.89 ± 0.17) × 10−3. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best values.2Assumes lepton universality imposing B(ψ(2s) → µ+µ−) = B(ψ(2s) → e+ e−).3CHATRCHYAN 12AK really reports �50/� = (3.08±0.12±0.13±0.42)×10−3 assumingPDG 10 value of �49/� = (1.16 ± 0.10)×10−2 whi
h we present as a ratio of �50/�49= (26.5 ± 1.0 ± 1.1 ± 2.8)× 10−2.4CHATRCHYAN 12AK reports (26.5 ± 1.0 ± 1.1 ± 2.8) × 10−2 from a measurementof [�(b → ψ(2S)anything)/�(b → J/ψ(1S)anything)℄ × [B(ψ(2S) → µ+µ−)℄
/ [B(J/ψ(1S) → µ+µ−)℄ assuming B(ψ(2S) → µ+µ−) = (7.7 ± 0.8) ×10−3,B(J/ψ(1S) → µ+µ−) = (5.93 ± 0.06) × 10−2, whi
h we res
ale to ourbest values B(ψ(2S) → µ+µ−) = (7.9 ± 0.9) × 10−3, B(J/ψ(1S) → µ+µ−)= (5.961 ± 0.033) × 10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best values.�(

χ
1(1P)anything)/�total �51/��(

χ
1(1P)anything)/�total �51/��(

χ
1(1P)anything)/�total �51/��(

χ
1(1P)anything)/�total �51/�VALUE EVTS DOCUMENT ID TECN COMMENT0.014 ±0.004 OUR AVERAGE0.014 ±0.004 OUR AVERAGE0.014 ±0.004 OUR AVERAGE0.014 ±0.004 OUR AVERAGE0.0113+0.0058
−0.0050±0.0004 1 ABREU 94P DLPH e+ e− → Z0.019 ±0.007 ±0.001 19 2 ADRIANI 93J L3 e+ e− → Z



1311131113111311See key on page 601 MesonParti
le ListingsB±/B0/B0s/b-baryonADMIXTURE1ABREU 94P reports 0.014 ± 0.006+0.004
−0.002 from a measurement of [�(b →

χ
1(1P)anything)/�total℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assuming B(χ
1(1P) →
γ J/ψ(1S)) = 0.273 ± 0.016, whi
h we res
ale to our best value B(χ
1(1P) →
γ J/ψ(1S)) = (33.9 ± 1.2) × 10−2. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value. Assumes no χ
2(1P)and �(Z → bb)/�hadron=0.22.2ADRIANI 93J reports 0.024 ± 0.009 ± 0.002 from a measurement of [�(b →
χ
1(1P)anything)/�total℄ × [B(χ
1(1P) → γ J/ψ(1S))℄ assuming B(χ
1(1P) →
γ J/ψ(1S)) = 0.273 ± 0.016, whi
h we res
ale to our best value B(χ
1(1P) →
γ J/ψ(1S)) = (33.9 ± 1.2) × 10−2. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.�(χ
1(1P)anything)/�(J/ψ(1S)anything) �51/�49�(χ
1(1P)anything)/�(J/ψ(1S)anything) �51/�49�(χ
1(1P)anything)/�(J/ψ(1S)anything) �51/�49�(χ
1(1P)anything)/�(J/ψ(1S)anything) �51/�49VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.92±0.82 121 1 ADRIANI 93J L3 e+ e− → Z1ADRIANI 93J is a ratio of in
lusive measurements from b de
ays at the Z using only theJ/ψ(1S) → µ+µ− 
hannel sin
e some systemati
s 
an
el.�(s γ
)/�total �52/��(s γ
)/�total �52/��(s γ
)/�total �52/��(s γ
)/�total �52/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT3.11±0.80±0.723.11±0.80±0.723.11±0.80±0.723.11±0.80±0.72 1 BARATE 98I ALEP e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 5.4 90 2 ADAM 96D DLPH e+ e− → Z
<12 90 3 ADRIANI 93L L3 e+ e− → Z1BARATE 98I uses lifetime tagged Z → bb sample.2ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12.3ADRIANI 93L result is for b → s γ is performed in
lusively.�(s ν ν

)/�total �53/��(s ν ν
)/�total �53/��(s ν ν
)/�total �53/��(s ν ν
)/�total �53/�VALUE CL% DOCUMENT ID TECN COMMENT

<6.4× 10−4<6.4× 10−4<6.4× 10−4<6.4× 10−4 90 1 BARATE 01E ALEP e+ e− → Z1The energy-
ow and b-tagging algorithms were used.�(K± anything)/�total �54/��(K± anything)/�total �54/��(K± anything)/�total �54/��(K± anything)/�total �54/�VALUE DOCUMENT ID TECN COMMENT0.74±0.06 OUR AVERAGE0.74±0.06 OUR AVERAGE0.74±0.06 OUR AVERAGE0.74±0.06 OUR AVERAGE0.72±0.02±0.06 BARATE 98V ALEP e+ e− → Z0.88±0.05±0.18 ABREU 95C DLPH e+ e− → Z�(K0S anything)/�total �55/��(K0S anything)/�total �55/��(K0S anything)/�total �55/��(K0S anything)/�total �55/�VALUE DOCUMENT ID TECN COMMENT0.290±0.011±0.0270.290±0.011±0.0270.290±0.011±0.0270.290±0.011±0.027 ABREU 95C DLPH e+ e− → Z�(π± anything)/�total �56/��(π± anything)/�total �56/��(π± anything)/�total �56/��(π± anything)/�total �56/�VALUE DOCUMENT ID TECN COMMENT3.97±0.02±0.213.97±0.02±0.213.97±0.02±0.213.97±0.02±0.21 BARATE 98V ALEP e+ e− → Z�(π0 anything)/�total �57/��(π0 anything)/�total �57/��(π0 anything)/�total �57/��(π0 anything)/�total �57/�VALUE DOCUMENT ID TECN COMMENT2.78±0.15±0.602.78±0.15±0.602.78±0.15±0.602.78±0.15±0.60 1 ADAM 96 DLPH e+ e− → Z1ADAM 96 measurement obtained from a �t to the rapidity distribution of π0′s in Z →bb events.�(φanything)/�total �58/��(φanything)/�total �58/��(φanything)/�total �58/��(φanything)/�total �58/�VALUE DOCUMENT ID TECN COMMENT0.0282±0.0013±0.00190.0282±0.0013±0.00190.0282±0.0013±0.00190.0282±0.0013±0.0019 ABBIENDI 00Z OPAL e+ e− → Z�(p/panything)/�total �59/��(p/panything)/�total �59/��(p/panything)/�total �59/��(p/panything)/�total �59/�VALUE DOCUMENT ID TECN COMMENT0.131±0.011 OUR AVERAGE0.131±0.011 OUR AVERAGE0.131±0.011 OUR AVERAGE0.131±0.011 OUR AVERAGE0.131±0.004±0.011 BARATE 98V ALEP e+ e− → Z0.141±0.018±0.056 ABREU 95C DLPH e+ e− → Z�(�/�anything)/�total �60/��(�/�anything)/�total �60/��(�/�anything)/�total �60/��(�/�anything)/�total �60/�VALUE DOCUMENT ID TECN COMMENT0.059 ±0.006 OUR AVERAGE0.059 ±0.006 OUR AVERAGE0.059 ±0.006 OUR AVERAGE0.059 ±0.006 OUR AVERAGE0.0587±0.0046±0.0048 ACKERSTAFF 97N OPAL e+ e− → Z0.059 ±0.007 ±0.009 ABREU 95C DLPH e+ e− → Z�(b -baryon anything)/�total �61/��(b -baryon anything)/�total �61/��(b -baryon anything)/�total �61/��(b -baryon anything)/�total �61/�VALUE DOCUMENT ID TECN COMMENT0.102±0.007±0.0270.102±0.007±0.0270.102±0.007±0.0270.102±0.007±0.027 1 BARATE 98V ALEP e+ e− → Z1BARATE 98V assumes B(Bs → pX) = 8 ± 4% and B(b -baryon → pX) = 58 ± 6%.�(
harged anything)/�total �62/��(
harged anything)/�total �62/��(
harged anything)/�total �62/��(
harged anything)/�total �62/�VALUE DOCUMENT ID TECN COMMENT4.97±0.03±0.064.97±0.03±0.064.97±0.03±0.064.97±0.03±0.06 1 ABREU 98H DLPH e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.84±0.04±0.38 ABREU 95C DLPH Repl. by ABREU 98H1ABREU 98H measurement ex
ludes the 
ontribution from K0 and � de
ay.

�(hadron+ hadron−)/�total �63/��(hadron+ hadron−)/�total �63/��(hadron+ hadron−)/�total �63/��(hadron+ hadron−)/�total �63/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.7+1.0
−0.7±0.21.7+1.0
−0.7±0.21.7+1.0
−0.7±0.21.7+1.0
−0.7±0.2 1,2 BUSKULIC 96V ALEP e+ e− → Z1BUSKULIC 96V assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons.2Average bran
hing fra
tion of weakly de
aying B hadrons into two long-lived 
hargedhadrons, weighted by their produ
tion 
ross se
tion and lifetimes.�(
harmless)/�total �64/��(
harmless)/�total �64/��(
harmless)/�total �64/��(
harmless)/�total �64/�VALUE DOCUMENT ID TECN COMMENT0.007±0.0210.007±0.0210.007±0.0210.007±0.021 1 ABREU 98D DLPH e+ e− → Z1ABREU 98D results are extra
ted from a �t to the b-tagging probability distribution basedon the impa
t parameter. The expe
ted hidden 
harm 
ontribution of 0.026 ± 0.004 hasbeen subtra
ted.�(µ+µ− anything)/�total �66/��(µ+µ− anything)/�total �66/��(µ+µ− anything)/�total �66/��(µ+µ− anything)/�total �66/�Test for �B = 1 weak neutral 
urrent.VALUE CL% DOCUMENT ID TECN COMMENT

<3.2 × 10−4<3.2 × 10−4<3.2 × 10−4<3.2 × 10−4 90 ABBOTT 98B D0 pp 1.8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5.0 × 10−5 90 1 ALBAJAR 91C UA1 Epp
m= 630 GeV
<0.02 95 ALTHOFF 84G TASS Eee
m= 34.5 GeV
<0.007 95 ADEVA 83 MRKJ Eee
m= 30{38 GeV
<0.007 95 BARTEL 83B JADE Eee
m= 33{37 GeV1Both ABBOTT 98B and GLENN 98 
laim that the eÆ
ien
y quoted in ALBAJAR 91Cwas overestimated by a large fa
tor.
[�(e+ e− anything)+�(µ+µ− anything)]/�total (�65+�66)/�[�(e+ e− anything)+�(µ+µ− anything)]/�total (�65+�66)/�[�(e+ e− anything)+�(µ+µ− anything)]/�total (�65+�66)/�[�(e+ e− anything)+�(µ+µ− anything)]/�total (�65+�66)/�Test for �B = 1 weak neutral 
urrent.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.008 90 MATTEUZZI 83 MRK2 Eee
m= 29 GeV�(ν ν anything)/�total �67/��(ν ν anything)/�total �67/��(ν ν anything)/�total �67/��(ν ν anything)/�total �67/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.9× 10−4 1 GROSSMAN 96 RVUE e+ e− → Z1GROSSMAN 96 limit is derived from the ALEPH BUSKULIC 95 limit B(B+ → τ+ ντ )

< 1.8× 10−3 at CL=90% using 
onservative simplifying assumptions.
χb AT HIGH ENERGYχb AT HIGH ENERGYχb AT HIGH ENERGYχb AT HIGH ENERGYFor a dis
ussion of B-B mixing, see the note on \B0-B0 Mixing" in theB0 Parti
le Listings.

χb is the average B-B mixing parameter at high-energy χb=f ′d χd +f ′s χs where f ′d and f ′s are the fra
tions of B0 and B0s hadrons in anunbiased sample of semileptoni
 b-hadron de
ays.\OUR EVALUATION" is an average using res
aled values of thedata listed below. The average and res
aling were performed bythe Heavy Flavor Averaging Group (HFAG) and are des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/. The averaging/res
aling pro-
edure takes into a

ount 
orrelations between the measurements.VALUE EVTS DOCUMENT ID TECN COMMENT0.1284±0.0069 OUR EVALUATION0.1284±0.0069 OUR EVALUATION0.1284±0.0069 OUR EVALUATION0.1284±0.0069 OUR EVALUATION0.129 ±0.004 OUR AVERAGE0.129 ±0.004 OUR AVERAGE0.129 ±0.004 OUR AVERAGE0.129 ±0.004 OUR AVERAGE0.132 ±0.001 ±0.024 1 ABAZOV 06S D0 pp at 1.96 TeV0.152 ±0.007 ±0.011 2 ACOSTA 04A CDF pp at 1.8 TeV0.1312±0.0049±0.0042 3 ABBIENDI 03P OPAL e+ e− → Z0.127 ±0.013 ±0.006 4 ABREU 01L DLPH e+ e− → Z0.1192±0.0068±0.0051 5 ACCIARRI 99D L3 e+ e− → Z0.121 ±0.016 ±0.006 6 ABREU 94J DLPH e+ e− → Z0.114 ±0.014 ±0.008 7 BUSKULIC 94G ALEP e+ e− → Z0.129 ±0.022 8 BUSKULIC 92B ALEP e+ e− → Z0.176 ±0.031 ±0.032 1112 9 ABE 91G CDF pp 1.8 TeV0.148 ±0.029 ±0.017 10 ALBAJAR 91D UA1 pp 630 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.131 ±0.020 ±0.016 11 ABE 97I CDF Repl. byACOSTA 04A0.1107±0.0062±0.0055 12 ALEXANDER 96 OPAL Rep. by ABBI-ENDI 03P0.136 ±0.037 ±0.040 13 UENO 96 AMY e+ e− at 57.9 GeV0.144 ±0.014 +0.017

−0.011 14 ABREU 94F DLPH Sup. by ABREU 94J0.131 ±0.014 15 ABREU 94J DLPH e+ e− → Z0.123 ±0.012 ±0.008 ACCIARRI 94D L3 Repl. by ACCIA-RRI 99D0.157 ±0.020 ±0.032 16 ALBAJAR 94 UA1 √s = 630 GeV0.121 +0.044
−0.040 ±0.017 1665 17 ABREU 93C DLPH Sup. by ABREU 94J0.143 +0.022
−0.021 ±0.007 18 AKERS 93B OPAL Sup. by ALEXAN-DER 96



1312131213121312MesonParti
le ListingsB±/B0/B0s/b-baryon ADMIXTURE0.145 +0.041
−0.035 ±0.018 19 ACTON 92C OPAL e+ e− → Z0.121 ±0.017 ±0.006 20 ADEVA 92C L3 Sup. by ACCIA-RRI 94D0.132 ±0.22 +0.015

−0.012 823 21 DECAMP 91 ALEP e+ e− → Z0.178 +0.049
−0.040 ±0.020 22 ADEVA 90P L3 e+ e− → Z0.17 +0.15
−0.08 23,24 WEIR 90 MRK2 e+ e− 29 GeV0.21 +0.29
−0.15 23 BAND 88 MAC Eee
m= 29 GeV

>0.02 at 90%CL 23 BAND 88 MAC Eee
m= 29 GeV0.121 ±0.047 23,25 ALBAJAR 87C UA1 Repl. by ALBA-JAR 91D
<0.12 at 90%CL 23,26 SCHAAD 85 MRK2 Eee
m= 29 GeV1Uses the dimuon 
harge asymmetry. Averaged over the mix of b-
avored hadrons.2Measurement performed using events 
ontaining a dimuon or an e/µ pair.3The average B mixing parameter is determined simultaneously with b and 
 forward-ba
kward asymmetries in the �t.4The experimental systemati
 and model un
ertainties are 
ombined in quadrature.5ACCIARRI 99D uses maximum-likelihood �ts to extra
t χb as well as the AbFB in Z →bb events 
ontaining prompt leptons.6This ABREU 94J result is from 5182 ℓℓ and 279 �ℓ events. The systemati
 error in
ludes0.004 for model dependen
e.7BUSKULIC 94G data analyzed using e e, e µ, and µµ events.8BUSKULIC 92B uses a jet 
harge te
hnique 
ombined with ele
trons and muons.9ABE 91G measurement of χ is done with e µ and e e events.10ALBAJAR 91D measurement of χ is done with dimuons.11Uses di-muon events.12ALEXANDER 96 uses a maximum likelihood �t to simultaneously extra
t χ as well asthe forward-ba
kward asymmetries in e+ e− → Z → bb and 
 
.13UENO 96 extra
ted χ from the energy dependen
e of the forward-ba
kward asymmetry.14ABREU 94F uses the average ele
tri
 
harge sum of the jets re
oiling against a b-quarkjet tagged by a high pT muon. The result is for χ = fd χd+0.9fs χs .15This ABREU 94J result 
ombines ℓℓ, �ℓ, and jet-
harge ℓ (ABREU 94F) analyses. It isfor χ = fdχd + 0.96fsχs .16ALBAJAR 94 uses dimuon events. Not independent of ALBAJAR 91D.17ABREU 93C data analyzed using e e, eµ, and µµ events.18AKERS 93B analysis performed using dilepton events.19ACTON 92C uses ele
trons and muons. Superseded by AKERS 93B.20ADEVA 92C uses ele
trons and muons.21DECAMP 91 done with opposite and like-sign dileptons. Superseded by BUSKULIC 92B.22ADEVA 90P measurement uses e e, µµ, and e µ events from 118k events at the Z .Superseded by ADEVA 92C.23These experiments are not in the average be
ause the 
ombination of Bs and Bd mesonswhi
h they see 
ould di�er from those at higher energy.24The WEIR 90 measurement supersedes the limit obtained in SCHAAD 85. The 90% CLare 0.06 and 0.38.25ALBAJAR 87C measured χ = (B0 → B0 → µ+X) divided by the average produ
tionweighted semileptoni
 bran
hing fra
tion for B hadrons at 546 and 630 GeV.26 Limit is average probability for hadron 
ontaining B quark to produ
e a positive lepton.CP VIOLATION PARAMETERS in semileptoni
 b-hadron de
ays.CP VIOLATION PARAMETERS in semileptoni
 b-hadron de
ays.CP VIOLATION PARAMETERS in semileptoni
 b-hadron de
ays.CP VIOLATION PARAMETERS in semileptoni
 b-hadron de
ays.Re(ǫb) / (1 + ∣

∣ǫb∣∣2)Re(ǫb) / (1 + ∣

∣ǫb∣∣2)Re(ǫb) / (1 + ∣

∣ǫb∣∣2)Re(ǫb) / (1 + ∣

∣ǫb∣∣2)CP impurity in semileptoni
 b-hadron de
ays.VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.24±0.38±0.181.24±0.38±0.181.24±0.38±0.181.24±0.38±0.18 1 ABAZOV 14 D0 pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−1.97±0.43±0.23 2 ABAZOV 11U D0 Repl. by ABAZOV 14
−2.39±0.63±0.37 3 ABAZOV 10H D0 Repl. by ABAZOV 11U1ABAZOV 14 reports a measurement of like-sign dimuon 
harge asymmetry of Ab

SL =(−4.96 ± 1.53 ± 0.72) × 10−3 in semileptoni
 b-hadron de
ays.2ABAZOV 11U reports a measurement of like-sign dimuon 
harge asymmetry of Ab
SL =(−7.87 ± 1.72 ± 0.93) × 10−3 in semileptoni
 b-hadron de
ays.3ABAZOV 10H reports a measurement of like-sign dimuon 
harge asymmetry ofAb

SL=(−9.57 ± 2.51 ± 1.46)× 10−3 in semileptoni
 b-hadron de
ays. Using the mea-sured produ
tion ratio of B0d and B0s , and the asymmetry of B0d Ad
SL

=(−4.7 ± 4.6)×10−3 measured from B-fa
tories, they obtain the asymmetry for B0s as As
SL=(−14.6±7.5) × 10−3.B-HADRON PRODUCTION FRACTIONS IN HADRONIC Z DECAYB-HADRON PRODUCTION FRACTIONS IN HADRONIC Z DECAYB-HADRON PRODUCTION FRACTIONS IN HADRONIC Z DECAYB-HADRON PRODUCTION FRACTIONS IN HADRONIC Z DECAYThe produ
tion fra
tions of b-hadrons in hadroni
 Z de
ays have been
al
ulated using the best values of mean lives, mixing parameters andbran
hing fra
tions in this edition by the Heavy Flavor Averaging Group(HFAG) (see http://www.sla
.stanford.edu/xorg/hfag/).The values reported below assume:f(b → B+) = f(b → B0)f(b → B+) + f(b → B0) + f(b → B0s ) + f(b → b-baryon) = 1The values are:f(b → B+) = f(b → B0) = 0.407 ± 0.007f(b → B0s ) = 0.100 ± 0.008f(b → b-baryon) = 0.085 ± 0.011f(b → B0s ) / f(b → B0d ) = 0.246 ± 0.023and their 
orrelation 
oeÆ
ients are:
or(B0s , b-baryon) = +0.073
or(B0s , B+=B0) = −0.633


or(b-baryon, B+=B0) = −0.818as obtained using a time-integrated mixing parameter χ = 0.1259±0.0042given by a �t to heavy quark quantities with asymmetries removed (seethe note \The Z boson").B-HADRON PRODUCTION FRACTIONS IN pp COLLISIONS AT TevatronB-HADRON PRODUCTION FRACTIONS IN pp COLLISIONS AT TevatronB-HADRON PRODUCTION FRACTIONS IN pp COLLISIONS AT TevatronB-HADRON PRODUCTION FRACTIONS IN pp COLLISIONS AT TevatronThe produ
tion fra
tions for b-hadrons in pp 
ollisions at the Tevatronhave been 
al
ulated from the best values of mean lifetimes, mixing param-eters, and bran
hing fra
tions in this edition by the Heavy Flavor AveragingGroup (HFAG) (see http://www.sla
.stanford.edu/xorg/hfag/).The values reported below assume:f(b → B+) = f(b → B0)f(b → B+) + f(b → B0) + f(b → B0s ) + f(b → b-baryon) = 1The values are:f(b → B+) = f(b → B0) = 0.344 ± 0.021f(b → B0s ) = 0.115 ± 0.013f(b → b-baryon) = 0.197 ± 0.046f(b → B0s ) / f(b → B0d ) = 0.334 ± 0.041and their 
orrelation 
oeÆ
ients are:
or(B0s , b-baryon) = −0.419
or(B0s , B+=B0) = +0.139
or(b-baryon, B+=B0) = −0.958as obtained with the Tevatron average of time-integrated mixing parameter
χ = 0.147 ± 0.011.PRODUCTION ASYMMETRIESPRODUCTION ASYMMETRIESPRODUCTION ASYMMETRIESPRODUCTION ASYMMETRIESAb bCAb bCAb bCAb bC AbbC = [N(�y > 0) − N(�y < 0)℄ / [N(�y > 0) + N(�y < 0)℄ with �y = ∣

∣yb∣

∣ −
∣

∣yb ∣

∣where yb/b is rapidity of b or b quarks.VALUE (units 10−2) DOCUMENT ID TECN COMMENTAverage is meaningless.0.4±0.4±0.3 1 AAIJ 14AS LHCB pp at 7 TeV2.0±0.9±0.6 2 AAIJ 14AS LHCB pp at 7 TeV1.6±1.7±0.6 3 AAIJ 14AS LHCB pp at 7 TeV1Measured for 40 < M(bb) < 75 GeV/
2.2Measured for 75 < M(bb) < 105 GeV/
2.3Measured for M(bb) > 105 GeV/
2.B±/B0/B0s/b-baryon ADMIXTURE REFERENCESB±/B0/B0s/b-baryon ADMIXTURE REFERENCESB±/B0/B0s/b-baryon ADMIXTURE REFERENCESB±/B0/B0s/b-baryon ADMIXTURE REFERENCESAAD 15CM PRL 115 262001 G. Aad et al. (ATLAS Collab.)AAIJ 14AS PRL 113 082003 R. Aaij et al. (LHCb Collab.)ABAZOV 14 PR D89 012002 V.M. Abazov et al. (D0 Collab.)AAIJ 13P JHEP 1304 001 R. Aaij et al. (LHCb Collab.)AAIJ 12BD EPJ C72 2100 R. Aaij et al. (LHCb Collab.)AAIJ 12J PR D85 032008 R. Aaji et al. (LHCb Collab.)CHATRCHYAN 12AK JHEP 1202 011 S. Chatr
hyan et al. (CMS Collab.)AAIJ 11F PRL 107 211801 R. Aaij et al. (LHCb Collab.)ABAZOV 11U PR D84 052007 V.M. Abazov et al. (D0 Collab.)ABAZOV 10H PRL 105 081801 V.M. Abazov et al. (D0 Collab.)Also PR D82 032001 V.M. Abazov et al. (D0 Collab.)PDG 10 JP G37 075021 K. Nakamura et al. (PDG Collab.)AALTONEN 09E PR D79 032001 T. Aaltonen et al. (CDF Collab.)AALTONEN 08N PR D77 072003 T. Aaltonen et al. (CDF Collab.)ABAZOV 06S PR D74 092001 V.M. Abazov et al. (D0 Collab.)ABBIENDI 04I EPJ C35 149 G. Abbiendi et al. (OPAL Collab.)ABDALLAH 04E EPJ C33 307 J. Abdallah et al. (DELPHI Collab.)ACOSTA 04A PR D69 012002 D. A
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SEMILEPTONIC BOTTOM HADRON DECAYS

AND THE DETERMINATION OF Vcb AND Vub
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Canada) and T. Mannel (Univ. of Siegen, Germany)

INTRODUCTION

Precision determinations of |Vub| and |Vcb| are central to

testing the CKM sector of the Standard Model, and complement

the measurements of CP asymmetries in B decays. The length

of the side of the unitarity triangle opposite the well-measured

angle β is proportional to the ratio |Vub|/|Vcb|; its determination

is a high priority of the heavy-flavor physics program.

The semileptonic transitions b → cℓν̄ℓ and b → uℓν̄ℓ (where

ℓ refers to an electron or muon) each provide two avenues

for determining these CKM matrix elements, namely through

inclusive and exclusive final states. Recent measurements and

calculations are reflected in the values quoted in this article,

which is an update of the previous review [1]. The leptonic

decay B− → τ ν̄ can also be used to extract |Vub|; we do

not use this information at present since none of the experi-

mental measurements has reached the significance level of an

observation.

The theory underlying the determination of |Vqb| is mature,

in particular for |Vcb|. Most of the theoretical approaches use

the fact that the mass mb of the b quark is large compared to

the scale ΛQCD that determines low-energy hadronic physics.

The basis for precise calculations is a systematic expansion in

powers of Λ/mb, where Λ ∼ 500 − 700 MeV is a hadronic scale

of the order of ΛQCD, based on effective-field-theory methods

described in a separate RPP mini-review [2]. The use of

lattice QCD for calculations of non-perturbative quantities

plays an essential role in many of the determinations discussed

here; lattice methods are discussed in a separate RPP mini-

review [3].

The measurements discussed in this review are of branching

fractions or ratios of branching fractions. The determination of

the |Vcb| and |Vub| also requires a measurement of the total decay

widths of the corresponding b hadrons, which is the subject of a

separate RPP mini-review [4]. The measurements of inclusive

semileptonic decays relevant to this review come primarily from

e+e− B factories operating at the Υ(4S) resonance, where BB̄

pairs are produced nearly at rest in the center-of-mass frame.

Measurements of exclusive semileptonic decays come from the

e+e− B factories and from the LHCb experiment at CERN.

Semileptonic B meson decay amplitudes to electrons and

muons are assumed to be largely free from any impact of non-

Standard Model physics, since they are dominated by Standard-

Model W boson exchange. The decays B̄ → D(∗)τ ν̄τ , however,

provide sensitivity to possible non-universalities in the couplings

to the third generation leptons that are present at tree level

in models involving new charged mediators. For example, a

charged Higgs boson, present in many models of new physics,

couples to the mass of the lepton and breaks lepton universality.

If the enhanced decay rates seen in recent measurements of these

decay modes turn out to be robust, they are an indication of

new physics.

Throughout this review the numerical results quoted are

based on the methods of the Heavy Flavor Averaging Group [5]

using updated values from Ref. 6.

DETERMINATION OF |Vcb|

Summary: The determination of |Vcb| from B̄ → D∗ℓν̄ℓ

decays has a relative precision of about 2%, with compa-

rable contributions from theory and experiment. The value

determined from B̄ → Dℓν̄ℓ decays is consistent and has an

uncertainty of 4%. Inclusive decays provide a determination of

|Vcb| with a relative uncertainty of about 2%; the limitations
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arise mainly from our ignorance of higher-order perturbative

and non-perturbative corrections.

The values obtained from inclusive and exclusive determi-

nations are only marginally consistent with each other:

|Vcb| = (42.2 ± 0.8) × 10−3 (inclusive) (1)

|Vcb| = (39.2 ± 0.7) × 10−3 (exclusive); (2)

as a result, their combination should be treated with caution.

An average of these determinations has p(χ2) = 0.33%, so we

scale the error by
√

χ2/1 = 2.9 to find

|Vcb| = (40.5 ± 1.5) × 10−3 (average). (3)

|Vcb| from exclusive decays

Exclusive determinations of |Vcb| make use of semileptonic

B decays into the ground state charmed mesons D and D∗

and are based on the distribution of the variable w ≡ v · v′,

where v and v′ are the four velocities of the initial and final-

state hadrons. In the rest frame of the decay this variable

corresponds to the energy of the final state D(∗) meson. Heavy

Quark Symmetry (HQS) [7,8] predicts these decay rates in

the infinite mass limit in terms of a single form factor, which

is normalized at w = 1, the point of maximum momentum

transfer to the leptons. Measured decay rates and calculations

of the form factors are used to determine |Vcb|.
A precise determination requires corrections to the HQS

prediction for the normalization as well as some information

on the shape of the form factors near the point w = 1. These

calculations utilize Heavy Quark Effective Theory, which is

discussed in a separate RPP mini-review [2]. Form factors

that are normalized due to HQS are protected against linear

corrections [9], and thus the leading corrections are of order

Λ2
QCD/m2

c . For the form factors that vanish in the infinite

mass limit the corrections are in general linear in ΛQCD/mc. In

addition to these corrections, there are perturbatively calculable

radiative corrections from hard gluons and photons, which will

be discussed in the relevant sections.

B̄ → D∗ℓν̄ℓ

The decay rate for B̄ → D∗ℓν̄ℓ is given by

dΓ

dw
(B̄ → D∗ℓν̄ℓ) =

G2
F m5

B

48π3
|Vcb|2(w2 − 1)1/2P (w)(ηewF(w))2,

(4)

where P (w) is a phase space factor,

P (w) = r3(1 − r)2(w + 1)2
(

1 +
4w

w + 1

1 − 2rw + r2

(1 − r)2

)

.

with r = mD∗/mB. The form factor F(w), which is unity

by HQS in the infinite-mass limit, is dominated by the axial

vector form factor hA1 as w → 1. For the definitions of the

vector and axial vector form factors as a function of w see

Eq. (2.84) of Ref. 10. The factor ηew = 1.015 ± 0.005 accounts

for the leading electroweak corrections to the four-fermion

operator mediating the semileptonic decay [11], and includes an

estimated uncertainty for missing long-distance QED radiative

corrections [12].

The determination of Vcb involves an extrapolation to the

zero-recoil point. A frequently used one-parameter form for

F(w) is [13,14]

hA1(w) = ηA

[

1 + δ1/m2 + · · ·
]

[

1 − 8ρ2
A1z + (53ρ2

A1 − 15)z2 − (231ρ2
A1 − 91)z3

]

(5)

with

z = (
√

w + 1 −
√

2)/(
√

w + 1 +
√

2) . (6)

The use of the variable z originates from a conformal transfor-

mation, which is motivated by analyticity and unitarity. The

expansion in this variable converges rapidly in the kinematical

region of heavy hadron decays. Expanding in w − 1 one sees

that the parameter ρ2
A1 is the slope of the form factor at w = 1,

and the one parameter form (Eq. (5)) links the curvature (i.e.

the coefficient of the second order in the w − 1 expansion) to

the slope. All current analyses use the form given in Eq. (5);

however, as data become more precise, this simple assumption

on the curvature needs to be revised.

The factor ηA is the QCD short-distance radiative correc-

tion [15] to the form factor

ηA = 0.960 ± 0.007, (7)

and δ1/m2 comes from non-perturbative 1/m2 corrections, which

can be calculated on the lattice (see below).

Precise lattice determinations of the B → D(∗) form factors

use heavy-quark symmetries, so all uncertainties scale with the

deviation of the form factor from unity. The state-of-the-art

calculations are “unquenched”, i.e. calculations with realistic

sea quarks using 2+1 flavors. The relevant calculations for the

form factor F(ω) in Ref. 12 quote a total uncertainty at the

(1-2)% level. The main contributions to this uncertainty are

from the chiral extrapolation from the light quark masses used

in the numerical lattice computation to realistic up and down

quark masses, and from discretization errors. These sources of

uncertainty will be reduced with larger lattice sizes and smaller

lattice spacings. Including effects from finite quark masses to

calculate the deviation of F(1) from unity, the current lattice

prediction [12] is

F(1) = 0.906 ± 0.013, (8)

where we take ηew = 1.015± 0.005 [12], appropriate to the mix

of B0 and B+ decays in the HFAG average, and the errors have

been added in quadrature.

Non-lattice estimates based on sum rules for the form factor

tend to yield lower values for F(1) [16,17,18]. Omitting the

contributions from excited states, the sum rules indicate that

F(1) < 0.93. Including an estimate for the contribution of the

excited states yields F(1) = 0.86± 0.01± 0.02 [18,19] where the

second uncertainty accounts for the excited states.

Many experiments [20–28] have measured the differential

decay rate as a function of w, employing a variety of methods:
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using either B+ or B0 decays, with or without B-tagging,

and with or without explicit reconstruction of the transition

pion from D∗ → D decays. These measurements are input to

a four-dimensional fit [6] for ηewF(1)|Vcb|, ρ2
A1

and the form-

factor ratios R1 ∝ A2/A1 and R2 ∝ V/A1. The fit gives [6]

ηewF(1) |Vcb| = (35.81 ± 0.45) × 10−3 with a p-value of 0.15.

The leading sources of uncertainty on ηewF(1) |Vcb| are due to

detection efficiencies and D(∗) decay branching fractions.

Along with the lattice value given above for F(1) this yields

|Vcb| = (38.9±0.5±0.5±0.2)×10−3 (B̄ → D∗ℓν̄ℓ, LQCD). (9)

where the first error is experimental, the second from lattice

QCD and the third from the electroweak and Coulomb correc-

tion. The value of F(1) obtained from QCD sum rules results

in a larger value for |Vcb|:

|Vcb| = (41.0 ± 0.5 ± 1.0) × 10−3 (B̄ → D∗ℓν̄ℓ, SR), (10)

where the errors are from experiment and theory, respectively.

B̄ → Dℓν̄ℓ

The differential rate for B̄ → Dℓν̄ℓ is given by

dΓ

dw
(B̄ → Dℓν̄ℓ) =

G2
F

48π3
|Vcb|2(mB + mD)2m3

D(w2 − 1)3/2(ηewG(w))2. (11)

The form factor is

G(w) = h+(w) − mB − mD

mB + mD
h−(w), (12)

where h+ is normalized to unity due to HQS and h− vanishes

in the infinite-mass limit. Thus

G(1) = 1 + O
(

mB − mD

mB + mD

ΛQCD

mc

)

(13)

and the corrections to the HQET predictions are parametrically

larger than was the case for B̄ → D∗ℓν̄ℓ.

Lattice calculations including effects beyond the heavy mass

limit have become available, and hence the fact that deviations

from the HQET predictions are parametrically larger than in the

case B̄ → D∗ℓν̄ℓ is irrelevant. These unquenched calculations

provide information over a range of z values (see Eq. (6)) and

can be used in a simultaneous fit, along with the differential

branching fraction, in a form-factor expansion in z [29,30].

This is important, since the experimental precision near w = 1

is poor given the low decay rate in this region.

From the lattice simulations one obtains the form factor

normalization at zero recoil: G(1) = 1.033±0.095 [31], G(1) =

1.035 ± 0.040 [32] and, from Ref. 33,

G(1) = 1.0528 ± 0.0082 . (14)

The most precise measurements of B̄ → Dℓν̄ℓ [27,34] dominate

the average [6] value, ηewG(1)|Vcb| = (42.65 ± 1.53) × 10−3.

Using the value from Eq. (14) for G(1) and accounting for the

electroweak correction [33], ηew = 1.012 ± 0.005, appropriate

to the mix of B0 and B+ decays in the average, gives

|Vcb| = (40.0 ± 1.4 ± 0.3 ± 0.2) × 10−3 (B̄ → Dℓν̄ℓ, LQCD),

(15)

where the first uncertainty is from experiment, the second

from lattice QCD and the third from the QED and Coulomb

corrections.

The first |Vcb| determinations using combined fits to ex-

perimental and lattice data over a range of q2 were re-

ported in Refs. 32 and 33; they find values compatible

with the result quoted above. A new preliminary result from

Belle [35] provides the most precise single determination,

ηew|Vcb| = (41.10 ± 1.14) × 10−3. Using the same value for

ηew quoted above results in |Vcb| = (40.6 ± 1.1) × 10−3. This

new determination has not yet been included in the B̄ → Dℓν̄ℓ

average quoted above.

The |Vcb| averages from B̄ → D∗ℓν̄ℓ and B̄ → Dℓν̄ℓ decays

are consistent, and their uncertainties are largely uncorrelated.

Averaging the results from Eqs. (9) and (15) gives

|Vcb| = (39.2 ± 0.7) × 10−3 (exclusive). (16)

|Vcb| from inclusive decays

Measurements of the total semileptonic branching decay

rate, along with moments of the lepton energy and hadronic

invariant mass spectra in inclusive semileptonic b → c tran-

sitions, can be used to determine |Vcb|. The total semilepto-

nic decay rate can be calculated quite reliably in terms of

non-perturbative parameters that can be extracted from the

information contained in the moments.

Inclusive semileptonic rate

The theoretical foundation for the calculation of the total

semileptonic rate is the Operator Product Expansion (OPE)

which yields the Heavy Quark Expansion (HQE) [36,37]. Details

can be found in the RPP mini-review on Effective Theories [2].

The OPE result for the total rate can be written schemati-

cally (details can be found, e.g., in Ref. 38) as

Γ =|Vcb|2
G2

F m5
b(µ)

192π3
(1 + Aew)×

[

z
(0)
0 (r) +

αs(µ)

π
z
(1)
0 (r) +

(

αs(µ)

π

)2

z
(2)
0 (r) + · · ·

+
µ2

π

m2
b

(

z
(0)
2 (r) +

αs(µ)

π
z
(1)
2 (r) + · · ·

)

+
µ2

G

m2
b

(

y
(0)
2 (r) +

αs(µ)

π
y

(1)
2 (r) + · · ·

)

+
ρ3

D

m3
b

(

z
(0)
3 (r) +

αs(µ)

π
z
(1)
3 (r) + · · ·

)

+
ρ3

LS

m3
b

(

y
(0)
3 (r) +

αs(µ)

π
y

(1)
3 (r) + · · ·

)

+ ...

]

(17)

where ηew = 1+Aew denotes the electroweak corrections, r is the

ratio mc/mb and the yi and zi are functions that appear in the

perturbative expansion at different orders of the heavy mass
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expansion. The parameters µπ, µG, ρD and ρLS constitute

the non-perturbative input into the heavy quark expansion;

they correspond to certain matrix elements to be discussed

below. Similar expansions give the moments of distributions

of charged-lepton energy, hadronic invariant mass and hadronic

energy, e.g.

〈En
e 〉Ee>Ecut =

∫ Emax

Ecut

dΓ

dEe
En

e dEe

/

∫ Emax

Ecut

dΓ

dEe
dEe .

The OPE result is known up to order 1/m5
b at tree level [39–42].

The leading term is the parton model, and is known completely

to order αs and α2
s [43–45]; the terms of order αn+1

s βn
0 (where β0

is the first coefficient of the QCD β function, β0 = (33−2nf )/3)

have been included by the usual BLM procedure [38,46,47].

Corrections of order αsµ
2
π/m2

b have been computed in Refs. 48

and 49, while the αsµ
2
G/m2

b terms have been calculated in

Refs. 50 and 51.

Starting at order 1/m3
b contributions with an infrared sen-

sitivity to the charm mass, mc, appear [41,52,53]. At order

1/m3
b this “intrinsic charm” contribution manifests as a log(mc)

in the coefficient of the Darwin term ρ3
D. At higher orders,

terms such as 1/m3
b × 1/m2

c and αs(mc)1/m3
b × 1/mc appear,

which are comparable in size to the contributions of order 1/m4
b

The HQE parameters are given in terms of forward matrix

elements; the parameters entering the expansion for orders up

to 1/m3
b are (Dµ

⊥ = (gµν − vµvν)Dν)

Λ = MB − mb ,

µ2
π = −〈B|b̄(iD⊥)2b|B〉 ,

µ2
G = 〈B|b̄(iDµ

⊥)(iDν
⊥)σµνb|B〉 ,

ρ3
D = 〈B|b̄(iD⊥µ)(ivD)(iDν

⊥)b|B〉 ,

ρ3
LS = 〈B|b̄(iDµ

⊥)(ivD)(iDν
⊥)σµνb|B〉. (18)

These parameters still depend on the heavy quark mass. Some-

times the infinite mass limits of these parameters Λ → ΛHQET,

µ2
π → −λ1, µ2

G → 3λ2, ρ3
D → ρ1 and ρ3

LS → 3ρ2, are used in-

stead. The hadronic parameters of the orders 1/m4
b and 1/m5

b

have been defined and estimated in Ref. 42. The five hadronic

parameters si of the order 1/m4
b can be found in Ref. 40. These

terms have not yet been included in the fits.

The rates and the spectra depend strongly on mb (or equiv-

alently on Λ). This makes the discussion of renormalization

issues mandatory, since the size of QCD corrections is strongly

correlated with the definitions used for the quark masses. For

example, it is well known that using the pole mass definition

for heavy quark masses leads to a perturbative series for the

decay rates that does not converge very well, making a precision

determination of |Vcb| in such a scheme impossible.

This motivates the use of “short-distance” mass definitions,

such as the kinetic scheme [16] or the 1S scheme [54]. Both

schemes have been applied to semileptonic b → c transitions

and yield comparable results and uncertainties. The 1S scheme

eliminates the b quark pole mass by relating it to the pertur-

bative expression for the mass of the 1S state of the Υ system.

The physical mass of the Υ(1S) contains non-perturbative

contributions, which have been estimated in Ref. 55. These

non-perturbative contributions are small; nevertheless, the best

determination of the b quark mass in the 1S scheme is obtained

from sum rules for e+e− → bb̄ [56]. Alternatively one may use

a short-distance mass definition such as the MS mass, mMS
b (mb).

However, it has been argued that the scale mb is unnaturally

high for B decays, while for smaller scales µ ∼ 1 GeV mMS
b (µ)

is under poor control. For this reason the so-called “kinetic

mass” mkin
b (µ), has been proposed. It is the mass entering

the non-relativistic expression for the kinetic energy of a heavy

quark, and is defined using heavy-quark sum rules [16].

Determination of HQE Parameters and |Vcb|

Several experiments have measured moments in B̄ → Xcℓν̄ℓ

decays [57–65] as a function of the minimum lepton momentum.

The measurements of the moments of the electron energy

spectrum (0th-3rd) and of the squared hadronic mass spectrum

(0th-2nd) have statistical uncertainties that are roughly equal to

their systematic uncertainties. The sets of moments measured

within each experiment have strong correlations; their use in

a global fit requires fully specified statistical and systematic

covariance matrices. Measurements of photon energy moments

(0th-2nd) in B → Xsγ decays [66–70] as a function of the

minimum accepted photon energy are also used in some fits; the

dominant uncertainties on these measurements are statistical.

Global fits to the full set of moments [65,67,71–76] have been

performed in the 1S and kinetic schemes. The semileptonic

moments alone determine a linear combination of mb and mc

very accurately but leave the orthogonal combination poorly

determined [77]; additional input is required to allow a precise

determination of mb. This additional information can come

from the radiative B → Xsγ moments (with the caveat that

the OPE for b → sγ breaks down beyond leading order in

ΛQCD/mb), which provide complementary information on mb

and µ2
π, or from precise determinations of the charm quark

mass [78,79]. The values obtained in the kinetic scheme

fits [73,75,76] with these two constraints are consistent. Based

on the charm quark mass constraint mMS
c (3 GeV) = 0.986 ±

0.013 GeV [80], a recent analysis [76] obtains

|Vcb| = (42.21 ± 0.78) × 10−3 (19)

mkin
b = 4.553 ± 0.020 GeV (20)

µ2
π(kin) = 0.465 ± 0.068 GeV2, (21)

where the errors include experimental and theoretical uncer-

tainties.

Theoretical uncertainties are estimated and included in per-

forming the fits. Similar values for the parameters are obtained

with a variety of assumptions about the theoretical uncertain-

ties and their correlations. The χ2/dof is substantially below

unity in all fits, suggesting that the theoretical uncertainties

may be overestimated. While one could obtain a satisfactory

fit with smaller uncertainties, this would result in unrealistically

small uncertainties on the extracted HQE parameters, which
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are used as input to other calculations (e.g. the determination

of |Vub|). In any case, the low χ2 shows no evidence for duality

violations at a significant level. The mass in the MS scheme

corresponding to Eq. (20) is mMS
b = 4.18 ± 0.04 GeV, which

can be compared with a value obtained using relativistic sum

rules [80], mMS
b = 4.163±0.016 GeV, and provides a non-trivial

cross-check.

A fit to the measured moments in the 1S scheme [74,5] gives

|Vcb| = (41.98 ± 0.45) × 10−3 (22)

m1S
b = 4.691 ± 0.037 GeV (23)

λ1(1S) = −0.362 ± 0.067 GeV2, (24)

This fit uses semileptonic and radiative moments and constrains

the chromomagnetic operator using the B∗-B and D∗-D mass

differences, but does not include the constraint on mc nor the

full NNLO corrections.

The fits in the two renormalization schemes give consistent

results for |Vcb| and, after translation to a common renor-

malization scheme, for mb and µ2
π. We take the fit in the

kinetic scheme [76], which includes higher-order corrections

and results in a more conservative uncertainty, as the inclusive

determination of |Vcb|:

|Vcb| = (42.2 ± 0.8) × 10−3 (inclusive). (25)

The precision of the global fit results can be further im-

proved by calculating higher-order perturbative corrections to

the coefficients of the HQE parameters, in particular the still-

missing αsµ
2
G corrections, which are presently only known for

B → Xsγ [81]. The inclusion of still-higher-order moments, if

they can be measured with the required precision, may improve

the sensitivity of the fits to higher-order terms in the HQE.

DETERMINATION OF |Vub|

Summary: The best determinations of |Vub| are from B̄ →
πℓν̄ℓ decays, where combined fits to theory and experimental

data as a function of q2 provide a precision below 5%; the

uncertainties from experiment and theory are comparable in

size. Determinations based on inclusive semileptonic decays

are done based on different observables and using different

calculational ansatzes. All determinations are consistent and

provide a precision of about 6%, with comparable contributions

to the uncertainty from experiment and theory.

The values obtained from inclusive and exclusive determi-

nations are

|Vub| = (4.49 ± 0.16 + 0.16
− 0.18) × 10−3 (inclusive), (26)

|Vub| = (3.72 ± 0.19) × 10−3 (exclusive). (27)

The two determinations are independent, and the dominant

uncertainties are on multiplicative factors. To combine these

values, the inclusive and exclusive values are weighted by their

relative errors and the uncertainties are treated as normally

distributed. The resulting average has p(χ2) = 1.0%, so we

scale the error by
√

χ2/1 = 2.6 to find

|Vub| = (4.09 ± 0.39) × 10−3 (average). (28)

Given the poor consistency between the two determinations,

this average should be treated with caution.

|Vub| from inclusive decays

The theoretical description of inclusive B̄ → Xuℓν̄ℓ decays is

based on the Heavy Quark Expansion, as for B̄ → Xcℓν̄ℓ decays,

and leads to a predicted total decay rate with uncertainties

below 5% [82,83]. Unfortunately, the total decay rate is

hard to measure due to the large background from CKM-

favored B̄ → Xcℓν̄ℓ transitions. Technically, the calculation

of the partial decay rate in regions of phase space where

B̄ → Xcℓν̄ℓ decays are suppressed requires the introduction of

a non-perturbative distribution function, the “shape function”

(SF) [84,85], whose form is unknown. The shape function

becomes important when the light-cone momentum component

P+ ≡ EX − |PX | is not large compared to ΛQCD, as is the

case near the endpoint of the B̄ → Xuℓν̄ℓ lepton spectrum.

Partial rates for B̄ → Xuℓν̄ℓ are predicted and measured in a

variety of kinematic regions that differ in their sensitivity to

shape-function effects.

At leading order a single shape function appears, which is

universal for all heavy-to-light transitions [84,85] and can be

measured in B̄ → Xsγ decays. At subleading order in 1/mb,

several shape functions appear [86]. Thus, prescriptions that

relate directly the partial rates for B̄ → Xsγ and B̄ → Xuℓν̄ℓ

decays [87–90] are limited to leading order in 1/mb.

Existing approaches have tended to use parameterizations

of the leading SF that respect constraints on the normalization

and on the first and second moments, which are given in terms

of the HQE parameters Λ = MB−mb and µ2
π, respectively. The

relations between SF moments and HQE parameters are known

to second order in αs [91]. As a result, measurements of

HQE parameters from global fits to B̄ → Xcℓν̄ℓ and B̄ → Xsγ

moments can be used to constrain the SF moments, as well as

to provide accurate values of mb and other parameters for use

in determining |Vub|. The authors of Ref. 92 propose the use

of a set of orthogonal basis functions to approximate the SF

and thereby include the known short-distance contributions and

renormalization properties of the SF; this would allow a global

fit of all inclusive B meson decay data.

The calculations used for the fits performed by HFAG are

documented in Ref. 93 (BLNP), Ref. 94 (GGOU), Ref. 95

(DGE) and Ref. 96 (BLL).

The triple diffential rate in the variables

Pl = MB − 2El, P− = EX + | ~PX |, P+ = EX − |~PX | (29)

is
d3Γ

dP+ dP− dPl
=

G2
F |Vub|2
16π2

(MB − P+) (30)

{

(P− − Pl)(MB − P− + Pl − P+)F1

+(MB − P−)(P− − P+)F2 + (P− − Pl)(Pl − P+)F3

}

.
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The “structure functions” Fi can be calculated using factoriza-

tion theorems that have been proven to subleading order in the

1/mb expansion.

The BLNP [93] calculation uses these factorization theorems

to write the Fi in terms of perturbatively calculable hard

coefficients H and jet functions J , which are convolved with the

(soft) light-cone distribution functions S, the shape functions of

the B meson. The calculation of O(α2
S) contributions [97,98] is

not yet complete and is not included in the |Vub| determination

given below.

The leading order term in the 1/mb expansion of the Fi

contains a single non-perturbative function and is calculated

to subleading order in αs, while at subleading order in the

1/mb expansion there are several independent non-perturbative

functions that have been calculated only at tree level in the αs

expansion.

A distinct approach (GGOU) [94] uses a hard, Wilsonian

cut-off that matches the definition of the kinetic mass. The

non-perturbative input is similar to what is used in BLNP, but

the shape functions are defined differently. In particular, they

are defined at finite mb and depend on the light-cone component

k+ of the b quark momentum and on the momentum transfer

q2 to the leptons. These functions include subleading effects to

all orders; as a result they are non-universal, with one shape

function corresponding to each structure function in Eq. (30).

Their k+ moments can be computed in the OPE and related to

observables and to the shape functions defined in Ref. 93.

Going to subleading order in αs requires the definition

of a renormalization scheme for the HQE parameters and for

the SF. The relation between the moments of the SF and

the forward matrix elements of local operators is plagued by

ultraviolet problems and requires additional renormalization.

A scheme for improving this behavior was suggested in Refs. 93

and 99, which introduce a definition of the quark mass (the

so-called shape-function scheme) based on the first moment of

the measured B̄ → Xsγ photon energy spectrum. Likewise,

the HQE parameters can be defined from measured moments of

spectra, corresponding to moments of the SF.

One can attempt to calculate the SF by using additional

assumptions. One approach (DGE) is the so-called “dressed

gluon exponentiation” [95], where the perturbative result

is continued into the infrared regime using the renormalon

structure obtained in the large β0 limit, where β0 has been

defined following Eq. (17).

In order to reduce sensitivity to SF uncertainties, measure-

ments that use a combination of cuts on the leptonic momentum

transfer q2 and the hadronic invariant mass mX , as suggested in

Ref. 96, have been made. In general, efforts to extend the ex-

perimental measurements of B̄ → Xuℓν̄ℓ into charm-dominated

regions (in order to reduce SF uncertainties) lead to an increased

experimental sensitivity to the modeling of B̄ → Xuℓν̄ℓ decays,

resulting in measured partial rates with an undesirable level of

model dependence. The measurements quoted below have used

a variety of functional forms to parameterize the leading SF; in

no case does this lead to more than a 2% uncertainty on |Vub|.
Weak Annihilation [100,101,94] (WA) can in principle con-

tribute significantly in the high-q2 region of B̄ → Xuℓν̄ℓ decays.

Estimates based on semileptonic Ds decays [101,53,96] lead to a

∼ 2% uncertainty on the total B̄ → Xuℓν̄ℓ rate from the Υ(4S).

The q2 spectrum of the WA contribution is not well known,

but from the OPE it is expected to contribute predominantly

at high q2. More recent investigations [53,102,103] indicate

that WA is a small effect, but may become a significant source

of uncertainty for |Vub| measurements that accept only a small

fraction of the full B̄ → Xuℓν̄ℓ phase space.

Measurements

We summarize the measurements used in the determination

of |Vub| below. Given the improved precision and more rigorous

theoretical interpretation of the recent measurements, earlier

determinations [104–107] will not be considered in this review.

Inclusive electron momentum measurements [108–110] re-

construct a single charged electron to determine a partial decay

rate for B̄ → Xuℓν̄ℓ near the kinematic endpoint. This results

in a selection efficiency of order 50% and only modest sensitivity

to the modeling of detector response. The inclusive electron

momentum spectrum from BB̄ events, after subtraction of

the e+e− → qq̄ continuum background, is fitted to a model

B̄ → Xuℓν̄ℓ spectrum and several components (Dℓν̄ℓ, D∗ℓν̄ℓ,

...) of the B̄ → Xcℓν̄ℓ background; the dominant uncertainties

are related to this subtraction and modelling. The decay rate

can be cleanly extracted for Ee > 2.3 GeV, but this is deep in

the SF region, where theoretical uncertainties are large. Mea-

surements with Ee > 2.0 GeV have a low (< 1/10) but usable

signal-to-background (S/B) ratio. The resulting |Vub| values for

various Ee cuts are given in Table 1.

An untagged “neutrino reconstruction” measurement [111]

from BABAR uses a combination [112] of a high-energy electron

with a measurement of the missing momentum vector. This

allows S/B∼ 0.7 for Ee > 2.0 GeV and a ≈ 5% selection

efficiency, but at the cost of a smaller accepted phase space

for B̄ → Xuℓν̄ℓ decays and uncertainties associated with the

determination of the missing momentum. The corresponding

values for |Vub| are given in Table 1.

The large samples accumulated at the B factories allow

studies in which one B meson is fully reconstructed and the

recoiling B decays semileptonically [113–117]. The experi-

ments can fully reconstruct a “tag” B candidate in about 0.5%

(0.3%) of B+B− (B0B̄0) events. An electron or muon with

center-of-mass momentum above 1.0 GeV is required amongst

the charged tracks not assigned to the tag B and the remain-

ing particles are assigned to the Xu system. The full set of

kinematic properties (Eℓ, mX , q2, etc.) are available for study-

ing the semileptonically decaying B, making possible selections

that accept up to 90% of the full B̄ → Xuℓν̄ℓ rate. Despite

requirements (e.g. on the square of the missing mass) aimed at

rejecting events with additional missing particles, undetected
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or mis-measured particles from B̄ → Xcℓν̄ℓ decay (e.g., K0

L

and additional neutrinos) remain an important source of un-

certainty. Measurements with the largest kinematic acceptance

(i.e. Eℓ > 1 GeV) lead to the smallest overall uncertainties on

|Vub|.
BABAR [113] and Belle [114,115] have measured partial

rates with cuts on mX , mX and q2, P+ and Eℓ using the

recoil method. In each case the experimental systematics have

significant contributions from the modeling of B̄ → Xuℓν̄ℓ and

B̄ → Xcℓν̄ℓ decays and from the detector response to charged

particles, photons and neutral hadrons. The corresponding

|Vub| values are given in Table 1.

|Vub| from inclusive partial rates

The measured partial rates and theoretical calculations from

BLNP, GGOU and DGE described previously are used to deter-

mine |Vub| from all measured partial B̄ → Xuℓν̄ℓ rates [6]; se-

lected values are given in Table 1. The correlations amongst the

multiple BABAR recoil-based measurements [113] are fully ac-

counted for in the average. The statistical correlations amongst

the other measurements used in the average are tiny (due to

small overlaps among signal events and large differences in

S/B ratios) and have been ignored. Correlated systematic and

theoretical errors are taken into account, both within an ex-

periment and between experiments. As an illustration of the

relative sizes of the uncertainties entering |Vub| we give the

error breakdown for the GGOU average: statistical—1.9%;

experimental—1.7%; B̄ → Xcℓν̄ℓ modeling—1.3%; B̄ → Xuℓν̄ℓ

modeling—1.9%; HQE parameters (mb) —1.6%; higher-order

corrections—1.5%; q2 modeling—1.4%; Weak Annihilation—
+0.0
−2.0%; SF parameterization—0.2%.

The averages quoted here are based on the following mb

values: mSF
b = 4.569 ± 0.029 GeV for BLNP, mkin

b = 4.541 ±
0.023 GeV for GGOU, and mMS

b = 4.177±0.043 GeV for DGE.

The mkin
b value is determined in a global fit to moments in the

kinetic scheme; this value is translated into mSF
b and mMS

b at

fixed order in αs. These input values are based on an earlier

determination of mkin
b than is quoted in equation Eq. (20); using

the latest value would decrease the |Vub| averages by 1-2%.

The theoretical calculations produce very similar results

for |Vub|; the standard deviation of the |Vub| values for the

Ee > 2.1 GeV rate is 4.9%, for the mX – q2 rate is 0.6%,

and for the Ee > 1 GeV rate is 1.6%. The |Vub| values do

not show a marked trend versus the kinematic acceptance,

fu, for B̄ → Xuℓν̄ℓ decays. The p-values of the averages are

in the range 55-62%, indicating that the ratios of calculated

partial widths in the different phase space regions are in good

agreement with ratios of measured partial branching fractions.

Hadronization uncertainties also impact the |Vub| determi-

nation. The theoretical expressions are valid at the parton level

and do not incorporate any resonant structure (e.g. B̄ → πℓν̄ℓ);

this must be added to the simulated B̄ → Xuℓν̄ℓ event samples,

since the detailed final state multiplicity and structure impacts

the estimates of experimental acceptance and efficiency. The

Ref. cut (GeV) BLNP GGOU DGE

[108] Ee > 2.1 428 ± 50 + 31
− 36 421 ± 49 + 23

− 33 390 ± 45 + 26
− 28

[111] Ee – q2 453 ± 22 + 33
− 38 not available 417 ± 20 + 28

− 29

[110] Ee > 2.0 454 ± 26 + 27
− 33 450 ± 26 + 18

− 25 434 ± 25 + 23
− 25

[109] Ee > 1.9 493 ± 46 + 27
− 29 493 ± 46 + 17

− 22 485 ± 45 + 21
− 25

[113] q2>8
mX<1.7 430 ± 23 + 26

− 28 432 ± 23 + 27
− 30 427 ± 22 + 20

− 20

[113] P+ < 0.66 415 ± 25 + 28
− 27 424 ± 26 + 32

− 32 424 ± 26 + 37
− 32

[113] mX < 1.55 430 ± 20 + 28
− 27 429 ± 20 + 21

− 22 453 ± 21 + 24
− 22

[113] Eℓ > 1 432 ± 24 + 19
− 21 442 ± 24 + 9

− 11 446 ± 24 + 13
− 13

[115] Eℓ > 1 449 ± 27 + 20
− 22 460 ± 27 + 10

− 11 463 ± 28 + 13
− 13

HFAG average 445 ± 16 + 21
− 22 451 ± 16 + 12

− 15 452 ± 16 + 15
− 16

Table 1: |Vub| (in units of 10−5) from inclu-
sive B̄ → Xuℓν̄ℓ measurements. The first un-
certainty on |Vub| is experimental, while the sec-
ond includes both theoretical and HQE parame-
ter uncertainties. The values are listed in order
of increasing kinematic acceptance fu (0.19 to
0.90); those below the horizontal bar are based
on recoil methods.

experiments have adopted procedures to input resonant struc-

ture while preserving the appropriate behavior in the kinematic

variables (q2, Eℓ, mX) averaged over the sample, but these pre-

scriptions are ad hoc. The resulting uncertainties have been

estimated to be ∼ 1-2% on |Vub|.
All calculations yield compatible |Vub| values and similar

error estimates. We take the arithmetic mean of the values and

errors to find

|Vub| = (4.49 ± 0.16exp
+0.16
−0.18 theo) × 10−3 (inclusive). (31)

The BLL [96] calculation has been used along with mea-

surements [113,114,118] with cuts on mX and q2 to determine

|Vub|. Using m1S
b = 4.704 ± 0.029 GeV yields a |Vub| value of

(4.62 ± 0.20 ± 0.29) × 10−3, which is somewhat larger than the

corresponding values listed in Table 1.

|Vub| from exclusive decays

Exclusive charmless semileptonic decays offer a comple-

mentary means of determining |Vub|. For the experiments, the

specification of the final state provides better background re-

jection, but the branching fraction to a specific final state is

typically only a few percent of that for inclusive decays. For

theory, the calculation of the form factors for B̄ → Xuℓν̄ℓ de-

cays is challenging, but brings in a different set of uncertainties

from those encountered in inclusive decays. In this review we

focus on B̄ → πℓν̄ℓ, as it is the most promising mode for

both experiment and theory. Measurements of other exclusive

B̄ → Xuℓν̄ℓ states can be found in Refs. [119–126].

B̄ → πℓν̄ℓ form factor calculations

The relevant form factors for the decay B̄ → πℓν̄ℓ are

usually defined as

〈π(pπ)|V µ|B(pB)〉 = (32)

f+(q2)

[

pµ
B + pµ

π − m2
B − m2

π

q2
qµ

]

+ f0(q
2)

m2
B − m2

π

q2
qµ
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in terms of which the rate becomes (in the limit mℓ → 0)

dΓ

dq2
=

G2
F |Vub|2
24π3

|pπ|3|f+(q2)|2, (33)

where pπ is the pion momentum in the B meson rest frame.

Currently available non-perturbative methods for the cal-

culation of the form factors include lattice QCD (LQCD) and

light-cone sum rules (LCSR). The two methods are complemen-

tary in phase space, since the lattice calculation is restricted

to the kinematical range of high momentum transfer q2 to

the leptons, while light-cone sum rules provide information

near q2 = 0. Interpolations between these two regions can be

constrained by unitarity and analyticity.

Unquenched simulations, i.e. where quark loop effects are

fully incorporated, are now standard, and have been performed

by the Fermilab/MILC [127], the HPQCD [128] and the

RBC/UKQCD [129] collaborations. The calculations differ in

the way the b quark is simulated, with HPQCD using nonrel-

ativistic QCD, and Fermilab/MILC and RBC/UKQCD using

relativistic b quarks with the Fermilab and Columbia heavy-

quark forumulations; they agree within the quoted errors. The

result from Ref. 127 represents a significant improvement in pre-

cision. The form factor f+ evaluated at q2 = 20 GeV2 has an

estimated uncertainty of 3.4%, where the leading contribution

is due to the chiral-continuum extrapolation fit, which includes

statistical and heavy-quark discretization errors. However, the

lattice simulations are restricted to the region of large q2, i.e.

the region q2
max > q2 >∼ 15 GeV2.

The extrapolation to small values of q2 is performed using

guidance from analyticity and unitarity. Making use of the

heavy-quark limit, stringent constraints on the shape of the

form factor can be derived [130], and the conformal mapping

of the kinematical variables onto the complex unit disc yields a

rapidly converging series in the variable

z =

√
t+ − t− −

√

t+ − q2

√
t+ − t− +

√

t+ − q2

where t± = (MB±mπ)2. The use of lattice data in combination

with experimental measurements of the differential decay rate

provides a stringent constraint on the shape of the form factor

in addition to precise determination of |Vub| [131].

Another established non-perturbative approach to obtain

the form factors is through Light-Cone QCD Sum Rules

(LCSR). The sum-rule approach provides an estimate for the

product fBf+(q2), valid in the region 0 < q2 <∼ 12 GeV2. The

determination of f+(q2) itself requires knowledge of the decay

constant fB, which is usually obtained by replacing fB by

its two-point QCD (SVZ) sum rule [132] in terms of pertur-

bative and condensate contributions. The advantage of this

procedure is the approximate cancellation of various theoretical

uncertainties in the ratio (fBf+)/(fB).

The LCSR for fBf+ is based on the light-cone OPE of the

relevant vacuum-to-pion correlation function, calculated in full

QCD at finite b-quark mass. The resulting expressions actually

Table 2: Total and partial branching frac-
tions for B̄0 → π+ℓ−ν̄ℓ. B-tagged analyses
are indicated (SL for semileptonic, Had for

hadronic). The first uncertainty listed is from
statistics, the second from systematics. Mea-
surements of B(B− → π0ℓ−ν̄ℓ) have been multi-
plied by a factor 2τB0/τB+ to obtain the values
below.

B×104 B(q2 > 16) × 104

CLEO π+, π0 [124] 1.38 ± 0.15 ± 0.11 0.41 ± 0.08 ± 0.04
BABAR π+, π0 [125] 1.41 ± 0.05 ± 0.08 0.32 ± 0.02 ± 0.03
BABAR π+ [126] 1.44 ± 0.04 ± 0.06 0.37 ± 0.02 ± 0.02
Belle π+, π0 [139] 1.48 ± 0.04 ± 0.07 0.40 ± 0.02 ± 0.02

Belle SL π+ [140] 1.41 ± 0.19 ± 0.15 0.37 ± 0.10 ± 0.04
Belle SL π0 [140] 1.41 ± 0.26 ± 0.15 0.37 ± 0.15 ± 0.04
Belle Had π+ [119] 1.49 ± 0.09 ± 0.07 0.45 ± 0.05 ± 0.02
Belle Had π0 [119] 1.48 ± 0.15 ± 0.08 0.36 ± 0.07 ± 0.02
BABAR SL π+ [141] 1.38 ± 0.21 ± 0.08 0.46 ± 0.13 ± 0.03
BABAR SL π0 [141] 1.78 ± 0.28 ± 0.15 0.44 ± 0.17 ± 0.06
BABAR Had π+ [142] 1.07 ± 0.27 ± 0.19 0.65 ± 0.20 ± 0.13
BABAR Had π0 [142] 1.52 ± 0.41 ± 0.30 0.48 ± 0.22 ± 0.12

Average 1.45 ± 0.02 ± 0.04 0.38 ± 0.01 ± 0.01

comprise a triple expansion: in the twist t of the operators

near the light-cone, in αs, and in the deviation of the pion

distribution amplitudes from their asymptotic form, which is

fixed from conformal symmetry. The sources of uncertainties

in the LCSR calculation are discussed in Refs. 133 and 134;

currently the total uncertainty slightly larger than 10% on |Vub|
is obtained from a LCSR calculation of

∆ζ(0, q2
max) =

G2
F

24π3

q2
max
∫

0

dq2 p3
π|f+(q2)|2

=
1

|Vub|2τB0

q2
max
∫

0

dq2 dB(B → πℓν)

dq2
(34)

which gives [135]

∆ζ(0, 12 GeV2) = 4.59+1.00
−0.85 ps−1. (35)

The recent calculation of two loop contributions to the LCQCD

sum rules [136] and the estimation of statistical correla-

tions [137] results in only small changes to the central value and

uncertainty.

B̄ → πℓν̄ℓ measurements

The B̄ → πℓν̄ℓ measurements fall into two broad classes:

untagged, in which case the reconstruction of the missing mo-

mentum of the event serves as an estimator for the unseen

neutrino, and tagged, in which the second B meson in the

event is fully reconstructed in either a hadronic or semileptonic

decay mode. The tagged measurements have high and uniform

acceptance and S/B as high as 10, but low statistics. The un-

tagged measurements have somewhat higher background levels

(S/B < 1) and make slightly more restrictive kinematic cuts,

but provide better precision on the q2 dependence of the form

factor.
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CLEO has analyzed B̄ → πℓν̄ℓ and B̄ → ρℓν̄ℓ using an

untagged analysis [124]. Similar analyses have been done at

BABAR [125,126] and Belle [139]. The leading systematic

uncertainties in the untagged B̄ → πℓν̄ℓ analyses are associ-

ated with modeling the missing momentum reconstruction, with

backgrounds from B̄ → Xuℓν̄ℓ decays and e+e− → qq̄ contin-

uum events, and with varying the form factor for the B̄ → ρℓν̄ℓ

decay. The values obtained for the full and partial branching

fractions [6] are listed in Table 2 above the horizontal line.

These BABAR and Belle measurements provide the differential

B̄ → πℓν̄ℓ rate versus q2, shown in Fig. 1, which is used in the

determination of |Vub| discussed below.

Analyses [140,141] based on reconstructing a B in the

D̄(∗)ℓ+νℓ decay mode and looking for a B̄ → πℓν̄ℓ or B̄ → ρℓν̄ℓ

decay amongst the remaining particles in the event make use of

the fact that the B and B̄ are back-to-back in the Υ(4S) frame

to construct a discriminant variable that provides a signal-to-

noise ratio above unity for all q2 bins. A related technique was

discussed in Ref. 143. BABAR [141] and Belle [119] have also

used their samples of B mesons reconstructed in hadronic decay

modes to measure exclusive charmless semileptonic decays,

resulting in very clean but small samples. The corresponding

full and partial branching fractions are given in Table 2. The

averages take account of correlations and common systematic

uncertainties, and have p(χ2) > 0.5 in each case.
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Figure 1: The differential B̄ → πℓν̄ℓ branch-
ing fraction versus q2 for untagged measure-
ments along with a combined fit to lattice cal-
culations from Ref. 127.

|Vub| can be obtained from the average B̄ → πℓν̄ℓ branching

fraction and the measured q2 spectrum. Fits to the q2 spectrum

using a theoretically motivated parameterization (e.g. ”BCL”

from Ref. 138) remove most of the model dependence from

theoretical uncertainties in the shape of the spectrum. The

most sensitive method for determining |Vub| from B̄ → πℓν̄ℓ

decays employs a simultaneous fit [6,127,144] to measured

experimental partial rates and lattice points versus q2 (or z) to

determine |Vub| and the first few coefficients of the expansion

of the form factor in z. The most precise determination at

present is from Ref. 127, which uses as experimental input the

measurements in Refs. [119,125,126,139], and finds |Vub| =

(3.72±0.16 )×10−3. This fit, shown in Fig. 1, has p(χ2) = 2%.

We scale the quoted uncertainty by
√

χ2/d.o.f. = 1.2 to find

|Vub| = (3.72 ± 0.19 )× 10−3 (exclusive). (36)

We note that fits that exclude the data of Ref. 125 have larger

p(χ2) and result in higher |Vub| values between 3.8 × 10−3

and 4.0 × 10−3. The contributions to the uncertainty from the

lattice calculation and from the experimental measurements are

comparable.

An alternative approach using the average [6] of partial

branching fractions in the q2 < 12 GeV2 region, (0.81 ± 0.02 ±
0.02)× 10−4, along with an LCSR calculation of the theoretical

rate [135], gives

|Vub| = (3.41±0.06exp
+0.37
−0.32 theo)×10−3 (LCSR, q2 < 12 GeV2).

(37)

SEMILEPTONIC B-BARYON DECAYS AND DE-

TERMINATION OF |Vub|/|Vcb|

Summary: A significant sample of Λ0
b baryons is avail-

able at the LHCb experiment, and methods have been devel-

oped to study their semileptonic decays. Both Λ0
b → pµν̄ and

Λ0
b → Λ+

c µν̄ decays have been measured at LHCb, and the

ratio of branching fractions to these two decay modes is used to

determine the ratio |Vub/Vcb|. Averaging the LHCb determina-

tion with those obtained from inclusive and exclusive B meson

decays, we find

|Vub|/|Vcb| = 0.096 ± 0.007 (average)

where the uncertainty has been scaled by a factor
√

χ2/ndf =

2.0. In light of the poor consistency of the three determinations

considered, the average should be treated with caution.

Λ0
b → Λ+

c µν̄ and Λ0
b → pµν̄

The Λ0
b → Λ+

c and Λ0
b → p semileptonic transitions are

described in terms of six form factors each. The three form

factors corresponding to the vector current can be defined as

[145]

〈F (p′, s′)|q̄ γµ b|Λ0
b(p, s)〉 = ūF (p′, s′)

{

f0(q
2) (MΛ0

b
− mF )

qµ

q2

+f+(q2)
MΛ0

b
+ mF

s+

(

pµ + p′µ − qµ

q2
(M2

Λ0
b

− m2
F )

)

+f⊥(q2)

(

γµ − 2mF

s+
pµ −

2MΛ0
b

s+
p′µ

)}

uΛ0
b
(p, s) , (38)

where F = p or Λ+
c and where we define s± = (MΛ0

b
±

mF )2 − q2. At vanishing momentum transfer, q2 → 0, the

kinematic constraint f0(0) = f+(0) holds. The form factors

are defined in such a way that they correspond to time-like
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(scalar), longitudinal and transverse polarization with respect

to the momentum-transfer qµ for f0, f+ and f⊥, respectively.

Furthermore we have chosen the normalization in such a way

that for f0, f+, f⊥ → 1 one recovers the expression for point-like

baryons.

Likewise, the expression for the axial-vector current is

〈F (p′, s′)|q̄ γµγ5 b|Λ0
b(p, s)〉 = − ūF (p′, s′)γ5

{

g0(q
2) (MΛ0

b
+ mF )

qµ

q2

+g+(q2)
MΛ0

b
− mF

s−

(

pµ + p′µ − qµ

q2
(M2

Λ0
b

− m2
F )

)

+g⊥(q2)

(

γµ +
2mF

s−
pµ −

2MΛ0
b

s−
p′µ

)}

uΛ0
b
(p, s) , (39)

with the kinematic constraint g0(0) = g+(0) at q2 → 0.

The form factors have been discussed in the heavy quark

limit; assuming both b and c as heavy, all the form factors fi

and gi turn out to be identical [145]

f0 = f+ = f⊥ = g0 = g+ = g⊥ = ξB (40)

and equal to the Isgur Wise function ξB for baryons. In

the limit of a light baryon in the final state, the number of

independent form factors is still reduced to two through the

heavy quark symmetries of the Λ0
b . It should be noted that the

Λ0
b → (p/Λ+

c )µν decay rates peak at high q2, which facilitates

both lattice QCD calculations and experimental measurements.

The form factors for Λ0
b decays have been studied on the

lattice [146]. Based on these results the differential rates for

both Λ0
b → Λ+

c µν̄ as well as for Λ0
b → pµν̄ can be predicted

in the full phase space. In particular, for the experimentally

interesting region they find the ratio of decay rates to be [146]

B(Λ0
b → pµν̄)q2>15GeV2

B(Λ0
b → Λ+

c µν̄)q2>7GeV2

= (1.471 ± 0.095± 0.109)

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2

(41)

where the first uncertainty is statistical and the second, system-

atic.

Measurements at LHCb

The LHCb experiment has measured the branching fractions

of the semileptonic decays Λ0
b → Λ+

c µν̄ and Λ0
b → pµν̄, from

which they determine |Vub|/|Vcb|. This is the first such determi-

nation at a hadron collider, the first to use a b baryon decay, and

the first observation of Λ0
b → pµν̄. Excellent vertex resolution

allows the pµ and production vertices to be separated, which

permits the calculation of the transverse momentum p⊥ of the

pµ pair relative to the Λ0
b flight direction. The corrected mass,

mcorr =
√

p2
⊥ + m2

pµ + p⊥, peaks at the Λ0
b mass for signal

decays and provides good discrimination against background

combinations. The topologically similar decay Λ0
b → Λ+

c µν̄ is

also measured, which eliminates the need to know the pro-

duction cross-section or absolute efficiencies. Using vertex and

Λ0
b mass constraints, q2 can be determined up to a two-fold

ambiguity. The LHCb analysis requires both solutions to be in

the high q2 region to minimise contamination from the low q2

region. They find [147]

B(Λ0
b → pµν̄)q2>15GeV2

B(Λ0
b → Λ+

c µν̄)q2>7GeV2

= (1.00± 0.04± 0.08)× 10−2 . (42)

The largest systematic uncertainty is from knowledge of the

branching fraction B(Λ+
c → pK−π+); uncertainties due to

trigger, tracking and the Λ+
c selection efficiency are each about

3%.

The ratio |Vub|/|Vcb|

The ratio of matrix elements, |Vub|/|Vcb|, is often required

when testing the compatibility of a set of measurements with

theoretical predictions. It can be determined from the ratio of

branching fractions measured by the LHCb experiment, quoted

in the previous section. It can also be calculated based on the

|Vub| and |Vcb| values quoted earlier in this review.

As previously noted, the decay rate for Λ0
b → pµν̄ peaks

at high q2 where the calculation of the associated form factors

using lattice QCD is under good control. Using the measured

ratio from Eq. (42) along with the calculations of Ref. 146

results in

|Vub|/|Vcb| = 0.083 ± 0.006 (LHCb). (43)

Given the similarities in the theoretical frameworks used for

charmed and charmless decays, we choose to quote the ratio

|Vub|/|Vcb| separately for inclusive and exclusive decays:

|Vub|/|Vcb| = 0.107 ± 0.006 (inclusive), (44)

|Vub|/|Vcb| = 0.095 ± 0.005 (exclusive). (45)

We average these values, along with the result in Eq. (43),

weighting by relative errors. The average has p(χ2) = 1.8%, so

we scale the uncertainty by a factor 2.0 to find

|Vub|/|Vcb| = 0.096 ± 0.007 (average). (46)

SEMITAUONIC DECAYS

Summary: Semileptonic decays to third-generation leptons

provide sensitivity to non-Standard Model amplitudes, such as

from a charged Higgs boson [148]. The ratios of branch-

ing fractions of semileptonic decays involving tau leptons

to those involving e/µ, RD(∗) ≡ B(B̄ → D(∗)τ ν̄τ )/B(B̄ →
D(∗)ℓν̄ℓ), are predicted with good precision in the Standard

Model [32,33,149,150]. We use the most precise values from

lattice QCD for RD [32], and for RD∗ we use a calcula-

tion based on the heavy quark expansion, combined with the

measurements for B̄ → D∗ℓν̄ℓ [150]

RSM
D = 0.300 ± 0.008 ,

RSM
D∗ = 0.252 ± 0.003 . (47)

Measurements [151–157] of these ratios yield higher values;

averaging B-tagged measurements of RD and RD∗ at the

Υ(4S) and the LHCb measurement of RD yields

Rmeas
D = 0.391 ± 0.050

Rmeas
D∗ = 0.322 ± 0.022 (48)
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These values exceed Standard Model predictions by 1.7σ and

3.0σ, respectively. A variety of new physics models have been

proposed [148,156–160] to explain this excess. The potential

impact of any new physics in this decay mode on the |Vub| and

|Vcb| results given above is expected to be negligible.

Sensitivity of B̄ → D(∗)τ ν̄τ to additional amplitudes

In addition to the helicity amplitudes present for decays to

eν̄e and µν̄µ, decays proceeding through τ ν̄τ include a scalar

amplitude Hs. The differential decay rate is given by [161]

dΓ

dq2
=

G2
F |Vcb|2 |p∗

D(∗) |q2

96π3m2
B

(

1 − m2
τ

q2

)2

[

(|H+|2 + |H−|2 + |H0|2)
(

1 +
m2

τ

2q2

)

+
3m2

τ

2q2
|Hs|2

]

, (49)

where |p∗
D(∗)| is the 3-momentum of the D(∗) in the B̄ rest

frame and the helicity amplitudes H depend on the four-

momentum transfer q2. All four helicity amplitudes contribute

to B̄ → D∗τ ν̄τ , while only H0 and Hs contribute to B̄ → Dτν̄τ ;

as a result, new physics contributions tend to produce larger

effects in the latter mode.

The (semi)-leptonic B decays into a τ lepton provide a strin-

gent test of the two-Higgs doublet model of type II (2HDMII),

i.e. where the two Higgs doublets couple separately to up- and

down-type quarks. This is also of relevance for Supersymme-

try, since this corresponds to the Higgs sector of any commonly

used supersymmetric model. These models involve additional

charged scalar particles, which contribute at tree level to the

(semi)-leptonic B decays into a τ . The distinct feature of the

2HDMII is that the contributions of the charged scalars scale

as m2
τ/m2

H+, since the couplings to the charged Higgs particles

are proportional to the mass of the lepton. As a consequence,

one may expect visible effects in decays into a τ , but only small

effects for decays into e and µ.

As discussed in the next section, the 2HDMII does not

describe the observations any better than the Standard Model.

To achieve a better description one has to extend the analysis

to other models, where the scaling of the new contributions

with the lepton mass is different.

Measurement of RD(∗)

B̄ → D(∗)τ ν̄τ decays have been studied at the Υ(4S)

resonance and in pp collisions.

At the Υ(4S), the experimental signature consists of a D

or D∗ meson, an electron or muon (denoted here by ℓ) from

the decay τ → ℓντνℓ, a fully-reconstructed hadronic decay

of the second B meson in the event, and multiple missing

neutrinos. The signal decays are separated from B̄ → D(∗)ℓν̄ℓ

decays using the lepton momentum and the measured missing

mass squared; decays with only a single missing neutrino peak

sharply at zero in this variable, while the signal is spread out to

positive values. Background from B̄ → D∗∗ℓν̄ℓ decays with one

or more unreconstructed particles is harder to separate from

signal, as is background from B̄ → D(∗)Hc̄X (where Hc̄ is a

hadron containing a c̄ quark) decays. The leading sources of

systematic uncertainty are due to the limited size of simulation

samples used in constructing the PDFs, the composition of the

D∗∗ states, efficiency corrections, and cross-feed (swapping soft

particles between the signal and tag B).

The LHCb experiment has studied the decay B̄ → D∗+τ ν̄τ

with D∗+ → D0π+, D0 → K−π+ and τ → µντνµ in pp

collisions. Their analysis takes advantage of the measurable

flight lengths of b and c hadrons and τ leptons. A multivariate

discriminant is used to select decays where no additional charged

particles are consistent with coming from the signal decay

vertices. The separation between the primary and B decay

vertices is used to calculate the momentum of the B decay

products transverse to the B flight direction. The longitudinal

component of the B momentum can be estimated based on

the visible decay products; this allows a determination of

the B rest frame, with modest resolution, and enables the

calculation of the same discrimination variables available at

the e+e− B factories. The (rest frame) muon energy, missing

mass-squared and q2 are used in a 3-d fit. The leading sources

of systematic uncertainty are due to the size of the simulation

sample used in constructing the fit templates, the shape of the

muon misidentification template, and uncertainties in modelling

the background from B̄ → D∗∗ℓν̄ℓ and B̄ → D(∗)Hc̄X decays.

Measurements from Belle [152–154], BABAR [155,151] and

LHCb [157] result in values for RD and RD∗ that exceed

Standard Model predictions. Table 3 lists these values and

their average. The measurements of RD and RD∗ have linear

correlation coefficients of −0.27 (BABAR) and −0.49 (Belle);

the averaged values have a correlation of −0.29. Two untagged

Belle measurements [152,153] are subject to larger systematic

uncertainties; we do not include them in our average.

Table 3: Measurements of RD and RD∗ .
The averages correspond to the values in the
upper portion of the table.

RD × 102 RD∗ × 102

BABAR [151] B0, B+ 44.0 ± 5.8 ± 4.2 33.2 ± 2.4 ± 1.8
Belle [154] B0, B+ 37.5 ± 6.4 ± 2.6 29.3 ± 3.8 ± 1.5
LHCb [157] B0 33.6 ± 2.7 ± 3.0

Average B0, B+ 39.1 ± 4.1 ± 2.8 32.2 ± 1.8 ± 1.2

The tension between the SM prediction and the measure-

ments is at the level of 1.7σ (RD) and 3.0σ (RD∗); if one

considers these deviations together the significance rises to

3.9σ. This motivates speculation on possible new physics con-

tributions. It is striking that an interpretation in terms of the

2HDMII seems to be ruled out by the data. Fig. 2 shows that

the interpretation of the deviation of RD in terms of the 2HD-

MII requires vastly different values of the relevant parameter

tan β/mH+ than for RD∗ , excluding this possibility. All three

experiments assume the Standard Model kinematic distribu-

tions for B̄ → D(∗)τ ν̄τ in their determinations of the branching

fraction ratio. The BABAR [151] and Belle [154] analyses use
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kinematical distributions from the 2HDMII when comparing

the compatibility of their measurements with predictions; this

is why the band in Fig. 2 corresponding to the measurement

varies with tanβ/mH+ . In general, new physics contributions

with a different operator structure to the SM could modify

RD(∗) from the measured values, and could have a different

effect in different experiments.
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Figure 2: The RD(∗) measured in Ref. 151
along with expectations in the 2HDMII as a
function of tan β/mH+.

A more general approach has been formulated in Ref. 159

on the basis of an effective field theory. Assuming lepton-

flavour-universality-violating operators of dimension six and

eight, the coefficients of these operators can be fitted to the

observed values. Although a detailed analysis along these lines

requires more data on related decays (such as B → πτν̄), there

are indications that the tension in RD(∗) cannot be explained

by a minimally flavor-violating scenario with only left-handed

interactions; a better fit is obtained once right-handed and

scalar currents are included.

CONCLUSION

The study of semileptonic B meson decays continues to be

an active area for both theory and experiment. The application

of HQE calculations to inclusive decays is mature, and fits to

moments of B̄ → Xcℓν̄ℓ decays provide precise values for |Vcb|
and, in conjunction with input on mc or from B → Xsγ decays,

provide precise and consistent values for mb.

The determination of |Vub| from inclusive B̄ → Xuℓν̄ℓ decays

is based on multiple calculational approaches and independent

measurements over a variety of kinematic regions, all of which

provide consistent results. Further progress in this area is

possible, but will require better theoretical control over higher-

order terms, improved experimental knowledge of the B̄ →
Xcℓν̄ℓ background and improvements to the modeling of the

B̄ → Xuℓν̄ℓ signal distributions.

In both b → u and b → c exclusive channels there has

been significant recent progress in lattice-QCD calculations,

resulting in improved precision on both |Vub| and |Vcb|. These

calculations now provide information on the form factors well

away from the high q2 region, allowing better use of experi-

mental data. Projections for future uncertainties from lattice

calculations can be found in Ref. 162.

The values from the inclusive and exclusive determinations

of both |Vcb| and |Vub| are only marginally consistent. This is

a long-standing puzzle, and the new measurement of |Vub|/|Vcb|
from LHCb based on Λ0

b decays does not simplify the picture.

Both |Vcb| and |Vub| are indispensable inputs into unitarity

triangle fits. In particular, knowing |Vub| with good precision

allows a test of CKM unitarity in a most direct way, by

comparing the length of the |Vub| side of the unitarity triangle

with the measurement of sin(2β). This comparison of a “tree”

process (b → u) with a “loop-induced” process (B0−B̄0 mixing)

provides sensitivity to possible contributions from new physics.

The observation of semileptonic decays into τ leptons has

opened a new window to the physics of the third generation.

The measurements indicate a tension between the data and

the Standard Model prediction, which could be a hint to new

physics. However, the most prominent and simplest candidate,

the 2HDMII, cannot explain the current data. More general

ansatzes fit the data, but do not provide deeper insight until

measurements of related processes (such as B → πτν̄) are

available.
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b MEASUREMENTSFor the dis
ussion of V
b measurements, whi
h is not repeated here, seethe review on \Determination of ∣

∣V
b ∣

∣ and ∣

∣Vub ∣

∣."The CKM matrix element ∣

∣V
b ∣

∣ 
an be determined by studying the rate ofthe semileptoni
 de
ay B → D (∗) ℓν as a fun
tion of the re
oil kinemat-i
s of D(∗) mesons. Taking advantage of theoreti
al 
onstraints on thenormalization and a linear ω dependen
e of the form fa
tors (F (ω), G(ω))provided by Heavy Quark E�e
tive Theory (HQET), the ∣

∣V
b ∣

∣×F (ω) and
ρ2 (a2) 
an be simultaneously extra
ted from data, where ω is the s
alarprodu
t of the two-meson four velo
ities, F (1) is the form fa
tor at zerore
oil (ω=1) and ρ2 is the slope, sometimes denoted as a2. Using thetheoreti
al input of F (1), a value of ∣

∣V
b ∣

∣ 
an be obtained.\OUR EVALUATION" is an average using res
aled values of thedata listed below. The average and res
aling were performed bythe Heavy Flavor Averaging Group (HFAG) and are des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/. The averaging/res
aling pro-
edure takes into a

ount 
orrelations between the measurements.
∣

∣V
b∣∣ × F (1) (from B0 → D∗− ℓ+ν)∣

∣V
b∣∣ × F (1) (from B0 → D∗− ℓ+ν)∣

∣V
b∣∣ × F (1) (from B0 → D∗− ℓ+ν)∣

∣V
b∣∣ × F (1) (from B0 → D∗− ℓ+ν)VALUE DOCUMENT ID TECN COMMENT0.03581±0.00045 OUR EVALUATION0.03581±0.00045 OUR EVALUATION0.03581±0.00045 OUR EVALUATION0.03581±0.00045 OUR EVALUATION with ρ2=1.207 ± 0.026 and a 
orrelation 0.324.The �tted χ2 is 30.0 for 23 degrees of freedom.0.0360 ±0.0009 OUR AVERAGE0.0360 ±0.0009 OUR AVERAGE0.0360 ±0.0009 OUR AVERAGE0.0360 ±0.0009 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.0.0346 ±0.0002 ±0.0010 1 DUNGEL 10 BELL e+ e− → �(4S)0.0359 ±0.0002 ±0.0012 2 AUBERT 09A BABR e+ e− → �(4S)0.0359 ±0.0006 ±0.0014 3 AUBERT 08AT BABR e+ e− → �(4S)0.0392 ±0.0018 ±0.0023 4 ABDALLAH 04D DLPH e+ e− → Z0

0.0431 ±0.0013 ±0.0018 5 ADAM 03 CLE2 e+ e− → �(4S)0.0355 ±0.0014 +0.0023
−0.0024 6 ABREU 01H DLPH e+ e− → Z0.0371 ±0.0010 ±0.0020 7 ABBIENDI 00Q OPAL e+ e− → Z0.0319 ±0.0018 ±0.0019 8 BUSKULIC 97 ALEP e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0344 ±0.0003 ±0.0011 9 AUBERT 08R BABR Repl. by AUBERT 09A0.0355 ±0.0003 ±0.0016 10 AUBERT 05E BABR Repl. by AUBERT 08R0.0377 ±0.0011 ±0.0019 11 ABDALLAH 04D DLPH e+ e− → Z00.0354 ±0.0019 ±0.0018 12 ABE 02F BELL Repl. by DUNGEL 100.0431 ±0.0013 ±0.0018 13 BRIERE 02 CLE2 e+ e− → �(4S)0.0328 ±0.0019 ±0.0022 ACKERSTAFF 97G OPAL Repl. by ABBIENDI 00Q0.0350 ±0.0019 ±0.0023 14 ABREU 96P DLPH Repl. by ABREU 01H0.0351 ±0.0019 ±0.0020 15 BARISH 95 CLE2 Repl. by ADAM 030.0314 ±0.0023 ±0.0025 BUSKULIC 95N ALEP Repl. by BUSKULIC 971Uses fully re
onstru
ted D∗− ℓ+ ν events (ℓ = e or µ).2Obtained from a global �t to B → D(∗) ℓνℓ events, with re
onstru
ted D0 ℓ and D+ ℓ�nal states and ρ2 = 1.22 ± 0.02 ± 0.07.3Measured using the dependen
e of B− → D∗0 e− νe de
ay di�erential rate and theform fa
tor des
ription by CAPRINI 98 with ρ2 = 1.16 ± 0.06 ± 0.08.4Measurement using fully re
onstru
ted D∗ sample with a ρ2 = 1.32 ± 0.15 ± 0.33.5Average of the B0 → D∗(2010)− ℓ+ ν and B+ → D∗(2007)) ℓ+ ν modes with ρ2 =1.61 ± 0.09 ± 0.21 and f+− = 0.521 ± 0.012.6ABREU 01H measured using about 5000 partial re
onstru
ted D∗ sample with a
ρ2=1.34 ± 0.14+0.24

−0.22.7ABBIENDI 00Q: measured using both in
lusively and ex
lusively re
onstru
ted D∗±samples with a ρ2=1.21 ± 0.12 ± 0.20. The statisti
al and systemati
 
orrelationsbetween ∣

∣V
b ∣

∣×F(1) and ρ2 are 0.90 and 0.54 respe
tively.8BUSKULIC 97: measured using ex
lusively re
onstru
ted D∗± with a a2=0.31± 0.17±0.08. The statisti
al 
orrelation is 0.92.9Measured using fully re
onstru
ted D∗ sample and a simultaneous �t to the Caprini-Lellou
h-Neubert form fa
tor parameters: ρ2 = 1.191± 0.048± 0.028, R1(1) = 1.429±0.061 ± 0.044, and R2(1) = 0.827 ± 0.038 ± 0.022.10Measurement using fully re
onstru
ted D∗ sample with a ρ2 = 1.29 ± 0.03 ± 0.27.11Combines with previous partial re
onstru
ted D∗ measurement with a ρ2 = 1.39±0.10±0.33.12Measured using ex
lusive B0 → D∗(892)− e+ ν de
ays with ρ2= 1.35 ± 0.17 ± 0.19and a 
orrelation of 0.91.13BRIERE 02 result is based on the same analysis and data sample reported in ADAM 03.14ABREU 96P: measured using both in
lusively and ex
lusively re
onstru
ted D∗± samples.15BARISH 95: measured using both ex
lusive re
onstru
ted B0 → D∗− ℓ+ ν and B+ →D∗0 ℓ+ ν samples. They report their experiment's un
ertainties ±0.0019 ± 0.0018 ±0.0008, where the �rst error is statisti
al, the se
ond is systemati
, and the third is theun
ertainty in the lifetimes. We 
ombine the last two in quadrature.
WEIGHTED AVERAGE
0.0360±0.0009 (Error scaled by 1.5)

BUSKULIC 97 ALEP 2.4
ABBIENDI 00Q OPAL 0.3
ABREU 01H DLPH 0.0
ADAM 03 CLE2 10.3
ABDALLAH 04D DLPH 1.2
AUBERT 08AT BABR 0.0
AUBERT 09A BABR 0.0
DUNGEL 10 BELL 1.8

χ2

      16.0
(Confidence Level = 0.025)

0.025 0.03 0.035 0.04 0.045 0.05 0.055
∣

∣

∣V
b ∣

∣

∣ × F (1) (from B0 → D∗− ℓ+ν)
∣

∣V
b∣∣ × G (1) (from B → D− ℓ+ν)∣

∣V
b∣∣ × G (1) (from B → D− ℓ+ν)∣

∣V
b∣∣ × G (1) (from B → D− ℓ+ν)∣

∣V
b∣∣ × G (1) (from B → D− ℓ+ν)VALUE DOCUMENT ID TECN COMMENT0.04265±0.00153 OUR EVALUATION0.04265±0.00153 OUR EVALUATION0.04265±0.00153 OUR EVALUATION0.04265±0.00153 OUR EVALUATION with ρ2=1.190 ± 0.054 and a 
orrelation 0.83.The �tted χ2 is 0.5 for 8 degrees of freedom.0.0422 ±0.0010 OUR AVERAGE0.0422 ±0.0010 OUR AVERAGE0.0422 ±0.0010 OUR AVERAGE0.0422 ±0.0010 OUR AVERAGE0.04229±0.00137 16 GLATTAUER 16 BELL e+ e− → �(4S)0.0423 ±0.0019 ±0.0014 17 AUBERT 10 BABR e+ e− → �(4S)0.0431 ±0.0008 ±0.0023 18 AUBERT 09A BABR e+ e− → �(4S)0.0416 ±0.0047 ±0.0037 19 BARTELT 99 CLE2 e+ e− → �(4S)0.0278 ±0.0068 ±0.0065 20 BUSKULIC 97 ALEP e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0411 ±0.0044 ±0.0052 21 ABE 02E BELL Repl. by GLATTAUER 160.0337 ±0.0044 +0.0072

−0.0049 22 ATHANAS 97 CLE2 Repl. by BARTELT 99
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ombined partially re
onstru
ted B → D ℓνℓ sample whiletagged by the other fully re
onstru
ted B meson in the event. Also reports �tted ρ2 =1.09 ± 0.05.17Obtained from a �t to the 
ombined B → D ℓ+ νℓ sample in whi
h a hadroni
 de
ay ofthe se
ond B meson is fully re
onstru
ted and ρ2 = 1.20 ± 0.09 ± 0.04.18Obtained from a global �t to B → D(∗) ℓνℓ events, with re
onstru
ted D0 ℓ and D+ ℓ�nal states and ρ2 = 1.20 ± 0.04 ± 0.07.19BARTELT 99: measured using both ex
lusive re
onstru
ted B0 → D− ℓ+ ν and B+ →D0 ℓ+ ν samples.20BUSKULIC 97: measured using ex
lusively re
onstru
ted D± with a a2=−0.05± 0.53±0.38. The statisti
al 
orrelation is 0.99.21Using the missing energy and momentum to extra
t kinemati
 information about theundete
ted neutrino in the B0 → D− ℓ+ ν de
ay.22ATHANAS 97: measured using both ex
lusive re
onstru
ted B0 → D− ℓ+ ν and B+ →D0 ℓ+ ν samples with a ρ2=0.59 ± 0.22 ± 0.12+0.59
−0 . They report their experiment'sun
ertainties ±0.0044 ± 0.0048+0.0053

−0.0012, where the �rst error is statisti
al, the se
ondis systemati
, and the third is the un
ertainty due to the form fa
tor model variations.We 
ombine the last two in quadrature.Vub MEASUREMENTSVub MEASUREMENTSVub MEASUREMENTSVub MEASUREMENTSFor the dis
ussion of Vub measurements, whi
h is not repeated here, seethe review on "Determination of ∣

∣V
b ∣

∣ and ∣

∣Vub ∣

∣."The CKM matrix element ∣

∣Vub ∣

∣ 
an be determined by studying the rateof the 
harmless semileptoni
 de
ay b → u ℓν. The relevant bran
hingratio measurements based on ex
lusive and in
lusive de
ays 
an be foundin the B Listings, and are not repeated here.Vcb and Vub CKM Matrix Elements REFERENCESVcb and Vub CKM Matrix Elements REFERENCESVcb and Vub CKM Matrix Elements REFERENCESVcb and Vub CKM Matrix Elements REFERENCESGLATTAUER 16 PR D93 032006 R. Glattauer et al. (BELLE Collab.)AUBERT 10 PRL 104 011802 B. Aubert et al. (BABAR Collab.)DUNGEL 10 PR D82 112007 W. Dungel et al. (BELLE Collab.)AUBERT 09A PR D79 012002 B. Aubert et al. (BABAR Collab.)AUBERT 08AT PRL 100 231803 B. Aubert et al. (BABAR Collab.)AUBERT 08R PR D77 032002 B. Aubert et al. (BABAR Collab.)AUBERT 05E PR D71 051502 B. Aubert et al. (BABAR Collab.)ABDALLAH 04D EPJ C33 213 J. Abdallah et al. (DELPHI Collab.)ADAM 03 PR D67 032001 N.E. Adam et al. (CLEO Collab.)ABE 02E PL B526 258 K. Abe et al. (BELLE Collab.)ABE 02F PL B526 247 K. Abe et al. (BELLE Collab.)BRIERE 02 PRL 89 081803 R. Briere et al. (CLEO Collab.)ABREU 01H PL B510 55 P. Abreu et al. (DELPHI Collab.)ABBIENDI 00Q PL B482 15 G. Abbiendi et al. (OPAL Collab.)BARTELT 99 PRL 82 3746 J. Bartelt et al. (CLEO Collab.)CAPRINI 98 NP B530 153 I. Caprini, L. Lellou
h, M. Neubert (BCIP, CERN)ACKERSTAFF 97G PL B395 128 K. A
kersta� et al. (OPAL Collab.)ATHANAS 97 PRL 79 2208 M. Athanas et al. (CLEO Collab.)BUSKULIC 97 PL B395 373 D. Buskuli
 et al. (ALEPH Collab.)ABREU 96P ZPHY C71 539 P. Abreu et al. (DELPHI Collab.)BARISH 95 PR D51 1014 B.C. Barish et al. (CLEO Collab.)BUSKULIC 95N PL B359 236 D. Buskuli
 et al. (ALEPH Collab.)B∗ I (JP ) = 12 (1−)I , J, P need 
on�rmation. Quantum numbers shown are quark-model predi
tions. B∗ MASSB∗ MASSB∗ MASSB∗ MASSFrom mass di�eren
e below and the average of our B masses(mB±+mB0)/2.VALUE (MeV) DOCUMENT ID5324.65±0.25 OUR FIT5324.65±0.25 OUR FIT5324.65±0.25 OUR FIT5324.65±0.25 OUR FIT mB∗ − mBmB∗ − mBmB∗ − mBmB∗ − mBVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT45.18±0.23 OUR FIT45.18±0.23 OUR FIT45.18±0.23 OUR FIT45.18±0.23 OUR FIT45.42±0.26 OUR AVERAGE45.42±0.26 OUR AVERAGE45.42±0.26 OUR AVERAGE45.42±0.26 OUR AVERAGE In
ludes data from the datablo
k that follows this one.46.2 ±0.3 ±0.8 1 ACKERSTAFF 97M OPAL e+ e− → Z45.3 ±0.35±0.87 4227 1 BUSKULIC 96D ALEP Eee
m= 88{94 GeV45.5 ±0.3 ±0.8 1 ABREU 95R DLPH Eee
m= 88{94 GeV46.3 ±1.9 1378 1 ACCIARRI 95B L3 Eee
m= 88{94 GeV46.4 ±0.3 ±0.8 2 AKERIB 91 CLE2 e+ e− → γX45.6 ±0.8 2 WU 91 CSB2 e+ e− → γX, γ ℓX45.4 ±1.0 3 LEE-FRANZINI 90 CSB2 e+ e− → �(5S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •52 ±2 ±4 1400 4 HAN 85 CUSB e+ e− → γ eX1 u, d, s 
avor averaged.2These papers report Eγ in the B∗ 
enter of mass. The mB∗ − mB is 0.2 MeV higher.E
m = 10.61{10.7 GeV. Admixture of B0 and B+ mesons, but not Bs .3 LEE-FRANZINI 90 value is for an admixture of B0 and B+. They measure 46.7± 0.4±0.2 MeV for an admixture of B0, B+, and Bs , and use the shape of the photon line toseparate the above value.4HAN 85 is for E
m = 10.6{11.2 GeV, giving an admixture of B0, B+, and Bs .

mB∗+ − mB+mB∗+ − mB+mB∗+ − mB+mB∗+ − mB+VALUE (MeV) DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.45.34±0.23 OUR FIT45.34±0.23 OUR FIT45.34±0.23 OUR FIT45.34±0.23 OUR FIT45.01±0.30±0.2345.01±0.30±0.2345.01±0.30±0.2345.01±0.30±0.23 5 AAIJ 13O LHCB pp at 7 TeV5Obtained the mass di�eren
e between B∗+K− and B+K− from B∗s2(5840)0 de
ay.
∣

∣(mB∗+ − mB+) { (mB∗0 − mB0)∣∣∣

∣(mB∗+ − mB+) { (mB∗0 − mB0)∣∣∣

∣(mB∗+ − mB+) { (mB∗0 − mB0)∣∣∣

∣(mB∗+ − mB+) { (mB∗0 − mB0)∣∣VALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<6<6<6<6 95 ABREU 95R DLPH Eee
m= 88{94 GeVB∗ DECAY MODESB∗ DECAY MODESB∗ DECAY MODESB∗ DECAY MODESMode Fra
tion (�i /�)�1 B γ dominantB∗ REFERENCESB∗ REFERENCESB∗ REFERENCESB∗ REFERENCESAAIJ 13O PRL 110 151803 R. Aaij et al. (LHCb Collab.)ACKERSTAFF 97M ZPHY C74 413 K. A
kersta� et al. (OPAL Collab.)BUSKULIC 96D ZPHY C69 393 D. Buskuli
 et al. (ALEPH Collab.)ABREU 95R ZPHY C68 353 P. Abreu et al. (DELPHI Collab.)ACCIARRI 95B PL B345 589 M. A

iarri et al. (L3 Collab.)AKERIB 91 PRL 67 1692 D.S. Akerib et al. (CLEO Collab.)WU 91 PL B273 177 Q.W. Wu et al. (CUSB II Collab.)LEE-FRANZINI 90 PRL 65 2947 J. Lee-Franzini et al. (CUSB II Collab.)HAN 85 PRL 55 36 K. Han et al. (COLU, LSU, MPIM, STON)B1(5721)+ I (JP ) = 12 (1+)I, J, P need 
on�rmation.Status: ∗∗Quantum numbers shown are quark-model predi
tions.B1(5721)+ MASSB1(5721)+ MASSB1(5721)+ MASSB1(5721)+ MASSOUR FIT uses mB∗0 and mB+1 − mB∗0 to determine mB1(5721)+ .VALUE (MeV) DOCUMENT ID5725.9+2.5

−2.7 OUR FIT5725.9+2.5
−2.7 OUR FIT5725.9+2.5
−2.7 OUR FIT5725.9+2.5
−2.7 OUR FIT mB+1 − mB∗0mB+1 − mB∗0mB+1 − mB∗0mB+1 − mB∗0VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT401.2+2.4

−2.7 OUR FIT401.2+2.4
−2.7 OUR FIT401.2+2.4
−2.7 OUR FIT401.2+2.4
−2.7 OUR FIT401.2+2.4
−2.7 OUR AVERAGE401.2+2.4
−2.7 OUR AVERAGE401.2+2.4
−2.7 OUR AVERAGE401.2+2.4
−2.7 OUR AVERAGE400.5±1.8±3.1 8K 1 AAIJ 15AB LHCB pp at 7, 8 TeV402 ±3 +1

−3 2 AALTONEN 14I CDF pp at 1.96 TeV1AAIJ 15AB reports [mB+1 − mB0 ℄ − (mB∗0 − mB0) − m
π+ = 260.9 ± 1.8 ± 3.1MeV whi
h we adjust by the π+ mass and assume (mB∗0 − mB0) = (mB∗+ − mB+)= 45.01 ± 0.30 ± 0.23 MeV. The masses inside the square bra
kets were measured forea
h 
andidate event.2AALTONEN 14I reports mB1(5721)+ − mB∗0 − m

π+ = 262 ± 3+1
−3 MeV whi
h weadjusted by the π+ mass. B1(5721)+ WIDTHB1(5721)+ WIDTHB1(5721)+ WIDTHB1(5721)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT31 ± 6 OUR AVERAGE31 ± 6 OUR AVERAGE31 ± 6 OUR AVERAGE31 ± 6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.29.1± 3.6± 4.3 8K AAIJ 15AB LHCB pp at 7, 8 TeV49 +12

−10 + 2
−13 AALTONEN 14I CDF pp at 1.96 TeVB1(5721)+ DECAY MODESB1(5721)+ DECAY MODESB1(5721)+ DECAY MODESB1(5721)+ DECAY MODESMode Fra
tion (�i /�)�1 B∗0π+ seenB1(5721)+ BRANCHING RATIOSB1(5721)+ BRANCHING RATIOSB1(5721)+ BRANCHING RATIOSB1(5721)+ BRANCHING RATIOS�(B∗0π+)/�total �1/��(B∗0π+)/�total �1/��(B∗0π+)/�total �1/��(B∗0π+)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 8K AAIJ 15AB LHCB pp at 7, 8 TeVseenseenseenseen AALTONEN 14I CDF pp at 1.96 TeVB1(5721)+ REFERENCESB1(5721)+ REFERENCESB1(5721)+ REFERENCESB1(5721)+ REFERENCESAAIJ 15AB JHEP 1504 024 R. Aaij et al. (LHCb Collab.)AALTONEN 14I PR D90 012013 T. Aaltonen et al. (CDF Collab.)



1329132913291329See key on page 601 MesonParti
le ListingsB1(5721)0,B∗J(5732),B∗2(5747)+B1(5721)0 I (JP ) = 12 (1+)I, J, P need 
on�rmation.Status: ∗∗∗Quantum numbers shown are quark-model predi
tions.B1(5721)0 MASSB1(5721)0 MASSB1(5721)0 MASSB1(5721)0 MASSOUR FIT uses mass di�eren
es measurements listed below to determinethe mass mB1(5721)0 .VALUE (MeV) DOCUMENT ID5726.0±1.3 OUR FIT5726.0±1.3 OUR FIT5726.0±1.3 OUR FIT5726.0±1.3 OUR FIT Error in
ludes s
ale fa
tor of 1.2.mB01 − mB+mB01 − mB+mB01 − mB+mB01 − mB+VALUE (MeV) DOCUMENT ID TECN COMMENT446.7±1.3 OUR FIT446.7±1.3 OUR FIT446.7±1.3 OUR FIT446.7±1.3 OUR FIT Error in
ludes s
ale fa
tor of 1.2.441.5±2.4±1.3441.5±2.4±1.3441.5±2.4±1.3441.5±2.4±1.3 1 ABAZOV 07T D0 pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •446.2+1.9

−2.1+1.0
−1.2 1 AALTONEN 09D CDF Repl. by AALTONEN 14I1Observed in B01 → B∗+π−. mB01 − mB∗+mB01 − mB∗+mB01 − mB∗+mB01 − mB∗+VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT401.4±1.2 OUR FIT401.4±1.2 OUR FIT401.4±1.2 OUR FIT401.4±1.2 OUR FIT Error in
ludes s
ale fa
tor of 1.2.402.8±1.1 OUR AVERAGE402.8±1.1 OUR AVERAGE402.8±1.1 OUR AVERAGE402.8±1.1 OUR AVERAGE403.4±0.7±1.5 35K 2 AAIJ 15AB LHCB pp at 7, 8 TeV402.3±0.9+1.1
−1.2 3 AALTONEN 14I CDF pp at 1.96 TeV2AAIJ 15AB reports [mB01 − mB+ ℄ − (mB∗+ − mB+) − m

π− = 263.9 ± 0.7 ± 1.4MeV whi
h we adjust by the π− mass and (mB∗+ − mB+) = 45.01 ± 0.30 ± 0.23MeV. The masses inside the square bra
kets were measured for ea
h 
andidate event.3AALTONEN 14I reports mB1(5721)0 − mB∗+ − m
π− = 262.7 ± 0.9+1.1

−1.2 MeV whi
hwe adjusted by the π− mass. B1(5721)0 WIDTHB1(5721)0 WIDTHB1(5721)0 WIDTHB1(5721)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT27.5±3.4 OUR AVERAGE27.5±3.4 OUR AVERAGE27.5±3.4 OUR AVERAGE27.5±3.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.30.1±1.5±3.5 35k AAIJ 15AB LHCB pp at 7, 8 TeV23 ±3 ±4 AALTONEN 14I CDF pp at 1.96 TeVB1(5721)0 DECAY MODESB1(5721)0 DECAY MODESB1(5721)0 DECAY MODESB1(5721)0 DECAY MODESMode Fra
tion (�i /�)�1 B∗+π− dominantB1(5721)0 BRANCHING RATIOSB1(5721)0 BRANCHING RATIOSB1(5721)0 BRANCHING RATIOSB1(5721)0 BRANCHING RATIOS�(B∗+π−)/�total �1/��(B∗+π−)/�total �1/��(B∗+π−)/�total �1/��(B∗+π−)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 35K AAIJ 15AB LHCB pp at 7, 8 TeVdominant AALTONEN 09D CDF pp at 1.96 TeVdominantdominantdominantdominant 4 ABAZOV 07T D0 pp at 1.96 TeV4Observed in B01 → B∗+π− with B∗+ → B+ γ and B+ → J/ψπ+.B1(5721)0 REFERENCESB1(5721)0 REFERENCESB1(5721)0 REFERENCESB1(5721)0 REFERENCESAAIJ 15AB JHEP 1504 024 R. Aaij et al. (LHCb Collab.)AALTONEN 14I PR D90 012013 T. Aaltonen et al. (CDF Collab.)AALTONEN 09D PRL 102 102003 T. Aaltonen et al. (CDF Collab.)ABAZOV 07T PRL 99 172001 V.M. Abazov et al. (D0 Collab.)B∗J(5732)or B∗∗

I (JP ) = ?(??)I, J, P need 
on�rmation.OMITTED FROM SUMMARY TABLESignal 
an be interpreted as stemming from several narrow and broadresonan
es. Needs 
on�rmation.B∗J (5732) MASSB∗J (5732) MASSB∗J (5732) MASSB∗J (5732) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT5698± 8 OUR AVERAGE5698± 8 OUR AVERAGE5698± 8 OUR AVERAGE5698± 8 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.5710±20 1 AFFOLDER 01F CDF pp at 1.8 TeV5695+17
−19 2 BARATE 98L ALEP e+ e− → Z5704± 4±10 1944 3 BUSKULIC 96D ALEP Eee
m= 88{94 GeV5732± 5±20 2157 ABREU 95B DLPH Eee
m= 88{94 GeV5681±11 1738 AKERS 95E OPAL Eee
m= 88{94 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •5713± 2 4 ACCIARRI 99N L3 e+ e− → Z

1AFFOLDER 01F uses the re
onstru
ted B meson through semileptoni
 de
ay 
hannels.The fra
tion of light B mesons that are produ
ed at L=1 B∗∗ states is measured to be0.28 ± 0.06 ± 0.03.2BARATE 98L uses fully re
onstru
ted B mesons to sear
h for B∗∗ produ
tion in theB π± system. In the framework of heavy quark symmetry (HQS), they also measuredthe mass of B∗2 to be 5739+ 8
−11+6

−4 MeV/
2 and the relative produ
tion rate of B(b →B∗2 → B (∗)π)/B(b → B u,d ) = (31 ± 9+6
−5)%.3Using mBπ−mB = 424 ± 4 ± 10 MeV.4ACCIARRI 99N uses in
lusive re
onstru
ted B mesons to sear
h for B∗∗ produ
tion inthe B(∗)π± system. In the framework of HQET, they measured the mass of B∗1 and B∗2to be 5670±10±13 MeV and 5768±5±6 with the B(b → B ∗∗)= (32±3±6)×10−2.They also reported the eviden
e for the existen
e of an ex
ited B-meson state or mixtureof states in the region 5.9{6.0 GeV.B∗J (5732) WIDTHB∗J (5732) WIDTHB∗J (5732) WIDTHB∗J (5732) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT128±18 OUR AVERAGE128±18 OUR AVERAGE128±18 OUR AVERAGE128±18 OUR AVERAGE145±28 2157 ABREU 95B DLPH Eee
m= 88{94 GeV116±24 1738 AKERS 95E OPAL Eee
m= 88{94 GeVB∗J (5732) DECAY MODESB∗J (5732) DECAY MODESB∗J (5732) DECAY MODESB∗J (5732) DECAY MODESMode Fra
tion (�i /�)�1 B∗π + B π dominant�2 B∗π (X) [a℄ (85±29) %[a℄ X refers to de
ay modes with or without additional a

ompanying de
ayparti
les. B∗J (5732) BRANCHING RATIOSB∗J (5732) BRANCHING RATIOSB∗J (5732) BRANCHING RATIOSB∗J (5732) BRANCHING RATIOSX refers to de
ay modes with or without additional a

ompanying de
ayparti
les.�(B∗π (X))/�total �2/��(B∗π (X))/�total �2/��(B∗π (X))/�total �2/��(B∗π (X))/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.85+0.26

−0.27±0.120.85+0.26
−0.27±0.120.85+0.26
−0.27±0.120.85+0.26
−0.27±0.12 ABBIENDI 02E OPAL e+ e− → ZB∗J (5732) REFERENCESB∗J (5732) REFERENCESB∗J (5732) REFERENCESB∗J (5732) REFERENCESABBIENDI 02E EPJ C23 437 G. Abbiendi et al. (OPAL Collab.)AFFOLDER 01F PR D64 072002 T. A�older et al. (CDF Collab.)ACCIARRI 99N PL B465 323 M. A

iarri et al. (L3 Collab.)BARATE 98L PL B425 215 R. Barate et al. (ALEPH Collab.)BUSKULIC 96D ZPHY C69 393 D. Buskuli
 et al. (ALEPH Collab.)ABREU 95B PL B345 598 P. Abreu et al. (DELPHI Collab.)AKERS 95E ZPHY C66 19 R. Akers et al. (OPAL Collab.)B∗2(5747)+ I (JP ) = 12 (2+)I, J, P need 
on�rmation.Status: ∗∗Quantum numbers shown are quark-model predi
tions.B∗2(5747)+ MASSB∗2(5747)+ MASSB∗2(5747)+ MASSB∗2(5747)+ MASSOUR FIT uses mB0 and mB∗+2 − mB0 to determine mB∗2(5747)+ .VALUE (MeV) DOCUMENT ID5737.2±0.7 OUR FIT5737.2±0.7 OUR FIT5737.2±0.7 OUR FIT5737.2±0.7 OUR FIT mB∗+2 − mB0mB∗+2 − mB0mB∗+2 − mB0mB∗+2 − mB0VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT457.5 ±0.7 OUR FIT457.5 ±0.7 OUR FIT457.5 ±0.7 OUR FIT457.5 ±0.7 OUR FIT457.5 ±0.7 OUR AVERAGE457.5 ±0.7 OUR AVERAGE457.5 ±0.7 OUR AVERAGE457.5 ±0.7 OUR AVERAGE457.62±0.72±0.40 4K 1 AAIJ 15AB LHCB pp at 7, 8 TeV457.3 ±1.3 +0.3

−0.9 2 AALTONEN 14I CDF pp at 1.96 TeV1AAIJ 15AB reports [mB∗+2 − mB0 ℄ − m
π+ = 318.1± 0.7± 0.4 MeV whi
h we adjust bythe π+ mass. The masses inside the square bra
kets were measured for ea
h 
andidateevent.2AALTONEN 14I reports mB∗2(5747)+ − mB0 − m

π+ = 317.7 ± 1.2+0.3
−0.9 MeV whi
hwe adjusted by the π+ mass. B∗2(5747)+ WIDTHB∗2(5747)+ WIDTHB∗2(5747)+ WIDTHB∗2(5747)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT20 ±5 OUR AVERAGE20 ±5 OUR AVERAGE20 ±5 OUR AVERAGE20 ±5 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2.23.6±2.0±2.1 4K AAIJ 15AB LHCB pp at 7, 8 TeV11 +4

−3 +3
−4 AALTONEN 14I CDF pp at 1.96 TeV



1330133013301330MesonParti
le ListingsB∗2(5747)+,B∗2(5747)0,BJ(5840)+B∗2(5747)+ DECAY MODESB∗2(5747)+ DECAY MODESB∗2(5747)+ DECAY MODESB∗2(5747)+ DECAY MODESMode Fra
tion (�i /�)�1 B0π+ seen�2 B∗0π+ seenB∗2(5747)+ BRANCHING RATIOSB∗2(5747)+ BRANCHING RATIOSB∗2(5747)+ BRANCHING RATIOSB∗2(5747)+ BRANCHING RATIOS�(B0π+)/�total �1/��(B0π+)/�total �1/��(B0π+)/�total �1/��(B0π+)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 4K AAIJ 15AB LHCB pp at 7, 8 TeVseenseenseenseen AALTONEN 14I CDF pp at 1.96 TeV�(B∗0π+)/�total �2/��(B∗0π+)/�total �2/��(B∗0π+)/�total �2/��(B∗0π+)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 4k AAIJ 15AB LHCB pp at 7, 8 TeV�(B∗0π+)/�(B0π+) �2/�1�(B∗0π+)/�(B0π+) �2/�1�(B∗0π+)/�(B0π+) �2/�1�(B∗0π+)/�(B0π+) �2/�1VALUE EVTS DOCUMENT ID TECN COMMENT1.0±0.5±0.81.0±0.5±0.81.0±0.5±0.81.0±0.5±0.8 4k AAIJ 15AB LHCB pp at 7, 8 TeVB∗2(5747)+ REFERENCESB∗2(5747)+ REFERENCESB∗2(5747)+ REFERENCESB∗2(5747)+ REFERENCESAAIJ 15AB JHEP 1504 024 R. Aaij et al. (LHCb Collab.)AALTONEN 14I PR D90 012013 T. Aaltonen et al. (CDF Collab.)B∗2(5747)0 I (JP ) = 12 (2+)I, J, P need 
on�rmation.Status: ∗∗∗Quantum numbers shown are quark-model predi
tions.B∗2(5747)0 MASSB∗2(5747)0 MASSB∗2(5747)0 MASSB∗2(5747)0 MASSOUR FIT uses mB+ , mB01 − mB+ , and mB∗02 − mB01 to determinemB∗2(5747)0 . The −0.659 
orrelation between statisti
al un
ertainties ofmB01 − mB+ and mB∗02 − mB01 measurements reported by ABAZOV 07Tis taken into a

ount.VALUE (MeV) DOCUMENT ID5739.5±0.7 OUR FIT5739.5±0.7 OUR FIT5739.5±0.7 OUR FIT5739.5±0.7 OUR FIT Error in
ludes s
ale fa
tor of 1.4.mB∗02 − mB01mB∗02 − mB01mB∗02 − mB01mB∗02 − mB01VALUE (MeV) DOCUMENT ID TECN COMMENT13.5±1.4 OUR FIT13.5±1.4 OUR FIT13.5±1.4 OUR FIT13.5±1.4 OUR FIT Error in
ludes s
ale fa
tor of 1.3.26.2±3.1±0.926.2±3.1±0.926.2±3.1±0.926.2±3.1±0.9 1 ABAZOV 07T D0 pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •14.9+2.2

−2.5+1.2
−1.4 1 AALTONEN 09D CDF Repl. by AALTONEN 14I1Observed in B∗02 → B∗+π− and B∗02 → B+π−.mB∗02 − mB+mB∗02 − mB+mB∗02 − mB+mB∗02 − mB+VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT460.2 ±0.6 OUR FIT460.2 ±0.6 OUR FIT460.2 ±0.6 OUR FIT460.2 ±0.6 OUR FIT Error in
ludes s
ale fa
tor of 1.4.459.9 ±0.8 OUR AVERAGE459.9 ±0.8 OUR AVERAGE459.9 ±0.8 OUR AVERAGE459.9 ±0.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.460.18±0.37±0.33 17K 2 AAIJ 15AB LHCB pp at 7, 8 TeV457.5 ±1.2 +0.8

−0.9 3 AALTONEN 14I CDF pp at 1.96 TeV2AAIJ 15AB reports [mB∗02 − mB+ ℄ − m
π− = 320.6± 0.4± 0.3 MeV whi
h we adjust bythe π− mass. The masses inside the square bra
kets were measured for ea
h 
andidateevent.3AALTONEN 14I reports mB∗2(5747)0 − mB+ − m

π− = 317.9 ± 1.2+0.8
−0.9 MeV whi
hwe adjusted by the π− mass. B∗2(5747)0 WIDTHB∗2(5747)0 WIDTHB∗2(5747)0 WIDTHB∗2(5747)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT24.2±1.7 OUR AVERAGE24.2±1.7 OUR AVERAGE24.2±1.7 OUR AVERAGE24.2±1.7 OUR AVERAGE24.5±1.0± 1.5 17K AAIJ 15AB LHCB pp at 7, 8 TeV22 +3

−2 + 4
− 5 AALTONEN 14I CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •22.7+3.8
−3.2+ 3.2

−10.2 AALTONEN 09D CDF Repl. by AALTO-NEN 14IB∗2(5747)0 DECAY MODESB∗2(5747)0 DECAY MODESB∗2(5747)0 DECAY MODESB∗2(5747)0 DECAY MODESMode Fra
tion (�i /�)�1 B+π− dominant�2 B∗+π− dominant

B∗2(5747)0 BRANCHING RATIOSB∗2(5747)0 BRANCHING RATIOSB∗2(5747)0 BRANCHING RATIOSB∗2(5747)0 BRANCHING RATIOS�(B+π−)/�total �1/��(B+π−)/�total �1/��(B+π−)/�total �1/��(B+π−)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 17K AAIJ 15AB LHCB pp at 7, 8 TeVdominant AALTONEN 09D CDF pp at 1.96 TeVdominantdominantdominantdominant ABAZOV 07T D0 pp at 1.96 TeV�(B∗+π−)/�total �2/��(B∗+π−)/�total �2/��(B∗+π−)/�total �2/��(B∗+π−)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 17K AAIJ 15AB LHCB pp at 7, 8 TeVdominant AALTONEN 09D CDF pp at 1.96 TeVdominantdominantdominantdominant ABAZOV 07T D0 pp at 1.96 TeV�(B∗+π−)/�(B+π−) �2/�1�(B∗+π−)/�(B+π−) �2/�1�(B∗+π−)/�(B+π−) �2/�1�(B∗+π−)/�(B+π−) �2/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.82±0.28 OUR AVERAGE0.82±0.28 OUR AVERAGE0.82±0.28 OUR AVERAGE0.82±0.28 OUR AVERAGE0.71±0.14±0.30 17K AAIJ 15AB LHCB pp at 7, 8 TeV1.10±0.42±0.31 4 ABAZOV 07T D0 pp at 1.96 TeV4Converted from measured ratio of R = B(B∗02 → B∗+π−) / B(B∗02 → B(∗)+ π−)= 0.475 ± 0.095 ± 0.069.B∗2(5747)0 REFERENCESB∗2(5747)0 REFERENCESB∗2(5747)0 REFERENCESB∗2(5747)0 REFERENCESAAIJ 15AB JHEP 1504 024 R. Aaij et al. (LHCb Collab.)AALTONEN 14I PR D90 012013 T. Aaltonen et al. (CDF Collab.)AALTONEN 09D PRL 102 102003 T. Aaltonen et al. (CDF Collab.)ABAZOV 07T PRL 99 172001 V.M. Abazov et al. (D0 Collab.)BJ(5840)+ I (JP ) = 12 (??)I, J, P need 
on�rmation.Status: ∗∗OMITTED FROM SUMMARY TABLEQuantum numbers shown are quark-model predi
tions.BJ (5840)+ MASSBJ (5840)+ MASSBJ (5840)+ MASSBJ (5840)+ MASSOUR FIT uses mB0 and mBJ(5840)+ − mB0 to determine mBJ(5840)+ .VALUE (MeV) DOCUMENT ID5851±19 OUR FIT5851±19 OUR FIT5851±19 OUR FIT5851±19 OUR FIT mBJ(5840)+ − mB0mBJ(5840)+ − mB0mBJ(5840)+ − mB0mBJ(5840)+ − mB0VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT571±19 OUR FIT571±19 OUR FIT571±19 OUR FIT571±19 OUR FIT571±13±14571±13±14571±13±14571±13±14 7k 1 AAIJ 15AB LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •595±26±14 7k 2 AAIJ 15AB LHCB pp at 7, 8 TeV1AAIJ 15AB reports [mB+J − mB0 ℄ − m

π+ = 431 ± 13 ± 14 MeV whi
h we adjust bythe π+ mass. The masses inside the square bra
kets were measured for ea
h 
andidateevent. The result assumes P = (−1)J and uses two relativisti
 Breit-Wigner fun
tionsin the �t for mass di�eren
e.2AAIJ 15AB reports [mB+J − mB0 ℄ − m
π+ = 455 ± 26 ± 14 MeV whi
h we adjust bythe π+ mass. The masses inside the square bra
kets were measured for ea
h 
andidateevent. The result assumes P = (−1)J and uses three relativisti
 Breit-Wigner fun
tionsin the �t for mass di�eren
e. mBJ(5840)+ − mB∗0mBJ(5840)+ − mB∗0mBJ(5840)+ − mB∗0mBJ(5840)+ − mB∗0VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •565±15±14 7k 3 AAIJ 15AB LHCB pp at 7, 8 TeV3AAIJ 15AB reports [mB+J − mB0 ℄ − (mB∗+ − mB+) − m
π+ = 425 ± 15 ± 14MeV whi
h we adjust by the π+ mass. The masses inside the square bra
kets weremeasured for ea
h 
andidate event. The result assumes P = −(−1)J , (mB∗0 − mB0)= (mB∗+ − mB+) = 45.01± 0.30± 0.23 MeV, and uses three relativisti
 Breit-Wignerfun
tions in the �t for mass di�eren
e.BJ (5840)+ WIDTHBJ (5840)+ WIDTHBJ (5840)+ WIDTHBJ (5840)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT224±24±80224±24±80224±24±80224±24±80 7k 4 AAIJ 15AB LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •215±27±80 7k 5 AAIJ 15AB LHCB pp at 7, 8 TeV229±27±80 7k 6 AAIJ 15AB LHCB pp at 7, 8 TeV4Assuming P = (−1)J and using two relativisti
 Breit-Wigner fun
tions in the �t for massdi�eren
e.5Assuming P = (−1)J and using three relativisti
 Breit-Wigner fun
tions in the �t formass di�eren
e.6Assuming P = −(−1)J and using three relativisti
 Breit-Wigner fun
tions in the �t formass di�eren
e.



1331133113311331See key on page 601 MesonParti
le ListingsBJ(5840)+,BJ(5840)0,BJ(5970)+BJ (5840)+ DECAY MODESBJ (5840)+ DECAY MODESBJ (5840)+ DECAY MODESBJ (5840)+ DECAY MODESMode Fra
tion (�i /�)�1 B∗0π+ seen�2 B0π+ possibly seenBJ (5840)+ BRANCHING RATIOSBJ (5840)+ BRANCHING RATIOSBJ (5840)+ BRANCHING RATIOSBJ (5840)+ BRANCHING RATIOS�(B∗0π+)/�total �1/��(B∗0π+)/�total �1/��(B∗0π+)/�total �1/��(B∗0π+)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 7k AAIJ 15AB LHCB pp at 7, 8 TeV�(B0π+)/�total �2/��(B0π+)/�total �2/��(B0π+)/�total �2/��(B0π+)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENTpossibly seenpossibly seenpossibly seenpossibly seen 7k 7 AAIJ 15AB LHCB pp at 7, 8 TeV7A B π de
ay is forbidden from a P = −(−1)J parent, whereas B∗π is allowed.BJ (5840)+ REFERENCESBJ (5840)+ REFERENCESBJ (5840)+ REFERENCESBJ (5840)+ REFERENCESAAIJ 15AB JHEP 1504 024 R. Aaij et al. (LHCb Collab.)BJ(5840)0 I (JP ) = 12 (??)I, J, P need 
on�rmation.Status: ∗∗OMITTED FROM SUMMARY TABLEQuantum numbers shown are quark-model predi
tions.BJ (5840)0 MASSBJ (5840)0 MASSBJ (5840)0 MASSBJ (5840)0 MASSOUR FIT uses mB+ and mBJ(5840)0 − mB+ to determine mBJ(5840)0 .VALUE (MeV) DOCUMENT ID5863±9 OUR FIT5863±9 OUR FIT5863±9 OUR FIT5863±9 OUR FIT mBJ(5840)0 − mB+mBJ(5840)0 − mB+mBJ(5840)0 − mB+mBJ(5840)0 − mB+VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT584± 9 OUR FIT584± 9 OUR FIT584± 9 OUR FIT584± 9 OUR FIT584± 5±7584± 5±7584± 5±7584± 5±7 12k 1 AAIJ 15AB LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •610±22±7 12k 2 AAIJ 15AB LHCB pp at 7, 8 TeV1AAIJ 15AB reports [mB0J − mB+ ℄ − m

π− = 444 ± 5 ± 7 MeV whi
h we adjust bythe π− mass. The masses inside the square bra
kets were measured for ea
h 
andidateevent. The result assumes P = (−1)J and uses two relativisti
 Breit-Wigner fun
tionsin the �t for mass di�eren
e.2AAIJ 15AB reports [mB0J − mB+ ℄ − m
π− = 471 ± 22 ± 7 MeV whi
h we adjust bythe π− mass. The masses inside the square bra
kets were measured for ea
h 
andidateevent. The result assumes P = (−1)J and uses three relativisti
 Breit-Wigner fun
tionsin the �t for mass di�eren
e. mBJ(5840)0 − mB∗+mBJ(5840)0 − mB∗+mBJ(5840)0 − mB∗+mBJ(5840)0 − mB∗+VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •584±5±7 12k 3 AAIJ 15AB LHCB pp at 7, 8 TeV3AAIJ 15AB reports [mB0J − mB+ ℄ − (mB∗+ − mB+) − m
π− = 444 ± 5 ± 7 MeVwhi
h we adjust by the π− mass. The masses inside the square bra
kets were measuredfor ea
h 
andidate event. The result assumes P = −(−1)J , (mB∗+ − mB+) = 45.01±0.30 ± 0.23 MeV, and uses three relativisti
 Breit-Wigner fun
tions in the �t for massdi�eren
e. BJ (5840)0 WIDTHBJ (5840)0 WIDTHBJ (5840)0 WIDTHBJ (5840)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT127±17±34127±17±34127±17±34127±17±34 12k 4 AAIJ 15AB LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •107±20±34 12k 5 AAIJ 15AB LHCB pp at 7, 8 TeV119±17±34 12k 6 AAIJ 15AB LHCB pp at 7, 8 TeV4Assuming P = (−1)J and using two relativisti
 Breit-Wigner fun
tions in the �t for massdi�eren
e.5Assuming P = (−1)J and using three relativisti
 Breit-Wigner fun
tions in the �t formass di�eren
e.6Assuming P = −(−1)J and using three relativisti
 Breit-Wigner fun
tions in the �t formass di�eren
e. BJ (5840)0 DECAY MODESBJ (5840)0 DECAY MODESBJ (5840)0 DECAY MODESBJ (5840)0 DECAY MODESMode Fra
tion (�i /�)�1 B∗+π− seen�2 B+π− possibly seen

BJ (5840)0 BRANCHING RATIOSBJ (5840)0 BRANCHING RATIOSBJ (5840)0 BRANCHING RATIOSBJ (5840)0 BRANCHING RATIOS�(B∗+π−)/�total �1/��(B∗+π−)/�total �1/��(B∗+π−)/�total �1/��(B∗+π−)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 12k AAIJ 15AB LHCB pp at 7, 8 TeV�(B+π−)/�total �2/��(B+π−)/�total �2/��(B+π−)/�total �2/��(B+π−)/�total �2/�VALUE DOCUMENT ID TECN COMMENTpossibly seenpossibly seenpossibly seenpossibly seen 7 AAIJ 15AB LHCB pp at 7, 8 TeV7A B π de
ay is forbidden from a P = −(−1)J parent, whereas B∗π is allowed.BJ (5840)0 REFERENCESBJ (5840)0 REFERENCESBJ (5840)0 REFERENCESBJ (5840)0 REFERENCESAAIJ 15AB JHEP 1504 024 R. Aaij et al. (LHCb Collab.)BJ(5970)+ I (JP ) = 12 (??)I, J, P need 
on�rmation.Status: ∗∗Quantum numbers shown are quark-model predi
tions.BJ (5970)+ MASSBJ (5970)+ MASSBJ (5970)+ MASSBJ (5970)+ MASSOUR FIT uses mB0 and mBJ(5970)+ − mB0 to determine mBJ(5970)+ .VALUE (MeV) DOCUMENT ID5964±5 OUR FIT5964±5 OUR FIT5964±5 OUR FIT5964±5 OUR FIT mBJ(5970)+ − mB0mBJ(5970)+ − mB0mBJ(5970)+ − mB0mBJ(5970)+ − mB0VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT685 ±5 OUR FIT685 ±5 OUR FIT685 ±5 OUR FIT685 ±5 OUR FIT685 ±5 OUR AVERAGE685 ±5 OUR AVERAGE685 ±5 OUR AVERAGE685 ±5 OUR AVERAGE685.3±4.1± 2.5 2K 1 AAIJ 15AB LHCB pp at 7, 8 TeV681 ±5 ±12 1.4k 2 AALTONEN 14I CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •686.8±4.5± 2.5 2K 3 AAIJ 15AB LHCB pp at 7, 8 TeV1AAIJ 15AB reports [mB+J − mB0 ℄ − m

π+ = 545.8± 4.1± 2.5 MeV whi
h we adjust bythe π+ mass. The masses inside the square bra
kets were measured for ea
h 
andidateevent. The result assumes P = (−1)J and uses two relativisti
 Breit-Wigner fun
tionsin the �t for mass di�eren
e.2AALTONEN 14I reports mBJ(5970)+ − mB0 − m
π+ = 541 ± 5 ± 12 MeV whi
h weadjusted by the π+ mass.3AAIJ 15AB reports [mB+J − mB0 ℄ − m

π+ = 547 ± 5 ± 3 MeV whi
h we adjust bythe π+ mass. The masses inside the square bra
kets were measured for ea
h 
andidateevent. The result assumes P = (−1)J and uses three relativisti
 Breit-Wigner fun
tionsin the �t for mass di�eren
e. mBJ(5970)+ − mB∗0mBJ(5970)+ − mB∗0mBJ(5970)+ − mB∗0mBJ(5970)+ − mB∗0VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •686.0±4.0±2.5 2k 4 AAIJ 15AB LHCB pp at 7, 8 TeV4AAIJ 15AB reports [mB+J − mB0 ℄ − (mB∗+ −mB+) −m

π+ = 547±4±3 MeV whi
hwe adjust by the π+ mass. The masses inside the square bra
kets were measured forea
h 
andidate event. The result assumes P = −(−1)J , (mB∗0 − mB0) = (mB∗+ −mB+) = 45.01 ± 0.30 ± 0.23 MeV, and uses three relativisti
 Breit-Wigner fun
tionsin the �t for mass di�eren
e. BJ (5970)+ WIDTHBJ (5970)+ WIDTHBJ (5970)+ WIDTHBJ (5970)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT62±20 OUR AVERAGE62±20 OUR AVERAGE62±20 OUR AVERAGE62±20 OUR AVERAGE63±15±17 2K 5 AAIJ 15AB LHCB pp at 7, 8 TeV60+30
−20±40 1.4k AALTONEN 14I CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •61±14±17 2K 6 AAIJ 15AB LHCB pp at 7, 8 TeV61±15±17 2K 7 AAIJ 15AB LHCB pp at 7, 8 TeV5Assuming P = (−1)J and using two relativisti
 Breit-Wigner fun
tions in the �t for massdi�eren
e.6Assuming P = (−1)J and using three relativisti
 Breit-Wigner fun
tions in the �t formass di�eren
e.7Assuming P = −(−1)J and using three relativisti
 Breit-Wigner fun
tions in the �t formass di�eren
e. BJ (5970)+ DECAY MODESBJ (5970)+ DECAY MODESBJ (5970)+ DECAY MODESBJ (5970)+ DECAY MODESMode Fra
tion (�i /�)�1 B0π+ possibly seen�2 B∗0π+ seen



1332133213321332MesonParti
le ListingsBJ(5970)+,BJ(5970)0BJ (5970)+ BRANCHING RATIOSBJ (5970)+ BRANCHING RATIOSBJ (5970)+ BRANCHING RATIOSBJ (5970)+ BRANCHING RATIOS�(B0π+)/�total �1/��(B0π+)/�total �1/��(B0π+)/�total �1/��(B0π+)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTpossibly seen 2K 8 AAIJ 15AB LHCB pp at 7, 8 TeVpossibly seenpossibly seenpossibly seenpossibly seen 1.4k AALTONEN 14I CDF pp at 1.96 TeV8A B π de
ay is forbidden from a P = −(−1)J parent, whereas B∗π is allowed.�(B∗0π+)/�total �2/��(B∗0π+)/�total �2/��(B∗0π+)/�total �2/��(B∗0π+)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 2k AAIJ 15AB LHCB pp at 7, 8 TeVseenseenseenseen 1.4k AALTONEN 14I CDF pp at 1.96 TeVBJ (5970)+ REFERENCESBJ (5970)+ REFERENCESBJ (5970)+ REFERENCESBJ (5970)+ REFERENCESAAIJ 15AB JHEP 1504 024 R. Aaij et al. (LHCb Collab.)AALTONEN 14I PR D90 012013 T. Aaltonen et al. (CDF Collab.)BJ(5970)0 I (JP ) = 12 (??)I, J, P need 
on�rmation.Status: ∗∗Quantum numbers shown are quark-model predi
tions.BJ (5970)0 MASSBJ (5970)0 MASSBJ (5970)0 MASSBJ (5970)0 MASSOUR FIT uses mB+ and mBJ(5970)0 − mB+ to determine mBJ(5970)0 .VALUE (MeV) DOCUMENT ID5971±5 OUR FIT5971±5 OUR FIT5971±5 OUR FIT5971±5 OUR FIT mBJ(5970)0 − mB+mBJ(5970)0 − mB+mBJ(5970)0 − mB+mBJ(5970)0 − mB+VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT691 ±5 OUR FIT691 ±5 OUR FIT691 ±5 OUR FIT691 ±5 OUR FIT691 ±5 OUR AVERAGE691 ±5 OUR AVERAGE691 ±5 OUR AVERAGE691 ±5 OUR AVERAGE689.9±2.9± 5.1 10K 1 AAIJ 15AB LHCB pp at 7, 8 TeV698 ±5 ±12 2.6k 2 AALTONEN 14I CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •714.3±6.4± 5.1 10K 3 AAIJ 15AB LHCB pp at 7, 8 TeV1AAIJ 15AB reports [mB0J − mB+ ℄ − m

π− = 550.4± 2.9± 5.1 MeV whi
h we adjust bythe π− mass. The masses inside the square bra
kets were measured for ea
h 
andidateevent. The result assumes P = (−1)J and uses two relativisti
 Breit-Wigner fun
tionsin the �t for mass di�eren
e.2AALTONEN 14I reports mBJ(5970)0 − mB+ − m
π− = 558 ± 5 ± 12 MeV whi
h weadjusted by the π− mass.3AAIJ 15AB reports [mB0J − mB+ ℄ − m

π− = 575 ± 6 ± 5 MeV whi
h we adjust bythe π− mass. The masses inside the square bra
kets were measured for ea
h 
andidateevent. The result assumes P = (−1)J and uses three relativisti
 Breit-Wigner fun
tionsin the �t for mass di�eren
e. mBJ(5970)0 − mB∗+mBJ(5970)0 − mB∗+mBJ(5970)0 − mB∗+mBJ(5970)0 − mB∗+VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •691.6±3.7±5.1 10k 4 AAIJ 15AB LHCB pp at 7, 8 TeV4AAIJ 15AB reports [mB0J − mB+ ℄ − (mB∗+ − mB+) − m

π− = 552 ± 4 ± 5 MeVwhi
h we adjust by the π− mass. The masses inside the square bra
kets were measuredfor ea
h 
andidate event. The result assumes P = −(−1)J , (mB∗+ − mB+) = 45.01±0.30 ± 0.23 MeV, and uses three relativisti
 Breit-Wigner fun
tions in the �t for massdi�eren
e.

BJ (5970)0 WIDTHBJ (5970)0 WIDTHBJ (5970)0 WIDTHBJ (5970)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT81±12 OUR AVERAGE81±12 OUR AVERAGE81±12 OUR AVERAGE81±12 OUR AVERAGE82± 8± 9 10K 5 AAIJ 15AB LHCB pp at 7, 8 TeV70+30
−20±30 2.6k AALTONEN 14I CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •56± 7± 9 10K 6 AAIJ 15AB LHCB pp at 7, 8 TeV82±10± 9 10K 7 AAIJ 15AB LHCB pp at 7, 8 TeV5Assuming P = (−1)J and using two relativisti
 Breit-Wigner fun
tions in the �t for massdi�eren
e.6Assuming P = (−1)J and using three relativisti
 Breit-Wigner fun
tions in the �t formass di�eren
e.7Assuming P = −(−1)J and using three relativisti
 Breit-Wigner fun
tions in the �t formass di�eren
e. BJ (5970)0 DECAY MODESBJ (5970)0 DECAY MODESBJ (5970)0 DECAY MODESBJ (5970)0 DECAY MODESMode Fra
tion (�i /�)�1 B+π− possibly seen�2 B∗+π− seenBJ (5970)0 BRANCHING RATIOSBJ (5970)0 BRANCHING RATIOSBJ (5970)0 BRANCHING RATIOSBJ (5970)0 BRANCHING RATIOS�(B+π−)/�total �1/��(B+π−)/�total �1/��(B+π−)/�total �1/��(B+π−)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTpossibly seen 10K 8 AAIJ 15AB LHCB pp at 7, 8 TeVpossibly seenpossibly seenpossibly seenpossibly seen 2.6k AALTONEN 14I CDF pp at 1.96 TeV8A B π de
ay is forbidden from a P = −(−1)J parent, whereas B∗π is allowed.�(B∗+π−)/�total �2/��(B∗+π−)/�total �2/��(B∗+π−)/�total �2/��(B∗+π−)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 10K AAIJ 15AB LHCB pp at 7, 8 TeVseenseenseenseen 2.6k AALTONEN 14I CDF pp at 1.96 TeVBJ (5970)0 REFERENCESBJ (5970)0 REFERENCESBJ (5970)0 REFERENCESBJ (5970)0 REFERENCESAAIJ 15AB JHEP 1504 024 R. Aaij et al. (LHCb Collab.)AALTONEN 14I PR D90 012013 T. Aaltonen et al. (CDF Collab.)



1333133313331333See key on page 601 MesonParti
le ListingsB0sBOTTOM, STRANGE MESONSBOTTOM, STRANGE MESONSBOTTOM, STRANGE MESONSBOTTOM, STRANGE MESONS(B = ±1, S = ∓1)(B = ±1, S = ∓1)(B = ±1, S = ∓1)(B = ±1, S = ∓1)B0s = sb, B0s = s b, similarly for B∗s 'sB0s I (JP ) = 0(0−)I , J, P need 
on�rmation. Quantum numbers shown are quark-model predi
tions. B0s MASSB0s MASSB0s MASSB0s MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT5366.82± 0.22 OUR FIT5366.82± 0.22 OUR FIT5366.82± 0.22 OUR FIT5366.82± 0.22 OUR FIT5366.7 ± 0.4 OUR AVERAGE5366.7 ± 0.4 OUR AVERAGE5366.7 ± 0.4 OUR AVERAGE5366.7 ± 0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogrambelow.5366.90± 0.28±0.23 1 AAIJ 12E LHCB pp at 7 TeV5364.4 ± 1.3 ±0.7 LOUVOT 09 BELL e+ e− → �(5S)5366.01± 0.73±0.33 2 ACOSTA 06 CDF pp at 1.96 TeV5369.9 ± 2.3 ±1.3 32 3 ABE 96B CDF pp at 1.8 TeV5374 ±16 ±2 3 ABREU 94D DLPH e+ e− → Z5359 ±19 ±7 1 3 AKERS 94J OPAL e+ e− → Z5368.6 ± 5.6 ±1.5 2 BUSKULIC 93G ALEP e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •5370 ± 1 ±3 DRUTSKOY 07A BELL Repl. by LOUVOT 095370 ±40 6 4 AKERS 94J OPAL e+ e− → Z5383.3 ± 4.5 ±5.0 14 ABE 93F CDF Repl. by ABE 96B1Uses B0s → J/ψφ fully re
onstru
ted de
ays.2Uses ex
lusively re
onstru
ted �nal states 
ontaining a J/ψ → µ+µ− de
ays.3 From the de
ay Bs → J/ψ(1S)φ.4 From the de
ay Bs → D−s π+.

WEIGHTED AVERAGE
5366.7±0.4 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BUSKULIC 93G ALEP
AKERS 94J OPAL
ABREU 94D DLPH
ABE 96B CDF
ACOSTA 06 CDF 0.7
LOUVOT 09 BELL 2.4
AAIJ 12E LHCB 0.3

χ2

       3.5
(Confidence Level = 0.177)

5360 5362 5364 5366 5368 5370 5372 5374B0s mass (MeV) mB0s − mBmB0s − mBmB0s − mBmB0s − mBmB is the average of our B masses (mB±+mB0)/2.VALUE (MeV) CL% DOCUMENT ID TECN COMMENT87.35±0.20 OUR FIT87.35±0.20 OUR FIT87.35±0.20 OUR FIT87.35±0.20 OUR FIT87.37±0.24 OUR AVERAGE87.37±0.24 OUR AVERAGE87.37±0.24 OUR AVERAGE87.37±0.24 OUR AVERAGE87.45±0.44±0.09 1 AAIJ 15U LHCB pp at 7, 8 TeV87.42±0.30±0.09 2 AAIJ 12E LHCB pp at 7 TeV86.64±0.80±0.08 3 ACOSTA 06 CDF pp at 1.96 TeV
• • • We use the following data for averages but not for �ts. • • •89.7 ±2.7 ±1.2 ABE 96B CDF pp at 1.8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •80 to 130 68 LEE-FRANZINI 90 CSB2 e+ e− → �(5S)1Uses the mode B0s → ψ(2S)K−π+.2The reported result is mB0s − mB+ = 87.52 ± 0.30 ± 0.12 MeV. We 
onvert it to themass di�eren
e with respe
t to the average of (mB± + mB0)/2.3The reported result is m

B0
s
− mB0 = 86.38 ± 0.90 ± 0.06 MeV. We 
onvert it to themass di�eren
e with respe
t to the average of (mB± + mB0)/2.

mB0s H { mB0s LmB0s H { mB0s LmB0s H { mB0s LmB0s H { mB0s LSee the B0s -B0s MIXING se
tion near the end of these B0s Listings.B0s MEAN LIFEB0s MEAN LIFEB0s MEAN LIFEB0s MEAN LIFE\OUR EVALUATION" is an average using res
aled values of thedata listed below. The average and res
aling were performed bythe Heavy Flavor Averaging Group (HFAG) and are des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/. The averaging/res
aling pro-
edure takes into a

ount 
orrelations between the measurements andasymmetri
 lifetime errors.\OUR EVALUATION" is an average of 1 / [0.5 (�B0
sL

+ �B0
sH

)℄.VALUE (10−12 s) EVTS DOCUMENT ID TECN COMMENT1.510±0.005 OUR EVALUATION1.510±0.005 OUR EVALUATION1.510±0.005 OUR EVALUATION1.510±0.005 OUR EVALUATION
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.518±0.041±0.027 1 AALTONEN 11AP CDF pp at 1.96 TeV1.398±0.044+0.028

−0.025 2 ABAZOV 06V D0 pp at 1.96 TeV1.42 +0.14
−0.13 ±0.03 3 ABREU 00Y DLPH e+ e− → Z1.53 +0.16
−0.15 ±0.07 4 ABREU,P 00G DLPH e+ e− → Z1.36 ±0.09 +0.06

−0.05 5 ABE 99D CDF pp at 1.8 TeV1.72 +0.20
−0.19 +0.18

−0.17 6 ACKERSTAFF 98F OPAL e+ e− → Z1.50 +0.16
−0.15 ±0.04 5 ACKERSTAFF 98G OPAL e+ e− → Z1.47 ±0.14 ±0.08 4 BARATE 98C ALEP e+ e− → Z1.51 ±0.11 7 BARATE 98C ALEP e+ e− → Z1.56 +0.29
−0.26 +0.08

−0.07 5 ABREU 96F DLPH Repl. by ABREU 00Y1.65 +0.34
−0.31 ±0.12 4 ABREU 96F DLPH Repl. by ABREU 00Y1.76 ±0.20 +0.15

−0.10 8 ABREU 96F DLPH Repl. by ABREU 00Y1.60 ±0.26 +0.13
−0.15 9 ABREU 96F DLPH Repl. by ABREU,P 00G1.67 ±0.14 10 ABREU 96F DLPH e+ e− → Z1.61 +0.30

−0.29 +0.18
−0.16 90 4 BUSKULIC 96E ALEP Repl. by BARATE 98C1.54 +0.14

−0.13 ±0.04 5 BUSKULIC 96M ALEP e+ e− → Z1.42 +0.27
−0.23 ±0.11 76 5 ABE 95R CDF Repl. by ABE 99D1.74 +1.08
−0.69 ±0.07 8 11 ABE 95R CDF Sup. by ABE 96N1.54 +0.25
−0.21 ±0.06 79 5 AKERS 95G OPAL Repl. by ACKER-STAFF 98G1.59 +0.17
−0.15 ±0.03 134 5 BUSKULIC 95O ALEP Sup. by BUSKULIC 96M0.96 ±0.37 41 12 ABREU 94E DLPH Sup. by ABREU 96F1.92 +0.45
−0.35 ±0.04 31 5 BUSKULIC 94C ALEP Sup. by BUSKULIC 95O1.13 +0.35
−0.26 ±0.09 22 5 ACTON 93H OPAL Sup. by AKERS 95G1AALTONEN 11AP 
ombines the fully re
onstr
uted B0s → D−s π+ de
ays and partiallyre
onstru
ted B0s → Ds X de
ays.2Measured using Ds µ+ verti
es.3Uses D−s ℓ+, and φℓ+ verti
es.4Measured using Ds hadron verti
es.5Measured using D−s ℓ+ verti
es.6ACKERSTAFF 98F use fully re
onstru
ted D−s → φπ− and D−s → K∗0K− in thein
lusive B0s de
ay.7Combined results from D−s ℓ+ and Ds hadron.8Measured using φℓ verti
es.9Measured using in
lusive Ds verti
es.10Combined result for the four ABREU 96F methods.11Ex
lusive re
onstru
tion of Bs → ψφ.12ABREU 94E uses the 
ight-distan
e distribution of Ds verti
es, φ-lepton verti
es, andDs µ verti
es. B0s MEAN LIFE (Flavor spe
i�
)B0s MEAN LIFE (Flavor spe
i�
)B0s MEAN LIFE (Flavor spe
i�
)B0s MEAN LIFE (Flavor spe
i�
)VALUE (10−12 s) DOCUMENT ID TECN COMMENT1.511±0.014 OUR EVALUATION1.511±0.014 OUR EVALUATION1.511±0.014 OUR EVALUATION1.511±0.014 OUR EVALUATION1.508±0.019 OUR AVERAGE1.508±0.019 OUR AVERAGE1.508±0.019 OUR AVERAGE1.508±0.019 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.1.479±0.010±0.021 1 ABAZOV 15A D0 pp at 1.96 TeV1.535±0.015±0.014 2 AAIJ 14AX LHCB pp at 7 TeV1.52 ±0.15 ±0.01 3 AAIJ 14F LHCB pp at 7, 8 TeV1.518±0.041±0.027 4 AALTONEN 11AP CDF pp at 1.96 TeV



1334133413341334Meson Parti
le ListingsB0s1.42 +0.14
−0.13 ±0.03 5 ABREU 00Y DLPH e+ e− → Z1.36 ±0.09 +0.06

−0.05 6 ABE 99D CDF pp at 1.8 TeV1.50 +0.16
−0.15 ±0.04 6 ACKERSTAFF 98G OPAL e+ e− → Z1.54 +0.14
−0.13 ±0.04 6 BUSKULIC 96M ALEP e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.60 ±0.06 ±0.01 7 AAIJ 14R LHCB pp at 7 TeV1.398±0.044+0.028
−0.025 8 ABAZOV 06V D0 Repl. by ABAZOV 15A1Measured using B0s → D−s µ+ νX de
ays.2Measured using the B0s → D−s π+ de
ays.3Measured using B0s → D+D−s .4AALTONEN 11AP 
ombines the fully re
onstr
uted B0s → D−s π+ de
ays and partiallyre
onstru
ted B0s → Ds X de
ays.5Uses D−s ℓ+, and φℓ+ verti
es.6Measured using D−s ℓ+ verti
es.7Measured using B0s → π+K− de
ays. May not be 
avor spe
i�
.8Measured using D−s µ+ verti
es.

WEIGHTED AVERAGE
1.508±0.019 (Error scaled by 1.3)

BUSKULIC 96M ALEP
ACKERSTAFF 98G OPAL
ABE 99D CDF 1.9
ABREU 00Y DLPH
AALTONEN 11AP CDF 0.0
AAIJ 14F LHCB
AAIJ 14AX LHCB 1.8
ABAZOV 15A D0 1.5

χ2

       5.2
(Confidence Level = 0.158)

1 1.2 1.4 1.6 1.8 2B0s MEAN LIFE (Flavor spe
i�
) (10−12 s)B0s MEAN LIFE (BS → J/ψφ)B0s MEAN LIFE (BS → J/ψφ)B0s MEAN LIFE (BS → J/ψφ)B0s MEAN LIFE (BS → J/ψφ)VALUE (10−12 s) DOCUMENT ID TECN COMMENT1.479±0.012 OUR EVALUATION1.479±0.012 OUR EVALUATION1.479±0.012 OUR EVALUATION1.479±0.012 OUR EVALUATION1.479±0.012 OUR AVERAGE1.479±0.012 OUR AVERAGE1.479±0.012 OUR AVERAGE1.479±0.012 OUR AVERAGE1.480±0.011±0.005 1 AAIJ 14E LHCB pp at 7 TeV1.444+0.098
−0.090±0.020 1 ABAZOV 05B D0 pp at 1.96 TeV1.34 +0.23
−0.19 ±0.05 2 ABE 98B CDF pp at 1.8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.39 +0.13
−0.16 +0.01

−0.02 2 ABAZOV 05W D0 pp at 1.96 TeV1.34 +0.23
−0.19 ±0.05 3 ABE 96N CDF Repl. by ABE 98B1Measured using fully re
onstru
ted Bs → J/ψφ de
ays.2Measured using the time-dependent angular analysis of B0s → J/ψφ de
ays.3ABE 96N uses 58 ± 12 ex
lusive Bs → J/ψφ events.B0

sH MEAN LIFEB0
sH MEAN LIFEB0
sH MEAN LIFEB0
sH MEAN LIFEB0sH is the heavy mass state of two B0s CP eigenstates.\OUR EVALUATION" has been obtained by the Heavy Flavor AveragingGroup (HFAG) using the 
onstraint of the 
avor-spe
i�
 lifetime averagein a way similar to ��B0s /�B0s .VALUE (10−12 s) DOCUMENT ID TECN COMMENT1.610±0.012 OUR EVALUATION1.610±0.012 OUR EVALUATION1.610±0.012 OUR EVALUATION1.610±0.012 OUR EVALUATION1.70 ±0.04 OUR AVERAGE1.70 ±0.04 OUR AVERAGE1.70 ±0.04 OUR AVERAGE1.70 ±0.04 OUR AVERAGE1.75 ±0.12 ±0.07 1 AAIJ 13AB LHCB pp at 7 TeV1.700±0.040±0.026 2 AAIJ 12AN LHCB pp at 7 TeV1.70 +0.12

−0.11 ±0.03 2 AALTONEN 11AB CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •3 AALTONEN 12D CDF pp at 1.96 TeV1.613+0.123
−0.113 4,5 AALTONEN 08J CDF Repl. by AALTONEN 12D1.58 +0.39
−0.42 +0.01

−0.02 5 ABAZOV 05W D0 Repl. by ABAZOV 08AM2.07 +0.58
−0.46 ±0.03 5 ACOSTA 05 CDF Repl. by AALTONEN 08J1Measured using a pure CP-odd �nal state J/ψK0S with the assumption that 
ontributionsfrom penguin diagrams are small.2Measured using a pure CP-odd �nal state J/ψ f0(980).3Uses the time-dependent angular analysis of B0s → J/ψφ de
ays assuming CP-violatingangle βs (B0 → J/ψφ) = 0.02.4Obtained from ��s and �s �t with a 
orrelation of 0.6.5Measured using the time-dependent angular analysis of B0s → J/ψφ de
ays.B0

sL MEAN LIFEB0
sL MEAN LIFEB0
sL MEAN LIFEB0
sL MEAN LIFEB0

sL
is the light mass state of two B0s CP eigenstates.\OUR EVALUATION" has been obtained by the Heavy Flavor AveragingGroup (HFAG) using the 
onstraint of the 
avor-spe
i�
 lifetime averagein a way similar to ��B0s /�B0s .VALUE (10−12 s) DOCUMENT ID TECN COMMENT1.422±0.008 OUR EVALUATION1.422±0.008 OUR EVALUATION1.422±0.008 OUR EVALUATION1.422±0.008 OUR EVALUATION1.379±0.026±0.0171.379±0.026±0.0171.379±0.026±0.0171.379±0.026±0.017 1 AAIJ 14F LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.407±0.016±0.007 2 AAIJ 14R LHCB pp at 7 TeV1.440±0.096±0.009 2 AAIJ 12 LHCB Repl. by AAIJ 14R1.455±0.046±0.006 2 AAIJ 12R LHCB Repl. by AAIJ 14R3 AALTONEN 12D CDF pp at 1.96 TeV1.437+0.054
−0.047 4,5 AALTONEN 08J CDF Repl. by AALTONEN 12D1.24 +0.14
−0.11 +0.01

−0.02 5 ABAZOV 05W D0 Repl. by ABAZOV 08AM1.05 +0.16
−0.13 ±0.02 5 ACOSTA 05 CDF Repl. by AALTONEN 08J1.27 ±0.33 ±0.08 6 BARATE 00K ALEP e+ e− → Z1Measured using B0s → D−s D+s . The e�e
tive lifetime is translated into a de
ay widthof �L = 0.725 ± 0.014 ± 0.009 ps−1.2Measured using B0s → K+K− de
ays. There may still be CPV in the de
ay.3Uses the time-dependent angular analysis of B0s → J/ψφ de
ays and assuming CP-violating angle βs (B0 → J/ψφ) = 0.02.4Obtained from ��s and �s �t with a 
orrelation of 0.6.5Measured using the time-dependent angular analysis of B0s → J/ψφ de
ays.6Uses φφ 
orrelations from B0s → D(∗)+s D(∗)−s .��B0s /�B0s��B0s /�B0s��B0s /�B0s��B0s /�B0s�B0s and ��B0s are the de
ay rate average and di�eren
e between two B0sCP eigenstates (light − heavy).\OUR EVALUATION" is an average of all available Bs 
avor-spe
i�
 life-time measurements with the ��B0s /�s analyses performed by the HeavyFlavor Averaging Group (HFAG) as des
ribed in our \Review on B-B Mix-ing" in the B0 Se
tion of these Listings.VALUE CL% DOCUMENT ID TECN COMMENT0.124±0.011 OUR EVALUATION0.124±0.011 OUR EVALUATION0.124±0.011 OUR EVALUATION0.124±0.011 OUR EVALUATION1 AAIJ 12D LHCB pp at 7 TeV2 ABAZOV 12D D0 pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.090±0.009±0.023 3 ESEN 13 BELL e+ e− → �(5S)4 AALTONEN 12D CDF pp at 1.96 TeV0.147+0.036
−0.030+0.042

−0.041 3 ESEN 10 BELL e+ e− → �(5S)0.116+0.09
−0.10 ±0.010 5 AALTONEN 08J CDF Repl. by AALTONEN 12D0.24 +0.28
−0.38 +0.03

−0.04 5,6 ABAZOV 05W D0 Repl. by ABAZOV 08AM0.65 +0.25
−0.33 ±0.01 5 ACOSTA 05 CDF Repl. by AALTONEN 08J

<0.46 95 7 ABREU 00Y DLPH e+ e− → Z
<0.69 95 8 ABREU,P 00G DLPH e+ e− → Z
<0.83 95 9 ABE 99D CDF pp at 1.8 TeV
<0.67 95 10 ACCIARRI 98S L3 e+ e− → Z



1335133513351335See key on page 601 Meson Parti
le ListingsB0s1Measured using the time-dependent angular analysis of B0s → J/ψφ de
ays.2Measured using fully re
onstru
ted Bs → J/ψφ de
ays.3Assumes CP violation is negligible.4Uses the time-dependent angular analysis of B0s → J/ψφ de
ays and assuming CP-violating angle βs (B0 → J/ψφ) = 0.02.5Measured using the time-dependent angular analysis of B0s → J/ψφ de
ays.6Uses ∣

∣A0∣

∣

2 −
∣

∣A‖∣

∣

2=0.355 ± 0.066 from ACOSTA 05.7Uses D−s ℓ+, and φℓ+ verti
es.8Measured using Ds hadron verti
es.9ABE 99D assumes τB0s= 1.55 ± 0.05 ps.10ACCIARRI 98S assumes τB0s= 1.49±0.06 ps and PDG 98 values of b produ
tion fra
tion.��B0s��B0s��B0s��B0s\OUR EVALUATION" has been obtained by the Heavy Flavor AveragingGroup (HFAG) using the 
onstraint of the 
avor-spe
i�
 lifetime averagein a way similar to ��B0s /�B0s .VALUE (1012 s−1) DOCUMENT ID TECN COMMENT0.082 ±0.007 OUR EVALUATION0.082 ±0.007 OUR EVALUATION0.082 ±0.007 OUR EVALUATION0.082 ±0.007 OUR EVALUATION0.077 ±0.008 OUR AVERAGE0.077 ±0.008 OUR AVERAGE0.077 ±0.008 OUR AVERAGE0.077 ±0.008 OUR AVERAGE0.0805±0.0091±0.0032 1 AAIJ 15I LHCB pp at 7, 8 TeV0.053 ±0.021 ±0.010 2 AAD 14U ATLS pp at 7 TeV0.068 ±0.026 ±0.007 3 AALTONEN 12AJ CDF pp at 1.96 TeV0.163 +0.065
−0.064 4,5 ABAZOV 12D D0 pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.106 ±0.011 ±0.007 6 AAIJ 13AR LHCB Repl. by AAIJ 15I0.053 ±0.021 ±0.010 3 AAD 12CV ATLS Repl. by AAD 14U0.123 ±0.029 ±0.011 3 AAIJ 12D LHCB Repl. by AAIJ 13AR0.075 ±0.035 ±0.006 7 AALTONEN 12D CDF Repl. by AALTONEN 12AJ0.085 +0.072
−0.078 ±0.001 8 ABAZOV 09E D0 Repl. by ABAZOV 08AM0.076 +0.059
−0.063 ±0.006 9 AALTONEN 08J CDF Repl. by AALTONEN 12D0.19 ±0.07 +0.02

−0.01 5,10 ABAZOV 08AMD0 Repl. by ABAZOV 12D0.12 +0.08
−0.10 ±0.02 9,11 ABAZOV 07 D0 Repl. by ABAZOV 07N0.13 ±0.09 12 ABAZOV 07N D0 Repl. by ABAZOV 09E0.47 +0.19
−0.24 ±0.01 9 ACOSTA 05 CDF Repl. by AALTONEN 08J1Measured using time-dependent angular analysis of B0s → J/ψK+K− de
ays.2Measured using the 
avor tagged time-dependent angular analysis of B0s → J/ψφde
ays.3Measured using the time-dependent angular analysis of B0s → J/ψφ de
ays.4The error in
ludes both statisti
al and systemati
 un
ertainties.5Measured using fully re
onstru
ted Bs → J/ψφ de
ays.6AAIJ 13AR result 
omes from a 
ombined �t to B0s → J/ψK+K− and B0s →J/ψπ+ π− data sets. Also reports ��s = 0.100 ± 0.016 ± 0.003 ps−1 from a �tto B0s → J/ψK+K− de
ays.7Uses the time-dependent angular analysis of B0s → J/ψφ de
ays and assuming CP-violating angle βs (B0 → J/ψφ) = 0.02.8Measured the angular and lifetime parameters for the time-dependent angular untaggedde
ays B0d → J/ψK∗0 and B0s → J/ψφ.9Measured using the time-dependent angular analysis of B0s → J/ψφ de
ays and assum-ing CP-violating phase φs = 0.10Obtaines 90% CL interval −0.06 < ��s < 0.30.11ABAZOV 07 reports 0.17± 0.09 ± 0.02 with CP-violating phase φs as a free parameter.12Combines D0 measurements of time-dependent angular distributions in B0s → J/ψφand 
harge asymmetry in semileptoni
 de
ays. There is a 4-fold ambiguity in the solution.��CP

s / �s��CP
s / �s��CP
s / �s��CP
s / �s�s and ��CP

s are the de
ay rate average and di�eren
e between even,�CP−even
s

, and odd, �CP−odd
s

, CP eigenstates.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.072±0.021±0.022 1 ABAZOV 09I D0 pp at 1.96 TeV
>0.012 95 1 AALTONEN 08F CDF pp at 1.96 TeV0.079+0.038

−0.035+0.031
−0.030 1 ABAZOV 07Y D0 Repl. by ABAZOV 09I0.25 +0.21

−0.14 2 BARATE 00K ALEP e+ e− → Z

1Assumes 2 B(B0s → D(∗)s D(∗)s ) ≃ ��CP
s / �s.2Uses φφ 
orrelations from B0s → D(∗)+s D(∗)−s .1 / �B0s1 / �B0s1 / �B0s1 / �B0s\OUR EVALUATION" has been obtained by the Heavy Flavor AveragingGroup (HFAG) using the 
onstraint of the 
avor-spe
i�
 lifetime averagein a way similar to ��B0s /�B0s .VALUE (10−12 s) DOCUMENT ID TECN COMMENT1.510 ±0.005 OUR EVALUATION1.510 ±0.005 OUR EVALUATION1.510 ±0.005 OUR EVALUATION1.510 ±0.005 OUR EVALUATION1.509 ±0.010 OUR AVERAGE1.509 ±0.010 OUR AVERAGE1.509 ±0.010 OUR AVERAGE1.509 ±0.010 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.1.5145±0.0062±0.0034 1 AAIJ 15I LHCB pp at 7, 8 TeV1.477 ±0.015 ±0.009 2 AAD 14U ATLS pp at 7 TeV1.528 ±0.019 ±0.009 3 AALTONEN 12AJ CDF pp at 1.96 TeV1.443 +0.038

−0.035 3,4 ABAZOV 12D D0 pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.513 ±0.009 ±0.014 5 AAIJ 13AR LHCB Repl. by AAIJ 15I1.477 ±0.015 ±0.009 6 AAD 12CV ATLS Repl. by AAD 14U1.522 ±0.021 ±0.019 7 AAIJ 12D LHCB Repl. by AAIJ 13AR1.529 ±0.025 ±0.012 3 AALTONEN 12D CDF Repl. by AALTONEN 12AJ1.487 ±0.060 ±0.028 3 ABAZOV 09E D0 Repl. by ABAZOV 08AM1.52 ±0.04 ±0.02 3 AALTONEN 08J CDF Repl. by AALTONEN 12D1.52 ±0.05 ±0.01 3 ABAZOV 08AMD0 Repl. by ABAZOV 12D1.40 +0.15

−0.13 ±0.02 3 ACOSTA 05 CDF pp at 1.96 TeV1AAIJ 15I reports �B0s = 0.6603 ± 0.0027 ± 0.0015 ps−1 obtained from time-dependentangular analysis of B0s → J/ψK+K− de
ays.2AAD 14U reports �B0s = 0.677 ± 0.007 ± 0.004 ps−1 measured using a tagged, time-dependent angular analysis of B0s → J/ψφ de
ays.3Measured using the time-dependent angular analysis of B0s → J/ψφ de
ays.4The error in
ludes both statisti
al and systemati
 un
ertainties.5AAIJ 13AR reports �s = 0.661±0.004±0.006 ps−1 obtained from 
ombined �t to B0s →J/ψK+K− and B0s → J/ψπ+ π− data sets. Also reports a separate measurement of�s = 0.663 ± 0.005 ± 0.006 ps−1 from B0s → J/ψK+K− de
ays.6AAD 12CV reports �B0s = 0.677± 0.007± 0.004 ps−1 measured using a time-dependentangular analysis of B0s → J/ψφ de
ays.7AAIJ 12D reports average dea
y width of B0s , �B0s = 0.657 ± 0.009 ± 0.008 ps−1 thatwe 
onverted to 1/�B0s .
WEIGHTED AVERAGE
1.509±0.010 (Error scaled by 1.5)

ABAZOV 12D D0
AALTONEN 12AJ CDF 0.8
AAD 14U ATLS 3.4
AAIJ 15I LHCB 0.6

χ2

       4.8
(Confidence Level = 0.093)

1.35 1.4 1.45 1.5 1.55 1.6 1.651 / �B0s (10−12 s) B0s DECAY MODESB0s DECAY MODESB0s DECAY MODESB0s DECAY MODESThese bran
hing fra
tions all s
ale with B(b → B0s ).The bran
hing fra
tion B(B0s → D−s ℓ+ νℓanything) is not a pure mea-surement sin
e the measured produ
t bran
hing fra
tion B(b → B0s ) ×B(B0s → D−s ℓ+ νℓ anything) was used to determine B(b → B0s ), asdes
ribed in the note on \B0-B0 Mixing"For in
lusive bran
hing fra
tions, e.g., B → D± anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one.



1336133613361336MesonParti
le ListingsB0s S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 D−s anything (93 ±25 ) %�2 ℓνℓX ( 9.6 ± 0.8 ) %�3 e+νX− ( 9.1 ± 0.8 ) %�4 µ+νX− (10.2 ± 1.0 ) %�5 D−s ℓ+νℓ anything [a℄ ( 8.1 ± 1.3 ) %�6 D∗−s ℓ+νℓ anything ( 5.4 ± 1.1 ) %�7 Ds1(2536)−µ+ νµ,D−s1 → D∗−K0S ( 2.6 ± 0.7 )× 10−3�8 Ds1(2536)−X µ+ν,D−s1 → D0K+ ( 4.4 ± 1.3 )× 10−3�9 Ds2(2573)−X µ+ν,D−s2 → D0K+ ( 2.7 ± 1.0 )× 10−3�10 D−s π+ ( 3.00± 0.23)× 10−3�11 D−s ρ+ ( 6.9 ± 1.4 )× 10−3�12 D−s π+π+π− ( 6.1 ± 1.0 )× 10−3�13 Ds1(2536)−π+,D−s1 → D−s π+π−
( 2.5 ± 0.8 )× 10−5�14 D∓s K± ( 2.27± 0.19)× 10−4�15 D−s K+π+π− ( 3.2 ± 0.6 )× 10−4�16 D+s D−s ( 4.4 ± 0.5 )× 10−3�17 D−s D+ ( 2.8 ± 0.5 )× 10−4�18 D+D− ( 2.2 ± 0.6 )× 10−4�19 D0D0 ( 1.9 ± 0.5 )× 10−4�20 D∗−s π+ ( 2.0 ± 0.5 )× 10−3�21 D∗∓s K± ( 1.33± 0.35)× 10−4�22 D∗−s ρ+ ( 9.6 ± 2.1 )× 10−3�23 D∗+s D−s + D∗−s D+s ( 1.29± 0.22) % S=1.1�24 D∗+s D∗−s ( 1.86± 0.30) %�25 D(∗)+s D(∗)−s ( 4.5 ± 1.4 ) %�26 D0K−π+ ( 1.03± 0.13)× 10−3�27 D0K∗(892)0 ( 4.4 ± 0.6 )× 10−4�28 D0K∗(1410) ( 3.9 ± 3.5 )× 10−4�29 D0K∗0(1430) ( 3.0 ± 0.7 )× 10−4�30 D0K∗2(1430) ( 1.1 ± 0.4 )× 10−4�31 D0K∗(1680) < 7.8 × 10−5 CL=90%�32 D0K∗0(1950) < 1.1 × 10−4 CL=90%�33 D0K∗3(1780) < 2.6 × 10−5 CL=90%�34 D0K∗4(2045) < 3.1 × 10−5 CL=90%�35 D0K−π+ (non-resonant) ( 2.1 ± 0.8 )× 10−4�36 D∗s2(2573)−π+,D∗s2 → D0K−
( 2.6 ± 0.4 )× 10−4�37 D∗s1(2700)−π+,D∗s1 → D0K−
( 1.6 ± 0.8 )× 10−5�38 D∗s1(2860)−π+,D∗s1 → D0K−
( 5 ± 4 )× 10−5�39 D∗s3(2860)−π+,D∗s3 → D0K−
( 2.2 ± 0.6 )× 10−5�40 D0K+K− ( 4.4 ± 2.0 )× 10−5�41 D0 f0(980) < 3.1 × 10−6 CL=90%�42 D0φ ( 3.0 ± 0.8 )× 10−5�43 D∗∓π± < 6.1 × 10−6 CL=90%�44 J/ψ(1S)φ ( 1.07± 0.08)× 10−3�45 J/ψ(1S)π0 < 1.2 × 10−3 CL=90%�46 J/ψ(1S)η ( 3.9 ± 0.7 )× 10−4 S=1.4�47 J/ψ(1S)K0S ( 1.89± 0.12)× 10−5�48 J/ψ(1S)K∗(892)0 ( 4.1 ± 0.4 )× 10−5�49 J/ψ(1S)η′ ( 3.3 ± 0.4 )× 10−4�50 J/ψ(1S)π+π− ( 2.13± 0.18)× 10−4�51 J/ψ(1S) f0(500), f0 →

π+π−
< 1.7 × 10−6 CL=90%�52 J/ψ(1S)ρ, ρ →

π+π−
< 1.2 × 10−6 CL=90%�53 J/ψ(1S) f0(980), f0 →

π+π−
( 1.34± 0.15)× 10−4�54 J/ψ(1S) f0(980)0,f0 → π+π−
( 5.1 ± 0.9 )× 10−5

�55 J/ψ(1S) f2(1270),f2 → π+π−�56 J/ψ(1S) f2(1270)0,f2 → π+π−
( 2.6 ± 0.7 )× 10−7�57 J/ψ(1S) f2(1270)‖,f2 → π+π−
( 3.8 ± 1.3 )× 10−7�58 J/ψ(1S) f2(1270)⊥,f2 → π+π−
( 4.6 ± 2.7 )× 10−7�59 J/ψ(1S) f0(1370),f0 → π+π−�60 J/ψ(1S) f0(1500),f0 → π+π−
( 7.3 + 1.6

− 1.4 )× 10−6�61 J/ψ(1S) f ′2(1525)0,f ′2 → π+π−
( 3.7 ± 1.0 )× 10−7�62 J/ψ(1S) f ′2(1525)‖,f ′2 → π+π−
( 4.3 + 9.0

− 3.1 )× 10−8�63 J/ψ(1S) f ′2(1525)⊥,f ′2 → π+π−
( 1.9 ± 1.4 )× 10−7�64 J/ψ(1S) f0(1790),f0 → π+π−
( 1.7 + 4.0

− 0.4 )× 10−6�65 J/ψ(1S)π+π− (nonres-onant)�66 J/ψ(1S)K0π+π− < 4.4 × 10−5 CL=90%�67 J/ψ(1S)K+K− ( 7.9 ± 0.7 )× 10−4�68 J/ψ(1S)K0K−π++ 
.
. ( 9.3 ± 1.3 )× 10−4�69 J/ψ(1S)K0K+K− < 1.2 × 10−5 CL=90%�70 J/ψ(1S) f ′2(1525) ( 2.6 ± 0.6 )× 10−4�71 J/ψ(1S)pp < 4.8 × 10−6 CL=90%�72 J/ψ(1S)γ < 7.3 × 10−6 CL=90%�73 J/ψ(1S)π+π−π+π− ( 7.9 ± 0.9 )× 10−5�74 J/ψ(1S) f1(1285) ( 7.1 ± 1.4 )× 10−5�75 ψ(2S)η ( 3.3 ± 0.9 )× 10−4�76 ψ(2S)η′ ( 1.29± 0.35)× 10−4�77 ψ(2S)π+π− ( 7.2 ± 1.2 )× 10−5�78 ψ(2S)φ ( 5.4 ± 0.5 )× 10−4�79 ψ(2S)K−π+ ( 3.12± 0.30)× 10−5�80 ψ(2S)K∗(892)0 ( 3.3 ± 0.5 )× 10−5�81 χ
1φ ( 2.03± 0.29)× 10−4�82 π+π− ( 7.7 ± 2.0 )× 10−7 S=1.4�83 π0π0 < 2.1 × 10−4 CL=90%�84 ηπ0 < 1.0 × 10−3 CL=90%�85 ηη < 1.5 × 10−3 CL=90%�86 ρ0 ρ0 < 3.20 × 10−4 CL=90%�87 η′ η′ ( 3.3 ± 0.7 )× 10−5�88 φρ0 < 6.17 × 10−4 CL=90%�89 φφ ( 1.87± 0.15)× 10−5�90 π+K− ( 5.6 ± 0.6 )× 10−6�91 K+K− ( 2.52± 0.17)× 10−5�92 K0K0 < 6.6 × 10−5 CL=90%�93 K0π+π− ( 1.5 ± 0.4 )× 10−5�94 K0K±π∓ ( 7.7 ± 1.0 )× 10−5�95 K∗(892)−π+ ( 3.3 ± 1.2 )× 10−6�96 K∗(892)±K∓ ( 1.25± 0.26)× 10−5�97 K0S K∗(892)0+ 
.
. ( 1.6 ± 0.4 )× 10−5�98 K0K+K− < 3.5 × 10−6 CL=90%�99 K∗(892)0 ρ0 < 7.67 × 10−4 CL=90%�100 K∗(892)0K∗(892)0 ( 1.11± 0.27)× 10−5�101 φK∗(892)0 ( 1.14± 0.30)× 10−6�102 pp ( 2.8 + 2.2
− 1.7 )× 10−8�103 �−
 �π+ ( 3.6 ± 1.6 )× 10−4�104 �−
 �+
 < 8.0 × 10−5 CL=95%�105 γ γ B1 < 3.1 × 10−6 CL=90%�106 φγ ( 3.52± 0.34)× 10−5Lepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes orLepton Family number (LF ) violating modes or�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�B = 1 weak neutral 
urrent (B1) modes�107 µ+µ− B1 ( 2.9 + 0.7
− 0.6 )× 10−9�108 e+ e− B1 < 2.8 × 10−7 CL=90%�109 µ+µ−µ+µ− B1 < 1.2 × 10−8 CL=90%�110 S P , S → µ+µ−,P → µ+µ−

B1 [b℄ < 1.2 × 10−8 CL=90%



1337133713371337See key on page 601 MesonParti
le ListingsB0s�111 φ(1020)µ+µ− B1 ( 8.2 ± 1.2 )× 10−7�112 π+π−µ+µ− B1 ( 8.4 ± 1.7 )× 10−8�113 φν ν B1 < 5.4 × 10−3 CL=90%�114 e±µ∓ LF [
℄ < 1.1 × 10−8 CL=90%[a℄ Not a pure measurement. See note at head of B0s De
ay Modes.[b℄ Here S and P are the hypotheti
al s
alar and pseudos
alar parti
les withmasses of 2.5 GeV/
2 and 214.3 MeV/
2, respe
tively.[
 ℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 10 bran
hing ratios uses 16 measurements andone 
onstraint to determine 7 parameters. The overall �t has a
χ2 = 3.3 for 10 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x12 28x14 92 25x44 0 0 0x53 0 0 0 62x89 0 0 0 28 17x10 x12 x14 x44 x53B0s BRANCHING RATIOSB0s BRANCHING RATIOSB0s BRANCHING RATIOSB0s BRANCHING RATIOS�(D−s anything)/�total �1/��(D−s anything)/�total �1/��(D−s anything)/�total �1/��(D−s anything)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.93±0.25 OUR AVERAGE0.93±0.25 OUR AVERAGE0.93±0.25 OUR AVERAGE0.93±0.25 OUR AVERAGE0.91±0.18±0.41 1 DRUTSKOY 07 BELL e+ e− → �(4S)0.81±0.24±0.22 90 2 BUSKULIC 96E ALEP e+ e− → Z1.56±0.58±0.44 147 3 ACTON 92N OPAL e+ e− → Z1The extra
tion of this result takes into a

ount the 
orrelation between the measurementsof B(�(5S) → Ds X ) and B(�(5S) → D0X ).2BUSKULIC 96E separate 
 
 and bb sour
es of D+s mesons using a lifetime tag, subtra
tgeneri
 b → W+ → D+s events, and obtain B(b → B0s ) × B(B0s → D−s anything)= 0.088 ± 0.020 ± 0.020 assuming B(Ds → φπ) = (3.5 ± 0.4)× 10−2 and PDG 1994values for the relative partial widths to other Ds 
hannels. We evaluate using our 
urrentvalues B(b → B0s ) = 0.107 ± 0.014 and B(Ds → φπ) = 0.036 ± 0.009. Our �rsterror is their experiment's and our se
ond error is that due to B(b → B0s ) and B(Ds →
φπ).3ACTON 92N assume that ex
ess of 147 ± 48 D0s events over that expe
ted from B0,B+, and 
 
 is all from B0s de
ay. The produ
t bran
hing fra
tion is measured to beB(b → B0s )B(B0s → D−s anything)×B(D−s → φπ−) = (5.9 ± 1.9 ± 1.1) × 10−3.We evaluate using our 
urrent values B(b → B0s ) = 0.107 ± 0.014 and B(Ds → φπ)= 0.036 ± 0.009. Our �rst error is their experiment's and our se
ond error is that dueto B(b → B0s ) and B(Ds → φπ).�(ℓνℓX)/�total �2/��(ℓνℓX)/�total �2/��(ℓνℓX)/�total �2/��(ℓνℓX)/�total �2/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT9.6±0.8 OUR AVERAGE9.6±0.8 OUR AVERAGE9.6±0.8 OUR AVERAGE9.6±0.8 OUR AVERAGE9.6±0.4±0.7 1 OSWALD 13 BELL e+ e− → �(5S)9.5+2.5
−2.0+1.1

−1.9 2 LEES 12A BABR e+ e−1The measurement 
orresponds to the average of the ele
tron and muon bran
hing fra
-tions.2The measurement 
orresponds to a bran
hing fra
tion where the lepton originates frombottom de
ay and is the average between the ele
tron and muon bran
hing fra
tions.LEES 12A uses the 
orrelation of the produ
tion of φ mesons in asso
iation with a leptonin e+ e− data taken at 
enter-of-mass energies between 10.54 and 11.2 GeV.�(e+ νX−)/�total �3/��(e+ νX−)/�total �3/��(e+ νX−)/�total �3/��(e+ νX−)/�total �3/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT9.1±0.5±0.69.1±0.5±0.69.1±0.5±0.69.1±0.5±0.6 OSWALD 13 BELL e+ e− → �(5S)�(µ+νX−)/�total �4/��(µ+νX−)/�total �4/��(µ+νX−)/�total �4/��(µ+νX−)/�total �4/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT10.2±0.6±0.810.2±0.6±0.810.2±0.6±0.810.2±0.6±0.8 OSWALD 13 BELL e+ e− → �(5S)

�(D−s ℓ+νℓ anything)/�total �5/��(D−s ℓ+νℓ anything)/�total �5/��(D−s ℓ+νℓ anything)/�total �5/��(D−s ℓ+νℓ anything)/�total �5/�The values and averages in this se
tion serve only to show what values result if oneassumes our B(b → B0s ). They 
annot be thought of as measurements sin
e theunderlying produ
t bran
hing fra
tions were also used to determine B(b → B0s ) asdes
ribed in the note on \Produ
tion and De
ay of b-Flavored Hadrons."VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT8.1±1.3 OUR AVERAGE8.1±1.3 OUR AVERAGE8.1±1.3 OUR AVERAGE8.1±1.3 OUR AVERAGE8.2±0.2±1.5 1 OSWALD 15 BELL e+ e− → �(5S)7.6±1.2±2.1 134 2 BUSKULIC 95O ALEP e+ e− → Z10.7±4.3±2.9 3 ABREU 92M DLPH e+ e− → Z10.3±3.6±2.8 18 4 ACTON 92N OPAL e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •13 ±4 ±4 27 5 BUSKULIC 92E ALEP e+ e− → Z1Obtains Bs → Ds X e ν, and Ds X µν separately, then 
ombines them by assumingsystemati
 un
ertainties are fully 
orrelated, ex
ept for the one on lepton identi�
ation.The third un
ertainty adds in quadrature systemati
 un
ertainties from external sour
es(number of Bs events, and D(∗)s bran
hing fra
tions). OSWALD 15 also measures the
ross-se
tion σ(e+ e− → B(∗)s B(∗)s ) = 53.8 ± 1.4 ± 5.3 pb at √s = 10.86 GeV.2BUSKULIC 95O use Ds ℓ 
orrelations. The measured produ
t bran
hing ratio is B(b →Bs ) × B(Bs → D−s ℓ+ νℓ anything) = (0.82 ± 0.09+0.13

−0.14)% assuming B(Ds → φπ)= (3.5 ± 0.4) × 10−2 and PDG 1994 values for the relative partial widths to the sixother Ds 
hannels used in this analysis. Combined with results from �(4S) experimentsthis 
an be used to extra
t B(b → Bs ) = (11.0 ± 1.2+2.5
−2.6)%. We evaluate using our
urrent values B(b → B0s ) = 0.107 ± 0.014 and B(Ds → φπ) = 0.036 ± 0.009. Our�rst error is their experiment's and our se
ond error is that due to B(b → B0s ) andB(Ds → φπ).3ABREU 92M measured muons only and obtained produ
t bran
hing ratio B(Z → borb) × B(b → Bs ) × B(Bs → Ds µ+ νµ anything) × B(Ds → φπ) = (18± 8)×10−5.We evaluate using our 
urrent values B(b → B0s ) = 0.107 ± 0.014 and B(Ds → φπ)= 0.036 ± 0.009. Our �rst error is their experiment's and our se
ond error is that dueto B(b → B0s ) and B(Ds → φπ). We use B(Z → bor b) = 2B(Z → bb) =2×(0.2212 ± 0.0019).4ACTON 92N is measured using Ds → φπ+ and K∗(892)0K+ events. The produ
tbran
hing fra
tion measured is measured to be B(b → B0s )B(B0s → D−s ℓ+νℓ anything)

×B(D−s → φπ−) = (3.9 ± 1.1 ± 0.8) × 10−4. We evaluate using our 
urrent valuesB(b → B0s ) = 0.107 ± 0.014 and B(Ds → φπ) = 0.036 ± 0.009. Our �rst error istheir experiment's and our se
ond error is that due to B(b → B0s ) and B(Ds → φπ).5BUSKULIC 92E is measured using Ds → φπ+ and K∗(892)0K+ events. They use2.7 ± 0.7% for the φπ+ bran
hing fra
tion. The average produ
t bran
hing fra
tion ismeasured to be B(b → B0s )B(B0s → D−s ℓ+ νℓ anything) =0.020 ± 0.0055+0.005
−0.006.We evaluate using our 
urrent values B(b → B0s ) = 0.107 ± 0.014 and B(Ds → φπ)= 0.036 ± 0.009. Our �rst error is their experiment's and our se
ond error is that dueto B(b → B0s ) and B(Ds → φπ). Superseded by BUSKULIC 95O.�(D∗−s ℓ+νℓ anything)/�total �6/��(D∗−s ℓ+νℓ anything)/�total �6/��(D∗−s ℓ+νℓ anything)/�total �6/��(D∗−s ℓ+νℓ anything)/�total �6/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT5.4±0.4±1.05.4±0.4±1.05.4±0.4±1.05.4±0.4±1.0 1 OSWALD 15 BELL e+ e− → �(5S)1Obtains Bs → D∗s X e ν, and D∗s X µν separately, then 
ombines them by assumingsystemati
 un
ertainties are fully 
orrelated, ex
ept for the one on lepton identi�
ation.The third un
ertainty adds in quadrature systemati
 un
ertainties from external sour
es(number of Bs events, and D(∗)s bran
hing fra
tions). OSWALD 15 also measures the
ross-se
tion σ(e+ e− → B(∗)s B(∗)s ) = 53.8 ± 1.4 ± 5.3 pb at √s = 10.86 GeV.�(Ds1(2536)−µ+ νµ, D−s1 → D∗−K0S)/�total �7/��(Ds1(2536)−µ+ νµ, D−s1 → D∗−K0S)/�total �7/��(Ds1(2536)−µ+ νµ, D−s1 → D∗−K0S)/�total �7/��(Ds1(2536)−µ+ νµ, D−s1 → D∗−K0S)/�total �7/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.6±0.7±0.12.6±0.7±0.12.6±0.7±0.12.6±0.7±0.1 1 ABAZOV 09G D0 pp at 1.96 TeV1ABAZOV 09G reports [�(B0s → Ds1(2536)−µ+ νµ, D−s1 → D∗−K0S )/�total℄ ×[B(b → B0s )℄ = (2.66 ± 0.52 ± 0.45)× 10−4 whi
h we divide by our best value B(b →B0s ) = (10.3 ± 0.5) × 10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.�(Ds1(2536)−X µ+ν, D−s1 → D0K+)/�(D−s ℓ+νℓ anything) �8/�5�(Ds1(2536)−X µ+ν, D−s1 → D0K+)/�(D−s ℓ+νℓ anything) �8/�5�(Ds1(2536)−X µ+ν, D−s1 → D0K+)/�(D−s ℓ+νℓ anything) �8/�5�(Ds1(2536)−X µ+ν, D−s1 → D0K+)/�(D−s ℓ+νℓ anything) �8/�5VALUE (units 10−2) DOCUMENT ID TECN COMMENT5.4±1.2±0.55.4±1.2±0.55.4±1.2±0.55.4±1.2±0.5 AAIJ 11A LHCB pp at 7 TeV�(Ds2(2573)−X µ+ν, D−s2 → D0K+)/�(D−s ℓ+νℓ anything) �9/�5�(Ds2(2573)−X µ+ν, D−s2 → D0K+)/�(D−s ℓ+νℓ anything) �9/�5�(Ds2(2573)−X µ+ν, D−s2 → D0K+)/�(D−s ℓ+νℓ anything) �9/�5�(Ds2(2573)−X µ+ν, D−s2 → D0K+)/�(D−s ℓ+νℓ anything) �9/�5VALUE (units 10−2) DOCUMENT ID TECN COMMENT3.3±1.0±0.43.3±1.0±0.43.3±1.0±0.43.3±1.0±0.4 AAIJ 11A LHCB pp at 7 TeV�(Ds1(2536)−X µ+ν, D−s1 → D0K+)/�(Ds2(2573)−X µ+ν, D−s2 →D0K+) �8/�9�(Ds1(2536)−X µ+ν, D−s1 → D0K+)/�(Ds2(2573)−X µ+ν, D−s2 →D0K+) �8/�9�(Ds1(2536)−X µ+ν, D−s1 → D0K+)/�(Ds2(2573)−X µ+ν, D−s2 →D0K+) �8/�9�(Ds1(2536)−X µ+ν, D−s1 → D0K+)/�(Ds2(2573)−X µ+ν, D−s2 →D0K+) �8/�9VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.61±0.14±0.05 1 AAIJ 11A LHCB pp at 7 TeV1Not independent of other AAIJ 11A measurements.



1338133813381338MesonParti
le ListingsB0s�(D−s π+)/�total �10/��(D−s π+)/�total �10/��(D−s π+)/�total �10/��(D−s π+)/�total �10/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.00±0.23 OUR FIT3.00±0.23 OUR FIT3.00±0.23 OUR FIT3.00±0.23 OUR FIT2.99±0.24 OUR AVERAGE2.99±0.24 OUR AVERAGE2.99±0.24 OUR AVERAGE2.99±0.24 OUR AVERAGE2.95±0.05+0.25
−0.28 1 AAIJ 12AG LHCB pp at 7 TeV3.6 ±0.5 ±0.5 2 LOUVOT 09 BELL e+ e− → �(5S)2.8 ±0.6 ±0.1 3 ABULENCIA 07C CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.8 ±2.2 ±1.6 DRUTSKOY 07A BELL Repl. by LOUVOT 093.3 ±1.1 ±0.2 4 ABULENCIA 06J CDF Repl. by ABULENCIA 07C
<130 6 5 AKERS 94J OPAL e+ e− → Zseen 1 BUSKULIC 93G ALEP e+ e− → Z1AAIJ 12AG reports (2.95 ± 0.05 ± 0.17+0.18

−0.22)×10−3 where the last un
ertainty 
omesfrom the semileptoni
 fs/fd measurement. We 
ombined the systemati
s in quadrature.2 LOUVOT 09 reports (3.67+0.35
−0.33+0.65

−0.645) × 10−3 from a measurement of [�(B0s →D−s π+)/�total℄ × [B(�(10860) → B(∗)s B(∗)s )℄ assuming B(�(10860) → B(∗)s B(∗)s )= (19.5 ± 2.6)× 10−2, whi
h we res
ale to our best value B(�(10860) → B(∗)s B(∗)s )= (20.1 ± 3.1)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.3ABULENCIA 07C reports [�(B0s → D−s π+)/�total℄ / [B(B0 → D−π+)℄ = 1.13 ±0.08 ± 0.23 whi
h we multiply by our best value B(B0 → D−π+) = (2.52 ± 0.13)×10−3. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.4ABULENCIA 06J reports [�(B0s → D−s π+)/�total℄ / [B(B0 → D−π+)℄ = 1.32 ±0.18 ± 0.38 whi
h we multiply by our best value B(B0 → D−π+) = (2.52 ± 0.13)×10−3. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.5AKERS 94J sees ≤ 6 events and measures the limit on the produ
t bran
hing fra
tionf (b → B0s )·B(B0s → D−s π+) < 1.3% at CL = 90%. We divide by our 
urrent valueB(b → B0s ) = 0.105.�(D−s ρ+)/�total �11/��(D−s ρ+)/�total �11/��(D−s ρ+)/�total �11/��(D−s ρ+)/�total �11/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT6.9±1.3±0.56.9±1.3±0.56.9±1.3±0.56.9±1.3±0.5 1 LOUVOT 10 BELL e+ e− → �(5S)1 LOUVOT 10 reports [�(B0s → D−s ρ+)/�total℄ / [B(B0s → D−s π+)℄ = 2.3± 0.4± 0.2whi
h we multiply by our best value B(B0s → D−s π+) = (3.00 ± 0.23) × 10−3. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.�(D−s π+π+π−)/�total �12/��(D−s π+π+π−)/�total �12/��(D−s π+π+π−)/�total �12/��(D−s π+π+π−)/�total �12/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT6.1±1.0 OUR FIT6.1±1.0 OUR FIT6.1±1.0 OUR FIT6.1±1.0 OUR FIT6.3±1.5±0.76.3±1.5±0.76.3±1.5±0.76.3±1.5±0.7 1 ABULENCIA 07C CDF pp at 1.96 TeV1ABULENCIA 07C reports [�(B0s → D−s π+π+π−
)/�total℄ / [B(B0 →D−π+π+π−)℄ = 1.05 ± 0.10 ± 0.22 whi
h we multiply by our best value B(B0 →D−π+π+π−) = (6.0 ± 0.7) × 10−3. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.�(D−s π+π+π−)/�(D−s π+) �12/�10�(D−s π+π+π−)/�(D−s π+) �12/�10�(D−s π+π+π−)/�(D−s π+) �12/�10�(D−s π+π+π−)/�(D−s π+) �12/�10VALUE DOCUMENT ID TECN COMMENT2.05±0.34 OUR FIT2.05±0.34 OUR FIT2.05±0.34 OUR FIT2.05±0.34 OUR FIT2.01±0.37±0.202.01±0.37±0.202.01±0.37±0.202.01±0.37±0.20 AAIJ 11E LHCB pp at 7 TeV�(Ds1(2536)−π+, D−s1 → D−s π+π−)/�(D−s π+π+π−) �13/�12�(Ds1(2536)−π+, D−s1 → D−s π+π−)/�(D−s π+π+π−) �13/�12�(Ds1(2536)−π+, D−s1 → D−s π+π−)/�(D−s π+π+π−) �13/�12�(Ds1(2536)−π+, D−s1 → D−s π+π−)/�(D−s π+π+π−) �13/�12VALUE (units 10−3) DOCUMENT ID TECN COMMENT4.0±1.0±0.44.0±1.0±0.44.0±1.0±0.44.0±1.0±0.4 AAIJ 12AX LHCB pp at 7 TeV�(D∓s K±)/�total �14/��(D∓s K±)/�total �14/��(D∓s K±)/�total �14/��(D∓s K±)/�total �14/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.27±0.19 OUR FIT2.27±0.19 OUR FIT2.27±0.19 OUR FIT2.27±0.19 OUR FIT2.3 +1.2

−1.0 +0.4
−0.32.3 +1.2

−1.0 +0.4
−0.32.3 +1.2

−1.0 +0.4
−0.32.3 +1.2

−1.0 +0.4
−0.3 1 LOUVOT 09 BELL e+ e− → �(5S)1 LOUVOT 09 reports (2.4+1.2

−1.0 ± 0.42) × 10−4 from a measurement of [�(B0s →D∓s K±)/�total℄ × [B(�(10860) → B(∗)s B(∗)s )℄ assuming B(�(10860) → B(∗)s B(∗)s )= (19.5 ± 2.6)× 10−2, whi
h we res
ale to our best value B(�(10860) → B(∗)s B(∗)s )= (20.1 ± 3.1)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(D∓s K±)/�(D−s π+) �14/�10�(D∓s K±)/�(D−s π+) �14/�10�(D∓s K±)/�(D−s π+) �14/�10�(D∓s K±)/�(D−s π+) �14/�10VALUE (units 10−2) DOCUMENT ID TECN COMMENT7.55±0.24 OUR FIT7.55±0.24 OUR FIT7.55±0.24 OUR FIT7.55±0.24 OUR FIT7.55±0.24 OUR AVERAGE7.55±0.24 OUR AVERAGE7.55±0.24 OUR AVERAGE7.55±0.24 OUR AVERAGE7.52±0.15±0.19 AAIJ 15AC LHCB pp at 7, 8 TeV9.7 ±1.8 ±0.9 AALTONEN 09AQ CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.46±0.43±0.25 AAIJ 12AG LHCB Repl. by AAIJ 15AC

�(D−s K+π+π−)/�(D−s π+π+π−) �15/�12�(D−s K+π+π−)/�(D−s π+π+π−) �15/�12�(D−s K+π+π−)/�(D−s π+π+π−) �15/�12�(D−s K+π+π−)/�(D−s π+π+π−) �15/�12VALUE (units 10−2) DOCUMENT ID TECN COMMENT5.2±0.5±0.35.2±0.5±0.35.2±0.5±0.35.2±0.5±0.3 AAIJ 12AX LHCB pp at 7 TeV�(D+s D−s )/�total �16/��(D+s D−s )/�total �16/��(D+s D−s )/�total �16/��(D+s D−s )/�total �16/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT4.4±0.5 OUR AVERAGE4.4±0.5 OUR AVERAGE4.4±0.5 OUR AVERAGE4.4±0.5 OUR AVERAGE4.0±0.2±0.5 1 AAIJ 13AP LHCB pp at 7 TeV5.8+1.1
−0.9±1.3 2 ESEN 13 BELL e+ e− → �(5S)5.1±0.8±0.6 3 AALTONEN 12C CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •10.3+3.9
−3.2+2.6

−2.5 4 ESEN 10 BELL Repl. by ESEN 1310.4+3.5
−3.2±1.1 5 AALTONEN 08F CDF Repl. by AALTONEN 12C

<67 90 DRUTSKOY 07A BELL Repl. by ESEN 101Uses B(B0 → D−D+s ) = (7.2 ± 0.8)× 10−3.2Use �(5S) → B∗s B∗s de
ays assuming B(�(5S) → B∗s B∗s ) = (17.1 ± 3.0)% and�(�(5S) → B∗s B∗s ) / �(�(5S) → B(∗)s B(∗)s ) = (87.0 ± 1.7)%.3AALTONEN 12C reports (fs/fd ) (B(B0s → D+s D−s ) / B(B0 → D−D+s )) = 0.183 ±0.021 ± 0.017. We multiply this result by our best value of B(B0 → D−D+s ) = (7.2 ±0.8) × 10−3 and divide by our best value of fs/fd , where 1/2 fs/fd = 0.130 ± 0.008.Our �rst quoted un
ertainty is the 
ombined experiment's un
ertainty and our se
ond isthe systemati
 un
ertainty from using out best values.4Uses �(10860) → B∗s B∗s assuming B(�(10860) → B(∗)s B(∗)s ) = (19.3 ± 2.9)% and�(�(10860) → B∗s B∗s ) / �(�(10860) → B(∗)s B(∗)s ) = (90.1+3.8
−4.0)%.5AALTONEN 08F reports [�(B0s → D+s D−s )/�total℄ / [B(B0 → D−D+s )℄ =1.44+0.48

−0.44 whi
h we multiply by our best value B(B0 → D−D+s ) = (7.2±0.8)×10−3.Our �rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.�(D−s D+)/�total �17/��(D−s D+)/�total �17/��(D−s D+)/�total �17/��(D−s D+)/�total �17/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.8±0.4±0.32.8±0.4±0.32.8±0.4±0.32.8±0.4±0.3 1 AAIJ 14AA LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.6±0.6±0.5 2 AAIJ 13AP LHCB Repl. by AAIJ 14AA1AAIJ 14AA reports [�(B0s → D−s D+)/�total℄ / [B(B0 → D−D+s )℄ = 0.038± 0.004±0.003 whi
h we multiply by our best value B(B0 → D−D+s ) = (7.2 ± 0.8) × 10−3.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value..2Uses B(B0 → D−D+s ) = (7.2 ± 0.8)× 10−3.�(D+D−)/�total �18/��(D+D−)/�total �18/��(D+D−)/�total �18/��(D+D−)/�total �18/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.2±0.4±0.42.2±0.4±0.42.2±0.4±0.42.2±0.4±0.4 1 AAIJ 13AP LHCB pp at 7 TeV1Uses B(B0 → D−D+) = (2.11 ± 0.31) × 10−4 and B(B+ → D0D+s ) = (10.1 ±1.7) × 10−3.�(D0D0)/�total �19/��(D0D0)/�total �19/��(D0D0)/�total �19/��(D0D0)/�total �19/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.9±0.3±0.41.9±0.3±0.41.9±0.3±0.41.9±0.3±0.4 1 AAIJ 13AP LHCB pp at 7 TeV1Uses B(B0 → D−D+) = (2.11 ± 0.31) × 10−4 and B(B+ → D0D+s ) = (10.1 ±1.7) × 10−3.�(D∗−s π+)/�total �20/��(D∗−s π+)/�total �20/��(D∗−s π+)/�total �20/��(D∗−s π+)/�total �20/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.0+0.5

−0.4+0.1
−0.22.0+0.5

−0.4+0.1
−0.22.0+0.5

−0.4+0.1
−0.22.0+0.5

−0.4+0.1
−0.2 1 LOUVOT 10 BELL e+ e− → �(5S)1 LOUVOT 10 reports [�(B0s → D∗−s π+)/�total℄ / [B(B0s → D−s π+)℄ = 0.65+0.15

−0.13±0.07 whi
h we multiply by our best value B(B0s → D−s π+) = (3.00 ± 0.23) × 10−3.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.�(D∗∓s K±)/�(D∗−s π+) �21/�20�(D∗∓s K±)/�(D∗−s π+) �21/�20�(D∗∓s K±)/�(D∗−s π+) �21/�20�(D∗∓s K±)/�(D∗−s π+) �21/�20VALUE DOCUMENT ID TECN COMMENT0.068±0.005+0.003
−0.0020.068±0.005+0.003
−0.0020.068±0.005+0.003
−0.0020.068±0.005+0.003
−0.002 AAIJ 15AD LHCB pp at 7, 8 TeV�(D∗−s ρ+)/�total �22/��(D∗−s ρ+)/�total �22/��(D∗−s ρ+)/�total �22/��(D∗−s ρ+)/�total �22/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT9.6±2.0±0.79.6±2.0±0.79.6±2.0±0.79.6±2.0±0.7 1 LOUVOT 10 BELL e+ e− → �(5S)1 LOUVOT 10 reports [�(B0s → D∗−s ρ+)/�total℄ / [B(B0s → D−s π+)℄ = 3.2±0.6±0.3whi
h we multiply by our best value B(B0s → D−s π+) = (3.00 ± 0.23) × 10−3. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.



1339133913391339See key on page 601 MesonParti
le ListingsB0s�(D∗−s ρ+)/�(D−s ρ+) �22/�11�(D∗−s ρ+)/�(D−s ρ+) �22/�11�(D∗−s ρ+)/�(D−s ρ+) �22/�11�(D∗−s ρ+)/�(D−s ρ+) �22/�11VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.4±0.3±0.1 LOUVOT 10 BELL e+ e− → �(5S)
[�(D∗+s D−s ) +�(D∗−s D+s )

]/�total �23/�[�(D∗+s D−s ) +�(D∗−s D+s )
]/�total �23/�[�(D∗+s D−s ) +�(D∗−s D+s )
]/�total �23/�[�(D∗+s D−s ) +�(D∗−s D+s )
]/�total �23/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT12.9±2.2 OUR AVERAGE12.9±2.2 OUR AVERAGE12.9±2.2 OUR AVERAGE12.9±2.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.17.6+2.3

−2.2±4.0 1 ESEN 13 BELL e+ e− → �(5S)11.8±1.6±1.4 2 AALTONEN 12C CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •27.5+8.3

−7.1±6.9 3 ESEN 10 BELL Repl. by ESEN 13
<121 90 DRUTSKOY 07A BELL Repl. by ESEN 101Use �(5S) → B∗s B∗s de
ays assuming B(�(5S) → B∗s B∗s ) = (17.1 ± 3.0)% and�(�(5S) → B∗s B∗s ) / �(�(5S) → B(∗)s B(∗)s ) = (87.0 ± 1.7)%.2AALTONEN 12C reports (fs/fd ) (B(B0s → D∗+s D−s + D∗−s D+s ) / B(B0 →D−D+s )) = 0.424 ± 0.046 ± 0.035. We multiply this result by our best value ofB(B0 → D−D+s ) = (7.2 ± 0.8)× 10−3 and divide by our best value of fs/fd , where1/2 fs/fd = 0.130 ± 0.008. Our �rst quoted un
ertainty is the 
ombined experiment'sun
ertainty and our se
ond is the systemati
 un
ertainty from using out best values.3Uses �(10860) → B∗s B∗s assuming B(�(10860) → B(∗)s B(∗)s ) = (19.3 ± 2.9)% and�(�(10860) → B∗s B∗s ) / �(�(10860) → B(∗)s B(∗)s ) = (90.1+3.8

−4.0)%.�(D∗+s D∗−s )/�total �24/��(D∗+s D∗−s )/�total �24/��(D∗+s D∗−s )/�total �24/��(D∗+s D∗−s )/�total �24/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT18.6± 3.0 OUR AVERAGE18.6± 3.0 OUR AVERAGE18.6± 3.0 OUR AVERAGE18.6± 3.0 OUR AVERAGE19.8+ 3.3
− 3.1+5.2

−5.0 1 ESEN 13 BELL e+ e− → �(5S)18.2± 2.7±2.2 2 AALTONEN 12C CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •30.8+12.2

−10.4+8.5
−8.6 3 ESEN 10 BELL Repl. by ESEN 13

<257 90 DRUTSKOY 07A BELL Repl. by ESEN 101Use �(5S) → B∗s B∗s de
ays assuming B(�(5S) → B∗s B∗s ) = (17.1 ± 3.0)% and�(�(5S) → B∗s B∗s ) / �(�(5S) → B(∗)s B(∗)s ) = (87.0 ± 1.7)%.2AALTONEN 12C reports (fs/fd ) (B(B0s → D∗+s D∗−s ) / B(B0 → D−D+s )) = 0.654±0.072 ± 0.065. We multiply this result by our best value of B(B0 → D−D+s ) = (7.2 ±0.8) × 10−3 and divide by our best value of fs/fd , where 1/2 fs/fd = 0.130 ± 0.008.Our �rst quoted un
ertainty is the 
ombined experiment's un
ertainty and our se
ond isthe systemati
 un
ertainty from using out best values.3Uses �(10860) → B∗s B∗s assuming B(�(10860) → B(∗)s B(∗)s ) = (19.3 ± 2.9)% and�(�(10860) → B∗s B∗s ) / �(�(10860) → B(∗)s B(∗)s ) = (90.1+3.8
−4.0)%.�(D(∗)+s D(∗)−s )/�total �25/��(D(∗)+s D(∗)−s )/�total �25/��(D(∗)+s D(∗)−s )/�total �25/��(D(∗)+s D(∗)−s )/�total �25/�\OUR EVALUATION" is an average using res
aled values of the data listed below.The average and res
aling were performed by the Heavy Flavor Averaging Group(HFAG) and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The aver-aging/res
aling pro
edure takes into a

ount 
orrelations between the measurements.VALUE (%) CL% DOCUMENT ID TECN COMMENT4.5 ±1.4 OUR EVALUATION4.5 ±1.4 OUR EVALUATION4.5 ±1.4 OUR EVALUATION4.5 ±1.4 OUR EVALUATION3.7 ±0.5 OUR AVERAGE3.7 ±0.5 OUR AVERAGE3.7 ±0.5 OUR AVERAGE3.7 ±0.5 OUR AVERAGE4.32+0.42

−0.39+1.04
−1.03 1 ESEN 13 BELL e+ e− → �(5S)3.5 ±0.4 ±0.4 2 AALTONEN 12C CDF pp at 1.96 TeV3.5 ±1.0 ±1.1 3 ABAZOV 09I D0 pp at 1.96 TeV14 ±6 ±3 4,5 BARATE 00K ALEP e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.85+1.53
−1.30+1.79

−1.80 6,7 ESEN 10 BELL Repl. by ESEN 133.9 +1.9
−1.7 +1.6

−1.5 3 ABAZOV 07Y D0 Repl. by ABAZOV 09I
<0.218 90 BARATE 98Q ALEP e+ e− → Z1Use �(5S) → B∗s B∗s de
ays assuming B(�(5S) → B∗s B∗s ) = (17.1 ± 3.0)% and�(�(5S) → B∗s B∗s ) / �(�(5S) → B(∗)s B(∗)s ) = (87.0 ± 1.7)%.2AALTONEN 12C reports (fs/fd ) (B(B0s → D(∗)+s D(∗)−s ) / B(B0 → D−D+s )) =1.261 ± 0.095 ± 0.112. We multiply this result by our best value of B(B0 → D−D+s )= (7.2 ± 0.8)×10−3 and divide by our best value of fs/fd , where 1/2 fs/fd = 0.130 ±0.008. Our �rst quoted un
ertainty is the 
ombined experiment's un
ertainty and ourse
ond is the systemati
 un
ertainty from using out best values.3Uses the �nal states where D+s → φπ+ and D−s → φµ− νµ.4Reports B(B0s (short) → D(∗)s D(∗)s ) = (0.23 ± 0.10 ± 0.05) · [0.17/B(Ds → φχ)℄2assuming B(B0s → B0s (short)) = 50%. We use our best value of B(Ds → φχ) =15.7 ± 1.0% to obtain the quoted result.5Uses φφ 
orrelations from B0s (short) → D(∗)+s D(∗)−s .6 Sum of ex
lusive Bs → D+s D−s , Bs → D∗±s D∓s and Bs → D∗+s D∗−s .7Uses �(10860) → B∗s B∗s assuming B(�(10860) → B(∗)s B(∗)s ) = (19.3 ± 2.9)% and�(�(10860) → B∗s B∗s ) / �(�(10860) → B(∗)s B(∗)s ) = (90.1+3.8

−4.0)%.

�(D0K−π+)/�total �26/��(D0K−π+)/�total �26/��(D0K−π+)/�total �26/��(D0K−π+)/�total �26/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT10.4±1.1±0.510.4±1.1±0.510.4±1.1±0.510.4±1.1±0.5 1 AAIJ 13AQ LHCB pp at 7 TeV1AAIJ 13AQ reports [�(B0s → D0K−π+)/�total℄ / [B(B0 → D0π+π−)℄ = 1.18 ±0.05 ± 0.12 whi
h we multiply by our best value B(B0 → D0π+π−) = (8.8 ± 0.5)×10−4. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.�(D0K∗(892)0)/�total �27/��(D0K∗(892)0)/�total �27/��(D0K∗(892)0)/�total �27/��(D0K∗(892)0)/�total �27/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.4 ±0.6 OUR AVERAGE4.4 ±0.6 OUR AVERAGE4.4 ±0.6 OUR AVERAGE4.4 ±0.6 OUR AVERAGE4.29±0.09±0.65 1 AAIJ 14BH LHCB pp at 7, 8 TeV4.7 ±1.2 ±0.3 2 AAIJ 11D LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.5 ±0.4 ±0.4 3 AAIJ 13BX LHCB Repl. by AAIJ 14BH1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays.2AAIJ 11D reports [�(B0s → D0K∗(892)0)/�total℄ / [B(B0 → D0 ρ0)℄ = 1.48± 0.34±0.19 whi
h we multiply by our best value B(B0 → D0 ρ0) = (3.21 ± 0.21) × 10−4.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.3AAIJ 13BX reports [�(B0s → D0K∗(892)0)/�total℄ / [B(B0 → D0K∗(892)0)℄ =7.8 ± 0.7 ± 0.3 ± 0.6 whi
h we multiply by our best value B(B0 → D0K∗(892)0) =(4.5 ± 0.6) × 10−5. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(D0K∗(1410))/�total �28/��(D0K∗(1410))/�total �28/��(D0K∗(1410))/�total �28/��(D0K∗(1410))/�total �28/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT38.6±11.4±33.338.6±11.4±33.338.6±11.4±33.338.6±11.4±33.3 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays.�(D0K∗0(1430))/�total �29/��(D0K∗0(1430))/�total �29/��(D0K∗0(1430))/�total �29/��(D0K∗0(1430))/�total �29/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT30.0±2.4±6.830.0±2.4±6.830.0±2.4±6.830.0±2.4±6.8 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays. Corresponds to the resonantK∗0(1430) part of LASS parametrisation.�(D0K∗2(1430))/�total �30/��(D0K∗2(1430))/�total �30/��(D0K∗2(1430))/�total �30/��(D0K∗2(1430))/�total �30/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT11.1±1.8±3.811.1±1.8±3.811.1±1.8±3.811.1±1.8±3.8 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays.�(D0K∗(1680))/�total �31/��(D0K∗(1680))/�total �31/��(D0K∗(1680))/�total �31/��(D0K∗(1680))/�total �31/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<7.8<7.8<7.8<7.8 90 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays.�(D0K∗0(1950))/�total �32/��(D0K∗0(1950))/�total �32/��(D0K∗0(1950))/�total �32/��(D0K∗0(1950))/�total �32/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<11<11<11<11 90 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays.�(D0K∗3(1780))/�total �33/��(D0K∗3(1780))/�total �33/��(D0K∗3(1780))/�total �33/��(D0K∗3(1780))/�total �33/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<2.6<2.6<2.6<2.6 90 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays.�(D0K∗4(2045))/�total �34/��(D0K∗4(2045))/�total �34/��(D0K∗4(2045))/�total �34/��(D0K∗4(2045))/�total �34/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<3.1<3.1<3.1<3.1 90 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays.�(D0K−π+ (non-resonant))/�total �35/��(D0K−π+ (non-resonant))/�total �35/��(D0K−π+ (non-resonant))/�total �35/��(D0K−π+ (non-resonant))/�total �35/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT20.6±3.8±7.320.6±3.8±7.320.6±3.8±7.320.6±3.8±7.3 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays. Corresponds to the non-resonantpart of the LASS parametrisation.�(D∗s2(2573)−π+, D∗s2 → D0K−)/�total �36/��(D∗s2(2573)−π+, D∗s2 → D0K−)/�total �36/��(D∗s2(2573)−π+, D∗s2 → D0K−)/�total �36/��(D∗s2(2573)−π+, D∗s2 → D0K−)/�total �36/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT25.7±0.7±4.025.7±0.7±4.025.7±0.7±4.025.7±0.7±4.0 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays.�(D∗s1(2700)−π+, D∗s1 → D0K−)/�total �37/��(D∗s1(2700)−π+, D∗s1 → D0K−)/�total �37/��(D∗s1(2700)−π+, D∗s1 → D0K−)/�total �37/��(D∗s1(2700)−π+, D∗s1 → D0K−)/�total �37/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.6±0.4±0.71.6±0.4±0.71.6±0.4±0.71.6±0.4±0.7 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays.



1340134013401340Meson Parti
le ListingsB0s�(D∗s1(2860)−π+, D∗s1 → D0K−)/�total �38/��(D∗s1(2860)−π+, D∗s1 → D0K−)/�total �38/��(D∗s1(2860)−π+, D∗s1 → D0K−)/�total �38/��(D∗s1(2860)−π+, D∗s1 → D0K−)/�total �38/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT5.0±1.2±3.45.0±1.2±3.45.0±1.2±3.45.0±1.2±3.4 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays.�(D∗s3(2860)−π+, D∗s3 → D0K−)/�total �39/��(D∗s3(2860)−π+, D∗s3 → D0K−)/�total �39/��(D∗s3(2860)−π+, D∗s3 → D0K−)/�total �39/��(D∗s3(2860)−π+, D∗s3 → D0K−)/�total �39/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.2±0.1±0.62.2±0.1±0.62.2±0.1±0.62.2±0.1±0.6 1 AAIJ 14BH LHCB pp at 7, 8 TeV1Uses Dalitz plot analysis of B0s → D0K−π+ de
ays.�(D0K+K−)/�total �40/��(D0K+K−)/�total �40/��(D0K+K−)/�total �40/��(D0K+K−)/�total �40/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.4±1.7±1.14.4±1.7±1.14.4±1.7±1.14.4±1.7±1.1 1,2 AAIJ 12AMLHCB pp at 7 TeV1AAIJ 12AM reports [�(B0s → D0K+K−)/�total℄ / [B(B0 → D0K+K−)℄ = 0.90 ±0.27 ± 0.20 whi
h we multiply by our best value B(B0 → D0K+K−) = (4.9 ± 1.2)×10−5. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.2Uses B(b → B0s )/B(b → B0) = 0.267+0.023
−0.020 measured by the same authors.�(D0 f0(980))/�total �41/��(D0 f0(980))/�total �41/��(D0 f0(980))/�total �41/��(D0 f0(980))/�total �41/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.1× 10−6<3.1× 10−6<3.1× 10−6<3.1× 10−6 90 AAIJ 15AG LHCB pp at 7, 8 TeV�(D0φ
)/�(D0K∗(892)0) �42/�27�(D0φ
)/�(D0K∗(892)0) �42/�27�(D0φ
)/�(D0K∗(892)0) �42/�27�(D0φ
)/�(D0K∗(892)0) �42/�27VALUE DOCUMENT ID TECN COMMENT0.069±0.013±0.0070.069±0.013±0.0070.069±0.013±0.0070.069±0.013±0.007 AAIJ 13BX LHCB pp at 7 TeV�(D∗∓π±)/�total �43/��(D∗∓π±)/�total �43/��(D∗∓π±)/�total �43/��(D∗∓π±)/�total �43/�VALUE CL% DOCUMENT ID TECN COMMENT

<6.1× 10−6<6.1× 10−6<6.1× 10−6<6.1× 10−6 90 1 AAIJ 13AL LHCB pp at 7 TeV1Uses fs/fd = 0.256 ± 0.020 and B(B0 → D∗−π+) = (2.76 ± 0.13)× 10−3.�(J/ψ(1S)φ)/�total �44/��(J/ψ(1S)φ)/�total �44/��(J/ψ(1S)φ)/�total �44/��(J/ψ(1S)φ)/�total �44/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.07 ±0.08 OUR FIT1.07 ±0.08 OUR FIT1.07 ±0.08 OUR FIT1.07 ±0.08 OUR FIT1.10 ±0.09 OUR AVERAGE1.10 ±0.09 OUR AVERAGE1.10 ±0.09 OUR AVERAGE1.10 ±0.09 OUR AVERAGE1.050±0.013±0.104 1 AAIJ 13AN LHCB pp at 7 TeV1.25 ±0.07 ±0.23 2 THORNE 13 BELL e+ e− → �(5S)1.4 ±0.5 ±0.1 3 ABE 96Q CDF pp
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6 1 4 AKERS 94J OPAL e+ e− → Zseen 14 5 ABE 93F CDF pp at 1.8 TeVseen 1 6 ACTON 92N OPAL Sup. by AKERS 94J1Uses fs/fd = 0.256 ± 0.020 and B(B+ → J/ψK+) = (10.18 ± 0.42)× 10−4.2Uses fs = (17.2 ± 3.0)% as the fra
tion of �(5S) de
aying to B(∗)s B(∗)s .3ABE 96Q reports [�(B0s → J/ψ(1S)φ

)/�total℄ × [�(b → B0s )/[�(b → B+) + �(b →B0)

]℄ = (0.185± 0.055± 0.020)×10−3 whi
h we divide by our best value �(b → B0s )/
[�(b → B+) + �(b → B0)

] = 0.130 ± 0.008. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.4AKERS 94J sees one event and measures the limit on the produ
t bran
hing fra
tionf (b → B0s )·B(B0s → J/ψ(1S)φ) < 7 × 10−4 at CL = 90%. We divide by B(b →B0s ) = 0.112.5ABE 93F measured using J/ψ(1S) → µ+µ− and φ → K+K−.6 In ACTON 92N a limit on the produ
t bran
hing fra
tion is measured to bef (b → B0s )·B(B0s → J/ψ(1S)φ) ≤ 0.22 × 10−2.�(J/ψ(1S)π0)/�total �45/��(J/ψ(1S)π0)/�total �45/��(J/ψ(1S)π0)/�total �45/��(J/ψ(1S)π0)/�total �45/�VALUE CL% DOCUMENT ID TECN
<1.2× 10−3<1.2× 10−3<1.2× 10−3<1.2× 10−3 90 1 ACCIARRI 97C L31ACCIARRI 97C assumes B0 produ
tion fra
tion (39.5 ± 4.0%) and Bs (12.0 ± 3.0%).�(J/ψ(1S)η)/�total �46/��(J/ψ(1S)η)/�total �46/��(J/ψ(1S)η)/�total �46/��(J/ψ(1S)η)/�total �46/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT3.9 ±0.7 OUR AVERAGE3.9 ±0.7 OUR AVERAGE3.9 ±0.7 OUR AVERAGE3.9 ±0.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.3.6 ±0.5 ±0.2 1 AAIJ 13A LHCB pp at 7 TeV5.10±0.50+1.17

−0.83 2 LI 12 BELL e+ e− → �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<38 90 3 ACCIARRI 97C L31AAIJ 13A reports [�(B0s → J/ψ(1S)η

)/�total℄ / [B(B0 → J/ψ(1S)ρ0)℄ = 14.0 ±1.2+1.1
−1.5+1.1

−1.0 whi
h we multiply by our best value B(B0 → J/ψ(1S)ρ0) = (2.54 ±0.14) × 10−5. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.2Observed for the �rst time with signi�
an
es over 10 σ. The se
ond error are totalsystemati
 un
ertainties in
luding the error on N(B(∗)s B(∗)s ).3ACCIARRI 97C assumes B0 produ
tion fra
tion (39.5 ± 4.0%) and Bs (12.0 ± 3.0%).

�(J/ψ(1S)K0S)/�total �47/��(J/ψ(1S)K0S)/�total �47/��(J/ψ(1S)K0S)/�total �47/��(J/ψ(1S)K0S)/�total �47/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.89±0.12 OUR AVERAGE1.89±0.12 OUR AVERAGE1.89±0.12 OUR AVERAGE1.89±0.12 OUR AVERAGE1.88±0.14±0.07 1 AAIJ 15AL LHCB pp at 7, 8 TeV1.91±0.15±0.13 2 AAIJ 13AB LHCB pp at 7 TeV1.9 ±0.4 ±0.1 3 AALTONEN 11A CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.91+0.25

−0.24±0.13 4 AAIJ 12O LHCB Repl. by AAIJ 13AB1AAIJ 15AL reports [�(B0s → J/ψ(1S)K0S )/�total℄ / [B(B0 → J/ψ(1S)K0S )℄ = (4.31±0.17± 0.12± 0.25)×10−2 whi
h we multiply by our best value B(B0 → J/ψ(1S)K0S )= (4.36 ± 0.16)× 10−4. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2AAIJ 13AB reports (1.97 ± 0.14 ± 0.07 ± 0.15 ± 0.08) × 10−5 from a measurementof [�(B0s → J/ψ(1S)K0S )/�total℄ / [B(B0 → J/ψ(1S)K0)℄ × [�(b → B0s )/�(b →B0)℄ assuming B(B0 → J/ψ(1S)K0) = (8.98 ± 0.35) × 10−4,�(b → B0s )/�(b →B0) = 0.256 ± 0.020, whi
h we res
ale to our best values B(B0 → J/ψ(1S)K0) =(8.73 ± 0.32) × 10−4, �(b → B0s )/�(b → B0) = 0.256 ± 0.014. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalues.3AALTONEN 11A reports [�(B0s → J/ψ(1S)K0S )/�total℄ × [B(b → B0s )℄ / [B(b →B0)℄ / [B(B0 → J/ψ(1S)K0S )℄ = (1.09 ± 0.19 ± 0.11) × 10−2 whi
h we multiplyor divide by our best values B(b → B0s ) = (10.3 ± 0.5) × 10−2, B(b → B0) =(40.4 ± 0.6)× 10−2, B(B0 → J/ψ(1S)K0S ) = 1/2 × B(B0 → J/ψ(1S)K0) = 1/2
× (8.73 ± 0.32) × 10−4. Our �rs t error is their experiment's error and our se
onderror is the systemati
 error from using our best values.4AAIJ 12O reports (1.83 ± 0.21 ± 0.10 ± 0.14 ± 0.07) × 10−5 from a measurement of[�(B0s → J/ψ(1S)K0S )/�total℄ / [B(B0 → J/ψ(1S)K0)℄ × [�(b → B0s )/�(b →B0)℄ assuming B(B0 → J/ψ(1S)K0) = (8.71 ± 0.32) × 10−4,�(b → B0s )/�(b →B0) = 0.267+0.021

−0.02 , whi
h we res
ale to our best values B(B0 → J/ψ(1S)K0) =(8.73 ± 0.32) × 10−4, �(b → B0s )/�(b → B0) = 0.256 ± 0.014. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalues.�(J/ψ(1S)K∗(892)0)/�total �48/��(J/ψ(1S)K∗(892)0)/�total �48/��(J/ψ(1S)K∗(892)0)/�total �48/��(J/ψ(1S)K∗(892)0)/�total �48/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT4.14±0.18±0.354.14±0.18±0.354.14±0.18±0.354.14±0.18±0.35 1 AAIJ 15AV LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.4 +0.5

−0.4 ±0.8 2 AAIJ 12AP LHCB Repl. by AAIJ 15AV8 ±4 ±1 3 AALTONEN 11A CDF pp at 1.96 TeV1AAIJ 15AV result 
ombines two measurements with di�erent normalizing modes of B0 →J/ψK∗(892)0 and B0s → J/ψφ.2AAIJ 12AP reports B(B0s → J/ψ(1S)K∗(892)0)/B(B0 → J/ψ(1S)K∗(892)0) =(3.43+0.34
−0.36 ± 0.50) × 10−2 and B(B0 → J/ψ(1S)K∗(892)0) = (1.29 ± 0.05 ±0.13) × 10−3 after 
orre
ting for the 
ontribution from K π S-wave beneath the K∗peak.3AALTONEN 11A reports [�(B0s → J/ψ(1S)K∗(892)0)/�total℄ × [B(b → B0s )℄ /[B(b → B0)℄ / [B(B0 → J/ψ(1S)K∗(892)0)℄ = 0.0168 ± 0.0024 ± 0.0068 whi
h wemultiply or divide by our best values B(b → B0s ) = (10.3 ± 0.5)× 10−2, B(b → B0)= (40.4 ± 0.6) × 10−2, B(B0 → J/ψ(1S)K∗(892)0) = (1.28 ± 0.05) × 10−3. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best values.�(J/ψ(1S)η′)/�total �49/��(J/ψ(1S)η′)/�total �49/��(J/ψ(1S)η′)/�total �49/��(J/ψ(1S)η′)/�total �49/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.3 ±0.4 OUR AVERAGE3.3 ±0.4 OUR AVERAGE3.3 ±0.4 OUR AVERAGE3.3 ±0.4 OUR AVERAGE3.2 +0.4

−0.5 ±0.2 1 AAIJ 13A LHCB pp at 7 TeV3.71±0.61+0.85
−0.60 2 LI 12 BELL e+ e− → �(4S)1AAIJ 13A reports [�(B0s → J/ψ(1S)η′

)/�total℄ / [B(B0 → J/ψ(1S)ρ0)℄ = 12.7 ±1.1+0.5
−1.3+1.0

−0.9 whi
h we multiply by our best value B(B0 → J/ψ(1S)ρ0) = (2.54 ±0.14) × 10−5. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.2Observed for the �rst time with signi�
an
es over 10 σ. The se
ond error are totalsystemati
 un
ertainties in
luding the error on N(B(∗)s B(∗)s ).�(J/ψ(1S)η′)/�(J/ψ(1S)η) �49/�46�(J/ψ(1S)η′)/�(J/ψ(1S)η) �49/�46�(J/ψ(1S)η′)/�(J/ψ(1S)η) �49/�46�(J/ψ(1S)η′)/�(J/ψ(1S)η) �49/�46VALUE DOCUMENT ID TECN COMMENT0.87 ±0.06 OUR AVERAGE0.87 ±0.06 OUR AVERAGE0.87 ±0.06 OUR AVERAGE0.87 ±0.06 OUR AVERAGE0.902±0.072±0.045 1 AAIJ 15D LHCB pp at 7, 8 TeV0.90 ±0.09 +0.06
−0.02 2 AAIJ 13A LHCB pp at 7 TeV0.73 ±0.14 ±0.02 2 LI 12 BELL e+ e− → �(4S)1Uses J/ψ → µ+µ−, η′ → ρ0 γ, and η′ → ηπ+π− de
ays.2 Strongly 
orrelated with measurements of �(J/ψ(1S) η)/� and �(J/ψ(1S)η′)/� reportedin the same referen
e.



1341134113411341See key on page 601 MesonParti
le ListingsB0s�(J/ψ(1S)π+π−)/�(J/ψ(1S)φ) �50/�44�(J/ψ(1S)π+π−)/�(J/ψ(1S)φ) �50/�44�(J/ψ(1S)π+π−)/�(J/ψ(1S)φ) �50/�44�(J/ψ(1S)π+π−)/�(J/ψ(1S)φ) �50/�44VALUE (units 10−2) DOCUMENT ID TECN COMMENT19.8±0.5±0.519.8±0.5±0.519.8±0.5±0.519.8±0.5±0.5 1 AAIJ 12AO LHCB pp at 7 TeV1AAIJ 12AO reports (19.79 ± 0.47 ± 0.52) × 10−2 from a measurement of [�(B0s →J/ψ(1S)π+π−
)/�(B0s → J/ψ(1S)φ

)℄ / [B(φ(1020) → K+K−)℄ assumingB(φ(1020) → K+K−) = (48.9 ± 0.5)× 10−2.�(J/ψ(1S) f0(980), f0 → π+π−)/�total �53/��(J/ψ(1S) f0(980), f0 → π+π−)/�total �53/��(J/ψ(1S) f0(980), f0 → π+π−)/�total �53/��(J/ψ(1S) f0(980), f0 → π+π−)/�total �53/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.34±0.15 OUR FIT1.34±0.15 OUR FIT1.34±0.15 OUR FIT1.34±0.15 OUR FIT1.16+0.31
−0.19+0.30

−0.251.16+0.31
−0.19+0.30

−0.251.16+0.31
−0.19+0.30

−0.251.16+0.31
−0.19+0.30

−0.25 1 LI 11 BELL e+ e− → �(5S)1The se
ond error in
ludes both the dete
tor systemati
 and the un
ertainty in the numberof produ
ed Y (5S) → B(∗)s B(∗)s pairs.�(J/ψ(1S) f0(500), f0 → π+π−)/�(J/ψ(1S) f0(980)0, f0 → π+π−)�51/�54�(J/ψ(1S) f0(500), f0 → π+π−)/�(J/ψ(1S) f0(980)0, f0 → π+π−)�51/�54�(J/ψ(1S) f0(500), f0 → π+π−)/�(J/ψ(1S) f0(980)0, f0 → π+π−)�51/�54�(J/ψ(1S) f0(500), f0 → π+π−)/�(J/ψ(1S) f0(980)0, f0 → π+π−)�51/�54VALUE CL% DOCUMENT ID TECN COMMENT
<0.034<0.034<0.034<0.034 90 1 AAIJ 14BR LHCB pp at 7, 8 TeV1Reported �rst of two solutions using the full Dalitz analysis.�(J/ψ(1S)ρ, ρ→ π+π−)/�(

ψ(2S)π+π−) �52/�77�(J/ψ(1S)ρ, ρ→ π+π−)/�(

ψ(2S)π+π−) �52/�77�(J/ψ(1S)ρ, ρ→ π+π−)/�(

ψ(2S)π+π−) �52/�77�(J/ψ(1S)ρ, ρ→ π+π−)/�(

ψ(2S)π+π−) �52/�77VALUE CL% DOCUMENT ID TECN COMMENT
<0.017<0.017<0.017<0.017 90 1 AAIJ 14BR LHCB pp at 7, 8 TeV1Reported �rst of two solutions using the full Dalitz analysis.�(J/ψ(1S) f0(980)0, f0 → π+π−)/�(

ψ(2S)π+π−) �54/�77�(J/ψ(1S) f0(980)0, f0 → π+π−)/�(

ψ(2S)π+π−) �54/�77�(J/ψ(1S) f0(980)0, f0 → π+π−)/�(

ψ(2S)π+π−) �54/�77�(J/ψ(1S) f0(980)0, f0 → π+π−)/�(

ψ(2S)π+π−) �54/�77VALUE DOCUMENT ID TECN COMMENT0.703±0.015+0.004
−0.0510.703±0.015+0.004
−0.0510.703±0.015+0.004
−0.0510.703±0.015+0.004
−0.051 1 AAIJ 14BR LHCB pp at 7, 8 TeV1Reported �rst of two solutions using the full Dalitz analysis.�(J/ψ(1S) f2(1270)0, f2 → π+π−)/�(

ψ(2S)π+π−) �56/�77�(J/ψ(1S) f2(1270)0, f2 → π+π−)/�(

ψ(2S)π+π−) �56/�77�(J/ψ(1S) f2(1270)0, f2 → π+π−)/�(

ψ(2S)π+π−) �56/�77�(J/ψ(1S) f2(1270)0, f2 → π+π−)/�(

ψ(2S)π+π−) �56/�77VALUE (%) DOCUMENT ID TECN COMMENT0.36±0.07±0.030.36±0.07±0.030.36±0.07±0.030.36±0.07±0.03 1 AAIJ 14BR LHCB pp at 7, 8 TeV1Reported �rst of two solutions using the full Dalitz analysis.�(J/ψ(1S) f2(1270)‖, f2 → π+π−)/�(

ψ(2S)π+π−) �57/�77�(J/ψ(1S) f2(1270)‖, f2 → π+π−)/�(

ψ(2S)π+π−) �57/�77�(J/ψ(1S) f2(1270)‖, f2 → π+π−)/�(

ψ(2S)π+π−) �57/�77�(J/ψ(1S) f2(1270)‖, f2 → π+π−)/�(

ψ(2S)π+π−) �57/�77VALUE (%) DOCUMENT ID TECN COMMENT0.52±0.15+0.05
−0.020.52±0.15+0.05
−0.020.52±0.15+0.05
−0.020.52±0.15+0.05
−0.02 1 AAIJ 14BR LHCB pp at 7, 8 TeV1Reported �rst of two solutions using the full Dalitz analysis.�(J/ψ(1S) f2(1270)⊥, f2 → π+π−)/�(

ψ(2S)π+π−) �58/�77�(J/ψ(1S) f2(1270)⊥, f2 → π+π−)/�(

ψ(2S)π+π−) �58/�77�(J/ψ(1S) f2(1270)⊥, f2 → π+π−)/�(

ψ(2S)π+π−) �58/�77�(J/ψ(1S) f2(1270)⊥, f2 → π+π−)/�(

ψ(2S)π+π−) �58/�77VALUE (%) DOCUMENT ID TECN COMMENT0.63±0.34+0.16
−0.080.63±0.34+0.16
−0.080.63±0.34+0.16
−0.080.63±0.34+0.16
−0.08 1 AAIJ 14BR LHCB pp at 7, 8 TeV1Reported �rst of two solutions using the full Dalitz analysis.�(J/ψ(1S) f0(1500), f0 → π+π−)/�(

ψ(2S)π+π−) �60/�77�(J/ψ(1S) f0(1500), f0 → π+π−)/�(

ψ(2S)π+π−) �60/�77�(J/ψ(1S) f0(1500), f0 → π+π−)/�(

ψ(2S)π+π−) �60/�77�(J/ψ(1S) f0(1500), f0 → π+π−)/�(

ψ(2S)π+π−) �60/�77VALUE DOCUMENT ID TECN COMMENT0.101±0.008+0.011
−0.0030.101±0.008+0.011
−0.0030.101±0.008+0.011
−0.0030.101±0.008+0.011
−0.003 1 AAIJ 14BR LHCB pp at 7, 8 TeV1Reported �rst of two solutions using the full Dalitz analysis.�(J/ψ(1S) f ′2(1525)0, f ′2 → π+π−)/�(

ψ(2S)π+π−) �61/�77�(J/ψ(1S) f ′2(1525)0, f ′2 → π+π−)/�(

ψ(2S)π+π−) �61/�77�(J/ψ(1S) f ′2(1525)0, f ′2 → π+π−)/�(

ψ(2S)π+π−) �61/�77�(J/ψ(1S) f ′2(1525)0, f ′2 → π+π−)/�(

ψ(2S)π+π−) �61/�77VALUE (%) DOCUMENT ID TECN COMMENT0.51±0.09+0.05
−0.040.51±0.09+0.05
−0.040.51±0.09+0.05
−0.040.51±0.09+0.05
−0.04 1 AAIJ 14BR LHCB pp at 7, 8 TeV1Reported �rst of two solutions using the full Dalitz analysis.�(J/ψ(1S) f ′2(1525)‖, f ′2 → π+π−)/�(

ψ(2S)π+π−) �62/�77�(J/ψ(1S) f ′2(1525)‖, f ′2 → π+π−)/�(

ψ(2S)π+π−) �62/�77�(J/ψ(1S) f ′2(1525)‖, f ′2 → π+π−)/�(

ψ(2S)π+π−) �62/�77�(J/ψ(1S) f ′2(1525)‖, f ′2 → π+π−)/�(

ψ(2S)π+π−) �62/�77VALUE (%) DOCUMENT ID TECN COMMENT0.06+0.13
−0.04±0.010.06+0.13
−0.04±0.010.06+0.13
−0.04±0.010.06+0.13
−0.04±0.01 1 AAIJ 14BR LHCB pp at 7, 8 TeV1Reported �rst of two solutions using the full Dalitz analysis.�(J/ψ(1S) f ′2(1525)⊥, f ′2 → π+π−)/�(

ψ(2S)π+π−) �63/�77�(J/ψ(1S) f ′2(1525)⊥, f ′2 → π+π−)/�(

ψ(2S)π+π−) �63/�77�(J/ψ(1S) f ′2(1525)⊥, f ′2 → π+π−)/�(

ψ(2S)π+π−) �63/�77�(J/ψ(1S) f ′2(1525)⊥, f ′2 → π+π−)/�(

ψ(2S)π+π−) �63/�77VALUE (%) DOCUMENT ID TECN COMMENT0.26±0.18+0.06
−0.040.26±0.18+0.06
−0.040.26±0.18+0.06
−0.040.26±0.18+0.06
−0.04 1 AAIJ 14BR LHCB pp at 7, 8 TeV1Reported �rst of two solutions using the full Dalitz analysis.�(J/ψ(1S) f0(1790), f0 → π+π−)/�(

ψ(2S)π+π−) �64/�77�(J/ψ(1S) f0(1790), f0 → π+π−)/�(

ψ(2S)π+π−) �64/�77�(J/ψ(1S) f0(1790), f0 → π+π−)/�(

ψ(2S)π+π−) �64/�77�(J/ψ(1S) f0(1790), f0 → π+π−)/�(

ψ(2S)π+π−) �64/�77VALUE DOCUMENT ID TECN COMMENT0.024±0.004+0.050
−0.0020.024±0.004+0.050
−0.0020.024±0.004+0.050
−0.0020.024±0.004+0.050
−0.002 1 AAIJ 14BR LHCB pp at 7, 8 TeV1Reported �rst of two solutions using the full Dalitz analysis.

�(J/ψ(1S) f0(980), f0 → π+π−)/�(J/ψ(1S)φ) �53/�44�(J/ψ(1S) f0(980), f0 → π+π−)/�(J/ψ(1S)φ) �53/�44�(J/ψ(1S) f0(980), f0 → π+π−)/�(J/ψ(1S)φ) �53/�44�(J/ψ(1S) f0(980), f0 → π+π−)/�(J/ψ(1S)φ) �53/�44VALUE DOCUMENT ID TECN COMMENT0.125±0.011 OUR FIT0.125±0.011 OUR FIT0.125±0.011 OUR FIT0.125±0.011 OUR FIT0.127±0.011 OUR AVERAGE0.127±0.011 OUR AVERAGE0.127±0.011 OUR AVERAGE0.127±0.011 OUR AVERAGE0.135±0.036±0.001 1 ABAZOV 12C D0 pp at 1.96 TeV0.126±0.012±0.001 2 AALTONEN 11AB CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.139±0.006+0.025

−0.012 3,4 AAIJ 12AO LHCB Repl. by AAIJ 140.123+0.026
−0.022±0.001 5 AAIJ 11 LHCB Repl. by AAIJ 12AO1ABAZOV 12C reports [�(B0s → J/ψ(1S) f0(980), f0 → π+π−

)/�(B0s → J/ψ(1S)φ
)℄

/ [B(φ(1020) → K+K−)℄ = 0.275± 0.041± 0.061 whi
h we multiply by our best valueB(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.2AALTONEN 11AB reports [�(B0s → J/ψ(1S) f0(980), f0 → π+π−
)/�(B0s →J/ψ(1S)φ

)℄ / [B(φ(1020) → K+K−)℄ = 0.257 ± 0.020 ± 0.014 whi
h we multi-ply by our best value B(φ(1020) → K+K−) = (48.9 ± 0.5)× 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.3AAIJ 12AO reports (13.9 ± 0.6+2.5
−1.2) × 10−2 from a measurement of [�(B0s →J/ψ(1S) f0(980), f0 → π+π−
)/�(B0s → J/ψ(1S)φ

)℄ / [B(φ(1020) → K+K−)℄assuming B(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2.4Measured in Dalitz plot like analysis of Bs → J/ψπ+π− de
ays.5AAIJ 11 reports [�(B0s → J/ψ(1S) f0(980), f0 → π+π−
)/�(B0s → J/ψ(1S)φ

)℄ /[B(φ(1020) → K+K−)℄ = 0.252+0.046
−0.032+0.027

−0.033 whi
h we multiply by our best valueB(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(J/ψ(1S) f0(1370), f0 → π+π−)/�total �59/��(J/ψ(1S) f0(1370), f0 → π+π−)/�total �59/��(J/ψ(1S) f0(1370), f0 → π+π−)/�total �59/��(J/ψ(1S) f0(1370), f0 → π+π−)/�total �59/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.34+0.11

−0.14+0.085
−0.054 1 LI 11 BELL e+ e− → �(5S)1The se
ond error in
ludes both the dete
tor systemati
 and the un
ertainty in the numberof produ
ed Y (5S) → B(∗)s B(∗)s pairs.�(J/ψ(1S) f0(1370), f0 → π+π−)/�(J/ψ(1S)φ) �59/�44�(J/ψ(1S) f0(1370), f0 → π+π−)/�(J/ψ(1S)φ) �59/�44�(J/ψ(1S) f0(1370), f0 → π+π−)/�(J/ψ(1S)φ) �59/�44�(J/ψ(1S) f0(1370), f0 → π+π−)/�(J/ψ(1S)φ) �59/�44VALUE (units 10−2) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.2±0.5+0.1
−3.7 1,2 AAIJ 12AO LHCB Repl. by AAIJ 141AAIJ 12AO reports (4.19 ± 0.53+0.12

−3.7 ) × 10−2 from a measurement of [�(B0s →J/ψ(1S) f0(1370), f0 → π+π−
)/�(B0s → J/ψ(1S)φ

)℄ / [B(φ(1020) → K+K−)℄assuming B(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2.2Measured in Dalitz plot like analysis of Bs → J/ψπ+π− de
ays.�(J/ψ(1S) f2(1270), f2 → π+π−)/�(J/ψ(1S)φ) �55/�44�(J/ψ(1S) f2(1270), f2 → π+π−)/�(J/ψ(1S)φ) �55/�44�(J/ψ(1S) f2(1270), f2 → π+π−)/�(J/ψ(1S)φ) �55/�44�(J/ψ(1S) f2(1270), f2 → π+π−)/�(J/ψ(1S)φ) �55/�44VALUE (units 10−4) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.8±3.3+0.6

−1.5 1,2 AAIJ 12AO LHCB Repl. by AAIJ 141AAIJ 12AO reports (0.098 ± 0.033+0.006
−0.015) × 10−2 from a measurement of [�(B0s →J/ψ(1S) f2(1270), f2 → π+π−

)/�(B0s → J/ψ(1S)φ
)℄ / [B(φ(1020) → K+K−)℄assuming B(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2.2Measured in Dalitz plot like analysis of Bs → J/ψπ+ π− de
ays for the f2 heli
ity state

λ = 0.�(J/ψ(1S)π+π− (nonresonant))/�(J/ψ(1S)φ) �65/�44�(J/ψ(1S)π+π− (nonresonant))/�(J/ψ(1S)φ) �65/�44�(J/ψ(1S)π+π− (nonresonant))/�(J/ψ(1S)φ) �65/�44�(J/ψ(1S)π+π− (nonresonant))/�(J/ψ(1S)φ) �65/�44VALUE (units 10−2) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.66±0.31+0.96

−0.08 1,2 AAIJ 12AO LHCB Repl. by AAIJ 141AAIJ 12AO reports (1.66 ± 0.31+0.96
−0.08) × 10−2 from a measurement of [�(B0s →J/ψ(1S)π+π− (nonresonant))/�(B0s → J/ψ(1S)φ)℄ / [B(φ(1020) → K+K−)℄ as-suming B(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2.2Measured in Dalitz plot like analysis of Bs → J/ψπ+π− de
ays.�(J/ψ(1S)K0π+π−)/�total �66/��(J/ψ(1S)K0π+π−)/�total �66/��(J/ψ(1S)K0π+π−)/�total �66/��(J/ψ(1S)K0π+π−)/�total �66/�VALUE CL% DOCUMENT ID TECN COMMENT

<4.4× 10−5<4.4× 10−5<4.4× 10−5<4.4× 10−5 90 1 AAIJ 14L LHCB pp at 7 TeV1Measured with B(B0s → J/ψK0S π+π−) / B(B0 → J/ψK0S π+π−) using PDG 12values for the involved bran
hing fra
tions.�(J/ψ(1S)K+K−)/�total �67/��(J/ψ(1S)K+K−)/�total �67/��(J/ψ(1S)K+K−)/�total �67/��(J/ψ(1S)K+K−)/�total �67/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT7.9 ±0.7 OUR AVERAGE7.9 ±0.7 OUR AVERAGE7.9 ±0.7 OUR AVERAGE7.9 ±0.7 OUR AVERAGE7.70±0.08±0.72 1 AAIJ 13AN LHCB pp at 7 TeV10.1 ±0.9 ±2.1 2 THORNE 13 BELL e+ e− → �(5S)1Uses fs/fd = 0.256 ± 0.020 and B(B+ → J/ψK+) = (10.18 ± 0.42)× 10−4.2Uses fs = (17.2 ± 3.0)% as the fra
tion of �(5S) de
aying to B(∗)s B(∗)s .



1342134213421342MesonParti
le ListingsB0s�(J/ψ(1S)K0K−π++ 
.
.)/�total �68/��(J/ψ(1S)K0K−π++ 
.
.)/�total �68/��(J/ψ(1S)K0K−π++ 
.
.)/�total �68/��(J/ψ(1S)K0K−π++ 
.
.)/�total �68/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT9.3±1.0±0.99.3±1.0±0.99.3±1.0±0.99.3±1.0±0.9 1 AAIJ 14L LHCB pp at 7 TeV1AAIJ 14L reports [�(B0s → J/ψ(1S)K0K−π++ 
.
.)/�total℄ / [B(B0 →J/ψ(1S)K0π+π−)℄ = 2.12± 0.15± 0.18 whi
h we multiply by our best value B(B0 →J/ψ(1S)K0π+π−) = (4.4± 0.4)×10−4. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value. This is an observationof B0s → J/ψK0S K±π∓ with more than 10 standard deviations.�(J/ψ(1S)K0K+K−)/�total �69/��(J/ψ(1S)K0K+K−)/�total �69/��(J/ψ(1S)K0K+K−)/�total �69/��(J/ψ(1S)K0K+K−)/�total �69/�VALUE CL% DOCUMENT ID TECN COMMENT
<12× 10−6<12× 10−6<12× 10−6<12× 10−6 90 1 AAIJ 14L LHCB pp at 7 TeV1Measured with B(B0s → J/ψK0S K+K−)/B(B0 → J/ψK0S π+π−) using PDG 12values for the involved bran
hing fra
tions.�(J/ψ(1S) f ′2(1525))/�(J/ψ(1S)φ) �70/�44�(J/ψ(1S) f ′2(1525))/�(J/ψ(1S)φ) �70/�44�(J/ψ(1S) f ′2(1525))/�(J/ψ(1S)φ) �70/�44�(J/ψ(1S) f ′2(1525))/�(J/ψ(1S)φ) �70/�44VALUE (units 10−2) DOCUMENT ID TECN COMMENT21 ±4 OUR AVERAGE21 ±4 OUR AVERAGE21 ±4 OUR AVERAGE21 ±4 OUR AVERAGE21.5±4.9±2.6 1 THORNE 13 BELL e+ e− → �(5S)21 ±7 ±1 2,3 ABAZOV 12AF D0 pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •26.4±3.5±0.7 4 AAIJ 12S LHCB Repl. by AAIJ 13AN1Uses B(f ′2(1525) → K+K−) = (44.4 ± 1.1)%.2ABAZOV 12AF reports [�(B0s → J/ψ(1S) f ′2(1525))/�(B0s → J/ψ(1S)φ)℄ ×B(f ′2(1525) → K+K−) / B(φ(1020) → K+K−) = 0.19 ± 0.05 ± 0.04 whi
h we di-vide and multiply by our best values B(f ′2(1525) → K+K−) = 12 (88.7± 2.2)×10−2,B(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best values.3ABAZOV 12AF �ts the invariant masses of the K+K− pair in the range 1.35 <M(K+K−) < 2 GeV.4AAIJ 12S reports [(26.4 ± 2.7 ± 2.4) × 10−2 from a measurement of �(B0s →J/ψ(1S) f ′2(1525))/�(B0s → J/ψ(1S)φ)℄ × B(f ′2(1525) → K+K−) / B(φ(1020) →K+K−) assuming B(f ′2(1525) → K+K−) = (44.4 ± 1.1) × 10−2, B(φ(1020) →K+K−) = (48.9 ± 0.5) × 10−2, whi
h we res
ale to our best values B(f ′2(1525) →K+K−) = 12 (88.7 ± 2.2) × 10−2, B(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best values.�(J/ψ(1S) f ′2(1525))/�total �70/��(J/ψ(1S) f ′2(1525))/�total �70/��(J/ψ(1S) f ′2(1525))/�total �70/��(J/ψ(1S) f ′2(1525))/�total �70/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.61±0.20+0.56

−0.502.61±0.20+0.56
−0.502.61±0.20+0.56
−0.502.61±0.20+0.56
−0.50 1 AAIJ 13AN LHCB pp at 7 TeV1Uses fs/fd = 0.256 ± 0.020 and B(B+ → J/ψK+) = (10.18 ± 0.42)× 10−4.�(

ψ(2S)η)/�(J/ψ(1S)η) �75/�46�(

ψ(2S)η)/�(J/ψ(1S)η) �75/�46�(

ψ(2S)η)/�(J/ψ(1S)η) �75/�46�(

ψ(2S)η)/�(J/ψ(1S)η) �75/�46VALUE DOCUMENT ID TECN COMMENT0.83±0.14±0.120.83±0.14±0.120.83±0.14±0.120.83±0.14±0.12 1 AAIJ 13AA LHCB pp at 7 TeV1Assuming lepton universality for dimuon de
ay modes of J/ψ and ψ(2S) mesons, theratio B(J/ψ → µ+µ−)/B(ψ(2S) → µ+µ−) = B(J/ψ → e+ e−)/B(ψ(2S) →e+ e−) = 7.69 ± 0.19 was used.�(

ψ(2S)η′)/�(J/ψ(1S)η′) �76/�49�(

ψ(2S)η′)/�(J/ψ(1S)η′) �76/�49�(

ψ(2S)η′)/�(J/ψ(1S)η′) �76/�49�(

ψ(2S)η′)/�(J/ψ(1S)η′) �76/�49VALUE (units 10−2) DOCUMENT ID TECN COMMENT38.7±9.0±1.638.7±9.0±1.638.7±9.0±1.638.7±9.0±1.6 1 AAIJ 15D LHCB pp at 7, 8 TeV1Uses J/ψ → µ+µ−, η′ → ρ0 γ, and η′ → ηπ+π− de
ays.�(J/ψ(1S)pp)/�total �71/��(J/ψ(1S)pp)/�total �71/��(J/ψ(1S)pp)/�total �71/��(J/ψ(1S)pp)/�total �71/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.8× 10−6<4.8× 10−6<4.8× 10−6<4.8× 10−6 90 1 AAIJ 13Z LHCB pp at 7 TeV1Uses B(B0s → J/ψ(1S)π+π−) = (1.98 ± 0.20)× 10−4.�(J/ψ(1S)γ)/�total �72/��(J/ψ(1S)γ)/�total �72/��(J/ψ(1S)γ)/�total �72/��(J/ψ(1S)γ)/�total �72/�VALUE CL% DOCUMENT ID TECN COMMENT
<7.3× 10−6<7.3× 10−6<7.3× 10−6<7.3× 10−6 90 1 AAIJ 15BB LHCB pp at 7, 8 TeV1Bran
hing fra
tions of normalization modes B0s → J/ψγX taken from PDG 14. Usesfs/fd = 0.259 ± 0.015.�(J/ψ(1S)π+π−π+π−)/�(J/ψ(1S)π+π−) �73/�50�(J/ψ(1S)π+π−π+π−)/�(J/ψ(1S)π+π−) �73/�50�(J/ψ(1S)π+π−π+π−)/�(J/ψ(1S)π+π−) �73/�50�(J/ψ(1S)π+π−π+π−)/�(J/ψ(1S)π+π−) �73/�50VALUE DOCUMENT ID TECN COMMENT0.371±0.015±0.0220.371±0.015±0.0220.371±0.015±0.0220.371±0.015±0.022 1 AAIJ 14Y LHCB pp at 7,8 TeV1Ex
ludes 
ontributions from ψ(2S) and X (3872) de
aying to J/ψ(1S)π+π−.�(J/ψ(1S) f1(1285))/�total �74/��(J/ψ(1S) f1(1285))/�total �74/��(J/ψ(1S) f1(1285))/�total �74/��(J/ψ(1S) f1(1285))/�total �74/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT7.1±1.0+0.9

−1.07.1±1.0+0.9
−1.07.1±1.0+0.9
−1.07.1±1.0+0.9
−1.0 1 AAIJ 14Y LHCB pp at 7, 8 TeV1AAIJ 14Y reports (7.14 ± 0.99+0.83

−0.91 ± 0.41)× 10−5 from a measurement of [�(B0s →J/ψ(1S) f1(1285))/�total℄ × [B(f1(1285) → 2π+2π−)℄ assuming B(f1(1285) →2π+2π−) = 0.11+0.007
−0.006.

�(

ψ(2S)φ)/�total �78/��(

ψ(2S)φ)/�total �78/��(

ψ(2S)φ)/�total �78/��(

ψ(2S)φ)/�total �78/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 1 BUSKULIC 93G ALEP e+ e− → Z�(

ψ(2S)φ)/�(J/ψ(1S)φ) �78/�44�(

ψ(2S)φ)/�(J/ψ(1S)φ) �78/�44�(

ψ(2S)φ)/�(J/ψ(1S)φ) �78/�44�(

ψ(2S)φ)/�(J/ψ(1S)φ) �78/�44VALUE DOCUMENT ID TECN COMMENT0.501±0.034 OUR AVERAGE0.501±0.034 OUR AVERAGE0.501±0.034 OUR AVERAGE0.501±0.034 OUR AVERAGE0.497±0.034±0.011 1,2 AAIJ 12L LHCB pp at 7 TeV0.53 ±0.10 ±0.09 ABAZOV 09Y D0 pp at 1.96 TeV0.52 ±0.13 ±0.07 ABULENCIA 06N CDF pp at 1.96 TeV1AAIJ 12L reports 0.489 ± 0.026 ± 0.021 ± 0.012 from a measurement of [�(B0s →
ψ(2S)φ)/�(B0s → J/ψ(1S)φ

)℄ × [B(J/ψ(1S) → e+ e−)℄ / [B(ψ(2S) → e+ e−)℄assuming B(J/ψ(1S) → e+ e−) = (5.94 ± 0.06) × 10−2,B(ψ(2S) → e+ e−) =(7.72 ± 0.17) × 10−3, whi
h we res
ale to our best values B(J/ψ(1S) → e+ e−) =(5.971 ± 0.032)× 10−2, B(ψ(2S) → e+ e−) = (7.89 ± 0.17)× 10−3. Our �rst erroris their experiment's error and our se
ond error is the systemati
 error from using ourbest values.2Assumes B(J/ψ → µ+µ−) / B(ψ(2S) → µ+µ−) = B(J/ψ → e+ e−) / B(ψ(2S) →e+ e−) = 7.69 ± 0.19.�(

ψ(2S)K−π+)/�total �79/��(

ψ(2S)K−π+)/�total �79/��(

ψ(2S)K−π+)/�total �79/��(

ψ(2S)K−π+)/�total �79/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT3.12±0.30±0.213.12±0.30±0.213.12±0.30±0.213.12±0.30±0.21 1 AAIJ 15U LHCB pp at 7, 8 TeV1AAIJ 15U reports [�(B0s → ψ(2S)K−π+)/�total℄ / [B(B0 → ψ(2S)K+π−)℄ =(5.38 ± 0.36 ± 0.22 ± 0.31) × 10−2 whi
h we multiply by our best value B(B0 →
ψ(2S)K+π−) = (5.8 ± 0.4)× 10−4. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(

ψ(2S)K∗(892)0)/�total �80/��(

ψ(2S)K∗(892)0)/�total �80/��(

ψ(2S)K∗(892)0)/�total �80/��(

ψ(2S)K∗(892)0)/�total �80/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT3.3±0.5+0.2
−0.33.3±0.5+0.2
−0.33.3±0.5+0.2
−0.33.3±0.5+0.2
−0.3 1 AAIJ 15U LHCB pp at 7, 8 TeV1AAIJ 15U reports [�(B0s → ψ(2S)K∗(892)0)/�total℄ / [B(B0 → ψ(2S)K∗(892)0)℄= (5.58 ± 0.57 ± 0.40 ± 0.32) × 10−2 whi
h we multiply by our best value B(B0 →

ψ(2S)K∗(892)0) = (5.9 ± 0.4) × 10−4. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.�(

χ
1φ
)/�(J/ψ(1S)φ) �81/�44�(

χ
1φ
)/�(J/ψ(1S)φ) �81/�44�(

χ
1φ
)/�(J/ψ(1S)φ) �81/�44�(

χ
1φ
)/�(J/ψ(1S)φ) �81/�44VALUE (units 10−2) DOCUMENT ID TECN COMMENT18.9±1.8±1.518.9±1.8±1.518.9±1.8±1.518.9±1.8±1.5 1 AAIJ 13AC LHCB pp at 7 TeV1Uses B(χ
1 → J/ψγ) = (34.4 ± 1.5)%.�(

ψ(2S)π+π−)/�(J/ψ(1S)π+π−) �77/�50�(

ψ(2S)π+π−)/�(J/ψ(1S)π+π−) �77/�50�(

ψ(2S)π+π−)/�(J/ψ(1S)π+π−) �77/�50�(

ψ(2S)π+π−)/�(J/ψ(1S)π+π−) �77/�50VALUE DOCUMENT ID TECN COMMENT0.34±0.04±0.030.34±0.04±0.030.34±0.04±0.030.34±0.04±0.03 1 AAIJ 13AA LHCB pp at 7 TeV1Assuming lepton universality for dimuon de
ay modes of J/ψ and ψ(2S) mesons, theratio B(J/ψ → µ+µ−)/B(ψ(2S) → µ+µ−) = B(J/ψ → e+ e−)/B(ψ(2S) →e+ e−) = 7.69 ± 0.19 was used.�(

π+π−)/�total �82/��(

π+π−)/�total �82/��(

π+π−)/�total �82/��(

π+π−)/�total �82/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT0.77±0.20 OUR AVERAGE0.77±0.20 OUR AVERAGE0.77±0.20 OUR AVERAGE0.77±0.20 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.1.00+0.23
−0.20±0.07 1 AAIJ 12AR LHCB pp at 7 TeV0.61±0.17±0.04 2 AALTONEN 12L CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 12 90 3 PENG 10 BELL e+ e− → �(5S)
< 1.2 90 4 AALTONEN 09C CDF Repl. by AALTONEN 12L
< 1.7 90 5 ABULENCIA,A 06D CDF Repl. by AALTONEN 09C
<232 90 6 ABE 00C SLD e+ e− → Z
<170 90 7 BUSKULIC 96V ALEP e+ e− → Z1AAIJ 12AR reports [�(B0s → π+π−

)/�total℄ / [B(B0 → π+π−)℄ × [�(b → B0s )/�(b → B0)℄ = 0.050+0.011
−0.009 ± 0.004 whi
h we multiply or divide by our best valuesB(B0 → π+π−) = (5.12 ± 0.19)×10−6, �(b → B0s )/�(b → B0) = 0.256 ± 0.014.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best values.2AALTONEN 12L reports [�(B0s → π+π−

)/�total℄ / [B(B0 → K+π−)℄ × [�(b →B0s )/�(b → B0)℄ = 0.008±0.002±0.001 whi
h we multiply or divide by our best valuesB(B0 → K+π−) = (1.96± 0.05)×10−5, �(b → B0s )/�(b → B0) = 0.256± 0.014.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best values.3Uses �(10860) → B∗s B∗s and assumes B(�(10860) → B(∗)s B(∗)s ) = (19.3 ± 2.9)%and �(�(10860) → B∗s B∗s ) / �(�(10860) → B(∗)s B(∗)s ) = (90.1+3.8
−4.0)%.4Obtains this result from (f s/f d) · B(Bs → π+π−)/B(B0 → K+π−) = 0.007 ±0.004 ± 0.005, assuming f s/f d = 0.276 ± 0.034 and B(B0 → K+π−) = (19.4 ±0.6) × 10−6.5ABULENCIA,A 06D obtains this from B(Bs → π+π−) / B(Bs → K+K−) < 0.05at 90% CL, assuming B(Bs → K+K−) = (33 ± 6 ± 7)× 10−6.6ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.7BUSKULIC 96V assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons.



1343134313431343See key on page 601 Meson Parti
le ListingsB0s�(

π0π0)/�total �83/��(

π0π0)/�total �83/��(

π0π0)/�total �83/��(

π0π0)/�total �83/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.1× 10−4<2.1× 10−4<2.1× 10−4<2.1× 10−4 90 1 ACCIARRI 95H L3 e+ e− → Z1ACCIARRI 95H assumes fB0 = 39.5 ± 4.0 and fBs = 12.0 ± 3.0%.�(

ηπ0)/�total �84/��(

ηπ0)/�total �84/��(

ηπ0)/�total �84/��(

ηπ0)/�total �84/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.0× 10−3<1.0× 10−3<1.0× 10−3<1.0× 10−3 90 1 ACCIARRI 95H L3 e+ e− → Z1ACCIARRI 95H assumes fB0 = 39.5 ± 4.0 and fBs = 12.0 ± 3.0%.�(

ηη
)/�total �85/��(

ηη
)/�total �85/��(

ηη
)/�total �85/��(

ηη
)/�total �85/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.5× 10−3<1.5× 10−3<1.5× 10−3<1.5× 10−3 90 1 ACCIARRI 95H L3 e+ e− → Z1ACCIARRI 95H assumes fB0 = 39.5 ± 4.0 and fBs = 12.0 ± 3.0%.�(

ρ0 ρ0)/�total �86/��(

ρ0 ρ0)/�total �86/��(

ρ0 ρ0)/�total �86/��(

ρ0 ρ0)/�total �86/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.20× 10−4<3.20× 10−4<3.20× 10−4<3.20× 10−4 90 1 ABE 00C SLD e+ e− → Z1ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.�(

η′ η′
)/�total �87/��(

η′ η′
)/�total �87/��(

η′ η′
)/�total �87/��(

η′ η′
)/�total �87/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT3.3±0.7±0.13.3±0.7±0.13.3±0.7±0.13.3±0.7±0.1 1 AAIJ 15O LHCB pp at 7, 8 TeV1AAIJ 15O reports [�(B0s → η′ η′

)/�total℄ / [B(B+ → η′K+)℄ = 0.47 ± 0.09 ± 0.04whi
h we multiply by our best value B(B+ → η′K+) = (7.06 ± 0.25) × 10−5. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.�(

φρ0)/�total �88/��(

φρ0)/�total �88/��(

φρ0)/�total �88/��(

φρ0)/�total �88/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.17× 10−4<6.17× 10−4<6.17× 10−4<6.17× 10−4 90 1 ABE 00C SLD e+ e− → Z1ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.�(

φφ
)/�total �89/��(

φφ
)/�total �89/��(

φφ
)/�total �89/��(

φφ
)/�total �89/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT18.7±1.5 OUR FIT18.7±1.5 OUR FIT18.7±1.5 OUR FIT18.7±1.5 OUR FIT18.5±1.4±1.018.5±1.4±1.018.5±1.4±1.018.5±1.4±1.0 1 AAIJ 15AS LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •14 +6
−5 ±6 2 ACOSTA 05J CDF Repl. by AALTONEN 11AN

<1183 90 3 ABE 00C SLD e+ e− → Z1AAIJ 15AS reports [�(B0s → φφ
)/�total℄ / [B(B0 → K∗(892)0φ)℄ = 1.84±0.05±0.13whi
h we multiply by our best value B(B0 → K∗(892)0φ) = (1.00 ± 0.05) × 10−5.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.2Uses B(B0 → J/ψφ) = (1.38 ± 0.49) × 10−3 and produ
tion 
ross-se
tion ratio of

σ(Bs )/σ(B0) = 0.26 ± 0.04.3ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8
−2.2)% and fBs=(10.5+1.8

−2.2)%.�(

φφ
)/�(J/ψ(1S)φ) �89/�44�(

φφ
)/�(J/ψ(1S)φ) �89/�44�(

φφ
)/�(J/ψ(1S)φ) �89/�44�(

φφ
)/�(J/ψ(1S)φ) �89/�44VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.74±0.16 OUR FIT1.74±0.16 OUR FIT1.74±0.16 OUR FIT1.74±0.16 OUR FIT1.78±0.14±0.201.78±0.14±0.201.78±0.14±0.201.78±0.14±0.20 AALTONEN 11AN CDF pp at 1.96 TeV�(

π+K−)/�total �90/��(

π+K−)/�total �90/��(

π+K−)/�total �90/��(

π+K−)/�total �90/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT5.6±0.6 OUR AVERAGE5.6±0.6 OUR AVERAGE5.6±0.6 OUR AVERAGE5.6±0.6 OUR AVERAGE5.7±0.6±0.3 1 AAIJ 12AR LHCB pp at 7 TeV5.5±0.9±0.3 2 AALTONEN 09C CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 26 90 3 PENG 10 BELL e+ e− → �(5S)
< 5.6 90 4 ABULENCIA,A 06D CDF Repl. by AALTONEN 09C
<261 90 5 ABE 00C SLD e+ e− → Z
<210 90 6 BUSKULIC 96V ALEP e+ e− → Z
<260 90 7 AKERS 94L OPAL e+ e− → Z1AAIJ 12AR reports [�(B0s → π+K−)/�total℄ / [B(B0 → K+π−)℄ × [�(b → B0s )/�(b → B0)℄ = 0.074 ± 0.006 ± 0.006 whi
h we multiply or divide by our best valuesB(B0 → K+π−) = (1.96± 0.05)×10−5, �(b → B0s )/�(b → B0) = 0.256± 0.014.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best values.2AALTONEN 09C reports [�(B0s → π+K−)/�total℄ / [B(B0 → K+π−)℄ × [B(b →B0s )℄ / [B(b → B0)℄ = 0.071 ± 0.010 ± 0.007 whi
h we multiply or divide by our bestvalues B(B0 → K+π−) = (1.96± 0.05)×10−5, B(b → B0s ) = (10.3± 0.5)×10−2,B(b → B0) = (40.4 ± 0.6)× 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best values.

3Uses �(10860) → B∗s B∗s and assumes B(�(10860) → B(∗)s B(∗)s ) = (19.3 ± 2.9)%and �(�(10860) → B∗s B∗s ) / �(�(10860) → B(∗)s B(∗)s ) = (90.1+3.8
−4.0)%.4ABULENCIA,A 06D obtains this from (fs/fd ) (B(Bs → π+K−) / B(B0 → K+π−))

< 0.08 at 90% CL, assuming fs/fd = 0.260 ± 0.039 and B(B0 → K+π−) = (18.9 ±0.7) × 10−6.5ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8
−2.2)% and fBs=(10.5+1.8

−2.2)%.6BUSKULIC 96V assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons.7Assumes B(Z → bb) = 0.217 and B0d (B0s ) fra
tion 39.5% (12%).�(K+K−)/�total �91/��(K+K−)/�total �91/��(K+K−)/�total �91/��(K+K−)/�total �91/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT25.2± 1.7 OUR AVERAGE25.2± 1.7 OUR AVERAGE25.2± 1.7 OUR AVERAGE25.2± 1.7 OUR AVERAGE24.2± 1.6±1.5 1 AAIJ 12AR LHCB pp at 7 TeV26.1± 2.2±1.7 2 AALTONEN 11N CDF pp at 1.96 TeV38 +10
− 9 ±7 3 PENG 10 BELL e+ e− → �(5S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<310 90 DRUTSKOY 07A BELL e+ e− → �(5S)33 ± 6 ±7 4 ABULENCIA,A 06D CDF Repl. by AALTONEN 11N
<283 90 5 ABE 00C SLD e+ e− → Z
< 59 90 6 BUSKULIC 96V ALEP e+ e− → Z
<140 90 7 AKERS 94L OPAL e+ e− → Z1AAIJ 12AR reports [�(B0s → K+K−)/�total℄ / [B(B0 → K+π−)℄ × [�(b → B0s )/�(b → B0)℄ = 0.316 ± 0.009 ± 0.019 whi
h we multiply or divide by our best valuesB(B0 → K+π−) = (1.96± 0.05)×10−5, �(b → B0s )/�(b → B0) = 0.256± 0.014.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best values.2AALTONEN 11N reports (fs/fd ) (B(B0s → K+K−) / B(B0 → K+π−)) = 0.347 ±0.020± 0.021. We multiply this result by our best value of B(B0 → K+π−) = (1.96±0.05)× 10−5 and divide by our best value of fs/fd , where 1/2 fs/fd = 0.130 ± 0.008.Our �rst quoted un
ertainty is the 
ombined experiment's un
ertainty and our se
ond isthe systemati
 un
ertainty from using out best values.3Uses �(10860) → B∗s B∗s and assumes B(�(10860) → B(∗)s B(∗)s ) = (19.3 ± 2.9)%and �(�(10860) → B∗s B∗s ) / �(�(10860) → B(∗)s B(∗)s ) = (90.1+3.8

−4.0)%.4ABULENCIA,A 06D obtains this from (fs/fd ) (B(Bs → K+K−) / B(B0 → K+π−))= 0.46 ± 0.08 ± 0.07, assuming fs/fd = 0.260 ± 0.039 and B(B0 → K+π−) =(18.9 ± 0.7)× 10−6.5ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8
−2.2)% and fBs=(10.5+1.8

−2.2)%.6BUSKULIC 96V assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons.7Assumes B(Z → bb) = 0.217 and B0d (B0s ) fra
tion 39.5% (12%).�(K0K0)/�total �92/��(K0K0)/�total �92/��(K0K0)/�total �92/��(K0K0)/�total �92/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<6.6<6.6<6.6<6.6 90 1 PENG 10 BELL e+ e− → �(5S)1Uses �(10860) → B∗s B∗s and assumes B(�(10860) → B(∗)s B(∗)s ) = (19.3 ± 2.9)%and �(�(10860) → B∗s B∗s ) / �(�(10860) → B(∗)s B(∗)s ) = (90.1+3.8

−4.0)%.�(K0π+π−)/�total �93/��(K0π+π−)/�total �93/��(K0π+π−)/�total �93/��(K0π+π−)/�total �93/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT15±4±115±4±115±4±115±4±1 1 AAIJ 13BP LHCB pp at 7 TeV1AAIJ 13BP reports [�(B0s → K0π+π−
)/�total℄ / [B(B0 → K0π+π−)℄ = 0.29 ±0.06± 0.04 whi
h we multiply by our best value B(B0 → K0π+π−) = (5.20± 0.24)×10−5. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.�(K∗(892)−π+)/�total �95/��(K∗(892)−π+)/�total �95/��(K∗(892)−π+)/�total �95/��(K∗(892)−π+)/�total �95/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT3.3±1.2±0.33.3±1.2±0.33.3±1.2±0.33.3±1.2±0.3 1,2 AAIJ 14BMLHCB pp at 7 TeV1AAIJ 14BM reports [�(B0s → K∗(892)−π+)/�total℄ / [B(B0 → K∗(892)+π−)℄ =0.39 ± 0.13 ± 0.05 whi
h we multiply by our best value B(B0 → K∗(892)+π−) =(8.4 ± 0.8) × 10−6. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Uses fs/fd = 0.259 ± 0.015.�(K0K±π∓)/�total �94/��(K0K±π∓)/�total �94/��(K0K±π∓)/�total �94/��(K0K±π∓)/�total �94/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT7.7±1.0±0.47.7±1.0±0.47.7±1.0±0.47.7±1.0±0.4 1 AAIJ 13BP LHCB pp at 7 TeV1AAIJ 13BP reports [�(B0s → K0K±π∓
)/�total℄ / [B(B0 → K0π+π−)℄ = 1.48 ±0.12± 0.14 whi
h we multiply by our best value B(B0 → K0π+π−) = (5.20± 0.24)×10−5. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.



1344134413441344Meson Parti
le ListingsB0s�(K∗(892)±K∓)/�total �96/��(K∗(892)±K∓)/�total �96/��(K∗(892)±K∓)/�total �96/��(K∗(892)±K∓)/�total �96/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.25±0.24±0.111.25±0.24±0.111.25±0.24±0.111.25±0.24±0.11 1,2 AAIJ 14BMLHCB pp at 7 TeV1AAIJ 14BM reports [�(B0s → K∗(892)±K∓)/�total℄ / [B(B0 → K∗(892)+π−)℄ =1.49 ± 0.22 ± 0.18 whi
h we multiply by our best value B(B0 → K∗(892)+π−) =(8.4 ± 0.8) × 10−6. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Uses fs/fd = 0.259 ± 0.015.�(K0S K∗(892)0+ 
.
.)/�total �97/��(K0S K∗(892)0+ 
.
.)/�total �97/��(K0S K∗(892)0+ 
.
.)/�total �97/��(K0S K∗(892)0+ 
.
.)/�total �97/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT16.4±3.4±2.316.4±3.4±2.316.4±3.4±2.316.4±3.4±2.3 1 AAIJ 16 LHCB pp at 7 TeV1Measured relative to B0 → K0S π+π− using the value of B(B0 → K0π+π−) =(4.96 ± 0.2)× 10−5.�(K0K+K−)/�total �98/��(K0K+K−)/�total �98/��(K0K+K−)/�total �98/��(K0K+K−)/�total �98/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.5× 10−6<3.5× 10−6<3.5× 10−6<3.5× 10−6 90 1 AAIJ 13BP LHCB pp at 7 TeV1AAIJ 13BP reports [�(B0s → K0K+K−)/�total℄ / [B(B0 → K0π+π−)℄ < 0.068whi
h we multiply by our best value B(B0 → K0π+π−) = 5.20× 10−5.�(K∗(892)0 ρ0)/�total �99/��(K∗(892)0 ρ0)/�total �99/��(K∗(892)0 ρ0)/�total �99/��(K∗(892)0 ρ0)/�total �99/�VALUE CL% DOCUMENT ID TECN COMMENT
<7.67× 10−4<7.67× 10−4<7.67× 10−4<7.67× 10−4 90 1 ABE 00C SLD e+ e− → Z1ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.�(K∗(892)0K∗(892)0)/�total �100/��(K∗(892)0K∗(892)0)/�total �100/��(K∗(892)0K∗(892)0)/�total �100/��(K∗(892)0K∗(892)0)/�total �100/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT1.11±0.26±0.061.11±0.26±0.061.11±0.26±0.061.11±0.26±0.06 1 AAIJ 15AF LHCB pp at 7 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.81±0.46±0.56 2 AAIJ 12F LHCB Repl. by AAIJ 15AF
<168.1 90 3 ABE 00C SLD e+ e− → Z1AAIJ 15AF reports [�(B0s → K∗(892)0K∗(892)0)/�total℄ / [B(B0 → K∗(892)0φ)℄= 1.11± 0.22± 0.12± 0.06 whi
h we multiply by our best value B(B0 → K∗(892)0φ)= (1.00 ± 0.05)× 10−5. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Uses B0 → J/ψK∗0 for normalization and assumes B(B0 → J/ψK∗0) B(J/ψ →

µ+µ−) B(K∗0 → K+π−) = (1.33 ± 0.06)× 10−3 and fs/fd = 0.253 ± 0.031. These
ond quoted error is total un
ertainty in
luding the error of 0.34 on fs/fd .3ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8
−2.2)% and fBs=(10.5+1.8

−2.2)%.�(

φK∗(892)0)/�total �101/��(

φK∗(892)0)/�total �101/��(

φK∗(892)0)/�total �101/��(

φK∗(892)0)/�total �101/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT1.14±0.29±0.061.14±0.29±0.061.14±0.29±0.061.14±0.29±0.06 1 AAIJ 13BW LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1013 90 2 ABE 00C SLD e+ e− → Z1AAIJ 13BW reports [�(B0s → φK∗(892)0)/�total℄ / [B(B0 → K∗(892)0φ)℄ = 0.113±0.024 ± 0.016 whi
h we multiply by our best value B(B0 → K∗(892)0φ) = (1.00 ±0.05) × 10−5. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.2ABE 00C assumes B(Z → bb)=(21.7 ± 0.1)% and the B fra
tions fB0=fB+=(39.7+1.8

−2.2)% and fBs=(10.5+1.8
−2.2)%.�(pp)/�total �102/��(pp)/�total �102/��(pp)/�total �102/��(pp)/�total �102/�Test for �B=1 weak neutral 
urrent. Allowed by higher-order ele
troweak intera
tions.VALUE (units 10−8) CL% DOCUMENT ID TECN COMMENT2.84+2.03

−1.68+0.85
−0.182.84+2.03

−1.68+0.85
−0.182.84+2.03

−1.68+0.85
−0.182.84+2.03

−1.68+0.85
−0.18 1 AAIJ 13BQ LHCB pp at 7 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5900 90 2 BUSKULIC 96V ALEP e+ e− → Z1Uses normalization mode B(B0 → K+π−) = (19.55± 0.54)×10−6 and B produ
tionratio f(b → B0s )/f(b → B0d ) = 0.256 ± 0.020.2BUSKULIC 96V assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons.�(�−
 �π+)/�total �103/��(�−
 �π+)/�total �103/��(�−
 �π+)/�total �103/��(�−
 �π+)/�total �103/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.6±1.1±1.23.6±1.1±1.23.6±1.1±1.23.6±1.1±1.2 1 SOLOVIEVA 13 BELL e+ e− → �(4S)1The se
ond error is the total systemati
 un
ertainty in
luding the �
 absolute bran
hingfra
tions and the normalizion number of Bs events.�(�−
 �+
 )/�total �104/��(�−
 �+
 )/�total �104/��(�−
 �+
 )/�total �104/��(�−
 �+
 )/�total �104/�VALUE CL% DOCUMENT ID TECN COMMENT
<8.0× 10−5<8.0× 10−5<8.0× 10−5<8.0× 10−5 95 1 AAIJ 14AA LHCB pp at 7 TeV1Uses B(B0 → D+D−s ) = (7.2 ± 0.8)× 10−3.

�(

γ γ
)/�total �105/��(

γ γ
)/�total �105/��(

γ γ
)/�total �105/��(

γ γ
)/�total �105/�Test for �B=1 weak neutral 
urrent.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 3.1< 3.1< 3.1< 3.1 90 1 DUTTA 15 BELL e+ e− → �(5S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 8.7 90 2 WICHT 08A BELL Repl. by DUTTA 15
< 53 90 DRUTSKOY 07A BELL Repl. by WICHT 08A
<148 90 3 ACCIARRI 95I L3 e+ e− → Z1Assumes the fra
tion of B(∗)s B(∗)s in bb events is fs = (17.2 ± 3.0)%.2Assumes �(5S) → B∗s B∗s = (19.5+3.0

−2.3)%.3ACCIARRI 95I assumes fB0 = 39.5 ± 4.0 and fBs = (12.0 ± 3.0)%.�(

φγ
)/�total �106/��(

φγ
)/�total �106/��(

φγ
)/�total �106/��(

φγ
)/�total �106/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT35.2± 3.4 OUR AVERAGE35.2± 3.4 OUR AVERAGE35.2± 3.4 OUR AVERAGE35.2± 3.4 OUR AVERAGE36 ± 5 ± 7 1 DUTTA 15 BELL e+ e− → �(5S)35.1± 3.5± 1.2 2 AAIJ 13 LHCB pp at 7 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •39 ± 5 3 AAIJ 12AE LHCB Repl. by AAIJ 1357 +18
−15 +12

−11 4 WICHT 08A BELL Repl. by DUTTA 15
<390 90 DRUTSKOY 07A BELL e+ e− → �(5S)
<120 90 ACOSTA 02G CDF pp at 1.8 TeV
<700 90 5 ADAM 96D DLPH e+ e− → Z1Assumes the fra
tion of B(∗)s B(∗)s in bb events is fs = (17.2 ± 3.0)%. The systemati
un
ertainty from fs is 0.6× 10−5.2AAIJ 13 reports [�(B0s → φγ

)/�total℄ / [B(B0 → K∗(892)0 γ)℄ = 0.81 ± 0.04 ± 0.07whi
h we multiply by our best value B(B0 → K∗(892)0 γ) = (4.33 ± 0.15) × 10−5.Our �rst error is their experiment's error and our se
ond error is the systemati
 errorfrom using our best value.3Measures B(B0 → K∗0 γ)/B(Bs → φγ) = 1.12± 0.08(stat)+0.06
−0.04(sys)+0.09

−0.08(fs/fd )and uses 
urrent world-average value of B(B0 → K∗0γ) = (4.33 ± 0.15)× 10−5.4Assumes �(5S) → B∗s B∗s = (19.5+3.0
−2.3)%.5ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12.�(

µ+µ−)/�total �107/��(

µ+µ−)/�total �107/��(

µ+µ−)/�total �107/��(

µ+µ−)/�total �107/�Test for �B = 1 weak neutral 
urrent.VALUE (units 10−9) CL% DOCUMENT ID TECN COMMENT2.9+0.7
−0.6 OUR AVERAGE2.9+0.7
−0.6 OUR AVERAGE2.9+0.7
−0.6 OUR AVERAGE2.9+0.7
−0.6 OUR AVERAGE2.8+0.7
−0.6 1 KHACHATRY...15BE LHC pp at 7, 8 TeV13 +9
−7 2 AALTONEN 13F CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.2+1.4
−1.2+0.5

−0.3 3 AAIJ 13B LHCB Repl. by AAIJ 13BA2.9+1.1
−1.0+0.3

−0.1 4 AAIJ 13BA LHCB Repl. by KHACHA-TRYAN 15BE
< 12 90 5 ABAZOV 13C D0 pp at 1.96 TeV3.0+1.0

−0.9 6 CHATRCHYAN13AWCMS Repl. by KHACHA-TRYAN 15BE
< 19 90 7 AAD 12AE ATLS pp at 7 TeV
< 12 90 8 AAIJ 12A LHCB Repl. by AAIJ 12W
< 3.8 90 9 AAIJ 12W LHCB Repl. by AAIJ 13B
< 6.4 90 10 CHATRCHYAN12A CMS pp at 7 TeV
< 43 90 11 AAIJ 11B LHCB Repl. by AAIJ 12A
< 35 90 12 AALTONEN 11AG CDF pp at 1.96 TeV
< 16 90 13 CHATRCHYAN11T CMS Repl. by CHATRCHYAN 12A
< 42 90 14 ABAZOV 10S D0 pp at 1.96 TeV
< 47 90 14 AALTONEN 08I CDF Repl. by AALTONEN 11AG
< 94 90 15 ABAZOV 07Q D0 Repl. by ABAZOV 10S
< 410 90 16 ABAZOV 05E D0 pp at 1.96 TeV
< 150 90 17 ABULENCIA 05 CDF pp at 1.96 TeV
< 580 90 18 ACOSTA 04D CDF pp at 1.96 TeV
< 2000 90 19 ABE 98 CDF pp at 1.8 TeV
<38000 90 20 ACCIARRI 97B L3 e+ e− → Z
< 8400 90 21 ABE 96L CDF Repl. by ABE 981Determined from the joint �t to CMS and LHCb data. Un
ertainty in
ludes both statis-ti
al and systemati
 
omponent.2Uses normalization mode B(B+ → J/ψK+) = (10.22±0.35)×10−4 and B produ
tionratio f(b → B0s )/f(b → B0d ) = 0.28 ± 0.04.3Uses B produ
tion ratio f(b → B0s )/f(b → B0d ) = 0.256± 0.020 and two normalizationmodes: B(B+ → J/ψK+→ µ+µ−K+) = (6.01 ± 0.21) × 10−5 and B(B0 →K+π−) = (1.94 ± 0.06) × 10−5.4Uses B produ
tion ratio f(b → B0s )/f(b → B0d ) = 0.259 ± 0.015 and normalizationmodes B+ → J/ψK+ → µ+µ−K+ and B0 → K+π−.5Uses normalization mode B(B+ → J/ψK+ → µ+µ−K+) = (6.01 ± 0.21)× 10−5and B produ
tion ratio f(b → B0s )/f(b → B0d ) = 0.263 ± 0.017.6Uses B produ
tion ratio f(b → B0s )/f(b → B0d ) = 0.256 ± 0.020 and B(B+ →J/ψK+ → µ+µ−K+) = (6.0 ± 0.2) × 10−5 for normalization.



1345134513451345See key on page 601 MesonParti
le ListingsB0s7Uses B produ
tion ratio f(b → B+)/f(b → B0s ) = 3.75±0.29 and B(B+ → J/ψK+ →
µ+µ−K+) = (6.0 ± 0.2)× 10−5.8Uses B produ
tion ratio f(b → B0s )/f(b → B0d ) = 0.267+0.021

−0.020 and three normalizationmodes B(B+ → J/ψK+→ µ+µ−K+) = (6.01 ± 0.21)× 10−5, B(B0 → K+π−)= (1.94± 0.06)×10−5, and B(B0s → J/ψφ→ µ+µ−K+K−) = (3.4± 0.9)×10−5.9Uses B produ
tion ratio f(b → B0s )/f(b → B0d ) = 0.267+0.021
−0.020 and three normalizationmodes of B+ → J/ψK+, B0 → K+π−, and B0s → J/ψφ.10Uses fs/fu = 0.267±0.021 and B(B+ → J/ψK+ → µ+µ−K+) = (6.0±0.2)×10−5.11Uses B produ
tion ratio f(b → B+)/f(b → B0s ) = 3.71± 0.47 and three normalizationmodes.12Uses B produ
tion ratio f(b → B+)/f(b → B0s ) = 3.55±0.47 and B(B+ → J/ψK+→

µ+µ−K+) = (6.01 ± 0.21) × 10−5.13Uses B produ
tion ratio f(b → B+)/f(b → B0s ) = 3.55±0.42 and B(B+ → J/ψK+→
µ+µ−K+) = (6.0 ± 0.2)× 10−5.14Uses B produ
tion ratio f(b → B+)/f(b → B0s ) = 3.86 ± 0.59, and the number ofB+ → J/ψK+ de
ays.15Uses B produ
tion ratio f(b → B+)/f(b → B0s ) = 3.86 ± 0.54 and the number ofB+ → J/ψK+ de
ays.16Assumes produ
tion 
ross-se
tion σ(Bs )/σ(B+) = 0.270 ± 0.034.17Assumes produ
tion 
ross se
tion σ(B+)/σ(Bs ) = 3.71±0.41 and B(B+ → J/ψK+ →
µ+µ−K+) = (5.88 ± 0.26) × 10−5.18Assumes produ
tion 
ross-se
tion σ(Bs )/σ(B+) = 0.100/0.391 and the CDF measuredvalue of σ(B+) = 3.6 ± 0.6 µb.19ABE 98 assumes produ
tion of σ(B0) = σ(B+) and σ(Bs )/σ(B0) = 1/3. They nor-malize to their measured σ(B0,pT (B)> 6,∣∣y∣∣ < 1.0) = 2.39 ± 0.32 ± 0.44 µb.20ACCIARRI 97B assume PDG 96 produ
tion fra
tions for B+, B0, Bs , and �b .21ABE 96L assumes B+/Bs produ
tion ratio 3/1. They normalize to their measured
σ(B+, pT (B)> 6 GeV/
, ∣

∣y∣∣ < 1) = 2.39 ± 0.54 µb.�(e+ e−)/�total �108/��(e+ e−)/�total �108/��(e+ e−)/�total �108/��(e+ e−)/�total �108/�Test for �B = 1 weak neutral 
urrent.VALUE CL% DOCUMENT ID TECN COMMENT
<2.8× 10−7<2.8× 10−7<2.8× 10−7<2.8× 10−7 90 AALTONEN 09P CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5.4× 10−5 90 1 ACCIARRI 97B L3 e+ e− → Z1ACCIARRI 97B assume PDG 96 produ
tion fra
tions for B+, B0, Bs , and �b .�(µ+µ−µ+µ−)/�total �109/��(µ+µ−µ+µ−)/�total �109/��(µ+µ−µ+µ−)/�total �109/��(µ+µ−µ+µ−)/�total �109/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−8<1.2× 10−8<1.2× 10−8<1.2× 10−8 90 1 AAIJ 13AWLHCB pp at 7 TeV1Also reports a limit of < 1.6× 10−8 at 95% CL.�(S P , S → µ+µ−, P → µ+µ−)/�total �110/��(S P , S → µ+µ−, P → µ+µ−)/�total �110/��(S P , S → µ+µ−, P → µ+µ−)/�total �110/��(S P , S → µ+µ−, P → µ+µ−)/�total �110/�Here S and P are the hypotheti
al s
alar and pseudos
alar parti
les with masses of2.5 GeV/
2 and 214.3 MeV/
2, respe
tively.VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−8<1.2× 10−8<1.2× 10−8<1.2× 10−8 90 1 AAIJ 13AWLHCB pp at 7 TeV1Also reports a limit of < 1.6× 10−8 at 95% CL.�(φ(1020)µ+µ−)/�total �111/��(φ(1020)µ+µ−)/�total �111/��(φ(1020)µ+µ−)/�total �111/��(φ(1020)µ+µ−)/�total �111/�Test for �B = 1 weak neutral 
urrent.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<32 90 1 ABAZOV 06G D0 pp at 1.96 TeV
< 4.7× 102 90 ACOSTA 02D CDF pp at 1.8 TeV1Uses B(B0s → J/ψφ) = 9.3× 10−4.�(φ(1020)µ+µ−)/�(J/ψ(1S)φ) �111/�44�(φ(1020)µ+µ−)/�(J/ψ(1S)φ) �111/�44�(φ(1020)µ+µ−)/�(J/ψ(1S)φ) �111/�44�(φ(1020)µ+µ−)/�(J/ψ(1S)φ) �111/�44VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT0.76 ±0.09 OUR AVERAGE0.76 ±0.09 OUR AVERAGE0.76 ±0.09 OUR AVERAGE0.76 ±0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.0.741+0.042

−0.040±0.029 AAIJ 15AQ LHCB pp at 7, 8 TeV1.13 ±0.19 ±0.07 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.674+0.061

−0.056±0.016 1 AAIJ 13X LHCB Repl. by AAIJ 15AQ1.11 ±0.25 ±0.09 AALTONEN 11L CDF Repl. by AALTONEN 11AI
< 2.3 90 AALTONEN 09B CDF Repl. by AALTONEN 11L1Repla
ed by AAIJ 15AQ.�(π+π−µ+µ−)/�total �112/��(π+π−µ+µ−)/�total �112/��(π+π−µ+µ−)/�total �112/��(π+π−µ+µ−)/�total �112/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT8.4±1.6±0.38.4±1.6±0.38.4±1.6±0.38.4±1.6±0.3 1 AAIJ 15S LHCB pp at 7, 8 TeV1AAIJ 15S reports (8.6 ± 1.5 ± 0.7 ± 0.7) × 10−8 from a measurement of[�(B0s → π+π−µ+µ−

)/�total℄ / [B(B0 → J/ψ(1S)K∗(892)0)℄ assuming B(B0 →J/ψ(1S)K∗(892)0) = (1.3 ± 0.1)× 10−3, whi
h we res
ale to our best value B(B0 →J/ψ(1S)K∗(892)0) = (1.28 ± 0.05)× 10−3. Our �rst error is their experiment's errorand our se
ond error is the systemati
 error from using our best value.

�(φν ν
)/�total �113/��(φν ν
)/�total �113/��(φν ν
)/�total �113/��(φν ν
)/�total �113/�Test for �B = 1 weak neutral 
urrent.VALUE CL% DOCUMENT ID TECN COMMENT

<5.4× 10−3<5.4× 10−3<5.4× 10−3<5.4× 10−3 90 1 ADAM 96D DLPH e+ e− → Z1ADAM 96D assumes fB0 = fB− = 0.39 and fBs = 0.12.�(e±µ∓)/�total �114/��(e±µ∓)/�total �114/��(e±µ∓)/�total �114/��(e±µ∓)/�total �114/�Test of lepton family number 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<1.1× 10−8<1.1× 10−8<1.1× 10−8<1.1× 10−8 90 1 AAIJ 13BMLHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.0× 10−7 90 AALTONEN 09P CDF pp at 1.96 TeV
<6.1× 10−6 90 ABE 98V CDF Repl. by AALTONEN 09P
<4.1× 10−5 90 2 ACCIARRI 97B L3 e+ e− → Z1Uses normalization mode B(B0 → K+π−) = (19.4 ± 0.6)× 10−6 and B produ
tionratio f(b → B0s )/f(b → B0d ) = 0.256 ± 0.020.2ACCIARRI 97B assume PDG 96 produ
tion fra
tions for B+, B0, Bs , and �b .POLARIZATION IN B0s DECAYPOLARIZATION IN B0s DECAYPOLARIZATION IN B0s DECAYPOLARIZATION IN B0s DECAYIn de
ays involving two ve
tor mesons, one 
an distinguish among thestates in whi
h meson polarizations are both longitudinal (L), or both aretransverse and parallel (‖), or perpendi
ular (⊥) to ea
h other with theparameters �L/�, �⊥/�, and the relative phases φ‖ and φ⊥. See thede�nitions in the note on \Polarization in B De
ays" review in the B0Parti
le Listings.�L/� in B0s → D∗s ρ+�L/� in B0s → D∗s ρ+�L/� in B0s → D∗s ρ+�L/� in B0s → D∗s ρ+VALUE DOCUMENT ID TECN COMMENT1.05+0.08

−0.10+0.03
−0.041.05+0.08

−0.10+0.03
−0.041.05+0.08

−0.10+0.03
−0.041.05+0.08

−0.10+0.03
−0.04 LOUVOT 10 BELL e+ e− → �(5S)�L/� in B0s → J/ψ(1S)φ�L/� in B0s → J/ψ(1S)φ�L/� in B0s → J/ψ(1S)φ�L/� in B0s → J/ψ(1S)φVALUE DOCUMENT ID TECN COMMENT0.528 ±0.006 OUR AVERAGE0.528 ±0.006 OUR AVERAGE0.528 ±0.006 OUR AVERAGE0.528 ±0.006 OUR AVERAGE0.5241±0.0034±0.0067 AAIJ 15I LHCB pp at 7, 8 TeV0.529 ±0.006 ±0.012 1 AAD 14U ATLS pp at 7 TeV0.524 ±0.013 ±0.015 2 AALTONEN 12D CDF pp at 1.96 TeV0.558 +0.017

−0.019 2,3 ABAZOV 12D D0 pp at 1.96 TeV0.61 ±0.14 ±0.02 4 AFFOLDER 00N CDF pp at 1.8 TeV0.56 ±0.21 +0.02
−0.04 ABE 95Z CDF pp at 1.8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.539 ±0.014 ±0.016 2 AAD 12CV ATLS Repl. by AAD 14U0.555 ±0.027 ±0.006 5 ABAZOV 09E D0 Repl. by ABAZOV 12D0.531 ±0.020 ±0.007 2 AALTONEN 08J CDF Repl. by AALTONEN 12D0.62 ±0.06 ±0.01 ACOSTA 05 CDF Repl. by AALTONEN 08J1Measured using the 
avor tagged, time-dependent angular analysis of B0s → J/ψφde
ays.2Measured using the time-dependent angular analysis of B0s → J/ψφ de
ays.3The error in
ludes both statisti
al and systemati
 un
ertainties.4AFFOLDER 00N measurements are based on 40 B0s 
andidates obtained from a datasample of 89 pb−1. The P-wave fra
tion is found to be 0.23 ± 0.19 ± 0.04.5Measured the angular and lifetime parameters for the time-dependent angular untaggedde
ays B0d → J/ψK∗0 and B0s → J/ψφ.�L/� in B0s → D∗+s D∗−s�L/� in B0s → D∗+s D∗−s�L/� in B0s → D∗+s D∗−s�L/� in B0s → D∗+s D∗−sVALUE DOCUMENT ID TECN COMMENT0.06+0.18
−0.17±0.030.06+0.18
−0.17±0.030.06+0.18
−0.17±0.030.06+0.18
−0.17±0.03 ESEN 13 BELL e+ e− → �(5S)�‖/� in B0s → J/ψ(1S)φ�‖/� in B0s → J/ψ(1S)φ�‖/� in B0s → J/ψ(1S)φ�‖/� in B0s → J/ψ(1S)φVALUE DOCUMENT ID TECN COMMENT0.224±0.010 OUR AVERAGE0.224±0.010 OUR AVERAGE0.224±0.010 OUR AVERAGE0.224±0.010 OUR AVERAGE0.220±0.008±0.009 1 AAD 14U ATLS pp at 7 TeV0.231±0.014±0.015 2 AALTONEN 12D CDF pp at 1.96 TeV0.231+0.024
−0.030 2,3 ABAZOV 12D D0 pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.224±0.010±0.009 2 AAD 12CV ATLS Repl. by AAD 14U0.244±0.032±0.014 4 ABAZOV 09E D0 Repl. by ABAZOV 12D0.230±0.029±0.011 2 AALTONEN 08J CDF Repl. by AALTONEN 12D0.260±0.084±0.013 ACOSTA 05 CDF Repl. by AALTONEN 08J1Measured using a tagged, time-dependent angular analysis of B0s → J/ψφ de
ays.2Measured using the time-dependent angular analysis of B0s → J/ψφ de
ays.3The error in
ludes both statisti
al and systemati
 un
ertainties.4Measured the angular and lifetime parameters for the time-dependent angular untaggedde
ays B0d → J/ψK∗0 and B0s → J/ψφ.�⊥/� in B0s → J/ψ(1S)φ�⊥/� in B0s → J/ψ(1S)φ�⊥/� in B0s → J/ψ(1S)φ�⊥/� in B0s → J/ψ(1S)φVALUE DOCUMENT ID TECN COMMENT0.2504±0.0049±0.00360.2504±0.0049±0.00360.2504±0.0049±0.00360.2504±0.0049±0.0036 AAIJ 15I LHCB pp at 7, 8 TeV



1346134613461346MesonParti
le ListingsB0s
φ‖ in B0s → J/ψ(1S)φφ‖ in B0s → J/ψ(1S)φφ‖ in B0s → J/ψ(1S)φφ‖ in B0s → J/ψ(1S)φVALUE (rad) DOCUMENT ID TECN COMMENT3.23+0.10

−0.14 OUR AVERAGE3.23+0.10
−0.14 OUR AVERAGE3.23+0.10
−0.14 OUR AVERAGE3.23+0.10
−0.14 OUR AVERAGE3.26+0.10
−0.17+0.06

−0.07 AAIJ 15I LHCB pp at 7, 8 TeV3.15±0.22 1 ABAZOV 12D D0 pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.72+1.12

−0.27±0.26 ABAZOV 09E D0 Repl. by ABAZOV 12D1The error in
ludes both statisti
al and systemati
 un
ertainties.
φ⊥ in B0s → J/ψ(1S)φφ⊥ in B0s → J/ψ(1S)φφ⊥ in B0s → J/ψ(1S)φφ⊥ in B0s → J/ψ(1S)φVALUE (rad) DOCUMENT ID TECN COMMENT3.16±0.24 OUR AVERAGE3.16±0.24 OUR AVERAGE3.16±0.24 OUR AVERAGE3.16±0.24 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.3.08+0.14

−0.15±0.06 AAIJ 15I LHCB pp at 7, 8 TeV3.89±0.47±0.11 1 AAD 14U ATLS pp at 7 TeV1Measured using a tagged, time-dependent angular analysis of B0s → J/ψφ de
ays.�L/� for B0s → J/ψ(1S)K∗(892)0�L/� for B0s → J/ψ(1S)K∗(892)0�L/� for B0s → J/ψ(1S)K∗(892)0�L/� for B0s → J/ψ(1S)K∗(892)0Longitudinal polarization fra
tion, equals to fL using notation of \Polarization in Bde
ays" review.VALUE DOCUMENT ID TECN COMMENT0.497±0.025±0.0250.497±0.025±0.0250.497±0.025±0.0250.497±0.025±0.025 AAIJ 15AV LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.50 ±0.08 ±0.02 1 AAIJ 12AP LHCB Repl. by AAIJ 15AV1The non-resonant K π ba
kground 
ontributions are subtra
ted. Also reports an S-waveamplitude ∣

∣AS
∣

∣

2 = 0.07+0.15
−0.07.�‖ /� for B0s → J/ψ(1S)K∗(892)0�‖ /� for B0s → J/ψ(1S)K∗(892)0�‖ /� for B0s → J/ψ(1S)K∗(892)0�‖ /� for B0s → J/ψ(1S)K∗(892)0Parallel polarization fra
tion, equals to 1 − fL − f⊥ using notation of \Polarizationin B de
ays" review.VALUE DOCUMENT ID TECN COMMENT0.179±0.027±0.0130.179±0.027±0.0130.179±0.027±0.0130.179±0.027±0.013 AAIJ 15AV LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.19 +0.10
−0.08 ±0.02 1 AAIJ 12AP LHCB Repl. by AAIJ 15AV1The non-resonant K π ba
kground 
ontributions are subtra
ted. Also reports an S-waveamplitude ∣

∣AS
∣

∣

2 = 0.07+0.15
−0.07.�‖ /� of K∗(892)0 in B0s → ψ(2S)K∗(892)0�‖ /� of K∗(892)0 in B0s → ψ(2S)K∗(892)0�‖ /� of K∗(892)0 in B0s → ψ(2S)K∗(892)0�‖ /� of K∗(892)0 in B0s → ψ(2S)K∗(892)0VALUE DOCUMENT ID TECN COMMENT0.524±0.056±0.0290.524±0.056±0.0290.524±0.056±0.0290.524±0.056±0.029 AAIJ 15U LHCB pp at 7, 8 TeV�L/� in B0s → φφ�L/� in B0s → φφ�L/� in B0s → φφ�L/� in B0s → φφVALUE DOCUMENT ID TECN COMMENT0.362±0.014 OUR AVERAGE0.362±0.014 OUR AVERAGE0.362±0.014 OUR AVERAGE0.362±0.014 OUR AVERAGE0.364±0.012±0.009 AAIJ 14AE LHCB pp at 7, 8 TeV0.348±0.041±0.021 AALTONEN 11AN CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.365±0.022±0.012 AAIJ 12P LHCB Repl. by AAIJ 14AE�⊥/� in B0s → φφ�⊥/� in B0s → φφ�⊥/� in B0s → φφ�⊥/� in B0s → φφVALUE DOCUMENT ID TECN COMMENT0.309±0.015 OUR AVERAGE0.309±0.015 OUR AVERAGE0.309±0.015 OUR AVERAGE0.309±0.015 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.305±0.013±0.005 AAIJ 14AE LHCB pp at 7, 8 TeV0.365±0.044±0.027 AALTONEN 11AN CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.291±0.024±0.010 AAIJ 12P LHCB Repl. by AAIJ 14AE
φ‖ in B0s → φφφ‖ in B0s → φφφ‖ in B0s → φφφ‖ in B0s → φφVALUE (rad) DOCUMENT ID TECN COMMENT2.55±0.11 OUR AVERAGE2.55±0.11 OUR AVERAGE2.55±0.11 OUR AVERAGE2.55±0.11 OUR AVERAGE2.54±0.07±0.09 1 AAIJ 14AE LHCB pp at 7, 8 TeV2.71+0.31

−0.36±0.22 2 AALTONEN 11AN CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.57±0.15±0.06 3 AAIJ 12P LHCB Repl. by AAIJ 14AE1AAIJ 14AE reports measurement of φ⊥ and φ⊥ − φ‖, whi
h we 
onvert into φ‖. Sta-tisti
al un
ertainty in
ludes 
orrelation between measured parameters, while systemati
un
ertainties are assumed un
orrelated.2AALTONEN 11AN quotes 
osφ‖ = −0.91+0.15

−0.13 ± 0.09 whi
h we 
onvert to φ‖ takingthe smaller solution.3AAIJ 12P quotes 
osφ‖ = −0.844 ± 0.068 ± 0.029 whi
h we 
onvert to φ‖, taking thesmaller solution.
φ⊥ in B0s → φφφ⊥ in B0s → φφφ⊥ in B0s → φφφ⊥ in B0s → φφVALUE (rad) DOCUMENT ID TECN COMMENT2.67±0.23±0.072.67±0.23±0.072.67±0.23±0.072.67±0.23±0.07 AAIJ 14AE LHCB pp at 7, 8 TeV

�L/� in B0s → K∗0K∗0�L/� in B0s → K∗0K∗0�L/� in B0s → K∗0K∗0�L/� in B0s → K∗0K∗0VALUE DOCUMENT ID TECN COMMENT0.201±0.057±0.0400.201±0.057±0.0400.201±0.057±0.0400.201±0.057±0.040 1 AAIJ 15AF LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.31 ±0.12 ±0.04 AAIJ 12F LHCB Repl. by AAIJ 15AF1Measured in angular analysis, whi
h takes into a

ount S-wave 
ontributions.�⊥/� in B0s → K∗0K∗0�⊥/� in B0s → K∗0K∗0�⊥/� in B0s → K∗0K∗0�⊥/� in B0s → K∗0K∗0VALUE DOCUMENT ID TECN COMMENT0.38±0.11±0.040.38±0.11±0.040.38±0.11±0.040.38±0.11±0.04 AAIJ 12F LHCB pp at 7 TeV�‖/� in B0s → K∗(892)0K∗(892)0�‖/� in B0s → K∗(892)0K∗(892)0�‖/� in B0s → K∗(892)0K∗(892)0�‖/� in B0s → K∗(892)0K∗(892)0VALUE DOCUMENT ID TECN COMMENT0.215±0.046±0.0150.215±0.046±0.0150.215±0.046±0.0150.215±0.046±0.015 AAIJ 15AF LHCB pp at 7 TeV�‖ in B0s → K∗(892)0K∗(892)0�‖ in B0s → K∗(892)0K∗(892)0�‖ in B0s → K∗(892)0K∗(892)0�‖ in B0s → K∗(892)0K∗(892)0VALUE DOCUMENT ID TECN COMMENT5.31±0.24±0.145.31±0.24±0.145.31±0.24±0.145.31±0.24±0.14 AAIJ 15AF LHCB pp at 7 TeV�L/� in B0s → φK∗0�L/� in B0s → φK∗0�L/� in B0s → φK∗0�L/� in B0s → φK∗0VALUE DOCUMENT ID TECN COMMENT0.51±0.15±0.070.51±0.15±0.070.51±0.15±0.070.51±0.15±0.07 AAIJ 13BW LHCB pp at 7 TeV�‖ /� in B0s → φK∗0�‖ /� in B0s → φK∗0�‖ /� in B0s → φK∗0�‖ /� in B0s → φK∗0VALUE DOCUMENT ID TECN COMMENT0.21±0.11±0.020.21±0.11±0.020.21±0.11±0.020.21±0.11±0.02 AAIJ 13BW LHCB pp at 7 TeV
φ‖ in B0s → φK∗0φ‖ in B0s → φK∗0φ‖ in B0s → φK∗0φ‖ in B0s → φK∗0VALUE (rad) DOCUMENT ID TECN COMMENT1.75±0.53±0.291.75±0.53±0.291.75±0.53±0.291.75±0.53±0.29 1 AAIJ 13BW LHCB pp at 7 TeV1Measures 
os(φ‖) = −0.18± 0.52± 0.29, whi
h we 
onvert to φ‖ by taking the smallersolution.FL(B0s → φµ+µ−) (0.10 < q2 < 2.00 GeV2/
4)FL(B0s → φµ+µ−) (0.10 < q2 < 2.00 GeV2/
4)FL(B0s → φµ+µ−) (0.10 < q2 < 2.00 GeV2/
4)FL(B0s → φµ+µ−) (0.10 < q2 < 2.00 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.20+0.08

−0.09±0.020.20+0.08
−0.09±0.020.20+0.08
−0.09±0.020.20+0.08
−0.09±0.02 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.37+0.19
−0.17±0.07 AAIJ 13X LHCB Repl. by AAIJ 15AQFL(B0s → φµ+µ−) (2.00 < q2 < 5.0 GeV2/
4)FL(B0s → φµ+µ−) (2.00 < q2 < 5.0 GeV2/
4)FL(B0s → φµ+µ−) (2.00 < q2 < 5.0 GeV2/
4)FL(B0s → φµ+µ−) (2.00 < q2 < 5.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.68+0.16
−0.13±0.030.68+0.16
−0.13±0.030.68+0.16
−0.13±0.030.68+0.16
−0.13±0.03 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.53+0.25
−0.23±0.10 1 AAIJ 13X LHCB Repl. by AAIJ 15AQ1Measured in 2.0 < q2 < 4.3 GeV2/
4.FL(B0s → φµ+µ−) (5.0 < q2 < 8.0 GeV2/
4)FL(B0s → φµ+µ−) (5.0 < q2 < 8.0 GeV2/
4)FL(B0s → φµ+µ−) (5.0 < q2 < 8.0 GeV2/
4)FL(B0s → φµ+µ−) (5.0 < q2 < 8.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.54+0.10
−0.09±0.020.54+0.10
−0.09±0.020.54+0.10
−0.09±0.020.54+0.10
−0.09±0.02 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.81+0.11
−0.13±0.05 1 AAIJ 13X LHCB Repl. by AAIJ 15AQ1Measured in 4.3 < q2 < 8.68 GeV2/
4.FL(B0s → φµ+µ−) (11.0 < q2 < 12.5 GeV2/
4)FL(B0s → φµ+µ−) (11.0 < q2 < 12.5 GeV2/
4)FL(B0s → φµ+µ−) (11.0 < q2 < 12.5 GeV2/
4)FL(B0s → φµ+µ−) (11.0 < q2 < 12.5 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.29±0.11±0.040.29±0.11±0.040.29±0.11±0.040.29±0.11±0.04 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.33+0.14
−0.12±0.06 1 AAIJ 13X LHCB Repl. by AAIJ 15AQ1Measured in 10.09 < q2 < 12.90 GeV2/
4.FL(B0s → φµ+µ−) (15.0< q2 < 17.0 GeV2/
4)FL(B0s → φµ+µ−) (15.0< q2 < 17.0 GeV2/
4)FL(B0s → φµ+µ−) (15.0< q2 < 17.0 GeV2/
4)FL(B0s → φµ+µ−) (15.0< q2 < 17.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.23+0.09
−0.08±0.020.23+0.09
−0.08±0.020.23+0.09
−0.08±0.020.23+0.09
−0.08±0.02 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.34+0.18
−0.17±0.07 1 AAIJ 13X LHCB Repl. by AAIJ 15AQ1Measured in 14.18 < q2 < 16 GeV2/
4.FL(B0s → φµ+µ−) (17.0 < q2 < 19.0 GeV2/
4)FL(B0s → φµ+µ−) (17.0 < q2 < 19.0 GeV2/
4)FL(B0s → φµ+µ−) (17.0 < q2 < 19.0 GeV2/
4)FL(B0s → φµ+µ−) (17.0 < q2 < 19.0 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.40+0.13
−0.15±0.020.40+0.13
−0.15±0.020.40+0.13
−0.15±0.020.40+0.13
−0.15±0.02 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.16+0.17
−0.10±0.07 1 AAIJ 13X LHCB Repl. by AAIJ 15AQ1Measured in 16.0 < q2 < 19.0 GeV2/
4.



1347134713471347See key on page 601 Meson Parti
le ListingsB0sFL(B0s → φµ+µ−) (1.00 < q2 < 6.00 GeV2/
4)FL(B0s → φµ+µ−) (1.00 < q2 < 6.00 GeV2/
4)FL(B0s → φµ+µ−) (1.00 < q2 < 6.00 GeV2/
4)FL(B0s → φµ+µ−) (1.00 < q2 < 6.00 GeV2/
4)VALUE DOCUMENT ID TECN COMMENT0.63+0.09
−0.09±0.030.63+0.09
−0.09±0.030.63+0.09
−0.09±0.030.63+0.09
−0.09±0.03 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.56+0.17
−0.16±0.09 AAIJ 13X LHCB Repl. by AAIJ 15AQB0s -B0s MIXINGB0s -B0s MIXINGB0s -B0s MIXINGB0s -B0s MIXINGFor a dis
ussion of B0s -B0s mixing see the note on \B0-B0 Mixing" in theB0 Parti
le Listings above.

χs is a measure of the time-integrated B0s -B0s mixing probability thatprodu
ed B0s (B0s ) de
ays as a B0s (B0s ). Mixing violates �B 6= 2 rule.
χs = x2s2(1+x2s )xs = �mB0s�B0s = (mB0s H { mB0s L) τB0s ,where H, L stand for heavy and light states of two B0s CP eigenstates and

τB0s = 10.5(�B0s H+�B0s L ) .�mB0s = mB0s H { mB0s L�mB0s = mB0s H { mB0s L�mB0s = mB0s H { mB0s L�mB0s = mB0s H { mB0s L�mB0s is a measure of 2π times the B0s -B0s os
illation frequen
y in time-dependentmixing experiments.\OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFAG) bytaking into a

ount 
orrelations between measurements.VALUE (1012 �h s−1) CL% DOCUMENT ID TECN COMMENT17.757±0.021 OUR EVALUATION17.757±0.021 OUR EVALUATION17.757±0.021 OUR EVALUATION17.757±0.021 OUR EVALUATION17.756±0.021 OUR AVERAGE17.756±0.021 OUR AVERAGE17.756±0.021 OUR AVERAGE17.756±0.021 OUR AVERAGE17.711+0.055
−0.057±0.011 1 AAIJ 15I LHCB pp at 7, 8 TeV17.768±0.023±0.006 2 AAIJ 13BI LHCB pp at 7 TeV17.93 ±0.22 ±0.15 3 AAIJ 13CF LHCB pp at 7 TeV17.63 ±0.11 ±0.02 4 AAIJ 12I LHCB pp at 7 TeV17.77 ±0.10 ±0.07 5 ABULENCIA,A 06G CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •17{21 90 6 ABAZOV 06B D0 pp at 1.96 TeV17.31 +0.33
−0.18 ±0.07 7 ABULENCIA 06Q CDF Repl. by ABULEN-CIA,A 06G

> 8.0 95 8 ABDALLAH 04J DLPH e+ e− → Z0
> 4.9 95 9 ABDALLAH 04J DLPH e+ e− → Z0
> 8.5 95 10 ABDALLAH 04J DLPH e+ e− → Z0
> 5.0 95 11 ABDALLAH 03B DLPH e+ e− → Z
>10.3 95 12 ABE 03 SLD e+ e− → Z
>10.9 95 13 HEISTER 03E ALEP e+ e− → Z
> 5.3 95 14 ABE 02V SLD e+ e− → Z
> 1.0 95 15 ABBIENDI 01D OPAL e+ e− → Z
> 7.4 95 16 ABREU 00Y DLPH Repl. by ABDALLAH 04J
> 4.0 95 17 ABREU,P 00G DLPH e+ e− → Z
> 5.2 95 18 ABBIENDI 99S OPAL e+ e− → Z
<96 95 19 ABE 99D CDF pp at 1.8 TeV
> 5.8 95 20 ABE 99J CDF pp at 1.8 TeV
> 9.6 95 21 BARATE 99J ALEP e+ e− → Z
> 7.9 95 22 BARATE 98C ALEP Repl. by BARATE 99J
> 3.1 95 23 ACKERSTAFF 97U OPAL Repl. by ABBIENDI 99S
> 2.2 95 24 ACKERSTAFF 97V OPAL Repl. by ABBIENDI 99S
> 6.5 95 25 ADAM 97 DLPH Repl. by ABREU 00Y
> 6.6 95 26 BUSKULIC 96M ALEP Repl. by BARATE 98C
> 2.2 95 24 AKERS 95J OPAL Sup. by ACKERSTAFF 97V
> 5.7 95 27 BUSKULIC 95J ALEP e+ e− → Z
> 1.8 95 24 BUSKULIC 94B ALEP e+ e− → Z1Measured using time-dependent angular analysis of B0s → J/ψK+K− de
ays.2Measured using B0s → D−s π+ de
ays.3Measured using B0s → D−s µ+ νµX de
ays.4Measured using B0s → D−s π+ and D−s π+π−π+ de
ays.5 Signi�
an
e of os
illation signal is 5.4 σ. Also reports ∣

∣V td / V ts ∣

∣ = 0.2060 ±0.0007+0.0081
−0.0060.6A likelihood s
an over the os
illation frequen
y, �ms, gives a most probable value of19 ps−1 and a range of 17< �ms <21 (ps−1) at 90% C.L. assuming Gaussian un
er-tainties. Also ex
ludes �ms <14.8 ps−1 at 95% C.L7Signi�
an
e of os
illation signal is 0.2%. Also reported the value ∣

∣V td / V ts ∣∣ =0.208+0.001
−0.002+0.008

−0.006.8Uses leptons emitted with large momentum transverse to a jet and improved te
hniquesfor vertexing and 
avor-tagging.9Updates of Ds -lepton analysis.

10Combined results from all Delphi analyses.11Events with a high transverse momentum lepton were removed and an in
lusively re
on-stru
ted vertex was required.12ABE 03 uses the novel \
harge dipole" te
hnique to re
onstru
t separate se
ondaryand tertiary verti
es originating from the B → D de
ay 
hain. The analysis ex
ludes�ms <4.9 ps−1 and 7.9< �ms <10.3 ps−1.13Three analyses based on 
omplementary event sele
tions: (1) fully-re
onstru
tedhadroni
 de
ays; (2) semileptoni
 de
ays with Ds ex
lusively re
onstru
ted; (3) in
lusivesemileptoni
 de
ays.14ABE 02V uses ex
lusively re
onstru
ted D−s mesons and ex
ludes �ms <1.4 ps−1 and2.4< �ms <5.3 ps−1 at 95%CL.15Uses fully or partially re
onstru
ted Ds ℓ verti
es and a mixing tag as a 
avor tagging.16Repla
ed by ABDALLAH 04A. Uses D−s ℓ+, and φℓ+ verti
es, and a multi-variabledis
riminant as a 
avor tagging.17Uses in
lusive Ds verti
es and fully re
onstru
ted Bs de
ays and a multi-variable dis-
riminant as a 
avor tagging.18Uses ℓ-Qhem and ℓ-ℓ.19ABE 99D assumes τB0s= 1.55 ± 0.05 ps and ��/�m= (5.6 ± 2.6)× 10−3.20ABE 99J uses φ ℓ-ℓ 
orrelation.21BARATE 99J uses 
ombination of an in
lusive lepton and D−s -based analyses.22BARATE 98C 
ombines results from Ds h-ℓ/Qhem, Ds h-K in the same side, Ds ℓ-
ℓ/Qhem and Ds ℓ-K in the same side.23Uses ℓ-Qhem.24Uses ℓ-ℓ.25ADAM 97 
ombines results from Ds ℓ-Qhem, ℓ-Qhem, and ℓ-ℓ.26BUSKULIC 96M uses Ds lepton 
orrelations and lepton, kaon, and jet 
harge tags.27BUSKULIC 95J uses ℓ-Qhem. They �nd �ms > 5.6 [> 6.1℄ for fs=10% [12%℄. Weinterpolate to our 
entral value fs=10.5%.xs = �mB0s /�B0sxs = �mB0s /�B0sxs = �mB0s /�B0sxs = �mB0s /�B0sThis is derived by the Heavy Flavor Averaging Group (HFAG) from the results on�mB0s and \OUR EVALUATION" of the B0s mean lifetime.VALUE DOCUMENT ID26.81±0.10 OUR EVALUATION26.81±0.10 OUR EVALUATION26.81±0.10 OUR EVALUATION26.81±0.10 OUR EVALUATION

χsχsχsχs This is a B0s -B0s integrated mixing parameter derived from xs above and OUR EVAL-UATION of ��B0s /�B0s .VALUE DOCUMENT ID0.499308±0.000005 OUR EVALUATION0.499308±0.000005 OUR EVALUATION0.499308±0.000005 OUR EVALUATION0.499308±0.000005 OUR EVALUATIONCP VIOLATION PARAMETERS in B0sCP VIOLATION PARAMETERS in B0sCP VIOLATION PARAMETERS in B0sCP VIOLATION PARAMETERS in B0sRe(ǫB0s ) / (1 + ∣

∣ǫB0s ∣∣2)Re(ǫB0s ) / (1 + ∣

∣ǫB0s ∣∣2)Re(ǫB0s ) / (1 + ∣

∣ǫB0s ∣∣2)Re(ǫB0s ) / (1 + ∣

∣ǫB0s ∣∣2)CP impurity in B0s system.\OUR EVALUATION" is an average using res
aled values of the data listed below. Theaverage and res
aling were performed by the Heavy Flavor Averaging Group (HFAG)and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The averaging/s
alingpro
edure takes into a

ount 
orrelation between the measurements. The value hasbeen obtained from a 2D �t of the Bd and Bs asymmetries, whi
h in
ludes the Bsmeasurements listed below and the B fa
tory average for the Bd .VALUE (units 10−3) DOCUMENT ID TECN COMMENT
−1.9 ±1.0 OUR EVALUATION−1.9 ±1.0 OUR EVALUATION−1.9 ±1.0 OUR EVALUATION−1.9 ±1.0 OUR EVALUATION
−1.5 ±1.0 OUR AVERAGE−1.5 ±1.0 OUR AVERAGE−1.5 ±1.0 OUR AVERAGE−1.5 ±1.0 OUR AVERAGE
−0.15±1.25±0.90 1 AAIJ 14D LHCB pp at 7 TeV
−2.15±1.85 2 ABAZOV 14 D0 pp at 1.96 TeV
−2.8 ±1.9 ±0.4 3 ABAZOV 13 D0 pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−4.5 ±2.7 4 ABAZOV 11U D0 Repl. by ABAZOV 14
−0.4 ±2.3 ±0.4 5 ABAZOV 10E D0 Repl. by ABAZOV 13
−3.6 ±1.9 6 ABAZOV 10H D0 Repl. by ABAZOV 11U6.1 ±4.8 ±0.9 7 ABAZOV 07A D0 Repl. by ABAZOV 10E1AAIJ 14D reports a measurement of time-integrated 
avor-spe
i�
 asymmetry in B0s →

µ+D−s X de
ays as
sl

= (−0.06 ± 0.50 ± 0.36)% whi
h is approximately equal to 4 ×Re(ǫB0s ) / (1 + ∣

∣ǫB0s ∣∣2).2ABAZOV 14 uses the dimuon 
harge asymmetry with di�erent impa
t parameters fromwhi
h it reports As
SL = (−0.86 ± 0.74) × 10−2.3ABAZOV 13 reports a measurement of time-integrated 
avor-spe
i�
 asymmetry inmixed semileptoni
 B0s → µ+D−s X de
ays ASL

s
= (−1.12 ± 0.74 ± 0.17)% whi
h isapproximately equal to 4 × Re(ǫB0s ) / (1 + ∣

∣ǫB0s ∣∣2).4ABAZOV 11U uses the dimuon 
harge asymmetry with di�erent impa
t parameters fromwhi
h it reports As
SL = (−18.1 ± 10.6) × 10−3.5ABAZOV 10E reports a measurement of 
avor-spe
i�
 asymmetry in B0(s) → µ+D∗−(s)Xde
ays with a de
ay-time analysis in
luding initial-state 
avor tagging, As

SL=(−1.7 ±9.1+1.4
−1.5)× 10−3 whi
h is approximately equal to 4 × Re(ǫB0s ) / (1 + ∣

∣ǫB0s ∣∣2).



1348134813481348MesonParti
le ListingsB0s6ABAZOV 10H reports a measurement of like-sign dimuon 
harge asymmetry ofAb
SL=(−9.57 ± 2.51 ± 1.46)× 10−3 in semileptoni
 b-hadron de
ays. Using the mea-sured produ
tion ratio of B0d and B0s , and the asymmetry of B0d Ad

SL=(−4.7 ± 4.6)×10−3 measured from B-fa
tories, they obtain the asymmetry for B0s .7The �rst dire
t measurement of the time integrated 
avor untagged 
harge asymmetryin semileptoni
 B0s de
ays is reported as 2xAs
SL(untagged) = As

SL = (2.45 ± 1.93 ±0.35) × 10−2.CK K (B0s → K+K−)CK K (B0s → K+K−)CK K (B0s → K+K−)CK K (B0s → K+K−)VALUE DOCUMENT ID TECN COMMENT0.14±0.11±0.030.14±0.11±0.030.14±0.11±0.030.14±0.11±0.03 AAIJ 13BO LHCB pp at 7 TeVSK K (B0s → K+K−)SK K (B0s → K+K−)SK K (B0s → K+K−)SK K (B0s → K+K−)VALUE DOCUMENT ID TECN COMMENT0.30±0.12±0.040.30±0.12±0.040.30±0.12±0.040.30±0.12±0.04 AAIJ 13BO LHCB pp at 7 TeV
γγγγ For angle γ(φ3) of the CKM unitarity triangle, see the review on \CP Violation" inthe Reviews se
tion.VALUE (◦) DOCUMENT ID TECN COMMENT65 ± 7 OUR AVERAGE65 ± 7 OUR AVERAGE65 ± 7 OUR AVERAGE65 ± 7 OUR AVERAGE63.5+ 7.2

− 6.7 1,2 AAIJ 15K LHCB pp at 7, 8 TeV115 +28
−43 3 AAIJ 14BF LHCB pp at 7 TeV1Obtained by measuring time-dependent CP asymmetry in B0s → K+K− and using aU-spin relation between B0s → K+K− and B0 → π+π−.2Results are also presented using additional inputs on B0 → π0π0 and B+ → π+π0de
ays from other experiments and isospin symmetry assumptions. The dependen
eof the results on the maximum allowed amount of U-spin breaking up to 50% is alsoin
luded.3Measured in B0s → D∓s K± de
ays, 
onstraining −2βs by the measurement of φs =0.01 ± 0.07 ± 0.0 from AAIJ 13AR. The value is modulo 180◦ at 68% CL.

δB(B0s → D±s K∓)δB(B0s → D±s K∓)δB(B0s → D±s K∓)δB(B0s → D±s K∓)VALUE (◦) DOCUMENT ID TECN COMMENT3+19
−203+19
−203+19
−203+19
−20 1 AAIJ 14BF LHCB pp at 7 TeV1Measured in B0s → D∓s K± de
ays, 
onstraining −2βs by the measurement of φs =0.01 ± 0.07 ± 0.0 from AAIJ 13AR. The value is modulo 180◦ at 68% CL.rB(B0s → D∓s K±)rB(B0s → D∓s K±)rB(B0s → D∓s K±)rB(B0s → D∓s K±)rB and δB are the amplitude ratio and relative strong phase between the amplitudesof A(B0s → D+s K−) and A(B0s → D−s K+),VALUE DOCUMENT ID TECN COMMENT0.53+0.17

−0.160.53+0.17
−0.160.53+0.17
−0.160.53+0.17
−0.16 1 AAIJ 14BF LHCB pp at 7 TeV1Measured in B0s → D∓s K± de
ays, 
onstraining −2βs by the measurement of φs =0.01 ± 0.07 ± 0.0 from AAIJ 13AR. At 68% CL.CP Violation phase βsCP Violation phase βsCP Violation phase βsCP Violation phase βs
−2βs is the weak phase di�eren
e between B0

s mixing amplitude and the B0
s → J/ψφde
ay amplitude driven by the b → 
 
 s transition (su
h as Bs → J/ψφ, J/ψK+K−,J/ψπ+π−, and D+s D−s ). The Standard Model value of βs is arg(− V tsV ∗

tb

V csV ∗
cb

) ifpenguin 
ontributions are negle
ted.\OUR EVALUATION" is an average using res
aled values of the data listed below. Theaverage and res
aling were performed by the Heavy Flavor Averaging Group (HFAG)and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The averaging/s
alingpro
edure takes into a

ount 
orrelation between the measurements.VALUE (10−2 rad) DOCUMENT ID TECN COMMENT0.6 ± 1.9 OUR EVALUATION0.6 ± 1.9 OUR EVALUATION0.6 ± 1.9 OUR EVALUATION0.6 ± 1.9 OUR EVALUATION1.1 ± 1.9 OUR AVERAGE1.1 ± 1.9 OUR AVERAGE1.1 ± 1.9 OUR AVERAGE1.1 ± 1.9 OUR AVERAGE2.9 ± 2.5 ±0.3 1 AAIJ 15I LHCB pp at 7, 8 TeV6 + 8
− 7 2,3 AAIJ 15K LHCB pp at 7, 8 TeV

− 6 ±13 ±3 4 AAD 14U ATLS pp at 7 TeV
− 1 ± 9 ±1 5 AAIJ 14AY LHCB pp at 7, 8 TeV
− 3.5 ± 3.4 ±0.4 6 AAIJ 14S LHCB pp at 7, 8 TeV7 AALTONEN 12AJ CDF pp at 1.96 TeV28 +18

−19 8,9 ABAZOV 12D D0 pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−17 ±15 ±3 10 AAIJ 14AE LHCB pp at 7, 8 TeV
− 0.5 ± 3.5 ±0.5 11 AAIJ 13AR LHCB Repl. by AAIJ 15I12 AAIJ 13AY LHCB pp at 7 TeV
−11.0 ±20.5 ±5.0 13 AAD 12CV ATLS Repl. by AAD 14U22 ±22 ±1 14 AAIJ 12B LHCB Repl. by AAIJ 12Q
− 8 ± 9 ±3 15 AAIJ 12D LHCB Repl. by AAIJ 13AR

0.95+ 8.70
− 8.65+0.15

−0.20 16 AAIJ 12Q LHCB Repl. by AAIJ 13AR17 AALTONEN 12D CDF Repl. by AALTONEN 12AJ18 AALTONEN 08G CDF Repl. by AALTONEN 12D28 +12
−15 +4

−1 8,19 ABAZOV 08AMD0 Repl. by ABAZOV 12D39.5 ±28.0 +0.5
−7.0 9,20 ABAZOV 07 D0 Repl. by ABAZOV 07N35 +20

−24 9,21 ABAZOV 07N D0 Repl. by ABAZOV 08AM1AAIJ 15I reports φs = −2 βs = −0.058± 0.049± 0.006 rad. that was measured using atagged, time-dependent angular analysis of B0s → J/ψK+K− de
ays. It also 
ombinesthis result with that of AAIJ 14S and quotes φs = −2 βs = −0.010 ± 0.039 rad.2AAIJ 15K reports −2βs = −0.12+0.14
−0.16 rad. The value was obtained by measuringtime-dependent CP asymmetry in B0s → K+K− and using a U-spin relation betweenB0s → K+K− and B0 → π+π−.3Results are also presented using additional inputs on B0 → π0π0 and B+ → π+π0de
ays from other experiments and isospin symmetry assumptions. The dependen
eof the results on the maximum allowed amount of U-spin breaking up to 50% is alsoin
luded.4AAD 14U reports φs = −2 βs = 0.12 ± 0.25 ± 0.05 rad. that was measured using atagged, time-dependent angular analysis of B0s → J/ψφ de
ays.5AAIJ 14AY reports φs = −2 βs = 0.02 ± 0.17 ± 0.02 rad. in tagged, time-dependent�t to B0s → D+s D−s , while allowing CP violation in de
ay.6AAIJ 14S reports φs = −2 βs = 0.070± 0.068± 0.008 rad. and ∣

∣λ
∣

∣= 0.89± 0.05± 0.01,when dire
t CP violation is allowed. Measured using a tagged, time-dependent �t toB0s → J/ψπ+ π− de
ays.7AALTONEN 12AJ reports −π/2 < βs < −1.51 or −0.06 < βs < 0.30, or 1.26 < βs <

π/2 rad. at 68% CL. Measured using the time-dependent angular analysis of B0s →J/ψφ de
ays.8Measured using fully re
onstru
ted Bs → J/ψφ de
ays. A single error in
ludes bothstatisti
al and systemati
 un
ertainties.9Reports φs whi
h equals to −2βs .10Measured in B0s → φφ de
ays. This is a b → s s s transition with a de
ay amplitudephase di�erent from that of b → 
 
 s transition.11AAIJ 13AR reports φs = −2βs = 0.01 ± 0.07 ± 0.01 rad. obtained from 
ombined�t to B0s → J/ψK+K− and B0s → J/ψπ+ π− data sets. Also reports separateresults of φs = 0.07 ± 0.09 ± 0.01 rad. from B0s → J/ψK+K− de
ays and φs =
−0.14+0.17

−0.16 ± 0.01 rad. from B0s → J/ψπ+π− de
ays.12AAIJ 13AY uses B0s → φφ mode, and reports the 68% CL interval of φs = −2 βs as[−2.46, −0.76℄ rad.13AAD 12CV reports φs = −2 βs = 0.22 ± 0.41 ± 0.10 rad. that was measured using atime-dependent angular analysis of B0s → J/ψφ de
ays.14Reports φs = −2 βs = −0.44 ± 0.44 ± 0.02 rad. that was measured using a time-dependent �t to B0s → J/ψ f0(980) de
ays.15Reports φs = −2 βs = 0.15 ± 0.18 ± 0.06 rad. that was measured using a time-dependent angular analysis of B0s → J/ψφ de
ays.16Reports φs = −2 βs = −0.019+0.173
−0.174+0.004

−0.003 rad. whi
h was measured using a time-dependent �t to B0s → J/ψπ+π− de
ays, with the π+π− mass within 775{1550MeV. Sear
hes for, but �nds no eviden
e, for dire
t CP violation in B0s → J/ψππde
ays.17Reports 0.02 < φs < 0.52 or 1.08 < φs < 1.55 rad. at 68% C.L. 
on�den
e regionsin the two-dimensional spa
e of φs and ��B0s from B0s → J/ψφ de
ays.18Reports 0.32 < 2βs < 2.82 rad. at 68% C.L. and 
on�den
e regions in the two-dimensional spa
e of 2βs and �� from the �rst measurement of B0s → J/ψφ de
aysusing 
avor tagging. The probability of a deviation from SM predi
tion as large as thelevel of observed data is 15%.19Reports φs = −2 βs and obtains 90% CL interval −0.03 < βs < 0.60 rad.20The �rst dire
t measurement of the CP-violating mixing phase is reported from thetime-dependent analysis of 
avor untagged B0s → J/ψφ de
ays.21Combines D0 
ollaboration measurements of time-dependent angular distributions inB0s → J/ψφ and 
harge asymmetry in semileptoni
 de
ays. There is a 4-fold ambiguityin the solution.
∣

∣λ
∣

∣ (B0s → J/ψ(1S)φ)∣

∣λ
∣

∣ (B0s → J/ψ(1S)φ)∣

∣λ
∣

∣ (B0s → J/ψ(1S)φ)∣

∣λ
∣

∣ (B0s → J/ψ(1S)φ)VALUE DOCUMENT ID TECN COMMENT0.964±0.019±0.0070.964±0.019±0.0070.964±0.019±0.0070.964±0.019±0.007 AAIJ 15I LHCB pp at 7, 8 TeV
∣

∣λ
∣

∣

∣

∣λ
∣

∣

∣

∣λ
∣

∣

∣

∣λ
∣

∣VALUE DOCUMENT ID TECN COMMENT1.02±0.07 OUR AVERAGE1.02±0.07 OUR AVERAGE1.02±0.07 OUR AVERAGE1.02±0.07 OUR AVERAGE1.04±0.07±0.03 1 AAIJ 14AE LHCB pp at 7, 8 TeV0.91+0.18
−0.15±0.02 2 AAIJ 14AY LHCB pp at 7, 8 TeV1Measured in B0s → φφ de
ays.2Measured in B0s → D+s D−s de
ays.A, CP violation parameterA, CP violation parameterA, CP violation parameterA, CP violation parameterA = −2 Re(λ) / (1 + ∣

∣λ
∣

∣

2)VALUE DOCUMENT ID TECN COMMENT0.49+0.77
−0.65±0.060.49+0.77
−0.65±0.060.49+0.77
−0.65±0.060.49+0.77
−0.65±0.06 1 AAIJ 15AL LHCB pp at 7, 8 TeV1Measured in B0s → J/ψK0S de
ays.



1349134913491349See key on page 601 Meson Parti
le ListingsB0sC, CP violation parameterC, CP violation parameterC, CP violation parameterC, CP violation parameterC = (1 −
∣

∣λ
∣

∣

2) / (1 + ∣

∣λ
∣

∣

2)VALUE DOCUMENT ID TECN COMMENT
−0.28±0.41±0.08−0.28±0.41±0.08−0.28±0.41±0.08−0.28±0.41±0.08 1 AAIJ 15AL LHCB pp at 7, 8 TeV1Measured in B0s → J/ψK0S de
ays.S, CP violation parameterS, CP violation parameterS, CP violation parameterS, CP violation parameterS = −2 Im(λ) / (1 + ∣

∣λ
∣

∣

2)VALUE DOCUMENT ID TECN COMMENT
−0.08±0.40±0.08−0.08±0.40±0.08−0.08±0.40±0.08−0.08±0.40±0.08 1 AAIJ 15AL LHCB pp at 7, 8 TeV1Measured in B0s → J/ψK0S de
ays.AL

CP (Bs → J/ψK∗(892)0)AL
CP (Bs → J/ψK∗(892)0)AL
CP (Bs → J/ψK∗(892)0)AL
CP (Bs → J/ψK∗(892)0)VALUE DOCUMENT ID TECN COMMENT

−0.048±0.057±0.020−0.048±0.057±0.020−0.048±0.057±0.020−0.048±0.057±0.020 AAIJ 15AV LHCB pp at 7, 8 TeVA‖
CP (Bs → J/ψK∗(892)0)A‖
CP (Bs → J/ψK∗(892)0)A‖
CP (Bs → J/ψK∗(892)0)A‖
CP (Bs → J/ψK∗(892)0)VALUE DOCUMENT ID TECN COMMENT0.171±0.152±0.0280.171±0.152±0.0280.171±0.152±0.0280.171±0.152±0.028 AAIJ 15AV LHCB pp at 7, 8 TeVA⊥
CP (Bs → J/ψK∗(892)0)A⊥
CP (Bs → J/ψK∗(892)0)A⊥
CP (Bs → J/ψK∗(892)0)A⊥
CP (Bs → J/ψK∗(892)0)VALUE DOCUMENT ID TECN COMMENT

−0.049±0.096±0.025−0.049±0.096±0.025−0.049±0.096±0.025−0.049±0.096±0.025 AAIJ 15AV LHCB pp at 7, 8 TeVACP (Bs → π+K−)ACP (Bs → π+K−)ACP (Bs → π+K−)ACP (Bs → π+K−)ACP is de�ned as
B(B0s →f )−B(B0s →f )
B(B0s →f )+B(B0s →f ) ,the CP-violation asymmetry of ex
lusive B0s and B0s de
ay.VALUE DOCUMENT ID TECN COMMENT0.263±0.035 OUR AVERAGE0.263±0.035 OUR AVERAGE0.263±0.035 OUR AVERAGE0.263±0.035 OUR AVERAGE0.22 ±0.07 ±0.02 AALTONEN 14P CDF pp at 1.96 TeV0.27 ±0.04 ±0.01 AAIJ 13AX LHCB pp at 7 TeV0.39 ±0.15 ±0.08 AALTONEN 11N CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.27 ±0.08 ±0.02 AAIJ 12V LHCB Repl. by AAIJ 13AXACP (B0s → [K+K− ℄DK∗(892)0)ACP (B0s → [K+K− ℄DK∗(892)0)ACP (B0s → [K+K− ℄DK∗(892)0)ACP (B0s → [K+K− ℄DK∗(892)0)VALUE DOCUMENT ID TECN COMMENT
−0.04±0.07±0.02−0.04±0.07±0.02−0.04±0.07±0.02−0.04±0.07±0.02 AAIJ 14BN LHCB pp at 7, 8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.04±0.16±0.01 AAIJ 13L LHCB Repl. by AAIJ 14BNACP (B0s → [π+K− ℄DK∗(892)0)ACP (B0s → [π+K− ℄DK∗(892)0)ACP (B0s → [π+K− ℄DK∗(892)0)ACP (B0s → [π+K− ℄DK∗(892)0)VALUE DOCUMENT ID TECN COMMENT
−0.01±0.03±0.02−0.01±0.03±0.02−0.01±0.03±0.02−0.01±0.03±0.02 AAIJ 14BN LHCB pp at 7, 8 TeVACP (B0s → [π+π− ℄DK∗(892)0)ACP (B0s → [π+π− ℄DK∗(892)0)ACP (B0s → [π+π− ℄DK∗(892)0)ACP (B0s → [π+π− ℄DK∗(892)0)VALUE DOCUMENT ID TECN COMMENT0.06±0.13±0.020.06±0.13±0.020.06±0.13±0.020.06±0.13±0.02 AAIJ 14BN LHCB pp at 7, 8 TeVCPT VIOLATION PARAMETERSCPT VIOLATION PARAMETERSCPT VIOLATION PARAMETERSCPT VIOLATION PARAMETERSIn the B0s mixing, propagating mass eigenstates 
an be written as

∣

∣BsL
〉

∝ p √1−ξ
∣

∣B0s 〉 + q √1+ξ
∣

∣B0s 〉

∣

∣BsH
〉

∝ p √1+ξ
∣

∣B0s 〉

− q √1−ξ
∣

∣B0s 〉where parameter ξ 
ontrols CPT violation. If ξ is zero, then CPT is
onserved. The parameter ξ 
an be written as
ξ = 2(M11−M22)−i(�11−�22)

−2�ms+i��s ≈ −2βµ�aµ2�ms−i��s ,where Mii, �ii, �ms , and ��s are parameters of Hamiltonian govern-ing Bs os
illations, βµ is the B0s meson velo
ity and �aµ 
hara
terizesLorentz-invarian
e violation.�a⊥�a⊥�a⊥�a⊥VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
<1.2× 10−12<1.2× 10−12<1.2× 10−12<1.2× 10−12 95 1 ABAZOV 15L D0 pp at 1.96 TeV1Measured in semileptoni
 B0s → D−s µ+X de
ays. Also extra
ts limit on time andlongitudinal 
omponents ( −0.8 < �aT − 0.396 �aZ < 3.9 ) 10−13 GeV.

PARTIAL BRANCHING FRACTIONS IN Bs → φℓ+ ℓ−PARTIAL BRANCHING FRACTIONS IN Bs → φℓ+ ℓ−PARTIAL BRANCHING FRACTIONS IN Bs → φℓ+ ℓ−PARTIAL BRANCHING FRACTIONS IN Bs → φℓ+ ℓ−B(Bs → φℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (0.1 < q2 < 2.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.14 ±0.16 OUR AVERAGE1.14 ±0.16 OUR AVERAGE1.14 ±0.16 OUR AVERAGE1.14 ±0.16 OUR AVERAGE1.11 +0.14
−0.13 ±0.09 1 AAIJ 15AQ LHCB pp at 7, 8 TeV2.78 ±0.95 ±0.89 AALTONEN 11AI CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.897+0.207
−0.186±0.097 1 AAIJ 13X LHCB Repl. by AAIJ 15AQ1Measured in B0s → φµ+µ− de
ays.B(Bs → φℓ+ ℓ−) (2.0 < q2 < 5.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (2.0 < q2 < 5.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (2.0 < q2 < 5.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (2.0 < q2 < 5.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.77 ±0.12 ±0.060.77 ±0.12 ±0.060.77 ±0.12 ±0.060.77 ±0.12 ±0.06 1 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.529+0.182
−0.159±0.057 1,2 AAIJ 13X LHCB Repl. by AAIJ 15AQ0.58 ±0.55 ±0.19 2 AALTONEN 11AI CDF pp at 1.96 TeV1Measured in B0s → φµ+µ− de
ays.2Measured in 2<q2 <4.3 GeV2/
4.B(Bs → φℓ+ ℓ−) (5.0 < q2 < 8.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (5.0 < q2 < 8.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (5.0 < q2 < 8.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (5.0 < q2 < 8.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.96±0.13±0.080.96±0.13±0.080.96±0.13±0.080.96±0.13±0.08 1 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.38+0.25
−0.23±0.14 1,2 AAIJ 13X LHCB Repl. by AAIJ 15AQ1.34±0.83±0.43 2 AALTONEN 11AI CDF pp at 1.96 TeV1Measured in B0s → φµ+µ− de
ays.2Measured in 4.3<q2 <8.68 GeV2/
4.B(Bs → φℓ+ ℓ−) (11.0 < q2 < 12.5 GeV2/
4)B(Bs → φℓ+ ℓ−) (11.0 < q2 < 12.5 GeV2/
4)B(Bs → φℓ+ ℓ−) (11.0 < q2 < 12.5 GeV2/
4)B(Bs → φℓ+ ℓ−) (11.0 < q2 < 12.5 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.71±0.10±0.060.71±0.10±0.060.71±0.10±0.060.71±0.10±0.06 1 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.18+0.22
−0.21±0.14 1,2 AAIJ 13X LHCB Repl. by AAIJ 15AQ2.98±0.95±0.95 2 AALTONEN 11AI CDF pp at 1.96 TeV1Measured in B0s → φµ+µ− de
ays.2Measured in 10.9<q2 <12.86 GeV2/
4.B(Bs → φℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (15.0 < q2 < 17.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.90 ±0.11 ±0.070.90 ±0.11 ±0.070.90 ±0.11 ±0.070.90 ±0.11 ±0.07 1 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.760+0.189
−0.169±0.087 1,2 AAIJ 13X LHCB Repl. by AAIJ 15AQ1.86 ±0.66 ±0.59 2 AALTONEN 11AI CDF pp at 1.96 TeV1Measured in B0s → φµ+µ− de
ays.2Measured in 14.18<q2 <16 GeV2/
4.B(Bs → φℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (17.0 < q2 < 19.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.79±0.11±0.070.79±0.11±0.070.79±0.11±0.070.79±0.11±0.07 1 AAIJ 15AQ LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.06+0.23
−0.21±0.12 1,2 AAIJ 13X LHCB Repl. by AAIJ 15AQ2.32±0.76±0.74 2 AALTONEN 11AI CDF pp at 1.96 TeV1Measured in B0s → φµ+µ− de
ays.2Measured in 16<q2 <19 GeV2/
4.B(Bs → φℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)B(Bs → φℓ+ ℓ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.28±0.18 OUR AVERAGE1.28±0.18 OUR AVERAGE1.28±0.18 OUR AVERAGE1.28±0.18 OUR AVERAGE1.29±0.16±0.10 1 AAIJ 15AQ LHCB pp at 7, 8 TeV1.14±0.79±0.36 AALTONEN 11AI CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.14+0.25
−0.23±0.13 1 AAIJ 13X LHCB Repl. by AAIJ 15AQ1Measured in B0s → φµ+µ− de
ays.B(Bs → φℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(Bs → φℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(Bs → φℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)B(Bs → φℓ+ ℓ−) (0.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT3.30±1.09±1.053.30±1.09±1.053.30±1.09±1.053.30±1.09±1.05 AALTONEN 11AI CDF pp at 1.96 TeV
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ia et al. (CDF Collab.)ACOSTA 06 PRL 96 202001 D. A
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ia et al. (CDF Collab.)ACOSTA 05 PRL 94 101803 D. A
osta et al. (CDF Collab.)ACOSTA 05J PRL 95 031801 D. A
osta et al. (CDF Collab.)ABDALLAH 04A PL B585 63 J. Abdallah et al. (DELPHI Collab.)ABDALLAH 04J EPJ C35 35 J. Abdallah et al. (DELPHI Collab.)ACOSTA 04D PRL 93 032001 D. A
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osta et al. (CDF Collab.)ACOSTA 02G PR D66 112002 D. A
osta et al. (CDF Collab.)ABBIENDI 01D EPJ C19 241 G. Abbiendi et al. (OPAL Collab.)ABE 00C PR D62 071101 K. Abe et al. (SLD Collab.)ABREU 00Y EPJ C16 555 P. Abreu et al. (DELPHI Collab.)ABREU,P 00G EPJ C18 229 P. Abreu et al. (DELPHI Collab.)AFFOLDER 00N PRL 85 4668 T. A�older et al. (CDF Collab.)BARATE 00K PL B486 286 R. Barate et al. (ALEPH Collab.)ABBIENDI 99S EPJ C11 587 G. Abbiendi et al. (OPAL Collab.)ABE 99D PR D59 032004 F. Abe et al. (CDF Collab.)ABE 99J PRL 82 3576 F. Abe et al. (CDF Collab.)BARATE 99J EPJ C7 553 R. Barate et al. (ALEPH Collab.)Also EPJ C12 181 (errat.) R. Barate et al. (ALEPH Collab.)ABE 98 PR D57 R3811 F. Abe et al. (CDF Collab.)ABE 98B PR D57 5382 F. Abe et al. (CDF Collab.)ABE 98V PRL 81 5742 F. Abe et al. (CDF Collab.)ACCIARRI 98S PL B438 417 M. A

iarri et al. (L3 Collab.)ACKERSTAFF 98F EPJ C2 407 K. A
kersta� et al. (OPAL Collab.)ACKERSTAFF 98G PL B426 161 K. A
kersta� et al. (OPAL Collab.)BARATE 98C EPJ C4 367 R. Barate et al. (ALEPH Collab.)BARATE 98Q EPJ C4 387 R. Barate et al. (ALEPH Collab.)PDG 98 EPJ C3 1 C. Caso et al. (PDG Collab.)ACCIARRI 97B PL B391 474 M. A

iarri et al. (L3 Collab.)ACCIARRI 97C PL B391 481 M. A

iarri et al. (L3 Collab.)ACKERSTAFF 97U ZPHY C76 401 K. A
kersta� et al. (OPAL Collab.)ACKERSTAFF 97V ZPHY C76 417 K. A
kersta� et al. (OPAL Collab.)ADAM 97 PL B414 382 W. Adam et al. (DELPHI Collab.)ABE 96B PR D53 3496 F. Abe et al. (CDF Collab.)ABE 96L PRL 76 4675 F. Abe et al. (CDF Collab.)ABE 96N PRL 77 1945 F. Abe et al. (CDF Collab.)ABE 96Q PR D54 6596 F. Abe et al. (CDF Collab.)ABREU 96F ZPHY C71 11 P. Abreu et al. (DELPHI Collab.)ADAM 96D ZPHY C72 207 W. Adam et al. (DELPHI Collab.)BUSKULIC 96E ZPHY C69 585 D. Buskuli
 et al. (ALEPH Collab.)BUSKULIC 96M PL B377 205 D. Buskuli
 et al. (ALEPH Collab.)BUSKULIC 96V PL B384 471 D. Buskuli
 et al. (ALEPH Collab.)PDG 96 PR D54 1 R. M. Barnett et al. (PDG Collab.)ABE 95R PRL 74 4988 F. Abe et al. (CDF Collab.)ABE 95Z PRL 75 3068 F. Abe et al. (CDF Collab.)ACCIARRI 95H PL B363 127 M. A

iarri et al. (L3 Collab.)ACCIARRI 95I PL B363 137 M. A

iarri et al. (L3 Collab.)



1351135113511351See key on page 601 MesonParti
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tions. B∗s MASSB∗s MASSB∗s MASSB∗s MASSFrom mass di�eren
e below and the B0s mass.VALUE (MeV) DOCUMENT ID TECN COMMENT5415.4+1.8
−1.5 OUR FIT5415.4+1.8
−1.5 OUR FIT5415.4+1.8
−1.5 OUR FIT5415.4+1.8
−1.5 OUR FIT Error in
ludes s
ale fa
tor of 3.0.5415.8±1.5 OUR AVERAGE5415.8±1.5 OUR AVERAGE5415.8±1.5 OUR AVERAGE5415.8±1.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.6.5416.4±0.4±0.5 LOUVOT 09 BELL e+ e− → �(5S)5411.7±1.6±0.6 1 AQUINES 06 CLEO e+ e− → �(5S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •5418 ±1 ±3 DRUTSKOY 07A BELL Repl. by LOUVOT 095414 ±1 ±3 2 BONVICINI 06 CLEO e+ e− → �(5S)1Utilized the beam 
onstrained invariant mass peak positions for B∗ and B∗
s to extra
tthe measurement.2Uses 14 
andidates 
onsistent with Bs de
ays into �nal states with a J/ψ and a D(∗)−s .mB∗s − mBsmB∗s − mBsmB∗s − mBsmB∗s − mBsVALUE (MeV) DOCUMENT ID TECN COMMENT48.6+1.8

−1.6 OUR FIT48.6+1.8
−1.6 OUR FIT48.6+1.8
−1.6 OUR FIT48.6+1.8
−1.6 OUR FIT Error in
ludes s
ale fa
tor of 2.8.46.1±1.5 OUR AVERAGE46.1±1.5 OUR AVERAGE46.1±1.5 OUR AVERAGE46.1±1.5 OUR AVERAGE45.7±1.7±0.7 3 AQUINES 06 CLEO e+ e− → �(5S)47.0±2.6 4 LEE-FRANZINI 90 CSB2 e+ e− → �(5S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •48 ±1 ±3 5 BONVICINI 06 CLEO Repl. by AQUINES 063Utilized the beam 
onstrained invariant mass peak positions for B∗ and B∗s to extra
tthe measurement.4 LEE-FRANZINI 90 measure 46.7 ± 0.4 ± 0.2 MeV for an admixture of B0, B+, andBs . They use the shape of the photon line to separate the above value for Bs .5Uses 14 
andidates 
onsistent with Bs de
ays into �nal states with a J/ψ and a D(∗)−s .
∣

∣(mB∗s − mBs ) { (mB∗ − mB )∣∣∣

∣(mB∗s − mBs ) { (mB∗ − mB )∣∣∣

∣(mB∗s − mBs ) { (mB∗ − mB )∣∣∣

∣(mB∗s − mBs ) { (mB∗ − mB )∣∣VALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<6<6<6<6 95 ABREU 95R DLPH Eee
m= 88{94 GeVB∗s DECAY MODESB∗s DECAY MODESB∗s DECAY MODESB∗s DECAY MODESMode Fra
tion (�i /�)�1 Bs γ dominantB∗s REFERENCESB∗s REFERENCESB∗s REFERENCESB∗s REFERENCESLOUVOT 09 PRL 102 021801 R. Louvot et al. (BELLE Collab.)DRUTSKOY 07A PR D76 012002 A. Drutskoy et al. (BELLE Collab.)AQUINES 06 PRL 96 152001 O. Aquines et al. (CLEO Collab.)BONVICINI 06 PRL 96 022002 G. Bonvi
ini et al. (CLEO Collab.)ABREU 95R ZPHY C68 353 P. Abreu et al. (DELPHI Collab.)LEE-FRANZINI 90 PRL 65 2947 J. Lee-Franzini et al. (CUSB II Collab.)

Bs1(5830)0 I (JP ) = 0(1+)I, J, P need 
on�rmation.Status: ∗∗∗Quantum numbers shown are quark-model predi
tions.Bs1(5830)0 MASSBs1(5830)0 MASSBs1(5830)0 MASSBs1(5830)0 MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5828.63±0.27 OUR FIT5828.63±0.27 OUR FIT5828.63±0.27 OUR FIT5828.63±0.27 OUR FIT5828.40±0.04±0.415828.40±0.04±0.415828.40±0.04±0.415828.40±0.04±0.41 1 AAIJ 13O LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •5829.4 ±0.7 2 AALTONEN 08K CDF Repl. by AALTONEN 14I1Uses Bs1(5830)0 → B∗+K− de
ay.2Uses two-body de
ays into K− and B+ mesons re
onstru
ted as B+ → J/ψK+,J/ψ → µ+µ− or B+ → D0π+, D0 → K+π−.mB0s1 − mB∗+mB0s1 − mB∗+mB0s1 − mB∗+mB0s1 − mB∗+VALUE (MeV) DOCUMENT ID TECN COMMENT503.98±0.18 OUR FIT503.98±0.18 OUR FIT503.98±0.18 OUR FIT503.98±0.18 OUR FIT504.03±0.12±0.15504.03±0.12±0.15504.03±0.12±0.15504.03±0.12±0.15 3 AALTONEN 14I CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •504.41±0.21±0.14 4 AALTONEN 08K CDF Repl. by AALTONEN 14I3AALTONEN 14I reports mBs1(5830)0 − mB∗+ − mK− = 10.35 ± 0.12 ± 0.15 MeVwhi
h we adjusted by the K− mass.4Uses two-body de
ays into K− and B+ mesons re
onstru
ted as B+ → J/ψK+,J/ψ → µ+µ− or B+ → D0π+, D0 → K+π−.Bs1(5830)0 WIDTHBs1(5830)0 WIDTHBs1(5830)0 WIDTHBs1(5830)0 WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT0.5±0.3±0.30.5±0.3±0.30.5±0.3±0.30.5±0.3±0.3 AALTONEN 14I CDF pp at 1.96 TeVBs1(5830)0 DECAY MODESBs1(5830)0 DECAY MODESBs1(5830)0 DECAY MODESBs1(5830)0 DECAY MODESMode Fra
tion (�i /�)�1 B∗+K− dominantBs1(5830)0 BRANCHING RATIOSBs1(5830)0 BRANCHING RATIOSBs1(5830)0 BRANCHING RATIOSBs1(5830)0 BRANCHING RATIOS�(B∗+K−)/�total �1/��(B∗+K−)/�total �1/��(B∗+K−)/�total �1/��(B∗+K−)/�total �1/�VALUE DOCUMENT ID TECN COMMENTdominantdominantdominantdominant AALTONEN 08K CDF pp at 1.96 TeVBs1(5830)0 REFERENCESBs1(5830)0 REFERENCESBs1(5830)0 REFERENCESBs1(5830)0 REFERENCESAALTONEN 14I PR D90 012013 T. Aaltonen et al. (CDF Collab.)AAIJ 13O PRL 110 151803 R. Aaij et al. (LHCb Collab.)AALTONEN 08K PRL 100 082001 T. Aaltonen et al. (CDF Collab.)B∗s2(5840)0 I (JP ) = 0(2+)I, J, P need 
on�rmation.Status: ∗∗∗Quantum numbers shown are quark-model predi
tions.B∗s2(5840)0 MASSB∗s2(5840)0 MASSB∗s2(5840)0 MASSB∗s2(5840)0 MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5839.84±0.18 OUR FIT5839.84±0.18 OUR FIT5839.84±0.18 OUR FIT5839.84±0.18 OUR FIT Error in
ludes s
ale fa
tor of 1.1.5839.98±0.20 OUR AVERAGE5839.98±0.20 OUR AVERAGE5839.98±0.20 OUR AVERAGE5839.98±0.20 OUR AVERAGE5839.99±0.05±0.20 AAIJ 13O LHCB pp at 7 TeV5839.6 ±1.1 ±0.7 1 ABAZOV 08E D0 pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •5839.7 ±0.7 2 AALTONEN 08K CDF Repl. by AALTONEN 14I1Observed in B∗0s2 → B+K−. Measured produ
tion rate of B∗0s2 relative to B+ to be(1.15 ± 0.23 ± 0.13)%.2Uses two-body de
ays into K− and B+ mesons re
onstru
ted as B+ → J/ψK+,J/ψ → µ+µ− or B+ → D0π+, D0 → K+π−.mB∗0s2 − mB0s1mB∗0s2 − mB0s1mB∗0s2 − mB0s1mB∗0s2 − mB0s1VALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •10.5±0.6 3 AALTONEN 08K CDF Repl. by AALTONEN 14I3Uses two-body de
ays into K− and B+ mesons re
onstru
ted as B+ → J/ψK+,J/ψ → µ+µ− or B+ → D0π+, D0 → K+π−.



1352135213521352MesonParti
le ListingsB∗s2(5840)0,B∗
sJ(5850)mB∗0s2 − mB+mB∗0s2 − mB+mB∗0s2 − mB+mB∗0s2 − mB+VALUE (MeV) DOCUMENT ID TECN COMMENT560.53±0.18 OUR FIT560.53±0.18 OUR FIT560.53±0.18 OUR FIT560.53±0.18 OUR FIT Error in
ludes s
ale fa
tor of 1.1.560.41±0.13±0.14560.41±0.13±0.14560.41±0.13±0.14560.41±0.13±0.14 4 AALTONEN 14I CDF pp at 1.96 TeV4AALTONEN 14I reports mBs2(5840)0 − mB+ − mK− = 66.73 ± 0.13 ± 0.14 MeVwhi
h we adjusted by the K− mass.B∗s2(5840)0 WIDTHB∗s2(5840)0 WIDTHB∗s2(5840)0 WIDTHB∗s2(5840)0 WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT1.47±0.33 OUR AVERAGE1.47±0.33 OUR AVERAGE1.47±0.33 OUR AVERAGE1.47±0.33 OUR AVERAGE1.4 ±0.4 ±0.2 AALTONEN 14I CDF pp at 1.96 TeV1.56±0.13±0.47 5 AAIJ 13O LHCB pp at 7 TeV5Uses B∗s2(5840)0 → B∗+K− de
ays.B∗s2(5840)0 DECAY MODESB∗s2(5840)0 DECAY MODESB∗s2(5840)0 DECAY MODESB∗s2(5840)0 DECAY MODESMode Fra
tion (�i /�)�1 B+K− dominant�2 B∗+K− B∗s2(5840)0 BRANCHING RATIOSB∗s2(5840)0 BRANCHING RATIOSB∗s2(5840)0 BRANCHING RATIOSB∗s2(5840)0 BRANCHING RATIOS�(B+K−)/�total �1/��(B+K−)/�total �1/��(B+K−)/�total �1/��(B+K−)/�total �1/�VALUE DOCUMENT ID TECN COMMENTdominantdominantdominantdominant AALTONEN 08K CDF pp at 1.96 TeVdominantdominantdominantdominant 6 ABAZOV 08E D0 pp at 1.96 TeV6Measured produ
tion rate of B∗0s2 relative to B+ to be (1.15 ± 0.23 ± 0.13)%.�(B∗+K−)/�(B+K−) �2/�1�(B∗+K−)/�(B+K−) �2/�1�(B∗+K−)/�(B+K−) �2/�1�(B∗+K−)/�(B+K−) �2/�1VALUE DOCUMENT ID TECN COMMENT0.093±0.013±0.0120.093±0.013±0.0120.093±0.013±0.0120.093±0.013±0.012 AAIJ 13O LHCB pp at 7 TeVB∗s2(5840)0 REFERENCESB∗s2(5840)0 REFERENCESB∗s2(5840)0 REFERENCESB∗s2(5840)0 REFERENCESAALTONEN 14I PR D90 012013 T. Aaltonen et al. (CDF Collab.)AAIJ 13O PRL 110 151803 R. Aaij et al. (LHCb Collab.)AALTONEN 08K PRL 100 082001 T. Aaltonen et al. (CDF Collab.)ABAZOV 08E PRL 100 082002 V.M. Abazov et al. (D0 Collab.)

B∗
sJ(5850) I (JP ) = ?(??)I, J, P need 
on�rmation.OMITTED FROM SUMMARY TABLESignal 
an be interpreted as 
oming from bs states. Needs 
on�r-mation. B∗

sJ (5850) MASSB∗
sJ (5850) MASSB∗
sJ (5850) MASSB∗
sJ (5850) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT5853±155853±155853±155853±15 141 AKERS 95E OPAL Eee
m= 88{94 GeVB∗

sJ(5850) WIDTHB∗
sJ(5850) WIDTHB∗
sJ(5850) WIDTHB∗
sJ(5850) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT47±2247±2247±2247±22 141 AKERS 95E OPAL Eee
m= 88{94 GeVB∗

sJ(5850) REFERENCESB∗
sJ(5850) REFERENCESB∗
sJ(5850) REFERENCESB∗
sJ(5850) REFERENCESAKERS 95E ZPHY C66 19 R. Akers et al. (OPAL Collab.)



1353135313531353See key on page 601 MesonParti
le ListingsB+
BOTTOM, CHARMED MESONSBOTTOM, CHARMED MESONSBOTTOM, CHARMED MESONSBOTTOM, CHARMED MESONS(B = C = ±1)(B = C = ±1)(B = C = ±1)(B = C = ±1)B+
 = 
b, B−
 = 
 b, similarly for B∗
 'sB+
 I (JP ) = 0(0−)I, J, P need 
on�rmation.Quantum numbers shown are quark-model predi
tions.B+
 MASSB+
 MASSB+
 MASSB+
 MASSVALUE (MeV) DOCUMENT ID TECN COMMENT6275.1 ± 1.0 OUR AVERAGE6275.1 ± 1.0 OUR AVERAGE6275.1 ± 1.0 OUR AVERAGE6275.1 ± 1.0 OUR AVERAGE6274.0 ± 1.8 ± 0.4 1 AAIJ 14AQ LHCB pp at 7, 8 TeV6276.28± 1.44± 0.36 2 AAIJ 13AS LHCB pp at 7, 8 TeV6273.7 ± 1.3 ± 1.6 3 AAIJ 12AV LHCB pp at 7 TeV6275.6 ± 2.9 ± 2.5 4 AALTONEN 08M CDF pp at 1.96 TeV6300 ± 14 ± 5 4 ABAZOV 08T D0 pp at 1.96 TeV6400 ±390 ±130 5 ABE 98M CDF pp at 1.8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •6285.7 ± 5.3 ± 1.2 4 ABULENCIA 06C CDF Repl. by AALTONEN 08M6320 ± 60 6 ACKERSTAFF 98O OPAL e+ e− → Z1Uses B+
 → J/ψpp π+ de
ays.2AAIJ 13AS uses the B+
 → J/ψD+s .3AAIJ 12AV uses the B+
 → J/ψπ+ mode and also measures the mass di�eren
e M(B+
 )

− M(B+) = 994.6 ± 1.3 ± 0.6 MeV/
2.4Measured using a fully re
onstru
ted de
ay mode of B
 → J/ψπ.5ABE 98M observed 20.4+6.2
−5.5 events in the B+
 → J/ψ(1s) ℓνℓ with a signi�
an
e of

> 4.8 standard deviations. The mass value is estimated from m(J/ψ(1S) ℓ).6ACKERSTAFF 98O observed 2 
andidate events in the B+
 → J/ψ(1S)π+ 
hannelwith an estimated ba
kground of 0.63 ± 0.20 events.B+
 MEAN LIFEB+
 MEAN LIFEB+
 MEAN LIFEB+
 MEAN LIFE\OUR EVALUATION" is an average using res
aled values of thedata listed below. The average and res
aling were performed bythe Heavy Flavor Averaging Group (HFAG) and are des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/. The averaging/res
aling pro-
edure takes into a

ount 
orrelations between the measurements.VALUE (10−12 s) DOCUMENT ID TECN COMMENT0.507 ±0.009 OUR EVALUATION0.507 ±0.009 OUR EVALUATION0.507 ±0.009 OUR EVALUATION0.507 ±0.009 OUR EVALUATION0.507 ±0.009 OUR AVERAGE0.507 ±0.009 OUR AVERAGE0.507 ±0.009 OUR AVERAGE0.507 ±0.009 OUR AVERAGE0.5134±0.0110±0.0057 1,2 AAIJ 15G LHCB pp at 7, 8 TeV0.509 ±0.008 ±0.012 3 AAIJ 14G LHCB pp at 8 TeV0.452 ±0.048 ±0.027 2 AALTONEN 13 CDF pp at 1.96 TeV0.448 +0.038
−0.036 ±0.032 4 ABAZOV 09H D0 pp at 1.96 TeV0.463 +0.073
−0.065 ±0.036 4 ABULENCIA 06O CDF pp at 1.96 TeV0.46 +0.18
−0.16 ±0.03 4 ABE 98M CDF pp 1.8 TeV1Also measures the width di�eren
e �� = �B+
 − �B+ = 4.46 ± 0.14 ± 0.07 mm−1 
.2Uses fully re
onstru
ted B+
 → J/ψπ+ de
ays.3Measured using B+
 → J/ψµ+ νµX de
ays.4The lifetime is measured from the J/ψe de
ay verti
es.B+
 DECAY MODES × B(b → B
 )B+
 DECAY MODES × B(b → B
 )B+
 DECAY MODES × B(b → B
 )B+
 DECAY MODES × B(b → B
 )B−
 modes are 
harge 
onjugates of the modes below.Mode Fra
tion (�i /�) Con�den
e levelThe following quantities are not pure bran
hing ratios; rather the fra
tion�i /� × B(b → B
 ).�1 J/ψ(1S)ℓ+νℓ anything (5.2 +2.4

−2.1 )× 10−5�2 J/ψ(1S)µ+νµ�3 J/ψ(1S)π+ seen�4 J/ψ(1S)K+ seen�5 J/ψ(1S)π+π+π− seen�6 J/ψ(1S)a1(1260) < 1.2 × 10−3 90%�7 J/ψ(1S)K+K−π+ seen

�8 J/ψ(1S)π+π+π+π−π− seen�9 ψ(2S)π+ seen�10 J/ψ(1S)D+s seen�11 J/ψ(1S)D∗+s seen�12 J/ψ(1S)ppπ+ seen�13 D∗(2010)+D0 < 6.2 × 10−3 90%�14 D+K∗0 < 0.20 × 10−6 90%�15 D+K∗0 < 0.16 × 10−6 90%�16 D+s K∗0 < 0.28 × 10−6 90%�17 D+s K∗0 < 0.4 × 10−6 90%�18 D+s φ < 0.32 × 10−6 90%�19 K+K0 < 4.6 × 10−7 90%�20 B0s π+ / B(b → Bs ) (2.37+0.37
−0.35)× 10−3B+
 BRANCHING RATIOSB+
 BRANCHING RATIOSB+
 BRANCHING RATIOSB+
 BRANCHING RATIOS�(J/ψ(1S)ℓ+νℓ anything)/�total × B(b→ B
) �1/�× B�(J/ψ(1S)ℓ+νℓ anything)/�total × B(b→ B
) �1/�× B�(J/ψ(1S)ℓ+νℓ anything)/�total × B(b→ B
) �1/�× B�(J/ψ(1S)ℓ+νℓ anything)/�total × B(b→ B
) �1/�× BVALUE CL% DOCUMENT ID TECN COMMENT(5.2+2.4

−2.1)× 10−5(5.2+2.4
−2.1)× 10−5(5.2+2.4
−2.1)× 10−5(5.2+2.4
−2.1)× 10−5 1 ABE 98M CDF pp 1.8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1.6 × 10−4 90 2 ACKERSTAFF 98O OPAL e+ e− → Z
< 1.9 × 10−4 90 3 ABREU 97E DLPH e+ e− → Z
< 1.2 × 10−4 90 4 BARATE 97H ALEP e+ e− → Z1ABE 98M result is derived from the measurement of [σ(B
 )×B(B
 → J/ψ(1S) ℓνℓ)℄ /[σ(B+)×B(B+ → J/ψ(1S)K+)℄ = 0.132+0.041

−0.037(stat)±0.031(sys)+0.032
−0.020(lifetime)by using PDG 98 values of B(b → B+) and B(B+ → J/ψ(1S)K+).2ACKERSTAFF 98O reports B(Z → B
 X)/B(Z → qq)×B(B
 → J/ψ(1S) ℓνℓ) <6.95 × 10−5 at 90%CL. We res
ale to our PDG 98 values of B(Z → bb).3ABREU 97E value listed is for an assumed τB
 = 0.4 ps and improves to 1.6× 10−4 for

τB
 = 1.4 ps.4BARATE 97H reports B(Z → B
 X)/B(Z → qq)·B(B
 → J/ψ(1S) ℓνℓ) < 5.2×10−5at 90%CL. We res
ale to our PDG 96 values of B(Z → bb). A B+
 → J/ψ(1S)µ+ νµ
andidate event is found, 
ompared to all the known ba
kground sour
es 2 × 10−3,whi
h gives mB
 = 5.96+0.25
−0.19 GeV and τB
 = 1.77 ± 0.17 ps.�(J/ψ(1S)π+)/�total ×B(b→ B
) �3/�× B�(J/ψ(1S)π+)/�total ×B(b→ B
) �3/�× B�(J/ψ(1S)π+)/�total ×B(b→ B
) �3/�× B�(J/ψ(1S)π+)/�total ×B(b→ B
) �3/�× BVALUE CL% DOCUMENT ID TECN COMMENTseen 1 AAIJ 15M LHCB pp at 8 TeVseen 2 KHACHATRY...15AA CMS pp at 7 TeVseen AALTONEN 13 CDF pp at 1.96 TeVseen 3 AAIJ 12AV LHCB pp at 7 TeVseen AALTONEN 08M CDF pp at 1.96 TeVseen ABAZOV 08T D0 pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2.4× 10−4 90 4 ACKERSTAFF 98O OPAL e+ e− → Z
<3.4× 10−4 90 5 ABREU 97E DLPH e+ e− → Z
<8.2× 10−5 90 6 BARATE 97H ALEP e+ e− → Z
<2.0× 10−5 95 7 ABE 96R CDF pp 1.8 TeV1AAIJ 15M reports a measurement of B(B+
 → J/ψπ+) / B(B+ → J/ψK+) · f
/fu= (0.683 ± 0.018 ± 0.009)% at pT (B) < 20 GeV and 2.0 < y(B) < 4.5.2KHACHATRYAN 15AA reports a measurement of B(B+
 → J/ψπ+) / B(B+ →J/ψK+) · f
/fu = (0.48 ± 0.05 ± 0.03 ± 0.05)%, at pT > 15 GeV and ∣

∣η(B)∣∣ <1.6.3AAIJ 12AV reports a measurement of B(B+
 → J/ψπ+)/B(B+ → J/ψK+) f
 /fu =(0.68 ± 0.10 ± 0.03 ± 0.05)% at pT (B) > 4 GeV and 2.5 < η(B) < 4.5.4ACKERSTAFF 98O reports B(Z → B
 X)/B(Z → qq)×B(B
 → J/ψ(1S)π+) <1.06 × 10−4 at 90%CL. We res
ale to our PDG 98 values of B(Z → bb).5ABREU 97E value listed is for an assumed τB
 = 0.4 ps and improves to 2.7× 10−4 for
τB
 = 1.4 ps.6BARATE 97H reports B(Z → B
 X)/B(Z → qq)·B(B
 → J/ψ(1S)π) < 3.6× 10−5at 90%CL. We res
ale to our PDG 96 values of B(Z → bb).7ABE 96R reports B(b → B
 X)/B(b → B+X)·B(B+
 → J/ψ(1S)π+)/B(B+ →J/ψ(1S)K+) < 0.053 at 95%CL for τB
 = 0.8 ps. It 
hanges from 0.15 to 0.04 for0.17 ps< τB
 < 1.6 ps. We res
ale to our PDG 96 values of B(b → B+) = 0.378±0.022and B(B+ → J/ψ(1S)K+) = 0.00101 ± 0.00014.�(J/ψ(1S)π+)/�(J/ψ(1S)µ+ νµ

) �3/�2�(J/ψ(1S)π+)/�(J/ψ(1S)µ+ νµ

) �3/�2�(J/ψ(1S)π+)/�(J/ψ(1S)µ+ νµ

) �3/�2�(J/ψ(1S)π+)/�(J/ψ(1S)µ+ νµ

) �3/�2VALUE DOCUMENT ID TECN COMMENT(4.69±0.28±0.46)× 10−2(4.69±0.28±0.46)× 10−2(4.69±0.28±0.46)× 10−2(4.69±0.28±0.46)× 10−2 1 AAIJ 14W LHCB pp at 7 TeV1AAIJ 14W reports also a measurement B(B+
 → J/ψπ+) / B(B+
 → J/ψµ+ νµ) =0.271 ± 0.016 ± 0.016 in the region mJ/ψµ+ > 5.3 GeV.



1354135413541354MesonParti
le ListingsB+
�(J/ψ(1S)K+)/�(J/ψ(1S)π+) �4/�3�(J/ψ(1S)K+)/�(J/ψ(1S)π+) �4/�3�(J/ψ(1S)K+)/�(J/ψ(1S)π+) �4/�3�(J/ψ(1S)K+)/�(J/ψ(1S)π+) �4/�3VALUE EVTS DOCUMENT ID TECN COMMENT0.069±0.019±0.0050.069±0.019±0.0050.069±0.019±0.0050.069±0.019±0.005 50 AAIJ 13BY LHCB pp at 7 TeV�(J/ψ(1S)π+π+π−
)/�total ×B(b→ B
) �5/�× B�(J/ψ(1S)π+π+π−
)/�total ×B(b→ B
) �5/�× B�(J/ψ(1S)π+π+π−
)/�total ×B(b→ B
) �5/�× B�(J/ψ(1S)π+π+π−
)/�total ×B(b→ B
) �5/�× BVALUE CL% DOCUMENT ID TECN COMMENTseen AAIJ 12Y LHCB pp at 7 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5.7× 10−4 90 1 ABREU 97E DLPH e+ e− → Z1ABREU 97E value listed is independent of 0.4 ps< τB
 < 1.4 ps.�(J/ψ(1S)π+π+π−
)/�(J/ψ(1S)π+) �5/�3�(J/ψ(1S)π+π+π−
)/�(J/ψ(1S)π+) �5/�3�(J/ψ(1S)π+π+π−
)/�(J/ψ(1S)π+) �5/�3�(J/ψ(1S)π+π+π−
)/�(J/ψ(1S)π+) �5/�3VALUE DOCUMENT ID TECN COMMENT2.4 ±0.4 OUR AVERAGE2.4 ±0.4 OUR AVERAGE2.4 ±0.4 OUR AVERAGE2.4 ±0.4 OUR AVERAGE2.55±0.80±0.33+0.04

−0.01 KHACHATRY...15AA CMS pp at 7 TeV2.41±0.30±0.33 AAIJ 12Y LHCB pp at 7 TeV�(J/ψ(1S)a1(1260))/�total ×B(b→ B
) �6/�× B�(J/ψ(1S)a1(1260))/�total ×B(b→ B
) �6/�× B�(J/ψ(1S)a1(1260))/�total ×B(b→ B
) �6/�× B�(J/ψ(1S)a1(1260))/�total ×B(b→ B
) �6/�× BVALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−3<1.2× 10−3<1.2× 10−3<1.2× 10−3 90 1 ACKERSTAFF 98O OPAL e+ e− → Z1ACKERSTAFF 98O reports B(Z → B
 X)/B(Z → qq)×B(B
 → J/ψ(1S)a1(1260))

< 5.29× 10−4 at 90%CL. We res
ale to our PDG 98 values of B(Z → bb).�(J/ψ(1S)K+K−π+)/�total ×B(b→ B
) �7/�× B�(J/ψ(1S)K+K−π+)/�total ×B(b→ B
) �7/�× B�(J/ψ(1S)K+K−π+)/�total ×B(b→ B
) �7/�× B�(J/ψ(1S)K+K−π+)/�total ×B(b→ B
) �7/�× BVALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 AAIJ 13CA LHCB pp at 7, 8 TeV1A signal yield of 78 ± 14 de
ays is reported with a signi�
an
e of 6.2 standard deviationsusing an integrated luminosity of 3 fb−1 data.�(J/ψ(1S)K+K−π+)/�(J/ψ(1S)π+) �7/�3�(J/ψ(1S)K+K−π+)/�(J/ψ(1S)π+) �7/�3�(J/ψ(1S)K+K−π+)/�(J/ψ(1S)π+) �7/�3�(J/ψ(1S)K+K−π+)/�(J/ψ(1S)π+) �7/�3VALUE DOCUMENT ID TECN COMMENT0.53±0.10±0.050.53±0.10±0.050.53±0.10±0.050.53±0.10±0.05 1 AAIJ 13CA LHCB pp at 7, 8 TeV1A signal yield of 78 ± 14 de
ays is reported with a signi�
an
e of 6.2 standard deviationsusing an integrated luminosity of 3 fb−1 data.�(J/ψ(1S)π+π+π+π−π−
)/�(J/ψ(1S)π+) �8/�3�(J/ψ(1S)π+π+π+π−π−
)/�(J/ψ(1S)π+) �8/�3�(J/ψ(1S)π+π+π+π−π−
)/�(J/ψ(1S)π+) �8/�3�(J/ψ(1S)π+π+π+π−π−
)/�(J/ψ(1S)π+) �8/�3VALUE DOCUMENT ID TECN COMMENT1.74±0.44±0.241.74±0.44±0.241.74±0.44±0.241.74±0.44±0.24 1 AAIJ 14P LHCB pp at 7, 8 TeV1A signal yield of 32 ± 8 de
ays is reported with a signi�
an
e of 4.5 standard deviations.�(ψ(2S)π+)/�(J/ψ(1S)π+) �9/�3�(ψ(2S)π+)/�(J/ψ(1S)π+) �9/�3�(ψ(2S)π+)/�(J/ψ(1S)π+) �9/�3�(ψ(2S)π+)/�(J/ψ(1S)π+) �9/�3VALUE DOCUMENT ID TECN COMMENT0.268±0.032±0.007±0.0060.268±0.032±0.007±0.0060.268±0.032±0.007±0.0060.268±0.032±0.007±0.006 1 AAIJ 15AY LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.250±0.068±0.014±0.006 1 AAIJ 13AMLHCB Repl. by AAIJ 15AY1The last un
ertainty is due to the un
ertainty of the B(ψ(2S) → µ+µ−)/B(J/ψ →

µ+µ−) ratio measurement.�(J/ψ(1S)D+s )/�(J/ψ(1S)π+) �10/�3�(J/ψ(1S)D+s )/�(J/ψ(1S)π+) �10/�3�(J/ψ(1S)D+s )/�(J/ψ(1S)π+) �10/�3�(J/ψ(1S)D+s )/�(J/ψ(1S)π+) �10/�3VALUE DOCUMENT ID TECN COMMENT3.1 ±0.5 OUR AVERAGE3.1 ±0.5 OUR AVERAGE3.1 ±0.5 OUR AVERAGE3.1 ±0.5 OUR AVERAGE3.8 ±1.1 ±0.4 AAD 16H ATLS pp at 7, 8 TeV2.90±0.57±0.24 AAIJ 13AS LHCB pp at 7, 8 TeV�(J/ψ(1S)D∗+s )/�(J/ψ(1S)π+) �11/�3�(J/ψ(1S)D∗+s )/�(J/ψ(1S)π+) �11/�3�(J/ψ(1S)D∗+s )/�(J/ψ(1S)π+) �11/�3�(J/ψ(1S)D∗+s )/�(J/ψ(1S)π+) �11/�3VALUE DOCUMENT ID TECN COMMENT10.4±3.1±1.610.4±3.1±1.610.4±3.1±1.610.4±3.1±1.6 AAD 16H ATLS pp at 7, 8 TeV�(J/ψ(1S)D∗+s )/�(J/ψ(1S)D+s ) �11/�10�(J/ψ(1S)D∗+s )/�(J/ψ(1S)D+s ) �11/�10�(J/ψ(1S)D∗+s )/�(J/ψ(1S)D+s ) �11/�10�(J/ψ(1S)D∗+s )/�(J/ψ(1S)D+s ) �11/�10VALUE DOCUMENT ID TECN COMMENT2.5 ±0.5 OUR AVERAGE2.5 ±0.5 OUR AVERAGE2.5 ±0.5 OUR AVERAGE2.5 ±0.5 OUR AVERAGE2.8 +1.2
−0.8 ±0.3 AAD 16H ATLS pp at 7, 8 TeV2.37±0.56±0.10 AAIJ 13AS LHCB pp at 7, 8 TeV�(J/ψ(1S)ppπ+)/�(J/ψ(1S)π+) �12/�3�(J/ψ(1S)ppπ+)/�(J/ψ(1S)π+) �12/�3�(J/ψ(1S)ppπ+)/�(J/ψ(1S)π+) �12/�3�(J/ψ(1S)ppπ+)/�(J/ψ(1S)π+) �12/�3VALUE DOCUMENT ID TECN COMMENT0.143+0.041
−0.0360.143+0.041
−0.0360.143+0.041
−0.0360.143+0.041
−0.036 AAIJ 14AQ LHCB pp at 7, 8 TeV�(D∗(2010)+D0)/�total ×B(b→ B
) �13/�× B�(D∗(2010)+D0)/�total ×B(b→ B
) �13/�× B�(D∗(2010)+D0)/�total ×B(b→ B
) �13/�× B�(D∗(2010)+D0)/�total ×B(b→ B
) �13/�× BVALUE CL% DOCUMENT ID TECN COMMENT

<6.2× 10−3<6.2× 10−3<6.2× 10−3<6.2× 10−3 90 1 BARATE 98Q ALEP e+ e− → Z1BARATE 98Q reports B(Z → B
 X)×B(B
 → D∗(2010)+D0) < 1.9 × 10−3 at90%CL. We res
ale to our PDG 98 values of B(Z → bb).�(D+K∗0)/�total ×B(b→ B
) �14/�× B�(D+K∗0)/�total ×B(b→ B
) �14/�× B�(D+K∗0)/�total ×B(b→ B
) �14/�× B�(D+K∗0)/�total ×B(b→ B
) �14/�× BVALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.20<0.20<0.20<0.20 90 1 AAIJ 13R LHCB pp at 7 TeV1AAIJ 13R reports [�(B+
 → D+K∗0)/�total × B(b → B
 )℄ / [B(b → B+)℄ <0.5× 10−6 whi
h we multiply by our best value B(b → B+) = 40.4× 10−2.

�(D+K∗0)/�total ×B(b→ B
 ) �15/�× B�(D+K∗0)/�total ×B(b→ B
 ) �15/�× B�(D+K∗0)/�total ×B(b→ B
 ) �15/�× B�(D+K∗0)/�total ×B(b→ B
 ) �15/�× BVALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.16<0.16<0.16<0.16 90 1 AAIJ 13R LHCB pp at 7 TeV1AAIJ 13R reports [�(B+
 → D+K∗0)/�total × B(b → B
 )℄ / [B(b → B+)℄ <0.4× 10−6 whi
h we multiply by our best value B(b → B+) = 40.4× 10−2.�(D+s K∗0)/�total ×B(b→ B
 ) �16/�× B�(D+s K∗0)/�total ×B(b→ B
 ) �16/�× B�(D+s K∗0)/�total ×B(b→ B
 ) �16/�× B�(D+s K∗0)/�total ×B(b→ B
 ) �16/�× BVALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.28<0.28<0.28<0.28 90 1 AAIJ 13R LHCB pp at 7 TeV1AAIJ 13R reports [�(B+
 → D+s K∗0)/�total × B(b → B
 )℄ / [B(b → B+)℄ <0.7× 10−6 whi
h we multiply by our best value B(b → B+) = 40.4× 10−2.�(D+s K∗0)/�total ×B(b→ B
 ) �17/�× B�(D+s K∗0)/�total ×B(b→ B
 ) �17/�× B�(D+s K∗0)/�total ×B(b→ B
 ) �17/�× B�(D+s K∗0)/�total ×B(b→ B
 ) �17/�× BVALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.4<0.4<0.4<0.4 90 1 AAIJ 13R LHCB pp at 7 TeV1AAIJ 13R reports [�(B+
 → D+s K∗0)/�total × B(b → B
 )℄ / [B(b → B+)℄ <1.1× 10−6 whi
h we multiply by our best value B(b → B+) = 40.4× 10−2.�(D+s φ

)/�total × B(b→ B
) �18/�× B�(D+s φ
)/�total × B(b→ B
) �18/�× B�(D+s φ
)/�total × B(b→ B
) �18/�× B�(D+s φ
)/�total × B(b→ B
) �18/�× BVALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<0.32<0.32<0.32<0.32 90 1 AAIJ 13R LHCB pp at 7 TeV1AAIJ 13R reports [�(B+
 → D+s φ
)/�total × B(b → B
 )℄ / [B(b → B+)℄ < 0.8×10−6 whi
h we multiply by our best value B(b → B+) = 40.4 × 10−2.�(K+K0)/�total ×B(b→ B
 ) �19/�× B�(K+K0)/�total ×B(b→ B
 ) �19/�× B�(K+K0)/�total ×B(b→ B
 ) �19/�× B�(K+K0)/�total ×B(b→ B
 ) �19/�× BVALUE CL% DOCUMENT ID TECN COMMENT

<4.6× 10−7<4.6× 10−7<4.6× 10−7<4.6× 10−7 90 1 AAIJ 13BS LHCB pp at 7 TeV1Derived from �(K+K0)/�×B(b → B
 ) / (B(B+ → K0π+) B(b → B+)) < 5.8% at90% CL using normalization mode B(B+ → K0π+) = (23.97 ± 0.53 ± 0.71)× 10−6and assuming a B produ
tion ratio f(b → B+u ) = 0.33.�(B0s π+ / B(b→ Bs ) )/�total ×B(b→ B
) �20/�× B�(B0s π+ / B(b→ Bs ) )/�total ×B(b→ B
) �20/�× B�(B0s π+ / B(b→ Bs ) )/�total ×B(b→ B
) �20/�× B�(B0s π+ / B(b→ Bs ) )/�total ×B(b→ B
) �20/�× BVALUE (units 10−3) DOCUMENT ID TECN COMMENT2.37±0.31±0.11+0.17
−0.132.37±0.31±0.11+0.17
−0.132.37±0.31±0.11+0.17
−0.132.37±0.31±0.11+0.17
−0.13 1 AAIJ 13BU LHCB pp at 7, 8 TeV1The last un
ertinty is due to the un
ertainty of the B+
 lifetime measurument.POLARIZATION IN B+
 DECAYPOLARIZATION IN B+
 DECAYPOLARIZATION IN B+
 DECAYPOLARIZATION IN B+
 DECAYIn de
ays involving two ve
tor mesons, one 
an distinguish among thestates in whi
h meson polarizations are both longitudinal (L) or both aretransverse and parallel (‖) or perpendi
ular (⊥) to ea
h other with theparameters �L/�, �⊥/�, and the relative phases φ‖ and φ⊥. See thede�nitions in the note on \Polarization in B De
ays" review in the B0Parti
le Listings.�L/� in B+
 → J/ψD∗+s�L/� in B+
 → J/ψD∗+s�L/� in B+
 → J/ψD∗+s�L/� in B+
 → J/ψD∗+sVALUE DOCUMENT ID TECN COMMENT0.54±0.15 OUR AVERAGE0.54±0.15 OUR AVERAGE0.54±0.15 OUR AVERAGE0.54±0.15 OUR AVERAGE0.62±0.24 1 AAD 16H ATLS pp at 7, 8 TeV0.48±0.20 2 AAIJ 13AS LHCB pp at 7, 8 TeV1AAD 16H measures 1 − �L/� = 0.38 ± 0.24.2AAIJ 13AS measures 1 − �L/� = 0.52 ± 0.20.B+
 REFERENCESB+
 REFERENCESB+
 REFERENCESB+
 REFERENCESAAD 16H EPJ C76 4 G. Aad et al. (ATLAS Collab.)AAIJ 15AY PR D92 072007 R. Aaij et al. (LHCb Collab.)AAIJ 15G PL B742 29 R. Aaij et al. (LHCb Collab.)AAIJ 15M PRL 114 132001 R. Aaij et al. (LHCb Collab.)KHACHATRY... 15AA JHEP 1501 063 V. Kha
hatryan et al. (CMS Collab.)AAIJ 14AQ PRL 113 152003 R. Aaij et al. (LHCb Collab.)AAIJ 14G EPJ C74 2839 R. Aaij et al. (LHCb Collab.)AAIJ 14P JHEP 1405 148 R. Aaij et al. (LHCb Collab.)AAIJ 14W PR D90 032009 R. Aaij et al. (LHCb Collab.)AAIJ 13AM PR D87 071103 R. Aaij et al. (LHCb Collab.)AAIJ 13AS PR D87 112012 R. Aaij et al. (LHCb Collab.)Also PR D89 019901 (errat.) R. Aaij et al. (LHCb Collab.)AAIJ 13BS PL B726 646 R. Aaij et al. (LHCb Collab.)AAIJ 13BU PRL 111 181801 R. Aaij et al. (LHCb Collab.)AAIJ 13BY JHEP 1309 075 R. Aaij et al. (LHCb Collab.)AAIJ 13CA JHEP 1311 094 R. Aaij et al. (LHCb Collab.)AAIJ 13R JHEP 1302 043 R. Aaij et al. (LHCb Collab.)AALTONEN 13 PR D87 011101 T. Aaltonen et al. (CDF Collab.)AAIJ 12AV PRL 109 232001 R. Aaij et al. (LHCb Collab.)AAIJ 12Y PRL 108 251802 R. Aaij et al. (LHCb Collab.)ABAZOV 09H PRL 102 092001 V.M. Abazov et al. (D0 Collab.)AALTONEN 08M PRL 100 182002 T. Aaltonen et al. (CDF Collab.)ABAZOV 08T PRL 101 012001 V.M. Abazov et al. (D0 Collab.)ABULENCIA 06C PRL 96 082002 A. Abulen
ia et al. (CDF Collab.)ABULENCIA 06O PRL 97 012002 A. Abulen
ia et al. (CDF Collab.)ABE 98M PRL 81 2432 F. Abe et al. (CDF Collab.)Also PR D58 112004 F. Abe et al. (CDF Collab.)ACKERSTAFF 98O PL B420 157 K. A
kersta� et al. (OPAL Collab.)BARATE 98Q EPJ C4 387 R. Barate et al. (ALEPH Collab.)PDG 98 EPJ C3 1 C. Caso et al. (PDG Collab.)ABREU 97E PL B398 207 P. Abreu et al. (DELPHI Collab.)BARATE 97H PL B402 213 R. Barate et al. (ALEPH Collab.)ABE 96R PRL 77 5176 F. Abe et al. (CDF Collab.)PDG 96 PR D54 1 R. M. Barnett et al. (PDG Collab.)
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(2S)± I (JP ) = 0(0−)OMITTED FROM SUMMARY TABLEQuantum numbers neither measured nor 
on�rmed.B
 (2S)± MASSB
 (2S)± MASSB
 (2S)± MASSB
 (2S)± MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT6842±4±56842±4±56842±4±56842±4±5 57 1 AAD 14AQ ATLS pp at 7, 8 TeV1Observed in the de
ay mode B
 (2S)+ → B+
 π+π− (B+
 → J/ψπ+) with 5.2standard deviations signi�
an
e.B
 (2S)± DECAY MODESB
 (2S)± DECAY MODESB
 (2S)± DECAY MODESB
 (2S)± DECAY MODESMode Fra
tion (�i /�)�1 B+
 π+π− seenB
 (2S)± BRANCHING RATIOSB
 (2S)± BRANCHING RATIOSB
 (2S)± BRANCHING RATIOSB
 (2S)± BRANCHING RATIOS�(B+
 π+π−
)/�total �1/��(B+
 π+π−
)/�total �1/��(B+
 π+π−
)/�total �1/��(B+
 π+π−
)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 57 1 AAD 14AQ ATLS pp at 7, 8 TeV1Observed with 5.2 standard deviations signi�
an
e.B
 (2S)± REFERENCESB
 (2S)± REFERENCESB
 (2S)± REFERENCESB
 (2S)± REFERENCESAAD 14AQ PRL 113 212004 G. Aad et al. (ATLAS Collab.)

SPECTROSCOPY OF MESONS CONTAINING

TWO HEAVY QUARKS

Updated March 2016 by S. Eidelman (Budker Inst. and Novosi-
birsk State Univ.), C. Hanhart (Forschungszentrum Jülich),
B.K. Heltsley (Cornell Univ.), J.J. Hernandez-Rey (Univ.
Valencia–CSIC), R.E. Mitchell (Indiana Univ.), S. Navas (Univ.
Granada), and C. Patrignani (Bologna Univ., INFN).

A golden age for heavy quarkonium physics dawned at the

turn of this century, initiated by the confluence of exciting ad-

vances in quantum chromodynamics (QCD) and an explosion of

related experimental activity. The subsequent broad spectrum

of breakthroughs, surprises, and continuing puzzles had not

been anticipated. In that period, the BESII program concluded

only to give birth to BESIII; the B-factories and CLEO-c flour-

ished; quarkonium production and polarization measurements

at HERA and the Tevatron matured; and heavy-ion collisions at

RHIC opened a window on the deconfinement regime. Recently

also ATLAS, CMS and LHCb started to contribute to the field.

For an extensive presentation of the status of heavy quarkonium

physics, the reader is referred to several reviews [1–8]. This

note focuses on experimental developments in heavy quarko-

nium spectroscopy with very few theoretical comments. Some

other comments on possible theoretical interpretations of the

states not predicted by the quark model are presented in the

mini-review on non q̄q–states.

In this mini-review we display the newly discovered states,

where “newly” is interpreted to include the period since 2002.

In earlier versions of this write-up the particles were sorted ac-

cording to an assumed conventional or unconventional nature

with respect to the quark model. However, since this classifica-

tion is not always unambiguous, we here follow Ref. [8] and sort

the states into three groups, namely states below (cf. Table 1),

near (cf. Table 2) and above (cf. Table 3) the lowest open

flavor thresholds.

Table 1 lists properties of newly observed heavy quarkonium

states located below the lowest open flavor thresholds. Those are

expected to be (at least prominently) conventional quarkonia.

The hc(1P ) is the 1P1 state of charmonium, singlet partner of

the long-known χcJ triplet 3PJ . The ηc(2S) is the first excited

state of the pseudoscalar ground state ηc(1S), lying just below

the mass of its vector counterpart, ψ(2S).

Although ηc(2S) measurements began to converge towards

a mass and a width some time ago, refinements are still in

progress. In particular, Belle [16] has revisited its analysis of

B → Kηc(2S), ηc(2S) → KKπ decays with more data and

methods that account for interference between the above decay

chain, an equivalent one with the ηc(1S) instead, and one with

no intermediate resonance. The net effect of this interference is

far from trivial; it shifts the apparent mass by ∼+10 MeV and

blows up the apparent width by a factor of six. The updated

ηc(2S) mass and width are in better accordance with other

measurements than the previous treatment [15], which did

not include interference. Complementing this measurement in

B-decay, BaBar [17] updated their previous [18] ηc(2S) mass

and width measurements in two-photon production, where

interference effects, judging from studies of ηc(1S), appear

to be small. In combination, precision on the ηc(2S) mass

has improved dramatically. In addition, Belle recently reported

a measurement of ψ2(1D) which would be a JPC = 2+−

state [23]. Its existence was confirmed with high significance by

BESIII [24]. While the negative C-parity is indeed established

by the measurement, the assignment of J = 2 was done by

matching to the closest quark model state. In the table this

state is therefore simply called X(3823), according to the PDG

name convention.

A new cb̄ state was discovered by the ATLAS Collabora-

tion [28]. They observed an excited B±
c state, which properties

are consistent with expectations for the second S-wave state of

the B±
c meson, B±

c (2S).

The ground state of bottomonium is the ηb(1S), recently

confirmed with a second observation of more than 5σ signif-

icance at Belle. In addition, in the same experiment strong

evidence was collected for ηb(2S) [32], but it still needs ex-

perimental confirmation at the 5σ level. The Υ(1D) is the

lowest-lying D-wave triplet of the bb̄ system. Both the hb(1P ),

the bottomonium counterpart of hc(1P ), and the next excited

state, hb(2P ), were recently observed by Belle [35], as described

further below, in dipion transitions from the Υ(10860). We no

longer mention a hypothetical Yb(10888) state since new anal-

ysis of the Υ(10860) energy range does not show evidence for

an additional state with mass shifted from the Υ(10860) [111].

After the mass of the ηb(1S) was shifted upwards by about 10

MeV based on the new Belle measurements [32,33], all states



1356135613561356Meson Parti
le ListingsHeavy Quarkonium Spe
tros
opy
mentioned in this paragraph fit into their respective spectro-

scopies roughly where expected. Their exact masses, production

mechanisms, and decay modes provide guidance to their de-

scriptions within QCD.

Table 1: New states below the open flavor thresholds in the cc̄, bc̄, and bb̄ regions, ordered by mass. Masses m

and widths Γ represent the PDG16 weighted averages. Ellipses (...) in the Process column indicate inclusively

selected event topologies; i.e., additional particles not required by the Experiments to be present. A question

mark (?) indicates an unmeasured value. For each Experiment a citation is given, as well as the statistical

significance (#σ), or “(np)” for “not provided”. The Year column gives the date of the first measurement cited.

The Status column indicates that the state has been observed by at most one (NC!-needs confirmation) or at

least two independent experiments with significance of >5σ (OK).

State m (MeV) Γ (MeV) JPC Process (mode) Experiment (#σ) Year Status

hc(1P ) 3525.38 ± 0.11 0.7 ± 0.35 1+− ψ(2S) → π0 (γηc(1S)) CLEO [9–11] (13.2) 2004 OK

ψ(2S) → π0 (γ...) CLEO [9–11] (10), BES [12] (19)

pp̄ → (γηc) → (γγγ) E835 [13] (3.1)

ψ(2S) → π0(γηc(1S)) BESIII [14] (np)

ηc(2S) 3639.2± 1.2 11.3+3.2
−2.9 0−+ B → K (K0

S
K−π+) Belle [15,16] (6.0) 2002 OK

e+e− → e+e− (K0
S
K−π+) BaBar [17,18] (7.8),

CLEO [19] (6.5), Belle [20] (6)

e+e− → J/ψ (...) BaBar [21] (np), Belle [22] (8.1)

X(3823) 3822.5± 1.2 < 16 ??− B → K(γ χc1) Belle [23]( 3.8) 2013 NC!

e+e− → π+π−χc1γ BESIII [24] (6.2)

B+
c 6277 ± 6 ? 0− p̄p → (π+J/ψ)... CDF [25,26] (8.0), D0 [27] (5.2) 2007 OK

B+
c (2S) 6842 ± 6 ? 0− pp → (B+

c π+π−) . . . ATLAS [28] (5.2) 2014 NC!

ηb(1S) 9399.2± 1.9 9.8+4.4
−3.6 0−+ Υ(3S) → γ (...) BaBar [29] (10), CLEO [30] (4.0) 2008 OK

Υ(2S) → γ (...) BaBar [31] (3.0)

hb(1P, 2P ) → γ (...) Belle [32]( 14)
Υ(4S) → ηhb(1P ) Belle [33]( 9)

Υ(10860) → π+π−γ (...) Belle [34] (14)

hb(1P ) 9899.3± 0.7 ? 1+− Υ(10860) → π+π− (...) Belle [35,34] (5.5) 2011 NC!

Υ(3S) → π0 (...) BaBar [36] (3.0)

Υ(4S) → ηhb(1P ) Belle [33] (11)

ηb(2S) 9999.0+4.5
−4.0 < 24 0−+ hb(2P ) → γ (...) Belle [32]( 4.2) 2012 NC!

Υ(13D2) 10163.7± 1.4 ? 2−− Υ(3S) → γγ (γγΥ(1S)) CLEO [37] (10.2) 2004 OK

Υ(3S) → γγ (π+π−Υ(1S)) BaBar [38] (5.8)

Υ(10860) → π+π− (...) Belle [35] (2.4)

hb(2P ) 10259.8+1.5
−1.2 ? 1+− Υ(10860) → π+π− (...) Belle [35,34] (11.2) 2011 NC!

χbJ(3P ) 10512.1± 2.3 ? ??+ pp → (γµ+µ−)... ATLAS [39] (>6), D0 [40] (3.6) 2011 OK

LHCB [41] (6.9)

There is a large number of newly discovered states both near

and above the lowest open flavor thresholds. They are displayed

in Table 2 and Table 3, respectively*; notice that just a few of

* For consistency with the literature, we preserve the use of X ,

Y and Z, contrary to the practice of the PDG, which exclusively

uses X for states with undetermined quantum numbers.

them have been confirmed experimentally as indicated in the

last column of the tables. With the possible exception of the

tensor state located at 3930 MeV, neither can unambiguously

be assigned a place in the hierarchy of

charmonia or bottomonia. However, besides the charged states,

none has a universally accepted unconventional origin either.

The X(3872) is widely studied, yet its interpretation demands

additional experimental attention: after the quantum numbers

were fixed at LHCb [59,60], the next experimental challenge

will be a measurement of its line shape. The state originally
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dubbed Z(3930) is now regarded by many as the first observed

2P state of χcJ , the χc2(2P ). Another state was discovered

at 3915 MeV [75] and from a subsequent measurement its

quantum numbers were determined to be JPC = 0++ [77]

suggesting it to be the χc0(2P ) quark model state, but this

interpretation is not generally accepted [114,115]. In addition,

it was pointed out in Ref. [116] that if the assumption of

a helicity-2 dominance is abandoned and instead one allows

for a sizable helicity-0 component, a JPC = 2++ assignment

is possible. This could imply that the state at 3930 MeV is

actually identical to the one at 3915 MeV—but to explain

the large helicity-0 component a sizable portion of non-q̄q is

necessary [116]. Because of this analysis the name of the state

was changed back from χc0(2P ) to X(3915).

Table 2: As in Table 1, but for new states near the first open flavor thresholds in the cc̄ and bb̄ regions, ordered

by mass. For X(3872), the values given are based only upon decays to π+π−J/ψ. Updated from [7] with kind

permission, copyright (2011), Springer, and [8] with kind permission from the authors.

State m (MeV) Γ (MeV) JPC Process (mode) Experiment (#σ) Year Status

X(3872) 3871.68±0.17 < 1.2 1++ B → K (π+π−J/ψ) Belle [42,43] (10.3), BaBar [44] (8.6) 2003 OK
pp̄ → (π+π−J/ψ) + ... CDF [45–47] (np), D0 [48] (5.2)

B → K (ωJ/ψ) Belle [49] (4.3), BaBar [50] (4.9)

B → K (D∗0D
0
) Belle [51,52] (6.4), BaBar [53] (4.9)

B → K (γJ/ψ) Belle [54] (4.0), BaBar [55,56] (3.6),
LHCb [57] (>10)

B → K (γψ(2S)) BaBar [56] (3.5), Belle [54] (0.4),
LHCb [57] (4.4)

pp → (π+π−J/ψ) + ... LHCb [58,59,60] (np)
Zc(3900) 3891.2 ± 3.3 40 ± 8 1+− Y (4260) → π−(π+J/ψ) BESIII [61]( > 8), Belle [62]( 5.2) 2013 OK

CLEO data [63]( >5)
Y (4260) → π0(π0J/ψ) BESIII [64]( 10.4)

CLEO data [63]( 3.5)
Y (4260) → π−(DD̄∗)+ BESIII [65]( 18)
Y (4260) → π0(DD̄∗)0 BESIII [66]( > 10)

Zc(4020) 4022.9 ± 2.8 7.9 ± 3.7 1+− Y (4260, 4360) → π−(π+hc) BESIII [67]( 8.9) 2013 NC!
Y (4260, 4360) → π0(π0hc) BESIII [68]( > 5)
Y (4260) → π−(D∗D̄∗)+ BESIII [69]( 10)
Y (4260) → π0(D∗D̄∗)0 BESIII [70]( 5.9)

Zb(10610) 10607.2 ± 2.0 18.4 ± 2.4 1+− Υ(10860) → π−(π+Υ(1S, 2S, 3S)) Belle [71]( > 10) [72] 2011 NC!
Υ(10860) → π−(π+hb(1P, 2P )) Belle [71]( 16)

Υ(10860) → π0(π0Υ(1S, 2S, 3S)) Belle [73] (6.5)
Υ(10860) → π−(BB̄∗)+ Belle [74]( > 8)

Zb(10650) 10652.2 ± 1.5 11.5 ± 2.2 1+− Υ(10860) → π−(π+Υ(1S, 2S, 3S)) Belle [71]( >10) 2011 OK
Υ(10860) → π−(π+hb(1P, 2P )) Belle [71]( 16)

Υ(10860) → π−(B∗B̄∗)+ Belle [74]( 6.8)

The Y (4260) and Y (4360) are vector states decaying to

π+π−J/ψ and π+π−ψ(2S), respectively, yet, unlike most con-

ventional vector charmonia, do not correspond to enhancements

in the e+e− hadronic cross section. Another interesting question

is whether a heavier π+π−ψ(2S) state, the Y (4660), discovered

by Belle [101,102] and confirmed by BaBar [100], is identical to

the Λ+
c Λ−

c state with close parameters observed by Belle using

initial-state radiation [108].

Based on a full amplitude analysis of the B0 → K+π−ψ(2S)

decays, Belle determined the spin-parity of the Z(4430)±**

to be JP = 1+ [105]. Very recently this state as well as

its quantum numbers were confirmed at LHCb [107] with

much higher statistics. Improved values for mass and width

from LHCb are consistent with earlier measurements; our

new average is in Table 3; the experiment even reports a

resonant behavior of the Z(4430)± amplitude. This state as

well as Z(4050)± and Z(4250)± seen in π±χc1 is, however, not

confirmed (nor excluded) by BaBar (see [106] for the Z(4430)

and [83] for the Z(4050)± and Z(4250)±). Belle observes signals

of significances 5.0σ, 5.0σ, and 6.4σ for Z1(4050)+, Z2(4250)+,

and Z(4430)+, respectively, whereas BABAR reports 1.1σ, 2.0σ,

and 2.4σ effects, setting upper limits on product branching

fractions that are not inconsistent with Belle’s and LHCb’s

measured rates. For the Z1(4050)+ and Z2(4250)+ states the

situation remains unresolved.

** There are currently various candidates for isotriplet states in

the spectrum. For some of them both charged states are already

established and sometimes there is also evidence for the neutral

partner. We still chose to put the charge as superscript since it

is an explicit marker of the exotic nature of the states.
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Table 3: As in Table 1, but for new states above the first open flavor thresholds in the cc̄ and bb̄ regions,

ordered by mass. X(3945) and Y (3940) have been subsumed under X(3940) due to compatible properties. The

χc0(3915) is now changed back to X(3915) as explained in the main text. The state known as Z(3930) appears

as the χc2(2P ) in Table 1. In some cases experiment still allows two JPC values, in which case both appear. See

also the reviews in [1–8].

State m (MeV) Γ (MeV) JPC Process (mode) Experiment (#σ) Year Status

X(3915) 3917.4± 2.7 28+10
− 9 0/2++ B → K (ωJ/ψ) Belle [75] (8.1), BaBar [50] (np) 2004 OK

e+e− → e+e−ωJ/ψ Belle [76] (7.7), BaBar [77] (19)
χc2(2P ) 3927.2± 2.6 24±6 2++ e+e− → e+e−(DD̄) Belle [78] (5.3), BaBar [79] 2005 OK

X(3940) 3942+9
−8 37+27

−17 ??+ e+e− → J/ψ (DD
∗
) Belle [80] (6.0) 2007 NC!

e+e− → J/ψ (...) Belle [22] (5.0)
Y (4008) 4008+121

− 49 226±97 1−− e+e− → γ(π+π−J/ψ) Belle [81] (7.4) 2007 NC!

Z1(4050)+ 4051+24
−43 82+51

−55 ? B → K (π+χc1(1P )) Belle [82] (5.0), BaBar [83] (1.1) 2008 NC!

Y (4140) 4145.8± 2.6 18 ± 8 ??+ B+ → K+(φJ/ψ) CDF [84,85] (5.0) 2009 NC!
D0 [86] (3.1), CMS [87] (>5)

Belle [88] (1.9), LHCb [89] (1.4), BaBar [90]
e+e− → e+e− (φJ/ψ) Belle [91] (3.2) 2009 NC!

X(4160) 4156+29
−25 139+113

−65 ??+ e+e− → J/ψ (DD
∗
) Belle [80] (5.5) 2007 NC!

Zc(4200)+ 4196+35
−32 370+99

−149 1+ B̄0 → K−(J/ψπ+) Belle [92] (6.2) 2014 NC!

Z2(4250)+ 4248+185
− 45 177+321

− 72 ? B → K (π+χc1(1P )) Belle [82] (5.0), BaBar [83] (2.0) 2008 NC!

Y (4260) 4263+8
−9 95±14 1−− e+e− → γ (π+π−J/ψ) BaBar [93,94] (8.0) 2005 OK

CLEO [95] (5.4), Belle [81] (15)
e+e− → (π+π−J/ψ) CLEO [96] (11)
e+e− → (π0π0J/ψ) CLEO [96] (5.1)

e+e− → (f0(980)J/ψ) BaBar [97] (np), Belle [62] (np)
e+e− → (π−Zc(3900)+) BESIII [61] (8), Belle [62] (5.2)
e+e− → (γ X(3872)) BESIII [98] (5.3)

Y (4274) 4293± 20 35 ± 16 ??+ B+ → K+(φJ/ψ) CDF [85] (3.1), LHCb [89] (1.0), 2011 NC!
CMS [87] (>3), D0 [86] (np)

X(4350) 4350.6+4.6
−5.1 13.3+18.4

−10.0 0/2++ e+e− → e+e− (φJ/ψ) Belle [91] (3.2) 2009 NC!
Y (4360) 4361± 13 74±18 1−− e+e− → γ (π+π−ψ(2S)) BaBar [99,100] (np), Belle [101,102] (8.0) 2007 OK
Z(4430)+ 4458 ± 15 166+37

−32 1+ B̄0 → K−(π+ψ(2S)) Belle [103,104,105] (6.4), BaBar [106] (2.4), 2007 OK
LHCb [107] (13.9)

B̄o → (J/ψπ+)K− Belle [92] (4.0)
X(4630) 4634+ 9

−11 92+41
−32 1−− e+e− → γ (Λ+

c Λ−
c ) Belle [108] (8.2) 2007 NC!

Y (4660) 4664±12 48±15 1−− e+e− → γ (π+π−ψ(2S)) Belle [101,102] (5.8),BaBar [100] (np) 2007 NC!

Υ(10860) 10876± 11 55 ± 28 1−− e+e− → (B
(∗)
(s)B̄

(∗)
(s)(π)) PDG [109] (> 10) 1985 OK

e+e− → (ππΥ(1S, 2S, 3S)) Belle [110,71,73,111] (>10)
e+e− → (f0(980)Υ(1S)) Belle [71,73] (>5)

e+e− → (πZb(10610, 10650)) Belle [71,73] (>10)
e+e− → (ηΥ(1S, 2S)) Belle [33] (10)
e+e− → (π+π−Υ(1D)) Belle [112] (9)

e+e− → (π+π−hb(1P, 2P )) Belle [113] (9)

Υ(11020) 10987.5+11.1
−3.3 61.0+9.2

−27.7 1−− e+e− → (B
(∗)
(s)B̄

(∗)
(s)(π)) PDG [109] (> 10) 1985 OK

e+e− → (ππΥ(1S, 2S, 3S)) [111] (>10)
e+e− → (π+π−hb(1P, 2P )) Belle [113] (9)

In addition to the three Z+
c discussed in the previous

paragraph, in 2013 two more states named Zc(3900)+ and

Zc(4020)+ were unearthed in the charmonium region. Note that

in this write-up as well as the RPP listings we combined

Zc(3900)+ (seen in J/ψππ) and Zc(3885)+ (seen in DD̄∗)

as well as Zc(4020)+ (seen in hcππ) and Zc(4025)+ (seen in

D∗D̄∗) into only two states due to their close proximity in

mass. In various respects Zc(3900)+ and Zc(4020)+ seem to be

the charmed partners of Zb(10610)+ and Zb(10650)+ as will be

outlined below. Finally, from their study of B̄0 → J/ψK−π+

decays Belle reported evidence for one more charged state,

dubbed Zc(4200)+ [92]. This very analysis gave evidence for

the decay mode Z(4430) → J/ψπ, which has an order of

magnitude lower branching fraction than the discovery mode

Z(4430) → ψ(2S)π.

The Y (4140) observed in 2008 by CDF [84,85] was confirmed

at D0 and CMS [86,87], however, a second structure related

to Y (4274) could not be established unambiguously. The two

states were neither seen in B decays at Belle [88], LHCb [89]
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and BaBar [90] nor in γγ collisions at Belle [91]. Thus the

situation for the Y (4140) and Y (4274) is still controversial.

New results on ηb, hb, and Z+
b

mostly come from

Belle [32–35], [71–74], [110–113], all from analy-

ses of 121.4 fb−1 of e+e− collision data collected near the

peak of the Υ(10860) resonance as well as from additional

25 fb−1 of data collected during the scans of the c.m. energy

range 10.63-11.05 GeV. They all appear in the decay chains:

Υ(10860) → π−Z+
b

, Z+
b

→ π+(bb̄), and, when the bb̄ forms an

hb(1P ), frequently decaying as hb(1P ) → γηb.

Figure 1: From Belle [35], the mass recoil-
ing against π+π− pairs, Mmiss, in e+e− colli-
sion data taken near the peak of the Υ(10860)
(points with error bars). The smooth combinato-
rial and K0

S
→ π+π− background contributions

have been subtracted. The fit to the various la-
beled signal contributions is overlaid (curve).
Adapted from [35] with kind permission, copy-
right (2011) The American Physical Society.

The Belle hb discovery analysis [35] selects hadronic

events and searches for peaks in the mass recoiling against

π+π− pairs, the spectrum for which, after subtraction of

smooth combinatorial and K0
S
→ π+π− backgrounds, appears

in Fig. 1. Prominent and unmistakable hb(1P ) and hb(2P )

peaks are present. This search was directly inspired by a

CLEO result [117], which found the surprisingly copious

transitions ψ(4160) → π+π−hc(1P ) and an indication that

Y (4260) → π+π−hc(1P ) occurs at a comparable rate as the

signature mode, Y (4260) → π+π−J/ψ. The presence of Υ(nS)

peaks in Fig. 1 at rates two orders of magnitude larger than

expected, along with separate studies with exclusive decays

Υ(nS) → µ+µ−, allow precise calibration of the π+π− re-

coil mass spectrum and very accurate measurements of hb(1P )

and hb(2P ) masses. Both corresponding hyperfine splittings are

consistent with zero within an uncertainty of about 1.5 MeV

(lowered to ±1.1 MeV for hb(1P ) in Ref. [34]) .

Belle soon noticed that, for events in the peaks of Fig. 1,

there seemed to be two intermediate charged states nearby. For

example, Fig. 2 shows a Dalitz plot for events restricted to the

Υ(2S) region of π+π− recoil mass, with Υ(2S) → µ+µ−. The

two bands observed in the maximum of the two M [π±Υ(2S)]2

values also appear for Υ(1S), Υ(3S), hb(1P ), and hb(2P )

Figure 2: From Belle [71] e+e− collision data
taken near the peak of the Υ(10860) for events
with a π+π−-missing mass consistent with an
Υ(2S) → µ+µ−, (a) the maximum of the two
possible single π±-missing-mass-squared combi-
nations vs. the π+π−-mass-squared; and (b)
projection of the maximum of the two possi-
ble single π±-missing-mass combinations (points

with error bars) overlaid with a fit (curve).
Events to the left of the vertical line in (a) are
excluded from amplitude analysis. The hatched
histogram in (b) corresponds to the combinato-
rial background. The two horizontal stripes in
(a) and two peaks in (b) correspond to the two
Z+

b
states. Adapted from [71] with kind permis-

sion, copyright (2011) The American Physical
Society.

Figure 3: From Belle [34] e+e− collision data
taken near the peak of the Υ(10860), the hb(1P )
event yield vs. the mass recoiling against the
π+π−γ (corrected for misreconstructed π+π−),
where the hb(1P ) yield is obtained by fitting the
mass recoiling against the π+π− (points with

error bars). The fit results (solid histograms) for
signal plus background and background alone
are superimposed.

samples. Belle fits all subsamples to resonant plus non-resonant

amplitudes, allowing for interference (notably, between π−Z+
b

and π+Z−

b
), and finds consistent pairs of Z+

b
masses for all

bottomonium transitions, and comparable strengths of the two

states. A recent angular analysis assigned JP = 1+ for both Z+
b
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states [72], which must also have negative G-parity. Transitions

through Z+
b

to the hb(nP ) saturate the observed π+π−hb(nP )

cross sections. While the two masses of the Z+
b

states as ex-

tracted from Breit-Wigner fits for the various channels are

just a few MeV above the B∗B̄ and B∗B̄∗ thresholds, respec-

tively, more refined analyses find pole locations right below

the corresponding thresholds either on the physical [118] or

the unphysical sheet [119]. Regardless their proximity to the

corresponding thresholds, both states predominantly decay into

these open flavor channels [74], regardless the small phase

space, with branching fractions that exceed 80% and 70%, re-

spectively, at 90% CL. This feature provides strong evidence

for their molecular nature—note that the Z+
b

states cannot be

simple mesons because they are charged and have bb̄ content.

Figure 4: From ATLAS [39] pp collision
data (points with error bars) taken at

√
s =

7 TeV, the effective mass of χbJ (1P, 2P, 3P ) →
γΥ(1S, 2S) candidates in which Υ(1S, 2S) →
µ+µ− and the photon is reconstructed as an
e+e− conversion in the tracking system. Fits
(smooth curves) show significant signals for each
triplet (merged-J) on top of a smooth back-
ground. From [39] with kind permission, copy-
right (2012) The American Physical Society.

The third Belle result to follow from these data is the confir-

mation of the ηb(1S) and measurement of the hb(1P ) → γηb(1S)

branching fraction, expected to be several tens of percent. To

accomplish this, events with the π+π− recoil mass in the hb(1P )

mass window and a radiative photon candidate are selected, and

the π+π−γ recoil mass queried for correlation with non-zero

hb(1P ) population in the π+π− missing mass spectrum, as

shown in Fig. 3. A clear peak is observed, corresponding to the

ηb(1S). A fit is performed to extract the ηb(1S) mass, and deter-

mine its width and the branching fraction for hb(1P ) → γηb(1S)

(the latter of which is (49.8± 6.8+10.9
− 5.2)%) for the first time. The

mass determination has comparable uncertainty and a larger

central value (by 10 MeV, or 2.4σ) than the average of previous

measurements, thereby reducing the new world average hyper-

fine splitting by nearly 5 MeV. An independent experimental

confirmation of the shifted mass recently came from the Belle

observation of the Υ(4S) → ηhb(1P ) [33].

The χbJ (nP ) states have recently been observed at the

LHC by ATLAS [39] and confirmed by D0 [40] for n = 1, 2, 3,

although in each case the three J states are not distinguished

from one another. Events are sought which have both a photon

and an Υ(1S, 2S) → µ+µ− candidate which together form a

mass in the χb region. Observation of all three J-merged peaks

is seen with significance in excess of 6σ for both unconverted

and converted photons. The mass plot for converted photons,

which provide better mass resolution, is shown in Fig. 4. This

marks the first observation of the χbJ (3P ) triplet, quite near

the expected mass. A precise confirmation of this result came

from LHCb [41].
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Figure 5: J/ψπ invariant mass distributions
from BES-III [61] e+e− collision data taken
near the peak of the Y (4260). Adapted from
[61] with kind permission, copyright (2013)
The American Physical Society.

In 2013 at BESIII [61] and shortly after at Belle [62]

a charged state called Zc(3900)+ was found near the DD̄∗

threshold—the corresponding spectrum from BESIII is shown

in Fig. 5. In addition to confirming these findings, Ref. [63] also

provided evidence for a neutral partner. A nearby signal was also

seen in the DD̄∗ channel [65] whose quantum numbers were

fixed to 1+−. The masses extracted from these experiments

agree only within 2σ. However, since the extraction did not

allow for an interference with the background and used Breit-

Wigner line shapes, which is not justified near thresholds,

there might be some additional systematic uncertainty in the

mass values. Therefore in the RPP listings as well as Table 2
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both structures appear under the name Zc(3900)+. Analogously,

Zc(4020)+ (seen in in hcππ [67]) and Z+
c (4025) (seen in

D∗D̄∗ [69]) are listed as one state, Zc(4020)+. The Z+
c states

show some remarkable similarities to the Z+
b

states, e.g. they

decay dominantly to the D(∗)D̄∗ channels. However, current

analyses suggest that the mass of especially the Zc(3900)+

might be somewhat above the DD̄∗ threshold. If confirmed,

this feature would clearly challenge a possible DD̄∗–molecular

interpretation.
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(1S)

 MESONS

 MESONS

 MESONS

 MESONS
THE CHARMONIUM SYSTEM

 = PCJ − +0 − −1 + +0 + +1+ −1 + +2

(2S) 
c

η

(1S) 
c

η

(2S)ψ

(4660)X

(4360)X

(4260)X

(4415)ψ

(4160)ψ

(4040)ψ

(3770)ψ

(1S) ψ/J

(1P) ch

(1P) 
c2

χ

(2P) 
c2

χ
(3872)X

?)-+(2

(1P) 
c1

χ
(1P) 

c0
χ

0π

π π

η
0π

π π
η

π π

π π

π π

π π

Thresholds:

DD

*D D
sD sD

*D*D
sD*sD

*sD*sD

2900

3100

3300

3500

3700

3900

4100

4300

4500

4700

Mass (MeV)

The level scheme of the cc states showing experimentally established states with solid lines. Singlet states
are called ηc and hc, triplet states ψ and χcJ , and unassigned charmonium-like states X . In parentheses
it is sufficient to give the radial quantum number and the orbital angular momentum to specify the states
with all their quantum numbers. Only observed hadronic transitions are shown; the single photon transitions
ψ(nS) → γηc(mP ), ψ(nS) → γχcJ(mP ), and χcJ (1P ) → γJ/ψ are omitted for clarity.

η
(1S) IG (JPC ) = 0+(0−+)
η
 (1S) MASSη
 (1S) MASSη
 (1S) MASSη
 (1S) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2983.4 ± 0.5 OUR AVERAGE2983.4 ± 0.5 OUR AVERAGE2983.4 ± 0.5 OUR AVERAGE2983.4 ± 0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.2982.2 ± 1.5 ± 0.1 2.0k 1 AAIJ 15BI LHCB pp → η
 (1S)X2983.5 ± 1.4 + 1.6

− 3.6 2 ANASHIN 14 KEDR J/ψ → γ η
2979.8 ± 0.8 ± 3.5 4.5k 3,4 LEES 14E BABR γ γ → K+K−π02984.1 ± 1.1 ± 2.1 900 3,4,5 LEES 14E BABR γ γ → K+K− η2984.3 ± 0.6 ± 0.6 6,7 ABLIKIM 12F BES3 ψ(2S) → γ η
2984.49± 1.16± 0.52 832 3 ABLIKIM 12N BES3 ψ(2S) → π0 γ hadrons2982.7 ± 1.8 ± 2.2 486 ZHANG 12A BELL e+ e− →e+ e− η′π+π−2984.5 ± 0.8 ± 3.1 11k DEL-AMO-SA...11M BABR γ γ →K+K−π+π−π02985.4 ± 1.5 + 0.5
− 2.0 920 7 VINOKUROVA 11 BELL B± →K±(K0S K±π∓)2982.2 ± 0.4 ± 1.6 14k 8 LEES 10 BABR 10.6 e+ e− →e+ e−K0S K±π∓2985.8 ± 1.5 ± 3.1 0.9k AUBERT 08AB BABR B → η
 (1S)K(∗) →KK πK (∗)2986.1 ± 1.0 ± 2.5 7.5k UEHARA 08 BELL γ γ → η
 → hadrons2970 ± 5 ± 6 501 9 ABE 07 BELL e+ e− → J/ψ (
 
)2971 ± 3 + 2
− 1 195 WU 06 BELL B+ → ppK+2974 ± 7 + 2
− 1 20 WU 06 BELL B+ → ��K+2981.8 ± 1.3 ± 1.5 592 ASNER 04 CLEO γ γ → η
 →K0S K±π∓2984.1 ± 2.1 ± 1.0 190 10 AMBROGIANI 03 E835 pp → η
 → γ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •2982.5 ± 0.4 ± 1.4 12k 11 DEL-AMO-SA...11M BABR γ γ → K0S K±π∓2982.2 ± 0.6 12 MITCHELL 09 CLEO e+ e− → γX2982 ± 5 270 13 AUBERT 06E BABR B± → K±X
 
2982.5 ± 1.1 ± 0.9 2.5k 14 AUBERT 04D BABR γ γ → η
 (1S) →KK π

2977.5 ± 1.0 ± 1.2 12,15 BAI 03 BES J/ψ → γ η
2979.6 ± 2.3 ± 1.6 180 16 FANG 03 BELL B → η
 K2976.3 ± 2.3 ± 1.2 12,17 BAI 00F BES J/ψ, ψ(2S) → γ η
2976.6 ± 2.9 ± 1.3 140 12,18 BAI 00F BES J/ψ → γ η
2980.4 ± 2.3 ± 0.6 19 BRANDENB... 00B CLE2 γ γ → η
 →K±K0S π∓2975.8 ± 3.9 ± 1.2 18 BAI 99B BES Sup. by BAI 00F2999 ± 8 25 ABREU 98O DLPH e+ e− → e+ e−+hadrons2988.3 + 3.3
− 3.1 ARMSTRONG 95F E760 pp → γ γ2974.4 ± 1.9 12,20 BISELLO 91 DM2 J/ψ → η
 γ2969 ± 4 ± 4 80 12 BAI 90B MRK3 J/ψ →

γK+K−K+K−2956 ±12 ±12 12 BAI 90B MRK3 J/ψ →
γK+K−K0S K0L2982.6 + 2.7

− 2.3 12 BAGLIN 87B SPEC pp → γ γ2980.2 ± 1.6 12,20 BALTRUSAIT...86 MRK3 J/ψ → η
 γ2984 ± 2.3 ± 4.0 12 GAISER 86 CBAL J/ψ → γX, ψ(2S) →
γX2976 ± 8 12,21 BALTRUSAIT...84 MRK3 J/ψ → 2φγ2982 ± 8 18 22 HIMEL 80B MRK2 e+ e−2980 ± 9 22 PARTRIDGE 80B CBAL e+ e−1AAIJ 15BI reports mJ/ψ − mη
(1S) = 114.7 ± 1.5 ± 0.1 MeV from a sample of

η
 (1S) and J/ψ produ
ed in b-hadron de
ays. We have used 
urrent value of mJ/ψ =3096.900 ± 0.006 MeV to arrive at the quoted mη
(1S) result.2Taking into a

ount an asymmetri
 photon lineshape.3With 
oating width.4 Ignoring possible interferen
e with the non-resonant 0− amplitude.5Using both, η → γ γ and η → π+π−π0 de
ays.6 From a simultaneous �t to six de
ay modes of the η
 .7A

ounts for interferen
e with non-resonant 
ontinuum.8Taking into a

ount interferen
e with the non-resonant JP = 0− amplitude.9 From a �t of the J/ψ re
oil mass spe
trum. Supersedes ABE,K 02 and ABE 04G.10Using mass of ψ(2S) = 3686.00 MeV.11Not independent from the measurements reported by LEES 10.12MITCHELL 09 observes a signi�
ant asymmetry in the lineshapes of ψ(2S) → γ η
and J/ψ → γ η
 transitions. If ignored, this asymmetry 
ould lead to signi�
ant biaswhenever the mass and width are measured in ψ(2S) or J/ψ radiative de
ays.13 From the �t of the kaon momentum spe
trum. Systemati
 errors not evaluated.14 Superseded by LEES 10.
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η
(1S)15From a simultaneous �t of �ve de
ay modes of the η
 .16 Superseded by VINOKUROVA 11.17Weighted average of the ψ(2S) and J/ψ(1S) samples. Using an η
 width of 13.2 MeV.18Average of several de
ay modes. Using an η
 width of 13.2 MeV.19 Superseded by ASNER 04.20Average of several de
ay modes.21 η
 → φφ.22Mass adjusted by us to 
orrespond to J/ψ(1S) mass = 3097 MeV.

η
 (1S) WIDTHη
 (1S) WIDTHη
 (1S) WIDTHη
 (1S) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT31.8± 0.8 OUR FIT31.8± 0.8 OUR FIT31.8± 0.8 OUR FIT31.8± 0.8 OUR FIT31.9± 1.0 OUR AVERAGE31.9± 1.0 OUR AVERAGE31.9± 1.0 OUR AVERAGE31.9± 1.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.27.2± 3.1+5.4
−2.6 1 ANASHIN 14 KEDR J/ψ → γ η
25.2± 2.6±2.4 4.5k 2,3 LEES 14E BABR γ γ → K+K−π034.8± 3.1±4.0 900 2,3,4 LEES 14E BABR γ γ → K+K− η32.0± 1.2±1.0 5,6 ABLIKIM 12F BES3 ψ(2S) → γ η
36.4± 3.2±1.7 832 2 ABLIKIM 12N BES3 ψ(2S) → π0 γ hadrons37.8+ 5.8

− 5.3±3.1 486 ZHANG 12A BELL e+ e− →e+ e− η′π+π−36.2± 2.8±3.0 11k DEL-AMO-SA...11M BABR γ γ → K+K−π+π−π035.1± 3.1+1.0
−1.6 920 6 VINOKUROVA 11 BELL B± → K±(K0S K±π∓)31.7± 1.2±0.8 14k 7 LEES 10 BABR 10.6 e+ e− →e+ e−K0S K±π∓36.3+ 3.7

− 3.6±4.4 0.9k AUBERT 08AB BABR B → η
 (1S)K(∗) →KK πK (∗)28.1± 3.2±2.2 7.5k UEHARA 08 BELL γ γ → η
 → hadrons48 + 8
− 7 ±5 195 WU 06 BELL B+ → ppK+40 ±19 ±5 20 WU 06 BELL B+ → ��K+24.8± 3.4±3.5 592 ASNER 04 CLEO γ γ → η
 → K0S K±π∓20.4+ 7.7
− 6.7±2.0 190 AMBROGIANI 03 E835 pp → η
 → γ γ23.9+12.6
− 7.1 ARMSTRONG 95F E760 pp → γ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •32.1± 1.1±1.3 12k 8 DEL-AMO-SA...11M BABR γ γ → K0S K±π∓34.3± 2.3±0.9 2.5k 9 AUBERT 04D BABR γ γ → η
 (1S) → K K π17.0± 3.7±7.4 10 BAI 03 BES J/ψ → γ η
29 ± 8 ±6 180 11 FANG 03 BELL B → η
 K11.0± 8.1±4.1 12 BAI 00F BES J/ψ → γ η
 and ψ(2S) →
γ η
27.0± 5.8±1.4 13 BRANDENB... 00B CLE2 γ γ → η
 → K±K0S π∓7.0+ 7.5

− 7.0 12 BAGLIN 87B SPEC pp → γ γ10.1+33.0
− 8.2 23 14 BALTRUSAIT...86 MRK3 J/ψ → γ pp11.5± 4.5 GAISER 86 CBAL J/ψ → γX, ψ(2S) → γX

< 40 90% CL 18 HIMEL 80B MRK2 e+ e−
< 20 90% CL PARTRIDGE 80B CBAL e+ e−1Taking into a

ount an asymmetri
 photon lineshape.2With 
oating mass.3 Ignoring possible interferen
e with the non-resonant 0− amplitude.4Using both, η → γ γ and η → π+π−π0 de
ays.5 From a simultaneous �t to six de
ay modes of the η
 .6A

ounts for interferen
e with non-resonant 
ontinuum.7Taking into a

ount interferen
e with the non-resonant JP = 0− amplitude.8Not independent from the measurements reported by LEES 10.9 Superseded by LEES 10.10 From a simultaneous �t of �ve de
ay modes of the η
 .11 Superseded by VINOKUROVA 11.12From a �t to the 4-prong invariant mass in ψ(2S) → γ η
 and J/ψ(1S) → γ η
 de
ays.13 Superseded by ASNER 04.14Positive and negative errors 
orrespond to 90% 
on�den
e level.

η
 (1S) DECAY MODESη
 (1S) DECAY MODESη
 (1S) DECAY MODESη
 (1S) DECAY MODESMode Fra
tion (�i /�) Con�den
e levelDe
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
es�1 η′(958)ππ ( 4.1 ±1.7 ) %�2 ρρ ( 1.8 ±0.5 ) %�3 K∗(892)0K−π++ 
.
. ( 2.0 ±0.7 ) %�4 K∗(892)K∗(892) ( 7.0 ±1.3 ) × 10−3�5 K∗(892)0K∗(892)0π+π− ( 1.1 ±0.5 ) %�6 φK+K− ( 2.9 ±1.4 ) × 10−3�7 φφ ( 1.75±0.20) × 10−3�8 φ2(π+π−) < 4 × 10−3 90%�9 a0(980)π < 2 % 90%�10 a2(1320)π < 2 % 90%�11 K∗(892)K+ 
.
. < 1.28 % 90%�12 f2(1270)η < 1.1 % 90%

�13 ωω < 3.1 × 10−3 90%�14 ωφ < 1.7 × 10−3 90%�15 f2(1270)f2(1270) ( 9.8 ±2.5 ) × 10−3�16 f2(1270)f ′2(1525) ( 9.7 ±3.2 ) × 10−3�17 f0(980)η seen�18 f0(1500)η seen�19 f0(2200)η seen�20 a0(980)π seen�21 a0(1320)π seen�22 a0(1450)π seen�23 a0(1950)π seen�24 a2(1950)π not seen�25 K∗0 (1430)K seen�26 K∗2 (1430)K seen�27 K∗0 (1950)K seenDe
ays into stable hadronsDe
ays into stable hadronsDe
ays into stable hadronsDe
ays into stable hadrons�28 K K π ( 7.3 ±0.5 ) %�29 K K η ( 1.35±0.16) %�30 ηπ+π− ( 1.7 ±0.5 ) %�31 η2(π+π−) ( 4.4 ±1.3 ) %�32 K+K−π+π− ( 6.9 ±1.1 ) × 10−3�33 K+K−π+π−π0 ( 3.5 ±0.6 ) %�34 K0K−π+π−π++
.
. ( 5.6 ±1.5 ) %�35 K+K−2(π+π−) ( 7.5 ±2.4 ) × 10−3�36 2(K+K−) ( 1.46±0.30) × 10−3�37 π+π−π0π0 ( 4.7 ±1.0 ) %�38 2(π+π−) ( 9.7 ±1.2 ) × 10−3�39 2(π+π−π0) (17.4 ±3.3 ) %�40 3(π+π−) ( 1.8 ±0.4 ) %�41 pp ( 1.50±0.16) × 10−3�42 ppπ0 ( 3.6 ±1.3 ) × 10−3�43 �� ( 1.09±0.24) × 10−3�44 �+�− ( 2.1 ±0.6 ) × 10−3�45 �−�+ ( 8.9 ±2.7 ) × 10−4�46 π+π−pp ( 5.3 ±1.8 ) × 10−3Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays�47 γ γ ( 1.59±0.13) × 10−4Charge 
onjugation (C), Parity (P),Charge 
onjugation (C), Parity (P),Charge 
onjugation (C), Parity (P),Charge 
onjugation (C), Parity (P),Lepton family number (LF) violating modesLepton family number (LF) violating modesLepton family number (LF) violating modesLepton family number (LF) violating modes�48 π+π− P,CP < 1.1 × 10−4 90%�49 π0π0 P,CP < 4 × 10−5 90%�50 K+K− P,CP < 6 × 10−4 90%�51 K0S K0S P,CP < 3.1 × 10−4 90%CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the total width, 8 
ombinations of partial widthsobtained from integrated 
ross se
tion, and 19 bran
hing ratiosuses 85 measurements and one 
onstraint to determine 13 param-eters. The overall �t has a χ2 = 118.3 for 73 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x7 18x15 3 6x28 22 41 7x29 12 22 4 54x32 11 21 4 25 13x36 9 16 3 25 14 10x38 14 25 5 30 16 16 12x41 14 26 5 36 19 16 13 20x43 3 6 1 9 5 4 3 5 25x47 −29 −54 −10 −66 −35 −34 −27 −41 −46 −11� −2 −3 −1 −4 −2 −2 −1 −2 7 2x4 x7 x15 x28 x29 x32 x36 x38 x41 x43� −28x47



1366136613661366MesonParti
le Listings
η
(1S)Mode Rate (MeV)�4 K∗(892)K∗(892) 0.22 ±0.04�7 φφ 0.056 ±0.007�15 f2(1270)f2(1270) 0.31 ±0.08�28 K K π 2.31 ±0.16�29 K K η 0.43 ±0.05�32 K+K−π+π− 0.219 ±0.034�36 2(K+K−) 0.046 ±0.010�38 2(π+π−) 0.31 ±0.04�41 pp 0.048 ±0.005�43 �� 0.034 ±0.008�47 γ γ 0.0051±0.0004

η
 (1S) PARTIAL WIDTHSη
 (1S) PARTIAL WIDTHSη
 (1S) PARTIAL WIDTHSη
 (1S) PARTIAL WIDTHS�(γ γ
) �47�(γ γ
) �47�(γ γ
) �47�(γ γ
) �47VALUE (keV) EVTS DOCUMENT ID TECN COMMENT5.1± 0.4 OUR FIT5.1± 0.4 OUR FIT5.1± 0.4 OUR FIT5.1± 0.4 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.8± 1.1 486 1 ZHANG 12A BELL e+ e− →e+ e− η′π+π−5.2± 1.2 273 ± 43 2,3 AUBERT 06E BABR B± → K±X
 
5.5± 1.2± 1.8 157 ± 33 4 KUO 05 BELL γ γ → pp7.4± 0.4± 2.3 5 ASNER 04 CLEO γ γ → η
 → K0S K±π∓13.9± 2.0± 3.0 41 6 ABDALLAH 03J DLPH γ γ → η
3.8+ 1.1
− 1.0+ 1.9

− 1.0 190 7 AMBROGIANI 03 E835 pp → η
 → γ γ7.6± 0.8± 2.3 5,8 BRANDENB... 00B CLE2 γ γ → η
 → K±K0S π∓6.9± 1.7± 2.1 76 9 ACCIARRI 99T L3 e+ e− → e+ e− η
27 ±16 ±10 5 5 SHIRAI 98 AMY 58 e+ e−6.7+ 2.4
− 1.7± 2.3 4 ARMSTRONG 95F E760 pp → γ γ11.3± 4.2 10 ALBRECHT 94H ARG e+ e− → e+ e− η
8.0± 2.3± 2.4 17 11 ADRIANI 93N L3 e+ e− → e+ e− η
5.9+ 2.1
− 1.8± 1.9 7 CHEN 90B CLEO e+ e− → e+ e− η
6.4+ 5.0
− 3.4 12 AIHARA 88D TPC e+ e− → e+ e−X4.3+ 3.4
− 3.7± 2.4 4 BAGLIN 87B SPEC pp → γ γ28 ±15 5,13 BERGER 86 PLUT γ γ → K K π1Assuming there is no interferen
e with the non-resonant ba
kground.2Cal
ulated by us using �(η
 → K K π) × �(η
 → γ γ) / � = 0.44 ± 0.05 keV fromPDG 06 and B(η
 → K K π) = (8.5 ± 1.8)% from AUBERT 06E.3 Systemati
 errors not evaluated.4Normalized to B(η
 → pp)= (1.3 ± 0.4) × 10−3.5Normalized to B(η
 → K±K0S π∓).6Average of K0S K±π∓, π+π−K+K−, and 2(K+K−) de
ay modes.7Normalized to the sum of B(η
 → K±K0S π∓), B(η
 → K+K−π+π−), and B(η
 →2π+2π−).8 Superseded by ASNER 04.9Normalized to the sum of 9 bran
hing ratios.10Normalized to the sum of B(η
 → K±K0S π∓), B(η
 → φφ), B(η
 →K+K−π+π−), and B(η
 → 2π+2π−).11 Superseded by ACCIARRI 99T.12Normalized to the sum of B(η
 → K±K0S π∓), B(η
 → 2K+2K−), B(η
 →K+K−π+π−), and B(η
 → 2π+2π−).13Re-evaluated by AIHARA 88D.

η
 (1S) �(i)�(γ γ)/�(total)η
 (1S) �(i)�(γ γ)/�(total)η
 (1S) �(i)�(γ γ)/�(total)η
 (1S) �(i)�(γ γ)/�(total)�(η′(958)ππ
)

× �(

γ γ
)/�total �1�47/��(η′(958)ππ

)

× �(

γ γ
)/�total �1�47/��(η′(958)ππ

)

× �(

γ γ
)/�total �1�47/��(η′(958)ππ

)

× �(

γ γ
)/�total �1�47/�VALUE (keV) EVTS DOCUMENT ID TECN COMMENT75.8+6.3

−6.2±8.475.8+6.3
−6.2±8.475.8+6.3
−6.2±8.475.8+6.3
−6.2±8.4 486 1 ZHANG 12A BELL e+ e− →e+ e− η′π+π−1Assuming there is no interferen
e with the non-resonant ba
kground.�(ρρ
)

× �(

γ γ
)/�total �2�47/��(ρρ

)

× �(

γ γ
)/�total �2�47/��(ρρ

)

× �(

γ γ
)/�total �2�47/��(ρρ

)

× �(

γ γ
)/�total �2�47/�VALUE (eV) CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<39 90 < 1556 UEHARA 08 BELL γ γ → 2(π+π−)�(K∗(892)K∗(892)) × �(

γ γ
)/�total �4�47/��(K∗(892)K∗(892)) × �(

γ γ
)/�total �4�47/��(K∗(892)K∗(892)) × �(

γ γ
)/�total �4�47/��(K∗(892)K∗(892)) × �(

γ γ
)/�total �4�47/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT35 ±6 OUR FIT35 ±6 OUR FIT35 ±6 OUR FIT35 ±6 OUR FIT32.4±4.2±5.832.4±4.2±5.832.4±4.2±5.832.4±4.2±5.8 882 ± 115 UEHARA 08 BELL γ γ → π+π−K+K−

�(φφ
)

× �(

γ γ
)/�total �7�47/��(φφ

)

× �(

γ γ
)/�total �7�47/��(φφ

)

× �(

γ γ
)/�total �7�47/��(φφ

)

× �(

γ γ
)/�total �7�47/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT8.9 ±0.8 OUR FIT8.9 ±0.8 OUR FIT8.9 ±0.8 OUR FIT8.9 ±0.8 OUR FIT7.75±0.66±0.627.75±0.66±0.627.75±0.66±0.627.75±0.66±0.62 386 ± 31 1 LIU 12B BELL γ γ → 2(K+K−)

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.8 ±1.2 ±1.3 132 ± 23 UEHARA 08 BELL γ γ → 2(K+K−)1 Supersedes UEHARA 08. Using B(φ → K+K−) = (48.9 ± 0.5)%.�(ωω
)

× �(

γ γ
)/�total �13�47/��(ωω

)

× �(

γ γ
)/�total �13�47/��(ωω

)

× �(

γ γ
)/�total �13�47/��(ωω

)

× �(

γ γ
)/�total �13�47/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT8.67±2.86±0.968.67±2.86±0.968.67±2.86±0.968.67±2.86±0.96 85 ± 29 1 LIU 12B BELL γ γ → 2(π+π−π0)1Using B(ω → π+π−π0) = (89.2 ± 0.7)%.�(ωφ

)

× �(

γ γ
)/�total �14�47/��(ωφ

)

× �(

γ γ
)/�total �14�47/��(ωφ

)

× �(

γ γ
)/�total �14�47/��(ωφ

)

× �(

γ γ
)/�total �14�47/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.49 90 1 LIU 12B BELL γ γ → K+K−π+π−π01Using B(φ → K+K−) = (48.9 ± 0.5)% and B(ω → π+π−π0) = (89.2 ± 0.7)%.�(f2(1270)f2(1270)) × �(

γ γ
)/�total �15�47/��(f2(1270)f2(1270)) × �(

γ γ
)/�total �15�47/��(f2(1270)f2(1270)) × �(

γ γ
)/�total �15�47/��(f2(1270)f2(1270)) × �(

γ γ
)/�total �15�47/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT50±13 OUR FIT50±13 OUR FIT50±13 OUR FIT50±13 OUR FIT69±17±1269±17±1269±17±1269±17±12 3182± 766 UEHARA 08 BELL γ γ → 2(π+π−)�(f2(1270)f ′2(1525)) × �(

γ γ
)/�total �16�47/��(f2(1270)f ′2(1525)) × �(

γ γ
)/�total �16�47/��(f2(1270)f ′2(1525)) × �(

γ γ
)/�total �16�47/��(f2(1270)f ′2(1525)) × �(

γ γ
)/�total �16�47/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT49±9±1349±9±1349±9±1349±9±13 1128± 206 UEHARA 08 BELL γ γ → π+π−K+K−�(K K π

)

× �(

γ γ
)/�total �28�47/��(K K π

)

× �(

γ γ
)/�total �28�47/��(K K π

)

× �(

γ γ
)/�total �28�47/��(K K π

)

× �(

γ γ
)/�total �28�47/�VALUE (keV) CL% EVTS DOCUMENT ID TECN COMMENT0.368±0.021 OUR FIT0.368±0.021 OUR FIT0.368±0.021 OUR FIT0.368±0.021 OUR FIT0.407±0.027 OUR AVERAGE0.407±0.027 OUR AVERAGE0.407±0.027 OUR AVERAGE0.407±0.027 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.374±0.009±0.031 14k 1 LEES 10 BABR 10.6 e+ e− →e+ e−K0S K±π∓0.407±0.022±0.028 2,3 ASNER 04 CLEO γ γ → η
 →K0S K±π∓0.60 ±0.12 ±0.09 41 3,4 ABDALLAH 03J DLPH γ γ → K0S K±π∓1.47 ±0.87 ±0.27 3 SHIRAI 98 AMY γ γ → η
 →K±K0S π∓0.84 ±0.21 3 ALBRECHT 94H ARG γ γ → K±K0S π∓0.60 +0.23

−0.20 3 CHEN 90B CLEO γ γ → η
 K±K0S π∓1.06 ±0.41 ±0.27 11 3 BRAUNSCH... 89 TASS γ γ → K K π1.5 +0.60
−0.45 ±0.3 7 3 BERGER 86 PLUT γ γ → K K π

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.386±0.008±0.021 12k 5 DEL-AMO-SA...11M BABR γ γ → K0S K±π∓0.418±0.044±0.022 3,6 BRANDENB... 00B CLE2 γ γ → η
 →K±K0S π∓

<0.63 95 3 BEHREND 89 CELL γ γ → K0S K±π∓

<4.4 95 ALTHOFF 85B TASS γ γ → K K π1From the 
orre
ted and unfolded mass spe
trum.2Cal
ulated by us from the value reported in ASNER 04 that assumes B(η
 → K K π)= 5.5 ± 1.7%3We have multiplied K±K0S π∓ measurement by 3 to obtain K K π.4 Cal
ulated by us from the value reported in ABDALLAH 03J, whi
h uses B(η
 →K0S K±π∓) = (1.5 ± 0.4)%.5Not independent from the measurements reported by LEES 10.6 Superseded by ASNER 04.�(K+K−π+π−)

× �(

γ γ
)/�total �32�47/��(K+K−π+π−)

× �(

γ γ
)/�total �32�47/��(K+K−π+π−)

× �(

γ γ
)/�total �32�47/��(K+K−π+π−)

× �(

γ γ
)/�total �32�47/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT35 ± 5 OUR FIT35 ± 5 OUR FIT35 ± 5 OUR FIT35 ± 5 OUR FIT27 ± 6 OUR AVERAGE27 ± 6 OUR AVERAGE27 ± 6 OUR AVERAGE27 ± 6 OUR AVERAGE25.7± 3.2± 4.9 2019± 248 UEHARA 08 BELL γ γ → π+π−K+K−280 ±100 ±60 42 1 ABDALLAH 03J DLPH γ γ → π+π−K+K−170 ± 80 ±20 13.9 ± 6.6 ALBRECHT 94H ARG γ γ → π+π−K+K−1Cal
ulated by us from the value reported in ABDALLAH 03J, whi
h uses B(η
 →

π+π−K+K−) = (2.0 ± 0.7)%.�(K+K−π+π−π0) × �(

γ γ
)/�total �33�47/��(K+K−π+π−π0) × �(

γ γ
)/�total �33�47/��(K+K−π+π−π0) × �(

γ γ
)/�total �33�47/��(K+K−π+π−π0) × �(

γ γ
)/�total �33�47/�VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.190±0.006±0.028 11k 1 DEL-AMO-SA...11M BABR γ γ → K+K−π+π−π01Not independent from other measurements reported in DEL-AMO-SANCHEZ 11M.



1367136713671367See key on page 601 MesonParti
le Listings
η
(1S)�(2(K+K−)) × �(γ γ

)/�total �36�47/��(2(K+K−)) × �(γ γ
)/�total �36�47/��(2(K+K−)) × �(γ γ
)/�total �36�47/��(2(K+K−)) × �(γ γ
)/�total �36�47/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT7.4± 1.5 OUR FIT7.4± 1.5 OUR FIT7.4± 1.5 OUR FIT7.4± 1.5 OUR FIT5.8± 1.9 OUR AVERAGE5.8± 1.9 OUR AVERAGE5.8± 1.9 OUR AVERAGE5.8± 1.9 OUR AVERAGE5.6± 1.1± 1.6 216 ± 42 UEHARA 08 BELL γ γ → 2(K+K−)350 ±90 ±60 46 1 ABDALLAH 03J DLPH γ γ → 2(K+K−)231 ±90 ±23 9.1 ± 3.3 2 ALBRECHT 94H ARG γ γ → 2(K+K−)1Cal
ulated by us from the value reported in ABDALLAH 03J, whi
h uses B(η
 → )2(K+K−) = (2.1 ± 1.2)%.2 In
ludes all topologi
al modes ex
ept η
 → φφ.�(2(π+π−)) × �(γ γ

)/�total �38�47/��(2(π+π−)) × �(γ γ
)/�total �38�47/��(2(π+π−)) × �(γ γ
)/�total �38�47/��(2(π+π−)) × �(γ γ
)/�total �38�47/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT49 ± 6 OUR FIT49 ± 6 OUR FIT49 ± 6 OUR FIT49 ± 6 OUR FIT42 ± 6 OUR AVERAGE42 ± 6 OUR AVERAGE42 ± 6 OUR AVERAGE42 ± 6 OUR AVERAGE40.7± 3.7± 5.3 5381± 492 UEHARA 08 BELL γ γ → 2(π+π−)180 ±70 ±20 21.4 ± 8.6 ALBRECHT 94H ARG γ γ → 2(π+π−)�(pp)

× �(γ γ
)/�total �41�47/��(pp)

× �(γ γ
)/�total �41�47/��(pp)

× �(γ γ
)/�total �41�47/��(pp)

× �(γ γ
)/�total �41�47/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT7.6 ±0.7 OUR FIT7.6 ±0.7 OUR FIT7.6 ±0.7 OUR FIT7.6 ±0.7 OUR FIT7.20±1.53+0.67

−0.757.20±1.53+0.67
−0.757.20±1.53+0.67
−0.757.20±1.53+0.67
−0.75 157 ± 33 1 KUO 05 BELL γ γ → pp

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.6 +1.3
−1.1 ±0.4 190 1 AMBROGIANI 03 E835 pp → γ γ8.1 +2.9
−2.0 1 ARMSTRONG 95F E760 pp → γ γ1Not independent from the �γ γ reported by the same experiment.�(K0S K0S)

× �(γ γ
)/�total �51�47/��(K0S K0S)

× �(γ γ
)/�total �51�47/��(K0S K0S)

× �(γ γ
)/�total �51�47/��(K0S K0S)

× �(γ γ
)/�total �51�47/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<1.6<1.6<1.6<1.6 90 1 UEHARA 13 BELL γ γ → K0S K0S
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.29 90 2 UEHARA 13 BELL γ γ → K0S K0S1Taking into a

ount interferen
e with the non-resonant 
ontinuum.2Negle
ting interferen
e with the non-resonant 
ontinuum.
η
 (1S) BRANCHING RATIOSη
 (1S) BRANCHING RATIOSη
 (1S) BRANCHING RATIOSη
 (1S) BRANCHING RATIOSHADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYS�(η′(958)ππ

)/�total �1/��(η′(958)ππ
)/�total �1/��(η′(958)ππ
)/�total �1/��(η′(958)ππ
)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.041±0.0170.041±0.0170.041±0.0170.041±0.017 14 1 BALTRUSAIT...86 MRK3 J/ψ → η
 γ1The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036.�(ρρ

)/�total �2/��(ρρ
)/�total �2/��(ρρ
)/�total �2/��(ρρ
)/�total �2/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT18 ± 5 OUR AVERAGE18 ± 5 OUR AVERAGE18 ± 5 OUR AVERAGE18 ± 5 OUR AVERAGE12.6± 3.8±5.1 72 1 ABLIKIM 05L BES2 J/ψ → π+π−π+π− γ26.0± 2.4±8.8 113 1 BISELLO 91 DM2 J/ψ → γ ρ0 ρ023.6±10.6±8.2 32 1 BISELLO 91 DM2 J/ψ → γ ρ+ ρ−

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<14 90 1 BALTRUSAIT...86 MRK3 J/ψ → η
 γ1The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036. Whererelevant, the error in this bran
hing ratio is treated as a 
ommon systemati
 in 
omputingaverages.�(K∗(892)0K−π++ 
.
.)/�total �3/��(K∗(892)0K−π++ 
.
.)/�total �3/��(K∗(892)0K−π++ 
.
.)/�total �3/��(K∗(892)0K−π++ 
.
.)/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENT0.02±0.0070.02±0.0070.02±0.0070.02±0.007 63 1,2 BALTRUSAIT...86 MRK3 J/ψ → η
 γ1BALTRUSAITIS 86 has an error a

ording to Partridge.2The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036.�(K∗(892)K∗(892))/�total �4/��(K∗(892)K∗(892))/�total �4/��(K∗(892)K∗(892))/�total �4/��(K∗(892)K∗(892))/�total �4/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT70±13 OUR FIT70±13 OUR FIT70±13 OUR FIT70±13 OUR FIT91±26 OUR AVERAGE91±26 OUR AVERAGE91±26 OUR AVERAGE91±26 OUR AVERAGE108±25±44 60 1 ABLIKIM 05L BES2 J/ψ → K+K−π+π− γ82±28±27 14 1 BISELLO 91 DM2 e+ e− → γK+K−π+π−90±50 9 1 BALTRUSAIT...86 MRK3 J/ψ → η
 γ1The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036. Whererelevant, the error in this bran
hing ratio is treated as a 
ommon systemati
 in 
omputingaverages.�(K∗(892)0K∗(892)0π+π−)/�total �5/��(K∗(892)0K∗(892)0π+π−)/�total �5/��(K∗(892)0K∗(892)0π+π−)/�total �5/��(K∗(892)0K∗(892)0π+π−)/�total �5/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT113±47±25113±47±25113±47±25113±47±25 45 1 ABLIKIM 06A BES2 J/ψ → K∗0K∗0π+π− γ1ABLIKIM 06A reports [�(

η
 (1S) → K∗(892)0K∗(892)0π+π−
)/�total℄ ×[B(J/ψ(1S) → γ η
 (1S))℄ = (1.91 ± 0.64 ± 0.48) × 10−4 whi
h we divide by ourbest value B(J/ψ(1S) → γ η
 (1S)) = (1.7 ± 0.4) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.

�(φK+K−)/�total �6/��(φK+K−)/�total �6/��(φK+K−)/�total �6/��(φK+K−)/�total �6/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.9+0.9
−0.8±1.12.9+0.9
−0.8±1.12.9+0.9
−0.8±1.12.9+0.9
−0.8±1.1 14.1+4.4

−3.7 1 HUANG 03 BELL B+ → (φK+K−) K+1Using B(B+ → η
 K+) = (1.25 ± 0.12+0.10
−0.12) × 10−3 from FANG 03 and B(η
 →K K π) = (5.5 ± 1.7)× 10−2.�(φφ

)/�total �7/��(φφ
)/�total �7/��(φφ
)/�total �7/��(φφ
)/�total �7/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT17.5± 2.0 OUR FIT17.5± 2.0 OUR FIT17.5± 2.0 OUR FIT17.5± 2.0 OUR FIT30 ± 5 OUR AVERAGE30 ± 5 OUR AVERAGE30 ± 5 OUR AVERAGE30 ± 5 OUR AVERAGE25.3± 5.1± 9.1 72 1 ABLIKIM 05L BES2 J/ψ → K+K−K+K− γ26 ± 9 357 ± 64 1 BAI 04 BES J/ψ → γK+K−K+K−31 ± 7 ±10 19 1 BISELLO 91 DM2 J/ψ → γK+K−K+K−30 +18

−12 ±10 5 1 BISELLO 91 DM2 J/ψ → γK+K−K0S K0L74 ±18 ±24 80 1 BAI 90B MRK3 J/ψ → γK+K−K+K−67 ±21 ±24 1 BAI 90B MRK3 J/ψ → γK+K−K0S K0L
• • • We do not use the following data for averages, �ts, limits, et
. • • •18 + 8

− 6 ± 7 7.0+3.0
−2.3 2 HUANG 03 BELL B+ → (φφ) K+1The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036. Whererelevant, the error in this bran
hing ratio is treated as a 
ommon systemati
 in 
omputingaverages.2Using B(B+ → η
 K+) = (1.25 ± 0.12+0.10

−0.12) × 10−3 from FANG 03 and B(η
 →K K π) = (5.5 ± 1.7)× 10−2.�(φφ
)/�(K K π

) �7/�28�(φφ
)/�(K K π

) �7/�28�(φφ
)/�(K K π

) �7/�28�(φφ
)/�(K K π

) �7/�28VALUE EVTS DOCUMENT ID TECN COMMENT0.0240±0.0026 OUR FIT0.0240±0.0026 OUR FIT0.0240±0.0026 OUR FIT0.0240±0.0026 OUR FIT0.044 +0.012
−0.010 OUR AVERAGE0.044 +0.012
−0.010 OUR AVERAGE0.044 +0.012
−0.010 OUR AVERAGE0.044 +0.012
−0.010 OUR AVERAGE0.055 ±0.014 ±0.005 AUBERT,B 04B BABR B± → K± η
0.032 +0.014
−0.010 ±0.009 7 1 HUANG 03 BELL B± → K±φφ1Using B(B+ → η
 K+) = (1.25 ± 0.12+0.10

−0.12) × 10−3 from FANG 03 and B(η
 →K K π) = (5.5 ± 1.7)× 10−2.�(φ2(π+π−))/�total �8/��(φ2(π+π−))/�total �8/��(φ2(π+π−))/�total �8/��(φ2(π+π−))/�total �8/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<40<40<40<40 90 1 ABLIKIM 06A BES2 J/ψ → φ2(π+π−)γ1ABLIKIM 06A reports [�(

η
 (1S) → φ2(π+π−))/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄
< 0.603 × 10−4 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S)) = 1.7×10−2.�(a0(980)π)/�total �9/��(a0(980)π)/�total �9/��(a0(980)π)/�total �9/��(a0(980)π)/�total �9/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.02<0.02<0.02<0.02 90 1,2 BALTRUSAIT...86 MRK3 J/ψ → η
 γ1The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036.2We are assuming B(a0(980) → ηπ) >0.5.�(a2(1320)π)/�total �10/��(a2(1320)π)/�total �10/��(a2(1320)π)/�total �10/��(a2(1320)π)/�total �10/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.02<0.02<0.02<0.02 90 1 BALTRUSAIT...86 MRK3 J/ψ → η
 γ1The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036.�(K∗(892)K+ 
.
.)/�total �11/��(K∗(892)K+ 
.
.)/�total �11/��(K∗(892)K+ 
.
.)/�total �11/��(K∗(892)K+ 
.
.)/�total �11/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.0128<0.0128<0.0128<0.0128 90 BISELLO 91 DM2 J/ψ → γK0S K±π∓

<0.0132 90 1 BISELLO 91 DM2 J/ψ → γK+K−π01The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036.�(f2(1270)η)/�total �12/��(f2(1270)η)/�total �12/��(f2(1270)η)/�total �12/��(f2(1270)η)/�total �12/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.011<0.011<0.011<0.011 90 1 BALTRUSAIT...86 MRK3 J/ψ → η
 γ1The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036.�(ωω

)/�total �13/��(ωω
)/�total �13/��(ωω
)/�total �13/��(ωω
)/�total �13/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.0031<0.0031<0.0031<0.0031 90 1 BALTRUSAIT...86 MRK3 J/ψ → η
 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.0063 90 1 ABLIKIM 05L BES2 J/ψ → π+π−π0π+π−π0 γ

<0.0063 1 BISELLO 91 DM2 J/ψ → γωω1The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036. Whererelevant, the error in this bran
hing ratio is treated as a 
ommon systemati
 in 
omputingaverages.�(ωφ
)/�total �14/��(ωφ
)/�total �14/��(ωφ
)/�total �14/��(ωφ
)/�total �14/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.0017<0.0017<0.0017<0.0017 90 1 ABLIKIM 05L BES2 J/ψ → π+π−π0K+K− γ1The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036.



1368136813681368MesonParti
le Listings
η
(1S)�(f2(1270)f2(1270))/�total �15/��(f2(1270)f2(1270))/�total �15/��(f2(1270)f2(1270))/�total �15/��(f2(1270)f2(1270))/�total �15/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.98±0.25 OUR FIT0.98±0.25 OUR FIT0.98±0.25 OUR FIT0.98±0.25 OUR FIT0.77+0.25

−0.30±0.170.77+0.25
−0.30±0.170.77+0.25
−0.30±0.170.77+0.25
−0.30±0.17 91.2 ± 19.8 1 ABLIKIM 04M BES J/ψ → γ 2π+2π−1ABLIKIM 04M reports [�(

η
 (1S) → f2(1270) f2(1270))/�total℄ × [B(J/ψ(1S) →
γ η
 (1S))℄ = (1.3 ± 0.3+0.3

−0.4)× 10−4 whi
h we divide by our best value B(J/ψ(1S) →
γ η
 (1S)) = (1.7 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(f0(980)η)/�total �17/��(f0(980)η)/�total �17/��(f0(980)η)/�total �17/��(f0(980)η)/�total �17/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen LEES 14E BABR Dalitz anal. of η
 → K+K− η�(f0(1500)η)/�total �18/��(f0(1500)η)/�total �18/��(f0(1500)η)/�total �18/��(f0(1500)η)/�total �18/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen LEES 14E BABR Dalitz anal. of η
 → K+K− η�(f0(2200)η)/�total �19/��(f0(2200)η)/�total �19/��(f0(2200)η)/�total �19/��(f0(2200)η)/�total �19/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen LEES 14E BABR Dalitz anal. of η
 → K+K− η�(a0(980)π)/�total �20/��(a0(980)π)/�total �20/��(a0(980)π)/�total �20/��(a0(980)π)/�total �20/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen LEES 14E BABR Dalitz anal. of η
 → K+K−π0�(a0(1320)π)/�total �21/��(a0(1320)π)/�total �21/��(a0(1320)π)/�total �21/��(a0(1320)π)/�total �21/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen LEES 14E BABR Dalitz anal. of η
 → K+K−π0�(a0(1450)π)/�total �22/��(a0(1450)π)/�total �22/��(a0(1450)π)/�total �22/��(a0(1450)π)/�total �22/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen LEES 14E BABR Dalitz anal. of η
 → K+K−π0�(a0(1950)π)/�total �23/��(a0(1950)π)/�total �23/��(a0(1950)π)/�total �23/��(a0(1950)π)/�total �23/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 12k 1 LEES 16A BABR γ γ → η
 (1S) → K K π1From a model-independant partial wave analysis.�(a2(1950)π)/�total �24/��(a2(1950)π)/�total �24/��(a2(1950)π)/�total �24/��(a2(1950)π)/�total �24/�VALUE EVTS DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen 12k 1 LEES 16A BABR γ γ → η
 (1S) → K K π1From a model-independent partial wave analysis assuming the existen
e of a hypotheti
altensor isove
tor a2(1950).�(

K∗0 (1430)K)/�total �25/��(

K∗0 (1430)K)/�total �25/��(

K∗0 (1430)K)/�total �25/��(

K∗0 (1430)K)/�total �25/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 12k 1 LEES 16A BABR γ γ → η
 (1S) → K K πseenseenseenseen LEES 14E BABR Dalitz anal. of η
 →K+K− η/π01From a model-independant partial wave analysis.�(

K∗2 (1430)K)/�total �26/��(

K∗2 (1430)K)/�total �26/��(

K∗2 (1430)K)/�total �26/��(

K∗2 (1430)K)/�total �26/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen LEES 14E BABR Dalitz anal. of η
 → K+K−π0�(

K∗0 (1950)K)/�total �27/��(

K∗0 (1950)K)/�total �27/��(

K∗0 (1950)K)/�total �27/��(

K∗0 (1950)K)/�total �27/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 12K 1 LEES 16A BABR γ γ → η
 (1S) → K K πseenseenseenseen LEES 14E BABR Dalitz anal. of η
 →K+K− η/π01From a Dalitz plot analysis using an isobar model.�(K K π
)/�total �28/��(K K π
)/�total �28/��(K K π
)/�total �28/��(K K π
)/�total �28/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT7.3 ±0.5 OUR FIT7.3 ±0.5 OUR FIT7.3 ±0.5 OUR FIT7.3 ±0.5 OUR FIT6.5 ±0.6 OUR AVERAGE6.5 ±0.6 OUR AVERAGE6.5 ±0.6 OUR AVERAGE6.5 ±0.6 OUR AVERAGE6.3 ±1.3 ±0.6 55 1,2 ABLIKIM 12N BES3 ψ(2S) → π0 γK+K−π07.9 ±1.4 ±0.7 107 3,4 ABLIKIM 12N BES3 ψ(2S) → π0 γK0S K∓π±8.5 ±1.8 5 AUBERT 06E BABR B± → K±X
 
5.1 ±2.1 0.6k 6 BAI 04 BES J/ψ → γK±π∓K0S6.90±1.42±1.32 33 6 BISELLO 91 DM2 J/ψ → γK+K−π05.43±0.94±0.94 68 6 BISELLO 91 DM2 J/ψ → γK±π∓K0S4.8 ±1.7 95 6,7 BALTRUSAIT...86 MRK3 J/ψ → η
 γ16.1 +9.2

−7.3 8,9 HIMEL 80B MRK2 ψ(2S) → η
 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 10.7 90% CL 6,10 PARTRIDGE 80B CBAL J/ψ → η
 γ

1ABLIKIM 12N quotes B(ψ(2S) → π0 h
 ) · B(h
 → γ η
 ) · B(η
 → K+K−π0) =(4.54 ± 0.76 ± 0.48)× 10−6 whi
h we multiply by 6 to a

ount for isospin symmetry.2ABLIKIM 12N reports [�(

η
 (1S) → K K π
)/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (27.24 ± 4.56 ± 2.88)× 10−6 whi
h wedivide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.3ABLIKIM 12N quotes B(ψ(2S) → π0 h
 ) · B(h
 → γ η
 ) · B(η
 → K0S K±π∓) =(11.35 ± 1.25 ± 1.50)× 10−6 whi
h we multiply by 3 to a

ount for isospin symmetry.4ABLIKIM 12N reports [�(

η
 (1S) → K K π
)/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (34.05 ± 3.75 ± 4.50)× 10−6 whi
h wedivide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.5Determined from the ratio of B(B± → K± η
 ) B(η
 → K K π) = (7.4 ± 0.5 ± 0.7)×10−5 reported in AUBERT,B 04B and B(B± → K± η
 ) = (8.7± 1.5)×10−3 reportedin AUBERT 06E.6The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036. Whererelevant, the error in this bran
hing ratio is treated as a 
ommon systemati
 in 
omputingaverages.7Average from K+K−π0 and K±K0S π∓ de
ay 
hannels.8K±K0S π∓ 
orre
ted to K K π by fa
tor 3. KS, MR.9Estimated using B(ψ(2S) → γ η
 (1S)) = 0.0028 ± 0.0006.10K+K−π0 
orre
ted to K K π by fa
tor 6. KS, MR�(

φK+K−)/�(K K π
) �6/�28�(

φK+K−)/�(K K π
) �6/�28�(

φK+K−)/�(K K π
) �6/�28�(

φK+K−)/�(K K π
) �6/�28VALUE EVTS DOCUMENT ID TECN COMMENT0.052+0.016

−0.014±0.0140.052+0.016
−0.014±0.0140.052+0.016
−0.014±0.0140.052+0.016
−0.014±0.014 7 1 HUANG 03 BELL B± → K±φφ1Using B(B+ → η
 K+) = (1.25 ± 0.12+0.10

−0.12) × 10−3 from FANG 03 and B(η
 →K K π) = (5.5 ± 1.7)× 10−2.�(K K η
)/�total �29/��(K K η
)/�total �29/��(K K η
)/�total �29/��(K K η
)/�total �29/�VALUE (units 10−2) CL% EVTS DOCUMENT ID TECN COMMENT1.35±0.16 OUR FIT1.35±0.16 OUR FIT1.35±0.16 OUR FIT1.35±0.16 OUR FIT1.0 ±0.5 ±0.21.0 ±0.5 ±0.21.0 ±0.5 ±0.21.0 ±0.5 ±0.2 7 1,2 ABLIKIM 12N BES3 ψ(2S) → π0 γ ηK+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.1 90 3 BALTRUSAIT...86 MRK3 J/ψ → η
 γ1ABLIKIM 12N quotes B(ψ(2S) → π0 h
 ) · B(h
 → γ η
 ) · B(η
 → K+K− η) =(2.11 ± 1.01 ± 0.32)× 10−6 whi
h we multiply by 2 to a

ount for isospin symmetry.2ABLIKIM 12N reports [�(

η
 (1S) → K K η
)/�total℄ × [B(ψ(2S) → π0 h
 (1P))℄ ×[B(h
 (1P) → η
 (1S)γ)℄ = (4.22 ± 2.02 ± 0.64)× 10−6 whi
h we divide by our bestvalues B(ψ(2S) → π0 h
 (1P)) = (8.6 ± 1.3) × 10−4, B(h
 (1P) → η
 (1S)γ) =(51 ± 6) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best values.3The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036.�(K K η

)/�(K K π
) �29/�28�(K K η

)/�(K K π
) �29/�28�(K K η

)/�(K K π
) �29/�28�(K K η

)/�(K K π
) �29/�28VALUE EVTS DOCUMENT ID TECN COMMENT0.186±0.018 OUR FIT0.186±0.018 OUR FIT0.186±0.018 OUR FIT0.186±0.018 OUR FIT0.190±0.008±0.0170.190±0.008±0.0170.190±0.008±0.0170.190±0.008±0.017 5.4k 1 LEES 14E BABR γ γ → K+K− η/π01 LEES 14E reports B(η
 (1S) → K+K− η)/B(η
 (1S) → K+K−π0) = 0.571±0.025±0.051, whi
h we divide by 3 to a

ount for isospin symmetry. It uses both η → γ γ and

η → π+π−π0 de
ays.�(

ηπ+π−)/�total �30/��(

ηπ+π−)/�total �30/��(

ηπ+π−)/�total �30/��(

ηπ+π−)/�total �30/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.7±0.4±0.11.7±0.4±0.11.7±0.4±0.11.7±0.4±0.1 33 1 ABLIKIM 12N BES3 ψ(2S) → π0 γ ηπ+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.4±2.0 75 2 BALTRUSAIT...86 MRK3 J/ψ → η
 γ3.7±1.3±2.0 18 2 PARTRIDGE 80B CBAL J/ψ → ηπ+π− γ1ABLIKIM 12N reports [�(

η
 (1S) → ηπ+π−
)/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (7.22 ± 1.47 ± 1.11) × 10−6 whi
h wedivide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.2The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036. Whererelevant, the error in this bran
hing ratio is treated as a 
ommon systemati
 in 
omputingaverages.�(

η2(π+π−))/�total �31/��(

η2(π+π−))/�total �31/��(

η2(π+π−))/�total �31/��(

η2(π+π−))/�total �31/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT4.4±1.2±0.44.4±1.2±0.44.4±1.2±0.44.4±1.2±0.4 39 1 ABLIKIM 12N BES3 ψ(2S) → π0 γ η2(π+ π−)1ABLIKIM 12N reports [�(

η
 (1S) → η2(π+ π−))/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (19.17 ± 3.77 ± 3.72)× 10−6 whi
h wedivide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.
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η
(1S)�(K+K−π+π−)/�total �32/��(K+K−π+π−)/�total �32/��(K+K−π+π−)/�total �32/��(K+K−π+π−)/�total �32/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT6.9± 1.1 OUR FIT6.9± 1.1 OUR FIT6.9± 1.1 OUR FIT6.9± 1.1 OUR FIT11.2± 1.9 OUR AVERAGE11.2± 1.9 OUR AVERAGE11.2± 1.9 OUR AVERAGE11.2± 1.9 OUR AVERAGE9.7± 2.2±0.9 38 1 ABLIKIM 12N BES3 ψ(2S) → π0 γK+K−π+π−12 ± 4 0.4k 2 BAI 04 BES J/ψ → γK+K−π+π−21 ± 7 110 2 BALTRUSAIT...86 MRK3 J/ψ → η
 γ14 +22

− 9 3 HIMEL 80B MRK2 ψ(2S) → η
 γ1ABLIKIM 12N reports [�(

η
 (1S) → K+K−π+π−
)/�total℄ × [�(h
 (1P) →

η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (4.16 ± 0.76 ± 0.59)× 10−6whi
h we divide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) →
π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.2The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036. Whererelevant, the error in this bran
hing ratio is treated as a 
ommon systemati
 in 
omputingaverages.3 Estimated using B(ψ(2S) → γ η
 (1S)) = 0.0028 ± 0.0006.�(K+K−π+π−π0)/�(KK π

) �33/�28�(K+K−π+π−π0)/�(KK π
) �33/�28�(K+K−π+π−π0)/�(KK π
) �33/�28�(K+K−π+π−π0)/�(KK π
) �33/�28VALUE EVTS DOCUMENT ID TECN COMMENT0.477±0.017±0.0700.477±0.017±0.0700.477±0.017±0.0700.477±0.017±0.070 11k 1 DEL-AMO-SA...11M BABR γ γ → K+K−π+π−π01We have multiplied the value of �(K+K−π+π−π0)/�(K0S K±π∓) reported in DEL-AMO-SANCHEZ 11M by a fa
tor 1/3 to obtain �(K+K−π+π−π0)/�(K K π

). Notindependent from other measurements reported in DEL-AMO-SANCHEZ 11M.�(K0K−π+π−π++
.
.)/�total �34/��(K0K−π+π−π++
.
.)/�total �34/��(K0K−π+π−π++
.
.)/�total �34/��(K0K−π+π−π++
.
.)/�total �34/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.6±1.4±0.55.6±1.4±0.55.6±1.4±0.55.6±1.4±0.5 43 1,2 ABLIKIM 12N BES3 ψ(2S) → π0 γK0S K∓π∓ 2π±1ABLIKIM 12N quotes B(ψ(2S) → π0 h
 ) · B(h
 → γ η
 ) · B(η
 → K0S K−π− 2π+)= (12.01 ± 2.22 ± 2.04)× 10−6 whi
h we multiply by 2 to take 
.
. into a

ount.2ABLIKIM 12N reports [�(

η
 (1S) → K0K−π+π−π++
.
.)/�total℄ × [�(h
 (1P) →
η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (24.02 ± 4.44 ± 4.08)× 10−6whi
h we divide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) →
π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.�(K+K−2(π+π−))/�total �35/��(K+K−2(π+π−))/�total �35/��(K+K−2(π+π−))/�total �35/��(K+K−2(π+π−))/�total �35/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT7.5±2.4 OUR AVERAGE7.5±2.4 OUR AVERAGE7.5±2.4 OUR AVERAGE7.5±2.4 OUR AVERAGE8 ±4 ±1 10 1 ABLIKIM 12N BES3 ψ(2S) → π0 γK+K− 2(π+π−)7.2±2.4±1.6 100 2 ABLIKIM 06A BES2 J/ψ → K+K−2(π+π−)γ1ABLIKIM 12N reports [�(

η
 (1S) → K+K−2(π+π−))/�total℄ × [�(h
 (1P) →
η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (3.60 ± 1.71 ± 0.64)× 10−6whi
h we divide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) →
π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.2ABLIKIM 06A reports [�(

η
 (1S) → K+K− 2(π+π−))/�total℄ × [B(J/ψ(1S) →
γ η
 (1S))℄ = (1.21±0.32±0.24)×10−4 whi
h we divide by our best value B(J/ψ(1S) →
γ η
 (1S)) = (1.7± 0.4)×10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.�(2(K+K−))/�total �36/��(2(K+K−))/�total �36/��(2(K+K−))/�total �36/��(2(K+K−))/�total �36/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.46± 0.30 OUR FIT1.46± 0.30 OUR FIT1.46± 0.30 OUR FIT1.46± 0.30 OUR FIT2.2 ± 0.9 ±0.22.2 ± 0.9 ±0.22.2 ± 0.9 ±0.22.2 ± 0.9 ±0.2 7 1 ABLIKIM 12N BES3 ψ(2S) → π0 γ 2(K+K−)

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.4 + 0.5
− 0.4 ±0.6 14.5+4.6

−3.0 2 HUANG 03 BELL B+ → 2(K+K−) K+21 ±10 ±6 3 ALBRECHT 94H ARG γ γ → K+K−K+K−1ABLIKIM 12N reports [�(

η
 (1S) → 2(K+K−))/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (0.94 ± 0.37 ± 0.14) × 10−6 whi
h wedivide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.2Using B(B+ → η
 K+) = (1.25 ± 0.12+0.10
−0.12) × 10−3 from FANG 03 and B(η
 →K K π) = (5.5 ± 1.7)× 10−2.3Normalized to the sum of B(η
 → K±K0S π∓), B(η
 → φφ), B(η
 →K+K−π+π−), and B(η
 → 2π+2π−).�(2(K+K−))/�(K K π

) �36/�28�(2(K+K−))/�(K K π
) �36/�28�(2(K+K−))/�(K K π
) �36/�28�(2(K+K−))/�(K K π
) �36/�28VALUE EVTS DOCUMENT ID TECN COMMENT0.020±0.004 OUR FIT0.020±0.004 OUR FIT0.020±0.004 OUR FIT0.020±0.004 OUR FIT0.024±0.007 OUR AVERAGE0.024±0.007 OUR AVERAGE0.024±0.007 OUR AVERAGE0.024±0.007 OUR AVERAGE0.023±0.007±0.006 AUBERT,B 04B BABR B± → K± η
0.026+0.009

−0.007±0.007 15 1 HUANG 03 BELL B± → K±(2K+2K−)1Using B(B+ → η
 K+) = (1.25 ± 0.12+0.10
−0.12) × 10−3 from FANG 03 and B(η
 →K K π) = (5.5 ± 1.7)× 10−2.

�(

π+π−π0π0)/�total �37/��(

π+π−π0π0)/�total �37/��(

π+π−π0π0)/�total �37/��(

π+π−π0π0)/�total �37/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT4.7±0.9±0.44.7±0.9±0.44.7±0.9±0.44.7±0.9±0.4 118 1 ABLIKIM 12N BES3 ψ(2S) → π0 γπ+π− 2π01ABLIKIM 12N reports [�(

η
 (1S) → π+π−π0π0)/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (20.31 ± 2.20 ± 3.33)× 10−6 whi
h wedivide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.�(2(π+π−))/�total �38/��(2(π+π−))/�total �38/��(2(π+π−))/�total �38/��(2(π+π−))/�total �38/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.97±0.12 OUR FIT0.97±0.12 OUR FIT0.97±0.12 OUR FIT0.97±0.12 OUR FIT1.35±0.21 OUR AVERAGE1.35±0.21 OUR AVERAGE1.35±0.21 OUR AVERAGE1.35±0.21 OUR AVERAGE1.74±0.32±0.15 100 1 ABLIKIM 12N BES3 ψ(2S) → π0 γ 2(π+π−)1.0 ±0.5 542 ± 75 2 BAI 04 BES J/ψ → γ 2(π+π−)1.05±0.17±0.34 137 2 BISELLO 91 DM2 J/ψ → γ 2π+2π−1.3 ±0.6 25 2 BALTRUSAIT...86 MRK3 J/ψ → η
 γ2.0 +1.5
−1.0 3 HIMEL 80B MRK2 ψ(2S) → η
 γ1ABLIKIM 12N reports [�(

η
 (1S) → 2(π+π−))/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (7.51 ± 0.85 ± 1.11) × 10−6 whi
h wedivide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.2The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036. Whererelevant, the error in this bran
hing ratio is treated as a 
ommon systemati
 in 
omputingaverages.3 Estimated using B(ψ(2S) → γ η
 (1S)) = 0.0028 ± 0.0006.�(2(π+π−π0))/�total �39/��(2(π+π−π0))/�total �39/��(2(π+π−π0))/�total �39/��(2(π+π−π0))/�total �39/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT17.4±2.9±1.517.4±2.9±1.517.4±2.9±1.517.4±2.9±1.5 175 1 ABLIKIM 12N BES3 ψ(2S) → π0 γ 2(π+π− 2π0)1ABLIKIM 12N reports [�(

η
 (1S) → 2(π+π−π0))/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (75.13 ± 7.42 ± 9.99)× 10−6 whi
h wedivide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.�(3(π+π−))/�total �40/��(3(π+π−))/�total �40/��(3(π+π−))/�total �40/��(3(π+π−))/�total �40/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT18 ±4 OUR AVERAGE18 ±4 OUR AVERAGE18 ±4 OUR AVERAGE18 ±4 OUR AVERAGE20 ±5 ±2 51 1 ABLIKIM 12N BES3 ψ(2S) → π0 γ 3(π+π−)15.3±3.4±3.3 479 2 ABLIKIM 06A BES2 J/ψ → 3(π+π−)γ1ABLIKIM 12N reports [�(

η
 (1S) → 3(π+π−))/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (8.82 ± 1.57 ± 1.59) × 10−6 whi
h wedivide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.2ABLIKIM 06A reports [�(

η
 (1S) → 3(π+π−))/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄ =(2.59± 0.32± 0.47)×10−4 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S))= (1.7 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(pp)/�total �41/��(pp)/�total �41/��(pp)/�total �41/��(pp)/�total �41/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT15.0± 1.6 OUR FIT15.0± 1.6 OUR FIT15.0± 1.6 OUR FIT15.0± 1.6 OUR FIT13.2± 2.7 OUR AVERAGE13.2± 2.7 OUR AVERAGE13.2± 2.7 OUR AVERAGE13.2± 2.7 OUR AVERAGE15 ± 5 ±1 15 1 ABLIKIM 12N BES3 ψ(2S) → π0 γ pp15 ± 6 213 ± 33 2 BAI 04 BES J/ψ → γ pp10 ± 3 ±4 18 2 BISELLO 91 DM2 J/ψ → γ pp11 ± 6 23 2 BALTRUSAIT...86 MRK3 J/ψ → η
 γ29 +29
−15 3 HIMEL 80B MRK2 ψ(2S) → η
 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •14.8+ 2.0
− 2.4+1.7

−1.8 195 4 WU 06 BELL B+ → ppK+1ABLIKIM 12N reports [�(

η
 (1S) → pp)/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total ×�(

ψ(2S) → π0 h
 (1P))/�total℄ = (0.65 ± 0.19 ± 0.10) × 10−6 whi
h we divide byour best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total =(4.3 ± 0.4) × 10−4. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036. Whererelevant, the error in this bran
hing ratio is treated as a 
ommon systemati
 in 
omputingaverages.3 Estimated using B(ψ(2S) → γ η
 (1S)) = 0.0028 ± 0.0006.4WU 06 reports [�(

η
 (1S)→ pp)/�total℄× [B(B+ → η
 K+)℄ = (1.42±0.11+0.16
−0.20)×10−6 whi
h we divide by our best value B(B+ → η
 K+) = (9.6 ± 1.1)× 10−4. Our�rst error is their experiment's error and our se
ond error is the systemati
 error fromusing our best value.
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η
(1S)�(pp)/�(K K π

) �41/�28�(pp)/�(K K π
) �41/�28�(pp)/�(K K π
) �41/�28�(pp)/�(K K π
) �41/�28VALUE EVTS DOCUMENT ID TECN COMMENT0.0207±0.0021 OUR FIT0.0207±0.0021 OUR FIT0.0207±0.0021 OUR FIT0.0207±0.0021 OUR FIT0.021 ±0.002 +0.004

−0.0060.021 ±0.002 +0.004
−0.0060.021 ±0.002 +0.004
−0.0060.021 ±0.002 +0.004
−0.006 195 1 WU 06 BELL B± → K± pp1Using B(B+ → η
 K+) = (1.25 ± 0.12+0.10

−0.12) × 10−3 from FANG 03 and B(η
 →K K π) = (5.5 ± 1.7)× 10−2.�(pp)/�total × �(

φφ
)/�total �41/�× �7/��(pp)/�total × �(

φφ
)/�total �41/�× �7/��(pp)/�total × �(

φφ
)/�total �41/�× �7/��(pp)/�total × �(

φφ
)/�total �41/�× �7/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT0.26±0.05 OUR FIT0.26±0.05 OUR FIT0.26±0.05 OUR FIT0.26±0.05 OUR FIT4.0 +3.5

−3.24.0 +3.5
−3.24.0 +3.5
−3.24.0 +3.5
−3.2 BAGLIN 89 SPEC pp → K+K−K+K−�(ppπ0)/�total �42/��(ppπ0)/�total �42/��(ppπ0)/�total �42/��(ppπ0)/�total �42/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.36±0.13±0.030.36±0.13±0.030.36±0.13±0.030.36±0.13±0.03 14 1 ABLIKIM 12N BES3 ψ(2S) → π0 γ ppπ01ABLIKIM 12N reports [�(

η
 (1S) → ppπ0)/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (1.53 ± 0.49 ± 0.23) × 10−6 whi
h wedivide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.�(��)/�total �43/��(��)/�total �43/��(��)/�total �43/��(��)/�total �43/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT10.9±2.4 OUR FIT10.9±2.4 OUR FIT10.9±2.4 OUR FIT10.9±2.4 OUR FIT11.7±2.3±2.611.7±2.3±2.611.7±2.3±2.611.7±2.3±2.6 1 ABLIKIM 12B BES3
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.9+2.7

−2.6±1.2 20 2 WU 06 BELL B+ → ��K+
<20 90 3 BISELLO 91 DM2 e+ e− → γ��1ABLIKIM 12B reports [�(

η
 (1S) → ��)/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄ =(0.198 ± 0.021 ± 0.032) × 10−4 whi
h we divide by our best value B(J/ψ(1S) →
γ η
 (1S)) = (1.7 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2WU 06 reports [�(

η
 (1S) → ��)/�total℄ × [B(B+ → η
 K+)℄ =(0.95+0.25
−0.22+0.08

−0.11) × 10−6 whi
h we divide by our best value B(B+ → η
 K+) =(9.6 ± 1.1) × 10−4. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036.�(��)/�(pp) �43/�41�(��)/�(pp) �43/�41�(��)/�(pp) �43/�41�(��)/�(pp) �43/�41VALUE DOCUMENT ID TECN COMMENT0.72±0.16 OUR FIT0.72±0.16 OUR FIT0.72±0.16 OUR FIT0.72±0.16 OUR FIT0.67+0.19
−0.16±0.120.67+0.19
−0.16±0.120.67+0.19
−0.16±0.120.67+0.19
−0.16±0.12 1 WU 06 BELL B+ → ppK+, ��K+1Not independent from other η
 → ��, pp bran
hing ratios reported by WU 06.�(�+�−)/�total �44/��(�+�−)/�total �44/��(�+�−)/�total �44/��(�+�−)/�total �44/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.1±0.3±0.52.1±0.3±0.52.1±0.3±0.52.1±0.3±0.5 112 1 ABLIKIM 13C BES3 J/ψ → γ ppπ0π01ABLIKIM 13C reports [�(

η
 (1S) → �+�−)/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄ =(3.60± 0.48± 0.31)×10−5 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S))= (1.7 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(�−�+)/�total �45/��(�−�+)/�total �45/��(�−�+)/�total �45/��(�−�+)/�total �45/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.89±0.18±0.190.89±0.18±0.190.89±0.18±0.190.89±0.18±0.19 78 1 ABLIKIM 13C BES3 J/ψ → γ��π+π−1ABLIKIM 13C reports [�(

η
 (1S) → �−�+)/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄ =(1.51± 0.27± 0.14)×10−5 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S))= (1.7 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(

π+π−pp)/�total �46/��(

π+π−pp)/�total �46/��(

π+π−pp)/�total �46/��(

π+π−pp)/�total �46/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT5.3±1.7±0.55.3±1.7±0.55.3±1.7±0.55.3±1.7±0.5 19 1 ABLIKIM 12N BES3 ψ(2S) → π0 γ ppπ+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<12 90 HIMEL 80B MRK2 ψ(2S) → η
 γ1ABLIKIM 12N reports [�(

η
 (1S) → π+π− pp)/�total℄ × [�(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total℄ = (2.30 ± 0.65 ± 0.36) × 10−6 whi
h wedivide by our best value �(h
 (1P) → η
 (1S)γ)/�total × �(

ψ(2S) → π0 h
 (1P))/�total = (4.3 ± 0.4)× 10−4. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.

RADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYS�(

γ γ
)/�total �47/��(

γ γ
)/�total �47/��(

γ γ
)/�total �47/��(

γ γ
)/�total �47/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT1.59±0.13 OUR FIT1.59±0.13 OUR FIT1.59±0.13 OUR FIT1.59±0.13 OUR FIT1.9 +0.7

−0.6 OUR AVERAGE1.9 +0.7
−0.6 OUR AVERAGE1.9 +0.7
−0.6 OUR AVERAGE1.9 +0.7
−0.6 OUR AVERAGE2.7 ±0.8 ±0.6 1 ABLIKIM 13I BES31.4 +0.7
−0.5 ±0.3 1.2+2.8

−1.1 2 ADAMS 08 CLEO ψ(2S) → π+π− J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.3 +1.0
−0.8 ±0.3 13 3 WICHT 08 BELL B± → K± γ γ2.80+0.67
−0.58±1.0 4 ARMSTRONG 95F E760 p p → γ γ

< 9 90 5 BISELLO 91 DM2 J/ψ → γ γ γ6 +4
−3 ±4 4 BAGLIN 87B SPEC p p → γ γ

< 18 90 6 BLOOM 83 CBAL J/ψ → η
 γ1ABLIKIM 13I reports [�(

η
 (1S) → γ γ
)/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄ = (4.5±1.2 ± 0.6) × 10−6 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S)) =(1.7 ± 0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2ADAMS 08 reports [�(

η
 (1S) → γ γ
)/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄ =(2.4+1.1

−0.8 ± 0.3) × 10−6 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S))= (1.7 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3WICHT 08 reports [�(

η
 (1S) → γ γ
)/�total℄ × [B(B+ → η
 K+)℄ =(2.2+0.9

−0.7+0.4
−0.2) × 10−7 whi
h we divide by our best value B(B+ → η
 K+) =(9.6 ± 1.1) × 10−4. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.4Not independent from the values of the total and two-photon width quoted by the sameexperiment.5The quoted bran
hing ratios use B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036.6Using B(J/ψ(1S) → γ η
 (1S)) = 0.0127 ± 0.0036.�(

γ γ
)/�(K K π

) �47/�28�(

γ γ
)/�(K K π

) �47/�28�(

γ γ
)/�(K K π

) �47/�28�(

γ γ
)/�(K K π

) �47/�28VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.19±0.29 OUR FIT2.19±0.29 OUR FIT2.19±0.29 OUR FIT2.19±0.29 OUR FIT3.2 +1.3
−1.0 +0.8

−0.63.2 +1.3
−1.0 +0.8

−0.63.2 +1.3
−1.0 +0.8

−0.63.2 +1.3
−1.0 +0.8

−0.6 13 1 WICHT 08 BELL B± → K± γ γ1Using B(B+ → η
 K+) = (1.25 ± 0.12+0.10
−0.12) × 10−3 from FANG 03 and B(η
 →K K π) = (5.5 ± 1.7)× 10−2.�(pp)/�total × �(

γ γ
)/�total �41/�× �47/��(pp)/�total × �(

γ γ
)/�total �41/�× �47/��(pp)/�total × �(

γ γ
)/�total �41/�× �47/��(pp)/�total × �(

γ γ
)/�total �41/�× �47/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT0.240±0.024 OUR FIT0.240±0.024 OUR FIT0.240±0.024 OUR FIT0.240±0.024 OUR FIT0.26 ±0.05 OUR AVERAGE0.26 ±0.05 OUR AVERAGE0.26 ±0.05 OUR AVERAGE0.26 ±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.0.224+0.038

−0.037±0.020 190 AMBROGIANI 03 E835 pp → η
 → γ γ0.336+0.080
−0.070 ARMSTRONG 95F E760 pp → γ γ0.68 +0.42
−0.31 12 BAGLIN 87B SPEC pp → γ γCharge 
onjugation (C), Parity (P),Charge 
onjugation (C), Parity (P),Charge 
onjugation (C), Parity (P),Charge 
onjugation (C), Parity (P),Lepton family number (LF) violating modesLepton family number (LF) violating modesLepton family number (LF) violating modesLepton family number (LF) violating modes�(

π+π−)/�total �48/��(

π+π−)/�total �48/��(

π+π−)/�total �48/��(

π+π−)/�total �48/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<11<11<11<11 90 1 ABLIKIM 11G BES3 J/ψ → γπ+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<70 90 2 ABLIKIM 06B BES2 J/ψ → π+π− γ1ABLIKIM 11G reports [�(

η
 (1S) → π+π−
)/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄

< 1.82×10−6 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S)) = 1.7×10−2.2ABLIKIM 06B reports [�(

η
 (1S) → π+π−
)/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄

< 1.1×10−5 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S)) = 1.7×10−2.�(

π0π0)/�total �49/��(

π0π0)/�total �49/��(

π0π0)/�total �49/��(

π0π0)/�total �49/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
< 4< 4< 4< 4 90 1 ABLIKIM 11G BES3 J/ψ → γπ0π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<40 90 2 ABLIKIM 06B BES2 J/ψ → π0π0 γ1ABLIKIM 11G reports [�(

η
 (1S) → π0π0)/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄ <6.0× 10−7 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S)) = 1.7× 10−2.2ABLIKIM 06B reports [�(

η
 (1S) → π0π0)/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄ <0.71×10−5 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S)) = 1.7×10−2.�(K+K−)/�total �50/��(K+K−)/�total �50/��(K+K−)/�total �50/��(K+K−)/�total �50/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<60<60<60<60 90 1 ABLIKIM 06B BES2 J/ψ → K+K− γ1ABLIKIM 06B reports [�(

η
 (1S) → K+K−)/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄
< 0.96×10−5 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S)) = 1.7×10−2.
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η
(1S), J/ψ(1S)�(K0S K0S)/�total �51/��(K0S K0S)/�total �51/��(K0S K0S)/�total �51/��(K0S K0S)/�total �51/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<31<31<31<31 90 1 ABLIKIM 06B BES2 J/ψ → K0S K0S γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<32 90 2 UEHARA 13 BELL γ γ → K0S K0S
< 5.6 90 3 UEHARA 13 BELL γ γ → K0S K0S1ABLIKIM 06B reports [�(

η
 (1S) → K0S K0S )/�total℄ × [B(J/ψ(1S) → γ η
 (1S))℄
< 0.53×10−5 whi
h we divide by our best value B(J/ψ(1S) → γ η
 (1S)) = 1.7×10−2.2Taking into a

ount interferen
e with the non-resonant 
ontinuum.3Negle
ting interferen
e with the non-resonant 
ontinuum.

η
 (1S) REFERENCESη
 (1S) REFERENCESη
 (1S) REFERENCESη
 (1S) REFERENCESLEES 16A PR D93 012005 J.P. Lees et al. (BABAR Collab.)AAIJ 15BI EPJ C75 311 R. Aaij et al. (LHCb Collab.)ANASHIN 14 PL B738 391 V.V. Anashin et al. (KEDR Collab.)LEES 14E PR D89 112004 J.P. Lees et al. (BABAR Collab.)ABLIKIM 13C PR D87 012003 M. Ablikim et al. (BES III Collab.)ABLIKIM 13I PR D87 032003 M. Ablikim et al. (BES III Collab.)UEHARA 13 PTEP 2013 123C01 S. Uehara et al. (BELLE Collab.)ABLIKIM 12B PR D86 032008 M. Ablikim et al. (BES III Collab.)ABLIKIM 12F PRL 108 222002 M. Ablikim et al. (BES III Collab.)ABLIKIM 12N PR D86 092009 M. Ablikim et al. (BES III Collab.)LIU 12B PRL 108 232001 Z.Q. Liu et al. (BELLE Collab.)ZHANG 12A PR D86 052002 C.C. Zhang et al. (BELLE Collab.)ABLIKIM 11G PR D84 032006 M. Ablikim et al. (BES III Collab.)DEL-AMO-SA... 11M PR D84 012004 P. del Amo San
hez et al. (BABAR Collab.)VINOKUROVA 11 PL B706 139 A. Vinokurova et al. (BELLE Collab.)LEES 10 PR D81 052010 J.P. Lees et al. (BABAR Collab.)MITCHELL 09 PRL 102 011801 R.E. Mit
hell et al. (CLEO Collab.)ADAMS 08 PRL 101 101801 G.S. Adams et al. (CLEO Collab.)AUBERT 08AB PR D78 012006 B. Aubert et al. (BABAR Collab.)UEHARA 08 EPJ C53 1 S. Uehara et al. (BELLE Collab.)WICHT 08 PL B662 323 J. Wi
ht et al. (BELLE Collab.)ABE 07 PRL 98 082001 K. Abe et al. (BELLE Collab.)ABLIKIM 06A PL B633 19 M. Ablikim et al. (BES Collab.)ABLIKIM 06B EPJ C45 337 M. Ablikim et al. (BES Collab.)AUBERT 06E PRL 96 052002 B. Aubert et al. (BABAR Collab.)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)WU 06 PRL 97 162003 C.-H. Wu et al. (BELLE Collab.)ABLIKIM 05L PR D72 072005 M. Ablikim et al. (BES Collab.)KUO 05 PL B621 41 C.C. Kuo et al. (BELLE Collab.)ABE 04G PR D70 071102 K. Abe et al. (BELLE Collab.)ABLIKIM 04M PR D70 112008 M. Ablikim et al. (BES Collab.)ASNER 04 PRL 92 142001 D.M. Asner et al. (CLEO Collab.)AUBERT 04D PRL 92 142002 B. Aubert et al. (BABAR Collab.)AUBERT,B 04B PR D70 011101 B. Aubert et al. (BABAR Collab.)BAI 04 PL B578 16 J.Z. Bai et al. (BES Collab.)ABDALLAH 03J EPJ C31 481 J. Abdallah et al. (DELPHI Collab.)AMBROGIANI 03 PL B566 45 M. Ambrogiani et al. (FNAL E835 Collab.)BAI 03 PL B555 174 J.Z. Bai et al. (BES Collab.)FANG 03 PRL 90 071801 F. Fang et al. (BELLE Collab.)HUANG 03 PRL 91 241802 H.-C. Huang et al. (BELLE Collab.)ABE,K 02 PRL 89 142001 K. Abe et al. (BELLE Collab.)BAI 00F PR D62 072001 J.Z. Bai et al. (BES Collab.)BRANDENB... 00B PRL 85 3095 G. Brandenburg et al. (CLEO Collab.)ACCIARRI 99T PL B461 155 M. A

iarri et al. (L3 Collab.)BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.)ABREU 98O PL B441 479 P. Abreu et al. (DELPHI Collab.)SHIRAI 98 PL B424 405 M. Shirai et al. (AMY Collab.)ARMSTRONG 95F PR D52 4839 T.A. Armstrong et al. (FNAL, FERR, GENO+)ALBRECHT 94H PL B338 390 H. Albre
ht et al. (ARGUS Collab.)ADRIANI 93N PL B318 575 O. Adriani et al. (L3 Collab.)BISELLO 91 NP B350 1 D. Bisello et al. (DM2 Collab.)BAI 90B PRL 65 1309 Z. Bai et al. (Mark III Collab.)CHEN 90B PL B243 169 W.Y. Chen et al. (CLEO Collab.)BAGLIN 89 PL B231 557 C. Baglin, S. Baird, G. Bassompierre (R704 Collab.)BEHREND 89 ZPHY C42 367 H.J. Behrend et al. (CELLO Collab.)BRAUNSCH... 89 ZPHY C41 533 W. Brauns
hweig et al. (TASSO Collab.)AIHARA 88D PRL 60 2355 H. Aihara et al. (TPC Collab.)BAGLIN 87B PL B187 191 C. Baglin et al. (R704 Collab.)BALTRUSAIT... 86 PR D33 629 R.M. Baltrusaitis et al. (Mark III Collab.)BERGER 86 PL 167B 120 C. Berger et al. (PLUTO Collab.)GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.)ALTHOFF 85B ZPHY C29 189 M. Altho� et al. (TASSO Collab.)BALTRUSAIT... 84 PRL 52 2126 R.M. Baltrusaitis et al. (CIT, UCSC+) JPBLOOM 83 ARNS 33 143 E.D. Bloom, C. Pe
k (SLAC, CIT)HIMEL 80B PRL 45 1146 T.M. Himel et al. (SLAC, LBL, UCB)PARTRIDGE 80B PRL 45 1150 R. Partridge et al. (CIT, HARV, PRIN+)J/ψ(1S) IG (JPC ) = 0−(1−−)J/ψ(1S) MASSJ/ψ(1S) MASSJ/ψ(1S) MASSJ/ψ(1S) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3096.900±0.006 OUR AVERAGE3096.900±0.006 OUR AVERAGE3096.900±0.006 OUR AVERAGE3096.900±0.006 OUR AVERAGE3096.66 ±0.19 ±0.02 6.1k 1 AAIJ 15BI LHCB pp → J/ψX3096.900±0.002±0.006 2 ANASHIN 15 KEDR e+ e− → hadrons3096.89 ±0.09 502 3 ARTAMONOV 00 OLYA e+ e− → hadrons3096.91 ±0.03 ±0.01 4 ARMSTRONG 93B E760 pp → e+ e−3096.95 ±0.1 ±0.3 193 BAGLIN 87 SPEC pp → e+ e−X
• • • We do not use the following data for averages, �ts, limits, et
. • • •3096.917±0.010±0.007 AULCHENKO 03 KEDR e+ e− → hadrons3097.5 ±0.3 GRIBUSHIN 96 FMPS 515 π−Be → 2µX3098.4 ±2.0 38k LEMOIGNE 82 GOLI 185 π−Be →

γµ+µ−A3096.93 ±0.09 502 5 ZHOLENTZ 80 REDE e+ e−3097.0 ±1 6 BRANDELIK 79C DASP e+ e−

1From a sample of η
 (1S) and J/ψ produ
ed in b-hadron de
ays.2 Supersedes AULCHENKO 03.3Reanalysis of ZHOLENTZ 80 using new ele
tron mass (COHEN 87) and radiative 
or-re
tions (KURAEV 85).4Mass 
entral value and systemati
 error re
al
ulated by us a

ording to Eq. (16) inARMSTRONG 93B, using the value for the ψ(2S) mass from AULCHENKO 03.5 Superseded by ARTAMONOV 00.6 From a simultaneous �t to e+ e−, µ+µ− and hadroni
 
hannels assuming �(e+ e−)= �(µ+µ−). J/ψ(1S) WIDTHJ/ψ(1S) WIDTHJ/ψ(1S) WIDTHJ/ψ(1S) WIDTHVALUE (keV) EVTS DOCUMENT ID TECN COMMENT92.9± 2.8 OUR AVERAGE92.9± 2.8 OUR AVERAGE92.9± 2.8 OUR AVERAGE92.9± 2.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.96.1± 3.2 13k 1 ADAMS 06A CLEO e+ e− → µ+µ− γ84.4± 8.9 BAI 95B BES e+ e−91 ±11 ±6 2 ARMSTRONG 93B E760 p p → e+ e−85.5+ 6.1
− 5.8 3 HSUEH 92 RVUE See � mini-review

• • • We do not use the following data for averages, �ts, limits, et
. • • •94.1± 2.7 4 ANASHIN 10 KEDR 3.097 e+ e− → e+ e−, µ+µ−93.7± 3.5 7.8k 1 AUBERT 04 BABR e+ e− → µ+µ− γ1Cal
ulated by us from the reported values of �(e+ e−)×B(µ+µ−) using B(e+ e−) =(5.94 ± 0.06)% and B(µ+µ−) = (5.93 ± 0.06)%.2The initial-state radiation 
orre
tion reevaluated by ANDREOTTI 07 in its Ref. [4℄.3Using data from COFFMAN 92, BALDINI-CELIO 75, BOYARSKI 75, ESPOSITO 75B,BRANDELIK 79C.4Assuming �(e+ e−) = �(µ+µ−) and using �(e+ e−)/�total = (5.94 ± 0.06)%.J/ψ(1S) DECAY MODESJ/ψ(1S) DECAY MODESJ/ψ(1S) DECAY MODESJ/ψ(1S) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 hadrons (87.7 ±0.5 ) %�2 virtualγ → hadrons (13.50 ±0.30 ) %�3 g g g (64.1 ±1.0 ) %�4 γ g g ( 8.8 ±1.1 ) %�5 e+ e− ( 5.971±0.032) %�6 e+ e− γ [a℄ ( 8.8 ±1.4 )× 10−3�7 µ+µ− ( 5.961±0.033) %De
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
esDe
ays involving hadroni
 resonan
es�8 ρπ ( 1.69 ±0.15 ) % S=2.4�9 ρ0π0 ( 5.6 ±0.7 )× 10−3�10 a2(1320)ρ ( 1.09 ±0.22 ) %�11 ωπ+π+π−π− ( 8.5 ±3.4 )× 10−3�12 ωπ+π−π0 ( 4.0 ±0.7 )× 10−3�13 ωπ+π− ( 8.6 ±0.7 )× 10−3 S=1.1�14 ω f2(1270) ( 4.3 ±0.6 )× 10−3�15 K∗(892)0K∗(892)0 ( 2.3 ±0.7 )× 10−4�16 K∗(892)±K∗(892)∓ ( 1.00 +0.22
−0.40 )× 10−3�17 K∗(892)±K∗(800)∓ ( 1.1 +1.0
−0.6 )× 10−3�18 ηK∗(892)0K∗(892)0 ( 1.15 ±0.26 )× 10−3�19 K∗(892)0K∗2(1430)0+ 
.
. ( 6.0 ±0.6 )× 10−3�20 K∗(892)0K2(1770)0+ 
.
. →K∗(892)0K−π++ 
.
. ( 6.9 ±0.9 )× 10−4�21 ωK∗(892)K+ 
.
. ( 6.1 ±0.9 )× 10−3�22 K+K∗(892)−+ 
.
. ( 5.12 ±0.30 )× 10−3�23 K+K∗(892)−+ 
.
. →K+K−π0 ( 1.97 ±0.20 )× 10−3�24 K+K∗(892)−+ 
.
. →K0K±π∓+ 
.
. ( 3.0 ±0.4 )× 10−3�25 K0K∗(892)0+ 
.
. ( 4.39 ±0.31 )× 10−3�26 K0K∗(892)0+ 
.
. →K0K±π∓+ 
.
. ( 3.2 ±0.4 )× 10−3�27 K1(1400)±K∓ ( 3.8 ±1.4 )× 10−3�28 K∗(892)0K+π−+ 
.
. seen�29 ωπ0π0 ( 3.4 ±0.8 )× 10−3�30 b1(1235)±π∓ [b℄ ( 3.0 ±0.5 )× 10−3�31 ωK±K0S π∓ [b℄ ( 3.4 ±0.5 )× 10−3�32 b1(1235)0π0 ( 2.3 ±0.6 )× 10−3�33 ηK±K0S π∓ [b℄ ( 2.2 ±0.4 )× 10−3�34 φK∗(892)K+ 
.
. ( 2.18 ±0.23 )× 10−3�35 ωK K ( 1.70 ±0.32 )× 10−3�36 ω f0(1710) → ωK K ( 4.8 ±1.1 )× 10−4�37 φ2(π+π−) ( 1.66 ±0.23 )× 10−3�38 �(1232)++pπ− ( 1.6 ±0.5 )× 10−3�39 ωη ( 1.74 ±0.20 )× 10−3 S=1.6�40 φK K ( 1.83 ±0.24 )× 10−3 S=1.5



1372137213721372MesonParti
le ListingsJ/ψ(1S)�41 φ f0(1710) → φK K ( 3.6 ±0.6 )× 10−4�42 φ f2(1270) ( 7.2 ±1.3 )× 10−4�43 �(1232)++�(1232)−− ( 1.10 ±0.29 )× 10−3�44 � (1385)−� (1385)+ (or 
.
.) [b℄ ( 1.10 ±0.12 )× 10−3�45 φ f ′2(1525) ( 8 ±4 )× 10−4 S=2.7�46 φπ+π− ( 9.4 ±0.9 )× 10−4 S=1.2�47 φπ0π0 ( 5.6 ±1.6 )× 10−4�48 φK±K0S π∓ [b℄ ( 7.2 ±0.8 )× 10−4�49 ω f1(1420) ( 6.8 ±2.4 )× 10−4�50 φη ( 7.5 ±0.8 )× 10−4 S=1.5�51 � 0� 0 ( 1.20 ±0.24 )× 10−3�52 � (1530)−�+ ( 5.9 ±1.5 )× 10−4�53 pK−� (1385)0 ( 5.1 ±3.2 )× 10−4�54 ωπ0 ( 4.5 ±0.5 )× 10−4 S=1.4�55 φη′(958) ( 4.0 ±0.7 )× 10−4 S=2.1�56 φ f0(980) ( 3.2 ±0.9 )× 10−4 S=1.9�57 φ f0(980) → φπ+π− ( 1.8 ±0.4 )× 10−4�58 φ f0(980) → φπ0π0 ( 1.7 ±0.7 )× 10−4�59 φπ0 f0(980) → φπ0π+π− ( 4.5 ±1.0 )× 10−6�60 φπ0 f0(980) → φπ0 p0π0 ( 1.7 ±0.6 )× 10−6�61 ηφ f0(980) → ηφπ+π− ( 3.2 ±1.0 )× 10−4�62 φa0(980)0 → φηπ0 ( 5 ±4 )× 10−6�63 � (1530)0� 0 ( 3.2 ±1.4 )× 10−4�64 � (1385)−�+ (or 
.
.) [b℄ ( 3.1 ±0.5 )× 10−4�65 φ f1(1285) ( 2.6 ±0.5 )× 10−4�66 φ f1(1285) → φπ0 f0(980) →
φπ0π+π−

( 9.4 ±2.8 )× 10−7�67 φ f1(1285) → φπ0 f0(980) →
φπ0π0π0 ( 2.1 ±2.2 )× 10−7�68 ηπ+π− ( 4.0 ±1.7 )× 10−4�69 ηρ ( 1.93 ±0.23 )× 10−4�70 ωη′(958) ( 1.82 ±0.21 )× 10−4�71 ω f0(980) ( 1.4 ±0.5 )× 10−4�72 ρη′(958) ( 1.05 ±0.18 )× 10−4�73 a2(1320)±π∓ [b℄ < 4.3 × 10−3 CL=90%�74 K K∗2(1430)+ 
.
. < 4.0 × 10−3 CL=90%�75 K1(1270)±K∓ < 3.0 × 10−3 CL=90%�76 K∗2(1430)0K∗2(1430)0 < 2.9 × 10−3 CL=90%�77 φπ0 3× 10−6 or 1× 10−7�78 φη(1405) → φηπ+π− ( 2.0 ±1.0 )× 10−5�79 ω f ′2(1525) < 2.2 × 10−4 CL=90%�80 ωX (1835) → ωpp < 3.9 × 10−6 CL=95%�81 φX (1835) → φηπ+π− < 2.8 × 10−4 CL=90%�82 φX (1870) → φηπ+π− < 6.13 × 10−5 CL=90%�83 ηφ(2170) → ηφ f0(980) →

ηφπ+π−
( 1.2 ±0.4 )× 10−4�84 ηφ(2170) →

ηK∗(892)0K∗(892)0 < 2.52 × 10−4 CL=90%�85 � (1385)0�+ 
.
. < 8.2 × 10−6 CL=90%�86 �(1232)+p < 1 × 10−4 CL=90%�87 �(1520)�+ 
.
. → γ�� < 4.1 × 10−6 CL=90%�88 �(1540)�(1540) →K0S pK−n+ 
.
. < 1.1 × 10−5 CL=90%�89 �(1540)K−n → K0S pK−n < 2.1 × 10−5 CL=90%�90 �(1540)K0S p → K0S pK+n < 1.6 × 10−5 CL=90%�91 �(1540)K+n → K0S pK+n < 5.6 × 10−5 CL=90%�92 �(1540)K0S p → K0S pK−n < 1.1 × 10−5 CL=90%�93 �0� < 9 × 10−5 CL=90%De
ays into stable hadronsDe
ays into stable hadronsDe
ays into stable hadronsDe
ays into stable hadrons�94 2(π+π−)π0 ( 4.1 ±0.5 ) % S=2.4�95 3(π+π−)π0 ( 2.9 ±0.6 ) %�96 π+π−π0 ( 2.11 ±0.07 ) % S=1.5�97 π+π−π0K+K− ( 1.79 ±0.29 ) % S=2.2�98 4(π+π−)π0 ( 9.0 ±3.0 )× 10−3�99 π+π−K+K− ( 6.6 ±0.5 )× 10−3�100 π+π−K+K−η ( 1.84 ±0.28 )× 10−3�101 π0π0K+K− ( 2.45 ±0.31 )× 10−3�102 K K π ( 6.1 ±1.0 )× 10−3�103 2(π+π−) ( 3.57 ±0.30 )× 10−3�104 3(π+π−) ( 4.3 ±0.4 )× 10−3�105 2(π+π−π0) ( 1.62 ±0.21 ) %�106 2(π+π−)η ( 2.29 ±0.24 )× 10−3�107 3(π+π−)η ( 7.2 ±1.5 )× 10−4�108 pp ( 2.120±0.029)× 10−3

�109 ppπ0 ( 1.19 ±0.08 )× 10−3 S=1.1�110 ppπ+π− ( 6.0 ±0.5 )× 10−3 S=1.3�111 ppπ+π−π0 [
℄ ( 2.3 ±0.9 )× 10−3 S=1.9�112 ppη ( 2.00 ±0.12 )× 10−3�113 ppρ < 3.1 × 10−4 CL=90%�114 ppω ( 9.8 ±1.0 )× 10−4 S=1.3�115 ppη′(958) ( 2.1 ±0.4 )× 10−4�116 ppa0(980) → ppπ0 η ( 6.8 ±1.8 )× 10−5�117 ppφ ( 4.5 ±1.5 )× 10−5�118 nn ( 2.09 ±0.16 )× 10−3�119 nnπ+π− ( 4 ±4 )× 10−3�120 �+�− ( 1.50 ±0.24 )× 10−3�121 �0�0 ( 1.29 ±0.09 )× 10−3�122 2(π+π−)K+K− ( 4.7 ±0.7 )× 10−3 S=1.3�123 pnπ− ( 2.12 ±0.09 )× 10−3�124 nN(1440) seen�125 nN(1520) seen�126 nN(1535) seen�127 �−�+ ( 8.6 ±1.1 )× 10−4 S=1.2�128 �� ( 1.61 ±0.15 )× 10−3 S=1.9�129 ��−π+ (or 
.
.) [b℄ ( 8.3 ±0.7 )× 10−4 S=1.2�130 pK−� ( 8.9 ±1.6 )× 10−4�131 2(K+K−) ( 7.6 ±0.9 )× 10−4�132 pK−�0 ( 2.9 ±0.8 )× 10−4�133 K+K− ( 2.86 ±0.21 )× 10−4�134 K0S K0L ( 2.1 ±0.4 )× 10−4 S=3.2�135 ��π+π− ( 4.3 ±1.0 )× 10−3�136 ��η ( 1.62 ±0.17 )× 10−4�137 ��π0 ( 3.8 ±0.4 )× 10−5�138 �nK0S+ 
.
. ( 6.5 ±1.1 )× 10−4�139 π+π− ( 1.47 ±0.14 )× 10−4�140 ��+ 
.
. ( 2.83 ±0.23 )× 10−5�141 K0S K0S < 1 × 10−6 CL=95%Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays�142 3γ ( 1.16 ±0.22 )× 10−5�143 4γ < 9 × 10−6 CL=90%�144 5γ < 1.5 × 10−5 CL=90%�145 γπ0π0 ( 1.15 ±0.05 )× 10−3�146 γ η
 (1S) ( 1.7 ±0.4 ) % S=1.5�147 γ η
 (1S) → 3γ ( 3.8 +1.3
−1.0 )× 10−6 S=1.1�148 γπ+π−2π0 ( 8.3 ±3.1 )× 10−3�149 γ ηππ ( 6.1 ±1.0 )× 10−3�150 γ η2(1870) → γ ηπ+π− ( 6.2 ±2.4 )× 10−4�151 γ η(1405/1475) → γK K π [d℄ ( 2.8 ±0.6 )× 10−3 S=1.6�152 γ η(1405/1475) → γ γ ρ0 ( 7.8 ±2.0 )× 10−5 S=1.8�153 γ η(1405/1475) → γ ηπ+π− ( 3.0 ±0.5 )× 10−4�154 γ η(1405/1475) → γ γφ < 8.2 × 10−5 CL=95%�155 γ ρρ ( 4.5 ±0.8 )× 10−3�156 γ ρω < 5.4 × 10−4 CL=90%�157 γ ρφ < 8.8 × 10−5 CL=90%�158 γ η′(958) ( 5.15 ±0.16 )× 10−3 S=1.2�159 γ 2π+2π− ( 2.8 ±0.5 )× 10−3 S=1.9�160 γ f2(1270)f2(1270) ( 9.5 ±1.7 )× 10−4�161 γ f2(1270)f2(1270)(non reso-nant) ( 8.2 ±1.9 )× 10−4�162 γK+K−π+π− ( 2.1 ±0.6 )× 10−3�163 γ f4(2050) ( 2.7 ±0.7 )× 10−3�164 γωω ( 1.61 ±0.33 )× 10−3�165 γ η(1405/1475) → γ ρ0 ρ0 ( 1.7 ±0.4 )× 10−3 S=1.3�166 γ f2(1270) ( 1.64 ±0.12 )× 10−3 S=1.3�167 γ f0(1370) → γK K ( 4.2 ±1.5 )× 10−4�168 γ f0(1710) → γK K ( 1.00 +0.11
−0.09 )× 10−3 S=1.5�169 γ f0(1710) → γππ ( 3.8 ±0.5 )× 10−4�170 γ f0(1710) → γωω ( 3.1 ±1.0 )× 10−4�171 γ f0(1710) → γ ηη ( 2.4 +1.2
−0.7 )× 10−4�172 γ η ( 1.104±0.034)× 10−3�173 γ f1(1420) → γK K π ( 7.9 ±1.3 )× 10−4�174 γ f1(1285) ( 6.1 ±0.8 )× 10−4�175 γ f1(1510) → γ ηπ+π− ( 4.5 ±1.2 )× 10−4�176 γ f ′2(1525) ( 5.7 +0.8
−0.5 )× 10−4 S=1.5�177 γ f ′2(1525) → γ ηη ( 3.4 ±1.4 )× 10−5�178 γ f2(1640) → γωω ( 2.8 ±1.8 )× 10−4



1373137313731373See key on page 601 MesonParti
le ListingsJ/ψ(1S)�179 γ f2(1910) → γωω ( 2.0 ±1.4 )× 10−4�180 γ f0(1800) → γωφ ( 2.5 ±0.6 )× 10−4�181 γ f2(1810) → γ ηη ( 5.4 +3.5
−2.4 )× 10−5�182 γ f2(1950) →

γK∗(892)K∗(892) ( 7.0 ±2.2 )× 10−4�183 γK∗(892)K∗(892) ( 4.0 ±1.3 )× 10−3�184 γφφ ( 4.0 ±1.2 )× 10−4 S=2.1�185 γ pp ( 3.8 ±1.0 )× 10−4�186 γ η(2225) ( 3.3 ±0.5 )× 10−4�187 γ η(1760) → γ ρ0ρ0 ( 1.3 ±0.9 )× 10−4�188 γ η(1760) → γωω ( 1.98 ±0.33 )× 10−3�189 γX (1835) → γπ+π−η′ ( 2.6 ±0.4 )× 10−4�190 γX (1835) → γ pp ( 7.7 +1.5
−0.9 )× 10−5�191 γX (1835) → γK0S K0S η ( 3.3 +2.0
−1.3 )× 10−5�192 γX (1840) → γ 3(π+π−) ( 2.4 +0.7
−0.8 )× 10−5�193 γ (K K π) [JPC = 0−+℄ ( 7 ±4 )× 10−4 S=2.1�194 γπ0 ( 3.49 +0.33
−0.30 )× 10−5�195 γ ppπ+π− < 7.9 × 10−4 CL=90%�196 γ�� < 1.3 × 10−4 CL=90%�197 γ f0(2100) → γ ηη ( 1.13 +0.60
−0.30 )× 10−4�198 γ f0(2100) → γππ ( 6.2 ±1.0 )× 10−4�199 γ f0(2200)�200 γ f0(2200) → γK K ( 5.9 ±1.3 )× 10−4�201 γ fJ (2220)�202 γ fJ (2220) → γππ < 3.9 × 10−5 CL=90%�203 γ fJ (2220) → γK K < 4.1 × 10−5 CL=90%�204 γ fJ (2220) → γ pp ( 1.5 ±0.8 )× 10−5�205 γ f2(2340) → γ ηη ( 5.6 +2.4
−2.2 )× 10−5�206 γ f0(1500) → γππ ( 1.09 ±0.24 )× 10−4�207 γ f0(1500) → γ ηη ( 1.7 +0.6
−1.4 )× 10−5�208 γA → γ invisible [e℄ < 6.3 × 10−6 CL=90%�209 γA0 → γµ+µ− [f ℄ < 2.1 × 10−5 CL=90%Dalitz de
aysDalitz de
aysDalitz de
aysDalitz de
ays�210 π0 e+ e− ( 7.6 ±1.4 )× 10−7�211 ηe+ e− ( 1.16 ±0.09 )× 10−5�212 η′(958)e+ e− ( 5.81 ±0.35 )× 10−5Weak de
aysWeak de
aysWeak de
aysWeak de
ays�213 D− e+νe+ 
.
. < 1.2 × 10−5 CL=90%�214 D0 e+ e−+ 
.
. < 1.1 × 10−5 CL=90%�215 D−s e+νe+ 
.
. < 1.3 × 10−6 CL=90%�216 D∗−s e+νe+ 
.
. < 1.8 × 10−6 CL=90%�217 D−π++ 
.
. < 7.5 × 10−5 CL=90%�218 D0K0+ 
.
. < 1.7 × 10−4 CL=90%�219 D0K∗0+ 
.
. < 2.5 × 10−6 CL=90%�220 D−s π++ 
.
. < 1.3 × 10−4 CL=90%�221 D−s ρ++ 
.
. < 1.3 × 10−5 CL=90%Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Charge 
onjugation (C ), Parity (P),Lepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modes�222 γ γ C < 2.7 × 10−7 CL=90%�223 γφ C < 1.4 × 10−6 CL=90%�224 e±µ∓ LF < 1.6 × 10−7 CL=90%�225 e± τ∓ LF < 8.3 × 10−6 CL=90%�226 µ± τ∓ LF < 2.0 × 10−6 CL=90%Other de
aysOther de
aysOther de
aysOther de
ays�227 invisible < 7 × 10−4 CL=90%[a℄ For Eγ > 100 MeV.[b℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.[
 ℄ In
ludes ppπ+π−γ and ex
ludes ppη, ppω, ppη′.[d ℄ See the \Note on the η(1405)" in the η(1405) Parti
le Listings.[e℄ For a narrow state A with mass less than 960 MeV.[f ℄ For a narrow s
alar or pseudos
alar A0 with mass 0.21{3.0 GeV.

J/ψ(1S) PARTIAL WIDTHSJ/ψ(1S) PARTIAL WIDTHSJ/ψ(1S) PARTIAL WIDTHSJ/ψ(1S) PARTIAL WIDTHS�(hadrons) �1�(hadrons) �1�(hadrons) �1�(hadrons) �1VALUE (keV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •74.1± 8.1 BAI 95B BES e+ e−59 ±24 BALDINI-... 75 FRAG e+ e−59 ±14 BOYARSKI 75 MRK1 e+ e−50 ±25 ESPOSITO 75B FRAM e+ e−�(e+ e−) �5�(e+ e−) �5�(e+ e−) �5�(e+ e−) �5VALUE (keV) EVTS DOCUMENT ID TECN COMMENT5.55±0.14±0.02 OUR EVALUATION5.55±0.14±0.02 OUR EVALUATION5.55±0.14±0.02 OUR EVALUATION5.55±0.14±0.02 OUR EVALUATION
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.71±0.16 13k 1 ADAMS 06A CLEO e+ e− → µ+µ− γ5.57±0.19 7.8k 1 AUBERT 04 BABR e+ e− → µ+µ− γ5.14±0.39 BAI 95B BES e+ e−5.36+0.29

−0.28 2 HSUEH 92 RVUE See � mini-review4.72±0.35 ALEXANDER 89 RVUE See � mini-review4.4 ±0.6 2 BRANDELIK 79C DASP e+ e−4.6 ±0.8 3 BALDINI-... 75 FRAG e+ e−4.8 ±0.6 BOYARSKI 75 MRK1 e+ e−4.6 ±1.0 ESPOSITO 75B FRAM e+ e−1Cal
ulated by us from the reported values of �(e+ e−)×B(µ+ µ−) using B(µ+µ−) =(5.93 ± 0.06)%.2From a simultaneous �t to e+ e−, µ+µ−, and hadroni
 
hannels assuming �(e+ e−)= �(µ+µ−).3Assuming equal partial widths for e+ e− and µ+µ−.�(µ+µ−) �7�(µ+µ−) �7�(µ+µ−) �7�(µ+µ−) �7VALUE (keV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.13±0.52 BAI 95B BES e+ e−4.8 ±0.6 BOYARSKI 75 MRK1 e+ e−5 ±1 ESPOSITO 75B FRAM e+ e−�(γ γ

) �222�(γ γ
) �222�(γ γ
) �222�(γ γ
) �222VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<5.4<5.4<5.4<5.4 90 BRANDELIK 79C DASP e+ e−J/ψ(1S) �(i)�(e+ e−)/�(total)J/ψ(1S) �(i)�(e+ e−)/�(total)J/ψ(1S) �(i)�(e+ e−)/�(total)J/ψ(1S) �(i)�(e+ e−)/�(total)This 
ombination of a partial width with the partial width into e+ e−and with the total width is obtained from the integrated 
ross se
tion into
hannelI in the e+ e− annihilation.�(hadrons) × �(e+ e−)/�total �1�5/��(hadrons) × �(e+ e−)/�total �1�5/��(hadrons) × �(e+ e−)/�total �1�5/��(hadrons) × �(e+ e−)/�total �1�5/�VALUE (keV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •4 ±0.8 1 BALDINI-... 75 FRAG e+ e−3.9±0.8 1 ESPOSITO 75B FRAM e+ e−1Data redundant with bran
hing ratios or partial widths above.�(e+ e−)

× �(e+ e−)/�total �5�5/��(e+ e−)

× �(e+ e−)/�total �5�5/��(e+ e−)

× �(e+ e−)/�total �5�5/��(e+ e−)

× �(e+ e−)/�total �5�5/�VALUE (eV) DOCUMENT ID TECN COMMENT332.3± 6.4±4.8332.3± 6.4±4.8332.3± 6.4±4.8332.3± 6.4±4.8 ANASHIN 10 KEDR 3.097 e+ e− → e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •350 ± 20 BRANDELIK 79C DASP e+ e−320 ± 70 1 BALDINI-... 75 FRAG e+ e−340 ± 90 1 ESPOSITO 75B FRAM e+ e−360 ±100 1 FORD 75 SPEC e+ e−1Data redundant with bran
hing ratios or partial widths above.�(µ+µ−)

× �(e+ e−)/�total �7�5/��(µ+µ−)

× �(e+ e−)/�total �7�5/��(µ+µ−)

× �(e+ e−)/�total �7�5/��(µ+µ−)

× �(e+ e−)/�total �7�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT334 ± 5 OUR AVERAGE334 ± 5 OUR AVERAGE334 ± 5 OUR AVERAGE334 ± 5 OUR AVERAGE331.8± 5.2±6.3 ANASHIN 10 KEDR 3.097 e+ e− → µ+µ−338.4± 5.8±7.1 13k ADAMS 06A CLEO e+ e− → µ+µ− γ330.1± 7.7±7.3 7.8k AUBERT 04 BABR e+ e− → µ+µ− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •510 ±90 DASP 75 DASP e+ e−380 ±50 1 ESPOSITO 75B FRAM e+ e−1Data redundant with bran
hing ratios or partial widths above.�(ωπ+π−π0) × �(e+ e−)/�total �12�5/��(ωπ+π−π0) × �(e+ e−)/�total �12�5/��(ωπ+π−π0) × �(e+ e−)/�total �12�5/��(ωπ+π−π0) × �(e+ e−)/�total �12�5/�VALUE (10−2 keV) EVTS DOCUMENT ID TECN COMMENT2.2±0.3±0.22.2±0.3±0.22.2±0.3±0.22.2±0.3±0.2 170 AUBERT 06D BABR 10.6 e+ e− → ωπ+π−π0 γ



1374137413741374MesonParti
le ListingsJ/ψ(1S)�(

ωπ+π−)

× �(e+ e−)/�total �13�5/��(

ωπ+π−)

× �(e+ e−)/�total �13�5/��(

ωπ+π−)

× �(e+ e−)/�total �13�5/��(

ωπ+π−)

× �(e+ e−)/�total �13�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT53.6±5.0±0.453.6±5.0±0.453.6±5.0±0.453.6±5.0±0.4 788 1 AUBERT 07AU BABR 10.6 e+ e− → ωπ+π− γ1AUBERT 07AU reports [�(J/ψ(1S) → ωπ+π−
)

× �(J/ψ(1S) → e+ e−)/�total℄
× [B(ω(782) → π+π−π0)℄ = 47.8 ± 3.1 ± 3.2 eV whi
h we divide by our best valueB(ω(782) → π+π−π0) = (89.2 ± 0.7) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(K∗(892)0K∗2(1430)0+ 
.
.) × �(e+ e−)/�total �19�5/��(K∗(892)0K∗2(1430)0+ 
.
.) × �(e+ e−)/�total �19�5/��(K∗(892)0K∗2(1430)0+ 
.
.) × �(e+ e−)/�total �19�5/��(K∗(892)0K∗2(1430)0+ 
.
.) × �(e+ e−)/�total �19�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT33±4±133±4±133±4±133±4±1 317 ± 23 1,2 AUBERT 07AK BABR 10.6 e+ e− → π+π−K+K− γ1Dividing by 2/3 to take into a

ount that B(K∗0 → K+π−) = 2/3.2AUBERT 07AK reports [�(J/ψ(1S) → K∗(892)0K∗2(1430)0+ 
.
.) × �(J/ψ(1S) →e+ e−)/�total℄ × [B(K∗2(1430) → K π)℄ = 16.4 ± 1.1 ± 1.4 eV whi
h we divide byour best value B(K∗2(1430) → K π) = (49.9 ± 1.2) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(K∗(892)0K2(1770)0+ 
.
.→ K∗(892)0K−π++ 
.
.) × �(e+ e−)/�total �20�5/��(K∗(892)0K2(1770)0+ 
.
.→ K∗(892)0K−π++ 
.
.) × �(e+ e−)/�total �20�5/��(K∗(892)0K2(1770)0+ 
.
.→ K∗(892)0K−π++ 
.
.) × �(e+ e−)/�total �20�5/��(K∗(892)0K2(1770)0+ 
.
.→ K∗(892)0K−π++ 
.
.) × �(e+ e−)/�total �20�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT3.8±0.4±0.33.8±0.4±0.33.8±0.4±0.33.8±0.4±0.3 110 ± 14 1 AUBERT 07AK BABR 10.6 e+ e− → π+π−K+K− γ1Dividing by 2/3 to take into a

ount that B(K∗0 → K+π−) = 2/3.�(K+K∗(892)−+ 
.
.) × �(e+ e−)/�total �22�5/��(K+K∗(892)−+ 
.
.) × �(e+ e−)/�total �22�5/��(K+K∗(892)−+ 
.
.) × �(e+ e−)/�total �22�5/��(K+K∗(892)−+ 
.
.) × �(e+ e−)/�total �22�5/�VALUE (eV) DOCUMENT ID TECN COMMENT29.0±1.7±1.329.0±1.7±1.329.0±1.7±1.329.0±1.7±1.3 AUBERT 08S BABR 10.6 e+ e− → K+K∗(892)− γ�(K+K∗(892)−+ 
.
.→ K+K−π0) × �(e+ e−)/�total �23�5/��(K+K∗(892)−+ 
.
.→ K+K−π0) × �(e+ e−)/�total �23�5/��(K+K∗(892)−+ 
.
.→ K+K−π0) × �(e+ e−)/�total �23�5/��(K+K∗(892)−+ 
.
.→ K+K−π0) × �(e+ e−)/�total �23�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT10.96±0.85±0.7010.96±0.85±0.7010.96±0.85±0.7010.96±0.85±0.70 155 AUBERT 08S BABR 10.6 e+ e− → K+K−π0 γ�(K+K∗(892)−+ 
.
.→ K0K±π∓+ 
.
.) × �(e+ e−)/�total �24�5/��(K+K∗(892)−+ 
.
.→ K0K±π∓+ 
.
.) × �(e+ e−)/�total �24�5/��(K+K∗(892)−+ 
.
.→ K0K±π∓+ 
.
.) × �(e+ e−)/�total �24�5/��(K+K∗(892)−+ 
.
.→ K0K±π∓+ 
.
.) × �(e+ e−)/�total �24�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT16.76±1.70±1.0016.76±1.70±1.0016.76±1.70±1.0016.76±1.70±1.00 89 AUBERT 08S BABR 10.6 e+ e− → K0S K±π∓ γ�(K0K∗(892)0+ 
.
.) × �(e+ e−)/�total �25�5/��(K0K∗(892)0+ 
.
.) × �(e+ e−)/�total �25�5/��(K0K∗(892)0+ 
.
.) × �(e+ e−)/�total �25�5/��(K0K∗(892)0+ 
.
.) × �(e+ e−)/�total �25�5/�VALUE (eV) DOCUMENT ID TECN COMMENT26.6±2.5±1.526.6±2.5±1.526.6±2.5±1.526.6±2.5±1.5 AUBERT 08S BABR 10.6 e+ e− → K0K∗(892)0 γ�(K0K∗(892)0+ 
.
.→ K0K±π∓+ 
.
.) × �(e+ e−)/�total �26�5/��(K0K∗(892)0+ 
.
.→ K0K±π∓+ 
.
.) × �(e+ e−)/�total �26�5/��(K0K∗(892)0+ 
.
.→ K0K±π∓+ 
.
.) × �(e+ e−)/�total �26�5/��(K0K∗(892)0+ 
.
.→ K0K±π∓+ 
.
.) × �(e+ e−)/�total �26�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT17.70±1.70±1.0017.70±1.70±1.0017.70±1.70±1.0017.70±1.70±1.00 94 AUBERT 08S BABR 10.6 e+ e− → K0S K±π∓ γ�(

ωK K)

× �(e+ e−)/�total �35�5/��(

ωK K)

× �(e+ e−)/�total �35�5/��(

ωK K)

× �(e+ e−)/�total �35�5/��(

ωK K)

× �(e+ e−)/�total �35�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT3.70±1.98±0.033.70±1.98±0.033.70±1.98±0.033.70±1.98±0.03 24 1 AUBERT 07AU BABR 10.6 e+ e− → ωK+K− γ1AUBERT 07AU reports [�(J/ψ(1S) → ωK K)

× �(J/ψ(1S) → e+ e−)/�total℄ ×[B(ω(782) → π+π−π0)℄ = 3.3 ± 1.3 ± 1.2 eV whi
h we divide by our best valueB(ω(782) → π+π−π0) = (89.2 ± 0.7) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(

φ2(π+π−)) × �(e+ e−)/�total �37�5/��(

φ2(π+π−)) × �(e+ e−)/�total �37�5/��(

φ2(π+π−)) × �(e+ e−)/�total �37�5/��(

φ2(π+π−)) × �(e+ e−)/�total �37�5/�VALUE (10−2 keV) EVTS DOCUMENT ID TECN COMMENT0.96±0.19±0.010.96±0.19±0.010.96±0.19±0.010.96±0.19±0.01 35 1 AUBERT 06D BABR 10.6 e+ e− → φ2(π+π−)γ1AUBERT 06D reports [�(J/ψ(1S) → φ2(π+π−)) × �(J/ψ(1S) → e+ e−)/�total℄
× [B(φ(1020) → K+K−)℄ = (0.47 ± 0.09 ± 0.03) × 10−2 keV whi
h we divide byour best value B(φ(1020) → K+K−) = (48.9 ± 0.5)× 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(

φπ+π−)

× �(e+ e−)/�total �46�5/��(

φπ+π−)

× �(e+ e−)/�total �46�5/��(

φπ+π−)

× �(e+ e−)/�total �46�5/��(

φπ+π−)

× �(e+ e−)/�total �46�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT4.8 ±0.4 OUR AVERAGE4.8 ±0.4 OUR AVERAGE4.8 ±0.4 OUR AVERAGE4.8 ±0.4 OUR AVERAGE4.52±0.48±0.04 254± 23 1 SHEN 09 BELL 10.6 e+ e− →K+K−π+π− γ5.33±0.71±0.05 103 2 AUBERT,BE 06D BABR 10.6 e+ e− →K+K−π+π− γ1SHEN 09 reports 4.50 ± 0.41 ± 0.26 eV from a measurement of [�(J/ψ(1S) →
φπ+π−

)

× �(J/ψ(1S) → e+ e−)/�total℄ × [B(φ(1020) → K+K−)℄ assumingB(φ(1020) → K+K−) = (49.2 ± 0.6) × 10−2, whi
h we res
ale to our best valueB(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.2AUBERT,BE 06D reports [�(J/ψ(1S) → φπ+π−
)

× �(J/ψ(1S) → e+ e−)/�total℄
× [B(φ(1020) → K+K−)℄ = 2.61 ± 0.30 ± 0.18 eV whi
h we divide by our best valueB(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(

φπ0π0) × �(e+ e−)/�total �47�5/��(

φπ0π0) × �(e+ e−)/�total �47�5/��(

φπ0π0) × �(e+ e−)/�total �47�5/��(

φπ0π0) × �(e+ e−)/�total �47�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT3.15±0.88±0.033.15±0.88±0.033.15±0.88±0.033.15±0.88±0.03 23 1 AUBERT,BE 06D BABR 10.6 e+ e− → K+K−π0π0 γ1AUBERT,BE 06D reports [�(J/ψ(1S) → φπ0π0)

× �(J/ψ(1S) → e+ e−)/�total℄
× [B(φ(1020) → K+K−)℄ = 1.54 ± 0.40 ± 0.16 eV whi
h we divide by our best valueB(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.

�(

φη
)

× �(e+ e−)/�total �50�5/��(

φη
)

× �(e+ e−)/�total �50�5/��(

φη
)

× �(e+ e−)/�total �50�5/��(

φη
)

× �(e+ e−)/�total �50�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT6.1±2.7±0.46.1±2.7±0.46.1±2.7±0.46.1±2.7±0.4 6 1 AUBERT 07AU BABR 10.6 e+ e− → φηγ1AUBERT 07AU quotes �J/ψ
ee

· B(J/ψ → φη) · B(φ → K+K−) · B(η → 3π) =0.84 ± 0.37 ± 0.05 eV.�(

φ f0(980)→ φπ+π−)

× �(e+ e−)/�total �57�5/��(

φ f0(980)→ φπ+π−)

× �(e+ e−)/�total �57�5/��(

φ f0(980)→ φπ+π−)

× �(e+ e−)/�total �57�5/��(

φ f0(980)→ φπ+π−)

× �(e+ e−)/�total �57�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT1.21±0.23 OUR AVERAGE1.21±0.23 OUR AVERAGE1.21±0.23 OUR AVERAGE1.21±0.23 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1.48±0.27±0.09 60±11 1 SHEN 09 BELL 10.6 e+ e− → K+K−π+π− γ1.02±0.24±0.01 20 ± 5 2 AUBERT 07AK BABR 10.6 e+ e− → π+π−K+K− γ1Multiplied by 2/3 to take into a

ount the φπ+π− mode only. Using B(φ → K+K−)= (49.2 ± 0.6)%.2AUBERT 07AK reports [�(J/ψ(1S) → φ f0(980) → φπ+π−
)

× �(J/ψ(1S) →e+ e−)/�total℄ × [B(φ(1020) → K+K−)℄ = 0.50 ± 0.11 ± 0.04 eV whi
h we divideby our best value B(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.�(

φ f0(980)→ φπ0π0) × �(e+ e−)/�total �58�5/��(

φ f0(980)→ φπ0π0) × �(e+ e−)/�total �58�5/��(

φ f0(980)→ φπ0π0) × �(e+ e−)/�total �58�5/��(

φ f0(980)→ φπ0π0) × �(e+ e−)/�total �58�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT0.96±0.40±0.010.96±0.40±0.010.96±0.40±0.010.96±0.40±0.01 7.0 ± 2.8 1 AUBERT 07AK BABR 10.6 e+ e− → π0π0K+K− γ1AUBERT 07AK reports [�(J/ψ(1S) → φ f0(980) → φπ0π0)

× �(J/ψ(1S) → e+ e−)/�total℄ × [B(φ(1020) → K+K−)℄ = 0.47 ± 0.19 ± 0.05 eV whi
h we divide by ourbest value B(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(

ηπ+π−)

× �(e+ e−)/�total �68�5/��(

ηπ+π−)

× �(e+ e−)/�total �68�5/��(

ηπ+π−)

× �(e+ e−)/�total �68�5/��(

ηπ+π−)

× �(e+ e−)/�total �68�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT2.23±0.97±0.032.23±0.97±0.032.23±0.97±0.032.23±0.97±0.03 9 1 AUBERT 07AU BABR 10.6 e+ e− → ηπ+π− γ1AUBERT 07AU reports [�(J/ψ(1S) → ηπ+π−
)

× �(J/ψ(1S) → e+ e−)/�total℄ ×[B(η → π+π−π0)℄ = 0.51 ± 0.22 ± 0.03 eV whi
h we divide by our best value B(η →
π+π−π0) = (22.92 ± 0.28)× 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(K∗(892)0K∗(892)0) × �(e+ e−)/�total �15�5/��(K∗(892)0K∗(892)0) × �(e+ e−)/�total �15�5/��(K∗(892)0K∗(892)0) × �(e+ e−)/�total �15�5/��(K∗(892)0K∗(892)0) × �(e+ e−)/�total �15�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT1.28±0.40±0.111.28±0.40±0.111.28±0.40±0.111.28±0.40±0.11 25 ± 8 1 AUBERT 07AK BABR 10.6 e+ e− → π+π−K+K− γ1Dividing by (2/3)2 to take twi
e into a

ount that B(K∗0 → K+π−) = 2/3.�(

φ f2(1270)) × �(e+ e−)/�total �42�5/��(

φ f2(1270)) × �(e+ e−)/�total �42�5/��(

φ f2(1270)) × �(e+ e−)/�total �42�5/��(

φ f2(1270)) × �(e+ e−)/�total �42�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT4.05±0.73+0.04
−0.144.05±0.73+0.04
−0.144.05±0.73+0.04
−0.144.05±0.73+0.04
−0.14 44 ± 7 1,2 AUBERT 07AK BABR 10.6 e+ e− →

π+π−K+K− γ1Using B(φ → (K + K)−) = (49.3 ± 0.6)%.2AUBERT 07AK reports [�(J/ψ(1S) → φ f2(1270)) × �(J/ψ(1S) → e+ e−)/�total℄
× [B(f2(1270) → ππ)℄ = 3.41 ± 0.55 ± 0.28 eV whi
h we divide by our best valueB(f2(1270) → ππ) = (84.2+2.9

−0.9) × 10−2. Our �rst error is their experiment's errorand our se
ond error is the systemati
 error from using our best value.�(2(π+π−)π0) × �(e+ e−)/�total �94�5/��(2(π+π−)π0) × �(e+ e−)/�total �94�5/��(2(π+π−)π0) × �(e+ e−)/�total �94�5/��(2(π+π−)π0) × �(e+ e−)/�total �94�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT303±5±18303±5±18303±5±18303±5±18 4990 AUBERT 07AU BABR 10.6 e+ e− → 2(π+π−)π0 γ�(

π+π−π0) × �(e+ e−)/�total �96�5/��(

π+π−π0) × �(e+ e−)/�total �96�5/��(

π+π−π0) × �(e+ e−)/�total �96�5/��(

π+π−π0) × �(e+ e−)/�total �96�5/�VALUE (keV) DOCUMENT ID TECN COMMENT0.122±0.005±0.0080.122±0.005±0.0080.122±0.005±0.0080.122±0.005±0.008 AUBERT,B 04N BABR 10.6 e+ e− → π+π−π0 γ�(

π+π−π0K+K−)

× �(e+ e−)/�total �97�5/��(

π+π−π0K+K−)

× �(e+ e−)/�total �97�5/��(

π+π−π0K+K−)

× �(e+ e−)/�total �97�5/��(

π+π−π0K+K−)

× �(e+ e−)/�total �97�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT107.0±4.3±6.4107.0±4.3±6.4107.0±4.3±6.4107.0±4.3±6.4 768 AUBERT 07AU BABR 10.6 e+ e− → K+K−π+π−π0 γ�(

π+π−K+K−)

× �(e+ e−)/�total �99�5/��(

π+π−K+K−)

× �(e+ e−)/�total �99�5/��(

π+π−K+K−)

× �(e+ e−)/�total �99�5/��(

π+π−K+K−)

× �(e+ e−)/�total �99�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT36.3±1.3±2.136.3±1.3±2.136.3±1.3±2.136.3±1.3±2.1 1586± 58 AUBERT 07AK BABR 10.6 e+ e− → π+π−K+K− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •33.6±2.7±2.7 233 1 AUBERT 05D BABR 10.6 e+ e− → K+K−π+π− γ1Superseded by AUBERT 07AK.�(

π+π−K+K−η
)

× �(e+ e−)/�total �100�5/��(

π+π−K+K−η
)

× �(e+ e−)/�total �100�5/��(

π+π−K+K−η
)

× �(e+ e−)/�total �100�5/��(

π+π−K+K−η
)

× �(e+ e−)/�total �100�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT25.9±3.9±0.125.9±3.9±0.125.9±3.9±0.125.9±3.9±0.1 73 1 AUBERT 07AU BABR 10.6 e+ e− → K+K−π+π− ηγ1AUBERT 07AU reports [�(J/ψ(1S) → π+π−K+K− η
)

× �(J/ψ(1S) → e+ e−)/�total℄ × [B(η → 2γ)℄ = 10.2 ± 1.3 ± 0.8 eV whi
h we divide by our best value B(η →2γ) = (39.41 ± 0.20)× 10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.�(

π0π0K+K−)

× �(e+ e−)/�total �101�5/��(

π0π0K+K−)

× �(e+ e−)/�total �101�5/��(

π0π0K+K−)

× �(e+ e−)/�total �101�5/��(

π0π0K+K−)

× �(e+ e−)/�total �101�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT13.6±1.1±1.313.6±1.1±1.313.6±1.1±1.313.6±1.1±1.3 203 ± 16 AUBERT 07AK BABR 10.6 e+ e− → π0π0K+K− γ



1375137513751375See key on page 601 MesonParti
le ListingsJ/ψ(1S)�(2(π+π−)) × �(e+ e−)/�total �103�5/��(2(π+π−)) × �(e+ e−)/�total �103�5/��(2(π+π−)) × �(e+ e−)/�total �103�5/��(2(π+π−)) × �(e+ e−)/�total �103�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT20.4±0.9±0.420.4±0.9±0.420.4±0.9±0.420.4±0.9±0.4 LEES 12E BABR 10.6 e+ e− → 2π+2π− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •19.5±1.4±1.3 270 1 AUBERT 05D BABR 10.6 e+ e− → 2(π+π−)γ1Superseded by LEES 12E.�(3(π+π−)) × �(e+ e−)/�total �104�5/��(3(π+π−)) × �(e+ e−)/�total �104�5/��(3(π+π−)) × �(e+ e−)/�total �104�5/��(3(π+π−)) × �(e+ e−)/�total �104�5/�VALUE (10−2 keV) EVTS DOCUMENT ID TECN COMMENT2.37±0.16±0.142.37±0.16±0.142.37±0.16±0.142.37±0.16±0.14 496 AUBERT 06D BABR 10.6 e+ e− → 3(π+π−)γ�(2(π+π−π0)) × �(e+ e−)/�total �105�5/��(2(π+π−π0)) × �(e+ e−)/�total �105�5/��(2(π+π−π0)) × �(e+ e−)/�total �105�5/��(2(π+π−π0)) × �(e+ e−)/�total �105�5/�VALUE (10−2 keV) EVTS DOCUMENT ID TECN COMMENT8.9±0.5±1.08.9±0.5±1.08.9±0.5±1.08.9±0.5±1.0 761 AUBERT 06D BABR 10.6 e+ e− → 2(π+π−π0)γ�(2(π+π−)η)

× �(e+ e−)/�total �106�5/��(2(π+π−)η)

× �(e+ e−)/�total �106�5/��(2(π+π−)η)

× �(e+ e−)/�total �106�5/��(2(π+π−)η)

× �(e+ e−)/�total �106�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT13.1±2.4±0.113.1±2.4±0.113.1±2.4±0.113.1±2.4±0.1 85 1 AUBERT 07AU BABR 10.6 e+ e− → 2(π+π−)ηγ1AUBERT 07AU reports [�(J/ψ(1S) → 2(π+π−)η)

× �(J/ψ(1S) → e+ e−)/�total℄
× [B(η → 2γ)℄ = 5.16 ± 0.85 ± 0.39 eV whi
h we divide by our best value B(η →2γ) = (39.41 ± 0.20)× 10−2. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.�(pp) × �(e+ e−)/�total �108�5/��(pp) × �(e+ e−)/�total �108�5/��(pp) × �(e+ e−)/�total �108�5/��(pp) × �(e+ e−)/�total �108�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT11.9±0.5 OUR AVERAGE11.9±0.5 OUR AVERAGE11.9±0.5 OUR AVERAGE11.9±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.11.3±0.4±0.3 821 LEES 13O BABR e+ e− → pp γ12.9±0.4±0.4 918 LEES 13Y BABR e+ e− → pp γ12.0±0.6±0.5 438 AUBERT 06B e+ e− → pp γ9.7±1.7 1 ARMSTRONG 93B E760 pp → e+ e−1Using �total = 85.5+6.1

−5.8 MeV.
WEIGHTED AVERAGE
11.9±0.5 (Error scaled by 1.4)

ARMSTRONG 93B E760 1.7
AUBERT 06B 0.0
LEES 13Y BABR 3.0
LEES 13O BABR 1.5

χ2

       6.3
(Confidence Level = 0.100)

6 8 10 12 14 16 18�(pp)

× �(e+ e−)/�total (eV)�(�0�0)
× �(e+ e−)/�total �121�5/��(�0�0)
× �(e+ e−)/�total �121�5/��(�0�0)
× �(e+ e−)/�total �121�5/��(�0�0)
× �(e+ e−)/�total �121�5/�VALUE (eV) DOCUMENT ID TECN COMMENT6.4±1.2±0.66.4±1.2±0.66.4±1.2±0.66.4±1.2±0.6 AUBERT 07BD BABR 10.6 e+ e− → �0�0 γ�(2(π+π−)K+K−)

× �(e+ e−)/�total �122�5/��(2(π+π−)K+K−)

× �(e+ e−)/�total �122�5/��(2(π+π−)K+K−)

× �(e+ e−)/�total �122�5/��(2(π+π−)K+K−)

× �(e+ e−)/�total �122�5/�VALUE (10−2 keV) EVTS DOCUMENT ID TECN COMMENT2.75±0.23±0.172.75±0.23±0.172.75±0.23±0.172.75±0.23±0.17 205 AUBERT 06D BABR 10.6 e+ e− →K+K− 2(π+π−)γ�(��)

× �(e+ e−)/�total �128�5/��(��)

× �(e+ e−)/�total �128�5/��(��)

× �(e+ e−)/�total �128�5/��(��)

× �(e+ e−)/�total �128�5/�VALUE (eV) DOCUMENT ID TECN COMMENT10.7±0.9±0.710.7±0.9±0.710.7±0.9±0.710.7±0.9±0.7 AUBERT 07BD BABR 10.6 e+ e− → ��γ�(2(K+K−)) × �(e+ e−)/�total �131�5/��(2(K+K−)) × �(e+ e−)/�total �131�5/��(2(K+K−)) × �(e+ e−)/�total �131�5/��(2(K+K−)) × �(e+ e−)/�total �131�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT4.11±0.39±0.304.11±0.39±0.304.11±0.39±0.304.11±0.39±0.30 156 ± 15 AUBERT 07AK BABR 10.6 e+ e− → 2(K+K−)γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.0 ±0.7 ±0.6 38 1 AUBERT 05D BABR 10.6 e+ e− → 2(K+K−)γ1Superseded by AUBERT 07AK.

�(K+K−)

× �(e+ e−)/�total �133�5/��(K+K−)

× �(e+ e−)/�total �133�5/��(K+K−)

× �(e+ e−)/�total �133�5/��(K+K−)

× �(e+ e−)/�total �133�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.78±0.11±0.05 462 1 LEES 15J BABR e+ e− → K+K− γ1.94±0.11±0.05 462 2 LEES 15J BABR e+ e− → K+K− γ1.42±0.23±0.08 51 3 LEES 13Q BABR e+ e− → K+K− γ1 sinφ > 0.2 sinφ < 0.3 Interferen
e with non-resonant K+K− produ
tion not taken into a

ount.J/ψ(1S) BRANCHING RATIOSJ/ψ(1S) BRANCHING RATIOSJ/ψ(1S) BRANCHING RATIOSJ/ψ(1S) BRANCHING RATIOSFor the �rst four bran
hing ratios, see also the partial widths, and (partialwidths) × �(e+ e−)/�total above.�(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.877±0.005 OUR AVERAGE0.877±0.005 OUR AVERAGE0.877±0.005 OUR AVERAGE0.877±0.005 OUR AVERAGE0.878±0.005 BAI 95B BES e+ e−0.86 ±0.02 BOYARSKI 75 MRK1 e+ e−�(virtualγ → hadrons)/�total �2/��(virtualγ → hadrons)/�total �2/��(virtualγ → hadrons)/�total �2/��(virtualγ → hadrons)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.135±0.0030.135±0.0030.135±0.0030.135±0.003 1,2 SETH 04 RVUE e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.17 ±0.02 1 BOYARSKI 75 MRK1 e+ e−1 In
luded in �(hadrons)/�total.2Using B(J/ψ → ℓ+ ℓ−) = (5.90 ± 0.09)% from RPP-2002 and R = 2.28 ± 0.04determined by a �t to data from BAI 00 and BAI 02C.�(g g g)/�total �3/��(g g g)/�total �3/��(g g g)/�total �3/��(g g g)/�total �3/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT64.1±1.064.1±1.064.1±1.064.1±1.0 6 M 1 BESSON 08 CLEO ψ(2S) → π+π−+ hadrons1Cal
ulated using the value �(γ g g)/�(g g g) = 0.137 ± 0.001 ± 0.016 ± 0.004 fromBESSON 08 and the PDG 08 values of B(ℓ+ ℓ−), B(virtual γ → hadrons), and B(γ η
 ).The statisti
al error is negligible and the systemati
 error is partially 
orrelated with thatof �(γ g g)/�total measurement of BESSON 08.�(γ g g)/�total �4/��(γ g g)/�total �4/��(γ g g)/�total �4/��(γ g g)/�total �4/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT8.79±1.058.79±1.058.79±1.058.79±1.05 200 k 1 BESSON 08 CLEO ψ(2S) → π+π− γ + hadrons1Cal
ulated using the value �(γ g g)/�(g g g) = 0.137 ± 0.001 ± 0.016 ± 0.004 fromBESSON 08 and the value of �(g g g)/�total . The statisti
al error is negligible andthe systemati
 error is partially 
orrelated with that of �(g g g)/�total measurement ofBESSON 08.�(γ g g)/�(g g g) �4/�3�(γ g g)/�(g g g) �4/�3�(γ g g)/�(g g g) �4/�3�(γ g g)/�(g g g) �4/�3VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT13.7±0.1±0.713.7±0.1±0.713.7±0.1±0.713.7±0.1±0.7 6 M BESSON 08 CLEO ψ(2S) → π+π− J/ψ�(e+ e−)/�total �5/��(e+ e−)/�total �5/��(e+ e−)/�total �5/��(e+ e−)/�total �5/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.971±0.032 OUR AVERAGE5.971±0.032 OUR AVERAGE5.971±0.032 OUR AVERAGE5.971±0.032 OUR AVERAGE5.983±0.007±0.037 720k ABLIKIM 13R BES3 ψ(2S) → J/ψπ+ π−5.945±0.067±0.042 15k LI 05C CLEO ψ(2S) → J/ψπ+ π−5.90 ±0.05 ±0.10 BAI 98D BES ψ(2S) → J/ψπ+ π−6.09 ±0.33 BAI 95B BES e+ e−5.92 ±0.15 ±0.20 COFFMAN 92 MRK3 ψ(2S) → J/ψπ+ π−6.9 ±0.9 BOYARSKI 75 MRK1 e+ e−�(e+ e−γ

)/�total �6/��(e+ e−γ
)/�total �6/��(e+ e−γ
)/�total �6/��(e+ e−γ
)/�total �6/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT8.8±1.3±0.48.8±1.3±0.48.8±1.3±0.48.8±1.3±0.4 1 ARMSTRONG 96 E760 pp → e+ e− γ1For Eγ > 100 MeV.�(µ+µ−)/�total �7/��(µ+µ−)/�total �7/��(µ+µ−)/�total �7/��(µ+µ−)/�total �7/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.961±0.033 OUR AVERAGE5.961±0.033 OUR AVERAGE5.961±0.033 OUR AVERAGE5.961±0.033 OUR AVERAGE5.973±0.007±0.038 770k ABLIKIM 13R BES3 ψ(2S) → J/ψπ+ π−5.960±0.065±0.050 17k LI 05C CLEO ψ(2S) → J/ψπ+ π−5.84 ±0.06 ±0.10 BAI 98D BES ψ(2S) → J/ψπ+ π−6.08 ±0.33 BAI 95B BES e+ e−5.90 ±0.15 ±0.19 COFFMAN 92 MRK3 ψ(2S) → J/ψπ+ π−6.9 ±0.9 BOYARSKI 75 MRK1 e+ e−



1376137613761376MesonParti
le ListingsJ/ψ(1S)�(e+ e−)/�(µ+µ−) �5/�7�(e+ e−)/�(µ+µ−) �5/�7�(e+ e−)/�(µ+µ−) �5/�7�(e+ e−)/�(µ+µ−) �5/�7VALUE DOCUMENT ID TECN COMMENT1.0016±0.0031 OUR AVERAGE1.0016±0.0031 OUR AVERAGE1.0016±0.0031 OUR AVERAGE1.0016±0.0031 OUR AVERAGE1.0022±0.0044±0.0048 1 AULCHENKO 14 KEDR 3.097 e+ e− → e+ e−,µ+µ−1.0017±0.0017±0.0033 2 ABLIKIM 13R BES3 ψ(2S) → J/ψπ+π−1.002 ±0.021 ±0.013 3 ANASHIN 10 KEDR 3.097 e+ e− → e+ e−,µ+µ−0.997 ±0.012 ±0.006 LI 05C CLEO ψ(2S) → J/ψπ+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.011 ±0.013 ±0.016 BAI 98D BES ψ(2S) → J/ψπ+π−1.00 ±0.07 BAI 95B BES e+ e−1.00 ±0.05 BOYARSKI 75 MRK1 e+ e−0.91 ±0.15 ESPOSITO 75B FRAM e+ e−0.93 ±0.10 FORD 75 SPEC e+ e−1From 235.3k J/ψ → e+ e− and 156.6k J/ψ → µ+µ− observed events.2Not independent of the 
orresponding measurements of �(e+ e-)/�total and �(mu+mu-)/�total.3Not independent of the 
orresponding measurements of �(e+ e−) × �(e+ e−)/�totaland �(µ+µ−) × �(e+ e−)/�total.HADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYS�(ρπ

)/�total �8/��(ρπ
)/�total �8/��(ρπ
)/�total �8/��(ρπ
)/�total �8/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.69 ±0.15 OUR AVERAGE1.69 ±0.15 OUR AVERAGE1.69 ±0.15 OUR AVERAGE1.69 ±0.15 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogram below.2.18 ±0.19 1,2 AUBERT,B 04N BABR 10.6 e+ e− →

π+π−π0 γ2.184±0.005±0.201 220k 2,3 BAI 04H BES e+ e− → J/ψ →
π+π−π02.091±0.021±0.116 2,4 BAI 04H BES ψ(2S) → π+π− J/ψ1.21 ±0.20 BAI 96D BES e+ e− → ρπ1.42 ±0.01 ±0.19 COFFMAN 88 MRK3 e+ e−1.3 ±0.3 150 FRANKLIN 83 MRK2 e+ e−1.6 ±0.4 183 ALEXANDER 78 PLUT e+ e−1.33 ±0.21 BRANDELIK 78B DASP e+ e−1.0 ±0.2 543 BARTEL 76 CNTR e+ e−1.3 ±0.3 153 JEAN-MARIE 76 MRK1 e+ e−1From the ratio of �(e+ e−) B(π+π−π0) and �(e+ e−) B(µ+ µ−) (AUBERT 04).2Not independent of their B(π+π−π0).3 From J/ψ → π+π−π0 events dire
tly.4Obtained 
omparing the rates for π+π−π0 and µ+µ−, using J/ψ events produ
ed via

ψ(2S) → π+π− J/ψ and with B(J/ψ → µ+µ−) = 5.88 ± 0.10%.
WEIGHTED AVERAGE
1.69±0.15 (Error scaled by 2.4)

JEAN-MARIE 76 MRK1 1.7
BARTEL 76 CNTR 12.0
BRANDELIK 78B DASP 3.0
ALEXANDER 78 PLUT 0.1
FRANKLIN 83 MRK2 1.7
COFFMAN 88 MRK3 2.0
BAI 96D BES 5.8
BAI 04H BES 11.4
BAI 04H BES 6.0
AUBERT,B 04N BABR 6.6

χ2

      50.3
(Confidence Level < 0.0001)

0 0.5 1 1.5 2 2.5 3 3.5�(

ρπ
)/�total (units 10−2)�(ρ0π0)/�(ρπ
) �9/�8�(ρ0π0)/�(ρπ
) �9/�8�(ρ0π0)/�(ρπ
) �9/�8�(ρ0π0)/�(ρπ
) �9/�8VALUE DOCUMENT ID TECN COMMENT0.328±0.005±0.0270.328±0.005±0.0270.328±0.005±0.0270.328±0.005±0.027 COFFMAN 88 MRK3 e+ e−

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.35 ±0.08 ALEXANDER 78 PLUT e+ e−0.32 ±0.08 BRANDELIK 78B DASP e+ e−0.39 ±0.11 BARTEL 76 CNTR e+ e−0.37 ±0.09 JEAN-MARIE 76 MRK1 e+ e−�(a2(1320)ρ)/�total �10/��(a2(1320)ρ)/�total �10/��(a2(1320)ρ)/�total �10/��(a2(1320)ρ)/�total �10/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT10.9±2.2 OUR AVERAGE10.9±2.2 OUR AVERAGE10.9±2.2 OUR AVERAGE10.9±2.2 OUR AVERAGE11.7±0.7±2.5 7584 AUGUSTIN 89 DM2 J/ψ → ρ0 ρ±π∓8.4±4.5 36 VANNUCCI 77 MRK1 e+ e− → 2(π+π−)π0�(ωπ+π+π−π−)/�total �11/��(ωπ+π+π−π−)/�total �11/��(ωπ+π+π−π−)/�total �11/��(ωπ+π+π−π−)/�total �11/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT85±3485±3485±3485±34 140 VANNUCCI 77 MRK1 e+ e− → 3(π+π−)π0

�(ωπ+π−π0)/�total �12/��(ωπ+π−π0)/�total �12/��(ωπ+π−π0)/�total �12/��(ωπ+π−π0)/�total �12/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.40±0.06±0.040.40±0.06±0.040.40±0.06±0.040.40±0.06±0.04 170 1 AUBERT 06D BABR 10.6 e+ e− → ωπ+π−π0 γ1Using �(J/ψ → e+ e−) = 5.52 ± 0.14 ± 0.04 keV.�(ωπ+π−)/�total �13/��(ωπ+π−)/�total �13/��(ωπ+π−)/�total �13/��(ωπ+π−)/�total �13/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT8.6±0.7 OUR AVERAGE8.6±0.7 OUR AVERAGE8.6±0.7 OUR AVERAGE8.6±0.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.9.7±0.6±0.6 788 1 AUBERT 07AU BABR 10.6 e+ e− → ωπ+π− γ7.0±1.6 18058 AUGUSTIN 89 DM2 J/ψ → 2(π+π−)π07.8±1.6 215 BURMESTER 77D PLUT e+ e−6.8±1.9 348 VANNUCCI 77 MRK1 e+ e− → 2(π+π−)π01AUBERT 07AU quotes �J/ψ
ee

·B(J/ψ → ωπ+π−) ·B(ω → 3π) = 47.8 ± 3.1± 3.2 eV.�(ω f2(1270))/�total �14/��(ω f2(1270))/�total �14/��(ω f2(1270))/�total �14/��(ω f2(1270))/�total �14/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.3±0.6 OUR AVERAGE4.3±0.6 OUR AVERAGE4.3±0.6 OUR AVERAGE4.3±0.6 OUR AVERAGE4.3±0.2±0.6 5860 AUGUSTIN 89 DM2 e+ e−4.0±1.6 70 BURMESTER 77D PLUT e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.9±0.8 81 VANNUCCI 77 MRK1 e+ e− → 2(π+π−)π0�(K∗(892)0K∗(892)0)/�total �15/��(K∗(892)0K∗(892)0)/�total �15/��(K∗(892)0K∗(892)0)/�total �15/��(K∗(892)0K∗(892)0)/�total �15/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT2.3±0.7±0.12.3±0.7±0.12.3±0.7±0.12.3±0.7±0.1 25 ± 8 1 AUBERT 07AK BABR 10.6 e+ e− →

π+π−K+K− γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5 90 VANNUCCI 77 MRK1 e+ e− → π+π−K+K−1AUBERT 07AK reports [�(J/ψ(1S) → K∗(892)0K∗(892)0)/�total℄ × [�(J/ψ(1S) →e+ e−)℄ = (1.28 ± 0.40 ± 0.11) × 10−3 keV whi
h we divide by our best value�(J/ψ(1S) → e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(K∗(892)±K∗(892)∓)/�total �16/��(K∗(892)±K∗(892)∓)/�total �16/��(K∗(892)±K∗(892)∓)/�total �16/��(K∗(892)±K∗(892)∓)/�total �16/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.00±0.19+0.11

−0.321.00±0.19+0.11
−0.321.00±0.19+0.11
−0.321.00±0.19+0.11
−0.32 323 ABLIKIM 10E BES2 J/ψ → K±K0S π∓π0�(K∗(892)±K∗(800)∓)/�total �17/��(K∗(892)±K∗(800)∓)/�total �17/��(K∗(892)±K∗(800)∓)/�total �17/��(K∗(892)±K∗(800)∓)/�total �17/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.09±0.18+0.94
−0.541.09±0.18+0.94
−0.541.09±0.18+0.94
−0.541.09±0.18+0.94
−0.54 655 ABLIKIM 10E BES2 J/ψ → K±K0S π∓π0�(ηK∗(892)0K∗(892)0)/�total �18/��(ηK∗(892)0K∗(892)0)/�total �18/��(ηK∗(892)0K∗(892)0)/�total �18/��(ηK∗(892)0K∗(892)0)/�total �18/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.15±0.13±0.221.15±0.13±0.221.15±0.13±0.221.15±0.13±0.22 209 ABLIKIM 10C BES2 J/ψ → ηK+π−K−π+�(K∗(892)0K∗2(1430)0+ 
.
.)/�total �19/��(K∗(892)0K∗2(1430)0+ 
.
.)/�total �19/��(K∗(892)0K∗2(1430)0+ 
.
.)/�total �19/��(K∗(892)0K∗2(1430)0+ 
.
.)/�total �19/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT6.0±0.6 OUR AVERAGE6.0±0.6 OUR AVERAGE6.0±0.6 OUR AVERAGE6.0±0.6 OUR AVERAGE5.9±0.6±0.2 317 ± 23 1,2 AUBERT 07AK BABR 10.6 e+ e− →

π+π−K+K−γ6.7±2.6 40 VANNUCCI 77 MRK1 e+ e− → π+π−K+K−1Using B(K∗2(1430)0 → K π) = (49.9 ± 1.2)%.2AUBERT 07AK reports [�(J/ψ(1S) → K∗(892)0K∗2(1430)0+ 
.
.)/�total℄ ×[�(J/ψ(1S) → e+ e−)℄ = (32.9 ± 2.3 ± 2.7) × 10−3 keV whi
h we divide by ourbest value �(J/ψ(1S) → e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(ωK∗(892)K+ 
.
.)/�total �21/��(ωK∗(892)K+ 
.
.)/�total �21/��(ωK∗(892)K+ 
.
.)/�total �21/��(ωK∗(892)K+ 
.
.)/�total �21/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT61 ± 9 OUR AVERAGE61 ± 9 OUR AVERAGE61 ± 9 OUR AVERAGE61 ± 9 OUR AVERAGE62.0± 6.8±10.6 899 ± 98 ABLIKIM 08E BES2 J/ψ → ωK0S K±π∓65.3±10.2±13.5 176 ± 28 ABLIKIM 08E BES2 J/ψ → ωK+K−π053 ±14 ±14 530± 140 BECKER 87 MRK3 e+ e− → hadrons�(K+K∗(892)−+ 
.
.)/�total �22/��(K+K∗(892)−+ 
.
.)/�total �22/��(K+K∗(892)−+ 
.
.)/�total �22/��(K+K∗(892)−+ 
.
.)/�total �22/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT5.12±0.30 OUR AVERAGE5.12±0.30 OUR AVERAGE5.12±0.30 OUR AVERAGE5.12±0.30 OUR AVERAGE5.2 ±0.4 ±0.1 1 AUBERT 08S BABR 10.6 e+ e− →K+K∗(892)− γ4.57±0.17±0.70 2285 JOUSSET 90 DM2 J/ψ → hadrons5.26±0.13±0.53 COFFMAN 88 MRK3 J/ψ → K±K0S π∓,K+K−π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.6 ±0.6 24 FRANKLIN 83 MRK2 J/ψ → K+K−π03.2 ±0.6 48 VANNUCCI 77 MRK1 J/ψ → K±K0S π∓4.1 ±1.2 39 BRAUNSCH... 76 DASP J/ψ → K±X1AUBERT 08S reports [�(J/ψ(1S) → K+K∗(892)−+ 
.
.)/�total℄ × [�(J/ψ(1S) →e+ e−)℄ = (29.0±1.7±1.3)×10−3 keV whi
h we divide by our best value �(J/ψ(1S) →e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.



1377137713771377See key on page 601 Meson Parti
le ListingsJ/ψ(1S)�(K+K∗(892)−+ 
.
.→ K+K−π0)/�total �23/��(K+K∗(892)−+ 
.
.→ K+K−π0)/�total �23/��(K+K∗(892)−+ 
.
.→ K+K−π0)/�total �23/��(K+K∗(892)−+ 
.
.→ K+K−π0)/�total �23/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.97±0.20±0.051.97±0.20±0.051.97±0.20±0.051.97±0.20±0.05 155 1 AUBERT 08S BABR 10.6 e+ e− → K+K−π0 γ1AUBERT 08S reports [�(J/ψ(1S) → K+K∗(892)−+ 
.
. → K+K−π0)/�total℄ ×[�(J/ψ(1S) → e+ e−)℄ = (10.96 ± 0.85 ± 0.70)× 10−3 keV whi
h we divide by ourbest value �(J/ψ(1S) → e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(K+K∗(892)−+ 
.
.→ K0K±π∓+ 
.
.)/�total �24/��(K+K∗(892)−+ 
.
.→ K0K±π∓+ 
.
.)/�total �24/��(K+K∗(892)−+ 
.
.→ K0K±π∓+ 
.
.)/�total �24/��(K+K∗(892)−+ 
.
.→ K0K±π∓+ 
.
.)/�total �24/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.0±0.4±0.13.0±0.4±0.13.0±0.4±0.13.0±0.4±0.1 89 1 AUBERT 08S BABR 10.6 e+ e− → K0S K±π∓ γ1AUBERT 08S reports [�(J/ψ(1S) → K+K∗(892)−+ 
.
. → K0K±π∓+ 
.
.)/�total℄ × [�(J/ψ(1S) → e+ e−)℄ = (16.76 ± 1.70 ± 1.00) × 10−3 keV whi
h wedivide by our best value �(J/ψ(1S) → e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.�(K0K∗(892)0+ 
.
.)/�total �25/��(K0K∗(892)0+ 
.
.)/�total �25/��(K0K∗(892)0+ 
.
.)/�total �25/��(K0K∗(892)0+ 
.
.)/�total �25/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.39±0.31 OUR AVERAGE4.39±0.31 OUR AVERAGE4.39±0.31 OUR AVERAGE4.39±0.31 OUR AVERAGE4.8 ±0.5 ±0.1 1 AUBERT 08S BABR 10.6 e+ e− →K0K∗(892)0 γ3.96±0.15±0.60 1192 JOUSSET 90 DM2 J/ψ → hadrons4.33±0.12±0.45 COFFMAN 88 MRK3 J/ψ → K±K0S π∓

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.7 ±0.6 45 VANNUCCI 77 MRK1 J/ψ → K±K0S π∓1AUBERT 08S reports [�(J/ψ(1S) → K0K∗(892)0+ 
.
.)/�total℄ × [�(J/ψ(1S) →e+ e−)℄ = (26.6±2.5±1.5)×10−3 keV whi
h we divide by our best value �(J/ψ(1S) →e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(K0K∗(892)0+ 
.
.)/�(K+K∗(892)−+ 
.
.) �25/�22�(K0K∗(892)0+ 
.
.)/�(K+K∗(892)−+ 
.
.) �25/�22�(K0K∗(892)0+ 
.
.)/�(K+K∗(892)−+ 
.
.) �25/�22�(K0K∗(892)0+ 
.
.)/�(K+K∗(892)−+ 
.
.) �25/�22VALUE DOCUMENT ID TECN COMMENT0.82±0.05±0.090.82±0.05±0.090.82±0.05±0.090.82±0.05±0.09 COFFMAN 88 MRK3 J/ψ → K K∗(892)+
.
.�(K0K∗(892)0+ 
.
.→ K0K±π∓+ 
.
.)/�total �26/��(K0K∗(892)0+ 
.
.→ K0K±π∓+ 
.
.)/�total �26/��(K0K∗(892)0+ 
.
.→ K0K±π∓+ 
.
.)/�total �26/��(K0K∗(892)0+ 
.
.→ K0K±π∓+ 
.
.)/�total �26/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.2±0.4±0.13.2±0.4±0.13.2±0.4±0.13.2±0.4±0.1 94 1 AUBERT 08S BABR 10.6 e+ e− → K0S K±π∓ γ1AUBERT 08S reports [�(J/ψ(1S) → K0K∗(892)0+ 
.
.→ K0K±π∓+ 
.
.)/�total℄
× [�(J/ψ(1S) → e+ e−)℄ = (17.70 ± 1.70 ± 1.00) × 10−3 keV whi
h we divide byour best value �(J/ψ(1S) → e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(K1(1400)±K∓)/�total �27/��(K1(1400)±K∓)/�total �27/��(K1(1400)±K∓)/�total �27/��(K1(1400)±K∓)/�total �27/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.8±0.8±1.23.8±0.8±1.23.8±0.8±1.23.8±0.8±1.2 1 BAI 99C BES e+ e−1Assuming B(K1(1400) → K∗π)=0.94 ± 0.06�(K∗(892)0K+π−+ 
.
.)/�total �28/��(K∗(892)0K+π−+ 
.
.)/�total �28/��(K∗(892)0K+π−+ 
.
.)/�total �28/��(K∗(892)0K+π−+ 
.
.)/�total �28/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 ABLIKIM 06C BES2 J/ψ → K∗(892)0K+π−1A K∗0(800) is observed by ABLIKIM 06C in the K+π− mass spe
trum of theK∗(892)0K+π− �nal state against the K∗(892). A 
orresponding bran
hing fra
tionof the J/ψ(1S) is not presented.�(

ωπ0π0)/�total �29/��(

ωπ0π0)/�total �29/��(

ωπ0π0)/�total �29/��(

ωπ0π0)/�total �29/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.4±0.3±0.73.4±0.3±0.73.4±0.3±0.73.4±0.3±0.7 509 AUGUSTIN 89 DM2 J/ψ → π+π− 3π0�(b1(1235)±π∓)/�total �30/��(b1(1235)±π∓)/�total �30/��(b1(1235)±π∓)/�total �30/��(b1(1235)±π∓)/�total �30/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT30±5 OUR AVERAGE30±5 OUR AVERAGE30±5 OUR AVERAGE30±5 OUR AVERAGE31±6 4600 AUGUSTIN 89 DM2 J/ψ → 2(π+π−)π029±7 87 BURMESTER 77D PLUT e+ e−�(

ωK±K0S π∓)/�total �31/��(

ωK±K0S π∓)/�total �31/��(

ωK±K0S π∓)/�total �31/��(

ωK±K0S π∓)/�total �31/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT34 ±5 OUR AVERAGE34 ±5 OUR AVERAGE34 ±5 OUR AVERAGE34 ±5 OUR AVERAGE37.7±0.8±5.8 1972± 41 ABLIKIM 08E BES2 e+ e− → J/ψ29.5±1.4±7.0 879 ± 41 BECKER 87 MRK3 e+ e− → hadrons�(b1(1235)0π0)/�total �32/��(b1(1235)0π0)/�total �32/��(b1(1235)0π0)/�total �32/��(b1(1235)0π0)/�total �32/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT23±3±523±3±523±3±523±3±5 229 AUGUSTIN 89 DM2 e+ e−�(

ηK±K0S π∓)/�total �33/��(

ηK±K0S π∓)/�total �33/��(

ηK±K0S π∓)/�total �33/��(

ηK±K0S π∓)/�total �33/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT21.8±2.2±3.421.8±2.2±3.421.8±2.2±3.421.8±2.2±3.4 232 ± 23 ABLIKIM 08E BES2 e+ e− → J/ψ

�(

φK∗(892)K+ 
.
.)/�total �34/��(

φK∗(892)K+ 
.
.)/�total �34/��(

φK∗(892)K+ 
.
.)/�total �34/��(

φK∗(892)K+ 
.
.)/�total �34/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT21.8±2.3 OUR AVERAGE21.8±2.3 OUR AVERAGE21.8±2.3 OUR AVERAGE21.8±2.3 OUR AVERAGE20.8±2.7±3.9 195 ± 25 ABLIKIM 08E BES2 J/ψ → φK0S K±π∓29.6±3.7±4.7 238 ± 30 ABLIKIM 08E BES2 J/ψ → φK+K−π020.7±2.4±3.0 FALVARD 88 DM2 J/ψ → hadrons20 ±3 ±3 155 ± 20 BECKER 87 MRK3 e+ e− → hadrons�(

ωK K)/�total �35/��(

ωK K)/�total �35/��(

ωK K)/�total �35/��(

ωK K)/�total �35/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT17.0± 3.2 OUR AVERAGE17.0± 3.2 OUR AVERAGE17.0± 3.2 OUR AVERAGE17.0± 3.2 OUR AVERAGE13.6± 5.0±1.0 24 1 AUBERT 07AU BABR 10.6 e+ e− → ωK+K− γ19.8± 2.1±3.9 2 FALVARD 88 DM2 J/ψ → hadrons16 ±10 22 FELDMAN 77 MRK1 e+ e−1AUBERT 07AU quotes �J/ψ
ee

·B(J/ψ → ωK+K−) ·B(η → 3π) = 3.3 ± 1.3 ± 0.2 eV.2Addition of ωK+K− and ωK0K0 bran
hing ratios.�(

ω f0(1710)→ ωK K)/�total �36/��(

ω f0(1710)→ ωK K)/�total �36/��(

ω f0(1710)→ ωK K)/�total �36/��(

ω f0(1710)→ ωK K)/�total �36/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.8±1.1±0.34.8±1.1±0.34.8±1.1±0.34.8±1.1±0.3 1,2 FALVARD 88 DM2 J/ψ → hadrons1 In
ludes unknown bran
hing fra
tion f0(1710) → K K .2Addition of f0(1710) → K+K− and f0(1710) → K0K0 bran
hing ratios.�(

φ2(π+π−))/�total �37/��(

φ2(π+π−))/�total �37/��(

φ2(π+π−))/�total �37/��(

φ2(π+π−))/�total �37/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT16.6±2.3 OUR AVERAGE16.6±2.3 OUR AVERAGE16.6±2.3 OUR AVERAGE16.6±2.3 OUR AVERAGE17.3±3.3±1.2 35 1 AUBERT 06D BABR 10.6 e+ e− → φ2(π+π−)γ16.0±1.0±3.0 FALVARD 88 DM2 J/ψ → hadrons1Using �(J/ψ → e+ e−) = 5.52 ± 0.14 ± 0.04 keV.�(�(1232)++pπ−)/�total �38/��(�(1232)++pπ−)/�total �38/��(�(1232)++pπ−)/�total �38/��(�(1232)++pπ−)/�total �38/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.58±0.23±0.401.58±0.23±0.401.58±0.23±0.401.58±0.23±0.40 332 EATON 84 MRK2 e+ e−�(

ωη
)/�total �39/��(

ωη
)/�total �39/��(

ωη
)/�total �39/��(

ωη
)/�total �39/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.74 ±0.20 OUR AVERAGE1.74 ±0.20 OUR AVERAGE1.74 ±0.20 OUR AVERAGE1.74 ±0.20 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.2.352±0.273 5k 1 ABLIKIM 06F BES2 J/ψ → ωη1.44 ±0.40 ±0.14 13 2 AUBERT 06D BABR 10.6 e+ e− → ωηγ1.43 ±0.10 ±0.21 378 JOUSSET 90 DM2 J/ψ → hadrons1.71 ±0.08 ±0.20 COFFMAN 88 MRK3 e+ e− → 3πη1Using B(η → 2γ) = (39.43 ± 0.26)%, B(η → π+π−π0) = 22.6 ± 0.4%, B(η →

π+π− γ) = 4.68 ± 0.11%, and B(ω → π+π−π0) = (89.1 ± 0.7)%.2Using �(J/ψ → e+ e−) = 5.52 ± 0.14 ± 0.04 keV.
WEIGHTED AVERAGE
1.74±0.20 (Error scaled by 1.6)

COFFMAN 88 MRK3 0.0
JOUSSET 90 DM2 1.8
AUBERT 06D BABR 0.5
ABLIKIM 06F BES2 5.0

χ2

       7.3
(Confidence Level = 0.062)

0 1 2 3 4 5�(

ωη
)/�total (units 10−3)�(

φK K)/�total �40/��(

φK K)/�total �40/��(

φK K)/�total �40/��(

φK K)/�total �40/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT18.3± 2.4 OUR AVERAGE18.3± 2.4 OUR AVERAGE18.3± 2.4 OUR AVERAGE18.3± 2.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.21.4± 0.4±2.2 ABLIKIM 05 BES2 J/ψ → φπ+π−48 +20
−16 ±6 9.0+3.7

−3.0 1,2 HUANG 03 BELL B+ → (φK+K−) K+14.6± 0.8±2.1 3 FALVARD 88 DM2 J/ψ → hadrons18 ± 8 14 FELDMAN 77 MRK1 e+ e−



1378137813781378Meson Parti
le ListingsJ/ψ(1S)1We have multiplied K+K− measurement by 2 to obtain K K .2Using B(B+ → J/ψK+) = (1.01 ± 0.05) × 10−3.3Addition of φK+K− and φK0K0 bran
hing ratios.
WEIGHTED AVERAGE
18.3±2.4 (Error scaled by 1.5)

FELDMAN 77 MRK1 0.0
FALVARD 88 DM2 2.7
HUANG 03 BELL
ABLIKIM 05 BES2 2.0

χ2

       4.6
(Confidence Level = 0.099)

0 20 40 60 80�(

φK K)/�total (units 10−4)�(

φ f0(1710)→ φK K)/�total �41/��(

φ f0(1710)→ φK K)/�total �41/��(

φ f0(1710)→ φK K)/�total �41/��(

φ f0(1710)→ φK K)/�total �41/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.6±0.2±0.63.6±0.2±0.63.6±0.2±0.63.6±0.2±0.6 1,2 FALVARD 88 DM2 J/ψ → hadrons1 In
luding interferen
e with f ′2(1525).2 In
ludes unknown bran
hing fra
tion f0(1710) → K K .�(

φ f2(1270))/�total �42/��(

φ f2(1270))/�total �42/��(

φ f2(1270))/�total �42/��(

φ f2(1270))/�total �42/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT0.72±0.13±0.020.72±0.13±0.020.72±0.13±0.020.72±0.13±0.02 44 ± 7 1,2 AUBERT 07AK BABR 10.6 e+ e− →
π+π−K+K− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.45 90 FALVARD 88 DM2 J/ψ → hadrons
< 0.37 90 VANNUCCI 77 MRK1 e+ e− →

π+π−K+K−1Using B(f2(1270) → ππ) = (84.8+2.4
−1.2)%2AUBERT 07AK reports [�(J/ψ(1S) → φ f2(1270))/�total℄ × [�(J/ψ(1S) → e+ e−)℄= (4.02 ± 0.65 ± 0.33) × 10−3 keV whi
h we divide by our best value �(J/ψ(1S) →e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(�(1232)++�(1232)−−)/�total �43/��(�(1232)++�(1232)−−)/�total �43/��(�(1232)++�(1232)−−)/�total �43/��(�(1232)++�(1232)−−)/�total �43/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.10±0.09±0.281.10±0.09±0.281.10±0.09±0.281.10±0.09±0.28 233 EATON 84 MRK2 e+ e−�(� (1385)−� (1385)+ (or 
.
.))/�total �44/��(� (1385)−� (1385)+ (or 
.
.))/�total �44/��(� (1385)−� (1385)+ (or 
.
.))/�total �44/��(� (1385)−� (1385)+ (or 
.
.))/�total �44/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.10±0.12 OUR AVERAGE1.10±0.12 OUR AVERAGE1.10±0.12 OUR AVERAGE1.10±0.12 OUR AVERAGE1.23±0.07±0.30 0.8k ABLIKIM 12P BES2 J/ψ → �(1385)−�(1385)+1.50±0.08±0.38 1k ABLIKIM 12P BES2 J/ψ → �(1385)+�(1385)−1.00±0.04±0.21 0.6k HENRARD 87 DM2 e+ e− → �∗−1.19±0.04±0.25 0.7k HENRARD 87 DM2 e+ e− → �∗+0.86±0.18±0.22 56 EATON 84 MRK2 e+ e− → �∗−1.03±0.24±0.25 68 EATON 84 MRK2 e+ e− → �∗+�(

φ f ′2(1525))/�total �45/��(

φ f ′2(1525))/�total �45/��(

φ f ′2(1525))/�total �45/��(

φ f ′2(1525))/�total �45/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8 ±4 OUR AVERAGE8 ±4 OUR AVERAGE8 ±4 OUR AVERAGE8 ±4 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.7.12.3±0.6±2.0 1,2 FALVARD 88 DM2 J/ψ → hadrons4.8±1.8 46 1 GIDAL 81 MRK2 J/ψ → K+K−K+K−1Re-evaluated using B(f ′2(1525) → K K) = 0.713.2 In
luding interferen
e with f0(1710).�(

φπ+π−)/�total �46/��(

φπ+π−)/�total �46/��(

φπ+π−)/�total �46/��(

φπ+π−)/�total �46/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.94±0.09 OUR AVERAGE0.94±0.09 OUR AVERAGE0.94±0.09 OUR AVERAGE0.94±0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.96±0.13 103 1 AUBERT,BE 06D BABR 10.6 e+ e− → K+K−π+π− γ1.09±0.02±0.13 ABLIKIM 05 BES2 J/ψ → φπ+π−0.78±0.03±0.12 FALVARD 88 DM2 J/ψ → hadrons2.1 ±0.9 23 FELDMAN 77 MRK1 e+ e−1Derived by us. AUBERT,BE 06D measures �(J/ψ → e+ e−) × B(J/ψ → φπ+π−)
× B(φ → K+K−) = (2.61 ± 0.30 ± 0.18) eV

�(

φπ0π0)/�total �47/��(

φπ0π0)/�total �47/��(

φπ0π0)/�total �47/��(

φπ0π0)/�total �47/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.56±0.160.56±0.160.56±0.160.56±0.16 23 1 AUBERT,BE 06D BABR 10.6 e+ e− → K+K−π0π0 γ1Derived by us. AUBERT,BE 06D measures �(J/ψ → e+ e−) × B(J/ψ → φπ0π0) ×B(φ → K+K−) = (1.54 ± 0.40 ± 0.16) eV�(

φK±K0S π∓)/�total �48/��(

φK±K0S π∓)/�total �48/��(

φK±K0S π∓)/�total �48/��(

φK±K0S π∓)/�total �48/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.2±0.8 OUR AVERAGE7.2±0.8 OUR AVERAGE7.2±0.8 OUR AVERAGE7.2±0.8 OUR AVERAGE7.4±0.6±1.4 227 ± 19 ABLIKIM 08E BES2 e+ e− → J/ψ7.4±0.9±1.1 FALVARD 88 DM2 J/ψ → hadrons7 ±0.6±1.0 163 ± 15 BECKER 87 MRK3 e+ e− → hadrons�(

ω f1(1420))/�total �49/��(

ω f1(1420))/�total �49/��(

ω f1(1420))/�total �49/��(

ω f1(1420))/�total �49/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.8+1.9
−1.6±1.76.8+1.9
−1.6±1.76.8+1.9
−1.6±1.76.8+1.9
−1.6±1.7 111+31

−26 BECKER 87 MRK3 e+ e− → hadrons�(

φη
)/�total �50/��(

φη
)/�total �50/��(

φη
)/�total �50/��(

φη
)/�total �50/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.75 ±0.08 OUR AVERAGE0.75 ±0.08 OUR AVERAGE0.75 ±0.08 OUR AVERAGE0.75 ±0.08 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.1.4 ±0.6 ±0.1 6 1 AUBERT 07AU BABR 10.6 e+ e− → φηγ0.898±0.024±0.089 ABLIKIM 05B BES2 e+ e− → J/ψ → hadr0.64 ±0.04 ±0.11 346 JOUSSET 90 DM2 J/ψ → hadrons0.661±0.045±0.078 COFFMAN 88 MRK3 e+ e− → K+K− η1AUBERT 07AU quotes �J/ψ

ee
· B(J/ψ → φη) · B(φ → K+K−) · B(η → γ γ)=0.84 ± 0.37 ± 0.05 eV.

WEIGHTED AVERAGE
0.75±0.08 (Error scaled by 1.5)

COFFMAN 88 MRK3 1.0
JOUSSET 90 DM2 0.9
ABLIKIM 05B BES2 2.6
AUBERT 07AU BABR

χ2

       4.4
(Confidence Level = 0.109)

0 0.5 1 1.5 2�(

φη
)/�total (units 10−3)�(� 0� 0)/�total �51/��(� 0� 0)/�total �51/��(� 0� 0)/�total �51/��(� 0� 0)/�total �51/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.20±0.12±0.211.20±0.12±0.211.20±0.12±0.211.20±0.12±0.21 206 ABLIKIM 08O BES2 e+ e− → J/ψ�(� (1530)−�+)/�total �52/��(� (1530)−�+)/�total �52/��(� (1530)−�+)/�total �52/��(� (1530)−�+)/�total �52/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.59±0.09±0.120.59±0.09±0.120.59±0.09±0.120.59±0.09±0.12 75 ± 11 HENRARD 87 DM2 e+ e−�(pK−� (1385)0)/�total �53/��(pK−� (1385)0)/�total �53/��(pK−� (1385)0)/�total �53/��(pK−� (1385)0)/�total �53/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.51±0.26±0.180.51±0.26±0.180.51±0.26±0.180.51±0.26±0.18 89 EATON 84 MRK2 e+ e−�(

ωπ0)/�total �54/��(

ωπ0)/�total �54/��(

ωπ0)/�total �54/��(

ωπ0)/�total �54/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.45 ±0.05 OUR AVERAGE0.45 ±0.05 OUR AVERAGE0.45 ±0.05 OUR AVERAGE0.45 ±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.0.538±0.012±0.065 2090 1 ABLIKIM 06F BES2 J/ψ → ωπ00.360±0.028±0.054 222 JOUSSET 90 DM2 J/ψ → hadrons0.482±0.019±0.064 COFFMAN 88 MRK3 e+ e− → π0π+π−π01Using B(ω → π+π−π0) = (89.1 ± 0.7)%.



1379137913791379See key on page 601 MesonParti
le ListingsJ/ψ(1S)
WEIGHTED AVERAGE
0.45±0.05 (Error scaled by 1.4)

COFFMAN 88 MRK3 0.2
JOUSSET 90 DM2 2.4
ABLIKIM 06F BES2 1.6

χ2

       4.2
(Confidence Level = 0.124)

0 0.2 0.4 0.6 0.8 1�(

ωπ0)/�total (units 10−3)�(

φη′(958))/�total �55/��(

φη′(958))/�total �55/��(

φη′(958))/�total �55/��(

φη′(958))/�total �55/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT0.40 ±0.07 OUR AVERAGE0.40 ±0.07 OUR AVERAGE0.40 ±0.07 OUR AVERAGE0.40 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1. See the ideogram below.0.546±0.031±0.056 ABLIKIM 05B BES2 e+ e− → J/ψ → hadr0.41 ±0.03 ±0.08 167 JOUSSET 90 DM2 J/ψ → hadrons0.308±0.034±0.036 COFFMAN 88 MRK3 e+ e− → K+K− η′
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1.3 90 VANNUCCI 77 MRK1 e+ e−
WEIGHTED AVERAGE
0.40±0.07 (Error scaled by 2.1)

COFFMAN 88 MRK3 3.4
JOUSSET 90 DM2 0.0
ABLIKIM 05B BES2 5.2

χ2

       8.7
(Confidence Level = 0.013)

0 0.2 0.4 0.6 0.8 1�(

φη′(958))/�total (units 10−3)�(

φ f0(980))/�total �56/��(

φ f0(980))/�total �56/��(

φ f0(980))/�total �56/��(

φ f0(980))/�total �56/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.2±0.9 OUR AVERAGE3.2±0.9 OUR AVERAGE3.2±0.9 OUR AVERAGE3.2±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.4.6±0.4±0.8 1 FALVARD 88 DM2 J/ψ → hadrons2.6±0.6 50 1 GIDAL 81 MRK2 J/ψ → K+K−K+K−1Assuming B(f0(980) → ππ) = 0.78.�(

φ f0(980)→ φπ+π−)/�total �57/��(

φ f0(980)→ φπ+π−)/�total �57/��(

φ f0(980)→ φπ+π−)/�total �57/��(

φ f0(980)→ φπ+π−)/�total �57/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.182±0.042±0.0050.182±0.042±0.0050.182±0.042±0.0050.182±0.042±0.005 19.5± 4.5 1,2 AUBERT 07AK BABR 10.6 e+ e− →
π+π−K+K− γ1Using B(φ → K+K−) = (49.3 ± 0.6)%.2AUBERT 07AK reports [�(J/ψ(1S) → φ f0(980) → φπ+π−

)/�total℄× [�(J/ψ(1S) →e+ e−)℄ = (1.01 ± 0.22 ± 0.08) × 10−3 keV whi
h we divide by our best value�(J/ψ(1S) → e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(

φ f0(980)→ φπ0π0)/�total �58/��(

φ f0(980)→ φπ0π0)/�total �58/��(

φ f0(980)→ φπ0π0)/�total �58/��(

φ f0(980)→ φπ0π0)/�total �58/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.171±0.073±0.0040.171±0.073±0.0040.171±0.073±0.0040.171±0.073±0.004 7.0 ± 2.8 1,2 AUBERT 07AK BABR 10.6 e+ e− →
π0π0K+K− γ1Using B(φ → K+K−) = (49.3 ± 0.6)%.2AUBERT 07AK reports [�(J/ψ(1S) → φ f0(980) → φπ0π0)/�total℄ × [�(J/ψ(1S) →e+ e−)℄ = (0.95 ± 0.39 ± 0.10) × 10−3 keV whi
h we divide by our best value�(J/ψ(1S) → e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.

�(

φπ0 f0(980)→ φπ0π+π−)/�total �59/��(

φπ0 f0(980)→ φπ0π+π−)/�total �59/��(

φπ0 f0(980)→ φπ0π+π−)/�total �59/��(

φπ0 f0(980)→ φπ0π+π−)/�total �59/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT4.50±0.80±0.614.50±0.80±0.614.50±0.80±0.614.50±0.80±0.61 355 ABLIKIM 15P BES3 J/ψ → K+K− 3π�(

φπ0 f0(980)→ φπ0 p0π0)/�total �60/��(

φπ0 f0(980)→ φπ0 p0π0)/�total �60/��(

φπ0 f0(980)→ φπ0 p0π0)/�total �60/��(

φπ0 f0(980)→ φπ0 p0π0)/�total �60/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT1.67±0.50±0.241.67±0.50±0.241.67±0.50±0.241.67±0.50±0.24 70 ABLIKIM 15P BESE J/ψ → K+K− 3π�(

ηφ f0(980)→ ηφπ+π−)/�total �61/��(

ηφ f0(980)→ ηφπ+π−)/�total �61/��(

ηφ f0(980)→ ηφπ+π−)/�total �61/��(

ηφ f0(980)→ ηφπ+π−)/�total �61/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.23±0.75±0.733.23±0.75±0.733.23±0.75±0.733.23±0.75±0.73 52 ABLIKIM 08F BES J/ψ → ηφ f0(980)�(

φa0(980)0 → φηπ0)/�total �62/��(

φa0(980)0 → φηπ0)/�total �62/��(

φa0(980)0 → φηπ0)/�total �62/��(

φa0(980)0 → φηπ0)/�total �62/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT5.0±2.7±2.55.0±2.7±2.55.0±2.7±2.55.0±2.7±2.5 1 ABLIKIM 11D BES3 J/ψ → φηπ01Assuming a0(980) − f0(980) mixing and isospin breaking via γ∗ and K∗K loops.�(� (1530)0� 0)/�total �63/��(� (1530)0� 0)/�total �63/��(� (1530)0� 0)/�total �63/��(� (1530)0� 0)/�total �63/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.32±0.12±0.070.32±0.12±0.070.32±0.12±0.070.32±0.12±0.07 24 ± 9 HENRARD 87 DM2 e+ e−�(� (1385)−�+ (or 
.
.))/�total �64/��(� (1385)−�+ (or 
.
.))/�total �64/��(� (1385)−�+ (or 
.
.))/�total �64/��(� (1385)−�+ (or 
.
.))/�total �64/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.31±0.05 OUR AVERAGE0.31±0.05 OUR AVERAGE0.31±0.05 OUR AVERAGE0.31±0.05 OUR AVERAGE0.30±0.03±0.07 74 ± 8 HENRARD 87 DM2 e+ e− → �∗−0.34±0.04±0.07 77 ± 9 HENRARD 87 DM2 e+ e− → �∗+0.29±0.11±0.10 26 EATON 84 MRK2 e+ e− → �∗−0.31±0.11±0.11 28 EATON 84 MRK2 e+ e− → �∗+�(

φ f1(1285))/�total �65/��(

φ f1(1285))/�total �65/��(

φ f1(1285))/�total �65/��(

φ f1(1285))/�total �65/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.6±0.5 OUR AVERAGE2.6±0.5 OUR AVERAGE2.6±0.5 OUR AVERAGE2.6±0.5 OUR AVERAGE3.4±1.8±1.5 1.1k 1 ABLIKIM 15H BES3 e+ e− → J/ψ → φηπ+π−3.2±0.6±0.4 JOUSSET 90 DM2 J/ψ → φ2(π+π−)2.1±0.5±0.4 25 2 JOUSSET 90 DM2 J/ψ → φηπ+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.6±0.2±0.1 16 BECKER 87 MRK3 J/ψ → φK K π1ABLIKIM 15H reports [�(J/ψ(1S) → φ f1(1285))/�total℄ × [B(f1(1285) → ηπ+π−)℄= (1.20± 0.6± 0.14)×10−4 whi
h we divide by our best value B(f1(1285) → ηπ+π−)= (35 ± 15) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2We attribute to the f1(1285) the signal observed in the π+π− η invariant mass distri-bution at 1297 MeV.�(

φ f1(1285)→ φπ0 f0(980)→ φπ0π+π−)/�total �66/��(

φ f1(1285)→ φπ0 f0(980)→ φπ0π+π−)/�total �66/��(

φ f1(1285)→ φπ0 f0(980)→ φπ0π+π−)/�total �66/��(

φ f1(1285)→ φπ0 f0(980)→ φπ0π+π−)/�total �66/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT9.36±2.31±1.549.36±2.31±1.549.36±2.31±1.549.36±2.31±1.54 78 ABLIKIM 15P BES3 J/ψ → K+K− 3π�(

φ f1(1285)→ φπ0 f0(980)→ φπ0π0π0)/�total �67/��(

φ f1(1285)→ φπ0 f0(980)→ φπ0π0π0)/�total �67/��(

φ f1(1285)→ φπ0 f0(980)→ φπ0π0π0)/�total �67/��(

φ f1(1285)→ φπ0 f0(980)→ φπ0π0π0)/�total �67/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT2.08±1.63±1.472.08±1.63±1.472.08±1.63±1.472.08±1.63±1.47 9 ABLIKIM 15P BES3 J/ψ → K+K− 3π�(

ηπ+π−)/�total �68/��(

ηπ+π−)/�total �68/��(

ηπ+π−)/�total �68/��(

ηπ+π−)/�total �68/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.40±0.17±0.030.40±0.17±0.030.40±0.17±0.030.40±0.17±0.03 9 1 AUBERT 07AU BABR 10.6 e+ e− → ηπ+π− γ1AUBERT 07AU quotes �J/ψ
ee

·B(J/ψ → ηπ+π−) ·B(η → 3π) = 0.51± 0.22± 0.03 eV.�(

ηρ
)/�total �69/��(

ηρ
)/�total �69/��(

ηρ
)/�total �69/��(

ηρ
)/�total �69/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.193±0.023 OUR AVERAGE0.193±0.023 OUR AVERAGE0.193±0.023 OUR AVERAGE0.193±0.023 OUR AVERAGE0.194±0.017±0.029 299 JOUSSET 90 DM2 J/ψ → hadrons0.193±0.013±0.029 COFFMAN 88 MRK3 e+ e− → π+π− η�(

ωη′(958))/�total �70/��(

ωη′(958))/�total �70/��(

ωη′(958))/�total �70/��(

ωη′(958))/�total �70/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.182±0.021 OUR AVERAGE0.182±0.021 OUR AVERAGE0.182±0.021 OUR AVERAGE0.182±0.021 OUR AVERAGE0.226±0.043 218 1 ABLIKIM 06F BES2 J/ψ → ωη′0.18 +0.10
−0.08 ±0.03 6 JOUSSET 90 DM2 J/ψ → hadrons0.166±0.017±0.019 COFFMAN 88 MRK3 e+ e− → 3πη′1Using B(η′ → π+π− η) = (44.3 ± 1.5)%, B(η′ → π+π− γ) = 29.5 ± 1.0%, B(η →2γ) = 39.43 ± 0.26%, and B(ω → π+π−π0) = (89.1 ± 0.7)%.�(

ω f0(980))/�total �71/��(

ω f0(980))/�total �71/��(

ω f0(980))/�total �71/��(

ω f0(980))/�total �71/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.41±0.27±0.471.41±0.27±0.471.41±0.27±0.471.41±0.27±0.47 1 AUGUSTIN 89 DM2 J/ψ → 2(π+π−)π01Assuming B(f0(980) → ππ) = 0.78.



1380138013801380MesonParti
le ListingsJ/ψ(1S)�(ρη′(958))/�total �72/��(ρη′(958))/�total �72/��(ρη′(958))/�total �72/��(ρη′(958))/�total �72/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.105±0.018 OUR AVERAGE0.105±0.018 OUR AVERAGE0.105±0.018 OUR AVERAGE0.105±0.018 OUR AVERAGE0.083±0.030±0.012 19 JOUSSET 90 DM2 J/ψ → hadrons0.114±0.014±0.016 COFFMAN 88 MRK3 J/ψ → π+π− η′�(a2(1320)±π∓)/�total �73/��(a2(1320)±π∓)/�total �73/��(a2(1320)±π∓)/�total �73/��(a2(1320)±π∓)/�total �73/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<43<43<43<43 90 BRAUNSCH... 76 DASP e+ e−�(K K∗2(1430)+ 
.
.)/�total �74/��(K K∗2(1430)+ 
.
.)/�total �74/��(K K∗2(1430)+ 
.
.)/�total �74/��(K K∗2(1430)+ 
.
.)/�total �74/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<40<40<40<40 90 VANNUCCI 77 MRK1 e+ e− → K0K∗02
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<66 90 BRAUNSCH... 76 DASP e+ e− → K±K∗∓2�(K1(1270)±K∓)/�total �75/��(K1(1270)±K∓)/�total �75/��(K1(1270)±K∓)/�total �75/��(K1(1270)±K∓)/�total �75/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<3.0<3.0<3.0<3.0 90 1 BAI 99C BES e+ e−1Assuming B(K1(1270) → K ρ)=0.42 ± 0.06�(K∗2(1430)0K∗2(1430)0)/�total �76/��(K∗2(1430)0K∗2(1430)0)/�total �76/��(K∗2(1430)0K∗2(1430)0)/�total �76/��(K∗2(1430)0K∗2(1430)0)/�total �76/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<29<29<29<29 90 VANNUCCI 77 MRK1 e+ e− →

π+π−K+K−�(φπ0)/�total �77/��(φπ0)/�total �77/��(φπ0)/�total �77/��(φπ0)/�total �77/�The two di�erent �t values of ABLIKIM 15K below have the same statisti
al signi�-
an
e of 6.4 σ and 
annot be distinguished at this moment.VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT2.94 ±0.16 ±0.16 0.8k 1 ABLIKIM 15K BES3 e+ e− → J/ψ →K+K− γ γ0.124±0.033±0.030 35 ± 9 2 ABLIKIM 15K BES3 e+ e− → J/ψ →K+K− γ γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.4 90 3 ABLIKIM 05B BES2 e+ e− → J/ψ →
φγγ

<6.8 90 COFFMAN 88 MRK3 e+ e− →K+K−π01Corresponding to one of the two �t solutions with δ = (−95.9 ± 1.5)◦ for the phaseangle between the resonant J/ψ → φπ0 and non-phi J/ψ → K+K−π0 
ontributions.2Corresponding to one of the two �t solutions with δ = (−152.1 ± 7.7)◦ for the phaseangle between the resonant J/ψ → φπ0 and non-phi J/ψ → K+K−π0 
ontributions.3 Superseded by ABLIKIM 15K.�(φη(1405)→ φηπ+π−)/�total �78/��(φη(1405)→ φηπ+π−)/�total �78/��(φη(1405)→ φηπ+π−)/�total �78/��(φη(1405)→ φηπ+π−)/�total �78/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT2.01±0.58±0.822.01±0.58±0.822.01±0.58±0.822.01±0.58±0.82 172 1 ABLIKIM 15H BES3 e+ e− → J/ψ →
φηπ+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 17 90 2 FALVARD 88 DM2 J/ψ → hadrons1With 3.6 σ signi�
an
e.2 In
ludes unknown bran
hing fra
tion η(1405) → ηππ.�(ω f ′2(1525))/�total �79/��(ω f ′2(1525))/�total �79/��(ω f ′2(1525))/�total �79/��(ω f ′2(1525))/�total �79/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<2.2<2.2<2.2<2.2 90 1 VANNUCCI 77 MRK1 e+ e− → π+π−π0K+K−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.8 90 1 FALVARD 88 DM2 J/ψ → hadrons1Re-evaluated assuming B(f ′2(1525) → K K) = 0.713.�(ωX (1835)→ ωpp)/�total �80/��(ωX (1835)→ ωpp)/�total �80/��(ωX (1835)→ ωpp)/�total �80/��(ωX (1835)→ ωpp)/�total �80/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<3.9<3.9<3.9<3.9 95 ABLIKIM 13P BES3 J/ψ → γπ0 pp�(φX (1835)→ φηπ+π−)/�total �81/��(φX (1835)→ φηπ+π−)/�total �81/��(φX (1835)→ φηπ+π−)/�total �81/��(φX (1835)→ φηπ+π−)/�total �81/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.8× 10−4<2.8× 10−4<2.8× 10−4<2.8× 10−4 90 ABLIKIM 15H BES3 e+ e− → J/ψ → φηπ+π−�(φX (1870)→ φηπ+π−)/�total �82/��(φX (1870)→ φηπ+π−)/�total �82/��(φX (1870)→ φηπ+π−)/�total �82/��(φX (1870)→ φηπ+π−)/�total �82/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.13× 10−5<6.13× 10−5<6.13× 10−5<6.13× 10−5 90 ABLIKIM 15H BES3 e+ e− → J/ψ → φηπ+π−�(ηφ(2170)→ ηφ f0(980)→ ηφπ+π−)/�total �83/��(ηφ(2170)→ ηφ f0(980)→ ηφπ+π−)/�total �83/��(ηφ(2170)→ ηφ f0(980)→ ηφπ+π−)/�total �83/��(ηφ(2170)→ ηφ f0(980)→ ηφπ+π−)/�total �83/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.20±0.14±0.371.20±0.14±0.371.20±0.14±0.371.20±0.14±0.37 471 ABLIKIM 15H BES3 e+ e− → J/ψ → φηπ+π−�(ηφ(2170)→ ηK∗(892)0K∗(892)0)/�total �84/��(ηφ(2170)→ ηK∗(892)0K∗(892)0)/�total �84/��(ηφ(2170)→ ηK∗(892)0K∗(892)0)/�total �84/��(ηφ(2170)→ ηK∗(892)0K∗(892)0)/�total �84/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<2.52<2.52<2.52<2.52 90 ABLIKIM 10C BES2 J/ψ → ηK+π−K−π+

�(� (1385)0�+ 
.
.)/�total �85/��(� (1385)0�+ 
.
.)/�total �85/��(� (1385)0�+ 
.
.)/�total �85/��(� (1385)0�+ 
.
.)/�total �85/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
< 0.82< 0.82< 0.82< 0.82 90 ABLIKIM 13F BES3 J/ψ → ppπ+π− γ γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<20 90 HENRARD 87 DM2 e+ e−�(�(1232)+p)/�total �86/��(�(1232)+p)/�total �86/��(�(1232)+p)/�total �86/��(�(1232)+p)/�total �86/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.1<0.1<0.1<0.1 90 HENRARD 87 DM2 e+ e−�(�(1520)�+ 
.
.→ γ��)/�total �87/��(�(1520)�+ 
.
.→ γ��)/�total �87/��(�(1520)�+ 
.
.→ γ��)/�total �87/��(�(1520)�+ 
.
.→ γ��)/�total �87/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<4.1<4.1<4.1<4.1 90 ABLIKIM 12B BES3 J/ψ → ��γ�(�(1540)�(1540)→ K0S pK−n+ 
.
.)/�total �88/��(�(1540)�(1540)→ K0S pK−n+ 
.
.)/�total �88/��(�(1540)�(1540)→ K0S pK−n+ 
.
.)/�total �88/��(�(1540)�(1540)→ K0S pK−n+ 
.
.)/�total �88/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.1<1.1<1.1<1.1 90 BAI 04G BES2 e+ e−�(�(1540)K−n→ K0S pK−n)/�total �89/��(�(1540)K−n→ K0S pK−n)/�total �89/��(�(1540)K−n→ K0S pK−n)/�total �89/��(�(1540)K−n→ K0S pK−n)/�total �89/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<2.1<2.1<2.1<2.1 90 BAI 04G BES2 e+ e−�(�(1540)K0S p→ K0S pK+n)/�total �90/��(�(1540)K0S p→ K0S pK+n)/�total �90/��(�(1540)K0S p→ K0S pK+n)/�total �90/��(�(1540)K0S p→ K0S pK+n)/�total �90/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.6<1.6<1.6<1.6 90 BAI 04G BES2 e+ e−�(�(1540)K+n→ K0S pK+n)/�total �91/��(�(1540)K+n→ K0S pK+n)/�total �91/��(�(1540)K+n→ K0S pK+n)/�total �91/��(�(1540)K+n→ K0S pK+n)/�total �91/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<5.6<5.6<5.6<5.6 90 BAI 04G BES2 e+ e−�(�(1540)K0S p→ K0S pK−n)/�total �92/��(�(1540)K0S p→ K0S pK−n)/�total �92/��(�(1540)K0S p→ K0S pK−n)/�total �92/��(�(1540)K0S p→ K0S pK−n)/�total �92/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.1<1.1<1.1<1.1 90 BAI 04G BES2 e+ e−�(�0�)/�total �93/��(�0�)/�total �93/��(�0�)/�total �93/��(�0�)/�total �93/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.9<0.9<0.9<0.9 90 HENRARD 87 DM2 e+ e−STABLE HADRONSSTABLE HADRONSSTABLE HADRONSSTABLE HADRONS�(2(π+π−)π0)/�total �94/��(2(π+π−)π0)/�total �94/��(2(π+π−)π0)/�total �94/��(2(π+π−)π0)/�total �94/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT4.1 ±0.5 OUR AVERAGE4.1 ±0.5 OUR AVERAGE4.1 ±0.5 OUR AVERAGE4.1 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogram below.5.46±0.34±0.14 4990 1 AUBERT 07AU BABR 10.6 e+ e− → 2(π+π−)π0 γ3.25±0.49 46055 AUGUSTIN 89 DM2 J/ψ → 2(π+π−)π03.17±0.42 147 FRANKLIN 83 MRK2 e+ e− → hadrons3.64±0.52 1500 BURMESTER 77D PLUT e+ e−4 ±1 675 JEAN-MARIE 76 MRK1 e+ e−1AUBERT 07AU reports [�(J/ψ(1S) → 2(π+π−)π0)/�total℄ × [�(J/ψ(1S) →e+ e−)℄ = 0.303 ± 0.005 ± 0.018 keV whi
h we divide by our best value �(J/ψ(1S) →e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.

WEIGHTED AVERAGE
4.1±0.5 (Error scaled by 2.4)

JEAN-MARIE 76 MRK1 0.0
BURMESTER 77D PLUT 0.7
FRANKLIN 83 MRK2 4.7
AUGUSTIN 89 DM2 2.9
AUBERT 07AU BABR 14.3

χ2

      22.6
(Confidence Level = 0.0002)

1 2 3 4 5 6 7 8�(2(π+π−)π0)/�total (units 10−2)�(ωπ+π−)/�(2(π+π−)π0) �13/�94�(ωπ+π−)/�(2(π+π−)π0) �13/�94�(ωπ+π−)/�(2(π+π−)π0) �13/�94�(ωπ+π−)/�(2(π+π−)π0) �13/�94VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.3 1 JEAN-MARIE 76 MRK1 e+ e−1Final state (π+π−)π0 under the assumption that ππ is isospin 0.



1381138113811381See key on page 601 MesonParti
le ListingsJ/ψ(1S)�(3(π+π−)π0)/�total �95/��(3(π+π−)π0)/�total �95/��(3(π+π−)π0)/�total �95/��(3(π+π−)π0)/�total �95/�VALUE EVTS DOCUMENT ID TECN COMMENT0.029±0.006 OUR AVERAGE0.029±0.006 OUR AVERAGE0.029±0.006 OUR AVERAGE0.029±0.006 OUR AVERAGE0.028±0.009 11 FRANKLIN 83 MRK2 e+ e− → hadrons0.029±0.007 181 JEAN-MARIE 76 MRK1 e+ e−�(

π+π−π0)/�total �96/��(

π+π−π0)/�total �96/��(

π+π−π0)/�total �96/��(

π+π−π0)/�total �96/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT21.1 ±0.7 OUR AVERAGE21.1 ±0.7 OUR AVERAGE21.1 ±0.7 OUR AVERAGE21.1 ±0.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.21.37±0.04+0.64
−0.62 1.8M 1,2 ABLIKIM 12H BES3 e+ e− → J/ψ23.0 ±2.0 ±0.4 256 3 AUBERT 07AU BABR 10.6 e+ e− → J/ψπ+π− γ21.8 ±1.9 4,5 AUBERT,B 04N BABR 10.6 e+ e− → π+π−π0 γ21.84±0.05±2.01 220k 1,5 BAI 04H BES e+ e−20.91±0.21±1.16 5,6 BAI 04H BES e+ e−15 ±2 168 FRANKLIN 83 MRK2 e+ e−1From J/ψ → π+π−π0 events dire
tly.2The quoted systemati
 error in
ludes a 
ontribution of 1.23% (added in quadrature) fromthe un
ertainty on the number of J/ψ events.3AUBERT 07AU reports [�(J/ψ(1S) → π+π−π0)/�total℄ × [�(

ψ(2S) →J/ψ(1S)π+π−
)

× �(

ψ(2S) → e+ e−)/�total℄ = (18.6±1.2±1.1)×10−3 keV whi
hwe divide by our best value �(

ψ(2S) → J/ψ(1S)π+π−
)

× �(

ψ(2S) → e+ e−)/�total = 0.807 ± 0.013 keV. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.4 From the ratio of �(e+ e−) B(π+π−π0) and �(e+ e−) B(µ+ µ−) (AUBERT 04).5Mostly ρπ, see also ρπ subse
tion.6Obtained 
omparing the rates for π+π−π0 and µ+µ−, using J/ψ events produ
ed via
ψ(2S) → π+π− J/ψ and with B(J/ψ → µ+µ−) = 5.88 ± 0.10%.

WEIGHTED AVERAGE
21.1±0.7 (Error scaled by 1.5)

FRANKLIN 83 MRK2 9.2
BAI 04H BES 0.0
BAI 04H BES 0.2
AUBERT,B 04N BABR 0.2
AUBERT 07AU BABR 0.9
ABLIKIM 12H BES3 0.2

χ2

      10.7
(Confidence Level = 0.058)

10 15 20 25 30 35�(

π+π−π0)/�total (units 10−3)�(

π+π−π0K+K−)/�total �97/��(

π+π−π0K+K−)/�total �97/��(

π+π−π0K+K−)/�total �97/��(

π+π−π0K+K−)/�total �97/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.79±0.29 OUR AVERAGE1.79±0.29 OUR AVERAGE1.79±0.29 OUR AVERAGE1.79±0.29 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2.1.93±0.14±0.05 768 1 AUBERT 07AU BABR 10.6 e+ e− →K+K−π+π−π0 γ1.2 ±0.3 309 VANNUCCI 77 MRK1 e+ e−1AUBERT 07AU reports [�(J/ψ(1S) → π+π−π0K+K−)/�total℄ × [�(J/ψ(1S) →e+ e−)℄ = 0.1070±0.0043±0.0064 keV whi
h we divide by our best value �(J/ψ(1S) →e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(4(π+π−)π0)/�total �98/��(4(π+π−)π0)/�total �98/��(4(π+π−)π0)/�total �98/��(4(π+π−)π0)/�total �98/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT90±3090±3090±3090±30 13 JEAN-MARIE 76 MRK1 e+ e−�(

π+π−K+K−)/�total �99/��(

π+π−K+K−)/�total �99/��(

π+π−K+K−)/�total �99/��(

π+π−K+K−)/�total �99/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT6.6±0.5 OUR AVERAGE6.6±0.5 OUR AVERAGE6.6±0.5 OUR AVERAGE6.6±0.5 OUR AVERAGE6.5±0.4±0.2 1.6k 1 AUBERT 07AK BABR 10.6 e+ e− → π+π−K+K− γ7.2±2.3 205 VANNUCCI 77 MRK1 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.1±0.7±0.2 233 2 AUBERT 05D BABR 10.6 e+ e− → K+K−π+π− γ1AUBERT 07AK reports [�(J/ψ(1S) → π+π−K+K−)/�total℄ × [�(J/ψ(1S) →e+ e−)℄ = (36.3±1.3±2.1)×10−3 keV whi
h we divide by our best value �(J/ψ(1S) →e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2 Superseded by AUBERT 07AK. AUBERT 05D reports [�(J/ψ(1S) → π+π−K+K−)/�total℄ × [�(J/ψ(1S) → e+ e−)℄ = (33.6 ± 2.7 ± 2.7)× 10−3 keV whi
h we divideby our best value �(J/ψ(1S) → e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.

�(

π+π−K+K−η
)/�total �100/��(

π+π−K+K−η
)/�total �100/��(

π+π−K+K−η
)/�total �100/��(

π+π−K+K−η
)/�total �100/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.84±0.28±0.051.84±0.28±0.051.84±0.28±0.051.84±0.28±0.05 73 1 AUBERT 07AU BABR 10.6 e+ e− →K+K−π+π− ηγ1AUBERT 07AU reports [�(J/ψ(1S) → π+π−K+K−η

)/�total℄ × [�(J/ψ(1S) →e+ e−)℄ = (10.2±1.3±0.8)×10−3 keV whi
h we divide by our best value �(J/ψ(1S) →e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(

π0π0K+K−)/�total �101/��(

π0π0K+K−)/�total �101/��(

π0π0K+K−)/�total �101/��(

π0π0K+K−)/�total �101/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.45±0.31±0.062.45±0.31±0.062.45±0.31±0.062.45±0.31±0.06 203 ± 16 1 AUBERT 07AK BABR 10.6 e+ e− → π0π0K+K− γ1AUBERT 07AK reports [�(J/ψ(1S) → π0π0K+K−)/�total℄ × [�(J/ψ(1S) →e+ e−)℄ = (13.6±1.1±1.3)×10−3 keV whi
h we divide by our best value �(J/ψ(1S) →e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(K K π
)/�total �102/��(K K π
)/�total �102/��(K K π
)/�total �102/��(K K π
)/�total �102/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT61 ±10 OUR AVERAGE61 ±10 OUR AVERAGE61 ±10 OUR AVERAGE61 ±10 OUR AVERAGE55.2±12.0 25 FRANKLIN 83 MRK2 e+ e− → K+K−π078.0±21.0 126 VANNUCCI 77 MRK1 e+ e− → K0S K±π∓�(2(π+π−))/�total �103/��(2(π+π−))/�total �103/��(2(π+π−))/�total �103/��(2(π+π−))/�total �103/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.57±0.30 OUR AVERAGE3.57±0.30 OUR AVERAGE3.57±0.30 OUR AVERAGE3.57±0.30 OUR AVERAGE3.53±0.12±0.29 1107 1 ABLIKIM 05H BES2 e+ e− → ψ(2S) →J/ψπ+π−, J/ψ →2(π+π−)4.0 ±1.0 76 JEAN-MARIE 76 MRK1 e+ e−

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.51±0.34±0.09 270 2 AUBERT 05D BABR 10.6 e+ e− → 2(π+π−)γ1Computed using B(J/ψ → µ+µ−) = 0.0588 ± 0.0010.2AUBERT 05D reports [�(J/ψ(1S) → 2(π+π−))/�total℄ × [�(J/ψ(1S) → e+ e−)℄= (19.5 ± 1.4 ± 1.3) × 10−3 keV whi
h we divide by our best value �(J/ψ(1S) →e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. Superseded by LEES 12E.�(3(π+π−))/�total �104/��(3(π+π−))/�total �104/��(3(π+π−))/�total �104/��(3(π+π−))/�total �104/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT43 ± 4 OUR AVERAGE43 ± 4 OUR AVERAGE43 ± 4 OUR AVERAGE43 ± 4 OUR AVERAGE43.0± 2.9±2.8 496 1 AUBERT 06D BABR 10.6 e+ e− → 3(π+π−)γ40 ±20 32 JEAN-MARIE 76 MRK1 e+ e−1Using �(J/ψ → e+ e−) = 5.52 ± 0.14 ± 0.04 keV.�(2(π+π−π0))/�total �105/��(2(π+π−π0))/�total �105/��(2(π+π−π0))/�total �105/��(2(π+π−π0))/�total �105/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.62±0.09±0.191.62±0.09±0.191.62±0.09±0.191.62±0.09±0.19 761 1 AUBERT 06D BABR 10.6 e+ e− → 2(π+π−π0)γ1Using �(J/ψ → e+ e−) = 5.52 ± 0.14 ± 0.04 keV.�(2(π+π−)η)/�total �106/��(2(π+π−)η)/�total �106/��(2(π+π−)η)/�total �106/��(2(π+π−)η)/�total �106/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.29±0.24 OUR AVERAGE2.29±0.24 OUR AVERAGE2.29±0.24 OUR AVERAGE2.29±0.24 OUR AVERAGE2.35±0.39±0.20 85 1 AUBERT 07AU BABR 10.6 e+ e− → 2(π+π−)ηγ2.26±0.08±0.27 4839 ABLIKIM 05C BES2 e+ e− → 2(π+π−)η1AUBERT 07AU quotes �J/ψ
ee

· B(J/ψ → 2(π+π−)η) ·B(η → γ γ) = 5.16 ± 0.85 ±0.39 eV.�(3(π+π−)η)/�total �107/��(3(π+π−)η)/�total �107/��(3(π+π−)η)/�total �107/��(3(π+π−)η)/�total �107/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.24±0.96±1.117.24±0.96±1.117.24±0.96±1.117.24±0.96±1.11 616 ABLIKIM 05C BES2 e+ e− → 3(π+π−)η�(pp)/�total �108/��(pp)/�total �108/��(pp)/�total �108/��(pp)/�total �108/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.120±0.029 OUR AVERAGE2.120±0.029 OUR AVERAGE2.120±0.029 OUR AVERAGE2.120±0.029 OUR AVERAGE2.112±0.004±0.031 314k ABLIKIM 12C BES3 e+ e−2.15 ±0.16 ±0.06 317 1 WU 06 BELL B+ → ppK+2.26 ±0.01 ±0.14 63316 BAI 04E BES2 e+ e− → J/ψ1.97 ±0.22 99 BALDINI 98 FENI e+ e−1.91 ±0.04 ±0.30 PALLIN 87 DM2 e+ e−2.16 ±0.07 ±0.15 1420 EATON 84 MRK2 e+ e−2.5 ±0.4 133 BRANDELIK 79C DASP e+ e−2.0 ±0.5 BESCH 78 BONA e+ e−2.2 ±0.2 331 2 PERUZZI 78 MRK1 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.0 ±0.3 48 ANTONELLI 93 SPEC e+ e−1WU 06 reports [�(J/ψ(1S) → pp)/�total℄ × [B(B+ → J/ψ(1S)K+)℄ = (2.21 ±0.13 ± 0.10) × 10−6 whi
h we divide by our best value B(B+ → J/ψ(1S)K+) =(1.026 ± 0.031)× 10−3. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Assuming angular distribution (1+
os2θ).



1382138213821382MesonParti
le ListingsJ/ψ(1S)�(ppπ0)/�total �109/��(ppπ0)/�total �109/��(ppπ0)/�total �109/��(ppπ0)/�total �109/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.19±0.08 OUR AVERAGE1.19±0.08 OUR AVERAGE1.19±0.08 OUR AVERAGE1.19±0.08 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1.33±0.02±0.11 11k ABLIKIM 09B BES2 e+ e−1.13±0.09±0.09 685 EATON 84 MRK2 e+ e−1.4 ±0.4 BRANDELIK 79C DASP e+ e−1.00±0.15 109 PERUZZI 78 MRK1 e+ e−�(ppπ+π−)/�total �110/��(ppπ+π−)/�total �110/��(ppπ+π−)/�total �110/��(ppπ+π−)/�total �110/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT6.0 ±0.5 OUR AVERAGE6.0 ±0.5 OUR AVERAGE6.0 ±0.5 OUR AVERAGE6.0 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.6.46±0.17±0.43 1435 EATON 84 MRK2 e+ e−3.8 ±1.6 48 BESCH 81 BONA e+ e−5.5 ±0.6 533 PERUZZI 78 MRK1 e+ e−
WEIGHTED AVERAGE
6.0±0.5 (Error scaled by 1.3)

PERUZZI 78 MRK1 0.7
BESCH 81 BONA 1.9
EATON 84 MRK2 1.0

χ2

       3.6
(Confidence Level = 0.167)

0 2 4 6 8 10�(ppπ+π−
)/�total (units 10−3)�(ppπ+π−π0)/�total �111/��(ppπ+π−π0)/�total �111/��(ppπ+π−π0)/�total �111/��(ppπ+π−π0)/�total �111/�In
luding ppπ+π− γ and ex
luding ω, η, η′VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.3 ±0.9 OUR AVERAGE2.3 ±0.9 OUR AVERAGE2.3 ±0.9 OUR AVERAGE2.3 ±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.3.36±0.65±0.28 364 EATON 84 MRK2 e+ e−1.6 ±0.6 39 PERUZZI 78 MRK1 e+ e−�(ppη

)/�total �112/��(ppη
)/�total �112/��(ppη
)/�total �112/��(ppη
)/�total �112/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.00±0.12 OUR AVERAGE2.00±0.12 OUR AVERAGE2.00±0.12 OUR AVERAGE2.00±0.12 OUR AVERAGE1.91±0.02±0.17 13k 1 ABLIKIM 09 BES2 e+ e−2.03±0.13±0.15 826 EATON 84 MRK2 e+ e−2.5 ±1.2 BRANDELIK 79C DASP e+ e−2.3 ±0.4 197 PERUZZI 78 MRK1 e+ e−1From the 
ombination of pp η → pp γ γ and pp η → ppπ+π−π0 
hannels.�(ppρ
)/�total �113/��(ppρ
)/�total �113/��(ppρ
)/�total �113/��(ppρ
)/�total �113/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.31<0.31<0.31<0.31 90 EATON 84 MRK2 e+ e− → hadronsγ�(ppω
)/�total �114/��(ppω
)/�total �114/��(ppω
)/�total �114/��(ppω
)/�total �114/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.98±0.10 OUR AVERAGE0.98±0.10 OUR AVERAGE0.98±0.10 OUR AVERAGE0.98±0.10 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.0.90±0.02±0.09 2670 ABLIKIM 13P BES3 e+ e−0.98±0.03±0.14 2449 ABLIKIM 08 BES2 e+ e−1.10±0.17±0.18 486 EATON 84 MRK2 e+ e−1.6 ±0.3 77 PERUZZI 78 MRK1 e+ e−

WEIGHTED AVERAGE
0.98±0.10 (Error scaled by 1.3)

PERUZZI 78 MRK1 4.3
EATON 84 MRK2 0.2
ABLIKIM 08 BES2 0.0
ABLIKIM 13P BES3 0.7

χ2

       5.3
(Confidence Level = 0.154)

0.5 1 1.5 2 2.5 3�(ppω
)/�total (units 10−3)�(ppη′(958))/�total �115/��(ppη′(958))/�total �115/��(ppη′(958))/�total �115/��(ppη′(958))/�total �115/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.21 ±0.04 OUR AVERAGE0.21 ±0.04 OUR AVERAGE0.21 ±0.04 OUR AVERAGE0.21 ±0.04 OUR AVERAGE0.200±0.023±0.028 265 ± 31 1 ABLIKIM 09 BES2 e+ e−0.68 ±0.23 ±0.17 19 EATON 84 MRK2 e+ e−1.8 ±0.6 19 PERUZZI 78 MRK1 e+ e−1From the 
ombination of pp η′ → ppπ+π− η and pp η′ → pp γ ρ0 
hannels.�(ppa0(980)→ ppπ0 η

)/�total �116/��(ppa0(980)→ ppπ0 η
)/�total �116/��(ppa0(980)→ ppπ0 η
)/�total �116/��(ppa0(980)→ ppπ0 η
)/�total �116/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT6.8±1.2±1.36.8±1.2±1.36.8±1.2±1.36.8±1.2±1.3 ABLIKIM 14N BES3 e+ e− → J/ψ�(ppφ

)/�total �117/��(ppφ
)/�total �117/��(ppφ
)/�total �117/��(ppφ
)/�total �117/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.45±0.13±0.070.45±0.13±0.070.45±0.13±0.070.45±0.13±0.07 FALVARD 88 DM2 J/ψ → hadrons�(nn)/�total �118/��(nn)/�total �118/��(nn)/�total �118/��(nn)/�total �118/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.09±0.16 OUR AVERAGE2.09±0.16 OUR AVERAGE2.09±0.16 OUR AVERAGE2.09±0.16 OUR AVERAGE2.07±0.01±0.17 36k ABLIKIM 12C BES3 e+ e−2.31±0.49 79 BALDINI 98 FENI e+ e−1.8 ±0.9 BESCH 78 BONA e+ e−

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.90±0.55 40 ANTONELLI 93 SPEC e+ e−�(nnπ+π−)/�total �119/��(nnπ+π−)/�total �119/��(nnπ+π−)/�total �119/��(nnπ+π−)/�total �119/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.8±3.63.8±3.63.8±3.63.8±3.6 5 BESCH 81 BONA e+ e−�(�+�−)/�total �120/��(�+�−)/�total �120/��(�+�−)/�total �120/��(�+�−)/�total �120/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.50±0.10±0.221.50±0.10±0.221.50±0.10±0.221.50±0.10±0.22 399 ABLIKIM 08O BES2 e+ e− → J/ψ�(�0�0)/�total �121/��(�0�0)/�total �121/��(�0�0)/�total �121/��(�0�0)/�total �121/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.29±0.09 OUR AVERAGE1.29±0.09 OUR AVERAGE1.29±0.09 OUR AVERAGE1.29±0.09 OUR AVERAGE1.15±0.24±0.03 1 AUBERT 07BD BABR 10.6 e+ e− → �0�0 γ1.33±0.04±0.11 1779 ABLIKIM 06 BES2 J/ψ → �0�01.06±0.04±0.23 884 ± 30 PALLIN 87 DM2 e+ e− → �0�01.58±0.16±0.25 90 EATON 84 MRK2 e+ e− → �0�01.3 ±0.4 52 PERUZZI 78 MRK1 e+ e− → �0�0
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.4 ±2.6 3 BESCH 81 BONA e+ e− → �+�−1AUBERT 07BD reports [�(J/ψ(1S) → �0�0)/�total℄ × [�(J/ψ(1S) → e+ e−)℄ =(6.4 ± 1.2 ± 0.6)×10−3 keV whi
h we divide by our best value �(J/ψ(1S) → e+ e−)= 5.55± 0.14± 0.02 keV. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(2(π+π−)K+K−)/�total �122/��(2(π+π−)K+K−)/�total �122/��(2(π+π−)K+K−)/�total �122/��(2(π+π−)K+K−)/�total �122/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT47 ± 7 OUR AVERAGE47 ± 7 OUR AVERAGE47 ± 7 OUR AVERAGE47 ± 7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.49.8± 4.2±3.4 205 1 AUBERT 06D BABR 10.6 e+ e− →

ωK+K− 2(π+π−)γ31 ±13 30 VANNUCCI 77 MRK1 e+ e−1Using �(J/ψ → e+ e−) = 5.52 ± 0.14 ± 0.04 keV.



1383138313831383See key on page 601 MesonParti
le ListingsJ/ψ(1S)�(pnπ−)/�total �123/��(pnπ−)/�total �123/��(pnπ−)/�total �123/��(pnπ−)/�total �123/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.12±0.09 OUR AVERAGE2.12±0.09 OUR AVERAGE2.12±0.09 OUR AVERAGE2.12±0.09 OUR AVERAGE2.36±0.02±0.21 59k ABLIKIM 06K BES2 J/ψ → pπ− n2.47±0.02±0.24 55k ABLIKIM 06K BES2 J/ψ → pπ+ n2.02±0.07±0.16 1288 EATON 84 MRK2 e+ e− → pπ−1.93±0.07±0.16 1191 EATON 84 MRK2 e+ e− → pπ+1.7 ±0.7 32 BESCH 81 BONA e+ e− → pπ−1.6 ±1.2 5 BESCH 81 BONA e+ e− → pπ+2.16±0.29 194 PERUZZI 78 MRK1 e+ e− → pπ−2.04±0.27 204 PERUZZI 78 MRK1 e+ e− → pπ+�(�−�+)/�total �127/��(�−�+)/�total �127/��(�−�+)/�total �127/��(�−�+)/�total �127/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.86±0.11 OUR AVERAGE0.86±0.11 OUR AVERAGE0.86±0.11 OUR AVERAGE0.86±0.11 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.90±0.03±0.18 961 ± 35 ABLIKIM 12P BES2 J/ψ → �−�+0.70±0.06±0.12 132 ± 11 HENRARD 87 DM2 e+ e− → �−�+1.14±0.08±0.20 194 EATON 84 MRK2 e+ e− → �−�+1.4 ±0.5 51 PERUZZI 78 MRK1 e+ e− → �−�+�(��)/�total �128/��(��)/�total �128/��(��)/�total �128/��(��)/�total �128/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.61±0.15 OUR AVERAGE1.61±0.15 OUR AVERAGE1.61±0.15 OUR AVERAGE1.61±0.15 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.1.93±0.21±0.05 1 AUBERT 07BD BABR 10.6 e+ e− → ��γ2.03±0.03±0.15 8887 ABLIKIM 06 BES2 J/ψ → ��1.9 +0.5
−0.4 ±0.1 46 2 WU 06 BELL B+ → ��K+1.08±0.06±0.24 631 BAI 98G BES e+ e−1.38±0.05±0.20 1847 PALLIN 87 DM2 e+ e−1.58±0.08±0.19 365 EATON 84 MRK2 e+ e−2.6 ±1.6 5 BESCH 81 BONA e+ e−1.1 ±0.2 196 PERUZZI 78 MRK1 e+ e−1AUBERT 07BD reports [�(J/ψ(1S) → ��)/�total℄ × [�(J/ψ(1S) → e+ e−)℄ =(10.7± 0.9± 0.7)×10−3 keV whi
h we divide by our best value �(J/ψ(1S) → e+ e−)= 5.55 ± 0.14± 0.02 keV. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2WU 06 reports [�(J/ψ(1S) → ��)/�total℄ × [B(B+ → J/ψ(1S)K+)℄ =(2.00+0.34

−0.29 ± 0.34)× 10−6 whi
h we divide by our best value B(B+ → J/ψ(1S)K+)= (1.026 ± 0.031) × 10−3. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.
WEIGHTED AVERAGE
1.61±0.15 (Error scaled by 1.9)

PERUZZI 78 MRK1 6.4
BESCH 81 BONA
EATON 84 MRK2 0.0
PALLIN 87 DM2 1.2
BAI 98G BES 4.6
WU 06 BELL 0.6
ABLIKIM 06 BES2 7.6
AUBERT 07BD BABR 2.3

χ2

      22.7
(Confidence Level = 0.0009)

0 1 2 3 4 5�(��)/�total (units 10−3)�(��)/�(pp) �128/�108�(��)/�(pp) �128/�108�(��)/�(pp) �128/�108�(��)/�(pp) �128/�108VALUE DOCUMENT ID TECN COMMENT0.90+0.15
−0.14±0.100.90+0.15
−0.14±0.100.90+0.15
−0.14±0.100.90+0.15
−0.14±0.10 1 WU 06 BELL B+ → ppK+, ��K+1Not independent of other J/ψ → ��, pp bran
hing ratios reported by WU 06.�(��−π+ (or 
.
.))/�total �129/��(��−π+ (or 
.
.))/�total �129/��(��−π+ (or 
.
.))/�total �129/��(��−π+ (or 
.
.))/�total �129/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.83 ±0.07 OUR AVERAGE0.83 ±0.07 OUR AVERAGE0.83 ±0.07 OUR AVERAGE0.83 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.770±0.051±0.083 335 1 ABLIKIM 07H BES2 e+ e− → ��+π−0.747±0.056±0.076 254 1 ABLIKIM 07H BES2 e+ e− → ��−π+0.90 ±0.06 ±0.16 225 ± 15 HENRARD 87 DM2 e+ e− → ��+π−1.11 ±0.06 ±0.20 342 ± 18 HENRARD 87 DM2 e+ e− → ��−π+1.53 ±0.17 ±0.38 135 EATON 84 MRK2 e+ e− → ��+π−1.38 ±0.21 ±0.35 118 EATON 84 MRK2 e+ e− → ��−π+1Using B(� → π− p) = 63.9% and B(�+ → π0 p) = 51.6%.

�(pK−�)/�total �130/��(pK−�)/�total �130/��(pK−�)/�total �130/��(pK−�)/�total �130/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.89±0.07±0.140.89±0.07±0.140.89±0.07±0.140.89±0.07±0.14 307 EATON 84 MRK2 e+ e−�(2(K+K−))/�total �131/��(2(K+K−))/�total �131/��(2(K+K−))/�total �131/��(2(K+K−))/�total �131/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.76±0.09 OUR AVERAGE0.76±0.09 OUR AVERAGE0.76±0.09 OUR AVERAGE0.76±0.09 OUR AVERAGE0.74±0.09±0.02 156 ± 15 1 AUBERT 07AK BABR 10.6 e+ e− → 2(K+K−)γ1.4 +0.5
−0.4 ±0.2 11.0+4.3

−3.5 2 HUANG 03 BELL B+ → 2(K+K−) K+0.7 ±0.3 VANNUCCI 77 MRK1 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.72±0.17±0.02 38 3 AUBERT 05D BABR 10.6 e+ e− → 2(K+K−)γ1AUBERT 07AK reports [�(J/ψ(1S) → 2(K+K−))/�total℄ × [�(J/ψ(1S) → e+ e−)℄= (4.11 ± 0.39 ± 0.30) × 10−3 keV whi
h we divide by our best value �(J/ψ(1S) →e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2Using B(B+ → J/ψK+) = (1.01 ± 0.05) × 10−3.3 Superseded by AUBERT 07AK. AUBERT 05D reports [�(J/ψ(1S) → 2(K+K−))/�total℄ × [�(J/ψ(1S) → e+ e−)℄ = (4.0 ± 0.7 ± 0.6) × 10−3 keV whi
h we divideby our best value �(J/ψ(1S) → e+ e−) = 5.55 ± 0.14 ± 0.02 keV. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.�(pK−�0)/�total �132/��(pK−�0)/�total �132/��(pK−�0)/�total �132/��(pK−�0)/�total �132/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.29±0.06±0.050.29±0.06±0.050.29±0.06±0.050.29±0.06±0.05 90 EATON 84 MRK2 e+ e−�(K+K−)/�total �133/��(K+K−)/�total �133/��(K+K−)/�total �133/��(K+K−)/�total �133/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.86±0.09±0.192.86±0.09±0.192.86±0.09±0.192.86±0.09±0.19 1k 1 METREVELI 12 ψ(2S) → π+π−K+K−
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.22±0.20±0.12 462 2,3 LEES 15J BABR e+ e− → K+K− γ3.50±0.20±0.12 462 3,4 LEES 15J BABR e+ e− → K+K− γ2.39±0.24±0.22 107 5 BALTRUSAIT...85D MRK3 e+ e−2.2 ±0.9 6 5 BRANDELIK 79C DASP e+ e−1Obtained by analyzing CLEO-
 data but not authored by the CLEO Collaboration.2 sinφ > 0.3Using �(J/ψ → e+ e−) = (5.55 ± 0.14) keV.4 sinφ < 0.5 Interferen
e with non-resonant K+K− produ
tion not taken into a

ount.�(K0S K0L)/�total �134/��(K0S K0L)/�total �134/��(K0S K0L)/�total �134/��(K0S K0L)/�total �134/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.1 ±0.4 OUR AVERAGE2.1 ±0.4 OUR AVERAGE2.1 ±0.4 OUR AVERAGE2.1 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.2.2.62±0.15±0.14 0.3k 1 METREVELI 12 ψ(2S) → π+π−K0S K0L1.82±0.04±0.13 2.1k 2 BAI 04A BES2 J/ψ → K0S K0L → π+π−X
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.18±0.12±0.18 JOUSSET 90 DM2 J/ψ → hadrons1.01±0.16±0.09 74 BALTRUSAIT...85D MRK3 e+ e−1Obtained by analyzing CLEO-
 data but not authored by the CLEO Collaboration.2Using B(K0S → π+π−) = 0.6868 ± 0.0027.�(��π+π−)/�total �135/��(��π+π−)/�total �135/��(��π+π−)/�total �135/��(��π+π−)/�total �135/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.30±0.13±0.994.30±0.13±0.994.30±0.13±0.994.30±0.13±0.99 2.4k ABLIKIM 12P BES2 J/ψ�(��η

)/�total �136/��(��η
)/�total �136/��(��η
)/�total �136/��(��η
)/�total �136/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT16.2±1.7 OUR AVERAGE16.2±1.7 OUR AVERAGE16.2±1.7 OUR AVERAGE16.2±1.7 OUR AVERAGE15.7±0.80±1.54 454 1 ABLIKIM 13F BES3 J/ψ → ppπ+π− γ γ26.2±6.0 ±4.4 44 2 ABLIKIM 07H BES2 e+ e− → ψ(2S)1Using B(� → π− p) = 63.9% and B(η → γ γ) = 39.31%.2Using B(� → π− p) = 63.9% and B(η → γ γ) = 39.4%.�(��π0)/�total �137/��(��π0)/�total �137/��(��π0)/�total �137/��(��π0)/�total �137/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT3.78±0.27±0.303.78±0.27±0.303.78±0.27±0.303.78±0.27±0.30 323 1 ABLIKIM 13F BES3 J/ψ → ppπ+π− γ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 6.4 90 2 ABLIKIM 07H BES2 e+ e− → ψ(2S)23 ±7 ±8 11 BAI 98G BES e+ e−22 ±5 ±5 19 HENRARD 87 DM2 e+ e−1Using B(� → π− p) = 63.9% and B(π0 → γ γ) = 98.8%.2Using B(� → π− p) = 63.9%.�(�nK0S+ 
.
.)/�total �138/��(�nK0S+ 
.
.)/�total �138/��(�nK0S+ 
.
.)/�total �138/��(�nK0S+ 
.
.)/�total �138/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.46±0.20±1.076.46±0.20±1.076.46±0.20±1.076.46±0.20±1.07 1058 1 ABLIKIM 08C BES2 e+ e− → J/ψ1Using B(� → pπ+) = 63.9% and B(K0S → π+π−) = 69.2%.



1384138413841384MesonParti
le ListingsJ/ψ(1S)�(π+π−)/�total �139/��(π+π−)/�total �139/��(π+π−)/�total �139/��(π+π−)/�total �139/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.47±0.14 OUR AVERAGE1.47±0.14 OUR AVERAGE1.47±0.14 OUR AVERAGE1.47±0.14 OUR AVERAGE1.47±0.13±0.13 140 1 METREVELI 12 ψ(2S) → 2(π+π−)1.58±0.20±0.15 84 BALTRUSAIT...85D MRK3 e+ e−1.0 ±0.5 5 BRANDELIK 78B DASP e+ e−1.6 ±1.6 1 VANNUCCI 77 MRK1 e+ e−1Obtained by analyzing CLEO-
 data but not authored by the CLEO Collaboration.�(��+ 
.
.)/�total �140/��(��+ 
.
.)/�total �140/��(��+ 
.
.)/�total �140/��(��+ 
.
.)/�total �140/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT2.83±0.23 OUR AVERAGE2.83±0.23 OUR AVERAGE2.83±0.23 OUR AVERAGE2.83±0.23 OUR AVERAGE2.74±0.24±0.22 234 ± 21 1 ABLIKIM 12B BES3 J/ψ → ��02.92±0.22±0.24 308 ± 24 2 ABLIKIM 12B BES3 J/ψ → ��0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<15 90 PERUZZI 78 MRK1 e+ e− → �X1ABLIKIM 12B quotes B(J/ψ → ��0) whi
h we multiply by 2.2ABLIKIM 12B quotes B(J/ψ → ��0) whi
h we multiply by 2.�(K0S K0S)/�total �141/��(K0S K0S)/�total �141/��(K0S K0S)/�total �141/��(K0S K0S)/�total �141/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.01<0.01<0.01<0.01 95 1 BAI 04D BES e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.052 90 1 BALTRUSAIT...85C MRK3 e+ e−1Forbidden by CP. RADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYS�(3γ)/�total �142/��(3γ)/�total �142/��(3γ)/�total �142/��(3γ)/�total �142/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT11.6±2.2 OUR AVERAGE11.6±2.2 OUR AVERAGE11.6±2.2 OUR AVERAGE11.6±2.2 OUR AVERAGE11.3±1.8±2.0 113 ± 18 ABLIKIM 13I BES3 ψ(2S) → π+π− J/ψ12 ±3 ±2 24.2+7.2
−6.0 ADAMS 08 CLEO ψ(2S) → π+π− J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<55 90 PARTRIDGE 80 CBAL e+ e−�(4γ)/�total �143/��(4γ)/�total �143/��(4γ)/�total �143/��(4γ)/�total �143/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<9<9<9<9 90 ADAMS 08 CLEO ψ(2S) → π+π− J/ψ�(5γ)/�total �144/��(5γ)/�total �144/��(5γ)/�total �144/��(5γ)/�total �144/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<15<15<15<15 90 ADAMS 08 CLEO ψ(2S) → π+π− J/ψ�(γπ0π0)/�total �145/��(γπ0π0)/�total �145/��(γπ0π0)/�total �145/��(γπ0π0)/�total �145/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.15±0.051.15±0.051.15±0.051.15±0.05 1 ABLIKIM 15AE BES3 J/ψ → γπ0π01The un
ertainty is systemati
 as statisti
al is netligible.�(γ η
 (1S))/�total �146/��(γ η
 (1S))/�total �146/��(γ η
 (1S))/�total �146/��(γ η
 (1S))/�total �146/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.2.01±0.32±0.02 1 MITCHELL 09 CLEO e+ e− → γX1.27±0.36 GAISER 86 CBAL J/ψ → γX
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen ANASHIN 14 KEDR J/ψ → γ η
0.79±0.20 273 ± 43 2 AUBERT 06E BABR B± → K±X
 
seen 16 BALTRUSAIT...84 MRK3 J/ψ → 2φγ1MITCHELL 09 reports (1.98 ± 0.09 ± 0.30) × 10−2 from a measurement of[�(J/ψ(1S) → γ η
 (1S))/�total℄ × [B(ψ(2S) → J/ψ(1S)π+π−)℄ assumingB(ψ(2S) → J/ψ(1S)π+π−) = (35.04 ± 0.07 ± 0.77) × 10−2, whi
h we res
aleto our best value B(ψ(2S) → J/ψ(1S)π+π−) = (34.49 ± 0.30) × 10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.2Cal
ulated by the authors using an average of B(J/ψ → γ η
 ) × B(η
 → K K π) fromBALTRUSAITIS 86, BISELLO 91, BAI 04 and B(η
 → K K π) = (8.5 ± 1.8)% fromAUBERT 06E.�(γ η
 (1S)→ 3γ)/�total �147/��(γ η
 (1S)→ 3γ)/�total �147/��(γ η
 (1S)→ 3γ)/�total �147/��(γ η
 (1S)→ 3γ)/�total �147/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT3.8+1.3

−1.0 OUR AVERAGE3.8+1.3
−1.0 OUR AVERAGE3.8+1.3
−1.0 OUR AVERAGE3.8+1.3
−1.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.4.5±1.2±0.6 33 ± 9 ABLIKIM 13I BES3 ψ(2S) → π+π− J/ψ1.2+2.7
−1.1±0.3 1.2+2.8

−1.1 ADAMS 08 CLEO ψ(2S) → π+π− J/ψ�(γπ+π−2π0)/�total �148/��(γπ+π−2π0)/�total �148/��(γπ+π−2π0)/�total �148/��(γπ+π−2π0)/�total �148/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT8.3±0.2±3.18.3±0.2±3.18.3±0.2±3.18.3±0.2±3.1 1 BALTRUSAIT...86B MRK3 J/ψ → 4πγ1 4π mass less than 2.0 GeV.

�(γ ηππ
)/�total �149/��(γ ηππ
)/�total �149/��(γ ηππ
)/�total �149/��(γ ηππ
)/�total �149/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT6.1 ±1.0 OUR AVERAGE6.1 ±1.0 OUR AVERAGE6.1 ±1.0 OUR AVERAGE6.1 ±1.0 OUR AVERAGE5.85±0.3±1.05 1 EDWARDS 83B CBAL J/ψ → ηπ+π−7.8 ±1.2±2.4 1 EDWARDS 83B CBAL J/ψ → η2π01Broad enhan
ement at 1700 MeV.�(γ η2(1870)→ γ ηπ+π−)/�total �150/��(γ η2(1870)→ γ ηπ+π−)/�total �150/��(γ η2(1870)→ γ ηπ+π−)/�total �150/��(γ η2(1870)→ γ ηπ+π−)/�total �150/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.2±2.2±0.96.2±2.2±0.96.2±2.2±0.96.2±2.2±0.9 BAI 99 BES J/ψ → γ ηπ+π−�(γ η(1405/1475)→ γK K π

)/�total �151/��(γ η(1405/1475)→ γK K π
)/�total �151/��(γ η(1405/1475)→ γK K π
)/�total �151/��(γ η(1405/1475)→ γK K π
)/�total �151/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.8 ±0.6 OUR AVERAGE2.8 ±0.6 OUR AVERAGE2.8 ±0.6 OUR AVERAGE2.8 ±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.1.66±0.1 ±0.58 1,2 BAI 00D BES J/ψ → γK±K0S π∓3.8 ±0.3 ±0.6 3 AUGUSTIN 90 DM2 J/ψ → γK K π4.0 ±0.7 ±1.0 3 EDWARDS 82E CBAL J/ψ → K+K−π0 γ4.3 ±1.7 3,4 SCHARRE 80 MRK2 e+ e−

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.78±0.21±0.33 3,5,6 AUGUSTIN 92 DM2 J/ψ → γK K π0.83±0.13±0.18 3,7,8 AUGUSTIN 92 DM2 J/ψ → γK K π0.66+0.17
−0.16+0.24

−0.15 3,6,9 BAI 90C MRK3 J/ψ → γK0S K±π∓1.03+0.21
−0.18+0.26

−0.19 3,8,10 BAI 90C MRK3 J/ψ → γK0S K±π∓1 Interferen
e with the J/ψ(1S) radiative transition to the broad K K π pseudos
alar statearound 1800 is (0.15 ± 0.01 ± 0.05) × 10−3.2 Interferen
e with J/ψ → γ f1(1420) is (−0.03 ± 0.01 ± 0.01)× 10−3.3 In
ludes unknown bran
hing fra
tion η(1405) → K K π.4 Corre
ted for spin-zero hypothesis for η(1405).5 From �t to the a0(980)π 0 −+ partial wave.6 a0(980)π mode.7 From �t to the K∗(892)K 0−+ partial wave.8K∗K mode.9 From a0(980)π �nal state.10 From K∗(890)K �nal state.
WEIGHTED AVERAGE
2.8±0.6 (Error scaled by 1.6)

SCHARRE 80 MRK2 0.7
EDWARDS 82E CBAL 0.9
AUGUSTIN 90 DM2 2.0
BAI 00D BES 4.0

χ2

       7.7
(Confidence Level = 0.052)

-2 0 2 4 6 8 10 12�(

γ η(1405/1475) → γK K π
)/�total (units 10−3)�(γ η(1405/1475)→ γ γ ρ0)/�total �152/��(γ η(1405/1475)→ γ γ ρ0)/�total �152/��(γ η(1405/1475)→ γ γ ρ0)/�total �152/��(γ η(1405/1475)→ γ γ ρ0)/�total �152/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.78±0.20 OUR AVERAGE0.78±0.20 OUR AVERAGE0.78±0.20 OUR AVERAGE0.78±0.20 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.1.07±0.17±0.11 1 BAI 04J BES2 J/ψ → γ γπ+π−0.64±0.12±0.07 1 COFFMAN 90 MRK3 J/ψ → γ γπ+π−1 In
ludes unknown bran
hing fra
tion η(1405) → γ ρ0.�(γ η(1405/1475)→ γ ηπ+π−)/�total �153/��(γ η(1405/1475)→ γ ηπ+π−)/�total �153/��(γ η(1405/1475)→ γ ηπ+π−)/�total �153/��(γ η(1405/1475)→ γ ηπ+π−)/�total �153/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.0 ±0.5 OUR AVERAGE3.0 ±0.5 OUR AVERAGE3.0 ±0.5 OUR AVERAGE3.0 ±0.5 OUR AVERAGE2.6 ±0.7 ±0.4 BAI 99 BES J/ψ → γ ηπ+π−3.38±0.33±0.64 1 BOLTON 92B MRK3 J/ψ → γ ηπ+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •7.0 ±0.6 ±1.1 261 2 AUGUSTIN 90 DM2 J/ψ → γ ηπ+π−1Via a0(980)π.2 In
ludes unknown bran
hing fra
tion to ηπ+π−.�(γ η(1405/1475)→ γ γφ
)/�total �154/��(γ η(1405/1475)→ γ γφ
)/�total �154/��(γ η(1405/1475)→ γ γφ
)/�total �154/��(γ η(1405/1475)→ γ γφ
)/�total �154/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<0.82<0.82<0.82<0.82 95 BAI 04J BES2 J/ψ → γ γK+K−



1385138513851385See key on page 601 MesonParti
le ListingsJ/ψ(1S)�(

γ ρρ
)/�total �155/��(

γ ρρ
)/�total �155/��(

γ ρρ
)/�total �155/��(

γ ρρ
)/�total �155/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT4.5 ±0.8 OUR AVERAGE4.5 ±0.8 OUR AVERAGE4.5 ±0.8 OUR AVERAGE4.5 ±0.8 OUR AVERAGE4.7 ±0.3 ±0.9 1 BALTRUSAIT...86B MRK3 J/ψ → 4πγ3.75±1.05±1.20 2 BURKE 82 MRK2 J/ψ → 4πγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.09 90 3 BISELLO 89B J/ψ → 4πγ1 4π mass less than 2.0 GeV.2 4π mass less than 2.0 GeV. We have multiplied 2ρ0 measurement by 3 to obtain 2ρ.3 4π mass in the range 2.0{25 GeV.�(

γ ρω
)/�total �156/��(

γ ρω
)/�total �156/��(

γ ρω
)/�total �156/��(

γ ρω
)/�total �156/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<5.4<5.4<5.4<5.4 90 ABLIKIM 08A BES2 e+ e− → J/ψ�(

γ ρφ
)/�total �157/��(

γ ρφ
)/�total �157/��(

γ ρφ
)/�total �157/��(

γ ρφ
)/�total �157/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<8.8<8.8<8.8<8.8 90 ABLIKIM 08A BES2 e+ e− → J/ψ�(

γ η′(958))/�total �158/��(

γ η′(958))/�total �158/��(

γ η′(958))/�total �158/��(

γ η′(958))/�total �158/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT5.15±0.16 OUR AVERAGE5.15±0.16 OUR AVERAGE5.15±0.16 OUR AVERAGE5.15±0.16 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.4.82±0.23±0.08 1 ABLIKIM 11 BES3 J/ψ → η′ γ5.24±0.12±0.11 PEDLAR 09 CLE3 J/ψ → η′ γ5.55±0.44 35k ABLIKIM 06E BES2 J/ψ → η′ γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.50±0.14±0.53 BOLTON 92B MRK3 J/ψ → γπ+π− η, η →

γ γ4.30±0.31±0.71 BOLTON 92B MRK3 J/ψ → γπ+π− η, η →
π+π−π04.04±0.16±0.85 622 AUGUSTIN 90 DM2 J/ψ → γ ηπ+π−4.39±0.09±0.66 2420 AUGUSTIN 90 DM2 J/ψ → γ γπ+π−4.1 ±0.3 ±0.6 BLOOM 83 CBAL e+ e− → 3γ +hadrons2.9 ±1.1 6 BRANDELIK 79C DASP e+ e− → 3γ2.4 ±0.7 57 BARTEL 76 CNTR e+ e− → 2γ ρ1ABLIKIM 11 reports (4.84± 0.03± 0.24)×10−3 from a measurement of [�(J/ψ(1S) →

γ η′(958))/�total℄ / [B(η′(958) → π+π− η)℄ / [B(η → 2γ)℄ assuming B(η′(958) →
π+π− η) = (43.2 ± 0.7) × 10−2,B(η → 2γ) = (39.31 ± 0.20) × 10−2, whi
h weres
ale to our best values B(η′(958) → π+π− η) = (42.9 ± 0.7)× 10−2, B(η → 2γ)= (39.41 ± 0.20)×10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best values.�(

γ 2π+2π−)/�total �159/��(

γ 2π+2π−)/�total �159/��(

γ 2π+2π−)/�total �159/��(

γ 2π+2π−)/�total �159/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.8 ±0.5 OUR AVERAGE2.8 ±0.5 OUR AVERAGE2.8 ±0.5 OUR AVERAGE2.8 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.4.32±0.14±0.73 1 BISELLO 89B DM2 J/ψ → 4πγ2.08±0.13±0.35 2 BISELLO 89B DM2 J/ψ → 4πγ3.05±0.08±0.45 2 BALTRUSAIT...86B MRK3 J/ψ → 4πγ4.85±0.45±1.20 3 BURKE 82 MRK2 e+ e−1 4π mass less than 3.0 GeV.2 4π mass less than 2.0 GeV.3 4π mass less than 2.5 GeV.
WEIGHTED AVERAGE
2.8±0.5 (Error scaled by 1.9)

BURKE 82 MRK2 2.5
BALTRUSAIT... 86B MRK3 0.3
BISELLO 89B DM2 3.7
BISELLO 89B DM2 4.2

χ2

      10.8
(Confidence Level = 0.013)

0 2 4 6 8 10�(

γ 2π+2π−)/�total (units 10−3)�(

γ f2(1270)f2(1270))/�total �160/��(

γ f2(1270)f2(1270))/�total �160/��(

γ f2(1270)f2(1270))/�total �160/��(

γ f2(1270)f2(1270))/�total �160/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT9.5±0.7±1.69.5±0.7±1.69.5±0.7±1.69.5±0.7±1.6 646 ± 45 ABLIKIM 04M BES J/ψ → γ 2π+2π−

�(

γ f2(1270)f2(1270)(non resonant))/�total �161/��(

γ f2(1270)f2(1270)(non resonant))/�total �161/��(

γ f2(1270)f2(1270)(non resonant))/�total �161/��(

γ f2(1270)f2(1270)(non resonant))/�total �161/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT8.2±0.8±1.78.2±0.8±1.78.2±0.8±1.78.2±0.8±1.7 1 ABLIKIM 04M BES J/ψ → γ 2π+2π−1Subtra
ting 
ontribution from intermediate η
 (1S) de
ays.�(

γK+K−π+π−)/�total �162/��(

γK+K−π+π−)/�total �162/��(

γK+K−π+π−)/�total �162/��(

γK+K−π+π−)/�total �162/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.1±0.1±0.62.1±0.1±0.62.1±0.1±0.62.1±0.1±0.6 1516 BAI 00B BES J/ψ → γK+K0π+π−�(

γ f4(2050))/�total �163/��(

γ f4(2050))/�total �163/��(

γ f4(2050))/�total �163/��(

γ f4(2050))/�total �163/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.7±0.5±0.52.7±0.5±0.52.7±0.5±0.52.7±0.5±0.5 1 BALTRUSAIT...87 MRK3 J/ψ → γπ+π−1Assuming bran
hing fra
tion f4(2050) → ππ/ total = 0.167.�(

γωω
)/�total �164/��(

γωω
)/�total �164/��(

γωω
)/�total �164/��(

γωω
)/�total �164/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.61±0.33 OUR AVERAGE1.61±0.33 OUR AVERAGE1.61±0.33 OUR AVERAGE1.61±0.33 OUR AVERAGE6.0 ±4.8 ±1.8 ABLIKIM 08A BES2 J/ψ → γωπ+π−1.41±0.2 ±0.42 120 ± 17 BISELLO 87 SPEC e+ e−, hadronsγ1.76±0.09±0.45 BALTRUSAIT...85C MRK3 e+ e− → hadronsγ�(

γ η(1405/1475)→ γ ρ0 ρ0)/�total �165/��(

γ η(1405/1475)→ γ ρ0 ρ0)/�total �165/��(

γ η(1405/1475)→ γ ρ0 ρ0)/�total �165/��(

γ η(1405/1475)→ γ ρ0 ρ0)/�total �165/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.2.1 ±0.4 BUGG 95 MRK3 J/ψ → γπ+π−π+π−1.36±0.38 1,2 BISELLO 89B DM2 J/ψ → 4πγ1Estimated by us from various �ts.2 In
ludes unknown bran
hing fra
tion to ρ0 ρ0.�(

γ f2(1270))/�total �166/��(

γ f2(1270))/�total �166/��(

γ f2(1270))/�total �166/��(

γ f2(1270))/�total �166/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.64±0.12 OUR AVERAGE1.64±0.12 OUR AVERAGE1.64±0.12 OUR AVERAGE1.64±0.12 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.2.07±0.16+0.02
−0.07 2.4k 1,2 DOBBS 15 J/ψ → γππ1.63±0.26+0.02
−0.06 3 ABLIKIM 06V BES2 e+ e− → J/ψ → γπ+π−1.42±0.21+0.01
−0.05 4 ABLIKIM 06V BES2 e+ e− → J/ψ → γπ0π01.33±0.05±0.20 5 AUGUSTIN 87 DM2 J/ψ → γπ+π−1.36±0.09±0.23 5 BALTRUSAIT...87 MRK3 J/ψ → γπ+π−1.48±0.25±0.30 178 EDWARDS 82B CBAL e+ e− → 2π0 γ2.0 ±0.7 35 ALEXANDER 78 PLUT e+ e−1.2 ±0.6 30 6 BRANDELIK 78B DASP e+ e− → π+π− γ1Using CLEO-
 data but not authored by the CLEO Collaboration.2DOBBS 15 reports [�(J/ψ(1S) → γ f2(1270))/�total℄ × [B(f2(1270) → ππ)℄ =(1.744 ± 0.052 ± 0.122)× 10−3 whi
h we divide by our best value B(f2(1270) → ππ)= (84.2+2.9
−0.9)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3ABLIKIM 06V reports [�(J/ψ(1S) → γ f2(1270))/�total℄ × [B(f2(1270) → ππ)℄ =(1.371 ± 0.010 ± 0.222)× 10−3 whi
h we divide by our best value B(f2(1270) → ππ)= (84.2+2.9
−0.9)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.4ABLIKIM 06V reports [�(J/ψ(1S) → γ f2(1270))/�total℄ × [B(f2(1270) → ππ)℄ =(1.200 ± 0.027 ± 0.174)× 10−3 whi
h we divide by our best value B(f2(1270) → ππ)= (84.2+2.9
−0.9)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.5 Estimated using B(f2(1270) → ππ)=0.843 ± 0.012. The errors do not 
ontain theun
ertainty in the f2(1270) de
ay.6Restated by us to take a

ount of spread of E1, M2, E3 transitions.

WEIGHTED AVERAGE
1.64±0.12 (Error scaled by 1.3)

BRANDELIK 78B DASP 0.5
ALEXANDER 78 PLUT 0.3
EDWARDS 82B CBAL 0.2
BALTRUSAIT... 87 MRK3 1.2
AUGUSTIN 87 DM2 2.2
ABLIKIM 06V BES2 0.8
ABLIKIM 06V BES2 0.0
DOBBS 15 7.4

χ2

      12.6
(Confidence Level = 0.082)

0 1 2 3 4 5�(

γ f2(1270))/�total (units 10−3)



1386138613861386Meson Parti
le ListingsJ/ψ(1S)�(

γ f0(1370)→ γK K)/�total �167/��(

γ f0(1370)→ γK K)/�total �167/��(

γ f0(1370)→ γK K)/�total �167/��(

γ f0(1370)→ γK K)/�total �167/�VALUE (units 10−4) EVTS DOCUMENT ID COMMENT4.19±0.73±1.344.19±0.73±1.344.19±0.73±1.344.19±0.73±1.34 478 1 DOBBS 15 J/ψ → γK K1Using CLEO-
 data but not authored by the CLEO Collaboration.�(

γ f0(1710)→ γK K)/�total �168/��(

γ f0(1710)→ γK K)/�total �168/��(

γ f0(1710)→ γK K)/�total �168/��(

γ f0(1710)→ γK K)/�total �168/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT10.0 + 1.1
− 0.9 OUR AVERAGE10.0 + 1.1
− 0.9 OUR AVERAGE10.0 + 1.1
− 0.9 OUR AVERAGE10.0 + 1.1
− 0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.11.76± 0.54±0.94 1.2k 1 DOBBS 15 J/ψ → γK K9.62±029 +3.51

−1.86 2 BAI 03G BES J/ψ → γK K5.0 ± 0.8 +1.8
−0.4 3,4 BAI 96C BES J/ψ → γK+K−9.2 ± 1.4 ±1.4 4 AUGUSTIN 88 DM2 J/ψ → γK+K−10.4 ± 1.2 ±1.6 4 AUGUSTIN 88 DM2 J/ψ → γK0S K0S9.6 ± 1.2 ±1.8 4 BALTRUSAIT...87 MRK3 J/ψ → γK+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.6 ± 0.2 +0.6
−0.2 4,5 BAI 96C BES J/ψ → γK+K−

< 0.8 90 6 BISELLO 89B J/ψ → 4πγ1.6 ± 0.4 ±0.3 7 BALTRUSAIT...87 MRK3 J/ψ → γπ+π−3.8 ± 1.6 8 EDWARDS 82D CBAL e+ e− → ηηγ1Using CLEO-
 data but not authored by the CLEO Collaboration.2 In
ludes unknown bran
hing ratio to K+K− or K0S K0S .3Assuming JP = 2+ for f0(1710).4 In
ludes unknown bran
hing fra
tion to K+K− or K0S K0S . We have multiplied K+K−measurement by 2, and K0S K0S by 4 to obtain K K result.5Assuming JP = 0+ for f0(1710).6 In
ludes unknown bran
hing fra
tion to ρ0 ρ0.7 In
ludes unknown bran
hing fra
tion to π+π−.8 In
ludes unknown bran
hing fra
tion to ηη.
WEIGHTED AVERAGE
10.0+1.1-0.9 (Error scaled by 1.5)

BALTRUSAIT... 87 MRK3 0.0
AUGUSTIN 88 DM2 0.0
AUGUSTIN 88 DM2 0.2
BAI 96C BES 6.5
BAI 03G BES
DOBBS 15 2.6

χ2

       9.3
(Confidence Level = 0.054)

0 5 10 15 20 25J/ψ(1S) mass (units 10−4)�(

γ f0(1710)→ γππ
)/�total �169/��(

γ f0(1710)→ γππ
)/�total �169/��(

γ f0(1710)→ γππ
)/�total �169/��(

γ f0(1710)→ γππ
)/�total �169/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.8 ±0.5 OUR AVERAGE3.8 ±0.5 OUR AVERAGE3.8 ±0.5 OUR AVERAGE3.8 ±0.5 OUR AVERAGE3.72±0.30±0.43 483 1 DOBBS 15 J/ψ → γππ3.96±0.06±1.12 2 ABLIKIM 06V BES2 e+ e− → J/ψ → γπ+π−3.99±0.15±2.64 2 ABLIKIM 06V BES2 e+ e− → J/ψ → γπ0π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.5 ±1.6 ±0.8 BAI 98H BES J/ψ → γπ0π01Using CLEO-
 data but not authored by the CLEO Collaboration.2 In
luding unknown bran
hing fra
tion to ππ.�(

γ f0(1710)→ γωω
)/�total �170/��(

γ f0(1710)→ γωω
)/�total �170/��(

γ f0(1710)→ γωω
)/�total �170/��(

γ f0(1710)→ γωω
)/�total �170/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.31±0.06±0.080.31±0.06±0.080.31±0.06±0.080.31±0.06±0.08 180 ABLIKIM 06H BES J/ψ → γωω�(

γ f0(1710)→ γ ηη
)/�total �171/��(

γ f0(1710)→ γ ηη
)/�total �171/��(

γ f0(1710)→ γ ηη
)/�total �171/��(

γ f0(1710)→ γ ηη
)/�total �171/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.35+0.13

−0.11+1.24
−0.742.35+0.13

−0.11+1.24
−0.742.35+0.13

−0.11+1.24
−0.742.35+0.13

−0.11+1.24
−0.74 5.5k 1 ABLIKIM 13N BES3 J/ψ → γ ηη1From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.

�(

γ η
)/�total �172/��(

γ η
)/�total �172/��(

γ η
)/�total �172/��(

γ η
)/�total �172/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.104±0.034 OUR AVERAGE1.104±0.034 OUR AVERAGE1.104±0.034 OUR AVERAGE1.104±0.034 OUR AVERAGE1.101±0.029±0.022 PEDLAR 09 CLE3 J/ψ → ηγ1.123±0.089 11k ABLIKIM 06E BES2 J/ψ → ηγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.88 ±0.08 ±0.11 BLOOM 83 CBAL e+ e−0.82 ±0.10 BRANDELIK 79C DASP e+ e−1.3 ±0.4 21 BARTEL 77 CNTR e+ e−�(

γ f1(1420)→ γK K π
)/�total �173/��(

γ f1(1420)→ γK K π
)/�total �173/��(

γ f1(1420)→ γK K π
)/�total �173/��(

γ f1(1420)→ γK K π
)/�total �173/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.79±0.13 OUR AVERAGE0.79±0.13 OUR AVERAGE0.79±0.13 OUR AVERAGE0.79±0.13 OUR AVERAGE0.68±0.04±0.24 BAI 00D BES J/ψ → γK±K0S π∓0.76±0.15±0.21 1,2 AUGUSTIN 92 DM2 J/ψ → γK K π0.87±0.14+0.14

−0.11 1 BAI 90C MRK3 J/ψ → γK0S K±π∓1 In
luded unknown bran
hing fra
tion f1(1420) → K K π.2 From �t to the K∗(892)K 1 + + partial wave.�(

γ f1(1285))/�total �174/��(

γ f1(1285))/�total �174/��(

γ f1(1285))/�total �174/��(

γ f1(1285))/�total �174/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.61 ±0.08 OUR AVERAGE0.61 ±0.08 OUR AVERAGE0.61 ±0.08 OUR AVERAGE0.61 ±0.08 OUR AVERAGE0.69 ±0.16 ±0.20 1 BAI 04J BES2 J/ψ → γ γ ρ00.61 ±0.04 ±0.21 2 BAI 00D BES J/ψ → γK±K0S π∓0.45 ±0.09 ±0.17 3 BAI 99 BES J/ψ → γ ηπ+π−0.625±0.063±0.103 4 BOLTON 92 MRK3 J/ψ → γ f1(1285)0.70 ±0.08 ±0.16 5 BOLTON 92B MRK3 J/ψ → γ ηπ+π−1Assuming B(f1(1285) → ρ0 γ) = 0.055 ± 0.013.2Assuming �(f1(1285) → K K π)/�total = 0.090 ± 0.004.3Assuming �(f1(1285) → ηππ)/�total =0.5 ± 0.18.4Obtained summing the sequential de
ay 
hannelsB(J/ψ → γ f1(1285) , f1(1285) → ππππ) = (1.44 ± 0.39 ± 0.27) × 10−4;B(J/ψ → γ f1(1285) , f1(1285) → a0(980)π ,a0(980) → ηπ) = (3.90± 0.42± 0.87)×10−4;B(J/ψ → γ f1(1285) , f1(1285) → a0(980)π ,a0(980) → K K) = (0.66 ± 0.26 ±0.29) × 10−4;B(J/ψ → γ f1(1285) , f1(1285) → γ ρ0) = (0.25 ± 0.07 ± 0.03) × 10−4.5Using B(f1(1285) → a0(980)π) = 0.37, and in
luding unknown bran
hing ratio fora0(980) → ηπ.�(

γ f1(1510)→ γ ηπ+π−)/�total �175/��(

γ f1(1510)→ γ ηπ+π−)/�total �175/��(

γ f1(1510)→ γ ηπ+π−)/�total �175/��(

γ f1(1510)→ γ ηπ+π−)/�total �175/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.5±1.0±0.74.5±1.0±0.74.5±1.0±0.74.5±1.0±0.7 BAI 99 BES J/ψ → γ ηπ+π−�(

γ f ′2(1525))/�total �176/��(

γ f ′2(1525))/�total �176/��(

γ f ′2(1525))/�total �176/��(

γ f ′2(1525))/�total �176/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT5.7 +0.8
−0.5 OUR AVERAGE5.7 +0.8
−0.5 OUR AVERAGE5.7 +0.8
−0.5 OUR AVERAGE5.7 +0.8
−0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.8.0 ±0.9 ±0.2 750 1,2 DOBBS 15 J/ψ → γK K3.85±0.17+1.91

−0.73 3 BAI 03G BES J/ψ → γK K3.6 ±0.4 +1.4
−0.4 3 BAI 96C BES J/ψ → γK+K−5.6 ±1.4 ±0.9 3 AUGUSTIN 88 DM2 J/ψ → γK+K−4.5 ±0.4 ±0.9 3 AUGUSTIN 88 DM2 J/ψ → γK0S K0S6.8 ±1.6 ±1.4 3 BALTRUSAIT...87 MRK3 J/ψ → γK+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.4 90 4 4 BRANDELIK 79C DASP e+ e− → π+π− γ

<2.3 90 3 ALEXANDER 78 PLUT e+ e− → K+K− γ

WEIGHTED AVERAGE
5.7+0.8-0.5 (Error scaled by 1.5)

BALTRUSAIT... 87 MRK3 0.3
AUGUSTIN 88 DM2 1.5
AUGUSTIN 88 DM2 0.0
BAI 96C BES 2.1
BAI 03G BES 1.0
DOBBS 15 5.9

χ2

      10.8
(Confidence Level = 0.056)

0 2 4 6 8 10 12 14�(

γ f ′2(1525))/�total (units 10−4)



1387138713871387See key on page 601 MesonParti
le ListingsJ/ψ(1S)1Using CLEO-
 data but not authored by the CLEO Collaboration.2DOBBS 15 reports [�(J/ψ(1S) → γ f ′2(1525))/�total℄ × [B(f ′2(1525) → K K)℄ =(7.09 ± 0.46 ± 0.67) × 10−4 whi
h we divide by our best value B(f ′2(1525) → K K)= (88.7 ± 2.2)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.3Using B(f ′2(1525) → K K) = 0.888.4Assuming isotropi
 produ
tion and de
ay of the f ′2(1525) and isospin.�(

γ f ′2(1525)→ γ ηη
)/�total �177/��(

γ f ′2(1525)→ γ ηη
)/�total �177/��(

γ f ′2(1525)→ γ ηη
)/�total �177/��(

γ f ′2(1525)→ γ ηη
)/�total �177/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.42+0.43

−0.51+1.37
−1.303.42+0.43

−0.51+1.37
−1.303.42+0.43

−0.51+1.37
−1.303.42+0.43

−0.51+1.37
−1.30 5.5k 1 ABLIKIM 13N BES3 J/ψ → γ ηη1From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.�(

γ f2(1640)→ γωω
)/�total �178/��(

γ f2(1640)→ γωω
)/�total �178/��(

γ f2(1640)→ γωω
)/�total �178/��(

γ f2(1640)→ γωω
)/�total �178/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.28±0.05±0.170.28±0.05±0.170.28±0.05±0.170.28±0.05±0.17 141 ABLIKIM 06H BES J/ψ → γωω�(

γ f2(1910)→ γωω
)/�total �179/��(

γ f2(1910)→ γωω
)/�total �179/��(

γ f2(1910)→ γωω
)/�total �179/��(

γ f2(1910)→ γωω
)/�total �179/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.20±0.04±0.130.20±0.04±0.130.20±0.04±0.130.20±0.04±0.13 151 ABLIKIM 06H BES J/ψ → γωω�(

γ f0(1800)→ γωφ
)/�total �180/��(

γ f0(1800)→ γωφ
)/�total �180/��(

γ f0(1800)→ γωφ
)/�total �180/��(

γ f0(1800)→ γωφ
)/�total �180/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.5 ±0.6 OUR AVERAGE2.5 ±0.6 OUR AVERAGE2.5 ±0.6 OUR AVERAGE2.5 ±0.6 OUR AVERAGE2.00±0.08+1.38

−1.64 1.3k ABLIKIM 13J BES3 J/ψ → γωφ2.61±0.27±0.65 95 ABLIKIM 06J BES2 J/ψ → γωφ�(

γ f2(1810)→ γ ηη
)/�total �181/��(

γ f2(1810)→ γ ηη
)/�total �181/��(

γ f2(1810)→ γ ηη
)/�total �181/��(

γ f2(1810)→ γ ηη
)/�total �181/�VALUE (units 10−5) EVTS DOCUMENT ID COMMENT5.40+0.60

−0.67+3.42
−2.355.40+0.60

−0.67+3.42
−2.355.40+0.60

−0.67+3.42
−2.355.40+0.60

−0.67+3.42
−2.35 5.5k 1 ABLIKIM 13N J/ψ → γ ηη1From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.�(

γ f2(1950)→ γK∗(892)K∗(892))/�total �182/��(

γ f2(1950)→ γK∗(892)K∗(892))/�total �182/��(

γ f2(1950)→ γK∗(892)K∗(892))/�total �182/��(

γ f2(1950)→ γK∗(892)K∗(892))/�total �182/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.7±0.1±0.20.7±0.1±0.20.7±0.1±0.20.7±0.1±0.2 BAI 00B BES J/ψ → γK+K0π+π−�(

γK∗(892)K∗(892))/�total �183/��(

γK∗(892)K∗(892))/�total �183/��(

γK∗(892)K∗(892))/�total �183/��(

γK∗(892)K∗(892))/�total �183/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.0±0.3±1.34.0±0.3±1.34.0±0.3±1.34.0±0.3±1.3 320 1 BAI 00B BES J/ψ → γK+K0π+π−1Summed over all 
harges.�(

γφφ
)/�total �184/��(

γφφ
)/�total �184/��(

γφφ
)/�total �184/��(

γφφ
)/�total �184/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.0±1.2 OUR AVERAGE4.0±1.2 OUR AVERAGE4.0±1.2 OUR AVERAGE4.0±1.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1. See the ideogram below.7.5±0.6±1.2 168 BAI 90B MRK3 J/ψ → γ 4K3.4±0.8±0.6 33 ± 7 1 BISELLO 90 DM2 J/ψ → γK+K−K0S K0L3.1±0.7±0.4 1 BISELLO 86B DM2 J/ψ → γK+K−K+K−1φφ mass less than 2.9 GeV, η
 ex
luded.

WEIGHTED AVERAGE
4.0±1.2 (Error scaled by 2.1)

BISELLO 86B DM2 1.2
BISELLO 90 DM2 0.3
BAI 90B MRK3 6.9

χ2

       8.4
(Confidence Level = 0.015)

0 5 10 15 20�(

γφφ
)/�total (units 10−4)�(

γ pp)/�total �185/��(

γ pp)/�total �185/��(

γ pp)/�total �185/��(

γ pp)/�total �185/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT0.38±0.07±0.070.38±0.07±0.070.38±0.07±0.070.38±0.07±0.07 49 EATON 84 MRK2 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.11 90 PERUZZI 78 MRK1 e+ e−

�(

γ η(2225))/�total �186/��(

γ η(2225))/�total �186/��(

γ η(2225))/�total �186/��(

γ η(2225))/�total �186/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.33±0.05 OUR AVERAGE0.33±0.05 OUR AVERAGE0.33±0.05 OUR AVERAGE0.33±0.05 OUR AVERAGE0.44±0.04±0.08 196 ± 19 1 ABLIKIM 08I BES J/ψ → γK+K−K0S K0L0.33±0.08±0.05 1 BAI 90B MRK3 J/ψ → γK+K−K+K−0.27±0.06±0.06 1 BAI 90B MRK3 J/ψ → γK+K−K0S K0L0.24+0.15
−0.10 2,3 BISELLO 89B DM2 J/ψ → 4πγ1 In
ludes unknown bran
hing fra
tion to φφ.2 Estimated by us from various �ts.3 In
ludes unknown bran
hing fra
tion to ρ0 ρ0.�(

γ η(1760)→ γ ρ0ρ0)/�total �187/��(

γ η(1760)→ γ ρ0ρ0)/�total �187/��(

γ η(1760)→ γ ρ0ρ0)/�total �187/��(

γ η(1760)→ γ ρ0ρ0)/�total �187/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.13±0.090.13±0.090.13±0.090.13±0.09 1,2 BISELLO 89B DM2 J/ψ → 4πγ1Estimated by us from various �ts.2 In
ludes unknown bran
hing fra
tion to ρ0 ρ0.�(

γ η(1760)→ γωω
)/�total �188/��(

γ η(1760)→ γωω
)/�total �188/��(

γ η(1760)→ γωω
)/�total �188/��(

γ η(1760)→ γωω
)/�total �188/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.98±0.08±0.321.98±0.08±0.321.98±0.08±0.321.98±0.08±0.32 1045 ABLIKIM 06H BES J/ψ → γωω�(

γX (1835)→ γπ+π− η′
)/�total �189/��(

γX (1835)→ γπ+π− η′
)/�total �189/��(

γX (1835)→ γπ+π− η′
)/�total �189/��(

γX (1835)→ γπ+π− η′
)/�total �189/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.6 ±0.4 OUR AVERAGE2.6 ±0.4 OUR AVERAGE2.6 ±0.4 OUR AVERAGE2.6 ±0.4 OUR AVERAGE2.87±0.09+0.49

−0.52 4265 1 ABLIKIM 11C BES3 J/ψ → γπ+π− η′2.2 ±0.4 ±0.4 264 ABLIKIM 05R BES2 J/ψ → γπ+π− η′1From a �t of the π+π− η′ mass distribution to a 
ombination of γ f1(1510), γX (1835),and two un
on�rmed states γX (2120), and γX (2370), for M(pp) < 2.8 GeV, anda

ounting for ba
kgrounds from non-η′ events and J/ψ → π0π+π− η′.�(

γX (1835)→ γ pp)/�total �190/��(

γX (1835)→ γ pp)/�total �190/��(

γX (1835)→ γ pp)/�total �190/��(

γX (1835)→ γ pp)/�total �190/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.77+0.15
−0.09 OUR AVERAGE0.77+0.15
−0.09 OUR AVERAGE0.77+0.15
−0.09 OUR AVERAGE0.77+0.15
−0.09 OUR AVERAGE0.90+0.04
−0.11+0.27

−0.55 1 ABLIKIM 12D BES3 J/ψ → γ pp1.14+0.43
−0.30+0.42

−0.26 231 2 ALEXANDER 10 CLEO J/ψ → γ pp0.70±0.04+0.19
−0.08 BAI 03F BES2 J/ψ → γ pp1From the �t in
luding �nal state intera
tion e�e
ts in isospin 0 S-wave a

ording toSIBIRTSEV 05A.2 From a �t of the pp mass distribution to a 
ombination of γX (1835), γR with M(R)= 2100 MeV and � (R) = 160 MeV, and γ pp phase spa
e, for M(pp) < 2.85 GeV.�(

γX (1835)→ γK0S K0S η
)/�total �191/��(

γX (1835)→ γK0S K0S η
)/�total �191/��(

γX (1835)→ γK0S K0S η
)/�total �191/��(

γX (1835)→ γK0S K0S η
)/�total �191/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT3.31+0.33

−0.30+1.96
−1.293.31+0.33

−0.30+1.96
−1.293.31+0.33

−0.30+1.96
−1.293.31+0.33

−0.30+1.96
−1.29 ABLIKIM 15T BES3 J/ψ → γK0S K0S η�(

γX (1840)→ γ 3(π+π−))/�total �192/��(

γX (1840)→ γ 3(π+π−))/�total �192/��(

γX (1840)→ γ 3(π+π−))/�total �192/��(

γX (1840)→ γ 3(π+π−))/�total �192/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.44±0.36+0.60
−0.742.44±0.36+0.60
−0.742.44±0.36+0.60
−0.742.44±0.36+0.60
−0.74 0.6k ABLIKIM 13U BES3 J/ψ → γ 3(π+π−)�(

γ (K K π) [JPC =0−+℄)/�total �193/��(

γ (K K π) [JPC =0−+℄)/�total �193/��(

γ (K K π) [JPC =0−+℄)/�total �193/��(

γ (K K π) [JPC =0−+℄)/�total �193/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.7 ±0.4 OUR AVERAGE0.7 ±0.4 OUR AVERAGE0.7 ±0.4 OUR AVERAGE0.7 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1.0.58±0.03±0.20 1 BAI 00D BES J/ψ → γK±K0S π∓2.1 ±0.1 ±0.7 2 BAI 00D BES J/ψ → γK±K0S π∓1For a broad stru
ture around 1800 MeV.2 For a broad stru
ture around 2040 MeV.�(

γπ0)/�total �194/��(

γπ0)/�total �194/��(

γπ0)/�total �194/��(

γπ0)/�total �194/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.49+0.33
−0.30 OUR AVERAGE3.49+0.33
−0.30 OUR AVERAGE3.49+0.33
−0.30 OUR AVERAGE3.49+0.33
−0.30 OUR AVERAGE3.63±0.36±0.13 PEDLAR 09 CLE3 J/ψ → π0 γ3.13+0.65
−0.47 586 ABLIKIM 06E BES2 J/ψ → π0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.6 ±1.1 ±0.7 BLOOM 83 CBAL e+ e−7.3 ±4.7 10 BRANDELIK 79C DASP e+ e−�(

γ ppπ+π−)/�total �195/��(

γ ppπ+π−)/�total �195/��(

γ ppπ+π−)/�total �195/��(

γ ppπ+π−)/�total �195/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.79<0.79<0.79<0.79 90 EATON 84 MRK2 e+ e−�(

γ��)/�total �196/��(

γ��)/�total �196/��(

γ��)/�total �196/��(

γ��)/�total �196/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.13<0.13<0.13<0.13 90 HENRARD 87 DM2 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.16 90 BAI 98G BES e+ e−



1388138813881388MesonParti
le ListingsJ/ψ(1S)�(γ f0(2100)→ γ ηη
)/�total �197/��(γ f0(2100)→ γ ηη
)/�total �197/��(γ f0(2100)→ γ ηη
)/�total �197/��(γ f0(2100)→ γ ηη
)/�total �197/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.13+0.09

−0.10+0.64
−0.281.13+0.09

−0.10+0.64
−0.281.13+0.09

−0.10+0.64
−0.281.13+0.09

−0.10+0.64
−0.28 5.5k 1 ABLIKIM 13N BES3 J/ψ → γ ηη1From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.�(γ f0(2100)→ γππ

)/�total �198/��(γ f0(2100)→ γππ
)/�total �198/��(γ f0(2100)→ γππ
)/�total �198/��(γ f0(2100)→ γππ
)/�total �198/�VALUE (units 10−4) EVTS DOCUMENT ID COMMENT6.24±0.48±0.876.24±0.48±0.876.24±0.48±0.876.24±0.48±0.87 744 1 DOBBS 15 J/ψ → γππ1Using CLEO-
 data but not authored by the CLEO Collaboration.�(γ f0(2200))/�total �199/��(γ f0(2200))/�total �199/��(γ f0(2200))/�total �199/��(γ f0(2200))/�total �199/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.5 1 AUGUSTIN 88 DM2 J/ψ → γK0S K0S1 In
ludes unknown bran
hing fra
tion to K0S K0S .�(γ f0(2200)→ γK K)/�total �200/��(γ f0(2200)→ γK K)/�total �200/��(γ f0(2200)→ γK K)/�total �200/��(γ f0(2200)→ γK K)/�total �200/�VALUE (units 10−4) EVTS DOCUMENT ID COMMENT5.86±0.49±1.205.86±0.49±1.205.86±0.49±1.205.86±0.49±1.20 490 1 DOBBS 15 J/ψ → γK K1Using CLEO-
 data but not authored by the CLEO Collaboration.�(γ fJ (2220))/�total �201/��(γ fJ (2220))/�total �201/��(γ fJ (2220))/�total �201/��(γ fJ (2220))/�total �201/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>300 1 BAI 96B BES e+ e− → γ p p, K K
>250 99.9 2 HASAN 96 SPEC pp → π+π−
< 2.3 95 3 AUGUSTIN 88 DM2 J/ψ → γK+K−
< 1.6 95 3 AUGUSTIN 88 DM2 J/ψ → γK0S K0S12.4+6.4

−5.2±2.8 23 3 BALTRUSAIT...86D MRK3 J/ψ → γK0S K0S8.4+3.4
−2.8±1.6 93 3 BALTRUSAIT...86D MRK3 J/ψ → γK+K−1Using BARNES 93.2Using BAI 96B.3 In
ludes unknown bran
hing fra
tion to K+K− or K0S K0S .�(γ fJ (2220)→ γππ

)/�total �202/��(γ fJ (2220)→ γππ
)/�total �202/��(γ fJ (2220)→ γππ
)/�total �202/��(γ fJ (2220)→ γππ
)/�total �202/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

< 3.9< 3.9< 3.9< 3.9 90 1,2 DOBBS 15 J/ψ → γππ

• • • We do not use the following data for averages, �ts, limits, et
. • • •14 ±8 ±4 BAI 98H BES J/ψ → γπ0π08.4±2.6±3.0 BAI 96B BES e+ e− → J/ψ → γπ+π−1Using CLEO-
 data but not authored by the CLEO Collaboration.2 For � = 20/50 MeV, the 90% CL upper limits for π+π− and π0π0 are 2.6/5.2× 10−5and 1.3/1.9× 10−5, respe
tively.�(γ fJ (2220)→ γKK)/�total �203/��(γ fJ (2220)→ γKK)/�total �203/��(γ fJ (2220)→ γKK)/�total �203/��(γ fJ (2220)→ γKK)/�total �203/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
< 4.1< 4.1< 4.1< 4.1 90 1,2 DOBBS 15 J/ψ → γK K
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.6 3 DEL-AMO-SA...10O BABR e+ e− → J/ψ → γK+K−
< 2.9 3 DEL-AMO-SA...10O BABR e+ e− → J/ψ → γK0S K0S6.6±2.9±2.4 BAI 96B BES e+ e− → J/ψ → γK+K−10.8±4.0±3.2 BAI 96B BES e+ e− → J/ψ → γK0S K0S1Using CLEO-
 data but not authored by the CLEO Collaboration.2 For � = 20/50 MeV, the 90% CL upper limits for K+K− and K0S K0S are 1.7/3.1×10−5and 1.2/2.0× 10−5, respe
tively.3 For spin 2 and heli
ity 0; other 
ombinations lead to more stringent upper limits.�(γ fJ (2220)→ γ pp)/�total �204/��(γ fJ (2220)→ γ pp)/�total �204/��(γ fJ (2220)→ γ pp)/�total �204/��(γ fJ (2220)→ γ pp)/�total �204/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.5±0.6±0.51.5±0.6±0.51.5±0.6±0.51.5±0.6±0.5 BAI 96B BES e+ e− → J/ψ → γ pp�(γ f2(2340)→ γ ηη

)/�total �205/��(γ f2(2340)→ γ ηη
)/�total �205/��(γ f2(2340)→ γ ηη
)/�total �205/��(γ f2(2340)→ γ ηη
)/�total �205/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT5.60+0.62

−0.65+2.37
−2.075.60+0.62

−0.65+2.37
−2.075.60+0.62

−0.65+2.37
−2.075.60+0.62

−0.65+2.37
−2.07 5.5k 1 ABLIKIM 13N BES3 J/ψ → γ ηη1From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.�(γ f0(1500)→ γππ

)/�total �206/��(γ f0(1500)→ γππ
)/�total �206/��(γ f0(1500)→ γππ
)/�total �206/��(γ f0(1500)→ γππ
)/�total �206/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.09±0.24 OUR AVERAGE1.09±0.24 OUR AVERAGE1.09±0.24 OUR AVERAGE1.09±0.24 OUR AVERAGE1.21±0.29±0.24 174 1 DOBBS 15 J/ψ → γππ1.00±0.03±0.45 2 ABLIKIM 06V BES2 e+ e− → J/ψ → γπ+π−1.02±0.09±0.45 2 ABLIKIM 06V BES2 e+ e− → J/ψ → γπ0π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.7 ±0.8 3,4 BUGG 95 MRK3 J/ψ → γπ+π−π+π−

1Using CLEO-
 data but not authored by the CLEO Collaboration.2 In
luding unknown bran
hing fra
tion to ππ.3 In
luding unknown bran
hing ratio for f0(1500) → π+π−π+π−.4Assuming that f0(1500) de
ays only to two S-wave dipions.�(γ f0(1500)→ γ ηη
)/�total �207/��(γ f0(1500)→ γ ηη
)/�total �207/��(γ f0(1500)→ γ ηη
)/�total �207/��(γ f0(1500)→ γ ηη
)/�total �207/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.65+0.26

−0.31+0.51
−1.401.65+0.26

−0.31+0.51
−1.401.65+0.26

−0.31+0.51
−1.401.65+0.26

−0.31+0.51
−1.40 5.5k 1 ABLIKIM 13N BES3 J/ψ → γ ηη1From partial wave analysis in
luding all possible 
ombinations of 0++, 2++, and 4++resonan
es.�(γA→ γ invisible)/�total �208/�(narrow state A with mA < 960 MeV)�(γA→ γ invisible)/�total �208/�(narrow state A with mA < 960 MeV)�(γA→ γ invisible)/�total �208/�(narrow state A with mA < 960 MeV)�(γA→ γ invisible)/�total �208/�(narrow state A with mA < 960 MeV)VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<6.3<6.3<6.3<6.3 90 1 INSLER 10 CLEO e+ e− → π+π− J/ψ1The limit varies with mass mA of a narrow state A and is 4.3× 10−6 for mA = 0 MeV,rea
hes its largest value of 6.3× 10−6 at mA = 500 MeV, and is 3.6× 10−6 at mA =960 MeV.�(γA0 → γµ+µ−)/�total �209/�(narrow state A0 with 0.2 GeV <mA0 < 3 GeV)�(γA0 → γµ+µ−)/�total �209/�(narrow state A0 with 0.2 GeV <mA0 < 3 GeV)�(γA0 → γµ+µ−)/�total �209/�(narrow state A0 with 0.2 GeV <mA0 < 3 GeV)�(γA0 → γµ+µ−)/�total �209/�(narrow state A0 with 0.2 GeV <mA0 < 3 GeV)VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<2.1<2.1<2.1<2.1 90 1 ABLIKIM 12 BES3 J/ψ → γµ+µ−1For a narrow s
alar or pseudos
alar, A0, with a mass in the range 0.21{3.00 GeV. Themeasured 90% CL limit as a fun
tion of mA0 ranges from 4× 10−7 to 2.1× 10−5.DALITZ DECAYSDALITZ DECAYSDALITZ DECAYSDALITZ DECAYS�(π0 e+ e−)/�total �210/��(π0 e+ e−)/�total �210/��(π0 e+ e−)/�total �210/��(π0 e+ e−)/�total �210/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT7.56±1.32±0.507.56±1.32±0.507.56±1.32±0.507.56±1.32±0.50 39 ABLIKIM 14I BES3 J/ψ → π0 e+ e−�(ηe+ e−)/�total �211/��(ηe+ e−)/�total �211/��(ηe+ e−)/�total �211/��(ηe+ e−)/�total �211/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.16±0.07±0.061.16±0.07±0.061.16±0.07±0.061.16±0.07±0.06 320 1 ABLIKIM 14I BES3 J/ψ → ηe+ e−1Using both η → γ γ and η → π+π−π0 de
ays.�(η′(958)e+ e−)/�total �212/��(η′(958)e+ e−)/�total �212/��(η′(958)e+ e−)/�total �212/��(η′(958)e+ e−)/�total �212/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT5.81±0.16±0.315.81±0.16±0.315.81±0.16±0.315.81±0.16±0.31 1.4k 1 ABLIKIM 14I BES3 J/ψ → η′ e+ e−1Using both η′ → γπ+π− and η′ → π+π− η de
ays.WEAK DECAYSWEAK DECAYSWEAK DECAYSWEAK DECAYS�(D− e+νe+ 
.
.)/�total �213/��(D− e+νe+ 
.
.)/�total �213/��(D− e+νe+ 
.
.)/�total �213/��(D− e+νe+ 
.
.)/�total �213/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.2<1.2<1.2<1.2 90 ABLIKIM 06M BES2 e+ e− → J/ψ�(D0 e+ e−+ 
.
.)/�total �214/��(D0 e+ e−+ 
.
.)/�total �214/��(D0 e+ e−+ 
.
.)/�total �214/��(D0 e+ e−+ 
.
.)/�total �214/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.1<1.1<1.1<1.1 90 ABLIKIM 06M BES2 e+ e− → J/ψ�(D−s e+νe+ 
.
.)/�total �215/��(D−s e+νe+ 
.
.)/�total �215/��(D−s e+νe+ 
.
.)/�total �215/��(D−s e+νe+ 
.
.)/�total �215/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 1.3< 1.3< 1.3< 1.3 90 ABLIKIM 14R BES3 e+ e− → J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<36 90 1 ABLIKIM 06M BES2 e+ e− → J/ψ1Using B(D−s → φπ−) = 4.4 ± 0.5 %.�(D∗−s e+νe+ 
.
.)/�total �216/��(D∗−s e+νe+ 
.
.)/�total �216/��(D∗−s e+νe+ 
.
.)/�total �216/��(D∗−s e+νe+ 
.
.)/�total �216/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.8× 10−6<1.8× 10−6<1.8× 10−6<1.8× 10−6 90 ABLIKIM 14R BES3 e+ e− → J/ψ�(D−π++ 
.
.)/�total �217/��(D−π++ 
.
.)/�total �217/��(D−π++ 
.
.)/�total �217/��(D−π++ 
.
.)/�total �217/�VALUE CL% DOCUMENT ID TECN COMMENT
<7.5× 10−5<7.5× 10−5<7.5× 10−5<7.5× 10−5 90 ABLIKIM 08J BES2 e+ e− → J/ψ�(D0K0+ 
.
.)/�total �218/��(D0K0+ 
.
.)/�total �218/��(D0K0+ 
.
.)/�total �218/��(D0K0+ 
.
.)/�total �218/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.7× 10−4<1.7× 10−4<1.7× 10−4<1.7× 10−4 90 ABLIKIM 08J BES2 e+ e− → J/ψ�(D0K∗0+ 
.
.)/�total �219/��(D0K∗0+ 
.
.)/�total �219/��(D0K∗0+ 
.
.)/�total �219/��(D0K∗0+ 
.
.)/�total �219/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.5× 10−6<2.5× 10−6<2.5× 10−6<2.5× 10−6 90 ABLIKIM 14K BES3 e+ e− → J/ψ�(D−s π++ 
.
.)/�total �220/��(D−s π++ 
.
.)/�total �220/��(D−s π++ 
.
.)/�total �220/��(D−s π++ 
.
.)/�total �220/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.3× 10−4<1.3× 10−4<1.3× 10−4<1.3× 10−4 90 ABLIKIM 08J BES2 e+ e− → J/ψ



1389138913891389See key on page 601 MesonParti
le ListingsJ/ψ(1S)�(D−s ρ++ 
.
.)/�total �221/��(D−s ρ++ 
.
.)/�total �221/��(D−s ρ++ 
.
.)/�total �221/��(D−s ρ++ 
.
.)/�total �221/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.3× 10−5<1.3× 10−5<1.3× 10−5<1.3× 10−5 90 ABLIKIM 14K BES3 e+ e− → J/ψCHARGE CONJUGATION (C ), PARITY (P),CHARGE CONJUGATION (C ), PARITY (P),CHARGE CONJUGATION (C ), PARITY (P),CHARGE CONJUGATION (C ), PARITY (P),LEPTON FAMILY NUMBER (LF ) VIOLATING MODESLEPTON FAMILY NUMBER (LF ) VIOLATING MODESLEPTON FAMILY NUMBER (LF ) VIOLATING MODESLEPTON FAMILY NUMBER (LF ) VIOLATING MODES�(γ γ

)/�total �222/��(γ γ
)/�total �222/��(γ γ
)/�total �222/��(γ γ
)/�total �222/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT

< 2.7< 2.7< 2.7< 2.7 90 ABLIKIM 14Q BES3 ψ(2S) → π+π− J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 50 90 ADAMS 08 CLEO ψ(2S) → π+π− J/ψ

<1600 90 1 WICHT 08 BELL B± → K± γ γ

< 220 90 ABLIKIM 07J BES2 ψ(2S) → J/ψπ+ π−
<5000 90 BARTEL 77 CNTR e+ e−1WICHT 08 reports [�(J/ψ(1S) → γ γ

)/�total℄ × [B(B+ → J/ψ(1S)K+)℄ < 0.16×10−6 whi
h we divide by our best value B(B+ → J/ψ(1S)K+) = 1.026 × 10−3.�(γφ
)/�total �223/��(γφ
)/�total �223/��(γφ
)/�total �223/��(γφ
)/�total �223/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.4× 10−6<1.4× 10−6<1.4× 10−6<1.4× 10−6 90 ABLIKIM 14Q BES3 ψ(2S) → π+π− J/ψ�(e±µ∓)/�total �224/��(e±µ∓)/�total �224/��(e±µ∓)/�total �224/��(e±µ∓)/�total �224/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
< 1.6< 1.6< 1.6< 1.6 90 ABLIKIM 13L BES3 e+ e− → J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<11 90 BAI 03D BES e+ e− → J/ψ�(e± τ∓
)/�total �225/��(e± τ∓
)/�total �225/��(e± τ∓
)/�total �225/��(e± τ∓
)/�total �225/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<8.3<8.3<8.3<8.3 90 ABLIKIM 04 BES e+ e− → J/ψ�(µ± τ∓
)/�total �226/��(µ± τ∓
)/�total �226/��(µ± τ∓
)/�total �226/��(µ± τ∓
)/�total �226/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<2.0<2.0<2.0<2.0 90 ABLIKIM 04 BES e+ e− → J/ψOTHER DECAYSOTHER DECAYSOTHER DECAYSOTHER DECAYS�(invisible)/�(e+ e−) �227/�5�(invisible)/�(e+ e−) �227/�5�(invisible)/�(e+ e−) �227/�5�(invisible)/�(e+ e−) �227/�5VALUE CL% DOCUMENT ID TECN COMMENT
<6.6× 10−2<6.6× 10−2<6.6× 10−2<6.6× 10−2 90 LEES 13I BABR B → K(∗) J/ψ�(invisible)/�(µ+µ−) �227/�7�(invisible)/�(µ+µ−) �227/�7�(invisible)/�(µ+µ−) �227/�7�(invisible)/�(µ+µ−) �227/�7VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−2<1.2× 10−2<1.2× 10−2<1.2× 10−2 90 ABLIKIM 08G BES2 ψ(2S) → π+π− J/ψJ/ψ(1S) REFERENCESJ/ψ(1S) REFERENCESJ/ψ(1S) REFERENCESJ/ψ(1S) REFERENCESAAIJ 15BI EPJ C75 311 R. Aaij et al. (LHCb Collab.)ABLIKIM 15AE PR D92 052003 M. Ablikim et al. (BES III Collab.)ABLIKIM 15H PR D91 052017 M. Ablikim et al. (BES III Collab.)ABLIKIM 15K PR D91 112001 M. Ablikim et al. (BES III Collab.)ABLIKIM 15P PR D92 012007 M. Ablikim et al. (BES III Collab.)ABLIKIM 15T PRL 115 091803 M. Ablikim et al. (BES III Collab.)ANASHIN 15 PL B749 50 V.V. Anashin et al. (KEDR Collab.)DOBBS 15 PR D91 052006 S. Dobbs et al. (NWES)LEES 15J PR D92 072008 J.P. Lees et al. (BABAR Collab.)ABLIKIM 14I PR D89 092008 M. Ablikim et al. (BES III Collab.)ABLIKIM 14K PR D89 071101 M. Ablikim et al. (BES III Collab.)ABLIKIM 14N PR D90 052009 M. Ablikim et al. (BES III Collab.)ABLIKIM 14Q PR D90 092002 M. Ablikim et al. (BES III Collab.)ABLIKIM 14R PR D90 112014 M. Ablikim et al. (BES III Collab.)ANASHIN 14 PL B738 391 V.V. Anashin et al. (KEDR Collab.)AULCHENKO 14 PL B731 227 V.M. Aul
henko et al. (KEDR Collab.)ABLIKIM 13F PR D87 052007 M. Ablikim et al. (BES III Collab.)ABLIKIM 13I PR D87 032003 M. Ablikim et al. (BES III Collab.)ABLIKIM 13J PR D87 032008 M. Ablikim et al. (BES III Collab.)ABLIKIM 13L PR D87 112007 Ablikim M. et al. (BES III Collab.)ABLIKIM 13N PR D87 092009 Ablikim M. et al. (BES III Collab.)ABLIKIM 13P PR D87 112004 M. Ablikim et al. (BES III Collab.)ABLIKIM 13R PR D88 032007 M. Ablikim et al. (BES III Collab.)ABLIKIM 13U PR D88 091502 M. Ablikim et al. (BES III Collab.)LEES 13I PR D87 112005 J.P. Lees et al. (BABAR Collab.)LEES 13O PR D87 092005 J.P. Lees et al. (BABAR Collab.)LEES 13Q PR D88 032013 J.P. Lees et al. (BABAR Collab.)LEES 13Y PR D88 072009 J.P. Lees et al. (BABAR Collab.)ABLIKIM 12 PR D85 092012 M. Ablikim et al. (BES III Collab.)ABLIKIM 12B PR D86 032008 M. Ablikim et al. (BES III Collab.)ABLIKIM 12C PR D86 032014 M. Ablikim et al. (BES III Collab.)ABLIKIM 12D PRL 108 112003 M. Ablikim et al. (BES III Collab.)ABLIKIM 12H PL B710 594 M. Ablikim et al. (BES III Collab.)ABLIKIM 12P CPC 36 1031 M. Ablikim et al. (BES II Collab.)LEES 12E PR D85 112009 J.P. Lees et al. (BABAR Collab.)METREVELI 12 PR D85 092007 Z. Metreveli et al. (NWES, FLOR, WAYN+)ABLIKIM 11 PR D83 012003 M. Ablikim et al. (BES III Collab.)ABLIKIM 11C PRL 106 072002 M. Ablikim et al. (BES III Collab.)ABLIKIM 11D PR D83 032003 M. Ablikim et al. (BES III Collab.)ABLIKIM 10C PL B685 27 M. Ablikim et al. (BES II Collab.)ABLIKIM 10E PL B693 88 M. Ablikim et al. (BES II Collab.)ALEXANDER 10 PR D82 092002 J.P. Alexander et al. (CLEO Collab.)ANASHIN 10 PL B685 134 V.V. Anashin et al. (KEDR Collab.)DEL-AMO-SA... 10O PRL 105 172001 P. del Amo San
hez et al. (BABAR Collab.)INSLER 10 PR D81 091101 J. Insler et al. (CLEO Collab.)ABLIKIM 09 PL B676 25 M. Ablikim et al. (BES Collab.)ABLIKIM 09B PR D80 052004 M. Ablikim et al. (BES II Collab.)MITCHELL 09 PRL 102 011801 R.E. Mit
hell et al. (CLEO Collab.)PEDLAR 09 PR D79 111101 T.K. Pedlar et al. (CLEO Collab.)SHEN 09 PR D80 031101 C.P. Shen et al. (BELLE Collab.)
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BRANCHING RATIOS OF ψ(2S) AND χc0,1,2

Updated August 2015 by J.J. Hernández-Rey (IFIC, Valencia),
S. Navas (University of Granada), and C. Patrignani (INFN,
Bologna Univ.)

Since 2002, the treatment of the branching ratios of the

ψ(2S) and χc0,1,2 has undergone an important restructuring.

When measuring a branching ratio experimentally, it is not

always possible to normalize the number of events observed in

the corresponding decay mode to the total number of particles

produced. Therefore, the experimenters sometimes report the

number of observed decays with respect to another decay mode

of the same or another particle in the relevant decay chain. This

is actually equivalent to measuring combinations of branching

fractions of several decay modes.

To extract the branching ratio of a given decay mode, the

collaborations use some previously reported measurements of

the required branching ratios. However, the values are frequently

taken from the Review of Particle Physics (RPP), which in turn

uses the branching ratio reported by the experiment in the

following edition, giving rise either to correlations or to plain

vicious circles Ref. 1,Ref. 2 as discussed in more detail in earlier

editions of this mini-review.

The way to avoid these dependencies and correlations is

to extract the branching ratios through a fit that uses the

truly measured combinations of branching fractions and partial

widths. This fit, in fact, should involve decays from the four

concerned particles, ψ(2S), χc0, χc1, and χc2, and occasionally

some combinations of branching ratios of more than one of

them. This is what is done since the 2002 edition [3].

The PDG policy is to quote the results of the collaborations

in a manner as close as possible to what appears in their original

publications. However, in order to avoid the problems mentioned

above, we had in some cases to work out the values originally

measured, using the number of events and detection efficiencies

given by the collaborations, or rescaling back the published

results. The information was sometimes spread over several

articles, and some articles referred to papers still unpublished,

which in turn contained the relevant numbers in footnotes.

Even though the experimental collaborations are entitled to

extract whatever branching ratios they consider appropriate by

using other published results, we would like to encourage them

to also quote explicitly in their articles the actual quantities

measured, so that they can be used directly in averages and fits

of different experimental determinations.

To inform the reader how we computed some of the values

used in this edition of RPP, we use footnotes to indicate the

branching ratios actually given by the experiments and the

quantities they use to derive them from the true combination

of branching ratios actually measured.

None of the branching ratios of the χc0,1,2 are measured in-

dependently of the ψ(2S) radiative decays. We tried to identify

those branching ratios which can be correlated in a non-trivial

way, and although we cannot preclude the existence of other

cases, we are confident that the most relevant correlations have

already been removed. Nevertheless, correlations in the errors

of different quantities measured by the same experiment have

not been taken into account.

FIT INFORMATION

This is an overall fit to 4 total widths, 1 partial width,

25 combinations of partial widths, 10 branching ratios, and

80 combinations of branching ratios. Of the latter 57 involve

decays of more than one particle.

The overall fit uses 239 measurements to determine 49

parameters and has a χ2 of 341.3 for 190 degrees of freedom.

The relatively high χ2 of the fit, 1.8 per d.o.f., can be traced

back to a few specific discrepancies in the data. No scaling

factors to fit uncertainties have been applied.

In the listing we provide the inter-particle correlation coef-

ficients < δxiδxj > / (δxi · δxj), in percent, from the fit to the

corresponding parameter xi.
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χ
0(1P) IG (JPC ) = 0+(0 + +)
χ
0(1P) MASSχ
0(1P) MASSχ
0(1P) MASSχ
0(1P) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3414.75± 0.31 OUR AVERAGE3414.75± 0.31 OUR AVERAGE3414.75± 0.31 OUR AVERAGE3414.75± 0.31 OUR AVERAGE3414.2 ± 0.5 ±2.3 5.4k UEHARA 08 BELL γ γ → χ
0 → hadrons3406 ± 7 ±6 230 1 ABE 07 BELL e+ e− → J/ψ (
 
)3414.21± 0.39±0.27 ABLIKIM 05G BES2 ψ(2S) → γχ
03414.7 + 0.7

− 0.6 ±0.2 2 ANDREOTTI 03 E835 pp → χ
0 → π0π03415.5 ± 0.4 ±0.4 392 3 BAGNASCO 02 E835 pp → χ
0 → J/ψγ3417.4 + 1.8
− 1.9 ±0.2 2 AMBROGIANI 99B E835 pp → e+ e− γ3414.1 ± 0.6 ±0.8 BAI 99B BES ψ(2S) → γX3417.8 ± 0.4 ±4 2 GAISER 86 CBAL ψ(2S) → γX3416 ± 3 ±4 4 TANENBAUM 78 MRK1 e+ e−

• • • We do not use the following data for averages, �ts, limits, et
. • • •3414.6 ± 1.1 266 UEHARA 13 BELL γ γ → K0S K0S3416.5 ± 3.0 EISENSTEIN 01 CLE2 e+ e− → e+ e−χc03422 ±10 4 BARTEL 78B CNTR e+ e− → J/ψ2γ3415 ± 9 4 BIDDICK 77 CNTR e+ e− → γX1From a �t of the J/ψ re
oil mass spe
trum. Supersedes ABE,K 02 and ABE 04G.2Using mass of ψ(2S) = 3686.0 MeV.
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χ
0(1P)3Re
al
ulated by ANDREOTTI 05A, using the value of ψ(2S) mass from AULCHENKO 03.4Mass value shifted by us by amount appropriate for ψ(2S) mass = 3686 MeV andJ/ψ(1S) mass = 3097 MeV.

χ
0(1P) WIDTHχ
0(1P) WIDTHχ
0(1P) WIDTHχ
0(1P) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT10.5±0.6 OUR FIT10.5±0.6 OUR FIT10.5±0.6 OUR FIT10.5±0.6 OUR FIT10.5±0.8 OUR AVERAGE10.5±0.8 OUR AVERAGE10.5±0.8 OUR AVERAGE10.5±0.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.10.6±1.9±2.6 5.4k UEHARA 08 BELL γ γ → χ
0 → hadrons12.6+1.5
−1.6+0.9

−1.1 ABLIKIM 05G BES2 ψ(2S) → γχ
08.6+1.7
−1.3±0.1 ANDREOTTI 03 E835 pp → χ
0 → π0π09.7±1.0 392 1 BAGNASCO 02 E835 pp → χ
0 → J/ψγ16.6+5.2
−3.7±0.1 AMBROGIANI 99B E835 pp → e+ e− γ14.3±2.0±3.0 BAI 98I BES ψ(2S) → γπ+π−13.5±3.3±4.2 GAISER 86 CBAL ψ(2S) → γX, γπ0π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •13.2±2.1 266 UEHARA 13 BELL γ γ → K0S K0S1Re
al
ulated by ANDREOTTI 05A.
χ
0(1P) DECAY MODESχ
0(1P) DECAY MODESχ
0(1P) DECAY MODESχ
0(1P) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelHadroni
 de
aysHadroni
 de
aysHadroni
 de
aysHadroni
 de
ays�1 2(π+π−) (2.24±0.18) %�2 ρ0π+π− (8.7 ±2.8 )× 10−3�3 ρ0 ρ0�4 f0(980)f0(980) (6.5 ±2.1 )× 10−4�5 π+π−π0π0 (3.3 ±0.4 ) %�6 ρ+π−π0+ 
.
. (2.8 ±0.4 ) %�7 4π0 (3.2 ±0.4 )× 10−3�8 π+π−K+K− (1.75±0.14) %�9 K∗0(1430)0K∗0(1430)0 →

π+π−K+K−
(9.6 +3.5

−2.8 )× 10−4�10 K∗0(1430)0K∗2(1430)0+ 
.
. →
π+π−K+K−

(7.8 +1.9
−2.4 )× 10−4�11 K1(1270)+K−+ 
.
. →

π+π−K+K−
(6.1 ±1.9 )× 10−3�12 K1(1400)+K−+ 
.
. →

π+π−K+K−
< 2.6 × 10−3 CL=90%�13 f0(980)f0(980) (1.6 +1.0

−0.9 )× 10−4�14 f0(980)f0(2200) (7.8 +2.0
−2.5 )× 10−4�15 f0(1370)f0(1370) < 2.7 × 10−4 CL=90%�16 f0(1370)f0(1500) < 1.7 × 10−4 CL=90%�17 f0(1370)f0(1710) (6.6 +3.5
−2.3 )× 10−4�18 f0(1500)f0(1370) < 1.3 × 10−4 CL=90%�19 f0(1500)f0(1500) < 5 × 10−5 CL=90%�20 f0(1500)f0(1710) < 7 × 10−5 CL=90%�21 K+K−π+π−π0 (8.6 ±0.9 )× 10−3�22 K0S K±π∓π+π− (4.2 ±0.4 )× 10−3�23 K+K−π0π0 (5.4 ±0.9 )× 10−3�24 K+π−K0π0+ 
.
. (2.44±0.33) %�25 ρ+K−K0+ 
.
. (1.18±0.21) %�26 K∗(892)−K+π0 →K+π−K0π0+ 
.
. (4.5 ±1.1 )× 10−3�27 K0S K0S π+π− (5.6 ±1.0 )× 10−3�28 K+K−ηπ0 (3.0 ±0.7 )× 10−3�29 3(π+π−) (1.20±0.18) %�30 K+K∗(892)0π−+ 
.
. (7.2 ±1.6 )× 10−3�31 K∗(892)0K∗(892)0 (1.7 ±0.6 )× 10−3�32 ππ (8.33±0.35)× 10−3�33 π0 η < 1.8 × 10−4�34 π0 η′ < 1.1 × 10−3�35 π0 η
 < 1.6 × 10−3 CL=90%�36 ηη (2.95±0.19)× 10−3�37 ηη′ < 2.3 × 10−4 CL=90%�38 η′ η′ (1.96±0.21)× 10−3�39 ωω (9.5 ±1.1 )× 10−4�40 ωφ (1.16±0.21)× 10−4�41 ωK+K− (1.94±0.21)× 10−3�42 K+K− (5.91±0.32)× 10−3�43 K0S K0S (3.10±0.18)× 10−3

�44 π+π−η < 1.9 × 10−4 CL=90%�45 π+π−η′ < 3.5 × 10−4 CL=90%�46 K0K+π−+ 
.
. < 9 × 10−5 CL=90%�47 K+K−π0 < 6 × 10−5 CL=90%�48 K+K−η < 2.2 × 10−4 CL=90%�49 K+K−K0S K0S (1.4 ±0.5 )× 10−3�50 K+K−K+K− (2.75±0.28)× 10−3�51 K+K−φ (9.5 ±2.4 )× 10−4�52 K0K+π−φ+ 
.
. (3.7 ±0.6 )× 10−3�53 K+K−π0φ (1.90±0.35)× 10−3�54 φπ+π−π0 (1.18±0.15)× 10−3�55 φφ (7.7 ±0.7 )× 10−4�56 pp (2.25±0.09)× 10−4�57 ppπ0 (6.8 ±0.7 )× 10−4 S=1.3�58 ppη (3.5 ±0.4 )× 10−4�59 ppω (5.1 ±0.6 )× 10−4�60 ppφ (5.9 ±1.4 )× 10−5�61 ppπ+π− (2.1 ±0.7 )× 10−3 S=1.4�62 ppπ0π0 (1.02±0.27)× 10−3�63 ppK+K− (non-resonant) (1.19±0.26)× 10−4�64 ppK0S K0S < 8.8 × 10−4 CL=90%�65 pnπ− (1.24±0.11)× 10−3�66 pnπ+ (1.34±0.12)× 10−3�67 pnπ−π0 (2.29±0.21)× 10−3�68 pnπ+π0 (2.16±0.18)× 10−3�69 �� (3.21±0.25)× 10−4�70 ��π+π− (1.15±0.13)× 10−3�71 ��π+π− (non-resonant) < 5 × 10−4 CL=90%�72 � (1385)+�π−+ 
.
. < 5 × 10−4 CL=90%�73 � (1385)−�π++ 
.
. < 5 × 10−4 CL=90%�74 K+p�+ 
.
. (1.22±0.12)× 10−3 S=1.3�75 K+p�(1520)+ 
.
. (2.9 ±0.7 )× 10−4�76 �(1520)�(1520) (3.1 ±1.2 )× 10−4�77 �0�0 (4.4 ±0.4 )× 10−4�78 �+�− (3.9 ±0.7 )× 10−4 S=1.7�79 � (1385)+� (1385)− (1.6 ±0.6 )× 10−4�80 � (1385)−� (1385)+ (2.3 ±0.6 )× 10−4�81 K−��++ 
.
. (1.90±0.34)× 10−4�82 � 0� 0 (3.1 ±0.8 )× 10−4�83 �−�+ (4.7 ±0.7 )× 10−4�84 η
 π+π− < 7 × 10−4 CL=90%Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays�85 γ J/ψ(1S) (1.27±0.06) %�86 γ ρ0 < 9 × 10−6 CL=90%�87 γω < 8 × 10−6 CL=90%�88 γφ < 6 × 10−6 CL=90%�89 γ γ (2.23±0.13)× 10−4CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONA multiparti
le �t to χ
1(1P), χ
0(1P), χ
2(1P), and ψ(2S)with 4 total widths, a partial width, 25 
ombinations of partialwidths obtained from integrated 
ross se
tion, and 84 bran
hingratios uses 240 measurements to determine 49 parameters. Theoverall �t has a χ2 = 342.4 for 191 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
hingfra
tions, xi ≡ �i/�total.x2 25x8 14 4x30 7 2 29x32 15 4 16 5x36 8 2 9 3 21x42 13 3 14 5 28 17x43 12 3 13 4 27 16 22x50 9 2 8 3 14 8 12 11x55 10 3 10 4 14 9 12 12 7x56 7 2 9 3 13 6 15 15 8 8x69 8 2 9 3 20 12 17 16 8 9x85 4 1 5 1 14 9 10 10 5 5x89 −16 −4 −9 −6 5 4 2 4 −2 −4� −22 −6 −17 −8 −16 −9 −15 −14 −10 −13x1 x2 x8 x30 x32 x36 x42 x43 x50 x55
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χ
0(1P)x69 11x85 −21 8x89 2 4 9� −7 −9 −8 −48x56 x69 x85 x89

χ
0(1P) PARTIAL WIDTHSχ
0(1P) PARTIAL WIDTHSχ
0(1P) PARTIAL WIDTHSχ
0(1P) PARTIAL WIDTHS
χ
0(1P) �(i)�(γ J/ψ(1S))/�(total)χ
0(1P) �(i)�(γ J/ψ(1S))/�(total)χ
0(1P) �(i)�(γ J/ψ(1S))/�(total)χ
0(1P) �(i)�(γ J/ψ(1S))/�(total)�(pp)

× �(γ J/ψ(1S))/�total �56�85/��(pp)

× �(γ J/ψ(1S))/�total �56�85/��(pp)

× �(γ J/ψ(1S))/�total �56�85/��(pp)

× �(γ J/ψ(1S))/�total �56�85/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT30.0± 2.3 OUR FIT30.0± 2.3 OUR FIT30.0± 2.3 OUR FIT30.0± 2.3 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •26.6± 2.6±1.4 392 1,2 BAGNASCO 02 E835 pp → χ
0 → J/ψγ48.7+11.3

− 8.9±2.4 1,2 AMBROGIANI 99B E835 pp → γ J/ψ1Cal
ulated by us using B(J/ψ(1S) → e+ e−) = 0.0593 ± 0.0010.2Values in (�(pp)

× �(

γ J/ψ(1S))/�total) and (�(pp)/�total × �(

γ J/ψ(1S))/�total)are not independent. The latter is used in the �t sin
e it is less 
orrelated to the totalwidth.
χ
0(1P) �(i)�(γ γ)/�(total)χ
0(1P) �(i)�(γ γ)/�(total)χ
0(1P) �(i)�(γ γ)/�(total)χ
0(1P) �(i)�(γ γ)/�(total)�(2(π+π−)) × �(γ γ

)/�total �1�89/��(2(π+π−)) × �(γ γ
)/�total �1�89/��(2(π+π−)) × �(γ γ
)/�total �1�89/��(2(π+π−)) × �(γ γ
)/�total �1�89/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT53 ± 4 OUR FIT53 ± 4 OUR FIT53 ± 4 OUR FIT53 ± 4 OUR FIT49 ±10 OUR AVERAGE49 ±10 OUR AVERAGE49 ±10 OUR AVERAGE49 ±10 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.44.7± 3.6±4.9 3.6k UEHARA 08 BELL γ γ → χ
0 → 2(π+π−)75 ±13 ±8 EISENSTEIN 01 CLE2 e+ e− → e+ e−χc0�(ρ0 ρ0) × �(γ γ

)/�total �3�89/��(ρ0 ρ0) × �(γ γ
)/�total �3�89/��(ρ0 ρ0) × �(γ γ
)/�total �3�89/��(ρ0 ρ0) × �(γ γ
)/�total �3�89/�VALUE (eV) CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<12 90 <252 UEHARA 08 BELL γ γ → χ
0 → 2(π+π−)�(π+π−K+K−)

× �(γ γ
)/�total �8�89/��(π+π−K+K−)

× �(γ γ
)/�total �8�89/��(π+π−K+K−)

× �(γ γ
)/�total �8�89/��(π+π−K+K−)

× �(γ γ
)/�total �8�89/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT41 ±4 OUR FIT41 ±4 OUR FIT41 ±4 OUR FIT41 ±4 OUR FIT38.8±3.7±4.738.8±3.7±4.738.8±3.7±4.738.8±3.7±4.7 1.7k UEHARA 08 BELL γ γ → χ
0 → K+K−π+π−�(K+K−π+π−π0) × �(γ γ

)/�total �21�89/��(K+K−π+π−π0) × �(γ γ
)/�total �21�89/��(K+K−π+π−π0) × �(γ γ
)/�total �21�89/��(K+K−π+π−π0) × �(γ γ
)/�total �21�89/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT26±4±426±4±426±4±426±4±4 1094 DEL-AMO-SA...11M BABR γ γ → K+K−π+π−π0�(K+K∗(892)0π−+ 
.
.) × �(γ γ

)/�total �30�89/��(K+K∗(892)0π−+ 
.
.) × �(γ γ
)/�total �30�89/��(K+K∗(892)0π−+ 
.
.) × �(γ γ
)/�total �30�89/��(K+K∗(892)0π−+ 
.
.) × �(γ γ
)/�total �30�89/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT17 ±4 OUR FIT17 ±4 OUR FIT17 ±4 OUR FIT17 ±4 OUR FIT16.7±6.1±3.016.7±6.1±3.016.7±6.1±3.016.7±6.1±3.0 495± 182 UEHARA 08 BELL γ γ → χ
0 → K+K−π+π−�(K∗(892)0K∗(892)0) × �(γ γ

)/�total �31�89/��(K∗(892)0K∗(892)0) × �(γ γ
)/�total �31�89/��(K∗(892)0K∗(892)0) × �(γ γ
)/�total �31�89/��(K∗(892)0K∗(892)0) × �(γ γ
)/�total �31�89/�VALUE (eV) CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6 90 <148 UEHARA 08 BELL γ γ → χ
0 → K+K−π+π−�(ππ
)

× �(γ γ
)/�total �32�89/��(ππ

)

× �(γ γ
)/�total �32�89/��(ππ

)

× �(γ γ
)/�total �32�89/��(ππ

)

× �(γ γ
)/�total �32�89/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT19.5± 1.4 OUR FIT19.5± 1.4 OUR FIT19.5± 1.4 OUR FIT19.5± 1.4 OUR FIT23 ± 5 OUR AVERAGE23 ± 5 OUR AVERAGE23 ± 5 OUR AVERAGE23 ± 5 OUR AVERAGE29.7+17.4

−12.0±4.8 103+60
−42 1 UEHARA 09 BELL 10.6 e+ e− → e+ e−π0π022.7± 3.2±3.5 129 ± 18 2 NAKAZAWA 05 BELL 10.6 e+ e− →e+ e−π+π−1We multiplied the measurement by 3 to 
onvert from π0π0 to ππ. Interferen
e withthe 
ontinuum in
luded.2We have multiplied π+π− measurement by 3/2 to obtain ππ.�(ηη

)

× �(γ γ
)/�total �36�89/��(ηη

)

× �(γ γ
)/�total �36�89/��(ηη

)

× �(γ γ
)/�total �36�89/��(ηη

)

× �(γ γ
)/�total �36�89/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT9.4±2.3±1.29.4±2.3±1.29.4±2.3±1.29.4±2.3±1.2 22 1 UEHARA 10A BELL 10.6 e+ e− → e+ e− ηη1 Interferen
e with the 
ontinuum not in
luded.�(ωω

)

× �(γ γ
)/�total �39�89/��(ωω

)

× �(γ γ
)/�total �39�89/��(ωω

)

× �(γ γ
)/�total �39�89/��(ωω

)

× �(γ γ
)/�total �39�89/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.9 90 1 LIU 12B BELL γ γ → 2(π+π−π0)1Using B(ω → π+π−π0) = (89.2 ± 0.7)%.�(ωφ
)

× �(γ γ
)/�total �40�89/��(ωφ

)

× �(γ γ
)/�total �40�89/��(ωφ

)

× �(γ γ
)/�total �40�89/��(ωφ

)

× �(γ γ
)/�total �40�89/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.34 90 1 LIU 12B BELL γ γ → K+K−π+π−π01Using B(φ → K+K−) = (48.9 ± 0.5)% and B(ω → π+π−π0) = (89.2 ± 0.7)%.

�(K+K−)

× �(γ γ
)/�total �42�89/��(K+K−)

× �(γ γ
)/�total �42�89/��(K+K−)

× �(γ γ
)/�total �42�89/��(K+K−)

× �(γ γ
)/�total �42�89/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT13.9±1.1 OUR FIT13.9±1.1 OUR FIT13.9±1.1 OUR FIT13.9±1.1 OUR FIT14.3±1.6±2.314.3±1.6±2.314.3±1.6±2.314.3±1.6±2.3 153 ± 17 NAKAZAWA 05 BELL 10.6 e+ e− →e+ e−K+K−�(K0S K0S)

× �(γ γ
)/�total �43�89/��(K0S K0S)

× �(γ γ
)/�total �43�89/��(K0S K0S)

× �(γ γ
)/�total �43�89/��(K0S K0S)

× �(γ γ
)/�total �43�89/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT7.3 ±0.6 OUR FIT7.3 ±0.6 OUR FIT7.3 ±0.6 OUR FIT7.3 ±0.6 OUR FIT8.7 ±1.7 ±0.98.7 ±1.7 ±0.98.7 ±1.7 ±0.98.7 ±1.7 ±0.9 266 1 UEHARA 13 BELL γ γ → K0S K0S

• • • We do not use the following data for averages, �ts, limits, et
. • • •7.00±0.65±0.71 134 ± 12 CHEN 07B BELL e+ e− → e+ e−χ
01Supersedes CHEN 07B.�(K+K−K+K−)

× �(γ γ
)/�total �50�89/��(K+K−K+K−)

× �(γ γ
)/�total �50�89/��(K+K−K+K−)

× �(γ γ
)/�total �50�89/��(K+K−K+K−)

× �(γ γ
)/�total �50�89/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT6.4±0.7 OUR FIT6.4±0.7 OUR FIT6.4±0.7 OUR FIT6.4±0.7 OUR FIT7.9±1.3±1.17.9±1.3±1.17.9±1.3±1.17.9±1.3±1.1 215 ± 36 UEHARA 08 BELL γ γ → χ
0 → 2(K+K−)�(φφ

)

× �(γ γ
)/�total �55�89/��(φφ

)

× �(γ γ
)/�total �55�89/��(φφ

)

× �(γ γ
)/�total �55�89/��(φφ

)

× �(γ γ
)/�total �55�89/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT1.82±0.19 OUR FIT1.82±0.19 OUR FIT1.82±0.19 OUR FIT1.82±0.19 OUR FIT1.72±0.33±0.141.72±0.33±0.141.72±0.33±0.141.72±0.33±0.14 56 ± 11 1 LIU 12B BELL γ γ → 2(K+K−)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.3 ±0.9 ±0.4 23.6± 9.6 UEHARA 08 BELL γ γ → χ
0 → 2(K+K−)1 Supersedes UEHARA 08. Using B(φ → K+K−) = (48.9 ± 0.5)%.
χ
0(1P) BRANCHING RATIOSχ
0(1P) BRANCHING RATIOSχ
0(1P) BRANCHING RATIOSχ
0(1P) BRANCHING RATIOSHADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYS�(2(π+π−))/�total �1/��(2(π+π−))/�total �1/��(2(π+π−))/�total �1/��(2(π+π−))/�total �1/�VALUE DOCUMENT ID0.0224±0.0018 OUR FIT0.0224±0.0018 OUR FIT0.0224±0.0018 OUR FIT0.0224±0.0018 OUR FIT�(ρ0π+π−)/�(2(π+π−)) �2/�1�(ρ0π+π−)/�(2(π+π−)) �2/�1�(ρ0π+π−)/�(2(π+π−)) �2/�1�(ρ0π+π−)/�(2(π+π−)) �2/�1VALUE DOCUMENT ID TECN COMMENT0.39±0.12 OUR FIT0.39±0.12 OUR FIT0.39±0.12 OUR FIT0.39±0.12 OUR FIT0.39±0.120.39±0.120.39±0.120.39±0.12 TANENBAUM 78 MRK1 ψ(2S) → γχ
0�(ρ0π+π−)/�total �2/��(ρ0π+π−)/�total �2/��(ρ0π+π−)/�total �2/��(ρ0π+π−)/�total �2/�VALUE DOCUMENT ID0.0087±0.0028 OUR FIT0.0087±0.0028 OUR FIT0.0087±0.0028 OUR FIT0.0087±0.0028 OUR FIT�(f0(980)f0(980))/�total �4/��(f0(980)f0(980))/�total �4/��(f0(980)f0(980))/�total �4/��(f0(980)f0(980))/�total �4/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.5±2.1±0.26.5±2.1±0.26.5±2.1±0.26.5±2.1±0.2 36 ± 9 1 ABLIKIM 04G BES ψ(2S) → γ 2π+2π−1ABLIKIM 04G reports [�(

χ
0(1P) → f0(980) f0(980))/�total℄ × [B(ψ(2S) →
γχ
0(1P))℄ = (6.5 ± 1.6 ± 1.3)× 10−5 whi
h we divide by our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(π+π−π0π0)/�total �5/��(π+π−π0π0)/�total �5/��(π+π−π0π0)/�total �5/��(π+π−π0π0)/�total �5/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT3.3±0.4±0.13.3±0.4±0.13.3±0.4±0.13.3±0.4±0.1 1751.4 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 3.54 ± 0.10 ± 0.43 ± 0.18 % from a measurement of [�(

χ
0(1P) →
π+π−π0π0)/�total℄× [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.22± 0.11± 0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(ρ+π−π0+ 
.
.)/�total �6/��(ρ+π−π0+ 
.
.)/�total �6/��(ρ+π−π0+ 
.
.)/�total �6/��(ρ+π−π0+ 
.
.)/�total �6/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT2.8±0.4±0.12.8±0.4±0.12.8±0.4±0.12.8±0.4±0.1 1358.5 1,2 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 3.04 ± 0.18 ± 0.42 ± 0.16 % from a measurement of [�(

χ
0(1P) →
ρ+π−π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2Cal
ulated by us. We have added the values from HE 08B for ρ+π−π0 and ρ−π+π0de
ays assuming un
orrelated statisti
al and fully 
orrelated systemati
 un
ertainties.�(4π0)/�total �7/��(4π0)/�total �7/��(4π0)/�total �7/��(4π0)/�total �7/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.2±0.4±0.13.2±0.4±0.13.2±0.4±0.13.2±0.4±0.1 3296 1 ABLIKIM 11A BES3 e+ e− → ψ(2S) → γχ
01ABLIKIM 11A reports (3.34±0.06±0.44)×10−3 from a measurement of [�(

χ
0(1P) →4π0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.62±0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = (9.99 ±0.27) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.
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χ
0(1P)�(

π+π−K+K−)/�total �8/��(

π+π−K+K−)/�total �8/��(

π+π−K+K−)/�total �8/��(

π+π−K+K−)/�total �8/�VALUE (units 10−3) DOCUMENT ID17.5±1.4 OUR FIT17.5±1.4 OUR FIT17.5±1.4 OUR FIT17.5±1.4 OUR FIT�(K+K∗(892)0π−+ 
.
.)/�(

π+π−K+K−) �30/�8�(K+K∗(892)0π−+ 
.
.)/�(

π+π−K+K−) �30/�8�(K+K∗(892)0π−+ 
.
.)/�(

π+π−K+K−) �30/�8�(K+K∗(892)0π−+ 
.
.)/�(

π+π−K+K−) �30/�8VALUE DOCUMENT ID TECN COMMENT0.41±0.09 OUR FIT0.41±0.09 OUR FIT0.41±0.09 OUR FIT0.41±0.09 OUR FIT0.41±0.100.41±0.100.41±0.100.41±0.10 TANENBAUM 78 MRK1 ψ(2S) → γχ
0�(K∗0(1430)0K∗0(1430)0 → π+π−K+K−)/�total �9/��(K∗0(1430)0K∗0(1430)0 → π+π−K+K−)/�total �9/��(K∗0(1430)0K∗0(1430)0 → π+π−K+K−)/�total �9/��(K∗0(1430)0K∗0(1430)0 → π+π−K+K−)/�total �9/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT9.6+3.5
−2.8±0.39.6+3.5
−2.8±0.39.6+3.5
−2.8±0.39.6+3.5
−2.8±0.3 83 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports (10.44 ± 2.37+3.05

−1.90) × 10−4 from a measurement of[�(

χ
0(1P) → K∗0(1430)0K∗0(1430)0 → π+π−K+K−)/�total℄ × [B(ψ(2S) →
γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.22 ± 0.11 ± 0.46)× 10−2, whi
hwe res
ale to our best value B(ψ(2S) → γχ
0(1P)) = (9.99 ± 0.27)×10−2. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best value.�(K∗0(1430)0K∗2(1430)0+ 
.
.→ π+π−K+K−)/�total �10/��(K∗0(1430)0K∗2(1430)0+ 
.
.→ π+π−K+K−)/�total �10/��(K∗0(1430)0K∗2(1430)0+ 
.
.→ π+π−K+K−)/�total �10/��(K∗0(1430)0K∗2(1430)0+ 
.
.→ π+π−K+K−)/�total �10/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.8+1.9
−2.4±0.27.8+1.9
−2.4±0.27.8+1.9
−2.4±0.27.8+1.9
−2.4±0.2 62 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports (8.49±1.66+1.32

−1.99)×10−4 from a measurement of [�(

χ
0(1P) →K∗0(1430)0K∗2(1430)0+ 
.
. → π+π−K+K−)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄assuming B(ψ(2S) → γχ
0(1P)) = (9.22 ± 0.11 ± 0.46) × 10−2, whi
h we res
aleto our best value B(ψ(2S) → γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.�(K1(1270)+K−+ 
.
.→ π+π−K+K−)/�total �11/��(K1(1270)+K−+ 
.
.→ π+π−K+K−)/�total �11/��(K1(1270)+K−+ 
.
.→ π+π−K+K−)/�total �11/��(K1(1270)+K−+ 
.
.→ π+π−K+K−)/�total �11/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT6.1+1.9
−1.8±0.26.1+1.9
−1.8±0.26.1+1.9
−1.8±0.26.1+1.9
−1.8±0.2 68 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports (6.66±1.31+1.60

−1.51)×10−3 from a measurement of [�(

χ
0(1P) →K1(1270)+K−+ 
.
. → π+π−K+K−)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assum-ing B(ψ(2S) → γχ
0(1P)) = (9.22 ± 0.11 ± 0.46) × 10−2, whi
h we res
ale to ourbest value B(ψ(2S) → γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.The measurement assumes B(K1(1270) → K ρ(770)) = 42 ± 6%.�(K1(1400)+K−+ 
.
.→ π+π−K+K−)/�total �12/��(K1(1400)+K−+ 
.
.→ π+π−K+K−)/�total �12/��(K1(1400)+K−+ 
.
.→ π+π−K+K−)/�total �12/��(K1(1400)+K−+ 
.
.→ π+π−K+K−)/�total �12/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<2.6<2.6<2.6<2.6 90 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports < 2.85 × 10−3 from a measurement of [�(

χ
0(1P) →K1(1400)+K−+ 
.
. → π+π−K+K−)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ as-suming B(ψ(2S) → γχ
0(1P)) = (9.22 ± 0.11 ± 0.46) × 10−2, whi
h we res
ale toour best value B(ψ(2S) → γχ
0(1P)) = 9.99 × 10−2. The measurement assumesB(K1(1400) → K∗(892)π) = 94 ± 6%.�(f0(980)f0(980))/�total �13/��(f0(980)f0(980))/�total �13/��(f0(980)f0(980))/�total �13/��(f0(980)f0(980))/�total �13/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT15.9+10.2
− 8.8±0.415.9+10.2
− 8.8±0.415.9+10.2
− 8.8±0.415.9+10.2
− 8.8±0.4 28 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports [�(

χ
0(1P) → f0(980) f0(980))/�total℄ × [B(ψ(2S) →
γχ
0(1P))℄ = (1.59±0.50+0.89

−0.72)×10−5 whi
h we divide by our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. One of the f0(980) mesonsis identi�ed via de
ay to π+π− while the other via K+K− de
ay.�(f0(980)f0(2200))/�total �14/��(f0(980)f0(2200))/�total �14/��(f0(980)f0(2200))/�total �14/��(f0(980)f0(2200))/�total �14/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.8+2.0
−2.5±0.27.8+2.0
−2.5±0.27.8+2.0
−2.5±0.27.8+2.0
−2.5±0.2 77 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports (8.42±1.42+1.65

−2.29)×10−4 from a measurement of [�(

χ
0(1P) →f0(980) f0(2200))/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. The f0 mesons are iden-ti�ed via f0(980) → π+π− and f0(2200) → K+K− de
ays.�(f0(1370)f0(1370))/�total �15/��(f0(1370)f0(1370))/�total �15/��(f0(1370)f0(1370))/�total �15/��(f0(1370)f0(1370))/�total �15/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<2.7<2.7<2.7<2.7 90 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports < 2.9 × 10−4 from a measurement of [�(

χ
0(1P) →f0(1370) f0(1370))/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = 9.99×10−2. One of the f0(1370) mesons is identi�ed via de
ay to π+π−while the other via K+K− de
ay. Both bran
hing fra
tions for these f0 de
ays are im-pli
itly in
luded in the quoted result.

�(f0(1370)f0(1500))/�total �16/��(f0(1370)f0(1500))/�total �16/��(f0(1370)f0(1500))/�total �16/��(f0(1370)f0(1500))/�total �16/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.7<1.7<1.7<1.7 90 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports < 1.8 × 10−4 from a measurement of [�(

χ
0(1P) →f0(1370) f0(1500))/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = 9.99× 10−2. The f0 mesons are identi�ed via f0(1370) → π+π− andf0(1500) → K+K− de
ays. Both bran
hing fra
tions for these f0 de
ays are impli
itlyin
luded in the quoted result.�(f0(1370)f0(1710))/�total �17/��(f0(1370)f0(1710))/�total �17/��(f0(1370)f0(1710))/�total �17/��(f0(1370)f0(1710))/�total �17/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.6+3.5
−2.3±0.26.6+3.5
−2.3±0.26.6+3.5
−2.3±0.26.6+3.5
−2.3±0.2 61 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports (7.12±1.85+3.28

−1.68)×10−4 from a measurement of [�(

χ
0(1P) →f0(1370) f0(1710))/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. The f0 mesons are identi-�ed via f0(1370) → π+π− and f0(1710) → K+K− de
ays. Both bran
hing fra
tionsfor these f0 de
ays are impli
itly in
luded in the quoted result.�(f0(1500)f0(1370))/�total �18/��(f0(1500)f0(1370))/�total �18/��(f0(1500)f0(1370))/�total �18/��(f0(1500)f0(1370))/�total �18/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.3<1.3<1.3<1.3 90 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports < 1.4 × 10−4 from a measurement of [�(

χ
0(1P) →f0(1500) f0(1370))/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = 9.99× 10−2. The f0 mesons are identi�ed via f0(1500) → π+π− andf0(1370) → K+K− de
ays. Both bran
hing fra
tions for these f0 de
ays are impli
itlyin
luded in the quoted result.�(f0(1500)f0(1500))/�total �19/��(f0(1500)f0(1500))/�total �19/��(f0(1500)f0(1500))/�total �19/��(f0(1500)f0(1500))/�total �19/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<0.5<0.5<0.5<0.5 90 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports < 0.55 × 10−4 from a measurement of [�(

χ
0(1P) →f0(1500) f0(1500))/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = 9.99× 10−2. One of the f0(1500) is identi�ed via de
ay to π+π− whilethe other via K+K− de
ay. Both bran
hing fra
tions for these f0 de
ays are impli
itlyin
luded in the quoted result.�(f0(1500)f0(1710))/�total �20/��(f0(1500)f0(1710))/�total �20/��(f0(1500)f0(1710))/�total �20/��(f0(1500)f0(1710))/�total �20/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<0.7<0.7<0.7<0.7 90 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−1ABLIKIM 05Q reports < 0.73 × 10−4 from a measurement of [�(

χ
0(1P) →f0(1500) f0(1710))/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = 9.99× 10−2. The f0 mesons are identi�ed via f0(1500) → π+π− andf0(1710) → K+K− de
ays. Both bran
hing fra
tions for these f0 de
ays are impli
itlyin
luded in the quoted result.�(K+K−π+π−π0)/�total �21/��(K+K−π+π−π0)/�total �21/��(K+K−π+π−π0)/�total �21/��(K+K−π+π−π0)/�total �21/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT8.61±0.13±0.948.61±0.13±0.948.61±0.13±0.948.61±0.13±0.94 9.0k 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
01Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
0 γ) = (9.68 ± 0.31)%.�(K0S K±π∓π+π−)/�total �22/��(K0S K±π∓π+π−)/�total �22/��(K0S K±π∓π+π−)/�total �22/��(K0S K±π∓π+π−)/�total �22/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.22±0.10±0.434.22±0.10±0.434.22±0.10±0.434.22±0.10±0.43 2.7k 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
01Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
0 γ) = (9.68 ± 0.31)%.�(K+K−π0π0)/�total �23/��(K+K−π0π0)/�total �23/��(K+K−π0π0)/�total �23/��(K+K−π0π0)/�total �23/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.54±0.09±0.010.54±0.09±0.010.54±0.09±0.010.54±0.09±0.01 213.5 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.59 ± 0.05 ± 0.08 ± 0.03 % from a measurement of [�(

χ
0(1P) →K+K−π0π0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P))= (9.22 ± 0.11 ± 0.46) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.�(K+π−K0π0+ 
.
.)/�total �24/��(K+π−K0π0+ 
.
.)/�total �24/��(K+π−K0π0+ 
.
.)/�total �24/��(K+π−K0π0+ 
.
.)/�total �24/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT2.44±0.32±0.072.44±0.32±0.072.44±0.32±0.072.44±0.32±0.07 401.7 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 2.64 ± 0.15 ± 0.31 ± 0.14 % from a measurement of [�(

χ
0(1P) →K+π−K0π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.
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χ
0(1P)�(

ρ+K−K0+ 
.
.)/�total �25/��(

ρ+K−K0+ 
.
.)/�total �25/��(

ρ+K−K0+ 
.
.)/�total �25/��(

ρ+K−K0+ 
.
.)/�total �25/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.18±0.20±0.031.18±0.20±0.031.18±0.20±0.031.18±0.20±0.03 179.7 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 1.28 ± 0.16 ± 0.15 ± 0.07 % from a measurement of [�(

χ
0(1P) →
ρ+K−K0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(K∗(892)−K+π0 → K+π−K0π0+ 
.
.)/�total �26/��(K∗(892)−K+π0 → K+π−K0π0+ 
.
.)/�total �26/��(K∗(892)−K+π0 → K+π−K0π0+ 
.
.)/�total �26/��(K∗(892)−K+π0 → K+π−K0π0+ 
.
.)/�total �26/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.45±0.11±0.010.45±0.11±0.010.45±0.11±0.010.45±0.11±0.01 64.1 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.49 ± 0.10 ± 0.07 ± 0.03 % from a measurement of [�(

χ
0(1P) →K∗(892)−K+π0 → K+π−K0π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ as-suming B(ψ(2S) → γχ
0(1P)) = (9.22 ± 0.11 ± 0.46) × 10−2, whi
h we res
ale toour best value B(ψ(2S) → γχ
0(1P)) = (9.99 ± 0.27)× 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(K0S K0S π+π−)/�total �27/��(K0S K0S π+π−)/�total �27/��(K0S K0S π+π−)/�total �27/��(K0S K0S π+π−)/�total �27/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT5.6±1.0±0.25.6±1.0±0.25.6±1.0±0.25.6±1.0±0.2 152 ± 14 1 ABLIKIM 05O BES2 ψ(2S) → γχ
01ABLIKIM 05O reports [�(

χ
0(1P) → K0S K0S π+π−
)/�total℄ × [B(ψ(2S) →

γχ
0(1P))℄ = (0.558 ± 0.051 ± 0.089) × 10−3 whi
h we divide by our best valueB(ψ(2S) → γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(K+K−ηπ0)/�total �28/��(K+K−ηπ0)/�total �28/��(K+K−ηπ0)/�total �28/��(K+K−ηπ0)/�total �28/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.30±0.07±0.010.30±0.07±0.010.30±0.07±0.010.30±0.07±0.01 56.4 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.32 ± 0.05 ± 0.05 ± 0.02 % from a measurement of [�(

χ
0(1P) →K+K− ηπ0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.22± 0.11± 0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(3(π+π−))/�total �29/��(3(π+π−))/�total �29/��(3(π+π−))/�total �29/��(3(π+π−))/�total �29/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT12.0±1.8 OUR EVALUATION12.0±1.8 OUR EVALUATION12.0±1.8 OUR EVALUATION12.0±1.8 OUR EVALUATION Treating systemati
 error as 
orrelated.12.0±1.7 OUR AVERAGE12.0±1.7 OUR AVERAGE12.0±1.7 OUR AVERAGE12.0±1.7 OUR AVERAGE11.7±1.0±1.9 1 BAI 99B BES ψ(2S) → γχ
012.5±2.9±0.5 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
01Res
aled by us using B(ψ(2S) → γχ
0)= (9.4 ± 0.4)% and B(ψ(2S) →J/ψ(1S)π+π−) = (32.6 ± 0.5)%.�(K+K∗(892)0π−+ 
.
.)/�total �30/��(K+K∗(892)0π−+ 
.
.)/�total �30/��(K+K∗(892)0π−+ 
.
.)/�total �30/��(K+K∗(892)0π−+ 
.
.)/�total �30/�VALUE DOCUMENT ID0.0072±0.0016 OUR FIT0.0072±0.0016 OUR FIT0.0072±0.0016 OUR FIT0.0072±0.0016 OUR FIT�(K∗(892)0K∗(892)0)/�total �31/��(K∗(892)0K∗(892)0)/�total �31/��(K∗(892)0K∗(892)0)/�total �31/��(K∗(892)0K∗(892)0)/�total �31/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.68+0.59
−0.53±0.051.68+0.59
−0.53±0.051.68+0.59
−0.53±0.051.68+0.59
−0.53±0.05 64 1 ABLIKIM 05Q BES2 ψ(2S) → γπ+π−K+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.53±0.39±0.04 30 ± 6 2,3 ABLIKIM 04H BES Repl. by ABLIKIM 05Q1ABLIKIM 05Q reports [�(

χ
0(1P) → K∗(892)0K∗(892)0)/�total℄ × [B(ψ(2S) →
γχ
0(1P))℄ = (0.168 ± 0.035+0.047

−0.040) × 10−3 whi
h we divide by our best valueB(ψ(2S) → γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.2Assumes B(K∗(892)0 → K−π+) = 2/3.3ABLIKIM 04H reports [�(

χ
0(1P) → K∗(892)0K∗(892)0)/�total℄ × [B(ψ(2S) →
γχ
0(1P))℄ = (1.53±0.29±0.26)×10−4 whi
h we divide by our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(

ππ
)/�total �32/��(

ππ
)/�total �32/��(

ππ
)/�total �32/��(

ππ
)/�total �32/�VALUE (units 10−3) DOCUMENT ID8.33±0.35 OUR FIT8.33±0.35 OUR FIT8.33±0.35 OUR FIT8.33±0.35 OUR FIT�(

π0 η
)/�total �35/��(

π0 η
)/�total �35/��(

π0 η
)/�total �35/��(

π0 η
)/�total �35/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.6× 10−3<1.6× 10−3<1.6× 10−3<1.6× 10−3 90 1 ABLIKIM 15N BES3 ψ(2s)e+ e− → γπ0 η
1Using B(η
 → K0S K±π∓)×B(K0S → π+π−)×B(π0 → γ γ) = (1.66±0.11)×10−2.�(

ηη
)/�total �36/��(

ηη
)/�total �36/��(

ηη
)/�total �36/��(

ηη
)/�total �36/�VALUE (units 10−3) DOCUMENT ID2.95±0.19 OUR FIT2.95±0.19 OUR FIT2.95±0.19 OUR FIT2.95±0.19 OUR FIT

�(

ηη
)/�(

ππ
) �36/�32�(

ηη
)/�(

ππ
) �36/�32�(

ηη
)/�(

ππ
) �36/�32�(

ηη
)/�(

ππ
) �36/�32VALUE DOCUMENT ID TECN COMMENT0.354±0.025 OUR FIT0.354±0.025 OUR FIT0.354±0.025 OUR FIT0.354±0.025 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.26 ±0.09 +0.03
−0.02 1 ANDREOTTI 05C E835 pp → 2 mesons0.24 ±0.10 ±0.08 1 BAI 03C BES ψ(2S) → 5γ1We have multiplied π0π0 measurement by 3 to obtain ππ.�(

ηη′
)/�total �37/��(

ηη′
)/�total �37/��(

ηη′
)/�total �37/��(

ηη′
)/�total �37/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT

<0.23<0.23<0.23<0.23 90 35 ± 13 1 ASNER 09 CLEO ψ(2S) → γ η′ η
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.5 90 2 ADAMS 07 CLEO ψ(2S) → γχ
01ASNER 09 reports < 0.25× 10−3 from a measurement of [�(

χ
0(1P) → ηη′
)/�total℄

× [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = 9.99× 10−2.2 Superseded by ASNER 09. ADAMS 07 reports < 0.5 × 10−3 from a measurementof [�(

χ
0(1P) → ηη′
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →

γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = 9.99× 10−2.�(

η′ η′
)/�total �38/��(

η′ η′
)/�total �38/��(

η′ η′
)/�total �38/��(

η′ η′
)/�total �38/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.96±0.20±0.051.96±0.20±0.051.96±0.20±0.051.96±0.20±0.05 0.4k 1 ASNER 09 CLEO ψ(2S) → γ η′ η′

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.57±0.40±0.04 23 2 ADAMS 07 CLEO ψ(2S) → γχ
01ASNER 09 reports (2.12 ± 0.13 ± 0.21)× 10−3 from a measurement of [�(

χ
0(1P) →
η′ η′

)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.22±0.11 ± 0.46) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) =(9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2 Superseded by ASNER 09. ADAMS 07 reports (1.7 ± 0.4 ± 0.2) × 10−3 from ameasurement of [�(

χ
0(1P) → η′ η′
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assum-ing B(ψ(2S) → γχ
0(1P)) = 0.0922 ± 0.0011 ± 0.0046, whi
h we res
ale to ourbest value B(ψ(2S) → γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(

ωω
)/�total �39/��(

ωω
)/�total �39/��(

ωω
)/�total �39/��(

ωω
)/�total �39/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.95±0.11 OUR AVERAGE0.95±0.11 OUR AVERAGE0.95±0.11 OUR AVERAGE0.95±0.11 OUR AVERAGE0.91±0.11±0.02 991 1 ABLIKIM 11K BES3 ψ(2S) → γ hadrons2.1 ±0.6 ±0.1 38.1± 9.6 2 ABLIKIM 05N BES2 ψ(2S) → γχ
0 → γ 6π1ABLIKIM 11K reports (0.95±0.03±0.11)×10−3 from a measurement of [�(

χ
0(1P) →
ωω

)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.62 ±0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = (9.99 ±0.27) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.2ABLIKIM 05N reports [�(

χ
0(1P) → ωω
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ =(0.212 ± 0.053 ± 0.037) × 10−3 whi
h we divide by our best value B(ψ(2S) →

γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.�(

ωφ
)/�total �40/��(

ωφ
)/�total �40/��(

ωφ
)/�total �40/��(

ωφ
)/�total �40/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.16±0.21±0.031.16±0.21±0.031.16±0.21±0.031.16±0.21±0.03 76 1 ABLIKIM 11K BES3 ψ(2S) → γ hadrons1ABLIKIM 11K reports (1.2 ± 0.1 ± 0.2)× 10−4 from a measurement of [�(

χ
0(1P) →
ωφ

)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.62 ±0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = (9.99 ±0.27) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(

ωK+K−)/�total �41/��(

ωK+K−)/�total �41/��(

ωK+K−)/�total �41/��(

ωK+K−)/�total �41/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.94±0.06±0.201.94±0.06±0.201.94±0.06±0.201.94±0.06±0.20 1.4k 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
01Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
0 γ) = (9.68 ± 0.31)%.�(K+K−)/�total �42/��(K+K−)/�total �42/��(K+K−)/�total �42/��(K+K−)/�total �42/�VALUE (units 10−3) DOCUMENT ID5.91±0.32 OUR FIT5.91±0.32 OUR FIT5.91±0.32 OUR FIT5.91±0.32 OUR FIT�(K0S K0S)/�total �43/��(K0S K0S)/�total �43/��(K0S K0S)/�total �43/��(K0S K0S)/�total �43/�VALUE (units 10−3) DOCUMENT ID3.10±0.18 OUR FIT3.10±0.18 OUR FIT3.10±0.18 OUR FIT3.10±0.18 OUR FIT�(K0S K0S)/�(

ππ
) �43/�32�(K0S K0S)/�(

ππ
) �43/�32�(K0S K0S)/�(

ππ
) �43/�32�(K0S K0S)/�(

ππ
) �43/�32VALUE DOCUMENT ID TECN COMMENT0.372±0.023 OUR FIT0.372±0.023 OUR FIT0.372±0.023 OUR FIT0.372±0.023 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.31 ±0.05 ±0.05 1,2 CHEN 07B BELL e+ e− → e+ e−χ
01Using �(

ππ
)

× �(

γ γ
)/�total from the π+π− measurement of NAKAZAWA 05 res
aledby 3/2 to 
onvert to ππ.2Not independent from other measurements.
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χ
0(1P)�(K0S K0S)/�(K+K−) �43/�42�(K0S K0S)/�(K+K−) �43/�42�(K0S K0S)/�(K+K−) �43/�42�(K0S K0S)/�(K+K−) �43/�42VALUE DOCUMENT ID TECN COMMENT0.52±0.04 OUR FIT0.52±0.04 OUR FIT0.52±0.04 OUR FIT0.52±0.04 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.49±0.07±0.08 1,2 CHEN 07B BELL e+ e− → e+ e−χ
01Using �(K+K−)

× �(

γ γ
)/�total from NAKAZAWA 05.2Not independent from other measurements.�(π+π−η

)/�total �44/��(π+π−η
)/�total �44/��(π+π−η
)/�total �44/��(π+π−η
)/�total �44/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.19<0.19<0.19<0.19 90 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h0
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.0 90 2 ABLIKIM 06R BES2 ψ(2S) → γχ
01ATHAR 07 reports < 0.21 × 10−3 from a measurement of [�(

χ
0(1P) → π+π− η
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.22 ±0.11 ± 0.46) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) =9.99 × 10−2.2ABLIKIM 06R reports < 1.1×10−3 from a measurement of [�(

χ
0(1P) → π+π− η
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.2 ± 0.4)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = 9.99× 10−2.�(π+π−η′

)/�total �45/��(π+π−η′
)/�total �45/��(π+π−η′
)/�total �45/��(π+π−η′
)/�total �45/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.35<0.35<0.35<0.35 90 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ATHAR 07 reports < 0.38× 10−3 from a measurement of [�(

χ
0(1P) → π+π− η′
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.22 ±0.11 ± 0.46) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) =9.99 × 10−2.�(K0K+π−+ 
.
.)/�total �46/��(K0K+π−+ 
.
.)/�total �46/��(K0K+π−+ 
.
.)/�total �46/��(K0K+π−+ 
.
.)/�total �46/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.09<0.09<0.09<0.09 90 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h0
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.6 90 2,3 ABLIKIM 06R BES2 ψ(2S) → γχ
0
<0.7 90 3,4 BAI 99B BES ψ(2S) → γχ
01ATHAR 07 reports < 0.10×10−3 from a measurement of [�(

χ
0(1P) → K0K+π−+
.
.)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.22±0.11 ± 0.46) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) =9.99 × 10−2.2ABLIKIM 06R reports < 0.70 × 10−3 from a measurement of [�(

χ
0(1P) →K0K+π−+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = 9.99× 10−2.3We have multiplied the K0S K+π− measurement by a fa
tor of 2 to 
onvert toK0K+π−.4Res
aled by us using B(ψ(2S) → γχ
0)= (9.4 ± 0.4)% and B(ψ(2S) →J/ψ(1S)π+π−) = (32.6 ± 0.5)%.�(K+K−π0)/�total �47/��(K+K−π0)/�total �47/��(K+K−π0)/�total �47/��(K+K−π0)/�total �47/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.06<0.06<0.06<0.06 90 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ATHAR 07 reports < 0.06×10−3 from a measurement of [�(

χ
0(1P) → K+K−π0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.22± 0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = 9.99×10−2.�(K+K−η
)/�total �48/��(K+K−η
)/�total �48/��(K+K−η
)/�total �48/��(K+K−η
)/�total �48/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.22<0.22<0.22<0.22 90 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ATHAR 07 reports < 0.24× 10−3 from a measurement of [�(

χ
0(1P) → K+K−η
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.22 ±0.11 ± 0.46) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) =9.99 × 10−2.�(K+K−K0S K0S)/�total �49/��(K+K−K0S K0S)/�total �49/��(K+K−K0S K0S)/�total �49/��(K+K−K0S K0S)/�total �49/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.38±0.46±0.041.38±0.46±0.041.38±0.46±0.041.38±0.46±0.04 16.8± 4.8 1 ABLIKIM 05O BES2 ψ(2S) → γχ
01ABLIKIM 05O reports [�(

χ
0(1P) → K+K−K0S K0S )/�total℄ × [B(ψ(2S) →
γχ
0(1P))℄ = (0.138 ± 0.039 ± 0.025) × 10−3 whi
h we divide by our best valueB(ψ(2S) → γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(K+K−K+K−)/�total �50/��(K+K−K+K−)/�total �50/��(K+K−K+K−)/�total �50/��(K+K−K+K−)/�total �50/�VALUE (units 10−3) DOCUMENT ID2.75±0.28 OUR FIT2.75±0.28 OUR FIT2.75±0.28 OUR FIT2.75±0.28 OUR FIT

�(K+K−φ
)/�total �51/��(K+K−φ
)/�total �51/��(K+K−φ
)/�total �51/��(K+K−φ
)/�total �51/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.95±0.24±0.030.95±0.24±0.030.95±0.24±0.030.95±0.24±0.03 38 1 ABLIKIM 06T BES2 ψ(2S) → γ 2K+2K−1ABLIKIM 06T reports (1.03±0.22±0.15)×10−3 from a measurement of [�(

χ
0(1P) →K+K−φ
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) =(9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(K0K+π−φ+ 
.
.)/�total �52/��(K0K+π−φ+ 
.
.)/�total �52/��(K0K+π−φ+ 
.
.)/�total �52/��(K0K+π−φ+ 
.
.)/�total �52/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.68±0.30±0.503.68±0.30±0.503.68±0.30±0.503.68±0.30±0.50 ABLIKIM 15M BES3 ψ(2S) → γχ
0�(K+K−π0φ

)/�total �53/��(K+K−π0φ
)/�total �53/��(K+K−π0φ
)/�total �53/��(K+K−π0φ
)/�total �53/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.90±0.14±0.321.90±0.14±0.321.90±0.14±0.321.90±0.14±0.32 ABLIKIM 15M BES3 ψ(2S) → γχ
0�(φπ+π−π0)/�total �54/��(φπ+π−π0)/�total �54/��(φπ+π−π0)/�total �54/��(φπ+π−π0)/�total �54/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.18±0.07±0.131.18±0.07±0.131.18±0.07±0.131.18±0.07±0.13 538 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
01Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
0 γ) = (9.68 ± 0.31)%.�(φφ

)/�total �55/��(φφ
)/�total �55/��(φφ
)/�total �55/��(φφ
)/�total �55/�VALUE (units 10−3) DOCUMENT ID0.77±0.07 OUR FIT0.77±0.07 OUR FIT0.77±0.07 OUR FIT0.77±0.07 OUR FIT�(pp)/�total �56/��(pp)/�total �56/��(pp)/�total �56/��(pp)/�total �56/�VALUE (units 10−4) DOCUMENT ID2.25±0.09 OUR FIT2.25±0.09 OUR FIT2.25±0.09 OUR FIT2.25±0.09 OUR FIT�(ppπ0)/�total �57/��(ppπ0)/�total �57/��(ppπ0)/�total �57/��(ppπ0)/�total �57/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.68±0.07 OUR AVERAGE0.68±0.07 OUR AVERAGE0.68±0.07 OUR AVERAGE0.68±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.72±0.06±0.02 1 ONYISI 10 CLE3 ψ(2S) → γ ppX0.54±0.11±0.01 2 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ONYISI 10 reports (7.76 ± 0.37 ± 0.51 ± 0.39) × 10−4 from a measurement of[�(

χ
0(1P) → ppπ0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2ATHAR 07 reports (0.59 ± 0.10 ± 0.08)×10−3 from a measurement of [�(

χ
0(1P) →ppπ0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.22± 0.11± 0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(ppη
)/�total �58/��(ppη
)/�total �58/��(ppη
)/�total �58/��(ppη
)/�total �58/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.35±0.04 OUR AVERAGE0.35±0.04 OUR AVERAGE0.35±0.04 OUR AVERAGE0.35±0.04 OUR AVERAGE0.34±0.04±0.01 1 ONYISI 10 CLE3 ψ(2S) → γ ppX0.36±0.11±0.01 2 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ONYISI 10 reports (3.73 ± 0.38 ± 0.28 ± 0.19) × 10−4 from a measurement of[�(

χ
0(1P) → pp η
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →

γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2ATHAR 07 reports (0.39 ± 0.11 ± 0.04)×10−3 from a measurement of [�(

χ
0(1P) →pp η
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.22±0.11 ± 0.46) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) =(9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(ppω
)/�total �59/��(ppω
)/�total �59/��(ppω
)/�total �59/��(ppω
)/�total �59/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.51±0.05±0.010.51±0.05±0.010.51±0.05±0.010.51±0.05±0.01 1 ONYISI 10 CLE3 ψ(2S) → γ ppX1ONYISI 10 reports (5.57 ± 0.48 ± 0.42 ± 0.14) × 10−4 from a measurement of[�(

χ
0(1P) → ppω
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →

γχ
0(1P)) = (9.22±0.11±0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(ppφ

)/�total �60/��(ppφ
)/�total �60/��(ppφ
)/�total �60/��(ppφ
)/�total �60/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT5.9±1.4±0.25.9±1.4±0.25.9±1.4±0.25.9±1.4±0.2 42 ± 8 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports (6.12±1.18±0.86)×10−5 from a measurement of [�(

χ
0(1P) →ppφ
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.62±0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = (9.99 ±0.27) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.
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χ
0(1P)�(ppπ+π−)/�total �61/��(ppπ+π−)/�total �61/��(ppπ+π−)/�total �61/��(ppπ+π−)/�total �61/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.1 ±0.7 OUR EVALUATION2.1 ±0.7 OUR EVALUATION2.1 ±0.7 OUR EVALUATION2.1 ±0.7 OUR EVALUATION Error in
ludes s
ale fa
tor of 1.4. Treating systemati
error as 
orrelated.2.1 ±1.0 OUR AVERAGE2.1 ±1.0 OUR AVERAGE2.1 ±1.0 OUR AVERAGE2.1 ±1.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0.1.57±0.21±0.53 1 BAI 99B BES ψ(2S) → γχ
04.20±1.15±0.18 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
01Res
aled by us using B(ψ(2S) → γχ
0)= (9.4 ± 0.4)% and B(ψ(2S) →J/ψ(1S)π+π−) = (32.6 ± 0.5)%.�(ppπ0π0)/�total �62/��(ppπ0π0)/�total �62/��(ppπ0π0)/�total �62/��(ppπ0π0)/�total �62/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.102±0.027±0.0030.102±0.027±0.0030.102±0.027±0.0030.102±0.027±0.003 39.5 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.11 ± 0.02 ± 0.02 ± 0.01 % from a measurement of [�(

χ
0(1P) →ppπ0π0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.22± 0.11± 0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(ppK+K− (non-resonant))/�total �63/��(ppK+K− (non-resonant))/�total �63/��(ppK+K− (non-resonant))/�total �63/��(ppK+K− (non-resonant))/�total �63/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.19±0.26±0.031.19±0.26±0.031.19±0.26±0.031.19±0.26±0.03 48 ± 8 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports (1.24±0.20±0.18)×10−4 from a measurement of [�(

χ
0(1P) →ppK+K− (non-resonant))/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.62 ± 0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(ppK0S K0S)/�total �64/��(ppK0S K0S)/�total �64/��(ppK0S K0S)/�total �64/��(ppK0S K0S)/�total �64/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<8.8<8.8<8.8<8.8 90 1 ABLIKIM 06D BES2 ψ(2S) → χ
0 γ1Using B(ψ(2S) → χ
0 γ) = (9.2 ± 0.5)%�(pnπ−)/�total �65/��(pnπ−)/�total �65/��(pnπ−)/�total �65/��(pnπ−)/�total �65/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT12.4±1.1 OUR AVERAGE12.4±1.1 OUR AVERAGE12.4±1.1 OUR AVERAGE12.4±1.1 OUR AVERAGE12.6±1.1±0.3 5150 1 ABLIKIM 12J BES3 ψ(2S) → γ pnπ−11.0±3.0±0.3 2 ABLIKIM 06I BES2 ψ(2S) → γ pπ−X1ABLIKIM 12J reports [�(

χ
0(1P) → pnπ−
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ =(1.26 ± 0.02± 0.11)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2ABLIKIM 06I reports [�(

χ
0(1P) → pnπ−
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ =(1.10 ± 0.24± 0.18)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(pnπ+)/�total �66/��(pnπ+)/�total �66/��(pnπ+)/�total �66/��(pnπ+)/�total �66/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT13.4±1.1±0.413.4±1.1±0.413.4±1.1±0.413.4±1.1±0.4 5808 1 ABLIKIM 12J BES3 ψ(2S) → γ p nπ+1ABLIKIM 12J reports [�(

χ
0(1P) → pnπ+)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ =(1.34 ± 0.03± 0.11)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(pnπ−π0)/�total �67/��(pnπ−π0)/�total �67/��(pnπ−π0)/�total �67/��(pnπ−π0)/�total �67/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT22.9±2.0±0.622.9±2.0±0.622.9±2.0±0.622.9±2.0±0.6 2480 1 ABLIKIM 12J BES3 ψ(2S) → γ pnπ−π01ABLIKIM 12J reports [�(

χ
0(1P) → pnπ−π0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ =(2.29 ± 0.08± 0.18)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(pnπ+π0)/�total �68/��(pnπ+π0)/�total �68/��(pnπ+π0)/�total �68/��(pnπ+π0)/�total �68/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT21.6±1.7±0.621.6±1.7±0.621.6±1.7±0.621.6±1.7±0.6 2757 1 ABLIKIM 12J BES3 ψ(2S) → γ p nπ+π01ABLIKIM 12J reports [�(

χ
0(1P) → pnπ+π0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ =(2.16 ± 0.07± 0.16)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(��)/�total �69/��(��)/�total �69/��(��)/�total �69/��(��)/�total �69/�VALUE (units 10−4) DOCUMENT ID3.21±0.25 OUR FIT3.21±0.25 OUR FIT3.21±0.25 OUR FIT3.21±0.25 OUR FIT

�(��π+π−)/�total �70/��(��π+π−)/�total �70/��(��π+π−)/�total �70/��(��π+π−)/�total �70/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT115±12±3115±12±3115±12±3115±12±3 426 1 ABLIKIM 12I BES3 ψ(2S) → γ��π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<400 90 2 ABLIKIM 06D BES2 ψ(2S) → χ
0 γ1ABLIKIM 12I reports (119.0± 6.4± 11.4)×10−5 from a measurement of [�(

χ
0(1P) →��π+π−
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.68 ± 0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) =(9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Using B(ψ(2S) → χ
0 γ) = (9.2 ± 0.5)%�(��π+π− (non-resonant))/�total �71/��(��π+π− (non-resonant))/�total �71/��(��π+π− (non-resonant))/�total �71/��(��π+π− (non-resonant))/�total �71/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<50<50<50<50 90 1 ABLIKIM 12I BES3 ψ(2S) → γ��π+π−1ABLIKIM 12I reports < 54 × 10−5 from a measurement of [�(

χ
0(1P) →��π+π− (non-resonant))/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.68 ± 0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = 9.99× 10−2.�(� (1385)+�π−+ 
.
.)/�total �72/��(� (1385)+�π−+ 
.
.)/�total �72/��(� (1385)+�π−+ 
.
.)/�total �72/��(� (1385)+�π−+ 
.
.)/�total �72/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<50<50<50<50 90 1 ABLIKIM 12I BES3 ψ(2S) → γ�(1385)+�π−1ABLIKIM 12I reports < 55 × 10−5 from a measurement of [�(

χ
0(1P) →�(1385)+�π−+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.68 ± 0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = 9.99× 10−2.�(� (1385)−�π++ 
.
.)/�total �73/��(� (1385)−�π++ 
.
.)/�total �73/��(� (1385)−�π++ 
.
.)/�total �73/��(� (1385)−�π++ 
.
.)/�total �73/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<50<50<50<50 90 1 ABLIKIM 12I BES3 ψ(2S) → γ�(1385)−�π+1ABLIKIM 12I reports < 50 × 10−5 from a measurement of [�(

χ
0(1P) →�(1385)−�π++ 
.
.)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.68 ± 0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = 9.99× 10−2.�(K+p�+ 
.
.)/�total �74/��(K+p�+ 
.
.)/�total �74/��(K+p�+ 
.
.)/�total �74/��(K+p�+ 
.
.)/�total �74/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.22±0.12 OUR AVERAGE1.22±0.12 OUR AVERAGE1.22±0.12 OUR AVERAGE1.22±0.12 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.1.28±0.09±0.03 9k 1,2 ABLIKIM 13D BES3 ψ(2S) → γ�pK+0.99±0.19±0.03 3 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ABLIKIM 13D reports (1.32±0.03±0.10)×10−3 from a measurement of [�(

χ
0(1P) →K+ p�+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P))= (9.68 ± 0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Using B(� → pπ−) = 63.9%.3ATHAR 07 reports (1.07 ± 0.17 ± 0.12)×10−3 from a measurement of [�(

χ
0(1P) →K+ p�+ 
.
.)/�total℄× [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.22± 0.11± 0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(K+p�(1520)+ 
.
.)/�total �75/��(K+p�(1520)+ 
.
.)/�total �75/��(K+p�(1520)+ 
.
.)/�total �75/��(K+p�(1520)+ 
.
.)/�total �75/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.9±0.7±0.12.9±0.7±0.12.9±0.7±0.12.9±0.7±0.1 62 ± 12 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports (3.00±0.58±0.50)×10−4 from a measurement of [�(

χ
0(1P) →K+ p�(1520)+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.62 ± 0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(�(1520)�(1520))/�total �76/��(�(1520)�(1520))/�total �76/��(�(1520)�(1520))/�total �76/��(�(1520)�(1520))/�total �76/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.1±1.2±0.13.1±1.2±0.13.1±1.2±0.13.1±1.2±0.1 28 ± 10 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports (3.18 ± 1.11 ± 0.53) × 10−4 from a measurement of[�(

χ
0(1P) → �(1520)�(1520))/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assumingB(ψ(2S) → γχ
0(1P)) = (9.62 ± 0.31) × 10−2, whi
h we res
ale to our best valueB(ψ(2S) → γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(�0�0)/�total �77/��(�0�0)/�total �77/��(�0�0)/�total �77/��(�0�0)/�total �77/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.4±0.4 OUR AVERAGE4.4±0.4 OUR AVERAGE4.4±0.4 OUR AVERAGE4.4±0.4 OUR AVERAGE4.6±0.5±0.1 243 1 ABLIKIM 13H BES3 ψ(2S) → γ�0�04.1±0.6±0.1 78 ± 10 2 NAIK 08 CLEO ψ(2S) → γ�0�0
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χ
0(1P)1ABLIKIM 13H reports (4.78±0.34±0.39)×10−4 from a measurement of [�(

χ
0(1P) →�0�0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.62 ± 0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) =(9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2NAIK 08 reports (4.41 ± 0.56 ± 0.47) × 10−4 from a measurement of [�(

χ
0(1P) →�0�0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.22± 0.11± 0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(�+�−)/�total �78/��(�+�−)/�total �78/��(�+�−)/�total �78/��(�+�−)/�total �78/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.9±0.7 OUR AVERAGE3.9±0.7 OUR AVERAGE3.9±0.7 OUR AVERAGE3.9±0.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.4.4±0.5±0.1 148 1 ABLIKIM 13H BES3 ψ(2S) → γ�+�−3.0±0.6±0.1 39 ± 7 2 NAIK 08 CLEO ψ(2S) → γ�+�−1ABLIKIM 13H reports (4.54±0.42±0.30)×10−4 from a measurement of [�(

χ
0(1P) →�+�−)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.62 ± 0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) =(9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2NAIK 08 reports (3.25 ± 0.57 ± 0.43) × 10−4 from a measurement of [�(

χ
0(1P) →�+�−)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.22± 0.11± 0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(� (1385)+� (1385)−)/�total �79/��(� (1385)+� (1385)−)/�total �79/��(� (1385)+� (1385)−)/�total �79/��(� (1385)+� (1385)−)/�total �79/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT15.9±5.7±0.415.9±5.7±0.415.9±5.7±0.415.9±5.7±0.4 27 1 ABLIKIM 12I BES3 ψ(2S) → γ��π+π−1ABLIKIM 12I reports (16.4 ± 5.7 ± 1.6)× 10−5 from a measurement of [�(

χ
0(1P) →�(1385)+�(1385)−)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.68 ± 0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(� (1385)−� (1385)+)/�total �80/��(� (1385)−� (1385)+)/�total �80/��(� (1385)−� (1385)+)/�total �80/��(� (1385)−� (1385)+)/�total �80/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT23±6±123±6±123±6±123±6±1 33 1 ABLIKIM 12I BES3 ψ(2S) → γ��π+π−1ABLIKIM 12I reports (23.5 ± 6.2 ± 2.3)× 10−5 from a measurement of [�(

χ
0(1P) →�(1385)−�(1385)+)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) →
γχ
0(1P)) = (9.68 ± 0.31) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(K−��++ 
.
.)/�total �81/��(K−��++ 
.
.)/�total �81/��(K−��++ 
.
.)/�total �81/��(K−��++ 
.
.)/�total �81/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.90±0.34±0.051.90±0.34±0.051.90±0.34±0.051.90±0.34±0.05 57 1 ABLIKIM 15I BES3 ψ(2S) → γK−��++ 
.
.1ABLIKIM 15I reports [�(

χ
0(1P) → K−��++ 
.
.)/�total℄ × [B(ψ(2S) →
γχ
0(1P))℄ = (1.90±0.30±0.16)×10−5 whi
h we divide by our best value B(ψ(2S) →
γχ
0(1P)) = (9.99 ± 0.27) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(� 0� 0)/�total �82/��(� 0� 0)/�total �82/��(� 0� 0)/�total �82/��(� 0� 0)/�total �82/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.1±0.8±0.13.1±0.8±0.13.1±0.8±0.13.1±0.8±0.1 23.3± 4.9 1 NAIK 08 CLEO ψ(2S) → γ�0�01NAIK 08 reports (3.34 ± 0.70 ± 0.48) × 10−4 from a measurement of [�(

χ
0(1P) →�0�0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.22± 0.11± 0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(�−�+)/�total �83/��(�−�+)/�total �83/��(�−�+)/�total �83/��(�−�+)/�total �83/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT4.7±0.7±0.14.7±0.7±0.14.7±0.7±0.14.7±0.7±0.1 95 ± 11 1 NAIK 08 CLEO ψ(2S) → γ�+�−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<10.3 90 2 ABLIKIM 06D BES2 ψ(2S) → χ
0 γ1NAIK 08 reports (5.14 ± 0.60 ± 0.47) × 10−4 from a measurement of [�(

χ
0(1P) →�−�+)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) =(9.22± 0.11± 0.46)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P))= (9.99 ± 0.27)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Using B(ψ(2S) → χ
0 γ) = (9.2 ± 0.5)%�(η
 π+π−)/�total �84/��(η
 π+π−)/�total �84/��(η
 π+π−)/�total �84/��(η
 π+π−)/�total �84/�VALUE CL% DOCUMENT ID TECN COMMENT
< 7× 10−4< 7× 10−4< 7× 10−4< 7× 10−4 90 1,2 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
0
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<41× 10−4 90 1,3 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
01Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
0 γ) = (9.68 ± 0.31)%.2From the η
 → K0S K±π∓ de
ays.3 From the η
 → K+K−π0 de
ays.

�(pp)/�total × �(ππ
)/�total �56/�× �32/��(pp)/�total × �(ππ
)/�total �56/�× �32/��(pp)/�total × �(ππ
)/�total �56/�× �32/��(pp)/�total × �(ππ
)/�total �56/�× �32/�VALUE (units 10−7) DOCUMENT ID TECN COMMENT18.8±1.2 OUR FIT18.8±1.2 OUR FIT18.8±1.2 OUR FIT18.8±1.2 OUR FIT15.3±2.4±0.815.3±2.4±0.815.3±2.4±0.815.3±2.4±0.8 1 ANDREOTTI 03 E835 pp → χ
0 → π0π01We have multiplied B(pp)·B(π0π0) measurement by 3 to obtain B(pp)·B(ππ).�(pp)/�total × �(π0 η
)/�total �56/�× �33/��(pp)/�total × �(π0 η
)/�total �56/�× �33/��(pp)/�total × �(π0 η
)/�total �56/�× �33/��(pp)/�total × �(π0 η
)/�total �56/�× �33/�VALUE (units 10−7) DOCUMENT ID TECN COMMENT

<0.4<0.4<0.4<0.4 ANDREOTTI 05C E835 pp → π0 η�(pp)/�total × �(π0 η′
)/�total �56/�× �34/��(pp)/�total × �(π0 η′
)/�total �56/�× �34/��(pp)/�total × �(π0 η′
)/�total �56/�× �34/��(pp)/�total × �(π0 η′
)/�total �56/�× �34/�VALUE (units 10−7) DOCUMENT ID TECN COMMENT

<2.5<2.5<2.5<2.5 ANDREOTTI 05C E835 pp → π0 η�(pp)/�total × �(ηη
)/�total �56/�× �36/��(pp)/�total × �(ηη
)/�total �56/�× �36/��(pp)/�total × �(ηη
)/�total �56/�× �36/��(pp)/�total × �(ηη
)/�total �56/�× �36/�VALUE (units 10−7) DOCUMENT ID TECN COMMENT6.6±0.5 OUR FIT6.6±0.5 OUR FIT6.6±0.5 OUR FIT6.6±0.5 OUR FIT4.0±1.2+0.5

−0.34.0±1.2+0.5
−0.34.0±1.2+0.5
−0.34.0±1.2+0.5
−0.3 ANDREOTTI 05C E835 pp → ηη�(pp)/�total × �(ηη′

)/�total �56/�× �37/��(pp)/�total × �(ηη′
)/�total �56/�× �37/��(pp)/�total × �(ηη′
)/�total �56/�× �37/��(pp)/�total × �(ηη′
)/�total �56/�× �37/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.1+2.3
−1.5 ANDREOTTI 05C E835 pp → π0 ηRADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYS�(γ J/ψ(1S))/�total �85/��(γ J/ψ(1S))/�total �85/��(γ J/ψ(1S))/�total �85/��(γ J/ψ(1S))/�total �85/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT127± 6 OUR FIT127± 6 OUR FIT127± 6 OUR FIT127± 6 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •200±20±20 1 ADAM 05A CLEO e+ e− → ψ(2S) → γχ
01Uses B(ψ(2S) → γχ
0 → γ γ J/ψ) from ADAM 05A and B(ψ(2S) → γχ
0) fromATHAR 04.�(γ ρ0)/�total �86/��(γ ρ0)/�total �86/��(γ ρ0)/�total �86/��(γ ρ0)/�total �86/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT
< 9< 9< 9< 9 90 1.2 ± 4.5 1 BENNETT 08A CLEO ψ(2S) → γ γ ρ0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<10 90 6 ± 12 2 ABLIKIM 11E BES3 ψ(2S) → γ γ ρ01BENNETT 08A reports < 9.6 × 10−6 from a measurement of [�(

χ
0(1P) → γ ρ0)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.2 ± 0.4)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = 9.99× 10−2.2ABLIKIM 11E reports < 10.5 × 10−6 from a measurement of [�(

χ
0(1P) → γ ρ0)/�total℄× [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.62±0.31)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = 9.99× 10−2.�(γω
)/�total �87/��(γω
)/�total �87/��(γω
)/�total �87/��(γω
)/�total �87/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT

< 8< 8< 8< 8 90 0.0 ± 2.8 1 BENNETT 08A CLEO ψ(2S) → γ γω

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<12 90 5 ± 11 2 ABLIKIM 11E BES3 ψ(2S) → γ γω1BENNETT 08A reports < 8.8 × 10−6 from a measurement of [�(

χ
0(1P) → γω
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.2 ± 0.4)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = 9.99× 10−2.2ABLIKIM 11E reports < 12.9×10−6 from a measurement of [�(

χ
0(1P)→ γω
)/�total℄

× [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.62± 0.31)×10−2,whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = 9.99× 10−2.�(γφ
)/�total �88/��(γφ
)/�total �88/��(γφ
)/�total �88/��(γφ
)/�total �88/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT

< 6< 6< 6< 6 90 0.1 ± 1.6 1 BENNETT 08A CLEO ψ(2S) → γ γφ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<16 90 15 ± 7 2 ABLIKIM 11E BES3 ψ(2S) → γ γφ1BENNETT 08A reports < 6.4 × 10−6 from a measurement of [�(

χ
0(1P) → γφ
)/�total℄ × [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.2 ± 0.4)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = 9.99× 10−2.2ABLIKIM 11E reports < 16.2×10−6 from a measurement of [�(

χ
0(1P) → γφ
)/�total℄

× [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.62± 0.31)×10−2,whi
h we res
ale to our best value B(ψ(2S) → γχ
0(1P)) = 9.99× 10−2.�(γ γ
)/�total �89/��(γ γ
)/�total �89/��(γ γ
)/�total �89/��(γ γ
)/�total �89/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.23±0.13 OUR FIT2.23±0.13 OUR FIT2.23±0.13 OUR FIT2.23±0.13 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<7 90 1 WICHT 08 BELL B± → K± γ γ1WICHT 08 reports [�(

χ
0(1P) → γ γ
)/�total℄ × [B(B+ → χ
0(1P)K+)℄ < 0.11×10−6 whi
h we divide by our best value B(B+ → χ
0(1P)K+) = 1.50× 10−4.
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χ
0(1P)�(γ γ

)/�(γ J/ψ(1S)) �89/�85�(γ γ
)/�(γ J/ψ(1S)) �89/�85�(γ γ
)/�(γ J/ψ(1S)) �89/�85�(γ γ
)/�(γ J/ψ(1S)) �89/�85VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.76±0.13 OUR FIT1.76±0.13 OUR FIT1.76±0.13 OUR FIT1.76±0.13 OUR FIT2.0 ±0.4 OUR AVERAGE2.0 ±0.4 OUR AVERAGE2.0 ±0.4 OUR AVERAGE2.0 ±0.4 OUR AVERAGE2.2 ±0.4 +0.1

−0.2 1 ANDREOTTI 04 E835 pp → χ
0 → γ γ1.45±0.74 2 AMBROGIANI 00B E835 p p → χ
2 → γ γ, γ J/ψ1The values of B(pp)B(γ γ) and B(γ γ)B(γ J/ψ) measured by ANDREOTTI 04 are notindependent. The latter is used in the �t be
ause of smaller systemati
s.2Cal
ulated by us using B(J/ψ(1S) → e+ e−) = 0.0593 ± 0.0010.�(pp)/�total × �(γ J/ψ(1S))/�total �56/�× �85/��(pp)/�total × �(γ J/ψ(1S))/�total �56/�× �85/��(pp)/�total × �(γ J/ψ(1S))/�total �56/�× �85/��(pp)/�total × �(γ J/ψ(1S))/�total �56/�× �85/�VALUE (units 10−7) EVTS DOCUMENT ID TECN COMMENT28.5±1.6 OUR FIT28.5±1.6 OUR FIT28.5±1.6 OUR FIT28.5±1.6 OUR FIT28.2±2.1 OUR AVERAGE28.2±2.1 OUR AVERAGE28.2±2.1 OUR AVERAGE28.2±2.1 OUR AVERAGE28.0±1.9±1.3 392 1,2,3 BAGNASCO 02 E835 pp → χ
0 → J/ψγ29.3+5.7
−4.7±1.5 89 1,2 AMBROGIANI 99B pp → χ
0 → J/ψγ1Values in (�(pp)

× �(

γ J/ψ(1S))/�total) and (�(pp)/�total × �(

γ J/ψ(1S))/�total)are not independent. The latter is used in the �t sin
e it is less 
orrelated to the totalwidth.2Cal
ulated by us using B(J/ψ(1S) → e+ e−) = 0.0593 ± 0.0010.3Re
al
ulated by ANDREOTTI 05A.�(pp)/�total × �(γ γ
)/�total �56/�× �89/��(pp)/�total × �(γ γ
)/�total �56/�× �89/��(pp)/�total × �(γ γ
)/�total �56/�× �89/��(pp)/�total × �(γ γ
)/�total �56/�× �89/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT5.0 ±0.4 OUR FIT5.0 ±0.4 OUR FIT5.0 ±0.4 OUR FIT5.0 ±0.4 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.52±1.18+0.48
−0.72 1 ANDREOTTI 04 E835 pp → χ
0 → γ γ1The values of B(pp)B(γ γ) and B(γ γ)B(γ J/ψ) measured by ANDREOTTI 04 are notindependent. The latter is used in the �t be
ause of smaller systemati
s.

χ
0(1P) CROSS-PARTICLE BRANCHING RATIOSχ
0(1P) CROSS-PARTICLE BRANCHING RATIOSχ
0(1P) CROSS-PARTICLE BRANCHING RATIOSχ
0(1P) CROSS-PARTICLE BRANCHING RATIOS�(χ
0(1P)→ pp)/�total × �(ψ(2S)→ γχ
0(1P))/�total�56/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ pp)/�total × �(ψ(2S)→ γχ
0(1P))/�total�56/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ pp)/�total × �(ψ(2S)→ γχ
0(1P))/�total�56/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ pp)/�total × �(ψ(2S)→ γχ
0(1P))/�total�56/�× �ψ(2S)132 /�ψ(2S)VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT22.5±0.9 OUR FIT22.5±0.9 OUR FIT22.5±0.9 OUR FIT22.5±0.9 OUR FIT23.7±1.0 OUR AVERAGE23.7±1.0 OUR AVERAGE23.7±1.0 OUR AVERAGE23.7±1.0 OUR AVERAGE23.7±0.8±0.9 1222 ABLIKIM 13V BES3 ψ(2S) → γ pp23.7±1.4±1.4 383 ± 22 1 NAIK 08 CLEO ψ(2S) → γ pp23.6+3.7
−3.4±3.4 89.5+14

−13 BAI 04F BES ψ(2S) → γχ
0(1P) → γ p p1Cal
ulated by us. NAIK 08 reports B(χ
0 → pp) = (25.7 ± 1.5 ± 1.5 ± 1.3)× 10−5using B(ψ(2S) → γχ
0) = (9.22 ± 0.11 ± 0.46)%.�(χ
0(1P)→ pp)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �56/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ pp)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �56/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ pp)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �56/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ pp)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �56/�× �ψ(2S)132 /�ψ(2S)11VALUE (units 10−5) DOCUMENT ID TECN COMMENT6.53±0.27 OUR FIT6.53±0.27 OUR FIT6.53±0.27 OUR FIT6.53±0.27 OUR FIT4.6 ±1.94.6 ±1.94.6 ±1.94.6 ±1.9 1 BAI 98I BES ψ(2S) → γχ
0 → γ p p1Cal
ulated by us. The value for B(χ
0 → pp) reported in BAI 98I is derived usingB(ψ(2S) → γχ
0) = (9.3± 0.8)% and B(ψ(2S) → J/ψ(1S)π+π−) = (32.4± 2.6)%[BAI 98D℄.�(χ
0(1P)→ ��)/�total × �(ψ(2S)→ γχ
0(1P))/�total�69/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ ��)/�total × �(ψ(2S)→ γχ
0(1P))/�total�69/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ ��)/�total × �(ψ(2S)→ γχ
0(1P))/�total�69/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ ��)/�total × �(ψ(2S)→ γχ
0(1P))/�total�69/�× �ψ(2S)132 /�ψ(2S)VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT32.0±2.3 OUR FIT32.0±2.3 OUR FIT32.0±2.3 OUR FIT32.0±2.3 OUR FIT31.7±2.3 OUR AVERAGE31.7±2.3 OUR AVERAGE31.7±2.3 OUR AVERAGE31.7±2.3 OUR AVERAGE32.0±1.9±2.2 369 1 ABLIKIM 13H BES3 ψ(2S) → γ��31.2±3.3±2.0 131 ± 12 2 NAIK 08 CLEO ψ(2S) → γ��1Cal
ulated by us. ABLIKIM 13H reports B(χ
0 → ��) = (33.3 ± 2.0 ± 2.6) × 10−5from a measurement of B(χ
0 → ��) × B(ψ(2S) → γχ
0) assuming B(ψ(2S) →
γχ
0) = (9.62 ± 0.31)%.2Cal
ulated by us. NAIK 08 reports B(χ
0 → ��) = (33.8 ± 3.6 ± 2.2 ± 1.7)× 10−5using B(ψ(2S) → γχ
0) = (9.22 ± 0.11 ± 0.46)%.�(χ
0(1P)→ ��)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �69/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ ��)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �69/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ ��)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �69/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ ��)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �69/�× �ψ(2S)132 /�ψ(2S)11VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT9.3±0.7 OUR FIT9.3±0.7 OUR FIT9.3±0.7 OUR FIT9.3±0.7 OUR FIT13.0+3.6
−3.5±2.513.0+3.6
−3.5±2.513.0+3.6
−3.5±2.513.0+3.6
−3.5±2.5 15.2+4.2

−4.0 1 BAI 03E BES ψ(2S) → γ��1BAI 03E reports [ B(χ
0 → ��) B(ψ(2S) → γχ
0) / B(ψ(2S) → J/ψπ+π−) ℄ ×[B2(� → π− p) / B(J/ψ → pp) ℄ = (2.45+0.68
−0.65 ± 0.46)%. We 
al
ulate from thismeasurement the presented value using B(� → π− p) = (63.9 ± 0.5)% and B(J/ψ →pp) = (2.17 ± 0.07) × 10−3.

�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�total�85/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�total�85/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�total�85/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�total�85/�× �ψ(2S)132 /�ψ(2S)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.127±0.006 OUR FIT0.127±0.006 OUR FIT0.127±0.006 OUR FIT0.127±0.006 OUR FIT0.131±0.035 OUR AVERAGE0.131±0.035 OUR AVERAGE0.131±0.035 OUR AVERAGE0.131±0.035 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.9.0.151±0.003±0.010 4.3k ABLIKIM 12O BES3 ψ(2S) → γχ
00.069±0.018 1 OREGLIA 82 CBAL ψ(2S) → γχ
00.4 ±0.3 2 BRANDELIK 79B DASP ψ(2S) → γχ
00.16 ±0.11 2 BARTEL 78B CNTR ψ(2S) → γχ
03.3 ±1.7 3 BIDDICK 77 CNTR e+ e− → γX
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.125±0.007±0.013 560 4 MENDEZ 08 CLEO ψ(2S) → γχ
00.18 ±0.01 ±0.02 172 5 ADAM 05A CLEO Repl. by MENDEZ 081Re
al
ulated by us using B(J/ψ(1S) → ℓ+ ℓ−) = 0.1181 ± 0.0020.2Re
al
ulated by us using B(J/ψ(1S) → µ+µ−) = 0.0588 ± 0.0010.3Assumes isotropi
 gamma distribution.4Not independent from other measurements of MENDEZ 08.5Not independent from other values reported by ADAM 05A.�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)anything) �85/�× �ψ(2S)132 /�ψ(2S)9�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)anything) �85/�× �ψ(2S)132 /�ψ(2S)9�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)anything) �85/�× �ψ(2S)132 /�ψ(2S)9�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)anything) �85/�× �ψ(2S)132 /�ψ(2S)9�85/�× �ψ(2S)132 /�ψ(2S)9 = �85/� × �ψ(2S)132 /(�ψ(2S)11 +�ψ(2S)12 +�ψ(2S)13 +0.339�ψ(2S)133 +0.192�ψ(2S)134 )VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.207±0.011 OUR FIT0.207±0.011 OUR FIT0.207±0.011 OUR FIT0.207±0.011 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.201±0.011±0.021 560 1 MENDEZ 08 CLEO ψ(2S) → γχ
00.31 ±0.02 ±0.03 172 ADAM 05A CLEO Repl. by MENDEZ 081Not independent from other measurements of MENDEZ 08.�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �85/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �85/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �85/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �85/�× �ψ(2S)132 /�ψ(2S)11VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.367±0.019 OUR FIT0.367±0.019 OUR FIT0.367±0.019 OUR FIT0.367±0.019 OUR FIT0.358±0.020±0.0370.358±0.020±0.0370.358±0.020±0.0370.358±0.020±0.037 560 MENDEZ 08 CLEO ψ(2S) → γχ
0
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.55 ±0.04 ±0.06 172 1 ADAM 05A CLEO Repl. by MENDEZ 081Not independent from other values reported by ADAM 05A.�(χ
0(1P)→ γ γ

)/�total × �(ψ(2S)→ γχ
0(1P))/�total�89/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ γ γ
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�89/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ γ γ
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�89/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ γ γ
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�89/�× �ψ(2S)132 /�ψ(2S)VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.23±0.14 OUR FIT2.23±0.14 OUR FIT2.23±0.14 OUR FIT2.23±0.14 OUR FIT2.18±0.18 OUR AVERAGE2.18±0.18 OUR AVERAGE2.18±0.18 OUR AVERAGE2.18±0.18 OUR AVERAGE2.17±0.17±0.12 0.8k ABLIKIM 12A BES3 ψ(2S) → γχ
0 → 3γ2.17±0.32±0.10 0.2k ECKLUND 08A CLEO ψ(2S) → γχ
0 → 3γ3.7 ±1.8 ±1.0 LEE 85 CBAL ψ(2S) → γχ
0�(χ
0(1P)→ ππ
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�32/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ ππ
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�32/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ ππ
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�32/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ ππ
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�32/�× �ψ(2S)132 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8.32±0.29 OUR FIT8.32±0.29 OUR FIT8.32±0.29 OUR FIT8.32±0.29 OUR FIT8.80±0.34 OUR AVERAGE8.80±0.34 OUR AVERAGE8.80±0.34 OUR AVERAGE8.80±0.34 OUR AVERAGE9.11±0.08±0.65 17k 1 ABLIKIM 10A BES3 e+ e− → ψ(2S) → γχ
08.81±0.11±0.43 8.9k 2 ASNER 09 CLEO ψ(2S) → γπ+π−8.13±0.19±0.89 2.8k 3 ASNER 09 CLEO ψ(2S) → γπ0π01Cal
ulated by us. ABLIKIM 10A reports B(χ
0 → π0π0) = (3.23 ± 0.03 ± 0.23 ±0.14)× 10−3 using B(ψ(2S) → γχ
0) = (9.4 ± 0.4)%. We have multiplied the π0π0measurement by 3 to obtain ππ.2 Cal
ulated by us. ASNER 09 reports B(χ
0 → π+π−) = (6.37 ± 0.08 ± 0.31 ±0.32)× 10−3 using B(ψ(2S) → γχ
0) = (9.22 ± 0.11 ± 0.46)%. We have multipliedthe π+π− measurement by 3/2 to obtain ππ.3 Cal
ulated by us. ASNER 09 reports B(χ
0 → π0π0) = (2.94± 0.07± 0.32± 0.15)×10−3 using B(ψ(2S) → γχ
0) = (9.22 ± 0.11 ± 0.46)%. We have multiplied the

π0π0 measurement by 3 to obtain ππ.�(χ
0(1P)→ ππ
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �32/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ ππ
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �32/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ ππ
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �32/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ ππ
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �32/�× �ψ(2S)132 /�ψ(2S)11VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT24.1±0.8 OUR FIT24.1±0.8 OUR FIT24.1±0.8 OUR FIT24.1±0.8 OUR FIT20.7±1.7 OUR AVERAGE20.7±1.7 OUR AVERAGE20.7±1.7 OUR AVERAGE20.7±1.7 OUR AVERAGE23.9±2.7±4.1 97 ± 11 1 BAI 03C BES ψ(2S) → γχ
0 → γπ0π020.2±1.1±1.5 720 ± 32 2 BAI 98I BES ψ(2S) → γχ
0 → γπ+π−1We have multiplied π0π0 measurement by 3 to obtain ππ.2 Cal
ulated by us. The value for B(χ
0 → π+π−) reported in BAI 98I is derived usingB(ψ′ → γχ
0)= (9.3 ± 0.8)% and B(ψ′ → J/ψπ+π−) = (32.4 ± 2.6)% [BAI 98D℄.We have multiplied π+π− measurement by 3/2 to obtain ππ.
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χ
0(1P)�(χ
0(1P)→ ηη

)/�total × �(ψ(2S)→ γχ
0(1P))/�total�36/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ ηη
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�36/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ ηη
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�36/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ ηη
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�36/�× �ψ(2S)132 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.95±0.18 OUR FIT2.95±0.18 OUR FIT2.95±0.18 OUR FIT2.95±0.18 OUR FIT3.12±0.19 OUR AVERAGE3.12±0.19 OUR AVERAGE3.12±0.19 OUR AVERAGE3.12±0.19 OUR AVERAGE3.23±0.09±0.23 2132 1 ABLIKIM 10A BES3 e+ e− → ψ(2S) → γχ
02.93±0.12±0.29 0.9k 2 ASNER 09 CLEO ψ(2S) → γ ηη

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.86±0.46±0.37 48 3 ADAMS 07 CLEO ψ(2S) → γχ
01Cal
ulated by us. ABLIKIM 10A reports B(χ
0 → ηη) = (3.44± 0.10± 0.24± 0.13)×10−3 using B(ψ(2S) → γχ
0) = (9.4 ± 0.4)%.2Cal
ulated by us. ASNER 09 reports B(χ
0 → ηη) = (3.18±0.13±0.31±0.16)×10−3using B(ψ(2S) → γχ
0) = (9.22 ± 0.11 ± 0.46)%.3 Superseded by ASNER 09. Cal
ulated by us. The value of B(χ
0(1P) → ηη) reportedby ADAMS 07 was derived using B(ψ(2S) → γχ
0(1P)) = (9.22 ± 0.11 ± 0.46)%(ATHAR 04).�(χ
0(1P)→ ηη
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �36/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ ηη
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �36/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ ηη
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �36/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ ηη
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �36/�× �ψ(2S)132 /�ψ(2S)11VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.85 ±0.05 OUR FIT0.85 ±0.05 OUR FIT0.85 ±0.05 OUR FIT0.85 ±0.05 OUR FIT0.578±0.241±0.1580.578±0.241±0.1580.578±0.241±0.1580.578±0.241±0.158 BAI 03C BES ψ(2S) → γ ηη�(χ
0(1P)→ K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�42/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�42/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�42/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�42/�× �ψ(2S)132 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT5.91±0.28 OUR FIT5.91±0.28 OUR FIT5.91±0.28 OUR FIT5.91±0.28 OUR FIT5.97±0.07±0.325.97±0.07±0.325.97±0.07±0.325.97±0.07±0.32 8.1k 1 ASNER 09 CLEO ψ(2S) → γK+K−1Cal
ulated by us. ASNER 09 reports B(χ
0 → K+K−) = (6.47 ± 0.08 ± 0.35 ±0.32) × 10−3 using B(ψ(2S) → γχ
0) = (9.22 ± 0.11 ± 0.46)%.�(χ
0(1P)→ K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �42/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �42/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �42/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �42/�× �ψ(2S)132 /�ψ(2S)11VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.71±0.08 OUR FIT1.71±0.08 OUR FIT1.71±0.08 OUR FIT1.71±0.08 OUR FIT1.63±0.10±0.151.63±0.10±0.151.63±0.10±0.151.63±0.10±0.15 774 ± 38 1 BAI 98I BES ψ(2S) → γK+K−1Cal
ulated by us. The value for B(χ
0 → K+K−) reported by BAI 98I is derived usingB(ψ(2S) → γχ
0) = (9.3 ± 0.8)% and B(ψ(2S) → J/ψπ+π−) = (32.4 ± 2.6)%[BAI 98D℄.�(χ
0(1P)→ K0S K0S)/�total × �(ψ(2S)→ γχ
0(1P))/�total�43/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ K0S K0S)/�total × �(ψ(2S)→ γχ
0(1P))/�total�43/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ K0S K0S)/�total × �(ψ(2S)→ γχ
0(1P))/�total�43/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ K0S K0S)/�total × �(ψ(2S)→ γχ
0(1P))/�total�43/�× �ψ(2S)132 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.09±0.16 OUR FIT3.09±0.16 OUR FIT3.09±0.16 OUR FIT3.09±0.16 OUR FIT3.18±0.17 OUR AVERAGE3.18±0.17 OUR AVERAGE3.18±0.17 OUR AVERAGE3.18±0.17 OUR AVERAGE3.22±0.07±0.17 2.1k 1 ASNER 09 CLEO ψ(2S) → γK0S K0S3.02±0.19±0.33 322 ABLIKIM 05O BES2 ψ(2S) → γK0S K0S1Cal
ulated by us. ASNER 09 reports B(χ
0 → K0S K0S ) = (3.49 ± 0.08 ± 0.18 ±0.17) × 10−3 using B(ψ(2S) → γχ
0) = (9.22 ± 0.11 ± 0.46)%.�(χ
0(1P)→ K0S K0S)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �43/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ K0S K0S)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �43/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ K0S K0S)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �43/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ K0S K0S)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �43/�× �ψ(2S)132 /�ψ(2S)11VALUE (units 10−4) DOCUMENT ID TECN COMMENT9.0±0.5 OUR FIT9.0±0.5 OUR FIT9.0±0.5 OUR FIT9.0±0.5 OUR FIT5.6±0.8±1.35.6±0.8±1.35.6±0.8±1.35.6±0.8±1.3 1 BAI 99B BES ψ(2S) → γK0S K0S1Cal
ulated by us. The value of B(χ
0 → K0S K0S ) reported by BAI 99B was derived usingB(ψ(2S) → γχ
0(1P)) = (9.3± 0.8)% and B(ψ(2S) → J/ψπ+ π−) = (32.4± 2.6)%[BAI 98D℄.�(χ
0(1P)→ 2(π+π−))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �1/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ 2(π+π−))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �1/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ 2(π+π−))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �1/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ 2(π+π−))/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �1/�× �ψ(2S)132 /�ψ(2S)11VALUE (units 10−3) DOCUMENT ID TECN COMMENT6.5±0.5 OUR FIT6.5±0.5 OUR FIT6.5±0.5 OUR FIT6.5±0.5 OUR FIT6.9±2.4 OUR AVERAGE6.9±2.4 OUR AVERAGE6.9±2.4 OUR AVERAGE6.9±2.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.8.4.4±0.1±0.9 1 BAI 99B BES ψ(2S) → γχ
09.3±0.9 2 TANENBAUM 78 MRK1 ψ(2S) → γχ
01Cal
ulated by us. The value for B(χ
0 → 2π+2π−) reported in BAI 99B is derived usingB(ψ(2S) → γχ
0) = (9.3± 0.8)% and B(ψ(2S) → J/ψ(1S)π+π−) = (32.4± 2.6)%[BAI 98D℄.2The value B(ψ(1S) → γχ
0)×B(χ
0 → 2π+2π−) reported in TANENBAUM 78 isderived using B(ψ(2S) → J/ψ(1S)π+π−)×B(J/ψ(1S) → ℓ+ ℓ−) =(4.6 ± 0.7)%.Cal
ulated by us using B(J/ψ(1S) → ℓ+ ℓ−) = 0.1181 ± 0.0020.�(χ
0(1P)→ π+π−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�8/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ π+π−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�8/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ π+π−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�8/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ π+π−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�8/�× �ψ(2S)132 /�ψ(2S)VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.75±0.14 OUR FIT1.75±0.14 OUR FIT1.75±0.14 OUR FIT1.75±0.14 OUR FIT1.64±0.05±0.21.64±0.05±0.21.64±0.05±0.21.64±0.05±0.2 ABLIKIM 05Q BES2 ψ(2S) → γχ
0

�(χ
0(1P)→ π+π−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �8/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ π+π−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �8/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ π+π−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �8/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ π+π−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �8/�× �ψ(2S)132 /�ψ(2S)11VALUE (units 10−3) DOCUMENT ID TECN COMMENT5.1 ±0.4 OUR FIT5.1 ±0.4 OUR FIT5.1 ±0.4 OUR FIT5.1 ±0.4 OUR FIT5.8 ±1.6 OUR AVERAGE5.8 ±1.6 OUR AVERAGE5.8 ±1.6 OUR AVERAGE5.8 ±1.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3.4.22±0.20±0.97 BAI 99B BES ψ(2S) → γχ
07.4 ±1.0 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
01The reported value is derived using B(ψ(2S) → π+π− J/ψ) × B(J/ψ → ℓ+ ℓ−) =(4.6 ± 0.7)%. Cal
ulated by us using B(J/ψ → ℓ+ ℓ−) = 0.1181 ± 0.0020.�(χ
0(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�50/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�50/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�50/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�total�50/�× �ψ(2S)132 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.74±0.28 OUR FIT2.74±0.28 OUR FIT2.74±0.28 OUR FIT2.74±0.28 OUR FIT3.20±0.11±0.413.20±0.11±0.413.20±0.11±0.413.20±0.11±0.41 278 1 ABLIKIM 06T BES2 ψ(2S) → γ 2K+2K−1Cal
ulated by us. The value of B(χ
0 → 2K+2K−) reported by ABLIKIM 06T wasderived using B(ψ(2S) → γχ
0(1P)) = (9.2 ± 0.4)%.�(χ
0(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→ J/ψ(1S)π+π−) �50/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→ J/ψ(1S)π+π−) �50/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→ J/ψ(1S)π+π−) �50/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→ J/ψ(1S)π+π−) �50/�× �ψ(2S)132 /�ψ(2S)11VALUE (units 10−4) DOCUMENT ID TECN COMMENT8.0±0.8 OUR FIT8.0±0.8 OUR FIT8.0±0.8 OUR FIT8.0±0.8 OUR FIT6.1±0.8±0.96.1±0.8±0.96.1±0.8±0.96.1±0.8±0.9 1 BAI 99B BES ψ(2S) → γ 2K+2K−1Cal
ulated by us. The value of B(χ
0 → 2K+2K−) reported by BAI 99B was derivedusing B(ψ(2S) → γχ
0(1P)) = (9.3± 0.8)% and B(ψ(2S) → J/ψπ+ π−) = (32.4±2.6)% [BAI 98D℄.�(χ
0(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�55/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�55/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�55/�× �ψ(2S)132 /�ψ(2S)�(χ
0(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
0(1P))/�total�55/�× �ψ(2S)132 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.77±0.07 OUR FIT0.77±0.07 OUR FIT0.77±0.07 OUR FIT0.77±0.07 OUR FIT0.78±0.08 OUR AVERAGE0.78±0.08 OUR AVERAGE0.78±0.08 OUR AVERAGE0.78±0.08 OUR AVERAGE0.77±0.03±0.08 612 1 ABLIKIM 11K BES3 ψ(2S) → γ hadrons0.86±0.19±0.12 26 2 ABLIKIM 06T BES2 ψ(2S) → γ 2K+2K−1Cal
ulated by us. The value of B(χ
0 → φφ) reported by ABLIKIM 11K was derivedusing B(ψ(2S) → γχ
0(1P)) = (9.62 ± 0.31)%.2Cal
ulated by us. The value of B(χ
0 → φφ) reported by ABLIKIM 06T was derivedusing B(ψ(2S) → γχ
0(1P)) = (9.2 ± 0.4)%.�(χ
0(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �55/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �55/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �55/�× �ψ(2S)132 /�ψ(2S)11�(χ
0(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
0(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �55/�× �ψ(2S)132 /�ψ(2S)11VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.24±0.21 OUR FIT2.24±0.21 OUR FIT2.24±0.21 OUR FIT2.24±0.21 OUR FIT2.6 ±1.0 ±1.12.6 ±1.0 ±1.12.6 ±1.0 ±1.12.6 ±1.0 ±1.1 1 BAI 99B BES ψ(2S) → γ 2K+2K−1Cal
ulated by us. The value of B(χ
0 → φφ) reported by BAI 99B was derived usingB(ψ(2S) → γχ
0(1P)) = (9.3± 0.8)% and B(ψ(2S) → J/ψπ+ π−) = (32.4± 2.6)%[BAI 98D℄.

χ
0(1P) REFERENCESχ
0(1P) REFERENCESχ
0(1P) REFERENCESχ
0(1P) REFERENCESABLIKIM 15I PR D91 092006 M. Ablikim et al. (BES III Collab.)ABLIKIM 15M PR D91 112008 M. Ablikim et al. (BES III Collab.)ABLIKIM 15N PR D91 112018 M. Ablikim et al. (BES III Collab.)ABLIKIM 13B PR D87 012002 M. Ablikim et al. (BES III Collab.)ABLIKIM 13D PR D87 012007 M. Ablikim et al. (BES III Collab.)ABLIKIM 13H PR D87 032007 M. Ablikim et al. (BES III Collab.)ABLIKIM 13V PR D88 112001 M. Ablikim et al. (BES III Collab.)UEHARA 13 PTEP 2013 123C01 S. Uehara et al. (BELLE Collab.)ABLIKIM 12A PR D85 112008 M. Ablikim et al. (BES III Collab.)ABLIKIM 12I PR D86 052004 M. Ablikim et al. (BES III Collab.)ABLIKIM 12J PR D86 052011 M. Ablikim et al. (BES III Collab.)ABLIKIM 12O PRL 109 172002 M. Ablikim et al. (BES III Collab.)LIU 12B PRL 108 232001 Z.Q. Liu et al. (BELLE Collab.)ABLIKIM 11A PR D83 012006 M. Ablikim et al. (BES III Collab.)ABLIKIM 11E PR D83 112005 M. Ablikim et al. (BES III Collab.)ABLIKIM 11F PR D83 112009 M. Ablikim et al. (BES III Collab.)ABLIKIM 11K PRL 107 092001 M. Ablikim et al. (BES III Collab.)DEL-AMO-SA... 11M PR D84 012004 P. del Amo San
hez et al. (BABAR Collab.)ABLIKIM 10A PR D81 052005 M. Ablikim et al. (BES III Collab.)ONYISI 10 PR D82 011103 P.U.E. Onyisi et al. (CLEO Collab.)UEHARA 10A PR D82 114031 S. Uehara et al. (BELLE Collab.)ASNER 09 PR D79 072007 D.M. Asner et al. (CLEO Collab.)UEHARA 09 PR D79 052009 S. Uehara et al. (BELLE Collab.)BENNETT 08A PRL 101 151801 J.V. Bennett et al. (CLEO Collab.)ECKLUND 08A PR D78 091501 K.M. E
klund et al. (CLEO Collab.)HE 08B PR D78 092004 Q. He et al. (CLEO Collab.)MENDEZ 08 PR D78 011102 H. Mendez et al. (CLEO Collab.)NAIK 08 PR D78 031101 P. Naik et al. (CLEO Collab.)UEHARA 08 EPJ C53 1 S. Uehara et al. (BELLE Collab.)WICHT 08 PL B662 323 J. Wi
ht et al. (BELLE Collab.)ABE 07 PRL 98 082001 K. Abe et al. (BELLE Collab.)ADAMS 07 PR D75 071101 G.S. Adams et al. (CLEO Collab.)ATHAR 07 PR D75 032002 S.B. Athar et al. (CLEO Collab.)CHEN 07B PL B651 15 W.T. Chen et al. (BELLE Collab.)ABLIKIM 06D PR D73 052006 M. Ablikim et al. (BES Collab.)ABLIKIM 06I PR D74 012004 M. Ablikim et al. (BES Collab.)ABLIKIM 06R PR D74 072001 M. Ablikim et al. (BES Collab.)ABLIKIM 06T PL B642 197 M. Ablikim et al. (BES Collab.)ABLIKIM 05G PR D71 092002 M. Ablikim et al. (BES Collab.)ABLIKIM 05N PL B630 7 M. Ablikim et al. (BES Collab.)ABLIKIM 05O PL B630 21 M. Ablikim et al. (BES Collab.)ABLIKIM 05Q PR D72 092002 M. Ablikim et al. (BES Collab.)ADAM 05A PRL 94 232002 N.E. Adam et al. (CLEO Collab.)
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χ
0(1P), χ
1(1P)ANDREOTTI 05A NP B717 34 M. Andreotti et al. (FNAL E835 Collab.)ANDREOTTI 05C PR D72 112002 M. Andreotti et al. (FNAL E835 Collab.)NAKAZAWA 05 PL B615 39 H. Nakazawa et al. (BELLE Collab.)ABE 04G PR D70 071102 K. Abe et al. (BELLE Collab.)ABLIKIM 04G PR D70 092002 M. Ablikim et al. (BES Collab.)ABLIKIM 04H PR D70 092003 M. Ablikim et al. (BES Collab.)ANDREOTTI 04 PL B584 16 M. Andreotti et al. (E835 Collab.)ATHAR 04 PR D70 112002 S.B. Athar et al. (CLEO Collab.)BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.)ANDREOTTI 03 PRL 91 091801 M. Andreotti et al. (FNAL E835 Collab.)AULCHENKO 03 PL B573 63 V.M. Aul
henko et al. (KEDR Collab.)BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.)BAI 03E PR D67 112001 J.Z. Bai et al. (BES Collab.)ABE,K 02 PRL 89 142001 K. Abe et al. (BELLE Collab.)BAGNASCO 02 PL B533 237 S. Bagnas
o et al. (FNAL E835 Collab.)EISENSTEIN 01 PRL 87 061801 B.I. Eisenstein et al. (CLEO Collab.)AMBROGIANI 00B PR D62 052002 M. Ambrogiani et al. (FNAL E835 Collab.)AMBROGIANI 99B PRL 83 2902 M. Ambrogiani et al. (FNAL E835 Collab.)BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.)BAI 98D PR D58 092006 J.Z. Bai et al. (BES Collab.)BAI 98I PRL 81 3091 J.Z. Bai et al. (BES Collab.)GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.)LEE 85 SLAC 282 R.A. Lee (SLAC)OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+)BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.)BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP)TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL)Also Private Comm. G. Trilling (LBL, UCB)BIDDICK 77 PRL 38 1324 C.J. Biddi
k et al. (UCSD, UMD, PAVI+)
χ
1(1P) IG (JPC ) = 0+(1 + +)See the Review on \ψ(2S) and χ
 bran
hing ratios" before the

χ
0(1P) Listings.
χ
1(1P) MASSχ
1(1P) MASSχ
1(1P) MASSχ
1(1P) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3510.66 ± 0.07 OUR AVERAGE3510.66 ± 0.07 OUR AVERAGE3510.66 ± 0.07 OUR AVERAGE3510.66 ± 0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.3510.30 ± 0.14 ±0.16 ABLIKIM 05G BES2 ψ(2S) → γχ
13510.719± 0.051±0.019 ANDREOTTI 05A E835 pp → e+ e− γ3509.4 ± 0.9 BAI 99B BES ψ(2S) → γX3510.60 ± 0.087±0.019 513 1 ARMSTRONG 92 E760 pp → e+ e− γ3511.3 ± 0.4 ±0.4 30 BAGLIN 86B SPEC pp → e+ e−X3512.3 ± 0.3 ±4.0 2 GAISER 86 CBAL ψ(2S) → γX3507.4 ± 1.7 91 3 LEMOIGNE 82 GOLI 185 π−Be →

γµ+µ−A3510.4 ± 0.6 OREGLIA 82 CBAL e+ e− → J/ψ2γ3510.1 ± 1.1 254 4 HIMEL 80 MRK2 e+ e− → J/ψ2γ3509 ±11 21 BRANDELIK 79B DASP e+ e− → J/ψ2γ3507 ± 3 4 BARTEL 78B CNTR e+ e− → J/ψ2γ3505.0 ± 4 ±4 4,5 TANENBAUM 78 MRK1 e+ e−3513 ± 7 367 4 BIDDICK 77 CNTR ψ(2S) → γX
• • • We do not use the following data for averages, �ts, limits, et
. • • •3500 ±10 40 TANENBAUM 75 MRK1 Hadrons γ1Re
al
ulated by ANDREOTTI 05A, using the value of ψ(2S) mass from AULCHENKO 03.2Using mass of ψ(2S) = 3686.0 MeV.3 J/ψ(1S) mass 
onstrained to 3097 MeV.4Mass value shifted by us by amount appropriate for ψ(2S) mass = 3686 MeV andJ/ψ(1S) mass = 3097 MeV.5From a simultaneous �t to radiative and hadroni
 de
ay 
hannels.

WEIGHTED AVERAGE
3510.66±0.07 (Error scaled by 1.5)

BIDDICK 77 CNTR
TANENBAUM 78 MRK1
BARTEL 78B CNTR
BRANDELIK 79B DASP
HIMEL 80 MRK2
OREGLIA 82 CBAL
LEMOIGNE 82 GOLI
GAISER 86 CBAL
BAGLIN 86B SPEC
ARMSTRONG 92 E760 0.5
BAI 99B BES
ANDREOTTI 05A E835 1.0
ABLIKIM 05G BES2 2.9

χ2

       4.5
(Confidence Level = 0.107)

3509.5 3510 3510.5 3511 3511.5 3512

χ
1(1P) mass (MeV)

χ
1(1P) WIDTHχ
1(1P) WIDTHχ
1(1P) WIDTHχ
1(1P) WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT0.84 ±0.04 OUR FIT0.84 ±0.04 OUR FIT0.84 ±0.04 OUR FIT0.84 ±0.04 OUR FIT0.88 ±0.05 OUR AVERAGE0.88 ±0.05 OUR AVERAGE0.88 ±0.05 OUR AVERAGE0.88 ±0.05 OUR AVERAGE1.39 +0.40
−0.38 +0.26

−0.77 ABLIKIM 05G BES2 ψ(2S) → γχ
10.876±0.045±0.026 ANDREOTTI 05A E835 pp → e+ e− γ0.87 ±0.11 ±0.08 513 1 ARMSTRONG 92 E760 pp → e+ e− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.3 95 BAGLIN 86B SPEC pp → e+ e−X
<3.8 90 GAISER 86 CBAL ψ(2S) → γX1Re
al
ulated by ANDREOTTI 05A.

χ
1(1P) DECAY MODESχ
1(1P) DECAY MODESχ
1(1P) DECAY MODESχ
1(1P) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelHadroni
 de
aysHadroni
 de
aysHadroni
 de
aysHadroni
 de
ays�1 3(π+π−) ( 5.8 ±1.4 ) × 10−3 S=1.2�2 2(π+π−) ( 7.6 ±2.6 ) × 10−3�3 π+π−π0π0 ( 1.22±0.16) %�4 ρ+π−π0+ 
.
. ( 1.48±0.25) %�5 ρ0π+π− ( 3.9 ±3.5 ) × 10−3�6 4π0 ( 5.5 ±0.8 ) × 10−4�7 π+π−K+K− ( 4.5 ±1.0 ) × 10−3�8 K+K−π0π0 ( 1.14±0.28) × 10−3�9 K+K−π+π−π0 ( 1.15±0.13) %�10 K0S K±π∓π+π− ( 7.5 ±0.8 ) × 10−3�11 K+π−K0π0+ 
.
. ( 8.7 ±1.4 ) × 10−3�12 ρ−K+K0+ 
.
. ( 5.1 ±1.2 ) × 10−3�13 K∗(892)0K0π0 →K+π−K0π0+ 
.
. ( 2.4 ±0.7 ) × 10−3�14 K+K−ηπ0 ( 1.14±0.35) × 10−3�15 π+π−K0S K0S ( 7.0 ±3.0 ) × 10−4�16 K+K−η ( 3.2 ±1.0 ) × 10−4�17 K0K+π−+ 
.
. ( 7.1 ±0.6 ) × 10−3�18 K∗(892)0K0+ 
.
. ( 1.0 ±0.4 ) × 10−3�19 K∗(892)+K−+ 
.
. ( 1.5 ±0.7 ) × 10−3�20 K∗J(1430)0K0+ 
.
. →K0S K+π−+ 
.
. < 8 × 10−4 CL=90%�21 K∗J(1430)+K−+ 
.
. →K0S K+π−+ 
.
. < 2.2 × 10−3 CL=90%�22 K+K−π0 ( 1.85±0.25) × 10−3�23 ηπ+π− ( 4.9 ±0.5 ) × 10−3�24 a0(980)+π−+ 
.
. → ηπ+π− ( 1.8 ±0.6 ) × 10−3�25 f2(1270)η ( 2.7 ±0.8 ) × 10−3�26 π+π−η′ ( 2.3 ±0.5 ) × 10−3�27 K+K−η′(958) ( 8.8 ±0.9 ) × 10−4�28 K∗0(1430)+K−+ 
.
. ( 6.4 +2.2
−2.8 )× 10−4�29 f0(980)η′(958) ( 1.6 +1.4
−0.7 )× 10−4�30 f0(1710)η′(958) ( 7 +7
−5 )× 10−5�31 f ′2(1525)η′(958) ( 9 ±6 ) × 10−5�32 π0 f0(980) → π0π+π− < 6 × 10−6 CL=90%�33 K+K∗(892)0π−+ 
.
. ( 3.2 ±2.1 ) × 10−3�34 K∗(892)0K∗(892)0 ( 1.5 ±0.4 ) × 10−3�35 K+K−K0S K0S < 4 × 10−4 CL=90%�36 K+K−K+K− ( 5.5 ±1.1 ) × 10−4�37 K+K−φ ( 4.2 ±1.6 ) × 10−4�38 K0K+π−φ+ 
.
. ( 3.3 ±0.5 ) × 10−3�39 K+K−π0φ ( 1.62±0.30) × 10−3�40 φπ+π−π0 ( 7.5 ±1.0 ) × 10−4�41 ωω ( 5.8 ±0.7 ) × 10−4�42 ωK+K− ( 7.8 ±0.9 ) × 10−4�43 ωφ ( 2.1 ±0.6 ) × 10−5�44 φφ ( 4.2 ±0.5 ) × 10−4�45 pp ( 7.72±0.35) × 10−5�46 ppπ0 ( 1.59±0.19) × 10−4�47 ppη ( 1.48±0.25) × 10−4�48 ppω ( 2.16±0.31) × 10−4�49 ppφ < 1.8 × 10−5 CL=90%�50 ppπ+π− ( 5.0 ±1.9 ) × 10−4�51 ppπ0π0�52 ppK+K− (non-resonant) ( 1.30±0.23) × 10−4
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χ
1(1P)�53 ppK0S K0S < 4.5 × 10−4 CL=90%�54 pnπ− ( 3.9 ±0.5 ) × 10−4�55 pnπ+ ( 4.0 ±0.5 ) × 10−4�56 pnπ−π0 ( 1.05±0.12) × 10−3�57 pnπ+π0 ( 1.03±0.12) × 10−3�58 �� ( 1.16±0.12) × 10−4�59 ��π+π− ( 3.0 ±0.5 ) × 10−4�60 ��π+π− (non-resonant) ( 2.5 ±0.6 ) × 10−4�61 � (1385)+�π−+ 
.
. < 1.3 × 10−4 CL=90%�62 � (1385)−�π++ 
.
. < 1.3 × 10−4 CL=90%�63 K+p� ( 4.2 ±0.4 ) × 10−4 S=1.1�64 K+p�(1520)+ 
.
. ( 1.7 ±0.5 ) × 10−4�65 �(1520)�(1520) < 1.0 × 10−4 CL=90%�66 �0�0 < 4 × 10−5 CL=90%�67 �+�− < 6 × 10−5 CL=90%�68 � (1385)+� (1385)− < 1.0 × 10−4 CL=90%�69 � (1385)−� (1385)+ < 5 × 10−5 CL=90%�70 K−��++ 
.
. ( 1.38±0.25) × 10−4�71 � 0� 0 < 6 × 10−5 CL=90%�72 �−�+ ( 8.2 ±2.2 ) × 10−5�73 π+π− + K+K− < 2.1 × 10−3�74 K0S K0S < 6 × 10−5 CL=90%�75 η
 π+π− < 3.2 × 10−3 CL=90%Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays�76 γ J/ψ(1S) (33.9 ±1.2 ) %�77 γ ρ0 ( 2.20±0.18) × 10−4�78 γω ( 6.9 ±0.8 ) × 10−5�79 γφ ( 2.5 ±0.5 ) × 10−5�80 γ γ CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONA multiparti
le �t to χ
1(1P), χ
0(1P), χ
2(1P), and ψ(2S)with 4 total widths, a partial width, 25 
ombinations of partialwidths obtained from integrated 
ross se
tion, and 84 bran
hingratios uses 240 measurements to determine 49 parameters. Theoverall �t has a χ2 = 342.4 for 191 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
hingfra
tions, xi ≡ �i/�total.x36 6x45 8 3x58 13 5 7x76 31 13 6 26� −19 −8 −62 −16 −51x17 x36 x45 x58 x76
χ
1(1P) PARTIAL WIDTHSχ
1(1P) PARTIAL WIDTHSχ
1(1P) PARTIAL WIDTHSχ
1(1P) PARTIAL WIDTHS

χ
1(1P) �(i)�(γ J/ψ(1S))/�(total)χ
1(1P) �(i)�(γ J/ψ(1S))/�(total)χ
1(1P) �(i)�(γ J/ψ(1S))/�(total)χ
1(1P) �(i)�(γ J/ψ(1S))/�(total)�(pp) × �(γ J/ψ(1S))/�total �45�76/��(pp) × �(γ J/ψ(1S))/�total �45�76/��(pp) × �(γ J/ψ(1S))/�total �45�76/��(pp) × �(γ J/ψ(1S))/�total �45�76/�VALUE (eV) DOCUMENT ID TECN COMMENT21.9±0.8 OUR FIT21.9±0.8 OUR FIT21.9±0.8 OUR FIT21.9±0.8 OUR FIT21.4±0.9 OUR AVERAGE21.4±0.9 OUR AVERAGE21.4±0.9 OUR AVERAGE21.4±0.9 OUR AVERAGE21.5±0.5±0.8 1 ANDREOTTI 05A E835 pp → e+ e− γ21.4±1.5±2.2 1,2 ARMSTRONG 92 E760 pp → e+ e− γ19.9+4.4
−4.0 1 BAGLIN 86B SPEC pp → e+ e−X1Cal
ulated by us using B(J/ψ(1S) → e+ e−) = 0.0593 ± 0.0010.2Re
al
ulated by ANDREOTTI 05A.

χ
1(1P) BRANCHING RATIOSχ
1(1P) BRANCHING RATIOSχ
1(1P) BRANCHING RATIOSχ
1(1P) BRANCHING RATIOSHADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYS�(3(π+π−))/�total �1/��(3(π+π−))/�total �1/��(3(π+π−))/�total �1/��(3(π+π−))/�total �1/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT5.8±1.4 OUR EVALUATION5.8±1.4 OUR EVALUATION5.8±1.4 OUR EVALUATION5.8±1.4 OUR EVALUATION Error in
ludes s
ale fa
tor of 1.2. Treating systemati
error as 
orrelated.5.8±1.1 OUR AVERAGE5.8±1.1 OUR AVERAGE5.8±1.1 OUR AVERAGE5.8±1.1 OUR AVERAGE5.4±0.7±0.9 1 BAI 99B BES ψ(2S) → γχ
116.0±5.9±0.8 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
11Res
aled by us using B(ψ(2S) → γχ
1) = (8.8 ± 0.4)% and B(ψ(2S) →J/ψ(1S)π+π−) = (32.6 ± 0.5)%.

�(2(π+π−))/�total �2/��(2(π+π−))/�total �2/��(2(π+π−))/�total �2/��(2(π+π−))/�total �2/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT7.6±2.6 OUR EVALUATION7.6±2.6 OUR EVALUATION7.6±2.6 OUR EVALUATION7.6±2.6 OUR EVALUATION Treating systemati
 error as 
orrelated.8 ±4 OUR AVERAGE8 ±4 OUR AVERAGE8 ±4 OUR AVERAGE8 ±4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.4.6±2.1±2.6 1 BAI 99B BES ψ(2S) → γχ
112.5±4.2±0.6 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
11Res
aled by us using B(ψ(2S) → γχ
1) = (8.8 ± 0.4)% and B(ψ(2S) →J/ψ(1S)π+π−) = (32.6 ± 0.5)%.�(π+π−π0π0)/�total �3/��(π+π−π0π0)/�total �3/��(π+π−π0π0)/�total �3/��(π+π−π0π0)/�total �3/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.22±0.15±0.041.22±0.15±0.041.22±0.15±0.041.22±0.15±0.04 604.7 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 1.28 ± 0.06 ± 0.15 ± 0.08 % from a measurement of [�(

χ
1(1P) →
π+π−π0π0)/�total℄× [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =(9.07± 0.11± 0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(ρ+π−π0+ 
.
.)/�total �4/��(ρ+π−π0+ 
.
.)/�total �4/��(ρ+π−π0+ 
.
.)/�total �4/��(ρ+π−π0+ 
.
.)/�total �4/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.48±0.24±0.051.48±0.24±0.051.48±0.24±0.051.48±0.24±0.05 712.3 1,2 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 1.56 ± 0.13 ± 0.22 ± 0.10 % from a measurement of [�(

χ
1(1P) →
ρ+π−π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.07±0.11±0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2Cal
ulated by us. We have added the values from HE 08B for ρ+π−π0 and ρ−π+π0de
ays assuming un
orrelated statisti
al and fully 
orrelated systemati
 un
ertainties.�(ρ0π+π−)/�total �5/��(ρ0π+π−)/�total �5/��(ρ0π+π−)/�total �5/��(ρ0π+π−)/�total �5/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT39±3539±3539±3539±35 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
11Estimated using B(ψ(2S) → γχ
1(1P)) = 0.087. The errors do not 
ontain theun
ertainty in the ψ(2S) de
ay.�(4π0)/�total �6/��(4π0)/�total �6/��(4π0)/�total �6/��(4π0)/�total �6/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.55±0.08±0.020.55±0.08±0.020.55±0.08±0.020.55±0.08±0.02 608 1 ABLIKIM 11A BES3 e+ e− → ψ(2S) → γχ
11ABLIKIM 11A reports (0.57±0.03±0.08)×10−3 from a measurement of [�(

χ
1(1P) →4π0)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.2 ±0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = (9.55 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(π+π−K+K−)/�total �7/��(π+π−K+K−)/�total �7/��(π+π−K+K−)/�total �7/��(π+π−K+K−)/�total �7/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT4.5±1.0 OUR EVALUATION4.5±1.0 OUR EVALUATION4.5±1.0 OUR EVALUATION4.5±1.0 OUR EVALUATION Treating systemati
 error as 
orrelated.4.5±0.9 OUR AVERAGE4.5±0.9 OUR AVERAGE4.5±0.9 OUR AVERAGE4.5±0.9 OUR AVERAGE4.2±0.4±0.9 1 BAI 99B BES ψ(2S) → γχ
17.3±3.0±0.4 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
11Res
aled by us using B(ψ(2S) → γχ
1) = (8.8 ± 0.4)% and B(ψ(2S) →J/ψ(1S)π+π−) = (32.6 ± 0.5)%.�(K+K−π0π0)/�total �8/��(K+K−π0π0)/�total �8/��(K+K−π0π0)/�total �8/��(K+K−π0π0)/�total �8/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.114±0.028±0.0040.114±0.028±0.0040.114±0.028±0.0040.114±0.028±0.004 45.1 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.12 ± 0.02 ± 0.02 ± 0.01 % from a measurement of [�(

χ
1(1P) →K+K−π0π0)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P))= (9.07 ± 0.11 ± 0.54) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.�(K+K−π+π−π0)/�total �9/��(K+K−π+π−π0)/�total �9/��(K+K−π+π−π0)/�total �9/��(K+K−π+π−π0)/�total �9/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT11.46±0.12±1.2911.46±0.12±1.2911.46±0.12±1.2911.46±0.12±1.29 12k 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
11Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
1 γ) = (9.2 ± 0.4)%.�(K0S K±π∓π+π−)/�total �10/��(K0S K±π∓π+π−)/�total �10/��(K0S K±π∓π+π−)/�total �10/��(K0S K±π∓π+π−)/�total �10/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT7.52±0.11±0.797.52±0.11±0.797.52±0.11±0.797.52±0.11±0.79 5.1k 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
11Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
1 γ) = (9.2 ± 0.4)%.�(K+π−K0π0+ 
.
.)/�total �11/��(K+π−K0π0+ 
.
.)/�total �11/��(K+π−K0π0+ 
.
.)/�total �11/��(K+π−K0π0+ 
.
.)/�total �11/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.87±0.14±0.030.87±0.14±0.030.87±0.14±0.030.87±0.14±0.03 141.3 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.92 ± 0.09 ± 0.11 ± 0.06 % from a measurement of [�(

χ
1(1P) →K+π−K0π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.07±0.11±0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.
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χ
1(1P)�(

ρ−K+K0+ 
.
.)/�total �12/��(

ρ−K+K0+ 
.
.)/�total �12/��(

ρ−K+K0+ 
.
.)/�total �12/��(

ρ−K+K0+ 
.
.)/�total �12/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.51±0.12±0.020.51±0.12±0.020.51±0.12±0.020.51±0.12±0.02 141.3 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.54 ± 0.11 ± 0.07 ± 0.03 % from a measurement of [�(

χ
1(1P) →
ρ−K+K0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.07±0.11±0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(K∗(892)0K0π0 → K+π−K0π0+ 
.
.)/�total �13/��(K∗(892)0K0π0 → K+π−K0π0+ 
.
.)/�total �13/��(K∗(892)0K0π0 → K+π−K0π0+ 
.
.)/�total �13/��(K∗(892)0K0π0 → K+π−K0π0+ 
.
.)/�total �13/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.24±0.06±0.010.24±0.06±0.010.24±0.06±0.010.24±0.06±0.01 141.3 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.25 ± 0.06 ± 0.03 ± 0.02 % from a measurement of [�(

χ
1(1P) →K∗(892)0K0π0 → K+π−K0π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assum-ing B(ψ(2S) → γχ
1(1P)) = (9.07 ± 0.11 ± 0.54) × 10−2, whi
h we res
ale to ourbest value B(ψ(2S) → γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(K+K−ηπ0)/�total �14/��(K+K−ηπ0)/�total �14/��(K+K−ηπ0)/�total �14/��(K+K−ηπ0)/�total �14/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.114±0.035±0.0040.114±0.035±0.0040.114±0.035±0.0040.114±0.035±0.004 141.3 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.12 ± 0.03 ± 0.02 ± 0.01 % from a measurement of [�(

χ
1(1P) →K+K− ηπ0)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =(9.07± 0.11± 0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(

π+π−K0S K0S)/�total �15/��(

π+π−K0S K0S)/�total �15/��(

π+π−K0S K0S)/�total �15/��(

π+π−K0S K0S)/�total �15/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.0±3.0±0.27.0±3.0±0.27.0±3.0±0.27.0±3.0±0.2 19.8± 7.7 1 ABLIKIM 05O BES2 ψ(2S) → χ
1 γ1ABLIKIM 05O reports [�(

χ
1(1P) → π+π−K0S K0S )/�total℄ × [B(ψ(2S) →
γχ
1(1P))℄ = (0.67±0.26±0.11)×10−4 whi
h we divide by our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(K+K−η

)/�total �16/��(K+K−η
)/�total �16/��(K+K−η
)/�total �16/��(K+K−η
)/�total �16/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.32±0.10±0.010.32±0.10±0.010.32±0.10±0.010.32±0.10±0.01 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ATHAR 07 reports (0.34 ± 0.10 ± 0.04)×10−3 from a measurement of [�(

χ
1(1P) →K+K− η
)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =0.0907 ± 0.0011 ± 0.0054, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(K0K+π−+ 
.
.)/�total �17/��(K0K+π−+ 
.
.)/�total �17/��(K0K+π−+ 
.
.)/�total �17/��(K0K+π−+ 
.
.)/�total �17/�VALUE (units 10−3) DOCUMENT ID7.1±0.6 OUR FIT7.1±0.6 OUR FIT7.1±0.6 OUR FIT7.1±0.6 OUR FIT�(K∗(892)0K0+ 
.
.)/�total �18/��(K∗(892)0K0+ 
.
.)/�total �18/��(K∗(892)0K0+ 
.
.)/�total �18/��(K∗(892)0K0+ 
.
.)/�total �18/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.00±0.37±0.031.00±0.37±0.031.00±0.37±0.031.00±0.37±0.03 22 1 ABLIKIM 06R BES2 ψ(2S) → γχ
11ABLIKIM 06R reports (1.1 ± 0.4 ± 0.1)× 10−3 from a measurement of [�(

χ
1(1P) →K∗(892)0K0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (8.7 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(K∗(892)+K−+ 
.
.)/�total �19/��(K∗(892)+K−+ 
.
.)/�total �19/��(K∗(892)+K−+ 
.
.)/�total �19/��(K∗(892)+K−+ 
.
.)/�total �19/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.46±0.66±0.051.46±0.66±0.051.46±0.66±0.051.46±0.66±0.05 27 1 ABLIKIM 06R BES2 ψ(2S) → γχ
11ABLIKIM 06R reports (1.6 ± 0.7 ± 0.2)× 10−3 from a measurement of [�(

χ
1(1P) →K∗(892)+K−+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (8.7 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(K∗J(1430)0K0+ 
.
.→ K0S K+π−+ 
.
.)/�total �20/��(K∗J(1430)0K0+ 
.
.→ K0S K+π−+ 
.
.)/�total �20/��(K∗J(1430)0K0+ 
.
.→ K0S K+π−+ 
.
.)/�total �20/��(K∗J(1430)0K0+ 
.
.→ K0S K+π−+ 
.
.)/�total �20/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.8<0.8<0.8<0.8 90 1 ABLIKIM 06R BES2 ψ(2S) → γχ
11ABLIKIM 06R reports < 0.9 × 10−3 from a measurement of [�(

χ
1(1P) →K∗J (1430)0K0+ 
.
. → K0S K+π−+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ as-suming B(ψ(2S) → γχ
1(1P)) = (8.7 ± 0.4) × 10−2, whi
h we res
ale to our bestvalue B(ψ(2S) → γχ
1(1P)) = 9.55× 10−2.�(K∗J(1430)+K−+ 
.
.→ K0S K+π−+ 
.
.)/�total �21/��(K∗J(1430)+K−+ 
.
.→ K0S K+π−+ 
.
.)/�total �21/��(K∗J(1430)+K−+ 
.
.→ K0S K+π−+ 
.
.)/�total �21/��(K∗J(1430)+K−+ 
.
.→ K0S K+π−+ 
.
.)/�total �21/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<2.2<2.2<2.2<2.2 90 1 ABLIKIM 06R BES2 ψ(2S) → γχ
11ABLIKIM 06R reports < 2.4 × 10−3 from a measurement of [�(

χ
1(1P) →K∗J (1430)+K−+ 
.
. → K0S K+π−+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄assuming B(ψ(2S) → γχ
1(1P)) = (8.7 ± 0.4)× 10−2, whi
h we res
ale to our bestvalue B(ψ(2S) → γχ
1(1P)) = 9.55× 10−2.

�(K+K−π0)/�total �22/��(K+K−π0)/�total �22/��(K+K−π0)/�total �22/��(K+K−π0)/�total �22/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.85±0.24±0.061.85±0.24±0.061.85±0.24±0.061.85±0.24±0.06 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ATHAR 07 reports (1.95 ± 0.16 ± 0.23)×10−3 from a measurement of [�(

χ
1(1P) →K+K−π0)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =0.0907 ± 0.0011 ± 0.0054, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(

ηπ+π−)/�total �23/��(

ηπ+π−)/�total �23/��(

ηπ+π−)/�total �23/��(

ηπ+π−)/�total �23/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.9±0.5 OUR AVERAGE4.9±0.5 OUR AVERAGE4.9±0.5 OUR AVERAGE4.9±0.5 OUR AVERAGE4.7±0.5±0.2 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h05.4±0.9±0.2 222 2 ABLIKIM 06R BES2 ψ(2S) → γχ
11ATHAR 07 reports (5.0 ± 0.3 ± 0.5) × 10−3 from a measurement of [�(

χ
1(1P) →
ηπ+π−

)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =0.0907 ± 0.0011 ± 0.0054, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2ABLIKIM 06R reports (5.9 ± 0.7 ± 0.8)× 10−3 from a measurement of [�(

χ
1(1P) →
ηπ+π−

)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =(8.7 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) =(9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(a0(980)+π−+ 
.
.→ ηπ+π−)/�total �24/��(a0(980)+π−+ 
.
.→ ηπ+π−)/�total �24/��(a0(980)+π−+ 
.
.→ ηπ+π−)/�total �24/��(a0(980)+π−+ 
.
.→ ηπ+π−)/�total �24/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.8±0.6±0.11.8±0.6±0.11.8±0.6±0.11.8±0.6±0.1 58 1 ABLIKIM 06R BES2 ψ(2S) → γχ
11ABLIKIM 06R reports (2.0 ± 0.5 ± 0.5)× 10−3 from a measurement of [�(

χ
1(1P) →a0(980)+π−+ 
.
. → ηπ+π−
)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assumingB(ψ(2S) → γχ
1(1P)) = (8.7 ± 0.4) × 10−2, whi
h we res
ale to our best valueB(ψ(2S) → γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(f2(1270)η)/�total �25/��(f2(1270)η)/�total �25/��(f2(1270)η)/�total �25/��(f2(1270)η)/�total �25/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.7±0.8±0.12.7±0.8±0.12.7±0.8±0.12.7±0.8±0.1 53 1 ABLIKIM 06R BES2 ψ(2S) → γχ
11ABLIKIM 06R reports (3.0 ± 0.7 ± 0.5)× 10−3 from a measurement of [�(

χ
1(1P) →f2(1270)η
)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =(8.7 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) =(9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(

π+π−η′
)/�total �26/��(

π+π−η′
)/�total �26/��(

π+π−η′
)/�total �26/��(

π+π−η′
)/�total �26/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.3±0.5±0.12.3±0.5±0.12.3±0.5±0.12.3±0.5±0.1 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ATHAR 07 reports (2.4 ± 0.4 ± 0.3) × 10−3 from a measurement of [�(

χ
1(1P) →
π+π− η′

)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =0.0907 ± 0.0011 ± 0.0054, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(K+K−η′(958))/�total �27/��(K+K−η′(958))/�total �27/��(K+K−η′(958))/�total �27/��(K+K−η′(958))/�total �27/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8.75±0.878.75±0.878.75±0.878.75±0.87 310 1 ABLIKIM 14J BES3 ψ(2S) → γK+K− η′(958)1Derived using B(ψ(2S) → γχ
1) = (9.2 ± 0.4)%. Un
ertainty in
ludes both statisti
aland systemati
 
ontributions 
ombined in quadrature.�(K∗0(1430)+K−+ 
.
.)/�total �28/��(K∗0(1430)+K−+ 
.
.)/�total �28/��(K∗0(1430)+K−+ 
.
.)/�total �28/��(K∗0(1430)+K−+ 
.
.)/�total �28/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.41±0.57+2.09
−2.716.41±0.57+2.09
−2.716.41±0.57+2.09
−2.716.41±0.57+2.09
−2.71 1 ABLIKIM 14J BES3 ψ(2S) → γK+K− η′(958)1Normalized to B(χ
1 → K+K− η′(958)) bran
hing fra
tion.�(f0(980)η′(958))/�total �29/��(f0(980)η′(958))/�total �29/��(f0(980)η′(958))/�total �29/��(f0(980)η′(958))/�total �29/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.65±0.47+1.32
−0.561.65±0.47+1.32
−0.561.65±0.47+1.32
−0.561.65±0.47+1.32
−0.56 1 ABLIKIM 14J BES3 ψ(2S) → γK+K− η′(958)1Normalized to B(χ
1 → K+K− η′(958)) bran
hing fra
tion.�(f0(1710)η′(958))/�total �30/��(f0(1710)η′(958))/�total �30/��(f0(1710)η′(958))/�total �30/��(f0(1710)η′(958))/�total �30/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.71±0.22+0.68
−0.480.71±0.22+0.68
−0.480.71±0.22+0.68
−0.480.71±0.22+0.68
−0.48 1 ABLIKIM 14J BES3 ψ(2S) → γK+K− η′(958)1Normalized to B(χ
1 → K+K− η′(958)) bran
hing fra
tion.�(f ′2(1525)η′(958))/�total �31/��(f ′2(1525)η′(958))/�total �31/��(f ′2(1525)η′(958))/�total �31/��(f ′2(1525)η′(958))/�total �31/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.92±0.23+0.55
−0.510.92±0.23+0.55
−0.510.92±0.23+0.55
−0.510.92±0.23+0.55
−0.51 1 ABLIKIM 14J BES3 ψ(2S) → γK+K− η′(958)1Normalized to B(χ
1 → K+K− η′(958)) bran
hing fra
tion.
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χ
1(1P)�(

π0 f0(980)→ π0π+π−)/�total �32/��(

π0 f0(980)→ π0π+π−)/�total �32/��(

π0 f0(980)→ π0π+π−)/�total �32/��(

π0 f0(980)→ π0π+π−)/�total �32/�VALUE CL% DOCUMENT ID TECN COMMENT
<6× 10−6<6× 10−6<6× 10−6<6× 10−6 90 1 ABLIKIM 11D BES3 ψ(2S) → γπ0π+π−1ABLIKIM 11D reports [�(

χ
1(1P) → π0 f0(980) → π0π+π−
)/�total℄ × [B(ψ(2S) →

γχ
1(1P))℄ < 6.0× 10−7 whi
h we divide by our best value B(ψ(2S) → γχ
1(1P))= 9.55× 10−2.�(K+K∗(892)0π−+ 
.
.)/�total �33/��(K+K∗(892)0π−+ 
.
.)/�total �33/��(K+K∗(892)0π−+ 
.
.)/�total �33/��(K+K∗(892)0π−+ 
.
.)/�total �33/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT32±2132±2132±2132±21 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
11Estimated using B(ψ(2S) → γχ
1(1P)) = 0.087. The errors do not 
ontain theun
ertainty in the ψ(2S) de
ay.�(K∗(892)0K∗(892)0)/�total �34/��(K∗(892)0K∗(892)0)/�total �34/��(K∗(892)0K∗(892)0)/�total �34/��(K∗(892)0K∗(892)0)/�total �34/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.47±0.36±0.051.47±0.36±0.051.47±0.36±0.051.47±0.36±0.05 28.4± 5.5 1,2 ABLIKIM 04H BES ψ(2S) → γK+K−π+π−1ABLIKIM 04H reports [�(

χ
1(1P) → K∗(892)0K∗(892)0)/�total℄ × [B(ψ(2S) →
γχ
1(1P))℄ = (1.40±0.27±0.22)×10−4 whi
h we divide by our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2Assumes B(K∗(892)0 → K−π+) = 2/3.�(K+K−K0S K0S)/�total �35/��(K+K−K0S K0S)/�total �35/��(K+K−K0S K0S)/�total �35/��(K+K−K0S K0S)/�total �35/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT

<4<4<4<4 90 3.2 ± 2.4 1 ABLIKIM 05O BES2 ψ(2S) → χ
1 γ1ABLIKIM 05O reports [�(

χ
1(1P) → K+K−K0S K0S )/�total℄ × [B(ψ(2S) →
γχ
1(1P))℄ < 4.2× 10−5 whi
h we divide by our best value B(ψ(2S) → γχ
1(1P))= 9.55× 10−2.�(K+K−K+K−)/�total �36/��(K+K−K+K−)/�total �36/��(K+K−K+K−)/�total �36/��(K+K−K+K−)/�total �36/�VALUE (units 10−3) DOCUMENT ID0.55±0.11 OUR FIT0.55±0.11 OUR FIT0.55±0.11 OUR FIT0.55±0.11 OUR FIT�(K+K−φ

)/�total �37/��(K+K−φ
)/�total �37/��(K+K−φ
)/�total �37/��(K+K−φ
)/�total �37/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.42±0.15±0.010.42±0.15±0.010.42±0.15±0.010.42±0.15±0.01 17 1 ABLIKIM 06T BES2 ψ(2S) → γ 2K+2K−1ABLIKIM 06T reports (0.46±0.16±0.06)×10−3 from a measurement of [�(

χ
1(1P) →K+K−φ
)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =(8.7 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) =(9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(K0K+π−φ+ 
.
.)/�total �38/��(K0K+π−φ+ 
.
.)/�total �38/��(K0K+π−φ+ 
.
.)/�total �38/��(K0K+π−φ+ 
.
.)/�total �38/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT3.27±0.28±0.463.27±0.28±0.463.27±0.28±0.463.27±0.28±0.46 ABLIKIM 15M BES3 ψ(2S) → γχ
1�(K+K−π0φ

)/�total �39/��(K+K−π0φ
)/�total �39/��(K+K−π0φ
)/�total �39/��(K+K−π0φ
)/�total �39/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.62±0.12±0.281.62±0.12±0.281.62±0.12±0.281.62±0.12±0.28 ABLIKIM 15M BES3 ψ(2S) → γχ
1�(

φπ+π−π0)/�total �40/��(

φπ+π−π0)/�total �40/��(

φπ+π−π0)/�total �40/��(

φπ+π−π0)/�total �40/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.75±0.06±0.080.75±0.06±0.080.75±0.06±0.080.75±0.06±0.08 373 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
11Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
1 γ) = (9.2 ± 0.4)%.�(

ωω
)/�total �41/��(

ωω
)/�total �41/��(

ωω
)/�total �41/��(

ωω
)/�total �41/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT5.8±0.7±0.25.8±0.7±0.25.8±0.7±0.25.8±0.7±0.2 597 1 ABLIKIM 11K BES3 ψ(2S) → γ hadrons1ABLIKIM 11K reports (6.0 ± 0.3 ± 0.7)× 10−4 from a measurement of [�(

χ
1(1P) →
ωω

)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.2 ±0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = (9.55 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(

ωK+K−)/�total �42/��(

ωK+K−)/�total �42/��(

ωK+K−)/�total �42/��(

ωK+K−)/�total �42/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.78±0.04±0.080.78±0.04±0.080.78±0.04±0.080.78±0.04±0.08 628 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
11Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
1 γ) = (9.2 ± 0.4)%.�(

ωφ
)/�total �43/��(

ωφ
)/�total �43/��(

ωφ
)/�total �43/��(

ωφ
)/�total �43/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.21±0.06±0.010.21±0.06±0.010.21±0.06±0.010.21±0.06±0.01 15 1 ABLIKIM 11K BES3 ψ(2S) → γ hadrons1ABLIKIM 11K reports (0.22±0.06±0.02)×10−4 from a measurement of [�(

χ
1(1P) →
ωφ

)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.2 ±0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = (9.55 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.

�(

φφ
)/�total �44/��(

φφ
)/�total �44/��(

φφ
)/�total �44/��(

φφ
)/�total �44/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.2±0.5±0.14.2±0.5±0.14.2±0.5±0.14.2±0.5±0.1 366 1 ABLIKIM 11K BES3 ψ(2S) → γ hadrons1ABLIKIM 11K reports (4.4 ± 0.3 ± 0.5)× 10−4 from a measurement of [�(

χ
1(1P) →
φφ

)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.2 ±0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = (9.55 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(pp)/�total �45/��(pp)/�total �45/��(pp)/�total �45/��(pp)/�total �45/�VALUE (units 10−4) DOCUMENT ID0.772±0.035 OUR FIT0.772±0.035 OUR FIT0.772±0.035 OUR FIT0.772±0.035 OUR FIT�(ppπ0)/�total �46/��(ppπ0)/�total �46/��(ppπ0)/�total �46/��(ppπ0)/�total �46/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.159±0.019 OUR AVERAGE0.159±0.019 OUR AVERAGE0.159±0.019 OUR AVERAGE0.159±0.019 OUR AVERAGE0.166±0.020±0.005 1 ONYISI 10 CLE3 ψ(2S) → γ ppX0.114±0.048±0.004 2 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ONYISI 10 reports (1.75 ± 0.16 ± 0.13 ± 0.11) × 10−4 from a measurement of[�(

χ
1(1P) → ppπ0)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.07±0.11±0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2ATHAR 07 reports (1.2 ± 0.5 ± 0.1) × 10−4 from a measurement of [�(

χ
1(1P) →ppπ0)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =(9.07± 0.11± 0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(ppη
)/�total �47/��(ppη
)/�total �47/��(ppη
)/�total �47/��(ppη
)/�total �47/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT0.148±0.025±0.0050.148±0.025±0.0050.148±0.025±0.0050.148±0.025±0.005 1 ONYISI 10 CLE3 ψ(2S) → γ ppX

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.15 90 2 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ONYISI 10 reports (1.56 ± 0.22 ± 0.14 ± 0.10) × 10−4 from a measurement of[�(

χ
1(1P) → pp η
)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →

γχ
1(1P)) = (9.07±0.11±0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2ATHAR 07 reports < 0.16×10−3 from a measurement of [�(

χ
1(1P) → pp η
)/�total℄

× [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.07±0.11±0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = 9.55× 10−2.�(ppω
)/�total �48/��(ppω
)/�total �48/��(ppω
)/�total �48/��(ppω
)/�total �48/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.216±0.031±0.0070.216±0.031±0.0070.216±0.031±0.0070.216±0.031±0.007 1 ONYISI 10 CLE3 ψ(2S) → γ ppX1ONYISI 10 reports (2.28 ± 0.28 ± 0.16 ± 0.14) × 10−4 from a measurement of[�(

χ
1(1P) → ppω
)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →

γχ
1(1P)) = (9.07±0.11±0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(ppφ

)/�total �49/��(ppφ
)/�total �49/��(ppφ
)/�total �49/��(ppφ
)/�total �49/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<1.8<1.8<1.8<1.8 90 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports < 1.82 × 10−5 from a measurement of [�(

χ
1(1P) → ppφ
)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.2 ± 0.4)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = 9.55× 10−2.�(ppπ+π−)/�total �50/��(ppπ+π−)/�total �50/��(ppπ+π−)/�total �50/��(ppπ+π−)/�total �50/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.50±0.19 OUR EVALUATION0.50±0.19 OUR EVALUATION0.50±0.19 OUR EVALUATION0.50±0.19 OUR EVALUATION Treating systemati
 error as 
orrelated.0.50±0.19 OUR AVERAGE0.50±0.19 OUR AVERAGE0.50±0.19 OUR AVERAGE0.50±0.19 OUR AVERAGE0.46±0.12±0.15 1 BAI 99B BES ψ(2S) → γχ
11.08±0.77±0.05 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
11Res
aled by us using B(ψ(2S) → γχ
1) = (8.8 ± 0.4)% and B(ψ(2S) →J/ψ(1S)π+π−) = (32.6 ± 0.5)%.�(ppπ0π0)/�total �51/��(ppπ0π0)/�total �51/��(ppπ0π0)/�total �51/��(ppπ0π0)/�total �51/�VALUE (%) CL% DOCUMENT ID TECN COMMENT

<0.05 90 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports < 0.05 % from a measurement of [�(

χ
1(1P) → ppπ0π0)/�total℄ ×[B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.07 ± 0.11 ± 0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = 9.55× 10−2.�(ppK+K− (non-resonant))/�total �52/��(ppK+K− (non-resonant))/�total �52/��(ppK+K− (non-resonant))/�total �52/��(ppK+K− (non-resonant))/�total �52/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.30±0.23±0.041.30±0.23±0.041.30±0.23±0.041.30±0.23±0.04 82 ± 9 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports (1.35±0.15±0.19)×10−4 from a measurement of [�(

χ
1(1P) →ppK+K− (non-resonant))/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.



1404140414041404MesonParti
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χ
1(1P)�(ppK0S K0S)/�total �53/��(ppK0S K0S)/�total �53/��(ppK0S K0S)/�total �53/��(ppK0S K0S)/�total �53/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<4.5<4.5<4.5<4.5 90 1 ABLIKIM 06D BES2 ψ(2S) → γχ
11Using B(ψ(2S) → χ
1 γ) (9.1 ± 0.6)%.�(pnπ−)/�total �54/��(pnπ−)/�total �54/��(pnπ−)/�total �54/��(pnπ−)/�total �54/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.9±0.5±0.13.9±0.5±0.13.9±0.5±0.13.9±0.5±0.1 1412 1 ABLIKIM 12J BES3 ψ(2S) → γ pnπ−1ABLIKIM 12J reports [�(

χ
1(1P) → pnπ−
)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ =(0.37 ± 0.02± 0.04)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(pnπ+)/�total �55/��(pnπ+)/�total �55/��(pnπ+)/�total �55/��(pnπ+)/�total �55/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.0±0.5±0.14.0±0.5±0.14.0±0.5±0.14.0±0.5±0.1 1625 1 ABLIKIM 12J BES3 ψ(2S) → γ p nπ+1ABLIKIM 12J reports [�(

χ
1(1P) → pnπ+)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ =(0.38 ± 0.02± 0.04)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(pnπ−π0)/�total �56/��(pnπ−π0)/�total �56/��(pnπ−π0)/�total �56/��(pnπ−π0)/�total �56/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT10.5±1.2±0.310.5±1.2±0.310.5±1.2±0.310.5±1.2±0.3 1082 1 ABLIKIM 12J BES3 ψ(2S) → γ pnπ−π01ABLIKIM 12J reports [�(

χ
1(1P) → pnπ−π0)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ =(1.00 ± 0.05± 0.10)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(pnπ+π0)/�total �57/��(pnπ+π0)/�total �57/��(pnπ+π0)/�total �57/��(pnπ+π0)/�total �57/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT10.3±1.2±0.310.3±1.2±0.310.3±1.2±0.310.3±1.2±0.3 1261 1 ABLIKIM 12J BES3 ψ(2S) → γ p nπ+π01ABLIKIM 12J reports [�(

χ
1(1P) → pnπ+π0)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ =(0.98 ± 0.05± 0.10)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(��)/�total �58/��(��)/�total �58/��(��)/�total �58/��(��)/�total �58/�VALUE (units 10−4) DOCUMENT ID1.16±0.12 OUR FIT1.16±0.12 OUR FIT1.16±0.12 OUR FIT1.16±0.12 OUR FIT�(��π+π−)/�total �59/��(��π+π−)/�total �59/��(��π+π−)/�total �59/��(��π+π−)/�total �59/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT30±5±130±5±130±5±130±5±1 105 1 ABLIKIM 12I BES3 ψ(2S) → γ��π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<150 90 2 ABLIKIM 06D BES2 ψ(2S) → γχ
11ABLIKIM 12I reports (31.1 ± 3.4 ± 3.9)× 10−5 from a measurement of [�(

χ
1(1P) →��π+π−
)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =(9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) =(9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Using B(ψ(2S) → χ
1 γ) (9.1 ± 0.6)%.�(��π+π− (non-resonant))/�total �60/��(��π+π− (non-resonant))/�total �60/��(��π+π− (non-resonant))/�total �60/��(��π+π− (non-resonant))/�total �60/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT25±6±125±6±125±6±125±6±1 13 1 ABLIKIM 12I BES3 ψ(2S) → γ��π+π−1ABLIKIM 12I reports (26.2 ± 5.5 ± 3.3)× 10−5 from a measurement of [�(

χ
1(1P) →��π+π− (non-resonant))/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(� (1385)+�π−+ 
.
.)/�total �61/��(� (1385)+�π−+ 
.
.)/�total �61/��(� (1385)+�π−+ 
.
.)/�total �61/��(� (1385)+�π−+ 
.
.)/�total �61/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<13<13<13<13 90 1 ABLIKIM 12I BES3 ψ(2S) → γ�(1385)+�π−1ABLIKIM 12I reports < 14 × 10−5 from a measurement of [�(

χ
1(1P) →�(1385)+�π−+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = 9.55× 10−2.�(� (1385)−�π++ 
.
.)/�total �62/��(� (1385)−�π++ 
.
.)/�total �62/��(� (1385)−�π++ 
.
.)/�total �62/��(� (1385)−�π++ 
.
.)/�total �62/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<13<13<13<13 90 1 ABLIKIM 12I BES3 ψ(2S) → γ�(1385)−�π+1ABLIKIM 12I reports < 14 × 10−5 from a measurement of [�(

χ
1(1P) →�(1385)−�π++ 
.
.)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = 9.55× 10−2.

�(K+p�)/�total �63/��(K+p�)/�total �63/��(K+p�)/�total �63/��(K+p�)/�total �63/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.2±0.4 OUR AVERAGE4.2±0.4 OUR AVERAGE4.2±0.4 OUR AVERAGE4.2±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.4.3±0.4±0.1 3k 1,2 ABLIKIM 13D BES3 ψ(2S) → γ�pK+3.1±0.9±0.1 3 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ABLIKIM 13D reports (4.5 ± 0.2 ± 0.4)× 10−4 from a measurement of [�(

χ
1(1P) →K+ p�)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =(9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) =(9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Using B(� → pπ−) = 63.9%.3ATHAR 07 reports (3.3 ± 0.9 ± 0.4) × 10−4 from a measurement of [�(

χ
1(1P) →K+ p�)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =(9.07± 0.11± 0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(K+p�(1520)+ 
.
.)/�total �64/��(K+p�(1520)+ 
.
.)/�total �64/��(K+p�(1520)+ 
.
.)/�total �64/��(K+p�(1520)+ 
.
.)/�total �64/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.7±0.4±0.11.7±0.4±0.11.7±0.4±0.11.7±0.4±0.1 48 ± 10 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports (1.81±0.38±0.28)×10−4 from a measurement of [�(

χ
1(1P) →K+ p�(1520)+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(�(1520)�(1520))/�total �65/��(�(1520)�(1520))/�total �65/��(�(1520)�(1520))/�total �65/��(�(1520)�(1520))/�total �65/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.0<1.0<1.0<1.0 90 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports < 1.00 × 10−4 from a measurement of [�(

χ
1(1P) →�(1520)�(1520))/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = 9.55× 10−2.�(�0�0)/�total �66/��(�0�0)/�total �66/��(�0�0)/�total �66/��(�0�0)/�total �66/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT

<0.4<0.4<0.4<0.4 90 3.8 ± 2.5 1 NAIK 08 CLEO ψ(2S) → γ�0�0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.6 90 2 ABLIKIM 13H BES3 ψ(2S) → γ�0�01NAIK 08 reports < 0.44×10−4 from a measurement of [�(

χ
1(1P) → �0�0)/�total℄
× [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.07±0.11±0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = 9.55× 10−2.2ABLIKIM 13H reports < 0.62× 10−4 from a measurement of [�(

χ
1(1P) → �0�0)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.2 ± 0.4)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = 9.55× 10−2.�(�+�−)/�total �67/��(�+�−)/�total �67/��(�+�−)/�total �67/��(�+�−)/�total �67/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT
<0.6<0.6<0.6<0.6 90 4.3 ± 2.3 1 NAIK 08 CLEO ψ(2S) → γ�+�−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.8 90 2 ABLIKIM 13H BES3 ψ(2S) → γ�+�−1NAIK 08 reports < 0.65 × 10−4 from a measurement of [�(

χ
1(1P) → �+�−)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.07 ±0.11 ± 0.54) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) =9.55 × 10−2.2ABLIKIM 13H reports < 0.87×10−4 from a measurement of [�(

χ
1(1P) → �+�−)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.2 ± 0.4)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = 9.55× 10−2.�(� (1385)+� (1385)−)/�total �68/��(� (1385)+� (1385)−)/�total �68/��(� (1385)+� (1385)−)/�total �68/��(� (1385)+� (1385)−)/�total �68/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<10<10<10<10 90 1 ABLIKIM 12I BES3 ψ(2S) → γ��π+π−1ABLIKIM 12I reports < 10 × 10−5 from a measurement of [�(

χ
1(1P) →�(1385)+�(1385)−)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = 9.55× 10−2.�(� (1385)−� (1385)+)/�total �69/��(� (1385)−� (1385)+)/�total �69/��(� (1385)−� (1385)+)/�total �69/��(� (1385)−� (1385)+)/�total �69/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<5<5<5<5 90 1 ABLIKIM 12I BES3 ψ(2S) → γ��π+π−1ABLIKIM 12I reports < 5.7 × 10−5 from a measurement of [�(

χ
1(1P) →�(1385)−�(1385)+)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) →
γχ
1(1P)) = (9.2 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
1(1P)) = 9.55× 10−2.
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χ
1(1P)�(K−��++ 
.
.)/�total �70/��(K−��++ 
.
.)/�total �70/��(K−��++ 
.
.)/�total �70/��(K−��++ 
.
.)/�total �70/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.38±0.24±0.051.38±0.24±0.051.38±0.24±0.051.38±0.24±0.05 49 1 ABLIKIM 15I BES3 ψ(2S) → γK−��++ 
.
.1ABLIKIM 15I reports [�(

χ
1(1P) → K−��++ 
.
.)/�total℄ × [B(ψ(2S) →
γχ
1(1P))℄ = (1.32±0.20±0.12)×10−5 whi
h we divide by our best value B(ψ(2S) →
γχ
1(1P)) = (9.55 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(� 0� 0)/�total �71/��(� 0� 0)/�total �71/��(� 0� 0)/�total �71/��(� 0� 0)/�total �71/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT

<0.6<0.6<0.6<0.6 90 1.7 ± 2.4 1 NAIK 08 CLEO ψ(2S) → γ�0�01NAIK 08 reports < 0.60×10−4 from a measurement of [�(

χ
1(1P) → �0�0)/�total℄
× [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.07±0.11±0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = 9.55× 10−2.�(�−�+)/�total �72/��(�−�+)/�total �72/��(�−�+)/�total �72/��(�−�+)/�total �72/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT0.82±0.22±0.030.82±0.22±0.030.82±0.22±0.030.82±0.22±0.03 16.4± 4.3 1 NAIK 08 CLEO ψ(2S) → γ�+�−

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.4 90 2 ABLIKIM 06D BES2 ψ(2S) → γχ
11NAIK 08 reports (0.86 ± 0.22 ± 0.08) × 10−4 from a measurement of [�(

χ
1(1P) →�−�+)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) =(9.07± 0.11± 0.54)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P))= (9.55 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Using B(ψ(2S) → χ
1 γ) (9.1 ± 0.6)%.
[�(π+π−)+�(K+K−)

]/�total �73/�[�(π+π−)+�(K+K−)
]/�total �73/�[�(π+π−)+�(K+K−)
]/�total �73/�[�(π+π−)+�(K+K−)
]/�total �73/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<21<21<21<21 1 FELDMAN 77 MRK1 ψ(2S) → γχ
1
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<38 90 1 BRANDELIK 79B DASP ψ(2S) → γχ
11Estimated using B(ψ(2S) → γχ
1(1P)) = 0.087. The errors do not 
ontain theun
ertainty in the ψ(2S) de
ay.�(K0S K0S)/�total �74/��(K0S K0S)/�total �74/��(K0S K0S)/�total �74/��(K0S K0S)/�total �74/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.6<0.6<0.6<0.6 90 1 ABLIKIM 05O BES2 ψ(2S) → χ
1 γ1ABLIKIM 05O reports [�(

χ
1(1P) → K0S K0S )/�total℄ × [B(ψ(2S) → γχ
1(1P))℄
< 0.6×10−5 whi
h we divide by our best value B(ψ(2S) → γχ
1(1P)) = 9.55×10−2.�(η
 π+π−)/�total �75/��(η
 π+π−)/�total �75/��(η
 π+π−)/�total �75/��(η
 π+π−)/�total �75/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.2× 10−3<3.2× 10−3<3.2× 10−3<3.2× 10−3 90 1,2 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
1
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<4.4× 10−3 90 1,3 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
11Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
1 γ) = (9.2 ± 0.4)%.2Using the η
 → K0S K±π∓ de
ays.3Using the η
 → K+K−π0 de
ays.RADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYS�(γ J/ψ(1S))/�total �76/��(γ J/ψ(1S))/�total �76/��(γ J/ψ(1S))/�total �76/��(γ J/ψ(1S))/�total �76/�VALUE DOCUMENT ID TECN COMMENT0.339±0.012 OUR FIT0.339±0.012 OUR FIT0.339±0.012 OUR FIT0.339±0.012 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.379±0.008±0.021 1 ADAM 05A CLEO e+ e− → ψ(2S) → γχ
11Uses B(ψ(2S) → γχ
1 → γ γ J/ψ) from ADAM 05A and B(ψ(2S) → γχ
1) fromATHAR 04.�(γ ρ0)/�total �77/��(γ ρ0)/�total �77/��(γ ρ0)/�total �77/��(γ ρ0)/�total �77/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT220±18 OUR AVERAGE220±18 OUR AVERAGE220±18 OUR AVERAGE220±18 OUR AVERAGE220±23±7 432 ± 25 1 ABLIKIM 11E BES3 ψ(2S) → γ γ ρ0221±24±7 186 ± 15 2 BENNETT 08A CLEO ψ(2S) → γ γ ρ01ABLIKIM 11E reports (228 ± 13 ± 22)× 10−6 from a measurement of [�(

χ
1(1P) →
γ ρ0)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.2 ±0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = (9.55 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.2BENNETT 08A reports (243 ± 19 ± 22)×10−6 from a measurement of [�(

χ
1(1P) →
γ ρ0)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (8.7 ±0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = (9.55 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.

�(γω
)/�total �78/��(γω
)/�total �78/��(γω
)/�total �78/��(γω
)/�total �78/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT69± 8 OUR AVERAGE69± 8 OUR AVERAGE69± 8 OUR AVERAGE69± 8 OUR AVERAGE67± 9±2 136 ± 14 1 ABLIKIM 11E BES3 ψ(2S) → γ γω76±17±2 39 ± 7 2 BENNETT 08A CLEO ψ(2S) → γ γω1ABLIKIM 11E reports (69.7 ± 7.2± 6.6)×10−6 from a measurement of [�(

χ
1(1P) →
γω

)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.2 ±0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = (9.55 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.2BENNETT 08A reports (83 ± 15 ± 12)× 10−6 from a measurement of [�(

χ
1(1P) →
γω

)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (8.7 ±0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = (9.55 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(γφ
)/�total �79/��(γφ
)/�total �79/��(γφ
)/�total �79/��(γφ
)/�total �79/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT25±5±125±5±125±5±125±5±1 43 ± 9 1 ABLIKIM 11E BES3 ψ(2S) → γ γφ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<24 90 5.2 ± 3.1 2 BENNETT 08A CLEO ψ(2S) → γ γφ1ABLIKIM 11E reports (25.8 ± 5.2± 2.3)×10−6 from a measurement of [�(

χ
1(1P) →
γφ

)/�total℄ × [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.2 ±0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = (9.55 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.2BENNETT 08A reports < 26×10−6 from a measurement of [�(

χ
1(1P) → γφ
)/�total℄

× [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (8.7 ± 0.4)× 10−2,whi
h we res
ale to our best value B(ψ(2S) → γχ
1(1P)) = 9.55× 10−2.�(γ γ
)/�total �80/��(γ γ
)/�total �80/��(γ γ
)/�total �80/��(γ γ
)/�total �80/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.5 90 ECKLUND 08A CLEO ψ(2S) → γχ
1 → 3γ
<150 90 1 YAMADA 77 DASP e+ e− → 3γ1Estimated using B(ψ(2S) → γχ
1(1P)) = 0.087. The errors do not 
ontain theun
ertainty in the ψ(2S) de
ay.

χ
1(1P) CROSS-PARTICLE BRANCHING RATIOSχ
1(1P) CROSS-PARTICLE BRANCHING RATIOSχ
1(1P) CROSS-PARTICLE BRANCHING RATIOSχ
1(1P) CROSS-PARTICLE BRANCHING RATIOS�(χ
1(1P)→ pp)/�total × �(ψ(2S)→ γχ
1(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �45/�× �ψ(2S)133 /�ψ(2S)11�(χ
1(1P)→ pp)/�total × �(ψ(2S)→ γχ
1(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �45/�× �ψ(2S)133 /�ψ(2S)11�(χ
1(1P)→ pp)/�total × �(ψ(2S)→ γχ
1(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �45/�× �ψ(2S)133 /�ψ(2S)11�(χ
1(1P)→ pp)/�total × �(ψ(2S)→ γχ
1(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �45/�× �ψ(2S)133 /�ψ(2S)11VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.14±0.11 OUR FIT2.14±0.11 OUR FIT2.14±0.11 OUR FIT2.14±0.11 OUR FIT1.1 ±1.01.1 ±1.01.1 ±1.01.1 ±1.0 1 BAI 98I BES ψ(2S) → γχ
1 → γ p p1Cal
ulated by us. The value for B(χ
1 → pp) reported in BAI 98I is derived usingB(ψ(2S) → γχ
1) = (8.7± 0.8)% and B(ψ(2S) → J/ψ(1S)π+π−) = (32.4± 2.6)%[BAI 98D℄.�(χ
1(1P)→ ��)/�total × �(ψ(2S)→ γχ
1(1P))/�total�58/�× �ψ(2S)133 /�ψ(2S)�(χ
1(1P)→ ��)/�total × �(ψ(2S)→ γχ
1(1P))/�total�58/�× �ψ(2S)133 /�ψ(2S)�(χ
1(1P)→ ��)/�total × �(ψ(2S)→ γχ
1(1P))/�total�58/�× �ψ(2S)133 /�ψ(2S)�(χ
1(1P)→ ��)/�total × �(ψ(2S)→ γχ
1(1P))/�total�58/�× �ψ(2S)133 /�ψ(2S)VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT11.1±1.1 OUR FIT11.1±1.1 OUR FIT11.1±1.1 OUR FIT11.1±1.1 OUR FIT10.9±1.1 OUR AVERAGE10.9±1.1 OUR AVERAGE10.9±1.1 OUR AVERAGE10.9±1.1 OUR AVERAGE11.2±1.0±0.9 136 1 ABLIKIM 13H BES3 ψ(2S) → γ��10.5±1.6±0.6 46 ± 7 2 NAIK 08 CLEO ψ(2S) → γ��1Cal
ulated by us. ABLIKIM 13H reports B(χ
1 → ��) = (12.2 ± 1.1 ± 1.1) × 10−5from a measurement of B(χ
1 → ��) × B(ψ(2S) → γχ
1) assuming B(ψ(2S) →
γχ
1) = (9.2 ± 0.4)%.2Cal
ulated by us. NAIK 08 reports B(χ
1 → ��) = (11.6 ± 1.8 ± 0.7 ± 0.7)× 10−5using B(ψ(2S) → γχ
1) = (9.07 ± 0.11 ± 0.54)%.�(χ
1(1P)→ ��)/�total × �(ψ(2S)→ γχ
1(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �58/�× �ψ(2S)133 /�ψ(2S)11�(χ
1(1P)→ ��)/�total × �(ψ(2S)→ γχ
1(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �58/�× �ψ(2S)133 /�ψ(2S)11�(χ
1(1P)→ ��)/�total × �(ψ(2S)→ γχ
1(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �58/�× �ψ(2S)133 /�ψ(2S)11�(χ
1(1P)→ ��)/�total × �(ψ(2S)→ γχ
1(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �58/�× �ψ(2S)133 /�ψ(2S)11VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.22±0.31 OUR FIT3.22±0.31 OUR FIT3.22±0.31 OUR FIT3.22±0.31 OUR FIT7.1 +2.8
−2.4 ±1.37.1 +2.8
−2.4 ±1.37.1 +2.8
−2.4 ±1.37.1 +2.8
−2.4 ±1.3 9.0+3.5

−3.1 1 BAI 03E BES ψ(2S) → γ��1BAI 03E reports [ B(χ
1 → ��) B(ψ(2S) → γχ
1) / B(ψ(2S) → J/ψπ+π−) ℄ ×[B2(� → π− p) / B(J/ψ → pp) ℄ = (1.33+0.52
−0.46 ± 0.25)%. We 
al
ulate from thismeasurement the presented value using B(� → π− p) = (63.9 ± 0.5)% and B(J/ψ →pp) = (2.17 ± 0.07) × 10−3.



1406140614061406MesonParti
le Listings
χ
1(1P)�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�total�76/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�total�76/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�total�76/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�total�76/�× �ψ(2S)133 /�ψ(2S)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.24 ±0.07 OUR FIT3.24 ±0.07 OUR FIT3.24 ±0.07 OUR FIT3.24 ±0.07 OUR FIT2.93 ±0.15 OUR AVERAGE2.93 ±0.15 OUR AVERAGE2.93 ±0.15 OUR AVERAGE2.93 ±0.15 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.3.377±0.009±0.183 142k ABLIKIM 12O BES3 ψ(2S) → γχ
12.81 ±0.05 ±0.23 13k BAI 04I BES2 ψ(2S) → J/ψγγ2.56 ±0.12 ±0.20 GAISER 86 CBAL ψ(2S) → γX2.78 ±0.30 1 OREGLIA 82 CBAL ψ(2S) → γχ
12.2 ±0.5 2 BRANDELIK 79B DASP ψ(2S) → γχ
12.9 ±0.5 2 BARTEL 78B CNTR ψ(2S) → γχ
15.0 ±1.5 3 BIDDICK 77 CNTR e+ e− → γX2.8 ±0.9 1 WHITAKER 76 MRK1 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.56 ±0.03 ±0.12 24.9k 4 MENDEZ 08 CLEO ψ(2S) → γχ
13.44 ±0.06 ±0.13 3.7k 5 ADAM 05A CLEO Repl. by MENDEZ 081Re
al
ulated by us using B(J/ψ(1S) → ℓ+ ℓ−) = 0.1181 ± 0.0020.2Re
al
ulated by us using B(J/ψ(1S) → µ+µ−) = 0.0588 ± 0.0010.3Assumes isotropi
 gamma distribution.4Not independent from other measurements of MENDEZ 08.5Not independent from other values reported by ADAM 05A.

WEIGHTED AVERAGE
2.93±0.15 (Error scaled by 1.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

WHITAKER 76 MRK1 0.0
BIDDICK 77 CNTR
BARTEL 78B CNTR 0.0
BRANDELIK 79B DASP 2.2
OREGLIA 82 CBAL 0.3
GAISER 86 CBAL 2.6
BAI 04I BES2 0.3
ABLIKIM 12O BES3 5.8

χ2

      11.1
(Confidence Level = 0.084)

1 2 3 4 5 6 7�(

χ
1(1P) → γ J/ψ(1S))/�total × �(

ψ(2S) → γχ
1(1P))/�total (units10−2)�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→J/ψ(1S)anything) �76/�× �ψ(2S)133 /�ψ(2S)9�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→J/ψ(1S)anything) �76/�× �ψ(2S)133 /�ψ(2S)9�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→J/ψ(1S)anything) �76/�× �ψ(2S)133 /�ψ(2S)9�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→J/ψ(1S)anything) �76/�× �ψ(2S)133 /�ψ(2S)9�76/�× �ψ(2S)133 /�ψ(2S)9 = �76/� × �ψ(2S)133 /(�ψ(2S)11 +�ψ(2S)12 +�ψ(2S)13 +0.339�ψ(2S)133 +0.192�ψ(2S)134 )VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.31±0.11 OUR FIT5.31±0.11 OUR FIT5.31±0.11 OUR FIT5.31±0.11 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.70±0.04±0.15 24.9k 1 MENDEZ 08 CLEO ψ(2S) → γχ
15.77±0.10±0.12 3.7k ADAM 05A CLEO Repl. by MENDEZ 081Not independent from other measurements of MENDEZ 08.�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �76/�× �ψ(2S)133 /�ψ(2S)11�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �76/�× �ψ(2S)133 /�ψ(2S)11�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �76/�× �ψ(2S)133 /�ψ(2S)11�(

χ
1(1P)→ γ J/ψ(1S))/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �76/�× �ψ(2S)133 /�ψ(2S)11VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT9.40±0.21 OUR FIT9.40±0.21 OUR FIT9.40±0.21 OUR FIT9.40±0.21 OUR FIT10.15±0.28 OUR AVERAGE10.15±0.28 OUR AVERAGE10.15±0.28 OUR AVERAGE10.15±0.28 OUR AVERAGE10.17±0.07±0.27 24.9k MENDEZ 08 CLEO ψ(2S) → γχ
112.6 ±0.3 ±3.8 3k 1 ABLIKIM 04B BES ψ(2S) → J/ψX8.5 ±2.1 2 HIMEL 80 MRK2 ψ(2S) → γχ
1
• • • We do not use the following data for averages, �ts, limits, et
. • • •10.24±0.17±0.23 3.7k 3 ADAM 05A CLEO Repl. by MENDEZ 081From a �t to the J/ψ re
oil mass spe
tra.2The value for B(ψ(2S) → γχ
1)×B(χ
1 → γ J/ψ(1S)) quoted in HIMEL 80 isderived using B(ψ(2S) → J/ψ(1S)π+π−) = (33 ± 3)% and B(J/ψ(1S) → ℓ+ ℓ−)= 0.138 ± 0.018. Cal
ulated by us using B(J/ψ(1S) → ℓ+ ℓ−) = 0.1181 ± 0.0020.3Not independent from other values reported by ADAM 05A.

�(

χ
1(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�17/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�17/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�17/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�17/�× �ψ(2S)133 /�ψ(2S)VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.8±0.5 OUR FIT6.8±0.5 OUR FIT6.8±0.5 OUR FIT6.8±0.5 OUR FIT7.2±0.6 OUR AVERAGE7.2±0.6 OUR AVERAGE7.2±0.6 OUR AVERAGE7.2±0.6 OUR AVERAGE7.3±0.5±0.5 1 ATHAR 07 CLEO ψ(2S) → γK0S K+π−7.0±0.5±0.9 2 ABLIKIM 06R BES2 ψ(2S) → γχ
11Cal
ulated by us. The value of B(χ
1 → K0K+π−+ 
.
.) reported by ATHAR 07was derived using B(ψ(2S) → γχ
1(1P)) = (9.07 ± 0.11 ± 0.54)%.2Cal
ulated by us. ABLIKIM 06R reports B(χ
1 → K0S K+π−) = (4.0 ± 0.3 ± 0.5)×10−3. We use B(ψ(2S) → γχ
1) = (8.7 ± 0.4) × 10−2.�(

χ
1(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→ J/ψ(1S)π+π−) �17/�× �ψ(2S)133 /�ψ(2S)11�(

χ
1(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→ J/ψ(1S)π+π−) �17/�× �ψ(2S)133 /�ψ(2S)11�(

χ
1(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→ J/ψ(1S)π+π−) �17/�× �ψ(2S)133 /�ψ(2S)11�(

χ
1(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→ J/ψ(1S)π+π−) �17/�× �ψ(2S)133 /�ψ(2S)11VALUE (units 10−4) DOCUMENT ID TECN COMMENT19.7±1.6 OUR FIT19.7±1.6 OUR FIT19.7±1.6 OUR FIT19.7±1.6 OUR FIT13.2±2.4±3.213.2±2.4±3.213.2±2.4±3.213.2±2.4±3.2 1 BAI 99B BES ψ(2S) → γK0S K+π−1Cal
ulated by us. The value of B(χ
1 → K0S K+π−) reported by BAI 99B was derivedusing B(ψ(2S) → γχ
1(1P)) = (8.7± 0.8)% and B(ψ(2S) → J/ψπ+ π−) = (32.4±2.6)% [BAI 98D℄.�(

χ
1(1P)→ K+K−K+K−)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�36/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ K+K−K+K−)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�36/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ K+K−K+K−)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�36/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ K+K−K+K−)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�36/�× �ψ(2S)133 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.52±0.11 OUR FIT0.52±0.11 OUR FIT0.52±0.11 OUR FIT0.52±0.11 OUR FIT0.61±0.11±0.080.61±0.11±0.080.61±0.11±0.080.61±0.11±0.08 54 1 ABLIKIM 06T BES2 ψ(2S) → γK+K+K−K−1Cal
ulated by us. The value of B(χ
1 → 2K+2K−) reported by ABLIKIM 06T wasderived using B(ψ(2S) → γχ
1(1P)) = (8.7 ± 0.8)%.�(

χ
1(1P)→ K+K−K+K−)/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→ J/ψ(1S)π+π−) �36/�× �ψ(2S)133 /�ψ(2S)11�(

χ
1(1P)→ K+K−K+K−)/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→ J/ψ(1S)π+π−) �36/�× �ψ(2S)133 /�ψ(2S)11�(

χ
1(1P)→ K+K−K+K−)/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→ J/ψ(1S)π+π−) �36/�× �ψ(2S)133 /�ψ(2S)11�(

χ
1(1P)→ K+K−K+K−)/�total × �(

ψ(2S)→ γχ
1(1P))/�(

ψ(2S)→ J/ψ(1S)π+π−) �36/�× �ψ(2S)133 /�ψ(2S)11VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.52±0.31 OUR FIT1.52±0.31 OUR FIT1.52±0.31 OUR FIT1.52±0.31 OUR FIT1.13±0.40±0.291.13±0.40±0.291.13±0.40±0.291.13±0.40±0.29 1 BAI 99B BES ψ(2S) → γK+K+K−K−1Cal
ulated by us. The value of B(χ
1 → 2K+2K−) reported by BAI 99B was derivedusing B(ψ(2S) → γχ
1(1P)) = (8.7± 0.8)% and B(ψ(2S) → J/ψπ+ π−) = (32.4±2.6)% [BAI 98D℄.�(

χ
1(1P)→ pp)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�45/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ pp)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�45/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ pp)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�45/�× �ψ(2S)133 /�ψ(2S)�(

χ
1(1P)→ pp)/�total × �(

ψ(2S)→ γχ
1(1P))/�total�45/�× �ψ(2S)133 /�ψ(2S)VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT7.4±0.4 OUR FIT7.4±0.4 OUR FIT7.4±0.4 OUR FIT7.4±0.4 OUR FIT7.8±0.6 OUR AVERAGE7.8±0.6 OUR AVERAGE7.8±0.6 OUR AVERAGE7.8±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.7.9±0.4±0.3 453 ABLIKIM 13V BES3 ψ(2S) → γ pp8.2±0.7±0.4 141 ± 13 1 NAIK 08 CLEO ψ(2S) → γ pp4.8+1.4
−1.3±0.6 18.2+5.5

−4.9 BAI 04F BES ψ(2S) → γχ
1(1P) → γ p p1Cal
ulated by us. NAIK 08 reports B(χ
1 → pp) = (9.0 ± 0.8 ± 0.4 ± 0.5) × 10−5using B(ψ(2S) → γχ
1) = (9.07 ± 0.11 ± 0.54)%.
WEIGHTED AVERAGE
7.8±0.6 (Error scaled by 1.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BAI 04F BES 3.8
NAIK 08 CLEO 0.3
ABLIKIM 13V BES3 0.1

χ2

       4.2
(Confidence Level = 0.125)

0 5 10 15 20�(

χ
1(1P) → pp)/�total × �(

ψ(2S) → γχ
1(1P))/�total (units 10−6)



1407140714071407See key on page 601 MesonParti
le Listings
χ
1(1P), h
(1P)MULTIPOLE AMPLITUDES IN χ
1(1P) → γ J/ψ(1S)MULTIPOLE AMPLITUDES IN χ
1(1P) → γ J/ψ(1S)MULTIPOLE AMPLITUDES IN χ
1(1P) → γ J/ψ(1S)MULTIPOLE AMPLITUDES IN χ
1(1P) → γ J/ψ(1S)a2 = M2/√E12 +M22 Magneti
 quadrupole fra
tional transition amplitudea2 = M2/√E12 +M22 Magneti
 quadrupole fra
tional transition amplitudea2 = M2/√E12 +M22 Magneti
 quadrupole fra
tional transition amplitudea2 = M2/√E12 +M22 Magneti
 quadrupole fra
tional transition amplitudeVALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT

−5.4 +1.2
−1.5 OUR AVERAGE−5.4 +1.2
−1.5 OUR AVERAGE−5.4 +1.2
−1.5 OUR AVERAGE−5.4 +1.2
−1.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogram below.

−6.26±0.63±0.24 39k ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−0.2 ±3.2 ±0.4 2090 AMBROGIANI 02 E835 pp → χ
1 → J/ψγ

−0.2 +0.8
−2.0 921 OREGLIA 82 CBAL ψ(2S) → χ
1 γ → J/ψγγ

WEIGHTED AVERAGE
-5.4+1.2-1.5 (Error scaled by 2.4)

OREGLIA 82 CBAL 6.8
AMBROGIANI 02 E835 3.0
ARTUSO 09 CLEO 1.5

χ2

      11.4
(Confidence Level = 0.0033)

-10 -5 0 5 10 15a2 = M2/√E12 +M22 (units 10−2)MULTIPOLE AMPLITUDES IN ψ(2S) → γχ
1(1S) RADIATIVE DECAYMULTIPOLE AMPLITUDES IN ψ(2S) → γχ
1(1S) RADIATIVE DECAYMULTIPOLE AMPLITUDES IN ψ(2S) → γχ
1(1S) RADIATIVE DECAYMULTIPOLE AMPLITUDES IN ψ(2S) → γχ
1(1S) RADIATIVE DECAYb2 = M2/√E12 +M22 Magneti
 quadrupole fra
tional transition amplitudeb2 = M2/√E12 +M22 Magneti
 quadrupole fra
tional transition amplitudeb2 = M2/√E12 +M22 Magneti
 quadrupole fra
tional transition amplitudeb2 = M2/√E12 +M22 Magneti
 quadrupole fra
tional transition amplitudeVALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.9 ±0.8 OUR AVERAGE2.9 ±0.8 OUR AVERAGE2.9 ±0.8 OUR AVERAGE2.9 ±0.8 OUR AVERAGE2.76±0.73±0.23 39k ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−7.7 +5.0
−4.5 921 OREGLIA 82 CBAL ψ(2S) → γ γ ℓ+ ℓ−MULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYSMULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYSMULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYSMULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYS

ψ(2S) → γχ
1(1S) and χ
1 → γ J/ψ(1S)ψ(2S) → γχ
1(1S) and χ
1 → γ J/ψ(1S)ψ(2S) → γχ
1(1S) and χ
1 → γ J/ψ(1S)ψ(2S) → γχ
1(1S) and χ
1 → γ J/ψ(1S)a2/b2 Magneti
 quadrupole transition amplitude ratioa2/b2 Magneti
 quadrupole transition amplitude ratioa2/b2 Magneti
 quadrupole transition amplitude ratioa2/b2 Magneti
 quadrupole transition amplitude ratioVALUE EVTS DOCUMENT ID TECN COMMENT
−2.27+0.57

−0.99−2.27+0.57
−0.99−2.27+0.57
−0.99−2.27+0.57
−0.99 39k 1 ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−1Statisti
al and systemati
 errors 
ombined. Not independent of a2(χ
1) and b2(χ
1)values from ARTUSO 09.

χ
1(1P) REFERENCESχ
1(1P) REFERENCESχ
1(1P) REFERENCESχ
1(1P) REFERENCESABLIKIM 15I PR D91 092006 M. Ablikim et al. (BES III Collab.)ABLIKIM 15M PR D91 112008 M. Ablikim et al. (BES III Collab.)ABLIKIM 14J PR D89 074030 M. Ablikim et al. (BES III Collab.)ABLIKIM 13B PR D87 012002 M. Ablikim et al. (BES III Collab.)ABLIKIM 13D PR D87 012007 M. Ablikim et al. (BES III Collab.)ABLIKIM 13H PR D87 032007 M. Ablikim et al. (BES III Collab.)ABLIKIM 13V PR D88 112001 M. Ablikim et al. (BES III Collab.)ABLIKIM 12I PR D86 052004 M. Ablikim et al. (BES III Collab.)ABLIKIM 12J PR D86 052011 M. Ablikim et al. (BES III Collab.)ABLIKIM 12O PRL 109 172002 M. Ablikim et al. (BES III Collab.)ABLIKIM 11A PR D83 012006 M. Ablikim et al. (BES III Collab.)ABLIKIM 11D PR D83 032003 M. Ablikim et al. (BES III Collab.)ABLIKIM 11E PR D83 112005 M. Ablikim et al. (BES III Collab.)ABLIKIM 11F PR D83 112009 M. Ablikim et al. (BES III Collab.)ABLIKIM 11K PRL 107 092001 M. Ablikim et al. (BES III Collab.)ONYISI 10 PR D82 011103 P.U.E. Onyisi et al. (CLEO Collab.)ARTUSO 09 PR D80 112003 M. Artuso et al. (CLEO Collab.)BENNETT 08A PRL 101 151801 J.V. Bennett et al. (CLEO Collab.)ECKLUND 08A PR D78 091501 K.M. E
klund et al. (CLEO Collab.)HE 08B PR D78 092004 Q. He et al. (CLEO Collab.)MENDEZ 08 PR D78 011102 H. Mendez et al. (CLEO Collab.)NAIK 08 PR D78 031101 P. Naik et al. (CLEO Collab.)ATHAR 07 PR D75 032002 S.B. Athar et al. (CLEO Collab.)ABLIKIM 06D PR D73 052006 M. Ablikim et al. (BES Collab.)ABLIKIM 06R PR D74 072001 M. Ablikim et al. (BES Collab.)ABLIKIM 06T PL B642 197 M. Ablikim et al. (BES Collab.)ABLIKIM 05G PR D71 092002 M. Ablikim et al. (BES Collab.)ABLIKIM 05O PL B630 21 M. Ablikim et al. (BES Collab.)ADAM 05A PRL 94 232002 N.E. Adam et al. (CLEO Collab.)ANDREOTTI 05A NP B717 34 M. Andreotti et al. (FNAL E835 Collab.)ABLIKIM 04B PR D70 012003 M. Ablikim et al. (BES Collab.)ABLIKIM 04H PR D70 092003 M. Ablikim et al. (BES Collab.)ATHAR 04 PR D70 112002 S.B. Athar et al. (CLEO Collab.)BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.)BAI 04I PR D70 012006 J.Z. Bai et al. (BES Collab.)AULCHENKO 03 PL B573 63 V.M. Aul
henko et al. (KEDR Collab.)BAI 03E PR D67 112001 J.Z. Bai et al. (BES Collab.)AMBROGIANI 02 PR D65 052002 M. Ambrogiani et al. (FNAL E835 Collab.)BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.)BAI 98D PR D58 092006 J.Z. Bai et al. (BES Collab.)

BAI 98I PRL 81 3091 J.Z. Bai et al. (BES Collab.)ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+)Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+)BAGLIN 86B PL B172 455 C. Baglin (LAPP, CERN, GENO, LYON, OSLO+)GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.)LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+)OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+)Also Private Comm. M.J. Oreglia (EFI)HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC)Also Private Comm. G. Trilling (LBL, UCB)BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.)BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP)TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL)Also Private Comm. G. Trilling (LBL, UCB)BIDDICK 77 PRL 38 1324 C.J. Biddi
k et al. (UCSD, UMD, PAVI+)FELDMAN 77 PRPL 33C 285 G.J. Feldman, M.L. Perl (LBL, SLAC)YAMADA 77 Hamburg Conf. 69 S. Yamada (DASP Collab.)WHITAKER 76 PRL 37 1596 J.S. Whitaker et al. (SLAC, LBL)TANENBAUM 75 PRL 35 1323 W.M. Tanenbaum et al. (LBL, SLAC)h
(1P) IG (JPC ) = ??(1 +−)Quantum numbers are quark model predi
tion, C = − establishedby η
 γ de
ay. h
 (1P) MASSh
 (1P) MASSh
 (1P) MASSh
 (1P) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3525.38±0.11 OUR AVERAGE3525.38±0.11 OUR AVERAGE3525.38±0.11 OUR AVERAGE3525.38±0.11 OUR AVERAGE3525.31±0.11±0.14 832 1 ABLIKIM 12N BES3 ψ(2S) → π0 γ hadrons3525.40±0.13±0.18 3679 ABLIKIM 10B BES3 ψ(2S) → π0 γ η
3525.20±0.18±0.12 1282 2 DOBBS 08A CLEO ψ(2S) → π0 η
 γ3525.8 ±0.2 ±0.2 13 ANDREOTTI 05B E835 pp → η
 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •3525.6 ±0.5 92+23
−22 ADAMS 09 CLEO ψ(2S) → 2(π+π−π0)3524.4 ±0.6 ±0.4 168 ± 40 3 ROSNER 05 CLEO ψ(2S) → π0 η
 γ3527 ±8 42 ANTONIAZZI 94 E705 300 π±, pLi →J/ψπ0X3526.28±0.18±0.19 59 4 ARMSTRONG 92D E760 pp → J/ψπ03525.4 ±0.8 ±0.4 5 BAGLIN 86 SPEC pp → J/ψX1With 
oating width.2Combination of ex
lusive and in
lusive analyses for the rea
tion ψ(2S) → π0 h
 →

π0 η
 γ. This result is the average of DOBBS 08A and ROSNER 05.3 Superseded by DOBBS 08A.4Mass 
entral value and systemati
 error re
al
ulated by us a

ording to Eq. (16) inARMSTRONG 93B, using the value for the ψ(2S) mass from AULCHENKO 03.h
 (1P) WIDTHh
 (1P) WIDTHh
 (1P) WIDTHh
 (1P) WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT0.70±0.28±0.220.70±0.28±0.220.70±0.28±0.220.70±0.28±0.22 832 5 ABLIKIM 12N BES3 ψ(2S) → π0 γ hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.44 90 3679 6 ABLIKIM 10B BES3 ψ(2S) → π0 γ η

< 1 13 ANDREOTTI 05B E835 pp → η
 γ

< 1.1 90 59 ARMSTRONG 92D E760 pp → J/ψπ05With 
oating mass.6The 
entral value is �= 0.73 ± 0.45 ± 0.28 MeV.h
 (1P) DECAY MODESh
 (1P) DECAY MODESh
 (1P) DECAY MODESh
 (1P) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 J/ψ(1S)π0�2 J/ψ(1S)ππ not seen�3 pp < 1.5 × 10−4 90%�4 η
 (1S)γ (51 ±6 ) %�5 π+π−π0 < 2.2 × 10−3�6 2π+2π−π0 ( 2.2+0.8
−0.7) %�7 3π+3π−π0 < 2.9 %h
 (1P) PARTIAL WIDTHSh
 (1P) PARTIAL WIDTHSh
 (1P) PARTIAL WIDTHSh
 (1P) PARTIAL WIDTHSh
 (1P) �(i)�(p p)/�(total)h
 (1P) �(i)�(p p)/�(total)h
 (1P) �(i)�(p p)/�(total)h
 (1P) �(i)�(p p)/�(total)�(η
 (1S)γ)

× �(pp)/�total �4�3/��(η
 (1S)γ)

× �(pp)/�total �4�3/��(η
 (1S)γ)

× �(pp)/�total �4�3/��(η
 (1S)γ)

× �(pp)/�total �4�3/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •12.0±4.5 13 7 ANDREOTTI 05B E835 pp → η
 γ7Assuming � = 1 MeV. h
 (1P) BRANCHING RATIOSh
 (1P) BRANCHING RATIOSh
 (1P) BRANCHING RATIOSh
 (1P) BRANCHING RATIOS�(J/ψ(1S)ππ

)/�(J/ψ(1S)π0) �2/�1�(J/ψ(1S)ππ
)/�(J/ψ(1S)π0) �2/�1�(J/ψ(1S)ππ
)/�(J/ψ(1S)π0) �2/�1�(J/ψ(1S)ππ
)/�(J/ψ(1S)π0) �2/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.18<0.18<0.18<0.18 90 ARMSTRONG 92D E760 pp → J/ψπ0



1408140814081408MesonParti
le Listingsh
(1P), χ
2(1P)�(η
 (1S)γ)/�total �4/��(η
 (1S)γ)/�total �4/��(η
 (1S)γ)/�total �4/��(η
 (1S)γ)/�total �4/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT51 ± 6 OUR AVERAGE51 ± 6 OUR AVERAGE51 ± 6 OUR AVERAGE51 ± 6 OUR AVERAGE54.3± 6.7±5.2 3679 ABLIKIM 10B BES3 ψ(2S) → π0 γ η
48 ± 6 ±7 8 DOBBS 08A CLEO ψ(2S) → π0 η
 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •48 ± 6 ±7 1282 9 DOBBS 08A CLEO ψ(2S) → π0 η
 γ46 ±12 ±7 168 10 ROSNER 05 CLEO ψ(2S) → π0 η
 γ8Average of DOBBS 08A and ROSNER 05. DOBBS 08A reports [�(h
 (1P) → η
 (1S)γ)/�total℄ × [B(ψ(2S) → π0 h
 (1P))℄ = (4.16 ± 0.30 ± 0.37)× 10−4 whi
h we divide byour best value B(ψ(2S) → π0 h
 (1P)) = (8.6 ± 1.3) × 10−4. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.9DOBBS 08A reports [�(h
 (1P) → η
 (1S)γ)/�total℄ × [B(ψ(2S) → π0 h
 (1P))℄ =(4.19 ± 0.32± 0.45)×10−4 whi
h we divide by our best value B(ψ(2S) → π0 h
 (1P))= (8.6 ± 1.3)× 10−4. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.10ROSNER 05 reports [�(h
 (1P) → η
 (1S)γ)/�total℄ × [B(ψ(2S) → π0 h
 (1P))℄ =(4.0 ± 0.8 ± 0.7) × 10−4 whi
h we divide by our best value B(ψ(2S) → π0 h
 (1P))= (8.6 ± 1.3)× 10−4. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(π+π−π0)/�total �5/��(π+π−π0)/�total �5/��(π+π−π0)/�total �5/��(π+π−π0)/�total �5/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT
<2.2<2.2<2.2<2.2 11 ADAMS 09 CLEO ψ(2S) → π0 γ η
11ADAMS 09 reports [�(h
 (1P) → π+π−π0)/�total℄ × [B(ψ(2S) → π0 h
 (1P))℄

< 0.19×10−5 whi
h we divide by our best value B(ψ(2S) → π0 h
 (1P)) = 8.6×10−4.�(2π+2π−π0)/�total �6/��(2π+2π−π0)/�total �6/��(2π+2π−π0)/�total �6/��(2π+2π−π0)/�total �6/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.2+0.8
−0.6±0.32.2+0.8
−0.6±0.32.2+0.8
−0.6±0.32.2+0.8
−0.6±0.3 92 12 ADAMS 09 CLEO ψ(2S) → π0 γ η
12ADAMS 09 reports [�(h
 (1P) → 2π+2π−π0)/�total℄ × [B(ψ(2S) → π0 h
 (1P))℄ =(1.88+0.48

−0.45+0.47
−0.30)× 10−5 whi
h we divide by our best value B(ψ(2S) → π0 h
 (1P))= (8.6 ± 1.3)× 10−4. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(3π+3π−π0)/�total �7/��(3π+3π−π0)/�total �7/��(3π+3π−π0)/�total �7/��(3π+3π−π0)/�total �7/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT

<2.9<2.9<2.9<2.9 13 ADAMS 09 CLEO ψ(2S) → π0 γ η
13ADAMS 09 reports [�(h
 (1P) → 3π+3π−π0)/�total℄ × [B(ψ(2S) → π0 h
 (1P))℄
< 2.5×10−5 whi
h we divide by our best value B(ψ(2S) → π0 h
 (1P)) = 8.6×10−4.�(h
 (1P)→ η
 (1S)γ)/�total × �(ψ(2S)→ π0 h
 (1P))/�total�4/�× �ψ(2S)15 /�ψ(2S)�(h
 (1P)→ η
 (1S)γ)/�total × �(ψ(2S)→ π0 h
 (1P))/�total�4/�× �ψ(2S)15 /�ψ(2S)�(h
 (1P)→ η
 (1S)γ)/�total × �(ψ(2S)→ π0 h
 (1P))/�total�4/�× �ψ(2S)15 /�ψ(2S)�(h
 (1P)→ η
 (1S)γ)/�total × �(ψ(2S)→ π0 h
 (1P))/�total�4/�× �ψ(2S)15 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.3 ±0.4 OUR AVERAGE4.3 ±0.4 OUR AVERAGE4.3 ±0.4 OUR AVERAGE4.3 ±0.4 OUR AVERAGE4.58±0.40±0.50 3679 14 ABLIKIM 10B BES3 ψ(2S) → π0 γX4.16±0.30±0.37 1430 15 DOBBS 08A CLEO ψ(2S) → π0 γ η
14Not independent of other bran
hing fra
tions in ABLIKIM 10B.15Not independent of other bran
hing fra
tions in DOBBS 08A.�(h
 (1P)→ pp)/�total × �(ψ(2S)→ π0 h
 (1P))/�total�3/�× �ψ(2S)15 /�ψ(2S)�(h
 (1P)→ pp)/�total × �(ψ(2S)→ π0 h
 (1P))/�total�3/�× �ψ(2S)15 /�ψ(2S)�(h
 (1P)→ pp)/�total × �(ψ(2S)→ π0 h
 (1P))/�total�3/�× �ψ(2S)15 /�ψ(2S)�(h
 (1P)→ pp)/�total × �(ψ(2S)→ π0 h
 (1P))/�total�3/�× �ψ(2S)15 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT

<1.3× 10−7<1.3× 10−7<1.3× 10−7<1.3× 10−7 90 ABLIKIM 13V BES3 ψ(2S) → γ pph
 (1P) REFERENCESh
 (1P) REFERENCESh
 (1P) REFERENCESh
 (1P) REFERENCESABLIKIM 13V PR D88 112001 M. Ablikim et al. (BES III Collab.)ABLIKIM 12N PR D86 092009 M. Ablikim et al. (BES III Collab.)ABLIKIM 10B PRL 104 132002 M. Ablikim et al. (BES III Collab.)ADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO Collab.)DOBBS 08A PRL 101 182003 S. Dobbs et al. (CLEO Collab.)ANDREOTTI 05B PR D72 032001 M. Andreotti et al. (FNAL E835 Collab.)ROSNER 05 PRL 95 102003 J.L. Rosner et al. (CLEO Collab.)AULCHENKO 03 PL B573 63 V.M. Aul
henko et al. (KEDR Collab.)ANTONIAZZI 94 PR D50 4258 L. Antoniazzi et al. (E705 Collab.)ARMSTRONG 93B PR D47 772 T.A. Armstrong et al. (FNAL E760 Collab.)ARMSTRONG 92D PRL 69 2337 T.A. Armstrong et al. (FNAL, FERR, GENO+)BAGLIN 86 PL B171 135 C. Baglin et al. (LAPP, CERN, TORI, STRB+)

χ
2(1P) IG (JPC ) = 0+(2 + +)See the Review on \ψ(2S) and χ
 bran
hing ratios" before the
χ
0(1P) Listings.

χ
2(1P) MASSχ
2(1P) MASSχ
2(1P) MASSχ
2(1P) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3556.20 ± 0.09 OUR AVERAGE3556.20 ± 0.09 OUR AVERAGE3556.20 ± 0.09 OUR AVERAGE3556.20 ± 0.09 OUR AVERAGE3555.3 ± 0.6 ±2.2 2.5k UEHARA 08 BELL γ γ → hadrons3555.70 ± 0.59 ±0.39 ABLIKIM 05G BES2 ψ(2S) → γχ
23556.173± 0.123±0.020 ANDREOTTI 05A E835 pp → e+ e− γ3559.9 ± 2.9 EISENSTEIN 01 CLE2 e+ e− →e+ e−χc23556.4 ± 0.7 BAI 99B BES ψ(2S) → γX3556.22 ± 0.131±0.020 585 1 ARMSTRONG 92 E760 pp → e+ e− γ3556.9 ± 0.4 ±0.5 50 BAGLIN 86B SPEC pp → e+ e−X3557.8 ± 0.2 ±4 2 GAISER 86 CBAL ψ(2S) → γX3553.4 ± 2.2 66 3 LEMOIGNE 82 GOLI 185 π−Be →
γµ+µ−A3555.9 ± 0.7 4 OREGLIA 82 CBAL e+ e− → J/ψ2γ3557 ± 1.5 69 5 HIMEL 80 MRK2 e+ e− → J/ψ2γ3551 ±11 15 BRANDELIK 79B DASP e+ e− → J/ψ2γ3553 ± 4 5 BARTEL 78B CNTR e+ e− → J/ψ2γ3553 ± 4 ±4 5,6 TANENBAUM 78 MRK1 e+ e−3563 ± 7 360 5 BIDDICK 77 CNTR e+ e− → γX

• • • We do not use the following data for averages, �ts, limits, et
. • • •3555.4 ± 1.3 53 UEHARA 13 BELL γ γ → K0S K0S3543 ±10 4 WHITAKER 76 MRK1 e+ e− → J/ψ2γ1Re
al
ulated by ANDREOTTI 05A, using the value of ψ(2S) mass from AULCHENKO 03.2Using mass of ψ(2S) = 3686.0 MeV.3 J/ψ(1S) mass 
onstrained to 3097 MeV.4Assuming ψ(2S) mass = 3686 MeV and J/ψ(1S) mass = 3097 MeV.5Mass value shifted by us by amount appropriate for ψ(2S) mass = 3686 MeV andJ/ψ(1S) mass = 3097 MeV.6From a simultaneous �t to radiative and hadroni
 de
ay 
hannels.
χ
2(1P) WIDTHχ
2(1P) WIDTHχ
2(1P) WIDTHχ
2(1P) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1.93 ±0.11 OUR FIT1.93 ±0.11 OUR FIT1.93 ±0.11 OUR FIT1.93 ±0.11 OUR FIT1.95 ±0.13 OUR AVERAGE1.95 ±0.13 OUR AVERAGE1.95 ±0.13 OUR AVERAGE1.95 ±0.13 OUR AVERAGE1.915±0.188±0.013 ANDREOTTI 05A E835 pp → e+ e− γ1.96 ±0.17 ±0.07 585 1 ARMSTRONG 92 E760 pp → e+ e− γ2.6 +1.4

−1.0 50 BAGLIN 86B SPEC pp → e+ e−X2.8 +2.1
−2.0 2 GAISER 86 CBAL ψ(2S) → γX1Re
al
ulated by ANDREOTTI 05A.2 Errors 
orrespond to 90% 
on�den
e level; authors give only width range.

χ
2(1P) DECAY MODESχ
2(1P) DECAY MODESχ
2(1P) DECAY MODESχ
2(1P) DECAY MODESMode Fra
tion (�i /�) Con�den
e levelHadroni
 de
aysHadroni
 de
aysHadroni
 de
aysHadroni
 de
ays�1 2(π+π−) ( 1.07±0.10) %�2 ρρ�3 π+π−π0π0 ( 1.91±0.25) %�4 ρ+π−π0+ 
.
. ( 2.3 ±0.4 ) %�5 4π0 ( 1.16±0.16) × 10−3�6 K+K−π0π0 ( 2.2 ±0.4 ) × 10−3�7 K+π−K0π0+ 
.
. ( 1.44±0.21) %�8 ρ−K+K0+ 
.
. ( 4.3 ±1.3 ) × 10−3�9 K∗(892)0K−π+ →K−π+K0π0+ 
.
. ( 3.1 ±0.8 ) × 10−3�10 K∗(892)0K0π0 →K+π−K0π0+ 
.
. ( 4.0 ±0.9 ) × 10−3�11 K∗(892)−K+π0 →K+π−K0π0+ 
.
. ( 3.9 ±0.9 ) × 10−3�12 K∗(892)+K0π−
→K+π−K0π0+ 
.
. ( 3.1 ±0.8 ) × 10−3�13 K+K−ηπ0 ( 1.3 ±0.5 ) × 10−3�14 K+K−π+π− ( 8.9 ±1.0 ) × 10−3�15 K+K−π+π−π0 ( 1.17±0.13) %�16 K0S K±π∓π+π− ( 7.3 ±0.8 ) × 10−3�17 K+K∗(892)0π−+ 
.
. ( 2.2 ±1.1 ) × 10−3�18 K∗(892)0K∗(892)0 ( 2.4 ±0.5 ) × 10−3�19 3(π+π−) ( 8.6 ±1.8 ) × 10−3�20 φφ ( 1.12±0.10) × 10−3�21 ωω ( 8.8 ±1.1 ) × 10−4
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χ
2(1P)�22 ωK+K− ( 7.3 ±0.9 ) × 10−4�23 ωφ�24 ππ ( 2.33±0.12) × 10−3�25 ρ0π+π− ( 3.8 ±1.6 ) × 10−3�26 π+π−η ( 5.0 ±1.3 ) × 10−4�27 π+π−η′ ( 5.2 ±1.9 ) × 10−4�28 ηη ( 5.7 ±0.5 ) × 10−4�29 K+K− ( 1.05±0.07) × 10−3�30 K0S K0S ( 5.5 ±0.4 ) × 10−4�31 K0K+π−+ 
.
. ( 1.34±0.19) × 10−3�32 K+K−π0 ( 3.2 ±0.8 ) × 10−4�33 K+K−η < 3.4 × 10−4 90%�34 K+K−η′(958) ( 1.94±0.34) × 10−4�35 ηη′ < 6 × 10−5 90%�36 η′ η′ < 1.0 × 10−4 90%�37 π+π−K0S K0S ( 2.3 ±0.6 ) × 10−3�38 K+K−K0S K0S < 4 × 10−4 90%�39 K+K−K+K− ( 1.73±0.21) × 10−3�40 K+K−φ ( 1.48±0.31) × 10−3�41 K0K+π−φ+ 
.
. ( 4.8 ±0.7 ) × 10−3�42 K+K−π0φ ( 2.7 ±0.5 ) × 10−3�43 φπ+π−π0 ( 9.3 ±1.2 ) × 10−4�44 pp ( 7.5 ±0.4 ) × 10−5�45 ppπ0 ( 4.9 ±0.4 ) × 10−4�46 ppη ( 1.82±0.26) × 10−4�47 ppω ( 3.8 ±0.5 ) × 10−4�48 ppφ ( 2.9 ±0.9 ) × 10−5�49 ppπ+π− ( 1.32±0.34) × 10−3�50 ppπ0π0 ( 8.2 ±2.5 ) × 10−4�51 ppK+K− (non-resonant) ( 2.00±0.34) × 10−4�52 ppK0S K0S < 7.9 × 10−4 90%�53 pnπ− ( 8.9 ±1.0 ) × 10−4�54 pnπ+ ( 9.3 ±0.9 ) × 10−4�55 pnπ−π0 ( 2.27±0.19) × 10−3�56 pnπ+π0 ( 2.21±0.20) × 10−3�57 �� ( 1.92±0.16) × 10−4�58 ��π+π− ( 1.31±0.17) × 10−3�59 ��π+π− (non-resonant) ( 6.9 ±1.6 ) × 10−4�60 � (1385)+�π−+ 
.
. < 4 × 10−4 90%�61 � (1385)−�π++ 
.
. < 6 × 10−4 90%�62 K+p� + 
.
. ( 8.1 ±0.6 ) × 10−4�63 K+p�(1520)+ 
.
. ( 2.9 ±0.7 ) × 10−4�64 �(1520)�(1520) ( 4.8 ±1.5 ) × 10−4�65 �0�0 < 6 × 10−5 90%�66 �+�− < 7 × 10−5 90%�67 � (1385)+� (1385)− < 1.6 × 10−4 90%�68 � (1385)−� (1385)+ < 8 × 10−5 90%�69 K−��++ 
.
. ( 1.84±0.34) × 10−4�70 � 0� 0 < 1.1 × 10−4 90%�71 �−�+ ( 1.48±0.33) × 10−4�72 J/ψ(1S)π+π−π0 < 1.5 % 90%�73 π0 η
 < 3.2 × 10−3 90%�74 η
 (1S)π+π− < 5.4 × 10−3 90%Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays�75 γ J/ψ(1S) (19.2 ±0.7 ) %�76 γ ρ0 < 2.0 × 10−5 90%�77 γω < 6 × 10−6 90%�78 γφ < 8 × 10−6 90%�79 γ γ ( 2.74±0.14) × 10−4CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONA multiparti
le �t to χ
1(1P), χ
0(1P), χ
2(1P), and ψ(2S)with 4 total widths, a partial width, 25 
ombinations of partialwidths obtained from integrated 
ross se
tion, and 84 bran
hingratios uses 240 measurements to determine 49 parameters. Theoverall �t has a χ2 = 342.4 for 191 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
hingfra
tions, xi ≡ �i/�total.

x14 13x17 3 21x18 8 7 1x20 14 12 3 7x24 19 16 3 10 24x25 19 3 1 2 3 4x28 11 9 2 6 14 27 2x29 14 12 3 7 17 33 3 19x30 13 11 2 6 15 28 3 17 20x31 7 6 1 4 8 16 1 9 11 10x39 9 8 2 5 10 18 2 10 13 11x44 16 13 3 8 16 24 4 14 17 15x57 11 9 2 6 14 28 2 16 20 17x75 24 21 4 12 29 55 5 32 40 34x79 −8 −6 −1 −3 1 19 −2 13 13 10� −28 −23 −5 −14 −28 −43 −6 −25 −32 −28x1 x14 x17 x18 x20 x24 x25 x28 x29 x30x39 6x44 8 10x57 9 11 14x75 19 22 19 33x79 6 4 26 13 30� −15 −19 −54 −25 −61 −52x31 x39 x44 x57 x75 x79
χ
2(1P) PARTIAL WIDTHSχ
2(1P) PARTIAL WIDTHSχ
2(1P) PARTIAL WIDTHSχ
2(1P) PARTIAL WIDTHS

χ
2(1P) �(i)�(γ J/ψ(1S))/�(total)χ
2(1P) �(i)�(γ J/ψ(1S))/�(total)χ
2(1P) �(i)�(γ J/ψ(1S))/�(total)χ
2(1P) �(i)�(γ J/ψ(1S))/�(total)�(pp) × �(γ J/ψ(1S))/�total �44�75/��(pp) × �(γ J/ψ(1S))/�total �44�75/��(pp) × �(γ J/ψ(1S))/�total �44�75/��(pp) × �(γ J/ψ(1S))/�total �44�75/�VALUE (eV) DOCUMENT ID TECN COMMENT27.9±1.3 OUR FIT27.9±1.3 OUR FIT27.9±1.3 OUR FIT27.9±1.3 OUR FIT27.5±1.5 OUR AVERAGE27.5±1.5 OUR AVERAGE27.5±1.5 OUR AVERAGE27.5±1.5 OUR AVERAGE27.0±1.5±1.1 1 ANDREOTTI 05A E835 pp → e+ e− γ27.7±1.5±2.0 1,2 ARMSTRONG 92 E760 pp → e+ e− γ36 ±8 1 BAGLIN 86B SPEC pp → e+ e−X1Cal
ulated by us using B(J/ψ(1S) → e+ e−) = 0.0593 ± 0.0010.2Re
al
ulated by ANDREOTTI 05A.�(γ γ
)

× �(γ J/ψ(1S))/�total �79�75/��(γ γ
)

× �(γ J/ψ(1S))/�total �79�75/��(γ γ
)

× �(γ J/ψ(1S))/�total �79�75/��(γ γ
)

× �(γ J/ψ(1S))/�total �79�75/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT102± 5 OUR FIT102± 5 OUR FIT102± 5 OUR FIT102± 5 OUR FIT117± 10 OUR AVERAGE117± 10 OUR AVERAGE117± 10 OUR AVERAGE117± 10 OUR AVERAGE111± 12± 9 147 ± 15 1 DOBBS 06 CLE3 10.4 e+ e− →e+ e−χ
2114± 11± 9 136 ± 13.3 1,2 ABE 02T BELL e+ e− → e+ e−χ
2139± 55± 21 1,3 ACCIARRI 99E L3 e+ e− → e+ e−χ
2242± 65± 51 1,4 ACKER..,K... 98 OPAL e+ e− → e+ e−χ
2150± 42± 36 1,5 DOMINICK 94 CLE2 e+ e− → e+ e−χ
2470±240±120 1,6 BAUER 93 TPC e+ e− → e+ e−χ
21Cal
ulated by us using B(J/ψ → ℓ+ ℓ−) = 0.1187 ± 0.0008.2All systemati
 errors added in quadrature.3The value for �(χ
2 → γ γ) reported in ACCIARRI 99E is derived using B(χ
2 →
γ J/ψ(1S))×B(J/ψ(1S) → ℓ+ ℓ−) = 0.0162 ± 0.0014.4The value for �(χ
2 → γ γ) reported in ACKERSTAFF,K 98 is derived using B(χ
2 →
γ J/ψ(1S)) = 0.135 ± 0.011 and B(J/ψ(1S) → ℓ+ ℓ−) = 0.1203 ± 0.0038.5The value for �(χ
2 → γ γ) reported in DOMINICK 94 is derived using B(χ
2 →
γ J/ψ(1S))= 0.135 ± 0.011, B(J/ψ(1S) → e+ e−) = 0.0627 ± 0.0020, andB(J/ψ(1S) → µ+µ−) = 0.0597 ± 0.0025.6The value for �(χ
2 → γ γ) reported in BAUER 93 is derived using B(χ
2 →
γ J/ψ(1S))= 0.135 ± 0.011, B(J/ψ(1S) → e+ e−) = 0.0627 ± 0.0020, andB(J/ψ(1S) → µ+µ−) = 0.0597 ± 0.0025.

χ
2(1P) �(i)�(γ γ)/�(total)χ
2(1P) �(i)�(γ γ)/�(total)χ
2(1P) �(i)�(γ γ)/�(total)χ
2(1P) �(i)�(γ γ)/�(total)�(2(π+π−)) × �(γ γ
)/�total �1�79/��(2(π+π−)) × �(γ γ
)/�total �1�79/��(2(π+π−)) × �(γ γ
)/�total �1�79/��(2(π+π−)) × �(γ γ
)/�total �1�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT5.7 ±0.5 OUR FIT5.7 ±0.5 OUR FIT5.7 ±0.5 OUR FIT5.7 ±0.5 OUR FIT5.2 ±0.7 OUR AVERAGE5.2 ±0.7 OUR AVERAGE5.2 ±0.7 OUR AVERAGE5.2 ±0.7 OUR AVERAGE5.01±0.44±0.55 1597± 138 UEHARA 08 BELL γ γ → χ
2 → 2(π+π−)6.4 ±1.8 ±0.8 EISENSTEIN 01 CLE2 e+ e− → e+ e−χc2�(ρρ

)

× �(γ γ
)/�total �2�79/��(ρρ

)

× �(γ γ
)/�total �2�79/��(ρρ

)

× �(γ γ
)/�total �2�79/��(ρρ

)

× �(γ γ
)/�total �2�79/�VALUE (eV) CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<7.8 90 <598 UEHARA 08 BELL γ γ → χ
2 → 2(π+π−)
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χ
2(1P)�(K+K−π+π−)

× �(γ γ
)/�total �14�79/��(K+K−π+π−)

× �(γ γ
)/�total �14�79/��(K+K−π+π−)

× �(γ γ
)/�total �14�79/��(K+K−π+π−)

× �(γ γ
)/�total �14�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT4.7 ±0.5 OUR FIT4.7 ±0.5 OUR FIT4.7 ±0.5 OUR FIT4.7 ±0.5 OUR FIT4.42±0.42±0.534.42±0.42±0.534.42±0.42±0.534.42±0.42±0.53 780 ± 74 UEHARA 08 BELL γ γ → χ
2 → K+K−π+π−�(K+K−π+π−π0) × �(γ γ

)/�total �15�79/��(K+K−π+π−π0) × �(γ γ
)/�total �15�79/��(K+K−π+π−π0) × �(γ γ
)/�total �15�79/��(K+K−π+π−π0) × �(γ γ
)/�total �15�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT6.5±0.9±1.56.5±0.9±1.56.5±0.9±1.56.5±0.9±1.5 1250 DEL-AMO-SA...11M BABR γ γ → K+K−π+π−π0�(K∗(892)0K∗(892)0) × �(γ γ

)/�total �18�79/��(K∗(892)0K∗(892)0) × �(γ γ
)/�total �18�79/��(K∗(892)0K∗(892)0) × �(γ γ
)/�total �18�79/��(K∗(892)0K∗(892)0) × �(γ γ
)/�total �18�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT1.26±0.24 OUR FIT1.26±0.24 OUR FIT1.26±0.24 OUR FIT1.26±0.24 OUR FIT0.8 ±0.17±0.270.8 ±0.17±0.270.8 ±0.17±0.270.8 ±0.17±0.27 151 ± 30 UEHARA 08 BELL γ γ → χ
2 → K+K−π+π−�(φφ

)

× �(γ γ
)/�total �20�79/��(φφ

)

× �(γ γ
)/�total �20�79/��(φφ

)

× �(γ γ
)/�total �20�79/��(φφ

)

× �(γ γ
)/�total �20�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT0.59±0.05 OUR FIT0.59±0.05 OUR FIT0.59±0.05 OUR FIT0.59±0.05 OUR FIT0.62±0.07±0.050.62±0.07±0.050.62±0.07±0.050.62±0.07±0.05 89 ± 11 1 LIU 12B BELL γ γ → 2(K+K−)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.58±0.18±0.16 26.5± 8.1 UEHARA 08 BELL γ γ → χ
2 → 2(K+K−)1 Supersedes UEHARA 08. Using B(φ → K+K−) = (48.9 ± 0.5)%.�(ωω
)

× �(γ γ
)/�total �21�79/��(ωω

)

× �(γ γ
)/�total �21�79/��(ωω

)

× �(γ γ
)/�total �21�79/��(ωω

)

× �(γ γ
)/�total �21�79/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.64 90 1 LIU 12B BELL γ γ → 2(π+π−π0)1Using B(ω → π+π−π0) = (89.2 ± 0.7)%.�(ωφ
)

× �(γ γ
)/�total �23�79/��(ωφ

)

× �(γ γ
)/�total �23�79/��(ωφ

)

× �(γ γ
)/�total �23�79/��(ωφ

)

× �(γ γ
)/�total �23�79/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.04 90 1 LIU 12B BELL γ γ → K+K−π+π−π01Using B(φ → K+K−) = (48.9 ± 0.5)% and B(ω → π+π−π0) = (89.2 ± 0.7)%.�(ππ
)

× �(γ γ
)/�total �24�79/��(ππ

)

× �(γ γ
)/�total �24�79/��(ππ

)

× �(γ γ
)/�total �24�79/��(ππ

)

× �(γ γ
)/�total �24�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT1.23±0.08 OUR FIT1.23±0.08 OUR FIT1.23±0.08 OUR FIT1.23±0.08 OUR FIT1.18±0.25 OUR AVERAGE1.18±0.25 OUR AVERAGE1.18±0.25 OUR AVERAGE1.18±0.25 OUR AVERAGE1.44±0.54±0.47 34 ± 13 1 UEHARA 09 BELL 10.6 e+ e− → e+ e−π0π01.14±0.21±0.17 54 ± 10 2 NAKAZAWA 05 BELL 10.6 e+ e− →e+ e−π+π−1We multiplied the measurement by 3 to 
onvert from π0π0 to ππ. Interferen
e withthe 
ontinuum in
luded.2We have multiplied π+π− measurement by 3/2 to obtain ππ.�(ρ0π+π−)

× �(γ γ
)/�total �25�79/��(ρ0π+π−)

× �(γ γ
)/�total �25�79/��(ρ0π+π−)

× �(γ γ
)/�total �25�79/��(ρ0π+π−)

× �(γ γ
)/�total �25�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT2.0±0.9 OUR FIT2.0±0.9 OUR FIT2.0±0.9 OUR FIT2.0±0.9 OUR FIT3.2±1.9±0.53.2±1.9±0.53.2±1.9±0.53.2±1.9±0.5 986± 578 UEHARA 08 BELL γ γ → χ
2 → 2(π+π−)�(ηη

)

× �(γ γ
)/�total �28�79/��(ηη

)

× �(γ γ
)/�total �28�79/��(ηη

)

× �(γ γ
)/�total �28�79/��(ηη

)

× �(γ γ
)/�total �28�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT0.53±0.22±0.090.53±0.22±0.090.53±0.22±0.090.53±0.22±0.09 8 1 UEHARA 10A BELL 10.6 e+ e− → e+ e− ηη1 Interferen
e with the 
ontinuum not in
luded.�(K+K−)

× �(γ γ
)/�total �29�79/��(K+K−)

× �(γ γ
)/�total �29�79/��(K+K−)

× �(γ γ
)/�total �29�79/��(K+K−)

× �(γ γ
)/�total �29�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT0.56±0.04 OUR FIT0.56±0.04 OUR FIT0.56±0.04 OUR FIT0.56±0.04 OUR FIT0.44±0.11±0.070.44±0.11±0.070.44±0.11±0.070.44±0.11±0.07 33 ± 8 NAKAZAWA 05 BELL 10.6 e+ e− →e+ e−K+K−�(K0S K0S)

× �(γ γ
)/�total �30�79/��(K0S K0S)

× �(γ γ
)/�total �30�79/��(K0S K0S)

× �(γ γ
)/�total �30�79/��(K0S K0S)

× �(γ γ
)/�total �30�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT0.291±0.025 OUR FIT0.291±0.025 OUR FIT0.291±0.025 OUR FIT0.291±0.025 OUR FIT0.27 +0.07

−0.06 ±0.030.27 +0.07
−0.06 ±0.030.27 +0.07
−0.06 ±0.030.27 +0.07
−0.06 ±0.03 53 1 UEHARA 13 BELL γ γ → K0S K0S

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.31 ±0.05 ±0.03 38 ± 7 CHEN 07B BELL e+ e− → e+ e−χ
21Supersedes CHEN 07B.�(K0K+π−+ 
.
.) × �(γ γ
)/�total �31�79/��(K0K+π−+ 
.
.) × �(γ γ
)/�total �31�79/��(K0K+π−+ 
.
.) × �(γ γ
)/�total �31�79/��(K0K+π−+ 
.
.) × �(γ γ
)/�total �31�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT0.71±0.11 OUR FIT0.71±0.11 OUR FIT0.71±0.11 OUR FIT0.71±0.11 OUR FIT1.20±0.33±0.131.20±0.33±0.131.20±0.33±0.131.20±0.33±0.13 126 1 DEL-AMO-SA...11M BABR γ γ → K0S K±π∓1We have multiplied K K π by 2/3 to obtain K0K+π− + 
.
.�(K+K−K+K−)

× �(γ γ
)/�total �39�79/��(K+K−K+K−)

× �(γ γ
)/�total �39�79/��(K+K−K+K−)

× �(γ γ
)/�total �39�79/��(K+K−K+K−)

× �(γ γ
)/�total �39�79/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT0.91±0.12 OUR FIT0.91±0.12 OUR FIT0.91±0.12 OUR FIT0.91±0.12 OUR FIT1.10±0.21±0.151.10±0.21±0.151.10±0.21±0.151.10±0.21±0.15 126 ± 24 UEHARA 08 BELL γ γ → χ
2 → 2(K+K−)

�(η
 (1S)π+π−)

× �(γ γ
)/�total �74�79/��(η
 (1S)π+π−)

× �(γ γ
)/�total �74�79/��(η
 (1S)π+π−)

× �(γ γ
)/�total �74�79/��(η
 (1S)π+π−)

× �(γ γ
)/�total �74�79/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<15.7<15.7<15.7<15.7 90 LEES 12AE BABR e+ e− →e+ e−π+π− η

χ
2(1P) BRANCHING RATIOSχ
2(1P) BRANCHING RATIOSχ
2(1P) BRANCHING RATIOSχ
2(1P) BRANCHING RATIOSHADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYS�(2(π+π−))/�total �1/��(2(π+π−))/�total �1/��(2(π+π−))/�total �1/��(2(π+π−))/�total �1/�VALUE DOCUMENT ID0.0107±0.0010 OUR FIT0.0107±0.0010 OUR FIT0.0107±0.0010 OUR FIT0.0107±0.0010 OUR FIT�(ρ0π+π−)/�(2(π+π−)) �25/�1�(ρ0π+π−)/�(2(π+π−)) �25/�1�(ρ0π+π−)/�(2(π+π−)) �25/�1�(ρ0π+π−)/�(2(π+π−)) �25/�1VALUE DOCUMENT ID TECN COMMENT0.36±0.15 OUR FIT0.36±0.15 OUR FIT0.36±0.15 OUR FIT0.36±0.15 OUR FIT0.31±0.170.31±0.170.31±0.170.31±0.17 TANENBAUM 78 MRK1 ψ(2S) → γχ
2�(π+π−π0π0)/�total �3/��(π+π−π0π0)/�total �3/��(π+π−π0π0)/�total �3/��(π+π−π0π0)/�total �3/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.91±0.24±0.071.91±0.24±0.071.91±0.24±0.071.91±0.24±0.07 903.5 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 1.87 ± 0.07 ± 0.22 ± 0.13 % from a measurement of [�(

χ
2(1P) →
π+π−π0π0)/�total℄× [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) =(9.33± 0.14± 0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(ρ+π−π0+ 
.
.)/�total �4/��(ρ+π−π0+ 
.
.)/�total �4/��(ρ+π−π0+ 
.
.)/�total �4/��(ρ+π−π0+ 
.
.)/�total �4/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT2.28±0.35±0.082.28±0.35±0.082.28±0.35±0.082.28±0.35±0.08 1031.9 1,2 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 2.23 ± 0.11 ± 0.32 ± 0.16 % from a measurement of [�(

χ
2(1P) →
ρ+π−π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →
γχ
2(1P)) = (9.33±0.14±0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2Cal
ulated by us. We have added the values from HE 08B for ρ+π−π0 and ρ−π+π0de
ays assuming un
orrelated statisti
al and fully 
orrelated systemati
 un
ertainties.�(4π0)/�total �5/��(4π0)/�total �5/��(4π0)/�total �5/��(4π0)/�total �5/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.16±0.15±0.041.16±0.15±0.041.16±0.15±0.041.16±0.15±0.04 1164 1 ABLIKIM 11A BES3 e+ e− → ψ(2S) → γχ
21ABLIKIM 11A reports (1.21±0.05±0.16)×10−3 from a measurement of [�(

χ
2(1P) →4π0)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.74±0.35) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = (9.11 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(K+K−π0π0)/�total �6/��(K+K−π0π0)/�total �6/��(K+K−π0π0)/�total �6/��(K+K−π0π0)/�total �6/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.22±0.04±0.010.22±0.04±0.010.22±0.04±0.010.22±0.04±0.01 76.9 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.21 ± 0.03 ± 0.03 ± 0.01 % from a measurement of [�(

χ
2(1P) →K+K−π0π0)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P))= (9.33 ± 0.14 ± 0.61) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.�(K+π−K0π0+ 
.
.)/�total �7/��(K+π−K0π0+ 
.
.)/�total �7/��(K+π−K0π0+ 
.
.)/�total �7/��(K+π−K0π0+ 
.
.)/�total �7/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.44±0.20±0.051.44±0.20±0.051.44±0.20±0.051.44±0.20±0.05 211.6 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 1.41 ± 0.11 ± 0.16 ± 0.10 % from a measurement of [�(

χ
2(1P) →K+π−K0π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →
γχ
2(1P)) = (9.33±0.14±0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(ρ−K+K0+ 
.
.)/�total �8/��(ρ−K+K0+ 
.
.)/�total �8/��(ρ−K+K0+ 
.
.)/�total �8/��(ρ−K+K0+ 
.
.)/�total �8/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.43±0.13±0.010.43±0.13±0.010.43±0.13±0.010.43±0.13±0.01 62.9 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.42 ± 0.11 ± 0.06 ± 0.03 % from a measurement of [�(

χ
2(1P) →
ρ−K+K0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →
γχ
2(1P)) = (9.33±0.14±0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(K∗(892)0K−π+ → K−π+K0π0+ 
.
.)/�total �9/��(K∗(892)0K−π+ → K−π+K0π0+ 
.
.)/�total �9/��(K∗(892)0K−π+ → K−π+K0π0+ 
.
.)/�total �9/��(K∗(892)0K−π+ → K−π+K0π0+ 
.
.)/�total �9/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.31±0.08±0.010.31±0.08±0.010.31±0.08±0.010.31±0.08±0.01 38.7 1 HE 08B CLEO e+ e− →

γ h+ h− h0 h01HE 08B reports 0.30 ± 0.07 ± 0.04 ± 0.02 % from a measurement of [�(

χ
2(1P) →K∗(892)0K−π+ → K−π+K0π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ as-suming B(ψ(2S) → γχ
2(1P)) = (9.33 ± 0.14 ± 0.61) × 10−2, whi
h we res
ale toour best value B(ψ(2S) → γχ
2(1P)) = (9.11 ± 0.31)× 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.
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χ
2(1P)�(K∗(892)0K0π0 → K+π−K0π0+ 
.
.)/�total �10/��(K∗(892)0K0π0 → K+π−K0π0+ 
.
.)/�total �10/��(K∗(892)0K0π0 → K+π−K0π0+ 
.
.)/�total �10/��(K∗(892)0K0π0 → K+π−K0π0+ 
.
.)/�total �10/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.40±0.09±0.010.40±0.09±0.010.40±0.09±0.010.40±0.09±0.01 63.0 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.39 ± 0.07 ± 0.05 ± 0.03 % from a measurement of [�(

χ
2(1P) →K∗(892)0K0π0 → K+π−K0π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assum-ing B(ψ(2S) → γχ
2(1P)) = (9.33 ± 0.14 ± 0.61) × 10−2, whi
h we res
ale to ourbest value B(ψ(2S) → γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(K∗(892)−K+π0 → K+π−K0π0+ 
.
.)/�total �11/��(K∗(892)−K+π0 → K+π−K0π0+ 
.
.)/�total �11/��(K∗(892)−K+π0 → K+π−K0π0+ 
.
.)/�total �11/��(K∗(892)−K+π0 → K+π−K0π0+ 
.
.)/�total �11/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.39±0.08±0.010.39±0.08±0.010.39±0.08±0.010.39±0.08±0.01 51.1 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.38 ± 0.07 ± 0.04 ± 0.03 % from a measurement of [�(

χ
2(1P) →K∗(892)−K+π0 → K+π−K0π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ as-suming B(ψ(2S) → γχ
2(1P)) = (9.33 ± 0.14 ± 0.61) × 10−2, whi
h we res
ale toour best value B(ψ(2S) → γχ
2(1P)) = (9.11 ± 0.31)× 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(K∗(892)+K0π−
→ K+π−K0π0+ 
.
.)/�total �12/��(K∗(892)+K0π−
→ K+π−K0π0+ 
.
.)/�total �12/��(K∗(892)+K0π−
→ K+π−K0π0+ 
.
.)/�total �12/��(K∗(892)+K0π−
→ K+π−K0π0+ 
.
.)/�total �12/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.31±0.08±0.010.31±0.08±0.010.31±0.08±0.010.31±0.08±0.01 39.3 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.30 ± 0.07 ± 0.04 ± 0.02 % from a measurement of [�(

χ
2(1P) →K∗(892)+K0π− → K+π−K0π0+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ as-suming B(ψ(2S) → γχ
2(1P)) = (9.33 ± 0.14 ± 0.61) × 10−2, whi
h we res
ale toour best value B(ψ(2S) → γχ
2(1P)) = (9.11 ± 0.31)× 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(K+K−ηπ0)/�total �13/��(K+K−ηπ0)/�total �13/��(K+K−ηπ0)/�total �13/��(K+K−ηπ0)/�total �13/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.133±0.046±0.0050.133±0.046±0.0050.133±0.046±0.0050.133±0.046±0.005 22.9 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.13 ± 0.04 ± 0.02 ± 0.01 % from a measurement of [�(

χ
2(1P) →K+K− ηπ0)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) =(9.33± 0.14± 0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(K+K−π+π−)/�total �14/��(K+K−π+π−)/�total �14/��(K+K−π+π−)/�total �14/��(K+K−π+π−)/�total �14/�VALUE (units 10−3) DOCUMENT ID8.9±1.0 OUR FIT8.9±1.0 OUR FIT8.9±1.0 OUR FIT8.9±1.0 OUR FIT�(K+K−π+π−π0)/�total �15/��(K+K−π+π−π0)/�total �15/��(K+K−π+π−π0)/�total �15/��(K+K−π+π−π0)/�total �15/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT11.69±0.13±1.3111.69±0.13±1.3111.69±0.13±1.3111.69±0.13±1.31 11k 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
21Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
2 γ) = (8.72 ± 0.34)%.�(K0S K±π∓π+π−)/�total �16/��(K0S K±π∓π+π−)/�total �16/��(K0S K±π∓π+π−)/�total �16/��(K0S K±π∓π+π−)/�total �16/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT7.30±0.11±0.757.30±0.11±0.757.30±0.11±0.757.30±0.11±0.75 4.5k 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
21Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
2 γ) = (8.72 ± 0.34)%.�(K+K∗(892)0π−+ 
.
.)/�(K+K−π+π−) �17/�14�(K+K∗(892)0π−+ 
.
.)/�(K+K−π+π−) �17/�14�(K+K∗(892)0π−+ 
.
.)/�(K+K−π+π−) �17/�14�(K+K∗(892)0π−+ 
.
.)/�(K+K−π+π−) �17/�14VALUE DOCUMENT ID TECN COMMENT0.25±0.13 OUR FIT0.25±0.13 OUR FIT0.25±0.13 OUR FIT0.25±0.13 OUR FIT0.25±0.130.25±0.130.25±0.130.25±0.13 TANENBAUM 78 MRK1 ψ(2S) → γχ
2�(K+K∗(892)0π−+ 
.
.)/�total �17/��(K+K∗(892)0π−+ 
.
.)/�total �17/��(K+K∗(892)0π−+ 
.
.)/�total �17/��(K+K∗(892)0π−+ 
.
.)/�total �17/�VALUE (units 10−4) DOCUMENT ID22±11 OUR FIT22±11 OUR FIT22±11 OUR FIT22±11 OUR FIT�(K∗(892)0K∗(892)0)/�total �18/��(K∗(892)0K∗(892)0)/�total �18/��(K∗(892)0K∗(892)0)/�total �18/��(K∗(892)0K∗(892)0)/�total �18/�VALUE (units 10−3) DOCUMENT ID2.4±0.5 OUR FIT2.4±0.5 OUR FIT2.4±0.5 OUR FIT2.4±0.5 OUR FIT�(3(π+π−))/�total �19/��(3(π+π−))/�total �19/��(3(π+π−))/�total �19/��(3(π+π−))/�total �19/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT8.6±1.8 OUR EVALUATION8.6±1.8 OUR EVALUATION8.6±1.8 OUR EVALUATION8.6±1.8 OUR EVALUATION Treating systemati
 error as 
orrelated.8.6±1.8 OUR AVERAGE8.6±1.8 OUR AVERAGE8.6±1.8 OUR AVERAGE8.6±1.8 OUR AVERAGE8.6±0.9±1.6 1 BAI 99B BES ψ(2S) → γχ
28.7±5.9±0.4 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
21Res
aled by us using B(ψ(2S) → γχ
2)= (8.3 ± 0.4)% and B(ψ(2S) →J/ψ(1S)π+π−) = (32.6 ± 0.5)%. Multiplied by a fa
tor of 2 to 
onvert fromK0S K+π− to K0K+π− de
ay.�(

φφ
)/�total �20/��(

φφ
)/�total �20/��(

φφ
)/�total �20/��(

φφ
)/�total �20/�VALUE (units 10−3) DOCUMENT ID1.12±0.10 OUR FIT1.12±0.10 OUR FIT1.12±0.10 OUR FIT1.12±0.10 OUR FIT

�(

ωω
)/�total �21/��(

ωω
)/�total �21/��(

ωω
)/�total �21/��(

ωω
)/�total �21/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.88±0.11 OUR AVERAGE0.88±0.11 OUR AVERAGE0.88±0.11 OUR AVERAGE0.88±0.11 OUR AVERAGE0.85±0.10±0.03 762 1 ABLIKIM 11K BES3 ψ(2S) → γ hadrons1.8 ±0.6 ±0.1 27.7± 7.4 2 ABLIKIM 05N BES2 ψ(2S) → γχ
2 → γ 6π1ABLIKIM 11K reports (8.9 ± 0.3 ± 1.1)× 10−4 from a measurement of [�(

χ
2(1P) →
ωω

)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.74 ±0.35) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = (9.11 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.2ABLIKIM 05N reports [�(

χ
2(1P) → ωω
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ =(0.165 ± 0.044 ± 0.032) × 10−3 whi
h we divide by our best value B(ψ(2S) →

γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.�(

ωK+K−)/�total �22/��(

ωK+K−)/�total �22/��(

ωK+K−)/�total �22/��(

ωK+K−)/�total �22/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.73±0.04±0.080.73±0.04±0.080.73±0.04±0.080.73±0.04±0.08 512 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
21Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
2 γ) = (8.72 ± 0.34)%.�(

ωφ
)/�total �23/��(

ωφ
)/�total �23/��(

ωφ
)/�total �23/��(

ωφ
)/�total �23/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<1.9 90 1 ABLIKIM 11K BES3 ψ(2S) → γ hadrons1ABLIKIM 11K reports < 2× 10−5 from a measurement of [�(

χ
2(1P) → ωφ
)/�total℄

× [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.74± 0.35)×10−2,whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.�(

ππ
)/�total �24/��(

ππ
)/�total �24/��(

ππ
)/�total �24/��(

ππ
)/�total �24/�VALUE (units 10−3) DOCUMENT ID2.33±0.12 OUR FIT2.33±0.12 OUR FIT2.33±0.12 OUR FIT2.33±0.12 OUR FIT�(

ρ0π+π−)/�total �25/��(

ρ0π+π−)/�total �25/��(

ρ0π+π−)/�total �25/��(

ρ0π+π−)/�total �25/�VALUE (units 10−4) DOCUMENT ID38±16 OUR FIT38±16 OUR FIT38±16 OUR FIT38±16 OUR FIT�(

π+π−η
)/�total �26/��(

π+π−η
)/�total �26/��(

π+π−η
)/�total �26/��(

π+π−η
)/�total �26/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT0.50±0.13±0.020.50±0.13±0.020.50±0.13±0.020.50±0.13±0.02 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h0

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.5 90 2 ABLIKIM 06R BES2 ψ(2S) → γχ
21ATHAR 07 reports (0.49 ± 0.12 ± 0.06)×10−3 from a measurement of [�(

χ
2(1P) →
π+π− η

)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) =(9.33± 0.14± 0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2ABLIKIM 06R reports < 1.7×10−3 from a measurement of [�(

χ
2(1P) → π+π− η
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.1 ± 0.4)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.�(

π+π−η′
)/�total �27/��(

π+π−η′
)/�total �27/��(

π+π−η′
)/�total �27/��(

π+π−η′
)/�total �27/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.52±0.19±0.020.52±0.19±0.020.52±0.19±0.020.52±0.19±0.02 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ATHAR 07 reports (0.51 ± 0.18 ± 0.06)×10−3 from a measurement of [�(

χ
2(1P) →
π+π− η′

)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) =(9.33± 0.14± 0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(

ηη
)/�total �28/��(

ηη
)/�total �28/��(

ηη
)/�total �28/��(

ηη
)/�total �28/�VALUE (units 10−4) DOCUMENT ID5.7±0.5 OUR FIT5.7±0.5 OUR FIT5.7±0.5 OUR FIT5.7±0.5 OUR FIT�(K+K−)/�total �29/��(K+K−)/�total �29/��(K+K−)/�total �29/��(K+K−)/�total �29/�VALUE (units 10−3) DOCUMENT ID1.05±0.07 OUR FIT1.05±0.07 OUR FIT1.05±0.07 OUR FIT1.05±0.07 OUR FIT�(K0S K0S)/�total �30/��(K0S K0S)/�total �30/��(K0S K0S)/�total �30/��(K0S K0S)/�total �30/�VALUE (units 10−3) DOCUMENT ID0.55±0.04 OUR FIT0.55±0.04 OUR FIT0.55±0.04 OUR FIT0.55±0.04 OUR FIT�(K0S K0S)/�(

ππ
) �30/�24�(K0S K0S)/�(

ππ
) �30/�24�(K0S K0S)/�(

ππ
) �30/�24�(K0S K0S)/�(

ππ
) �30/�24VALUE DOCUMENT ID TECN COMMENT0.235±0.019 OUR FIT0.235±0.019 OUR FIT0.235±0.019 OUR FIT0.235±0.019 OUR FIT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.27 ±0.07 ±0.04 1,2 CHEN 07B BELL e+ e− → e+ e−χ
21Using �(

ππ
)

× �(

γ γ
)/�total from the π+π− measurement of NAKAZAWA 05 res
aledby 3/2 to 
onvert to ππ.2Not independent from other measurements.
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χ
2(1P)�(K0S K0S)/�(K+K−) �30/�29�(K0S K0S)/�(K+K−) �30/�29�(K0S K0S)/�(K+K−) �30/�29�(K0S K0S)/�(K+K−) �30/�29VALUE DOCUMENT ID TECN COMMENT0.52±0.05 OUR FIT0.52±0.05 OUR FIT0.52±0.05 OUR FIT0.52±0.05 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.70±0.21±0.12 1,2 CHEN 07B BELL e+ e− → e+ e−χ
21Using �(K+K−)

× �(

γ γ
)/�total from NAKAZAWA 05.2Not independent from other measurements.�(K+K−π0)/�total �32/��(K+K−π0)/�total �32/��(K+K−π0)/�total �32/��(K+K−π0)/�total �32/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.32±0.08±0.010.32±0.08±0.010.32±0.08±0.010.32±0.08±0.01 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ATHAR 07 reports (0.31 ± 0.07 ± 0.04)×10−3 from a measurement of [�(

χ
2(1P) →K+K−π0)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) =(9.33± 0.14± 0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(K+K−η
)/�total �33/��(K+K−η
)/�total �33/��(K+K−η
)/�total �33/��(K+K−η
)/�total �33/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.34<0.34<0.34<0.34 90 1 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ATHAR 07 reports < 0.33× 10−3 from a measurement of [�(

χ
2(1P) → K+K−η
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (9.33 ±0.14 ± 0.61) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) =9.11 × 10−2.�(K+K−η′(958))/�total �34/��(K+K−η′(958))/�total �34/��(K+K−η′(958))/�total �34/��(K+K−η′(958))/�total �34/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.94±0.341.94±0.341.94±0.341.94±0.34 107 1 ABLIKIM 14J BES3 ψ(2S) → γK+K− η′(958)1Derived using B(ψ(2S) → γχ
2) = (8.72±0.34)%. Un
ertainty in
ludes both statisti
aland systemati
 
ontributions 
ombined in quadrature.�(

ηη′
)/�total �35/��(

ηη′
)/�total �35/��(

ηη′
)/�total �35/��(

ηη′
)/�total �35/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT

<0.6<0.6<0.6<0.6 90 3.3 ± 8.0 1 ASNER 09 CLEO ψ(2S) → γ ηη′
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.4 90 2 ADAMS 07 CLEO ψ(2S) → γχ
21ASNER 09 reports < 0.6×10−4 from a measurement of [�(

χ
2(1P) → ηη′
)/�total℄ ×[B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (9.33 ± 0.14 ± 0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.2 Superseded by ASNER 09. ADAMS 07 reports < 2.3 × 10−4 from a measurementof [�(

χ
2(1P) → ηη′
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →

γχ
2(1P)) = 0.0933± 0.0014± 0.0061, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = 9.11× 10−2.�(

η′ η′
)/�total �36/��(

η′ η′
)/�total �36/��(

η′ η′
)/�total �36/��(

η′ η′
)/�total �36/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT

<1.0<1.0<1.0<1.0 90 12 ± 7 1 ASNER 09 CLEO ψ(2S) → γ η′ η′
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<3.2 90 2 ADAMS 07 CLEO ψ(2S) → γχ
21ASNER 09 reports < 1.0× 10−4 from a measurement of [�(

χ
2(1P) → η′ η′
)/�total℄

× [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (9.33±0.14±0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.2 Superseded by ASNER 09. ADAMS 07 reports < 3.1 × 10−4 from a measurementof [�(

χ
2(1P) → η′ η′
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →

γχ
2(1P)) = 0.0933± 0.0014± 0.0061, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = 9.11× 10−2.�(

π+π−K0S K0S)/�total �37/��(

π+π−K0S K0S)/�total �37/��(

π+π−K0S K0S)/�total �37/��(

π+π−K0S K0S)/�total �37/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.3±0.6±0.12.3±0.6±0.12.3±0.6±0.12.3±0.6±0.1 57 ± 11 1 ABLIKIM 05O BES2 ψ(2S) → γχ
21ABLIKIM 05O reports [�(

χ
2(1P) → π+π−K0S K0S )/�total℄ × [B(ψ(2S) →
γχ
2(1P))℄ = (0.207 ± 0.039 ± 0.033) × 10−3 whi
h we divide by our best valueB(ψ(2S) → γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(K+K−K0S K0S)/�total �38/��(K+K−K0S K0S)/�total �38/��(K+K−K0S K0S)/�total �38/��(K+K−K0S K0S)/�total �38/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT

<4<4<4<4 90 2.3 ± 2.2 1 ABLIKIM 05O BES2 e+ e− → χ
2 γ1ABLIKIM 05O reports [�(

χ
2(1P) → K+K−K0S K0S )/�total℄ × [B(ψ(2S) →
γχ
2(1P))℄ < 3.5× 10−5 whi
h we divide by our best value B(ψ(2S) → γχ
2(1P))= 9.11× 10−2.�(K+K−K+K−)/�total �39/��(K+K−K+K−)/�total �39/��(K+K−K+K−)/�total �39/��(K+K−K+K−)/�total �39/�VALUE (units 10−3) DOCUMENT ID1.73±0.21 OUR FIT1.73±0.21 OUR FIT1.73±0.21 OUR FIT1.73±0.21 OUR FIT

�(K+K−φ
)/�total �40/��(K+K−φ
)/�total �40/��(K+K−φ
)/�total �40/��(K+K−φ
)/�total �40/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.48±0.31±0.051.48±0.31±0.051.48±0.31±0.051.48±0.31±0.05 52 1 ABLIKIM 06T BES2 ψ(2S) → γ 2K+2K−1ABLIKIM 06T reports (1.67±0.26±0.24)×10−3 from a measurement of [�(

χ
2(1P) →K+K−φ
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) =(8.1 ± 0.4) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) =(9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(K0K+π−φ+ 
.
.)/�total �41/��(K0K+π−φ+ 
.
.)/�total �41/��(K0K+π−φ+ 
.
.)/�total �41/��(K0K+π−φ+ 
.
.)/�total �41/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT4.83±0.32±0.664.83±0.32±0.664.83±0.32±0.664.83±0.32±0.66 ABLIKIM 15M BES3 ψ(2S) → γχ
2�(K+K−π0φ

)/�total �42/��(K+K−π0φ
)/�total �42/��(K+K−π0φ
)/�total �42/��(K+K−π0φ
)/�total �42/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.74±0.16±0.442.74±0.16±0.442.74±0.16±0.442.74±0.16±0.44 ABLIKIM 15M BES3 ψ(2S) → γχ
2�(

φπ+π−π0)/�total �43/��(

φπ+π−π0)/�total �43/��(

φπ+π−π0)/�total �43/��(

φπ+π−π0)/�total �43/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.93±0.06±0.100.93±0.06±0.100.93±0.06±0.100.93±0.06±0.10 408 1 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
21Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
2 γ) = (8.72 ± 0.34)%.�(pp)/�total �44/��(pp)/�total �44/��(pp)/�total �44/��(pp)/�total �44/�VALUE (units 10−4) DOCUMENT ID0.75±0.04 OUR FIT0.75±0.04 OUR FIT0.75±0.04 OUR FIT0.75±0.04 OUR FIT�(ppπ0)/�total �45/��(ppπ0)/�total �45/��(ppπ0)/�total �45/��(ppπ0)/�total �45/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.49±0.04 OUR AVERAGE0.49±0.04 OUR AVERAGE0.49±0.04 OUR AVERAGE0.49±0.04 OUR AVERAGE0.49±0.04±0.02 1 ONYISI 10 CLE3 ψ(2S) → γ ppX0.45±0.09±0.02 2 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ONYISI 10 reports (4.83 ± 0.25 ± 0.35 ± 0.31) × 10−4 from a measurement of[�(

χ
2(1P) → ppπ0)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →
γχ
2(1P)) = (9.33±0.14±0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2ATHAR 07 reports (0.44 ± 0.08 ± 0.05)×10−3 from a measurement of [�(

χ
2(1P) →ppπ0)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) =(9.33± 0.14± 0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(ppη
)/�total �46/��(ppη
)/�total �46/��(ppη
)/�total �46/��(ppη
)/�total �46/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.182±0.026 OUR AVERAGE0.182±0.026 OUR AVERAGE0.182±0.026 OUR AVERAGE0.182±0.026 OUR AVERAGE0.180±0.027±0.006 1 ONYISI 10 CLE3 ψ(2S) → γ ppX0.19 ±0.07 ±0.01 2 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ONYISI 10 reports (1.76 ± 0.23 ± 0.14 ± 0.11) × 10−4 from a measurement of[�(

χ
2(1P) → pp η
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →

γχ
2(1P)) = (9.33±0.14±0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.2ATHAR 07 reports (0.19 ± 0.07 ± 0.02)×10−3 from a measurement of [�(

χ
2(1P) →pp η
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (9.33±0.14 ± 0.61) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) =(9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(ppω
)/�total �47/��(ppω
)/�total �47/��(ppω
)/�total �47/��(ppω
)/�total �47/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT0.38±0.04±0.010.38±0.04±0.010.38±0.04±0.010.38±0.04±0.01 1 ONYISI 10 CLE3 ψ(2S) → γ ppX1ONYISI 10 reports (3.68 ± 0.35 ± 0.26 ± 0.24) × 10−4 from a measurement of[�(

χ
2(1P) → ppω
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →

γχ
2(1P)) = (9.33±0.14±0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(ppφ

)/�total �48/��(ppφ
)/�total �48/��(ppφ
)/�total �48/��(ppφ
)/�total �48/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.9±0.9±0.12.9±0.9±0.12.9±0.9±0.12.9±0.9±0.1 24 ± 7 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports (3.04±0.85±0.43)×10−5 from a measurement of [�(

χ
2(1P) →ppφ
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.74±0.35) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = (9.11 ±0.31) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.
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χ
2(1P)�(ppπ+π−)/�total �49/��(ppπ+π−)/�total �49/��(ppπ+π−)/�total �49/��(ppπ+π−)/�total �49/�VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.32±0.34 OUR EVALUATION1.32±0.34 OUR EVALUATION1.32±0.34 OUR EVALUATION1.32±0.34 OUR EVALUATION Treating systemati
 error as 
orrelated.1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE1.3 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.1.17±0.19±0.30 1 BAI 99B BES ψ(2S) → γχ
22.64±1.03±0.14 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
21Res
aled by us using B(ψ(2S) → γχ
2)= (8.3 ± 0.4)% and B(ψ(2S) →J/ψ(1S)π+π−) = (32.6 ± 0.5)%. Multiplied by a fa
tor of 2 to 
onvert fromK0S K+π− to K0K+π− de
ay.�(ppπ0π0)/�total �50/��(ppπ0π0)/�total �50/��(ppπ0π0)/�total �50/��(ppπ0π0)/�total �50/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.082±0.024±0.0030.082±0.024±0.0030.082±0.024±0.0030.082±0.024±0.003 29.2 1 HE 08B CLEO e+ e− → γ h+ h− h0 h01HE 08B reports 0.08 ± 0.02 ± 0.01 ± 0.01 % from a measurement of [�(

χ
2(1P) →ppπ0π0)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) =(9.33± 0.14± 0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(ppK+K− (non-resonant))/�total �51/��(ppK+K− (non-resonant))/�total �51/��(ppK+K− (non-resonant))/�total �51/��(ppK+K− (non-resonant))/�total �51/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.00±0.33±0.072.00±0.33±0.072.00±0.33±0.072.00±0.33±0.07 131 ± 12 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports (2.08±0.19±0.30)×10−4 from a measurement of [�(

χ
2(1P) →ppK+K− (non-resonant))/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →
γχ
2(1P)) = (8.74 ± 0.35) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(ppK0S K0S)/�total �52/��(ppK0S K0S)/�total �52/��(ppK0S K0S)/�total �52/��(ppK0S K0S)/�total �52/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<7.9<7.9<7.9<7.9 90 1 ABLIKIM 06D BES2 ψ(2S) → χ
2 γ1Using B(ψ(2S) → χ
2 γ) = (9.3 ± 0.6)%.�(pnπ−)/�total �53/��(pnπ−)/�total �53/��(pnπ−)/�total �53/��(pnπ−)/�total �53/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8.9±1.0 OUR AVERAGE8.9±1.0 OUR AVERAGE8.9±1.0 OUR AVERAGE8.9±1.0 OUR AVERAGE8.8±1.0±0.3 3309 1 ABLIKIM 12J BES3 ψ(2S) → γ pnπ−10.6±3.6±0.4 2 ABLIKIM 06I BES2 ψ(2S) → γ pπ−X1ABLIKIM 12J reports [�(

χ
2(1P) → pnπ−
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ =(0.80 ± 0.02± 0.09)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2ABLIKIM 06I reports [�(

χ
2(1P) → pnπ−
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ =(0.97 ± 0.20± 0.26)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(pnπ+)/�total �54/��(pnπ+)/�total �54/��(pnπ+)/�total �54/��(pnπ+)/�total �54/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT9.3±0.8±0.39.3±0.8±0.39.3±0.8±0.39.3±0.8±0.3 3732 1 ABLIKIM 12J BES3 ψ(2S) → γ p nπ+1ABLIKIM 12J reports [�(

χ
2(1P) → pnπ+)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ =(0.85 ± 0.02± 0.07)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(pnπ−π0)/�total �55/��(pnπ−π0)/�total �55/��(pnπ−π0)/�total �55/��(pnπ−π0)/�total �55/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT22.7±1.8±0.822.7±1.8±0.822.7±1.8±0.822.7±1.8±0.8 2128 1 ABLIKIM 12J BES3 ψ(2S) → γ pnπ−π01ABLIKIM 12J reports [�(

χ
2(1P) → pnπ−π0)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ =(2.07 ± 0.06± 0.15)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(pnπ+π0)/�total �56/��(pnπ+π0)/�total �56/��(pnπ+π0)/�total �56/��(pnπ+π0)/�total �56/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT22.1±1.9±0.822.1±1.9±0.822.1±1.9±0.822.1±1.9±0.8 2352 1 ABLIKIM 12J BES3 ψ(2S) → γ p nπ+π01ABLIKIM 12J reports [�(

χ
2(1P) → pnπ+π0)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ =(2.01 ± 0.06± 0.16)×10−4 whi
h we divide by our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(��)/�total �57/��(��)/�total �57/��(��)/�total �57/��(��)/�total �57/�VALUE (units 10−4) DOCUMENT ID1.92±0.16 OUR FIT1.92±0.16 OUR FIT1.92±0.16 OUR FIT1.92±0.16 OUR FIT

�(��π+π−)/�total �58/��(��π+π−)/�total �58/��(��π+π−)/�total �58/��(��π+π−)/�total �58/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT131±16±5131±16±5131±16±5131±16±5 371 1 ABLIKIM 12I BES3 ψ(2S) → γ��π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<350 90 2 ABLIKIM 06D BES2 ψ(2S) → χ
2 γ1ABLIKIM 12I reports (137.0± 7.6± 15.7)×10−5 from a measurement of [�(

χ
2(1P) →��π+π−
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) =(8.72 ± 0.34) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) =(9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2Using B(ψ(2S) → χ
2 γ) = (9.3 ± 0.6)%.�(��π+π− (non-resonant))/�total �59/��(��π+π− (non-resonant))/�total �59/��(��π+π− (non-resonant))/�total �59/��(��π+π− (non-resonant))/�total �59/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT69±16±269±16±269±16±269±16±2 36 1 ABLIKIM 12I BES3 ψ(2S) → γ��π+π−1ABLIKIM 12I reports (71.8± 14.5± 8.2)×10−5 from a measurement of [�(

χ
2(1P) →��π+π− (non-resonant))/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →
γχ
2(1P)) = (8.72 ± 0.34) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(� (1385)+�π−+ 
.
.)/�total �60/��(� (1385)+�π−+ 
.
.)/�total �60/��(� (1385)+�π−+ 
.
.)/�total �60/��(� (1385)+�π−+ 
.
.)/�total �60/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<40<40<40<40 90 1 ABLIKIM 12I BES3 ψ(2S) → γ�(1385)+�π−1ABLIKIM 12I reports < 42 × 10−5 from a measurement of [�(

χ
2(1P) →�(1385)+�π−+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →
γχ
2(1P)) = (8.72 ± 0.34) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = 9.11× 10−2.�(� (1385)−�π++ 
.
.)/�total �61/��(� (1385)−�π++ 
.
.)/�total �61/��(� (1385)−�π++ 
.
.)/�total �61/��(� (1385)−�π++ 
.
.)/�total �61/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<60<60<60<60 90 1 ABLIKIM 12I BES3 ψ(2S) → γ�(1385)−�π+1ABLIKIM 12I reports < 61 × 10−5 from a measurement of [�(

χ
2(1P) →�(1385)−�π++ 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →
γχ
2(1P)) = (8.72 ± 0.34) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = 9.11× 10−2.�(K+p� + 
.
.)/�total �62/��(K+p� + 
.
.)/�total �62/��(K+p� + 
.
.)/�total �62/��(K+p� + 
.
.)/�total �62/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8.1±0.6 OUR AVERAGE8.1±0.6 OUR AVERAGE8.1±0.6 OUR AVERAGE8.1±0.6 OUR AVERAGE8.0±0.6±0.3 5k 1,2 ABLIKIM 13D BES3 ψ(2S) → γ�pK+8.7±1.7±0.3 3 ATHAR 07 CLEO ψ(2S) → γ h+ h− h01ABLIKIM 13D reports (8.4 ± 0.3 ± 0.6)× 10−4 from a measurement of [�(

χ
2(1P) →K+ p� + 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P))= (8.72 ± 0.34) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Using B(� → pπ−) = 63.9%.3ATHAR 07 reports (8.5 ± 1.4 ± 1.0) × 10−4 from a measurement of [�(

χ
2(1P) →K+ p� + 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P))= (9.33 ± 0.14 ± 0.61) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.�(K+p�(1520)+ 
.
.)/�total �63/��(K+p�(1520)+ 
.
.)/�total �63/��(K+p�(1520)+ 
.
.)/�total �63/��(K+p�(1520)+ 
.
.)/�total �63/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.9±0.7±0.12.9±0.7±0.12.9±0.7±0.12.9±0.7±0.1 79 ± 13 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports (3.06±0.50±0.54)×10−4 from a measurement of [�(

χ
2(1P) →K+ p�(1520)+ 
.
.)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →
γχ
2(1P)) = (8.74 ± 0.35) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(�(1520)�(1520))/�total �64/��(�(1520)�(1520))/�total �64/��(�(1520)�(1520))/�total �64/��(�(1520)�(1520))/�total �64/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.8±1.5±0.24.8±1.5±0.24.8±1.5±0.24.8±1.5±0.2 29 ± 7 1 ABLIKIM 11F BES3 ψ(2S) → γ ppK+K−1ABLIKIM 11F reports (5.05 ± 1.29 ± 0.93) × 10−4 from a measurement of[�(

χ
2(1P) → �(1520)�(1520))/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assumingB(ψ(2S) → γχ
2(1P)) = (8.74 ± 0.35) × 10−2, whi
h we res
ale to our best valueB(ψ(2S) → γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(�0�0)/�total �65/��(�0�0)/�total �65/��(�0�0)/�total �65/��(�0�0)/�total �65/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT
<0.6<0.6<0.6<0.6 90 1 ABLIKIM 13H BES3 ψ(2S) → γ�0�0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.8 90 7.5 ± 3.4 2 NAIK 08 CLEO ψ(2S) → γ�0�0



1414141414141414MesonParti
le Listings
χ
2(1P)1ABLIKIM 13H reports < 0.65× 10−4 from a measurement of [�(

χ
2(1P) → �0�0)/�total℄× [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.74±0.35)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.2NAIK 08 reports < 0.75×10−4 from a measurement of [�(

χ
2(1P) → �0�0)/�total℄
× [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (9.33±0.14±0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.�(�+�−)/�total �66/��(�+�−)/�total �66/��(�+�−)/�total �66/��(�+�−)/�total �66/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT

<0.7<0.7<0.7<0.7 90 4.0 ± 3.5 1 NAIK 08 CLEO ψ(2S) → γ�+�−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.8 90 2 ABLIKIM 13H BES3 ψ(2S) → γ�+�−1NAIK 08 reports < 0.67 × 10−4 from a measurement of [�(

χ
2(1P) → �+�−)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (9.33 ±0.14 ± 0.61) × 10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) =9.11 × 10−2.2ABLIKIM 13H reports < 0.88×10−4 from a measurement of [�(

χ
2(1P) → �+�−)/�total℄× [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.74±0.35)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.�(� (1385)+� (1385)−)/�total �67/��(� (1385)+� (1385)−)/�total �67/��(� (1385)+� (1385)−)/�total �67/��(� (1385)+� (1385)−)/�total �67/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<16<16<16<16 90 1 ABLIKIM 12I BES3 ψ(2S) → γ�(1385)+�(1385)−1ABLIKIM 12I reports < 17 × 10−5 from a measurement of [�(

χ
2(1P) →�(1385)+�(1385)−)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →
γχ
2(1P)) = (8.72 ± 0.34) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = 9.11× 10−2.�(� (1385)−� (1385)+)/�total �68/��(� (1385)−� (1385)+)/�total �68/��(� (1385)−� (1385)+)/�total �68/��(� (1385)−� (1385)+)/�total �68/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<8<8<8<8 90 1 ABLIKIM 12I BES3 ψ(2S) → γ�(1385)−�(1385)+1ABLIKIM 12I reports < 8.5 × 10−5 from a measurement of [�(

χ
2(1P) →�(1385)−�(1385)+)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) →
γχ
2(1P)) = (8.72 ± 0.34) × 10−2, whi
h we res
ale to our best value B(ψ(2S) →
γχ
2(1P)) = 9.11× 10−2.�(K−��++ 
.
.)/�total �69/��(K−��++ 
.
.)/�total �69/��(K−��++ 
.
.)/�total �69/��(K−��++ 
.
.)/�total �69/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.84±0.33±0.061.84±0.33±0.061.84±0.33±0.061.84±0.33±0.06 51 1 ABLIKIM 15I BES3 ψ(2S) → γK−��++ 
.
.1ABLIKIM 15I reports [�(

χ
2(1P) → K−��++ 
.
.)/�total℄ × [B(ψ(2S) →
γχ
2(1P))℄ = (1.68±0.26±0.15)×10−5 whi
h we divide by our best value B(ψ(2S) →
γχ
2(1P)) = (9.11 ± 0.31) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(� 0� 0)/�total �70/��(� 0� 0)/�total �70/��(� 0� 0)/�total �70/��(� 0� 0)/�total �70/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT

<1.1<1.1<1.1<1.1 90 2.9 ± 1.7 1 NAIK 08 CLEO ψ(2S) → γ�0�01NAIK 08 reports < 1.06×10−4 from a measurement of [�(

χ
2(1P) → �0�0)/�total℄
× [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (9.33±0.14±0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.�(�−�+)/�total �71/��(�−�+)/�total �71/��(�−�+)/�total �71/��(�−�+)/�total �71/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT1.48±0.33±0.051.48±0.33±0.051.48±0.33±0.051.48±0.33±0.05 29 ± 5 1 NAIK 08 CLEO ψ(2S) → γ�+�−

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3.7 90 2 ABLIKIM 06D BES2 ψ(2S) → χ
2 γ1NAIK 08 reports (1.45 ± 0.30 ± 0.15) × 10−4 from a measurement of [�(

χ
2(1P) →�−�+)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) =(9.33± 0.14± 0.61)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P))= (9.11 ± 0.31)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2Using B(ψ(2S) → χ
2 γ) = (9.3 ± 0.6)%.�(J/ψ(1S)π+π−π0)/�total �72/��(J/ψ(1S)π+π−π0)/�total �72/��(J/ψ(1S)π+π−π0)/�total �72/��(J/ψ(1S)π+π−π0)/�total �72/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.015<0.015<0.015<0.015 90 BARATE 81 SPEC 190 GeV π−Be → 2π2µ�(π0 η
)/�total �73/��(π0 η
)/�total �73/��(π0 η
)/�total �73/��(π0 η
)/�total �73/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.2× 10−3<3.2× 10−3<3.2× 10−3<3.2× 10−3 90 1 ABLIKIM 15N BES3 ψ(2S)e+ e− → γπ0 η
1Using B(η
 → K0S K±π∓)×B(K0S → π+π−)×B(π0 → γ γ) = (1.66±0.11)×10−2.�(η
 (1S)π+π−)/�total �74/��(η
 (1S)π+π−)/�total �74/��(η
 (1S)π+π−)/�total �74/��(η
 (1S)π+π−)/�total �74/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.54× 10−2<0.54× 10−2<0.54× 10−2<0.54× 10−2 90 1,2 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
2
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.2 × 10−2 90 1,3 ABLIKIM 13B BES3 e+ e− → ψ (2S) → γχ
21Using 1.06× 108 ψ(2S) mesons and B(ψ(2S) → χ
2 γ) = (8.72 ± 0.34)%.2From the η
 → K0S K±π∓ de
ays.3 From the η
 → K+K−π0 de
ays.

�(η
 (1S)π+π−)/�(K0K+π−+ 
.
.) �74/�31�(η
 (1S)π+π−)/�(K0K+π−+ 
.
.) �74/�31�(η
 (1S)π+π−)/�(K0K+π−+ 
.
.) �74/�31�(η
 (1S)π+π−)/�(K0K+π−+ 
.
.) �74/�31VALUE CL% DOCUMENT ID TECN COMMENT
<16.4<16.4<16.4<16.4 90 1 LEES 12AE BABR e+ e− →e+ e−π+π− η
1We divided the reported limit by 2 to take into a

ount the K0LK+π− mode.RADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYS�(γ J/ψ(1S))/�total �75/��(γ J/ψ(1S))/�total �75/��(γ J/ψ(1S))/�total �75/��(γ J/ψ(1S))/�total �75/�VALUE DOCUMENT ID TECN COMMENT0.192±0.007 OUR FIT0.192±0.007 OUR FIT0.192±0.007 OUR FIT0.192±0.007 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.199±0.005±0.012 1 ADAM 05A CLEO e+ e− → ψ(2S) → γχ
21Uses B(ψ(2S) → γχ
2 → γ γ J/ψ) from ADAM 05A and B(ψ(2S) → γχ
2) fromATHAR 04.�(γ ρ0)/�total �76/��(γ ρ0)/�total �76/��(γ ρ0)/�total �76/��(γ ρ0)/�total �76/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT
<20<20<20<20 90 13 ± 11 1 ABLIKIM 11E BES3 ψ(2S) → γ γ ρ0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<40 90 17.2± 6.8 2 BENNETT 08A CLEO ψ(2S) → γ γ ρ01ABLIKIM 11E reports < 20.8 × 10−6 from a measurement of [�(

χ
2(1P) → γ ρ0)/�total℄× [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.74±0.35)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.2BENNETT 08A reports < 50 × 10−6 from a measurement of [�(

χ
2(1P) → γ ρ0)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.1 ± 0.4)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.�(γω
)/�total �77/��(γω
)/�total �77/��(γω
)/�total �77/��(γω
)/�total �77/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT

<6<6<6<6 90 1 ± 6 1 ABLIKIM 11E BES3 ψ(2S) → γ γω

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<6 90 0.0 ± 1.8 2 BENNETT 08A CLEO ψ(2S) → γ γω1ABLIKIM 11E reports < 6.1×10−6 from a measurement of [�(

χ
2(1P) → γω
)/�total℄

× [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.74± 0.35)×10−2,whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.2BENNETT 08A reports < 7.0 × 10−6 from a measurement of [�(

χ
2(1P) → γω
)/�total℄ × [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.1 ± 0.4)×10−2, whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.�(γφ

)/�total �78/��(γφ
)/�total �78/��(γφ
)/�total �78/��(γφ
)/�total �78/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT

< 8< 8< 8< 8 90 5 ± 5 1 ABLIKIM 11E BES3 ψ(2S) → γ γφ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<12 90 1.3 ± 2.5 2 BENNETT 08A CLEO ψ(2S) → γ γφ1ABLIKIM 11E reports < 8.1×10−6 from a measurement of [�(

χ
2(1P) → γφ
)/�total℄

× [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.74± 0.35)×10−2,whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.2BENNETT 08A reports < 13×10−6 from a measurement of [�(

χ
2(1P) → γφ
)/�total℄

× [B(ψ(2S) → γχ
2(1P))℄ assuming B(ψ(2S) → γχ
2(1P)) = (8.1 ± 0.4)× 10−2,whi
h we res
ale to our best value B(ψ(2S) → γχ
2(1P)) = 9.11× 10−2.�(γ γ
)/�total �79/��(γ γ
)/�total �79/��(γ γ
)/�total �79/��(γ γ
)/�total �79/�VALUE (units 10−4) DOCUMENT ID2.74±0.14 OUR FIT2.74±0.14 OUR FIT2.74±0.14 OUR FIT2.74±0.14 OUR FIT�(γ γ
)/�(γ J/ψ(1S)) �79/�75�(γ γ
)/�(γ J/ψ(1S)) �79/�75�(γ γ
)/�(γ J/ψ(1S)) �79/�75�(γ γ
)/�(γ J/ψ(1S)) �79/�75VALUE (units 10−3) DOCUMENT ID TECN COMMENT1.43±0.08 OUR FIT1.43±0.08 OUR FIT1.43±0.08 OUR FIT1.43±0.08 OUR FIT0.99±0.180.99±0.180.99±0.180.99±0.18 1 AMBROGIANI 00B E835 p p → χ
2 → γ γ, γ J/ψ1Cal
ulated by us using B(J/ψ(1S) → e+ e−) = 0.0593 ± 0.0010.�(γ γ
)/�total × �(pp)/�total �79/�× �44/��(γ γ
)/�total × �(pp)/�total �79/�× �44/��(γ γ
)/�total × �(pp)/�total �79/�× �44/��(γ γ
)/�total × �(pp)/�total �79/�× �44/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT2.06±0.16 OUR FIT2.06±0.16 OUR FIT2.06±0.16 OUR FIT2.06±0.16 OUR FIT1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE1.7 ±0.4 OUR AVERAGE1.60±0.42 ARMSTRONG 93 E760 pp → γ γX9.9 ±4.5 BAGLIN 87B SPEC pp → γ γX

χ
2(1P) CROSS-PARTICLE BRANCHING RATIOSχ
2(1P) CROSS-PARTICLE BRANCHING RATIOSχ
2(1P) CROSS-PARTICLE BRANCHING RATIOSχ
2(1P) CROSS-PARTICLE BRANCHING RATIOS�(χ
2(1P)→ K+K−π+π−)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �14/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ K+K−π+π−)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �14/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ K+K−π+π−)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �14/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ K+K−π+π−)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �14/�× �ψ(2S)134 /�ψ(2S)11VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.34±0.26 OUR FIT2.34±0.26 OUR FIT2.34±0.26 OUR FIT2.34±0.26 OUR FIT2.5 ±0.9 OUR AVERAGE2.5 ±0.9 OUR AVERAGE2.5 ±0.9 OUR AVERAGE2.5 ±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3.1.90±0.14±0.44 BAI 99B BES ψ(2S) → γχ
23.8 ±0.67 1 TANENBAUM 78 MRK1 ψ(2S) → γχ
21The reported value is derived using B(ψ(2S) → π+π− J/ψ) × B(J/ψ → ℓ+ ℓ−) =(4.6 ± 0.7)%. Cal
ulated by us using B(J/ψ → ℓ+ ℓ−) = 0.1181 ± 0.0020.



1415141514151415See key on page 601 MesonParti
le Listings
χ
2(1P)�(

χ
2(1P)→ K∗(892)0K∗(892)0)/�total × �(

ψ(2S)→ γχ
2(1P))/�total �18/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K∗(892)0K∗(892)0)/�total × �(

ψ(2S)→ γχ
2(1P))/�total �18/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K∗(892)0K∗(892)0)/�total × �(

ψ(2S)→ γχ
2(1P))/�total �18/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K∗(892)0K∗(892)0)/�total × �(

ψ(2S)→ γχ
2(1P))/�total �18/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.2 ±0.4 OUR FIT2.2 ±0.4 OUR FIT2.2 ±0.4 OUR FIT2.2 ±0.4 OUR FIT3.11±0.36±0.483.11±0.36±0.483.11±0.36±0.483.11±0.36±0.48 ABLIKIM 04H BES2 ψ(2S) → γχ
2�(

χ
2(1P)→ pp)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �44/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ pp)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �44/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ pp)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �44/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ pp)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �44/�× �ψ(2S)134 /�ψ(2S)11VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.98±0.10 OUR FIT1.98±0.10 OUR FIT1.98±0.10 OUR FIT1.98±0.10 OUR FIT1.4 ±1.11.4 ±1.11.4 ±1.11.4 ±1.1 1 BAI 98I BES ψ(2S) → γχ
2 → γ p p1Cal
ulated by us. The value for B(χ
2 → pp) reported in BAI 98I is derived usingB(ψ(2S) → γχ
2) = (7.8± 0.8)% and B(ψ(2S) → J/ψ(1S)π+π−) = (32.4± 2.6)%[BAI 98D℄.�(

χ
2(1P)→ pp)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�44/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ pp)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�44/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ pp)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�44/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ pp)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�44/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT6.85±0.33 OUR FIT6.85±0.33 OUR FIT6.85±0.33 OUR FIT6.85±0.33 OUR FIT7.1 ±0.5 OUR AVERAGE7.1 ±0.5 OUR AVERAGE7.1 ±0.5 OUR AVERAGE7.1 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.7.3 ±0.4 ±0.3 405 ABLIKIM 13V BES3 ψ(2S) → γ pp7.2 ±0.7 ±0.4 121 ± 12 1 NAIK 08 CLEO ψ(2S) → γ pp4.4 +1.6
−1.4 ±0.6 14.3+5.2

−4.7 BAI 04F BES ψ(2S) → γχ
2(1P) → γ p p1Cal
ulated by us. NAIK 08 reports B(χ
2 → pp) = (7.7 ± 0.8 ± 0.4 ± 0.5) × 10−5using B(ψ(2S) → γχ
2) = (9.33 ± 0.14 ± 0.61)%.�(

χ
2(1P)→ ��)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�57/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ ��)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�57/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ ��)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�57/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ ��)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�57/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT17.5±1.3 OUR FIT17.5±1.3 OUR FIT17.5±1.3 OUR FIT17.5±1.3 OUR FIT17.4±1.4 OUR AVERAGE17.4±1.4 OUR AVERAGE17.4±1.4 OUR AVERAGE17.4±1.4 OUR AVERAGE18.2±1.4±0.9 207 1 ABLIKIM 13H BES3 ψ(2S) → γ��15.9±2.1±1.0 71 ± 9 2 NAIK 08 CLEO ψ(2S) → γ��1Cal
ulated by us. ABLIKIM 13H reports B(χ
2 → ��) = (20.8 ± 1.6 ± 2.3) × 10−5from a measurement of B(χ
2 → ��) × B(ψ(2S) → γχ
2) assuming B(ψ(2S) →
γχ
2) = (8.74 ± 0.35)%.2Cal
ulated by us. NAIK 08 reports B(χ
2 → ��) = (17.0 ± 2.2 ± 1.1 ± 1.1)× 10−5using B(ψ(2S) → γχ
2) = (9.33 ± 0.14 ± 0.61)%.�(

χ
2(1P)→ ��)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �57/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ ��)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �57/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ ��)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �57/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ ��)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �57/�× �ψ(2S)134 /�ψ(2S)11VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT5.1±0.4 OUR FIT5.1±0.4 OUR FIT5.1±0.4 OUR FIT5.1±0.4 OUR FIT7.1+3.1
−2.9±1.37.1+3.1
−2.9±1.37.1+3.1
−2.9±1.37.1+3.1
−2.9±1.3 8.3+3.7

−3.4 1 BAI 03E BES ψ(2S) → γ��1BAI 03E reports [ B(χ
2 → ��) B(ψ(2S) → γχ
2) / B(ψ(2S) → J/ψπ+π−) ℄ ×[B2(� → π− p) / B(J/ψ → pp) ℄ = (1.33+0.59
−0.55 ± 0.25)%. We 
al
ulate from thismeasurement the presented value using B(� → π− p) = (63.9 ± 0.5)% and B(J/ψ →pp) = (2.17 ± 0.07) × 10−3.�(

χ
2(1P)→ ππ
)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�24/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ ππ
)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�24/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ ππ
)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�24/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ ππ
)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�24/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.12±0.08 OUR FIT2.12±0.08 OUR FIT2.12±0.08 OUR FIT2.12±0.08 OUR FIT2.17±0.09 OUR AVERAGE2.17±0.09 OUR AVERAGE2.17±0.09 OUR AVERAGE2.17±0.09 OUR AVERAGE2.19±0.05±0.15 4.5k 1 ABLIKIM 10A BES3 e+ e− → ψ(2S) → γχ
22.23±0.06±0.10 2.5k 2 ASNER 09 CLEO ψ(2S) → γπ+π−1.90±0.08±0.20 0.8k 3 ASNER 09 CLEO ψ(2S) → γπ0π01Cal
ulated by us. ABLIKIM 10A reports B(χ
2 → π0π0) = (0.88 ± 0.02 ± 0.06 ±0.04)× 10−3 using B(ψ(2S) → γχ
2) = (8.3 ± 0.4)%. We have multiplied the π0π0measurement by 3 to obtain ππ.2 Cal
ulated by us. ASNER 09 reports B(χ
2 → π+π−) = (1.59 ± 0.04 ± 0.07 ±0.10)× 10−3 using B(ψ(2S) → γχ
2) = (9.33 ± 0.14 ± 0.61)%. We have multipliedthe π+π− measurement by 3/2 to obtain ππ.3 Cal
ulated by us. ASNER 09 reports B(χ
2 → π0π0) = (0.68± 0.03± 0.07± 0.04)×10−3 using B(ψ(2S) → γχ
2) = (9.33 ± 0.14 ± 0.61)%. We have multiplied the
π0π0 measurement by 3 to obtain ππ.�(

χ
2(1P)→ ππ
)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �24/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ ππ
)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �24/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ ππ
)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �24/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ ππ
)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �24/�× �ψ(2S)134 /�ψ(2S)11VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.615±0.023 OUR FIT0.615±0.023 OUR FIT0.615±0.023 OUR FIT0.615±0.023 OUR FIT0.54 ±0.06 OUR AVERAGE0.54 ±0.06 OUR AVERAGE0.54 ±0.06 OUR AVERAGE0.54 ±0.06 OUR AVERAGE0.66 ±0.18 ±0.37 21 ± 6 1 BAI 03C BES ψ(2S) → γπ0π00.54 ±0.05 ±0.04 185 ± 16 2 BAI 98I BES ψ(2S) → γπ+π−1We have multiplied π0π0 measurement by 3 to obtain ππ.2 Cal
ulated by us. The value for B(χ
2 → π+π−) reported by BAI 98I is derived usingB(ψ(2S) → γχ
2) = (7.8 ± 0.8)% and B(ψ(2S) → J/ψπ+π−) = (32.4 ± 2.6)%[BAI 98D℄. We have multiplied π+π− measurement by 3/2 to obtain ππ.

�(

χ
2(1P)→ ηη
)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�28/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ ηη
)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�28/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ ηη
)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�28/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ ηη
)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�28/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT0.52±0.04 OUR FIT0.52±0.04 OUR FIT0.52±0.04 OUR FIT0.52±0.04 OUR FIT0.52±0.04 OUR AVERAGE0.52±0.04 OUR AVERAGE0.52±0.04 OUR AVERAGE0.52±0.04 OUR AVERAGE0.54±0.03±0.04 386 1 ABLIKIM 10A BES3 e+ e− → ψ(2S) →
γχ
20.47±0.05±0.05 156 ASNER 09 CLEO ψ(2S) → γ ηη

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.44 90 2 ADAMS 07 CLEO ψ(2S) → γχ
2
< 3 90 BAI 03C BES ψ(2S) → γ ηη → 5γ0.62±0.31±0.19 LEE 85 CBAL ψ(2S) → photons1Cal
ulated by us. ABLIKIM 10A reports B(χ
2 → ηη) = (0.65± 0.04± 0.05± 0.03)×10−3 using B(ψ(2S) → γχ
2) = (8.3 ± 0.4)%.2 Superseded by ASNER 09.�(

χ
2(1P)→ K+K−)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�29/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K+K−)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�29/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K+K−)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�29/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K+K−)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�29/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT9.6±0.6 OUR FIT9.6±0.6 OUR FIT9.6±0.6 OUR FIT9.6±0.6 OUR FIT10.5±0.3±0.610.5±0.3±0.610.5±0.3±0.610.5±0.3±0.6 1.6k 1 ASNER 09 CLEO ψ(2S) → γK+K−1Cal
ulated by us. ASNER 09 reports B(χ
2 → K+K−) = (1.13 ± 0.03 ± 0.06 ±0.07) × 10−3 using B(ψ(2S) → γχ
2) = (9.33 ± 0.14 ± 0.61)%.�(

χ
2(1P)→ K+K−)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �29/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ K+K−)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �29/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ K+K−)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �29/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ K+K−)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �29/�× �ψ(2S)134 /�ψ(2S)11VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.277±0.017 OUR FIT0.277±0.017 OUR FIT0.277±0.017 OUR FIT0.277±0.017 OUR FIT0.190±0.034±0.0190.190±0.034±0.0190.190±0.034±0.0190.190±0.034±0.019 115 ± 13 1 BAI 98I BES ψ(2S) → γK+K−1Cal
ulated by us. The value for B(χ
2 → K+K−) reported by BAI 98I is derived usingB(ψ(2S) → γχ
2) = (7.8 ± 0.8)% and B(ψ(2S) → J/ψπ+π−) = (32.4 ± 2.6)%[BAI 98D℄.�(

χ
2(1P)→ K0S K0S)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�30/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K0S K0S)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�30/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K0S K0S)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�30/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K0S K0S)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�30/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT5.0 ±0.4 OUR FIT5.0 ±0.4 OUR FIT5.0 ±0.4 OUR FIT5.0 ±0.4 OUR FIT5.0 ±0.4 OUR AVERAGE5.0 ±0.4 OUR AVERAGE5.0 ±0.4 OUR AVERAGE5.0 ±0.4 OUR AVERAGE4.9 ±0.3 ±0.3 373 ± 20 1 ASNER 09 CLEO ψ(2S) → γK0S K0S5.72±0.76±0.63 65 ABLIKIM 05O BES2 ψ(2S) → γK0S K0S1Cal
ulated by us. ASNER 09 reports B(χ
2 → K0S K0S ) = (0.53 ± 0.03 ± 0.03 ±0.03) × 10−3 using B(ψ(2S) → γχ
2) = (9.33 ± 0.14 ± 0.61)%.�(

χ
2(1P)→ K0S K0S)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �30/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ K0S K0S)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �30/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ K0S K0S)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �30/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ K0S K0S)/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �30/�× �ψ(2S)134 /�ψ(2S)11VALUE (units 10−5) DOCUMENT ID TECN COMMENT14.5±1.1 OUR FIT14.5±1.1 OUR FIT14.5±1.1 OUR FIT14.5±1.1 OUR FIT14.7±4.1±3.314.7±4.1±3.314.7±4.1±3.314.7±4.1±3.3 1 BAI 99B BES ψ(2S) → γK0S K0S1Cal
ulated by us. The value of B(χ
2 → K0S K0S ) reported by BAI 99B was derived usingB(ψ(2S) → γχ
2(1P)) = (7.8± 0.8)% and B(ψ(2S) → J/ψπ+ π−) = (32.4± 2.6)%[BAI 98D℄.�(

χ
2(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�31/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�31/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�31/�× �ψ(2S)134 /�ψ(2S)�(

χ
2(1P)→ K0K+π−+ 
.
.)/�total × �(

ψ(2S)→ γχ
2(1P))/�total�31/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.22±0.17 OUR FIT1.22±0.17 OUR FIT1.22±0.17 OUR FIT1.22±0.17 OUR FIT1.15±0.18 OUR AVERAGE1.15±0.18 OUR AVERAGE1.15±0.18 OUR AVERAGE1.15±0.18 OUR AVERAGE1.21±0.19±0.09 37 1 ATHAR 07 CLEO ψ(2S) → γK0S K±π∓0.97±0.32±0.13 28 2 ABLIKIM 06R BES2 ψ(2S) → γK0S K±π∓1Cal
ulated by us. ATHAR 07 reports B(χ
2 → K0K+π−+ 
.
.) = (1.3 ± 0.2 ±0.1 ± 0.1)× 10−3 using B(ψ(2S) → γχ
2) = (9.33 ± 0.14 ± 0.61)%.2Cal
ulated by us. ABLIKIM 06R reports B(χ
2 → K0S K±π∓) = (0.6 ± 0.2 ± 0.1)×10−3 using B(ψ(2S) → γχ
2) = (8.1 ± 0.6)%. We have multiplied by 2 to obtainK0K+π− + 
.
. from K0S K±π∓.�(

χ
2(1P)→ 2(π+π−))/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �1/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ 2(π+π−))/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �1/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ 2(π+π−))/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �1/�× �ψ(2S)134 /�ψ(2S)11�(

χ
2(1P)→ 2(π+π−))/�total × �(

ψ(2S)→ γχ
2(1P))/�(

ψ(2S)→J/ψ(1S)π+π−) �1/�× �ψ(2S)134 /�ψ(2S)11VALUE (units 10−3) DOCUMENT ID TECN COMMENT2.83±0.27 OUR FIT2.83±0.27 OUR FIT2.83±0.27 OUR FIT2.83±0.27 OUR FIT3.1 ±1.0 OUR AVERAGE3.1 ±1.0 OUR AVERAGE3.1 ±1.0 OUR AVERAGE3.1 ±1.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.5.2.3 ±0.1 ±0.5 1 BAI 99B BES ψ(2S) → γχ
24.3 ±0.6 2 TANENBAUM 78 MRK1 ψ(2S) → γχ
21Cal
ulated by us. The value for B(χ
2 → 2π+2π−) reported in BAI 99B is derived usingB(ψ(2S) → γχ
2) = (7.8± 0.8)% and B(ψ(2S) → J/ψ(1S)π+π−) = (32.4± 2.6)%[BAI 98D℄.2The value for B(ψ(2S) → γχ
2)×B(χ
2 → 2π+π−) reported in TANENBAUM 78is derived using B(ψ(2S) → J/ψ(1S)π+π−)×B(J/ψ(1S) ℓ+ ℓ−) = (4.6 ± 0.7)%.Cal
ulated by us using B(J/ψ(1S) → ℓ+ ℓ−) = 0.1181 ± 0.0020.
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χ
2(1P)�(χ
2(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
2(1P))/�total�39/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
2(1P))/�total�39/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
2(1P))/�total�39/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
2(1P))/�total�39/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.57±0.19 OUR FIT1.57±0.19 OUR FIT1.57±0.19 OUR FIT1.57±0.19 OUR FIT1.76±0.16±0.241.76±0.16±0.241.76±0.16±0.241.76±0.16±0.24 160 1 ABLIKIM 06T BES2 ψ(2S) → γ 2K+2K−1Cal
ulated by us. The value of B(χ
2 → 2K+2K−) reported by ABLIKIM 06T wasderived using B(ψ(2S) → γχ
2(1P)) = (8.1 ± 0.4)%.�(χ
2(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→ J/ψ(1S)π+π−) �39/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→ J/ψ(1S)π+π−) �39/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→ J/ψ(1S)π+π−) �39/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ K+K−K+K−)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→ J/ψ(1S)π+π−) �39/�× �ψ(2S)134 /�ψ(2S)11VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.6±0.5 OUR FIT4.6±0.5 OUR FIT4.6±0.5 OUR FIT4.6±0.5 OUR FIT3.6±0.6±0.63.6±0.6±0.63.6±0.6±0.63.6±0.6±0.6 1 BAI 99B BES ψ(2S) → γ 2K+2K−1Cal
ulated by us. The value of B(χ
2 → 2K+2K−) reported by BAI 99B was derivedusing B(ψ(2S) → γχ
2(1P)) = (7.8± 0.8)% and B(ψ(2S) → J/ψπ+ π−) = (32.4±2.6)% [BAI 98D℄.�(χ
2(1P)→ φφ

)/�total × �(ψ(2S)→ γχ
2(1P))/�total�20/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
2(1P))/�total�20/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
2(1P))/�total�20/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
2(1P))/�total�20/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.02±0.08 OUR FIT1.02±0.08 OUR FIT1.02±0.08 OUR FIT1.02±0.08 OUR FIT0.98±0.13 OUR AVERAGE0.98±0.13 OUR AVERAGE0.98±0.13 OUR AVERAGE0.98±0.13 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.94±0.03±0.10 849 1 ABLIKIM 11K BES3 ψ(2S) → γ hadrons1.38±0.24±0.23 41 2 ABLIKIM 06T BES2 ψ(2S) → γ 2K+2K−1Cal
ulated by us. The value of B(χ
2 → φφ) reported by ABLIKIM 11K was derivedusing B(ψ(2S) → γχ
2(1P)) = (8.74 ± 0.35)%.2Cal
ulated by us. The value of B(χ
2 → φφ) reported by ABLIKIM 06T was derivedusing B(ψ(2S) → γχ
2(1P)) = (8.1 ± 0.4)%.�(χ
2(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �20/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �20/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �20/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ φφ
)/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �20/�× �ψ(2S)134 /�ψ(2S)11VALUE (units 10−4) DOCUMENT ID TECN COMMENT2.95±0.24 OUR FIT2.95±0.24 OUR FIT2.95±0.24 OUR FIT2.95±0.24 OUR FIT4.8 ±1.3 ±1.34.8 ±1.3 ±1.34.8 ±1.3 ±1.34.8 ±1.3 ±1.3 1 BAI 99B BES ψ(2S) → γ 2K+2K−1Cal
ulated by us. The value of B(χ
2 → φφ) reported by BAI 99B was derived usingB(ψ(2S) → γχ
2(1P)) = (7.8± 0.8)% and B(ψ(2S) → J/ψπ+ π−) = (32.4± 2.6)%[BAI 98D℄.�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�total�75/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�total�75/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�total�75/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�total�75/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.75 ±0.04 OUR FIT1.75 ±0.04 OUR FIT1.75 ±0.04 OUR FIT1.75 ±0.04 OUR FIT1.52 ±0.15 OUR AVERAGE1.52 ±0.15 OUR AVERAGE1.52 ±0.15 OUR AVERAGE1.52 ±0.15 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.6. See the ideogram below.1.874±0.007±0.102 76k ABLIKIM 12O BES3 ψ(2S) → γχ
21.62 ±0.04 ±0.12 5.8k BAI 04I BES2 ψ(2S) → J/ψγγ0.99 ±0.10 ±0.08 GAISER 86 CBAL ψ(2S) → γX1.47 ±0.17 1 OREGLIA 82 CBAL ψ(2S) → γχ
21.8 ±0.5 2 BRANDELIK 79B DASP ψ(2S) → γχ
21.2 ±0.2 2 BARTEL 78B CNTR ψ(2S) → γχ
22.2 ±1.2 3 BIDDICK 77 CNTR e+ e− → γX1.2 ±0.7 1 WHITAKER 76 MRK1 e+ e−

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.95 ±0.02 ±0.07 12.4k 4 MENDEZ 08 CLEO ψ(2S) → γχ
21.85 ±0.04 ±0.07 1.9k 5 ADAM 05A CLEO Repl. by MENDEZ 081Re
al
ulated by us using B(J/ψ(1S) → ℓ+ ℓ−) = 0.1181 ± 0.0020.2Re
al
ulated by us using B(J/ψ(1S) → µ+µ−) = 0.0588 ± 0.0010.3Assumes isotropi
 gamma distribution.4Not independent from other measurements of MENDEZ 08.5Not independent from other values reported by ADAM 05A.
WEIGHTED AVERAGE
1.52±0.15 (Error scaled by 2.6)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

WHITAKER 76 MRK1
BIDDICK 77 CNTR
BARTEL 78B CNTR 2.5
BRANDELIK 79B DASP 0.3
OREGLIA 82 CBAL 0.1
GAISER 86 CBAL 16.9
BAI 04I BES2 0.7
ABLIKIM 12O BES3 12.2

χ2

      32.7
(Confidence Level < 0.0001)

0 0.5 1 1.5 2 2.5 3 3.5�(

χ
2(1P) → γ J/ψ(1S))/�total × �(

ψ(2S) → γχ
2(1P))/�total (units10−2)

�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)anything) �75/�× �ψ(2S)134 /�ψ(2S)9�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)anything) �75/�× �ψ(2S)134 /�ψ(2S)9�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)anything) �75/�× �ψ(2S)134 /�ψ(2S)9�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)anything) �75/�× �ψ(2S)134 /�ψ(2S)9�75/�× �ψ(2S)134 /�ψ(2S)9 = �75/� × �ψ(2S)134 /(�ψ(2S)11 +�ψ(2S)12 +�ψ(2S)13 +0.339�ψ(2S)133 +0.192�ψ(2S)134 )VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.87±0.07 OUR FIT2.87±0.07 OUR FIT2.87±0.07 OUR FIT2.87±0.07 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.12±0.03±0.09 12.4k 1 MENDEZ 08 CLEO ψ(2S) → γχ
23.11±0.07±0.07 1.9k ADAM 05A CLEO Repl. by MENDEZ 081Not independent from other measurements of MENDEZ 08.�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �75/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �75/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �75/�× �ψ(2S)134 /�ψ(2S)11�(χ
2(1P)→ γ J/ψ(1S))/�total × �(ψ(2S)→ γχ
2(1P))/�(ψ(2S)→J/ψ(1S)π+π−) �75/�× �ψ(2S)134 /�ψ(2S)11VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.08±0.12 OUR FIT5.08±0.12 OUR FIT5.08±0.12 OUR FIT5.08±0.12 OUR FIT5.53±0.17 OUR AVERAGE5.53±0.17 OUR AVERAGE5.53±0.17 OUR AVERAGE5.53±0.17 OUR AVERAGE5.56±0.05±0.16 12.4k MENDEZ 08 CLEO ψ(2S) → γχ
26.0 ±2.8 1.3k 1 ABLIKIM 04B BES ψ(2S) → J/ψX3.9 ±1.2 2 HIMEL 80 MRK2 ψ(2S) → γχ
2
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.52±0.13±0.13 1.9k 3 ADAM 05A CLEO Repl. by MENDEZ 081From a �t to the J/ψ re
oil mass spe
tra.2The value for B(ψ(2S) → γχ
2)×B(χ
2 → γ J/ψ(1S)) reported in HIMEL 80 isderived using B(ψ(2S) → J/ψ(1S)π+π−) = (33 ± 3)% and B(J/ψ(1S) → ℓ+ ℓ−)= 0.138 ± 0.018. Cal
ulated by us using B(J/ψ(1S) → ℓ+ ℓ−) = (0.1181 ± 0.0020).3Not independent from other values reported by ADAM 05A.�(χ
2(1P)→ γ γ

)/�total × �(ψ(2S)→ γχ
2(1P))/�total�79/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ γ γ
)/�total × �(ψ(2S)→ γχ
2(1P))/�total�79/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ γ γ
)/�total × �(ψ(2S)→ γχ
2(1P))/�total�79/�× �ψ(2S)134 /�ψ(2S)�(χ
2(1P)→ γ γ
)/�total × �(ψ(2S)→ γχ
2(1P))/�total�79/�× �ψ(2S)134 /�ψ(2S)VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.50±0.13 OUR FIT2.50±0.13 OUR FIT2.50±0.13 OUR FIT2.50±0.13 OUR FIT2.78±0.18 OUR AVERAGE2.78±0.18 OUR AVERAGE2.78±0.18 OUR AVERAGE2.78±0.18 OUR AVERAGE2.81±0.17±0.15 1.1k 1 ABLIKIM 12A BES3 ψ(2S) → γχ
2 → 3γ2.68±0.28±0.15 0.3k ECKLUND 08A CLEO ψ(2S) → γχ
2 → 3γ7.0 ±2.1 ±2.0 LEE 85 CBAL ψ(2S) → γχ
21ABLIKIM 12A measures the ratio of two-photon partial widths for the heli
ity λ = 0 andheli
ity λ = 2 
omponents to be f0/2 = �λ=0

γγ /�λ=2
γγ = 0.00 ± 0.02 ± 0.02.�(χ
2(1P)→ γ γ

)/�(χ
0(1P)→ γ γ
) �79/�χ
0(1P)89�(χ
2(1P)→ γ γ

)/�(χ
0(1P)→ γ γ
) �79/�χ
0(1P)89�(χ
2(1P)→ γ γ

)/�(χ
0(1P)→ γ γ
) �79/�χ
0(1P)89�(χ
2(1P)→ γ γ

)/�(χ
0(1P)→ γ γ
) �79/�χ
0(1P)89VALUE EVTS DOCUMENT ID TECN COMMENT0.273±0.035 OUR AVERAGE0.273±0.035 OUR AVERAGE0.273±0.035 OUR AVERAGE0.273±0.035 OUR AVERAGE0.271±0.029±0.030 1.9k 1 ABLIKIM 12A BES3 ψ(2S) → γχcJ → 3γ0.278±0.050±0.036 0.5k 1 ECKLUND 08A CLEO ψ(2S) → γχcJ → 3γ1Not independent from the values of �(χ
0, χ
2) and B(ψ(2S) → χ
0, χ
2).MULTIPOLE AMPLITUDES IN χ
2(1P) → γ J/ψ(1S) RADIATIVE DECAYMULTIPOLE AMPLITUDES IN χ
2(1P) → γ J/ψ(1S) RADIATIVE DECAYMULTIPOLE AMPLITUDES IN χ
2(1P) → γ J/ψ(1S) RADIATIVE DECAYMULTIPOLE AMPLITUDES IN χ
2(1P) → γ J/ψ(1S) RADIATIVE DECAYa2 = M2/√E12 +M22 + E32 Magneti
 quadrupole fra
tional transitionamplitudea2 = M2/√E12 +M22 + E32 Magneti
 quadrupole fra
tional transitionamplitudea2 = M2/√E12 +M22 + E32 Magneti
 quadrupole fra
tional transitionamplitudea2 = M2/√E12 +M22 + E32 Magneti
 quadrupole fra
tional transitionamplitudeVALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT

−10.0± 1.5 OUR AVERAGE−10.0± 1.5 OUR AVERAGE−10.0± 1.5 OUR AVERAGE−10.0± 1.5 OUR AVERAGE
− 9.3± 1.6±0.3 19.8k 1 ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−

− 9.3+ 3.9
− 4.1±0.6 5.9k 2 AMBROGIANI 02 E835 pp → χ
2 → J/ψγ

−14 ± 6 1.9k 2 ARMSTRONG 93E E760 pp → χ
2 → J/ψγ

−33.3+11.6
−29.2 441 2 OREGLIA 82 CBAL ψ(2S) → χ
1 γ → J/ψγγ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 7.9± 1.9±0.3 19.8k 3 ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−1From a �t with 
oating M2 amplitudes a2 and b2, and �xed E3 amplitudes a3=b3=0.2Assuming a3=0.3 From a �t with 
oating M2 and E3 amplitudes a2, b2, and a3, and b3.a3 = E3/√E12 +M22 + E32 Ele
tri
 o
tupole fra
tional transition ampli-tudea3 = E3/√E12 +M22 + E32 Ele
tri
 o
tupole fra
tional transition ampli-tudea3 = E3/√E12 +M22 + E32 Ele
tri
 o
tupole fra
tional transition ampli-tudea3 = E3/√E12 +M22 + E32 Ele
tri
 o
tupole fra
tional transition ampli-tudeVALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.6±1.3 OUR AVERAGE1.6±1.3 OUR AVERAGE1.6±1.3 OUR AVERAGE1.6±1.3 OUR AVERAGE1.7±1.4±0.3 19.8k 1 ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−2.0+5.5
−4.4±0.9 5908 AMBROGIANI 02 E835 pp → χ
2 → J/ψγ0 +6
−5 1904 ARMSTRONG 93E E760 pp → χ
2 → J/ψγ1From a �t with 
oating M2 and E3 amplitudes a2, b2, and a3, and b3.
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χ
2(1P), η
(2S)MULTIPOLE AMPLITUDES IN ψ(2S) → γχ
2(1P) RADIATIVE DECAYMULTIPOLE AMPLITUDES IN ψ(2S) → γχ
2(1P) RADIATIVE DECAYMULTIPOLE AMPLITUDES IN ψ(2S) → γχ
2(1P) RADIATIVE DECAYMULTIPOLE AMPLITUDES IN ψ(2S) → γχ
2(1P) RADIATIVE DECAYb2 = M2/√E12 +M22 + E32 Magneti
 quadrupole fra
tional transitionamplitudeb2 = M2/√E12 +M22 + E32 Magneti
 quadrupole fra
tional transitionamplitudeb2 = M2/√E12 +M22 + E32 Magneti
 quadrupole fra
tional transitionamplitudeb2 = M2/√E12 +M22 + E32 Magneti
 quadrupole fra
tional transitionamplitudeVALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.2±1.8 OUR AVERAGE2.2±1.8 OUR AVERAGE2.2±1.8 OUR AVERAGE2.2±1.8 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.4.6±1.0±1.3 13.8k 1 ABLIKIM 11I BES3 ψ(2S) → γπ+π−, γK+K−0.2±1.5±0.4 19.8k 2 ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−

− 5.1+5.4
−3.6 721 1 ABLIKIM 04I BES2 ψ(2S) → γπ+π−, γK+K−13.2+9.8
−7.5 441 3 OREGLIA 82 CBAL ψ(2S) → γ γ ℓ+ ℓ−

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.0±1.3±0.3 19.8k 3 ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−1From a �t with 
oating M2 and E3 amplitudes b2 and b3.2 From a �t with 
oating M2 and E3 amplitudes a2, b2, and a3, and b3.3 From a �t with 
oating M2 amplitudes a2 and b2, and �xed E3 amplitudes a3=b3=0.
WEIGHTED AVERAGE
2.2±1.8 (Error scaled by 1.7)

OREGLIA 82 CBAL
ABLIKIM 04I BES2 1.8
ARTUSO 09 CLEO 1.7
ABLIKIM 11I BES3 2.1

χ2

       5.6
(Confidence Level = 0.060)

-20 -10 0 10 20 30b2 = M2/√E12 +M22 + E32 Magneti
 quadrupole fra
tional transitionamplitude (units 10−2)b3 = E3/√E12 +M22 + E32 Ele
tri
 o
tupole fra
tional transition ampli-tudeb3 = E3/√E12 +M22 + E32 Ele
tri
 o
tupole fra
tional transition ampli-tudeb3 = E3/√E12 +M22 + E32 Ele
tri
 o
tupole fra
tional transition ampli-tudeb3 = E3/√E12 +M22 + E32 Ele
tri
 o
tupole fra
tional transition ampli-tudeVALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
−0.3±1.0 OUR AVERAGE−0.3±1.0 OUR AVERAGE−0.3±1.0 OUR AVERAGE−0.3±1.0 OUR AVERAGE1.5±0.8±1.8 13.8k 1 ABLIKIM 11I BES3 ψ(2S) → γπ+π−, γK+K−
−0.8±1.2±0.2 19.8k ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−

−2.7+4.3
−2.9 721 1 ABLIKIM 04I BES2 ψ(2S) → γπ+π−, γK+K−1From a �t with 
oating M2 and E3 amplitudes b2 and b3.MULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYSMULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYSMULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYSMULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYS

ψ(2S) → γχ
2(1P) and χ
2 → γ J/ψ(1S)ψ(2S) → γχ
2(1P) and χ
2 → γ J/ψ(1S)ψ(2S) → γχ
2(1P) and χ
2 → γ J/ψ(1S)ψ(2S) → γχ
2(1P) and χ
2 → γ J/ψ(1S)b2/a2 Magneti
 quadrupole transition amplitude ratiob2/a2 Magneti
 quadrupole transition amplitude ratiob2/a2 Magneti
 quadrupole transition amplitude ratiob2/a2 Magneti
 quadrupole transition amplitude ratioVALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
−11+14

−15−11+14
−15−11+14
−15−11+14
−15 19.8k 1 ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−1Statisti
al and systemati
 errors 
ombined. From a �t with 
oating M2 amplitudes a2and b2, and �xed E3 amplitudes a3=b3=0. Not independent of values for a2(χ
2(1P))and b2(χ
2(1P)) from ARTUSO 09.

χ
2(1P) REFERENCESχ
2(1P) REFERENCESχ
2(1P) REFERENCESχ
2(1P) REFERENCESABLIKIM 15I PR D91 092006 M. Ablikim et al. (BES III Collab.)ABLIKIM 15M PR D91 112008 M. Ablikim et al. (BES III Collab.)ABLIKIM 15N PR D91 112018 M. Ablikim et al. (BES III Collab.)ABLIKIM 14J PR D89 074030 M. Ablikim et al. (BES III Collab.)ABLIKIM 13B PR D87 012002 M. Ablikim et al. (BES III Collab.)ABLIKIM 13D PR D87 012007 M. Ablikim et al. (BES III Collab.)ABLIKIM 13H PR D87 032007 M. Ablikim et al. (BES III Collab.)ABLIKIM 13V PR D88 112001 M. Ablikim et al. (BES III Collab.)UEHARA 13 PTEP 2013 123C01 S. Uehara et al. (BELLE Collab.)ABLIKIM 12A PR D85 112008 M. Ablikim et al. (BES III Collab.)ABLIKIM 12I PR D86 052004 M. Ablikim et al. (BES III Collab.)ABLIKIM 12J PR D86 052011 M. Ablikim et al. (BES III Collab.)ABLIKIM 12O PRL 109 172002 M. Ablikim et al. (BES III Collab.)LEES 12AE PR D86 092005 J.P. Lees et al. (BABAR Collab.)LIU 12B PRL 108 232001 Z.Q. Liu et al. (BELLE Collab.)ABLIKIM 11A PR D83 012006 M. Ablikim et al. (BES III Collab.)ABLIKIM 11E PR D83 112005 M. Ablikim et al. (BES III Collab.)ABLIKIM 11F PR D83 112009 M. Ablikim et al. (BES III Collab.)ABLIKIM 11I PR D84 092006 M. Ablikim et al. (BES III Collab.)ABLIKIM 11K PRL 107 092001 M. Ablikim et al. (BES III Collab.)DEL-AMO-SA... 11M PR D84 012004 P. del Amo San
hez et al. (BABAR Collab.)ABLIKIM 10A PR D81 052005 M. Ablikim et al. (BES III Collab.)ONYISI 10 PR D82 011103 P.U.E. Onyisi et al. (CLEO Collab.)UEHARA 10A PR D82 114031 S. Uehara et al. (BELLE Collab.)ARTUSO 09 PR D80 112003 M. Artuso et al. (CLEO Collab.)ASNER 09 PR D79 072007 D.M. Asner et al. (CLEO Collab.)

UEHARA 09 PR D79 052009 S. Uehara et al. (BELLE Collab.)BENNETT 08A PRL 101 151801 J.V. Bennett et al. (CLEO Collab.)ECKLUND 08A PR D78 091501 K.M. E
klund et al. (CLEO Collab.)HE 08B PR D78 092004 Q. He et al. (CLEO Collab.)MENDEZ 08 PR D78 011102 H. Mendez et al. (CLEO Collab.)NAIK 08 PR D78 031101 P. Naik et al. (CLEO Collab.)UEHARA 08 EPJ C53 1 S. Uehara et al. (BELLE Collab.)ADAMS 07 PR D75 071101 G.S. Adams et al. (CLEO Collab.)ATHAR 07 PR D75 032002 S.B. Athar et al. (CLEO Collab.)CHEN 07B PL B651 15 W.T. Chen et al. (BELLE Collab.)ABLIKIM 06D PR D73 052006 M. Ablikim et al. (BES Collab.)ABLIKIM 06I PR D74 012004 M. Ablikim et al. (BES Collab.)ABLIKIM 06R PR D74 072001 M. Ablikim et al. (BES Collab.)ABLIKIM 06T PL B642 197 M. Ablikim et al. (BES Collab.)DOBBS 06 PR D73 071101 S. Dobbs et al. (CLEO Collab.)ABLIKIM 05G PR D71 092002 M. Ablikim et al. (BES Collab.)ABLIKIM 05N PL B630 7 M. Ablikim et al. (BES Collab.)ABLIKIM 05O PL B630 21 M. Ablikim et al. (BES Collab.)ADAM 05A PRL 94 232002 N.E. Adam et al. (CLEO Collab.)ANDREOTTI 05A NP B717 34 M. Andreotti et al. (FNAL E835 Collab.)NAKAZAWA 05 PL B615 39 H. Nakazawa et al. (BELLE Collab.)ABLIKIM 04B PR D70 012003 M. Ablikim et al. (BES Collab.)ABLIKIM 04H PR D70 092003 M. Ablikim et al. (BES Collab.)ABLIKIM 04I PR D70 092004 M. Ablikim et al. (BES Collab.)ATHAR 04 PR D70 112002 S.B. Athar et al. (CLEO Collab.)BAI 04F PR D69 092001 J.Z. Bai et al. (BES Collab.)BAI 04I PR D70 012006 J.Z. Bai et al. (BES Collab.)AULCHENKO 03 PL B573 63 V.M. Aul
henko et al. (KEDR Collab.)BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.)BAI 03E PR D67 112001 J.Z. Bai et al. (BES Collab.)ABE 02T PL B540 33 K. Abe et al. (BELLE Collab.)AMBROGIANI 02 PR D65 052002 M. Ambrogiani et al. (FNAL E835 Collab.)EISENSTEIN 01 PRL 87 061801 B.I. Eisenstein et al. (CLEO Collab.)AMBROGIANI 00B PR D62 052002 M. Ambrogiani et al. (FNAL E835 Collab.)ACCIARRI 99E PL B453 73 M. A

iarri et al. (L3 Collab.)BAI 99B PR D60 072001 J.Z. Bai et al. (BES Collab.)ACKER..,K... 98 PL B439 197 K. A
kersta� et al. (OPAL Collab.)BAI 98D PR D58 092006 J.Z. Bai et al. (BES Collab.)BAI 98I PRL 81 3091 J.Z. Bai et al. (BES Collab.)DOMINICK 94 PR D50 4265 J. Domini
k et al. (CLEO Collab.)ARMSTRONG 93 PRL 70 2988 T.A. Armstrong et al. (FNAL E760 Collab.)ARMSTRONG 93E PR D48 3037 T.A. Armstrong et al. (FNAL-E760 Collab.)BAUER 93 PL B302 345 D.A. Bauer et al. (TPC Collab.)ARMSTRONG 92 NP B373 35 T.A. Armstrong et al. (FNAL, FERR, GENO+)Also PRL 68 1468 T.A. Armstrong et al. (FNAL, FERR, GENO+)BAGLIN 87B PL B187 191 C. Baglin et al. (R704 Collab.)BAGLIN 86B PL B172 455 C. Baglin (LAPP, CERN, GENO, LYON, OSLO+)GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.)LEE 85 SLAC 282 R.A. Lee (SLAC)LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+)OREGLIA 82 PR D25 2259 M.J. Oreglia et al. (SLAC, CIT, HARV+)Also Private Comm. M.J. Oreglia (EFI)BARATE 81 PR D24 2994 R. Barate et al. (SACL, LOIC, SHMP, CERN+)HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC)Also Private Comm. G. Trilling (LBL, UCB)BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.)BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP)TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL)Also Private Comm. G. Trilling (LBL, UCB)BIDDICK 77 PRL 38 1324 C.J. Biddi
k et al. (UCSD, UMD, PAVI+)WHITAKER 76 PRL 37 1596 J.S. Whitaker et al. (SLAC, LBL)
η
(2S) IG (JPC ) = 0+(0−+)Quantum numbers are quark model predi
tions.

η
 (2S) MASSη
 (2S) MASSη
 (2S) MASSη
 (2S) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3639.2±1.2 OUR AVERAGE3639.2±1.2 OUR AVERAGE3639.2±1.2 OUR AVERAGE3639.2±1.2 OUR AVERAGE3637.0±5.7±3.4 178 1,2 LEES 14E BABR γ γ → K+K−π03635.1±5.8±2.1 47 1,3 LEES 14E BABR γ γ → K+K− η3646.9±1.6±3.6 57 ± 17 ABLIKIM 13K BES3 ψ(2S) →
γK0S K±π∓π+π−3637.6±2.9±1.6 127 ± 18 4 ABLIKIM 12G BES3 ψ(2S) → γK0K π,KK π03638.5±1.5±0.8 624 1 DEL-AMO-SA...11M BABR γ γ → K0S K±π∓3640.5±3.2±2.5 1201 1 DEL-AMO-SA...11M BABR γ γ → K+K−π+π−π03636.1+3.9

−4.2+0.7
−2.0 128 5 VINOKUROVA 11 BELL B± → K±(K0S K±π∓)3626 ±5 ±6 311 6 ABE 07 BELL e+ e− → J/ψ (
 
)3645.0±5.5+4.9
−7.8 121 ± 27 AUBERT 05C BABR e+ e− → J/ψ
 
3642.9±3.1±1.5 61 ASNER 04 CLEO γ γ → η
 → K0S K±π∓

• • • We do not use the following data for averages, �ts, limits, et
. • • •3639 ±7 98 ± 52 7 AUBERT 06E BABR B± → K±X
 
3630.8±3.4±1.0 112 ± 24 8 AUBERT 04D BABR γ γ → η
 (2S) → K K π3654 ±6 ±8 39 ± 11 9 CHOI 02 BELL B → K KS K−π+3594 ±5 10 EDWARDS 82C CBAL e+ e− → γX1 Ignoring possible interferen
e with 
ontinuum.2With a width �xed to 11.3 MeV.3With a width �xed to 11.3 MeV. Using both η → γ γ and η → π+π−π0 de
ays.4 From a simultaneous �t to K0S K±π∓ and K+K−π0 de
ay modes.5A

ounts for interferen
e with non-resonant 
ontinuum.6From a �t of the J/ψ re
oil mass spe
trum. Supersedes ABE,K 02 and ABE 04G.7 From the �t of the kaon momentum spe
trum. Systemati
 errors not evaluated.8 Superseded by DEL-AMO-SANCHEZ 11M.9 Superseded by VINOKUROVA 11.10Assuming mass of ψ(2S) = 3686 MeV.
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η
(2S)

η
 (2S) WIDTHη
 (2S) WIDTHη
 (2S) WIDTHη
 (2S) WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT11.3+ 3.2
− 2.9 OUR AVERAGE11.3+ 3.2
− 2.9 OUR AVERAGE11.3+ 3.2
− 2.9 OUR AVERAGE11.3+ 3.2
− 2.9 OUR AVERAGE9.9± 4.8±2.9 57 ± 17 ABLIKIM 13K BES3 ψ(2S) →

γK0S K±π∓π+π−16.9± 6.4±4.8 127 ± 18 11 ABLIKIM 12G BES3 ψ(2S) → γK0K π,K K π013.4± 4.6±3.2 624 12 DEL-AMO-SA...11M BABR γ γ → K0S K±π∓6.6+ 8.4
− 5.1+2.6

−0.9 128 13 VINOKUROVA 11 BELL B± →K±(K0S K±π∓)6.3±12.4±4.0 61 ASNER 04 CLEO γ γ → η
 →K0S K±π∓

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 23 90 98 ± 52 14 AUBERT 06E BABR B± → K±X
 
22 ±14 121 ± 27 AUBERT 05C BABR e+ e− → J/ψ
 
17.0± 8.3±2.5 112 ± 24 15 AUBERT 04D BABR γ γ → η
 (2S) →K K π
<55 90 39 ± 11 16 CHOI 02 BELL B → K KS K−π+
<8.0 95 17 EDWARDS 82C CBAL e+ e− → γX11From a simultaneous �t to K0S K±π∓ and K+K−π0 de
ay modes.12 Ignoring possible interferen
e with 
ontinuum.13A

ounts for interferen
e with non-resonant 
ontinuum.14From the �t of the kaon momentum spe
trum. Systemati
 errors not evaluated.15 Superseded by DEL-AMO-SANCHEZ 11M.16 For a mass value of 3654 ± 6 MeV. Superseded by VINOKUROVA 11.17For a mass value of 3594 ± 5 MeV

η
 (2S) DECAY MODESη
 (2S) DECAY MODESη
 (2S) DECAY MODESη
 (2S) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 hadrons not seen�2 K K π ( 1.9±1.2) %�3 K K η ( 5 ±4 )× 10−3�4 2π+2π− not seen�5 ρ0 ρ0 not seen�6 3π+3π− not seen�7 K+K−π+π− not seen�8 K∗0K∗0 not seen�9 K+K−π+π−π0 ( 1.4±1.0) %�10 K+K−2π+2π− not seen�11 K0S K−2π+π−+ 
.
. seen�12 2K+2K− not seen�13 φφ not seen�14 pp < 2.0 × 10−3 90%�15 γ γ ( 1.9±1.3)× 10−4�16 π+π−η not seen�17 π+π−η′ not seen�18 π+π−η
 (1S) < 25 % 90%
η
 (2S) PARTIAL WIDTHSη
 (2S) PARTIAL WIDTHSη
 (2S) PARTIAL WIDTHSη
 (2S) PARTIAL WIDTHS�(γ γ

) �15�(γ γ
) �15�(γ γ
) �15�(γ γ
) �15VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.3±0.6 18 ASNER 04 CLEO γ γ → η
 → K0S K±π∓18They measure �(η
 (2S)γ γ) B(η
 (2S) → KK π) = (0.18± 0.05± 0.02) �(η
 (1S)γ γ)B(η
 (1S) → K K π). The value for �(η
 (2S) → γ γ) is derived assuming thatthe bran
hing fra
tions for η
 (2S) and η
 (1S) de
ays to KS K π are equal and using�(η
 (1S) → γ γ) = 7.4 ± 0.4 ± 2.3 keV.
η
 (2S) �(i)�(γ γ)/�(total)η
 (2S) �(i)�(γ γ)/�(total)η
 (2S) �(i)�(γ γ)/�(total)η
 (2S) �(i)�(γ γ)/�(total)�(2π+2π−)

× �(γ γ
)/�total �4�15/��(2π+2π−)

× �(γ γ
)/�total �4�15/��(2π+2π−)

× �(γ γ
)/�total �4�15/��(2π+2π−)

× �(γ γ
)/�total �4�15/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<6.5<6.5<6.5<6.5 90 UEHARA 08 BELL γ γ → η
 (2S) → 2(π+π−)�(K K π
)

× �(γ γ
)/�total �2�15/��(K K π

)

× �(γ γ
)/�total �2�15/��(K K π

)

× �(γ γ
)/�total �2�15/��(K K π

)

× �(γ γ
)/�total �2�15/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT41±4±641±4±641±4±641±4±6 624 19 DEL-AMO-SA...11M BABR γ γ → K0S K±π∓19Not independent from other measurements reported in DEL-AMO-SANCHEZ 11M.�(K+K−π+π−)

× �(γ γ
)/�total �7�15/��(K+K−π+π−)

× �(γ γ
)/�total �7�15/��(K+K−π+π−)

× �(γ γ
)/�total �7�15/��(K+K−π+π−)

× �(γ γ
)/�total �7�15/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<5.0<5.0<5.0<5.0 90 UEHARA 08 BELL γ γ → η
 (2S) → K+K−π+π−

�(K+K−π+π−π0) × �(γ γ
)/�total �9�15/��(K+K−π+π−π0) × �(γ γ
)/�total �9�15/��(K+K−π+π−π0) × �(γ γ
)/�total �9�15/��(K+K−π+π−π0) × �(γ γ
)/�total �9�15/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT30±6±530±6±530±6±530±6±5 1201 20 DEL-AMO-SA...11M BABR γ γ → K+K−π+π−π020Not independent from other measurements reported in DEL-AMO-SANCHEZ 11M.�(2K+2K−)

× �(γ γ
)/�total �12�15/��(2K+2K−)

× �(γ γ
)/�total �12�15/��(2K+2K−)

× �(γ γ
)/�total �12�15/��(2K+2K−)

× �(γ γ
)/�total �12�15/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<2.9<2.9<2.9<2.9 90 UEHARA 08 BELL γ γ → η
 (2S) → 2(K+K−)�(π+π−η
 (1S)) × �(γ γ
)/�total �18�15/��(π+π−η
 (1S)) × �(γ γ
)/�total �18�15/��(π+π−η
 (1S)) × �(γ γ
)/�total �18�15/��(π+π−η
 (1S)) × �(γ γ
)/�total �18�15/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<133<133<133<133 90 LEES 12AE BABR e+ e− →e+ e−π+π− η

η
 (2S) �(i)�(γ γ)/�2(total)η
 (2S) �(i)�(γ γ)/�2(total)η
 (2S) �(i)�(γ γ)/�2(total)η
 (2S) �(i)�(γ γ)/�2(total)�(pp)/�total × �(γ γ

)/�total �14/�× �15/��(pp)/�total × �(γ γ
)/�total �14/�× �15/��(pp)/�total × �(γ γ
)/�total �14/�× �15/��(pp)/�total × �(γ γ
)/�total �14/�× �15/�VALUE (units 10−8) CL% DOCUMENT ID TECN COMMENT

< 5.6< 5.6< 5.6< 5.6 9021,22,23 AMBROGIANI 01 E835 pp → γ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 8.0 9021,22,24 AMBROGIANI 01 E835 pp → γ γ

<12.0 90 22,24 AMBROGIANI 01 E835 pp → γ γ21 In
luding the measurements of of ARMSTRONG 95F in the AMBROGIANI 01 analysis.22 For a total width �=5 MeV.23For the resonan
e mass region 3589{3599 MeV/
2.24 For the resonan
e mass region 3575{3660 MeV/
2.
η
 (2S) BRANCHING RATIOSη
 (2S) BRANCHING RATIOSη
 (2S) BRANCHING RATIOSη
 (2S) BRANCHING RATIOS�(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen ABREU 98O DLPH e+ e− → e+ e− + hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 25 EDWARDS 82C CBAL e+ e− → γX25For a mass value of 3594 ± 5 MeV�(K K π
)/�total �2/��(K K π
)/�total �2/��(K K π
)/�total �2/��(K K π
)/�total �2/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.9±0.4±1.11.9±0.4±1.11.9±0.4±1.11.9±0.4±1.1 59 ± 12 26 AUBERT 08AB BABR B → η
 (2S)K → KK πK

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 127 ± 18 ABLIKIM 13K BES3 ψ(2S) → γK K πseen 39 ± 11 27 CHOI 02 BELL B → K KS K−π+26Derived from a measurement of [B(B+ → η
 (2S)K+) × B(η
 (2S) → K K π)℄ /[B(B+ → η
 K+) × B(η
 → K K π)℄ = (9.6+2.0
−1.9 ± 2.5)% and using B(B+ →

η
 (2S)K+) = (3.4 ± 1.8) × 10−4, and [B(B+ → η
 K+) × B(η
 → K K π)℄ =(6.88 ± 0.77+0.55
−0.66)× 10−5.27 For a mass value of 3654 ± 6 MeV�(K K η

)/�(K K π
) �3/�2�(K K η

)/�(K K π
) �3/�2�(K K η

)/�(K K π
) �3/�2�(K K η

)/�(K K π
) �3/�2VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT27.3±7.0±9.027.3±7.0±9.027.3±7.0±9.027.3±7.0±9.0 225 28 LEES 14E BABR γ γ → K+K− γ γ28 LEES 14E reports B(η
 (2S) → K+K− η)/B(η
 (2S) → K+K−π0) = 0.82 ± 0.21 ±0.27, whi
h we divide by 3 to a

ount for isospin symmetry.�(2π+2π−)/�total �4/��(2π+2π−)/�total �4/��(2π+2π−)/�total �4/��(2π+2π−)/�total �4/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen UEHARA 08 BELL γ γ → η
 (2S)�(ρ0 ρ0)/�total �5/��(ρ0 ρ0)/�total �5/��(ρ0 ρ0)/�total �5/��(ρ0 ρ0)/�total �5/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen ABLIKIM 11H BES3 ψ(2S) → γ 2π+2π−�(K+K−π+π−)/�total �7/��(K+K−π+π−)/�total �7/��(K+K−π+π−)/�total �7/��(K+K−π+π−)/�total �7/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen UEHARA 08 BELL γ γ → η
 (2S)�(K+K−π+π−π0)/�(KK π

) �9/�2�(K+K−π+π−π0)/�(KK π
) �9/�2�(K+K−π+π−π0)/�(KK π
) �9/�2�(K+K−π+π−π0)/�(KK π
) �9/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.73±0.17±0.170.73±0.17±0.170.73±0.17±0.170.73±0.17±0.17 1201 29 DEL-AMO-SA...11M BABR γ γ → K+K−π+π−π029We have multiplied the value of �(K+K−π+π−π0)/�(K0S K±π∓) reported in DEL-AMO-SANCHEZ 11M by a fa
tor 1/3 to obtain �(K+K−π+π−π0)/�(K K π

). Notindependent from other measurements reported in DEL-AMO-SANCHEZ 11M.�(K∗0K∗0)/�total �8/��(K∗0K∗0)/�total �8/��(K∗0K∗0)/�total �8/��(K∗0K∗0)/�total �8/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen ABLIKIM 11H BES3 ψ(2S) → γK+K−π+π−�(K0S K−2π+π−+ 
.
.)/�total �11/��(K0S K−2π+π−+ 
.
.)/�total �11/��(K0S K−2π+π−+ 
.
.)/�total �11/��(K0S K−2π+π−+ 
.
.)/�total �11/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 57±17 ABLIKIM 13K BES3 ψ(2S) → γK0S K±π∓π+π−
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η
(2S), ψ(2S)�(2K+2K−)/�total �12/��(2K+2K−)/�total �12/��(2K+2K−)/�total �12/��(2K+2K−)/�total �12/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen UEHARA 08 BELL γ γ → η
 (2S)�(φφ

)/�total �13/��(φφ
)/�total �13/��(φφ
)/�total �13/��(φφ
)/�total �13/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen ABLIKIM 11H BES3 ψ(2S) → γK+K−K+K−�(γ γ
)/�total �15/��(γ γ
)/�total �15/��(γ γ
)/�total �15/��(γ γ
)/�total �15/�VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5 × 10−4 90 30 WICHT 08 BELL B± → K± γ γnot seen AMBROGIANI 01 E835 pp → γ γ

<0.01 90 LEE 85 CBAL ψ′ → photons30WICHT 08 reports [�(

η
 (2S) → γ γ
)/�total℄× [B(B+ → η
 (2S)K+)℄ < 0.18×10−6whi
h we divide by our best value B(B+ → η
 (2S)K+) = 3.4× 10−4.�(π+π−η
 (1S))/�(K K π

) �18/�2�(π+π−η
 (1S))/�(K K π
) �18/�2�(π+π−η
 (1S))/�(K K π
) �18/�2�(π+π−η
 (1S))/�(K K π
) �18/�2VALUE CL% DOCUMENT ID TECN COMMENT

<3.33<3.33<3.33<3.33 90 31 LEES 12AE BABR e+ e− →e+ e−π+π− η
31We divided the reported limit by 3 to take into a

ount isospin relations.
η
 (2S) CROSS-PARTICLE BRANCHING RATIOSη
 (2S) CROSS-PARTICLE BRANCHING RATIOSη
 (2S) CROSS-PARTICLE BRANCHING RATIOSη
 (2S) CROSS-PARTICLE BRANCHING RATIOS�(η
 (2S)→ 2π+2π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�4/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ 2π+2π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�4/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ 2π+2π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�4/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ 2π+2π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�4/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT

<14.6× 10−6<14.6× 10−6<14.6× 10−6<14.6× 10−6 90 32 CRONIN-HEN...10 CLEO ψ(2S) → γ 2π+2π−32Assuming �(η
 (2S)) = 14 MeV. CRONIN-HENNESSY 10 gives the analyti
 dependen
eof limits on width.�(η
 (2S)→ ρ0ρ0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�5/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ ρ0ρ0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�5/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ ρ0ρ0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�5/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ ρ0ρ0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�5/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT
<12.7× 10−7<12.7× 10−7<12.7× 10−7<12.7× 10−7 90 ABLIKIM 11H BES3 ψ(2S) → γ 2π+2π−�(η
 (2S)→ 3π+3π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�6/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ 3π+3π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�6/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ 3π+3π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�6/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ 3π+3π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�6/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT
<13.2× 10−6<13.2× 10−6<13.2× 10−6<13.2× 10−6 90 33 CRONIN-HEN...10 CLEO ψ(2S) → γ 3π+3π−33Assuming �(η
 (2S)) = 14 MeV. CRONIN-HENNESSY 10 gives the analyti
 dependen
eof limits on width.�(η
 (2S)→ K+K−π+π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�7/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K+K−π+π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�7/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K+K−π+π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�7/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K+K−π+π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�7/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT
<9.6× 10−6<9.6× 10−6<9.6× 10−6<9.6× 10−6 90 34 CRONIN-HEN...10 CLEO ψ(2S) → γK+K−π+π−34Assuming �(η
 (2S)) = 14 MeV. CRONIN-HENNESSY 10 gives the analyti
 dependen
eof limits on width.�(η
 (2S)→ K∗0K∗0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�8/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K∗0K∗0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�8/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K∗0K∗0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�8/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K∗0K∗0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�8/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT
<19.6× 10−7<19.6× 10−7<19.6× 10−7<19.6× 10−7 90 ABLIKIM 11H BES3 ψ(2S) → γK+K−π+π−�(η
 (2S)→ K+K−π+π−π0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�9/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K+K−π+π−π0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�9/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K+K−π+π−π0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�9/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K+K−π+π−π0)/�total × �(ψ(2S)→ γ η
 (2S))/�total�9/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT
<43.0× 10−6<43.0× 10−6<43.0× 10−6<43.0× 10−6 90 35 CRONIN-HEN...10 CLEO ψ(2S) →

γK+K−π+π−π035Assuming �(η
 (2S)) = 14 MeV. CRONIN-HENNESSY 10 gives the analyti
 dependen
eof limits on width.�(η
 (2S)→ K+K−2π+2π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�10/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K+K−2π+2π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�10/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K+K−2π+2π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�10/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K+K−2π+2π−)/�total × �(ψ(2S)→ γ η
 (2S))/�total�10/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT
<9.7× 10−6<9.7× 10−6<9.7× 10−6<9.7× 10−6 90 36 CRONIN-HEN...10 CLEO ψ(2S) → γK+K− 2π+2π−36Assuming �(η
 (2S)) = 14 MeV. CRONIN-HENNESSY 10 gives the analyti
 dependen
eof limits on width.�(η
 (2S)→ K0S K−2π+π−+ 
.
.)/�total × �(ψ(2S)→ γ η
 (2S))/�total �11/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K0S K−2π+π−+ 
.
.)/�total × �(ψ(2S)→ γ η
 (2S))/�total �11/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K0S K−2π+π−+ 
.
.)/�total × �(ψ(2S)→ γ η
 (2S))/�total �11/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K0S K−2π+π−+ 
.
.)/�total × �(ψ(2S)→ γ η
 (2S))/�total �11/�× �ψ(2S)136 /�ψ(2S)VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT7.03±2.10±0.77.03±2.10±0.77.03±2.10±0.77.03±2.10±0.7 60 ABLIKIM 13K BES3 ψ(2S) →

γK0S K− 2π+π− +
.
.
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 15.2 90 37 CRONIN-HEN...10 CLEO ψ(2S) →

γK0S K− 2π+π− +
.
.37Assuming �(η
 (2S)) = 14 MeV. CRONIN-HENNESSY 10 gives the analyti
 dependen
eof limits on width.

�(η
 (2S)→ φφ
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�13/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ φφ
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�13/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ φφ
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�13/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ φφ
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�13/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT

<7.8× 10−7<7.8× 10−7<7.8× 10−7<7.8× 10−7 90 ABLIKIM 11H BES3 ψ(2S) → γK+K−K+K−�(η
 (2S)→ π+π− η
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�16/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ π+π− η
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�16/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ π+π− η
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�16/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ π+π− η
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�16/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT

<4.3× 10−6<4.3× 10−6<4.3× 10−6<4.3× 10−6 90 38 CRONIN-HEN...10 CLEO ψ(2S) → γπ+π− η38Assuming �(η
 (2S)) = 14 MeV. CRONIN-HENNESSY 10 gives the analyti
 dependen
eof limits on width.�(η
 (2S)→ π+π− η′
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�17/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ π+π− η′
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�17/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ π+π− η′
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�17/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ π+π− η′
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�17/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT

<14.2× 10−6<14.2× 10−6<14.2× 10−6<14.2× 10−6 90 39 CRONIN-HEN...10 CLEO ψ(2S) → γπ+π− η′39Assuming �(η
 (2S)) = 14 MeV. CRONIN-HENNESSY 10 gives the analyti
 dependen
eof limits on width.�(η
 (2S)→ K K η
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�3/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K K η
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�3/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K K η
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�3/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ K K η
)/�total × �(ψ(2S)→ γ η
 (2S))/�total�3/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<11.8× 10−6 90 40 CRONIN-HEN...10 CLEO ψ(2S) → γK+K− η40CRONIN-HENNESSY 10 reports a limit of < 5.9 × 10−6 for the de
ay η
 (2S) →K+K− η whi
h we multiply by 2 a

ount for isospin symmetry. It assumes �(η
 (2S))= 14 MeV. It also gives the analyti
 dependen
e of limits on width.�(η
 (2S)→ π+π− η
 (1S))/�total × �(ψ(2S)→ γ η
 (2S))/�total�18/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ π+π− η
 (1S))/�total × �(ψ(2S)→ γ η
 (2S))/�total�18/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ π+π− η
 (1S))/�total × �(ψ(2S)→ γ η
 (2S))/�total�18/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ π+π− η
 (1S))/�total × �(ψ(2S)→ γ η
 (2S))/�total�18/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT
<1.7× 10−4<1.7× 10−4<1.7× 10−4<1.7× 10−4 90 41 CRONIN-HEN...10 CLEO ψ(2S) → γπ+π− η
 (1S)41Assuming �(η
 (2S)) = 14 MeV. CRONIN-HENNESSY 10 gives the analyti
 dependen
eof limits on width.�(η
 (2S)→ pp)/�total × �(ψ(2S)→ γ η
 (2S))/�total�14/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ pp)/�total × �(ψ(2S)→ γ η
 (2S))/�total�14/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ pp)/�total × �(ψ(2S)→ γ η
 (2S))/�total�14/�× �ψ(2S)136 /�ψ(2S)�(η
 (2S)→ pp)/�total × �(ψ(2S)→ γ η
 (2S))/�total�14/�× �ψ(2S)136 /�ψ(2S)VALUE CL% DOCUMENT ID TECN COMMENT
<1.4× 10−6<1.4× 10−6<1.4× 10−6<1.4× 10−6 90 ABLIKIM 13V BES3 ψ(2S) → γ pp

η
 (2S) REFERENCESη
 (2S) REFERENCESη
 (2S) REFERENCESη
 (2S) REFERENCESLEES 14E PR D89 112004 J.P. Lees et al. (BABAR Collab.)ABLIKIM 13K PR D87 052005 M. Ablikim et al. (BES III Collab.)ABLIKIM 13V PR D88 112001 M. Ablikim et al. (BES III Collab.)ABLIKIM 12G PRL 109 042003 M. Ablikim et al. (BES III Collab.)LEES 12AE PR D86 092005 J.P. Lees et al. (BABAR Collab.)ABLIKIM 11H PR D84 091102 M. Ablikim et al. (BES III Collab.)DEL-AMO-SA... 11M PR D84 012004 P. del Amo San
hez et al. (BABAR Collab.)VINOKUROVA 11 PL B706 139 A. Vinokurova et al. (BELLE Collab.)CRONIN-HEN... 10 PR D81 052002 D. Cronin-Hennessey et al. (CLEO Collab.)AUBERT 08AB PR D78 012006 B. Aubert et al. (BABAR Collab.)UEHARA 08 EPJ C53 1 S. Uehara et al. (BELLE Collab.)WICHT 08 PL B662 323 J. Wi
ht et al. (BELLE Collab.)ABE 07 PRL 98 082001 K. Abe et al. (BELLE Collab.)AUBERT 06E PRL 96 052002 B. Aubert et al. (BABAR Collab.)AUBERT 05C PR D72 031101 B. Aubert et al. (BABAR Collab.)ABE 04G PR D70 071102 K. Abe et al. (BELLE Collab.)ASNER 04 PRL 92 142001 D.M. Asner et al. (CLEO Collab.)AUBERT 04D PRL 92 142002 B. Aubert et al. (BABAR Collab.)ABE,K 02 PRL 89 142001 K. Abe et al. (BELLE Collab.)CHOI 02 PRL 89 102001 S.-K. Choi et al. (BELLE Collab.)AMBROGIANI 01 PR D64 052003 M. Ambrogiani et al. (FNAL E835 Collab.)ABREU 98O PL B441 479 P. Abreu et al. (DELPHI Collab.)ARMSTRONG 95F PR D52 4839 T.A. Armstrong et al. (FNAL, FERR, GENO+)LEE 85 SLAC 282 R.A. Lee (SLAC)EDWARDS 82C PRL 48 70 C. Edwards et al. (CIT, HARV, PRIN+)
ψ(2S) IG (JPC ) = 0−(1−−)See the Review on \ψ(2S) and χ
 bran
hing ratios" before the

χ
0(1P) Listings.
ψ(2S) MASSψ(2S) MASSψ(2S) MASSψ(2S) MASSOUR FIT in
ludes measurements of mψ(2S), mψ(3770), andmψ(3770) − mψ(2S).VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3686.097±0.025 OUR FIT3686.097±0.025 OUR FIT3686.097±0.025 OUR FIT3686.097±0.025 OUR FIT Error in
ludes s
ale fa
tor of 2.6.3686.097±0.010 OUR AVERAGE3686.097±0.010 OUR AVERAGE3686.097±0.010 OUR AVERAGE3686.097±0.010 OUR AVERAGE3686.099±0.004±0.009 1 ANASHIN 15 KEDR e+ e− → hadrons3686.12 ±0.06 ±0.10 4k AAIJ 12H LHCB pp → J/ψπ+π−X3685.95 ±0.10 413 2 ARTAMONOV 00 OLYA e+ e− → hadrons3685.98 ±0.09 ±0.04 3 ARMSTRONG 93B E760 pp → e+ e−



1420142014201420MesonParti
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ψ(2S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3686.114±0.007+0.011

−0.016 4 ANASHIN 12 KEDR e+ e− → hadrons3686.111±0.025±0.009 AULCHENKO 03 KEDR e+ e− → hadrons3686.00 ±0.10 413 5 ZHOLENTZ 80 OLYA e+ e−1Supersedes AULCHENKO 03 and ANASHIN 12.2Reanalysis of ZHOLENTZ 80 using new ele
tron mass (COHEN 87) and radiative 
or-re
tions (KURAEV 85).3Mass 
entral value and systemati
 error re
al
ulated by us a

ording to Eq. (16) inARMSTRONG 93B, using the value for the J/ψ(1S) mass from AULCHENKO 03.4 From the s
ans in 2004 and 2006. ANASHIN 12 reports the value 3686.114 ± 0.007 ±0.011+0.002
−0.012 MeV, where the third un
ertainty is due to assumptions on the interfer-en
e between the resonan
e and hadroni
 
ontinuum. We 
ombined the two systemati
un
ertainties.5 Superseded by ARTAMONOV 00.mψ(2S) − mJ/ψ(1S)mψ(2S) − mJ/ψ(1S)mψ(2S) − mJ/ψ(1S)mψ(2S) − mJ/ψ(1S)VALUE (MeV) DOCUMENT ID TECN COMMENT589.188±0.028 OUR AVERAGE589.188±0.028 OUR AVERAGE589.188±0.028 OUR AVERAGE589.188±0.028 OUR AVERAGE589.194±0.027±0.011 1 AULCHENKO 03 KEDR e+ e− → hadrons589.7 ±1.2 LEMOIGNE 82 GOLI 185 π−Be → γµ+µ−A589.07 ±0.13 1 ZHOLENTZ 80 OLYA e+ e−588.7 ±0.8 LUTH 75 MRK1

• • • We do not use the following data for averages, �ts, limits, et
. • • •588 ±1 2 BAI 98E BES e+ e−1Redundant with data in mass above.2 Systemati
 errors not evaluated.
ψ(2S) WIDTHψ(2S) WIDTHψ(2S) WIDTHψ(2S) WIDTHVALUE (keV) EVTS DOCUMENT ID TECN COMMENT296± 8 OUR FIT296± 8 OUR FIT296± 8 OUR FIT296± 8 OUR FIT286±16 OUR AVERAGE286±16 OUR AVERAGE286±16 OUR AVERAGE286±16 OUR AVERAGE358±88± 4 ABLIKIM 08B BES2 e+ e− → hadrons290±25± 4 2.7k ANDREOTTI 07 E835 pp → e+ e−, J/ψX331±58± 2 ABLIKIM 06L BES2 e+ e− → hadrons264±27 1 BAI 02B BES2 e+ e−287±37±16 2 ARMSTRONG 93B E760 pp → e+ e−1From a simultaneous �t to the hadroni
 and µ+µ− 
ross se
tion, assuming � = �h +�e + �µ + �τ and lepton universality. Does not in
lude va
uum polarization 
orre
tion.2The initial-state radiation 
orre
tion reevaluated by ANDREOTTI 07 in its Ref. [4℄.

ψ(2S) DECAY MODESψ(2S) DECAY MODESψ(2S) DECAY MODESψ(2S) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 hadrons (97.85 ±0.13 ) %�2 virtualγ → hadrons ( 1.73 ±0.14 ) % S=1.5�3 g g g (10.6 ±1.6 ) %�4 γ g g ( 1.03 ±0.29 ) %�5 light hadrons (15.4 ±1.5 ) %�6 e+ e− ( 7.89 ±0.17 )× 10−3�7 µ+µ− ( 7.9 ±0.9 )× 10−3�8 τ+ τ− ( 3.1 ±0.4 )× 10−3De
ays into J/ψ(1S) and anythingDe
ays into J/ψ(1S) and anythingDe
ays into J/ψ(1S) and anythingDe
ays into J/ψ(1S) and anything�9 J/ψ(1S)anything (61.0 ±0.6 ) %�10 J/ψ(1S)neutrals (25.14 ±0.33 ) %�11 J/ψ(1S)π+π− (34.49 ±0.30 ) %�12 J/ψ(1S)π0π0 (18.16 ±0.31 ) %�13 J/ψ(1S)η ( 3.36 ±0.05 ) %�14 J/ψ(1S)π0 ( 1.268±0.032)× 10−3Hadroni
 de
aysHadroni
 de
aysHadroni
 de
aysHadroni
 de
ays�15 π0 h
 (1P) ( 8.6 ±1.3 )× 10−4�16 3(π+π−)π0 ( 3.5 ±1.6 )× 10−3�17 2(π+π−)π0 ( 2.9 ±1.0 )× 10−3 S=4.7�18 ρa2(1320) ( 2.6 ±0.9 )× 10−4�19 pp ( 2.88 ±0.09 )× 10−4�20 �++�−− ( 1.28 ±0.35 )× 10−4�21 ��π0 < 2.9 × 10−6 CL=90%�22 ��η ( 2.5 ±0.4 )× 10−5�23 �pK+ ( 1.00 ±0.14 )× 10−4�24 �pK+π+π− ( 1.8 ±0.4 )× 10−4�25 ��π+π− ( 2.8 ±0.6 )× 10−4�26 �� ( 3.57 ±0.18 )× 10−4�27 ��+π−+ 
.
. ( 1.40 ±0.13 )× 10−4�28 ��−π++ 
.
. ( 1.54 ±0.14 )× 10−4�29 �0 pK++ 
.
. ( 1.67 ±0.18 )× 10−5�30 �+�− ( 2.51 ±0.21 )× 10−4

�31 �0�0 ( 2.32 ±0.16 )× 10−4�32 � (1385)+� (1385)− ( 1.1 ±0.4 )× 10−4�33 �−�+ ( 2.64 ±0.18 )× 10−4�34 � 0� 0 ( 2.07 ±0.23 )× 10−4�35 � (1530)0� (1530)0 ( 5.2 +3.2
−1.2 )× 10−5�36 K−��++ 
.
. ( 3.9 ±0.4 )× 10−5�37 � (1690)−�+

→ K−��++
.
. ( 5.2 ±1.6 )× 10−6�38 � (1820)−�+
→ K−��++
.
. ( 1.20 ±0.32 )× 10−5�39 K−�0�++ 
.
. ( 3.7 ±0.4 )× 10−5�40 
−
+ ( 4.7 ±1.0 )× 10−5�41 π0 pp ( 1.53 ±0.07 )× 10−4�42 N(940)p+ 
.
. → π0 pp ( 6.4 +1.8

−1.3 )× 10−5�43 N(1440)p+ 
.
. → π0 pp ( 7.3 +1.7
−1.5 )× 10−5 S=2.5�44 N(1520)p+ 
.
. → π0 pp ( 6.4 +2.3
−1.8 )× 10−6�45 N(1535)p+ 
.
. → π0 pp ( 2.5 ±1.0 )× 10−5�46 N(1650)p+ 
.
. → π0 pp ( 3.8 +1.4
−1.7 )× 10−5�47 N(1720)p+ 
.
. → π0 pp ( 1.79 +0.26
−0.70 )× 10−5�48 N(2300)p+ 
.
. → π0 pp ( 2.6 +1.2
−0.7 )× 10−5�49 N(2570)p+ 
.
. → π0 pp ( 2.13 +0.40
−0.31 )× 10−5�50 π0 f0(2100) → π0 pp ( 1.1 ±0.4 )× 10−5�51 ηpp ( 6.0 ±0.4 )× 10−5�52 η f0(2100) → ηpp ( 1.2 ±0.4 )× 10−5�53 N(1535)p → ηpp ( 4.4 ±0.7 )× 10−5�54 ωpp ( 6.9 ±2.1 )× 10−5�55 φpp < 2.4 × 10−5 CL=90%�56 π+π−pp ( 6.0 ±0.4 )× 10−4�57 pnπ− or 
.
. ( 2.48 ±0.17 )× 10−4�58 pnπ−π0 ( 3.2 ±0.7 )× 10−4�59 2(π+π−π0) ( 4.8 ±1.5 )× 10−3�60 ηπ+π− < 1.6 × 10−4 CL=90%�61 ηπ+π−π0 ( 9.5 ±1.7 )× 10−4�62 2(π+π−)η ( 1.2 ±0.6 )× 10−3�63 η′π+π−π0 ( 4.5 ±2.1 )× 10−4�64 ωπ+π− ( 7.3 ±1.2 )× 10−4 S=2.1�65 b±1 π∓ ( 4.0 ±0.6 )× 10−4 S=1.1�66 b01π0 ( 2.4 ±0.6 )× 10−4�67 ω f2(1270) ( 2.2 ±0.4 )× 10−4�68 π+π−K+K− ( 7.5 ±0.9 )× 10−4 S=1.9�69 ρ0K+K− ( 2.2 ±0.4 )× 10−4�70 K∗(892)0K∗2(1430)0 ( 1.9 ±0.5 )× 10−4�71 K+K−π+π−η ( 1.3 ±0.7 )× 10−3�72 K+K−2(π+π−)π0 ( 1.00 ±0.31 )× 10−3�73 K+K−2(π+π−) ( 1.9 ±0.9 )× 10−3�74 K1(1270)±K∓ ( 1.00 ±0.28 )× 10−3�75 K0S K0S π+π− ( 2.2 ±0.4 )× 10−4�76 ρ0 pp ( 5.0 ±2.2 )× 10−5�77 K+K∗(892)0π−+ 
.
. ( 6.7 ±2.5 )× 10−4�78 2(π+π−) ( 2.4 ±0.6 )× 10−4 S=2.2�79 ρ0π+π− ( 2.2 ±0.6 )× 10−4 S=1.4�80 K+K−π+π−π0 ( 1.26 ±0.09 )× 10−3�81 ω f0(1710) → ωK+K− ( 5.9 ±2.2 )× 10−5�82 K∗(892)0K−π+π0 + 
.
. ( 8.6 ±2.2 )× 10−4�83 K∗(892)+K−π+π− + 
.
. ( 9.6 ±2.8 )× 10−4�84 K∗(892)+K−ρ0 + 
.
. ( 7.3 ±2.6 )× 10−4�85 K∗(892)0K−ρ+ + 
.
. ( 6.1 ±1.8 )× 10−4�86 ηK+K− , no ηφ ( 3.1 ±0.4 )× 10−5�87 ωK+K− ( 1.62 ±0.11 )× 10−4 S=1.1�88 ωK∗(892)+K−+ 
.
. ( 2.07 ±0.26 )× 10−4�89 ωK∗2(1430)+K−+ 
.
. ( 6.1 ±1.2 )× 10−5�90 ωK∗(892)0K0 ( 1.68 ±0.30 )× 10−4�91 ωK∗2(1430)0K0 ( 5.8 ±2.2 )× 10−5�92 ωX (1440) → ωK0S K−π++
.
. ( 1.6 ±0.4 )× 10−5�93 ωX (1440) → ωK+K−π0 ( 1.09 ±0.26 )× 10−5�94 ω f1(1285) → ωK0S K−π++
.
. ( 3.0 ±1.0 )× 10−6�95 ω f1(1285) → ωK+K−π0 ( 1.2 ±0.7 )× 10−6�96 3(π+π−) ( 3.5 ±2.0 )× 10−4 S=2.8�97 ppπ+π−π0 ( 7.3 ±0.7 )× 10−4
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ψ(2S)�98 K+K− ( 7.5 ±0.5 )× 10−5�99 K0S K0L ( 5.34 ±0.33 )× 10−5�100 π+π−π0 ( 2.01 ±0.17 )× 10−4 S=1.7�101 ρ(2150)π → π+π−π0 ( 1.9 +1.2

−0.4 )× 10−4�102 ρ(770)π → π+π−π0 ( 3.2 ±1.2 )× 10−5 S=1.8�103 π+π− ( 7.8 ±2.6 )× 10−6�104 K1(1400)±K∓ < 3.1 × 10−4 CL=90%�105 K∗2(1430)±K∓ ( 7.1 +1.3
−0.9 )× 10−5�106 K+K−π0 ( 4.07 ±0.31 )× 10−5�107 K+K∗(892)−+ 
.
. ( 2.9 ±0.4 )× 10−5 S=1.2�108 K∗(892)0K0+ 
.
. ( 1.09 ±0.20 )× 10−4�109 φπ+π− ( 1.17 ±0.29 )× 10−4 S=1.7�110 φ f0(980) → π+π− ( 6.8 ±2.5 )× 10−5 S=1.2�111 2(K+K−) ( 6.0 ±1.4 )× 10−5�112 φK+K− ( 7.0 ±1.6 )× 10−5�113 2(K+K−)π0 ( 1.10 ±0.28 )× 10−4�114 φη ( 3.10 ±0.31 )× 10−5�115 φη′ ( 3.1 ±1.6 )× 10−5�116 ωη′ ( 3.2 +2.5
−2.1 )× 10−5�117 ωπ0 ( 2.1 ±0.6 )× 10−5�118 ρη′ ( 1.9 +1.7
−1.2 )× 10−5�119 ρη ( 2.2 ±0.6 )× 10−5 S=1.1�120 ωη < 1.1 × 10−5 CL=90%�121 φπ0 < 4 × 10−7 CL=90%�122 η
 π+π−π0 < 1.0 × 10−3 CL=90%�123 ppK+K− ( 2.7 ±0.7 )× 10−5�124 �nK0S+ 
.
. ( 8.1 ±1.8 )× 10−5�125 φ f ′2(1525) ( 4.4 ±1.6 )× 10−5�126 �(1540)�(1540) →K0S pK−n+ 
.
. < 8.8 × 10−6 CL=90%�127 �(1540)K−n → K0S pK−n < 1.0 × 10−5 CL=90%�128 �(1540)K0S p → K0S pK+n < 7.0 × 10−6 CL=90%�129 �(1540)K+n → K0S pK+n < 2.6 × 10−5 CL=90%�130 �(1540)K0S p → K0S pK−n < 6.0 × 10−6 CL=90%�131 K0S K0S < 4.6 × 10−6Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays�132 γχ
0(1P) ( 9.99 ±0.27 ) %�133 γχ
1(1P) ( 9.55 ±0.31 ) %�134 γχ
2(1P) ( 9.11 ±0.31 ) %�135 γ η
 (1S) ( 3.4 ±0.5 )× 10−3 S=1.3�136 γ η
 (2S) ( 7 ±5 )× 10−4�137 γπ0 ( 1.6 ±0.4 )× 10−6�138 γ η′(958) ( 1.23 ±0.06 )× 10−4�139 γ f2(1270) ( 2.73 +0.29
−0.25 )× 10−4 S=1.8�140 γ f0(1370) → γK K ( 3.1 ±1.7 )× 10−5�141 γ f0(1500) ( 9.2 ±1.9 )× 10−5�142 γ f ′2(1525) ( 3.3 ±0.8 )× 10−5�143 γ f0(1710)�144 γ f0(1710) → γππ ( 3.5 ±0.6 )× 10−5�145 γ f0(1710) → γK K ( 6.6 ±0.7 )× 10−5�146 γ f0(2100) → γππ ( 4.8 ±1.0 )× 10−6�147 γ f0(2200) → γK K ( 3.2 ±1.0 )× 10−6�148 γ fJ (2220) → γππ < 5.8 × 10−6 CL=90%�149 γ fJ (2220) → γK K < 9.5 × 10−6 CL=90%�150 γ γ < 1.5 × 10−4 CL=90%�151 γ η ( 1.4 ±0.5 )× 10−6�152 γ ηπ+π− ( 8.7 ±2.1 )× 10−4�153 γ η(1405)�154 γ η(1405) → γK K π < 9 × 10−5 CL=90%�155 γ η(1405) → ηπ+π− ( 3.6 ±2.5 )× 10−5�156 γ η(1475)�157 γ η(1475) → K K π < 1.4 × 10−4 CL=90%�158 γ η(1475) → ηπ+π− < 8.8 × 10−5 CL=90%�159 γ 2(π+π−) ( 4.0 ±0.6 )× 10−4�160 γK∗0K+π−+ 
.
. ( 3.7 ±0.9 )× 10−4�161 γK∗0K∗0 ( 2.4 ±0.7 )× 10−4�162 γK0S K+π−+ 
.
. ( 2.6 ±0.5 )× 10−4�163 γK+K−π+π− ( 1.9 ±0.5 )× 10−4�164 γ pp ( 3.9 ±0.5 )× 10−5 S=2.0�165 γ f2(1950) → γ pp ( 1.20 ±0.22 )× 10−5�166 γ f2(2150) → γ pp ( 7.2 ±1.8 )× 10−6

�167 γX (1835) → γ pp ( 4.6 +1.8
−4.0 )× 10−6�168 γX → γ pp [a℄ < 2 × 10−6 CL=90%�169 γπ+π−pp ( 2.8 ±1.4 )× 10−5�170 γ 2(π+π−)K+K− < 2.2 × 10−4 CL=90%�171 γ 3(π+π−) < 1.7 × 10−4 CL=90%�172 γK+K−K+K− < 4 × 10−5 CL=90%�173 γ γ J/ψ ( 3.1 +1.0
−1.2 )× 10−4Other de
aysOther de
aysOther de
aysOther de
ays�174 invisible < 1.6 % CL=90%[a℄ For a narrow resonan
e in the range 2.2 < M(X ) < 2.8 GeV.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONA multiparti
le �t to χ
1(1P), χ
0(1P), χ
2(1P), and ψ(2S)with 4 total widths, a partial width, 25 
ombinations of partialwidths obtained from integrated 
ross se
tion, and 84 bran
hingratios uses 240 measurements to determine 49 parameters. Theoverall �t has a χ2 = 342.4 for 191 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
hingfra
tions, xi ≡ �i/�total.x7 3x8 1 0x11 30 8 2x12 29 5 1 49x13 13 3 1 36 16x19 0 0 0 5 3 2x132 1 0 0 3 1 1 0x133 2 0 0 4 1 1 0 0x134 1 0 0 4 1 1 0 0 0� −81 −3 −1 −39 −35 −17 −9 −1 −2 −2x6 x7 x8 x11 x12 x13 x19 x132 x133 x134
ψ(2S) PARTIAL WIDTHSψ(2S) PARTIAL WIDTHSψ(2S) PARTIAL WIDTHSψ(2S) PARTIAL WIDTHS�(hadrons) �1�(hadrons) �1�(hadrons) �1�(hadrons) �1VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •258±26 BAI 02B BES2 e+ e−224±56 LUTH 75 MRK1 e+ e−�(e+ e−) �6�(e+ e−) �6�(e+ e−) �6�(e+ e−) �6VALUE (keV) DOCUMENT ID TECN COMMENT2.34 ±0.04 OUR FIT2.34 ±0.04 OUR FIT2.34 ±0.04 OUR FIT2.34 ±0.04 OUR FIT2.30 ±0.06 OUR AVERAGE2.30 ±0.06 OUR AVERAGE2.30 ±0.06 OUR AVERAGE2.30 ±0.06 OUR AVERAGE2.24 ±0.10 ±0.02 1 ABLIKIM 15V BES3 4.0{4.4 e+ e− →
π+π− J/ψ2.338±0.037±0.096 ABLIKIM 08B BES2 e+ e− → hadrons2.330±0.036±0.110 ABLIKIM 06L BES2 e+ e− → hadrons2.44 ±0.21 2 BAI 02B BES2 e+ e−2.14 ±0.21 ALEXANDER 89 RVUE See � mini-review

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.0 ±0.3 BRANDELIK 79C DASP e+ e−2.1 ±0.3 3 LUTH 75 MRK1 e+ e−1ABLIKIM 15V reports 2.213 ± 0.018 ± 0.099 keV from a measurement of [�(

ψ(2S) →e+ e−)℄ × [B(ψ(2S) → J/ψ(1S)π+π−)℄ assuming B(ψ(2S) → J/ψ(1S)π+π−) =(34.95± 0.45)×10−2, whi
h we res
ale to our best value B(ψ(2S) → J/ψ(1S)π+π−)= (34.49 ± 0.30)×10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.2 From a simultaneous �t to e+ e−, µ+µ−, and hadroni
 
hannel, assuming �e = �µ =�τ /0.38847.3 From a simultaneous �t to e+ e−, µ+µ−, and hadroni
 
hannels assuming �(e+ e−)= �(µ+µ−).�(γ γ
) �150�(γ γ
) �150�(γ γ
) �150�(γ γ
) �150VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<43<43<43<43 90 BRANDELIK 79C DASP e+ e−
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ψ(2S)

ψ(2S) �(i)�(e+ e−)/�(total)ψ(2S) �(i)�(e+ e−)/�(total)ψ(2S) �(i)�(e+ e−)/�(total)ψ(2S) �(i)�(e+ e−)/�(total)This 
ombination of a partial width with the partial width into e+ e−and with the total width is obtained from the integrated 
ross se
tion into
hannel(i) in the e+ e− annihilation. We list only data that have not beenused to determine the partial width �(i) or the bran
hing ratio �(i)/total.�(hadrons) × �(e+ e−)/�total �1�6/��(hadrons) × �(e+ e−)/�total �1�6/��(hadrons) × �(e+ e−)/�total �1�6/��(hadrons) × �(e+ e−)/�total �1�6/�VALUE (keV) DOCUMENT ID TECN COMMENT2.233±0.015±0.0422.233±0.015±0.0422.233±0.015±0.0422.233±0.015±0.042 1 ANASHIN 12 KEDR e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.2 ±0.4 ABRAMS 75 MRK1 e+ e−1ANASHIN 12 reports the value 2.233 ± 0.015 ± 0.037 ± 0.020 keV, where the thirdun
ertainty is due to assumptions on the interferen
e between the resonan
e and hadroni

ontinuum. We 
ombined the two systemati
 un
ertainties.�(

τ+ τ−
)

× �(e+ e−)/�total �8�6/��(

τ+ τ−
)

× �(e+ e−)/�total �8�6/��(

τ+ τ−
)

× �(e+ e−)/�total �8�6/��(

τ+ τ−
)

× �(e+ e−)/�total �8�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.0±2.6 79 1 ANASHIN 07 KEDR e+ e− → ψ(2S) → τ+ τ−1Using ψ(2S) total width of 337 ± 13 keV. Systemati
 errors not evaluated.�(J/ψ(1S)π+π−)

× �(e+ e−)/�total �11�6/��(J/ψ(1S)π+π−)

× �(e+ e−)/�total �11�6/��(J/ψ(1S)π+π−)

× �(e+ e−)/�total �11�6/��(J/ψ(1S)π+π−)

× �(e+ e−)/�total �11�6/�VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.807±0.013 OUR FIT0.807±0.013 OUR FIT0.807±0.013 OUR FIT0.807±0.013 OUR FIT0.837±0.025 OUR AVERAGE0.837±0.025 OUR AVERAGE0.837±0.025 OUR AVERAGE0.837±0.025 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.0.837±0.028±0.005 1 LEES 12E BABR 10.6 e+ e− → 2π+2π− γ0.852±0.010±0.026 19.5k ADAM 06 CLEO 3.773 e+ e− → γψ(2S)0.68 ±0.09 2 BAI 98E BES e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.88 ±0.08 ±0.03 256 3 AUBERT 07AU BABR 10.6 e+ e− → J/ψπ+ π− γ0.755±0.048±0.004 544 4 AUBERT 05D BABR 10.6 e+ e− → π+π−µ+µ− γ1 LEES 12E reports [�(

ψ(2S) → J/ψ(1S)π+π−
)

× �(

ψ(2S) → e+ e−)/�total℄ ×[B(J/ψ(1S) → µ+µ−)℄ = (49.9 ± 1.3 ± 1.0) × 10−3 keV whi
h we divide by ourbest value B(J/ψ(1S) → µ+µ−) = (5.961 ± 0.033) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.2The value of �(e+ e−) quoted in BAI 98E is derived using B(ψ(2S) →J/ψ(1S)π+π−)= (32.4 ± 2.6)× 10−2 and B(J/ψ(1S) → ℓ+ ℓ−)= 0.1203 ± 0.0038.Re
al
ulated by us using B(J/ψ(1S) → ℓ+ ℓ−)= 0.1181 ± 0.0020.3AUBERT 07AU reports [�(

ψ(2S) → J/ψ(1S)π+π−
)

× �(

ψ(2S) → e+ e−)/�total℄
× [B(J/ψ(1S) → π+π−π0)℄ = 0.0186 ± 0.0012 ± 0.0011 keV whi
h we divide byour best value B(J/ψ(1S) → π+π−π0) = (2.11 ± 0.07) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.4AUBERT 05D reports [�(

ψ(2S) → J/ψ(1S)π+π−
)

× �(

ψ(2S) → e+ e−)/�total℄
× [B(J/ψ(1S) → µ+µ−)℄ = 0.0450 ± 0.0018 ± 0.0022 keV whi
h we divide by ourbest value B(J/ψ(1S) → µ+µ−) = (5.961 ± 0.033) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.Superseded by LEES 12E.

WEIGHTED AVERAGE
0.837±0.025 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BAI 98E BES 3.0
ADAM 06 CLEO 0.3
LEES 12E BABR 0.0

χ2

       3.3
(Confidence Level = 0.189)

0.4 0.6 0.8 1 1.2 1.4�(J/ψ(1S)π+π−
)

× �(e+ e−)/�total (keV)�(J/ψ(1S)π0π0) × �(e+ e−)/�total �12�6/��(J/ψ(1S)π0π0) × �(e+ e−)/�total �12�6/��(J/ψ(1S)π0π0) × �(e+ e−)/�total �12�6/��(J/ψ(1S)π0π0) × �(e+ e−)/�total �12�6/�VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.425±0.009 OUR FIT0.425±0.009 OUR FIT0.425±0.009 OUR FIT0.425±0.009 OUR FIT0.411±0.008±0.0180.411±0.008±0.0180.411±0.008±0.0180.411±0.008±0.018 3.6k±96 ADAM 06 CLEO 3.773 e+ e− → γψ(2S)

�(J/ψ(1S)η)

× �(e+ e−)/�total �13�6/��(J/ψ(1S)η)

× �(e+ e−)/�total �13�6/��(J/ψ(1S)η)

× �(e+ e−)/�total �13�6/��(J/ψ(1S)η)

× �(e+ e−)/�total �13�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT78.6± 1.6 OUR FIT78.6± 1.6 OUR FIT78.6± 1.6 OUR FIT78.6± 1.6 OUR FIT87 ± 9 OUR AVERAGE87 ± 9 OUR AVERAGE87 ± 9 OUR AVERAGE87 ± 9 OUR AVERAGE83 ±25 ±5 14 1 AUBERT 07AU BABR 10.6 e+ e− →J/ψπ+π−π0 γ88 ± 6 ±7 291 ± 24 ADAM 06 CLEO 3.773 e+ e− → γψ(2S)1AUBERT 07AU quotes �ψ(2S)
ee

· B(ψ(2S) → J/ψη) · B(J/ψ → µ+µ−) · B(η →
π+π−π0) = 1.11 ± 0.33 ± 0.07 eV.�(J/ψ(1S)π0) × �(e+ e−)/�total �14�6/��(J/ψ(1S)π0) × �(e+ e−)/�total �14�6/��(J/ψ(1S)π0) × �(e+ e−)/�total �14�6/��(J/ψ(1S)π0) × �(e+ e−)/�total �14�6/�VALUE (eV) CL% EVTS DOCUMENT ID TECN COMMENT

<8<8<8<8 90 <37 ADAM 06 CLEO 3.773 e+ e− → γψ(2S)�(pp)

× �(e+ e−)/�total �19�6/��(pp)

× �(e+ e−)/�total �19�6/��(pp)

× �(e+ e−)/�total �19�6/��(pp)

× �(e+ e−)/�total �19�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT0.674±0.023 OUR FIT0.674±0.023 OUR FIT0.674±0.023 OUR FIT0.674±0.023 OUR FIT0.64 ±0.04 OUR AVERAGE0.64 ±0.04 OUR AVERAGE0.64 ±0.04 OUR AVERAGE0.64 ±0.04 OUR AVERAGE0.67 ±0.12 ±0.02 43 LEES 13O BABR e+ e− → pp γ0.74 ±0.07 ±0.04 142 LEES 13Y BABR e+ e− → pp γ0.579±0.038±0.036 2.7k ANDREOTTI 07 E835 pp → e+ e−, J/ψX0.70 ±0.17 ±0.03 22 AUBERT 06B e+ e− → pp γ�(��)

× �(e+ e−)/�total �26�6/��(��)

× �(e+ e−)/�total �26�6/��(��)

× �(e+ e−)/�total �26�6/��(��)

× �(e+ e−)/�total �26�6/�VALUE (eV) DOCUMENT ID TECN COMMENT1.5±0.4±0.11.5±0.4±0.11.5±0.4±0.11.5±0.4±0.1 AUBERT 07BD BABR 10.6 e+ e− → ��γ�(2(π+π−π0)) × �(e+ e−)/�total �59�6/��(2(π+π−π0)) × �(e+ e−)/�total �59�6/��(2(π+π−π0)) × �(e+ e−)/�total �59�6/��(2(π+π−π0)) × �(e+ e−)/�total �59�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT11.2±3.3±1.311.2±3.3±1.311.2±3.3±1.311.2±3.3±1.3 43 AUBERT 06D BABR 10.6 e+ e− → 2(π+π−π0)γ�(K+K−2(π+π−)) × �(e+ e−)/�total �73�6/��(K+K−2(π+π−)) × �(e+ e−)/�total �73�6/��(K+K−2(π+π−)) × �(e+ e−)/�total �73�6/��(K+K−2(π+π−)) × �(e+ e−)/�total �73�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT4.4±2.1±0.34.4±2.1±0.34.4±2.1±0.34.4±2.1±0.3 26 AUBERT 06D BABR 10.6 e+ e− →K+K− 2(π+π−)γ�(

π+π−K+K−)

× �(e+ e−)/�total �68�6/��(

π+π−K+K−)

× �(e+ e−)/�total �68�6/��(

π+π−K+K−)

× �(e+ e−)/�total �68�6/��(

π+π−K+K−)

× �(e+ e−)/�total �68�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT2.56±0.42±0.162.56±0.42±0.162.56±0.42±0.162.56±0.42±0.16 85 AUBERT 07AK BABR 10.6 e+ e− → π+π−K+K− γ�(

φ f0(980)→ π+π−)

× �(e+ e−)/�total �110�6/��(

φ f0(980)→ π+π−)

× �(e+ e−)/�total �110�6/��(

φ f0(980)→ π+π−)

× �(e+ e−)/�total �110�6/��(

φ f0(980)→ π+π−)

× �(e+ e−)/�total �110�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT0.347±0.169±0.0030.347±0.169±0.0030.347±0.169±0.0030.347±0.169±0.003 6 ± 3 1 AUBERT 07AK BABR 10.6 e+ e− →
π+π−K+K− γ1AUBERT 07AK reports [�(

ψ(2S) → φ f0(980) → π+π−
)

× �(

ψ(2S) → e+ e−)/�total℄ × [B(φ(1020) → K+K−)℄ = 0.17 ± 0.08 ± 0.02 eV whi
h we divide by ourbest value B(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(

φπ+π−)

× �(e+ e−)/�total �109�6/��(

φπ+π−)

× �(e+ e−)/�total �109�6/��(

φπ+π−)

× �(e+ e−)/�total �109�6/��(

φπ+π−)

× �(e+ e−)/�total �109�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT0.57±0.23±0.010.57±0.23±0.010.57±0.23±0.010.57±0.23±0.01 10 1 AUBERT,BE 06D BABR 10.6 e+ e− → K+K−π+π− γ1AUBERT,BE 06D reports [�(

ψ(2S) → φπ+π−
)

× �(

ψ(2S) → e+ e−)/�total℄ ×[B(φ(1020) → K+K−)℄ = 0.28 ± 0.11 ± 0.02 eV whi
h we divide by our best valueB(φ(1020) → K+K−) = (48.9 ± 0.5) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(2(π+π−)π0) × �(e+ e−)/�total �17�6/��(2(π+π−)π0) × �(e+ e−)/�total �17�6/��(2(π+π−)π0) × �(e+ e−)/�total �17�6/��(2(π+π−)π0) × �(e+ e−)/�total �17�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT29.7±2.2±1.829.7±2.2±1.829.7±2.2±1.829.7±2.2±1.8 410 AUBERT 07AU BABR 10.6 e+ e− → 2(π+π−)π0 γ�(

ωπ+π−)

× �(e+ e−)/�total �64�6/��(

ωπ+π−)

× �(e+ e−)/�total �64�6/��(

ωπ+π−)

× �(e+ e−)/�total �64�6/��(

ωπ+π−)

× �(e+ e−)/�total �64�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT3.01±0.84±0.023.01±0.84±0.023.01±0.84±0.023.01±0.84±0.02 37 1 AUBERT 07AU BABR 10.6 e+ e− → ωπ+π− γ1AUBERT 07AU reports [�(

ψ(2S) → ωπ+π−
)

× �(

ψ(2S) → e+ e−)/�total℄ ×[B(ω(782) → π+π−π0)℄ = 2.69 ± 0.73 ± 0.16 eV whi
h we divide by our best valueB(ω(782) → π+π−π0) = (89.2 ± 0.7) × 10−2. Our �rst error is their experiment'serror and our se
ond error is the systemati
 error from using our best value.�(2(π+π−)η)

× �(e+ e−)/�total �62�6/��(2(π+π−)η)

× �(e+ e−)/�total �62�6/��(2(π+π−)η)

× �(e+ e−)/�total �62�6/��(2(π+π−)η)

× �(e+ e−)/�total �62�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT2.87±1.41±0.012.87±1.41±0.012.87±1.41±0.012.87±1.41±0.01 16 1 AUBERT 07AU BABR 10.6 e+ e− → 2(π+π−)ηγ1AUBERT 07AU reports [�(

ψ(2S) → 2(π+π−)η)

× �(

ψ(2S) → e+ e−)/�total℄ ×[B(η → 2γ)℄ = 1.13 ± 0.55 ± 0.08 eV whi
h we divide by our best value B(η → 2γ) =(39.41 ± 0.20) × 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(K+K−π+π−π0) × �(e+ e−)/�total �80�6/��(K+K−π+π−π0) × �(e+ e−)/�total �80�6/��(K+K−π+π−π0) × �(e+ e−)/�total �80�6/��(K+K−π+π−π0) × �(e+ e−)/�total �80�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT4.4±1.3±0.34.4±1.3±0.34.4±1.3±0.34.4±1.3±0.3 32 AUBERT 07AU BABR 10.6 e+ e− → K+K−π+π−π0 γ
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ψ(2S)�(K+K−π+π−η

)

× �(e+ e−)/�total �71�6/��(K+K−π+π−η
)

× �(e+ e−)/�total �71�6/��(K+K−π+π−η
)

× �(e+ e−)/�total �71�6/��(K+K−π+π−η
)

× �(e+ e−)/�total �71�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT3.04±1.79±0.023.04±1.79±0.023.04±1.79±0.023.04±1.79±0.02 7 1 AUBERT 07AU BABR 10.6 e+ e− → K+K−π+π− ηγ1AUBERT 07AU reports [�(

ψ(2S) → K+K−π+π− η
)

× �(

ψ(2S) → e+ e−)/�total℄
× [B(η → 2γ)℄ = 1.2 ± 0.7 ± 0.1 eV whi
h we divide by our best value B(η → 2γ) =(39.41 ± 0.20) × 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(K+K−)

× �(e+ e−)/�total �98�6/��(K+K−)

× �(e+ e−)/�total �98�6/��(K+K−)

× �(e+ e−)/�total �98�6/��(K+K−)

× �(e+ e−)/�total �98�6/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.147±0.035±0.005 66 1 LEES 15J BABR e+ e− → K+K− γ0.197±0.035±0.005 66 2 LEES 15J BABR e+ e− → K+K− γ0.35 ±0.14 ±0.03 11 3 LEES 13Q BABR e+ e− → K+K− γ1 sinφ > 0.2 sinφ < 0.3 Interferen
e with non-resonant K+K− produ
tion not taken into a

ount.

ψ(2S) BRANCHING RATIOSψ(2S) BRANCHING RATIOSψ(2S) BRANCHING RATIOSψ(2S) BRANCHING RATIOS�(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.9785±0.0013 OUR AVERAGE0.9785±0.0013 OUR AVERAGE0.9785±0.0013 OUR AVERAGE0.9785±0.0013 OUR AVERAGE0.9779±0.0015 1 BAI 02B BES2 e+ e−0.981 ±0.003 1 LUTH 75 MRK1 e+ e−1 In
ludes 
as
ade de
ay into J/ψ(1S).�(virtualγ → hadrons)/�total �2/��(virtualγ → hadrons)/�total �2/��(virtualγ → hadrons)/�total �2/��(virtualγ → hadrons)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.0173±0.0014 OUR AVERAGE0.0173±0.0014 OUR AVERAGE0.0173±0.0014 OUR AVERAGE0.0173±0.0014 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.0.0166±0.0010 1,2 SETH 04 RVUE e+ e−0.0199±0.0019 1 BAI 02B BES2 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.029 ±0.004 1 LUTH 75 MRK1 e+ e−1 In
luded in �(hadrons)/�total.2Using B(ψ(2S) → ℓ+ ℓ−) = (0.73 ± 0.04)% from RPP-2002 and R = 2.28 ± 0.04determined by a �t to data from BAI 00 and BAI 02C.�(g g g)/�total �3/��(g g g)/�total �3/��(g g g)/�total �3/��(g g g)/�total �3/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT10.58±1.6210.58±1.6210.58±1.6210.58±1.62 2.9 M 1 LIBBY 09 CLEO ψ(2S) → hadrons1Cal
ulated using �(γ g g)/�(g g g) = 0.097± 0.026± 0.016 from LIBBY 09, B(ψ(2S) →X J/ψ) relative and absolute bran
hing fra
tions from MENDEZ 08, B(ψ(2S) → γ η
 )from MITCHELL 09, and B(ψ(2S) → virtual γ → hadrons), B(ψ(2S) → γχcJ ), andB(ψ(2S) → ℓ+ ℓ−) from PDG 08. The statisti
al error is negligible and the systemati
error is largely un
orrelated with that of �(γ g g)/�total LIBBY 09 measurement.�(γ g g)/�total �4/��(γ g g)/�total �4/��(γ g g)/�total �4/��(γ g g)/�total �4/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.025±0.2881.025±0.2881.025±0.2881.025±0.288 200 k 1 LIBBY 09 CLEO ψ(2S) → γ + hadrons1Cal
ulated using �(γ g g)/�(g g g) = 0.097 ± 0.026 ± 0.016 from LIBBY 09. Thestatisti
al error is negligible and the systemati
 error is largely un
orrelated with that of�(g g g)/�total LIBBY 09 measurement.�(γ g g)/�(g g g) �4/�3�(γ g g)/�(g g g) �4/�3�(γ g g)/�(g g g) �4/�3�(γ g g)/�(g g g) �4/�3VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT9.7±2.6±1.69.7±2.6±1.69.7±2.6±1.69.7±2.6±1.6 2.9 M LIBBY 09 CLEO ψ(2S) → (γ +) hadrons�(light hadrons)/�total �5/��(light hadrons)/�total �5/��(light hadrons)/�total �5/��(light hadrons)/�total �5/�VALUE DOCUMENT ID TECN COMMENT0.154±0.0150.154±0.0150.154±0.0150.154±0.015 1 MENDEZ 08 CLEO e+ e− → ψ(2S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.169±0.026 2 ADAM 05A CLEO e+ e− → ψ(2S)1Uses B(ψ(2S) → J/ψX ) from MENDEZ 08 and other bran
hing fra
tions from PDG 07.2Uses B(J/ψX ) from ADAM 05A, B(χcJ γ), B(η
 γ) from ATHAR 04 and B(ℓ+ ℓ−)from PDG 04. Superseded by MENDEZ 08.�(e+ e−)/�total �6/��(e+ e−)/�total �6/��(e+ e−)/�total �6/��(e+ e−)/�total �6/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT78.9± 1.7 OUR FIT78.9± 1.7 OUR FIT78.9± 1.7 OUR FIT78.9± 1.7 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •88 ±13 1 FELDMAN 77 RVUE e+ e−1From an overall �t assuming equal partial widths for e+ e− and µ+µ−. For a mea-surement of the ratio see the entry �(

µ+µ−
)/�(e+ e−) below. In
ludes LUTH 75,HILGER 75, BURMESTER 77.�(µ+µ−)/�total �7/��(µ+µ−)/�total �7/��(µ+µ−)/�total �7/��(µ+µ−)/�total �7/�VALUE (units 10−4) DOCUMENT ID79±9 OUR FIT79±9 OUR FIT79±9 OUR FIT79±9 OUR FIT

�(µ+µ−)/�(e+ e−) �7/�6�(µ+µ−)/�(e+ e−) �7/�6�(µ+µ−)/�(e+ e−) �7/�6�(µ+µ−)/�(e+ e−) �7/�6VALUE DOCUMENT ID TECN COMMENT1.00±0.11 OUR FIT1.00±0.11 OUR FIT1.00±0.11 OUR FIT1.00±0.11 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.89±0.16 BOYARSKI 75C MRK1 e+ e−�(τ+ τ−

)/�total �8/��(τ+ τ−
)/�total �8/��(τ+ τ−
)/�total �8/��(τ+ τ−
)/�total �8/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT31 ±4 OUR FIT31 ±4 OUR FIT31 ±4 OUR FIT31 ±4 OUR FIT30.8±2.1±3.830.8±2.1±3.830.8±2.1±3.830.8±2.1±3.8 1 ABLIKIM 06W BES e+ e− → ψ(2S)1Computed using PDG 02 value of B(ψ(2S) → hadrons) = 0.9810 ± 0.0030 to estimatethe total number of ψ(2S) events.DECAYS INTO J/ψ(1S) AND ANYTHINGDECAYS INTO J/ψ(1S) AND ANYTHINGDECAYS INTO J/ψ(1S) AND ANYTHINGDECAYS INTO J/ψ(1S) AND ANYTHING�(J/ψ(1S)anything)/�total �9/��(J/ψ(1S)anything)/�total �9/��(J/ψ(1S)anything)/�total �9/��(J/ψ(1S)anything)/�total �9/�VALUE EVTS DOCUMENT ID TECN COMMENT0.610 ±0.006 OUR FIT0.610 ±0.006 OUR FIT0.610 ±0.006 OUR FIT0.610 ±0.006 OUR FIT0.55 ±0.07 OUR AVERAGE0.55 ±0.07 OUR AVERAGE0.55 ±0.07 OUR AVERAGE0.55 ±0.07 OUR AVERAGE0.51 ±0.12 BRANDELIK 79C DASP e+ e− → µ+µ−X0.57 ±0.08 ABRAMS 75B MRK1 e+ e− → µ+µ−X

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.6254±0.0016±0.0155 1.1M 1 MENDEZ 08 CLEO ψ(2S) → ℓ+ ℓ−X0.5950±0.0015±0.0190 151k ADAM 05A CLEO Repl. by MENDEZ 081Not independent from other measurements of MENDEZ 08.�(e+ e−)/�(J/ψ(1S)anything)�6/�9 =�6/(�11+�12+�13+0.339�133+0.192�134)�(e+ e−)/�(J/ψ(1S)anything)�6/�9 =�6/(�11+�12+�13+0.339�133+0.192�134)�(e+ e−)/�(J/ψ(1S)anything)�6/�9 =�6/(�11+�12+�13+0.339�133+0.192�134)�(e+ e−)/�(J/ψ(1S)anything)�6/�9 =�6/(�11+�12+�13+0.339�133+0.192�134)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.294±0.026 OUR FIT1.294±0.026 OUR FIT1.294±0.026 OUR FIT1.294±0.026 OUR FIT1.28 ±0.04 OUR AVERAGE1.28 ±0.04 OUR AVERAGE1.28 ±0.04 OUR AVERAGE1.28 ±0.04 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.1.22 ±0.02 ±0.05 5097 ± 73 1 ANDREOTTI 05 E835 pp → ψ(2S) →e+ e−1.28 ±0.03 ±0.02 1 AMBROGIANI 00A E835 pp → ψ(2S)1.44 ±0.08 ±0.02 1 ARMSTRONG 97 E760 pp → ψ(2S)1Using B(J/ψ(1S) → e+ e−) = 0.0593 ± 0.0010.
WEIGHTED AVERAGE
1.28±0.04 (Error scaled by 1.6)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ARMSTRONG 97 E760 3.7
AMBROGIANI 00A E835 0.0
ANDREOTTI 05 E835 1.3

χ2

       5.0
(Confidence Level = 0.082)

1 1.2 1.4 1.6 1.8 2�(e+ e−)/�(J/ψ(1S)anything) (units 10−2)�(µ+µ−)/�(J/ψ(1S)anything)�7/�9 =�7/(�11+�12+�13+0.339�133+0.192�134)�(µ+µ−)/�(J/ψ(1S)anything)�7/�9 =�7/(�11+�12+�13+0.339�133+0.192�134)�(µ+µ−)/�(J/ψ(1S)anything)�7/�9 =�7/(�11+�12+�13+0.339�133+0.192�134)�(µ+µ−)/�(J/ψ(1S)anything)�7/�9 =�7/(�11+�12+�13+0.339�133+0.192�134)VALUE DOCUMENT ID TECN COMMENT0.0130±0.0014 OUR FIT0.0130±0.0014 OUR FIT0.0130±0.0014 OUR FIT0.0130±0.0014 OUR FIT0.014 ±0.0030.014 ±0.0030.014 ±0.0030.014 ±0.003 HILGER 75 SPEC e+ e−�(J/ψ(1S)neutrals)/�total �10/��(J/ψ(1S)neutrals)/�total �10/��(J/ψ(1S)neutrals)/�total �10/��(J/ψ(1S)neutrals)/�total �10/�VALUE DOCUMENT ID0.2514±0.0033 OUR FIT0.2514±0.0033 OUR FIT0.2514±0.0033 OUR FIT0.2514±0.0033 OUR FIT�(J/ψ(1S)π+π−)/�total �11/��(J/ψ(1S)π+π−)/�total �11/��(J/ψ(1S)π+π−)/�total �11/��(J/ψ(1S)π+π−)/�total �11/�VALUE EVTS DOCUMENT ID TECN COMMENT0.3449±0.0030 OUR FIT0.3449±0.0030 OUR FIT0.3449±0.0030 OUR FIT0.3449±0.0030 OUR FIT0.348 ±0.005 OUR AVERAGE0.348 ±0.005 OUR AVERAGE0.348 ±0.005 OUR AVERAGE0.348 ±0.005 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogrambelow.0.3498±0.0002±0.0045 20M ABLIKIM 13R BES3 ψ(2S) → J/ψπ+ π−0.3504±0.0007±0.0077 565k MENDEZ 08 CLEO ψ(2S) → ℓ+ ℓ−π+π−0.323 ±0.014 BAI 02B BES2 e+ e−0.32 ±0.04 ABRAMS 75B MRK1 e+ e− → J/ψπ+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.3354±0.0014±0.0110 60k 1ADAM 05A CLEO Repl. by MENDEZ 081Not independent from other values reported by ADAM 05A.
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ψ(2S)

WEIGHTED AVERAGE
0.348±0.005 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ABRAMS 75B MRK1
BAI 02B BES2 3.1
MENDEZ 08 CLEO 0.1
ABLIKIM 13R BES3 0.2

χ2

       3.4
(Confidence Level = 0.178)

0.25 0.3 0.35 0.4 0.45�(J/ψ(1S)π+π−
)/�total�(e+ e−)/�(J/ψ(1S)π+π−) �6/�11�(e+ e−)/�(J/ψ(1S)π+π−) �6/�11�(e+ e−)/�(J/ψ(1S)π+π−) �6/�11�(e+ e−)/�(J/ψ(1S)π+π−) �6/�11VALUE DOCUMENT ID TECN COMMENT0.0229±0.0005 OUR FIT0.0229±0.0005 OUR FIT0.0229±0.0005 OUR FIT0.0229±0.0005 OUR FIT0.0252±0.0028±0.00110.0252±0.0028±0.00110.0252±0.0028±0.00110.0252±0.0028±0.0011 1 AUBERT 02B BABR e+ e−1Using B(J/ψ(1S) → e+ e−) = 0.0593 ± 0.0010.�(

µ+µ−)/�(J/ψ(1S)π+π−) �7/�11�(

µ+µ−)/�(J/ψ(1S)π+π−) �7/�11�(

µ+µ−)/�(J/ψ(1S)π+π−) �7/�11�(

µ+µ−)/�(J/ψ(1S)π+π−) �7/�11VALUE DOCUMENT ID TECN COMMENT0.0229±0.0025 OUR FIT0.0229±0.0025 OUR FIT0.0229±0.0025 OUR FIT0.0229±0.0025 OUR FIT0.0224±0.0029 OUR AVERAGE0.0224±0.0029 OUR AVERAGE0.0224±0.0029 OUR AVERAGE0.0224±0.0029 OUR AVERAGE0.0216±0.0026±0.0014 1 AUBERT 02B BABR e+ e−0.0327±0.0077±0.0072 1 GRIBUSHIN 96 FMPS 515 π−Be → 2µX1Using B(J/ψ(1S) → µ+µ−) = 0.0588 ± 0.0010.�(

τ+ τ−
)/�(J/ψ(1S)π+π−) �8/�11�(

τ+ τ−
)/�(J/ψ(1S)π+π−) �8/�11�(

τ+ τ−
)/�(J/ψ(1S)π+π−) �8/�11�(

τ+ τ−
)/�(J/ψ(1S)π+π−) �8/�11VALUE (units 10−3) DOCUMENT ID TECN COMMENT8.9 ±1.1 OUR FIT8.9 ±1.1 OUR FIT8.9 ±1.1 OUR FIT8.9 ±1.1 OUR FIT8.73±1.39±1.578.73±1.39±1.578.73±1.39±1.578.73±1.39±1.57 BAI 02 BES e+ e−�(J/ψ(1S)π+π−)/�(J/ψ(1S)anything) �11/�9�(J/ψ(1S)π+π−)/�(J/ψ(1S)anything) �11/�9�(J/ψ(1S)π+π−)/�(J/ψ(1S)anything) �11/�9�(J/ψ(1S)π+π−)/�(J/ψ(1S)anything) �11/�9VALUE EVTS DOCUMENT ID TECN COMMENT0.5653±0.0026 OUR FIT0.5653±0.0026 OUR FIT0.5653±0.0026 OUR FIT0.5653±0.0026 OUR FIT0.554 ±0.008 OUR AVERAGE0.554 ±0.008 OUR AVERAGE0.554 ±0.008 OUR AVERAGE0.554 ±0.008 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogrambelow.0.5604±0.0009±0.0062 565k MENDEZ 08 CLEO ψ(2S) → ℓ+ ℓ−π+π−0.525 ±0.009 ±0.022 4k ANDREOTTI 05 E835 ψ(2S) → J/ψX0.536 ±0.007 ±0.016 20k 1,2ABLIKIM 04B BES ψ(2S) → J/ψX0.496 ±0.037 ARMSTRONG 97 E760 pp → ψ(2S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.5637±0.0027±0.0046 60k ADAM 05A CLEO Repl. by MENDEZ 081From a �t to the J/ψ re
oil mass spe
tra.2ABLIKIM 04B quotes B(ψ(2S) → J/ψX ) / B(ψ(2S) → J/ψπ+π−).
WEIGHTED AVERAGE
0.554±0.008 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ARMSTRONG 97 E760
ABLIKIM 04B BES 1.1
ANDREOTTI 05 E835 1.5
MENDEZ 08 CLEO 0.9

χ2

       3.6
(Confidence Level = 0.168)

0.4 0.45 0.5 0.55 0.6 0.65 0.7�(J/ψ(1S)π+π−
)/�(J/ψ(1S)anything) �11/�9�(J/ψ(1S)neutrals)/�(J/ψ(1S)π+π−)�10/�11 = (0.9761�12+0.719�13+0.339�133+0.192�134)/�11�(J/ψ(1S)neutrals)/�(J/ψ(1S)π+π−)�10/�11 = (0.9761�12+0.719�13+0.339�133+0.192�134)/�11�(J/ψ(1S)neutrals)/�(J/ψ(1S)π+π−)�10/�11 = (0.9761�12+0.719�13+0.339�133+0.192�134)/�11�(J/ψ(1S)neutrals)/�(J/ψ(1S)π+π−)�10/�11 = (0.9761�12+0.719�13+0.339�133+0.192�134)/�11VALUE DOCUMENT ID TECN COMMENT0.729±0.008 OUR FIT0.729±0.008 OUR FIT0.729±0.008 OUR FIT0.729±0.008 OUR FIT0.73 ±0.090.73 ±0.090.73 ±0.090.73 ±0.09 TANENBAUM 76 MRK1 e+ e−

�(J/ψ(1S)π0π0)/�total �12/��(J/ψ(1S)π0π0)/�total �12/��(J/ψ(1S)π0π0)/�total �12/��(J/ψ(1S)π0π0)/�total �12/�VALUE EVTS DOCUMENT ID TECN COMMENT0.1816±0.0031 OUR FIT0.1816±0.0031 OUR FIT0.1816±0.0031 OUR FIT0.1816±0.0031 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1769±0.0008±0.0053 61k 1 MENDEZ 08 CLEO ψ(2S) → ℓ+ ℓ− 2π00.1652±0.0014±0.0058 13.4k 2 ADAM 05A CLEO Repl. by MENDEZ 081Not independent from other measurements of MENDEZ 08.2Not independent from other values reported by ADAM 05A.�(J/ψ(1S)π0π0)/�(J/ψ(1S)anything) �12/�9�(J/ψ(1S)π0π0)/�(J/ψ(1S)anything) �12/�9�(J/ψ(1S)π0π0)/�(J/ψ(1S)anything) �12/�9�(J/ψ(1S)π0π0)/�(J/ψ(1S)anything) �12/�9VALUE EVTS DOCUMENT ID TECN COMMENT0.2977±0.0031 OUR FIT0.2977±0.0031 OUR FIT0.2977±0.0031 OUR FIT0.2977±0.0031 OUR FIT0.320 ±0.012 OUR AVERAGE0.320 ±0.012 OUR AVERAGE0.320 ±0.012 OUR AVERAGE0.320 ±0.012 OUR AVERAGE0.300 ±0.008 ±0.022 1655 ± 44 ANDREOTTI 05 E835 ψ(2S) → J/ψX0.328 ±0.013 ±0.008 AMBROGIANI 00A E835 pp → ψ(2S)0.323 ±0.033 ARMSTRONG 97 E760 pp → ψ(2S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.2829±0.0012±0.0056 61k MENDEZ 08 CLEO ψ(2S) → ℓ+ ℓ− 2π00.2776±0.0025±0.0043 13.4k ADAM 05A CLEO Repl. by MENDEZ 08�(J/ψ(1S)π0π0)/�(J/ψ(1S)π+π−) �12/�11�(J/ψ(1S)π0π0)/�(J/ψ(1S)π+π−) �12/�11�(J/ψ(1S)π0π0)/�(J/ψ(1S)π+π−) �12/�11�(J/ψ(1S)π0π0)/�(J/ψ(1S)π+π−) �12/�11VALUE EVTS DOCUMENT ID TECN COMMENT0.527 ±0.008 OUR FIT0.527 ±0.008 OUR FIT0.527 ±0.008 OUR FIT0.527 ±0.008 OUR FIT0.513 ±0.022 OUR AVERAGE0.513 ±0.022 OUR AVERAGE0.513 ±0.022 OUR AVERAGE0.513 ±0.022 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2.0.5047±0.0022±0.0102 61k MENDEZ 08 CLEO ψ(2S) → ℓ+ ℓ− 2π00.570 ±0.009 ±0.026 14k 1 ABLIKIM 04B BES ψ(2S) → J/ψX
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.4924±0.0047±0.0086 73k 2,3 ADAM 05A CLEO Repl. by MENDEZ 080.571 ±0.018 ±0.044 4 ANDREOTTI 05 E835 ψ(2S) → J/ψX0.53 ±0.06 TANENBAUM 76 MRK1 e+ e−0.64 ±0.15 5 HILGER 75 SPEC e+ e−1From a �t to the J/ψ re
oil mass spe
tra.2Not independent from other values reported by ADAM 05A.3Using 13,217 J/ψπ0π0 and 60,010 J/ψπ+ π− events.4Not independent from other values reported by ANDREOTTI 05.5 Ignoring the J/ψ(1S)η and J/ψ(1S)γ γ de
ays.�(J/ψ(1S)η)/�total �13/��(J/ψ(1S)η)/�total �13/��(J/ψ(1S)η)/�total �13/��(J/ψ(1S)η)/�total �13/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT33.6 ± 0.5 OUR FIT33.6 ± 0.5 OUR FIT33.6 ± 0.5 OUR FIT33.6 ± 0.5 OUR FIT32.9 ± 1.7 OUR AVERAGE32.9 ± 1.7 OUR AVERAGE32.9 ± 1.7 OUR AVERAGE32.9 ± 1.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1. See the ideogram below.33.75± 0.17±0.86 68.2k ABLIKIM 12M BES3 e+ e− → ℓ+ ℓ− 2γ29.8 ± 0.9 ±2.3 5.7k BAI 04I BES2 ψ(2S) → J/ψγγ25.5 ± 2.9 386 1 OREGLIA 80 CBAL e+ e− → J/ψ2γ45 ±12 17 2 BRANDELIK 79B DASP e+ e− → J/ψ2γ42 ± 6 164 2 BARTEL 78B CNTR e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •34.3 ± 0.4 ±0.9 18.4k 3 MENDEZ 08 CLEO ψ(2S) → ℓ+ ℓ− η32.5 ± 0.6 ±1.1 2.8k 4 ADAM 05A CLEO Repl. by MENDEZ 0843 ± 8 44 TANENBAUM 76 MRK1 e+ e−1Re
al
ulated by us using B(J/ψ(1S) → ℓ+ ℓ−) = 0.1181 ± 0.0020.2Re
al
ulated by us using B(J/ψ(1S) → µ+µ−) = 0.0588 ± 0.0010.3Not independent from other measurements of MENDEZ 08.4Not independent from other values reported by ADAM 05A.

WEIGHTED AVERAGE
32.9±1.7 (Error scaled by 2.1)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BARTEL 78B CNTR
BRANDELIK 79B DASP
OREGLIA 80 CBAL 6.6
BAI 04I BES2 1.6
ABLIKIM 12M BES3 0.9

χ2

       9.0
(Confidence Level = 0.011)

10 20 30 40 50 60�(J/ψ(1S)η)/�total (units 10−3)
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ψ(2S)�(J/ψ(1S)η)/�(J/ψ(1S)anything) �13/�9�(J/ψ(1S)η)/�(J/ψ(1S)anything) �13/�9�(J/ψ(1S)η)/�(J/ψ(1S)anything) �13/�9�(J/ψ(1S)η)/�(J/ψ(1S)anything) �13/�9VALUE EVTS DOCUMENT ID TECN COMMENT0.0551±0.0008 OUR FIT0.0551±0.0008 OUR FIT0.0551±0.0008 OUR FIT0.0551±0.0008 OUR FIT0.058 ±0.007 OUR AVERAGE0.058 ±0.007 OUR AVERAGE0.058 ±0.007 OUR AVERAGE0.058 ±0.007 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogrambelow.0.050 ±0.006 ±0.003 298 ± 20 ANDREOTTI 05 E835 ψ(2S) → J/ψX0.072 ±0.009 AMBROGIANI 00A E835 pp → ψ(2S)0.061 ±0.015 ARMSTRONG 97 E760 pp → ψ(2S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0549±0.0006±0.0009 18.4k 1 MENDEZ 08 CLEO ψ(2S) → ℓ+ ℓ− η0.0546±0.0010±0.0007 2.8k ADAM 05A CLEO Repl. by MENDEZ 081Not independent from other measurements of MENDEZ 08.
WEIGHTED AVERAGE
0.058±0.007 (Error scaled by 1.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ARMSTRONG 97 E760 0.0
AMBROGIANI 00A E835 2.3
ANDREOTTI 05 E835 1.5

χ2

       3.9
(Confidence Level = 0.144)

0.02 0.04 0.06 0.08 0.1 0.12�(J/ψ(1S)η)/�(J/ψ(1S)anything) �13/�9�(J/ψ(1S)η)/�(J/ψ(1S)π+π−) �13/�11�(J/ψ(1S)η)/�(J/ψ(1S)π+π−) �13/�11�(J/ψ(1S)η)/�(J/ψ(1S)π+π−) �13/�11�(J/ψ(1S)η)/�(J/ψ(1S)π+π−) �13/�11VALUE EVTS DOCUMENT ID TECN COMMENT0.0974±0.0014 OUR FIT0.0974±0.0014 OUR FIT0.0974±0.0014 OUR FIT0.0974±0.0014 OUR FIT0.0979±0.0018 OUR AVERAGE0.0979±0.0018 OUR AVERAGE0.0979±0.0018 OUR AVERAGE0.0979±0.0018 OUR AVERAGE0.0979±0.0010±0.0015 18.4k MENDEZ 08 CLEO ψ(2S) → ℓ+ ℓ− η0.098 ±0.005 ±0.010 2k 1 ABLIKIM 04B BES ψ(2S) → J/ψX0.091 ±0.021 2 HIMEL 80 MRK2 e+ e− → ψ(2S)X
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.0968±0.0019±0.0013 2.8k 3 ADAM 05A CLEO Repl. by MENDEZ 080.095 ±0.007 ±0.007 4 ANDREOTTI 05 E835 ψ(2S) → J/ψX1From a �t to the J/ψ re
oil mass spe
tra.2The value for B(ψ(2S) → J/ψ(1s)η) reported in HIMEL 80 is derived using B(ψ(2S)) →J/ψ(1S)π+π−) = (33± 3))% and B(J/ψ(1S) → ℓ+ ℓ−) = 0.138± 0.018. Cal
ulatedby us using B(J/ψ(1S) → ℓ+ ℓ−) = (0.1181 ± 0.0020).3Not independent from other values reported by ADAM 05A.4Not independent from other values reported by ANDREOTTI 05.�(J/ψ(1S)π0)/�total �14/��(J/ψ(1S)π0)/�total �14/��(J/ψ(1S)π0)/�total �14/��(J/ψ(1S)π0)/�total �14/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT12.68±0.32 OUR AVERAGE12.68±0.32 OUR AVERAGE12.68±0.32 OUR AVERAGE12.68±0.32 OUR AVERAGE12.6 ±0.2 ±0.3 4.1k ABLIKIM 12M BES3 e+ e− → ℓ+ ℓ− 2γ13.3 ±0.8 ±0.3 530 MENDEZ 08 CLEO ψ(2S) → ℓ+ ℓ− 2γ14.3 ±1.4 ±1.2 280 BAI 04I BES2 ψ(2S) → J/ψγγ14 ±6 7 HIMEL 80 MRK2 e+ e−9 ±2 ±1 23 1 OREGLIA 80 CBAL ψ(2S) → J/ψ2γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •13 ±1 ±1 88 ADAM 05A CLEO Repl. by MENDEZ 081Re
al
ulated by us using B(J/ψ(1S) → ℓ+ ℓ−) = 0.1181 ± 0.0020.�(J/ψ(1S)π0)/�(J/ψ(1S)anything)�14/�9 =�14/(�11+�12+�13+0.339�133+0.192�134)�(J/ψ(1S)π0)/�(J/ψ(1S)anything)�14/�9 =�14/(�11+�12+�13+0.339�133+0.192�134)�(J/ψ(1S)π0)/�(J/ψ(1S)anything)�14/�9 =�14/(�11+�12+�13+0.339�133+0.192�134)�(J/ψ(1S)π0)/�(J/ψ(1S)anything)�14/�9 =�14/(�11+�12+�13+0.339�133+0.192�134)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.213±0.012±0.003 527 1 MENDEZ 08 CLEO e+ e− → J/ψγγ0.22 ±0.02 ±0.01 2 ADAM 05A CLEO e+ e− → ψ(2S) →J/ψγγ1Not independent from other values reported by MENDEZ 08. Supersedes ADAM 05A.2Not independent from other values reported by ADAM 05A.�(J/ψ(1S)π0)/�(J/ψ(1S)π+π−) �14/�11�(J/ψ(1S)π0)/�(J/ψ(1S)π+π−) �14/�11�(J/ψ(1S)π0)/�(J/ψ(1S)π+π−) �14/�11�(J/ψ(1S)π0)/�(J/ψ(1S)π+π−) �14/�11VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.380±0.022±0.005 527 1 MENDEZ 08 CLEO e+ e− → J/ψγγ0.39 ±0.04 ±0.01 2 ADAM 05A CLEO e+ e− → ψ(2S) →J/ψγγ1Not independent from other values reported by MENDEZ 08. Supersedes ADAM 05A.2Not independent from other values reported by ADAM 05A.

HADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYSHADRONIC DECAYS�(π0 h
 (1P))/�total �15/��(π0 h
 (1P))/�total �15/��(π0 h
 (1P))/�total �15/��(π0 h
 (1P))/�total �15/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8.6±1.3 OUR AVERAGE8.6±1.3 OUR AVERAGE8.6±1.3 OUR AVERAGE8.6±1.3 OUR AVERAGE9.0±1.5±1.3 3k 1 GE 11 CLEO ψ(2S) → π0 anything8.4±1.3±1.0 11k ABLIKIM 10B BES3 ψ(2S) → π0 h

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 92+23

−22 ADAMS 09 CLEO ψ(2S) → 2π+2π− 2π0seen 1282 DOBBS 08A CLEO ψ(2S) → π0 η
 γseen 168 ± 40 ROSNER 05 CLEO ψ(2S) → π0 η
 γ1Assuming a width �(h
 (1P)) = 0.86 MeV ≡ �0, a measured dependen
e of the 
entralvalue of B = (7.6 +1.4 × �(h
 (1P)/�0) × 10−4, and with a systemati
 error thata

ounts for the width variation range 0.43{1.29 MeV.�(3(π+π−)π0)/�total �16/��(3(π+π−)π0)/�total �16/��(3(π+π−)π0)/�total �16/��(3(π+π−)π0)/�total �16/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT35±1635±1635±1635±16 6 FRANKLIN 83 MRK2 e+ e− → hadrons�(2(π+π−)π0)/�total �17/��(2(π+π−)π0)/�total �17/��(2(π+π−)π0)/�total �17/��(2(π+π−)π0)/�total �17/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT29 ±10 OUR AVERAGE29 ±10 OUR AVERAGE29 ±10 OUR AVERAGE29 ±10 OUR AVERAGE Error in
ludes s
ale fa
tor of 4.7. See the ideogram below.24.9± 0.7±3.6 2173 ABLIKIM 07D BES2 e+ e− → ψ(2S)127 ±12 ±2 410 1 AUBERT 07AU BABR 10.6 e+ e− → 2(π+π−)π0 γ26.1± 0.7±3.0 1703 BRIERE 05 CLEO e+ e− → ψ(2S) →2(π+π−)π030 ± 8 42 FRANKLIN 83 MRK2 e+ e−1AUBERT 07AU reports [�(

ψ(2S) → 2(π+π−)π0)/�total℄ × [�(

ψ(2S) → e+ e−)℄ =(297 ± 22 ± 18) × 10−4 keV whi
h we divide by our best value �(

ψ(2S) → e+ e−)= 2.34 ± 0.04 keV. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.
WEIGHTED AVERAGE
29±10 (Error scaled by 4.7)

FRANKLIN 83 MRK2 0.0
BRIERE 05 CLEO 1.0
AUBERT 07AU BABR 63.0
ABLIKIM 07D BES2 1.4

χ2

      65.5
(Confidence Level < 0.0001)

0 50 100 150 200�(2(π+π−)π0)/�total (units 10−4)�(ρa2(1320))/�total �18/��(ρa2(1320))/�total �18/��(ρa2(1320))/�total �18/��(ρa2(1320))/�total �18/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT2.55±0.73±0.472.55±0.73±0.472.55±0.73±0.472.55±0.73±0.47 112 ± 31 BAI 04C BES2 ψ(2S) → 2(π+π−)π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.3 90 BAI 98J BES e+ e−�(pp)/�total �19/��(pp)/�total �19/��(pp)/�total �19/��(pp)/�total �19/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.88±0.09 OUR FIT2.88±0.09 OUR FIT2.88±0.09 OUR FIT2.88±0.09 OUR FIT3.00±0.13 OUR AVERAGE3.00±0.13 OUR AVERAGE3.00±0.13 OUR AVERAGE3.00±0.13 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.3.08±0.05±0.18 4.5k 1 DOBBS 14 e+ e− → ψ(2S) → pp3.36±0.09±0.25 1.6k ABLIKIM 07C BES e+ e− → ψ(2S) → pp2.87±0.12±0.15 557 PEDLAR 05 CLEO e+ e− → ψ(2S) → pp1.4 ±0.8 4 BRANDELIK 79C DASP e+ e− → ψ(2S) → pp2.3 ±0.7 FELDMAN 77 MRK1 e+ e− → ψ(2S) → pp1Using CLEO-
 data but not authored by the CLEO Collaboration.�(pp)/�(J/ψ(1S)π+π−) �19/�11�(pp)/�(J/ψ(1S)π+π−) �19/�11�(pp)/�(J/ψ(1S)π+π−) �19/�11�(pp)/�(J/ψ(1S)π+π−) �19/�11VALUE (units 10−4) DOCUMENT ID TECN COMMENT8.35±0.28 OUR FIT8.35±0.28 OUR FIT8.35±0.28 OUR FIT8.35±0.28 OUR FIT6.98±0.49±0.976.98±0.49±0.976.98±0.49±0.976.98±0.49±0.97 BAI 01 BES e+ e− → ψ(2S) → pp�(�++�−−)/�total �20/��(�++�−−)/�total �20/��(�++�−−)/�total �20/��(�++�−−)/�total �20/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT12.8±1.0±3.412.8±1.0±3.412.8±1.0±3.412.8±1.0±3.4 157 1 BAI 01 BES e+ e− → ψ(2S) →hadrons1Estimated using B(ψ(2S) → J/ψπ+π−)= 0.310 ± 0.028.
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ψ(2S)�(��π0)/�total �21/��(��π0)/�total �21/��(��π0)/�total �21/��(��π0)/�total �21/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
< 0.29< 0.29< 0.29< 0.29 90 1 ABLIKIM 13F BES3 ψ(2S) → ppπ+π− γ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<12 90 2 ABLIKIM 07H BES2 e+ e− → ψ(2S)1Using B(� → π− p) = 63.9% and B(π0 → γ γ) = 98.8%.2Using B(� → π− p) = 63.9% and B(η → γ γ) = 39.4%.�(��η
)/�total �22/��(��η
)/�total �22/��(��η
)/�total �22/��(��η
)/�total �22/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT2.48±0.34±0.192.48±0.34±0.192.48±0.34±0.192.48±0.34±0.19 60 1 ABLIKIM 13F BES3 ψ(2S) → ppπ+π− γ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<4.9 90 2 ABLIKIM 07H BES2 e+ e− → ψ(2S)1Using B(� → π− p) = 63.9% and B(η → γ γ) = 39.31%.2Using B(� → π− p) = 63.9%.�(�pK+)/�total �23/��(�pK+)/�total �23/��(�pK+)/�total �23/��(�pK+)/�total �23/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.0±0.1±0.11.0±0.1±0.11.0±0.1±0.11.0±0.1±0.1 74.0 BRIERE 05 CLEO e+ e− → ψ(2S) →ppK+π−�(�pK+π+π−)/�total �24/��(�pK+π+π−)/�total �24/��(�pK+π+π−)/�total �24/��(�pK+π+π−)/�total �24/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.8±0.3±0.31.8±0.3±0.31.8±0.3±0.31.8±0.3±0.3 45.8 BRIERE 05 CLEO e+ e− → ψ(2S) →ppK+π+π−π−�(��π+π−)/�total �25/��(��π+π−)/�total �25/��(��π+π−)/�total �25/��(��π+π−)/�total �25/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.8±0.4±0.52.8±0.4±0.52.8±0.4±0.52.8±0.4±0.5 73.4 BRIERE 05 CLEO e+ e− → ψ(2S) →pp 2(π+π−)�(��)/�total �26/��(��)/�total �26/��(��)/�total �26/��(��)/�total �26/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT3.57±0.18 OUR AVERAGE3.57±0.18 OUR AVERAGE3.57±0.18 OUR AVERAGE3.57±0.18 OUR AVERAGE3.75±0.09±0.23 1.9k 1 DOBBS 14 e+ e− → ψ(2S) → hadrons3.39±0.20±0.32 337 ABLIKIM 07C BES e+ e− → ψ(2S) → hadrons6.4 ±1.8 ±0.1 2 AUBERT 07BD BABR 10.6 e+ e− → ��γ3.28±0.23±0.25 208 PEDLAR 05 CLEO e+ e− → ψ(2S) → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.81±0.20±0.27 80 3 BAI 01 BES e+ e− → ψ(2S) → hadrons
< 4 90 FELDMAN 77 MRK1 e+ e− → ψ(2S) → hadrons1Using CLEO-
 data but not authored by the CLEO Collaboration.2AUBERT 07BD reports [�(

ψ(2S) → ��)/�total℄ × [�(

ψ(2S) → e+ e−)℄ = (15± 4±1) × 10−4 keV whi
h we divide by our best value �(

ψ(2S) → e+ e−) = 2.34 ± 0.04keV. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.3 Estimated using B(ψ(2S) → J/ψπ+π−)= 0.310 ± 0.028.�(��+π−+ 
.
.)/�total �27/��(��+π−+ 
.
.)/�total �27/��(��+π−+ 
.
.)/�total �27/��(��+π−+ 
.
.)/�total �27/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.40±0.03±0.131.40±0.03±0.131.40±0.03±0.131.40±0.03±0.13 2.8k ABLIKIM 13W BES3 ψ(2S) → hadrons�(��−π++ 
.
.)/�total �28/��(��−π++ 
.
.)/�total �28/��(��−π++ 
.
.)/�total �28/��(��−π++ 
.
.)/�total �28/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.54±0.04±0.131.54±0.04±0.131.54±0.04±0.131.54±0.04±0.13 2.8k ABLIKIM 13W BES3 ψ(2S) → hadrons�(�0 pK++ 
.
.)/�total �29/��(�0 pK++ 
.
.)/�total �29/��(�0 pK++ 
.
.)/�total �29/��(�0 pK++ 
.
.)/�total �29/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.67±0.13±0.121.67±0.13±0.121.67±0.13±0.121.67±0.13±0.12 276 1 ABLIKIM 13D BES3 ψ(2S) → γ�pK+1Using B(� → pπ−) = 63.9%, and B(�0 → �γ) = 100%.�(�+�−)/�total �30/��(�+�−)/�total �30/��(�+�−)/�total �30/��(�+�−)/�total �30/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.51±0.21 OUR AVERAGE2.51±0.21 OUR AVERAGE2.51±0.21 OUR AVERAGE2.51±0.21 OUR AVERAGE2.51±0.15±0.16 281 1 DOBBS 14 e+ e− → ψ(2S) → hadrons2.57±0.44±0.68 35 PEDLAR 05 CLEO e+ e− → ψ(2S) → hadrons1Using CLEO-
 data but not authored by the CLEO Collaboration.�(�0�0)/�total �31/��(�0�0)/�total �31/��(�0�0)/�total �31/��(�0�0)/�total �31/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.32±0.16 OUR AVERAGE2.32±0.16 OUR AVERAGE2.32±0.16 OUR AVERAGE2.32±0.16 OUR AVERAGE2.25±0.11±0.16 439 1 DOBBS 14 e+ e− → ψ(2S) → hadrons2.35±0.36±0.32 59 ABLIKIM 07C BES e+ e− → ψ(2S) → hadrons2.63±0.35±0.21 58 PEDLAR 05 CLEO e+ e− → ψ(2S) → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.2 ±0.4 ±0.4 8 2 BAI 01 BES e+ e− → ψ(2S) → hadrons1Using CLEO-
 data but not authored by the CLEO Collaboration.2 Estimated using B(ψ(2S) → J/ψπ+π−)= 0.310 ± 0.028.

�(� (1385)+� (1385)−)/�total �32/��(� (1385)+� (1385)−)/�total �32/��(� (1385)+� (1385)−)/�total �32/��(� (1385)+� (1385)−)/�total �32/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT11±3±311±3±311±3±311±3±3 14 1 BAI 01 BES e+ e− → ψ(2S) →hadrons1Estimated using B(ψ(2S) → J/ψπ+π−)= 0.310 ± 0.028.�(�−�+)/�total �33/��(�−�+)/�total �33/��(�−�+)/�total �33/��(�−�+)/�total �33/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT2.64±0.18 OUR AVERAGE2.64±0.18 OUR AVERAGE2.64±0.18 OUR AVERAGE2.64±0.18 OUR AVERAGE2.66±0.12±0.20 548 1 DOBBS 14 e+ e− → ψ(2S) → hadrons3.03±0.40±0.32 67 ABLIKIM 07C BES e+ e− → ψ(2S) → hadrons2.38±0.30±0.21 63 PEDLAR 05 CLEO e+ e− → ψ(2S) → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.94±0.27±0.15 12 2 BAI 01 BES e+ e− → ψ(2S) → hadrons
<2 90 FELDMAN 77 MRK1 e+ e− → ψ(2S) → hadrons1Using CLEO-
 data but not authored by the CLEO Collaboration.2 Estimated using B(ψ(2S) → J/ψπ+π−)= 0.310 ± 0.028.�(� 0� 0)/�total �34/��(� 0� 0)/�total �34/��(� 0� 0)/�total �34/��(� 0� 0)/�total �34/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.07±0.23 OUR AVERAGE2.07±0.23 OUR AVERAGE2.07±0.23 OUR AVERAGE2.07±0.23 OUR AVERAGE2.02±0.19±0.15 112 1 DOBBS 14 e+ e− → ψ(2S) → hadrons2.75±0.64±0.61 19 PEDLAR 05 CLEO e+ e− → ψ(2S) → hadrons1Using CLEO-
 data but not authored by the CLEO Collaboration.�(� (1530)0� (1530)0)/�total �35/��(� (1530)0� (1530)0)/�total �35/��(� (1530)0� (1530)0)/�total �35/��(� (1530)0� (1530)0)/�total �35/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT5.2±0.3+3.2

−1.25.2±0.3+3.2
−1.25.2±0.3+3.2
−1.25.2±0.3+3.2
−1.2 527 1 ABLIKIM 13S BES3 ψ(2S) → ηpp

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<32 90 PEDLAR 05 CLEO e+ e− → ψ(2S) →hadrons
< 8.1 90 2 BAI 01 BES e+ e− → ψ(2S) →hadrons1With N(1535) de
aying to pη.2 Estimated using B(ψ(2S) → J/ψπ+π−)= 0.310 ± 0.028.�(K−��++ 
.
.)/�total �36/��(K−��++ 
.
.)/�total �36/��(K−��++ 
.
.)/�total �36/��(K−��++ 
.
.)/�total �36/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.86±0.27±0.323.86±0.27±0.323.86±0.27±0.323.86±0.27±0.32 236 ABLIKIM 15I BES3 e+ e− → ψ(2S) →K−��++ 
.
.�(� (1690)−�+

→ K−��++ 
.
.)/�total �37/��(� (1690)−�+
→ K−��++ 
.
.)/�total �37/��(� (1690)−�+
→ K−��++ 
.
.)/�total �37/��(� (1690)−�+
→ K−��++ 
.
.)/�total �37/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT5.21±1.48±0.575.21±1.48±0.575.21±1.48±0.575.21±1.48±0.57 74 ABLIKIM 15I BES3 e+ e− → ψ(2S) →K−��++ 
.
.�(� (1820)−�+
→ K−��++ 
.
.)/�total �38/��(� (1820)−�+
→ K−��++ 
.
.)/�total �38/��(� (1820)−�+
→ K−��++ 
.
.)/�total �38/��(� (1820)−�+
→ K−��++ 
.
.)/�total �38/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT12.03±2.94±1.2212.03±2.94±1.2212.03±2.94±1.2212.03±2.94±1.22 136 ABLIKIM 15I BES3 e+ e− → ψ(2S) →K−��++ 
.
.�(K−�0�++ 
.
.)/�total �39/��(K−�0�++ 
.
.)/�total �39/��(K−�0�++ 
.
.)/�total �39/��(K−�0�++ 
.
.)/�total �39/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.67±0.33±0.283.67±0.33±0.283.67±0.33±0.283.67±0.33±0.28 142 ABLIKIM 15I BES3 e+ e− → ψ(2S) →K−�0�++ 
.
.�(
−
+)/�total �40/��(
−
+)/�total �40/��(
−
+)/�total �40/��(
−
+)/�total �40/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT0.47±0.09±0.050.47±0.09±0.050.47±0.09±0.050.47±0.09±0.05 27 1 DOBBS 14 e+ e− → ψ(2S) →hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.5 90 ABLIKIM 12Q BES2 e+ e− → ψ(2S) →hadrons
<1.6 90 PEDLAR 05 CLEO e+ e− → ψ(2S) →hadrons
<0.73 90 2 BAI 01 BES e+ e− → ψ(2S) →hadrons1Using CLEO-
 data but not authored by the CLEO Collaboration.2 Estimated using B(ψ(2S) → J/ψπ+π−)= 0.310 ± 0.028.�(

π0 pp)/�total �41/��(

π0 pp)/�total �41/��(

π0 pp)/�total �41/��(

π0 pp)/�total �41/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.53±0.07 OUR AVERAGE1.53±0.07 OUR AVERAGE1.53±0.07 OUR AVERAGE1.53±0.07 OUR AVERAGE1.65±0.03±0.15 4.5k ABLIKIM 13A BES3 ψ(2S) → ppπ01.54±0.06±0.06 948 ALEXANDER 10 CLEO ψ(2S) → π0 pp1.32±0.10±0.15 256 1 ABLIKIM 05E BES2 e+ e− → ψ(2S) → pp γ γ1.4 ±0.5 9 FRANKLIN 83 MRK2 e+ e−1Computed using B(π0 → γ γ) = (98.80 ± 0.03)%.�(N(940)p+ 
.
.→ π0 pp)/�total �42/��(N(940)p+ 
.
.→ π0 pp)/�total �42/��(N(940)p+ 
.
.→ π0 pp)/�total �42/��(N(940)p+ 
.
.→ π0 pp)/�total �42/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT6.42±0.20+1.78
−1.286.42±0.20+1.78
−1.286.42±0.20+1.78
−1.286.42±0.20+1.78
−1.28 1.9k 1 ABLIKIM 13A BES3 ψ(2S) → ppπ01From a �t of π0 pp data to eight distin
t intermediate N p resonant states.



1427142714271427See key on page 601 Meson Parti
le Listings
ψ(2S)�(N(1440)p+ 
.
.→ π0 pp)/�total �43/��(N(1440)p+ 
.
.→ π0 pp)/�total �43/��(N(1440)p+ 
.
.→ π0 pp)/�total �43/��(N(1440)p+ 
.
.→ π0 pp)/�total �43/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT7.3 +1.7

−1.5 OUR AVERAGE7.3 +1.7
−1.5 OUR AVERAGE7.3 +1.7
−1.5 OUR AVERAGE7.3 +1.7
−1.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.5.3.58±0.25+1.59

−0.84 1.1k 1 ABLIKIM 13A BES3 ψ(2S) → ppπ08.1 ±0.7 ±0.3 474 2 ALEXANDER 10 CLEO ψ(2S) → π0 pp1From a �t of π0 pp data to eight distin
t intermediate N p resonant states.2 From a �t of the pp and pπ0 mass distributions to a 
ombination of N(1440)p,
π0 f0(2100), and two other broad, unestablished resonan
es.�(N(1520)p+ 
.
.→ π0 pp)/�total �44/��(N(1520)p+ 
.
.→ π0 pp)/�total �44/��(N(1520)p+ 
.
.→ π0 pp)/�total �44/��(N(1520)p+ 
.
.→ π0 pp)/�total �44/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT0.64±0.05+0.22

−0.170.64±0.05+0.22
−0.170.64±0.05+0.22
−0.170.64±0.05+0.22
−0.17 0.2k 1 ABLIKIM 13A BES3 ψ(2S) → ppπ01From a �t of π0 pp data to eight distin
t intermediate N p resonant states.�(N(1535)p+ 
.
.→ π0 pp)/�total �45/��(N(1535)p+ 
.
.→ π0 pp)/�total �45/��(N(1535)p+ 
.
.→ π0 pp)/�total �45/��(N(1535)p+ 
.
.→ π0 pp)/�total �45/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.47±0.28+0.99
−0.972.47±0.28+0.99
−0.972.47±0.28+0.99
−0.972.47±0.28+0.99
−0.97 0.7k 1 ABLIKIM 13A BES3 ψ(2S) → ppπ01From a �t of π0 pp data to eight distin
t intermediate N p resonant states.�(N(1650)p+ 
.
.→ π0 pp)/�total �46/��(N(1650)p+ 
.
.→ π0 pp)/�total �46/��(N(1650)p+ 
.
.→ π0 pp)/�total �46/��(N(1650)p+ 
.
.→ π0 pp)/�total �46/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.76±0.28+1.37
−1.663.76±0.28+1.37
−1.663.76±0.28+1.37
−1.663.76±0.28+1.37
−1.66 1.1k 1 ABLIKIM 13A BES3 ψ(2S) → ppπ01From a �t of π0 pp data to eight distin
t intermediate N p resonant states.�(N(1720)p+ 
.
.→ π0 pp)/�total �47/��(N(1720)p+ 
.
.→ π0 pp)/�total �47/��(N(1720)p+ 
.
.→ π0 pp)/�total �47/��(N(1720)p+ 
.
.→ π0 pp)/�total �47/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.79±0.10+0.24
−0.711.79±0.10+0.24
−0.711.79±0.10+0.24
−0.711.79±0.10+0.24
−0.71 0.5k 1 ABLIKIM 13A BES3 ψ(2S) → ppπ01From a �t of π0 pp data to eight distin
t intermediate N p resonant states.�(N(2300)p+ 
.
.→ π0 pp)/�total �48/��(N(2300)p+ 
.
.→ π0 pp)/�total �48/��(N(2300)p+ 
.
.→ π0 pp)/�total �48/��(N(2300)p+ 
.
.→ π0 pp)/�total �48/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.62±0.28+1.12
−0.642.62±0.28+1.12
−0.642.62±0.28+1.12
−0.642.62±0.28+1.12
−0.64 0.9k 1 ABLIKIM 13A BES3 ψ(2S) → ppπ01From a �t of π0 pp data to eight distin
t intermediate N p resonant states.�(N(2570)p+ 
.
.→ π0 pp)/�total �49/��(N(2570)p+ 
.
.→ π0 pp)/�total �49/��(N(2570)p+ 
.
.→ π0 pp)/�total �49/��(N(2570)p+ 
.
.→ π0 pp)/�total �49/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.13±0.08+0.40
−0.302.13±0.08+0.40
−0.302.13±0.08+0.40
−0.302.13±0.08+0.40
−0.30 0.8k 1 ABLIKIM 13A BES3 ψ(2S) → ppπ01From a �t of π0 pp data to eight distin
t intermediate N p resonant states.�(

π0 f0(2100)→ π0 pp)/�total �50/��(

π0 f0(2100)→ π0 pp)/�total �50/��(

π0 f0(2100)→ π0 pp)/�total �50/��(

π0 f0(2100)→ π0 pp)/�total �50/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.1±0.4±0.11.1±0.4±0.11.1±0.4±0.11.1±0.4±0.1 76 1 ALEXANDER 10 CLEO ψ(2S) → π0 pp1From a �t of the pp and pπ0 mass distributions to a 
ombination of N∗1(1440)p,
π0 f0(2100), and two other broad, unestablished resonan
es.�(

ηpp)/�total �51/��(

ηpp)/�total �51/��(

ηpp)/�total �51/��(

ηpp)/�total �51/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT6.0±0.4 OUR AVERAGE6.0±0.4 OUR AVERAGE6.0±0.4 OUR AVERAGE6.0±0.4 OUR AVERAGE6.4±0.2±0.6 679 1 ABLIKIM 13S BES3 ψ(2S) → ηpp5.6±0.6±0.3 154 1 ALEXANDER 10 CLEO ψ(2S) → ηpp5.8±1.1±0.7 44.8 ± 8.5 2 ABLIKIM 05E BES2 e+ e− → ψ(2S) →pp γ γ8 ±3 ±3 9.8 BRIERE 05 CLEO e+ e− → ψ(2S) →ppπ+π−π01With N(1535) de
aying to pη.2 Computed using B(η → γ γ) = (39.43 ± 0.26)%.�(

η f0(2100)→ ηpp)/�total �52/��(

η f0(2100)→ ηpp)/�total �52/��(

η f0(2100)→ ηpp)/�total �52/��(

η f0(2100)→ ηpp)/�total �52/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.2±0.4±0.11.2±0.4±0.11.2±0.4±0.11.2±0.4±0.1 31 1 ALEXANDER 10 CLEO ψ(2S) → ηpp1From a �t of the pp and pη distributions to a 
ombination of N∗(1535)p and η f0(2100).�(N(1535)p→ ηpp)/�total �53/��(N(1535)p→ ηpp)/�total �53/��(N(1535)p→ ηpp)/�total �53/��(N(1535)p→ ηpp)/�total �53/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT4.4±0.6±0.34.4±0.6±0.34.4±0.6±0.34.4±0.6±0.3 123 1 ALEXANDER 10 CLEO ψ(2S) → ηpp1From a �t of the pp and pη distributions to a 
ombination of N∗(1535)p and η f0(2100).�(

ωpp)/�total �54/��(

ωpp)/�total �54/��(

ωpp)/�total �54/��(

ωpp)/�total �54/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.69±0.21 OUR AVERAGE0.69±0.21 OUR AVERAGE0.69±0.21 OUR AVERAGE0.69±0.21 OUR AVERAGE0.6 ±0.2 ±0.2 21.2 BRIERE 05 CLEO e+ e− → ψ(2S) →ppπ+π−π00.8 ±0.3 ±0.1 14.9 ± 0.1 1 BAI 03B BES ψ(2S) → ppπ+π−π01Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.

�(

φpp)/�total �55/��(

φpp)/�total �55/��(

φpp)/�total �55/��(

φpp)/�total �55/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.24<0.24<0.24<0.24 90 BRIERE 05 CLEO e+ e− → ψ(2S) →ppK+K−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.26 90 1 BAI 03B BES ψ(2S) → K+K− pp1Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.�(

π+π−pp)/�total �56/��(

π+π−pp)/�total �56/��(

π+π−pp)/�total �56/��(

π+π−pp)/�total �56/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.0±0.4 OUR AVERAGE6.0±0.4 OUR AVERAGE6.0±0.4 OUR AVERAGE6.0±0.4 OUR AVERAGE5.9±0.2±0.4 904.5 BRIERE 05 CLEO e+ e− → ψ(2S) →ppπ+π−8 ±2 1 TANENBAUM 78 MRK1 e+ e−1Assuming entirely strong de
ay.�(pnπ− or 
.
.)/�total �57/��(pnπ− or 
.
.)/�total �57/��(pnπ− or 
.
.)/�total �57/��(pnπ− or 
.
.)/�total �57/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.48±0.17 OUR AVERAGE2.48±0.17 OUR AVERAGE2.48±0.17 OUR AVERAGE2.48±0.17 OUR AVERAGE2.45±0.11±0.21 851 ABLIKIM 06I BES2 e+ e− → pπ−X2.52±0.12±0.22 849 ABLIKIM 06I BES2 e+ e− → pπ+X�(pnπ−π0)/�total �58/��(pnπ−π0)/�total �58/��(pnπ−π0)/�total �58/��(pnπ−π0)/�total �58/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.18±0.50±0.503.18±0.50±0.503.18±0.50±0.503.18±0.50±0.50 135 ± 21 ABLIKIM 06I BES2 e+ e− → pπ−π0X�(

ηπ+π−)/�total �60/��(

ηπ+π−)/�total �60/��(

ηπ+π−)/�total �60/��(

ηπ+π−)/�total �60/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.6<1.6<1.6<1.6 90 BRIERE 05 CLEO e+ e− → ψ(2S) →2(π+π−)π0�(

ηπ+π−π0)/�total �61/��(

ηπ+π−π0)/�total �61/��(

ηπ+π−π0)/�total �61/��(

ηπ+π−π0)/�total �61/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT9.5±0.7±1.59.5±0.7±1.59.5±0.7±1.59.5±0.7±1.5 1 BRIERE 05 CLEO e+ e− → ψ(2S) →hadr
• • • We do not use the following data for averages, �ts, limits, et
. • • •10.3±0.8±1.4 201.7 2 BRIERE 05 CLEO e+ e− → ψ(2S) →

η3π(η → γ γ)8.1±1.4±1.6 50.0 2 BRIERE 05 CLEO e+ e− → ψ(2S) →
η3π(η → 3π)1Average of η → γ γ and η → 3π.2Not independent from other values reported by BRIERE 05.�(2(π+π−)η)/�total �62/��(2(π+π−)η)/�total �62/��(2(π+π−)η)/�total �62/��(2(π+π−)η)/�total �62/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.2±0.6±0.11.2±0.6±0.11.2±0.6±0.11.2±0.6±0.1 16 1 AUBERT 07AU BABR 10.6 e+ e− → 2(π+π−)ηγ1AUBERT 07AU quotes �ψ(2S)

ee
·B(ψ(2S) → 2(π+π)η) ·B(η → γ γ) = 1.2±0.7±0.1 eV.�(

η′π+π−π0)/�total �63/��(

η′π+π−π0)/�total �63/��(

η′π+π−π0)/�total �63/��(

η′π+π−π0)/�total �63/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.5±1.6±1.34.5±1.6±1.34.5±1.6±1.34.5±1.6±1.3 12.8 BRIERE 05 CLEO e+ e− → ψ(2S) →hadr�(

ωπ+π−)/�total �64/��(

ωπ+π−)/�total �64/��(

ωπ+π−)/�total �64/��(

ωπ+π−)/�total �64/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.3±1.2 OUR AVERAGE7.3±1.2 OUR AVERAGE7.3±1.2 OUR AVERAGE7.3±1.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1. See the ideogram below.8.4±0.5±1.2 386 ABLIKIM 07D BES2 e+ e− → ψ(2S)12.2±2.2±0.7 37 1 AUBERT 07AU BABR 10.6 e+ e− → ωπ+π− γ8.2±0.5±0.7 391 BRIERE 05 CLEO e+ e− → ψ(2S) →2(π+π−)π04.8±0.6±0.7 100 ± 22 2 BAI 03B BES ψ(2S) → 2(π+π−)π0
WEIGHTED AVERAGE
7.3±1.2 (Error scaled by 2.1)

BAI 03B BES 7.1
BRIERE 05 CLEO 1.2
AUBERT 07AU BABR 4.6
ABLIKIM 07D BES2 0.8

χ2

      13.7
(Confidence Level = 0.0034)

0 5 10 15 20 25�(

ωπ+π−
)/�total (units 10−4)
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ψ(2S)1AUBERT 07AU quotes �ψ(2S)

ee
·B(ψ(2S) → ωπ+π−) · B(ω → 3π) = 2.69 ± 0.73 ±0.16 eV.2Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.�(b±1 π∓)/�total �65/��(b±1 π∓)/�total �65/��(b±1 π∓)/�total �65/��(b±1 π∓)/�total �65/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.0 ±0.6 OUR AVERAGE4.0 ±0.6 OUR AVERAGE4.0 ±0.6 OUR AVERAGE4.0 ±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.5.1 ±0.6 ±0.8 202 ABLIKIM 07D BES2 e+ e− → ψ(2S)4.18+0.43

−0.42±0.92 170 ADAM 05 CLEO e+ e− → ψ(2S)3.2 ±0.6 ±0.5 61 ± 11 1,2 BAI 03B BES ψ(2S) → 2(π+π−)π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •5.2 ±0.8 ±1.0 1 BAI 99C BES Repl. by BAI 03B1Assuming B(b1 → ωπ)=1.2Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.�(b01π0)/�total �66/��(b01π0)/�total �66/��(b01π0)/�total �66/��(b01π0)/�total �66/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.35+0.47

−0.42±0.402.35+0.47
−0.42±0.402.35+0.47
−0.42±0.402.35+0.47
−0.42±0.40 45 ADAM 05 CLEO e+ e− → ψ(2S)�(

ω f2(1270))/�total �67/��(

ω f2(1270))/�total �67/��(

ω f2(1270))/�total �67/��(

ω f2(1270))/�total �67/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE2.2 ±0.4 OUR AVERAGE2.3 ±0.5 ±0.4 57 ABLIKIM 07D BES2 e+ e− → ψ(2S)2.05±0.41±0.38 62±12 BAI 04C BES2 ψ(2S) → 2(π+π−)π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.5 90 1 BAI 03B BES ψ(2S) → 2(π+π−)π0
<1.7 90 BAI 98J BES Repl. by BAI 03B1Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.�(

π+π−K+K−)/�total �68/��(

π+π−K+K−)/�total �68/��(

π+π−K+K−)/�total �68/��(

π+π−K+K−)/�total �68/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.5±0.9 OUR AVERAGE7.5±0.9 OUR AVERAGE7.5±0.9 OUR AVERAGE7.5±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.10.9±1.9±0.2 85 1 AUBERT 07AK BABR 10.6 e+ e− →
π+π−K+K− γ7.1±0.3±0.4 817.2 BRIERE 05 CLEO e+ e− → ψ(2S) →K+K−π+π−16 ±4 2 TANENBAUM 78 MRK1 e+ e−1AUBERT 07AK reports [�(

ψ(2S) → π+π−K+K−)/�total℄ × [�(

ψ(2S) → e+ e−)℄= (2.56 ± 0.42 ± 0.16) × 10−3 keV whi
h we divide by our best value �(

ψ(2S) →e+ e−) = 2.34 ± 0.04 keV. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.2Assuming entirely strong de
ay.�(

ρ0K+K−)/�total �69/��(

ρ0K+K−)/�total �69/��(

ρ0K+K−)/�total �69/��(

ρ0K+K−)/�total �69/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.2±0.2±0.42.2±0.2±0.42.2±0.2±0.42.2±0.2±0.4 223.8 BRIERE 05 CLEO e+ e− → ψ(2S) →K+K−π+π−�(K∗(892)0K∗2(1430)0)/�total �70/��(K∗(892)0K∗2(1430)0)/�total �70/��(K∗(892)0K∗2(1430)0)/�total �70/��(K∗(892)0K∗2(1430)0)/�total �70/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT1.86±0.32±0.431.86±0.32±0.431.86±0.32±0.431.86±0.32±0.43 93 ± 16 BAI 04C ψ(2S) → K+K−π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.2 90 BAI 98J BES e+ e−�(K+K−π+π−η
)/�total �71/��(K+K−π+π−η
)/�total �71/��(K+K−π+π−η
)/�total �71/��(K+K−π+π−η
)/�total �71/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.3±0.7±0.11.3±0.7±0.11.3±0.7±0.11.3±0.7±0.1 7 1 AUBERT 07AU BABR 10.6 e+ e− → K+K−π+π− ηγ1AUBERT 07AU quotes �ψ(2S)

ee
·B(ψ(2S) → 2(π+π)η) ·B(η → γ γ) = 1.2±0.7±0.1 eV.�(K+K−2(π+π−)π0)/�total �72/��(K+K−2(π+π−)π0)/�total �72/��(K+K−2(π+π−)π0)/�total �72/��(K+K−2(π+π−)π0)/�total �72/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT10.0±2.5±1.810.0±2.5±1.810.0±2.5±1.810.0±2.5±1.8 65 ABLIKIM 07D BES2 e+ e− → ψ(2S)�(K1(1270)±K∓)/�total �74/��(K1(1270)±K∓)/�total �74/��(K1(1270)±K∓)/�total �74/��(K1(1270)±K∓)/�total �74/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT10.0±1.8±2.110.0±1.8±2.110.0±1.8±2.110.0±1.8±2.1 1 BAI 99C BES e+ e−1Assuming B(K1(1270) → K ρ)=0.42 ± 0.06�(K0S K0S π+π−)/�total �75/��(K0S K0S π+π−)/�total �75/��(K0S K0S π+π−)/�total �75/��(K0S K0S π+π−)/�total �75/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.20±0.25±0.372.20±0.25±0.372.20±0.25±0.372.20±0.25±0.37 83 ± 9 ABLIKIM 05O BES2 e+ e− → ψ(2S)�(

ρ0 pp)/�total �76/��(

ρ0 pp)/�total �76/��(

ρ0 pp)/�total �76/��(

ρ0 pp)/�total �76/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.5±0.1±0.20.5±0.1±0.20.5±0.1±0.20.5±0.1±0.2 61.1 BRIERE 05 CLEO e+ e− → ψ(2S) →ppπ+π−

�(K+K∗(892)0π−+ 
.
.)/�total �77/��(K+K∗(892)0π−+ 
.
.)/�total �77/��(K+K∗(892)0π−+ 
.
.)/�total �77/��(K+K∗(892)0π−+ 
.
.)/�total �77/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT6.7±2.56.7±2.56.7±2.56.7±2.5 TANENBAUM 78 MRK1 e+ e−�(2(π+π−))/�total �78/��(2(π+π−))/�total �78/��(2(π+π−))/�total �78/��(2(π+π−))/�total �78/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.4±0.6 OUR AVERAGE2.4±0.6 OUR AVERAGE2.4±0.6 OUR AVERAGE2.4±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2.2.2±0.2±0.2 308 BRIERE 05 CLEO e+ e− → ψ(2S) →2(π+π−)4.5±1.0 TANENBAUM 78 MRK1 e+ e−�(

ρ0π+π−)/�total �79/��(

ρ0π+π−)/�total �79/��(

ρ0π+π−)/�total �79/��(

ρ0π+π−)/�total �79/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.2±0.6 OUR AVERAGE2.2±0.6 OUR AVERAGE2.2±0.6 OUR AVERAGE2.2±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.2.0±0.2±0.4 285.5 BRIERE 05 CLEO e+ e− → ψ(2S) →2(π+π−)4.2±1.5 TANENBAUM 78 MRK1 e+ e−�(K+K−π+π−π0)/�total �80/��(K+K−π+π−π0)/�total �80/��(K+K−π+π−π0)/�total �80/��(K+K−π+π−π0)/�total �80/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT12.6±0.9 OUR AVERAGE12.6±0.9 OUR AVERAGE12.6±0.9 OUR AVERAGE12.6±0.9 OUR AVERAGE18.8±5.7±0.3 32 1 AUBERT 07AU BABR 10.6 e+ e− →K+K−π+π−π0 γ11.7±1.0±1.5 597 ABLIKIM 06G BES2 ψ(2S) → K+K−π+π−π012.7±0.5±1.0 711.6 BRIERE 05 CLEO e+ e− → ψ(2S) →K+K−π+π−π01AUBERT 07AU reports [�(

ψ(2S) → K+K−π+π−π0)/�total℄ × [�(

ψ(2S) →e+ e−)℄ = (44 ± 13 ± 3) × 10−4 keV whi
h we divide by our best value �(

ψ(2S) →e+ e−) = 2.34 ± 0.04 keV. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.�(

ω f0(1710)→ ωK+K−)/�total �81/��(

ω f0(1710)→ ωK+K−)/�total �81/��(

ω f0(1710)→ ωK+K−)/�total �81/��(

ω f0(1710)→ ωK+K−)/�total �81/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT5.9±2.0±0.95.9±2.0±0.95.9±2.0±0.95.9±2.0±0.9 19 ABLIKIM 06G BES2 ψ(2S) →K+K−π+π−π0�(K∗(892)0K−π+π0 + 
.
.)/�total �82/��(K∗(892)0K−π+π0 + 
.
.)/�total �82/��(K∗(892)0K−π+π0 + 
.
.)/�total �82/��(K∗(892)0K−π+π0 + 
.
.)/�total �82/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8.6±1.3±1.88.6±1.3±1.88.6±1.3±1.88.6±1.3±1.8 238 ABLIKIM 06G BES2 ψ(2S) →K+K−π+π−π0�(K∗(892)+K−π+π− + 
.
.)/�total �83/��(K∗(892)+K−π+π− + 
.
.)/�total �83/��(K∗(892)+K−π+π− + 
.
.)/�total �83/��(K∗(892)+K−π+π− + 
.
.)/�total �83/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT9.6±2.2±1.79.6±2.2±1.79.6±2.2±1.79.6±2.2±1.7 133 ABLIKIM 06G BES2 ψ(2S) →K+K−π+π−π0�(K∗(892)+K−ρ0 + 
.
.)/�total �84/��(K∗(892)+K−ρ0 + 
.
.)/�total �84/��(K∗(892)+K−ρ0 + 
.
.)/�total �84/��(K∗(892)+K−ρ0 + 
.
.)/�total �84/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.3±2.2±1.47.3±2.2±1.47.3±2.2±1.47.3±2.2±1.4 78 ABLIKIM 06G BES2 ψ(2S) →K+K−π+π−π0�(K∗(892)0K−ρ+ + 
.
.)/�total �85/��(K∗(892)0K−ρ+ + 
.
.)/�total �85/��(K∗(892)0K−ρ+ + 
.
.)/�total �85/��(K∗(892)0K−ρ+ + 
.
.)/�total �85/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.1±1.3±1.26.1±1.3±1.26.1±1.3±1.26.1±1.3±1.2 125 ABLIKIM 06G BES2 ψ(2S) →K+K−π+π−π0�(

ηK+K− , no ηφ
)/�total �86/��(

ηK+K− , no ηφ
)/�total �86/��(

ηK+K− , no ηφ
)/�total �86/��(

ηK+K− , no ηφ
)/�total �86/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT3.08±0.29±0.253.08±0.29±0.253.08±0.29±0.253.08±0.29±0.25 0.3k 1 ABLIKIM 12L BES3 ψ(2S) → K+K− γ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<13 90 BRIERE 05 CLEO e+ e− → ψ(2S) →K+K−π+π−π01Ex
luding ηφ.�(

ωK+K−)/�total �87/��(

ωK+K−)/�total �87/��(

ωK+K−)/�total �87/��(

ωK+K−)/�total �87/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.62±0.11 OUR AVERAGE1.62±0.11 OUR AVERAGE1.62±0.11 OUR AVERAGE1.62±0.11 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1.56±0.04±0.11 2.8k ABLIKIM 14G BES3 ψ(2S) → K+K−π+π−π02.38±0.37±0.29 78 ABLIKIM 06G BES2 ψ(2S) → K+K−π+π−π01.9 ±0.3 ±0.3 76.8 BRIERE 05 CLEO e+ e− → ψ(2S) →K+K−π+π−π01.5 ±0.3 ±0.2 23 1 BAI 03B BES ψ(2S) → K+K−π+π−π01Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.�(

ωK∗(892)+K−+ 
.
.)/�total �88/��(

ωK∗(892)+K−+ 
.
.)/�total �88/��(

ωK∗(892)+K−+ 
.
.)/�total �88/��(

ωK∗(892)+K−+ 
.
.)/�total �88/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT20.7±2.6 OUR AVERAGE20.7±2.6 OUR AVERAGE20.7±2.6 OUR AVERAGE20.7±2.6 OUR AVERAGE18.9±2.9±2.2 396 ABLIKIM 13M BES3 ψ(2S) → ωK0S K−π+22.6±3.0±2.4 535 ABLIKIM 13M BES3 ψ(2S) → ωK+K−π0
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ψ(2S)�(

ωK∗2(1430)+K−+ 
.
.)/�total �89/��(

ωK∗2(1430)+K−+ 
.
.)/�total �89/��(

ωK∗2(1430)+K−+ 
.
.)/�total �89/��(

ωK∗2(1430)+K−+ 
.
.)/�total �89/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT6.1 ±1.2 OUR AVERAGE6.1 ±1.2 OUR AVERAGE6.1 ±1.2 OUR AVERAGE6.1 ±1.2 OUR AVERAGE6.39±1.50±0.78 128 ABLIKIM 13M BES3 ψ(2S) → ωK0S K−π+5.86±1.61±0.83 143 ABLIKIM 13M BES3 ψ(2S) → ωK+K−π0�(

ωK∗(892)0K0)/�total �90/��(

ωK∗(892)0K0)/�total �90/��(

ωK∗(892)0K0)/�total �90/��(

ωK∗(892)0K0)/�total �90/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT16.8±2.5±1.616.8±2.5±1.616.8±2.5±1.616.8±2.5±1.6 356 ABLIKIM 13M BES3 ψ(2S) → ωK0S K−π+�(

ωK∗2(1430)0K0)/�total �91/��(

ωK∗2(1430)0K0)/�total �91/��(

ωK∗2(1430)0K0)/�total �91/��(

ωK∗2(1430)0K0)/�total �91/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT5.82±2.08±0.725.82±2.08±0.725.82±2.08±0.725.82±2.08±0.72 116 ABLIKIM 13M BES3 ψ(2S) → ωK0S K−π+�(

ωX (1440)→ ωK0S K−π++ 
.
.)/�total �92/��(

ωX (1440)→ ωK0S K−π++ 
.
.)/�total �92/��(

ωX (1440)→ ωK0S K−π++ 
.
.)/�total �92/��(

ωX (1440)→ ωK0S K−π++ 
.
.)/�total �92/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.60±0.27±0.241.60±0.27±0.241.60±0.27±0.241.60±0.27±0.24 109 1 ABLIKIM 13M BES3 ψ(2S) → ωK0S K−π+1X (1440) 
ompatible with η(1405) and η(1475). A f1(1420) is also possible.�(

ωX (1440)→ ωK+K−π0)/�total �93/��(

ωX (1440)→ ωK+K−π0)/�total �93/��(

ωX (1440)→ ωK+K−π0)/�total �93/��(

ωX (1440)→ ωK+K−π0)/�total �93/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.09±0.20±0.161.09±0.20±0.161.09±0.20±0.161.09±0.20±0.16 82 1 ABLIKIM 13M BES3 ψ(2S) → ωK+K−π01X (1440) 
ompatible with η(1405) and η(1475). A f1(1420) is also possible.�(

ω f1(1285)→ ωK0S K−π++ 
.
.)/�total �94/��(

ω f1(1285)→ ωK0S K−π++ 
.
.)/�total �94/��(

ω f1(1285)→ ωK0S K−π++ 
.
.)/�total �94/��(

ω f1(1285)→ ωK0S K−π++ 
.
.)/�total �94/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT0.302±0.098±0.0270.302±0.098±0.0270.302±0.098±0.0270.302±0.098±0.027 22 1 ABLIKIM 13M BES3 ψ(2S) → ωK0S K−π+1Statisti
al sign�
an
e 4.5 σ. This measurement is equivalent to a limit of < 0.478×10−5at 90% C.L.�(

ω f1(1285)→ ωK+K−π0)/�total �95/��(

ω f1(1285)→ ωK+K−π0)/�total �95/��(

ω f1(1285)→ ωK+K−π0)/�total �95/��(

ω f1(1285)→ ωK+K−π0)/�total �95/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT0.125±0.070±0.0130.125±0.070±0.0130.125±0.070±0.0130.125±0.070±0.013 10 1 ABLIKIM 13M BES3 ψ(2S) → ωK+K−π01Statisti
al sign�
an
e 3.2 σ. This measurement is equivalent to a limit of < 0.221×10−5at 90% C.L.�(3(π+π−))/�total �96/��(3(π+π−))/�total �96/��(3(π+π−))/�total �96/��(3(π+π−))/�total �96/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.5 ±2.0 OUR AVERAGE3.5 ±2.0 OUR AVERAGE3.5 ±2.0 OUR AVERAGE3.5 ±2.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.8.5.45±0.42±0.87 671 ABLIKIM 05H BES2 e+ e− → ψ(2S) →3(π+π−)1.5 ±1.0 1 TANENBAUM 78 MRK1 e+ e−1Assuming entirely strong de
ay.�(ppπ+π−π0)/�total �97/��(ppπ+π−π0)/�total �97/��(ppπ+π−π0)/�total �97/��(ppπ+π−π0)/�total �97/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.3±0.4±0.67.3±0.4±0.67.3±0.4±0.67.3±0.4±0.6 434.9 BRIERE 05 CLEO e+ e− → ψ(2S) →ppπ+π−π0�(K+K−)/�total �98/��(K+K−)/�total �98/��(K+K−)/�total �98/��(K+K−)/�total �98/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT7.48±0.23±0.397.48±0.23±0.397.48±0.23±0.397.48±0.23±0.39 1.3k 1 METREVELI 12 ψ(2S) → K+K−
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.2 ±1.5 ±0.2 66 2,3 LEES 15J BABR e+ e− → K+K− γ8.3 ±1.5 ±0.2 66 3,4 LEES 15J BABR e+ e− → K+K− γ6.3 ±0.6 ±0.3 5 DOBBS 06A CLEO e+ e−10 ±7 5 BRANDELIK 79C DASP e+ e−
< 5 90 FELDMAN 77 MRK1 e+ e−1Obtained by analyzing CLEO-
 data but not authored by the CLEO Collaboration.2 sinφ > 0.3Using �(ψ(2S) → e+ e−) = (2.37 ± 0.04) keV.4 sinφ < 0.5 Interferen
e with non-resonant K+K− produ
tion not taken into a

ount.�(K0S K0L)/�total �99/��(K0S K0L)/�total �99/��(K0S K0L)/�total �99/��(K0S K0L)/�total �99/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT5.34±0.33 OUR AVERAGE5.34±0.33 OUR AVERAGE5.34±0.33 OUR AVERAGE5.34±0.33 OUR AVERAGE5.28±0.25±0.34 478 ± 23 1 METREVELI 12 ψ(2S) → K0S K0L5.8 ±0.8 ±0.4 DOBBS 06A CLEO e+ e−5.24±0.47±0.48 156 ± 14 2 BAI 04B BES2 ψ(2S) → K0S K0L →

π+π−X1Obtained by analyzing CLEO-
 data but not authored by the CLEO Collaboration.2Using B(K0S → π+π−) = 0.6860 ± 0.0027.

�(

π+π−π0)/�total �100/��(

π+π−π0)/�total �100/��(

π+π−π0)/�total �100/��(

π+π−π0)/�total �100/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.01±0.17 OUR AVERAGE2.01±0.17 OUR AVERAGE2.01±0.17 OUR AVERAGE2.01±0.17 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.2.14±0.03+0.12
−0.11 7k 1 ABLIKIM 12H BES3 e+ e− → ψ(2S)1.81±0.18±0.19 260 ± 19 2 ABLIKIM 05J BES2 e+ e− → ψ(2S)1.88+0.16

−0.15±0.28 194 ADAM 05 CLEO e+ e− → ψ(2S)0.85±0.46 4 FRANKLIN 83 MRK2 e+ e− → hadrons1 From ψ(2S) → π+π−π0 events dire
tly. The quoted systemati
 error in
ludes a
ontribution of 4% (added in quadrature) from the un
ertainty on the number of ψ(2S)events.2 From a PW analysis of ψ(2S) → π+π−π0.
WEIGHTED AVERAGE
2.01±0.17 (Error scaled by 1.7)

FRANKLIN 83 MRK2 6.4
ADAM 05 CLEO 0.2
ABLIKIM 05J BES2 0.6
ABLIKIM 12H BES3 1.2

χ2

       8.4
(Confidence Level = 0.038)

0 1 2 3 4�(

π+π−π0)/�total (units 10−4)�(

ρ(2150)π → π+π−π0)/�total �101/��(

ρ(2150)π → π+π−π0)/�total �101/��(

ρ(2150)π → π+π−π0)/�total �101/��(

ρ(2150)π → π+π−π0)/�total �101/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT1.94±0.25+1.15
−0.341.94±0.25+1.15
−0.341.94±0.25+1.15
−0.341.94±0.25+1.15
−0.34 1 ABLIKIM 05J BES2 ψ(2S) → ρ(2150)π → π+π−π01From a PW analysis of ψ(2S) → π+π−π0.�(

ρ(770)π → π+π−π0)/�total �102/��(

ρ(770)π → π+π−π0)/�total �102/��(

ρ(770)π → π+π−π0)/�total �102/��(

ρ(770)π → π+π−π0)/�total �102/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT0.32±0.12 OUR AVERAGE0.32±0.12 OUR AVERAGE0.32±0.12 OUR AVERAGE0.32±0.12 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.0.51±0.07±0.11 1 ABLIKIM 05J BES2 ψ(2S) → ρ(770)π →
π+π−π00.24+0.08

−0.07±0.02 22 ADAM 05 CLEO e+ e− → ψ(2S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.83 90 1 FRANKLIN 83 MRK2 e+ e−
<10 90 BARTEL 76 CNTR e+ e−
<10 90 2 ABRAMS 75 MRK1 e+ e−1From a PW analysis of ψ(2S) → π+π−π0.2 Final state ρ0π0.�(

π+π−)/�total �103/��(

π+π−)/�total �103/��(

π+π−)/�total �103/��(

π+π−)/�total �103/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT0.78±0.26 OUR AVERAGE0.78±0.26 OUR AVERAGE0.78±0.26 OUR AVERAGE0.78±0.26 OUR AVERAGE0.76±0.25±0.06 30 1 METREVELI 12 ψ(2S) → π+π−8 ±5 BRANDELIK 79C DASP e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.1 90 DOBBS 06A CLEO e+ e− → ψ(2S)
<5 90 FELDMAN 77 MRK1 e+ e−1Obtained by analyzing CLEO-
 data but not authored by the CLEO Collaboration. Using

ψ(3770) → π+π− for 
ontinuum subtra
tion.�(K1(1400)±K∓)/�total �104/��(K1(1400)±K∓)/�total �104/��(K1(1400)±K∓)/�total �104/��(K1(1400)±K∓)/�total �104/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<3.1<3.1<3.1<3.1 90 1 BAI 99C BES e+ e−1Assuming B(K1(1400) → K∗π)=0.94 ± 0.06�(K∗2(1430)±K∓)/�total �105/��(K∗2(1430)±K∓)/�total �105/��(K∗2(1430)±K∓)/�total �105/��(K∗2(1430)±K∓)/�total �105/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT7.12±0.62+1.13

−0.617.12±0.62+1.13
−0.617.12±0.62+1.13
−0.617.12±0.62+1.13
−0.61 251 ± 22 ABLIKIM 12L BES3 e+ e− → ψ(2S)�(K+K−π0)/�total �106/��(K+K−π0)/�total �106/��(K+K−π0)/�total �106/��(K+K−π0)/�total �106/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT4.07±0.16±0.264.07±0.16±0.264.07±0.16±0.264.07±0.16±0.26 0.9k ABLIKIM 12L BES3 e+ e− → ψ(2S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8.9 90 1 FRANKLIN 83 MRK2 e+ e− → hadrons
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ψ(2S)�(K+K∗(892)−+ 
.
.)/�total �107/��(K+K∗(892)−+ 
.
.)/�total �107/��(K+K∗(892)−+ 
.
.)/�total �107/��(K+K∗(892)−+ 
.
.)/�total �107/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT2.9 ±0.4 OUR AVERAGE2.9 ±0.4 OUR AVERAGE2.9 ±0.4 OUR AVERAGE2.9 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.3.18±0.30+0.26

−0.31 0.2k ABLIKIM 12L BES3 e+ e− → ψ(2S)2.9 +1.3
−1.7 ±0.4 9.6 ± 4.2 ABLIKIM 05I BES2 e+ e− → ψ(2S)1.3 +1.0
−0.7 ±0.3 7 ADAM 05 CLEO e+ e− → ψ(2S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5.4 90 FRANKLIN 83 MRK2 e+ e− → hadrons�(K∗(892)0K0+ 
.
.)/�total �108/��(K∗(892)0K0+ 
.
.)/�total �108/��(K∗(892)0K0+ 
.
.)/�total �108/��(K∗(892)0K0+ 
.
.)/�total �108/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT10.9±2.0 OUR AVERAGE10.9±2.0 OUR AVERAGE10.9±2.0 OUR AVERAGE10.9±2.0 OUR AVERAGE13.3+2.4
−2.8±1.7 65.6 ± 9.0 ABLIKIM 05I BES2 e+ e− → ψ(2S)9.2+2.7
−2.2±0.9 25 ADAM 05 CLEO e+ e− → ψ(2S)�(K+K∗(892)−+ 
.
.)/�(K∗(892)0K0+ 
.
.) �107/�108�(K+K∗(892)−+ 
.
.)/�(K∗(892)0K0+ 
.
.) �107/�108�(K+K∗(892)−+ 
.
.)/�(K∗(892)0K0+ 
.
.) �107/�108�(K+K∗(892)−+ 
.
.)/�(K∗(892)0K0+ 
.
.) �107/�108VALUE DOCUMENT ID TECN COMMENT0.16±0.06 OUR AVERAGE0.16±0.06 OUR AVERAGE0.16±0.06 OUR AVERAGE0.16±0.06 OUR AVERAGE0.22+0.10
−0.14 ABLIKIM 05I BES2 e+ e− → ψ(2S)0.14+0.08
−0.06 ADAM 05 CLEO e+ e− → ψ(2S)�(

φπ+π−)/�total �109/��(

φπ+π−)/�total �109/��(

φπ+π−)/�total �109/��(

φπ+π−)/�total �109/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.17±0.29 OUR AVERAGE1.17±0.29 OUR AVERAGE1.17±0.29 OUR AVERAGE1.17±0.29 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.2.44±0.96±0.04 10 ± 4 1,2 AUBERT 07AK BABR 10.6 e+ e− →
π+π−K+K− γ0.9 ±0.2 ±0.1 47.6 BRIERE 05 CLEO e+ e− → ψ(2S) →K+K−π+π−1.5 ±0.2 ±0.2 51.5± 8.3 3 BAI 03B BES ψ(2S) → K+K−π+π−1AUBERT 07AK reports [�(

ψ(2S) → φπ+π−
)/�total℄ × [�(

ψ(2S) → e+ e−)℄ =(0.57± 0.22± 0.04)×10−3 keV whi
h we divide by our best value �(

ψ(2S) → e+ e−)= 2.34 ± 0.04 keV. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.2Using B(φ → K+K−) = (49.3 ± 0.6)%.3Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.�(

φ f0(980)→ π+π−)/�total �110/��(

φ f0(980)→ π+π−)/�total �110/��(

φ f0(980)→ π+π−)/�total �110/��(

φ f0(980)→ π+π−)/�total �110/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.68±0.25 OUR AVERAGE0.68±0.25 OUR AVERAGE0.68±0.25 OUR AVERAGE0.68±0.25 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1.45±0.70±0.02 6 ± 3 1,2 AUBERT 07AK BABR 10.6 e+ e− →
π+π−K+K− γ0.6 ±0.2 ±0.1 18.4± 6.4 3 BAI 03B BES ψ(2S) → K+K−π+π−1AUBERT 07AK reports [�(

ψ(2S) → φ f0(980) → π+π−
)/�total℄ × [�(

ψ(2S) →e+ e−)℄ = (0.34±0.16±0.04)×10−3 keV whi
h we divide by our best value �(

ψ(2S) →e+ e−) = 2.34 ± 0.04 keV. Our �rst error is their experiment's error and our se
onderror is the systemati
 error from using our best value.2Using B(φ → K+K−) = (49.3 ± 0.6)%.3Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.�(2(K+K−))/�total �111/��(2(K+K−))/�total �111/��(2(K+K−))/�total �111/��(2(K+K−))/�total �111/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.6±0.1±0.10.6±0.1±0.10.6±0.1±0.10.6±0.1±0.1 59.2 BRIERE 05 CLEO e+ e− → ψ(2S) →2(K+K−)�(

φK+K−)/�total �112/��(

φK+K−)/�total �112/��(

φK+K−)/�total �112/��(

φK+K−)/�total �112/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.70±0.16 OUR AVERAGE0.70±0.16 OUR AVERAGE0.70±0.16 OUR AVERAGE0.70±0.16 OUR AVERAGE0.8 ±0.2 ±0.1 36.8 BRIERE 05 CLEO e+ e− → ψ(2S) →2(K+K−)0.6 ±0.2 ±0.1 16.1 ± 5.0 1 BAI 03B BES ψ(2S) → 2(K+K−)1Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.�(2(K+K−)π0)/�total �113/��(2(K+K−)π0)/�total �113/��(2(K+K−)π0)/�total �113/��(2(K+K−)π0)/�total �113/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.1±0.2±0.21.1±0.2±0.21.1±0.2±0.21.1±0.2±0.2 44.7 BRIERE 05 CLEO e+ e− → ψ(2S) →2(K+K−)π0�(

φη
)/�total �114/��(

φη
)/�total �114/��(

φη
)/�total �114/��(

φη
)/�total �114/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.10±0.31 OUR AVERAGE3.10±0.31 OUR AVERAGE3.10±0.31 OUR AVERAGE3.10±0.31 OUR AVERAGE3.14±0.23±0.23 0.2k ABLIKIM 12L BES3 e+ e− → ψ(2S)2.0 +1.5

−1.1 ±0.4 6 ADAM 05 CLEO e+ e− → ψ(2S)3.3 ±1.1 ±0.5 17 ABLIKIM 04K BES e+ e− → ψ(2S)�(

φη′
)/�total �115/��(

φη′
)/�total �115/��(

φη′
)/�total �115/��(

φη′
)/�total �115/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.1±1.4±0.73.1±1.4±0.73.1±1.4±0.73.1±1.4±0.7 8 1 ABLIKIM 04K BES e+ e− → ψ(2S)1Cal
ulated 
ombining η′ → γ ρ and ηπ+π− 
hannels.

�(

ωη′
)/�total �116/��(

ωη′
)/�total �116/��(

ωη′
)/�total �116/��(

ωη′
)/�total �116/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.2+2.4

−2.0±0.73.2+2.4
−2.0±0.73.2+2.4
−2.0±0.73.2+2.4
−2.0±0.7 4 1 ABLIKIM 04K BES e+ e− → ψ(2S)1Cal
ulated 
ombining η′ → γ ρ and ηπ+π− 
hannels.�(

ωπ0)/�total �117/��(

ωπ0)/�total �117/��(

ωπ0)/�total �117/��(

ωπ0)/�total �117/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.1 ±0.6 OUR AVERAGE2.1 ±0.6 OUR AVERAGE2.1 ±0.6 OUR AVERAGE2.1 ±0.6 OUR AVERAGE2.5 +1.2
−1.0 ±0.2 14 ADAM 05 CLEO e+ e− → ψ(2S)1.87+0.68
−0.62±0.28 14 ABLIKIM 04L BES e+ e− → ψ(2S)�(

ρη′
)/�total �118/��(

ρη′
)/�total �118/��(

ρη′
)/�total �118/��(

ρη′
)/�total �118/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.87+1.64

−1.11±0.331.87+1.64
−1.11±0.331.87+1.64
−1.11±0.331.87+1.64
−1.11±0.33 2 ABLIKIM 04L BES e+ e− → ψ(2S)�(

ρη
)/�total �119/��(

ρη
)/�total �119/��(

ρη
)/�total �119/��(

ρη
)/�total �119/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.2 ±0.6 OUR AVERAGE2.2 ±0.6 OUR AVERAGE2.2 ±0.6 OUR AVERAGE2.2 ±0.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.3.0 +1.1

−0.9 ±0.2 18 ADAM 05 CLEO e+ e− → ψ(2S)1.78+0.67
−0.62±0.17 13 ABLIKIM 04L BES e+ e− → ψ(2S)�(

ωη
)/�total �120/��(

ωη
)/�total �120/��(

ωη
)/�total �120/��(

ωη
)/�total �120/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<1.1<1.1<1.1<1.1 90 ADAM 05 CLEO e+ e− → ψ(2S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.1 90 ABLIKIM 04K BES e+ e− → ψ(2S)�(

φπ0)/�total �121/��(

φπ0)/�total �121/��(

φπ0)/�total �121/��(

φπ0)/�total �121/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<0.04<0.04<0.04<0.04 90 ABLIKIM 12L BES3 e+ e− → ψ(2S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.7 90 ADAM 05 CLEO e+ e− → ψ(2S)
<0.4 90 ABLIKIM 04K BES e+ e− → ψ(2S)�(

η
 π+π−π0)/�total �122/��(

η
 π+π−π0)/�total �122/��(

η
 π+π−π0)/�total �122/��(

η
 π+π−π0)/�total �122/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<1.0<1.0<1.0<1.0 90 PEDLAR 07 CLEO e+ e− → ψ(2S)�(ppK+K−)/�total �123/��(ppK+K−)/�total �123/��(ppK+K−)/�total �123/��(ppK+K−)/�total �123/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.7±0.6±0.42.7±0.6±0.42.7±0.6±0.42.7±0.6±0.4 30.1 BRIERE 05 CLEO e+ e− → ψ(2S) →ppK+K−�(�nK0S+ 
.
.)/�total �124/��(�nK0S+ 
.
.)/�total �124/��(�nK0S+ 
.
.)/�total �124/��(�nK0S+ 
.
.)/�total �124/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.81±0.11±0.140.81±0.11±0.140.81±0.11±0.140.81±0.11±0.14 50 1 ABLIKIM 08C BES2 e+ e− → J/ψ1Using B(� → pπ+) = 63.9% and B(K0S → π+π−) = 69.2%.�(

φ f ′2(1525))/�total �125/��(

φ f ′2(1525))/�total �125/��(

φ f ′2(1525))/�total �125/��(

φ f ′2(1525))/�total �125/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT0.44±0.12±0.110.44±0.12±0.110.44±0.12±0.110.44±0.12±0.11 20 ± 6 BAI 04C ψ(2S) → 2(K+K−)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.45 90 BAI 98J BES e+ e− → 2(K+K−)�(�(1540)�(1540)→ K0S pK−n+ 
.
.)/�total �126/��(�(1540)�(1540)→ K0S pK−n+ 
.
.)/�total �126/��(�(1540)�(1540)→ K0S pK−n+ 
.
.)/�total �126/��(�(1540)�(1540)→ K0S pK−n+ 
.
.)/�total �126/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<0.88<0.88<0.88<0.88 90 BAI 04G BES2 e+ e−�(�(1540)K−n→ K0S pK−n)/�total �127/��(�(1540)K−n→ K0S pK−n)/�total �127/��(�(1540)K−n→ K0S pK−n)/�total �127/��(�(1540)K−n→ K0S pK−n)/�total �127/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.0<1.0<1.0<1.0 90 BAI 04G BES2 e+ e−�(�(1540)K0S p→ K0S pK+n)/�total �128/��(�(1540)K0S p→ K0S pK+n)/�total �128/��(�(1540)K0S p→ K0S pK+n)/�total �128/��(�(1540)K0S p→ K0S pK+n)/�total �128/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<0.70<0.70<0.70<0.70 90 BAI 04G BES2 e+ e−�(�(1540)K+n→ K0S pK+n)/�total �129/��(�(1540)K+n→ K0S pK+n)/�total �129/��(�(1540)K+n→ K0S pK+n)/�total �129/��(�(1540)K+n→ K0S pK+n)/�total �129/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<2.6<2.6<2.6<2.6 90 BAI 04G BES2 e+ e−�(�(1540)K0S p→ K0S pK−n)/�total �130/��(�(1540)K0S p→ K0S pK−n)/�total �130/��(�(1540)K0S p→ K0S pK−n)/�total �130/��(�(1540)K0S p→ K0S pK−n)/�total �130/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<0.60<0.60<0.60<0.60 90 BAI 04G BES2 e+ e−
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ψ(2S)�(K0S K0S)/�total �131/��(K0S K0S)/�total �131/��(K0S K0S)/�total �131/��(K0S K0S)/�total �131/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT

<0.046<0.046<0.046<0.046 1 BAI 04D BES e+ e−1Forbidden by CP. RADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYS�(γχ
0(1P))/�total �132/��(γχ
0(1P))/�total �132/��(γχ
0(1P))/�total �132/��(γχ
0(1P))/�total �132/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT9.99±0.27 OUR FIT9.99±0.27 OUR FIT9.99±0.27 OUR FIT9.99±0.27 OUR FIT9.2 ±0.4 OUR AVERAGE9.2 ±0.4 OUR AVERAGE9.2 ±0.4 OUR AVERAGE9.2 ±0.4 OUR AVERAGE9.22±0.11±0.46 72600 ATHAR 04 CLEO e+ e− → γX9.9 ±0.5 ±0.8 1 GAISER 86 CBAL e+ e− → γX7.2 ±2.3 1 BIDDICK 77 CNTR e+ e− → γX7.5 ±2.6 1 WHITAKER 76 MRK1 e+ e−1Angular distribution (1+
os2θ) assumed.�(γχ
1(1P))/�total �133/��(γχ
1(1P))/�total �133/��(γχ
1(1P))/�total �133/��(γχ
1(1P))/�total �133/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT9.55±0.31 OUR FIT9.55±0.31 OUR FIT9.55±0.31 OUR FIT9.55±0.31 OUR FIT8.9 ±0.5 OUR AVERAGE8.9 ±0.5 OUR AVERAGE8.9 ±0.5 OUR AVERAGE8.9 ±0.5 OUR AVERAGE9.07±0.11±0.54 76700 ATHAR 04 CLEO e+ e− → γX9.0 ±0.5 ±0.7 1 GAISER 86 CBAL e+ e− → γX7.1 ±1.9 2 BIDDICK 77 CNTR e+ e− → γX1Angular distribution (1−0.189 
os2θ) assumed.2Valid for isotropi
 distribution of the photon.�(γχ
2(1P))/�total �134/��(γχ
2(1P))/�total �134/��(γχ
2(1P))/�total �134/��(γχ
2(1P))/�total �134/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT9.11±0.31 OUR FIT9.11±0.31 OUR FIT9.11±0.31 OUR FIT9.11±0.31 OUR FIT8.8 ±0.5 OUR AVERAGE8.8 ±0.5 OUR AVERAGE8.8 ±0.5 OUR AVERAGE8.8 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.9.33±0.14±0.61 79300 ATHAR 04 CLEO e+ e− → γX8.0 ±0.5 ±0.7 1 GAISER 86 CBAL e+ e− → γX7.0 ±2.0 2 BIDDICK 77 CNTR e+ e− → γX1Angular distribution (1−0.052 
os2θ) assumed.2Valid for isotropi
 distribution of the photon.
[�(γχ
0(1P))+ �(γχ
1(1P))+�(γχ
2(1P))]/�total (�132+�133+�134)/�[�(γχ
0(1P))+ �(γχ
1(1P))+�(γχ
2(1P))]/�total (�132+�133+�134)/�[�(γχ
0(1P))+ �(γχ
1(1P))+�(γχ
2(1P))]/�total (�132+�133+�134)/�[�(γχ
0(1P))+ �(γχ
1(1P))+�(γχ
2(1P))]/�total (�132+�133+�134)/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •27.6±0.3±2.0 1 ATHAR 04 CLEO e+ e− → γX1Not independent from ATHAR 04 measurements of B(γχcJ ).�(γχ
0(1P))/�(γχ
1(1P)) �132/�133�(γχ
0(1P))/�(γχ
1(1P)) �132/�133�(γχ
0(1P))/�(γχ
1(1P)) �132/�133�(γχ
0(1P))/�(γχ
1(1P)) �132/�133VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.02±0.01±0.07 1 ATHAR 04 CLEO e+ e− → γX1Not independent from ATHAR 04 measurements of B(γχcJ ).�(γχ
2(1P))/�(γχ
1(1P)) �134/�133�(γχ
2(1P))/�(γχ
1(1P)) �134/�133�(γχ
2(1P))/�(γχ
1(1P)) �134/�133�(γχ
2(1P))/�(γχ
1(1P)) �134/�133VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.03±0.02±0.03 1 ATHAR 04 CLEO e+ e− → γX1Not independent from ATHAR 04 measurements of B(γχcJ ).�(γχ
0(1P))/�(γχ
2(1P)) �132/�134�(γχ
0(1P))/�(γχ
2(1P)) �132/�134�(γχ
0(1P))/�(γχ
2(1P)) �132/�134�(γχ
0(1P))/�(γχ
2(1P)) �132/�134VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.99±0.02±0.08 1 ATHAR 04 CLEO e+ e− → γX1Not independent from ATHAR 04 measurements of B(γχcJ ).�(γ η
 (1S))/�total �135/��(γ η
 (1S))/�total �135/��(γ η
 (1S))/�total �135/��(γ η
 (1S))/�total �135/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.34 ±0.05 OUR AVERAGE0.34 ±0.05 OUR AVERAGE0.34 ±0.05 OUR AVERAGE0.34 ±0.05 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.0.432±0.016±0.060 MITCHELL 09 CLEO e+ e− → γX0.32 ±0.04 ±0.06 2560 1 ATHAR 04 CLEO e+ e− → γX0.28 ±0.06 2 GAISER 86 CBAL e+ e− → γX1ATHAR 04 used �η
 (1S) = 24.8 ± 4.9 MeV to obtain this result.2GAISER 86 used �η
 (1S) = 11.5 ± 4.5 MeV to obtain this result.

WEIGHTED AVERAGE
0.34±0.05 (Error scaled by 1.3)

GAISER 86 CBAL 1.2
ATHAR 04 CLEO 0.1
MITCHELL 09 CLEO 2.0

χ2

       3.3
(Confidence Level = 0.196)

0 0.2 0.4 0.6 0.8 1�(

γ η
 (1S))/�total (units 10−2)�(γ η
 (2S))/�total �136/��(γ η
 (2S))/�total �136/��(γ η
 (2S))/�total �136/��(γ η
 (2S))/�total �136/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT7±2±47±2±47±2±47±2±4 1 ABLIKIM 12G BES3 ψ(2S) → γK0K π, KK π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 8 90 2 CRONIN-HEN...10 CLEO ψ(2S) → γK K π

<20 90 ATHAR 04 CLEO e+ e− → γX20{130 95 EDWARDS 82C CBAL e+ e− → γX1ABLIKIM 12G reports [�(

ψ(2S) → γ η
 (2S))/�total℄ × [B(η
 (2S) → K K π)℄ =(1.30 ± 0.20 ± 0.30) × 10−5 whi
h we divide by our best value B(η
 (2S) → K K π)= (1.9 ± 1.2)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.2CRONIN-HENNESSY 10 reports [�(

ψ(2S) → γ η
 (2S))/�total℄ × [B(η
 (2S) →K K π)℄ < 14.5 × 10−6 whi
h we divide by our best value B(η
 (2S) → K K π) =1.9×10−2. This measurement assumes �(η
 (2S)) = 14 MeV. CRONIN-HENNESSY 10gives the analyti
 dependen
e of limits on width.�(γπ0)/�total �137/��(γπ0)/�total �137/��(γπ0)/�total �137/��(γπ0)/�total �137/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT1.58±0.40±0.131.58±0.40±0.131.58±0.40±0.131.58±0.40±0.13 37 ABLIKIM 10F BES3 ψ(2S) → γπ0
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 5 90 PEDLAR 09 CLE3 ψ(2S) → γX
<5400 95 1 LIBERMAN 75 SPEC e+ e−
< 1× 104 90 WIIK 75 DASP e+ e−1Restated by us using B(ψ(2S) → µ+µ−) = 0.0077.�(γ η′(958))/�total �138/��(γ η′(958))/�total �138/��(γ η′(958))/�total �138/��(γ η′(958))/�total �138/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT1.23±0.06 OUR AVERAGE1.23±0.06 OUR AVERAGE1.23±0.06 OUR AVERAGE1.23±0.06 OUR AVERAGE1.26±0.03±0.08 2226 1 ABLIKIM 10F BES3 ψ(2S) → 3γπ+π−,2γπ+π−1.19±0.08±0.03 PEDLAR 09 CLE3 ψ(2S) → γX1.24±0.27±0.15 23 ABLIKIM 06R BES2 e+ e− → ψ(2S)1.54±0.31±0.20 ∼ 43 BAI 98F BES ψ(2S) → π+π− 2γ,

π+π− 3γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 60 90 2 BRAUNSCH... 77 DASP e+ e−
< 11 90 3 BARTEL 76 CNTR e+ e−1Combining the results from η′ → π+π− η and η′ → π+π− γ de
ay modes.2Restated by us using total de
ay width 228 keV.3The value is normalized to the bran
hing ratio for �(J/ψ(1S)η

)/�total.�(γ f2(1270))/�total �139/��(γ f2(1270))/�total �139/��(γ f2(1270))/�total �139/��(γ f2(1270))/�total �139/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.73+0.29
−0.25 OUR AVERAGE2.73+0.29
−0.25 OUR AVERAGE2.73+0.29
−0.25 OUR AVERAGE2.73+0.29
−0.25 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.2.84±0.15+0.03

−0.10 1.9k 1,2 DOBBS 15 ψ(2S) → γππ2.12±0.19±0.32 3,4 BAI 03C BES ψ(2S) → γππ

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.08±0.19±0.33 200.6 ± 18.8 3 BAI 03C BES ψ(2S) → γπ+π−2.90±1.08±1.07 29.9 ± 11.1 3 BAI 03C BES ψ(2S) → γπ0π01Using CLEO-
 data but not authored by the CLEO Collaboration.2DOBBS 15 reports [�(

ψ(2S) → γ f2(1270))/�total℄ × [B(f2(1270) → ππ)℄ =(2.39 ± 0.09 ± 0.09)× 10−4 whi
h we divide by our best value B(f2(1270) → ππ) =(84.2+2.9
−0.9) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.4Combining the results from π+π− and π0π0 de
ay modes.



1432143214321432MesonParti
le Listings
ψ(2S)�(

γ f0(1370)→ γK K)/�total �140/��(

γ f0(1370)→ γK K)/�total �140/��(

γ f0(1370)→ γK K)/�total �140/��(

γ f0(1370)→ γK K)/�total �140/�VALUE (units 10−5) EVTS DOCUMENT ID COMMENT3.1±1.0±1.43.1±1.0±1.43.1±1.0±1.43.1±1.0±1.4 175 1 DOBBS 15 ψ(2S) → γK K1Using CLEO-
 data but not authored by the CLEO Collaboration.�(

γ f0(1500))/�total �141/��(

γ f0(1500))/�total �141/��(

γ f0(1500))/�total �141/��(

γ f0(1500))/�total �141/�VALUE (units 10−5) EVTS DOCUMENT ID COMMENT9.2±1.8±0.69.2±1.8±0.69.2±1.8±0.69.2±1.8±0.6 274 1,2 DOBBS 15 ψ(2S) → γππ1DOBBS 15 reports [�(

ψ(2S) → γ f0(1500))/�total℄ × [B(f0(1500) → ππ)℄ = (3.2 ±0.6± 0.2)×10−5 whi
h we divide by our best value B(f0(1500) → ππ) = (34.9± 2.3)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.2Using CLEO-
 data but not authored by the CLEO Collaboration.�(

γ f ′2(1525))/�total �142/��(

γ f ′2(1525))/�total �142/��(

γ f ′2(1525))/�total �142/��(

γ f ′2(1525))/�total �142/�VALUE (units 10−5) EVTS DOCUMENT ID COMMENT3.3±0.8±0.13.3±0.8±0.13.3±0.8±0.13.3±0.8±0.1 136 1,2 DOBBS 15 ψ(2S) → γK K1DOBBS 15 reports [�(

ψ(2S) → γ f ′2(1525))/�total℄ × [B(f ′2(1525) → K K)℄ = (2.9±0.6 ± 0.3) × 10−5 whi
h we divide by our best value B(f ′2(1525) → K K) = (88.7 ±2.2) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.2Using CLEO-
 data but not authored by the CLEO Collaboration.�(

γ f0(1710)→ γππ
)/�total �144/��(

γ f0(1710)→ γππ
)/�total �144/��(

γ f0(1710)→ γππ
)/�total �144/��(

γ f0(1710)→ γππ
)/�total �144/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.5 ±0.6 OUR AVERAGE3.5 ±0.6 OUR AVERAGE3.5 ±0.6 OUR AVERAGE3.5 ±0.6 OUR AVERAGE3.6 ±0.4 ±0.5 290 1 DOBBS 15 ψ(2S) → γππ3.01±0.41±1.24 35.6 ± 4.8 2 BAI 03C BES ψ(2S) → γπ+π−1Using CLEO-
 data but not authored by the CLEO Collaboration.2Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.�(

γ f0(1710)→ γK K)/�total �145/��(

γ f0(1710)→ γK K)/�total �145/��(

γ f0(1710)→ γK K)/�total �145/��(

γ f0(1710)→ γK K)/�total �145/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT6.6 ±0.7 OUR AVERAGE6.6 ±0.7 OUR AVERAGE6.6 ±0.7 OUR AVERAGE6.6 ±0.7 OUR AVERAGE6.7 ±0.6 ±0.6 375 1 DOBBS 15 ψ(2S) → γK K6.04±0.90±1.32 39.6± 5.9 2,3 BAI 03C BES ψ(2S) → γK+K−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 15.6 90 6.8 ± 3.1 2,3 BAI 03C BES ψ(2S) → γK0S K0S1Using CLEO-
 data but not authored by the CLEO Collaboration.2 In
ludes unknown bran
hing fra
tions to K+K− or K0S K0S . We have multiplied theK+K− result by a fa
tor of 2 and the K0S K0S result by a fa
tor of 4 to obtain the K Kresult.3Normalized to B(ψ(2S) → J/ψπ+π−) = 0.305 ± 0.016.�(

γ f0(2100)→ γππ
)/�total �146/��(

γ f0(2100)→ γππ
)/�total �146/��(

γ f0(2100)→ γππ
)/�total �146/��(

γ f0(2100)→ γππ
)/�total �146/�VALUE (units 10−6) EVTS DOCUMENT ID COMMENT4.8±0.5±0.94.8±0.5±0.94.8±0.5±0.94.8±0.5±0.9 373 1 DOBBS 15 ψ(2S) → γππ1Using CLEO-
 data but not authored by the CLEO Collaboration.�(

γ f0(2200)→ γK K)/�total �147/��(

γ f0(2200)→ γK K)/�total �147/��(

γ f0(2200)→ γK K)/�total �147/��(

γ f0(2200)→ γK K)/�total �147/�VALUE (units 10−6) EVTS DOCUMENT ID COMMENT3.2±0.6±0.83.2±0.6±0.83.2±0.6±0.83.2±0.6±0.8 207 1 DOBBS 15 ψ(2S) → γK K1Using CLEO-
 data but not authored by the CLEO Collaboration.�(

γ fJ (2220)→ γππ
)/�total �148/��(

γ fJ (2220)→ γππ
)/�total �148/��(

γ fJ (2220)→ γππ
)/�total �148/��(

γ fJ (2220)→ γππ
)/�total �148/�VALUE CL% DOCUMENT ID COMMENT

<5.8× 10−6<5.8× 10−6<5.8× 10−6<5.8× 10−6 90 1,2 DOBBS 15 ψ(2S) → γππ1Using CLEO-
 data but not authored by the CLEO Collaboration.2 For � = 20/50 MeV, the 90% CL upper limits for π+π− and π0π0 are 3.2/4.3× 10−6and 2.6/4.0× 10−6, respe
tively.�(

γ fJ (2220)→ γKK)/�total �149/��(

γ fJ (2220)→ γKK)/�total �149/��(

γ fJ (2220)→ γKK)/�total �149/��(

γ fJ (2220)→ γKK)/�total �149/�VALUE CL% DOCUMENT ID COMMENT
<9.5× 10−6<9.5× 10−6<9.5× 10−6<9.5× 10−6 90 1,2 DOBBS 15 ψ(2S) → γK K1Using CLEO-
 data but not authored by the CLEO Collaboration.2 For � = 20/50 MeV, the 90% CL upper limits for K+K− and K0S K0S are 2.1/4.3×10−6and 3.7/5.5× 10−6, respe
tively.�(

γ η
)/�total �151/��(

γ η
)/�total �151/��(

γ η
)/�total �151/��(

γ η
)/�total �151/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT1.38±0.48±0.091.38±0.48±0.091.38±0.48±0.091.38±0.48±0.09 13 1 ABLIKIM 10F BES3 ψ(2S) → γπ+π−π0,

γ 3π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 2 90 PEDLAR 09 CLE3 ψ(2S) → γX
< 90 90 BAI 98F BES ψ(2S) → π+π− 3γ
<200 90 YAMADA 77 DASP e+ e− → 3γ1Combining the results from η → π+π−π0 and η → 3π0 de
ay modes.

�(

γ ηπ+π−)/�total �152/��(

γ ηπ+π−)/�total �152/��(

γ ηπ+π−)/�total �152/��(

γ ηπ+π−)/�total �152/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8.71±1.25±1.648.71±1.25±1.648.71±1.25±1.648.71±1.25±1.64 418 ABLIKIM 06R BES2 ψ(2S) → γ ηπ+ π−�(

γ η(1405)→ γKK π
)/�total �154/��(

γ η(1405)→ γKK π
)/�total �154/��(

γ η(1405)→ γKK π
)/�total �154/��(

γ η(1405)→ γKK π
)/�total �154/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<0.9<0.9<0.9<0.9 90 ABLIKIM 06R BES2 ψ(2S) → γK0S K+π− + 
.
.
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.3 90 ABLIKIM 06R BES2 ψ(2S) → γK+K−π0
<1.2 90 1 SCHARRE 80 MRK1 e+ e−1 In
ludes unknown bran
hing fra
tion η(1405) → K K π.�(

γ η(1405)→ ηπ+π−)/�total �155/��(

γ η(1405)→ ηπ+π−)/�total �155/��(

γ η(1405)→ ηπ+π−)/�total �155/��(

γ η(1405)→ ηπ+π−)/�total �155/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.36±0.25±0.050.36±0.25±0.050.36±0.25±0.050.36±0.25±0.05 10 ABLIKIM 06R BES2 ψ(2S) → γ ηπ+ π−�(

γ η(1475)→ KK π
)/�total �157/��(

γ η(1475)→ KK π
)/�total �157/��(

γ η(1475)→ KK π
)/�total �157/��(

γ η(1475)→ KK π
)/�total �157/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.4<1.4<1.4<1.4 90 ABLIKIM 06R BES2 ψ(2S) → γK+K−π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.5 90 ABLIKIM 06R BES2 ψ(2S) → γK0S K+π− + 
.
.�(

γ η(1475)→ ηπ+π−)/�total �158/��(

γ η(1475)→ ηπ+π−)/�total �158/��(

γ η(1475)→ ηπ+π−)/�total �158/��(

γ η(1475)→ ηπ+π−)/�total �158/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.88<0.88<0.88<0.88 90 ABLIKIM 06R BES2 ψ(2S) → γ ηπ+ π−�(

γ 2(π+π−))/�total �159/��(

γ 2(π+π−))/�total �159/��(

γ 2(π+π−))/�total �159/��(

γ 2(π+π−))/�total �159/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT39.6±2.8±5.039.6±2.8±5.039.6±2.8±5.039.6±2.8±5.0 583 ABLIKIM 07D BES2 e+ e− → ψ(2S)�(

γK∗0K+π−+ 
.
.)/�total �160/��(

γK∗0K+π−+ 
.
.)/�total �160/��(

γK∗0K+π−+ 
.
.)/�total �160/��(

γK∗0K+π−+ 
.
.)/�total �160/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT37.0±6.1±7.237.0±6.1±7.237.0±6.1±7.237.0±6.1±7.2 237 ABLIKIM 07D BES2 e+ e− → ψ(2S)�(

γK∗0K∗0)/�total �161/��(

γK∗0K∗0)/�total �161/��(

γK∗0K∗0)/�total �161/��(

γK∗0K∗0)/�total �161/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT24.0±4.5±5.024.0±4.5±5.024.0±4.5±5.024.0±4.5±5.0 41 ABLIKIM 07D BES2 e+ e− → ψ(2S)�(

γK0S K+π−+ 
.
.)/�total �162/��(

γK0S K+π−+ 
.
.)/�total �162/��(

γK0S K+π−+ 
.
.)/�total �162/��(

γK0S K+π−+ 
.
.)/�total �162/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT25.6±3.6±3.625.6±3.6±3.625.6±3.6±3.625.6±3.6±3.6 115 ABLIKIM 07D BES2 e+ e− → ψ(2S)�(

γK+K−π+π−)/�total �163/��(

γK+K−π+π−)/�total �163/��(

γK+K−π+π−)/�total �163/��(

γK+K−π+π−)/�total �163/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT19.1±2.7±4.319.1±2.7±4.319.1±2.7±4.319.1±2.7±4.3 132 ABLIKIM 07D BES2 e+ e− → ψ(2S)�(

γ pp)/�total �164/��(

γ pp)/�total �164/��(

γ pp)/�total �164/��(

γ pp)/�total �164/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.9 ±0.5 OUR AVERAGE3.9 ±0.5 OUR AVERAGE3.9 ±0.5 OUR AVERAGE3.9 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0.4.18±0.26±0.18 348 1 ALEXANDER 10 CLEO ψ(2S) → γ pp2.9 ±0.4 ±0.4 142 ABLIKIM 07D BES2 e+ e− → ψ(2S)1 From a �t of the pp mass distribution to a 
ombination of γ f2(1950), γ f2(2150), and
γ pp phase spa
e, forM(pp < 2.85 GeV, and a

ounting for ba
kgrounds from ψ(2S) →
π0 pp and 
ontinuum.�(

γ f2(1950)→ γ pp)/�total �165/��(

γ f2(1950)→ γ pp)/�total �165/��(

γ f2(1950)→ γ pp)/�total �165/��(

γ f2(1950)→ γ pp)/�total �165/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.2±0.2±0.11.2±0.2±0.11.2±0.2±0.11.2±0.2±0.1 111 1 ALEXANDER 10 CLEO ψ(2S) → γ pp1From a �t of the pp mass distribution to a 
ombination of γ f2(1950), γ f2(2150), and
γ pp phase spa
e, forM(pp < 2.85 GeV, and a

ounting for ba
kgrounds from ψ(2S) →
π0 pp and 
ontinuum.�(

γ f2(2150)→ γ pp)/�total �166/��(

γ f2(2150)→ γ pp)/�total �166/��(

γ f2(2150)→ γ pp)/�total �166/��(

γ f2(2150)→ γ pp)/�total �166/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT0.72±0.18±0.030.72±0.18±0.030.72±0.18±0.030.72±0.18±0.03 73 1 ALEXANDER 10 CLEO ψ(2S) → γ pp1From a �t of the pp mass distribution to a 
ombination of γ f2(1950), γ f2(2150), and
γ pp phase spa
e, forM(pp < 2.85 GeV, and a

ounting for ba
kgrounds from ψ(2S) →
π0 pp and 
ontinuum.�(

γX (1835)→ γ pp)/�total �167/��(

γX (1835)→ γ pp)/�total �167/��(

γX (1835)→ γ pp)/�total �167/��(

γX (1835)→ γ pp)/�total �167/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT4.57±0.36+1.77
−4.264.57±0.36+1.77
−4.264.57±0.36+1.77
−4.264.57±0.36+1.77
−4.26 ABLIKIM 12D BES3 J/ψ → γ pp

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.6 90 ALEXANDER 10 CLEO ψ(2S) → γ pp
<5.4 90 ABLIKIM 07D BES ψ(2S) → γ pp�(

γX → γ pp)/�total �168/��(

γX → γ pp)/�total �168/��(

γX → γ pp)/�total �168/��(

γX → γ pp)/�total �168/�For a narrow resonan
e in the range 2.2 < M(X ) < 2.8 GeV.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<2<2<2<2 90 ALEXANDER 10 CLEO ψ(2S) → γ pp
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ψ(2S)�(γπ+π−pp)/�total �169/��(γπ+π−pp)/�total �169/��(γπ+π−pp)/�total �169/��(γπ+π−pp)/�total �169/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.8±1.2±0.72.8±1.2±0.72.8±1.2±0.72.8±1.2±0.7 17 ABLIKIM 07D BES2 e+ e− → ψ(2S)�(γ 2(π+π−)K+K−)/�total �170/��(γ 2(π+π−)K+K−)/�total �170/��(γ 2(π+π−)K+K−)/�total �170/��(γ 2(π+π−)K+K−)/�total �170/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<22<22<22<22 90 ABLIKIM 07D BES2 e+ e− → ψ(2S)�(γ 3(π+π−))/�total �171/��(γ 3(π+π−))/�total �171/��(γ 3(π+π−))/�total �171/��(γ 3(π+π−))/�total �171/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<17<17<17<17 90 ABLIKIM 07D BES2 e+ e− → ψ(2S)�(γK+K−K+K−)/�total �172/��(γK+K−K+K−)/�total �172/��(γK+K−K+K−)/�total �172/��(γK+K−K+K−)/�total �172/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<4<4<4<4 90 ABLIKIM 07D BES2 e+ e− → ψ(2S)�(γ γ J/ψ

)/�total �173/��(γ γ J/ψ
)/�total �173/��(γ γ J/ψ
)/�total �173/��(γ γ J/ψ
)/�total �173/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.1±0.6+0.8

−1.03.1±0.6+0.8
−1.03.1±0.6+0.8
−1.03.1±0.6+0.8
−1.0 1.1k ABLIKIM 12O BES3 e+ e− → ψ(2S)OTHER DECAYSOTHER DECAYSOTHER DECAYSOTHER DECAYS�(invisible)/�(e+ e−) �174/�6�(invisible)/�(e+ e−) �174/�6�(invisible)/�(e+ e−) �174/�6�(invisible)/�(e+ e−) �174/�6VALUE CL% DOCUMENT ID TECN COMMENT

<2.0<2.0<2.0<2.0 90 LEES 13I BABR B → K(∗)ψ(2S)
ψ(2S) CROSS-PARTICLE BRANCHING RATIOSψ(2S) CROSS-PARTICLE BRANCHING RATIOSψ(2S) CROSS-PARTICLE BRANCHING RATIOSψ(2S) CROSS-PARTICLE BRANCHING RATIOSFor measurements involving B(ψ(2S) → γχcJ (1P))×B(χcJ (1P) → X )see the 
orresponding entries in the χcJ (1P) se
tions.MULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYSMULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYSMULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYSMULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYS

ψ(2S) → γχcJ (1P) and χcJ → γ J/ψ(1S)ψ(2S) → γχcJ (1P) and χcJ → γ J/ψ(1S)ψ(2S) → γχcJ (1P) and χcJ → γ J/ψ(1S)ψ(2S) → γχcJ (1P) and χcJ → γ J/ψ(1S)a2(χ
1)/a2(χ
2) Magneti
 quadrupole transition amplitude ratioa2(χ
1)/a2(χ
2) Magneti
 quadrupole transition amplitude ratioa2(χ
1)/a2(χ
2) Magneti
 quadrupole transition amplitude ratioa2(χ
1)/a2(χ
2) Magneti
 quadrupole transition amplitude ratioVALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT67+19
−1367+19
−1367+19
−1367+19
−13 59k 1 ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−1Statisti
al and systemati
 errors 
ombined. Using values from �ts with 
oating M2amplitudes a2(χ
1), a2(χ
2), b2(χ
1), b2(χ
2) and �xed E3 amplitudes of a3(χ
2)= b3(χ
2) = 0. Not independent of values for a2(χ
1(1P)) and a2(χ
2(1P)) fromARTUSO 09.b2(χ
2)/b2(χ
1) Magneti
 quadrupole transition amplitude ratiob2(χ
2)/b2(χ
1) Magneti
 quadrupole transition amplitude ratiob2(χ
2)/b2(χ
1) Magneti
 quadrupole transition amplitude ratiob2(χ
2)/b2(χ
1) Magneti
 quadrupole transition amplitude ratioVALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT37+53
−4737+53
−4737+53
−4737+53
−47 59k 1 ARTUSO 09 CLEO ψ(2S) → γ γ ℓ+ ℓ−1Statisti
al and systemati
 errors 
ombined. Using values from �ts with 
oating M2amplitudes a2(χ
1), a2(χ
2), b2(χ
1), b2(χ
2) and �xed E3 amplitudes of a3(χ
2)= b3(χ
2) = 0. Not independent of values for b2(χ
1(1P)) and b2(χ
2(1P)) fromARTUSO 09.

ψ(2S) REFERENCESψ(2S) REFERENCESψ(2S) REFERENCESψ(2S) REFERENCESABLIKIM 15I PR D91 092006 M. Ablikim et al. (BES III Collab.)ABLIKIM 15V PL B749 414 M. Ablikim et al. (BES III Collab.)ANASHIN 15 PL B749 50 V.V. Anashin et al. (KEDR Collab.)DOBBS 15 PR D91 052006 S. Dobbs et al. (NWES)LEES 15J PR D92 072008 J.P. Lees et al. (BABAR Collab.)ABLIKIM 14G PR D89 112006 M. Ablikim et al. (BES III Collab.)DOBBS 14 PL B739 90 S. Dobbs et al. (NWES, WAYN)ABLIKIM 13A PRL 110 022001 M. Ablikim et al. (BES III Collab.)ABLIKIM 13D PR D87 012007 M. Ablikim et al. (BES III Collab.)ABLIKIM 13F PR D87 052007 M. Ablikim et al. (BES III Collab.)ABLIKIM 13M PR D87 092006 M. Ablikim et al. (BES III Collab.)ABLIKIM 13R PR D88 032007 M. Ablikim et al. (BES III Collab.)ABLIKIM 13S PR D88 032010 M. Ablikim et al. (BES III Collab.)ABLIKIM 13W PR D88 112007 M. Ablikim et al. (BES III Collab.)LEES 13I PR D87 112005 J.P. Lees et al. (BABAR Collab.)LEES 13O PR D87 092005 J.P. Lees et al. (BABAR Collab.)LEES 13Q PR D88 032013 J.P. Lees et al. (BABAR Collab.)LEES 13Y PR D88 072009 J.P. Lees et al. (BABAR Collab.)AAIJ 12H EPJ C72 1972 R. Aaij et al. (LHCb Collab.)ABLIKIM 12D PRL 108 112003 M. Ablikim et al. (BES III Collab.)ABLIKIM 12G PRL 109 042003 M. Ablikim et al. (BES III Collab.)ABLIKIM 12H PL B710 594 M. Ablikim et al. (BES III Collab.)ABLIKIM 12L PR D86 072011 M. Ablikim et al. (BES III Collab.)ABLIKIM 12M PR D86 092008 M. Ablikim et al. (BES III Collab.)ABLIKIM 12O PRL 109 172002 M. Ablikim et al. (BES III Collab.)ABLIKIM 12Q CPC 36 1040 M. Ablikim et al. (BES II Collab.)ANASHIN 12 PL B711 280 V.V. Anashin et al. (KEDR Collab.)LEES 12E PR D85 112009 J.P. Lees et al. (BABAR Collab.)METREVELI 12 PR D85 092007 Z. Metreveli et al. (NWES, FLOR, WAYN+)GE 11 PR D84 032008 J.Y. Ge et al. (CLEO Collab.)ABLIKIM 10B PRL 104 132002 M. Ablikim et al. (BES III Collab.)ABLIKIM 10F PRL 105 261801 M. Ablikim et al. (BES III Collab.)ALEXANDER 10 PR D82 092002 J.P. Alexander et al. (CLEO Collab.)CRONIN-HEN... 10 PR D81 052002 D. Cronin-Hennessey et al. (CLEO Collab.)ADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO Collab.)ARTUSO 09 PR D80 112003 M. Artuso et al. (CLEO Collab.)LIBBY 09 PR D80 072002 J. Libby et al. (CLEO Collab.)MITCHELL 09 PRL 102 011801 R.E. Mit
hell et al. (CLEO Collab.)PEDLAR 09 PR D79 111101 T.K. Pedlar et al. (CLEO Collab.)ABLIKIM 08B PL B659 74 M. Ablikim et al. (BES Collab.)ABLIKIM 08C PL B659 789 M. Ablikim et al. (BES Collab.)DOBBS 08A PRL 101 182003 S. Dobbs et al. (CLEO Collab.)

MENDEZ 08 PR D78 011102 H. Mendez et al. (CLEO Collab.)PDG 08 PL B667 1 C. Amsler et al. (PDG Collab.)ABLIKIM 07C PL B648 149 M. Ablikim et al. (BES Collab.)ABLIKIM 07D PRL 99 011802 M. Ablikim et al. (BES II Collab.)ABLIKIM 07H PR D76 092003 M. Ablikim et al. (BES Collab.)ANASHIN 07 JETPL 85 347 V.V. Anashin et al. (KEDR Collab.)Translated from ZETFP 85 429.ANDREOTTI 07 PL B654 74 M. Andreotti et al. (Femilab E835 Collab.)AUBERT 07AK PR D76 012008 B. Aubert et al. (BABAR Collab.)AUBERT 07AU PR D76 092005 B. Aubert et al. (BABAR Collab.)Also PR D77 119902E (errat.) B. Aubert et al. (BABAR Collab.)AUBERT 07BD PR D76 092006 B. Aubert et al. (BABAR Collab.)PDG 07 UnoÆ
ial 2007 WWW edition (PDG Collab.)PEDLAR 07 PR D75 011102 T.K. Pedlar et al. (CLEO Collab.)ABLIKIM 06G PR D73 052004 M. Ablikim et al. (BES Collab.)ABLIKIM 06I PR D74 012004 M. Ablikim et al. (BES Collab.)ABLIKIM 06L PRL 97 121801 M. Ablikim et al. (BES Collab.)ABLIKIM 06R PR D74 072001 M. Ablikim et al. (BES Collab.)ABLIKIM 06W PR D74 112003 M. Ablikim et al. (BES Collab.)ADAM 06 PRL 96 082004 N.E. Adam et al. (CLEO Collab.)AUBERT 06B PR D73 012005 B. Aubert et al. (BABAR Collab.)AUBERT 06D PR D73 052003 B. Aubert et al. (BABAR Collab.)AUBERT,BE 06D PR D74 091103 B. Aubert et al. (BABAR Collab.)DOBBS 06A PR D74 011105 S. Dobbs et al. (CLEO Collab.)ABLIKIM 05E PR D71 072006 M. Ablikim et al. (BES Collab.)ABLIKIM 05H PR D72 012002 M. Ablikim et al. (BES Collab.)ABLIKIM 05I PL B614 37 M. Ablikim et al. (BES Collab.)ABLIKIM 05J PL B619 247 M. Ablikim et al. (BES Collab.)ABLIKIM 05O PL B630 21 M. Ablikim et al. (BES Collab.)ADAM 05 PRL 94 012005 N.E. Adam et al. (CLEO Collab.)ADAM 05A PRL 94 232002 N.E. Adam et al. (CLEO Collab.)ANDREOTTI 05 PR D71 032006 M. Andreotti et al. (FNAL E835 Collab.)AUBERT 05D PR D71 052001 B. Aubert et al. (BABAR Collab.)BRIERE 05 PRL 95 062001 R.A. Briere et al. (CLEO Collab.)PEDLAR 05 PR D72 051108 T.K. Pedlar et al. (CLEO Collab.)ROSNER 05 PRL 95 102003 J.L. Rosner et al. (CLEO Collab.)ABLIKIM 04B PR D70 012003 M. Ablikim et al. (BES Collab.)ABLIKIM 04K PR D70 112003 M. Ablikim et al. (BES Collab.)ABLIKIM 04L PR D70 112007 M. Ablikim et al. (BES Collab.)ATHAR 04 PR D70 112002 S.B. Athar et al. (CLEO Collab.)BAI 04B PRL 92 052001 J.Z. Bai et al. (BES Collab.)BAI 04C PR D69 072001 J.Z. Bai et al. (BES Collab.)BAI 04D PL B589 7 J.Z. Bai et al. (BES Collab.)BAI 04G PR D70 012004 J.Z. Bai et al. (BES Collab.)BAI 04I PR D70 012006 J.Z. Bai et al. (BES Collab.)PDG 04 PL B592 1 S. Eidelman et al. (PDG Collab.)SETH 04 PR D69 097503 K.K. SethAULCHENKO 03 PL B573 63 V.M. Aul
henko et al. (KEDR Collab.)BAI 03B PR D67 052002 J.Z. Bai et al. (BES Collab.)BAI 03C PR D67 032004 J.Z. Bai et al. (BES Collab.)AUBERT 02B PR D65 031101 B. Aubert et al. (BABAR Collab.)BAI 02 PR D65 052004 J.Z. Bai et al. (BES Collab.)BAI 02B PL B550 24 J.Z. Bai et al. (BES Collab.)BAI 02C PRL 88 101802 J.Z. Bai et al. (BES Collab.)PDG 02 PR D66 010001 K. Hagiwara et al. (PDG Collab.)BAI 01 PR D63 032002 J.Z. Bai et al. (BES Collab.)AMBROGIANI 00A PR D62 032004 M. Ambrogiani et al. (FNAL E835 Collab.)ARTAMONOV 00 PL B474 427 A.S. Artamonov et al.BAI 00 PRL 84 594 J.Z. Bai et al. (BES Collab.)BAI 99C PRL 83 1918 J.Z. Bai et al. (BES Collab.)BAI 98E PR D57 3854 J.Z. Bai et al. (BES Collab.)BAI 98F PR D58 097101 J.Z. Bai et al. (BES Collab.)BAI 98J PRL 81 5080 J.Z. Bai et al. (BES Collab.)ARMSTRONG 97 PR D55 1153 T.A. Armstrong et al. (E760 Collab.)GRIBUSHIN 96 PR D53 4723 A. Gribushin et al. (E672 Collab., E706 Collab.)ARMSTRONG 93B PR D47 772 T.A. Armstrong et al. (FNAL E760 Collab.)ALEXANDER 89 NP B320 45 J.P. Alexander et al. (LBL, MICH, SLAC)COHEN 87 RMP 59 1121 E.R. Cohen, B.N. Taylor (RISC, NBS)GAISER 86 PR D34 711 J. Gaiser et al. (Crystal Ball Collab.)KURAEV 85 SJNP 41 466 E.A. Kuraev, V.S. Fadin (NOVO)Translated from YAF 41 733.FRANKLIN 83 PRL 51 963 M.E.B. Franklin et al. (LBL, SLAC)EDWARDS 82C PRL 48 70 C. Edwards et al. (CIT, HARV, PRIN+)LEMOIGNE 82 PL 113B 509 Y. Lemoigne et al. (SACL, LOIC, SHMP+)HIMEL 80 PRL 44 920 T. Himel et al. (LBL, SLAC)OREGLIA 80 PRL 45 959 M.J. Oreglia et al. (SLAC, CIT, HARV+)SCHARRE 80 PL 97B 329 D.L. S
harre et al. (SLAC, LBL)ZHOLENTZ 80 PL 96B 214 A.A. Zholents et al. (NOVO)Also SJNP 34 814 A.A. Zholents et al. (NOVO)Translated from YAF 34 1471.BRANDELIK 79B NP B160 426 R. Brandelik et al. (DASP Collab.)BRANDELIK 79C ZPHY C1 233 R. Brandelik et al. (DASP Collab.)BARTEL 78B PL 79B 492 W. Bartel et al. (DESY, HEIDP)TANENBAUM 78 PR D17 1731 W.M. Tanenbaum et al. (SLAC, LBL)BIDDICK 77 PRL 38 1324 C.J. Biddi
k et al. (UCSD, UMD, PAVI+)BRAUNSCH... 77 PL 67B 249 W. Brauns
hweig et al. (DASP Collab.)BURMESTER 77 PL 66B 395 J. Burmester et al. (DESY, HAMB, SIEG+)FELDMAN 77 PRPL 33C 285 G.J. Feldman, M.L. Perl (LBL, SLAC)YAMADA 77 Hamburg Conf. 69 S. Yamada (DASP Collab.)BARTEL 76 PL 64B 483 W. Bartel et al. (DESY, HEIDP)TANENBAUM 76 PRL 36 402 W.M. Tanenbaum et al. (SLAC, LBL) IGWHITAKER 76 PRL 37 1596 J.S. Whitaker et al. (SLAC, LBL)ABRAMS 75 Stanford Symp. 25 G.S. Abrams (LBL)ABRAMS 75B PRL 34 1181 G.S. Abrams et al. (LBL, SLAC)BOYARSKI 75C Palermo Conf. 54 A.M. Boyarski et al. (SLAC, LBL)HILGER 75 PRL 35 625 E. Hilger et al. (STAN, PENN)LIBERMAN 75 Stanford Symp. 55 A.D. Liberman (STAN)LUTH 75 PRL 35 1124 V. Luth et al. (SLAC, LBL) JPCWIIK 75 Stanford Symp. 69 B.H. Wiik (DESY)
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ψ(3770)
ψ(3770) IG (JPC ) = 0−(1−−)

ψ(3770) MASS (MeV)ψ(3770) MASS (MeV)ψ(3770) MASS (MeV)ψ(3770) MASS (MeV)OUR FIT in
ludes measurements of mψ(2S), mψ(3770), andmψ(3770) − mψ(2S).VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3773.13±0.35 OUR FIT3773.13±0.35 OUR FIT3773.13±0.35 OUR FIT3773.13±0.35 OUR FIT Error in
ludes s
ale fa
tor of 1.1.3778.1 ±1.2 OUR AVERAGE3778.1 ±1.2 OUR AVERAGE3778.1 ±1.2 OUR AVERAGE3778.1 ±1.2 OUR AVERAGE3779.2 +1.8
−1.7 +0.6

−0.8 1 ANASHIN 12A KEDR e+ e− → DD3775.5 ±2.4 ±0.5 57 AUBERT 08B BABR B → DDK3776 ±5 ±4 68 BRODZICKA 08 BELL B+ → D0D0K+3778.8 ±1.9 ±0.9 AUBERT 07BE BABR e+ e− → DD γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •3772.0 ±1.9 2,3 ABLIKIM 08D BES2 e+ e− → hadrons3778.4 ±3.0 ±1.3 34 CHISTOV 04 BELL Sup. by BRODZICKA 081Taking into a

ount interferen
e between the resonant and non-resonant DD produ
tion.2Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = 0◦.3 Interferen
e between the resonant and non-resonant DD produ
tion not taken into a
-
ount. mψ(3770) − mψ(2S)mψ(3770) − mψ(2S)mψ(3770) − mψ(2S)mψ(3770) − mψ(2S)OUR FIT in
ludes measurements of mψ(2S), mψ(3770), andmψ(3770) − mψ(2S).VALUE (MeV) DOCUMENT ID TECN COMMENT87.04±0.35 OUR FIT87.04±0.35 OUR FIT87.04±0.35 OUR FIT87.04±0.35 OUR FIT Error in
ludes s
ale fa
tor of 1.1.86.6 ±0.7 OUR AVERAGE86.6 ±0.7 OUR AVERAGE86.6 ±0.7 OUR AVERAGE86.6 ±0.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0. See the ideogram below.86.9 ±0.4 4 ABLIKIM 07E BES2 e+ e− → hadrons86.7 ±0.7 ABLIKIM 06L BES2 e+ e− → hadrons80 ±2 SCHINDLER 80 MRK2 e+ e−86 ±2 5 BACINO 78 DLCO e+ e−88 ±3 RAPIDIS 77 LGW e+ e−4BES-II ψ(2S) mass subtra
ted (see ABLIKIM 06L).5 SPEAR ψ(2S) mass subtra
ted (see SCHINDLER 80).

WEIGHTED AVERAGE
86.6±0.7 (Error scaled by 2.0)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

RAPIDIS 77 LGW
BACINO 78 DLCO 0.1
SCHINDLER 80 MRK2 11.1
ABLIKIM 06L BES2 0.0
ABLIKIM 07E BES2 0.4

χ2

      11.6
(Confidence Level = 0.0091)

75 80 85 90 95 100mψ(3770) − mψ(2S) (MeV)
ψ(3770) WIDTHψ(3770) WIDTHψ(3770) WIDTHψ(3770) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT27.2± 1.0 OUR FIT27.2± 1.0 OUR FIT27.2± 1.0 OUR FIT27.2± 1.0 OUR FIT27.5± 0.9 OUR AVERAGE27.5± 0.9 OUR AVERAGE27.5± 0.9 OUR AVERAGE27.5± 0.9 OUR AVERAGE24.9+ 4.6

− 4.0+0.5
−1.1 6 ANASHIN 12A KEDR e+ e− → DD30.4± 8.5 7,8 ABLIKIM 08D BES2 e+ e− → hadrons27 ±10 ±5 68 BRODZICKA 08 BELL B+ → D0D0K+28.5± 1.2±0.2 8 ABLIKIM 07E BES2 e+ e− → hadrons23.5± 3.7±0.9 AUBERT 07BE BABR e+ e− → DD γ26.9± 2.4±0.3 8 ABLIKIM 06L BES2 e+ e− → hadrons24 ± 5 8 SCHINDLER 80 MRK2 e+ e−24 ± 5 8 BACINO 78 DLCO e+ e−28 ± 5 8 RAPIDIS 77 LGW e+ e−6Taking into a

ount interferen
e between the resonant and non-resonant DD produ
tion.7Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = 0◦.8 Interferen
e between the resonant and non-resonant DD produ
tion not taken into a
-
ount.

ψ(3770) DECAY MODESψ(3770) DECAY MODESψ(3770) DECAY MODESψ(3770) DECAY MODESIn addition to the dominant de
ay mode to DD, ψ(3770) was foundto de
ay into the �nal states 
ontaining the J/ψ (BAI 05, ADAM 06).ADAMS 06 and HUANG 06A sear
hed for various de
ay modes with lighthadrons and found a statisti
ally signi�
ant signal for the de
ay to φη only(ADAMS 06). S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 DD (93 +8
−9 ) % S=2.0�2 D0D0 (52 +4
−5 ) % S=2.0�3 D+D− (41 ±4 ) % S=2.0�4 J/ψπ+π− ( 1.93±0.28) × 10−3�5 J/ψπ0π0 ( 8.0 ±3.0 ) × 10−4�6 J/ψη ( 9 ±4 ) × 10−4�7 J/ψπ0 < 2.8 × 10−4 CL=90%�8 e+ e− ( 9.6 ±0.7 ) × 10−6 S=1.3De
ays to light hadronsDe
ays to light hadronsDe
ays to light hadronsDe
ays to light hadrons�9 b1(1235)π < 1.4 × 10−5 CL=90%�10 φη′ < 7 × 10−4 CL=90%�11 ωη′ < 4 × 10−4 CL=90%�12 ρ0 η′ < 6 × 10−4 CL=90%�13 φη ( 3.1 ±0.7 ) × 10−4�14 ωη < 1.4 × 10−5 CL=90%�15 ρ0 η < 5 × 10−4 CL=90%�16 φπ0 < 3 × 10−5 CL=90%�17 ωπ0 < 6 × 10−4 CL=90%�18 π+π−π0 < 5 × 10−6 CL=90%�19 ρπ < 5 × 10−6 CL=90%�20 K+K−�21 K∗(892)+K−+ 
.
. < 1.4 × 10−5 CL=90%�22 K∗(892)0K0+ 
.
. < 1.2 × 10−3 CL=90%�23 K0S K0L < 1.2 × 10−5 CL=90%�24 2(π+π−) < 1.12 × 10−3 CL=90%�25 2(π+π−)π0 < 1.06 × 10−3 CL=90%�26 2(π+π−π0) < 5.85 % CL=90%�27 ωπ+π− < 6.0 × 10−4 CL=90%�28 3(π+π−) < 9.1 × 10−3 CL=90%�29 3(π+π−)π0 < 1.37 % CL=90%�30 3(π+π−)2π0 < 11.74 % CL=90%�31 ηπ+π− < 1.24 × 10−3 CL=90%�32 π+π−2π0 < 8.9 × 10−3 CL=90%�33 ρ0π+π− < 6.9 × 10−3 CL=90%�34 η3π < 1.34 × 10−3 CL=90%�35 η2(π+π−) < 2.43 % CL=90%�36 ηρ0π+π− < 1.45 % CL=90%�37 η′ 3π < 2.44 × 10−3 CL=90%�38 K+K−π+π− < 9.0 × 10−4 CL=90%�39 φπ+π− < 4.1 × 10−4 CL=90%�40 K+K−2π0 < 4.2 × 10−3 CL=90%�41 4(π+π−) < 1.67 % CL=90%�42 4(π+π−)π0 < 3.06 % CL=90%�43 φ f0(980) < 4.5 × 10−4 CL=90%�44 K+K−π+π−π0 < 2.36 × 10−3 CL=90%�45 K+K−ρ0π0 < 8 × 10−4 CL=90%�46 K+K−ρ+π− < 1.46 % CL=90%�47 ωK+K− < 3.4 × 10−4 CL=90%�48 φπ+π−π0 < 3.8 × 10−3 CL=90%�49 K∗0K−π+π0+ 
.
. < 1.62 % CL=90%�50 K∗+K−π+π−+ 
.
. < 3.23 % CL=90%�51 K+K−π+π−2π0 < 2.67 % CL=90%�52 K+K−2(π+π−) < 1.03 % CL=90%�53 K+K−2(π+π−)π0 < 3.60 % CL=90%�54 ηK+K− < 4.1 × 10−4 CL=90%�55 ηK+K−π+π− < 1.24 % CL=90%�56 ρ0K+K− < 5.0 × 10−3 CL=90%�57 2(K+K−) < 6.0 × 10−4 CL=90%�58 φK+K− < 7.5 × 10−4 CL=90%�59 2(K+K−)π0 < 2.9 × 10−4 CL=90%�60 2(K+K−)π+π− < 3.2 × 10−3 CL=90%�61 K0S K−π+ < 3.2 × 10−3 CL=90%�62 K0S K−π+π0 < 1.33 % CL=90%�63 K0S K−ρ+ < 6.6 × 10−3 CL=90%�64 K0S K−2π+π− < 8.7 × 10−3 CL=90%
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ψ(3770)�65 K0S K−π+ ρ0 < 1.6 % CL=90%�66 K0S K−π+ η < 1.3 % CL=90%�67 K0S K−2π+π−π0 < 4.18 % CL=90%�68 K0S K−2π+π− η < 4.8 % CL=90%�69 K0S K−π+ 2(π+π−) < 1.22 % CL=90%�70 K0S K−π+ 2π0 < 2.65 % CL=90%�71 K0S K−K+K−π+ < 4.9 × 10−3 CL=90%�72 K0S K−K+K−π+π0 < 3.0 % CL=90%�73 K0S K−K+K−π+ η < 2.2 % CL=90%�74 K∗0K−π++ 
.
. < 9.7 × 10−3 CL=90%�75 pp�76 ppπ0 < 4 × 10−5 CL=90%�77 ppπ+π− < 5.8 × 10−4 CL=90%�78 �� < 1.2 × 10−4 CL=90%�79 ppπ+π−π0 < 1.85 × 10−3 CL=90%�80 ωpp < 2.9 × 10−4 CL=90%�81 ��π0 < 7 × 10−5 CL=90%�82 pp2(π+π−) < 2.6 × 10−3 CL=90%�83 ηpp < 5.4 × 10−4 CL=90%�84 ηppπ+π− < 3.3 × 10−3 CL=90%�85 ρ0 pp < 1.7 × 10−3 CL=90%�86 ppK+K− < 3.2 × 10−4 CL=90%�87 ηppK+K− < 6.9 × 10−3 CL=90%�88 π0 ppK+K− < 1.2 × 10−3 CL=90%�89 φpp < 1.3 × 10−4 CL=90%�90 ��π+π− < 2.5 × 10−4 CL=90%�91 �pK+ < 2.8 × 10−4 CL=90%�92 �pK+π+π− < 6.3 × 10−4 CL=90%�93 ��η < 1.9 × 10−4 CL=90%�94 �+�− < 1.0 × 10−4 CL=90%�95 �0�0 < 4 × 10−5 CL=90%�96 �+�− < 1.5 × 10−4 CL=90%�97 � 0� 0 < 1.4 × 10−4 CL=90%Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays�98 γχ
2 < 6.4 × 10−4 CL=90%�99 γχ
1 ( 2.48±0.23) × 10−3�100 γχ
0 ( 7.0 ±0.6 ) × 10−3�101 γ η
 < 7 × 10−4 CL=90%�102 γ η
 (2S) < 9 × 10−4 CL=90%�103 γ η′ < 1.8 × 10−4 CL=90%�104 γ η < 1.5 × 10−4 CL=90%�105 γπ0 < 2 × 10−4 CL=90%CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to the total width, a partial width, and 3 bran
hingratios uses 23 measurements and one 
onstraint to determine 5parameters. The overall �t has a χ2 = 20.1 for 19 degrees offreedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δpiδpj

〉/(δpi·δpj), in per
ent, from the �t to parameters pi, in
luding the bran
h-ing fra
tions, xi ≡ �i/�total. The �t 
onstrains the xi whose labels appear in thisarray to sum to one.x3 99x8 0 0� 0 0 −44x2 x3 x8Mode Rate (MeV) S
ale fa
tor�2 D0D0 14.0 ±1.4 1.8�3 D+D− 11.2 ±1.1 1.7�8 e+ e− ( 2.62±0.18)× 10−4 1.4
ψ(3770) PARTIAL WIDTHSψ(3770) PARTIAL WIDTHSψ(3770) PARTIAL WIDTHSψ(3770) PARTIAL WIDTHS�(e+ e−) �8�(e+ e−) �8�(e+ e−) �8�(e+ e−) �8VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.262±0.018 OUR FIT0.262±0.018 OUR FIT0.262±0.018 OUR FIT0.262±0.018 OUR FIT Error in
ludes s
ale fa
tor of 1.4.0.256±0.016 OUR AVERAGE0.256±0.016 OUR AVERAGE0.256±0.016 OUR AVERAGE0.256±0.016 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.154+0.079

−0.058+0.021
−0.027 9,10 ANASHIN 12A KEDR e+ e− → DD0.22 ±0.05 11,12 ABLIKIM 08D BES2 e+ e− → hadrons0.277±0.011±0.013 12 ABLIKIM 07E BES2 e+ e− → hadrons

0.203±0.003+0.041
−0.027 1.4M 12,13 BESSON 06 CLEO e+ e− → hadrons0.276±0.050 12 SCHINDLER 80 MRK2 e+ e−0.18 ±0.06 12 BACINO 78 DLCO e+ e−

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.414+0.072
−0.080+0.093

−0.028 10,14 ANASHIN 12A KEDR e+ e− → DD0.37 ±0.09 15 RAPIDIS 77 LGW e+ e−9Solution I of the two solutions.10Taking into a

ount interferen
e between the resonant and non-resonant DD produ
tion.11Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = 0◦.12 Interferen
e between the resonant and non-resonant DD produ
tion not taken into a
-
ount.13BESSON 06 (as 
orre
ted in BESSON 10) measure σ(e+ e− → ψ(3770) → hadrons)= 6.36 ± 0.08+0.41
−0.30 nb at √s = 3773 ± 1 MeV, and obtain �e e from the Born-level
ross se
tion 
al
ulated using ψ(3770) mass and width from our 2004 edition, PDG 04.14 Solution II of the two solutions.15 See also �(e+ e−)/�total below.

ψ(3770) BRANCHING RATIOSψ(3770) BRANCHING RATIOSψ(3770) BRANCHING RATIOSψ(3770) BRANCHING RATIOS�(DD)/�total �1/�= (�2+�3)/��(DD)/�total �1/�= (�2+�3)/��(DD)/�total �1/�= (�2+�3)/��(DD)/�total �1/�= (�2+�3)/�VALUE EVTS DOCUMENT ID TECN COMMENT0.93 +0.08
−0.09 OUR FIT0.93 +0.08
−0.09 OUR FIT0.93 +0.08
−0.09 OUR FIT0.93 +0.08
−0.09 OUR FIT Error in
ludes s
ale fa
tor of 2.0.0.93 +0.08
−0.09 OUR AVERAGE0.93 +0.08
−0.09 OUR AVERAGE0.93 +0.08
−0.09 OUR AVERAGE0.93 +0.08
−0.09 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1.0.849±0.056±0.018 16 ABLIKIM 08B BES2 e+ e− → non-DD1.033±0.014+0.048

−0.066 1.427M 17 BESSON 06 CLEO e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.866±0.050±0.036 18,19 ABLIKIM 07K BES2 e+ e− → non-DD0.836±0.073±0.042 19 ABLIKIM 06L BES2 e+ e− → DD0.855±0.017±0.058 19,20 ABLIKIM 06N BES2 e+ e− → DD�(D0D0)/�total �2/��(D0D0)/�total �2/��(D0D0)/�total �2/��(D0D0)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.52 +0.04

−0.05 OUR FIT0.52 +0.04
−0.05 OUR FIT0.52 +0.04
−0.05 OUR FIT0.52 +0.04
−0.05 OUR FIT Error in
ludes s
ale fa
tor of 2.0.

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.467±0.047±0.023 ABLIKIM 06L BES2 e+ e− → D0D00.499±0.013±0.038 20 ABLIKIM 06N BES2 e+ e− → D0D0�(D+D−)/�total �3/��(D+D−)/�total �3/��(D+D−)/�total �3/��(D+D−)/�total �3/�VALUE DOCUMENT ID TECN COMMENT0.41 ±0.04 OUR FIT0.41 ±0.04 OUR FIT0.41 ±0.04 OUR FIT0.41 ±0.04 OUR FIT Error in
ludes s
ale fa
tor of 2.0.
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.369±0.037±0.028 ABLIKIM 06L BES2 e+ e− → D+D−0.357±0.011±0.034 20 ABLIKIM 06N BES2 e+ e− → D+D−�(D0D0)/�(D+D−) �2/�3�(D0D0)/�(D+D−) �2/�3�(D0D0)/�(D+D−) �2/�3�(D0D0)/�(D+D−) �2/�3VALUE EVTS DOCUMENT ID TECN COMMENT1.253±0.016 OUR FIT1.253±0.016 OUR FIT1.253±0.016 OUR FIT1.253±0.016 OUR FIT1.253±0.016 OUR AVERAGE1.253±0.016 OUR AVERAGE1.253±0.016 OUR AVERAGE1.253±0.016 OUR AVERAGE1.252±0.009±0.013 5.3M BONVICINI 14 CLEO e+ e− → DD1.39 ±0.31 ±0.12 PAKHLOVA 08 BELL 10.6 e+ e− → DD γ1.78 ±0.33 ±0.24 AUBERT 07BE BABR e+ e− → DD γ1.27 ±0.12 ±0.08 ABLIKIM 06L BES2 e+ e− → DD2.43 ±1.50 ±0.43 34 21 CHISTOV 04 BELL B+ → ψ(3770)K+
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.258±0.016±0.014 22 DOBBS 07 CLEO e+ e− → DD�(J/ψπ+π−)/�total �4/��(J/ψπ+π−)/�total �4/��(J/ψπ+π−)/�total �4/��(J/ψπ+π−)/�total �4/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.93±0.28 OUR AVERAGE1.93±0.28 OUR AVERAGE1.93±0.28 OUR AVERAGE1.93±0.28 OUR AVERAGE1.89±0.20±0.20 231 ± 33 ADAM 06 CLEO e+ e− → ψ(3770)3.4 ±1.4 ±0.9 17.8 ± 4.8 BAI 05 BES2 e+ e− → ψ(3770)�(J/ψπ0π0)/�total �5/��(J/ψπ0π0)/�total �5/��(J/ψπ0π0)/�total �5/��(J/ψπ0π0)/�total �5/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.080±0.025±0.0160.080±0.025±0.0160.080±0.025±0.0160.080±0.025±0.016 39 ± 14 ADAM 06 CLEO e+ e− → ψ(3770)�(J/ψη

)/�total �6/��(J/ψη
)/�total �6/��(J/ψη
)/�total �6/��(J/ψη
)/�total �6/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT87±33±2287±33±2287±33±2287±33±22 22 ± 10 ADAM 06 CLEO e+ e− → ψ(3770)�(J/ψπ0)/�total �7/��(J/ψπ0)/�total �7/��(J/ψπ0)/�total �7/��(J/ψπ0)/�total �7/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT

<28<28<28<28 90 <10 ADAM 06 CLEO e+ e− → ψ(3770)
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ψ(3770)�(e+ e−)/�total �8/��(e+ e−)/�total �8/��(e+ e−)/�total �8/��(e+ e−)/�total �8/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT0.96±0.07 OUR FIT0.96±0.07 OUR FIT0.96±0.07 OUR FIT0.96±0.07 OUR FIT Error in
ludes s
ale fa
tor of 1.3.1.3 ±0.21.3 ±0.21.3 ±0.21.3 ±0.2 RAPIDIS 77 LGW e+ e−16Negle
ting interferen
e.17Obtained by 
omparing a measurement of the total 
ross se
tion (
orre
ted inBESSON 10) with that of DD reported by CLEO in DOBBS 07.18Using σobs = 7.07 ± 0.58 nb and negle
ting interferen
e.19Not independent of ABLIKIM 08B.20 From a measurement of σ(e+ e− → DD) at √

s = 3773 MeV, using the ψ(3770)resonan
e parameters measured by ABLIKIM 06L.21 See ADLER 88C for older measurements of this quantity.22 Superseded by BONVICINI 14.DECAYS TO LIGHT HADRONSDECAYS TO LIGHT HADRONSDECAYS TO LIGHT HADRONSDECAYS TO LIGHT HADRONS�(b1(1235)π)/�total �9/��(b1(1235)π)/�total �9/��(b1(1235)π)/�total �9/��(b1(1235)π)/�total �9/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.4<1.4<1.4<1.4 90 23 ADAMS 06 CLEO e+ e− → ψ(3770)�(φη′

)/�total �10/��(φη′
)/�total �10/��(φη′
)/�total �10/��(φη′
)/�total �10/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<7<7<7<7 90 23 ADAMS 06 CLEO e+ e− → ψ(3770)�(ωη′
)/�total �11/��(ωη′
)/�total �11/��(ωη′
)/�total �11/��(ωη′
)/�total �11/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<4<4<4<4 90 23 ADAMS 06 CLEO e+ e− → ψ(3770)�(ρ0 η′
)/�total �12/��(ρ0 η′
)/�total �12/��(ρ0 η′
)/�total �12/��(ρ0 η′
)/�total �12/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<6<6<6<6 90 23 ADAMS 06 CLEO e+ e− → ψ(3770)�(φη
)/�total �13/��(φη
)/�total �13/��(φη
)/�total �13/��(φη
)/�total �13/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT3.1±0.6±0.33.1±0.6±0.33.1±0.6±0.33.1±0.6±0.3 23 ADAMS 06 CLEO 3.773 e+ e− → φη

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<19 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(ωη
)/�total �14/��(ωη
)/�total �14/��(ωη
)/�total �14/��(ωη
)/�total �14/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<1.4<1.4<1.4<1.4 90 23 ADAMS 06 CLEO e+ e− → ψ(3770)�(ρ0 η
)/�total �15/��(ρ0 η
)/�total �15/��(ρ0 η
)/�total �15/��(ρ0 η
)/�total �15/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<5<5<5<5 90 23 ADAMS 06 CLEO e+ e− → ψ(3770)�(φπ0)/�total �16/��(φπ0)/�total �16/��(φπ0)/�total �16/��(φπ0)/�total �16/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
< 3< 3< 3< 3 90 23 ADAMS 06 CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<50 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(ωπ0)/�total �17/��(ωπ0)/�total �17/��(ωπ0)/�total �17/��(ωπ0)/�total �17/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<6<6<6<6 90 23 ADAMS 06 CLEO e+ e− → ψ(3770)�(π+π−π0)/�total �18/��(π+π−π0)/�total �18/��(π+π−π0)/�total �18/��(π+π−π0)/�total �18/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<5<5<5<5 90 23,25 ADAMS 06 CLEO e+ e− → ψ(3770)�(ρπ

)/�total �19/��(ρπ
)/�total �19/��(ρπ
)/�total �19/��(ρπ
)/�total �19/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<5<5<5<5 90 23,25 ADAMS 06 CLEO e+ e− → ψ(3770)�(K+K−)/�total �20/��(K+K−)/�total �20/��(K+K−)/�total �20/��(K+K−)/�total �20/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 10−5 26 DRUZHININ 15 RVUE e+ e− → ψ(3770)�(K∗(892)+K−+ 
.
.)/�total �21/��(K∗(892)+K−+ 
.
.)/�total �21/��(K∗(892)+K−+ 
.
.)/�total �21/��(K∗(892)+K−+ 
.
.)/�total �21/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.4<1.4<1.4<1.4 90 23 ADAMS 06 CLEO e+ e− → ψ(3770)�(K∗(892)0K0+ 
.
.)/�total �22/��(K∗(892)0K0+ 
.
.)/�total �22/��(K∗(892)0K0+ 
.
.)/�total �22/��(K∗(892)0K0+ 
.
.)/�total �22/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<1.2<1.2<1.2<1.2 90 23 ADAMS 06 CLEO e+ e− → ψ(3770)

�(K0S K0L)/�total �23/��(K0S K0L)/�total �23/��(K0S K0L)/�total �23/��(K0S K0L)/�total �23/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
< 1.2< 1.2< 1.2< 1.2 90 27 CRONIN-HEN...06 CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<21 90 28 ABLIKIM 04F BES e+ e− → ψ(3770)�(2(π+π−))/�total �24/��(2(π+π−))/�total �24/��(2(π+π−))/�total �24/��(2(π+π−))/�total �24/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<11.2<11.2<11.2<11.2 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<48 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(2(π+π−)π0)/�total �25/��(2(π+π−)π0)/�total �25/��(2(π+π−)π0)/�total �25/��(2(π+π−)π0)/�total �25/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<10.6<10.6<10.6<10.6 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<62 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(2(π+π−π0))/�total �26/��(2(π+π−π0))/�total �26/��(2(π+π−π0))/�total �26/��(2(π+π−π0))/�total �26/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<58.5<58.5<58.5<58.5 90 305 ABLIKIM 08N BES2 e+ e− → ψ(3770)�(ωπ+π−)/�total �27/��(ωπ+π−)/�total �27/��(ωπ+π−)/�total �27/��(ωπ+π−)/�total �27/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 6.0< 6.0< 6.0< 6.0 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<55 90 24 ABLIKIM 07I BES2 3.77 e+ e−�(3(π+π−))/�total �28/��(3(π+π−))/�total �28/��(3(π+π−))/�total �28/��(3(π+π−))/�total �28/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<91<91<91<91 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(3(π+π−)π0)/�total �29/��(3(π+π−)π0)/�total �29/��(3(π+π−)π0)/�total �29/��(3(π+π−)π0)/�total �29/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<137<137<137<137 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(3(π+π−)2π0)/�total �30/��(3(π+π−)2π0)/�total �30/��(3(π+π−)2π0)/�total �30/��(3(π+π−)2π0)/�total �30/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<117.4<117.4<117.4<117.4 90 59 ABLIKIM 08N BES2 e+ e− → ψ(3770)�(ηπ+π−)/�total �31/��(ηπ+π−)/�total �31/��(ηπ+π−)/�total �31/��(ηπ+π−)/�total �31/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<1.24<1.24<1.24<1.24 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2.3 90 24 ABLIKIM 10D BES2 e+ e− → ψ(3770)�(π+π−2π0)/�total �32/��(π+π−2π0)/�total �32/��(π+π−2π0)/�total �32/��(π+π−2π0)/�total �32/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<8.9<8.9<8.9<8.9 90 218 ABLIKIM 08N BES2 e+ e− → ψ(3770)�(ρ0π+π−)/�total �33/��(ρ0π+π−)/�total �33/��(ρ0π+π−)/�total �33/��(ρ0π+π−)/�total �33/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<6.9<6.9<6.9<6.9 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)�(η3π)/�total �34/��(η3π)/�total �34/��(η3π)/�total �34/��(η3π)/�total �34/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<13.4<13.4<13.4<13.4 90 29 HUANG 06A CLEO e+ e− → ψ(3770)�(η2(π+π−))/�total �35/��(η2(π+π−))/�total �35/��(η2(π+π−))/�total �35/��(η2(π+π−))/�total �35/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<243<243<243<243 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(ηρ0π+π−)/�total �36/��(ηρ0π+π−)/�total �36/��(ηρ0π+π−)/�total �36/��(ηρ0π+π−)/�total �36/�VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT
<1.45<1.45<1.45<1.45 90 24 ABLIKIM 10D BES2 e+ e− → ψ(3770)�(η′ 3π)/�total �37/��(η′ 3π)/�total �37/��(η′ 3π)/�total �37/��(η′ 3π)/�total �37/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<24.4<24.4<24.4<24.4 90 29 HUANG 06A CLEO e+ e− → ψ(3770)�(K+K−π+π−)/�total �38/��(K+K−π+π−)/�total �38/��(K+K−π+π−)/�total �38/��(K+K−π+π−)/�total �38/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 9.0< 9.0< 9.0< 9.0 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<48 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)
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ψ(3770)�(

φπ+π−)/�total �39/��(

φπ+π−)/�total �39/��(

φπ+π−)/�total �39/��(

φπ+π−)/�total �39/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 4.1< 4.1< 4.1< 4.1 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<16 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(K+K−2π0)/�total �40/��(K+K−2π0)/�total �40/��(K+K−2π0)/�total �40/��(K+K−2π0)/�total �40/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<4.2<4.2<4.2<4.2 90 14 ABLIKIM 08N BES2 e+ e− → ψ(3770)�(4(π+π−))/�total �41/��(4(π+π−))/�total �41/��(4(π+π−))/�total �41/��(4(π+π−))/�total �41/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<16.7<16.7<16.7<16.7 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)�(4(π+π−)π0)/�total �42/��(4(π+π−)π0)/�total �42/��(4(π+π−)π0)/�total �42/��(4(π+π−)π0)/�total �42/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<30.6<30.6<30.6<30.6 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)�(

φ f0(980))/�total �43/��(

φ f0(980))/�total �43/��(

φ f0(980))/�total �43/��(

φ f0(980))/�total �43/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<4.5<4.5<4.5<4.5 90 29 HUANG 06A CLEO e+ e− → ψ(3770)�(K+K−π+π−π0)/�total �44/��(K+K−π+π−π0)/�total �44/��(K+K−π+π−π0)/�total �44/��(K+K−π+π−π0)/�total �44/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 23.6< 23.6< 23.6< 23.6 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<111 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(K+K−ρ0π0)/�total �45/��(K+K−ρ0π0)/�total �45/��(K+K−ρ0π0)/�total �45/��(K+K−ρ0π0)/�total �45/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<8<8<8<8 90 24 ABLIKIM 07I BES2 3.77 e+ e−�(K+K−ρ+π−)/�total �46/��(K+K−ρ+π−)/�total �46/��(K+K−ρ+π−)/�total �46/��(K+K−ρ+π−)/�total �46/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<146<146<146<146 90 24 ABLIKIM 07I BES2 3.77 e+ e−�(

ωK+K−)/�total �47/��(

ωK+K−)/�total �47/��(

ωK+K−)/�total �47/��(

ωK+K−)/�total �47/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 3.4< 3.4< 3.4< 3.4 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<66 90 24 ABLIKIM 07I BES2 3.77 e+ e−�(

φπ+π−π0)/�total �48/��(

φπ+π−π0)/�total �48/��(

φπ+π−π0)/�total �48/��(

φπ+π−π0)/�total �48/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<38<38<38<38 90 24 ABLIKIM 07I BES2 3.77 e+ e−�(K∗0K−π+π0+ 
.
.)/�total �49/��(K∗0K−π+π0+ 
.
.)/�total �49/��(K∗0K−π+π0+ 
.
.)/�total �49/��(K∗0K−π+π0+ 
.
.)/�total �49/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<162<162<162<162 90 24 ABLIKIM 07I BES2 3.77 e+ e−�(K∗+K−π+π−+ 
.
.)/�total �50/��(K∗+K−π+π−+ 
.
.)/�total �50/��(K∗+K−π+π−+ 
.
.)/�total �50/��(K∗+K−π+π−+ 
.
.)/�total �50/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<323<323<323<323 90 24 ABLIKIM 07I BES2 3.77 e+ e−�(K+K−π+π−2π0)/�total �51/��(K+K−π+π−2π0)/�total �51/��(K+K−π+π−2π0)/�total �51/��(K+K−π+π−2π0)/�total �51/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<26.7<26.7<26.7<26.7 90 24 ABLIKIM 08N BES2 e+ e− → ψ(3770)�(K+K−2(π+π−))/�total �52/��(K+K−2(π+π−))/�total �52/��(K+K−2(π+π−))/�total �52/��(K+K−2(π+π−))/�total �52/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<10.3<10.3<10.3<10.3 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)�(K+K−2(π+π−)π0)/�total �53/��(K+K−2(π+π−)π0)/�total �53/��(K+K−2(π+π−)π0)/�total �53/��(K+K−2(π+π−)π0)/�total �53/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<36.0<36.0<36.0<36.0 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)�(

ηK+K−)/�total �54/��(

ηK+K−)/�total �54/��(

ηK+K−)/�total �54/��(

ηK+K−)/�total �54/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 4.1< 4.1< 4.1< 4.1 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<31 90 24 ABLIKIM 10D BES2 e+ e− → ψ(3770)�(

ηK+K−π+π−)/�total �55/��(

ηK+K−π+π−)/�total �55/��(

ηK+K−π+π−)/�total �55/��(

ηK+K−π+π−)/�total �55/�VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT
<1.24<1.24<1.24<1.24 90 24 ABLIKIM 10D BES2 e+ e− → ψ(3770)�(

ρ0K+K−)/�total �56/��(

ρ0K+K−)/�total �56/��(

ρ0K+K−)/�total �56/��(

ρ0K+K−)/�total �56/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<5.0<5.0<5.0<5.0 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)

�(2(K+K−))/�total �57/��(2(K+K−))/�total �57/��(2(K+K−))/�total �57/��(2(K+K−))/�total �57/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 6.0< 6.0< 6.0< 6.0 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<17 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(

φK+K−)/�total �58/��(

φK+K−)/�total �58/��(

φK+K−)/�total �58/��(

φK+K−)/�total �58/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 7.5< 7.5< 7.5< 7.5 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<24 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(2(K+K−)π0)/�total �59/��(2(K+K−)π0)/�total �59/��(2(K+K−)π0)/�total �59/��(2(K+K−)π0)/�total �59/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 2.9< 2.9< 2.9< 2.9 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<46 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(2(K+K−)π+π−)/�total �60/��(2(K+K−)π+π−)/�total �60/��(2(K+K−)π+π−)/�total �60/��(2(K+K−)π+π−)/�total �60/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<3.2<3.2<3.2<3.2 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)�(K0S K−π+)/�total �61/��(K0S K−π+)/�total �61/��(K0S K−π+)/�total �61/��(K0S K−π+)/�total �61/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<3.2<3.2<3.2<3.2 90 18 ABLIKIM 08M BES2 e+ e− → ψ(3770)�(K0S K−π+π0)/�total �62/��(K0S K−π+π0)/�total �62/��(K0S K−π+π0)/�total �62/��(K0S K−π+π0)/�total �62/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<13.3<13.3<13.3<13.3 90 40 ABLIKIM 08M BES2 e+ e− → ψ(3770)�(K0S K−ρ+)/�total �63/��(K0S K−ρ+)/�total �63/��(K0S K−ρ+)/�total �63/��(K0S K−ρ+)/�total �63/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<6.6<6.6<6.6<6.6 90 ABLIKIM 09C BES2 e+ e− → ψ(3770)�(K0S K−2π+π−)/�total �64/��(K0S K−2π+π−)/�total �64/��(K0S K−2π+π−)/�total �64/��(K0S K−2π+π−)/�total �64/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<8.7<8.7<8.7<8.7 90 39 ABLIKIM 08M BES2 e+ e− → ψ(3770)�(K0S K−π+ ρ0)/�total �65/��(K0S K−π+ ρ0)/�total �65/��(K0S K−π+ ρ0)/�total �65/��(K0S K−π+ ρ0)/�total �65/�VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT
<1.6<1.6<1.6<1.6 90 ABLIKIM 09C BES2 e+ e− → ψ(3770)�(K0S K−π+ η

)/�total �66/��(K0S K−π+ η
)/�total �66/��(K0S K−π+ η
)/�total �66/��(K0S K−π+ η
)/�total �66/�VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT

<1.3<1.3<1.3<1.3 90 ABLIKIM 09C BES2 e+ e− → ψ(3770)�(K0S K−2π+π−π0)/�total �67/��(K0S K−2π+π−π0)/�total �67/��(K0S K−2π+π−π0)/�total �67/��(K0S K−2π+π−π0)/�total �67/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<41.8<41.8<41.8<41.8 90 23 ABLIKIM 08M BES2 e+ e− → ψ(3770)�(K0S K−2π+π− η

)/�total �68/��(K0S K−2π+π− η
)/�total �68/��(K0S K−2π+π− η
)/�total �68/��(K0S K−2π+π− η
)/�total �68/�VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT

<4.8<4.8<4.8<4.8 90 ABLIKIM 09C BES2 e+ e− → ψ(3770)�(K0S K−π+ 2(π+π−))/�total �69/��(K0S K−π+ 2(π+π−))/�total �69/��(K0S K−π+ 2(π+π−))/�total �69/��(K0S K−π+ 2(π+π−))/�total �69/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<12.2<12.2<12.2<12.2 90 4 ABLIKIM 08M BES2 e+ e− → ψ(3770)�(K0S K−π+ 2π0)/�total �70/��(K0S K−π+ 2π0)/�total �70/��(K0S K−π+ 2π0)/�total �70/��(K0S K−π+ 2π0)/�total �70/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<26.5<26.5<26.5<26.5 90 17 ABLIKIM 08M BES2 e+ e− → ψ(3770)�(K0S K−K+K−π+)/�total �71/��(K0S K−K+K−π+)/�total �71/��(K0S K−K+K−π+)/�total �71/��(K0S K−K+K−π+)/�total �71/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<4.9<4.9<4.9<4.9 90 ABLIKIM 09C BES2 e+ e− → ψ(3770)�(K0S K−K+K−π+π0)/�total �72/��(K0S K−K+K−π+π0)/�total �72/��(K0S K−K+K−π+π0)/�total �72/��(K0S K−K+K−π+π0)/�total �72/�VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT
<3.0<3.0<3.0<3.0 90 ABLIKIM 09C BES2 e+ e− → ψ(3770)�(K0S K−K+K−π+ η

)/�total �73/��(K0S K−K+K−π+ η
)/�total �73/��(K0S K−K+K−π+ η
)/�total �73/��(K0S K−K+K−π+ η
)/�total �73/�VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT

<2.2<2.2<2.2<2.2 90 ABLIKIM 09C BES2 e+ e− → ψ(3770)�(K∗0K−π++ 
.
.)/�total �74/��(K∗0K−π++ 
.
.)/�total �74/��(K∗0K−π++ 
.
.)/�total �74/��(K∗0K−π++ 
.
.)/�total �74/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<9.7<9.7<9.7<9.7 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)
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ψ(3770)�(pp)/�total �75/��(pp)/�total �75/��(pp)/�total �75/��(pp)/�total �75/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •7.1+ 8.6

− 2.9 684 30 ABLIKIM 14L BES3 e+ e− → ψ(3770)310 ±30 684 31 ABLIKIM 14L BES3 e+ e− → ψ(3770)�(ppπ0)/�total �76/��(ppπ0)/�total �76/��(ppπ0)/�total �76/��(ppπ0)/�total �76/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 0.4< 0.4< 0.4< 0.4 90 32,33 ABLIKIM 14O BES3 e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •59 +3

−2±5 32,34 ABLIKIM 14O BES3 e+ e− → ψ(3770)
<12 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(ppπ+π−)/�total �77/��(ppπ+π−)/�total �77/��(ppπ+π−)/�total �77/��(ppπ+π−)/�total �77/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 5.8< 5.8< 5.8< 5.8 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<16 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(��)/�total �78/��(��)/�total �78/��(��)/�total �78/��(��)/�total �78/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.2<1.2<1.2<1.2 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<4 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)�(ppπ+π−π0)/�total �79/��(ppπ+π−π0)/�total �79/��(ppπ+π−π0)/�total �79/��(ppπ+π−π0)/�total �79/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<18.5<18.5<18.5<18.5 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<73 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(ωpp)/�total �80/��(ωpp)/�total �80/��(ωpp)/�total �80/��(ωpp)/�total �80/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 2.9< 2.9< 2.9< 2.9 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<30 90 35 ABLIKIM 07I BES2 3.77 e+ e−�(��π0)/�total �81/��(��π0)/�total �81/��(��π0)/�total �81/��(��π0)/�total �81/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 0.7< 0.7< 0.7< 0.7 90 36 ABLIKIM 13Q BES3 e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<12 90 24 ABLIKIM 07I BES2 3.77 e+ e−�(pp2(π+π−))/�total �82/��(pp2(π+π−))/�total �82/��(pp2(π+π−))/�total �82/��(pp2(π+π−))/�total �82/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<2.6<2.6<2.6<2.6 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)�(ηpp)/�total �83/��(ηpp)/�total �83/��(ηpp)/�total �83/��(ηpp)/�total �83/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 5.4< 5.4< 5.4< 5.4 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<11 90 24 ABLIKIM 10D BES2 e+ e− → ψ(3770)�(ηppπ+π−)/�total �84/��(ηppπ+π−)/�total �84/��(ηppπ+π−)/�total �84/��(ηppπ+π−)/�total �84/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<3.3<3.3<3.3<3.3 90 24 ABLIKIM 10D BES2 e+ e− → ψ(3770)�(ρ0 pp)/�total �85/��(ρ0 pp)/�total �85/��(ρ0 pp)/�total �85/��(ρ0 pp)/�total �85/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<1.7<1.7<1.7<1.7 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)�(ppK+K−)/�total �86/��(ppK+K−)/�total �86/��(ppK+K−)/�total �86/��(ppK+K−)/�total �86/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 3.2< 3.2< 3.2< 3.2 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<11 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(ηppK+K−)/�total �87/��(ηppK+K−)/�total �87/��(ηppK+K−)/�total �87/��(ηppK+K−)/�total �87/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<6.9<6.9<6.9<6.9 90 24 ABLIKIM 10D BES2 e+ e− → ψ(3770)�(π0 ppK+K−)/�total �88/��(π0 ppK+K−)/�total �88/��(π0 ppK+K−)/�total �88/��(π0 ppK+K−)/�total �88/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<1.2<1.2<1.2<1.2 90 24 ABLIKIM 10D BES2 e+ e− → ψ(3770)

�(φpp)/�total �89/��(φpp)/�total �89/��(φpp)/�total �89/��(φpp)/�total �89/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.3<1.3<1.3<1.3 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<9 90 24 ABLIKIM 07B BES2 e+ e− → ψ(3770)�(��π+π−)/�total �90/��(��π+π−)/�total �90/��(��π+π−)/�total �90/��(��π+π−)/�total �90/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 2.5< 2.5< 2.5< 2.5 90 29 HUANG 06A CLEO e+ e− → ψ(3770)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 4.7 90 36 ABLIKIM 13Q BES3 e+ e− → ψ(3770)
<39 90 24 ABLIKIM 07F BES2 e+ e− → ψ(3770)�(�pK+)/�total �91/��(�pK+)/�total �91/��(�pK+)/�total �91/��(�pK+)/�total �91/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<2.8<2.8<2.8<2.8 90 29 HUANG 06A CLEO e+ e− → ψ(3770)�(�pK+π+π−)/�total �92/��(�pK+π+π−)/�total �92/��(�pK+π+π−)/�total �92/��(�pK+π+π−)/�total �92/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<6.3<6.3<6.3<6.3 90 29 HUANG 06A CLEO e+ e− → ψ(3770)�(��η

)/�total �93/��(��η
)/�total �93/��(��η
)/�total �93/��(��η
)/�total �93/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.9<1.9<1.9<1.9 90 36 ABLIKIM 13Q BES3 e+ e− → ψ(3770)�(�+�−)/�total �94/��(�+�−)/�total �94/��(�+�−)/�total �94/��(�+�−)/�total �94/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.0<1.0<1.0<1.0 90 36 ABLIKIM 13Q BES3 e+ e− → ψ(3770)�(�0�0)/�total �95/��(�0�0)/�total �95/��(�0�0)/�total �95/��(�0�0)/�total �95/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.4<0.4<0.4<0.4 90 36 ABLIKIM 13Q BES3 e+ e− → ψ(3770)�(�+�−)/�total �96/��(�+�−)/�total �96/��(�+�−)/�total �96/��(�+�−)/�total �96/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.5<1.5<1.5<1.5 90 36 ABLIKIM 13Q BES3 e+ e− → ψ(3770)�(� 0� 0)/�total �97/��(� 0� 0)/�total �97/��(� 0� 0)/�total �97/��(� 0� 0)/�total �97/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.4<1.4<1.4<1.4 90 36 ABLIKIM 13Q BES3 e+ e− → ψ(3770)23Comparing 
ross se
tions at √s = 3.773 GeV and √

s = 3.671 GeV, negle
ting interfer-en
e, and using σ(ψ(3770) → DD) = 6.39 ± 0.20 nb.24Assuming that interferen
e e�e
ts between resonan
e and 
ontinuum 
an be negle
tedand using σobs(e+ e− → ψ(3770)) = 7.15 ± 0.38 nb.25Data suggest possible destru
tive interferen
e with 
ontinuum.26DRUZHININ 15 uses BABAR and CLEO data takitaking into a

ount interferen
e of thepro
esses e+ e− → K+K− and e+ e− → K0S K0L.27Using σ(e+ e− → ψ(3770) → hadrons) = (6.38 ± 0.08+0.41
−0.30) nb from BESSON 06and B(K0S → π+π−) = 0.6895 ± 0.0014.28Using B(K0S → π+π−) = 0.6860 ± 0.0027.29Using σtot(e+ e− → ψ(3770)) = 7.9 ± 0.6 nb at the resonan
e.30 Solution I of two equivalent solutions in a �t with a resonan
e interfering with 
ontinuum.31Solution II of two equivalent solutions in a �t with a resonan
e interfering with 
ontinuum.32Cal
ulated by the authors using σ(e+ e− → ψ(3770) → hadrons) = 6.36± 0.08+0.41

−0.30nb from BESSON 10.33 Solution I of two equivalent solutions in a �t with a resonan
e interfering with 
ontinuum.34Solution II of two equivalent solutions in a �t with a resonan
e interfering with 
ontinuum.35Using σobs = 7.15 ± 0.27 ± 0.27 nb and negle
ting interferen
e.36Assuming that interferen
e e�e
ts between resonan
e and 
ontinuum 
an be negle
ted.RADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYSRADIATIVE DECAYS�(γχ
2)/�total �98/��(γχ
2)/�total �98/��(γχ
2)/�total �98/��(γχ
2)/�total �98/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.64<0.64<0.64<0.64 90 37 ABLIKIM 15J BES3 e+ e− → ψ(3770) →

γ γ J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2.0 90 38 BRIERE 06 CLEO e+ e− → ψ(3770) →
γ + hadrons

<0.9 90 39 COAN 06A CLEO e+ e− → ψ(3770) →
γ γ J/ψ
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le Listings
ψ(3770), ψ(3823)�(γχ
1)/�total �99/��(γχ
1)/�total �99/��(γχ
1)/�total �99/��(γχ
1)/�total �99/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.48±0.23 OUR AVERAGE2.48±0.23 OUR AVERAGE2.48±0.23 OUR AVERAGE2.48±0.23 OUR AVERAGE1.9 ±0.4 ±0.6 202 40 ABLIKIM 16B BES3 e+ e− → ψ(3770) →

γ + hadrons2.48±0.15±0.23 0.6k ABLIKIM 15J BES3 e+ e− → ψ(3770) →
γ γ J/ψ2.4 ±0.8 ±0.2 41 ABLIKIM 14H BES3 e+ e− → ψ(3770) →K0S K±π∓2.9 ±0.5 ±0.4 42 BRIERE 06 CLEO e+ e− → ψ(3770) →
γ + hadrons,
γ γ J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.9 ±1.4 ±0.6 54 43 BRIERE 06 CLEO e+ e− → ψ(3770) →
γ + hadrons2.8 ±0.5 ±0.4 53 39 COAN 06A CLEO e+ e− → ψ(3770) →
γ γ J/ψ�(γχ
1)/�(J/ψπ+π−) �99/�4�(γχ
1)/�(J/ψπ+π−) �99/�4�(γχ
1)/�(J/ψπ+π−) �99/�4�(γχ
1)/�(J/ψπ+π−) �99/�4VALUE EVTS DOCUMENT ID TECN COMMENT1.49±0.31±0.261.49±0.31±0.261.49±0.31±0.261.49±0.31±0.26 53 ± 10 44 COAN 06A CLEO e+ e− → ψ(3770) →

γ γ J/ψ�(γχ
0)/�total �100/��(γχ
0)/�total �100/��(γχ
0)/�total �100/��(γχ
0)/�total �100/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT7.0±0.6 OUR AVERAGE7.0±0.6 OUR AVERAGE7.0±0.6 OUR AVERAGE7.0±0.6 OUR AVERAGE6.9±0.3±0.7 2.2K 45 ABLIKIM 16B BES3 e+ e− → ψ(3770) →
γ + hadrons7.3±0.7±0.6 274 BRIERE 06 CLEO e+ e− → ψ(3770) →
γ + hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 44 90 39 COAN 06A CLEO e+ e− → ψ(3770) →
γ γ J/ψ�(γχ
0)/�(γχ
2) �100/�98�(γχ
0)/�(γχ
2) �100/�98�(γχ
0)/�(γχ
2) �100/�98�(γχ
0)/�(γχ
2) �100/�98VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

>8 90 46 BRIERE 06 CLEO e+ e− → ψ(3770)�(γχ
0)/�(γχ
1) �100/�99�(γχ
0)/�(γχ
1) �100/�99�(γχ
0)/�(γχ
1) �100/�99�(γχ
0)/�(γχ
1) �100/�99VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.5±0.6 46 BRIERE 06 CLEO e+ e− → ψ(3770)�(γ η
)/�total �101/��(γ η
)/�total �101/��(γ η
)/�total �101/��(γ η
)/�total �101/�VALUE CL% DOCUMENT ID TECN
<7× 10−4<7× 10−4<7× 10−4<7× 10−4 90 47 ABLIKIM 14H BES3�(γ η
 (2S))/�total �102/��(γ η
 (2S))/�total �102/��(γ η
 (2S))/�total �102/��(γ η
 (2S))/�total �102/�VALUE CL% DOCUMENT ID TECN
<9× 10−4<9× 10−4<9× 10−4<9× 10−4 90 48 ABLIKIM 14H BES3�(γ η′

)/�total �103/��(γ η′
)/�total �103/��(γ η′
)/�total �103/��(γ η′
)/�total �103/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.8<1.8<1.8<1.8 90 49 PEDLAR 09 CLE3 ψ(2S) → γX�(γ η
)/�total �104/��(γ η
)/�total �104/��(γ η
)/�total �104/��(γ η
)/�total �104/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.5<1.5<1.5<1.5 90 49 PEDLAR 09 CLE3 ψ(2S) → γX�(γπ0)/�total �105/��(γπ0)/�total �105/��(γπ0)/�total �105/��(γπ0)/�total �105/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<2<2<2<2 90 PEDLAR 09 CLE3 ψ(2S) → γX37This limit is equivalent to (0.25 ± 0.21 ± 0.18) × 10−3 bran
hing fra
tion value.38Uses B(ψ(2S) → γχ
2) = 9.22 ± 0.11 ± 0.46% from ATHAR 04, ψ(2S) mass andwidth from PDG 04, and �ee(ψ(2S)) = 2.54 ± 0.03 ± 0.11 keV from ADAM 06.39Using �ee(ψ(2S)) = (2.54 ± 0.03 ± 0.11) keV from ADAM 06 and taking σ(e+ e− →DD) from HE 05 for σ(e+ e− → ψ(3770)).40ABLIKIM 16B reports (1.94±0.42±0.64)×10−3 from a measurement of [�(

ψ(3770) →
γχ
1)/�total℄ / [B(ψ(2S) → γχ
1(1P))℄ assuming B(ψ(2S) → γχ
1(1P)) = (9.55±0.31) × 10−2.41ABLIKIM 14H reports [�(

ψ(3770) → γχ
1)/�total℄ × [B(χ
1(1P) → K0S K±π∓)℄= (8.51 ± 2.39 ± 1.42) × 10−6 whi
h we divide by our best value B(χ
1(1P) →K0S K±π∓) = 0.00356 ± 0.00030. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value. We have 
al
ulated thebest value of B(χ
1(1P) → K0S K±π∓) as 1/2 of B(χ
1(1P) → K0K+π−+ 
.
.)= (7.1 ± 0.6)× 10−3.42Averages the two measurements from COAN 06A and BRIERE 06.43Uses B(ψ(2S) → γχ
1) = 9.07 ± 0.11 ± 0.54% from ATHAR 04, ψ(2S) mass andwidth from PDG 04, and �ee(ψ(2S)) = 2.54 ± 0.03 ± 0.11 keV from ADAM 06.44Using B(ψ(3770) → J/ψπ+ π−) = (1.89 ± 0.20 ± 0.20) × 10−3 from ADAM 06.45ABLIKIM 16B reports (6.88±0.28±0.67)×10−3 from a measurement of [�(

ψ(3770) →
γχ
0)/�total℄ / [B(ψ(2S) → γχ
0(1P))℄ assuming B(ψ(2S) → γχ
0(1P)) = (9.99±0.27) × 10−2.

46Not independent of other results in BRIERE 06.47ABLIKIM 14H reports [�(

ψ(3770) → γ η
 )/�total℄ × [B(η
 (1S) → K0S K±π∓)℄
< 16×10−6 whi
h we divide by our best value B(η
 (1S)→ K0S K±π∓) = 2.43×10−2.We have 
al
ulated the best value of B(η
 (1S) → K0S K±π∓) as 1/3 of B(η
 (1S) →K K π) = 7.3× 10−2.48ABLIKIM 14H reports [�(

ψ(3770) → γ η
 (2S))/�total℄ × [B(η
 (2S) → K0S K±π∓)℄
< 5.6×10−6 whi
h we divide by our best value B(η
 (2S) → K0S K±π∓) = 6×10−3.We have 
al
ulated the best value of B(η
 (2S) → K0S K±π∓) as 1/3 of B(η
 (2S) →K K π) = 1.9× 10−2.49Assuming maximal destru
tive interferen
e between ψ(3770) and 
ontinuum sour
es.

ψ(3770) REFERENCESψ(3770) REFERENCESψ(3770) REFERENCESψ(3770) REFERENCESABLIKIM 16B PL B753 103 M. Ablikim et al. (BES III Collab.)ABLIKIM 15J PR D91 092009 M. Ablikim et al. (BES III Collab.)DRUZHININ 15 PR D92 054024 V.P. Druzhinin (NOVO)ABLIKIM 14H PR D89 112005 M. Ablikim et al. (BES III Collab.)ABLIKIM 14L PL B735 101 M. Ablikim et al. (BES III Collab.)ABLIKIM 14O PR D90 032007 M. Ablikim et al. (BES III Collab.)BONVICINI 14 PR D89 072002 G. Bonvi
ini et al. (CLEO Collab.)ABLIKIM 13Q PR D87 112011 Ablikim M. et al. (BES III Collab.)ANASHIN 12A PL B711 292 V.V. Anashin et al. (KEDR Collab.)ABLIKIM 10D EPJ C66 11 M. Ablikim et al. (BES II Collab.)BESSON 10 PRL 104 159901 (errat.) D. Besson et al. (CLEO Collab.)ABLIKIM 09C EPJ C64 243 M. Ablikim et al. (BES Collab.)PEDLAR 09 PR D79 111101 T.K. Pedlar et al. (CLEO Collab.)ABLIKIM 08B PL B659 74 M. Ablikim et al. (BES Collab.)ABLIKIM 08D PL B660 315 M. Ablikim et al. (BES Collab.)ABLIKIM 08M PL B670 179 M. Ablikim et al. (BES Collab.)ABLIKIM 08N PL B670 184 M. Ablikim et al. (BES Collab.)AUBERT 08B PR D77 011102 B. Aubert et al. (BABAR Collab.)BRODZICKA 08 PRL 100 092001 J. Brodzi
ka et al. (BELLE Collab.)PAKHLOVA 08 PR D77 011103 G. Pakhlova et al. (BELLE Collab.)ABLIKIM 07B PL B650 111 M. Ablikim et al. (BES Collab.)ABLIKIM 07E PL B652 238 M. Ablikim et al. (BES Collab.)ABLIKIM 07F PL B656 30 M. Ablikim et al. (BES Collab.)ABLIKIM 07I EPJ C52 805 M. Ablikim et al. (BES Collab.)ABLIKIM 07K PR D76 122002 M. Ablikim et al. (BES Collab.)AUBERT 07BE PR D76 111105 B. Aubert et al. (BABAR Collab.)DOBBS 07 PR D76 112001 S. Dobbs et al. (CLEO Collab.)ABLIKIM 06L PRL 97 121801 M. Ablikim et al. (BES Collab.)ABLIKIM 06N PL B641 145 M. Ablikim et al. (BES Collab.)ADAM 06 PRL 96 082004 N.E. Adam et al. (CLEO Collab.)ADAMS 06 PR D73 012002 G.S. Adams et al. (CLEO Collab.)BESSON 06 PRL 96 092002 D. Besson et al. (CLEO Collab.)Also PRL 104 159901 (errat.) D. Besson et al. (CLEO Collab.)BRIERE 06 PR D74 031106 R.A. Briere et al. (CLEO Collab.)COAN 06A PRL 96 182002 T.E. Coan et al. (CLEO Collab.)CRONIN-HEN... 06 PR D74 012005 D. Cronin-Hennessy et al. (CLEO Collab.)HUANG 06A PRL 96 032003 G.S. Huang et al. (CLEO Collab.)BAI 05 PL B605 63 J.Z. Bai et al. (BES Collab.)HE 05 PRL 95 121801 Q. He et al. (CLEO Collab.)Also PRL 96 199903 (errat.) Q. He et al. (CLEO Collab.)ABLIKIM 04F PR D70 077101 M. Ablikim et al. (BES Collab.)ATHAR 04 PR D70 112002 S.B. Athar et al. (CLEO Collab.)CHISTOV 04 PRL 93 051803 R. Chistov et al. (BELLE Collab.)PDG 04 PL B592 1 S. Eidelman et al. (PDG Collab.)BAI 02C PRL 88 101802 J.Z. Bai et al. (BES Collab.)ADLER 88C PRL 60 89 J. Adler et al. (Mark III Collab.)SCHINDLER 80 PR D21 2716 R.H. S
hindler et al. (Mark II Collab.)BACINO 78 PRL 40 671 W.J. Ba
ino et al. (SLAC, UCLA, UCI)RAPIDIS 77 PRL 39 526 P.A. Rapidis et al. (LGW Collab.)
ψ(3823)was X (3823), IG (JPC ) = ??(2−−)J, P need 
on�rmation.Seen by BHARDWAJ 13 in B → χ
1 γK and ABLIKIM 15S ine+ e− → π+π− γχ
1 de
ays as a narrow peak in the invariantmass distribution of the χ
1 γ system. Properties 
onsistent withthe ψ2(13D2) 
 
 state.

ψ(3823) MASSψ(3823) MASSψ(3823) MASSψ(3823) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3822.2±1.2 OUR AVERAGE3822.2±1.2 OUR AVERAGE3822.2±1.2 OUR AVERAGE3822.2±1.2 OUR AVERAGE3821.7±1.3±0.7 19 ± 5 1 ABLIKIM 15S BES3 e+ e− → π+π−χ
1 γ3823.1±1.8±0.7 33 ± 10 2 BHARDWAJ 13 BELL B → χ
1 γK1From a simultaneous unbinned maximum likelihood �t of e+ e− → π+π−χ
1 γ data(the π+π− re
oil mass) taken at √s values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV tosimulated events in
luding both ψ(2S) → χ
1 γ and ψ(3823) → χ
1 γ together, with
oating mass s
ale o�set for ψ(2S), 
oating ψ(3823) mass, and zero ψ(3823) width,resulting in a signi�
an
e of 5.9σ when in
luding systemati
 un
ertainties.2 From a simultaneous �t to B± → (χ
1 γ)K± and B0 → (χ
1 γ)K0S with signi�-
an
e 4.0σ in
luding systemati
s. Corre
ted for the measured ψ(2S) mass using B →
ψ(2S)K → (γχ
1)K de
ays.

ψ(3823) WIDTHψ(3823) WIDTHψ(3823) WIDTHψ(3823) WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<16<16<16<16 90 1 ABLIKIM 15S BES3 e+ e− → π+π−χ
1 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<24 90 2 BHARDWAJ 13 BELL B → χ
1 γK
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ψ(3823),X (3872)1From a �t of e+ e− → π+π−χ
1 γ data (the π+π− re
oil mass) taken at √s valuesof 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to a Breit-Wigner fun
tion with the mass �xedfrom the likelihood �t above, Gaussian resolution smearing, and 
oating width.2 From a simultaneous �t to B± → (χ
1 γ)K± and B0 → (χ
1 γ)K0S with signi�
an
e4.0σ in
luding systemati
s.

ψ(3823) DECAY MODESψ(3823) DECAY MODESψ(3823) DECAY MODESψ(3823) DECAY MODESMode Fra
tion (�i /�)�1 χ
1 γ seen�2 χ
2 γ not seen
ψ(3823) BRANCHING RATIOSψ(3823) BRANCHING RATIOSψ(3823) BRANCHING RATIOSψ(3823) BRANCHING RATIOS�(χ
1 γ

)/�total �1/��(χ
1 γ
)/�total �1/��(χ
1 γ
)/�total �1/��(χ
1 γ
)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 33 ± 10 1 BHARDWAJ 13 BELL B+ → χ
1 γK+1Reported B(B± → ψ(3823)K±) × B(ψ(3823) → γχ
1) = (9.7 ± 2.8 ± 1.1)×10−6with statisti
al signi�
an
e 3.8σ.�(χ
2 γ
)/�total �2/��(χ
2 γ
)/�total �2/��(χ
2 γ
)/�total �2/��(χ
2 γ
)/�total �2/�VALUE DOCUMENT ID TECN COMMENTnot seen 1 ABLIKIM 15S BES3 e+ e− → π+π−χ
2 γnot seennot seennot seennot seen 2 BHARDWAJ 13 BELL B+ → χ
2 γK+1From a simultaneous unbinned maximum likelihood �t of e+ e− → π+π−χ
2 γ data(the π+π− re
oil mass) taken at √s values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV tosimulated events in
luding both ψ(2S) → χ
2 γ and ψ(3823) → χ
2 γ together, with
oating mass s
ale o�set for ψ(2S), ψ(3823) mass 
oating (�xed to that above), andzero ψ(3823) width.2Reported B(B± → ψ(3823)K±) × B(ψ(3823) → γχ
2) < 3.6× 10−6 at 90% CL.�(χ
2 γ
)/�(χ
1 γ

) �2/�1�(χ
2 γ
)/�(χ
1 γ

) �2/�1�(χ
2 γ
)/�(χ
1 γ

) �2/�1�(χ
2 γ
)/�(χ
1 γ

) �2/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.41<0.41<0.41<0.41 90 BHARDWAJ 13 BELL B+ → χc1/c2 γK+
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.42 90 1 ABLIKIM 15S BES3 e+ e− → π+π−χ
1 γ1From a simultaneous unbinned maximum likelihood �t of e+ e− → π+π−χc1(2) γdata (the π+π− re
oil mass) taken at √
s values of 4.23, 4.26, 4.36, 4.42, and 4.60GeV to simulated events in
luding both ψ(2S) → χc1(2) γ and ψ(3823) → χc1(2) γtogether, with 
oating mass s
ale o�set for ψ(2S), ψ(3823) mass 
oating (�xed to thatabove), and zero ψ(3823) width.

ψ(3823) REFERENCESψ(3823) REFERENCESψ(3823) REFERENCESψ(3823) REFERENCESABLIKIM 15S PRL 115 011803 M. Ablikim et al. (BES III Collab.)BHARDWAJ 13 PRL 111 032001 V. Bhardwaj et al. (BELLE Collab.)X (3872) IG (JPC ) = 0+(1 + +)First observed by CHOI 03 in B → K π+π− J/ψ(1S) de
ays as anarrow peak in the invariant mass distribution of the π+π− J/ψ(1S)�nal state. Isove
tor hypothesis ex
luded by AUBERT 05B andCHOI 11.AAIJ 13Q perform a full �ve-dimensional amplitude analysis ofthe angular 
orrelations between the de
ay produ
ts in B+ →X (3872)K+ de
ays, where X (3872) → J/ψπ+π− and J/ψ →

µ+µ−, whi
h unambiguously gives the JPC = 1 ++ assignmentunder the assumption that the π+π− and J/ψ are in an S-wave.AAIJ 15AO extend this analysis with more data to limit D-wave
ontributions to < 4% at 95% CL.See our note on \Developments in Heavy Quarkonium Spe
-tros
opy". X (3872) MASS FROM J/ψX MODEX (3872) MASS FROM J/ψX MODEX (3872) MASS FROM J/ψX MODEX (3872) MASS FROM J/ψX MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3871.69± 0.17 OUR AVERAGE3871.69± 0.17 OUR AVERAGE3871.69± 0.17 OUR AVERAGE3871.69± 0.17 OUR AVERAGE3871.9 ± 0.7 ±0.2 20 ± 5 ABLIKIM 14 BES3 e+ e− → J/ψπ+π− γ3871.95± 0.48±0.12 0.6k AAIJ 12H LHCB pp → J/ψπ+π−X3871.85± 0.27±0.19 ∼ 170 1 CHOI 11 BELL B → K π+π− J/ψ3873 + 1.8
− 1.6 ±1.3 27 ± 8 2 DEL-AMO-SA...10B BABR B → ωJ/ψK3871.61± 0.16±0.19 6k 2,3 AALTONEN 09AU CDF2 pp → J/ψπ+π−X3871.4 ± 0.6 ±0.1 93.4 AUBERT 08Y BABR B+ → K+ J/ψπ+ π−3868.7 ± 1.5 ±0.4 9.4 AUBERT 08Y BABR B0 → K0S J/ψπ+π−3871.8 ± 3.1 ±3.0 522 2,4 ABAZOV 04F D0 pp → J/ψπ+π−X

• • • We do not use the following data for averages, �ts, limits, et
. • • •3868.6 ± 1.2 ±0.2 8 5 AUBERT 06 BABR B0 → K0S J/ψπ+π−3871.3 ± 0.6 ±0.1 61 5 AUBERT 06 BABR B− → K− J/ψπ+ π−3873.4 ± 1.4 25 6 AUBERT 05R BABR B+ → K+ J/ψπ+ π−3871.3 ± 0.7 ±0.4 730 2,7 ACOSTA 04 CDF2 pp → J/ψπ+π−X3872.0 ± 0.6 ±0.5 36 8 CHOI 03 BELL B → K π+π− J/ψ3836 ±13 58 2,9 ANTONIAZZI 94 E705 300 π±Li →J/ψπ+π−X1The mass di�eren
e for the X (3872) produ
ed in B+ and B0 de
ays is (−0.71± 0.96±0.19) MeV.2Width 
onsistent with dete
tor resolution.3A possible equal mixture of two states with a mass di�eren
e greater than 3.6 MeV/
2is ex
luded at 95% CL.4Cal
ulated from the 
orresponding mX (3872) − mJ/ψ using mJ/ψ=3096.916 MeV.5Cal
ulated from the 
orresponding mX (3872) − mψ(2S) using mψ(2S) = 3686.093MeV. Superseded by AUBERT 08Y.6 Cal
ulated from the 
orresponding mX (3872) − mψ(2S) using mψ(2S) = 3685.96MeV.Superseded by AUBERT 06.7 Superseded by AALTONEN 09AU.8 Superseded by CHOI 11.9A lower mass value 
an be due to an in
orre
t momentum s
ale for soft pions.X (3872) MASS FROM D∗0D0 MODEX (3872) MASS FROM D∗0D0 MODEX (3872) MASS FROM D∗0D0 MODEX (3872) MASS FROM D∗0D0 MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3872.9+0.6

−0.4+0.4
−0.5 50 1,2 AUSHEV 10 BELL B → D∗0D0K3875.1+0.7

−0.5±0.5 33 ± 6 2 AUBERT 08B BABR B → D∗0D0K3875.2±0.7+0.9
−1.8 24 ± 6 2,3 GOKHROO 06 BELL B → D0D0π0K1Cal
ulated from the measured mX (3872)−mD∗0−mD0 = 1.1+0.6

−0.4+0.1
−0.3 MeV.2Experiments report D∗0D0 invariant mass above D∗0D0 threshold be
ause D∗0 de
ayprodu
ts are kinemati
ally 
onstrained to the D∗0 mass, even though the D∗0 may de
ayo�-shell.3 Superseded by AUSHEV 10. mX (3872) − mJ/ψmX (3872) − mJ/ψmX (3872) − mJ/ψmX (3872) − mJ/ψVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT774.9±3.1±3.0774.9±3.1±3.0774.9±3.1±3.0774.9±3.1±3.0 522 ABAZOV 04F D0 pp → J/ψπ+π−XmX (3872) − mψ(2S)mX (3872) − mψ(2S)mX (3872) − mψ(2S)mX (3872) − mψ(2S)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •187.4±1.4 25 1 AUBERT 05R BABR B+ → K+ J/ψπ+ π−1Superseded by AUBERT 06. X (3872) WIDTHX (3872) WIDTHX (3872) WIDTHX (3872) WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT
<1.2<1.2<1.2<1.2 90 CHOI 11 BELL B → K π+π− J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2.4 90 ABLIKIM 14 BES3 e+ e− → J/ψπ+π− γ

<3.3 90 AUBERT 08Y BABR B+ → K+ J/ψπ+π−
<4.1 90 69 AUBERT 06 BABR B → K π+π− J/ψ

<2.3 90 36 1CHOI 03 BELL B → K π+π− J/ψ1Superseded by CHOI 11.X (3872) WIDTH FROM D∗0D0 MODEX (3872) WIDTH FROM D∗0D0 MODEX (3872) WIDTH FROM D∗0D0 MODEX (3872) WIDTH FROM D∗0D0 MODEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3.9+2.8

−1.4+0.2
−1.1 50 1 AUSHEV 10 BELL B → D∗0D0K3.0+1.9

−1.4±0.9 33 ± 6 AUBERT 08B BABR B → D∗0D0K1With a measured value of B(B → X (3872)K) × B(X (3872) → D∗0D0) = (0.80 ±0.20 ± 0.10) × 10−4, assumed to be equal for both 
harged and neutral modes.X (3872) DECAY MODESX (3872) DECAY MODESX (3872) DECAY MODESX (3872) DECAY MODESMode Fra
tion (�i /�)�1 e+ e−�2 π+π− J/ψ(1S) > 2.6 %�3 ρ0 J/ψ(1S)�4 ωJ/ψ(1S) > 1.9 %�5 D0D0π0 >32 %�6 D∗0D0 >24 %�7 γ γ



1441144114411441See key on page 601 MesonParti
le ListingsX (3872)�8 D0D0�9 D+D−�10 γχ
1�11 γχ
2�12 γ J/ψ > 6 × 10−3�13 γψ(2S) > 3.0 %�14 π+π−η
 (1S) not seen�15 pp not seenC-violating de
aysC-violating de
aysC-violating de
aysC-violating de
ays�16 ηJ/ψ X (3872) PARTIAL WIDTHSX (3872) PARTIAL WIDTHSX (3872) PARTIAL WIDTHSX (3872) PARTIAL WIDTHS�(e+ e−) �1�(e+ e−) �1�(e+ e−) �1�(e+ e−) �1VALUE (eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.3 90 1 ABLIKIM 15V BES3 4.0{4.4 e+ e− → π+π− J/ψ

<280 90 2 YUAN 04 RVUE e+ e− → π+π− J/ψ1ABLIKIM 15V reports this limit from the measurement of �(X (3872) →
π+π− J/ψ(1S)) × �(X (3872) → e+ e−)/� < 0.13 eV using �(X (3872) →
π+π− J/ψ(1S))/� = 3%.2Using BAI 98E data on e+ e− → π+π− ℓ+ ℓ−. Assuming that �(π+π− J/ψ) ofX (3872) is the same as that of ψ(2S) (85.4 keV).X (3872) �(i)�(e+ e−)/�(total)X (3872) �(i)�(e+ e−)/�(total)X (3872) �(i)�(e+ e−)/�(total)X (3872) �(i)�(e+ e−)/�(total)�(π+π− J/ψ(1S)) × �(e+ e−)/�total �2�1/��(π+π− J/ψ(1S)) × �(e+ e−)/�total �2�1/��(π+π− J/ψ(1S)) × �(e+ e−)/�total �2�1/��(π+π− J/ψ(1S)) × �(e+ e−)/�total �2�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

< 0.13< 0.13< 0.13< 0.13 90 ABLIKIM 15V BES3 4.0{4.4 e+ e− → π+π− J/ψ
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 6.2 90 1,2 AUBERT 05D BABR 10.6 e+ e− →K+K−π+π− γ
< 8.3 90 2 DOBBS 05 CLE3 e+ e− → π+π− J/ψ

<10 90 3 YUAN 04 RVUE e+ e− → π+π− J/ψ1Using B(X (3872) → J/ψπ+ π−) · B(J/ψ → µ+µ−) · �(X (3872) → e+ e−) < 0.37eV from AUBERT 05D and B(J/ψ → µ+µ−) = 0.0588 ± 0.0010 from the PDG 04.2Assuming X (3872) has JPC = 1−−.3Using BAI 98E data on e+ e− → π+π− ℓ+ ℓ−. From theoreti
al 
al
ulation of theprodu
tion 
ross se
tion and using B(J/ψ → µ+µ−) = (5.88 ± 0.10)%.X (3872) �(i)�(γ γ)/�(total)X (3872) �(i)�(γ γ)/�(total)X (3872) �(i)�(γ γ)/�(total)X (3872) �(i)�(γ γ)/�(total)�(π+π− J/ψ(1S)) × �(γ γ
)/�total �2�7/��(π+π− J/ψ(1S)) × �(γ γ
)/�total �2�7/��(π+π− J/ψ(1S)) × �(γ γ
)/�total �2�7/��(π+π− J/ψ(1S)) × �(γ γ
)/�total �2�7/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<12.9 90 1 DOBBS 05 CLE3 e+ e− → π+π− J/ψγ1Assuming X (3872) has positive C parity and spin 0.�(ωJ/ψ(1S)) × �(γ γ

)/�total �4�7/��(ωJ/ψ(1S)) × �(γ γ
)/�total �4�7/��(ωJ/ψ(1S)) × �(γ γ
)/�total �4�7/��(ωJ/ψ(1S)) × �(γ γ
)/�total �4�7/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.7 90 1 LEES 12AD BABR e+ e− → e+ e−ωJ/ψ1Assuming X (3872) has spin 2.�(π+π−η
 (1S)) × �(γ γ

)/�total �14�7/��(π+π−η
 (1S)) × �(γ γ
)/�total �14�7/��(π+π−η
 (1S)) × �(γ γ
)/�total �14�7/��(π+π−η
 (1S)) × �(γ γ
)/�total �14�7/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<11.1<11.1<11.1<11.1 90 LEES 12AE BABR e+ e− →e+ e−π+π− η
X (3872) BRANCHING RATIOSX (3872) BRANCHING RATIOSX (3872) BRANCHING RATIOSX (3872) BRANCHING RATIOS�(π+π− J/ψ(1S))/�total �2/��(π+π− J/ψ(1S))/�total �2/��(π+π− J/ψ(1S))/�total �2/��(π+π− J/ψ(1S))/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENT
>0.026>0.026>0.026>0.026 93 ± 17 1 AUBERT 08Y BABR B → X (3872)K
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 151 2 BALA 15 BELL B → X (3872)K π

>0.04 30 3 AUBERT 05R BABR B+ → K+π+π− J/ψ

>0.04 36 ± 7 4 CHOI 03 BELL B+ → K+π+π− J/ψ1AUBERT 08Y reports [�(X (3872) → π+π− J/ψ(1S))/�total℄ × [B(B+ →X (3872)K+)℄ = (8.4 ± 1.5 ± 0.7)× 10−6 whi
h we divide by our best value B(B+ →X (3872)K+) < 3.2× 10−4.2BALA 15 reports B(X (3872) → π+π− J/ψ) × B(B0 → X (3872)K+π−) = (7.9 ±1.3 ± 0.4) × 10−6 and B(X (3872) → π+π− J/ψ) × B(B+ → X (3872)K0π+) =(10.6 ± 3.0 ± 0.9)× 10−6.3 Superseded by AUBERT 08Y. AUBERT 05R reports [�(X (3872) → π+π− J/ψ(1S))/�total℄ × [B(B+ → X (3872)K+)℄ = (1.28 ± 0.41) × 10−5 whi
h we divide by ourbest value B(B+ → X (3872)K+) < 3.2× 10−4.4CHOI 03 reports [�(X (3872) → π+π− J/ψ(1S))/�total℄ × [B(B+ → X (3872)K+)℄
/ [B(B+ → ψ(2S)K+)℄ / [B(ψ(2S) → J/ψ(1S)π+π−)℄ = 0.063 ± 0.012 ± 0.007whi
h we multiply or divide by our best values B(B+ → X (3872)K+) < 3.2 × 10−4,B(B+ → ψ(2S)K+) = (6.26 ± 0.24) × 10−4, B(ψ(2S) → J/ψ(1S)π+π−) =(34.49 ± 0.30) × 10−2.

�(ωJ/ψ(1S))/�total �4/��(ωJ/ψ(1S))/�total �4/��(ωJ/ψ(1S))/�total �4/��(ωJ/ψ(1S))/�total �4/�VALUE EVTS DOCUMENT ID TECN COMMENT
>0.019>0.019>0.019>0.019 21± 7 1 DEL-AMO-SA...10B BABR B+ → ωJ/ψK+1DEL-AMO-SANCHEZ 10B reports [�(X (3872) → ωJ/ψ(1S))/�total℄ × [B(B+ →X (3872)K+)℄ = (6 ± 2 ± 1) × 10−6 whi
h we divide by our best value B(B+ →X (3872)K+) < 3.2 × 10−4. DEL-AMO-SANCHEZ 10B also reports B(B0 →X (3872)K0) × B(X (3872) → J/ψω) = (6 ± 3 ± 1)× 10−6.�(ωJ/ψ(1S))/�(π+π− J/ψ(1S)) �4/�2�(ωJ/ψ(1S))/�(π+π− J/ψ(1S)) �4/�2�(ωJ/ψ(1S))/�(π+π− J/ψ(1S)) �4/�2�(ωJ/ψ(1S))/�(π+π− J/ψ(1S)) �4/�2VALUE DOCUMENT ID TECN COMMENT0.8±0.30.8±0.30.8±0.30.8±0.3 1 DEL-AMO-SA...10B BABR B → ωJ/ψK1Statisti
al and systemati
 errors added in quadrature. Uses the values of B(B →X (3872)K) × B(X (3872) → J/ψπ+π−) reported in AUBERT 08Y, taking into a
-
ount the 
ommon systemati
s.�(D0D0π0)/�total �5/��(D0D0π0)/�total �5/��(D0D0π0)/�total �5/��(D0D0π0)/�total �5/�VALUE EVTS DOCUMENT ID TECN COMMENT
>0.32>0.32>0.32>0.32 17 ± 5 1 GOKHROO 06 BELL B+ → D0D0π0K+1GOKHROO 06 reports [�(X (3872) → D0D0π0)/�total℄ × [B(B+ → X (3872)K+)℄= (1.02±0.31+0.21

−0.29)×10−4 whi
h we divide by our best value B(B+ → X (3872)K+)
< 3.2× 10−4.�(D∗0D0)/�total �6/��(D∗0D0)/�total �6/��(D∗0D0)/�total �6/��(D∗0D0)/�total �6/�VALUE EVTS DOCUMENT ID TECN COMMENT

>0.24>0.24>0.24>0.24 41+9
−8 1 AUSHEV 10 BELL B+ → D∗0D0K+

• • • We do not use the following data for averages, �ts, limits, et
. • • •

>0.5 27 ± 6 2 AUBERT 08B BABR B+ → D∗0D0K+1AUSHEV 10 reports [�(X (3872) → D∗0D0)/�total℄ × [B(B+ → X (3872)K+)℄ =(0.77 ± 0.16 ± 0.10)×10−4 whi
h we divide by our best value B(B+ → X (3872)K+)
< 3.2× 10−4.2AUBERT 08B reports [�(X (3872) → D∗0D0)/�total℄ × [B(B+ → X (3872)K+)℄ =(1.67 ± 0.36 ± 0.47)×10−4 whi
h we divide by our best value B(B+ → X (3872)K+)
< 3.2× 10−4.�(D0D0π0)/�(π+π− J/ψ(1S)) �5/�2�(D0D0π0)/�(π+π− J/ψ(1S)) �5/�2�(D0D0π0)/�(π+π− J/ψ(1S)) �5/�2�(D0D0π0)/�(π+π− J/ψ(1S)) �5/�2VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 GOKHROO 06 BELL B → D0D0π0K

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen AUSHEV 10 BELL B → D0D0π0K1May not ne
essarily be the same state as that observed in the J/ψπ+ π− mode. Su-persedes CHISTOV 04.�(D0D0)/�(π+π− J/ψ(1S)) �8/�2�(D0D0)/�(π+π− J/ψ(1S)) �8/�2�(D0D0)/�(π+π− J/ψ(1S)) �8/�2�(D0D0)/�(π+π− J/ψ(1S)) �8/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen CHISTOV 04 BELL B → KD0D0�(D+D−)/�(π+π− J/ψ(1S)) �9/�2�(D+D−)/�(π+π− J/ψ(1S)) �9/�2�(D+D−)/�(π+π− J/ψ(1S)) �9/�2�(D+D−)/�(π+π− J/ψ(1S)) �9/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen CHISTOV 04 BELL B → KD+D−�(γχ
1)/�(π+π− J/ψ(1S)) �10/�2�(γχ
1)/�(π+π− J/ψ(1S)) �10/�2�(γχ
1)/�(π+π− J/ψ(1S)) �10/�2�(γχ
1)/�(π+π− J/ψ(1S)) �10/�2VALUE CL% DOCUMENT ID TECN COMMENTnot seen 1 BHARDWAJ 13 BELL B+ → χ
1 γK+
<0.89<0.89<0.89<0.89 90 CHOI 03 BELL B → K π+π− J/ψ1Reported B(B± → X (3872)K±) × B(X (3872) → γχ
1) < 1.9× 10−6 at 90% CL.�(γχ
2)/�(π+π− J/ψ(1S)) �11/�2�(γχ
2)/�(π+π− J/ψ(1S)) �11/�2�(γχ
2)/�(π+π− J/ψ(1S)) �11/�2�(γχ
2)/�(π+π− J/ψ(1S)) �11/�2VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen 1 BHARDWAJ 13 BELL B± → χ
2 γK+1Reported B(B± → X (3872)K±) × B(X (3872) → γχ
2) < 6.7× 10−6 at 90% CL.�(γ J/ψ

)/�total �12/��(γ J/ψ
)/�total �12/��(γ J/ψ
)/�total �12/��(γ J/ψ
)/�total �12/�VALUE EVTS DOCUMENT ID TECN COMMENT

>6 × 10−3>6 × 10−3>6 × 10−3>6 × 10−3 1 BHARDWAJ 11 BELL B± → γ J/ψK±
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>9 × 10−3 20 2 AUBERT 09B BABR B+ → γ J/ψK+
>0.010 19 3 AUBERT,BE 06M BABR B+ → γ J/ψK+1BHARDWAJ 11 reports [�(X (3872) → γ J/ψ

)/�total℄ × [B(B+ → X (3872)K+)℄ =(1.78+0.48
−0.44 ± 0.12)× 10−6 whi
h we divide by our best value B(B+ → X (3872)K+)

< 3.2× 10−4.2AUBERT 09B reports [�(X (3872) → γ J/ψ
)/�total℄ × [B(B+ → X (3872)K+)℄ =(2.8 ± 0.8 ± 0.1) × 10−6 whi
h we divide by our best value B(B+ → X (3872)K+)

< 3.2× 10−4.3 Superseded by AUBERT 09B. AUBERT,BE 06M reports [�(X (3872) → γ J/ψ
)/�total℄

× [B(B+ → X (3872)K+)℄ = (3.3 ± 1.0 ± 0.3) × 10−6 whi
h we divide by our bestvalue B(B+ → X (3872)K+) < 3.2× 10−4.



1442144214421442MesonParti
le ListingsX (3872),X (3900)�(γψ(2S))/�total �13/��(γψ(2S))/�total �13/��(γψ(2S))/�total �13/��(γψ(2S))/�total �13/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 36 ± 9 1 AAIJ 14AH LHCB B+ → γψ(2S)K+
>0.030>0.030>0.030>0.030 25 ± 7 2 AUBERT 09B BABR B+ → γψ(2S)K+
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen 3 BHARDWAJ 11 BELL B+ → γψ(2S)K+1From 36.4 ± 9.0 events of X (3872) → J/ψγ de
ays with a statisti
al signi�
an
e of4.4σ.2AUBERT 09B reports [�(X (3872) → γψ(2S))/�total℄ × [B(B+ → X (3872)K+)℄ =(9.5 ± 2.7 ± 0.6) × 10−6 whi
h we divide by our best value B(B+ → X (3872)K+)

< 3.2× 10−4.3BHARDWAJ 11 reports B(B+ → K+X (3872)) × B(X → γψ(2S)) < 3.45× 10−6at 90% CL.�(γψ(2S))/�(γ J/ψ
) �13/�12�(γψ(2S))/�(γ J/ψ
) �13/�12�(γψ(2S))/�(γ J/ψ
) �13/�12�(γψ(2S))/�(γ J/ψ
) �13/�12VALUE CL% EVTS DOCUMENT ID TECN COMMENT2.6 ±0.6 OUR AVERAGE2.6 ±0.6 OUR AVERAGE2.6 ±0.6 OUR AVERAGE2.6 ±0.6 OUR AVERAGE2.46±0.64±0.29 36 ± 9 1 AAIJ 14AH LHCB B+ → γψ(2S)K+3.4 ±1.4 AUBERT 09B BABR B+ → γ 
 
 K ′

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2.1 90 BHARDWAJ 11 BELL B+ → γψ(2S)K+1From 36.4 ± 9.0 events of X (3872) → J/ψγ de
ays with a statisti
al signi�
an
e of4.4σ.�(pp)/�(π+π− J/ψ(1S)) �15/�2�(pp)/�(π+π− J/ψ(1S)) �15/�2�(pp)/�(π+π− J/ψ(1S)) �15/�2�(pp)/�(π+π− J/ψ(1S)) �15/�2VALUE CL% DOCUMENT ID TECN COMMENT
<2.0× 10−3<2.0× 10−3<2.0× 10−3<2.0× 10−3 95 1 AAIJ 13S LHCB B+ → ppK+1AAIJ 13S reports [�(X (3872) → pp)/�(X (3872) → π+π− J/ψ(1S))℄ × [B(B+ →X (3872)K+, X → J/ψπ+π−)℄ < 1.7 × 10−8 whi
h we divide by our best valueB(B+ → X (3872)K+, X → J/ψπ+ π−) = 8.6× 10−6.C-violating de
aysC-violating de
aysC-violating de
aysC-violating de
ays�(ηJ/ψ

)/�(π+π− J/ψ(1S)) �16/�2�(ηJ/ψ
)/�(π+π− J/ψ(1S)) �16/�2�(ηJ/ψ
)/�(π+π− J/ψ(1S)) �16/�2�(ηJ/ψ
)/�(π+π− J/ψ(1S)) �16/�2VALUE CL% DOCUMENT ID TECN COMMENT

<0.4<0.4<0.4<0.4 90 1,2 IWASHITA 14 BELL B → K ηJ/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.6 90 AUBERT 04Y BABR B → K ηJ/ψ1 IWASHITA 14 reports [�(X (3872) → ηJ/ψ

)/�(X (3872) → π+π− J/ψ(1S))℄ ×[B(B+ → X (3872)K+, X → J/ψπ+ π−)℄ < 3.8 × 10−6 whi
h we divide byour best value B(B+ → X (3872)K+, X → J/ψπ+π−) = 8.6× 10−6.2 IWASHITA 14 also s
ans the ηJ/ψ mass range 3.8{4.75 GeV and sets upper limits forB(B± → X (3872)K±)×B(X (3872) → ηJ/ψ) in 5 MeV intervals.X (3872) REFERENCESX (3872) REFERENCESX (3872) REFERENCESX (3872) REFERENCESAAIJ 15AO PR D92 011102 R. Aaij et al. (LHCb Collab.)ABLIKIM 15V PL B749 414 M. Ablikim et al. (BES III Collab.)BALA 15 PR D91 051101 A. Bala et al. (BELLE Collab.)AAIJ 14AH NP B886 665 R. Aaij et al. (LHCb Collab.)ABLIKIM 14 PRL 112 092001 M. Ablikim et al. (BES III Collab.)IWASHITA 14 PTEP 2014 043C01 T. Iwashita et al. (BELLE Collab.)AAIJ 13Q PRL 110 222001 R. Aaij et al. (LHCb Collab.) JPAAIJ 13S EPJ C73 2462 R. Aaij et al. (LHCb Collab.)BHARDWAJ 13 PRL 111 032001 V. Bhardwaj et al. (BELLE Collab.)AAIJ 12H EPJ C72 1972 R. Aaij et al. (LHCb Collab.)LEES 12AD PR D86 072002 J.P. Lees et al. (BABAR Collab.)LEES 12AE PR D86 092005 J.P. Lees et al. (BABAR Collab.)BHARDWAJ 11 PRL 107 091803 V. Bhardwaj et al. (BELLE Collab.)CHOI 11 PR D84 052004 S.-K. Choi et al. (BELLE Collab.)AUSHEV 10 PR D81 031103 T. Aushev et al. (BELLE Collab.)DEL-AMO-SA... 10B PR D82 011101 P. del Amo San
hez et al. (BABAR Collab.)AALTONEN 09AU PRL 103 152001 T. Aaltonen et al. (CDF Collab.)AUBERT 09B PRL 102 132001 B. Aubert et al. (BABAR Collab.)AUBERT 08B PR D77 011102 B. Aubert et al. (BABAR Collab.)AUBERT 08Y PR D77 111101 B. Aubert et al. (BABAR Collab.)AUBERT 06 PR D73 011101 B. Aubert et al. (BABAR Collab.)AUBERT,BE 06M PR D74 071101 B. Aubert et al. (BABAR Collab.)GOKHROO 06 PRL 97 162002 G. Gokhroo et al. (BELLE Collab.)AUBERT 05B PR D71 031501 B. Aubert et al. (BABAR Collab.)AUBERT 05D PR D71 052001 B. Aubert et al. (BABAR Collab.)AUBERT 05R PR D71 071103 B. Aubert et al. (BABAR Collab.)DOBBS 05 PRL 94 032004 S. Dobbs et al. (CLEO Collab.)ABAZOV 04F PRL 93 162002 V.M. Abazov et al. (D0 Collab.)ACOSTA 04 PRL 93 072001 D. A
osta et al. (CDF Collab.)AUBERT 04Y PRL 93 041801 B. Aubert et al. (BABAR Collab.)CHISTOV 04 PRL 93 051803 R. Chistov et al. (BELLE Collab.)PDG 04 PL B592 1 S. Eidelman et al. (PDG Collab.)YUAN 04 PL B579 74 C.Z. Yuan et al.CHOI 03 PRL 91 262001 S.-K. Choi et al. (BELLE Collab.)BAI 98E PR D57 3854 J.Z. Bai et al. (BES Collab.)ANTONIAZZI 94 PR D50 4258 L. Antoniazzi et al. (E705 Collab.)

X (3900) IG (JPC ) = 1+(1 +−)Charged X (3900) seen as a peak in the invariant mass distributionof the J/ψπ± system by BES III (ABLIKIM 13T) in e+ e− →

π+π− J/ψ at 
.m. energy of 4.26 GeV and by radiative return frome+ e− 
ollisions at √s from 9.46 to 10.86 GeV at Belle (LIU 13B).Angular analysis of ABLIKIM 14A and ABLIKIM 15AC favor the JP= 1+ assignment. Neutral X (3900) seen in the J/ψπ0 invariantmass distribution in e+ e− → π0π0 J/ψ at 
.m. energies of 4.23,4.26, and 4.36 GeV by BES III (ABLIKIM 15U) and at 4.17 GeV byXIAO 13A. Peaks in (DD∗)0,± reported by BES III (ABLIKIM 14A,ABLIKIM 15AB) are assumed to be related.X (3900) MASSX (3900) MASSX (3900) MASSX (3900) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT3886.6±2.4 OUR AVERAGE3886.6±2.4 OUR AVERAGE3886.6±2.4 OUR AVERAGE3886.6±2.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.3885.7+4.3
−5.7±8.4 1 ABLIKIM 15AB BES3 0 e+ e− → π0 (DD∗)03881.7±1.6±1.6 1248 1 ABLIKIM 15AC BES3 ± e+ e− → π± (DD∗)∓3894.8±2.3±3.2 356 1 ABLIKIM 15U BES3 0 e+ e− → π0π0 J/ψ3883.9±1.5±4.2 1212 1 ABLIKIM 14A BES3 ± e+ e− → π± (DD∗)∓3899.0±3.6±4.9 307 1 ABLIKIM 13T BES3 ± e+ e− → π+π− J/ψ3894.5±6.6±4.5 159 1 LIU 13B BELL ± e+ e− → γπ+π− J/ψ3886 ±4 ±2 81 1,2 XIAO 13A ± 4.17 e+ e− →

π+π− J/ψ3904 ±9 ±5 25 1,2 XIAO 13A 0 4.17 e+ e− →
π0π0 J/ψ1Negle
ting interferen
e between the X (3900) and non-resonant 
ontinuum.2For M2(π+π−) < 0.65 GeV2. Obtained by analyzing CLEO-
 data but not authoredby the CLEO Collaboration.

WEIGHTED AVERAGE
3886.6±2.4 (Error scaled by 1.6)

XIAO 13A 2.8
XIAO 13A 0.0
LIU 13B BELL 1.0
ABLIKIM 13T BES3 4.1
ABLIKIM 14A BES3 0.4
ABLIKIM 15U BES3 4.3
ABLIKIM 15AC BES3 4.8
ABLIKIM 15AB BES3 0.0

χ2

      17.4
(Confidence Level = 0.015)

3860 3880 3900 3920 3940X (3900) MASS (MeV)X (3900) WIDTHX (3900) WIDTHX (3900) WIDTHX (3900) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT28.1± 2.6 OUR AVERAGE28.1± 2.6 OUR AVERAGE28.1± 2.6 OUR AVERAGE28.1± 2.6 OUR AVERAGE35 +11
−12 ±15 1 ABLIKIM 15AB BES3 0 e+ e− → π0 (DD∗)026.6± 2.0± 2.1 1248 1 ABLIKIM 15AC BES3 ± e+ e− → π± (DD∗)∓29.6± 8.2± 8.2 356 1 ABLIKIM 15U BES3 0 e+ e− → π0π0 J/ψ24.8± 3.3±11.0 1212 1 ABLIKIM 14A BES3 ± e+ e− → π± (DD∗)∓46 ±10 ±20 307 1 ABLIKIM 13T BES3 ± e+ e− → π+π− J/ψ63 ±24 ±26 159 1 LIU 13B BELL ± e+ e− → γπ+π− J/ψ37 ± 4 ± 8 81 1,2 XIAO 13A ± 4.17 e+ e− →

π+π− J/ψ1Negle
ting interferen
e between the X (3900) and non-resonant 
ontinuum.2For M2(π+π−) < 0.65 GeV2. Obtained by analyzing CLEO-
 data but not authoredby the CLEO Collaboration.X (3900) DECAY MODESX (3900) DECAY MODESX (3900) DECAY MODESX (3900) DECAY MODESMode Fra
tion (�i /�)�1 J/ψπ seen�2 h
 π± not seen�3 η
 π+π− not seen�4 (DD∗)± seen�5 D0D∗−+ 
.
. seen



1443144314431443See key on page 601 Meson Parti
le ListingsX (3900), X (3915)�6 D−D∗0+ 
.
. seen�7 ωπ± not seen�8 J/ψη not seen�9 D+D∗−+ 
.
 seen�10 D0D∗0+ 
.
 seenX (3900) BRANCHING RATIOSX (3900) BRANCHING RATIOSX (3900) BRANCHING RATIOSX (3900) BRANCHING RATIOS�(J/ψπ
)/�total �1/��(J/ψπ
)/�total �1/��(J/ψπ
)/�total �1/��(J/ψπ
)/�total �1/�VALUE CL% EVTS DOCUMENT ID TECN CHG COMMENTseen 356 ABLIKIM 15U BES3 0 e+ e− → π0π0 J/ψseenseenseenseen 307 ABLIKIM 13T BES3 ± e+ e− → π+π− J/ψseen 25 1 XIAO 13A 0 4.17 e+ e− →

π0π0 J/ψ
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen 90 2 ADOLPH 15D COMP ± γN → J/ψπ±N1Obtained by analyzing CLEO-
 data but not authored by the CLEO Collaboration.2ADOLPH 15D measure B(X (3900)± → J/ψπ±) σ(γN → X (3900)±N)/σ(γN →J/ψN) < 3.7× 10−3 at 90% CL.�(h
 π±)/�total �2/��(h
 π±)/�total �2/��(h
 π±)/�total �2/��(h
 π±)/�total �2/�VALUE DOCUMENT ID TECN CHG COMMENTnot seennot seennot seennot seen ABLIKIM 13X BES3 ± e+ e− → h
 π+π−�(η
 π+π−)/�total �3/��(η
 π+π−)/�total �3/��(η
 π+π−)/�total �3/��(η
 π+π−)/�total �3/�VALUE DOCUMENT ID TECN CHG COMMENTnot seennot seennot seennot seen 1 VINOKUROVA 15 BELL 0 B+ → K+ η
 π+π−1VINOKUROVA 15 reports B(B+ → K+X (3900)0) × B(X → η
 π+π−) < 4.7 ×10−5 at 90% CL.�((DD∗)±)/�(J/ψπ

) �4/�1�((DD∗)±)/�(J/ψπ
) �4/�1�((DD∗)±)/�(J/ψπ
) �4/�1�((DD∗)±)/�(J/ψπ
) �4/�1VALUE DOCUMENT ID TECN CHG COMMENT6.2±1.1±2.76.2±1.1±2.76.2±1.1±2.76.2±1.1±2.7 1 ABLIKIM 14A BES3 ± e+ e− → π± (DD∗)∓1Assuming the same origin of the (DD∗)± and π± J/ψ de
ay modes.�(D0D∗−+ 
.
.)/�total �5/��(D0D∗−+ 
.
.)/�total �5/��(D0D∗−+ 
.
.)/�total �5/��(D0D∗−+ 
.
.)/�total �5/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen ABLIKIM 15AC BES3 ± e+ e− → π+D0D∗−+ 
.
.seenseenseenseen ABLIKIM 14A BES3 ± e+ e− → π+D0D∗−+ 
.
.�(D−D∗0+ 
.
.)/�total �6/��(D−D∗0+ 
.
.)/�total �6/��(D−D∗0+ 
.
.)/�total �6/��(D−D∗0+ 
.
.)/�total �6/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen ABLIKIM 15AC BES3 ± e+ e− → π+D−D∗0+ 
.
.seenseenseenseen ABLIKIM 14A BES3 ± e+ e− → π+D−D∗0+ 
.
.�(ωπ±)/�total �7/��(ωπ±)/�total �7/��(ωπ±)/�total �7/��(ωπ±)/�total �7/�VALUE DOCUMENT ID TECN CHG COMMENTnot seennot seennot seennot seen ABLIKIM 15R BES3 ± e+ e− → ωπ+π−�(J/ψη

)/�total �8/��(J/ψη
)/�total �8/��(J/ψη
)/�total �8/��(J/ψη
)/�total �8/�VALUE DOCUMENT ID TECN CHG COMMENTnot seennot seennot seennot seen ABLIKIM 15Q BES3 0 4.0{4.6 e+ e− → J/ψηπ0�(J/ψη
)/�(J/ψπ

) �8/�1�(J/ψη
)/�(J/ψπ

) �8/�1�(J/ψη
)/�(J/ψπ

) �8/�1�(J/ψη
)/�(J/ψπ

) �8/�1VALUE CL% DOCUMENT ID TECN CHG COMMENT
<0.15 90 ABLIKIM 15Q BES3 0 4.226 e+ e− → J/ψηπ0
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.65 90 ABLIKIM 15Q BES3 0 4.257 e+ e− → J/ψηπ0�(D+D∗−+ 
.
)/�total �9/��(D+D∗−+ 
.
)/�total �9/��(D+D∗−+ 
.
)/�total �9/��(D+D∗−+ 
.
)/�total �9/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen ABLIKIM 15AB BES3 0 e+ e− → π0 (DD∗)0�(D0D∗0+ 
.
)/�total �10/��(D0D∗0+ 
.
)/�total �10/��(D0D∗0+ 
.
)/�total �10/��(D0D∗0+ 
.
)/�total �10/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen ABLIKIM 15AB BES3 0 e+ e− → π0 (DD∗)0�(D+D∗−+ 
.
)/�(D0D∗0+ 
.
) �9/�10�(D+D∗−+ 
.
)/�(D0D∗0+ 
.
) �9/�10�(D+D∗−+ 
.
)/�(D0D∗0+ 
.
) �9/�10�(D+D∗−+ 
.
)/�(D0D∗0+ 
.
) �9/�10VALUE DOCUMENT ID TECN CHG COMMENT0.96±0.18±0.120.96±0.18±0.120.96±0.18±0.120.96±0.18±0.12 ABLIKIM 15AB BES3 0 e+ e− → π0 (DD∗)0X (3900) REFERENCESX (3900) REFERENCESX (3900) REFERENCESX (3900) REFERENCESABLIKIM 15AB PRL 115 222002 M. Ablikim et al. (BES III Collab.)ABLIKIM 15AC PR D92 092006 M. Ablikim et al. (BES III Collab.) JPABLIKIM 15Q PR D92 012008 M. Ablikim et al. (BES III Collab.)ABLIKIM 15R PR D92 032009 M. Ablikim et al. (BES III Collab.)ABLIKIM 15U PRL 115 112003 M. Ablikim et al. (BES III Collab.)ADOLPH 15D PL B742 330 C. Adolph et al. (COMPASS Collab.)VINOKUROVA 15 JHEP 1506 132 A. Vinokurova et al. (BELLE Collab.)ABLIKIM 14A PRL 112 022001 M. Ablikim et al. (BES III Collab.) JPABLIKIM 13T PRL 110 252001 M. Ablikim et al. (BES III Collab.)ABLIKIM 13X PRL 111 242001 M. Ablikim et al. (BES III Collab.)LIU 13B PRL 110 252002 Z.Q. Liu et al. (BELLE Collab.)XIAO 13A PL B727 366 T. Xiao et al. (NWES)

X (3915)was χ
0(3915) IG (JPC ) = 0+(0 or 2 + +)The experimental analysis prefers JPC = 0 ++. However, a re-analysis presented in ZHOU 15C shows that if heli
ity-2 dominan
eassumption is abandoned and a sizable heli
ity-0 
omponent is al-lowed, a JPC = 2 ++ assignment is possible.X (3915) MASSX (3915) MASSX (3915) MASSX (3915) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3918.4± 1.9 OUR AVERAGE3918.4± 1.9 OUR AVERAGE3918.4± 1.9 OUR AVERAGE3918.4± 1.9 OUR AVERAGE3919.4± 2.2± 1.6 59 ± 10 LEES 12AD BABR e+ e− → e+ e−ωJ/ψ3919.1+ 3.8
− 3.4± 2.0 DEL-AMO-SA...10B BABR B → ωJ/ψK3915 ± 3 ± 2 49 ± 15 UEHARA 10 BELL 10.6 e+ e− →e+ e−ωJ/ψ3943 ±11 ±13 58 ± 11 1 CHOI 05 BELL B → ωJ/ψK

• • • We do not use the following data for averages, �ts, limits, et
. • • •3914.6+ 3.8
− 3.4± 2.0 1 AUBERT 08W BABR Superseded by DEL-AMO-SANCHEZ 10B1ωJ/ψ threshold enhan
ement �tted as an S-wave Breit-Wigner resonan
e.X (3915) WIDTHX (3915) WIDTHX (3915) WIDTHX (3915) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT20± 5 OUR AVERAGE20± 5 OUR AVERAGE20± 5 OUR AVERAGE20± 5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.13± 6± 3 59 ± 10 LEES 12ADBABR e+ e− → e+ e−ωJ/ψ31+10

− 8± 5 DEL-AMO-SA...10B BABR B → ωJ/ψK17±10± 3 49 ± 15 UEHARA 10 BELL 10.6 e+ e− → e+ e−ωJ/ψ87±22±26 58 ± 11 2 CHOI 05 BELL B → ωJ/ψK
• • • We do not use the following data for averages, �ts, limits, et
. • • •34+12

− 8± 5 2 AUBERT 08WBABR Superseded by DEL-AMO-SANCHEZ 10B2ωJ/ψ threshold enhan
ement �tted as an S-wave Breit-Wigner resonan
e.X (3915) DECAY MODESX (3915) DECAY MODESX (3915) DECAY MODESX (3915) DECAY MODESMode Fra
tion (�i /�)�1 ωJ/ψ seen�2 D∗0D0�3 π+π−η
 (1S) not seen�4 η
 η not seen�5 η
 π0 not seen�6 K K not seen�7 γ γ seenX (3915) �(i)�(γ γ)/�(total)X (3915) �(i)�(γ γ)/�(total)X (3915) �(i)�(γ γ)/�(total)X (3915) �(i)�(γ γ)/�(total)�(ωJ/ψ
)

× �(γ γ
)/�total �1�7/��(ωJ/ψ

)

× �(γ γ
)/�total �1�7/��(ωJ/ψ

)

× �(γ γ
)/�total �1�7/��(ωJ/ψ

)

× �(γ γ
)/�total �1�7/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT54± 9 OUR AVERAGE54± 9 OUR AVERAGE54± 9 OUR AVERAGE54± 9 OUR AVERAGE52±10±3 59 ± 10 3 LEES 12AD BABR e+ e− → e+ e−ωJ/ψ61±17±8 49 ± 15 3 UEHARA 10 BELL 10.6 e+ e− → e+ e−ωJ/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •18± 5±2 49 ± 15 4 UEHARA 10 BELL 10.6 e+ e− → e+ e−ωJ/ψ3For JP = 0+.4For JP = 2+, heli
ity-2.�(π+π−η
 (1S)) × �(γ γ
)/�total �3�7/��(π+π−η
 (1S)) × �(γ γ
)/�total �3�7/��(π+π−η
 (1S)) × �(γ γ
)/�total �3�7/��(π+π−η
 (1S)) × �(γ γ
)/�total �3�7/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<16<16<16<16 90 LEES 12AE BABR e+ e− →e+ e−π+π− η
�(K K)

× �(γ γ
)/�total �6�7/��(K K)

× �(γ γ
)/�total �6�7/��(K K)

× �(γ γ
)/�total �6�7/��(K K)

× �(γ γ
)/�total �6�7/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<1.96<1.96<1.96<1.96 90 UEHARA 13 BELL γ γ → K0S K0SX (3915) BRANCHING RATIOSX (3915) BRANCHING RATIOSX (3915) BRANCHING RATIOSX (3915) BRANCHING RATIOS�(ωJ/ψ
)/�total �1/��(ωJ/ψ
)/�total �1/��(ωJ/ψ
)/�total �1/��(ωJ/ψ
)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseen 5 DEL-AMO-SA...10B BABR B → ωJ/ψKseenseenseenseen 6 CHOI 05 BELL B → ωJ/ψK5DEL-AMO-SANCHEZ 10B reports B(B± → X (3915)K±) × B(X (3915) → J/ψω)= (3.0+0.7
−0.6+0.5

−0.3) × 10−5 and B(B0 → X (3915)K0) × B(X (3915) → J/ψω) =(2.1 ± 0.9 ± 0.3) × 10−5.6CHOI 05 reports B(B → X (3915)K)×B(X (3915) → J/ψω)=(7.1± 1.3± 3.1)×10−5.



1444144414441444Meson Parti
le ListingsX (3915), χ
2(2P), X (3940)�(ωJ/ψ
)/�(D∗0D0) �1/�2�(ωJ/ψ
)/�(D∗0D0) �1/�2�(ωJ/ψ
)/�(D∗0D0) �1/�2�(ωJ/ψ
)/�(D∗0D0) �1/�2VALUE CL% DOCUMENT ID TECN COMMENT

>0.71>0.71>0.71>0.71 90 7 AUSHEV 10 BELL B → D∗0D0K7By 
ombining the upper limit B(B → X (3915)K) × B(X (3915) → D∗0D0) < 0.67×10−4 from AUSHEV 10 with the average of CHOI 05 and AUBERT 08W measurementsB(B → X (3915)K) × B(X (3915) → ωJ/ψ) = (0.51 ± 0.11)× 10−4.�(η
 η
)/�total �4/��(η
 η
)/�total �4/��(η
 η
)/�total �4/��(η
 η
)/�total �4/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen 8 VINOKUROVA 15 BELL B+ → K+ η
 η8VINOKUROVA 15 reports B(B+ → K+X (3915)0) × B(X → η
 η) < 3.3 × 10−5at 90% CL.�(η
 π0)/�total �5/��(η
 π0)/�total �5/��(η
 π0)/�total �5/��(η
 π0)/�total �5/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen 9 VINOKUROVA 15 BELL B+ → K+ η
 π09VINOKUROVA 15 reports B(B+ → K+X (3915)0) × B(X → η
 π0) < 1.8× 10−5at 90% CL.�(γ γ

)/�total �7/��(γ γ
)/�total �7/��(γ γ
)/�total �7/��(γ γ
)/�total �7/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 59 ± 10 LEES 12AD BABR e+ e− → e+ e−ωJ/ψseenseenseenseen UEHARA 10 BELL 10.6 e+ e− → e+ e−ωJ/ψX (3915) REFERENCESX (3915) REFERENCESX (3915) REFERENCESX (3915) REFERENCESVINOKUROVA 15 JHEP 1506 132 A. Vinokurova et al. (BELLE Collab.)ZHOU 15C PRL 115 022001 Z.-Y. Zhou, Z. Xiao, H.-Q. Zhou (BEIJT, NANJ)UEHARA 13 PTEP 2013 123C01 S. Uehara et al. (BELLE Collab.)LEES 12AD PR D86 072002 J.P. Lees et al. (BABAR Collab.)LEES 12AE PR D86 092005 J.P. Lees et al. (BABAR Collab.)AUSHEV 10 PR D81 031103 T. Aushev et al. (BELLE Collab.)DEL-AMO-SA... 10B PR D82 011101 P. del Amo San
hez et al. (BABAR Collab.)UEHARA 10 PRL 104 092001 S. Uehara et al. (BELLE Collab.)AUBERT 08W PRL 101 082001 B. Aubert et al. (BABAR Collab.)CHOI 05 PRL 94 182002 S.-K. Choi et al. (BELLE Collab.)

χ
2(2P) IG (JPC ) = 0+(2 + +)
χ
2(2P) MASSχ
2(2P) MASSχ
2(2P) MASSχ
2(2P) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3927.2±2.6 OUR AVERAGE3927.2±2.6 OUR AVERAGE3927.2±2.6 OUR AVERAGE3927.2±2.6 OUR AVERAGE3926.7±2.7±1.1 76 ± 17 AUBERT 10G BABR 10.6 e+ e− → e+ e−DD3929 ±5 ±2 64 UEHARA 06 BELL 10.6 e+ e− → e+ e−DD
χ
2(2P) WIDTHχ
2(2P) WIDTHχ
2(2P) WIDTHχ
2(2P) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT24 ± 6 OUR AVERAGE24 ± 6 OUR AVERAGE24 ± 6 OUR AVERAGE24 ± 6 OUR AVERAGE21.3± 6.8±3.6 76 ± 17 AUBERT 10G BABR 10.6 e+ e− → e+ e−DD29 ±10 ±2 64 UEHARA 06 BELL 10.6 e+ e− → e+ e−DD

χ
2(2P) DECAY MODESχ
2(2P) DECAY MODESχ
2(2P) DECAY MODESχ
2(2P) DECAY MODESMode Fra
tion (�i /�)�1 γ γ seen�2 K K π�3 K+K−π+π−π0�4 DD seen�5 D+D− seen�6 D0D0 seen�7 π+π−η
 (1S) not seen�8 K K not seen
χ
2(2P) PARTIAL WIDTHSχ
2(2P) PARTIAL WIDTHSχ
2(2P) PARTIAL WIDTHSχ
2(2P) PARTIAL WIDTHS
χ
2(2P) �(i)�(γ γ)/�(total)χ
2(2P) �(i)�(γ γ)/�(total)χ
2(2P) �(i)�(γ γ)/�(total)χ
2(2P) �(i)�(γ γ)/�(total)�(K K π

)

× �(γ γ
)/�total �2�1/��(K K π

)

× �(γ γ
)/�total �2�1/��(K K π

)

× �(γ γ
)/�total �2�1/��(K K π

)

× �(γ γ
)/�total �2�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<2.1<2.1<2.1<2.1 90 DEL-AMO-SA...11M BABR γ γ → K0S K±π∓�(K+K−π+π−π0) × �(γ γ
)/�total �3�1/��(K+K−π+π−π0) × �(γ γ
)/�total �3�1/��(K+K−π+π−π0) × �(γ γ
)/�total �3�1/��(K+K−π+π−π0) × �(γ γ
)/�total �3�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<3.4<3.4<3.4<3.4 90 DEL-AMO-SA...11M BABR γ γ → K+K−π+π−π0�(DD)

× �(γ γ
)/�total �4�1/��(DD)

× �(γ γ
)/�total �4�1/��(DD)

× �(γ γ
)/�total �4�1/��(DD)

× �(γ γ
)/�total �4�1/�VALUE (keV) EVTS DOCUMENT ID TECN COMMENT0.21±0.04 OUR AVERAGE0.21±0.04 OUR AVERAGE0.21±0.04 OUR AVERAGE0.21±0.04 OUR AVERAGE0.24±0.05±0.04 76 ± 17 AUBERT 10G BABR 10.6 e+ e− → e+ e−DD0.18±0.05±0.03 64 1 UEHARA 06 BELL 10.6 e+ e− → e+ e−DD1Assuming B(D+D−) = 0.89 B(D0D0).

�(π+π−η
 (1S)) × �(γ γ
)/�total �7�1/��(π+π−η
 (1S)) × �(γ γ
)/�total �7�1/��(π+π−η
 (1S)) × �(γ γ
)/�total �7�1/��(π+π−η
 (1S)) × �(γ γ
)/�total �7�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<18<18<18<18 90 LEES 12AE BABR e+ e− →e+ e−π+π− η
�(K K)

× �(γ γ
)/�total �8�1/��(K K)

× �(γ γ
)/�total �8�1/��(K K)

× �(γ γ
)/�total �8�1/��(K K)

× �(γ γ
)/�total �8�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<0.256<0.256<0.256<0.256 90 UEHARA 13 BELL γ γ → K0S K0S
χ
2(2P) BRANCHING RATIOSχ
2(2P) BRANCHING RATIOSχ
2(2P) BRANCHING RATIOSχ
2(2P) BRANCHING RATIOS�(D+D−)/�(D0D0) �5/�6�(D+D−)/�(D0D0) �5/�6�(D+D−)/�(D0D0) �5/�6�(D+D−)/�(D0D0) �5/�6VALUE EVTS DOCUMENT ID TECN COMMENT0.74±0.43±0.160.74±0.43±0.160.74±0.43±0.160.74±0.43±0.16 64 UEHARA 06 BELL 10.6 e+ e− → e+ e−DD

χ
2(2P) REFERENCESχ
2(2P) REFERENCESχ
2(2P) REFERENCESχ
2(2P) REFERENCESUEHARA 13 PTEP 2013 123C01 S. Uehara et al. (BELLE Collab.)LEES 12AE PR D86 092005 J.P. Lees et al. (BABAR Collab.)DEL-AMO-SA... 11M PR D84 012004 P. del Amo San
hez et al. (BABAR Collab.)AUBERT 10G PR D81 092003 B. Aubert et al. (BABAR Collab.)UEHARA 06 PRL 96 082003 S. Uehara et al. (BELLE Collab.)X (3940) IG (JPC ) = ??(???)OMITTED FROM SUMMARY TABLEReported by ABE 07, observed in e+ e− → J/ψX .X (3940) MASSX (3940) MASSX (3940) MASSX (3940) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3942+ 7
− 6±63942+ 7
− 6±63942+ 7
− 6±63942+ 7
− 6±6 52 PAKHLOV 08 BELL e+ e− → J/ψX

• • • We do not use the following data for averages, �ts, limits, et
. • • •3943± 6±6 25 1 ABE 07 BELL e+ e− → J/ψX3936±14 266 2 ABE 07 BELL e+ e− → J/ψ (
 
)1 From a �t to D∗+D− and D∗0D0 events.2 From the in
lusive �t. Not independent of the ex
lusive measurement by ABE 07.X (3940) WIDTHX (3940) WIDTHX (3940) WIDTHX (3940) WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT37+26
−15±837+26
−15±837+26
−15±837+26
−15±8 52 PAKHLOV 08 BELL e+ e− → J/ψX

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<52 90 25 ABE 07 BELL e+ e− → J/ψXX (3940) DECAY MODESX (3940) DECAY MODESX (3940) DECAY MODESX (3940) DECAY MODESMode Fra
tion (�i /�)�1 DD∗+ 
.
. seen�2 DD not seen�3 J/ψω not seenX (3940) BRANCHING RATIOSX (3940) BRANCHING RATIOSX (3940) BRANCHING RATIOSX (3940) BRANCHING RATIOS�(DD∗+ 
.
.)/�total �1/��(DD∗+ 
.
.)/�total �1/��(DD∗+ 
.
.)/�total �1/��(DD∗+ 
.
.)/�total �1/�VALUE CL% EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>0.45 90 25 3,4 ABE 07 BELL e+ e− → J/ψX3For X (3940) de
aying to �nal states with more than two tra
ks.4PAKHLOV 08 �nds that the in
lusive peak near 3940 MeV/
2 may 
onsist of severalstates.�(DD)/�total �2/��(DD)/�total �2/��(DD)/�total �2/��(DD)/�total �2/�VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.41 90 5,6 ABE 07 BELL e+ e− → J/ψX5For X (3940) de
aying to �nal states with more than two tra
ks.6PAKHLOV 08 �nds that the in
lusive peak near 3940 MeV/
2 may 
onsist of severalstates.�(J/ψω

)/�total �3/��(J/ψω
)/�total �3/��(J/ψω
)/�total �3/��(J/ψω
)/�total �3/�VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.26 90 7,8 ABE 07 BELL e+ e− → J/ψX7For X (3940) de
aying to �nal states with more than two tra
ks.8PAKHLOV 08 �nds that the in
lusive peak near 3940 MeV/
2 may 
onsist of severalstates. X (3940) REFERENCESX (3940) REFERENCESX (3940) REFERENCESX (3940) REFERENCESPAKHLOV 08 PRL 100 202001 P. Pakhlov et al. (BELLE Collab.)ABE 07 PRL 98 082001 K. Abe et al. (BELLE Collab.)



1445144514451445See key on page 601 Meson Parti
le ListingsX (4020), ψ(4040)X (4020) I (JP ) = 1(??)Charged X(4020) seen by ABLIKIM 13X from e+ e− →

π+π− h
 (1P) at 
.m. energy from 3.90 to 4.42 GeV as a peakin the invariant mass distribution of the π±h
 (1P) system, and byABLIKIM 14B from e+ e− → (D∗D∗)±π∓ events in (D∗D∗)±mass. A neutral X(4020) seen by ABLIKIM 14P at three 
.m. ener-gies in the same range in e+ e− → π0π0 h
 (1P) as a peak in thelarger of the two masses re
oiling against a π0. ABLIKIM 15AA ob-serves a 5.9 σ signal in (D∗D∗)0 in e+ e− → (D∗D∗)0 π0 eventsusing 
ollisions at two 
.m. energies. Produ
tion rates and massvalues support grouping neutral and 
harged X(4020) together asmanifestations of a single I = 1 parti
le.X (4020) MASSX (4020) MASSX (4020) MASSX (4020) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT4024.1±1.9 OUR AVERAGE4024.1±1.9 OUR AVERAGE4024.1±1.9 OUR AVERAGE4024.1±1.9 OUR AVERAGE4025.5+2.0
−4.7±3.1 116 1 ABLIKIM 15AA BES3 0 e+ e− → (D∗D∗ )0 π04026.3±2.6±3.7 401 1 ABLIKIM 14B BES3 ± e+ e− → (D∗D∗ )± π∓4023.9±2.2±3.8 61 1,2 ABLIKIM 14P BES3 0 e+ e− → π0π0 h
4022.9±0.8±2.7 253 1 ABLIKIM 13X BES3 ± e+ e− → π+π− h
1Negle
ting interferen
e between the X (4020) and non-resonant 
ontinuum.2Assuming JP = 1+ and width of 7.9 ± 2.6 MeV.X (4020) WIDTHX (4020) WIDTHX (4020) WIDTHX (4020) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT13 ±5 OUR AVERAGE13 ±5 OUR AVERAGE13 ±5 OUR AVERAGE13 ±5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.23.0±6.0±1.0 116 1 ABLIKIM 15AA BES3 0 e+ e− → (D∗D∗)0 π024.8±5.6±7.7 401 1 ABLIKIM 14B BES3 ± e+ e− → (D∗D∗)±π∓7.9±2.7±2.6 253 1 ABLIKIM 13X BES3 ± e+ e− → π+π− h
1Negle
ting interferen
e between the X (4020) and non-resonant 
ontinuum.

WEIGHTED AVERAGE
13±5 (Error scaled by 1.7)

ABLIKIM 13X BES3 2.1
ABLIKIM 14B BES3 1.5
ABLIKIM 15AA BES3 2.5

χ2

       6.1
(Confidence Level = 0.048)

-10 0 10 20 30 40 50 60X (4020) WIDTH (MeV)X (4020) DECAY MODESX (4020) DECAY MODESX (4020) DECAY MODESX (4020) DECAY MODESMode Fra
tion (�i /�)�1 h
 (1P)π seen�2 D∗D∗ seen�3 DD∗+ 
.
. not seen�4 η
 π+π− not seenX (4020) BRANCHING RATIOSX (4020) BRANCHING RATIOSX (4020) BRANCHING RATIOSX (4020) BRANCHING RATIOS�(h
 (1P)π)/�total �1/��(h
 (1P)π)/�total �1/��(h
 (1P)π)/�total �1/��(h
 (1P)π)/�total �1/�VALUE EVTS DOCUMENT ID TECN CHG COMMENTseenseenseenseen 61 ABLIKIM 14P BES3 0 e+ e− → π0π0 h
seenseenseenseen 253 ABLIKIM 13X BES3 ± e+ e− →
π+π− h
�(D∗D∗)/�total �2/��(D∗D∗)/�total �2/��(D∗D∗)/�total �2/��(D∗D∗)/�total �2/�VALUE EVTS DOCUMENT ID TECN CHG COMMENTseen 116 1 ABLIKIM 15AA BES3 0 e+ e− → (D∗D∗)0 π0seenseenseenseen 401 1 ABLIKIM 14B BES3 ± e+ e− → (D∗D∗)±π∓1Negle
ting interferen
e between the X (4020) and non-resonant 
ontinuum.

�(DD∗+ 
.
.)/�total �3/��(DD∗+ 
.
.)/�total �3/��(DD∗+ 
.
.)/�total �3/��(DD∗+ 
.
.)/�total �3/�VALUE DOCUMENT ID TECN CHG COMMENTnot seennot seennot seennot seen ABLIKIM 15AC BES3 ± e+ e− → π± (DD∗)∓�(η
 π+π−)/�total �4/��(η
 π+π−)/�total �4/��(η
 π+π−)/�total �4/��(η
 π+π−)/�total �4/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen 1 VINOKUROVA 15 BELL B+ → K+ η
 π+π−1VINOKUROVA 15 reports B(B+ → K+X (4020)0) × B(X → η
 π+π−) < 1.6 ×10−5 at 90% CL. X (4020) REFERENCESX (4020) REFERENCESX (4020) REFERENCESX (4020) REFERENCESABLIKIM 15AA PRL 115 182002 M. Ablikim et al. (BES III Collab.)ABLIKIM 15AC PR D92 092006 M. Ablikim et al. (BES III Collab.)VINOKUROVA 15 JHEP 1506 132 A. Vinokurova et al. (BELLE Collab.)ABLIKIM 14B PRL 112 132001 M. Ablikim et al. (BES III Collab.)ABLIKIM 14P PRL 113 212002 M. Ablikim et al. (BES III Collab.)ABLIKIM 13X PRL 111 242001 M. Ablikim et al. (BES III Collab.)
ψ(4040) IG (JPC ) = 0−(1−−)

ψ(4040) MASSψ(4040) MASSψ(4040) MASSψ(4040) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT4039 ± 1 OUR ESTIMATE4039 ± 1 OUR ESTIMATE4039 ± 1 OUR ESTIMATE4039 ± 1 OUR ESTIMATE4039.6± 4.34039.6± 4.34039.6± 4.34039.6± 4.3 1 ABLIKIM 08D BES2 e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •4034 ± 6 2 MO 10 RVUE e+ e− → hadrons4037 ± 2 3 SETH 05A RVUE e+ e− → hadrons4040 ± 1 4 SETH 05A RVUE e+ e− → hadrons4040 ±10 BRANDELIK 78C DASP e+ e−1Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = (130 ± 46)◦.2Reanalysis of data presented in BAI 00 and BAI 02C. From a global �t over the 
enter-of-mass energy 3.8-4.8 GeV 
overing the ψ(4040), ψ(4160) and ψ(4415) resonan
es andin
luding interferen
e e�e
ts.3 From a �t to Crystal Ball (OSTERHELD 86) data.4 From a �t to BES (BAI 02C) data.

ψ(4040) WIDTHψ(4040) WIDTHψ(4040) WIDTHψ(4040) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT80 ±10 OUR ESTIMATE80 ±10 OUR ESTIMATE80 ±10 OUR ESTIMATE80 ±10 OUR ESTIMATE84.5±12.384.5±12.384.5±12.384.5±12.3 5 ABLIKIM 08D BES2 e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •87 ±11 6 MO 10 RVUE e+ e− → hadrons85 ±10 7 SETH 05A RVUE e+ e− → hadrons89 ± 6 8 SETH 05A RVUE e+ e− → hadrons52 ±10 BRANDELIK 78C DASP e+ e−5Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = (130 ± 46)◦.6Reanalysis of data presented in BAI 00 and BAI 02C. From a global �t over the 
enter-of-mass energy 3.8-4.8 GeV 
overing the ψ(4040), ψ(4160) and ψ(4415) resonan
es andin
luding interferen
e e�e
ts.7 From a �t to Crystal Ball (OSTERHELD 86) data.8 From a �t to BES (BAI 02C) data.

ψ(4040) DECAY MODESψ(4040) DECAY MODESψ(4040) DECAY MODESψ(4040) DECAY MODESDue to the 
omplexity of the 
 
 threshold region, in this listing, \seen"(\not seen") means that a 
ross se
tion for the mode in question hasbeen measured at e�e
tive √
s near this parti
le's 
entral mass value,more (less) than 2σ above zero, without regard to any peaking behaviorin √

s or absen
e thereof. See mode listing(s) for details and referen
es.Mode Fra
tion (�i /�) Con�den
e level�1 e+ e− (1.07±0.16)× 10−5�2 DD seen�3 D0D0 seen�4 D+D− seen�5 D∗D+ 
.
. seen�6 D∗(2007)0D0+ 
.
. seen�7 D∗(2010)+D−+ 
.
. seen�8 D∗D∗ seen�9 D∗(2007)0D∗(2007)0 seen�10 D∗(2010)+D∗(2010)− seen�11 DDπ (ex
l. D∗D)�12 D0D−π++
.
. (ex
l.D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.) not seen



1446144614461446MesonParti
le Listings
ψ(4040)�13 DD∗π (ex
l. D∗D∗) not seen�14 D0D∗−π++
.
. (ex
l.D∗(2010)+D∗(2010)−) seen�15 D+s D−s seen�16 J/ψ(1S)hadrons�17 J/ψπ+π− < 4 × 10−3 90%�18 J/ψπ0π0 < 2 × 10−3 90%�19 J/ψη (5.2 ±0.7 )× 10−3�20 J/ψπ0 < 2.8 × 10−4 90%�21 J/ψπ+π−π0 < 2 × 10−3 90%�22 χ
1 γ < 3.4 × 10−3 90%�23 χ
2 γ < 5 × 10−3 90%�24 χ
1π+π−π0 < 1.1 % 90%�25 χ
2π+π−π0 < 3.2 % 90%�26 h
 (1P)π+π− < 3 × 10−3 90%�27 φπ+π− < 3 × 10−3 90%�28 ��π+π− < 2.9 × 10−4 90%�29 ��π0 < 9 × 10−5 90%�30 ��η < 3.0 × 10−4 90%�31 �+�− < 1.3 × 10−4 90%�32 �0�0 < 7 × 10−5 90%�33 �+�− < 1.6 × 10−4 90%�34 � 0� 0 < 1.8 × 10−4 90%�35 µ+µ−

ψ(4040) PARTIAL WIDTHSψ(4040) PARTIAL WIDTHSψ(4040) PARTIAL WIDTHSψ(4040) PARTIAL WIDTHS�(e+ e−) �1�(e+ e−) �1�(e+ e−) �1�(e+ e−) �1VALUE (keV) DOCUMENT ID TECN COMMENT0.86±0.07 OUR ESTIMATE0.86±0.07 OUR ESTIMATE0.86±0.07 OUR ESTIMATE0.86±0.07 OUR ESTIMATE0.83±0.200.83±0.200.83±0.200.83±0.20 9 ABLIKIM 08D BES2 e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.6 to 1.4 10 MO 10 RVUE e+ e− → hadrons0.88±0.11 11 SETH 05A RVUE e+ e− → hadrons0.91±0.13 12 SETH 05A RVUE e+ e− → hadrons0.75±0.15 BRANDELIK 78C DASP e+ e−9Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = (130 ± 46)◦.10Reanalysis of data presented in BAI 00 and BAI 02C. From a global �t over the 
enter-of-mass energy 3.8-4.8 GeV 
overing the ψ(4040), ψ(4160) and ψ(4415) resonan
esand in
luding interferen
e e�e
ts. Four sets of solutions are obtained with the same �tquality, mass and total width, but with di�erent e+ e− partial widths. We quote onlythe range of values.11 From a �t to Crystal Ball (OSTERHELD 86) data.12 From a �t to BES (BAI 02C) data.

ψ(4040) �(i) × �(e+ e−)/�(total)ψ(4040) �(i) × �(e+ e−)/�(total)ψ(4040) �(i) × �(e+ e−)/�(total)ψ(4040) �(i) × �(e+ e−)/�(total)�(χ
1 γ
)

× �(e+ e−)/�total �22�1/��(χ
1 γ
)

× �(e+ e−)/�total �22�1/��(χ
1 γ
)

× �(e+ e−)/�total �22�1/��(χ
1 γ
)

× �(e+ e−)/�total �22�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<2.9<2.9<2.9<2.9 90 13 HAN 15 BELL 10.58 e+ e− → χ
1 γ13Using B(η → γ γ) = (39.41 ± 0.21)%.�(χ
2 γ

)

× �(e+ e−)/�total �23�1/��(χ
2 γ
)

× �(e+ e−)/�total �23�1/��(χ
2 γ
)

× �(e+ e−)/�total �23�1/��(χ
2 γ
)

× �(e+ e−)/�total �23�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<4.6<4.6<4.6<4.6 90 14 HAN 15 BELL 10.58 e+ e− → χ
2 γ14Using B(η → γ γ) = (39.41 ± 0.21)%.

ψ(4040) �(i) × �(e+ e−)/�2(total)ψ(4040) �(i) × �(e+ e−)/�2(total)ψ(4040) �(i) × �(e+ e−)/�2(total)ψ(4040) �(i) × �(e+ e−)/�2(total)�(J/ψη
)/�total × �(e+ e−)/�total �19/�× �1/��(J/ψη
)/�total × �(e+ e−)/�total �19/�× �1/��(J/ψη
)/�total × �(e+ e−)/�total �19/�× �1/��(J/ψη
)/�total × �(e+ e−)/�total �19/�× �1/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.1±1.4±1.5 15 WANG 13B BELL e+ e− → J/ψηγ12.8±2.1±1.9 16 WANG 13B BELL e+ e− → J/ψηγ15Solution I of two equivalent solutions in a �t using two interfering resonan
es. Mass andwidth �xed at 4039 MeV and 80 MeV, respe
tively.16 Solution II of two equivalent solutions in a �t using two interfering resonan
es. Massand width �xed at 4039 MeV and 80 MeV, respe
tively.
ψ(4040) BRANCHING RATIOSψ(4040) BRANCHING RATIOSψ(4040) BRANCHING RATIOSψ(4040) BRANCHING RATIOS�(e+ e−)/�total �1/��(e+ e−)/�total �1/��(e+ e−)/�total �1/��(e+ e−)/�total �1/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 1.0 FELDMAN 77 MRK1 e+ e−

�(D0D0)/�total �3/��(D0D0)/�total �3/��(D0D0)/�total �3/��(D0D0)/�total �3/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D0D0 γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D0D0seenseenseenseen PAKHLOVA 08 BELL e+ e− → D0D0 γ�(D+D−)/�total �4/��(D+D−)/�total �4/��(D+D−)/�total �4/��(D+D−)/�total �4/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D+D− γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D+D−seenseenseenseen PAKHLOVA 08 BELL e+ e− → D+D− γ�(DD)/�(D∗D+ 
.
.) �2/�5�(DD)/�(D∗D+ 
.
.) �2/�5�(DD)/�(D∗D+ 
.
.) �2/�5�(DD)/�(D∗D+ 
.
.) �2/�5VALUE DOCUMENT ID TECN COMMENT0.24±0.05±0.120.24±0.05±0.120.24±0.05±0.120.24±0.05±0.12 AUBERT 09M BABR e+ e− → γD(∗)D�(D0D0)/�(D∗(2007)0D0+ 
.
.) �3/�6�(D0D0)/�(D∗(2007)0D0+ 
.
.) �3/�6�(D0D0)/�(D∗(2007)0D0+ 
.
.) �3/�6�(D0D0)/�(D∗(2007)0D0+ 
.
.) �3/�6VALUE DOCUMENT ID TECN COMMENT0.05±0.030.05±0.030.05±0.030.05±0.03 17 GOLDHABER 77 MRK1 e+ e−17Phase-spa
e fa
tor (p3) expli
itly removed.�(D∗(2007)0D0+ 
.
.)/�total �6/��(D∗(2007)0D0+ 
.
.)/�total �6/��(D∗(2007)0D0+ 
.
.)/�total �6/��(D∗(2007)0D0+ 
.
.)/�total �6/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗0D0 γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D∗0D0�(D∗(2010)+D−+ 
.
.)/�total �7/��(D∗(2010)+D−+ 
.
.)/�total �7/��(D∗(2010)+D−+ 
.
.)/�total �7/��(D∗(2010)+D−+ 
.
.)/�total �7/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗+D− γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D∗+D−seenseenseenseen PAKHLOVA 07 BELL e+ e− → D∗+D− γ�(D∗(2010)+D−+ 
.
.)/�(D∗(2007)0D0+ 
.
.) �7/�6�(D∗(2010)+D−+ 
.
.)/�(D∗(2007)0D0+ 
.
.) �7/�6�(D∗(2010)+D−+ 
.
.)/�(D∗(2007)0D0+ 
.
.) �7/�6�(D∗(2010)+D−+ 
.
.)/�(D∗(2007)0D0+ 
.
.) �7/�6VALUE DOCUMENT ID TECN COMMENT0.95±0.09±0.100.95±0.09±0.100.95±0.09±0.100.95±0.09±0.10 AUBERT 09M BABR e+ e− → γD∗D�(D∗D∗)/�(D∗D+ 
.
.) �8/�5�(D∗D∗)/�(D∗D+ 
.
.) �8/�5�(D∗D∗)/�(D∗D+ 
.
.) �8/�5�(D∗D∗)/�(D∗D+ 
.
.) �8/�5VALUE DOCUMENT ID TECN COMMENT0.18±0.14±0.030.18±0.14±0.030.18±0.14±0.030.18±0.14±0.03 AUBERT 09M BABR e+ e− → γD(∗)D(∗)�(D∗(2007)0D∗(2007)0)/�total �9/��(D∗(2007)0D∗(2007)0)/�total �9/��(D∗(2007)0D∗(2007)0)/�total �9/��(D∗(2007)0D∗(2007)0)/�total �9/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗0D∗0γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D∗0D∗0�(D∗(2007)0D∗(2007)0)/�(D∗(2007)0D0+ 
.
.) �9/�6�(D∗(2007)0D∗(2007)0)/�(D∗(2007)0D0+ 
.
.) �9/�6�(D∗(2007)0D∗(2007)0)/�(D∗(2007)0D0+ 
.
.) �9/�6�(D∗(2007)0D∗(2007)0)/�(D∗(2007)0D0+ 
.
.) �9/�6VALUE DOCUMENT ID TECN COMMENT32.0±12.032.0±12.032.0±12.032.0±12.0 18 GOLDHABER 77 MRK1 e+ e−18Phase-spa
e fa
tor (p3) expli
itly removed.�(D∗(2010)+D∗(2010)−)/�total �10/��(D∗(2010)+D∗(2010)−)/�total �10/��(D∗(2010)+D∗(2010)−)/�total �10/��(D∗(2010)+D∗(2010)−)/�total �10/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗+D∗− γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D∗+D∗−seenseenseenseen PAKHLOVA 07 BELL e+ e− → D∗+D∗− γ�(D0D−π++
.
. (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.))/�total �12/��(D0D−π++
.
. (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.))/�total �12/��(D0D−π++
.
. (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.))/�total �12/��(D0D−π++
.
. (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.))/�total �12/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen PAKHLOVA 08A BELL e+ e− → D0D−π+ γ�(DD∗π (ex
l. D∗D∗))/�total �13/��(DD∗π (ex
l. D∗D∗))/�total �13/��(DD∗π (ex
l. D∗D∗))/�total �13/��(DD∗π (ex
l. D∗D∗))/�total �13/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → DD∗π�(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �14/��(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �14/��(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �14/��(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �14/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen PAKHLOVA 09 BELL e+ e− → D0D∗−π+ γ�(D+s D−s )/�total �15/��(D+s D−s )/�total �15/��(D+s D−s )/�total �15/��(D+s D−s )/�total �15/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen PAKHLOVA 11 BELL e+ e− → D+s D−s γseenseenseenseen DEL-AMO-SA...10N BABR e+ e− → D+s D−s γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D+s D−s�(J/ψπ+π−)/�total �17/��(J/ψπ+π−)/�total �17/��(J/ψπ+π−)/�total �17/��(J/ψπ+π−)/�total �17/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<4<4<4<4 90 COAN 06 CLEO 3.97{4.06 e+ e− → hadrons�(J/ψπ0π0)/�total �18/��(J/ψπ0π0)/�total �18/��(J/ψπ0π0)/�total �18/��(J/ψπ0π0)/�total �18/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<2<2<2<2 90 COAN 06 CLEO 3.97{4.06 e+ e− → hadrons



1447144714471447See key on page 601 MesonParti
le Listings
ψ(4040),X (4050)±�(J/ψη

)/�total �19/��(J/ψη
)/�total �19/��(J/ψη
)/�total �19/��(J/ψη
)/�total �19/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT5.2±0.5±0.55.2±0.5±0.55.2±0.5±0.55.2±0.5±0.5 19 ABLIKIM 12K BES3 e+ e− → ℓ+ ℓ− 2γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7 90 COAN 06 CLEO 3.97{4.06 e+ e− → hadrons19ABLIKIM 12K measure σ(e+ e− → J/ψη) = 32.1 ± 2.8 ± 1.3 pb. They assume the

ηJ/ψ fully originates from ψ(4040) de
ays.�(J/ψπ0)/�total �20/��(J/ψπ0)/�total �20/��(J/ψπ0)/�total �20/��(J/ψπ0)/�total �20/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.28<0.28<0.28<0.28 90 20 ABLIKIM 12K BES3 e+ e− → ℓ+ ℓ− 2γ
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2 90 COAN 06 CLEO 3.97{4.06 e+ e− → hadrons20ABLIKIM 12K measure σ(e+ e− → J/ψπ0) <1.6 pb. They assume the ηJ/ψ fullyoriginates from ψ(4040) de
ays.�(J/ψπ+π−π0)/�total �21/��(J/ψπ+π−π0)/�total �21/��(J/ψπ+π−π0)/�total �21/��(J/ψπ+π−π0)/�total �21/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<2<2<2<2 90 COAN 06 CLEO 3.97{4.06 e+ e− → hadrons�(χ
1 γ

)/�total �22/��(χ
1 γ
)/�total �22/��(χ
1 γ
)/�total �22/��(χ
1 γ
)/�total �22/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<11 90 COAN 06 CLEO 3.97{4.06 e+ e− → hadrons�(χ
2 γ
)/�total �23/��(χ
2 γ
)/�total �23/��(χ
2 γ
)/�total �23/��(χ
2 γ
)/�total �23/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<17 90 COAN 06 CLEO 3.97{4.06 e+ e− → hadrons�(χ
1π+π−π0)/�total �24/��(χ
1π+π−π0)/�total �24/��(χ
1π+π−π0)/�total �24/��(χ
1π+π−π0)/�total �24/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<11<11<11<11 90 COAN 06 CLEO 3.97{4.06 e+ e− → hadrons�(χ
2π+π−π0)/�total �25/��(χ
2π+π−π0)/�total �25/��(χ
2π+π−π0)/�total �25/��(χ
2π+π−π0)/�total �25/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<32<32<32<32 90 COAN 06 CLEO 3.97{4.06 e+ e− → hadrons�(h
 (1P)π+π−)/�total �26/��(h
 (1P)π+π−)/�total �26/��(h
 (1P)π+π−)/�total �26/��(h
 (1P)π+π−)/�total �26/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<3<3<3<3 90 21 PEDLAR 11 CLEO e+ e− → h
 (1P)π+π−21From several values of √

s near the peak of the ψ(4040), PEDLAR 11 measures
σ(e+ e− → h
 (1P)π+π−) = 1.0± 8.0± 5.4± 0.2 pb, where the errors are statisti
al,systemati
, and due to un
ertainty in B(ψ(2S) → π0 h
 (1P)), respe
tively.�(φπ+π−)/�total �27/��(φπ+π−)/�total �27/��(φπ+π−)/�total �27/��(φπ+π−)/�total �27/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<3<3<3<3 90 COAN 06 CLEO 3.97{4.06 e+ e− → hadrons�(��π+π−)/�total �28/��(��π+π−)/�total �28/��(��π+π−)/�total �28/��(��π+π−)/�total �28/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<2.9<2.9<2.9<2.9 90 22 ABLIKIM 13Q BES3 e+ e− → ψ(4040)22Assuming that interferen
e e�e
ts between resonan
e and 
ontinuum 
an be negle
ted.�(��π0)/�total �29/��(��π0)/�total �29/��(��π0)/�total �29/��(��π0)/�total �29/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.9<0.9<0.9<0.9 90 23 ABLIKIM 13Q BES3 e+ e− → ψ(4040)23Assuming that interferen
e e�e
ts between resonan
e and 
ontinuum 
an be negle
ted.�(��η

)/�total �30/��(��η
)/�total �30/��(��η
)/�total �30/��(��η
)/�total �30/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<3.0<3.0<3.0<3.0 90 24 ABLIKIM 13Q BES3 e+ e− → ψ(4040)24Assuming that interferen
e e�e
ts between resonan
e and 
ontinuum 
an be negle
ted.�(�+�−)/�total �31/��(�+�−)/�total �31/��(�+�−)/�total �31/��(�+�−)/�total �31/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.3<1.3<1.3<1.3 90 25 ABLIKIM 13Q BES3 e+ e− → ψ(4040)25Assuming that interferen
e e�e
ts between resonan
e and 
ontinuum 
an be negle
ted.�(�0�0)/�total �32/��(�0�0)/�total �32/��(�0�0)/�total �32/��(�0�0)/�total �32/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.7<0.7<0.7<0.7 90 26 ABLIKIM 13Q BES3 e+ e− → ψ(4040)26Assuming that interferen
e e�e
ts between resonan
e and 
ontinuum 
an be negle
ted.�(�+�−)/�total �33/��(�+�−)/�total �33/��(�+�−)/�total �33/��(�+�−)/�total �33/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.6<1.6<1.6<1.6 90 27 ABLIKIM 13Q BES3 e+ e− → ψ(4040)27Assuming that interferen
e e�e
ts between resonan
e and 
ontinuum 
an be negle
ted.

�(� 0� 0)/�total �34/��(� 0� 0)/�total �34/��(� 0� 0)/�total �34/��(� 0� 0)/�total �34/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.8<1.8<1.8<1.8 90 28 ABLIKIM 13Q BES3 e+ e− → ψ(4040)28Assuming that interferen
e e�e
ts between resonan
e and 
ontinuum 
an be negle
ted.

ψ(4040) REFERENCESψ(4040) REFERENCESψ(4040) REFERENCESψ(4040) REFERENCESHAN 15 PR D92 012011 Y.L. Han et al. (BELLE Collab.)ABLIKIM 13Q PR D87 112011 Ablikim M. et al. (BES III Collab.)WANG 13B PR D87 051101 X.L. Wang et al. (BELLE Collab.)ABLIKIM 12K PR D86 071101 M. Ablikim et al. (BES III Collab.)PAKHLOVA 11 PR D83 011101 G. Pakhlova et al. (BELLE Collab.)PEDLAR 11 PRL 107 041803 T. Pedlar et al. (CLEO Collab.)DEL-AMO-SA... 10N PR D82 052004 P. del Amo San
hez et al. (BABAR Collab.)MO 10 PR D82 077501 X.H. Mo, C.Z. Yuan, P. Wang (BHEP)AUBERT 09M PR D79 092001 B. Aubert et al. (BABAR Collab.)CRONIN-HEN... 09 PR D80 072001 D. Cronin-Hennessy et al. (CLEO Collab.)PAKHLOVA 09 PR D80 091101 G. Pakhlova et al. (BELLE Collab.)ABLIKIM 08D PL B660 315 M. Ablikim et al. (BES Collab.)PAKHLOVA 08 PR D77 011103 G. Pakhlova et al. (BELLE Collab.)PAKHLOVA 08A PRL 100 062001 G. Pakhlova et al. (BELLE Collab.)PAKHLOVA 07 PRL 98 092001 G. Pakhlova et al. (BELLE Collab.)COAN 06 PRL 96 162003 T.E. Coan et al. (CLEO Collab.)SETH 05A PR D72 017501 K.K. SethBAI 02C PRL 88 101802 J.Z. Bai et al. (BES Collab.)BAI 00 PRL 84 594 J.Z. Bai et al. (BES Collab.)OSTERHELD 86 SLAC-PUB-4160 A. Osterheld et al. (SLAC Crystal Ball Collab.)BRANDELIK 78C PL 76B 361 R. Brandelik et al. (DASP Collab.)Also ZPHY C1 233 R. Brandelik et al. (DASP Collab.)FELDMAN 77 PRPL 33C 285 G.J. Feldman, M.L. Perl (LBL, SLAC)GOLDHABER 77 PL 69B 503 G. Goldhaber et al. (Mark I Collab.)X (4050)± I (JP ) = ?(??)OMITTED FROM SUMMARY TABLEObserved by MIZUK 08 in the π+χ
1(1P) invariant mass distribu-tion in B0 → K−π+χ
1(1P) de
ays. Not seen by LEES 12B inthis same mode after a

ounting for K π resonant mass and angularstru
ture. X (4050)± MASSX (4050)± MASSX (4050)± MASSX (4050)± MASSVALUE (MeV) DOCUMENT ID TECN COMMENT4051±14+20
−414051±14+20
−414051±14+20
−414051±14+20
−41 1 MIZUK 08 BELL B0 → K−π+χ
1(1P)1 From a Dalitz plot analysis with two Breit-Wigner amplitudes.X (4050)± WIDTHX (4050)± WIDTHX (4050)± WIDTHX (4050)± WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT82+21

−17+47
−2282+21

−17+47
−2282+21

−17+47
−2282+21

−17+47
−22 1 MIZUK 08 BELL B0 → K−π+χ
1(1P)1 From a Dalitz plot analysis with two Breit-Wigner amplitudes.X (4050)± DECAY MODESX (4050)± DECAY MODESX (4050)± DECAY MODESX (4050)± DECAY MODESMode Fra
tion (�i /�)�1 π+χ
1(1P) seenX (4050)± BRANCHING RATIOSX (4050)± BRANCHING RATIOSX (4050)± BRANCHING RATIOSX (4050)± BRANCHING RATIOS�(π+χ
1(1P))/�total �1/��(π+χ
1(1P))/�total �1/��(π+χ
1(1P))/�total �1/��(π+χ
1(1P))/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 MIZUK 08 BELL B0 → K−π+χ
1(1P)

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen 2 LEES 12B BABR B → K πχ
1(1P)1With a produ
t bran
hing fra
tion measurement of B(B0 → K−X (4050)+) ×B(X (4050)+ → π+χ
1(1P)) = (3.0+1.5
−0.8+3.7

−1.6) × 10−5.2With a produ
t bran
hing fra
tion limit of B(B0 → X (4050)+K−) × B(X (4050)+ →
χ
1π+) < 1.8× 10−5 at 90% CL.X (4050)± REFERENCESX (4050)± REFERENCESX (4050)± REFERENCESX (4050)± REFERENCESLEES 12B PR D85 052003 J.P. Lees et al. (BABAR Collab.)MIZUK 08 PR D78 072004 R. Mizuk et al. (BELLE Collab.)



1448144814481448MesonParti
le ListingsX (4055)±,X (4140)X (4055)± I (JP ) = ?(??)OMITTED FROM SUMMARY TABLENeeds 
on�rmation. Seen by WANG 15A in the ψ(2S)π+ invariantmass distribution in X (4360) → ψ(2S)π+π− de
ay.X (4055)± MASSX (4055)± MASSX (4055)± MASSX (4055)± MASSVALUE (MeV) DOCUMENT ID TECN COMMENT4054±3±14054±3±14054±3±14054±3±1 1 WANG 15A BELL 10.58 e+ e− →
γπ+π−ψ(2S)1 Statisti
al signi�
an
e of 3.5 σ.X (4055)± WIDTHX (4055)± WIDTHX (4055)± WIDTHX (4055)± WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT45±11±645±11±645±11±645±11±6 1 WANG 15A BELL 10.58 e+ e− →
γπ+π−ψ(2S)1 Statisti
al signi�
an
e of 3.5 σ.X (4055)± DECAY MODESX (4055)± DECAY MODESX (4055)± DECAY MODESX (4055)± DECAY MODESMode Fra
tion (�i /�)�1 π+ψ(2S) seenX (4055)± BRANCHING RATIOSX (4055)± BRANCHING RATIOSX (4055)± BRANCHING RATIOSX (4055)± BRANCHING RATIOS�(π+ψ(2S))/�total �1/��(π+ψ(2S))/�total �1/��(π+ψ(2S))/�total �1/��(π+ψ(2S))/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 WANG 15A BELL 10.58 e+ e− →
γπ+π−ψ(2S)1 Statisti
al signi�
an
e of 3.5 σ.X (4055)± REFERENCESX (4055)± REFERENCESX (4055)± REFERENCESX (4055)± REFERENCESWANG 15A PR D91 112007 X.L. Wang et al. (BELLE Collab.)X (4140) IG (JPC ) = 0+(??+)Seen by AALTONEN 09AH, ABAZOV 14A, CHATRCHYAN 14M inB+ → X K+, X → J/ψφ, and by ABAZOV 15M separately inboth prompt (4.7 σ) and non-prompt (5.6 σ) produ
tion in pp →J/ψφ + anything. Not seen by SHEN 10 in γ γ → J/ψφ,AAIJ 12AA in B+ → J/ψφK+, and ABLIKIM 15 in e+ e− →

γ J/ψφ at √s = 4.23, 4.26, 4.36 GeV.X (4140) MASSX (4140) MASSX (4140) MASSX (4140) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT4146.9±3.1 OUR AVERAGE4146.9±3.1 OUR AVERAGE4146.9±3.1 OUR AVERAGE4146.9±3.1 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.4152.5±1.7+6.2
−5.4 616 1 ABAZOV 15M D0 pp → J/ψφ + anything4159.0±4.3±6.6 52 2 ABAZOV 14A D0 B+ → J/ψφK+4148.0±2.4±6.3 0.3k 3 CHATRCHYAN14M CMS B+ → J/ψφK+4143.0±2.9±1.2 14 4 AALTONEN 09AH CDF B+ → J/ψφK+

WEIGHTED AVERAGE
4146.9±3.1 (Error scaled by 1.3)

AALTONEN 09AH CDF 1.5
CHATRCHYAN 14M CMS 0.0
ABAZOV 14A D0 2.4
ABAZOV 15M D0 1.0

χ2

       4.9
(Confidence Level = 0.179)

4130 4140 4150 4160 4170 4180 4190X (4140) MASS (MeV)

1Statisti
al signi�
an
e of more than 6 σ.2 Statisti
al signi�
an
e of 3.1 σ.3 From a �t assuming an S-wave relativisti
 Breit-Wigner shape above a three-body phase-spa
e non-resonant 
omponent with statisti
al signi�
an
e of more than 5 σ.4 Statisti
al signi�
an
e of 3.8 σ.X (4140) WIDTHX (4140) WIDTHX (4140) WIDTHX (4140) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT15 + 6
− 5 OUR AVERAGE15 + 6
− 5 OUR AVERAGE15 + 6
− 5 OUR AVERAGE15 + 6
− 5 OUR AVERAGE16.3± 5.6±11.4 616 1 ABAZOV 15M D0 pp → J/ψφ + anything20 ±13 + 3

− 8 52 2 ABAZOV 14A D0 B+ → J/ψφK+28 +15
−11 ±19 0.3k 3 CHATRCHYAN14M CMS B+ → J/ψφK+11.7+ 8.3
− 5.0± 3.7 14 4 AALTONEN 09AH CDF B+ → J/ψφK+1Statisti
al signi�
an
e of more than 6 σ.2 Statisti
al signi�
an
e of 3.1 σ.3 From a �t assuming an S-wave relativisti
 Breit-Wigner shape above a three-body phase-spa
e non-resonant 
omponent with statisti
al signi�
an
e of more than 5 σ.4 Statisti
al signi�
an
e of 3.8 σ.X (4140) DECAY MODESX (4140) DECAY MODESX (4140) DECAY MODESX (4140) DECAY MODESMode Fra
tion (�i /�)�1 J/ψφ seen�2 γ γ not seenX (4140) �(i)�(γ γ)/�(total)X (4140) �(i)�(γ γ)/�(total)X (4140) �(i)�(γ γ)/�(total)X (4140) �(i)�(γ γ)/�(total)�(γ γ
)

× �(J/ψφ
)/�total �2�1/��(γ γ

)

× �(J/ψφ
)/�total �2�1/��(γ γ

)

× �(J/ψφ
)/�total �2�1/��(γ γ

)

× �(J/ψφ
)/�total �2�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

<41<41<41<41 90 1 SHEN 10 BELL 10.6 e+ e− →e+ e− J/ψφ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 6 90 2 SHEN 10 BELL 10.6 e+ e− →e+ e− J/ψφ1For JP = 0+.2For JP = 2+. X (4140) BRANCHING RATIOSX (4140) BRANCHING RATIOSX (4140) BRANCHING RATIOSX (4140) BRANCHING RATIOS�(J/ψφ
)/�total �1/��(J/ψφ
)/�total �1/��(J/ψφ
)/�total �1/��(J/ψφ
)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseen 616 1 ABAZOV 15M D0 pp → J/ψφ + anythingseenseenseenseen 52 2 ABAZOV 14A D0 B+ → J/ψφK+seenseenseenseen 0.3k 3 CHATRCHYAN14M CMS B+ → J/ψφK+seenseenseenseen 14 4 AALTONEN 09AH CDF B+ → J/ψφK+

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen 5 ABLIKIM 15 BES3 e+ e− → γφJ/ψnot seen 6 AAIJ 12AA LHCB pp → B+X at 7 TeV1Statisti
al signi�
an
e of more than 6 σ.2ABAZOV 14A reports B(B+ → X (4140)K+ → J/ψφK+)/B(B+ → J/ψφK+) =(19 ± 7 ± 4)% with 3.1 σ sign�
an
e.3 From a �t assuming an S-wave relativisti
 Breit-Wigner shape above a three-body phase-spa
e non-resonant 
omponent with statisti
al signi�
an
e of more than 5 σ.4 Statisti
al signi�
an
e of 3.8 σ.5Reported σ(e+ e− → γX (4140))·B(X (4140) → J/ψφ) < 0.35, 0.28, and 0.33 pb at4.23, 4.26, and 4.36 GeV, respe
tively, at 90% CL.6Reported B(B+ → X (4140)K+)·B(X (4140) → J/ψφ)/B(B+ → J/ψφK+) < 0.07at 90% CL.�(γ γ
)/�total �2/��(γ γ
)/�total �2/��(γ γ
)/�total �2/��(γ γ
)/�total �2/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen SHEN 10 BELL 10.6 e+ e− →e+ e− J/ψφX (4140) REFERENCESX (4140) REFERENCESX (4140) REFERENCESX (4140) REFERENCESABAZOV 15M PRL 115 232001 V.M. Abazov et al. (D0 Collab.)ABLIKIM 15 PR D91 032002 M. Ablikim et al. (BES III Collab.)ABAZOV 14A PR D89 012004 V.M. Abazov et al. (D0 Collab.)CHATRCHYAN 14M PL B734 261 S. Chatr
hyan et al. (CMS Collab.)AAIJ 12AA PR D85 091103 R. Aaij et al. (LHCb Collab.)SHEN 10 PRL 104 112004 C.P. Shen et al. (BELLE Collab.)AALTONEN 09AH PRL 102 242002 T. Aaltonen et al. (CDF Collab.)
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ψ(4160)

ψ(4160) IG (JPC ) = 0−(1−−)
ψ(4160) MASSψ(4160) MASSψ(4160) MASSψ(4160) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT4191 ± 5 OUR AVERAGE4191 ± 5 OUR AVERAGE4191 ± 5 OUR AVERAGE4191 ± 5 OUR AVERAGE4191 + 9

− 8 AAIJ 13BC LHCB B+ → K+µ+µ−4191.7± 6.5 1 ABLIKIM 08D BES2 e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •4193 ± 7 2 MO 10 RVUE e+ e− → hadrons4151 ± 4 3 SETH 05A RVUE e+ e− → hadrons4155 ± 5 4 SETH 05A RVUE e+ e− → hadrons4159 ±20 BRANDELIK 78C DASP e+ e−1Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = (293 ± 57)◦.2Reanalysis of data presented in BAI 00 and BAI 02C. From a global �t over the 
enter-of-mass energy 3.8-4.8 GeV 
overing the ψ(4040), ψ(4160) and ψ(4415) resonan
es andin
luding interferen
e e�e
ts.3 From a �t to Crystal Ball (OSTERHELD 86) data.4 From a �t to BES (BAI 02C) data.

ψ(4160) WIDTHψ(4160) WIDTHψ(4160) WIDTHψ(4160) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT70 ±10 OUR AVERAGE70 ±10 OUR AVERAGE70 ±10 OUR AVERAGE70 ±10 OUR AVERAGE65 +22
−16 AAIJ 13BC LHCB B+ → K+µ+µ−71.8±12.3 5 ABLIKIM 08D BES2 e+ e− → hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •79 ±14 6 MO 10 RVUE e+ e− → hadrons107 ±10 7 SETH 05A RVUE e+ e− → hadrons107 ±16 8 SETH 05A RVUE e+ e− → hadrons78 ±20 BRANDELIK 78C DASP e+ e−5Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = (293 ± 57)◦.6Reanalysis of data presented in BAI 00 and BAI 02C. From a global �t over the 
enter-of-mass energy 3.8-4.8 GeV 
overing the ψ(4040), ψ(4160) and ψ(4415) resonan
es andin
luding interferen
e e�e
ts.7 From a �t to Crystal Ball (OSTERHELD 86) data.8 From a �t to BES (BAI 02C) data.
ψ(4160) DECAY MODESψ(4160) DECAY MODESψ(4160) DECAY MODESψ(4160) DECAY MODESDue to the 
omplexity of the 
 
 threshold region, in this listing, \seen"(\not seen") means that a 
ross se
tion for the mode in question hasbeen measured at e�e
tive √

s near this parti
le's 
entral mass value,more (less) than 2σ above zero, without regard to any peaking behaviorin √
s or absen
e thereof. See mode listing(s) for details and referen
es.Mode Fra
tion (�i /�) Con�den
e level�1 e+ e− (6.9 ±3.3)× 10−6�2 µ+µ− seen�3 DD seen�4 D0D0 seen�5 D+D− seen�6 D∗D+ 
.
. seen�7 D∗(2007)0D0+ 
.
. seen�8 D∗(2010)+D−+ 
.
. seen�9 D∗D∗ seen�10 D∗(2007)0D∗(2007)0 seen�11 D∗(2010)+D∗(2010)− seen�12 D0D−π++
.
. (ex
l.D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.) not seen�13 DD∗π+
.
. (ex
l. D∗D∗) seen�14 D0D∗−π++
.
. (ex
l.D∗(2010)+D∗(2010)−) not seen�15 D+s D−s not seen�16 D∗+s D−s +
.
. seen�17 J/ψπ+π− < 3 × 10−3 90%�18 J/ψπ0π0 < 3 × 10−3 90%�19 J/ψK+K− < 2 × 10−3 90%�20 J/ψη < 8 × 10−3 90%�21 J/ψπ0 < 1 × 10−3 90%�22 J/ψη′ < 5 × 10−3 90%

�23 J/ψπ+π−π0 < 1 × 10−3 90%�24 ψ(2S)π+π− < 4 × 10−3 90%�25 χ
1 γ < 5 × 10−3 90%�26 χ
2 γ < 1.3 % 90%�27 χ
1π+π−π0 < 2 × 10−3 90%�28 χ
2π+π−π0 < 8 × 10−3 90%�29 h
 (1P)π+π− < 5 × 10−3 90%�30 h
 (1P)π0π0 < 2 × 10−3 90%�31 h
 (1P)η < 2 × 10−3 90%�32 h
 (1P)π0 < 4 × 10−4 90%�33 φπ+π− < 2 × 10−3 90%�34 γX (3872) → γ J/ψπ+π− < 6.8 × 10−5 90%�35 γX (3915) → γ J/ψπ+π− < 1.36 × 10−4 90%�36 γX (3930) → γ J/ψπ+π− < 1.18 × 10−4 90%�37 γX (3940) → γ J/ψπ+π− < 1.47 × 10−4 90%�38 γX (3872) → γ γ J/ψ < 1.05 × 10−4 90%�39 γX (3915) → γ γ J/ψ < 1.26 × 10−4 90%�40 γX (3930) → γ γ J/ψ < 8.8 × 10−5 90%�41 γX (3940) → γ γ J/ψ < 1.79 × 10−4 90%�42 K+K−

ψ(4160) PARTIAL WIDTHSψ(4160) PARTIAL WIDTHSψ(4160) PARTIAL WIDTHSψ(4160) PARTIAL WIDTHS�(e+ e−) �1�(e+ e−) �1�(e+ e−) �1�(e+ e−) �1VALUE (keV) DOCUMENT ID TECN COMMENT0.48±0.220.48±0.220.48±0.220.48±0.22 9 ABLIKIM 08D BES2 e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.4 to 1.1 10 MO 10 RVUE e+ e− → hadrons0.83±0.08 11 SETH 05A RVUE e+ e− → hadrons0.84±0.13 12 SETH 05A RVUE e+ e− → hadrons0.77±0.23 BRANDELIK 78C DASP e+ e−9Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = (293 ± 57)◦.10Reanalysis of data presented in BAI 00 and BAI 02C. From a global �t over the 
enter-of-mass energy 3.8-4.8 GeV 
overing the ψ(4040), ψ(4160) and ψ(4415) resonan
esand in
luding interferen
e e�e
ts. Four sets of solutions are obtained with the same �tquality, mass and total width, but with di�erent e+ e− partial widths. We quote onlythe range of values.11 From a �t to Crystal Ball (OSTERHELD 86) data.12 From a �t to BES (BAI 02C) data.

ψ(4160) �(i) × �(e+ e−)/�(total)ψ(4160) �(i) × �(e+ e−)/�(total)ψ(4160) �(i) × �(e+ e−)/�(total)ψ(4160) �(i) × �(e+ e−)/�(total)�(χ
1 γ
)

× �(e+ e−)/�total �25�1/��(χ
1 γ
)

× �(e+ e−)/�total �25�1/��(χ
1 γ
)

× �(e+ e−)/�total �25�1/��(χ
1 γ
)

× �(e+ e−)/�total �25�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<2.2<2.2<2.2<2.2 90 13 HAN 15 BELL 10.58 e+ e− → χ
1 γ13Using B(η → γ γ) = (39.41 ± 0.21)%.�(χ
2 γ

)

× �(e+ e−)/�total �26�1/��(χ
2 γ
)

× �(e+ e−)/�total �26�1/��(χ
2 γ
)

× �(e+ e−)/�total �26�1/��(χ
2 γ
)

× �(e+ e−)/�total �26�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.1 90 14 HAN 15 BELL 10.58 e+ e− → χ
2 γ14Using B(η → γ γ) = (39.41 ± 0.21)%.
ψ(4160) �(i) × �(e+ e−)/�2(total)ψ(4160) �(i) × �(e+ e−)/�2(total)ψ(4160) �(i) × �(e+ e−)/�2(total)ψ(4160) �(i) × �(e+ e−)/�2(total)�(J/ψη

)/�total × �(e+ e−)/�total �20/�× �1/��(J/ψη
)/�total × �(e+ e−)/�total �20/�× �1/��(J/ψη
)/�total × �(e+ e−)/�total �20/�× �1/��(J/ψη
)/�total × �(e+ e−)/�total �20/�× �1/�VALUE (units 10−8) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.8±0.9±0.9 15 WANG 13B BELL e+ e− → J/ψηγ12.8±1.7±2.0 16 WANG 13B BELL e+ e− → J/ψηγ15Solution I of two equivalent solutions in a �t using two interfering resonan
es. Mass andwidth �xed at 4153 MeV and 103 MeV, respe
tively.16 Solution II of two equivalent solutions in a �t using two interfering resonan
es. Massand width �xed at 4153 MeV and 103 MeV, respe
tively.
ψ(4160) BRANCHING RATIOSψ(4160) BRANCHING RATIOSψ(4160) BRANCHING RATIOSψ(4160) BRANCHING RATIOS�(µ+µ−)/�total �2/��(µ+µ−)/�total �2/��(µ+µ−)/�total �2/��(µ+µ−)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 17 AAIJ 13BC LHCB B+ → K+µ+µ−17AAIJ 13BC report B(B+ → K+ψ(4160)) B(ψ(4160) → µ+µ−) = (3.5+0.9

−0.8)×10−9.�(DD)/�(D∗D∗) �3/�9�(DD)/�(D∗D∗) �3/�9�(DD)/�(D∗D∗) �3/�9�(DD)/�(D∗D∗) �3/�9VALUE DOCUMENT ID TECN COMMENT0.02±0.03±0.020.02±0.03±0.020.02±0.03±0.020.02±0.03±0.02 AUBERT 09M BABR e+ e− → γD(∗)D(∗)
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ψ(4160)�(D0D0)/�total �4/��(D0D0)/�total �4/��(D0D0)/�total �4/��(D0D0)/�total �4/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D0D0seenseenseenseen PAKHLOVA 08 BELL e+ e− → D0D0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AUBERT 09M BABR e+ e− → D0D0 γ�(D+D−)/�total �5/��(D+D−)/�total �5/��(D+D−)/�total �5/��(D+D−)/�total �5/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D+D−seenseenseenseen PAKHLOVA 08 BELL e+ e− → D+D− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AUBERT 09M BABR e+ e− → D+D− γ�(D∗(2007)0D0+ 
.
.)/�total �7/��(D∗(2007)0D0+ 
.
.)/�total �7/��(D∗(2007)0D0+ 
.
.)/�total �7/��(D∗(2007)0D0+ 
.
.)/�total �7/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗0D0 γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D∗0D0�(D∗(2010)+D−+ 
.
.)/�total �8/��(D∗(2010)+D−+ 
.
.)/�total �8/��(D∗(2010)+D−+ 
.
.)/�total �8/��(D∗(2010)+D−+ 
.
.)/�total �8/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗+D− γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D∗+D−seenseenseenseen PAKHLOVA 07 BELL e+ e− → D∗+D− γ�(D∗D+ 
.
.)/�(D∗D∗) �6/�9�(D∗D+ 
.
.)/�(D∗D∗) �6/�9�(D∗D+ 
.
.)/�(D∗D∗) �6/�9�(D∗D+ 
.
.)/�(D∗D∗) �6/�9VALUE DOCUMENT ID TECN COMMENT0.34±0.14±0.050.34±0.14±0.050.34±0.14±0.050.34±0.14±0.05 AUBERT 09M BABR e+ e− → γD(∗)D(∗)�(D∗(2007)0D∗(2007)0)/�total �10/��(D∗(2007)0D∗(2007)0)/�total �10/��(D∗(2007)0D∗(2007)0)/�total �10/��(D∗(2007)0D∗(2007)0)/�total �10/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗0D∗0γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D∗0D∗0�(D∗(2010)+D∗(2010)−)/�total �11/��(D∗(2010)+D∗(2010)−)/�total �11/��(D∗(2010)+D∗(2010)−)/�total �11/��(D∗(2010)+D∗(2010)−)/�total �11/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗+D∗− γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D∗+D∗−seenseenseenseen PAKHLOVA 07 BELL e+ e− → D∗+D∗− γ�(D0D−π++
.
. (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.))/�total �12/��(D0D−π++
.
. (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.))/�total �12/��(D0D−π++
.
. (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.))/�total �12/��(D0D−π++
.
. (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.))/�total �12/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen PAKHLOVA 08A BELL e+ e− → D0D−π+ γ�(DD∗π+
.
. (ex
l. D∗D∗))/�total �13/��(DD∗π+
.
. (ex
l. D∗D∗))/�total �13/��(DD∗π+
.
. (ex
l. D∗D∗))/�total �13/��(DD∗π+
.
. (ex
l. D∗D∗))/�total �13/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → DD∗π�(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �14/��(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �14/��(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �14/��(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �14/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen PAKHLOVA 09 BELL e+ e− →D0D∗−π+ γ�(D+s D−s )/�total �15/��(D+s D−s )/�total �15/��(D+s D−s )/�total �15/��(D+s D−s )/�total �15/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen PAKHLOVA 11 BELL e+ e− → D+s D−s γnot seennot seennot seennot seen DEL-AMO-SA...10N BABR e+ e− → D+s D−s γnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D+s D−s�(D∗+s D−s +
.
.)/�total �16/��(D∗+s D−s +
.
.)/�total �16/��(D∗+s D−s +
.
.)/�total �16/��(D∗+s D−s +
.
.)/�total �16/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen PAKHLOVA 11 BELL e+ e− → D∗+s D−s γseenseenseenseen DEL-AMO-SA...10N BABR e+ e− → D∗+s D−s γseenseenseenseen CRONIN-HEN...09 CLEO e+ e− → D∗+s D−s�(J/ψπ+π−)/�total �17/��(J/ψπ+π−)/�total �17/��(J/ψπ+π−)/�total �17/��(J/ψπ+π−)/�total �17/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<3<3<3<3 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons�(J/ψπ0π0)/�total �18/��(J/ψπ0π0)/�total �18/��(J/ψπ0π0)/�total �18/��(J/ψπ0π0)/�total �18/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<3<3<3<3 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons�(J/ψK+K−)/�total �19/��(J/ψK+K−)/�total �19/��(J/ψK+K−)/�total �19/��(J/ψK+K−)/�total �19/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<2<2<2<2 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons

�(J/ψη
)/�total �20/��(J/ψη
)/�total �20/��(J/ψη
)/�total �20/��(J/ψη
)/�total �20/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<8<8<8<8 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •possibly seen 18 ABLIKIM 15L BES3 e+ e− → J/ψηseen WANG 13B BELL e+ e− → J/ψηγ18An enhan
ement around 4.2 GeV is observed.�(J/ψπ0)/�total �21/��(J/ψπ0)/�total �21/��(J/ψπ0)/�total �21/��(J/ψπ0)/�total �21/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<1<1<1<1 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons�(J/ψη′

)/�total �22/��(J/ψη′
)/�total �22/��(J/ψη′
)/�total �22/��(J/ψη′
)/�total �22/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<5<5<5<5 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons�(J/ψπ+π−π0)/�total �23/��(J/ψπ+π−π0)/�total �23/��(J/ψπ+π−π0)/�total �23/��(J/ψπ+π−π0)/�total �23/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<1<1<1<1 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons�(

ψ(2S)π+π−)/�total �24/��(

ψ(2S)π+π−)/�total �24/��(

ψ(2S)π+π−)/�total �24/��(

ψ(2S)π+π−)/�total �24/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<4<4<4<4 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons�(

χ
1 γ
)/�total �25/��(

χ
1 γ
)/�total �25/��(

χ
1 γ
)/�total �25/��(

χ
1 γ
)/�total �25/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<7 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons�(

χ
2 γ
)/�total �26/��(

χ
2 γ
)/�total �26/��(

χ
2 γ
)/�total �26/��(

χ
2 γ
)/�total �26/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<13<13<13<13 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons�(

χ
1π+π−π0)/�total �27/��(

χ
1π+π−π0)/�total �27/��(

χ
1π+π−π0)/�total �27/��(

χ
1π+π−π0)/�total �27/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<2<2<2<2 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons�(

χ
2π+π−π0)/�total �28/��(

χ
2π+π−π0)/�total �28/��(

χ
2π+π−π0)/�total �28/��(

χ
2π+π−π0)/�total �28/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<8<8<8<8 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons�(h
 (1P)π+π−)/�total �29/��(h
 (1P)π+π−)/�total �29/��(h
 (1P)π+π−)/�total �29/��(h
 (1P)π+π−)/�total �29/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<5<5<5<5 90 19 PEDLAR 11 CLEO e+ e− → h
 (1P)π+π−19At √

s = 4170 MeV, PEDLAR 11 measures σ(e+ e− → h
 (1P)π+π−) = 15.6 ±2.3 ± 1.9 ± 3.0 pb, where the errors are statisti
al, systemati
, and due to un
ertaintyin B(ψ(2S) → π0 h
 (1P)), respe
tively.�(h
 (1P)π0π0)/�total �30/��(h
 (1P)π0π0)/�total �30/��(h
 (1P)π0π0)/�total �30/��(h
 (1P)π0π0)/�total �30/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<2<2<2<2 90 20 PEDLAR 11 CLEO e+ e− → h
 (1P)π0π020At √s = 4170 MeV, PEDLAR 11 measures σ(e+ e− → h
 (1P)π0π0) = 3.0 ± 3.3 ±1.1 ± 0.6 pb, where the errors are statisti
al, systemati
, and due to un
ertainty inB(ψ(2S) → π0 h
 (1P)), respe
tively.�(h
 (1P)η)/�total �31/��(h
 (1P)η)/�total �31/��(h
 (1P)η)/�total �31/��(h
 (1P)η)/�total �31/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<2<2<2<2 90 21 PEDLAR 11 CLEO e+ e− → h
 (1P)η21At√s = 4170 MeV, PEDLAR 11 measures σ(e+ e− → h
 (1P)η) = 4.7±1.7±1.0±0.9pb, where the errors are statisti
al, systemati
, and due to un
ertainty in B(ψ(2S) →

π0 h
 (1P)), respe
tively.�(h
 (1P)π0)/�total �32/��(h
 (1P)π0)/�total �32/��(h
 (1P)π0)/�total �32/��(h
 (1P)π0)/�total �32/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.4<0.4<0.4<0.4 90 22 PEDLAR 11 CLEO e+ e− → h
 (1P)π022At √s = 4170 MeV, PEDLAR 11 measures σ(e+ e− → h
 (1P)π0) = −0.7 ± 1.8 ±0.7 ± 0.1 pb, where the errors are statisti
al, systemati
, and due to un
ertainty inB(ψ(2S) → π0 h
 (1P)), respe
tively.�(

φπ+π−)/�total �33/��(

φπ+π−)/�total �33/��(

φπ+π−)/�total �33/��(

φπ+π−)/�total �33/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<2<2<2<2 90 COAN 06 CLEO 4.12{4.2 e+ e− → hadrons�(

γX (3872)→ γ J/ψπ+π−)/�total �34/��(

γX (3872)→ γ J/ψπ+π−)/�total �34/��(

γX (3872)→ γ J/ψπ+π−)/�total �34/��(

γX (3872)→ γ J/ψπ+π−)/�total �34/�VALUE CL% DOCUMENT ID COMMENT
<0.68× 10−4<0.68× 10−4<0.68× 10−4<0.68× 10−4 90 23 XIAO 13 ψ(4160) → γ J/ψπ+ π−23Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.



1451145114511451See key on page 601 Meson Parti
le Listings
ψ(4160), X (4160), X (4200)±, X (4230)�(γX (3915)→ γ J/ψπ+π−)/�total �35/��(γX (3915)→ γ J/ψπ+π−)/�total �35/��(γX (3915)→ γ J/ψπ+π−)/�total �35/��(γX (3915)→ γ J/ψπ+π−)/�total �35/�VALUE CL% DOCUMENT ID COMMENT

<1.36× 10−4<1.36× 10−4<1.36× 10−4<1.36× 10−4 90 24 XIAO 13 ψ(4160) → γ J/ψπ+ π−24Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.�(γX (3930)→ γ J/ψπ+π−)/�total �36/��(γX (3930)→ γ J/ψπ+π−)/�total �36/��(γX (3930)→ γ J/ψπ+π−)/�total �36/��(γX (3930)→ γ J/ψπ+π−)/�total �36/�VALUE CL% DOCUMENT ID COMMENT
<1.18× 10−4<1.18× 10−4<1.18× 10−4<1.18× 10−4 90 25 XIAO 13 ψ(4160) → γ J/ψπ+ π−25Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.�(γX (3940)→ γ J/ψπ+π−)/�total �37/��(γX (3940)→ γ J/ψπ+π−)/�total �37/��(γX (3940)→ γ J/ψπ+π−)/�total �37/��(γX (3940)→ γ J/ψπ+π−)/�total �37/�VALUE CL% DOCUMENT ID COMMENT
<1.47× 10−4<1.47× 10−4<1.47× 10−4<1.47× 10−4 90 26 XIAO 13 ψ(4160) → γ J/ψπ+ π−26Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.�(γX (3872)→ γ γ J/ψ

)/�total �38/��(γX (3872)→ γ γ J/ψ
)/�total �38/��(γX (3872)→ γ γ J/ψ
)/�total �38/��(γX (3872)→ γ γ J/ψ
)/�total �38/�VALUE CL% DOCUMENT ID COMMENT

<1.05× 10−4<1.05× 10−4<1.05× 10−4<1.05× 10−4 90 27 XIAO 13 ψ(4160) → γ γ J/ψ27Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.�(γX (3915)→ γ γ J/ψ
)/�total �39/��(γX (3915)→ γ γ J/ψ
)/�total �39/��(γX (3915)→ γ γ J/ψ
)/�total �39/��(γX (3915)→ γ γ J/ψ
)/�total �39/�VALUE CL% DOCUMENT ID COMMENT

<1.26× 10−4<1.26× 10−4<1.26× 10−4<1.26× 10−4 90 28 XIAO 13 ψ(4160) → γ γ J/ψ28Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.�(γX (3930)→ γ γ J/ψ
)/�total �40/��(γX (3930)→ γ γ J/ψ
)/�total �40/��(γX (3930)→ γ γ J/ψ
)/�total �40/��(γX (3930)→ γ γ J/ψ
)/�total �40/�VALUE CL% DOCUMENT ID COMMENT

<0.88× 10−4<0.88× 10−4<0.88× 10−4<0.88× 10−4 90 29 XIAO 13 ψ(4160) → γ γ J/ψ29Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.�(γX (3940)→ γ γ J/ψ
)/�total �41/��(γX (3940)→ γ γ J/ψ
)/�total �41/��(γX (3940)→ γ γ J/ψ
)/�total �41/��(γX (3940)→ γ γ J/ψ
)/�total �41/�VALUE CL% DOCUMENT ID COMMENT

<1.79× 10−4<1.79× 10−4<1.79× 10−4<1.79× 10−4 90 30 XIAO 13 ψ(4160) → γ γ J/ψ30Obtained by analyzing CLEO data but not authored by the CLEO Collaboration.�(K+K−)/�total �42/��(K+K−)/�total �42/��(K+K−)/�total �42/��(K+K−)/�total �42/�VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2× 10−5 90 31 DRUZHININ 15 RVUE e+ e− → ψ(3770)31DRUZHININ 15 uses BABAR and CLEO data takitaking into a

ount interferen
e of thepro
esses e+ e− → K+K− and e+ e− → K0S K0L.
ψ(4160) REFERENCESψ(4160) REFERENCESψ(4160) REFERENCESψ(4160) REFERENCESABLIKIM 15L PR D91 112005 M. Ablikim et al. (BES III Collab.)DRUZHININ 15 PR D92 054024 V.P. Druzhinin (NOVO)HAN 15 PR D92 012011 Y.L. Han et al. (BELLE Collab.)AAIJ 13BC PRL 111 112003 R. Aaij et al. (LHCb Collab.)WANG 13B PR D87 051101 X.L. Wang et al. (BELLE Collab.)XIAO 13 PR D87 057501 T. Xiao et al. (NWES, WAYN)PAKHLOVA 11 PR D83 011101 G. Pakhlova et al. (BELLE Collab.)PEDLAR 11 PRL 107 041803 T. Pedlar et al. (CLEO Collab.)DEL-AMO-SA... 10N PR D82 052004 P. del Amo San
hez et al. (BABAR Collab.)MO 10 PR D82 077501 X.H. Mo, C.Z. Yuan, P. Wang (BHEP)AUBERT 09M PR D79 092001 B. Aubert et al. (BABAR Collab.)CRONIN-HEN... 09 PR D80 072001 D. Cronin-Hennessy et al. (CLEO Collab.)PAKHLOVA 09 PR D80 091101 G. Pakhlova et al. (BELLE Collab.)ABLIKIM 08D PL B660 315 M. Ablikim et al. (BES Collab.)PAKHLOVA 08 PR D77 011103 G. Pakhlova et al. (BELLE Collab.)PAKHLOVA 08A PRL 100 062001 G. Pakhlova et al. (BELLE Collab.)PAKHLOVA 07 PRL 98 092001 G. Pakhlova et al. (BELLE Collab.)COAN 06 PRL 96 162003 T.E. Coan et al. (CLEO Collab.)SETH 05A PR D72 017501 K.K. SethBAI 02C PRL 88 101802 J.Z. Bai et al. (BES Collab.)BAI 00 PRL 84 594 J.Z. Bai et al. (BES Collab.)OSTERHELD 86 SLAC-PUB-4160 A. Osterheld et al. (SLAC Crystal Ball Collab.)BRANDELIK 78C PL 76B 361 R. Brandelik et al. (DASP Collab.)X (4160) IG (JPC ) = ??(???)OMITTED FROM SUMMARY TABLESeen by PAKHLOV 08 in e+ e− → J/ψX , X → D∗D∗X (4160) MASSX (4160) MASSX (4160) MASSX (4160) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT4156+25

−20±154156+25
−20±154156+25
−20±154156+25
−20±15 24 PAKHLOV 08 BELL e+ e− → J/ψXX (4160) WIDTHX (4160) WIDTHX (4160) WIDTHX (4160) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT139+111

− 61±21139+111
− 61±21139+111
− 61±21139+111
− 61±21 24 PAKHLOV 08 BELL e+ e− → J/ψX

X (4160) DECAY MODESX (4160) DECAY MODESX (4160) DECAY MODESX (4160) DECAY MODESMode Fra
tion (�i /�)�1 DD not seen�2 D∗D+ 
.
. not seen�3 D∗D∗ seenX (4160) BRANCHING RATIOSX (4160) BRANCHING RATIOSX (4160) BRANCHING RATIOSX (4160) BRANCHING RATIOS�(DD)/�(D∗D∗) �1/�3�(DD)/�(D∗D∗) �1/�3�(DD)/�(D∗D∗) �1/�3�(DD)/�(D∗D∗) �1/�3VALUE CL% DOCUMENT ID TECN COMMENT
<0.09<0.09<0.09<0.09 90 PAKHLOV 08 BELL e+ e− → J/ψX�(D∗D+ 
.
.)/�(D∗D∗) �2/�3�(D∗D+ 
.
.)/�(D∗D∗) �2/�3�(D∗D+ 
.
.)/�(D∗D∗) �2/�3�(D∗D+ 
.
.)/�(D∗D∗) �2/�3VALUE CL% DOCUMENT ID TECN COMMENT
<0.22<0.22<0.22<0.22 90 PAKHLOV 08 BELL e+ e− → J/ψXX (4160) REFERENCESX (4160) REFERENCESX (4160) REFERENCESX (4160) REFERENCESPAKHLOV 08 PRL 100 202001 P. Pakhlov et al. (BELLE Collab.)X (4200)± I (JP ) = ?(1+)OMITTED FROM SUMMARY TABLEReported by CHILIKIN 14 in J/ψπ+ at a signi�
an
e of 6.2σ. As-signments of 0−, 1−, 2−, and 2+ ex
luded at 6.1σ, 7.4σ, 4.4σ,and 7.0σ level, respe
tively. Needs 
on�rmation.X (4200)± MASSX (4200)± MASSX (4200)± MASSX (4200)± MASSVALUE (MeV) DOCUMENT ID TECN COMMENT4196+31

−29+17
−134196+31

−29+17
−134196+31

−29+17
−134196+31

−29+17
−13 CHILIKIN 14 BELL B0 → J/ψK−π+X (4200)± WIDTHX (4200)± WIDTHX (4200)± WIDTHX (4200)± WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT370±70+ 70

−132370±70+ 70
−132370±70+ 70
−132370±70+ 70
−132 CHILIKIN 14 BELL B0 → J/ψK−π+X (4200)± DECAY MODESX (4200)± DECAY MODESX (4200)± DECAY MODESX (4200)± DECAY MODESMode Fra
tion (�i /�)�1 J/ψπ+ seenX (4200)± BRANCHING RATIOSX (4200)± BRANCHING RATIOSX (4200)± BRANCHING RATIOSX (4200)± BRANCHING RATIOS�(J/ψπ+)/�total �1/��(J/ψπ+)/�total �1/��(J/ψπ+)/�total �1/��(J/ψπ+)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen CHILIKIN 14 BELL B0 → J/ψK−π+X (4200)± REFERENCESX (4200)± REFERENCESX (4200)± REFERENCESX (4200)± REFERENCESCHILIKIN 14 PR D90 112009 K. Chilikin et al. (BELLE Collab.)X (4230) IG (JPC ) = ??(1−−)OMITTED FROM SUMMARY TABLEEnhan
ement reported by ABLIKIM 15C in e+ e− → ωχ
0 at √s= 4.23{4.26 GeV at 9σ signi�
an
e. Lineshape found to be in
on-sistent with origination from X (4260). NEEDS CONFIRMATION.X (4230) MASSX (4230) MASSX (4230) MASSX (4230) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT4230±8±64230±8±64230±8±64230±8±6 180 1 ABLIKIM 15C BES3 e+ e− → ωχ
01From a 3-parameter �t of measured 
ross se
tions from √

s = 4.21{4.42 GeV to aphase-spa
e modi�ed Breit-Wigner fun
tion, using the de
ays χ
0 → π+π−, χ
0 →K+K−, and ω → π+π−π0.X (4230) 00WIDTHX (4230) 00WIDTHX (4230) 00WIDTHX (4230) 00WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT38±12±238±12±238±12±238±12±2 180 1 ABLIKIM 15C BES3 e+ e− → ωχ
01From a 3-parameter �t of measured 
ross se
tions from √
s = 4.21{4.42 GeV to aphase-spa
e modi�ed Breit-Wigner fun
tion, using the de
ays χ
0 → π+π−, χ
0 →K+K−, and ω → π+π−π0.



1452145214521452MesonParti
le ListingsX (4230),X (4240)±,X (4250)±,X (4260)X (4230) DECAY MODESX (4230) DECAY MODESX (4230) DECAY MODESX (4230) DECAY MODESMode Fra
tion (�i /�)�1 e+ e−�2 ωχ
0 seenX (4230) �(i)�(e+ e−)/�(total)X (4230) �(i)�(e+ e−)/�(total)X (4230) �(i)�(e+ e−)/�(total)X (4230) �(i)�(e+ e−)/�(total)�(ωχ
0) × �(e+ e−)/�total �2�1/��(ωχ
0) × �(e+ e−)/�total �2�1/��(ωχ
0) × �(e+ e−)/�total �2�1/��(ωχ
0) × �(e+ e−)/�total �2�1/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT2.7±0.5±0.42.7±0.5±0.42.7±0.5±0.42.7±0.5±0.4 180 1 ABLIKIM 15C BES3 e+ e− → ωχ
01From a 3-parameter �t of measured 
ross se
tions from √
s = 4.21{4.42 GeV to aphase-spa
e modi�ed Breit-Wigner fun
tion, using the de
ays χ
0 → π+π−, χ
0 →K+K−, and ω → π+π−π0.X (4230) BRANCHING RATIOSX (4230) BRANCHING RATIOSX (4230) BRANCHING RATIOSX (4230) BRANCHING RATIOS�(ωχ
0)/�total �2/��(ωχ
0)/�total �2/��(ωχ
0)/�total �2/��(ωχ
0)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 180 1 ABLIKIM 15C BES3 e+ e− → ωχ
01From a 3-parameter �t of measured 
ross se
tions from √
s = 4.21{4.42 GeV to aphase-spa
e modi�ed Breit-Wigner fun
tion, using the de
ays χ
0 → π+π−, χ
0 →K+K−, and ω → π+π−π0.X (4230) REFERENCESX (4230) REFERENCESX (4230) REFERENCESX (4230) REFERENCESABLIKIM 15C PRL 114 092003 M. Ablikim et al. (BES III Collab.)X (4240)± IG (JP ) = ??(0−)OMITTED FROM SUMMARY TABLESpin and parity assigment JP = 0− is favored over 1−, 2−, and2+ by 8 σ and over 1+ by 1 σ, a

ording to the four-dimensionalamplitude analysis of AAIJ 14AG.X (4240)± MASSX (4240)± MASSX (4240)± MASSX (4240)± MASSVALUE (MeV) DOCUMENT ID TECN COMMENT4239±18+45

−104239±18+45
−104239±18+45
−104239±18+45
−10 1 AAIJ 14AG LHCB B0 → K+π−ψ(2S)1 From a 4-dimensional analysis when a se
ond, lower mass resonan
e is allowed in theX (4430)± �t, with signi�
an
e 6 σ in
luding systemati
 variations.X (4240)± WIDTHX (4240)± WIDTHX (4240)± WIDTHX (4240)± WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT220±47+108

− 74220±47+108
− 74220±47+108
− 74220±47+108
− 74 2 AAIJ 14AG LHCB B0 → K+π−ψ(2S)2 From a 4-dimensional analysis when a se
ond, lower mass resonan
e is allowed in theX (4430)± �t, with signi�
an
e 6 σ in
luding systemati
 variations.X (4240)± DECAY MODESX (4240)± DECAY MODESX (4240)± DECAY MODESX (4240)± DECAY MODESMode Fra
tion (�i /�)�1 π−ψ(2S) seenX (4240)± BRANCHING RATIOSX (4240)± BRANCHING RATIOSX (4240)± BRANCHING RATIOSX (4240)± BRANCHING RATIOS�(π−ψ(2S))/�total �1/��(π−ψ(2S))/�total �1/��(π−ψ(2S))/�total �1/��(π−ψ(2S))/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 3 AAIJ 14AG LHCB B0 → K+π−ψ(2S)3 From a 4-dimensional analysis when a se
ond, lower mass resonan
e is allowed in theX (4430)± �t. No partial bran
hing fra
tion quoted.X (4240)± REFERENCESX (4240)± REFERENCESX (4240)± REFERENCESX (4240)± REFERENCESAAIJ 14AG PRL 112 222002 R. Aaij et al. (LHCb Collab.)X (4250)± I (JP ) = ?(??)OMITTED FROM SUMMARY TABLEObserved by MIZUK 08 in the π+χ
1(1P) invariant mass distribu-tion in B0 → K−π+χ
1(1P) de
ays. Not seen by LEES 12B inthis same mode after a

ounting for K π resonant mass and angularstru
ture.

X (4250)± MASSX (4250)± MASSX (4250)± MASSX (4250)± MASSVALUE (MeV) DOCUMENT ID TECN COMMENT4248+44
−29+180

− 354248+44
−29+180

− 354248+44
−29+180

− 354248+44
−29+180

− 35 1 MIZUK 08 BELL B0 → K−π+χ
1(1P)1 From a Dalitz plot analysis with two Breit-Wigner amplitudes.X (4250)± WIDTHX (4250)± WIDTHX (4250)± WIDTHX (4250)± WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT177+54
−39+316

− 61177+54
−39+316

− 61177+54
−39+316

− 61177+54
−39+316

− 61 2 MIZUK 08 BELL B0 → K−π+χ
1(1P)2 From a Dalitz plot analysis with two Breit-Wigner amplitudes.X (4250)± DECAY MODESX (4250)± DECAY MODESX (4250)± DECAY MODESX (4250)± DECAY MODESMode Fra
tion (�i /�)�1 π+χ
1(1P) seenX (4250)± BRANCHING RATIOSX (4250)± BRANCHING RATIOSX (4250)± BRANCHING RATIOSX (4250)± BRANCHING RATIOS�(π+χ
1(1P))/�total �1/��(π+χ
1(1P))/�total �1/��(π+χ
1(1P))/�total �1/��(π+χ
1(1P))/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 3 MIZUK 08 BELL B0 → K−π+χ
1(1P)
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen 4 LEES 12B BABR B → K πχ
1(1P)3With a produ
t bran
hing fra
tion measurement of B(B0 → K−X (4250)+) ×B(X (4250)+ → π+χ
1(1P)) = (4.0+2.3

−0.9+19.7
− 0.5)× 10−5.4With a produ
t bran
hing fra
tion limit of B(B0 → X (4250)+K−) × B(X (4250)+ →

χ
1π+) < 4.0× 10−5 at 90% CL.X (4250)± REFERENCESX (4250)± REFERENCESX (4250)± REFERENCESX (4250)± REFERENCESLEES 12B PR D85 052003 J.P. Lees et al. (BABAR Collab.)MIZUK 08 PR D78 072004 R. Mizuk et al. (BELLE Collab.)X (4260) IG (JPC ) = ??(1−−)Seen in radiative return from e+ e− 
ollisions at √s = 9.54{10.58GeV by AUBERT,B 05I, HE 06B, and YUAN 07, and in e+ e−
ollisions at √
s ≈ 4.26 GeV by COAN 06. Possibly seen byAUBERT 06 in B− → K−π+π− J/ψ. See also the mini-reviewunder the X (3872). (See the index for the page number.)X (4260) MASSX (4260) MASSX (4260) MASSX (4260) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT4251 ± 9 OUR AVERAGE4251 ± 9 OUR AVERAGE4251 ± 9 OUR AVERAGE4251 ± 9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.4258.6± 8.3±12.1 1 LIU 13B BELL e+ e− → γπ+π− J/ψ4245 ± 5 ± 4 2 LEES 12AC BABR 10.58 e+ e− → γπ+π− J/ψ4284 +17

−16 ± 413.6 HE 06B CLEO 9.4{10.6 e+ e− → γπ+π− J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •4247 ±12 +17
−32 1,3 YUAN 07 BELL 10.58 e+ e− → γπ+π− J/ψ4259 ± 8 + 2
− 6 125 4 AUBERT,B 05I BABR 10.58 e+ e− → γπ+π− J/ψ

WEIGHTED AVERAGE
4251±9 (Error scaled by 1.6)

HE 06B CLEO 3.9
LEES 12AC BABR 1.0
LIU 13B BELL 0.2

χ2

       5.1
(Confidence Level = 0.076)

4220 4240 4260 4280 4300 4320 4340 4360X (4260) MASS (MeV)



1453145314531453See key on page 601 MesonParti
le ListingsX (4260)1From a two-resonan
e �t.2 From a single-resonan
e �t. Supersedes AUBERT,B 05I.3 Superseded by LIU 13B.4 From a single-resonan
e �t. Two interfering resonan
es are not ex
luded. Supersededby LEES 12AC. X (4260) WIDTHX (4260) WIDTHX (4260) WIDTHX (4260) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT120 ±12 OUR AVERAGE120 ±12 OUR AVERAGE120 ±12 OUR AVERAGE120 ±12 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.134.1±16.4± 5.5 1 LIU 13B BELL e+ e− → γπ+π− J/ψ114 +16
−15 ± 7 2 LEES 12AC BABR 10.58 e+ e− → γπ+π− J/ψ73 +39
−25 ± 5 13.6 HE 06B CLEO 9.4{10.6 e+ e− → γπ+π− J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •108 ±19 ±10 1,3 YUAN 07 BELL 10.58 e+ e− → γπ+π− J/ψ88 ±23 + 6
− 4 125 4 AUBERT,B 05I BABR 10.58 e+ e− → γπ+π− J/ψ1From a two-resonan
e �t.2 From a single-resonan
e �t. Supersedes AUBERT,B 05I.3 Superseded by LIU 13B.4 From a single-resonan
e �t. Two interfering resonan
es are not ex
luded. Supersededby LEES 12AC. X (4260) DECAY MODESX (4260) DECAY MODESX (4260) DECAY MODESX (4260) DECAY MODESMode Fra
tion (�i /�)�1 e+ e−�2 J/ψπ+π− seen�3 J/ψ f0(980), f0(980) → π+π− seen�4 X (3900)±π∓, X±

→ J/ψπ± seen�5 J/ψπ0π0 seen�6 J/ψK+K− seen�7 J/ψK0S K0S not seen�8 X (3872)γ seen�9 J/ψη not seen�10 J/ψπ0 not seen�11 J/ψη′ not seen�12 J/ψπ+π−π0 not seen�13 J/ψηπ0 not seen�14 J/ψηη not seen�15 ψ(2S)π+π− not seen�16 ψ(2S)η not seen�17 χ
0ω not seen�18 χ
1 γ not seen�19 χ
2 γ not seen�20 χ
1π+π−π0 not seen�21 χ
2π+π−π0 not seen�22 h
 (1P)π+π− not seen�23 φπ+π− not seen�24 φ f0(980) → φπ+π− not seen�25 DD not seen�26 D0D0 not seen�27 D+D− not seen�28 D∗D+
.
. not seen�29 D∗(2007)0D0+
.
. not seen�30 D∗(2010)+D−+
.
. not seen�31 D∗D∗ not seen�32 D∗(2007)0D∗(2007)0 not seen�33 D∗(2010)+D∗(2010)− not seen�34 DDπ+
.
.�35 D0D−π++
.
. (ex
l.D∗(2007)0D∗0 +
.
.,D∗(2010)+D− +
.
.) not seen�36 DD∗π+
.
. (ex
l. D∗D∗) not seen�37 D0D∗−π++
.
. (ex
l.D∗(2010)+D∗(2010)−) not seen�38 D0D∗(2010)−π++
.
. not seen�39 D∗D∗π not seen�40 D+s D−s not seen�41 D∗+s D−s +
.
. not seen�42 D∗+s D∗−s not seen�43 pp not seen�44 K0S K±π∓ not seen�45 K+K−π0 not seen

X (4260) �(i) × �(e+ e−)/�(total)X (4260) �(i) × �(e+ e−)/�(total)X (4260) �(i) × �(e+ e−)/�(total)X (4260) �(i) × �(e+ e−)/�(total)�(J/ψπ+π−)

× �(e+ e−)/�total �2�1/��(J/ψπ+π−)

× �(e+ e−)/�total �2�1/��(J/ψπ+π−)

× �(e+ e−)/�total �2�1/��(J/ψπ+π−)

× �(e+ e−)/�total �2�1/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT9.2±1.0 OUR AVERAGE9.2±1.0 OUR AVERAGE9.2±1.0 OUR AVERAGE9.2±1.0 OUR AVERAGE9.2±0.8±0.7 1 LEES 12AC BABR 10.58 e+ e− → γπ+π− J/ψ8.9+3.9
−3.1±1.8 8.1 HE 06B CLEO 9.4{10.6 e+ e− → γπ+π− J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.4±0.8±0.6 2 LIU 13B BELL e+ e− → γπ+π− J/ψ20.5±1.4±2.0 3 LIU 13B BELL e+ e− → γπ+π− J/ψ6.0±1.2+4.7
−0.5 2,4 YUAN 07 BELL 10.58 e+ e− → γπ+π− J/ψ20.6±2.3+9.1
−1.7 3,4 YUAN 07 BELL 10.58 e+ e− → γπ+π− J/ψ5.5±1.0+0.8
−0.7 125 5 AUBERT,B 05I BABR 10.58 e+ e− → γπ+π− J/ψ1From a single-resonan
e �t. Supersedes AUBERT,B 05I.2 Solution I of two equivalent solutions in a �t using two interfering resonan
es.3 Solution II of two equivalent solutions in a �t using two interfering resonan
es.4 Superseded by LIU 13B.5 From a single-resonan
e �t. Two interfering resonan
es are not ex
luded. Supersededby LEES 12AC.�(J/ψK+K−)

× �(e+ e−)/�total �6�1/��(J/ψK+K−)

× �(e+ e−)/�total �6�1/��(J/ψK+K−)

× �(e+ e−)/�total �6�1/��(J/ψK+K−)

× �(e+ e−)/�total �6�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<1.7<1.7<1.7<1.7 90 1 SHEN 14 BELL 9.4{10.9 e+ e− →

γK+K− J/ψ
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.2 90 2 YUAN 08 BELL e+ e− → γK+K− J/ψ1From a �t of the broad K+K− J/ψ enhan
ement in
luding a 
oherent X (4260) ampli-tude with mass and width from LIU 13B. Supersedes YUAN 08.2 From a �t of the broad K+K− J/ψ enhan
ement in
luding a 
oherent X (4260) ampli-tude with mass and width from YUAN 07.�(J/ψK0S K0S)

× �(e+ e−)/�total �7�1/��(J/ψK0S K0S)

× �(e+ e−)/�total �7�1/��(J/ψK0S K0S)

× �(e+ e−)/�total �7�1/��(J/ψK0S K0S)

× �(e+ e−)/�total �7�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<0.85<0.85<0.85<0.85 90 1 SHEN 14 BELL 9.4{10.9 e+ e− → γK0S K0S J/ψ1From a �t of the K0S K0S J/ψ mass range from 4.4 to 5.5 GeV in
luding a 
oherentX (4260) amplitude with mass and width from LIU 13B.�(J/ψη

)

× �(e+ e−)/�total �9�1/��(J/ψη
)

× �(e+ e−)/�total �9�1/��(J/ψη
)

× �(e+ e−)/�total �9�1/��(J/ψη
)

× �(e+ e−)/�total �9�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<14.2 90 WANG 13B BELL e+ e− → J/ψηγ�(ψ(2S)π+π−)

× �(e+ e−)/�total �15�1/��(ψ(2S)π+π−)

× �(e+ e−)/�total �15�1/��(ψ(2S)π+π−)

× �(e+ e−)/�total �15�1/��(ψ(2S)π+π−)

× �(e+ e−)/�total �15�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<4.3 90 1 LIU 08H RVUE 10.58 e+ e− →
ψ(2S)π+π− γ7.4+2.1

−1.7 2 LIU 08H RVUE 10.58 e+ e− →
ψ(2S)π+π− γ1For 
onstru
tive interferen
e with the X (4360) in a 
ombined �t of AUBERT 07S andWANG 07D data with three resonan
es.2 For destru
tive interferen
e with the X (4360) in a 
ombined �t of AUBERT 07S andWANG 07D data with three resonan
es.�(χ
1 γ

)

× �(e+ e−)/�total �18�1/��(χ
1 γ
)

× �(e+ e−)/�total �18�1/��(χ
1 γ
)

× �(e+ e−)/�total �18�1/��(χ
1 γ
)

× �(e+ e−)/�total �18�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<1.4<1.4<1.4<1.4 90 1 HAN 15 BELL 10.58 e+ e− → χ
1 γ1Using B(η → γ γ) = (39.41 ± 0.21)%.�(χ
2 γ

)

× �(e+ e−)/�total �19�1/��(χ
2 γ
)

× �(e+ e−)/�total �19�1/��(χ
2 γ
)

× �(e+ e−)/�total �19�1/��(χ
2 γ
)

× �(e+ e−)/�total �19�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<4.0<4.0<4.0<4.0 90 1 HAN 15 BELL 10.58 e+ e− → χ
2 γ1Using B(η → γ γ) = (39.41 ± 0.21)%.�(φπ+π−)

× �(e+ e−)/�total �23�1/��(φπ+π−)

× �(e+ e−)/�total �23�1/��(φπ+π−)

× �(e+ e−)/�total �23�1/��(φπ+π−)

× �(e+ e−)/�total �23�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<0.4<0.4<0.4<0.4 90 AUBERT,BE 06D BABR 10.6 e+ e− → K+K−π+π− γ�(φ f0(980)→ φπ+π−)

× �(e+ e−)/�total �24�1/��(φ f0(980)→ φπ+π−)

× �(e+ e−)/�total �24�1/��(φ f0(980)→ φπ+π−)

× �(e+ e−)/�total �24�1/��(φ f0(980)→ φπ+π−)

× �(e+ e−)/�total �24�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<0.29<0.29<0.29<0.29 90 1 AUBERT 07AK BABR 10.6 e+ e− → π+π−K+K− γ1AUBERT 07AK reports [�(X (4260) → φ f0(980) → φπ+π−

)

× �(X (4260) →e+ e−)/�total℄ × [B(φ(1020) → K+K−)℄ < 0.14 eV whi
h we divide by our bestvalue B(φ(1020) → K+K−) = 48.9× 10−2.�(K0S K±π∓)

× �(e+ e−)/�total �44�1/��(K0S K±π∓)

× �(e+ e−)/�total �44�1/��(K0S K±π∓)

× �(e+ e−)/�total �44�1/��(K0S K±π∓)

× �(e+ e−)/�total �44�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.5 90 AUBERT 08S BABR 10.6 e+ e− → K0S K±π∓ γ



1454145414541454MesonParti
le ListingsX (4260)�(K+K−π0) × �(e+ e−)/�total �45�1/��(K+K−π0) × �(e+ e−)/�total �45�1/��(K+K−π0) × �(e+ e−)/�total �45�1/��(K+K−π0) × �(e+ e−)/�total �45�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.6 90 AUBERT 08S BABR 10.6 e+ e− → K+K−π0 γX (4260) BRANCHING RATIOSX (4260) BRANCHING RATIOSX (4260) BRANCHING RATIOSX (4260) BRANCHING RATIOS�(J/ψ f0(980), f0(980)→ π+π−)/�(J/ψπ+π−) �3/�2�(J/ψ f0(980), f0(980)→ π+π−)/�(J/ψπ+π−) �3/�2�(J/ψ f0(980), f0(980)→ π+π−)/�(J/ψπ+π−) �3/�2�(J/ψ f0(980), f0(980)→ π+π−)/�(J/ψπ+π−) �3/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.17±0.13 1 LEES 12AC BABR 10.58 e+ e− → γπ+π− J/ψ1Systemati
 un
ertainties not estimated.�(X (3900)±π∓, X±

→ J/ψπ±)/�(J/ψπ+π−) �4/�2�(X (3900)±π∓, X±
→ J/ψπ±)/�(J/ψπ+π−) �4/�2�(X (3900)±π∓, X±
→ J/ψπ±)/�(J/ψπ+π−) �4/�2�(X (3900)±π∓, X±
→ J/ψπ±)/�(J/ψπ+π−) �4/�2VALUE DOCUMENT ID TECN COMMENT0.215±0.033±0.0750.215±0.033±0.0750.215±0.033±0.0750.215±0.033±0.075 1 ABLIKIM 13T BES3 e+ e− → π+π− J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.29 ±0.08 2 LIU 13B BELL e+ e− →
γπ+π− J/ψ1Assuming that the 
ross se
tion of e+ e− → π+π− J/ψ is fully due to the X (4260).2 Systemati
 error not evaluated.�(J/ψK0S K0S)/�total �7/��(J/ψK0S K0S)/�total �7/��(J/ψK0S K0S)/�total �7/��(J/ψK0S K0S)/�total �7/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen SHEN 14 BELL 9.4{10.9 e+ e− → γK0S K0S J/ψ�(X (3872)γ)/�total �8/��(X (3872)γ)/�total �8/��(X (3872)γ)/�total �8/��(X (3872)γ)/�total �8/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 20 ± 5 ABLIKIM 14 BES3 e+ e− → J/ψπ+π− γ�(J/ψηπ0)/�total �13/��(J/ψηπ0)/�total �13/��(J/ψηπ0)/�total �13/��(J/ψηπ0)/�total �13/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen ABLIKIM 15Q BES3 4.0{4.6 e+ e− → J/ψηπ0�(h
 (1P)π+π−)/�(J/ψπ+π−) �22/�2�(h
 (1P)π+π−)/�(J/ψπ+π−) �22/�2�(h
 (1P)π+π−)/�(J/ψπ+π−) �22/�2�(h
 (1P)π+π−)/�(J/ψπ+π−) �22/�2VALUE CL% DOCUMENT ID TECN COMMENT

<1.0<1.0<1.0<1.0 90 1 PEDLAR 11 CLEO e+ e− → h
 (1P)π+π−1At √s = 4260 MeV, PEDLAR 11 measures σ(e+ e− → h
 (1P)π+π−) = 32±17±6±6 pb, where the errors are statisti
al, systemati
, and due to un
ertainty in B(ψ(2S) →
π0 h
 (1P)), respe
tively.�(DD)/�(J/ψπ+π−) �25/�2�(DD)/�(J/ψπ+π−) �25/�2�(DD)/�(J/ψπ+π−) �25/�2�(DD)/�(J/ψπ+π−) �25/�2VALUE CL% DOCUMENT ID TECN COMMENT

<1.0<1.0<1.0<1.0 90 1 AUBERT 07BE BABR e+ e− → DD γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<4.0 90 CRONIN-HEN...09 CLEO e+ e−1Using 4259 ± 10 MeV for the mass and 88 ± 24 MeV for the width of X (4260).�(D0D0)/�total �26/��(D0D0)/�total �26/��(D0D0)/�total �26/��(D0D0)/�total �26/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D0D0
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AUBERT 09M BABR e+ e− → D0D0 γnot seen PAKHLOVA 08 BELL e+ e− → D0D0 γ�(D+D−)/�total �27/��(D+D−)/�total �27/��(D+D−)/�total �27/��(D+D−)/�total �27/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D+D−
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AUBERT 09M BABR e+ e− → D+D− γnot seen PAKHLOVA 08 BELL e+ e− → D+D− γ�(D∗D+
.
.)/�(J/ψπ+π−) �28/�2�(D∗D+
.
.)/�(J/ψπ+π−) �28/�2�(D∗D+
.
.)/�(J/ψπ+π−) �28/�2�(D∗D+
.
.)/�(J/ψπ+π−) �28/�2VALUE CL% DOCUMENT ID TECN COMMENT
<34<34<34<34 90 AUBERT 09M BABR e+ e− → γD∗D
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<45 90 CRONIN-HEN...09 CLEO e+ e−�(D∗(2007)0D0+
.
.)/�total �29/��(D∗(2007)0D0+
.
.)/�total �29/��(D∗(2007)0D0+
.
.)/�total �29/��(D∗(2007)0D0+
.
.)/�total �29/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D∗0D0
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AUBERT 09M BABR e+ e− → D∗0D0 γ�(D∗(2010)+D−+
.
.)/�total �30/��(D∗(2010)+D−+
.
.)/�total �30/��(D∗(2010)+D−+
.
.)/�total �30/��(D∗(2010)+D−+
.
.)/�total �30/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D∗+D−not seennot seennot seennot seen PAKHLOVA 07 BELL e+ e− → D∗+D− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AUBERT 09M BABR e+ e− → D∗+D− γ

�(D∗D∗)/�(J/ψπ+π−) �31/�2�(D∗D∗)/�(J/ψπ+π−) �31/�2�(D∗D∗)/�(J/ψπ+π−) �31/�2�(D∗D∗)/�(J/ψπ+π−) �31/�2VALUE CL% DOCUMENT ID TECN COMMENT
<11<11<11<11 90 CRONIN-HEN...09 CLEO e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<40 90 AUBERT 09M BABR e+ e− → γD∗D∗�(D∗(2007)0D∗(2007)0)/�total �32/��(D∗(2007)0D∗(2007)0)/�total �32/��(D∗(2007)0D∗(2007)0)/�total �32/��(D∗(2007)0D∗(2007)0)/�total �32/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D∗0D∗0
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AUBERT 09M BABR e+ e− → D∗0D∗0γ�(D∗(2010)+D∗(2010)−)/�total �33/��(D∗(2010)+D∗(2010)−)/�total �33/��(D∗(2010)+D∗(2010)−)/�total �33/��(D∗(2010)+D∗(2010)−)/�total �33/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D∗+D∗−not seennot seennot seennot seen PAKHLOVA 07 BELL e+ e− → D∗+D∗− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AUBERT 09M BABR e+ e− → D∗+D∗− γ�(D0D−π++
.
. (ex
l. D∗(2007)0D∗0 +
.
.,D∗(2010)+D− +
.
.))/�total �35/��(D0D−π++
.
. (ex
l. D∗(2007)0D∗0 +
.
.,D∗(2010)+D− +
.
.))/�total �35/��(D0D−π++
.
. (ex
l. D∗(2007)0D∗0 +
.
.,D∗(2010)+D− +
.
.))/�total �35/��(D0D−π++
.
. (ex
l. D∗(2007)0D∗0 +
.
.,D∗(2010)+D− +
.
.))/�total �35/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen PAKHLOVA 08A BELL 10.6 e+ e− →D0D−π+ γ�(DD∗π+
.
. (ex
l. D∗D∗))/�total �36/��(DD∗π+
.
. (ex
l. D∗D∗))/�total �36/��(DD∗π+
.
. (ex
l. D∗D∗))/�total �36/��(DD∗π+
.
. (ex
l. D∗D∗))/�total �36/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D∗Dπ�(DD∗π+
.
. (ex
l. D∗D∗))/�(J/ψπ+π−) �36/�2�(DD∗π+
.
. (ex
l. D∗D∗))/�(J/ψπ+π−) �36/�2�(DD∗π+
.
. (ex
l. D∗D∗))/�(J/ψπ+π−) �36/�2�(DD∗π+
.
. (ex
l. D∗D∗))/�(J/ψπ+π−) �36/�2VALUE CL% DOCUMENT ID TECN COMMENT
<15<15<15<15 90 CRONIN-HEN...09 CLEO e+ e−�(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �37/��(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �37/��(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �37/��(D0D∗−π++
.
. (ex
l. D∗(2010)+D∗(2010)−))/�total �37/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen PAKHLOVA 09 BELL e+ e− →D0D∗−π+ γ�(D0D∗(2010)−π++
.
.)/�(J/ψπ+π−) �38/�2�(D0D∗(2010)−π++
.
.)/�(J/ψπ+π−) �38/�2�(D0D∗(2010)−π++
.
.)/�(J/ψπ+π−) �38/�2�(D0D∗(2010)−π++
.
.)/�(J/ψπ+π−) �38/�2VALUE CL% DOCUMENT ID TECN COMMENT
<9<9<9<9 90 PAKHLOVA 09 BELL e+ e− → D0D∗−π+�(D0D∗(2010)−π++
.
.)/�total × �(e+ e−)/�total �38/�× �1/��(D0D∗(2010)−π++
.
.)/�total × �(e+ e−)/�total �38/�× �1/��(D0D∗(2010)−π++
.
.)/�total × �(e+ e−)/�total �38/�× �1/��(D0D∗(2010)−π++
.
.)/�total × �(e+ e−)/�total �38/�× �1/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.42× 10−6<0.42× 10−6<0.42× 10−6<0.42× 10−6 90 1 PAKHLOVA 09 BELL e+ e− → D0D∗−π+1Using 4263+8

−9 MeV for the mass of X (4260).�(D∗D∗π
)/�total �39/��(D∗D∗π
)/�total �39/��(D∗D∗π
)/�total �39/��(D∗D∗π
)/�total �39/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D∗D∗π�(D∗D∗π
)/�(J/ψπ+π−) �39/�2�(D∗D∗π
)/�(J/ψπ+π−) �39/�2�(D∗D∗π
)/�(J/ψπ+π−) �39/�2�(D∗D∗π
)/�(J/ψπ+π−) �39/�2VALUE CL% DOCUMENT ID TECN COMMENT

<8.2<8.2<8.2<8.2 90 CRONIN-HEN...09 CLEO e+ e−�(D+s D−s )/�total �40/��(D+s D−s )/�total �40/��(D+s D−s )/�total �40/��(D+s D−s )/�total �40/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen DEL-AMO-SA...10N BABR e+ e− → D+s D−s γnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D+s D−s
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen PAKHLOVA 11 BELL e+ e− → D+s D−s γ�(D+s D−s )/�(J/ψπ+π−) �40/�2�(D+s D−s )/�(J/ψπ+π−) �40/�2�(D+s D−s )/�(J/ψπ+π−) �40/�2�(D+s D−s )/�(J/ψπ+π−) �40/�2VALUE CL% DOCUMENT ID TECN COMMENT
<0.7<0.7<0.7<0.7 95 DEL-AMO-SA...10N BABR 10.6 e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.3 90 CRONIN-HEN...09 CLEO e+ e−�(D∗+s D−s +
.
.)/�total �41/��(D∗+s D−s +
.
.)/�total �41/��(D∗+s D−s +
.
.)/�total �41/��(D∗+s D−s +
.
.)/�total �41/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen DEL-AMO-SA...10N BABR e+ e− → D∗+s D−s γnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D∗+s D−s
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen PAKHLOVA 11 BELL e+ e− → D∗+s D−s γ�(D∗+s D−s +
.
.)/�(J/ψπ+π−) �41/�2�(D∗+s D−s +
.
.)/�(J/ψπ+π−) �41/�2�(D∗+s D−s +
.
.)/�(J/ψπ+π−) �41/�2�(D∗+s D−s +
.
.)/�(J/ψπ+π−) �41/�2VALUE CL% DOCUMENT ID TECN COMMENT
< 0.8< 0.8< 0.8< 0.8 90 CRONIN-HEN...09 CLEO e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<44 95 DEL-AMO-SA...10N BABR 10.6 e+ e−



1455145514551455See key on page 601 MesonParti
le ListingsX (4260),X (4350),X (4360)�(D∗+s D∗−s )/�total �42/��(D∗+s D∗−s )/�total �42/��(D∗+s D∗−s )/�total �42/��(D∗+s D∗−s )/�total �42/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen CRONIN-HEN...09 CLEO e+ e− → D∗+s D∗−s
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen PAKHLOVA 11 BELL e+ e− → D∗+s D∗−s γnot seen DEL-AMO-SA...10N BABR e+ e− → D∗+s D∗−s γ�(D∗+s D∗−s )/�(J/ψπ+π−) �42/�2�(D∗+s D∗−s )/�(J/ψπ+π−) �42/�2�(D∗+s D∗−s )/�(J/ψπ+π−) �42/�2�(D∗+s D∗−s )/�(J/ψπ+π−) �42/�2VALUE CL% DOCUMENT ID TECN COMMENT
< 9.5< 9.5< 9.5< 9.5 90 CRONIN-HEN...09 CLEO e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<30 95 DEL-AMO-SA...10N BABR 10.6 e+ e−�(pp)/�(J/ψπ+π−) �43/�2�(pp)/�(J/ψπ+π−) �43/�2�(pp)/�(J/ψπ+π−) �43/�2�(pp)/�(J/ψπ+π−) �43/�2VALUE CL% DOCUMENT ID COMMENT
<0.13<0.13<0.13<0.13 90 1 AUBERT 06B e+ e− → pp γ1Using 4259 ± 10 MeV for the mass and 88 ± 24 MeV for the width of X (4260).X (4260) REFERENCESX (4260) REFERENCESX (4260) REFERENCESX (4260) REFERENCESABLIKIM 15Q PR D92 012008 M. Ablikim et al. (BES III Collab.)HAN 15 PR D92 012011 Y.L. Han et al. (BELLE Collab.)ABLIKIM 14 PRL 112 092001 M. Ablikim et al. (BES III Collab.)SHEN 14 PR D89 072015 C.P. Shen et al. (BELLE Collab.)ABLIKIM 13T PRL 110 252001 M. Ablikim et al. (BES III Collab.)LIU 13B PRL 110 252002 Z.Q. Liu et al. (BELLE Collab.)WANG 13B PR D87 051101 X.L. Wang et al. (BELLE Collab.)LEES 12AC PR D86 051102 J.P. Lees et al. (BABAR Collab.)PAKHLOVA 11 PR D83 011101 G. Pakhlova et al. (BELLE Collab.)PEDLAR 11 PRL 107 041803 T. Pedlar et al. (CLEO Collab.)DEL-AMO-SA... 10N PR D82 052004 P. del Amo San
hez et al. (BABAR Collab.)AUBERT 09M PR D79 092001 B. Aubert et al. (BABAR Collab.)CRONIN-HEN... 09 PR D80 072001 D. Cronin-Hennessy et al. (CLEO Collab.)PAKHLOVA 09 PR D80 091101 G. Pakhlova et al. (BELLE Collab.)AUBERT 08S PR D77 092002 B. Aubert et al. (BABAR Collab.)LIU 08H PR D78 014032 Z.Q. Liu, X.S. Qin, C.Z. YuanPAKHLOVA 08 PR D77 011103 G. Pakhlova et al. (BELLE Collab.)PAKHLOVA 08A PRL 100 062001 G. Pakhlova et al. (BELLE Collab.)YUAN 08 PR D77 011105 C.Z. Yuan et al. (BELLE Collab.)AUBERT 07AK PR D76 012008 B. Aubert et al. (BABAR Collab.)AUBERT 07BE PR D76 111105 B. Aubert et al. (BABAR Collab.)AUBERT 07S PRL 98 212001 B. Aubert et al. (BABAR Collab.)PAKHLOVA 07 PRL 98 092001 G. Pakhlova et al. (BELLE Collab.)WANG 07D PRL 99 142002 X.L. Wang et al. (BELLE Collab.)YUAN 07 PRL 99 182004 C.Z. Yuan et al. (BELLE Collab.)AUBERT 06 PR D73 011101 B. Aubert et al. (BABAR Collab.)AUBERT 06B PR D73 012005 B. Aubert et al. (BABAR Collab.)AUBERT,BE 06D PR D74 091103 B. Aubert et al. (BABAR Collab.)COAN 06 PRL 96 162003 T.E. Coan et al. (CLEO Collab.)HE 06B PR D74 091104 Q. He et al. (CLEO Collab.)AUBERT,B 05I PRL 95 142001 B. Aubert et al. (BABAR Collab.)X (4350) IG (JPC ) = 0+(??+)OMITTED FROM SUMMARY TABLESeen by SHEN 10 in the γ γ → J/ψφ. Needs 
on�rmation.X (4350) MASSX (4350) MASSX (4350) MASSX (4350) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT4350.6+4.6

−5.1±0.74350.6+4.6
−5.1±0.74350.6+4.6
−5.1±0.74350.6+4.6
−5.1±0.7 8.8+4.2

−3.2 1 SHEN 10 BELL 10.6 e+ e− →e+ e− J/ψφ1Statisti
al signi�
an
e of 3.2 σ.X (4350) WIDTHX (4350) WIDTHX (4350) WIDTHX (4350) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT13+18
− 9±413+18
− 9±413+18
− 9±413+18
− 9±4 8.8+4.2

−3.2 1 SHEN 10 BELL 10.6 e+ e− →e+ e− J/ψφ1Statisti
al signi�
an
e of 3.2 σ.X (4350) DECAY MODESX (4350) DECAY MODESX (4350) DECAY MODESX (4350) DECAY MODESMode Fra
tion (�i /�)�1 J/ψφ seen�2 γ γ seenX (4350) �(i)�(γ γ)/�(total)X (4350) �(i)�(γ γ)/�(total)X (4350) �(i)�(γ γ)/�(total)X (4350) �(i)�(γ γ)/�(total)�(γ γ
)

× �(J/ψφ
)/�total �2�1/��(γ γ

)

× �(J/ψφ
)/�total �2�1/��(γ γ

)

× �(J/ψφ
)/�total �2�1/��(γ γ

)

× �(J/ψφ
)/�total �2�1/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT6.7+3.2

−2.4±1.16.7+3.2
−2.4±1.16.7+3.2
−2.4±1.16.7+3.2
−2.4±1.1 8.8+4.2

−3.2 1 SHEN 10 BELL 10.6 e+ e− →e+ e− J/ψφ
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.5+0.7

−0.6±0.3 8.8+4.2
−3.2 2 SHEN 10 BELL 10.6 e+ e− →e+ e− J/ψφ1For JP = 0+. Statisti
al signi�
an
e of 3.2 σ.2 For JP = 2+. Statisti
al signi�
an
e of 3.2 σ.

X (4350) BRANCHING RATIOSX (4350) BRANCHING RATIOSX (4350) BRANCHING RATIOSX (4350) BRANCHING RATIOS�(J/ψφ
)/�total �1/��(J/ψφ
)/�total �1/��(J/ψφ
)/�total �1/��(J/ψφ
)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 SHEN 10 BELL 10.6 e+ e− →e+ e− J/ψφ1Statisti
al signi�
an
e of 3.2 σ.�(γ γ

)/�total �2/��(γ γ
)/�total �2/��(γ γ
)/�total �2/��(γ γ
)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 SHEN 10 BELL 10.6 e+ e− →e+ e− J/ψφ1Statisti
al signi�
an
e of 3.2 σ.X (4350) REFERENCESX (4350) REFERENCESX (4350) REFERENCESX (4350) REFERENCESSHEN 10 PRL 104 112004 C.P. Shen et al. (BELLE Collab.)X (4360) IG (JPC ) = ??(1−−)Seen in radiative return from e+ e− 
ollisions at √s = 9.54{10.58GeV by AUBERT 07S, WANG 07D, and LEES 14F. See also thereview under the X (3872) parti
le listings. (See the index for thepage number.) X (4360) MASSX (4360) MASSX (4360) MASSX (4360) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT4346± 6 OUR AVERAGE4346± 6 OUR AVERAGE4346± 6 OUR AVERAGE4346± 6 OUR AVERAGE4347± 6±3 279 1 WANG 15A BELL 10.58 e+ e− →

γπ+π−ψ(2S)4340±16±9 37 2 LEES 14F BABR 10.58 e+ e− →
γπ+π−ψ(2S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4355+ 9
−10±9 74 3 LIU 08H RVUE 10.58 e+ e− →

γπ+π−ψ(2S)4324±24 4 AUBERT 07S BABR 10.58 e+ e− →
γπ+π−ψ(2S)4361± 9±9 47 2 WANG 07D BELL 10.58 e+ e− →
γπ+π−ψ(2S)1 From a two-resonan
e �t. Supersedes WANG 07D.2 From a two-resonan
e �t.3 From a 
ombined �t of AUBERT 07S and WANG 07D data with two resonan
es.4 From a single-resonan
e �t. Systemati
 errors not estimated.X (4360) WIDTHX (4360) WIDTHX (4360) WIDTHX (4360) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT102±10 OUR AVERAGE102±10 OUR AVERAGE102±10 OUR AVERAGE102±10 OUR AVERAGE103± 9± 5 279 1 WANG 15A BELL 10.58 e+ e− →
γπ+π−ψ(2S)94±32±13 37 2 LEES 14F BABR 10.58 e+ e− →
γπ+π−ψ(2S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •103+17
−15±11 74 3 LIU 08H RVUE 10.58 e+ e− →

γπ+π−ψ(2S)172±33 4 AUBERT 07S BABR 10.58 e+ e− →
γπ+π−ψ(2S)74±15±10 47 2 WANG 07D BELL 10.58 e+ e− →
γπ+π−ψ(2S)1 From a two-resonan
e �t. Supersedes WANG 07D.2 From a two-resonan
e �t.3 From a 
ombined �t of AUBERT 07S and WANG 07D data with two resonan
es.4 From a single-resonan
e �t. Systemati
 errors not estimated.X (4360) DECAY MODESX (4360) DECAY MODESX (4360) DECAY MODESX (4360) DECAY MODESMode Fra
tion (�i /�)�1 e+ e−�2 ψ(2S)π+π− seen�3 ψ(3823)π+π− possibly seen�4 J/ψη�5 D0D∗−π+�6 χ
1 γ�7 χ
2 γ



1456145614561456MesonParti
le ListingsX (4360),ψ(4415)X (4360) �(i) × �(e+ e−)/�(total)X (4360) �(i) × �(e+ e−)/�(total)X (4360) �(i) × �(e+ e−)/�(total)X (4360) �(i) × �(e+ e−)/�(total)�(ψ(2S)π+π−)

× �(e+ e−)/�total �2�1/��(ψ(2S)π+π−)

× �(e+ e−)/�total �2�1/��(ψ(2S)π+π−)

× �(e+ e−)/�total �2�1/��(ψ(2S)π+π−)

× �(e+ e−)/�total �2�1/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •9.2±0.6±0.6 279 1 WANG 15A BELL 10.58 e+ e− →

γπ+π−ψ(2S)10.9±0.6±0.7 279 2 WANG 15A BELL 10.58 e+ e− →
γπ+π−ψ(2S)6.0±1.0±0.5 37 3 LEES 14F BABR 10.58 e+ e− →
γπ+π−ψ(2S)7.2±1.0±0.6 37 4 LEES 14F BABR 10.58 e+ e− →
γπ+π−ψ(2S)11.1+1.3

−1.2 74 5 LIU 08H RVUE 10.58 e+ e− →
γπ+π−ψ(2S)12.3±1.2 74 6 LIU 08H RVUE 10.58 e+ e− →
γπ+π−ψ(2S)10.4±1.7±1.5 47 3 WANG 07D BELL 10.58 e+ e− →
γπ+π−ψ(2S)11.8±1.8±1.4 47 4 WANG 07D BELL 10.58 e+ e− →
γπ+π−ψ(2S)1 Solution I of two equivalent solutions from a �t using two interfering resonan
es. Super-sedes WANG 07D.2 Solution II of two equivalent solutions from a �t using two interfering resonan
es. Su-persedes WANG 07D.3 Solution I of two equivalent solutions in a �t using two interfering resonan
es.4 Solution II of two equivalent solutions in a �t using two interfering resonan
es.5 Solution I in a 
ombined �t of AUBERT 07S and WANG 07D data with two resonan
es.6 Solution II in a 
ombined �t of AUBERT 07S and WANG 07D data with two resonan
es.�(J/ψη

)

× �(e+ e−)/�total �4�1/��(J/ψη
)

× �(e+ e−)/�total �4�1/��(J/ψη
)

× �(e+ e−)/�total �4�1/��(J/ψη
)

× �(e+ e−)/�total �4�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.8 90 WANG 13B BELL e+ e− → J/ψηγ�(χ
1 γ
)

× �(e+ e−)/�total �6�1/��(χ
1 γ
)

× �(e+ e−)/�total �6�1/��(χ
1 γ
)

× �(e+ e−)/�total �6�1/��(χ
1 γ
)

× �(e+ e−)/�total �6�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<0.57<0.57<0.57<0.57 90 1 HAN 15 BELL 10.58 e+ e− → χ
1 γ1Using B(η → γ γ) = (39.41 ± 0.21)%.�(χ
2 γ

)

× �(e+ e−)/�total �7�1/��(χ
2 γ
)

× �(e+ e−)/�total �7�1/��(χ
2 γ
)

× �(e+ e−)/�total �7�1/��(χ
2 γ
)

× �(e+ e−)/�total �7�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<1.9<1.9<1.9<1.9 90 1 HAN 15 BELL 10.58 e+ e− → χ
2 γ1Using B(η → γ γ) = (39.41 ± 0.21)%.X (4360) BRANCHING RATIOSX (4360) BRANCHING RATIOSX (4360) BRANCHING RATIOSX (4360) BRANCHING RATIOS�(D0D∗−π+)/�(ψ(2S)π+π−) �5/�2�(D0D∗−π+)/�(ψ(2S)π+π−) �5/�2�(D0D∗−π+)/�(ψ(2S)π+π−) �5/�2�(D0D∗−π+)/�(ψ(2S)π+π−) �5/�2VALUE CL% DOCUMENT ID TECN COMMENT
<8<8<8<8 90 PAKHLOVA 09 BELL e+ e− → X (4360) →D0D∗−π+�(ψ(3823)π+π−)/�total �3/��(ψ(3823)π+π−)/�total �3/��(ψ(3823)π+π−)/�total �3/��(ψ(3823)π+π−)/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENTpossibly seenpossibly seenpossibly seenpossibly seen 19 1 ABLIKIM 15S BES3 e+ e− →

π+π−χ
1 γ1From a �t of e+ e− → π+π−ψ(3823), ψ(3823) → χ
1 γ 
ross se
tions taken at √svalues of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to the X (4360) line shape.�(D0D∗−π+)/�total × �(e+ e−)/�total �5/�× �1/��(D0D∗−π+)/�total × �(e+ e−)/�total �5/�× �1/��(D0D∗−π+)/�total × �(e+ e−)/�total �5/�× �1/��(D0D∗−π+)/�total × �(e+ e−)/�total �5/�× �1/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.72× 10−6<0.72× 10−6<0.72× 10−6<0.72× 10−6 90 1 PAKHLOVA 09 BELL e+ e− → X (4360) →D0D∗−π+1Using 4355+ 9

−10 ± 9 MeV for the mass of X (4360).X (4360) REFERENCESX (4360) REFERENCESX (4360) REFERENCESX (4360) REFERENCESABLIKIM 15S PRL 115 011803 M. Ablikim et al. (BES III Collab.)HAN 15 PR D92 012011 Y.L. Han et al. (BELLE Collab.)WANG 15A PR D91 112007 X.L. Wang et al. (BELLE Collab.)LEES 14F PR D89 111103 J.P. Lees et al. (BABAR Collab.)WANG 13B PR D87 051101 X.L. Wang et al. (BELLE Collab.)PAKHLOVA 09 PR D80 091101 G. Pakhlova et al. (BELLE Collab.)LIU 08H PR D78 014032 Z.Q. Liu, X.S. Qin, C.Z. YuanAUBERT 07S PRL 98 212001 B. Aubert et al. (BABAR Collab.)WANG 07D PRL 99 142002 X.L. Wang et al. (BELLE Collab.)

ψ(4415) IG (JPC ) = 0−(1−−)
ψ(4415) MASSψ(4415) MASSψ(4415) MASSψ(4415) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT4421 ± 4 OUR ESTIMATE4421 ± 4 OUR ESTIMATE4421 ± 4 OUR ESTIMATE4421 ± 4 OUR ESTIMATE4415.1± 7.94415.1± 7.94415.1± 7.94415.1± 7.9 1 ABLIKIM 08D BES2 e+ e− → hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •4412 ±15 2 MO 10 RVUE e+ e− → hadrons4411 ± 7 3 PAKHLOVA 08A BELL 10.6 e+ e− → D0D−π+ γ4425 ± 6 4 SETH 05A RVUE e+ e− → hadrons4429 ± 9 5 SETH 05A RVUE e+ e− → hadrons4417 ±10 BRANDELIK 78C DASP e+ e−4414 ± 7 SIEGRIST 76 MRK1 e+ e−1Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = (234 ± 88)◦.2Reanalysis of data presented in BAI 00 and BAI 02C. From a global �t over the 
enter-of-mass energy 3.8-4.8 GeV 
overing the ψ(4040), ψ(4160) and ψ(4415) resonan
es andin
luding interferen
e e�e
ts.3 Systemati
 un
ertainties not estimated.4 From a �t to Crystal Ball (OSTERHELD 86) data.5 From a �t to BES (BAI 02C) data.
ψ(4415) WIDTHψ(4415) WIDTHψ(4415) WIDTHψ(4415) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT62 ±20 OUR ESTIMATE62 ±20 OUR ESTIMATE62 ±20 OUR ESTIMATE62 ±20 OUR ESTIMATE71.5±19.071.5±19.071.5±19.071.5±19.0 6 ABLIKIM 08D BES2 e+ e− → hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •118 ±32 7 MO 10 RVUE e+ e− → hadrons77 ±20 8 PAKHLOVA 08A BELL 10.6 e+ e− → D0D−π+ γ119 ±16 9 SETH 05A RVUE e+ e− → hadrons118 ±35 10 SETH 05A RVUE e+ e− → hadrons66 ±15 BRANDELIK 78C DASP e+ e−33 ±10 SIEGRIST 76 MRK1 e+ e−6Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = (234 ± 88)◦.7Reanalysis of data presented in BAI 00 and BAI 02C. From a global �t over the 
enter-of-mass energy 3.8-4.8 GeV 
overing the ψ(4040), ψ(4160) and ψ(4415) resonan
es andin
luding interferen
e e�e
ts.8 Systemati
 un
ertainties not estimated.9 From a �t to Crystal Ball (OSTERHELD 86) data.10 From a �t to BES (BAI 02C) data.
ψ(4415) DECAY MODESψ(4415) DECAY MODESψ(4415) DECAY MODESψ(4415) DECAY MODESDue to the 
omplexity of the 
 
 threshold region, in this listing, \seen"(\not seen") means that a 
ross se
tion for the mode in question hasbeen measured at e�e
tive √

s near this parti
le's 
entral mass value,more (less) than 2σ above zero, without regard to any peaking behaviorin √
s or absen
e thereof. See mode listing(s) for details and referen
es.Mode Fra
tion (�i /�) Con�den
e level�1 DD seen�2 D0D0 seen�3 D+D− seen�4 D∗D+ 
.
. seen�5 D∗(2007)0D0+ 
.
. seen�6 D∗(2010)+D−+ 
.
. seen�7 D∗D∗ seen�8 D∗(2007)0D∗(2007)0+ 
.
. seen�9 D∗(2010)+D∗(2010)−+ 
.
. seen�10 D0D−π+ (ex
l. D∗(2007)0D0+
.
., D∗(2010)+D− +
.
. < 2.3 % 90%�11 DD∗2(2460) → D0D−π++
.
. (10 ±4 ) %�12 D0D∗−π++
.
. < 11 % 90%�13 D+s D−s not seen�14 ωχ
2 possibly seen�15 D∗+s D−s +
.
. seen�16 D∗+s D∗−s not seen�17 ψ(3823)π+π− possibly seen�18 J/ψη < 6 × 10−3 90%�19 χ
1 γ < 8 × 10−4 90%�20 χ
2 γ < 4 × 10−3 90%�21 e+ e− ( 9.4±3.2)× 10−6



1457145714571457See key on page 601 MesonParti
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ψ(4415),X (4430)±

ψ(4415) PARTIAL WIDTHSψ(4415) PARTIAL WIDTHSψ(4415) PARTIAL WIDTHSψ(4415) PARTIAL WIDTHS�(e+ e−) �21�(e+ e−) �21�(e+ e−) �21�(e+ e−) �21VALUE (keV) DOCUMENT ID TECN COMMENT0.58±0.07 OUR ESTIMATE0.58±0.07 OUR ESTIMATE0.58±0.07 OUR ESTIMATE0.58±0.07 OUR ESTIMATE0.35±0.120.35±0.120.35±0.120.35±0.12 11 ABLIKIM 08D BES2 e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.4 to 0.8 12 MO 10 RVUE e+ e− → hadrons0.72±0.11 13 SETH 05A RVUE e+ e− → hadrons0.64±0.23 14 SETH 05A RVUE e+ e− → hadrons0.49±0.13 BRANDELIK 78C DASP e+ e−0.44±0.14 SIEGRIST 76 MRK1 e+ e−11Reanalysis of data presented in BAI 02C. From a global �t over the 
enter-of-mass energyregion 3.7{5.0 GeV 
overing the ψ(3770), ψ(4040), ψ(4160), and ψ(4415) resonan
es.Phase angle �xed in the �t to δ = (234 ± 88)◦.12Reanalysis of data presented in BAI 00 and BAI 02C. From a global �t over the 
enter-of-mass energy 3.8-4.8 GeV 
overing the ψ(4040), ψ(4160) and ψ(4415) resonan
esand in
luding interferen
e e�e
ts. Four sets of solutions are obtained with the same �tquality, mass and total width, but with di�erent e+ e− partial widths. We quote onlythe range of values.13 From a �t to Crystal Ball (OSTERHELD 86) data.14 From a �t to BES (BAI 02C) data.

ψ(4415) �(i) × �(e+ e−)/�(total)ψ(4415) �(i) × �(e+ e−)/�(total)ψ(4415) �(i) × �(e+ e−)/�(total)ψ(4415) �(i) × �(e+ e−)/�(total)�(J/ψη
)

× �(e+ e−)/�total �18�21/��(J/ψη
)

× �(e+ e−)/�total �18�21/��(J/ψη
)

× �(e+ e−)/�total �18�21/��(J/ψη
)

× �(e+ e−)/�total �18�21/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<3.6<3.6<3.6<3.6 90 WANG 13B BELL e+ e− → J/ψηγ�(χ
1 γ

)

× �(e+ e−)/�total �19�21/��(χ
1 γ
)

× �(e+ e−)/�total �19�21/��(χ
1 γ
)

× �(e+ e−)/�total �19�21/��(χ
1 γ
)

× �(e+ e−)/�total �19�21/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<0.47<0.47<0.47<0.47 90 15 HAN 15 BELL 10.58 e+ e− → χ
1 γ15Using B(η → γ γ) = (39.41 ± 0.21)%.�(χ
2 γ

)

× �(e+ e−)/�total �20�21/��(χ
2 γ
)

× �(e+ e−)/�total �20�21/��(χ
2 γ
)

× �(e+ e−)/�total �20�21/��(χ
2 γ
)

× �(e+ e−)/�total �20�21/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<2.3<2.3<2.3<2.3 90 16 HAN 15 BELL 10.58 e+ e− → χ
2 γ16Using B(η → γ γ) = (39.41 ± 0.21)%.

ψ(4415) BRANCHING RATIOSψ(4415) BRANCHING RATIOSψ(4415) BRANCHING RATIOSψ(4415) BRANCHING RATIOS�(D0D0)/�total �2/��(D0D0)/�total �2/��(D0D0)/�total �2/��(D0D0)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen PAKHLOVA 08 BELL e+ e− → D0D0 γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AUBERT 09M BABR e+ e− → D0D0 γ�(D+D−)/�total �3/��(D+D−)/�total �3/��(D+D−)/�total �3/��(D+D−)/�total �3/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen PAKHLOVA 08 BELL e+ e− → D+D− γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen AUBERT 09M BABR e+ e− → D+D− γ�(DD)/�(D∗D∗) �1/�7�(DD)/�(D∗D∗) �1/�7�(DD)/�(D∗D∗) �1/�7�(DD)/�(D∗D∗) �1/�7VALUE DOCUMENT ID TECN COMMENT0.14±0.12±0.030.14±0.12±0.030.14±0.12±0.030.14±0.12±0.03 AUBERT 09M BABR e+ e− → γD(∗)D(∗)�(D∗(2007)0D0+ 
.
.)/�total �5/��(D∗(2007)0D0+ 
.
.)/�total �5/��(D∗(2007)0D0+ 
.
.)/�total �5/��(D∗(2007)0D0+ 
.
.)/�total �5/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗0D0 γ�(D∗(2010)+D−+ 
.
.)/�total �6/��(D∗(2010)+D−+ 
.
.)/�total �6/��(D∗(2010)+D−+ 
.
.)/�total �6/��(D∗(2010)+D−+ 
.
.)/�total �6/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗+D− γseenseenseenseen PAKHLOVA 07 BELL e+ e− → D∗+D− γ�(D∗D+ 
.
.)/�(D∗D∗) �4/�7�(D∗D+ 
.
.)/�(D∗D∗) �4/�7�(D∗D+ 
.
.)/�(D∗D∗) �4/�7�(D∗D+ 
.
.)/�(D∗D∗) �4/�7VALUE DOCUMENT ID TECN COMMENT0.17±0.25±0.030.17±0.25±0.030.17±0.25±0.030.17±0.25±0.03 AUBERT 09M BABR e+ e− → γD(∗)D(∗)�(D∗(2007)0D∗(2007)0+ 
.
.)/�total �8/��(D∗(2007)0D∗(2007)0+ 
.
.)/�total �8/��(D∗(2007)0D∗(2007)0+ 
.
.)/�total �8/��(D∗(2007)0D∗(2007)0+ 
.
.)/�total �8/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗0D∗0γ�(D∗(2010)+D∗(2010)−+ 
.
.)/�total �9/��(D∗(2010)+D∗(2010)−+ 
.
.)/�total �9/��(D∗(2010)+D∗(2010)−+ 
.
.)/�total �9/��(D∗(2010)+D∗(2010)−+ 
.
.)/�total �9/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 09M BABR e+ e− → D∗+D∗− γseenseenseenseen PAKHLOVA 07 BELL e+ e− → D∗+D∗− γ�(DD∗2(2460)→ D0D−π++
.
.)/�total �11/��(DD∗2(2460)→ D0D−π++
.
.)/�total �11/��(DD∗2(2460)→ D0D−π++
.
.)/�total �11/��(DD∗2(2460)→ D0D−π++
.
.)/�total �11/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT10.5±2.4±3.810.5±2.4±3.810.5±2.4±3.810.5±2.4±3.8 17 PAKHLOVA 08A BELL 10.6 e+ e− → D0D−π+ γ17Using 4421 ± 4 MeV for the mass and 62 ± 20 MeV for the width of ψ(4415).

�(D0D−π+ (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.)/�(DD∗2(2460)→ D0D−π++
.
.) �10/�11�(D0D−π+ (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.)/�(DD∗2(2460)→ D0D−π++
.
.) �10/�11�(D0D−π+ (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.)/�(DD∗2(2460)→ D0D−π++
.
.) �10/�11�(D0D−π+ (ex
l. D∗(2007)0D0 +
.
.,D∗(2010)+D− +
.
.)/�(DD∗2(2460)→ D0D−π++
.
.) �10/�11VALUE CL% DOCUMENT ID TECN COMMENT
<0.22<0.22<0.22<0.22 90 18 PAKHLOVA 08A BELL 10.6 e+ e− → D0D−π+ γ18Using 4421 ± 4 MeV for the mass and 62 ± 20 MeV for the width of ψ(4415).�(D0D∗−π++
.
.)/�total × �(e+ e−)/�total �12/�× �21/��(D0D∗−π++
.
.)/�total × �(e+ e−)/�total �12/�× �21/��(D0D∗−π++
.
.)/�total × �(e+ e−)/�total �12/�× �21/��(D0D∗−π++
.
.)/�total × �(e+ e−)/�total �12/�× �21/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.99× 10−6<0.99× 10−6<0.99× 10−6<0.99× 10−6 90 19 PAKHLOVA 09 BELL e+ e− → D0D∗−π+19Using 4421 ± 4 MeV for the mass of ψ(4415).�(D+s D−s )/�total �13/��(D+s D−s )/�total �13/��(D+s D−s )/�total �13/��(D+s D−s )/�total �13/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen PAKHLOVA 11 BELL e+ e− → D+s D−s γnot seennot seennot seennot seen DEL-AMO-SA...10N BABR e+ e− → D+s D−s γ�(ωχ
2)/�total �14/��(ωχ
2)/�total �14/��(ωχ
2)/�total �14/��(ωχ
2)/�total �14/�VALUE DOCUMENT ID TECN COMMENTpossibly seenpossibly seenpossibly seenpossibly seen ABLIKIM 16A BES3 e+ e− → γπ+π−π0 ℓ+ ℓ−�(D∗+s D−s +
.
.)/�total �15/��(D∗+s D−s +
.
.)/�total �15/��(D∗+s D−s +
.
.)/�total �15/��(D∗+s D−s +
.
.)/�total �15/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen PAKHLOVA 11 BELL e+ e− → D∗+s D−s γseenseenseenseen DEL-AMO-SA...10N BABR e+ e− → D∗+s D−s γ�(D∗+s D∗−s )/�total �16/��(D∗+s D∗−s )/�total �16/��(D∗+s D∗−s )/�total �16/��(D∗+s D∗−s )/�total �16/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen PAKHLOVA 11 BELL e+ e− → D∗+s D∗−s γnot seennot seennot seennot seen DEL-AMO-SA...10N BABR e+ e− → D∗+s D∗−s γ�(ψ(3823)π+π−)/�total �17/��(ψ(3823)π+π−)/�total �17/��(ψ(3823)π+π−)/�total �17/��(ψ(3823)π+π−)/�total �17/�VALUE EVTS DOCUMENT ID TECN COMMENTpossibly seenpossibly seenpossibly seenpossibly seen 19 20 ABLIKIM 15S BES3 e+ e− → π+π−χ
1 γ20From a �t of e+ e− → π+π−ψ(3823), ψ(3823) → χ
1 γ 
ross se
tions taken at √svalues of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to the ψ(4415) line shape.

ψ(4415) REFERENCESψ(4415) REFERENCESψ(4415) REFERENCESψ(4415) REFERENCESABLIKIM 16A PR D93 011102 M. Ablikim et al. (BES III Collab.)ABLIKIM 15S PRL 115 011803 M. Ablikim et al. (BES III Collab.)HAN 15 PR D92 012011 Y.L. Han et al. (BELLE Collab.)WANG 13B PR D87 051101 X.L. Wang et al. (BELLE Collab.)PAKHLOVA 11 PR D83 011101 G. Pakhlova et al. (BELLE Collab.)DEL-AMO-SA... 10N PR D82 052004 P. del Amo San
hez et al. (BABAR Collab.)MO 10 PR D82 077501 X.H. Mo, C.Z. Yuan, P. Wang (BHEP)AUBERT 09M PR D79 092001 B. Aubert et al. (BABAR Collab.)PAKHLOVA 09 PR D80 091101 G. Pakhlova et al. (BELLE Collab.)ABLIKIM 08D PL B660 315 M. Ablikim et al. (BES Collab.)PAKHLOVA 08 PR D77 011103 G. Pakhlova et al. (BELLE Collab.)PAKHLOVA 08A PRL 100 062001 G. Pakhlova et al. (BELLE Collab.)PAKHLOVA 07 PRL 98 092001 G. Pakhlova et al. (BELLE Collab.)SETH 05A PR D72 017501 K.K. SethBAI 02C PRL 88 101802 J.Z. Bai et al. (BES Collab.)BAI 00 PRL 84 594 J.Z. Bai et al. (BES Collab.)OSTERHELD 86 SLAC-PUB-4160 A. Osterheld et al. (SLAC Crystal Ball Collab.)BRANDELIK 78C PL 76B 361 R. Brandelik et al. (DASP Collab.)SIEGRIST 76 PRL 36 700 J.L. Siegrist et al. (LBL, SLAC)X (4430)± I (JP ) = ?(1+)First seen by CHOI 08 in B → K π+ψ(2S) de
ays, 
on�rmedby AAIJ 14AG, and 
on�rmed in a model-independent way byAAIJ 15BH. Also seen by CHILIKIN 14 in B → K+πJ/ψ de
ays.JP was determined by CHILIKIN 13 and AAIJ 14AG.X (4430)± MASSX (4430)± MASSX (4430)± MASSX (4430)± MASSVALUE (MeV) DOCUMENT ID TECN COMMENT4478+15
−18 OUR AVERAGE4478+15
−18 OUR AVERAGE4478+15
−18 OUR AVERAGE4478+15
−18 OUR AVERAGE4475± 7+15

−25 1 AAIJ 14AG LHCB B0 → K+π−ψ(2S)4485±22+28
−11 1 CHILIKIN 13 BELL B0 → K+π−ψ(2S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •4443+15
−12+19

−13 2 MIZUK 09 BELL B → K π+ψ(2S)4433± 4± 2 3 CHOI 08 BELL B → K π+ψ(2S)1 From a four-dimensional amplitude analysis.2 From a Dalitz plot analysis. Superseded by CHILIKIN 13.3 Superseded by MIZUK 09 and CHILIKIN 13.



1458145814581458MesonParti
le ListingsX (4430)±,X (4660)X (4430)± WIDTHX (4430)± WIDTHX (4430)± WIDTHX (4430)± WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT181±31 OUR AVERAGE181±31 OUR AVERAGE181±31 OUR AVERAGE181±31 OUR AVERAGE172±13+37
−34 1 AAIJ 14AG LHCB B0 → K+π−ψ(2S)200+41

−46+26
−35 1 CHILIKIN 13 BELL B0 → K+π−ψ(2S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •107+86
−43+74

−56 2 MIZUK 09 BELL B → K π+ψ(2S)45+18
−13+30

−13 3 CHOI 08 BELL B → K π+ψ(2S)1 From a four-dimensional amplitude analysis.2 From a Dalitz plot analysis. Superseded by CHILIKIN 13.3 Superseded by MIZUK 09 and CHILIKIN 13.X (4430)± DECAY MODESX (4430)± DECAY MODESX (4430)± DECAY MODESX (4430)± DECAY MODESMode Fra
tion (�i /�)�1 π+ψ(2S) seen�2 π+ J/ψ seenX (4430)± BRANCHING RATIOSX (4430)± BRANCHING RATIOSX (4430)± BRANCHING RATIOSX (4430)± BRANCHING RATIOS�(π+ψ(2S))/�total �1/��(π+ψ(2S))/�total �1/��(π+ψ(2S))/�total �1/��(π+ψ(2S))/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 AAIJ 14AG LHCB B0 → K+π−ψ(2S)seenseenseenseen 2 CHILIKIN 13 BELL B0 → K+π−ψ(2S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen 3 AUBERT 09AA BABR B → K π+ψ(2S)seen 4 MIZUK 09 BELL B → K π+ψ(2S)1 From a four-dimensional amplitude analysis. No produ
t of bran
hing fra
tions quoted.2 From a four-dimensional amplitude analysis. Measured a produ
t of bran
hing fra
tionsB(B0 → X (4430)−K+)×B(X (4430)− → ψ(2S)π−) = (6.0+1.7

−2.0+2.5
−1.4) × 10−5.3AUBERT 09AA quotes B(B+ → K0X (4430)+) × B(X (4430)+ → π+ψ(2S)) <4.7×10−5 and B(B0 → K−X (4430)+) × B(X (4430)+ → π+ψ(2S)) < 3.1×10−5at 95% CL.4Measured a produ
t of bran
hing fra
tions B(B0 → K−X (4430)+) × B(X (4430)+ →

π+ψ(2S)) = (3.2+1.8
−0.9+5.3

−1.6)× 10−5. Superseded by CHILIKIN 13.�(π+ J/ψ
)/�total �2/��(π+ J/ψ
)/�total �2/��(π+ J/ψ
)/�total �2/��(π+ J/ψ
)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 CHILIKIN 14 BELL B0 → K−π+ J/ψ

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen 2 AUBERT 09AA BABR B → K π+ J/ψ1CHILIKIN 14 reports B(B0 → X (4430)+K−) × B(X (4430)+ → J/ψπ+) =(5.4+4.0
−1.0+1.1

−0.9)× 10−6.2AUBERT 09AA quotes B(B+ → K0X (4430)+) × B(X (4430)+ → π+ J/ψ) < 1.5×10−5 and B(B0 → K−X (4430)+) × B(X (4430)+ → π+ J/ψ) < 0.4 × 10−5 at95% CL. X (4430)± REFERENCESX (4430)± REFERENCESX (4430)± REFERENCESX (4430)± REFERENCESAAIJ 15BH PR D92 112009 R. Aaij et al. (LHCb Collab.)AAIJ 14AG PRL 112 222002 R. Aaij et al. (LHCb Collab.) JPCHILIKIN 14 PR D90 112009 K. Chilikin et al. (BELLE Collab.)CHILIKIN 13 PR D88 074026 K. Chilikin et al. (BELLE Collab.) JPAUBERT 09AA PR D79 112001 B. Aubert et al. (BABAR Collab.)MIZUK 09 PR D80 031104 R. Mizuk et al. (BELLE Collab.)CHOI 08 PRL 100 142001 S.-K. Choi et al. (BELLE Collab.)X (4660) IG (JPC ) = ??(1−−)Seen in radiative return from e+ e− 
ollisions at √s = 9.54{10.58GeV by WANG 07D. Also obtained in a 
ombined �t of WANG 07D,AUBERT 07S, and LEES 14F. See also the review under the X (3872)parti
le listings. (See the index for the page number.)X (4660) MASSX (4660) MASSX (4660) MASSX (4660) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT4643± 9 OUR AVERAGE4643± 9 OUR AVERAGE4643± 9 OUR AVERAGE4643± 9 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.4652±10±11 279 1 WANG 15A BELL 10.58 e+ e− →
γπ+π−ψ(2S)4669±21± 3 37 2 LEES 14F BABR 10.58 e+ e− →
γπ+π−ψ(2S)4634+ 8

− 7+ 5
− 8 142 3 PAKHLOVA 08B BELL e+ e− → �+
 �−


• • • We do not use the following data for averages, �ts, limits, et
. • • •4661+ 9
− 8± 6 44 4 LIU 08H RVUE 10.58 e+ e− →

γπ+π−ψ(2S)4664±11± 5 44 WANG 07D BELL 10.58 e+ e− →
γπ+π−ψ(2S)

1 From a two-resonan
e �t. Supersedes WANG 07D.2 From a two-resonan
e �t.3The π+π−ψ(2S) and �+
 �−
 states are not ne
essarily the same.4 From a 
ombined �t of AUBERT 07S and WANG 07D data with two resonan
es.X (4660) WIDTHX (4660) WIDTHX (4660) WIDTHX (4660) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT72±11 OUR AVERAGE72±11 OUR AVERAGE72±11 OUR AVERAGE72±11 OUR AVERAGE68±11± 5 279 1 WANG 15A BELL 10.58 e+ e− →
γπ+π−ψ(2S)104±48±10 37 2 LEES 14F BABR 10.58 e+ e− →
γπ+π−ψ(2S)92+40

−24+10
−21 142 3 PAKHLOVA 08B BELL e+ e− → �+
 �−


• • • We do not use the following data for averages, �ts, limits, et
. • • •42+17
−12± 6 44 4 LIU 08H RVUE 10.58 e+ e− →

γπ+π−ψ(2S)48±15± 3 44 WANG 07D BELL 10.58 e+ e− →
γπ+π−ψ(2S)1 From a two-resonan
e �t. Supersedes WANG 07D.2 From a two-resonan
e �t.3The π+π−ψ(2S) and �+
 �−
 states are not ne
essarily the same.4 From a 
ombined �t of AUBERT 07S and WANG 07D data with two resonan
es.X (4660) DECAY MODESX (4660) DECAY MODESX (4660) DECAY MODESX (4660) DECAY MODESMode Fra
tion (�i /�)�1 e+ e−�2 ψ(2S)π+π− seen�3 J/ψη�4 D0D∗−π+�5 χ
1 γ�6 χ
2 γ�7 �+
 �−
 X (4660) �(i) × �(e+ e−)/�(total)X (4660) �(i) × �(e+ e−)/�(total)X (4660) �(i) × �(e+ e−)/�(total)X (4660) �(i) × �(e+ e−)/�(total)�(ψ(2S)π+π−)

× �(e+ e−)/�total �2�1/��(ψ(2S)π+π−)

× �(e+ e−)/�total �2�1/��(ψ(2S)π+π−)

× �(e+ e−)/�total �2�1/��(ψ(2S)π+π−)

× �(e+ e−)/�total �2�1/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.0±0.3±0.2 279 1 WANG 15A BELL 10.58 e+ e− →

γπ+π−ψ(2S)8.1±1.1±1.0 279 2 WANG 15A BELL 10.58 e+ e− →
γπ+π−ψ(2S)2.7±1.3±0.5 37 3 LEES 14F BABR 10.58 e+ e− →
γπ+π−ψ(2S)7.5±1.7±0.7 37 4 LEES 14F BABR 10.58 e+ e− →
γπ+π−ψ(2S)2.2+0.7

−0.6 44 5 LIU 08H RVUE 10.58 e+ e− →
γπ+π−ψ(2S)5.9±1.6 44 6 LIU 08H RVUE 10.58 e+ e− →
γπ+π−ψ(2S)3.0±0.9±0.3 44 3 WANG 07D BELL 10.58 e+ e− →
γπ+π−ψ(2S)7.6±1.8±0.8 44 4 WANG 07D BELL 10.58 e+ e− →
γπ+π−ψ(2S)1 Solution I of two equivalent solutions from a �t using two interfering resonan
es. Super-sedes WANG 07D.2 Solution II of two equivalent solutions from a �t using two interfering resonan
es. Su-persedes WANG 07D.3 Solution I of two equivalent solutions in a �t using two interfering resonan
es.4 Solution II of two equivalent solutions in a �t using two interfering resonan
es.5 Solution I in a 
ombined �t of AUBERT 07S and WANG 07D data with two resonan
es.6 Solution II in a 
ombined �t of AUBERT 07S and WANG 07D data with two resonan
es.�(J/ψη

)

× �(e+ e−)/�total �3�1/��(J/ψη
)

× �(e+ e−)/�total �3�1/��(J/ψη
)

× �(e+ e−)/�total �3�1/��(J/ψη
)

× �(e+ e−)/�total �3�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.94 90 WANG 13B BELL e+ e− → J/ψηγ�(χ
1 γ
)

× �(e+ e−)/�total �5�1/��(χ
1 γ
)

× �(e+ e−)/�total �5�1/��(χ
1 γ
)

× �(e+ e−)/�total �5�1/��(χ
1 γ
)

× �(e+ e−)/�total �5�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<0.45<0.45<0.45<0.45 90 1 HAN 15 BELL 10.58 e+ e− → χ
1 γ1Using B(η → γ γ) = (39.41 ± 0.21)%.�(χ
2 γ

)

× �(e+ e−)/�total �6�1/��(χ
2 γ
)

× �(e+ e−)/�total �6�1/��(χ
2 γ
)

× �(e+ e−)/�total �6�1/��(χ
2 γ
)

× �(e+ e−)/�total �6�1/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT
<2.1<2.1<2.1<2.1 90 1 HAN 15 BELL 10.58 e+ e− → χ
2 γ1Using B(η → γ γ) = (39.41 ± 0.21)%.
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le ListingsX (4660)X (4660) BRANCHING RATIOSX (4660) BRANCHING RATIOSX (4660) BRANCHING RATIOSX (4660) BRANCHING RATIOS�(D0D∗−π+)/�(ψ(2S)π+π−) �4/�2�(D0D∗−π+)/�(ψ(2S)π+π−) �4/�2�(D0D∗−π+)/�(ψ(2S)π+π−) �4/�2�(D0D∗−π+)/�(ψ(2S)π+π−) �4/�2VALUE CL% DOCUMENT ID TECN COMMENT
<10<10<10<10 90 PAKHLOVA 09 BELL e+ e− → D0D∗−π+�(D0D∗−π+)/�total × �(e+ e−)/�total �4/�× �1/��(D0D∗−π+)/�total × �(e+ e−)/�total �4/�× �1/��(D0D∗−π+)/�total × �(e+ e−)/�total �4/�× �1/��(D0D∗−π+)/�total × �(e+ e−)/�total �4/�× �1/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.37× 10−6<0.37× 10−6<0.37× 10−6<0.37× 10−6 90 1 PAKHLOVA 09 BELL e+ e− → D0D∗−π+1Using 4664 ± 11 ± 5 MeV for the mass of X (4660).�(�+
 �−
 )/�total × �(e+ e−)/�total �7/�× �1/��(�+
 �−
 )/�total × �(e+ e−)/�total �7/�× �1/��(�+
 �−
 )/�total × �(e+ e−)/�total �7/�× �1/��(�+
 �−
 )/�total × �(e+ e−)/�total �7/�× �1/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT0.68+0.16

−0.15+0.29
−0.300.68+0.16

−0.15+0.29
−0.300.68+0.16

−0.15+0.29
−0.300.68+0.16

−0.15+0.29
−0.30 142 1 PAKHLOVA 08B BELL e+ e− → �+
 �−
1The π+π−ψ(2S) and �+
 �−
 states are not ne
essarily the same.

X (4660) REFERENCESX (4660) REFERENCESX (4660) REFERENCESX (4660) REFERENCESHAN 15 PR D92 012011 Y.L. Han et al. (BELLE Collab.)WANG 15A PR D91 112007 X.L. Wang et al. (BELLE Collab.)LEES 14F PR D89 111103 J.P. Lees et al. (BABAR Collab.)WANG 13B PR D87 051101 X.L. Wang et al. (BELLE Collab.)PAKHLOVA 09 PR D80 091101 G. Pakhlova et al. (BELLE Collab.)LIU 08H PR D78 014032 Z.Q. Liu, X.S. Qin, C.Z. YuanPAKHLOVA 08B PRL 101 172001 C. Pakhlova et al. (BELLE Collab.)AUBERT 07S PRL 98 212001 B. Aubert et al. (BABAR Collab.)WANG 07D PRL 99 142002 X.L. Wang et al. (BELLE Collab.)
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 = PCJ − +0 − −1 + −1 + +0 + +1 + +2 − −2
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0π

ππ ππ
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Mass (MeV)

The level scheme of the bb states showing experimentally established states with solid lines. Singlet states are
called ηb and hb, triplet states Υ and χbJ . In parentheses it is sufficient to give the radial quantum number
and the orbital angular momentum to specify the states with all their quantum numbers. E.g., hb(2P ) means
21P1 with n = 2, L = 1, S = 0, J = 1, PC = +−. The figure shows observed hadronic transitions. The single
photon transitions Υ(nS) → γηb(mS), Υ(nS) → γχbJ(mP ), and χbJ (nP ) → γΥ(mS) are omitted for clarity.

WIDTH DETERMINATIONS OF THE Υ STATES

As is the case for the J/ψ(1S) and ψ(2S), the full widths

of the bb states Υ(1S), Υ(2S), and Υ(3S) are not directly

measurable, since they are much narrower than the energy

resolution of the e+e− storage rings where these states are

produced. The common indirect method to determine Γ starts

from

Γ = Γℓℓ/Bℓℓ , (1)

where Γℓℓ is one leptonic partial width and Bℓℓ is the cor-

responding branching fraction (ℓ = e, µ, or τ). One then

assumes e-µ-τ universality and uses

Γℓℓ = Γee

Bℓℓ = average of Bee, Bµµ, and Bττ . (2)

The electronic partial width Γee is also not directly measurable

at e+e− storage rings, only in the combination ΓeeΓhad/Γ,

where Γhad is the hadronic partial width and

Γhad + 3Γee = Γ . (3)

This combination is obtained experimentally from the

energy-integrated hadronic cross section

∫

resonance

σ(e+e− → Υ → hadrons)dE

=
6π2

M2

ΓeeΓhad

Γ
Cr =

6π2

M2

Γ
(0)
ee Γhad

Γ
C

(0)
r , (4)

where M is the Υ mass, and Cr and C
(0)
r are radiative correction

factors. Cr is used for obtaining Γee as defined in Eq. (1), and

contains corrections from all orders of QED for describing

(bb) → e+e−. The lowest order QED value Γ
(0)
ee , relevant for

comparison with potential-model calculations, is defined by the

lowest order QED graph (Born term) alone, and is about 7%

lower than Γee.

The Listings give experimental results on Bee, Bµµ, Bττ ,

and ΓeeΓhad/Γ. The entries of the last quantity have been

re-evaluated consistently using the correction procedure of KU-

RAEV 85. The partial width Γee is obtained from the average

values for ΓeeΓhad/Γ and Bℓℓ using

Γee =
ΓeeΓhad

Γ(1 − 3Bℓℓ)
. (5)
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The total width Γ is then obtained from Eq. (1). We do not

list Γee and Γ values of individual experiments. The Γee values

in the Meson Summary Table are also those defined in Eq. (1).

ηb(1S) IG (JPC ) = 0+(0−+)Quantum numbers shown are quark-model predi
tions. Observed inradiative de
ay of the �(3S), therefore C = +.
ηb(1S) MASSηb(1S) MASSηb(1S) MASSηb(1S) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT9399.0± 2.3 OUR AVERAGE9399.0± 2.3 OUR AVERAGE9399.0± 2.3 OUR AVERAGE9399.0± 2.3 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.9400.7± 1.7± 1.6 33.1k TAMPONI 15 BELL e+ e− → γ η+ hadrons9402.4± 1.5± 1.8 34k 1 MIZUK 12 BELL e+ e− → γπ+π− +hadrons9391.8± 6.6± 2.0 2.3k 2 BONVICINI 10 CLEO �(3S) → γX9394.2+ 4.8

− 4.9± 2.0 13k 2 AUBERT 09AQ BABR �(2S) → γX9388.9+ 3.1
− 2.3± 2.7 19k 2 AUBERT 08V BABR �(3S) → γX

• • • We do not use the following data for averages, �ts, limits, et
. • • •9393.2± 3.4± 2.3 10 2,3 DOBBS 12 �(2S) → γ hadrons9300 ±20 ±20 HEISTER 02D ALEP 181{209 e+ e−1With 
oating width. Not independent of the 
orresponding mass di�eren
e measurement.2Assuming �ηb(1S) = 10 MeV. Not independent of the 
orresponding γ energy or massdi�eren
e measurements.3Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.
WEIGHTED AVERAGE
9399.0±2.3 (Error scaled by 1.6)

AUBERT 08V BABR 6.1
AUBERT 09AQ BABR 0.9
BONVICINI 10 CLEO 1.1
MIZUK 12 BELL 2.1
TAMPONI 15 BELL 0.5

χ2

      10.6
(Confidence Level = 0.031)

9370 9380 9390 9400 9410 9420

ηb(1S) MASS (MeV) m�(1S) − mηbm�(1S) − mηbm�(1S) − mηbm�(1S) − mηbVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT62.3±3.2 OUR AVERAGE62.3±3.2 OUR AVERAGE62.3±3.2 OUR AVERAGE62.3±3.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogram below.57.9±1.5±1.8 34k 4 MIZUK 12 BELL e+ e− → γπ+π−+ hadrons68.5±6.6±2.0 2.3± 0.5k 5 BONVICINI 10 CLEO �(3S) → γX66.1+4.8
−4.9±2.0 13 ± 5k 5 AUBERT 09AQ BABR �(2S) → γX71.4+2.3
−3.1±2.7 19 ± 3k 5 AUBERT 08V BABR �(3S) → γX

• • • We do not use the following data for averages, �ts, limits, et
. • • •67.1±3.4±2.3 10+5
−4 5,6 DOBBS 12 �(2S) → γ hadrons4With 
oating width. Not independent of the 
orresponding mass measurement.5Assuming �ηb(1S) = 10 MeV. Not independent of the 
orresponding γ energy or massmeasurements.6Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.

WEIGHTED AVERAGE
62.3±3.2 (Error scaled by 1.8)

AUBERT 08V BABR 4.9
AUBERT 09AQ BABR 0.5
BONVICINI 10 CLEO 0.8
MIZUK 12 BELL 3.5

χ2

       9.8
(Confidence Level = 0.021)

50 60 70 80 90 100m�(1S) − mηb (MeV)
γ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT920.6+2.8

−3.2 OUR AVERAGE920.6+2.8
−3.2 OUR AVERAGE920.6+2.8
−3.2 OUR AVERAGE920.6+2.8
−3.2 OUR AVERAGE918.6±6.0±1.9 2.3± 0.5k 7 BONVICINI 10 CLEO �(3S) → γX921.2+2.1
−2.8±2.4 19 ± 3k 7 AUBERT 08V BABR �(3S) → γX7Assuming �ηb(1S) = 10 MeV. Not independent of the 
orresponding mass or massdi�eren
e measurements.

γ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT609.3+4.6
−4.5±1.9609.3+4.6
−4.5±1.9609.3+4.6
−4.5±1.9609.3+4.6
−4.5±1.9 13 ± 5k 8 AUBERT 09AQ BABR �(2S) → γX8Assuming �ηb(1S) = 10 MeV. Not independent of the 
orresponding mass or massdi�eren
e measurements.

ηb(1S) WIDTHηb(1S) WIDTHηb(1S) WIDTHηb(1S) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT10 +5
−4 OUR AVERAGE10 +5
−4 OUR AVERAGE10 +5
−4 OUR AVERAGE10 +5
−4 OUR AVERAGE8 +6
−5 ±5 33.1k 9 TAMPONI 15 BELL e+ e− → γ η+ hadrons10.8+4.0
−3.7+4.5

−2.0 34k 9 MIZUK 12 BELL e+ e− → γπ+π− +hadrons9With 
oating mass.
ηb(1S) DECAY MODESηb(1S) DECAY MODESηb(1S) DECAY MODESηb(1S) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 hadrons seen�2 3h+3h− not seen�3 2h+2h− not seen�4 4h+4h−�5 γ γ not seen�6 µ+µ− <9× 10−3 90%�7 τ+ τ− <8 % 90%

ηb(1S) �(i)�(γ γ)/�(total)ηb(1S) �(i)�(γ γ)/�(total)ηb(1S) �(i)�(γ γ)/�(total)ηb(1S) �(i)�(γ γ)/�(total)�(3h+3h−)

× �(γ γ
)/�total �2�5/��(3h+3h−)

× �(γ γ
)/�total �2�5/��(3h+3h−)

× �(γ γ
)/�total �2�5/��(3h+3h−)

× �(γ γ
)/�total �2�5/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<470 95 ABDALLAH 06 DLPH 161{209 e+ e−
<132 95 HEISTER 02D ALEP 181{209 e+ e−�(2h+2h−)

× �(γ γ
)/�total �3�5/��(2h+2h−)

× �(γ γ
)/�total �3�5/��(2h+2h−)

× �(γ γ
)/�total �3�5/��(2h+2h−)

× �(γ γ
)/�total �3�5/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<190 95 ABDALLAH 06 DLPH 161{209 e+ e−
< 48 95 HEISTER 02D ALEP 181{209 e+ e−
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ηb(1S),�(1S)�(4h+4h−)

× �(γ γ
)/�total �4�5/��(4h+4h−)

× �(γ γ
)/�total �4�5/��(4h+4h−)

× �(γ γ
)/�total �4�5/��(4h+4h−)

× �(γ γ
)/�total �4�5/�VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<660 95 ABDALLAH 06 DLPH 161{209 e+ e−

ηb(1S) BRANCHING RATIOSηb(1S) BRANCHING RATIOSηb(1S) BRANCHING RATIOSηb(1S) BRANCHING RATIOS�(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 34k MIZUK 12 BELL e+ e− → γπ+π− +hadrons�(µ+µ−)/�total �6/��(µ+µ−)/�total �6/��(µ+µ−)/�total �6/��(µ+µ−)/�total �6/�VALUE CL% DOCUMENT ID TECN COMMENT
<9× 10−3<9× 10−3<9× 10−3<9× 10−3 90 10 AUBERT 09Z BABR e+ e− → �(2S, 3S) → γ ηb10Obtained using B(�(2S) → γ ηb) = (4.2+1.1

−1.0 ± 0.9)× 10−4 and B(�(3S) → γ ηb)= (4.8 ± 0.5 ± 0.6)× 10−4. This limit is equivalent to B(ηb → µ+µ−) = (−0.25 ±0.51 ± 0.33)% measurement.�(τ+ τ−
)/�total �7/��(τ+ τ−
)/�total �7/��(τ+ τ−
)/�total �7/��(τ+ τ−
)/�total �7/�VALUE CL% DOCUMENT ID TECN COMMENT

<8× 10−2<8× 10−2<8× 10−2<8× 10−2 90 AUBERT 09P BABR e+ e− → γ τ+ τ−

ηb(1S) REFERENCESηb(1S) REFERENCESηb(1S) REFERENCESηb(1S) REFERENCESTAMPONI 15 PRL 115 142001 U. Tamponi et al. (BELLE Collab.)DOBBS 12 PRL 109 082001 S. Dobbs et al.MIZUK 12 PRL 109 232002 R. Mizuk et al. (BELLE Collab.)BONVICINI 10 PR D81 031104 G. Bonvi
ini et al. (CLEO Collab.)AUBERT 09AQ PRL 103 161801 B. Aubert et al. (BABAR Collab.)AUBERT 09P PRL 103 181801 B. Aubert et al. (BABAR Collab.)AUBERT 09Z PRL 103 081803 B. Aubert et al. (BABAR Collab.)AUBERT 08V PRL 101 071801 B. Aubert et al. (BABAR Collab.)ABDALLAH 06 PL B634 340 J.M. Abdallah et al. (DELPHI Collab.)HEISTER 02D PL B530 56 A. Heister et al. (ALEPH Collab.)�(1S) IG (JPC ) = 0−(1−−)�(1S) MASS�(1S) MASS�(1S) MASS�(1S) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT9460.30±0.26 OUR AVERAGE9460.30±0.26 OUR AVERAGE9460.30±0.26 OUR AVERAGE9460.30±0.26 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.3.9460.51±0.09±0.05 1 ARTAMONOV 00 MD1 e+ e− → hadrons9459.97±0.11±0.07 MACKAY 84 REDE e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •9460.60±0.09±0.05 2,3 BARU 92B REDE e+ e− → hadrons9460.59±0.12 BARU 86 REDE e+ e− → hadrons9460.6 ±0.4 3,4 ARTAMONOV 84 REDE e+ e− → hadrons1Reanalysis of BARU 92B and ARTAMONOV 84 using new ele
tron mass (COHEN 87).2 Superseding BARU 86.3 Superseded by ARTAMONOV 00.4Value in
ludes data of ARTAMONOV 82.�(1S) WIDTH�(1S) WIDTH�(1S) WIDTH�(1S) WIDTHVALUE (keV) DOCUMENT ID54.02±1.25 OUR EVALUATION54.02±1.25 OUR EVALUATION54.02±1.25 OUR EVALUATION54.02±1.25 OUR EVALUATION See the Note on \Width Determinations of the �States" �(1S) DECAY MODES�(1S) DECAY MODES�(1S) DECAY MODES�(1S) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 τ+ τ− ( 2.60 ±0.10 ) %�2 e+ e− ( 2.38 ±0.11 ) %�3 µ+µ− ( 2.48 ±0.05 ) %Hadroni
 de
aysHadroni
 de
aysHadroni
 de
aysHadroni
 de
ays�4 g g g (81.7 ±0.7 ) %�5 γ g g ( 2.2 ±0.6 ) %�6 η′(958) anything ( 2.94 ±0.24 ) %�7 J/ψ(1S) anything ( 6.5 ±0.7 )× 10−4�8 J/ψ(1S)η
 < 2.2 × 10−6 90%�9 J/ψ(1S)χ
0 < 3.4 × 10−6 90%�10 J/ψ(1S)χ
1 ( 3.9 ±1.2 )× 10−6�11 J/ψ(1S)χ
2 < 1.4 × 10−6 90%�12 J/ψ(1S)η
 (2S) < 2.2 × 10−6 90%�13 J/ψ(1S)X (3940) < 5.4 × 10−6 90%�14 J/ψ(1S)X (4160) < 5.4 × 10−6 90%�15 χ
0 anything < 5 × 10−3 90%�16 χ
1 anything ( 2.3 ±0.7 )× 10−4�17 χ
2 anything ( 3.4 ±1.0 )× 10−4�18 ψ(2S) anything ( 2.7 ±0.9 )× 10−4

�19 ψ(2S)η
 < 3.6 × 10−6 90%�20 ψ(2S)χ
0 < 6.5 × 10−6 90%�21 ψ(2S)χ
1 < 4.5 × 10−6 90%�22 ψ(2S)χ
2 < 2.1 × 10−6 90%�23 ψ(2S)η
 (2S) < 3.2 × 10−6 90%�24 ψ(2S)X (3940) < 2.9 × 10−6 90%�25 ψ(2S)X (4160) < 2.9 × 10−6 90%�26 ρπ < 3.68 × 10−6 90%�27 ωπ0 < 3.90 × 10−6 90%�28 π+π− < 5 × 10−4 90%�29 K+K− < 5 × 10−4 90%�30 pp < 5 × 10−4 90%�31 π+π−π0 ( 2.1 ±0.8 )× 10−6�32 φK+K− ( 2.4 ±0.5 )× 10−6�33 ωπ+π− ( 4.5 ±1.0 )× 10−6�34 K∗(892)0K−π++ 
.
. ( 4.4 ±0.8 )× 10−6�35 φ f ′2(1525) < 1.63 × 10−6 90%�36 ω f2(1270) < 1.79 × 10−6 90%�37 ρ(770)a2(1320) < 2.24 × 10−6 90%�38 K∗(892)0K∗2(1430)0+ 
.
. ( 3.0 ±0.8 )× 10−6�39 K1(1270)±K∓ < 2.41 × 10−6 90%�40 K1(1400)±K∓ ( 1.0 ±0.4 )× 10−6�41 b1(1235)±π∓ < 1.25 × 10−6 90%�42 π+π−π0π0 ( 1.28 ±0.30 )× 10−5�43 K0S K+π−+ 
.
. ( 1.6 ±0.4 )× 10−6�44 K∗(892)0K0+ 
.
. ( 2.9 ±0.9 )× 10−6�45 K∗(892)−K++ 
.
. < 1.11 × 10−6 90%�46 D∗(2010)± anything ( 2.52 ±0.20 ) %�47 2H anything ( 2.85 ±0.25 )× 10−5�48 Sum of 100 ex
lusive modes ( 1.200±0.017) %Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays�49 γπ+π− ( 6.3 ±1.8 )× 10−5�50 γπ0π0 ( 1.7 ±0.7 )× 10−5�51 γπ0 η < 2.4 × 10−6 90%�52 γK+K− [a℄ ( 1.14 ±0.13 )× 10−5�53 γ pp [b℄ < 6 × 10−6 90%�54 γ 2h+2h− ( 7.0 ±1.5 )× 10−4�55 γ 3h+3h− ( 5.4 ±2.0 )× 10−4�56 γ 4h+4h− ( 7.4 ±3.5 )× 10−4�57 γπ+π−K+K− ( 2.9 ±0.9 )× 10−4�58 γ 2π+2π− ( 2.5 ±0.9 )× 10−4�59 γ 3π+3π− ( 2.5 ±1.2 )× 10−4�60 γ 2π+2π−K+K− ( 2.4 ±1.2 )× 10−4�61 γπ+π−pp ( 1.5 ±0.6 )× 10−4�62 γ 2π+2π−pp ( 4 ±6 )× 10−5�63 γ 2K+2K− ( 2.0 ±2.0 )× 10−5�64 γ η′(958) < 1.9 × 10−6 90%�65 γ η < 1.0 × 10−6 90%�66 γ f0(980) < 3 × 10−5 90%�67 γ f ′2(1525) ( 3.8 ±0.9 )× 10−5�68 γ f2(1270) ( 1.01 ±0.09 )× 10−4�69 γ η(1405) < 8.2 × 10−5 90%�70 γ f0(1500) < 1.5 × 10−5 90%�71 γ f0(1710) < 2.6 × 10−4 90%�72 γ f0(1710) → γK+K− < 7 × 10−6 90%�73 γ f0(1710) → γπ0π0 < 1.4 × 10−6 90%�74 γ f0(1710) → γ ηη < 1.8 × 10−6 90%�75 γ f4(2050) < 5.3 × 10−5 90%�76 γ f0(2200) → γK+K− < 2 × 10−4 90%�77 γ fJ (2220) → γK+K− < 8 × 10−7 90%�78 γ fJ (2220) → γπ+π− < 6 × 10−7 90%�79 γ fJ (2220) → γ pp < 1.1 × 10−6 90%�80 γ η(2225) → γφφ < 3 × 10−3 90%�81 γ η
 (1S) < 5.7 × 10−5 90%�82 γχ
0 < 6.5 × 10−4 90%�83 γχ
1 < 2.3 × 10−5 90%�84 γχ
2 < 7.6 × 10−6 90%�85 γX (3872) → π+π− J/ψ < 1.6 × 10−6 90%�86 γX (3872) → π+π−π0 J/ψ < 2.8 × 10−6 90%�87 γX (3915) → ωJ/ψ < 3.0 × 10−6 90%�88 γX (4140) → φJ/ψ < 2.2 × 10−6 90%�89 γX [
℄ < 4.5 × 10−6 90%�90 γX X (mX < 3.1 GeV) [d℄ < 1 × 10−3 90%�91 γX X (mX < 4.5 GeV) [e℄ < 2.4 × 10−4 90%



1463146314631463See key on page 601 MesonParti
le Listings�(1S)�92 γX → γ+ ≥ 4 prongs [f ℄ < 1.78 × 10−4 95%�93 γ a01 → γµ+µ− [g ℄ < 9 × 10−6 90%�94 γ a01 → γ τ+ τ− [a℄ < 1.30 × 10−4 90%�95 γ a01 → γ g g [h℄ < 1 % 90%�96 γ a01 → γ s s [h℄ < 1 × 10−3 90%Lepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modes�97 µ± τ∓ LF < 6.0 × 10−6 95%Other de
aysOther de
aysOther de
aysOther de
ays�98 invisible < 3.0 × 10−4 90%[a℄ 2mτ < M(τ+ τ−) < 9.2 GeV[b℄ 2 GeV < mK+K− < 3 GeV[
 ℄ X = s
alar with m < 8.0 GeV[d ℄ X X = ve
tors with m < 3.1 GeV[e℄ X and X = zero spin with m < 4.5 GeV[f ℄ 1.5 GeV < mX < 5.0 GeV[g ℄ 201 MeV < M(µ+µ−) < 3565 MeV[h℄ 0.5 GeV < mX < 9.0 GeV, where mX is the invariant mass of thehadroni
 �nal state.�(1S) �(i)�(e+ e−)/�(total)�(1S) �(i)�(e+ e−)/�(total)�(1S) �(i)�(e+ e−)/�(total)�(1S) �(i)�(e+ e−)/�(total)�(e+ e−)

× �(µ+µ−)/�total �2�3/��(e+ e−)

× �(µ+µ−)/�total �2�3/��(e+ e−)

× �(µ+µ−)/�total �2�3/��(e+ e−)

× �(µ+µ−)/�total �2�3/�VALUE (eV) DOCUMENT ID TECN COMMENT31.2±1.6±1.731.2±1.6±1.731.2±1.6±1.731.2±1.6±1.7 KOBEL 92 CBAL e+ e− → µ+µ−�(hadrons) × �(e+ e−)/�total �0�2/��(hadrons) × �(e+ e−)/�total �0�2/��(hadrons) × �(e+ e−)/�total �0�2/��(hadrons) × �(e+ e−)/�total �0�2/�VALUE (keV) DOCUMENT ID TECN COMMENT1.240±0.016 OUR AVERAGE1.240±0.016 OUR AVERAGE1.240±0.016 OUR AVERAGE1.240±0.016 OUR AVERAGE1.252±0.004±0.019 5 ROSNER 06 CLEO 9.5 e+ e− → hadrons1.187±0.023±0.031 5 BARU 92B MD1 e+ e− → hadrons1.23 ±0.02 ±0.05 5 JAKUBOWSKI 88 CBAL e+ e− → hadrons1.37 ±0.06 ±0.09 6 GILES 84B CLEO e+ e− → hadrons1.23 ±0.08 ±0.04 6 ALBRECHT 82 DASP e+ e− → hadrons1.13 ±0.07 ±0.11 6 NICZYPORUK 82 LENA e+ e− → hadrons1.09 ±0.25 6 BOCK 80 CNTR e+ e− → hadrons1.35 ±0.14 7 BERGER 79 PLUT e+ e− → hadrons5Radiative 
orre
tions evaluated following KURAEV 85.6Radiative 
orre
tions reevaluated by BUCHMUELLER 88 following KURAEV 85.7Radiative 
orre
tions reevaluated by ALEXANDER 89 using B(µµ) = 0.026.�(1S) PARTIAL WIDTHS�(1S) PARTIAL WIDTHS�(1S) PARTIAL WIDTHS�(1S) PARTIAL WIDTHS�(e+ e−) �2�(e+ e−) �2�(e+ e−) �2�(e+ e−) �2VALUE (keV) DOCUMENT ID1.340±0.018 OUR EVALUATION1.340±0.018 OUR EVALUATION1.340±0.018 OUR EVALUATION1.340±0.018 OUR EVALUATION�(1S) BRANCHING RATIOS�(1S) BRANCHING RATIOS�(1S) BRANCHING RATIOS�(1S) BRANCHING RATIOS�(τ+ τ−
)/�total �1/��(τ+ τ−
)/�total �1/��(τ+ τ−
)/�total �1/��(τ+ τ−
)/�total �1/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.60±0.10 OUR AVERAGE2.60±0.10 OUR AVERAGE2.60±0.10 OUR AVERAGE2.60±0.10 OUR AVERAGE2.53±0.13±0.05 60k 8 BESSON 07 CLEO e+ e− → �(1S) → τ+ τ−2.61±0.12+0.09
−0.13 25k CINABRO 94B CLE2 e+ e− → τ+ τ−2.7 ±0.4 ±0.2 9 ALBRECHT 85C ARG �(2S) → π+π− τ+ τ−3.4 ±0.4 ±0.4 GILES 83 CLEO e+ e− → τ+ τ−8BESSON 07 reports [�(�(1S) → τ+ τ−

)/�total℄ / [B(�(1S) → µ+µ−)℄ = 1.02 ±0.02± 0.05 whi
h we multiply by our best value B(�(1S) → µ+µ−) = (2.48± 0.05)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.9Using B(�(1S) → e e) = B(�(1S) → µµ) = 0.0256; not used for width evaluations.�(e+ e−)/�total �2/��(e+ e−)/�total �2/��(e+ e−)/�total �2/��(e+ e−)/�total �2/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.38±0.11 OUR AVERAGE2.38±0.11 OUR AVERAGE2.38±0.11 OUR AVERAGE2.38±0.11 OUR AVERAGE2.29±0.08±0.11 ALEXANDER 98 CLE2 �(2S) → π+π− e+ e−2.42±0.14±0.14 307 ALBRECHT 87 ARG �(2S) → π+π− e+ e−2.8 ±0.3 ±0.2 826 BESSON 84 CLEO �(2S) → π+π− e+ e−5.1 ±3.0 BERGER 80C PLUT e+ e− → e+ e−�(µ+µ−)/�total �3/��(µ+µ−)/�total �3/��(µ+µ−)/�total �3/��(µ+µ−)/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0248±0.0005 OUR AVERAGE0.0248±0.0005 OUR AVERAGE0.0248±0.0005 OUR AVERAGE0.0248±0.0005 OUR AVERAGE0.0249±0.0002±0.0007 345k ADAMS 05 CLEO e+ e− → µ+µ−0.0249±0.0008±0.0013 ALEXANDER 98 CLE2 �(2S) →
π+π−µ+µ−

0.0212±0.0020±0.0010 10 BARU 92 MD1 e+ e− → µ+µ−0.0231±0.0012±0.0010 10 KOBEL 92 CBAL e+ e− → µ+µ−0.0252±0.0007±0.0007 CHEN 89B CLEO e+ e− → µ+µ−0.0261±0.0009±0.0011 KAARSBERG 89 CSB2 e+ e− → µ+µ−0.0230±0.0025±0.0013 86 ALBRECHT 87 ARG �(2S) →
π+π−µ+µ−0.029 ±0.003 ±0.002 864 BESSON 84 CLEO �(2S) →
π+π−µ+µ−0.027 ±0.003 ±0.003 ANDREWS 83 CLEO e+ e− → µ+µ−0.032 ±0.013 ±0.003 ALBRECHT 82 DASP e+ e− → µ+µ−0.038 ±0.015 ±0.002 NICZYPORUK 82 LENA e+ e− → µ+µ−0.014 +0.034

−0.014 BOCK 80 CNTR e+ e− → µ+µ−0.022 ±0.020 BERGER 79 PLUT e+ e− → µ+µ−10Taking into a

ount interferen
e between the resonan
e and 
ontinuum.�(τ+ τ−
)/�(µ+µ−) �1/�3�(τ+ τ−
)/�(µ+µ−) �1/�3�(τ+ τ−
)/�(µ+µ−) �1/�3�(τ+ τ−
)/�(µ+µ−) �1/�3VALUE EVTS DOCUMENT ID TECN COMMENT1.008±0.023 OUR AVERAGE1.008±0.023 OUR AVERAGE1.008±0.023 OUR AVERAGE1.008±0.023 OUR AVERAGE1.005±0.013±0.022 0.7M 11 DEL-AMO-SA...10C BABR �(3S) → π+π−�(1S)1.02 ±0.02 ±0.05 60k BESSON 07 CLEO e+ e− → �(1S)11Allows any number of extra photons with total energy < 500 MeV.�(g g g)/�total �4/��(g g g)/�total �4/��(g g g)/�total �4/��(g g g)/�total �4/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT81.7±0.781.7±0.781.7±0.781.7±0.7 20M 12 BESSON 06A CLEO �(1S) → hadrons12Cal
ulated using the value �(γ g g)/�(g g g) = (2.70 ± 0.01 ± 0.13 ± 0.24)% fromBESSON 06A and PDG 08 values of B(µ+µ−) = (2.48 ± 0.05)% and Rhadrons =3.51. The statisti
al error is negligible and the systemati
 error is partially 
orrelatedwith that of �(γ g g)/�total measurement of BESSON 06A.�(γ g g)/�total �5/��(γ g g)/�total �5/��(γ g g)/�total �5/��(γ g g)/�total �5/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.20±0.602.20±0.602.20±0.602.20±0.60 400k 13 BESSON 06A CLEO �(1S) → γ + hadrons13Cal
ulated using BESSON 06A values of �(γ g g)/�(g g g) = (2.70±0.01±0.13±0.24)%and �(g g g)/�total . The statisti
al error is negligible and the systemati
 error is partially
orrelated with that of �(g g g)/�total measurement of BESSON 06A.�(γ g g)/�(g g g) �5/�4�(γ g g)/�(g g g) �5/�4�(γ g g)/�(g g g) �5/�4�(γ g g)/�(g g g) �5/�4VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.70±0.01±0.272.70±0.01±0.272.70±0.01±0.272.70±0.01±0.27 20M BESSON 06A CLEO �(1S) → (γ +) hadrons�(η′(958) anything)/�total �6/��(η′(958) anything)/�total �6/��(η′(958) anything)/�total �6/��(η′(958) anything)/�total �6/�VALUE DOCUMENT ID TECN COMMENT0.0294±0.0024 OUR AVERAGE0.0294±0.0024 OUR AVERAGE0.0294±0.0024 OUR AVERAGE0.0294±0.0024 OUR AVERAGE0.030 ±0.002 ±0.002 AQUINES 06A CLE3 �(1S) → η′ anything0.028 ±0.004 ±0.002 ARTUSO 03 CLE2 �(1S) → η′ anything�(J/ψ(1S) anything)/�total �7/��(J/ψ(1S) anything)/�total �7/��(J/ψ(1S) anything)/�total �7/��(J/ψ(1S) anything)/�total �7/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT0.65±0.07 OUR AVERAGE0.65±0.07 OUR AVERAGE0.65±0.07 OUR AVERAGE0.65±0.07 OUR AVERAGE0.64±0.04±0.06 730 ± 40 BRIERE 04 CLEO e+ e− → J/ψX1.1 ±0.4 ±0.2 14 FULTON 89 CLEO e+ e− → µ+µ−X

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.68 90 ALBRECHT 92J ARG e+ e− → e+ e−X,
µ+µ−X

<1.7 90 MASCHMANN 90 CBAL e+ e− → hadrons
<20 90 NICZYPORUK 83 LENA14Using B((J/ψ) → µ+µ−) = (6.9 ± 0.9)%.�(J/ψ(1S)η
)/�total �8/��(J/ψ(1S)η
)/�total �8/��(J/ψ(1S)η
)/�total �8/��(J/ψ(1S)η
)/�total �8/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.2× 10−6<2.2× 10−6<2.2× 10−6<2.2× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(J/ψ(1S)χ
0)/�total �9/��(J/ψ(1S)χ
0)/�total �9/��(J/ψ(1S)χ
0)/�total �9/��(J/ψ(1S)χ
0)/�total �9/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.4× 10−6<3.4× 10−6<3.4× 10−6<3.4× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(J/ψ(1S)χ
1)/�total �10/��(J/ψ(1S)χ
1)/�total �10/��(J/ψ(1S)χ
1)/�total �10/��(J/ψ(1S)χ
1)/�total �10/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT3.90±1.21±0.233.90±1.21±0.233.90±1.21±0.233.90±1.21±0.23 20 YANG 14 BELL e+ e− → J/ψX�(J/ψ(1S)χ
2)/�total �11/��(J/ψ(1S)χ
2)/�total �11/��(J/ψ(1S)χ
2)/�total �11/��(J/ψ(1S)χ
2)/�total �11/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.4× 10−6<1.4× 10−6<1.4× 10−6<1.4× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(J/ψ(1S)η
 (2S))/�total �12/��(J/ψ(1S)η
 (2S))/�total �12/��(J/ψ(1S)η
 (2S))/�total �12/��(J/ψ(1S)η
 (2S))/�total �12/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.2× 10−6<2.2× 10−6<2.2× 10−6<2.2× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(J/ψ(1S)X (3940))/�total �13/��(J/ψ(1S)X (3940))/�total �13/��(J/ψ(1S)X (3940))/�total �13/��(J/ψ(1S)X (3940))/�total �13/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.4× 10−6<5.4× 10−6<5.4× 10−6<5.4× 10−6 90 YANG 14 BELL e+ e− → J/ψX



1464146414641464MesonParti
le Listings�(1S)�(J/ψ(1S)X (4160))/�total �14/��(J/ψ(1S)X (4160))/�total �14/��(J/ψ(1S)X (4160))/�total �14/��(J/ψ(1S)X (4160))/�total �14/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.4× 10−6<5.4× 10−6<5.4× 10−6<5.4× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(

χ
0 anything)/�(J/ψ(1S) anything) �15/�7�(

χ
0 anything)/�(J/ψ(1S) anything) �15/�7�(

χ
0 anything)/�(J/ψ(1S) anything) �15/�7�(

χ
0 anything)/�(J/ψ(1S) anything) �15/�7VALUE CL% DOCUMENT ID TECN COMMENT
<7.4<7.4<7.4<7.4 90 BRIERE 04 CLEO e+ e− → J/ψX�(

χ
1 anything)/�(J/ψ(1S) anything) �16/�7�(

χ
1 anything)/�(J/ψ(1S) anything) �16/�7�(

χ
1 anything)/�(J/ψ(1S) anything) �16/�7�(

χ
1 anything)/�(J/ψ(1S) anything) �16/�7VALUE EVTS DOCUMENT ID TECN COMMENT0.35±0.08±0.060.35±0.08±0.060.35±0.08±0.060.35±0.08±0.06 52 ± 12 BRIERE 04 CLEO e+ e− → J/ψX�(

χ
2 anything)/�(J/ψ(1S) anything) �17/�7�(

χ
2 anything)/�(J/ψ(1S) anything) �17/�7�(

χ
2 anything)/�(J/ψ(1S) anything) �17/�7�(

χ
2 anything)/�(J/ψ(1S) anything) �17/�7VALUE EVTS DOCUMENT ID TECN COMMENT0.52±0.12±0.090.52±0.12±0.090.52±0.12±0.090.52±0.12±0.09 47 ± 11 BRIERE 04 CLEO e+ e− → J/ψX�(

ψ(2S) anything)/�(J/ψ(1S) anything) �18/�7�(

ψ(2S) anything)/�(J/ψ(1S) anything) �18/�7�(

ψ(2S) anything)/�(J/ψ(1S) anything) �18/�7�(

ψ(2S) anything)/�(J/ψ(1S) anything) �18/�7VALUE EVTS DOCUMENT ID TECN COMMENT0.41±0.11±0.080.41±0.11±0.080.41±0.11±0.080.41±0.11±0.08 42 ± 11 BRIERE 04 CLEO e+ e− →J/ψπ+π−X�(

ψ(2S)η
)/�total �19/��(

ψ(2S)η
)/�total �19/��(

ψ(2S)η
)/�total �19/��(

ψ(2S)η
)/�total �19/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.6× 10−6<3.6× 10−6<3.6× 10−6<3.6× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)χ
0)/�total �20/��(

ψ(2S)χ
0)/�total �20/��(

ψ(2S)χ
0)/�total �20/��(

ψ(2S)χ
0)/�total �20/�VALUE CL% DOCUMENT ID TECN COMMENT
<6.5× 10−6<6.5× 10−6<6.5× 10−6<6.5× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)χ
1)/�total �21/��(

ψ(2S)χ
1)/�total �21/��(

ψ(2S)χ
1)/�total �21/��(

ψ(2S)χ
1)/�total �21/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.5× 10−6<4.5× 10−6<4.5× 10−6<4.5× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)χ
2)/�total �22/��(

ψ(2S)χ
2)/�total �22/��(

ψ(2S)χ
2)/�total �22/��(

ψ(2S)χ
2)/�total �22/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.1× 10−6<2.1× 10−6<2.1× 10−6<2.1× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)η
 (2S))/�total �23/��(

ψ(2S)η
 (2S))/�total �23/��(

ψ(2S)η
 (2S))/�total �23/��(

ψ(2S)η
 (2S))/�total �23/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.2× 10−6<3.2× 10−6<3.2× 10−6<3.2× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)X (3940))/�total �24/��(

ψ(2S)X (3940))/�total �24/��(

ψ(2S)X (3940))/�total �24/��(

ψ(2S)X (3940))/�total �24/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.9× 10−6<2.9× 10−6<2.9× 10−6<2.9× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)X (4160))/�total �25/��(

ψ(2S)X (4160))/�total �25/��(

ψ(2S)X (4160))/�total �25/��(

ψ(2S)X (4160))/�total �25/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.9× 10−6<2.9× 10−6<2.9× 10−6<2.9× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ρπ
)/�total �26/��(

ρπ
)/�total �26/��(

ρπ
)/�total �26/��(

ρπ
)/�total �26/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<3.68<3.68<3.68<3.68 90 SHEN 13 BELL �(1S) → π+π−π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1 × 103 90 BLINOV 90 MD1 �(1S) → ρ0π0
<2 × 102 90 FULTON 90B �(1S) → ρ0π0
<2.1 × 103 90 NICZYPORUK 83 LENA �(1S) → ρ0π0�(

ωπ0)/�total �27/��(

ωπ0)/�total �27/��(

ωπ0)/�total �27/��(

ωπ0)/�total �27/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<3.90<3.90<3.90<3.90 90 SHEN 13 BELL �(1S) → π+π−π0π0�(

π+π−)/�total �28/��(

π+π−)/�total �28/��(

π+π−)/�total �28/��(

π+π−)/�total �28/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<5<5<5<5 90 BARU 92 MD1 �(1S) → π+π−�(K+K−)/�total �29/��(K+K−)/�total �29/��(K+K−)/�total �29/��(K+K−)/�total �29/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<5<5<5<5 90 BARU 92 MD1 �(1S) → K+K−�(pp)/�total �30/��(pp)/�total �30/��(pp)/�total �30/��(pp)/�total �30/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<5<5<5<5 90 15 BARU 96 MD1 �(1S) → pp15Supersedes BARU 92 in this node.�(

π+π−π0)/�total �31/��(

π+π−π0)/�total �31/��(

π+π−π0)/�total �31/��(

π+π−π0)/�total �31/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT2.14±0.72±0.342.14±0.72±0.342.14±0.72±0.342.14±0.72±0.34 26 ± 9 SHEN 13 BELL �(1S) → π+π−π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<18.4 90 ANASTASSOV 99 CLE2 e+ e− → hadrons

�(

φK+K−)/�total �32/��(

φK+K−)/�total �32/��(

φK+K−)/�total �32/��(

φK+K−)/�total �32/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT2.36±0.37±0.292.36±0.37±0.292.36±0.37±0.292.36±0.37±0.29 56 SHEN 12A BELL �(1S) → 2(K+K−)�(

ωπ+π−)/�total �33/��(

ωπ+π−)/�total �33/��(

ωπ+π−)/�total �33/��(

ωπ+π−)/�total �33/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT4.46±0.67±0.724.46±0.67±0.724.46±0.67±0.724.46±0.67±0.72 64 SHEN 12A BELL �(1S) → 2(π+π−)π0�(K∗(892)0K−π++ 
.
.)/�total �34/��(K∗(892)0K−π++ 
.
.)/�total �34/��(K∗(892)0K−π++ 
.
.)/�total �34/��(K∗(892)0K−π++ 
.
.)/�total �34/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT4.42±0.50±0.584.42±0.50±0.584.42±0.50±0.584.42±0.50±0.58 173 SHEN 12A BELL �(1S) → K+K−π+π−�(

φ f ′2(1525))/�total �35/��(

φ f ′2(1525))/�total �35/��(

φ f ′2(1525))/�total �35/��(

φ f ′2(1525))/�total �35/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.63<1.63<1.63<1.63 90 SHEN 12A BELL �(1S) → 2(K+K−)�(

ω f2(1270))/�total �36/��(

ω f2(1270))/�total �36/��(

ω f2(1270))/�total �36/��(

ω f2(1270))/�total �36/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.79<1.79<1.79<1.79 90 SHEN 12A BELL �(1S) → 2(π+π−)π0�(

ρ(770)a2(1320))/�total �37/��(

ρ(770)a2(1320))/�total �37/��(

ρ(770)a2(1320))/�total �37/��(

ρ(770)a2(1320))/�total �37/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<2.24<2.24<2.24<2.24 90 SHEN 12A BELL �(1S) → 2(π+π−)π0�(K∗(892)0K∗2(1430)0+ 
.
.)/�total �38/��(K∗(892)0K∗2(1430)0+ 
.
.)/�total �38/��(K∗(892)0K∗2(1430)0+ 
.
.)/�total �38/��(K∗(892)0K∗2(1430)0+ 
.
.)/�total �38/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT3.02±0.68±0.343.02±0.68±0.343.02±0.68±0.343.02±0.68±0.34 42 SHEN 12A BELL �(1S) → K+K−π+π−�(K1(1270)±K∓)/�total �39/��(K1(1270)±K∓)/�total �39/��(K1(1270)±K∓)/�total �39/��(K1(1270)±K∓)/�total �39/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<2.41<2.41<2.41<2.41 90 SHEN 12A BELL �(1S) → K+K−π+π−�(K1(1400)±K∓)/�total �40/��(K1(1400)±K∓)/�total �40/��(K1(1400)±K∓)/�total �40/��(K1(1400)±K∓)/�total �40/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT1.02±0.35±0.221.02±0.35±0.221.02±0.35±0.221.02±0.35±0.22 24 SHEN 12A BELL �(1S) → K+K−π+π−�(b1(1235)±π∓)/�total �41/��(b1(1235)±π∓)/�total �41/��(b1(1235)±π∓)/�total �41/��(b1(1235)±π∓)/�total �41/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.25<1.25<1.25<1.25 90 SHEN 12A BELL �(1S) → 2(π+π−)π0�(

π+π−π0π0)/�total �42/��(

π+π−π0π0)/�total �42/��(

π+π−π0π0)/�total �42/��(

π+π−π0π0)/�total �42/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT12.8±2.0±2.312.8±2.0±2.312.8±2.0±2.312.8±2.0±2.3 143 ± 22 SHEN 13 BELL �(1S) → π+π−π0π0�(K0S K+π−+ 
.
.)/�total �43/��(K0S K+π−+ 
.
.)/�total �43/��(K0S K+π−+ 
.
.)/�total �43/��(K0S K+π−+ 
.
.)/�total �43/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT1.59±0.33±0.181.59±0.33±0.181.59±0.33±0.181.59±0.33±0.18 37 ± 8 SHEN 13 BELL �(1S) → K0S K−π+
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.4 90 16 DOBBS 12A �(1S) → K0S K−π+16Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.�(K∗(892)0K0+ 
.
.)/�total �44/��(K∗(892)0K0+ 
.
.)/�total �44/��(K∗(892)0K0+ 
.
.)/�total �44/��(K∗(892)0K0+ 
.
.)/�total �44/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT2.92±0.85±0.372.92±0.85±0.372.92±0.85±0.372.92±0.85±0.37 16 ± 5 SHEN 13 BELL �(1S) → K0S K−π+�(K∗(892)−K++ 
.
.)/�total �45/��(K∗(892)−K++ 
.
.)/�total �45/��(K∗(892)−K++ 
.
.)/�total �45/��(K∗(892)−K++ 
.
.)/�total �45/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.11<1.11<1.11<1.11 90 SHEN 13 BELL �(1S) → K0S K−π+�(D∗(2010)± anything)/�total �46/��(D∗(2010)± anything)/�total �46/��(D∗(2010)± anything)/�total �46/��(D∗(2010)± anything)/�total �46/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT25.2±1.3±1.525.2±1.3±1.525.2±1.3±1.525.2±1.3±1.5 ≈ 2k 17 AUBERT 10C BABR �(2S) → π+π−�(1S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<19 90 18 ALBRECHT 92J ARG e+ e− → D0π±X17For xp > 0.1.18 For xp > 0.2.�(2H anything)/�total �47/��(2H anything)/�total �47/��(2H anything)/�total �47/��(2H anything)/�total �47/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.85±0.25 OUR AVERAGE2.85±0.25 OUR AVERAGE2.85±0.25 OUR AVERAGE2.85±0.25 OUR AVERAGE2.81±0.49+0.20
−0.24 LEES 14G BABR e+ e− → 2H X2.86±0.19±0.21 455 ASNER 07 CLEO e+ e− → 2H X
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le Listings�(1S)�(Sum of 100 ex
lusive modes)/�total �48/��(Sum of 100 ex
lusive modes)/�total �48/��(Sum of 100 ex
lusive modes)/�total �48/��(Sum of 100 ex
lusive modes)/�total �48/�VALUE (units 10−2) DOCUMENT ID COMMENT1.200±0.0171.200±0.0171.200±0.0171.200±0.017 19,20 DOBBS 12A �(1S) → hadrons19DOBBS 12A presents individual ex
lusive bran
hing fra
tions or upper limits for 100modes of four to ten pions, kaons, or protons.20Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.�(g g g , γ g g → d anything)/�(g g g , γ g g → anything)�(g g g , γ g g → d anything)/�(g g g , γ g g → anything)�(g g g , γ g g → d anything)/�(g g g , γ g g → anything)�(g g g , γ g g → d anything)/�(g g g , γ g g → anything)VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.36±0.23±0.253.36±0.23±0.253.36±0.23±0.253.36±0.23±0.25 455 ASNER 07 CLEO e+ e− → d X�(

γπ+π−)/�total �49/��(

γπ+π−)/�total �49/��(

γπ+π−)/�total �49/��(

γπ+π−)/�total �49/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT6.3±1.2±1.36.3±1.2±1.36.3±1.2±1.36.3±1.2±1.3 21 ANASTASSOV 99 CLE2 e+ e− → hadrons21For mππ >1 GeV.�(

γπ0π0)/�total �50/��(

γπ0π0)/�total �50/��(

γπ0π0)/�total �50/��(

γπ0π0)/�total �50/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.7±0.6±0.31.7±0.6±0.31.7±0.6±0.31.7±0.6±0.3 22 ANASTASSOV 99 CLE2 e+ e− → hadrons22For mππ >1 GeV.�(

γπ0 η
)/�total �51/��(

γπ0 η
)/�total �51/��(

γπ0 η
)/�total �51/��(

γπ0 η
)/�total �51/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<2.4<2.4<2.4<2.4 90 23 BESSON 07A CLEO e+ e− → �(1S)23BESSON 07A obtained this limit for 0.7 < m
π0η

< 3 GeV.�(

γK+K−)/�total �52/��(

γK+K−)/�total �52/��(

γK+K−)/�total �52/��(

γK+K−)/�total �52/�(2 < mK+K− < 3 GeV)VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT1.14±0.08±0.101.14±0.08±0.101.14±0.08±0.101.14±0.08±0.10 90 ATHAR 06 CLE3 �(1S) → γK+K−�(

γ pp)/�total �53/��(

γ pp)/�total �53/��(

γ pp)/�total �53/��(

γ pp)/�total �53/�(2 < mpp < 3 GeV)VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<0.6<0.6<0.6<0.6 90 ATHAR 06 CLE3 �(1S) → γ pp�(

γ 2h+2h−)/�total �54/��(

γ 2h+2h−)/�total �54/��(

γ 2h+2h−)/�total �54/��(

γ 2h+2h−)/�total �54/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.0±1.1±1.07.0±1.1±1.07.0±1.1±1.07.0±1.1±1.0 80 ± 12 FULTON 90B CLEO e+ e− → hadrons�(

γ 3h+3h−)/�total �55/��(

γ 3h+3h−)/�total �55/��(

γ 3h+3h−)/�total �55/��(

γ 3h+3h−)/�total �55/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT5.4±1.5±1.35.4±1.5±1.35.4±1.5±1.35.4±1.5±1.3 39 ± 11 FULTON 90B CLEO e+ e− → hadrons�(

γ 4h+4h−)/�total �56/��(

γ 4h+4h−)/�total �56/��(

γ 4h+4h−)/�total �56/��(

γ 4h+4h−)/�total �56/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.4±2.5±2.57.4±2.5±2.57.4±2.5±2.57.4±2.5±2.5 36 ± 12 FULTON 90B CLEO e+ e− → hadrons�(

γπ+π−K+K−)/�total �57/��(

γπ+π−K+K−)/�total �57/��(

γπ+π−K+K−)/�total �57/��(

γπ+π−K+K−)/�total �57/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.9±0.7±0.62.9±0.7±0.62.9±0.7±0.62.9±0.7±0.6 29 ± 8 FULTON 90B CLEO e+ e− → hadrons�(

γ 2π+2π−)/�total �58/��(

γ 2π+2π−)/�total �58/��(

γ 2π+2π−)/�total �58/��(

γ 2π+2π−)/�total �58/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.5±0.7±0.52.5±0.7±0.52.5±0.7±0.52.5±0.7±0.5 26 ± 7 FULTON 90B CLEO e+ e− → hadrons�(

γ 3π+3π−)/�total �59/��(

γ 3π+3π−)/�total �59/��(

γ 3π+3π−)/�total �59/��(

γ 3π+3π−)/�total �59/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.5±0.9±0.82.5±0.9±0.82.5±0.9±0.82.5±0.9±0.8 17 ± 5 FULTON 90B CLEO e+ e− → hadrons�(

γ 2π+2π−K+K−)/�total �60/��(

γ 2π+2π−K+K−)/�total �60/��(

γ 2π+2π−K+K−)/�total �60/��(

γ 2π+2π−K+K−)/�total �60/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.4±0.9±0.82.4±0.9±0.82.4±0.9±0.82.4±0.9±0.8 18 ± 7 FULTON 90B CLEO e+ e− → hadrons�(

γπ+π−pp)/�total �61/��(

γπ+π−pp)/�total �61/��(

γπ+π−pp)/�total �61/��(

γπ+π−pp)/�total �61/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.5±0.5±0.31.5±0.5±0.31.5±0.5±0.31.5±0.5±0.3 22 ± 6 FULTON 90B CLEO e+ e− → hadrons�(

γ 2π+2π−pp)/�total �62/��(

γ 2π+2π−pp)/�total �62/��(

γ 2π+2π−pp)/�total �62/��(

γ 2π+2π−pp)/�total �62/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.4±0.4±0.40.4±0.4±0.40.4±0.4±0.40.4±0.4±0.4 7 ± 6 FULTON 90B CLEO e+ e− → hadrons�(

γ 2K+2K−)/�total �63/��(

γ 2K+2K−)/�total �63/��(

γ 2K+2K−)/�total �63/��(

γ 2K+2K−)/�total �63/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.2±0.20.2±0.20.2±0.20.2±0.2 2 ± 2 FULTON 90B CLEO e+ e− → hadrons

�(

γ η′(958))/�total �64/��(

γ η′(958))/�total �64/��(

γ η′(958))/�total �64/��(

γ η′(958))/�total �64/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 1.9< 1.9< 1.9< 1.9 90 ATHAR 07A CLEO �(1S) → γ η′ → γπ+π− η, γ ρ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<16 90 RICHICHI 01B CLE2 �(1S) → γ η′ → γ ηπ+π−�(

γ η
)/�total �65/��(

γ η
)/�total �65/��(

γ η
)/�total �65/��(

γ η
)/�total �65/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 1.0< 1.0< 1.0< 1.0 90 ATHAR 07A CLEO �(1S) → γ η → γ γ γ,
γπ+π−π0, γ 3π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<21 90 MASEK 02 CLEO �(1S) → γ η�(

γ f0(980))/�total �66/��(

γ f0(980))/�total �66/��(

γ f0(980))/�total �66/��(

γ f0(980))/�total �66/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<3<3<3<3 90 24 ATHAR 06 CLE3 �(1S) → γπ+π−24Assuming B(f0(980) → ππ) = 1.�(

γ f ′2(1525))/�total �67/��(

γ f ′2(1525))/�total �67/��(

γ f ′2(1525))/�total �67/��(

γ f ′2(1525))/�total �67/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT3.8±0.9 OUR AVERAGE3.8±0.9 OUR AVERAGE3.8±0.9 OUR AVERAGE3.8±0.9 OUR AVERAGE4.0±1.4±0.1 17 ± 5 25 BESSON 11 CLEO �(1S) → K0S K0S3.7+0.9
−0.7±0.8 ATHAR 06 CLE3 �(1S) → γK+K−

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<14 90 26 FULTON 90B CLEO �(1S) → γK+K−
<19.4 90 26 ALBRECHT 89 ARG �(1S) → γK+K−25BESSON 11 reports (4.0 ± 1.3 ± 0.6) × 10−5 from a measurement of [�(�(1S) →

γ f ′2(1525))/�total℄ × [B(f ′2(1525) → K K)℄ assuming B(f ′2(1525) → K K) = (88.8±3.1) × 10−2, whi
h we res
ale to our best value B(f ′2(1525) → K K) = (88.7 ±2.2) × 10−2. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value. The result also assumes B(K0S → π+π−)= (69.20 ± 0.05)% and B(f ′2(1525) → K K) = 4 B(f ′2(1525) → K0S K0S ).26Assuming B(f ′2(1525) → KK) = 0.71.�(

γ f2(1270))/�total �68/��(

γ f2(1270))/�total �68/��(

γ f2(1270))/�total �68/��(

γ f2(1270))/�total �68/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT10.1±0.9 OUR AVERAGE10.1±0.9 OUR AVERAGE10.1±0.9 OUR AVERAGE10.1±0.9 OUR AVERAGE10.5±1.6+1.9
−1.8 27 BESSON 07A CLE3 �(1S) → γπ0π010.2±0.8±0.7 ATHAR 06 CLE3 �(1S) → γπ+π−8.1±2.3+2.9
−2.7 28 ANASTASSOV 99 CLE2 e+ e− → hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<21 90 28 FULTON 90B CLEO �(1S) → γπ+π−
<13 90 28 ALBRECHT 89 ARG �(1S) → γπ+π−
<81 90 SCHMITT 88 CBAL �(1S) → γX27Using B(f2(1270) → π0π0) = B(f2(1270) → ππ)/3 and B(f2(1270) → ππ) =(0.845+0.025

−0.012)%.28Using B(f2(1270) → ππ) = 0.84.�(

γ η(1405))/�total �69/��(

γ η(1405))/�total �69/��(

γ η(1405))/�total �69/��(

γ η(1405))/�total �69/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<8.2<8.2<8.2<8.2 90 29 FULTON 90B CLEO �(1S) → γK±π∓K0S29 In
ludes unknown bran
hing ratio of η(1405) → K±π∓K0S .�(

γ f0(1500))/�total �70/��(

γ f0(1500))/�total �70/��(

γ f0(1500))/�total �70/��(

γ f0(1500))/�total �70/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.5<1.5<1.5<1.5 90 30 BESSON 07A CLEO e+ e− → �(1S) → γπ0π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.1 90 31 BESSON 07A CLEO e+ e− → �(1S) → γ ηη30Using B(f0(1500) → π0π0) = B(f0(1500) → ππ)/3 and B(f0(1500) → ππ) =(0.349 ± 0.023)%.31Cal
ulated by us using B(f0(1500) → ηη) = (5.1 ± 0.9)%.�(

γ f0(1710))/�total �71/��(

γ f0(1710))/�total �71/��(

γ f0(1710))/�total �71/��(

γ f0(1710))/�total �71/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 2.6< 2.6< 2.6< 2.6 90 32 ALBRECHT 89 ARG �(1S) → γK+K−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 6.3 90 32 FULTON 90B CLEO �(1S) → γK+K−
<19 90 32 FULTON 90B CLEO �(1S) → γK0S K0S
< 8 90 33 ALBRECHT 89 ARG �(1S) → γπ+π−
<24 90 34 SCHMITT 88 CBAL �(1S) → γX32Assuming B(f0(1710) → K K) = 0.38.33Assuming B(f0(1710) → ππ) = 0.04.34Assuming B(f0(1710) → ηη) = 0.18.
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le Listings�(1S)�(γ f0(1710)→ γK+K−)/�total �72/��(γ f0(1710)→ γK+K−)/�total �72/��(γ f0(1710)→ γK+K−)/�total �72/��(γ f0(1710)→ γK+K−)/�total �72/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<0.7<0.7<0.7<0.7 90 ATHAR 06 CLEO e+ e− → �(1S) → γK+K−�(γ f0(1710)→ γπ0π0)/�total �73/��(γ f0(1710)→ γπ0π0)/�total �73/��(γ f0(1710)→ γπ0π0)/�total �73/��(γ f0(1710)→ γπ0π0)/�total �73/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.4<1.4<1.4<1.4 90 BESSON 07A CLEO e+ e− → �(1S) → γπ0π0�(γ f0(1710)→ γ ηη

)/�total �74/��(γ f0(1710)→ γ ηη
)/�total �74/��(γ f0(1710)→ γ ηη
)/�total �74/��(γ f0(1710)→ γ ηη
)/�total �74/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<1.8<1.8<1.8<1.8 90 BESSON 07A CLEO e+ e− → �(1S) → γ ηη�(γ f4(2050))/�total �75/��(γ f4(2050))/�total �75/��(γ f4(2050))/�total �75/��(γ f4(2050))/�total �75/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<5.3<5.3<5.3<5.3 90 35 ATHAR 06 CLE3 �(1S) → γπ+π−35Assuming B(f4(2050) → ππ) = 0.17.�(γ f0(2200)→ γK+K−)/�total �76/��(γ f0(2200)→ γK+K−)/�total �76/��(γ f0(2200)→ γK+K−)/�total �76/��(γ f0(2200)→ γK+K−)/�total �76/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.0002<0.0002<0.0002<0.0002 90 BARU 89 MD1 �(1S) → γK+K−�(γ fJ (2220)→ γK+K−)/�total �77/��(γ fJ (2220)→ γK+K−)/�total �77/��(γ fJ (2220)→ γK+K−)/�total �77/��(γ fJ (2220)→ γK+K−)/�total �77/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
< 8< 8< 8< 8 90 ATHAR 06 CLE3 �(1S) → γK+K−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 160 90 MASEK 02 CLEO �(1S) → γK+K−
< 150 90 FULTON 90B CLEO �(1S) → γK+K−
< 290 90 ALBRECHT 89 ARG �(1S) → γK+K−
<2000 90 BARU 89 MD1 �(1S) → γK+K−�(γ fJ (2220)→ γπ+π−)/�total �78/��(γ fJ (2220)→ γπ+π−)/�total �78/��(γ fJ (2220)→ γπ+π−)/�total �78/��(γ fJ (2220)→ γπ+π−)/�total �78/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
< 6< 6< 6< 6 90 ATHAR 06 CLE3 �(1S) → γπ+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<120 90 MASEK 02 CLEO �(1S) → γπ+π−�(γ fJ (2220)→ γ pp)/�total �79/��(γ fJ (2220)→ γ pp)/�total �79/��(γ fJ (2220)→ γ pp)/�total �79/��(γ fJ (2220)→ γ pp)/�total �79/�VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT
< 11< 11< 11< 11 90 ATHAR 06 CLE3 �(1S) → γ pp
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<160 90 MASEK 02 CLEO �(1S) → γ pp�(γ η(2225)→ γφφ

)/�total �80/��(γ η(2225)→ γφφ
)/�total �80/��(γ η(2225)→ γφφ
)/�total �80/��(γ η(2225)→ γφφ
)/�total �80/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.003<0.003<0.003<0.003 90 BARU 89 MD1 �(1S) → γK+K−K+K−�(γ η
 (1S))/�total �81/��(γ η
 (1S))/�total �81/��(γ η
 (1S))/�total �81/��(γ η
 (1S))/�total �81/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<5.7<5.7<5.7<5.7 90 SHEN 10A BELL �(1S) → γX�(γχ
0)/�total �82/��(γχ
0)/�total �82/��(γχ
0)/�total �82/��(γχ
0)/�total �82/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<6.5<6.5<6.5<6.5 90 SHEN 10A BELL �(1S) → γX�(γχ
1)/�total �83/��(γχ
1)/�total �83/��(γχ
1)/�total �83/��(γχ
1)/�total �83/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<2.3<2.3<2.3<2.3 90 SHEN 10A BELL �(1S) → γX�(γχ
2)/�total �84/��(γχ
2)/�total �84/��(γχ
2)/�total �84/��(γχ
2)/�total �84/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<7.6<7.6<7.6<7.6 90 SHEN 10A BELL �(1S) → γX�(γX (3872)→ π+π− J/ψ

)/�total �85/��(γX (3872)→ π+π− J/ψ
)/�total �85/��(γX (3872)→ π+π− J/ψ
)/�total �85/��(γX (3872)→ π+π− J/ψ
)/�total �85/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<1.6<1.6<1.6<1.6 90 SHEN 10A BELL �(1S) → γX�(γX (3872)→ π+π−π0 J/ψ
)/�total �86/��(γX (3872)→ π+π−π0 J/ψ
)/�total �86/��(γX (3872)→ π+π−π0 J/ψ
)/�total �86/��(γX (3872)→ π+π−π0 J/ψ
)/�total �86/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<2.8<2.8<2.8<2.8 90 SHEN 10A BELL �(1S) → γX�(γX (3915)→ ωJ/ψ
)/�total �87/��(γX (3915)→ ωJ/ψ
)/�total �87/��(γX (3915)→ ωJ/ψ
)/�total �87/��(γX (3915)→ ωJ/ψ
)/�total �87/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<3.0<3.0<3.0<3.0 90 SHEN 10A BELL �(1S) → γX�(γX (4140)→ φJ/ψ
)/�total �88/��(γX (4140)→ φJ/ψ
)/�total �88/��(γX (4140)→ φJ/ψ
)/�total �88/��(γX (4140)→ φJ/ψ
)/�total �88/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<2.2<2.2<2.2<2.2 90 SHEN 10A BELL �(1S) → γX

�(γX)/�total �89/��(γX)/�total �89/��(γX)/�total �89/��(γX)/�total �89/�(X = s
alar with m < 8.0 GeV)VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
< 4.5< 4.5< 4.5< 4.5 90 36 DEL-AMO-SA...11J BABR e+ e− → γ + X
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<30 90 37 BALEST 95 CLEO e+ e− → γ + X36For a nonintera
ting s
alar X with mass m < 8.0 GeV.37For a nonintera
ting pseudos
alar X with mass < 7.2 GeV.�(γX X (mX < 3.1 GeV))/�total �90/��(γX X (mX < 3.1 GeV))/�total �90/��(γX X (mX < 3.1 GeV))/�total �90/��(γX X (mX < 3.1 GeV))/�total �90/�(X X = ve
tors with m< 3.1 GeV)VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<1<1<1<1 90 38 BALEST 95 CLEO e+ e− → γ + X X38For a nonintera
ting ve
tor X with mass < 3.1 GeV.�(γX X (mX < 4.5 GeV))/�total �91/��(γX X (mX < 4.5 GeV))/�total �91/��(γX X (mX < 4.5 GeV))/�total �91/��(γX X (mX < 4.5 GeV))/�total �91/�X and X = zero spin with m < 4.5 GeVVALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<24<24<24<24 90 39 DEL-AMO-SA...11J BABR e+ e− → γ + X X39For a nonintera
ting s
alar X with mass m < 4.5 GeV.�(γX → γ+ ≥ 4 prongs)/�total �92/��(γX → γ+ ≥ 4 prongs)/�total �92/��(γX → γ+ ≥ 4 prongs)/�total �92/��(γX → γ+ ≥ 4 prongs)/�total �92/�(1.5 GeV < mX < 5.0 GeV)VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.78<1.78<1.78<1.78 95 ROSNER 07A CLEO e+ e− → γX�(γ a01 → γµ+µ−)/�total �93/��(γ a01 → γµ+µ−)/�total �93/��(γ a01 → γµ+µ−)/�total �93/��(γ a01 → γµ+µ−)/�total �93/�(201 < M(µ+µ−) < 3565 MeV)VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<9<9<9<9 90 40 LOVE 08 CLEO e+ e− → γ a01 → γµ+µ−

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<9.7 90 41 LEES 13C BABR e+ e− → γ a01 → γµ+µ−40For a narrow s
alar or pseudos
alar a01 with 201 < M(µ+µ−) < 3565 MeV, ex
ludingJ/ψ. Measured 90% CL limits as a fun
tion of M(µ+µ−) range from 1{9× 10−6.41 For a narrow s
alar or pseudos
alar a01 with mass in the range 212{9200 MeV, ex
ludingJ/ψ and ψ(2S). Measured 90% CL limits as a fun
tion of ma01 range from 0.28{9.7×10−6.�(γ a01 → γ τ+ τ−

)/�total �94/��(γ a01 → γ τ+ τ−
)/�total �94/��(γ a01 → γ τ+ τ−
)/�total �94/��(γ a01 → γ τ+ τ−
)/�total �94/�(2mτ < M(τ+ τ−) < 9.2 GeV)VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<130<130<130<130 90 42 LEES 13R BABR �(2S) → γ τ+ τ−π+π−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 50 90 43 LOVE 08 CLEO e+ e− → γ a01 → γ τ+ τ−42For a narrow s
alar a01 with 2mτ < M(a01) < 9.2 GeV, whi
h result in a 90% CL upperlimits of 0.9×10−5 at M(a01) = 2mτ , ≈ 1.5×10−5 at M(a01) = 7.5 GeV, and 13×10−5at M(a01) = 9.2 GeV.43For a narrow s
alar or pseudos
alar a01 with 2mτ < M(a01) < 7.5 GeV, whi
h result in a90% CL limits ranging from 1× 10−5 at M(a01)=2mτ to 5× 10−5 at M(a01)=7.5 GeV.�(γ a01 → γ g g)/�total �95/��(γ a01 → γ g g)/�total �95/��(γ a01 → γ g g)/�total �95/��(γ a01 → γ g g)/�total �95/�(0.5 GeV < m < 9.0 GeV)VALUE CL% DOCUMENT ID TECN COMMENT
<1× 10−2<1× 10−2<1× 10−2<1× 10−2 90 44 LEES 13L BABR �(1S) → γX44For a narrow, CP-odd pseudos
alar a01 sear
hed for in 26 hadroni
 de
ay modes withinvariant mass 0.5 GeV < mX < 9.0 GeV. Measured 90% CL limit as a fun
tion of mXrange from 10−6 to 10−2.�(γ a01 → γ s s)/�total �96/��(γ a01 → γ s s)/�total �96/��(γ a01 → γ s s)/�total �96/��(γ a01 → γ s s)/�total �96/�(0.5 GeV < m < 9.0 GeV)VALUE CL% DOCUMENT ID TECN COMMENT
<1× 10−3<1× 10−3<1× 10−3<1× 10−3 90 45 LEES 13L BABR �(1S) → γX45For a narrow, CP-odd pseudos
alar a01 sear
hed for in 14 hadroni
 de
ay modes withinvariant mass 1.5 GeV < mX < 9.0 GeV. Measured 90% CL limit as a fun
tion of mXrange from 10−5 to 10−3.LEPTON FAMILY NUMBER (LF) VIOLATING MODESLEPTON FAMILY NUMBER (LF) VIOLATING MODESLEPTON FAMILY NUMBER (LF) VIOLATING MODESLEPTON FAMILY NUMBER (LF) VIOLATING MODES�(µ± τ∓

)/�total �97/��(µ± τ∓
)/�total �97/��(µ± τ∓
)/�total �97/��(µ± τ∓
)/�total �97/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<6.0<6.0<6.0<6.0 95 LOVE 08A CLEO e+ e− → µ± τ∓OTHER DECAYSOTHER DECAYSOTHER DECAYSOTHER DECAYS�(invisible)/�total �98/��(invisible)/�total �98/��(invisible)/�total �98/��(invisible)/�total �98/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 3.0< 3.0< 3.0< 3.0 90 AUBERT 09AX BABR �(3S) → π+π−�(1S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<39 90 RUBIN 07 CLEO �(2S) → π+π−�(1S)
<25 90 TAJIMA 07 BELL �(3S) → π+π−�(1S)
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hi
hi et al. (CLEO Collab.)ARTAMONOV 00 PL B474 427 A.S. Artamonov et al.ANASTASSOV 99 PRL 82 286 A. Anastassov et al. (CLEO Collab.)ALEXANDER 98 PR D58 052004 J.P. Alexander et al. (CLEO Collab.)BARU 96 PRPL 267 71 S.E. Baru et al. (NOVO)BALEST 95 PR D51 2053 R. Balest et al. (CLEO Collab.)CINABRO 94B PL B340 129 D. Cinabro et al. (CLEO Collab.)ALBRECHT 92J ZPHY C55 25 H. Albre
ht et al. (ARGUS Collab.)BARU 92 ZPHY C54 229 S.E. Baru et al. (NOVO)BARU 92B ZPHY C56 547 S.E. Baru et al. (NOVO)KOBEL 92 ZPHY C53 193 M. Kobel et al. (Crystal Ball Collab.)BLINOV 90 PL B245 311 A.E. Blinov et al. (NOVO)FULTON 90B PR D41 1401 R. Fulton et al. (CLEO Collab.)MASCHMANN 90 ZPHY C46 555 W.S. Mas
hmann et al. (Crystal Ball Collab.)ALBRECHT 89 ZPHY C42 349 H. Albre
ht et al. (ARGUS Collab.)ALEXANDER 89 NP B320 45 J.P. Alexander et al. (LBL, MICH, SLAC)BARU 89 ZPHY C42 505 S.E. Baru et al. (NOVO)CHEN 89B PR D39 3528 W.Y. Chen et al. (CLEO Collab.)FULTON 89 PL B224 445 R. Fulton et al. (CLEO Collab.)KAARSBERG 89 PRL 62 2077 T.M. Kaarsberg et al. (CUSB Collab.)BUCHMUEL... 88 HE e+ e− Physi
s 412 W. Bu
hmueller, S. Cooper (HANN, DESY, MIT)Editors: A. Ali and P. Soeding, World S
ienti�
, SingaporeJAKUBOWSKI 88 ZPHY C40 49 Z. Jakubowski et al. (Crystal Ball Collab.) IGJPCSCHMITT 88 ZPHY C40 199 P. S
hmitt et al. (Crystal Ball Collab.)ALBRECHT 87 ZPHY C35 283 H. Albre
ht et al. (ARGUS Collab.)COHEN 87 RMP 59 1121 E.R. Cohen, B.N. Taylor (RISC, NBS)BARU 86 ZPHY C30 551 S.E. Baru et al. (NOVO)ALBRECHT 85C PL 154B 452 H. Albre
ht et al. (ARGUS Collab.)KURAEV 85 SJNP 41 466 E.A. Kuraev, V.S. Fadin (NOVO)Translated from YAF 41 733.ARTAMONOV 84 PL 137B 272 A.S. Artamonov et al. (NOVO)BESSON 84 PR D30 1433 D. Besson et al. (CLEO Collab.)GILES 84B PR D29 1285 R. Giles et al. (CLEO Collab.)MACKAY 84 PR D29 2483 W.W. Ma
Kay et al. (CUSB Collab.)ANDREWS 83 PRL 50 807 D.E. Andrews et al. (CLEO Collab.)GILES 83 PRL 50 877 R. Giles et al. (HARV, OSU, ROCH, RUTG+)NICZYPORUK 83 ZPHY C17 197 B. Ni
zyporuk et al. (LENA Collab.)ALBRECHT 82 PL 116B 383 H. Albre
ht et al. (DESY, DORT, HEIDH+)ARTAMONOV 82 PL 118B 225 A.S. Artamonov et al. (NOVO)NICZYPORUK 82 ZPHY C15 299 B. Ni
zyporuk et al. (LENA Collab.)BERGER 80C PL 93B 497 C. Berger et al. (PLUTO Collab.)BOCK 80 ZPHY C6 125 P. Bo
k et al. (HEIDP, MPIM, DESY, HAMB)BERGER 79 ZPHY C1 343 C. Berger et al. (PLUTO Collab.)
χb0(1P) IG (JPC ) = 0+(0 + +)J needs 
on�rmation.Observed in radiative de
ay of the �(2S), therefore C = +. Bran
h-ing ratio requires E1 transition, M1 is strongly disfavored, thereforeP = +.

χb0(1P) MASSχb0(1P) MASSχb0(1P) MASSχb0(1P) MASSVALUE (MeV) DOCUMENT ID9859.44±0.42±0.31 OUR EVALUATION9859.44±0.42±0.31 OUR EVALUATION9859.44±0.42±0.31 OUR EVALUATION9859.44±0.42±0.31 OUR EVALUATION From average γ energy below, using �(2S)mass = 10023.26 ± 0.31 MeV
γ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYVALUE (MeV) DOCUMENT ID TECN COMMENT162.5 ±0.4 OUR AVERAGE162.5 ±0.4 OUR AVERAGE162.5 ±0.4 OUR AVERAGE162.5 ±0.4 OUR AVERAGE162.56±0.19±0.42 ARTUSO 05 CLEO �(2S) → γX162.0 ±0.8 ±1.2 EDWARDS 99 CLE2 �(2S) → γχ(1P)162.1 ±0.5 ±1.4 ALBRECHT 85E ARG �(2S) → 
onv.γX163.8 ±1.6 ±2.7 NERNST 85 CBAL �(2S) → γX158.0 ±7 ±1 HAAS 84 CLEO �(2S) → 
onv.γX

• • • We do not use the following data for averages, �ts, limits, et
. • • •149.4 ±0.7 ±5.0 KLOPFEN... 83 CUSB �(2S) → γX

χb0(1P) DECAY MODESχb0(1P) DECAY MODESχb0(1P) DECAY MODESχb0(1P) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 γ�(1S) ( 1.76±0.35) %�2 D0X < 10.4 % 90%�3 π+π−K+K−π0 < 1.6 × 10−4 90%�4 2π+π−K−K0S < 5 × 10−5 90%�5 2π+π−K−K0S 2π0 < 5 × 10−4 90%�6 2π+2π−2π0 < 2.1 × 10−4 90%�7 2π+2π−K+K− ( 1.1 ±0.6 ) × 10−4�8 2π+2π−K+K−π0 < 2.7 × 10−4 90%�9 2π+2π−K+K−2π0 < 5 × 10−4 90%�10 3π+2π−K−K0S π0 < 1.6 × 10−4 90%�11 3π+3π− < 8 × 10−5 90%�12 3π+3π−2π0 < 6 × 10−4 90%�13 3π+3π−K+K− ( 2.4 ±1.2 ) × 10−4�14 3π+3π−K+K−π0 < 1.0 × 10−3 90%�15 4π+4π− < 8 × 10−5 90%�16 4π+4π−2π0 < 2.1 × 10−3 90%�17 J/ψJ/ψ < 7 × 10−5 90%�18 J/ψψ(2S) < 1.2 × 10−4 90%�19 ψ(2S)ψ(2S) < 3.1 × 10−5 90%
χb0(1P) BRANCHING RATIOSχb0(1P) BRANCHING RATIOSχb0(1P) BRANCHING RATIOSχb0(1P) BRANCHING RATIOS�(γ�(1S))/�total �1/��(γ�(1S))/�total �1/��(γ�(1S))/�total �1/��(γ�(1S))/�total �1/�VALUE (%) CL% EVTS DOCUMENT ID TECN COMMENT1.76±0.30±0.181.76±0.30±0.181.76±0.30±0.181.76±0.30±0.18 87 1,2 KORNICER 11 CLEO e+ e− → γ γ ℓ+ ℓ−

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4.6 90 3 LEES 11J BABR �(2S) → X γ

< 6 90 WALK 86 CBAL �(2S) → γ γ ℓ+ ℓ−
<11 90 PAUSS 83 CUSB �(2S) → γ γ ℓ+ ℓ−1Assuming B(�(1S) → ℓ+ ℓ−) = (2.48 ± 0.05)%.2KORNICER 11 reports [�(

χb0(1P) → γ�(1S))/�total℄× [B(�(2S)→ γχb0(1P))℄ =(6.59± 0.96± 0.60)×10−4 whi
h we divide by our best value B(�(2S) → γχb0(1P))= (3.8 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3 LEES 11J quotes a 
entral value of �(

χb0(1P) → γ�(1S))/�total × �(�(2S) →
γχb0(1P))/�total = (8.3 ± 5.6+3.7

−2.6)× 10−4.�(D0X)/�total �2/��(D0X)/�total �2/��(D0X)/�total �2/��(D0X)/�total �2/�VALUE CL% DOCUMENT ID TECN COMMENT
<10.4× 10−2<10.4× 10−2<10.4× 10−2<10.4× 10−2 90 4,5 BRIERE 08 CLEO �(2S) → γD0X4For pD0 > 2.5 GeV/
.5The authors also present their result as (5.6 ± 3.6 ± 0.5)× 10−2.�(π+π−K+K−π0)/�total �3/��(π+π−K+K−π0)/�total �3/��(π+π−K+K−π0)/�total �3/��(π+π−K+K−π0)/�total �3/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.6<1.6<1.6<1.6 90 6 ASNER 08A CLEO �(2S) → γπ+π−K+K−π06ASNER 08A reports [�(

χb0(1P) → π+π−K+K−π0)/�total℄ × [B(�(2S) →
γχb0(1P))℄ < 6 × 10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P))= 3.8× 10−2.�(2π+π−K−K0S)/�total �4/��(2π+π−K−K0S)/�total �4/��(2π+π−K−K0S)/�total �4/��(2π+π−K−K0S)/�total �4/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<0.5<0.5<0.5<0.5 90 7 ASNER 08A CLEO �(2S) → γ 2π+π−K−K0S7ASNER 08A reports [�(

χb0(1P) → 2π+π−K−K0S )/�total℄ × [B(�(2S) →
γχb0(1P))℄ < 2 × 10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P))= 3.8× 10−2.�(2π+π−K−K0S 2π0)/�total �5/��(2π+π−K−K0S 2π0)/�total �5/��(2π+π−K−K0S 2π0)/�total �5/��(2π+π−K−K0S 2π0)/�total �5/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<5<5<5<5 90 8 ASNER 08A CLEO �(2S) → γ 2π+π−K− 2π08ASNER 08A reports [�(

χb0(1P) → 2π+π−K−K0S 2π0)/�total℄ × [B(�(2S) →
γχb0(1P))℄ < 18× 10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P))= 3.8× 10−2.�(2π+2π−2π0)/�total �6/��(2π+2π−2π0)/�total �6/��(2π+2π−2π0)/�total �6/��(2π+2π−2π0)/�total �6/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<2.1<2.1<2.1<2.1 90 9 ASNER 08A CLEO �(2S) → γ 2π+2π− 2π09ASNER 08A reports [�(

χb0(1P) → 2π+2π− 2π0)/�total℄× [B(�(2S)→ γχb0(1P))℄
< 8× 10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P)) = 3.8× 10−2.
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χb0(1P), χb1(1P)�(2π+2π−K+K−)/�total �7/��(2π+2π−K+K−)/�total �7/��(2π+2π−K+K−)/�total �7/��(2π+2π−K+K−)/�total �7/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.1±0.6±0.11.1±0.6±0.11.1±0.6±0.11.1±0.6±0.1 7 10 ASNER 08A CLEO �(2S) → γ 2π+2π−K+K−10ASNER 08A reports [�(

χb0(1P) → 2π+2π−K+K−)/�total℄ × [B(�(2S) →
γχb0(1P))℄ = (4 ± 2 ± 1) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb0(1P)) = (3.8 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+2π−K+K−π0)/�total �8/��(2π+2π−K+K−π0)/�total �8/��(2π+2π−K+K−π0)/�total �8/��(2π+2π−K+K−π0)/�total �8/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<2.7<2.7<2.7<2.7 90 11 ASNER 08A CLEO �(2S) → γ 2π+2π−K+K−π011ASNER 08A reports [�(

χb0(1P) → 2π+2π−K+K−π0)/�total℄ × [B(�(2S) →
γχb0(1P))℄ < 10× 10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P))= 3.8× 10−2.�(2π+2π−K+K−2π0)/�total �9/��(2π+2π−K+K−2π0)/�total �9/��(2π+2π−K+K−2π0)/�total �9/��(2π+2π−K+K−2π0)/�total �9/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<5<5<5<5 90 12 ASNER 08A CLEO �(2S) → γ 2π+2π−K+K−2π012ASNER 08A reports [�(

χb0(1P) → 2π+2π−K+K− 2π0)/�total℄ × [B(�(2S) →
γχb0(1P))℄ < 20× 10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P))= 3.8× 10−2.�(3π+2π−K−K0S π0)/�total �10/��(3π+2π−K−K0S π0)/�total �10/��(3π+2π−K−K0S π0)/�total �10/��(3π+2π−K−K0S π0)/�total �10/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.6<1.6<1.6<1.6 90 13 ASNER 08A CLEO �(2S) → γ 3π+2π−K−K0S π013ASNER 08A reports [�(

χb0(1P) → 3π+2π−K−K0S π0)/�total℄ × [B(�(2S) →
γχb0(1P))℄ < 6 × 10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P))= 3.8× 10−2.�(3π+3π−)/�total �11/��(3π+3π−)/�total �11/��(3π+3π−)/�total �11/��(3π+3π−)/�total �11/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<0.8<0.8<0.8<0.8 90 14 ASNER 08A CLEO �(2S) → γ 3π+3π−14ASNER 08A reports [�(

χb0(1P) → 3π+3π−)/�total℄ × [B(�(2S) → γχb0(1P))℄
< 3× 10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P)) = 3.8× 10−2.�(3π+3π−2π0)/�total �12/��(3π+3π−2π0)/�total �12/��(3π+3π−2π0)/�total �12/��(3π+3π−2π0)/�total �12/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<6<6<6<6 90 15 ASNER 08A CLEO �(2S) → γ 3π+3π− 2π015ASNER 08A reports [�(

χb0(1P) → 3π+3π− 2π0)/�total℄× [B(�(2S) → γχb0(1P))℄
< 22×10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P)) = 3.8×10−2.�(3π+3π−K+K−)/�total �13/��(3π+3π−K+K−)/�total �13/��(3π+3π−K+K−)/�total �13/��(3π+3π−K+K−)/�total �13/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.4±1.2±0.22.4±1.2±0.22.4±1.2±0.22.4±1.2±0.2 9 16 ASNER 08A CLEO �(2S) → γ 3π+3π−K+K−16ASNER 08A reports [�(

χb0(1P) → 3π+3π−K+K−)/�total℄ × [B(�(2S) →
γχb0(1P))℄ = (9 ± 4 ± 2) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb0(1P)) = (3.8 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(3π+3π−K+K−π0)/�total �14/��(3π+3π−K+K−π0)/�total �14/��(3π+3π−K+K−π0)/�total �14/��(3π+3π−K+K−π0)/�total �14/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<10<10<10<10 90 17 ASNER 08A CLEO �(2S) → γ 3π+3π−K+K−π017ASNER 08A reports [�(

χb0(1P) → 3π+3π−K+K−π0)/�total℄ × [B(�(2S) →
γχb0(1P))℄ < 37× 10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P))= 3.8× 10−2.�(4π+4π−)/�total �15/��(4π+4π−)/�total �15/��(4π+4π−)/�total �15/��(4π+4π−)/�total �15/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<0.8<0.8<0.8<0.8 90 18 ASNER 08A CLEO �(2S) → γ 4π+4π−18ASNER 08A reports [�(

χb0(1P) → 4π+4π−)/�total℄ × [B(�(2S) → γχb0(1P))℄
< 3× 10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P)) = 3.8× 10−2.�(4π+4π−2π0)/�total �16/��(4π+4π−2π0)/�total �16/��(4π+4π−2π0)/�total �16/��(4π+4π−2π0)/�total �16/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<21<21<21<21 90 19 ASNER 08A CLEO �(2S) → γ 4π+4π− 2π019ASNER 08A reports [�(

χb0(1P) → 4π+4π− 2π0)/�total℄× [B(�(2S) → γχb0(1P))℄
< 77×10−6 whi
h we divide by our best value B(�(2S) → γχb0(1P)) = 3.8×10−2.�(J/ψJ/ψ

)/�total �17/��(J/ψJ/ψ
)/�total �17/��(J/ψJ/ψ
)/�total �17/��(J/ψJ/ψ
)/�total �17/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<7<7<7<7 90 20 SHEN 12 BELL �(2S) → γψX20SHEN 12 reports < 7.1×10−5 from a measurement of [�(

χb0(1P) → J/ψJ/ψ
)/�total℄

× [B(�(2S) → γχb0(1P))℄ assuming B(�(2S) → γχb0(1P)) = (3.8 ± 0.4)×10−2.�(J/ψψ(2S))/�total �18/��(J/ψψ(2S))/�total �18/��(J/ψψ(2S))/�total �18/��(J/ψψ(2S))/�total �18/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<12<12<12<12 90 21 SHEN 12 BELL �(2S) → γψX

21SHEN 12 reports < 12 × 10−5 from a measurement of [�(

χb0(1P) → J/ψψ(2S))/�total℄ × [B(�(2S) → γχb0(1P))℄ assuming B(�(2S) → γχb0(1P)) = (3.8± 0.4)×10−2.�(ψ(2S)ψ(2S))/�total �19/��(ψ(2S)ψ(2S))/�total �19/��(ψ(2S)ψ(2S))/�total �19/��(ψ(2S)ψ(2S))/�total �19/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<3.1<3.1<3.1<3.1 90 22 SHEN 12 BELL �(2S) → γψX22SHEN 12 reports < 3.1× 10−5 from a measurement of [�(

χb0(1P) → ψ(2S)ψ(2S))/�total℄ × [B(�(2S) → γχb0(1P))℄ assuming B(�(2S) → γχb0(1P)) = (3.8± 0.4)×10−2.
χb0(1P) CROSS-PARTICLE BRANCHING RATIOSχb0(1P) CROSS-PARTICLE BRANCHING RATIOSχb0(1P) CROSS-PARTICLE BRANCHING RATIOSχb0(1P) CROSS-PARTICLE BRANCHING RATIOS�(χb0(1P)→ γ�(1S))/�total × �(�(2S)→ γχb0(1P))/�total�1/�× ��(2S)47 /��(2S)�(χb0(1P)→ γ�(1S))/�total × �(�(2S)→ γχb0(1P))/�total�1/�× ��(2S)47 /��(2S)�(χb0(1P)→ γ�(1S))/�total × �(�(2S)→ γχb0(1P))/�total�1/�× ��(2S)47 /��(2S)�(χb0(1P)→ γ�(1S))/�total × �(�(2S)→ γχb0(1P))/�total�1/�× ��(2S)47 /��(2S)VALUE CL% DOCUMENT ID TECN COMMENT

<1.7× 10−3<1.7× 10−3<1.7× 10−3<1.7× 10−3 90 23 LEES 11J BABR �(2S) → X γ23 LEES 11J quotes a 
entral value of �(

χb0(1P) → γ�(1S))/�total × �(�(2S) →
γχb0(1P))/�total = (8.3 ± 5.6+3.7

−2.6) × 10−4 and derives a 90% CL upper limit of�(

γ�(1S))/�total < 4.6% using B(�(4S) → γχb0(1P)) = (3.8 ± 0.4)%.B(χb0(1P) → γ�(1S)) × B(�(2S) → γχb0(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb0(1P) → γ�(1S)) × B(�(2S) → γχb0(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb0(1P) → γ�(1S)) × B(�(2S) → γχb0(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb0(1P) → γ�(1S)) × B(�(2S) → γχb0(1P)) × B(�(1S) → ℓ+ ℓ−)VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.63±0.24±0.151.63±0.24±0.151.63±0.24±0.151.63±0.24±0.15 87 KORNICER 11 CLEO e+ e− → γ γ ℓ+ ℓ−

χb0(1P) REFERENCESχb0(1P) REFERENCESχb0(1P) REFERENCESχb0(1P) REFERENCESSHEN 12 PR D85 071102 C.P. Shen et al. (BELLE Collab.)KORNICER 11 PR D83 054003 M. Korni
er et al. (CLEO Collab.)LEES 11J PR D84 072002 J.P. Lees et al. (BABAR Collab.)ASNER 08A PR D78 091103 D.M. Asner et al. (CLEO Collab.)BRIERE 08 PR D78 092007 R.A. Briere et al. (CLEO Collab.)ARTUSO 05 PRL 94 032001 M. Artuso et al. (CLEO Collab.)EDWARDS 99 PR D59 032003 K.W. Edwards et al. (CLEO Collab.)WALK 86 PR D34 2611 W.S. Walk et al. (Crystal Ball Collab.)ALBRECHT 85E PL 160B 331 H. Albre
ht et al. (ARGUS Collab.)NERNST 85 PRL 54 2195 R. Nernst et al. (Crystal Ball Collab.)HAAS 84 PRL 52 799 J. Haas et al. (CLEO Collab.)KLOPFEN... 83 PRL 51 160 C. Klopfenstein et al. (CUSB Collab.)PAUSS 83 PL 130B 439 F. Pauss et al. (MPIM, COLU, CORN, LSU+)
χb1(1P) IG (JPC ) = 0+(1 + +)J needs 
on�rmation.Observed in radiative de
ay of the �(2S), therefore C = +. Bran
h-ing ratio requires E1 transition, M1 is strongly disfavored, thereforeP = +. J = 1 from SKWARNICKI 87.

χb1(1P) MASSχb1(1P) MASSχb1(1P) MASSχb1(1P) MASSVALUE (MeV) DOCUMENT ID9892.78±0.26±0.31 OUR EVALUATION9892.78±0.26±0.31 OUR EVALUATION9892.78±0.26±0.31 OUR EVALUATION9892.78±0.26±0.31 OUR EVALUATION From average γ energy below, using �(2S)mass = 10023.26 ± 0.31 MeV
γ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYVALUE (MeV) DOCUMENT ID TECN COMMENT129.63±0.33 OUR AVERAGE129.63±0.33 OUR AVERAGE129.63±0.33 OUR AVERAGE129.63±0.33 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.129.58±0.09±0.29 ARTUSO 05 CLEO �(2S) → γX128.8 ±0.4 ±0.6 EDWARDS 99 CLE2 �(2S) → γχ(1P)131.7 ±0.9 ±1.3 WALK 86 CBAL �(2S) → γ γ ℓ+ ℓ−131.7 ±0.3 ±1.1 ALBRECHT 85E ARG �(2S) → 
onv.γX130.6 ±0.8 ±2.4 NERNST 85 CBAL �(2S) → γX129 ±0.8 ±1 HAAS 84 CLEO �(2S) → 
onv.γX128.1 ±0.4 ±3.0 KLOPFEN... 83 CUSB �(2S) → γX130.6 ±3.0 PAUSS 83 CUSB �(2S) → γ γ ℓ+ ℓ−

WEIGHTED AVERAGE
129.63±0.33 (Error scaled by 1.3)

PAUSS 83 CUSB
KLOPFEN... 83 CUSB
HAAS 84 CLEO 0.2
NERNST 85 CBAL
ALBRECHT 85E ARG 3.3
WALK 86 CBAL 1.7
EDWARDS 99 CLE2 1.3
ARTUSO 05 CLEO 0.0

χ2

       6.6
(Confidence Level = 0.158)

124 126 128 130 132 134 136 138

χb1(1P) mass (MeV)
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χb1(1P)

χb1(1P) DECAY MODESχb1(1P) DECAY MODESχb1(1P) DECAY MODESχb1(1P) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 γ�(1S) (33.9±2.2) %�2 D0X (12.6±2.2) %�3 π+π−K+K−π0 ( 2.0±0.6)× 10−4�4 2π+π−K−K0S ( 1.3±0.5)× 10−4�5 2π+π−K−K0S 2π0 < 6 × 10−4 90%�6 2π+2π−2π0 ( 8.0±2.5)× 10−4�7 2π+2π−K+K− ( 1.5±0.5)× 10−4�8 2π+2π−K+K−π0 ( 3.5±1.2)× 10−4�9 2π+2π−K+K−2π0 ( 8.6±3.2)× 10−4�10 3π+2π−K−K0S π0 ( 9.3±3.3)× 10−4�11 3π+3π− ( 1.9±0.6)× 10−4�12 3π+3π−2π0 ( 1.7±0.5)× 10−3�13 3π+3π−K+K− ( 2.6±0.8)× 10−4�14 3π+3π−K+K−π0 ( 7.5±2.6)× 10−4�15 4π+4π− ( 2.6±0.9)× 10−4�16 4π+4π−2π0 ( 1.4±0.6)× 10−3�17 J/ψJ/ψ < 2.7 × 10−5 90%�18 J/ψψ(2S) < 1.7 × 10−5 90%�19 ψ(2S)ψ(2S) < 6 × 10−5 90%
χb1(1P) BRANCHING RATIOSχb1(1P) BRANCHING RATIOSχb1(1P) BRANCHING RATIOSχb1(1P) BRANCHING RATIOS�(γ�(1S))/�total �1/��(γ�(1S))/�total �1/��(γ�(1S))/�total �1/��(γ�(1S))/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.339±0.022 OUR AVERAGE0.339±0.022 OUR AVERAGE0.339±0.022 OUR AVERAGE0.339±0.022 OUR AVERAGE0.331±0.018±0.017 3222 1,2 KORNICER 11 CLEO e+ e− → γ γ ℓ+ ℓ−0.350±0.023±0.018 13k 3 LEES 11J BABR �(2S) → X γ0.32 ±0.06 ±0.07 WALK 86 CBAL �(2S) → γ γ ℓ+ ℓ−0.47 ±0.18 KLOPFEN... 83 CUSB �(2S) → γ γ ℓ+ ℓ−1Assuming B(�(1S) → ℓ+ ℓ−) = (2.48 ± 0.05)%.2KORNICER 11 reports [�(

χb1(1P) → γ�(1S))/�total℄ × [B(�(2S) → γχb1(1P))℄= (22.8± 0.4± 1.2)×10−3 whi
h we divide by our best value B(�(2S) → γχb1(1P))= (6.9 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.3 LEES 11J reports [�(

χb1(1P) → γ�(1S))/�total℄ × [B(�(2S) → γχb1(1P))℄ =(24.1 ± 0.6 ± 1.5)× 10−3 whi
h we divide by our best value B(�(2S) → γχb1(1P))= (6.9 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(D0X)/�total �2/��(D0X)/�total �2/��(D0X)/�total �2/��(D0X)/�total �2/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT12.6±1.9±1.112.6±1.9±1.112.6±1.9±1.112.6±1.9±1.1 2310 4 BRIERE 08 CLEO �(2S) → γD0X4For pD0 > 2.5 GeV/
.�(π+π−K+K−π0)/�total �3/��(π+π−K+K−π0)/�total �3/��(π+π−K+K−π0)/�total �3/��(π+π−K+K−π0)/�total �3/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.0±0.6±0.12.0±0.6±0.12.0±0.6±0.12.0±0.6±0.1 18 5 ASNER 08A CLEO �(2S) → γπ+π−K+K−π05ASNER 08A reports [�(

χb1(1P) → π+π−K+K−π0)/�total℄ × [B(�(2S) →
γχb1(1P))℄ = (14 ± 3 ± 3) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb1(1P)) = (6.9 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+π−K−K0S)/�total �4/��(2π+π−K−K0S)/�total �4/��(2π+π−K−K0S)/�total �4/��(2π+π−K−K0S)/�total �4/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.3±0.5±0.11.3±0.5±0.11.3±0.5±0.11.3±0.5±0.1 11 6 ASNER 08A CLEO �(2S) → γ 2π+π−K−K0S6ASNER 08A reports [�(

χb1(1P) → 2π+π−K−K0S )/�total℄ × [B(�(2S) →
γχb1(1P))℄ = (9 ± 3 ± 2) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb1(1P)) = (6.9 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+π−K−K0S 2π0)/�total �5/��(2π+π−K−K0S 2π0)/�total �5/��(2π+π−K−K0S 2π0)/�total �5/��(2π+π−K−K0S 2π0)/�total �5/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<6<6<6<6 90 7 ASNER 08A CLEO �(2S) → γ 2π+π−K− 2π07ASNER 08A reports [�(

χb1(1P) → 2π+π−K−K0S 2π0)/�total℄ × [B(�(2S) →
γχb1(1P))℄ < 42× 10−6 whi
h we divide by our best value B(�(2S) → γχb1(1P))= 6.9× 10−2.�(2π+2π−2π0)/�total �6/��(2π+2π−2π0)/�total �6/��(2π+2π−2π0)/�total �6/��(2π+2π−2π0)/�total �6/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8.0±2.4±0.48.0±2.4±0.48.0±2.4±0.48.0±2.4±0.4 46 8 ASNER 08A CLEO �(2S) → γ 2π+2π− 2π08ASNER 08A reports [�(

χb1(1P) → 2π+2π− 2π0)/�total℄× [B(�(2S) → γχb1(1P))℄= (55 ± 9 ± 14) × 10−6 whi
h we divide by our best value B(�(2S) → γχb1(1P))= (6.9 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.

�(2π+2π−K+K−)/�total �7/��(2π+2π−K+K−)/�total �7/��(2π+2π−K+K−)/�total �7/��(2π+2π−K+K−)/�total �7/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.5±0.5±0.11.5±0.5±0.11.5±0.5±0.11.5±0.5±0.1 18 9 ASNER 08A CLEO �(2S) → γ 2π+2π−K+K−9ASNER 08A reports [�(

χb1(1P) → 2π+2π−K+K−)/�total℄ × [B(�(2S) →
γχb1(1P))℄ = (10 ± 3 ± 2) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb1(1P)) = (6.9 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+2π−K+K−π0)/�total �8/��(2π+2π−K+K−π0)/�total �8/��(2π+2π−K+K−π0)/�total �8/��(2π+2π−K+K−π0)/�total �8/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.5±1.2±0.23.5±1.2±0.23.5±1.2±0.23.5±1.2±0.2 22 10 ASNER 08A CLEO �(2S) → γ 2π+2π−K+K−π010ASNER 08A reports [�(

χb1(1P) → 2π+2π−K+K−π0)/�total℄ × [B(�(2S) →
γχb1(1P))℄ = (24 ± 6 ± 6) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb1(1P)) = (6.9 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+2π−K+K−2π0)/�total �9/��(2π+2π−K+K−2π0)/�total �9/��(2π+2π−K+K−2π0)/�total �9/��(2π+2π−K+K−2π0)/�total �9/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT8.6±3.2±0.48.6±3.2±0.48.6±3.2±0.48.6±3.2±0.4 26 11 ASNER 08A CLEO �(2S) → γ 2π+2π−K+K−2π011ASNER 08A reports [�(

χb1(1P) → 2π+2π−K+K− 2π0)/�total℄ × [B(�(2S) →
γχb1(1P))℄ = (59 ± 14 ± 17) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb1(1P)) = (6.9 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(3π+2π−K−K0S π0)/�total �10/��(3π+2π−K−K0S π0)/�total �10/��(3π+2π−K−K0S π0)/�total �10/��(3π+2π−K−K0S π0)/�total �10/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT9.3±3.3±0.59.3±3.3±0.59.3±3.3±0.59.3±3.3±0.5 21 12 ASNER 08A CLEO �(2S) → γ 3π+2π−K−K0S π012ASNER 08A reports [�(

χb1(1P) → 3π+2π−K−K0S π0)/�total℄ × [B(�(2S) →
γχb1(1P))℄ = (64 ± 16 ± 16) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb1(1P)) = (6.9 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(3π+3π−)/�total �11/��(3π+3π−)/�total �11/��(3π+3π−)/�total �11/��(3π+3π−)/�total �11/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.9±0.6±0.11.9±0.6±0.11.9±0.6±0.11.9±0.6±0.1 25 13 ASNER 08A CLEO �(2S) → γ 3π+3π−13ASNER 08A reports [�(

χb1(1P) → 3π+3π−)/�total℄ × [B(�(2S) → γχb1(1P))℄= (13 ± 3 ± 3)× 10−6 whi
h we divide by our best value B(�(2S) → γχb1(1P)) =(6.9 ± 0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(3π+3π−2π0)/�total �12/��(3π+3π−2π0)/�total �12/��(3π+3π−2π0)/�total �12/��(3π+3π−2π0)/�total �12/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT17±5±117±5±117±5±117±5±1 56 14 ASNER 08A CLEO �(2S) → γ 3π+3π− 2π014ASNER 08A reports [�(

χb1(1P) → 3π+3π− 2π0)/�total℄× [B(�(2S)→ γχb1(1P))℄= (119 ± 18 ± 32)× 10−6 whi
h we divide by our best value B(�(2S) → γχb1(1P))= (6.9 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(3π+3π−K+K−)/�total �13/��(3π+3π−K+K−)/�total �13/��(3π+3π−K+K−)/�total �13/��(3π+3π−K+K−)/�total �13/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.6±0.8±0.12.6±0.8±0.12.6±0.8±0.12.6±0.8±0.1 21 15 ASNER 08A CLEO �(2S) → γ 3π+3π−K+K−15ASNER 08A reports [�(

χb1(1P) → 3π+3π−K+K−)/�total℄ × [B(�(2S) →
γχb1(1P))℄ = (18 ± 4 ± 4) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb1(1P)) = (6.9 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(3π+3π−K+K−π0)/�total �14/��(3π+3π−K+K−π0)/�total �14/��(3π+3π−K+K−π0)/�total �14/��(3π+3π−K+K−π0)/�total �14/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.5±2.6±0.47.5±2.6±0.47.5±2.6±0.47.5±2.6±0.4 28 16 ASNER 08A CLEO �(2S) → γ 3π+3π−K+K−π016ASNER 08A reports [�(

χb1(1P) → 3π+3π−K+K−π0)/�total℄ × [B(�(2S) →
γχb1(1P))℄ = (52 ± 11 ± 14) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb1(1P)) = (6.9 ± 0.4) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(4π+4π−)/�total �15/��(4π+4π−)/�total �15/��(4π+4π−)/�total �15/��(4π+4π−)/�total �15/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.6±0.9±0.12.6±0.9±0.12.6±0.9±0.12.6±0.9±0.1 24 17 ASNER 08A CLEO �(2S) → γ 4π+4π−17ASNER 08A reports [�(

χb1(1P) → 4π+4π−)/�total℄ × [B(�(2S) → γχb1(1P))℄= (18 ± 4 ± 5)× 10−6 whi
h we divide by our best value B(�(2S) → γχb1(1P)) =(6.9 ± 0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(4π+4π−2π0)/�total �16/��(4π+4π−2π0)/�total �16/��(4π+4π−2π0)/�total �16/��(4π+4π−2π0)/�total �16/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT14±5±114±5±114±5±114±5±1 26 18 ASNER 08A CLEO �(2S) → γ 4π+4π− 2π018ASNER 08A reports [�(

χb1(1P) → 4π+4π− 2π0)/�total℄× [B(�(2S)→ γχb1(1P))℄= (96 ± 24 ± 29)× 10−6 whi
h we divide by our best value B(�(2S) → γχb1(1P))= (6.9 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.
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χb1(1P), hb(1P),χb2(1P)�(J/ψJ/ψ

)/�total �17/��(J/ψJ/ψ
)/�total �17/��(J/ψJ/ψ
)/�total �17/��(J/ψJ/ψ
)/�total �17/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<2.7<2.7<2.7<2.7 90 19 SHEN 12 BELL �(2S) → γψX19SHEN 12 reports < 2.7×10−5 from a measurement of [�(

χb1(1P) → J/ψJ/ψ
)/�total℄

× [B(�(2S) → γχb1(1P))℄ assuming B(�(2S) → γχb1(1P)) = (6.9 ± 0.4)×10−2.�(J/ψψ(2S))/�total �18/��(J/ψψ(2S))/�total �18/��(J/ψψ(2S))/�total �18/��(J/ψψ(2S))/�total �18/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.7<1.7<1.7<1.7 90 20 SHEN 12 BELL �(2S) → γψX20SHEN 12 reports < 1.7 × 10−5 from a measurement of [�(

χb1(1P) → J/ψψ(2S))/�total℄ × [B(�(2S) → γχb1(1P))℄ assuming B(�(2S) → γχb1(1P)) = (6.9± 0.4)×10−2.�(ψ(2S)ψ(2S))/�total �19/��(ψ(2S)ψ(2S))/�total �19/��(ψ(2S)ψ(2S))/�total �19/��(ψ(2S)ψ(2S))/�total �19/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<6<6<6<6 90 21 SHEN 12 BELL �(2S) → γψX21SHEN 12 reports < 6.2× 10−5 from a measurement of [�(

χb1(1P) → ψ(2S)ψ(2S))/�total℄ × [B(�(2S) → γχb1(1P))℄ assuming B(�(2S) → γχb1(1P)) = (6.9± 0.4)×10−2.
χb1(1P) Cross-Parti
le Bran
hing Ratiosχb1(1P) Cross-Parti
le Bran
hing Ratiosχb1(1P) Cross-Parti
le Bran
hing Ratiosχb1(1P) Cross-Parti
le Bran
hing Ratios�(χb1(1P)→ γ�(1S))/�total × �(�(2S)→ γχb1(1P))/�total�1/�× ��(2S)45 /��(2S)�(χb1(1P)→ γ�(1S))/�total × �(�(2S)→ γχb1(1P))/�total�1/�× ��(2S)45 /��(2S)�(χb1(1P)→ γ�(1S))/�total × �(�(2S)→ γχb1(1P))/�total�1/�× ��(2S)45 /��(2S)�(χb1(1P)→ γ�(1S))/�total × �(�(2S)→ γχb1(1P))/�total�1/�× ��(2S)45 /��(2S)VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT24.1±0.6±1.524.1±0.6±1.524.1±0.6±1.524.1±0.6±1.5 13k LEES 11J BABR �(2S) → X γB(χb1(1P) → γ�(1S)) × B(�(2S) → γχb1(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb1(1P) → γ�(1S)) × B(�(2S) → γχb1(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb1(1P) → γ�(1S)) × B(�(2S) → γχb1(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb1(1P) → γ�(1S)) × B(�(2S) → γχb1(1P)) × B(�(1S) → ℓ+ ℓ−)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT5.65±0.11±0.275.65±0.11±0.275.65±0.11±0.275.65±0.11±0.27 3222 KORNICER 11 CLEO e+ e− → γ γ ℓ+ ℓ−B(χb1(1P) → γ�(1S)) × B(�(3S) → γχb1(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb1(1P) → γ�(1S)) × B(�(3S) → γχb1(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb1(1P) → γ�(1S)) × B(�(3S) → γχb1(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb1(1P) → γ�(1S)) × B(�(3S) → γχb1(1P)) × B(�(1S) → ℓ+ ℓ−)VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT1.33±0.30±0.231.33±0.30±0.231.33±0.30±0.231.33±0.30±0.23 50 KORNICER 11 CLEO e+ e− → γ γ ℓ+ ℓ−B(χb2(1P) → pX + pX )/B(χb1(1P) → pX + pX )B(χb2(1P) → pX + pX )/B(χb1(1P) → pX + pX )B(χb2(1P) → pX + pX )/B(χb1(1P) → pX + pX )B(χb2(1P) → pX + pX )/B(χb1(1P) → pX + pX )VALUE DOCUMENT ID TECN COMMENT1.068±0.010±0.0401.068±0.010±0.0401.068±0.010±0.0401.068±0.010±0.040 BRIERE 07 CLEO �(2S) → γχbJ (1P)B(χb0(1P) → pX + pX )/B(χb1(1P) → pX + pX )B(χb0(1P) → pX + pX )/B(χb1(1P) → pX + pX )B(χb0(1P) → pX + pX )/B(χb1(1P) → pX + pX )B(χb0(1P) → pX + pX )/B(χb1(1P) → pX + pX )VALUE DOCUMENT ID TECN COMMENT1.11±0.15±0.201.11±0.15±0.201.11±0.15±0.201.11±0.15±0.20 BRIERE 07 CLEO �(2S) → γχbJ (1P)

χb1(1P) REFERENCESχb1(1P) REFERENCESχb1(1P) REFERENCESχb1(1P) REFERENCESSHEN 12 PR D85 071102 C.P. Shen et al. (BELLE Collab.)KORNICER 11 PR D83 054003 M. Korni
er et al. (CLEO Collab.)LEES 11J PR D84 072002 J.P. Lees et al. (BABAR Collab.)ASNER 08A PR D78 091103 D.M. Asner et al. (CLEO Collab.)BRIERE 08 PR D78 092007 R.A. Briere et al. (CLEO Collab.)BRIERE 07 PR D76 012005 R.A. Briere et al. (CLEO Collab.)ARTUSO 05 PRL 94 032001 M. Artuso et al. (CLEO Collab.)EDWARDS 99 PR D59 032003 K.W. Edwards et al. (CLEO Collab.)SKWARNICKI 87 PRL 58 972 T. Skwarni
ki et al. (Crystal Ball Collab.) JWALK 86 PR D34 2611 W.S. Walk et al. (Crystal Ball Collab.)ALBRECHT 85E PL 160B 331 H. Albre
ht et al. (ARGUS Collab.)NERNST 85 PRL 54 2195 R. Nernst et al. (Crystal Ball Collab.)HAAS 84 PRL 52 799 J. Haas et al. (CLEO Collab.)KLOPFEN... 83 PRL 51 160 C. Klopfenstein et al. (CUSB Collab.)PAUSS 83 PL 130B 439 F. Pauss et al. (MPIM, COLU, CORN, LSU+)hb(1P) IG (JPC ) = ??(1 +−)Quantum numbers are quark model predi
tions, C = − establishedby ηb γ de
ay. hb(1P) MASShb(1P) MASShb(1P) MASShb(1P) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT9899.3±0.8 OUR AVERAGE9899.3±0.8 OUR AVERAGE9899.3±0.8 OUR AVERAGE9899.3±0.8 OUR AVERAGE9899.3±0.4±1.0 112k TAMPONI 15 BELL e+ e− → γ η+ hadrons9899.1±0.4±1.0 70k MIZUK 12 BELL e+ e− → π+π− hadrons9902 ±4 ±2 10.8k LEES 11K BABR �(3S) → ηb γπ0
• • • We do not use the following data for averages, �ts, limits, et
. • • •9898.2+1.1

−1.0+1.0
−1.1 50.0k 1 ADACHI 12 BELL 10.86 e+ e− → π+π− MM1Superseded by MIZUK 12. hb(1P) DECAY MODEShb(1P) DECAY MODEShb(1P) DECAY MODEShb(1P) DECAY MODESMode Fra
tion (�i /�)�1 ηb(1S)γ (52+6

−5) %

hb(1P) BRANCHING RATIOShb(1P) BRANCHING RATIOShb(1P) BRANCHING RATIOShb(1P) BRANCHING RATIOS�(ηb(1S)γ)/�total �1/��(ηb(1S)γ)/�total �1/��(ηb(1S)γ)/�total �1/��(ηb(1S)γ)/�total �1/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT52 +6
−5 OUR AVERAGE52 +6
−5 OUR AVERAGE52 +6
−5 OUR AVERAGE52 +6
−5 OUR AVERAGE56 ±8 ±4 33.1k 1 TAMPONI 15 BELL e+ e− → γ η+ hadrons49.2±5.7+5.6

−3.3 24k MIZUK 12 BELL e+ e− → (γ)π+ π− hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 10.8k LEES 11K BABR �(3S) → ηb γπ01Using B(η → 2γ) = (39.41 ± 0.20)%.hb(1P) REFERENCEShb(1P) REFERENCEShb(1P) REFERENCEShb(1P) REFERENCESTAMPONI 15 PRL 115 142001 U. Tamponi et al. (BELLE Collab.)ADACHI 12 PRL 108 032001 I. Ada
hi et al. (BELLE Collab.)MIZUK 12 PRL 109 232002 R. Mizuk et al. (BELLE Collab.)LEES 11K PR D84 091101 J.P. Lees et al. (BABAR Collab.)
χb2(1P) IG (JPC ) = 0+(2 + +)J needs 
on�rmation.Observed in radiative de
ay of the �(2S), therefore C = +. Bran
h-ing ratio requires E1 transition, M1 is strongly disfavored, thereforeP = +. J = 2 from SKWARNICKI 87.

χb2(1P) MASSχb2(1P) MASSχb2(1P) MASSχb2(1P) MASSVALUE (MeV) DOCUMENT ID9912.21±0.26±0.31 OUR EVALUATION9912.21±0.26±0.31 OUR EVALUATION9912.21±0.26±0.31 OUR EVALUATION9912.21±0.26±0.31 OUR EVALUATION From average γ energy below, using �(2S)mass = 10023.26 ± 0.31 MeV mχb2(1P) − mχb1(1P)mχb2(1P) − mχb1(1P)mχb2(1P) − mχb1(1P)mχb2(1P) − mχb1(1P)VALUE (MeV) DOCUMENT ID TECN COMMENT19.81±0.65±0.2019.81±0.65±0.2019.81±0.65±0.2019.81±0.65±0.20 1 AAIJ 14BG LHCB pp → γµ+µ−X1From the χbj(1P) → �(1S)γ transition.
γ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYγ ENERGY IN �(2S) DECAYVALUE (MeV) DOCUMENT ID TECN COMMENT110.44±0.29 OUR AVERAGE110.44±0.29 OUR AVERAGE110.44±0.29 OUR AVERAGE110.44±0.29 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.110.58±0.08±0.30 ARTUSO 05 CLEO �(2S) → γX110.8 ±0.3 ±0.6 EDWARDS 99 CLE2 �(2S) → γχ(1P)107.0 ±1.1 ±1.3 WALK 86 CBAL �(2S) → γ γ ℓ+ ℓ−110.6 ±0.3 ±0.9 ALBRECHT 85E ARG �(2S) → 
onv.γX110.4 ±0.8 ±2.2 NERNST 85 CBAL �(2S) → γX109.5 ±0.7 ±1.0 HAAS 84 CLEO �(2S) → 
onv.γX108.2 ±0.3 ±2.0 KLOPFEN... 83 CUSB �(2S) → γX108.8 ±4.0 PAUSS 83 CUSB �(2S) → γ γ ℓ+ ℓ−

χb2(1P) DECAY MODESχb2(1P) DECAY MODESχb2(1P) DECAY MODESχb2(1P) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 γ�(1S) (19.1±1.2) %�2 D0X < 7.9 % 90%�3 π+π−K+K−π0 ( 8 ±5 )× 10−5�4 2π+π−K−K0S < 1.0 × 10−4 90%�5 2π+π−K−K0S 2π0 ( 5.3±2.4)× 10−4�6 2π+2π−2π0 ( 3.5±1.4)× 10−4�7 2π+2π−K+K− ( 1.1±0.4)× 10−4�8 2π+2π−K+K−π0 ( 2.1±0.9)× 10−4�9 2π+2π−K+K−2π0 ( 3.9±1.8)× 10−4�10 3π+2π−K−K0S π0 < 5 × 10−4 90%�11 3π+3π− ( 7.0±3.1)× 10−5�12 3π+3π−2π0 ( 1.0±0.4)× 10−3�13 3π+3π−K+K− < 8 × 10−5 90%�14 3π+3π−K+K−π0 ( 3.6±1.5)× 10−4�15 4π+4π− ( 8 ±4 )× 10−5�16 4π+4π−2π0 ( 1.8±0.7)× 10−3�17 J/ψJ/ψ < 4 × 10−5 90%�18 J/ψψ(2S) < 5 × 10−5 90%�19 ψ(2S)ψ(2S) < 1.6 × 10−5 90%
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χb2(1P)

χb2(1P) BRANCHING RATIOSχb2(1P) BRANCHING RATIOSχb2(1P) BRANCHING RATIOSχb2(1P) BRANCHING RATIOS�(γ�(1S))/�total �1/��(γ�(1S))/�total �1/��(γ�(1S))/�total �1/��(γ�(1S))/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.191±0.012 OUR AVERAGE0.191±0.012 OUR AVERAGE0.191±0.012 OUR AVERAGE0.191±0.012 OUR AVERAGE0.186±0.011±0.009 1770 2,3 KORNICER 11 CLEO e+ e− → γ γ ℓ+ ℓ−0.194+0.014
−0.017±0.009 8k 4 LEES 11J BABR �(2S) → X γ0.27 ±0.06 ±0.06 WALK 86 CBAL �(2S) → γ γ ℓ+ ℓ−0.20 ±0.05 KLOPFEN... 83 CUSB �(2S) → γ γ ℓ+ ℓ−2Assuming B(�(1S) → ℓ+ ℓ−) = (2.48 ± 0.05)%.3KORNICER 11 reports [�(

χb2(1P) → γ�(1S))/�total℄× [B(�(2S)→ γχb2(1P))℄ =(1.33± 0.04± 0.07)×10−2 whi
h we divide by our best value B(�(2S) → γχb2(1P))= (7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.4 LEES 11J reports [�(

χb2(1P) → γ�(1S))/�total℄ × [B(�(2S) → γχb2(1P))℄ =(13.9 ± 0.5+0.9
−1.1) × 10−3 whi
h we divide by our best value B(�(2S) → γχb2(1P))= (7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(D0X)/�total �2/��(D0X)/�total �2/��(D0X)/�total �2/��(D0X)/�total �2/�VALUE CL% DOCUMENT ID TECN COMMENT

<7.9× 10−2<7.9× 10−2<7.9× 10−2<7.9× 10−2 90 5,6 BRIERE 08 CLEO �(2S) → γD0X5For pD0 > 2.5 GeV/
.6The authors also present their result as (5.4 ± 1.9 ± 0.5)× 10−2.�(π+π−K+K−π0)/�total �3/��(π+π−K+K−π0)/�total �3/��(π+π−K+K−π0)/�total �3/��(π+π−K+K−π0)/�total �3/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.84±0.50±0.040.84±0.50±0.040.84±0.50±0.040.84±0.50±0.04 8 7 ASNER 08A CLEO �(2S) → γπ+π−K+K−π07ASNER 08A reports [�(

χb2(1P) → π+π−K+K−π0)/�total℄ × [B(�(2S) →
γχb2(1P))℄ = (6 ± 3 ± 2) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb2(1P)) = (7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+π−K−K0S)/�total �4/��(2π+π−K−K0S)/�total �4/��(2π+π−K−K0S)/�total �4/��(2π+π−K−K0S)/�total �4/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.0<1.0<1.0<1.0 90 8 ASNER 08A CLEO �(2S) → γ 2π+π−K−K0S8ASNER 08A reports [�(

χb2(1P) → 2π+π−K−K0S )/�total℄ × [B(�(2S) →
γχb2(1P))℄ < 7 × 10−6 whi
h we divide by our best value B(�(2S) → γχb2(1P))= 7.15× 10−2.�(2π+π−K−K0S 2π0)/�total �5/��(2π+π−K−K0S 2π0)/�total �5/��(2π+π−K−K0S 2π0)/�total �5/��(2π+π−K−K0S 2π0)/�total �5/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT5.3±2.4±0.35.3±2.4±0.35.3±2.4±0.35.3±2.4±0.3 11 9 ASNER 08A CLEO �(2S) → γ 2π+π−K− 2π09ASNER 08A reports [�(

χb2(1P) → 2π+π−K−K0S 2π0)/�total℄ × [B(�(2S) →
γχb2(1P))℄ = (38 ± 14 ± 10) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb2(1P)) = (7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+2π−2π0)/�total �6/��(2π+2π−2π0)/�total �6/��(2π+2π−2π0)/�total �6/��(2π+2π−2π0)/�total �6/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.5±1.4±0.23.5±1.4±0.23.5±1.4±0.23.5±1.4±0.2 19 10 ASNER 08A CLEO �(2S) → γ 2π+2π− 2π010ASNER 08A reports [�(

χb2(1P) → 2π+2π− 2π0)/�total℄× [B(�(2S) → γχb2(1P))℄= (25 ± 8 ± 6)× 10−6 whi
h we divide by our best value B(�(2S) → γχb2(1P)) =(7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(2π+2π−K+K−)/�total �7/��(2π+2π−K+K−)/�total �7/��(2π+2π−K+K−)/�total �7/��(2π+2π−K+K−)/�total �7/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.1±0.4±0.11.1±0.4±0.11.1±0.4±0.11.1±0.4±0.1 14 11 ASNER 08A CLEO �(2S) → γ 2π+2π−K+K−11ASNER 08A reports [�(

χb2(1P) → 2π+2π−K+K−)/�total℄ × [B(�(2S) →
γχb2(1P))℄ = (8 ± 2 ± 2) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb2(1P)) = (7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+2π−K+K−π0)/�total �8/��(2π+2π−K+K−π0)/�total �8/��(2π+2π−K+K−π0)/�total �8/��(2π+2π−K+K−π0)/�total �8/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.1±0.9±0.12.1±0.9±0.12.1±0.9±0.12.1±0.9±0.1 13 12 ASNER 08A CLEO �(2S) → γ 2π+2π−K+K−π012ASNER 08A reports [�(

χb2(1P) → 2π+2π−K+K−π0)/�total℄ × [B(�(2S) →
γχb2(1P))℄ = (15 ± 5 ± 4) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb2(1P)) = (7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+2π−K+K−2π0)/�total �9/��(2π+2π−K+K−2π0)/�total �9/��(2π+2π−K+K−2π0)/�total �9/��(2π+2π−K+K−2π0)/�total �9/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.9±1.8±0.23.9±1.8±0.23.9±1.8±0.23.9±1.8±0.2 11 13 ASNER 08A CLEO �(2S) → γ 2π+2π−K+K−2π013ASNER 08A reports [�(

χb2(1P) → 2π+2π−K+K− 2π0)/�total℄ × [B(�(2S) →
γχb2(1P))℄ = (28 ± 11 ± 7) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb2(1P)) = (7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.

�(3π+2π−K−K0S π0)/�total �10/��(3π+2π−K−K0S π0)/�total �10/��(3π+2π−K−K0S π0)/�total �10/��(3π+2π−K−K0S π0)/�total �10/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<5<5<5<5 90 14 ASNER 08A CLEO �(2S) → γ 3π+2π−K−K0S π014ASNER 08A reports [�(

χb2(1P) → 3π+2π−K−K0S π0)/�total℄ × [B(�(2S) →
γχb2(1P))℄ < 36× 10−6 whi
h we divide by our best value B(�(2S) → γχb2(1P))= 7.15× 10−2.�(3π+3π−)/�total �11/��(3π+3π−)/�total �11/��(3π+3π−)/�total �11/��(3π+3π−)/�total �11/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.70±0.31±0.030.70±0.31±0.030.70±0.31±0.030.70±0.31±0.03 9 15 ASNER 08A CLEO �(2S) → γ 3π+3π−15ASNER 08A reports [�(

χb2(1P) → 3π+3π−)/�total℄ × [B(�(2S) → γχb2(1P))℄= (5 ± 2 ± 1) × 10−6 whi
h we divide by our best value B(�(2S) → γχb2(1P)) =(7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(3π+3π−2π0)/�total �12/��(3π+3π−2π0)/�total �12/��(3π+3π−2π0)/�total �12/��(3π+3π−2π0)/�total �12/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT10.2±3.6±0.510.2±3.6±0.510.2±3.6±0.510.2±3.6±0.5 34 16 ASNER 08A CLEO �(2S) → γ 3π+3π− 2π016ASNER 08A reports [�(

χb2(1P) → 3π+3π− 2π0)/�total℄× [B(�(2S)→ γχb2(1P))℄= (73 ± 16 ± 20)× 10−6 whi
h we divide by our best value B(�(2S) → γχb2(1P))= (7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(3π+3π−K+K−)/�total �13/��(3π+3π−K+K−)/�total �13/��(3π+3π−K+K−)/�total �13/��(3π+3π−K+K−)/�total �13/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.8<0.8<0.8<0.8 90 17 ASNER 08A CLEO �(2S) → γ 3π+3π−K+K−17ASNER 08A reports [�(

χb2(1P) → 3π+3π−K+K−)/�total℄ × [B(�(2S) →
γχb2(1P))℄ < 6 × 10−6 whi
h we divide by our best value B(�(2S) → γχb2(1P))= 7.15× 10−2.�(3π+3π−K+K−π0)/�total �14/��(3π+3π−K+K−π0)/�total �14/��(3π+3π−K+K−π0)/�total �14/��(3π+3π−K+K−π0)/�total �14/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.6±1.5±0.23.6±1.5±0.23.6±1.5±0.23.6±1.5±0.2 14 18 ASNER 08A CLEO �(2S) → γ 3π+3π−K+K−π018ASNER 08A reports [�(

χb2(1P) → 3π+3π−K+K−π0)/�total℄ × [B(�(2S) →
γχb2(1P))℄ = (26 ± 8 ± 7) × 10−6 whi
h we divide by our best value B(�(2S) →
γχb2(1P)) = (7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(4π+4π−)/�total �15/��(4π+4π−)/�total �15/��(4π+4π−)/�total �15/��(4π+4π−)/�total �15/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.84±0.40±0.040.84±0.40±0.040.84±0.40±0.040.84±0.40±0.04 7 19 ASNER 08A CLEO �(2S) → γ 4π+4π−19ASNER 08A reports [�(

χb2(1P) → 4π+4π−)/�total℄ × [B(�(2S) → γχb2(1P))℄= (6 ± 2 ± 2) × 10−6 whi
h we divide by our best value B(�(2S) → γχb2(1P)) =(7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(4π+4π−2π0)/�total �16/��(4π+4π−2π0)/�total �16/��(4π+4π−2π0)/�total �16/��(4π+4π−2π0)/�total �16/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT18±7±118±7±118±7±118±7±1 29 20 ASNER 08A CLEO �(2S) → γ 4π+4π− 2π020ASNER 08A reports [�(

χb2(1P) → 4π+4π− 2π0)/�total℄× [B(�(2S)→ γχb2(1P))℄= (132 ± 31 ± 40)× 10−6 whi
h we divide by our best value B(�(2S) → γχb2(1P))= (7.15 ± 0.35)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(J/ψJ/ψ
)/�total �17/��(J/ψJ/ψ
)/�total �17/��(J/ψJ/ψ
)/�total �17/��(J/ψJ/ψ
)/�total �17/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT

<5<5<5<5 90 21 SHEN 12 BELL �(2S) → γψX21SHEN 12 reports < 4.5×10−5 from a measurement of [�(

χb2(1P) → J/ψJ/ψ
)/�total℄

× [B(�(2S) → γχb2(1P))℄ assuming B(�(2S) → γχb2(1P)) = (7.15±0.35)×10−2.�(J/ψψ(2S))/�total �18/��(J/ψψ(2S))/�total �18/��(J/ψψ(2S))/�total �18/��(J/ψψ(2S))/�total �18/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<5<5<5<5 90 22 SHEN 12 BELL �(2S) → γψX22SHEN 12 reports < 4.9 × 10−5 from a measurement of [�(

χb2(1P) → J/ψψ(2S))/�total℄ × [B(�(2S) → γχb2(1P))℄ assuming B(�(2S) → γχb2(1P)) = (7.15 ±0.35) × 10−2.�(ψ(2S)ψ(2S))/�total �19/��(ψ(2S)ψ(2S))/�total �19/��(ψ(2S)ψ(2S))/�total �19/��(ψ(2S)ψ(2S))/�total �19/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.6<1.6<1.6<1.6 90 23 SHEN 12 BELL �(2S) → γψX23SHEN 12 reports < 1.6× 10−5 from a measurement of [�(

χb2(1P) → ψ(2S)ψ(2S))/�total℄ × [B(�(2S) → γχb2(1P))℄ assuming B(�(2S) → γχb2(1P)) = (7.15 ±0.35) × 10−2.
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χb2(1P) Cross-Parti
le Bran
hing Ratiosχb2(1P) Cross-Parti
le Bran
hing Ratiosχb2(1P) Cross-Parti
le Bran
hing Ratiosχb2(1P) Cross-Parti
le Bran
hing Ratios�(χb2(1P)→ γ�(1S))/�total × �(�(2S)→ γχb2(1P))/�total�1/�× ��(2S)46 /��(2S)�(χb2(1P)→ γ�(1S))/�total × �(�(2S)→ γχb2(1P))/�total�1/�× ��(2S)46 /��(2S)�(χb2(1P)→ γ�(1S))/�total × �(�(2S)→ γχb2(1P))/�total�1/�× ��(2S)46 /��(2S)�(χb2(1P)→ γ�(1S))/�total × �(�(2S)→ γχb2(1P))/�total�1/�× ��(2S)46 /��(2S)VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT13.9±0.5+0.9
−1.113.9±0.5+0.9
−1.113.9±0.5+0.9
−1.113.9±0.5+0.9
−1.1 8k LEES 11J BABR �(2S) → X γB(χb2(1P) → γ�(1S)) × B(�(2S) → γχb2(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb2(1P) → γ�(1S)) × B(�(2S) → γχb2(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb2(1P) → γ�(1S)) × B(�(2S) → γχb2(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb2(1P) → γ�(1S)) × B(�(2S) → γχb2(1P)) × B(�(1S) → ℓ+ ℓ−)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.29±0.09±0.163.29±0.09±0.163.29±0.09±0.163.29±0.09±0.16 1770 KORNICER 11 CLEO e+ e− → γ γ ℓ+ ℓ−B(χb2(1P) → γ�(1S)) × B(�(3S) → γχb2(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb2(1P) → γ�(1S)) × B(�(3S) → γχb2(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb2(1P) → γ�(1S)) × B(�(3S) → γχb2(1P)) × B(�(1S) → ℓ+ ℓ−)B(χb2(1P) → γ�(1S)) × B(�(3S) → γχb2(1P)) × B(�(1S) → ℓ+ ℓ−)VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT3.56±0.40±0.413.56±0.40±0.413.56±0.40±0.413.56±0.40±0.41 126 KORNICER 11 CLEO e+ e− → γ γ ℓ+ ℓ−

χb2(1P) REFERENCESχb2(1P) REFERENCESχb2(1P) REFERENCESχb2(1P) REFERENCESAAIJ 14BG JHEP 1410 088 R. Aaij et al. (LHCb Collab.)SHEN 12 PR D85 071102 C.P. Shen et al. (BELLE Collab.)KORNICER 11 PR D83 054003 M. Korni
er et al. (CLEO Collab.)LEES 11J PR D84 072002 J.P. Lees et al. (BABAR Collab.)ASNER 08A PR D78 091103 D.M. Asner et al. (CLEO Collab.)BRIERE 08 PR D78 092007 R.A. Briere et al. (CLEO Collab.)ARTUSO 05 PRL 94 032001 M. Artuso et al. (CLEO Collab.)EDWARDS 99 PR D59 032003 K.W. Edwards et al. (CLEO Collab.)SKWARNICKI 87 PRL 58 972 T. Skwarni
ki et al. (Crystal Ball Collab.) JWALK 86 PR D34 2611 W.S. Walk et al. (Crystal Ball Collab.)ALBRECHT 85E PL 160B 331 H. Albre
ht et al. (ARGUS Collab.)NERNST 85 PRL 54 2195 R. Nernst et al. (Crystal Ball Collab.)HAAS 84 PRL 52 799 J. Haas et al. (CLEO Collab.)KLOPFEN... 83 PRL 51 160 C. Klopfenstein et al. (CUSB Collab.)PAUSS 83 PL 130B 439 F. Pauss et al. (MPIM, COLU, CORN, LSU+)
ηb(2S) IG (JPC ) = 0+(0−+)OMITTED FROM SUMMARY TABLEQuantum numbers shown are quark-model predi
tions.

ηb(2S) MASSηb(2S) MASSηb(2S) MASSηb(2S) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT9999.0±3.5+2.8
−1.99999.0±3.5+2.8
−1.99999.0±3.5+2.8
−1.99999.0±3.5+2.8
−1.9 26k 1 MIZUK 12 BELL e+ e− → γπ+π− +hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •9974.6±2.3±2.1 11 ± 4 2,3 DOBBS 12 �(2S) → γ hadrons1Assuming �ηb(2S) = 4.9 MeV. Not independent of the 
orresponding mass di�eren
emeasurement.2Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.3Assuming �ηb(2S) = 5 MeV. Not independent of the 
orresponding mass di�eren
emeasurement. m�(2S) − mηb(2S)m�(2S) − mηb(2S)m�(2S) − mηb(2S)m�(2S) − mηb(2S)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT24.3±3.5+2.8
−1.924.3±3.5+2.8
−1.924.3±3.5+2.8
−1.924.3±3.5+2.8
−1.9 26k 4 MIZUK 12 BELL e+ e− → γπ+π− +hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •48.7±2.3±2.1 11 ± 4 5,6 DOBBS 12 �(2S) → γ hadrons4Assuming �ηb(2S) = 4.9 MeV. Not independent of the 
orresponding mass measure-ment.5Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.6Assuming �ηb(2S) = 5 MeV. Not independent of the 
orresponding mass measurement.
ηb(2S) WIDTHηb(2S) WIDTHηb(2S) WIDTHηb(2S) WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT

<24<24<24<24 90 MIZUK 12 BELL e+ e− → γπ+π− hadrons
ηb(2S) DECAY MODESηb(2S) DECAY MODESηb(2S) DECAY MODESηb(2S) DECAY MODESMode Fra
tion (�i /�)�1 hadrons seen

ηb(2S) BRANCHING RATIOSηb(2S) BRANCHING RATIOSηb(2S) BRANCHING RATIOSηb(2S) BRANCHING RATIOS�(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 26k MIZUK 12 BELL e+ e− → γπ+π− hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 7 DOBBS 12 �(2S) → γ hadrons7Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.

ηb(2S) REFERENCESηb(2S) REFERENCESηb(2S) REFERENCESηb(2S) REFERENCESDOBBS 12 PRL 109 082001 S. Dobbs et al.MIZUK 12 PRL 109 232002 R. Mizuk et al. (BELLE Collab.)

�(2S) IG (JPC ) = 0−(1−−)�(2S) MASS�(2S) MASS�(2S) MASS�(2S) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT10023.26±0.31 OUR AVERAGE10023.26±0.31 OUR AVERAGE10023.26±0.31 OUR AVERAGE10023.26±0.31 OUR AVERAGE10023.5 ±0.5 1 ARTAMONOV 00 MD1 e+ e− → hadrons10023.1 ±0.4 BARBER 84 REDE e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •10023.6 ±0.5 2,3 BARU 86B REDE e+ e− → hadrons1Reanalysis of BARU 86B using new ele
tron mass (COHEN 87).2Reanalysis of ARTAMONOV 84.3 Superseded by ARTAMONOV 00.m�(3S) − m�(2S)m�(3S) − m�(2S)m�(3S) − m�(2S)m�(3S) − m�(2S)VALUE (MeV) DOCUMENT ID TECN COMMENT331.50±0.02±0.13331.50±0.02±0.13331.50±0.02±0.13331.50±0.02±0.13 LEES 11C BABR e+ e− → π+π−X�(2S) WIDTH�(2S) WIDTH�(2S) WIDTH�(2S) WIDTHVALUE (keV) DOCUMENT ID31.98±2.63 OUR EVALUATION31.98±2.63 OUR EVALUATION31.98±2.63 OUR EVALUATION31.98±2.63 OUR EVALUATION See the Note on \Width Determinations of the �States" �(2S) DECAY MODES�(2S) DECAY MODES�(2S) DECAY MODES�(2S) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 �(1S)π+π− (17.85± 0.26) %�2 �(1S)π0π0 ( 8.6 ± 0.4 ) %�3 τ+ τ− ( 2.00± 0.21) %�4 µ+µ− ( 1.93± 0.17) % S=2.2�5 e+ e− ( 1.91± 0.16) %�6 �(1S)π0 < 4 × 10−5 CL=90%�7 �(1S)η ( 2.9 ± 0.4 )× 10−4 S=2.0�8 J/ψ(1S) anything < 6 × 10−3 CL=90%�9 J/ψ(1S)η
 < 5.4 × 10−6 CL=90%�10 J/ψ(1S)χ
0 < 3.4 × 10−6 CL=90%�11 J/ψ(1S)χ
1 < 1.2 × 10−6 CL=90%�12 J/ψ(1S)χ
2 < 2.0 × 10−6 CL=90%�13 J/ψ(1S)η
 (2S) < 2.5 × 10−6 CL=90%�14 J/ψ(1S)X (3940) < 2.0 × 10−6 CL=90%�15 J/ψ(1S)X (4160) < 2.0 × 10−6 CL=90%�16 ψ(2S)η
 < 5.1 × 10−6 CL=90%�17 ψ(2S)χ
0 < 4.7 × 10−6 CL=90%�18 ψ(2S)χ
1 < 2.5 × 10−6 CL=90%�19 ψ(2S)χ
2 < 1.9 × 10−6 CL=90%�20 ψ(2S)η
 (2S) < 3.3 × 10−6 CL=90%�21 ψ(2S)X (3940) < 3.9 × 10−6 CL=90%�22 ψ(2S)X (4160) < 3.9 × 10−6 CL=90%�23 2H anything ( 2.78+ 0.30

− 0.26)× 10−5 S=1.2�24 hadrons (94 ±11 ) %�25 g g g (58.8 ± 1.2 ) %�26 γ g g ( 1.87± 0.28) %�27 φK+K− ( 1.6 ± 0.4 )× 10−6�28 ωπ+π− < 2.58 × 10−6 CL=90%�29 K∗(892)0K−π++ 
.
. ( 2.3 ± 0.7 )× 10−6�30 φ f ′2(1525) < 1.33 × 10−6 CL=90%�31 ω f2(1270) < 5.7 × 10−7 CL=90%�32 ρ(770)a2(1320) < 8.8 × 10−7 CL=90%�33 K∗(892)0K∗2(1430)0+ 
.
. ( 1.5 ± 0.6 )× 10−6�34 K1(1270)±K∓ < 3.22 × 10−6 CL=90%�35 K1(1400)±K∓ < 8.3 × 10−7 CL=90%�36 b1(1235)±π∓ < 4.0 × 10−7 CL=90%�37 ρπ < 1.16 × 10−6 CL=90%�38 π+π−π0 < 8.0 × 10−7 CL=90%�39 ωπ0 < 1.63 × 10−6 CL=90%�40 π+π−π0π0 ( 1.30± 0.28)× 10−5�41 K0S K+π−+ 
.
. ( 1.14± 0.33)× 10−6�42 K∗(892)0K0+ 
.
. < 4.22 × 10−6 CL=90%�43 K∗(892)−K++ 
.
. < 1.45 × 10−6 CL=90%�44 Sum of 100 ex
lusive modes ( 2.90± 0.30)× 10−3



1473147314731473See key on page 601 Meson Parti
le Listings�(2S)Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays�45 γχb1(1P) ( 6.9 ± 0.4 ) %�46 γχb2(1P) ( 7.15± 0.35) %�47 γχb0(1P) ( 3.8 ± 0.4 ) %�48 γ f0(1710) < 5.9 × 10−4 CL=90%�49 γ f ′2(1525) < 5.3 × 10−4 CL=90%�50 γ f2(1270) < 2.41 × 10−4 CL=90%�51 γ fJ (2220)�52 γ η
 (1S) < 2.7 × 10−5 CL=90%�53 γχ
0 < 1.0 × 10−4 CL=90%�54 γχ
1 < 3.6 × 10−6 CL=90%�55 γχ
2 < 1.5 × 10−5 CL=90%�56 γX (3872) → π+π− J/ψ < 8 × 10−7 CL=90%�57 γX (3872) → π+π−π0 J/ψ < 2.4 × 10−6 CL=90%�58 γX (3915) → ωJ/ψ < 2.8 × 10−6 CL=90%�59 γX (4140) → φJ/ψ < 1.2 × 10−6 CL=90%�60 γX (4350) → φJ/ψ < 1.3 × 10−6 CL=90%�61 γ ηb(1S) ( 3.9 ± 1.5 )× 10−4�62 γ ηb(1S) → γSum of 26 ex
lu-sive modes < 3.7 × 10−6 CL=90%�63 γX b b → γSum of 26 ex
lusivemodes < 4.9 × 10−6 CL=90%�64 γX → γ+ ≥ 4 prongs [a℄ < 1.95 × 10−4 CL=95%�65 γA0 → γ hadrons < 8 × 10−5 CL=90%�66 γ a01 → γµ+µ− < 8.3 × 10−6 CL=90%Lepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modes�67 e± τ∓ LF < 3.2 × 10−6 CL=90%�68 µ± τ∓ LF < 3.3 × 10−6 CL=90%[a℄ 1.5 GeV < mX < 5.0 GeVCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 3 bran
hing ratios uses 13 measurements and one
onstraint to determine 3 parameters. The overall �t has a χ2 =11.8 for 11 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x7 2x1 �(2S) �(i)�(e+ e−)/�(total)�(2S) �(i)�(e+ e−)/�(total)�(2S) �(i)�(e+ e−)/�(total)�(2S) �(i)�(e+ e−)/�(total)�(µ+µ−)

× �(e+ e−)/�total �4�5/��(µ+µ−)

× �(e+ e−)/�total �4�5/��(µ+µ−)

× �(e+ e−)/�total �4�5/��(µ+µ−)

× �(e+ e−)/�total �4�5/�VALUE (eV) DOCUMENT ID TECN COMMENT6.5±1.5±1.06.5±1.5±1.06.5±1.5±1.06.5±1.5±1.0 KOBEL 92 CBAL e+ e− → µ+µ−�(�(1S)π+π−)

× �(e+ e−)/�total �1�5/��(�(1S)π+π−)

× �(e+ e−)/�total �1�5/��(�(1S)π+π−)

× �(e+ e−)/�total �1�5/��(�(1S)π+π−)

× �(e+ e−)/�total �1�5/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT105.4±1.0±4.2105.4±1.0±4.2105.4±1.0±4.2105.4±1.0±4.2 11.8K 1 AUBERT 08BP BABR 10.58 e+ e− → γπ+π− ℓ+ ℓ−1Using B(�(1S) → e+ e−) = (2.38 ± 0.11)% and B(�(1S) → µ+µ−) = (2.48 ±0.05)%.�(hadrons) × �(e+ e−)/�total �24�5/��(hadrons) × �(e+ e−)/�total �24�5/��(hadrons) × �(e+ e−)/�total �24�5/��(hadrons) × �(e+ e−)/�total �24�5/�VALUE (keV) DOCUMENT ID TECN COMMENT0.577±0.009 OUR AVERAGE0.577±0.009 OUR AVERAGE0.577±0.009 OUR AVERAGE0.577±0.009 OUR AVERAGE0.581±0.004±0.009 1 ROSNER 06 CLEO 10.0 e+ e− → hadrons0.552±0.031±0.017 1 BARU 96 MD1 e+ e− → hadrons0.54 ±0.04 ±0.02 1 JAKUBOWSKI 88 CBAL e+ e− → hadrons0.58 ±0.03 ±0.04 2 GILES 84B CLEO e+ e− → hadrons0.60 ±0.12 ±0.07 2 ALBRECHT 82 DASP e+ e− → hadrons0.54 ±0.07 +0.09
−0.05 2 NICZYPORUK 81C LENA e+ e− → hadrons0.41 ±0.18 2 BOCK 80 CNTR e+ e− → hadrons1Radiative 
orre
tions evaluated following KURAEV 85.2Radiative 
orre
tions reevaluated by BUCHMUELLER 88 following KURAEV 85.�(2S) PARTIAL WIDTHS�(2S) PARTIAL WIDTHS�(2S) PARTIAL WIDTHS�(2S) PARTIAL WIDTHS�(e+ e−) �5�(e+ e−) �5�(e+ e−) �5�(e+ e−) �5VALUE (keV) DOCUMENT ID0.612±0.011 OUR EVALUATION0.612±0.011 OUR EVALUATION0.612±0.011 OUR EVALUATION0.612±0.011 OUR EVALUATION

�(2S) BRANCHING RATIOS�(2S) BRANCHING RATIOS�(2S) BRANCHING RATIOS�(2S) BRANCHING RATIOS�(�(1S)π+π−)/�total �1/��(�(1S)π+π−)/�total �1/��(�(1S)π+π−)/�total �1/��(�(1S)π+π−)/�total �1/�Abbreviation MM in the COMMENT �eld below stands for missing mass.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT17.85±0.26 OUR FIT17.85±0.26 OUR FIT17.85±0.26 OUR FIT17.85±0.26 OUR FIT17.92±0.26 OUR AVERAGE17.92±0.26 OUR AVERAGE17.92±0.26 OUR AVERAGE17.92±0.26 OUR AVERAGE16.8 ±1.1 ±1.3 906k 1 LEES 11C BABR e+ e− → π+π−X17.80±0.05±0.37 170k 2 LEES 11L BABR �(2S) → π+π−µ+µ−18.02±0.02±0.61 851k 3 BHARI 09 CLEO e+ e− → π+π− MM17.22±0.17±0.75 11.8K 4 AUBERT 08BP BABR e+ e− → γπ+π− ℓ+ ℓ−19.2 ±0.2 ±1.0 52.6k 5 ALEXANDER 98 CLE2 π+π− ℓ+ ℓ−, π+π− MM18.1 ±0.5 ±1.0 11.6k ALBRECHT 87 ARG e+ e− → π+π−MM16.9 ±4.0 GELPHMAN 85 CBAL e+ e− → e+ e−π+π−19.1 ±1.2 ±0.6 BESSON 84 CLEO π+π− MM18.9 ±2.6 FONSECA 84 CUSB e+ e− → ℓ+ ℓ−π+π−21 ±7 7 NICZYPORUK 81B LENA e+ e− → ℓ+ ℓ−π+π−1 LEES 11C reports [�(�(2S) → �(1S)π+π−
)/�total℄ × [B(�(3S) → �(2S)any-thing)℄ = (1.78 ± 0.02 ± 0.11)× 10−2 whi
h we divide by our best value B(�(3S) →�(2S)anything) = (10.6 ± 0.8)× 10−2. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.2Using B(�(1S) → µ+µ−) = (2.48 ± 0.05)%.3A weighted average of the in
lusive and ex
lusive results.4Using B(�(2S) → e+ e−) = (1.91 ± 0.16)%, B(�(2S) → µ+µ−) = (1.93 ± 0.17)%and, �ee(�(2S)) = 0.612 ± 0.011 keV.5Using B(�(1S) → e+ e−) = (2.52 ± 0.17)% and B(�(1S) → µ+µ−) = (2.48 ±0.07)%.�(�(1S)π0π0)/�total �2/��(�(1S)π0π0)/�total �2/��(�(1S)π0π0)/�total �2/��(�(1S)π0π0)/�total �2/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT8.6 ±0.4 OUR AVERAGE8.6 ±0.4 OUR AVERAGE8.6 ±0.4 OUR AVERAGE8.6 ±0.4 OUR AVERAGE8.43±0.16±0.42 38k 1 BHARI 09 CLEO e+ e− → π0π0 ℓ+ ℓ−9.2 ±0.6 ±0.8 275 2 ALEXANDER 98 CLE2 e+ e− → π0π0 ℓ+ ℓ−9.5 ±1.9 ±1.9 25 ALBRECHT 87 ARG e+ e− → π0π0 ℓ+ ℓ−8.0 ±1.5 GELPHMAN 85 CBAL e+ e− → π0π0 ℓ+ ℓ−10.3 ±2.3 FONSECA 84 CUSB e+ e− → π0π0 ℓ+ ℓ−1Authors assume B(�(1S) → e+ e−) + B(�(1S) → µ+µ−) = 4.96%.2Using B(�(1S) → e+ e−) = (2.52 ± 0.17)% and B(�(1S) → µ+µ−) = (2.48 ±0.07)%.�(�(1S)π0π0)/�(�(1S)π+π−) �2/�1�(�(1S)π0π0)/�(�(1S)π+π−) �2/�1�(�(1S)π0π0)/�(�(1S)π+π−) �2/�1�(�(1S)π0π0)/�(�(1S)π+π−) �2/�1VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.462±0.037 1 BHARI 09 CLEO e+ e− → �(2S)1Not independent of other values reported by BHARI 09.�(τ+ τ−
)/�total �3/��(τ+ τ−
)/�total �3/��(τ+ τ−
)/�total �3/��(τ+ τ−
)/�total �3/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.00±0.21 OUR AVERAGE2.00±0.21 OUR AVERAGE2.00±0.21 OUR AVERAGE2.00±0.21 OUR AVERAGE2.00±0.12±0.18 22k 1 BESSON 07 CLEO e+ e− → �(2S) → τ+ τ−1.7 ±1.5 ±0.6 HAAS 84B CLEO e+ e− → τ+ τ−1BESSON 07 reports [�(�(2S) → τ+ τ−

)/�total℄ / [B(�(2S) → µ+µ−)℄ = 1.04 ±0.04± 0.05 whi
h we multiply by our best value B(�(2S) → µ+µ−) = (1.93± 0.17)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.�(µ+µ−)/�total �4/��(µ+µ−)/�total �4/��(µ+µ−)/�total �4/��(µ+µ−)/�total �4/�VALUE CL% EVTS DOCUMENT ID TECN COMMENT0.0193±0.0017 OUR AVERAGE0.0193±0.0017 OUR AVERAGE0.0193±0.0017 OUR AVERAGE0.0193±0.0017 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2. See the ideogrambelow.0.0203±0.0003±0.0008 120k ADAMS 05 CLEO e+ e− → µ+µ−0.0122±0.0028±0.0019 1 KOBEL 92 CBAL e+ e− → µ+µ−0.0138±0.0025±0.0015 KAARSBERG 89 CSB2 e+ e− → µ+µ−0.009 ±0.006 ±0.006 2 ALBRECHT 85 ARG e+ e− → µ+µ−0.018 ±0.008 ±0.005 HAAS 84B CLEO e+ e− → µ+µ−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.038 90 NICZYPORUK 81C LENA e+ e− → µ+µ−1Taking into a

ount interferen
e between the resonan
e and 
ontinuum.2Re-evaluated using B(�(1S) → µ+µ−) = 0.026.
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le Listings�(2S)
WEIGHTED AVERAGE
0.0193±0.0017 (Error scaled by 2.2)

HAAS 84B CLEO
ALBRECHT 85 ARG
KAARSBERG 89 CSB2 3.5
KOBEL 92 CBAL 4.4
ADAMS 05 CLEO 1.5

χ2

       9.3
(Confidence Level = 0.0094)

0 0.005 0.01 0.015 0.02 0.025 0.03�(

µ+µ−
)/�total�(

τ+ τ−
)/�(

µ+µ−) �3/�4�(

τ+ τ−
)/�(

µ+µ−) �3/�4�(

τ+ τ−
)/�(

µ+µ−) �3/�4�(

τ+ τ−
)/�(

µ+µ−) �3/�4VALUE EVTS DOCUMENT ID TECN COMMENT1.04±0.04±0.051.04±0.04±0.051.04±0.04±0.051.04±0.04±0.05 22k BESSON 07 CLEO e+ e− → �(2S)�(�(1S)π0)/�total �6/��(�(1S)π0)/�total �6/��(�(1S)π0)/�total �6/��(�(1S)π0)/�total �6/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 4 90 1 TAMPONI 13 BELL e+ e− → �(1S)π0
< 18 90 2 HE 08A CLEO e+ e− → ℓ+ ℓ− γ γ

<110 90 ALEXANDER 98 CLE2 e+ e− → ℓ+ ℓ− γ γ

<800 90 LURZ 87 CBAL e+ e− → ℓ+ ℓ− γ γ1TAMPONI 13 reports [�(�(2S) → �(1S)π0)/�total℄ / [B(�(2S) → �(1S)π+π−)℄
< 2.3 × 10−4 whi
h we multiply by our best value B(�(2S) → �(1S)π+π−) =17.85 × 10−2.2Authors assume B(�(1S) → e+ e−) + B(�(1S) → µ+µ−) = 4.96%.�(�(1S)π0)/�(�(1S)π+π−) �6/�1�(�(1S)π0)/�(�(1S)π+π−) �6/�1�(�(1S)π0)/�(�(1S)π+π−) �6/�1�(�(1S)π0)/�(�(1S)π+π−) �6/�1VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<2.3<2.3<2.3<2.3 90 TAMPONI 13 BELL e+ e− → �(1S)π0�(�(1S)η)/�total �7/��(�(1S)η)/�total �7/��(�(1S)η)/�total �7/��(�(1S)η)/�total �7/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT2.9 ±0.4 OUR FIT2.9 ±0.4 OUR FIT2.9 ±0.4 OUR FIT2.9 ±0.4 OUR FIT Error in
ludes s
ale fa
tor of 2.0.2.9 ±0.4 OUR AVERAGE2.9 ±0.4 OUR AVERAGE2.9 ±0.4 OUR AVERAGE2.9 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.2.39±0.31±0.14 112 1 LEES 11L BABR �(2S) → ℓ+ ℓ− η2.1 +0.7
−0.6 ±0.3 14 2 HE 08A CLEO e+ e− → ℓ+ ℓ− η

• • • We use the following data for averages but not for �ts. • • •3.55±0.32±0.05 241 3 TAMPONI 13 BELL e+ e− → �(1S)η
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 9 90 1,4 AUBERT 08BP BABR e+ e− → γπ+π−π0 ℓ+ ℓ−
< 28 90 ALEXANDER98 CLE2 e+ e− → ℓ+ ℓ− η

< 50 90 ALBRECHT 87 ARG e+ e− → π+π− ℓ+ ℓ−MM
< 70 90 LURZ 87 CBAL e+ e− → ℓ+ ℓ− (γ γ , 3π0)
< 100 90 BESSON 84 CLEO e+ e− → π+π− ℓ+ ℓ−MM
< 20 90 FONSECA 84 CUSB e+ e− →

ℓ+ ℓ− (γ γ ,π+π−π0)
WEIGHTED AVERAGE
2.9±0.4 (Error scaled by 1.9)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

HE 08A CLEO 1.2
LEES 11L BABR 2.5
TAMPONI 13 BELL 3.8

χ2

       7.4
(Confidence Level = 0.024)

0 2 4 6 8�(�(1S)η)/�total (units 10−4)

1Using B(�(1S) → e+ e−) = (2.38 ± 0.11)% and B(�(1S) → µ+µ−) = (2.48 ±0.05)%.2Authors assume B(�(1S) → e+ e−) + B(�(1S) → µ+µ−) = 4.96%.3TAMPONI 13 reports [�(�(2S) → �(1S)η)/�total℄ / [B(�(2S) → �(1S)π+π−)℄= (1.99 ± 0.14 ± 0.11) × 10−3 whi
h we multiply by our best value B(�(2S) →�(1S)π+π−) = (17.85 ± 0.26)× 10−2. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best value.4Using �ee(�(2S)) = 0.612 ± 0.011 keV.�(�(1S)η)/�(�(1S)π+π−) �7/�1�(�(1S)η)/�(�(1S)π+π−) �7/�1�(�(1S)η)/�(�(1S)π+π−) �7/�1�(�(1S)η)/�(�(1S)π+π−) �7/�1VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT1.64±0.25 OUR FIT1.64±0.25 OUR FIT1.64±0.25 OUR FIT1.64±0.25 OUR FIT Error in
ludes s
ale fa
tor of 2.0.1.99±0.14±0.111.99±0.14±0.111.99±0.14±0.111.99±0.14±0.11 241 TAMPONI 13 BELL e+ e− → �(1S)η
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.35±0.17±0.08 1 LEES 11L BABR �(2S) → (π+π−)(γ γ)µ+ µ−
< 5.2 90 2 AUBERT 08BP BABR e+ e− → γπ+π− (π0)ℓ+ ℓ−1Not independent of other values reported by LEES 11L.2Not independent of other values reported by AUBERT 08BP.�(�(1S)π0)/�(�(1S)η) �6/�7�(�(1S)π0)/�(�(1S)η) �6/�7�(�(1S)π0)/�(�(1S)η) �6/�7�(�(1S)π0)/�(�(1S)η) �6/�7VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.13 90 TAMPONI 13 BELL e+ e− → �(1S)π0�(J/ψ(1S) anything)/�total �8/��(J/ψ(1S) anything)/�total �8/��(J/ψ(1S) anything)/�total �8/��(J/ψ(1S) anything)/�total �8/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.006<0.006<0.006<0.006 90 MASCHMANN 90 CBAL e+ e− → hadrons�(J/ψ(1S)η
)/�total �9/��(J/ψ(1S)η
)/�total �9/��(J/ψ(1S)η
)/�total �9/��(J/ψ(1S)η
)/�total �9/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.4× 10−6<5.4× 10−6<5.4× 10−6<5.4× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(J/ψ(1S)χ
0)/�total �10/��(J/ψ(1S)χ
0)/�total �10/��(J/ψ(1S)χ
0)/�total �10/��(J/ψ(1S)χ
0)/�total �10/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.4× 10−6<3.4× 10−6<3.4× 10−6<3.4× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(J/ψ(1S)χ
1)/�total �11/��(J/ψ(1S)χ
1)/�total �11/��(J/ψ(1S)χ
1)/�total �11/��(J/ψ(1S)χ
1)/�total �11/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−6<1.2× 10−6<1.2× 10−6<1.2× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(J/ψ(1S)χ
2)/�total �12/��(J/ψ(1S)χ
2)/�total �12/��(J/ψ(1S)χ
2)/�total �12/��(J/ψ(1S)χ
2)/�total �12/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.0× 10−6<2.0× 10−6<2.0× 10−6<2.0× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(J/ψ(1S)η
 (2S))/�total �13/��(J/ψ(1S)η
 (2S))/�total �13/��(J/ψ(1S)η
 (2S))/�total �13/��(J/ψ(1S)η
 (2S))/�total �13/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.5× 10−6<2.5× 10−6<2.5× 10−6<2.5× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(J/ψ(1S)X (3940))/�total �14/��(J/ψ(1S)X (3940))/�total �14/��(J/ψ(1S)X (3940))/�total �14/��(J/ψ(1S)X (3940))/�total �14/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.0× 10−6<2.0× 10−6<2.0× 10−6<2.0× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(J/ψ(1S)X (4160))/�total �15/��(J/ψ(1S)X (4160))/�total �15/��(J/ψ(1S)X (4160))/�total �15/��(J/ψ(1S)X (4160))/�total �15/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.0× 10−6<2.0× 10−6<2.0× 10−6<2.0× 10−6 90 YANG 14 BELL e+ e− → J/ψX�(

ψ(2S)η
)/�total �16/��(

ψ(2S)η
)/�total �16/��(

ψ(2S)η
)/�total �16/��(

ψ(2S)η
)/�total �16/�VALUE CL% DOCUMENT ID TECN COMMENT
<5.1× 10−6<5.1× 10−6<5.1× 10−6<5.1× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)χ
0)/�total �17/��(

ψ(2S)χ
0)/�total �17/��(

ψ(2S)χ
0)/�total �17/��(

ψ(2S)χ
0)/�total �17/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.7× 10−6<4.7× 10−6<4.7× 10−6<4.7× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)χ
1)/�total �18/��(

ψ(2S)χ
1)/�total �18/��(

ψ(2S)χ
1)/�total �18/��(

ψ(2S)χ
1)/�total �18/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.5× 10−6<2.5× 10−6<2.5× 10−6<2.5× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)χ
2)/�total �19/��(

ψ(2S)χ
2)/�total �19/��(

ψ(2S)χ
2)/�total �19/��(

ψ(2S)χ
2)/�total �19/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.9× 10−6<1.9× 10−6<1.9× 10−6<1.9× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)η
 (2S))/�total �20/��(

ψ(2S)η
 (2S))/�total �20/��(

ψ(2S)η
 (2S))/�total �20/��(

ψ(2S)η
 (2S))/�total �20/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.3× 10−6<3.3× 10−6<3.3× 10−6<3.3× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)X (3940))/�total �21/��(

ψ(2S)X (3940))/�total �21/��(

ψ(2S)X (3940))/�total �21/��(

ψ(2S)X (3940))/�total �21/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.9× 10−6<3.9× 10−6<3.9× 10−6<3.9× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X�(

ψ(2S)X (4160))/�total �22/��(

ψ(2S)X (4160))/�total �22/��(

ψ(2S)X (4160))/�total �22/��(

ψ(2S)X (4160))/�total �22/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.9× 10−6<3.9× 10−6<3.9× 10−6<3.9× 10−6 90 YANG 14 BELL e+ e− → ψ(2S)X



1475147514751475See key on page 601 MesonParti
le Listings�(2S)�(2H anything)/�total �23/��(2H anything)/�total �23/��(2H anything)/�total �23/��(2H anything)/�total �23/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.78+0.30
−0.26 OUR AVERAGE2.78+0.30
−0.26 OUR AVERAGE2.78+0.30
−0.26 OUR AVERAGE2.78+0.30
−0.26 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.2.64±0.11+0.26

−0.21 LEES 14G BABR e+ e− → 2H X3.37±0.50±0.25 58 ASNER 07 CLEO e+ e− → 2H X�(g g g)/�total �25/��(g g g)/�total �25/��(g g g)/�total �25/��(g g g)/�total �25/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT58.8±1.258.8±1.258.8±1.258.8±1.2 6M 1 BESSON 06A CLEO �(2S) → hadrons1Cal
ulated using the value �(γ g g)/�(g g g) = (3.18 ± 0.04 ± 0.22 ± 0.41)% fromBESSON 06A and PDG 08 values of B(π+π−�(1S)) = (18.1± 0.4)%, B(π0π0�(1S))= (8.6±0.4)%, B(µ+µ−) = (1.93±0.17)%, and Rhadrons = 3.51. The statisti
al erroris negligible and the systemati
 error is partially 
orrelated with that of �(γ g g)/�totalmeasurement of BESSON 06A.�(

γ g g)/�(g g g) �26/�25�(

γ g g)/�(g g g) �26/�25�(

γ g g)/�(g g g) �26/�25�(

γ g g)/�(g g g) �26/�25VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.18±0.04±0.473.18±0.04±0.473.18±0.04±0.473.18±0.04±0.47 6M BESSON 06A CLEO �(2S) → (γ +) hadrons�(

φK+K−)/�total �27/��(

φK+K−)/�total �27/��(

φK+K−)/�total �27/��(

φK+K−)/�total �27/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT1.58±0.33±0.181.58±0.33±0.181.58±0.33±0.181.58±0.33±0.18 58 SHEN 12A BELL �(1S) → 2(K+K−)�(

ωπ+π−)/�total �28/��(

ωπ+π−)/�total �28/��(

ωπ+π−)/�total �28/��(

ωπ+π−)/�total �28/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<2.58<2.58<2.58<2.58 90 SHEN 12A BELL �(1S) → 2(π+π−)π0�(K∗(892)0K−π++ 
.
.)/�total �29/��(K∗(892)0K−π++ 
.
.)/�total �29/��(K∗(892)0K−π++ 
.
.)/�total �29/��(K∗(892)0K−π++ 
.
.)/�total �29/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT2.32±0.40±0.542.32±0.40±0.542.32±0.40±0.542.32±0.40±0.54 135 SHEN 12A BELL �(1S) → K+K−π+π−�(

φ f ′2(1525))/�total �30/��(

φ f ′2(1525))/�total �30/��(

φ f ′2(1525))/�total �30/��(

φ f ′2(1525))/�total �30/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.33<1.33<1.33<1.33 90 SHEN 12A BELL �(1S) → 2(K+K−)�(

ω f2(1270))/�total �31/��(

ω f2(1270))/�total �31/��(

ω f2(1270))/�total �31/��(

ω f2(1270))/�total �31/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.57<0.57<0.57<0.57 90 SHEN 12A BELL �(1S) → 2(π+π−)π0�(

ρ(770)a2(1320))/�total �32/��(

ρ(770)a2(1320))/�total �32/��(

ρ(770)a2(1320))/�total �32/��(

ρ(770)a2(1320))/�total �32/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.88<0.88<0.88<0.88 90 SHEN 12A BELL �(1S) → 2(π+π−)π0�(K∗(892)0K∗2(1430)0+ 
.
.)/�total �33/��(K∗(892)0K∗2(1430)0+ 
.
.)/�total �33/��(K∗(892)0K∗2(1430)0+ 
.
.)/�total �33/��(K∗(892)0K∗2(1430)0+ 
.
.)/�total �33/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT1.53±0.52±0.191.53±0.52±0.191.53±0.52±0.191.53±0.52±0.19 32 SHEN 12A BELL �(1S) → K+K−π+π−�(K1(1270)±K∓)/�total �34/��(K1(1270)±K∓)/�total �34/��(K1(1270)±K∓)/�total �34/��(K1(1270)±K∓)/�total �34/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<3.22<3.22<3.22<3.22 90 SHEN 12A BELL �(1S) → K+K−π+π−�(K1(1400)±K∓)/�total �35/��(K1(1400)±K∓)/�total �35/��(K1(1400)±K∓)/�total �35/��(K1(1400)±K∓)/�total �35/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.83<0.83<0.83<0.83 90 SHEN 12A BELL �(1S) → K+K−π+π−�(b1(1235)±π∓)/�total �36/��(b1(1235)±π∓)/�total �36/��(b1(1235)±π∓)/�total �36/��(b1(1235)±π∓)/�total �36/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.40<0.40<0.40<0.40 90 SHEN 12A BELL �(1S) → 2(π+π−)π0�(

ρπ
)/�total �37/��(

ρπ
)/�total �37/��(

ρπ
)/�total �37/��(

ρπ
)/�total �37/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<1.16<1.16<1.16<1.16 90 SHEN 13 BELL �(2S) → π+π−π0�(

π+π−π0)/�total �38/��(

π+π−π0)/�total �38/��(

π+π−π0)/�total �38/��(

π+π−π0)/�total �38/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<0.80<0.80<0.80<0.80 90 SHEN 13 BELL �(2S) → π+π−π0�(

ωπ0)/�total �39/��(

ωπ0)/�total �39/��(

ωπ0)/�total �39/��(

ωπ0)/�total �39/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.63<1.63<1.63<1.63 90 SHEN 13 BELL �(2S) → π+π−π0π0�(

π+π−π0π0)/�total �40/��(

π+π−π0π0)/�total �40/��(

π+π−π0π0)/�total �40/��(

π+π−π0π0)/�total �40/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT13.0±1.9±2.113.0±1.9±2.113.0±1.9±2.113.0±1.9±2.1 261 ± 37 SHEN 13 BELL �(2S) → π+π−π0π0

�(K0S K+π−+ 
.
.)/�total �41/��(K0S K+π−+ 
.
.)/�total �41/��(K0S K+π−+ 
.
.)/�total �41/��(K0S K+π−+ 
.
.)/�total �41/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT1.14±0.30±0.131.14±0.30±0.131.14±0.30±0.131.14±0.30±0.13 40 ± 10 SHEN 13 BELL �(2S) → K0S K−π+
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.2 90 1 DOBBS 12A �(2S) → K0S K−π+1Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.�(K∗(892)0K0+ 
.
.)/�total �42/��(K∗(892)0K0+ 
.
.)/�total �42/��(K∗(892)0K0+ 
.
.)/�total �42/��(K∗(892)0K0+ 
.
.)/�total �42/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<4.22<4.22<4.22<4.22 90 SHEN 13 BELL �(2S) → K0S K−π+�(K∗(892)−K++ 
.
.)/�total �43/��(K∗(892)−K++ 
.
.)/�total �43/��(K∗(892)−K++ 
.
.)/�total �43/��(K∗(892)−K++ 
.
.)/�total �43/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<1.45<1.45<1.45<1.45 90 SHEN 13 BELL �(2S) → K0S K−π+�(Sum of 100 ex
lusive modes)/�total �44/��(Sum of 100 ex
lusive modes)/�total �44/��(Sum of 100 ex
lusive modes)/�total �44/��(Sum of 100 ex
lusive modes)/�total �44/�VALUE (units 10−2) DOCUMENT ID COMMENT0.29±0.030.29±0.030.29±0.030.29±0.03 1,2 DOBBS 12A �(2S) → hadrons1DOBBS 12A presents individual ex
lusive bran
hing fra
tions or upper limits for 100modes of four to ten pions, kaons, or protons.2Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.�(

γχb1(1P))/�total �45/��(

γχb1(1P))/�total �45/��(

γχb1(1P))/�total �45/��(

γχb1(1P))/�total �45/�VALUE EVTS DOCUMENT ID TECN COMMENT0.069 ±0.004 OUR AVERAGE0.069 ±0.004 OUR AVERAGE0.069 ±0.004 OUR AVERAGE0.069 ±0.004 OUR AVERAGE0.0693±0.0012±0.0041 407k ARTUSO 05 CLEO e+ e− → γX0.069 ±0.005 ±0.009 EDWARDS 99 CLE2 �(2S) → γχ(1P)0.091 ±0.018 ±0.022 ALBRECHT 85E ARG e+ e− → γ 
onv. X0.065 ±0.007 ±0.012 NERNST 85 CBAL e+ e− → γX0.080 ±0.017 ±0.016 HAAS 84 CLEO e+ e− → γ 
onv. X0.059 ±0.014 KLOPFEN... 83 CUSB e+ e− → γX�(

γχb2(1P))/�total �46/��(

γχb2(1P))/�total �46/��(

γχb2(1P))/�total �46/��(

γχb2(1P))/�total �46/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0715±0.0035 OUR AVERAGE0.0715±0.0035 OUR AVERAGE0.0715±0.0035 OUR AVERAGE0.0715±0.0035 OUR AVERAGE0.0724±0.0011±0.0040 410k ARTUSO 05 CLEO e+ e− → γX0.074 ±0.005 ±0.008 EDWARDS 99 CLE2 �(2S) → γχ(1P)0.098 ±0.021 ±0.024 ALBRECHT 85E ARG e+ e− → γ 
onv. X0.058 ±0.007 ±0.010 NERNST 85 CBAL e+ e− → γX0.102 ±0.018 ±0.021 HAAS 84 CLEO e+ e− → γ 
onv. X0.061 ±0.014 KLOPFEN... 83 CUSB e+ e− → γX�(

γχb0(1P))/�total �47/��(

γχb0(1P))/�total �47/��(

γχb0(1P))/�total �47/��(

γχb0(1P))/�total �47/�VALUE EVTS DOCUMENT ID TECN COMMENT0.038 ±0.004 OUR AVERAGE0.038 ±0.004 OUR AVERAGE0.038 ±0.004 OUR AVERAGE0.038 ±0.004 OUR AVERAGE0.0375±0.0012±0.0047 198k ARTUSO 05 CLEO e+ e− → γX0.034 ±0.005 ±0.006 EDWARDS 99 CLE2 �(2S) → γχ(1P)0.064 ±0.014 ±0.016 ALBRECHT 85E ARG e+ e− → γ 
onv. X0.036 ±0.008 ±0.009 NERNST 85 CBAL e+ e− → γX0.044 ±0.023 ±0.009 HAAS 84 CLEO e+ e− → γ 
onv. X
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.035 ±0.014 KLOPFEN... 83 CUSB e+ e− → γX�(

γ f0(1710))/�total �48/��(

γ f0(1710))/�total �48/��(

γ f0(1710))/�total �48/��(

γ f0(1710))/�total �48/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<59<59<59<59 90 1 ALBRECHT 89 ARG �(2S) → γK+K−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 5.9 90 2 ALBRECHT 89 ARG �(2S) → γπ+π−1Re-evaluated assuming B(f0(1710) → K+K−) = 0.19.2 In
ludes unknown bran
hing ratio of f0(1710) → π+π−.�(

γ f ′2(1525))/�total �49/��(

γ f ′2(1525))/�total �49/��(

γ f ′2(1525))/�total �49/��(

γ f ′2(1525))/�total �49/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<53<53<53<53 90 1 ALBRECHT 89 ARG �(2S) → γK+K−1Re-evaluated assuming B(f ′2(1525) → K K) = 0.71.�(

γ f2(1270))/�total �50/��(

γ f2(1270))/�total �50/��(

γ f2(1270))/�total �50/��(

γ f2(1270))/�total �50/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<24.1<24.1<24.1<24.1 90 1 ALBRECHT 89 ARG �(2S) → γπ+π−1Using B(f2(1270) → ππ) = 0.84.�(

γ fJ (2220))/�total �51/��(

γ fJ (2220))/�total �51/��(

γ fJ (2220))/�total �51/��(

γ fJ (2220))/�total �51/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.8 90 1 ALBRECHT 89 ARG �(2S) → γK+K−1 In
ludes unknown bran
hing ratio of fJ (2220) → K+K−.�(

γ η
 (1S))/�total �52/��(

γ η
 (1S))/�total �52/��(

γ η
 (1S))/�total �52/��(

γ η
 (1S))/�total �52/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.7× 10−5<2.7× 10−5<2.7× 10−5<2.7× 10−5 90 WANG 11B BELL �(2S) → γX
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le Listings�(2S),�(1D)�(γχ
0)/�total �53/��(γχ
0)/�total �53/��(γχ
0)/�total �53/��(γχ
0)/�total �53/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.0× 10−4<1.0× 10−4<1.0× 10−4<1.0× 10−4 90 WANG 11B BELL �(2S) → γX�(γχ
1)/�total �54/��(γχ
1)/�total �54/��(γχ
1)/�total �54/��(γχ
1)/�total �54/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.6× 10−6<3.6× 10−6<3.6× 10−6<3.6× 10−6 90 WANG 11B BELL �(2S) → γX�(γχ
2)/�total �55/��(γχ
2)/�total �55/��(γχ
2)/�total �55/��(γχ
2)/�total �55/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.5× 10−5<1.5× 10−5<1.5× 10−5<1.5× 10−5 90 WANG 11B BELL �(2S) → γX�(γX (3872)→ π+π− J/ψ

)/�total �56/��(γX (3872)→ π+π− J/ψ
)/�total �56/��(γX (3872)→ π+π− J/ψ
)/�total �56/��(γX (3872)→ π+π− J/ψ
)/�total �56/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.8× 10−6<0.8× 10−6<0.8× 10−6<0.8× 10−6 90 WANG 11B BELL �(2S) → γX�(γX (3872)→ π+π−π0 J/ψ
)/�total �57/��(γX (3872)→ π+π−π0 J/ψ
)/�total �57/��(γX (3872)→ π+π−π0 J/ψ
)/�total �57/��(γX (3872)→ π+π−π0 J/ψ
)/�total �57/�VALUE CL% DOCUMENT ID TECN COMMENT

<2.4× 10−6<2.4× 10−6<2.4× 10−6<2.4× 10−6 90 WANG 11B BELL �(2S) → γX�(γX (3915)→ ωJ/ψ
)/�total �58/��(γX (3915)→ ωJ/ψ
)/�total �58/��(γX (3915)→ ωJ/ψ
)/�total �58/��(γX (3915)→ ωJ/ψ
)/�total �58/�VALUE CL% DOCUMENT ID TECN COMMENT

<2.8× 10−6<2.8× 10−6<2.8× 10−6<2.8× 10−6 90 WANG 11B BELL �(2S) → γX�(γX (4140)→ φJ/ψ
)/�total �59/��(γX (4140)→ φJ/ψ
)/�total �59/��(γX (4140)→ φJ/ψ
)/�total �59/��(γX (4140)→ φJ/ψ
)/�total �59/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.2× 10−6<1.2× 10−6<1.2× 10−6<1.2× 10−6 90 WANG 11B BELL �(2S) → γX�(γX (4350)→ φJ/ψ
)/�total �60/��(γX (4350)→ φJ/ψ
)/�total �60/��(γX (4350)→ φJ/ψ
)/�total �60/��(γX (4350)→ φJ/ψ
)/�total �60/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.3× 10−6<1.3× 10−6<1.3× 10−6<1.3× 10−6 90 WANG 11B BELL �(2S) → γX�(γ ηb(1S))/�total �61/��(γ ηb(1S))/�total �61/��(γ ηb(1S))/�total �61/��(γ ηb(1S))/�total �61/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT3.9±1.1+1.1
−0.93.9±1.1+1.1
−0.93.9±1.1+1.1
−0.93.9±1.1+1.1
−0.9 13 ± 5k 1 AUBERT 09AQ BABR �(2S) → γX

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<21 90 LEES 11J BABR �(2S) → X γ

< 8.4 90 1 BONVICINI 10 CLEO �(2S) → γX
< 5.1 90 2 ARTUSO 05 CLEO e+ e− → γX1Assuming �ηb(1S) = 10 MeV.2 Superseded by BONVICINI 10.�(γ ηb(1S)→ γSum of 26 ex
lusive modes)/�total �62/��(γ ηb(1S)→ γSum of 26 ex
lusive modes)/�total �62/��(γ ηb(1S)→ γSum of 26 ex
lusive modes)/�total �62/��(γ ηb(1S)→ γSum of 26 ex
lusive modes)/�total �62/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.7× 10−6<3.7× 10−6<3.7× 10−6<3.7× 10−6 90 SANDILYA 13 BELL �(2S) → γ hadrons�(γX b b → γSum of 26 ex
lusive modes)/�total �63/��(γX b b → γSum of 26 ex
lusive modes)/�total �63/��(γX b b → γSum of 26 ex
lusive modes)/�total �63/��(γX b b → γSum of 26 ex
lusive modes)/�total �63/�VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT
< 4.9< 4.9< 4.9< 4.9 90 SANDILYA 13 BELL �(2S) → γ hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •46.2+29.7

−14.2±10.6 10 1 DOBBS 12 �(2S) → γ hadrons1Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.�(γX → γ+ ≥ 4 prongs)/�total �64/��(γX → γ+ ≥ 4 prongs)/�total �64/��(γX → γ+ ≥ 4 prongs)/�total �64/��(γX → γ+ ≥ 4 prongs)/�total �64/�(1.5 GeV < mX < 5.0 GeV)VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.95<1.95<1.95<1.95 95 ROSNER 07A CLEO e+ e− → γX�(γA0 → γ hadrons)/�total �65/��(γA0 → γ hadrons)/�total �65/��(γA0 → γ hadrons)/�total �65/��(γA0 → γ hadrons)/�total �65/�(0.3 GeV < mA0 < 7 GeV)VALUE CL% DOCUMENT ID TECN COMMENT
<8× 10−5<8× 10−5<8× 10−5<8× 10−5 90 1 LEES 11H BABR �(2S) → γ hadrons1 For a narrow s
alar or pseudos
alar A0, ex
luding known resonan
es, with mass in therange 0.3{7 GeV. Measured 90% CL limits as a fun
tion of mA0 range from 1 × 10−6to 8× 10−5.�(γ a01 → γµ+µ−)/�total �66/��(γ a01 → γµ+µ−)/�total �66/��(γ a01 → γµ+µ−)/�total �66/��(γ a01 → γµ+µ−)/�total �66/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<8.3<8.3<8.3<8.3 90 1 AUBERT 09Z BABR e+ e− → γ a01 → γµ+µ−1For a narrow s
alar or pseudos
alar a01 with mass in the range 212{9300 MeV, ex
ludingJ/ψ and ψ(2S). Measured 90% CL limits as a fun
tion of ma01 range from 0.26{8.3×10−6. LEPTON FAMILY NUMBER (LF) VIOLATING MODESLEPTON FAMILY NUMBER (LF) VIOLATING MODESLEPTON FAMILY NUMBER (LF) VIOLATING MODESLEPTON FAMILY NUMBER (LF) VIOLATING MODES�(e± τ∓

)/�total �67/��(e± τ∓
)/�total �67/��(e± τ∓
)/�total �67/��(e± τ∓
)/�total �67/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<3.2<3.2<3.2<3.2 90 LEES 10B BABR e+ e− → e± τ∓

�(µ± τ∓
)/�total �68/��(µ± τ∓
)/�total �68/��(µ± τ∓
)/�total �68/��(µ± τ∓
)/�total �68/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 3.3< 3.3< 3.3< 3.3 90 LEES 10B BABR e+ e− → µ± τ∓
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<14.4 95 LOVE 08A CLEO e+ e− → µ± τ∓�(2S) Cross-Parti
le Bran
hing Ratios�(2S) Cross-Parti
le Bran
hing Ratios�(2S) Cross-Parti
le Bran
hing Ratios�(2S) Cross-Parti
le Bran
hing RatiosB(�(2S) → π+π−) × B(�(3S) → �(2S)X )B(�(2S) → π+π−) × B(�(3S) → �(2S)X )B(�(2S) → π+π−) × B(�(3S) → �(2S)X )B(�(2S) → π+π−) × B(�(3S) → �(2S)X )VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.78±0.02±0.111.78±0.02±0.111.78±0.02±0.111.78±0.02±0.11 906k LEES 11C BABR e+ e− → π+π−X�(2S) REFERENCES�(2S) REFERENCES�(2S) REFERENCES�(2S) REFERENCESLEES 14G PR D89 111102 J.P. Lees et al. (BABAR Collab.)YANG 14 PR D90 112008 S.D. Yang et al. (BELLE Collab.)SANDILYA 13 PRL 111 112001 S. Sandilya et al. (BELLE Collab.)SHEN 13 PR D88 011102 C.P. Shen et al. (BELLE Collab.)TAMPONI 13 PR D87 011104 U. Tamponi et al. (BELLE Collab.)DOBBS 12 PRL 109 082001 S. Dobbs et al.DOBBS 12A PR D86 052003 S. Dobbs et al.SHEN 12A PR D86 031102 C.P. Shen et al. (BELLE Collab.)LEES 11C PR D84 011104 J.P. Lees et al. (BABAR Collab.)LEES 11H PRL 107 221803 J.P. Lees et al. (BABAR Collab.)LEES 11J PR D84 072002 J.P. Lees et al. (BABAR Collab.)LEES 11L PR D84 092003 J.P. Lees et al. (BABAR Collab.)WANG 11B PR D84 071107 X.L. Wang et al. (BELLE Collab.)BONVICINI 10 PR D81 031104 G. Bonvi
ini et al. (CLEO Collab.)LEES 10B PRL 104 151802 J.P. Lees et al. (BABAR Collab.)AUBERT 09AQ PRL 103 161801 B. Aubert et al. (BABAR Collab.)AUBERT 09Z PRL 103 081803 B. Aubert et al. (BABAR Collab.)BHARI 09 PR D79 011103 S.R. Bhari et al. (CLEO Collab.)AUBERT 08BP PR D78 112002 B. Aubert et al. (BABAR Collab.)HE 08A PRL 101 192001 Q. He et al. (CLEO Collab.)LOVE 08A PRL 101 201601 W. Love et al. (CLEO Collab.)PDG 08 PL B667 1 C. Amsler et al. (PDG Collab.)ASNER 07 PR D75 012009 D.M. Asner et al. (CLEO Collab.)BESSON 07 PRL 98 052002 D. Besson et al. (CLEO Collab.)ROSNER 07A PR D76 117102 J.L. Rosner et al. (CLEO Collab.)BESSON 06A PR D74 012003 D. Besson et al. (CLEO Collab.)ROSNER 06 PRL 96 092003 J.L. Rosner et al. (CLEO Collab.)ADAMS 05 PRL 94 012001 G.S. Adams et al. (CLEO Collab.)ARTUSO 05 PRL 94 032001 M. Artuso et al. (CLEO Collab.)ARTAMONOV 00 PL B474 427 A.S. Artamonov et al.EDWARDS 99 PR D59 032003 K.W. Edwards et al. (CLEO Collab.)ALEXANDER 98 PR D58 052004 J.P. Alexander et al. (CLEO Collab.)BARU 96 PRPL 267 71 S.E. Baru et al. (NOVO)KOBEL 92 ZPHY C53 193 M. Kobel et al. (Crystal Ball Collab.)MASCHMANN 90 ZPHY C46 555 W.S. Mas
hmann et al. (Crystal Ball Collab.)ALBRECHT 89 ZPHY C42 349 H. Albre
ht et al. (ARGUS Collab.)KAARSBERG 89 PRL 62 2077 T.M. Kaarsberg et al. (CUSB Collab.)BUCHMUEL... 88 HE e+ e− Physi
s 412 W. Bu
hmueller, S. Cooper (HANN, DESY, MIT)Editors: A. Ali and P. Soeding, World S
ienti�
, SingaporeJAKUBOWSKI 88 ZPHY C40 49 Z. Jakubowski et al. (Crystal Ball Collab.) IGJPCALBRECHT 87 ZPHY C35 283 H. Albre
ht et al. (ARGUS Collab.)COHEN 87 RMP 59 1121 E.R. Cohen, B.N. Taylor (RISC, NBS)LURZ 87 ZPHY C36 383 B. Lurz et al. (Crystal Ball Collab.)BARU 86B ZPHY C32 622 (erratum)S.E. Baru et al. (NOVO)ALBRECHT 85 ZPHY C28 45 H. Albre
ht et al. (ARGUS Collab.)ALBRECHT 85E PL 160B 331 H. Albre
ht et al. (ARGUS Collab.)GELPHMAN 85 PR D32 2893 D. Gelphman et al. (Crystal Ball Collab.)KURAEV 85 SJNP 41 466 E.A. Kuraev, V.S. Fadin (NOVO)Translated from YAF 41 733.NERNST 85 PRL 54 2195 R. Nernst et al. (Crystal Ball Collab.)ARTAMONOV 84 PL 137B 272 A.S. Artamonov et al. (NOVO)BARBER 84 PL 135B 498 D.P. Barber et al. (DESY, ARGUS Collab.+)BESSON 84 PR D30 1433 D. Besson et al. (CLEO Collab.)FONSECA 84 NP B242 31 V. Fonse
a et al. (CUSB Collab.)GILES 84B PR D29 1285 R. Giles et al. (CLEO Collab.)HAAS 84 PRL 52 799 J. Haas et al. (CLEO Collab.)HAAS 84B PR D30 1996 J. Haas et al. (CLEO Collab.)KLOPFEN... 83 PRL 51 160 C. Klopfenstein et al. (CUSB Collab.)ALBRECHT 82 PL 116B 383 H. Albre
ht et al. (DESY, DORT, HEIDH+)NICZYPORUK 81B PL 100B 95 B. Ni
zyporuk et al. (LENA Collab.)NICZYPORUK 81C PL 99B 169 B. Ni
zyporuk et al. (LENA Collab.)BOCK 80 ZPHY C6 125 P. Bo
k et al. (HEIDP, MPIM, DESY, HAMB)�(1D) IG (JPC ) = 0−(2−−)First observed by BONVICINI 04 in the de
ay to γ γ�(1S) and 
on-�rmed by DEL-AMO-SANCHEZ 10R in the de
ay to π+π−�(1S).Data 
onsistent with JP = 2−. The states with J = 1 and 3 alsopossibly seen, but need 
on�rmation.�(1D) MASS�(1D) MASS�(1D) MASS�(1D) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT10163.7±1.4 OUR AVERAGE10163.7±1.4 OUR AVERAGE10163.7±1.4 OUR AVERAGE10163.7±1.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.10164.5±0.8±0.5 DEL-AMO-SA...10R BABR �(3S) → γ γπ+π− ℓ+ ℓ−10161.1±0.6±1.6 38 BONVICINI 04 CLE3 �(3S) → 4γ ℓ+ ℓ−�(1D) DECAY MODES�(1D) DECAY MODES�(1D) DECAY MODES�(1D) DECAY MODESMode Fra
tion (�i /�)�1 γ γ�(1S) seen�2 γχbJ (1P) seen�3 η�(1S) not seen�4 π+π−�(1S) (6.6±1.6)× 10−3



1477147714771477See key on page 601 MesonParti
le Listings�(1D),χb0(2P)�(1D) BRANCHING RATIOS�(1D) BRANCHING RATIOS�(1D) BRANCHING RATIOS�(1D) BRANCHING RATIOS�(η�(1S))/�(γ γ�(1S)) �3/�1�(η�(1S))/�(γ γ�(1S)) �3/�1�(η�(1S))/�(γ γ�(1S)) �3/�1�(η�(1S))/�(γ γ�(1S)) �3/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.25<0.25<0.25<0.25 90 BONVICINI 04 CLE3 �(3S) → 4γ ℓ+ ℓ−�(π+π−�(1S))/�total �4/��(π+π−�(1S))/�total �4/��(π+π−�(1S))/�total �4/��(π+π−�(1S))/�total �4/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.66+0.15

−0.14±0.060.66+0.15
−0.14±0.060.66+0.15
−0.14±0.060.66+0.15
−0.14±0.06 1 DEL-AMO-SA...10R BABR �(3S) → γ γπ+π− ℓ+ ℓ−1Using theoreti
al predi
tions for B(χbJ (2P) → γ�(1D)).�(π+π−�(1S))/�(γ γ�(1S)) �4/�1�(π+π−�(1S))/�(γ γ�(1S)) �4/�1�(π+π−�(1S))/�(γ γ�(1S)) �4/�1�(π+π−�(1S))/�(γ γ�(1S)) �4/�1VALUE CL% DOCUMENT ID TECN COMMENT

<1.2<1.2<1.2<1.2 90 2 BONVICINI 04 CLE3 �(3S) → 4γ ℓ+ ℓ−2Assuming J = 2. �(1D) REFERENCES�(1D) REFERENCES�(1D) REFERENCES�(1D) REFERENCESDEL-AMO-SA... 10R PR D82 111102 P. del Amo San
hez et al. (BABAR Collab.)BONVICINI 04 PR D70 032001 G. Bonvi
ini et al. (CLEO Collab.)
χb0(2P) IG (JPC ) = 0+(0 + +)J needs 
on�rmation.Observed in radiative de
ay of the �(3S), therefore C = +. Bran
h-ing ratio requires E1 transition, M1 is strongly disfavored, thereforeP = +.

χb0(2P) MASSχb0(2P) MASSχb0(2P) MASSχb0(2P) MASSVALUE (MeV) DOCUMENT ID10232.5±0.4±0.5 OUR EVALUATION10232.5±0.4±0.5 OUR EVALUATION10232.5±0.4±0.5 OUR EVALUATION10232.5±0.4±0.5 OUR EVALUATION From γ energy below, using �(3S) mass =10355.2 ± 0.5 MeV
γ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT121.9 ±0.4 OUR EVALUATION121.9 ±0.4 OUR EVALUATION121.9 ±0.4 OUR EVALUATION121.9 ±0.4 OUR EVALUATION Treating systemati
 errors as 
orrelated122.2 ±0.5 OUR AVERAGE122.2 ±0.5 OUR AVERAGE122.2 ±0.5 OUR AVERAGE122.2 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.121.55±0.16±0.46 ARTUSO 05 CLEO �(3S) → γX123.0 ±0.8 4959 1 HEINTZ 92 CSB2 e+ e− → γX124.6 ±1.4 17 2 HEINTZ 92 CSB2 e+ e− → ℓ+ ℓ− γ γ122.3 ±0.3 ±0.6 9903 MORRISON 91 CLE2 e+ e− → γX1A systemati
 un
ertainty on the energy s
ale of 0.9% not in
luded. SupersedesNARAIN 91.2A systemati
 un
ertainty on the energy s
ale of 0.9% not in
luded. SupersedesHEINTZ 91.

WEIGHTED AVERAGE
122.2±0.5 (Error scaled by 1.4)

MORRISON 91 CLE2 0.0
HEINTZ 92 CSB2 3.0
HEINTZ 92 CSB2 1.0
ARTUSO 05 CLEO 1.8

χ2

       5.7
(Confidence Level = 0.125)

120 122 124 126 128 130

γ energy in �(3S) de
ay (MeV)
χb0(2P) DECAY MODESχb0(2P) DECAY MODESχb0(2P) DECAY MODESχb0(2P) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 γ�(2S) (4.6±2.1) %�2 γ�(1S) (9 ±6 )× 10−3�3 D0X < 8.2 % 90%�4 π+π−K+K−π0 < 3.4 × 10−5 90%�5 2π+π−K−K0S < 5 × 10−5 90%�6 2π+π−K−K0S 2π0 < 2.2 × 10−4 90%�7 2π+2π−2π0 < 2.4 × 10−4 90%

�8 2π+2π−K+K− < 1.5 × 10−4 90%�9 2π+2π−K+K−π0 < 2.2 × 10−4 90%�10 2π+2π−K+K−2π0 < 1.1 × 10−3 90%�11 3π+2π−K−K0S π0 < 7 × 10−4 90%�12 3π+3π− < 7 × 10−5 90%�13 3π+3π−2π0 < 1.2 × 10−3 90%�14 3π+3π−K+K− < 1.5 × 10−4 90%�15 3π+3π−K+K−π0 < 7 × 10−4 90%�16 4π+4π− < 1.7 × 10−4 90%�17 4π+4π−2π0 < 6 × 10−4 90%
χb0(2P) BRANCHING RATIOSχb0(2P) BRANCHING RATIOSχb0(2P) BRANCHING RATIOSχb0(2P) BRANCHING RATIOS�(γ�(2S))/�total �1/��(γ�(2S))/�total �1/��(γ�(2S))/�total �1/��(γ�(2S))/�total �1/�VALUE CL% DOCUMENT ID TECN COMMENT0.046±0.020±0.0070.046±0.020±0.0070.046±0.020±0.0070.046±0.020±0.007 3 HEINTZ 92 CSB2 e+ e− → ℓ+ ℓ− γ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.028 90 4 LEES 11J BABR �(3S) → X γ

<0.089 90 5 CRAWFORD 92B CLE2 e+ e− → ℓ+ ℓ− γ γ3Using B(�(2S) → µ+µ−) = (1.44 ± 0.10)%, B(�(3S) → γχb0(2P)) = (6.0 ±0.4 ± 0.6)% and assuming e µ universality. Supersedes HEINTZ 91.4 LEES 11J quotes a 
entral value of �(

χb0(2P) → γ�(2S))/�total × �(�(3S) →
γχb0(2P))/�total = (−0.3 ± 0.2+0.5

−0.4)%.5Using B(�(2S) → µ+µ−) = (1.37± 0.26)%, B(�(3S) → γ γ�(2S))×2 B(�(2S) →
µ+µ−) < 1.19 × 10−4, and B(�(3S) → χb0(2P)γ) = 0.049.�(γ�(1S))/�total �2/��(γ�(1S))/�total �2/��(γ�(1S))/�total �2/��(γ�(1S))/�total �2/�VALUE CL% DOCUMENT ID TECN COMMENT0.009±0.006±0.0010.009±0.006±0.0010.009±0.006±0.0010.009±0.006±0.001 6 HEINTZ 92 CSB2 e+ e− → ℓ+ ℓ− γ γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.012 90 7 LEES 11J BABR �(3S) → X γ

<0.025 90 8 CRAWFORD 92B CLE2 e+ e− → ℓ+ ℓ− γ γ6Using B(�(1S) → µ+µ−) = (2.57 ± 0.07)%, B(�(3S) → γχb0(2P)) = (6.0 ±0.4 ± 0.6)% and assuming e µ universality. Supersedes HEINTZ 91.7 LEES 11J quotes a 
entral value of �(

χb0(2P) → γ�(1S))/�total × �(�(3S) →
γχb0(2P))/�total = (3.9 ± 2.2+1.2

−0.6)× 10−4.8Using B(�(1S) → µ+µ−) = (2.57± 0.07)%, B(�(3S) → γ γ�(1S))×2 B(�(1S) →
µ+µ−) < 0.63 × 10−4, and B(�(3S) → χb0(2P)γ) = 0.049.�(D0X)/�total �3/��(D0X)/�total �3/��(D0X)/�total �3/��(D0X)/�total �3/�VALUE CL% DOCUMENT ID TECN COMMENT

<8.2× 10−2<8.2× 10−2<8.2× 10−2<8.2× 10−2 90 9,10 BRIERE 08 CLEO �(3S) → γD0X9For pD0 > 2.5 GeV/
.10The authors also present their result as (4.1 ± 3.0 ± 0.4)× 10−2.�(π+π−K+K−π0)/�total �4/��(π+π−K+K−π0)/�total �4/��(π+π−K+K−π0)/�total �4/��(π+π−K+K−π0)/�total �4/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<0.34<0.34<0.34<0.34 90 11 ASNER 08A CLEO �(3S) → γπ+π−K+K−π011ASNER 08A reports [�(

χb0(2P) → π+π−K+K−π0)/�total℄ × [B(�(3S) →
γχb0(2P))℄ < 2 × 10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P))= 5.9× 10−2.�(2π+π−K−K0S)/�total �5/��(2π+π−K−K0S)/�total �5/��(2π+π−K−K0S)/�total �5/��(2π+π−K−K0S)/�total �5/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<0.5<0.5<0.5<0.5 90 12 ASNER 08A CLEO �(3S) → γ 2π+π−K−K0S12ASNER 08A reports [�(

χb0(2P) → 2π+π−K−K0S )/�total℄ × [B(�(3S) →
γχb0(2P))℄ < 3 × 10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P))= 5.9× 10−2.�(2π+π−K−K0S 2π0)/�total �6/��(2π+π−K−K0S 2π0)/�total �6/��(2π+π−K−K0S 2π0)/�total �6/��(2π+π−K−K0S 2π0)/�total �6/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<2.2<2.2<2.2<2.2 90 13 ASNER 08A CLEO �(3S) → γ 2π+π−K− 2π013ASNER 08A reports [�(

χb0(2P) → 2π+π−K−K0S 2π0)/�total℄ × [B(�(3S) →
γχb0(2P))℄ < 13× 10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P))= 5.9× 10−2.�(2π+2π−2π0)/�total �7/��(2π+2π−2π0)/�total �7/��(2π+2π−2π0)/�total �7/��(2π+2π−2π0)/�total �7/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<2.4<2.4<2.4<2.4 90 14 ASNER 08A CLEO �(3S) → γ 2π+2π− 2π014ASNER 08A reports [�(

χb0(2P) → 2π+2π− 2π0)/�total℄× [B(�(3S)→ γχb0(2P))℄
< 14×10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P)) = 5.9×10−2.�(2π+2π−K+K−)/�total �8/��(2π+2π−K+K−)/�total �8/��(2π+2π−K+K−)/�total �8/��(2π+2π−K+K−)/�total �8/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.5<1.5<1.5<1.5 90 15 ASNER 08A CLEO �(3S) → γ 2π+2π−K+K−15ASNER 08A reports [�(

χb0(2P) → 2π+2π−K+K−)/�total℄ × [B(�(3S) →
γχb0(2P))℄ < 9 × 10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P))= 5.9× 10−2.



1478147814781478MesonParti
le Listings
χb0(2P), χb1(2P)�(2π+2π−K+K−π0)/�total �9/��(2π+2π−K+K−π0)/�total �9/��(2π+2π−K+K−π0)/�total �9/��(2π+2π−K+K−π0)/�total �9/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<2.2<2.2<2.2<2.2 90 16 ASNER 08A CLEO �(3S) → γ 2π+2π−K+K−π016ASNER 08A reports [�(

χb0(2P) → 2π+2π−K+K−π0)/�total℄ × [B(�(3S) →
γχb0(2P))℄ < 13× 10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P))= 5.9× 10−2.�(2π+2π−K+K−2π0)/�total �10/��(2π+2π−K+K−2π0)/�total �10/��(2π+2π−K+K−2π0)/�total �10/��(2π+2π−K+K−2π0)/�total �10/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<11<11<11<11 90 17 ASNER 08A CLEO �(3S) → γ 2π+2π−K+K−2π017ASNER 08A reports [�(

χb0(2P) → 2π+2π−K+K− 2π0)/�total℄ × [B(�(3S) →
γχb0(2P))℄ < 63× 10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P))= 5.9× 10−2.�(3π+2π−K−K0S π0)/�total �11/��(3π+2π−K−K0S π0)/�total �11/��(3π+2π−K−K0S π0)/�total �11/��(3π+2π−K−K0S π0)/�total �11/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<7<7<7<7 90 18 ASNER 08A CLEO �(3S) → γ 3π+2π−K−K0S π018ASNER 08A reports [�(

χb0(2P) → 3π+2π−K−K0S π0)/�total℄ × [B(�(3S) →
γχb0(2P))℄ < 39× 10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P))= 5.9× 10−2.�(3π+3π−)/�total �12/��(3π+3π−)/�total �12/��(3π+3π−)/�total �12/��(3π+3π−)/�total �12/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<0.7<0.7<0.7<0.7 90 19 ASNER 08A CLEO �(3S) → γ 3π+3π−19ASNER 08A reports [�(

χb0(2P) → 3π+3π−)/�total℄ × [B(�(3S) → γχb0(2P))℄
< 4× 10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P)) = 5.9× 10−2.�(3π+3π−2π0)/�total �13/��(3π+3π−2π0)/�total �13/��(3π+3π−2π0)/�total �13/��(3π+3π−2π0)/�total �13/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<12<12<12<12 90 20 ASNER 08A CLEO �(3S) → γ 3π+3π− 2π020ASNER 08A reports [�(

χb0(2P) → 3π+3π− 2π0)/�total℄× [B(�(3S) → γχb0(2P))℄
< 72×10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P)) = 5.9×10−2.�(3π+3π−K+K−)/�total �14/��(3π+3π−K+K−)/�total �14/��(3π+3π−K+K−)/�total �14/��(3π+3π−K+K−)/�total �14/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.5<1.5<1.5<1.5 90 21 ASNER 08A CLEO �(3S) → γ 3π+3π−K+K−21ASNER 08A reports [�(

χb0(2P) → 3π+3π−K+K−)/�total℄ × [B(�(3S) →
γχb0(2P))℄ < 9 × 10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P))= 5.9× 10−2.�(3π+3π−K+K−π0)/�total �15/��(3π+3π−K+K−π0)/�total �15/��(3π+3π−K+K−π0)/�total �15/��(3π+3π−K+K−π0)/�total �15/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<7<7<7<7 90 22 ASNER 08A CLEO �(3S) → γ 3π+3π−K+K−π022ASNER 08A reports [�(

χb0(2P) → 3π+3π−K+K−π0)/�total℄ × [B(�(3S) →
γχb0(2P))℄ < 43× 10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P))= 5.9× 10−2.�(4π+4π−)/�total �16/��(4π+4π−)/�total �16/��(4π+4π−)/�total �16/��(4π+4π−)/�total �16/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<1.7<1.7<1.7<1.7 90 23 ASNER 08A CLEO �(3S) → γ 4π+4π−23ASNER 08A reports [�(

χb0(2P) → 4π+4π−)/�total℄ × [B(�(3S) → γχb0(2P))℄
< 10×10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P)) = 5.9×10−2.�(4π+4π−2π0)/�total �17/��(4π+4π−2π0)/�total �17/��(4π+4π−2π0)/�total �17/��(4π+4π−2π0)/�total �17/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<6<6<6<6 90 24 ASNER 08A CLEO �(3S) → γ 4π+4π− 2π024ASNER 08A reports [�(

χb0(2P) → 4π+4π− 2π0)/�total℄× [B(�(3S) → γχb0(2P))℄
< 38×10−6 whi
h we divide by our best value B(�(3S) → γχb0(2P)) = 5.9×10−2.�(χb0(2P)→ γ�(1S))/�total × �(�(3S)→ γχb0(2P))/�total�2/�× ��(3S)22 /��(3S)�(χb0(2P)→ γ�(1S))/�total × �(�(3S)→ γχb0(2P))/�total�2/�× ��(3S)22 /��(3S)�(χb0(2P)→ γ�(1S))/�total × �(�(3S)→ γχb0(2P))/�total�2/�× ��(3S)22 /��(3S)�(χb0(2P)→ γ�(1S))/�total × �(�(3S)→ γχb0(2P))/�total�2/�× ��(3S)22 /��(3S)VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<8.2<8.2<8.2<8.2 90 25 LEES 11J BABR �(3S) → X γ25 LEES 11J quotes a 
entral value of �(

χb0(2P) → γ�(1S))/�total × �(�(3S) →
γχb0(2P))/�total = (3.9 ± 2.2+1.2

−0.6) × 10−4 and derives a 90% CL upper limit ofB(χb0(2P) → γ�(1S)) < 1.2% using B(�(3S) → γχb0(2P)) = (5.9 ± 0.6)%.�(χb0(2P)→ γ�(2S))/�total × �(�(3S)→ γχb0(2P))/�total�1/�× ��(3S)22 /��(3S)�(χb0(2P)→ γ�(2S))/�total × �(�(3S)→ γχb0(2P))/�total�1/�× ��(3S)22 /��(3S)�(χb0(2P)→ γ�(2S))/�total × �(�(3S)→ γχb0(2P))/�total�1/�× ��(3S)22 /��(3S)�(χb0(2P)→ γ�(2S))/�total × �(�(3S)→ γχb0(2P))/�total�1/�× ��(3S)22 /��(3S)VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<1.6<1.6<1.6<1.6 90 26 LEES 11J BABR �(3S) → X γ26 LEES 11J quotes a 
entral value of �(

χb0(2P) → γ�(2S))/�total × �(�(3S) →
γχb0(2P))/�total = (−0.3 ± 0.2+0.5

−0.4)% and derives a 90% CL upper limit ofB(χb0(2P) → γ�(2S)) < 2.8% using B(�(3S) → γχb0(2P)) = (5.9 ± 0.6)%.

χb0(2P) REFERENCESχb0(2P) REFERENCESχb0(2P) REFERENCESχb0(2P) REFERENCESLEES 11J PR D84 072002 J.P. Lees et al. (BABAR Collab.)ASNER 08A PR D78 091103 D.M. Asner et al. (CLEO Collab.)BRIERE 08 PR D78 092007 R.A. Briere et al. (CLEO Collab.)ARTUSO 05 PRL 94 032001 M. Artuso et al. (CLEO Collab.)CRAWFORD 92B PL B294 139 G. Crawford, R. Fulton (CLEO Collab.)HEINTZ 92 PR D46 1928 U. Heintz et al. (CUSB II Collab.)HEINTZ 91 PRL 66 1563 U. Heintz et al. (CUSB Collab.)MORRISON 91 PRL 67 1696 R.J. Morrison et al. (CLEO Collab.)NARAIN 91 PRL 66 3113 M. Narain et al. (CUSB Collab.)
χb1(2P) IG (JPC ) = 0+(1 + +)J needs 
on�rmation.Observed in radiative de
ay of the �(3S), therefore C = +. Bran
h-ing ratio requires E1 transition, M1 is strongly disfavored, thereforeP = +.

χb1(2P) MASSχb1(2P) MASSχb1(2P) MASSχb1(2P) MASSVALUE (MeV) DOCUMENT ID10255.46±0.22±0.50 OUR EVALUATION10255.46±0.22±0.50 OUR EVALUATION10255.46±0.22±0.50 OUR EVALUATION10255.46±0.22±0.50 OUR EVALUATION From γ energy below, using �(3S) mass =10355.2 ± 0.5 MeV mχb1(2P) − mχb0(2P)mχb1(2P) − mχb0(2P)mχb1(2P) − mχb0(2P)mχb1(2P) − mχb0(2P)VALUE (MeV) DOCUMENT ID TECN COMMENT23.5±0.7±0.723.5±0.7±0.723.5±0.7±0.723.5±0.7±0.7 1 HEINTZ 92 CSB2 e+ e− → γX,ℓ+ ℓ− γ γ1From the average photon energy for in
lusive and ex
lusive events. SupersedesNARAIN 91.
γ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT99.26±0.22 OUR EVALUATION99.26±0.22 OUR EVALUATION99.26±0.22 OUR EVALUATION99.26±0.22 OUR EVALUATION Treating systemati
 errors as 
orrelated99.53±0.23 OUR AVERAGE99.53±0.23 OUR AVERAGE99.53±0.23 OUR AVERAGE99.53±0.23 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.99.15±0.07±0.25 ARTUSO 05 CLEO �(3S) → γX99 ±1 169 CRAWFORD 92B CLE2 e+ e− → ℓ+ ℓ− γ γ100.1 ±0.4 11147 2 HEINTZ 92 CSB2 e+ e− → γX100.2 ±0.5 223 3 HEINTZ 92 CSB2 e+ e− → ℓ+ ℓ− γ γ99.5 ±0.1 ±0.5 25759 MORRISON 91 CLE2 e+ e− → γX2A systemati
 un
ertainty on the energy s
ale of 0.9% not in
luded. SupersedesNARAIN 91.3A systemati
 un
ertainty on the energy s
ale of 0.9% not in
luded. SupersedesHEINTZ 91.

WEIGHTED AVERAGE
99.53±0.23 (Error scaled by 1.3)

MORRISON 91 CLE2 0.0
HEINTZ 92 CSB2 1.8
HEINTZ 92 CSB2 2.0
CRAWFORD 92B CLE2 0.3
ARTUSO 05 CLEO 2.1

χ2

       6.3
(Confidence Level = 0.181)

97 98 99 100 101 102 103

γ energy in �(3S) de
ay (MeV)
χb1(2P) DECAY MODESχb1(2P) DECAY MODESχb1(2P) DECAY MODESχb1(2P) DECAY MODESMode Fra
tion (�i /�) S
ale fa
tor�1 ω�(1S) ( 1.63+0.40

−0.34) %�2 γ�(2S) (19.9 ±1.9 ) %�3 γ�(1S) ( 9.2 ±0.8 ) % 1.1�4 ππχb1(1P) ( 9.1 ±1.3 )× 10−3�5 D0X ( 8.8 ±1.7 ) %�6 π+π−K+K−π0 ( 3.1 ±1.0 )× 10−4�7 2π+π−K−K0S ( 1.1 ±0.5 )× 10−4�8 2π+π−K−K0S 2π0 ( 7.7 ±3.2 )× 10−4�9 2π+2π−2π0 ( 5.9 ±2.0 )× 10−4
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χb1(2P)�10 2π+2π−K+K− (10 ±4 )× 10−5�11 2π+2π−K+K−π0 ( 5.5 ±1.8 )× 10−4�12 2π+2π−K+K−2π0 (10 ±4 )× 10−4�13 3π+2π−K−K0S π0 ( 6.7 ±2.6 )× 10−4�14 3π+3π− ( 1.2 ±0.4 )× 10−4�15 3π+3π−2π0 ( 1.2 ±0.4 )× 10−3�16 3π+3π−K+K− ( 2.0 ±0.8 )× 10−4�17 3π+3π−K+K−π0 ( 6.1 ±2.2 )× 10−4�18 4π+4π− ( 1.7 ±0.6 )× 10−4�19 4π+4π−2π0 ( 1.9 ±0.7 )× 10−3

χb1(2P) BRANCHING RATIOSχb1(2P) BRANCHING RATIOSχb1(2P) BRANCHING RATIOSχb1(2P) BRANCHING RATIOS�(ω�(1S))/�total �1/��(ω�(1S))/�total �1/��(ω�(1S))/�total �1/��(ω�(1S))/�total �1/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.63+0.35
−0.31+0.16

−0.151.63+0.35
−0.31+0.16

−0.151.63+0.35
−0.31+0.16

−0.151.63+0.35
−0.31+0.16

−0.15 32.6+6.9
−6.1 4 CRONIN-HEN...04 CLE3 �(3S) → γω�(1S)4Using B(�(3S) → γχb1(2P)) = (11.3 ± 0.6)% and B(�(1S) → ℓ+ ℓ−) = 2B(�(1S) → µ+µ−) = 2 (2.48 ± 0.06)%.�(γ�(2S))/�total �2/��(γ�(2S))/�total �2/��(γ�(2S))/�total �2/��(γ�(2S))/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENT0.199±0.019 OUR AVERAGE0.199±0.019 OUR AVERAGE0.199±0.019 OUR AVERAGE0.199±0.019 OUR AVERAGE0.190±0.018±0.017 4.3k 5 LEES 11J BABR �(3S) → X γ0.356±0.042±0.092 6 CRAWFORD 92B CLE2 e+ e− → ℓ+ ℓ− γ γ0.199±0.020±0.022 7 HEINTZ 92 CSB2 e+ e− → ℓ+ ℓ− γ γ5 LEES 11J reports [�(

χb1(2P) → γ�(2S))/�total℄ × [B(�(3S) → γχb1(2P))℄ =(2.4 ± 0.1 ± 0.2) × 10−2 whi
h we divide by our best value B(�(3S) → γχb1(2P))= (12.6 ± 1.2)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.6Using B(�(2S) → µ+µ−) = (1.37± 0.26)%, B(�(3S) → γ γ�(2S))×2 B(�(2S) →
µ+µ−) = (10.23±1.20±1.26)×10−4, and B(�(3S) → γχb1(2P)) = 0.105+0.003

−0.002±0.013.7Using B(�(2S) → µ+µ−) = (1.44 ± 0.10)%, B(�(3S) → γχb1(2P)) = (11.5 ±0.5 ± 0.5)% and assuming e µ universality. Supersedes HEINTZ 91.�(γ�(1S))/�total �3/��(γ�(1S))/�total �3/��(γ�(1S))/�total �3/��(γ�(1S))/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENT0.092±0.008 OUR AVERAGE0.092±0.008 OUR AVERAGE0.092±0.008 OUR AVERAGE0.092±0.008 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.098±0.005±0.009 15k 8 LEES 11J BABR �(3S) → X γ0.120±0.021±0.021 9 CRAWFORD 92B CLE2 e+ e− → ℓ+ ℓ− γ γ0.080±0.009±0.007 10 HEINTZ 92 CSB2 e+ e− → ℓ+ ℓ− γ γ8 LEES 11J reports [�(

χb1(2P) → γ�(1S))/�total℄ × [B(�(3S) → γχb1(2P))℄ =(12.4 ± 0.3 ± 0.6)× 10−3 whi
h we divide by our best value B(�(3S) → γχb1(2P))= (12.6 ± 1.2)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.9Using B(�(1S) → µ+µ−) = (2.57± 0.07)%, B(�(3S) → γ γ�(1S))×2 B(�(1S) →
µ+µ−) = (6.47± 1.12± 0.82)×10−4 and B(�(3S) → γχb1(2P)) = 0.105+0.003

−0.002 ±0.013.10Using B(�(1S) → µ+µ−)=(2.57± 0.07)%, B(�(3S) → γχb1(2P)) = (11.5± 0.5±0.5)% and assuming e µ universality. Supersedes HEINTZ 91.�(ππχb1(1P))/�total �4/��(ππχb1(1P))/�total �4/��(ππχb1(1P))/�total �4/��(ππχb1(1P))/�total �4/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT9.1±1.3 OUR AVERAGE9.1±1.3 OUR AVERAGE9.1±1.3 OUR AVERAGE9.1±1.3 OUR AVERAGE9.2±1.1±0.8 31k 11 LEES 11C BABR e+ e− → π+π−X8.6±2.3±2.1 12 CAWLFIELD 06 CLE3 �(3S) → 2(γπℓ)11 LEES 11C measures B(�(3S) → χb1(2P)X ) × B(χb1(2P) → χb1(1P)π+π−) =(1.16 ± 0.07 ± 0.12)× 10−3. We derive the value assuming B(�(3S) → χb1(2P)X )= B(�(3S) → χb1(2P)γ) = (12.6 ± 1.2) × 10−2.12CAWLFIELD 06 quote �(χb(2P) → ππχb(1P)) = 0.83 ± 0.22 ± 0.08 ± 0.19 keVassuming I-spin 
onservation, no D-wave 
ontribution, �(χb1(2P)) = 96 ± 16keV, and�(χb2(2P)) = 138 ± 19 keV.�(D0X)/�total �5/��(D0X)/�total �5/��(D0X)/�total �5/��(D0X)/�total �5/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT8.8±1.5±0.88.8±1.5±0.88.8±1.5±0.88.8±1.5±0.8 2243 13 BRIERE 08 CLEO �(3S) → γD0X13For pD0 > 2.5 GeV/
.�(π+π−K+K−π0)/�total �6/��(π+π−K+K−π0)/�total �6/��(π+π−K+K−π0)/�total �6/��(π+π−K+K−π0)/�total �6/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.1±1.0±0.33.1±1.0±0.33.1±1.0±0.33.1±1.0±0.3 30 14 ASNER 08A CLEO �(3S) → γπ+π−K+K−π014ASNER 08A reports [�(

χb1(2P) → π+π−K+K−π0)/�total℄ × [B(�(3S) →
γχb1(2P))℄ = (39 ± 8 ± 9) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb1(2P)) = (12.6 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.

�(2π+π−K−K0S)/�total �7/��(2π+π−K−K0S)/�total �7/��(2π+π−K−K0S)/�total �7/��(2π+π−K−K0S)/�total �7/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.1±0.5±0.11.1±0.5±0.11.1±0.5±0.11.1±0.5±0.1 10 15 ASNER 08A CLEO �(3S) → γ 2π+π−K−K0S15ASNER 08A reports [�(

χb1(2P) → 2π+π−K−K0S )/�total℄ × [B(�(3S) →
γχb1(2P))℄ = (14 ± 5 ± 3) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb1(2P)) = (12.6 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+π−K−K0S 2π0)/�total �8/��(2π+π−K−K0S 2π0)/�total �8/��(2π+π−K−K0S 2π0)/�total �8/��(2π+π−K−K0S 2π0)/�total �8/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT7.7±3.1±0.77.7±3.1±0.77.7±3.1±0.77.7±3.1±0.7 15 16 ASNER 08A CLEO �(3S) → γ 2π+π−K− 2π016ASNER 08A reports [�(

χb1(2P) → 2π+π−K−K0S 2π0)/�total℄ × [B(�(3S) →
γχb1(2P))℄ = (97 ± 30 ± 26) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb1(2P)) = (12.6 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+2π−2π0)/�total �9/��(2π+2π−2π0)/�total �9/��(2π+2π−2π0)/�total �9/��(2π+2π−2π0)/�total �9/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT5.9±2.0±0.55.9±2.0±0.55.9±2.0±0.55.9±2.0±0.5 36 17 ASNER 08A CLEO �(3S) → γ 2π+2π− 2π017ASNER 08A reports [�(

χb1(2P) → 2π+2π− 2π0)/�total℄× [B(�(3S)→ γχb1(2P))℄= (74 ± 16 ± 19)× 10−6 whi
h we divide by our best value B(�(3S) → γχb1(2P))= (12.6 ± 1.2)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(2π+2π−K+K−)/�total �10/��(2π+2π−K+K−)/�total �10/��(2π+2π−K+K−)/�total �10/��(2π+2π−K+K−)/�total �10/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.0±0.4±0.11.0±0.4±0.11.0±0.4±0.11.0±0.4±0.1 12 18 ASNER 08A CLEO �(3S) → γ 2π+2π−K+K−18ASNER 08A reports [�(

χb1(2P) → 2π+2π−K+K−)/�total℄ × [B(�(3S) →
γχb1(2P))℄ = (12 ± 4 ± 3) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb1(2P)) = (12.6 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+2π−K+K−π0)/�total �11/��(2π+2π−K+K−π0)/�total �11/��(2π+2π−K+K−π0)/�total �11/��(2π+2π−K+K−π0)/�total �11/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT5.5±1.7±0.55.5±1.7±0.55.5±1.7±0.55.5±1.7±0.5 38 19 ASNER 08A CLEO �(3S) → γ 2π+2π−K+K−π019ASNER 08A reports [�(

χb1(2P) → 2π+2π−K+K−π0)/�total℄ × [B(�(3S) →
γχb1(2P))℄ = (69 ± 13 ± 17) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb1(2P)) = (12.6 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+2π−K+K−2π0)/�total �12/��(2π+2π−K+K−2π0)/�total �12/��(2π+2π−K+K−2π0)/�total �12/��(2π+2π−K+K−2π0)/�total �12/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT9.6±3.5±0.99.6±3.5±0.99.6±3.5±0.99.6±3.5±0.9 27 20 ASNER 08A CLEO �(3S) → γ 2π+2π−K+K−2π020ASNER 08A reports [�(

χb1(2P) → 2π+2π−K+K− 2π0)/�total℄ × [B(�(3S) →
γχb1(2P))℄ = (121 ± 29 ± 33)× 10−6 whi
h we divide by our best value B(�(3S) →
γχb1(2P)) = (12.6 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(3π+2π−K−K0S π0)/�total �13/��(3π+2π−K−K0S π0)/�total �13/��(3π+2π−K−K0S π0)/�total �13/��(3π+2π−K−K0S π0)/�total �13/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.7±2.5±0.66.7±2.5±0.66.7±2.5±0.66.7±2.5±0.6 17 21 ASNER 08A CLEO �(3S) → γ 3π+2π−K−K0S π021ASNER 08A reports [�(

χb1(2P) → 3π+2π−K−K0S π0)/�total℄ × [B(�(3S) →
γχb1(2P))℄ = (85 ± 23 ± 22) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb1(2P)) = (12.6 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(3π+3π−)/�total �14/��(3π+3π−)/�total �14/��(3π+3π−)/�total �14/��(3π+3π−)/�total �14/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.2±0.4±0.11.2±0.4±0.11.2±0.4±0.11.2±0.4±0.1 18 22 ASNER 08A CLEO �(3S) → γ 3π+3π−22ASNER 08A reports [�(

χb1(2P) → 3π+3π−)/�total℄ × [B(�(3S) → γχb1(2P))℄= (15 ± 4 ± 3)× 10−6 whi
h we divide by our best value B(�(3S) → γχb1(2P)) =(12.6 ± 1.2) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(3π+3π−2π0)/�total �15/��(3π+3π−2π0)/�total �15/��(3π+3π−2π0)/�total �15/��(3π+3π−2π0)/�total �15/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT12±4±112±4±112±4±112±4±1 44 23 ASNER 08A CLEO �(3S) → γ 3π+3π− 2π023ASNER 08A reports [�(

χb1(2P) → 3π+3π− 2π0)/�total℄× [B(�(3S)→ γχb1(2P))℄= (150 ± 30 ± 40)× 10−6 whi
h we divide by our best value B(�(3S) → γχb1(2P))= (12.6 ± 1.2)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(3π+3π−K+K−)/�total �16/��(3π+3π−K+K−)/�total �16/��(3π+3π−K+K−)/�total �16/��(3π+3π−K+K−)/�total �16/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.0±0.7±0.22.0±0.7±0.22.0±0.7±0.22.0±0.7±0.2 16 24 ASNER 08A CLEO �(3S) → γ 3π+3π−K+K−24ASNER 08A reports [�(

χb1(2P) → 3π+3π−K+K−)/�total℄ × [B(�(3S) →
γχb1(2P))℄ = (25 ± 7 ± 6) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb1(2P)) = (12.6 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.
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χb1(2P), hb(2P), χb2(2P)�(3π+3π−K+K−π0)/�total �17/��(3π+3π−K+K−π0)/�total �17/��(3π+3π−K+K−π0)/�total �17/��(3π+3π−K+K−π0)/�total �17/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.1±2.1±0.66.1±2.1±0.66.1±2.1±0.66.1±2.1±0.6 25 25 ASNER 08A CLEO �(3S) → γ 3π+3π−K+K−π025ASNER 08A reports [�(

χb1(2P) → 3π+3π−K+K−π0)/�total℄ × [B(�(3S) →
γχb1(2P))℄ = (77 ± 17 ± 21) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb1(2P)) = (12.6 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(4π+4π−)/�total �18/��(4π+4π−)/�total �18/��(4π+4π−)/�total �18/��(4π+4π−)/�total �18/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.7±0.6±0.21.7±0.6±0.21.7±0.6±0.21.7±0.6±0.2 16 26 ASNER 08A CLEO �(3S) → γ 4π+4π−26ASNER 08A reports [�(

χb1(2P) → 4π+4π−)/�total℄ × [B(�(3S) → γχb1(2P))℄= (22 ± 6 ± 5)× 10−6 whi
h we divide by our best value B(�(3S) → γχb1(2P)) =(12.6 ± 1.2) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(4π+4π−2π0)/�total �19/��(4π+4π−2π0)/�total �19/��(4π+4π−2π0)/�total �19/��(4π+4π−2π0)/�total �19/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT19±7±219±7±219±7±219±7±2 41 27 ASNER 08A CLEO �(3S) → γ 4π+4π− 2π027ASNER 08A reports [�(

χb1(2P) → 4π+4π− 2π0)/�total℄× [B(�(3S) → γχb1(2P))℄= (241 ± 47 ± 72)× 10−6 whi
h we divide by our best value B(�(3S) → γχb1(2P))= (12.6 ± 1.2)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.
χb1(2P) Cross-Parti
le Bran
hing Ratiosχb1(2P) Cross-Parti
le Bran
hing Ratiosχb1(2P) Cross-Parti
le Bran
hing Ratiosχb1(2P) Cross-Parti
le Bran
hing Ratios�(χb1(2P)→ γ�(1S))/�total × �(�(3S)→ γχb1(2P))/�total�3/�× ��(3S)21 /��(3S)�(χb1(2P)→ γ�(1S))/�total × �(�(3S)→ γχb1(2P))/�total�3/�× ��(3S)21 /��(3S)�(χb1(2P)→ γ�(1S))/�total × �(�(3S)→ γχb1(2P))/�total�3/�× ��(3S)21 /��(3S)�(χb1(2P)→ γ�(1S))/�total × �(�(3S)→ γχb1(2P))/�total�3/�× ��(3S)21 /��(3S)VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT12.4±0.3±0.612.4±0.3±0.612.4±0.3±0.612.4±0.3±0.6 15k LEES 11J BABR �(3S) → X γ�(χb1(2P)→ γ�(2S))/�total × �(�(3S)→ γχb1(2P))/�total�2/�× ��(3S)21 /��(3S)�(χb1(2P)→ γ�(2S))/�total × �(�(3S)→ γχb1(2P))/�total�2/�× ��(3S)21 /��(3S)�(χb1(2P)→ γ�(2S))/�total × �(�(3S)→ γχb1(2P))/�total�2/�× ��(3S)21 /��(3S)�(χb1(2P)→ γ�(2S))/�total × �(�(3S)→ γχb1(2P))/�total�2/�× ��(3S)21 /��(3S)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.4±0.1±0.22.4±0.1±0.22.4±0.1±0.22.4±0.1±0.2 4.3k LEES 11J BABR �(3S) → X γB(χb1(2P) → χb1(1P)π+π−) × B(�(3S) → χb1(2P)X )B(χb1(2P) → χb1(1P)π+π−) × B(�(3S) → χb1(2P)X )B(χb1(2P) → χb1(1P)π+π−) × B(�(3S) → χb1(2P)X )B(χb1(2P) → χb1(1P)π+π−) × B(�(3S) → χb1(2P)X )VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.16±0.07±0.121.16±0.07±0.121.16±0.07±0.121.16±0.07±0.12 31k LEES 11C BABR e+ e− → π+π−XB(χb2(2P) → pX + pX )/B(χb1(2P) → pX + pX )B(χb2(2P) → pX + pX )/B(χb1(2P) → pX + pX )B(χb2(2P) → pX + pX )/B(χb1(2P) → pX + pX )B(χb2(2P) → pX + pX )/B(χb1(2P) → pX + pX )VALUE DOCUMENT ID TECN COMMENT1.109±0.007±0.0401.109±0.007±0.0401.109±0.007±0.0401.109±0.007±0.040 BRIERE 07 CLEO �(3S) → γχbJ (2P)B(χb0(2P) → pX + pX )/B(χb1(2P) → pX + pX )B(χb0(2P) → pX + pX )/B(χb1(2P) → pX + pX )B(χb0(2P) → pX + pX )/B(χb1(2P) → pX + pX )B(χb0(2P) → pX + pX )/B(χb1(2P) → pX + pX )VALUE DOCUMENT ID TECN COMMENT1.082±0.025±0.0601.082±0.025±0.0601.082±0.025±0.0601.082±0.025±0.060 BRIERE 07 CLEO �(3S) → γχbJ (2P)

χb1(2P) REFERENCESχb1(2P) REFERENCESχb1(2P) REFERENCESχb1(2P) REFERENCESLEES 11C PR D84 011104 J.P. Lees et al. (BABAR Collab.)LEES 11J PR D84 072002 J.P. Lees et al. (BABAR Collab.)ASNER 08A PR D78 091103 D.M. Asner et al. (CLEO Collab.)BRIERE 08 PR D78 092007 R.A. Briere et al. (CLEO Collab.)BRIERE 07 PR D76 012005 R.A. Briere et al. (CLEO Collab.)CAWLFIELD 06 PR D73 012003 C. Cawl�eld et al. (CLEO Collab.)ARTUSO 05 PRL 94 032001 M. Artuso et al. (CLEO Collab.)CRONIN-HEN... 04 PRL 92 222002 D. Cronin-Hennessy et al. (CLEO Collab.)CRAWFORD 92B PL B294 139 G. Crawford, R. Fulton (CLEO Collab.)HEINTZ 92 PR D46 1928 U. Heintz et al. (CUSB II Collab.)HEINTZ 91 PRL 66 1563 U. Heintz et al. (CUSB Collab.)MORRISON 91 PRL 67 1696 R.J. Morrison et al. (CLEO Collab.)NARAIN 91 PRL 66 3113 M. Narain et al. (CUSB Collab.)hb(2P) IG (JPC ) = ??(1 +−)OMITTED FROM SUMMARY TABLEQuantum numbers are quark model predi
tions.hb(2P) MASShb(2P) MASShb(2P) MASShb(2P) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT10259.8±0.5±1.110259.8±0.5±1.110259.8±0.5±1.110259.8±0.5±1.1 90k MIZUK 12 BELL e+ e− → π+π− hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •10259.8±0.6+1.4

−1.0 83.9k 1 ADACHI 12 BELL 10.86 e+ e− → π+π− MM1Superseded by MIZUK 12.

hb(2P) DECAY MODEShb(2P) DECAY MODEShb(2P) DECAY MODEShb(2P) DECAY MODESMode Fra
tion (�i /�)�1 hadrons not seen�2 ηb(1S)γ (22± 5) %�3 ηb(2S)γ (48±13) %hb(2P) BRANCHING RATIOShb(2P) BRANCHING RATIOShb(2P) BRANCHING RATIOShb(2P) BRANCHING RATIOS�(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/��(hadrons)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen 83.9k ADACHI 12 BELL 10.86 e+ e− → π+π− MM�(ηb(1S)γ)/�total �2/��(ηb(1S)γ)/�total �2/��(ηb(1S)γ)/�total �2/��(ηb(1S)γ)/�total �2/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT22.3±3.8+3.1
−3.322.3±3.8+3.1
−3.322.3±3.8+3.1
−3.322.3±3.8+3.1
−3.3 10k MIZUK 12 BELL e+ e− → (γ)π+ π− hadrons�(ηb(2S)γ)/�total �3/��(ηb(2S)γ)/�total �3/��(ηb(2S)γ)/�total �3/��(ηb(2S)γ)/�total �3/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT47.5±10.5+6.8
−7.747.5±10.5+6.8
−7.747.5±10.5+6.8
−7.747.5±10.5+6.8
−7.7 26k MIZUK 12 BELL e+ e− → (γ)π+ π− hadronshb(2P) REFERENCEShb(2P) REFERENCEShb(2P) REFERENCEShb(2P) REFERENCESADACHI 12 PRL 108 032001 I. Ada
hi et al. (BELLE Collab.)MIZUK 12 PRL 109 232002 R. Mizuk et al. (BELLE Collab.)

χb2(2P) IG (JPC ) = 0+(2 + +)J needs 
on�rmation.Observed in radiative de
ay of the �(3S), therefore C = +. Bran
h-ing ratio requires E1 transition, M1 is strongly disfavored, thereforeP = +.
χb2(2P) MASSχb2(2P) MASSχb2(2P) MASSχb2(2P) MASSVALUE (MeV) DOCUMENT ID10268.65±0.22±0.50 OUR EVALUATION10268.65±0.22±0.50 OUR EVALUATION10268.65±0.22±0.50 OUR EVALUATION10268.65±0.22±0.50 OUR EVALUATION From γ energy below, using �(3S) mass =10355.2 ± 0.5 MeV mχb2(2P) − mχb1(2P)mχb2(2P) − mχb1(2P)mχb2(2P) − mχb1(2P)mχb2(2P) − mχb1(2P)VALUE (MeV) DOCUMENT ID TECN COMMENT13.4±0.6 OUR AVERAGE13.4±0.6 OUR AVERAGE13.4±0.6 OUR AVERAGE13.4±0.6 OUR AVERAGE12.3±2.6±0.6 1 AAIJ 14BG LHCB pp → γµ+µ−X13.5±0.4±0.5 2 HEINTZ 92 CSB2 e+ e− → γX,ℓ+ ℓ− γ γ1From the χbj(2P) → �(1S)γ transition.2 From the average photon energy for in
lusive and ex
lusive events. SupersedesNARAIN 91.

γ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYγ ENERGY IN �(3S) DECAYVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT86.19±0.22 OUR EVALUATION86.19±0.22 OUR EVALUATION86.19±0.22 OUR EVALUATION86.19±0.22 OUR EVALUATION Treating systemati
 errors as 
orrelated86.40±0.18 OUR AVERAGE86.40±0.18 OUR AVERAGE86.40±0.18 OUR AVERAGE86.40±0.18 OUR AVERAGE86.04±0.06±0.27 ARTUSO 05 CLEO �(3S) → γX86 ±1 101 CRAWFORD 92B CLE2 e+ e− → ℓ+ ℓ− γ γ86.7 ±0.4 10319 3 HEINTZ 92 CSB2 e+ e− → γX86.9 ±0.4 157 4 HEINTZ 92 CSB2 e+ e− → ℓ+ ℓ− γ γ86.4 ±0.1 ±0.4 30741 MORRISON 91 CLE2 e+ e− → γX3A systemati
 un
ertainty on the energy s
ale of 0.9% not in
luded. SupersedesNARAIN 91.4A systemati
 un
ertainty on the energy s
ale of 0.9% not in
luded. SupersedesHEINTZ 91.
χb2(2P) DECAY MODESχb2(2P) DECAY MODESχb2(2P) DECAY MODESχb2(2P) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 ω�(1S) ( 1.10+0.34

−0.30) %�2 γ�(2S) (10.6 ±2.6 ) % S=2.0�3 γ�(1S) ( 7.0 ±0.7 ) %�4 ππχb2(1P) ( 5.1 ±0.9 ) × 10−3�5 D0X < 2.4 % CL=90%�6 π+π−K+K−π0 < 1.1 × 10−4 CL=90%�7 2π+π−K−K0S < 9 × 10−5 CL=90%�8 2π+π−K−K0S 2π0 < 7 × 10−4 CL=90%�9 2π+2π−2π0 ( 3.9 ±1.6 ) × 10−4
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χb2(2P)�10 2π+2π−K+K− ( 9 ±4 ) × 10−5�11 2π+2π−K+K−π0 ( 2.4 ±1.1 ) × 10−4�12 2π+2π−K+K−2π0 ( 4.7 ±2.3 ) × 10−4�13 3π+2π−K−K0S π0 < 4 × 10−4 CL=90%�14 3π+3π− ( 9 ±4 ) × 10−5�15 3π+3π−2π0 ( 1.2 ±0.4 ) × 10−3�16 3π+3π−K+K− ( 1.4 ±0.7 ) × 10−4�17 3π+3π−K+K−π0 ( 4.2 ±1.7 ) × 10−4�18 4π+4π− ( 9 ±5 ) × 10−5�19 4π+4π−2π0 ( 1.3 ±0.5 ) × 10−3

χb2(2P) BRANCHING RATIOSχb2(2P) BRANCHING RATIOSχb2(2P) BRANCHING RATIOSχb2(2P) BRANCHING RATIOS�(ω�(1S))/�total �1/��(ω�(1S))/�total �1/��(ω�(1S))/�total �1/��(ω�(1S))/�total �1/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.10+0.32
−0.28+0.11

−0.101.10+0.32
−0.28+0.11

−0.101.10+0.32
−0.28+0.11

−0.101.10+0.32
−0.28+0.11

−0.10 20.1+5.8
−5.1 5 CRONIN-HEN...04 CLE3 �(3S) → γω�(1S)5Using B(�(3S) → γχb2(2P)) = (11.4 ± 0.8)% and B(�(1S) → ℓ+ ℓ−) = 2B(�(1S) → µ+µ−) = 2 (2.48 ± 0.06)%.�(γ�(2S))/�total �2/��(γ�(2S))/�total �2/��(γ�(2S))/�total �2/��(γ�(2S))/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENT0.106±0.026 OUR AVERAGE0.106±0.026 OUR AVERAGE0.106±0.026 OUR AVERAGE0.106±0.026 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0. See the ideogram below.0.084±0.011±0.010 2.5k 6 LEES 11J BABR �(3S) → X γ0.135±0.025±0.035 7 CRAWFORD 92B CLE2 e+ e− → ℓ+ ℓ− γ γ0.173±0.021±0.019 8 HEINTZ 92 CSB2 e+ e− → ℓ+ ℓ− γ γ6 LEES 11J reports [�(

χb2(2P) → γ�(2S))/�total℄ × [B(�(3S) → γχb2(2P))℄ =(1.1 ± 0.1 ± 0.1) × 10−2 whi
h we divide by our best value B(�(3S) → γχb2(2P))= (13.1 ± 1.6)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.7Using B(�(2S) → µ+µ−) = (1.37± 0.26)%, B(�(3S) → γ γ�(2S))×2 B(�(2S) →
µ+µ−) = (4.98±0.94±0.62)×10−4, and B(�(3S) → γχb2(2P)) = 0.135±0.003±0.017.8Using B(�(2S) → µ+µ−) = (1.44 ± 0.10)%, B(�(3S) → γχb2(2P)) = (11.1 ±0.5 ± 0.4)% and assuming e µ universality. Supersedes HEINTZ 91.

WEIGHTED AVERAGE
0.106±0.026 (Error scaled by 2.0)

HEINTZ 92 CSB2 5.7
CRAWFORD 92B CLE2 0.5
LEES 11J BABR 2.2

χ2

       8.3
(Confidence Level = 0.016)

0 0.05 0.1 0.15 0.2 0.25 0.3�(

γ�(2S))/�total�(γ�(1S))/�total �3/��(γ�(1S))/�total �3/��(γ�(1S))/�total �3/��(γ�(1S))/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENT0.070±0.007 OUR AVERAGE0.070±0.007 OUR AVERAGE0.070±0.007 OUR AVERAGE0.070±0.007 OUR AVERAGE0.070±0.004±0.008 11k 9 LEES 11J BABR �(3S) → X γ0.072±0.014±0.013 10 CRAWFORD 92B CLE2 e+ e− → ℓ+ ℓ− γ γ0.070±0.010±0.006 11 HEINTZ 92 CSB2 e+ e− → ℓ+ ℓ− γ γ9 LEES 11J reports [�(

χb2(2P) → γ�(1S))/�total℄ × [B(�(3S) → γχb2(2P))℄ =(9.2 ± 0.3 ± 0.4) × 10−3 whi
h we divide by our best value B(�(3S) → γχb2(2P))= (13.1 ± 1.6)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.10Using B(�(1S) → µ+µ−) = (2.57± 0.07)%, B(�(3S) → γ γ�(2S))×2 B(�(1S) →
µ+µ−) = (5.03±0.94±0.63)×10−4, and B(�(3S) → γχb2(2P)) = 0.135±0.003±0.017.11Using B(�(1S) → µ+µ−) = (2.57 ± 0.07)%, B(�(3S) → γχb2(2P)) = (11.1 ±0.5 ± 0.4)% and assuming e µ universality. Supersedes HEINTZ 91.�(ππχb2(1P))/�total �4/��(ππχb2(1P))/�total �4/��(ππχb2(1P))/�total �4/��(ππχb2(1P))/�total �4/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT5.1±0.9 OUR AVERAGE5.1±0.9 OUR AVERAGE5.1±0.9 OUR AVERAGE5.1±0.9 OUR AVERAGE4.9±0.7±0.6 17k 12 LEES 11C BABR e+ e− → π+π−X6.0±1.6±1.4 13 CAWLFIELD 06 CLE3 �(3S) → 2(γπℓ)12 (0.64 ± 0.05 ± 0.08)× 10−3. We derive the value assuming B(�(3S) → χb2(2P)X )= B(�(3S) → χb2(2P)γ) = (13.1 ± 1.6) × 10−2.13CAWLFIELD 06 quote �(χb(2P) → ππχb(1P)) = 0.83 ± 0.22 ± 0.08 ± 0.19 keVassuming I-spin 
onservation, no D-wave 
ontribution, �(χb1(2P)) = 96 ± 16keV, and�(χb2(2P)) = 138 ± 19 keV.

�(D0X)/�total �5/��(D0X)/�total �5/��(D0X)/�total �5/��(D0X)/�total �5/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.4× 10−2<2.4× 10−2<2.4× 10−2<2.4× 10−2 90 14,15 BRIERE 08 CLEO �(3S) → γD0X14For pD0 > 2.5 GeV/
.15The authors also present their result as (0.2 ± 1.4 ± 0.1)× 10−2.�(π+π−K+K−π0)/�total �6/��(π+π−K+K−π0)/�total �6/��(π+π−K+K−π0)/�total �6/��(π+π−K+K−π0)/�total �6/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.1<1.1<1.1<1.1 90 16 ASNER 08A CLEO �(3S) → γπ+π−K+K−π016ASNER 08A reports [�(

χb2(2P) → π+π−K+K−π0)/�total℄ × [B(�(3S) →
γχb2(2P))℄ < 14× 10−6 whi
h we divide by our best value B(�(3S) → γχb2(2P))= 13.1× 10−2.�(2π+π−K−K0S)/�total �7/��(2π+π−K−K0S)/�total �7/��(2π+π−K−K0S)/�total �7/��(2π+π−K−K0S)/�total �7/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<0.9<0.9<0.9<0.9 90 17 ASNER 08A CLEO �(3S) → γ 2π+π−K−K0S17ASNER 08A reports [�(

χb2(2P) → 2π+π−K−K0S )/�total℄ × [B(�(3S) →
γχb2(2P))℄ < 12× 10−6 whi
h we divide by our best value B(�(3S) → γχb2(2P))= 13.1× 10−2.�(2π+π−K−K0S 2π0)/�total �8/��(2π+π−K−K0S 2π0)/�total �8/��(2π+π−K−K0S 2π0)/�total �8/��(2π+π−K−K0S 2π0)/�total �8/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<7<7<7<7 90 18 ASNER 08A CLEO �(3S) → γ 2π+π−K− 2π018ASNER 08A reports [�(

χb2(2P) → 2π+π−K−K0S 2π0)/�total℄ × [B(�(3S) →
γχb2(2P))℄ < 87× 10−6 whi
h we divide by our best value B(�(3S) → γχb2(2P))= 13.1× 10−2.�(2π+2π−2π0)/�total �9/��(2π+2π−2π0)/�total �9/��(2π+2π−2π0)/�total �9/��(2π+2π−2π0)/�total �9/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.9±1.6±0.53.9±1.6±0.53.9±1.6±0.53.9±1.6±0.5 23 19 ASNER 08A CLEO �(3S) → γ 2π+2π− 2π019ASNER 08A reports [�(

χb2(2P) → 2π+2π− 2π0)/�total℄× [B(�(3S)→ γχb2(2P))℄= (51 ± 16 ± 13)× 10−6 whi
h we divide by our best value B(�(3S) → γχb2(2P))= (13.1 ± 1.6)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(2π+2π−K+K−)/�total �10/��(2π+2π−K+K−)/�total �10/��(2π+2π−K+K−)/�total �10/��(2π+2π−K+K−)/�total �10/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.9±0.4±0.10.9±0.4±0.10.9±0.4±0.10.9±0.4±0.1 11 20 ASNER 08A CLEO �(3S) → γ 2π+2π−K+K−20ASNER 08A reports [�(

χb2(2P) → 2π+2π−K+K−)/�total℄ × [B(�(3S) →
γχb2(2P))℄ = (12 ± 4 ± 3) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb2(2P)) = (13.1 ± 1.6) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+2π−K+K−π0)/�total �11/��(2π+2π−K+K−π0)/�total �11/��(2π+2π−K+K−π0)/�total �11/��(2π+2π−K+K−π0)/�total �11/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.4±1.0±0.32.4±1.0±0.32.4±1.0±0.32.4±1.0±0.3 16 21 ASNER 08A CLEO �(3S) → γ 2π+2π−K+K−π021ASNER 08A reports [�(

χb2(2P) → 2π+2π−K+K−π0)/�total℄ × [B(�(3S) →
γχb2(2P))℄ = (32 ± 11 ± 8) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb2(2P)) = (13.1 ± 1.6) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(2π+2π−K+K−2π0)/�total �12/��(2π+2π−K+K−2π0)/�total �12/��(2π+2π−K+K−2π0)/�total �12/��(2π+2π−K+K−2π0)/�total �12/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.7±2.2±0.64.7±2.2±0.64.7±2.2±0.64.7±2.2±0.6 14 22 ASNER 08A CLEO �(3S) → γ 2π+2π−K+K−2π022ASNER 08A reports [�(

χb2(2P) → 2π+2π−K+K− 2π0)/�total℄ × [B(�(3S) →
γχb2(2P))℄ = (62 ± 23 ± 17) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb2(2P)) = (13.1 ± 1.6) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(3π+2π−K−K0S π0)/�total �13/��(3π+2π−K−K0S π0)/�total �13/��(3π+2π−K−K0S π0)/�total �13/��(3π+2π−K−K0S π0)/�total �13/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT

<4<4<4<4 90 23 ASNER 08A CLEO �(3S) → γ 3π+2π−K−K0S π023ASNER 08A reports [�(

χb2(2P) → 3π+2π−K−K0S π0)/�total℄ × [B(�(3S) →
γχb2(2P))℄ < 58× 10−6 whi
h we divide by our best value B(�(3S) → γχb2(2P))= 13.1× 10−2.�(3π+3π−)/�total �14/��(3π+3π−)/�total �14/��(3π+3π−)/�total �14/��(3π+3π−)/�total �14/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.9±0.4±0.10.9±0.4±0.10.9±0.4±0.10.9±0.4±0.1 14 24 ASNER 08A CLEO �(3S) → γ 3π+3π−24ASNER 08A reports [�(

χb2(2P) → 3π+3π−)/�total℄ × [B(�(3S) → γχb2(2P))℄= (12 ± 4 ± 3)× 10−6 whi
h we divide by our best value B(�(3S) → γχb2(2P)) =(13.1 ± 1.6) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.
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χb2(2P), �(3S)�(3π+3π−2π0)/�total �15/��(3π+3π−2π0)/�total �15/��(3π+3π−2π0)/�total �15/��(3π+3π−2π0)/�total �15/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT12±4±112±4±112±4±112±4±1 45 25 ASNER 08A CLEO �(3S) → γ 3π+3π− 2π025ASNER 08A reports [�(

χb2(2P) → 3π+3π− 2π0)/�total℄× [B(�(3S) → γχb2(2P))℄= (159 ± 33 ± 43)× 10−6 whi
h we divide by our best value B(�(3S) → γχb2(2P))= (13.1 ± 1.6)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.�(3π+3π−K+K−)/�total �16/��(3π+3π−K+K−)/�total �16/��(3π+3π−K+K−)/�total �16/��(3π+3π−K+K−)/�total �16/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.4±0.7±0.21.4±0.7±0.21.4±0.7±0.21.4±0.7±0.2 12 26 ASNER 08A CLEO �(3S) → γ 3π+3π−K+K−26ASNER 08A reports [�(

χb2(2P) → 3π+3π−K+K−)/�total℄ × [B(�(3S) →
γχb2(2P))℄ = (19 ± 7 ± 5) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb2(2P)) = (13.1 ± 1.6) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(3π+3π−K+K−π0)/�total �17/��(3π+3π−K+K−π0)/�total �17/��(3π+3π−K+K−π0)/�total �17/��(3π+3π−K+K−π0)/�total �17/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT4.2±1.7±0.54.2±1.7±0.54.2±1.7±0.54.2±1.7±0.5 16 27 ASNER 08A CLEO �(3S) → γ 3π+3π−K+K−π027ASNER 08A reports [�(

χb2(2P) → 3π+3π−K+K−π0)/�total℄ × [B(�(3S) →
γχb2(2P))℄ = (55 ± 16 ± 15) × 10−6 whi
h we divide by our best value B(�(3S) →
γχb2(2P)) = (13.1 ± 1.6) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.�(4π+4π−)/�total �18/��(4π+4π−)/�total �18/��(4π+4π−)/�total �18/��(4π+4π−)/�total �18/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.9±0.4±0.10.9±0.4±0.10.9±0.4±0.10.9±0.4±0.1 9 28 ASNER 08A CLEO �(3S) → γ 4π+4π−28ASNER 08A reports [�(

χb2(2P) → 4π+4π−)/�total℄ × [B(�(3S) → γχb2(2P))℄= (12 ± 5 ± 3)× 10−6 whi
h we divide by our best value B(�(3S) → γχb2(2P)) =(13.1 ± 1.6) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(4π+4π−2π0)/�total �19/��(4π+4π−2π0)/�total �19/��(4π+4π−2π0)/�total �19/��(4π+4π−2π0)/�total �19/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT13±5±213±5±213±5±213±5±2 27 29 ASNER 08A CLEO �(3S) → γ 4π+4π− 2π029ASNER 08A reports [�(

χb2(2P) → 4π+4π− 2π0)/�total℄× [B(�(3S) → γχb2(2P))℄= (165 ± 46 ± 50)× 10−6 whi
h we divide by our best value B(�(3S) → γχb2(2P))= (13.1 ± 1.6)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.
χb2(2P) Cross-Parti
le Bran
hing Ratiosχb2(2P) Cross-Parti
le Bran
hing Ratiosχb2(2P) Cross-Parti
le Bran
hing Ratiosχb2(2P) Cross-Parti
le Bran
hing Ratios�(χb2(2P)→ γ�(1S))/�total × �(�(3S)→ γχb2(2P))/�total�3/�× ��(3S)20 /��(3S)�(χb2(2P)→ γ�(1S))/�total × �(�(3S)→ γχb2(2P))/�total�3/�× ��(3S)20 /��(3S)�(χb2(2P)→ γ�(1S))/�total × �(�(3S)→ γχb2(2P))/�total�3/�× ��(3S)20 /��(3S)�(χb2(2P)→ γ�(1S))/�total × �(�(3S)→ γχb2(2P))/�total�3/�× ��(3S)20 /��(3S)VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT9.2±0.3±0.49.2±0.3±0.49.2±0.3±0.49.2±0.3±0.4 11k LEES 11J BABR �(3S) → X γ�(χb2(2P)→ γ�(2S))/�total × �(�(3S)→ γχb2(2P))/�total�2/�× ��(3S)20 /��(3S)�(χb2(2P)→ γ�(2S))/�total × �(�(3S)→ γχb2(2P))/�total�2/�× ��(3S)20 /��(3S)�(χb2(2P)→ γ�(2S))/�total × �(�(3S)→ γχb2(2P))/�total�2/�× ��(3S)20 /��(3S)�(χb2(2P)→ γ�(2S))/�total × �(�(3S)→ γχb2(2P))/�total�2/�× ��(3S)20 /��(3S)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.1±0.1±0.11.1±0.1±0.11.1±0.1±0.11.1±0.1±0.1 2.5k LEES 11J BABR �(3S) → X γB(χb2(2P) → χb2(1P)π+π−) × B(�(3S) → χb2(2P)X )B(χb2(2P) → χb2(1P)π+π−) × B(�(3S) → χb2(2P)X )B(χb2(2P) → χb2(1P)π+π−) × B(�(3S) → χb2(2P)X )B(χb2(2P) → χb2(1P)π+π−) × B(�(3S) → χb2(2P)X )VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.64±0.05±0.080.64±0.05±0.080.64±0.05±0.080.64±0.05±0.08 17k LEES 11C BABR e+ e− → π+π−X

χb2(2P) REFERENCESχb2(2P) REFERENCESχb2(2P) REFERENCESχb2(2P) REFERENCESAAIJ 14BG JHEP 1410 088 R. Aaij et al. (LHCb Collab.)LEES 11C PR D84 011104 J.P. Lees et al. (BABAR Collab.)LEES 11J PR D84 072002 J.P. Lees et al. (BABAR Collab.)ASNER 08A PR D78 091103 D.M. Asner et al. (CLEO Collab.)BRIERE 08 PR D78 092007 R.A. Briere et al. (CLEO Collab.)CAWLFIELD 06 PR D73 012003 C. Cawl�eld et al. (CLEO Collab.)ARTUSO 05 PRL 94 032001 M. Artuso et al. (CLEO Collab.)CRONIN-HEN... 04 PRL 92 222002 D. Cronin-Hennessy et al. (CLEO Collab.)CRAWFORD 92B PL B294 139 G. Crawford, R. Fulton (CLEO Collab.)HEINTZ 92 PR D46 1928 U. Heintz et al. (CUSB II Collab.)HEINTZ 91 PRL 66 1563 U. Heintz et al. (CUSB Collab.)MORRISON 91 PRL 67 1696 R.J. Morrison et al. (CLEO Collab.)NARAIN 91 PRL 66 3113 M. Narain et al. (CUSB Collab.)

�(3S) IG (JPC ) = 0−(1−−)�(3S) MASS�(3S) MASS�(3S) MASS�(3S) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT10355.2±0.510355.2±0.510355.2±0.510355.2±0.5 1 ARTAMONOV 00 MD1 e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •10355.3±0.5 2,3 BARU 86B REDE e+ e− → hadrons1Reanalysis of BARU 86B using new ele
tron mass (COHEN 87).2Reanalysis of ARTAMONOV 84.3 Superseded by ARTAMONOV 00.m�(3S) − m�(2S)m�(3S) − m�(2S)m�(3S) − m�(2S)m�(3S) − m�(2S)VALUE (MeV) DOCUMENT ID TECN COMMENT331.50±0.02±0.13331.50±0.02±0.13331.50±0.02±0.13331.50±0.02±0.13 LEES 11C BABR e+ e− → π+π−X�(3S) WIDTH�(3S) WIDTH�(3S) WIDTH�(3S) WIDTHVALUE (keV) DOCUMENT ID20.32±1.85 OUR EVALUATION20.32±1.85 OUR EVALUATION20.32±1.85 OUR EVALUATION20.32±1.85 OUR EVALUATION See the Note on \Width Determinations of the �States" �(3S) DECAY MODES�(3S) DECAY MODES�(3S) DECAY MODES�(3S) DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 �(2S)anything (10.6 ±0.8 ) %�2 �(2S)π+π− ( 2.82±0.18) % S=1.6�3 �(2S)π0π0 ( 1.85±0.14) %�4 �(2S)γ γ ( 5.0 ±0.7 ) %�5 �(2S)π0 < 5.1 × 10−4 CL=90%�6 �(1S)π+π− ( 4.37±0.08) %�7 �(1S)π0π0 ( 2.20±0.13) %�8 �(1S)η < 1 × 10−4 CL=90%�9 �(1S)π0 < 7 × 10−5 CL=90%�10 hb(1P)π0 < 1.2 × 10−3 CL=90%�11 hb(1P)π0 → γ ηb(1S)π0 ( 4.3 ±1.4 ) × 10−4�12 hb(1P)π+π− < 1.2 × 10−4 CL=90%�13 τ+ τ− ( 2.29±0.30) %�14 µ+µ− ( 2.18±0.21) % S=2.1�15 e+ e− seen�16 hadrons�17 g g g (35.7 ±2.6 ) %�18 γ g g ( 9.7 ±1.8 ) × 10−3�19 2H anything ( 2.33±0.33) × 10−5Radiative de
aysRadiative de
aysRadiative de
aysRadiative de
ays�20 γχb2(2P) (13.1 ±1.6 ) % S=3.4�21 γχb1(2P) (12.6 ±1.2 ) % S=2.4�22 γχb0(2P) ( 5.9 ±0.6 ) % S=1.4�23 γχb2(1P) ( 9.9 ±1.3 ) × 10−3 S=2.0�24 γA0 → γ hadrons < 8 × 10−5 CL=90%�25 γχb1(1P) ( 9 ±5 ) × 10−4 S=1.9�26 γχb0(1P) ( 2.7 ±0.4 ) × 10−3�27 γ ηb(2S) < 6.2 × 10−4 CL=90%�28 γ ηb(1S) ( 5.1 ±0.7 ) × 10−4�29 γX → γ+ ≥ 4 prongs [a℄ < 2.2 × 10−4 CL=95%�30 γ a01 → γµ+µ− < 5.5 × 10−6 CL=90%�31 γ a01 → γ τ+ τ− [b℄ < 1.6 × 10−4 CL=90%Lepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modesLepton Family number (LF) violating modes�32 e± τ∓ LF < 4.2 × 10−6 CL=90%�33 µ± τ∓ LF < 3.1 × 10−6 CL=90%[a℄ 1.5 GeV < mX < 5.0 GeV[b℄ For mτ+ τ− in the ranges 4.03{9.52 and 9.61{10.10 GeV.�(3S) �(i)�(e+ e−)/�(total)�(3S) �(i)�(e+ e−)/�(total)�(3S) �(i)�(e+ e−)/�(total)�(3S) �(i)�(e+ e−)/�(total)�(hadrons) × �(e+ e−)/�total �16�15/��(hadrons) × �(e+ e−)/�total �16�15/��(hadrons) × �(e+ e−)/�total �16�15/��(hadrons) × �(e+ e−)/�total �16�15/�VALUE (keV) DOCUMENT ID TECN COMMENT0.414±0.007 OUR AVERAGE0.414±0.007 OUR AVERAGE0.414±0.007 OUR AVERAGE0.414±0.007 OUR AVERAGE0.413±0.004±0.006 ROSNER 06 CLEO 10.4 e+ e− → hadrons0.45 ±0.03 ±0.03 4 GILES 84B CLEO e+ e− → hadrons4Radiative 
orre
tions reevaluated by BUCHMUELLER 88 following KURAEV 85.
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le Listings�(3S)�(�(1S)π+π−)

× �(e+ e−)/�total �6�15/��(�(1S)π+π−)

× �(e+ e−)/�total �6�15/��(�(1S)π+π−)

× �(e+ e−)/�total �6�15/��(�(1S)π+π−)

× �(e+ e−)/�total �6�15/�VALUE (eV) EVTS DOCUMENT ID TECN COMMENT18.46±0.27±0.7718.46±0.27±0.7718.46±0.27±0.7718.46±0.27±0.77 6.4K 5 AUBERT 08BP BABR e+ e− → γπ+π− ℓ+ ℓ−5Using B(�(1S) → e+ e−) = (2.38 ± 0.11)% and B(�(1S) → µ+µ−) = (2.48 ±0.05)%. �(3S) PARTIAL WIDTHS�(3S) PARTIAL WIDTHS�(3S) PARTIAL WIDTHS�(3S) PARTIAL WIDTHS�(e+ e−) �15�(e+ e−) �15�(e+ e−) �15�(e+ e−) �15VALUE (keV) DOCUMENT ID0.443±0.008 OUR EVALUATION0.443±0.008 OUR EVALUATION0.443±0.008 OUR EVALUATION0.443±0.008 OUR EVALUATION�(3S) BRANCHING RATIOS�(3S) BRANCHING RATIOS�(3S) BRANCHING RATIOS�(3S) BRANCHING RATIOS�(�(2S)anything)/�total �1/��(�(2S)anything)/�total �1/��(�(2S)anything)/�total �1/��(�(2S)anything)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.106 ±0.008 OUR AVERAGE0.106 ±0.008 OUR AVERAGE0.106 ±0.008 OUR AVERAGE0.106 ±0.008 OUR AVERAGE0.1023±0.0105 4625 6,7,8 BUTLER 94B CLE2 e+ e− → ℓ+ ℓ−X0.111 ±0.012 4891 7,8,9 BROCK 91 CLEO e+ e− → π+π−X,
π+π− ℓ+ ℓ−6Using B(�(2S) → �(1S)γ γ) = (0.038 ± 0.007)%, and B(�(2S) → �(1S)π0π0) =(1/2)B(�(2S) → �(1S)π+π−).7Using B(�(1S) → µ+µ−) = (2.48 ± 0.06)%. With the assumption of e µ universality.8Using B(�(2S) → �(1S)π+π−) = (18.5 ± 0.8)%.9Using B(�(2S) → µ+µ−) = (1.31 ± 0.21)%, B(�(2S) → �(1S)γ γ)×2B(�(1S) →

µ+µ−) = (0.188 ± 0.035)%, and B(�(2S) → �(1S)π0π0)×2B(�(1S) → µ+µ−)= (0.436 ± 0.056)%. With the assumption of e µ universality.�(�(2S)π+π−)/�total �2/��(�(2S)π+π−)/�total �2/��(�(2S)π+π−)/�total �2/��(�(2S)π+π−)/�total �2/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.82±0.18 OUR AVERAGE2.82±0.18 OUR AVERAGE2.82±0.18 OUR AVERAGE2.82±0.18 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.3.00±0.02±0.14 543k LEES 11C BABR e+ e− → π+π−X2.40±0.10±0.26 800 10 AUBERT 08BP BABR e+ e− → γπ+π− e+ e−3.12±0.49 980 11,12 BUTLER 94B CLE2 e+ e− → π+π− ℓ+ ℓ−2.13±0.38 974 13 BROCK 91 CLEO e+ e− → π+π−X,
π+π− ℓ+ ℓ−

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.82±0.65±0.53 138 13 WU 93 CUSB �(3S) → π+π− ℓ+ ℓ−3.1 ±2.0 5 MAGERAS 82 CUSB �(3S) → π+π− ℓ+ ℓ−10Using B(�(1S) → e+ e−) = (2.38± 0.11)%, B(�(1S) → µ+µ−) = (2.48± 0.05)%,and �ee(�(3S)) = 0.443 ± 0.008 keV.11From the ex
lusive mode.12Using B(�(2S) → �(1S)γ γ) = (0.038 ± 0.007)%, and B(�(2S) → �(1S)π0π0) =(1/2)B(�(2S) → �(1S)π+π−).13Using B(�(2S) → µ+µ−) = (1.31 ± 0.21)%, B(�(2S) → �(1S)γ γ)×2B(�(1S) →
µ+µ−) = (0.188 ± 0.035)%, and B(�(2S) → �(1S)π0π0)×2B(�(1S) → µ+µ−)= (0.436 ± 0.056)%. With the assumption of e µ universality.

WEIGHTED AVERAGE
2.82±0.18 (Error scaled by 1.6)

BROCK 91 CLEO 3.3
BUTLER 94B CLE2 0.4
AUBERT 08BP BABR 2.3
LEES 11C BABR 1.6

χ2

       7.6
(Confidence Level = 0.056)

1 2 3 4 5 6�(�(2S)π+π−
)/�total (units 10−2)�(�(2S)π0π0)/�total �3/��(�(2S)π0π0)/�total �3/��(�(2S)π0π0)/�total �3/��(�(2S)π0π0)/�total �3/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.85±0.14 OUR AVERAGE1.85±0.14 OUR AVERAGE1.85±0.14 OUR AVERAGE1.85±0.14 OUR AVERAGE1.82±0.09±0.12 4391 14 BHARI 09 CLEO e+ e− → π0π0 ℓ+ ℓ−2.16±0.39 15,16 BUTLER 94B CLE2 e+ e− → π0π0 ℓ+ ℓ−1.7 ±0.5 ±0.2 10 17 HEINTZ 92 CSB2 e+ e− → π0π0 ℓ+ ℓ−14Authors assume B(�(1S) → e+ e−) + B(�(1S) → µ+µ−) = 4.06%.15B(�(2S) → µ+µ−) = (1.31 ± 0.21)% and assuming e µ universality.16 From the ex
lusive mode.17B(�(2S) → µ+µ−) = (1.44 ± 0.10)% and assuming e µ universality. SupersedesHEINTZ 91.

�(�(2S)γ γ
)/�total �4/��(�(2S)γ γ
)/�total �4/��(�(2S)γ γ
)/�total �4/��(�(2S)γ γ
)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.0502±0.00690.0502±0.00690.0502±0.00690.0502±0.0069 18 BUTLER 94B CLE2 e+ e− → ℓ+ ℓ− 2γ18From the ex
lusive mode.�(�(2S)π0)/�total �5/��(�(2S)π0)/�total �5/��(�(2S)π0)/�total �5/��(�(2S)π0)/�total �5/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT

<0.51<0.51<0.51<0.51 90 19 HE 08A CLEO e+ e− → ℓ+ ℓ− γ γ19Authors assume B(�(2S) → e+ e−) + B(�(1S) → µ+µ−) = 4.06%.�(�(1S)π+π−)/�total �6/��(�(1S)π+π−)/�total �6/��(�(1S)π+π−)/�total �6/��(�(1S)π+π−)/�total �6/�Abbreviation MM in the COMMENT �eld below stands for missing mass.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT4.37±0.08 OUR AVERAGE4.37±0.08 OUR AVERAGE4.37±0.08 OUR AVERAGE4.37±0.08 OUR AVERAGE4.32±0.07±0.13 90k 20 LEES 11L BABR �(3S) → π+π− ℓ+ ℓ−4.46±0.01±0.13 190k 21 BHARI 09 CLEO e+ e− → π+π− MM4.17±0.06±0.19 6.4K 22 AUBERT 08BP BABR 10.58 e+ e− →
γπ+π− ℓ+ ℓ−4.52±0.35 11830 23 BUTLER 94B CLE2 e+ e− → π+π−X,
π+π− ℓ+ ℓ−4.46±0.34±0.50 451 23 WU 93 CUSB �(3S) → π+π− ℓ+ ℓ−4.46±0.30 11221 23 BROCK 91 CLEO e+ e− → π+π−X,
π+π− ℓ+ ℓ−

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.9 ±1.0 22 GREEN 82 CLEO �(3S) → π+π− ℓ+ ℓ−3.9 ±1.3 26 MAGERAS 82 CUSB �(3S) → π+π− ℓ+ ℓ−20Using B(�(1S) → e+ e−) = (2.38 ± 0.11)% and B(�(1S) → µ+µ−) = (2.48 ±0.05)%.21A weighted average of the in
lusive and ex
lusive results.22Using B(�(2S) → e+ e−) = (1.91± 0.16)%, B(�(2S) → µ+µ−) = (1.93± 0.17)%,and �ee(�(3S)) = 0.443 ± 0.008 keV.23Using B(�(1S) → µ+µ−) = (2.48 ± 0.06)%. With the assumption of e µ universality.�(�(2S)π+π−)/�(�(1S)π+π−) �2/�6�(�(2S)π+π−)/�(�(1S)π+π−) �2/�6�(�(2S)π+π−)/�(�(1S)π+π−) �2/�6�(�(2S)π+π−)/�(�(1S)π+π−) �2/�6VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.577±0.026±0.060 800 24 AUBERT 08BP BABR e+ e− → γπ+π− ℓ+ ℓ−24Using B(�(1S) → e+ e−) = (2.38± 0.11)%, B(�(1S) → µ+µ−) = (2.48± 0.05)%,B(�(2S) → e+ e−) = (1.91 ± 0.16)%, and B(�(2S) → µ+µ−) = (1.93 ± 0.17)%.Not independent of other values reported by AUBERT 08BP.�(�(1S)π0π0)/�total �7/��(�(1S)π0π0)/�total �7/��(�(1S)π0π0)/�total �7/��(�(1S)π0π0)/�total �7/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.20±0.13 OUR AVERAGE2.20±0.13 OUR AVERAGE2.20±0.13 OUR AVERAGE2.20±0.13 OUR AVERAGE2.24±0.09±0.11 6584 25 BHARI 09 CLEO e+ e− → π0π0 ℓ+ ℓ−1.99±0.34 56 26 BUTLER 94B CLE2 e+ e− → π0π0 ℓ+ ℓ−2.2 ±0.4 ±0.3 33 27 HEINTZ 92 CSB2 e+ e− → π0π0 ℓ+ ℓ−25Authors assume B(�(1S) → e+ e−) + B(�(1S) → µ+µ−) = 4.96%.26Using B(�(1S) → µ+µ−) = (2.48 ± 0.06)% and assuming eµ universality.27Using B(�(1S) → µ+µ−) = (2.57± 0.07)% and assuming eµ universality. SupersedesHEINTZ 91.�(�(1S)π0π0)/�(�(1S)π+π−) �7/�6�(�(1S)π0π0)/�(�(1S)π+π−) �7/�6�(�(1S)π0π0)/�(�(1S)π+π−) �7/�6�(�(1S)π0π0)/�(�(1S)π+π−) �7/�6VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.501±0.043 28 BHARI 09 CLEO e+ e− → �(3S)28Not independent of other values reported by BHARI 09.�(�(1S)η)/�total �8/��(�(1S)η)/�total �8/��(�(1S)η)/�total �8/��(�(1S)η)/�total �8/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.1<0.1<0.1<0.1 90 29 LEES 11L BABR �(3S) → (π+π−)(γ γ)ℓ+ ℓ−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.8 90 29,30 AUBERT 08BP BABR e+ e− → γπ+π−π0 ℓ+ ℓ−
<0.18 90 31 HE 08A CLEO e+ e− → ℓ+ ℓ− η

<2.2 90 BROCK 91 CLEO e+ e− → ℓ+ ℓ− η29Using B(�(1S) → e+ e−) = (2.38± 0.11)%, B(�(1S) → µ+µ−) = (2.48± 0.05)%.30Using �ee(�(3S)) = 0.443 ± 0.008 keV.31Authors assume B(�(1S) → e+ e−) + B(�(1S) → µ+µ−) = 4.96%.�(�(1S)η)/�(�(1S)π+π−) �8/�6�(�(1S)η)/�(�(1S)π+π−) �8/�6�(�(1S)η)/�(�(1S)π+π−) �8/�6�(�(1S)η)/�(�(1S)π+π−) �8/�6VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT
<0.23<0.23<0.23<0.23 90 32 LEES 11L BABR �(3S) → (π+π−)(γ γ)ℓ+ ℓ−
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.9 90 33 AUBERT 08BP BABR e+ e− → γπ+π− (π0)ℓ+ ℓ−32Not independent of other values reported by LEES 11L.33Not independent of other values reported by AUBERT 08BP.�(�(1S)π0)/�total �9/��(�(1S)π0)/�total �9/��(�(1S)π0)/�total �9/��(�(1S)π0)/�total �9/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT
<0.07<0.07<0.07<0.07 90 34 HE 08A CLEO e+ e− → ℓ+ ℓ− γ γ34Authors assume B(�(1S) → e+ e−) + B(�(1S) → µ+µ−) = 4.96%.



1484148414841484Meson Parti
le Listings�(3S)�(hb(1P)π0)/�total �10/��(hb(1P)π0)/�total �10/��(hb(1P)π0)/�total �10/��(hb(1P)π0)/�total �10/�VALUE CL% DOCUMENT ID TECN COMMENT
<1.2× 10−3<1.2× 10−3<1.2× 10−3<1.2× 10−3 90 35 GE 11 CLEO �(3S) → π0 anything35Assuming M(hb(1P)) = 9900 MeV and �(hb(1P)) = 0 MeV, and allowing B(hb(1P) →

γ ηb(1S)) to vary from 0{100%.�(hb(1P)π0 → γ ηb(1S)π0)/�total �11/��(hb(1P)π0 → γ ηb(1S)π0)/�total �11/��(hb(1P)π0 → γ ηb(1S)π0)/�total �11/��(hb(1P)π0 → γ ηb(1S)π0)/�total �11/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.3±1.1±0.94.3±1.1±0.94.3±1.1±0.94.3±1.1±0.9 LEES 11K BABR �(3S) → ηb γπ0�(hb(1P)π+π−)/�total �12/��(hb(1P)π+π−)/�total �12/��(hb(1P)π+π−)/�total �12/��(hb(1P)π+π−)/�total �12/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 1.2< 1.2< 1.2< 1.2 90 36 LEES 11C BABR e+ e− → π+π−X
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<18 36 BUTLER 94B CLE2 e+ e− → π+π−X
<15 36 BROCK 91 CLEO e+ e− → π+π−X36For M(hb(1P)) = 9900 MeV.�(

τ+ τ−
)/�total �13/��(

τ+ τ−
)/�total �13/��(

τ+ τ−
)/�total �13/��(

τ+ τ−
)/�total �13/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.29±0.21±0.222.29±0.21±0.222.29±0.21±0.222.29±0.21±0.22 15k 37 BESSON 07 CLEO e+ e− → �(3S) → τ+ τ−37BESSON 07 reports [�(�(3S) → τ+ τ−

)/�total℄ / [B(�(3S) → µ+µ−)℄ = 1.05 ±0.08± 0.05 whi
h we multiply by our best value B(�(3S) → µ+µ−) = (2.18± 0.21)×10−2. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value.�(

τ+ τ−
)/�(

µ+µ−) �13/�14�(

τ+ τ−
)/�(

µ+µ−) �13/�14�(

τ+ τ−
)/�(

µ+µ−) �13/�14�(

τ+ τ−
)/�(

µ+µ−) �13/�14VALUE EVTS DOCUMENT ID TECN COMMENT1.05±0.08±0.051.05±0.08±0.051.05±0.08±0.051.05±0.08±0.05 15k BESSON 07 CLEO e+ e− → �(3S)�(

µ+µ−)/�total �14/��(

µ+µ−)/�total �14/��(

µ+µ−)/�total �14/��(

µ+µ−)/�total �14/�VALUE EVTS DOCUMENT ID TECN COMMENT0.0218±0.0021 OUR AVERAGE0.0218±0.0021 OUR AVERAGE0.0218±0.0021 OUR AVERAGE0.0218±0.0021 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1. See the ideogrambelow.0.0239±0.0007±0.0010 81k ADAMS 05 CLEO e+ e− → µ+µ−0.0202±0.0019±0.0033 CHEN 89B CLEO e+ e− → µ+µ−0.0173±0.0015±0.0011 KAARSBERG 89 CSB2 e+ e− → µ+µ−0.033 ±0.013 ±0.007 1096 ANDREWS 83 CLEO e+ e− → µ+µ−

WEIGHTED AVERAGE
0.0218±0.0021 (Error scaled by 2.1)

ANDREWS 83 CLEO
KAARSBERG 89 CSB2 6.0
CHEN 89B CLEO 0.2
ADAMS 05 CLEO 2.8

χ2

       9.0
(Confidence Level = 0.011)

0.01 0.015 0.02 0.025 0.03 0.035�(

µ+µ−
)/�total�(g g g)/�total �17/��(g g g)/�total �17/��(g g g)/�total �17/��(g g g)/�total �17/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT35.7±2.635.7±2.635.7±2.635.7±2.6 3M 38 BESSON 06A CLEO �(3S) → hadrons38Cal
ulated using BESSON 06A value of �(γ g g)/�(g g g) = (2.72±0.06±0.32±0.37)%and the PDG 08 values of B(�(2S) + anything) = (10.6 ± 0.8)%, B(π+π−�(1S)) =(4.40 ± 0.10)%, B(π0π0�(1S)) = (2.20 ± 0.13)%, B(γχb2(2P)) = (13.1 ± 1.6)%,B(γχb1(2P)) = (12.6 ± 1.2)%, B(γχb0(2P)) = (5.9 ± 0.6)%, B(γχb0(1P)) =(0.30 ± 0.11)% ,B(µ+µ−) = (2.18 ± 0.21)%, and Rhadrons = 3.51. The statisti-
al error is negligible and the systemati
 error is partially 
orrelated with �(γ g g)/�totalBESSON 06A value.�(

γ g g)/�total �18/��(

γ g g)/�total �18/��(

γ g g)/�total �18/��(

γ g g)/�total �18/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.97±0.180.97±0.180.97±0.180.97±0.18 60k 39 BESSON 06A CLEO �(3S) → γ + hadrons39Cal
ulated using BESSON 06A values of �(γ g g)/�(g g g) = (2.72±0.06±0.32±0.37)%and �(g g g)/�total . The statisti
al error is negligible and the systemati
 error is partially
orrelated with �(g g g)/�total BESSON 06A value.

�(

γ g g)/�(g g g) �18/�17�(

γ g g)/�(g g g) �18/�17�(

γ g g)/�(g g g) �18/�17�(

γ g g)/�(g g g) �18/�17VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.72±0.06±0.492.72±0.06±0.492.72±0.06±0.492.72±0.06±0.49 3M BESSON 06A CLEO �(3S) → (γ +) hadrons�(2H anything)/�total �19/��(2H anything)/�total �19/��(2H anything)/�total �19/��(2H anything)/�total �19/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.33±0.15+0.31
−0.282.33±0.15+0.31
−0.282.33±0.15+0.31
−0.282.33±0.15+0.31
−0.28 LEES 14G BABR e+ e− → 2H X�(

γχb2(2P))/�total �20/��(

γχb2(2P))/�total �20/��(

γχb2(2P))/�total �20/��(

γχb2(2P))/�total �20/�VALUE EVTS DOCUMENT ID TECN COMMENT0.131 ±0.016 OUR AVERAGE0.131 ±0.016 OUR AVERAGE0.131 ±0.016 OUR AVERAGE0.131 ±0.016 OUR AVERAGE Error in
ludes s
ale fa
tor of 3.4. See the ideogrambelow.0.1579±0.0017±0.0073 568k ARTUSO 05 CLEO e+ e− → γX0.111 ±0.005 ±0.004 10319 40 HEINTZ 92 CSB2 e+ e− → γX0.135 ±0.003 ±0.017 30741 MORRISON 91 CLE2 e+ e− → γX40Supersedes NARAIN 91.
WEIGHTED AVERAGE
0.131±0.016 (Error scaled by 3.4)

MORRISON 91 CLE2 0.1
HEINTZ 92 CSB2 9.9
ARTUSO 05 CLEO 12.8

χ2

      22.7
(Confidence Level < 0.0001)

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22�(

γχb2(2P))/�total�(

γχb1(2P))/�total �21/��(

γχb1(2P))/�total �21/��(

γχb1(2P))/�total �21/��(

γχb1(2P))/�total �21/�VALUE EVTS DOCUMENT ID TECN COMMENT0.126 ±0.012 OUR AVERAGE0.126 ±0.012 OUR AVERAGE0.126 ±0.012 OUR AVERAGE0.126 ±0.012 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogrambelow.0.1454±0.0018±0.0073 537k ARTUSO 05 CLEO e+ e− → γX0.115 ±0.005 ±0.005 11147 41 HEINTZ 92 CSB2 e+ e− → γX0.105 +0.003
−0.002 ±0.013 25759 MORRISON 91 CLE2 e+ e− → γX41Supersedes NARAIN 91.

WEIGHTED AVERAGE
0.126±0.012 (Error scaled by 2.4)

MORRISON 91 CLE2 2.5
HEINTZ 92 CSB2 2.5
ARTUSO 05 CLEO 6.6

χ2

      11.6
(Confidence Level = 0.0031)

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2�(

γχb1(2P))/�total�(

γχb0(2P))/�total �22/��(

γχb0(2P))/�total �22/��(

γχb0(2P))/�total �22/��(

γχb0(2P))/�total �22/�VALUE EVTS DOCUMENT ID TECN COMMENT0.059 ±0.006 OUR AVERAGE0.059 ±0.006 OUR AVERAGE0.059 ±0.006 OUR AVERAGE0.059 ±0.006 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogrambelow.0.0677±0.0020±0.0065 225k ARTUSO 05 CLEO e+ e− → γX0.060 ±0.004 ±0.006 4959 42 HEINTZ 92 CSB2 e+ e− → γX0.049 +0.003
−0.004 ±0.006 9903 MORRISON 91 CLE2 e+ e− → γX



1485148514851485See key on page 601 MesonParti
le Listings�(3S)42Supersedes NARAIN 91.
WEIGHTED AVERAGE
0.059±0.006 (Error scaled by 1.4)

MORRISON 91 CLE2 2.1
HEINTZ 92 CSB2 0.0
ARTUSO 05 CLEO 1.7

χ2

       3.9
(Confidence Level = 0.144)

0.02 0.04 0.06 0.08 0.1 0.12�(

γχb0(2P))/�total�(γχb2(1P))/�total �23/��(γχb2(1P))/�total �23/��(γχb2(1P))/�total �23/��(γχb2(1P))/�total �23/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT9.9±1.3 OUR AVERAGE9.9±1.3 OUR AVERAGE9.9±1.3 OUR AVERAGE9.9±1.3 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0.7.5±1.2±0.5 126 43,44 KORNICER 11 CLEO e+ e− → γ γ ℓ+ ℓ−10.5±0.3+0.7
−0.6 9.7k LEES 11J BABR �(3S) → X γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<19 90 45 ASNER 08A CLEO �(3S) → γ+ hadronsseen 46 HEINTZ 92 CSB2 e+ e− → γ γ ℓ+ ℓ−43Assuming B(�(1S) → ℓ+ ℓ−) = (2.48 ± 0.05)%.44KORNICER 11 reports [�(�(3S) → γχb2(1P))/�total℄ × [B(χb2(1P) → γ�(1S))℄= (1.435 ± 0.162 ± 0.169) × 10−3 whi
h we divide by our best value B(χb2(1P) →

γ�(1S)) = (19.1 ± 1.2) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.45ASNER 08A reports [�(�(3S) → γχb2(1P))/�total℄ / [B(�(2S) → γχb2(1P))℄
< 27.1 × 10−2 whi
h we multiply by our best value B(�(2S) → γχb2(1P)) =7.15 × 10−2.46HEINTZ 92, while unable to distinguish between di�erent J states, measures
∑

JB(�(3S) → γχbJ ) × B(χbJ → γ�(1S)) = (1.7 ± 0.4 ± 0.6) × 10−3 for J= 0,1,2 using in
lusive �(1S) de
ays and (1.2+0.4
−0.3 ± 0.09) × 10−3 for J = 1,2 using�(1S) → ℓ+ ℓ−.�(γχb1(1P))/�total �25/��(γχb1(1P))/�total �25/��(γχb1(1P))/�total �25/��(γχb1(1P))/�total �25/�VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT0.9±0.5 OUR AVERAGE0.9±0.5 OUR AVERAGE0.9±0.5 OUR AVERAGE0.9±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9.1.6±0.5±0.1 50 47,48 KORNICER 11 CLEO e+ e− → γ γ ℓ+ ℓ−0.5±0.3+0.2

−0.1 LEES 11J BABR �(3S) → X γ

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.7 90 49 ASNER 08A CLEO �(3S) → γ+ hadronsseen 50 HEINTZ 92 CSB2 e+ e− → γ γ ℓ+ ℓ−47Assuming B(�(1S) → ℓ+ ℓ−) = (2.48 ± 0.05)%.48KORNICER 11 reports [�(�(3S)→ γχb1(1P))/�total℄× [B(χb1(1P) → γ�(1S))℄ =(5.38± 1.20± 0.95)×10−4 whi
h we divide by our best value B(χb1(1P) → γ�(1S))= (33.9 ± 2.2)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.49ASNER 08A reports [�(�(3S) → γχb1(1P))/�total℄ / [B(�(2S) → γχb1(1P))℄ <2.5×10−2 whi
h we multiply by our best value B(�(2S) → γχb1(1P)) = 6.9×10−2.50HEINTZ 92, while unable to distinguish between di�erent J states, measures

∑

JB(�(3S) → γχbJ ) × B(χbJ → γ�(1S)) = (1.7 ± 0.4 ± 0.6) × 10−3 for J= 0,1,2 using in
lusive �(1S) de
ays and (1.2+0.4
−0.3 ± 0.09) × 10−3 for J = 1,2 using�(1S) → ℓ+ ℓ−.�(γχb0(1P))/�total �26/��(γχb0(1P))/�total �26/��(γχb0(1P))/�total �26/��(γχb0(1P))/�total �26/�VALUE (units 10−2) CL% EVTS DOCUMENT ID TECN COMMENT0.27±0.04 OUR AVERAGE0.27±0.04 OUR AVERAGE0.27±0.04 OUR AVERAGE0.27±0.04 OUR AVERAGE0.27±0.04±0.02 2.3k LEES 11J BABR �(3S) → X γ0.30±0.04±0.10 8.7k ARTUSO 05 CLEO e+ e− → γX

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.8 90 51 ASNER 08A CLEO �(3S) → γ + hadrons51ASNER 08A reports [�(�(3S) → γχb0(1P))/�total℄ / [B(�(2S) → γχb0(1P))℄

< 21.9 × 10−2 whi
h we multiply by our best value B(�(2S) → γχb0(1P)) =3.8× 10−2.

�(γ ηb(2S))/�total �27/��(γ ηb(2S))/�total �27/��(γ ηb(2S))/�total �27/��(γ ηb(2S))/�total �27/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
< 6.2< 6.2< 6.2< 6.2 90 ARTUSO 05 CLEO e+ e− → γX
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<19 90 LEES 11J BABR �(3S) → X γ�(γ ηb(1S))/�total �28/��(γ ηb(1S))/�total �28/��(γ ηb(1S))/�total �28/��(γ ηb(1S))/�total �28/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT5.1±0.7 OUR AVERAGE5.1±0.7 OUR AVERAGE5.1±0.7 OUR AVERAGE5.1±0.7 OUR AVERAGE7.1±1.8±1.3 2.3± 0.5k 52 BONVICINI 10 CLEO �(3S) → γX4.8±0.5±0.6 19 ± 3k 52 AUBERT 09AQ BABR �(3S) → γX
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8.5 90 LEES 11J BABR �(3S) → X γ4.8±0.5±1.2 19 ± 3k 52,53 AUBERT 08V BABR �(3S) → γX
<4.3 90 54 ARTUSO 05 CLEO e+ e− → γX52Assuming �ηb(1S) = 10 MeV.53 Systemati
 error re-evaluated by AUBERT 09AQ.54 Superseded by BONVICINI 10.�(γX → γ+ ≥ 4 prongs)/�total �29/��(γX → γ+ ≥ 4 prongs)/�total �29/��(γX → γ+ ≥ 4 prongs)/�total �29/��(γX → γ+ ≥ 4 prongs)/�total �29/�(1.5 GeV < mX < 5.0 GeV)VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<2.2<2.2<2.2<2.2 95 ROSNER 07A CLEO e+ e− → γX�(γ a01 → γµ+µ−)/�total �30/��(γ a01 → γµ+µ−)/�total �30/��(γ a01 → γµ+µ−)/�total �30/��(γ a01 → γµ+µ−)/�total �30/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT
<5.5<5.5<5.5<5.5 90 55 AUBERT 09Z BABR e+ e− → γ a01 → γµ+µ−55For a narrow s
alar or pseudos
alar a01 with mass in the range 212{9300 MeV, ex
ludingJ/ψ and ψ(2S). Measured 90% CL limits as a fun
tion of ma01 range from 0.27{5.5×10−6.�(γ a01 → γ τ+ τ−

)/�total �31/��(γ a01 → γ τ+ τ−
)/�total �31/��(γ a01 → γ τ+ τ−
)/�total �31/��(γ a01 → γ τ+ τ−
)/�total �31/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.6× 10−4<1.6× 10−4<1.6× 10−4<1.6× 10−4 90 56 AUBERT 09P BABR e+ e− → γ a01 → γ τ+ τ−56For a narrow s
alar or pseudos
alar a01 with M(τ+ τ−) in the ranges 4.03{9.52 and9.61{10.10 GeV. Measured 90% CL limits as a fun
tion of M(τ+ τ−) range from1.5{16× 10−5.�(γA0 → γ hadrons)/�total �24/��(γA0 → γ hadrons)/�total �24/��(γA0 → γ hadrons)/�total �24/��(γA0 → γ hadrons)/�total �24/�(0.3 GeV < mA0 < 7 GeV)VALUE CL% DOCUMENT ID TECN COMMENT
<8× 10−5<8× 10−5<8× 10−5<8× 10−5 90 57 LEES 11H BABR �(3S) → γ hadrons57For a narrow s
alar or pseudos
alar A0, ex
luding known resonan
es, with mass in therange 0.3{7 GeV. Measured 90% CL limits as a fun
tion of mA0 range from 1 × 10−6to 8× 10−5.LEPTON FAMILY NUMBER (LF) VIOLATING MODESLEPTON FAMILY NUMBER (LF) VIOLATING MODESLEPTON FAMILY NUMBER (LF) VIOLATING MODESLEPTON FAMILY NUMBER (LF) VIOLATING MODES�(e± τ∓

)/�total �32/��(e± τ∓
)/�total �32/��(e± τ∓
)/�total �32/��(e± τ∓
)/�total �32/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<4.2<4.2<4.2<4.2 90 LEES 10B BABR e+ e− → e± τ∓�(µ± τ∓
)/�total �33/��(µ± τ∓
)/�total �33/��(µ± τ∓
)/�total �33/��(µ± τ∓
)/�total �33/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 3.1< 3.1< 3.1< 3.1 90 LEES 10B BABR e+ e− → µ± τ∓
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<20.3 95 LOVE 08A CLEO e+ e− → µ± τ∓�(3S) REFERENCES�(3S) REFERENCES�(3S) REFERENCES�(3S) REFERENCESLEES 14G PR D89 111102 J.P. Lees et al. (BABAR Collab.)GE 11 PR D84 032008 J.Y. Ge et al. (CLEO Collab.)KORNICER 11 PR D83 054003 M. Korni
er et al. (CLEO Collab.)LEES 11C PR D84 011104 J.P. Lees et al. (BABAR Collab.)LEES 11H PRL 107 221803 J.P. Lees et al. (BABAR Collab.)LEES 11J PR D84 072002 J.P. Lees et al. (BABAR Collab.)LEES 11K PR D84 091101 J.P. Lees et al. (BABAR Collab.)LEES 11L PR D84 092003 J.P. Lees et al. (BABAR Collab.)BONVICINI 10 PR D81 031104 G. Bonvi
ini et al. (CLEO Collab.)LEES 10B PRL 104 151802 J.P. Lees et al. (BABAR Collab.)AUBERT 09AQ PRL 103 161801 B. Aubert et al. (BABAR Collab.)AUBERT 09P PRL 103 181801 B. Aubert et al. (BABAR Collab.)AUBERT 09Z PRL 103 081803 B. Aubert et al. (BABAR Collab.)BHARI 09 PR D79 011103 S.R. Bhari et al. (CLEO Collab.)ASNER 08A PR D78 091103 D.M. Asner et al. (CLEO Collab.)AUBERT 08BP PR D78 112002 B. Aubert et al. (BABAR Collab.)AUBERT 08V PRL 101 071801 B. Aubert et al. (BABAR Collab.)HE 08A PRL 101 192001 Q. He et al. (CLEO Collab.)LOVE 08A PRL 101 201601 W. Love et al. (CLEO Collab.)PDG 08 PL B667 1 C. Amsler et al. (PDG Collab.)BESSON 07 PRL 98 052002 D. Besson et al. (CLEO Collab.)ROSNER 07A PR D76 117102 J.L. Rosner et al. (CLEO Collab.)BESSON 06A PR D74 012003 D. Besson et al. (CLEO Collab.)ROSNER 06 PRL 96 092003 J.L. Rosner et al. (CLEO Collab.)ADAMS 05 PRL 94 012001 G.S. Adams et al. (CLEO Collab.)



1486148614861486Meson Parti
le Listings�(3S), χb1(3P), �(4S)ARTUSO 05 PRL 94 032001 M. Artuso et al. (CLEO Collab.)ARTAMONOV 00 PL B474 427 A.S. Artamonov et al.BUTLER 94B PR D49 40 F. Butler et al. (CLEO Collab.)WU 93 PL B301 307 Q.W. Wu et al. (CUSB Collab.)HEINTZ 92 PR D46 1928 U. Heintz et al. (CUSB II Collab.)BROCK 91 PR D43 1448 I.C. Bro
k et al. (CLEO Collab.)HEINTZ 91 PRL 66 1563 U. Heintz et al. (CUSB Collab.)MORRISON 91 PRL 67 1696 R.J. Morrison et al. (CLEO Collab.)NARAIN 91 PRL 66 3113 M. Narain et al. (CUSB Collab.)CHEN 89B PR D39 3528 W.Y. Chen et al. (CLEO Collab.)KAARSBERG 89 PRL 62 2077 T.M. Kaarsberg et al. (CUSB Collab.)BUCHMUEL... 88 HE e+ e− Physi
s 412 W. Bu
hmueller, S. Cooper (HANN, DESY, MIT)Editors: A. Ali and P. Soeding, World S
ienti�
, SingaporeCOHEN 87 RMP 59 1121 E.R. Cohen, B.N. Taylor (RISC, NBS)BARU 86B ZPHY C32 622 (erratum)S.E. Baru et al. (NOVO)KURAEV 85 SJNP 41 466 E.A. Kuraev, V.S. Fadin (NOVO)Translated from YAF 41 733.ARTAMONOV 84 PL 137B 272 A.S. Artamonov et al. (NOVO)GILES 84B PR D29 1285 R. Giles et al. (CLEO Collab.)ANDREWS 83 PRL 50 807 D.E. Andrews et al. (CLEO Collab.)GREEN 82 PRL 49 617 J. Green et al. (CLEO Collab.)MAGERAS 82 PL 118B 453 G. Mageras et al. (COLU, CORN, LSU+)
χb1(3P) IG (JPC ) = 0+(1 + +)Observed in the radiative de
ay to �(1S, 2S, 3S), therefore C = +.J needs 
on�rmation.

χb1(3P) MASSχb1(3P) MASSχb1(3P) MASSχb1(3P) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT10512.1± 2.1± 0.910512.1± 2.1± 0.910512.1± 2.1± 0.910512.1± 2.1± 0.9 351 1 AAIJ 14BG LHCB pp → γµ+µ−X
• • • We do not use the following data for averages, �ts, limits, et
. • • •10515.7+ 2.2

− 3.9+ 1.5
− 2.1 169 2 AAIJ 14BG LHCB pp → γµ+µ−X10511.3± 1.7± 2.5 182 3 AAIJ 14BI LHCB pp → γµ+µ−X10530 ± 5 ± 9 4 AAD 12A ATLS pp → γµ+µ−X10551 ±14 ±17 4 ABAZOV 12Q D0 pp → γµ+µ−X1The mass of the χb1(3P) state obtained by 
ombining the results of AAIJ 14BG withthat of AAIJ 14BI. The �rst un
ertainty is experimental and the se
ond attributable tothe unknown mass splitting, assumed to be mχb2(3P) − mχb1(3P) = 10.5 ± 1.5 MeV.2 From χb1(3P) → �(1S, 2S)γ transitions assuming mχb2(3P) − mχb1(3P) = 10.5 ±1.5 MeV and allowing for ±30% variation in the χb2(3P) produ
tion rate relative tothat of χb1(3P).3 From χb1(3P) → �(3S)γ transition assuming mχb2(3P) − mχb1(3P) = 10.5 ± 1.5MeV.4The mass bary
enter of the merged lineshapes from the J = 1 and 2 states.

χb1(3P) DECAY MODESχb1(3P) DECAY MODESχb1(3P) DECAY MODESχb1(3P) DECAY MODESMode Fra
tion (�i /�)�1 �(1S)γ seen�2 �(2S)γ seen�3 �(3S)γ seen
χb1(3P) BRANCHING RATIOSχb1(3P) BRANCHING RATIOSχb1(3P) BRANCHING RATIOSχb1(3P) BRANCHING RATIOS�(�(1S)γ)/�total �1/��(�(1S)γ)/�total �1/��(�(1S)γ)/�total �1/��(�(1S)γ)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 169 5 AAIJ 14BG LHCB pp → γµ+µ−X

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen AAD 12A ATLS pp → γµ+µ−Xseen ABAZOV 12Q D0 pp → γµ+µ−X5From χb1(3P) → �(1S, 2S)γ transitions assumingmχb2(3P)−mχb1(3P) = 10.5±1.5MeV and allowing for ±30% variation in the χb2(3P) produ
tion rate relative to thatof χb1(3P).�(�(2S)γ)/�total �2/��(�(2S)γ)/�total �2/��(�(2S)γ)/�total �2/��(�(2S)γ)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 169 6 AAIJ 14BG LHCB pp → γµ+µ−X
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen AAD 12A ATLS pp → γµ+µ−X6From χb1(3P) → �(1S, 2S)γ transitions assumingmχb2(3P)−mχb1(3P) = 10.5±1.5MeV and allowing for ±30% variation in the χb2(3P) produ
tion rate relative to thatof χb1(3P).�(�(3S)γ)/�total �3/��(�(3S)γ)/�total �3/��(�(3S)γ)/�total �3/��(�(3S)γ)/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 182 AAIJ 14BI LHCB pp → γµ+µ−X

χb1(3P) REFERENCESχb1(3P) REFERENCESχb1(3P) REFERENCESχb1(3P) REFERENCESAAIJ 14BG JHEP 1410 088 R. Aaij et al. (LHCb Collab.)AAIJ 14BI EPJ C74 3092 R. Aaij et al. (LHCb Collab.)AAD 12A PRL 108 152001 G. Aad et al. (ATLAS Collab.)ABAZOV 12Q PR D86 031103 V.M. Abazov et al. (D0 Collab.)

�(4S)or �(10580) IG (JPC ) = 0−(1−−)�(4S) MASS�(4S) MASS�(4S) MASS�(4S) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT10579.4±1.2 OUR AVERAGE10579.4±1.2 OUR AVERAGE10579.4±1.2 OUR AVERAGE10579.4±1.2 OUR AVERAGE10579.3±0.4±1.2 AUBERT 05Q BABR e+ e− → hadrons10580.0±3.5 1 BEBEK 87 CLEO e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •10577.4±1.0 2 LOVELOCK 85 CUSB e+ e− → hadrons1Reanalysis of BESSON 85.2No systemati
 error given. �(4S) WIDTH�(4S) WIDTH�(4S) WIDTH�(4S) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT20.5±2.5 OUR AVERAGE20.5±2.5 OUR AVERAGE20.5±2.5 OUR AVERAGE20.5±2.5 OUR AVERAGE20.7±1.6±2.5 AUBERT 05Q BABR e+ e− → hadrons20 ±2 ±4 BESSON 85 CLEO e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •25 ±2.5 LOVELOCK 85 CUSB e+ e− → hadrons�(4S) DECAY MODES�(4S) DECAY MODES�(4S) DECAY MODES�(4S) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 BB > 96 % 95%�2 B+B− (51.4 ±0.6 ) %�3 D+s anything + 
.
. (17.8 ±2.6 ) %�4 B0B0 (48.6 ±0.6 ) %�5 J/ψK0S + (J/ψ, η
 )K0S < 4 × 10−7 90%�6 non-BB < 4 % 95%�7 e+ e− ( 1.57±0.08) × 10−5�8 ρ+ρ− < 5.7 × 10−6 90%�9 K∗(892)0K0 < 2.0 × 10−6 90%�10 J/ψ(1S) anything < 1.9 × 10−4 95%�11 D∗+ anything + 
.
. < 7.4 % 90%�12 φ anything ( 7.1 ±0.6 ) %�13 φη < 1.8 × 10−6 90%�14 φη′ < 4.3 × 10−6 90%�15 ρη < 1.3 × 10−6 90%�16 ρη′ < 2.5 × 10−6 90%�17 �(1S) anything < 4 × 10−3 90%�18 �(1S)π+π− ( 8.1 ±0.6 ) × 10−5�19 �(1S)η ( 1.96±0.28) × 10−4�20 �(2S)π+π− ( 8.6 ±1.3 ) × 10−5�21 hb(1P)π+π− not seen�22 hb(1P)η ( 2.18±0.21) × 10−3�23 2H anything < 1.3 × 10−5 90%�(4S) PARTIAL WIDTHS�(4S) PARTIAL WIDTHS�(4S) PARTIAL WIDTHS�(4S) PARTIAL WIDTHS�(e+ e−) �7�(e+ e−) �7�(e+ e−) �7�(e+ e−) �7VALUE (keV) DOCUMENT ID TECN COMMENT0.272±0.029 OUR AVERAGE0.272±0.029 OUR AVERAGE0.272±0.029 OUR AVERAGE0.272±0.029 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.0.321±0.017±0.029 AUBERT 05Q BABR e+ e− → hadrons0.28 ±0.05 ±0.01 3 ALBRECHT 95E ARG e+ e− → hadrons0.192±0.007±0.038 BESSON 85 CLEO e+ e− → hadrons0.283±0.037 LOVELOCK 85 CUSB e+ e− → hadrons3Using LEYAOUANC 77 parametrization of �(s).



1487148714871487See key on page 601 MesonParti
le Listings�(4S)
WEIGHTED AVERAGE
0.272±0.029 (Error scaled by 1.5)

LOVELOCK 85 CUSB 0.1
BESSON 85 CLEO 4.3
ALBRECHT 95E ARG 0.0
AUBERT 05Q BABR 2.1

χ2

       6.5
(Confidence Level = 0.089)

0 0.1 0.2 0.3 0.4 0.5 0.6�(e+ e−) (keV)�(4S) BRANCHING RATIOS�(4S) BRANCHING RATIOS�(4S) BRANCHING RATIOS�(4S) BRANCHING RATIOSBB DECAYSBB DECAYSBB DECAYSBB DECAYSThe ratio of bran
hing fra
tion to 
harged and neutral B mesons is of-ten derived assuming isospin invarian
e in the de
ays, and relies on theknowledge of the B+/B0 lifetime ratio. \OUR EVALUATION" is ob-tained based on averages of res
aled data listed below. The average andres
aling were performed by the Heavy Flavor Averaging Group (HFAG)and are des
ribed at http://www.sla
.stanford.edu/xorg/hfag/. The av-eraging/res
aling pro
edure takes into a

ount the 
ommon dependen
eof the measurement on the value of the lifetime ratio.�(B+B−)/�total �2/��(B+B−)/�total �2/��(B+B−)/�total �2/��(B+B−)/�total �2/�VALUE DOCUMENT ID0.514±0.006 OUR EVALUATION0.514±0.006 OUR EVALUATION0.514±0.006 OUR EVALUATION0.514±0.006 OUR EVALUATION Assuming B(�(4S) → BB) = 1�(D+s anything + 
.
.)/�total �3/��(D+s anything + 
.
.)/�total �3/��(D+s anything + 
.
.)/�total �3/��(D+s anything + 
.
.)/�total �3/�VALUE DOCUMENT ID TECN COMMENT0.178±0.021±0.0160.178±0.021±0.0160.178±0.021±0.0160.178±0.021±0.016 4 ARTUSO 05B CLE3 e+ e− → Dx X4ARTUSO 05B reports [�(�(4S) → D+s anything + 
.
.)/�total℄ × [B(D+s → φπ+)℄= (8.0 ± 0.2 ± 0.9) × 10−3 whi
h we divide by our best value B(D+s → φπ+) =(4.5 ± 0.4) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(B0B0)/�total �4/��(B0B0)/�total �4/��(B0B0)/�total �4/��(B0B0)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.486±0.006 OUR EVALUATION0.486±0.006 OUR EVALUATION0.486±0.006 OUR EVALUATION0.486±0.006 OUR EVALUATION Assuming B(�(4S) → BB) = 1
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.487±0.010±0.008 5 AUBERT,B 05H BABR �(4S) → BB → D∗ ℓνℓ5Dire
t measurement. This value is averaged with the value extra
ted from the �(B+B−)/ �(B0B0) measurements.�(B+B−)/�(B0B0) �2/�4�(B+B−)/�(B0B0) �2/�4�(B+B−)/�(B0B0) �2/�4�(B+B−)/�(B0B0) �2/�4VALUE DOCUMENT ID TECN COMMENT1.058±0.024 OUR EVALUATION1.058±0.024 OUR EVALUATION1.058±0.024 OUR EVALUATION1.058±0.024 OUR EVALUATION1.006±0.036±0.031 6 AUBERT 04F BABR �(4S) → BB → J/ψK1.01 ±0.03 ±0.09 6 HASTINGS 03 BELL �(4S) → BB → dileptons1.058±0.084±0.136 7 ATHAR 02 CLEO �(4S) → BB → D∗ ℓν1.10 ±0.06 ±0.05 8 AUBERT 02 BABR �(4S) → BB → (
 
 )K∗1.04 ±0.07 ±0.04 9 ALEXANDER 01 CLEO �(4S) → BB → J/ψK∗6HASTINGS 03 and AUBERT 04F assume τ(B+) / τ(B0) = 1.083 ± 0.017.7ATHAR 02 assumes τ(B+) / τ(B0) = 1.074 ± 0.028. Supersedes BARISH 95.8AUBERT 02 assumes τ(B+) / τ(B0) = 1.062 ± 0.029.9ALEXANDER 01 assumes τ(B+) / τ(B0) = 1.066 ± 0.024.
[�(J/ψK0S)+�((J/ψ, η
 )K0S)

]/�total �5/�[�(J/ψK0S)+�((J/ψ, η
 )K0S)
]/�total �5/�[�(J/ψK0S)+�((J/ψ, η
 )K0S)
]/�total �5/�[�(J/ψK0S)+�((J/ψ, η
 )K0S)
]/�total �5/�Forbidden by CP invarian
e.VALUE (units 10−7) CL% DOCUMENT ID TECN COMMENT

<4<4<4<4 90 10 TAJIMA 07A BELL �(4S) → B0B010�(4S) with CP = +1 de
ays to the �nal state with CP = −1.non-BB DECAYSnon-BB DECAYSnon-BB DECAYSnon-BB DECAYS�(non-BB)/�total �6/��(non-BB)/�total �6/��(non-BB)/�total �6/��(non-BB)/�total �6/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.04<0.04<0.04<0.04 95 BARISH 96B CLEO e+ e−

�(e+ e−)/�total �7/��(e+ e−)/�total �7/��(e+ e−)/�total �7/��(e+ e−)/�total �7/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.57±0.08 OUR AVERAGE1.57±0.08 OUR AVERAGE1.57±0.08 OUR AVERAGE1.57±0.08 OUR AVERAGE1.55±0.04±0.07 AUBERT 05Q BABR e+ e− → hadrons2.77±0.50±0.49 11 ALBRECHT 95E ARG e+ e− → hadrons11Using LEYAOUANC 77 parametrization of �(s).�(ρ+ρ−
)/�total �8/��(ρ+ρ−
)/�total �8/��(ρ+ρ−
)/�total �8/��(ρ+ρ−
)/�total �8/�VALUE CL% DOCUMENT ID TECN COMMENT

<5.7× 10−6<5.7× 10−6<5.7× 10−6<5.7× 10−6 90 AUBERT 08BOBABR e+ e− → π+π− 2π0�(K∗(892)0K0)/�total �9/��(K∗(892)0K0)/�total �9/��(K∗(892)0K0)/�total �9/��(K∗(892)0K0)/�total �9/�VALUE CL% DOCUMENT ID TECN COMMENT
<2.0× 10−6<2.0× 10−6<2.0× 10−6<2.0× 10−6 90 SHEN 13A BELL e+ e− → K∗(892)0K0�(J/ψ(1S) anything)/�total �10/��(J/ψ(1S) anything)/�total �10/��(J/ψ(1S) anything)/�total �10/��(J/ψ(1S) anything)/�total �10/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT
<1.9<1.9<1.9<1.9 95 12 ABE 02D BELL e+ e− → J/ψX → ℓ+ ℓ−X
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4.7 90 12 AUBERT 01C BABR e+ e− → J/ψX → ℓ+ ℓ−X12Uses B(J/ψ → e+ e−) = 0.0593± 0.0010 and B(J/ψ → µ+µ−) = 0.0588± 0.0010.�(D∗+ anything + 
.
.)/�total �11/��(D∗+ anything + 
.
.)/�total �11/��(D∗+ anything + 
.
.)/�total �11/��(D∗+ anything + 
.
.)/�total �11/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.074<0.074<0.074<0.074 90 13 ALEXANDER 90C CLEO e+ e−13For x > 0.473.�(φ anything)/�total �12/��(φ anything)/�total �12/��(φ anything)/�total �12/��(φ anything)/�total �12/�VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT7.1 ±0.1±0.67.1 ±0.1±0.67.1 ±0.1±0.67.1 ±0.1±0.6 HUANG 07 CLEO �(4S) → φX
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.23 90 14 ALEXANDER 90C CLEO e+ e−14For x > 0.52.�(φη

)/�total �13/��(φη
)/�total �13/��(φη
)/�total �13/��(φη
)/�total �13/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<1.8<1.8<1.8<1.8 90 15 BELOUS 09 BELL e+ e− → φη
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.5 90 AUBERT,BE 06F BABR e+ e− → φη15Using all intermedite bran
hing fra
tion values from PDG 08.�(φη′

)/�total �14/��(φη′
)/�total �14/��(φη′
)/�total �14/��(φη′
)/�total �14/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<4.3<4.3<4.3<4.3 90 16 BELOUS 09 BELL e+ e− → φη′16Using all intermedite bran
hing fra
tion values from PDG 08.�(ρη
)/�total �15/��(ρη
)/�total �15/��(ρη
)/�total �15/��(ρη
)/�total �15/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<1.3<1.3<1.3<1.3 90 17 BELOUS 09 BELL e+ e− → ρη17Using all intermedite bran
hing fra
tion values from PDG 08.�(ρη′
)/�total �16/��(ρη′
)/�total �16/��(ρη′
)/�total �16/��(ρη′
)/�total �16/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

<2.5<2.5<2.5<2.5 90 18 BELOUS 09 BELL e+ e− → ρη′18Using all intermedite bran
hing fra
tion values from PDG 08.�(�(1S) anything)/�total �17/��(�(1S) anything)/�total �17/��(�(1S) anything)/�total �17/��(�(1S) anything)/�total �17/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.004<0.004<0.004<0.004 90 ALEXANDER 90C CLEO e+ e−�(�(1S)π+π−)/�total �18/��(�(1S)π+π−)/�total �18/��(�(1S)π+π−)/�total �18/��(�(1S)π+π−)/�total �18/�VALUE (units 10−5) CL% EVTS DOCUMENT ID TECN COMMENT8.1 ±0.6 OUR AVERAGE8.1 ±0.6 OUR AVERAGE8.1 ±0.6 OUR AVERAGE8.1 ±0.6 OUR AVERAGE8.5 ±1.3 ±0.2 113 ± 16 19 SOKOLOV 09 BELL e+ e− → π+π−µ+µ−8.00±0.64±0.27 430 20 AUBERT 08BP BABR �(4S) → π+π− ℓ+ ℓ−
• • • We do not use the following data for averages, �ts, limits, et
. • • •17.8 ±4.0 ±0.3 21,22 SOKOLOV 07 BELL e+ e− → π+π−µ+µ−9.0 ±1.5 ±0.2 167 ± 19 23 AUBERT 06R BABR e+ e− → π+π−µ+µ−
<12 90 GLENN 99 CLE2 e+ e−19SOKOLOV 09 reports [�(�(4S) → �(1S)π+π−

)/�total℄ × [B(�(1S) → µ+µ−)℄= (0.211 ± 0.030 ± 0.014) × 10−5 whi
h we divide by our best value B(�(1S) →
µ+µ−) = (2.48 ± 0.05) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.20Using B(�(1S) → e+ e−) = (2.38 ± 0.11)% and B(�(1S) → µ+µ−) = (2.48 ±0.05)%.21SOKOLOV 07 reports [�(�(4S) → �(1S)π+π−

)/�total℄ × [B(�(1S) → µ+µ−)℄= (4.42 ± 0.81 ± 0.56)×10−6 whi
h we divide by our best value B(�(1S) → µ+µ−)= (2.48 ± 0.05)× 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.22A

ording to the authors, systemati
 errors were underestimated.23 Superseded by AUBERT 08BP. AUBERT 06R reports [�(�(4S) → �(1S)π+π−
)/�total℄ × [B(�(1S) → µ+µ−)℄ = (2.23 ± 0.25 ± 0.27) × 10−6 whi
h we divide byour best value B(�(1S) → µ+µ−) = (2.48 ± 0.05) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.
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le Listings�(4S),X (10610)±�(�(1S)η)/�total �19/��(�(1S)η)/�total �19/��(�(1S)η)/�total �19/��(�(1S)η)/�total �19/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT1.96±0.26±0.091.96±0.26±0.091.96±0.26±0.091.96±0.26±0.09 56 24 AUBERT 08BP BABR �(4S) →
π+π−π0 ℓ+ ℓ−

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2.7 90 25 TAMPONI 15 BELL e+ e− → γ η+hadrons24Using B(�(1S) → e+ e−) = (2.38 ± 0.11)% and B(�(1S) → µ+µ−) = (2.48 ±0.05)%.25Using B(η → 2γ) = (39.41 ± 0.20)%.�(�(1S)η)/�(�(1S)π+π−) �19/�18�(�(1S)η)/�(�(1S)π+π−) �19/�18�(�(1S)η)/�(�(1S)π+π−) �19/�18�(�(1S)η)/�(�(1S)π+π−) �19/�18VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.41±0.40±0.12 56 26 AUBERT 08BP BABR �(4S) → π+π− (π0)ℓ+ ℓ−26Not independent of other values reported by AUBERT 08BP.�(�(2S)π+π−)/�total �20/��(�(2S)π+π−)/�total �20/��(�(2S)π+π−)/�total �20/��(�(2S)π+π−)/�total �20/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT0.86±0.11±0.070.86±0.11±0.070.86±0.11±0.070.86±0.11±0.07 220 27 AUBERT 08BP BABR �(4S) → π+π− ℓ+ ℓ−
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.88±0.17±0.08 97 ± 15 28 AUBERT 06R BABR e+ e− → π+π−µ+µ−
<3.9 90 GLENN 99 CLE2 e+ e−27Using B(�(2S) → e+ e−) = (1.91 ± 0.16)% and B(�(2S) → µ+µ−) = (1.93 ±0.17)%.28Superseded by AUBERT 08BP. AUBERT 06R reports [�(�(4S) → �(2S)π+π−

)/�total℄ × [B(�(2S) → µ+µ−)℄ = (1.69 ± 0.26 ± 0.20) × 10−6 whi
h we divide byour best value B(�(2S) → µ+µ−) = (1.93 ± 0.17) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(�(2S)π+π−)/�(�(1S)π+π−) �20/�18�(�(2S)π+π−)/�(�(1S)π+π−) �20/�18�(�(2S)π+π−)/�(�(1S)π+π−) �20/�18�(�(2S)π+π−)/�(�(1S)π+π−) �20/�18VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.16±0.16±0.14 220 29 AUBERT 08BP BABR �(4S) → π+π− ℓ+ ℓ−29Using B(�(1S) → e+ e−) = (2.38± 0.11)%, B(�(1S) → µ+µ−) = (2.48± 0.05)%,B(�(2S) → e+ e−) = (1.91 ± 0.16)%, and B(�(2S) → µ+µ−) = (1.93 ± 0.17)%.Not independent of other values reported by AUBERT 08BP.�(hb(1P)π+π−)/�total �21/��(hb(1P)π+π−)/�total �21/��(hb(1P)π+π−)/�total �21/��(hb(1P)π+π−)/�total �21/�VALUE EVTS DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen (35+32

−26)k 30 ADACHI 12 BELL 10.58 e+ e− → hb(1P)π+π−30From the upper limit on the ratio of σ(e+ e− → hb(1P)π+π−) at the �(4S) to thatat the �(5S) of 0.27.�(hb(1P)η)/�total �22/��(hb(1P)η)/�total �22/��(hb(1P)η)/�total �22/��(hb(1P)η)/�total �22/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.18±0.11±0.182.18±0.11±0.182.18±0.11±0.182.18±0.11±0.18 112k 31 TAMPONI 15 BELL e+ e− → hb(1P)η31Using B(η → 2γ) = (39.41 ± 0.20)%.�( 2H anything)/�total �23/��( 2H anything)/�total �23/��( 2H anything)/�total �23/��( 2H anything)/�total �23/�VALUE (units 10−5) CL% DOCUMENT ID TECN COMMENT
<1.3<1.3<1.3<1.3 90 ASNER 07 CLEO e+ e− → d X�(4S) REFERENCES�(4S) REFERENCES�(4S) REFERENCES�(4S) REFERENCESTAMPONI 15 PRL 115 142001 U. Tamponi et al. (BELLE Collab.)SHEN 13A PR D88 052019 C.P. Shen et al. (BELLE Collab.)ADACHI 12 PRL 108 032001 I. Ada
hi et al. (BELLE Collab.)BELOUS 09 PL B681 400 K. Belous et al. (BELLE Collab.)SOKOLOV 09 PR D79 051103 A. Sokolov et al. (BELLE Collab.)AUBERT 08BO PR D78 071103 B. Aubert et al. (BABAR Collab.)AUBERT 08BP PR D78 112002 B. Aubert et al. (BABAR Collab.)PDG 08 PL B667 1 C. Amsler et al. (PDG Collab.)ASNER 07 PR D75 012009 D.M. Asner et al. (CLEO Collab.)HUANG 07 PR D75 012002 G.S. Huang et al. (CLEO Collab.)SOKOLOV 07 PR D75 071103 A. Sokolov et al. (BELLE Collab.)TAJIMA 07A PRL 99 211601 O. Tajima et al. (BELLE Collab.)AUBERT 06R PRL 96 232001 B. Aubert et al. (BABAR Collab.)AUBERT,BE 06F PR D74 111103 B. Aubert et al. (BABAR Collab.)ARTUSO 05B PRL 95 261801 M. Artuso et al. (CLEO Collab.)AUBERT 05Q PR D72 032005 B. Aubert et al. (BABAR Collab.)AUBERT,B 05H PRL 95 042001 B. Aubert et al. (BABAR Collab.)AUBERT 04F PR D69 071101 B.Aubert et al.HASTINGS 03 PR D67 052004 N.C. Hastings et al. (BELLE Collab.)ABE 02D PRL 88 052001 K. Abe et al. (BELLE Collab.)ATHAR 02 PR D66 052003 S.B. Athar et al. (CLEO Collab.)AUBERT 02 PR D65 032001 B. Aubert et al. (BABAR Collab.)ALEXANDER 01 PRL 86 2737 J.P. Alexander et al. (CLEO Collab.)AUBERT 01C PRL 87 162002 B. Aubert et al. (BABAR Collab.)GLENN 99 PR D59 052003 S. Glenn et al.BARISH 96B PRL 76 1570 B.C. Barish et al. (CLEO Collab.)ALBRECHT 95E ZPHY C65 619 H. Albre
ht et al. (ARGUS Collab.)BARISH 95 PR D51 1014 B.C. Barish et al. (CLEO Collab.)ALEXANDER 90C PRL 64 2226 J. Alexander et al. (CLEO Collab.)BEBEK 87 PR D36 1289 C. Bebek et al. (CLEO Collab.)BESSON 85 PRL 54 381 D. Besson et al. (CLEO Collab.)LOVELOCK 85 PRL 54 377 D.M.J. Lovelo
k et al. (CUSB Collab.)LEYAOUANC 77 PL B71 397 A. Le Yaouan
 et al. (ORSAY)

X (10610)± IG (JP ) = 1+(1+)Observed by BONDAR 12 in �(5S) de
ays to �(nS)π+π− (n =1, 2, 3) and hb(mP)π+π− (m = 1, 2). JP = 1+ is favoredfrom angular analyses. Isospin = 1 is favored due to observationby KROKOVNY 13 of a 
orresponding neutral state produ
ed in�(10860) → �(2S)/�(3S)π0π0 de
ays at a 
onsistent mass.X (10610)± MASSX (10610)± MASSX (10610)± MASSX (10610)± MASSVALUE (MeV) DOCUMENT ID TECN COMMENT10607.2±2.010607.2±2.010607.2±2.010607.2±2.0 1 BONDAR 12 BELL e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •10608.5±3.4+3.7

−1.4 2 GARMASH 15 BELL e+ e− → �(1S)π+π−10608.1±1.2+1.5
−0.2 2 GARMASH 15 BELL e+ e− → �(2S)π+π−10607.4±1.5+0.8
−0.2 2 GARMASH 15 BELL e+ e− → �(3S)π+π−10611 ±4 ±3 3 BONDAR 12 BELL e+ e− → �(1S)π+π−10609 ±2 ±3 3 BONDAR 12 BELL e+ e− → �(2S)π+π−10608 ±2 ±3 3 BONDAR 12 BELL e+ e− → �(3S)π+π−10605 ±2 +3
−1 3 BONDAR 12 BELL e+ e− → hb(1P)π+π−10599 +6

−3 +5
−4 3 BONDAR 12 BELL e+ e− → hb(2P)π+π−1Average of the BONDAR 12 measurements in separate 
hannels.2Correlated with the 
orresponding result from BONDAR 12.3 Superseded by the average measurement of BONDAR 12.X (10610)± WIDTHX (10610)± WIDTHX (10610)± WIDTHX (10610)± WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT18.4± 2.418.4± 2.418.4± 2.418.4± 2.4 4 BONDAR 12 BELL e+ e− → hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •18.5± 5.3+6.1
−2.3 5 GARMASH 15 BELL e+ e− → �(1S)π+π−20.8± 2.5+0.3
−2.1 5 GARMASH 15 BELL e+ e− → �(2S)π+π−18.7± 3.4+2.5
−1.3 5 GARMASH 15 BELL e+ e− → �(3S)π+π−22.3± 7.7+3.0
−4.0 6 BONDAR 12 BELL e+ e− → �(1S)π+π−24.2± 3.1+2.0
−3.0 6 BONDAR 12 BELL e+ e− → �(2S)π+π−17.6± 3.0±3.0 6 BONDAR 12 BELL e+ e− → �(3S)π+π−11.4+ 4.5

− 3.9+2.1
−1.2 6 BONDAR 12 BELL e+ e− → hb(1P)π+π−13 +10

− 8 +9
−7 6 BONDAR 12 BELL e+ e− → hb(2P)π+π−4Average of the BONDAR 12 measurements in separate 
hannels.5Correlated with the 
orresponding result from BONDAR 12.6 Superseded by the average measurement of BONDAR 12.X (10610)+ DECAY MODESX (10610)+ DECAY MODESX (10610)+ DECAY MODESX (10610)+ DECAY MODESX (10610)− de
ay modes are 
harge 
onjugates of the modes below.Mode Fra
tion (�i /�)�1 �(1S)π+ seen�2 �(2S)π+ seen�3 �(3S)π+ seen�4 hb(1P)π+ seen�5 hb(2P)π+ seenX (10610)± BRANCHING RATIOSX (10610)± BRANCHING RATIOSX (10610)± BRANCHING RATIOSX (10610)± BRANCHING RATIOS�(�(1S)π+)/�total �1/��(�(1S)π+)/�total �1/��(�(1S)π+)/�total �1/��(�(1S)π+)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseen GARMASH 15 BELL e+ e− → �(1S)π+π−seenseenseenseen BONDAR 12 BELL e+ e− → �(1S)π+π−�(�(2S)π+)/�total �2/��(�(2S)π+)/�total �2/��(�(2S)π+)/�total �2/��(�(2S)π+)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseen GARMASH 15 BELL e+ e− → �(2S)π+π−seenseenseenseen BONDAR 12 BELL e+ e− → �(2S)π+π−�(�(3S)π+)/�total �3/��(�(3S)π+)/�total �3/��(�(3S)π+)/�total �3/��(�(3S)π+)/�total �3/�VALUE DOCUMENT ID TECN COMMENTseen GARMASH 15 BELL e+ e− → �(3S)π+π−seenseenseenseen BONDAR 12 BELL e+ e− → �(3S)π+π−
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le ListingsX (10610)±,X (10610)0,X (10650)±�(hb(1P)π+)/�total �4/��(hb(1P)π+)/�total �4/��(hb(1P)π+)/�total �4/��(hb(1P)π+)/�total �4/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen BONDAR 12 BELL e+ e− → hb(1P)π+π−�(hb(2P)π+)/�total �5/��(hb(2P)π+)/�total �5/��(hb(2P)π+)/�total �5/��(hb(2P)π+)/�total �5/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen BONDAR 12 BELL e+ e− → hb(2P)π+π−X (10610)± REFERENCESX (10610)± REFERENCESX (10610)± REFERENCESX (10610)± REFERENCESGARMASH 15 PR D91 072003 A. Garmash et al. (BELLE Collab.)KROKOVNY 13 PR D88 052016 P. Krokovny et al. (BELLE Collab.)BONDAR 12 PRL 108 122001 A. Bondar et al. (BELLE Collab.)X (10610)0 IG (JP ) = 1+(1+)Observed by KROKOVNY 13 in�(10860) → �(nS)π0π0 (n=2,3).Isospin 1 is favored from the proximity in mass to X (10610)± andtheir similarity of observed de
ay modes and 
ross se
tions. JP= 1+ is favored from angular analysis of X (10610)± de
ays byBONDAR 12. X (10610)0 MASSX (10610)0 MASSX (10610)0 MASSX (10610)0 MASSVALUE (MeV) DOCUMENT ID TECN COMMENT10609±4±410609±4±410609±4±410609±4±4 1 KROKOVNY 13 BELL e+ e− →�(2S)/�(3S)π0π01From a simultaneous �t to the KROKOVNY 13 Dalitz analysis of e+ e− →�(2S)/�(3S)π0π0 de
ays with �xed width �(X (10610)0) = 18.4 MeV.X (10610)0 DECAY MODESX (10610)0 DECAY MODESX (10610)0 DECAY MODESX (10610)0 DECAY MODESMode Fra
tion (�i /�)�1 �(1S)π0 not seen�2 �(2S)π0 seen�3 �(3S)π0 seenX (10610)0 BRANCHING RATIOSX (10610)0 BRANCHING RATIOSX (10610)0 BRANCHING RATIOSX (10610)0 BRANCHING RATIOS�(�(1S)π0)/�total �1/��(�(1S)π0)/�total �1/��(�(1S)π0)/�total �1/��(�(1S)π0)/�total �1/�VALUE DOCUMENT ID TECN COMMENTnot seennot seennot seennot seen KROKOVNY 13 BELL e+ e− → �(1S)π0π0�(�(2S)π0)/�total �2/��(�(2S)π0)/�total �2/��(�(2S)π0)/�total �2/��(�(2S)π0)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 2 KROKOVNY 13 BELL e+ e− → �(2S)π0π02Combined signi�
an
e in e+ e− → �(2S)/�(3S)π0π0, in
luding systemati
s, of 6.5σ.�(�(3S)π0)/�total �3/��(�(3S)π0)/�total �3/��(�(3S)π0)/�total �3/��(�(3S)π0)/�total �3/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 3 KROKOVNY 13 BELL e+ e− → �(3S)π0π03Combined signi�
an
e in e+ e− → �(2S)/�(3S)π0π0, in
luding systemati
s, of 6.5σ.X (10610)0 REFERENCESX (10610)0 REFERENCESX (10610)0 REFERENCESX (10610)0 REFERENCESKROKOVNY 13 PR D88 052016 P. Krokovny et al. (BELLE Collab.)BONDAR 12 PRL 108 122001 A. Bondar et al. (BELLE Collab.)X (10650)± IG (JP ) = ?+(1+)OMITTED FROM SUMMARY TABLEObserved by BONDAR 12 in �(5S) de
ays to �(nS)π+π− (n =1, 2, 3) and hb(mP)π+π− (m = 1, 2). JP = 1+ is favored fromangular analyses. X (10650)± MASSX (10650)± MASSX (10650)± MASSX (10650)± MASSVALUE (MeV) DOCUMENT ID TECN COMMENT10652.2±1.510652.2±1.510652.2±1.510652.2±1.5 1 BONDAR 12 BELL e+ e− → hadrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •10656.7±5.0+1.1

−3.1 2 GARMASH 15 BELL e+ e− → �(1S)π+π−10650.7±1.5+0.5
−0.2 2 GARMASH 15 BELL e+ e− → �(2S)π+π−

10651.2±1.0+0.4
−0.3 2 GARMASH 15 BELL e+ e− → �(3S)π+π−10657 ±6 ±3 3 BONDAR 12 BELL e+ e− → �(1S)π+π−10651 ±2 ±3 3 BONDAR 12 BELL e+ e− → �(2S)π+π−10652 ±1 ±2 3 BONDAR 12 BELL e+ e− → �(3S)π+π−10654 ±3 +1
−2 3 BONDAR 12 BELL e+ e− → hb(1P)π+π−10651 +2

−3 +3
−2 3 BONDAR 12 BELL e+ e− → hb(2P)π+π−1Average of the BONDAR 12 measurements in separate 
hannels.2Correlated with the 
orresponding result from BONDAR 12.3 Superseded by the average measurement of BONDAR 12.X (10650)± WIDTHX (10650)± WIDTHX (10650)± WIDTHX (10650)± WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT11.5± 2.211.5± 2.211.5± 2.211.5± 2.2 4 BONDAR 12 BELL e+ e− → hadrons

• • • We do not use the following data for averages, �ts, limits, et
. • • •12.1+11.3
− 4.8+ 2.7

− 0.6 5 GARMASH 15 BELL e+ e− → �(1S)π+π−14.2± 3.7+ 0.9
− 0.4 5 GARMASH 15 BELL e+ e− → �(2S)π+π−9.3± 2.2+ 0.3
− 0.5 5 GARMASH 15 BELL e+ e− → �(3S)π+π−16.3± 9.8+ 6.0
− 2.0 6 BONDAR 12 BELL e+ e− → �(1S)π+π−13.3± 3.3+ 4.0
− 3.0 6 BONDAR 12 BELL e+ e− → �(2S)π+π−8.4± 2.0± 2.0 6 BONDAR 12 BELL e+ e− → �(3S)π+π−20.9+ 5.4

− 4.7+ 2.1
− 5.7 6 BONDAR 12 BELL e+ e− → hb(1P)π+π−19 ± 7 +11
− 7 6 BONDAR 12 BELL e+ e− → hb(2P)π+π−4Average of the BONDAR 12 measurements in separate 
hannels.5Correlated with the 
orresponding result from BONDAR 12.6 Superseded by the average measurement of BONDAR 12.X (10650)+ DECAY MODESX (10650)+ DECAY MODESX (10650)+ DECAY MODESX (10650)+ DECAY MODESX (10650)− de
ay modes are 
harge 
onjugates of the modes below.Mode Fra
tion (�i /�)�1 �(1S)π+ seen�2 �(2S)π+ seen�3 �(3S)π+ seen�4 hb(1P)π+ seen�5 hb(2P)π+ seenX (10650)± BRANCHING RATIOSX (10650)± BRANCHING RATIOSX (10650)± BRANCHING RATIOSX (10650)± BRANCHING RATIOS�(�(1S)π+)/�total �1/��(�(1S)π+)/�total �1/��(�(1S)π+)/�total �1/��(�(1S)π+)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseen GARMASH 15 BELL e+ e− → �(1S)π+π−seenseenseenseen BONDAR 12 BELL e+ e− → �(1S)π+π−�(�(2S)π+)/�total �2/��(�(2S)π+)/�total �2/��(�(2S)π+)/�total �2/��(�(2S)π+)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseen GARMASH 15 BELL e+ e− → �(2S)π+π−seenseenseenseen BONDAR 12 BELL e+ e− → �(2S)π+π−�(�(3S)π+)/�total �3/��(�(3S)π+)/�total �3/��(�(3S)π+)/�total �3/��(�(3S)π+)/�total �3/�VALUE DOCUMENT ID TECN COMMENTseen GARMASH 15 BELL e+ e− → �(3S)π+π−seenseenseenseen BONDAR 12 BELL e+ e− → �(3S)π+π−�(hb(1P)π+)/�total �4/��(hb(1P)π+)/�total �4/��(hb(1P)π+)/�total �4/��(hb(1P)π+)/�total �4/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen BONDAR 12 BELL e+ e− → hb(1P)π+π−�(hb(2P)π+)/�total �5/��(hb(2P)π+)/�total �5/��(hb(2P)π+)/�total �5/��(hb(2P)π+)/�total �5/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen BONDAR 12 BELL e+ e− → hb(2P)π+π−X (10650)± REFERENCESX (10650)± REFERENCESX (10650)± REFERENCESX (10650)± REFERENCESGARMASH 15 PR D91 072003 A. Garmash et al. (BELLE Collab.)BONDAR 12 PRL 108 122001 A. Bondar et al. (BELLE Collab.)



1490149014901490MesonParti
le Listings�(10860)�(10860) IG (JPC ) = 0−(1−−)�(10860) MASS�(10860) MASS�(10860) MASS�(10860) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT10891.1± 3.2+1.2
−2.010891.1± 3.2+1.2
−2.010891.1± 3.2+1.2
−2.010891.1± 3.2+1.2
−2.0 1 SANTEL 16 BELL e+ e− → �(1S, 2S, 3S)π+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •10881.8+ 1.0
− 1.1±1.2 2,3 SANTEL 16 BELL e+ e− → hadrons10879 ± 3 4,5 CHEN 10 BELL e+ e− → hadrons10888.4+ 2.7
− 2.6±1.2 6 CHEN 10 BELL e+ e− → �(1S, 2S, 3S)π+π−10876 ± 2 4 AUBERT 09E BABR e+ e− → hadrons10869 ± 2 7 AUBERT 09E BABR e+ e− → hadrons10868 ± 6 ±5 8 BESSON 85 CLEO e+ e− → hadrons10845 ±20 9 LOVELOCK 85 CUSB e+ e− → hadrons1 From a simultaneous �t to the �(nS)π+π−, n = 1, 2, 3 
ross se
tions at 25 energypoints within √

s = 10.6{11.05 GeV to a pair of interfering Breit-Wigner amplitudesmodi�ed by phase spa
e fa
tors, with fourteen resonan
e parameters (a mass, width,and three amplitudes for ea
h of �(10860) and �(11020), a single universal relativephase, and three de
oheren
e 
oeÆ
ients, one for ea
h n). Continuum 
ontributionswere measured (and therefore �xed) to be zero.2 From a �t to the total hadroni
 
ross se
tions measured at 60 energy points within √
s= 10.82{11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two 
oating
ontinuum amplitudes with 1/√s dependen
e, one 
oherent with the resonan
es andone in
oherent, with six resonan
e parameters (a mass, width, and an amplitude forea
h of �(10860) and �(11020), one relative phase, and one de
oheren
e 
oeÆ
ient).3Not in
luding un
ertain and potentially large systemati
 errors due to assumed 
ontinuumamplitude 1/√s dependen
e and related interferen
e 
ontributions.4 In a model where a 
at non-resonant bb-
ontinuum is in
oherently added to a se
ond
at 
omponent interfering with two Breit-Wigner resonan
es. Systemati
 un
ertaintiesnot estimated.5The parameters of the �(11020) are �xed to those in AUBERT 09E.6 In a model where a 
at nonresonant �(1S, 2S, 3S)π+π− 
ontinuum interferes with asingle Breit-Wigner resonan
e.7 In a model where a non-resonant bb-
ontinuum represented by a threshold fun
tion at√

s=2mB is in
oherently added to a 
at 
omponent interfering with two Breit-Wignerresonan
es. Not independent of other AUBERT 09E results. Systemati
 un
ertaintiesnot estimated.8Assuming four Gaussians with radiative tails and a single step in R.9 In a 
oupled-
hannel model with three resonan
es and a smooth step in R.�(10860) WIDTH�(10860) WIDTH�(10860) WIDTH�(10860) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT53.7+ 7.1
− 5.6+ 1.3

− 5.453.7+ 7.1
− 5.6+ 1.3

− 5.453.7+ 7.1
− 5.6+ 1.3

− 5.453.7+ 7.1
− 5.6+ 1.3

− 5.4 10 SANTEL 16 BELL e+ e− → �(1S, 2S, 3S)π+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •48.5+ 1.9
− 1.8+ 2.0

− 2.8 11,12 SANTEL 16 BELL e+ e− → hadrons46 + 9
− 7 13,14 CHEN 10 BELL e+ e− → hadrons30.7+ 8.3
− 7.0± 3.1 15 CHEN 10 BELL e+ e− → �(1S, 2S, 3S)π+π−43 ± 4 13 AUBERT 09E BABR e+ e− → hadrons74 ± 4 16 AUBERT 09E BABR e+ e− → hadrons112 ±17 ±23 17 BESSON 85 CLEO e+ e− → hadrons110 ±15 18 LOVELOCK 85 CUSB e+ e− → hadrons10From a simultaneous �t to the �(nS)π+π−, n = 1, 2, 3 
ross se
tions at 25 energypoints within √

s = 10.6{11.05 GeV to a pair of interfering Breit-Wigner amplitudesmodi�ed by phase spa
e fa
tors, with fourteen resonan
e parameters (a mass, width,and three amplitudes for ea
h of �(10860) and �(11020), a single universal relativephase, and three de
oheren
e 
oeÆ
ients, one for ea
h n). Continuum 
ontributionswere measured (and therefore �xed) to be zero.11 From a �t to the total hadroni
 
ross se
tions measured at 60 energy points within √
s= 10.82{11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two 
oating
ontinuum amplitudes with 1/√s dependen
e, one 
oherent with the resonan
es andone in
oherent, with six resonan
e parameters (a mass, width, and an amplitude forea
h of �(10860) and �(11020), one relative phase, and one de
oheren
e 
oeÆ
ient).12Not in
luding un
ertain and potentially large systemati
 errors due to assumed 
ontinuumamplitude 1/√s dependen
e and related interferen
e 
ontributions.13 In a model where a 
at non-resonant bb-
ontinuum is in
oherently added to a se
ond
at 
omponent interfering with two Breit-Wigner resonan
es. Systemati
 un
ertaintiesnot estimated.14The parameters of the �(11020) are �xed to those in AUBERT 09E.15 In a model where a 
at nonresonant �(1S, 2S, 3S)π+π− 
ontinuum interferes with asingle Breit-Wigner resonan
e.16 In a model where a non-resonant bb-
ontinuum represented by a threshold fun
tion at√

s=2mB is in
oherently added to a 
at 
omponent interfering with two Breit-Wignerresonan
es. Not independent of other AUBERT 09E results. Systemati
 un
ertaintiesnot estimated.17Assuming four Gaussians with radiative tails and a single step in R.18 In a 
oupled-
hannel model with three resonan
es and a smooth step in R.

�(10860) DECAY MODES�(10860) DECAY MODES�(10860) DECAY MODES�(10860) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 BBX ( 76.2 +2.7
−4.0 ) %�2 BB ( 5.5 ±1.0 ) %�3 BB∗ + 
.
. ( 13.7 ±1.6 ) %�4 B∗B∗ ( 38.1 ±3.4 ) %�5 BB(∗)π < 19.7 % 90%�6 BB π ( 0.0 ±1.2 ) %�7 B∗B π + BB∗π ( 7.3 ±2.3 ) %�8 B∗B∗π ( 1.0 ±1.4 ) %�9 BB ππ < 8.9 % 90%�10 B(∗)s B(∗)s ( 20.1 ±3.1 ) %�11 Bs Bs ( 5 ±5 )× 10−3�12 Bs B∗s + 
.
. ( 1.35±0.32) %�13 B∗s B∗s ( 17.6 ±2.7 ) %�14 no open-bottom ( 3.8 +5.0
−0.5 ) %�15 e+ e− ( 5.7 ±1.5 )× 10−6�16 K∗(892)0K0 < 1.0 × 10−5 90%�17 �(1S)π+π− ( 5.3 ±0.6 )× 10−3�18 �(2S)π+π− ( 7.8 ±1.3 )× 10−3�19 �(3S)π+π− ( 4.8 +1.9
−1.7 )× 10−3�20 �(1S)K+K− ( 6.1 ±1.8 )× 10−4�21 hb(1P)π+π− ( 3.5 +1.0
−1.3 )× 10−3�22 hb(2P)π+π− ( 6.0 +2.1
−1.8 )× 10−3�23 χb0(1P)π+π−π0 < 6.3 × 10−3 90%�24 χb0(1P)ω < 3.9 × 10−3 90%�25 χb0(1P)(π+π−π0)non−ω < 4.8 × 10−3 90%�26 χb1(1P)π+π−π0 ( 1.85±0.33)× 10−3�27 χb1(1P)ω ( 1.57±0.30)× 10−3�28 χb1(1P)(π+π−π0)non−ω ( 5.2 ±1.9 )× 10−4�29 χb2(1P)π+π−π0 ( 1.17±0.30)× 10−3�30 χb2(1P)ω ( 6.0 ±2.7 )× 10−4�31 χb2(1P)(π+π−π0)non−ω ( 6 ±4 )× 10−4�32 γXb → γ�(1S)ω < 3.8 × 10−5 90%In
lusive De
ays.In
lusive De
ays.In
lusive De
ays.In
lusive De
ays.These de
ay modes are submodes of one or more of the de
ay modesabove.�33 φ anything ( 13.8 +2.4
−1.7 ) %�34 D0 anything + 
.
. (108 ±8 ) %�35 Ds anything + 
.
. ( 46 ±6 ) %�36 J/ψ anything ( 2.06±0.21) %�37 B0 anything + 
.
. ( 77 ±8 ) %�38 B+ anything + 
.
. ( 72 ±6 ) %�(10860) PARTIAL WIDTHS�(10860) PARTIAL WIDTHS�(10860) PARTIAL WIDTHS�(10860) PARTIAL WIDTHS�(e+ e−) �15�(e+ e−) �15�(e+ e−) �15�(e+ e−) �15VALUE (keV) DOCUMENT ID TECN COMMENT0.31 ±0.07 OUR AVERAGE0.31 ±0.07 OUR AVERAGE0.31 ±0.07 OUR AVERAGE0.31 ±0.07 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.22 ±0.05 ±0.07 BESSON 85 CLEO e+ e− → hadrons0.365±0.070 LOVELOCK 85 CUSB e+ e− → hadrons�(10860) BRANCHING RATIOS�(10860) BRANCHING RATIOS�(10860) BRANCHING RATIOS�(10860) BRANCHING RATIOS\OUR EVALUATION" is obtained based on averages of res
aleddata listed below. The averages and res
aling were performed bythe Heavy Flavor Averaging Group (HFAG) and are des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/.�(BBX)/�total �1/��(BBX)/�total �1/��(BBX)/�total �1/��(BBX)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.762+0.027

−0.043 OUR EVALUATION0.762+0.027
−0.043 OUR EVALUATION0.762+0.027
−0.043 OUR EVALUATION0.762+0.027
−0.043 OUR EVALUATION0.71 ±0.06 OUR AVERAGE0.71 ±0.06 OUR AVERAGE0.71 ±0.06 OUR AVERAGE0.71 ±0.06 OUR AVERAGE0.737±0.032±0.051 1063 19 DRUTSKOY 10 BELL �(5S) → B+X , B0X0.589±0.100±0.092 20 HUANG 07 CLEO �(5S) → hadrons�(BB)/�total �2/��(BB)/�total �2/��(BB)/�total �2/��(BB)/�total �2/�VALUE (units 10−2) CL% DOCUMENT ID TECN COMMENT5.5+1.0
−0.9±0.45.5+1.0
−0.9±0.45.5+1.0
−0.9±0.45.5+1.0
−0.9±0.4 21 DRUTSKOY 10 BELL �(5S) → B+X , B0X

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<13.8 90 20 HUANG 07 CLEO �(5S) → hadrons



1491149114911491See key on page 601 MesonParti
le Listings�(10860)�(BB)/�(BBX) �2/�1�(BB)/�(BBX) �2/�1�(BB)/�(BBX) �2/�1�(BB)/�(BBX) �2/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.22<0.22<0.22<0.22 90 AQUINES 06 CLE3 �(5S) → hadrons�(BB∗ + 
.
.)/�total �3/��(BB∗ + 
.
.)/�total �3/��(BB∗ + 
.
.)/�total �3/��(BB∗ + 
.
.)/�total �3/�VALUE DOCUMENT ID TECN COMMENT0.137±0.016 OUR AVERAGE0.137±0.016 OUR AVERAGE0.137±0.016 OUR AVERAGE0.137±0.016 OUR AVERAGE0.137±0.013±0.011 21 DRUTSKOY 10 BELL �(5S) → B+X , B0X0.143±0.053±0.027 20 HUANG 07 CLEO �(5S) → hadrons�(BB∗ + 
.
.)/�(BBX) �3/�1�(BB∗ + 
.
.)/�(BBX) �3/�1�(BB∗ + 
.
.)/�(BBX) �3/�1�(BB∗ + 
.
.)/�(BBX) �3/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.24±0.09±0.030.24±0.09±0.030.24±0.09±0.030.24±0.09±0.03 10 AQUINES 06 CLE3 �(5S) → hadrons�(B∗B∗)/�total �4/��(B∗B∗)/�total �4/��(B∗B∗)/�total �4/��(B∗B∗)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.381±0.034 OUR AVERAGE0.381±0.034 OUR AVERAGE0.381±0.034 OUR AVERAGE0.381±0.034 OUR AVERAGE0.375+0.021

−0.019±0.030 21 DRUTSKOY 10 BELL �(5S) → B+X , B0X0.436±0.083±0.072 20 HUANG 07 CLEO �(5S) → hadrons�(B∗B∗)/�(BBX) �4/�1�(B∗B∗)/�(BBX) �4/�1�(B∗B∗)/�(BBX) �4/�1�(B∗B∗)/�(BBX) �4/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.74±0.15±0.080.74±0.15±0.080.74±0.15±0.080.74±0.15±0.08 31 AQUINES 06 CLE3 �(5S) → hadrons�(BB(∗)π)/�total �5/��(BB(∗)π)/�total �5/��(BB(∗)π)/�total �5/��(BB(∗)π)/�total �5/�VALUE CL% DOCUMENT ID TECN COMMENT
<0.197<0.197<0.197<0.197 90 20 HUANG 07 CLEO �(5S) → hadrons�(BB(∗)π)/�(BBX) �5/�1�(BB(∗)π)/�(BBX) �5/�1�(BB(∗)π)/�(BBX) �5/�1�(BB(∗)π)/�(BBX) �5/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.32<0.32<0.32<0.32 90 AQUINES 06 CLE3 �(5S) → hadrons�(BB π

)/�total �6/��(BB π
)/�total �6/��(BB π
)/�total �6/��(BB π
)/�total �6/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT0.0±1.2±0.30.0±1.2±0.30.0±1.2±0.30.0±1.2±0.3 0 21 DRUTSKOY 10 BELL �(5S) → B+,0π−X

[�(B∗B π
)+ �(BB∗π

)
]/�total �7/�[�(B∗B π

)+ �(BB∗π
)
]/�total �7/�[�(B∗B π

)+ �(BB∗π
)
]/�total �7/�[�(B∗B π

)+ �(BB∗π
)
]/�total �7/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT7.3+2.3

−2.1±0.87.3+2.3
−2.1±0.87.3+2.3
−2.1±0.87.3+2.3
−2.1±0.8 38 21 DRUTSKOY 10 BELL �(5S) → B+,0π−X�(B∗B∗π

)/�total �8/��(B∗B∗π
)/�total �8/��(B∗B∗π
)/�total �8/��(B∗B∗π
)/�total �8/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.0+1.4

−1.3±0.41.0+1.4
−1.3±0.41.0+1.4
−1.3±0.41.0+1.4
−1.3±0.4 5 21 DRUTSKOY 10 BELL �(5S) → B+,0π−X�(BB ππ

)/�total �9/��(BB ππ
)/�total �9/��(BB ππ
)/�total �9/��(BB ππ
)/�total �9/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.089<0.089<0.089<0.089 90 20 HUANG 07 CLEO �(5S) → hadrons�(BB ππ
)/�(BBX) �9/�1�(BB ππ
)/�(BBX) �9/�1�(BB ππ
)/�(BBX) �9/�1�(BB ππ
)/�(BBX) �9/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.14<0.14<0.14<0.14 90 AQUINES 06 CLE3 �(5S) → hadrons�(B(∗)s B(∗)s )/�total �10/� = (�11+�12+�13)/��(B(∗)s B(∗)s )/�total �10/� = (�11+�12+�13)/��(B(∗)s B(∗)s )/�total �10/� = (�11+�12+�13)/��(B(∗)s B(∗)s )/�total �10/� = (�11+�12+�13)/�VALUE DOCUMENT ID TECN COMMENT0.201+0.030
−0.031 OUR EVALUATION0.201+0.030
−0.031 OUR EVALUATION0.201+0.030
−0.031 OUR EVALUATION0.201+0.030
−0.031 OUR EVALUATION0.189+0.027
−0.021 OUR AVERAGE0.189+0.027
−0.021 OUR AVERAGE0.189+0.027
−0.021 OUR AVERAGE0.189+0.027
−0.021 OUR AVERAGE0.172±0.030 22 ESEN 13 BELL �(5S) → D0X , Ds X0.21 +0.06
−0.03 23 HUANG 07 CLEO �(5S) → Ds X

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.180±0.013±0.032 24 DRUTSKOY 07 BELL �(5S) → D0X , Ds X0.160±0.026±0.058 25 ARTUSO 05B CLEO e+ e− → Dx X�(B(∗)s B(∗)s )/�(BBX) �10/�1�(B(∗)s B(∗)s )/�(BBX) �10/�1�(B(∗)s B(∗)s )/�(BBX) �10/�1�(B(∗)s B(∗)s )/�(BBX) �10/�1VALUE DOCUMENT ID0.264+0.052
−0.045 OUR EVALUATION0.264+0.052
−0.045 OUR EVALUATION0.264+0.052
−0.045 OUR EVALUATION0.264+0.052
−0.045 OUR EVALUATION�(B∗s B∗s )/�(B(∗)s B(∗)s ) �13/�10 =�13/(�11+�12+�13)�(B∗s B∗s )/�(B(∗)s B(∗)s ) �13/�10 =�13/(�11+�12+�13)�(B∗s B∗s )/�(B(∗)s B(∗)s ) �13/�10 =�13/(�11+�12+�13)�(B∗s B∗s )/�(B(∗)s B(∗)s ) �13/�10 =�13/(�11+�12+�13)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT87.8±1.5 OUR AVERAGE87.8±1.5 OUR AVERAGE87.8±1.5 OUR AVERAGE87.8±1.5 OUR AVERAGE87.0±1.7 26,27 ESEN 13 BELL B0s → D−s π+90.5±3.2±0.1 227 27,28 LI 12 BELL B0s → J/ψη(′)

• • • We do not use the following data for averages, �ts, limits, et
. • • •90.1+3.8
−4.0±0.2 29 LOUVOT 09 BELL 10.86 e+ e− → B(∗)s B(∗)s93 +7
−9 ±1 29 DRUTSKOY 07A BELL Superseded by LOUVOT 09

�(Bs Bs)/�(B(∗)s B(∗)s ) �11/�10 =�11/(�11+�12+�13)�(Bs Bs)/�(B(∗)s B(∗)s ) �11/�10 =�11/(�11+�12+�13)�(Bs Bs)/�(B(∗)s B(∗)s ) �11/�10 =�11/(�11+�12+�13)�(Bs Bs)/�(B(∗)s B(∗)s ) �11/�10 =�11/(�11+�12+�13)VALUE (units 10−2) DOCUMENT ID TECN COMMENT2.6+2.6
−2.52.6+2.6
−2.52.6+2.6
−2.52.6+2.6
−2.5 LOUVOT 09 BELL 10.86 e+ e− → B(∗)s B(∗)s�(Bs Bs)/�(B∗s B∗s ) �11/�13�(Bs Bs)/�(B∗s B∗s ) �11/�13�(Bs Bs)/�(B∗s B∗s ) �11/�13�(Bs Bs)/�(B∗s B∗s ) �11/�13VALUE CL% DOCUMENT ID TECN COMMENT

<0.16<0.16<0.16<0.16 90 BONVICINI 06 CLE3 e+ e−�(Bs B∗s + 
.
.)/�(B(∗)s B(∗)s ) �12/�10 =�12/(�11+�12+�13)�(Bs B∗s + 
.
.)/�(B(∗)s B(∗)s ) �12/�10 =�12/(�11+�12+�13)�(Bs B∗s + 
.
.)/�(B(∗)s B(∗)s ) �12/�10 =�12/(�11+�12+�13)�(Bs B∗s + 
.
.)/�(B(∗)s B(∗)s ) �12/�10 =�12/(�11+�12+�13)VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT6.7±1.2 OUR AVERAGE6.7±1.2 OUR AVERAGE6.7±1.2 OUR AVERAGE6.7±1.2 OUR AVERAGE7.3±1.4 26,27 ESEN 13 BELL B0s → D−s π+4.9±2.5±0.0 227 27,28 LI 12 BELL B0s → J/ψη(′)
• • • We do not use the following data for averages, �ts, limits, et
. • • •7.3+3.3

−3.0±0.1 LOUVOT 09 BELL 10.86 e+ e− → B(∗)s B(∗)s�(Bs B∗s + 
.
.)/�(B∗s B∗s ) �12/�13�(Bs B∗s + 
.
.)/�(B∗s B∗s ) �12/�13�(Bs B∗s + 
.
.)/�(B∗s B∗s ) �12/�13�(Bs B∗s + 
.
.)/�(B∗s B∗s ) �12/�13VALUE CL% DOCUMENT ID TECN COMMENT
<0.16<0.16<0.16<0.16 90 BONVICINI 06 CLE3 e+ e−�(no open-bottom)/�total �14/��(no open-bottom)/�total �14/��(no open-bottom)/�total �14/��(no open-bottom)/�total �14/�VALUE DOCUMENT ID0.038+0.051

−0.005 OUR EVALUATION0.038+0.051
−0.005 OUR EVALUATION0.038+0.051
−0.005 OUR EVALUATION0.038+0.051
−0.005 OUR EVALUATION�(K∗(892)0K0)/�total �16/��(K∗(892)0K0)/�total �16/��(K∗(892)0K0)/�total �16/��(K∗(892)0K0)/�total �16/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.0× 10−5<1.0× 10−5<1.0× 10−5<1.0× 10−5 90 SHEN 13A BELL e+ e− → K∗(892)0K0�(�(1S)π+π−)/�total �17/��(�(1S)π+π−)/�total �17/��(�(1S)π+π−)/�total �17/��(�(1S)π+π−)/�total �17/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT5.3±0.3±0.55.3±0.3±0.55.3±0.3±0.55.3±0.3±0.5 325 30 CHEN 08 BELL 10.87 e+ e− → �(1S)π+π−�(�(2S)π+π−)/�total �18/��(�(2S)π+π−)/�total �18/��(�(2S)π+π−)/�total �18/��(�(2S)π+π−)/�total �18/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT7.8±0.6±1.17.8±0.6±1.17.8±0.6±1.17.8±0.6±1.1 186 30 CHEN 08 BELL 10.87 e+ e− → �(2S)π+π−�(�(3S)π+π−)/�total �19/��(�(3S)π+π−)/�total �19/��(�(3S)π+π−)/�total �19/��(�(3S)π+π−)/�total �19/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.8+1.8
−1.5±0.74.8+1.8
−1.5±0.74.8+1.8
−1.5±0.74.8+1.8
−1.5±0.7 10 30 CHEN 08 BELL 10.87 e+ e− → �(3S)π+π−�(�(1S)K+K−)/�total �20/��(�(1S)K+K−)/�total �20/��(�(1S)K+K−)/�total �20/��(�(1S)K+K−)/�total �20/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT6.1+1.6
−1.4±1.06.1+1.6
−1.4±1.06.1+1.6
−1.4±1.06.1+1.6
−1.4±1.0 20 30 CHEN 08 BELL 10.87 e+ e− → �(1S)K+K−�(hb(1P)π+π−)/�(�(2S)π+π−) �21/�18�(hb(1P)π+π−)/�(�(2S)π+π−) �21/�18�(hb(1P)π+π−)/�(�(2S)π+π−) �21/�18�(hb(1P)π+π−)/�(�(2S)π+π−) �21/�18VALUE DOCUMENT ID TECN COMMENT0.45±0.08+0.07

−0.120.45±0.08+0.07
−0.120.45±0.08+0.07
−0.120.45±0.08+0.07
−0.12 ADACHI 12 BELL 10.86 e+ e− → hadrons�(hb(2P)π+π−)/�(�(2S)π+π−) �22/�18�(hb(2P)π+π−)/�(�(2S)π+π−) �22/�18�(hb(2P)π+π−)/�(�(2S)π+π−) �22/�18�(hb(2P)π+π−)/�(�(2S)π+π−) �22/�18VALUE DOCUMENT ID TECN COMMENT0.77±0.08+0.22
−0.170.77±0.08+0.22
−0.170.77±0.08+0.22
−0.170.77±0.08+0.22
−0.17 ADACHI 12 BELL 10.86 e+ e− → hadrons�(χb0(1P)π+π−π0)/�total �23/��(χb0(1P)π+π−π0)/�total �23/��(χb0(1P)π+π−π0)/�total �23/��(χb0(1P)π+π−π0)/�total �23/�VALUE CL% DOCUMENT ID TECN COMMENT

<6.3× 10−3<6.3× 10−3<6.3× 10−3<6.3× 10−3 90 31 HE 14 BELL �(5S) → π+π−π0 γ�(1S)�(χb0(1P)ω)/�total �24/��(χb0(1P)ω)/�total �24/��(χb0(1P)ω)/�total �24/��(χb0(1P)ω)/�total �24/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.9× 10−3<3.9× 10−3<3.9× 10−3<3.9× 10−3 90 31 HE 14 BELL �(5S) → π+π−π0 γ�(1S)�(χb0(1P)(π+π−π0)non−ω

)/�total �25/��(χb0(1P)(π+π−π0)non−ω

)/�total �25/��(χb0(1P)(π+π−π0)non−ω

)/�total �25/��(χb0(1P)(π+π−π0)non−ω

)/�total �25/�VALUE CL% DOCUMENT ID TECN COMMENT
<4.8× 10−3<4.8× 10−3<4.8× 10−3<4.8× 10−3 90 31 HE 14 BELL �(5S) → π+π−π0 γ�(1S)�(χb1(1P)π+π−π0)/�total �26/��(χb1(1P)π+π−π0)/�total �26/��(χb1(1P)π+π−π0)/�total �26/��(χb1(1P)π+π−π0)/�total �26/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.85±0.23±0.231.85±0.23±0.231.85±0.23±0.231.85±0.23±0.23 80 31 HE 14 BELL �(5S) →

π+π−π0 γ�(1S)�(χb1(1P)ω)/�total �27/��(χb1(1P)ω)/�total �27/��(χb1(1P)ω)/�total �27/��(χb1(1P)ω)/�total �27/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.57±0.22±0.211.57±0.22±0.211.57±0.22±0.211.57±0.22±0.21 60 31 HE 14 BELL �(5S) → π+π−π0 γ�(1S)�(χb1(1P)(π+π−π0)non−ω

)/�total �28/��(χb1(1P)(π+π−π0)non−ω

)/�total �28/��(χb1(1P)(π+π−π0)non−ω

)/�total �28/��(χb1(1P)(π+π−π0)non−ω

)/�total �28/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.52±0.15±0.110.52±0.15±0.110.52±0.15±0.110.52±0.15±0.11 24 31 HE 14 BELL �(5S) → π+π−π0 γ�(1S)



1492149214921492MesonParti
le Listings�(10860),�(11020)�(χb2(1P)π+π−π0)/�total �29/��(χb2(1P)π+π−π0)/�total �29/��(χb2(1P)π+π−π0)/�total �29/��(χb2(1P)π+π−π0)/�total �29/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.17±0.27±0.141.17±0.27±0.141.17±0.27±0.141.17±0.27±0.14 29 31 HE 14 BELL �(5S) → π+π−π0 γ�(1S)�(χb2(1P)ω)/�total �30/��(χb2(1P)ω)/�total �30/��(χb2(1P)ω)/�total �30/��(χb2(1P)ω)/�total �30/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.60±0.23±0.150.60±0.23±0.150.60±0.23±0.150.60±0.23±0.15 13 31 HE 14 BELL �(5S) → π+π−π0 γ�(1S)�(χb2(1P)ω)/�(χb1(1P)ω) �30/�27�(χb2(1P)ω)/�(χb1(1P)ω) �30/�27�(χb2(1P)ω)/�(χb1(1P)ω) �30/�27�(χb2(1P)ω)/�(χb1(1P)ω) �30/�27VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.38±0.16±0.09 32 HE 14 BELL �(5S) → π+π−π0 γ�(1S)�(χb2(1P)(π+π−π0)non−ω

)/�total �31/��(χb2(1P)(π+π−π0)non−ω

)/�total �31/��(χb2(1P)(π+π−π0)non−ω

)/�total �31/��(χb2(1P)(π+π−π0)non−ω

)/�total �31/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.61±0.22±0.280.61±0.22±0.280.61±0.22±0.280.61±0.22±0.28 16 31 HE 14 BELL �(5S) → π+π−π0 γ�(1S)�(χb2(1P)(π+π−π0)non−ω

)/�(χb1(1P)(π+π−π0)non−ω

) �31/�28�(χb2(1P)(π+π−π0)non−ω

)/�(χb1(1P)(π+π−π0)non−ω

) �31/�28�(χb2(1P)(π+π−π0)non−ω

)/�(χb1(1P)(π+π−π0)non−ω

) �31/�28�(χb2(1P)(π+π−π0)non−ω

)/�(χb1(1P)(π+π−π0)non−ω

) �31/�28VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.20±0.55±0.65 32 HE 14 BELL �(5S) → π+π−π0 γ�(1S)�(γXb → γ�(1S)ω)/�total �32/��(γXb → γ�(1S)ω)/�total �32/��(γXb → γ�(1S)ω)/�total �32/��(γXb → γ�(1S)ω)/�total �32/�VALUE CL% DOCUMENT ID TECN COMMENT
<3.8× 10−5<3.8× 10−5<3.8× 10−5<3.8× 10−5 90 33 HE 14 BELL �(5S) → π+π−π0 γ�(1S)�(φ anything)/�total �33/��(φ anything)/�total �33/��(φ anything)/�total �33/��(φ anything)/�total �33/�VALUE DOCUMENT ID TECN COMMENT0.138±0.007+0.023

−0.0150.138±0.007+0.023
−0.0150.138±0.007+0.023
−0.0150.138±0.007+0.023
−0.015 HUANG 07 CLEO �(5S) → φX�(D0 anything + 
.
.)/�total �34/��(D0 anything + 
.
.)/�total �34/��(D0 anything + 
.
.)/�total �34/��(D0 anything + 
.
.)/�total �34/�VALUE DOCUMENT ID TECN COMMENT1.076±0.040±0.0681.076±0.040±0.0681.076±0.040±0.0681.076±0.040±0.068 DRUTSKOY 07 BELL �(5S) → D0X�(Ds anything + 
.
.)/�total �35/��(Ds anything + 
.
.)/�total �35/��(Ds anything + 
.
.)/�total �35/��(Ds anything + 
.
.)/�total �35/�VALUE DOCUMENT ID TECN COMMENT0.46 ±0.06 OUR AVERAGE0.46 ±0.06 OUR AVERAGE0.46 ±0.06 OUR AVERAGE0.46 ±0.06 OUR AVERAGE0.472±0.024±0.072 24 DRUTSKOY 07 BELL �(5S) → Ds X0.44 ±0.09 ±0.04 34 ARTUSO 05B CLE3 e+ e− → Dx X�(J/ψ anything )/�total �36/��(J/ψ anything )/�total �36/��(J/ψ anything )/�total �36/��(J/ψ anything )/�total �36/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT2.060±0.160±0.1342.060±0.160±0.1342.060±0.160±0.1342.060±0.160±0.134 DRUTSKOY 07 BELL �(5S) → J/ψX�(B0 anything + 
.
.)/�total �37/��(B0 anything + 
.
.)/�total �37/��(B0 anything + 
.
.)/�total �37/��(B0 anything + 
.
.)/�total �37/�VALUE EVTS DOCUMENT ID TECN COMMENT0.770+0.058

−0.056±0.0610.770+0.058
−0.056±0.0610.770+0.058
−0.056±0.0610.770+0.058
−0.056±0.061 352 DRUTSKOY 10 BELL �(5S) → B0X�(B+ anything + 
.
.)/�total �38/��(B+ anything + 
.
.)/�total �38/��(B+ anything + 
.
.)/�total �38/��(B+ anything + 
.
.)/�total �38/�VALUE EVTS DOCUMENT ID TECN COMMENT0.721+0.039
−0.038±0.0500.721+0.039
−0.038±0.0500.721+0.039
−0.038±0.0500.721+0.039
−0.038±0.050 711 DRUTSKOY 10 BELL �(5S) → B+X19Not independent of DRUTSKOY 10 values for �(5S) → B±,0 anything.20Using measurements or limits from AQUINES 06.21Assuming isospin 
onservation.22 Supersedes DRUTSKOY 07.23 Supersedes ARTUSO 05B. Combining in
lusive φ, Ds , and B measurements. UsingB(D+s → φπ+) = 4.4 ± 0.6% from PDG 06.24Using B(D+s → φπ+) = (4.4 ± 0.6)% from PDG 06.25Uses a model-dependent estimate B(Bs → Ds X ) = (92 ± 11)%.26Supersedes LOUVOT 09.27With N(B(∗)s B(∗)s ) = (7.11 ± 1.30) × 106.28The ratios N(B∗s B∗s ) / N(B(∗)s B(∗)s ) and N(B∗

s B0s ) / N(B(∗)s B(∗)s ) are measured witha 
orrelation 
oeÆ
ient of −0.72.29 From a measurement of σ(e+ e− → B∗s B∗s ) / σ(e+ e− → B(∗)s B(∗)s ) at √s = 10.86GeV.30Assuming that the observed events are solely due to the �(5S) resonan
e.31Assuming that all the bb events are from �(5S) resonan
e de
ays and using σ(e+ e− →bb) = 0.340 ± 0.016 nb from ESEN 13. Correlated with other results from HE 14.32A

ounting for 
orrelated systemati
s.33Assuming that all the bb events are from �(5S) resonan
e de
ays and using σ(e+ e− →bb) = 0.340± 0.016 nb from ESEN 13. Correlated with other results from HE 14. For astate Xb with mass between 10.55 GeV/
2 and 10.65 GeV/
2, the obtained 90% upperlimit as a fun
tion of mXb varies from 2.6× 10−5 to 3.8× 10−5.34ARTUSO 05B reports [�(�(10860) → Ds anything + 
.
.)/�total℄ × [B(D+s →

φπ+)℄ = 0.0198 ± 0.0019 ± 0.0038 whi
h we divide by our best value B(D+s → φπ+)= (4.5 ± 0.4)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.

�(10860) REFERENCES�(10860) REFERENCES�(10860) REFERENCES�(10860) REFERENCESSANTEL 16 PR D93 011101 D. Santel et al. (BELLE Collab.)HE 14 PRL 113 142001 X.H. He et al. (BELLE Collab.)ESEN 13 PR D87 031101 S. Esen et al. (BELLE Collab.)SHEN 13A PR D88 052019 C.P. Shen et al. (BELLE Collab.)ADACHI 12 PRL 108 032001 I. Ada
hi et al. (BELLE Collab.)LI 12 PRL 108 181808 J. Li et al. (BELLE Collab.)CHEN 10 PR D82 091106 K.-F. Chen et al. (BELLE Collab.)DRUTSKOY 10 PR D81 112003 A. Drutskoy et al. (BELLE Collab.)AUBERT 09E PRL 102 012001 B. Aubert et al. (BABAR Collab.)LOUVOT 09 PRL 102 021801 R. Louvot et al. (BELLE Collab.)CHEN 08 PRL 100 112001 K.-F. Chen et al. (BELLE Collab.)DRUTSKOY 07 PRL 98 052001 A. Drutskoy et al. (BELLE Collab.)DRUTSKOY 07A PR D76 012002 A. Drutskoy et al. (BELLE Collab.)HUANG 07 PR D75 012002 G.S. Huang et al. (CLEO Collab.)AQUINES 06 PRL 96 152001 O. Aquines et al. (CLEO Collab.)BONVICINI 06 PRL 96 022002 G. Bonvi
ini et al. (CLEO Collab.)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)ARTUSO 05B PRL 95 261801 M. Artuso et al. (CLEO Collab.)BESSON 85 PRL 54 381 D. Besson et al. (CLEO Collab.)LOVELOCK 85 PRL 54 377 D.M.J. Lovelo
k et al. (CUSB Collab.)�(11020) IG (JPC ) = 0−(1−−)�(11020) MASS�(11020) MASS�(11020) MASS�(11020) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT10987.5+ 6.4
− 2.5+9.1

−2.310987.5+ 6.4
− 2.5+9.1

−2.310987.5+ 6.4
− 2.5+9.1

−2.310987.5+ 6.4
− 2.5+9.1

−2.3 1 SANTEL 16 BELL e+ e− → �(1S, 2S, 3S)π+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •11003.0± 1.1+0.9
−1.0 2,3 SANTEL 16 BELL e+ e− → hadrons10996 ± 2 4 AUBERT 09E BABR e+ e− → hadrons11019 ± 5 ±7 BESSON 85 CLEO e+ e− → hadrons11020 ±30 LOVELOCK 85 CUSB e+ e− → hadrons1 From a simultaneous �t to the �(nS)π+π−, n = 1, 2, 3 
ross se
tions at 25 energypoints within √

s = 10.6{11.05 GeV to a pair of interfering Breit-Wigner amplitudesmodi�ed by phase spa
e fa
tors, with fourteen resonan
e parameters (a mass, width,and three amplitudes for ea
h of �(10860) and �(11020), a single universal relativephase, and three de
oheren
e 
oeÆ
ients, one for ea
h n). Continuum 
ontributionswere measured (and therefore �xed) to be zero.2 From a �t to the total hadroni
 
ross se
tions measured at 60 energy points within √
s= 10.82{11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two 
oating
ontinuum amplitudes with 1/√s dependen
e, one 
oherent with the resonan
es andone in
oherent, with six resonan
e parameters (a mass, width, and an amplitude forea
h of �(10860) and �(11020), one relative phase, and one de
oheren
e 
oeÆ
ient).3Not in
luding un
ertain and potentially large systemati
 errors due to assumed 
ontinuumamplitude 1/√s dependen
e and related interferen
e 
ontributions.4 In a model where a 
at non-resonant bb-
ontinuum is in
oherently added to a se
ond
at 
omponent interfering with two Breit-Wigner resonan
es. Systemati
 un
ertaintiesnot estimated. �(11020) WIDTH�(11020) WIDTH�(11020) WIDTH�(11020) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT61 + 9

−19 + 2
−2061 + 9

−19 + 2
−2061 + 9

−19 + 2
−2061 + 9

−19 + 2
−20 5 SANTEL 16 BELL e+ e− → �(1S, 2S, 3S)π+π−

• • • We do not use the following data for averages, �ts, limits, et
. • • •39.3+ 1.7
− 1.6+ 1.3

− 2.4 6,7 SANTEL 16 BELL e+ e− → hadrons37 ± 3 8 AUBERT 09E BABR e+ e− → hadrons61 ±13 ±22 BESSON 85 CLEO e+ e− → hadrons90 ±20 LOVELOCK 85 CUSB e+ e− → hadrons5 From a simultaneous �t to the �(nS)π+π−, n=1, 2, 3 
ross se
tions at 25 energypoints within √
s = 10.6{11.05 GeV to a pair of interfering Breit-Wigner amplitudesmodi�ed by phase spa
e fa
tors, with fourteen resonan
e parameters (a mass, width,and three amplitudes for ea
h of �(10860) and �(11020), a single universal relativephase, and three de
oheren
e 
oeÆ
ients, one for ea
h n). Continuum 
ontributionswere measured (and therefore �xed) to be zero.6 From a �t to the total hadroni
 
ross se
tions measured at 60 energy points within √

s= 10.82{11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two 
oating
ontinuum amplitudes with 1/√s dependen
e, one 
oherent with the resonan
es andone in
oherent, with six resonan
e parameters (a mass, width, and an amplitude forea
h of �(10860) and �(11020), one relative phase, and one de
oheren
e 
oeÆ
ient).7Not in
luding un
ertain and potentially large systemati
 errors due to assumed 
ontinuumamplitude 1/√s dependen
e and related interferen
e 
ontributions.8 In a model where a 
at non-resonant bb-
ontinuum is in
oherently added to a se
ond
at 
omponent interfering with two Breit-Wigner resonan
es. Systemati
 un
ertaintiesnot estimated. �(11020) DECAY MODES�(11020) DECAY MODES�(11020) DECAY MODES�(11020) DECAY MODESMode Fra
tion (�i /�)�1 e+ e− (2.1+1.1
−0.6)× 10−6
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The constituent quark model describes the observed me-

son spectrum as bound qq states grouped into SU(N) flavor

multiplets (see our review on the ‘Quark Model’ in this issue

of the Review). However, the self-coupling of gluons in QCD

suggests that additional mesons made of bound gluons (glue-

balls), or qq-pairs with an excited gluon (hybrids), may exist.

Multiquark color singlet states such as qqqq (tetraquarks as

compact diquark-antidiquark systems and ‘molecular’ bound

states of two mesons) or qqqqqq (six-quark and ‘baryonium’

bound states of two baryons) have also been predicted. For a

more detailed discussion on exotic mesons we refer to [1,2].

In recent years experimental evidence for states beyond

the quark model has accumulated in the heavy quark sector.

We therefore split this mini-review into three parts discussing

separately light systems, heavy–light systems and heavy–heavy

systems.

1. Light systems

1.1. Glueball candidates

Among the signatures naively expected for glueballs are (i) no

free space in qq nonets, (ii) enhanced production in gluon-rich

channels such as central production and radiative J/ψ(1S) de-

cay, (iii) decay branching fractions incompatible with SU(N)

predictions for qq states, and (iv) reduced γγ couplings. How-

ever, mixing effects with isoscalar qq mesons [3–10] and decay

form factors [11] obscure these simple signatures.

Lattice calculations, QCD sum rules, flux tube, and con-

stituent glue models agree that the lightest glueballs have

quantum numbers JPC = 0++ and 2++. Lattice calculations

predict for the ground state (a 0++ glueball) a mass around

1600 – 1700 MeV [8,12–14]) with an uncertainty of about

100 MeV, while the first excited state (2++) has a mass of

about 2300 MeV. Hence, the low-mass glueballs lie in the same

mass region as ordinary isoscalar qq states, in the mass range

of the 13P0(0
++), 23P2(2

++), 33P2(2
++), and 13F2(2

++) qq

states. The 0−+ state and exotic glueballs (with non-qq quan-

tum numbers such as 0−−, 0+−, 1−+, 2+−, etc.) are expected

above 2 GeV [14]. The lattice calculations were performed so

far in the quenched approximation. Thus neither quark loops

nor mixing with conventional mesons were included, although

quenching effects seem to be small [15]. For a recent com-

parison between quenched and unquenched lattice studies see

[16].

However, one expects that glueballs will mix with nearby

qq states of the same quantum numbers. The presence of a

glueball mixed with qq would lead to a supernumerary isoscalar

state in the SU(3) classification of qq mesons. A lattice study in

full QCD (performed at unphysical quark masses corresponding

to a pion mass of 400 MeV) did not identify any state with

sizable overlap with pure gluonic sources [17].

In the following we focus on glueball candidates in the scalar

sector. For the 2++ sector we refer to the section on non-qq̄

mesons in the 2006 issue of this Review [18], and for the 0−+

glueball to the note on ‘The Pseudoscalar and Pseudovector

Mesons in the 1400 MeV Region’ in the Meson Listings.

Five isoscalar resonances are well established: the very

broad f0(500) (or σ), the f0(980), the broad f0(1370), and the

comparatively narrow f0(1500) and f0(1710), see the note on

‘Scalar Mesons below 2 GeV’ in the Meson Listings, and also

[19]. The f0(1370) and f0(1500) decay mostly into pions (2π

and 4π) while the f0(1710) decays mainly into KK final states.

Naively, this suggests an nn̄ (= uū + dd̄) structure for the

f0(1370) and f0(1500), and ss̄ for the f0(1710). The latter is

not observed in pp annihilation [20], as expected from the OZI

suppression for an ss state.

In γγ collisions leading to KSKS [21] and K+K− [22]

a spin-0 signal is observed at the f0(1710) mass (together

with a dominant spin-2 component), while the f0(1500) is not

observed in γγ → KK̄ nor π+π− [23]. The f0(1500) is

also not observed by Belle in γγ → π0π0, although a shoulder

is seen which could also be due to the f0(1370) [24]. The

absence of a signal in the ππ channel in γγ collisions does

not favor an nn interpretation for the f0(1500). The upper

limit from π+π− excludes a large nn content, and hence points

to a mainly ss content [25]. This is in contradiction with

the small KK decay branching ratio of the f0(1500) [26–28].

Hence, the f0(1500) is hard to accommodate as a qq̄ state.

This state could be mainly glue due its absence of 2γ-coupling,

while the f0(1710) coupling to 2γ would be compatible with an

ss̄ state. Indeed, Belle finds that in γγ → KSKS collisions the

1500 MeV region is dominated by the f ′
2(1525). The f0(1710)

is also observed but its production × decay rate is too large for

a glueball [29]. However, the 2γ-couplings are sensitive to

glue mixing with qq̄ [30].

Since the f0(1370) does not couple strongly to ss [28],

the f0(1370) or f0(1500) appear to be supernumerary. The

narrow width of the f0(1500), and its enhanced production at

low transverse momentum transfer in central collisions [31–33]

also favor the f0(1500) to be non-qq. In [3] the ground state

scalar nonet is made of the a0(1450), f0(1370), K∗
0(1430), and

f0(1710). The isoscalars f0(1370) and f0(1710) contain a small

fraction of glue, while the f0(1500) is mostly gluonic. The

light scalars f0(500), f0(980), a0(980), and κ(800) are four-

quark states or two-meson resonances (see [1] for a review).

In the mixing scheme of [30], which uses central production

data from WA102 and the recent hadronic J/ψ decay data from

BES [34,35], glue is shared between the f0(1370), f0(1500) and

f0(1710). The f0(1370) is mainly nn̄, the f0(1500) mainly glue

and the f0(1710) dominantly ss̄. This agrees with previous

analyses [3,9], but, as already pointed out, alternative schemes
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have been proposed, see, e.g. [8,36]. In particular, for

a scalar glueball the two-gluon coupling to nn̄ appears to

be suppressed by chiral symmetry [37] and therefore KK̄

decay could be enhanced. It was argued that chiral symmetry

constraints in a multichannel analysis imply that the f0(1710)

is an unmixed scalar glueball [38], a view that is challenged

[39].

The contribution of f0(1500) production in (the suppos-

edly gluon rich) radiative J/ψ decay is not well known. The

f0(1500) is observed by BESII in J/ψ → γππ [40] and by

BESIII in J/ψ → γηη [41] with a much smaller rate than for

the f0(1710), which speaks against a glueball interpretation for

the former. However, the mass found by BES is significantly

lower than the expected value. The overlap with the f0(1370)

and f ′
2(1525) and the statistically limited data sample prevent

a proper K-matrix analysis to be performed. Hence more data

are needed in radiative J/ψ decay and in γγ collisions to clarify

the spectrum of scalar mesons.

The Dalitz plots of B± → π±π±π∓ have been studied by

BaBar [42]. A broad 2π signal is observed around 1400

MeV which is attributed to the f0(1370), but could also be

due to the f0(1500). In B± → K±K±K∓ both BaBar [43]

and Belle [44] observe a strong spin-0 activity in KK̄ around

1550 MeV. B0 decay into J/ψX filters out the dd content of X

while B0
s decay selects its ss component. B decay into J/ψX

may therefore be the ideal environment to determine the flavor

content of neutral mesons [45], or to distinguish qq̄ from

tetraquark states [46]. LHCb has analyzed B
0

decay into

J/ψ π+π− [47]. The fit to the ππ mass spectrum above

∼1.2 GeV does not show any significant scalar component.

However, the data analysis has been challenged [48]. For

B
0

s → J/ψ π+π− a scalar contribution from the f0(1370) [49]

or the f0(1500) [50] is required in the 1400–1500 MeV region.

1.2. Tetraquark candidates and molecular bound states

The a0(980) and f0(980) could be tetraquark states [51–53] or

KK molecular states [54–56] due to their strong affinity for

KK, in spite of their masses being very close to threshold. For

qq states, the expected γγ widths [57,58] are not significantly

larger than for molecular states [57,59], both predictions

being consistent with data. Radiative decays of the φ(1020)

into a0(980) and f0(980) were claimed to enable disentangling

compact from molecular structures. Interpreting the data from

DAPHNE [60,61] and VEPP - 2M [62,63] along the lines of

[64,65] seems to favor these mesons to be tetraquark states. In

[66] they are made of a four-quark core and a virtual KK̄ cloud

at the periphery. This is challenged in [67] showing that φ

radiative decay data are consistent with a molecular structure of

the light scalars. The f0(980) is strongly produced in D+
s decay

[68]. This points to a large ss component, assuming Cabibbo

favored c → s decay. However, the mainly nn̄ f0(1370) is also

strongly produced in D+
s decay, indicating that other graphs

must contribute [69]. On the other hand, the contributions

from the f0(500) and f0(980) in the decay B
0 → J/ψ π+π−

seem to exclude a tetraquark structure for these states [47],

while the corresponding ones in B
0

s → J/ψ π+π− are compatible

with tetraquarks [50].

COMPASS reports a new 1++ isovector meson at 1414 MeV,

decaying into f0(980)π [70]. The resonance is observed in

diffractive dissociation π−p → π−(π+π−)p. Traditionally, the

1++ ground state nonet is believed to contain the a1(1260),

f1(1285) and f1(1420) (see the mini-review on ‘The Pseu-

doscalar and Pseudovector Mesons in the 1400 MeV Region’ in

the Meson Listings). However, a molecular KKπ structure has

been proposed for the f1(1420) [71] in view of the proximity

of the K∗K threshold. The new a1(1414) could then also be a

molecular state, the isovector partner of the f1(1420).

1.3. Baryonia

Bound states of two nucleons have been predicted, but have

remained elusive. The f2(1565) which is only observed in pp

annihilation [72,73] is a good candidate for a 2++ p̄p bound

state. Enhancements in the p̄p mass spectrum have also been

reported below p̄p threshold, in J/ψ → γp̄p [74–76] and in

B+ → K+p̄p, B0 → K0
S p̄p [77,78] and B̄0 → D0p̄p [79].

This enhancement could be due to a 0−+ baryonium [80] but

other explanations have been proposed, such as the dynamics

of the fragmentation mechanism [78] or the attractive 1S0 (p̄p)

wave [81–83].

The pronounced signal observed in e+e− → Λ+
c Λ−

c around
√

s = 4.63 GeV by Belle [84] was argued to be a strong evidence

in favor of an interpretation of Y (4660) as charmed baryonium

[85]. However, this picture was challenged in [86].

1.4. Hybrid mesons

Hybrids may be viewed as qq mesons with a vibrating gluon

flux tube. In contrast to glueballs, they can have isospin 0 or 1.

The mass spectrum of hybrids with exotic (non-qq) quantum

numbers was predicted in [87], while [88] also deals with

non-exotic quantum numbers. The ground state hybrids with

quantum numbers (0−+, 1−+, 1−−, and 2−+) are expected

around 1.7 to 1.9 GeV. Lattice calculations predict that the

hybrid with exotic quantum numbers 1−+ lies at a mass of 1.9

± 0.2 GeV [89,90]. Most hybrids are expected to be rather

broad, but some can be as narrow as 100 MeV [91]. They

prefer to decay into a pair of S- and P -wave mesons. The

lattice study in [17], based on full QCD with pion masses

around 400 MeV, finds that several of the high–lying states

observed in their spectrum show significant overlap with gluon

rich source terms.

A JPC = 1−+ exotic meson, π1(1400), was reported in

π−p → ηπ−p [92,93] and in π−p → ηπ0n [94]. It was

observed as an interference between the angular momentum

L = 1 and L = 2 ηπ amplitudes, leading to a forward/backward

asymmetry in the ηπ angular distribution. This state has been

reported earlier in π−p reactions [95], but ambiguous solutions
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in the partial wave analysis were pointed out in [96,97]. A

resonating 1−+ contribution to the ηπ P -wave is also required

in the Dalitz plot analysis of pn annihilation into π−π0η [98],

and in pp annihilation into π0π0η [99]. Mass and width are

consistent with the results of Ref. [92].

Another 1−+ state, π1(1600), decaying into ρπ, was reported

by COMPASS with 190 GeV pions hitting a lead target [100].

It was observed earlier in π−p interactions in the decay modes

η′π [101], f1(1285)π [102], and ωππ [103], b1(1235)π, but

not ηπ [104]. A strong enhancement in the 1−+ η′π wave,

compared to ηπ, was reported at this mass in [105]. Ref.

[106] suggests that a Deck-generated ηπ background from final

state rescattering in π1(1600) decay could mimic π1(1400).

However, this mechanism is absent in pp annihilation. The

ηππ data require π1(1400) and cannot accommodate a state at

1600 MeV [107]. Finally, evidence for a π1(2015) has also been

reported [102,103].

The flux tube model and the lattice concur to predict a

hybrid mass of about 1.9 GeV while the π1(1400) and π1(1600)

are lighter. As isovectors, π1(1400) and π1(1600) cannot be

glueballs. The coupling to ηπ of the former points to a four-

quark state [108], while the strong η′π coupling of the latter

is favored for hybrid states [109,110]. The mass of π1(1600)

is also not far below the lattice prediction.

Hybrid candidates with JPC = 0−+, 1−−, and 2−+ have

also been reported. The π(1800) decays mostly to a pair of

S- and P -wave mesons [100,111], in line with expectations

for 0−+ hybrid mesons. This meson is also somewhat narrow

if interpreted as the second radial excitation of the pion. The

evidence for 1−− hybrids required in e+e− annihilation and in

τ decays has been discussed in Ref. [112]. A candidate for

the 2−+ hybrid, the η2(1870), was reported in γγ interactions

[113], in pp annihilation [114], and in central production [115].

The near degeneracy of η2(1645) and π2(1670) suggests ideal

mixing in the 2−+ qq nonet, and hence, the second isoscalar

should be mainly ss. However, η2(1870) decays mainly to

a2(1320)π and f2(1270)π [114], with a relative rate compatible

with a hybrid state [88].

2. Heavy-light systems

Two very narrow states, D∗
s0(2317)± and Ds1(2460)±, were

observed at B factories [116,117]. They lie far below the

predicted masses for the two expected broad P -wave cs mesons.

These states have hence been interpreted as four-quark states

[118–120] or DK (DK∗) molecules [121–123]. However,

strong cusp effects, due to the nearby DK (DK∗) thresholds,

could shift their masses downwards and quench the observed

widths, an effect similar to that occurring for the a0(980)

and f0(980) mesons, which lie just below KK threshold. A

hadronic width of typically 100 keV would be the unequivocal

signature for the molecular nature of D∗
s0(2317)± [123,124].

Its measured width is currently less than 3.8 MeV.

3. Heavy-heavy systems

A search for multiquark states containing a c (or a b) quark

is promising since the charmonium spectrum can be predicted

accurately, and because those mesons lying below the DD̄

or DD̄∗ thresholds should be narrow. Several states have

been observed recently in the charmonium region. With the

discovery of the X(3872) in B± → K±X (X → J/ψ π+π−)

by Belle [126], soon confirmed by BaBar [127], many

searches for states beyond the standard quark model were

initiated both in the charm and in the bottom sectors. In

the decay Λ0
b → J/ψ K−p the LHCb collaboration has recently

reported the observation of two new baryons decaying into

J/ψ p, which are candidates for heavy pentaquark states [128].

For an updated collection of the currently available experimental

information on multiquark states we refer to the mini-review

on ‘Spectroscopy of mesons containing two heavy quarks’ in the

Meson Listings.

When restricting ourselves to confirmed states we are faced

with eight states that do not seem to fit into the standard

quark model. This is clear for the four established charged

states (Zc(3900)± and Zc(4430)± in the charmonium sector,

and Zb(10610)± and Zb(10650)± in the bottomonium sector).

The neutral ones (X(3872), Y (4260), Y (4360), Y (4660)) also

challenge the standard quark model since their masses and

decay properties are in conflict with expectations.

The quantum numbers of the X(3872) have been determined

by LHCb to be JPC = 1++, first by assuming the angular

momentum zero between the J/ψ and the dipion [129] and then

by relaxing this constraint [130]. The X(3872) can hardly

be identified with the 23P1 χ′
c1 since the latter is predicted to lie

about 100 MeV higher in mass [131]. Instead, the X(3940)

reported by Belle in e+e− → J/ψX , decaying into D∗D̄ but

not into DD̄ [132], and also observed in B → K(X → ωJ/ψ)

[133] could be the χ′
c1. The 23P2 tensor partner (χ′

c2) was

reported by Belle at 3931 MeV in γγ interactions [134].

The X(3872) lies close to the D0D̄∗0 threshold and therefore

the most natural explanation for this state is a 1++ DD̄∗

molecule [135] for which strong isospin breaking is predicted

[135,136] due to the nearby D+D∗− threshold. Indeed, the

comparable rates for ωJ/ψ and ρ0J/ψ are consistent with an

interpretation of X(3872) as an isoscalar DD̄∗ molecule when

the different widths of the ρ and ω are taken into account

[137]. A four-quark state cqc̄q̄′ is also possible [120] but

unlikely, since the charged partner of the X(3872) has not been

observed (e.g. in B− → K̄0X− nor in B0 → K+X−, where

X− → J/ψ π−π0 [138]) . The claim that X(3872) must be

a compact (tetraquark) state, since it is also produced at very

high pT in p̄p collisions [139], was challenged in [140] which

stresses the importance of rescattering, see also Ref. [141].

A broad structure, Y (4260), decaying into J/ψ π+π− was

reported by BaBar in initial state radiation e+e− → γ(e+e− →
Y (4260)) [142]. A charmonium state with the quantum

numbers 1−− is not expected in this mass region. In addition,
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a charmonium at this mass should have a significant coupling

to D̄D, a decay channel that is not observed for the Y (4260).

This state could be a hybrid charmonium with a spin-1 c̄c core

[143,144]. However, provided that the observation of Y (4260)

decay into hc(1P )ππ by BESIII [145] is confirmed, the hybrid

hypothesis would be under pressure, since the spin of the heavy

quarks (coupled to zero in the hc(1P )) should be conserved in

leading order in the expansion in (ΛQCD/mc). (The individual

conservation of the heavy quark spin and the total angular

momentum of the light quark cloud is a consequence of the

heavy quark spin symmetry, see the review on ‘Heavy-Quark

and Soft-Collinear Effective Theory’ in this issue of the Review.)

The same criticism applies to the hadrocharmonium inter-

pretation of the Y (4260) which describes this state as spin-1

quarkonium surrounded by a light quark cloud [146]. To

circumvent the spin symmetry argument Ref. [147] argues

that Y (4260) and Y (4360) could be mixtures of two hadrochar-

monia with spin–triplet and spin–singlet heavy quark pairs.

The same kind of mixing could also operate for a hybrid.

A dominant D1D̄ component in the Y (4260) [148] would

explain naturally why Zc(3900)± (interpreted by the authors

as a D̄D∗ bound state) is seen in Y (4260) → π∓Zc(3900)±. A

prominent D1D̄ component in the Y (4260) would in addition

explain the copious production of X(3872) in Y (4260) radiative

decays [149]. The Y (4360) as D1D̄
∗ bound state could be

the spin partner of the Y (4260) [150,151], but a detailed

microscopic calculation is still lacking.

The tetraquark picture explains the observed Y states

and, when including a tailor-made spin-spin interaction, is also

capable to describe both Zc(3900)±,0 and Zc(4020)± [152],

and even the recently confirmed Z(4430)± by Belle [153].

However, the model predicts many additional charged and

neutral states which have not yet been discovered.

The charged states Zc(3900)±, first observed by BESIII

[154] and the to be confirmed Zc(4020)± [155] decay predom-

inantly into D̄D∗ and D̄∗D∗, respectively, while Zb(10610)±,0

and Zb(10650)± [156,157] decay predominantly into B̄B∗ and

B̄∗B∗, respectively, although all of them were discovered in the

decay mode heavy quarkonium and pion. This suggests that

the states are close relatives and their interactions are connected

via heavy quark flavor symmetry. A molecular interpretation

for the bottomonium states was proposed shortly after the dis-

covery of the Z±
b states [158] and also shortly after that of the

Zc(3900)± [148]. However, their properties also appear to

be consistent with tetraquark structures [159].

The heaviest confirmed charged state in the charmonium

sector is the Z(4430)± observed by Belle [153]. It is inter-

preted as hadrocharmonium [146], D̄1D
∗ molecule [160] as

well as tetraquark state [152]. Alternatively, in [161] the

Z(4430)± can be explained as a cross-channel effect.

It should be stressed that the various scenarios, while

describing the data, also make decisive predictions, e.g. for

other decay channels. The forthcoming data on heavy meson

spectroscopy from various facilities should soon provide a much

deeper understanding on how QCD forms matter out of quarks

and gluons.
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1503150315031503See key on page 601 BaryonParti
le ListingspN BARYONSN BARYONSN BARYONSN BARYONS(S = 0, I = 1/2)(S = 0, I = 1/2)(S = 0, I = 1/2)(S = 0, I = 1/2)p, N+ = uud; n, N0 = uddp I (JP ) = 12 (12+) Status: ∗∗∗∗p MASS (atomi
 mass units u)p MASS (atomi
 mass units u)p MASS (atomi
 mass units u)p MASS (atomi
 mass units u)The mass is known mu
h more pre
isely in u (atomi
 mass units) than inMeV. See the next data blo
k.VALUE (u) DOCUMENT ID TECN COMMENT1.007276466879±0.0000000000911.007276466879±0.0000000000911.007276466879±0.0000000000911.007276466879±0.000000000091 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.007276466812±0.000000000090 MOHR 12 RVUE 2010 CODATA value1.00727646677 ±0.00000000010 MOHR 08 RVUE 2006 CODATA value1.00727646688 ±0.00000000013 MOHR 05 RVUE 2002 CODATA value1.00727646688 ±0.00000000013 MOHR 99 RVUE 1998 CODATA value1.007276470 ±0.000000012 COHEN 87 RVUE 1986 CODATA valuep MASS (MeV)p MASS (MeV)p MASS (MeV)p MASS (MeV)The mass is known mu
h more pre
isely in u (atomi
 mass units) than inMeV. The 
onversion from u to MeV, 1 u = 931.494 0054(57) MeV/
2(MOHR 16, the 2014 CODATA value), involves the relatively poorly knownele
troni
 
harge.VALUE (MeV) DOCUMENT ID TECN COMMENT938.2720813±0.0000058938.2720813±0.0000058938.2720813±0.0000058938.2720813±0.0000058 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •938.272046 ±0.000021 MOHR 12 RVUE 2010 CODATA value938.272013 ±0.000023 MOHR 08 RVUE 2006 CODATA value938.272029 ±0.000080 MOHR 05 RVUE 2002 CODATA value938.271998 ±0.000038 MOHR 99 RVUE 1998 CODATA value938.27231 ±0.00028 COHEN 87 RVUE 1986 CODATA value938.2796 ±0.0027 COHEN 73 RVUE 1973 CODATA value

∣∣mp−mp∣∣/mp∣∣mp−mp∣∣/mp∣∣mp−mp∣∣/mp∣∣mp−mp∣∣/mpA test of CPT invarian
e. Note that the 
omparison of the p and p 
harge-to-mass ratio, given in the next data blo
k, is mu
h better determined.VALUE CL% DOCUMENT ID TECN COMMENT
<7 × 10−10<7 × 10−10<7 × 10−10<7 × 10−10 90 1 HORI 11 SPEC p e−He atom
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2 × 10−9 90 1 HORI 06 SPEC p e−He atom
<1.0× 10−8 90 1 HORI 03 SPEC p e− 4He, p e− 3He
<6 × 10−8 90 1 HORI 01 SPEC p e−He atom
<5 × 10−7 2 TORII 99 SPEC p e−He atom1HORI 01, HORI 03, HORI 06, and HORI 11 use the more-pre
isely-known 
onstrainton the p 
harge-to-mass ratio of GABRIELSE 99 (see below) to get their results. Theirresults are not independent of the HORI 01, HORI 03, HORI 06, and HORI 11 valuesfor ∣∣qp+qp ∣∣/e, below.2TORII 99 uses the more-pre
isely-known 
onstraint on the p 
harge-to-mass ratio ofGABRIELSE 95 (see below) to get this result. This is not independent of the TORII 99value for ∣∣qp+qp ∣∣/e, below.p/p CHARGE-TO-MASS RATIO, ∣∣ qpmp ∣∣/( qpmp )p/p CHARGE-TO-MASS RATIO, ∣∣ qpmp ∣∣/( qpmp )p/p CHARGE-TO-MASS RATIO, ∣∣ qpmp ∣∣/( qpmp )p/p CHARGE-TO-MASS RATIO, ∣∣ qpmp ∣∣/( qpmp )A test of CPT invarian
e. Listed here are measurements involving theinertial masses. For a dis
ussion of what may be inferred about the ratioof p and p gravitational masses, see ERICSON 90; they obtain an upperbound of 10−6{10−7 for violation of the equivalen
e prin
iple for p's.VALUE DOCUMENT ID TECN COMMENT0.99999999991±0.000000000090.99999999991±0.000000000090.99999999991±0.000000000090.99999999991±0.00000000009 GABRIELSE 99 TRAP Penning trap
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.0000000015 ±0.0000000011 1 GABRIELSE 95 TRAP Penning trap1.000000023 ±0.000000042 2 GABRIELSE 90 TRAP Penning trap1Equation (2) of GABRIELSE 95 should read M(p)/M(p) = 0.999 999 9985 (11)(G. Gabrielse, private 
ommuni
ation).2GABRIELSE 90 also measures mp/me− = 1836.152660 ± 0.000083 and mp/me−= 1836.152680 ± 0.000088. Both are 
ompletely 
onsistent with the 1986 CODATA(COHEN 87) value for mp/me− of 1836.152701 ± 0.000037.(∣∣ qpmp ∣∣{ qpmp )/ qpmp(∣∣ qpmp ∣∣{ qpmp )/ qpmp(∣∣ qpmp ∣∣{ qpmp )/ qpmp(∣∣ qpmp ∣∣{ qpmp )/ qpmp

A test of CPT invarian
e. Taken from the p/p 
harge-to-mass ratio,above.VALUE DOCUMENT ID(−9±9)× 10−11 OUR EVALUATION(−9±9)× 10−11 OUR EVALUATION(−9±9)× 10−11 OUR EVALUATION(−9±9)× 10−11 OUR EVALUATION
∣∣qp + qp∣∣/e∣∣qp + qp∣∣/e∣∣qp + qp∣∣/e∣∣qp + qp∣∣/eA test of CPT invarian
e. Note that the 
omparison of the p and p 
harge-to-mass ratios given above is mu
h better determined. See also a similartest involving the ele
tron.VALUE CL% DOCUMENT ID TECN COMMENT

<7 × 10−10<7 × 10−10<7 × 10−10<7 × 10−10 90 1 HORI 11 SPEC pe−He atom
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2 × 10−9 90 1 HORI 06 SPEC pe−He atom
<1.0× 10−8 90 1 HORI 03 SPEC pe− 4He, p e− 3He
<6 × 10−8 90 1 HORI 01 SPEC pe−He atom
<5 × 10−7 2 TORII 99 SPEC pe−He atom
<2 × 10−5 3 HUGHES 92 RVUE1HORI 01, HORI 03, HORI 06, and HORI 11 use the more-pre
isely-known 
onstrainton the p 
harge-to-mass ratio of GABRIELSE 99 (see above) to get their results. Theirresults are not independent of the HORI 01, HORI 03, HORI 06, and HORI 11 valuesfor ∣∣mp−mp∣∣/mp, above.2TORII 99 uses the more-pre
isely-known 
onstraint on the p 
harge-to-mass ratio ofGABRIELSE 95 (see above) to get this result. This is not independent of the TORII 99value for ∣∣mp−mp∣∣/mp , above.3HUGHES 92 uses re
ent measurements of Rydberg-energy and 
y
lotron-frequen
y ra-tios.

∣∣qp + qe ∣∣/e∣∣qp + qe ∣∣/e∣∣qp + qe ∣∣/e∣∣qp + qe ∣∣/eSee BRESSI 11 for a summary of experiments on the neutrality of matter.See also \n CHARGE" in the neutron Listings.VALUE DOCUMENT ID COMMENT
<1 × 10−21<1 × 10−21<1 × 10−21<1 × 10−21 1 BRESSI 11 Neutrality of SF6
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.2× 10−20 2 SENGUPTA 00 binary pulsar
<0.8× 10−21 MARINELLI 84 Magneti
 levitation
<1.0× 10−21 1 DYLLA 73 Neutrality of SF61BRESSI 11 uses the method of DYLLA 73 but �nds serious errors in that experiment thatgreatly redu
e its a

ura
y. The BRESSI 11 limit assumes that n → pe− νe 
onserves
harge. Thus the limit applies equally to the 
harge of the neutron.2 SENGUPTA 00 uses the di�eren
e between the observed rate of of rotational energy lossby the binary pulsar PSR B1913+16 and the rate predi
ted by general relativity to setthis limit. See the paper for assumptions.p MAGNETIC MOMENTp MAGNETIC MOMENTp MAGNETIC MOMENTp MAGNETIC MOMENTSee the \Note on Baryon Magneti
 Moments" in the � Listings.VALUE (µ

N
) DOCUMENT ID TECN COMMENT2.7928473508±0.00000000852.7928473508±0.00000000852.7928473508±0.00000000852.7928473508±0.0000000085 MOHR 16 RVUE 2014 CODATA value

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.792847356 ±0.000000023 MOHR 12 RVUE 2010 CODATA value2.792847356 ±0.000000023 MOHR 08 RVUE 2006 CODATA value2.792847351 ±0.000000028 MOHR 05 RVUE 2002 CODATA value2.792847337 ±0.000000029 MOHR 99 RVUE 1998 CODATA value2.792847386 ±0.000000063 COHEN 87 RVUE 1986 CODATA value2.7928456 ±0.0000011 COHEN 73 RVUE 1973 CODATA valuep MAGNETIC MOMENTp MAGNETIC MOMENTp MAGNETIC MOMENTp MAGNETIC MOMENTA few early results have been omitted.VALUE (µN ) DOCUMENT ID TECN COMMENT
−2.792845±0.000012−2.792845±0.000012−2.792845±0.000012−2.792845±0.000012 DISCIACCA 13 TRAP Single p, Penning trap
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−2.7862 ±0.0083 PASK 09 CNTR p He+ hyper�ne stru
ture
−2.8005 ±0.0090 KREISSL 88 CNTR p 208Pb 11→ 10 X-ray
−2.817 ±0.048 ROBERTS 78 CNTR
−2.791 ±0.021 HU 75 CNTR Exoti
 atoms(µp + µp) /

µp(µp + µp) /
µp(µp + µp) /
µp(µp + µp) /
µpA test of CPT invarian
e.VALUE (units 10−6) DOCUMENT ID TECN COMMENT0±50±50±50±5 DISCIACCA 13 TRAP Single p, Penning trapp ELECTRIC DIPOLE MOMENTp ELECTRIC DIPOLE MOMENTp ELECTRIC DIPOLE MOMENTp ELECTRIC DIPOLE MOMENTA nonzero value is forbidden by both T invarian
e and P invarian
e.VALUE (10−23 e 
m) EVTS DOCUMENT ID TECN COMMENT

< 0.54< 0.54< 0.54< 0.54 1 DMITRIEV 03 Uses 199Hg atom EDM
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• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 3.7 ± 6.3 CHO 89 NMR Tl F mole
ules
< 400 DZUBA 85 THEO Uses 129Xe moment130 ± 200 2 WILKENING 84900 ±1400 3 WILKENING 84700 ± 900 1G HARRISON 69 MBR Mole
ular beam1DMITRIEV 03 
al
ulates this limit from the limit on the ele
tri
 dipole moment of the199Hg atom.2This WILKENING 84 value in
ludes a �nite-size e�e
t and a magneti
 e�e
t.3This WILKENING 84 value is more 
autious than the other and ex
ludes the �nite-sizee�e
t, whi
h relies on un
ertain nu
lear integrals.p ELECTRIC POLARIZABILITY αpp ELECTRIC POLARIZABILITY αpp ELECTRIC POLARIZABILITY αpp ELECTRIC POLARIZABILITY αpFor a very 
omplete review of the \polarizability of the nu
leon and Comp-ton s
attering," see SCHUMACHER 05. His re
ommended values for theproton are αp = (12.0 ± 0.6)× 10−4 fm3 and βp = (1.9 ∓ 0.6)× 10−4fm3, almost exa
tly our averages.VALUE (10−4 fm3) DOCUMENT ID TECN COMMENT11.2 ±0.4 OUR AVERAGE11.2 ±0.4 OUR AVERAGE11.2 ±0.4 OUR AVERAGE11.2 ±0.4 OUR AVERAGE10.65±0.35±0.36 MCGOVERN 13 RVUE χEFT + Compton s
attering12.1 ±1.1 ±0.5 1 BEANE 03 EFT + γ p11.82±0.98+0.52

−0.98 2 BLANPIED 01 LEGS p(~γ,γ), p(~γ,π0), p(~γ ,π+)11.9 ±0.5 ±1.3 3 OLMOSDEL... 01 CNTR γ p Compton s
attering12.1 ±0.8 ±0.5 4 MACGIBBON 95 RVUE global average
• • • We do not use the following data for averages, �ts, limits, et
. • • •11.7 ±0.8 ±0.7 5 BARANOV 01 RVUE Global average12.5 ±0.6 ±0.9 MACGIBBON 95 CNTR γ p Compton s
attering9.8 ±0.4 ±1.1 HALLIN 93 CNTR γ p Compton s
attering10.62+1.25

−1.19+1.07
−1.03 ZIEGER 92 CNTR γ p Compton s
attering10.9 ±2.2 ±1.3 6 FEDERSPIEL 91 CNTR γ p Compton s
attering1BEANE 03 uses e�e
tive �eld theory and low-energy γ p and γ d Compton-s
atteringdata. It also gets for the isos
alar polarizabilities (see the erratum) αN= (13.0 ±1.9+3.9

−1.5)× 10−4 fm3 and βN= (−1.8 ± 1.9+2.1
−0.9)× 10−4 fm3.2BLANPIED 01 gives αp + βp and αp − βp . The separate αp and βp are provided tous by A. Sandor�. The �rst error above is statisti
s plus systemati
s; the se
ond is fromthe model.3This OLMOSDELEON 01 result uses the TAPS data alone, and does not use the (re-evaluated) sum-rule 
onstraint that α+β= (13.8 ± 0.4)× 10−4 fm3. See the paper fora dis
ussion.4MACGIBBON 95 
ombine the results of ZIEGER 92, FEDERSPIEL 91, and their ownexperiment to get a \global average" in whi
h model errors and systemati
 errors aretreated in a 
onsistent way. See MACGIBBON 95 for a dis
ussion.5BARANOV 01 
ombines the results of 10 experiments from 1958 through 1995 to get aglobal average that takes into a

ount both systemati
 and model errors and does notuse the theoreti
al 
onstraint on the sum αp + βp .6 FEDERSPIEL 91 obtains for the (stati
) ele
tri
 polarizability αp , de�ned in terms of theindu
ed ele
tri
 dipole moment by DDDD = 4πǫ0αpEEEE, the value (7.0±2.2±1.3)×10−4 fm3.p MAGNETIC POLARIZABILITY βpp MAGNETIC POLARIZABILITY βpp MAGNETIC POLARIZABILITY βpp MAGNETIC POLARIZABILITY βpThe ele
tri
 and magneti
 polarizabilities are subje
t to a dispersion sum-rule 
onstraint α + β = (14.2 ± 0.5) × 10−4 fm3. Errors here areanti
orrelated with those on αp due to this 
onstraint.VALUE (10−4 fm3) DOCUMENT ID TECN COMMENT2.5 ±0.4 OUR AVERAGE2.5 ±0.4 OUR AVERAGE2.5 ±0.4 OUR AVERAGE2.5 ±0.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.3.15±0.35±0.36 MCGOVERN 13 RVUE χEFT + Compton s
attering3.4 ±1.1 ±0.1 1 BEANE 03 EFT + γ p1.43±0.98+0.52

−0.98 2 BLANPIED 01 LEGS p(~γ,γ), p(~γ,π0), p(~γ ,π+)1.2 ±0.7 ±0.5 3 OLMOSDEL... 01 CNTR γ p Compton s
attering2.1 ±0.8 ±0.5 4 MACGIBBON 95 RVUE global average
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.3 ±0.9 ±0.7 5 BARANOV 01 RVUE Global average1.7 ±0.6 ±0.9 MACGIBBON 95 CNTR γ p Compton s
attering4.4 ±0.4 ±1.1 HALLIN 93 CNTR γ p Compton s
attering3.58+1.19

−1.25+1.03
−1.07 ZIEGER 92 CNTR γ p Compton s
attering3.3 ±2.2 ±1.3 FEDERSPIEL 91 CNTR γ p Compton s
attering1BEANE 03 uses e�e
tive �eld theory and low-energy γ p and γ d Compton-s
atteringdata. It also gets for the isos
alar polarizabilities (see the erratum) αN= (13.0 ±1.9+3.9

−1.5)× 10−4 fm3 and βN= (−1.8 ± 1.9+2.1
−0.9)× 10−4 fm3.2BLANPIED 01 gives αp + βp and αp − βp . The separate αp and βp are provided tous by A. Sandor�. The �rst error above is statisti
s plus systemati
s; the se
ond is fromthe model.3This OLMOSDELEON 01 result uses the TAPS data alone, and does not use the (re-evaluated) sum-rule 
onstraint that α+β= (13.8 ± 0.4)× 10−4 fm3. See the paper fora dis
ussion.4MACGIBBON 95 
ombine the results of ZIEGER 92, FEDERSPIEL 91, and their ownexperiment to get a \global average" in whi
h model errors and systemati
 errors aretreated in a 
onsistent way. See MACGIBBON 95 for a dis
ussion.5BARANOV 01 
ombines the results of 10 experiments from 1958 through 1995 to get aglobal average that takes into a

ount both systemati
 and model errors and does notuse the theoreti
al 
onstraint on the sum αp + βp .

p CHARGE RADIUSp CHARGE RADIUSp CHARGE RADIUSp CHARGE RADIUSThis is the rms ele
tri
 
harge radius, √〈
r2
E

〉.Most measurements of the radius of the proton involve ele
tron-protonintera
tions, and most of the more re
ent values agree with one another.The most pre
ise of these is rp = 0.879(8) fm (BERNAUER 10). TheCODATA 14 value (MOHR 16), obtained from the ele
troni
 results, is0.8751(61). Compared to this CODATA value, however, a measurementusing muoni
 hydrogen �nds rp = 0.84087(39) fm (ANTOGNINI 13),whi
h is 16 times more pre
ise but di�ers by 5.6 standard deviations (usingthe CODATA 14 error).Sin
e POHL 10 (the �rst µp result), there has been a lot of dis
ussionabout the disagreement, espe
ially 
on
erning the modeling of muoni
 hy-drogen. Here is an in
omplete list of papers: DERUJULA 10, CLOET 11,DISTLER 11, DERUJULA 11, ARRINGTON 11, BERNAUER 11, HILL 11,LORENZ 14, KARSHENBOIM 14A, and PESET 15.Until the di�eren
e between the e p and µp values is understood, it doesnot make sense to average the values together. For the present, we giveboth values. It is up to workers in this �eld to solve this puzzle.See our 2014 edition (Chinese Physi
s C 38383838 070001 (2014)) for valuespublished before 2003.VALUE (fm) DOCUMENT ID TECN COMMENT0.8751 ±0.00610.8751 ±0.00610.8751 ±0.00610.8751 ±0.0061 MOHR 16 RVUE 2014 CODATA value0.84087±0.00026±0.000290.84087±0.00026±0.000290.84087±0.00026±0.000290.84087±0.00026±0.00029 ANTOGNINI 13 LASR µp-atom Lamb shift
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.895 ±0.014 ±0.014 1 LEE 15 SPEC Just 2010 Mainz data0.916 ±0.024 LEE 15 SPEC World data, no Mainz0.8775 ±0.0051 MOHR 12 RVUE 2010 CODATA, e p data0.875 ±0.008 ±0.006 ZHAN 11 SPEC Re
oil polarimetry0.879 ±0.005 ±0.006 BERNAUER 10 SPEC e p → e p form fa
tor0.912 ±0.009 ±0.007 BORISYUK 10 reanalyzes old e p data0.871 ±0.009 ±0.003 HILL 10 z-expansion reanalysis0.84184±0.00036±0.00056 POHL 10 LASR See ANTOGNINI 130.8768 ±0.0069 MOHR 08 RVUE 2006 CODATA value0.844 +0.008

−0.004 BELUSHKIN 07 Dispersion analysis0.897 ±0.018 BLUNDEN 05 SICK 03 + 2γ 
orre
tion0.8750 ±0.0068 MOHR 05 RVUE 2002 CODATA value0.895 ±0.010 ±0.013 SICK 03 e p → e p reanalysis1Authors also provide values for 
ombinations of all available data.p MAGNETIC RADIUSp MAGNETIC RADIUSp MAGNETIC RADIUSp MAGNETIC RADIUSThis is the rms magneti
 radius, √〈
r2
M

〉.VALUE (fm) DOCUMENT ID TECN COMMENT0.776±0.034±0.0170.776±0.034±0.0170.776±0.034±0.0170.776±0.034±0.017 1 LEE 15 SPEC Just 2010 Mainz data
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.914±0.035 LEE 15 SPEC World data, no Mainz0.87 ±0.02 EPSTEIN 14 Using e p, e n, ππ data0.867±0.009±0.018 ZHAN 11 SPEC Re
oil polarimetry0.777±0.013±0.010 BERNAUER 10 SPEC e p → e p form fa
tor0.876±0.010±0.016 BORISYUK 10 Reanalyzes old e p → e p data0.854±0.005 BELUSHKIN 07 Dispersion analysis1Authors also provide values for a 
ombination of all available data.p MEAN LIFEp MEAN LIFEp MEAN LIFEp MEAN LIFEA test of baryon 
onservation. See the \p Partial Mean Lives" se
tion below for limitsfor identi�ed �nal states. The limits here are to \anything" or are for \disappearan
e"modes of a bound proton (p) or (n). See also the 3ν modes in the \Partial MeanLives" se
tion. Table 1 of BACK 03 is a ni
e summary.LIMIT(years) PARTICLE CL% DOCUMENT ID TECN COMMENT
>5.8× 1029>5.8× 1029>5.8× 1029>5.8× 1029 nnnn 90 1 ARAKI 06 KLND n → invisible
>2.1× 1029>2.1× 1029>2.1× 1029>2.1× 1029 pppp 90 2 AHMED 04 SNO p → invisible
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>1.9× 1029 n 90 2 AHMED 04 SNO n → invisible
>1.8× 1025 n 90 3 BACK 03 BORX
>1.1× 1026 p 90 3 BACK 03 BORX
>3.5× 1028 p 90 4 ZDESENKO 03 p → invisible
>1 × 1028 p 90 5 AHMAD 02 SNO p → invisible
>4 × 1023 p 95 TRETYAK 01 d → n + ?
>1.9× 1024 p 90 6 BERNABEI 00B DAMA
>1.6× 1025 p, n 7,8 EVANS 77
>3 × 1023 p 8 DIX 70 CNTR
>3 × 1023 p, n 8,9 FLEROV 58



1505150515051505See key on page 601 Baryon Parti
le Listingsp1ARAKI 06 looks for signs of de-ex
itation of the residual nu
leus after disappearan
e ofa neutron from the s shell of 12C.2AHMED 04 looks for γ rays from the de-ex
itation of a residual 15O∗ or 15N∗ followingthe disappearan
e of a neutron or proton in 16O.3BACK 03 looks for de
ays of unstable nu
lides left after N de
ays of parent 12C, 13C,16O nu
lei. These are \invisible 
hannel" limits.4 ZDESENKO 03 gets this limit on proton disappearan
e in deuterium by analyzing SNOdata in AHMAD 02.5AHMAD 02 (see its footnote 7) looks for neutrons left behind after the disappearan
eof the proton in deuterons.6BERNABEI 00B looks for the de
ay of a 12853 I nu
leus following the disappearan
e of aproton in the otherwise-stable 12954 Xe nu
leus.7 EVANS 77 looks for the daughter nu
lide 129Xe from possible 130Te de
ays in an
ientTe ore samples.8This mean-life limit has been obtained from a half-life limit by dividing the latter by ln(2)= 0.693.9 FLEROV 58 looks for the spontaneous �ssion of a 232Th nu
leus after the disappearan
eof one of its nu
leons. p MEAN LIFEp MEAN LIFEp MEAN LIFEp MEAN LIFEOf the two astrophysi
al limits here, that of GEER 00D involves 
onsider-ably more re�nements in its modeling. The other limits 
ome from dire
tobservations of stored antiprotons. See also \p Partial Mean Lives" after\p Partial Mean Lives," below, for ex
lusive-mode limits. The best (life-time/bran
hing fra
tion) limit there is 7× 105 years, for p → e− γ. Weadvan
e only the ex
lusive-mode limits to our Summary Tables.LIMIT(years) CL% EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>8 × 105 90 1 GEER 00D p/p ratio, 
osmi
 rays
>0.28 GABRIELSE 90 TRAP Penning trap
>0.08 90 1 BELL 79 CNTR Storage ring
>1 × 107 GOLDEN 79 SPEC p/p ratio, 
osmi
 rays
>3.7 × 10−3 BREGMAN 78 CNTR Storage ring1GEER 00D uses agreement between a model of gala
ti
 p produ
tion and propagationand the observed p/p 
osmi
-ray spe
trum to set this limit.p DECAY MODESp DECAY MODESp DECAY MODESp DECAY MODESSee the \Note on Nu
leon De
ay" in our 1994 edition (Phys. Rev. D50D50D50D50,1173) for a short review.The \partial mean life" limits tabulated here are the limits on τ/Bi , where

τ is the total mean life and Bi is the bran
hing fra
tion for the mode inquestion. For N de
ays, p and n indi
ate proton and neutron partiallifetimes. Partial mean lifeMode (1030 years) Con�den
e levelAntilepton + mesonAntilepton + mesonAntilepton + mesonAntilepton + meson
τ1 N → e+π > 2000 (n), > 8200 (p) 90%
τ2 N → µ+π > 1000 (n), > 6600 (p) 90%
τ3 N → ν π > 1100 (n), > 390 (p) 90%
τ4 p → e+η > 4200 90%
τ5 p → µ+η > 1300 90%
τ6 n → ν η > 158 90%
τ7 N → e+ρ > 217 (n), > 710 (p) 90%
τ8 N → µ+ρ > 228 (n), > 160 (p) 90%
τ9 N → ν ρ > 19 (n), > 162 (p) 90%
τ10 p → e+ω > 320 90%
τ11 p → µ+ω > 780 90%
τ12 n → ν ω > 108 90%
τ13 N → e+K > 17 (n), > 1000 (p) 90%
τ14 p → e+K0S
τ15 p → e+K0L
τ16 N → µ+K > 26 (n), > 1600 (p) 90%
τ17 p → µ+K0S
τ18 p → µ+K0L
τ19 N → νK > 86 (n), > 5900 (p) 90%
τ20 n → νK0S > 260 90%
τ21 p → e+K∗(892)0 > 84 90%
τ22 N → νK∗(892) > 78 (n), > 51 (p) 90%Antilepton + mesonsAntilepton + mesonsAntilepton + mesonsAntilepton + mesons
τ23 p → e+π+π− > 82 90%
τ24 p → e+π0π0 > 147 90%
τ25 n → e+π−π0 > 52 90%
τ26 p → µ+π+π− > 133 90%
τ27 p → µ+π0π0 > 101 90%
τ28 n → µ+π−π0 > 74 90%
τ29 n → e+K0π− > 18 90%

Lepton + mesonLepton + mesonLepton + mesonLepton + meson
τ30 n → e−π+ > 65 90%
τ31 n → µ−π+ > 49 90%
τ32 n → e− ρ+ > 62 90%
τ33 n → µ−ρ+ > 7 90%
τ34 n → e−K+ > 32 90%
τ35 n → µ−K+ > 57 90%Lepton + mesonsLepton + mesonsLepton + mesonsLepton + mesons
τ36 p → e−π+π+ > 30 90%
τ37 n → e−π+π0 > 29 90%
τ38 p → µ−π+π+ > 17 90%
τ39 n → µ−π+π0 > 34 90%
τ40 p → e−π+K+ > 75 90%
τ41 p → µ−π+K+ > 245 90%Antilepton + photon(s)Antilepton + photon(s)Antilepton + photon(s)Antilepton + photon(s)
τ42 p → e+γ > 670 90%
τ43 p → µ+γ > 478 90%
τ44 n → ν γ > 550 90%
τ45 p → e+γ γ > 100 90%
τ46 n → ν γ γ > 219 90%Antilepton + single masslessAntilepton + single masslessAntilepton + single masslessAntilepton + single massless
τ47 p → e+X > 790 90%
τ48 p → µ+X > 410 90%Three (or more) leptonsThree (or more) leptonsThree (or more) leptonsThree (or more) leptons
τ49 p → e+ e+ e− > 793 90%
τ50 p → e+µ+µ− > 359 90%
τ51 p → e+ν ν > 170 90%
τ52 n → e+ e−ν > 257 90%
τ53 n → µ+ e− ν > 83 90%
τ54 n → µ+µ− ν > 79 90%
τ55 p → µ+ e+ e− > 529 90%
τ56 p → µ+µ+µ− > 675 90%
τ57 p → µ+ν ν > 220 90%
τ58 p → e−µ+µ+ > 6 90%
τ59 n → 3ν > 5× 10−4 90%
τ60 n → 5ν In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modes
τ61 N → e+anything > 0.6 (n, p) 90%
τ62 N → µ+anything > 12 (n, p) 90%
τ63 N → ν anything
τ64 N → e+π0 anything > 0.6 (n, p) 90%
τ65 N → 2 bodies, ν-free�B = 2 dinu
leon modes�B = 2 dinu
leon modes�B = 2 dinu
leon modes�B = 2 dinu
leon modesThe following are lifetime limits per iron nu
leus.
τ66 pp → π+π+ > 72.2 90%
τ67 pn → π+π0 > 170 90%
τ68 nn → π+π− > 0.7 90%
τ69 nn → π0π0 > 404 90%
τ70 pp → K+K+ > 170 90%
τ71 pp → e+ e+ > 5.8 90%
τ72 pp → e+µ+ > 3.6 90%
τ73 pp → µ+µ+ > 1.7 90%
τ74 pn → e+ν > 260 90%
τ75 pn → µ+ν > 200 90%
τ76 pn → τ+ ντ > 29 90%
τ77 nn → νe νe > 1.4 90%
τ78 nn → νµ νµ > 1.4 90%
τ79 pn → invisible > 2.1× 10−5 90%
τ80 pp → invisible > 5× 10−5 90%p DECAY MODESp DECAY MODESp DECAY MODESp DECAY MODESPartial mean lifeMode (years) Con�den
e level
τ81 p → e−γ > 7× 105 90%
τ82 p → µ−γ > 5× 104 90%
τ83 p → e−π0 > 4× 105 90%
τ84 p → µ−π0 > 5× 104 90%
τ85 p → e−η > 2× 104 90%
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τ86 p → µ−η > 8× 103 90%
τ87 p → e−K0S > 900 90%
τ88 p → µ−K0S > 4× 103 90%
τ89 p → e−K0L > 9× 103 90%
τ90 p → µ−K0L > 7× 103 90%
τ91 p → e−γ γ > 2× 104 90%
τ92 p → µ−γ γ > 2× 104 90%
τ93 p → e−ω > 200 90%p PARTIAL MEAN LIVESp PARTIAL MEAN LIVESp PARTIAL MEAN LIVESp PARTIAL MEAN LIVESThe \partial mean life" limits tabulated here are the limits on τ/Bi , where

τ is the total mean life for the proton and Bi is the bran
hing fra
tion forthe mode in question.De
aying parti
le: p = proton, n = bound neutron. The same event mayappear under more than one partial de
ay mode. Ba
kground estimatesmay be a

urate to a fa
tor of two.Antilepton + mesonAntilepton + mesonAntilepton + mesonAntilepton + meson
τ
(N → e+π

)
τ1τ

(N → e+π
)

τ1τ
(N → e+π

)
τ1τ

(N → e+π
)

τ1LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>2000>2000>2000>2000 nnnn 90909090 0000 0.270.270.270.27 NISHINO 12 SKAM
>8200>8200>8200>8200 pppp 90909090 0000 0.30.30.30.3 NISHINO 09 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 540 p 90 0 0.2 MCGREW 99 IMB3
> 158 n 90 3 5 MCGREW 99 IMB3
>1600 p 90 0 0.1 SHIOZAWA 98 SKAM
> 70 p 90 0 0.5 BERGER 91 FREJ
> 70 n 90 0 ≤ 0.1 BERGER 91 FREJ
> 550 p 90 0 0.7 1 BECKER-SZ... 90 IMB3
> 260 p 90 0 <0.04 HIRATA 89C KAMI
> 130 n 90 0 <0.2 HIRATA 89C KAMI
> 310 p 90 0 0.6 SEIDEL 88 IMB
> 100 n 90 0 1.6 SEIDEL 88 IMB
> 1.3 n 90 0 BARTELT 87 SOUD
> 1.3 p 90 0 BARTELT 87 SOUD
> 250 p 90 0 0.3 HAINES 86 IMB
> 31 n 90 8 9 HAINES 86 IMB
> 64 p 90 0 <0.4 ARISAKA 85 KAMI
> 26 n 90 0 <0.7 ARISAKA 85 KAMI
> 82 p (free) 90 0 0.2 BLEWITT 85 IMB
> 250 p 90 0 0.2 BLEWITT 85 IMB
> 25 n 90 4 4 PARK 85 IMB
> 15 p, n 90 0 BATTISTONI 84 NUSX
> 0.5 p 90 1 0.3 2 BARTELT 83 SOUD
> 0.5 n 90 1 0.3 2 BARTELT 83 SOUD
> 5.8 p 90 2 3 KRISHNA... 82 KOLR
> 5.8 n 90 2 3 KRISHNA... 82 KOLR
> 0.1 n 90 4 GURR 67 CNTR1This BECKER-SZENDY 90 result in
ludes data from SEIDEL 88.2 Limit based on zero events.3We have 
al
ulated 90% CL limit from 1 
on�ned event.4We have 
onverted half-life to 90% CL mean life.
τ
(N → µ+π

)
τ2τ

(N → µ+π
)

τ2τ
(N → µ+π

)
τ2τ

(N → µ+π
)

τ2LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>1000>1000>1000>1000 nnnn 90909090 1111 0.430.430.430.43 NISHINO 12 SKAM
>6600>6600>6600>6600 pppp 90909090 0000 0.30.30.30.3 NISHINO 09 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 473 p 90 0 0.6 MCGREW 99 IMB3
> 90 n 90 1 1.9 MCGREW 99 IMB3
> 81 p 90 0 0.2 BERGER 91 FREJ
> 35 n 90 1 1.0 BERGER 91 FREJ
> 230 p 90 0 <0.07 HIRATA 89C KAMI
> 100 n 90 0 <0.2 HIRATA 89C KAMI
> 270 p 90 0 0.5 SEIDEL 88 IMB
> 63 n 90 0 0.5 SEIDEL 88 IMB
> 76 p 90 2 1 HAINES 86 IMB
> 23 n 90 8 7 HAINES 86 IMB
> 46 p 90 0 <0.7 ARISAKA 85 KAMI
> 20 n 90 0 <0.4 ARISAKA 85 KAMI
> 59 p (free) 90 0 0.2 BLEWITT 85 IMB
> 100 p 90 1 0.4 BLEWITT 85 IMB
> 38 n 90 1 4 PARK 85 IMB
> 10 p, n 90 0 BATTISTONI 84 NUSX
> 1.3 p, n 90 0 ALEKSEEV 81 BAKS

τ
(N → ν π

)
τ3τ

(N → ν π
)

τ3τ
(N → ν π

)
τ3τ

(N → ν π
)

τ3LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
> 390> 390> 390> 390 pppp 90909090 52.852.852.852.8 ABE 14E SKAM
>1100>1100>1100>1100 nnnn 90909090 19.119.119.119.1 ABE 14E SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 16 p 90 6 6.7 WALL 00B SOU2
> 39 n 90 4 3.8 WALL 00B SOU2
> 10 p 90 15 20.3 MCGREW 99 IMB3
> 112 n 90 6 6.6 MCGREW 99 IMB3
> 13 n 90 1 1.2 BERGER 89 FREJ
> 10 p 90 11 14 BERGER 89 FREJ
> 25 p 90 32 32.8 1 HIRATA 89C KAMI
> 100 n 90 1 3 HIRATA 89C KAMI
> 6 n 90 73 60 HAINES 86 IMB
> 2 p 90 16 13 KAJITA 86 KAMI
> 40 n 90 0 1 KAJITA 86 KAMI
> 7 n 90 28 19 PARK 85 IMB
> 7 n 90 0 BATTISTONI 84 NUSX
> 2 p 90 ≤ 3 BATTISTONI 84 NUSX
> 5.8 p 90 1 2 KRISHNA... 82 KOLR
> 0.3 p 90 2 3 CHERRY 81 HOME
> 0.1 p 90 4 GURR 67 CNTR1 In estimating the ba
kground, this HIRATA 89C limit (as opposed to the later limits ofWALL 00B and MCGREW 99) does not take into a

ount present understanding thatthe 
ux of νµ originating in the upper atmosphere is depleted. Doing so would redu
ethe ba
kground and thus also would redu
e the limit here.2We have 
al
ulated 90% CL limit from 1 
on�ned event.3We have 
onverted 2 possible events to 90% CL limit.4We have 
onverted half-life to 90% CL mean life.
τ
(p→ e+ η

)
τ4τ

(p→ e+ η
)

τ4τ
(p→ e+ η

)
τ4τ

(p→ e+ η
)

τ4LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>4200>4200>4200>4200 pppp 90909090 0000 0.440.440.440.44 NISHINO 12 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 81 p 90 1 1.7 WALL 00B SOU2
> 313 p 90 0 0.2 MCGREW 99 IMB3
> 44 p 90 0 0.1 BERGER 91 FREJ
> 140 p 90 0 <0.04 HIRATA 89C KAMI
> 100 p 90 0 0.6 SEIDEL 88 IMB
> 200 p 90 5 3.3 HAINES 86 IMB
> 64 p 90 0 <0.8 ARISAKA 85 KAMI
> 64 p (free) 90 5 6.5 BLEWITT 85 IMB
> 200 p 90 5 4.7 BLEWITT 85 IMB
> 1.2 p 90 2 1 CHERRY 81 HOME1We have 
onverted 2 possible events to 90% CL limit.
τ
(p→ µ+η

)
τ5τ

(p→ µ+η
)

τ5τ
(p→ µ+η

)
τ5τ

(p→ µ+η
)

τ5LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>1300>1300>1300>1300 pppp 90909090 2222 0.490.490.490.49 NISHINO 12 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 89 p 90 0 1.6 WALL 00B SOU2
> 126 p 90 3 2.8 MCGREW 99 IMB3
> 26 p 90 1 0.8 BERGER 91 FREJ
> 69 p 90 1 <0.08 HIRATA 89C KAMI
> 1.3 p 90 0 0.7 PHILLIPS 89 HPW
> 34 p 90 1 1.5 SEIDEL 88 IMB
> 46 p 90 7 6 HAINES 86 IMB
> 26 p 90 1 <0.8 ARISAKA 85 KAMI
> 17 p (free) 90 6 6 BLEWITT 85 IMB
> 46 p 90 7 8 BLEWITT 85 IMB
τ
(n→ ν η

)
τ6τ

(n→ ν η
)

τ6τ
(n→ ν η

)
τ6τ

(n→ ν η
)

τ6LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>158>158>158>158 nnnn 90909090 0000 1.21.21.21.2 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 71 n 90 2 3.7 WALL 00B SOU2
> 29 n 90 0 0.9 BERGER 89 FREJ
> 54 n 90 2 0.9 HIRATA 89C KAMI
> 16 n 90 3 2.1 SEIDEL 88 IMB
> 25 n 90 7 6 HAINES 86 IMB
> 30 n 90 0 0.4 KAJITA 86 KAMI
> 18 n 90 4 3 PARK 85 IMB
> 0.6 n 90 2 1 CHERRY 81 HOME1We have 
onverted 2 possible events to 90% CL limit.
τ
(N → e+ ρ

)
τ7τ

(N → e+ ρ
)

τ7τ
(N → e+ ρ

)
τ7τ

(N → e+ ρ
)

τ7LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>710>710>710>710 pppp 90909090 0000 0.350.350.350.35 NISHINO 12 SKAM
>217>217>217>217 nnnn 90909090 4444 4.84.84.84.8 MCGREW 99 IMB3



1507150715071507See key on page 601 Baryon Parti
le Listingsp
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 70 n 90 1 0.38 NISHINO 12 SKAM
> 29 p 90 0 2.2 BERGER 91 FREJ
> 41 n 90 0 1.4 BERGER 91 FREJ
> 75 p 90 2 2.7 HIRATA 89C KAMI
> 58 n 90 0 1.9 HIRATA 89C KAMI
> 38 n 90 2 4.1 SEIDEL 88 IMB
> 1.2 p 90 0 BARTELT 87 SOUD
> 1.5 n 90 0 BARTELT 87 SOUD
> 17 p 90 7 7 HAINES 86 IMB
> 14 n 90 9 4 HAINES 86 IMB
> 12 p 90 0 <1.2 ARISAKA 85 KAMI
> 6 n 90 2 <1 ARISAKA 85 KAMI
> 6.7 p (free) 90 6 6 BLEWITT 85 IMB
> 17 p 90 7 7 BLEWITT 85 IMB
> 12 n 90 4 2 PARK 85 IMB
> 0.6 n 90 1 0.3 1 BARTELT 83 SOUD
> 0.5 p 90 1 0.3 1 BARTELT 83 SOUD
> 9.8 p 90 1 2 KRISHNA... 82 KOLR
> 0.8 p 90 2 3 CHERRY 81 HOME1Limit based on zero events.2We have 
al
ulated 90% CL limit from 0 
on�ned events.3We have 
onverted 2 possible events to 90% CL limit.
τ
(N → µ+ρ

)
τ8τ

(N → µ+ρ
)

τ8τ
(N → µ+ρ

)
τ8τ

(N → µ+ρ
)

τ8LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>160>160>160>160 pppp 90909090 1111 0.420.420.420.42 NISHINO 12 SKAM
>228>228>228>228 nnnn 90909090 3333 9.59.59.59.5 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 36 n 90 0 0.29 NISHINO 12 SKAM
> 12 p 90 0 0.5 BERGER 91 FREJ
> 22 n 90 0 1.1 BERGER 91 FREJ
>110 p 90 0 1.7 HIRATA 89C KAMI
> 23 n 90 1 1.8 HIRATA 89C KAMI
> 4.3 p 90 0 0.7 PHILLIPS 89 HPW
> 30 p 90 0 0.5 SEIDEL 88 IMB
> 11 n 90 1 1.1 SEIDEL 88 IMB
> 16 p 90 4 4.5 HAINES 86 IMB
> 7 n 90 6 5 HAINES 86 IMB
> 12 p 90 0 <0.7 ARISAKA 85 KAMI
> 5 n 90 1 <1.2 ARISAKA 85 KAMI
> 5.5 p (free) 90 4 5 BLEWITT 85 IMB
> 16 p 90 4 5 BLEWITT 85 IMB
> 9 n 90 1 2 PARK 85 IMB
τ
(N → ν ρ

)
τ9τ

(N → ν ρ
)

τ9τ
(N → ν ρ

)
τ9τ

(N → ν ρ
)

τ9LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>162>162>162>162 pppp 90909090 18181818 21.721.721.721.7 MCGREW 99 IMB3
> 19> 19> 19> 19 nnnn 90909090 0000 0.50.50.50.5 SEIDEL 88 IMB
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 9 n 90 4 2.4 BERGER 89 FREJ
> 24 p 90 0 0.9 BERGER 89 FREJ
> 27 p 90 5 1.5 HIRATA 89C KAMI
> 13 n 90 4 3.6 HIRATA 89C KAMI
> 13 p 90 1 1.1 SEIDEL 88 IMB
> 8 p 90 6 5 HAINES 86 IMB
> 2 n 90 15 10 HAINES 86 IMB
> 11 p 90 2 1 KAJITA 86 KAMI
> 4 n 90 2 2 KAJITA 86 KAMI
> 4.1 p (free) 90 6 7 BLEWITT 85 IMB
> 8.4 p 90 6 5 BLEWITT 85 IMB
> 2 n 90 7 3 PARK 85 IMB
> 0.9 p 90 2 1 CHERRY 81 HOME
> 0.6 n 90 2 1 CHERRY 81 HOME1We have 
onverted 2 possible events to 90% CL limit.
τ
(p→ e+ω

)
τ10τ

(p→ e+ω
)

τ10τ
(p→ e+ω

)
τ10τ

(p→ e+ω
)

τ10LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>320>320>320>320 pppp 90909090 1111 0.530.530.530.53 NISHINO 12 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>107 p 90 7 10.8 MCGREW 99 IMB3
> 17 p 90 0 1.1 BERGER 91 FREJ
> 45 p 90 2 1.45 HIRATA 89C KAMI
> 26 p 90 1 1.0 SEIDEL 88 IMB
> 1.5 p 90 0 BARTELT 87 SOUD
> 37 p 90 6 5.3 HAINES 86 IMB
> 25 p 90 1 <1.4 ARISAKA 85 KAMI
> 12 p (free) 90 6 7.5 BLEWITT 85 IMB
> 37 p 90 6 5.7 BLEWITT 85 IMB
> 0.6 p 90 1 0.3 1 BARTELT 83 SOUD
> 9.8 p 90 1 2 KRISHNA... 82 KOLR
> 2.8 p 90 2 3 CHERRY 81 HOME1Limit based on zero events.2We have 
al
ulated 90% CL limit from 0 
on�ned events.3We have 
onverted 2 possible events to 90% CL limit.

τ
(p→ µ+ω

)
τ11τ

(p→ µ+ω
)

τ11τ
(p→ µ+ω

)
τ11τ

(p→ µ+ω
)

τ11LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>780>780>780>780 pppp 90909090 0000 0.480.480.480.48 NISHINO 12 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>117 p 90 11 12.1 MCGREW 99 IMB3
> 11 p 90 0 1.0 BERGER 91 FREJ
> 57 p 90 2 1.9 HIRATA 89C KAMI
> 4.4 p 90 0 0.7 PHILLIPS 89 HPW
> 10 p 90 2 1.3 SEIDEL 88 IMB
> 23 p 90 2 1 HAINES 86 IMB
> 6.5 p (free) 90 9 8.7 BLEWITT 85 IMB
> 23 p 90 8 7 BLEWITT 85 IMB
τ
(n→ ν ω

)
τ12τ

(n→ ν ω
)

τ12τ
(n→ ν ω

)
τ12τ

(n→ ν ω
)

τ12LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>108>108>108>108 nnnn 90909090 12121212 22.522.522.522.5 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 17 n 90 1 0.7 BERGER 89 FREJ
> 43 n 90 3 2.7 HIRATA 89C KAMI
> 6 n 90 2 1.3 SEIDEL 88 IMB
> 12 n 90 6 6 HAINES 86 IMB
> 18 n 90 2 2 KAJITA 86 KAMI
> 16 n 90 1 2 PARK 85 IMB
> 2.0 n 90 2 1 CHERRY 81 HOME1We have 
onverted 2 possible events to 90% CL limit.
τ
(N → e+K)

τ13τ
(N → e+K)

τ13τ
(N → e+K)

τ13τ
(N → e+K)

τ13LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>1000>1000>1000>1000 pppp 90909090 6666 4.74.74.74.7 KOBAYASHI 05 SKAM
> 17> 17> 17> 17 nnnn 90909090 35353535 29.429.429.429.4 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 85 p 90 3 4.9 WALL 00 SOU2
> 31 p 90 23 25.2 MCGREW 99 IMB3
> 60 p 90 0 BERGER 91 FREJ
> 150 p 90 0 <0.27 HIRATA 89C KAMI
> 70 p 90 0 1.8 SEIDEL 88 IMB
> 77 p 90 5 4.5 HAINES 86 IMB
> 38 p 90 0 <0.8 ARISAKA 85 KAMI
> 24 p (free) 90 7 8.5 BLEWITT 85 IMB
> 77 p 90 5 4 BLEWITT 85 IMB
> 1.3 p 90 0 ALEKSEEV 81 BAKS
> 1.3 n 90 0 ALEKSEEV 81 BAKS
τ
(p→ e+K0S)

τ14τ
(p→ e+K0S)

τ14τ
(p→ e+K0S)

τ14τ
(p→ e+K0S)

τ14LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>120 p 90 1 1.3 WALL 00 SOU2
> 76 p 90 0 0.5 BERGER 91 FREJ
τ
(p→ e+K0L) τ15τ
(p→ e+K0L) τ15τ
(p→ e+K0L) τ15τ
(p→ e+K0L) τ15LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •

>51 p 90 2 3.5 WALL 00 SOU2
>44 p 90 0 ≤ 0.1 BERGER 91 FREJ
τ
(N → µ+K)

τ16τ
(N → µ+K)

τ16τ
(N → µ+K)

τ16τ
(N → µ+K)

τ16LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>1600>1600>1600>1600 pppp 90909090 13131313 13.213.213.213.2 REGIS 12 SKAM
> 26> 26> 26> 26 nnnn 90909090 20202020 28.428.428.428.4 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>1300 p 90 3 3.9 KOBAYASHI 05 SKAM
> 120 p 90 0 <1.2 WALL 00 SOU2
> 120 p 90 4 7.2 MCGREW 99 IMB3
> 54 p 90 0 BERGER 91 FREJ
> 120 p 90 1 0.4 HIRATA 89C KAMI
> 3.0 p 90 0 0.7 PHILLIPS 89 HPW
> 19 p 90 3 2.5 SEIDEL 88 IMB
> 1.5 p 90 0 1 BARTELT 87 SOUD
> 1.1 n 90 0 BARTELT 87 SOUD
> 40 p 90 7 6 HAINES 86 IMB
> 19 p 90 1 <1.1 ARISAKA 85 KAMI
> 6.7 p (free) 90 11 13 BLEWITT 85 IMB
> 40 p 90 7 8 BLEWITT 85 IMB
> 6 p 90 1 BATTISTONI 84 NUSX
> 0.6 p 90 0 2 BARTELT 83 SOUD
> 0.4 n 90 0 2 BARTELT 83 SOUD
> 5.8 p 90 2 3 KRISHNA... 82 KOLR
> 2.0 p 90 0 CHERRY 81 HOME
> 0.2 n 90 4 GURR 67 CNTR



1508150815081508BaryonParti
le Listingsp1BARTELT 87 limit applies to p → µ+K0S .2 Limit based on zero events.3We have 
al
ulated 90% CL limit from 1 
on�ned event.4We have 
onverted half-life to 90% CL mean life.
τ
(p→ µ+K0S)

τ17τ
(p→ µ+K0S)

τ17τ
(p→ µ+K0S)

τ17τ
(p→ µ+K0S)

τ17LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>150 p 90 0 <0.8 WALL 00 SOU2
> 64 p 90 0 1.2 BERGER 91 FREJ
τ
(p→ µ+K0L) τ18τ
(p→ µ+K0L) τ18τ
(p→ µ+K0L) τ18τ
(p→ µ+K0L) τ18LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •

>83 p 90 0 0.4 WALL 00 SOU2
>44 p 90 0 ≤ 0.1 BERGER 91 FREJ
τ
(N → νK)

τ19τ
(N → νK)

τ19τ
(N → νK)

τ19τ
(N → νK)

τ19LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>5900>5900>5900>5900 pppp 90909090 0000 1.01.01.01.0 ABE 14G SKAM
> 86> 86> 86> 86 nnnn 90909090 0000 2.42.42.42.4 HIRATA 89C KAMI
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 540 p 90 0 0.9 ASAKURA 15 KLND
>2300 p 90 0 1.3 KOBAYASHI 05 SKAM
> 26 n 90 16 9.1 WALL 00 SOU2
> 670 p 90 HAYATO 99 SKAM
> 151 p 90 15 21.4 MCGREW 99 IMB3
> 30 n 90 34 34.1 MCGREW 99 IMB3
> 43 p 90 1 1.54 1 ALLISON 98 SOU2
> 15 n 90 1 1.8 BERGER 89 FREJ
> 15 p 90 1 1.8 BERGER 89 FREJ
> 100 p 90 9 7.3 HIRATA 89C KAMI
> 0.28 p 90 0 0.7 PHILLIPS 89 HPW
> 0.3 p 90 0 BARTELT 87 SOUD
> 0.75 n 90 0 2 BARTELT 87 SOUD
> 10 p 90 6 5 HAINES 86 IMB
> 15 n 90 3 5 HAINES 86 IMB
> 28 p 90 3 3 KAJITA 86 KAMI
> 32 n 90 0 1.4 KAJITA 86 KAMI
> 1.8 p (free) 90 6 11 BLEWITT 85 IMB
> 9.6 p 90 6 5 BLEWITT 85 IMB
> 10 n 90 2 2 PARK 85 IMB
> 5 n 90 0 BATTISTONI 84 NUSX
> 2 p 90 0 BATTISTONI 84 NUSX
> 0.3 n 90 0 3 BARTELT 83 SOUD
> 0.1 p 90 0 3 BARTELT 83 SOUD
> 5.8 p 90 1 4 KRISHNA... 82 KOLR
> 0.3 n 90 2 5 CHERRY 81 HOME1This ALLISON 98 limit is with no ba
kground subtra
tion; with subtra
tion the limitbe
omes > 46 × 1030 years.2BARTELT 87 limit applies to n → νK0S .3 Limit based on zero events.4We have 
al
ulated 90% CL limit from 1 
on�ned event.5We have 
onverted 2 possible events to 90% CL limit.
τ
(n→ νK0S)

τ20τ
(n→ νK0S)

τ20τ
(n→ νK0S)

τ20τ
(n→ νK0S)

τ20LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>260>260>260>260 nnnn 90909090 34343434 30303030 1 KOBAYASHI 05 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 51 n 90 16 9.1 WALL 00 SOU21We have doubled the n → νK0 limit given in KOBAYASHI 05 to obtain this n → νK0Slimit.
τ
(p→ e+K∗(892)0) τ21τ
(p→ e+K∗(892)0) τ21τ
(p→ e+K∗(892)0) τ21τ
(p→ e+K∗(892)0) τ21LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

>84>84>84>84 pppp 90909090 38383838 52.052.052.052.0 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>10 p 90 0 0.8 BERGER 91 FREJ
>52 p 90 2 1.55 HIRATA 89C KAMI
>10 p 90 1 <1 ARISAKA 85 KAMI

τ
(N → νK∗(892)) τ22τ
(N → νK∗(892)) τ22τ
(N → νK∗(892)) τ22τ
(N → νK∗(892)) τ22LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

>51>51>51>51 pppp 90909090 7777 9.19.19.19.1 MCGREW 99 IMB3
>78>78>78>78 nnnn 90909090 40404040 50505050 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>22 n 90 0 2.1 BERGER 89 FREJ
>17 p 90 0 2.4 BERGER 89 FREJ
>20 p 90 5 2.1 HIRATA 89C KAMI
>21 n 90 4 2.4 HIRATA 89C KAMI
>10 p 90 7 6 HAINES 86 IMB
> 5 n 90 8 7 HAINES 86 IMB
> 8 p 90 3 2 KAJITA 86 KAMI
> 6 n 90 2 1.6 KAJITA 86 KAMI
> 5.8 p (free) 90 10 16 BLEWITT 85 IMB
> 9.6 p 90 7 6 BLEWITT 85 IMB
> 7 n 90 1 4 PARK 85 IMB
> 2.1 p 90 1 1 BATTISTONI 82 NUSX1We have 
onverted 1 possible event to 90% CL limit.Antilepton + mesonsAntilepton + mesonsAntilepton + mesonsAntilepton + mesons
τ
(p→ e+π+π−

)
τ23τ

(p→ e+π+π−
)

τ23τ
(p→ e+π+π−

)
τ23τ

(p→ e+π+π−
)

τ23LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>82>82>82>82 pppp 90909090 16161616 23.123.123.123.1 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>21 p 90 0 2.2 BERGER 91 FREJ
τ
(p→ e+π0π0) τ24τ
(p→ e+π0π0) τ24τ
(p→ e+π0π0) τ24τ
(p→ e+π0π0) τ24LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

>147>147>147>147 pppp 90909090 2222 0.80.80.80.8 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 38 p 90 1 0.5 BERGER 91 FREJ
τ
(n→ e+π−π0) τ25τ
(n→ e+π−π0) τ25τ
(n→ e+π−π0) τ25τ
(n→ e+π−π0) τ25LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

>52>52>52>52 nnnn 90909090 38383838 34.234.234.234.2 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>32 n 90 1 0.8 BERGER 91 FREJ
τ
(p→ µ+π+π−

)
τ26τ

(p→ µ+π+π−
)

τ26τ
(p→ µ+π+π−

)
τ26τ

(p→ µ+π+π−
)

τ26LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>133>133>133>133 pppp 90909090 25252525 38.038.038.038.0 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 17 p 90 1 2.6 BERGER 91 FREJ
> 3.3 p 90 0 0.7 PHILLIPS 89 HPW
τ
(p→ µ+π0π0) τ27τ
(p→ µ+π0π0) τ27τ
(p→ µ+π0π0) τ27τ
(p→ µ+π0π0) τ27LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

>101>101>101>101 pppp 90909090 3333 1.61.61.61.6 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 33 p 90 1 0.9 BERGER 91 FREJ
τ
(n→ µ+π−π0) τ28τ
(n→ µ+π−π0) τ28τ
(n→ µ+π−π0) τ28τ
(n→ µ+π−π0) τ28LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

>74>74>74>74 nnnn 90909090 17171717 20.820.820.820.8 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>33 n 90 0 1.1 BERGER 91 FREJ
τ
(n→ e+K0π−

)
τ29τ

(n→ e+K0π−
)

τ29τ
(n→ e+K0π−

)
τ29τ

(n→ e+K0π−
)

τ29LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>18>18>18>18 nnnn 90909090 1111 0.20.20.20.2 BERGER 91 FREJLepton + mesonLepton + mesonLepton + mesonLepton + meson
τ
(n→ e−π+)

τ30τ
(n→ e−π+)

τ30τ
(n→ e−π+)

τ30τ
(n→ e−π+)

τ30LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>65>65>65>65 nnnn 90909090 0000 1.61.61.61.6 SEIDEL 88 IMB
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>55 n 90 0 1.09 BERGER 91B FREJ
>16 n 90 9 7 HAINES 86 IMB
>25 n 90 2 4 PARK 85 IMB
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τ
(n→ µ−π+)

τ31τ
(n→ µ−π+)

τ31τ
(n→ µ−π+)

τ31τ
(n→ µ−π+)

τ31LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>49>49>49>49 nnnn 90909090 0000 0.50.50.50.5 SEIDEL 88 IMB
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>33 n 90 0 1.40 BERGER 91B FREJ
> 2.7 n 90 0 0.7 PHILLIPS 89 HPW
>25 n 90 7 6 HAINES 86 IMB
>27 n 90 2 3 PARK 85 IMB
τ
(n→ e−ρ+)

τ32τ
(n→ e−ρ+)

τ32τ
(n→ e−ρ+)

τ32τ
(n→ e−ρ+)

τ32LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>62>62>62>62 nnnn 90909090 2222 4.14.14.14.1 SEIDEL 88 IMB
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>12 n 90 13 6 HAINES 86 IMB
>12 n 90 5 3 PARK 85 IMB
τ
(n→ µ−ρ+)

τ33τ
(n→ µ−ρ+)

τ33τ
(n→ µ−ρ+)

τ33τ
(n→ µ−ρ+)

τ33LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>7>7>7>7 nnnn 90909090 1111 1.11.11.11.1 SEIDEL 88 IMB
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>2.6 n 90 0 0.7 PHILLIPS 89 HPW
>9 n 90 7 5 HAINES 86 IMB
>9 n 90 2 2 PARK 85 IMB
τ
(n→ e−K+)

τ34τ
(n→ e−K+)

τ34τ
(n→ e−K+)

τ34τ
(n→ e−K+)

τ34LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>32>32>32>32 nnnn 90909090 3333 2.962.962.962.96 BERGER 91B FREJ
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 0.23 n 90 0 0.7 PHILLIPS 89 HPW
τ
(n→ µ−K+)

τ35τ
(n→ µ−K+)

τ35τ
(n→ µ−K+)

τ35τ
(n→ µ−K+)

τ35LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>57>57>57>57 nnnn 90909090 0000 2.182.182.182.18 BERGER 91B FREJ
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 4.7 n 90 0 0.7 PHILLIPS 89 HPWLepton + mesonsLepton + mesonsLepton + mesonsLepton + mesons
τ
(p→ e−π+π+)

τ36τ
(p→ e−π+π+)

τ36τ
(p→ e−π+π+)

τ36τ
(p→ e−π+π+)

τ36LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>30>30>30>30 pppp 90909090 1111 2.502.502.502.50 BERGER 91B FREJ
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 2.0 p 90 0 0.7 PHILLIPS 89 HPW
τ
(n→ e−π+π0) τ37τ
(n→ e−π+π0) τ37τ
(n→ e−π+π0) τ37τ
(n→ e−π+π0) τ37LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

>29>29>29>29 nnnn 90909090 1111 0.780.780.780.78 BERGER 91B FREJ
τ
(p→ µ−π+π+)

τ38τ
(p→ µ−π+π+)

τ38τ
(p→ µ−π+π+)

τ38τ
(p→ µ−π+π+)

τ38LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>17>17>17>17 pppp 90909090 1111 1.721.721.721.72 BERGER 91B FREJ
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 7.8 p 90 0 0.7 PHILLIPS 89 HPW
τ
(n→ µ−π+π0) τ39τ
(n→ µ−π+π0) τ39τ
(n→ µ−π+π0) τ39τ
(n→ µ−π+π0) τ39LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

>34>34>34>34 nnnn 90909090 0000 0.780.780.780.78 BERGER 91B FREJ
τ
(p→ e−π+K+)

τ40τ
(p→ e−π+K+)

τ40τ
(p→ e−π+K+)

τ40τ
(p→ e−π+K+)

τ40LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>75>75>75>75 pppp 90909090 81818181 127.2127.2127.2127.2 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>20 p 90 3 2.50 BERGER 91B FREJ
τ
(p→ µ−π+K+)

τ41τ
(p→ µ−π+K+)

τ41τ
(p→ µ−π+K+)

τ41τ
(p→ µ−π+K+)

τ41LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>245>245>245>245 pppp 90909090 3333 4.04.04.04.0 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 5 p 90 2 0.78 BERGER 91B FREJ

Antilepton + photon(s)Antilepton + photon(s)Antilepton + photon(s)Antilepton + photon(s)
τ
(p→ e+ γ

)
τ42τ

(p→ e+ γ
)

τ42τ
(p→ e+ γ

)
τ42τ

(p→ e+ γ
)

τ42LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>670>670>670>670 pppp 90909090 0000 0.10.10.10.1 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>133 p 90 0 0.3 BERGER 91 FREJ
>460 p 90 0 0.6 SEIDEL 88 IMB
>360 p 90 0 0.3 HAINES 86 IMB
> 87 p (free) 90 0 0.2 BLEWITT 85 IMB
>360 p 90 0 0.2 BLEWITT 85 IMB
> 0.1 p 90 1 GURR 67 CNTR1We have 
onverted half-life to 90% CL mean life.
τ
(p→ µ+γ

)
τ43τ

(p→ µ+γ
)

τ43τ
(p→ µ+γ

)
τ43τ

(p→ µ+γ
)

τ43LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>478>478>478>478 pppp 90909090 0000 0.10.10.10.1 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>155 p 90 0 0.1 BERGER 91 FREJ
>380 p 90 0 0.5 SEIDEL 88 IMB
> 97 p 90 3 2 HAINES 86 IMB
> 61 p (free) 90 0 0.2 BLEWITT 85 IMB
>280 p 90 0 0.6 BLEWITT 85 IMB
> 0.3 p 90 1 GURR 67 CNTR1We have 
onverted half-life to 90% CL mean life.
τ
(n→ ν γ

)
τ44τ

(n→ ν γ
)

τ44τ
(n→ ν γ

)
τ44τ

(n→ ν γ
)

τ44LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>550>550>550>550 90909090 TAKHISTOV 15 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 28 n 90 163 144.7 MCGREW 99 IMB3
> 24 n 90 10 6.86 BERGER 91B FREJ
> 9 n 90 73 60 HAINES 86 IMB
> 11 n 90 28 19 PARK 85 IMB
τ
(p→ e+ γ γ

)
τ45τ

(p→ e+ γ γ
)

τ45τ
(p→ e+ γ γ

)
τ45τ

(p→ e+ γ γ
)

τ45LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>100>100>100>100 pppp 90909090 1111 0.80.80.80.8 BERGER 91 FREJ
τ
(n→ ν γ γ

)
τ46τ

(n→ ν γ γ
)

τ46τ
(n→ ν γ γ

)
τ46τ

(n→ ν γ γ
)

τ46LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>219>219>219>219 nnnn 90909090 5555 7.57.57.57.5 MCGREW 99 IMB3Antilepton + single masslessAntilepton + single masslessAntilepton + single masslessAntilepton + single massless
τ
(p→ e+X)

τ47τ
(p→ e+X)

τ47τ
(p→ e+X)

τ47τ
(p→ e+X)

τ47VALUE (1030 years) CL% DOCUMENT ID TECN
>790>790>790>790 90 TAKHISTOV 15 SKAM
τ
(p→ µ+X)

τ48τ
(p→ µ+X)

τ48τ
(p→ µ+X)

τ48τ
(p→ µ+X)

τ48VALUE (1030 years) CL% DOCUMENT ID TECN
>410>410>410>410 90 TAKHISTOV 15 SKAMThree (or more) leptonsThree (or more) leptonsThree (or more) leptonsThree (or more) leptons
τ
(p→ e+ e+ e−)

τ49τ
(p→ e+ e+ e−)

τ49τ
(p→ e+ e+ e−)

τ49τ
(p→ e+ e+ e−)

τ49LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>793>793>793>793 pppp 90909090 0000 0.50.50.50.5 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>147 p 90 0 0.1 BERGER 91 FREJ
>510 p 90 0 0.3 HAINES 86 IMB
> 89 p (free) 90 0 0.5 BLEWITT 85 IMB
>510 p 90 0 0.7 BLEWITT 85 IMB
τ
(p→ e+µ+µ−

)
τ50τ

(p→ e+µ+µ−
)

τ50τ
(p→ e+µ+µ−

)
τ50τ

(p→ e+µ+µ−
)

τ50LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>359>359>359>359 pppp 90909090 1111 0.90.90.90.9 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 81 p 90 0 0.16 BERGER 91 FREJ
> 5.0 p 90 0 0.7 PHILLIPS 89 HPW
τ
(p→ e+ ν ν

)
τ51τ

(p→ e+ ν ν
)

τ51τ
(p→ e+ ν ν

)
τ51τ

(p→ e+ ν ν
)

τ51LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>170>170>170>170 pppp 90909090 1 TAKHISTOV 14 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 17 p 90 152 153.7 MCGREW 99 IMB3
> 11 p 90 11 6.08 BERGER 91B FREJ1Allowed events at 90% CL are 459.
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τ
(n→ e+ e− ν

)
τ52τ

(n→ e+ e− ν
)

τ52τ
(n→ e+ e− ν

)
τ52τ

(n→ e+ e− ν
)

τ52LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>257>257>257>257 nnnn 90909090 5555 7.57.57.57.5 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 74 n 90 0 < 0.1 BERGER 91B FREJ
> 45 n 90 5 5 HAINES 86 IMB
> 26 n 90 4 3 PARK 85 IMB
τ
(n→ µ+ e−ν

)
τ53τ

(n→ µ+ e−ν
)

τ53τ
(n→ µ+ e−ν

)
τ53τ

(n→ µ+ e−ν
)

τ53LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>83>83>83>83 nnnn 90909090 25252525 29.429.429.429.4 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>47 n 90 0 < 0.1 BERGER 91B FREJ
τ
(n→ µ+µ−ν

)
τ54τ

(n→ µ+µ−ν
)

τ54τ
(n→ µ+µ−ν

)
τ54τ

(n→ µ+µ−ν
)

τ54LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>79>79>79>79 nnnn 90909090 100100100100 145145145145 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>42 n 90 0 1.4 BERGER 91B FREJ
> 5.1 n 90 0 0.7 PHILLIPS 89 HPW
>16 n 90 14 7 HAINES 86 IMB
>19 n 90 4 7 PARK 85 IMB
τ
(p→ µ+ e+ e−)

τ55τ
(p→ µ+ e+ e−)

τ55τ
(p→ µ+ e+ e−)

τ55τ
(p→ µ+ e+ e−)

τ55LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>529>529>529>529 pppp 90909090 0000 1.01.01.01.0 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 91 p 90 0 ≤ 0.1 BERGER 91 FREJ
τ
(p→ µ+µ+µ−

)
τ56τ

(p→ µ+µ+µ−
)

τ56τ
(p→ µ+µ+µ−

)
τ56τ

(p→ µ+µ+µ−
)

τ56LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>675>675>675>675 pppp 90909090 0000 0.30.30.30.3 MCGREW 99 IMB3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>119 p 90 0 0.2 BERGER 91 FREJ
> 10.5 p 90 0 0.7 PHILLIPS 89 HPW
>190 p 90 1 0.1 HAINES 86 IMB
> 44 p (free) 90 1 0.7 BLEWITT 85 IMB
>190 p 90 1 0.9 BLEWITT 85 IMB
> 2.1 p 90 1 1 BATTISTONI 82 NUSX1We have 
onverted 1 possible event to 90% CL limit.
τ
(p→ µ+ν ν

)
τ57τ

(p→ µ+ν ν
)

τ57τ
(p→ µ+ν ν

)
τ57τ

(p→ µ+ν ν
)

τ57LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>220>220>220>220 pppp 90909090 1 TAKHISTOV 14 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 21 p 90 7 11.23 BERGER 91B FREJ1Allowed events at 90% CL are 286.
τ
(p→ e−µ+µ+)

τ58τ
(p→ e−µ+µ+)

τ58τ
(p→ e−µ+µ+)

τ58τ
(p→ e−µ+µ+)

τ58LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>6.0>6.0>6.0>6.0 pppp 90909090 0000 0.70.70.70.7 PHILLIPS 89 HPW
τ
(n→ 3ν)

τ59τ
(n→ 3ν)

τ59τ
(n→ 3ν)

τ59τ
(n→ 3ν)

τ59See also the \to anything" and \disappearan
e" limits for bound nu
leons in the \pMean Life" data blo
k just in front of the list of possible p de
ay modes. Su
h modes
ould of 
ourse be to three (or �ve) neutrinos, and the limits are stronger, but we donot repeat them here.LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN
>0.00049>0.00049>0.00049>0.00049 nnnn 90909090 2222 2222 1 SUZUKI 93B KAMI
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>0.0023 n 90 2 GLICENSTEIN 97 KAMI
>0.00003 n 90 11 6.1 3 BERGER 91B FREJ
>0.00012 n 90 7 11.2 3 BERGER 91B FREJ
>0.0005 n 90 0 LEARNED 79 RVUE1The SUZUKI 93B limit applies to any of νe νe νe , νµ νµνµ, or ντ ντ ντ .2GLICENSTEIN 97 uses Kamioka data and the idea that the disappearan
e of the neu-tron's magneti
 moment should produ
e radiation.3The �rst BERGER 91B limit is for n → νe νe νe , the se
ond is for n → νµνµνµ.
τ
(n→ 5ν)

τ60τ
(n→ 5ν)

τ60τ
(n→ 5ν)

τ60τ
(n→ 5ν)

τ60See the note on τ
(n → 3ν) on the previous data blo
k.LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •

>0.0017 n 90 1 GLICENSTEIN 97 KAMI1GLICENSTEIN 97 uses Kamioka data and the idea that the disappearan
e of the neu-tron's magneti
 moment should produ
e radiation.

In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modes
τ
(N → e+ anything) τ61τ
(N → e+ anything) τ61τ
(N → e+ anything) τ61τ
(N → e+ anything) τ61LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

>0.6>0.6>0.6>0.6 p, np, np, np, n 90909090 1 LEARNED 79 RVUE1The ele
tron may be primary or se
ondary.
τ
(N → µ+anything) τ62τ
(N → µ+anything) τ62τ
(N → µ+anything) τ62τ
(N → µ+anything) τ62LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

>12>12>12>12 p, np, np, np, n 90909090 2222 1,2 CHERRY 81 HOME
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 1.8 p, n 90 2 COWSIK 80 CNTR
> 6 p, n 90 2 LEARNED 79 RVUE1We have 
onverted 2 possible events to 90% CL limit.2The muon may be primary or se
ondary.
τ
(N → ν anything) τ63τ
(N → ν anything) τ63τ
(N → ν anything) τ63τ
(N → ν anything) τ63Anything = π, ρ, K , et
.LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •

>0.0002 p, n 90 0 LEARNED 79 RVUE
τ
(N → e+π0 anything) τ64τ
(N → e+π0 anything) τ64τ
(N → e+π0 anything) τ64τ
(N → e+π0 anything) τ64LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

>0.6>0.6>0.6>0.6 p, np, np, np, n 90909090 0000 LEARNED 79 RVUE
τ
(N → 2 bodies, ν-free) τ65τ
(N → 2 bodies, ν-free) τ65τ
(N → 2 bodies, ν-free) τ65τ
(N → 2 bodies, ν-free) τ65LIMIT(1030 years) PARTICLE CL% EVTS BKGD EST DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •

>1.3 p, n 90 0 ALEKSEEV 81 BAKS�B = 2 dinu
leon modes�B = 2 dinu
leon modes�B = 2 dinu
leon modes�B = 2 dinu
leon modes
τ
(pp→ π+π+)

τ66τ
(pp→ π+π+)

τ66τ
(pp→ π+π+)

τ66τ
(pp→ π+π+)

τ66LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT
>72.2>72.2>72.2>72.2 90909090 2222 4.454.454.454.45 GUSTAFSON 15 SKAM per oxygen nu
leus
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 0.7 90 4 2.34 BERGER 91B FREJ per iron nu
leus
τ
(pn→ π+π0) τ67τ
(pn→ π+π0) τ67τ
(pn→ π+π0) τ67τ
(pn→ π+π0) τ67LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT

>170>170>170>170 90909090 GUSTAFSON 15 SKAM per oxygen nu
leus
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 2.0 90 0 0.31 BERGER 91B FREJ per iron nu
leus
τ
(nn→ π+π−

)
τ68τ

(nn→ π+π−
)

τ68τ
(nn→ π+π−

)
τ68τ

(nn→ π+π−
)

τ68LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT
>0.7>0.7>0.7>0.7 90909090 4444 2.182.182.182.18 BERGER 91B FREJ τ per iron nu
leus
τ
(nn→ π0π0) τ69τ
(nn→ π0π0) τ69τ
(nn→ π0π0) τ69τ
(nn→ π0π0) τ69LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT

>404>404>404>404 90909090 GUSTAFSON 15 SKAM per oxygen nu
leus
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 3.4 90 0 0.78 BERGER 91B FREJ per iron nu
leus
τ
(pp→ K+K+)

τ70τ
(pp→ K+K+)

τ70τ
(pp→ K+K+)

τ70τ
(pp→ K+K+)

τ70LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT
>170>170>170>170 90909090 0000 0.280.280.280.28 LITOS 14 SKAM τ per oxygen nu
leus
τ
(pp→ e+ e+)

τ71τ
(pp→ e+ e+)

τ71τ
(pp→ e+ e+)

τ71τ
(pp→ e+ e+)

τ71LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT
>5.8>5.8>5.8>5.8 90909090 0000 <0.1<0.1<0.1<0.1 BERGER 91B FREJ τ per iron nu
leus
τ
(pp→ e+µ+)

τ72τ
(pp→ e+µ+)

τ72τ
(pp→ e+µ+)

τ72τ
(pp→ e+µ+)

τ72LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT
>3.6>3.6>3.6>3.6 90909090 0000 <0.1<0.1<0.1<0.1 BERGER 91B FREJ τ per iron nu
leus
τ
(pp→ µ+µ+)

τ73τ
(pp→ µ+µ+)

τ73τ
(pp→ µ+µ+)

τ73τ
(pp→ µ+µ+)

τ73LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT
>1.7>1.7>1.7>1.7 90909090 0000 0.620.620.620.62 BERGER 91B FREJ τ per iron nu
leus
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τ
(pn→ e+ ν

)
τ74τ

(pn→ e+ ν
)

τ74τ
(pn→ e+ ν

)
τ74τ

(pn→ e+ ν
)

τ74LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT
>260>260>260>260 90909090 TAKHISTOV 15 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 2.8 90 5 9.67 BERGER 91B FREJ τ per iron nu
leus
τ
(pn→ µ+ ν

)
τ75τ

(pn→ µ+ ν
)

τ75τ
(pn→ µ+ ν

)
τ75τ

(pn→ µ+ ν
)

τ75LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT
>200>200>200>200 90909090 TAKHISTOV 15 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 1.6 90 4 4.37 BERGER 91B FREJ τ per iron nu
leus
τ
(pn→ τ+ ντ

)
τ76τ

(pn→ τ+ ντ

)
τ76τ

(pn→ τ+ ντ

)
τ76τ

(pn→ τ+ ντ

)
τ76LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN

>29>29>29>29 90909090 TAKHISTOV 15 SKAM
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 1 90 1 BRYMAN 14 CHER1BRYMAN 14 uses a MCGREW 99 limit on the p → e+ ν ν lifetime to extra
t this value.
τ
(nn→ νe νe) τ77τ
(nn→ νe νe) τ77τ
(nn→ νe νe) τ77τ
(nn→ νe νe) τ77We in
lude \invisible" modes here.LIMIT(1030 years) CL% EVTS BKGD EST DOCUMENT ID TECN COMMENT

>1.4>1.4>1.4>1.4 90909090 1 ARAKI 06 KLND nn → invisible
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>0.000042 90 2 TRETYAK 04 CNTR nn → invisible
>0.000049 90 3 BACK 03 BORX nn → invisible
>0.000012 90 4 BERNABEI 00B DAMA nn → invisible
>0.000012 90 5 9.7 BERGER 91B FREJ τ per iron nu
leus1ARAKI 06 looks for signs of de-ex
itation of the residual nu
leus after disappearan
e oftwo neutrons from the s shell of 12C.2TRETYAK 04 uses data from an old Homestake-mine radio
hemi
al experiment on limitsfor invisible de
ays of 39K to 37Ar.3BACK 03 looks for de
ays of unstable nu
lides left after NN de
ays of parent 12C, 13C,16O nu
lei. These are \invisible 
hannel" limits.4BERNABEI 00B looks for the de
ay of a 12754 Xe nu
leus following the disappearan
e ofan nn pair in the otherwise-stable 12954 Xe nu
leus. The limit here applies as well to nn →

νµ νµ, nn → ντ ντ , or any \disappearan
e" mode.
τ
(nn→ νµ νµ

)
τ78τ

(nn→ νµ νµ

)
τ78τ

(nn→ νµ νµ

)
τ78τ

(nn→ νµ νµ

)
τ78See the pro
eeding data blo
k. \Invisible modes" would in
lude any multi-neutrinomode.LIMIT(1030 years) CL% EVTS BKGD EST CL% DOCUMENT ID TECN COMMENT

>1.4 (CL = 90%) OUR LIMIT>1.4 (CL = 90%) OUR LIMIT>1.4 (CL = 90%) OUR LIMIT>1.4 (CL = 90%) OUR LIMIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>0.000006 90 4 4.4 BERGER 91B FREJ τ per ironnu
leus
τ
(pn→ invisible) τ79τ
(pn→ invisible) τ79τ
(pn→ invisible) τ79τ
(pn→ invisible) τ79This violates 
harge 
onservation as well as baryon number 
onservation.VALUE (1030 years) CL% DOCUMENT ID TECN

>0.000021>0.000021>0.000021>0.000021 90 1 TRETYAK 04 CNTR1TRETYAK 04 uses data from an old Homestake-mine radio
hemi
al experiment on limitsfor invisible de
ays of 39K to 37Ar.
τ
(pp→ invisible) τ80τ
(pp→ invisible) τ80τ
(pp→ invisible) τ80τ
(pp→ invisible) τ80This violates 
harge 
onservation as well as baryon number 
onservation.LIMIT(1030 years) CL% EVTS BKGD EST CL% DOCUMENT ID TECN

>0.00005>0.00005>0.00005>0.00005 90 1 BACK 03 BORX
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>0.00000055 90 2 BERNABEI 00B DAMA1BACK 03 looks for de
ays of unstable nu
lides left after NN de
ays of parent 12C, 13C,16O nu
lei. These are \invisible 
hannel" limits.2BERNABEI 00B looks for the de
ay of a 12752 Te nu
leus following the disappearan
e of app pair in the otherwise-stable 12954 Xe nu
leus.p PARTIAL MEAN LIVESp PARTIAL MEAN LIVESp PARTIAL MEAN LIVESp PARTIAL MEAN LIVESThe \partial mean life" limits tabulated here are the limits on τ/Bi , where
τ is the total mean life for the antiproton and Bi is the bran
hing fra
tionfor the mode in question.

τ
(p→ e− γ

)
τ81τ

(p→ e− γ
)

τ81τ
(p→ e− γ

)
τ81τ

(p→ e− γ
)

τ81VALUE (years) CL% DOCUMENT ID TECN COMMENT
> 7× 105> 7× 105> 7× 105> 7× 105 90 GEER 00 APEX 8.9 GeV/
 p beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>1848 95 GEER 94 CALO 8.9 GeV/
 p beam

τ
(p→ µ−γ

)
τ82τ

(p→ µ−γ
)

τ82τ
(p→ µ−γ

)
τ82τ

(p→ µ−γ
)

τ82VALUE (years) CL% DOCUMENT ID TECN COMMENT
>5 × 104>5 × 104>5 × 104>5 × 104 90 GEER 00 APEX 8.9 GeV/
 p beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>5.0× 104 90 HU 98B APEX 8.9 GeV/
 p beam
τ
(p→ e−π0) τ83τ
(p→ e−π0) τ83τ
(p→ e−π0) τ83τ
(p→ e−π0) τ83VALUE (years) CL% DOCUMENT ID TECN COMMENT

> 4× 105> 4× 105> 4× 105> 4× 105 90 GEER 00 APEX 8.9 GeV/
 p beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>554 95 GEER 94 CALO 8.9 GeV/
 p beam
τ
(p→ µ−π0) τ84τ
(p→ µ−π0) τ84τ
(p→ µ−π0) τ84τ
(p→ µ−π0) τ84VALUE (years) CL% DOCUMENT ID TECN COMMENT

>5 × 104>5 × 104>5 × 104>5 × 104 90 GEER 00 APEX 8.9 GeV/
 p beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>4.8× 104 90 HU 98B APEX 8.9 GeV/
 p beam
τ
(p→ e− η

)
τ85τ

(p→ e− η
)

τ85τ
(p→ e− η

)
τ85τ

(p→ e− η
)

τ85VALUE (years) CL% DOCUMENT ID TECN COMMENT
> 2× 104> 2× 104> 2× 104> 2× 104 90 GEER 00 APEX 8.9 GeV/
 p beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>171 95 GEER 94 CALO 8.9 GeV/
 p beam
τ
(p→ µ−η

)
τ86τ

(p→ µ−η
)

τ86τ
(p→ µ−η

)
τ86τ

(p→ µ−η
)

τ86VALUE (years) CL% DOCUMENT ID TECN COMMENT
>8 × 103>8 × 103>8 × 103>8 × 103 90 GEER 00 APEX 8.9 GeV/
 p beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>7.9× 103 90 HU 98B APEX 8.9 GeV/
 p beam
τ
(p→ e−K0S)

τ87τ
(p→ e−K0S)

τ87τ
(p→ e−K0S)

τ87τ
(p→ e−K0S)

τ87VALUE (years) CL% DOCUMENT ID TECN COMMENT
>900>900>900>900 90 GEER 00 APEX 8.9 GeV/
 p beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 29 95 GEER 94 CALO 8.9 GeV/
 p beam
τ
(p→ µ−K0S)

τ88τ
(p→ µ−K0S)

τ88τ
(p→ µ−K0S)

τ88τ
(p→ µ−K0S)

τ88VALUE (years) CL% DOCUMENT ID TECN COMMENT
>4 × 103>4 × 103>4 × 103>4 × 103 90 GEER 00 APEX 8.9 GeV/
 p beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>4.3× 103 90 HU 98B APEX 8.9 GeV/
 p beam
τ
(p→ e−K0L) τ89τ
(p→ e−K0L) τ89τ
(p→ e−K0L) τ89τ
(p→ e−K0L) τ89VALUE (years) CL% DOCUMENT ID TECN COMMENT

>9× 103>9× 103>9× 103>9× 103 90 GEER 00 APEX 8.9 GeV/
 p beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>9 95 GEER 94 CALO 8.9 GeV/
 p beam
τ
(p→ µ−K0L) τ90τ
(p→ µ−K0L) τ90τ
(p→ µ−K0L) τ90τ
(p→ µ−K0L) τ90VALUE (years) CL% DOCUMENT ID TECN COMMENT

>7 × 103>7 × 103>7 × 103>7 × 103 90 GEER 00 APEX 8.9 GeV/
 p beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>6.5× 103 90 HU 98B APEX 8.9 GeV/
 p beam
τ
(p→ e− γ γ

)
τ91τ

(p→ e− γ γ
)

τ91τ
(p→ e− γ γ

)
τ91τ

(p→ e− γ γ
)

τ91VALUE (years) CL% DOCUMENT ID TECN COMMENT
>2× 104>2× 104>2× 104>2× 104 90 GEER 00 APEX 8.9 GeV/
 p beam
τ
(p→ µ−γ γ

)
τ92τ

(p→ µ−γ γ
)

τ92τ
(p→ µ−γ γ

)
τ92τ

(p→ µ−γ γ
)

τ92VALUE (years) CL% DOCUMENT ID TECN COMMENT
>2 × 104>2 × 104>2 × 104>2 × 104 90 GEER 00 APEX 8.9 GeV/
 p beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>2.3× 104 90 HU 98B APEX 8.9 GeV/
 p beam
τ
(p→ e−ω

)
τ93τ

(p→ e−ω
)

τ93τ
(p→ e−ω

)
τ93τ

(p→ e−ω
)

τ93VALUE (years) CL% DOCUMENT ID TECN COMMENT
>200>200>200>200 90 GEER 00 APEX 8.9 GeV/
 p beam



1512151215121512BaryonParti
le Listingsp, n p REFERENCESp REFERENCESp REFERENCESp REFERENCESMOHR 16 arXiv:1507.07956 P.J. Mohr, D.B. Newell, B.N. Taylor (NIST)A

epted for publi
ation in RMPASAKURA 15 PR D92 052006 K. Asakura et al. (KamLAND Collab.)GUSTAFSON 15 PR D91 072009 J. Gustafson et al. (Super-Kamiokande Collab.)LEE 15 PR D92 013013 G. Lee, J.R. Arrington, R.J. Hill (ANL, EFI+)PESET 15 EPJ A51 32 C. Peset, A. Pineda (BARC)TAKHISTOV 15 PRL 115 121803 V. Takhistov et al. (Super-Kamiokande Collab.)ABE 14E PRL 113 121802 K. Abe et al. (Super-Kamiokande Collab.)ABE 14G PR D90 072005 K. Abe et al. (Super-Kamiokande Collab.)BRYMAN 14 PL B733 190 D. Bryman (BRCO)EPSTEIN 14 PR D90 074027 Z. Epstein, G. Paz, J. Roy (UMD, WAYN)KARSHENBOI...14A PR D90 053012 S.G. Karshenboim (MPIG)LITOS 14 PRL 112 131803 M. Litos et al. (Super-Kamiokande Collab.)LORENZ 14 PL B737 57 I.T. Lorentz, U.-G. Meissner (BONN, JULI)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)TAKHISTOV 14 PRL 113 101801 V. Takhistov et al. (Super-Kamiokande Collab.)ANTOGNINI 13 SCI 339 417 A. Antognini et al. (MPIM, ETH, UPMC+)DISCIACCA 13 PRL 110 130801 J. DiS
ia

a et al. (ATRAP Collab.)MCGOVERN 13 EPJ A49 12 J.A. M
Govern, D.R. Phillips, H.W. GriesshammerMOHR 12 RMP 84 1527 P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)NISHINO 12 PR D85 112001 H. Nishino et al. (Super-Kamiokande Collab.)REGIS 12 PR D86 012006 C. Regis et al. (Super-Kamiokande Collab.)ARRINGTON 11 PRL 107 119101 J. Arrington (ANL)BERNAUER 11 PRL 107 119102 J.C. Bernauer et al. (MAMI A1 Collab.)BRESSI 11 PR A83 052101 G. Bressi et al. (LEGN, PAVII, PADO, TRST+)CLOET 11 PR C83 012201 I.C. Cloet, G.A. Miller (WASH)DERUJULA 11 PL B697 26 A. de Rujula (MADE, BOST, CERN)DISTLER 11 PL B696 343 M.O. Distler, J.C. Bernauer, T. Wal
her (MANZ)HILL 11 PRL 107 160402 R.J. Hill, G. Paz (EFI)HORI 11 NAT 475 484 M. Hori et al. (MPIG, TOKY, BUDA, +)ZHAN 11 PL B705 59 X. Zhan et al. (JLAB-Hall A Collab.)BERNAUER 10 PRL 105 242001 J.C. Bernauer et al. (MAMI A1 Collab.)Also PR C90 015206 J.C. Bernauer et al. (MAMI A1 Collab.)BORISYUK 10 NP A843 59 D. Borisyuk (KIEV)DERUJULA 10 PL B693 555 A. De Rujula (MADU, CERN)HILL 10 PR D82 113005 R.J. Hill, G. Paz (CHIC)POHL 10 NAT 466 213 R. Pohl et al. (MPIQ, ENSP, COIM, +)NISHINO 09 PRL 102 141801 H. Nishino et al. (Super-Kamiokande Collab.)PASK 09 PL B678 55 T. Pask et al. (Stefan Meyer Inst., Vienna, TOKY+)MOHR 08 RMP 80 633 P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)BELUSHKIN 07 PR C75 035202 M.A. Belushkin, H.W. Hammer, U.-G. Meissner (BONN+)ARAKI 06 PRL 96 101802 T. Araki et al. (KamLAND Collab.)HORI 06 PRL 96 243401 M. Hori et al. (CERN, TOKYO+)BLUNDEN 05 PR C72 057601 P.G. Blunden, I. Si
k (MANI, BASL)KOBAYASHI 05 PR D72 052007 K. Kobayashi et al. (Super-Kamiokande Collab.)MOHR 05 RMP 77 1 P.J. Mohr, B.N. Taylor (NIST)SCHUMACHER 05 PPNP 55 567 M. S
huma
her (GOET)AHMED 04 PRL 92 102004 S.N. Ahmed et al. (SNO Collab.)TRETYAK 04 JETPL 79 106 V.I. Tretyak, V.Yu. Denisov, Yu.G. Zdesenko (KIEV)Translated from ZETFP 79 136.BACK 03 PL B563 23 H.O. Ba
k et al. (BOREXINO Collab.)BEANE 03 PL B567 200 S.R. Beane et al.Also PL B607 320 (errat.) S.R. Beane et al.DMITRIEV 03 PRL 91 212303 V.F. Dmitriev, R.A. Senkov (NOVO)HORI 03 PRL 91 123401 M. Hori et al. (CERN ASACUSA Collab.)SICK 03 PL B576 62 I. Si
k (BASL)ZDESENKO 03 PL B553 135 Yu.G. Zdesenko, V.I. Tretyak (KIEV)AHMAD 02 PRL 89 011301 Q.R. Ahmad et al. (SNO Collab.)BARANOV 01 PPN 32 376 P.S. Baranov et al.Translated from FECAY 32 699.BLANPIED 01 PR C64 025203 G. Blanpied et al. (BNL LEGS Collab.)HORI 01 PRL 87 093401 M. Hori et al. (CERN ASACUSA Collab.)OLMOSDEL... 01 EPJ A10 207 V. Olmos de Leon et al. (MAMI TAPS Collab.)TRETYAK 01 PL B505 59 V.I. Tretyak, Yu.G. Zdesenko (KIEV)BERNABEI 00B PL B493 12 R. Bernabei et al. (Gran Sasso DAMA Collab.)GEER 00 PRL 84 590 S. Geer et al. (FNAL APEX Collab.)Also PR D62 052004 S. Geer et al. (FNAL APEX Collab.)Also PRL 85 3546 (errat.) S. Geer et al. (FNAL APEX Collab.)GEER 00D APJ 532 648 S.H. Geer, D.C. KennedySENGUPTA 00 PL B484 275 S. SenguptaWALL 00 PR D61 072004 D. Wall et al. (Soudan-2 Collab.)WALL 00B PR D62 092003 D. Wall et al. (Soudan-2 Collab.)GABRIELSE 99 PRL 82 3198 G. Gabrielse et al.HAYATO 99 PRL 83 1529 Y. Hayato et al. (Super-Kamiokande Collab.)MCGREW 99 PR D59 052004 C. M
Grew et al. (IMB-3 Collab.)MOHR 99 JPCRD 28 1713 P.J. Mohr, B.N. Taylor (NIST)Also RMP 72 351 P.J. Mohr, B.N. Taylor (NIST)TORII 99 PR A59 223 H.A. Torii et al. (CERN PS-205 Collab.)ALLISON 98 PL B427 217 W.W.M. Allison et al. (Soudan-2 Collab.)HU 98B PR D58 111101 M. Hu et al. (FNAL APEX Collab.)SHIOZAWA 98 PRL 81 3319 M. Shiozawa et al. (Super-Kamiokande Collab.)GLICENSTEIN 97 PL B411 326 J.F. Gli
enstein (SACL)GABRIELSE 95 PRL 74 3544 G. Gabrielse et al. (HARV, MANZ, SEOUL)MACGIBBON 95 PR C52 2097 B.E. Ma
Gibbon et al. (ILL, SASK, INRM)GEER 94 PRL 72 1596 S. Geer et al. (FNAL, UCLA, PSU)HALLIN 93 PR C48 1497 E.L. Hallin et al. (SASK, BOST, ILL)SUZUKI 93B PL B311 357 Y. Suzuki et al. (Kamiokande Collab.)HUGHES 92 PRL 69 578 R.J. Hughes, B.I. Deut
h (LANL, AARH)ZIEGER 92 PL B278 34 A. Zieger et al. (MPCM)Also PL B281 417 (erratum) A. Zieger et al. (MPCM)BERGER 91 ZPHY C50 385 C. Berger et al. (FREJUS Collab.)BERGER 91B PL B269 227 C. Berger et al. (FREJUS Collab.)FEDERSPIEL 91 PRL 67 1511 F.J. Federspiel et al. (ILL)BECKER-SZ... 90 PR D42 2974 R.A. Be
ker-Szendy et al. (IMB-3 Collab.)ERICSON 90 EPL 11 295 T.E.O. Eri
son, A. Ri
hter (CERN, DARM)GABRIELSE 90 PRL 65 1317 G. Gabrielse et al. (HARV, MANZ, WASH+)BERGER 89 NP B313 509 C. Berger et al. (FREJUS Collab.)CHO 89 PRL 63 2559 D. Cho, K. Sangster, E.A. Hinds (YALE)HIRATA 89C PL B220 308 K.S. Hirata et al. (Kamiokande Collab.)PHILLIPS 89 PL B224 348 T.J. Phillips et al. (HPW Collab.)KREISSL 88 ZPHY C37 557 A. Kreissl et al. (CERN PS176 Collab.)SEIDEL 88 PRL 61 2522 S. Seidel et al. (IMB Collab.)BARTELT 87 PR D36 1990 J.E. Bartelt et al. (Soudan Collab.)Also PR D40 1701 (erratum) J.E. Bartelt et al. (Soudan Collab.)COHEN 87 RMP 59 1121 E.R. Cohen, B.N. Taylor (RISC, NBS)HAINES 86 PRL 57 1986 T.J. Haines et al. (IMB Collab.)KAJITA 86 JPSJ 55 711 T. Kajita et al. (Kamiokande Collab.)ARISAKA 85 JPSJ 54 3213 K. Arisaka et al. (Kamiokande Collab.)BLEWITT 85 PRL 55 2114 G.B. Blewitt et al. (IMB Collab.)DZUBA 85 PL 154B 93 V.A. Dzuba, V.V. Flambaum, P.G. Silvestrov (NOVO)PARK 85 PRL 54 22 H.S. Park et al. (IMB Collab.)BATTISTONI 84 PL 133B 454 G. Battistoni et al. (NUSEX Collab.)MARINELLI 84 PL 137B 439 M. Marinelli, G. Morpurgo (GENO)WILKENING 84 PR A29 425 D.A. Wilkening, N.F. Ramsey, D.J. Larson (HARV+)BARTELT 83 PRL 50 651 J.E. Bartelt et al. (MINN, ANL)BATTISTONI 82 PL 118B 461 G. Battistoni et al. (NUSEX Collab.)KRISHNA... 82 PL 115B 349 M.R. Krishnaswamy et al. (TATA, OSKC+)ALEKSEEV 81 JETPL 33 651 E.N. Alekseev et al. (PNPI)Translated from ZETFP 33 664.

CHERRY 81 PRL 47 1507 M.L. Cherry et al. (PENN, BNL)COWSIK 80 PR D22 2204 R. Cowsik, V.S. Narasimham (TATA)BELL 79 PL 86B 215 M. Bell et al. (CERN)GOLDEN 79 PRL 43 1196 R.L. Golden et al. (NASA, PSLL)LEARNED 79 PRL 43 907 J.G. Learned, F. Reines, A. Soni (UCI)BREGMAN 78 PL 78B 174 M. Bregman et al. (CERN)ROBERTS 78 PR D17 358 B.L. Roberts (WILL, RHEL)EVANS 77 SCI 197 989 J.C. Evans Jr., R.I. Steinberg (BNL, PENN)HU 75 NP A254 403 E. Hu et al. (COLU, YALE)COHEN 73 JPCRD 2 664 E.R. Cohen, B.N. Taylor (RISC, NBS)DYLLA 73 PR A7 1224 H.F. Dylla, J.G. King (MIT)DIX 70 Thesis Case F.W. Dix (CASE)HARRISON 69 PRL 22 1263 G.E. Harrison, P.G.H. Sandars, S.J. Wright (OXF)GURR 67 PR 158 1321 H.S. Gurr et al. (CASE, WITW)FLEROV 58 DOKL 3 79 G.N. Flerov et al. (ASCI)n I (JP ) = 12 (12+) Status: ∗∗∗∗We have omitted some results that have been superseded by laterexperiments. See our earlier editions.Anyone interested in the neutron should look at these two new reviewarti
les: D. Dubbers and M.G. S
hmidt, \The neutron and its rolein 
osmology and parti
le physi
s," Reviews of Modern Physi
s 838383831111 (2011); and F.E. Wietfeldt and G.L. Greene, \The neutronlifetime," Reviews of Modern Physi
s 83838383 1173 (2011).n MASS (atomi
 mass units u)n MASS (atomi
 mass units u)n MASS (atomi
 mass units u)n MASS (atomi
 mass units u)The mass is known mu
h more pre
isely in u (atomi
 mass units) than inMeV. See the next data blo
k.VALUE (u) DOCUMENT ID TECN COMMENT1.00866491588±0.000000000491.00866491588±0.000000000491.00866491588±0.000000000491.00866491588±0.00000000049 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.00866491600±0.00000000043 MOHR 12 RVUE 2010 CODATA value1.00866491597±0.00000000043 MOHR 08 RVUE 2006 CODATA value1.00866491560±0.00000000055 MOHR 05 RVUE 2002 CODATA value1.00866491578±0.00000000055 MOHR 99 RVUE 1998 CODATA value1.008665904 ±0.000000014 COHEN 87 RVUE 1986 CODATA valuen MASS (MeV)n MASS (MeV)n MASS (MeV)n MASS (MeV)The mass is known mu
h more pre
isely in u (atomi
 mass units) than inMeV. The 
onversion from u to MeV, 1 u = 931.494 0054(57)) MeV/
2(MOHR 16, the 2014 CODATA value), involves the relatively poorly knownele
troni
 
harge.VALUE (MeV) DOCUMENT ID TECN COMMENT939.5654133±0.0000058939.5654133±0.0000058939.5654133±0.0000058939.5654133±0.0000058 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •939.565379 ±0.000021 MOHR 12 RVUE 2010 CODATA value939.565346 ±0.000023 MOHR 08 RVUE 2006 CODATA value939.565360 ±0.000081 MOHR 05 RVUE 2002 CODATA value939.565331 ±0.000037 1 KESSLER 99 SPEC np → d γ939.565330 ±0.000038 MOHR 99 RVUE 1998 CODATA value939.56565 ±0.00028 2,3 DIFILIPPO 94 TRAP Penning trap939.56563 ±0.00028 COHEN 87 RVUE 1986 CODATA value939.56564 ±0.00028 3,4 GREENE 86 SPEC np → d γ939.5731 ±0.0027 3 COHEN 73 RVUE 1973 CODATA value1We use the 1998 CODATA u-to-MeV 
onversion fa
tor (see the heading above) toget this mass in MeV from the mu
h more pre
isely measured KESSLER 99 value of1.00866491637 ± 0.00000000082 u.2The mass is known mu
h more pre
isely in u: m = 1.0086649235 ± 0.0000000023 u.We use the 1986 CODATA 
onversion fa
tor to get the mass in MeV.3These determinations are not independent of the mn − mp measurements below.4The mass is known mu
h more pre
isely in u: m = 1.008664919 ± 0.000000014 u.n MASSn MASSn MASSn MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT939.485±0.051939.485±0.051939.485±0.051939.485±0.051 59 1 CRESTI 86 HBC pp → nn1This is a 
orre
ted result (see the erratum). The error is statisti
al. The maximumsystemati
 error is 0.029 MeV. (mn − mn )/ mn(mn − mn )/ mn(mn − mn )/ mn(mn − mn )/ mnA test of CPT invarian
e. Cal
ulated from the n and n masses, above.VALUE DOCUMENT ID(9±6)× 10−5 OUR EVALUATION(9±6)× 10−5 OUR EVALUATION(9±6)× 10−5 OUR EVALUATION(9±6)× 10−5 OUR EVALUATION



1513151315131513See key on page 601 BaryonParti
le Listingsnmn − mpmn − mpmn − mpmn − mpVALUE (MeV) DOCUMENT ID TECN COMMENT1.29333205±0.000000511.29333205±0.000000511.29333205±0.000000511.29333205±0.00000051 1 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.29333217±0.00000042 2 MOHR 12 RVUE 2010 CODATA value1.29333214±0.00000043 3 MOHR 08 RVUE 2006 CODATA value1.2933317 ±0.0000005 4 MOHR 05 RVUE 2002 CODATA value1.2933318 ±0.0000005 5 MOHR 99 RVUE 1998 CODATA value1.293318 ±0.000009 6 COHEN 87 RVUE 1986 CODATA value1.2933328 ±0.0000072 GREENE 86 SPEC np → d γ1.293429 ±0.000036 COHEN 73 RVUE 1973 CODATA value1The 2014 CODATA mass di�eren
e in u is mn − mp = 1.001 388 449 00(51)× 10−3u.2The 2010 CODATA mass di�eren
e in u is mn − mp = 1.388 449 19(45) × 10−3u.3 Cal
ulated by us from the MOHR 08 ratio mn/mp = 1.00137841918(46). In u, mn −mp = 1.38844920(46) × 10−3 u.4Cal
ulated by us from the MOHR 05 ratio mn/mp = 1.00137841870 ± 0.00000000058.In u, mn − mp = (1.3884487 ± 0.0000006) × 10−3 u.5Cal
ulated by us from the MOHR 99 ratio mn/mp = 1.00137841887 ± 0.00000000058.In u, mn − mp = (1.3884489 ± 0.0000006) × 10−3 u.6Cal
ulated by us from the COHEN 87 ratio mn/mp = 1.001378404 ± 0.000000009. Inu, mn − mp = 0.001388434 ± 0.000000009 u.n MEAN LIFEn MEAN LIFEn MEAN LIFEn MEAN LIFELimits on lifetimes for bound neutrons are given in the se
tion\p PARTIALMEAN LIVES."We average the best seven measurements. The result, 880.2 ± 1.0 s(in
luding a s
ale fa
tor of 1.9), is 5.5 se
onds lower than the value wegave in 2010|a drop of 6.9 old and 5.5 new standard deviations.For a full review of all matters 
on
erning the neutron lifetime, see F.E.Wietfeldt and G.L. Greene, \The neutron lifetime," Reviews of ModernPhysi
s 83838383 1173 (2011). In parti
ular, there is a full dis
ussion of theexperimental methods and results; and an average lifetime is obtainedmaking several di�erent sele
tions of the results then available.VALUE (s) DOCUMENT ID TECN COMMENT880.2± 1.0 OUR AVERAGE880.2± 1.0 OUR AVERAGE880.2± 1.0 OUR AVERAGE880.2± 1.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogram below.880.2± 1.2 1 ARZUMANOV 15 CNTR UCN double bottle887.7± 1.2± 1.9 2 YUE 13 CNTR In-beam n, trapped p882.5± 1.4± 1.5 3 STEYERL 12 CNTR UCN material bottle880.7± 1.3± 1.2 PICHLMAIER 10 CNTR UCN material bottle878.5± 0.7± 0.3 SEREBROV 05 CNTR UCN gravitational trap889.2± 3.0± 3.8 BYRNE 96 CNTR Penning trap882.6± 2.7 4 MAMPE 93 CNTR UCN material bottle
• • • We do not use the following data for averages, �ts, limits, et
. • • •881.6± 0.8± 1.9 5 ARZUMANOV 12 CNTR See ARZUMANOV 15886.3± 1.2± 3.2 NICO 05 CNTR See YUE 13886.8± 1.2± 3.2 DEWEY 03 CNTR See NICO 05885.4± 0.9± 0.4 ARZUMANOV 00 CNTR See ARZUMANOV 12888.4± 3.1± 1.1 6 NESVIZHEV... 92 CNTR UCN material bottle888.4± 2.9 ALFIMENKOV 90 CNTR See NESVIZHEVSKII 92893.6± 3.8± 3.7 BYRNE 90 CNTR See BYRNE 96878 ±27 ±14 KOSSAKOW... 89 TPC Pulsed beam887.6± 3.0 MAMPE 89 CNTR See STEYERL 12877 ±10 PAUL 89 CNTR Magneti
 storage ring876 ±10 ±19 LAST 88 SPEC Pulsed beam891 ± 9 SPIVAK 88 CNTR Beam903 ±13 KOSVINTSEV 86 CNTR UCN material bottle937 ±18 7 BYRNE 80 CNTR875 ±95 KOSVINTSEV 80 CNTR881 ± 8 BONDAREN... 78 CNTR See SPIVAK 88918 ±14 CHRISTENSEN72 CNTR1ARZUMANOV 15 is a reanalysis of their 2008{2010 dataset, with improved systemati

orre
tions of of ARZUMANOV 00 and ARZUMANOV 12.2YUE 13 di�ers from NICO 05 in that a di�erent and better method was used to measurethe neutron density in the �du
ial volume. This shifted the lifetime by +1.4 se
onds andredu
ed the previously largest sour
e of systemati
 un
ertainty by a fa
tor of �ve.3 STEYERL 12 is a detailed reanalysis of neutron storage loss 
orre
tions to the raw dataof MAMPE 89, and it repla
es that value.4 IGNATOVICH 95 
alls into question some of the 
orre
tions and averaging pro
eduresused by MAMPE 93. The response, BONDARENKO 96, denies the validity of the
riti
isms.5ARZUMANOV 12 reanalyzes its systemati
 
orre
tions in ARZUMANOV 00 and obtainsthis 
orre
ted value.6The NESVIZHEVSKII 92 measurement has been withdrawn by A. Serebrov.7The BYRNE 80 measurement has been withdrawn (J. Byrne, private 
ommuni
ation,1990).

WEIGHTED AVERAGE
880.2±1.0 (Error scaled by 1.9)

MAMPE 93 CNTR 0.8
BYRNE 96 CNTR
SEREBROV 05 CNTR 4.9
PICHLMAIER 10 CNTR 0.1
STEYERL 12 CNTR 1.3
YUE 13 CNTR 11.2
ARZUMANOV 15 CNTR 0.0

χ2

      18.2
(Confidence Level = 0.0027)

875 880 885 890 895 900neutron mean life (s)n MAGNETIC MOMENTn MAGNETIC MOMENTn MAGNETIC MOMENTn MAGNETIC MOMENTSee the \Note on Baryon Magneti
 Moments" in the � Listings.VALUE (µ
N
) DOCUMENT ID TECN COMMENT

−1.91304273±0.00000045−1.91304273±0.00000045−1.91304273±0.00000045−1.91304273±0.00000045 MOHR 16 RVUE 2014 CODATA value
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−1.91304272±0.00000045 MOHR 12 RVUE 2010 CODATA value
−1.91304273±0.00000045 MOHR 08 RVUE 2006 CODATA value
−1.91304273±0.00000045 MOHR 05 RVUE 2002 CODATA value
−1.91304272±0.00000045 MOHR 99 RVUE 1998 CODATA value
−1.91304275±0.00000045 COHEN 87 RVUE 1986 CODATA value
−1.91304277±0.00000048 1 GREENE 82 MRS1GREENE 82 measures the moment to be (1.04187564 ± 0.00000026) × 10−3 Bohrmagnetons. The value above is obtained by multiplying this bymp/me = 1836.152701±0.000037 (the 1986 CODATA value from COHEN 87).n ELECTRIC DIPOLE MOMENTn ELECTRIC DIPOLE MOMENTn ELECTRIC DIPOLE MOMENTn ELECTRIC DIPOLE MOMENTA nonzero value is forbidden by both T invarian
e and P invarian
e. Anumber of early results have been omitted. See RAMSEY 90, GOLUB 94,and LAMOREAUX 09 for reviews.The results are upper limits on ∣∣dn∣∣.VALUE (10−25 e 
m) CL% DOCUMENT ID TECN COMMENT
< 0.30< 0.30< 0.30< 0.30 90 PENDLEBURY 15 MRS d = (−0.21 ± 1.82)× 10−26
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 0.55 90 SEREBROV 15 MRS UCN's, hν = 2µnB ± 2dnE
< 0.55 90 1 SEREBROV 14 MRS See SEREBROV 15
< 0.29 90 2 BAKER 06 MRS See PENDLEBURY 15
< 0.63 90 3 HARRIS 99 MRS d = (−0.1 ± 0.36) × 10−25
< 0.97 90 ALTAREV 96 MRS See SEREBROV 14
< 1.1 95 ALTAREV 92 MRS See ALTAREV 96
< 1.2 95 SMITH 90 MRS See HARRIS 99
< 2.6 95 ALTAREV 86 MRS d = (−1.4 ± 0.6) × 10−250.3 ±4.8 PENDLEBURY 84 MRS Ultra
old neutrons
< 6 90 ALTAREV 81 MRS d = (2.1 ± 2.4)× 10−25
<16 90 ALTAREV 79 MRS d = (4.0 ± 7.5)× 10−251SEREBROV 14 in
ludes the data of ALTAREV 96.2 LAMOREAUX 07 faults BAKER 06 for not in
luding in the estimate of systemati
 erroran e�e
t due to the Earth's rotation. BAKER 07 replies (1) that the e�e
t was in
ludedimpli
itly in the analysis and (2) that further analysis 
on�rms that the BAKER 06 limitis 
orre
t as is. See also SILENKO 07.3This HARRIS 99 result in
ludes the result of SMITH 90. However, the averaging of theresults of these two experiments has been 
riti
ized by LAMOREAUX 00.n MEAN-SQUARE CHARGE RADIUSn MEAN-SQUARE CHARGE RADIUSn MEAN-SQUARE CHARGE RADIUSn MEAN-SQUARE CHARGE RADIUSThe mean-square 
harge radius of the neutron, 〈r2n〉, is related to theneutron-ele
tron s
attering length bne by 〈r2n〉 = 3(mea0/mn)bne ,where me and mn are the masses of the ele
tron and neutron, and a0 isthe Bohr radius. Numeri
ally, 〈r2n〉 = 86.34 bne , if we use a0 for a nu
leuswith in�nite mass.VALUE (fm2) DOCUMENT ID COMMENT
−0.1161±0.0022 OUR AVERAGE−0.1161±0.0022 OUR AVERAGE−0.1161±0.0022 OUR AVERAGE−0.1161±0.0022 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogrambelow.
−0.115 ±0.002 ±0.003 KOPECKY 97 ne s
attering (Pb)
−0.124 ±0.003 ±0.005 KOPECKY 97 ne s
attering (Bi)
−0.114 ±0.003 KOESTER 95 ne s
attering (Pb, Bi)
−0.134 ±0.009 ALEKSANDR...86 ne s
attering (Bi)
−0.115 ±0.003 1 KROHN 73 ne s
attering (Ne, Ar, Kr, Xe)
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• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.117 +0.007
−0.011 BELUSHKIN 07 Dispersion analysis

−0.113 ±0.003 ±0.004 KOPECKY 95 ne s
attering (Pb)
−0.114 ±0.003 KOESTER 86 ne s
attering (Pb, Bi)
−0.118 ±0.002 KOESTER 76 ne s
attering (Pb)
−0.120 ±0.002 KOESTER 76 ne s
attering (Bi)
−0.116 ±0.003 KROHN 66 ne s
attering (Ne, Ar, Kr, Xe)1This value is as 
orre
ted by KOESTER 76.

WEIGHTED AVERAGE
-0.1161±0.0022 (Error scaled by 1.3)

KROHN 73 0.1
ALEKSANDR... 86 3.9
KOESTER 95 0.5
KOPECKY 97 1.8
KOPECKY 97 0.1

χ2

       6.5
(Confidence Level = 0.164)

-0.15 -0.14 -0.13 -0.12 -0.11 -0.1 -0.09n mean-square 
harge radiusn MAGNETIC RADIUSn MAGNETIC RADIUSn MAGNETIC RADIUSn MAGNETIC RADIUSThis is the rms magneti
 radius, √〈r2
M

〉.VALUE (fm) DOCUMENT ID COMMENT0.864+0.009
−0.008 OUR AVERAGE0.864+0.009
−0.008 OUR AVERAGE0.864+0.009
−0.008 OUR AVERAGE0.864+0.009
−0.008 OUR AVERAGE0.89 ±0.03 EPSTEIN 14 Using e p, e n, ππ data0.862+0.009
−0.008 BELUSHKIN 07 Dispersion analysisn ELECTRIC POLARIZABILITY αnn ELECTRIC POLARIZABILITY αnn ELECTRIC POLARIZABILITY αnn ELECTRIC POLARIZABILITY αnFollowing is the ele
tri
 polarizability αn de�ned in terms of the indu
edele
tri
 dipole moment by DDDD = 4πǫ0αnEEEE. For a review, see SCHMIED-MAYER 89.For very 
omplete reviews of the polarizability of the nu
leon and Comptons
attering, see SCHUMACHER 05 and GRIESSHAMMER 12.VALUE (10−4 fm3) DOCUMENT ID TECN COMMENT11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE11.55± 1.25±0.8 MYERS 14 CNTR γ d → γ d12.5 ± 1.8 +1.6

−1.3 1 KOSSERT 03 CNTR γ d → γ pn12.0 ± 1.5 ±2.0 SCHMIEDM... 91 CNTR n Pb transmission10.7 + 3.3
−10.7 ROSE 90B CNTR γ d → γ np

• • • We do not use the following data for averages, �ts, limits, et
. • • •8.8 ± 2.4 ±3.0 2 LUNDIN 03 CNTR γ d → γ d13.6 3 KOLB 00 CNTR γ d → γ np0.0 ± 5.0 4 KOESTER 95 CNTR n Pb, n Bi transmission11.7 + 4.3
−11.7 ROSE 90 CNTR See ROSE 90B8 ±10 KOESTER 88 CNTR n Pb, n Bi transmission12 ±10 SCHMIEDM... 88 CNTR n Pb, n C transmission1KOSSERT 03 gets αn − βn =(9.8 ± 3.6+2.1

−1.1 ± 2.2) × 10−4 fm3, and uses αn + βn= (15.2 ± 0.5) × 10−4 fm3 from LEVCHUK 00. Thus the errors on αn and βn areanti-
orrelated.2 LUNDIN 03 measures αN − βN = (6.4 ± 2.4) × 10−4 fm3 and uses a

urate valuesfor αp and αp and a pre
ise sum-rule result for αn + βn . The se
ond error is a modelun
ertainty, and errors on αn and βn are anti
orrelated. The data from this paper aerin
luded in the analysis of MYERS 14.3KOLB 00 obtains this value with a lower limit of 7.6×10−4 fm3 but no upper limit fromthis experiment alone. Combined with results of ROSE 90, the 1-σ range is (7.6{14.0)×10−4 fm3.

4KOESTER 95 uses natural Pb and the isotopes 208, 207, and 206. See this paper for adis
ussion of methods used by various groups to extra
t αn from data.n MAGNETIC POLARIZABILITY βnn MAGNETIC POLARIZABILITY βnn MAGNETIC POLARIZABILITY βnn MAGNETIC POLARIZABILITY βnVALUE (10−4 fm3) DOCUMENT ID TECN COMMENT3.7 ±1.2 OUR AVERAGE3.7 ±1.2 OUR AVERAGE3.7 ±1.2 OUR AVERAGE3.7 ±1.2 OUR AVERAGE3.65±1.25±0.8 MYERS 14 CNTR γ d → γ d2.7 ±1.8 +1.3
−1.6 1 KOSSERT 03 CNTR γ d → γ pn6.5 ±2.4 ±3.0 2 LUNDIN 03 CNTR γ d → γ d

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.6 3 KOLB 00 CNTR γ d → γ np1KOSSERT 03 gets αn − βn =(9.8 ± 3.6+2.1
−1.1 ± 2.2) × 10−4 fm3, and uses αn + βn= (15.2 ± 0.5) × 10−4 fm3 from LEVCHUK 00. Thus the errors on αn and βn areanti-
orrelated.2 LUNDIN 03 measures αN − βN = (6.4 ± 2.4) × 10−4 fm3 and uses a

urate valuesfor αp and αp and a pre
ise sum-rule result for αn + βn. The se
ond error is a modelun
ertainty, and errors on αn and βn are anti
orrelated.3KOLB 00 obtains this value with an upper limit of 7.6×10−4 fm3 but no lower limit fromthis experiment alone. Combined with results of ROSE 90, the 1-σ range is (1.2{7.6)×10−4 fm3. n CHARGEn CHARGEn CHARGEn CHARGESee also \∣∣qp + qe ∣∣/e" in the proton Listings.VALUE (10−21 e) DOCUMENT ID TECN COMMENT

− 0.2± 0.8 OUR AVERAGE− 0.2± 0.8 OUR AVERAGE− 0.2± 0.8 OUR AVERAGE− 0.2± 0.8 OUR AVERAGE
− 0.1± 1.1 1 BRESSI 11 Neutrality of SF6
− 0.4± 1.1 2 BAUMANN 88 Cold n de
e
tion
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−15 ±22 3 GAEHLER 82 CNTR Cold n de
e
tion1As a limit, this BRESSI 11 value is < 1× 10−21 e.2The BAUMANN 88 error ±1.1 gives the 68% CL limits about the the value −0.4.3The GAEHLER 82 error ±22 gives the 90% CL limits about the the value −15.LIMIT ON nn OSCILLATIONSLIMIT ON nn OSCILLATIONSLIMIT ON nn OSCILLATIONSLIMIT ON nn OSCILLATIONSMean Time for nn Transition in Va
uumMean Time for nn Transition in Va
uumMean Time for nn Transition in Va
uumMean Time for nn Transition in Va
uumA test of �B=2 baryon number non
onservation. MOHAPATRA 80 and MOHAPA-TRA 89 dis
uss the theoreti
al motivations for looking for nn os
illations. DOVER 83and DOVER 85 give phenomenologi
al analyses. The best limits 
ome from lookingfor the de
ay of neutrons bound in nu
lei. However, these analyses require model-dependent 
orre
tions for nu
lear e�e
ts. See KABIR 83, DOVER 89, ALBERICO 91,and GAL 00 for dis
ussions. Dire
t sear
hes for n → n transitions using rea
tor neu-trons are 
leaner but give somewhat poorer limits. We in
lude limits for both free andbound neutrons in the Summary Table. See MOHAPATRA 09 for a re
ent review.VALUE (s) CL% DOCUMENT ID TECN COMMENT
>2.7× 108>2.7× 108>2.7× 108>2.7× 108 90 ABE 15C CNTR n bound in oxygen
>8.6× 107>8.6× 107>8.6× 107>8.6× 107 90 BALDO-... 94 CNTR Rea
tor (free) neutrons
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>1.3× 108 90 CHUNG 02B SOU2 n bound in iron
>1 × 107 90 BALDO-... 90 CNTR See BALDO-CEOLIN 94
>1.2× 108 90 BERGER 90 FREJ n bound in iron
>4.9× 105 90 BRESSI 90 CNTR Rea
tor neutrons
>4.7× 105 90 BRESSI 89 CNTR See BRESSI 90
>1.2× 108 90 TAKITA 86 CNTR n bound in oxygen
>1 × 106 90 FIDECARO 85 CNTR Rea
tor neutrons
>8.8× 107 90 PARK 85B CNTR
>3 × 107 BATTISTONI 84 NUSX
> 0.27{1.1× 108 JONES 84 CNTR
>2 × 107 CHERRY 83 CNTRLIMIT ON nn′ OSCILLATIONSLIMIT ON nn′ OSCILLATIONSLIMIT ON nn′ OSCILLATIONSLIMIT ON nn′ OSCILLATIONSLee and Yang (LEE 56) proposed the existen
e of mirror world in anattempt to restore global parity symmetry. See BEREZHIANI 06 for are
ent dis
ussion.VALUE (s) CL% DOCUMENT ID TECN COMMENT
>414>414>414>414 90 SEREBROV 08 CNTR UCN, B �eld on & o�
• • • We do not use the following data for averages, �ts, limits, et
. • • •

> 12 95 1 ALTAREV 09A CNTR UCN, s
an 0 ≤ B ≤ 12.5 µT
>103 95 BAN 07 CNTR UCN, B �eld on & o�1Losses of neutrons due to os
illations to mirror neutrons would be maximal when themagneti
 �elds B and B′ in the two worlds were equal. Hen
e the s
an over B byALTAREV 09A: the limit applies for any B′ over the given range. At B′ = 0, the limitis 141 s (95% CL).



1515151515151515See key on page 601 Baryon Parti
le Listingsnn DECAY MODESn DECAY MODESn DECAY MODESn DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 pe−νe 100 %�2 pe−νe γ [a℄ ( 3.09±0.32)× 10−3�3 hydrogen-atom νeCharge 
onservation (Q) violating modeCharge 
onservation (Q) violating modeCharge 
onservation (Q) violating modeCharge 
onservation (Q) violating mode�4 pνe νe Q < 8 × 10−27 68%[a℄ This limit is for γ energies between 15 and 340 keV.n BRANCHING RATIOSn BRANCHING RATIOSn BRANCHING RATIOSn BRANCHING RATIOS�(pe−νe γ
)/�total �2/��(pe−νe γ
)/�total �2/��(pe−νe γ
)/�total �2/��(pe−νe γ
)/�total �2/�VALUE (units 10−3) CL% DOCUMENT ID TECN COMMENT3.09±0.11±0.303.09±0.11±0.303.09±0.11±0.303.09±0.11±0.30 1 COOPER 10 CNTR γ, p, e− 
oin
iden
e

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.13±0.11±0.33 NICO 06 CNTR See COOPER 10
<6.9 90 2 BECK 02 CNTR γ, p, e− 
oin
iden
e1This COOPER 10 result is for γ energies between 15 and 340 keV.2This BECK 02 limit is for γ energies between 35 and 100 keV.�(hydrogen-atom νe)/�total �3/��(hydrogen-atom νe)/�total �3/��(hydrogen-atom νe)/�total �3/��(hydrogen-atom νe)/�total �3/�VALUE CL% DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3× 10−2 95 1 GREEN 90 RVUE1GREEN 90 infers that τ(hydrogen-atomνe ) > 3× 104 s by 
omparing neutron lifetimemeasurements made in storage experiments with those made in β-de
ay experiments.However, the result depends sensitively on the lifetime measurements, and does not of
ourse take into a

ount more re
ent measurements of same.�(pνe νe)/�total �4/��(pνe νe)/�total �4/��(pνe νe)/�total �4/��(pνe νe)/�total �4/�Forbidden by 
harge 
onservation.VALUE CL% DOCUMENT ID TECN COMMENT
<8 × 10−27<8 × 10−27<8 × 10−27<8 × 10−27 68 1 NORMAN 96 RVUE 71Ga → 71Ge neutrals
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<9.7× 10−18 90 ROY 83 CNTR 113Cd → 113mInneut.
<7.9× 10−21 VAIDYA 83 CNTR 87Rb → 87mSrneut.
<9 × 10−24 90 BARABANOV 80 CNTR 71Ga → 71GeX
<3 × 10−19 NORMAN 79 CNTR 87Rb → 87mSrneut.1NORMAN 96 gets this limit by attributing SAGE and GALLEX 
ounting rates to the
harge-non
onserving transition 71Ga → 71Ge+neutrals rather than to solar-neutrinorea
tions.
BARYON DECAY PARAMETERS

Written 1996 by E.D. Commins (University of California, Berke-
ley).

Baryon semileptonic decays

The typical spin-1/2 baryon semileptonic decay is described

by a matrix element, the hadronic part of which may be written

as:

Bf

[
f1(q

2)γλ + i f2(q
2)σλµqµ + g1(q

2)γλγ5 + g3(q
2)γ5qλ

]
Bi .

(1)

Here Bi and Bf are spinors describing the initial and final

baryons, and q = pi − pf , while the terms in f1, f2, g1, and g3

account for vector, induced tensor (“weak magnetism”), axial

vector, and induced pseudoscalar contributions [1]. Second-

class current contributions are ignored here. In the limit of zero

momentum transfer, f1 reduces to the vector coupling constant

gV , and g1 reduces to the axial-vector coupling constant gA.

The latter coefficients are related by Cabibbo’s theory [2], gen-

eralized to six quarks (and three mixing angles) by Kobayashi

and Maskawa [3]. The g3 term is negligible for transitions in

which an e± is emitted, and gives a very small correction, which

can be estimated by PCAC [4], for µ± modes. Recoil effects

include weak magnetism, and are taken into account adequately

by considering terms of first order in

δ =
mi − mf

mi + mf
, (2)

where mi and mf are the masses of the initial and final baryons.

The experimental quantities of interest are the total decay

rate, the lepton-neutrino angular correlation, the asymmetry

coefficients in the decay of a polarized initial baryon, and the

polarization of the decay baryon in its own rest frame for an

unpolarized initial baryon. Formulae for these quantities are

derived by standard means [5] and are analogous to formulae

for nuclear beta decay [6]. We use the notation of Ref. 6 in the

Listings for neutron beta decay. For comparison with experi-

ments at higher q2, it is necessary to modify the form factors

at q2 = 0 by a “dipole” q2 dependence, and for high-precision

comparisons to apply appropriate radiative corrections [7].

The ratio gA/gV may be written as

gA/gV = | gA/gV | eiφAV . (3)

The presence of a “triple correlation” term in the transition

probability, proportional to Im(gA/gV ) and of the form

σi·(pℓ × pν) (4)

for initial baryon polarization or

σf ·(pℓ × pν) (5)

for final baryon polarization, would indicate failure of time-

reversal invariance. The phase angle φ has been measured

precisely only in neutron decay (and in 19Ne nuclear beta

decay), and the results are consistent with T invariance.

Hyperon nonleptonic decays

The amplitude for a spin-1/2 hyperon decaying into a

spin-1/2 baryon and a spin-0 meson may be written in the form

M = GF m2
π · Bf (A − Bγ5) Bi , (6)

where A and B are constants [1]. The transition rate is pro-

portional to

R = 1 + γ ω̂f · ω̂i + (1 − γ)(ω̂f · n̂)(ω̂i · n̂)

+ α(ω̂f · n̂ + ω̂i · n̂) + βn̂ · (ω̂f × ω̂i) , (7)

where n̂ is a unit vector in the direction of the final baryon

momentum, and ω̂i and ω̂f are unit vectors in the directions of

the initial and final baryon spins. (The sign of the last term in

the above equation was incorrect in our 1988 and 1990 editions.)

The parameters α, β, and γ are defined as

α = 2 Re(s∗p)/( | s |2 + | p |2) ,

β = 2 Im(s∗p)/( | s |2 + | p |2) ,

γ = ( | s |2 − | p |2)/( | s |2 + | p |2) , (8)
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where s = A and p = |pf |B/(Ef + mf ); here Ef and pf are

the energy and momentum of the final baryon. The parameters

α, β, and γ satisfy

α2 + β2 + γ2 = 1 . (9)

If the hyperon polarization is PY , the polarization PB of the

decay baryons is

PB =
(α + PY · n̂)n̂ + β(PY × n̂) + γn̂× (PY × n̂)

1 + αPY · n̂ . (10)

Here PB is defined in the rest system of the baryon, obtained

by a Lorentz transformation along n̂ from the hyperon rest

frame, in which n̂ and PY are defined.

An additional useful parameter φ is defined by

β = (1 − α2)1/2 sinφ . (11)

In the Listings, we compile α and φ for each decay, since

these quantities are most closely related to experiment and are

essentially uncorrelated. When necessary, we have changed the

signs of reported values to agree with our sign conventions.

In the Baryon Summary Table, we give α, φ, and ∆ (defined

below) with errors, and also give the value of γ without error.

Time-reversal invariance requires, in the absence of final-

state interactions, that s and p be relatively real, and therefore

that β = 0. However, for the decays discussed here, the final-

state interaction is strong. Thus

s = | s | eiδs and p = | p | eiδp , (12)

where δs and δp are the pion-baryon s- and p-wave strong

interaction phase shifts. We then have

β =
−2 | s | | p |
| s |2 + | p |2 sin(δs − δp) . (13)

One also defines ∆ = −tan−1(β/α). If T invariance holds,

∆ = δs − δp. For Λ → pπ− decay, the value of ∆ may be

compared with the s- and p-wave phase shifts in low-energy

π−p scattering, and the results are consistent with T invariance.

See also the note on “Radiative Hyperon Decays” in the Ξ0

Listings in this Review.
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n → pe− νe DECAY PARAMETERSn → pe− νe DECAY PARAMETERSn → pe− νe DECAY PARAMETERSn → pe− νe DECAY PARAMETERSSee the above \Note on Baryon De
ay Parameters." For dis
ussions ofre
ent results, see the referen
es 
ited at the beginning of the se
tion onthe neutron mean life. For dis
ussions of the values of the weak 
ou-pling 
onstants gA and gV obtained using the neutron lifetime and asym-metry parameter A, 
omparisons with other methods of obtaining these
onstants, and impli
ations for parti
le physi
s and for astrophysi
s, seeDUBBERS 91 and WOOLCOCK 91. For tests of the V−A theory ofneutron de
ay, see EROZOLIMSKII 91B, MOSTOVOI 96, NICO 05, SEV-ERIJNS 06, and ABELE 08.
λ ≡ gA / gVλ ≡ gA / gVλ ≡ gA / gVλ ≡ gA / gVVALUE DOCUMENT ID TECN COMMENT
−1.2723 ±0.0023 OUR AVERAGE−1.2723 ±0.0023 OUR AVERAGE−1.2723 ±0.0023 OUR AVERAGE−1.2723 ±0.0023 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2. See the ideogrambelow.
−1.2755 ±0.0030 1 MENDENHALL13 UCNA Ultra
old n, polarized
−1.2748 ±0.0008 +0.0010

−0.0011 2 MUND 13 SPEC Cold n, polarized
−1.275 ±0.006 ±0.015 SCHUMANN 08 CNTR Cold n, polarized
−1.2686 ±0.0046 ±0.0007 3 MOSTOVOI 01 CNTR A and B × polariza-tions
−1.266 ±0.004 LIAUD 97 TPC Cold n, polarized, A
−1.2594 ±0.0038 4 YEROZLIM... 97 CNTR Cold n, polarized, A
−1.262 ±0.005 BOPP 86 SPEC Cold n, polarized, A
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−1.27590±0.00239+0.00331
−0.00377 5 PLASTER 12 UCNA See MENDENHALL 13

−1.27590+0.00409
−0.00445 LIU 10 UCNA See PLASTER 12

−1.2739 ±0.0019 6 ABELE 02 SPEC See MUND 13
−1.274 ±0.003 ABELE 97D SPEC Cold n, polarized, A
−1.266 ±0.004 SCHRECK... 95 TPC See LIAUD 97
−1.2544 ±0.0036 EROZOLIM... 91 CNTR See YEROZOLIM-SKY 97
−1.226 ±0.042 MOSTOVOY 83 RVUE
−1.261 ±0.012 EROZOLIM... 79 CNTR Cold n, polarized, A
−1.259 ±0.017 7 STRATOWA 78 CNTR p re
oil spe
trum, a
−1.263 ±0.015 EROZOLIM... 77 CNTR See EROZOLIMSKII 79
−1.250 ±0.036 7 DOBROZE... 75 CNTR See STRATOWA 78
−1.258 ±0.015 8 KROHN 75 CNTR Cold n, polarized, A
−1.263 ±0.016 9 KROPF 74 RVUE n de
ay alone
−1.250 ±0.009 9 KROPF 74 RVUE n de
ay + nu
lear ft1MENDENHALL 13 gets A = −0.11954 ± 0.00055 ± 0.00098 and λ = −1.2756 ±0.0030. We quote the nearly identi
al values that in
lude the earlier UCNA measurement(PLASTER 12), with a 
orre
tion to that result.2This MUND 13 value in
ludes earlier PERKEO II measurements (ABELE 02 andABELE 97D).3MOSTOVOI 01 measures the two P-odd 
orrelations A and B, or rather SA and SB,where S is the n polarization, in free neutron de
ay.4YEROZOLIMSKY 97 makes a 
orre
tion to the EROZOLIMSKII 91 value.5This PLASTER 12 value is identi
al with that given in LIU 10, but the experiment isnow des
ribed in detail.6This is the 
ombined result of ABELE 02 and ABELE 97D.7These experiments measure the absolute value of gA/gV only.8KROHN 75 in
ludes events of CHRISTENSEN 70.9KROPF 74 reviews all data through 1972.

WEIGHTED AVERAGE
-1.2723±0.0023 (Error scaled by 2.2)

BOPP 86 SPEC 4.3
YEROZLIM... 97 CNTR 11.6
LIAUD 97 TPC 2.5
MOSTOVOI 01 CNTR 0.6
SCHUMANN 08 CNTR
MUND 13 SPEC 3.8
MENDENHALL 13 UCNA 1.1

χ2

      23.8
(Confidence Level = 0.0002)

-1.29 -1.28 -1.27 -1.26 -1.25 -1.24

λ ≡ gA / gV



1517151715171517See key on page 601 Baryon Parti
le Listingsne− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER AThis is the neutron-spin ele
tron-momentum 
orrelation 
oeÆ
ient. Unless otherwisenoted, the values are 
orre
ted for radiative e�e
ts and weak magnetism. In theStandard Model, A is related to λ ≡ gA/gV by A = −2 λ (λ + 1) / (1 + 3λ2); thisassumes that gA and gV are real.VALUE DOCUMENT ID TECN COMMENT
−0.1184 ±0.0010 OUR AVERAGE−0.1184 ±0.0010 OUR AVERAGE−0.1184 ±0.0010 OUR AVERAGE−0.1184 ±0.0010 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4. See the ideogrambelow.
−0.11952±0.00110 1 MENDENHALL13 UCNA Ultra
old n, polarized
−0.11926±0.00031+0.00036

−0.00042 2 MUND 13 SPEC Cold n, polarized
−0.1160 ±0.0009 ±0.0012 LIAUD 97 TPC Cold n, polarized
−0.1135 ±0.0014 3 YEROZLIM... 97 CNTR Cold n, polarized
−0.1146 ±0.0019 BOPP 86 SPEC Cold n, polarized
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.11966±0.00089+0.00123
−0.00140 4 PLASTER 12 UCNA See MENDENHALL 13

−0.11966±0.00089+0.00123
−0.00140 LIU 10 UCNA See PLASTER 12

−0.1138 ±0.0046 ±0.0021 PATTIE 09 SPEC Ultra
old n, polarized
−0.1189 ±0.0007 5 ABELE 02 SPEC See MUND 13
−0.1168 ±0.0017 6 MOSTOVOI 01 CNTR Inferred
−0.1189 ±0.0012 ABELE 97D SPEC Cold n, polarized
−0.1160 ±0.0009 ±0.0011 SCHRECK... 95 TPC See LIAUD 97
−0.1116 ±0.0014 EROZOLIM... 91 CNTR See YEROZOLIM-SKY 97
−0.114 ±0.005 7 EROZOLIM... 79 CNTR Cold n, polarized
−0.113 ±0.006 7 KROHN 75 CNTR Cold n, polarized1MENDENHALL 13 gets A = −0.11954 ± 0.00055 ± 0.00098 and λ = −1.2756 ±0.0030. We quote the nearly identi
al values that in
lude the earlier UCNA measurement(PLASTER 12), with a 
orre
tion to that result.2This MUND 13 value in
ludes earlier PERKEO II measurements (ABELE 02 andABELE 97D), with a 
orre
tion to those results.3YEROZOLIMSKY 97 makes a 
orre
tion to the EROZOLIMSKII 91 value.4This PLASTER 12 value is identi
al with that given in LIU 10, but the experiment isnow des
ribed in detail.5This is the 
ombined result of ABELE 02 and ABELE 97D.6MOSTOVOI 01 
al
ulates this from its measurement of λ=gA/gV above.7These results are not 
orre
ted for radiative e�e
ts and weak magnetism, but the 
or-re
tions are small 
ompared to the errors.

WEIGHTED AVERAGE
-0.1184±0.0010 (Error scaled by 2.4)

BOPP 86 SPEC 4.0
YEROZLIM... 97 CNTR 12.3
LIAUD 97 TPC 2.6
MUND 13 SPEC 3.1
MENDENHALL 13 UCNA 1.0

χ2

      23.1
(Confidence Level = 0.0001)

-0.125 -0.12 -0.115 -0.11 -0.105e− asymmetry parameter A
νe ASYMMETRY PARAMETER Bνe ASYMMETRY PARAMETER Bνe ASYMMETRY PARAMETER Bνe ASYMMETRY PARAMETER BThis is the neutron-spin antineutrino-momentum 
orrelation 
oeÆ
ient. In the Stan-dard Model, B is related to λ ≡ gA/gV by B = 2λ(λ − 1) / (1 + 3λ2); this assumesthat gA and gV are real.VALUE DOCUMENT ID TECN COMMENT0.9807±0.0030 OUR AVERAGE0.9807±0.0030 OUR AVERAGE0.9807±0.0030 OUR AVERAGE0.9807±0.0030 OUR AVERAGE0.9802±0.0034±0.0036 SCHUMANN 07 CNTR Cold n, polarized0.967 ±0.006 ±0.010 KREUZ 05 CNTR Cold n, polarized0.9801±0.0046 SEREBROV 98 CNTR Cold n, polarized0.9894±0.0083 KUZNETSOV 95 CNTR Cold n, polarized1.00 ±0.05 CHRISTENSEN70 CNTR Cold n, polarized0.995 ±0.034 EROZOLIM... 70C CNTR Cold n, polarized
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.9876±0.0004 1 MOSTOVOI 01 CNTR Inferred1MOSTOVOI 01 
al
ulates this from its measurement of λ=gA/gV above.PROTON ASYMMETRY PARAMETER CPROTON ASYMMETRY PARAMETER CPROTON ASYMMETRY PARAMETER CPROTON ASYMMETRY PARAMETER CDes
ribes the 
orrelation between the neutron spin and the proton momentum. In theStandard Model, C is related to λ ≡ gA/gV by C = −xc (A + B) = xc 4λ/(1 +3λ2), where xc = 0.27484 is a kinemati
 fa
tor; this assumes that gA and gV arereal.VALUE DOCUMENT ID TECN COMMENT
−0.2377±0.0010±0.0024−0.2377±0.0010±0.0024−0.2377±0.0010±0.0024−0.2377±0.0010±0.0024 SCHUMANN 08 CNTR Cold n, polarized

e-νe ANGULAR CORRELATION COEFFICIENT ae-νe ANGULAR CORRELATION COEFFICIENT ae-νe ANGULAR CORRELATION COEFFICIENT ae-νe ANGULAR CORRELATION COEFFICIENT aFor a review of past experiments and plans for future measurements of the a parameter,see WIETFELDT 05. In the Standard Model, a is related to λ ≡ gA/gV by a = (1
− λ2) / (1 + 3λ2); this assumes that gA and gV are real.VALUE DOCUMENT ID TECN COMMENT

−0.103 ±0.004 OUR AVERAGE−0.103 ±0.004 OUR AVERAGE−0.103 ±0.004 OUR AVERAGE−0.103 ±0.004 OUR AVERAGE
−0.1054±0.0055 BYRNE 02 SPEC Proton re
oil spe
trum
−0.1017±0.0051 STRATOWA 78 CNTR Proton re
oil spe
trum
−0.091 ±0.039 GRIGOREV 68 SPEC Proton re
oil spe
trum
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.1045±0.0014 1 MOSTOVOI 01 CNTR Inferred1MOSTOVOI 01 
al
ulates this from its measurement of λ=gA/gV above.
φAV , PHASE OF gA RELATIVE TO gVφAV , PHASE OF gA RELATIVE TO gVφAV , PHASE OF gA RELATIVE TO gVφAV , PHASE OF gA RELATIVE TO gVTime reversal invarian
e requires this to be 0 or 180◦. This is related to D given inthe next data blo
k and λ ≡ gA/gV by sin(φAV ) ≡ D(1+3λ2)/2∣∣λ∣∣; this assumesthat gA and gV are real.VALUE (◦) CL% DOCUMENT ID TECN COMMENT180.017±0.026 OUR AVERAGE180.017±0.026 OUR AVERAGE180.017±0.026 OUR AVERAGE180.017±0.026 OUR AVERAGE180.012±0.028 68 CHUPP 12 CNTR Cold n, polarized > 91%180.04 ±0.09 SOLDNER 04 CNTR Cold n, polarized180.08 ±0.13 LISING 00 CNTR Polarized > 93%
• • • We do not use the following data for averages, �ts, limits, et
. • • •180.013±0.028 MUMM 11 CNTR See CHUPP 12179.71 ±0.39 EROZOLIM... 78 CNTR Cold n, polarized180.35 ±0.43 EROZOLIM... 74 CNTR Cold n, polarized181.1 ±1.3 1 KROPF 74 RVUE n de
ay180.14 ±0.22 STEINBERG 74 CNTR Cold n, polarized1KROPF 74 reviews all data through 1972.TRIPLE CORRELATION COEFFICIENT DTRIPLE CORRELATION COEFFICIENT DTRIPLE CORRELATION COEFFICIENT DTRIPLE CORRELATION COEFFICIENT DThese are measurements of the 
omponent of n spin perpendi
ular to the de
ay planein β de
ay. Should be zero if T invarian
e is not violated.VALUE (units 10−4) DOCUMENT ID TECN COMMENT
− 1.2 ± 2.0 OUR AVERAGE− 1.2 ± 2.0 OUR AVERAGE− 1.2 ± 2.0 OUR AVERAGE− 1.2 ± 2.0 OUR AVERAGE
− 0.94± 1.89±0.97 CHUPP 12 CNTR Cold n, polarized > 91%
− 2.8 ± 6.4 ±3.0 SOLDNER 04 CNTR Cold n, polarized
− 6 ±12 ±5 LISING 00 CNTR Polarized > 93%
• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 0.96± 1.89±1.01 MUMM 11 CNTR See CHUPP 12+22 ±30 EROZOLIM... 78 CNTR Cold n, polarized
−27 ±50 1 EROZOLIM... 74 CNTR Cold n, polarized
−11 ±17 STEINBERG 74 CNTR Cold n, polarized1EROZOLIMSKII 78 says asymmetri
 proton losses and nonuniform beam polarizationmay give a systemati
 error up to 30 × 10−4, thus in
reasing the EROZOLIMSKII 74error to 50 × 10−4. STEINBERG 74 and STEINBERG 76 estimate these systemati
errors to be insigni�
ant in their experiment.TRIPLE CORRELATION COEFFICIENT RTRIPLE CORRELATION COEFFICIENT RTRIPLE CORRELATION COEFFICIENT RTRIPLE CORRELATION COEFFICIENT RAnother test of time-reversal invarian
e. R measures the polarization of the ele
tron inthe dire
tion perpendi
ular to the plane de�ned by the neutron spin and the ele
tronmomentum. R = 0 for T invarian
e.VALUE DOCUMENT ID TECN COMMENT+0.004±0.012±0.005+0.004±0.012±0.005+0.004±0.012±0.005+0.004±0.012±0.005 1 KOZELA 12 CNTR Mott polarimeter
• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.008±0.015±0.005 KOZELA 09 CNTR See KOZELA 121KOZELA 12 also measures the polarization of the ele
tron along the dire
tion of theneutron spin. This is nonzero in the Standard Model; the 
orrelation 
oeÆ
ient is N =+0.067 ± 0.011 ± 0.004. n REFERENCESn REFERENCESn REFERENCESn REFERENCESWe have omitted some papers that have been superseded by later experi-ments. See our earlier editions.MOHR 16 arXiv:1507.07956 P.J. Mohr, D.B. Newell, B.N. Taylor (NIST)A

epted for publi
ation in RMPABE 15C PR D91 072006 K. Abe et al. (Super-Kamiokande Collab.)ARZUMANOV 15 PL B745 79 S. Arzumanov et al. (ILLG, KIAE)PENDLEBURY 15 PR D92 092003 J.M. Pendlebury et al. (ETHZ, PSI, SUSS)SEREBROV 15 PR C92 055501 A.P. Serebrov et al. (PNPI, ILLG, IOFF)EPSTEIN 14 PR D90 074027 Z. Epstein, G. Paz, J. Roy (UMD, WAYN)MYERS 14 PRL 113 262506 L.S. Myers et al. (COMPTON/MAX-lab Collab.)SEREBROV 14 JETPL 99 4 A.P. Serebrov et al. (PNPI, ILL, IOFF)MENDENHALL 13 PR C87 032501 M.P. Mendenhall et al. (UCNA Collab.)MUND 13 PRL 110 172502 D. Mund et al. (HEID, ILLG)YUE 13 PRL 111 222501 A.T. Yue et al. (UMD, NIST, TENN, ORNL+)ARZUMANOV 12 JETPL 95 224 S.S. Arzumanov et al. (KIAE)Translated from ZETFP 95 248.CHUPP 12 PR C86 035505 T.E. Chupp et al. (MICH, UCB, WASH+)GRIESSHAM... 12 PPNP 67 841 H.W. Griesshammer et al. (GWU, MCHS+)KOZELA 12 PR C85 045501 A. Kozela et al. (nTRV Collab.)MOHR 12 RMP 84 1527 P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)PLASTER 12 PR C86 055501 B. Plaster et al. (UCNA Collab.)STEYERL 12 PR C85 065503 A. Steyerl et al. (URI, SUSS)BRESSI 11 PR A83 052101 G. Bressi et al. (LEGN, PAVII, PADO, TRST+)DUBBERS 11 RMP 83 1111 D. Dubbers, M.G. S
hmidt (HEID)MUMM 11 PRL 107 102301 H.P. Mumm et al. (NIST, WASH, MICH, LBL+)WIETFELDT 11 RMP 83 1173 F.E. Wietfeldt, G.L. Greene (TULA, TENN)COOPER 10 PR C81 035503 R.L. Cooper et al. (MICH, NIST, TULA+)
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o et al. (NIST, TULN, MICH, UMD+)SEVERIJNS 06 RMP 78 991 N. Severijns, M. Be
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N AND ∆ RESONANCES

Revised May 2015 by V. Burkert (Jefferson Lab), E. Klempt
(University of Bonn), M.R. Pennington (Jefferson Lab), L.
Tiator (University of Mainz), and R.L. Workman (George
Washington University).

I. Introduction

The excited states of the nucleon have been studied in a

large number of formation and production experiments. The

Breit-Wigner masses and widths, the pole positions, and the

elasticities of the N and ∆ resonances in the Baryon Summary

Table come largely from partial-wave analyses of πN total,

elastic, and charge-exchange scattering data. The most com-

prehensive analyses were carried out by the Karlsruhe-Helsinki

(KH80) [1], Carnegie Mellon-Berkeley (CMB80) [2], and

George Washington U (GWU) [3] groups. Partial-wave analyses

have also been performed on much smaller πN reaction data

sets to get ηN , KΛ, and KΣ branching fractions (see the

Listings for references). Other branching fractions come from

analyses of πN → ππN data.

In recent years, a large amount of data on photoproduction

of many final states has been accumulated, and these data

are beginning to tell us much about the properties of baryon

resonances. A survey of data on photoproduction can be found

in the proceedings of recent conferences [4] and workshops [5],

and in recent reviews [6,7].
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Table 1. The status of the N resonances. Only those with
an overall status of ∗∗∗ or ∗∗∗∗ are included in the main
Baryon Summary Table.

Status as seen in

Particle JP overall Nγ Nπ Nη Nσ Nω ΛK ΣK Nρ ∆π

N 1/2+ ∗∗∗∗
N(1440) 1/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗ ∗∗∗
N(1520) 3/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
N(1535) 1/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗ ∗
N(1650) 1/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗∗
N(1675) 5/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗ ∗ ∗ ∗∗∗
N(1680) 5/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗ ∗∗ ∗∗∗ ∗∗∗
N(1700) 3/2− ∗∗∗ ∗∗ ∗∗∗ ∗ ∗ ∗ ∗ ∗∗∗
N(1710) 1/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗∗ ∗∗∗∗ ∗∗ ∗ ∗∗
N(1720) 3/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗ ∗
N(1860) 5/2+ ∗∗ ∗∗ ∗ ∗
N(1875) 3/2− ∗∗∗ ∗∗∗ ∗ ∗∗ ∗∗∗ ∗∗ ∗∗∗
N(1880) 1/2+ ∗∗ ∗ ∗ ∗∗ ∗
N(1895) 1/2− ∗∗ ∗∗ ∗ ∗∗ ∗∗ ∗
N(1900) 3/2+ ∗∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗ ∗∗∗ ∗∗ ∗ ∗∗
N(1990) 7/2+ ∗∗ ∗∗ ∗∗ ∗
N(2000) 5/2+ ∗∗ ∗∗ ∗ ∗∗ ∗∗ ∗ ∗∗
N(2040) 3/2+ ∗ ∗
N(2060) 5/2− ∗∗ ∗∗ ∗∗ ∗ ∗∗
N(2100) 1/2+ ∗ ∗
N(2120) 3/2− ∗∗ ∗∗ ∗∗ ∗ ∗
N(2190) 7/2− ∗∗∗∗ ∗∗∗ ∗∗∗∗ ∗ ∗∗ ∗
N(2220) 9/2+ ∗∗∗∗ ∗∗∗∗
N(2250) 9/2− ∗∗∗∗ ∗∗∗∗
N(2300) 1/2+ ∗∗ ∗∗
N(2570) 5/2− ∗∗ ∗∗
N(2600) 11/2− ∗∗∗ ∗∗∗
N(2700) 13/2+ ∗∗ ∗∗

∗∗∗∗ Existence is certain, and properties are at least fairly well explored.
∗∗∗ Existence is very likely but further confirmation of decay modes

is required.
∗∗ Evidence of existence is only fair.
∗ Evidence of existence is poor.

II. Naming scheme for baryon resonances

In the past, when nearly all resonance information came

from elastic πN scattering, it was common to label reso-

nances with the incoming partial wave L2I,2J , as in ∆(1232)P33

and N(1680)F15. However, most recent information has come

from γN experiments. Therefore, we have replaced L2I,2J with

the spin-parity JP of the state, as in ∆(1232)3/2+ and

N(1680)5/2+; this name gives intrinsic properties of the reso-

nance that are independent of the specific particles and reactions

used to study them. This applies equally to all baryons, includ-

ing Ξ resonances and charm baryons that are not produced in

formation experiments. We do not, however, attach the mass or

spin-parity to the names of the ground-state (“stable”) baryons

N, Λ, Σ, Ξ, Ω, Λc, · · ·.

III. Using the N and ∆ listings

Tables 1 and 2 list all the N and ∆ entries in the Baryon

Listings and give our evaluation of the overall status and the sta-

tus channel by channel. Only the established resonances (overall

status 3 or 4 stars) are promoted to the Baryon Summary Table.

We long ago omitted from the Listings information from old

analyses, prior to KH80 and CMB80, which can be found in

earlier editions. A rather complete survey of older results was

given in our 1982 edition [8].

Table 2. The status of the ∆ resonances. Only those with an
overall status of ∗∗∗ or ∗∗∗∗ are included in the main Baryon
Summary Table.

Status as seen in

Particle JP overall Nγ Nπ Nη Nσ Nω ΛK ΣK Nρ ∆π

∆(1232) 3/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ F

∆(1600) 3/2+ ∗∗∗ ∗∗∗ ∗∗∗ o ∗ ∗∗∗
∆(1620) 1/2− ∗∗∗∗ ∗∗∗ ∗∗∗∗ r ∗∗∗ ∗∗∗
∆(1700) 3/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ b ∗∗ ∗∗∗
∆(1750) 1/2+ ∗ ∗ i

∆(1900) 1/2− ∗∗ ∗∗ ∗∗ d ∗∗ ∗∗ ∗∗
∆(1905) 5/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ d ∗∗∗ ∗∗ ∗∗
∆(1910) 1/2+ ∗∗∗∗ ∗∗ ∗∗∗∗ e ∗ ∗ ∗∗
∆(1920) 3/2+ ∗∗∗ ∗∗ ∗∗∗ n ∗∗∗ ∗∗
∆(1930) 5/2− ∗∗∗ ∗∗∗
∆(1940) 3/2− ∗∗ ∗∗ ∗ F

∆(1950) 7/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ o ∗∗∗ ∗ ∗∗∗
∆(2000) 5/2+ ∗∗ r ∗∗
∆(2150) 1/2− ∗ ∗ b

∆(2200) 7/2− ∗ ∗ i

∆(2300) 9/2+ ∗∗ ∗∗ d

∆(2350) 5/2− ∗ ∗ d

∆(2390) 7/2+ ∗ ∗ e

∆(2400) 9/2− ∗∗ ∗∗ n

∆(2420) 11/2+ ∗∗∗∗ ∗ ∗∗∗∗
∆(2750) 13/2− ∗∗ ∗∗
∆(2950) 15/2+ ∗∗ ∗∗

∗∗∗∗ Existence is certain, and properties are at least fairly well explored.
∗∗∗ Existence is very likely but further confirmation of decay modes

is required.
∗∗ Evidence of existence is only fair.
∗ Evidence of existence is poor.

As a rule, we award an overall status **** or *** only to

those resonances which are derived from analyses of data sets

that include precision differential cross sections and polarization

observables, and are confirmed by independent analyses. All

other signals are given ** or * status. We do not consider new

results that are not accompanied by proper error evaluation.

The following criteria are guidelines for future error analysis.

1. Uncertainties in resonance parameters: The publication

must have a detailed discussion on how the uncertainties of

parameters were estimated and why the author(s) believe that

they approximately represent real uncertainties. This requires

that the error estimates go beyond the simple fit error as e.g.

given by MINUIT, and the robustness of the results must be

demonstrated.

2. Fit quality: Concrete measures for the fit quality must be

provided. The reduced global χ2 value of the fit, while useful,

is insufficient. Other possibilities include quoting variations of

local χ2 value in kinematic regions where evidence for new states

or significantly improved information on resonance parameters

is claimed.

3. Weight factors in observables: Analyses often use weight

factors for certain data sets to either increase or reduce their
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impact on the results. This has been particularly important

when polarization observables are involved, which usually are

very sensitive to amplitude interferences but often have much

poorer statistics than differential cross section data. To evalu-

ate sensitivities, the resulting resonance parameters should be

checked against variations of the specific weight factors.

Claims of evidence for new baryon states must be based

on a sufficiently complete set of partial waves in the fit. The

robustness of signals must be demonstrated, e.g. by examining

the effect of higher waves in the fit.

IV. Properties of resonances

Resonances are defined by poles of the S-matrix, whether

in scattering, production or decay matrix elements. These are

poles in the complex plane in s, as discussed in the new review

on Resonances. As traditional we quote here the pole positions

in the complex energy w =
√

s plane. Crucially, the position of

the pole of the S-matrix is independent of the process, and the

production and decay properties factorize. This is the rationale

for listing the pole position first for each resonance.

These key properties of the S-matrix pole are in contrast

to other quantities related to resonance phenomena, such as

Breit-Wigner parameters or any K-matrix pole. Thus, Breit-

Wigner parameters depend on the formalism used such as

angular-momentum barrier factors, or cut-off parameters, and

the assumed or modeled background. However, the accurate

determination of pole parameters from the analysis of data

on the real energy axis is not necessarily simple, or even

straightforward. It requires the implementation of the correct

analytic structure of the relevant (often coupled) channels.

The example in the meson sector of the σ-pole highlights

the need to incorporate right and left hand cut analyticity

(and their relation imposed by crossing symmetry) into a

dispersive analysis to obtain a robust determination of the

pole position, for a very short-lived state close to the lowest

threshold. The development of general methods that are simpler

to implement in the baryon sector is a research problem of

current interest, often exploiting techniques introduced long ago

when the experimental data were far poorer than those presently

available for reactions like γN → πN [9]. No consensus yet

exists for the use of any particular method, beyond the need to

incorporate the general properties mentioned here and discussed

more fully in the review of Resonances.

The tables will change in the following way: Pole positions,

elastic and normalized inelastic residues appear first, followed

by the Breit-Wigner mass, width, decay modes and branching

ratios. Finally, we give the photon decay amplitudes first as

complex values at the pole position and then as real numbers

at the Breit-Wigner mass.

V. Photoproduction

A new approach to the nucleon excitation spectrum is

provided by dedicated facilities at the Universities of Bonn,

Grenoble, and Mainz, and at the national laboratories Jefferson

Lab in the US and SPring-8 in Japan. High-precision cross sec-

tions and polarization observables for the photoproduction of

pseudoscalar mesons provide a data set that is nearly a “com-

plete experiment,” one that fully constrains the four complex

amplitudes describing the spin-structure of the reaction [11]. A

large number of photoproduction reactions has been studied.

In pseudo-scalar meson photoproduction, the four indepen-

dent helicity amplitudes can be expressed in terms of the four

CGLN [12] amplitudes allowed by Lorentz and gauge invariance.

These amplitudes can be expanded in a series of electric and

magnetic multipoles. Except for J=1/2, one electric and one

magnetic mulipole contributes to each JP combination.

For a given state, these two amplitudes determine the

resonance photo-decay helicity amplitudes A1/2 and A3/2. As

described below, this resonance extraction has been carried out

either assuming a Breit-Wigner resonance or at the pole.

If a Breit-Wigner parametrization is used, the Nγ partial

width, Γγ , is given in terms of the helicity amplitudes A1/2 and

A3/2 by

Γγ =
k2

BW

π

2mN

(2J + 1)mBW

(
|A1/2|2 + |A3/2|2

)
. (1)

Here mN and mBW are the nucleon and resonance masses,

J is the resonance spin, and kBW is the photon c.m. decay mo-

mentum. Most earlier analyses have quoted these real quantities

A1/2 and A3/2.

More recent studies have quoted related complex quanti-

ties, evaluated at the T-matrix pole. These complex helicity

amplitudes, Ã1/2 and Ã3/2, can be cast onto the form

Ãh =

√
π(2J + 1)wpole

mNk2
pole

Res(Th(γN → N b))√
Res(T (N b → N b))

(2)

where the residues (Res) are evaluated at the pole position,

wpole, and k2
pole = (w2

pole −m2
N )2/4w2

pole [13]. For Breit-Wigner

amplitudes, wpole = mBW and Ãh = Ah. Similar relations for

the photo- and electrocouplings at the pole position can be

found in [14,15].

The determination of eight real numbers from four com-

plex amplitudes (with one overall phase undetermined) requires

at least seven independent measurements. At least one further

measurement is required to resolve discrete ambiguities that

result from the fact that data are proportional to squared am-

plitudes. Photon beams and nucleon targets can be polarized

(with linear or circular polarization P⊥, P⊙ and ~T , respec-

tively); the recoil polarization of the outgoing baryon ~R can be

measured. The experiments can be divided into three classes:

(1) the beam and target are polarized (BT); (2) the beam is po-

larized and the recoil baryon polarization is measured (BR); (3)

the target is polarized and the recoil polarization is measured

(TR). Different sign conventions are used in the literature, as

summarized in [16].
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One of the best studied reactions is γp → ΛK+. Published

data include differential cross sections, the beam asymmetry

Σ, the target asymmetry T , the recoil polarization P , and the

BR double-polarization variables C ′
x, C ′

z, O
′
x, and O′

z . For the

photoproduction of pions and etas, off proton and neutron tar-

gets, differential cross sections, single- and double-polarization

asymmetries have been measured, mainly for pions.

VI. Electroproduction

Electro-production of mesons provides information on the

internal structure of resonances. The helicity amplitudes are

functions of the (squared) momentum transfer Q2 = −(e− e′)2,

where e and e′ are the 4-momenta of the incident and scattered

electron, and a third amplitude, S1/2, measures the resonance

response to the longitudinal component of the virtual photon.

Most data stem from the reactions e−p → e− nπ+ and e−p →
e− pπ0 but also the reactions e−p → e− pη, e−p → e− pπ+π−,

and e−p → e− Λ(Σ0)K+ have been studied. The data and their

interpretation are reviewed in Refs. 18,19.

The transition to the ∆(1232)3/2+ is often quantified in

terms of the magnetic dipole transition moment M1+ (or the

magnetic transition form factor G∗
M,Ash(Q2)) [20], and the

electric and scalar quadrupole transition moments E1+ and S1+ .

Figure 1 shows the strength of the p → ∆+ transition plotted

versus the photon virtuality Q2. At Q2 = 0, M1+ dominates the

resonance transition strength. The two amplitudes E1+ and S1+

imply a quadrupole deformation of the transition to the lowest

excited state. The magnitude of REM = E1+/M1+ remains

nearly constant, while the magnitude of RSM = S1+/M1+

increases rapidly up to 25% at the highest Q2 value. Dynamical

models assign most of the quadrupole strength in the p∆+

transition to the effect of a meson cloud around the bare ∆

states.
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Figure 1: Left: The magnetic transition form
factor for the γ∗p → ∆+(1232) transition ver-
sus the photon virtuality Q2. Right: The electric
and scalar quadrupole rations REM and RSM .
The different symbols are results from different
experiments at JLab (squares, diamonds, circle)
and MAMI (triangle, cross). The boxes near the
horizontal axis indicate model uncertainties of
the squares. Curves to guide the eyes.

Figure 2 shows the transverse and scalar helicity ampli-

tudes for the N(1440)1/2+, N(1520)3/2−, and N(1535)1/2−

resonances from JLab [18]. Similar results have been achieved

at Mainz [19]. For the states N(1440)1/2+ and N(1520)3/2−,

helicity amplitudes and π∆ and ρp decays were determined at

JLab in an analysis of π+π−p electroproduction [21]. The data

show distinctly different Q2 dependencies that indicate different

internal structures.
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Figure 2: Transverse and scalar (longitudi-
nal) helicity amplitudes for γp → N(1440)1/2+

(top), γp → N(1520)3/2− (center), and γp →
N(1535)1/2− (bottom) as extracted from the
JLab/CLAS data in nπ+ production (full cir-
cles), in pπ+π− (open triangles), combined sin-
gle and double pion production (open squares).
The solid triangle is the PDG 2014 value at
Q2 = 0. The open boxes are the model uncer-
tainties of the full circles.

The N(1520)3/2− helicity amplitudes reveal the dominance

of its three-quark nature: the A3/2 amplitude is large at the

photon point and decreases rapidly ∼ Q−5 with increasing Q2;

A1/2 is small at the photon point, increases rapidly with Q2

and then falls off with ∼ Q−3. Quantitative agreement with the

data is, however, achieved only when meson cloud effects are

included.

At high Q2, both amplitudes for N(1440)1/2+ are qual-

itatively described by light front quark models [22]: at short

distances the resonance behaves as expected from a radial

excitation of the nucleon. On the other hand, A1/2 changes

sign at about 0.6 GeV2. This remarkable behavior has not been

observed before for any nucleon form factor or transition am-

plitude. Obviously, an important change in the structure occurs

when the resonance is probed as a function of Q2.
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The Q2 dependence of A1/2 of the N(1535)1/2− resonance

exhibits the expected ∼ Q−3 dependence, except for small Q2

values where meson cloud effects set in.

0

10

20

0 2 4
Q2 (GeV2)

A
1/

2 
(1

0-3
G

eV
-1

/2
)

-10

0

10

20

0 2 4
Q2 (GeV2)

A
3/

2 
(1

0-3
G

eV
-1

/2
)

-7.5

-5

-2.5

0

0 2 4
Q2 (GeV2)

S 1/
2 

(1
0-3

G
eV

-1
/2
)

-40

-30

-20

-10

0

0 2 4
Q2 (GeV2)

A
1/

2 
(1

0-3
G

eV
-1

/2
)

0

50

100

150

0 2 4
Q2 (GeV2)

A
3/

2 
(1

0-3
G

eV
-1

/2
)

-30

-20

-10

0

0 2 4
Q2 (GeV2)

S 1/
2 

(1
0-3

G
eV

-1
/2
)

Figure 3: Transverse and scalar helicity am-
plitudes for γp → N(1675)5/2− (top), and
γp → N(1680)5/2+ (bottom) as extracted from
the JLab/CLAS data in nπ+ production (full
circles), combined single and double pion pro-
duction (open square). The solid triangle is the
2014 PDG value at Q2 = 0. The open boxes are
the model uncertainties of the full circles. The
curves are to guide the eye.

Figure 3 shows the transverse and scalar amplitudes for

two states in the 3rd nucleon resonance region around 1700

MeV, the N(1675)5/2− and N(1680)5/2+. These states have

nearly degenerate masses and are parity partners. In the quark

model picture, the transverse amplitudes for N(1675)5/2− on

the proton are suppressed due to the Moorhouse selection rule,

allowing for a quantitative evaluation of the meson-baryon

contributions. The data show significant meson-baryon strength

in the A1/2 amplitude even at quite high Q2, while A3/2

drops much faster with Q2. N(1680)5/2+ shows qualitatively

the features predicted in constituent quark models, a dominant

A3/2 at the real photon point that drops rapidly with increasing

Q2, while A1/2 becomes the dominant contribution at high Q2,

indicating a switch of the helicity structure in the resonance

transition at short distances.

VII. Partial wave analyses

Several PWA groups are now actively involved in the anal-

ysis of the new data. The GWU group maintains a nearly

complete database covering reactions from πN and KN elastic

scattering to γN → Nπ, Nη, and Nη′. It is presently the only

group determining πN elastic amplitudes from scattering data

in sliced energy bins. Given the high-precision of photoproduc-

tion data already or soon to be collected, the spectrum of N

and ∆ resonances will in the near future be better known.

Fits to the data are performed by various groups with the

aim to understand the reaction dynamics and to identify N

and ∆ resonances. For practical reasons, approximations have

to be made. We mention several analyses here: (1) The Mainz

unitary isobar model [23] focusses on the correct treatment of

the low-energy domain. Resonances are added to the unitary

amplitude as a sum of Breit-Wigner amplitudes. This model

also obtains resonance transition form factors and helicity

amplitudes from electroproduction [19]. (2) For Nπ electro-

production, the Yerevan/JLab group uses both the unitary

isobar model and the dispersion relation approach developed

in [22]. A phenomenological model was developed to extract

resonance couplings and partial decay widths from exclusive

π+π−p electroproduction [21]. (3) Multichannel analyses us-

ing K-matrix parameterizations derive background terms from

a chiral Lagrangian - providing a microscopical description

of the background - (Giessen [24,25]) or from phenomenol-

ogy (KSU [26,27], Bonn-Gatchina [28]) . (4.) Several groups

(EBAC-Jlab [29,30], ANL-Osaka [31], Dubna-Mainz-Taipeh

[32], Bonn-Jülich [33,34,35], Valencia [36]) use dynamical

reaction models, driven by chiral Lagrangians, which take dis-

persive parts of intermediate states into account. Several other

groups have made important contributions. The Giessen group

pioneered multichannel analyses of large data sets on pion- and

photo-induced reactions [24,25]. The Bonn-Gatchina group

included recent high-statistics data and reported systematic

searches for new baryon resonances in all relevant partial waves.

A summary of their results can be found in Ref. 28.
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33. M. Döring et al., Phys. Lett. B681, 26 (2009).
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• • • We do not use the following data for averages, �ts, limits, et
. • • •27 SHKLYAR 13 DPWA Multi
hannel36±3 ANISOVICH 12A DPWA Multi
hannel35 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−10±5 OUR ESTIMATE−10±5 OUR ESTIMATE−10±5 OUR ESTIMATE−10±5 OUR ESTIMATE
−14±3 SOKHOYAN 15A DPWA Multi
hannel
−15±1±1 1 SVARC 14 L+P πN → πN
− 5 ARNDT 06 DPWA πN → πN, ηN
− 8 HOEHLER 93 ARGD πN → πN
−12±5 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−35 SHKLYAR 13 DPWA Multi
hannel
−14±3 ANISOVICH 12A DPWA Multi
hannel
− 7 BATINIC 10 DPWA πN → Nπ, N ηN(1520) INELASTIC POLE RESIDUEN(1520) INELASTIC POLE RESIDUEN(1520) INELASTIC POLE RESIDUEN(1520) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1520) → �π, S-waveNormalized residue in N π → N(1520) → �π, S-waveNormalized residue in N π → N(1520) → �π, S-waveNormalized residue in N π → N(1520) → �π, S-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.33±0.04 155 ± 15 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.33±0.05 150 ± 20 ANISOVICH 12A DPWA Multi
hannel



1525152515251525See key on page 601 BaryonParti
le ListingsN(1520)Normalized residue in N π → N(1520) → �π, D-waveNormalized residue in N π → N(1520) → �π, D-waveNormalized residue in N π → N(1520) → �π, D-waveNormalized residue in N π → N(1520) → �π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.25±0.03 105 ± 18 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.25±0.03 100 ± 20 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1520) → N σNormalized residue in N π → N(1520) → N σNormalized residue in N π → N(1520) → N σNormalized residue in N π → N(1520) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.08±0.03 −45 ± 25 SOKHOYAN 15A DPWA Multi
hannelN(1520) BREIT-WIGNER MASSN(1520) BREIT-WIGNER MASSN(1520) BREIT-WIGNER MASSN(1520) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1510 to 1520 (≈ 1515) OUR ESTIMATE1510 to 1520 (≈ 1515) OUR ESTIMATE1510 to 1520 (≈ 1515) OUR ESTIMATE1510 to 1520 (≈ 1515) OUR ESTIMATE1516 ± 2 SOKHOYAN 15A DPWA Multi
hannel1505 ± 4 SHKLYAR 13 DPWA Multi
hannel1514.5± 0.2 ARNDT 06 DPWA πN → πN, ηN1525 ±10 CUTKOSKY 80 IPWA πN → πN1519 ± 4 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1517 ± 3 ANISOVICH 12A DPWA Multi
hannel1512.6± 0.5 SHRESTHA 12A DPWA Multi
hannel1522 ± 8 BATINIC 10 DPWA πN → Nπ, N η1509 ± 1 PENNER 02C DPWA Multi
hannel1518 ± 3 VRANA 00 DPWA Multi
hannelN(1520) BREIT-WIGNER WIDTHN(1520) BREIT-WIGNER WIDTHN(1520) BREIT-WIGNER WIDTHN(1520) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT100 to 125 (≈ 115) OUR ESTIMATE100 to 125 (≈ 115) OUR ESTIMATE100 to 125 (≈ 115) OUR ESTIMATE100 to 125 (≈ 115) OUR ESTIMATE113 ± 4 SOKHOYAN 15A DPWA Multi
hannel100 ± 2 SHKLYAR 13 DPWA Multi
hannel103.6± 0.4 ARNDT 06 DPWA πN → πN, ηN120 ±15 CUTKOSKY 80 IPWA πN → πN114 ± 7 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •114 ± 5 ANISOVICH 12A DPWA Multi
hannel117 ± 1 SHRESTHA 12A DPWA Multi
hannel132 ±11 BATINIC 10 DPWA πN → Nπ, N η100 ± 2 PENNER 02C DPWA Multi
hannel124 ± 4 VRANA 00 DPWA Multi
hannelN(1520) DECAY MODESN(1520) DECAY MODESN(1520) DECAY MODESN(1520) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 55{65 %�2 N η < 1 %�3 N ππ 25{35 %�4 �(1232)π 22{34 %�5 �(1232)π , S-wave 15{23 %�6 �(1232)π , D-wave 7{11 %�7 N σ < 2 %�8 pγ 0.31{0.52 %�9 pγ , heli
ity=1/2 0.01{0.02 %�10 pγ , heli
ity=3/2 0.30{0.50 %�11 nγ 0.30{0.53 %�12 nγ , heli
ity=1/2 0.04{0.10 %�13 nγ , heli
ity=3/2 0.25{0.45 %N(1520) BRANCHING RATIOSN(1520) BRANCHING RATIOSN(1520) BRANCHING RATIOSN(1520) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT55 to 65 OUR ESTIMATE55 to 65 OUR ESTIMATE55 to 65 OUR ESTIMATE55 to 65 OUR ESTIMATE61 ±2 SOKHOYAN 15A DPWA Multi
hannel57 ±2 SHKLYAR 13 DPWA Multi
hannel63.2±0.1 ARNDT 06 DPWA πN → πN, ηN58 ±3 CUTKOSKY 80 IPWA πN → πN54 ±3 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •62 ±3 ANISOVICH 12A DPWA Multi
hannel62.7±0.5 SHRESTHA 12A DPWA Multi
hannel55 ±5 BATINIC 10 DPWA πN → Nπ, N η56 ±1 PENNER 02C DPWA Multi
hannel63 ±2 VRANA 00 DPWA Multi
hannel

�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT0 ±1 SHKLYAR 13 DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1 ±0.1 BATINIC 10 DPWA πN → Nπ, N η0.2 ±0.1 THOMA 08 DPWA Multi
hannel0.08 to 0.12 ARNDT 05 DPWA Multi
hannel0.23±0.04 PENNER 02C DPWA Multi
hannel0 ±1 VRANA 00 DPWA Multi
hannel0.08±0.01 TIATOR 99 DPWA γ p → pη�(�(1232)π , S-wave)/�total �5/��(�(1232)π , S-wave)/�total �5/��(�(1232)π , S-wave)/�total �5/��(�(1232)π , S-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT19 ±4 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •19 ±4 ANISOVICH 12A DPWA Multi
hannel9.3±0.7 SHRESTHA 12A DPWA Multi
hannel15 ±2 VRANA 00 DPWA Multi
hannel�(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT9 ±2 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •9 ±2 ANISOVICH 12A DPWA Multi
hannel6.3±0.5 SHRESTHA 12A DPWA Multi
hannel11 ±2 VRANA 00 DPWA Multi
hannel�(N σ

)/�total �7/��(N σ
)/�total �7/��(N σ
)/�total �7/��(N σ
)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT

<2<2<2<2 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1 SHRESTHA 12A DPWA Multi
hannel
<4 THOMA 08 DPWA Multi
hannel1±1 VRANA 00 DPWA Multi
hannelN(1520) PHOTON DECAY AMPLITUDES AT THE POLEN(1520) PHOTON DECAY AMPLITUDES AT THE POLEN(1520) PHOTON DECAY AMPLITUDES AT THE POLEN(1520) PHOTON DECAY AMPLITUDES AT THE POLEN(1520) → pγ , heli
ity-1/2 amplitude A1/2N(1520) → pγ , heli
ity-1/2 amplitude A1/2N(1520) → pγ , heli
ity-1/2 amplitude A1/2N(1520) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT
−0.023±0.004 −6 ± 5 SOKHOYAN 15A DPWA Multi
hannelN(1520) → pγ , heli
ity-3/2 amplitude A3/2N(1520) → pγ , heli
ity-3/2 amplitude A3/2N(1520) → pγ , heli
ity-3/2 amplitude A3/2N(1520) → pγ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.131±0.006 4 ± 4 SOKHOYAN 15A DPWA Multi
hannelN(1520) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1520) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1520) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1520) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1520) → pγ , heli
ity-1/2 amplitude A1/2N(1520) → pγ , heli
ity-1/2 amplitude A1/2N(1520) → pγ , heli
ity-1/2 amplitude A1/2N(1520) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.020±0.005 OUR ESTIMATE−0.020±0.005 OUR ESTIMATE−0.020±0.005 OUR ESTIMATE−0.020±0.005 OUR ESTIMATE
−0.024±0.004 SOKHOYAN 15A DPWA Multi
hannel
−0.019±0.002 WORKMAN 12A DPWA γN → Nπ

−0.028±0.002 DUGGER 07 DPWA γN → πN
−0.038±0.003 AHRENS 02 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.015±0.001 SHKLYAR 13 DPWA Multi
hannel
−0.022±0.004 ANISOVICH 12A DPWA Multi
hannel
−0.034±0.001 SHRESTHA 12A DPWA Multi
hannel
−0.027 DRECHSEL 07 DPWA γN → πN
−0.003 PENNER 02D DPWA Multi
hannel
−0.052±0.010±0.007 2 MUKHOPAD... 98 γ p → ηpN(1520) → pγ , heli
ity-3/2 amplitude A3/2N(1520) → pγ , heli
ity-3/2 amplitude A3/2N(1520) → pγ , heli
ity-3/2 amplitude A3/2N(1520) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.140±0.010 OUR ESTIMATE0.140±0.010 OUR ESTIMATE0.140±0.010 OUR ESTIMATE0.140±0.010 OUR ESTIMATE0.130±0.006 SOKHOYAN 15A DPWA Multi
hannel0.141±0.002 WORKMAN 12A DPWA γN → Nπ0.143±0.002 DUGGER 07 DPWA γN → πN0.147±0.010 AHRENS 02 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.146±0.001 SHKLYAR 13 DPWA Multi
hannel0.131±0.010 ANISOVICH 12A DPWA Multi
hannel0.127±0.003 SHRESTHA 12A DPWA Multi
hannel0.161 DRECHSEL 07 DPWA γN → πN0.151 PENNER 02D DPWA Multi
hannel0.130±0.020±0.015 2 MUKHOPAD... 98 γ p → ηp



1526152615261526BaryonParti
le ListingsN(1520),N(1535)N(1520) → nγ , heli
ity-1/2 amplitude A1/2N(1520) → nγ , heli
ity-1/2 amplitude A1/2N(1520) → nγ , heli
ity-1/2 amplitude A1/2N(1520) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.050±0.010 OUR ESTIMATE−0.050±0.010 OUR ESTIMATE−0.050±0.010 OUR ESTIMATE−0.050±0.010 OUR ESTIMATE
−0.049±0.008 ANISOVICH 13B DPWA Multi
hannel
−0.046±0.006 CHEN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.038±0.003 SHRESTHA 12A DPWA Multi
hannel
−0.077 DRECHSEL 07 DPWA γN → πN
−0.084 PENNER 02D DPWA Multi
hannelN(1520) → nγ , heli
ity-3/2 amplitude A3/2N(1520) → nγ , heli
ity-3/2 amplitude A3/2N(1520) → nγ , heli
ity-3/2 amplitude A3/2N(1520) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.115±0.010 OUR ESTIMATE−0.115±0.010 OUR ESTIMATE−0.115±0.010 OUR ESTIMATE−0.115±0.010 OUR ESTIMATE
−0.113±0.012 ANISOVICH 13B DPWA Multi
hannel
−0.115±0.005 CHEN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.101±0.004 SHRESTHA 12A DPWA Multi
hannel
−0.154 DRECHSEL 07 DPWA γN → πN
−0.159 PENNER 02D DPWA Multi
hannelN(1520) FOOTNOTESN(1520) FOOTNOTESN(1520) FOOTNOTESN(1520) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.2MUKHOPADHYAY 98 uses an e�e
tive Lagrangian approa
h to analyze η photoprodu
-tion data. The ratio of the A3/2 and A1/2 amplitudes is determined, with less modeldependen
e than the amplitudes themselves, to be A3/2/A1/2 = −2.5 ± 0.5 ± 0.4.N(1520) REFERENCESN(1520) REFERENCESN(1520) REFERENCESN(1520) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982). For very earlyreferen
es, see Reviews of Modern Physi
s 37373737 633 (1965).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.SHKLYAR 13 PR C87 015201 V. Shklyar, H. Lenske, U. Mosel (GIES)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)CHEN 12A PR C86 015206 W. Chen et al. (DUKE, GWU, MSST, ITEP+)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)WORKMAN 12A PR C86 015202 R. Workman et al. (GWU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)THOMA 08 PL B659 87 U. Thoma et al. (CB-ELSA Collab.)DRECHSEL 07 EPJ A34 69 D. Dre
hsel, S.S. Kamalov, L. Tiator (MAINZ, JINR)DUGGER 07 PR C76 025211 M. Dugger et al. (JLab CLAS Collab.)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)ARNDT 05 PR C72 045202 R.A. Arndt et al. (GWU, PNPI)AHRENS 02 PRL 88 232002 J. Ahrens et al. (Mainz MAMI GDH/A2 Collab.)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)TIATOR 99 PR C60 035210 L. Tiator et al.MUKHOPAD... 98 PL B444 7 N.C. Mukhopadhyay, N. MathurHOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(1535) 1/2− I (JP ) = 12 (12−) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).N(1535) POLE POSITIONN(1535) POLE POSITIONN(1535) POLE POSITIONN(1535) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1490 to 1530 (≈ 1510) OUR ESTIMATE1490 to 1530 (≈ 1510) OUR ESTIMATE1490 to 1530 (≈ 1510) OUR ESTIMATE1490 to 1530 (≈ 1510) OUR ESTIMATE1500± 4 SOKHOYAN 15A DPWA Multi
hannel1509± 4±2 1 SVARC 14 L+P πN → πN1502 ARNDT 06 DPWA πN → πN, ηN1487 HOEHLER 93 SPED πN → πN1510±50 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1490 SHKLYAR 13 DPWA Multi
hannel1501± 4 ANISOVICH 12A DPWA Multi
hannel1515 SHRESTHA 12A DPWA Multi
hannel1521±14 BATINIC 10 DPWA πN → Nπ, N η1525 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT90 to 250 (≈ 170) OUR ESTIMATE90 to 250 (≈ 170) OUR ESTIMATE90 to 250 (≈ 170) OUR ESTIMATE90 to 250 (≈ 170) OUR ESTIMATE128± 9 SOKHOYAN 15A DPWA Multi
hannel118± 9±2 1 SVARC 14 L+P πN → πN95 ARNDT 06 DPWA πN → πN, ηN260±80 CUTKOSKY 80 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •100 SHKLYAR 13 DPWA Multi
hannel134±11 ANISOVICH 12A DPWA Multi
hannel123 SHRESTHA 12A DPWA Multi
hannel190±28 BATINIC 10 DPWA πN → Nπ, N η102 VRANA 00 DPWA Multi
hannelN(1535) ELASTIC POLE RESIDUEN(1535) ELASTIC POLE RESIDUEN(1535) ELASTIC POLE RESIDUEN(1535) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT50±20 OUR ESTIMATE50±20 OUR ESTIMATE50±20 OUR ESTIMATE50±20 OUR ESTIMATE29± 4 SOKHOYAN 15A DPWA Multi
hannel22± 2±0.4 1 SVARC 14 L+P πN → πN16 ARNDT 06 DPWA πN → πN, ηN120±40 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •15 SHKLYAR 13 DPWA Multi
hannel31± 4 ANISOVICH 12A DPWA Multi
hannel68 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−15±15 OUR ESTIMATE−15±15 OUR ESTIMATE−15±15 OUR ESTIMATE−15±15 OUR ESTIMATE
−20±10 SOKHOYAN 15A DPWA Multi
hannel
− 5± 5±3 1 SVARC 14 L+P πN → πN
−16 ARNDT 06 DPWA πN → πN, ηN+15±45 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−51 SHKLYAR 13 DPWA Multi
hannel
−29± 5 ANISOVICH 12A DPWA Multi
hannel12 BATINIC 10 DPWA πN → Nπ, N ηN(1535) INELASTIC POLE RESIDUEN(1535) INELASTIC POLE RESIDUEN(1535) INELASTIC POLE RESIDUEN(1535) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1535) → N ηNormalized residue in N π → N(1535) → N ηNormalized residue in N π → N(1535) → N ηNormalized residue in N π → N(1535) → N ηMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT43±3 −76 ± 5 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1535) → �π, D-waveNormalized residue in N π → N(1535) → �π, D-waveNormalized residue in N π → N(1535) → �π, D-waveNormalized residue in N π → N(1535) → �π, D-waveMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT11±2 160 ± 20 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •12±3 145 ± 17 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1535) → N σNormalized residue in N π → N(1535) → N σNormalized residue in N π → N(1535) → N σNormalized residue in N π → N(1535) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.16±0.07 25 ± 40 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(1535) → N(1440)πNormalized residue in N π → N(1535) → N(1440)πNormalized residue in N π → N(1535) → N(1440)πNormalized residue in N π → N(1535) → N(1440)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.21±0.14 −45 ± 50 SOKHOYAN 15A DPWA Multi
hannelN(1535) BREIT-WIGNER MASSN(1535) BREIT-WIGNER MASSN(1535) BREIT-WIGNER MASSN(1535) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1525 to 1545 (≈ 1535) OUR ESTIMATE1525 to 1545 (≈ 1535) OUR ESTIMATE1525 to 1545 (≈ 1535) OUR ESTIMATE1525 to 1545 (≈ 1535) OUR ESTIMATE1517 ± 4 SOKHOYAN 15A DPWA Multi
hannel1526 ± 2 SHKLYAR 13 DPWA Multi
hannel1547.0± 0.7 ARNDT 06 DPWA πN → πN, ηN1550 ±40 CUTKOSKY 80 IPWA πN → πN1526 ± 7 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1519 ± 5 ANISOVICH 12A DPWA Multi
hannel1538 ± 1 SHRESTHA 12A DPWA Multi
hannel1553 ± 8 BATINIC 10 DPWA πN → Nπ, N η1546.7± 2.2 ARNDT 04 DPWA πN → πN, ηN1526 ± 2 PENNER 02C DPWA Multi
hannel1530 ±10 BAI 01B BES J/ψ → pp η1522 ±11 THOMPSON 01 CLAS γ∗p → pη1542 ± 3 VRANA 00 DPWA Multi
hannel1532 ± 5 ARMSTRONG 99B DPWA γ∗p → pηN(1535) BREIT-WIGNER WIDTHN(1535) BREIT-WIGNER WIDTHN(1535) BREIT-WIGNER WIDTHN(1535) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT125 to 175 (≈ 150) OUR ESTIMATE125 to 175 (≈ 150) OUR ESTIMATE125 to 175 (≈ 150) OUR ESTIMATE125 to 175 (≈ 150) OUR ESTIMATE120 ±10 SOKHOYAN 15A DPWA Multi
hannel131 ±12 SHKLYAR 13 DPWA Multi
hannel188.4± 3.8 ARNDT 06 DPWA πN → πN, ηN240 ±80 CUTKOSKY 80 IPWA πN → πN120 ±20 HOEHLER 79 IPWA πN → πN



1527152715271527See key on page 601 BaryonParti
le ListingsN(1535),N(1650)
• • • We do not use the following data for averages, �ts, limits, et
. • • •128 ±14 ANISOVICH 12A DPWA Multi
hannel141 ± 4 SHRESTHA 12A DPWA Multi
hannel182 ±25 BATINIC 10 DPWA πN → Nπ, N η129 ± 8 PENNER 02C DPWA Multi
hannel95 ±25 BAI 01B BES J/ψ → pp η143 ±18 THOMPSON 01 CLAS γ∗p → pη112 ±19 VRANA 00 DPWA Multi
hannel154 ±20 ARMSTRONG 99B DPWA γ∗p → pηN(1535) DECAY MODESN(1535) DECAY MODESN(1535) DECAY MODESN(1535) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 35{55 %�2 N η 32{52 %�3 N ππ 3{14 %�4 Delt(1232)π�5 �(1232)π , D-wave 1{4 %�6 N σ 2{10 %�7 N(1440)π 5{12 %�8 pγ , heli
ity=1/2 0.15{0.30 %�9 nγ , heli
ity=1/2 0.01{0.25 %N(1535) BRANCHING RATIOSN(1535) BRANCHING RATIOSN(1535) BRANCHING RATIOSN(1535) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT52 ± 5 SOKHOYAN 15A DPWA Multi
hannel35 ± 3 SHKLYAR 13 DPWA Multi
hannel35.5± 0.2 ARNDT 06 DPWA πN → πN, ηN50 ±10 CUTKOSKY 80 IPWA πN → πN38 ± 4 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •54 ± 5 ANISOVICH 12A DPWA Multi
hannel37 ± 1 SHRESTHA 12A DPWA Multi
hannel46 ± 7 BATINIC 10 DPWA πN → Nπ, N η36 ± 1 PENNER 02C DPWA Multi
hannel35 ± 8 VRANA 00 DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT42±10 OUR ESTIMATE42±10 OUR ESTIMATE42±10 OUR ESTIMATE42±10 OUR ESTIMATE58± 4 SHKLYAR 13 DPWA Multi
hannel33± 5 ANISOVICH 12A DPWA Multi
hannel53± 1 PENNER 02C DPWA Multi
hannel51± 5 VRANA 00 DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •41± 2 SHRESTHA 12A DPWA Multi
hannel50± 7 BATINIC 10 DPWA πN → Nπ, N η�(N η
)/�(Nπ

) �2/�1�(N η
)/�(Nπ

) �2/�1�(N η
)/�(Nπ

) �2/�1�(N η
)/�(Nπ

) �2/�1VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.95±0.03 AZNAURYAN 09 CLAS π, η ele
troprodu
tion�(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT2.5±1.5 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.5±1.5 ANISOVICH 12A DPWA Multi
hannel1.8±0.8 SHRESTHA 12A DPWA Multi
hannel1 ±1 VRANA 00 DPWA Multi
hannel�(N σ

)/�total �6/��(N σ
)/�total �6/��(N σ
)/�total �6/��(N σ
)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT6 ±4 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.5±0.5 SHRESTHA 12A DPWA Multi
hannel2 ±1 VRANA 00 DPWA Multi
hannel�(N(1440)π)/�total �7/��(N(1440)π)/�total �7/��(N(1440)π)/�total �7/��(N(1440)π)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT12±8 SOKHOYAN 15A DPWA Multi
hannel8±2 2 STAROSTIN 03 π− p → n3π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1 SHRESTHA 12A DPWA Multi
hannel10±9 VRANA 00 DPWA Multi
hannel

N(1535) PHOTON DECAY AMPLITUDES AT THE POLEN(1535) PHOTON DECAY AMPLITUDES AT THE POLEN(1535) PHOTON DECAY AMPLITUDES AT THE POLEN(1535) PHOTON DECAY AMPLITUDES AT THE POLEN(1535) → pγ , heli
ity-1/2 amplitude A1/2N(1535) → pγ , heli
ity-1/2 amplitude A1/2N(1535) → pγ , heli
ity-1/2 amplitude A1/2N(1535) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.114±0.008 10 ± 5 SOKHOYAN 15A DPWA Multi
hannelN(1535) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1535) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1535) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1535) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1535) → pγ , heli
ity-1/2 amplitude A1/2N(1535) → pγ , heli
ity-1/2 amplitude A1/2N(1535) → pγ , heli
ity-1/2 amplitude A1/2N(1535) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT+0.115±0.015 OUR ESTIMATE+0.115±0.015 OUR ESTIMATE+0.115±0.015 OUR ESTIMATE+0.115±0.015 OUR ESTIMATE0.101±0.007 SOKHOYAN 15A DPWA Multi
hannel0.128±0.004 WORKMAN 12A DPWA γN → Nπ0.091±0.002 DUGGER 07 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.091±0.004 SHKLYAR 13 DPWA Multi
hannel0.105±0.010 ANISOVICH 12A DPWA Multi
hannel0.059±0.003 SHRESTHA 12A DPWA Multi
hannel0.066 DRECHSEL 07 DPWA γN → πN0.090 PENNER 02D DPWA Multi
hannelN(1535) → nγ , heli
ity-1/2 amplitude A1/2N(1535) → nγ , heli
ity-1/2 amplitude A1/2N(1535) → nγ , heli
ity-1/2 amplitude A1/2N(1535) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.075±0.020 OUR ESTIMATE−0.075±0.020 OUR ESTIMATE−0.075±0.020 OUR ESTIMATE−0.075±0.020 OUR ESTIMATE
−0.093±0.011 ANISOVICH 13B DPWA Multi
hannel
−0.058±0.006 CHEN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.049±0.003 SHRESTHA 12A DPWA Multi
hannel
−0.051 DRECHSEL 07 DPWA γN → πN
−0.024 PENNER 02D DPWA Multi
hannelN(1535) → N γ, ratio An1/2/Ap1/2N(1535) → N γ, ratio An1/2/Ap1/2N(1535) → N γ, ratio An1/2/Ap1/2N(1535) → N γ, ratio An1/2/Ap1/2VALUE (GeV−1/2) DOCUMENT ID TECN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.84±0.15 MUKHOPAD... 95B IPWAN(1535) FOOTNOTESN(1535) FOOTNOTESN(1535) FOOTNOTESN(1535) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.2This STAROSTIN 03 value is an estimate made using simplest assumptions.N(1535) REFERENCESN(1535) REFERENCESN(1535) REFERENCESN(1535) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.SHKLYAR 13 PR C87 015201 V. Shklyar, H. Lenske, U. Mosel (GIES)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)CHEN 12A PR C86 015206 W. Chen et al. (DUKE, GWU, MSST, ITEP+)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)WORKMAN 12A PR C86 015202 R. Workman et al. (GWU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)AZNAURYAN 09 PR C80 055203 I.G. Aznauryan et al. (JLab CLAS Collab.)DRECHSEL 07 EPJ A34 69 D. Dre
hsel, S.S. Kamalov, L. Tiator (MAINZ, JINR)DUGGER 07 PR C76 025211 M. Dugger et al. (JLab CLAS Collab.)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)ARNDT 04 PR C69 035213 R.A. Arndt et al. (GWU, TRIU)STAROSTIN 03 PR C67 068201 A. Starostin et al. (BNL Crystal Ball Collab.)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)BAI 01B PL B510 75 J.Z. Bai et al. (BES Collab.)THOMPSON 01 PRL 86 1702 R. Thompson et al. (JLab CLAS Collab.)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)ARMSTRONG 99B PR D60 052004 C.S. Armstrong et al.MUKHOPAD... 95B PL B364 1 N.C. Mukhopadhyay, J.F. Zhang, M. Benmerrou
heHOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(1650) 1/2− I (JP ) = 12 (12−) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).N(1650) POLE POSITIONN(1650) POLE POSITIONN(1650) POLE POSITIONN(1650) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1640 to 1670 (≈ 1655) OUR ESTIMATE1640 to 1670 (≈ 1655) OUR ESTIMATE1640 to 1670 (≈ 1655) OUR ESTIMATE1640 to 1670 (≈ 1655) OUR ESTIMATE1652± 7 SOKHOYAN 15A DPWA Multi
hannel1660± 3.5±1 1 SVARC 14 L+P πN → πN1648 ARNDT 06 DPWA πN → πN, ηN1670 HOEHLER 93 ARGD πN → πN1640±20 CUTKOSKY 80 IPWA πN → πN



1528152815281528BaryonParti
le ListingsN(1650)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1650 SHKLYAR 13 DPWA Multi
hannel1647± 6 ANISOVICH 12A DPWA Multi
hannel1655 SHRESTHA 12A DPWA Multi
hannel1646± 8 BATINIC 10 DPWA πN → Nπ, N η1663 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT100 to 170 (≈ 135) OUR ESTIMATE100 to 170 (≈ 135) OUR ESTIMATE100 to 170 (≈ 135) OUR ESTIMATE100 to 170 (≈ 135) OUR ESTIMATE102± 8 SOKHOYAN 15A DPWA Multi
hannel167± 8±2 1 SVARC 14 L+P πN → πN80 ARNDT 06 DPWA πN → πN, ηN163 HOEHLER 93 ARGD πN → πN150±30 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •89 SHKLYAR 13 DPWA Multi
hannel103± 8 ANISOVICH 12A DPWA Multi
hannel123 SHRESTHA 12A DPWA Multi
hannel204±17 BATINIC 10 DPWA πN → Nπ, N η240 VRANA 00 DPWA Multi
hannelN(1650) ELASTIC POLE RESIDUEN(1650) ELASTIC POLE RESIDUEN(1650) ELASTIC POLE RESIDUEN(1650) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT20 to 50 (≈ 35) OUR ESTIMATE20 to 50 (≈ 35) OUR ESTIMATE20 to 50 (≈ 35) OUR ESTIMATE20 to 50 (≈ 35) OUR ESTIMATE27± 6 SOKHOYAN 15A DPWA Multi
hannel47± 3±1 1 SVARC 14 L+P πN → πN14 ARNDT 06 DPWA πN → πN, ηN39 HOEHLER 93 ARGD πN → πN60±10 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •19 SHKLYAR 13 DPWA Multi
hannel24± 3 ANISOVICH 12A DPWA Multi
hannel100 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT50 to 80 (≈ 70) OUR ESTIMATE50 to 80 (≈ 70) OUR ESTIMATE50 to 80 (≈ 70) OUR ESTIMATE50 to 80 (≈ 70) OUR ESTIMATE
−60±20 SOKHOYAN 15A DPWA Multi
hannel
−47± 3±1 1 SVARC 14 L+P πN → πN
−69 ARNDT 06 DPWA πN → πN, ηN
−37 HOEHLER 93 ARGD πN → πN
−75±25 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−46 SHKLYAR 13 DPWA Multi
hannel
−75±12 ANISOVICH 12A DPWA Multi
hannel
−65 BATINIC 10 DPWA πN → Nπ, N ηN(1650) INELASTIC POLE RESIDUEN(1650) INELASTIC POLE RESIDUEN(1650) INELASTIC POLE RESIDUEN(1650) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1650) → N ηNormalized residue in N π → N(1650) → N ηNormalized residue in N π → N(1650) → N ηNormalized residue in N π → N(1650) → N ηMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.29±0.03 134 ± 10 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1650) → �KNormalized residue in N π → N(1650) → �KNormalized residue in N π → N(1650) → �KNormalized residue in N π → N(1650) → �KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.23±0.09 85 ± 9 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1650) → �π, D-waveNormalized residue in N π → N(1650) → �π, D-waveNormalized residue in N π → N(1650) → �π, D-waveNormalized residue in N π → N(1650) → �π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.19±0.06 −30 ± 20 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.23±0.04 −30 ± 20 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1650) → N σNormalized residue in N π → N(1650) → N σNormalized residue in N π → N(1650) → N σNormalized residue in N π → N(1650) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.20±0.15 unde�ned SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(1650) → N(1440)πNormalized residue in N π → N(1650) → N(1440)πNormalized residue in N π → N(1650) → N(1440)πNormalized residue in N π → N(1650) → N(1440)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.30±0.17 unde�ned SOKHOYAN 15A DPWA Multi
hannelN(1650) BREIT-WIGNER MASSN(1650) BREIT-WIGNER MASSN(1650) BREIT-WIGNER MASSN(1650) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1645 to 1670 (≈ 1655) OUR ESTIMATE1645 to 1670 (≈ 1655) OUR ESTIMATE1645 to 1670 (≈ 1655) OUR ESTIMATE1645 to 1670 (≈ 1655) OUR ESTIMATE1654 ± 6 SOKHOYAN 15A DPWA Multi
hannel1665 ± 2 SHKLYAR 13 DPWA Multi
hannel1634.7± 1.1 ARNDT 06 DPWA πN → πN, ηN1650 ±30 CUTKOSKY 80 IPWA πN → πN1670 ± 8 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •1651 ± 6 ANISOVICH 12A DPWA Multi
hannel1664 ± 2 SHRESTHA 12A DPWA Multi
hannel1652 ± 9 BATINIC 10 DPWA πN → Nπ, N η1665 ± 2 PENNER 02C DPWA Multi
hannel1647 ±20 BAI 01B BES J/ψ → pp η1689 ±12 VRANA 00 DPWA Multi
hannelN(1650) BREIT-WIGNER WIDTHN(1650) BREIT-WIGNER WIDTHN(1650) BREIT-WIGNER WIDTHN(1650) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT110 to 170 (≈ 140) OUR ESTIMATE110 to 170 (≈ 140) OUR ESTIMATE110 to 170 (≈ 140) OUR ESTIMATE110 to 170 (≈ 140) OUR ESTIMATE102 ± 8 SOKHOYAN 15A DPWA Multi
hannel147 ±14 SHKLYAR 13 DPWA Multi
hannel115.4± 2.8 ARNDT 06 DPWA πN → πN, ηN150 ±40 CUTKOSKY 80 IPWA πN → πN180 ±20 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •104 ±10 ANISOVICH 12A DPWA Multi
hannel126 ± 3 SHRESTHA 12A DPWA Multi
hannel202 ±16 BATINIC 10 DPWA πN → Nπ, N η138 ± 7 PENNER 02C DPWA Multi
hannel145 +80

−45 BAI 01B BES J/ψ → pp η202 ±40 VRANA 00 DPWA Multi
hannelN(1650) DECAY MODESN(1650) DECAY MODESN(1650) DECAY MODESN(1650) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 50{70 %�2 N η 14{22 %�3 �K 5{15 %�4 N ππ 8{36 %�5 �(1232)π�6 �(1232)π , D-wave 6{18 %�7 N σ 2{18 %�8 N(1440)π 6{26 %�9 pγ , heli
ity=1/2 0.04{0.20 %�10 nγ , heli
ity=1/2 0.003{0.17 %N(1650) BRANCHING RATIOSN(1650) BRANCHING RATIOSN(1650) BRANCHING RATIOSN(1650) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT50 to 70 (≈ 60) OUR ESTIMATE50 to 70 (≈ 60) OUR ESTIMATE50 to 70 (≈ 60) OUR ESTIMATE50 to 70 (≈ 60) OUR ESTIMATE51± 4 SOKHOYAN 15A DPWA Multi
hannel74± 3 SHKLYAR 13 DPWA Multi
hannel65±10 CUTKOSKY 80 IPWA πN → πN61± 4 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •51± 4 ANISOVICH 12A DPWA Multi
hannel57± 2 SHRESTHA 12A DPWA Multi
hannel79± 6 BATINIC 10 DPWA πN → Nπ, N η100 ARNDT 06 DPWA πN → πN, ηN65± 4 PENNER 02C DPWA Multi
hannel74± 2 VRANA 00 DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT1 ±2 SHKLYAR 13 DPWA Multi
hannel18 ±4 ANISOVICH 12A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •21 ±2 SHRESTHA 12A DPWA Multi
hannel13 ±5 BATINIC 10 DPWA πN → Nπ, N η1.0±0.6 PENNER 02C DPWA Multi
hannel6 ±1 VRANA 00 DPWA Multi
hannel�(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE10 ±5 ANISOVICH 12A DPWA Multi
hannel4 ±1 SHKLYAR 05 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •8 ±1 SHRESTHA 12A DPWA Multi
hannel2.7±0.4 PENNER 02C DPWA Multi
hannel



1529152915291529See key on page 601 BaryonParti
le ListingsN(1650),N(1675)�(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT12±6 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •19±9 ANISOVICH 12A DPWA Multi
hannel7±2 SHRESTHA 12A DPWA Multi
hannel2±1 VRANA 00 DPWA Multi
hannel�(N σ

)/�total �7/��(N σ
)/�total �7/��(N σ
)/�total �7/��(N σ
)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT10±8 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1 SHRESTHA 12A DPWA Multi
hannel1±1 VRANA 00 DPWA Multi
hannel�(N(1440)π)/�total �8/��(N(1440)π)/�total �8/��(N(1440)π)/�total �8/��(N(1440)π)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT16±10 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1 SHRESTHA 12A DPWA Multi
hannel3± 1 VRANA 00 DPWA Multi
hannelN(1650) PHOTON DECAY AMPLITUDES AT THE POLEN(1650) PHOTON DECAY AMPLITUDES AT THE POLEN(1650) PHOTON DECAY AMPLITUDES AT THE POLEN(1650) PHOTON DECAY AMPLITUDES AT THE POLEN(1650) → pγ , heli
ity-1/2 amplitude A1/2N(1650) → pγ , heli
ity-1/2 amplitude A1/2N(1650) → pγ , heli
ity-1/2 amplitude A1/2N(1650) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.032±0.006 −2 ± 11 SOKHOYAN 15A DPWA Multi
hannelN(1650) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1650) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1650) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1650) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1650) → pγ , heli
ity-1/2 amplitude A1/2N(1650) → pγ , heli
ity-1/2 amplitude A1/2N(1650) → pγ , heli
ity-1/2 amplitude A1/2N(1650) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT+0.045±0.010 OUR ESTIMATE+0.045±0.010 OUR ESTIMATE+0.045±0.010 OUR ESTIMATE+0.045±0.010 OUR ESTIMATE0.032±0.006 SOKHOYAN 15A DPWA Multi
hannel0.055±0.030 WORKMAN 12A DPWA γN → Nπ0.022±0.007 DUGGER 07 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.063±0.006 SHKLYAR 13 DPWA Multi
hannel0.033±0.007 ANISOVICH 12A DPWA Multi
hannel0.030±0.003 SHRESTHA 12A DPWA Multi
hannel0.033 DRECHSEL 07 DPWA γN → πN0.049 PENNER 02D DPWA Multi
hannelN(1650) → nγ , heli
ity-1/2 amplitude A1/2N(1650) → nγ , heli
ity-1/2 amplitude A1/2N(1650) → nγ , heli
ity-1/2 amplitude A1/2N(1650) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.050±0.020 OUR ESTIMATE−0.050±0.020 OUR ESTIMATE−0.050±0.020 OUR ESTIMATE−0.050±0.020 OUR ESTIMATE0.025±0.020 ANISOVICH 13B DPWA Multi
hannel
−0.040±0.010 CHEN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.011±0.002 SHRESTHA 12A DPWA Multi
hannel0.009 DRECHSEL 07 DPWA γN → πN
−0.011 PENNER 02D DPWA Multi
hannelN(1650) FOOTNOTESN(1650) FOOTNOTESN(1650) FOOTNOTESN(1650) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(1650) REFERENCESN(1650) REFERENCESN(1650) REFERENCESN(1650) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.SHKLYAR 13 PR C87 015201 V. Shklyar, H. Lenske, U. Mosel (GIES)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)CHEN 12A PR C86 015206 W. Chen et al. (DUKE, GWU, MSST, ITEP+)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)WORKMAN 12A PR C86 015202 R. Workman et al. (GWU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)DRECHSEL 07 EPJ A34 69 D. Dre
hsel, S.S. Kamalov, L. Tiator (MAINZ, JINR)DUGGER 07 PR C76 025211 M. Dugger et al. (JLab CLAS Collab.)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)SHKLYAR 05 PR C72 015210 V. Shklyar, H. Lenske, U. Mosel (GIES)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)BAI 01B PL B510 75 J.Z. Bai et al. (BES Collab.)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP

N(1675) 5/2− I (JP ) = 12 (52−) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).N(1675) POLE POSITIONN(1675) POLE POSITIONN(1675) POLE POSITIONN(1675) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1655 to 1665 (≈ 1660) OUR ESTIMATE1655 to 1665 (≈ 1660) OUR ESTIMATE1655 to 1665 (≈ 1660) OUR ESTIMATE1655 to 1665 (≈ 1660) OUR ESTIMATE1655± 4 SOKHOYAN 15A DPWA Multi
hannel1654± 2 1 SVARC 14 L+P πN → πN1657 ARNDT 06 DPWA πN → πN, ηN1656 HOEHLER 93 ARGD πN → πN1660±10 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1640 SHKLYAR 13 DPWA Multi
hannel1654± 4 ANISOVICH 12A DPWA Multi
hannel1656 SHRESTHA 12A DPWA Multi
hannel1658± 9 BATINIC 10 DPWA πN → Nπ, N η1674 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT125 to 150 (≈ 135) OUR ESTIMATE125 to 150 (≈ 135) OUR ESTIMATE125 to 150 (≈ 135) OUR ESTIMATE125 to 150 (≈ 135) OUR ESTIMATE147± 5 SOKHOYAN 15A DPWA Multi
hannel125± 3±1 1 SVARC 14 L+P πN → πN139 ARNDT 06 DPWA πN → πN, ηN126 HOEHLER 93 ARGD πN → πN140±10 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •108 SHKLYAR 13 DPWA Multi
hannel151± 5 ANISOVICH 12A DPWA Multi
hannel128 SHRESTHA 12A DPWA Multi
hannel137± 7 BATINIC 10 DPWA πN → Nπ, N η120 VRANA 00 DPWA Multi
hannelN(1675) ELASTIC POLE RESIDUEN(1675) ELASTIC POLE RESIDUEN(1675) ELASTIC POLE RESIDUEN(1675) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT27±5 OUR ESTIMATE27±5 OUR ESTIMATE27±5 OUR ESTIMATE27±5 OUR ESTIMATE28±1 SOKHOYAN 15A DPWA Multi
hannel23±1 1 SVARC 14 L+P πN → πN27 ARNDT 06 DPWA πN → πN, ηN23 HOEHLER 93 ARGD πN → πN31±5 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •20 SHKLYAR 13 DPWA Multi
hannel28±1 ANISOVICH 12A DPWA Multi
hannel25 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−25± 6 OUR ESTIMATE−25± 6 OUR ESTIMATE−25± 6 OUR ESTIMATE−25± 6 OUR ESTIMATE
−24± 4 SOKHOYAN 15A DPWA Multi
hannel
−25± 2 1 SVARC 14 L+P πN → πN
−21 ARNDT 06 DPWA πN → πN, ηN
−22 HOEHLER 93 ARGD πN → πN
−30±10 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−49 SHKLYAR 13 DPWA Multi
hannel
−26± 4 ANISOVICH 12A DPWA Multi
hannel
−16 BATINIC 10 DPWA πN → Nπ, N ηN(1675) INELASTIC POLE RESIDUEN(1675) INELASTIC POLE RESIDUEN(1675) INELASTIC POLE RESIDUEN(1675) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1675) → �π, D-waveNormalized residue in N π → N(1675) → �π, D-waveNormalized residue in N π → N(1675) → �π, D-waveNormalized residue in N π → N(1675) → �π, D-waveMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT33±4 90 ± 15 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •33±5 82 ± 10 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1675) → N σNormalized residue in N π → N(1675) → N σNormalized residue in N π → N(1675) → N σNormalized residue in N π → N(1675) → N σMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT13±3 125 ± 20 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •15±4 132 ± 18 ANISOVICH 12A DPWA Multi
hannel



1530153015301530Baryon Parti
le ListingsN(1675) N(1675) BREIT-WIGNER MASSN(1675) BREIT-WIGNER MASSN(1675) BREIT-WIGNER MASSN(1675) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1670 to 1680 (≈ 1675) OUR ESTIMATE1670 to 1680 (≈ 1675) OUR ESTIMATE1670 to 1680 (≈ 1675) OUR ESTIMATE1670 to 1680 (≈ 1675) OUR ESTIMATE1663 ± 4 SOKHOYAN 15A DPWA Multi
hannel1666 ± 2 SHKLYAR 13 DPWA Multi
hannel1674.1± 0.2 ARNDT 06 DPWA πN → πN, ηN1675 ±10 CUTKOSKY 80 IPWA πN → πN1679 ± 8 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1664 ± 5 ANISOVICH 12A DPWA Multi
hannel1679 ± 1 SHRESTHA 12A DPWA Multi
hannel1679 ± 9 BATINIC 10 DPWA πN → Nπ, N η1685 ± 4 VRANA 00 DPWA Multi
hannelN(1675) BREIT-WIGNER WIDTHN(1675) BREIT-WIGNER WIDTHN(1675) BREIT-WIGNER WIDTHN(1675) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT130 to 165 (≈ 150) OUR ESTIMATE130 to 165 (≈ 150) OUR ESTIMATE130 to 165 (≈ 150) OUR ESTIMATE130 to 165 (≈ 150) OUR ESTIMATE146 ± 6 SOKHOYAN 15A DPWA Multi
hannel148 ± 1 SHKLYAR 13 DPWA Multi
hannel146.5± 1.0 ARNDT 06 DPWA πN → πN, ηN160 ±20 CUTKOSKY 80 IPWA πN → πN120 ±15 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •152 ± 7 ANISOVICH 12A DPWA Multi
hannel145 ± 4 SHRESTHA 12A DPWA Multi
hannel152 ± 8 BATINIC 10 DPWA πN → Nπ, N η131 ±10 VRANA 00 DPWA Multi
hannelN(1675) DECAY MODESN(1675) DECAY MODESN(1675) DECAY MODESN(1675) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 35{45 %�2 N η < 1 %�3 N ππ 25{45 %�4 �(1232)π�5 �(1232)π , D-wave 23{37 %�6 N σ 3{7 %�7 pγ 0{0.02 %�8 pγ , heli
ity=1/2 0{0.01 %�9 pγ , heli
ity=3/2 0{0.01 %�10 nγ 0{0.15 %�11 nγ , heli
ity=1/2 0{0.05 %�12 nγ , heli
ity=3/2 0{0.10 %N(1675) BRANCHING RATIOSN(1675) BRANCHING RATIOSN(1675) BRANCHING RATIOSN(1675) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT35 to 45 OUR ESTIMATE35 to 45 OUR ESTIMATE35 to 45 OUR ESTIMATE35 to 45 OUR ESTIMATE41 ±2 SOKHOYAN 15A DPWA Multi
hannel41 ±1 SHKLYAR 13 DPWA Multi
hannel39.3±0.1 ARNDT 06 DPWA πN → πN, ηN38 ±5 CUTKOSKY 80 IPWA πN → πN38 ±3 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •40 ±3 ANISOVICH 12A DPWA Multi
hannel38.6±0.6 SHRESTHA 12A DPWA Multi
hannel35 ±4 BATINIC 10 DPWA πN → Nπ, N η35 ±1 VRANA 00 DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT0 ±1 SHKLYAR 13 DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1 SHRESTHA 12A DPWA Multi
hannel0.1±0.1 BATINIC 10 DPWA πN → Nπ, N η3 ±3 THOMA 08 DPWA Multi
hannel0 ±1 VRANA 00 DPWA Multi
hannel�(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT30±7 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •33±8 ANISOVICH 12A DPWA Multi
hannel46±1 SHRESTHA 12A DPWA Multi
hannel63±2 VRANA 00 DPWA Multi
hannel

�(N σ
)/�total �6/��(N σ
)/�total �6/��(N σ
)/�total �6/��(N σ
)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT5±2 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •7±3 ANISOVICH 12A DPWA Multi
hannelN(1675) PHOTON DECAY AMPLITUDES AT THE POLEN(1675) PHOTON DECAY AMPLITUDES AT THE POLEN(1675) PHOTON DECAY AMPLITUDES AT THE POLEN(1675) PHOTON DECAY AMPLITUDES AT THE POLEN(1675) → pγ , heli
ity-1/2 amplitude A1/2N(1675) → pγ , heli
ity-1/2 amplitude A1/2N(1675) → pγ , heli
ity-1/2 amplitude A1/2N(1675) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.022±0.003 −12 ± 7 SOKHOYAN 15A DPWA Multi
hannelN(1675) → pγ , heli
ity-3/2 amplitude A3/2N(1675) → pγ , heli
ity-3/2 amplitude A3/2N(1675) → pγ , heli
ity-3/2 amplitude A3/2N(1675) → pγ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.028±0.006 −17 ± 6 SOKHOYAN 15A DPWA Multi
hannelN(1675) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1675) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1675) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1675) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1675) → pγ , heli
ity-1/2 amplitude A1/2N(1675) → pγ , heli
ity-1/2 amplitude A1/2N(1675) → pγ , heli
ity-1/2 amplitude A1/2N(1675) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT+0.019±0.008 OUR ESTIMATE+0.019±0.008 OUR ESTIMATE+0.019±0.008 OUR ESTIMATE+0.019±0.008 OUR ESTIMATE0.022±0.003 SOKHOYAN 15A DPWA Multi
hannel0.013±0.001 WORKMAN 12A DPWA γN → Nπ0.018±0.002 DUGGER 07 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.009±0.001 SHKLYAR 13 DPWA Multi
hannel0.024±0.003 ANISOVICH 12A DPWA Multi
hannel0.011±0.001 SHRESTHA 12A DPWA Multi
hannel0.015 DRECHSEL 07 DPWA γN → πNN(1675) → pγ , heli
ity-3/2 amplitude A3/2N(1675) → pγ , heli
ity-3/2 amplitude A3/2N(1675) → pγ , heli
ity-3/2 amplitude A3/2N(1675) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT+0.020±0.005 OUR ESTIMATE+0.020±0.005 OUR ESTIMATE+0.020±0.005 OUR ESTIMATE+0.020±0.005 OUR ESTIMATE0.027±0.006 SOKHOYAN 15A DPWA Multi
hannel0.016±0.001 WORKMAN 12A DPWA γN → Nπ0.021±0.001 DUGGER 07 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.021±0.001 SHKLYAR 13 DPWA Multi
hannel0.025±0.007 ANISOVICH 12A DPWA Multi
hannel0.020±0.001 SHRESTHA 12A DPWA Multi
hannel0.022 DRECHSEL 07 DPWA γN → πNN(1675) → nγ , heli
ity-1/2 amplitude A1/2N(1675) → nγ , heli
ity-1/2 amplitude A1/2N(1675) → nγ , heli
ity-1/2 amplitude A1/2N(1675) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.060±0.005 OUR ESTIMATE−0.060±0.005 OUR ESTIMATE−0.060±0.005 OUR ESTIMATE−0.060±0.005 OUR ESTIMATE
−0.060±0.007 ANISOVICH 13B DPWA Multi
hannel
−0.058±0.002 CHEN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.040±0.004 SHRESTHA 12A DPWA Multi
hannel
−0.062 DRECHSEL 07 DPWA γN → πNN(1675) → nγ , heli
ity-3/2 amplitude A3/2N(1675) → nγ , heli
ity-3/2 amplitude A3/2N(1675) → nγ , heli
ity-3/2 amplitude A3/2N(1675) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.085±0.010 OUR ESTIMATE−0.085±0.010 OUR ESTIMATE−0.085±0.010 OUR ESTIMATE−0.085±0.010 OUR ESTIMATE
−0.088±0.010 ANISOVICH 13B DPWA Multi
hannel
−0.080±0.005 CHEN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.068±0.004 SHRESTHA 12A DPWA Multi
hannel
−0.084 DRECHSEL 07 DPWA γN → πNN(1675) FOOTNOTESN(1675) FOOTNOTESN(1675) FOOTNOTESN(1675) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(1675) REFERENCESN(1675) REFERENCESN(1675) REFERENCESN(1675) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.SHKLYAR 13 PR C87 015201 V. Shklyar, H. Lenske, U. Mosel (GIES)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)CHEN 12A PR C86 015206 W. Chen et al. (DUKE, GWU, MSST, ITEP+)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)WORKMAN 12A PR C86 015202 R. Workman et al. (GWU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)THOMA 08 PL B659 87 U. Thoma et al. (CB-ELSA Collab.)DRECHSEL 07 EPJ A34 69 D. Dre
hsel, S.S. Kamalov, L. Tiator (MAINZ, JINR)DUGGER 07 PR C76 025211 M. Dugger et al. (JLab CLAS Collab.)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP



1531153115311531See key on page 601 BaryonParti
le ListingsN(1680)N(1680) 5/2+ I (JP ) = 12 (52+) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).N(1680) POLE POSITIONN(1680) POLE POSITIONN(1680) POLE POSITIONN(1680) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1665 to 1680 (≈ 1675) OUR ESTIMATE1665 to 1680 (≈ 1675) OUR ESTIMATE1665 to 1680 (≈ 1675) OUR ESTIMATE1665 to 1680 (≈ 1675) OUR ESTIMATE1678±5 SOKHOYAN 15A DPWA Multi
hannel1674±2±1 1 SVARC 14 L+P πN → πN1674 ARNDT 06 DPWA πN → πN, ηN1673 HOEHLER 93 ARGD πN → πN1667±5 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1660 SHKLYAR 13 DPWA Multi
hannel1676±6 ANISOVICH 12A DPWA Multi
hannel1669 SHRESTHA 12A DPWA Multi
hannel1666±8 BATINIC 10 DPWA πN → Nπ, N η1667 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT110 to 135 (≈ 120) OUR ESTIMATE110 to 135 (≈ 120) OUR ESTIMATE110 to 135 (≈ 120) OUR ESTIMATE110 to 135 (≈ 120) OUR ESTIMATE113± 4 SOKHOYAN 15A DPWA Multi
hannel129± 3±1 1 SVARC 14 L+P πN → πN115 ARNDT 06 DPWA πN → πN, ηN135 HOEHLER 93 ARGD πN → πN110±10 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •98 SHKLYAR 13 DPWA Multi
hannel113± 4 ANISOVICH 12A DPWA Multi
hannel119 SHRESTHA 12A DPWA Multi
hannel135± 6 BATINIC 10 DPWA πN → Nπ, N η122 VRANA 00 DPWA Multi
hannelN(1680) ELASTIC POLE RESIDUEN(1680) ELASTIC POLE RESIDUEN(1680) ELASTIC POLE RESIDUEN(1680) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT40±5 OUR ESTIMATE40±5 OUR ESTIMATE40±5 OUR ESTIMATE40±5 OUR ESTIMATE45±4 SOKHOYAN 15A DPWA Multi
hannel44±1±1 1 SVARC 14 L+P πN → πN42 ARNDT 06 DPWA πN → πN, ηN44 HOEHLER 93 ARGD πN → πN34±2 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •33 SHKLYAR 13 DPWA Multi
hannel43±4 ANISOVICH 12A DPWA Multi
hannel44 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−10±10 OUR ESTIMATE−10±10 OUR ESTIMATE−10±10 OUR ESTIMATE−10±10 OUR ESTIMATE5±10 SOKHOYAN 15A DPWA Multi
hannel
−16± 1±1 1 SVARC 14 L+P πN → πN
− 4 ARNDT 06 DPWA πN → πN, ηN
−17 HOEHLER 93 ARGD πN → πN
−25± 5 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−32 SHKLYAR 13 DPWA Multi
hannel
− 2±10 ANISOVICH 12A DPWA Multi
hannel
−19 BATINIC 10 DPWA πN → Nπ, N ηN(1680) INELASTIC POLE RESIDUEN(1680) INELASTIC POLE RESIDUEN(1680) INELASTIC POLE RESIDUEN(1680) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1680) → �π, P-waveNormalized residue in N π → N(1680) → �π, P-waveNormalized residue in N π → N(1680) → �π, P-waveNormalized residue in N π → N(1680) → �π, P-waveMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT15±3 −60 ± 30 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •15±3 −70 ± 45 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1680) → �π, F-waveNormalized residue in N π → N(1680) → �π, F-waveNormalized residue in N π → N(1680) → �π, F-waveNormalized residue in N π → N(1680) → �π, F-waveMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT23±4 90 ± 12 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •23±4 85 ± 15 ANISOVICH 12A DPWA Multi
hannel

Normalized residue in N π → N(1680) → N (ππ)I=0S−waveNormalized residue in N π → N(1680) → N (ππ)I=0S−waveNormalized residue in N π → N(1680) → N (ππ)I=0S−waveNormalized residue in N π → N(1680) → N (ππ)I=0S−waveMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT29±6 −45 ± 15 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •26±4 −56 ± 15 ANISOVICH 12A DPWA Multi
hannelN(1680) BREIT-WIGNER MASSN(1680) BREIT-WIGNER MASSN(1680) BREIT-WIGNER MASSN(1680) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1680 to 1690 (≈ 1685) OUR ESTIMATE1680 to 1690 (≈ 1685) OUR ESTIMATE1680 to 1690 (≈ 1685) OUR ESTIMATE1680 to 1690 (≈ 1685) OUR ESTIMATE1690 ± 5 SOKHOYAN 15A DPWA Multi
hannel1676 ± 2 SHKLYAR 13 DPWA Multi
hannel1680.1± 0.2 ARNDT 06 DPWA πN → πN, ηN1680 ±10 CUTKOSKY 80 IPWA πN → πN1684 ± 3 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1689 ± 6 ANISOVICH 12A DPWA Multi
hannel1682.7± 0.5 SHRESTHA 12A DPWA Multi
hannel1680 ± 7 BATINIC 10 DPWA πN → Nπ, N η1679 ± 3 VRANA 00 DPWA Multi
hannelN(1680) BREIT-WIGNER WIDTHN(1680) BREIT-WIGNER WIDTHN(1680) BREIT-WIGNER WIDTHN(1680) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT120 to 140 (≈ 130) OUR ESTIMATE120 to 140 (≈ 130) OUR ESTIMATE120 to 140 (≈ 130) OUR ESTIMATE120 to 140 (≈ 130) OUR ESTIMATE119 ± 4 SOKHOYAN 15A DPWA Multi
hannel115 ± 1 SHKLYAR 13 DPWA Multi
hannel128.0± 1.1 ARNDT 06 DPWA πN → πN, ηN120 ±10 CUTKOSKY 80 IPWA πN → πN128 ± 8 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •118 ± 6 ANISOVICH 12A DPWA Multi
hannel126 ± 1 SHRESTHA 12A DPWA Multi
hannel142 ± 7 BATINIC 10 DPWA πN → Nπ, N η128 ± 9 VRANA 00 DPWA Multi
hannelN(1680) DECAY MODESN(1680) DECAY MODESN(1680) DECAY MODESN(1680) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 65{70 %�2 N η <1 %�3 N ππ 20{40 %�4 �(1232)π 11{23 %�5 �(1232)π , P-wave 4{10 %�6 �(1232)π , F-wave 7{13 %�7 N σ 9{19 %�8 pγ 0.21{0.32 %�9 pγ , heli
ity=1/2 0.001{0.011 %�10 pγ , heli
ity=3/2 0.20{0.32 %�11 nγ 0.021{0.046 %�12 nγ , heli
ity=1/2 0.004{0.029 %�13 nγ , heli
ity=3/2 0.01{0.024 %N(1680) BRANCHING RATIOSN(1680) BRANCHING RATIOSN(1680) BRANCHING RATIOSN(1680) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT65 to 70 OUR ESTIMATE65 to 70 OUR ESTIMATE65 to 70 OUR ESTIMATE65 to 70 OUR ESTIMATE62 ±4 SOKHOYAN 15A DPWA Multi
hannel68 ±1 SHKLYAR 13 DPWA Multi
hannel70.1±0.1 ARNDT 06 DPWA πN → πN, ηN62 ±5 CUTKOSKY 80 IPWA πN → πN65 ±2 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •64 ±5 ANISOVICH 12A DPWA Multi
hannel68.0±0.5 SHRESTHA 12A DPWA Multi
hannel67 ±3 BATINIC 10 DPWA πN → Nπ, N η69 ±2 VRANA 00 DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT0 ±1 SHKLYAR 13 DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.0 ±0.3 SHRESTHA 12A DPWA Multi
hannel0.4 ±0.2 BATINIC 10 DPWA πN → Nπ, N η

<1 THOMA 08 DPWA Multi
hannel0 ±1 VRANA 00 DPWA Multi
hannel0.15+0.35
−0.10 TIATOR 99 DPWA γ p → pη



1532153215321532BaryonParti
le ListingsN(1680),N(1700)�(�(1232)π , P-wave)/�total �5/��(�(1232)π , P-wave)/�total �5/��(�(1232)π , P-wave)/�total �5/��(�(1232)π , P-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT7 ±3 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •5 ±3 ANISOVICH 12A DPWA Multi
hannel10.5±0.9 SHRESTHA 12A DPWA Multi
hannel14 ±3 VRANA 00 DPWA Multi
hannel�(�(1232)π , F-wave)/�total �6/��(�(1232)π , F-wave)/�total �6/��(�(1232)π , F-wave)/�total �6/��(�(1232)π , F-wave)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT10 ±3 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •10 ±3 ANISOVICH 12A DPWA Multi
hannel1.0±0.1 SHRESTHA 12A DPWA Multi
hannel1 ±1 VRANA 00 DPWA Multi
hannel�(N σ

)/�total �7/��(N σ
)/�total �7/��(N σ
)/�total �7/��(N σ
)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT14 ±5 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •14 ±7 ANISOVICH 12A DPWA Multi
hannel9.4±0.8 SHRESTHA 12A DPWA Multi
hannel9 ±1 VRANA 00 DPWA Multi
hannelN(1680) PHOTON DECAY AMPLITUDES AT THE POLEN(1680) PHOTON DECAY AMPLITUDES AT THE POLEN(1680) PHOTON DECAY AMPLITUDES AT THE POLEN(1680) PHOTON DECAY AMPLITUDES AT THE POLEN(1680) → pγ , heli
ity-1/2 amplitude A1/2N(1680) → pγ , heli
ity-1/2 amplitude A1/2N(1680) → pγ , heli
ity-1/2 amplitude A1/2N(1680) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT
−0.013±0.003 −20 ± 17 SOKHOYAN 15A DPWA Multi
hannelN(1680) → pγ , heli
ity-3/2 amplitude A3/2N(1680) → pγ , heli
ity-3/2 amplitude A3/2N(1680) → pγ , heli
ity-3/2 amplitude A3/2N(1680) → pγ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.135±0.005 1 ± 3 SOKHOYAN 15A DPWA Multi
hannelN(1680) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1680) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1680) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1680) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1680) → pγ , heli
ity-1/2 amplitude A1/2N(1680) → pγ , heli
ity-1/2 amplitude A1/2N(1680) → pγ , heli
ity-1/2 amplitude A1/2N(1680) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.015±0.006 OUR ESTIMATE−0.015±0.006 OUR ESTIMATE−0.015±0.006 OUR ESTIMATE−0.015±0.006 OUR ESTIMATE
−0.015±0.002 SOKHOYAN 15A DPWA Multi
hannel
−0.007±0.002 WORKMAN 12A DPWA γN → Nπ

−0.017±0.001 DUGGER 07 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.003±0.001 SHKLYAR 13 DPWA Multi
hannel
−0.013±0.003 ANISOVICH 12A DPWA Multi
hannel
−0.017±0.001 SHRESTHA 12A DPWA Multi
hannel
−0.025 DRECHSEL 07 DPWA γN → πNN(1680) → pγ , heli
ity-3/2 amplitude A3/2N(1680) → pγ , heli
ity-3/2 amplitude A3/2N(1680) → pγ , heli
ity-3/2 amplitude A3/2N(1680) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT+0.133±0.012 OUR ESTIMATE+0.133±0.012 OUR ESTIMATE+0.133±0.012 OUR ESTIMATE+0.133±0.012 OUR ESTIMATE0.136±0.005 SOKHOYAN 15A DPWA Multi
hannel0.140±0.002 WORKMAN 12A DPWA γN → Nπ0.134±0.002 DUGGER 07 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.116±0.001 SHKLYAR 13 DPWA Multi
hannel0.135±0.006 ANISOVICH 12A DPWA Multi
hannel0.136±0.001 SHRESTHA 12A DPWA Multi
hannel0.134 DRECHSEL 07 DPWA γN → πNN(1680) → nγ , heli
ity-1/2 amplitude A1/2N(1680) → nγ , heli
ity-1/2 amplitude A1/2N(1680) → nγ , heli
ity-1/2 amplitude A1/2N(1680) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT+0.029±0.010 OUR ESTIMATE+0.029±0.010 OUR ESTIMATE+0.029±0.010 OUR ESTIMATE+0.029±0.010 OUR ESTIMATE0.034±0.006 ANISOVICH 13B DPWA Multi
hannel0.026±0.004 CHEN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.029±0.002 SHRESTHA 12A DPWA Multi
hannel0.028 DRECHSEL 07 DPWA γN → πNN(1680) → nγ , heli
ity-3/2 amplitude A3/2N(1680) → nγ , heli
ity-3/2 amplitude A3/2N(1680) → nγ , heli
ity-3/2 amplitude A3/2N(1680) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.033±0.009 OUR ESTIMATE−0.033±0.009 OUR ESTIMATE−0.033±0.009 OUR ESTIMATE−0.033±0.009 OUR ESTIMATE
−0.044±0.009 ANISOVICH 13B DPWA Multi
hannel
−0.029±0.002 CHEN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.059±0.002 SHRESTHA 12A DPWA Multi
hannel
−0.038 DRECHSEL 07 DPWA γN → πN

N(1680) FOOTNOTESN(1680) FOOTNOTESN(1680) FOOTNOTESN(1680) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(1680) REFERENCESN(1680) REFERENCESN(1680) REFERENCESN(1680) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982). For very earlyreferen
es, see Reviews of Modern Physi
s 37373737 633 (1965).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.SHKLYAR 13 PR C87 015201 V. Shklyar, H. Lenske, U. Mosel (GIES)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)CHEN 12A PR C86 015206 W. Chen et al. (DUKE, GWU, MSST, ITEP+)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)WORKMAN 12A PR C86 015202 R. Workman et al. (GWU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)THOMA 08 PL B659 87 U. Thoma et al. (CB-ELSA Collab.)DRECHSEL 07 EPJ A34 69 D. Dre
hsel, S.S. Kamalov, L. Tiator (MAINZ, JINR)DUGGER 07 PR C76 025211 M. Dugger et al. (JLab CLAS Collab.)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)TIATOR 99 PR C60 035210 L. Tiator et al.HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(1700) 3/2− I (JP ) = 12 (32−) Status: ∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).N(1700) POLE POSITIONN(1700) POLE POSITIONN(1700) POLE POSITIONN(1700) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1650 to 1750 (≈ 1700) OUR ESTIMATE1650 to 1750 (≈ 1700) OUR ESTIMATE1650 to 1750 (≈ 1700) OUR ESTIMATE1650 to 1750 (≈ 1700) OUR ESTIMATE1780±35 SOKHOYAN 15A DPWA Multi
hannel1757± 4±1 1 SVARC 14 L+P πN → πN1700 HOEHLER 93 SPED πN → πN1660±30 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1770±40 ANISOVICH 12A DPWA Multi
hannel1662 SHRESTHA 12A DPWA Multi
hannel1806±23 BATINIC 10 DPWA πN → Nπ, N η1704 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT100 to 300 OUR ESTIMATE100 to 300 OUR ESTIMATE100 to 300 OUR ESTIMATE100 to 300 OUR ESTIMATE420±140 SOKHOYAN 15A DPWA Multi
hannel136± 7±4 1 SVARC 14 L+P πN → πN120 HOEHLER 93 SPED πN → πN90± 40 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •420±180 ANISOVICH 12A DPWA Multi
hannel55 SHRESTHA 12A DPWA Multi
hannel129± 33 BATINIC 10 DPWA πN → Nπ, N η156 VRANA 00 DPWA Multi
hannelN(1700) ELASTIC POLE RESIDUEN(1700) ELASTIC POLE RESIDUEN(1700) ELASTIC POLE RESIDUEN(1700) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT5 to 50 OUR ESTIMATE5 to 50 OUR ESTIMATE5 to 50 OUR ESTIMATE5 to 50 OUR ESTIMATE60±30 SOKHOYAN 15A DPWA Multi
hannel7± 1±1 1 SVARC 14 L+P πN → πN5 HOEHLER 93 SPED πN → πN6± 3 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •50±40 ANISOVICH 12A DPWA Multi
hannel7 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−120 to 20 OUR ESTIMATE−120 to 20 OUR ESTIMATE−120 to 20 OUR ESTIMATE−120 to 20 OUR ESTIMATE
−115±30 SOKHOYAN 15A DPWA Multi
hannel
−113± 4±2 1 SVARC 14 L+P πN → πN0±50 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−100±40 ANISOVICH 12A DPWA Multi
hannel
− 34 BATINIC 10 DPWA πN → Nπ, N η



1533153315331533See key on page 601 BaryonParti
le ListingsN(1700)N(1700) INELASTIC POLE RESIDUEN(1700) INELASTIC POLE RESIDUEN(1700) INELASTIC POLE RESIDUEN(1700) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1700) → �π, S-waveNormalized residue in N π → N(1700) → �π, S-waveNormalized residue in N π → N(1700) → �π, S-waveNormalized residue in N π → N(1700) → �π, S-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.33±0.10 −70 ± 25 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.34±0.21 −60 ± 40 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1700) → �π, D-waveNormalized residue in N π → N(1700) → �π, D-waveNormalized residue in N π → N(1700) → �π, D-waveNormalized residue in N π → N(1700) → �π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.10±0.06 75 ± 30 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.08±0.06 90 ± 35 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1700) → N σNormalized residue in N π → N(1700) → N σNormalized residue in N π → N(1700) → N σNormalized residue in N π → N(1700) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.13±0.08 −100 ± 35 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(1700) → N(1440)πNormalized residue in N π → N(1700) → N(1440)πNormalized residue in N π → N(1700) → N(1440)πNormalized residue in N π → N(1700) → N(1440)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.13±0.05 40 ± 35 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(1700) → N(1520)π, P-waveNormalized residue in N π → N(1700) → N(1520)π, P-waveNormalized residue in N π → N(1700) → N(1520)π, P-waveNormalized residue in N π → N(1700) → N(1520)π, P-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.07±0.03 160 ± 45 SOKHOYAN 15A DPWA Multi
hannelN(1700) BREIT-WIGNER MASSN(1700) BREIT-WIGNER MASSN(1700) BREIT-WIGNER MASSN(1700) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1650 to 1750 (≈ 1700) OUR ESTIMATE1650 to 1750 (≈ 1700) OUR ESTIMATE1650 to 1750 (≈ 1700) OUR ESTIMATE1650 to 1750 (≈ 1700) OUR ESTIMATE1800±35 SOKHOYAN 15A DPWA Multi
hannel1675±25 CUTKOSKY 80 IPWA πN → πN1731±15 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1790±40 ANISOVICH 12A DPWA Multi
hannel1665± 3 SHRESTHA 12A DPWA Multi
hannel1817±22 BATINIC 10 DPWA πN → Nπ, N η1736±33 VRANA 00 DPWA Multi
hannelN(1700) BREIT-WIGNER WIDTHN(1700) BREIT-WIGNER WIDTHN(1700) BREIT-WIGNER WIDTHN(1700) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT100 to 250 (≈ 150) OUR ESTIMATE100 to 250 (≈ 150) OUR ESTIMATE100 to 250 (≈ 150) OUR ESTIMATE100 to 250 (≈ 150) OUR ESTIMATE400±100 SOKHOYAN 15A DPWA Multi
hannel90± 40 CUTKOSKY 80 IPWA πN → πN110± 30 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •390±140 ANISOVICH 12A DPWA Multi
hannel56± 8 SHRESTHA 12A DPWA Multi
hannel134± 37 BATINIC 10 DPWA πN → Nπ, N η175±133 VRANA 00 DPWA Multi
hannelN(1700) DECAY MODESN(1700) DECAY MODESN(1700) DECAY MODESN(1700) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 7{17 %�2 N η seen�3 N ππ 60{90 %�4 �(1232)π 55{85 %�5 �(1232)π , S-wave 50{80 %�6 �(1232)π , D-wave 4{14 %�7 N(1440)π 3{11 %�8 N(1520)π <4 %�9 N ρ , S=3/2, S-wave seen�10 N σ 2{14 %�11 pγ 0.01{0.05 %�12 pγ , heli
ity=1/2 0.0{0.024 %�13 pγ , heli
ity=3/2 0.002{0.026 %�14 nγ 0.01{0.13 %�15 nγ , heli
ity=1/2 0.0{0.09 %�16 nγ , heli
ity=3/2 0.01{0.05 %

N(1700) BRANCHING RATIOSN(1700) BRANCHING RATIOSN(1700) BRANCHING RATIOSN(1700) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT12 ±5 OUR ESTIMATE12 ±5 OUR ESTIMATE12 ±5 OUR ESTIMATE12 ±5 OUR ESTIMATE15 ±6 SOKHOYAN 15A DPWA Multi
hannel11 ±5 CUTKOSKY 80 IPWA πN → πN8 ±3 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •12 ±5 ANISOVICH 12A DPWA Multi
hannel2.8±0.5 SHRESTHA 12A DPWA Multi
hannel9 ±6 BATINIC 10 DPWA πN → Nπ, N η4 ±2 VRANA 00 DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •14±5 BATINIC 10 DPWA πN → Nπ, N η10±5 THOMA 08 DPWA Multi
hannel0±1 VRANA 00 DPWA Multi
hannel�(�(1232)π , S-wave)/�total �5/��(�(1232)π , S-wave)/�total �5/��(�(1232)π , S-wave)/�total �5/��(�(1232)π , S-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT65±15 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •72±23 ANISOVICH 12A DPWA Multi
hannel31± 9 SHRESTHA 12A DPWA Multi
hannel11± 1 VRANA 00 DPWA Multi
hannel�(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT9± 5 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<10 ANISOVICH 12A DPWA Multi
hannel3± 2 SHRESTHA 12A DPWA Multi
hannel79±56 VRANA 00 DPWA Multi
hannel�(N(1440)π)/�total �7/��(N(1440)π)/�total �7/��(N(1440)π)/�total �7/��(N(1440)π)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT7±4 SOKHOYAN 15A DPWA Multi
hannel�(N(1520)π)/�total �8/��(N(1520)π)/�total �8/��(N(1520)π)/�total �8/��(N(1520)π)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT
<4 SOKHOYAN 15A DPWA Multi
hannel�(N ρ , S=3/2, S-wave)/�total �9/��(N ρ , S=3/2, S-wave)/�total �9/��(N ρ , S=3/2, S-wave)/�total �9/��(N ρ , S=3/2, S-wave)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •38±6 SHRESTHA 12A DPWA Multi
hannel7±1 VRANA 00 DPWA Multi
hannel�(N σ

)/�total �10/��(N σ
)/�total �10/��(N σ
)/�total �10/��(N σ
)/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT8± 6 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •24± 6 SHRESTHA 12A DPWA Multi
hannel18±12 THOMA 08 DPWA Multi
hannel0± 1 VRANA 00 DPWA Multi
hannelN(1700) PHOTON DECAY AMPLITUDES AT THE POLEN(1700) PHOTON DECAY AMPLITUDES AT THE POLEN(1700) PHOTON DECAY AMPLITUDES AT THE POLEN(1700) PHOTON DECAY AMPLITUDES AT THE POLEN(1700) → pγ , heli
ity-1/2 amplitude A1/2N(1700) → pγ , heli
ity-1/2 amplitude A1/2N(1700) → pγ , heli
ity-1/2 amplitude A1/2N(1700) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.047±0.016 75 ± 30 SOKHOYAN 15A DPWA Multi
hannelN(1700) → pγ , heli
ity-3/2 amplitude A3/2N(1700) → pγ , heli
ity-3/2 amplitude A3/2N(1700) → pγ , heli
ity-3/2 amplitude A3/2N(1700) → pγ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT
−0.041±0.014 0 ± 20 SOKHOYAN 15A DPWA Multi
hannelN(1700) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1700) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1700) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1700) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1700) → pγ , heli
ity-1/2 amplitude A1/2N(1700) → pγ , heli
ity-1/2 amplitude A1/2N(1700) → pγ , heli
ity-1/2 amplitude A1/2N(1700) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.041±0.017 ANISOVICH 12A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.021±0.005 SHRESTHA 12A DPWA Multi
hannel



1534153415341534Baryon Parti
le ListingsN(1700), N(1710)N(1700) → pγ , heli
ity-3/2 amplitude A3/2N(1700) → pγ , heli
ity-3/2 amplitude A3/2N(1700) → pγ , heli
ity-3/2 amplitude A3/2N(1700) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.037±0.014 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.034±0.013 ANISOVICH 12A DPWA Multi
hannel0.050±0.009 SHRESTHA 12A DPWA Multi
hannelN(1700) → nγ , heli
ity-1/2 amplitude A1/2N(1700) → nγ , heli
ity-1/2 amplitude A1/2N(1700) → nγ , heli
ity-1/2 amplitude A1/2N(1700) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.025±0.010 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.049±0.008 SHRESTHA 12A DPWA Multi
hannelN(1700) → nγ , heli
ity-3/2 amplitude A3/2N(1700) → nγ , heli
ity-3/2 amplitude A3/2N(1700) → nγ , heli
ity-3/2 amplitude A3/2N(1700) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.032±0.018 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.092±0.014 SHRESTHA 12A DPWA Multi
hannelN(1700) FOOTNOTESN(1700) FOOTNOTESN(1700) FOOTNOTESN(1700) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(1700) REFERENCESN(1700) REFERENCESN(1700) REFERENCESN(1700) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)THOMA 08 PL B659 87 U. Thoma et al. (CB-ELSA Collab.)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(1710) 1/2+ I (JP ) = 12 (12+) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).N(1710) POLE POSITIONN(1710) POLE POSITIONN(1710) POLE POSITIONN(1710) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1670 to 1770 (≈ 1720) OUR ESTIMATE1670 to 1770 (≈ 1720) OUR ESTIMATE1670 to 1770 (≈ 1720) OUR ESTIMATE1670 to 1770 (≈ 1720) OUR ESTIMATE1690±15 SOKHOYAN 15A DPWA Multi
hannel1770± 5±2 1 SVARC 14 L+P πN → πN1690 HOEHLER 93 SPED πN → πN1698 CUTKOSKY 90 IPWA πN → πN1690±20 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1690±15 GUTZ 14 DPWA Multi
hannel1670 SHKLYAR 13 DPWA Multi
hannel1687±17 ANISOVICH 12A DPWA Multi
hannel1644 SHRESTHA 12A DPWA Multi
hannel1711±15 2 BATINIC 10 DPWA πN → Nπ, N η1679 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT80 to 380 (≈ 230) OUR ESTIMATE80 to 380 (≈ 230) OUR ESTIMATE80 to 380 (≈ 230) OUR ESTIMATE80 to 380 (≈ 230) OUR ESTIMATE170±20 SOKHOYAN 15A DPWA Multi
hannel98± 8±5 1 SVARC 14 L+P πN → πN200 HOEHLER 93 SPED πN → πN88 CUTKOSKY 90 IPWA πN → πN80±20 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •170±20 GUTZ 14 DPWA Multi
hannel159 SHKLYAR 13 DPWA Multi
hannel200±25 ANISOVICH 12A DPWA Multi
hannel104 SHRESTHA 12A DPWA Multi
hannel174±16 2 BATINIC 10 DPWA πN → Nπ, N η132 VRANA 00 DPWA Multi
hannel

N(1710) ELASTIC POLE RESIDUEN(1710) ELASTIC POLE RESIDUEN(1710) ELASTIC POLE RESIDUEN(1710) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT5 to 15 (≈ 8) OUR ESTIMATE5 to 15 (≈ 8) OUR ESTIMATE5 to 15 (≈ 8) OUR ESTIMATE5 to 15 (≈ 8) OUR ESTIMATE6±3 SOKHOYAN 15A DPWA Multi
hannel5±1±1 1 SVARC 14 L+P πN → πN15 HOEHLER 93 SPED πN → πN9 CUTKOSKY 90 IPWA πN → πN8±2 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •6±3 GUTZ 14 DPWA Multi
hannel11 SHKLYAR 13 DPWA Multi
hannel6±4 ANISOVICH 12A DPWA Multi
hannel24 2 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT130±35 SOKHOYAN 15A DPWA Multi
hannel
−104± 7±3 1 SVARC 14 L+P πN → πN
−167 CUTKOSKY 90 IPWA πN → πN175±35 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •120±45 GUTZ 14 DPWA Multi
hannel9 SHKLYAR 13 DPWA Multi
hannel120±70 ANISOVICH 12A DPWA Multi
hannel20 2 BATINIC 10 DPWA πN → Nπ, N ηN(1710) INELASTIC POLE RESIDUEN(1710) INELASTIC POLE RESIDUEN(1710) INELASTIC POLE RESIDUEN(1710) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1710) → N ηNormalized residue in N π → N(1710) → N ηNormalized residue in N π → N(1710) → N ηNormalized residue in N π → N(1710) → N ηMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT12±4 0 ± 45 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1710) → �KNormalized residue in N π → N(1710) → �KNormalized residue in N π → N(1710) → �KNormalized residue in N π → N(1710) → �KMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT17±6 −110 ± 20 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1710) → N(1535)πNormalized residue in N π → N(1710) → N(1535)πNormalized residue in N π → N(1710) → N(1535)πNormalized residue in N π → N(1710) → N(1535)πMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT10±4 140 ± 40 GUTZ 14 DPWA Multi
hannelN(1710) BREIT-WIGNER MASSN(1710) BREIT-WIGNER MASSN(1710) BREIT-WIGNER MASSN(1710) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1680 to 1740 (≈ 1710) OUR ESTIMATE1680 to 1740 (≈ 1710) OUR ESTIMATE1680 to 1740 (≈ 1710) OUR ESTIMATE1680 to 1740 (≈ 1710) OUR ESTIMATE1715±20 SOKHOYAN 15A DPWA Multi
hannel1737±17 SHKLYAR 13 DPWA Multi
hannel1700±50 CUTKOSKY 80 IPWA πN → πN1723± 9 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1715±20 GUTZ 14 DPWA Multi
hannel1710±20 ANISOVICH 12A DPWA Multi
hannel1662± 7 SHRESTHA 12A DPWA Multi
hannel1729±16 2 BATINIC 10 DPWA πN → Nπ, N η1752± 3 PENNER 02C DPWA Multi
hannel1699±65 VRANA 00 DPWA Multi
hannelN(1710) BREIT-WIGNER WIDTHN(1710) BREIT-WIGNER WIDTHN(1710) BREIT-WIGNER WIDTHN(1710) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT50 to 250 (≈ 100) OUR ESTIMATE50 to 250 (≈ 100) OUR ESTIMATE50 to 250 (≈ 100) OUR ESTIMATE50 to 250 (≈ 100) OUR ESTIMATE175± 15 SOKHOYAN 15A DPWA Multi
hannel368±120 SHKLYAR 13 DPWA Multi
hannel93± 30 CUTKOSKY 90 IPWA πN → πN90± 30 CUTKOSKY 80 IPWA πN → πN120± 15 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •175± 15 GUTZ 14 DPWA Multi
hannel200± 18 ANISOVICH 12A DPWA Multi
hannel116± 17 SHRESTHA 12A DPWA Multi
hannel180± 17 2 BATINIC 10 DPWA πN → Nπ, N η386± 59 PENNER 02C DPWA Multi
hannel143±100 VRANA 00 DPWA Multi
hannel



1535153515351535See key on page 601 BaryonParti
le ListingsN(1710),N(1720)N(1710) DECAY MODESN(1710) DECAY MODESN(1710) DECAY MODESN(1710) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 5{20 %�2 N η 10{50 %�3 Nω 1{5 %�4 �K 5{25 %�5 � K seen�6 N ππ seen�7 �(1232)π�8 �(1232)π , P-wave seen�9 N(1535)π 9{21 %�10 N ρ�11 N ρ , S=1/2, P-wave seen�12 pγ , heli
ity=1/2 0.002{0.08 %�13 nγ , heli
ity=1/2 0.0{0.02%N(1710) BRANCHING RATIOSN(1710) BRANCHING RATIOSN(1710) BRANCHING RATIOSN(1710) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT5± 3 SOKHOYAN 15A DPWA Multi
hannel2± 2 SHKLYAR 13 PWA Multi
hannel20± 4 CUTKOSKY 80 IPWA πN → πN12± 4 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •5± 3 GUTZ 14 DPWA Multi
hannel5± 4 ANISOVICH 12A DPWA Multi
hannel15± 4 SHRESTHA 12A DPWA Multi
hannel22±24 2 BATINIC 10 DPWA πN → Nπ, N η14± 8 PENNER 02C DPWA Multi
hannel27±13 VRANA 00 DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT45± 4 SHKLYAR 13 DPWA Multi
hannel17±10 ANISOVICH 12A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •11± 7 SHRESTHA 12A DPWA Multi
hannel6± 8 2 BATINIC 10 DPWA πN → Nπ, N η36±11 PENNER 02C DPWA Multi
hannel6± 1 VRANA 00 DPWA Multi
hannel�(Nω
)/�total �3/��(Nω
)/�total �3/��(Nω
)/�total �3/��(Nω
)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT3±2 SHKLYAR 13 DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •13±2 PENNER 02C DPWA Multi
hannel�(�K)/�total �4/��(�K)/�total �4/��(�K)/�total �4/��(�K)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT5 to 25 OUR ESTIMATE5 to 25 OUR ESTIMATE5 to 25 OUR ESTIMATE5 to 25 OUR ESTIMATE23± 7 ANISOVICH 12A DPWA Multi
hannel5± 3 SHKLYAR 05 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •8± 4 SHRESTHA 12A DPWA Multi
hannel5± 2 PENNER 02C DPWA Multi
hannel10±10 VRANA 00 DPWA Multi
hannel�(� K)/�total �5/��(� K)/�total �5/��(� K)/�total �5/��(� K)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •7±7 PENNER 02C DPWA Multi
hannel�(�(1232)π , P-wave)/�total �8/��(�(1232)π , P-wave)/�total �8/��(�(1232)π , P-wave)/�total �8/��(�(1232)π , P-wave)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •6±3 SHRESTHA 12A DPWA Multi
hannel39±8 VRANA 00 DPWA Multi
hannel�(N(1535)π)/�total �9/��(N(1535)π)/�total �9/��(N(1535)π)/�total �9/��(N(1535)π)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT15±6 GUTZ 14 DPWA Multi
hannel�(N ρ , S=1/2,P-wave)/�total �11/��(N ρ , S=1/2,P-wave)/�total �11/��(N ρ , S=1/2,P-wave)/�total �11/��(N ρ , S=1/2,P-wave)/�total �11/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •17±6 SHRESTHA 12A DPWA Multi
hannel17±1 VRANA 00 DPWA Multi
hannel

N(1710) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1710) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1710) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1710) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1710) → pγ , heli
ity-1/2 amplitude A1/2N(1710) → pγ , heli
ity-1/2 amplitude A1/2N(1710) → pγ , heli
ity-1/2 amplitude A1/2N(1710) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.050±0.010 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.05 ±0.01 GUTZ 14 DPWA Multi
hannel
−0.050±0.001 SHKLYAR 13 DPWA Multi
hannel0.052±0.015 ANISOVICH 12A DPWA Multi
hannel
−0.008±0.003 SHRESTHA 12A DPWA Multi
hannel0.044 PENNER 02D DPWA Multi
hannelN(1710) → nγ , heli
ity-1/2 amplitude A1/2N(1710) → nγ , heli
ity-1/2 amplitude A1/2N(1710) → nγ , heli
ity-1/2 amplitude A1/2N(1710) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.040±0.020 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.017±0.003 SHRESTHA 12A DPWA Multi
hannel
−0.024 PENNER 02D DPWA Multi
hannelN(1710) FOOTNOTESN(1710) FOOTNOTESN(1710) FOOTNOTESN(1710) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.2BATINIC 10 �nds eviden
e for a se
ond P11 state with all parameters ex
ept for thephase of the pole residue very similar to the parameters we give here.N(1710) REFERENCESN(1710) REFERENCESN(1710) REFERENCESN(1710) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)GUTZ 14 EPJ A50 74 E. Gutz et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.SHKLYAR 13 PR C87 015201 V. Shklyar, H. Lenske, U. Mosel (GIES)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)SHKLYAR 05 PR C72 015210 V. Shklyar, H. Lenske, U. Mosel (GIES)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 90 PR D42 235 R.E. Cutkosky, S. Wang (CMU)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(1720) 3/2+ I (JP ) = 12 (32+) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).N(1720) POLE POSITIONN(1720) POLE POSITIONN(1720) POLE POSITIONN(1720) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1660 to 1690 (≈ 1675) OUR ESTIMATE1660 to 1690 (≈ 1675) OUR ESTIMATE1660 to 1690 (≈ 1675) OUR ESTIMATE1660 to 1690 (≈ 1675) OUR ESTIMATE1670±25 SOKHOYAN 15A DPWA Multi
hannel1677± 4±1 1 SVARC 14 L+P πN → πN1666 ARNDT 06 DPWA πN → πN, ηN1686 HOEHLER 93 SPED πN → πN1680±30 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1670 SHKLYAR 13 DPWA Multi
hannel1660±30 ANISOVICH 12A DPWA Multi
hannel1687 SHRESTHA 12A DPWA Multi
hannel1691±23 BATINIC 10 DPWA πN → Nπ, N η1692 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT150 to 400 (≈ 250) OUR ESTIMATE150 to 400 (≈ 250) OUR ESTIMATE150 to 400 (≈ 250) OUR ESTIMATE150 to 400 (≈ 250) OUR ESTIMATE430±100 SOKHOYAN 15A DPWA Multi
hannel184± 8±1 1 SVARC 14 L+P πN → πN355 ARNDT 06 DPWA πN → πN, ηN187 HOEHLER 93 SPED πN → πN120± 40 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •118 SHKLYAR 13 DPWA Multi
hannel450±100 ANISOVICH 12A DPWA Multi
hannel175 SHRESTHA 12A DPWA Multi
hannel233± 23 BATINIC 10 DPWA πN → Nπ, N η94 VRANA 00 DPWA Multi
hannel



1536153615361536BaryonParti
le ListingsN(1720) N(1720) ELASTIC POLE RESIDUEN(1720) ELASTIC POLE RESIDUEN(1720) ELASTIC POLE RESIDUEN(1720) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT15± 8 OUR ESTIMATE15± 8 OUR ESTIMATE15± 8 OUR ESTIMATE15± 8 OUR ESTIMATE26±10 SOKHOYAN 15A DPWA Multi
hannel13± 1 1 SVARC 14 L+P πN → πN25 ARNDT 06 DPWA πN → πN, ηN15 HOEHLER 93 SPED πN → πN8± 2 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •12 SHKLYAR 13 DPWA Multi
hannel22± 8 ANISOVICH 12A DPWA Multi
hannel20 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−130±30 OUR ESTIMATE−130±30 OUR ESTIMATE−130±30 OUR ESTIMATE−130±30 OUR ESTIMATE
−100±25 SOKHOYAN 15A DPWA Multi
hannel
−115± 3±2 1 SVARC 14 L+P πN → πN
− 94 ARNDT 06 DPWA πN → πN, ηN
−160±30 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 45 SHKLYAR 13 DPWA Multi
hannel
−115±30 ANISOVICH 12A DPWA Multi
hannel
−109 BATINIC 10 DPWA πN → Nπ, N ηN(1720) INELASTIC POLE RESIDUEN(1720) INELASTIC POLE RESIDUEN(1720) INELASTIC POLE RESIDUEN(1720) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1720) → N ηNormalized residue in N π → N(1720) → N ηNormalized residue in N π → N(1720) → N ηNormalized residue in N π → N(1720) → N ηMODULUS DOCUMENT ID TECN COMMENT0.03±0.02 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1720) → �KNormalized residue in N π → N(1720) → �KNormalized residue in N π → N(1720) → �KNormalized residue in N π → N(1720) → �KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.06±0.04 −150 ± 45 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1720) → �π, P-waveNormalized residue in N π → N(1720) → �π, P-waveNormalized residue in N π → N(1720) → �π, P-waveNormalized residue in N π → N(1720) → �π, P-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.28±0.09 95 ± 30 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.29±0.08 80 ± 40 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1720) → �π, F-waveNormalized residue in N π → N(1720) → �π, F-waveNormalized residue in N π → N(1720) → �π, F-waveNormalized residue in N π → N(1720) → �π, F-waveMODULUS DOCUMENT ID TECN COMMENT0.07±0.05 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.03±0.03 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1720) → N σNormalized residue in N π → N(1720) → N σNormalized residue in N π → N(1720) → N σNormalized residue in N π → N(1720) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.08±0.04 −110 ± 35 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(1720) → N(1520)π, S-waveNormalized residue in N π → N(1720) → N(1520)π, S-waveNormalized residue in N π → N(1720) → N(1520)π, S-waveNormalized residue in N π → N(1720) → N(1520)π, S-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.05±0.04 unde�ned SOKHOYAN 15A DPWA Multi
hannelN(1720) BREIT-WIGNER MASSN(1720) BREIT-WIGNER MASSN(1720) BREIT-WIGNER MASSN(1720) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1700 to 1750 (≈ 1720) OUR ESTIMATE1700 to 1750 (≈ 1720) OUR ESTIMATE1700 to 1750 (≈ 1720) OUR ESTIMATE1700 to 1750 (≈ 1720) OUR ESTIMATE1690 ± 30 SOKHOYAN 15A DPWA Multi
hannel1700 ± 10 SHKLYAR 13 DPWA Multi
hannel1763.8± 4.6 ARNDT 06 DPWA πN → πN, ηN1700 ± 50 CUTKOSKY 80 IPWA πN → πN1710 ± 20 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1690 + 70

− 35 ANISOVICH 12A DPWA Multi
hannel1720 ± 5 SHRESTHA 12A DPWA Multi
hannel1720 ± 18 BATINIC 10 DPWA πN → Nπ, N η1705 ± 10 PENNER 02C DPWA Multi
hannel1716 ±112 VRANA 00 DPWA Multi
hannelN(1720) BREIT-WIGNER WIDTHN(1720) BREIT-WIGNER WIDTHN(1720) BREIT-WIGNER WIDTHN(1720) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT150 to 400 (≈ 250) OUR ESTIMATE150 to 400 (≈ 250) OUR ESTIMATE150 to 400 (≈ 250) OUR ESTIMATE150 to 400 (≈ 250) OUR ESTIMATE420± 80 SOKHOYAN 15A DPWA Multi
hannel152± 2 SHKLYAR 13 DPWA Multi
hannel210± 22 ARNDT 06 DPWA πN → πN, ηN125± 70 CUTKOSKY 80 IPWA πN → πN190± 30 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •420±100 ANISOVICH 12A DPWA Multi
hannel200± 20 SHRESTHA 12A DPWA Multi
hannel244± 28 BATINIC 10 DPWA πN → Nπ, N η237± 73 PENNER 02C DPWA Multi
hannel121± 39 VRANA 00 DPWA Multi
hannelN(1720) DECAY MODESN(1720) DECAY MODESN(1720) DECAY MODESN(1720) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 8{14 %�2 N η 1{5 %�3 �K 4{5 %�4 N ππ 50{90 %�5 �(1232)π�6 �(1232)π , P-wave 47{77 %�7 �(1232)π , F-wave <12 %�8 N ρ 70{85 %�9 N ρ , S=1/2, P-wave seen�10 N σ 2{14 %�11 N(1440)π <2 %�12 N(1520)π , S-wave 1{5 %�13 pγ 0.05{0.25 %�14 pγ , heli
ity=1/2 0.05{0.15 %�15 pγ , heli
ity=3/2 0.002{0.16 %�16 nγ 0.0{0.016 %�17 nγ , heli
ity=1/2 0.0{0.01 %�18 nγ , heli
ity=3/2 0.0{0.015 %N(1720) BRANCHING RATIOSN(1720) BRANCHING RATIOSN(1720) BRANCHING RATIOSN(1720) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT11 ±3 OUR ESTIMATE11 ±3 OUR ESTIMATE11 ±3 OUR ESTIMATE11 ±3 OUR ESTIMATE11 ±4 SOKHOYAN 15A DPWA Multi
hannel17 ±2 SHKLYAR 13 DPWA Multi
hannel9.4±0.5 ARNDT 06 DPWA πN → πN, ηN10 ±4 CUTKOSKY 80 IPWA πN → πN14 ±3 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •10 ±5 ANISOVICH 12A DPWA Multi
hannel13.6±0.6 SHRESTHA 12A DPWA Multi
hannel18 ±3 BATINIC 10 DPWA πN → Nπ, N η17 ±2 PENNER 02C DPWA Multi
hannel5 ±5 VRANA 00 DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT0 ±1 SHKLYAR 13 DPWA Multi
hannel3 ±2 ANISOVICH 12A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1 SHRESTHA 12A DPWA Multi
hannel0 ±1 BATINIC 10 DPWA πN → Nπ, N η10 ±7 THOMA 08 DPWA Multi
hannel0.2±0.2 PENNER 02C DPWA Multi
hannel4 ±1 VRANA 00 DPWA Multi
hannel�(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT4.3±0.4 SHKLYAR 05 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.8±0.4 SHRESTHA 12A DPWA Multi
hannel12 ±9 THOMA 08 DPWA Multi
hannel9 ±3 PENNER 02C DPWA Multi
hannel�(�(1232)π , P-wave)/�total �6/��(�(1232)π , P-wave)/�total �6/��(�(1232)π , P-wave)/�total �6/��(�(1232)π , P-wave)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT62±15 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •75±15 ANISOVICH 12A DPWA Multi
hannel�(�(1232)π , F-wave)/�total �7/��(�(1232)π , F-wave)/�total �7/��(�(1232)π , F-wave)/�total �7/��(�(1232)π , F-wave)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT6±6 SOKHOYAN 15A DPWA Multi
hannel�(N ρ , S=1/2,P-wave)/�total �9/��(N ρ , S=1/2,P-wave)/�total �9/��(N ρ , S=1/2,P-wave)/�total �9/��(N ρ , S=1/2,P-wave)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.4±0.5 SHRESTHA 12A DPWA Multi
hannel91 ±1 VRANA 00 DPWA Multi
hannel



1537153715371537See key on page 601 BaryonParti
le ListingsN(1720),N(1860)�(N σ
)/�total �10/��(N σ
)/�total �10/��(N σ
)/�total �10/��(N σ
)/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT8±6 SOKHOYAN 15A DPWA Multi
hannel�(N(1440)π)/�total �11/��(N(1440)π)/�total �11/��(N(1440)π)/�total �11/��(N(1440)π)/�total �11/�VALUE (%) DOCUMENT ID TECN COMMENT

<2 SOKHOYAN 15A DPWA Multi
hannel�(N(1520)π , S-wave)/�total �12/��(N(1520)π , S-wave)/�total �12/��(N(1520)π , S-wave)/�total �12/��(N(1520)π , S-wave)/�total �12/�VALUE (%) DOCUMENT ID TECN COMMENT3±2 SOKHOYAN 15A DPWA Multi
hannelN(1720) PHOTON DECAY AMPLITUDES AT THE POLEN(1720) PHOTON DECAY AMPLITUDES AT THE POLEN(1720) PHOTON DECAY AMPLITUDES AT THE POLEN(1720) PHOTON DECAY AMPLITUDES AT THE POLEN(1720) → pγ , heli
ity-1/2 amplitude A1/2N(1720) → pγ , heli
ity-1/2 amplitude A1/2N(1720) → pγ , heli
ity-1/2 amplitude A1/2N(1720) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.115±0.045 0 ± 35 SOKHOYAN 15A DPWA Multi
hannelN(1720) → pγ , heli
ity-3/2 amplitude A3/2N(1720) → pγ , heli
ity-3/2 amplitude A3/2N(1720) → pγ , heli
ity-3/2 amplitude A3/2N(1720) → pγ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.140±0.040 65 ± 35 SOKHOYAN 15A DPWA Multi
hannelN(1720) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1720) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1720) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1720) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1720) → pγ , heli
ity-1/2 amplitude A1/2N(1720) → pγ , heli
ity-1/2 amplitude A1/2N(1720) → pγ , heli
ity-1/2 amplitude A1/2N(1720) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.100±0.020 OUR ESTIMATE0.100±0.020 OUR ESTIMATE0.100±0.020 OUR ESTIMATE0.100±0.020 OUR ESTIMATE0.115±0.045 SOKHOYAN 15A DPWA Multi
hannel0.095±0.002 WORKMAN 12A DPWA γN → Nπ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.065±0.002 SHKLYAR 13 DPWA Multi
hannel0.110±0.045 ANISOVICH 12A DPWA Multi
hannel0.057±0.003 SHRESTHA 12A DPWA Multi
hannel0.073 DRECHSEL 07 DPWA γN → πN0.097±0.003 DUGGER 07 DPWA γN → πN
−0.053 PENNER 02D DPWA Multi
hannelN(1720) → pγ , heli
ity-3/2 amplitude A3/2N(1720) → pγ , heli
ity-3/2 amplitude A3/2N(1720) → pγ , heli
ity-3/2 amplitude A3/2N(1720) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.135±0.040 SOKHOYAN 15A DPWA Multi
hannel
−0.048±0.002 WORKMAN 12A DPWA γN → Nπ

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.035±0.002 SHKLYAR 13 DPWA Multi
hannel0.150±0.030 ANISOVICH 12A DPWA Multi
hannel
−0.019±0.002 SHRESTHA 12A DPWA Multi
hannel
−0.011 DRECHSEL 07 DPWA γN → πN
−0.039±0.003 DUGGER 07 DPWA γN → πN0.027 PENNER 02D DPWA Multi
hannelN(1720) → nγ , heli
ity-1/2 amplitude A1/2N(1720) → nγ , heli
ity-1/2 amplitude A1/2N(1720) → nγ , heli
ity-1/2 amplitude A1/2N(1720) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.080±0.050 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.002±0.001 SHRESTHA 12A DPWA Multi
hannel
−0.003 DRECHSEL 07 DPWA γN → πN
−0.004 PENNER 02D DPWA Multi
hannelN(1720) → nγ , heli
ity-3/2 amplitude A3/2N(1720) → nγ , heli
ity-3/2 amplitude A3/2N(1720) → nγ , heli
ity-3/2 amplitude A3/2N(1720) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.140±0.065 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.001±0.002 SHRESTHA 12A DPWA Multi
hannel
−0.031 DRECHSEL 07 DPWA γN → πN0.003 PENNER 02D DPWA Multi
hannelN(1720) FOOTNOTESN(1720) FOOTNOTESN(1720) FOOTNOTESN(1720) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(1720) REFERENCESN(1720) REFERENCESN(1720) REFERENCESN(1720) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.SHKLYAR 13 PR C87 015201 V. Shklyar, H. Lenske, U. Mosel (GIES)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)WORKMAN 12A PR C86 015202 R. Workman et al. (GWU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)THOMA 08 PL B659 87 U. Thoma et al. (CB-ELSA Collab.)

DRECHSEL 07 EPJ A34 69 D. Dre
hsel, S.S. Kamalov, L. Tiator (MAINZ, JINR)DUGGER 07 PR C76 025211 M. Dugger et al. (JLab CLAS Collab.)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)SHKLYAR 05 PR C72 015210 V. Shklyar, H. Lenske, U. Mosel (GIES)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(1860) 5/2+ I (JP ) = 12 (52+) Status: ∗∗OMITTED FROM SUMMARY TABLEBefore the 2012 Review, all the eviden
e for a JP = 5/2+ state witha mass above 1800 MeV was �led under a two-star N(2000). Thereis now some eviden
e from ANISOVICH 12A for two 5/2+ statesin this region, so we have split the older data (a

ording to mass)between two two-star 5/2+ states, an N(1860) and an N(2000).N(1860) POLE POSITIONN(1860) POLE POSITIONN(1860) POLE POSITIONN(1860) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1834± 19±6 1 SVARC 14 L+P πN → πN1830+120
− 60 ANISOVICH 12A DPWA Multi
hannel1807 ARNDT 06 DPWA πN → πN, ηN

• • • We do not use the following data for averages, �ts, limits, et
. • • •1863 SHRESTHA 12A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT122± 34±7 1 SVARC 14 L+P πN → πN250+150

− 50 ANISOVICH 12A DPWA Multi
hannel109 ARNDT 06 DPWA πN → πN, ηN
• • • We do not use the following data for averages, �ts, limits, et
. • • •189 SHRESTHA 12A DPWA Multi
hannelN(1860) ELASTIC POLE RESIDUEN(1860) ELASTIC POLE RESIDUEN(1860) ELASTIC POLE RESIDUEN(1860) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT4± 1±1 1 SVARC 14 L+P πN → πN50±20 ANISOVICH 12A DPWA Multi
hannel60 ARNDT 06 DPWA πN → πN, ηNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−39±18±9 1 SVARC 14 L+P πN → πN
−80±40 ANISOVICH 12A DPWA Multi
hannel
−67 ARNDT 06 DPWA πN → πN, ηNN(1860) BREIT-WIGNER MASSN(1860) BREIT-WIGNER MASSN(1860) BREIT-WIGNER MASSN(1860) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1820 to 1960 (≈ 1860) OUR ESTIMATE1820 to 1960 (≈ 1860) OUR ESTIMATE1820 to 1960 (≈ 1860) OUR ESTIMATE1820 to 1960 (≈ 1860) OUR ESTIMATE1860 +120

− 60 ANISOVICH 12A DPWA Multi
hannel1817.7 ARNDT 06 DPWA πN → πN, ηN1882 ± 10 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1900 ± 7 SHRESTHA 12A DPWA Multi
hannelN(1860) BREIT-WIGNER WIDTHN(1860) BREIT-WIGNER WIDTHN(1860) BREIT-WIGNER WIDTHN(1860) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT270 +140

− 50 ANISOVICH 12A DPWA Multi
hannel117.6 ARNDT 06 DPWA πN → πN, ηN95 ± 20 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •219 ± 23 SHRESTHA 12A DPWA Multi
hannel



1538153815381538BaryonParti
le ListingsN(1860),N(1875)N(1860) DECAY MODESN(1860) DECAY MODESN(1860) DECAY MODESN(1860) DECAY MODESMode Fra
tion (�i /�)�1 N π 4{20 %�2 N η seen�3 N ππ�4 N σ seen�5 pγ�6 pγ , heli
ity=1/2 seen�7 pγ , heli
ity=3/2 seen�8 nγ�9 nγ , heli
ity=1/2�10 nγ , heli
ity=3/2N(1860) BRANCHING RATIOSN(1860) BRANCHING RATIOSN(1860) BRANCHING RATIOSN(1860) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT20 ±6 ANISOVICH 12A DPWA Multi
hannel12.7 ARNDT 06 DPWA πN → πN, ηN4 ±2 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •17 ±1 SHRESTHA 12A DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •4±2 SHRESTHA 12A DPWA Multi
hannel�(N σ
)/�total �4/��(N σ
)/�total �4/��(N σ
)/�total �4/��(N σ
)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •41±6 SHRESTHA 12A DPWA Multi
hannelN(1860) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1860) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1860) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1860) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1860) → pγ , heli
ity-1/2 amplitude A1/2N(1860) → pγ , heli
ity-1/2 amplitude A1/2N(1860) → pγ , heli
ity-1/2 amplitude A1/2N(1860) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.017±0.003 SHRESTHA 12A DPWA Multi
hannelN(1860) → pγ , heli
ity-3/2 amplitude A3/2N(1860) → pγ , heli
ity-3/2 amplitude A3/2N(1860) → pγ , heli
ity-3/2 amplitude A3/2N(1860) → pγ , heli
ity-3/2 amplitude A3/2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.029±0.004 SHRESTHA 12A DPWA Multi
hannelN(1860) → nγ , heli
ity-1/2 amplitude A1/2N(1860) → nγ , heli
ity-1/2 amplitude A1/2N(1860) → nγ , heli
ity-1/2 amplitude A1/2N(1860) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.021±0.013 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.010±0.005 SHRESTHA 12A DPWA Multi
hannelN(1860) → nγ , heli
ity-3/2 amplitude A3/2N(1860) → nγ , heli
ity-3/2 amplitude A3/2N(1860) → nγ , heli
ity-3/2 amplitude A3/2N(1860) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.034±0.017 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.009±0.005 SHRESTHA 12A DPWA Multi
hannelN(1860) FOOTNOTESN(1860) FOOTNOTESN(1860) FOOTNOTESN(1860) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(1860) REFERENCESN(1860) REFERENCESN(1860) REFERENCESN(1860) REFERENCESSVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT)N(1875) 3/2− I (JP ) = 12 (32−) Status: ∗∗∗Before the 2012 Review, all the eviden
e for a JP = 3/2− statewith a mass above 1800 MeV was �led under a two-star N(2080).There is now eviden
e from ANISOVICH 12A for two 3/2− statesin this region, so we have split the older data (a

ording to mass)between a three-star N(1875) and a two-star N(2120).

N(1875) POLE POSITIONN(1875) POLE POSITIONN(1875) POLE POSITIONN(1875) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1800 to 1950 OUR ESTIMATE1800 to 1950 OUR ESTIMATE1800 to 1950 OUR ESTIMATE1800 to 1950 OUR ESTIMATE1870± 20 SOKHOYAN 15A DPWA Multi
hannel2094± 7±11 1 SVARC 14 L+P πN → πN1880±100 2 CUTKOSKY 80 IPWA πN → πN (lower m)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1810 SHKLYAR 13 DPWA Multi
hannel1860± 25 ANISOVICH 12A DPWA Multi
hannel1975 SHRESTHA 12A DPWA Multi
hannel1957± 49 BATINIC 10 DPWA πN → Nπ, N η1824 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT150 to 250 OUR ESTIMATE150 to 250 OUR ESTIMATE150 to 250 OUR ESTIMATE150 to 250 OUR ESTIMATE200± 15 SOKHOYAN 15A DPWA Multi
hannel296± 15±4 1 SVARC 14 L+P πN → πN160± 80 2 CUTKOSKY 80 IPWA πN → πN (lower m)
• • • We do not use the following data for averages, �ts, limits, et
. • • •98 SHKLYAR 13 DPWA Multi
hannel200± 20 ANISOVICH 12A DPWA Multi
hannel495 SHRESTHA 12A DPWA Multi
hannel467±106 BATINIC 10 DPWA πN → Nπ, N η614 VRANA 00 DPWA Multi
hannelN(1875) ELASTIC POLE RESIDUEN(1875) ELASTIC POLE RESIDUEN(1875) ELASTIC POLE RESIDUEN(1875) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT2 to 10 OUR ESTIMATE2 to 10 OUR ESTIMATE2 to 10 OUR ESTIMATE2 to 10 OUR ESTIMATE3 ±1.5 SOKHOYAN 15A DPWA Multi
hannel13 ±1 ±1 1 SVARC 14 L+P πN → πN10 ±5 2 CUTKOSKY 80 IPWA πN → πN (lower m)
• • • We do not use the following data for averages, �ts, limits, et
. • • •3 SHKLYAR 13 DPWA Multi
hannel2.5±1.0 ANISOVICH 12A DPWA Multi
hannel53 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT160±50 SOKHOYAN 15A DPWA Multi
hannel
− 2± 4±9 1 SVARC 14 L+P πN → πN100±80 2 CUTKOSKY 80 IPWA πN → πN (lower m)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 76 SHKLYAR 13 DPWA Multi
hannel
− 65 BATINIC 10 DPWA πN → Nπ, N ηN(1875) INELASTIC POLE RESIDUEN(1875) INELASTIC POLE RESIDUEN(1875) INELASTIC POLE RESIDUEN(1875) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1875) → �KNormalized residue in N π → N(1875) → �KNormalized residue in N π → N(1875) → �KNormalized residue in N π → N(1875) → �KMODULUS DOCUMENT ID TECN COMMENT0.015±0.005 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1875) → � KNormalized residue in N π → N(1875) → � KNormalized residue in N π → N(1875) → � KNormalized residue in N π → N(1875) → � KMODULUS DOCUMENT ID TECN COMMENT0.04±0.02 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1875) → N σNormalized residue in N π → N(1875) → N σNormalized residue in N π → N(1875) → N σNormalized residue in N π → N(1875) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.09±0.03 −175 ± 45 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.08±0.03 −170 ± 65 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1875) → �(1232)π, S-waveNormalized residue in N π → N(1875) → �(1232)π, S-waveNormalized residue in N π → N(1875) → �(1232)π, S-waveNormalized residue in N π → N(1875) → �(1232)π, S-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.05±0.03 unde�ned SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(1875) → �(1232)π, D-waveNormalized residue in N π → N(1875) → �(1232)π, D-waveNormalized residue in N π → N(1875) → �(1232)π, D-waveNormalized residue in N π → N(1875) → �(1232)π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.04±0.02 unde�ned SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(1875) → N(1440)πNormalized residue in N π → N(1875) → N(1440)πNormalized residue in N π → N(1875) → N(1440)πNormalized residue in N π → N(1875) → N(1440)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.03±0.02 unde�ned SOKHOYAN 15A DPWA Multi
hannelN(1875) BREIT-WIGNER MASSN(1875) BREIT-WIGNER MASSN(1875) BREIT-WIGNER MASSN(1875) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1820 to 1920 (≈ 1875) OUR ESTIMATE1820 to 1920 (≈ 1875) OUR ESTIMATE1820 to 1920 (≈ 1875) OUR ESTIMATE1820 to 1920 (≈ 1875) OUR ESTIMATE1875± 20 SOKHOYAN 15A DPWA Multi
hannel1934± 10 SHKLYAR 13 DPWA Multi
hannel1880±100 2 CUTKOSKY 80 IPWA πN → πN
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le ListingsN(1875)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1880± 20 ANISOVICH 12A DPWA Multi
hannel1951± 27 SHRESTHA 12A DPWA Multi
hannel2048± 65 BATINIC 10 DPWA πN → Nπ, N η1946± 1 PENNER 02C DPWA Multi
hannel1895 MART 00 DPWA γ p → �K+2003± 18 VRANA 00 DPWA Multi
hannelN(1875) BREIT-WIGNER WIDTHN(1875) BREIT-WIGNER WIDTHN(1875) BREIT-WIGNER WIDTHN(1875) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT250± 70 OUR ESTIMATE250± 70 OUR ESTIMATE250± 70 OUR ESTIMATE250± 70 OUR ESTIMATE200± 25 SOKHOYAN 15A DPWA Multi
hannel857±100 SHKLYAR 13 DPWA Multi
hannel180± 60 2 CUTKOSKY 80 IPWA πN → πN (lower m)
• • • We do not use the following data for averages, �ts, limits, et
. • • •200± 25 ANISOVICH 12A DPWA Multi
hannel500± 45 SHRESTHA 12A DPWA Multi
hannel529±128 BATINIC 10 DPWA πN → Nπ, N η859± 7 PENNER 02C DPWA Multi
hannel372 MART 00 DPWA γ p → �K+1070±858 VRANA 00 DPWA Multi
hannelN(1875) DECAY MODESN(1875) DECAY MODESN(1875) DECAY MODESN(1875) DECAY MODESMode Fra
tion (�i /�)�1 N π 2{14 %�2 N η <1 %�3 Nω 15{25 %�4 �K seen�5 � K seen�6 N ππ�7 �(1232)π 10{35 %�8 �(1232)π , S-wave 7{21 %�9 �(1232)π , D-wave 2{12 %�10 N ρ , S=3/2, S-wave seen�11 N σ 30{60 %�12 N(1440)π 2{8 %�13 N(1520)π <2 %�14 pγ 0.001{0.025 %�15 pγ , heli
ity=1/2 0.001{0.021 %�16 pγ , heli
ity=3/2 <0.003 %�17 nγ <0.040 %�18 nγ , heli
ity=1/2 <0.007 %�19 nγ , heli
ity=3/2 <0.033 %N(1875) BRANCHING RATIOSN(1875) BRANCHING RATIOSN(1875) BRANCHING RATIOSN(1875) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT7±6 OUR ESTIMATE7±6 OUR ESTIMATE7±6 OUR ESTIMATE7±6 OUR ESTIMATE4±2 SOKHOYAN 15A DPWA Multi
hannel11±1 SHKLYAR 13 DPWA Multi
hannel10±4 2 CUTKOSKY 80 IPWA πN → πN (lower m)

• • • We do not use the following data for averages, �ts, limits, et
. • • •3±2 ANISOVICH 12A DPWA Multi
hannel7±2 SHRESTHA 12A DPWA Multi
hannel17±7 BATINIC 10 DPWA πN → Nπ, N η12±2 PENNER 02C DPWA Multi
hannel13±3 VRANA 00 DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT0±1 SHKLYAR 13 DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •8±3 BATINIC 10 DPWA πN → Nπ, N η7±2 PENNER 02C DPWA Multi
hannel0±2 VRANA 00 DPWA Multi
hannel�(Nω
)/�total �3/��(Nω
)/�total �3/��(Nω
)/�total �3/��(Nω
)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT20±5 SHKLYAR 13 DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •21±7 PENNER 02C DPWA Multi
hannel�(�K)/�total �4/��(�K)/�total �4/��(�K)/�total �4/��(�K)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.2±0.2 PENNER 02C DPWA Multi
hannel

�(� K)/�total �5/��(� K)/�total �5/��(� K)/�total �5/��(� K)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT0.7±0.4 PENNER 02C DPWA Multi
hannel�(�(1232)π , S-wave)/�total �8/��(�(1232)π , S-wave)/�total �8/��(�(1232)π , S-wave)/�total �8/��(�(1232)π , S-wave)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT14± 7 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •87± 3 SHRESTHA 12A DPWA Multi
hannel40±10 VRANA 00 DPWA Multi
hannel�(�(1232)π ,D-wave)/�total �9/��(�(1232)π ,D-wave)/�total �9/��(�(1232)π ,D-wave)/�total �9/��(�(1232)π ,D-wave)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT7± 5 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 6 SHRESTHA 12A DPWA Multi
hannel17±10 VRANA 00 DPWA Multi
hannel�(N ρ , S=3/2, S-wave)/�total �10/��(N ρ , S=3/2, S-wave)/�total �10/��(N ρ , S=3/2, S-wave)/�total �10/��(N ρ , S=3/2, S-wave)/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5 SHRESTHA 12A DPWA Multi
hannel6±6 VRANA 00 DPWA Multi
hannel�(N σ
)/�total �11/��(N σ
)/�total �11/��(N σ
)/�total �11/��(N σ
)/�total �11/�VALUE (%) DOCUMENT ID TECN COMMENT45±15 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 4 SHRESTHA 12A DPWA Multi
hannel24±24 VRANA 00 DPWA Multi
hannel�(N(1440)π)/�total �12/��(N(1440)π)/�total �12/��(N(1440)π)/�total �12/��(N(1440)π)/�total �12/�VALUE (%) DOCUMENT ID TECN COMMENT5±3 SOKHOYAN 15A DPWA Multi
hannel�(N(1520)π)/�total �13/��(N(1520)π)/�total �13/��(N(1520)π)/�total �13/��(N(1520)π)/�total �13/�VALUE (%) DOCUMENT ID TECN COMMENT
<2 SOKHOYAN 15A DPWA Multi
hannelN(1875) PHOTON DECAY AMPLITUDES AT THE POLEN(1875) PHOTON DECAY AMPLITUDES AT THE POLEN(1875) PHOTON DECAY AMPLITUDES AT THE POLEN(1875) PHOTON DECAY AMPLITUDES AT THE POLEN(1875) → pγ , heli
ity-1/2 amplitude A1/2N(1875) → pγ , heli
ity-1/2 amplitude A1/2N(1875) → pγ , heli
ity-1/2 amplitude A1/2N(1875) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.017±0.009 −110 ± 40 SOKHOYAN 15A DPWA Multi
hannelN(1875) → pγ , heli
ity-3/2 amplitude A3/2N(1875) → pγ , heli
ity-3/2 amplitude A3/2N(1875) → pγ , heli
ity-3/2 amplitude A3/2N(1875) → pγ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.008±0.004 180 ± 40 SOKHOYAN 15A DPWA Multi
hannelN(1875) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1875) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1875) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1875) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1875) → pγ , heli
ity-1/2 amplitude A1/2N(1875) → pγ , heli
ity-1/2 amplitude A1/2N(1875) → pγ , heli
ity-1/2 amplitude A1/2N(1875) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.018±0.010 ANISOVICH 12A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.011±0.001 SHKLYAR 13 DPWA Multi
hannel0.007±0.008 SHRESTHA 12A DPWA Multi
hannel0.012 PENNER 02D DPWA Multi
hannelN(1875) → pγ , heli
ity-3/2 amplitude A3/2N(1875) → pγ , heli
ity-3/2 amplitude A3/2N(1875) → pγ , heli
ity-3/2 amplitude A3/2N(1875) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.007±0.004 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.026±0.001 SHKLYAR 13 DPWA Multi
hannel
−0.009±0.005 ANISOVICH 12A DPWA Multi
hannel0.043±0.022 SHRESTHA 12A DPWA Multi
hannel
−0.010 PENNER 02D DPWA Multi
hannelN(1875) → nγ , heli
ity-1/2 amplitude A1/2N(1875) → nγ , heli
ity-1/2 amplitude A1/2N(1875) → nγ , heli
ity-1/2 amplitude A1/2N(1875) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.010±0.006 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.055±0.021 SHRESTHA 12A DPWA Multi
hannel0.023 PENNER 02D DPWA Multi
hannel
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le ListingsN(1875),N(1880)N(1875) → nγ , heli
ity-3/2 amplitude A3/2N(1875) → nγ , heli
ity-3/2 amplitude A3/2N(1875) → nγ , heli
ity-3/2 amplitude A3/2N(1875) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.020±0.015 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.085±0.031 SHRESTHA 12A DPWA Multi
hannel
−0.009 PENNER 02D DPWA Multi
hannelN(1875) FOOTNOTESN(1875) FOOTNOTESN(1875) FOOTNOTESN(1875) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.2CUTKOSKY 80 �nds a lower mass D13 resonan
e, as well as one in this region. Bothare listed here. N(1875) REFERENCESN(1875) REFERENCESN(1875) REFERENCESN(1875) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.SHKLYAR 13 PR C87 015201 V. Shklyar, H. Lenske, U. Mosel (GIES)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)MART 00 PR C61 012201 T. Mart, C. BennholdVRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(1880) 1/2+ I (JP ) = 12 (12+) Status: ∗∗OMITTED FROM SUMMARY TABLEN(1880) POLE POSITIONN(1880) POLE POSITIONN(1880) POLE POSITIONN(1880) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1870±40 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •1870±40 GUTZ 14 DPWA Multi
hannel1860±35 ANISOVICH 12A DPWA Multi
hannel1801 SHRESTHA 12A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT220±50 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •220±50 GUTZ 14 DPWA Multi
hannel250±70 ANISOVICH 12A DPWA Multi
hannel383 SHRESTHA 12A DPWA Multi
hannelN(1880) ELASTIC POLE RESIDUEN(1880) ELASTIC POLE RESIDUEN(1880) ELASTIC POLE RESIDUEN(1880) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT6±4 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •6±4 GUTZ 14 DPWA Multi
hannel6±4 ANISOVICH 12A DPWA Multi
hannelPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT70±60 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •70±60 GUTZ 14 DPWA Multi
hannel80±65 ANISOVICH 12A DPWA Multi
hannelN(1880) INELASTIC POLE RESIDUEN(1880) INELASTIC POLE RESIDUEN(1880) INELASTIC POLE RESIDUEN(1880) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1880) → N ηNormalized residue in N π → N(1880) → N ηNormalized residue in N π → N(1880) → N ηNormalized residue in N π → N(1880) → N ηMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.11±0.07 −75 ± 55 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1880) → �KNormalized residue in N π → N(1880) → �KNormalized residue in N π → N(1880) → �KNormalized residue in N π → N(1880) → �KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.03±0.02 40 ± 40 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1880) → � KNormalized residue in N π → N(1880) → � KNormalized residue in N π → N(1880) → � KNormalized residue in N π → N(1880) → � KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.11±0.06 95 ± 40 ANISOVICH 12A DPWA Multi
hannel

Normalized residue in N π → N(1880) → �π, P-waveNormalized residue in N π → N(1880) → �π, P-waveNormalized residue in N π → N(1880) → �π, P-waveNormalized residue in N π → N(1880) → �π, P-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.14±0.08 −150 ± 55 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.20±0.08 −150 ± 50 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1880) → N(1535)πNormalized residue in N π → N(1880) → N(1535)πNormalized residue in N π → N(1880) → N(1535)πNormalized residue in N π → N(1880) → N(1535)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.09±0.05 130 ± 60 GUTZ 14 DPWA Multi
hannelNormalized residue in N π → N(1880) → N a0(980)Normalized residue in N π → N(1880) → N a0(980)Normalized residue in N π → N(1880) → N a0(980)Normalized residue in N π → N(1880) → N a0(980)MODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.04±0.03 40 ± 65 GUTZ 14 DPWA Multi
hannelNormalized residue in N π → N(1880) → N σNormalized residue in N π → N(1880) → N σNormalized residue in N π → N(1880) → N σNormalized residue in N π → N(1880) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.10±0.05 −140 ± 55 SOKHOYAN 15A DPWA Multi
hannelN(1880) BREIT-WIGNER MASSN(1880) BREIT-WIGNER MASSN(1880) BREIT-WIGNER MASSN(1880) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1875±40 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •1875±40 GUTZ 14 DPWA Multi
hannel1870±35 ANISOVICH 12A DPWA Multi
hannel1900±36 SHRESTHA 12A DPWA Multi
hannelN(1880) BREIT-WIGNER WIDTHN(1880) BREIT-WIGNER WIDTHN(1880) BREIT-WIGNER WIDTHN(1880) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT230± 50 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •230± 50 GUTZ 14 DPWA Multi
hannel235± 65 ANISOVICH 12A DPWA Multi
hannel485±142 SHRESTHA 12A DPWA Multi
hannelN(1880) DECAY MODESN(1880) DECAY MODESN(1880) DECAY MODESN(1880) DECAY MODESMode Fra
tion (�i /�)�1 N π 3{9 %�2 N η 5{55 %�3 �K 1{3 %�4 � K 10{24 %�5 N ππ 30{80 %�6 �(1232)π 18{42 %�7 N σ 10{40 %�8 N(1535)π 4{12 %�9 N a0(980) 1{5 %�10 pγ , heli
ity=1/2 seen�11 nγ , heli
ity=1/2 0.002{0.63 %N(1880) BRANCHING RATIOSN(1880) BRANCHING RATIOSN(1880) BRANCHING RATIOSN(1880) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT6±3 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •6±3 GUTZ 14 DPWA Multi
hannel5±3 ANISOVICH 12A DPWA Multi
hannel15±5 SHRESTHA 12A DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT25+30

−20 ANISOVICH 12A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •16± 7 SHRESTHA 12A DPWA Multi
hannel�(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT2± 1 ANISOVICH 12A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •32±10 SHRESTHA 12A DPWA Multi
hannel�(� K)/�total �4/��(� K)/�total �4/��(� K)/�total �4/��(� K)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT17±7 ANISOVICH 12A DPWA Multi
hannel
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le ListingsN(1880),N(1895)�(�(1232)π)/�total �6/��(�(1232)π)/�total �6/��(�(1232)π)/�total �6/��(�(1232)π)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT30±12 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •29±12 ANISOVICH 12A DPWA Multi
hannel
< 2 SHRESTHA 12A DPWA Multi
hannel�(N σ

)/�total �7/��(N σ
)/�total �7/��(N σ
)/�total �7/��(N σ
)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT25±15 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •8± 5 SHRESTHA 12A DPWA Multi
hannel�(N(1535)π)/�total �8/��(N(1535)π)/�total �8/��(N(1535)π)/�total �8/��(N(1535)π)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT8±4 GUTZ 14 DPWA Multi
hannel�(N a0(980))/�total �9/��(N a0(980))/�total �9/��(N a0(980))/�total �9/��(N a0(980))/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT3±2 GUTZ 14 DPWA Multi
hannelN(1880) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1880) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1880) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1880) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1880) → pγ , heli
ity-1/2 amplitude A1/2N(1880) → pγ , heli
ity-1/2 amplitude A1/2N(1880) → pγ , heli
ity-1/2 amplitude A1/2N(1880) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.021±0.006 SHRESTHA 12A DPWA Multi
hannelN(1880) → nγ , heli
ity-1/2 amplitude A1/2N(1880) → nγ , heli
ity-1/2 amplitude A1/2N(1880) → nγ , heli
ity-1/2 amplitude A1/2N(1880) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.060±0.050 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.014±0.007 SHRESTHA 12A DPWA Multi
hannelN(1880) REFERENCESN(1880) REFERENCESN(1880) REFERENCESN(1880) REFERENCESSOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)GUTZ 14 EPJ A50 74 E. Gutz et al. (CBELSA/TAPS Collab.)ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)N(1895) 1/2− I (JP ) = 12 (12−) Status: ∗∗OMITTED FROM SUMMARY TABLEBefore our 2012 Review, this state appeared in our Listings as theN(2090). Any stru
ture in the S11 wave above 1800 MeV is listedhere. A few early results that are now obsolete have been omitted.N(1895) POLE POSITIONN(1895) POLE POSITIONN(1895) POLE POSITIONN(1895) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1907±10 SOKHOYAN 15A DPWA Multi
hannel1917±19±1 1 SVARC 14 L+P πN → πN2150±70 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1900±15 ANISOVICH 12A DPWA Multi
hannel1858 SHRESTHA 12A DPWA Multi
hannel1797±26 BATINIC 10 DPWA πN → Nπ, N η1795 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT100+ 40

− 15 SOKHOYAN 15A DPWA Multi
hannel101± 36±1 1 SVARC 14 L+P πN → πN350±100 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •90+ 30

− 15 ANISOVICH 12A DPWA Multi
hannel479 SHRESTHA 12A DPWA Multi
hannel420± 45 BATINIC 10 DPWA πN → Nπ, N η220 VRANA 00 DPWA Multi
hannelN(1895) ELASTIC POLE RESIDUEN(1895) ELASTIC POLE RESIDUEN(1895) ELASTIC POLE RESIDUEN(1895) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT3 ± 2 SOKHOYAN 15A DPWA Multi
hannel3.1± 1.4 1 SVARC 14 L+P πN → πN40 ±20 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 ± 1 ANISOVICH 12A DPWA Multi
hannel60 BATINIC 10 DPWA πN → Nπ, N η

PHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT125±45 SOKHOYAN 15A DPWA Multi
hannel
−107±23±2 1 SVARC 14 L+P πN → πN0±90 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−164 BATINIC 10 DPWA πN → Nπ, N ηN(1895) INELASTIC POLE RESIDUEN(1895) INELASTIC POLE RESIDUEN(1895) INELASTIC POLE RESIDUEN(1895) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1895) → N ηNormalized residue in N π → N(1895) → N ηNormalized residue in N π → N(1895) → N ηNormalized residue in N π → N(1895) → N ηMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.06±0.02 40 ± 20 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1895) → �KNormalized residue in N π → N(1895) → �KNormalized residue in N π → N(1895) → �KNormalized residue in N π → N(1895) → �KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.05±0.02 −90 ± 30 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1895) → � KNormalized residue in N π → N(1895) → � KNormalized residue in N π → N(1895) → � KNormalized residue in N π → N(1895) → � KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.06±0.02 40 ± 30 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1895) → �(1232)πNormalized residue in N π → N(1895) → �(1232)πNormalized residue in N π → N(1895) → �(1232)πNormalized residue in N π → N(1895) → �(1232)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.05±0.025 −100 ± 45 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(1895) → N(1440)πNormalized residue in N π → N(1895) → N(1440)πNormalized residue in N π → N(1895) → N(1440)πNormalized residue in N π → N(1895) → N(1440)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.05±0.025 −100 ± 45 SOKHOYAN 15A DPWA Multi
hannelN(1895) BREIT-WIGNER MASSN(1895) BREIT-WIGNER MASSN(1895) BREIT-WIGNER MASSN(1895) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1905±12 SOKHOYAN 15A DPWA Multi
hannel2180±80 CUTKOSKY 80 IPWA πN → πN1880±20 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1895±15 ANISOVICH 12A DPWA Multi
hannel1910±15 SHRESTHA 12A DPWA Multi
hannel1812±25 BATINIC 10 DPWA πN → Nπ, N η1822±43 VRANA 00 DPWA Multi
hannelN(1895) BREIT-WIGNER WIDTHN(1895) BREIT-WIGNER WIDTHN(1895) BREIT-WIGNER WIDTHN(1895) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT100+ 30

− 10 SOKHOYAN 15A DPWA Multi
hannel350±100 CUTKOSKY 80 IPWA πN → πN95± 30 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •90+ 30

− 15 ANISOVICH 12A DPWA Multi
hannel502± 47 SHRESTHA 12A DPWA Multi
hannel405± 40 BATINIC 10 DPWA πN → Nπ, N η248±185 VRANA 00 DPWA Multi
hannelN(1895) DECAY MODESN(1895) DECAY MODESN(1895) DECAY MODESN(1895) DECAY MODESMode Fra
tion (�i /�)�1 N π 1{4 %�2 N η 15{27 %�3 �K 13{23 %�4 � K 6{20 %�5 N ππ�6 �(1232)π�7 �(1232)π , D-wave 3{11 %�8 N ρ�9 N ρ , S=1/2, S-wave seen�10 N ρ , S=3/2, D-wave seen�11 N σ seen�12 N(1440)π 1{4 %�13 pγ , heli
ity=1/2 0.01{0.06 %�14 nγ , heli
ity=1/2 0.003{0.05 %



1542154215421542BaryonParti
le ListingsN(1895),N(1900)N(1895) BRANCHING RATIOSN(1895) BRANCHING RATIOSN(1895) BRANCHING RATIOSN(1895) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT2.5±1.5 SOKHOYAN 15A DPWA Multi
hannel18 ±8 CUTKOSKY 80 IPWA πN → πN9 ±5 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •2 ±1 ANISOVICH 12A DPWA Multi
hannel17 ±2 SHRESTHA 12A DPWA Multi
hannel32 ±6 BATINIC 10 DPWA πN → Nπ, N η17 ±3 VRANA 00 DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT21± 6 ANISOVICH 12A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •40± 4 SHRESTHA 12A DPWA Multi
hannel22±10 BATINIC 10 DPWA πN → Nπ, N η41± 4 VRANA 00 DPWA Multi
hannel�(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT18 ±5 ANISOVICH 12A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.8±0.8 SHRESTHA 12A DPWA Multi
hannel�(� K)/�total �4/��(� K)/�total �4/��(� K)/�total �4/��(� K)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT13±7 ANISOVICH 12A DPWA Multi
hannel�(�(1232)π ,D-wave)/�total �7/��(�(1232)π ,D-wave)/�total �7/��(�(1232)π ,D-wave)/�total �7/��(�(1232)π ,D-wave)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT7±4 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •7±3 SHRESTHA 12A DPWA Multi
hannel1±1 VRANA 00 DPWA Multi
hannel�(N ρ , S=1/2, S-wave)/�total �9/��(N ρ , S=1/2, S-wave)/�total �9/��(N ρ , S=1/2, S-wave)/�total �9/��(N ρ , S=1/2, S-wave)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 2 SHRESTHA 12A DPWA Multi
hannel36±1 VRANA 00 DPWA Multi
hannel�(N ρ , S=3/2,D-wave)/�total �10/��(N ρ , S=3/2,D-wave)/�total �10/��(N ρ , S=3/2,D-wave)/�total �10/��(N ρ , S=3/2,D-wave)/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •9±3 SHRESTHA 12A DPWA Multi
hannel1±1 VRANA 00 DPWA Multi
hannel�(N σ

)/�total �11/��(N σ
)/�total �11/��(N σ
)/�total �11/��(N σ
)/�total �11/�VALUE (%) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<2 SHRESTHA 12A DPWA Multi
hannel2±1 VRANA 00 DPWA Multi
hannel�(N(1440)π)/�total �12/��(N(1440)π)/�total �12/��(N(1440)π)/�total �12/��(N(1440)π)/�total �12/�VALUE (%) DOCUMENT ID TECN COMMENT2.5±1.5 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •24 ±4 SHRESTHA 12A DPWA Multi
hannel2 ±1 VRANA 00 DPWA Multi
hannelN(1895) PHOTON DECAY AMPLITUDES AT THE POLEN(1895) PHOTON DECAY AMPLITUDES AT THE POLEN(1895) PHOTON DECAY AMPLITUDES AT THE POLEN(1895) PHOTON DECAY AMPLITUDES AT THE POLEN(1895) → pγ , heli
ity-1/2 amplitude A1/2N(1895) → pγ , heli
ity-1/2 amplitude A1/2N(1895) → pγ , heli
ity-1/2 amplitude A1/2N(1895) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.015±0.006 145 ± 35 SOKHOYAN 15A DPWA Multi
hannelN(1895) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1895) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1895) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1895) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1895) → pγ , heli
ity-1/2 amplitude A1/2N(1895) → pγ , heli
ity-1/2 amplitude A1/2N(1895) → pγ , heli
ity-1/2 amplitude A1/2N(1895) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.016±0.006 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.012±0.006 SHRESTHA 12A DPWA Multi
hannelN(1895) → nγ , heli
ity-1/2 amplitude A1/2N(1895) → nγ , heli
ity-1/2 amplitude A1/2N(1895) → nγ , heli
ity-1/2 amplitude A1/2N(1895) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.013±0.006 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.003±0.007 SHRESTHA 12A DPWA Multi
hannel

N(1895) FOOTNOTESN(1895) FOOTNOTESN(1895) FOOTNOTESN(1895) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(1895) REFERENCESN(1895) REFERENCESN(1895) REFERENCESN(1895) REFERENCESSOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(1900) 3/2+ I (JP ) = 12 (32+) Status: ∗∗∗N(1900) POLE POSITIONN(1900) POLE POSITIONN(1900) POLE POSITIONN(1900) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1900 to 1940 (≈ 1920) OUR ESTIMATE1900 to 1940 (≈ 1920) OUR ESTIMATE1900 to 1940 (≈ 1920) OUR ESTIMATE1900 to 1940 (≈ 1920) OUR ESTIMATE1910±30 SOKHOYAN 15A DPWA Multi
hannel1928±18±2 1 SVARC 14 L+P πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1910±30 GUTZ 14 DPWA Multi
hannel1910 SHKLYAR 13 DPWA Multi
hannel1900±30 ANISOVICH 12A DPWA Multi
hannel1895 SHRESTHA 12A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT130 to 300 OUR ESTIMATE130 to 300 OUR ESTIMATE130 to 300 OUR ESTIMATE130 to 300 OUR ESTIMATE280± 50 SOKHOYAN 15A DPWA Multi
hannel152± 40±9 1 SVARC 14 L+P πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •280± 50 GUTZ 14 DPWA Multi
hannel173 SHKLYAR 13 DPWA Multi
hannel200+100

− 60 ANISOVICH 12A DPWA Multi
hannel100 SHRESTHA 12A DPWA Multi
hannelN(1900) ELASTIC POLE RESIDUEN(1900) ELASTIC POLE RESIDUEN(1900) ELASTIC POLE RESIDUEN(1900) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT4±2 SOKHOYAN 15A DPWA Multi
hannel4±1±1 1 SVARC 14 L+P πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •4±2 GUTZ 14 DPWA Multi
hannel10 SHKLYAR 13 DPWA Multi
hannel3±2 ANISOVICH 12A DPWA Multi
hannelPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−10±40 SOKHOYAN 15A DPWA Multi
hannel
−29±15±2 1 SVARC 14 L+P πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−10±40 GUTZ 14 DPWA Multi
hannel
−64 SHKLYAR 13 DPWA Multi
hannel10±35 ANISOVICH 12A DPWA Multi
hannelN(1900) INELASTIC POLE RESIDUEN(1900) INELASTIC POLE RESIDUEN(1900) INELASTIC POLE RESIDUEN(1900) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(1900) → N ηNormalized residue in N π → N(1900) → N ηNormalized residue in N π → N(1900) → N ηNormalized residue in N π → N(1900) → N ηMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.05±0.02 70 ± 60 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1900) → �KNormalized residue in N π → N(1900) → �KNormalized residue in N π → N(1900) → �KNormalized residue in N π → N(1900) → �KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.07±0.03 135 ± 25 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1900) → � KNormalized residue in N π → N(1900) → � KNormalized residue in N π → N(1900) → � KNormalized residue in N π → N(1900) → � KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.04±0.02 110 ± 30 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(1900) → N(1535)πNormalized residue in N π → N(1900) → N(1535)πNormalized residue in N π → N(1900) → N(1535)πNormalized residue in N π → N(1900) → N(1535)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.04±0.01 170 ± 30 GUTZ 14 DPWA Multi
hannel



1543154315431543See key on page 601 BaryonParti
le ListingsN(1900)Normalized residue in N π → N(1900) → �(1232)π, P-waveNormalized residue in N π → N(1900) → �(1232)π, P-waveNormalized residue in N π → N(1900) → �(1232)π, P-waveNormalized residue in N π → N(1900) → �(1232)π, P-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.07±0.04 −65 ± 30 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(1900) → �(1232)π, F-waveNormalized residue in N π → N(1900) → �(1232)π, F-waveNormalized residue in N π → N(1900) → �(1232)π, F-waveNormalized residue in N π → N(1900) → �(1232)π, F-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.10±0.05 80 ± 30 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(1900) → N(1520)πNormalized residue in N π → N(1900) → N(1520)πNormalized residue in N π → N(1900) → N(1520)πNormalized residue in N π → N(1900) → N(1520)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.07±0.04 −105 ± 35 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(1900) → N σNormalized residue in N π → N(1900) → N σNormalized residue in N π → N(1900) → N σNormalized residue in N π → N(1900) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.03±0.02 −110 ± 35 SOKHOYAN 15A DPWA Multi
hannelN(1900) BREIT-WIGNER MASSN(1900) BREIT-WIGNER MASSN(1900) BREIT-WIGNER MASSN(1900) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1900±30 OUR ESTIMATE1900±30 OUR ESTIMATE1900±30 OUR ESTIMATE1900±30 OUR ESTIMATE1910±30 SOKHOYAN 15A DPWA Multi
hannel1998± 3 SHKLYAR 13 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •1910±30 GUTZ 14 DPWA Multi
hannel1905±30 ANISOVICH 12A DPWA Multi
hannel1900± 8 SHRESTHA 12A DPWA Multi
hannel1951±53 PENNER 02C DPWA Multi
hannelN(1900) BREIT-WIGNER WIDTHN(1900) BREIT-WIGNER WIDTHN(1900) BREIT-WIGNER WIDTHN(1900) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT200± 50 OUR ESTIMATE200± 50 OUR ESTIMATE200± 50 OUR ESTIMATE200± 50 OUR ESTIMATE270± 50 SOKHOYAN 15A DPWA Multi
hannel359± 10 SHKLYAR 13 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •270± 50 GUTZ 14 DPWA Multi
hannel250+120

− 50 ANISOVICH 12A DPWA Multi
hannel101± 15 SHRESTHA 12A DPWA Multi
hannel622± 42 PENNER 02C DPWA Multi
hannelN(1900) DECAY MODESN(1900) DECAY MODESN(1900) DECAY MODESN(1900) DECAY MODESMode Fra
tion (�i /�)�1 N π <10 %�2 N η 2{14 %�3 Nω 7{13 %�4 �K 2{20 %�5 � K 3{7 %�6 N ππ 40{80 %�7 �(1232)π 30{70 %�8 �(1232)π , P-wave 9{25 %�9 �(1232)π , F-wave 21{45 %�10 N σ 1{7 %�11 N(1520)π 7{23 %�12 N(1535)π 4{10 %�13 pγ 0.001{0.025 %�14 pγ , heli
ity=1/2 0.001{0.021 %�15 pγ , heli
ity=3/2 <0.003 %�16 nγ <0.040 %�17 nγ , heli
ity=1/2 <0.007 %�18 nγ , heli
ity=3/2 <0.033 %N(1900) BRANCHING RATIOSN(1900) BRANCHING RATIOSN(1900) BRANCHING RATIOSN(1900) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT3±2 SOKHOYAN 15A DPWA Multi
hannel25±1 SHKLYAR 13 DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •3±2 GUTZ 14 DPWA Multi
hannel3±2 ANISOVICH 12A DPWA Multi
hannel7±4 SHRESTHA 12A DPWA Multi
hannel16±2 PENNER 02C DPWA Multi
hannel

�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT2±2 SHKLYAR 13 DPWA Multi
hannel10±4 ANISOVICH 12A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1 SHRESTHA 12A DPWA Multi
hannel14±5 PENNER 02C DPWA Multi
hannel�(Nω
)/�total �3/��(Nω
)/�total �3/��(Nω
)/�total �3/��(Nω
)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT10±3 SHKLYAR 13 DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •39±9 PENNER 02C DPWA Multi
hannel�(�K)/�total �4/��(�K)/�total �4/��(�K)/�total �4/��(�K)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT16 ±5 ANISOVICH 12A DPWA Multi
hannel2.4±0.3 SHKLYAR 05 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •14 ±5 SHRESTHA 12A DPWA Multi
hannel5 to 15 NIKONOV 08 DPWA Multi
hannel0.1±0.1 PENNER 02C DPWA Multi
hannel�(� K)/�total �5/��(� K)/�total �5/��(� K)/�total �5/��(� K)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT5±2 ANISOVICH 12A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •1±1 PENNER 02C DPWA Multi
hannel�(N σ

)/�total �10/��(N σ
)/�total �10/��(N σ
)/�total �10/��(N σ
)/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT4±3 SOKHOYAN 15A DPWA Multi
hannel�(N(1520)π)/�total �11/��(N(1520)π)/�total �11/��(N(1520)π)/�total �11/��(N(1520)π)/�total �11/�VALUE (%) DOCUMENT ID TECN COMMENT15±8 SOKHOYAN 15A DPWA Multi
hannel�(N(1535)π)/�total �12/��(N(1535)π)/�total �12/��(N(1535)π)/�total �12/��(N(1535)π)/�total �12/�VALUE (%) DOCUMENT ID TECN COMMENT7±3 GUTZ 14 DPWA Multi
hannel�(�(1232)π , P-wave)/�total �8/��(�(1232)π , P-wave)/�total �8/��(�(1232)π , P-wave)/�total �8/��(�(1232)π , P-wave)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT17±8 SOKHOYAN 15A DPWA Multi
hannel�(�(1232)π , F-wave)/�total �9/��(�(1232)π , F-wave)/�total �9/��(�(1232)π , F-wave)/�total �9/��(�(1232)π , F-wave)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT33±12 SOKHOYAN 15A DPWA Multi
hannelN(1900) PHOTON DECAY AMPLITUDES AT THE POLEN(1900) PHOTON DECAY AMPLITUDES AT THE POLEN(1900) PHOTON DECAY AMPLITUDES AT THE POLEN(1900) PHOTON DECAY AMPLITUDES AT THE POLEN(1900) → pγ , heli
ity-1/2 amplitude A1/2N(1900) → pγ , heli
ity-1/2 amplitude A1/2N(1900) → pγ , heli
ity-1/2 amplitude A1/2N(1900) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.026±0.014 60 ± 35 SOKHOYAN 15A DPWA Multi
hannelN(1900) → pγ , heli
ity-3/2 amplitude A3/2N(1900) → pγ , heli
ity-3/2 amplitude A3/2N(1900) → pγ , heli
ity-3/2 amplitude A3/2N(1900) → pγ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT

−0.070±0.030 70 ± 50 SOKHOYAN 15A DPWA Multi
hannelN(1900) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1900) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1900) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1900) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1900) → pγ , heli
ity-1/2 amplitude A1/2N(1900) → pγ , heli
ity-1/2 amplitude A1/2N(1900) → pγ , heli
ity-1/2 amplitude A1/2N(1900) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.024±0.014 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.024±0.014 GUTZ 14 DPWA Multi
hannel
−0.008±0.001 SHKLYAR 13 DPWA Multi
hannel0.026±0.015 ANISOVICH 12A DPWA Multi
hannel0.041±0.008 SHRESTHA 12A DPWA Multi
hannel
−0.017 PENNER 02D DPWA Multi
hannelN(1900) → pγ , heli
ity-3/2 amplitude A3/2N(1900) → pγ , heli
ity-3/2 amplitude A3/2N(1900) → pγ , heli
ity-3/2 amplitude A3/2N(1900) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.067±0.030 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.067±0.030 GUTZ 14 DPWA Multi
hannel0. ±0.001 SHKLYAR 13 DPWA Multi
hannel
−0.065±0.030 ANISOVICH 12A DPWA Multi
hannel
−0.004±0.006 SHRESTHA 12A DPWA Multi
hannel0.031 PENNER 02D DPWA Multi
hannel



1544154415441544BaryonParti
le ListingsN(1900),N(1990),N(2000)N(1900) → nγ , heli
ity-1/2 amplitude A1/2N(1900) → nγ , heli
ity-1/2 amplitude A1/2N(1900) → nγ , heli
ity-1/2 amplitude A1/2N(1900) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.000±0.030 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.010±0.004 SHRESTHA 12A DPWA Multi
hannel
−0.016 PENNER 02D DPWA Multi
hannelN(1900) → nγ , heli
ity-3/2 amplitude A3/2N(1900) → nγ , heli
ity-3/2 amplitude A3/2N(1900) → nγ , heli
ity-3/2 amplitude A3/2N(1900) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.060±0.045 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.011±0.007 SHRESTHA 12A DPWA Multi
hannel
−0.002 PENNER 02D DPWA Multi
hannelN(1900) FOOTNOTESN(1900) FOOTNOTESN(1900) FOOTNOTESN(1900) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(1900) REFERENCESN(1900) REFERENCESN(1900) REFERENCESN(1900) REFERENCESSOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)GUTZ 14 EPJ A50 74 E. Gutz et al. (CBELSA/TAPS Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.SHKLYAR 13 PR C87 015201 V. Shklyar, H. Lenske, U. Mosel (GIES)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)NIKONOV 08 PL B662 245 V.A. Nikonov et al. (Bonn, Gat
hina)SHKLYAR 05 PR C72 015210 V. Shklyar, H. Lenske, U. Mosel (GIES)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT)N(1990) 7/2+ I (JP ) = 12 (72+) Status: ∗∗OMITTED FROM SUMMARY TABLEOlder and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).N(1990) POLE POSITIONN(1990) POLE POSITIONN(1990) POLE POSITIONN(1990) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2030±65 ANISOVICH 12A DPWA Multi
hannel1900±30 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1941 SHRESTHA 12A DPWA Multi
hannel2301 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT240±60 ANISOVICH 12A DPWA Multi
hannel260±60 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •130 SHRESTHA 12A DPWA Multi
hannel202 VRANA 00 DPWA Multi
hannelN(1990) ELASTIC POLE RESIDUEN(1990) ELASTIC POLE RESIDUEN(1990) ELASTIC POLE RESIDUEN(1990) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT2±1 ANISOVICH 12A DPWA Multi
hannel9±3 CUTKOSKY 80 IPWA πN → πNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT125±65 ANISOVICH 12A DPWA Multi
hannel
− 60±30 CUTKOSKY 80 IPWA πN → πNN(1990) BREIT-WIGNER MASSN(1990) BREIT-WIGNER MASSN(1990) BREIT-WIGNER MASSN(1990) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2060± 65 ANISOVICH 12A DPWA Multi
hannel1970± 50 CUTKOSKY 80 IPWA πN → πN2005±150 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1990± 45 SHRESTHA 12A DPWA Multi
hannel2311± 16 VRANA 00 DPWA Multi
hannelN(1990) BREIT-WIGNER WIDTHN(1990) BREIT-WIGNER WIDTHN(1990) BREIT-WIGNER WIDTHN(1990) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE240± 50 ANISOVICH 12A DPWA Multi
hannel350±120 CUTKOSKY 80 IPWA πN → πN350±100 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

203±161 SHRESTHA 12A DPWA Multi
hannel205± 72 VRANA 00 DPWA Multi
hannelN(1990) DECAY MODESN(1990) DECAY MODESN(1990) DECAY MODESN(1990) DECAY MODESMode Fra
tion (�i /�)�1 N π 2{6 %�2 pγ 0.01{0.12 %�3 pγ , heli
ity=1/2 0.003{0.042 %�4 pγ , heli
ity=3/2 0.009{0.075 %�5 nγ 0.01{0.16 %�6 nγ , heli
ity=1/2 0.003{0.066 %�7 nγ , heli
ity=3/2 0.003{0.098 %N(1990) BRANCHING RATIOSN(1990) BRANCHING RATIOSN(1990) BRANCHING RATIOSN(1990) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT2 to 6 (≈ 4) OUR ESTIMATE2 to 6 (≈ 4) OUR ESTIMATE2 to 6 (≈ 4) OUR ESTIMATE2 to 6 (≈ 4) OUR ESTIMATE2± 1 ANISOVICH 12A DPWA Multi
hannel6± 2 CUTKOSKY 80 IPWA πN → πN4± 2 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •2± 1 SHRESTHA 12A DPWA Multi
hannel22±11 VRANA 00 DPWA Multi
hannelN(1990) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1990) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1990) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1990) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(1990) → pγ , heli
ity-1/2 amplitude A1/2N(1990) → pγ , heli
ity-1/2 amplitude A1/2N(1990) → pγ , heli
ity-1/2 amplitude A1/2N(1990) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.040±0.012 ANISOVICH 12A DPWA Multi
hannelN(1990) → pγ , heli
ity-3/2 amplitude A3/2N(1990) → pγ , heli
ity-3/2 amplitude A3/2N(1990) → pγ , heli
ity-3/2 amplitude A3/2N(1990) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.057±0.012 ANISOVICH 12A DPWA Multi
hannelN(1990) → nγ , heli
ity-1/2 amplitude A1/2N(1990) → nγ , heli
ity-1/2 amplitude A1/2N(1990) → nγ , heli
ity-1/2 amplitude A1/2N(1990) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.045±0.020 ANISOVICH 13B DPWA Multi
hannelN(1990) → nγ , heli
ity-3/2 amplitude A3/2N(1990) → nγ , heli
ity-3/2 amplitude A3/2N(1990) → nγ , heli
ity-3/2 amplitude A3/2N(1990) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.052±0.027 ANISOVICH 13B DPWA Multi
hannelN(1990) REFERENCESN(1990) REFERENCESN(1990) REFERENCESN(1990) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(2000) 5/2+ I (JP ) = 12 (52+) Status: ∗∗OMITTED FROM SUMMARY TABLEBefore the 2012 Review, all the eviden
e for a JP = 5/2+ state witha mass above 1800 MeV was �led under a two-star N(2000). Thereis now some eviden
e from ANISOVICH 12A for two 5/2+ statesin this region, so we have split the older data (a

ording to mass)between two two-star 5/2+ states, an N(1860) and an N(2000).N(2000) POLE POSITIONN(2000) POLE POSITIONN(2000) POLE POSITIONN(2000) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2030± 40 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •1900 SHKLYAR 13 DPWA Multi
hannel2030±110 ANISOVICH 12A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT380± 60 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •123 SHKLYAR 13 DPWA Multi
hannel480±100 ANISOVICH 12A DPWA Multi
hannel



1545154515451545See key on page 601 BaryonParti
le ListingsN(2000),N(2040)N(2000) ELASTIC POLE RESIDUEN(2000) ELASTIC POLE RESIDUEN(2000) ELASTIC POLE RESIDUEN(2000) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT18± 8 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •11 SHKLYAR 13 DPWA Multi
hannel35+80

−15 ANISOVICH 12A DPWA Multi
hannelPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−150±40 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 6 SHKLYAR 13 DPWA Multi
hannel
−100±40 ANISOVICH 12A DPWA Multi
hannelN(2000) INELASTIC POLE RESIDUEN(2000) INELASTIC POLE RESIDUEN(2000) INELASTIC POLE RESIDUEN(2000) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(2000) → �(1232)π, P-waveNormalized residue in N π → N(2000) → �(1232)π, P-waveNormalized residue in N π → N(2000) → �(1232)π, P-waveNormalized residue in N π → N(2000) → �(1232)π, P-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.16±0.06 100 ± 50 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(2000) → �(1232)π, F-waveNormalized residue in N π → N(2000) → �(1232)π, F-waveNormalized residue in N π → N(2000) → �(1232)π, F-waveNormalized residue in N π → N(2000) → �(1232)π, F-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.20±0.10 −20 ± 45 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(2000) → N σNormalized residue in N π → N(2000) → N σNormalized residue in N π → N(2000) → N σNormalized residue in N π → N(2000) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.12±0.06 80 ± 40 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(2000) → N(1520)π, D-waveNormalized residue in N π → N(2000) → N(1520)π, D-waveNormalized residue in N π → N(2000) → N(1520)π, D-waveNormalized residue in N π → N(2000) → N(1520)π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.17±0.09 −60 ± 35 SOKHOYAN 15A DPWA Multi
hannelN(2000) BREIT-WIGNER MASSN(2000) BREIT-WIGNER MASSN(2000) BREIT-WIGNER MASSN(2000) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2060± 30 SOKHOYAN 15A DPWA Multi
hannel1946± 4 SHKLYAR 13 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •2090±120 ANISOVICH 12A DPWA Multi
hannelN(2000) BREIT-WIGNER WIDTHN(2000) BREIT-WIGNER WIDTHN(2000) BREIT-WIGNER WIDTHN(2000) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT390± 55 SOKHOYAN 15A DPWA Multi
hannel198± 2 SHKLYAR 13 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •460±100 ANISOVICH 12A DPWA Multi
hannelN(2000) DECAY MODESN(2000) DECAY MODESN(2000) DECAY MODESN(2000) DECAY MODESMode Fra
tion (�i /�)�1 N π 6{10 %�2 N η <4 %�3 Nω <2 %�4 N ππ 35{90 %�5 �(1232)π 30{80 %�6 �(1232)π , P-wave 12{32 %�7 �(1232)π , F-wave 19{49 %�8 N σ 5{15 %�9 N(1520)π , D-wave 11{31 %�10 N(1680)π , P-wave 17{25 %�11 pγ 0.01{0.08 %�12 pγ , heli
ity=1/2 0.003{0.031 %�13 pγ , heli
ity=3/2 0.008{0.048 %�14 nγ 0.002{0.07 %�15 nγ , heli
ity=1/2 <0.017 %�16 nγ , heli
ity=3/2 0.001{0.056 %N(2000) BRANCHING RATIOSN(2000) BRANCHING RATIOSN(2000) BRANCHING RATIOSN(2000) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT6 to 10 (≈ 8) OUR ESTIMATE6 to 10 (≈ 8) OUR ESTIMATE6 to 10 (≈ 8) OUR ESTIMATE6 to 10 (≈ 8) OUR ESTIMATE8±4 SOKHOYAN 15A DPWA Multi
hannel10±1 SHKLYAR 13 DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •9±4 ANISOVICH 12A DPWA Multi
hannel

�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT2±2 SHKLYAR 13 DWPA Multi
hannel�(Nω
)/�total �3/��(Nω
)/�total �3/��(Nω
)/�total �3/��(Nω
)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT1±1 SHKLYAR 13 DPWA Multi
hannel�(�(1232)π , P-wave)/�total �6/��(�(1232)π , P-wave)/�total �6/��(�(1232)π , P-wave)/�total �6/��(�(1232)π , P-wave)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT22±10 SOKHOYAN 15A DPWA Multi
hannel�(�(1232)π , F-wave)/�total �7/��(�(1232)π , F-wave)/�total �7/��(�(1232)π , F-wave)/�total �7/��(�(1232)π , F-wave)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT34±15 SOKHOYAN 15A DPWA Multi
hannel�(N σ
)/�total �8/��(N σ
)/�total �8/��(N σ
)/�total �8/��(N σ
)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT10±5 SOKHOYAN 15A DPWA Multi
hannel�(N(1520)π , D-wave)/�total �9/��(N(1520)π , D-wave)/�total �9/��(N(1520)π , D-wave)/�total �9/��(N(1520)π , D-wave)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT21±10 SOKHOYAN 15A DPWA Multi
hannel�(N(1680)π , P-wave)/�total �10/��(N(1680)π , P-wave)/�total �10/��(N(1680)π , P-wave)/�total �10/��(N(1680)π , P-wave)/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT16±9 SOKHOYAN 15A DPWA Multi
hannelN(2000) PHOTON DECAY AMPLITUDES AT THE POLEN(2000) PHOTON DECAY AMPLITUDES AT THE POLEN(2000) PHOTON DECAY AMPLITUDES AT THE POLEN(2000) PHOTON DECAY AMPLITUDES AT THE POLEN(2000) → pγ , heli
ity-1/2 amplitude A1/2N(2000) → pγ , heli
ity-1/2 amplitude A1/2N(2000) → pγ , heli
ity-1/2 amplitude A1/2N(2000) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.033±0.010 15 ± 25 SOKHOYAN 15A DPWA Multi
hannelN(2000) → pγ , heli
ity-3/2 amplitude A3/2N(2000) → pγ , heli
ity-3/2 amplitude A3/2N(2000) → pγ , heli
ity-3/2 amplitude A3/2N(2000) → pγ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.045±0.008 −140 ± 25 SOKHOYAN 15A DPWA Multi
hannelN(2000) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2000) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2000) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2000) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2000) → pγ , heli
ity-1/2 amplitude A1/2N(2000) → pγ , heli
ity-1/2 amplitude A1/2N(2000) → pγ , heli
ity-1/2 amplitude A1/2N(2000) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.031±0.010 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.011±0.001 SHKLYAR 13 DPWA Multi
hannelN(2000) → pγ , heli
ity-3/2 amplitude A3/2N(2000) → pγ , heli
ity-3/2 amplitude A3/2N(2000) → pγ , heli
ity-3/2 amplitude A3/2N(2000) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.043±0.008 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.025±0.001 SHKLYAR 13 DPWA Multi
hannelN(2000) → nγ , heli
ity-1/2 amplitude A1/2N(2000) → nγ , heli
ity-1/2 amplitude A1/2N(2000) → nγ , heli
ity-1/2 amplitude A1/2N(2000) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.018±0.012 ANISOVICH 13B DPWA Multi
hannelN(2000) → nγ , heli
ity-3/2 amplitude A3/2N(2000) → nγ , heli
ity-3/2 amplitude A3/2N(2000) → nγ , heli
ity-3/2 amplitude A3/2N(2000) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.035±0.020 ANISOVICH 13B DPWA Multi
hannelN(2000) REFERENCESN(2000) REFERENCESN(2000) REFERENCESN(2000) REFERENCESSOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.SHKLYAR 13 PR C87 015201 V. Shklyar, H. Lenske, U. Mosel (GIES)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)N(2040) 3/2+ JP = 32+ Status: ∗OMITTED FROM SUMMARY TABLEN(2040) MASSN(2040) MASSN(2040) MASSN(2040) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2040+3

−4±25 ABLIKIM 09B BES2 J/ψ → ppπ02068±3+15
−40 ABLIKIM 06K BES2 J/ψ → pnπ−, npπ+



1546154615461546BaryonParti
le ListingsN(2040),N(2060)N(2040) WIDTHN(2040) WIDTHN(2040) WIDTHN(2040) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT230± 8±52 ABLIKIM 09B BES2 J/ψ → ppπ0165±14±40 ABLIKIM 06K BES2 J/ψ → pnπ−, npπ+N(2040) REFERENCESN(2040) REFERENCESN(2040) REFERENCESN(2040) REFERENCESABLIKIM 09B PR D80 052004 M. Ablikim et al. (BES II Collab.)ABLIKIM 06K PRL 97 062001 M. Ablikim et al. (BES II Collab.)N(2060) 5/2− I (JP ) = 12 (52−) Status: ∗∗OMITTED FROM SUMMARY TABLEBefore our 2012 Review, this state appeared in our Listings as theN(2200). N(2060) POLE POSITIONN(2060) POLE POSITIONN(2060) POLE POSITIONN(2060) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2030±15 SOKHOYAN 15A DPWA Multi
hannel2119±11±1 1 SVARC 14 L+P πN → πN2100±60 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •2040±15 ANISOVICH 12A DPWA Multi
hannel2064 SHRESTHA 12A DPWA Multi
hannel2144±31 BATINIC 10 DPWA πN → Nπ, N η

−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT400±35 SOKHOYAN 15A DPWA Multi
hannel370±20±5 1 SVARC 14 L+P πN → πN360±80 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •390±25 ANISOVICH 12A DPWA Multi
hannel267 SHRESTHA 12A DPWA Multi
hannel438±13 BATINIC 10 DPWA πN → Nπ, N ηN(2060) ELASTIC POLE RESIDUEN(2060) ELASTIC POLE RESIDUEN(2060) ELASTIC POLE RESIDUEN(2060) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT25± 8 SOKHOYAN 15A DPWA Multi
hannel19± 1±1 1 SVARC 14 L+P πN → πN20±10 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •19± 5 ANISOVICH 12A DPWA Multi
hannel26 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−130±20 SOKHOYAN 15A DPWA Multi
hannel
− 94± 5±1 1 SVARC 14 L+P πN → πN
− 90±50 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−125±20 ANISOVICH 12A DPWA Multi
hannel
− 71 BATINIC 10 DPWA πN → Nπ, N ηN(2060) INELASTIC POLE RESIDUEN(2060) INELASTIC POLE RESIDUEN(2060) INELASTIC POLE RESIDUEN(2060) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(2060) → N ηNormalized residue in N π → N(2060) → N ηNormalized residue in N π → N(2060) → N ηNormalized residue in N π → N(2060) → N ηMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.05±0.03 40 ± 25 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(2060) → �KNormalized residue in N π → N(2060) → �KNormalized residue in N π → N(2060) → �KNormalized residue in N π → N(2060) → �KMODULUS DOCUMENT ID TECN COMMENT0.01±0.005 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(2060) → � KNormalized residue in N π → N(2060) → � KNormalized residue in N π → N(2060) → � KNormalized residue in N π → N(2060) → � KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.04±0.02 −70 ± 30 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(2060) → �(1232)π, D-waveNormalized residue in N π → N(2060) → �(1232)π, D-waveNormalized residue in N π → N(2060) → �(1232)π, D-waveNormalized residue in N π → N(2060) → �(1232)π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.06±0.03 −90 ± 40 SOKHOYAN 15A DPWA Multi
hannel

Normalized residue in N π → N(2060) → N σNormalized residue in N π → N(2060) → N σNormalized residue in N π → N(2060) → N σNormalized residue in N π → N(2060) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.12±0.06 80 ± 40 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(2060) → N(1440)πNormalized residue in N π → N(2060) → N(1440)πNormalized residue in N π → N(2060) → N(1440)πNormalized residue in N π → N(2060) → N(1440)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.17±0.09 −60 ± 35 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(2060) → N(1520)π, P-waveNormalized residue in N π → N(2060) → N(1520)π, P-waveNormalized residue in N π → N(2060) → N(1520)π, P-waveNormalized residue in N π → N(2060) → N(1520)π, P-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.14±0.06 −45 ± 15 SOKHOYAN 15A DPWA Multi
hannelN(2060) BREIT-WIGNER MASSN(2060) BREIT-WIGNER MASSN(2060) BREIT-WIGNER MASSN(2060) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2045±15 SOKHOYAN 15A DPWA Multi
hannel2180±80 CUTKOSKY 80 IPWA πN → πN2228±30 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •2060±15 ANISOVICH 12A DPWA Multi
hannel2116±21 SHRESTHA 12A DPWA Multi
hannel2217±27 BATINIC 10 DPWA πN → Nπ, N ηN(2060) BREIT-WIGNER WIDTHN(2060) BREIT-WIGNER WIDTHN(2060) BREIT-WIGNER WIDTHN(2060) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT420± 30 SOKHOYAN 15A DPWA Multi
hannel400±100 CUTKOSKY 80 IPWA πN → πN310± 50 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •375± 25 ANISOVICH 12A DPWA Multi
hannel307±112 SHRESTHA 12A DPWA Multi
hannel481± 17 BATINIC 10 DPWA πN → Nπ, N ηN(2060) DECAY MODESN(2060) DECAY MODESN(2060) DECAY MODESN(2060) DECAY MODESMode Fra
tion (�i /�)�1 N π 7{12 %�2 N η 2{6 %�3 �K seen�4 � K 1{5 %�5 N ππ�6 �(1232)π�7 �(1232)π , D-wave 4{10 %�8 N ρ�9 N ρ , S=1/2, P-wave seen�10 N σ 3{9 %�11 N(1440)π 4{14 %�12 N(1520)π , P-wave 9{21 %�13 N(1680)π , S-wave 8{22 %�14 pγ 0.03{0.19 %�15 pγ , heli
ity=1/2 0.02{0.08 %�16 pγ , heli
ity=3/2 0.01{0.10 %�17 nγ 0.003{0.07 %�18 nγ , heli
ity=1/2 0.001{0.02 %�19 nγ , heli
ity=3/2 0.002{0.05 %N(2060) BRANCHING RATIOSN(2060) BRANCHING RATIOSN(2060) BRANCHING RATIOSN(2060) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT11±2 SOKHOYAN 15A DPWA Multi
hannel10±3 CUTKOSKY 80 IPWA πN → πN7±2 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •8±2 ANISOVICH 12A DPWA Multi
hannel9±2 SHRESTHA 12A DPWA Multi
hannel13±4 BATINIC 10 DPWA πN → Nπ, N η�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT4 ±2 ANISOVICH 12A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1 SHRESTHA 12A DPWA Multi
hannel0.2±1.0 BATINIC 10 DPWA πN → Nπ, N η�(� K)/�total �4/��(� K)/�total �4/��(� K)/�total �4/��(� K)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT3±2 ANISOVICH 12A DPWA Multi
hannel



1547154715471547See key on page 601 BaryonParti
le ListingsN(2060),N(2100)�(�(1232)π ,D-wave)/�total �7/��(�(1232)π ,D-wave)/�total �7/��(�(1232)π ,D-wave)/�total �7/��(�(1232)π ,D-wave)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT7± 3 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •40±13 SHRESTHA 12A DPWA Multi
hannel�(N ρ , S=1/2,P-wave)/�total �9/��(N ρ , S=1/2,P-wave)/�total �9/��(N ρ , S=1/2,P-wave)/�total �9/��(N ρ , S=1/2,P-wave)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •21±15 SHRESTHA 12A DPWA Multi
hannel�(N σ

)/�total �10/��(N σ
)/�total �10/��(N σ
)/�total �10/��(N σ
)/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT6±3 SOKHOYAN 15A DPWA Multi
hannel�(N(1440)π)/�total �11/��(N(1440)π)/�total �11/��(N(1440)π)/�total �11/��(N(1440)π)/�total �11/�VALUE (%) DOCUMENT ID TECN COMMENT9±5 SOKHOYAN 15A DPWA Multi
hannel�(N(1520)π , P-wave)/�total �12/��(N(1520)π , P-wave)/�total �12/��(N(1520)π , P-wave)/�total �12/��(N(1520)π , P-wave)/�total �12/�VALUE (%) DOCUMENT ID TECN COMMENT15±6 SOKHOYAN 15A DPWA Multi
hannel�(N(1680)π , S-wave)/�total �13/��(N(1680)π , S-wave)/�total �13/��(N(1680)π , S-wave)/�total �13/��(N(1680)π , S-wave)/�total �13/�VALUE (%) DOCUMENT ID TECN COMMENT15±7 SOKHOYAN 15A DPWA Multi
hannelN(2060) PHOTON DECAY AMPLITUDES AT THE POLEN(2060) PHOTON DECAY AMPLITUDES AT THE POLEN(2060) PHOTON DECAY AMPLITUDES AT THE POLEN(2060) PHOTON DECAY AMPLITUDES AT THE POLEN(2060) → pγ , heli
ity-1/2 amplitude A1/2N(2060) → pγ , heli
ity-1/2 amplitude A1/2N(2060) → pγ , heli
ity-1/2 amplitude A1/2N(2060) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.064±0.010 12 ± 8 SOKHOYAN 15A DPWA Multi
hannelN(2060) → pγ , heli
ity-3/2 amplitude A3/2N(2060) → pγ , heli
ity-3/2 amplitude A3/2N(2060) → pγ , heli
ity-3/2 amplitude A3/2N(2060) → pγ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.060±0.020 13 ± 10 SOKHOYAN 15A DPWA Multi
hannelN(2060) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2060) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2060) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2060) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2060) → pγ , heli
ity-1/2 amplitude A1/2N(2060) → pγ , heli
ity-1/2 amplitude A1/2N(2060) → pγ , heli
ity-1/2 amplitude A1/2N(2060) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.062±0.010 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.018±0.004 SHRESTHA 12A DPWA Multi
hannelN(2060) → pγ , heli
ity-3/2 amplitude A3/2N(2060) → pγ , heli
ity-3/2 amplitude A3/2N(2060) → pγ , heli
ity-3/2 amplitude A3/2N(2060) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.062±0.020 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.010±0.004 SHRESTHA 12A DPWA Multi
hannelN(2060) → nγ , heli
ity-1/2 amplitude A1/2N(2060) → nγ , heli
ity-1/2 amplitude A1/2N(2060) → nγ , heli
ity-1/2 amplitude A1/2N(2060) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.025±0.011 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.012±0.017 SHRESTHA 12A DPWA Multi
hannelN(2060) → nγ , heli
ity-3/2 amplitude A3/2N(2060) → nγ , heli
ity-3/2 amplitude A3/2N(2060) → nγ , heli
ity-3/2 amplitude A3/2N(2060) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.037±0.017 ANISOVICH 13B DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.023±0.023 SHRESTHA 12A DPWA Multi
hannelN(2060) FOOTNOTESN(2060) FOOTNOTESN(2060) FOOTNOTESN(2060) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(2060) REFERENCESN(2060) REFERENCESN(2060) REFERENCESN(2060) REFERENCESSOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP

N(2100) 1/2+ I (JP ) = 12 (12+) Status: ∗OMITTED FROM SUMMARY TABLEN(2100) POLE POSITIONN(2100) POLE POSITIONN(2100) POLE POSITIONN(2100) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2120±25 SOKHOYAN 15A DPWA Multi
hannel2052± 6±3 1 SVARC 14 L+P πN → πN2120±40 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •2120±47 BATINIC 10 DPWA πN → Nπ, N η1810 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT290±30 SOKHOYAN 15A DPWA Multi
hannel337±10±4 1 SVARC 14 L+P πN → πN240±80 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •346±80 BATINIC 10 DPWA πN → Nπ, N η622 VRANA 00 DPWA Multi
hannelN(2100) ELASTIC POLE RESIDUEN(2100) ELASTIC POLE RESIDUEN(2100) ELASTIC POLE RESIDUEN(2100) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT23±5 SOKHOYAN 15A DPWA Multi
hannel30±1±1 1 SVARC 14 L+P πN → πN14±7 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •33 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−70±25 SOKHOYAN 15A DPWA Multi
hannel
−92± 3±2 1 SVARC 14 L+P πN → πN35±25 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−59 BATINIC 10 DPWA πN → Nπ, N ηN(2100) INELASTIC POLE RESIDUEN(2100) INELASTIC POLE RESIDUEN(2100) INELASTIC POLE RESIDUEN(2100) INELASTIC POLE RESIDUENormalized residue in N π → N(2100) → �(1232)πNormalized residue in N π → N(2100) → �(1232)πNormalized residue in N π → N(2100) → �(1232)πNormalized residue in N π → N(2100) → �(1232)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.11±0.05 20 ± 60 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(2100) → N σNormalized residue in N π → N(2100) → N σNormalized residue in N π → N(2100) → N σNormalized residue in N π → N(2100) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.18±0.06 125 ± 25 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(2100) → N(1535)πNormalized residue in N π → N(2100) → N(1535)πNormalized residue in N π → N(2100) → N(1535)πNormalized residue in N π → N(2100) → N(1535)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.22±0.06 −40 ± 25 SOKHOYAN 15A DPWA Multi
hannelN(2100) BREIT-WIGNER MASSN(2100) BREIT-WIGNER MASSN(2100) BREIT-WIGNER MASSN(2100) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 2100 OUR ESTIMATE≈ 2100 OUR ESTIMATE≈ 2100 OUR ESTIMATE≈ 2100 OUR ESTIMATE2115±20 SOKHOYAN 15A DPWA Multi
hannel2125±75 CUTKOSKY 80 IPWA πN → πN2050±20 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •2157±42 BATINIC 10 DPWA πN → Nπ, N η2068± 3+15

−40 ABLIKIM 06K BES2 J/ψ → (pπ−)n2084±93 VRANA 00 DPWA Multi
hannelN(2100) BREIT-WIGNER WIDTHN(2100) BREIT-WIGNER WIDTHN(2100) BREIT-WIGNER WIDTHN(2100) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT290± 20 SOKHOYAN 15A DPWA Multi
hannel260±100 CUTKOSKY 80 IPWA πN → πN200± 30 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •355± 88 BATINIC 10 DPWA πN → Nπ, N η165± 14±40 ABLIKIM 06K BES2 J/ψ → (pπ−)n1077±643 VRANA 00 DPWA Multi
hannel



1548154815481548BaryonParti
le ListingsN(2100),N(2120)N(2100) DECAY MODESN(2100) DECAY MODESN(2100) DECAY MODESN(2100) DECAY MODESMode Fra
tion (�i /�)�1 N π 8{18 %�2 N η seen�3 �K seen�4 N ππ 20{40 %�5 �(1232)π�6 �(1232)π , P-wave 6{14 %�7 N ρ�8 N ρ , S=1/2, P-wave seen�9 N σ 14{26 %�10 N(1535)π 26{34 %�11 N γ , heli
ity=1/2 0.001{0.012 %N(2100) BRANCHING RATIOSN(2100) BRANCHING RATIOSN(2100) BRANCHING RATIOSN(2100) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT16±5 SOKHOYAN 15A DPWA Multi
hannel12±3 CUTKOSKY 80 IPWA πN → πN10±4 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •16±5 BATINIC 10 DPWA πN → Nπ, N η2±5 VRANA 00 DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •83± 5 BATINIC 10 DPWA πN → Nπ, N η61±61 VRANA 00 DPWA Multi
hannel�(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •21±20 VRANA 00 DPWA Multi
hannel�(�(1232)π , P-wave)/�total �6/��(�(1232)π , P-wave)/�total �6/��(�(1232)π , P-wave)/�total �6/��(�(1232)π , P-wave)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT10±4 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •2±1 VRANA 00 DPWA Multi
hannel�(N ρ , S=1/2,P-wave)/�total �8/��(N ρ , S=1/2,P-wave)/�total �8/��(N ρ , S=1/2,P-wave)/�total �8/��(N ρ , S=1/2,P-wave)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •4±1 VRANA 00 DPWA Multi
hannel�(N σ

)/�total �9/��(N σ
)/�total �9/��(N σ
)/�total �9/��(N σ
)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT20±6 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •10±1 VRANA 00 DPWA Multi
hannel�(N(1535)π)/�total �10/��(N(1535)π)/�total �10/��(N(1535)π)/�total �10/��(N(1535)π)/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT30±4 SOKHOYAN 15A DPWA Multi
hannelN(2100) PHOTON DECAY AMPLITUDES AT THE POLEN(2100) PHOTON DECAY AMPLITUDES AT THE POLEN(2100) PHOTON DECAY AMPLITUDES AT THE POLEN(2100) PHOTON DECAY AMPLITUDES AT THE POLEN(2100) → pγ , heli
ity-1/2 amplitude A1/2N(2100) → pγ , heli
ity-1/2 amplitude A1/2N(2100) → pγ , heli
ity-1/2 amplitude A1/2N(2100) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.011±0.004 65 ± 30 SOKHOYAN 15A DPWA Multi
hannelN(2100) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2100) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2100) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2100) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2100) → pγ , heli
ity-1/2 amplitude A1/2N(2100) → pγ , heli
ity-1/2 amplitude A1/2N(2100) → pγ , heli
ity-1/2 amplitude A1/2N(2100) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.010±0.004 SOKHOYAN 15A DPWA Multi
hannelN(2100) FOOTNOTESN(2100) FOOTNOTESN(2100) FOOTNOTESN(2100) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(2100) REFERENCESN(2100) REFERENCESN(2100) REFERENCESN(2100) REFERENCESSOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)ABLIKIM 06K PRL 97 062001 M. Ablikim et al. (BES II Collab.)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP

N(2120) 3/2− I (JP ) = 12 (32−) Status: ∗∗OMITTED FROM SUMMARY TABLEBefore the 2012 Review, all the eviden
e for a JP = 3/2− statewith a mass above 1800 MeV was �led under a two-star N(2080).There is now eviden
e from ANISOVICH 12A for two 3/2− statesin this region, so we have split the older data (a

ording to mass)between a three-star N(1875) and a two-star N(2120).N(2120) POLE POSITIONN(2120) POLE POSITIONN(2120) POLE POSITIONN(2120) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2115±40 SOKHOYAN 15A DPWA Multi
hannel2050±70 CUTKOSKY 80 IPWA πN → πN (higher m)
• • • We do not use the following data for averages, �ts, limits, et
. • • •2115±40 GUTZ 14 DPWA Multi
hannel2110±50 ANISOVICH 12A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT345±35 SOKHOYAN 15A DPWA Multi
hannel200±80 CUTKOSKY 80 IPWA πN → πN (higher m)
• • • We do not use the following data for averages, �ts, limits, et
. • • •345±35 GUTZ 14 DPWA Multi
hannel340±45 ANISOVICH 12A DPWA Multi
hannelN(2120) ELASTIC POLE RESIDUEN(2120) ELASTIC POLE RESIDUEN(2120) ELASTIC POLE RESIDUEN(2120) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT11± 6 SOKHOYAN 15A DPWA Multi
hannel30±20 CUTKOSKY 80 IPWA πN → πN (higher m)
• • • We do not use the following data for averages, �ts, limits, et
. • • •11± 6 GUTZ 14 DPWA Multi
hannel13± 3 ANISOVICH 12A DPWA Multi
hannelPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−30± 20 SOKHOYAN 15A DPWA Multi
hannel0±100 CUTKOSKY 80 IPWA πN → πN (higher m)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−30± 20 GUTZ 14 DPWA Multi
hannel
−20± 10 ANISOVICH 12A DPWA Multi
hannelN(2120) INELASTIC POLE RESIDUEN(2120) INELASTIC POLE RESIDUEN(2120) INELASTIC POLE RESIDUEN(2120) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(2120) → �KNormalized residue in N π → N(2120) → �KNormalized residue in N π → N(2120) → �KNormalized residue in N π → N(2120) → �KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.03±0.01 100 ± 30 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(2120) → � KNormalized residue in N π → N(2120) → � KNormalized residue in N π → N(2120) → � KNormalized residue in N π → N(2120) → � KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.02±0.015 −50 ± 40 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → N(2120) → N(1535)πNormalized residue in N π → N(2120) → N(1535)πNormalized residue in N π → N(2120) → N(1535)πNormalized residue in N π → N(2120) → N(1535)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.15±0.08 −90 ± 40 GUTZ 14 DPWA Multi
hannelNormalized residue in N π → N(2120) → �(1232)π, S-waveNormalized residue in N π → N(2120) → �(1232)π, S-waveNormalized residue in N π → N(2120) → �(1232)π, S-waveNormalized residue in N π → N(2120) → �(1232)π, S-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.25±0.10 unde�ned SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(2120) → �(1232)π, D-waveNormalized residue in N π → N(2120) → �(1232)π, D-waveNormalized residue in N π → N(2120) → �(1232)π, D-waveNormalized residue in N π → N(2120) → �(1232)π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.15±0.06 −35 ± 30 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(2120) → N σNormalized residue in N π → N(2120) → N σNormalized residue in N π → N(2120) → N σNormalized residue in N π → N(2120) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.09±0.05 −80 ± 50 SOKHOYAN 15A DPWA Multi
hannelN(2120) BREIT-WIGNER MASSN(2120) BREIT-WIGNER MASSN(2120) BREIT-WIGNER MASSN(2120) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2120 OUR ESTIMATE2120 OUR ESTIMATE2120 OUR ESTIMATE2120 OUR ESTIMATE2120±45 SOKHOYAN 15A DPWA Multi
hannel2060±80 CUTKOSKY 80 IPWA πN → πN2081±20 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •



1549154915491549See key on page 601 BaryonParti
le ListingsN(2120),N(2190)2120±35 GUTZ 14 DPWA Multi
hannel2150±60 ANISOVICH 12A DPWA Multi
hannelN(2120) BREIT-WIGNER WIDTHN(2120) BREIT-WIGNER WIDTHN(2120) BREIT-WIGNER WIDTHN(2120) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT340± 35 SOKHOYAN 15A DPWA Multi
hannel300±100 CUTKOSKY 80 IPWA πN → πN (higher m)265± 40 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •340± 35 GUTZ 14 DPWA Multi
hannel330± 45 ANISOVICH 12A DPWA Multi
hannelN(2120) DECAY MODESN(2120) DECAY MODESN(2120) DECAY MODESN(2120) DECAY MODESMode Fra
tion (�i /�)�1 N π 5{15 %�2 N ππ 50{95 %�3 �(1232)π 40{90 %�4 �(1232)π , S-wave 30{70 %�5 �(1232)π , D-wave 8{32 %�6 N σ 7{15 %�7 N(1535)π 7{23 %�8 pγ 0.16{2.1 %�9 pγ , heli
ity=1/2 0.07{0.80 %�10 pγ , heli
ity=3/2 0.09{1.3 %�11 nγ 0.04{0.72 %�12 nγ , heli
ity=1/2 0.04{0.60 %�13 nγ , heli
ity=3/2 0.001{0.12 %N(2120) BRANCHING RATIOSN(2120) BRANCHING RATIOSN(2120) BRANCHING RATIOSN(2120) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT5±3 SOKHOYAN 15A DPWA Multi
hannel14±7 CUTKOSKY 80 IPWA πN → πN (higher m)6±2 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •5±3 GUTZ 14 DPWA Multi
hannel6±2 ANISOVICH 12A DPWA Multi
hannel�(�(1232)π , S-wave)/�total �4/��(�(1232)π , S-wave)/�total �4/��(�(1232)π , S-wave)/�total �4/��(�(1232)π , S-wave)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT50±20 SOKHOYAN 15A DPWA Multi
hannel�(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT20±12 SOKHOYAN 15A DPWA Multi
hannel�(N σ
)/�total �6/��(N σ
)/�total �6/��(N σ
)/�total �6/��(N σ
)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT11±4 SOKHOYAN 15A DPWA Multi
hannel�(N(1535)π)/�total �7/��(N(1535)π)/�total �7/��(N(1535)π)/�total �7/��(N(1535)π)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT15±8 GUTZ 14 DPWA Multi
hannelN(2120) PHOTON DECAY AMPLITUDES AT THE POLEN(2120) PHOTON DECAY AMPLITUDES AT THE POLEN(2120) PHOTON DECAY AMPLITUDES AT THE POLEN(2120) PHOTON DECAY AMPLITUDES AT THE POLEN(2120) → pγ , heli
ity-1/2 amplitude A1/2N(2120) → pγ , heli
ity-1/2 amplitude A1/2N(2120) → pγ , heli
ity-1/2 amplitude A1/2N(2120) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.130±0.045 −40 ± 25 SOKHOYAN 15A DPWA Multi
hannelN(2120) → pγ , heli
ity-3/2 amplitude A3/2N(2120) → pγ , heli
ity-3/2 amplitude A3/2N(2120) → pγ , heli
ity-3/2 amplitude A3/2N(2120) → pγ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.160±0.060 −30 ± 15 SOKHOYAN 15A DPWA Multi
hannelN(2120) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2120) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2120) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2120) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2120) → pγ , heli
ity-1/2 amplitude A1/2N(2120) → pγ , heli
ity-1/2 amplitude A1/2N(2120) → pγ , heli
ity-1/2 amplitude A1/2N(2120) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.130±0.050 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.130±0.050 GUTZ 14 DPWA Multi
hannelN(2120) → pγ , heli
ity-3/2 amplitude A3/2N(2120) → pγ , heli
ity-3/2 amplitude A3/2N(2120) → pγ , heli
ity-3/2 amplitude A3/2N(2120) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.160±0.065 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.160±0.065 GUTZ 14 DPWA Multi
hannel

N(2120) → nγ , heli
ity-1/2 amplitude A1/2N(2120) → nγ , heli
ity-1/2 amplitude A1/2N(2120) → nγ , heli
ity-1/2 amplitude A1/2N(2120) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.110±0.045 ANISOVICH 13B DPWA Multi
hannelN(2120) → nγ , heli
ity-3/2 amplitude A3/2N(2120) → nγ , heli
ity-3/2 amplitude A3/2N(2120) → nγ , heli
ity-3/2 amplitude A3/2N(2120) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.040±0.030 ANISOVICH 13B DPWA Multi
hannelN(2120) REFERENCESN(2120) REFERENCESN(2120) REFERENCESN(2120) REFERENCESSOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)GUTZ 14 EPJ A50 74 E. Gutz et al. (CBELSA/TAPS Collab.)ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT)N(2190) 7/2− I (JP ) = 12 (72−) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).N(2190) POLE POSITIONN(2190) POLE POSITIONN(2190) POLE POSITIONN(2190) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2050 to 2100 (≈ 2075) OUR ESTIMATE2050 to 2100 (≈ 2075) OUR ESTIMATE2050 to 2100 (≈ 2075) OUR ESTIMATE2050 to 2100 (≈ 2075) OUR ESTIMATE2150±25 SOKHOYAN 15A DPWA Multi
hannel2079± 4±9 1 SVARC 14 L+P πN → πN2070 ARNDT 06 DPWA πN → πN, ηN2042 HOEHLER 93 SPED πN → πN2100±50 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •2150±25 ANISOVICH 12A DPWA Multi
hannel2062 SHRESTHA 12A DPWA Multi
hannel2063±32 BATINIC 10 DPWA πN → Nπ, N η2107 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT400 to 520 (≈ 450) OUR ESTIMATE400 to 520 (≈ 450) OUR ESTIMATE400 to 520 (≈ 450) OUR ESTIMATE400 to 520 (≈ 450) OUR ESTIMATE325± 25 SOKHOYAN 15A DPWA Multi
hannel509± 7±16 1 SVARC 14 L+P πN → πN520 ARNDT 06 DPWA πN → πN, ηN482 HOEHLER 93 SPED πN → πN400±160 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •330± 30 ANISOVICH 12A DPWA Multi
hannel428 SHRESTHA 12A DPWA Multi
hannel330±101 BATINIC 10 DPWA πN → Nπ, N η380 VRANA 00 DPWA Multi
hannelN(2190) ELASTIC POLE RESIDUEN(2190) ELASTIC POLE RESIDUEN(2190) ELASTIC POLE RESIDUEN(2190) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT25 to 70 (≈ 50) OUR ESTIMATE25 to 70 (≈ 50) OUR ESTIMATE25 to 70 (≈ 50) OUR ESTIMATE25 to 70 (≈ 50) OUR ESTIMATE30± 4 SOKHOYAN 15A DPWA Multi
hannel54± 1±3 1 SVARC 14 L+P πN → πN72 ARNDT 06 DPWA πN → πN, ηN45 HOEHLER 93 SPED πN → πN25±10 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •30± 5 ANISOVICH 12A DPWA Multi
hannel34 BATINIC 10 DPWA πN → Nπ, N ηPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−30 to 30 (≈ 0) OUR ESTIMATE−30 to 30 (≈ 0) OUR ESTIMATE−30 to 30 (≈ 0) OUR ESTIMATE−30 to 30 (≈ 0) OUR ESTIMATE28±10 SOKHOYAN 15A DPWA Multi
hannel
−18± 1±3 1 SVARC 14 L+P πN → πN
−32 ARNDT 06 DPWA πN → πN, ηN
−30±50 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •30±10 ANISOVICH 12A DPWA Multi
hannel
−19 BATINIC 10 DPWA πN → Nπ, N ηN(2190) INELASTIC POLE RESIDUEN(2190) INELASTIC POLE RESIDUEN(2190) INELASTIC POLE RESIDUEN(2190) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → N(2190) → �KNormalized residue in N π → N(2190) → �KNormalized residue in N π → N(2190) → �KNormalized residue in N π → N(2190) → �KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.03±0.01 20 ± 15 ANISOVICH 12A DPWA Multi
hannel



1550155015501550BaryonParti
le ListingsN(2190)Normalized residue in N π → N(2190) → �(1232)π, D-waveNormalized residue in N π → N(2190) → �(1232)π, D-waveNormalized residue in N π → N(2190) → �(1232)π, D-waveNormalized residue in N π → N(2190) → �(1232)π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.27±0.04 −165 ± 20 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → N(2190) → N σNormalized residue in N π → N(2190) → N σNormalized residue in N π → N(2190) → N σNormalized residue in N π → N(2190) → N σMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.13±0.05 50 ± 15 SOKHOYAN 15A DPWA Multi
hannelN(2190) BREIT-WIGNER MASSN(2190) BREIT-WIGNER MASSN(2190) BREIT-WIGNER MASSN(2190) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2100 to 2200 (≈ 2190) OUR ESTIMATE2100 to 2200 (≈ 2190) OUR ESTIMATE2100 to 2200 (≈ 2190) OUR ESTIMATE2100 to 2200 (≈ 2190) OUR ESTIMATE2205 ±18 SOKHOYAN 15A DPWA Multi
hannel2152.4± 1.4 ARNDT 06 DPWA πN → πN, ηN2200 ±70 CUTKOSKY 80 IPWA πN → πN2140 ±12 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •2180 ±20 ANISOVICH 12A DPWA Multi
hannel2150 ±26 SHRESTHA 12A DPWA Multi
hannel2125 ±61 BATINIC 10 DPWA πN → Nπ, N η2168 ±18 VRANA 00 DPWA Multi
hannelN(2190) BREIT-WIGNER WIDTHN(2190) BREIT-WIGNER WIDTHN(2190) BREIT-WIGNER WIDTHN(2190) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT300 to 700 (≈ 500) OUR ESTIMATE300 to 700 (≈ 500) OUR ESTIMATE300 to 700 (≈ 500) OUR ESTIMATE300 to 700 (≈ 500) OUR ESTIMATE355± 30 SOKHOYAN 15A DPWA Multi
hannel484± 13 ARNDT 06 DPWA πN → πN, ηN500±150 CUTKOSKY 80 IPWA πN → πN390± 30 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •335± 40 ANISOVICH 12A DPWA Multi
hannel500± 74 SHRESTHA 12A DPWA Multi
hannel381±160 BATINIC 10 DPWA πN → Nπ, N η453±101 VRANA 00 DPWA Multi
hannelN(2190) DECAY MODESN(2190) DECAY MODESN(2190) DECAY MODESN(2190) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 10{20 %�2 N η seen�3 �K 0.2{0.8;%�4 N ππ 22{80;%�5 �(1232)π�6 �(1232)π , D-wave 19{31 %�7 N ρ�8 N ρ , S=3/2, D-wave seen�9 N σ 3{9 %�10 pγ 0.014{0.077 %�11 pγ , heli
ity=1/2 0.013{0.062;%�12 pγ , heli
ity=3/2 0.001{0.014;%�13 nγ <0.04 %�14 nγ , heli
ity=1/2 <0.01;%�15 nγ , heli
ity=3/2 <0.03 %N(2190) BRANCHING RATIOSN(2190) BRANCHING RATIOSN(2190) BRANCHING RATIOSN(2190) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT10 to 20 OUR ESTIMATE10 to 20 OUR ESTIMATE10 to 20 OUR ESTIMATE10 to 20 OUR ESTIMATE16 ± 2 SOKHOYAN 15A DPWA Multi
hannel23.8± 0.1 ARNDT 06 DPWA πN → πN, ηN12 ± 6 CUTKOSKY 80 IPWA πN → πN14 ± 2 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •16 ± 2 ANISOVICH 12A DPWA Multi
hannel20 ± 1 SHRESTHA 12A DPWA Multi
hannel18 ±12 BATINIC 10 DPWA πN → Nπ, N η20 ± 4 VRANA 00 DPWA Multi
hannel�(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/��(N η
)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2 ±1 SHRESTHA 12A DPWA Multi
hannel0.1±0.3 BATINIC 10 DPWA πN → Nπ, N η0 ±1 VRANA 00 DPWA Multi
hannel

�(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/��(�K)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT0.5±0.3 ANISOVICH 12A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1 SHRESTHA 12A DPWA Multi
hannel�(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/��(�(1232)π ,D-wave)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT25±6 SOKHOYAN 15A DPWA Multi
hannel�(N ρ , S=3/2,D-wave)/�total �8/��(N ρ , S=3/2,D-wave)/�total �8/��(N ρ , S=3/2,D-wave)/�total �8/��(N ρ , S=3/2,D-wave)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •29±28 VRANA 00 DPWA Multi
hannel�(N σ

)/�total �9/��(N σ
)/�total �9/��(N σ
)/�total �9/��(N σ
)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT6±3 SOKHOYAN 15A DPWA Multi
hannelN(2190) PHOTON DECAY AMPLITUDES AT THE POLEN(2190) PHOTON DECAY AMPLITUDES AT THE POLEN(2190) PHOTON DECAY AMPLITUDES AT THE POLEN(2190) PHOTON DECAY AMPLITUDES AT THE POLEN(2190) → pγ , heli
ity-1/2 amplitude A1/2N(2190) → pγ , heli
ity-1/2 amplitude A1/2N(2190) → pγ , heli
ity-1/2 amplitude A1/2N(2190) → pγ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.068±0.005 −170 ± 12 SOKHOYAN 15A DPWA Multi
hannelN(2190) → pγ , heli
ity-3/2 amplitude A3/2N(2190) → pγ , heli
ity-3/2 amplitude A3/2N(2190) → pγ , heli
ity-3/2 amplitude A3/2N(2190) → pγ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.025±0.010 22 ± 10 SOKHOYAN 15A DPWA Multi
hannelN(2190) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2190) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2190) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2190) BREIT-WIGNER PHOTON DECAY AMPLITUDESN(2190) → pγ , heli
ity-1/2 amplitude A1/2N(2190) → pγ , heli
ity-1/2 amplitude A1/2N(2190) → pγ , heli
ity-1/2 amplitude A1/2N(2190) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT

−0.071±0.006 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.065±0.008 ANISOVICH 12A DPWA Multi
hannelN(2190) → pγ , heli
ity-3/2 amplitude A3/2N(2190) → pγ , heli
ity-3/2 amplitude A3/2N(2190) → pγ , heli
ity-3/2 amplitude A3/2N(2190) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.027±0.010 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.035±0.017 ANISOVICH 12A DPWA Multi
hannelN(2190) → pγ, ratio of heli
ity amplitudes A3/2/A1/2N(2190) → pγ, ratio of heli
ity amplitudes A3/2/A1/2N(2190) → pγ, ratio of heli
ity amplitudes A3/2/A1/2N(2190) → pγ, ratio of heli
ity amplitudes A3/2/A1/2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.17±0.15 WILLIAMS 09 IPWA γ p → pωN(2190) → nγ , heli
ity-1/2 amplitude A1/2N(2190) → nγ , heli
ity-1/2 amplitude A1/2N(2190) → nγ , heli
ity-1/2 amplitude A1/2N(2190) → nγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.015±0.013 ANISOVICH 13B DPWA Multi
hannelN(2190) → nγ , heli
ity-3/2 amplitude A3/2N(2190) → nγ , heli
ity-3/2 amplitude A3/2N(2190) → nγ , heli
ity-3/2 amplitude A3/2N(2190) → nγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.034±0.022 ANISOVICH 13B DPWA Multi
hannelN(2190) FOOTNOTESN(2190) FOOTNOTESN(2190) FOOTNOTESN(2190) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(2190) REFERENCESN(2190) REFERENCESN(2190) REFERENCESN(2190) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 13B EPJ A49 67 A.V. Anisovi
h et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)BATINIC 10 PR C82 038203 M. Batini
 et al. (ZAGR)WILLIAMS 09 PR C80 065209 M. Williams et al. (JLab CLAS Collab.)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP



1551155115511551See key on page 601 BaryonParti
le ListingsN(2220),N(2250)N(2220) 9/2+ I (JP ) = 12 (92+) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).N(2220) POLE POSITIONN(2220) POLE POSITIONN(2220) POLE POSITIONN(2220) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2130 to 2200 (≈ 2170) OUR ESTIMATE2130 to 2200 (≈ 2170) OUR ESTIMATE2130 to 2200 (≈ 2170) OUR ESTIMATE2130 to 2200 (≈ 2170) OUR ESTIMATE2127± 3±24 1 SVARC 14 L+P πN → πN2150±35 ANISOVICH 12A DPWA Multi
hannel2199 ARNDT 06 DPWA πN → πN, ηN2135 HOEHLER 93 ARGD πN → πN2160±80 CUTKOSKY 80 IPWA πN → πN
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT400 to 560 (≈ 480) OUR ESTIMATE400 to 560 (≈ 480) OUR ESTIMATE400 to 560 (≈ 480) OUR ESTIMATE400 to 560 (≈ 480) OUR ESTIMATE380± 7±22 1 SVARC 14 L+P πN → πN440± 40 ANISOVICH 12A DPWA Multi
hannel372 ARNDT 06 DPWA πN → πN, ηN400 HOEHLER 93 ARGD πN → πN480±100 CUTKOSKY 80 IPWA πN → πNN(2220) ELASTIC POLE RESIDUEN(2220) ELASTIC POLE RESIDUEN(2220) ELASTIC POLE RESIDUEN(2220) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT35 to 60 (≈ 45) OUR ESTIMATE35 to 60 (≈ 45) OUR ESTIMATE35 to 60 (≈ 45) OUR ESTIMATE35 to 60 (≈ 45) OUR ESTIMATE38± 1±5 1 SVARC 14 L+P πN → πN60±12 ANISOVICH 12A DPWA Multi
hannel33 ARNDT 06 DPWA πN → πN, ηN40 HOEHLER 93 ARGD πN → πN45±20 CUTKOSKY 80 IPWA πN → πNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−35 to −60 (≈ − 50) OUR ESTIMATE−35 to −60 (≈ − 50) OUR ESTIMATE−35 to −60 (≈ − 50) OUR ESTIMATE−35 to −60 (≈ − 50) OUR ESTIMATE
−52± 1±14 1 SVARC 14 L+P πN → πN
−58±12 ANISOVICH 12A DPWA Multi
hannel
−33 ARNDT 06 DPWA πN → πN, ηN
−50 HOEHLER 93 ARGD πN → πN
−45±25 CUTKOSKY 80 IPWA πN → πNN(2220) BREIT-WIGNER MASSN(2220) BREIT-WIGNER MASSN(2220) BREIT-WIGNER MASSN(2220) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2200 to 2300 (≈ 2250) OUR ESTIMATE2200 to 2300 (≈ 2250) OUR ESTIMATE2200 to 2300 (≈ 2250) OUR ESTIMATE2200 to 2300 (≈ 2250) OUR ESTIMATE2316.3± 2.9 ARNDT 06 DPWA πN → πN, ηN2230 ±80 CUTKOSKY 80 IPWA πN → πN2205 ±10 HOEHLER 79 IPWA πN → πNN(2220) BREIT-WIGNER WIDTHN(2220) BREIT-WIGNER WIDTHN(2220) BREIT-WIGNER WIDTHN(2220) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT350 to 500 (≈ 400) OUR ESTIMATE350 to 500 (≈ 400) OUR ESTIMATE350 to 500 (≈ 400) OUR ESTIMATE350 to 500 (≈ 400) OUR ESTIMATE633± 17 ARNDT 06 DPWA πN → πN, ηN500±150 CUTKOSKY 80 IPWA πN → πN365± 30 HOEHLER 79 IPWA πN → πNN(2220) DECAY MODESN(2220) DECAY MODESN(2220) DECAY MODESN(2220) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 15{25 %N(2220) BRANCHING RATIOSN(2220) BRANCHING RATIOSN(2220) BRANCHING RATIOSN(2220) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT15 to 25 OUR ESTIMATE15 to 25 OUR ESTIMATE15 to 25 OUR ESTIMATE15 to 25 OUR ESTIMATE24 ±5 ANISOVICH 12A DPWA Multi
hannel24.6±0.1 ARNDT 06 DPWA πN → πN, ηN15 ±3 CUTKOSKY 80 IPWA πN → πN18.0±1.5 HOEHLER 79 IPWA πN → πNN(2220) FOOTNOTESN(2220) FOOTNOTESN(2220) FOOTNOTESN(2220) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.

N(2220) REFERENCESN(2220) REFERENCESN(2220) REFERENCESN(2220) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(2250) 9/2− I (JP ) = 12 (92−) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).N(2250) POLE POSITIONN(2250) POLE POSITIONN(2250) POLE POSITIONN(2250) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2150 to 2250 (≈ 2200) OUR ESTIMATE2150 to 2250 (≈ 2200) OUR ESTIMATE2150 to 2250 (≈ 2200) OUR ESTIMATE2150 to 2250 (≈ 2200) OUR ESTIMATE2157± 3±14 1 SVARC 14 L+P πN → πN2195±45 ANISOVICH 12A DPWA Multi
hannel2217 ARNDT 06 DPWA πN → πN, ηN2187 HOEHLER 93 SPED πN → πN2150±50 CUTKOSKY 80 IPWA πN → πN
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT350 to 550 (≈ 450) OUR ESTIMATE350 to 550 (≈ 450) OUR ESTIMATE350 to 550 (≈ 450) OUR ESTIMATE350 to 550 (≈ 450) OUR ESTIMATE412± 7±44 1 SVARC 14 L+P πN → πN470± 50 ANISOVICH 12A DPWA Multi
hannel431 ARNDT 06 DPWA πN → πN, ηN388 HOEHLER 93 SPED πN → πN360±100 CUTKOSKY 80 IPWA πN → πNN(2250) ELASTIC POLE RESIDUEN(2250) ELASTIC POLE RESIDUEN(2250) ELASTIC POLE RESIDUEN(2250) ELASTIC POLE RESIDUEMODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣MODULUS ∣∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT20 to 30 (≈ 25) OUR ESTIMATE20 to 30 (≈ 25) OUR ESTIMATE20 to 30 (≈ 25) OUR ESTIMATE20 to 30 (≈ 25) OUR ESTIMATE24±1±5 1 SVARC 14 L+P πN → πN26±5 ANISOVICH 12A DPWA Multi
hannel21 ARNDT 06 DPWA πN → πN, ηN21 HOEHLER 93 SPED πN → πN20±6 CUTKOSKY 80 IPWA πN → πNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−20 to −60 (≈ − 40) OUR ESTIMATE−20 to −60 (≈ − 40) OUR ESTIMATE−20 to −60 (≈ − 40) OUR ESTIMATE−20 to −60 (≈ − 40) OUR ESTIMATE
−62± 1±11 1 SVARC 14 L+P πN → πN
−38±25 ANISOVICH 12A DPWA Multi
hannel
−20 ARNDT 06 DPWA πN → πN, ηN
−50±20 CUTKOSKY 80 IPWA πN → πNN(2250) BREIT-WIGNER MASSN(2250) BREIT-WIGNER MASSN(2250) BREIT-WIGNER MASSN(2250) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2250 to 2320 (≈ 2280) OUR ESTIMATE2250 to 2320 (≈ 2280) OUR ESTIMATE2250 to 2320 (≈ 2280) OUR ESTIMATE2250 to 2320 (≈ 2280) OUR ESTIMATE2280±40 ANISOVICH 12A DPWA Multi
hannel2302± 6 ARNDT 06 DPWA πN → πN, ηN2250±80 CUTKOSKY 80 IPWA πN → πN2268±15 HOEHLER 79 IPWA πN → πNN(2250) BREIT-WIGNER WIDTHN(2250) BREIT-WIGNER WIDTHN(2250) BREIT-WIGNER WIDTHN(2250) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT300 to 600 (≈ 500) OUR ESTIMATE300 to 600 (≈ 500) OUR ESTIMATE300 to 600 (≈ 500) OUR ESTIMATE300 to 600 (≈ 500) OUR ESTIMATE520± 50 ANISOVICH 12A DPWA Multi
hannel628± 28 ARNDT 06 DPWA πN → πN, ηN480±120 CUTKOSKY 80 IPWA πN → πN300± 40 HOEHLER 79 IPWA πN → πNN(2250) DECAY MODESN(2250) DECAY MODESN(2250) DECAY MODESN(2250) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 5{15 %



1552155215521552BaryonParti
le ListingsN(2250),N(2300),N(2570),N(2600),N(2700),N(∼ 3000)N(2250) BRANCHING RATIOSN(2250) BRANCHING RATIOSN(2250) BRANCHING RATIOSN(2250) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE12 ±4 ANISOVICH 12A DPWA Multi
hannel8.9±0.1 ARNDT 06 DPWA πN → πN, ηN10 ±2 CUTKOSKY 80 IPWA πN → πN10 ±2 HOEHLER 79 IPWA πN → πNN(2250) FOOTNOTESN(2250) FOOTNOTESN(2250) FOOTNOTESN(2250) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.N(2250) REFERENCESN(2250) REFERENCESN(2250) REFERENCESN(2250) REFERENCESPDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(2300) 1/2+ I (JP ) = 12 (12+) Status: ∗∗OMITTED FROM SUMMARY TABLEN(2300) MASSN(2300) MASSN(2300) MASSN(2300) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2300+40

−30+109
− 0 ABLIKIM 13A BES3 ψ(2S) → ppπ0N(2300) WIDTHN(2300) WIDTHN(2300) WIDTHN(2300) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT340±30+110

− 58 ABLIKIM 13A BES3 ψ(2S) → ppπ0N(2300) REFERENCESN(2300) REFERENCESN(2300) REFERENCESN(2300) REFERENCESABLIKIM 13A PRL 110 022001 M. Ablikim et al. (BES III Collab.)N(2570) 5/2− I (JP ) = 12 (52−) Status: ∗∗OMITTED FROM SUMMARY TABLEN(2570) MASSN(2570) MASSN(2570) MASSN(2570) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2570+19
−10+34

−10 ABLIKIM 13A BES3 ψ(2S) → ppπ0N(2570) WIDTHN(2570) WIDTHN(2570) WIDTHN(2570) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT250+14
−24+69

−21 ABLIKIM 13A BES3 ψ(2S) → ppπ0N(2570) REFERENCESN(2570) REFERENCESN(2570) REFERENCESN(2570) REFERENCESABLIKIM 13A PRL 110 022001 M. Ablikim et al. (BES III Collab.)N(2600) 11/2− I (JP ) = 12 (112 −) Status: ∗∗∗N(2600) BREIT-WIGNER MASSN(2600) BREIT-WIGNER MASSN(2600) BREIT-WIGNER MASSN(2600) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2550 to 2750 (≈ 2600) OUR ESTIMATE2550 to 2750 (≈ 2600) OUR ESTIMATE2550 to 2750 (≈ 2600) OUR ESTIMATE2550 to 2750 (≈ 2600) OUR ESTIMATE2623±197 ARNDT 06 DPWA πN → πN, ηN2577± 50 HOEHLER 79 IPWA πN → πNN(2600) BREIT-WIGNER WIDTHN(2600) BREIT-WIGNER WIDTHN(2600) BREIT-WIGNER WIDTHN(2600) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT500 to 800 (≈ 650) OUR ESTIMATE500 to 800 (≈ 650) OUR ESTIMATE500 to 800 (≈ 650) OUR ESTIMATE500 to 800 (≈ 650) OUR ESTIMATE1311±996 ARNDT 06 DPWA πN → πN, ηN400±100 HOEHLER 79 IPWA πN → πN

N(2600) DECAY MODESN(2600) DECAY MODESN(2600) DECAY MODESN(2600) DECAY MODESMode Fra
tion (�i /�)�1 N π 5{10 %N(2600) BRANCHING RATIOSN(2600) BRANCHING RATIOSN(2600) BRANCHING RATIOSN(2600) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT5 to 10 OUR ESTIMATE5 to 10 OUR ESTIMATE5 to 10 OUR ESTIMATE5 to 10 OUR ESTIMATE5.0±1.8 ARNDT 06 DPWA πN → πN, ηN5 ±1 HOEHLER 79 IPWA πN → πNN(2600) REFERENCESN(2600) REFERENCESN(2600) REFERENCESN(2600) REFERENCESARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(2700) 13/2+ I (JP ) = 12 (132 +)Status: ∗∗OMITTED FROM SUMMARY TABLEN(2700) BREIT-WIGNER MASSN(2700) BREIT-WIGNER MASSN(2700) BREIT-WIGNER MASSN(2700) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2612±45 HOEHLER 79 IPWA πN → πNN(2700) BREIT-WIGNER WIDTHN(2700) BREIT-WIGNER WIDTHN(2700) BREIT-WIGNER WIDTHN(2700) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT350±50 HOEHLER 79 IPWA πN → πNN(2700) DECAY MODESN(2700) DECAY MODESN(2700) DECAY MODESN(2700) DECAY MODESMode Fra
tion (�i /�)�1 N π 3{5 %N(2700) BRANCHING RATIOSN(2700) BRANCHING RATIOSN(2700) BRANCHING RATIOSN(2700) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT4±1 HOEHLER 79 IPWA πN → πNN(2700) REFERENCESN(2700) REFERENCESN(2700) REFERENCESN(2700) REFERENCESHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPN(∼ 3000 Region)Partial-Wave AnalysesOMITTED FROM SUMMARY TABLEWe list here mis
ellaneous high-mass 
andidates for isospin-1/2 res-onan
es found in partial-wave analyses.Our 1982 edition had an N(3245), an N(3690), and an N(3755),ea
h a narrow peak seen in a produ
tion experiment. Sin
e nothinghas been heard from them sin
e the 1960's, we de
lare them to bedead. There was also an N(3030), dedu
ed from total 
ross-se
tionand 180◦ elasti
 
ross-se
tion measurements; it is the KOCH 80L1,15 state below.N(∼ 3000) BREIT-WIGNER MASSN(∼ 3000) BREIT-WIGNER MASSN(∼ 3000) BREIT-WIGNER MASSN(∼ 3000) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT

≈ 3000 OUR ESTIMATE≈ 3000 OUR ESTIMATE≈ 3000 OUR ESTIMATE≈ 3000 OUR ESTIMATE2600 KOCH 80 IPWA πN → πN D133100 KOCH 80 IPWA πN → πN L1,15 wave3500 KOCH 80 IPWA πN → πN M1,17 wave3500 to 4000 KOCH 80 IPWA πN → πN N1,19 wave3500±200 HENDRY 78 MPWA πN → πN L1,15 wave3800±200 HENDRY 78 MPWA πN → πN M1,17 wave4100±200 HENDRY 78 MPWA πN → πN N1,19 wave



1553155315531553See key on page 601 BaryonParti
le ListingsN(∼ 3000)N(∼ 3000) BREIT-WIGNER WIDTHN(∼ 3000) BREIT-WIGNER WIDTHN(∼ 3000) BREIT-WIGNER WIDTHN(∼ 3000) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT1300±200 HENDRY 78 MPWA πN → πN L1,15 wave1600±200 HENDRY 78 MPWA πN → πN M1,17 wave1900±300 HENDRY 78 MPWA πN → πN N1,19 waveN(∼ 3000) DECAY MODESN(∼ 3000) DECAY MODESN(∼ 3000) DECAY MODESN(∼ 3000) DECAY MODESMode�1 N π

N(∼ 3000) BRANCHING RATIOSN(∼ 3000) BRANCHING RATIOSN(∼ 3000) BRANCHING RATIOSN(∼ 3000) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT6 ±2 HENDRY 78 MPWA πN → πN L1,15 wave4.0±1.5 HENDRY 78 MPWA πN → πN M1,17 wave3.0±1.5 HENDRY 78 MPWA πN → πN N1,19 waveN(∼ 3000) REFERENCESN(∼ 3000) REFERENCESN(∼ 3000) REFERENCESN(∼ 3000) REFERENCESKOCH 80 Toronto Conf. 3 R. Ko
h (KARLT) IJPHENDRY 78 PRL 41 222 A.W. Hendry (IND, LBL) IJPAlso ANP 136 1 A.W. Hendry (IND) IJP



1554155415541554BaryonParti
le Listings�(1232) � BARYONS� BARYONS� BARYONS� BARYONS(S = 0, I = 3/2)(S = 0, I = 3/2)(S = 0, I = 3/2)(S = 0, I = 3/2)�++ = uuu, �+ = uud, �0 = udd, �− = ddd�(1232) 3/2+ I (JP ) = 32 (32+) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).�(1232) POLE POSITIONS�(1232) POLE POSITIONS�(1232) POLE POSITIONS�(1232) POLE POSITIONSREAL PART, MIXED CHARGESREAL PART, MIXED CHARGESREAL PART, MIXED CHARGESREAL PART, MIXED CHARGESVALUE (MeV) DOCUMENT ID TECN COMMENT1209 to 1211 (≈ 1210) OUR ESTIMATE1209 to 1211 (≈ 1210) OUR ESTIMATE1209 to 1211 (≈ 1210) OUR ESTIMATE1209 to 1211 (≈ 1210) OUR ESTIMATE1211 ±1 ±1 1 SVARC 14 L+P πN → πN1210.5±1.0 ANISOVICH 12A DPWA Multi
hannel1211 ARNDT 06 DPWA πN → πN, ηN1209 2 HOEHLER 93 ARGD πN → πN1210 ±1 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1212 SHRESTHA 12A DPWA Multi
hannel1211 ±1 ANISOVICH 10 DPWA Multi
hannel1210 ARNDT 04 DPWA πN → πN, ηN1217 VRANA 00 DPWA Multi
hannel1211 ARNDT 95 DPWA πN → Nπ1210 ARNDT 91 DPWA πN → πN Soln SM90
−2×IMAGINARY PART, MIXED CHARGES−2×IMAGINARY PART, MIXED CHARGES−2×IMAGINARY PART, MIXED CHARGES−2×IMAGINARY PART, MIXED CHARGESVALUE (MeV) DOCUMENT ID TECN COMMENT98 to 102 (≈ 100) OUR ESTIMATE98 to 102 (≈ 100) OUR ESTIMATE98 to 102 (≈ 100) OUR ESTIMATE98 to 102 (≈ 100) OUR ESTIMATE98±2±1 1 SVARC 14 L+P πN → πN99±2 ANISOVICH 12A DPWA Multi
hannel99 ARNDT 06 DPWA πN → πN, ηN100 2 HOEHLER 93 ARGD πN → πN100±2 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •98 SHRESTHA 12A DPWA Multi
hannel100±2 ANISOVICH 10 DPWA Multi
hannel100 ARNDT 04 DPWA πN → πN, ηN96 VRANA 00 DPWA Multi
hannel100 ARNDT 95 DPWA πN → Nπ100 ARNDT 91 DPWA πN → πN Soln SM90REAL PART, �(1232)++REAL PART, �(1232)++REAL PART, �(1232)++REAL PART, �(1232)++VALUE (MeV) DOCUMENT ID COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1212.50±0.24 BERNICHA 96 Fit to PEDRONI 78
−2×IMAGINARY PART, �(1232)++−2×IMAGINARY PART, �(1232)++−2×IMAGINARY PART, �(1232)++−2×IMAGINARY PART, �(1232)++VALUE (MeV) DOCUMENT ID COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •97.37±0.42 BERNICHA 96 Fit to PEDRONI 78REAL PART, �(1232)+REAL PART, �(1232)+REAL PART, �(1232)+REAL PART, �(1232)+VALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1211 ±1 to 1212 ± 1 HANSTEIN 96 DPWA γN → πN1206.9±0.9 to 1210.5 ± 1.8 MIROSHNIC... 79 Fit photoprodu
tion
−2×IMAGINARY PART, �(1232)+−2×IMAGINARY PART, �(1232)+−2×IMAGINARY PART, �(1232)+−2×IMAGINARY PART, �(1232)+VALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •102 ±2 to 99 ± 2 3 HANSTEIN 96 DPWA γN → πN111.2±2.0 to 116.6 ± 2.2 MIROSHNIC... 79 Fit photoprodu
tionREAL PART, �(1232)0REAL PART, �(1232)0REAL PART, �(1232)0REAL PART, �(1232)0VALUE (MeV) DOCUMENT ID COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1213.20±0.66 BERNICHA 96 Fit to PEDRONI 78
−2×IMAGINARY PART, �(1232)0−2×IMAGINARY PART, �(1232)0−2×IMAGINARY PART, �(1232)0−2×IMAGINARY PART, �(1232)0VALUE (MeV) DOCUMENT ID COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •104.10±1.01 BERNICHA 96 Fit to PEDRONI 781Fit to the amplitudes of HOEHLER 79.2 See HOEHLER 93 for a detailed dis
ussion of the eviden
e for and the pole parametersof N and � resonan
es as determined from Argand diagrams of πN elasti
 partial-waveamplitudes and from plots of the speeds with whi
h the amplitudes traverse the diagrams.3The se
ond (lower) value of HANSTEIN 96 here goes with the se
ond (higher) value ofthe real part in the pre
eding data blo
k.

�(1232) ELASTIC POLE RESIDUES�(1232) ELASTIC POLE RESIDUES�(1232) ELASTIC POLE RESIDUES�(1232) ELASTIC POLE RESIDUESABSOLUTE VALUE, MIXED CHARGESABSOLUTE VALUE, MIXED CHARGESABSOLUTE VALUE, MIXED CHARGESABSOLUTE VALUE, MIXED CHARGESVALUE (MeV) DOCUMENT ID TECN COMMENT50 ±1 ±1 4 SVARC 14 L+P πN → πN51.6±0.6 ANISOVICH 12A DPWA Multi
hannel52 ARNDT 06 DPWA πN → πN, ηN50 HOEHLER 93 ARGD πN → πN53 ±2 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •53 ARNDT 04 DPWA πN → πN, ηN38 5 ARNDT 95 DPWA πN → Nπ52 ARNDT 91 DPWA πN → πN Soln SM90PHASE, MIXED CHARGESPHASE, MIXED CHARGESPHASE, MIXED CHARGESPHASE, MIXED CHARGESVALUE (◦) DOCUMENT ID TECN COMMENT
−46±1±1 4 SVARC 14 L+P πN → πN
−46±1 ANISOVICH 12A DPWA Multi
hannel
−47 ARNDT 06 DPWA πN → πN, ηN
−48 HOEHLER 93 ARGD πN → πN
−47±1 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−47 ARNDT 04 DPWA πN → πN, ηN
−22 5 ARNDT 95 DPWA πN → Nπ

−31 ARNDT 91 DPWA πN → πN Soln SM904Fit to the amplitudes of HOEHLER 79.5This ARNDT 95 value is in error, as pointed out by HOHLER 01. The 
orre
ted valueis in line with the ARNDT 91 value (R.A. Arndt, private 
ommuni
ation).�(1232) BREIT-WIGNER MASSES�(1232) BREIT-WIGNER MASSES�(1232) BREIT-WIGNER MASSES�(1232) BREIT-WIGNER MASSESMIXED CHARGESMIXED CHARGESMIXED CHARGESMIXED CHARGESVALUE (MeV) DOCUMENT ID TECN COMMENT1230 to 1234 (≈ 1232) OUR ESTIMATE1230 to 1234 (≈ 1232) OUR ESTIMATE1230 to 1234 (≈ 1232) OUR ESTIMATE1230 to 1234 (≈ 1232) OUR ESTIMATE1228 ±2 ANISOVICH 12A DPWA Multi
hannel1233.4±0.4 ARNDT 06 DPWA πN → πN, ηN1232 ±3 CUTKOSKY 80 IPWA πN → πN1233 ±2 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1231.1±0.2 SHRESTHA 12A DPWA Multi
hannel1230 ±2 ANISOVICH 10 DPWA Multi
hannel1232.9±1.2 ARNDT 04 DPWA πN → πN, ηN1228 ±1 PENNER 02C DPWA Multi
hannel1234 ±5 VRANA 00 DPWA Multi
hannel1233 ARNDT 95 DPWA πN → Nπ1231 ±1 MANLEY 92 IPWA πN → πN & N ππ�(1232)++ MASS�(1232)++ MASS�(1232)++ MASS�(1232)++ MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1230.55±0.20 GRIDNEV 06 DPWA πN → πN1231.88±0.29 BERNICHA 96 Fit to PEDRONI 781230.5 ±0.2 ABAEV 95 IPWA πN → πN1230.9 ±0.3 KOCH 80B IPWA πN → πN1231.1 ±0.2 PEDRONI 78 πN → πN 70{370 MeV�(1232)+ MASS�(1232)+ MASS�(1232)+ MASS�(1232)+ MASSVALUE (MeV) DOCUMENT ID COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1234.9±1.4 MIROSHNIC... 79 Fit photoprodu
tion�(1232)0 MASS�(1232)0 MASS�(1232)0 MASS�(1232)0 MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1231.3 ±0.6 BREITSCHOP...06 CNTR Using new CHEX data1233.40±0.22 GRIDNEV 06 DPWA πN → πN1234.35±0.75 BERNICHA 96 Fit to PEDRONI 781233.1 ±0.3 ABAEV 95 IPWA πN → πN1233.6 ±0.5 KOCH 80B IPWA πN → πN1233.8 ±0.2 PEDRONI 78 πN → πN 70{370 MeVm�0 − m�++m�0 − m�++m�0 − m�++m�0 − m�++VALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.86±0.30 GRIDNEV 06 DPWA πN → πN2.25±0.68 BERNICHA 96 Fit to PEDRONI 782.6 ±0.4 ABAEV 95 IPWA πN → πN2.7 ±0.3 6 PEDRONI 78 See the masses6Using π± d as well, PEDRONI 78 determine (M− − M++) + (M0 − M+)/3 =4.6 ± 0.2 MeV.



1555155515551555See key on page 601 BaryonParti
le Listings�(1232)�(1232) BREIT-WIGNER WIDTHS�(1232) BREIT-WIGNER WIDTHS�(1232) BREIT-WIGNER WIDTHS�(1232) BREIT-WIGNER WIDTHSMIXED CHARGESMIXED CHARGESMIXED CHARGESMIXED CHARGESVALUE (MeV) DOCUMENT ID TECN COMMENT114 to 120 (≈ 117) OUR ESTIMATE114 to 120 (≈ 117) OUR ESTIMATE114 to 120 (≈ 117) OUR ESTIMATE114 to 120 (≈ 117) OUR ESTIMATE110 ± 3 ANISOVICH 12A DPWA Multi
hannel118.7± 0.6 ARNDT 06 DPWA πN → πN, ηN120 ± 5 CUTKOSKY 80 IPWA πN → πN116 ± 5 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •113.0± 0.5 SHRESTHA 12A DPWA Multi
hannel112 ± 4 ANISOVICH 10 DPWA Multi
hannel118.0± 2.2 ARNDT 04 DPWA πN → πN, ηN106 ± 1 PENNER 02C DPWA Multi
hannel112 ±18 VRANA 00 DPWA Multi
hannel114 ARNDT 95 DPWA πN → Nπ118 ± 4 MANLEY 92 IPWA πN → πN & N ππ�(1232)++ WIDTH�(1232)++ WIDTH�(1232)++ WIDTH�(1232)++ WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •112.2 ±0.7 GRIDNEV 06 DPWA πN → πN109.07±0.48 BERNICHA 96 Fit to PEDRONI 78111.0 ±1.0 KOCH 80B IPWA πN → πN111.3 ±0.5 PEDRONI 78 πN → πN 70{370 MeV�(1232)+ WIDTH�(1232)+ WIDTH�(1232)+ WIDTH�(1232)+ WIDTHVALUE (MeV) DOCUMENT ID COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •131.1±2.4 MIROSHNIC... 79 Fit photoprodu
tion�(1232)0 WIDTH�(1232)0 WIDTH�(1232)0 WIDTH�(1232)0 WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •112.5 ±1.9 BREITSCHOP...06 CNTR Using new CHEX data116.9 ±0.7 GRIDNEV 06 DPWA πN → πN117.58±1.16 BERNICHA 96 Fit to PEDRONI 78113.0 ±1.5 KOCH 80B IPWA πN → πN117.9 ±0.9 PEDRONI 78 πN → πN 70{370 MeV�0-�++ WIDTH DIFFERENCE�0-�++ WIDTH DIFFERENCE�0-�++ WIDTH DIFFERENCE�0-�++ WIDTH DIFFERENCEVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.66±1.0 GRIDNEV 06 DPWA πN → πN8.45±1.11 BERNICHA 96 Fit to PEDRONI 785.1 ±1.0 ABAEV 95 IPWA πN → πN6.6 ±1.0 PEDRONI 78 See the widths�(1232) DECAY MODES�(1232) DECAY MODES�(1232) DECAY MODES�(1232) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 99.4 %�2 N γ 0.55{0.65 %�3 N γ , heli
ity=1/2 0.11{0.13 %�4 N γ , heli
ity=3/2 0.44{0.52 %�(1232) BRANCHING RATIOS�(1232) BRANCHING RATIOS�(1232) BRANCHING RATIOS�(1232) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.994 OUR ESTIMATE0.994 OUR ESTIMATE0.994 OUR ESTIMATE0.994 OUR ESTIMATE1.00 ARNDT 06 DPWA πN → πN, ηN1.0 CUTKOSKY 80 IPWA πN → πN1.0 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.994 SHRESTHA 12A DPWA Multi
hannel1.0 ANISOVICH 10 DPWA Multi
hannel1.000 ARNDT 04 DPWA πN → πN, ηN1.00 PENNER 02C DPWA Multi
hannel1.00 ±0.01 VRANA 00 DPWA Multi
hannel1.0 ARNDT 95 DPWA πN → Nπ1.0 MANLEY 92 IPWA πN → πN & N ππ

�(1232) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1232) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1232) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1232) BREIT-WIGNER PHOTON DECAY AMPLITUDESPapers on γN amplitudes predating 1981 may be found in our 2006 edition,Journal of Physi
s G33G33G33G33 1 (2006).�(1232) → N γ , heli
ity-1/2 amplitude A1/2�(1232) → N γ , heli
ity-1/2 amplitude A1/2�(1232) → N γ , heli
ity-1/2 amplitude A1/2�(1232) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.135 ±0.006 OUR ESTIMATE−0.135 ±0.006 OUR ESTIMATE−0.135 ±0.006 OUR ESTIMATE−0.135 ±0.006 OUR ESTIMATE
−0.131 ±0.004 ANISOVICH 12A DPWA Multi
hannel
−0.139 ±0.002 WORKMAN 12A DPWA γN → Nπ

−0.139 ±0.004 DUGGER 07 DPWA γN → πN
−0.137 ±0.005 AHRENS 04A DPWA ~γ~p → N π

−0.1357±0.0013±0.0037 BLANPIED 01 LEGS γ p → pγ, pπ0, nπ+
−0.131 ±0.001 BECK 00 IPWA ~γ p → pπ0, nπ+
−0.140 ±0.005 KAMALOV 99 DPWA γN → πN
−0.1294±0.0013 HANSTEIN 98 IPWA γN → πN
−0.1278±0.0012 DAVIDSON 97 DPWA γN → πN
−0.135 ±0.016 DAVIDSON 91B FIT γN → πN
−0.145 ±0.015 CRAWFORD 83 IPWA γN → πN
−0.138 ±0.004 AWAJI 81 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.137 ±0.001 SHRESTHA 12A DPWA Multi
hannel
−0.136 ±0.005 ANISOVICH 10 DPWA Multi
hannel
−0.140 DRECHSEL 07 DPWA γN → πN
−0.129 ±0.001 ARNDT 02 DPWA γ p → N π

−0.128 PENNER 02D DPWA Multi
hannel
−0.1312 HANSTEIN 98 DPWA γN → πN
−0.135 ±0.005 ARNDT 97 IPWA γN → πN
−0.141 ±0.005 ARNDT 96 IPWA γN → πN
−0.143 ±0.004 LI 93 IPWA γN → πN
−0.140 ±0.007 DAVIDSON 90 FIT See DAVIDSON 91B�(1232) → N γ , heli
ity-3/2 amplitude A3/2�(1232) → N γ , heli
ity-3/2 amplitude A3/2�(1232) → N γ , heli
ity-3/2 amplitude A3/2�(1232) → N γ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.255 ±0.005 OUR ESTIMATE−0.255 ±0.005 OUR ESTIMATE−0.255 ±0.005 OUR ESTIMATE−0.255 ±0.005 OUR ESTIMATE
−0.254 ±0.005 ANISOVICH 12A DPWA Multi
hannel
−0.262 ±0.003 WORKMAN 12A DPWA γN → Nπ

−0.258 ±0.005 DUGGER 07 DPWA γN → πN
−0.256 ±0.003 AHRENS 04A DPWA ~γ~p → N π

−0.2669±0.0016±0.0078 BLANPIED 01 LEGS γ p → pγ, pπ0, nπ+
−0.251 ±0.001 BECK 00 IPWA ~γ p → pπ0, nπ+
−0.258 ±0.006 KAMALOV 99 DPWA γN → πN
−0.2466±0.0013 HANSTEIN 98 IPWA γN → πN
−0.2524±0.0013 DAVIDSON 97 DPWA γN → πN
−0.251 ±0.033 DAVIDSON 91B FIT γN → πN
−0.263 ±0.026 CRAWFORD 83 IPWA γN → πN
−0.259 ±0.006 AWAJI 81 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.251 ±0.001 SHRESTHA 12A DPWA Multi
hannel
−0.267 ±0.008 ANISOVICH 10 DPWA Multi
hannel
−0.265 DRECHSEL 07 DPWA γN → πN
−0.243 ±0.001 ARNDT 02 DPWA γ p → N π

−0.247 PENNER 02D DPWA Multi
hannel
−0.2522 HANSTEIN 98 DPWA γN → πN
−0.250 ±0.008 ARNDT 97 IPWA γN → πN
−0.261 ±0.005 ARNDT 96 IPWA γN → πN
−0.262 ±0.004 LI 93 IPWA γN → πN
−0.254 ±0.011 DAVIDSON 90 FIT See DAVIDSON 91B�(1232) → N γ, E2/M1 ratio�(1232) → N γ, E2/M1 ratio�(1232) → N γ, E2/M1 ratio�(1232) → N γ, E2/M1 ratioVALUE DOCUMENT ID TECN COMMENT
−0.025 ±0.005 OUR ESTIMATE−0.025 ±0.005 OUR ESTIMATE−0.025 ±0.005 OUR ESTIMATE−0.025 ±0.005 OUR ESTIMATE
−0.0274±0.0003±0.0030 AHRENS 04A DPWA ~γ~p → N π

−0.020 ±0.002 ARNDT 02 DPWA γ p → N π

−0.0307±0.0026±0.0024 BLANPIED 01 LEGS γ p → pγ, pπ0, nπ+
−0.016 ±0.004 ±0.002 GALLER 01 DPWA γ p → γ p
−0.025 ±0.001 ±0.002 BECK 00 IPWA ~γ p → pπ0, nπ+
−0.0233±0.0017 HANSTEIN 98 IPWA γN → πN
−0.015 ±0.005 7 ARNDT 97 IPWA γN → πN
−0.0319±0.0024 DAVIDSON 97 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.022 DRECHSEL 07 DPWA γN → πN
−0.026 PENNER 02D DPWA Multi
hannel
−0.0254±0.0010 HANSTEIN 98 DPWA γN → πN
−0.025 ±0.002 ±0.002 BECK 97 IPWA γN → πN
−0.030 ±0.003 ±0.002 BLANPIED 97 DPWA γN → πN, γN
−0.027 ±0.003 ±0.001 KHANDAKER 95 DPWA γN → πN
−0.015 ±0.005 WORKMAN 92 IPWA γN → πN
−0.0157±0.0072 DAVIDSON 91B FIT γN → πN
−0.0107±0.0037 DAVIDSON 90 FIT γN → πN
−0.015 ±0.002 DAVIDSON 86 FIT γN → πN+0.037 ±0.004 TANABE 85 FIT γN → πN�(1232) → N γ, absolute value of E2/M1 ratio at pole�(1232) → N γ, absolute value of E2/M1 ratio at pole�(1232) → N γ, absolute value of E2/M1 ratio at pole�(1232) → N γ, absolute value of E2/M1 ratio at poleVALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.065±0.007 ARNDT 97 DPWA γN → πN0.058 HANSTEIN 96 DPWA γN → πN



1556155615561556BaryonParti
le Listings�(1232),�(1600)�(1232) → N γ, phase of E2/M1 ratio at pole�(1232) → N γ, phase of E2/M1 ratio at pole�(1232) → N γ, phase of E2/M1 ratio at pole�(1232) → N γ, phase of E2/M1 ratio at poleVALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−122 ±5 ARNDT 97 DPWA γN → πN
−127.2 HANSTEIN 96 DPWA γN → πN7This ARNDT 97 value is very sensitive to the database being �tted. The result is from a�t to the full pion photoprodu
tion database, apart from the BLANPIED 97 
ross-se
tionmeasurements. �(1232) MAGNETIC MOMENTS�(1232) MAGNETIC MOMENTS�(1232) MAGNETIC MOMENTS�(1232) MAGNETIC MOMENTS�(1232)++ MAGNETIC MOMENT�(1232)++ MAGNETIC MOMENT�(1232)++ MAGNETIC MOMENT�(1232)++ MAGNETIC MOMENTThe values are extra
ted from UCLA and SIN data on π+ p bremsstrahlung using avariety of di�erent theoreti
al approximations and methods. Our estimate is only arough guess of the range we expe
t the moment to lie within.VALUE (µ

N
) DOCUMENT ID TECN COMMENT3.7 to 7.5 OUR ESTIMATE3.7 to 7.5 OUR ESTIMATE3.7 to 7.5 OUR ESTIMATE3.7 to 7.5 OUR ESTIMATE

• • • We do not use the following data for averages, �ts, limits, et
. • • •6.14±0.51 LOPEZCAST... 01 DPWA π+ p → π+ pγ4.52±0.50±0.45 BOSSHARD 91 π+ p → π+ pγ (SIN data)3.7 to 4.2 LIN 91B π+ p → π+ pγ (from UCLA data)4.6 to 4.9 LIN 91B π+ p → π+ pγ (from SIN data)5.6 to 7.5 WITTMAN 88 π+ p → π+ pγ (from UCLA data)6.9 to 9.8 HELLER 87 π+ p → π+ pγ (from UCLA data)4.7 to 6.7 NEFKENS 78 π+ p → π+ pγ (UCLA data)�(1232)+ MAGNETIC MOMENT�(1232)+ MAGNETIC MOMENT�(1232)+ MAGNETIC MOMENT�(1232)+ MAGNETIC MOMENTVALUE (µ
N
) DOCUMENT ID COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.7+1.0
−1.3 ± 1.5 ± 3 8 KOTULLA 02 γ p → pπ0 γ′8The se
ond error is systemati
, the third is an estimate of theoreti
al un
ertainties.�(1232) REFERENCES�(1232) REFERENCES�(1232) REFERENCES�(1232) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)WORKMAN 12A PR C86 015202 R. Workman et al. (GWU)ANISOVICH 10 EPJ A44 203 A.V. Anisovi
h et al. (BONN, PNPI)DRECHSEL 07 EPJ A34 69 D. Dre
hsel, S.S. Kamalov, L. Tiator (MAINZ, JINR)DUGGER 07 PR C76 025211 M. Dugger et al. (JLab CLAS Collab.)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)BREITSCHOP... 06 PL B639 424 J. Breits
hopf et al. (TUBIN, HEBR, CSUS)GRIDNEV 06 PAN 69 1542 A.B. Gridnev et al. (PNPI, BONN, GWU)PDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)AHRENS 04A EPJ A21 323 J. Ahrens et al. (Mainz GDH, A2 Collab.)ARNDT 04 PR C69 035213 R.A. Arndt et al. (GWU, TRIU)ARNDT 02 PR C66 055213 R. A. Arndt et al. (GWU)KOTULLA 02 PRL 89 272001 M. Kotulla et al. (MAMI TAPS Collab.)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)BLANPIED 01 PR C64 025203 G. Blanpied et al. (BNL LEGS Collab.)GALLER 01 PL B503 245 G. Galler et al. (Mainz LARA Collab.)HOHLER 01 NSTAR 2001 185 G. Hohler (KARL)LOPEZCAST... 01 PL B517 339 G. Lopez Castro, A. MarianoAlso NP A697 440 G. Lopez Castro, A. MarianoBECK 00 PR C61 035204 R. Be
k et al. (Mainz Mi
rotron DAPHNE Col.)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)KAMALOV 99 PRL 83 4494 S.S. Kamalov, S.N. Yang (Taiwan U.)HANSTEIN 98 NP A632 561 O. Hanstein, D. Dre
hsel, L. TiatorARNDT 97 PR C56 577 R.A. Arndt, I.I. Strakovsky, R.L. Workman (VPI)BECK 97 PRL 78 606 R. Be
k et al. (MANZ, SACL, PAVI, GLAS)Also PRL 79 4510 R.L. Be
k, H.P. Krahn (MANZ)Also PRL 79 4512 R.L. Be
k, H.P. Krahn (MANZ)Also PRL 79 4515 (erratum) R.L. Be
k et al. (MANZ, SACL, PAVI, GLAS)BLANPIED 97 PRL 79 4337 G.S. Blanpied et al. (LEGS Collab.)DAVIDSON 97 PRL 79 4509 R.M. Davidson, N.C.A. Mukhopadhyay (RPI)ARNDT 96 PR C53 430 R.A. Arndt, I.I. Strakovsky, R.L. Workman (VPI)BERNICHA 96 NP A597 623 A. Berni
ha, G. Lopez Castro, J. Pestieau (LOUV+)HANSTEIN 96 PL B385 45 O. Hanstein, D. Dre
hsel, L. Tiator (MANZ)ABAEV 95 ZPHY A352 85 V.V. Abaev, S.P. Kruglov (PNPI)ARNDT 95 PR C52 2120 R.A. Arndt et al. (VPI, BRCO)KHANDAKER 95 PR D51 3966 M. Khandaker, A.M. Sandor� (BNL, VPI)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)LI 93 PR C47 2759 Z.J. Li et al. (VPI)MANLEY 92 PR D45 4002 D.M. Manley, E.M. Saleski (KSA) IJPAlso PR D30 904 D.M. Manley et al. (VPI)WORKMAN 92 PR C46 1546 R.L. Workman, R.A. Arndt, Z.J. Li (VPI)ARNDT 91 PR D43 2131 R.A. Arndt et al. (VPI, TELE) IJPBOSSHARD 91 PR D44 1962 A. Bosshard et al. (ZURI, LBL, VILL+)Also PRL 64 2619 A. Bosshard et al. (CATH, LAUS, LBL+)DAVIDSON 91B PR D43 71 R.M. Davidson, N.C. Mukhopadhyay, R.S. WittmanLIN 91B PR C44 1819 D.H. Lin, M.K. Liou, Z.M. Ding (CUNY, CSOK)Also PR C43 R930 D. Lin, M.K. Liou (CUNY)DAVIDSON 90 PR D42 20 R.M. Davidson, N.C. Mukhopadhyay (RPI)WITTMAN 88 PR C37 2075 R. Wittman (TRIU)HELLER 87 PR C35 718 L. Heller et al. (LANL, MIT, ILL)DAVIDSON 86 PRL 56 804 R.M. Davidson, N.C. Mukhopadhyay, R. Wittman (RPI)TANABE 85 PR C31 1876 H. Tanabe, K. Ohta (KOMAB)CRAWFORD 83 NP B211 1 R.L. Crawford, W.T. Morton (GLAS)AWAJI 81 Bonn Conf. 352 N. Awaji, R. Kajikawa (NAGO)Also NP B197 365 K. Fujii et al. (NAGO)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)KOCH 80B NP A336 331 R. Ko
h, E. Pietarinen (KARLT) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJPMIROSHNIC... 79 SJNP 29 94 I.I. Miroshni
henko et al. (KFTI) IJPTranslated from YAF 29 188.NEFKENS 78 PR D18 3911 B.M.K. Nefkens et al. (UCLA, CATH) IJPPEDRONI 78 NP A300 321 E. Pedroni et al. (SIN, ISNG, KARLE+) IJP

�(1600) 3/2+ I (JP ) = 32 (32+) Status: ∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).�(1600) POLE POSITION�(1600) POLE POSITION�(1600) POLE POSITION�(1600) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1460 to 1560 (≈ 1510) OUR ESTIMATE1460 to 1560 (≈ 1510) OUR ESTIMATE1460 to 1560 (≈ 1510) OUR ESTIMATE1460 to 1560 (≈ 1510) OUR ESTIMATE1515±20 SOKHOYAN 15A DPWA Multi
hannel1469±10±5 1 SVARC 14 L+P πN → πN1457 ARNDT 06 DPWA πN → πN, ηN1550 HOEHLER 93 SPED πN → πN1550±40 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1498±25 ANISOVICH 12A DPWA Multi
hannel1599 SHRESTHA 12A DPWA Multi
hannel1599 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT200 to 350 (≈ 275) OUR ESTIMATE200 to 350 (≈ 275) OUR ESTIMATE200 to 350 (≈ 275) OUR ESTIMATE200 to 350 (≈ 275) OUR ESTIMATE250±30 SOKHOYAN 15A DPWA Multi
hannel314±18±8 1 SVARC 14 L+P πN → πN400 ARNDT 06 DPWA πN → πN, ηN200±60 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •230±50 ANISOVICH 12A DPWA Multi
hannel211 SHRESTHA 12A DPWA Multi
hannel312 VRANA 00 DPWA Multi
hannel�(1600) ELASTIC POLE RESIDUE�(1600) ELASTIC POLE RESIDUE�(1600) ELASTIC POLE RESIDUE�(1600) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT10 to 40 (≈ 25) OUR ESTIMATE10 to 40 (≈ 25) OUR ESTIMATE10 to 40 (≈ 25) OUR ESTIMATE10 to 40 (≈ 25) OUR ESTIMATE13±3 SOKHOYAN 15A DPWA Multi
hannel38±2±2 1 SVARC 14 L+P πN → πN44 ARNDT 06 DPWA πN → πN, ηN17±4 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •11±6 ANISOVICH 12A DPWA Multi
hannelPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT150 to 210 (≈ 180) OUR ESTIMATE150 to 210 (≈ 180) OUR ESTIMATE150 to 210 (≈ 180) OUR ESTIMATE150 to 210 (≈ 180) OUR ESTIMATE
−155±20 SOKHOYAN 15A DPWA Multi
hannel173± 5±5 1 SVARC 14 L+P πN → πN+147 ARNDT 06 DPWA πN → πN, ηN
−150±30 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−160±33 ANISOVICH 12A DPWA Multi
hannel�(1600) INELASTIC POLE RESIDUE�(1600) INELASTIC POLE RESIDUE�(1600) INELASTIC POLE RESIDUE�(1600) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → �(1600) → �π, P-waveNormalized residue in N π → �(1600) → �π, P-waveNormalized residue in N π → �(1600) → �π, P-waveNormalized residue in N π → �(1600) → �π, P-waveMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT15± 4 30 ± 35 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •14±10 154 ± 40 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1600) → �π, F-waveNormalized residue in N π → �(1600) → �π, F-waveNormalized residue in N π → �(1600) → �π, F-waveNormalized residue in N π → �(1600) → �π, F-waveMODULUS (%) DOCUMENT ID TECN COMMENT1.0±0.5 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.0±0.5 ANISOVICH 12A DPWA Multi
hannel�(1600) BREIT-WIGNER MASS�(1600) BREIT-WIGNER MASS�(1600) BREIT-WIGNER MASS�(1600) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1500 to 1700 (≈ 1600) OUR ESTIMATE1500 to 1700 (≈ 1600) OUR ESTIMATE1500 to 1700 (≈ 1600) OUR ESTIMATE1500 to 1700 (≈ 1600) OUR ESTIMATE1520±20 SOKHOYAN 15A DPWA Multi
hannel1600±50 CUTKOSKY 80 IPWA πN → πN1522±13 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1510±20 ANISOVICH 12A DPWA Multi
hannel1626± 8 SHRESTHA 12A DPWA Multi
hannel1667± 1 PENNER 02C DPWA Multi
hannel1687±44 VRANA 00 DPWA Multi
hannel



1557155715571557See key on page 601 BaryonParti
le Listings�(1600),�(1620)�(1600) BREIT-WIGNER WIDTH�(1600) BREIT-WIGNER WIDTH�(1600) BREIT-WIGNER WIDTH�(1600) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT220 to 420 (≈ 320) OUR ESTIMATE220 to 420 (≈ 320) OUR ESTIMATE220 to 420 (≈ 320) OUR ESTIMATE220 to 420 (≈ 320) OUR ESTIMATE235± 30 SOKHOYAN 15A DPWA Multi
hannel300±100 CUTKOSKY 80 IPWA πN → πN220± 40 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •220± 45 ANISOVICH 12A DPWA Multi
hannel225± 18 SHRESTHA 12A DPWA Multi
hannel397± 10 PENNER 02C DPWA Multi
hannel493± 75 VRANA 00 DPWA Multi
hannel�(1600) DECAY MODES�(1600) DECAY MODES�(1600) DECAY MODES�(1600) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 10{25 %�2 N ππ 75{90 %�3 �(1232)π 73{83 %�4 �(1232)π , P-wave 72{82 %�5 �(1232)π , F-wave <2 %�6 N(1440)π�7 N(1440)π , P-wave seen�8 N γ 0.001{0.035 %�9 N γ , heli
ity=1/2 0.0{0.02 %�10 N γ , heli
ity=3/2 0.001{0.015 %�(1600) BRANCHING RATIOS�(1600) BRANCHING RATIOS�(1600) BRANCHING RATIOS�(1600) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT10 to 25 OUR ESTIMATE10 to 25 OUR ESTIMATE10 to 25 OUR ESTIMATE10 to 25 OUR ESTIMATE14±4 SOKHOYAN 15A DPWA Multi
hannel18±4 CUTKOSKY 80 IPWA πN → πN21±6 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •12±5 ANISOVICH 12A DPWA Multi
hannel8±2 SHRESTHA 12A DPWA Multi
hannel13±1 PENNER 02C DPWA Multi
hannel28±5 VRANA 00 DPWA Multi
hannel�(�(1232)π , P-wave)/�total �4/��(�(1232)π , P-wave)/�total �4/��(�(1232)π , P-wave)/�total �4/��(�(1232)π , P-wave)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT77± 5 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •78± 6 ANISOVICH 12A DPWA Multi
hannel70± 3 SHRESTHA 12A DPWA Multi
hannel59±10 VRANA 00 DPWA Multi
hannel�(�(1232)π , F-wave)/�total �5/��(�(1232)π , F-wave)/�total �5/��(�(1232)π , F-wave)/�total �5/��(�(1232)π , F-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT
<2 SOKHOYAN 15A DPWA Multi
hannel�(N(1440)π)/�total �6/��(N(1440)π)/�total �6/��(N(1440)π)/�total �6/��(N(1440)π)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •22±3 SHRESTHA 12A DPWA Multi
hannel13±4 VRANA 00 DPWA Multi
hannel�(1600) PHOTON DECAY AMPLITUDES AT THE POLE�(1600) PHOTON DECAY AMPLITUDES AT THE POLE�(1600) PHOTON DECAY AMPLITUDES AT THE POLE�(1600) PHOTON DECAY AMPLITUDES AT THE POLE�(1600) → N γ , heli
ity-1/2 amplitude A1/2�(1600) → N γ , heli
ity-1/2 amplitude A1/2�(1600) → N γ , heli
ity-1/2 amplitude A1/2�(1600) → N γ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.053±0.010 130 ± 15 SOKHOYAN 15A DPWA Multi
hannel�(1600) → N γ , heli
ity-3/2 amplitude A3/2�(1600) → N γ , heli
ity-3/2 amplitude A3/2�(1600) → N γ , heli
ity-3/2 amplitude A3/2�(1600) → N γ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.055±0.010 152 ± 15 SOKHOYAN 15A DPWA Multi
hannel�(1600) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1600) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1600) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1600) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1600) → N γ , heli
ity-1/2 amplitude A1/2�(1600) → N γ , heli
ity-1/2 amplitude A1/2�(1600) → N γ , heli
ity-1/2 amplitude A1/2�(1600) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.045±0.015 OUR ESTIMATE−0.045±0.015 OUR ESTIMATE−0.045±0.015 OUR ESTIMATE−0.045±0.015 OUR ESTIMATE
−0.051±0.010 SOKHOYAN 15A DPWA Multi
hannel
−0.018±0.015 ARNDT 96 IPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.050±0.009 ANISOVICH 12A DPWA Multi
hannel0.006±0.005 SHRESTHA 12A DPWA Multi
hannel0.0 PENNER 02D DPWA Multi
hannel

�(1600) → N γ , heli
ity-3/2 amplitude A3/2�(1600) → N γ , heli
ity-3/2 amplitude A3/2�(1600) → N γ , heli
ity-3/2 amplitude A3/2�(1600) → N γ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.035±0.015 OUR ESTIMATE−0.035±0.015 OUR ESTIMATE−0.035±0.015 OUR ESTIMATE−0.035±0.015 OUR ESTIMATE
−0.055±0.010 SOKHOYAN 15A DPWA Multi
hannel
−0.025±0.015 ARNDT 96 IPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.040±0.012 ANISOVICH 12A DPWA Multi
hannel0.052±0.008 SHRESTHA 12A DPWA Multi
hannel
−0.024 PENNER 02D DPWA Multi
hannel�(1600) FOOTNOTES�(1600) FOOTNOTES�(1600) FOOTNOTES�(1600) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(1600) REFERENCES�(1600) REFERENCES�(1600) REFERENCES�(1600) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)ARNDT 96 PR C53 430 R.A. Arndt, I.I. Strakovsky, R.L. Workman (VPI)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(1620) 1/2− I (JP ) = 32 (12−) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).�(1620) POLE POSITION�(1620) POLE POSITION�(1620) POLE POSITION�(1620) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1590 to 1610 (≈ 1600) OUR ESTIMATE1590 to 1610 (≈ 1600) OUR ESTIMATE1590 to 1610 (≈ 1600) OUR ESTIMATE1590 to 1610 (≈ 1600) OUR ESTIMATE1597± 5 SOKHOYAN 15A DPWA Multi
hannel1603± 7±2 1 SVARC 14 L+P πN → πN1595 ARNDT 06 DPWA πN → πN, ηN1608 HOEHLER 93 SPED πN → πN1600±15 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1597± 4 ANISOVICH 12A DPWA Multi
hannel1587 SHRESTHA 12A DPWA Multi
hannel1607 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT120 to 140 (≈ 130) OUR ESTIMATE120 to 140 (≈ 130) OUR ESTIMATE120 to 140 (≈ 130) OUR ESTIMATE120 to 140 (≈ 130) OUR ESTIMATE134± 8 SOKHOYAN 15A DPWA Multi
hannel114±12±4 1 SVARC 14 L+P πN → πN135 ARNDT 06 DPWA πN → πN, ηN116 HOEHLER 93 SPED πN → πN120±20 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •130± 9 ANISOVICH 12A DPWA Multi
hannel107 SHRESTHA 12A DPWA Multi
hannel148 VRANA 00 DPWA Multi
hannel�(1620) ELASTIC POLE RESIDUE�(1620) ELASTIC POLE RESIDUE�(1620) ELASTIC POLE RESIDUE�(1620) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT15 to 20 (≈ 17) OUR ESTIMATE15 to 20 (≈ 17) OUR ESTIMATE15 to 20 (≈ 17) OUR ESTIMATE15 to 20 (≈ 17) OUR ESTIMATE20±3 SOKHOYAN 15A DPWA Multi
hannel17±2±1 1 SVARC 14 L+P πN → πN15 ARNDT 06 DPWA πN → πN, ηN19 HOEHLER 93 SPED πN → πN15±2 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •18±2 ANISOVICH 12A DPWA Multi
hannelPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
− 90 to −110 (≈ − 100) OUR ESTIMATE− 90 to −110 (≈ − 100) OUR ESTIMATE− 90 to −110 (≈ − 100) OUR ESTIMATE− 90 to −110 (≈ − 100) OUR ESTIMATE
− 90±15 SOKHOYAN 15A DPWA Multi
hannel
−106±10±4 1 SVARC 14 L+P πN → πN
− 92 ARNDT 06 DPWA πN → πN, ηN
− 95 HOEHLER 93 SPED πN → πN
−110±20 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−100± 5 ANISOVICH 12A DPWA Multi
hannel



1558155815581558BaryonParti
le Listings�(1620),�(1700)�(1620) INELASTIC POLE RESIDUE�(1620) INELASTIC POLE RESIDUE�(1620) INELASTIC POLE RESIDUE�(1620) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → �(1620) → �π, D-waveNormalized residue in N π → �(1620) → �π, D-waveNormalized residue in N π → �(1620) → �π, D-waveNormalized residue in N π → �(1620) → �π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.42±0.06 −90 ± 20 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.38±0.09 −85 ± 30 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1620) → N(1440)πNormalized residue in N π → �(1620) → N(1440)πNormalized residue in N π → �(1620) → N(1440)πNormalized residue in N π → �(1620) → N(1440)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.10±0.06 −65 ± 30 SOKHOYAN 15A DPWA Multi
hannel�(1620) BREIT-WIGNER MASS�(1620) BREIT-WIGNER MASS�(1620) BREIT-WIGNER MASS�(1620) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1600 to 1660 (≈ 1630) OUR ESTIMATE1600 to 1660 (≈ 1630) OUR ESTIMATE1600 to 1660 (≈ 1630) OUR ESTIMATE1600 to 1660 (≈ 1630) OUR ESTIMATE1595 ± 8 SOKHOYAN 15A DPWA Multi
hannel1615.2± 0.4 ARNDT 06 DPWA πN → πN, ηN1620 ±20 CUTKOSKY 80 IPWA πN → πN1610 ± 7 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1600 ± 8 ANISOVICH 12A DPWA Multi
hannel1600 ± 1 SHRESTHA 12A DPWA Multi
hannel1612 ± 2 PENNER 02C DPWA Multi
hannel1617 ±15 VRANA 00 DPWA Multi
hannel�(1620) BREIT-WIGNER WIDTH�(1620) BREIT-WIGNER WIDTH�(1620) BREIT-WIGNER WIDTH�(1620) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT130 to 150 (≈ 140) OUR ESTIMATE130 to 150 (≈ 140) OUR ESTIMATE130 to 150 (≈ 140) OUR ESTIMATE130 to 150 (≈ 140) OUR ESTIMATE135 ± 9 SOKHOYAN 15A DPWA Multi
hannel146.9± 1.9 ARNDT 06 DPWA πN → πN, ηN140 ±20 CUTKOSKY 80 IPWA πN → πN139 ±18 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •130 ±11 ANISOVICH 12A DPWA Multi
hannel112 ± 2 SHRESTHA 12A DPWA Multi
hannel202 ± 7 PENNER 02C DPWA Multi
hannel143 ±42 VRANA 00 DPWA Multi
hannel�(1620) DECAY MODES�(1620) DECAY MODES�(1620) DECAY MODES�(1620) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 20{30 %�2 N ππ 55{80 %�3 �(1232)π�4 �(1232)π , D-wave 52{72 %�5 N ρ�6 N ρ , S=1/2, S-wave seen�7 N ρ , S=3/2, D-wave seen�8 N(1440)π 3{9 %�9 N γ , heli
ity=1/2 0.03{0.10 %�(1620) BRANCHING RATIOS�(1620) BRANCHING RATIOS�(1620) BRANCHING RATIOS�(1620) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT20 to 30 OUR ESTIMATE20 to 30 OUR ESTIMATE20 to 30 OUR ESTIMATE20 to 30 OUR ESTIMATE28 ±3 SOKHOYAN 15A DPWA Multi
hannel31.5±0.1 ARNDT 06 DPWA πN → πN, ηN25 ±3 CUTKOSKY 80 IPWA πN → πN35 ±6 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •28 ±3 ANISOVICH 12A DPWA Multi
hannel33 ±2 SHRESTHA 12A DPWA Multi
hannel34 ±1 PENNER 02C DPWA Multi
hannel45 ±5 VRANA 00 DPWA Multi
hannel�(�(1232)π ,D-wave)/�total �4/��(�(1232)π ,D-wave)/�total �4/��(�(1232)π ,D-wave)/�total �4/��(�(1232)π ,D-wave)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT62±10 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •60±17 ANISOVICH 12A DPWA Multi
hannel32± 2 SHRESTHA 12A DPWA Multi
hannel39± 2 VRANA 00 DPWA Multi
hannel

�(N ρ , S=1/2, S-wave)/�total �6/��(N ρ , S=1/2, S-wave)/�total �6/��(N ρ , S=1/2, S-wave)/�total �6/��(N ρ , S=1/2, S-wave)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •26±2 SHRESTHA 12A DPWA Multi
hannel14±3 VRANA 00 DPWA Multi
hannel�(N ρ , S=3/2,D-wave)/�total �7/��(N ρ , S=3/2,D-wave)/�total �7/��(N ρ , S=3/2,D-wave)/�total �7/��(N ρ , S=3/2,D-wave)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2±1 VRANA 00 DPWA Multi
hannel�(N(1440)π)/�total �8/��(N(1440)π)/�total �8/��(N(1440)π)/�total �8/��(N(1440)π)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT6±3 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •9±1 SHRESTHA 12A DPWA Multi
hannel0±1 VRANA 00 DPWA Multi
hannel�(1620) PHOTON DECAY AMPLITUDES AT THE POLE�(1620) PHOTON DECAY AMPLITUDES AT THE POLE�(1620) PHOTON DECAY AMPLITUDES AT THE POLE�(1620) PHOTON DECAY AMPLITUDES AT THE POLE�(1620) → N γ , heli
ity-1/2 amplitude A1/2�(1620) → N γ , heli
ity-1/2 amplitude A1/2�(1620) → N γ , heli
ity-1/2 amplitude A1/2�(1620) → N γ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.054±0.007 −6 ± 7 SOKHOYAN 15A DPWA Multi
hannel�(1620) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1620) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1620) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1620) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1620) → N γ , heli
ity-1/2 amplitude A1/2�(1620) → N γ , heli
ity-1/2 amplitude A1/2�(1620) → N γ , heli
ity-1/2 amplitude A1/2�(1620) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT+0.040±0.015 OUR ESTIMATE+0.040±0.015 OUR ESTIMATE+0.040±0.015 OUR ESTIMATE+0.040±0.015 OUR ESTIMATE0.055±0.007 SOKHOYAN 15A DPWA Multi
hannel0.029±0.003 WORKMAN 12A DPWA γN → Nπ0.050±0.002 DUGGER 07 DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.052±0.005 ANISOVICH 12A DPWA Multi
hannel
−0.003±0.003 SHRESTHA 12A DPWA Multi
hannel0.066 DRECHSEL 07 DPWA γN → πN
−0.050 PENNER 02D DPWA Multi
hannel�(1620) FOOTNOTES�(1620) FOOTNOTES�(1620) FOOTNOTES�(1620) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(1620) REFERENCES�(1620) REFERENCES�(1620) REFERENCES�(1620) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)WORKMAN 12A PR C86 015202 R. Workman et al. (GWU)DRECHSEL 07 EPJ A34 69 D. Dre
hsel, S.S. Kamalov, L. Tiator (MAINZ, JINR)DUGGER 07 PR C76 025211 M. Dugger et al. (JLab CLAS Collab.)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(1700) 3/2− I (JP ) = 32 (32−) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).�(1700) POLE POSITION�(1700) POLE POSITION�(1700) POLE POSITION�(1700) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1620 to 1680 (≈ 1650) OUR ESTIMATE1620 to 1680 (≈ 1650) OUR ESTIMATE1620 to 1680 (≈ 1650) OUR ESTIMATE1620 to 1680 (≈ 1650) OUR ESTIMATE1685±10 SOKHOYAN 15A DPWA Multi
hannel1643± 6±3 1 SVARC 14 L+P πN → πN1632 ARNDT 06 DPWA πN → πN, ηN1651 HOEHLER 93 SPED πN → πN1675±25 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1685±10 GUTZ 14 DPWA Multi
hannel1680±10 ANISOVICH 12A DPWA Multi
hannel1656 SHRESTHA 12A DPWA Multi
hannel1726 VRANA 00 DPWA Multi
hannel



1559155915591559See key on page 601 BaryonParti
le Listings�(1700)
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT160 to 300 (≈ 230) OUR ESTIMATE160 to 300 (≈ 230) OUR ESTIMATE160 to 300 (≈ 230) OUR ESTIMATE160 to 300 (≈ 230) OUR ESTIMATE300±15 SOKHOYAN 15A DPWA Multi
hannel217±10±8 1 SVARC 14 L+P πN → πN253 ARNDT 06 DPWA πN → πN, ηN159 HOEHLER 93 SPED πN → πN220±40 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •300±15 GUTZ 14 DPWA Multi
hannel305±15 ANISOVICH 12A DPWA Multi
hannel226 SHRESTHA 12A DPWA Multi
hannel118 VRANA 00 DPWA Multi
hannel�(1700) ELASTIC POLE RESIDUE�(1700) ELASTIC POLE RESIDUE�(1700) ELASTIC POLE RESIDUE�(1700) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT10 to 40 (≈ 25) OUR ESTIMATE10 to 40 (≈ 25) OUR ESTIMATE10 to 40 (≈ 25) OUR ESTIMATE10 to 40 (≈ 25) OUR ESTIMATE40±6 SOKHOYAN 15A DPWA Multi
hannel13±1±1 1 SVARC 14 L+P πN → πN18 ARNDT 06 DPWA πN → πN, ηN10 HOEHLER 93 SPED πN → πN13±3 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •40±6 GUTZ 14 DPWA Multi
hannel42±7 ANISOVICH 12A DPWA Multi
hannelPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−40 to 0 (≈ − 20) OUR ESTIMATE−40 to 0 (≈ − 20) OUR ESTIMATE−40 to 0 (≈ − 20) OUR ESTIMATE−40 to 0 (≈ − 20) OUR ESTIMATE
− 1±10 SOKHOYAN 15A DPWA Multi
hannel
−30± 4±3 1 SVARC 14 L+P πN → πN
−40 ARNDT 06 DPWA πN → πN, ηN
−20±25 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 1±10 GUTZ 14 DPWA Multi
hannel
− 3±15 ANISOVICH 12A DPWA Multi
hannel�(1700) INELASTIC POLE RESIDUE�(1700) INELASTIC POLE RESIDUE�(1700) INELASTIC POLE RESIDUE�(1700) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → �(1700) → �ηNormalized residue in N π → �(1700) → �ηNormalized residue in N π → �(1700) → �ηNormalized residue in N π → �(1700) → �ηMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.12±0.02 −60 ± 12 GUTZ 14 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.12±0.03 −60 ± 15 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1700) → N(1535)πNormalized residue in N π → �(1700) → N(1535)πNormalized residue in N π → �(1700) → N(1535)πNormalized residue in N π → �(1700) → N(1535)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.035±0.015 −75 ± 30 GUTZ 14 DPWA Multi
hannelNormalized residue in N π → �(1700) → �(1232)π, S-waveNormalized residue in N π → �(1700) → �(1232)π, S-waveNormalized residue in N π → �(1700) → �(1232)π, S-waveNormalized residue in N π → �(1700) → �(1232)π, S-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.25±0.12 135 ± 45 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → �(1700) → �(1232)π, D-waveNormalized residue in N π → �(1700) → �(1232)π, D-waveNormalized residue in N π → �(1700) → �(1232)π, D-waveNormalized residue in N π → �(1700) → �(1232)π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.12±0.06 −160 ± 30 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → �(1700) → N(1520)π, P-waveNormalized residue in N π → �(1700) → N(1520)π, P-waveNormalized residue in N π → �(1700) → N(1520)π, P-waveNormalized residue in N π → �(1700) → N(1520)π, P-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.10±0.03 −10 ± 20 SOKHOYAN 15A DPWA Multi
hannel�(1700) BREIT-WIGNER MASS�(1700) BREIT-WIGNER MASS�(1700) BREIT-WIGNER MASS�(1700) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1670 to 1750 (≈ 1700) OUR ESTIMATE1670 to 1750 (≈ 1700) OUR ESTIMATE1670 to 1750 (≈ 1700) OUR ESTIMATE1670 to 1750 (≈ 1700) OUR ESTIMATE1715 ±20 SOKHOYAN 15A DPWA Multi
hannel1695.0± 1.3 ARNDT 06 DPWA πN → πN, ηN1710 ±30 CUTKOSKY 80 IPWA πN → πN1680 ±70 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1715 ±20 GUTZ 14 DPWA Multi
hannel1715 +30

−15 ANISOVICH 12A DPWA Multi
hannel1691 ± 4 SHRESTHA 12A DPWA Multi
hannel1678 ± 1 PENNER 02C DPWA Multi
hannel1732 ±23 VRANA 00 DPWA Multi
hannel�(1700) BREIT-WIGNER WIDTH�(1700) BREIT-WIGNER WIDTH�(1700) BREIT-WIGNER WIDTH�(1700) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE300 ±25 SOKHOYAN 15A DPWA Multi
hannel375.5± 7.0 ARNDT 06 DPWA πN → πN, ηN280 ±80 CUTKOSKY 80 IPWA πN → πN230 ±80 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •300 ±25 GUTZ 14 DPWA Multi
hannel310 +40
−15 ANISOVICH 12A DPWA Multi
hannel248 ± 9 SHRESTHA 12A DPWA Multi
hannel606 ±15 PENNER 02C DPWA Multi
hannel119 ±70 VRANA 00 DPWA Multi
hannel�(1700) DECAY MODES�(1700) DECAY MODES�(1700) DECAY MODES�(1700) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 10{20 %�2 N ππ 10{55 %�3 �(1232)π 10{50 %�4 �(1232)π , S-wave 5{35 %�5 �(1232)π , D-wave 4{16 %�6 N ρ�7 N ρ , S=3/2, S-wave seen�8 N(1520)π , P-wave 1{5 %�9 N(1535)π 0.5{1.5 %�10 �(1232)η 3{7 %�11 N γ 0.22{0.60 %�12 N γ , heli
ity=1/2 0.12{0.30 %�13 N γ , heli
ity=3/2 0.10{0.30 %�(1700) BRANCHING RATIOS�(1700) BRANCHING RATIOS�(1700) BRANCHING RATIOS�(1700) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT10 to 20 OUR ESTIMATE10 to 20 OUR ESTIMATE10 to 20 OUR ESTIMATE10 to 20 OUR ESTIMATE22 ±4 SOKHOYAN 15A DPWA Multi
hannel15.6±0.1 ARNDT 06 DPWA πN → πN, ηN12 ±3 CUTKOSKY 80 IPWA πN → πN20 ±3 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •22 ±4 GUTZ 14 DPWA Multi
hannel22 ±4 ANISOVICH 12A DPWA Multi
hannel14 ±1 SHRESTHA 12A DPWA Multi
hannel14 ±1 PENNER 02C DPWA Multi
hannel5 ±1 VRANA 00 DPWA Multi
hannel�(�(1232)π , S-wave)/�total �4/��(�(1232)π , S-wave)/�total �4/��(�(1232)π , S-wave)/�total �4/��(�(1232)π , S-wave)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT20±15 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •20+25

−13 ANISOVICH 12A DPWA Multi
hannel54± 3 SHRESTHA 12A DPWA Multi
hannel90± 2 VRANA 00 DPWA Multi
hannel�(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT10± 6 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •12+14

− 7 ANISOVICH 12A DPWA Multi
hannel1± 1 SHRESTHA 12A DPWA Multi
hannel4± 1 VRANA 00 DPWA Multi
hannel�(N ρ , S=3/2, S-wave)/�total �7/��(N ρ , S=3/2, S-wave)/�total �7/��(N ρ , S=3/2, S-wave)/�total �7/��(N ρ , S=3/2, S-wave)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •30±3 SHRESTHA 12A DPWA Multi
hannel1±1 VRANA 00 DPWA Multi
hannel�(N(1520)π , P-wave)/�total �8/��(N(1520)π , P-wave)/�total �8/��(N(1520)π , P-wave)/�total �8/��(N(1520)π , P-wave)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT3±2 SOKHOYAN 15A DPWA Multi
hannel�(N(1535)π)/�total �9/��(N(1535)π)/�total �9/��(N(1535)π)/�total �9/��(N(1535)π)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT1.0±0.5 GUTZ 14 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •4 ±2 HORN 08A DPWA Multi
hannel�(�(1232)η)/�total �10/��(�(1232)η)/�total �10/��(�(1232)η)/�total �10/��(�(1232)η)/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT5±2 GUTZ 14 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •5±2 ANISOVICH 12A DPWA Multi
hannel



1560156015601560BaryonParti
le Listings�(1700),�(1750)�(N(1535)π)/�(�(1232)η) �9/�10�(N(1535)π)/�(�(1232)η) �9/�10�(N(1535)π)/�(�(1232)η) �9/�10�(N(1535)π)/�(�(1232)η) �9/�10VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.67 KASHEVAROV 09 CBAL γ p → pπ0 η�(1700) PHOTON DECAY AMPLITUDES AT THE POLE�(1700) PHOTON DECAY AMPLITUDES AT THE POLE�(1700) PHOTON DECAY AMPLITUDES AT THE POLE�(1700) PHOTON DECAY AMPLITUDES AT THE POLE�(1700) → N γ , heli
ity-1/2 amplitude A1/2�(1700) → N γ , heli
ity-1/2 amplitude A1/2�(1700) → N γ , heli
ity-1/2 amplitude A1/2�(1700) → N γ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.175±0.020 50 ± 10 SOKHOYAN 15A DPWA Multi
hannel�(1700) → N γ , heli
ity-3/2 amplitude A3/2�(1700) → N γ , heli
ity-3/2 amplitude A3/2�(1700) → N γ , heli
ity-3/2 amplitude A3/2�(1700) → N γ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.180±0.020 45 ± 10 SOKHOYAN 15A DPWA Multi
hannel�(1700) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1700) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1700) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1700) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1700) → N γ , heli
ity-1/2 amplitude A1/2�(1700) → N γ , heli
ity-1/2 amplitude A1/2�(1700) → N γ , heli
ity-1/2 amplitude A1/2�(1700) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.140±0.030 OUR ESTIMATE0.140±0.030 OUR ESTIMATE0.140±0.030 OUR ESTIMATE0.140±0.030 OUR ESTIMATE0.165±0.020 SOKHOYAN 15A DPWA Multi
hannel0.132±0.005 DUGGER 13 DPWA γN → πN0.105±0.005 WORKMAN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.165±0.020 GUTZ 14 DPWA Multi
hannel0.160±0.020 ANISOVICH 12A DPWA Multi
hannel0.058±0.010 SHRESTHA 12A DPWA Multi
hannel0.226 DRECHSEL 07 DPWA γN → πN0.125±0.003 DUGGER 07 DPWA γN → πN0.096 PENNER 02D DPWA Multi
hannel�(1700) → N γ , heli
ity-3/2 amplitude A3/2�(1700) → N γ , heli
ity-3/2 amplitude A3/2�(1700) → N γ , heli
ity-3/2 amplitude A3/2�(1700) → N γ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.140±0.030 OUR ESTIMATE0.140±0.030 OUR ESTIMATE0.140±0.030 OUR ESTIMATE0.140±0.030 OUR ESTIMATE0.170±0.025 SOKHOYAN 15A DPWA Multi
hannel0.108±0.005 DUGGER 13 DPWA γN → πN0.092±0.004 WORKMAN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.170±0.025 GUTZ 14 DPWA Multi
hannel0.165±0.025 ANISOVICH 12A DPWA Multi
hannel0.097±0.008 SHRESTHA 12A DPWA Multi
hannel0.210 DRECHSEL 07 DPWA γN → πN0.105±0.003 DUGGER 07 DPWA γN → πN0.154 PENNER 02D DPWA Multi
hannel�(1700) FOOTNOTES�(1700) FOOTNOTES�(1700) FOOTNOTES�(1700) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(1700) REFERENCES�(1700) REFERENCES�(1700) REFERENCES�(1700) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)GUTZ 14 EPJ A50 74 E. Gutz et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.DUGGER 13 PR C88 065203 M. Dugger et al. (JLab CLAS Collab.)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)WORKMAN 12A PR C86 015202 R. Workman et al. (GWU)KASHEVAROV 09 EPJ A42 141 V.L. Kashevarov et al. (MAMI Crystal Ball/TAPS)HORN 08A EPJ A38 173 I. Horn et al. (CB-ELSA Collab.)Also PRL 101 202002 I. Horn et al. (CB-ELSA Collab.)DRECHSEL 07 EPJ A34 69 D. Dre
hsel, S.S. Kamalov, L. Tiator (MAINZ, JINR)DUGGER 07 PR C76 025211 M. Dugger et al. (JLab CLAS Collab.)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(1750) 1/2+ I (JP ) = 32 (12+) Status: ∗OMITTED FROM SUMMARY TABLE�(1750) POLE POSITION�(1750) POLE POSITION�(1750) POLE POSITION�(1750) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1748 ARNDT 04 DPWA πN → πN, ηN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1714 VRANA 00 DPWA Multi
hannel

−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT524 ARNDT 04 DPWA πN → πN, ηN
• • • We do not use the following data for averages, �ts, limits, et
. • • •68 VRANA 00 DPWA Multi
hannel�(1750) ELASTIC POLE RESIDUE�(1750) ELASTIC POLE RESIDUE�(1750) ELASTIC POLE RESIDUE�(1750) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT48 ARNDT 04 DPWA πN → πN, ηNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT158 ARNDT 04 DPWA πN → πN, ηN�(1750) BREIT-WIGNER MASS�(1750) BREIT-WIGNER MASS�(1750) BREIT-WIGNER MASS�(1750) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1712± 1 PENNER 02C DPWA Multi
hannel1721±61 VRANA 00 DPWA Multi
hannel�(1750) BREIT-WIGNER WIDTH�(1750) BREIT-WIGNER WIDTH�(1750) BREIT-WIGNER WIDTH�(1750) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •643±17 PENNER 02C DPWA Multi
hannel70±50 VRANA 00 DPWA Multi
hannel�(1750) DECAY MODES�(1750) DECAY MODES�(1750) DECAY MODES�(1750) DECAY MODESMode Fra
tion (�i /�)�1 N π seen�2 N ππ�3 N(1440)π seen�4 � K seen�(1750) BRANCHING RATIOS�(1750) BRANCHING RATIOS�(1750) BRANCHING RATIOS�(1750) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1±1 PENNER 02C DPWA Multi
hannel6±9 VRANA 00 DPWA Multi
hannel�(N(1440)π)/�total �3/��(N(1440)π)/�total �3/��(N(1440)π)/�total �3/��(N(1440)π)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •83±1 VRANA 00 DPWA Multi
hannel�(� K)/�total �4/��(� K)/�total �4/��(� K)/�total �4/��(� K)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1±0.1 PENNER 02C DPWA Multi
hannel�(1750) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1750) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1750) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1750) BREIT-WIGNER PHOTON DECAY AMPLITUDESPapers on γN amplitudes predating 1981 may be found in our 2006 edition,Journal of Physi
s G33G33G33G33 1 (2006).�(1750) → N γ , heli
ity-1/2 amplitude A1/2�(1750) → N γ , heli
ity-1/2 amplitude A1/2�(1750) → N γ , heli
ity-1/2 amplitude A1/2�(1750) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.053 PENNER 02D DPWA Multi
hannel�(1750) REFERENCES�(1750) REFERENCES�(1750) REFERENCES�(1750) REFERENCESPDG 06 JP G33 1 W.-M. Yao et al. (PDG Collab.)ARNDT 04 PR C69 035213 R.A. Arndt et al. (GWU, TRIU)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)



1561156115611561See key on page 601 BaryonParti
le Listings�(1900)�(1900) 1/2− I (JP ) = 32 (12−) Status: ∗∗OMITTED FROM SUMMARY TABLEOlder and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).�(1900) POLE POSITION�(1900) POLE POSITION�(1900) POLE POSITION�(1900) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1845±20 SOKHOYAN 15A DPWA Multi
hannel1865±35±19 1 SVARC 14 L+P πN → πN1780 HOEHLER 93 SPED πN → πN1870±40 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1845±20 GUTZ 14 DPWA Multi
hannel1845±25 ANISOVICH 12A DPWA Multi
hannel1844 SHRESTHA 12A DPWA Multi
hannel1795 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT295±35 SOKHOYAN 15A DPWA Multi
hannel187±50±19 1 SVARC 14 L+P πN → πN180±50 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •295±35 GUTZ 14 DPWA Multi
hannel300±45 ANISOVICH 12A DPWA Multi
hannel223 SHRESTHA 12A DPWA Multi
hannel58 VRANA 00 DPWA Multi
hannel�(1900) ELASTIC POLE RESIDUE�(1900) ELASTIC POLE RESIDUE�(1900) ELASTIC POLE RESIDUE�(1900) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT11±2 SOKHOYAN 15A DPWA Multi
hannel11±4±2 1 SVARC 14 L+P πN → πN10±3 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •11±2 GUTZ 14 DPWA Multi
hannel10±3 ANISOVICH 12A DPWA Multi
hannelPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−115±20 SOKHOYAN 15A DPWA Multi
hannel20±27±19 1 SVARC 14 L+P πN → πN+ 20±40 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−115±20 GUTZ 14 DPWA Multi
hannel
−125±20 ANISOVICH 12A DPWA Multi
hannel�(1900) INELASTIC POLE RESIDUE�(1900) INELASTIC POLE RESIDUE�(1900) INELASTIC POLE RESIDUE�(1900) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → �(1900) → � KNormalized residue in N π → �(1900) → � KNormalized residue in N π → �(1900) → � KNormalized residue in N π → �(1900) → � KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.07±0.02 −50 ± 30 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1900) → �π, D-waveNormalized residue in N π → �(1900) → �π, D-waveNormalized residue in N π → �(1900) → �π, D-waveNormalized residue in N π → �(1900) → �π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.18±0.10 105 ± 25 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.12+0.08

−0.05 110 ± 20 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1900) → �(1232)ηNormalized residue in N π → �(1900) → �(1232)ηNormalized residue in N π → �(1900) → �(1232)ηNormalized residue in N π → �(1900) → �(1232)ηMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.013±0.006 unde�ned GUTZ 14 DPWA Multi
hannelNormalized residue in N π → �(1900) → N(1440)πNormalized residue in N π → �(1900) → N(1440)πNormalized residue in N π → �(1900) → N(1440)πNormalized residue in N π → �(1900) → N(1440)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.11±0.06 115 ± 30 SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → �(1900) → N(1520)πNormalized residue in N π → �(1900) → N(1520)πNormalized residue in N π → �(1900) → N(1520)πNormalized residue in N π → �(1900) → N(1520)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.06±0.03 unde�ned SOKHOYAN 15A DPWA Multi
hannel�(1900) BREIT-WIGNER MASS�(1900) BREIT-WIGNER MASS�(1900) BREIT-WIGNER MASS�(1900) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1840 to 1920 (≈ 1860) OUR ESTIMATE1840 to 1920 (≈ 1860) OUR ESTIMATE1840 to 1920 (≈ 1860) OUR ESTIMATE1840 to 1920 (≈ 1860) OUR ESTIMATE1840±20 SOKHOYAN 15A DPWA Multi
hannel1890±50 CUTKOSKY 80 IPWA πN → πN1908±30 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •1840±20 GUTZ 14 DPWA Multi
hannel1840±30 ANISOVICH 12A DPWA Multi
hannel1868±12 SHRESTHA 12A DPWA Multi
hannel1802±87 VRANA 00 DPWA Multi
hannel�(1900) BREIT-WIGNER WIDTH�(1900) BREIT-WIGNER WIDTH�(1900) BREIT-WIGNER WIDTH�(1900) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT295±30 SOKHOYAN 15A DPWA Multi
hannel170±50 CUTKOSKY 80 IPWA πN → πN140±40 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •295±30 GUTZ 14 DPWA Multi
hannel300±45 ANISOVICH 12A DPWA Multi
hannel234±27 SHRESTHA 12A DPWA Multi
hannel48±45 VRANA 00 DPWA Multi
hannel�(1900) DECAY MODES�(1900) DECAY MODES�(1900) DECAY MODES�(1900) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 4{12 %�2 � K seen�3 N ππ 45{85 %�4 �(1232)π�5 �(1232)π , D-wave 30{70 %�6 N ρ�7 N ρ , S=1/2, S-wave seen�8 N ρ , S=3/2, D-wave seen�9 N(1440)π 8{32 %�10 N(1520)π 2{10 %�11 �(1232)η 0{2 %�12 N γ , heli
ity=1/2 0.06{0.43 %�(1900) BRANCHING RATIOS�(1900) BRANCHING RATIOS�(1900) BRANCHING RATIOS�(1900) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT7± 2 SOKHOYAN 15A DPWA Multi
hannel10± 3 CUTKOSKY 80 IPWA πN → πN8± 4 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •7± 2 GUTZ 14 DPWA Multi
hannel7± 3 ANISOVICH 12A DPWA Multi
hannel8± 1 SHRESTHA 12A DPWA Multi
hannel33±10 VRANA 00 DPWA Multi
hannel�(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT50±20 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •15+50

−10 ANISOVICH 12A DPWA Multi
hannel56± 6 SHRESTHA 12A DPWA Multi
hannel28± 1 VRANA 00 DPWA Multi
hannel�(N ρ , S=1/2, S-wave)/�total �7/��(N ρ , S=1/2, S-wave)/�total �7/��(N ρ , S=1/2, S-wave)/�total �7/��(N ρ , S=1/2, S-wave)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •12±4 SHRESTHA 12A DPWA Multi
hannel30±2 VRANA 00 DPWA Multi
hannel�(N ρ , S=3/2,D-wave)/�total �8/��(N ρ , S=3/2,D-wave)/�total �8/��(N ρ , S=3/2,D-wave)/�total �8/��(N ρ , S=3/2,D-wave)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •23±5 SHRESTHA 12A DPWA Multi
hannel5±1 VRANA 00 DPWA Multi
hannel�(N(1440)π)/�total �9/��(N(1440)π)/�total �9/��(N(1440)π)/�total �9/��(N(1440)π)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT20±12 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 1 SHRESTHA 12A DPWA Multi
hannel4± 1 VRANA 00 DPWA Multi
hannel�(N(1520)π)/�total �10/��(N(1520)π)/�total �10/��(N(1520)π)/�total �10/��(N(1520)π)/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT6±4 SOKHOYAN 15A DPWA Multi
hannel



1562156215621562BaryonParti
le Listings�(1900),�(1905)�(�(1232)η)/�total �11/��(�(1232)η)/�total �11/��(�(1232)η)/�total �11/��(�(1232)η)/�total �11/�VALUE (%) DOCUMENT ID TECN COMMENT1±1 GUTZ 14 DPWA Multi
hannel�(1900) PHOTON DECAY AMPLITUDES AT THE POLE�(1900) PHOTON DECAY AMPLITUDES AT THE POLE�(1900) PHOTON DECAY AMPLITUDES AT THE POLE�(1900) PHOTON DECAY AMPLITUDES AT THE POLE�(1900) → N γ , heli
ity-1/2 amplitude A1/2�(1900) → N γ , heli
ity-1/2 amplitude A1/2�(1900) → N γ , heli
ity-1/2 amplitude A1/2�(1900) → N γ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.064±0.015 60 ± 20 SOKHOYAN 15A DPWA Multi
hannel�(1900) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1900) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1900) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1900) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1900) → N γ , heli
ity-1/2 amplitude A1/2�(1900) → N γ , heli
ity-1/2 amplitude A1/2�(1900) → N γ , heli
ity-1/2 amplitude A1/2�(1900) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.065±0.015 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.057±0.014 GUTZ 14 DPWA Multi
hannel
−0.082±0.009 SHRESTHA 12A DPWA Multi
hannel�(1900) FOOTNOTES�(1900) FOOTNOTES�(1900) FOOTNOTES�(1900) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(1900) REFERENCES�(1900) REFERENCES�(1900) REFERENCES�(1900) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)GUTZ 14 EPJ A50 74 E. Gutz et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(1905) 5/2+ I (JP ) = 32 (52+) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).�(1905) POLE POSITION�(1905) POLE POSITION�(1905) POLE POSITION�(1905) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1805 to 1835 (≈ 1820) OUR ESTIMATE1805 to 1835 (≈ 1820) OUR ESTIMATE1805 to 1835 (≈ 1820) OUR ESTIMATE1805 to 1835 (≈ 1820) OUR ESTIMATE1800± 6 SOKHOYAN 15A DPWA Multi
hannel1752± 3±2 1 SVARC 14 L+P πN → πN1819 ARNDT 06 DPWA πN → πN, ηN1829 HOEHLER 93 SPED πN → πN1830±40 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1800± 6 GUTZ 14 DPWA Multi
hannel1805±10 ANISOVICH 12A DPWA Multi
hannel1769 SHRESTHA 12A DPWA Multi
hannel1793 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT265 to 300 (≈ 280) OUR ESTIMATE265 to 300 (≈ 280) OUR ESTIMATE265 to 300 (≈ 280) OUR ESTIMATE265 to 300 (≈ 280) OUR ESTIMATE290±15 SOKHOYAN 15A DPWA Multi
hannel346± 6±2 1 SVARC 14 L+P πN → πN247 ARNDT 06 DPWA πN → πN, ηN303 HOEHLER 93 SPED πN → πN280±60 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •290±15 GUTZ 14 DPWA Multi
hannel300±15 ANISOVICH 12A DPWA Multi
hannel239 SHRESTHA 12A DPWA Multi
hannel302 VRANA 00 DPWA Multi
hannel�(1905) ELASTIC POLE RESIDUE�(1905) ELASTIC POLE RESIDUE�(1905) ELASTIC POLE RESIDUE�(1905) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT15 to 25 (≈ 20) OUR ESTIMATE15 to 25 (≈ 20) OUR ESTIMATE15 to 25 (≈ 20) OUR ESTIMATE15 to 25 (≈ 20) OUR ESTIMATE19±2 SOKHOYAN 15A DPWA Multi
hannel24±1±1 1 SVARC 14 L+P πN → πN15 ARNDT 06 DPWA πN → πN, ηN25 HOEHLER 93 SPED πN → πN25±8 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •19±2 GUTZ 14 DPWA Multi
hannel20±2 ANISOVICH 12A DPWA Multi
hannel

PHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−120 to −30 (≈ − 50) OUR ESTIMATE−120 to −30 (≈ − 50) OUR ESTIMATE−120 to −30 (≈ − 50) OUR ESTIMATE−120 to −30 (≈ − 50) OUR ESTIMATE
− 45± 4 SOKHOYAN 15A DPWA Multi
hannel
−114± 1±2 1 SVARC 14 L+P πN → πN
− 30 ARNDT 06 DPWA πN → πN, ηN
− 50±20 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 45± 4 GUTZ 14 DPWA Multi
hannel
− 44± 5 ANISOVICH 12A DPWA Multi
hannel�(1905) INELASTIC POLE RESIDUE�(1905) INELASTIC POLE RESIDUE�(1905) INELASTIC POLE RESIDUE�(1905) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → �(1905) → �π, P-waveNormalized residue in N π → �(1905) → �π, P-waveNormalized residue in N π → �(1905) → �π, P-waveNormalized residue in N π → �(1905) → �π, P-waveMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT19±7 10 ± 30 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •25±6 0 ± 15 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1905) → N(1535)πNormalized residue in N π → �(1905) → N(1535)πNormalized residue in N π → �(1905) → N(1535)πNormalized residue in N π → �(1905) → N(1535)πMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT2.5±1.0 130 ± 35 GUTZ 14 DPWA Multi
hannelNormalized residue in N π → �(1905) → �(1232)ηNormalized residue in N π → �(1905) → �(1232)ηNormalized residue in N π → �(1905) → �(1232)ηNormalized residue in N π → �(1905) → �(1232)ηMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT7±2 40 ± 20 GUTZ 14 DPWA Multi
hannel�(1905) BREIT-WIGNER MASS�(1905) BREIT-WIGNER MASS�(1905) BREIT-WIGNER MASS�(1905) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1855 to 1910 (≈ 1880) OUR ESTIMATE1855 to 1910 (≈ 1880) OUR ESTIMATE1855 to 1910 (≈ 1880) OUR ESTIMATE1855 to 1910 (≈ 1880) OUR ESTIMATE1856 ± 6 SOKHOYAN 15A DPWA Multi
hannel1857.8± 1.6 ARNDT 06 DPWA πN → πN, ηN1910 ±30 CUTKOSKY 80 IPWA πN → πN1905 ±20 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1856 ± 6 GUTZ 14 DPWA Multi
hannel1861 ± 6 ANISOVICH 12A DPWA Multi
hannel1818 ± 8 SHRESTHA 12A DPWA Multi
hannel1873 ±77 VRANA 00 DPWA Multi
hannel�(1905) BREIT-WIGNER WIDTH�(1905) BREIT-WIGNER WIDTH�(1905) BREIT-WIGNER WIDTH�(1905) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT270 to 400 (≈ 330) OUR ESTIMATE270 to 400 (≈ 330) OUR ESTIMATE270 to 400 (≈ 330) OUR ESTIMATE270 to 400 (≈ 330) OUR ESTIMATE325 ± 15 SOKHOYAN 15A DPWA Multi
hannel320.6± 8.6 ARNDT 06 DPWA πN → πN, ηN400 ±100 CUTKOSKY 80 IPWA πN → πN260 ± 20 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •325 ± 15 GUTZ 14 DPWA Multi
hannel335 ± 18 ANISOVICH 12A DPWA Multi
hannel278 ± 18 SHRESTHA 12A DPWA Multi
hannel461 ±111 VRANA 00 DPWA Multi
hannel�(1905) DECAY MODES�(1905) DECAY MODES�(1905) DECAY MODES�(1905) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 9{15 %�2 N ππ�3 �(1232)π�4 �(1232)π , P-wave 23{43 %�5 �(1232)π , F-wave seen�6 N ρ�7 N ρ , S=3/2, P-wave seen�8 N(1535)π < 1 %�9 N(1680)π , P-wave 5{15 %�10 �(1232)η 2{6 %�11 N γ 0.012{0.036 %�12 N γ , heli
ity=1/2 0.002{0.006 %�13 N γ , heli
ity=3/2 0.01{0.03 %



1563156315631563See key on page 601 BaryonParti
le Listings�(1905),�(1910)�(1905) BRANCHING RATIOS�(1905) BRANCHING RATIOS�(1905) BRANCHING RATIOS�(1905) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT9 to 15 OUR ESTIMATE9 to 15 OUR ESTIMATE9 to 15 OUR ESTIMATE9 to 15 OUR ESTIMATE13 ±2 SOKHOYAN 15A DPWA Multi
hannel12.2±0.1 ARNDT 06 DPWA πN → πN, ηN8 ±3 CUTKOSKY 80 IPWA πN → πN15 ±2 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •13 ±2 GUTZ 14 DPWA Multi
hannel13 ±2 ANISOVICH 12A DPWA Multi
hannel6 ±1 SHRESTHA 12A DPWA Multi
hannel9 ±1 VRANA 00 DPWA Multi
hannel�(�(1232)π , P-wave)/�total �4/��(�(1232)π , P-wave)/�total �4/��(�(1232)π , P-wave)/�total �4/��(�(1232)π , P-wave)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT33±10 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •45±14 ANISOVICH 12A DPWA Multi
hannel28± 7 SHRESTHA 12A DPWA Multi
hannel23± 1 VRANA 00 DPWA Multi
hannel�(�(1232)π , F-wave)/�total �5/��(�(1232)π , F-wave)/�total �5/��(�(1232)π , F-wave)/�total �5/��(�(1232)π , F-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •64±8 SHRESTHA 12A DPWA Multi
hannel44±1 VRANA 00 DPWA Multi
hannel�(N ρ , S=3/2,P-wave)/�total �7/��(N ρ , S=3/2,P-wave)/�total �7/��(N ρ , S=3/2,P-wave)/�total �7/��(N ρ , S=3/2,P-wave)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 6 SHRESTHA 12A DPWA Multi
hannel24±1 VRANA 00 DPWA Multi
hannel�(N(1535)π)/�total �8/��(N(1535)π)/�total �8/��(N(1535)π)/�total �8/��(N(1535)π)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT
<1 GUTZ 14 DPWA Multi
hannel�(N(1680)π , P-wave)/�total �9/��(N(1680)π , P-wave)/�total �9/��(N(1680)π , P-wave)/�total �9/��(N(1680)π , P-wave)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT10±5 SOKHOYAN 15A DPWA Multi
hannel�(�(1232)η)/�total �10/��(�(1232)η)/�total �10/��(�(1232)η)/�total �10/��(�(1232)η)/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT4±2 GUTZ 14 DPWA Multi
hannel�(1905) PHOTON DECAY AMPLITUDES AT THE POLE�(1905) PHOTON DECAY AMPLITUDES AT THE POLE�(1905) PHOTON DECAY AMPLITUDES AT THE POLE�(1905) PHOTON DECAY AMPLITUDES AT THE POLE�(1905) → N γ , heli
ity-1/2 amplitude A1/2�(1905) → N γ , heli
ity-1/2 amplitude A1/2�(1905) → N γ , heli
ity-1/2 amplitude A1/2�(1905) → N γ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.025±0.005 −28 ± 12 SOKHOYAN 15A DPWA Multi
hannel�(1905) → N γ , heli
ity-3/2 amplitude A3/2�(1905) → N γ , heli
ity-3/2 amplitude A3/2�(1905) → N γ , heli
ity-3/2 amplitude A3/2�(1905) → N γ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT
−0.050±0.004 5 ± 10 SOKHOYAN 15A DPWA Multi
hannel�(1905) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1905) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1905) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1905) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1905) → N γ , heli
ity-1/2 amplitude A1/2�(1905) → N γ , heli
ity-1/2 amplitude A1/2�(1905) → N γ , heli
ity-1/2 amplitude A1/2�(1905) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT+0.022±0.005 OUR ESTIMATE+0.022±0.005 OUR ESTIMATE+0.022±0.005 OUR ESTIMATE+0.022±0.005 OUR ESTIMATE0.025±0.005 SOKHOYAN 15A DPWA Multi
hannel0.020±0.002 DUGGER 13 DPWA γN → πN0.019±0.002 WORKMAN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.025±0.005 GUTZ 14 DPWA Multi
hannel0.025±0.004 ANISOVICH 12A DPWA Multi
hannel0.066±0.018 SHRESTHA 12A DPWA Multi
hannel0.018 DRECHSEL 07 DPWA γN → πN�(1905) → N γ , heli
ity-3/2 amplitude A3/2�(1905) → N γ , heli
ity-3/2 amplitude A3/2�(1905) → N γ , heli
ity-3/2 amplitude A3/2�(1905) → N γ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.045±0.010 OUR ESTIMATE−0.045±0.010 OUR ESTIMATE−0.045±0.010 OUR ESTIMATE−0.045±0.010 OUR ESTIMATE
−0.050±0.005 SOKHOYAN 15A DPWA Multi
hannel
−0.049±0.005 DUGGER 13 DPWA γN → πN
−0.038±0.004 WORKMAN 12A DPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.050±0.005 GUTZ 14 DPWA Multi
hannel
−0.049±0.004 ANISOVICH 12A DPWA Multi
hannel
−0.223±0.029 SHRESTHA 12A DPWA Multi
hannel
−0.028 DRECHSEL 07 DPWA γN → πN

�(1905) FOOTNOTES�(1905) FOOTNOTES�(1905) FOOTNOTES�(1905) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(1905) REFERENCES�(1905) REFERENCES�(1905) REFERENCES�(1905) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)GUTZ 14 EPJ A50 74 E. Gutz et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.DUGGER 13 PR C88 065203 M. Dugger et al. (JLab CLAS Collab.)ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)WORKMAN 12A PR C86 015202 R. Workman et al. (GWU)DRECHSEL 07 EPJ A34 69 D. Dre
hsel, S.S. Kamalov, L. Tiator (MAINZ, JINR)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(1910) 1/2+ I (JP ) = 32 (12+) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).�(1910) POLE POSITION�(1910) POLE POSITION�(1910) POLE POSITION�(1910) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1830 to 1880 (≈ 1855) OUR ESTIMATE1830 to 1880 (≈ 1855) OUR ESTIMATE1830 to 1880 (≈ 1855) OUR ESTIMATE1830 to 1880 (≈ 1855) OUR ESTIMATE1840±40 SOKHOYAN 15A DPWA Multi
hannel1896±11 1 SVARC 14 L+P πN → πN1771 ARNDT 06 DPWA πN → πN, ηN1874 HOEHLER 93 SPED πN → πN1880±30 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1840±40 GUTZ 14 DPWA Multi
hannel1850±40 ANISOVICH 12A DPWA Multi
hannel1910 SHRESTHA 12A DPWA Multi
hannel1880 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT200 to 500 (≈ 350) OUR ESTIMATE200 to 500 (≈ 350) OUR ESTIMATE200 to 500 (≈ 350) OUR ESTIMATE200 to 500 (≈ 350) OUR ESTIMATE370±60 SOKHOYAN 15A DPWA Multi
hannel302±22 1 SVARC 14 L+P πN → πN479 ARNDT 06 DPWA πN → πN, ηN283 HOEHLER 93 SPED πN → πN200±40 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •370±60 GUTZ 14 DPWA Multi
hannel350±45 ANISOVICH 12A DPWA Multi
hannel199 SHRESTHA 12A DPWA Multi
hannel496 VRANA 00 DPWA Multi
hannel�(1910) ELASTIC POLE RESIDUE�(1910) ELASTIC POLE RESIDUE�(1910) ELASTIC POLE RESIDUE�(1910) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT20 to 45 (≈ 30) OUR ESTIMATE20 to 45 (≈ 30) OUR ESTIMATE20 to 45 (≈ 30) OUR ESTIMATE20 to 45 (≈ 30) OUR ESTIMATE25±6 SOKHOYAN 15A DPWA Multi
hannel29±2 1 SVARC 14 L+P πN → πN45 ARNDT 06 DPWA πN → πN, ηN38 HOEHLER 93 SPED πN → πN20±4 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •25±6 GUTZ 14 DPWA Multi
hannel24±6 ANISOVICH 12A DPWA Multi
hannelPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
− 80 to −180 (≈ − 130) OUR ESTIMATE− 80 to −180 (≈ − 130) OUR ESTIMATE− 80 to −180 (≈ − 130) OUR ESTIMATE− 80 to −180 (≈ − 130) OUR ESTIMATE
−155±30 SOKHOYAN 15A DPWA Multi
hannel
− 83± 4±1 1 SVARC 14 L+P πN → πN+172 ARNDT 06 DPWA πN → πN, ηN
− 90±30 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−155±30 GUTZ 14 DPWA Multi
hannel
−145±30 ANISOVICH 12A DPWA Multi
hannel



1564156415641564BaryonParti
le Listings�(1910),�(1920)�(1910) INELASTIC POLE RESIDUE�(1910) INELASTIC POLE RESIDUE�(1910) INELASTIC POLE RESIDUE�(1910) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → �(1910) → � KNormalized residue in N π → �(1910) → � KNormalized residue in N π → �(1910) → � KNormalized residue in N π → �(1910) → � KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.07±0.02 −110 ± 30 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1910) → �π, P-waveNormalized residue in N π → �(1910) → �π, P-waveNormalized residue in N π → �(1910) → �π, P-waveNormalized residue in N π → �(1910) → �π, P-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.24±0.10 85 ± 35 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.16±0.09 95 ± 40 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1910) → �(1232)ηNormalized residue in N π → �(1910) → �(1232)ηNormalized residue in N π → �(1910) → �(1232)ηNormalized residue in N π → �(1910) → �(1232)ηMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.11±0.04 −150 ± 50 GUTZ 14 DPWA Multi
hannelNormalized residue in N π → �(1910) → N(1440)πNormalized residue in N π → �(1910) → N(1440)πNormalized residue in N π → �(1910) → N(1440)πNormalized residue in N π → �(1910) → N(1440)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.06±0.03 170 ± 45 SOKHOYAN 15A DPWA Multi
hannel�(1910) BREIT-WIGNER MASS�(1910) BREIT-WIGNER MASS�(1910) BREIT-WIGNER MASS�(1910) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1860 to 1910 (≈ 1890) OUR ESTIMATE1860 to 1910 (≈ 1890) OUR ESTIMATE1860 to 1910 (≈ 1890) OUR ESTIMATE1860 to 1910 (≈ 1890) OUR ESTIMATE1845 ±40 SOKHOYAN 15A DPWA Multi
hannel2067.9± 1.7 ARNDT 06 DPWA πN → πN, ηN1910 ±40 CUTKOSKY 80 IPWA πN → πN1888 ±20 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1845 ±40 GUTZ 14 DPWA Multi
hannel1860 ±40 ANISOVICH 12A DPWA Multi
hannel1934 ± 5 SHRESTHA 12A DPWA Multi
hannel1995 ±12 VRANA 00 DPWA Multi
hannel�(1910) BREIT-WIGNER WIDTH�(1910) BREIT-WIGNER WIDTH�(1910) BREIT-WIGNER WIDTH�(1910) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT220 to 340 (≈ 280) OUR ESTIMATE220 to 340 (≈ 280) OUR ESTIMATE220 to 340 (≈ 280) OUR ESTIMATE220 to 340 (≈ 280) OUR ESTIMATE360± 60 SOKHOYAN 15A DPWA Multi
hannel543± 10 ARNDT 06 DPWA πN → πN, ηN225± 50 CUTKOSKY 80 IPWA πN → πN280± 50 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •360± 60 GUTZ 14 DPWA Multi
hannel350± 55 ANISOVICH 12A DPWA Multi
hannel211± 11 SHRESTHA 12A DPWA Multi
hannel713±465 VRANA 00 DPWA Multi
hannel�(1910) DECAY MODES�(1910) DECAY MODES�(1910) DECAY MODES�(1910) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 15{30 %�2 � K 4{14 %�3 N ππ�4 �(1232)π 34{66 %�5 N(1440)π 3{9 %�6 �(1232)η 5{13 %�7 N γ , heli
ity=1/2 0.0{0.02 %�(1910) BRANCHING RATIOS�(1910) BRANCHING RATIOS�(1910) BRANCHING RATIOS�(1910) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT15 to 30 OUR ESTIMATE15 to 30 OUR ESTIMATE15 to 30 OUR ESTIMATE15 to 30 OUR ESTIMATE12 ± 3 SOKHOYAN 15A DPWA Multi
hannel23.9± 0.1 ARNDT 06 DPWA πN → πN, ηN19 ± 3 CUTKOSKY 80 IPWA πN → πN24 ± 6 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •12 ± 3 GUTZ 14 DPWA Multi
hannel12 ± 3 ANISOVICH 12A DPWA Multi
hannel17 ± 1 SHRESTHA 12A DPWA Multi
hannel29 ±21 VRANA 00 DPWA Multi
hannel�(� K)/�total �2/��(� K)/�total �2/��(� K)/�total �2/��(� K)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT9±5 ANISOVICH 12A DPWA Multi
hannel

�(�(1232)π)/�total �4/��(�(1232)π)/�total �4/��(�(1232)π)/�total �4/��(�(1232)π)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT50±16 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •60±28 ANISOVICH 12A DPWA Multi
hannel�(N(1440)π)/�total �5/��(N(1440)π)/�total �5/��(N(1440)π)/�total �5/��(N(1440)π)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT6±3 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •47±6 SHRESTHA 12A DPWA Multi
hannel56±7 VRANA 00 DPWA Multi
hannel�(�(1232)η)/�total �6/��(�(1232)η)/�total �6/��(�(1232)η)/�total �6/��(�(1232)η)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT9±4 GUTZ 14 DPWA Multi
hannel�(1910) PHOTON DECAY AMPLITUDES AT THE POLE�(1910) PHOTON DECAY AMPLITUDES AT THE POLE�(1910) PHOTON DECAY AMPLITUDES AT THE POLE�(1910) PHOTON DECAY AMPLITUDES AT THE POLE�(1910) → N γ , heli
ity-1/2 amplitude A1/2�(1910) → N γ , heli
ity-1/2 amplitude A1/2�(1910) → N γ , heli
ity-1/2 amplitude A1/2�(1910) → N γ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.027±0.009 −30 ± 60 SOKHOYAN 15A DPWA Multi
hannel�(1910) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1910) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1910) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1910) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1910) → N γ , heli
ity-1/2 amplitude A1/2�(1910) → N γ , heli
ity-1/2 amplitude A1/2�(1910) → N γ , heli
ity-1/2 amplitude A1/2�(1910) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT+0.020±0.010 OUR ESTIMATE+0.020±0.010 OUR ESTIMATE+0.020±0.010 OUR ESTIMATE+0.020±0.010 OUR ESTIMATE0.026±0.008 SOKHOYAN 15A DPWA Multi
hannel
−0.002±0.008 ARNDT 96 IPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.026±0.008 GUTZ 14 DPWA Multi
hannel0.022±0.009 ANISOVICH 12A DPWA Multi
hannel0.030±0.002 SHRESTHA 12A DPWA Multi
hannel�(1910) FOOTNOTES�(1910) FOOTNOTES�(1910) FOOTNOTES�(1910) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(1910) REFERENCES�(1910) REFERENCES�(1910) REFERENCES�(1910) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)GUTZ 14 EPJ A50 74 E. Gutz et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)ARNDT 96 PR C53 430 R.A. Arndt, I.I. Strakovsky, R.L. Workman (VPI)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(1920) 3/2+ I (JP ) = 32 (32+) Status: ∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).�(1920) POLE POSITION�(1920) POLE POSITION�(1920) POLE POSITION�(1920) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1850 to 1950 (≈ 1900) OUR ESTIMATE1850 to 1950 (≈ 1900) OUR ESTIMATE1850 to 1950 (≈ 1900) OUR ESTIMATE1850 to 1950 (≈ 1900) OUR ESTIMATE1875±30 SOKHOYAN 15A DPWA Multi
hannel1906±10±2 1 SVARC 14 L+P πN → πN1900 HOEHLER 93 SPED πN → πN1900±80 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1875±30 GUTZ 14 DPWA Multi
hannel1890±30 ANISOVICH 12A DPWA Multi
hannel2110 SHRESTHA 12A DPWA Multi
hannel1880 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE300± 40 SOKHOYAN 15A DPWA Multi
hannel310± 20±11 1 SVARC 14 L+P πN → πN300±100 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •300± 40 GUTZ 14 DPWA Multi
hannel300± 60 ANISOVICH 12A DPWA Multi
hannel386 SHRESTHA 12A DPWA Multi
hannel120 VRANA 00 DPWA Multi
hannel



1565156515651565See key on page 601 BaryonParti
le Listings�(1920)�(1920) ELASTIC POLE RESIDUE�(1920) ELASTIC POLE RESIDUE�(1920) ELASTIC POLE RESIDUE�(1920) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT16±6 SOKHOYAN 15A DPWA Multi
hannel26±3±2 1 SVARC 14 L+P πN → πN24±4 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •16±6 GUTZ 14 DPWA Multi
hannel17±8 ANISOVICH 12A DPWA Multi
hannelPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
− 50±25 SOKHOYAN 15A DPWA Multi
hannel
−130± 5±3 1 SVARC 14 L+P πN → πN
−150±30 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 50±25 GUTZ 14 DPWA Multi
hannel
− 40±20 ANISOVICH 12A DPWA Multi
hannel�(1920) INELASTIC POLE RESIDUE�(1920) INELASTIC POLE RESIDUE�(1920) INELASTIC POLE RESIDUE�(1920) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → �(1920) → �ηNormalized residue in N π → �(1920) → �ηNormalized residue in N π → �(1920) → �ηNormalized residue in N π → �(1920) → �ηMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.15±0.04 70 ± 20 GUTZ 14 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.17±0.08 70 ± 20 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1920) → � KNormalized residue in N π → �(1920) → � KNormalized residue in N π → �(1920) → � KNormalized residue in N π → �(1920) → � KMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.09±0.03 80 ± 40 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1920) → �π, P-waveNormalized residue in N π → �(1920) → �π, P-waveNormalized residue in N π → �(1920) → �π, P-waveNormalized residue in N π → �(1920) → �π, P-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.20±0.08 −105 ± 25 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.20±0.12 −120 ± 30 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1920) → �π, F-waveNormalized residue in N π → �(1920) → �π, F-waveNormalized residue in N π → �(1920) → �π, F-waveNormalized residue in N π → �(1920) → �π, F-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.37±0.10 −90 ± 20 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.28±0.07 −95 ± 35 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1920) → N(1535)πNormalized residue in N π → �(1920) → N(1535)πNormalized residue in N π → �(1920) → N(1535)πNormalized residue in N π → �(1920) → N(1535)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.03±0.02 35 ± 45 GUTZ 14 DPWA Multi
hannelNormalized residue in N π → �(1920) → N a0(980)Normalized residue in N π → �(1920) → N a0(980)Normalized residue in N π → �(1920) → N a0(980)Normalized residue in N π → �(1920) → N a0(980)MODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.03±0.02 −85 ± 45 GUTZ 14 DPWA Multi
hannelNormalized residue in N π → �(1920) → N(1440)πNormalized residue in N π → �(1920) → N(1440)πNormalized residue in N π → �(1920) → N(1440)πNormalized residue in N π → �(1920) → N(1440)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.04±0.03 unde�ned SOKHOYAN 15A DPWA Multi
hannelNormalized residue in N π → �(1920) → N(1520)π, S-waveNormalized residue in N π → �(1920) → N(1520)π, S-waveNormalized residue in N π → �(1920) → N(1520)π, S-waveNormalized residue in N π → �(1920) → N(1520)π, S-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.05±0.05 unde�ned SOKHOYAN 15A DPWA Multi
hannel�(1920) BREIT-WIGNER MASS�(1920) BREIT-WIGNER MASS�(1920) BREIT-WIGNER MASS�(1920) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1900 to 1970 (≈ 1920) OUR ESTIMATE1900 to 1970 (≈ 1920) OUR ESTIMATE1900 to 1970 (≈ 1920) OUR ESTIMATE1900 to 1970 (≈ 1920) OUR ESTIMATE1880± 30 SOKHOYAN 15A DPWA Multi
hannel1920± 80 CUTKOSKY 80 IPWA πN → πN1868± 10 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1880± 30 GUTZ 14 DPWA Multi
hannel1900± 30 ANISOVICH 12A DPWA Multi
hannel2146± 32 SHRESTHA 12A DPWA Multi
hannel2057± 1 PENNER 02C DPWA Multi
hannel1889±100 VRANA 00 DPWA Multi
hannel�(1920) BREIT-WIGNER WIDTH�(1920) BREIT-WIGNER WIDTH�(1920) BREIT-WIGNER WIDTH�(1920) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT180 to 300 (≈ 260) OUR ESTIMATE180 to 300 (≈ 260) OUR ESTIMATE180 to 300 (≈ 260) OUR ESTIMATE180 to 300 (≈ 260) OUR ESTIMATE300± 40 SOKHOYAN 15A DPWA Multi
hannel300±100 CUTKOSKY 80 IPWA πN → πN220± 80 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •300± 40 GUTZ 14 DPWA Multi
hannel310± 60 ANISOVICH 12A DPWA Multi
hannel400± 80 SHRESTHA 12A DPWA Multi
hannel525± 32 PENNER 02C DPWA Multi
hannel123± 53 VRANA 00 DPWA Multi
hannel�(1920) DECAY MODES�(1920) DECAY MODES�(1920) DECAY MODES�(1920) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 5{20 %�2 � K 2{6 %�3 N ππ�4 �(1232)π 50{90 %�5 �(1232)π , P-wave 8{28 %�6 �(1232)π , F-wave 44{72 %�7 N(1440)π , P-wave <4 %�8 N(1520)π , S-wave <5 %�9 N(1535)π <2 %�10 N a0(980) seen�11 �(1232)η 5{17 %�(1920) BRANCHING RATIOS�(1920) BRANCHING RATIOS�(1920) BRANCHING RATIOS�(1920) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT5 to 20 OUR ESTIMATE5 to 20 OUR ESTIMATE5 to 20 OUR ESTIMATE5 to 20 OUR ESTIMATE8±4 SOKHOYAN 15A DPWA Multi
hannel20±5 CUTKOSKY 80 IPWA πN → πN14±4 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •8±4 GUTZ 14 DPWA Multi
hannel8±4 ANISOVICH 12A DPWA Multi
hannel16±4 SHRESTHA 12A DPWA Multi
hannel15±1 PENNER 02C DPWA Multi
hannel5±4 VRANA 00 DPWA Multi
hannel�(� K)/�total �2/��(� K)/�total �2/��(� K)/�total �2/��(� K)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT4 ±2 ANISOVICH 12A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.1±0.3 PENNER 02C DPWA Multi
hannel�(�(1232)π , P-wave)/�total �5/��(�(1232)π , P-wave)/�total �5/��(�(1232)π , P-wave)/�total �5/��(�(1232)π , P-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT18±10 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •22±12 ANISOVICH 12A DPWA Multi
hannel7± 5 SHRESTHA 12A DPWA Multi
hannel41± 3 VRANA 00 DPWA Multi
hannel�(�(1232)π , F-wave)/�total �6/��(�(1232)π , F-wave)/�total �6/��(�(1232)π , F-wave)/�total �6/��(�(1232)π , F-wave)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT58±14 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •45±20 ANISOVICH 12A DPWA Multi
hannel�(N(1440)π , P-wave)/�total �7/��(N(1440)π , P-wave)/�total �7/��(N(1440)π , P-wave)/�total �7/��(N(1440)π , P-wave)/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT
< 4 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<20 SHRESTHA 12A DPWA Multi
hannel53±8 VRANA 00 DPWA Multi
hannel�(N(1520)π , S-wave)/�total �8/��(N(1520)π , S-wave)/�total �8/��(N(1520)π , S-wave)/�total �8/��(N(1520)π , S-wave)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT
<5 SOKHOYAN 15A DPWA Multi
hannel�(N(1535)π)/�total �9/��(N(1535)π)/�total �9/��(N(1535)π)/�total �9/��(N(1535)π)/�total �9/�VALUE (%) DOCUMENT ID TECN COMMENT
<2 GUTZ 14 DPWA Multi
hannel�(N a0(980))/�total �10/��(N a0(980))/�total �10/��(N a0(980))/�total �10/��(N a0(980))/�total �10/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •4±2 HORN 08A DPWA Multi
hannel



1566156615661566BaryonParti
le Listings�(1920),�(1930)�(�(1232)η)/�total �11/��(�(1232)η)/�total �11/��(�(1232)η)/�total �11/��(�(1232)η)/�total �11/�VALUE (%) DOCUMENT ID TECN COMMENT11±6 GUTZ 14 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •15±8 ANISOVICH 12A DPWA Multi
hannel�(1920) PHOTON DECAY AMPLITUDES AT THE POLE�(1920) PHOTON DECAY AMPLITUDES AT THE POLE�(1920) PHOTON DECAY AMPLITUDES AT THE POLE�(1920) PHOTON DECAY AMPLITUDES AT THE POLE�(1920) → N γ , heli
ity-1/2 amplitude A1/2�(1920) → N γ , heli
ity-1/2 amplitude A1/2�(1920) → N γ , heli
ity-1/2 amplitude A1/2�(1920) → N γ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.110±0.030 −50 ± 20 SOKHOYAN 15A DPWA Multi
hannel�(1920) → N γ , heli
ity-3/2 amplitude A3/2�(1920) → N γ , heli
ity-3/2 amplitude A3/2�(1920) → N γ , heli
ity-3/2 amplitude A3/2�(1920) → N γ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT
−0.100±0.040 0 ± 20 SOKHOYAN 15A DPWA Multi
hannel�(1920) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1920) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1920) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1920) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1920) → N γ , heli
ity-1/2 amplitude A1/2�(1920) → N γ , heli
ity-1/2 amplitude A1/2�(1920) → N γ , heli
ity-1/2 amplitude A1/2�(1920) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.110±0.030 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.110±0.030 GUTZ 14 DPWA Multi
hannel0.130+0.030

−0.060 ANISOVICH 12A DPWA Multi
hannel0.051±0.010 SHRESTHA 12A DPWA Multi
hannel
−0.007 PENNER 02D DPWA Multi
hannel�(1920) → N γ , heli
ity-3/2 amplitude A3/2�(1920) → N γ , heli
ity-3/2 amplitude A3/2�(1920) → N γ , heli
ity-3/2 amplitude A3/2�(1920) → N γ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.105±0.035 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.105±0.035 GUTZ 14 DPWA Multi
hannel
−0.115+0.025

−0.050 ANISOVICH 12A DPWA Multi
hannel0.017±0.015 SHRESTHA 12A DPWA Multi
hannel
−0.001 PENNER 02D DPWA Multi
hannel�(1920) FOOTNOTES�(1920) FOOTNOTES�(1920) FOOTNOTES�(1920) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(1920) REFERENCES�(1920) REFERENCES�(1920) REFERENCES�(1920) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).SOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)GUTZ 14 EPJ A50 74 E. Gutz et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)HORN 08A EPJ A38 173 I. Horn et al. (CB-ELSA Collab.)Also PRL 101 202002 I. Horn et al. (CB-ELSA Collab.)PENNER 02C PR C66 055211 G. Penner, U. Mosel (GIES)PENNER 02D PR C66 055212 G. Penner, U. Mosel (GIES)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(1930) 5/2− I (JP ) = 32 (52−) Status: ∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).�(1930) POLE POSITION�(1930) POLE POSITION�(1930) POLE POSITION�(1930) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1840 to 1960 (≈ 1900) OUR ESTIMATE1840 to 1960 (≈ 1900) OUR ESTIMATE1840 to 1960 (≈ 1900) OUR ESTIMATE1840 to 1960 (≈ 1900) OUR ESTIMATE1848± 9±19 1 SVARC 14 L+P πN → πN2001 ARNDT 06 DPWA πN → πN, ηN1850 HOEHLER 93 SPED πN → πN1890±50 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1882 SHRESTHA 12A DPWA Multi
hannel1883 VRANA 00 DPWA Multi
hannel

−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT175 to 360 (≈ 270) OUR ESTIMATE175 to 360 (≈ 270) OUR ESTIMATE175 to 360 (≈ 270) OUR ESTIMATE175 to 360 (≈ 270) OUR ESTIMATE321±17±7 1 SVARC 14 L+P πN → πN387 ARNDT 06 DPWA πN → πN, ηN180 HOEHLER 93 SPED πN → πN260±60 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •187 SHRESTHA 12A DPWA Multi
hannel250 VRANA 00 DPWA Multi
hannel�(1930) ELASTIC POLE RESIDUE�(1930) ELASTIC POLE RESIDUE�(1930) ELASTIC POLE RESIDUE�(1930) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT8 to 20 (≈ 14) OUR ESTIMATE8 to 20 (≈ 14) OUR ESTIMATE8 to 20 (≈ 14) OUR ESTIMATE8 to 20 (≈ 14) OUR ESTIMATE9±1±1 1 SVARC 14 L+P πN → πN7 ARNDT 06 DPWA πN → πN, ηN20 HOEHLER 93 SPED πN → πN18±6 CUTKOSKY 80 IPWA πN → πNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−10 to −40 (≈ − 30) OUR ESTIMATE−10 to −40 (≈ − 30) OUR ESTIMATE−10 to −40 (≈ − 30) OUR ESTIMATE−10 to −40 (≈ − 30) OUR ESTIMATE
−37± 3±7 1 SVARC 14 L+P πN → πN
−12 ARNDT 06 DPWA πN → πN, ηN
−20±40 CUTKOSKY 80 IPWA πN → πN�(1930) BREIT-WIGNER MASS�(1930) BREIT-WIGNER MASS�(1930) BREIT-WIGNER MASS�(1930) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1900 to 2000 (≈ 1950) OUR ESTIMATE1900 to 2000 (≈ 1950) OUR ESTIMATE1900 to 2000 (≈ 1950) OUR ESTIMATE1900 to 2000 (≈ 1950) OUR ESTIMATE2233± 53 ARNDT 06 DPWA πN → πN, ηN1940± 30 CUTKOSKY 80 IPWA πN → πN1901± 15 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1930± 12 SHRESTHA 12A DPWA Multi
hannel1932±100 VRANA 00 DPWA Multi
hannel�(1930) BREIT-WIGNER WIDTH�(1930) BREIT-WIGNER WIDTH�(1930) BREIT-WIGNER WIDTH�(1930) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT220 to 500 (≈ 360) OUR ESTIMATE220 to 500 (≈ 360) OUR ESTIMATE220 to 500 (≈ 360) OUR ESTIMATE220 to 500 (≈ 360) OUR ESTIMATE773±187 ARNDT 06 DPWA πN → πN, ηN320± 60 CUTKOSKY 80 IPWA πN → πN195± 60 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •235± 39 SHRESTHA 12A DPWA Multi
hannel316±237 VRANA 00 DPWA Multi
hannel�(1930) DECAY MODES�(1930) DECAY MODES�(1930) DECAY MODES�(1930) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 5{15 %�2 N γ 0.0{0.01 %�3 N γ , heli
ity=1/2 0.0{0.005 %�4 N γ , heli
ity=3/2 0.0{0.004 %�(1930) BRANCHING RATIOS�(1930) BRANCHING RATIOS�(1930) BRANCHING RATIOS�(1930) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE8.1±1.2 ARNDT 06 DPWA πN → πN, ηN14 ±4 CUTKOSKY 80 IPWA πN → πN4 ±3 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •7.9±0.4 SHRESTHA 12A DPWA Multi
hannel9 ±8 VRANA 00 DPWA Multi
hannel�(1930) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1930) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1930) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1930) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1930) → N γ , heli
ity-1/2 amplitude A1/2�(1930) → N γ , heli
ity-1/2 amplitude A1/2�(1930) → N γ , heli
ity-1/2 amplitude A1/2�(1930) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.007±0.010 ARNDT 96 IPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.011±0.003 SHRESTHA 12A DPWA Multi
hannel
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le Listings�(1930),�(1940)�(1930) → N γ , heli
ity-3/2 amplitude A3/2�(1930) → N γ , heli
ity-3/2 amplitude A3/2�(1930) → N γ , heli
ity-3/2 amplitude A3/2�(1930) → N γ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.005±0.010 ARNDT 96 IPWA γN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.002±0.002 SHRESTHA 12A DPWA Multi
hannel�(1930) FOOTNOTES�(1930) FOOTNOTES�(1930) FOOTNOTES�(1930) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(1930) REFERENCES�(1930) REFERENCES�(1930) REFERENCES�(1930) REFERENCESFor early referen
es, see Physi
s Letters 111B111B111B111B 1 (1982).PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)ARNDT 96 PR C53 430 R.A. Arndt, I.I. Strakovsky, R.L. Workman (VPI)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(1940) 3/2− I (JP ) = 32 (32−) Status: ∗∗OMITTED FROM SUMMARY TABLE�(1940) POLE POSITION�(1940) POLE POSITION�(1940) POLE POSITION�(1940) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2040± 50 SOKHOYAN 15A DPWA Multi
hannel1878± 11±5.5 1 SVARC 14 L+P πN → πN1900±100 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •2040± 50 GUTZ 14 DPWA Multi
hannel1990+100

− 50 ANISOVICH 12A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT450±90 SOKHOYAN 15A DPWA Multi
hannel212±21±6 1 SVARC 14 L+P πN → πN200±60 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •450±90 GUTZ 14 DPWA Multi
hannel450±90 ANISOVICH 12A DPWA Multi
hannel�(1940) ELASTIC POLE RESIDUE�(1940) ELASTIC POLE RESIDUE�(1940) ELASTIC POLE RESIDUE�(1940) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT6±3 SOKHOYAN 15A DPWA Multi
hannel9±1±1 1 SVARC 14 L+P πN → πN8±3 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •4±3 GUTZ 14 DPWA Multi
hannel4±4 ANISOVICH 12A DPWA Multi
hannelPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
− 90±35 SOKHOYAN 15A DPWA Multi
hannel140± 7±7 1 SVARC 14 L+P πN → πN135±45 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

− 50±35 GUTZ 14 DPWA Multi
hannel�(1940) INELASTIC POLE RESIDUE�(1940) INELASTIC POLE RESIDUE�(1940) INELASTIC POLE RESIDUE�(1940) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → �(1940) → �(1232)ηNormalized residue in N π → �(1940) → �(1232)ηNormalized residue in N π → �(1940) → �(1232)ηNormalized residue in N π → �(1940) → �(1232)ηMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT
<0.01 unde�ned GUTZ 14 DPWA Multi
hannelNormalized residue in N π → �(1940) → N(1535)πNormalized residue in N π → �(1940) → N(1535)πNormalized residue in N π → �(1940) → N(1535)πNormalized residue in N π → �(1940) → N(1535)πMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT
<0.03 unde�ned GUTZ 14 DPWA Multi
hannelNormalized residue in N π → �(1940) → �(1232)π, S-waveNormalized residue in N π → �(1940) → �(1232)π, S-waveNormalized residue in N π → �(1940) → �(1232)π, S-waveNormalized residue in N π → �(1940) → �(1232)π, S-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.12±0.06 120 ± 45 SOKHOYAN 15A DPWA Multi
hannel

Normalized residue in N π → �(1940) → �(1232)π, D-waveNormalized residue in N π → �(1940) → �(1232)π, D-waveNormalized residue in N π → �(1940) → �(1232)π, D-waveNormalized residue in N π → �(1940) → �(1232)π, D-waveMODULUS PHASE (◦) DOCUMENT ID TECN COMMENT0.06±0.04 −80 ± 35 SOKHOYAN 15A DPWA Multi
hannel�(1940) BREIT-WIGNER MASS�(1940) BREIT-WIGNER MASS�(1940) BREIT-WIGNER MASS�(1940) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1940 to 2060 (≈ 2000) OUR ESTIMATE1940 to 2060 (≈ 2000) OUR ESTIMATE1940 to 2060 (≈ 2000) OUR ESTIMATE1940 to 2060 (≈ 2000) OUR ESTIMATE2050± 40 SOKHOYAN 15A DPWA Multi
hannel1940±100 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •2050± 40 GUTZ 14 DPWA Multi
hannel1995+105

− 60 ANISOVICH 12A DPWA Multi
hannel�(1940) BREIT-WIGNER WIDTH�(1940) BREIT-WIGNER WIDTH�(1940) BREIT-WIGNER WIDTH�(1940) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT450± 70 SOKHOYAN 15A DPWA Multi
hannel200±100 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •450± 70 GUTZ 14 DPWA Multi
hannel450±100 ANISOVICH 12A DPWA Multi
hannel�(1940) DECAY MODES�(1940) DECAY MODES�(1940) DECAY MODES�(1940) DECAY MODESMode Fra
tion (�i /�)�1 N π 1{7 %�2 N ππ�3 �(1232)π 30{85 %�4 �(1232)π , S-wave 25{65 %�5 �(1232)π , D-wave 5{20 %�6 N(1535)π 2{14 %�7 N a0(980) seen�8 �(1232)η 4{16 %�9 N γ , heli
ity=1/2 seen�10 N γ , heli
ity=3/2 seen�(1940) BRANCHING RATIOS�(1940) BRANCHING RATIOS�(1940) BRANCHING RATIOS�(1940) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT2±1 SOKHOYAN 15A DPWA Multi
hannel5±2 CUTKOSKY 80 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •2±1 GUTZ 14 DPWA Multi
hannel�(�(1232)π , S-wave)/�total �4/��(�(1232)π , S-wave)/�total �4/��(�(1232)π , S-wave)/�total �4/��(�(1232)π , S-wave)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT46±20 SOKHOYAN 15A DPWA Multi
hannel�(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/��(�(1232)π ,D-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT12±7 SOKHOYAN 15A DPWA Multi
hannel�(N(1535)π)/�total �6/��(N(1535)π)/�total �6/��(N(1535)π)/�total �6/��(N(1535)π)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT8±6 GUTZ 14 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •2±1 HORN 08A DPWA Multi
hannel�(N a0(980))/�total �7/��(N a0(980))/�total �7/��(N a0(980))/�total �7/��(N a0(980))/�total �7/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2±1 HORN 08A DPWA Multi
hannel�(�(1232)η)/�total �8/��(�(1232)η)/�total �8/��(�(1232)η)/�total �8/��(�(1232)η)/�total �8/�VALUE (%) DOCUMENT ID TECN COMMENT10±6 GUTZ 14 DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •4±2 HORN 08A DPWA Multi
hannel�(1940) PHOTON DECAY AMPLITUDES AT THE POLE�(1940) PHOTON DECAY AMPLITUDES AT THE POLE�(1940) PHOTON DECAY AMPLITUDES AT THE POLE�(1940) PHOTON DECAY AMPLITUDES AT THE POLE�(1940) → N γ , heli
ity-1/2 amplitude A1/2�(1940) → N γ , heli
ity-1/2 amplitude A1/2�(1940) → N γ , heli
ity-1/2 amplitude A1/2�(1940) → N γ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.170+0.120

−0.100 −10 ± 30 SOKHOYAN 15A DPWA Multi
hannel



1568156815681568BaryonParti
le Listings�(1940),�(1950)�(1940) → N γ , heli
ity-3/2 amplitude A3/2�(1940) → N γ , heli
ity-3/2 amplitude A3/2�(1940) → N γ , heli
ity-3/2 amplitude A3/2�(1940) → N γ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT0.150±0.080 −10 ± 30 SOKHOYAN 15A DPWA Multi
hannel�(1940) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1940) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1940) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1940) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1940) → N γ , heli
ity-1/2 amplitude A1/2�(1940) → N γ , heli
ity-1/2 amplitude A1/2�(1940) → N γ , heli
ity-1/2 amplitude A1/2�(1940) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.170+0.110
−0.080 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.170+0.110
−0.080 GUTZ 14 DPWA Multi
hannel�(1940) → N γ , heli
ity-3/2 amplitude A3/2�(1940) → N γ , heli
ity-3/2 amplitude A3/2�(1940) → N γ , heli
ity-3/2 amplitude A3/2�(1940) → N γ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT0.150±0.080 SOKHOYAN 15A DPWA Multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.150±0.080 GUTZ 14 DPWA Multi
hannel�(1940) FOOTNOTES�(1940) FOOTNOTES�(1940) FOOTNOTES�(1940) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(1940) REFERENCES�(1940) REFERENCES�(1940) REFERENCES�(1940) REFERENCESSOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)GUTZ 14 EPJ A50 74 E. Gutz et al. (CBELSA/TAPS Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)HORN 08A EPJ A38 173 I. Horn et al. (CB-ELSA Collab.)Also PRL 101 202002 I. Horn et al. (CB-ELSA Collab.)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT)�(1950) 7/2+ I (JP ) = 32 (72+) Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).�(1950) POLE POSITION�(1950) POLE POSITION�(1950) POLE POSITION�(1950) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1870 to 1890 (≈ 1880) OUR ESTIMATE1870 to 1890 (≈ 1880) OUR ESTIMATE1870 to 1890 (≈ 1880) OUR ESTIMATE1870 to 1890 (≈ 1880) OUR ESTIMATE1888± 4 SOKHOYAN 15A DPWA Multi
hannel1877± 2±1 1 SVARC 14 L+P πN → πN1876 ARNDT 06 DPWA πN → πN, ηN1878 HOEHLER 93 ARGD πN → πN1890±15 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1888± 4 GUTZ 14 DPWA Multi
hannel1890± 4 ANISOVICH 12A DPWA Multi
hannel1871 SHRESTHA 12A DPWA Multi
hannel1910 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT220 to 260 (≈ 240) OUR ESTIMATE220 to 260 (≈ 240) OUR ESTIMATE220 to 260 (≈ 240) OUR ESTIMATE220 to 260 (≈ 240) OUR ESTIMATE245± 8 SOKHOYAN 15A DPWA Multi
hannel223± 4±1 1 SVARC 14 L+P πN → πN227 ARNDT 06 DPWA πN → πN, ηN230 HOEHLER 93 ARGD πN → πN260±40 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •245± 8 GUTZ 14 DPWA Multi
hannel243± 8 ANISOVICH 12A DPWA Multi
hannel220 SHRESTHA 12A DPWA Multi
hannel230 VRANA 00 DPWA Multi
hannel�(1950) ELASTIC POLE RESIDUE�(1950) ELASTIC POLE RESIDUE�(1950) ELASTIC POLE RESIDUE�(1950) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT44 to 60 (≈ 52) OUR ESTIMATE44 to 60 (≈ 52) OUR ESTIMATE44 to 60 (≈ 52) OUR ESTIMATE44 to 60 (≈ 52) OUR ESTIMATE58±2 SOKHOYAN 15A DPWA Multi
hannel44±1 1 SVARC 14 L+P πN → πN53 ARNDT 06 DPWA πN → πN, ηN47 HOEHLER 93 ARGD πN → πN50±7 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •58±2 GUTZ 14 DPWA Multi
hannel58±2 ANISOVICH 12A DPWA Multi
hannel

PHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−24 to −40 (≈ − 32) OUR ESTIMATE−24 to −40 (≈ − 32) OUR ESTIMATE−24 to −40 (≈ − 32) OUR ESTIMATE−24 to −40 (≈ − 32) OUR ESTIMATE
−24±3 SOKHOYAN 15A DPWA Multi
hannel
−39±1±1 1 SVARC 14 L+P πN → πN
−31 ARNDT 06 DPWA πN → πN, ηN
−32 HOEHLER 93 ARGD πN → πN
−33±8 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−24±3 GUTZ 14 DPWA Multi
hannel
−24±3 ANISOVICH 12A DPWA Multi
hannel�(1950) INELASTIC POLE RESIDUE�(1950) INELASTIC POLE RESIDUE�(1950) INELASTIC POLE RESIDUE�(1950) INELASTIC POLE RESIDUEThe \normalized residue" is the residue divided by �pole/2.Normalized residue in N π → �(1950) → � KNormalized residue in N π → �(1950) → � KNormalized residue in N π → �(1950) → � KNormalized residue in N π → �(1950) → � KMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT5±1 −65 ± 25 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1950) → �π, F-waveNormalized residue in N π → �(1950) → �π, F-waveNormalized residue in N π → �(1950) → �π, F-waveNormalized residue in N π → �(1950) → �π, F-waveMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT12±4 unde�ned SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •12±4 12 ± 10 ANISOVICH 12A DPWA Multi
hannelNormalized residue in N π → �(1950) → �(1232)ηNormalized residue in N π → �(1950) → �(1232)ηNormalized residue in N π → �(1950) → �(1232)ηNormalized residue in N π → �(1950) → �(1232)ηMODULUS (%) PHASE (◦) DOCUMENT ID TECN COMMENT3.5±0.5 90 ± 25 GUTZ 14 DPWA Multi
hannel�(1950) BREIT-WIGNER MASS�(1950) BREIT-WIGNER MASS�(1950) BREIT-WIGNER MASS�(1950) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1915 to 1950 (≈ 1930) OUR ESTIMATE1915 to 1950 (≈ 1930) OUR ESTIMATE1915 to 1950 (≈ 1930) OUR ESTIMATE1915 to 1950 (≈ 1930) OUR ESTIMATE1917 ± 4 SOKHOYAN 15A DPWA Multi
hannel1921.3± 0.2 ARNDT 06 DPWA πN → πN, ηN1950 ±15 CUTKOSKY 80 IPWA πN → πN1913 ± 8 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1917 ± 4 GUTZ 14 DPWA Multi
hannel1915 ± 6 ANISOVICH 12A DPWA Multi
hannel1918 ± 1 SHRESTHA 12A DPWA Multi
hannel1936 ± 5 VRANA 00 DPWA Multi
hannel�(1950) BREIT-WIGNER WIDTH�(1950) BREIT-WIGNER WIDTH�(1950) BREIT-WIGNER WIDTH�(1950) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT235 to 335 (≈ 285) OUR ESTIMATE235 to 335 (≈ 285) OUR ESTIMATE235 to 335 (≈ 285) OUR ESTIMATE235 to 335 (≈ 285) OUR ESTIMATE251 ± 8 SOKHOYAN 15A DPWA Multi
hannel271.1± 1.1 ARNDT 06 DPWA πN → πN, ηN340 ±50 CUTKOSKY 80 IPWA πN → πN224 ±10 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •251 ± 8 GUTZ 14 DPWA Multi
hannel246 ±10 ANISOVICH 12A DPWA Multi
hannel259 ± 4 SHRESTHA 12A DPWA Multi
hannel245 ±12 VRANA 00 DPWA Multi
hannel�(1950) DECAY MODES�(1950) DECAY MODES�(1950) DECAY MODES�(1950) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 35{45 %�2 � K 0.3{0.5 %�3 N ππ�4 �(1232)π , F-wave 1{9 %�5 N(1680)π , P-wave 3{9 %�6 �(1232)η < 1 %�(1950) BRANCHING RATIOS�(1950) BRANCHING RATIOS�(1950) BRANCHING RATIOS�(1950) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT35 to 45 OUR ESTIMATE35 to 45 OUR ESTIMATE35 to 45 OUR ESTIMATE35 to 45 OUR ESTIMATE46 ±2 SOKHOYAN 15A DPWA Multi
hannel47.1±0.1 ARNDT 06 DPWA πN → πN, ηN39 ±4 CUTKOSKY 80 IPWA πN → πN38 ±2 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •46 ±2 GUTZ 14 DPWA Multi
hannel45 ±2 ANISOVICH 12A DPWA Multi
hannel45.6±0.4 SHRESTHA 12A DPWA Multi
hannel44 ±1 VRANA 00 DPWA Multi
hannel



1569156915691569See key on page 601 BaryonParti
le Listings�(1950),�(2000)�(� K)/�total �2/��(� K)/�total �2/��(� K)/�total �2/��(� K)/�total �2/�VALUE (%) DOCUMENT ID TECN COMMENT0.4±0.1 ANISOVICH 12A DPWA Multi
hannel�(�(1232)π , F-wave)/�total �4/��(�(1232)π , F-wave)/�total �4/��(�(1232)π , F-wave)/�total �4/��(�(1232)π , F-wave)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT5 ±4 SOKHOYAN 15A DPWA Multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.8±1.4 ANISOVICH 12A DPWA Multi
hannel8 ±1 SHRESTHA 12A DPWA Multi
hannel36 ±1 VRANA 00 DPWA Multi
hannel�(N(1680)π , P-wave)/�total �5/��(N(1680)π , P-wave)/�total �5/��(N(1680)π , P-wave)/�total �5/��(N(1680)π , P-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT6±3 SOKHOYAN 15A DPWA Multi
hannel�(�(1232)η)/�total �6/��(�(1232)η)/�total �6/��(�(1232)η)/�total �6/��(�(1232)η)/�total �6/�VALUE (%) DOCUMENT ID TECN COMMENT
<1 GUTZ 14 DPWA Multi
hannel�(1950) PHOTON DECAY AMPLITUDES AT THE POLE�(1950) PHOTON DECAY AMPLITUDES AT THE POLE�(1950) PHOTON DECAY AMPLITUDES AT THE POLE�(1950) PHOTON DECAY AMPLITUDES AT THE POLE�(1950) → N γ , heli
ity-1/2 amplitude A1/2�(1950) → N γ , heli
ity-1/2 amplitude A1/2�(1950) → N γ , heli
ity-1/2 amplitude A1/2�(1950) → N γ , heli
ity-1/2 amplitude A1/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT
−0.067±0.004 −10 ± 5 SOKHOYAN 15A DPWA Multi
hannel�(1950) → N γ , heli
ity-3/2 amplitude A3/2�(1950) → N γ , heli
ity-3/2 amplitude A3/2�(1950) → N γ , heli
ity-3/2 amplitude A3/2�(1950) → N γ , heli
ity-3/2 amplitude A3/2MODULUS (GeV−1/2) PHASE (◦) DOCUMENT ID TECN COMMENT
−0.095±0.004 −10 ± 5 SOKHOYAN 15A DPWA Multi
hannel�(1950) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1950) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1950) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1950) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(1950) → N γ , heli
ity-1/2 amplitude A1/2�(1950) → N γ , heli
ity-1/2 amplitude A1/2�(1950) → N γ , heli
ity-1/2 amplitude A1/2�(1950) → N γ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.067±0.005 SOKHOYAN 15A DPWA Multi
hannel
−0.083±0.004 WORKMAN 12A DPWA γN → Nπ
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.067±0.005 GUTZ 14 DPWA Multi
hannel
−0.071±0.004 ANISOVICH 12A DPWA Multi
hannel
−0.065±0.001 SHRESTHA 12A DPWA Multi
hannel
−0.094 DRECHSEL 07 DPWA γN → πN�(1950) → N γ , heli
ity-3/2 amplitude A3/2�(1950) → N γ , heli
ity-3/2 amplitude A3/2�(1950) → N γ , heli
ity-3/2 amplitude A3/2�(1950) → N γ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
−0.094±0.004 SOKHOYAN 15A DPWA Multi
hannel
−0.096±0.004 WORKMAN 12A DPWA γN → Nπ
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.094±0.004 GUTZ 14 DPWA Multi
hannel
−0.094±0.005 ANISOVICH 12A DPWA Multi
hannel
−0.083±0.001 SHRESTHA 12A DPWA Multi
hannel
−0.121 DRECHSEL 07 DPWA γN → πN�(1950) FOOTNOTES�(1950) FOOTNOTES�(1950) FOOTNOTES�(1950) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(1950) REFERENCES�(1950) REFERENCES�(1950) REFERENCES�(1950) REFERENCESSOKHOYAN 15A EPJ A51 95 V. Sokhoyan et al. (CBELSA/TAPS Collab.)GUTZ 14 EPJ A50 74 E. Gutz et al. (CBELSA/TAPS Collab.)PDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)WORKMAN 12A PR C86 015202 R. Workman et al. (GWU)DRECHSEL 07 EPJ A34 69 D. Dre
hsel, S.S. Kamalov, L. Tiator (MAINZ, JINR)ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(2000) 5/2+ I (JP ) = 32 (52+) Status: ∗∗OMITTED FROM SUMMARY TABLE�(2000) POLE POSITION�(2000) POLE POSITION�(2000) POLE POSITION�(2000) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1998± 4±4 1 SVARC 14 L+P πN → πN2150±100 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •1976 SHRESTHA 12A DPWA Multi
hannel1697 VRANA 00 DPWA Multi
hannel

−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT404± 10±4 1 SVARC 14 L+P πN → πN350±100 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •488 SHRESTHA 12A DPWA Multi
hannel112 VRANA 00 DPWA Multi
hannel�(2000) ELASTIC POLE RESIDUE�(2000) ELASTIC POLE RESIDUE�(2000) ELASTIC POLE RESIDUE�(2000) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT34±1±1 1 SVARC 14 L+P πN → πN16±5 CUTKOSKY 80 IPWA πN → πNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT110± 1±3 1 SVARC 14 L+P πN → πN150±90 CUTKOSKY 80 IPWA πN → πN�(2000) BREIT-WIGNER MASS�(2000) BREIT-WIGNER MASS�(2000) BREIT-WIGNER MASS�(2000) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2200±125 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •2015± 24 SHRESTHA 12A DPWA Multi
hannel1724± 61 VRANA 00 DPWA Multi
hannel1752± 32 MANLEY 92 IPWA πN → πN & N ππ�(2000) BREIT-WIGNER WIDTH�(2000) BREIT-WIGNER WIDTH�(2000) BREIT-WIGNER WIDTH�(2000) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT400±125 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •500± 52 SHRESTHA 12A DPWA Multi
hannel138± 68 VRANA 00 DPWA Multi
hannel251± 93 MANLEY 92 IPWA πN → πN & N ππ�(2000) DECAY MODES�(2000) DECAY MODES�(2000) DECAY MODES�(2000) DECAY MODESMode Fra
tion (�i /�)�1 N π 3{11 %�2 N ππ�3 �(1232)π , P-wave seen�4 �(1232)π , F-wave seen�5 N ρ , S=3/2, P-wave seen�6 N γ�7 N γ , heli
ity=1/2 seen�8 N γ , heli
ity=3/2 seen�(2000) BRANCHING RATIOS�(2000) BRANCHING RATIOS�(2000) BRANCHING RATIOS�(2000) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT7±4 CUTKOSKY 80 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •7±1 SHRESTHA 12A DPWA Multi
hannel0±1 VRANA 00 DPWA Multi
hannel2±1 MANLEY 92 IPWA πN → πN & N ππ�(�(1232)π , P-wave)/�total �3/��(�(1232)π , P-wave)/�total �3/��(�(1232)π , P-wave)/�total �3/��(�(1232)π , P-wave)/�total �3/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •3±3 SHRESTHA 12A DPWA Multi
hannel0±1 VRANA 00 DPWA Multi
hannel�(�(1232)π , F-wave)/�total �4/��(�(1232)π , F-wave)/�total �4/��(�(1232)π , F-wave)/�total �4/��(�(1232)π , F-wave)/�total �4/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 3 SHRESTHA 12A DPWA Multi
hannel40±1 VRANA 00 DPWA Multi
hannel�(N ρ , S=3/2,P-wave)/�total �5/��(N ρ , S=3/2,P-wave)/�total �5/��(N ρ , S=3/2,P-wave)/�total �5/��(N ρ , S=3/2,P-wave)/�total �5/�VALUE (%) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •90± 3 SHRESTHA 12A DPWA Multi
hannel60±60 VRANA 00 DPWA Multi
hannel



1570157015701570BaryonParti
le Listings�(2000),�(2150),�(2200),�(2300)�(2000) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(2000) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(2000) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(2000) BREIT-WIGNER PHOTON DECAY AMPLITUDES�(2000) → pγ , heli
ity-1/2 amplitude A1/2�(2000) → pγ , heli
ity-1/2 amplitude A1/2�(2000) → pγ , heli
ity-1/2 amplitude A1/2�(2000) → pγ , heli
ity-1/2 amplitude A1/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.061±0.018 SHRESTHA 12A DPWA Multi
hannel�(2000) → pγ , heli
ity-3/2 amplitude A3/2�(2000) → pγ , heli
ity-3/2 amplitude A3/2�(2000) → pγ , heli
ity-3/2 amplitude A3/2�(2000) → pγ , heli
ity-3/2 amplitude A3/2VALUE (GeV−1/2) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.158±0.032 SHRESTHA 12A DPWA Multi
hannel�(2000) FOOTNOTES�(2000) FOOTNOTES�(2000) FOOTNOTES�(2000) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(2000) REFERENCES�(2000) REFERENCES�(2000) REFERENCES�(2000) REFERENCESSVARC 14 PR C89 045205 A. Svar
 et al.SHRESTHA 12A PR C86 055203 M. Shrestha, D.M. Manley (KSU)VRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)MANLEY 92 PR D45 4002 D.M. Manley, E.M. Saleski (KSA) IJPAlso PR D30 904 D.M. Manley et al. (VPI)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL)Also PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT)�(2150) 1/2− I (JP ) = 32 (12−) Status: ∗OMITTED FROM SUMMARY TABLE�(2150) POLE POSITION�(2150) POLE POSITION�(2150) POLE POSITION�(2150) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2140±80 CUTKOSKY 80 IPWA πN → πN
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT200±80 CUTKOSKY 80 IPWA πN → πN�(2150) ELASTIC POLE RESIDUE�(2150) ELASTIC POLE RESIDUE�(2150) ELASTIC POLE RESIDUE�(2150) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT7±2 CUTKOSKY 80 IPWA πN → πNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−60±90 CUTKOSKY 80 IPWA πN → πN�(2150) BREIT-WIGNER MASS�(2150) BREIT-WIGNER MASS�(2150) BREIT-WIGNER MASS�(2150) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2150±100 CUTKOSKY 80 IPWA πN → πN�(2150) BREIT-WIGNER WIDTH�(2150) BREIT-WIGNER WIDTH�(2150) BREIT-WIGNER WIDTH�(2150) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT200±100 CUTKOSKY 80 IPWA πN → πN�(2150) DECAY MODES�(2150) DECAY MODES�(2150) DECAY MODES�(2150) DECAY MODESMode Fra
tion (�i /�)�1 N π 6{10 %�(2150) BRANCHING RATIOS�(2150) BRANCHING RATIOS�(2150) BRANCHING RATIOS�(2150) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT8±2 CUTKOSKY 80 IPWA πN → πN�(2150) REFERENCES�(2150) REFERENCES�(2150) REFERENCES�(2150) REFERENCESCUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)

�(2200) 7/2− I (JP ) = 32 (72−) Status: ∗OMITTED FROM SUMMARY TABLE�(2200) POLE POSITION�(2200) POLE POSITION�(2200) POLE POSITION�(2200) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2100±50 CUTKOSKY 80 IPWA πN → πN
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT340±80 CUTKOSKY 80 IPWA πN → πN�(2200) ELASTIC POLE RESIDUE�(2200) ELASTIC POLE RESIDUE�(2200) ELASTIC POLE RESIDUE�(2200) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT8±3 CUTKOSKY 80 IPWA πN → πNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−70±40 CUTKOSKY 80 IPWA πN → πN�(2200) BREIT-WIGNER MASS�(2200) BREIT-WIGNER MASS�(2200) BREIT-WIGNER MASS�(2200) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2200±80 CUTKOSKY 80 IPWA πN → πN2215±60 HOEHLER 79 IPWA πN → πN�(2200) BREIT-WIGNER WIDTH�(2200) BREIT-WIGNER WIDTH�(2200) BREIT-WIGNER WIDTH�(2200) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT450±100 CUTKOSKY 80 IPWA πN → πN400±100 HOEHLER 79 IPWA πN → πN�(2200) DECAY MODES�(2200) DECAY MODES�(2200) DECAY MODES�(2200) DECAY MODESMode Fra
tion (�i /�)�1 N π 3{8 %�(2200) BRANCHING RATIOS�(2200) BRANCHING RATIOS�(2200) BRANCHING RATIOS�(2200) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT6±2 CUTKOSKY 80 IPWA πN → πN5±2 HOEHLER 79 IPWA πN → πN�(2200) REFERENCES�(2200) REFERENCES�(2200) REFERENCES�(2200) REFERENCESCUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL) IJPHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(2300) 9/2+ I (JP ) = 32 (92+) Status: ∗∗OMITTED FROM SUMMARY TABLE�(2300) POLE POSITION�(2300) POLE POSITION�(2300) POLE POSITION�(2300) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2370±80 CUTKOSKY 80 IPWA πN → πN

−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT420±160 CUTKOSKY 80 IPWA πN → πN�(2300) ELASTIC POLE RESIDUE�(2300) ELASTIC POLE RESIDUE�(2300) ELASTIC POLE RESIDUE�(2300) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT10±4 CUTKOSKY 80 IPWA πN → πN



1571157115711571See key on page 601 Baryon Parti
le Listings�(2300), �(2350), �(2390)PHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−20±30 CUTKOSKY 80 IPWA πN → πN�(2300) BREIT-WIGNER MASS�(2300) BREIT-WIGNER MASS�(2300) BREIT-WIGNER MASS�(2300) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2400±125 CUTKOSKY 80 IPWA πN → πN2217± 80 HOEHLER 79 IPWA πN → πN�(2300) BREIT-WIGNER WIDTH�(2300) BREIT-WIGNER WIDTH�(2300) BREIT-WIGNER WIDTH�(2300) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT425±150 CUTKOSKY 80 IPWA πN → πN300±100 HOEHLER 79 IPWA πN → πN�(2300) DECAY MODES�(2300) DECAY MODES�(2300) DECAY MODES�(2300) DECAY MODESMode Fra
tion (�i /�)�1 N π 1{8 %�(2300) BRANCHING RATIOS�(2300) BRANCHING RATIOS�(2300) BRANCHING RATIOS�(2300) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT6±2 CUTKOSKY 80 IPWA πN → πN3±2 HOEHLER 79 IPWA πN → πN�(2300) REFERENCES�(2300) REFERENCES�(2300) REFERENCES�(2300) REFERENCESCUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(2350) 5/2− I (JP ) = 32 (52−) Status: ∗OMITTED FROM SUMMARY TABLE�(2350) POLE POSITION�(2350) POLE POSITION�(2350) POLE POSITION�(2350) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2400±125 CUTKOSKY 80 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •2427 VRANA 00 DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT400±150 CUTKOSKY 80 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •458 VRANA 00 DPWA Multi
hannel�(2350) ELASTIC POLE RESIDUE�(2350) ELASTIC POLE RESIDUE�(2350) ELASTIC POLE RESIDUE�(2350) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT15±8 CUTKOSKY 80 IPWA πN → πNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−70±70 CUTKOSKY 80 IPWA πN → πN�(2350) BREIT-WIGNER MASS�(2350) BREIT-WIGNER MASS�(2350) BREIT-WIGNER MASS�(2350) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2400±125 CUTKOSKY 80 IPWA πN → πN2305± 26 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •2459±100 VRANA 00 DPWA Multi
hannel�(2350) BREIT-WIGNER WIDTH�(2350) BREIT-WIGNER WIDTH�(2350) BREIT-WIGNER WIDTH�(2350) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT400±150 CUTKOSKY 80 IPWA πN → πN300± 70 HOEHLER 79 IPWA πN → πN
• • • We do not use the following data for averages, �ts, limits, et
. • • •480±360 VRANA 00 DPWA Multi
hannel

�(2350) DECAY MODES�(2350) DECAY MODES�(2350) DECAY MODES�(2350) DECAY MODESMode Fra
tion (�i /�)�1 N π 4{30 %�(2350) BRANCHING RATIOS�(2350) BRANCHING RATIOS�(2350) BRANCHING RATIOS�(2350) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT20±10 CUTKOSKY 80 IPWA πN → πN4± 2 HOEHLER 79 IPWA πN → πN

• • • We do not use the following data for averages, �ts, limits, et
. • • •7±14 VRANA 00 DPWA Multi
hannel�(2350) REFERENCES�(2350) REFERENCES�(2350) REFERENCES�(2350) REFERENCESVRANA 00 PRPL 328 181 T.P. Vrana, S.A. Dytman, T.-S.H. Lee (PITT, ANL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(2390) 7/2+ I (JP ) = 32 (72+) Status: ∗OMITTED FROM SUMMARY TABLE�(2390) POLE POSITION�(2390) POLE POSITION�(2390) POLE POSITION�(2390) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2223± 15±19 1 SVARC 14 L+P πN → πN2350±100 CUTKOSKY 80 IPWA πN → πN
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT431± 26±7 1 SVARC 14 L+P πN → πN260±100 CUTKOSKY 80 IPWA πN → πN�(2390) ELASTIC POLE RESIDUE�(2390) ELASTIC POLE RESIDUE�(2390) ELASTIC POLE RESIDUE�(2390) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT26±2±1 1 SVARC 14 L+P πN → πN12±6 CUTKOSKY 80 IPWA πN → πNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−160± 5±11 1 SVARC 14 L+P πN → πN
− 90±60 CUTKOSKY 80 IPWA πN → πN�(2390) BREIT-WIGNER MASS�(2390) BREIT-WIGNER MASS�(2390) BREIT-WIGNER MASS�(2390) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2350±100 CUTKOSKY 80 IPWA πN → πN2425± 60 HOEHLER 79 IPWA πN → πN�(2390) BREIT-WIGNER WIDTH�(2390) BREIT-WIGNER WIDTH�(2390) BREIT-WIGNER WIDTH�(2390) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT300±100 CUTKOSKY 80 IPWA πN → πN300± 80 HOEHLER 79 IPWA πN → πN�(2390) DECAY MODES�(2390) DECAY MODES�(2390) DECAY MODES�(2390) DECAY MODESMode Fra
tion (�i /�)�1 N π 3{12 %�(2390) BRANCHING RATIOS�(2390) BRANCHING RATIOS�(2390) BRANCHING RATIOS�(2390) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT8±4 CUTKOSKY 80 IPWA πN → πN7±4 HOEHLER 79 IPWA πN → πN�(2390) FOOTNOTES�(2390) FOOTNOTES�(2390) FOOTNOTES�(2390) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(2390) REFERENCES�(2390) REFERENCES�(2390) REFERENCES�(2390) REFERENCESSVARC 14 PR C89 045205 A. Svar
 et al.CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP



1572157215721572BaryonParti
le Listings�(2400),�(2420),�(2750)�(2400) 9/2− I (JP ) = 32 (92−) Status: ∗∗OMITTED FROM SUMMARY TABLE�(2400) POLE POSITION�(2400) POLE POSITION�(2400) POLE POSITION�(2400) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT1983 ARNDT 06 DPWA πN → πN, ηN2260±60 CUTKOSKY 80 IPWA πN → πN
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT878 ARNDT 06 DPWA πN → πN, ηN320±160 CUTKOSKY 80 IPWA πN → πN�(2400) ELASTIC POLE RESIDUE�(2400) ELASTIC POLE RESIDUE�(2400) ELASTIC POLE RESIDUE�(2400) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT24 ARNDT 06 DPWA πN → πN, ηN8±4 CUTKOSKY 80 IPWA πN → πNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−139 ARNDT 06 DPWA πN → πN, ηN
− 25±15 CUTKOSKY 80 IPWA πN → πN�(2400) BREIT-WIGNER MASS�(2400) BREIT-WIGNER MASS�(2400) BREIT-WIGNER MASS�(2400) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2643±141 ARNDT 06 DPWA πN → πN, ηN2300±100 CUTKOSKY 80 IPWA πN → πN2468± 50 HOEHLER 79 IPWA πN → πN�(2400) BREIT-WIGNER WIDTH�(2400) BREIT-WIGNER WIDTH�(2400) BREIT-WIGNER WIDTH�(2400) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT895±432 ARNDT 06 DPWA πN → πN, ηN330±100 CUTKOSKY 80 IPWA πN → πN480±100 HOEHLER 79 IPWA πN → πN�(2400) DECAY MODES�(2400) DECAY MODES�(2400) DECAY MODES�(2400) DECAY MODESMode Fra
tion (�i /�)�1 N π 3{9 %�(2400) BRANCHING RATIOS�(2400) BRANCHING RATIOS�(2400) BRANCHING RATIOS�(2400) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT6.4±2.2 ARNDT 06 DPWA πN → πN, ηN5 ±2 CUTKOSKY 80 IPWA πN → πN6 ±3 HOEHLER 79 IPWA πN → πN�(2400) REFERENCES�(2400) REFERENCES�(2400) REFERENCES�(2400) REFERENCESARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(2420) 11/2+ I (JP ) = 32 (112 +)Status: ∗∗∗∗Older and obsolete values are listed and referen
ed in the 2014 edi-tion, Chinese Physi
s C 38383838 070001 (2014).�(2420) POLE POSITION�(2420) POLE POSITION�(2420) POLE POSITION�(2420) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT2260 to 2400 (≈ 2330) OUR ESTIMATE2260 to 2400 (≈ 2330) OUR ESTIMATE2260 to 2400 (≈ 2330) OUR ESTIMATE2260 to 2400 (≈ 2330) OUR ESTIMATE2454± 4±11 1 SVARC 14 L+P πN → πN2529 ARNDT 06 DPWA πN → πN, ηN2300 HOEHLER 93 ARGD πN → πN2360±100 CUTKOSKY 80 IPWA πN → πN

−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT350 to 750 (≈ 550) OUR ESTIMATE350 to 750 (≈ 550) OUR ESTIMATE350 to 750 (≈ 550) OUR ESTIMATE350 to 750 (≈ 550) OUR ESTIMATE462± 8±50 1 SVARC 14 L+P πN → πN621 ARNDT 06 DPWA πN → πN, ηN620 HOEHLER 93 ARGD πN → πN420±100 CUTKOSKY 80 IPWA πN → πN�(2420) ELASTIC POLE RESIDUE�(2420) ELASTIC POLE RESIDUE�(2420) ELASTIC POLE RESIDUE�(2420) ELASTIC POLE RESIDUEMODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣MODULUS ∣

∣r ∣∣VALUE (MeV) DOCUMENT ID TECN COMMENT20 to 40 (≈ 30) OUR ESTIMATE20 to 40 (≈ 30) OUR ESTIMATE20 to 40 (≈ 30) OUR ESTIMATE20 to 40 (≈ 30) OUR ESTIMATE30±1±7 1 SVARC 14 L+P πN → πN33 ARNDT 06 DPWA πN → πN, ηN39 HOEHLER 93 ARGD πN → πN18±6 CUTKOSKY 80 IPWA πN → πNPHASE θPHASE θPHASE θPHASE θVALUE (◦) DOCUMENT ID TECN COMMENT
−60 to 20 (≈ − 20) OUR ESTIMATE−60 to 20 (≈ − 20) OUR ESTIMATE−60 to 20 (≈ − 20) OUR ESTIMATE−60 to 20 (≈ − 20) OUR ESTIMATE11± 1±8 1 SVARC 14 L+P πN → πN
−45 ARNDT 06 DPWA πN → πN, ηN
−60 HOEHLER 93 ARGD πN → πN
−30±40 CUTKOSKY 80 IPWA πN → πN�(2420) BREIT-WIGNER MASS�(2420) BREIT-WIGNER MASS�(2420) BREIT-WIGNER MASS�(2420) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2300 to 2500 (≈ 2420) OUR ESTIMATE2300 to 2500 (≈ 2420) OUR ESTIMATE2300 to 2500 (≈ 2420) OUR ESTIMATE2300 to 2500 (≈ 2420) OUR ESTIMATE2633± 29 ARNDT 06 DPWA πN → πN, ηN2400±125 CUTKOSKY 80 IPWA πN → πN2416± 17 HOEHLER 79 IPWA πN → πN�(2420) BREIT-WIGNER WIDTH�(2420) BREIT-WIGNER WIDTH�(2420) BREIT-WIGNER WIDTH�(2420) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT300 to 500 (≈ 400) OUR ESTIMATE300 to 500 (≈ 400) OUR ESTIMATE300 to 500 (≈ 400) OUR ESTIMATE300 to 500 (≈ 400) OUR ESTIMATE692± 47 ARNDT 06 DPWA πN → πN, ηN450±150 CUTKOSKY 80 IPWA πN → πN340± 28 HOEHLER 79 IPWA πN → πN�(2420) DECAY MODES�(2420) DECAY MODES�(2420) DECAY MODES�(2420) DECAY MODESThe following bran
hing fra
tions are our estimates, not �ts or averages.Mode Fra
tion (�i /�)�1 N π 5{15 %�(2420) BRANCHING RATIOS�(2420) BRANCHING RATIOS�(2420) BRANCHING RATIOS�(2420) BRANCHING RATIOS�(N π

)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE5 to 15 OUR ESTIMATE8.5±0.8 ARNDT 06 DPWA πN → πN, ηN8 ±3 CUTKOSKY 80 IPWA πN → πN8.0±1.5 HOEHLER 79 IPWA πN → πN�(2420) FOOTNOTES�(2420) FOOTNOTES�(2420) FOOTNOTES�(2420) FOOTNOTES1Fit to the amplitudes of HOEHLER 79.�(2420) REFERENCES�(2420) REFERENCES�(2420) REFERENCES�(2420) REFERENCESPDG 14 CPC 38 070001 K. Olive et al. (PDG Collab.)SVARC 14 PR C89 045205 A. Svar
 et al.ARNDT 06 PR C74 045205 R.A. Arndt et al. (GWU)HOEHLER 93 πN Newsletter 9 1 G. Hohler (KARL)CUTKOSKY 80 Toronto Conf. 19 R.E. Cutkosky et al. (CMU, LBL) IJPAlso PR D20 2839 R.E. Cutkosky et al. (CMU, LBL)HOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(2750) 13/2− I (JP ) = 32 (132 −) Status: ∗∗OMITTED FROM SUMMARY TABLE�(2750) BREIT-WIGNER MASS�(2750) BREIT-WIGNER MASS�(2750) BREIT-WIGNER MASS�(2750) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2794±80 HOEHLER 79 IPWA πN → πN



1573157315731573See key on page 601 BaryonParti
le Listings�(2750),�(2950),�(∼ 3000)�(2750) BREIT-WIGNER WIDTH�(2750) BREIT-WIGNER WIDTH�(2750) BREIT-WIGNER WIDTH�(2750) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT350±100 HOEHLER 79 IPWA πN → πN�(2750) DECAY MODES�(2750) DECAY MODES�(2750) DECAY MODES�(2750) DECAY MODESMode Fra
tion (�i /�)�1 N π 2{6 %�(2750) BRANCHING RATIOS�(2750) BRANCHING RATIOS�(2750) BRANCHING RATIOS�(2750) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT4.0±1.5 HOEHLER 79 IPWA πN → πN�(2750) REFERENCES�(2750) REFERENCES�(2750) REFERENCES�(2750) REFERENCESHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP�(2950) 15/2+ I (JP ) = 32 (152 +)Status: ∗∗OMITTED FROM SUMMARY TABLE�(2950) BREIT-WIGNER MASS�(2950) BREIT-WIGNER MASS�(2950) BREIT-WIGNER MASS�(2950) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2990±100 HOEHLER 79 IPWA πN → πN�(2950) BREIT-WIGNER WIDTH�(2950) BREIT-WIGNER WIDTH�(2950) BREIT-WIGNER WIDTH�(2950) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT330±100 HOEHLER 79 IPWA πN → πN�(2950) DECAY MODES�(2950) DECAY MODES�(2950) DECAY MODES�(2950) DECAY MODESMode Fra
tion (�i /�)�1 N π 2{6 %�(2950) BRANCHING RATIOS�(2950) BRANCHING RATIOS�(2950) BRANCHING RATIOS�(2950) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT4±2 HOEHLER 79 IPWA πN → πN�(2950) REFERENCES�(2950) REFERENCES�(2950) REFERENCES�(2950) REFERENCESHOEHLER 79 PDAT 12-1 G. Hohler et al. (KARLT) IJPAlso Toronto Conf. 3 R. Ko
h (KARLT) IJP

�(∼ 3000 Region)Partial-Wave AnalysesOMITTED FROM SUMMARY TABLEWe list here mis
ellaneous high-mass 
andidates for isospin-3/2 res-onan
es found in partial-wave analyses.Our 1982 edition also had a �(2850) and a �(3230). The eviden
efor them was dedu
ed from total 
ross-se
tion and 180◦ elasti
 
ross-se
tion measurements. The �(2850) has been resolved into the�(2750) I3,13 and �(2950) K3,15. The �(3230) is perhaps relatedto the K3,13 of HENDRY 78 and to the L3,17 of KOCH 80.�(∼ 3000) BREIT-WIGNER MASS�(∼ 3000) BREIT-WIGNER MASS�(∼ 3000) BREIT-WIGNER MASS�(∼ 3000) BREIT-WIGNER MASSVALUE (MeV) DOCUMENT ID TECN COMMENT3300 1 KOCH 80 IPWA πN → πN L3,17 wave3500 1 KOCH 80 IPWA πN → πN M3,19 wave2850±150 HENDRY 78 MPWA πN → πN I3,11 wave3200±200 HENDRY 78 MPWA πN → πN K3,13 wave3300±200 HENDRY 78 MPWA πN → πN L3,17 wave3700±200 HENDRY 78 MPWA πN → πN M3,19 wave4100±300 HENDRY 78 MPWA πN → πN N3,21 wave�(∼ 3000) BREIT-WIGNER WIDTH�(∼ 3000) BREIT-WIGNER WIDTH�(∼ 3000) BREIT-WIGNER WIDTH�(∼ 3000) BREIT-WIGNER WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT700±200 HENDRY 78 MPWA πN → πN I3,11 wave1000±300 HENDRY 78 MPWA πN → πN K3,13 wave1100±300 HENDRY 78 MPWA πN → πN L3,17 wave1300±400 HENDRY 78 MPWA πN → πN M3,19 wave1600±500 HENDRY 78 MPWA πN → πN N3,21 wave�(∼ 3000) DECAY MODES�(∼ 3000) DECAY MODES�(∼ 3000) DECAY MODES�(∼ 3000) DECAY MODESMode Fra
tion (�i /�)�1 N π seen�(∼ 3000) BRANCHING RATIOS�(∼ 3000) BRANCHING RATIOS�(∼ 3000) BRANCHING RATIOS�(∼ 3000) BRANCHING RATIOS�(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/��(N π
)/�total �1/�VALUE (%) DOCUMENT ID TECN COMMENT6±2 HENDRY 78 MPWA πN → πN I3,11 wave5±2 HENDRY 78 MPWA πN → πN K3,13 wave3±1 HENDRY 78 MPWA πN → πN L3,17 wave3±1 HENDRY 78 MPWA πN → πN M3,19 wave2±1 HENDRY 78 MPWA πN → πN N3,21 wave�(∼ 3000) FOOTNOTES�(∼ 3000) FOOTNOTES�(∼ 3000) FOOTNOTES�(∼ 3000) FOOTNOTES1 In addition, KOCH 80 reports some eviden
e for an S31 �(2700) and a P33 �(2800).�(∼ 3000) REFERENCES�(∼ 3000) REFERENCES�(∼ 3000) REFERENCES�(∼ 3000) REFERENCESKOCH 80 Toronto Conf. 3 R. Ko
h (KARLT) IJPHENDRY 78 PRL 41 222 A.W. Hendry (IND, LBL) IJPAlso ANP 136 1 A.W. Hendry (IND)



1574157415741574Baryon Parti
le Listings� � BARYONS� BARYONS� BARYONS� BARYONS(S = −1, I = 0)(S = −1, I = 0)(S = −1, I = 0)(S = −1, I = 0)�0 = uds� I (JP ) = 0(12+) Status: ∗∗∗∗We have omitted some results that have been superseded by laterexperiments. See our earlier editions.� MASS� MASS� MASS� MASSThe �t uses �, �+, �0, �− mass and mass-di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1115.683±0.006 OUR FIT1115.683±0.006 OUR FIT1115.683±0.006 OUR FIT1115.683±0.006 OUR FIT1115.683±0.006 OUR AVERAGE1115.683±0.006 OUR AVERAGE1115.683±0.006 OUR AVERAGE1115.683±0.006 OUR AVERAGE1115.678±0.006±0.006 20k HARTOUNI 94 SPEC pp 27.5 GeV/
1115.690±0.008±0.006 18k 1 HARTOUNI 94 SPEC pp 27.5 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •1115.59 ±0.08 935 HYMAN 72 HEBC1115.39 ±0.12 195 MAYEUR 67 EMUL1115.6 ±0.4 LONDON 66 HBC1115.65 ±0.07 488 2 SCHMIDT 65 HBC1115.44 ±0.12 3 BHOWMIK 63 RVUE1We assume CPT invarian
e: this is the � mass as measured by HARTOUNI 94. Seebelow for the fra
tional mass di�eren
e, testing CPT.2The SCHMIDT 65 masses have been reevaluated using our April 1973 proton and K±and π± masses. P. S
hmidt, private 
ommuni
ation (1974).3The mass has been raised 35 keV to take into a

ount a 46 keV in
rease in the protonmass and an 11 keV de
rease in the π± mass (note added Reviews of Modern Physi
s39393939 1 (1967)). (m� − m�) / m�(m� − m�) / m�(m� − m�) / m�(m� − m�) / m�A test of CPT invarian
e.VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT
− 0.1 ± 1.1 OUR AVERAGE− 0.1 ± 1.1 OUR AVERAGE− 0.1 ± 1.1 OUR AVERAGE− 0.1 ± 1.1 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.+ 1.3 ± 1.2 31k 1 RYBICKI 96 NA32 π− Cu, 230 GeV
− 1.08± 0.90 HARTOUNI 94 SPEC pp 27.5 GeV/
4.5 ± 5.4 CHIEN 66 HBC 6.9 GeV/
 p p
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−26 ±13 BADIER 67 HBC 2.4 GeV/
 p p1RYBICKI 96 is an analysis of old ACCMOR (NA32) data.� MEAN LIFE� MEAN LIFE� MEAN LIFE� MEAN LIFEMeasurements with an error ≥ 0.1 × 10−10 s have been omitted alto-gether, and only the latest high-statisti
s measurements are used for theaverage.VALUE (10−10 s) EVTS DOCUMENT ID TECN COMMENT2.632±0.020 OUR AVERAGE2.632±0.020 OUR AVERAGE2.632±0.020 OUR AVERAGE2.632±0.020 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.2.69 ±0.03 53k ZECH 77 SPEC Neutral hyperon beam2.611±0.020 34k CLAYTON 75 HBC 0.96{1.4 GeV/
 K− p2.626±0.020 36k POULARD 73 HBC 0.4{2.3 GeV/
 K− p
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.69 ±0.05 6582 ALTHOFF 73B OSPK π+ n → �K+2.54 ±0.04 4572 BALTAY 71B HBC K−p at rest2.535±0.035 8342 GRIMM 68 HBC2.47 ±0.08 2600 HEPP 68 HBC2.35 ±0.09 916 BURAN 66 HLBC2.452+0.056

−0.054 2213 ENGELMANN 66 HBC2.59 ±0.09 794 HUBBARD 64 HBC2.59 ±0.07 1378 SCHWARTZ 64 HBC2.36 ±0.06 2239 BLOCK 63 HEBC

WEIGHTED AVERAGE
2.631±0.020 (Error scaled by 1.6)

POULARD 73 HBC 0.1
CLAYTON 75 HBC 1.0
ZECH 77 SPEC 3.8

χ2

       4.9
(Confidence Level = 0.085)

2.55 2.6 2.65 2.7 2.75 2.8 2.85� mean life (10−10 s) (τ � − τ �) / τ �(τ � − τ �) / τ �(τ � − τ �) / τ �(τ � − τ �) / τ �A test of CPT invarian
e.VALUE DOCUMENT ID TECN COMMENT
−0.001 ±0.009 OUR AVERAGE−0.001 ±0.009 OUR AVERAGE−0.001 ±0.009 OUR AVERAGE−0.001 ±0.009 OUR AVERAGE
−0.0018±0.0066±0.0056 BARNES 96 CNTR LEAR p p → ��0.044 ±0.085 BADIER 67 HBC 2.4 GeV/
 p p
BARYON MAGNETIC MOMENTS

Written 1994 by C.G. Wohl (LBNL).

The figure below shows the measured magnetic moments of

the stable baryons. It also shows the predictions of the simplest
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quark model, using the measured p, n, and Λ moments as input.

In this model, the moments are [1]

µp = (4µu − µd)/3 µn = (4µd − µu)/3

µΣ+ = (4µu − µs)/3 µΣ− = (4µd − µs)/3

µΞ0 = (4µs − µu)/3 µΞ− = (4µs − µd)/3

µΛ = µs µΣ0 = (2µu + 2µd − µs)/3

µΩ− = 3µs



1575157515751575See key on page 601 BaryonParti
le Listings�
and the Σ0 → Λ transition moment is

µΣ0Λ = (µd − µu)/
√

3 .

The quark moments that result from this model are

µu = +1.852 µN , µd = −0.972 µN , and µs = −0.613 µN . The

corresponding effective quark masses, taking the quarks to be

Dirac point particles, where µ = qh̄/2m, are 338, 322, and 510

MeV. As the figure shows, the model gives a good first approx-

imation to the experimental moments. For efforts to make a

better model, we refer to the literature [2].
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L. Brekke and J.L. Rosner, Comm. Nucl. Part. Phys. 18,
83 (1988);
K.-T. Chao, Phys. Rev. D41, 920 (1990) and references
cited therein Also, see references cited in discussions of
results in the experimental papers..� MAGNETIC MOMENT� MAGNETIC MOMENT� MAGNETIC MOMENT� MAGNETIC MOMENTSee the \Note on Baryon Magneti
 Moments" above. Measurements withan error ≥ 0.15 µN have been omitted.VALUE (µN ) EVTS DOCUMENT ID TECN COMMENT

−0.613 ±0.004 OUR AVERAGE−0.613 ±0.004 OUR AVERAGE−0.613 ±0.004 OUR AVERAGE−0.613 ±0.004 OUR AVERAGE
−0.606 ±0.015 200k COX 81 SPEC
−0.6138±0.0047 3M SCHACHIN... 78 SPEC
−0.59 ±0.07 350k HELLER 77 SPEC
−0.57 ±0.05 1.2M BUNCE 76 SPEC
−0.66 ±0.07 1300 DAHL-JENSEN71 EMUL 200 kG �eld� ELECTRIC DIPOLE MOMENT� ELECTRIC DIPOLE MOMENT� ELECTRIC DIPOLE MOMENT� ELECTRIC DIPOLE MOMENTA nonzero value is forbidden by both T invarian
e and P invarian
e.VALUE (10−16 e 
m) CL% DOCUMENT ID TECN
< 1.5< 1.5< 1.5< 1.5 95 1 PONDROM 81 SPEC
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<100 95 2 BARONI 71 EMUL
<500 95 GIBSON 66 EMUL1PONDROM 81 measures (−3.0 ± 7.4)× 10−17 e-
m.2BARONI 71 measures (−5.9 ± 2.9)× 10−15 e-
m.� DECAY MODES� DECAY MODES� DECAY MODES� DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 pπ− (63.9 ±0.5 ) %�2 nπ0 (35.8 ±0.5 ) %�3 nγ ( 1.75±0.15) × 10−3�4 pπ−γ [a℄ ( 8.4 ±1.4 ) × 10−4�5 pe−νe ( 8.32±0.14) × 10−4�6 pµ−νµ ( 1.57±0.35) × 10−4Lepton (L) and/or Baryon (B) number violating de
ay modesLepton (L) and/or Baryon (B) number violating de
ay modesLepton (L) and/or Baryon (B) number violating de
ay modesLepton (L) and/or Baryon (B) number violating de
ay modes�7 π+ e− L,B < 6 × 10−7 90%�8 π+µ− L,B < 6 × 10−7 90%�9 π− e+ L,B < 4 × 10−7 90%�10 π−µ+ L,B < 6 × 10−7 90%�11 K+ e− L,B < 2 × 10−6 90%

�12 K+µ− L,B < 3 × 10−6 90%�13 K− e+ L,B < 2 × 10−6 90%�14 K−µ+ L,B < 3 × 10−6 90%�15 K0S ν L,B < 2 × 10−5 90%�16 pπ+ B < 9 × 10−7 90%[a℄ See the Listings below for the pion momentum range used in this mea-surement. CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 5 bran
hing ratios uses 20 measurements and one
onstraint to determine 5 parameters. The overall �t has a χ2 =10.5 for 16 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −100x3 −2 −1x5 46 −46 −1x6 0 0 0 0x1 x2 x3 x5� BRANCHING RATIOS� BRANCHING RATIOS� BRANCHING RATIOS� BRANCHING RATIOS�(pπ−
)/�(N π

) �1/(�1+�2)�(pπ−
)/�(N π

) �1/(�1+�2)�(pπ−
)/�(N π

) �1/(�1+�2)�(pπ−
)/�(N π

) �1/(�1+�2)VALUE EVTS DOCUMENT ID TECN COMMENT0.641±0.005 OUR FIT0.641±0.005 OUR FIT0.641±0.005 OUR FIT0.641±0.005 OUR FIT0.640±0.005 OUR AVERAGE0.640±0.005 OUR AVERAGE0.640±0.005 OUR AVERAGE0.640±0.005 OUR AVERAGE0.646±0.008 4572 BALTAY 71B HBC K−p at rest0.635±0.007 6736 DOYLE 69 HBC π− p → �K00.643±0.016 903 HUMPHREY 62 HBC0.624±0.030 CRAWFORD 59B HBC π− p → �K0�(nπ0)/�(Nπ
) �2/(�1+�2)�(nπ0)/�(Nπ
) �2/(�1+�2)�(nπ0)/�(Nπ
) �2/(�1+�2)�(nπ0)/�(Nπ
) �2/(�1+�2)VALUE EVTS DOCUMENT ID TECN0.359±0.005 OUR FIT0.359±0.005 OUR FIT0.359±0.005 OUR FIT0.359±0.005 OUR FIT0.310±0.028 OUR AVERAGE0.310±0.028 OUR AVERAGE0.310±0.028 OUR AVERAGE0.310±0.028 OUR AVERAGE0.35 ±0.05 BROWN 63 HLBC0.291±0.034 75 CHRETIEN 63 HLBC�(nγ

)/�total �3/��(nγ
)/�total �3/��(nγ
)/�total �3/��(nγ
)/�total �3/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.75±0.15 OUR FIT1.75±0.15 OUR FIT1.75±0.15 OUR FIT1.75±0.15 OUR FIT1.75±0.151.75±0.151.75±0.151.75±0.15 1816 LARSON 93 SPEC K−p at rest

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.78±0.24+0.14
−0.16 287 NOBLE 92 SPEC See LARSON 93�(nγ

)/�(nπ0) �3/�2�(nγ
)/�(nπ0) �3/�2�(nγ
)/�(nπ0) �3/�2�(nγ
)/�(nπ0) �3/�2VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •2.86±0.74±0.57 24 BIAGI 86 SPEC SPS hyperon beam�(pπ−γ
)/�(pπ−

) �4/�1�(pπ−γ
)/�(pπ−

) �4/�1�(pπ−γ
)/�(pπ−

) �4/�1�(pπ−γ
)/�(pπ−

) �4/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.32±0.221.32±0.221.32±0.221.32±0.22 72 BAGGETT 72C HBC π− < 95 MeV/
�(pe−νe)/�(pπ−
) �5/�1�(pe−νe)/�(pπ−
) �5/�1�(pe−νe)/�(pπ−
) �5/�1�(pe−νe)/�(pπ−
) �5/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.301±0.019 OUR FIT1.301±0.019 OUR FIT1.301±0.019 OUR FIT1.301±0.019 OUR FIT1.301±0.019 OUR AVERAGE1.301±0.019 OUR AVERAGE1.301±0.019 OUR AVERAGE1.301±0.019 OUR AVERAGE1.335±0.056 7111 BOURQUIN 83 SPEC SPS hyperon beam1.313±0.024 10k WISE 80 SPEC1.23 ±0.11 544 LINDQUIST 77 SPEC π− p → K0�1.27 ±0.07 1089 KATZ 73 HBC1.31 ±0.06 1078 ALTHOFF 71 OSPK1.17 ±0.13 86 1 CANTER 71 HBC K−p at rest1.20 ±0.12 143 2 MALONEY 69 HBC1.17 ±0.18 120 2 BAGLIN 64 FBC K− freon 1.45 GeV/
1.23 ±0.20 150 2 ELY 63 FBC

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.32 ±0.15 218 1 LINDQUIST 71 OSPK See LINDQUIST 771Changed by us from �(pe− νe )/�(N π
) assuming the authors used �(pπ−

)/�total =2/3.2Changed by us from �(pe− νe )/�(N π
) be
ause �(pe− ν)/�(pπ−) is the dire
tly mea-sured quantity.



1576157615761576Baryon Parti
le Listings��(pµ−νµ

)/�(Nπ
) �6/(�1+�2)�(pµ−νµ

)/�(Nπ
) �6/(�1+�2)�(pµ−νµ

)/�(Nπ
) �6/(�1+�2)�(pµ−νµ

)/�(Nπ
) �6/(�1+�2)VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.57±0.35 OUR FIT1.57±0.35 OUR FIT1.57±0.35 OUR FIT1.57±0.35 OUR FIT1.57±0.35 OUR AVERAGE1.57±0.35 OUR AVERAGE1.57±0.35 OUR AVERAGE1.57±0.35 OUR AVERAGE1.4 ±0.5 14 BAGGETT 72B HBC K−p at rest2.4 ±0.8 9 CANTER 71B HBC K−p at rest1.3 ±0.7 3 LIND 64 RVUE1.5 ±1.2 2 RONNE 64 FBCLepton (L) and/or Baryon (B) number violating de
ay modesLepton (L) and/or Baryon (B) number violating de
ay modesLepton (L) and/or Baryon (B) number violating de
ay modesLepton (L) and/or Baryon (B) number violating de
ay modes�(π+ e−)/�total �7/��(π+ e−)/�total �7/��(π+ e−)/�total �7/��(π+ e−)/�total �7/�VALUE CL% DOCUMENT ID TECN COMMENT

<6× 10−7<6× 10−7<6× 10−7<6× 10−7 90 1 MCCRACKEN 15 CLAS γ p → K+�1Uses B(� → pπ−) = (63.9 ± 0.5)% for normalization mode.�(π+µ−
)/�total �8/��(π+µ−
)/�total �8/��(π+µ−
)/�total �8/��(π+µ−
)/�total �8/�VALUE CL% DOCUMENT ID TECN COMMENT

<6× 10−7<6× 10−7<6× 10−7<6× 10−7 90 1 MCCRACKEN 15 CLAS γ p → K+�1Uses B(� → pπ−) = (63.9 ± 0.5)% for normalization mode.�(π− e+)/�total �9/��(π− e+)/�total �9/��(π− e+)/�total �9/��(π− e+)/�total �9/�VALUE CL% DOCUMENT ID TECN COMMENT
<4× 10−7<4× 10−7<4× 10−7<4× 10−7 90 1 MCCRACKEN 15 CLAS γ p → K+�1Uses B(� → pπ−) = (63.9 ± 0.5)% for normalization mode.�(π−µ+)/�total �10/��(π−µ+)/�total �10/��(π−µ+)/�total �10/��(π−µ+)/�total �10/�VALUE CL% DOCUMENT ID TECN COMMENT
<6× 10−7<6× 10−7<6× 10−7<6× 10−7 90 1 MCCRACKEN 15 CLAS γ p → K+�1Uses B(� → pπ−) = (63.9 ± 0.5)% for normalization mode.�(K+ e−)/�total �11/��(K+ e−)/�total �11/��(K+ e−)/�total �11/��(K+ e−)/�total �11/�VALUE CL% DOCUMENT ID TECN COMMENT
<2× 10−6<2× 10−6<2× 10−6<2× 10−6 90 1 MCCRACKEN 15 CLAS γ p → K+�1Uses B(� → pπ−) = (63.9 ± 0.5)% for normalization mode.�(K+µ−

)/�total �12/��(K+µ−
)/�total �12/��(K+µ−
)/�total �12/��(K+µ−
)/�total �12/�VALUE CL% DOCUMENT ID TECN COMMENT

<3× 10−6<3× 10−6<3× 10−6<3× 10−6 90 1 MCCRACKEN 15 CLAS γ p → K+�1Uses B(� → pπ−) = (63.9 ± 0.5)% for normalization mode.�(K− e+)/�total �13/��(K− e+)/�total �13/��(K− e+)/�total �13/��(K− e+)/�total �13/�VALUE CL% DOCUMENT ID TECN COMMENT
<2× 10−6<2× 10−6<2× 10−6<2× 10−6 90 1 MCCRACKEN 15 CLAS γ p → K+�1Uses B(� → pπ−) = (63.9 ± 0.5)% for normalization mode.�(K−µ+)/�total �14/��(K−µ+)/�total �14/��(K−µ+)/�total �14/��(K−µ+)/�total �14/�VALUE CL% DOCUMENT ID TECN COMMENT
<3× 10−6<3× 10−6<3× 10−6<3× 10−6 90 1 MCCRACKEN 15 CLAS γ p → K+�1Uses B(� → pπ−) = (63.9 ± 0.5)% for normalization mode.�(K0S ν

)/�total �15/��(K0S ν
)/�total �15/��(K0S ν
)/�total �15/��(K0S ν
)/�total �15/�VALUE CL% DOCUMENT ID TECN COMMENT

<2× 10−5<2× 10−5<2× 10−5<2× 10−5 90 1 MCCRACKEN 15 CLAS γ p → K+�1Uses B(� → pπ−) = (63.9 ± 0.5)% for normalization mode.�(pπ+)/�total �16/��(pπ+)/�total �16/��(pπ+)/�total �16/��(pπ+)/�total �16/�VALUE CL% DOCUMENT ID TECN COMMENT
<9× 10−7<9× 10−7<9× 10−7<9× 10−7 90 1 MCCRACKEN 15 CLAS γ p → K+�1Uses B(� → pπ−) = (63.9 ± 0.5)% for normalization mode.� DECAY PARAMETERS� DECAY PARAMETERS� DECAY PARAMETERS� DECAY PARAMETERSSee the \Note on Baryon De
ay Parameters" in the neutron Listings. Someearly results have been omitted.
α− FOR � → pπ−α− FOR � → pπ−α− FOR � → pπ−α− FOR � → pπ−VALUE EVTS DOCUMENT ID TECN COMMENT0.642±0.013 OUR AVERAGE0.642±0.013 OUR AVERAGE0.642±0.013 OUR AVERAGE0.642±0.013 OUR AVERAGE0.584±0.046 8500 ASTBURY 75 SPEC0.649±0.023 10325 CLELAND 72 OSPK0.67 ±0.06 3520 DAUBER 69 HBC From � de
ay0.645±0.017 10130 OVERSETH 67 OSPK � from π− p0.62 ±0.07 1156 CRONIN 63 CNTR � from π− p
α+ FOR � → pπ+α+ FOR � → pπ+α+ FOR � → pπ+α+ FOR � → pπ+VALUE EVTS DOCUMENT ID TECN COMMENT
−0.71 ±0.08 OUR AVERAGE−0.71 ±0.08 OUR AVERAGE−0.71 ±0.08 OUR AVERAGE−0.71 ±0.08 OUR AVERAGE
−0.755±0.083±0.063 ≈ 8.7k ABLIKIM 10 BES J/ψ → ��
−0.63 ±0.13 770 TIXIER 88 DM2 J/ψ → ��

φ ANGLE FOR � → pπ− (tanφ = β / γ)φ ANGLE FOR � → pπ− (tanφ = β / γ)φ ANGLE FOR � → pπ− (tanφ = β / γ)φ ANGLE FOR � → pπ− (tanφ = β / γ)VALUE (◦) EVTS DOCUMENT ID TECN COMMENT
− 6.5± 3.5 OUR AVERAGE− 6.5± 3.5 OUR AVERAGE− 6.5± 3.5 OUR AVERAGE− 6.5± 3.5 OUR AVERAGE
− 7.0± 4.5 10325 CLELAND 72 OSPK � from π− p
− 8.0± 6.0 10130 OVERSETH 67 OSPK � from π− p13.0±17.0 1156 CRONIN 63 OSPK � from π− p
α0 / α− = α(� → nπ0) / α(� → pπ−)α0 / α− = α(� → nπ0) / α(� → pπ−)α0 / α− = α(� → nπ0) / α(� → pπ−)α0 / α− = α(� → nπ0) / α(� → pπ−)VALUE EVTS DOCUMENT ID TECN COMMENT1.01 ±0.07 OUR AVERAGE1.01 ±0.07 OUR AVERAGE1.01 ±0.07 OUR AVERAGE1.01 ±0.07 OUR AVERAGE1.000±0.068 4760 1 OLSEN 70 OSPK π+ n → �K+1.10 ±0.27 CORK 60 CNTR1OLSEN 70 
ompares proton and neutron distributions from � de
ay.(α + α)/(α − α) in � → pπ−, � → pπ+(α + α)/(α − α) in � → pπ−, � → pπ+(α + α)/(α − α) in � → pπ−, � → pπ+(α + α)/(α − α) in � → pπ−, � → pπ+Zero if CP is 
onserved; α− and α+ are the asymmetry parameters for � → pπ−and � → pπ+ de
ay. See also the �− for a similar test involving the de
ay 
hain�− → �π−, � → pπ− and the 
orresponding antiparti
le 
hain.VALUE EVTS DOCUMENT ID TECN COMMENT0.006±0.021 OUR AVERAGE0.006±0.021 OUR AVERAGE0.006±0.021 OUR AVERAGE0.006±0.021 OUR AVERAGE
−0.081±0.055±0.059 ≈ 8.7k ABLIKIM 10 BES J/ψ → ��+0.013±0.022 96k BARNES 96 CNTR LEAR p p → ��+0.01 ±0.10 770 TIXIER 88 DM2 J/ψ → ��
−0.02 ±0.14 10k 1 CHAUVAT 85 CNTR pp, pp ISR
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.07 ±0.09 4063 BARNES 87 CNTR See BARNES 961CHAUVAT 85 a
tually gives α+(�)/α−(�) = −1.04 ± 0.29. Assumes polarization issame in pp → �X and pp → �X. Tests of this assumption, based on C-invarian
e andfragmentation, are satis�ed by the data.gA / gV FOR � → pe−νegA / gV FOR � → pe−νegA / gV FOR � → pe−νegA / gV FOR � → pe−νeMeasurements with fewer than 500 events have been omitted. Where ne
essary, signshave been 
hanged to agree with our 
onventions, whi
h are given in the \Note onBaryon De
ay Parameters" in the neutron Listings. The measurements all assume thatthe form fa
tor g2 = 0. See also the footnote on DWORKIN 90.VALUE EVTS DOCUMENT ID TECN COMMENT
−0.718±0.015 OUR AVERAGE−0.718±0.015 OUR AVERAGE−0.718±0.015 OUR AVERAGE−0.718±0.015 OUR AVERAGE
−0.719±0.016±0.012 37k 1 DWORKIN 90 SPEC e ν angular 
orr.
−0.70 ±0.03 7111 BOURQUIN 83 SPEC � → �π−

−0.734±0.031 10k 2 WISE 81 SPEC e ν angular 
orrel.
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.63 ±0.06 817 ALTHOFF 73 OSPK Polarized �1The tabulated result assumes the weak-magnetism 
oupling w ≡ gw (0)/gv (0) to be0.97, as given by the CVC hypothesis and as assumed by the other listed measurements.However, DWORKIN 90 measures w to be 0.15 ± 0.30, and then gA/gV = −0.731 ±0.016.2This experiment measures only the absolute value of gA/gV .� REFERENCES� REFERENCES� REFERENCES� REFERENCESWe have omitted some papers that have been superseded by later experi-ments. See our earlier editions.MCCRACKEN 15 PR D92 072002 M.E. M
Cra
ken et al. (JLab CLAS Collab.)ABLIKIM 10 PR D81 012003 M. Ablikim et al. (BES Collab.)BARNES 96 PR C54 1877 P.D. Barnes et al. (CERN PS-185 Collab.)RYBICKI 96 APP B27 2155 K. Rybi
kiHARTOUNI 94 PRL 72 1322 E.P. Hartouni et al. (BNL E766 Collab.)Also PRL 72 2821 (erratum) E.P. Hartouni et al. (BNL E766 Collab.)LARSON 93 PR D47 799 K.D. Larson et al. (BNL-811 Collab.)NOBLE 92 PRL 69 414 A.J. Noble et al. (BIRM, BOST, BRCO+)DWORKIN 90 PR D41 780 J. Dworkin et al. (MICH, WISC, RUTG+)TIXIER 88 PL B212 523 M.H. Tixier et al. (DM2 Collab.)BARNES 87 PL B199 147 P.D. Barnes et al. (CMU, SACL, LANL+)BIAGI 86 ZPHY C30 201 S.F. Biagi et al. (BRIS, CERN, GEVA+)CHAUVAT 85 PL 163B 273 P. Chauvat et al. (CERN, CLER, UCLA+)BOURQUIN 83 ZPHY C21 1 M.H. Bourquin et al. (BRIS, GEVA, HEIDP+)COX 81 PRL 46 877 P.T. Cox et al. (MICH, WISC, RUTG, MINN+)PONDROM 81 PR D23 814 L. Pondrom et al. (WISC, MICH, RUTG+)WISE 81 PL 98B 123 J.E. Wise et al. (MASA, BNL)WISE 80 PL 91B 165 J.E. Wise et al. (MASA, BNL)SCHACHIN... 78 PRL 41 1348 L. S
ha
hinger et al. (MICH, RUTG, WISC)HELLER 77 PL 68B 480 K. Heller et al. (MICH, WISC, HEIDH)LINDQUIST 77 PR D16 2104 J. Lindquist et al. (EFI, OSU, ANL)Also JP G2 L211 J. Lindquist et al. (EFI, WUSL, OSU+)ZECH 77 NP B124 413 G. Ze
h et al. (SIEG, CERN, DORT, HEIDH)BUNCE 76 PRL 36 1113 G.R.M. Bun
e et al. (WISC, MICH, RUTG)ASTBURY 75 NP B99 30 P. Astbury et al. (LOIC, CERN, ETH+)CLAYTON 75 NP B95 130 E.F. Clayton et al. (LOIC, RHEL)ALTHOFF 73 PL 43B 237 K.H. Altho� et al. (CERN, HEID)ALTHOFF 73B NP B66 29 K.H. Altho� et al. (CERN, HEID)KATZ 73 Thesis MDDP-TR-74-044 C.N. Katz (UMD)POULARD 73 PL 46B 135 G. Poulard, A. Givernaud, A.C. Borg (SACL)BAGGETT 72B ZPHY 252 362 M.J. Baggett et al. (HEID)BAGGETT 72C PL 42B 379 M.J. Baggett et al. (HEID)CLELAND 72 NP B40 221 W.E. Cleland et al. (CERN, GEVA, LUND)HYMAN 72 PR D5 1063 L.G. Hyman et al. (ANL, CMU)ALTHOFF 71 PL 37B 531 K.H. Altho� et al. (CERN, HEID)BALTAY 71B PR D4 670 C. Baltay et al. (COLU, BING)BARONI 71 LNC 2 1256 G. Baroni, S. Petrera, G. Romano (ROMA)CANTER 71 PRL 26 868 J. Canter et al. (STON, COLU)CANTER 71B PRL 27 59 J. Canter et al. (STON, COLU)DAHL-JENSEN 71 NC 3A 1 E. Dahl-Jensen et al. (CERN, ANKA, LAUS+)LINDQUIST 71 PRL 27 612 J. Lindquist et al. (EFI, WUSL, OSU+)OLSEN 70 PRL 24 843 S.L. Olsen et al. (WISC, MICH)DAUBER 69 PR 179 1262 P.M. Dauber et al. (LRL)DOYLE 69 Thesis UCRL 18139 J.C. Doyle (LRL)MALONEY 69 PRL 23 425 J.E. Maloney, B. Se
hi-Zorn (UMD)GRIMM 68 NC 54A 187 H.J. Grimm (HEID)
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Λ AND Σ RESONANCES

Introduction: Since our last edition, there have been a few

measurements of properties of the lowest Λ and Σ resonances—

mostly of masses and widths. But the field remains at a stand-

still. What follows is a much abbreviated version of the note

on Λ and Σ Resonances from our 1990 edition [1]. In particu-

lar, see that edition for some representative Argand plots from

partial-wave analyses.
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Figure 1. The signs of the imaginary parts of resonating amplitudes in the KN → Λπ and Σπ channels. The
signs of the Σ (1385) and Λ(1405), marked with a •, are set by convention, and then the others are determined
relative to them. The signs required by the SU(3) assignments of the resonances are shown with an arrow, and
the experimentally determined signs are shown with an ×.

Table 1 is an attempt to evaluate the status, both overall

and channel by channel, of each Λ and Σ resonance in the

Particle Listings. The evaluations are of course partly subjec-

tive. A blank indicates there is no evidence at all: either the

relevant couplings are small or the resonance does not really

exist. The main Baryon Summary Table includes only the es-

tablished resonances (overall status 3 or 4 stars). A number of

the 1- and 2-star entries may eventually disappear, but there

are certainly many resonances yet to be discovered underlying

the established ones.

Sign conventions for resonance couplings: In terms of

the isospin-0 and -1 elastic scattering amplitudes A0 and A1, the

amplitude for K−p → K
0
n scattering is ±(A1 − A0)/2, where

the sign depends on conventions used in conjunction with the

Clebsch-Gordan coefficients (such as, is the baryon or the meson

the “first” particle). If this reaction is partial-wave analyzed

and if the overall phase is chosen so that, say, the Σ(1775)D15

amplitude at resonance points along the positive imaginary axis

(points “up”), then any Σ at resonance will point “up” and any

Λ at resonance will point “down” (along the negative imaginary

axis). Thus the phase at resonance determines the isospin. The

above ignores background amplitudes in the resonating partial

waves.

That is the basic idea. In a similar but somewhat more

complicated way, the phases of the KN → Λπ and KN → Σπ

amplitudes for a resonating wave help determine the SU(3)

multiplet to which the resonance belongs. Again, a convention

has to be adopted for some overall arbitrary phases: which

way is “up”? Our convention is that of Levi-Setti [2] and is

shown in Fig. 1, which also compares experimental results with

theoretical predictions for the signs of several resonances. In the

Listings, a + or − sign in front of a measurement of an inelastic

resonance coupling indicates the sign (the absence of a sign

means that the sign is not determined, not that it is positive).

For more details, see Appendix II of our 1982 edition [3].

Errors on masses and widths: The errors quoted on

resonance parameters from partial-wave analyses are often only

statistical, and the parameters can change by more than these

errors when a different parametrization of the waves is used.

Furthermore, the different analyses use more or less the same

data, so it is not really appropriate to treat the different

determinations of the resonance parameters as independent or

to average them together. In any case, the spread of the masses,

widths, and branching fractions from the different analyses is

certainly a better indication of the uncertainties than are the

quoted errors. In the Baryon Summary Table, we usually give a
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range reflecting the spread of the values rather than a particular

value with error.

For three states, the Λ(1520), the Λ(1820), and the Σ(1775),

there is enough information to make an overall fit to the various

branching fractions. It is then necessary to use the quoted

errors, but the errors obtained from the fit should not be taken

seriously.

Table 1. The status of the Λ and Σ resonances. Only those with an
overall status of ∗∗∗ or ∗∗∗∗ are included in the main Baryon Summary
Table.

Status as seen in —

Particle JP
Overall
status NK Λπ Σπ Other channels

Λ(1116) 1/2+ ∗∗∗∗ F Nπ(weakly)
Λ(1405) 1/2− ∗∗∗∗ ∗∗∗∗ o ∗∗∗∗
Λ(1520) 3/2− ∗∗∗∗ ∗∗∗∗ r ∗∗∗∗ Λππ, Λγ
Λ(1600) 1/2+ ∗∗∗ ∗∗∗ b ∗∗
Λ(1670) 1/2− ∗∗∗∗ ∗∗∗∗ i ∗∗∗∗ Λη
Λ(1690) 3/2− ∗∗∗∗ ∗∗∗∗ d ∗∗∗∗ Λππ, Σππ

Λ(1800) 1/2− ∗∗∗ ∗∗∗ d ∗∗ NK
∗
, Σ(1385)π

Λ(1810) 1/2+ ∗∗∗ ∗∗∗ e ∗∗ NK
∗

Λ(1820) 5/2+ ∗∗∗∗ ∗∗∗∗ n ∗∗∗∗ Σ(1385)π
Λ(1830) 5/2− ∗∗∗∗ ∗∗∗ F ∗∗∗∗ Σ(1385)π

Λ(1890) 3/2+ ∗∗∗∗ ∗∗∗∗ o ∗∗ NK
∗
, Σ(1385)π

Λ(2000) ∗ r ∗ Λω, NK
∗

Λ(2020) 7/2+ ∗ ∗ b ∗
Λ(2100) 7/2− ∗∗∗∗ ∗∗∗∗ i ∗∗∗ Λω, NK

∗

Λ(2110) 5/2+ ∗∗∗ ∗∗ d ∗ Λω, NK
∗

Λ(2325) 3/2− ∗ ∗ d Λω
Λ(2350) ∗∗∗ ∗∗∗ e ∗
Λ(2585) ∗∗ ∗∗ n
Σ(1193) 1/2+ ∗∗∗∗ Nπ(weakly)
Σ(1385) 3/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗
Σ(1480) ∗ ∗ ∗ ∗
Σ(1560) ∗∗ ∗∗ ∗∗
Σ(1580) 3/2− ∗ ∗ ∗
Σ(1620) 1/2− ∗∗ ∗∗ ∗ ∗
Σ(1660) 1/2+ ∗∗∗ ∗∗∗ ∗ ∗∗
Σ(1670) 3/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ several others
Σ(1690) ∗∗ ∗ ∗∗ ∗ Λππ
Σ(1750) 1/2− ∗∗∗ ∗∗∗ ∗∗ ∗ Ση
Σ(1770) 1/2+ ∗
Σ(1775) 5/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ several others
Σ(1840) 3/2+ ∗ ∗ ∗∗ ∗
Σ(1880) 1/2+ ∗∗ ∗∗ ∗∗ NK

∗

Σ(1915) 5/2+ ∗∗∗∗ ∗∗∗ ∗∗∗∗ ∗∗∗ Σ(1385)π
Σ(1940) 3/2− ∗∗∗ ∗ ∗∗∗ ∗∗ quasi-2-body

Σ(2000) 1/2− ∗ ∗ NK
∗
, Λ(1520)π

Σ(2030) 7/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗ several others
Σ(2070) 5/2+ ∗ ∗ ∗
Σ(2080) 3/2+ ∗∗ ∗∗
Σ(2100) 7/2− ∗ ∗ ∗
Σ(2250) ∗∗∗ ∗∗∗ ∗ ∗
Σ(2455) ∗∗ ∗
Σ(2620) ∗∗ ∗
Σ(3000) ∗ ∗ ∗
Σ(3170) ∗ multi-body

∗∗∗∗ Existence is certain, and properties are at least fairly well explored.
∗∗∗ Existence ranges from very likely to certain, but further confir-

mation is desirable and/or quantum numbers, branching fractions,
etc. are not well determined.

∗∗ Evidence of existence is only fair.
∗ Evidence of existence is poor.

Production experiments: Partial-wave analyses of

course separate partial waves, whereas a peak in a cross section

or an invariant mass distribution usually cannot be disentangled

from background and analyzed for its quantum numbers; and

more than one resonance may be contributing to the peak.

Results from partial-wave analyses and from production exper-

iments are generally kept separate in the Listings, and in the

Baryon Summary Table results from production experiments

are used only for the low-mass states. The Σ(1385) and Λ(1405)

of course lie below the KN threshold and nearly everything

about them is learned from production experiments; and pro-

duction and formation experiments agree quite well in the case

of Λ(1520) and results have been combined. There is some dis-

agreement between production and formation experiments in

the 1600–1700 MeV region: see the note on the Σ(1670).
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POLE STRUCTURE OF THE Λ(1405) REGION

Written November 2015 by Ulf-G. Meißner (Bonn Univ. / FZ
Jülich) and Tetsuo Hyodo (YITP, Kyoto Univ.).

The Λ(1405) resonance emerges in the meson-baryon scat-

tering amplitude with the strangeness S = −1 and isospin

I = 0. It is the archetype of what is called a dynamically gener-

ated resonance, as pioneered by Dalitz and Tuan [1]. The most

powerful and systematic approach for the low-energy regime of

the strong interactions is chiral perturbation theory (ChPT),

see e.g. Ref. 2. A perturbative calculation is, however, not ap-

plicable to this sector because of the existence of the Λ(1405)

just below the K̄N threshold. In this case, ChPT has to be

combined with a non-perturbative resummation technique, just

as in the case of the nuclear forces. By solving the Lippmann-

Schwinger equation with the interaction kernel determined by

ChPT and using a particular regularization, in Ref. 3 a success-

ful description of the low-energy K−p scattering data as well as

the mass distribution of the Λ(1405) was achieved (for further

developments, see Ref. 4 and references therein).

The study of the pole structure was initiated by Ref. 5,

which finds two poles of the scattering amplitude in the com-

plex energy plane between the K̄N and πΣ thresholds. The

spectrum in experiments exhibits one effective resonance shape,
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while the existence of two poles results in the reaction-dependent

lineshape [6]. The origin of this two-pole structure is attributed

to the two attractive channels of the leading order interaction

in the SU(3) basis (singlet and octet) [6] and in the isospin

basis (K̄N and πΣ) [7]. It is remarkable that the sign and

the strength of the leading order interaction is determined

by a low-energy theorem of chiral symmetry, i.e. the so-called

Weinberg-Tomozawa term. The two-pole nature of the Λ(1405)

is qualitatively different from the case of the N(1440) resonance.

Two poles of the N(1440) appear on different Riemann sheets

of the complex energy plane separated by the π∆ branch point.

These poles reflect a single state, with a nearby pole and a

more distant shadow pole. In contrast, the two poles in the

Λ(1405) region on the same Riemann sheet (where πΣ channels

are unphysical and all other channels physical, correspondingly

to the one, connected to the real axis beween the πΣ and K̄N

thresholds) are generated from two attractive forces mentioned

above [6,7].

Recently, various new experimental results on the Λ(1405)

have become available [4]. Among these, the most striking

measurement is the precise determination of the energy shift and

width of kaonic hydrogen by the SIDDHARTA collaboration [8],

[9], which provides a quantitative and stringent constraint

on the K−p amplitude at threshold through the improved

Deser formula [10]. Systematic studies with error analyses

based on the next-to-leading order ChPT interaction including

the SIDDHARTA constraint have been performed by various

groups [11–15]. All these studies confirm that the new kaonic

hydrogen data are compatible with the scattering data above

threshold.

Table 1: Comparison of the pole positions of
Λ(1405) in the complex energy plane from next-
to-leading order chiral unitary coupled-channel
approaches including the SIDDHARTA con-
straint.

approach pole 1 [MeV] pole 2 [MeV]

Refs. 11,12, NLO 1424+7
−23 − i 26+3

−14 1381+18
−6 − i 81+19

−8

Ref. 14, Fit II 1421+3
−2 − i 19+8

−5 1388+9
−9 − i 114+24

−25

Ref. 15, solution #2 1434+2
−2 − i 10+2

−1 1330+4
−5 − i 56+17

−11

Ref. 15, solution #4 1429+8
−7 − i 12+2

−3 1325+15
−15 − i 90+12

−18

The results of the pole positions of Λ(1405) in the various

approaches are summarized in Table 1. We may regard the

difference among the calculations as a systematic error, which

stems from the various approximations of the Bethe-Salpeter

equation, the fitting procedure, and also the inclusion of SU(3)

breaking effects such as the choice of the various meson decay

constants, and so on. The main component for the Λ(1405)

is the pole 1, whose position converges within a relatively

small region near the K̄N threshold. On the other hand, the

position of the pole 2 shows a sizeable scatter. Detailed studies

of the πΣ spectrum in various reaction processes, together with

the precise experimental lineshape (see e.g. the recent precise

photoproduction data from the LEPS collaboration [16] and

from the CLAS collaboration [17,18], electroproduction data

from the CLAS collaboration [19], and proton-proton collision

data from COSY [20] and the HADES collaboration [21]) , will

shed light on the position of the second pole. The πΣ spectra

from the CLAS data and the HADES data are analyzed in

Ref. 22 and Ref. 23, respectively. Although the result of the pole

positions in Ref. 22 is similar to those in Table 1, the pole found

in Ref. 23 is not compatible with other results. Therefore, the

analysis with only the πΣ spectrum is not completely conclusive.

It is thus desirable to perform a comprehensive analysis of πΣ

spectra together with the systematic error analysis of the

scattering data as done in Ref. 15. It was shown there that

several solutions, which agree with the scattering data are ruled

out, if confronted with the recent CLAS data. The remaining

solutions are collected as solution #2 and solution #4 of Ref. 15

in Table 1.
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− 1.0 OUR AVERAGE1405.1+ 1.3
− 1.0 OUR AVERAGE1405.1+ 1.3
− 1.0 OUR AVERAGE1405.1+ 1.3
− 1.0 OUR AVERAGE1405 +11
− 9 HASSANVAND13 SPEC pp → p�(1405)K+1405 + 1.4
− 1.0 ESMAILI 10 RVUE 4He K− → �±π∓X at rest1406.5± 4.0 1 DALITZ 91 M-matrix �t



1580158015801580BaryonParti
le Listings�(1405),�(1520)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1391 ± 1 700 1 HEMINGWAY 85 HBC K− p 4.2 GeV/

∼ 1405 400 2 THOMAS 73 HBC π− p 1.69 GeV/
1405 120 BARBARO-... 68B DBC K− d 2.1{2.7 GeV/
1400 ± 5 67 BIRMINGHAM 66 HBC K− p 3.5 GeV/
1382 ± 8 ENGLER 65 HDBC π− p, π+ d 1.68 GeV/
1400 ±24 MUSGRAVE 65 HBC p p 3{4 GeV/
1410 ALEXANDER 62 HBC π− p 2.1 GeV/
1405 ALSTON 62 HBC K− p 1.2{0.5 GeV/
1405 ALSTON 61B HBC K− p 1.15 GeV/
EXTRAPOLATIONS BELOW NK THRESHOLDEXTRAPOLATIONS BELOW NK THRESHOLDEXTRAPOLATIONS BELOW NK THRESHOLDEXTRAPOLATIONS BELOW NK THRESHOLDVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1407.56 or 1407.50 3 KIMURA 00 potential model1411 4 MARTIN 81 K-matrix �t1406 5 CHAO 73 DPWA 0{range �t (sol. B)1421 MARTIN 70 RVUE Constant K-matrix1416 ±4 MARTIN 69 HBC Constant K-matrix1403 ±3 KIM 67 HBC K-matrix �t1407.5±1.2 6 KITTEL 66 HBC 0{e�e
tive-range �t1410.7±1.0 KIM 65 HBC 0{e�e
tive-range �t1409.6±1.7 6 SAKITT 65 HBC 0{e�e
tive-range �t�(1405) WIDTH�(1405) WIDTH�(1405) WIDTH�(1405) WIDTHPRODUCTION EXPERIMENTSPRODUCTION EXPERIMENTSPRODUCTION EXPERIMENTSPRODUCTION EXPERIMENTSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT50.5± 2.0 OUR AVERAGE50.5± 2.0 OUR AVERAGE50.5± 2.0 OUR AVERAGE50.5± 2.0 OUR AVERAGE62 ±10 HASSANVAND13 SPEC pp → p�(1405)K+50 ± 2 1 DALITZ 91 M-matrix �t
• • • We do not use the following data for averages, �ts, limits, et
. • • •24 + 4

− 3 ESMAILI 10 RVUE 4He K− → �±π∓X at rest32 ± 1 700 1 HEMINGWAY 85 HBC K− p 4.2 GeV/
45 to 55 400 2 THOMAS 73 HBC π− p 1.69 GeV/
35 120 BARBARO-... 68B DBC K− d 2.1{2.7 GeV/
50 ±10 67 BIRMINGHAM 66 HBC K− p 3.5 GeV/
89 ±20 ENGLER 65 HDBC60 ±20 MUSGRAVE 65 HBC35 ± 5 ALEXANDER 62 HBC50 ALSTON 62 HBC20 ALSTON 61B HBCEXTRAPOLATIONS BELOW NK THRESHOLDEXTRAPOLATIONS BELOW NK THRESHOLDEXTRAPOLATIONS BELOW NK THRESHOLDEXTRAPOLATIONS BELOW NK THRESHOLDVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •50.24 or 50.26 3 KIMURA 00 potential model30 4 MARTIN 81 K-matrix �t55 5,7 CHAO 73 DPWA 0{range �t (sol. B)20 MARTIN 70 RVUE Constant K-matrix29 ±6 MARTIN 69 HBC Constant K-matrix50 ±5 KIM 67 HBC K-matrix �t34.1±4.1 6 KITTEL 66 HBC37.0±3.2 KIM 65 HBC28.2±4.1 6 SAKITT 65 HBC�(1405) DECAY MODES�(1405) DECAY MODES�(1405) DECAY MODES�(1405) DECAY MODESMode Fra
tion (�i /�)�1 � π 100 %�2 �γ�3 �0 γ�4 NK �(1405) PARTIAL WIDTHS�(1405) PARTIAL WIDTHS�(1405) PARTIAL WIDTHS�(1405) PARTIAL WIDTHS�(�γ

) �2�(�γ
) �2�(�γ
) �2�(�γ
) �2VALUE (keV) DOCUMENT ID COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •27±8 BURKHARDT 91 Isobar model �t�(�0 γ
) �3�(�0 γ
) �3�(�0 γ
) �3�(�0 γ
) �3VALUE (keV) DOCUMENT ID COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •10 ± 4 or 23 ± 7 BURKHARDT 91 Isobar model �t�(1405) BRANCHING RATIOS�(1405) BRANCHING RATIOS�(1405) BRANCHING RATIOS�(1405) BRANCHING RATIOS�(NK)/�(� π
) �4/�1�(NK)/�(� π
) �4/�1�(NK)/�(� π
) �4/�1�(NK)/�(� π
) �4/�1VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3 95 HEMINGWAY 85 HBC K−p 4.2 GeV/


�(1405) FOOTNOTES�(1405) FOOTNOTES�(1405) FOOTNOTES�(1405) FOOTNOTES1DALITZ 91 �ts the HEMINGWAY 85 data.2THOMAS 73 data is �t by CHAO 73 (see next se
tion).3The KIMURA 00 values are from �ts A and B from a 
oupled-
hannel potential model us-ing low-energy KN and � π data, kaoni
-hydrogen x-ray measurements, and our �(1405)mass and width. The results bear mainly on the nature of the �(1405): three-quark stateor K N bound state.4The MARTIN 81 �t in
ludes the K± p forward s
attering amplitudes and the dispersionrelations they must satisfy.5 See also the a

ompanying paper of THOMAS 73.6Data of SAKITT 65 are used in the �t by KITTEL 66.7An asymmetri
 shape, with �/2 = 41 MeV below resonan
e, 14 MeV above.�(1405) REFERENCES�(1405) REFERENCES�(1405) REFERENCES�(1405) REFERENCESHASSANVAND 13 PR C87 055202 M. Hassanvand et al.Also PR C88 019905 (errat.) M. Hassanvand et al.IKEDA 12 NP A881 98 Y. Ikeda, T. Hyodo, W. Weise (TINT, RIKEN, MUNT)SHEVCHENKO 12A PR C85 034001 N.V. Shev
henko (REZ)KISSLINGER 11 EPJ A47 8 L.S. Kisslinger, E.M. Henley (CMU, WASH)SEKIHARA 11 PR C83 055202 T. Sekihara, T. Hyodo, D. Jido (KYOT, KYOTU+)CIEPLY 10 EPJ A43 191 A. Cieply, J. Smejkal (NPI, Te
h. U, Cze
h Rep.)ESMAILI 10 PL B686 23 J. Esmaili, Y. Akaishi, T. Yamazaki (RIKEN, ISUT+)REVAI 09 PR C79 035202 J. Revai, N.V. Shev
henko (BUDA, NPI Cze
h Rep.)ZYCHOR 08 PL B660 167 I. Zy
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k (GUEL)LOWE 89 NC 102A 167 J. Lowe (BIRM)WHITEHOUSE 89 PRL 63 1352 D.A. Whitehouse et al. (BIRM, BOST, BRCO+)SIEGEL 88 PR C38 2221 P.B. Siegel, W. Weise (REGE)WORKMAN 88 PR D37 3117 R.L. Workman, H.W. Fearing (TRIU)SCHNICK 87 PRL 58 1719 J. S
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k, R.H. Landau (ORST)CAPSTICK 86 PR D34 2809 S. Capsti
k, N. Isgur (TNTO)JENNINGS 86 PL B176 229 B.K. Jennings (TRIU)MALTMAN 86 PR D34 1372 K. Maltman, N. Isgur (LANL, TNTO)ZHONG 86 PL B171 471 Y.S. Zhong et al. (ADLD, TRIU, SURR)BURKHARDT 85 NP A440 653 H. Burkhardt, J. Lowe, A.S. Rosenthal (NOTT+)DAREWYCH 85 PR D32 1765 J.W. Darewy
h, R. Koniuk, N. Isgur (YORKC, TNTO)VEIT 85 PR D31 1033 E.A. Veit et al. (TRIU, ADLD, SURR)KIANG 84 PR C30 1638 D. Kiang et al. (DALH, MCMS)MILLER 84 Conferen
e paper D.J. Miller (LOUC)Conf. Interse
tions between Parti
le and Nu
lear Physi
s, p. 783VANDIJK 84 PR D30 937 W. van Dijk (MCMS)VEIT 84 PL 137B 415 E.A. Veit et al. (TRIU, SURR, CERN)DALITZ 82 Heid. Conf. R.H. Dalitz et al. (OXFTP)Heidelberg Conf., p. 201DALITZ 81 Kaon Conf. R.H. Dalitz, J.G. M
Ginley (OXFTP)Low and Intermediate Energy Kaon-Nu
leon Physi
s, p.381MARTIN 81B Kaon Conf. A.D. Martin (DURH)Low and Intermediate Energy Kaon-Nu
elon Physi
s, p. 97OADES 77 NC 42A 462 G.C. Oades, G. Ras
he (AARH, ZURI)SHAW 73 Purdue Conf. 417 G.L. Shaw (UCI)BARBARO-... 72 LBL-555 A. Barbaro-Galtieri (LBL)DOBSON 72 PR D6 3256 P.N. Dobson, R. M
Elhaney (HAWA)RAJASEKA... 72 PR D5 610 G. Rajasekaran (TATA)Earlier papers also 
ited in RAJASEKARAN 72.CLINE 71 PRL 26 1194 D. Cline, R. Laumann, J. Mapp (WISC)MARTIN 71 PL 35B 62 A.D. Martin, A.D. Martin, G.G. Ross (DURH, LOUC+)DALITZ 67 PR 153 1617 R.H. Dalitz, T.C. Wong, G. Rajasekaran (OXFTP+)DONALD 66 PL 22 711 R.A. Donald et al. (LIVP)KADYK 66 PRL 17 599 J.A. Kadyk et al. (LRL)ABRAMS 65 PR 139 B454 G.S. Abrams, B. Se
hi-Zorn (UMD)�(1520) 3/2− I (JP ) = 0(32−) Status: ∗∗∗∗Dis
overed by FERRO-LUZZI 62; the elaboration in WATSON 63is the 
lassi
 paper on the Breit-Wigner analysis of a multi
hannelresonan
e.The measurements of the mass, width, and elasti
ity published be-fore 1975 are now obsolete and have been omitted. They were lastlisted in our 1982 edition Physi
s Letters 111B111B111B111B 1 (1982).Produ
tion and formation experiments agree quite well, so they arelisted together here.



1581158115811581See key on page 601 BaryonParti
le Listings�(1520)�(1520) MASS�(1520) MASS�(1520) MASS�(1520) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1519.5 ±1.0 OUR ESTIMATE1519.5 ±1.0 OUR ESTIMATE1519.5 ±1.0 OUR ESTIMATE1519.5 ±1.0 OUR ESTIMATE1519.54±0.17 OUR AVERAGE1519.54±0.17 OUR AVERAGE1519.54±0.17 OUR AVERAGE1519.54±0.17 OUR AVERAGE1519.6 ±0.5 ZHANG 13A DPWA Multi
hannel1520.4 ±0.6 ±1.5 QIANG 10 SPEC e p → e′K+X (�t to X )1517.3 ±1.5 300 BARBER 80D SPEC γ p → �(1520)K+1517.8 ±1.2 5k BARLAG 79 HBC K−p 4.2 GeV/
1520.0 ±0.5 ALSTON-... 78 DPWA KN → K N1519.7 ±0.3 4k CAMERON 77 HBC K−p 0.96{1.36 GeV/
1519 ±1 GOPAL 77 DPWA KN multi
hannel1519.4 ±0.3 2000 CORDEN 75 DBC K−d 1.4{1.8 GeV/
�(1520) WIDTH�(1520) WIDTH�(1520) WIDTH�(1520) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT15.6 ±1.0 OUR ESTIMATE15.6 ±1.0 OUR ESTIMATE15.6 ±1.0 OUR ESTIMATE15.6 ±1.0 OUR ESTIMATE15.73±0.29 OUR AVERAGE15.73±0.29 OUR AVERAGE15.73±0.29 OUR AVERAGE15.73±0.29 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.17 ±1 ZHANG 13A DPWA Multi
hannel18.6 ±1.9 ±1.0 QIANG 10 SPEC e p → e′K+X (�t to X )16.3 ±3.3 300 BARBER 80D SPEC γ p → �(1520)K+16 ±1 GOPAL 80 DPWA KN → K N14 ±3 677 1 BARLAG 79 HBC K−p 4.2 GeV/
15.4 ±0.5 ALSTON-... 78 DPWA KN → K N16.3 ±0.5 4k CAMERON 77 HBC K−p 0.96{1.36 GeV/
15.0 ±0.5 GOPAL 77 DPWA KN multi
hannel15.5 ±1.6 2000 CORDEN 75 DBC K−d 1.4{1.8 GeV/
1From the best-resolution sample of �ππ events only.�(1520) POLE POSITION�(1520) POLE POSITION�(1520) POLE POSITION�(1520) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1518 ZHANG 13A DPWA Multi
hannel1518.8 QIANG 10 SPEC e p → e′K+X (�t to X )
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •16 ZHANG 13A DPWA Multi
hannel17.2 QIANG 10 SPEC e p → e′K+X (�t to X )�(1520) DECAY MODES�(1520) DECAY MODES�(1520) DECAY MODES�(1520) DECAY MODESMode Fra
tion (�i /�)�1 NK (45 ±1 ) %�2 � π (42 ±1 ) %�3 �ππ (10 ±1 ) %�4 � (1385)π�5 � (1385)π ( → �ππ )�6 �(ππ)S-wave�7 � ππ ( 0.9 ±0.1 ) %�8 �γ ( 0.85±0.15) %�9 �0 γ CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 9 bran
hing ratios uses 28 measurements and one
onstraint to determine 6 parameters. The overall �t has a χ2 =18.9 for 23 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −63x3 −32 −34x7 −4 −3 −1x8 −8 −7 −3 0x9 −24 −21 −10 −1 −1x1 x2 x3 x7 x8

�(1520) BRANCHING RATIOS�(1520) BRANCHING RATIOS�(1520) BRANCHING RATIOS�(1520) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.45 ±0.01 OUR ESTIMATE0.45 ±0.01 OUR ESTIMATE0.45 ±0.01 OUR ESTIMATE0.45 ±0.01 OUR ESTIMATE0.448±0.007 OUR FIT0.448±0.007 OUR FIT0.448±0.007 OUR FIT0.448±0.007 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.456±0.010 OUR AVERAGE0.456±0.010 OUR AVERAGE0.456±0.010 OUR AVERAGE0.456±0.010 OUR AVERAGE0.47 ±0.04 ZHANG 13A DPWA Multi
hannel0.47 ±0.02 GOPAL 80 DPWA KN → K N0.45 ±0.03 ALSTON-... 78 DPWA KN → K N0.448±0.014 CORDEN 75 DBC K−d 1.4{1.8 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.47 ±0.01 GOPAL 77 DPWA See GOPAL 800.42 MAST 76 HBC K−p → K0 n�(� π

)/�total �2/��(� π
)/�total �2/��(� π
)/�total �2/��(� π
)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.42 ±0.01 OUR ESTIMATE0.42 ±0.01 OUR ESTIMATE0.42 ±0.01 OUR ESTIMATE0.42 ±0.01 OUR ESTIMATE0.421±0.007 OUR FIT0.421±0.007 OUR FIT0.421±0.007 OUR FIT0.421±0.007 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.425±0.011 OUR AVERAGE0.425±0.011 OUR AVERAGE0.425±0.011 OUR AVERAGE0.425±0.011 OUR AVERAGE0.47 ±0.05 ZHANG 13A DPWA Multi
hannel0.426±0.014 CORDEN 75 DBC K−d 1.4{1.8 GeV/
0.418±0.017 BARBARO-... 69B HBC K−p 0.28{0.45 GeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •0.46 KIM 71 DPWA K-matrix analysis�(� π
)/�(NK) �2/�1�(� π
)/�(NK) �2/�1�(� π
)/�(NK) �2/�1�(� π
)/�(NK) �2/�1VALUE DOCUMENT ID TECN COMMENT0.940±0.026 OUR FIT0.940±0.026 OUR FIT0.940±0.026 OUR FIT0.940±0.026 OUR FIT Error in
ludes s
ale fa
tor of 1.3.0.95 ±0.04 OUR AVERAGE0.95 ±0.04 OUR AVERAGE0.95 ±0.04 OUR AVERAGE0.95 ±0.04 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.0.98 ±0.03 2 GOPAL 77 DPWA KN multi
hannel0.82 ±0.08 BURKHARDT 69 HBC K−p 0.8{1.2 GeV/
1.06 ±0.14 SCHEUER 68 DBC K−N 3 GeV/
0.96 ±0.20 DAHL 67 HBC π− p 1.6{4 GeV/
0.73 ±0.11 DAUBER 67 HBC K−p 2 GeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •1.06 ±0.12 BERTHON 74 HBC Quasi-2-body σ1.72 ±0.78 MUSGRAVE 65 HBC2The K N → � π amplitude at resonan
e is +0.46 ± 0.01.
WEIGHTED AVERAGE
0.95±0.04 (Error scaled by 1.7)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

DAUBER 67 HBC 4.0
DAHL 67 HBC
SCHEUER 68 DBC 0.6
BURKHARDT 69 HBC 2.7
GOPAL 77 DPWA 1.0

χ2

       8.3
(Confidence Level = 0.041)

0.4 0.6 0.8 1 1.2 1.4 1.6�(� π
)/�(NK)�(�ππ

)/�total �3/��(�ππ
)/�total �3/��(�ππ
)/�total �3/��(�ππ
)/�total �3/�VALUE DOCUMENT ID TECN COMMENT0.10 ±0.01 OUR ESTIMATE0.10 ±0.01 OUR ESTIMATE0.10 ±0.01 OUR ESTIMATE0.10 ±0.01 OUR ESTIMATE0.095±0.005 OUR FIT0.095±0.005 OUR FIT0.095±0.005 OUR FIT0.095±0.005 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.096±0.008 OUR AVERAGE0.096±0.008 OUR AVERAGE0.096±0.008 OUR AVERAGE0.096±0.008 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6.0.091±0.006 CORDEN 75 DBC K−d 1.4{1.8 GeV/
0.11 ±0.01 3 MAST 73B IPWA K−p → �ππ3Assumes �(NK)/�total = 0.46 ± 0.02.�(�ππ
)/�(NK) �3/�1�(�ππ
)/�(NK) �3/�1�(�ππ
)/�(NK) �3/�1�(�ππ
)/�(NK) �3/�1VALUE DOCUMENT ID TECN COMMENT0.212±0.012 OUR FIT0.212±0.012 OUR FIT0.212±0.012 OUR FIT0.212±0.012 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.202±0.021 OUR AVERAGE0.202±0.021 OUR AVERAGE0.202±0.021 OUR AVERAGE0.202±0.021 OUR AVERAGE0.22 ±0.03 BURKHARDT 69 HBC K−p 0.8{1.2 GeV/
0.19 ±0.04 SCHEUER 68 DBC K−N 3 GeV/
0.17 ±0.05 DAHL 67 HBC π− p 1.6{4 GeV/
0.21 ±0.18 DAUBER 67 HBC K−p 2 GeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •0.27 ±0.13 BERTHON 74 HBC Quasi-2-body σ0.2 KIM 71 DPWA K-matrix analysis



1582158215821582BaryonParti
le Listings�(1520), �(1600)�(� π
)/�(�ππ

) �2/�3�(� π
)/�(�ππ

) �2/�3�(� π
)/�(�ππ

) �2/�3�(� π
)/�(�ππ

) �2/�3VALUE DOCUMENT ID TECN COMMENT4.43±0.25 OUR FIT4.43±0.25 OUR FIT4.43±0.25 OUR FIT4.43±0.25 OUR FIT Error in
ludes s
ale fa
tor of 1.2.3.9 ±0.6 OUR AVERAGE3.9 ±0.6 OUR AVERAGE3.9 ±0.6 OUR AVERAGE3.9 ±0.6 OUR AVERAGE3.9 ±1.0 UHLIG 67 HBC K−p 0.9{1.0 GeV/
3.3 ±1.1 BIRMINGHAM 66 HBC K−p 3.5 GeV/
4.5 ±1.0 ARMENTEROS65C HBC�(� (1385)π)/�total �4/��(� (1385)π)/�total �4/��(� (1385)π)/�total �4/��(� (1385)π)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.041±0.0050.041±0.0050.041±0.0050.041±0.005 CHAN 72 HBC K−p → �ππ�(� (1385)π (→ �ππ ))/�(�ππ
) �5/�3�(� (1385)π (→ �ππ ))/�(�ππ
) �5/�3�(� (1385)π (→ �ππ ))/�(�ππ
) �5/�3�(� (1385)π (→ �ππ ))/�(�ππ
) �5/�3The �ππ mode is largely due to �(1385)π. Only the values of (�(1385)π) / (�2π)given by MAST 73B and CORDEN 75 are based on real 3-body partial-wave analyses.The dis
repan
y between the two results is essentially due to the di�erent hypothesesmade 
on
erning the shape of the (ππ)S-wave state.VALUE CL% DOCUMENT ID TECN COMMENT0.58±0.22 CORDEN 75 DBC K−d 1.4{1.8 GeV/
0.82±0.10 4 MAST 73B IPWA K−p → �ππ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.44 90 WIELAND 11 SPHR γ p → K+�(1520)0.39±0.10 5 BURKHARDT 71 HBC K−p → (�ππ)π4Both �(1385)π DS03 and � (ππ) DP03 
ontribute.5The 
entral bin (1514{1524 MeV) gives 0.74 ± 0.10; other bins are lower by 2-to-5standard deviations.�(�(ππ)S-wave)/�(�ππ
) �6/�3�(�(ππ)S-wave)/�(�ππ
) �6/�3�(�(ππ)S-wave)/�(�ππ
) �6/�3�(�(ππ)S-wave)/�(�ππ
) �6/�3VALUE DOCUMENT ID TECN COMMENT0.20±0.080.20±0.080.20±0.080.20±0.08 CORDEN 75 DBC K−d 1.4{1.8 GeV/
�(� ππ

)/�total �7/��(� ππ
)/�total �7/��(� ππ
)/�total �7/��(� ππ
)/�total �7/�VALUE DOCUMENT ID TECN COMMENT0.009 ±0.001 OUR ESTIMATE0.009 ±0.001 OUR ESTIMATE0.009 ±0.001 OUR ESTIMATE0.009 ±0.001 OUR ESTIMATE0.0086±0.0005 OUR FIT0.0086±0.0005 OUR FIT0.0086±0.0005 OUR FIT0.0086±0.0005 OUR FIT0.0086±0.0005 OUR AVERAGE0.0086±0.0005 OUR AVERAGE0.0086±0.0005 OUR AVERAGE0.0086±0.0005 OUR AVERAGE0.007 ±0.002 6 CORDEN 75 DBC K−d 1.4{1.8 GeV/
0.0085±0.0006 7 MAST 73 MPWA K−p → � ππ0.010 ±0.0015 BARBARO-... 69B HBC K−p 0.28{0.45 GeV/
6Mu
h of the � ππ de
ay pro
eeds via �(1385)π.7Assumes �(NK)/�total = 0.46.�(�γ

)/�total �8/��(�γ
)/�total �8/��(�γ
)/�total �8/��(�γ
)/�total �8/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT8.5±1.5 OUR ESTIMATE8.5±1.5 OUR ESTIMATE8.5±1.5 OUR ESTIMATE8.5±1.5 OUR ESTIMATE8.8±1.1 OUR FIT8.8±1.1 OUR FIT8.8±1.1 OUR FIT8.8±1.1 OUR FIT8.8±1.1 OUR AVERAGE8.8±1.1 OUR AVERAGE8.8±1.1 OUR AVERAGE8.8±1.1 OUR AVERAGE10.7±2.9+1.5

−0.4 32 TAYLOR 05 CLAS γ p → K+�γ10.2±2.1±1.5 290 ANTIPOV 04A SPNX pN(C) → �(1520)K+N(C)8.0±1.4 238 MAST 68B HBC Using �(NK)/�total = 0.45�(�0 γ
)/�total �9/��(�0 γ
)/�total �9/��(�0 γ
)/�total �9/��(�0 γ
)/�total �9/�VALUE DOCUMENT ID TECN COMMENT0.0193±0.0034 OUR FIT0.0193±0.0034 OUR FIT0.0193±0.0034 OUR FIT0.0193±0.0034 OUR FIT0.02 ±0.00350.02 ±0.00350.02 ±0.00350.02 ±0.0035 8 MAST 68B HBC Not measured; see note8Cal
ulated from �(�γ

)/�total, assuming SU(3). Needed to 
onstrain the sum of all thebran
hing ratios to be unity.�(1520) REFERENCES�(1520) REFERENCES�(1520) REFERENCES�(1520) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)WIELAND 11 EPJ A47 47 F. Wieland et al. (ELSA SAPHIR Collab.)QIANG 10 PL B694 123 Y. Qiang et al. (DUKE, JEFF, PNPI, GWU+)TAYLOR 05 PR C71 054609 S. Taylor et al. (JLab CLAS Collab.)Also PR C72 039902 (errat.) S. Taylor et al. (JLab CLAS Collab.)ANTIPOV 04A PL B604 22 Yu.M. Antipov et al. (IHEP SPHINX Collab.)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)BARBER 80D ZPHY C7 17 D.P. Barber et al. (DARE, LANC, SHEF)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPBARLAG 79 NP B149 220 S.J.M. Barlag et al. (AMST, CERN, NIJM+)ALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPCAMERON 77 NP B131 399 W. Cameron et al. (RHEL, LOIC) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMAST 76 PR D14 13 T.S. Mast et al. (LBL)CORDEN 75 NP B84 306 M.J. Corden et al. (BIRM)BERTHON 74 NC 21A 146 A. Berthon et al. (CDEF, RHEL, SACL+)MAST 73 PR D7 3212 T.S. Mast et al. (LBL) IJPMAST 73B PR D7 5 T.S. Mast et al. (LBL) IJPCHAN 72 PRL 28 256 S.B. Chan et al. (MASA, YALE)BURKHARDT 71 NP B27 64 E. Burkhardt et al. (HEID, CERN, SACL)KIM 71 PRL 27 356 J.K. Kim (HARV) IJPAlso Duke Conf. 161 J.K. Kim (HARV) IJPHyperon Resonan
es, 1970BARBARO-... 69B Lund Conf. 352 A. Barbaro-Galtieri et al. (LRL)Also Duke Conf. 95 R.D. Tripp (LRL)Hyperon Resonan
es 1970BURKHARDT 69 NP B14 106 E. Burkhardt et al. (HEID, EFI, CERN+)MAST 68B PRL 21 1715 T.S. Mast et al. (LRL)SCHEUER 68 NP B8 503 J.C. S
heuer et al. (SABRE Collab.)DAHL 67 PR 163 1377 O.I. Dahl et al. (LRL)DAUBER 67 PL 24B 525 P.M. Dauber et al. (UCLA)UHLIG 67 PR 155 1448 R.P. Uhlig et al. (UMD, NRL)BIRMINGHAM 66 PR 152 1148 M. Haque et al. (BIRM, GLAS, LOIC, OXF+)ARMENTEROS 65C PL 19 338 R. Armenteros et al. (CERN, HEID, SACL)MUSGRAVE 65 NC 35 735 B. Musgrave et al. (BIRM, CERN, EPOL+)WATSON 63 PR 131 2248 M.B. Watson, M. Ferro-Luzzi, R.D. Tripp (LRL) IJPFERRO-LUZZI 62 PRL 8 28 M. Ferro-Luzzi, R.D. Tripp, M.B. Watson (LRL) IJP

�(1600) 1/2+ I (JP ) = 0(12+) Status: ∗∗∗See also the �(1810) P01. There are quite possibly two P01 statesin this region. �(1600) MASS�(1600) MASS�(1600) MASS�(1600) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1560 to 1700 (≈ 1600) OUR ESTIMATE1560 to 1700 (≈ 1600) OUR ESTIMATE1560 to 1700 (≈ 1600) OUR ESTIMATE1560 to 1700 (≈ 1600) OUR ESTIMATE1592± 10 ZHANG 13A DPWA Multi
hannel1568± 20 GOPAL 80 DPWA KN → K N1703±100 ALSTON-... 78 DPWA KN → K N1573± 25 GOPAL 77 DPWA KN multi
hannel1596± 6 KANE 74 DPWA K−p → � π1620± 10 LANGBEIN 72 IPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •1572 or 1617 1 MARTIN 77 DPWA KN multi
hannel1646± 7 2 CARROLL 76 DPWA Isospin-0 total σ1570 KIM 71 DPWA K-matrix analysis�(1600) WIDTH�(1600) WIDTH�(1600) WIDTH�(1600) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT50 to 250 (≈ 150) OUR ESTIMATE50 to 250 (≈ 150) OUR ESTIMATE50 to 250 (≈ 150) OUR ESTIMATE50 to 250 (≈ 150) OUR ESTIMATE150± 28 ZHANG 13A DPWA Multi
hannel116± 20 GOPAL 80 DPWA KN → K N593±200 ALSTON-... 78 DPWA KN → K N147± 50 GOPAL 77 DPWA KN multi
hannel175± 20 KANE 74 DPWA K−p → � π60± 10 LANGBEIN 72 IPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •247 or 271 1 MARTIN 77 DPWA KN multi
hannel20 2 CARROLL 76 DPWA Isospin-0 total σ50 KIM 71 DPWA K-matrix analysis�(1600) POLE POSITION�(1600) POLE POSITION�(1600) POLE POSITION�(1600) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1572 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •138 ZHANG 13A DPWA Multi
hannel�(1600) DECAY MODES�(1600) DECAY MODES�(1600) DECAY MODES�(1600) DECAY MODESMode Fra
tion (�i /�)�1 NK 15{30 %�2 � π 10{60 %The above bran
hing fra
tions are our estimates, not �ts or averages.�(1600) BRANCHING RATIOS�(1600) BRANCHING RATIOS�(1600) BRANCHING RATIOS�(1600) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.15 to 0.30 OUR ESTIMATE0.15 to 0.30 OUR ESTIMATE0.15 to 0.30 OUR ESTIMATE0.15 to 0.30 OUR ESTIMATE0.14±0.04 ZHANG 13A DPWA Multi
hannel0.23±0.04 GOPAL 80 DPWA KN → K N0.14±0.05 ALSTON-... 78 DPWA KN → K N0.25±0.15 LANGBEIN 72 IPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.24±0.04 GOPAL 77 DPWA See GOPAL 800.30 or 0.29 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → �(1600)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1600)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1600)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1600)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.23±0.03 ZHANG 13A DPWA Multi
hannel
−0.16±0.04 GOPAL 77 DPWA KN multi
hannel
−0.33±0.11 KANE 74 DPWA K−p → � π0.28±0.09 LANGBEIN 72 IPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.39 or −0.39 1 MARTIN 77 DPWA KN multi
hannelnot seen HEPP 76B DPWA K−N → � π



1583158315831583See key on page 601 BaryonParti
le Listings�(1600),�(1670)�(1600) FOOTNOTES�(1600) FOOTNOTES�(1600) FOOTNOTES�(1600) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2A total 
ross-se
tion bump with (J+1/2) �el / �total = 0.04.�(1600) REFERENCES�(1600) REFERENCES�(1600) REFERENCES�(1600) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPCARROLL 76 PRL 37 806 A.S. Carroll et al. (BNL) IHEPP 76B PL 65B 487 V. Hepp et al. (CERN, HEIDH, MPIM) IJPKANE 74 LBL-2452 D.F. Kane (LBL) IJPLANGBEIN 72 NP B47 477 W. Langbein, F. Wagner (MPIM) IJPKIM 71 PRL 27 356 J.K. Kim (HARV) IJP�(1670) 1/2− I (JP ) = 0(12−) Status: ∗∗∗∗The measurements of the mass, width, and elasti
ity published be-fore 1974 are now obsolete and have been omitted. They were lastlisted in our 1982 edition Physi
s Letters 111B111B111B111B 1 (1982).�(1670) MASS�(1670) MASS�(1670) MASS�(1670) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1660 to 1680 (≈ 1670) OUR ESTIMATE1660 to 1680 (≈ 1670) OUR ESTIMATE1660 to 1680 (≈ 1670) OUR ESTIMATE1660 to 1680 (≈ 1670) OUR ESTIMATE1672 ±3 ZHANG 13A DPWA Multi
hannel1677.5±0.8 1 GARCIA-REC...03 DPWA KN multi
hannel1673 ±2 MANLEY 02 DPWA KN multi
hannel1670.8±1.7 KOISO 85 DPWA K−p → � π1667 ±5 GOPAL 80 DPWA KN → K N1671 ±3 ALSTON-... 78 DPWA KN → K N1670 ±5 GOPAL 77 DPWA KN multi
hannel1675 ±2 HEPP 76B DPWA K−N → � π1679 ±1 KANE 74 DPWA K−p → � π1665 ±5 PREVOST 74 DPWA K−N → �(1385)π
• • • We do not use the following data for averages, �ts, limits, et
. • • •1668.9±2.0 ABAEV 96 DPWA K−p → �η1664 2 MARTIN 77 DPWA KN multi
hannel�(1670) WIDTH�(1670) WIDTH�(1670) WIDTH�(1670) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT25 to 50 (≈ 35) OUR ESTIMATE25 to 50 (≈ 35) OUR ESTIMATE25 to 50 (≈ 35) OUR ESTIMATE25 to 50 (≈ 35) OUR ESTIMATE29 ± 5 ZHANG 13A DPWA Multi
hannel29.2± 1.4 1 GARCIA-REC...03 DPWA KN multi
hannel23 ± 6 MANLEY 02 DPWA KN multi
hannel34.1± 3.7 KOISO 85 DPWA K−p → � π29 ± 5 GOPAL 80 DPWA KN → K N29 ± 5 ALSTON-... 78 DPWA KN → K N45 ±10 GOPAL 77 DPWA KN multi
hannel46 ± 5 HEPP 76B DPWA K−N → � π40 ± 3 KANE 74 DPWA K−p → � π19 ± 5 PREVOST 74 DPWA K−N → �(1385)π
• • • We do not use the following data for averages, �ts, limits, et
. • • •21.1± 3.6 ABAEV 96 DPWA K−p → �η12 2 MARTIN 77 DPWA KN multi
hannel�(1670) POLE POSITIONS�(1670) POLE POSITIONS�(1670) POLE POSITIONS�(1670) POLE POSITIONSREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1667 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •26 ZHANG 13A DPWA Multi
hannel�(1670) DECAY MODES�(1670) DECAY MODES�(1670) DECAY MODES�(1670) DECAY MODESMode Fra
tion (�i /�)�1 NK 20{30 %�2 � π 25{55 %�3 �η 10{25 %�4 � (1385)πThe above bran
hing fra
tions are our estimates, not �ts or averages.�5 NK∗(892), S=3/2, D-wave (5±4) %

�(1670) BRANCHING RATIOS�(1670) BRANCHING RATIOS�(1670) BRANCHING RATIOS�(1670) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.20 to 0.30 OUR ESTIMATE0.20 to 0.30 OUR ESTIMATE0.20 to 0.30 OUR ESTIMATE0.20 to 0.30 OUR ESTIMATE0.26±0.25 ZHANG 13A DPWA Multi
hannel0.37±0.07 MANLEY 02 DPWA KN multi
hannel0.18±0.03 GOPAL 80 DPWA KN → K N0.17±0.03 ALSTON-... 78 DPWA KN → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.20±0.03 GOPAL 77 DPWA See GOPAL 800.15 2 MARTIN 77 DPWA KN multi
hannel�(�η

)/�total �3/��(�η
)/�total �3/��(�η
)/�total �3/��(�η
)/�total �3/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.30±0.08 ABAEV 96 DPWA K−p → �η(�i�f )1/2/�total inNK → �(1670)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1670)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1670)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1670)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.29±0.06 ZHANG 13A DPWA Multi
hannel
−0.38±0.03 MANLEY 02 DPWA KN multi
hannel
−0.26±0.02 KOISO 85 DPWA K−p → � π

−0.31±0.03 GOPAL 77 DPWA KN multi
hannel
−0.29±0.03 HEPP 76B DPWA K−N → � π

−0.23±0.03 LONDON 75 HLBC K−p → �0π0
−0.27±0.02 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.13 2 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → �(1670)→ �η (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1670)→ �η (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1670)→ �η (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1670)→ �η (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.30±0.10 ZHANG 13A DPWA Multi
hannel+0.24±0.04 MANLEY 02 DPWA KN multi
hannel+0.20±0.05 BAXTER 73 DPWA K−p → neutrals
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.24 KIM 71 DPWA K-matrix analysis0.26 ARMENTEROS69C HBC0.20 or 0.23 BERLEY 65 HBC(�i�f )1/2/�total inNK → �(1670)→ � (1385)π (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1670)→ � (1385)π (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1670)→ � (1385)π (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1670)→ � (1385)π (�1�4)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.17±0.06 MANLEY 02 DPWA KN multi
hannel
−0.18±0.05 PREVOST 74 DPWA K−N → �(1385)π�(NK∗(892), S=3/2,D-wave)/�total �5/��(NK∗(892), S=3/2,D-wave)/�total �5/��(NK∗(892), S=3/2,D-wave)/�total �5/��(NK∗(892), S=3/2,D-wave)/�total �5/�VALUE DOCUMENT ID TECN COMMENT0.05±0.040.05±0.040.05±0.040.05±0.04 ZHANG 13A DPWA Multi
hannel�(1670) FOOTNOTES�(1670) FOOTNOTES�(1670) FOOTNOTES�(1670) FOOTNOTES1GARCIA-RECIO 03 gives pole, not Breit-Wigner, parameters, but the narrow width ofthe �(1670) means there will be little di�eren
e.2MARTIN 77 obtains identi
al resonan
e parameters from a T-matrix pole and from aBreit-Wigner �t. �(1670) REFERENCES�(1670) REFERENCES�(1670) REFERENCES�(1670) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)GARCIA-REC... 03 PR D67 076009 C. Gar
ia-Re
io et al. (GRAN, VALE)MANLEY 02 PRL 88 012002 D.M. Manley et al. (BNL Crystal Ball Collab.)ABAEV 96 PR C53 385 V.V. Abaev, B.M.K. Nefkens (UCLA)KOISO 85 NP A433 619 H. Koiso et al. (TOKY, MASA)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPHEPP 76B PL 65B 487 V. Hepp et al. (CERN, HEIDH, MPIM) IJPLONDON 75 NP B85 289 G.W. London et al. (BNL, CERN, EPOL+)KANE 74 LBL-2452 D.F. Kane (LBL) IJPPREVOST 74 NP B69 246 J. Prevost et al. (SACL, CERN, HEID)BAXTER 73 NP B67 125 D.F. Baxter et al. (OXF) IJPKIM 71 PRL 27 356 J.K. Kim (HARV) IJPAlso Duke Conf. 161 J.K. Kim (HARV) IJPHyperon Resonan
es, 1970ARMENTEROS 69C Lund Paper 229 R. Armenteros et al. (CERN, HEID, SACL) IJPValues are quoted in LEVI-SETTI 69.BERLEY 65 PRL 15 641 D. Berley et al. (BNL) IJP



1584158415841584BaryonParti
le Listings�(1690),�(1710)�(1690) 3/2− I (JP ) = 0(32−) Status: ∗∗∗∗The measurements of the mass, width, and elasti
ity published be-fore 1974 are now obsolete and have been omitted. They were lastlisted in our 1982 edition Physi
s Letters 111B111B111B111B 1 (1982).�(1690) MASS�(1690) MASS�(1690) MASS�(1690) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1685 to 1695 (≈ 1690) OUR ESTIMATE1685 to 1695 (≈ 1690) OUR ESTIMATE1685 to 1695 (≈ 1690) OUR ESTIMATE1685 to 1695 (≈ 1690) OUR ESTIMATE1691 ±3 ZHANG 13A DPWA Multi
hannel1695.7±2.6 KOISO 85 DPWA K−p → � π1690 ±5 GOPAL 80 DPWA KN → K N1692 ±5 ALSTON-... 78 DPWA KN → K N1690 ±5 GOPAL 77 DPWA KN multi
hannel1690 ±3 HEPP 76B DPWA K−N → � π1689 ±1 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •1687 or 1689 1 MARTIN 77 DPWA KN multi
hannel1692 ±4 CARROLL 76 DPWA Isospin-0 total σ�(1690) WIDTH�(1690) WIDTH�(1690) WIDTH�(1690) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT50 to 70 (≈ 60) OUR ESTIMATE50 to 70 (≈ 60) OUR ESTIMATE50 to 70 (≈ 60) OUR ESTIMATE50 to 70 (≈ 60) OUR ESTIMATE54 ± 5 ZHANG 13A DPWA Multi
hannel67.2± 5.6 KOISO 85 DPWA K−p → � π61 ± 5 GOPAL 80 DPWA KN → K N64 ±10 ALSTON-... 78 DPWA KN → K N60 ± 5 GOPAL 77 DPWA KN multi
hannel82 ± 8 HEPP 76B DPWA K−N → � π60 ± 4 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •62 or 62 1 MARTIN 77 DPWA KN multi
hannel38 CARROLL 76 DPWA Isospin-0 total σ�(1690) POLE POSITION�(1690) POLE POSITION�(1690) POLE POSITION�(1690) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1689 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •53 ZHANG 13A DPWA Multi
hannel�(1690) DECAY MODES�(1690) DECAY MODES�(1690) DECAY MODES�(1690) DECAY MODESMode Fra
tion (�i /�)�1 NK 20{30 %�2 � π 20{40 %�3 �ππ ∼ 25 %�4 � ππ ∼ 20 %�5 �η�6 � (1385)π , S-waveThe above bran
hing fra
tions are our estimates, not �ts or averages.�(1690) BRANCHING RATIOS�(1690) BRANCHING RATIOS�(1690) BRANCHING RATIOS�(1690) BRANCHING RATIOSThe sum of all the quoted bran
hing ratios is more than 1.0. The two-body ratios are from partial-wave analyses, and thus probably are morereliable than the three-body ratios, whi
h are determined from bumps in
ross se
tions. Of the latter, the � ππ bump looks more signi�
ant. (Theerror given for the �ππ ratio looks unreasonably small.) Hardly any ofthe � ππ de
ay 
an be via �(1385), for then seven times as mu
h �ππde
ay would be required. See \Sign 
onventions for resonan
e 
ouplings"in the Note on � and � Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.2 to 0.3 OUR ESTIMATE0.2 to 0.3 OUR ESTIMATE0.2 to 0.3 OUR ESTIMATE0.2 to 0.3 OUR ESTIMATE0.25±0.04 ZHANG 13A DPWA Multi
hannel0.23±0.03 GOPAL 80 DPWA KN → K N0.22±0.03 ALSTON-... 78 DPWA KN → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.24±0.03 GOPAL 77 DPWA See GOPAL 800.28 or 0.26 1 MARTIN 77 DPWA KN multi
hannel

(�i�f )1/2/�total inNK → �(1690)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1690)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1690)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1690)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.27±0.03 ZHANG 13A DPWA Multi
hannel
−0.34±0.02 KOISO 85 DPWA K−p → � π

−0.25±0.03 GOPAL 77 DPWA KN multi
hannel
−0.29±0.03 HEPP 76B DPWA K−N → � π

−0.28±0.03 LONDON 75 HLBC K−p → �0π0
−0.28±0.02 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.30 or −0.28 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → �(1690)→ �ππ (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1690)→ �ππ (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1690)→ �ππ (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1690)→ �ππ (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.25±0.02 2 BARTLEY 68 HDBC K−p → �ππ(�i�f )1/2/�total inNK → �(1690)→ � ππ (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1690)→ � ππ (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1690)→ � ππ (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1690)→ � ππ (�1�4)1/2/�VALUE DOCUMENT ID TECN COMMENT0.21 ARMENTEROS68C HDBC K−N → � ππ(�i�f )1/2/�total inNK → �(1690)→ �η (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1690)→ �η (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1690)→ �η (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1690)→ �η (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT0.00±0.03 BAXTER 73 DPWA K−p → neutrals(�i�f )1/2/�total inNK → �(1690)→ � (1385)π , S-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1690)→ � (1385)π , S-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1690)→ � (1385)π , S-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1690)→ � (1385)π , S-wave (�1�6)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.28±0.06 ZHANG 13A DPWA Multi
hannel+0.27±0.04 PREVOST 74 DPWA K−N → �(1385)π�(1690) FOOTNOTES�(1690) FOOTNOTES�(1690) FOOTNOTES�(1690) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.Another D03 � at 1966 MeV is also suggested by MARTIN 77, but is very un
ertain.2BARTLEY 68 uses only 
ross-se
tion data. The enhan
ement is not seen by PRE-VOST 71. �(1690) REFERENCES�(1690) REFERENCES�(1690) REFERENCES�(1690) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)KOISO 85 NP A433 619 H. Koiso et al. (TOKY, MASA)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPCARROLL 76 PRL 37 806 A.S. Carroll et al. (BNL) IHEPP 76B PL 65B 487 V. Hepp et al. (CERN, HEIDH, MPIM) IJPLONDON 75 NP B85 289 G.W. London et al. (BNL, CERN, EPOL+)KANE 74 LBL-2452 D.F. Kane (LBL) IJPPREVOST 74 NP B69 246 J. Prevost et al. (SACL, CERN, HEID)BAXTER 73 NP B67 125 D.F. Baxter et al. (OXF) IJPPREVOST 71 Amsterdam Conf. J. Prevost (CERN, HEID, SACL)ARMENTEROS 68C NP B8 216 R. Armenteros et al. (CERN, HEID, SACL) IBARTLEY 68 PRL 21 1111 J.H. Bartley et al. (TUFTS, FSU, BRAN) I�(1710) 1/2+ I (JP ) = 0(12+) Status: ∗OMITTED FROM SUMMARY TABLE�(1710) MASS�(1710) MASS�(1710) MASS�(1710) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1713±131713±131713±131713±13 ZHANG 13A DPWA Multi
hannel�(1710) WIDTH�(1710) WIDTH�(1710) WIDTH�(1710) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT180±42180±42180±42180±42 ZHANG 13A DPWA Multi
hannel�(1710) DECAY MODES�(1710) DECAY MODES�(1710) DECAY MODES�(1710) DECAY MODESMode Fra
tion (�i /�)�1 NK (43±4) %�2 � π (21±5) %�3 �∗(1385)π , P-wave (20±8) %�4 NK∗(892)�5 NK∗(892), S=1/2 ( 5±4) %�6 NK∗(892), S=3/2, P-wave (10±8) %



1585158515851585See key on page 601 BaryonParti
le Listings�(1710),�(1800)�(1710) BRANCHING RATIOS�(1710) BRANCHING RATIOS�(1710) BRANCHING RATIOS�(1710) BRANCHING RATIOS�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.43±0.040.43±0.040.43±0.040.43±0.04 ZHANG 13A DPWA Multi
hannel�(� π
)/�total �2/��(� π
)/�total �2/��(� π
)/�total �2/��(� π
)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.21±0.050.21±0.050.21±0.050.21±0.05 ZHANG 13A DPWA Multi
hannel�(�∗(1385)π , P-wave)/�total �3/��(�∗(1385)π , P-wave)/�total �3/��(�∗(1385)π , P-wave)/�total �3/��(�∗(1385)π , P-wave)/�total �3/�VALUE DOCUMENT ID TECN COMMENT0.20±0.080.20±0.080.20±0.080.20±0.08 ZHANG 13A DPWA Multi
hannel�(NK∗(892), S=1/2)/�total �5/��(NK∗(892), S=1/2)/�total �5/��(NK∗(892), S=1/2)/�total �5/��(NK∗(892), S=1/2)/�total �5/�VALUE DOCUMENT ID TECN COMMENT0.05±0.040.05±0.040.05±0.040.05±0.04 ZHANG 13A DPWA Multi
hannel�(NK∗(892), S=3/2,P-wave)/�total �6/��(NK∗(892), S=3/2,P-wave)/�total �6/��(NK∗(892), S=3/2,P-wave)/�total �6/��(NK∗(892), S=3/2,P-wave)/�total �6/�VALUE DOCUMENT ID TECN COMMENT0.10±0.080.10±0.080.10±0.080.10±0.08 ZHANG 13A DPWA Multi
hannel�(1710) REFERENCES�(1710) REFERENCES�(1710) REFERENCES�(1710) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)�(1800) 1/2− I (JP ) = 0(12−) Status: ∗∗∗This is the se
ond resonan
e in the S01 wave, the �rst being the�(1670). �(1800) MASS�(1800) MASS�(1800) MASS�(1800) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1720 to 1850 (≈ 1800) OUR ESTIMATE1720 to 1850 (≈ 1800) OUR ESTIMATE1720 to 1850 (≈ 1800) OUR ESTIMATE1720 to 1850 (≈ 1800) OUR ESTIMATE1783±19 ZHANG 13A DPWA Multi
hannel1845±10 MANLEY 02 DPWA KN multi
hannel1841±10 GOPAL 80 DPWA KN → K N1725±20 ALSTON-... 78 DPWA KN → K N1825±20 GOPAL 77 DPWA KN multi
hannel1830±20 LANGBEIN 72 IPWA KN multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •1767 or 1842 1 MARTIN 77 DPWA KN multi
hannel1780 KIM 71 DPWA K-matrix analysis1872±10 BRICMAN 70B DPWA KN → K N�(1800) WIDTH�(1800) WIDTH�(1800) WIDTH�(1800) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE200 to 400 (≈ 300) OUR ESTIMATE256±35 ZHANG 13A DPWA Multi
hannel518±84 MANLEY 02 DPWA KN multi
hannel228±20 GOPAL 80 DPWA KN → K N185±20 ALSTON-... 78 DPWA KN → K N230±20 GOPAL 77 DPWA KN multi
hannel70±15 LANGBEIN 72 IPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •435 or 473 1 MARTIN 77 DPWA KN multi
hannel40 KIM 71 DPWA K-matrix analysis100±20 BRICMAN 70B DPWA KN → K N�(1800) POLE POSITION�(1800) POLE POSITION�(1800) POLE POSITION�(1800) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1729 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •198 ZHANG 13A DPWA Multi
hannel

�(1800) DECAY MODES�(1800) DECAY MODES�(1800) DECAY MODES�(1800) DECAY MODESMode Fra
tion (�i /�)�1 NK 25{40 %�2 � π seen�3 � (1385)π seenThe above bran
hing fra
tions are our estimates, not �ts or averages.�4 �η (6±5) %�5 NK∗(892) seen�6 NK∗(892), S=1/2, S-wave�7 NK∗(892), S=3/2, D-wave�(1800) BRANCHING RATIOS�(1800) BRANCHING RATIOS�(1800) BRANCHING RATIOS�(1800) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.25 to 0.40 OUR ESTIMATE0.25 to 0.40 OUR ESTIMATE0.25 to 0.40 OUR ESTIMATE0.25 to 0.40 OUR ESTIMATE0.13±0.06 ZHANG 13A DPWA Multi
hannel0.24±0.10 MANLEY 02 DPWA KN multi
hannel0.36±0.04 GOPAL 80 DPWA KN → K N0.28±0.05 ALSTON-... 78 DPWA KN → K N0.35±0.15 LANGBEIN 72 IPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.37±0.05 GOPAL 77 DPWA See GOPAL 801.21 or 0.70 1 MARTIN 77 DPWA KN multi
hannel0.80 KIM 71 DPWA K-matrix analysis0.18±0.02 BRICMAN 70B DPWA KN → K N(�i�f )1/2/�total inNK → �(1800)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1800)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1800)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1800)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.07±0.02 ZHANG 13A DPWA Multi
hannel
−0.08±0.05 GOPAL 77 DPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.74 or −0.43 1 MARTIN 77 DPWA KN multi
hannel0.24 KIM 71 DPWA K-matrix analysis(�i�f )1/2/�total inNK → �(1800)→ � (1385)π (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1800)→ � (1385)π (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1800)→ � (1385)π (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1800)→ � (1385)π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.09 ±0.05 ZHANG 13A DPWA Multi
hannel+0.056±0.028 2 CAMERON 78 DPWA K−p → �(1385)π�(�η

)/�total �4/��(�η
)/�total �4/��(�η
)/�total �4/��(�η
)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.06±0.050.06±0.050.06±0.050.06±0.05 ZHANG 13A DPWA Multi
hannel(�i�f )1/2/�total inNK → �(1800)→ NK∗(892), S=1/2, S-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1800)→ NK∗(892), S=1/2, S-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1800)→ NK∗(892), S=1/2, S-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1800)→ NK∗(892), S=1/2, S-wave (�1�6)1/2/�VALUE DOCUMENT ID TECN COMMENT

−0.13±0.02 ZHANG 13A DPWA Multi
hannel
−0.17±0.03 2 CAMERON 78B DPWA K−p → NK∗(�i�f )1/2/�total inNK → �(1800)→ NK∗(892), S=3/2,D-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → �(1800)→ NK∗(892), S=3/2,D-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → �(1800)→ NK∗(892), S=3/2,D-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → �(1800)→ NK∗(892), S=3/2,D-wave (�1�7)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.13±0.04 CAMERON 78B DPWA K−p → NK∗�(1800) FOOTNOTES�(1800) FOOTNOTES�(1800) FOOTNOTES�(1800) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.�(1800) REFERENCES�(1800) REFERENCES�(1800) REFERENCES�(1800) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)MANLEY 02 PRL 88 012002 D.M. Manley et al. (BNL Crystal Ball Collab.)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPCAMERON 78 NP B143 189 W. Cameron et al. (RHEL, LOIC) IJPCAMERON 78B NP B146 327 W. Cameron et al. (RHEL, LOIC) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPLANGBEIN 72 NP B47 477 W. Langbein, F. Wagner (MPIM) IJPKIM 71 PRL 27 356 J.K. Kim (HARV) IJPAlso Duke Conf. 161 J.K. Kim (HARV) IJPHyperon Resonan
es, 1970BRICMAN 70B PL 33B 511 C. Bri
man, M. Ferro-Luzzi, J.P. Lagnaux (CERN) IJP



1586158615861586BaryonParti
le Listings�(1810),�(1820)�(1810) 1/2+ I (JP ) = 0(12+) Status: ∗∗∗Almost all the re
ent analyses 
ontain a P01 state, and sometimestwo of them, but the masses, widths, and bran
hing ratios varygreatly. See also the �(1600) P01.�(1810) MASS�(1810) MASS�(1810) MASS�(1810) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1750 to 1850 (≈ 1810) OUR ESTIMATE1750 to 1850 (≈ 1810) OUR ESTIMATE1750 to 1850 (≈ 1810) OUR ESTIMATE1750 to 1850 (≈ 1810) OUR ESTIMATE1821±10 ZHANG 13A DPWA Multi
hannel1841±20 GOPAL 80 DPWA KN → K N1853±20 GOPAL 77 DPWA KN multi
hannel1735± 5 CARROLL 76 DPWA Isospin-0 total σ1746±10 PREVOST 74 DPWA K−N → �(1385)π1780±20 LANGBEIN 72 IPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •1861 or 1953 1 MARTIN 77 DPWA KN multi
hannel1755 KIM 71 DPWA K-matrix analysis1800 ARMENTEROS70 HBC KN → K N1750 ARMENTEROS70 HBC KN → � π1690±10 BARBARO-... 70 HBC KN → � π1740 BAILEY 69 DPWA KN → K N1745 ARMENTEROS68B HBC KN → K N�(1810) WIDTH�(1810) WIDTH�(1810) WIDTH�(1810) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT50 to 250 (≈ 150) OUR ESTIMATE50 to 250 (≈ 150) OUR ESTIMATE50 to 250 (≈ 150) OUR ESTIMATE50 to 250 (≈ 150) OUR ESTIMATE174±50 ZHANG 13A DPWA Multi
hannel164±20 GOPAL 80 DPWA KN → K N90±20 CAMERON 78B DPWA K−p → NK∗166±20 GOPAL 77 DPWA KN multi
hannel46±20 PREVOST 74 DPWA K−N → �(1385)π120±10 LANGBEIN 72 IPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •535 or 585 1 MARTIN 77 DPWA KN multi
hannel28 CARROLL 76 DPWA Isospin-0 total σ35 KIM 71 DPWA K-matrix analysis30 ARMENTEROS70 HBC KN → K N70 ARMENTEROS70 HBC KN → � π22 BARBARO-... 70 HBC KN → � π300 BAILEY 69 DPWA KN → K N147 ARMENTEROS68B HBC�(1810) POLE POSITION�(1810) POLE POSITION�(1810) POLE POSITION�(1810) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1780 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •64 ZHANG 13A DPWA Multi
hannel�(1810) DECAY MODES�(1810) DECAY MODES�(1810) DECAY MODES�(1810) DECAY MODESMode Fra
tion (�i /�)�1 NK 20{50 %�2 � π 10{40 %�3 � (1385)π seen�4 NK∗(892) 30{60 %�5 NK∗(892), S=1/2, P-wave�6 NK∗(892), S=3/2, P-waveThe above bran
hing fra
tions are our estimates, not �ts or averages.�(1810) BRANCHING RATIOS�(1810) BRANCHING RATIOS�(1810) BRANCHING RATIOS�(1810) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.2 to 0.5 OUR ESTIMATE0.2 to 0.5 OUR ESTIMATE0.2 to 0.5 OUR ESTIMATE0.2 to 0.5 OUR ESTIMATE0.19±0.08 ZHANG 13A DPWA Multi
hannel0.24±0.04 GOPAL 80 DPWA KN → K N0.36±0.05 LANGBEIN 72 IPWA KN multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.21±0.04 GOPAL 77 DPWA See GOPAL 800.52 or 0.49 1 MARTIN 77 DPWA KN multi
hannel0.30 KIM 71 DPWA K-matrix analysis0.15 ARMENTEROS70 DPWA KN → K N0.55 BAILEY 69 DPWA KN → K N0.4 ARMENTEROS68B DPWA KN → K N(�i�f )1/2/�total inNK → �(1810)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1810)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1810)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1810)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.08±0.05 ZHANG 13A DPWA Multi
hannel
−0.24±0.04 GOPAL 77 DPWA KN multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.25 or +0.23 1 MARTIN 77 DPWA KN multi
hannel
< 0.01 LANGBEIN 72 IPWA KN multi
hannel0.17 KIM 71 DPWA K-matrix analysis+0.20 2 ARMENTEROS70 DPWA KN → � π

−0.13±0.03 BARBARO-... 70 DPWA KN → � π(�i�f )1/2/�total inNK → �(1810)→ � (1385)π (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1810)→ � (1385)π (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1810)→ � (1385)π (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1810)→ � (1385)π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.18±0.10 PREVOST 74 DPWA K−N → �(1385)π(�i�f )1/2/�total inNK → �(1810)→ NK∗(892), S=1/2,P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1810)→ NK∗(892), S=1/2,P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1810)→ NK∗(892), S=1/2,P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1810)→ NK∗(892), S=1/2,P-wave (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.14±0.03 2 CAMERON 78B DPWA K−p → NK∗(�i�f )1/2/�total inNK → �(1810)→ NK∗(892), S=3/2,P-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1810)→ NK∗(892), S=3/2,P-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1810)→ NK∗(892), S=3/2,P-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1810)→ NK∗(892), S=3/2,P-wave (�1�6)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.38±0.06 ZHANG 13A DPWA Multi
hannel+0.35±0.06 CAMERON 78B DPWA K−p → NK∗�(1810) FOOTNOTES�(1810) FOOTNOTES�(1810) FOOTNOTES�(1810) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.�(1810) REFERENCES�(1810) REFERENCES�(1810) REFERENCES�(1810) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPCAMERON 78B NP B146 327 W. Cameron et al. (RHEL, LOIC) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPCARROLL 76 PRL 37 806 A.S. Carroll et al. (BNL) IPREVOST 74 NP B69 246 J. Prevost et al. (SACL, CERN, HEID)LANGBEIN 72 NP B47 477 W. Langbein, F. Wagner (MPIM) IJPKIM 71 PRL 27 356 J.K. Kim (HARV) IJPAlso Duke Conf. 161 J.K. Kim (HARV) IJPHyperon Resonan
es, 1970ARMENTEROS 70 Duke Conf. 123 R. Armenteros et al. (CERN, HEID, SACL) IJPHyperon Resonan
es, 1970BARBARO-... 70 Duke Conf. 173 A. Barbaro-Galtieri (LRL) IJPHyperon Resonan
es, 1970BAILEY 69 Thesis UCRL 50617 J.M. Bailey (LLL) IJPARMENTEROS 68B NP B8 195 R. Armenteros et al. (CERN, HEID, SACL) IJP�(1820) 5/2+ I (JP ) = 0(52+) Status: ∗∗∗∗This resonan
e is the 
ornerstone for all partial-wave analyses in thisregion. Most of the results published before 1973 are now obsoleteand have been omitted. They may be found in our 1982 editionPhysi
s Letters 111B111B111B111B 1 (1982).Most of the quoted errors are statisti
al only; the systemati
 errorsdue to the parti
ular parametrizations used in the partial-wave anal-yses are not in
luded. For this reason we do not 
al
ulate weightedaverages for the mass and width.�(1820) MASS�(1820) MASS�(1820) MASS�(1820) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1815 to 1825 (≈ 1820) OUR ESTIMATE1815 to 1825 (≈ 1820) OUR ESTIMATE1815 to 1825 (≈ 1820) OUR ESTIMATE1815 to 1825 (≈ 1820) OUR ESTIMATE1823.5±0.8 ZHANG 13A DPWA Multi
hannel1823 ±3 GOPAL 80 DPWA KN → K N1819 ±2 ALSTON-... 78 DPWA KN → K N1822 ±2 GOPAL 77 DPWA KN multi
hannel1821 ±2 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •1830 DECLAIS 77 DPWA KN → K N1817 or 1819 1 MARTIN 77 DPWA KN multi
hannel



1587158715871587See key on page 601 BaryonParti
le Listings�(1820),�(1830)�(1820) WIDTH�(1820) WIDTH�(1820) WIDTH�(1820) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT70 to 90 (≈ 80) OUR ESTIMATE70 to 90 (≈ 80) OUR ESTIMATE70 to 90 (≈ 80) OUR ESTIMATE70 to 90 (≈ 80) OUR ESTIMATE89±2 ZHANG 13A DPWA Multi
hannel77±5 GOPAL 80 DPWA KN → K N72±5 ALSTON-... 78 DPWA KN → K N81±5 GOPAL 77 DPWA KN multi
hannel87±3 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •82 DECLAIS 77 DPWA KN → K N76 or 76 1 MARTIN 77 DPWA KN multi
hannel�(1820) POLE POSITION�(1820) POLE POSITION�(1820) POLE POSITION�(1820) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1814 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •85 ZHANG 13A DPWA Multi
hannel�(1820) DECAY MODES�(1820) DECAY MODES�(1820) DECAY MODES�(1820) DECAY MODESMode Fra
tion (�i /�)�1 NK 55{65 %�2 � π 8{14 %�3 � (1385)π 5{10 %�4 � (1385)π , P-wave�5 � (1385)π , F-wave�6 �η�7 � ππThe above bran
hing fra
tions are our estimates, not �ts or averages.�8 NK∗(892), S=3/2, P-wave (3.0±1.0) %�(1820) BRANCHING RATIOS�(1820) BRANCHING RATIOS�(1820) BRANCHING RATIOS�(1820) BRANCHING RATIOSErrors quoted do not in
lude un
ertainties in the parametrizations used inthe partial-wave analyses and are thus too small. See also \Sign 
onven-tions for resonan
e 
ouplings" in the Note on � and � Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.55 to 0.65 OUR ESTIMATE0.55 to 0.65 OUR ESTIMATE0.55 to 0.65 OUR ESTIMATE0.55 to 0.65 OUR ESTIMATE0.54±0.01 ZHANG 13A DPWA Multi
hannel0.58±0.02 GOPAL 80 DPWA KN → K N0.60±0.03 ALSTON-... 78 DPWA KN → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.51 DECLAIS 77 DPWA KN → K N0.57±0.02 GOPAL 77 DPWA See GOPAL 800.59 or 0.58 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → �(1820)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1820)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1820)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1820)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.28±0.01 ZHANG 13A DPWA Multi
hannel
−0.28±0.03 GOPAL 77 DPWA KN multi
hannel
−0.28±0.01 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.25 or −0.25 1 MARTIN 77 DPWA KN multi
hannel�(� ππ
)/�total �7/��(� ππ
)/�total �7/��(� ππ
)/�total �7/��(� ππ
)/�total �7/�VALUE DOCUMENT ID TECN COMMENTno 
lear signal 2 ARMENTEROS68C HDBC K−N → � ππ(�i�f )1/2/�total inNK → �(1820)→ � (1385)π , P-wave (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1820)→ � (1385)π , P-wave (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1820)→ � (1385)π , P-wave (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1820)→ � (1385)π , P-wave (�1�4)1/2/�VALUE DOCUMENT ID TECN COMMENT

−0.20 ±0.02 ZHANG 13A DPWA Multi
hannel
−0.167±0.054 3 CAMERON 78 DPWA K−p → �(1385)π+0.27 ±0.03 PREVOST 74 DPWA K−N → �(1385)π(�i�f )1/2/�total inNK → �(1820)→ � (1385)π , F-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1820)→ � (1385)π , F-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1820)→ � (1385)π , F-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1820)→ � (1385)π , F-wave (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.065±0.029 3 CAMERON 78 DPWA K−p → �(1385)π(�i�f )1/2/�total inNK → �(1820)→ �η (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1820)→ �η (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1820)→ �η (�1�6)1/2/�(�i�f )1/2/�total inNK → �(1820)→ �η (�1�6)1/2/�VALUE DOCUMENT ID TECN
−0.096+0.040

−0.020 RADER 73 MPWA

�(NK∗(892), S=3/2,P-wave)/�total �8/��(NK∗(892), S=3/2,P-wave)/�total �8/��(NK∗(892), S=3/2,P-wave)/�total �8/��(NK∗(892), S=3/2,P-wave)/�total �8/�VALUE DOCUMENT ID TECN COMMENT0.03±0.010.03±0.010.03±0.010.03±0.01 ZHANG 13A DPWA Multi
hannel�(1820) FOOTNOTES�(1820) FOOTNOTES�(1820) FOOTNOTES�(1820) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2There is a suggestion of a bump, enough to be 
onsistent with what is expe
ted from�(1385) → � π de
ay.3The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.�(1820) REFERENCES�(1820) REFERENCES�(1820) REFERENCES�(1820) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPCAMERON 78 NP B143 189 W. Cameron et al. (RHEL, LOIC) IJPDECLAIS 77 CERN 77-16 Y. De
lais et al. (CAEN, CERN) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPKANE 74 LBL-2452 D.F. Kane (LBL) IJPPREVOST 74 NP B69 246 J. Prevost et al. (SACL, CERN, HEID)RADER 73 NC 16A 178 R.K. Rader et al. (SACL, HEID, CERN+)ARMENTEROS 68C NP B8 216 R. Armenteros et al. (CERN, HEID, SACL) I�(1830) 5/2− I (JP ) = 0(52−) Status: ∗∗∗∗For results published before 1973 (they are now obsolete), see our1982 edition Physi
s Letters 111B111B111B111B 1 (1982).The best eviden
e for this resonan
e is in the � π 
hannel.�(1830) MASS�(1830) MASS�(1830) MASS�(1830) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1810 to 1830 (≈ 1830) OUR ESTIMATE1810 to 1830 (≈ 1830) OUR ESTIMATE1810 to 1830 (≈ 1830) OUR ESTIMATE1810 to 1830 (≈ 1830) OUR ESTIMATE1820± 4 ZHANG 13A DPWA Multi
hannel1831±10 GOPAL 80 DPWA KN → K N1825±10 GOPAL 77 DPWA KN multi
hannel1825± 1 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •1817 or 1818 1 MARTIN 77 DPWA KN multi
hannel�(1830) WIDTH�(1830) WIDTH�(1830) WIDTH�(1830) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT60 to 110 (≈ 95) OUR ESTIMATE60 to 110 (≈ 95) OUR ESTIMATE60 to 110 (≈ 95) OUR ESTIMATE60 to 110 (≈ 95) OUR ESTIMATE114±10 ZHANG 13A DPWA Multi
hannel100±10 GOPAL 80 DPWA KN → K N94±10 GOPAL 77 DPWA KN multi
hannel119± 3 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •56 or 56 1 MARTIN 77 DPWA KN multi
hannel�(1830) POLE POSITION�(1830) POLE POSITION�(1830) POLE POSITION�(1830) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1809 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •109 ZHANG 13A DPWA Multi
hannel�(1830) DECAY MODES�(1830) DECAY MODES�(1830) DECAY MODES�(1830) DECAY MODESMode Fra
tion (�i /�)�1 NK 3{10 %�2 � π 35{75 %�3 � (1385)π >15 %The above bran
hing fra
tions are our estimates, not �ts or averages.�4 � (1385)π , D-wave (52±6) %�5 �η



1588158815881588BaryonParti
le Listings�(1830),�(1890)�(1830) BRANCHING RATIOS�(1830) BRANCHING RATIOS�(1830) BRANCHING RATIOS�(1830) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.03 to 0.10 OUR ESTIMATE0.03 to 0.10 OUR ESTIMATE0.03 to 0.10 OUR ESTIMATE0.03 to 0.10 OUR ESTIMATE0.041±0.005 ZHANG 13A DPWA Multi
hannel0.08 ±0.03 GOPAL 80 DPWA KN → K N0.02 ±0.02 ALSTON-... 78 DPWA KN → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.04 ±0.03 GOPAL 77 DPWA See GOPAL 800.04 or 0.04 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → �(1830)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1830)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1830)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1830)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.13±0.01 ZHANG 13A DPWA Multi
hannel
−0.17±0.03 GOPAL 77 DPWA KN multi
hannel
−0.15±0.01 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.17 or −0.17 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → �(1830)→ � (1385)π (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1830)→ � (1385)π (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1830)→ � (1385)π (�1�3)1/2/�(�i�f )1/2/�total inNK → �(1830)→ � (1385)π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.141±0.014 2 CAMERON 78 DPWA K−p → �(1385)π+0.13 ±0.03 PREVOST 74 DPWA K−N → �(1385)π�(� (1385)π ,D-wave)/�total �4/��(� (1385)π ,D-wave)/�total �4/��(� (1385)π ,D-wave)/�total �4/��(� (1385)π ,D-wave)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.52±0.060.52±0.060.52±0.060.52±0.06 ZHANG 13A DPWA Multi
hannel(�i�f )1/2/�total inNK → �(1830)→ �η (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1830)→ �η (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1830)→ �η (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1830)→ �η (�1�5)1/2/�VALUE DOCUMENT ID TECN
−0.044±0.020 RADER 73 MPWA�(1830) FOOTNOTES�(1830) FOOTNOTES�(1830) FOOTNOTES�(1830) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2The CAMERON 78 upper limit on G-wave de
ay is 0.03. The published sign has been
hanged to be in a

ord with the baryon-�rst 
onvention.�(1830) REFERENCES�(1830) REFERENCES�(1830) REFERENCES�(1830) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPCAMERON 78 NP B143 189 W. Cameron et al. (RHEL, LOIC) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPKANE 74 LBL-2452 D.F. Kane (LBL) IJPPREVOST 74 NP B69 246 J. Prevost et al. (SACL, CERN, HEID)RADER 73 NC 16A 178 R.K. Rader et al. (SACL, HEID, CERN+)�(1890) 3/2+ I (JP ) = 0(32+) Status: ∗∗∗∗For results published before 1974 (they are now obsolete), see our1982 edition Physi
s Letters 111B111B111B111B 1 (1982).The JP = 3/2+ assignment is 
onsistent with all available data(in
luding polarization) and re
ent partial-wave analyses. The dom-inant inelasti
 modes remain unknown.�(1890) MASS�(1890) MASS�(1890) MASS�(1890) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1850 to 1910 (≈ 1890) OUR ESTIMATE1850 to 1910 (≈ 1890) OUR ESTIMATE1850 to 1910 (≈ 1890) OUR ESTIMATE1850 to 1910 (≈ 1890) OUR ESTIMATE1900± 5 ZHANG 13A DPWA Multi
hannel1897± 5 GOPAL 80 DPWA KN → K N1908±10 ALSTON-... 78 DPWA KN → K N1900± 5 GOPAL 77 DPWA KN multi
hannel1894±10 HEMINGWAY 75 DPWA K−p → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •1856 or 1868 1 MARTIN 77 DPWA KN multi
hannel1900 2 NAKKASYAN 75 DPWA K−p → �ω

�(1890) WIDTH�(1890) WIDTH�(1890) WIDTH�(1890) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT60 to 200 (≈ 100) OUR ESTIMATE60 to 200 (≈ 100) OUR ESTIMATE60 to 200 (≈ 100) OUR ESTIMATE60 to 200 (≈ 100) OUR ESTIMATE161±15 ZHANG 13A DPWA Multi
hannel74±10 GOPAL 80 DPWA KN → K N119±20 ALSTON-... 78 DPWA KN → K N72±10 GOPAL 77 DPWA KN multi
hannel107±10 HEMINGWAY 75 DPWA K−p → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •191 or 193 1 MARTIN 77 DPWA KN multi
hannel100 2 NAKKASYAN 75 DPWA K−p → �ω�(1890) POLE POSITION�(1890) POLE POSITION�(1890) POLE POSITION�(1890) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1876 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •145 ZHANG 13A DPWA Multi
hannel�(1890) DECAY MODES�(1890) DECAY MODES�(1890) DECAY MODES�(1890) DECAY MODESMode Fra
tion (�i /�)�1 NK 20{35 %�2 � π 3{10 %�3 � (1385)π seen�4 � (1385)π , P-wave�5 � (1385)π , F-wave�6 NK∗(892) seen�7 NK∗(892), S=1/2�8 NK∗(892), S=3/2, F-wave�9 �ωThe above bran
hing fra
tions are our estimates, not �ts or averages.�(1890) BRANCHING RATIOS�(1890) BRANCHING RATIOS�(1890) BRANCHING RATIOS�(1890) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.20 to 0.35 OUR ESTIMATE0.20 to 0.35 OUR ESTIMATE0.20 to 0.35 OUR ESTIMATE0.20 to 0.35 OUR ESTIMATE0.37±0.03 ZHANG 13A DPWA Multi
hannel0.20±0.02 GOPAL 80 DPWA KN → K N0.34±0.05 ALSTON-... 78 DPWA KN → K N0.24±0.04 HEMINGWAY 75 DPWA K−p → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.18±0.02 GOPAL 77 DPWA See GOPAL 800.36 or 0.34 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → �(1890)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1890)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1890)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(1890)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.09±0.02 ZHANG 13A DPWA Multi
hannel
−0.09±0.03 GOPAL 77 DPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.15 or +0.14 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → �(1890)→ � (1385)π , P-wave (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1890)→ � (1385)π , P-wave (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1890)→ � (1385)π , P-wave (�1�4)1/2/�(�i�f )1/2/�total inNK → �(1890)→ � (1385)π , P-wave (�1�4)1/2/�VALUE DOCUMENT ID TECN COMMENT
<0.03 CAMERON 78 DPWA K−p → �(1385)π(�i�f )1/2/�total inNK → �(1890)→ � (1385)π , F-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1890)→ � (1385)π , F-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1890)→ � (1385)π , F-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(1890)→ � (1385)π , F-wave (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.31 ±0.04 ZHANG 13A DPWA Multi
hannel
−0.126±0.055 3 CAMERON 78 DPWA K−p → �(1385)π(�i�f )1/2/�total inNK → �(1890)→ NK∗(892), S=1/2 (�1�7)1/2/�(�i�f )1/2/�total inNK → �(1890)→ NK∗(892), S=1/2 (�1�7)1/2/�(�i�f )1/2/�total inNK → �(1890)→ NK∗(892), S=1/2 (�1�7)1/2/�(�i�f )1/2/�total inNK → �(1890)→ NK∗(892), S=1/2 (�1�7)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.17±0.05 ZHANG 13A DPWA Multi
hannel
−0.07±0.03 3,4 CAMERON 78B DPWA K−p → NK∗(�i�f )1/2/�total inNK → �(1890)→ NK∗(892), S=3/2, F-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → �(1890)→ NK∗(892), S=3/2, F-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → �(1890)→ NK∗(892), S=3/2, F-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → �(1890)→ NK∗(892), S=3/2, F-wave (�1�8)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.11±0.03 ZHANG 13A DPWA Multi
hannel



1589158915891589See key on page 601 BaryonParti
le Listings�(1890),�(2000),�(2020)(�i�f )1/2/�total inNK → �(1890)→ �ω (�1�9)1/2/�(�i�f )1/2/�total inNK → �(1890)→ �ω (�1�9)1/2/�(�i�f )1/2/�total inNK → �(1890)→ �ω (�1�9)1/2/�(�i�f )1/2/�total inNK → �(1890)→ �ω (�1�9)1/2/�VALUE DOCUMENT ID TECN COMMENTseen BACCARI 77 IPWA K−p → �ω0.032 2 NAKKASYAN 75 DPWA K−p → �ω�(1890) FOOTNOTES�(1890) FOOTNOTES�(1890) FOOTNOTES�(1890) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2 Found in one of two best solutions.3The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.4Upper limits on the P3 and F3 waves are ea
h 0.03.�(1890) REFERENCES�(1890) REFERENCES�(1890) REFERENCES�(1890) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPCAMERON 78 NP B143 189 W. Cameron et al. (RHEL, LOIC) IJPCAMERON 78B NP B146 327 W. Cameron et al. (RHEL, LOIC) IJPBACCARI 77 NC 41A 96 B. Ba

ari et al. (SACL, CDEF) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPHEMINGWAY 75 NP B91 12 R.J. Hemingway et al. (CERN, HEIDH, MPIM) IJPNAKKASYAN 75 NP B93 85 A. Nakkasyan (CERN) IJP�(2000) I (JP ) = 0(??) Status: ∗OMITTED FROM SUMMARY TABLEZHANG 13A 
laims a JP = 1/2− state.We list here all the ambiguous resonan
e possibilities with a massaround 2 GeV. The proposed quantum numbers are D3 (BARBARO-GALTIERI 70 in � π), D3+F5, P3+D5, or P1+D3 (BRANDSTET-TER 72 in �ω), and S1 (CAMERON 78B in NK∗). The �rst twoof the above analyses should now be 
onsidered obsolete. See alsoNAKKASYAN 75. �(2000) MASS�(2000) MASS�(2000) MASS�(2000) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 2000 OUR ESTIMATE≈ 2000 OUR ESTIMATE≈ 2000 OUR ESTIMATE≈ 2000 OUR ESTIMATE2020±16 ZHANG 13A DPWA Multi
hannel2030±30 CAMERON 78B DPWA K−p → NK∗1935 to 1971 1 BRANDSTET...72 DPWA K−p → �ω1951 to 2034 1 BRANDSTET...72 DPWA K−p → �ω2010±30 BARBARO-... 70 DPWA K−p → � π�(2000) WIDTH�(2000) WIDTH�(2000) WIDTH�(2000) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT255±63 ZHANG 13A DPWA Multi
hannel125±25 CAMERON 78B DPWA K−p → NK∗180 to 240 1 BRANDSTET...72 DPWA (lower mass)73 to 154 1 BRANDSTET...72 DPWA (higher mass)130±50 BARBARO-... 70 DPWA K−p → � π�(2000) DECAY MODES�(2000) DECAY MODES�(2000) DECAY MODES�(2000) DECAY MODESMode Fra
tion (�i /�)�1 NK (27±6) %�2 � π�3 �η (16±7) %�4 �ω�5 NK∗(892), S=1/2, S-wave�6 NK∗(892), S=3/2, D-wave�(2000) BRANCHING RATIOS�(2000) BRANCHING RATIOS�(2000) BRANCHING RATIOS�(2000) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.27±0.060.27±0.060.27±0.060.27±0.06 ZHANG 13A DPWA Multi
hannel(�i�f )1/2/�total inNK → �(2000)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2000)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2000)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2000)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.07±0.03 ZHANG 13A DPWA Multi
hannel
−0.20±0.04 BARBARO-... 70 DPWA K−p → � π

�(�η
)/�total �3/��(�η
)/�total �3/��(�η
)/�total �3/��(�η
)/�total �3/�VALUE DOCUMENT ID TECN COMMENT0.16±0.070.16±0.070.16±0.070.16±0.07 ZHANG 13A DPWA Multi
hannel(�i�f )1/2/�total inNK → �(2000)→ �ω (�1�4)1/2/�(�i�f )1/2/�total inNK → �(2000)→ �ω (�1�4)1/2/�(�i�f )1/2/�total inNK → �(2000)→ �ω (�1�4)1/2/�(�i�f )1/2/�total inNK → �(2000)→ �ω (�1�4)1/2/�VALUE DOCUMENT ID TECN COMMENT0.17 to 0.25 1 BRANDSTET...72 DPWA (lower mass)0.04 to 0.15 1 BRANDSTET...72 DPWA (higher mass)(�i�f )1/2/�total inNK → �(2000)→ NK∗(892), S=1/2, S-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(2000)→ NK∗(892), S=1/2, S-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(2000)→ NK∗(892), S=1/2, S-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(2000)→ NK∗(892), S=1/2, S-wave (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT

−0.12±0.03 2 CAMERON 78B DPWA K−p → NK∗(�i�f )1/2/�total inNK → �(2000)→ NK∗(892), S=3/2,D-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(2000)→ NK∗(892), S=3/2,D-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(2000)→ NK∗(892), S=3/2,D-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → �(2000)→ NK∗(892), S=3/2,D-wave (�1�6)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.34±0.05 ZHANG 13A DPWA Multi
hannel+0.09±0.03 CAMERON 78B DPWA K−p → NK∗�(2000) FOOTNOTES�(2000) FOOTNOTES�(2000) FOOTNOTES�(2000) FOOTNOTES1The parameters quoted here are ranges from the three best �ts; the lower state probablyhas J ≤ 3/2, and the higher one probably has J ≤ 5/2.2The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.�(2000) REFERENCES�(2000) REFERENCES�(2000) REFERENCES�(2000) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)CAMERON 78B NP B146 327 W. Cameron et al. (RHEL, LOIC) IJPNAKKASYAN 75 NP B93 85 A. Nakkasyan (CERN) IJPBRANDSTET... 72 NP B39 13 A.A. Brandstetter et al. (RHEL, CDEF+)BARBARO-... 70 Duke Conf. 173 A. Barbaro-Galtieri (LRL) IJPHyperon Resonan
es, 1970�(2020) 7/2+ I (JP ) = 0(72+) Status: ∗OMITTED FROM SUMMARY TABLEIn LITCHFIELD 71, need for the state rests solely on a possiblyin
onsistent polarization measurement at 1.784 GeV/
 . HEMING-WAY 75 does not require this state. GOPAL 77 does not need itin either NK or� π. With new K− n angular distributions in
luded,DECLAIS 77 sees it. However, this and other new data are in
ludedin GOPAL 80 and the state is not required. BACCARI 77 weaklysupports it. �(2020) MASS�(2020) MASS�(2020) MASS�(2020) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 2020 OUR ESTIMATE≈ 2020 OUR ESTIMATE≈ 2020 OUR ESTIMATE≈ 2020 OUR ESTIMATE2043±22 ZHANG 13A DPWA Multi
hannel2140 BACCARI 77 DPWA K−p → �ω2117 DECLAIS 77 DPWA KN → K N2100±30 LITCHFIELD 71 DPWA K−p → K N2020±20 BARBARO-... 70 DPWA K−p → � π�(2020) WIDTH�(2020) WIDTH�(2020) WIDTH�(2020) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT200±75 ZHANG 13A DPWA Multi
hannel128 BACCARI 77 DPWA K−p → �ω167 DECLAIS 77 DPWA KN → K N120±30 LITCHFIELD 71 DPWA K−p → K N160±30 BARBARO-... 70 DPWA K−p → � π�(2020) DECAY MODES�(2020) DECAY MODES�(2020) DECAY MODES�(2020) DECAY MODESMode Fra
tion (�i /�)�1 NK�2 � π�3 �ω�4 NK∗(892), S=1/2 (30±9) %�(2020) BRANCHING RATIOS�(2020) BRANCHING RATIOS�(2020) BRANCHING RATIOS�(2020) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.028±0.005 ZHANG 13A DPWA Multi
hannel0.05 DECLAIS 77 DPWA KN → K N0.05 ±0.02 LITCHFIELD 71 DPWA K−p → K N



1590159015901590BaryonParti
le Listings�(2020),�(2050),�(2100)(�i�f )1/2/�total inNK → �(2020)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2020)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2020)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2020)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.02±0.01 ZHANG 13A DPWA Multi
hannel
−0.15±0.02 BARBARO-... 70 DPWA K−p → � π(�i�f )1/2/�total inNK → �(2020)→ �ω (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2020)→ �ω (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2020)→ �ω (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2020)→ �ω (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT
<0.05 BACCARI 77 DPWA K−p → �ω�(NK∗(892), S=1/2)/�total �4/��(NK∗(892), S=1/2)/�total �4/��(NK∗(892), S=1/2)/�total �4/��(NK∗(892), S=1/2)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.30±0.090.30±0.090.30±0.090.30±0.09 ZHANG 13A DPWA Multi
hannel�(2020) REFERENCES�(2020) REFERENCES�(2020) REFERENCES�(2020) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL)BACCARI 77 NC 41A 96 B. Ba

ari et al. (SACL, CDEF) IJPDECLAIS 77 CERN 77-16 Y. De
lais et al. (CAEN, CERN) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL)HEMINGWAY 75 NP B91 12 R.J. Hemingway et al. (CERN, HEIDH, MPIM) IJPLITCHFIELD 71 NP B30 125 P.J. Lit
h�eld et al. (RHEL, CDEF, SACL) IJPBARBARO-... 70 Duke Conf. 173 A. Barbaro-Galtieri (LRL) IJPHyperon Resonan
es, 1970�(2050) 3/2− I (JP ) = 0(32−) Status: ∗OMITTED FROM SUMMARY TABLE�(2050) MASS�(2050) MASS�(2050) MASS�(2050) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2056±222056±222056±222056±22 ZHANG 13A DPWA Multi
hannel�(2050) WIDTH�(2050) WIDTH�(2050) WIDTH�(2050) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT493±61493±61493±61493±61 ZHANG 13A DPWA Multi
hannel�(2050) DECAY MODES�(2050) DECAY MODES�(2050) DECAY MODES�(2050) DECAY MODESMode Fra
tion (�i /�)�1 NK (19 ±4 ) %�2 � π ( 6.0±3.0) %�3 �∗(1385)π , S-wave ( 8 ±6 ) %�4 �∗(1385)π , D-wave ( 4.0±3.0) %�5 NK∗(892), S=1/2 (23 ±7 ) %�(2050) BRANCHING RATIOS�(2050) BRANCHING RATIOS�(2050) BRANCHING RATIOS�(2050) BRANCHING RATIOS�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.19±0.040.19±0.040.19±0.040.19±0.04 ZHANG 13A DPWA Multi
hannel�(� π

)/�total �2/��(� π
)/�total �2/��(� π
)/�total �2/��(� π
)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.06±0.030.06±0.030.06±0.030.06±0.03 ZHANG 13A DPWA Multi
hannel�(�∗(1385)π , S-wave)/�total �3/��(�∗(1385)π , S-wave)/�total �3/��(�∗(1385)π , S-wave)/�total �3/��(�∗(1385)π , S-wave)/�total �3/�VALUE DOCUMENT ID TECN COMMENT0.08±0.060.08±0.060.08±0.060.08±0.06 ZHANG 13A DPWA Multi
hannel�(�∗(1385)π , D-wave)/�total �4/��(�∗(1385)π , D-wave)/�total �4/��(�∗(1385)π , D-wave)/�total �4/��(�∗(1385)π , D-wave)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.04±0.030.04±0.030.04±0.030.04±0.03 ZHANG 13A DPWA Multi
hannel�(NK∗(892), S=1/2)/�total �5/��(NK∗(892), S=1/2)/�total �5/��(NK∗(892), S=1/2)/�total �5/��(NK∗(892), S=1/2)/�total �5/�VALUE DOCUMENT ID TECN COMMENT0.23±0.070.23±0.070.23±0.070.23±0.07 ZHANG 13A DPWA Multi
hannel�(2050) REFERENCES�(2050) REFERENCES�(2050) REFERENCES�(2050) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)�(2100) 7/2− I (JP ) = 0(72−) Status: ∗∗∗∗Most of the results published before 1973 are now obsolete andhave been omitted. They may be found in our 1982 edition Physi
sLetters 111B111B111B111B 1 (1982).

This entry only in
ludes results from partial-wave analyses. Param-eters of peaks seen in 
ross se
tions and in invariant-mass distribu-tions around 2100 MeV used to be listed in a separate entry immedi-ately following. It may be found in our 1986 edition Physi
s Letters170B170B170B170B 1 (1986). �(2100) MASS�(2100) MASS�(2100) MASS�(2100) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2090 to 2110 (≈ 2100) OUR ESTIMATE2090 to 2110 (≈ 2100) OUR ESTIMATE2090 to 2110 (≈ 2100) OUR ESTIMATE2090 to 2110 (≈ 2100) OUR ESTIMATE2086± 6 ZHANG 13A DPWA Multi
hannel2104±10 GOPAL 80 DPWA KN → K N2106±30 DEBELLEFON 78 DPWA KN → K N2110±10 GOPAL 77 DPWA KN multi
hannel2105±10 HEMINGWAY 75 DPWA K−p → K N2115±10 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •2094 BACCARI 77 DPWA K−p → �ω2094 DECLAIS 77 DPWA KN → K N2110 or 2089 1 NAKKASYAN 75 DPWA K−p → �ω�(2100) WIDTH�(2100) WIDTH�(2100) WIDTH�(2100) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT100 to 250 (≈ 200) OUR ESTIMATE100 to 250 (≈ 200) OUR ESTIMATE100 to 250 (≈ 200) OUR ESTIMATE100 to 250 (≈ 200) OUR ESTIMATE305±16 ZHANG 13A DPWA Multi
hannel157±40 DEBELLEFON 78 DPWA KN → K N250±30 GOPAL 77 DPWA KN multi
hannel241±30 HEMINGWAY 75 DPWA K−p → K N152±15 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •98 BACCARI 77 DPWA K−p → �ω250 DECLAIS 77 DPWA KN → K N244 or 302 1 NAKKASYAN 75 DPWA K−p → �ω�(2100) POLE POSITION�(2100) POLE POSITION�(2100) POLE POSITION�(2100) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2023 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •239 ZHANG 13A DPWA Multi
hannel�(2100) DECAY MODES�(2100) DECAY MODES�(2100) DECAY MODES�(2100) DECAY MODESMode Fra
tion (�i /�)�1 NK 25{35 %�2 � π ∼ 5 %�3 �η <3 %�4 � K <3 %�5 �ω <8 %�6 NK∗(892) 10{20 %�7 NK∗(892), S=3/2, D-wave�8 NK∗(892), S=1/2, G-wave�9 NK∗(892), S=3/2, G-waveThe above bran
hing fra
tions are our estimates, not �ts or averages.�(2100) BRANCHING RATIOS�(2100) BRANCHING RATIOS�(2100) BRANCHING RATIOS�(2100) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.25 to 0.35 OUR ESTIMATE0.25 to 0.35 OUR ESTIMATE0.25 to 0.35 OUR ESTIMATE0.25 to 0.35 OUR ESTIMATE0.23±0.01 ZHANG 13A DPWA Multi
hannel0.34±0.03 GOPAL 80 DPWA KN → K N0.24±0.06 DEBELLEFON 78 DPWA KN → K N0.31±0.03 HEMINGWAY 75 DPWA K−p → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.29 DECLAIS 77 DPWA KN → K N0.30±0.03 GOPAL 77 DPWA See GOPAL 80(�i�f )1/2/�total inNK → �(2100)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2100)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2100)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2100)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.03±0.01 ZHANG 13A DPWA Multi
hannel+0.12±0.04 GOPAL 77 DPWA KN multi
hannel+0.11±0.01 KANE 74 DPWA K−p → � π



1591159115911591See key on page 601 Baryon Parti
le Listings�(2100), �(2110)(�i�f )1/2/�total inNK → �(2100)→ �η (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2100)→ �η (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2100)→ �η (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2100)→ �η (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.050±0.020 RADER 73 MPWA K−p → �η(�i�f )1/2/�total inNK → �(2100)→ � K (�1�4)1/2/�(�i�f )1/2/�total inNK → �(2100)→ � K (�1�4)1/2/�(�i�f )1/2/�total inNK → �(2100)→ � K (�1�4)1/2/�(�i�f )1/2/�total inNK → �(2100)→ � K (�1�4)1/2/�VALUE DOCUMENT ID TECN COMMENT0.035±0.018 LITCHFIELD 71 DPWA K−p → � K
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.003 MULLER 69B DPWA K−p → � K0.05 TRIPP 67 RVUE K−p → � K(�i�f )1/2/�total inNK → �(2100)→ �ω (�1�5)1/2/�(�i�f )1/2/�total inNK → �(2100)→ �ω (�1�5)1/2/�(�i�f )1/2/�total inNK → �(2100)→ �ω (�1�5)1/2/�(�i�f )1/2/�total inNK → �(2100)→ �ω (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.070 2 BACCARI 77 DPWA GD37 wave+0.011 2 BACCARI 77 DPWA GG17 wave+0.008 2 BACCARI 77 DPWA GG37 wave0.122 or 0.154 1 NAKKASYAN 75 DPWA K−p → �ω(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=3/2,D-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=3/2,D-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=3/2,D-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=3/2,D-wave (�1�7)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.16±0.02 ZHANG 13A DPWA Multi
hannel+0.21±0.04 CAMERON 78B DPWA K−p → NK∗(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=1/2,G-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=1/2,G-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=1/2,G-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=1/2,G-wave (�1�8)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.03±0.02 ZHANG 13A DPWA Multi
hannel
−0.04±0.03 3 CAMERON 78B DPWA K−p → NK∗(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=3/2,G-wave (�1�9)1/2/�(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=3/2,G-wave (�1�9)1/2/�(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=3/2,G-wave (�1�9)1/2/�(�i�f )1/2/�total inNK → �(2100)→ NK∗(892), S=3/2,G-wave (�1�9)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.08±0.02 ZHANG 13A DPWA Multi
hannel�(2100) FOOTNOTES�(2100) FOOTNOTES�(2100) FOOTNOTES�(2100) FOOTNOTES1The NAKKASYAN 75 values are from the two best solutions found. Ea
h has the�(2100) and one additional resonan
e (P3 or F5).2Note that the three for BACCARI 77 entries are for three di�erent waves.3The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.The upper limit on the G3 wave is 0.03.�(2100) REFERENCES�(2100) REFERENCES�(2100) REFERENCES�(2100) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)PDG 86 PL 170B 1 M. Aguilar-Benitez et al. (CERN, CIT+)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPCAMERON 78B NP B146 327 W. Cameron et al. (RHEL, LOIC) IJPDEBELLEFON 78 NC 42A 403 A. de Bellefon et al. (CDEF, SACL) IJPBACCARI 77 NC 41A 96 B. Ba

ari et al. (SACL, CDEF) IJPDECLAIS 77 CERN 77-16 Y. De
lais et al. (CAEN, CERN) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPHEMINGWAY 75 NP B91 12 R.J. Hemingway et al. (CERN, HEIDH, MPIM) IJPNAKKASYAN 75 NP B93 85 A. Nakkasyan (CERN) IJPKANE 74 LBL-2452 D.F. Kane (LBL) IJPRADER 73 NC 16A 178 R.K. Rader et al. (SACL, HEID, CERN+)LITCHFIELD 71 NP B30 125 P.J. Lit
h�eld et al. (RHEL, CDEF, SACL) IJPMULLER 69B Thesis UCRL 19372 R.A. Muller (LRL)TRIPP 67 NP B3 10 R.D. Tripp et al. (LRL, SLAC, CERN+)�(2110) 5/2+ I (JP ) = 0(52+) Status: ∗∗∗For results published before 1974 (they are now obsolete), see our1982 edition Physi
s Letters 111B111B111B111B 1 (1982). All the referen
es havebeen retained.This resonan
e is in the Baryon Summary Table, but the eviden
efor it 
ould be better. �(2110) MASS�(2110) MASS�(2110) MASS�(2110) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2090 to 2140 (≈ 2110) OUR ESTIMATE2090 to 2140 (≈ 2110) OUR ESTIMATE2090 to 2140 (≈ 2110) OUR ESTIMATE2090 to 2140 (≈ 2110) OUR ESTIMATE2036±13 ZHANG 13A DPWA Multi
hannel2092±25 GOPAL 80 DPWA KN → K N2125±25 CAMERON 78B DPWA K−p → NK∗2106±50 DEBELLEFON 78 DPWA KN → K N2140±20 DEBELLEFON 77 DPWA K−p → � π2100±50 GOPAL 77 DPWA KN multi
hannel2112± 7 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •2137 BACCARI 77 DPWA K−p → �ω2103 1 NAKKASYAN 75 DPWA K−p → �ω

�(2110) WIDTH�(2110) WIDTH�(2110) WIDTH�(2110) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT150 to 250 (≈ 200) OUR ESTIMATE150 to 250 (≈ 200) OUR ESTIMATE150 to 250 (≈ 200) OUR ESTIMATE150 to 250 (≈ 200) OUR ESTIMATE400±38 ZHANG 13A DPWA Multi
hannel245±25 GOPAL 80 DPWA KN → K N160±30 CAMERON 78B DPWA K−p → NK∗251±50 DEBELLEFON 78 DPWA KN → K N140±20 DEBELLEFON 77 DPWA K−p → � π200±50 GOPAL 77 DPWA KN multi
hannel190±30 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •132 BACCARI 77 DPWA K−p → �ω391 1 NAKKASYAN 75 DPWA K−p → �ω�(2110) POLE POSITION�(2110) POLE POSITION�(2110) POLE POSITION�(2110) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1970 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •350 ZHANG 13A DPWA Multi
hannel�(2110) DECAY MODES�(2110) DECAY MODES�(2110) DECAY MODES�(2110) DECAY MODESMode Fra
tion (�i /�)�1 NK 5{25 %�2 � π 10{40 %�3 �ω seen�4 � (1385)π seen�5 � (1385)π , P-wave�6 NK∗(892) 10{60 %�7 NK∗(892), S=1/2�8 NK∗(892), S=3/2, P-waveThe above bran
hing fra
tions are our estimates, not �ts or averages.�(2110) BRANCHING RATIOS�(2110) BRANCHING RATIOS�(2110) BRANCHING RATIOS�(2110) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.05 to 0.25 OUR ESTIMATE0.05 to 0.25 OUR ESTIMATE0.05 to 0.25 OUR ESTIMATE0.05 to 0.25 OUR ESTIMATE0.083±0.005 ZHANG 13A DPWA Multi
hannel0.07 ±0.03 GOPAL 80 DPWA KN → K N0.27 ±0.06 2 DEBELLEFON 78 DPWA KN → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.07 ±0.03 GOPAL 77 DPWA See GOPAL 80(�i�f )1/2/�total inNK → �(2110)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2110)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2110)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2110)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.04±0.01 ZHANG 13A DPWA Multi
hannel+0.14±0.01 DEBELLEFON 77 DPWA K−p → � π+0.20±0.03 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.10±0.03 GOPAL 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → �(2110)→ �ω (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2110)→ �ω (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2110)→ �ω (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2110)→ �ω (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT
<0.05 BACCARI 77 DPWA K−p → �ω0.112 1 NAKKASYAN 75 DPWA K−p → �ω(�i�f )1/2/�total inNK → �(2110)→ � (1385)π , P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(2110)→ � (1385)π , P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(2110)→ � (1385)π , P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → �(2110)→ � (1385)π , P-wave (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.04 ±0.01 ZHANG 13A DPWA Multi
hannel+0.071±0.025 3 CAMERON 78 DPWA K−p → �(1385)π(�i�f )1/2/�total inNK → �(2110)→ NK∗(892), S=1/2 (�1�7)1/2/�(�i�f )1/2/�total inNK → �(2110)→ NK∗(892), S=1/2 (�1�7)1/2/�(�i�f )1/2/�total inNK → �(2110)→ NK∗(892), S=1/2 (�1�7)1/2/�(�i�f )1/2/�total inNK → �(2110)→ NK∗(892), S=1/2 (�1�7)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.09±0.01 ZHANG 13A DPWA Multi
hannel
−0.17±0.04 4 CAMERON 78B DPWA K−p → NK∗(�i�f )1/2/�total inNK → �(2110)→ NK∗(892), S=3/2,P-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → �(2110)→ NK∗(892), S=3/2,P-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → �(2110)→ NK∗(892), S=3/2,P-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → �(2110)→ NK∗(892), S=3/2,P-wave (�1�8)1/2/�VALUE DOCUMENT ID TECN COMMENT0.24±0.01 ZHANG 13A DPWA Multi
hannel



1592159215921592BaryonParti
le Listings�(2110), �(2325), �(2350), �(2585) Bumps�(2110) FOOTNOTES�(2110) FOOTNOTES�(2110) FOOTNOTES�(2110) FOOTNOTES1Found in one of two best solutions.2The published error of 0.6 was a misprint.3The CAMERON 78 upper limit on F-wave de
ay is 0.03. The sign here has been 
hangedto be in a

ord with the baryon-�rst 
onvention.4The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.The CAMERON 78B upper limits on the P3 and F3 waves are ea
h 0.03.�(2110) REFERENCES�(2110) REFERENCES�(2110) REFERENCES�(2110) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPCAMERON 78 NP B143 189 W. Cameron et al. (RHEL, LOIC) IJPCAMERON 78B NP B146 327 W. Cameron et al. (RHEL, LOIC) IJPDEBELLEFON 78 NC 42A 403 A. de Bellefon et al. (CDEF, SACL) IJPBACCARI 77 NC 41A 96 B. Ba

ari et al. (SACL, CDEF) IJPDEBELLEFON 77 NC 37A 175 A. de Bellefon et al. (CDEF, SACL) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPNAKKASYAN 75 NP B93 85 A. Nakkasyan (CERN) IJPKANE 74 LBL-2452 D.F. Kane (LBL) IJP�(2325) 3/2− I (JP ) = 0(32−) Status: ∗OMITTED FROM SUMMARY TABLEBACCARI 77 �nds this state with either JP = 3/2− or 3/2+ in aenergy-dependent partial-wave analyses of K− p → �ω from 2070to 2436 MeV. A subsequent semi-energy-independent analysis fromthreshold to 2436 MeV sele
ts 3/2−. DEBELLEFON 78 (samegroup) also sees this state in an energy-dependent partial-wave anal-ysis of K− p → K N data, and �nds JP = 3/2− or 3/2+. Theyagain prefer JP = 3/2−, but only on the basis of model-dependent
onsiderations. �(2325) MASS�(2325) MASS�(2325) MASS�(2325) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 2325 OUR ESTIMATE≈ 2325 OUR ESTIMATE≈ 2325 OUR ESTIMATE≈ 2325 OUR ESTIMATE2342±30 DEBELLEFON 78 DPWA KN → K N2327±20 BACCARI 77 DPWA K−p → �ω�(2325) WIDTH�(2325) WIDTH�(2325) WIDTH�(2325) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT177±40 DEBELLEFON 78 DPWA KN → K N160±40 BACCARI 77 IPWA K−p → �ω�(2325) DECAY MODES�(2325) DECAY MODES�(2325) DECAY MODES�(2325) DECAY MODESMode�1 NK�2 �ω �(2325) BRANCHING RATIOS�(2325) BRANCHING RATIOS�(2325) BRANCHING RATIOS�(2325) BRANCHING RATIOS�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.19±0.06 DEBELLEFON 78 DPWA KN → K N(�i�f )1/2/�total inNK → �(2325)→ �ω (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2325)→ �ω (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2325)→ �ω (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2325)→ �ω (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT0.06±0.02 1 BACCARI 77 IPWA DS33 wave0.05±0.02 1 BACCARI 77 DPWA DD13 wave0.08±0.03 1 BACCARI 77 DPWA DD33 wave�(2325) FOOTNOTES�(2325) FOOTNOTES�(2325) FOOTNOTES�(2325) FOOTNOTES1Note that the three BACCARI 77 entries are for three di�erent waves.�(2325) REFERENCES�(2325) REFERENCES�(2325) REFERENCES�(2325) REFERENCESDEBELLEFON 78 NC 42A 403 A. de Bellefon et al. (CDEF, SACL) IJPBACCARI 77 NC 41A 96 B. Ba

ari et al. (SACL, CDEF) IJP�(2350) 9/2+ I (JP ) = 0(92+) Status: ∗∗∗DAUM 68 favors JP = 7/2− or 9/2+. BRICMAN 70 favors 9/2+.LASINSKI 71 suggests three states in this region using a Pomeron+ resonan
es model. There are now also three formation experi-ments from the College de Fran
e-Sa
lay group, DEBELLEFON 77,BACCARI 77, and DEBELLEFON 78, whi
h �nd 9/2+ in energy-dependent partial-wave analyses of K N → � π, �ω, and NK .

�(2350) MASS�(2350) MASS�(2350) MASS�(2350) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2340 to 2370 (≈ 2350) OUR ESTIMATE2340 to 2370 (≈ 2350) OUR ESTIMATE2340 to 2370 (≈ 2350) OUR ESTIMATE2340 to 2370 (≈ 2350) OUR ESTIMATE2370±50 DEBELLEFON 78 DPWA KN → K N2365±20 DEBELLEFON 77 DPWA K−p → � π2358± 6 BRICMAN 70 CNTR Total, 
harge ex
hange
• • • We do not use the following data for averages, �ts, limits, et
. • • •2372 BACCARI 77 DPWA K−p → �ω2344±15 COOL 70 CNTR K−p, K− d total2360±20 LU 70 CNTR γ p → K+Y ∗2340± 7 BUGG 68 CNTR K−p, K− d total�(2350) WIDTH�(2350) WIDTH�(2350) WIDTH�(2350) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT100 to 250 (≈ 150) OUR ESTIMATE100 to 250 (≈ 150) OUR ESTIMATE100 to 250 (≈ 150) OUR ESTIMATE100 to 250 (≈ 150) OUR ESTIMATE204±50 DEBELLEFON 78 DPWA KN → K N110±20 DEBELLEFON 77 DPWA K−p → � π324±30 BRICMAN 70 CNTR Total, 
harge ex
hange
• • • We do not use the following data for averages, �ts, limits, et
. • • •257 BACCARI 77 DPWA K−p → �ω190 COOL 70 CNTR K−p, K− d total55 LU 70 CNTR γ p → K+Y ∗140±20 BUGG 68 CNTR K−p, K− d total�(2350) DECAY MODES�(2350) DECAY MODES�(2350) DECAY MODES�(2350) DECAY MODESMode Fra
tion (�i /�)�1 NK ∼ 12 %�2 � π ∼ 10 %�3 �ωThe above bran
hing fra
tions are our estimates, not �ts or averages.�(2350) BRANCHING RATIOS�(2350) BRANCHING RATIOS�(2350) BRANCHING RATIOS�(2350) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT
∼ 0.12 OUR ESTIMATE∼ 0.12 OUR ESTIMATE∼ 0.12 OUR ESTIMATE∼ 0.12 OUR ESTIMATE0.12±0.04 DEBELLEFON 78 DPWA KN → K N(�i�f )1/2/�total inNK → �(2350)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2350)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2350)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → �(2350)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.11±0.02 DEBELLEFON 77 DPWA K−p → � π(�i�f )1/2/�total inNK → �(2350)→ �ω (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2350)→ �ω (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2350)→ �ω (�1�3)1/2/�(�i�f )1/2/�total inNK → �(2350)→ �ω (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT
<0.05 BACCARI 77 DPWA K−p → �ω�(2350) REFERENCES�(2350) REFERENCES�(2350) REFERENCES�(2350) REFERENCESDEBELLEFON 78 NC 42A 403 A. de Bellefon et al. (CDEF, SACL) IJPBACCARI 77 NC 41A 96 B. Ba

ari et al. (SACL, CDEF) IJPDEBELLEFON 77 NC 37A 175 A. de Bellefon et al. (CDEF, SACL) IJPLASINSKI 71 NP B29 125 T.A. Lasinski (EFI) IJPBRICMAN 70 PL 31B 152 C. Bri
man et al. (CERN, CAEN, SACL)COOL 70 PR D1 1887 R.L. Cool et al. (BNL) IAlso PRL 16 1228 R.L. Cool et al. (BNL) ILU 70 PR D2 1846 D.C. Lu et al. (YALE)BUGG 68 PR 168 1466 D.V. Bugg et al. (RHEL, BIRM, CAVE) IDAUM 68 NP B7 19 C. Daum et al. (CERN) JP�(2585) Bumps I (JP ) = 0(??) Status: ∗∗OMITTED FROM SUMMARY TABLE�(2585) MASS�(2585) MASS�(2585) MASS�(2585) MASS(BUMPS)(BUMPS)(BUMPS)(BUMPS)VALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 2585 OUR ESTIMATE≈ 2585 OUR ESTIMATE≈ 2585 OUR ESTIMATE≈ 2585 OUR ESTIMATE2585±45 ABRAMS 70 CNTR K−p, K− d total2530±25 LU 70 CNTR γ p → K+Y ∗�(2585) WIDTH�(2585) WIDTH�(2585) WIDTH�(2585) WIDTH(BUMPS)(BUMPS)(BUMPS)(BUMPS)VALUE (MeV) DOCUMENT ID TECN COMMENT300 ABRAMS 70 CNTR K−p, K− d total150 LU 70 CNTR γ p → K+Y ∗



1593159315931593See key on page 601 BaryonParti
le Listings�(2585) Bumps�(2585) DECAY MODES�(2585) DECAY MODES�(2585) DECAY MODES�(2585) DECAY MODES(BUMPS)(BUMPS)(BUMPS)(BUMPS)Mode�1 NK �(2585) BRANCHING RATIOS�(2585) BRANCHING RATIOS�(2585) BRANCHING RATIOS�(2585) BRANCHING RATIOS(BUMPS)(BUMPS)(BUMPS)(BUMPS)(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�J is not known, so only (J+12 )× �(NK)/�total 
an be given.VALUE DOCUMENT ID TECN COMMENT1 ABRAMS 70 CNTR K−p, K− d total0.12±0.12 1 BRICMAN 70 CNTR Total, 
harge ex
hange

�(2585) FOOTNOTES�(2585) FOOTNOTES�(2585) FOOTNOTES�(2585) FOOTNOTES(BUMPS)(BUMPS)(BUMPS)(BUMPS)1The resonan
e is at the end of the region analyzed | no 
lear signal.�(2585) REFERENCES�(2585) REFERENCES�(2585) REFERENCES�(2585) REFERENCES(BUMPS)(BUMPS)(BUMPS)(BUMPS)ABRAMS 70 PR D1 1917 R.J. Abrams et al. (BNL) IAlso PRL 16 1228 R.L. Cool et al. (BNL) IBRICMAN 70 PL 31B 152 C. Bri
man et al. (CERN, CAEN, SACL)LU 70 PR D2 1846 D.C. Lu et al. (YALE)



1594159415941594BaryonParti
le Listings�+ � BARYONS� BARYONS� BARYONS� BARYONS(S = −1, I = 1)(S = −1, I = 1)(S = −1, I = 1)(S = −1, I = 1)�+ = uus, �0 = uds, �− = dds�+ I (JP ) = 1(12+) Status: ∗∗∗∗We have omitted some results that have been superseded by laterexperiments. See our earlier editions.�+ MASS�+ MASS�+ MASS�+ MASSThe �t uses �+, �0, �−, and �mass and mass-di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1189.37±0.07 OUR FIT1189.37±0.07 OUR FIT1189.37±0.07 OUR FIT1189.37±0.07 OUR FIT Error in
ludes s
ale fa
tor of 2.2.1189.37±0.06 OUR AVERAGE1189.37±0.06 OUR AVERAGE1189.37±0.06 OUR AVERAGE1189.37±0.06 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8. See the ideogrambelow.1189.33±0.04 607 1 BOHM 72 EMUL1189.16±0.12 HYMAN 67 HEBC1189.61±0.08 4205 SCHMIDT 65 HBC See note with � mass1189.48±0.22 58 2 BHOWMIK 64 EMUL1189.38±0.15 144 2 BARKAS 63 EMUL1BOHM 72 is updated with our 1973 K−, π−, and π0 masses (Reviews of ModernPhysi
s 45454545 S1 (1973)).2These masses have been raised 30 keV to take into a

ount a 46 keV in
rease in theproton mass and a 21 keV de
rease in the π0 mass (note added 1967 edition, Reviewsof Modern Physi
s 39393939 1 (1967)).
WEIGHTED AVERAGE
1189.37±0.06 (Error scaled by 1.8)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BARKAS 63 EMUL 0.0
BHOWMIK 64 EMUL 0.2
SCHMIDT 65 HBC 8.9
HYMAN 67 HEBC 3.1
BOHM 72 EMUL 1.0

χ2

      13.3
(Confidence Level = 0.0098)

1189 1189.4 1189.8 1190.2�+ mass (MeV) �+ MEAN LIFE�+ MEAN LIFE�+ MEAN LIFE�+ MEAN LIFEMeasurements with fewer than 1000 events have been omitted.VALUE (10−10 s) EVTS DOCUMENT ID TECN COMMENT0.8018±0.0026 OUR AVERAGE0.8018±0.0026 OUR AVERAGE0.8018±0.0026 OUR AVERAGE0.8018±0.0026 OUR AVERAGE0.8038±0.0040±0.0014 BARBOSA 00 E761 hyperons, 375 GeV0.8043±0.0080±0.0014 3 BARBOSA 00 E761 hyperons, 375 GeV0.798 ±0.005 30k MARRAFFINO 80 HBC K−p 0.42{0.5GeV/
0.807 ±0.013 5719 CONFORTO 76 HBC K−p 1{1.4 GeV/
0.795 ±0.010 20k EISELE 70 HBC K−p at rest0.803 ±0.008 10664 BARLOUTAUD69 HBC K−p 0.4{1.2GeV/
0.83 ±0.032 1300 4 CHANG 66 HBC3This is a measurement of the �− lifetime. Here we assume CPT invarian
e; see belowfor the fra
tional �+-�− lifetime di�eren
e obtained by BARBOSA 00.4We have in
reased the CHANG 66 error of 0.018; see our 1970 edition, Reviews ofModern Physi
s 42424242 87 (1970).(τ�+ − τ�−) / τ�+(τ�+ − τ�−) / τ�+(τ�+ − τ�−) / τ�+(τ�+ − τ�−) / τ�+A test of CPT invarian
e.VALUE DOCUMENT ID TECN COMMENT(−6±12)× 10−4(−6±12)× 10−4(−6±12)× 10−4(−6±12)× 10−4 BARBOSA 00 E761 hyperons, 375 GeV�+ MAGNETIC MOMENT�+ MAGNETIC MOMENT�+ MAGNETIC MOMENT�+ MAGNETIC MOMENT

See the \Note on Baryon Magneti
 Moments" in the � Listings. Measure-ments with an error ≥ 0.1 µN have been omitted.VALUE (µ
N
) EVTS DOCUMENT ID TECN COMMENT2.458 ±0.010 OUR AVERAGE2.458 ±0.010 OUR AVERAGE2.458 ±0.010 OUR AVERAGE2.458 ±0.010 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1. See the ideogrambelow.2.4613±0.0034±0.0040 250k MORELOS 93 SPEC pCu 800 GeV2.428 ±0.036 ±0.007 12k 5 MORELOS 93 SPEC pCu 800 GeV2.479 ±0.012 ±0.022 137k WILKINSON 87 SPEC pBe 400 GeV2.4040±0.0198 44k 6 ANKENBRA... 83 CNTR pCu 400 GeV5We assume CPT invarian
e: this is (minus) the �− magneti
 moment as measured byMORELOS 93. See below for the moment di�eren
e testing CPT.6ANKENBRANDT 83 gives the value 2.38 ± 0.02µN . MORELOS 93 uses the samehyperon magnet and 
hannel and 
laims to determine the �eld integral better, leadingto the revised value given here.
WEIGHTED AVERAGE
2.458±0.010 (Error scaled by 2.1)

ANKENBRA... 83 CNTR 7.4
WILKINSON 87 SPEC 0.7
MORELOS 93 SPEC
MORELOS 93 SPEC 0.4

χ2

       8.5
(Confidence Level = 0.014)

2.35 2.4 2.45 2.5 2.55 2.6�+ magneti
 moment (µN )(µ�+ + µ�−) /

µ�+(µ�+ + µ�−) /

µ�+(µ�+ + µ�−) /

µ�+(µ�+ + µ�−) /

µ�+A test of CPT invarian
e.VALUE DOCUMENT ID TECN COMMENT0.014±0.0150.014±0.0150.014±0.0150.014±0.015 7 MORELOS 93 SPEC pCu 800 GeV7This is our 
al
ulation from the MORELOS 93 measurements of the �+ and �−magneti
 moments given above. The statisti
al error on µ�−
dominates the error here.�+ DECAY MODES�+ DECAY MODES�+ DECAY MODES�+ DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 pπ0 (51.57±0.30) %�2 nπ+ (48.31±0.30) %�3 pγ ( 1.23±0.05) × 10−3�4 nπ+ γ [a℄ ( 4.5 ±0.5 ) × 10−4�5 �e+ νe ( 2.0 ±0.5 ) × 10−5�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = 1 weak neutral 
urrent (S1) modes�S = 1 weak neutral 
urrent (S1) modes�S = 1 weak neutral 
urrent (S1) modes�S = 1 weak neutral 
urrent (S1) modes�6 ne+ νe SQ < 5 × 10−6 90%�7 nµ+ νµ SQ < 3.0 × 10−5 90%�8 pe+ e− S1 < 7 × 10−6�9 pµ+µ− S1 ( 9 +9

−8 )× 10−8[a℄ See the Listings below for the pion momentum range used in this mea-surement. CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 2 bran
hing ratios uses 14 measurements and one
onstraint to determine 3 parameters. The overall �t has a χ2 =7.7 for 12 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −100x3 12 −14x1 x2



1595159515951595See key on page 601 Baryon Parti
le Listings�+�+ BRANCHING RATIOS�+ BRANCHING RATIOS�+ BRANCHING RATIOS�+ BRANCHING RATIOS�(nπ+)/�(N π
) �2/(�1+�2)�(nπ+)/�(N π
) �2/(�1+�2)�(nπ+)/�(N π
) �2/(�1+�2)�(nπ+)/�(N π
) �2/(�1+�2)VALUE EVTS DOCUMENT ID TECN COMMENT0.4836±0.0030 OUR FIT0.4836±0.0030 OUR FIT0.4836±0.0030 OUR FIT0.4836±0.0030 OUR FIT0.4836±0.0030 OUR AVERAGE0.4836±0.0030 OUR AVERAGE0.4836±0.0030 OUR AVERAGE0.4836±0.0030 OUR AVERAGE0.4828±0.0036 10k 8 MARRAFFINO 80 HBC K−p 0.42{0.5 GeV/
0.488 ±0.008 1861 NOWAK 78 HBC0.484 ±0.015 537 TOVEE 71 EMUL0.488 ±0.010 1331 BARLOUTAUD69 HBC K−p 0.4{1.2 GeV/
0.46 ±0.02 534 CHANG 66 HBC0.490 ±0.024 308 HUMPHREY 62 HBC8MARRAFFINO 80 a
tually gives �(pπ0)/�(total) = 0.5172 ± 0.0036.�(pγ

)/�(pπ0) �3/�1�(pγ
)/�(pπ0) �3/�1�(pγ
)/�(pπ0) �3/�1�(pγ
)/�(pπ0) �3/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.38±0.10 OUR FIT2.38±0.10 OUR FIT2.38±0.10 OUR FIT2.38±0.10 OUR FIT2.38±0.10 OUR AVERAGE2.38±0.10 OUR AVERAGE2.38±0.10 OUR AVERAGE2.38±0.10 OUR AVERAGE2.32±0.11±0.10 32k TIMM 95 E761 �+ 375 GeV2.81±0.39+0.21

−0.43 408 HESSEY 89 CNTR K−p → �+π− atrest2.52±0.28 190 9 KOBAYASHI 87 CNTR π+ p → �+K+2.46+0.30
−0.35 155 BIAGI 85 CNTR CERN hyperon beam2.11±0.38 46 MANZ 80 HBC K−p → �+π−2.1 ±0.3 45 ANG 69B HBC K−p at rest2.76±0.51 31 GERSHWIN 69B HBC K−p → �+π−3.7 ±0.8 24 BAZIN 65 HBC K−p at rest9KOBAYASHI 87 a
tually gives �(pγ)/�(total) = (1.30 ± 0.15)× 10−3.�(nπ+ γ

)/�(nπ+) �4/�2�(nπ+ γ
)/�(nπ+) �4/�2�(nπ+ γ
)/�(nπ+) �4/�2�(nπ+ γ
)/�(nπ+) �4/�2The π+ momentum 
uts di�er, so we do not average the results but simply use thelatest value in the Summary Table.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.93±0.100.93±0.100.93±0.100.93±0.10 180 EBENHOH 73 HBC π+ < 150 MeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •0.27±0.05 29 ANG 69B HBC π+ < 110 MeV/

∼ 1.8 BAZIN 65B HBC π+ < 116 MeV/
�(�e+ νe)/�total �5/��(�e+ νe)/�total �5/��(�e+ νe)/�total �5/��(�e+ νe)/�total �5/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT2.0±0.5 OUR AVERAGE2.0±0.5 OUR AVERAGE2.0±0.5 OUR AVERAGE2.0±0.5 OUR AVERAGE1.6±0.7 5 BALTAY 69 HBC K−p at rest2.9±1.0 10 EISELE 69 HBC K−p at rest2.0±0.8 6 BARASH 67 HBC K−p at rest�(ne+ νe)/�(nπ+) �6/�2�(ne+ νe)/�(nπ+) �6/�2�(ne+ νe)/�(nπ+) �6/�2�(ne+ νe)/�(nπ+) �6/�2Test of �S = �Q rule. Experiments with an e�e
tive denominator less than 100,000have been omitted.EFFECTIVE DENOM. EVTS DOCUMENT ID TECN COMMENT
< 1.1× 10−5 OUR LIMIT< 1.1× 10−5 OUR LIMIT< 1.1× 10−5 OUR LIMIT< 1.1× 10−5 OUR LIMIT Our 90% CL limit = (2.3 events)/(e�e
tive denominatorsum). [Number of events in
reased to 2.3 for a 90% 
on�den
e level.℄111000 0 10 EBENHOH 74 HBC K−p at rest105000 0 10 SECHI-ZORN 73 HBC K−p at rest10E�e
tive denominator 
al
ulated by us.�(nµ+ νµ

)/�(nπ+) �7/�2�(nµ+ νµ

)/�(nπ+) �7/�2�(nµ+ νµ

)/�(nπ+) �7/�2�(nµ+ νµ

)/�(nπ+) �7/�2Test of �S = �Q rule.EFFECTIVE DENOM. EVTS DOCUMENT ID TECN
< 6.2× 10−5 OUR LIMIT< 6.2× 10−5 OUR LIMIT< 6.2× 10−5 OUR LIMIT< 6.2× 10−5 OUR LIMIT Our 90% CL limit = (6.7 events)/(e�e
tive denominatorsum). [Number of events in
reased to 6.7 for a 90% 
on�den
e level.℄33800 0 BAGGETT 69B HBC62000 2 11 EISELE 69B HBC10150 0 12 COURANT 64 HBC1710 0 12 NAUENBERG 64 HBC120 1 GALTIERI 62 EMUL11E�e
tive denominator 
al
ulated by us.12E�e
tive denominator taken from EISELE 67.�(pe+ e−)/�total �8/��(pe+ e−)/�total �8/��(pe+ e−)/�total �8/��(pe+ e−)/�total �8/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT
<7<7<7<7 13 ANG 69B HBC K−p at rest13ANG 69B found three pe+ e− events in agreement with γ → e+ e− 
onversion from�+ → pγ. The limit given here is for neutral 
urrents.�(pµ+µ−)/�total �9/��(pµ+µ−)/�total �9/��(pµ+µ−)/�total �9/��(pµ+µ−)/�total �9/�A test for a �S = 1 weak neutral 
urrent, but also allowed by higher-order ele
troweakintera
tions.VALUE (units 10−8) EVTS DOCUMENT ID TECN COMMENT8.6+6.6

−5.4±5.58.6+6.6
−5.4±5.58.6+6.6
−5.4±5.58.6+6.6
−5.4±5.5 3 14 PARK 05 HYCP p Cu, 800 GeV14The masses of the three dimuons of PARK 05 are within 1 MeV of one another, perhapsindi
ating the existen
e of a new state P0 with mass 214.3 ± 0.5 MeV. In that 
ase, thede
ay is �+ → pP0, P0 → µ+µ−, with a bran
hing fra
tion of (3.1+2.4

−1.9 ± 1.5)×10−8.

�(�+
→ ne+ νe)/�(�−

→ ne−νe) �6/��−3�(�+
→ ne+ νe)/�(�−

→ ne−νe) �6/��−3�(�+
→ ne+ νe)/�(�−

→ ne−νe) �6/��−3�(�+
→ ne+ νe)/�(�−

→ ne−νe) �6/��−3VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<0.009 OUR LIMIT<0.009 OUR LIMIT<0.009 OUR LIMIT<0.009 OUR LIMIT Our 90% CL limit, using �(ne+ νe )/�(nπ+) above.
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.019 90 0 EBENHOH 74 HBC K−p at rest
<0.018 90 0 SECHI-ZORN 73 HBC K−p at rest
<0.12 95 0 COLE 71 HBC K−p at rest
<0.03 90 0 EISELE 69B HBC See EBENHOH 74�(�+

→ nµ+νµ

)/�(�−
→ nµ− νµ

) �7/��−4�(�+
→ nµ+νµ

)/�(�−
→ nµ− νµ

) �7/��−4�(�+
→ nµ+νµ

)/�(�−
→ nµ− νµ

) �7/��−4�(�+
→ nµ+νµ

)/�(�−
→ nµ− νµ

) �7/��−4VALUE EVTS DOCUMENT ID TECN COMMENT
<0.12 OUR LIMIT<0.12 OUR LIMIT<0.12 OUR LIMIT<0.12 OUR LIMIT Our 90% CL limit, using �(nµ+ νµ

)/�(nπ+) above.
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.06+0.045

−0.03 2 EISELE 69B HBC K−p at rest�(�+
→ nℓ+ν

)/�(�−
→ nℓ−ν

) (�6+�7)/(��−3 +��−4 )�(�+
→ nℓ+ν

)/�(�−
→ nℓ−ν

) (�6+�7)/(��−3 +��−4 )�(�+
→ nℓ+ν

)/�(�−
→ nℓ−ν

) (�6+�7)/(��−3 +��−4 )�(�+
→ nℓ+ν

)/�(�−
→ nℓ−ν

) (�6+�7)/(��−3 +��−4 )Test of �S = �Q rule.VALUE EVTS DOCUMENT ID TECN
<0.043 OUR LIMIT<0.043 OUR LIMIT<0.043 OUR LIMIT<0.043 OUR LIMIT Our 90% CL limit, using [�(ne+ νe ) + �(nµ+ νµ

)

]/�(nπ+).
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.08 1 NORTON 69 HBC
<0.034 0 BAGGETT 67 HBC�+ DECAY PARAMETERS�+ DECAY PARAMETERS�+ DECAY PARAMETERS�+ DECAY PARAMETERSSee the \Note on Baryon De
ay Parameters" in the neutron Listings. Afew early results have been omitted.
α0 FOR �+

→ pπ0α0 FOR �+
→ pπ0α0 FOR �+
→ pπ0α0 FOR �+
→ pπ0VALUE EVTS DOCUMENT ID TECN COMMENT

−0.980+0.017
−0.015 OUR FIT−0.980+0.017
−0.015 OUR FIT−0.980+0.017
−0.015 OUR FIT−0.980+0.017
−0.015 OUR FIT

−0.980+0.017
−0.013 OUR AVERAGE−0.980+0.017
−0.013 OUR AVERAGE−0.980+0.017
−0.013 OUR AVERAGE−0.980+0.017
−0.013 OUR AVERAGE

−0.945+0.055
−0.042 1259 15 LIPMAN 73 OSPK π+ p → �+

−0.940±0.045 16k BELLAMY 72 ASPK π+ p → �+K+
−0.98 +0.05

−0.02 1335 16 HARRIS 70 OSPK π+ p → �+K+
−0.999±0.022 32k BANGERTER 69 HBC K−p 0.4 GeV/
15De
ay protons s
attered o� aluminum.16De
ay protons s
attered o� 
arbon.
φ0 ANGLE FOR �+

→ pπ0 (tanφ0 = β/γ)φ0 ANGLE FOR �+
→ pπ0 (tanφ0 = β/γ)φ0 ANGLE FOR �+
→ pπ0 (tanφ0 = β/γ)φ0 ANGLE FOR �+
→ pπ0 (tanφ0 = β/γ)VALUE (◦) EVTS DOCUMENT ID TECN COMMENT36 ±34 OUR AVERAGE36 ±34 OUR AVERAGE36 ±34 OUR AVERAGE36 ±34 OUR AVERAGE38.1+35.7

−37.1 1259 17 LIPMAN 73 OSPK π+ p → �+K+22 ±90 18 HARRIS 70 OSPK π+ p → �+K+17De
ay proton s
attered o� aluminum.18De
ay protons s
attered o� 
arbon.
α+ / α0α+ / α0α+ / α0α+ / α0Older results have been omitted.VALUE EVTS DOCUMENT ID TECN COMMENT
−0.069±0.013 OUR FIT−0.069±0.013 OUR FIT−0.069±0.013 OUR FIT−0.069±0.013 OUR FIT
−0.073±0.021−0.073±0.021−0.073±0.021−0.073±0.021 23k MARRAFFINO 80 HBC K−p 0.42{0.5 GeV/

α+ FOR �+

→ nπ+α+ FOR �+
→ nπ+α+ FOR �+
→ nπ+α+ FOR �+
→ nπ+VALUE EVTS DOCUMENT ID TECN COMMENT0.068±0.013 OUR FIT0.068±0.013 OUR FIT0.068±0.013 OUR FIT0.068±0.013 OUR FIT0.066±0.016 OUR AVERAGE0.066±0.016 OUR AVERAGE0.066±0.016 OUR AVERAGE0.066±0.016 OUR AVERAGE0.037±0.049 4101 BERLEY 70B HBC0.069±0.017 35k BANGERTER 69 HBC K−p 0.4 GeV/


φ+ ANGLE FOR �+
→ nπ+ (tanφ+ = β/γ)φ+ ANGLE FOR �+
→ nπ+ (tanφ+ = β/γ)φ+ ANGLE FOR �+
→ nπ+ (tanφ+ = β/γ)φ+ ANGLE FOR �+
→ nπ+ (tanφ+ = β/γ)VALUE (◦) EVTS DOCUMENT ID TECN COMMENT167±20 OUR AVERAGE167±20 OUR AVERAGE167±20 OUR AVERAGE167±20 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.184±24 1054 19 BERLEY 70B HBC143±29 560 BANGERTER 69B HBC K−p 0.4 GeV/
19Changed from 176 to 184◦ to agree with our sign 
onvention.

αγ FOR �+
→ pγαγ FOR �+
→ pγαγ FOR �+
→ pγαγ FOR �+
→ pγVALUE EVTS DOCUMENT ID TECN COMMENT

−0.76 ±0.08 OUR AVERAGE−0.76 ±0.08 OUR AVERAGE−0.76 ±0.08 OUR AVERAGE−0.76 ±0.08 OUR AVERAGE
−0.720±0.086±0.045 35k 20 FOUCHER 92 SPEC �+ 375 GeV
−0.86 ±0.13 ±0.04 190 KOBAYASHI 87 CNTR π+ p → �+K+
−0.53 +0.38

−0.36 46 MANZ 80 HBC K−p → �+π−

−1.03 +0.52
−0.42 61 GERSHWIN 69B HBC K−p → �+π−20See TIMM 95 for a detailed des
ription of the analysis.



1596159615961596BaryonParti
le Listings�+,� 0,�− �+ REFERENCES�+ REFERENCES�+ REFERENCES�+ REFERENCESWe have omitted some papers that have been superseded by later experi-ments. See our earlier editions.PARK 05 PRL 94 021801 H.K. Park et al. (FNAL HyperCP Collab.)BARBOSA 00 PR D61 031101 R.F. Barbosa et al. (FNAL E761 Collab.)TIMM 95 PR D51 4638 S. Timm et al. (FNAL E761 Collab.)MORELOS 93 PRL 71 3417 A. Morelos et al. (FNAL E761 Collab.)FOUCHER 92 PRL 68 3004 M. Fou
her et al. (FNAL E761 Collab.)HESSEY 89 ZPHY C42 175 N.P. Hessey et al. (BNL-811 Collab.)KOBAYASHI 87 PRL 59 868 M. Kobayashi et al. (KYOT)WILKINSON 87 PRL 58 855 C.A. Wilkinson et al. (WISC, MICH, RUTG+)BIAGI 85 ZPHY C28 495 S.F. Biagi et al. (CERN WA62 Collab.)ANKENBRA... 83 PRL 51 863 C.M. Ankenbrandt et al. (FNAL, IOWA, ISU+)MANZ 80 PL 96B 217 A. Manz et al. (MPIM, VAND)MARRAFFINO 80 PR D21 2501 J. MarraÆno et al. (VAND, MPIM)NOWAK 78 NP B139 61 R.J. Nowak et al. (LOUC, BELG, DURH+)CONFORTO 76 NP B105 189 B. Conforto et al. (RHEL, LOIC)EBENHOH 74 ZPHY 266 367 H. Ebenhoh et al. (HEIDT)EBENHOH 73 ZPHY 264 413 W. Ebenhoh et al. (HEIDT)LIPMAN 73 PL 43B 89 N.H. Lipman et al. (RHEL, SUSS, LOWC)PDG 73 RMP 45 S1 T.A. Lasinski et al. (LBL, BRAN, CERN+)SECHI-ZORN 73 PR D8 12 B. Se
hi-Zorn, G.A. Snow (UMD)BELLAMY 72 PL 39B 299 E.H. Bellamy et al. (LOWC, RHEL, SUSS)BOHM 72 NP B48 1 G. Bohm et al. (BERL, KIDR, BRUX, IASD+)Also IIHE-73.2 Nov G. Bohm (BERL, KIDR, BRUX, IASD, DUUC+)COLE 71 PR D4 631 J. Cole et al. (STON, COLU)TOVEE 71 NP B33 493 D.N. Tovee et al. (LOUC, KIDR, BERL+)BERLEY 70B PR D1 2015 D. Berley et al. (BNL, MASA, YALE)EISELE 70 ZPHY 238 372 F. Eisele et al. (HEID)HARRIS 70 PRL 24 165 F. Harris et al. (MICH, WISC)PDG 70 RMP 42 87 A. Barbaro-Galtieri et al. (LRL, BRAN+)ANG 69B ZPHY 228 151 G. Ang et al. (HEID)BAGGETT 69B Thesis MDDP-TR-973 N.V. Baggett (UMD)BALTAY 69 PRL 22 615 C. Baltay et al. (COLU, STON)BANGERTER 69 Thesis UCRL 19244 R.O. Bangerter (LRL)BANGERTER 69B PR 187 1821 R.O. Bangerter et al. (LRL)BARLOUTAUD 69 NP B14 153 R. Barloutaud et al. (SACL, CERN, HEID)EISELE 69 ZPHY 221 1 F. Eisele et al. (HEID)Also PRL 13 291 W. Willis et al. (BNL, CERN, HEID, UMD)EISELE 69B ZPHY 221 401 F. Eisele et al. (HEID)GERSHWIN 69B PR 188 2077 L.K. Gershwin et al. (LRL)Also Thesis UCRL 19246 L.K. Gershwin (LRL)NORTON 69 Thesis Nevis 175 H. Norton (COLU)BAGGETT 67 PRL 19 1458 N. Baggett et al. (UMD)Also Vienna Abs. 374 N.V. Baggett, B. Kehoe (UMD)Also Private Comm. N.V. Baggett (UMD)BARASH 67 PRL 19 181 N. Barash et al. (UMD)EISELE 67 ZPHY 205 409 F. Eisele et al. (HEID)HYMAN 67 PL 25B 376 L.G. Hyman et al. (ANL, CMU, NWES)PDG 67 RMP 39 1 A.H. Rosenfeld et al. (LRL, CERN, YALE)CHANG 66 PR 151 1081 C.Y. Chang (COLU)Also Thesis Nevis 145 C.Y. Chang (COLU)BAZIN 65 PRL 14 154 M. Bazin et al. (PRIN, COLU)BAZIN 65B PR 140B 1358 M. Bazin et al. (PRIN, RUTG, COLU)SCHMIDT 65 PR 140B 1328 P. S
hmidt (COLU)BHOWMIK 64 NP 53 22 B. Bhowmik et al. (DELH)COURANT 64 PR 136 B1791 H. Courant et al. (CERN, HEID, UMD+)NAUENBERG 64 PRL 12 679 U. Nauenberg et al. (COLU, RUTG, PRIN)BARKAS 63 PRL 11 26 W.H. Barkas, J.N. Dyer, H.H. He
kman (LRL)Also Thesis UCRL 9450 J.N. Dyer (LRL)GALTIERI 62 PRL 9 26 A. Barbaro-Galtieri et al. (LRL)HUMPHREY 62 PR 127 1305 W.E. Humphrey, R.R. Ross (LRL)� 0 I (JP ) = 1(12+) Status: ∗∗∗∗COURANT 63 and ALFF 65, using �0
→ �e+ e− de
ays (Dalitzde
ays), determined the �0 parity to be positive, given that J = 1/2and that 
ertain very reasonable assumptions about form fa
tors aretrue. The results of experiments involving the Primako� e�e
t, fromwhi
h the �0 mean life and �0

→ � transition magneti
 moment
ome (see below), strongly support J = 1/2.�0 MASS�0 MASS�0 MASS�0 MASSThe �t uses �+, �0, �−, and �mass and mass-di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1192.642±0.024 OUR FIT1192.642±0.024 OUR FIT1192.642±0.024 OUR FIT1192.642±0.024 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1192.65 ±0.020±0.014 3327 1 WANG 97 SPEC �0 → �γ →(pπ−)(e+ e−)1This WANG 97 result is redundant with the �0-� mass-di�eren
e measurement below.m�− − m�0m�− − m�0m�− − m�0m�− − m�0VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT4.807±0.035 OUR FIT4.807±0.035 OUR FIT4.807±0.035 OUR FIT4.807±0.035 OUR FIT Error in
ludes s
ale fa
tor of 1.1.4.86 ±0.08 OUR AVERAGE4.86 ±0.08 OUR AVERAGE4.86 ±0.08 OUR AVERAGE4.86 ±0.08 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.4.87 ±0.12 37 DOSCH 65 HBC5.01 ±0.12 12 SCHMIDT 65 HBC See note with � mass4.75 ±0.1 18 BURNSTEIN 64 HBCm�0 − m�m�0 − m�m�0 − m�m�0 − m�VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT76.959±0.023 OUR FIT76.959±0.023 OUR FIT76.959±0.023 OUR FIT76.959±0.023 OUR FIT76.966±0.020±0.01376.966±0.020±0.01376.966±0.020±0.01376.966±0.020±0.013 3327 WANG 97 SPEC �0 → �γ →(pπ−)(e+ e−)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

76.23 ±0.55 109 COLAS 75 HLBC �0 → �γ76.63 ±0.28 208 SCHMIDT 65 HBC See note with � mass�0 MEAN LIFE�0 MEAN LIFE�0 MEAN LIFE�0 MEAN LIFEThese lifetimes are dedu
ed from measurements of the 
ross se
tions forthe Primako� pro
ess � → �0 in nu
lear Coulomb �elds. An alterna-tive expression of the same information is the �0-� transition magneti
moment given in the following se
tion. The relation is (µ� �/µN )2 τ =1.92951 × 10−19 s (see DEVLIN 86).VALUE (10−20 s) DOCUMENT ID TECN COMMENT7.4±0.7 OUR EVALUATION7.4±0.7 OUR EVALUATION7.4±0.7 OUR EVALUATION7.4±0.7 OUR EVALUATION Using µ� � (see the above note).6.5+1.7
−1.1 2 DEVLIN 86 SPEC Primako� e�e
t7.6±0.5±0.7 3 PETERSEN 86 SPEC Primako� e�e
t

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.8±1.3 2 DYDAK 77 SPEC See DEVLIN 862DEVLIN 86 is a re
al
ulation of the results of DYDAK 77 removing a numeri
al approx-imation made in that work.3An additional un
ertainty of the Primako� formalism is estimated to be < 5%.
∣

∣µ(�0
→ �)∣∣ TRANSITION MAGNETIC MOMENT∣

∣µ(�0
→ �)∣∣ TRANSITION MAGNETIC MOMENT∣

∣µ(�0
→ �)∣∣ TRANSITION MAGNETIC MOMENT∣

∣µ(�0
→ �)∣∣ TRANSITION MAGNETIC MOMENTSee the note in the �0 mean-life se
tion above. Also, see the \Note onBaryon Magneti
 Moments" in the � Listings.VALUE (µ

N
) DOCUMENT ID TECN COMMENT1.61±0.08 OUR AVERAGE1.61±0.08 OUR AVERAGE1.61±0.08 OUR AVERAGE1.61±0.08 OUR AVERAGE1.72+0.17

−0.19 4 DEVLIN 86 SPEC Primako� e�e
t1.59±0.05±0.07 5 PETERSEN 86 SPEC Primako� e�e
t
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.82+0.25

−0.18 4 DYDAK 77 SPEC See DEVLIN 864DEVLIN 86 is a re
al
ulation of the results of DYDAK 77 removing a numeri
al approx-imation made in that work.5An additional un
ertainty of the Primako� formalism is estimated to be < 2.5%.�0 DECAY MODES�0 DECAY MODES�0 DECAY MODES�0 DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 �γ 100 %�2 �γ γ < 3 % 90%�3 �e+ e− [a℄ 5× 10−3[a℄ A theoreti
al value using QED.�0 BRANCHING RATIOS�0 BRANCHING RATIOS�0 BRANCHING RATIOS�0 BRANCHING RATIOS�(�γ γ
)/�total �2/��(�γ γ
)/�total �2/��(�γ γ
)/�total �2/��(�γ γ
)/�total �2/�VALUE CL% DOCUMENT ID TECN

<0.03<0.03<0.03<0.03 90 COLAS 75 HLBC�(�e+ e−)/�total �3/��(�e+ e−)/�total �3/��(�e+ e−)/�total �3/��(�e+ e−)/�total �3/�See COURANT 63 and ALFF 65 for measurements of the invariant-mass spe
trum ofthe Dalitz pairs.VALUE DOCUMENT ID COMMENT0.005450.005450.005450.00545 FEINBERG 58 Theoreti
al QED 
al
ulation�0 REFERENCES�0 REFERENCES�0 REFERENCES�0 REFERENCESWANG 97 PR D56 2544 M.H.L.S. Wang et al. (BNL-E766 Collab.)DEVLIN 86 PR D34 1626 T. Devlin, P.C. Petersen, A. Beretvas (RUTG)PETERSEN 86 PRL 57 949 P.C. Petersen et al. (RUTG, WISC, MICH+)DYDAK 77 NP B118 1 F. Dydak et al. (CERN, DORT, HEIDH)COLAS 75 NP B91 253 J. Colas et al. (ORSAY)ALFF 65 PR 137 B1105 C. Al� et al. (COLU, RUTG, BNL) PDOSCH 65 PL 14 239 H.C. Dos
h et al. (HEID)SCHMIDT 65 PR 140B 1328 P. S
hmidt (COLU)BURNSTEIN 64 PRL 13 66 R.A. Burnstein et al. (UMD)COURANT 63 PRL 10 409 H. Courant et al. (CERN, UMD) PFEINBERG 58 PR 109 1019 G. Feinberg (BNL)�− I (JP ) = 1(12+) Status: ∗∗∗∗We have omitted some results that have been superseded by laterexperiments. See our earlier editions.�− MASS�− MASS�− MASS�− MASSThe �t uses �+, �0, �−, and � mass and mass-di�eren
e measurements.



1597159715971597See key on page 601 BaryonParti
le Listings�−VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1197.449±0.030 OUR FIT1197.449±0.030 OUR FIT1197.449±0.030 OUR FIT1197.449±0.030 OUR FIT Error in
ludes s
ale fa
tor of 1.2.1197.45 ±0.04 OUR AVERAGE1197.45 ±0.04 OUR AVERAGE1197.45 ±0.04 OUR AVERAGE1197.45 ±0.04 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1197.417±0.040 GUREV 93 SPEC �−C atom, 
rystaldi�.1197.532±0.057 GALL 88 CNTR �−Pb, �−W atoms1197.43 ±0.08 3000 SCHMIDT 65 HBC See note with � mass
• • • We do not use the following data for averages, �ts, limits, et
. • • •1197.24 ±0.15 1 DUGAN 75 CNTR Exoti
 atoms1GALL 88 
on
ludes that the DUGAN 75 mass needs to be reevaluated.m�− − m�+m�− − m�+m�− − m�+m�− − m�+VALUE (MeV) EVTS DOCUMENT ID TECN8.08±0.08 OUR FIT8.08±0.08 OUR FIT8.08±0.08 OUR FIT8.08±0.08 OUR FIT Error in
ludes s
ale fa
tor of 1.9.8.09±0.16 OUR AVERAGE8.09±0.16 OUR AVERAGE8.09±0.16 OUR AVERAGE8.09±0.16 OUR AVERAGE7.91±0.23 86 BOHM 72 EMUL8.25±0.25 2500 DOSCH 65 HBC8.25±0.40 87 BARKAS 63 EMULm�− − m�m�− − m�m�− − m�m�− − m�VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT81.766±0.030 OUR FIT81.766±0.030 OUR FIT81.766±0.030 OUR FIT81.766±0.030 OUR FIT Error in
ludes s
ale fa
tor of 1.2.81.69 ±0.07 OUR AVERAGE81.69 ±0.07 OUR AVERAGE81.69 ±0.07 OUR AVERAGE81.69 ±0.07 OUR AVERAGE81.64 ±0.09 2279 HEPP 68 HBC81.80 ±0.13 85 SCHMIDT 65 HBC See note with � mass81.70 ±0.19 BURNSTEIN 64 HBC�− MEAN LIFE�− MEAN LIFE�− MEAN LIFE�− MEAN LIFEMeasurements with an error ≥ 0.2× 10−10 s have been omitted.VALUE (10−10 s) EVTS DOCUMENT ID TECN COMMENT1.479±0.011 OUR AVERAGE1.479±0.011 OUR AVERAGE1.479±0.011 OUR AVERAGE1.479±0.011 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.1.480±0.014 16k MARRAFFINO 80 HBC K−p 0.42{0.5 GeV/
1.49 ±0.03 8437 CONFORTO 76 HBC K−p 1{1.4 GeV/
1.463±0.039 2400 ROBERTSON 72 HBC K−p 0.25 GeV/
1.42 ±0.05 1383 BAKKER 71 DBC K−N → �−ππ1.41 +0.09

−0.08 TOVEE 71 EMUL1.485±0.022 100k EISELE 70 HBC K−p at rest1.472±0.016 10k BARLOUTAUD69 HBC K−p 0.4{1.2 GeV/
1.38 ±0.07 506 WHITESIDE 68 HBC K−p at rest1.666±0.075 3267 2 CHANG 66 HBC K−p at rest1.58 ±0.06 1208 HUMPHREY 62 HBC K−p at rest2We have in
reased the CHANG 66 error of 0.026; see our 1970 edition, Reviews ofModern Physi
s 42424242 87 (1970).
WEIGHTED AVERAGE
1.479±0.011 (Error scaled by 1.3)

HUMPHREY 62 HBC 2.8
CHANG 66 HBC 6.2
WHITESIDE 68 HBC 2.0
BARLOUTAUD 69 HBC 0.2
EISELE 70 HBC 0.1
TOVEE 71 EMUL
BAKKER 71 DBC 1.4
ROBERTSON 72 HBC 0.2
CONFORTO 76 HBC 0.1
MARRAFFINO 80 HBC 0.0

χ2

      13.0
(Confidence Level = 0.111)

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9�− mean life (10−10 s)�− MAGNETIC MOMENT�− MAGNETIC MOMENT�− MAGNETIC MOMENT�− MAGNETIC MOMENTSee the \Note on Baryon Magneti
 Moments" in the � Listings. Measure-ments with an error ≥ 0.3 µN have been omitted.VALUE (µN ) EVTS DOCUMENT ID TECN COMMENT
−1.160±0.025 OUR AVERAGE−1.160±0.025 OUR AVERAGE−1.160±0.025 OUR AVERAGE−1.160±0.025 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogrambelow.
−1.105±0.029±0.010 HERTZOG 88 CNTR �−Pb, �−Watoms
−1.166±0.014±0.010 671k ZAPALAC 86 SPEC ne− ν, nπ−de
ays
−1.23 ±0.03 ±0.03 WAH 85 CNTR pCu → �−X
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.89 ±0.14 516k DECK 83 SPEC pBe → �−X

WEIGHTED AVERAGE
-1.160±0.025 (Error scaled by 1.7)

WAH 85 CNTR 2.7
ZAPALAC 86 SPEC 0.1
HERTZOG 88 CNTR 3.2

χ2

       6.1
(Confidence Level = 0.048)

-1.3 -1.2 -1.1 -1 -0.9�− magneti
 moment (µN )�− CHARGE RADIUS�− CHARGE RADIUS�− CHARGE RADIUS�− CHARGE RADIUSVALUE (fm) DOCUMENT ID TECN COMMENT0.780±0.080±0.0600.780±0.080±0.0600.780±0.080±0.0600.780±0.080±0.060 3 ESCHRICH 01 SELX �− e → �− e3ESCHRICH 01 a
tually gives 〈r2〉 = (0.61 ± 0.12 ± 0.09) fm2.�− DECAY MODES�− DECAY MODES�− DECAY MODES�− DECAY MODESMode Fra
tion (�i /�)�1 nπ− (99.848±0.005) %�2 nπ− γ [a℄ ( 4.6 ±0.6 ) × 10−4�3 ne− νe ( 1.017±0.034) × 10−3�4 nµ− νµ ( 4.5 ±0.4 ) × 10−4�5 �e− νe ( 5.73 ±0.27 ) × 10−5[a℄ See the Listings below for the pion momentum range used in this mea-surement. CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 3 bran
hing ratios uses 16 measurements and one
onstraint to determine 4 parameters. The overall �t has a χ2 =8.7 for 13 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x3 −64x4 −77 0x5 −5 0 0x1 x3 x4�− BRANCHING RATIOS�− BRANCHING RATIOS�− BRANCHING RATIOS�− BRANCHING RATIOS�(nπ− γ
)/�(nπ−) �2/�1�(nπ− γ
)/�(nπ−) �2/�1�(nπ− γ
)/�(nπ−) �2/�1�(nπ− γ
)/�(nπ−) �2/�1The π+ momentum 
uts di�er, so we do not average the results but simply use thelatest value for the Summary Table.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.46±0.060.46±0.060.46±0.060.46±0.06 292 EBENHOH 73 HBC π+ < 150 MeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •0.10±0.02 23 ANG 69B HBC π− < 110 MeV/

∼ 1.1 BAZIN 65B HBC π− < 166 MeV/
�(ne− νe)/�(nπ−) �3/�1�(ne− νe)/�(nπ−) �3/�1�(ne− νe)/�(nπ−) �3/�1�(ne− νe)/�(nπ−) �3/�1Measurements with an error ≥ 0.2× 10−3 have been omitted.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.019±0.035 OUR FIT1.019±0.035 OUR FIT1.019±0.035 OUR FIT1.019±0.035 OUR FIT1.019+0.031

−0.040 OUR AVERAGE1.019+0.031
−0.040 OUR AVERAGE1.019+0.031
−0.040 OUR AVERAGE1.019+0.031
−0.040 OUR AVERAGE0.96 ±0.05 2847 BOURQUIN 83C SPEC SPS hyperon beam1.09 +0.06
−0.08 601 4 EBENHOH 74 HBC K−p at rest1.05 +0.07
−0.13 455 4 SECHI-ZORN 73 HBC K−p at rest0.97 ±0.15 57 COLE 71 HBC K−p at rest1.11 ±0.09 180 BIERMAN 68 HBC4An additional negative systemati
 error is in
luded for internal radiative 
orre
tions andlatest form fa
tors; see BOURQUIN 83C.



1598159815981598Baryon Parti
le Listings�−�(nµ− νµ

)/�(nπ−) �4/�1�(nµ− νµ

)/�(nπ−) �4/�1�(nµ− νµ

)/�(nπ−) �4/�1�(nµ− νµ

)/�(nπ−) �4/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.45±0.04 OUR FIT0.45±0.04 OUR FIT0.45±0.04 OUR FIT0.45±0.04 OUR FIT0.45±0.04 OUR AVERAGE0.45±0.04 OUR AVERAGE0.45±0.04 OUR AVERAGE0.45±0.04 OUR AVERAGE0.38±0.11 13 COLE 71 HBC K−p at rest0.43±0.06 72 ANG 69 HBC K−p at rest0.43±0.09 56 BAGGETT 69 HBC K−p at rest0.56±0.20 11 BAZIN 65B HBC K−p at rest0.66±0.15 22 COURANT 64 HBC�(�e− νe)/�(nπ−) �5/�1�(�e− νe)/�(nπ−) �5/�1�(�e− νe)/�(nπ−) �5/�1�(�e− νe)/�(nπ−) �5/�1VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.574±0.027 OUR FIT0.574±0.027 OUR FIT0.574±0.027 OUR FIT0.574±0.027 OUR FIT0.574±0.027 OUR AVERAGE0.574±0.027 OUR AVERAGE0.574±0.027 OUR AVERAGE0.574±0.027 OUR AVERAGE0.561±0.031 1620 5 BOURQUIN 82 SPEC SPS hyperon beam0.63 ±0.11 114 THOMPSON 80 ASPK Hyperon beam0.52 ±0.09 31 BALTAY 69 HBC K−p at rest0.69 ±0.12 31 EISELE 69 HBC K−p at rest0.64 ±0.12 35 BARASH 67 HBC K−p at rest0.75 ±0.28 11 COURANT 64 HBC K−p at rest5The value is from BOURQUIN 83B, and in
ludes radiation 
orre
tions and new a

ep-tan
e. �− DECAY PARAMETERS�− DECAY PARAMETERS�− DECAY PARAMETERS�− DECAY PARAMETERSSee the \Note on Baryon De
ay Parameters" in the neutron Listings.Older, outdated results have been omitted.
α− FOR �−

→ nπ−α− FOR �−
→ nπ−α− FOR �−
→ nπ−α− FOR �−
→ nπ−VALUE EVTS DOCUMENT ID TECN COMMENT

−0.068±0.008 OUR AVERAGE−0.068±0.008 OUR AVERAGE−0.068±0.008 OUR AVERAGE−0.068±0.008 OUR AVERAGE
−0.062±0.024 28k HANSL 78 HBC K−p → �−π+
−0.067±0.011 60k BOGERT 70 HBC K−p 0.4 GeV/

−0.071±0.012 51k BANGERTER 69 HBC K−p 0.4 GeV/

φ ANGLE FOR �−

→ nπ− (tanφ = β / γ)φ ANGLE FOR �−
→ nπ− (tanφ = β / γ)φ ANGLE FOR �−
→ nπ− (tanφ = β / γ)φ ANGLE FOR �−
→ nπ− (tanφ = β / γ)VALUE (◦) EVTS DOCUMENT ID TECN COMMENT10±15 OUR AVERAGE10±15 OUR AVERAGE10±15 OUR AVERAGE10±15 OUR AVERAGE+ 5±23 1092 6 BERLEY 70B HBC n res
attering14±19 1385 BANGERTER 69B HBC K−p 0.4 GeV/
6BERLEY 70B 
hanged from −5 to +5◦ to agree with our sign 
onvention.gA/gV FOR �−

→ ne− νegA/gV FOR �−
→ ne− νegA/gV FOR �−
→ ne− νegA/gV FOR �−
→ ne− νeMeasurements with fewer than 500 events have been omitted. Where ne
essary, signshave been 
hanged to agree with our 
onventions, whi
h are given in the \Note onBaryon De
ay Parameters" in the neutron Listings. What is a
tually listed is ∣

∣g1/f1−0.237g2/f1∣

∣. This redu
es to gA/gV ≡ g1(0)/f1(0) on making the usual assumptionthat g2 = 0. See also the note on HSUEH 88.VALUE EVTS DOCUMENT ID TECN COMMENT0.340±0.017 OUR AVERAGE0.340±0.017 OUR AVERAGE0.340±0.017 OUR AVERAGE0.340±0.017 OUR AVERAGE+0.327±0.007±0.019 50k 7 HSUEH 88 SPEC �− 250 GeV+0.34 ±0.05 4456 8 BOURQUIN 83C SPEC SPS hyperon beam0.385±0.037 3507 9 TANENBAUM 74 ASPK
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.29 ±0.07 25k HSUEH 85 SPEC See HSUEH 880.17 +0.07

−0.09 519 DECAMP 77 ELEC Hyperon beam7The sign is, with our 
onventions, unambiguously positive. The value assumes, as usual,that g2 = 0. If g2 is in
luded in the �t, than (with our sign 
onvention) g2 = −0.56 ±0.37, with a 
orresponding redu
tion of gA/gV to +0.20 ± 0.08.8BOURQUIN 83C favors the positive sign by at least 2.6 standard deviations.9TANENBAUM 74 gives 0.435 ± 0.035, assuming no q2 dependen
e in gA and gV . Thelisted result allows q2 dependen
e, and is taken from HSUEH 88.f2(0)/f1(0) FOR �−
→ ne− νef2(0)/f1(0) FOR �−
→ ne− νef2(0)/f1(0) FOR �−
→ ne− νef2(0)/f1(0) FOR �−
→ ne− νeThe signs have been 
hanged to be in a

ord with our 
onventions, given in the \Noteon Baryon De
ay Parameters" in the neutron Listings.VALUE EVTS DOCUMENT ID TECN COMMENT0.97±0.14 OUR AVERAGE0.97±0.14 OUR AVERAGE0.97±0.14 OUR AVERAGE0.97±0.14 OUR AVERAGE+0.96±0.07±0.13 50k HSUEH 88 SPEC �− 250 GeV+1.02±0.34 4456 BOURQUIN 83C SPEC SPS hyperon beamTRIPLE CORRELATION COEFFICIENT D for �−

→ ne− νeTRIPLE CORRELATION COEFFICIENT D for �−
→ ne− νeTRIPLE CORRELATION COEFFICIENT D for �−
→ ne− νeTRIPLE CORRELATION COEFFICIENT D for �−
→ ne− νeThe 
oeÆ
ient D of the term D PPPP·(p̂̂p̂p̂pe×p̂̂p̂p̂pν ) in the �− → ne− ν de
ay angulardistribution. A nonzero value would indi
ate a violation of time-reversal invarian
e.VALUE EVTS DOCUMENT ID TECN COMMENT0.11±0.100.11±0.100.11±0.100.11±0.10 50k HSUEH 88 SPEC �− 250 GeVgV /gA FOR �−

→ �e− νegV /gA FOR �−
→ �e− νegV /gA FOR �−
→ �e− νegV /gA FOR �−
→ �e− νeFor the sign 
onvention, see the \Note on Baryon De
ay Parameters" in the neutronListings. The value is predi
ted to be zero by 
onserved ve
tor 
urrent theory. Thevalues averaged assume CVC-SU(3) weak magnetism term.VALUE EVTS DOCUMENT ID TECN COMMENT0.01 ±0.10 OUR AVERAGE0.01 ±0.10 OUR AVERAGE0.01 ±0.10 OUR AVERAGE0.01 ±0.10 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogrambelow.

−0.034±0.080 1620 10 BOURQUIN 82 SPEC SPS hyperon beam
−0.29 ±0.29 114 THOMPSON 80 ASPK BNL hyperon beam
−0.17 ±0.35 55 TANENBAUM 75B SPEC BNL hyperon beam+0.45 ±0.20 186 10,11 FRANZINI 72 HBC

10The sign has been 
hanged to agree with our 
onvention.11The FRANZINI 72 value in
ludes the events of earlier papers.
WEIGHTED AVERAGE
0.01±0.10 (Error scaled by 1.5)

FRANZINI 72 HBC 4.9
TANENBAUM 75B SPEC 0.2
THOMPSON 80 ASPK 1.0
BOURQUIN 82 SPEC 0.2

χ2

       6.5
(Confidence Level = 0.091)

-1 -0.5 0 0.5 1gV /gA for �−
→ �e− νegWM/gA FOR �−

→ �e−νegWM/gA FOR �−
→ �e−νegWM/gA FOR �−
→ �e−νegWM/gA FOR �−
→ �e−νeThe values quoted assume the CVC predi
tion gV = 0.VALUE EVTS DOCUMENT ID TECN COMMENT2.4 ±1.7 OUR AVERAGE2.4 ±1.7 OUR AVERAGE2.4 ±1.7 OUR AVERAGE2.4 ±1.7 OUR AVERAGE1.75±3.5 114 THOMPSON 80 ASPK BNL hyperon beam3.5 ±4.5 55 TANENBAUM 75B SPEC BNL hyperon beam2.4 ±2.1 186 FRANZINI 72 HBC�− REFERENCES�− REFERENCES�− REFERENCES�− REFERENCESWe have omitted some papers that have been superseded by later experi-ments. See our earlier editions.ESCHRICH 01 PL B522 233 I. Es
hri
h et al. (FNAL SELEX Collab.)GUREV 93 JETPL 57 400 M.P. Gurev et al. (PNPI)Translated from ZETFP 57 389.GALL 88 PRL 60 186 K.P. Gall et al. (BOST, MIT, WILL, CIT+)HERTZOG 88 PR D37 1142 D.W. Hertzog et al. (WILL, BOST, MIT+)HSUEH 88 PR D38 2056 S.Y. Hsueh et al. (CHIC, ELMT, FNAL+)ZAPALAC 86 PRL 57 1526 G. Zapala
 et al. (EFI, ELMT, FNAL+)HSUEH 85 PRL 54 2399 S.Y. Hsueh et al. (CHIC, ELMT, FNAL+)WAH 85 PRL 55 2551 Y.W. Wah et al. (FNAL, IOWA, ISU)BOURQUIN 83B ZPHY C21 27 M.H. Bourquin et al. (BRIS, GEVA, HEIDP+)BOURQUIN 83C ZPHY C21 17 M.H. Bourquin et al. (BRIS, GEVA, HEIDP+)DECK 83 PR D28 1 L. De
k et al. (RUTG, WISC, MICH, MINN)BOURQUIN 82 ZPHY C12 307 M.H. Bourquin et al. (BRIS, GEVA, HEIDP+)MARRAFFINO 80 PR D21 2501 J. MarraÆno et al. (VAND, MPIM)THOMPSON 80 PR D21 25 J.A. Thompson et al. (PITT, BNL)HANSL 78 NP B132 45 T. Hansl et al. (MPIM, VAND)DECAMP 77 PL 66B 295 D. De
amp et al. (LALO, EPOL)CONFORTO 76 NP B105 189 B. Conforto et al. (RHEL, LOIC)DUGAN 75 NP A254 396 G. Dugan et al. (COLU, YALE)TANENBAUM 75B PR D12 1871 W. Tanenbaum et al. (YALE, FNAL, BNL)EBENHOH 74 ZPHY 266 367 H. Ebenhoh et al. (HEIDT)TANENBAUM 74 PRL 33 175 W. Tanenbaum et al. (YALE, FNAL, BNL)EBENHOH 73 ZPHY 264 413 W. Ebenhoh et al. (HEIDT)SECHI-ZORN 73 PR D8 12 B. Se
hi-Zorn, G.A. Snow (UMD)BOHM 72 NP B48 1 G. Bohm et al. (BERL, KIDR, BRUX, IASD+)FRANZINI 72 PR D6 2417 P. Franzini et al. (COLU, HEID, UMD+)ROBERTSON 72 Thesis UMI 78-00877 R.M. Robertson (IIT)BAKKER 71 LNC 1 37 A.M. Bakker et al. (SABRE Collab.)COLE 71 PR D4 631 J. Cole et al. (STON, COLU)Also Thesis Nevis 175 H. Norton (COLU)TOVEE 71 NP B33 493 D.N. Tovee et al. (LOUC, KIDR, BERL+)BERLEY 70B PR D1 2015 D. Berley et al. (BNL, MASA, YALE)BOGERT 70 PR D2 6 D.V. Bogert et al. (BNL, MASA, YALE)EISELE 70 ZPHY 238 372 F. Eisele et al. (HEID)PDG 70 RMP 42 87 A. Barbaro-Galtieri et al. (LRL, BRAN+)ANG 69 ZPHY 223 103 G. Ang et al. (HEID)ANG 69B ZPHY 228 151 G. Ang et al. (HEID)BAGGETT 69 PRL 23 249 N.V. Baggett, B. Kehoe, G.A. Snow (UMD)BALTAY 69 PRL 22 615 C. Baltay et al. (COLU, STON)BANGERTER 69 Thesis UCRL 19244 R.O. Bangerter (LRL)BANGERTER 69B PR 187 1821 R.O. Bangerter et al. (LRL)BARLOUTAUD 69 NP B14 153 R. Barloutaud et al. (SACL, CERN, HEID)EISELE 69 ZPHY 221 1 F. Eisele et al. (HEID)BIERMAN 68 PRL 20 1459 E. Bierman et al. (PRIN)HEPP 68 ZPHY 214 71 V. Hepp, H. S
hlei
h (HEID)WHITESIDE 68 NC 54A 537 H. Whiteside, J. Gollub (OBER)BARASH 67 PRL 19 181 N. Barash et al. (UMD)CHANG 66 PR 151 1081 C.Y. Chang (COLU)BAZIN 65B PR 140B 1358 M. Bazin et al. (PRIN, RUTG, COLU)DOSCH 65 PL 14 239 H.C. Dos
h et al. (HEID)Also PR 151 1081 C.Y. Chang (COLU)SCHMIDT 65 PR 140B 1328 P. S
hmidt (COLU)BURNSTEIN 64 PRL 13 66 R.A. Burnstein et al. (UMD)COURANT 64 PR 136 B1791 H. Courant et al. (CERN, HEID, UMD+)BARKAS 63 PRL 11 26 W.H. Barkas, J.N. Dyer, H.H. He
kman (LRL)HUMPHREY 62 PR 127 1305 W.E. Humphrey, R.R. Ross (LRL)



1599159915991599See key on page 601 BaryonParti
le Listings� (1385)� (1385) 3/2+ I (JP ) = 1(32+) Status: ∗∗∗∗Dis
overed by ALSTON 60. Early measurements of the mass andwidth for 
ombined 
harge states have been omitted. They may befound in our 1984 edition Reviews of Modern Physi
s 56565656 S1 (1984).We average only the most signi�
ant determinations. We do notaverage results from in
lusive experiments with large ba
kgroundsor results whi
h are not a

ompanied by some dis
ussion of ex-perimental resolution. Nevertheless systemati
 di�eren
es betweenexperiments remain. (See the ideograms in the Listings below.)These di�eren
es 
ould arise from interferen
e e�e
ts that 
hangewith produ
tion me
hanism and/or beam momentum. They 
analso be a

ounted for in part by di�eren
es in the parametriza-tions employed. (See BORENSTEIN 74 for a dis
ussion on thispoint.) Thus BORENSTEIN 74 uses a Breit-Wigner with energy-independent width, sin
e a P-wave was found to give unsatisfa
tory�ts. CAMERON 78 uses the same form. On the other hand HOLM-GREN 77 obtains a good �t to their �π spe
trum with a P-waveBreit-Wigner, but in
ludes the partial width for the � π de
ay modein the parametrization. AGUILAR-BENITEZ 81D gives masses andwidths for �ve di�erent Breit-Wigner shapes. The results vary 
on-siderably. Only the best-�t S-wave results are given here.� (1385) MASSES� (1385) MASSES� (1385) MASSES� (1385) MASSES� (1385)+ MASS� (1385)+ MASS� (1385)+ MASS� (1385)+ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1382.80±0.35 OUR AVERAGE1382.80±0.35 OUR AVERAGE1382.80±0.35 OUR AVERAGE1382.80±0.35 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.9. See the ideogrambelow.1383.2 ±0.9 +0.1
−1.5 AGAKISHIEV 12 SPEC pp → �(1385)+K+ n,3.5 GeV1384.1 ±0.7 1897 BAUBILLIER 84 HBC K−p 8.25 GeV/
1384.5 ±0.5 5256 AGUILAR-... 81D HBC K−p → �ππ 4.2 GeV/
1383.0 ±0.4 9361 AGUILAR-... 81D HBC K−p → �3π 4.2 GeV/
1381.9 ±0.3 6900 CAMERON 78 HBC K−p 0.96{1.36 GeV/
1381 ±1 6846 BORENSTEIN 74 HBC K−p 2.18 GeV/
1383.5 ±0.85 2300 HABIBI 73 HBC K−p → �ππ1382 ±2 400 AGUILAR-... 72B HBC K−p → �π 's1384.4 ±1.0 1260 SIEGEL 67 HBC K−p 2.1 GeV/
1382 ±1 750 ARMENTEROS65B HBC K−p 0.9{1.2 GeV/
1381.0 ±1.6 859 HUWE 64 HBC K−p 1.22 GeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •1385.1 ±1.2 600 BAKER 80 HYBR π+ p 7 GeV/
1383.2 ±1.0 750 BAKER 80 HYBR K−p 7 GeV/
1381 ±2 7k 1 BAUBILLIER 79B HBC K−p 8.25 GeV/
1391 ±2 2k CAUTIS 79 HYBR π+ p/K− p 11.5 GeV1390 ±2 100 1 SUGAHARA 79B HBC π− p 6 GeV/
1385 ±3 22k 1,2 BARREIRO 77B HBC K−p 4.2 GeV/
1385 ±1 2594 HOLMGREN 77 HBC See AGUILAR-BENITEZ 81D1380 ±2 1 BARDADIN-... 75 HBC K−p 14.3 GeV/
1382 ±1 3740 3 BERTHON 74 HBC K−p 1263{1843 MeV/
1390 ±6 46 AGUILAR-... 70B HBC K−p → � π 's 4 GeV/
1383 ±8 62 4 BIRMINGHAM 66 HBC K−p 3.5 GeV/
1378 ±5 135 LONDON 66 HBC K−p 2.24 GeV/
1384.3 ±1.9 250 4 SMITH 65 HBC K−p 1.8 GeV/
1382.6 ±2.1 250 4 SMITH 65 HBC K−p 1.95 GeV/
1375.0 ±3.9 170 COOPER 64 HBC K−p 1.45 GeV/
1376.0 ±3.9 154 4 ELY 61 HLBC K−p 1.11 GeV/

WEIGHTED AVERAGE
1382.80±0.35 (Error scaled by 1.9)

HUWE 64 HBC 1.3
ARMENTEROS 65B HBC 0.6
SIEGEL 67 HBC 2.6
AGUILAR-... 72B HBC
HABIBI 73 HBC 0.7
BORENSTEIN 74 HBC 3.2
CAMERON 78 HBC 9.0
AGUILAR-... 81D HBC 0.2
AGUILAR-... 81D HBC 11.6
BAUBILLIER 84 HBC 3.5
AGAKISHIEV 12 SPEC 0.1

χ2

      32.7
(Confidence Level = 0.0001)

1375 1380 1385 1390�(1385)+ mass (MeV)

� (1385)0 MASS� (1385)0 MASS� (1385)0 MASS� (1385)0 MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1383.7±1.0 OUR AVERAGE1383.7±1.0 OUR AVERAGE1383.7±1.0 OUR AVERAGE1383.7±1.0 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.1384.1±0.8 5722 AGUILAR-... 81D HBC K−p → �3π 4.2 GeV/
1380 ±2 3100 5 BORENSTEIN 74 HBC K−p → �3π 2.18GeV/
1385.1±2.5 240 4 THOMAS 73 HBC π− p → �π0K0
• • • We do not use the following data for averages, �ts, limits, et
. • • •1389 ±3 500 6 BAUBILLIER 79B HBC K−p 8.25 GeV/


WEIGHTED AVERAGE
1383.7±1.0 (Error scaled by 1.4)

THOMAS 73 HBC 0.3
BORENSTEIN 74 HBC 3.3
AGUILAR-... 81D HBC 0.3

χ2

       4.0
(Confidence Level = 0.136)

1375 1380 1385 1390 1395 1400�(1385)0 mass (MeV)� (1385)− MASS� (1385)− MASS� (1385)− MASS� (1385)− MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1387.2±0.5 OUR AVERAGE1387.2±0.5 OUR AVERAGE1387.2±0.5 OUR AVERAGE1387.2±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.2. See the ideogram below.1388.3±1.7 620 AGUILAR-... 81D HBC K−p → �ππ 4.2 GeV/
1384.9±0.8 3346 AGUILAR-... 81D HBC K−p → �3π 4.2 GeV/
1387.6±0.3 9720 CAMERON 78 HBC K−p 0.96{1.36 GeV/
1383 ±2 2303 BORENSTEIN 74 HBC K−p 2.18 GeV/
1390.7±1.2 1900 HABIBI 73 HBC K−p → �ππ1387.1±1.9 630 4 THOMAS 73 HBC π− p → �π−K+1390.7±2.0 370 SIEGEL 67 HBC K−p 2.1 GeV/
1384 ±1 1380 ARMENTEROS65B HBC K−p 0.9{1.2 GeV/
1385.3±1.9 1086 4 HUWE 64 HBC K−p 1.15{1.30 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •1383 ±1 4.5k 1 BAUBILLIER 79B HBC K−p 8.25 GeV/
1380 ±6 150 1 SUGAHARA 79B HBC π− p 6 GeV/
1387 ±3 12k 1,2 BARREIRO 77B HBC K−p 4.2 GeV/
1391 ±3 193 HOLMGREN 77 HBC See AGUILAR-BENITEZ 81D1383 ±2 1 BARDADIN-... 75 HBC K−p 14.3 GeV/
1389 ±1 3060 3 BERTHON 74 HBC K−p 1263{1843 MeV/
1389 ±9 15 LONDON 66 HBC K−p 2.24 GeV/
1391.5±2.6 120 4 SMITH 65 HBC K−p 1.8 GeV/
1399.8±2.2 58 4 SMITH 65 HBC K−p 1.95 GeV/
1392.0±6.2 200 COOPER 64 HBC K−p 1.45 GeV/
1382 ±3 93 DAHL 61 DBC K−d 0.45 GeV/
1376.0±4.4 224 4 ELY 61 HLBC K−p 1.11 GeV/


WEIGHTED AVERAGE
1387.2±0.5 (Error scaled by 2.2)

HUWE 64 HBC 1.0
ARMENTEROS 65B HBC 10.1
SIEGEL 67 HBC 3.1
THOMAS 73 HBC 0.0
HABIBI 73 HBC 8.6
BORENSTEIN 74 HBC 4.4
CAMERON 78 HBC 1.9
AGUILAR-... 81D HBC 8.1
AGUILAR-... 81D HBC 0.4

χ2

      37.7
(Confidence Level < 0.0001)

1375 1380 1385 1390 1395 1400�(1385)− mass (MeV)



1600160016001600BaryonParti
le Listings� (1385) m�(1385)− − m�(1385)+m�(1385)− − m�(1385)+m�(1385)− − m�(1385)+m�(1385)− − m�(1385)+VALUE (MeV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
− 2 to +6 95 7 BORENSTEIN 74 HBC K−p 2.18 GeV/
7.2±1.4 7 HABIBI 73 HBC K−p → �ππ6.3±2.0 7 SIEGEL 67 HBC K−p 2.1 GeV/
11 ±9 7 LONDON 66 HBC K−p 2.24 GeV/
9 ±6 LONDON 66 HBC �3π events2.0±1.5 7 ARMENTEROS65B HBC K−p 0.9{1.2 GeV/
7.2±2.1 7 SMITH 65 HBC K−p 1.8 GeV/
17.2±2.0 7 SMITH 65 HBC K−p 1.95 GeV/
17 ±7 7 COOPER 64 HBC K−p 1.45 GeV/
4.3±2.2 7 HUWE 64 HBC K−p 1.22 GeV/
0.0±4.2 7 ELY 61 HLBC K−p 1.11 GeV/
m�(1385)0 − m�(1385)+m�(1385)0 − m�(1385)+m�(1385)0 − m�(1385)+m�(1385)0 − m�(1385)+VALUE (MeV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−4 to +4 95 7 BORENSTEIN 74 HBC K−p 2.18 GeV/
m�(1385)− − m�(1385)0m�(1385)− − m�(1385)0m�(1385)− − m�(1385)0m�(1385)− − m�(1385)0VALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.0±2.4 7 THOMAS 73 HBC π− p → �π−K+� (1385) WIDTHS� (1385) WIDTHS� (1385) WIDTHS� (1385) WIDTHS� (1385)+ WIDTH� (1385)+ WIDTH� (1385)+ WIDTH� (1385)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT36.0± 0.7 OUR AVERAGE36.0± 0.7 OUR AVERAGE36.0± 0.7 OUR AVERAGE36.0± 0.7 OUR AVERAGE40.2± 2.1+1.2

−2.8 AGAKISHIEV 12 SPEC pp → �(1385)+K+ n,3.5 GeV37.2± 2.0 1897 BAUBILLIER 84 HBC K−p 8.25 GeV/
35.1± 1.7 5256 AGUILAR-... 81D HBC K−p → �ππ 4.2 GeV/
37.5± 2.0 9361 AGUILAR-... 81D HBC K−p → �3π 4.2 GeV/
35.5± 1.9 6900 CAMERON 78 HBC K−p 0.96{1.36 GeV/
34.0± 1.6 6846 8 BORENSTEIN 74 HBC K−p 2.18 GeV/
38.3± 3.2 2300 9 HABIBI 73 HBC K−p → �ππ32.5± 6.0 400 AGUILAR-... 72B HBC K−p → �π 's36 ± 4 1260 9 SIEGEL 67 HBC K−p 2.1 GeV/
32.0± 4.7 750 9 ARMENTEROS65B HBC K−p 0.95{1.20 GeV/
46.5± 6.4 859 9 HUWE 64 HBC K−p 1.15{1.30 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •40 ± 3 600 BAKER 80 HYBR π+ p 7 GeV/
37 ± 2 750 BAKER 80 HYBR K−p 7 GeV/
37 ± 2 7k 1 BAUBILLIER 79B HBC K−p 8.25 GeV/
30 ± 4 2k CAUTIS 79 HYBR π+ p/K− p 11.5 GeV30 ± 6 100 1 SUGAHARA 79B HBC π− p 6 GeV/
43 ± 5 22k 1,2 BARREIRO 77B HBC K−p 4.2 GeV/
34 ± 2 2594 HOLMGREN 77 HBC See AGUILAR-BENITEZ 81D40.0± 3.2 1 BARDADIN-... 75 HBC K−p 14.3 GeV/
48 ± 3 3740 3 BERTHON 74 HBC K−p 1263{1843 MeV/
33 ±20 46 9 AGUILAR-... 70B HBC K−p → � π 's 4 GeV/
25 ±32 62 9 BIRMINGHAM 66 HBC K−p 3.5 GeV/
30.3± 7.5 250 9 SMITH 65 HBC K−p 1.8 GeV/
33.1± 8.3 250 9 SMITH 65 HBC K−p 1.95 GeV/
51 ±16 170 9 COOPER 64 HBC K−p 1.45 GeV/
48 ±16 154 9 ELY 61 HLBC K−p 1.11 GeV/
� (1385)0 WIDTH� (1385)0 WIDTH� (1385)0 WIDTH� (1385)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT36 ± 5 OUR AVERAGE36 ± 5 OUR AVERAGE36 ± 5 OUR AVERAGE36 ± 5 OUR AVERAGE34.8± 5.6 5722 AGUILAR-... 81D HBC K−p → �3π 4.2 GeV/
39.3±10.2 240 9 THOMAS 73 HBC π− p → �π0K0
• • • We do not use the following data for averages, �ts, limits, et
. • • •53 ± 8 3100 10 BORENSTEIN 74 HBC K−p → �3π 2.18GeV/
30 ± 9 106 CURTIS 63 OSPK π− p 1.5 GeV/
� (1385)− WIDTH� (1385)− WIDTH� (1385)− WIDTH� (1385)− WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT39.4± 2.1 OUR AVERAGE39.4± 2.1 OUR AVERAGE39.4± 2.1 OUR AVERAGE39.4± 2.1 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogram below.38.4±10.7 620 AGUILAR-... 81D HBC K−p → �ππ 4.2 GeV/
34.6± 4.2 3346 AGUILAR-... 81D HBC K−p → �3π 4.2 GeV/
39.2± 1.7 9720 CAMERON 78 HBC K−p 0.96{1.36 GeV/
35 ± 3 2303 8 BORENSTEIN 74 HBC K−p 2.18 GeV/
51.9± 4.8 1900 9 HABIBI 73 HBC K−p → �ππ48.2± 7.7 630 9 THOMAS 73 HBC π− p → �π−K031.0± 6.5 370 9 SIEGEL 67 HBC K−p 2.1 GeV/
38.0± 4.1 1382 9 ARMENTEROS65B HBC K−p 0.95{1.20 GeV/
62 ± 7 1086 HUWE 64 HBC K−p 1.15{1.30 GeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •44 ± 4 4.5k 1 BAUBILLIER 79B HBC K−p 8.25 GeV/
58 ± 4 150 1 SUGAHARA 79B HBC π− p 6 GeV/
45 ± 5 12k 1,2 BARREIRO 77B HBC K−p 4.2 GeV/
35 ±10 193 HOLMGREN 77 HBC See AGUILAR-BENITEZ 81D47 ± 6 1 BARDADIN-... 75 HBC K−p 14.3 GeV/
40 ± 3 3060 3 BERTHON 74 HBC K−p 1263{1843 MeV/
29.2±10.6 120 9 SMITH 65 HBC K−p 1.80 GeV/
17.1± 8.9 58 9 SMITH 65 HBC K−p 1.95 GeV/
88 ±24 200 9 COOPER 64 HBC K−p 1.45 GeV/
40 DAHL 61 DBC K−d 0.45 GeV/
66 ±18 224 9 ELY 61 HLBC K−p 1.11 GeV/

WEIGHTED AVERAGE
39.4±2.1 (Error scaled by 1.7)

HUWE 64 HBC 10.4
ARMENTEROS 65B HBC 0.1
SIEGEL 67 HBC 1.7
THOMAS 73 HBC 1.3
HABIBI 73 HBC 6.7
BORENSTEIN 74 HBC 2.2
CAMERON 78 HBC 0.0
AGUILAR-... 81D HBC 1.3
AGUILAR-... 81D HBC 0.0

χ2

      23.8
(Confidence Level = 0.0025)

0 20 40 60 80 100�(1385)− width (MeV)� (1385) POLE POSITIONS� (1385) POLE POSITIONS� (1385) POLE POSITIONS� (1385) POLE POSITIONS� (1385)+ REAL PART� (1385)+ REAL PART� (1385)+ REAL PART� (1385)+ REAL PARTVALUE DOCUMENT ID COMMENT1379±1 LICHTENBERG74 Extrapolates HABIBI 73� (1385)+ −IMAGINARY PART� (1385)+ −IMAGINARY PART� (1385)+ −IMAGINARY PART� (1385)+ −IMAGINARY PARTVALUE DOCUMENT ID COMMENT17.5±1.5 LICHTENBERG74 Extrapolates HABIBI 73� (1385)− REAL PART� (1385)− REAL PART� (1385)− REAL PART� (1385)− REAL PARTVALUE DOCUMENT ID COMMENT1383±1 LICHTENBERG74 Extrapolates HABIBI 73� (1385)− −IMAGINARY PART� (1385)− −IMAGINARY PART� (1385)− −IMAGINARY PART� (1385)− −IMAGINARY PARTVALUE DOCUMENT ID COMMENT22.5±1.5 LICHTENBERG74 Extrapolates HABIBI 73� (1385) DECAY MODES� (1385) DECAY MODES� (1385) DECAY MODES� (1385) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 �π (87.0 ±1.5 ) %�2 � π (11.7 ±1.5 ) %�3 �γ ( 1.25+0.13
−0.12) %�4 �+γ ( 7.0 ±1.7 ) × 10−3�5 �−γ < 2.4 × 10−4 90%�6 NKThe above bran
hing fra
tions are our estimates, not �ts or averages.� (1385) BRANCHING RATIOS� (1385) BRANCHING RATIOS� (1385) BRANCHING RATIOS� (1385) BRANCHING RATIOS�(� π

)/�(�π
) �2/�1�(� π

)/�(�π
) �2/�1�(� π

)/�(�π
) �2/�1�(� π

)/�(�π
) �2/�1VALUE DOCUMENT ID TECN CHG COMMENT0.135±0.011 OUR AVERAGE0.135±0.011 OUR AVERAGE0.135±0.011 OUR AVERAGE0.135±0.011 OUR AVERAGE0.20 ±0.06 DIONISI 78B HBC ± K− p → Y ∗K K0.16 ±0.03 BERTHON 74 HBC + K− p 1.26{1.84 GeV/
0.11 ±0.02 BERTHON 74 HBC − K− p 1.26{1.84 GeV/
0.21 ±0.05 BORENSTEIN 74 HBC + K− p → �π+π−,�0π+π−0.18 ±0.04 MAST 73 MPWA ± K− p → �π+π−,�0π+π−0.10 ±0.05 THOMAS 73 HBC − π− p → �K π, � K π



1601160116011601See key on page 601 BaryonParti
le Listings� (1385),� (1480) Bumps0.16 ±0.07 AGUILAR-... 72B HBC + K− p 3.9, 4.6 GeV/
0.13 ±0.04 COLLEY 71B DBC −0 K−N 1.5 GeV/
0.13 ±0.04 PAN 69 HBC + π+ p → �K π, � K π0.08 ±0.06 LONDON 66 HBC + K− p 2.24 GeV/
0.163±0.041 ARMENTEROS65B HBC ± K− p 0.95{1.20 GeV/
0.09 ±0.04 HUWE 64 HBC ± K− p 1.2{1.7 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.04 ALSTON 62 HBC ±0 K− p 1.15 GeV/
0.04 ±0.04 BASTIEN 61 HBC ±�(�γ
)/�(�π

) �3/�1�(�γ
)/�(�π

) �3/�1�(�γ
)/�(�π

) �3/�1�(�γ
)/�(�π

) �3/�1This ratio is of 
ourse for �(1385)0 → �γ and �π0.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT1.43+0.15
−0.13 OUR AVERAGE1.43+0.15
−0.13 OUR AVERAGE1.43+0.15
−0.13 OUR AVERAGE1.43+0.15
−0.13 OUR AVERAGE1.42±0.12+0.11

−0.07 624 ± 25 KELLER 11 CLAS γ p → K+�γ, Eγ 1.6{3.8 GeV1.53±0.39+0.15
−0.24 61 TAYLOR 05 CLAS γ p → K+�γ�(�+γ

)/�(� π
) �4/�2�(�+γ

)/�(� π
) �4/�2�(�+γ

)/�(� π
) �4/�2�(�+γ

)/�(� π
) �4/�2This ratio is for �(1385)+ → �+ γ over �(1385)+ → � π.VALUE (%) DOCUMENT ID TECN COMMENT5.98±1.11+0.27

−0.615.98±1.11+0.27
−0.615.98±1.11+0.27
−0.615.98±1.11+0.27
−0.61 11 KELLER 12 CLAS γ p → K0�(1385)+�(�−γ

)/�total �5/��(�−γ
)/�total �5/��(�−γ
)/�total �5/��(�−γ
)/�total �5/�VALUE CL% DOCUMENT ID TECN CHG COMMENT

<2.4× 10−4<2.4× 10−4<2.4× 10−4<2.4× 10−4 90 12 MOLCHANOV 04 SELX − �− Pb → �(1385)−Pb, 600 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<6.1× 10−4 90 13 ARIK 77 SPEC − �− Pb → �(1385)−Pb, 23 GeV(�i�f )1/2/�total inNK → � (1385)→ �π (�6�1)1/2/�(�i�f )1/2/�total inNK → � (1385)→ �π (�6�1)1/2/�(�i�f )1/2/�total inNK → � (1385)→ �π (�6�1)1/2/�(�i�f )1/2/�total inNK → � (1385)→ �π (�6�1)1/2/�VALUE DOCUMENT ID CHG COMMENT+0.586±0.319 14 DEVENISH 74B 0 Fixed-t dispersion rel.� (1385) FOOTNOTES� (1385) FOOTNOTES� (1385) FOOTNOTES� (1385) FOOTNOTES1From �t to in
lusive �π spe
trum.2 In
ludes data of HOLMGREN 77.3The errors are statisti
al only. The resolution is not unfolded.4The error is enlarged to �/√N. See the note on the K∗(892) mass in the 1984 edition.5 From a �t to �π0 with the width �xed at 34 MeV.6 From �t to in
lusive �π0 spe
trum with the width �xed at 40 MeV.7Redundant with data in the mass Listings.8Results from �π+π− and �π+π−π0 
ombined by us.9The error is enlarged to 4�/√N. See the note on the K∗(892) mass in the 1984 edition.10Consistent with +, 0, and − widths equal.11KELLER 12 gives �(�+ γ)/�(�+ π0) = (11.95 ± 2.21+0.53
−1.21)%, using 1/2 our total�(1385) → � π fra
tion for �+π0. We divide the KELLER 12 value by two.12We 
al
ulate this from the MOLCHANOV 04 upper limit of 9.5 keV on the �− γ width.13We 
al
ulate this from the ARIK 77 upper limit of 24 keV on the �− γ width.14An extrapolation of the parametrized amplitude below threshold.� (1385) REFERENCES� (1385) REFERENCES� (1385) REFERENCES� (1385) REFERENCESAGAKISHIEV 12 PR C85 035203 G. Agakishiev et al. (HADES Collab.)KELLER 12 PR D85 052004 D. Keller et al. (JLab CLAS Collab.)KELLER 11 PR D83 072004 D. Keller et al. (JLab CLAS Collab.)TAYLOR 05 PR C71 054609 S. Taylor et al. (JLab CLAS Collab.)Also PR C72 039902 (errat.) S. Taylor et al. (JLab CLAS Collab.)MOLCHANOV 04 PL B590 161 V.V. Mol
hanov et al. (FNAL SELEX Collab.)BAUBILLIER 84 ZPHY C23 213 M. Baubillier et al. (BIRM, CERN, GLAS+)PDG 84 RMP 56 S1 C.G. Wohl et al. (LBL, CIT, CERN)AGUILAR-... 81D AFIS A77 144 M. Aguilar-Benitez, J. Sali
io (MADR)BAKER 80 NP B166 207 P.A. Baker et al. (LOIC)BAUBILLIER 79B NP B148 18 M. Baubillier et al. (BIRM, CERN, GLAS+)CAUTIS 79 NP B156 507 C.V. Cautis et al. (SLAC)SUGAHARA 79B NP B156 237 R. Sugahara et al. (KEK, OSKC, KINK)CAMERON 78 NP B143 189 W. Cameron et al. (RHEL, LOIC)DIONISI 78B PL 78B 154 C. Dionisi, R. Armenteros, J. Diaz (CERN, AMST+)ARIK 77 PRL 38 1000 E. Arik et al. (PITT, BNL, MASA)BARREIRO 77B NP B126 319 F. Barreiro et al. (CERN, AMST, NIJM)HOLMGREN 77 NP B119 261 S.O. Holmgren et al. (CERN, AMST, NIJM)BARDADIN-... 75 NP B98 418 M. Bardadin-Otwinowska et al. (SACL, EPOL+)BERTHON 74 NC 21A 146 A. Berthon et al. (CDEF, RHEL, SACL+)BORENSTEIN 74 PR D9 3006 S.R. Borenstein et al. (BNL, MICH)DEVENISH 74B NP B81 330 R.C.E. Devenish, C.D. Froggatt, B.R. Martin (DESY+)LICHTENBERG 74 PR D10 3865 D.B. Li
htenberg (IND)Also Private Comm. D.B. Li
htenberg (IND)HABIBI 73 Thesis Nevis 199 M. Habibi (COLU)Also Purdue Conf. 387 C. Baltay et al. (COLU, BING)MAST 73 PR D7 3212 T.S. Mast et al. (LBL) IJPAlso PR D7 5 T.S. Mast et al. (LBL) IJPTHOMAS 73 NP B56 15 D.W. Thomas et al. (CMU) JPAGUILAR-... 72B PR D6 29 M. Aguilar-Benitez et al. (BNL)COLLEY 71B NP B31 61 D.C. Colley et al. (BIRM, EDIN, GLAS+)AGUILAR-... 70B PRL 25 58 M. Aguilar-Benitez et al. (BNL, SYRA)PAN 69 PRL 23 808 Y.L. Pan, F.L. Forman (PENN) ISIEGEL 67 Thesis UCRL 18041 D.M. Siegel (LRL)BIRMINGHAM 66 PR 152 1148 M. Haque et al. (BIRM, GLAS, LOIC, OXF+)LONDON 66 PR 143 1034 G.W. London et al. (BNL, SYRA) J

ARMENTEROS 65B PL 19 75 R. Armenteros et al. (CERN, HEID, SACL)SMITH 65 Thesis UCLA L.T. Smith (UCLA)COOPER 64 PL 8 365 W.A. Cooper et al. (CERN, AMST)HUWE 64 Thesis UCRL 11291 D.O. Huwe (LRL) JPAlso PR 181 1824 D.O. Huwe (LRL)CURTIS 63 PR 132 1771 L.J. Curtis et al. (MICH) JALSTON 62 CERN Conf. 311 M.H. Alston et al. (LRL)BASTIEN 61 PRL 6 702 P.L. Bastien, M. Ferro-Luzzi, A.H. Rosenfeld (LRL)DAHL 61 PRL 6 142 O.I. Dahl et al. (LRL)ELY 61 PRL 7 461 R.P. Ely et al. (LRL) JALSTON 60 PRL 5 520 M.H. Alston et al. (LRL) I� (1480) Bumps I (JP ) = 1(??) Status: ∗OMITTED FROM SUMMARY TABLEThese are peaks seen in �π and � π spe
tra in the rea
tion π+p →(Y π )K+ at 1.7 GeV/
 . Also, the Y polarization os
illates in thesame region.MILLER 70 suggests a possible alternate explanation in terms of are
e
tion of N(1675) → �K de
ay. However, su
h an explanationfor the (�+π0 )K+ 
hannel in terms of �(1650) → � K de
ayseems unlikely (see PAN 70). In addition su
h re
e
tions would alsohave to a

ount for the os
illation of the Y polarization in the 1480MeV region.HANSON 71, with less data than PAN 70, 
an neither 
on�rm nordeny the existen
e of this state. MAST 75 sees no stru
ture in thisregion in K− p → �π0.ENGELEN 80 performs a multi
hannel analysis of K− p → pK0π−at 4.2 GeV/
 . They observe a 3.5 standard-deviation signal at 1480MeV in pK0 whi
h 
annot be explained as a re
e
tion of any 
om-peting 
hannel.PRAKHOV 04 sees no eviden
e for this or other light � resonan
es,aside from the �(1385), in K− p → �π0π0.ZYCHOR 06 �nds peaks in pp → pK+(π±X∓) at pbeam =3.65 GeV/
. � (1480) MASS� (1480) MASS� (1480) MASS� (1480) MASS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
≈ 1480 OUR ESTIMATE≈ 1480 OUR ESTIMATE≈ 1480 OUR ESTIMATE≈ 1480 OUR ESTIMATE1480±15 365 ± 60 ZYCHOR 06 SPEC pp → pK+(π±X∓)1480 120 ENGELEN 80 HBC K− p → (pK0)π−1485±10 CLINE 73 MPWA K− d → (�π−)p1479±10 PAN 70 HBC π+ p → (�π+)K+1465±15 PAN 70 HBC π+ p → (� π)K+� (1480) WIDTH� (1480) WIDTH� (1480) WIDTH� (1480) WIDTH(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT60±15 365 ± 60 ZYCHOR 06 SPEC pp → pK+(π±X∓)80±20 120 ENGELEN 80 HBC K− p → (pK0)π−40±20 CLINE 73 MPWA K− d → (�π−)p31±15 PAN 70 HBC π+ p → (�π+)K+30±20 PAN 70 HBC π+ p → (� π)K+� (1480) DECAY MODES� (1480) DECAY MODES� (1480) DECAY MODES� (1480) DECAY MODES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)Mode�1 NK�2 �π�3 � π � (1480) BRANCHING RATIOS� (1480) BRANCHING RATIOS� (1480) BRANCHING RATIOS� (1480) BRANCHING RATIOS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)�(� π

)/�(�π
) �3/�2�(� π

)/�(�π
) �3/�2�(� π

)/�(�π
) �3/�2�(� π

)/�(�π
) �3/�2VALUE DOCUMENT ID TECN CHG0.82±0.51 PAN 70 HBC +�(NK)/�(�π
) �1/�2�(NK)/�(�π
) �1/�2�(NK)/�(�π
) �1/�2�(NK)/�(�π
) �1/�2VALUE DOCUMENT ID TECN CHG0.72±0.50 PAN 70 HBC +�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENTsmall CLINE 73 MPWA K−d → (�π−)p



1602160216021602BaryonParti
le Listings� (1480)Bumps,� (1560)Bumps,� (1580),� (1620)� (1480) REFERENCES� (1480) REFERENCES� (1480) REFERENCES� (1480) REFERENCES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)ZYCHOR 06 PRL 96 012002 I. Zy
hor et al. (ANKE Collab.)PRAKHOV 04 PR C69 042202 S. Prakhov et al. (BNL Crystal Ball Collab.)ENGELEN 80 NP B167 61 J.J. Engelen et al. (NIJM, AMST, CERN+)MAST 75 PR D11 3078 T.S. Mast et al. (LBL)CLINE 73 LNC 6 205 D. Cline, R. Laumann, J. Mapp (WISC) IJPHANSON 71 PR D4 1296 P. Hanson, G.E. Kalmus, J. Louie (LBL) IMILLER 70 Duke Conf. 229 D.H. Miller (PURD)Hyperon Resonan
es, 1970PAN 70 PR D2 449 Y.L. Pan et al. (PENN)Also PRL 23 808 Y.L. Pan, F.L. Forman (PENN) IAlso PRL 23 806 Y.L. Pan, F.L. Forman (PENN) I� (1560) Bumps I (JP ) = 1(??) Status: ∗∗OMITTED FROM SUMMARY TABLEThis entry lists peaks reported in mass spe
tra around 1560 MeVwithout implying that they are ne
essarily related.DIONISI 78B observes a 6 standard-deviation enhan
ement at1553 MeV in the 
harged �/� π mass spe
tra from K− p →(�/�)πK K at 4.2 GeV/
 . In a CERN ISR experiment, LOCK-MAN 78 reports a narrow 6 standard-deviation enhan
ement at 1572MeV in �π± from the rea
tion pp → �π+π−X . These enhan
e-ments are unlikely to be asso
iated with the �(1580) (whi
h has notbeen 
on�rmed by several re
ent experiments { see the next entryin the Listings).CARROLL 76 observes a bump at 1550 MeV (as well as one at1580 MeV) in the isospin-1 K N total 
ross se
tion, but un
ertain-ties in 
ross se
tion measurements outside the mass range of theexperiment pre
lude estimating its signi�
an
e.See also MEADOWS 80 for a review of this state.� (1560) MASS� (1560) MASS� (1560) MASS� (1560) MASS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
≈ 1560 OUR ESTIMATE≈ 1560 OUR ESTIMATE≈ 1560 OUR ESTIMATE≈ 1560 OUR ESTIMATE1553±7 121 DIONISI 78B HBC ± K−p →(Y π)K K1572±4 40 LOCKMAN 78 SPEC ± pp →�π+π−X� (1560) WIDTH� (1560) WIDTH� (1560) WIDTH� (1560) WIDTH(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT79±30 121 DIONISI 78B HBC ± K−p →(Y π)K K15± 6 40 1 LOCKMAN 78 SPEC ± pp →�π+π−X� (1560) DECAY MODES� (1560) DECAY MODES� (1560) DECAY MODES� (1560) DECAY MODES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)Mode Fra
tion (�i /�)�1 �π seen�2 � π � (1560) BRANCHING RATIOS� (1560) BRANCHING RATIOS� (1560) BRANCHING RATIOS� (1560) BRANCHING RATIOS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)�(� π

)/[�(�π
)+�(� π

)
] �2/(�1+�2)�(� π

)/[�(�π
)+�(� π

)
] �2/(�1+�2)�(� π

)/[�(�π
)+�(� π

)
] �2/(�1+�2)�(� π

)/[�(�π
)+�(� π

)
] �2/(�1+�2)VALUE DOCUMENT ID TECN CHG COMMENT0.35±0.12 DIONISI 78B HBC ± K− p →(Y π)K K�(�π

)/�total �1/��(�π
)/�total �1/��(�π
)/�total �1/��(�π
)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen LOCKMAN 78 SPEC ± pp →�π+π−X� (1560) FOOTNOTES� (1560) FOOTNOTES� (1560) FOOTNOTES� (1560) FOOTNOTES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)1The width observed by LOCKMAN 78 is 
onsistent with experimental resolution.� (1560) REFERENCES� (1560) REFERENCES� (1560) REFERENCES� (1560) REFERENCES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)MEADOWS 80 Toronto Conf. 283 B.T. Meadows (CINC)DIONISI 78B PL 78B 154 C. Dionisi, R. Armenteros, J. Diaz (CERN, AMST+) ILOCKMAN 78 Sa
lay DPHPE 78-01 W. Lo
kman et al. (UCLA, SACL)CARROLL 76 PRL 37 806 A.S. Carroll et al. (BNL) I

� (1580) 3/2− I (JP ) = 1(32−) Status: ∗OMITTED FROM SUMMARY TABLESeen in the isospin-1 K N 
ross se
tion at BNL (LI 73, CARROLL 76)and in a partial-wave analysis of K− p → �π0 for 
.m. energies1560{1600 MeV by LITCHFIELD 74. LITCHFIELD 74 �nds JP =3/2−. Not seen by ENGLER 78 or by CAMERON 78C (with largerstatisti
s in K0L p → �π+ and �0π+).Neither OLMSTED 04 (in K− p → �π0) nor PRAKHOV 04 (inK− p → �π0π0) see any eviden
e for this state.� (1580) MASS� (1580) MASS� (1580) MASS� (1580) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 1580 OUR ESTIMATE≈ 1580 OUR ESTIMATE≈ 1580 OUR ESTIMATE≈ 1580 OUR ESTIMATE1583±4 1 CARROLL 76 DPWA Isospin-1 total σ1582±4 2 LITCHFIELD 74 DPWA K−p → �π0� (1580) WIDTH� (1580) WIDTH� (1580) WIDTH� (1580) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT15 1 CARROLL 76 DPWA Isospin-1 total σ11±4 2 LITCHFIELD 74 DPWA K−p → �π0� (1580) DECAY MODES� (1580) DECAY MODES� (1580) DECAY MODES� (1580) DECAY MODESMode�1 NK�2 �π�3 � π � (1580) BRANCHING RATIOS� (1580) BRANCHING RATIOS� (1580) BRANCHING RATIOS� (1580) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT+0.03±0.01 2 LITCHFIELD 74 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1580)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1580)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1580)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1580)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENTnot seen CAMERON 78C HBC K0Lp → �π+not seen ENGLER 78 HBC K0Lp → �π++0.10±0.02 2 LITCHFIELD 74 DPWA K−p → �π0(�i�f )1/2/�total inNK → � (1580)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1580)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1580)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1580)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENTnot seen CAMERON 78C HBC K0Lp → �0π+not seen ENGLER 78 HBC K0Lp → �0π++0.03±0.04 2 LITCHFIELD 74 DPWA KN multi
hannel� (1580) FOOTNOTES� (1580) FOOTNOTES� (1580) FOOTNOTES� (1580) FOOTNOTES1CARROLL 76 sees a total-
ross-se
tion bump with (J+1/2) �el / �total = 0.06.2The main e�e
t observed by LITCHFIELD 74 is in the �π �nal state; the K N and� π 
ouplings are estimated from a multi
hannel �t in
luding total-
ross-se
tion data ofLI 73. � (1580) REFERENCES� (1580) REFERENCES� (1580) REFERENCES� (1580) REFERENCESOLMSTED 04 PL B588 29 J. Olmsted et al. (BNL Crystal Ball Collab.)PRAKHOV 04 PR C69 042202 S. Prakhov et al. (BNL Crystal Ball Collab.)CAMERON 78C NP B132 189 W. Cameron et al. (BGNA, EDIN, GLAS+) IENGLER 78 PR D18 3061 A. Engler et al. (CMU, ANL)CARROLL 76 PRL 37 806 A.S. Carroll et al. (BNL) ILITCHFIELD 74 PL 51B 509 P.J. Lit
h�eld (CERN) IJPLI 73 Purdue Conf. 283 K.K. Li (BNL) I� (1620) 1/2− I (JP ) = 1(12−) Status: ∗OMITTED FROM SUMMARY TABLEThe S11 state at 1697 MeV reported by VANHORN 75 is tentativelylisted under the �(1750). CARROLL 76 sees two bumps in theisospin-1 total 
ross se
tion near this mass. GAO 12 sees no eviden
efor this resonan
e.Produ
tion experiments are listed separately in the next entry.



1603160316031603See key on page 601 BaryonParti
le Listings� (1620),� (1620) Produ
tion Experiments� (1620) MASS� (1620) MASS� (1620) MASS� (1620) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 1620 OUR ESTIMATE≈ 1620 OUR ESTIMATE≈ 1620 OUR ESTIMATE≈ 1620 OUR ESTIMATE1600±15 ZHANG 13A DPWA Multi
hannel1600± 6 1 MORRIS 78 DPWA K−n → �π−1608± 5 2 CARROLL 76 DPWA Isospin-1 total σ1633±10 3 CARROLL 76 DPWA Isospin-1 total σ1630±10 LANGBEIN 72 IPWA KN multi
hannel1620 KIM 71 DPWA K-matrix analysis� (1620) WIDTH� (1620) WIDTH� (1620) WIDTH� (1620) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT400±152 ZHANG 13A DPWA Multi
hannel87± 19 1 MORRIS 78 DPWA K−n → �π−15 2 CARROLL 76 DPWA Isospin-1 total σ10 3 CARROLL 76 DPWA Isospin-1 total σ65± 20 LANGBEIN 72 IPWA KN multi
hannel40 KIM 71 DPWA K-matrix analysis� (1620) POLE POSITION� (1620) POLE POSITION� (1620) POLE POSITION� (1620) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1501 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •171 ZHANG 13A DPWA Multi
hannel� (1620) DECAY MODES� (1620) DECAY MODES� (1620) DECAY MODES� (1620) DECAY MODESMode�1 NK�2 �π�3 � π � (1620) BRANCHING RATIOS� (1620) BRANCHING RATIOS� (1620) BRANCHING RATIOS� (1620) BRANCHING RATIOS�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.59±0.10 ZHANG 13A DPWA Multi
hannel0.22±0.02 LANGBEIN 72 IPWA KN multi
hannel0.05 KIM 71 DPWA K-matrix analysis(�i�f )1/2/�total inNK → � (1620)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1620)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1620)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1620)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT0.12±0.02 1 MORRIS 78 DPWA K−n → �π−not seen BAILLON 75 IPWA KN → �π0.15 KIM 71 DPWA K-matrix analysis(�i�f )1/2/�total inNK → � (1620)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1620)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1620)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1620)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.32±0.03 ZHANG 13A DPWA Multi
hannelnot seen HEPP 76B DPWA K−N → � π+0.40±0.06 LANGBEIN 72 IPWA KN multi
hannel+0.08 KIM 71 DPWA K-matrix analysis� (1620) FOOTNOTES� (1620) FOOTNOTES� (1620) FOOTNOTES� (1620) FOOTNOTES1MORRIS 78 obtains an equally good �t without in
luding this resonan
e.2Total 
ross-se
tion bump with (J+1/2) �el / �total is 0.06 seen by CARROLL 76.3Total 
ross-se
tion bump with (J+1/2) �el / �total is 0.04 seen by CARROLL 76.� (1620) REFERENCES� (1620) REFERENCES� (1620) REFERENCES� (1620) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)GAO 12 PR C86 025201 P. Gao, J. Shi, B.S. Zou (BHEP, BEIJT)Also NP A867 41 P. Gao, B.S. Zou, A. Sibirtsev (BHEP, BEIJT+)MORRIS 78 PR D17 55 W.A. Morris et al. (FSU) IJPCARROLL 76 PRL 37 806 A.S. Carroll et al. (BNL) IHEPP 76B PL 65B 487 V. Hepp et al. (CERN, HEIDH, MPIM) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPVANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJPLANGBEIN 72 NP B47 477 W. Langbein, F. Wagner (MPIM) IJPKIM 71 PRL 27 356 J.K. Kim (HARV) IJPAlso Duke Conf. 161 J.K. Kim (HARV) IJPHyperon Resonan
es, 1970

� (1620) Produ
tion ExperimentsI (JP ) = 1(??)OMITTED FROM SUMMARY TABLEFormation experiments are listed separately in the previous entry.The results of CRENNELL 69B at 3.9 GeV/
 are not 
on�rmed bySABRE 70 at 3.0 GeV/
 . However, at 4.5 GeV/
 , AMMANN 70sees a peak at 1642 MeV whi
h on the basis of bran
hing ratios theydo not asso
iate with the �(1670). See MILLER 70 for a review ofthese 
on
i
ts. � (1620) MASS� (1620) MASS� (1620) MASS� (1620) MASS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
≈ 1620 OUR ESTIMATE≈ 1620 OUR ESTIMATE≈ 1620 OUR ESTIMATE≈ 1620 OUR ESTIMATE1642±12 AMMANN 70 DBC K−N 4.5 GeV/
1618± 3 20 BLUMENFELD 69 HBC + K0Lp1619± 8 CRENNELL 69B DBC ± K−N → �πππ

• • • We do not use the following data for averages, �ts, limits, et
. • • •1616± 8 CRENNELL 68 DBC ± See CREN-NELL 69B� (1620) WIDTH� (1620) WIDTH� (1620) WIDTH� (1620) WIDTH(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT55±24 AMMANN 70 DBC K−N 4.5 GeV/
30±10 20 BLUMENFELD 69 HBC +72+22
−15 CRENNELL 69B DBC ±

• • • We do not use the following data for averages, �ts, limits, et
. • • •66±16 CRENNELL 68 DBC ± See CREN-NELL 69B� (1620) DECAY MODES� (1620) DECAY MODES� (1620) DECAY MODES� (1620) DECAY MODES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)Mode�1 NK�2 �π�3 � π�4 �ππ�5 � (1385)π�6 �(1405)π � (1620) BRANCHING RATIOS� (1620) BRANCHING RATIOS� (1620) BRANCHING RATIOS� (1620) BRANCHING RATIOS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)�(�ππ
)/�(�π

) �4/�2�(�ππ
)/�(�π

) �4/�2�(�ππ
)/�(�π

) �4/�2�(�ππ
)/�(�π

) �4/�2VALUE EVTS DOCUMENT ID TECN CHG
∼ 2.5 14 BLUMENFELD 69 HBC +�(NK)/�(�π

) �1/�2�(NK)/�(�π
) �1/�2�(NK)/�(�π
) �1/�2�(NK)/�(�π
) �1/�2VALUE DOCUMENT ID TECN CHG COMMENT0.4±0.4 AMMANN 70 DBC K− p 4.5 GeV/
0.0±0.1 CRENNELL 68 DBC + See CREN-NELL 69B�(�π

)/�total �2/��(�π
)/�total �2/��(�π
)/�total �2/��(�π
)/�total �2/�VALUE DOCUMENT ID TECN CHGlarge CRENNELL 68 DBC ±�(� (1385)π)/�(�π

) �5/�2�(� (1385)π)/�(�π
) �5/�2�(� (1385)π)/�(�π
) �5/�2�(� (1385)π)/�(�π
) �5/�2VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.3 95 AMMANN 70 DBC K−p 4.5 GeV/
0.2±0.1 CRENNELL 68 DBC ±�(� π
)/�(�π

) �3/�2�(� π
)/�(�π

) �3/�2�(� π
)/�(�π

) �3/�2�(� π
)/�(�π

) �3/�2VALUE CL% DOCUMENT ID TECN COMMENT
<1.1 95 AMMANN 70 DBC K−N 4.5 GeV/
�(�(1405)π)/�(�π

) �6/�2�(�(1405)π)/�(�π
) �6/�2�(�(1405)π)/�(�π
) �6/�2�(�(1405)π)/�(�π
) �6/�2VALUE DOCUMENT ID TECN COMMENT0.7±0.4 AMMANN 70 DBC K−p 4.5 GeV/




1604160416041604BaryonParti
le Listings� (1620) Produ
tion Experiments,� (1660),� (1670)� (1620) REFERENCES� (1620) REFERENCES� (1620) REFERENCES� (1620) REFERENCES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)AMMANN 70 PRL 24 327 A.C. Ammann et al. (PURD, IND)Also PR D7 1345 A.C. Ammann et al. (PURD, IUPU)MILLER 70 Duke Conf. 229 D.H. Miller (PURD)Hyperon Resonan
es, 1970SABRE 70 NP B16 201 R. Barloutaud et al. (SABRE Collab.)BLUMENFELD 69 PL 29B 58 B.J. Blumenfeld, G.R. Kalb
eis
h (BNL) ICRENNELL 69B Lund Paper 183 D.J. Crennell et al. (BNL, CUNY) IResults are quoted in LEVI-SETTI 69C.Also Lund Conf. R. Levi-Setti (EFI)CRENNELL 68 PRL 21 648 D.J. Crennell et al. (BNL, CUNY) I� (1660) 1/2+ I (JP ) = 1(12+) Status: ∗∗∗For results published before 1974 (they are now obsolete), see our1982 edition Physi
s Letters 111B111B111B111B 1 (1982).� (1660) MASS� (1660) MASS� (1660) MASS� (1660) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1630 to 1690 (≈ 1660) OUR ESTIMATE1630 to 1690 (≈ 1660) OUR ESTIMATE1630 to 1690 (≈ 1660) OUR ESTIMATE1630 to 1690 (≈ 1660) OUR ESTIMATE1633 ± 3 GAO 12 DPWA KN → �π1665.1±11.2 1 KOISO 85 DPWA K−p → � π1670 ±10 GOPAL 80 DPWA KN → K N1679 ±10 ALSTON-... 78 DPWA KN → K N1676 ±15 GOPAL 77 DPWA KN multi
hannel1668 ±25 VANHORN 75 DPWA K−p → �π01670 ±20 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •1565 or 1597 2 MARTIN 77 DPWA KN multi
hannel1660 ±30 3 BAILLON 75 IPWA KN → �π1671 ± 2 4 PONTE 75 DPWA K−p → �π0� (1660) WIDTH� (1660) WIDTH� (1660) WIDTH� (1660) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT40 to 200 (≈ 100) OUR ESTIMATE40 to 200 (≈ 100) OUR ESTIMATE40 to 200 (≈ 100) OUR ESTIMATE40 to 200 (≈ 100) OUR ESTIMATE121 + 4
− 7 GAO 12 DPWA KN → �π81.5± 22.2 1 KOISO 85 DPWA K−p → � π152 ± 20 GOPAL 80 DPWA KN → K N38 ± 10 ALSTON-... 78 DPWA KN → K N120 ± 20 GOPAL 77 DPWA KN multi
hannel230 +165
− 60 VANHORN 75 DPWA K−p → �π0250 ±110 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •202 or 217 2 MARTIN 77 DPWA KN multi
hannel80 ± 40 3 BAILLON 75 IPWA KN → �π81 ± 10 4 PONTE 75 DPWA K−p → �π0� (1660) DECAY MODES� (1660) DECAY MODES� (1660) DECAY MODES� (1660) DECAY MODESMode Fra
tion (�i /�)�1 NK 10{30 %�2 �π seen�3 � π seen� (1660) BRANCHING RATIOS� (1660) BRANCHING RATIOS� (1660) BRANCHING RATIOS� (1660) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.1 to 0.3 OUR ESTIMATE0.1 to 0.3 OUR ESTIMATE0.1 to 0.3 OUR ESTIMATE0.1 to 0.3 OUR ESTIMATE0.12±0.03 GOPAL 80 DPWA KN → K N0.10±0.05 ALSTON-... 78 DPWA KN → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.04 GOPAL 77 DPWA See GOPAL 800.27 or 0.29 2 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1660)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1660)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1660)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1660)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.064+0.005

−0.003 GAO 12 DPWA KN → �π

< 0.04 GOPAL 77 DPWA KN multi
hannel0.12 +0.12
−0.04 VANHORN 75 DPWA K−p → �π0

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.10 or −0.11 2 MARTIN 77 DPWA KN multi
hannel
−0.04 ±0.02 3 BAILLON 75 IPWA KN → �π+0.16 ±0.01 4 PONTE 75 DPWA K−p → �π0(�i�f )1/2/�total inNK → � (1660)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1660)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1660)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1660)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT

−0.13±0.04 1 KOISO 85 DPWA K−p → � π

−0.16±0.03 GOPAL 77 DPWA KN multi
hannel
−0.11±0.01 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.34 or −0.37 2 MARTIN 77 DPWA KN multi
hannelnot seen HEPP 76B DPWA K−N → � π� (1660) FOOTNOTES� (1660) FOOTNOTES� (1660) FOOTNOTES� (1660) FOOTNOTES1The eviden
e of KOISO 85 is weak.2The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.3 From solution 1 of BAILLON 75; not present in solution 2.4 From solution 2 of PONTE 75; not present in solution 1.� (1660) REFERENCES� (1660) REFERENCES� (1660) REFERENCES� (1660) REFERENCESGAO 12 PR C86 025201 P. Gao, J. Shi, B.S. Zou (BHEP, BEIJT)Also NP A867 41 P. Gao, B.S. Zou, A. Sibirtsev (BHEP, BEIJT+)KOISO 85 NP A433 619 H. Koiso et al. (TOKY, MASA)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPHEPP 76B PL 65B 487 V. Hepp et al. (CERN, HEIDH, MPIM) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPPONTE 75 PR D12 2597 R.A. Ponte et al. (MASA, TENN, UCR) IJPVANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJPKANE 74 LBL-2452 D.F. Kane (LBL) IJP
THE Σ(1670) REGION

Production experiments: The measured Σπ/Σππ

branching ratio for the Σ(1670) produced in the reaction

K−p → π−Σ(1670)+ is strongly dependent on momentum

transfer. This was first discovered by EBERHARD 69, who

suggested that there exist two Σ resonances with the same

mass and quantum numbers: one with a large Σππ (mainly

Λ(1405)π) branching fraction produced peripherally, and the

other with a large Σπ branching fraction produced at

larger angles. The experimental results have been confirmed

by AGUILAR-BENITEZ 70, ASPELL 74, ESTES 74, and

TIMMERMANS 76. If, in fact, there are two resonances,

the most likely quantum numbers for both the Σπ and the

Λ(1405)π states are D13. There is also possibly a third Σ in

this region, the Σ(1690) in the Listings, the main evidence

for which is a large Λπ/Σπ branching ratio. These topics

have been reviewed by EBERHARD 73 and by MILLER 70.

Formation experiments: Two states are also observed

near this mass in formation experiments. One of these, the

Σ(1670)D13, has the same quantum numbers as those observed

in production and has a large Σπ/Σππ branching ratio; it

may well be the Σ(1670) produced at larger angles (see TIM-

MERMANS 76). The other state, the Σ(1660)P11, has different

quantum numbers, its Σπ/Σππ branching ratio is unknown,

and its relation to the produced Σ(1670) states is obscure.



1605160516051605See key on page 601 BaryonParti
le Listings� (1670)� (1670) 3/2− I (JP ) = 1(32−) Status: ∗∗∗∗For most results published before 1974 (they are now obsolete), seeour 1982 edition Physi
s Letters 111B111B111B111B 1 (1982).Results from produ
tion experiments are listed separately in the nextentry. � (1670) MASS� (1670) MASS� (1670) MASS� (1670) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1665 to 1685 (≈ 1670) OUR ESTIMATE1665 to 1685 (≈ 1670) OUR ESTIMATE1665 to 1685 (≈ 1670) OUR ESTIMATE1665 to 1685 (≈ 1670) OUR ESTIMATE1678 ± 2 ZHANG 13A DPWA Multi
hannel1673 ± 1 GAO 12 DPWA KN → �π1665.1± 4.1 KOISO 85 DPWA K−p → � π1682 ± 5 GOPAL 80 DPWA KN → K N1679 ±10 ALSTON-... 78 DPWA KN → K N1670 ± 5 GOPAL 77 DPWA KN multi
hannel1670 ± 6 HEPP 76B DPWA K−N → � π1685 ±20 BAILLON 75 IPWA KN → �π1659 +12
− 5 VANHORN 75 DPWA K−p → �π01670 ± 2 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •1667 or 1668 1 MARTIN 77 DPWA KN multi
hannel1650 DEBELLEFON 76 IPWA K−p → �π01671 ± 3 PONTE 75 DPWA K−p → �π0 (sol. 1)1655 ± 2 PONTE 75 DPWA K−p → �π0 (sol. 2)� (1670) WIDTH� (1670) WIDTH� (1670) WIDTH� (1670) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT40 to 80 (≈ 60) OUR ESTIMATE40 to 80 (≈ 60) OUR ESTIMATE40 to 80 (≈ 60) OUR ESTIMATE40 to 80 (≈ 60) OUR ESTIMATE55 ± 4 ZHANG 13A DPWA Multi
hannel52 + 5
− 2 GAO 12 DPWA KN → �π65.0± 7.3 KOISO 85 DPWA K−p → � π79 ±10 GOPAL 80 DPWA KN → K N56 ±20 ALSTON-... 78 DPWA KN → K N50 ± 5 GOPAL 77 DPWA KN multi
hannel56 ± 3 HEPP 76B DPWA K−N → � π85 ±25 BAILLON 75 IPWA KN → �π32 ±11 VANHORN 75 DPWA K−p → �π079 ± 6 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •46 or 46 1 MARTIN 77 DPWA KN multi
hannel80 DEBELLEFON 76 IPWA K−p → �π044 ±11 PONTE 75 DPWA K−p → �π0 (sol. 1)76 ± 5 PONTE 75 DPWA K−p → �π0 (sol. 2)� (1670) POLE POSITION� (1670) POLE POSITION� (1670) POLE POSITION� (1670) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1674 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •54 ZHANG 13A DPWA Multi
hannel� (1670) DECAY MODES� (1670) DECAY MODES� (1670) DECAY MODES� (1670) DECAY MODESMode Fra
tion (�i /�)�1 NK 7{13 %�2 �π 5{15 %�3 � π 30{60 %�4 �ππ�5 � ππ�6 � (1385)π�7 � (1385)π , S-wave�8 �(1405)π�9 �(1520)πThe above bran
hing fra
tions are our estimates, not �ts or averages.

� (1670) BRANCHING RATIOS� (1670) BRANCHING RATIOS� (1670) BRANCHING RATIOS� (1670) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.07 to 0.13 OUR ESTIMATE0.07 to 0.13 OUR ESTIMATE0.07 to 0.13 OUR ESTIMATE0.07 to 0.13 OUR ESTIMATE0.062±0.007 ZHANG 13A DPWA Multi
hannel0.10 ±0.03 GOPAL 80 DPWA KN → K N0.11 ±0.03 ALSTON-... 78 DPWA KN → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.08 ±0.03 GOPAL 77 DPWA See GOPAL 800.07 or 0.07 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1670)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1670)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1670)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1670)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.08 ±0.01 ZHANG 13A DPWA Multi
hannel+0.081+0.002

−0.004 GAO 12 DPWA KN → �π+0.17 ±0.03 2 MORRIS 78 DPWA K−n → �π−+0.13 ±0.02 2 MORRIS 78 DPWA K−n → �π−+0.10 ±0.02 GOPAL 77 DPWA KN multi
hannel+0.06 ±0.02 BAILLON 75 IPWA KN → �π+0.09 ±0.02 VANHORN 75 DPWA K−p → �π0+0.018±0.060 DEVENISH 74B Fixed-t dispersion rel.
• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.08 or +0.08 1 MARTIN 77 DPWA KN multi
hannel+0.05 DEBELLEFON 76 IPWA K−p → �π0+0.08 ±0.01 PONTE 75 DPWA K−p → �π0 (sol. 1)+0.17 ±0.01 PONTE 75 DPWA K−p → �π0 (sol. 2)(�i�f )1/2/�total inNK → � (1670)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1670)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1670)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1670)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.20±0.01 ZHANG 13A DPWA Multi
hannel+0.20±0.02 KOISO 85 DPWA K−p → � π+0.21±0.02 GOPAL 77 DPWA KN multi
hannel+0.20±0.01 HEPP 76B DPWA K−N → � π+0.21±0.03 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.18 or +0.17 1 MARTIN 77 DPWA KN multi
hannel�(�ππ
)/�total �4/��(�ππ
)/�total �4/��(�ππ
)/�total �4/��(�ππ
)/�total �4/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.11 ARMENTEROS68E HBC K−p (�1=0.09)�(� ππ
)/�total �5/��(� ππ
)/�total �5/��(� ππ
)/�total �5/��(� ππ
)/�total �5/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.14 3 ARMENTEROS68E HBC K−p, K− d (�1=0.09)(�i�f )1/2/�total inNK → � (1670)→ � (1385)π , S-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → � (1670)→ � (1385)π , S-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → � (1670)→ � (1385)π , S-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → � (1670)→ � (1385)π , S-wave (�1�7)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.11±0.03 PREVOST 74 DPWA K−N → �(1385)π
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.17±0.02 4 SIMS 68 DBC K−N → �ππ�(�(1405)π)/�total �8/��(�(1405)π)/�total �8/��(�(1405)π)/�total �8/��(�(1405)π)/�total �8/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.06 ARMENTEROS68E HBC K−p, K− d (�1=0.09)�i�f /�2total inNK → � (1670)→ �(1405)π �1�8/�2�i�f /�2total inNK → � (1670)→ �(1405)π �1�8/�2�i�f /�2total inNK → � (1670)→ �(1405)π �1�8/�2�i�f /�2total inNK → � (1670)→ �(1405)π �1�8/�2VALUE DOCUMENT ID TECN COMMENT0.007±0.002 5 BRUCKER 70 DBC K−N → � ππ

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.03 BERLEY 69 HBC K−p 0.6{0.82 GeV/
�(�(1405)π)/�(� (1385)π) �8/�6�(�(1405)π)/�(� (1385)π) �8/�6�(�(1405)π)/�(� (1385)π) �8/�6�(�(1405)π)/�(� (1385)π) �8/�6VALUE DOCUMENT ID TECN COMMENT0.23±0.08 BRUCKER 70 DBC K−N → � ππ(�i�f )1/2/�total inNK → � (1670)→ �(1520)π (�1�9)1/2/�(�i�f )1/2/�total inNK → � (1670)→ �(1520)π (�1�9)1/2/�(�i�f )1/2/�total inNK → � (1670)→ �(1520)π (�1�9)1/2/�(�i�f )1/2/�total inNK → � (1670)→ �(1520)π (�1�9)1/2/�VALUE DOCUMENT ID TECN COMMENT0.081±0.016 6 CAMERON 77 DPWA P-wave de
ay



1606160616061606BaryonParti
le Listings� (1670),� (1670)Bumps� (1670) FOOTNOTES� (1670) FOOTNOTES� (1670) FOOTNOTES� (1670) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2Results are with and without an S11 �(1620) in the �t.3Ratio only for � 2π system in I = 1, whi
h 
annot be �(1385).4 SIMS 68 uses only 
ross-se
tion data. Result used as upper limit only.5Assuming the �(1405)π 
ross-se
tion bump is due only to 3/2− resonan
e.6The CAMERON 77 upper limit on F-wave de
ay is 0.03.� (1670) REFERENCES� (1670) REFERENCES� (1670) REFERENCES� (1670) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)GAO 12 PR C86 025201 P. Gao, J. Shi, B.S. Zou (BHEP, BEIJT)Also NP A867 41 P. Gao, B.S. Zou, A. Sibirtsev (BHEP, BEIJT+)KOISO 85 NP A433 619 H. Koiso et al. (TOKY, MASA)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPMORRIS 78 PR D17 55 W.A. Morris et al. (FSU) IJPCAMERON 77 NP B131 399 W. Cameron et al. (RHEL, LOIC) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPDEBELLEFON 76 NP B109 129 A. de Bellefon, A. Berthon (CDEF) IJPHEPP 76B PL 65B 487 V. Hepp et al. (CERN, HEIDH, MPIM) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPPONTE 75 PR D12 2597 R.A. Ponte et al. (MASA, TENN, UCR) IJPVANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJPDEVENISH 74B NP B81 330 R.C.E. Devenish, C.D. Froggatt, B.R. Martin (DESY+)KANE 74 LBL-2452 D.F. Kane (LBL) IJPPREVOST 74 NP B69 246 J. Prevost et al. (SACL, CERN, HEID)BRUCKER 70 Duke Conf. 155 E.B. Bru
ker et al. (FSU) IHyperon Resonan
es, 1970BERLEY 69 PL 30B 430 D. Berley et al. (BNL)ARMENTEROS 68E PL 28B 521 R. Armenteros et al. (CERN, HEID, SACL) ISIMS 68 PRL 21 1413 W.H. Sims et al. (FSU, TUFTS, BRAN)� (1670) Bumps I (JP ) = 1(??)OMITTED FROM SUMMARY TABLEFormation experiments are listed separately in the pre
eding entry.Probably there are two states at the same mass with the same quan-tum numbers, one de
aying to � π and �π, the other to �(1405)π.See the note in front of the pre
eding entry.� (1670) MASS� (1670) MASS� (1670) MASS� (1670) MASS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
≈ 1670 OUR ESTIMATE≈ 1670 OUR ESTIMATE≈ 1670 OUR ESTIMATE≈ 1670 OUR ESTIMATE1670± 4 1 CARROLL 76 DPWA Isospin-1 total σ1675±10 2 HEPP 76 DBC − K−N 1.6{1.75 GeV/
1665± 1 APSELL 74 HBC K−p 2.87 GeV/
1688± 2 or 1683 ± 5 1.2k BERTHON 74 HBC 0 Quasi-2-body σ1670± 6 AGUILAR-... 70B HBC K−p → � ππ 4 GeV1668±10 AGUILAR-... 70B HBC K−p → � 3π 4 GeV1660±10 ALVAREZ 63 HBC + K−p 1.51 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •1668±10 150 3 FERRERSORIA81 OMEG − π− p 9,12 GeV/
1655 to 1677 TIMMERMANS76 HBC + K−p 4.2 GeV/
1665± 5 BUGG 68 CNTR K−p, d total σ1661± 9 70 PRIMER 68 HBC + See BARNES 69E1685 ALEXANDER 62C HBC −0 π− p 2{2.2 GeV/
� (1670) WIDTH� (1670) WIDTH� (1670) WIDTH� (1670) WIDTH(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT67.0± 2.4 APSELL 74 HBC K−p 2.87 GeV/
110 ±12 AGUILAR-... 70B HBC K−p → � ππ 4 GeV135 +40

−30 AGUILAR-... 70B HBC K−p → � 3π 4 GeV40 ±10 ALVAREZ 63 HBC +
• • • We do not use the following data for averages, �ts, limits, et
. • • •90 ±20 150 3 FERRERSORIA81 OMEG − π− p 9,12 GeV/
52 1 CARROLL 76 DPWA Isospin-1 total σ48 to 63 TIMMERMANS76 HBC + K−p 4.2 GeV/
30 ±15 BUGG 68 CNTR60 ±20 70 PRIMER 68 HBC + See BARNES 69E45 ALEXANDER 62C HBC −0

� (1670) DECAY MODES� (1670) DECAY MODES� (1670) DECAY MODES� (1670) DECAY MODES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)Mode�1 NK�2 �π�3 � π�4 �ππ�5 � ππ�6 � (1385)π�7 �(1405)π � (1670) BRANCHING RATIOS� (1670) BRANCHING RATIOS� (1670) BRANCHING RATIOS� (1670) BRANCHING RATIOS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)�(NK)/�(� π
) �1/�3�(NK)/�(� π
) �1/�3�(NK)/�(� π
) �1/�3�(NK)/�(� π
) �1/�3VALUE EVTS DOCUMENT ID TECN CHG COMMENT

<0.03 TIMMERMANS76 HBC + K−p 4.2 GeV/

<0.10 BERTHON 74 HBC 0 Quasi-2-body σ

<0.2 AGUILAR-... 70B HBC
<0.26 BARNES 69E HBC + K−p 3.9{5 GeV/
0.025 BUGG 68 CNTR 0 Assuming J = 3/2
<0.24 0 PRIMER 68 HBC + K−p 4.6{5 GeV/

<0.6 LONDON 66 HBC + K−p 2.25 GeV/

<0.19 0 ALVAREZ 63 HBC + K−p 1.15 GeV/

≥ 0.5 ±0.25 SMITH 63 HBC −0�(�π

)/�(� π
) �2/�3�(�π

)/�(� π
) �2/�3�(�π

)/�(� π
) �2/�3�(�π

)/�(� π
) �2/�3VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.76±0.09 ESTES 74 HBC 0 K−p 2.1,2.6 GeV/
0.45±0.15 BARNES 69E HBC + K−p 3.9{5 GeV/
0.15±0.07 HUWE 69 HBC +0.11±0.06 33 BUTTON-... 68 HBC + K−p 1.7 GeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •

≤ 0.45±0.07 TIMMERMANS76 HBC + K−p 4.2 GeV/
0.55±0.11 BERTHON 74 HBC 0 Quasi-2-body σ0 0 PRIMER 68 HBC + See BARNES 69E
<0.6 LONDON 66 HBC + K−p 2.25 GeV/
1.2 130 ALVAREZ 63 HBC + K−p 1.15 GeV/
1.2 SMITH 63 HBC −0�(�ππ

)/�(� π
) �4/�3�(�ππ

)/�(� π
) �4/�3�(�ππ

)/�(� π
) �4/�3�(�ππ

)/�(� π
) �4/�3VALUE EVTS DOCUMENT ID TECN CHG COMMENT

<0.6 LONDON 66 HBC + K−p 2.25 GeV/
0.56 90 ALVAREZ 63 HBC + K−p 1.15 GeV/
0.17 SMITH 63 HBC −0�(� ππ
)/�(� π

) �5/�3�(� ππ
)/�(� π

) �5/�3�(� ππ
)/�(� π

) �5/�3�(� ππ
)/�(� π

) �5/�3VALUE EVTS DOCUMENT ID TECN CHG COMMENTlargest at smallangles ESTES 74 HBC 0 K−p 2.1,2.6 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.2 2 HEPP 76 DBC − K−N 1.6{1.75 GeV/
0.56 180 ALVAREZ 63 HBC + K−p 1.15 GeV/
�(�(1405)π)/�(� π
) �7/�3�(�(1405)π)/�(� π
) �7/�3�(�(1405)π)/�(� π
) �7/�3�(�(1405)π)/�(� π
) �7/�3VALUE EVTS DOCUMENT ID TECN CHG COMMENT1.8 ±0.3 to0.02 ± 0.07 3,4 TIMMERMANS76 HBC + K−p 4.2 GeV/
largest at small an-gles ESTES 74 HBC ± K−p 2.1,2.6 GeV/
3.0 ±1.6 50 LONDON 66 HBC + K−p 2.25 GeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •0.58±0.20 17 PRIMER 68 HBC + See BARNES 69E�(� π
)/�(� ππ

) �3/�5�(� π
)/�(� ππ

) �3/�5�(� π
)/�(� ππ

) �3/�5�(� π
)/�(� ππ

) �3/�5VALUE DOCUMENT ID TECN CHG COMMENTvaries with prod. angle 5 APSELL 74 HBC + K− p 2.87 GeV/
1.39±0.16 BERTHON 74 HBC 0 Quasi-2-body σ2.5 to 0.24 4 EBERHARD 69 HBC K− p 2.6 GeV/

<0.4 BIRMINGHAM 66 HBC + K− p 3.5 GeV/
0.30±0.15 LONDON 66 HBC + K− p 2.25 GeV/
�(�(1405)π)/�(� ππ

) �7/�5�(�(1405)π)/�(� ππ
) �7/�5�(�(1405)π)/�(� ππ
) �7/�5�(�(1405)π)/�(� ππ
) �7/�5VALUE DOCUMENT ID TECN CHG COMMENT0.97±0.08 TIMMERMANS76 HBC K− p 4.2 GeV/
1.00±0.02 APSELL 74 HBC K− p 2.87 GeV/
0.90+0.10

−0.16 EBERHARD 65 HBC + K− p 2.45 GeV/
�(�(1405)π)/�(� (1385)π) �7/�6�(�(1405)π)/�(� (1385)π) �7/�6�(�(1405)π)/�(� (1385)π) �7/�6�(�(1405)π)/�(� (1385)π) �7/�6VALUE DOCUMENT ID TECN CHG COMMENT
<0.8 EBERHARD 65 HBC + K− p 2.45 GeV/




1607160716071607See key on page 601 BaryonParti
le Listings� (1670) Bumps,� (1690) Bumps,� (1730)�(�ππ
)/�(� ππ

) �4/�5�(�ππ
)/�(� ππ

) �4/�5�(�ππ
)/�(� ππ

) �4/�5�(�ππ
)/�(� ππ

) �4/�5VALUE DOCUMENT ID TECN CHG COMMENT0.35±0.2 BIRMINGHAM 66 HBC + K− p 3.5 GeV/
�(�π
)/�(� ππ

) �2/�5�(�π
)/�(� ππ

) �2/�5�(�π
)/�(� ππ

) �2/�5�(�π
)/�(� ππ

) �2/�5VALUE DOCUMENT ID TECN CHG COMMENT
<0.2 BIRMINGHAM 66 HBC + K− p 3.5 GeV/
�(�π

)/[�(�π
)+�(� π

)
] �2/(�2+�3)�(�π

)/[�(�π
)+�(� π

)
] �2/(�2+�3)�(�π

)/[�(�π
)+�(� π

)
] �2/(�2+�3)�(�π

)/[�(�π
)+�(� π

)
] �2/(�2+�3)VALUE DOCUMENT ID TECN

<0.6 AGUILAR-... 70B HBC�(� (1385)π)/�(� π
) �6/�3�(� (1385)π)/�(� π
) �6/�3�(� (1385)π)/�(� π
) �6/�3�(� (1385)π)/�(� π
) �6/�3VALUE DOCUMENT ID TECN COMMENT

≤ 0.21±0.05 TIMMERMANS76 HBC K−p 4.2 GeV/
� (1670) QUANTUM NUMBERS� (1670) QUANTUM NUMBERS� (1670) QUANTUM NUMBERS� (1670) QUANTUM NUMBERS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE EVTS DOCUMENT ID TECN CHG COMMENTJP = 3/2− 400 BUTTON-... 68 HBC ± �0πJP = 3/2− EBERHARD 67 HBC + �(1405)πJP = 3/2+ LEVEQUE 65 HBC �(1405)π� (1670) FOOTNOTES� (1670) FOOTNOTES� (1670) FOOTNOTES� (1670) FOOTNOTES1Total 
ross-se
tion bump with (J+1/2) �el / �total = 0.23.2 Enhan
ements in � π and � ππ 
ross se
tions.3Ba
kward produ
tion in the �π−K+ �nal state.4Depending on produ
tion angle.5APSELL 74, ESTES 74, and TIMMERMANS 76 �nd strong bran
hing ratio dependen
eon produ
tion angle, as in earlier produ
tion experiments.� (1670) REFERENCES� (1670) REFERENCES� (1670) REFERENCES� (1670) REFERENCES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)FERRERSORIA 81 NP B178 373 A. Ferrer Soria et al. (CERN, CDEF, EPOL+)CARROLL 76 PRL 37 806 A.S. Carroll et al. (BNL) IHEPP 76 NP B115 82 V. Hepp et al. (CERN, HEID, MPIM) ITIMMERMANS 76 NP B112 77 J.J.M. Timmermans et al. (NIJM, CERN+) JPAPSELL 74 PR D10 1419 S.P. Apsell et al. (BRAN, UMD, SYRA+) IBERTHON 74 NC 21A 146 A. Berthon et al. (CDEF, RHEL, SACL+)ESTES 74 Thesis LBL-3827 R.D. Estes (LBL)AGUILAR-... 70B PRL 25 58 M. Aguilar-Benitez et al. (BNL, SYRA)BARNES 69E BNL 13823 V.E. Barnes et al. (BNL, SYRA)EBERHARD 69 PRL 22 200 P.H. Eberhard et al. (LRL)HUWE 69 PR 181 1824 D.O. Huwe (LRL)BUGG 68 PR 168 1466 D.V. Bugg et al. (RHEL, BIRM, CAVE) IBUTTON-... 68 PRL 21 1123 J. Button-Shafer (MASA, LRL) JPPRIMER 68 PRL 20 610 M. Primer et al. (SYRA, BNL)EBERHARD 67 PR 163 1446 P. Eberhard et al. (LRL, ILL) IJPBIRMINGHAM 66 PR 152 1148 M. Haque et al. (BIRM, GLAS, LOIC, OXF+)LONDON 66 PR 143 1034 G.W. London et al. (BNL, SYRA) IJEBERHARD 65 PRL 14 466 P.H. Eberhard et al. (LRL, ILL) ILEVEQUE 65 PL 18 69 A. Leveque et al. (SACL, EPOL, GLAS+) JPALVAREZ 63 PRL 10 184 L.W. Alvarez et al. (LRL) ISMITH 63 Athens Conf. 67 G.A. Smith (LRL)ALEXANDER 62C CERN Conf. 320 G. Alexander et al. (LRL) I� (1690) Bumps I (JP ) = 1(??) Status: ∗∗OMITTED FROM SUMMARY TABLESee the note pre
eding the �(1670) Listings. Seen in produ
tionexperiments only, mainly in �π.� (1690) MASS� (1690) MASS� (1690) MASS� (1690) MASS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
≈ 1690 OUR ESTIMATE≈ 1690 OUR ESTIMATE≈ 1690 OUR ESTIMATE≈ 1690 OUR ESTIMATE1698±20 70 1 GODDARD 79 HBC + π+ p 10.3 GeV/
1707±20 40 2 GODDARD 79 HBC + π+ p 10.3 GeV/
1698±20 15 ADERHOLZ 69 HBC + π+ p 8 GeV/
1682± 2 46 BLUMENFELD 69 HBC + K0Lp1700±20 MOTT 69 HBC + K−p 5.5 GeV/
1694±24 60 3 PRIMER 68 HBC + K−p 4.6{5 GeV/
1700± 6 4 SIMS 68 HBC − K−N → �ππ1715±12 30 COLLEY 67 HBC + K−p 6 GeV/
� (1690) WIDTH� (1690) WIDTH� (1690) WIDTH� (1690) WIDTH(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT240± 60 70 1 GODDARD 79 HBC + π+ p 10.3 GeV/
130+100

− 60 40 2 GODDARD 79 HBC + π+ p 10.3 GeV/
142± 40 15 ADERHOLZ 69 HBC + π+ p 8 GeV/
25± 10 46 BLUMENFELD 69 HBC + K0Lp

130± 25 MOTT 69 HBC + K− p 5.5 GeV/
105± 35 60 3 PRIMER 68 HBC + K− p 4.6{5 GeV/
62± 14 4 SIMS 68 HBC − K−N → �ππ100± 35 30 COLLEY 67 HBC + K− p 6 GeV/
� (1690) DECAY MODES� (1690) DECAY MODES� (1690) DECAY MODES� (1690) DECAY MODES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)Mode�1 NK�2 �π�3 � π�4 � (1385)π�5 �ππ (in
luding� (1385)π )� (1690) BRANCHING RATIOS� (1690) BRANCHING RATIOS� (1690) BRANCHING RATIOS� (1690) BRANCHING RATIOS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)�(NK)/�(�π
) �1/�2�(NK)/�(�π
) �1/�2�(NK)/�(�π
) �1/�2�(NK)/�(�π
) �1/�2VALUE EVTS DOCUMENT ID TECN CHG COMMENTsmall GODDARD 79 HBC + π+ p 10.2 GeV/


<0.2 MOTT 69 HBC + K−p 5.5 GeV/
0.4±0.25 18 COLLEY 67 HBC + 6/30 events�(� π
)/�(�π

) �3/�2�(� π
)/�(�π

) �3/�2�(� π
)/�(�π

) �3/�2�(� π
)/�(�π

) �3/�2VALUE CL% DOCUMENT ID TECN CHG COMMENTsmall GODDARD 79 HBC + π+ p 10.2 GeV/

<0.4 90 MOTT 69 HBC + K−p 5.5 GeV/
0.3±0.3 COLLEY 67 HBC + 4/30 events�(� (1385)π)/�(�π

) �4/�2�(� (1385)π)/�(�π
) �4/�2�(� (1385)π)/�(�π
) �4/�2�(� (1385)π)/�(�π
) �4/�2VALUE DOCUMENT ID TECN CHG COMMENT

<0.5 MOTT 69 HBC + K− p 5.5 GeV/
�(�ππ (in
luding� (1385)π ))/�(�π
) �5/�2�(�ππ (in
luding� (1385)π ))/�(�π
) �5/�2�(�ππ (in
luding� (1385)π ))/�(�π
) �5/�2�(�ππ (in
luding� (1385)π ))/�(�π
) �5/�2VALUE DOCUMENT ID TECN CHG COMMENT2.0±0.6 BLUMENFELD 69 HBC + 31/15 events0.5±0.25 COLLEY 67 HBC + 15/30 events�(� (1385)π)/�(�ππ (in
luding� (1385)π )) �4/�5�(� (1385)π)/�(�ππ (in
luding� (1385)π )) �4/�5�(� (1385)π)/�(�ππ (in
luding� (1385)π )) �4/�5�(� (1385)π)/�(�ππ (in
luding� (1385)π )) �4/�5VALUE DOCUMENT ID TECN CHG COMMENTlarge SIMS 68 HBC − K−N → �ππsmall COLLEY 67 HBC + K− p 6 GeV/
� (1690) FOOTNOTES� (1690) FOOTNOTES� (1690) FOOTNOTES� (1690) FOOTNOTES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)1From π+ p → (�π+)K+. J >1/2 is not required by the data.2 From π+ p → (�π+)(K π)+. J >1/2 is indi
ated, but large ba
kground pre
ludes ade�nite 
on
lusion.3 See the �(1670) Listings. AGUILAR-BENITEZ 70B with three times the data ofPRIMER 68 �nd no eviden
e for the �(1690).4This analysis, whi
h is diÆ
ult and requires several assumptions and shows no unam-biguous �(1690) signal, suggests JP = 5/2+. Su
h a state would lead all previouslyknown Y ∗ traje
tories. � (1690) REFERENCES� (1690) REFERENCES� (1690) REFERENCES� (1690) REFERENCES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)GODDARD 79 PR D19 1350 M.C. Goddard et al. (TNTO, BNL) IJAGUILAR-... 70B PRL 25 58 M. Aguilar-Benitez et al. (BNL, SYRA)ADERHOLZ 69 NP B11 259 M. Aderholz et al. (AACH3, BERL, CERN+) IBLUMENFELD 69 PL 29B 58 B.J. Blumenfeld, G.R. Kalb
eis
h (BNL) IMOTT 69 PR 177 1966 J. Mott et al. (NWES, ANL) IAlso PRL 18 266 M. Derri
k et al. (ANL, NWES) IPRIMER 68 PRL 20 610 M. Primer et al. (SYRA, BNL) ISIMS 68 PRL 21 1413 W.H. Sims et al. (FSU, TUFTS, BRAN) ICOLLEY 67 PL 24B 489 D.C. Colley (BIRM, GLAS, LOIC, MUNI, OXF+) I� (1730) 3/2+ I (JP ) = 1(32+) Status: ∗OMITTED FROM SUMMARY TABLE� (1730) MASS� (1730) MASS� (1730) MASS� (1730) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1727±271727±271727±271727±27 ZHANG 13A DPWA Multi
hannel�(1730) WIDTH�(1730) WIDTH�(1730) WIDTH�(1730) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT276±87276±87276±87276±87 ZHANG 13A DPWA Multi
hannel



1608160816081608BaryonParti
le Listings� (1730),� (1750)� (1730) DECAY MODES� (1730) DECAY MODES� (1730) DECAY MODES� (1730) DECAY MODESMode Fra
tion (�i /�)�1 NK ( 2.0± 1.0) %�2 �π (70 ±17 ) %�3 � π (12 ± 6 ) %� (1730) BRANCHING RATIOS� (1730) BRANCHING RATIOS� (1730) BRANCHING RATIOS� (1730) BRANCHING RATIOS�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.02±0.010.02±0.010.02±0.010.02±0.01 ZHANG 13A DPWA Multi
hannel�(�π
)/�total �2/��(�π
)/�total �2/��(�π
)/�total �2/��(�π
)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.70±0.170.70±0.170.70±0.170.70±0.17 ZHANG 13A DPWA Multi
hannel�(� π
)/�total �3/��(� π
)/�total �3/��(� π
)/�total �3/��(� π
)/�total �3/�VALUE DOCUMENT ID TECN COMMENT0.12±0.060.12±0.060.12±0.060.12±0.06 ZHANG 13A DPWA Multi
hannel� (1730) REFERENCES� (1730) REFERENCES� (1730) REFERENCES� (1730) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)� (1750) 1/2− I (JP ) = 1(12−) Status: ∗∗∗For most results published before 1974 (they are now obsolete), seeour 1982 edition Physi
s Letters 111B111B111B111B 1 (1982).There is eviden
e for this state in many partial-wave analyses, butwith wide variations in the mass, width, and 
ouplings. The latestanalyses indi
ated signi�
ant 
ouplings to NK and �π, as well asto � η whose threshold is at 1746 MeV (JONES 74).� (1750) MASS� (1750) MASS� (1750) MASS� (1750) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1730 to 1800 (≈ 1750) OUR ESTIMATE1730 to 1800 (≈ 1750) OUR ESTIMATE1730 to 1800 (≈ 1750) OUR ESTIMATE1730 to 1800 (≈ 1750) OUR ESTIMATE1739± 8 ZHANG 13A DPWA Multi
hannel1756±10 GOPAL 80 DPWA KN → K N1770±10 ALSTON-... 78 DPWA KN → K N1770±15 GOPAL 77 DPWA KN multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •1800 or 1813 1 MARTIN 77 DPWA KN multi
hannel1715±10 2 CARROLL 76 DPWA Isospin-1 total σ1730 DEBELLEFON 76 IPWA K−p → �π01780±30 BAILLON 75 IPWA KN → �π (sol. 1)1700±30 BAILLON 75 IPWA KN → �π (sol. 2)1697+20
−10 VANHORN 75 DPWA K−p → �π01785±12 CHU 74 DBC Fits σ(K− n → �− η)1760± 5 3 JONES 74 HBC Fits σ(K− p → �0 η)1739±10 PREVOST 74 DPWA K−N → �(1385)π� (1750) WIDTH� (1750) WIDTH� (1750) WIDTH� (1750) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT60 to 160 (≈ 90) OUR ESTIMATE60 to 160 (≈ 90) OUR ESTIMATE60 to 160 (≈ 90) OUR ESTIMATE60 to 160 (≈ 90) OUR ESTIMATE182±60 ZHANG 13A DPWA Multi
hannel64±10 GOPAL 80 DPWA KN → K N161±20 ALSTON-... 78 DPWA KN → K N60±10 GOPAL 77 DPWA KN multi
hannel

• • • We do not use the following data for averages, �ts, limits, et
. • • •117 or 119 1 MARTIN 77 DPWA KN multi
hannel10 2 CARROLL 76 DPWA Isospin-1 total σ110 DEBELLEFON 76 IPWA K−p → �π0140±30 BAILLON 75 IPWA KN → �π (sol. 1)160±50 BAILLON 75 IPWA KN → �π (sol. 2)66+14
−12 VANHORN 75 DPWA K−p → �π089±33 CHU 74 DBC Fits σ(K− n → �− η)92± 7 3 JONES 74 HBC Fits σ(K− p → �0 η)108±20 PREVOST 74 DPWA K−N → �(1385)π� (1750) POLE POSITION� (1750) POLE POSITION� (1750) POLE POSITION� (1750) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1708 ZHANG 13A DPWA Multi
hannel

−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •158 ZHANG 13A DPWA Multi
hannel� (1750) DECAY MODES� (1750) DECAY MODES� (1750) DECAY MODES� (1750) DECAY MODESMode Fra
tion (�i /�)�1 NK 10{40 %�2 �π seen�3 � π <8 %�4 � η 15{55 %�5 � (1385)π , D-wave�6 �(1520)πThe above bran
hing fra
tions are our estimates, not �ts or averages.�7 NK∗(892), S=1/2 (8±4) %� (1750) BRANCHING RATIOS� (1750) BRANCHING RATIOS� (1750) BRANCHING RATIOS� (1750) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.1 to 0.4 OUR ESTIMATE0.1 to 0.4 OUR ESTIMATE0.1 to 0.4 OUR ESTIMATE0.1 to 0.4 OUR ESTIMATE0.09±0.07 ZHANG 13A DPWA Multi
hannel0.14±0.03 GOPAL 80 DPWA KN → K N0.33±0.05 ALSTON-... 78 DPWA KN → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.15±0.03 GOPAL 77 DPWA See GOPAL 800.06 or 0.05 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1750)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1750)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1750)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1750)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.10 ±0.04 ZHANG 13A DPWA Multi
hannel0.04 ±0.03 GOPAL 77 DPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.10 or −0.09 1 MARTIN 77 DPWA KN multi
hannel
−0.12 DEBELLEFON 76 IPWA K−p → �π0
−0.12 ±0.02 BAILLON 75 IPWA KN → �π (sol. 1)
−0.13 ±0.03 BAILLON 75 IPWA KN → �π (sol. 2)
−0.13 ±0.04 VANHORN 75 DPWA K−p → �π0
−0.120±0.077 DEVENISH 74B Fixed-t dispersion rel.(�i�f )1/2/�total inNK → � (1750)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1750)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1750)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1750)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.17±0.07 ZHANG 13A DPWA Multi
hannel
−0.09±0.05 GOPAL 77 DPWA KN multi
hannel
• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.06 or +0.06 1 MARTIN 77 DPWA KN multi
hannel0.13±0.02 LANGBEIN 72 IPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1750)→ � η (�1�4)1/2/�(�i�f )1/2/�total inNK → � (1750)→ � η (�1�4)1/2/�(�i�f )1/2/�total inNK → � (1750)→ � η (�1�4)1/2/�(�i�f )1/2/�total inNK → � (1750)→ � η (�1�4)1/2/�VALUE DOCUMENT ID TECN COMMENT0.23±0.01 3 JONES 74 HBC Fits σ(K− p → �0 η)
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen CLINE 69 DBC Threshold bump(�i�f )1/2/�total inNK → � (1750)→ � (1385)π , D-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1750)→ � (1385)π , D-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1750)→ � (1385)π , D-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1750)→ � (1385)π , D-wave (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.17±0.07 ZHANG 13A DPWA Multi
hannel+0.18±0.15 PREVOST 74 DPWA K−N → �(1385)π(�i�f )1/2/�total inNK → � (1750)→ �(1520)π (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1750)→ �(1520)π (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1750)→ �(1520)π (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1750)→ �(1520)π (�1�6)1/2/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.032±0.021 CAMERON 77 DPWA P-wave de
ay�(NK∗(892), S=1/2)/�total �7/��(NK∗(892), S=1/2)/�total �7/��(NK∗(892), S=1/2)/�total �7/��(NK∗(892), S=1/2)/�total �7/�VALUE DOCUMENT ID TECN COMMENT0.08±0.040.08±0.040.08±0.040.08±0.04 ZHANG 13A DPWA Multi
hannel� (1750) FOOTNOTES� (1750) FOOTNOTES� (1750) FOOTNOTES� (1750) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2A total 
ross-se
tion bump with (J+1/2) �el / �total = 0.30.3An S-wave Breit-Wigner �t to the threshold 
ross se
tion with no ba
kground and errorsstatisti
al only.



1609160916091609See key on page 601 Baryon Parti
le Listings� (1750), � (1770), � (1775)� (1750) REFERENCES� (1750) REFERENCES� (1750) REFERENCES� (1750) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPCAMERON 77 NP B131 399 W. Cameron et al. (RHEL, LOIC) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPCARROLL 76 PRL 37 806 A.S. Carroll et al. (BNL) IDEBELLEFON 76 NP B109 129 A. de Bellefon, A. Berthon (CDEF) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPVANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJPCHU 74 NC 20A 35 R.Y.L. Chu et al. (PLAT, TUFTS, BRAN) IJPDEVENISH 74B NP B81 330 R.C.E. Devenish, C.D. Froggatt, B.R. Martin (DESY+)JONES 74 NP B73 141 M.D. Jones (CHIC) IJPPREVOST 74 NP B69 246 J. Prevost et al. (SACL, CERN, HEID)LANGBEIN 72 NP B47 477 W. Langbein, F. Wagner (MPIM) IJPCLINE 69 LNC 2 407 D. Cline, R. Laumann, J. Mapp (WISC)� (1770) 1/2+ I (JP ) = 1(12+) Status: ∗OMITTED FROM SUMMARY TABLEEviden
e for this state now rests solely on solution 1 of BAILLON 75,(see the footnotes) but the �π partial-wave amplitudes of this solu-tion are in disagreement with amplitudes from most other �π anal-yses. ZHANG 13A �nds no eviden
e for this state.� (1770) MASS� (1770) MASS� (1770) MASS� (1770) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 1770 OUR ESTIMATE≈ 1770 OUR ESTIMATE≈ 1770 OUR ESTIMATE≈ 1770 OUR ESTIMATE1738±10 1 GOPAL 77 DPWA KN multi
hannel1770±20 2 BAILLON 75 IPWA KN → �π1772 3 KANE 72 DPWA K−p → � π� (1770) WIDTH� (1770) WIDTH� (1770) WIDTH� (1770) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT72±10 1 GOPAL 77 DPWA KN multi
hannel80±30 2 BAILLON 75 IPWA KN → �π80 3 KANE 72 DPWA K−p → � π� (1770) DECAY MODES� (1770) DECAY MODES� (1770) DECAY MODES� (1770) DECAY MODESMode�1 NK�2 �π�3 � π � (1770) BRANCHING RATIOS� (1770) BRANCHING RATIOS� (1770) BRANCHING RATIOS� (1770) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.14±0.04 1 GOPAL 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1770)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1770)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1770)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1770)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
< 0.04 GOPAL 77 DPWA KN multi
hannel
−0.08±0.02 2 BAILLON 75 IPWA KN → �π(�i�f )1/2/�total inNK → � (1770)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1770)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1770)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1770)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT

< 0.04 GOPAL 77 DPWA KN multi
hannel
−0.108 3 KANE 72 DPWA K−p → � π� (1770) FOOTNOTES� (1770) FOOTNOTES� (1770) FOOTNOTES� (1770) FOOTNOTES1Required to �t the isospin-1 total 
ross se
tion of CARROLL 76 in the K N 
hannel. Theaddition of new K− p polarization and K− n di�erential 
ross-se
tion data in GOPAL 80�nd it to be more 
onsistent with the �(1660) P11.2 From solution 1 of BAILLON 75; not present in solution 2.3Not required in KANE 74, whi
h supersedes KANE 72.� (1770) REFERENCES� (1770) REFERENCES� (1770) REFERENCES� (1770) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL)GOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPCARROLL 76 PRL 37 806 A.S. Carroll et al. (BNL) IBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPKANE 74 LBL-2452 D.F. Kane (LBL) IJPKANE 72 PR D5 1583 D.F.J. Kane (LBL)

� (1775) 5/2− I (JP ) = 1(52−) Status: ∗∗∗∗Dis
overed by GALTIERI 63, this resonan
e plays the same role as
ornerstone for isospin-1 analyses in this region as the �(1820)F05does in the isospin-0 
hannel.For most results published before 1974 (they are now obsolete), seeour 1982 edition Physi
s Letters 111B111B111B111B 1 (1982).� (1775) MASS� (1775) MASS� (1775) MASS� (1775) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1770 to 1780 (≈ 1775) OUR ESTIMATE1770 to 1780 (≈ 1775) OUR ESTIMATE1770 to 1780 (≈ 1775) OUR ESTIMATE1770 to 1780 (≈ 1775) OUR ESTIMATE1778± 1 ZHANG 13A DPWA Multi
hannel1778± 5 GOPAL 80 DPWA KN → K N1777± 5 ALSTON-... 78 DPWA KN → K N1774± 5 GOPAL 77 DPWA KN multi
hannel1775±10 BAILLON 75 IPWA KN → �π1774±10 VANHORN 75 DPWA K−p → �π01772± 6 KANE 74 DPWA K−p → � π
• • • We do not use the following data for averages, �ts, limits, et
. • • •1772 or 1777 1 MARTIN 77 DPWA KN multi
hannel1765 DEBELLEFON 76 IPWA K−p → �π0� (1775) WIDTH� (1775) WIDTH� (1775) WIDTH� (1775) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT105 to 135 (≈ 120) OUR ESTIMATE105 to 135 (≈ 120) OUR ESTIMATE105 to 135 (≈ 120) OUR ESTIMATE105 to 135 (≈ 120) OUR ESTIMATE131± 3 ZHANG 13A DPWA Multi
hannel137±10 GOPAL 80 DPWA KN → K N116±10 ALSTON-... 78 DPWA KN → K N130±10 GOPAL 77 DPWA KN multi
hannel125±15 BAILLON 75 IPWA KN → �π146±18 VANHORN 75 DPWA K−p → �π0154±10 KANE 74 DPWA K−p → � π
• • • We do not use the following data for averages, �ts, limits, et
. • • •102 or 103 1 MARTIN 77 DPWA KN multi
hannel120 DEBELLEFON 76 IPWA K−p → �π0� (1775) POLE POSITION� (1775) POLE POSITION� (1775) POLE POSITION� (1775) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1759 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •118 ZHANG 13A DPWA Multi
hannel� (1775) DECAY MODES� (1775) DECAY MODES� (1775) DECAY MODES� (1775) DECAY MODESMode Fra
tion (�i /�)�1 NK 37{43%�2 �π 14{20%�3 � π 2{5%�4 � (1385)π 8{12%�5 � (1385)π , D-wave�6 �(1520)π , P-wave 17{23%�7 � ππ�8 �(1232)K , D-wave�9 NK∗(892), S=1/2�10 NK∗(892), S=3/2, D-waveThe above bran
hing fra
tions are our estimates, not �ts or averages.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 7 bran
hing ratios uses 18 measurements and one
onstraint to determine 5 parameters. The overall �t has a χ2 =363.4 for 14 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −44x3 −23 10x4 −23 −32 −4x6 −3 1 1 −84x1 x2 x3 x4



1610161016101610BaryonParti
le Listings� (1775) � (1775) BRANCHING RATIOS� (1775) BRANCHING RATIOS� (1775) BRANCHING RATIOS� (1775) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es. Also, the errors quoted do not in
lude un
ertainties due tothe parametrization used in the partial-wave analyses and are thus toosmall.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.37 to 0.43 OUR ESTIMATE0.37 to 0.43 OUR ESTIMATE0.37 to 0.43 OUR ESTIMATE0.37 to 0.43 OUR ESTIMATE0.421±0.020 OUR FIT0.421±0.020 OUR FIT0.421±0.020 OUR FIT0.421±0.020 OUR FIT Error in
ludes s
ale fa
tor of 2.5.0.398±0.009 OUR AVERAGE0.398±0.009 OUR AVERAGE0.398±0.009 OUR AVERAGE0.398±0.009 OUR AVERAGE0.40 ±0.01 ZHANG 13A DPWA Multi
hannel0.40 ±0.02 GOPAL 80 DPWA KN → K N0.37 ±0.03 ALSTON-... 78 DPWA KN → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.41 ±0.03 GOPAL 77 DPWA See GOPAL 800.37 or 0.36 1 MARTIN 77 DPWA KN multi
hannel�(�π

)/�(NK) �2/�1�(�π
)/�(NK) �2/�1�(�π
)/�(NK) �2/�1�(�π
)/�(NK) �2/�1VALUE DOCUMENT ID TECN COMMENT0.48±0.06 OUR FIT0.48±0.06 OUR FIT0.48±0.06 OUR FIT0.48±0.06 OUR FIT Error in
ludes s
ale fa
tor of 2.3.0.33±0.050.33±0.050.33±0.050.33±0.05 UHLIG 67 HBC K−p 0.9 GeV/
(�i�f )1/2/�total inNK → � (1775)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1775)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1775)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1775)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT0.293±0.013 OUR FIT0.293±0.013 OUR FIT0.293±0.013 OUR FIT0.293±0.013 OUR FIT Error in
ludes s
ale fa
tor of 1.8.0.295±0.012 OUR AVERAGE0.295±0.012 OUR AVERAGE0.295±0.012 OUR AVERAGE0.295±0.012 OUR AVERAGE Signs on measurements were ignored. Error in
ludess
ale fa
tor of 1.4. See the ideogram below.

−0.31 ±0.01 ZHANG 13A DPWA Multi
hannel
−0.28 ±0.03 GOPAL 77 DPWA KN multi
hannel
−0.25 ±0.02 BAILLON 75 IPWA KN → �π

−0.28 +0.04
−0.05 VANHORN 75 DPWA K−p → �π0

−0.259±0.048 DEVENISH 74B Fixed-t dispersion rel.
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.29 or −0.28 1 MARTIN 77 DPWA KN multi
hannel
−0.30 DEBELLEFON 76 IPWA K−p → �π0

WEIGHTED AVERAGE
0.295±0.012 (Error scaled by 1.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

DEVENISH 74B 0.6
VANHORN 75 DPWA 0.1
BAILLON 75 IPWA 5.0
GOPAL 77 DPWA 0.2
ZHANG 13A DPWA 2.3

χ2

       8.2
(Confidence Level = 0.083)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5(�i�f )1/2/�total in NK → �(1775) → �π(�i�f )1/2/�total inNK → � (1775)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1775)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1775)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1775)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT0.090±0.009 OUR FIT0.090±0.009 OUR FIT0.090±0.009 OUR FIT0.090±0.009 OUR FIT Error in
ludes s
ale fa
tor of 1.4.0.090±0.011 OUR AVERAGE0.090±0.011 OUR AVERAGE0.090±0.011 OUR AVERAGE0.090±0.011 OUR AVERAGE Signs on measurements were ignored. Error in
ludess
ale fa
tor of 1.6. See the ideogram below.+0.08 ±0.01 ZHANG 13A DPWA Multi
hannel+0.13 ±0.02 GOPAL 77 DPWA KN multi
hannel0.09 ±0.01 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.08 or +0.08 1 MARTIN 77 DPWA KN multi
hannel

WEIGHTED AVERAGE
0.090±0.011 (Error scaled by 1.6)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

KANE 74 DPWA 0.0
GOPAL 77 DPWA 4.0
ZHANG 13A DPWA 1.0

χ2

       5.0
(Confidence Level = 0.082)

0.05 0.1 0.15 0.2 0.25(�i�f )1/2/�total in NK → �(1775) → � π�(� (1385)π)/�(NK) �4/�1�(� (1385)π)/�(NK) �4/�1�(� (1385)π)/�(NK) �4/�1�(� (1385)π)/�(NK) �4/�1VALUE DOCUMENT ID TECN COMMENT0.79±0.11 OUR FIT0.79±0.11 OUR FIT0.79±0.11 OUR FIT0.79±0.11 OUR FIT Error in
ludes s
ale fa
tor of 3.2.0.25±0.090.25±0.090.25±0.090.25±0.09 UHLIG 67 HBC K−p 0.9 GeV/
(�i�f )1/2/�total inNK → � (1775)→ � (1385)π , D-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1775)→ � (1385)π , D-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1775)→ � (1385)π , D-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1775)→ � (1385)π , D-wave (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT0.155±0.024 OUR AVERAGE0.155±0.024 OUR AVERAGE0.155±0.024 OUR AVERAGE0.155±0.024 OUR AVERAGE Signs on measurements were ignored. Error in
ludess
ale fa
tor of 3.5. See the ideogram below.
−0.12 ±0.01 ZHANG 13A DPWA Multi
hannel
−0.184±0.011 2 CAMERON 78 DPWA K−p → �(1385)π+0.20 ±0.02 PREVOST 74 DPWA K−N → �(1385)π
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.32 ±0.06 SIMS 68 DBC K−N → �ππ0.24 ±0.03 ARMENTEROS67C HBC K−p → �ππ

WEIGHTED AVERAGE
0.155±0.024 (Error scaled by 3.5)

PREVOST 74 DPWA 5.0
CAMERON 78 DPWA 6.9
ZHANG 13A DPWA 12.3

χ2

      24.3
(Confidence Level < 0.0001)

0.05 0.1 0.15 0.2 0.25 0.3(�i�f )1/2/�total in NK → �(1775) → �(1385)π , D-wave�(�(1520)π , P-wave)/�(NK) �6/�1�(�(1520)π , P-wave)/�(NK) �6/�1�(�(1520)π , P-wave)/�(NK) �6/�1�(�(1520)π , P-wave)/�(NK) �6/�1VALUE DOCUMENT ID TECN COMMENT0.053+0.080
−0.035 OUR FIT0.053+0.080
−0.035 OUR FIT0.053+0.080
−0.035 OUR FIT0.053+0.080
−0.035 OUR FIT Error in
ludes s
ale fa
tor of 11.8.0.28 ±0.050.28 ±0.050.28 ±0.050.28 ±0.05 UHLIG 67 HBC K−p 0.9 GeV/
(�i�f )1/2/�total inNK → � (1775)→ �(1520)π , P-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1775)→ �(1520)π , P-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1775)→ �(1520)π , P-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1775)→ �(1520)π , P-wave (�1�6)1/2/�VALUE DOCUMENT ID TECN COMMENT0.10 ±0.06 OUR FIT0.10 ±0.06 OUR FIT0.10 ±0.06 OUR FIT0.10 ±0.06 OUR FIT Error in
ludes s
ale fa
tor of 11.5.0.20 ±0.07 OUR AVERAGE0.20 ±0.07 OUR AVERAGE0.20 ±0.07 OUR AVERAGE0.20 ±0.07 OUR AVERAGE Signs on measurements were ignored. Error in
ludess
ale fa
tor of 10.7. See the ideogram below.

−0.06 ±0.01 ZHANG 13A DPWA Multi
hannel
−0.305±0.010 3 CAMERON 77 DPWA K−p → �(1520)π00.31 ±0.02 BARLETTA 72 DPWA K−p → �(1520)π00.27 ±0.03 ARMENTEROS65C HBC K−p → �(1520)π0



1611161116111611See key on page 601 BaryonParti
le Listings� (1775),� (1840),� (1880)
WEIGHTED AVERAGE
0.20±0.07 (Error scaled by 11.)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

ARMENTEROS 65C HBC 5.4
BARLETTA 72 DPWA 30.2
CAMERON 77 DPWA 110.0
ZHANG 13A DPWA 196.3

χ2

     341.9
(Confidence Level < 0.0001)

0 0.1 0.2 0.3 0.4 0.5 0.6(�i�f )1/2/�total in NK → �(1775) → �(1520)π , P-wave�(� ππ
)/�total �7/��(� ππ
)/�total �7/��(� ππ
)/�total �7/��(� ππ
)/�total �7/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.12 4 ARMENTEROS68C HDBC K−N → � ππ(�i�f )1/2/�total inNK → � (1775)→ �(1232)K ,D-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → � (1775)→ �(1232)K ,D-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → � (1775)→ �(1232)K ,D-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → � (1775)→ �(1232)K ,D-wave (�1�8)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.06±0.03+0.06±0.03+0.06±0.03+0.06±0.03 ZHANG 13A DPWA Multi
hannel(�i�f )1/2/�total inNK → � (1775)→ NK∗(892), S=1/2 (�1�9)1/2/�(�i�f )1/2/�total inNK → � (1775)→ NK∗(892), S=1/2 (�1�9)1/2/�(�i�f )1/2/�total inNK → � (1775)→ NK∗(892), S=1/2 (�1�9)1/2/�(�i�f )1/2/�total inNK → � (1775)→ NK∗(892), S=1/2 (�1�9)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.04±0.01+0.04±0.01+0.04±0.01+0.04±0.01 ZHANG 13A DPWA Multi
hannel(�i�f )1/2/�total inNK → � (1775)→ NK∗(892), S=3/2,D-wave(�1�10)1/2/�(�i�f )1/2/�total inNK → � (1775)→ NK∗(892), S=3/2,D-wave(�1�10)1/2/�(�i�f )1/2/�total inNK → � (1775)→ NK∗(892), S=3/2,D-wave(�1�10)1/2/�(�i�f )1/2/�total inNK → � (1775)→ NK∗(892), S=3/2,D-wave(�1�10)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.04±0.01+0.04±0.01+0.04±0.01+0.04±0.01 ZHANG 13A DPWA Multi
hannel� (1775) FOOTNOTES� (1775) FOOTNOTES� (1775) FOOTNOTES� (1775) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2The CAMERON 78 upper limit on G-wave de
ay is 0.03.3This rate 
ombines P-wave- and F-wave de
ays. The CAMERON 77 results for theseparate P-wave- and F-wave de
ays are −0.303 ± 0.010 and −0.037 ± 0.014. Thepublished signs have been 
hanged here to be in a

ord with the baryon-�rst 
onvention.4 For about 3/4 of this, the � π system has I = 0 and is almost entirely �(1520). For therest, the � π has I = 1, whi
h is about what is expe
ted from the known �(1775) →�(1385)π rate, as seen in �ππ.� (1775) REFERENCES� (1775) REFERENCES� (1775) REFERENCES� (1775) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPCAMERON 78 NP B143 189 W. Cameron et al. (RHEL, LOIC) IJPCAMERON 77 NP B131 399 W. Cameron et al. (RHEL, LOIC) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPDEBELLEFON 76 NP B109 129 A. de Bellefon, A. Berthon (CDEF) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPVANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJPDEVENISH 74B NP B81 330 R.C.E. Devenish, C.D. Froggatt, B.R. Martin (DESY+)KANE 74 LBL-2452 D.F. Kane (LBL) IJPPREVOST 74 NP B69 246 J. Prevost et al. (SACL, CERN, HEID)BARLETTA 72 NP B40 45 W.A. Barletta (EFI) IJPAlso PRL 17 841 S. Fenster et al. (CHIC, ANL, CERN) IJPARMENTEROS 68C NP B8 216 R. Armenteros et al. (CERN, HEID, SACL) ISIMS 68 PRL 21 1413 W.H. Sims et al. (FSU, TUFTS, BRAN)ARMENTEROS 67C ZPHY 202 486 R. Armenteros et al. (CERN, HEID, SACL)UHLIG 67 PR 155 1448 R.P. Uhlig et al. (UMD, NRL)ARMENTEROS 65C PL 19 338 R. Armenteros et al. (CERN, HEID, SACL) IJPGALTIERI 63 PL 6 296 A. Galtieri, A. Hussain, R. Tripp (LRL) IJ

� (1840) 3/2+ I (JP ) = 1(32+) Status: ∗OMITTED FROM SUMMARY TABLEFor the time being, we list together here all resonan
e 
laims in theP13 wave between 1700 and 1900 MeV.� (1840) MASS� (1840) MASS� (1840) MASS� (1840) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 1840 OUR ESTIMATE≈ 1840 OUR ESTIMATE≈ 1840 OUR ESTIMATE≈ 1840 OUR ESTIMATE1798 or 1802 1 MARTIN 77 DPWA KN multi
hannel1720± 30 2 BAILLON 75 IPWA KN → �π1925±200 VANHORN 75 DPWA K−p → �π01840± 10 LANGBEIN 72 IPWA KN multi
hannel� (1840) WIDTH� (1840) WIDTH� (1840) WIDTH� (1840) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT93 or 93 1 MARTIN 77 DPWA KN multi
hannel120±30 2 BAILLON 75 IPWA KN → �π65+50

−20 VANHORN 75 DPWA K−p → �π0120±10 LANGBEIN 72 IPWA KN multi
hannel� (1840) DECAY MODES� (1840) DECAY MODES� (1840) DECAY MODES� (1840) DECAY MODESMode�1 NK�2 �π�3 � π � (1840) BRANCHING RATIOS� (1840) BRANCHING RATIOS� (1840) BRANCHING RATIOS� (1840) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0 or 0 1 MARTIN 77 DPWA KN multi
hannel0.37±0.13 LANGBEIN 72 IPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1840)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1840)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1840)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1840)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.03 or +0.03 1 MARTIN 77 DPWA KN multi
hannel+0.11 ±0.02 2 BAILLON 75 IPWA KN → �π+0.06 ±0.04 VANHORN 75 DPWA K−p → �π0+0.122±0.078 DEVENISH 74B Fixed-t dispersion rel.0.20 ±0.04 LANGBEIN 72 IPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1840)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1840)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1840)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1840)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.04 or −0.04 1 MARTIN 77 DPWA KN multi
hannel0.15±0.04 LANGBEIN 72 IPWA KN multi
hannel� (1840) FOOTNOTES� (1840) FOOTNOTES� (1840) FOOTNOTES� (1840) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2 From solution 1 of BAILLON 75; not present in solution 2.� (1840) REFERENCES� (1840) REFERENCES� (1840) REFERENCES� (1840) REFERENCESMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPVANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJPDEVENISH 74B NP B81 330 R.C.E. Devenish, C.D. Froggatt, B.R. Martin (DESY+)LANGBEIN 72 NP B47 477 W. Langbein, F. Wagner (MPIM) IJP� (1880) 1/2+ I (JP ) = 1(12+) Status: ∗∗OMITTED FROM SUMMARY TABLEA P11 resonan
e is suggested by several partial-wave analyses, butwith wide variations in the mass and other parameters. We list hereall 
laims whi
h lie well above the P11 �(1770).



1612161216121612Baryon Parti
le Listings� (1880), � (1900)� (1880) MASS� (1880) MASS� (1880) MASS� (1880) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 1880 OUR ESTIMATE≈ 1880 OUR ESTIMATE≈ 1880 OUR ESTIMATE≈ 1880 OUR ESTIMATE1821±17 ZHANG 13A DPWA Multi
hannel1826±20 GOPAL 80 DPWA KN → K N1870±10 CAMERON 78B DPWA K−p → NK∗1847 or 1863 1 MARTIN 77 DPWA KN multi
hannel1960±30 2 BAILLON 75 IPWA KN → �π1985±50 VANHORN 75 DPWA K−p → �π01898 3 LEA 73 DPWA Multi
hannel K-matrix
∼ 1850 ARMENTEROS70 IPWA KN → K N1950±50 BARBARO-... 70 DPWA K−N → �π1920±30 LITCHFIELD 70 DPWA K−N → �π1850 BAILEY 69 DPWA KN → K N1882±40 SMART 68 DPWA K−N → �π� (1880) WIDTH� (1880) WIDTH� (1880) WIDTH� (1880) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT300± 59 ZHANG 13A DPWA Multi
hannel86± 15 GOPAL 80 DPWA KN → K N80± 10 CAMERON 78B DPWA K−p → NK∗216 or 220 1 MARTIN 77 DPWA KN multi
hannel260± 40 2 BAILLON 75 IPWA KN → �π220±140 VANHORN 75 DPWA K−p → �π0222 3 LEA 73 DPWA Multi
hannel K-matrix
∼ 30 ARMENTEROS70 IPWA KN → K N200± 50 BARBARO-... 70 DPWA K−N → �π170± 40 LITCHFIELD 70 DPWA K−N → �π200 BAILEY 69 DPWA KN → K N222±150 SMART 68 DPWA K−N → �π� (1880) POLE POSITION� (1880) POLE POSITION� (1880) POLE POSITION� (1880) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1776 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •270 ZHANG 13A DPWA Multi
hannel� (1880) DECAY MODES� (1880) DECAY MODES� (1880) DECAY MODES� (1880) DECAY MODESMode Fra
tion (�i /�)�1 NK�2 �π�3 � π�4 �(1520)π , D-wave ( 2.0±1.0) %�5 NK∗(892), S=1/2, P-wave�6 NK∗(892), S=3/2, P-wave�7 �(1232)K , P-wave (39 ±8 ) %� (1880) BRANCHING RATIOS� (1880) BRANCHING RATIOS� (1880) BRANCHING RATIOS� (1880) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.10±0.03 ZHANG 13A DPWA Multi
hannel0.06±0.02 GOPAL 80 DPWA KN → K N0.27 or 0.27 1 MARTIN 77 DPWA KN multi
hannel0.31 3 LEA 73 DPWA Multi
hannel K-matrix0.20 ARMENTEROS70 IPWA KN → K N0.22 BAILEY 69 DPWA KN → K N(�i�f )1/2/�total inNK → � (1880)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1880)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1880)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1880)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.24 or −0.24 1 MARTIN 77 DPWA KN multi
hannel
−0.12 ±0.02 2 BAILLON 75 IPWA KN → �π+0.05 +0.07

−0.02 VANHORN 75 DPWA K−p → �π0
−0.169±0.119 DEVENISH 74B Fixed-t dispersion rel.
−0.30 3 LEA 73 DPWA Multi
hannel K-matrix
−0.09 ±0.04 BARBARO-... 70 DPWA K−N → �π

−0.14 ±0.03 LITCHFIELD 70 DPWA K−N → �π

−0.11 ±0.03 SMART 68 DPWA K−N → �π

(�i�f )1/2/�total inNK → � (1880)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1880)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1880)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1880)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.30 or +0.29 1 MARTIN 77 DPWA KN multi
hannelnot seen 3 LEA 73 DPWA Multi
hannel K-matrix�(�(1520)π ,D-wave)/�total �4/��(�(1520)π ,D-wave)/�total �4/��(�(1520)π ,D-wave)/�total �4/��(�(1520)π ,D-wave)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.02±0.010.02±0.010.02±0.010.02±0.01 ZHANG 13A DPWA Multi
hannel(�i�f )1/2/�total inNK → � (1880)→ NK∗(892), S=1/2,P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1880)→ NK∗(892), S=1/2,P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1880)→ NK∗(892), S=1/2,P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1880)→ NK∗(892), S=1/2,P-wave (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.05±0.03 4 CAMERON 78B DPWA K−p → NK∗(�i�f )1/2/�total inNK → � (1880)→ NK∗(892), S=3/2,P-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1880)→ NK∗(892), S=3/2,P-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1880)→ NK∗(892), S=3/2,P-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1880)→ NK∗(892), S=3/2,P-wave (�1�6)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.11±0.03 CAMERON 78B DPWA K−p → NK∗�(�(1232)K , P-wave)/�total �7/��(�(1232)K , P-wave)/�total �7/��(�(1232)K , P-wave)/�total �7/��(�(1232)K , P-wave)/�total �7/�VALUE DOCUMENT ID TECN COMMENT0.39±0.080.39±0.080.39±0.080.39±0.08 ZHANG 13A DPWA Multi
hannel� (1880) FOOTNOTES� (1880) FOOTNOTES� (1880) FOOTNOTES� (1880) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2 From solution 1 of BAILLON 75; not present in solution 2.3Only un
onstrained states from table 1 of LEA 73 are listed.4The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.� (1880) REFERENCES� (1880) REFERENCES� (1880) REFERENCES� (1880) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPCAMERON 78B NP B146 327 W. Cameron et al. (RHEL, LOIC) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPVANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJPDEVENISH 74B NP B81 330 R.C.E. Devenish, C.D. Froggatt, B.R. Martin (DESY+)LEA 73 NP B56 77 A.T. Lea et al. (RHEL, LOUC, GLAS, AARH) IJPARMENTEROS 70 Duke Conf. 123 R. Armenteros et al. (CERN, HEID, SACL) IJPHyperon Resonan
es, 1970BARBARO-... 70 Duke Conf. 173 A. Barbaro-Galtieri (LRL) IJPHyperon Resonan
es, 1970LITCHFIELD 70 NP B22 269 P.J. Lit
h�eld (RHEL) IJPBAILEY 69 Thesis UCRL 50617 J.M. Bailey (LLL) IJPSMART 68 PR 169 1330 W.M. Smart (LRL) IJP� (1900) 1/2− I (JP ) = 1(12−) Status: ∗OMITTED FROM SUMMARY TABLE� (1900) MASS� (1900) MASS� (1900) MASS� (1900) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1900±211900±211900±211900±21 ZHANG 13A DPWA Multi
hannel�(1900) WIDTH�(1900) WIDTH�(1900) WIDTH�(1900) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT191±47191±47191±47191±47 ZHANG 13A DPWA Multi
hannel� (1900) DECAY MODES� (1900) DECAY MODES� (1900) DECAY MODES� (1900) DECAY MODESMode Fra
tion (�i /�)�1 NK (67±17) %�2 � π (10± 5) %� (1900) BRANCHING RATIOS� (1900) BRANCHING RATIOS� (1900) BRANCHING RATIOS� (1900) BRANCHING RATIOS�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.67±0.170.67±0.170.67±0.170.67±0.17 ZHANG 13A DPWA Multi
hannel�(� π

)/�total �2/��(� π
)/�total �2/��(� π
)/�total �2/��(� π
)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.10±0.050.10±0.050.10±0.050.10±0.05 ZHANG 13A DPWA Multi
hannel� (1900) REFERENCES� (1900) REFERENCES� (1900) REFERENCES� (1900) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)



1613161316131613See key on page 601 BaryonParti
le Listings� (1915),� (1940)� (1915) 5/2+ I (JP ) = 1(52+) Status: ∗∗∗∗Dis
overed by COOL 66. For results published before 1974 (they arenow obsolete), see our 1982 edition Physi
s Letters 111B111B111B111B 1 (1982).This entry only in
ludes results from partial-wave analyses. Parame-ters of peaks seen in 
ross se
tions and invariant-mass distributionsin this region used to be listed in in a separate entry immediatelyfollowing. They may be found in our 1986 edition Physi
s Letters170B170B170B170B 1 (1986). � (1915) MASS� (1915) MASS� (1915) MASS� (1915) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1900 to 1935 (≈ 1915) OUR ESTIMATE1900 to 1935 (≈ 1915) OUR ESTIMATE1900 to 1935 (≈ 1915) OUR ESTIMATE1900 to 1935 (≈ 1915) OUR ESTIMATE1920± 7 ZHANG 13A DPWA Multi
hannel1937±20 ALSTON-... 78 DPWA KN → K N1894± 5 1 CORDEN 77C K−n → � π1909± 5 1 CORDEN 77C K−n → � π1920±10 GOPAL 77 DPWA KN multi
hannel1900± 4 2 CORDEN 76 DPWA K−n → �π−1920±30 BAILLON 75 IPWA KN → �π1914±10 HEMINGWAY 75 DPWA K−p → K N1920+15
−20 VANHORN 75 DPWA K−p → �π01920± 5 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •not seen DECLAIS 77 DPWA KN → K N1925 or 1933 3 MARTIN 77 DPWA KN multi
hannel1915 DEBELLEFON 76 IPWA K−p → �π0� (1915) WIDTH� (1915) WIDTH� (1915) WIDTH� (1915) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT80 to 160 (≈ 120) OUR ESTIMATE80 to 160 (≈ 120) OUR ESTIMATE80 to 160 (≈ 120) OUR ESTIMATE80 to 160 (≈ 120) OUR ESTIMATE149±17 ZHANG 13A DPWA Multi
hannel161±20 ALSTON-... 78 DPWA KN → K N107±14 1 CORDEN 77C K−n → � π85±13 1 CORDEN 77C K−n → � π130±10 GOPAL 77 DPWA KN multi
hannel75±14 2 CORDEN 76 DPWA K−n → �π−70±20 BAILLON 75 IPWA KN → �π85±15 HEMINGWAY 75 DPWA K−p → K N102±18 VANHORN 75 DPWA K−p → �π0162±25 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •171 or 173 3 MARTIN 77 DPWA KN multi
hannel60 DEBELLEFON 76 IPWA K−p → �π0� (1915) POLE POSITION� (1915) POLE POSITION� (1915) POLE POSITION� (1915) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1897 ZHANG 13A DPWA Multi
hannel
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •133 ZHANG 13A DPWA Multi
hannel� (1915) DECAY MODES� (1915) DECAY MODES� (1915) DECAY MODES� (1915) DECAY MODESMode Fra
tion (�i /�)�1 NK 5{15 %�2 �π seen�3 � π seen�4 � (1385)π <5 %�5 � (1385)π , P-wave�6 � (1385)π , F-waveThe above bran
hing fra
tions are our estimates, not �ts or averages.

� (1915) BRANCHING RATIOS� (1915) BRANCHING RATIOS� (1915) BRANCHING RATIOS� (1915) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.05 to 0.15 OUR ESTIMATE0.05 to 0.15 OUR ESTIMATE0.05 to 0.15 OUR ESTIMATE0.05 to 0.15 OUR ESTIMATE0.026±0.004 ZHANG 13A DPWA Multi
hannel0.03 ±0.02 4 GOPAL 80 DPWA KN → K N0.14 ±0.05 ALSTON-... 78 DPWA KN → K N0.11 ±0.04 HEMINGWAY 75 DPWA K−p → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.05 ±0.03 GOPAL 77 DPWA See GOPAL 800.08 or 0.08 3 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1915)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1915)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1915)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1915)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.09 ±0.03 GOPAL 77 DPWA KN multi
hannel
−0.10 ±0.01 2 CORDEN 76 DPWA K−n → �π−
−0.06 ±0.02 BAILLON 75 IPWA KN → �π

−0.09 ±0.02 VANHORN 75 DPWA K−p → �π0
−0.087±0.056 DEVENISH 74B Fixed-t dispersion rel.
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.09 or −0.09 3 MARTIN 77 DPWA KN multi
hannel
−0.10 DEBELLEFON 76 IPWA K−p → �π0(�i�f )1/2/�total inNK → � (1915)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1915)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1915)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1915)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.14±0.01 ZHANG 13A DPWA Multi
hannel
−0.17±0.01 1 CORDEN 77C K−n → � π

−0.15±0.02 1 CORDEN 77C K−n → � π

−0.19±0.03 GOPAL 77 DPWA KN multi
hannel
−0.16±0.03 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.05 or −0.05 3 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1915)→ � (1385)π , P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1915)→ � (1385)π , P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1915)→ � (1385)π , P-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (1915)→ � (1385)π , P-wave (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT
<0.01 CAMERON 78 DPWA K−p → �(1385)π(�i�f )1/2/�total inNK → � (1915)→ � (1385)π , F-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1915)→ � (1385)π , F-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1915)→ � (1385)π , F-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (1915)→ � (1385)π , F-wave (�1�6)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.06 ±0.02 ZHANG 13A DPWA Multi
hannel+0.039±0.009 5 CAMERON 78 DPWA K−p → �(1385)π� (1915) FOOTNOTES� (1915) FOOTNOTES� (1915) FOOTNOTES� (1915) FOOTNOTES1The two entries for CORDEN 77C are from two di�erent a

eptable solutions.2Preferred solution 3; see CORDEN 76 for other possibilities.3The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.4The mass and width are �xed to the GOPAL 77 values due to the low elasti
ity.5The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.� (1915) REFERENCES� (1915) REFERENCES� (1915) REFERENCES� (1915) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)PDG 86 PL 170B 1 M. Aguilar-Benitez et al. (CERN, CIT+)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPALSTON-... 78 PR D18 182 M. Alston-Garnjost et al. (LBL, MTHO+) IJPAlso PRL 38 1007 M. Alston-Garnjost et al. (LBL, MTHO+) IJPCAMERON 78 NP B143 189 W. Cameron et al. (RHEL, LOIC) IJPCORDEN 77C NP B125 61 M.J. Corden et al. (BIRM) IJPDECLAIS 77 CERN 77-16 Y. De
lais et al. (CAEN, CERN) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPCORDEN 76 NP B104 382 M.J. Corden et al. (BIRM) IJPDEBELLEFON 76 NP B109 129 A. de Bellefon, A. Berthon (CDEF) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPHEMINGWAY 75 NP B91 12 R.J. Hemingway et al. (CERN, HEIDH, MPIM) IJPVANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJPDEVENISH 74B NP B81 330 R.C.E. Devenish, C.D. Froggatt, B.R. Martin (DESY+)KANE 74 LBL-2452 D.F. Kane (LBL) IJPCOOL 66 PRL 16 1228 R.L. Cool et al. (BNL)� (1940) 3/2+ I (JP ) = 1(32+) Status: ∗OMITTED FROM SUMMARY TABLE� (1940) MASS� (1940) MASS� (1940) MASS� (1940) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1941±181941±181941±181941±18 ZHANG 13A DPWA Multi
hannel



1614161416141614BaryonParti
le Listings� (1940),� (1940)�(1945) WIDTH�(1945) WIDTH�(1945) WIDTH�(1945) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT400±49400±49400±49400±49 ZHANG 13A DPWA Multi
hannel� (1940) DECAY MODES� (1940) DECAY MODES� (1940) DECAY MODES� (1940) DECAY MODESMode Fra
tion (�i /�)�1 NK (13.0±2.0) %�2 � π ( 4.0±2.0) %�3 � (1385)π , P-wave (22 ±7 ) %�4 �(1520)π , S-wave ( 5.0±2.0) %� (1940) BRANCHING RATIOS� (1940) BRANCHING RATIOS� (1940) BRANCHING RATIOS� (1940) BRANCHING RATIOS�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.13±0.020.13±0.020.13±0.020.13±0.02 ZHANG 13A DPWA Multi
hannel�(� π
)/�total �2/��(� π
)/�total �2/��(� π
)/�total �2/��(� π
)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.04±0.020.04±0.020.04±0.020.04±0.02 ZHANG 13A DPWA Multi
hannel�(� (1385)π , P-wave)/�total �3/��(� (1385)π , P-wave)/�total �3/��(� (1385)π , P-wave)/�total �3/��(� (1385)π , P-wave)/�total �3/�VALUE DOCUMENT ID TECN COMMENT0.22±0.070.22±0.070.22±0.070.22±0.07 ZHANG 13A DPWA Multi
hannel�(�(1520)π , S-wave)/�total �4/��(�(1520)π , S-wave)/�total �4/��(�(1520)π , S-wave)/�total �4/��(�(1520)π , S-wave)/�total �4/�VALUE DOCUMENT ID TECN COMMENT0.05±0.020.05±0.020.05±0.020.05±0.02 ZHANG 13A DPWA Multi
hannel� (1940) REFERENCES� (1940) REFERENCES� (1940) REFERENCES� (1940) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)� (1940) 3/2− I (JP ) = 1(32−) Status: ∗∗∗For results published before 1974 (they are now obsolete), see our1982 edition Physi
s Letters 111B111B111B111B 1 (1982).Not all analyses require this state. It is not required by the GOYAL 77analysis of K− n → (�π)− nor by the GOPAL 80 analysis ofK− n → K− n. See also HEMINGWAY 75.� (1940) MASS� (1940) MASS� (1940) MASS� (1940) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT1900 to 1950 (≈ 1940) OUR ESTIMATE1900 to 1950 (≈ 1940) OUR ESTIMATE1900 to 1950 (≈ 1940) OUR ESTIMATE1900 to 1950 (≈ 1940) OUR ESTIMATE1920±50 GOPAL 77 DPWA KN multi
hannel1950±30 BAILLON 75 IPWA KN → �π1949+40

−60 VANHORN 75 DPWA K−p → �π01935±80 KANE 74 DPWA K−p → � π1940±20 LITCHFIELD 74B DPWA K−p → �(1520)π01950±20 LITCHFIELD 74C DPWA K−p → �(1232)K
• • • We do not use the following data for averages, �ts, limits, et
. • • •1886 or 1893 1 MARTIN 77 DPWA KN multi
hannel1940 DEBELLEFON 76 IPWA K−p → �π0, F17wave� (1940) WIDTH� (1940) WIDTH� (1940) WIDTH� (1940) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT150 to 300 (≈ 220) OUR ESTIMATE150 to 300 (≈ 220) OUR ESTIMATE150 to 300 (≈ 220) OUR ESTIMATE150 to 300 (≈ 220) OUR ESTIMATE170±25 CAMERON 78B DPWA K−p → NK∗300±80 GOPAL 77 DPWA KN multi
hannel150±75 BAILLON 75 IPWA KN → �π160+70

−40 VANHORN 75 DPWA K−p → �π0330±80 KANE 74 DPWA K−p → � π60±20 LITCHFIELD 74B DPWA K−p → �(1520)π070+30
−20 LITCHFIELD 74C DPWA K−p → �(1232)K

• • • We do not use the following data for averages, �ts, limits, et
. • • •157 or 159 1 MARTIN 77 DPWA KN multi
hannel

� (1940) DECAY MODES� (1940) DECAY MODES� (1940) DECAY MODES� (1940) DECAY MODESMode Fra
tion (�i /�)�1 NK <20 %�2 �π seen�3 � π seen�4 � (1385)π seen�5 � (1385)π , S-wave�6 �(1520)π seen�7 �(1520)π , P-wave�8 �(1520)π , F-wave�9 �(1232)K seen�10 �(1232)K , S-wave�11 �(1232)K , D-wave�12 NK∗(892) seen�13 NK∗(892), S=3/2, S-wave� (1940) BRANCHING RATIOS� (1940) BRANCHING RATIOS� (1940) BRANCHING RATIOS� (1940) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT
<0.2 OUR ESTIMATE<0.2 OUR ESTIMATE<0.2 OUR ESTIMATE<0.2 OUR ESTIMATE
<0.04 GOPAL 77 DPWA KN multi
hannel0.14 or 0.13 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1940)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.06 ±0.03 GOPAL 77 DPWA KN multi
hannel
−0.04 ±0.02 BAILLON 75 IPWA KN → �π

−0.05 +0.03
−0.02 VANHORN 75 DPWA K−p → �π0

−0.153±0.070 DEVENISH 74B Fixed-t dispersion rel.
• • • We do not use the following data for averages, �ts, limits, et
. • • •
−0.15 or −0.14 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1940)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1940)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1940)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (1940)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.08±0.04 GOPAL 77 DPWA KN multi
hannel
−0.14±0.04 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.16 or +0.16 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (1940)→ �(1520)π , P-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1520)π , P-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1520)π , P-wave (�1�7)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1520)π , P-wave (�1�7)1/2/�VALUE DOCUMENT ID TECN COMMENT
< 0.03 CAMERON 77 DPWA K−p → �(1520)π0
−0.11±0.04 LITCHFIELD 74B DPWA K−p → �(1520)π0(�i�f )1/2/�total inNK → � (1940)→ �(1520)π , F-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1520)π , F-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1520)π , F-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1520)π , F-wave (�1�8)1/2/�VALUE DOCUMENT ID TECN COMMENT0.062±0.021 CAMERON 77 DPWA K−p → �(1520)π0

−0.08 ±0.04 LITCHFIELD 74B DPWA K−p → �(1520)π0(�i�f )1/2/�total inNK → � (1940)→ �(1232)K , S-wave (�1�10)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1232)K , S-wave (�1�10)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1232)K , S-wave (�1�10)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1232)K , S-wave (�1�10)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.16±0.05 LITCHFIELD 74C DPWA K−p → �(1232)K(�i�f )1/2/�total inNK → � (1940)→ �(1232)K ,D-wave (�1�11)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1232)K ,D-wave (�1�11)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1232)K ,D-wave (�1�11)1/2/�(�i�f )1/2/�total inNK → � (1940)→ �(1232)K ,D-wave (�1�11)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.14±0.05 LITCHFIELD 74C DPWA K−p → �(1232)K(�i�f )1/2/�total inNK → � (1940)→ � (1385)π (�1�4)1/2/�(�i�f )1/2/�total inNK → � (1940)→ � (1385)π (�1�4)1/2/�(�i�f )1/2/�total inNK → � (1940)→ � (1385)π (�1�4)1/2/�(�i�f )1/2/�total inNK → � (1940)→ � (1385)π (�1�4)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.066±0.025 2 CAMERON 78 DPWA K−p → �(1385)π(�i�f )1/2/�total inNK → � (1940)→ NK∗(892) (�1�12)1/2/�(�i�f )1/2/�total inNK → � (1940)→ NK∗(892) (�1�12)1/2/�(�i�f )1/2/�total inNK → � (1940)→ NK∗(892) (�1�12)1/2/�(�i�f )1/2/�total inNK → � (1940)→ NK∗(892) (�1�12)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.09±0.02 3 CAMERON 78B DPWA K−p → NK∗� (1940) FOOTNOTES� (1940) FOOTNOTES� (1940) FOOTNOTES� (1940) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.3Upper limits on the D1 and D3 waves are ea
h 0.03.



1615161516151615See key on page 601 BaryonParti
le Listings� (1940),� (2000),� (2030)� (1940) REFERENCES� (1940) REFERENCES� (1940) REFERENCES� (1940) REFERENCESPDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL)CAMERON 78 NP B143 189 W. Cameron et al. (RHEL, LOIC) IJPCAMERON 78B NP B146 327 W. Cameron et al. (RHEL, LOIC) IJPCAMERON 77 NP B131 399 W. Cameron et al. (RHEL, LOIC) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPGOYAL 77 PR D16 2746 D.P. Goyal, A.V. Sodhi (DELH)MARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPDEBELLEFON 76 NP B109 129 A. de Bellefon, A. Berthon (CDEF) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPHEMINGWAY 75 NP B91 12 R.J. Hemingway et al. (CERN, HEIDH, MPIM) IJPVANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJPDEVENISH 74B NP B81 330 R.C.E. Devenish, C.D. Froggatt, B.R. Martin (DESY+)KANE 74 LBL-2452 D.F. Kane (LBL) IJPLITCHFIELD 74B NP B74 19 P.J. Lit
h�eld et al. (CERN, HEIDH) IJPLITCHFIELD 74C NP B74 39 P.J. Lit
h�eld et al. (CERN, HEIDH) IJP� (2000) 1/2− I (JP ) = 1(12−) Status: ∗OMITTED FROM SUMMARY TABLEWe list here all reported S11 states lying above the �(1750) S11.ZHANG 13A �nds no eviden
e for those states.� (2000) MASS� (2000) MASS� (2000) MASS� (2000) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 2000 OUR ESTIMATE≈ 2000 OUR ESTIMATE≈ 2000 OUR ESTIMATE≈ 2000 OUR ESTIMATE1944±15 GOPAL 80 DPWA KN → K N1955±15 GOPAL 77 DPWA KN multi
hannel1755 or 1834 1 MARTIN 77 DPWA KN multi
hannel2004±40 VANHORN 75 DPWA K−p → �π0� (2000) WIDTH� (2000) WIDTH� (2000) WIDTH� (2000) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT215±25 GOPAL 80 DPWA KN → K N170±40 GOPAL 77 DPWA KN multi
hannel413 or 450 1 MARTIN 77 DPWA KN multi
hannel116±40 VANHORN 75 DPWA K−p → �π0� (2000) DECAY MODES� (2000) DECAY MODES� (2000) DECAY MODES� (2000) DECAY MODESMode�1 NK�2 �π�3 � π�4 �(1520)π�5 NK∗(892), S=1/2, S-wave�6 NK∗(892), S=3/2, D-wave� (2000) BRANCHING RATIOS� (2000) BRANCHING RATIOS� (2000) BRANCHING RATIOS� (2000) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.51±0.05 GOPAL 80 DPWA KN → K N0.44±0.05 GOPAL 77 DPWA See GOPAL 800.62 or 0.57 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (2000)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2000)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2000)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2000)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT0.08±0.03 GOPAL 77 DPWA KN multi
hannel
−0.19 or −0.18 1 MARTIN 77 DPWA KN multi
hannelnot seen BAILLON 75 IPWA KN → �π+0.07+0.02

−0.01 VANHORN 75 DPWA K−p → �π0(�i�f )1/2/�total inNK → � (2000)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2000)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2000)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2000)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.20±0.04 GOPAL 77 DPWA KN multi
hannel+0.26 or +0.24 1 MARTIN 77 DPWA KN multi
hannel(�i�f )1/2/�total inNK → � (2000)→ �(1520)π (�1�4)1/2/�(�i�f )1/2/�total inNK → � (2000)→ �(1520)π (�1�4)1/2/�(�i�f )1/2/�total inNK → � (2000)→ �(1520)π (�1�4)1/2/�(�i�f )1/2/�total inNK → � (2000)→ �(1520)π (�1�4)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.081±0.021 2 CAMERON 77 DPWA P-wave de
ay(�i�f )1/2/�total inNK → � (2000)→ NK∗(892), S=1/2, S-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (2000)→ NK∗(892), S=1/2, S-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (2000)→ NK∗(892), S=1/2, S-wave (�1�5)1/2/�(�i�f )1/2/�total inNK → � (2000)→ NK∗(892), S=1/2, S-wave (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.10±0.02 2 CAMERON 78B DPWA K−p → NK∗

(�i�f )1/2/�total inNK → � (2000)→ NK∗(892), S=3/2,D-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (2000)→ NK∗(892), S=3/2,D-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (2000)→ NK∗(892), S=3/2,D-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (2000)→ NK∗(892), S=3/2,D-wave (�1�6)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.07±0.03 CAMERON 78B DPWA K−p → NK∗� (2000) FOOTNOTES� (2000) FOOTNOTES� (2000) FOOTNOTES� (2000) FOOTNOTES1The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner �t.2The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.� (2000) REFERENCES� (2000) REFERENCES� (2000) REFERENCES� (2000) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPCAMERON 78B NP B146 327 W. Cameron et al. (RHEL, LOIC) IJPCAMERON 77 NP B131 399 W. Cameron et al. (RHEL, LOIC) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPMARTIN 77 NP B127 349 B.R. Martin, M.K. Pid
o
k, R.G. Moorhouse (LOUC+) IJPAlso NP B126 266 B.R. Martin, M.K. Pid
o
k (LOUC)Also NP B126 285 B.R. Martin, M.K. Pid
o
k (LOUC) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPVANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJP� (2030) 7/2+ I (JP ) = 1(72+) Status: ∗∗∗∗Dis
overed by COOL 66 and by WOHL 66. For most results pub-lished before 1974 (they are now obsolete), see our 1982 editionPhysi
s Letters 111B111B111B111B 1 (1982).This entry only in
ludes results from partial-wave analyses. Parame-ters of peaks seen in 
ross se
tions and invariant-mass distributionsaround 2030 MeV may be found in our 1984 edition, Reviews ofModern Physi
s 56565656 S1 (1984).� (2030) MASS� (2030) MASS� (2030) MASS� (2030) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2025 to 2040 (≈ 2030) OUR ESTIMATE2025 to 2040 (≈ 2030) OUR ESTIMATE2025 to 2040 (≈ 2030) OUR ESTIMATE2025 to 2040 (≈ 2030) OUR ESTIMATE2030± 5 ZHANG 13A DPWA Multi
hannel2036± 5 GOPAL 80 DPWA KN → K N2038±10 CORDEN 77B K−N → NK∗2040± 5 GOPAL 77 DPWA KN multi
hannel2030± 3 1 CORDEN 76 DPWA K−n → �π−2035±15 BAILLON 75 IPWA KN → �π2038±10 HEMINGWAY 75 DPWA K−p → K N2042±11 VANHORN 75 DPWA K−p → �π02020± 6 KANE 74 DPWA K−p → � π2035±10 LITCHFIELD 74B DPWA K−p → �(1520)π02020±30 LITCHFIELD 74C DPWA K−p → �(1232)K2025±10 LITCHFIELD 74D DPWA K−p → �(1820)π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •2027 to 2057 GOYAL 77 DPWA K−N → � π2030 DEBELLEFON 76 IPWA K−p → �π0� (2030) WIDTH� (2030) WIDTH� (2030) WIDTH� (2030) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT150 to 200 (≈ 180) OUR ESTIMATE150 to 200 (≈ 180) OUR ESTIMATE150 to 200 (≈ 180) OUR ESTIMATE150 to 200 (≈ 180) OUR ESTIMATE207±17 ZHANG 13A DPWA Multi
hannel172±10 GOPAL 80 DPWA KN → K N137±40 CORDEN 77B K−N → NK∗190±10 GOPAL 77 DPWA KN multi
hannel201± 9 1 CORDEN 76 DPWA K−n → �π−180±20 BAILLON 75 IPWA KN → �π172±15 HEMINGWAY 75 DPWA K−p → K N178±13 VANHORN 75 DPWA K−p → �π0111± 5 KANE 74 DPWA K−p → � π160±20 LITCHFIELD 74B DPWA K−p → �(1520)π0200±30 LITCHFIELD 74C DPWA K−p → �(1232)K
• • • We do not use the following data for averages, �ts, limits, et
. • • •260 DECLAIS 77 DPWA KN → K N126 to 195 GOYAL 77 DPWA K−N → � π160 DEBELLEFON 76 IPWA K−p → �π070 to 125 LITCHFIELD 74D DPWA K−p → �(1820)π0� (2030) POLE POSITION� (2030) POLE POSITION� (2030) POLE POSITION� (2030) POLE POSITIONREAL PARTREAL PARTREAL PARTREAL PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1993 ZHANG 13A DPWA Multi
hannel



1616161616161616BaryonParti
le Listings� (2030),� (2070)
−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PARTVALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •176 ZHANG 13A DPWA Multi
hannel� (2030) DECAY MODES� (2030) DECAY MODES� (2030) DECAY MODES� (2030) DECAY MODESMode Fra
tion (�i /�)�1 NK 17{23 %�2 �π 17{23 %�3 � π 5{10 %�4 � K <2 %�5 � (1385)π 5{15 %�6 � (1385)π , F-wave�7 �(1520)π 10{20 %�8 �(1520)π , D-wave�9 �(1520)π , G-wave�10 �(1232)K 10{20 %�11 �(1232)K , F-wave�12 �(1232)K , H-wave�13 NK∗(892) <5 %�14 NK∗(892), S=1/2, F-wave�15 NK∗(892), S=3/2, F-wave�16 �(1820)π , P-waveThe above bran
hing fra
tions are our estimates, not �ts or averages.� (2030) BRANCHING RATIOS� (2030) BRANCHING RATIOS� (2030) BRANCHING RATIOS� (2030) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.17 to 0.23 OUR ESTIMATE0.17 to 0.23 OUR ESTIMATE0.17 to 0.23 OUR ESTIMATE0.17 to 0.23 OUR ESTIMATE0.13±0.01 ZHANG 13A DPWA Multi
hannel0.19±0.03 GOPAL 80 DPWA KN → K N0.18±0.03 HEMINGWAY 75 DPWA K−p → K N
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.15 DECLAIS 77 DPWA KN → K N0.24±0.02 GOPAL 77 DPWA See GOPAL 80(�i�f )1/2/�total inNK → � (2030)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.15 ±0.01 ZHANG 13A DPWA Multi
hannel+0.18 ±0.02 GOPAL 77 DPWA KN multi
hannel+0.20 ±0.01 1 CORDEN 76 DPWA K−n → �π−+0.18 ±0.02 BAILLON 75 IPWA KN → �π+0.20 ±0.01 VANHORN 75 DPWA K−p → �π0+0.195±0.053 DEVENISH 74B Fixed-t dispersion rel.
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.20 DEBELLEFON 76 IPWA K−p → �π0(�i�f )1/2/�total inNK → � (2030)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2030)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2030)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2030)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.08 ±0.01 ZHANG 13A DPWA Multi
hannel
−0.09 ±0.01 2 CORDEN 77C K−n → � π

−0.06 ±0.01 2 CORDEN 77C K−n → � π

−0.15 ±0.03 GOPAL 77 DPWA KN multi
hannel
−0.10 ±0.01 KANE 74 DPWA K−p → � π

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.085±0.02 3 GOYAL 77 DPWA K−N → � π(�i�f )1/2/�total inNK → � (2030)→ � K (�1�4)1/2/�(�i�f )1/2/�total inNK → � (2030)→ � K (�1�4)1/2/�(�i�f )1/2/�total inNK → � (2030)→ � K (�1�4)1/2/�(�i�f )1/2/�total inNK → � (2030)→ � K (�1�4)1/2/�VALUE DOCUMENT ID TECN COMMENT0.023 MULLER 69B DPWA K−p → � K
<0.05 BURGUN 68 DPWA K−p → � K
<0.05 TRIPP 67 RVUE K−p → � K(�i�f )1/2/�total inNK → � (2030)→ � (1385)π , F-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (2030)→ � (1385)π , F-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (2030)→ � (1385)π , F-wave (�1�6)1/2/�(�i�f )1/2/�total inNK → � (2030)→ � (1385)π , F-wave (�1�6)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.16 ±0.01 ZHANG 13A DPWA Multi
hannel+0.153±0.026 4 CAMERON 78 DPWA K−p → �(1385)π(�i�f )1/2/�total inNK → � (2030)→ �(1520)π ,D-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1520)π ,D-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1520)π ,D-wave (�1�8)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1520)π ,D-wave (�1�8)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.114±0.010 4 CAMERON 77 DPWA K−p → �(1520)π00.14 ±0.03 LITCHFIELD 74B DPWA K−p → �(1520)π0
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.10 ±0.03 5 CORDEN 75B DBC K−n → NK π−

(�i�f )1/2/�total inNK → � (2030)→ �(1520)π , G-wave (�1�9)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1520)π , G-wave (�1�9)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1520)π , G-wave (�1�9)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1520)π , G-wave (�1�9)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.146±0.010 4 CAMERON 77 DPWA K−p → �(1520)π00.02 ±0.02 LITCHFIELD 74B DPWA K−p → �(1520)π0(�i�f )1/2/�total inNK → � (2030)→ �(1232)K , F-wave (�1�11)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1232)K , F-wave (�1�11)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1232)K , F-wave (�1�11)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1232)K , F-wave (�1�11)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.12±0.02 ZHANG 13A DPWA Multi
hannel0.16±0.03 LITCHFIELD 74C DPWA K−p → �(1232)K
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.17±0.03 5 CORDEN 75B DBC K−n → NK π−(�i�f )1/2/�total inNK → � (2030)→ �(1232)K ,H-wave (�1�12)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1232)K ,H-wave (�1�12)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1232)K ,H-wave (�1�12)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1232)K ,H-wave (�1�12)1/2/�VALUE DOCUMENT ID TECN COMMENT0.00±0.02 LITCHFIELD 74C DPWA K−p → �(1232)K(�i�f )1/2/�total inNK → � (2030)→ NK∗(892), S=1/2, F-wave(�1�14)1/2/�(�i�f )1/2/�total inNK → � (2030)→ NK∗(892), S=1/2, F-wave(�1�14)1/2/�(�i�f )1/2/�total inNK → � (2030)→ NK∗(892), S=1/2, F-wave(�1�14)1/2/�(�i�f )1/2/�total inNK → � (2030)→ NK∗(892), S=1/2, F-wave(�1�14)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.06±0.02 ZHANG 13A DPWA Multi
hannel+0.06±0.03 4 CAMERON 78B DPWA K−p → NK∗
−0.02±0.01 CORDEN 77B K−d → NNK∗(�i�f )1/2/�total inNK → � (2030)→ NK∗(892), S=3/2, F-wave(�1�15)1/2/�(�i�f )1/2/�total inNK → � (2030)→ NK∗(892), S=3/2, F-wave(�1�15)1/2/�(�i�f )1/2/�total inNK → � (2030)→ NK∗(892), S=3/2, F-wave(�1�15)1/2/�(�i�f )1/2/�total inNK → � (2030)→ NK∗(892), S=3/2, F-wave(�1�15)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.05±0.01 ZHANG 13A DPWA Multi
hannel+0.04±0.03 6 CAMERON 78B DPWA K−p → NK∗
−0.12±0.02 CORDEN 77B K−d → NNK∗(�i�f )1/2/�total inNK → � (2030)→ �(1820)π , P-wave (�1�16)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1820)π , P-wave (�1�16)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1820)π , P-wave (�1�16)1/2/�(�i�f )1/2/�total inNK → � (2030)→ �(1820)π , P-wave (�1�16)1/2/�VALUE DOCUMENT ID TECN COMMENT0.14±0.02 CORDEN 75B DBC K−n → NK π−0.18±0.04 LITCHFIELD 74D DPWA K−p → �(1820)π0� (2030) FOOTNOTES� (2030) FOOTNOTES� (2030) FOOTNOTES� (2030) FOOTNOTES1Preferred solution 3; see CORDEN 76 for other possibilities.2The two entries for CORDEN 77C are from two di�erent a

eptable solutions.3This 
oupling is extra
ted from unnormalized data.4The published sign has been 
hanged to be in a

ord with the baryon-�rst 
onvention.5An upper limit.6The upper limit on the G3 wave is 0.03.� (2030) REFERENCES� (2030) REFERENCES� (2030) REFERENCES� (2030) REFERENCESZHANG 13A PR C88 035205 H. Zhang et al. (KSU)PDG 84 RMP 56 S1 C.G. Wohl et al. (LBL, CIT, CERN)PDG 82 PL 111B 1 M. Roos et al. (HELS, CIT, CERN)GOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPCAMERON 78 NP B143 189 W. Cameron et al. (RHEL, LOIC) IJPCAMERON 78B NP B146 327 W. Cameron et al. (RHEL, LOIC) IJPCAMERON 77 NP B131 399 W. Cameron et al. (RHEL, LOIC) IJPCORDEN 77B NP B121 365 M.J. Corden et al. (BIRM) IJPCORDEN 77C NP B125 61 M.J. Corden et al. (BIRM) IJPDECLAIS 77 CERN 77-16 Y. De
lais et al. (CAEN, CERN) IJPGOPAL 77 NP B119 362 G.P. Gopal et al. (LOIC, RHEL) IJPGOYAL 77 PR D16 2746 D.P. Goyal, A.V. Sodhi (DELH) IJPCORDEN 76 NP B104 382 M.J. Corden et al. (BIRM) IJPDEBELLEFON 76 NP B109 129 A. de Bellefon, A. Berthon (CDEF) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPCORDEN 75B NP B92 365 M.J. Corden et al. (BIRM) IJPHEMINGWAY 75 NP B91 12 R.J. Hemingway et al. (CERN, HEIDH, MPIM) IJPVANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJPDEVENISH 74B NP B81 330 R.C.E. Devenish, C.D. Froggatt, B.R. Martin (DESY+)KANE 74 LBL-2452 D.F. Kane (LBL) IJPLITCHFIELD 74B NP B74 19 P.J. Lit
h�eld et al. (CERN, HEIDH) IJPLITCHFIELD 74C NP B74 39 P.J. Lit
h�eld et al. (CERN, HEIDH) IJPLITCHFIELD 74D NP B74 12 P.J. Lit
h�eld et al. (CERN, HEIDH) IJPMULLER 69B Thesis UCRL 19372 R.A. Muller (LRL)BURGUN 68 NP B8 447 G. Burgun et al. (SACL, CDEF, RHEL)TRIPP 67 NP B3 10 R.D. Tripp et al. (LRL, SLAC, CERN+)COOL 66 PRL 16 1228 R.L. Cool et al. (BNL)WOHL 66 PRL 17 107 C.G. Wohl, F.T. Solmitz, M.L. Stevenson (LRL) IJP� (2070) 5/2+ I (JP ) = 1(52+) Status: ∗OMITTED FROM SUMMARY TABLEThis state suggested by BERTHON 70B �nds support in GOPAL 80with new K− p polarization and K− n angular distributions. Thevery broad state seen in KANE 72 is not required in the later(KANE 74) analysis of K N → � π.



1617161716171617See key on page 601 BaryonParti
le Listings� (2070),� (2080),� (2100),� (2250)� (2070) MASS� (2070) MASS� (2070) MASS� (2070) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 2070 OUR ESTIMATE≈ 2070 OUR ESTIMATE≈ 2070 OUR ESTIMATE≈ 2070 OUR ESTIMATE2051±25 GOPAL 80 DPWA KN → K N2057 KANE 72 DPWA K−p → � π2070±10 BERTHON 70B DPWA K−p → � π� (2070) WIDTH� (2070) WIDTH� (2070) WIDTH� (2070) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT300±30 GOPAL 80 DPWA KN → K N906 KANE 72 DPWA K−p → � π140±20 BERTHON 70B DPWA K−p → � π� (2070) DECAY MODES� (2070) DECAY MODES� (2070) DECAY MODES� (2070) DECAY MODESMode�1 NK�2 � π � (2070) BRANCHING RATIOS� (2070) BRANCHING RATIOS� (2070) BRANCHING RATIOS� (2070) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.08±0.03 GOPAL 80 DPWA KN → K N(�i�f )1/2/�total inNK → � (2070)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2070)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2070)→ � π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2070)→ � π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.104 KANE 72 DPWA K−p → � π+0.12 ±0.02 BERTHON 70B DPWA K−p → � π� (2070) REFERENCES� (2070) REFERENCES� (2070) REFERENCES� (2070) REFERENCESGOPAL 80 Toronto Conf. 159 G.P. Gopal (RHEL) IJPKANE 74 LBL-2452 D.F. Kane (LBL)KANE 72 PR D5 1583 D.F.J. Kane (LBL)BERTHON 70B NP B24 417 A. Berthon et al. (CDEF, RHEL, SACL) IJP� (2080) 3/2+ I (JP ) = 1(32+) Status: ∗∗OMITTED FROM SUMMARY TABLESuggested by some but not all partial-wave analyses a
ross this re-gion. � (2080) MASS� (2080) MASS� (2080) MASS� (2080) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 2080 OUR ESTIMATE≈ 2080 OUR ESTIMATE≈ 2080 OUR ESTIMATE≈ 2080 OUR ESTIMATE2091± 7 1 CORDEN 76 DPWA K−n → �π−2070 to 2120 DEBELLEFON 76 IPWA K−p → �π02120±40 BAILLON 75 IPWA KN → �π (sol. 1)2140±40 BAILLON 75 IPWA KN → �π (sol. 2)2082± 4 COX 70 DPWA See CORDEN 762070±30 LITCHFIELD 70 DPWA K−N → �π� (2080) WIDTH� (2080) WIDTH� (2080) WIDTH� (2080) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT186±48 1 CORDEN 76 DPWA K−n → �π−100 DEBELLEFON 76 IPWA K−p → �π0240±50 BAILLON 75 IPWA KN → �π (sol. 1)200±50 BAILLON 75 IPWA KN → �π (sol. 2)87±20 COX 70 DPWA See CORDEN 76250±40 LITCHFIELD 70 DPWA K−N → �π� (2080) DECAY MODES� (2080) DECAY MODES� (2080) DECAY MODES� (2080) DECAY MODESMode�1 NK�2 �π

� (2080) BRANCHING RATIOS� (2080) BRANCHING RATIOS� (2080) BRANCHING RATIOS� (2080) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.(�i�f )1/2/�total inNK → � (2080)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2080)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2080)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2080)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.10±0.03 1 CORDEN 76 DPWA K− n → �π−
−0.10 DEBELLEFON 76 IPWA K− p → �π0
−0.13±0.04 BAILLON 75 IPWA K N → �π (sol. 1 and 2)
−0.16±0.03 COX 70 DPWA See CORDEN 76
−0.09±0.03 LITCHFIELD 70 DPWA K−N → �π� (2080) FOOTNOTES� (2080) FOOTNOTES� (2080) FOOTNOTES� (2080) FOOTNOTES1Preferred solution 3; see CORDEN 76 for other possibilities, in
luding a D15 at thismass. � (2080) REFERENCES� (2080) REFERENCES� (2080) REFERENCES� (2080) REFERENCESCORDEN 76 NP B104 382 M.J. Corden et al. (BIRM) IJPDEBELLEFON 76 NP B109 129 A. de Bellefon, A. Berthon (CDEF) IJPAlso NP B90 1 A. de Bellefon et al. (CDEF, SACL) IJPBAILLON 75 NP B94 39 P.H. Baillon, P.J. Lit
h�eld (CERN, RHEL) IJPCOX 70 NP B19 61 G.F. Cox et al. (BIRM, EDIN, GLAS, LOIC) IJPLITCHFIELD 70 NP B22 269 P.J. Lit
h�eld (RHEL) IJP� (2100) 7/2− I (JP ) = 1(72−) Status: ∗OMITTED FROM SUMMARY TABLE� (2100) MASS� (2100) MASS� (2100) MASS� (2100) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 2100 OUR ESTIMATE≈ 2100 OUR ESTIMATE≈ 2100 OUR ESTIMATE≈ 2100 OUR ESTIMATE2060±20 BARBARO-... 70 DPWA K−p → �π02120±30 BARBARO-... 70 DPWA K−p → � π� (2100) WIDTH� (2100) WIDTH� (2100) WIDTH� (2100) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT70±30 BARBARO-... 70 DPWA K−p → �π0135±30 BARBARO-... 70 DPWA K−p → � π� (2100) DECAY MODES� (2100) DECAY MODES� (2100) DECAY MODES� (2100) DECAY MODESMode�1 NK�2 �π�3 � π � (2100) BRANCHING RATIOS� (2100) BRANCHING RATIOS� (2100) BRANCHING RATIOS� (2100) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.(�i�f )1/2/�total inNK → � (2100)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2100)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2100)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2100)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.07±0.02 BARBARO-... 70 DPWA K−p → �π0(�i�f )1/2/�total inNK → � (2100)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2100)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2100)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2100)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.13±0.02 BARBARO-... 70 DPWA K−p → � π� (2100) REFERENCES� (2100) REFERENCES� (2100) REFERENCES� (2100) REFERENCESBARBARO-... 70 Duke Conf. 173 A. Barbaro-Galtieri (LRL) IJPHyperon Resonan
es, 1970� (2250) I (JP ) = 1(??) Status: ∗∗∗Results from partial-wave analyses are too weak to warrant sep-arating them from the produ
tion and 
ross-se
tion experiments.LASINSKI 71 in K N using a Pomeron + resonan
es model, andDEBELLEFON 76, DEBELLEFON 77, and DEBELLEFON 78 inenergy-dependent partial-wave analyses of K N → �π, � π, andNK , respe
tively, suggest two resonan
es around this mass.



1618161816181618Baryon Parti
le Listings� (2250), � (2455) Bumps� (2250) MASS� (2250) MASS� (2250) MASS� (2250) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2210 to 2280 (≈ 2250) OUR ESTIMATE2210 to 2280 (≈ 2250) OUR ESTIMATE2210 to 2280 (≈ 2250) OUR ESTIMATE2210 to 2280 (≈ 2250) OUR ESTIMATE2270±50 DEBELLEFON 78 DPWA D5 wave2210±30 DEBELLEFON 78 DPWA G9 wave2275±20 DEBELLEFON 77 DPWA D5 wave2215±20 DEBELLEFON 77 DPWA G9 wave2300±30 1 DEBELLEFON 75B HBC K−p → �∗0K02251+30
−20 VANHORN 75 DPWA K−p → �π0, F5wave2280±14 AGUILAR-... 70B HBC K−p 3.9, 4.6 GeV/
2237±11 BRICMAN 70 CNTR Total, 
harge ex
hange2255±10 COOL 70 CNTR K−p, K− d total2250± 7 BUGG 68 CNTR K−p, K− d total

• • • We do not use the following data for averages, �ts, limits, et
. • • •2260 DEBELLEFON 76 IPWA D5 wave2215 DEBELLEFON 76 IPWA G9 wave2250±20 LU 70 CNTR γ p → K+Y ∗2245 BLANPIED 65 CNTR γ p → K+Y ∗2299± 6 BOCK 65 HBC pp 5.7 GeV/
� (2250) WIDTH� (2250) WIDTH� (2250) WIDTH� (2250) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT60 to 150 (≈ 100) OUR ESTIMATE60 to 150 (≈ 100) OUR ESTIMATE60 to 150 (≈ 100) OUR ESTIMATE60 to 150 (≈ 100) OUR ESTIMATE120±40 DEBELLEFON 78 DPWA D5 wave80±20 DEBELLEFON 78 DPWA G9 wave70±20 DEBELLEFON 77 DPWA D5 wave60±20 DEBELLEFON 77 DPWA G9 wave130±20 1 DEBELLEFON 75B HBC K−p → �∗0K0192±30 VANHORN 75 DPWA K−p → �π0, F5wave100±20 AGUILAR-... 70B HBC K−p 3.9, 4.6 GeV/
164±50 BRICMAN 70 CNTR Total, 
harge ex
hange230±20 BUGG 68 CNTR K−p, K− d total
• • • We do not use the following data for averages, �ts, limits, et
. • • •100 DEBELLEFON 76 IPWA D5 wave140 DEBELLEFON 76 IPWA G9 wave170 COOL 70 CNTR K−p, K− d total125 LU 70 CNTR γ p → K+Y ∗150 BLANPIED 65 CNTR γ p → K+Y ∗21+17

−21 BOCK 65 HBC pp 5.7 GeV/
� (2250) DECAY MODES� (2250) DECAY MODES� (2250) DECAY MODES� (2250) DECAY MODESMode Fra
tion (�i /�)�1 NK <10 %�2 �π seen�3 � π seen�4 NK π�5 � (1530)KThe above bran
hing fra
tions are our estimates, not �ts or averages.� (2250) BRANCHING RATIOS� (2250) BRANCHING RATIOS� (2250) BRANCHING RATIOS� (2250) BRANCHING RATIOSSee \Sign 
onventions for resonan
e 
ouplings" in the Note on � and �Resonan
es.�(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/��(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT
<0.1 OUR ESTIMATE<0.1 OUR ESTIMATE<0.1 OUR ESTIMATE<0.1 OUR ESTIMATE0.08±0.02 DEBELLEFON 78 DPWA D5 wave0.02±0.01 DEBELLEFON 78 DPWA G9 wave(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.16±0.12 BRICMAN 70 CNTR Total, 
harge ex
hange0.42 COOL 70 CNTR K−p, K− d total0.47 BUGG 68 CNTR(�i�f )1/2/�total inNK → � (2250)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2250)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2250)→ �π (�1�2)1/2/�(�i�f )1/2/�total inNK → � (2250)→ �π (�1�2)1/2/�VALUE DOCUMENT ID TECN COMMENT
−0.16±0.03 VANHORN 75 DPWA K−p → �π0, F5wave
• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.11 DEBELLEFON 76 IPWA D5 wave
−0.10 DEBELLEFON 76 IPWA G9 wave
−0.18 BARBARO-... 70 DPWA K−p → �π0, G9wave

(�i�f )1/2/�total inNK → � (2250)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2250)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2250)→ � π (�1�3)1/2/�(�i�f )1/2/�total inNK → � (2250)→ � π (�1�3)1/2/�VALUE DOCUMENT ID TECN COMMENT+0.06±0.02 DEBELLEFON 77 DPWA D5 wave
−0.03±0.02 DEBELLEFON 77 DPWA G9 wave+0.07 BARBARO-... 70 DPWA K−p → � π, G9 wave�(NK)/�(� π

) �1/�3�(NK)/�(� π
) �1/�3�(NK)/�(� π
) �1/�3�(NK)/�(� π
) �1/�3VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.18 BARNES 69 HBC 1 standard dev. limit�(�π

)/�(� π
) �2/�3�(�π

)/�(� π
) �2/�3�(�π

)/�(� π
) �2/�3�(�π

)/�(� π
) �2/�3VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.18 BARNES 69 HBC 1 standard dev. limit(�i�f )1/2/�total inNK → � (2250)→ � (1530)K (�1�5)1/2/�(�i�f )1/2/�total inNK → � (2250)→ � (1530)K (�1�5)1/2/�(�i�f )1/2/�total inNK → � (2250)→ � (1530)K (�1�5)1/2/�(�i�f )1/2/�total inNK → � (2250)→ � (1530)K (�1�5)1/2/�VALUE DOCUMENT ID TECN COMMENT0.18±0.04 1 DEBELLEFON 75B HBC K−p → �∗0K0� (2250) FOOTNOTES� (2250) FOOTNOTES� (2250) FOOTNOTES� (2250) FOOTNOTES1Seen in the (initial and �nal state) D5 wave. Isospin not determined.� (2250) REFERENCES� (2250) REFERENCES� (2250) REFERENCES� (2250) REFERENCESDEBELLEFON 78 NC 42A 403 A. de Bellefon et al. (CDEF, SACL) IJPDEBELLEFON 77 NC 37A 175 A. de Bellefon et al. (CDEF, SACL) IJPDEBELLEFON 76 NP B109 129 A. de Bellefon, A. Berthon (CDEF) IJPAlso NP B90 1 A. de Bellefon et al. (CDEF, SACL) IJPDEBELLEFON 75B NC 28A 289 A. de Bellefon et al. (CDEF, SACL)VANHORN 75 NP B87 145 A.J. van Horn (LBL) IJPAlso NP B87 157 A.J. van Horn (LBL) IJPLASINSKI 71 NP B29 125 T.A. Lasinski (EFI) IJPAGUILAR-... 70B PRL 25 58 M. Aguilar-Benitez et al. (BNL, SYRA)BARBARO-... 70 Duke Conf. 173 A. Barbaro-Galtieri (LRL) IJPHyperon Resonan
es, 1970BRICMAN 70 PL 31B 152 C. Bri
man et al. (CERN, CAEN, SACL)COOL 70 PR D1 1887 R.L. Cool et al. (BNL) IAlso PRL 16 1228 R.L. Cool et al. (BNL) ILU 70 PR D2 1846 D.C. Lu et al. (YALE)BARNES 69 PRL 22 479 V.E. Barnes et al. (BNL, SYRA)BUGG 68 PR 168 1466 D.V. Bugg et al. (RHEL, BIRM, CAVE) IBLANPIED 65 PRL 14 741 W.A. Blanpied et al. (YALE, CEA)BOCK 65 PL 17 166 R.K. Bo
k et al. (CERN, SACL)� (2455) Bumps I (JP ) = 1(??) Status: ∗∗OMITTED FROM SUMMARY TABLEThere is also some slight eviden
e for Y ∗ states in this mass regionfrom the rea
tion γp → K+X | see GREENBERG 68.� (2455) MASS� (2455) MASS� (2455) MASS� (2455) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 2455 OUR ESTIMATE≈ 2455 OUR ESTIMATE≈ 2455 OUR ESTIMATE≈ 2455 OUR ESTIMATE2455±10 ABRAMS 70 CNTR K−p, K− d total2455± 7 BUGG 68 CNTR K−p, K− d total� (2455) WIDTH� (2455) WIDTH� (2455) WIDTH� (2455) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT140 ABRAMS 70 CNTR K−p, K− d total100±20 BUGG 68 CNTR� (2455) DECAY MODES� (2455) DECAY MODES� (2455) DECAY MODES� (2455) DECAY MODESMode�1 NK � (2455) BRANCHING RATIOS� (2455) BRANCHING RATIOS� (2455) BRANCHING RATIOS� (2455) BRANCHING RATIOS(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.39 ABRAMS 70 CNTR K−p, K− d total0.05±0.05 1 BRICMAN 70 CNTR Total, 
harge ex
hange0.3 BUGG 68 CNTR� (2455) FOOTNOTES� (2455) FOOTNOTES� (2455) FOOTNOTES� (2455) FOOTNOTES1Fit of total 
ross se
tion given by BRICMAN 70 is poor in this region.� (2455) REFERENCES� (2455) REFERENCES� (2455) REFERENCES� (2455) REFERENCESABRAMS 70 PR D1 1917 R.J. Abrams et al. (BNL) IAlso PRL 19 678 R.J. Abrams et al. (BNL)BRICMAN 70 PL 31B 152 C. Bri
man et al. (CERN, CAEN, SACL)BUGG 68 PR 168 1466 D.V. Bugg et al. (RHEL, BIRM, CAVE) IGREENBERG 68 PRL 20 221 J.S. Greenberg et al. (YALE)



1619161916191619See key on page 601 BaryonParti
le Listings� (2620) Bumps,� (3000) Bumps,� (3170) Bumps� (2620) Bumps I (JP ) = 1(??) Status: ∗∗OMITTED FROM SUMMARY TABLE� (2620) MASS� (2620) MASS� (2620) MASS� (2620) MASSVALUE (MeV) DOCUMENT ID TECN COMMENT
≈ 2620 OUR ESTIMATE≈ 2620 OUR ESTIMATE≈ 2620 OUR ESTIMATE≈ 2620 OUR ESTIMATE2542±22 DIBIANCA 75 DBC K−N → � K π2620±15 ABRAMS 70 CNTR K−p, K− d total� (2620) WIDTH� (2620) WIDTH� (2620) WIDTH� (2620) WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT221±81 DIBIANCA 75 DBC K−N → � K π175 ABRAMS 70 CNTR K−p, K− d total� (2620) DECAY MODES� (2620) DECAY MODES� (2620) DECAY MODES� (2620) DECAY MODESMode�1 NK � (2620) BRANCHING RATIOS� (2620) BRANCHING RATIOS� (2620) BRANCHING RATIOS� (2620) BRANCHING RATIOS(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�(J+12 )×�(NK)/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.32 ABRAMS 70 CNTR K−p, K− d total0.36±0.12 BRICMAN 70 CNTR Total, 
harge ex
hange� (2620) REFERENCES� (2620) REFERENCES� (2620) REFERENCES� (2620) REFERENCESDIBIANCA 75 NP B98 137 F.A. Dibian
a, R.J. Endorf (CMU)ABRAMS 70 PR D1 1917 R.J. Abrams et al. (BNL) IAlso PRL 19 678 R.J. Abrams et al. (BNL)BRICMAN 70 PL 31B 152 C. Bri
man et al. (CERN, CAEN, SACL)� (3000) Bumps I (JP ) = 1(??) Status: ∗OMITTED FROM SUMMARY TABLESeen as an enhan
ement in �π and K N invariant mass spe
tra andin the missing mass of neutrals re
oiling against a K0.� (3000) MASS� (3000) MASS� (3000) MASS� (3000) MASSVALUE (MeV) DOCUMENT ID TECN CHG COMMENT
≈ 3000 OUR ESTIMATE≈ 3000 OUR ESTIMATE≈ 3000 OUR ESTIMATE≈ 3000 OUR ESTIMATE3000 EHRLICH 66 HBC 0 π− p 7.91 GeV/
� (3000) DECAY MODES� (3000) DECAY MODES� (3000) DECAY MODES� (3000) DECAY MODESMode�1 NK�2 �π � (3000) REFERENCES� (3000) REFERENCES� (3000) REFERENCES� (3000) REFERENCESEHRLICH 66 PR 152 1194 R. Ehrli
h, W. Selove, H. Yuta (PENN) I

� (3170) Bumps I (JP ) = 1(??) Status: ∗OMITTED FROM SUMMARY TABLESeen by AMIRZADEH 79 as a narrow 6.5-standard-deviation en-han
ement in the rea
tion K− p → Y ∗+π− using data from in-dependent high statisti
s bubble 
hamber experiments at 8.25 and6.5 GeV/
 . The dominant de
ay modes are multibody, multistrange�nal states and the produ
tion is via isospin-3/2 baryon ex
hange.Isospin 1 is favored.Not seen in a K− p experiment in LASS at 11 GeV/
 (ASTON 85B).� (3170) MASS� (3170) MASS� (3170) MASS� (3170) MASS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
≈ 3170 OUR ESTIMATE≈ 3170 OUR ESTIMATE≈ 3170 OUR ESTIMATE≈ 3170 OUR ESTIMATE3170±5 35 AMIRZADEH 79 HBC K−p → Y ∗+π−� (3170) WIDTH� (3170) WIDTH� (3170) WIDTH� (3170) WIDTH(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
<20 35 1 AMIRZADEH 79 HBC K−p → Y ∗+π−� (3170) DECAY MODES� (3170) DECAY MODES� (3170) DECAY MODES� (3170) DECAY MODES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)Mode Fra
tion (�i /�)�1 �K K π 's seen�2 � K K π 's seen�3 � K π 's seen� (3170) BRANCHING RATIOS� (3170) BRANCHING RATIOS� (3170) BRANCHING RATIOS� (3170) BRANCHING RATIOS(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)�(�K K π 's)/�total �1/��(�K K π 's)/�total �1/��(�K K π 's)/�total �1/��(�K K π 's)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AMIRZADEH 79 HBC K−p → Y ∗+π−�(� K K π 's)/�total �2/��(� K K π 's)/�total �2/��(� K K π 's)/�total �2/��(� K K π 's)/�total �2/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AMIRZADEH 79 HBC K−p → Y ∗+π−�(� K π 's)/�total �3/��(� K π 's)/�total �3/��(� K π 's)/�total �3/��(� K π 's)/�total �3/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AMIRZADEH 79 HBC K−p → Y ∗+π−� (3170) FOOTNOTES� (3170) FOOTNOTES� (3170) FOOTNOTES� (3170) FOOTNOTES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)1Observed width 
onsistent with experimental resolution.� (3170) REFERENCES� (3170) REFERENCES� (3170) REFERENCES� (3170) REFERENCES(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)(PRODUCTION EXPERIMENTS)ASTON 85B PR D32 2270 D. Aston et al. (SLAC, CARL, CNRC, CINC)AMIRZADEH 79 PL 89B 125 J. Amirzadeh et al. (BIRM, CERN, GLAS+) IAlso Toronto Conf. 263 J.B. Kinson et al. (BIRM, CERN, GLAS+) I



1620162016201620BaryonParti
le Listings� 0 � BARYONS� BARYONS� BARYONS� BARYONS(S = −2, I = 1/2)(S = −2, I = 1/2)(S = −2, I = 1/2)(S = −2, I = 1/2)� 0 = uss, �− = dss� 0 I (JP ) = 12 (12+) Status: ∗∗∗∗The parity has not a
tually been measured, but + is of 
ourse ex-pe
ted. � 0 MASS� 0 MASS� 0 MASS� 0 MASSThe �t uses the �0, �−, and �+ masses and the �− −�0 mass di�er-en
e. It assumes that the �− and �+ masses are the same.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1314.86±0.20 OUR FIT1314.86±0.20 OUR FIT1314.86±0.20 OUR FIT1314.86±0.20 OUR FIT1314.82±0.06±0.201314.82±0.06±0.201314.82±0.06±0.201314.82±0.06±0.20 3120 FANTI 00 NA48 p Be, 450 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1315.2 ±0.92 49 WILQUET 72 HLBC1313.4 ±1.8 1 PALMER 68 HBCm�− − m�0m�− − m�0m�− − m�0m�− − m�0The �t uses the �0, �−, and �+ masses and the �− −�0 mass di�er-en
e. It assumes that the �− and �+ masses are the same.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT6.85±0.21 OUR FIT6.85±0.21 OUR FIT6.85±0.21 OUR FIT6.85±0.21 OUR FIT6.3 ±0.7 OUR AVERAGE6.3 ±0.7 OUR AVERAGE6.3 ±0.7 OUR AVERAGE6.3 ±0.7 OUR AVERAGE6.9 ±2.2 29 LONDON 66 HBC6.1 ±0.9 88 PJERROU 65B HBC6.8 ±1.6 23 JAUNEAU 63 FBC
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.1 ±1.6 45 CARMONY 64B HBC See PJERROU 65B� 0 MEAN LIFE� 0 MEAN LIFE� 0 MEAN LIFE� 0 MEAN LIFEVALUE (10−10 s) EVTS DOCUMENT ID TECN COMMENT2.90±0.09 OUR AVERAGE2.90±0.09 OUR AVERAGE2.90±0.09 OUR AVERAGE2.90±0.09 OUR AVERAGE2.83±0.16 6300 1 ZECH 77 SPEC Neutral hyperon beam2.88+0.21

−0.19 652 BALTAY 74 HBC 1.75 GeV/
 K− p2.90+0.32
−0.27 157 2 MAYEUR 72 HLBC 2.1 GeV/
 K−3.07+0.22
−0.20 340 DAUBER 69 HBC3.0 ±0.5 80 PJERROU 65B HBC2.5 +0.4
−0.3 101 HUBBARD 64 HBC3.9 +1.4
−0.8 24 JAUNEAU 63 FBC

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.5 +1.0
−0.8 45 CARMONY 64B HBC See PJERROU 65B1The ZECH 77 result is τ�0 = [2.77−(τ�−2.69)] × 10−10 s, in whi
h we use τ� =2.63 × 10−10 s.2The MAYEUR 72 value is modi�ed by the erratum.� 0 MAGNETIC MOMENT� 0 MAGNETIC MOMENT� 0 MAGNETIC MOMENT� 0 MAGNETIC MOMENTSee the \Note on Baryon Magneti
 Moments" in the � Listings.VALUE (µ

N
) EVTS DOCUMENT ID TECN

−1.250±0.014 OUR AVERAGE−1.250±0.014 OUR AVERAGE−1.250±0.014 OUR AVERAGE−1.250±0.014 OUR AVERAGE
−1.253±0.014 270k COX 81 SPEC
−1.20 ±0.06 42k BUNCE 79 SPEC� 0 DECAY MODES� 0 DECAY MODES� 0 DECAY MODES� 0 DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 �π0 (99.524±0.012) %�2 �γ ( 1.17 ±0.07 )× 10−3�3 �e+ e− ( 7.6 ±0.6 )× 10−6�4 �0 γ ( 3.33 ±0.10 )× 10−3�5 �+ e− νe ( 2.52 ±0.08 )× 10−4�6 �+µ− νµ ( 2.33 ±0.35 )× 10−6

�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = �Q (SQ) violating modes or�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�7 �− e+ νe SQ < 9 × 10−4 90%�8 �−µ+ νµ SQ < 9 × 10−4 90%�9 pπ− S2 < 8 × 10−6 90%�10 pe−νe S2 < 1.3 × 10−3�11 pµ−νµ S2 < 1.3 × 10−3CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 5 bran
hing ratios uses 11 measurements and one
onstraint to determine 5 parameters. The overall �t has a χ2 =7.5 for 7 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −57x4 −82 0x5 −7 0 0x6 0 0 0 1x1 x2 x4 x5� 0 BRANCHING RATIOS� 0 BRANCHING RATIOS� 0 BRANCHING RATIOS� 0 BRANCHING RATIOS�(�γ
)/�(�π0) �2/�1�(�γ
)/�(�π0) �2/�1�(�γ
)/�(�π0) �2/�1�(�γ
)/�(�π0) �2/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.17±0.07 OUR FIT1.17±0.07 OUR FIT1.17±0.07 OUR FIT1.17±0.07 OUR FIT1.17±0.07 OUR AVERAGE1.17±0.07 OUR AVERAGE1.17±0.07 OUR AVERAGE1.17±0.07 OUR AVERAGE1.17±0.05±0.06 672 3 LAI 04A NA48 p Be, 450 GeV1.91±0.34±0.19 31 4 FANTI 00 NA48 p Be, 450 GeV1.06±0.12±0.11 116 JAMES 90 SPEC FNAL hyperons3 LAI 04A used our 2002 value of 99.5% for the �0 → �π0 bran
hing fra
tion to get�(�0 → �γ)/�total= (1.16 ± 0.05 ± 0.06)× 10−3. We adjust slightly to go ba
k towhat was dire
tly measured.4 FANTI 00 used our 1998 value of 99.5% for the �0 → �π0 bran
hing fra
tion to get�(�0 → �γ)/�total= (1.90 ± 0.34 ± 0.19)× 10−3. We adjust slightly to go ba
k towhat was dire
tly measured.�(�e+ e−)/�total �3/��(�e+ e−)/�total �3/��(�e+ e−)/�total �3/��(�e+ e−)/�total �3/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT7.6±0.4±0.57.6±0.4±0.57.6±0.4±0.57.6±0.4±0.5 397 ± 21 5 BATLEY 07C NA48 p Be, 400 GeV5This BATLEY 07C result is 
onsistent with internal bremsstrahlung.�(�0 γ
)/�(�π0) �4/�1�(�0 γ
)/�(�π0) �4/�1�(�0 γ
)/�(�π0) �4/�1�(�0 γ
)/�(�π0) �4/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT3.35±0.10 OUR FIT3.35±0.10 OUR FIT3.35±0.10 OUR FIT3.35±0.10 OUR FIT3.35±0.10 OUR AVERAGE3.35±0.10 OUR AVERAGE3.35±0.10 OUR AVERAGE3.35±0.10 OUR AVERAGE3.34±0.05±0.09 4045 ALAVI-HARATI01C KTEV p nu
leus, 800 GeV3.16±0.76±0.32 17 6 FANTI 00 NA48 p Be, 450 GeV3.56±0.42±0.10 85 TEIGE 89 SPEC FNAL hyperons6 FANTI 00 used our 1998 value of 99.5% for the �0 → �π0 bran
hing fra
tion to get�(�0 → �0 γ)/�total= (3.14 ± 0.76 ± 0.32) × 10−3. We adjust slightly to go ba
kto what was dire
tly measured.�(�+ e− νe)/�total �5/��(�+ e− νe)/�total �5/��(�+ e− νe)/�total �5/��(�+ e− νe)/�total �5/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT2.52±0.08 OUR FIT2.52±0.08 OUR FIT2.52±0.08 OUR FIT2.52±0.08 OUR FIT2.53±0.08 OUR AVERAGE2.53±0.08 OUR AVERAGE2.53±0.08 OUR AVERAGE2.53±0.08 OUR AVERAGE2.51±0.03±0.09 6101 BATLEY 07 NA48 p Be, 400 GeV2.55±0.14±0.10 419 7 BATLEY 07 NA48 p Be, 400 GeV2.71±0.22±0.31 176 AFFOLDER 99 KTEV p nu
leus, 800 GeV7This BATLEY 07 result is for �0 → �− e+ νe events.�(�+µ− νµ

)/�total �6/��(�+µ− νµ

)/�total �6/��(�+µ− νµ

)/�total �6/��(�+µ− νµ

)/�total �6/�VALUE (units 10−6) EVTS DOCUMENT ID TECN COMMENT2.3 ±0.4 OUR FIT2.3 ±0.4 OUR FIT2.3 ±0.4 OUR FIT2.3 ±0.4 OUR FIT2.17±0.32±0.172.17±0.32±0.172.17±0.32±0.172.17±0.32±0.17 66 8 BATLEY 13 NA48 p Be, 400 GeV8BATLEY 13 used �0 → �+ e− νe de
ay as a normalization mode and its bran
hingfra
tion value of (2.51 ± 0.03 ± 0.09) × 10−4 from BATLEY 07.�(�+µ− νµ

)/�(�+ e− νe) �6/�5�(�+µ− νµ

)/�(�+ e− νe) �6/�5�(�+µ− νµ

)/�(�+ e− νe) �6/�5�(�+µ− νµ

)/�(�+ e− νe) �6/�5VALUE EVTS DOCUMENT ID TECN COMMENT0.0092±0.0015 OUR FIT0.0092±0.0015 OUR FIT0.0092±0.0015 OUR FIT0.0092±0.0015 OUR FIT0.018 +0.007
−0.005 ±0.0020.018 +0.007
−0.005 ±0.0020.018 +0.007
−0.005 ±0.0020.018 +0.007
−0.005 ±0.002 9 ABOUZAID 05 KTEV p nu
leus 800 GeV



1621162116211621See key on page 601 Baryon Parti
le Listings� 0�(�− e+ νe)/�(�π0) �7/�1�(�− e+ νe)/�(�π0) �7/�1�(�− e+ νe)/�(�π0) �7/�1�(�− e+ νe)/�(�π0) �7/�1Test of �S = �Q rule.VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<0.9<0.9<0.9<0.9 90 0 YEH 74 HBC E�e
tive denom.=2500
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.5 DAUBER 69 HBC
<6 HUBBARD 66 HBC�(�−µ+ νµ

)/�(�π0) �8/�1�(�−µ+ νµ

)/�(�π0) �8/�1�(�−µ+ νµ

)/�(�π0) �8/�1�(�−µ+ νµ

)/�(�π0) �8/�1Test of �S = �Q rule.VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<0.9<0.9<0.9<0.9 90 0 YEH 74 HBC E�e
tive denom.=2500
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.5 DAUBER 69 HBC
<6 HUBBARD 66 HBC�(pπ−

)/�(�π0) �9/�1�(pπ−
)/�(�π0) �9/�1�(pπ−
)/�(�π0) �9/�1�(pπ−
)/�(�π0) �9/�1�S=2. Forbidden in �rst-order weak intera
tion.VALUE (units 10−6) CL% EVTS DOCUMENT ID TECN COMMENT

< 8.2< 8.2< 8.2< 8.2 90 WHITE 05 HYCP p Cu, 800 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 36 90 GEWENIGER 75 SPEC
<1800 90 0 YEH 74 HBC E�e
tive denom.=1300
< 900 DAUBER 69 HBC
<5000 HUBBARD 66 HBC�(pe−νe)/�(�π0) �10/�1�(pe−νe)/�(�π0) �10/�1�(pe−νe)/�(�π0) �10/�1�(pe−νe)/�(�π0) �10/�1�S=2. Forbidden in �rst-order weak intera
tion.VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<1.3<1.3<1.3<1.3 DAUBER 69 HBC
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.4 90 0 YEH 74 HBC E�e
tive denom.=670
<6 HUBBARD 66 HBC�(pµ−νµ

)/�(�π0) �11/�1�(pµ−νµ

)/�(�π0) �11/�1�(pµ−νµ

)/�(�π0) �11/�1�(pµ−νµ

)/�(�π0) �11/�1�S=2. Forbidden in �rst-order weak intera
tion.VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<1.3<1.3<1.3<1.3 DAUBER 69 HBC
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.5 90 0 YEH 74 HBC E�e
tive denom.=664
<6 HUBBARD 66 HBC� 0 DECAY PARAMETERS� 0 DECAY PARAMETERS� 0 DECAY PARAMETERS� 0 DECAY PARAMETERSSee the \Note on Baryon De
ay Parameters" in the neutron Listings.
α(� 0) α−(�)α(� 0) α−(�)α(� 0) α−(�)α(� 0) α−(�)This is a produ
t of the �0 → �π0 and � → pπ− asymmetries.VALUE EVTS DOCUMENT ID TECN COMMENT
−0.261±0.006 OUR AVERAGE−0.261±0.006 OUR AVERAGE−0.261±0.006 OUR AVERAGE−0.261±0.006 OUR AVERAGE
−0.276±0.001±0.035 4M BATLEY 10B NA48 p Be, 400 GeV
−0.260±0.004±0.005 300k HANDLER 82 SPEC FNAL hyperons
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.317±0.027 6075 BUNCE 78 SPEC FNAL hyperons
−0.35 ±0.06 505 BALTAY 74 HBC K−p 1.75 GeV/

−0.28 ±0.06 739 DAUBER 69 HBC K−p 1.7{2.6 GeV/

α FOR � 0 → �π0α FOR � 0 → �π0α FOR � 0 → �π0α FOR � 0 → �π0The above average, α(�0)α−(�) = −0.261 ± 0.006, divided by our 
urrent average

α−(�) = 0.642 ± 0.013, gives the following value for α(�0).VALUE DOCUMENT ID
−0.406±0.013 OUR EVALUATION−0.406±0.013 OUR EVALUATION−0.406±0.013 OUR EVALUATION−0.406±0.013 OUR EVALUATION
φ ANGLE FOR � 0 → �π0 (tanφ = β/γ)φ ANGLE FOR � 0 → �π0 (tanφ = β/γ)φ ANGLE FOR � 0 → �π0 (tanφ = β/γ)φ ANGLE FOR � 0 → �π0 (tanφ = β/γ)VALUE (◦) EVTS DOCUMENT ID TECN COMMENT21±12 OUR AVERAGE21±12 OUR AVERAGE21±12 OUR AVERAGE21±12 OUR AVERAGE16±17 652 BALTAY 74 HBC 1.75 GeV/
 K− p38±19 739 9 DAUBER 69 HBC
− 8±30 146 10 BERGE 66 HBC9DAUBER 69 uses α� = 0.647 ± 0.020.10The errors have been multiplied by 1.2 due to approximations used for the � polarization;see DAUBER 69 for a dis
ussion.
RADIATIVE HYPERON DECAYS

Revised July 2011 by J.D. Jackson (LBNL).

The weak radiative decays of spin-1/2 hyperons, Bi → Bfγ,

yield information about matrix elements (form factors) similar

to that gained from weak hadronic decays. For a polarized

spin-1/2 hyperon decaying radiatively via a ∆Q = 0, ∆S = 1

transition, the angular distribution of the direction p̂ of the

final spin-1/2 baryon in the hyperon rest frame is

dN

dΩ
=

N

4π
(1 + αγ Pi ·p̂) . (1)

Here Pi is the polarization of the decaying hyperon, and αγ is

the asymmetry parameter. In terms of the form factors F1(q
2),

F2(q
2), and G(q2) of the effective hadronic weak electromagnetic

vertex,

F1(q
2)γλ + iF2(q

2)σλµqµ + G(q2)γλγ5 ,

αγ is

αγ =
2 Re[G(0)F ∗

M (0)]

|G(0)|2 + |FM (0)|2
, (2)

where FM = (mi −mf )[F2 − F1/(mi +mf )]. If the decaying

hyperon is unpolarized, the decay baryon has a longitudinal

polarization given by Pf = −αγ [1].

The angular distribution for the weak hadronic decay,

Bi → Bfπ, has the same form as Eq. (1), but of course

with a different asymmetry parameter, απ. Now, however, if

the decaying hyperon is unpolarized, the decay baryon has a

longitudinal polarization given by Pf = +απ [2,3]. The differ-

ence of sign is because the spins of the pion and photon are

different.

Ξ0
→ Λγ decay—The radiative decay Ξ0 → Λγ of an unpo-

larized Ξ0 uses the hadronic decay Λ → pπ− as the analyzer.

As noted above, the longitudinal polarization of the Λ will be

PΛ = −αΞΛγ. Let α− be the Λ → pπ− asymmetry parameter

and θΛp be the angle, as seen in the Λ rest frame, between the

Λ line of flight and the proton momentum. Then the hadronic

version of Eq. (1) applied to the Λ → pπ− decay gives

dN

d cos θΛp
=

N

2
(1 − αΞΛγ α− cos θΛp) (3)

for the angular distribution of the proton in the Λ frame. Our

current value, from the CERN NA48/1 experiment [4], is

αΞΛγ = −0.704 ± 0.019± 0.064.

Ξ0
→ Σ0

γ decay—The asymmetry parameter here, αΞΣγ ,

is measured by following the decay chain Ξ0 → Σ0γ, Σ0 →

Λγ, Λ → pπ−. Again, for an unpolarized Ξ0, the longitudinal

polarization of the Σ0 will be PΣ = −αΞΣγ . In the Σ0 →

Λγ decay, a parity-conserving magnetic-dipole transition, the

polarization of the Σ0 is transferred to the Λ, as may be seen as

follows. Let θΣΛ be the angle seen in the Σ0 rest frame between

the Σ0 line of flight and the Λ momentum. For Σ0 helicity

+1/2, the probability amplitudes for positive and negative spin

states of the Σ0 along the Λ momentum are cos(θΣΛ/2) and

sin(θΣΛ/2). Then the amplitude for a negative helicity photon

and a negative helicity Λ is cos(θΣΛ/2), while the amplitude for

positive helicities for the photon and Λ is sin(θΣΛ/2). For Σ0

helicity −1/2, the amplitudes are interchanged. If the Σ0 has

longitudinal polarization PΣ, the probabilities for Λ helicities

±1/2 are therefore

p(±1/2) =
1

2
(1∓PΣ) cos2(θΣΛ/2)+

1

2
(1±PΣ) sin2(θΣΛ/2) , (4)
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and the longitudinal polarization of the Λ is

PΛ = −PΣ cos θΣΛ = +αΞΣγ cos θΣΛ . (5)

Using Eq. (1) for the Λ → pπ− decay again, we get for the

joint angular distribution of the Σ0 → Λγ, Λ → pπ− chain,

d2N

d cos θΣΛ d cos θΛp
=

N

4
(1 + αΞΣγ cos θΣΛ α− cos θΛp) . (6)

Our current average for αΞΣγ is −0.69 ± 0.06 [4,5].
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α FOR � 0 → �γα FOR � 0 → �γα FOR � 0 → �γα FOR � 0 → �γSee the note above on \Radiative Hyperon De
ays."VALUE EVTS DOCUMENT ID TECN COMMENT
−0.704±0.019±0.064−0.704±0.019±0.064−0.704±0.019±0.064−0.704±0.019±0.064 52k 11 BATLEY 10B NA48 p Be, 400 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.78 ±0.18 ±0.06 672 LAI 04A NA48 See BATLEY 10B
−0.43 ±0.44 87 12 JAMES 90 SPEC FNAL hyperons11BATLEY 10B also measured the �0 → �γ asymmetry to be −0.798 ± 0.064 (nosystemati
 error given) with 4769 events.12The sign has been 
hanged; see the erratum, JAMES 02.
α FOR � 0 → �e+ e−α FOR � 0 → �e+ e−α FOR � 0 → �e+ e−α FOR � 0 → �e+ e−VALUE EVTS DOCUMENT ID TECN COMMENT
−0.8±0.2−0.8±0.2−0.8±0.2−0.8±0.2 397 ± 21 13 BATLEY 07C NA48 p Be, 400 GeV13This BATLEY 07C result is 
onsistent with the asymmetry α for �0 → �γ, as expe
tedif the me
hanism is internal bremsstrahlung.
α FOR � 0 → �0 γα FOR � 0 → �0 γα FOR � 0 → �0 γα FOR � 0 → �0 γSee the note above on \Radiative Hyperon De
ays."VALUE EVTS DOCUMENT ID TECN COMMENT
−0.69 ±0.06 OUR AVERAGE−0.69 ±0.06 OUR AVERAGE−0.69 ±0.06 OUR AVERAGE−0.69 ±0.06 OUR AVERAGE
−0.729±0.030±0.076 15k 14 BATLEY 10B NA48 p Be, 400 GeV
−0.63 ±0.08 ±0.05 4045 ALAVI-HARATI01C KTEV p nu
leus, 800 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.20 ±0.32 ±0.05 85 15 TEIGE 89 SPEC FNAL hyperons14BATLEY 10B also measured the �0 → �0 γ asymmetry to be −0.786 ± 0.104 (nosystemati
 error given) with 1404 events.15This result has been withdrawn, due to an error. See the erratum, TEIGE 02.g1(0)/f1(0) FOR � 0 → �+ e− νeg1(0)/f1(0) FOR � 0 → �+ e− νeg1(0)/f1(0) FOR � 0 → �+ e− νeg1(0)/f1(0) FOR � 0 → �+ e− νeVALUE EVTS DOCUMENT ID TECN COMMENT1.22±0.05 OUR AVERAGE1.22±0.05 OUR AVERAGE1.22±0.05 OUR AVERAGE1.22±0.05 OUR AVERAGE1.21±0.05 BATLEY 13 NA48 p Be, 400 GeV1.32+0.21

−0.17±0.05 487 16 ALAVI-HARATI01I KTEV p nu
leus, 800 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.20±0.04±0.03 6520 17 BATLEY 07 NA48 See BATLEY 1316ALAVI-HARATI 01I assumes here that the se
ond-
lass 
urrent is zero and that theweak-magnetism term takes its exa
t SU(3) value.17This BATLEY 07 result uses our 2006 value of Vus from semileptoni
 kaon de
ays asinput.g2(0)/f1(0)) FOR � 0 → �+ e− νeg2(0)/f1(0)) FOR � 0 → �+ e− νeg2(0)/f1(0)) FOR � 0 → �+ e− νeg2(0)/f1(0)) FOR � 0 → �+ e− νeVALUE EVTS DOCUMENT ID TECN COMMENT
−1.7+2.1

−2.0±0.5−1.7+2.1
−2.0±0.5−1.7+2.1
−2.0±0.5−1.7+2.1
−2.0±0.5 487 18 ALAVI-HARATI01I KTEV p nu
leus, 800 GeV18ALAVI-HARATI 01I thus assumes that g2 = 0 in 
al
ulating g1/f1, above.

f2(0)/f1(0) FOR � 0 → �+ e− νef2(0)/f1(0) FOR � 0 → �+ e− νef2(0)/f1(0) FOR � 0 → �+ e− νef2(0)/f1(0) FOR � 0 → �+ e− νeVALUE EVTS DOCUMENT ID TECN COMMENT2.0±0.9 OUR AVERAGE2.0±0.9 OUR AVERAGE2.0±0.9 OUR AVERAGE2.0±0.9 OUR AVERAGE2.0±1.3 BATLEY 13 NA48 p Be, 400 GeV2.0±1.2±0.5 487 ALAVI-HARATI01I KTEV p nu
leus, 800 GeV� 0 REFERENCES� 0 REFERENCES� 0 REFERENCES� 0 REFERENCESBATLEY 13 PL B720 105 J.R. Batley et al. (CERN NA48/1 Collab.)BATLEY 10B PL B693 241 J.R. Batley et al. (CERN NA48/1 Collab.)BATLEY 07 PL B645 36 J.R. Batley et al. (CERN NA48/1 Collab.)BATLEY 07C PL B650 1 J.R. Batley et al. (CERN NA48 Collab.)ABOUZAID 05 PRL 95 081801 E. Abouzaid et al. (FNAL KTeV Collab.)WHITE 05 PRL 94 101804 C.G. White et al. (FNAL HyperCP Collab.)LAI 04A PL B584 251 A. Lai et al. (CERN NA48 Collab.)JAMES 02 PRL 89 169901 (errat.) C. James et al. (MINN, MICH, WISC, RUTG)TEIGE 02 PRL 89 169902 (errat.) S. Teige et al. (RUTG, MICH, MINN)ALAVI-HARATI 01C PRL 86 3239 A. Alavi-Harati et al. (FNAL KTeV Collab.)ALAVI-HARATI 01I PRL 87 132001 A. Alavi-Harati et al. (FNAL KTeV Collab.)FANTI 00 EPJ C12 69 V. Fanti et al. (CERN NA48 Collab.)AFFOLDER 99 PRL 82 3751 A. A�older et al. (FNAL KTeV Collab.)JAMES 90 PRL 64 843 C. James et al. (MINN, MICH, WISC, RUTG)TEIGE 89 PRL 63 2717 S. Teige et al. (RUTG, MICH, MINN)HANDLER 82 PR D25 639 R. Handler et al. (WISC, MICH, MINN+)COX 81 PRL 46 877 P.T. Cox et al. (MICH, WISC, RUTG, MINN+)BUNCE 79 PL 86B 386 G.R.M. Bun
e et al. (BNL, MICH, RUTG+)BUNCE 78 PR D18 633 G.R.M. Bun
e et al. (WISC, MICH, RUTG)ZECH 77 NP B124 413 G. Ze
h et al. (SIEG, CERN, DORT, HEIDH)GEWENIGER 75 PL 57B 193 C. Geweniger et al. (CERN, HEIDH)BALTAY 74 PR D9 49 C. Baltay et al. (COLU, BING) JYEH 74 PR D10 3545 N. Yeh et al. (BING, COLU)MAYEUR 72 NP B47 333 C. Mayeur et al. (BRUX, CERN, TUFTS, LOUC)Also NP B53 268 (erratum) C. MayeurWILQUET 72 PL 42B 372 G. Wilquet et al. (BRUX, CERN, TUFTS+)DAUBER 69 PR 179 1262 P.M. Dauber et al. (LRL)PALMER 68 PL 26B 323 R.B. Palmer et al. (BNL, SYRA)BERGE 66 PR 147 945 J.P. Berge et al. (LRL)HUBBARD 66 Thesis UCRL 11510 J.R. Hubbard (LRL)LONDON 66 PR 143 1034 G.W. London et al. (BNL, SYRA)PJERROU 65B PRL 14 275 G.M. Pjerrou et al. (UCLA)Also Thesis G.M. Pjerrou (UCLA)CARMONY 64B PRL 12 482 D.D. Carmony et al. (UCLA)HUBBARD 64 PR 135 B183 J.R. Hubbard et al. (LRL)JAUNEAU 63 PL 4 49 L. Jauneau et al. (EPOL, CERN, LOUC+)Also Siena Conf. 1 1 L. Jauneau et al. (EPOL, CERN, LOUC+)�− I (JP ) = 12 (12+) Status: ∗∗∗∗The parity has not a
tually been measured, but + is of 
ourse ex-pe
ted.We have omitted some results that have been superseded by laterexperiments. See our earlier editions.�− MASS�− MASS�− MASS�− MASSThe �t uses the �−, �+, and �0 masses and the �−�+ mass di�eren
e.It assumes that the �− and �+ masses are the same.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1321.71±0.07 OUR FIT1321.71±0.07 OUR FIT1321.71±0.07 OUR FIT1321.71±0.07 OUR FIT1321.70±0.08±0.051321.70±0.08±0.051321.70±0.08±0.051321.70±0.08±0.05 2478 ± 68 ABDALLAH 06E DLPH from Z de
ays
• • • We do not use the following data for averages, �ts, limits, et
. • • •1321.46±0.34 632 DIBIANCA 75 DBC 4.9 GeV/
 K− d1321.12±0.41 268 WILQUET 72 HLBC1321.87±0.51 195 1 GOLDWASSER 70 HBC 5.5 GeV/
 K− p1321.67±0.52 6 CHIEN 66 HBC 6.9 GeV/
 p p1321.4 ±1.1 299 LONDON 66 HBC1321.3 ±0.4 149 PJERROU 65B HBC1321.1 ±0.3 241 2 BADIER 64 HBC1321.4 ±0.4 517 2 JAUNEAU 63D FBC1321.1 ±0.65 62 2 SCHNEIDER 63 HBC1GOLDWASSER 70 uses m� = 1115.58 MeV.2These masses have been in
reased 0.09 MeV be
ause the � mass in
reased.�+ MASS�+ MASS�+ MASS�+ MASSThe �t uses the �−, �+, and �0 masses and the �− − �+ massdi�eren
e. It assumes that the �− and �+ masses are the same.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1321.71±0.07 OUR FIT1321.71±0.07 OUR FIT1321.71±0.07 OUR FIT1321.71±0.07 OUR FIT1321.73±0.08±0.051321.73±0.08±0.051321.73±0.08±0.051321.73±0.08±0.05 2256 ± 63 ABDALLAH 06E DLPH from Z de
ays
• • • We do not use the following data for averages, �ts, limits, et
. • • •1321.6 ±0.8 35 VOTRUBA 72 HBC 10 GeV/
 K+ p1321.2 ±0.4 34 STONE 70 HBC1320.69±0.93 5 CHIEN 66 HBC 6.9 GeV/
 p p(m�− − m�+) / m�−(m�− − m�+) / m�−(m�− − m�+) / m�−(m�− − m�+) / m�−A test of CPT invarian
e.VALUE DOCUMENT ID TECN COMMENT(−2.5±8.7) × 10−5(−2.5±8.7) × 10−5(−2.5±8.7) × 10−5(−2.5±8.7) × 10−5 ABDALLAH 06E DLPH from Z de
ays



1623162316231623See key on page 601 BaryonParti
le Listings�−�− MEAN LIFE�− MEAN LIFE�− MEAN LIFE�− MEAN LIFEMeasurements with an error > 0.2 × 10−10 s or with systemati
 errorsnot in
luded have been omitted.VALUE (10−10 s) EVTS DOCUMENT ID TECN COMMENT1.639±0.015 OUR AVERAGE1.639±0.015 OUR AVERAGE1.639±0.015 OUR AVERAGE1.639±0.015 OUR AVERAGE1.65 ±0.07 ±0.12 2478 ± 68 ABDALLAH 06E DLPH from Z de
ays1.652±0.051 32k BOURQUIN 84 SPEC Hyperon beam1.665±0.065 41k BOURQUIN 79 SPEC Hyperon beam1.609±0.028 4286 HEMINGWAY 78 HBC 4.2 GeV/
 K− p1.67 ±0.08 DIBIANCA 75 DBC 4.9 GeV/
 K− d1.63 ±0.03 4303 BALTAY 74 HBC 1.75 GeV/
 K− p1.73 +0.08
−0.07 680 MAYEUR 72 HLBC 2.1 GeV/
 K−1.61 ±0.04 2610 DAUBER 69 HBC1.80 ±0.16 299 LONDON 66 HBC1.70 ±0.12 246 PJERROU 65B HBC1.69 ±0.07 794 HUBBARD 64 HBC1.86 +0.15
−0.14 517 JAUNEAU 63D FBC�+ MEAN LIFE�+ MEAN LIFE�+ MEAN LIFE�+ MEAN LIFEVALUE (10−10 s) EVTS DOCUMENT ID TECN COMMENT1.70±0.08±0.121.70±0.08±0.121.70±0.08±0.121.70±0.08±0.12 2256 ± 63 ABDALLAH 06E DLPH from Z de
ays

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.55+0.35
−0.20 35 3 VOTRUBA 72 HBC 10 GeV/
 K+ p1.6 ±0.3 34 STONE 70 HBC1.9 +0.7
−0.5 12 3 SHEN 67 HBC1.51±0.55 5 3 CHIEN 66 HBC 6.9 GeV/
 p p3The error is statisti
al only. (τ�− − τ �+) / τ�−(τ�− − τ �+) / τ�−(τ�− − τ �+) / τ�−(τ�− − τ �+) / τ�−A test of CPT invarian
e.VALUE DOCUMENT ID TECN COMMENT

−0.01±0.07−0.01±0.07−0.01±0.07−0.01±0.07 ABDALLAH 06E DLPH from Z de
ays�− MAGNETIC MOMENT�− MAGNETIC MOMENT�− MAGNETIC MOMENT�− MAGNETIC MOMENTSee the \Note on Baryon Magneti
 Moments" in the � Listings.VALUE (µN ) EVTS DOCUMENT ID TECN COMMENT
−0.6507±0.0025 OUR AVERAGE−0.6507±0.0025 OUR AVERAGE−0.6507±0.0025 OUR AVERAGE−0.6507±0.0025 OUR AVERAGE
−0.6505±0.0025 4.36M DURYEA 92 SPEC 800 GeV p Be
−0.661 ±0.036 ±0.036 44k TROST 89 SPEC �− ∼ 250 GeV
−0.69 ±0.04 218k RAMEIKA 84 SPEC 400 GeV pBe
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.674 ±0.021 ±0.020 122k HO 90 SPEC SeeDURYEA 92
−2.1 ±0.8 2436 COOL 74 OSPK 1.8 GeV/
 K− p
−0.1 ±2.1 2724 BINGHAM 70B OSPK 1.8 GeV/
 K− p�+ MAGNETIC MOMENT�+ MAGNETIC MOMENT�+ MAGNETIC MOMENT�+ MAGNETIC MOMENTSee the \Note on Baryon Magneti
 Moments" in the � Listings.VALUE (µ

N
) EVTS DOCUMENT ID TECN COMMENT+0.657±0.028±0.020+0.657±0.028±0.020+0.657±0.028±0.020+0.657±0.028±0.020 70k HO 90 SPEC 800 GeV pBe(µ�− + µ�+) / ∣

∣µ�−

∣

∣(µ�− + µ�+) / ∣

∣µ�−

∣

∣(µ�− + µ�+) / ∣

∣µ�−

∣

∣(µ�− + µ�+) / ∣

∣µ�−

∣

∣A test of CPT invarian
e. We 
al
ulate this from the �− and �+ mag-neti
 moments above.VALUE DOCUMENT ID+0.01±0.05 OUR EVALUATION+0.01±0.05 OUR EVALUATION+0.01±0.05 OUR EVALUATION+0.01±0.05 OUR EVALUATION�− DECAY MODES�− DECAY MODES�− DECAY MODES�− DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 �π− (99.887±0.035) %�2 �−γ ( 1.27 ±0.23 )× 10−4�3 �e− νe ( 5.63 ±0.31 )× 10−4�4 �µ−νµ ( 3.5 +3.5
−2.2 )× 10−4�5 �0 e−νe ( 8.7 ±1.7 )× 10−5�6 �0µ−νµ < 8 × 10−4 90%�7 � 0 e−νe < 2.3 × 10−3 90%

�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�8 nπ− S2 < 1.9 × 10−5 90%�9 ne− νe S2 < 3.2 × 10−3 90%�10 nµ− νµ S2 < 1.5 % 90%�11 pπ−π− S2 < 4 × 10−4 90%�12 pπ− e− νe S2 < 4 × 10−4 90%�13 pπ−µ− νµ S2 < 4 × 10−4 90%�14 pµ−µ− L < 4 × 10−8 90%CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 4 bran
hing ratios uses 5 measurements and one
onstraint to determine 5 parameters. The overall �t has a χ2 =1.0 for 1 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 −6x3 −8 0x4 −99 0 −1x5 −5 0 0 0x1 x2 x3 x4�− BRANCHING RATIOS�− BRANCHING RATIOS�− BRANCHING RATIOS�− BRANCHING RATIOSA number of early results have been omitted.�(�−γ
)/�(�π−

) �2/�1�(�−γ
)/�(�π−

) �2/�1�(�−γ
)/�(�π−

) �2/�1�(�−γ
)/�(�π−

) �2/�1VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT1.27±0.24 OUR FIT1.27±0.24 OUR FIT1.27±0.24 OUR FIT1.27±0.24 OUR FIT1.27±0.23 OUR AVERAGE1.27±0.23 OUR AVERAGE1.27±0.23 OUR AVERAGE1.27±0.23 OUR AVERAGE1.22±0.23±0.06 211 4 DUBBS 94 E761 �− 375 GeV2.27±1.02 9 BIAGI 87B SPEC SPS hyperon beam4DUBBS 94 also �nds weak eviden
e that the asymmetry parameter αγ is positive (αγ= 1.0 ± 1.3).�(�e− νe)/�(�π−
) �3/�1�(�e− νe)/�(�π−
) �3/�1�(�e− νe)/�(�π−
) �3/�1�(�e− νe)/�(�π−
) �3/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.564±0.031 OUR FIT0.564±0.031 OUR FIT0.564±0.031 OUR FIT0.564±0.031 OUR FIT0.564±0.0310.564±0.0310.564±0.0310.564±0.031 2857 BOURQUIN 83 SPEC SPS hyperon beam

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.30 ±0.13 11 THOMPSON 80 ASPK Hyperon beam�(�µ−νµ

)/�(�π−
) �4/�1�(�µ−νµ

)/�(�π−
) �4/�1�(�µ−νµ

)/�(�π−
) �4/�1�(�µ−νµ

)/�(�π−
) �4/�1VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT0.35+0.35

−0.22 OUR FIT0.35+0.35
−0.22 OUR FIT0.35+0.35
−0.22 OUR FIT0.35+0.35
−0.22 OUR FIT0.35±0.350.35±0.350.35±0.350.35±0.35 1 YEH 74 HBC E�e
tive denom.=2859

• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 2.3 90 0 THOMPSON 80 ASPK E�e
tive denom.=1017
< 1.3 DAUBER 69 HBC
<12 BERGE 66 HBC�(�0 e−νe)/�(�π−

) �5/�1�(�0 e−νe)/�(�π−
) �5/�1�(�0 e−νe)/�(�π−
) �5/�1�(�0 e−νe)/�(�π−
) �5/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT0.087±0.017 OUR FIT0.087±0.017 OUR FIT0.087±0.017 OUR FIT0.087±0.017 OUR FIT0.087±0.0170.087±0.0170.087±0.0170.087±0.017 154 BOURQUIN 83 SPEC SPS hyperon beam

[�(�e−νe)+�(�0 e−νe)]/�(�π−
) (�3+�5)/�1[�(�e−νe)+�(�0 e−νe)]/�(�π−
) (�3+�5)/�1[�(�e−νe)+�(�0 e−νe)]/�(�π−
) (�3+�5)/�1[�(�e−νe)+�(�0 e−νe)]/�(�π−
) (�3+�5)/�1VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.651±0.031 3011 5 BOURQUIN 83 SPEC SPS hyperon beam0.68 ±0.22 17 6 DUCLOS 71 OSPK5See the separate BOURQUIN 83 values for �(�e− νe)/�(�π−
) and �(�0 e− νe)/�(�π−

) above.6DUCLOS 71 
annot distinguish �0's from �'s. The Cabibbo theory predi
ts the �0 rateis about a fa
tor 6 smaller than the � rate.�(�0µ−νµ

)/�(�π−
) �6/�1�(�0µ−νµ

)/�(�π−
) �6/�1�(�0µ−νµ

)/�(�π−
) �6/�1�(�0µ−νµ

)/�(�π−
) �6/�1VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT

<0.76<0.76<0.76<0.76 90 0 YEH 74 HBC E�e
tive denom.=3026
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<5 BERGE 66 HBC�(� 0 e−νe)/�(�π−
) �7/�1�(� 0 e−νe)/�(�π−
) �7/�1�(� 0 e−νe)/�(�π−
) �7/�1�(� 0 e−νe)/�(�π−
) �7/�1VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT

<2.3<2.3<2.3<2.3 90 0 YEH 74 HBC E�e
tive denom.=1000



1624162416241624Baryon Parti
le Listings�−�(nπ−
)/�(�π−

) �8/�1�(nπ−
)/�(�π−

) �8/�1�(nπ−
)/�(�π−

) �8/�1�(nπ−
)/�(�π−

) �8/�1�S=2. Forbidden in �rst-order weak intera
tion.VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT
<0.019<0.019<0.019<0.019 90 BIAGI 82B SPEC SPS hyperon beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.0 90 0 YEH 74 HBC E�e
tive denom.=760
<1.1 DAUBER 69 HBC
<5.0 FERRO-LUZZI 63 HBC�(ne− νe)/�(�π−

) �9/�1�(ne− νe)/�(�π−
) �9/�1�(ne− νe)/�(�π−
) �9/�1�(ne− νe)/�(�π−
) �9/�1�S=2. Forbidden in �rst-order weak intera
tion.VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT

< 3.2< 3.2< 3.2< 3.2 90 0 YEH 74 HBC E�e
tive denom.=715
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<10 90 BINGHAM 65 RVUE�(nµ− νµ

)/�(�π−
) �10/�1�(nµ− νµ

)/�(�π−
) �10/�1�(nµ− νµ

)/�(�π−
) �10/�1�(nµ− νµ

)/�(�π−
) �10/�1�S=2. Forbidden in �rst-order weak intera
tion.VALUE (units 10−3) CL% EVTS DOCUMENT ID TECN COMMENT

<15.3<15.3<15.3<15.3 90 0 YEH 74 HBC E�e
tive denom.=150�(pπ−π−
)/�(�π−

) �11/�1�(pπ−π−
)/�(�π−

) �11/�1�(pπ−π−
)/�(�π−

) �11/�1�(pπ−π−
)/�(�π−

) �11/�1�S=2. Forbidden in �rst-order weak intera
tion.VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT
<3.7<3.7<3.7<3.7 90 0 YEH 74 HBC E�e
tive denom.=6200�(pπ− e− νe)/�(�π−

) �12/�1�(pπ− e− νe)/�(�π−
) �12/�1�(pπ− e− νe)/�(�π−
) �12/�1�(pπ− e− νe)/�(�π−
) �12/�1�S=2. Forbidden in �rst-order weak intera
tion.VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT

<3.7<3.7<3.7<3.7 90 0 YEH 74 HBC E�e
tive denom.=6200�(pπ−µ− νµ

)/�(�π−
) �13/�1�(pπ−µ− νµ

)/�(�π−
) �13/�1�(pπ−µ− νµ

)/�(�π−
) �13/�1�(pπ−µ− νµ

)/�(�π−
) �13/�1�S=2. Forbidden in �rst-order weak intera
tion.VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT

<3.7<3.7<3.7<3.7 90 0 YEH 74 HBC E�e
tive denom.=6200�(pµ−µ−
)/�(�π−

) �14/�1�(pµ−µ−
)/�(�π−

) �14/�1�(pµ−µ−
)/�(�π−

) �14/�1�(pµ−µ−
)/�(�π−

) �14/�1A �L=2 de
ay, forbidden by total lepton number 
onservation.VALUE (units 10−8) CL% DOCUMENT ID TECN COMMENT
<4.0<4.0<4.0<4.0 90 RAJARAM 05 HYCP p Cu, 800 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.7× 104 90 7 LITTENBERG 92B HBC Uses YEH 74 data7This LITTENBERG 92B limit and the identi
al YEH 74 limits for the pre
eding threemodes all result from nonobservan
e of any 3-prong de
ays of the �−. One 
ould aswell apply the limit to the sum of the four modes.�− DECAY PARAMETERS�− DECAY PARAMETERS�− DECAY PARAMETERS�− DECAY PARAMETERSSee the \Note on Baryon De
ay Parameters" in the neutron Listings.
α(�−)α−(�)α(�−)α−(�)α(�−)α−(�)α(�−)α−(�)VALUE EVTS DOCUMENT ID TECN COMMENT
−0.294 ±0.005 OUR AVERAGE−0.294 ±0.005 OUR AVERAGE−0.294 ±0.005 OUR AVERAGE−0.294 ±0.005 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7. See the ideogrambelow.
−0.2963±0.0042 189k LUK 00 E756 p Be, 800 GeV
−0.2894±0.0073 63k 8 LUK 00 E756 p Be, 800 GeV
−0.303 ±0.004 ±0.004 192k RAMEIKA 86 SPEC 400 GeV pBe
−0.257 ±0.020 11k ASTON 85B LASS 11 GeV/
 K− p
−0.260 ±0.017 21k BENSINGER 85 MPS 5 GeV/
 K− p
−0.299 ±0.007 150k BIAGI 82 SPEC SPS hyperon beam
−0.315 ±0.026 9046 CLELAND 80C ASPK BNL hyperon beam
−0.239 ±0.021 6599 HEMINGWAY 78 HBC 4.2 GeV/
 K− p
−0.243 ±0.025 4303 BALTAY 74 HBC 1.75 GeV/
 K− p
−0.252 ±0.032 2436 COOL 74 OSPK 1.8 GeV/
 K− p
−0.253 ±0.028 2781 DAUBER 69 HBC8This LUK 00 value is for α(�+) α+(�). We assume CP 
onservation here by in
ludingit in the average for α(�−) α−(�). But see the se
ond data blo
k below for the CPtest.

WEIGHTED AVERAGE
-0.294±0.005 (Error scaled by 1.7)

DAUBER 69 HBC
COOL 74 OSPK
BALTAY 74 HBC 4.1
HEMINGWAY 78 HBC 6.8
CLELAND 80C ASPK 0.7
BIAGI 82 SPEC 0.6
BENSINGER 85 MPS 3.9
ASTON 85B LASS 3.4
RAMEIKA 86 SPEC 2.7
LUK 00 E756 0.3
LUK 00 E756 0.4

χ2

      22.9
(Confidence Level = 0.0035)

-0.35 -0.3 -0.25 -0.2 -0.15

α(�−)α−(�)

α FOR �− → �π−α FOR �− → �π−α FOR �− → �π−α FOR �− → �π−The above average, α(�−) α−(�) = −0.294 ± 0.005, where the error in
ludes as
ale fa
tor of 1.7, divided by our 
urrent average α−(�) = 0.642 ± 0.013, gives thefollowing value for α(�−).VALUE DOCUMENT ID
−0.458±0.012 OUR EVALUATION−0.458±0.012 OUR EVALUATION−0.458±0.012 OUR EVALUATION−0.458±0.012 OUR EVALUATION Error in
ludes s
ale fa
tor of 1.8.[α(�−)α−(�)−α(�+)α+(�)℄[α(�−)α−(�)+α(�+)α+(�)℄[α(�−)α−(�)−α(�+)α+(�)℄[α(�−)α−(�)+α(�+)α+(�)℄[α(�−)α−(�)−α(�+)α+(�)℄[α(�−)α−(�)+α(�+)α+(�)℄[α(�−)α−(�)−α(�+)α+(�)℄[α(�−)α−(�)+α(�+)α+(�)℄This is zero if CP is 
onserved. The α's are the de
ay-asymmetry parameters for�− → �π− and � → pπ− and for �+ → �π+ and � → pπ+.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT0.0± 5.1±4.40.0± 5.1±4.40.0± 5.1±4.40.0± 5.1±4.4 158M HOLMSTROM 04 HYCP p Cu, 800 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •+120 ±140 252k LUK 00 E756 p Be, 800 GeV
φ ANGLE FOR �− → �π− (tanφ = β/γ)φ ANGLE FOR �− → �π− (tanφ = β/γ)φ ANGLE FOR �− → �π− (tanφ = β/γ)φ ANGLE FOR �− → �π− (tanφ = β/γ)VALUE (◦) EVTS DOCUMENT ID TECN COMMENT
− 2.1 ± 0.8 OUR AVERAGE− 2.1 ± 0.8 OUR AVERAGE− 2.1 ± 0.8 OUR AVERAGE− 2.1 ± 0.8 OUR AVERAGE
− 2.39± 0.64±0.64 144M 9 HUANG 04 HYCP p Cu, 800 GeV
− 1.61± 2.66±0.37 1.35M 10 CHAKRAVO... 03 E756 p Be, 800 GeV5 ±10 11k ASTON 85B LASS K−p14.7 ±16.0 21k 11 BENSINGER 85 MPS 5 GeV/
 K− p11 ± 9 4303 BALTAY 74 HBC 1.75 GeV/
 K− p5 ±16 2436 COOL 74 OSPK 1.8 GeV/
 K− p
−14 ±11 2781 DAUBER 69 HBC Uses α� = 0.647±0.0200 ±12 1004 12 BERGE 66 HBC
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−26 ±30 2724 BINGHAM 70B OSPK0 ±20.4 364 12 LONDON 66 HBC Using α�=0.6254 ±30 356 12 CARMONY 64B HBC9From this result and α� , HUANG 04 gets β� = −0.037 ± 0.011 ± 0.010 and γ� =0.888 ± 0.0004 ± 0.006. And the strong p{s phase di�eren
e for �π− s
attering is(4.6 ± 1.4 ± 1.2)◦.10 From this result and α� , CHAKRAVORTY 03 obtains β� = −0.025 ± 0.042 ± 0.006and γ� = 0.889±0.001±0.007. And the strong p{s phase di�eren
e for �π− s
atteringis (3.17 ± 5.28 ± 0.73)◦.11BENSINGER 85 used α� = 0.642 ± 0.013.12The errors have been multiplied by 1.2 due to approximations used for the � polarization;see DAUBER 69 for a dis
ussion.gA / gV FOR �− → �e− νegA / gV FOR �− → �e− νegA / gV FOR �− → �e− νegA / gV FOR �− → �e− νeVALUE EVTS DOCUMENT ID TECN COMMENT
−0.25±0.05−0.25±0.05−0.25±0.05−0.25±0.05 1992 13 BOURQUIN 83 SPEC SPS hyperon beam13BOURQUIN 83 assumes that g2 = 0. Also, the sign has been 
hanged to agree with our
onventions, given in the \Note on Baryon De
ay Parameters" in the neutron Listings.�− REFERENCES�− REFERENCES�− REFERENCES�− REFERENCESWe have omitted some papers that have been superseded by later experi-ments. See our earlier editions.ABDALLAH 06E PL B639 179 J. Abdallah et al. (DELPHI Collab.)RAJARAM 05 PRL 94 181801 D. Rajaram et al. (FNAL HyperCP Collab.)HOLMSTROM 04 PRL 93 262001 T. Holmstrom et al. (FNAL HyperCP Collab.)HUANG 04 PRL 93 011802 M. Huang et al. (FNAL HyperCP Collab.)CHAKRAVO... 03 PRL 91 031601 A. Chakravorty et al. (FNAL E756 Collab.)LUK 00 PRL 85 4860 K.B. Luk et al. (FNAL E756 Collab.)DUBBS 94 PRL 72 808 T. Dubbs et al. (FNAL E761 Collab.)DURYEA 92 PRL 68 768 J. Duryea et al. (MINN, FNAL, MICH, RUTG)LITTENBERG 92B PR D46 R892 L.S. Littenberg, R.E. Shro
k (BNL, STON)HO 90 PRL 65 1713 P.M. Ho et al. (MICH, FNAL, MINN, RUTG)Also PR D44 3402 P.M. Ho et al. (MICH, FNAL, MINN, RUTG)TROST 89 PR D40 1703 L.H. Trost et al. (FNAL-715 Collab.)BIAGI 87B ZPHY C35 143 S.F. Biagi et al. (BRIS, CERN, GEVA+)RAMEIKA 86 PR D33 3172 R. Rameika et al. (RUTG, MICH, WISC+)ASTON 85B PR D32 2270 D. Aston et al. (SLAC, CARL, CNRC, CINC)BENSINGER 85 NP B252 561 J.R. Bensinger et al. (CHIC, ELMT, FNAL+)BOURQUIN 84 NP B241 1 M.H. Bourquin et al. (BRIS, GEVA, HEIDP+)RAMEIKA 84 PRL 52 581 R. Rameika et al. (RUTG, MICH, WISC+)BOURQUIN 83 ZPHY C21 1 M.H. Bourquin et al. (BRIS, GEVA, HEIDP+)BIAGI 82 PL 112B 265 S.F. Biagi et al. (BRIS, CAVE, GEVA+)BIAGI 82B PL 112B 277 S.F. Biagi et al. (LOQM, GEVA, RL+)CLELAND 80C PR D21 12 W.E. Cleland et al. (PITT, BNL)THOMPSON 80 PR D21 25 J.A. Thompson et al. (PITT, BNL)BOURQUIN 79 PL 87B 297 M.H. Bourquin et al. (BRIS, GEVA, HEIDP+)HEMINGWAY 78 NP B142 205 R.J. Hemingway et al. (CERN, ZEEM, NIJM+)DIBIANCA 75 NP B98 137 F.A. Dibian
a, R.J. Endorf (CMU)BALTAY 74 PR D9 49 C. Baltay et al. (COLU, BING) JCOOL 74 PR D10 792 R.L. Cool et al. (BNL)Also PRL 29 1630 R.L. Cool et al. (BNL)YEH 74 PR D10 3545 N. Yeh et al. (BING, COLU)MAYEUR 72 NP B47 333 C. Mayeur et al. (BRUX, CERN, TUFTS, LOUC)VOTRUBA 72 NP B45 77 M.F. Votruba, A. Safder, T.M. Rat
li�e (BIRM+)WILQUET 72 PL 42B 372 G. Wilquet et al. (BRUX, CERN, TUFTS+)DUCLOS 71 NP B32 493 J. Du
los et al. (CERN)BINGHAM 70B PR D1 3010 G.M. Bingham et al. (UCSD, WASH)GOLDWASSER 70 PR D1 1960 E.L. Goldwasser, P.F. S
hultz (ILL)STONE 70 PL 32B 515 S.L. Stone et al. (ROCH)DAUBER 69 PR 179 1262 P.M. Dauber et al. (LRL) JSHEN 67 PL 25B 443 B.C. Shen, A. Firestone, G. Goldhaber (UCB+)
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le Listings�−,� 's,� (1530)BERGE 66 PR 147 945 J.P. Berge et al. (LRL)CHIEN 66 PR 152 1171 C.Y. Chien et al. (YALE, BNL)LONDON 66 PR 143 1034 G.W. London et al. (BNL, SYRA)BINGHAM 65 PRSL 285 202 H.H. Bingham (CERN)PJERROU 65B PRL 14 275 G.M. Pjerrou et al. (UCLA)Also Thesis G.M. Pjerrou (UCLA)BADIER 64 Dubna Conf. 1 593 J. Badier et al. (EPOL, SACL, ZEEM)CARMONY 64B PRL 12 482 D.D. Carmony et al. (UCLA) JHUBBARD 64 PR 135 B183 J.R. Hubbard et al. (LRL)FERRO-LUZZI 63 PR 130 1568 M. Ferro-Luzzi et al. (LRL)JAUNEAU 63D Siena Conf. 4 L. Jauneau et al. (EPOL, CERN, LOUC+)Also PL 5 261 L. Jauneau et al. (EPOL, CERN, LOUC+)SCHNEIDER 63 PL 4 360 J. S
hneider (CERN)
Ξ RESONANCES

The accompanying table gives our evaluation of the present

status of the Ξ resonances. Not much is known about Ξ reso-

nances. This is because (1) they can only be produced as a part

of a final state, and so the analysis is more complicated than if

direct formation were possible, (2) the production cross sections

are small (typically a few µb), and (3) the final states are

topologically complicated and difficult to study with electronic

techniques. Thus early information about Ξ resonances came

entirely from bubble chamber experiments, where the numbers

of events are small, and only in the 1980’s did electronic ex-

periments make any significant contributions. However, nothing

of significance on Ξ resonances has been added since our 1988

edition.

For a detailed earlier review, see Meadows [1].

Table 1. The status of the Ξ resonances. Only those with an overall
status of ∗∗∗ or ∗∗∗∗ are included in the Baryon Summary Table.

Status as seen in —

Particle JP
Overall
status Ξπ ΛK ΣK Ξ(1530)π Other channels

Ξ(1318) 1/2+ ∗∗∗∗ Decays weakly
Ξ(1530) 3/2+ ∗∗∗∗ ∗∗∗∗
Ξ(1620) ∗ ∗
Ξ(1690) ∗∗∗ ∗∗∗ ∗∗
Ξ(1820) 3/2− ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗
Ξ(1950) ∗∗∗ ∗∗ ∗∗ ∗
Ξ(2030) ∗∗∗ ∗∗ ∗∗∗
Ξ(2120) ∗ ∗
Ξ(2250) ∗∗ 3-body decays
Ξ(2370) ∗∗ 3-body decays
Ξ(2500) ∗ ∗ ∗ 3-body decays

∗∗∗∗ Existence is certain, and properties are at least fairly well explored.
∗∗∗ Existence ranges from very likely to certain, but further confir-

mation is desirable and/or quantum numbers, branching fractions,
etc. are not well determined.

∗∗ Evidence of existence is only fair.
∗ Evidence of existence is poor.

Reference

1. B.T. Meadows, in Proceedings of the IV th Interna-

tional Conference on Baryon Resonances (Toronto, 1980),
ed. N. Isgur, p. 283.� (1530) 3/2+ I (JP ) = 12 (32+) Status: ∗∗∗∗This is the only � resonan
e whose properties are all reasonably wellknown. Assuming that the �+
 has JP = 1/2+, AUBERT 08AK,in a study of �+
 → �−π+K+, �nds 
on
lusively that the spinof the � (1530)0 is 3/2. In 
onjun
tion with SCHLEIN 63B andBUTTON-SHAFER 66, this proves also that the parity is +.We use only those determinations of the mass and width that area

ompanied by some dis
ussion of systemati
s and resolution.

� (1530) MASSES� (1530) MASSES� (1530) MASSES� (1530) MASSES� (1530)0 MASS� (1530)0 MASS� (1530)0 MASS� (1530)0 MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1531.80±0.32 OUR FIT1531.80±0.32 OUR FIT1531.80±0.32 OUR FIT1531.80±0.32 OUR FIT Error in
ludes s
ale fa
tor of 1.3.1531.78±0.34 OUR AVERAGE1531.78±0.34 OUR AVERAGE1531.78±0.34 OUR AVERAGE1531.78±0.34 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogrambelow.1532.2 ±0.7 DEBELLEFON 75B HBC K−p → �−K π1533 ±1 ROSS 73B HBC K−p → � K π (π)1531.4 ±0.8 59 BADIER 72 HBC K−p 3.95 GeV/
1532.0 ±0.4 1262 BALTAY 72 HBC K−p 1.75 GeV/
1531.3 ±0.6 324 BORENSTEIN 72 HBC K−p 2.2 GeV/
1532.3 ±0.7 286 KIRSCH 72 HBC K−p 2.87 GeV/
1528.7 ±1.1 76 LONDON 66 HBC K−p 2.24 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •1532.1 ±0.4 1244 ASTON 85B LASS K−p 11 GeV/
1532.1 ±0.6 2700 1 BAUBILLIER 81B HBC K−p 8.25 GeV/
1530 ±1 450 BIAGI 81 SPEC SPS hyperon beam1527 ±6 80 SIXEL 79 HBC K−p 10 GeV/
1535 ±4 100 SIXEL 79 HBC K−p 16 GeV/
1533.6 ±1.4 97 BERTHON 74 HBC Quasi-2-body σ

WEIGHTED AVERAGE
1531.78±0.34 (Error scaled by 1.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

LONDON 66 HBC 7.8
KIRSCH 72 HBC 0.6
BORENSTEIN 72 HBC 0.6
BALTAY 72 HBC 0.3
BADIER 72 HBC 0.2
ROSS 73B HBC 1.5
DEBELLEFON 75B HBC 0.4

χ2

      11.4
(Confidence Level = 0.077)

1526 1528 1530 1532 1534 1536 1538� (1530)0 mass (MeV)� (1530)− MASS� (1530)− MASS� (1530)− MASS� (1530)− MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1535.0±0.6 OUR FIT1535.0±0.6 OUR FIT1535.0±0.6 OUR FIT1535.0±0.6 OUR FIT1535.2±0.8 OUR AVERAGE1535.2±0.8 OUR AVERAGE1535.2±0.8 OUR AVERAGE1535.2±0.8 OUR AVERAGE1534.5±1.2 DEBELLEFON 75B HBC K−p → �−K π1535.3±2.0 ROSS 73B HBC K−p → � K π (π)1536.2±1.6 185 KIRSCH 72 HBC K−p 2.87 GeV/
1535.7±3.2 38 LONDON 66 HBC K−p 2.24 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •1540 ±3 48 BERTHON 74 HBC Quasi-2-body σ1534.7±1.1 334 BALTAY 72 HBC K−p 1.75 GeV/
m�(1530)− − m�(1530)m�(1530)− − m�(1530)m�(1530)− − m�(1530)m�(1530)− − m�(1530)VALUE (MeV) DOCUMENT ID TECN COMMENT3.2±0.6 OUR FIT3.2±0.6 OUR FIT3.2±0.6 OUR FIT3.2±0.6 OUR FIT2.9±0.9 OUR AVERAGE2.9±0.9 OUR AVERAGE2.9±0.9 OUR AVERAGE2.9±0.9 OUR AVERAGE2.7±1.0 BALTAY 72 HBC K−p 1.75 GeV/
2.0±3.2 MERRILL 66 HBC K−p 1.7{2.7 GeV/
5.7±3.0 PJERROU 65B HBC K−p 1.8{1.95 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •3.9±1.8 2 KIRSCH 72 HBC K−p 2.87 GeV/
7 ±4 2 LONDON 66 HBC K−p 2.24 GeV/
� (1530) WIDTHS� (1530) WIDTHS� (1530) WIDTHS� (1530) WIDTHS� (1530)0 WIDTH� (1530)0 WIDTH� (1530)0 WIDTH� (1530)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT9.1±0.5 OUR AVERAGE9.1±0.5 OUR AVERAGE9.1±0.5 OUR AVERAGE9.1±0.5 OUR AVERAGE9.5±1.2 DEBELLEFON 75B HBC K−p → �−K π9.1±2.4 ROSS 73B HBC K−p → � K π (π)11 ±2 BADIER 72 HBC K−p 3.95 GeV/
9.0±0.7 BALTAY 72 HBC K−p 1.75 GeV/
8.4±1.4 BORENSTEIN 72 HBC �−π+11.0±1.8 KIRSCH 72 HBC �−π+7 ±7 BERGE 66 HBC K−p 1.5{1.7 GeV/
8.5±3.5 LONDON 66 HBC K−p 2.24 GeV/
7 ±2 SCHLEIN 63B HBC K−p 1.8, 1.95 GeV/




1626162616261626BaryonParti
le Listings� (1530),� (1620),� (1690)
• • • We do not use the following data for averages, �ts, limits, et
. • • •12.8±1.0 2700 1 BAUBILLIER 81B HBC K−p 8.25 GeV/
19 ±6 80 3 SIXEL 79 HBC K−p 10 GeV/
14 ±5 100 3 SIXEL 79 HBC K−p 16 GeV/
� (1530)− WIDTH� (1530)− WIDTH� (1530)− WIDTH� (1530)− WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT9.9+1.7

−1.9 OUR AVERAGE9.9+1.7
−1.9 OUR AVERAGE9.9+1.7
−1.9 OUR AVERAGE9.9+1.7
−1.9 OUR AVERAGE9.6±2.8 DEBELLEFON 75B HBC K−p → �−K π8.3±3.6 ROSS 73B HBC K−p → � K π (π)7.8+3.5
−7.8 BALTAY 72 HBC K−p 1.75 GeV/
16.2±4.6 KIRSCH 72 HBC �−π0, �0π−� (1530) POLE POSITIONS� (1530) POLE POSITIONS� (1530) POLE POSITIONS� (1530) POLE POSITIONS� (1530)0 REAL PART� (1530)0 REAL PART� (1530)0 REAL PART� (1530)0 REAL PARTVALUE DOCUMENT ID COMMENT1531.6±0.4 LICHTENBERG74 Using HABIBI 73� (1530)0 IMAGINARY PART� (1530)0 IMAGINARY PART� (1530)0 IMAGINARY PART� (1530)0 IMAGINARY PARTVALUE DOCUMENT ID COMMENT4.45±0.35 LICHTENBERG74 Using HABIBI 73� (1530)− REAL PART� (1530)− REAL PART� (1530)− REAL PART� (1530)− REAL PARTVALUE DOCUMENT ID COMMENT1534.4±1.1 LICHTENBERG74 Using HABIBI 73� (1530)− IMAGINARY PART� (1530)− IMAGINARY PART� (1530)− IMAGINARY PART� (1530)− IMAGINARY PARTVALUE DOCUMENT ID COMMENT3.9+1.75

−3.9 LICHTENBERG74 Using HABIBI 73� (1530) DECAY MODES� (1530) DECAY MODES� (1530) DECAY MODES� (1530) DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 � π 100 %�2 � γ <4 % 90%� (1530) BRANCHING RATIOS� (1530) BRANCHING RATIOS� (1530) BRANCHING RATIOS� (1530) BRANCHING RATIOS�(� γ
)/�total �2/��(� γ
)/�total �2/��(� γ
)/�total �2/��(� γ
)/�total �2/�VALUE CL% DOCUMENT ID TECN COMMENT

<0.04<0.04<0.04<0.04 90 KALBFLEISCH 75 HBC K−p 2.18 GeV/
� (1530) FOOTNOTES� (1530) FOOTNOTES� (1530) FOOTNOTES� (1530) FOOTNOTES1BAUBILLIER 81B is a �t to the in
lusive spe
trum. The resolution (5 MeV) is notunfolded.2Redundant with data in the mass Listings.3 SIXEL 79 doesn't unfold the experimental resolution of 15 MeV.� (1530) REFERENCES� (1530) REFERENCES� (1530) REFERENCES� (1530) REFERENCESAUBERT 08AK PR D78 034008 B. Aubert et al. (BABAR Collab.)ASTON 85B PR D32 2270 D. Aston et al. (SLAC, CARL, CNRC, CINC)BAUBILLIER 81B NP B192 1 M. Baubillier et al. (BIRM, CERN, GLAS+)BIAGI 81 ZPHY C9 305 S.F. Biagi et al. (BRIS, CAVE, GEVA+)SIXEL 79 NP B159 125 P. Sixel et al. (AACH3, BERL, CERN, LOIC+)DEBELLEFON 75B NC 28A 289 A. de Bellefon et al. (CDEF, SACL)KALBFLEISCH 75 PR D11 987 G.R. Kalb
eis
h, R.C. Strand, J.W. Chapman (BNL+)BERTHON 74 NC 21A 146 A. Berthon et al. (CDEF, RHEL, SACL+)LICHTENBERG 74 PR D10 3865 D.B. Li
htenberg (IND)Also Private Comm. D.B. Li
htenberg (IND)HABIBI 73 Thesis Nevis 199 M. Habibi (COLU)ROSS 73B Purdue Conf. 355 R.T. Ross, J.L. Lloyd, D. Radoji
i
 (OXF)BADIER 72 NP B37 429 J. Badier et al. (EPOL)BALTAY 72 PL 42B 129 C. Baltay et al. (COLU, BING)BORENSTEIN 72 PR D5 1559 S.R. Borenstein et al. (BNL, MICH) IKIRSCH 72 NP B40 349 L.E. Kirs
h et al. (BRAN, UMD, SYRA+) IBERGE 66 PR 147 945 J.P. Berge et al. (LRL) IBUTTON-... 66 PR 142 883 J. Button-Shafer et al. (LRL) JPLONDON 66 PR 143 1034 G.W. London et al. (BNL, SYRA) IJMERRILL 66 Thesis UCRL 16455 D.W. Merrill (LRL) JPPJERROU 65B PRL 14 275 G.M. Pjerrou et al. (UCLA)SCHLEIN 63B PRL 11 167 P.E. S
hlein et al. (UCLA) IJPOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSMAZZUCATO 81 NP B178 1 M. Mazzu
ato et al. (AMST, CERN, NIJM+)BRIEFEL 77 PR D16 2706 E. Briefel et al. (BRAN, UMD, SYRA+)BRIEFEL 75 PR D12 1859 E. Briefel et al. (BRAN, UMD, SYRA+)HUNGERBU... 74 PR D10 2051 V. Hungerbuhler et al. (YALE, FNAL, BNL+)BUTTON-... 66 PR 142 883 J. Button-Shafer et al. (LRL) JP

� (1620) I (JP ) = 12 (??)J, P need 
on�rmation.Status: ∗OMITTED FROM SUMMARY TABLEWhat little eviden
e there is 
onsists of weak signals in the � π
hannel. A number of other experiments (e.g., BORENSTEIN 72and HASSALL 81) have looked for but not seen any e�e
t.� (1620) MASS� (1620) MASS� (1620) MASS� (1620) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
≈ 1620 OUR ESTIMATE≈ 1620 OUR ESTIMATE≈ 1620 OUR ESTIMATE≈ 1620 OUR ESTIMATE1624± 3 31 BRIEFEL 77 HBC K−p 2.87 GeV/
1633±12 34 DEBELLEFON 75B HBC K−p → �−K π1606± 6 29 ROSS 72 HBC K−p 3.1{3.7 GeV/
� (1620) WIDTH� (1620) WIDTH� (1620) WIDTH� (1620) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT22.5 31 1 BRIEFEL 77 HBC K−p 2.87 GeV/
40 ±15 34 DEBELLEFON 75B HBC K−p → �−K π21 ± 7 29 ROSS 72 HBC K−p →�−π+K∗0(892)� (1620) DECAY MODES� (1620) DECAY MODES� (1620) DECAY MODES� (1620) DECAY MODESMode�1 � π � (1620) FOOTNOTES� (1620) FOOTNOTES� (1620) FOOTNOTES� (1620) FOOTNOTES1The �t is insensitive to values between 15 and 30 MeV.� (1620) REFERENCES� (1620) REFERENCES� (1620) REFERENCES� (1620) REFERENCESHASSALL 81 NP B189 397 J.K. Hassall et al. (CAVE, MSU)BRIEFEL 77 PR D16 2706 E. Briefel et al. (BRAN, UMD, SYRA+)Also Duke Conf. 317 E. Briefel et al. (BRAN, UMD, SYRA+)Hyperon Resonan
es, 1970Also PR D12 1859 E. Briefel et al. (BRAN, UMD, SYRA+)DEBELLEFON 75B NC 28A 289 A. de Bellefon et al. (CDEF, SACL)BORENSTEIN 72 PR D5 1559 S.R. Borenstein et al. (BNL, MICH) IROSS 72 PL 38B 177 R.T. Ross et al. (OXF) IOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSHUNGERBU... 74 PR D10 2051 V. Hungerbuhler et al. (YALE, FNAL, BNL+)SCHMIDT 73 Purdue Conf. 363 P.E. S
hmidt (BRAN)KALBFLEISCH 70 Duke Conf. 331 G.R. Kalb
eis
h (BNL) IHyperon Resonan
es 1970APSELL 69 PRL 23 884 S.P. Apsell et al. (BRAN, UMD, SYRA+)BARTSCH 69 PL 28B 439 J. Barts
h et al. (AACH, BERL, CERN+)� (1690) I (JP ) = 12 (??) Status: ∗∗∗AUBERT 08AK, in a study of �+
 → �−π+K+, �nds some evi-den
e that the � (1690) has JP = 1/2−.DIONISI 78 sees a threshold enhan
ement in both the neutral andnegatively 
harged � K mass spe
tra in K− p → (� K)K π at 4.2GeV/
 . The data from the � K 
hannels alone 
annot distinguishbetween a resonan
e and a large s
attering length. Weaker eviden
eat the same mass is seen in the 
orresponding �K 
hannels, and a
oupled-
hannel analysis yields results 
onsistent with a new � .BIAGI 81 sees an enhan
ement at 1700 MeV in the di�ra
tivelyprodu
ed �K− system. A peak is also observed in the �K0 massspe
trum at 1660 MeV that is 
onsistent with a 1720 MeV resonan
ede
aying to �0K0, with the γ from the �0 de
ay not dete
ted.BIAGI 87 provides further 
on�rmation of this state in di�ra
tive dis-so
iation of �− into �K−. The signi�
an
e 
laimed is 6.7 standarddeviations.ADAMOVICH 98 sees a peak of 1400 ± 300 events in the �−π+spe
trum produ
ed by 345 GeV/
 �−-nu
leus intera
tions.� (1690) MASSES� (1690) MASSES� (1690) MASSES� (1690) MASSESMIXED CHARGESMIXED CHARGESMIXED CHARGESMIXED CHARGESVALUE (MeV) DOCUMENT ID1690±10 OUR ESTIMATE1690±10 OUR ESTIMATE1690±10 OUR ESTIMATE1690±10 OUR ESTIMATE This is only an edu
ated guess; the error given is larger thanthe error on the average of the published values.



1627162716271627See key on page 601 BaryonParti
le Listings� (1690),� (1820)� (1690)0 MASS� (1690)0 MASS� (1690)0 MASS� (1690)0 MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1686±4 1400 ADAMOVICH 98 WA89 �− nu
leus, 345GeV/
1699±5 175 1 DIONISI 78 HBC K−p 4.2 GeV/
1684±5 183 2 DIONISI 78 HBC K−p 4.2 GeV/
� (1690)− MASS� (1690)− MASS� (1690)− MASS� (1690)− MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1691.1± 1.9±2.0 104 BIAGI 87 SPEC �−Be 116 GeV1700 ±10 150 3 BIAGI 81 SPEC �−H 100, 135 GeV1694 ± 6 45 4 DIONISI 78 HBC K−p 4.2 GeV/
� (1690) WIDTHS� (1690) WIDTHS� (1690) WIDTHS� (1690) WIDTHSMIXED CHARGESMIXED CHARGESMIXED CHARGESMIXED CHARGESVALUE (MeV) DOCUMENT ID
<30 OUR ESTIMATE<30 OUR ESTIMATE<30 OUR ESTIMATE<30 OUR ESTIMATE� (1690)0 WIDTH� (1690)0 WIDTH� (1690)0 WIDTH� (1690)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT10± 6 1400 ADAMOVICH 98 WA89 �− nu
leus, 345GeV/
44±23 175 1 DIONISI 78 HBC K−p 4.2 GeV/
20± 4 183 2 DIONISI 78 HBC K−p 4.2 GeV/
� (1690)− WIDTH� (1690)− WIDTH� (1690)− WIDTH� (1690)− WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT
< 8 90 104 BIAGI 87 SPEC �−Be 116 GeV47±14 150 3 BIAGI 81 SPEC �−H 100, 135 GeV26± 6 45 4 DIONISI 78 HBC K−p 4.2 GeV/
� (1690) DECAY MODES� (1690) DECAY MODES� (1690) DECAY MODES� (1690) DECAY MODESMode Fra
tion (�i /�)�1 �K seen�2 � K seen�3 � π seen�4 �−π+π0�5 �−π+π− possibly seen�6 � (1530)π � (1690) BRANCHING RATIOS� (1690) BRANCHING RATIOS� (1690) BRANCHING RATIOS� (1690) BRANCHING RATIOS�(�K)/�total �1/��(�K)/�total �1/��(�K)/�total �1/��(�K)/�total �1/�VALUE EVTS DOCUMENT ID TECN CHG COMMENTseenseenseenseen 104 BIAGI 87 SPEC − �−Be 116 GeV�(� K)/�(�K) �2/�1�(� K)/�(�K) �2/�1�(� K)/�(�K) �2/�1�(� K)/�(�K) �2/�1VALUE EVTS DOCUMENT ID TECN CHG COMMENT0.75±0.39 75 ABE 02C BELL e+ e− ≈ �(4S)2.7 ±0.9 DIONISI 78 HBC 0 K−p 4.2 GeV/
3.1 ±1.4 DIONISI 78 HBC − K−p 4.2 GeV/
�(� π

)/�(� K) �3/�2�(� π
)/�(� K) �3/�2�(� π
)/�(� K) �3/�2�(� π
)/�(� K) �3/�2VALUE DOCUMENT ID TECN CHG COMMENT

<0.09 DIONISI 78 HBC 0 K− p 4.2 GeV/
�(� π
)/�total �3/��(� π
)/�total �3/��(� π
)/�total �3/��(� π
)/�total �3/�VALUE DOCUMENT ID TECN COMMENTseen ADAMOVICH 98 WA89 �− nu
leus, 345GeV/
�(�−π+π0)/�(� K) �4/�2�(�−π+π0)/�(� K) �4/�2�(�−π+π0)/�(� K) �4/�2�(�−π+π0)/�(� K) �4/�2VALUE DOCUMENT ID TECN CHG COMMENT

<0.04 DIONISI 78 HBC 0 K− p 4.2 GeV/
�(�−π+π−
)/�total �5/��(�−π+π−
)/�total �5/��(�−π+π−
)/�total �5/��(�−π+π−
)/�total �5/�VALUE EVTS DOCUMENT ID TECN CHG COMMENTpossibly seenpossibly seenpossibly seenpossibly seen 4 BIAGI 87 SPEC − �−Be 116 GeV�(�−π+π−
)/�(� K) �5/�2�(�−π+π−
)/�(� K) �5/�2�(�−π+π−
)/�(� K) �5/�2�(�−π+π−
)/�(� K) �5/�2VALUE DOCUMENT ID TECN CHG COMMENT

<0.03 DIONISI 78 HBC − K− p 4.2 GeV/
�(� (1530)π)/�(� K) �6/�2�(� (1530)π)/�(� K) �6/�2�(� (1530)π)/�(� K) �6/�2�(� (1530)π)/�(� K) �6/�2VALUE DOCUMENT ID TECN CHG COMMENT
<0.06 DIONISI 78 HBC − K− p 4.2 GeV/


� (1690) FOOTNOTES� (1690) FOOTNOTES� (1690) FOOTNOTES� (1690) FOOTNOTES1From a �t to the �+K− spe
trum.2From a 
oupled-
hannel analysis of the �+K− and �K0 spe
tra.3A �t to the in
lusive spe
trum from �−N → �K−X.4From a 
oupled-
hannel analysis of the �0K− and �K− spe
tra.� (1690) REFERENCES� (1690) REFERENCES� (1690) REFERENCES� (1690) REFERENCESAUBERT 08AK PR D78 034008 B. Aubert et al. (BABAR Collab.)ABE 02C PL B524 33 K. Abe et al. (KEK BELLE Collab.)ADAMOVICH 98 EPJ C5 621 M.I. Adamovi
h et al. (CERN WA89 Collab.)BIAGI 87 ZPHY C34 15 S.F. Biagi et al. (BRIS, CERN, GEVA+) IBIAGI 81 ZPHY C9 305 S.F. Biagi et al. (BRIS, CAVE, GEVA+)DIONISI 78 PL 80B 145 C. Dionisi et al. (CERN, AMST, NIJM+) I� (1820) 3/2− I (JP ) = 12 (32−) Status: ∗∗∗The 
learest eviden
e is an 8-standard-deviation peak in �K− seenby GAY 76C. TEODORO 78 favors J = 3/2, but 
annot make aparity dis
rimination. BIAGI 87C is 
onsistent with J = 3/2 andfavors negative parity for this J value.� (1820) MASS� (1820) MASS� (1820) MASS� (1820) MASSWe only average the measurements that appear to us to be most signi�
antand best determined.VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT1823 ± 5 OUR ESTIMATE1823 ± 5 OUR ESTIMATE1823 ± 5 OUR ESTIMATE1823 ± 5 OUR ESTIMATE1823.4± 1.4 OUR AVERAGE1823.4± 1.4 OUR AVERAGE1823.4± 1.4 OUR AVERAGE1823.4± 1.4 OUR AVERAGE1819.4± 3.1±2.0 280 1 BIAGI 87 SPEC 0 �−Be → (�K−) X1826 ± 3 ±1 54 BIAGI 87C SPEC 0 �−Be → (�K0) X1822 ± 6 JENKINS 83 MPS − K− p → K+ (MM)1830 ± 6 300 BIAGI 81 SPEC − SPS hyperon beam1823 ± 2 130 GAY 76C HBC − K− p 4.2 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •1817 ± 3 ADAMOVICH 99B WA89 �− nu
leus, 345 GeV1797 ±19 74 BRIEFEL 77 HBC 0 K− p 2.87 GeV/
1829 ± 9 68 BRIEFEL 77 HBC −0 �(1530)π1860 ±14 39 BRIEFEL 77 HBC − �−K01870 ± 9 44 BRIEFEL 77 HBC 0 �K01813 ± 4 57 BRIEFEL 77 HBC − �K−1807 ±27 DIBIANCA 75 DBC −0 � ππ, �∗π1762 ± 8 28 2 BADIER 72 HBC −0 � π, � ππ, Y K1838 ± 5 38 2 BADIER 72 HBC −0 � π, � ππ, Y K1830 ±10 25 3 CRENNELL 70B DBC −0 3.6, 3.9 GeV/
1826 ±12 4 CRENNELL 70B DBC −0 3.6, 3.9 GeV/
1830 ±10 40 ALITTI 69 HBC − �, �K1814 ± 4 30 BADIER 65 HBC 0 �K01817 ± 7 29 SMITH 65C HBC −0 �K0, �K−1770 HALSTEINSLID63 FBC −0 K− freon 3.5 GeV/
� (1820) WIDTH� (1820) WIDTH� (1820) WIDTH� (1820) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT24 +15

−10 OUR ESTIMATE24 +15
−10 OUR ESTIMATE24 +15
−10 OUR ESTIMATE24 +15
−10 OUR ESTIMATE24 ± 6 OUR AVERAGE24 ± 6 OUR AVERAGE24 ± 6 OUR AVERAGE24 ± 6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.24.6± 5.3 280 1 BIAGI 87 SPEC 0 �−Be → (�K−) X12 ±14 ±1.7 54 BIAGI 87C SPEC 0 �−Be → (�K0) X72 ±20 300 BIAGI 81 SPEC − SPS hyperon beam21 ± 7 130 GAY 76C HBC − K− p 4.2 GeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •23 ±13 ADAMOVICH 99B WA89 �− nu
leus, 345 GeV99 ±57 74 BRIEFEL 77 HBC 0 K− p 2.87 GeV/
52 ±34 68 BRIEFEL 77 HBC −0 �(1530)π72 ±17 39 BRIEFEL 77 HBC − �−K044 ±11 44 BRIEFEL 77 HBC 0 �K026 ±11 57 BRIEFEL 77 HBC − �K−85 ±58 DIBIANCA 75 DBC −0 � ππ, �∗π51 ±13 2 BADIER 72 HBC −0 Lower mass58 ±13 2 BADIER 72 HBC −0 Higher mass103 +38
−24 3 CRENNELL 70B DBC −0 3.6, 3.9 GeV/
48 +36
−19 4 CRENNELL 70B DBC −0 3.6, 3.9 GeV/
55 +40
−20 ALITTI 69 HBC − �, �K12 ± 4 BADIER 65 HBC 0 �K030 ± 7 SMITH 65B HBC −0 �K

<80 HALSTEINSLID63 FBC −0 K− freon 3.5 GeV/




1628162816281628BaryonParti
le Listings� (1820),� (1950)
WEIGHTED AVERAGE
24±6 (Error scaled by 1.5)

GAY 76C HBC 0.2
BIAGI 81 SPEC 5.7
BIAGI 87C SPEC 0.8
BIAGI 87 SPEC 0.0

χ2

       6.7
(Confidence Level = 0.083)

-20 0 20 40 60 80 100 120� (1820) width (MeV)� (1820) DECAY MODES� (1820) DECAY MODES� (1820) DECAY MODES� (1820) DECAY MODESMode Fra
tion (�i /�)�1 �K large�2 � K small�3 � π small�4 � (1530)π small�5 � ππ (not � (1530) π)� (1820) BRANCHING RATIOS� (1820) BRANCHING RATIOS� (1820) BRANCHING RATIOS� (1820) BRANCHING RATIOSThe dominant modes seem to be �K and (perhaps) �(1530)π, but thebran
hing fra
tions are very poorly determined.�(�K)/�total �1/��(�K)/�total �1/��(�K)/�total �1/��(�K)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENT0.25±0.05 OUR AVERAGE0.25±0.05 OUR AVERAGE0.25±0.05 OUR AVERAGE0.25±0.05 OUR AVERAGE0.24±0.05 ANISOVICH 12A DPWA Multi
hannel0.30±0.15 ALITTI 69 HBC − K− p 3.9{5 GeV/
�(� π
)/�total �3/��(� π
)/�total �3/��(� π
)/�total �3/��(� π
)/�total �3/�VALUE DOCUMENT ID TECN CHG COMMENT0.10±0.100.10±0.100.10±0.100.10±0.10 ALITTI 69 HBC − K− p 3.9{5 GeV/
�(� π
)/�(�K) �3/�1�(� π
)/�(�K) �3/�1�(� π
)/�(�K) �3/�1�(� π
)/�(�K) �3/�1VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.36<0.36<0.36<0.36 95 GAY 76C HBC − K−p 4.2 GeV/
0.20±0.200.20±0.200.20±0.200.20±0.20 BADIER 65 HBC 0 K−p 3 GeV/
�(� π
)/�(� (1530)π) �3/�4�(� π
)/�(� (1530)π) �3/�4�(� π
)/�(� (1530)π) �3/�4�(� π
)/�(� (1530)π) �3/�4VALUE DOCUMENT ID TECN CHG COMMENT1.5+0.6

−0.41.5+0.6
−0.41.5+0.6
−0.41.5+0.6
−0.4 APSELL 70 HBC 0 K− p 2.87 GeV/
�(� K)/�total �2/��(� K)/�total �2/��(� K)/�total �2/��(� K)/�total �2/�VALUE DOCUMENT ID TECN CHG COMMENT0.30±0.150.30±0.150.30±0.150.30±0.15 ALITTI 69 HBC − K− p 3.9{5 GeV/


• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.02 TRIPP 67 RVUE Use SMITH 65C�(� K)/�(�K) �2/�1�(� K)/�(�K) �2/�1�(� K)/�(�K) �2/�1�(� K)/�(�K) �2/�1VALUE DOCUMENT ID TECN CHG COMMENT0.24±0.100.24±0.100.24±0.100.24±0.10 GAY 76C HBC − K− p 4.2 GeV/
�(� (1530)π)/�total �4/��(� (1530)π)/�total �4/��(� (1530)π)/�total �4/��(� (1530)π)/�total �4/�VALUE DOCUMENT ID TECN CHG COMMENT0.30±0.150.30±0.150.30±0.150.30±0.15 ALITTI 69 HBC − K− p 3.9{5 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen ASTON 85B LASS K− p 11 GeV/
not seen 5 HASSALL 81 HBC K− p 6.5 GeV/

<0.25 6 DAUBER 69 HBC K− p 2.7 GeV/
�(� (1530)π)/�(�K) �4/�1�(� (1530)π)/�(�K) �4/�1�(� (1530)π)/�(�K) �4/�1�(� (1530)π)/�(�K) �4/�1VALUE DOCUMENT ID TECN CHG COMMENT0.38±0.27 OUR AVERAGE0.38±0.27 OUR AVERAGE0.38±0.27 OUR AVERAGE0.38±0.27 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.3.1.0 ±0.3 GAY 76C HBC − K− p 4.2 GeV/
0.26±0.13 SMITH 65C HBC −0 K− p 2.45{2.7 GeV/


�(� ππ (not � (1530) π))/�(�K) �5/�1�(� ππ (not � (1530) π))/�(�K) �5/�1�(� ππ (not � (1530) π))/�(�K) �5/�1�(� ππ (not � (1530) π))/�(�K) �5/�1VALUE DOCUMENT ID TECN CHG COMMENT0.30±0.200.30±0.200.30±0.200.30±0.20 BIAGI 87 SPEC − �−Be 116 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.14 7 BADIER 65 HBC 0 1 st. dev. limit
>0.1 SMITH 65C HBC −0 K− p 2.45{2.7 GeV/
�(� ππ (not � (1530) π))/�(� (1530)π) �5/�4�(� ππ (not � (1530) π))/�(� (1530)π) �5/�4�(� ππ (not � (1530) π))/�(� (1530)π) �5/�4�(� ππ (not � (1530) π))/�(� (1530)π) �5/�4VALUE DOCUMENT ID TECN CHG COMMENT
onsistent with zero GAY 76C HBC − K− p 4.2 GeV/

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.3±0.5 8 APSELL 70 HBC 0 K− p 2.87 GeV/
� (1820) FOOTNOTES� (1820) FOOTNOTES� (1820) FOOTNOTES� (1820) FOOTNOTES1BIAGI 87 also sees weak signals in the in the �−π+π− 
hannel at 1782.6 ± 1.4 MeV(� = 6.0 ± 1.5 MeV) and 1831.9 ± 2.8 MeV (� = 9.6 ± 9.9 MeV).2BADIER 72 adds all 
hannels and divides the peak into lower and higher mass regions.The data 
an also be �tted with a single Breit-Wigner of mass 1800 MeV and width 150MeV.3 From a �t to in
lusive � π, � ππ, and �K− spe
tra.4 From a �t to in
lusive � π and � ππ spe
tra only.5 In
luding � ππ.6DAUBER 69 uses in part the same data as SMITH 65C.7 For the de
ay mode �−π+π0 only. This limit in
ludes �(1530)π.8Or less. Upper limit for the 3-body de
ay.� (1820) REFERENCES� (1820) REFERENCES� (1820) REFERENCES� (1820) REFERENCESANISOVICH 12A EPJ A48 15 A.V. Anisovi
h et al. (BONN, PNPI)ADAMOVICH 99B EPJ C11 271 M.I. Adamovi
h et al. (CERN WA89 Collab.)BIAGI 87 ZPHY C34 15 S.F. Biagi et al. (BRIS, CERN, GEVA+)BIAGI 87C ZPHY C34 175 S.F. Biagi et al. (BRIS, CERN, GEVA+) JPASTON 85B PR D32 2270 D. Aston et al. (SLAC, CARL, CNRC, CINC)JENKINS 83 PRL 51 951 C.M. Jenkins et al. (FSU, BRAN, LBL+)BIAGI 81 ZPHY C9 305 S.F. Biagi et al. (BRIS, CAVE, GEVA+)HASSALL 81 NP B189 397 J.K. Hassall et al. (CAVE, MSU)TEODORO 78 PL 77B 451 D. Teodoro et al. (AMST, CERN, NIJM+) JPBRIEFEL 77 PR D16 2706 E. Briefel et al. (BRAN, UMD, SYRA+)Also PRL 23 884 S.P. Apsell et al. (BRAN, UMD, SYRA+)GAY 76C PL 62B 477 J.B. Gay et al. (AMST, CERN, NIJM) IJDIBIANCA 75 NP B98 137 F.A. Dibian
a, R.J. Endorf (CMU)BADIER 72 NP B37 429 J. Badier et al. (EPOL)APSELL 70 PRL 24 777 S.P. Apsell et al. (BRAN, UMD, SYRA+) ICRENNELL 70B PR D1 847 D.J. Crennell et al. (BNL)ALITTI 69 PRL 22 79 J. Alitti et al. (BNL, SYRA) IDAUBER 69 PR 179 1262 P.M. Dauber et al. (LRL)TRIPP 67 NP B3 10 R.D. Tripp et al. (LRL, SLAC, CERN+)BADIER 65 PL 16 171 J. Badier et al. (EPOL, SACL, AMST) ISMITH 65B Athens Conf. 251 G.A. Smith, J.S. Lindsey (LRL)SMITH 65C PRL 14 25 G.A. Smith et al. (LRL) IJPHALSTEINSLID 63 Siena Conf. 1 73 A. Halsteinslid et al. (BERG, CERN, EPOL+) IOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSTEODORO 78 PL 77B 451 D. Teodoro et al. (AMST, CERN, NIJM+) JPBRIEFEL 75 PR D12 1859 E. Briefel et al. (BRAN, UMD, SYRA+)SCHMIDT 73 Purdue Conf. 363 P.E. S
hmidt (BRAN)MERRILL 68 PR 167 1202 D.W. Merrill, J. Button-Shafer (LRL)SMITH 64 PRL 13 61 G.A. Smith et al. (LRL) IJP� (1950) I (JP ) = 12 (??) Status: ∗∗∗We list here everything reported between 1875 and 2000 MeV. Thea

umulated eviden
e for a � near 1950 MeV seems strong enoughto in
lude a � (1950) in the main Baryon Table, but not mu
h 
anbe said about its properties. In fa
t, there may be more than one �near this mass. � (1950) MASS� (1950) MASS� (1950) MASS� (1950) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1950±15 OUR ESTIMATE1950±15 OUR ESTIMATE1950±15 OUR ESTIMATE1950±15 OUR ESTIMATE1955± 6 ADAMOVICH 99B WA89 �− nu
leus, 345 GeV1944± 9 129 BIAGI 87 SPEC �−Be →(�−π+)π−X1963± 5±2 63 BIAGI 87C SPEC �−Be → (�K0) X1937± 7 150 BIAGI 81 SPEC SPS hyperon beam1961±18 139 BRIEFEL 77 HBC 2.87 K− p →�−π+X1936±22 44 BRIEFEL 77 HBC 2.87 K− p → �0π−X1964±10 56 BRIEFEL 77 HBC �(1530)π1900±12 DIBIANCA 75 DBC � π1952±11 25 ROSS 73C (�π)−1956± 6 29 BADIER 72 HBC � π, � ππ, Y K1955±14 21 GOLDWASSER 70 HBC � π1894±18 66 DAUBER 69 HBC � π1930±20 27 ALITTI 68 HBC �−π+1933±16 35 BADIER 65 HBC �−π+



1629162916291629See key on page 601 BaryonParti
le Listings� (1950),� (2030)� (1950) WIDTH� (1950) WIDTH� (1950) WIDTH� (1950) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT60±20 OUR ESTIMATE60±20 OUR ESTIMATE60±20 OUR ESTIMATE60±20 OUR ESTIMATE68±22 ADAMOVICH 99B WA89 �− nu
leus, 345 GeV100±31 129 BIAGI 87 SPEC �−Be →(�− π+)π−X25±15±1.2 63 BIAGI 87C SPEC �−Be → (�K0) X60± 8 150 BIAGI 81 SPEC SPS hyperon beam159±57 139 BRIEFEL 77 HBC 2.87 K− p →�−π+X87±26 44 BRIEFEL 77 HBC 2.87 K− p → �0π−X60±39 56 BRIEFEL 77 HBC �(1530)π63±78 DIBIANCA 75 DBC � π38±10 ROSS 73C (�π)−35±11 29 BADIER 72 HBC � π, � ππ, Y K56±26 21 GOLDWASSER 70 HBC � π98±23 66 DAUBER 69 HBC � π80±40 27 ALITTI 68 HBC �−π+140±35 35 BADIER 65 HBC �−π+� (1950) DECAY MODES� (1950) DECAY MODES� (1950) DECAY MODES� (1950) DECAY MODESMode Fra
tion (�i /�)�1 �K seen�2 � K possibly seen�3 � π seen�4 � (1530)π�5 � ππ (not � (1530) π)� (1950) BRANCHING RATIOS� (1950) BRANCHING RATIOS� (1950) BRANCHING RATIOS� (1950) BRANCHING RATIOS�(� K)/�(�K) �2/�1�(� K)/�(�K) �2/�1�(� K)/�(�K) �2/�1�(� K)/�(�K) �2/�1VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<2.3 90 0 BIAGI 87C SPEC �−Be 116 GeV�(� K)/�total �2/��(� K)/�total �2/��(� K)/�total �2/��(� K)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENTpossibly seenpossibly seenpossibly seenpossibly seen 17 HASSALL 81 HBC K−p 6.5 GeV/
�(� π

)/�(� (1530)π) �3/�4�(� π
)/�(� (1530)π) �3/�4�(� π
)/�(� (1530)π) �3/�4�(� π
)/�(� (1530)π) �3/�4VALUE DOCUMENT ID TECN2.8+0.7

−0.6 APSELL 70 HBC�(� ππ (not � (1530) π))/�(� (1530)π) �5/�4�(� ππ (not � (1530) π))/�(� (1530)π) �5/�4�(� ππ (not � (1530) π))/�(� (1530)π) �5/�4�(� ππ (not � (1530) π))/�(� (1530)π) �5/�4VALUE DOCUMENT ID TECN0.0±0.3 APSELL 70 HBC� (1950) REFERENCES� (1950) REFERENCES� (1950) REFERENCES� (1950) REFERENCESADAMOVICH 99B EPJ C11 271 M.I. Adamovi
h et al. (CERN WA89 Collab.)BIAGI 87 ZPHY C34 15 S.F. Biagi et al. (BRIS, CERN, GEVA+)BIAGI 87C ZPHY C34 175 S.F. Biagi et al. (BRIS, CERN, GEVA+)BIAGI 81 ZPHY C9 305 S.F. Biagi et al. (BRIS, CAVE, GEVA+)HASSALL 81 NP B189 397 J.K. Hassall et al. (CAVE, MSU)BRIEFEL 77 PR D16 2706 E. Briefel et al. (BRAN, UMD, SYRA+)Also Duke Conf. 317 E. Briefel et al. (BRAN, UMD, SYRA+)Hyperon Resonan
es, 1970DIBIANCA 75 NP B98 137 F.A. Dibian
a, R.J. Endorf (CMU)ROSS 73C Purdue Conf. 345 R.T. Ross, J.L. Lloyd, D. Radoji
i
 (OXF)BADIER 72 NP B37 429 J. Badier et al. (EPOL)APSELL 70 PRL 24 777 S.P. Apsell et al. (BRAN, UMD, SYRA+) IGOLDWASSER 70 PR D1 1960 E.L. Goldwasser, P.F. S
hultz (ILL)DAUBER 69 PR 179 1262 P.M. Dauber et al. (LRL) IALITTI 68 PRL 21 1119 J. Alitti et al. (BNL, SYRA) IBADIER 65 PL 16 171 J. Badier et al. (EPOL, SACL, AMST) I� (2030) I (JP ) = 12 ( ≥ 52?)Status: ∗∗∗The eviden
e for this state has been mu
h improved by HEMING-WAY 77, who see an eight standard deviation enhan
ement in � Kand a weaker 
oupling to �K . ALITTI 68 and HEMINGWAY 77observe no signals in the � ππ (or � (1530)π) 
hannel, in 
ontrastto DIBIANCA 75. The de
ay (�/�)K π reported by BARTSCH 69is also not 
on�rmed by HEMINGWAY 77.A moments analysis of the HEMINGWAY 77 data indi
ates at a levelof three standard deviations that J ≥ 5/2.� (2030) MASS� (2030) MASS� (2030) MASS� (2030) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT2025 ± 5 OUR ESTIMATE2025 ± 5 OUR ESTIMATE2025 ± 5 OUR ESTIMATE2025 ± 5 OUR ESTIMATE2025.1± 2.4 OUR AVERAGE2025.1± 2.4 OUR AVERAGE2025.1± 2.4 OUR AVERAGE2025.1± 2.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.2022 ± 7 JENKINS 83 MPS − K−p → K+MM2024 ± 2 200 HEMINGWAY 77 HBC − K−p 4.2 GeV/
2044 ± 8 DIBIANCA 75 DBC −0 � ππ, �∗π

2019 ± 7 15 ROSS 73C HBC −0 �K2030 ±10 42 ALITTI 69 HBC − K−p 3.9{5GeV/
2058 ±17 40 BARTSCH 69 HBC −0 K−p 10 GeV/

WEIGHTED AVERAGE
2025.1±2.4 (Error scaled by 1.3)

BARTSCH 69 HBC
ALITTI 69 HBC 0.2
ROSS 73C HBC 0.8
DIBIANCA 75 DBC 5.6
HEMINGWAY 77 HBC 0.3
JENKINS 83 MPS 0.2

χ2

       7.1
(Confidence Level = 0.132)

2000 2020 2040 2060 2080 2100� (2030) mass (MeV) � (2030) WIDTH� (2030) WIDTH� (2030) WIDTH� (2030) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT20+15
− 5 OUR ESTIMATE20+15
− 5 OUR ESTIMATE20+15
− 5 OUR ESTIMATE20+15
− 5 OUR ESTIMATE21± 6 OUR AVERAGE21± 6 OUR AVERAGE21± 6 OUR AVERAGE21± 6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.16± 5 200 HEMINGWAY 77 HBC − K−p 4.2 GeV/
60±24 DIBIANCA 75 DBC −0 � ππ, �∗π33±17 15 ROSS 73C HBC −0 �K45+40
−20 ALITTI 69 HBC − K−p 3.9{5GeV/
57±30 BARTSCH 69 HBC −0 K−p 10 GeV/


WEIGHTED AVERAGE
21±6 (Error scaled by 1.3)

BARTSCH 69 HBC 1.4
ALITTI 69 HBC 1.4
ROSS 73C HBC 0.5
DIBIANCA 75 DBC 2.6
HEMINGWAY 77 HBC 1.1

χ2

       7.0
(Confidence Level = 0.135)

-50 0 50 100 150 200� (2030) width (MeV)� (2030) DECAY MODES� (2030) DECAY MODES� (2030) DECAY MODES� (2030) DECAY MODESMode Fra
tion (�i /�)�1 �K ∼ 20 %�2 � K ∼ 80 %�3 � π small�4 � (1530)π small�5 � ππ (not � (1530) π) small�6 �K π small�7 � K π small� (2030) BRANCHING RATIOS� (2030) BRANCHING RATIOS� (2030) BRANCHING RATIOS� (2030) BRANCHING RATIOS�(� π
)/[�(�K)+ �(� K)+�(� π

)+�(� (1530)π)
] �3/(�1+�2+�3+�4)�(� π

)/[�(�K)+ �(� K)+�(� π
)+�(� (1530)π)

] �3/(�1+�2+�3+�4)�(� π
)/[�(�K)+ �(� K)+�(� π

)+�(� (1530)π)
] �3/(�1+�2+�3+�4)�(� π

)/[�(�K)+ �(� K)+�(� π
)+�(� (1530)π)

] �3/(�1+�2+�3+�4)VALUE DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.30 ALITTI 69 HBC − 1 standard dev.limit



1630163016301630BaryonParti
le Listings� (2030),� (2120),� (2250),� (2370)�(� π
)/�(� K) �3/�2�(� π
)/�(� K) �3/�2�(� π
)/�(� K) �3/�2�(� π
)/�(� K) �3/�2VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.19 95 HEMINGWAY 77 HBC − K−p 4.2 GeV/
�(�K)/[�(�K)+ �(� K)+�(� π
)+�(� (1530)π)

] �1/(�1+�2+�3+�4)�(�K)/[�(�K)+ �(� K)+�(� π
)+�(� (1530)π)

] �1/(�1+�2+�3+�4)�(�K)/[�(�K)+ �(� K)+�(� π
)+�(� (1530)π)

] �1/(�1+�2+�3+�4)�(�K)/[�(�K)+ �(� K)+�(� π
)+�(� (1530)π)

] �1/(�1+�2+�3+�4)VALUE DOCUMENT ID TECN CHG COMMENT0.25±0.15 ALITTI 69 HBC − K− p 3.9{5GeV/
�(�K)/�(� K) �1/�2�(�K)/�(� K) �1/�2�(�K)/�(� K) �1/�2�(�K)/�(� K) �1/�2VALUE DOCUMENT ID TECN CHG COMMENT0.22±0.09 HEMINGWAY 77 HBC − K− p 4.2 GeV/
�(� K)/[�(�K)+�(� K)+�(� π
)+�(� (1530)π)

] �2/(�1+�2+�3+�4)�(� K)/[�(�K)+�(� K)+�(� π
)+�(� (1530)π)

] �2/(�1+�2+�3+�4)�(� K)/[�(�K)+�(� K)+�(� π
)+�(� (1530)π)

] �2/(�1+�2+�3+�4)�(� K)/[�(�K)+�(� K)+�(� π
)+�(� (1530)π)

] �2/(�1+�2+�3+�4)VALUE DOCUMENT ID TECN CHG COMMENT0.75±0.20 ALITTI 69 HBC − K− p 3.9{5GeV/
�(� (1530)π)/[�(�K)+�(� K)+�(� π
)+�(� (1530)π)

]�4/(�1+�2+�3+�4)�(� (1530)π)/[�(�K)+�(� K)+�(� π
)+�(� (1530)π)

]�4/(�1+�2+�3+�4)�(� (1530)π)/[�(�K)+�(� K)+�(� π
)+�(� (1530)π)

]�4/(�1+�2+�3+�4)�(� (1530)π)/[�(�K)+�(� K)+�(� π
)+�(� (1530)π)

]�4/(�1+�2+�3+�4)VALUE DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.15 ALITTI 69 HBC − 1 standard dev.limit
[�(� (1530)π)+�(� ππ (not � (1530) π))]/�(� K) (�4+�5)/�2[�(� (1530)π)+�(� ππ (not � (1530) π))]/�(� K) (�4+�5)/�2[�(� (1530)π)+�(� ππ (not � (1530) π))]/�(� K) (�4+�5)/�2[�(� (1530)π)+�(� ππ (not � (1530) π))]/�(� K) (�4+�5)/�2VALUE CL% DOCUMENT ID TECN CHG COMMENT
<0.11 95 1 HEMINGWAY 77 HBC − K−p 4.2 GeV/
�(�K π

)/�total �6/��(�K π
)/�total �6/��(�K π
)/�total �6/��(�K π
)/�total �6/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen BARTSCH 69 HBC K−p 10 GeV�(�K π
)/�(� K) �6/�2�(�K π
)/�(� K) �6/�2�(�K π
)/�(� K) �6/�2�(�K π
)/�(� K) �6/�2VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.32 95 HEMINGWAY 77 HBC − K−p 4.2 GeV/
�(� K π
)/�total �7/��(� K π
)/�total �7/��(� K π
)/�total �7/��(� K π
)/�total �7/�VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen BARTSCH 69 HBC K−p 10 GeV�(� K π
)/�(� K) �7/�2�(� K π
)/�(� K) �7/�2�(� K π
)/�(� K) �7/�2�(� K π
)/�(� K) �7/�2VALUE CL% DOCUMENT ID TECN CHG COMMENT

<0.04 95 2 HEMINGWAY 77 HBC − K−p 4.2 GeV/
� (2030) FOOTNOTES� (2030) FOOTNOTES� (2030) FOOTNOTES� (2030) FOOTNOTES1For the de
ay mode �−π+π− only.2 For the de
ay mode �±K−π∓ only.� (2030) REFERENCES� (2030) REFERENCES� (2030) REFERENCES� (2030) REFERENCESJENKINS 83 PRL 51 951 C.M. Jenkins et al. (FSU, BRAN, LBL+)HEMINGWAY 77 PL 68B 197 R.J. Hemingway et al. (AMST, CERN, NIJM+) IJAlso PL 62B 477 J.B. Gay et al. (AMST, CERN, NIJM)DIBIANCA 75 NP B98 137 F.A. Dibian
a, R.J. Endorf (CMU)ROSS 73C Purdue Conf. 345 R.T. Ross, J.L. Lloyd, D. Radoji
i
 (OXF)ALITTI 69 PRL 22 79 J. Alitti et al. (BNL, SYRA) IBARTSCH 69 PL 28B 439 J. Barts
h et al. (AACH, BERL, CERN+)ALITTI 68 PRL 21 1119 J. Alitti et al. (BNL, SYRA)� (2120) I (JP ) = 12 (??)J, P need 
on�rmation.Status: ∗OMITTED FROM SUMMARY TABLE� (2120) MASS� (2120) MASS� (2120) MASS� (2120) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
≈ 2120 OUR ESTIMATE≈ 2120 OUR ESTIMATE≈ 2120 OUR ESTIMATE≈ 2120 OUR ESTIMATE2137±4 18 1 CHLIAPNIK... 79 HBC K+p 32 GeV/
2123±7 2 GAY 76C HBC K−p 4.2 GeV/
� (2120) WIDTH� (2120) WIDTH� (2120) WIDTH� (2120) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
<20 18 1 CHLIAPNIK... 79 HBC K+p 32 GeV/
25±12 2 GAY 76C HBC K−p 4.2 GeV/
� (2120) DECAY MODES� (2120) DECAY MODES� (2120) DECAY MODES� (2120) DECAY MODESMode Fra
tion (�i /�)�1 �K seen

� (2120) BRANCHING RATIOS� (2120) BRANCHING RATIOS� (2120) BRANCHING RATIOS� (2120) BRANCHING RATIOS�(�K)/�total �1/��(�K)/�total �1/��(�K)/�total �1/��(�K)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen 1 CHLIAPNIK... 79 HBC K+p → (�K+) Xseenseenseenseen 2 GAY 76C HBC K−p 4.2 GeV/
� (2120) FOOTNOTES� (2120) FOOTNOTES� (2120) FOOTNOTES� (2120) FOOTNOTES1CHLIAPNIKOV 79 does not uniquely identify the K+ in the (�K+) X �nal state. Italso reports bumps with fewer events at 2240, 2540, and 2830 MeV.2GAY 76C sees a 4-standard deviation signal. However, HEMINGWAY 77, with moreevents from the same experiment points out that the signal is greatly redu
ed if a 
ut ismade on the 4-momentum u. This suggests an anomalous produ
tion me
hanism if the�(2120) is real. � (2120) REFERENCES� (2120) REFERENCES� (2120) REFERENCES� (2120) REFERENCESCHLIAPNIK... 79 NP B158 253 P.V. Chliapnikov et al. (CERN, BELG, MONS)HEMINGWAY 77 PL 68B 197 R.J. Hemingway et al. (AMST, CERN, NIJM+)GAY 76C PL 62B 477 J.B. Gay et al. (AMST, CERN, NIJM)� (2250) I (JP ) = 12 (??)J, P need 
on�rmation.Status: ∗∗OMITTED FROM SUMMARY TABLEThe eviden
e for this state is mixed. BARTSCH 69 sees a bumpof not mu
h statisti
al signi�
an
e in �K π, � K π, and � ππ massspe
tra. GOLDWASSER 70 sees a narrower bump in � ππ at ahigher mass. Not seen by HASSALL 81 with 45 events/µb at 6.5GeV/
 . Seen by JENKINS 83. Perhaps seen by BIAGI 87.� (2250) MASS� (2250) MASS� (2250) MASS� (2250) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
≈ 2250 OUR ESTIMATE≈ 2250 OUR ESTIMATE≈ 2250 OUR ESTIMATE≈ 2250 OUR ESTIMATE2189± 7 66 BIAGI 87 SPEC − �−Be →(�−π+π−)X2214± 5 JENKINS 83 MPS − K−p → K+MM2295±15 18 GOLDWASSER 70 HBC − K−p 5.5 GeV/
2244±52 35 BARTSCH 69 HBC K−p 10 GeV/
� (2250) WIDTH� (2250) WIDTH� (2250) WIDTH� (2250) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT46±27 66 BIAGI 87 SPEC − �−Be →(�−π+π−)X
< 30 GOLDWASSER 70 HBC − K−p 5.5 GeV/
130±80 BARTSCH 69 HBC� (2250) DECAY MODES� (2250) DECAY MODES� (2250) DECAY MODES� (2250) DECAY MODESMode�1 � ππ�2 �K π�3 � K π � (2250) REFERENCES� (2250) REFERENCES� (2250) REFERENCES� (2250) REFERENCESBIAGI 87 ZPHY C34 15 S.F. Biagi et al. (BRIS, CERN, GEVA+)JENKINS 83 PRL 51 951 C.M. Jenkins et al. (FSU, BRAN, LBL+)HASSALL 81 NP B189 397 J.K. Hassall et al. (CAVE, MSU)GOLDWASSER 70 PR D1 1960 E.L. Goldwasser, P.F. S
hultz (ILL)BARTSCH 69 PL 28B 439 J. Barts
h et al. (AACH, BERL, CERN+)� (2370) I (JP ) = 12 (??)J, P need 
on�rmation.Status: ∗∗OMITTED FROM SUMMARY TABLE� (2370) MASS� (2370) MASS� (2370) MASS� (2370) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
≈ 2370 OUR ESTIMATE≈ 2370 OUR ESTIMATE≈ 2370 OUR ESTIMATE≈ 2370 OUR ESTIMATE2356±10 JENKINS 83 MPS − K− p → K+ MM2370 50 HASSALL 81 HBC −0 K− p 6.5 GeV/
2373± 8 94 AMIRZADEH 80 HBC −0 K− p 8.25 GeV/
2392±27 DIBIANCA 75 DBC � 2π� (2370) WIDTH� (2370) WIDTH� (2370) WIDTH� (2370) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT80 50 HASSALL 81 HBC −0 K− p 6.5 GeV/
80±25 94 AMIRZADEH 80 HBC −0 K− p 8.25 GeV/
75±69 DIBIANCA 75 DBC � 2π



1631163116311631See key on page 601 BaryonParti
le Listings� (2370),� (2500)� (2370) DECAY MODES� (2370) DECAY MODES� (2370) DECAY MODES� (2370) DECAY MODESMode Fra
tion (�i /�)�1 �K π seenIn
ludes �4 + �6.�2 � K π seenIn
ludes �5 + �6.�3 
−K�4 �K∗(892)�5 � K∗(892)�6 � (1385)K � (2370) BRANCHING RATIOS� (2370) BRANCHING RATIOS� (2370) BRANCHING RATIOS� (2370) BRANCHING RATIOS�(�K π
)/�total �1/��(�K π
)/�total �1/��(�K π
)/�total �1/��(�K π
)/�total �1/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen AMIRZADEH 80 HBC −0 K− p 8.25 GeV/
�(� K π
)/�total �2/��(� K π
)/�total �2/��(� K π
)/�total �2/��(� K π
)/�total �2/�VALUE DOCUMENT ID TECN CHG COMMENTseenseenseenseen AMIRZADEH 80 HBC −0 K− p 8.25 GeV/


[�(�K π
)+�(� K π

)
]/�total (�1+�2)/�[�(�K π

)+�(� K π
)
]/�total (�1+�2)/�[�(�K π

)+�(� K π
)
]/�total (�1+�2)/�[�(�K π

)+�(� K π
)
]/�total (�1+�2)/�VALUE EVTS DOCUMENT ID TECN CHG COMMENTseenseenseenseen 50 HASSALL 81 HBC −0 K−p 6.5 GeV/
�(
−K)/�total �3/��(
−K)/�total �3/��(
−K)/�total �3/��(
−K)/�total �3/�VALUE DOCUMENT ID TECN CHG COMMENT0.09±0.04 1 KINSON 80 HBC − K− p 8.25 GeV/


[�(�K∗(892))+�(� K∗(892))]/�total (�4+�5)/�[�(�K∗(892))+�(� K∗(892))]/�total (�4+�5)/�[�(�K∗(892))+�(� K∗(892))]/�total (�4+�5)/�[�(�K∗(892))+�(� K∗(892))]/�total (�4+�5)/�VALUE DOCUMENT ID TECN CHG COMMENT0.22±0.13 1 KINSON 80 HBC − K− p 8.25 GeV/
�(� (1385)K)/�total �6/��(� (1385)K)/�total �6/��(� (1385)K)/�total �6/��(� (1385)K)/�total �6/�VALUE DOCUMENT ID TECN CHG COMMENT0.12±0.08 1 KINSON 80 HBC − K− p 8.25 GeV/
� (2370) FOOTNOTES� (2370) FOOTNOTES� (2370) FOOTNOTES� (2370) FOOTNOTES1KINSON 80 is a reanalysis of AMIRZADEH 80 with 50% more events.� (2370) REFERENCES� (2370) REFERENCES� (2370) REFERENCES� (2370) REFERENCESJENKINS 83 PRL 51 951 C.M. Jenkins et al. (FSU, BRAN, LBL+)HASSALL 81 NP B189 397 J.K. Hassall et al. (CAVE, MSU)AMIRZADEH 80 PL 90B 324 J. Amirzadeh et al. (BIRM, CERN, GLAS+) IKINSON 80 Toronto Conf. 263 J.B. Kinson et al. (BIRM, CERN, GLAS+) IDIBIANCA 75 NP B98 137 F.A. Dibian
a, R.J. Endorf (CMU)� (2500) I (JP ) = 12 (??)J, P need 
on�rmation.Status: ∗OMITTED FROM SUMMARY TABLEThe ALITTI 69 peak might be instead the � (2370) or might beneither the � (2370) nor the � (2500).� (2500) MASS� (2500) MASS� (2500) MASS� (2500) MASSVALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT
≈ 2500 OUR ESTIMATE≈ 2500 OUR ESTIMATE≈ 2500 OUR ESTIMATE≈ 2500 OUR ESTIMATE2505±10 JENKINS 83 MPS − K−p → K+MM2430±20 30 ALITTI 69 HBC − K−p 4.6{5GeV/
2500±10 45 BARTSCH 69 HBC −0 K−p 10 GeV/
� (2500) WIDTH� (2500) WIDTH� (2500) WIDTH� (2500) WIDTHVALUE (MeV) DOCUMENT ID TECN CHG150+60

−40 ALITTI 69 HBC −59±27 BARTSCH 69 HBC −0

� (2500) DECAY MODES� (2500) DECAY MODES� (2500) DECAY MODES� (2500) DECAY MODESMode Fra
tion (�i /�)�1 � π�2 �K�3 � K�4 � ππ seen�5 � (1530)π�6 �K π + � K π seen� (2500) BRANCHING RATIOS� (2500) BRANCHING RATIOS� (2500) BRANCHING RATIOS� (2500) BRANCHING RATIOS�(� π
)/[�(� π

)+ �(�K)+�(� K)+�(� (1530)π)
] �1/(�1+�2+�3+�5)�(� π

)/[�(� π
)+ �(�K)+�(� K)+�(� (1530)π)

] �1/(�1+�2+�3+�5)�(� π
)/[�(� π

)+ �(�K)+�(� K)+�(� (1530)π)
] �1/(�1+�2+�3+�5)�(� π

)/[�(� π
)+ �(�K)+�(� K)+�(� (1530)π)

] �1/(�1+�2+�3+�5)VALUE DOCUMENT ID TECN COMMENT
<0.5 ALITTI 69 HBC 1 standard dev. limit�(�K)/[�(� π

)+ �(�K)+�(� K)+�(� (1530)π)
] �2/(�1+�2+�3+�5)�(�K)/[�(� π

)+ �(�K)+�(� K)+�(� (1530)π)
] �2/(�1+�2+�3+�5)�(�K)/[�(� π

)+ �(�K)+�(� K)+�(� (1530)π)
] �2/(�1+�2+�3+�5)�(�K)/[�(� π

)+ �(�K)+�(� K)+�(� (1530)π)
] �2/(�1+�2+�3+�5)VALUE DOCUMENT ID TECN CHG0.5±0.2 ALITTI 69 HBC −�(� K)/[�(� π

)+�(�K)+�(� K)+�(� (1530)π)
] �3/(�1+�2+�3+�5)�(� K)/[�(� π

)+�(�K)+�(� K)+�(� (1530)π)
] �3/(�1+�2+�3+�5)�(� K)/[�(� π

)+�(�K)+�(� K)+�(� (1530)π)
] �3/(�1+�2+�3+�5)�(� K)/[�(� π

)+�(�K)+�(� K)+�(� (1530)π)
] �3/(�1+�2+�3+�5)VALUE DOCUMENT ID TECN CHG0.5±0.2 ALITTI 69 HBC −�(� (1530)π)/[�(� π

)+�(�K)+ �(� K)+�(� (1530)π)
]�5/(�1+�2+�3+�5)�(� (1530)π)/[�(� π

)+�(�K)+ �(� K)+�(� (1530)π)
]�5/(�1+�2+�3+�5)�(� (1530)π)/[�(� π

)+�(�K)+ �(� K)+�(� (1530)π)
]�5/(�1+�2+�3+�5)�(� (1530)π)/[�(� π

)+�(�K)+ �(� K)+�(� (1530)π)
]�5/(�1+�2+�3+�5)VALUE DOCUMENT ID TECN COMMENT

<0.2 ALITTI 69 HBC 1 standard dev. limit�(� ππ
)/�total �4/��(� ππ
)/�total �4/��(� ππ
)/�total �4/��(� ππ
)/�total �4/�VALUE DOCUMENT ID TECN CHGseenseenseenseen BARTSCH 69 HBC −0

[�(�K π
)+�(� K π

)
]/�total �6/�[�(�K π

)+�(� K π
)
]/�total �6/�[�(�K π

)+�(� K π
)
]/�total �6/�[�(�K π

)+�(� K π
)
]/�total �6/�VALUE DOCUMENT ID TECN CHGseenseenseenseen BARTSCH 69 HBC −0� (2500) REFERENCES� (2500) REFERENCES� (2500) REFERENCES� (2500) REFERENCESJENKINS 83 PRL 51 951 C.M. Jenkins et al. (FSU, BRAN, LBL+)ALITTI 69 PRL 22 79 J. Alitti et al. (BNL, SYRA) IBARTSCH 69 PL 28B 439 J. Barts
h et al. (AACH, BERL, CERN+)



1632163216321632BaryonParti
le Listings
− 
 BARYONS
 BARYONS
 BARYONS
 BARYONS(S = −3, I = 0)(S = −3, I = 0)(S = −3, I = 0)(S = −3, I = 0)
− = sss
− I (JP ) = 0(32+) Status: ∗∗∗∗The unambiguous dis
overy in both produ
tion and de
ay was byBARNES 64. The quantum numbers follow from the assignmentof the parti
le to the baryon de
uplet. DEUTSCHMANN 78 andBAUBILLIER 78 rule out J = 1/2 and �nd 
onsisten
y with J =3/2. AUBERT,BE 06 �nds from the de
ay angular distributions of�0
 → 
−K+ and 
0
 → 
−K+ that J = 3/2; this depends onthe spins of the �0
 and 
0
 being J = 1/2, their supposed values.We have omitted some results that have been superseded by laterexperiments. See our earlier editions.
− MASS
− MASS
− MASS
− MASSThe �t assumes the 
− and 
+ masses are the same, and averages themtogether.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1672.45±0.29 OUR FIT1672.45±0.29 OUR FIT1672.45±0.29 OUR FIT1672.45±0.29 OUR FIT1672.43±0.32 OUR AVERAGE1672.43±0.32 OUR AVERAGE1672.43±0.32 OUR AVERAGE1672.43±0.32 OUR AVERAGE1673 ±1 100 HARTOUNI 85 SPEC 80{280 GeV K0LC1673.0 ±0.8 41 BAUBILLIER 78 HBC 8.25 GeV/
 K− p1671.7 ±0.6 27 HEMINGWAY 78 HBC 4.2 GeV/
 K− p1673.4 ±1.7 4 1 DIBIANCA 75 DBC 4.9 GeV/
 K− d1673.3 ±1.0 3 PALMER 68 HBC K−p 4.6, 5 GeV/
1671.8 ±0.8 3 SCHULTZ 68 HBC K−p 5.5 GeV/
1674.2 ±1.6 5 SCOTTER 68 HBC K−p 6 GeV/
1672.1 ±1.0 1 2 FRY 55 EMUL
• • • We do not use the following data for averages, �ts, limits, et
. • • •1671.43±0.78 13 3 DEUTSCH... 73 HBC K−p 10 GeV/
1671.9 ±1.2 6 3 SPETH 69 HBC See DEUTSCHMANN 731673.0 ±8.0 1 ABRAMS 64 HBC → �−π01670.6 ±1.0 1 2 FRY 55B EMUL1615 1 4 EISENBERG 54 EMUL1DIBIANCA 75 gives a mass for ea
h event. We quote the average.2The FRY 55 and FRY 55B events were identi�ed as 
− by ALVAREZ 73. The massesassume de
ay to �K− at rest. For FRY 55B, de
ay from an atomi
 orbit 
ould Dopplershift the K− energy and the resulting 
− mass by several MeV. This shift is negligiblefor FRY 55 be
ause the 
 de
ay is approximately perpendi
ular to its orbital velo
ity,as is known be
ause the � strikes the nu
leus (L.Alvarez, private 
ommuni
ation 1973).We have 
al
ulated the error assuming that the orbital n is 4 or larger.3 Ex
luded from the average; the 
− lifetimes measured by the experiments di�er signif-i
antly from other measurements.4The EISENBERG 54 mass was 
al
ulated for de
ay in 
ight. ALVAREZ 73 has shownthat the 
 intera
ted with an Ag nu
leus to give K−� Ag.
+ MASS
+ MASS
+ MASS
+ MASSThe �t assumes the 
− and 
+ masses are the same, and averages themtogether.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1672.45±0.29 OUR FIT1672.45±0.29 OUR FIT1672.45±0.29 OUR FIT1672.45±0.29 OUR FIT1672.5 ±0.7 OUR AVERAGE1672.5 ±0.7 OUR AVERAGE1672.5 ±0.7 OUR AVERAGE1672.5 ±0.7 OUR AVERAGE1672 ±1 72 HARTOUNI 85 SPEC 80{280 GeV K0LC1673.1 ±1.0 1 FIRESTONE 71B HBC 12 GeV/
 K+ d(m
− − m
+) / m
−

(m
− − m
+) / m
−(m
− − m
+) / m
−
(m
− − m
+) / m
−A test of CPT invarian
e.VALUE DOCUMENT ID TECN COMMENT(−1.44±7.98)× 10−5(−1.44±7.98)× 10−5(−1.44±7.98)× 10−5(−1.44±7.98)× 10−5 CHAN 98 E756 p Be, 800 GeV
− MEAN LIFE
− MEAN LIFE
− MEAN LIFE
− MEAN LIFEMeasurements with an error > 0.1 × 10−10 s have been omitted. The�t assumes the 
− and 
+ mean lives are the same, and averages themtogether.VALUE (10−10 s) EVTS DOCUMENT ID TECN COMMENT0.821±0.011 OUR FIT0.821±0.011 OUR FIT0.821±0.011 OUR FIT0.821±0.011 OUR FIT0.821±0.011 OUR AVERAGE0.821±0.011 OUR AVERAGE0.821±0.011 OUR AVERAGE0.821±0.011 OUR AVERAGE0.817±0.013±0.018 6934 CHAN 98 E756 p Be, 800 GeV0.811±0.037 1096 LUK 88 SPEC pBe 400 GeV0.823±0.013 12k BOURQUIN 84 SPEC SPS hyperon beam

• • • We do not use the following data for averages, �ts, limits, et
. • • •

0.822±0.028 2437 BOURQUIN 79B SPEC See BOURQUIN 84
+ MEAN LIFE
+ MEAN LIFE
+ MEAN LIFE
+ MEAN LIFEThe �t assumes the 
− and 
+ mean lives are the same, and averagesthem together.VALUE (10−10 s) EVTS DOCUMENT ID TECN COMMENT0.821±0.011 OUR FIT0.821±0.011 OUR FIT0.821±0.011 OUR FIT0.821±0.011 OUR FIT0.823±0.031±0.0220.823±0.031±0.0220.823±0.031±0.0220.823±0.031±0.022 1801 CHAN 98 E756 p Be, 800 GeV(τ
− − τ
+) / τ
−
(τ
− − τ
+) / τ
−(τ
− − τ
+) / τ
−
(τ
− − τ
+) / τ
−A test of CPT invarian
e. Our 
al
ulation, from the averages in the pre-
eding two data blo
ks.VALUE DOCUMENT ID0.00±0.05 OUR ESTIMATE0.00±0.05 OUR ESTIMATE0.00±0.05 OUR ESTIMATE0.00±0.05 OUR ESTIMATE
− MAGNETIC MOMENT
− MAGNETIC MOMENT
− MAGNETIC MOMENT
− MAGNETIC MOMENTVALUE (µ

N
) EVTS DOCUMENT ID TECN COMMENT

−2.02 ±0.05 OUR AVERAGE−2.02 ±0.05 OUR AVERAGE−2.02 ±0.05 OUR AVERAGE−2.02 ±0.05 OUR AVERAGE
−2.024±0.056 235k WALLACE 95 SPEC 
− 300{550 GeV
−1.94 ±0.17 ±0.14 25k DIEHL 91 SPEC Spin-transfer produ
tion
− DECAY MODES
− DECAY MODES
− DECAY MODES
− DECAY MODESMode Fra
tion (�i /�) Con�den
e level�1 �K− (67.8±0.7) %�2 � 0

π
− (23.6±0.7) %�3 �−

π
0 ( 8.6±0.4) %�4 �−

π
+

π
− ( 3.7+0.7

−0.6)× 10−4�5 � (1530)0π
− < 7 × 10−5 90%�6 � 0 e−νe ( 5.6±2.8)× 10−3�7 �−

γ < 4.6 × 10−4 90%�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�S = 2 forbidden (S2) modes�8 �π
− S2 < 2.9 × 10−6 90%
− BRANCHING RATIOS
− BRANCHING RATIOS
− BRANCHING RATIOS
− BRANCHING RATIOSThe BOURQUIN 84 values (whi
h in
lude results of BOURQUIN 79B, aseparate experiment) are mu
h more a

urate than any other results, andso the other results have been omitted.�(�K−

)/�total �1/��(�K−
)/�total �1/��(�K−
)/�total �1/��(�K−
)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.678±0.0070.678±0.0070.678±0.0070.678±0.007 14k BOURQUIN 84 SPEC SPS hyperon beam

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.686±0.013 1920 BOURQUIN 79B SPEC See BOURQUIN 84�(� 0
π
−

)/�total �2/��(� 0
π
−

)/�total �2/��(� 0
π
−

)/�total �2/��(� 0
π
−

)/�total �2/�VALUE EVTS DOCUMENT ID TECN COMMENT0.236±0.0070.236±0.0070.236±0.0070.236±0.007 1947 BOURQUIN 84 SPEC SPS hyperon beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.234±0.013 317 BOURQUIN 79B SPEC See BOURQUIN 84�(�−

π
0)/�total �3/��(�−

π
0)/�total �3/��(�−

π
0)/�total �3/��(�−

π
0)/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENT0.086±0.0040.086±0.0040.086±0.0040.086±0.004 759 BOURQUIN 84 SPEC SPS hyperon beam

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.080±0.008 145 BOURQUIN 79B SPEC See BOURQUIN 84�(�−
π
+

π
−

)/�total �4/��(�−
π
+

π
−

)/�total �4/��(�−
π
+

π
−

)/�total �4/��(�−
π
+

π
−

)/�total �4/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.74+0.67
−0.563.74+0.67
−0.563.74+0.67
−0.563.74+0.67
−0.56 100 5 KAMAEV 10 HYCP p Cu, 800 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •4.3 +3.4
−1.3 4 BOURQUIN 84 SPEC SPS hyperon beam5This KAMAEV 10 value uses 76 
−

→ �−π+π− and 24 
+ → �+π−π+ de-
ays. The 
− and 
+ bran
hing fra
tions measurements are statisti
ally equal. Theerrors given 
ombine statisti
al and systemati
 
ontributions. The CP bran
hing-fra
tionasymmetry, (
− − 
+)/sum, is +0.12 ± 0.20.



1633163316331633See key on page 601 BaryonParti
le Listings
−,
(2250)−,
(2380)−�(� (1530)0π
−

)/�total �5/��(� (1530)0π
−

)/�total �5/��(� (1530)0π
−

)/�total �5/��(� (1530)0π
−

)/�total �5/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT
<0.7<0.7<0.7<0.7 90 KAMAEV 10 HYCP p Cu, 800 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.4+5.1

−2.0 4 6 BOURQUIN 84 SPEC SPS hyperon beam6The same 4 events as in the previous mode, with the isospin fa
tor to take into a

ount�(1530)0 → �0π0 de
ays in
luded. BOURQUIN 84 adopted a theoreti
al assumptionthat �(1530)0π− would dominate �−π+π− de
ay.�(� 0 e−νe)/�total �6/��(� 0 e−νe)/�total �6/��(� 0 e−νe)/�total �6/��(� 0 e−νe)/�total �6/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT5.6±2.85.6±2.85.6±2.85.6±2.8 14 BOURQUIN 84 SPEC SPS hyperon beam
• • • We do not use the following data for averages, �ts, limits, et
. • • •

∼ 10 3 BOURQUIN 79B SPEC See BOURQUIN 84�(�−
γ
)/�total �7/��(�−

γ
)/�total �7/��(�−

γ
)/�total �7/��(�−

γ
)/�total �7/�VALUE (units 10−4) CL% EVTS DOCUMENT ID TECN COMMENT

< 4.6< 4.6< 4.6< 4.6 90 0 ALBUQUERQ...94 E761 
− 375 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<22 90 9 BOURQUIN 84 SPEC SPS hyperon beam
<31 90 0 BOURQUIN 79B SPEC See BOURQUIN 84�(�π

−
)/�total �8/��(�π

−
)/�total �8/��(�π

−
)/�total �8/��(�π

−
)/�total �8/��S=2. Forbidden in �rst-order weak intera
tion.VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

< 2.9< 2.9< 2.9< 2.9 90 WHITE 05 HYCP p Cu, 800 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 190 90 BOURQUIN 84 SPEC SPS hyperon beam
<1300 90 BOURQUIN 79B SPEC See BOURQUIN 84
− DECAY PARAMETERS
− DECAY PARAMETERS
− DECAY PARAMETERS
− DECAY PARAMETERS
α FOR 
−

→ �K−α FOR 
−
→ �K−

α FOR 
−
→ �K−α FOR 
−
→ �K−Some early results have been omitted.VALUE EVTS DOCUMENT ID TECN COMMENT0.0180±0.0024 OUR AVERAGE0.0180±0.0024 OUR AVERAGE0.0180±0.0024 OUR AVERAGE0.0180±0.0024 OUR AVERAGE+0.0207±0.0051±0.0081 960k 7 CHEN 05 HYCP p Cu, 800 GeV+0.0178±0.0019±0.0016 4.5M 7 LU 05A HYCP p Cu, 800 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.028 ±0.047 6953 CHAN 98 E756 p Be, 800 GeV
−0.034 ±0.079 1743 LUK 88 SPEC p Be 400 GeV
−0.025 ±0.028 12k BOURQUIN 84 SPEC SPS hyperon beam7The results of CHEN 05 and LU 05A are from di�erent experimental runs.
α FOR 
+

→ �K+α FOR 
+
→ �K+

α FOR 
+
→ �K+α FOR 
+
→ �K+VALUE EVTS DOCUMENT ID TECN COMMENT

−0.0181±0.0028±0.0026−0.0181±0.0028±0.0026−0.0181±0.0028±0.0026−0.0181±0.0028±0.0026 1.89M LU 06 HYCP p Cu, 800 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •+0.017 ±0.077 1823 CHAN 98 E756 p Be, 800 GeV(α + α)/(α − α) in 
−

→ �K−, 
+
→ �K+(α + α)/(α − α) in 
−

→ �K−, 
+
→ �K+(α + α)/(α − α) in 
−

→ �K−, 
+
→ �K+(α + α)/(α − α) in 
−

→ �K−, 
+
→ �K+Zero if CP is 
onserved.VALUE DOCUMENT ID TECN COMMENT

−0.016±0.092±0.089−0.016±0.092±0.089−0.016±0.092±0.089−0.016±0.092±0.089 8 LU 06 HYCP p Cu, 800 GeV8This value uses the results of CHEN 05, LU 05A, and LU 06.
α FOR 
−

→ � 0
π
−α FOR 
−

→ � 0
π
−

α FOR 
−
→ � 0

π
−α FOR 
−

→ � 0
π
−VALUE EVTS DOCUMENT ID TECN COMMENT+0.09±0.14+0.09±0.14+0.09±0.14+0.09±0.14 1630 BOURQUIN 84 SPEC SPS hyperon beam

α FOR 
−
→ �−

π
0α FOR 
−

→ �−
π
0

α FOR 
−
→ �−

π
0α FOR 
−

→ �−
π
0VALUE EVTS DOCUMENT ID TECN COMMENT+0.05±0.21+0.05±0.21+0.05±0.21+0.05±0.21 614 BOURQUIN 84 SPEC SPS hyperon beam
− REFERENCES
− REFERENCES
− REFERENCES
− REFERENCESWe have omitted some papers that have been superseded by later experi-ments. See our earlier editions.KAMAEV 10 PL B693 236 O. Kamaev et al. (FNAL HyperCP Collab.)AUBERT,BE 06 PRL 97 112001 B. Aubert et al. (BABAR Collab.)LU 06 PRL 96 242001 L.C. Lu et al. (FNAL HyperCP Collab.)CHEN 05 PR D71 051102 Y.C. Chen et al. (FNAL HyperCP Collab.)LU 05A PL B617 11 L.C. Lu et al. (FNAL HyperCP Collab.)WHITE 05 PRL 94 101804 C.G. White et al. (FNAL HyperCP Collab.)CHAN 98 PR D58 072002 A.W. Chan et al. (FNAL E756 Collab.)WALLACE 95 PRL 74 3732 N.B. Walla
e et al. (MINN, ARIZ, MICH+)ALBUQUERQ... 94 PR D50 R18 I.F. Albuquerque et al. (FNAL E761 Collab.)DIEHL 91 PRL 67 804 H.T. Diehl et al. (RUTG, FNAL, MICH+)LUK 88 PR D38 19 K.B. Luk et al. (RUTG, WISC, MICH, MINN)HARTOUNI 85 PRL 54 628 E.P. Hartouni et al. (COLU, ILL, FNAL)BOURQUIN 84 NP B241 1 M.H. Bourquin et al. (BRIS, GEVA, HEIDP+)Also PL 87B 297 M.H. Bourquin et al. (BRIS, GEVA, HEIDP+)BOURQUIN 79B PL 88B 192 M.H. Bourquin et al. (BRIS, GEVA, HEIDP+)BAUBILLIER 78 PL 78B 342 M. Baubillier et al. (BIRM, CERN, GLAS+) J

DEUTSCH... 78 PL 73B 96 M. Deuts
hmann et al. (AACH3, BERL, CERN+) JHEMINGWAY 78 NP B142 205 R.J. Hemingway et al. (CERN, ZEEM, NIJM+)DIBIANCA 75 NP B98 137 F.A. Dibian
a, R.J. Endorf (CMU)ALVAREZ 73 PR D8 702 L.W. Alvarez (LBL)DEUTSCH... 73 NP B61 102 M. Deuts
hmann et al. (ABCLV Collab.)FIRESTONE 71B PRL 26 410 I. Firestone et al. (LRL)SPETH 69 PL 29B 252 R. Speth et al. (AACH, BERL, CERN, LOIC+)PALMER 68 PL 26B 323 R.B. Palmer et al. (BNL, SYRA)SCHULTZ 68 PR 168 1509 P.F. S
hultz et al. (ILL, ANL, NWES+)SCOTTER 68 PL 26B 474 D. S
otter et al. (BIRM, GLAS, LOIC+)ABRAMS 64 PRL 13 670 G.S. Abrams et al. (UMD, NRL)BARNES 64 PRL 12 204 V.E. Barnes et al. (BNL)FRY 55 PR 97 1189 W.F. Fry, J. S
hneps, M.S. Swami (WISC)FRY 55B NC 2 346 W.F. Fry, J. S
hneps, M.S. Swami (WISC)EISENBERG 54 PR 96 541 Y. Eisenberg (CORN)
(2250)− I (JP ) = 0(??) Status: ∗∗∗
(2250)− MASS
(2250)− MASS
(2250)− MASS
(2250)− MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2252± 9 OUR AVERAGE2252± 9 OUR AVERAGE2252± 9 OUR AVERAGE2252± 9 OUR AVERAGE2253±13 44 ASTON 87B LASS K−p 11 GeV/
2251± 9±8 78 BIAGI 86B SPEC SPS �− beam
(2250)− WIDTH
(2250)− WIDTH
(2250)− WIDTH
(2250)− WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT55±18 OUR AVERAGE55±18 OUR AVERAGE55±18 OUR AVERAGE55±18 OUR AVERAGE81±38 44 ASTON 87B LASS K−p 11 GeV/
48±20 78 BIAGI 86B SPEC SPS �− beam
(2250)− DECAY MODES
(2250)− DECAY MODES
(2250)− DECAY MODES
(2250)− DECAY MODESMode Fra
tion (�i /�)�1 �−
π
+K− seen�2 � (1530)0K− seen
(2250)− BRANCHING RATIOS
(2250)− BRANCHING RATIOS
(2250)− BRANCHING RATIOS
(2250)− BRANCHING RATIOS�(� (1530)0K−

)/�(�−
π
+K−

) �2/�1�(� (1530)0K−
)/�(�−

π
+K−

) �2/�1�(� (1530)0K−
)/�(�−

π
+K−

) �2/�1�(� (1530)0K−
)/�(�−

π
+K−

) �2/�1VALUE EVTS DOCUMENT ID TECN COMMENT
∼ 1.0 44 ASTON 87B LASS K−p 11 GeV/
0.70±0.20 49 BIAGI 86B SPEC �−Be 116 GeV/

(2250)− REFERENCES
(2250)− REFERENCES
(2250)− REFERENCES
(2250)− REFERENCESASTON 87B PL B194 579 D. Aston et al. (SLAC, NAGO, CINC, INUS)BIAGI 86B ZPHY C31 33 S.F. Biagi et al. (LOQM, GEVA, RAL+)
(2380)− Status: ∗∗OMITTED FROM SUMMARY TABLE
(2380)− MASS
(2380)− MASS
(2380)− MASS
(2380)− MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
≈ 2380 OUR ESTIMATE≈ 2380 OUR ESTIMATE≈ 2380 OUR ESTIMATE≈ 2380 OUR ESTIMATE2384±9±8 45 BIAGI 86B SPEC SPS �− beam
(2380)− WIDTH
(2380)− WIDTH
(2380)− WIDTH
(2380)− WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT26±23 45 BIAGI 86B SPEC SPS �− beam
(2380)− DECAY MODES
(2380)− DECAY MODES
(2380)− DECAY MODES
(2380)− DECAY MODESMode Fra
tion (�i /�)�1 �−

π
+K−�2 � (1530)0K− seen�3 �−K∗(892)0 
(2380)− BRANCHING RATIOS
(2380)− BRANCHING RATIOS
(2380)− BRANCHING RATIOS
(2380)− BRANCHING RATIOS�(� (1530)0K−

)/�(�−
π
+K−

) �2/�1�(� (1530)0K−
)/�(�−

π
+K−

) �2/�1�(� (1530)0K−
)/�(�−

π
+K−

) �2/�1�(� (1530)0K−
)/�(�−

π
+K−

) �2/�1VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<0.44 90 9 BIAGI 86B SPEC �−Be 116 GeV/
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(2380)−,
(2470)−�(�−K∗(892)0)/�(�−
π
+K−

) �3/�1�(�−K∗(892)0)/�(�−
π
+K−

) �3/�1�(�−K∗(892)0)/�(�−
π
+K−

) �3/�1�(�−K∗(892)0)/�(�−
π
+K−

) �3/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.5±0.3 21 BIAGI 86B SPEC �−Be 116 GeV/

(2380)− REFERENCES
(2380)− REFERENCES
(2380)− REFERENCES
(2380)− REFERENCESBIAGI 86B ZPHY C31 33 S.F. Biagi et al. (LOQM, GEVA, RAL+)
(2470)− Status: ∗∗OMITTED FROM SUMMARY TABLEA peak in the 
−
π
+

π
− mass spe
trum with a signal signi�
an
e
laimed to be at least 5.5 standard deviations. There is no reason toseriously doubt the existen
e of this state, but unless the eviden
eis overwhelming we usually wait for 
on�rmation from a se
ond ex-periment before elevating peaks to the Summary Table.
(2470)− MASS
(2470)− MASS
(2470)− MASS
(2470)− MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2474±122474±122474±122474±12 59 ASTON 88G LASS K−p 11 GeV/



(2470)− WIDTH
(2470)− WIDTH
(2470)− WIDTH
(2470)− WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT72±3372±3372±3372±33 59 ASTON 88G LASS K−p 11 GeV/

(2470)− DECAY MODES
(2470)− DECAY MODES
(2470)− DECAY MODES
(2470)− DECAY MODESMode�1 
−
π
+

π
− 
(2470)− REFERENCES
(2470)− REFERENCES
(2470)− REFERENCES
(2470)− REFERENCESASTON 88G PL B215 799 D. Aston et al. (SLAC, NAGO, CINC, INUS)



1635163516351635See key on page 601 Baryon Parti
le ListingsCharmed BaryonsCHARMED BARYONSCHARMED BARYONSCHARMED BARYONSCHARMED BARYONS(C = +1)(C = +1)(C = +1)(C = +1)�+
 = ud 
 , �++
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 , �0
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 ,�+
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 , � 0
 = d s 
 , 
0
 = s s 

CHARMED BARYONS

Revised March 2012 by C.G. Wohl (LBNL).

(Note added November 2015.) Since the 2014 Review, there

have been three papers that improved the values of the masses

and/or widths of the Σ(2455), Σ(2520), Ξ+
c , Ξ0

c , Ξc(2645),

Ξc(2970), Ξc(3055), and Ξc(3080). See the Listings for those

particles.
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Fig. 1. (a) The known charmed baryons, and (b) the lightest “4-star” strange baryons. Note that there are two JP = 1/2+ Ξc states,
and that the lightest Ωc does not have J = 3/2. The JP = 1/2+ states, all tabbed with a circle, belong to the SU(4) multiplet that
includes the nucleon; states with a circle with the same fill belong to the same SU(3) multiplet within that SU(4) multiplet. Similar
remarks apply to the other states: same shape of tab, same SU(4) multiplet; same fill of that shape, same SU(3) multiplet. The
JP = 1/2− and 3/2− states tabbed with triangles complete two SU(4) 4̄ multiplets.

But far and away the most important advance for c-baryons

this edition is the first ever (!) model-independent measure-

ment of a Λ+
c branching fraction. The anchor for all the other

Λ+
c fractions is the pK−π+ fraction. Our value for many edi-

tions, (5.0 ± 1.3)%, was cobbled together from two ancient

model-dependent measurements. Now, thanks to the Belle ex-

periment, it is (6.84± 0.24±0.21
±0.27)%. This fraction is 37% larger

than the old fraction, and its error is only 27% as large as the

old error.

There are 18 known charmed baryons, and four other

candidates not well enough established to be promoted to the

Summary Tables.∗ Fig. 1(a) shows the mass spectrum, and for

comparison Fig. 1(b) shows the spectrum of the lightest strange

baryons. The Λc and Σc spectra ought to look much like the Λ

and Σ spectra, since a Λc or a Σc differs from a Λ or a Σ only

by the replacement of the s quark with a c quark. However,

a Ξ or an Ω has more than one s quark, only one of which is

changed to a c quark to make a Ξc or an Ωc. Thus the Ξc and

Ωc spectra ought to be richer than the Ξ and Ω spectra.∗∗

Before discussing the observed spectra, we review the theory

of SU(4) multiplets, which tells what charmed baryons to

expect; this is essential, because few of the spin-parity values

given in Fig. 1(a) have been measured.

Rather, they have been assigned in accord with expectations

of the theory. However, they are all very likely as shown (see

below).

SU(4) multiplets—Baryons made from u, d, s, and c quarks

belong to SU(4) multiplets. The multiplet numerology, analo-

gous to 3×3×3 = 10+81+82+1 for the subset of baryons made

from just u, d, and s quarks, is 4 × 4 × 4 = 20 + 20 ′
1 + 20 ′

2 + 4̄.

Figure 2(a) shows the 20-plet whose bottom level is an SU(3)

decuplet, such as the decuplet that includes the ∆(1232).

Figure 2(b) shows the 20 ′-plet whose bottom level is an

SU(3) octet, such as the octet that includes the nucleon.
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Figure 2(c) shows the 4̄ multiplet, an inverted tetrahedron.

One level up from the bottom level of each multiplet are the

baryons with one c quark. All the baryons in a given multiplet

have the same spin and parity. Each N or ∆ or SU(3)-singlet-Λ

resonance calls for another 20 ′- or 20- or 4̄-plet, respectively.

The flavor symmetries shown in Fig. 2 are of course badly

broken, but the figure is the simplest way to see what charmed

baryons should exist. For example, from Fig. 2(b), we expect

to find, in the same JP = 1/2+ 20 ′-plet as the nucleon, a Λc, a

Σc, two Ξc’s, and an Ωc. Note that this Ωc has JP = 1/2+ and

is not in the same SU(4) multiplet as the famous JP = 3/2+

Ω−.

Figure 2: SU(4) multiplets of baryons made
of u, d, s, and c quarks. (a) The 20-plet with
an SU(3) decuplet on the lowest level. (b) The
20 ′-plet with an SU(3) octet on the lowest level.
(c) The 4-plet. Note that here and in Fig. 3,
but not in Fig. 1, each charge state is shown
separately.

Figure 3 shows in more detail the middle level of the 20 ′-plet

of Fig. 2(b); it splits apart into two SU(3) multiplets, a 3̄ and a

6. The states of the 3̄ are antisymmetric under the interchange

of the two light quarks (the u, d, and s quarks), whereas the

states of the 6 are symmetric under this interchange. We use

a prime to distinguish the Ξc in the 6 from the one in the 3̄.

The observed spectra—(1) The parity of the lightest Λc is

defined to be positive (as are the parities of the p, n, and Λ);

the limited evidence about its spin is consistent with J = 1/2.

However, few of the JP quantum numbers given in Fig. 1(a)

have been measured. Models using spin-spin and spin-orbit

interactions between the quarks, with parameters determined

using a few of the masses as input, lead to the JP assignments

shown.† There are no surprises: the JP = 1/2+ states come

first, then the JP = 3/2+ states . . .

(2) There is, however, evidence that many of the JP

assignments in Fig. 1(a) must be correct. As is well known, the

successive mass differences between the JP = 3/2+ particles,

the ∆(1232)−, Σ(1385)−, Ξ(1535)−, and Ω−, which lie along

the lower left edge of the 20-plet in Fig. 2(a), should according

Ξ +
c

Σ ++
c

uscdsc dsc usc

uucudc

ssc

ddc

Σ +
cΛ+

c
udc

Ξc
0 Ξ'c

0 Ξ'c
+

Ω 0
c

Σ 0
c

(b)(a)

Figure 3: The SU(3) multiplets on the
second level of the SU(4) multiplet of Fig. 2(b).
The Λc and Ξc tabbed with open circles in
Fig. 1(a) complete a JP = 1/2+ SU(3) 3-plet,
as in (a) here. The Σc, Ξc, and Ωc tabbed with
closed circles in Fig. 1(a) complete a JP = 1/2+

SU(3) 6-plet, as in (b) here. Together the nine
particles complete the charm = +1 level of a
JP = 1/2+ SU(4) 20′-plet, as in Fig. 2(b).

to SU(3) be about equal; and indeed experimentally they

nearly are. In the same way, the mass differences between the

JP = 1/2+ Σc(2455)0, Ξ′0
c , and Ω0

c ,
‡ the particles along the left

edge of Fig. 3(b), should be about equal—assuming, of course,

that they do all have the same JP . The measured differences

are 125.0 ± 2.9 MeV and 117.3 ± 3.4 MeV—not perfect, but

close. Similarly, the mass differences between the presumed

JP = 3/2+ Σc(2520)0, Ξc(2645)0, and Ωc(2770)0 are 127.1±0.8

MeV and 120.0 ± 2.1 MeV. In Fig. 1(a), these two sets of

charm particles are tabbed with solid circles and solid squares.

(3) Other evidence comes from the decay of the Λc(2593).

The only allowed strong decay is Λc(2593)+ → Λ+
c ππ, and this

appears to be dominated by the submode Σc(2455)π, despite

little available phase space for the latter (the “Q” is about

2 MeV, the c.m. decay momentum about 20 MeV/c). Thus

the decay is almost certainly s-wave, which, assuming that the

Σc(2455) does indeed have JP = 1/2+, makes JP = 1/2− for

the Λc(2593).

Footnotes:
∗ The unpromoted states are a Λc(2765)+, a Ξc(2930), and

a Ξc(3123). There is also very weak evidence for a baryon

with two c quarks, a Ξ+
cc at 3519 MeV. See the Particle

Listings.
∗∗ For example, there are three Ω0

c states (properly sym-

metrized states of ssc, scs, and css) corresponding to each

Ω− (sss) state.
† This is not the place to discuss the details of the models,

nor to attempt a guide to the literature. See the discovery

papers of the various charmed baryons for references to the

models that lead to the quantum-number assignments.
‡ A reminder about the Particle Data Group naming scheme:

A particle has its mass as part of its name if and only if it

decays strongly. Thus Σ(1385) and Σc(2455) but Ω− and

Ξ ′
c.
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�+
 I (JP ) = 0(12+) Status: ∗∗∗∗The parity of the �+
 is de�ned to be positive (as are the parities ofthe proton, neutron, and �). The quark 
ontent is ud 
 . Results ofan analysis of pK−π+ de
ays (JEZABEK 92) are 
onsistent with J= 1/2. Nobody doubts that the spin is indeed 1/2.We have omitted some results that have been superseded by laterexperiments. The omitted results may be found in earlier editions.�+
 MASS�+
 MASS�+
 MASS�+
 MASSOur value in 2004, 2284.9±0.6 MeV, was the average of the measurementsnow �led below as \not used." The BABAR measurement is so mu
hbetter that we use it alone. Note that it is about 2.6 (old) standarddeviations above the 2004 value.The �t also in
ludes �
{�+
 and �∗+
 {�+
 mass-di�eren
e measurements,but this doesn't a�e
t the �+
 mass. The new (in 2006) �+
 mass simplypushes all those other masses higher.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2286.46±0.14 OUR FIT2286.46±0.14 OUR FIT2286.46±0.14 OUR FIT2286.46±0.14 OUR FIT2286.46±0.142286.46±0.142286.46±0.142286.46±0.14 4891 1 AUBERT,B 05S BABR �K0S K+ and �0K0S K+
• • • We do not use the following data for averages, �ts, limits, et
. • • •2284.7 ±0.6 ±0.7 1134 AVERY 91 CLEO Six modes2281.7 ±2.7 ±2.6 29 ALVAREZ 90B NA14 pK−π+2285.8 ±0.6 ±1.2 101 BARLAG 89 NA32 pK−π+2284.7 ±2.3 ±0.5 5 AGUILAR-... 88B LEBC pK−π+2283.1 ±1.7 ±2.0 628 ALBRECHT 88C ARG pK−π+, pK0, �3π2286.2 ±1.7 ±0.7 97 ANJOS 88B E691 pK−π+2281 ±3 2 JONES 87 HBC pK−π+2283 ±3 3 BOSETTI 82 HBC pK−π+2290 ±3 1 CALICCHIO 80 HYBR pK−π+1AUBERT,B 05S uses low-Q �K0S K+ and �0K0S K+ de
ays to minimize systemati
errors. The error above in
ludes systemati
 as well as statisti
al errors. Many 
ross
he
ks and adjustments to properties of the BABAR dete
tor, as well as the large numberof 
lean events, make this by far the best measurement of the �+
 mass.�+
 MEAN LIFE�+
 MEAN LIFE�+
 MEAN LIFE�+
 MEAN LIFEMeasurements with an error ≥ 100 × 10−15 s or with fewer than 20events have been omitted from the Listings.VALUE (10−15 s) EVTS DOCUMENT ID TECN COMMENT200 ± 6 OUR AVERAGE200 ± 6 OUR AVERAGE200 ± 6 OUR AVERAGE200 ± 6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.204.6± 3.4± 2.5 8034 LINK 02C FOCS pK−π+198.1± 7.0± 5.6 1630 KUSHNIR... 01 SELX �+
 → pK−π+179.6± 6.9± 4.4 4749 MAHMOOD 01 CLE2 e+ e− ≈ �(4S)215 ±16 ± 8 1340 FRABETTI 93D E687 γBe, �+
 → pK−π+
• • • We do not use the following data for averages, �ts, limits, et
. • • •180 ±30 ±30 29 ALVAREZ 90 NA14 γ, �+
 → pK−π+200 ±30 ±30 90 FRABETTI 90 E687 γBe, �+
 → pK−π+196 +23

−20 101 BARLAG 89 NA32 pK−π++ 
.
.220 ±30 ±20 97 ANJOS 88B E691 pK−π++ 
.
.
WEIGHTED AVERAGE
200±6 (Error scaled by 1.6)

FRABETTI 93D E687 0.7
MAHMOOD 01 CLE2 6.1
KUSHNIR... 01 SELX 0.0
LINK 02C FOCS 1.3

χ2

       8.1
(Confidence Level = 0.043)

140 160 180 200 220 240 260 280�+
 mean life

�+
 DECAY MODES�+
 DECAY MODES�+
 DECAY MODES�+
 DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e levelHadroni
 modes with a p: S = −1 �nal statesHadroni
 modes with a p: S = −1 �nal statesHadroni
 modes with a p: S = −1 �nal statesHadroni
 modes with a p: S = −1 �nal states�1 pK0S ( 1.58± 0.08) % S=1.2�2 pK−π+ ( 6.35± 0.33) % S=1.4�3 pK∗(892)0 [a℄ ( 1.98± 0.28) %�4 �(1232)++K− ( 1.09± 0.25) %�5 �(1520)π+ [a℄ ( 2.2 ± 0.5 ) %�6 pK−π+nonresonant ( 3.5 ± 0.4 ) %�7 pK0S π0 ( 1.99± 0.13) % S=1.1�8 pK0 η ( 1.6 ± 0.4 ) %�9 pK0S π+π− ( 1.66± 0.12) % S=1.1�10 pK−π+π0 ( 4.9 ± 0.4 ) % S=1.3�11 pK∗(892)−π+ [a℄ ( 1.5 ± 0.5 ) %�12 p (K−π+)nonresonant π0 ( 4.6 ± 0.9 ) %�13 �(1232)K∗(892) seen�14 pK−2π+π− ( 1.4 ± 1.0 )× 10−3�15 pK−π+2π0 ( 1.0 ± 0.5 ) %�16 pK−π+3π0Hadroni
 modes with a p: S = 0 �nal statesHadroni
 modes with a p: S = 0 �nal statesHadroni
 modes with a p: S = 0 �nal statesHadroni
 modes with a p: S = 0 �nal states�17 pπ+π− ( 4.4 ± 2.3 )× 10−3�18 p f0(980) [a℄ ( 3.5 ± 2.3 )× 10−3�19 p2π+2π− ( 2.3 ± 1.5 )× 10−3�20 pK+K− (10 ± 4 )× 10−4�21 pφ [a℄ ( 1.04± 0.21)× 10−3�22 pK+K−non-φ ( 4.4 ± 1.8 )× 10−4Hadroni
 modes with a hyperon: S = −1 �nal statesHadroni
 modes with a hyperon: S = −1 �nal statesHadroni
 modes with a hyperon: S = −1 �nal statesHadroni
 modes with a hyperon: S = −1 �nal states�23 �π+ ( 1.30± 0.07) % S=1.2�24 �π+π0 ( 7.1 ± 0.4 ) % S=1.2�25 �ρ+ < 6 % CL=95%�26 �π− 2π+ ( 3.7 ± 0.4 ) % S=1.9�27 � (1385)+π+π− , �∗+
→�π+ ( 1.0 ± 0.5 ) %�28 � (1385)−2π+ , �∗−

→ �π− ( 7.8 ± 1.6 )× 10−3�29 �π+ ρ0 ( 1.5 ± 0.6 ) %�30 � (1385)+ρ0 , �∗+
→ �π+ ( 5 ± 4 )× 10−3�31 �π− 2π+nonresonant < 1.1 % CL=90%�32 �π−π0 2π+ total ( 2.3 ± 0.8 ) %�33 �π+ η [a℄ ( 2.3 ± 0.5 ) %�34 � (1385)+η [a℄ ( 1.08± 0.32) %�35 �π+ω [a℄ ( 1.5 ± 0.5 ) %�36 �π−π0 2π+ , no η or ω < 8 × 10−3 CL=90%�37 �K+K0 ( 5.7 ± 1.1 )× 10−3 S=2.0�38 � (1690)0K+ , � ∗0
→ �K0 ( 1.6 ± 0.5 )× 10−3�39 �0π+ ( 1.29± 0.07) % S=1.1�40 �+π0 ( 1.24± 0.10) %�41 �+η ( 7.0 ± 2.3 )× 10−3�42 �+π+π− ( 4.57± 0.29) % S=1.2�43 �+ρ0 < 1.7 % CL=95%�44 �−2π+ ( 2.1 ± 0.4 ) %�45 �0π+π0 ( 2.3 ± 0.9 ) %�46 �0π−2π+ ( 1.13± 0.29) %�47 �+π+π−π0 |�48 �+ω [a℄ ( 1.74± 0.21) %�49 �+K+K− ( 3.6 ± 0.4 )× 10−3�50 �+φ [a℄ ( 4.0 ± 0.6 )× 10−3 S=1.1�51 � (1690)0K+ , � ∗0
→�+K−

( 1.03± 0.26)× 10−3�52 �+K+K−nonresonant < 8 × 10−4 CL=90%�53 � 0K+ ( 5.0 ± 1.2 )× 10−3�54 �−K+π+ ( 6.2 ± 0.6 )× 10−3 S=1.1�55 � (1530)0K+ [a℄ ( 3.3 ± 0.9 )× 10−3Hadroni
 modes with a hyperon: S = 0 �nal statesHadroni
 modes with a hyperon: S = 0 �nal statesHadroni
 modes with a hyperon: S = 0 �nal statesHadroni
 modes with a hyperon: S = 0 �nal states�56 �K+ ( 6.1 ± 1.2 )× 10−4�57 �K+π+π− < 5 × 10−4 CL=90%�58 �0K+ ( 5.2 ± 0.8 )× 10−4�59 �0K+π+π− < 2.6 × 10−4 CL=90%�60 �+K+π− ( 2.1 ± 0.6 )× 10−3�61 �+K∗(892)0 [a℄ ( 3.6 ± 1.0 )× 10−3�62 �−K+π+ < 1.2 × 10−3 CL=90%Doubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modes�63 pK+π− < 2.9 × 10−4 CL=90%
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 Semileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modes�64 �e+ νe ( 3.6 ± 0.4 ) %�65 �µ+νµ In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modes�66 e+ anything ( 4.5 ± 1.7 ) %�67 pe+ anything ( 1.8 ± 0.9 ) %�68 �e+ anything�69 p anything (50 ±16 ) %�70 p anything (no �) (12 ±19 ) %�71 p hadrons�72 n anything (50 ±16 ) %�73 n anything (no �) (29 ±17 ) %�74 � anything (35 ±11 ) % S=1.4�75 �± anything [b℄ (10 ± 5 ) %�76 3prongs (24 ± 8 ) %�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, or�C = 1 weak neutral 
urrent (C1) modes, orLepton Family number (LF ), or Lepton number (L), orLepton Family number (LF ), or Lepton number (L), orLepton Family number (LF ), or Lepton number (L), orLepton Family number (LF ), or Lepton number (L), orBaryon number (B) violating modesBaryon number (B) violating modesBaryon number (B) violating modesBaryon number (B) violating modes�77 pe+ e− C1 < 5.5 × 10−6 CL=90%�78 pµ+µ− C1 < 4.4 × 10−5 CL=90%�79 pe+µ− LF < 9.9 × 10−6 CL=90%�80 pe−µ+ LF < 1.9 × 10−5 CL=90%�81 p2e+ L,B < 2.7 × 10−6 CL=90%�82 p2µ+ L,B < 9.4 × 10−6 CL=90%�83 pe+µ+ L,B < 1.6 × 10−5 CL=90%�84 �−µ+µ+ L < 7.0 × 10−4 CL=90%[a℄ This bran
hing fra
tion in
ludes all the de
ay modes of the �nal-stateresonan
e.[b℄ The value is for the sum of the 
harge states or parti
le/antiparti
lestates indi
ated.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 36 bran
hing ratios uses 57 measurements andone 
onstraint to determine 19 parameters. The overall �t has a
χ2 = 39.9 for 39 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients

〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.x2 50x7 43 59x9 48 57 37x10 30 83 48 54x23 46 72 47 36 53x24 37 66 44 31 52 69x26 53 13 13 44 9 15 6x37 14 24 15 13 18 27 20 4x39 49 58 40 36 42 74 59 28 20x40 36 42 32 25 30 35 34 14 11 31x42 42 79 48 52 72 54 52 18 18 45x44 15 29 17 17 24 20 19 4 7 17x46 17 11 8 15 9 9 7 25 3 11x48 19 31 19 24 29 20 19 13 7 17x49 22 41 25 26 37 28 27 9 9 24x50 17 33 20 22 30 23 22 8 8 19x54 26 43 27 22 33 53 38 8 15 40x1 x2 x7 x9 x10 x23 x24 x26 x37 x39x42 34x44 12 26x46 7 11 3x48 15 28 9 6x49 18 49 13 5 14x50 14 42 11 4 12 20x54 20 33 12 5 12 17 14x40 x42 x44 x46 x48 x49 x50

�+
 BRANCHING RATIOS�+
 BRANCHING RATIOS�+
 BRANCHING RATIOS�+
 BRANCHING RATIOSA few really obsolete results have been omitted.Hadroni
 modes with a p: S = −1 �nal statesHadroni
 modes with a p: S = −1 �nal statesHadroni
 modes with a p: S = −1 �nal statesHadroni
 modes with a p: S = −1 �nal states�(pK0S)/�total �1/��(pK0S)/�total �1/��(pK0S)/�total �1/��(pK0S)/�total �1/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.58±0.08 OUR FIT1.58±0.08 OUR FIT1.58±0.08 OUR FIT1.58±0.08 OUR FIT Error in
ludes s
ale fa
tor of 1.2.1.52±0.08±0.031.52±0.08±0.031.52±0.08±0.031.52±0.08±0.03 1243 ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV�(pK0S)/�(pK−π+) �1/�2�(pK0S)/�(pK−π+) �1/�2�(pK0S)/�(pK−π+) �1/�2�(pK0S)/�(pK−π+) �1/�2Measurements given as a K0 ratio have been divided by 2 to 
onvert to a K0S ratio.VALUE EVTS DOCUMENT ID TECN COMMENT0.249±0.013 OUR FIT0.249±0.013 OUR FIT0.249±0.013 OUR FIT0.249±0.013 OUR FIT Error in
ludes s
ale fa
tor of 1.5.0.234±0.020 OUR AVERAGE0.234±0.020 OUR AVERAGE0.234±0.020 OUR AVERAGE0.234±0.020 OUR AVERAGE0.23 ±0.01 ±0.02 1025 ALAM 98 CLE2 e+ e− ≈ �(4S)0.22 ±0.04 ±0.03 133 AVERY 91 CLEO e+ e− 10.5 GeV0.28 ±0.09 ±0.07 45 ANJOS 90 E691 γBe 70{260 GeV0.31 ±0.08 ±0.02 73 ALBRECHT 88C ARG e+ e− 10 GeV�(pK−π+)/�total �2/��(pK−π+)/�total �2/��(pK−π+)/�total �2/��(pK−π+)/�total �2/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT6.35±0.33 OUR FIT6.35±0.33 OUR FIT6.35±0.33 OUR FIT6.35±0.33 OUR FIT Error in
ludes s
ale fa
tor of 1.4.6.3 ±0.5 OUR AVERAGE6.3 ±0.5 OUR AVERAGE6.3 ±0.5 OUR AVERAGE6.3 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.0.5.84±0.27±0.23 6.3k ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV6.84±0.24+0.21
−0.27 1.4k 1 ZUPANC 14 BELL e+ e− → D(∗)− pπ+ re
oil

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.0 ±1.3 2 PDG 02 See footnote1This ZUPANC 14 value is the FIRST-EVER model-independent measurement of a �+
bran
hing fra
tion.2 See the note by P. Bur
hat, "�+
 Bran
hing Fra
tions," in any edition of the Reviewfrom 2002 through 2014 for how this value was obtained. It is now obsolete.�(pK∗(892)0)/�(pK−π+) �3/�2�(pK∗(892)0)/�(pK−π+) �3/�2�(pK∗(892)0)/�(pK−π+) �3/�2�(pK∗(892)0)/�(pK−π+) �3/�2Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.31±0.04 OUR AVERAGE0.31±0.04 OUR AVERAGE0.31±0.04 OUR AVERAGE0.31±0.04 OUR AVERAGE0.29±0.04±0.03 1 AITALA 00 E791 π−N, 500 GeV0.35+0.06
−0.07±0.03 39 BOZEK 93 NA32 π−Cu 230 GeV0.42±0.24 12 BASILE 81B CNTR pp → �+
 e−X

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.35±0.11 BARLAG 90D NA32 See BOZEK 931AITALA 00 makes a 
oherent 5-dimensional amplitude analysis of 946 ± 38 �+
 →pK−π+ de
ays.�(�(1232)++K−
)/�(pK−π+) �4/�2�(�(1232)++K−
)/�(pK−π+) �4/�2�(�(1232)++K−
)/�(pK−π+) �4/�2�(�(1232)++K−
)/�(pK−π+) �4/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.17±0.04 OUR AVERAGE0.17±0.04 OUR AVERAGE0.17±0.04 OUR AVERAGE0.17±0.04 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.0.18±0.03±0.03 1 AITALA 00 E791 π−N, 500 GeV0.12+0.04

−0.05±0.05 14 BOZEK 93 NA32 π−Cu 230 GeV0.40±0.17 17 BASILE 81B CNTR pp → �+
 e−X1AITALA 00 makes a 
oherent 5-dimensional amplitude analysis of 946 ± 38 �+
 →pK−π+ de
ays.�(�(1520)π+)/�(pK−π+) �5/�2�(�(1520)π+)/�(pK−π+) �5/�2�(�(1520)π+)/�(pK−π+) �5/�2�(�(1520)π+)/�(pK−π+) �5/�2Unseen de
ay modes of the �(1520) are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.35±0.08 OUR AVERAGE0.35±0.08 OUR AVERAGE0.35±0.08 OUR AVERAGE0.35±0.08 OUR AVERAGE0.34±0.08±0.05 1 AITALA 00 E791 π−N, 500 GeV0.40+0.18
−0.13±0.09 12 BOZEK 93 NA32 π−Cu 230 GeV1AITALA 00 makes a 
oherent 5-dimensional amplitude analysis of 946 ± 38 �+
 →pK−π+ de
ays.�(pK−π+nonresonant)/�(pK−π+) �6/�2�(pK−π+nonresonant)/�(pK−π+) �6/�2�(pK−π+nonresonant)/�(pK−π+) �6/�2�(pK−π+nonresonant)/�(pK−π+) �6/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.55±0.06 OUR AVERAGE0.55±0.06 OUR AVERAGE0.55±0.06 OUR AVERAGE0.55±0.06 OUR AVERAGE0.55±0.06±0.04 1 AITALA 00 E791 π−N, 500 GeV0.56+0.07
−0.09±0.05 71 BOZEK 93 NA32 π−Cu 230 GeV1AITALA 00 makes a 
oherent 5-dimensional amplitude analysis of 946 ± 38 �+
 →pK−π+ de
ays.�(pK0S π0)/�total �7/��(pK0S π0)/�total �7/��(pK0S π0)/�total �7/��(pK0S π0)/�total �7/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.99±0.13 OUR FIT1.99±0.13 OUR FIT1.99±0.13 OUR FIT1.99±0.13 OUR FIT Error in
ludes s
ale fa
tor of 1.1.1.87±0.13±0.051.87±0.13±0.051.87±0.13±0.051.87±0.13±0.05 558 ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV
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�(pK0S π0)/�(pK−π+) �7/�2�(pK0S π0)/�(pK−π+) �7/�2�(pK0S π0)/�(pK−π+) �7/�2�(pK0S π0)/�(pK−π+) �7/�2Measurements given as a K0 ratio have been divided by 2 to 
onvert to a K0S ratio.VALUE EVTS DOCUMENT ID TECN COMMENT0.313±0.018 OUR FIT0.313±0.018 OUR FIT0.313±0.018 OUR FIT0.313±0.018 OUR FIT0.33 ±0.03 ±0.040.33 ±0.03 ±0.040.33 ±0.03 ±0.040.33 ±0.03 ±0.04 774 ALAM 98 CLE2 e+ e− ≈ �(4S)�(pK0 η
)/�(pK−π+) �8/�2�(pK0 η
)/�(pK−π+) �8/�2�(pK0 η
)/�(pK−π+) �8/�2�(pK0 η
)/�(pK−π+) �8/�2Unseen de
ay modes of the η are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.25±0.04±0.040.25±0.04±0.040.25±0.04±0.040.25±0.04±0.04 57 AMMAR 95 CLE2 e+ e− ≈ �(4S)�(pK0S π+π−

)/�total �9/��(pK0S π+π−
)/�total �9/��(pK0S π+π−
)/�total �9/��(pK0S π+π−
)/�total �9/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.66±0.12 OUR FIT1.66±0.12 OUR FIT1.66±0.12 OUR FIT1.66±0.12 OUR FIT Error in
ludes s
ale fa
tor of 1.1.1.53±0.11±0.091.53±0.11±0.091.53±0.11±0.091.53±0.11±0.09 485 ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV�(pK0S π+π−
)/�(pK−π+) �9/�2�(pK0S π+π−
)/�(pK−π+) �9/�2�(pK0S π+π−
)/�(pK−π+) �9/�2�(pK0S π+π−
)/�(pK−π+) �9/�2Measurements given as a K0 ratio have been divided by 2 to 
onvert to a K0S ratio.VALUE EVTS DOCUMENT ID TECN COMMENT0.261±0.016 OUR FIT0.261±0.016 OUR FIT0.261±0.016 OUR FIT0.261±0.016 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.257±0.031 OUR AVERAGE0.257±0.031 OUR AVERAGE0.257±0.031 OUR AVERAGE0.257±0.031 OUR AVERAGE0.26 ±0.02 ±0.03 985 ALAM 98 CLE2 e+ e− ≈ �(4S)0.22 ±0.06 ±0.02 83 AVERY 91 CLEO e+ e− 10.5 GeV0.49 ±0.18 ±0.04 12 BARLAG 90D NA32 π− 230 GeV�(pK−π+π0)/�total �10/��(pK−π+π0)/�total �10/��(pK−π+π0)/�total �10/��(pK−π+π0)/�total �10/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT4.9 ±0.4 OUR FIT4.9 ±0.4 OUR FIT4.9 ±0.4 OUR FIT4.9 ±0.4 OUR FIT Error in
ludes s
ale fa
tor of 1.3.4.53±0.23±0.304.53±0.23±0.304.53±0.23±0.304.53±0.23±0.30 1849 ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV�(pK−π+π0)/�(pK−π+) �10/�2�(pK−π+π0)/�(pK−π+) �10/�2�(pK−π+π0)/�(pK−π+) �10/�2�(pK−π+π0)/�(pK−π+) �10/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.777±0.033 OUR FIT0.777±0.033 OUR FIT0.777±0.033 OUR FIT0.777±0.033 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.67 ±0.04 ±0.110.67 ±0.04 ±0.110.67 ±0.04 ±0.110.67 ±0.04 ±0.11 2606 ALAM 98 CLE2 e+ e− ≈ �(4S)�(pK∗(892)−π+)/�(pK0S π+π−

) �11/�9�(pK∗(892)−π+)/�(pK0S π+π−
) �11/�9�(pK∗(892)−π+)/�(pK0S π+π−
) �11/�9�(pK∗(892)−π+)/�(pK0S π+π−
) �11/�9Unseen de
ay modes of the K∗(892)− are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.88±0.280.88±0.280.88±0.280.88±0.28 17 ALEEV 94 BIS2 nN 20{70 GeV�(p (K−π+)nonresonant π0)/�(pK−π+) �12/�2�(p (K−π+)nonresonant π0)/�(pK−π+) �12/�2�(p (K−π+)nonresonant π0)/�(pK−π+) �12/�2�(p (K−π+)nonresonant π0)/�(pK−π+) �12/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.73±0.12±0.050.73±0.12±0.050.73±0.12±0.050.73±0.12±0.05 67 BOZEK 93 NA32 π−Cu 230 GeV�(�(1232)K∗(892))/�total �13/��(�(1232)K∗(892))/�total �13/��(�(1232)K∗(892))/�total �13/��(�(1232)K∗(892))/�total �13/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 35 AMENDOLIA 87 SPEC γGe-Si�(pK−2π+π−

)/�(pK−π+) �14/�2�(pK−2π+π−
)/�(pK−π+) �14/�2�(pK−2π+π−
)/�(pK−π+) �14/�2�(pK−2π+π−
)/�(pK−π+) �14/�2VALUE DOCUMENT ID TECN COMMENT0.022±0.0150.022±0.0150.022±0.0150.022±0.015 BARLAG 90D NA32 π− 230 GeV�(pK−π+2π0)/�(pK−π+) �15/�2�(pK−π+2π0)/�(pK−π+) �15/�2�(pK−π+2π0)/�(pK−π+) �15/�2�(pK−π+2π0)/�(pK−π+) �15/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.16±0.07±0.030.16±0.07±0.030.16±0.07±0.030.16±0.07±0.03 15 BOZEK 93 NA32 π−Cu 230 GeV�(pK−π+3π0)/�(pK−π+) �16/�2�(pK−π+3π0)/�(pK−π+) �16/�2�(pK−π+3π0)/�(pK−π+) �16/�2�(pK−π+3π0)/�(pK−π+) �16/�2VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.10±0.06±0.02 8 BOZEK 93 NA32 π−Cu 230 GeVHadroni
 modes with a p: S = 0 �nal statesHadroni
 modes with a p: S = 0 �nal statesHadroni
 modes with a p: S = 0 �nal statesHadroni
 modes with a p: S = 0 �nal states�(pπ+π−
)/�(pK−π+) �17/�2�(pπ+π−
)/�(pK−π+) �17/�2�(pπ+π−
)/�(pK−π+) �17/�2�(pπ+π−
)/�(pK−π+) �17/�2VALUE DOCUMENT ID TECN COMMENT0.069±0.0360.069±0.0360.069±0.0360.069±0.036 BARLAG 90D NA32 π− 230 GeV�(p f0(980))/�(pK−π+) �18/�2�(p f0(980))/�(pK−π+) �18/�2�(p f0(980))/�(pK−π+) �18/�2�(p f0(980))/�(pK−π+) �18/�2Unseen de
ay modes of the f0(980) are in
luded.VALUE DOCUMENT ID TECN COMMENT0.055±0.0360.055±0.0360.055±0.0360.055±0.036 BARLAG 90D NA32 π− 230 GeV�(p2π+2π−

)/�(pK−π+) �19/�2�(p2π+2π−
)/�(pK−π+) �19/�2�(p2π+2π−
)/�(pK−π+) �19/�2�(p2π+2π−
)/�(pK−π+) �19/�2VALUE DOCUMENT ID TECN COMMENT0.036±0.0230.036±0.0230.036±0.0230.036±0.023 BARLAG 90D NA32 π− 230 GeV�(pK+K−

)/�(pK−π+) �20/�2�(pK+K−
)/�(pK−π+) �20/�2�(pK+K−
)/�(pK−π+) �20/�2�(pK+K−
)/�(pK−π+) �20/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.015±0.006 OUR AVERAGE0.015±0.006 OUR AVERAGE0.015±0.006 OUR AVERAGE0.015±0.006 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1.0.014±0.002±0.002 676 ABE 02C BELL e+ e− ≈ �(4S)0.039±0.009±0.007 214 ALEXANDER 96C CLE2 e+ e− ≈ �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.096±0.029±0.010 30 FRABETTI 93H E687 γBe, Eγ 220 GeV0.048±0.027 BARLAG 90D NA32 π− 230 GeV

�(pφ
)/�(pK−π+) �21/�2�(pφ
)/�(pK−π+) �21/�2�(pφ
)/�(pK−π+) �21/�2�(pφ
)/�(pK−π+) �21/�2Unseen de
ay modes of the φ are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.0164±0.0032 OUR AVERAGE0.0164±0.0032 OUR AVERAGE0.0164±0.0032 OUR AVERAGE0.0164±0.0032 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.0.015 ±0.002 ±0.002 345 ABE 02C BELL e+ e− ≈ �(4S)0.024 ±0.006 ±0.003 54 ALEXANDER 96C CLE2 e+ e− ≈ �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.040 ±0.027 BARLAG 90D NA32 π− 230 GeV�(pK+K−non-φ)/�(pK−π+) �22/�2�(pK+K−non-φ)/�(pK−π+) �22/�2�(pK+K−non-φ)/�(pK−π+) �22/�2�(pK+K−non-φ)/�(pK−π+) �22/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.007±0.002±0.0020.007±0.002±0.0020.007±0.002±0.0020.007±0.002±0.002 344 ABE 02C BELL e+ e− ≈ �(4S)Hadroni
 modes with a hyperon: S = −1 �nal statesHadroni
 modes with a hyperon: S = −1 �nal statesHadroni
 modes with a hyperon: S = −1 �nal statesHadroni
 modes with a hyperon: S = −1 �nal states�(�π+)/�total �23/��(�π+)/�total �23/��(�π+)/�total �23/��(�π+)/�total �23/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.30±0.07 OUR FIT1.30±0.07 OUR FIT1.30±0.07 OUR FIT1.30±0.07 OUR FIT Error in
ludes s
ale fa
tor of 1.2.1.24±0.07±0.031.24±0.07±0.031.24±0.07±0.031.24±0.07±0.03 706 ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV�(�π+)/�(pK−π+) �23/�2�(�π+)/�(pK−π+) �23/�2�(�π+)/�(pK−π+) �23/�2�(�π+)/�(pK−π+) �23/�2VALUE CL% EVTS DOCUMENT ID TECN COMMENT0.204±0.009 OUR FIT0.204±0.009 OUR FIT0.204±0.009 OUR FIT0.204±0.009 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.204±0.019 OUR AVERAGE0.204±0.019 OUR AVERAGE0.204±0.019 OUR AVERAGE0.204±0.019 OUR AVERAGE0.217±0.013±0.020 750 LINK 05F FOCS γ nu
leus, Eγ≈ 180 GeV0.18 ±0.03 ±0.04 ALBRECHT 92 ARG e+ e− ≈ 10.4 GeV0.18 ±0.03 ±0.03 87 AVERY 91 CLEO e+ e− 10.5 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.33 90 ANJOS 90 E691 γBe 70{260 GeV
<0.16 90 ALBRECHT 88C ARG e+ e− 10 GeV�(�π+π0)/�total �24/��(�π+π0)/�total �24/��(�π+π0)/�total �24/��(�π+π0)/�total �24/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT7.1 ±0.4 OUR FIT7.1 ±0.4 OUR FIT7.1 ±0.4 OUR FIT7.1 ±0.4 OUR FIT Error in
ludes s
ale fa
tor of 1.2.7.01±0.37±0.197.01±0.37±0.197.01±0.37±0.197.01±0.37±0.19 1497 ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV�(�π+π0)/�(pK−π+) �24/�2�(�π+π0)/�(pK−π+) �24/�2�(�π+π0)/�(pK−π+) �24/�2�(�π+π0)/�(pK−π+) �24/�2VALUE EVTS DOCUMENT ID TECN COMMENT1.11±0.05 OUR FIT1.11±0.05 OUR FIT1.11±0.05 OUR FIT1.11±0.05 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.73±0.09±0.160.73±0.09±0.160.73±0.09±0.160.73±0.09±0.16 464 AVERY 94 CLE2 e+ e− ≈ �(3S),�(4S)�(�ρ+)/�(pK−π+) �25/�2�(�ρ+)/�(pK−π+) �25/�2�(�ρ+)/�(pK−π+) �25/�2�(�ρ+)/�(pK−π+) �25/�2VALUE CL% DOCUMENT ID TECN COMMENT
<0.95<0.95<0.95<0.95 95 AVERY 94 CLE2 e+ e− ≈ �(3S),�(4S)�(�π− 2π+)/�total �26/��(�π− 2π+)/�total �26/��(�π− 2π+)/�total �26/��(�π− 2π+)/�total �26/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT3.7 ±0.4 OUR FIT3.7 ±0.4 OUR FIT3.7 ±0.4 OUR FIT3.7 ±0.4 OUR FIT Error in
ludes s
ale fa
tor of 1.9.3.81±0.24±0.183.81±0.24±0.183.81±0.24±0.183.81±0.24±0.18 609 ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV�(�π− 2π+)/�(pK−π+) �26/�2�(�π− 2π+)/�(pK−π+) �26/�2�(�π− 2π+)/�(pK−π+) �26/�2�(�π− 2π+)/�(pK−π+) �26/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.58 ±0.06 OUR FIT0.58 ±0.06 OUR FIT0.58 ±0.06 OUR FIT0.58 ±0.06 OUR FIT Error in
ludes s
ale fa
tor of 2.8.0.522±0.032 OUR AVERAGE0.522±0.032 OUR AVERAGE0.522±0.032 OUR AVERAGE0.522±0.032 OUR AVERAGE0.508±0.024±0.024 1356 LINK 05F FOCS γ nu
leus, Eγ ≈ 180 GeV0.65 ±0.11 ±0.12 289 AVERY 91 CLEO e+ e− 10.5 GeV0.82 ±0.29 ±0.27 44 ANJOS 90 E691 γBe 70{260 GeV0.94 ±0.41 ±0.13 10 BARLAG 90D NA32 π− 230 GeV0.61 ±0.16 ±0.04 105 ALBRECHT 88C ARG e+ e− 10 GeV�(� (1385)+π+π− ,�∗+

→ �π+)/�(�π− 2π+) �27/�26�(� (1385)+π+π− ,�∗+
→ �π+)/�(�π− 2π+) �27/�26�(� (1385)+π+π− ,�∗+
→ �π+)/�(�π− 2π+) �27/�26�(� (1385)+π+π− ,�∗+
→ �π+)/�(�π− 2π+) �27/�26VALUE DOCUMENT ID TECN COMMENT0.28±0.10±0.080.28±0.10±0.080.28±0.10±0.080.28±0.10±0.08 LINK 05F FOCS γ nu
leus, Eγ ≈ 180 GeV�(� (1385)−2π+ ,�∗−

→ �π−
)/�(�π−2π+) �28/�26�(� (1385)−2π+ ,�∗−

→ �π−
)/�(�π−2π+) �28/�26�(� (1385)−2π+ ,�∗−

→ �π−
)/�(�π−2π+) �28/�26�(� (1385)−2π+ ,�∗−

→ �π−
)/�(�π−2π+) �28/�26VALUE DOCUMENT ID TECN COMMENT0.21±0.03±0.020.21±0.03±0.020.21±0.03±0.020.21±0.03±0.02 LINK 05F FOCS γ nu
leus, Eγ ≈ 180 GeV�(�π+ ρ0)/�(�π−2π+) �29/�26�(�π+ ρ0)/�(�π−2π+) �29/�26�(�π+ ρ0)/�(�π−2π+) �29/�26�(�π+ ρ0)/�(�π−2π+) �29/�26VALUE DOCUMENT ID TECN COMMENT0.40±0.12±0.120.40±0.12±0.120.40±0.12±0.120.40±0.12±0.12 LINK 05F FOCS γ nu
leus, Eγ ≈ 180 GeV�(� (1385)+ρ0 ,�∗+

→ �π+)/�(�π− 2π+) �30/�26�(� (1385)+ρ0 ,�∗+
→ �π+)/�(�π− 2π+) �30/�26�(� (1385)+ρ0 ,�∗+
→ �π+)/�(�π− 2π+) �30/�26�(� (1385)+ρ0 ,�∗+
→ �π+)/�(�π− 2π+) �30/�26VALUE DOCUMENT ID TECN COMMENT0.14±0.09±0.070.14±0.09±0.070.14±0.09±0.070.14±0.09±0.07 LINK 05F FOCS γ nu
leus, Eγ ≈ 180 GeV�(�π− 2π+nonresonant)/�(�π− 2π+) �31/�26�(�π− 2π+nonresonant)/�(�π− 2π+) �31/�26�(�π− 2π+nonresonant)/�(�π− 2π+) �31/�26�(�π− 2π+nonresonant)/�(�π− 2π+) �31/�26VALUE CL% DOCUMENT ID TECN COMMENT

<0.3<0.3<0.3<0.3 90 LINK 05F FOCS γ nu
leus, Eγ ≈ 180 GeV�(�π−π0 2π+ total)/�(pK−π+) �32/�2�(�π−π0 2π+ total)/�(pK−π+) �32/�2�(�π−π0 2π+ total)/�(pK−π+) �32/�2�(�π−π0 2π+ total)/�(pK−π+) �32/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.36±0.09±0.090.36±0.09±0.090.36±0.09±0.090.36±0.09±0.09 50 1 CRONIN-HEN...03 CLE3 e+ e− ≈ �(4S)1CRONIN-HENNESSY 03 �nds this 
hannel to be dominantly �ηπ+ and �ωπ+; seebelow.



1640164016401640BaryonParti
le Listings�+
�(�π+ η
)/�(pK−π+) �33/�2�(�π+ η
)/�(pK−π+) �33/�2�(�π+ η
)/�(pK−π+) �33/�2�(�π+ η
)/�(pK−π+) �33/�2Unseen de
ay modes of the η are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.36±0.07 OUR AVERAGE0.36±0.07 OUR AVERAGE0.36±0.07 OUR AVERAGE0.36±0.07 OUR AVERAGE0.41±0.17±0.10 11 CRONIN-HEN...03 CLE3 e+ e− ≈ �(4S)0.35±0.05±0.06 116 AMMAR 95 CLE2 e+ e− ≈ �(4S)�(� (1385)+η

)/�(pK−π+) �34/�2�(� (1385)+η
)/�(pK−π+) �34/�2�(� (1385)+η
)/�(pK−π+) �34/�2�(� (1385)+η
)/�(pK−π+) �34/�2Unseen de
ay modes of the �(1385)+ and η are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.17±0.04±0.030.17±0.04±0.030.17±0.04±0.030.17±0.04±0.03 54 AMMAR 95 CLE2 e+ e− ≈ �(4S)�(�π+ω

)/�(pK−π+) �35/�2�(�π+ω
)/�(pK−π+) �35/�2�(�π+ω
)/�(pK−π+) �35/�2�(�π+ω
)/�(pK−π+) �35/�2Unseen de
ay modes of the ω are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.24±0.06±0.060.24±0.06±0.060.24±0.06±0.060.24±0.06±0.06 32 CRONIN-HEN...03 CLE3 e+ e− ≈ �(4S)�(�π−π0 2π+ , no η or ω

)/�(pK−π+) �36/�2�(�π−π0 2π+ , no η or ω
)/�(pK−π+) �36/�2�(�π−π0 2π+ , no η or ω
)/�(pK−π+) �36/�2�(�π−π0 2π+ , no η or ω
)/�(pK−π+) �36/�2VALUE CL% DOCUMENT ID TECN COMMENT

<0.13<0.13<0.13<0.13 90 CRONIN-HEN...03 CLE3 e+ e− ≈ �(4S)�(�K+K0)/�(pK−π+) �37/�2�(�K+K0)/�(pK−π+) �37/�2�(�K+K0)/�(pK−π+) �37/�2�(�K+K0)/�(pK−π+) �37/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.089±0.018 OUR FIT0.089±0.018 OUR FIT0.089±0.018 OUR FIT0.089±0.018 OUR FIT Error in
ludes s
ale fa
tor of 2.0.0.131±0.020 OUR AVERAGE0.131±0.020 OUR AVERAGE0.131±0.020 OUR AVERAGE0.131±0.020 OUR AVERAGE0.142±0.018±0.022 251 LINK 05F FOCS γ nu
leus, Eγ ≈ 180 GeV0.12 ±0.02 ±0.02 59 AMMAR 95 CLE2 e+ e− ≈ �(4S)�(� (1690)0K+ , � ∗0
→ �K0)/�(�K+K0) �38/�37�(� (1690)0K+ , � ∗0
→ �K0)/�(�K+K0) �38/�37�(� (1690)0K+ , � ∗0
→ �K0)/�(�K+K0) �38/�37�(� (1690)0K+ , � ∗0
→ �K0)/�(�K+K0) �38/�37VALUE EVTS DOCUMENT ID TECN COMMENT0.28±0.07 OUR AVERAGE0.28±0.07 OUR AVERAGE0.28±0.07 OUR AVERAGE0.28±0.07 OUR AVERAGE0.32±0.10±0.04 84±24 LINK 05F FOCS γ nu
leus, Eγ ≈ 180 GeV0.26±0.08±0.03 93 ABE 02C BELL e+ e− ≈ �(4S)�(�K+K0)/�(�π+) �37/�23�(�K+K0)/�(�π+) �37/�23�(�K+K0)/�(�π+) �37/�23�(�K+K0)/�(�π+) �37/�23VALUE EVTS DOCUMENT ID TECN COMMENT0.44 ±0.08 OUR FIT0.44 ±0.08 OUR FIT0.44 ±0.08 OUR FIT0.44 ±0.08 OUR FIT Error in
ludes s
ale fa
tor of 2.1.0.395±0.026±0.0360.395±0.026±0.0360.395±0.026±0.0360.395±0.026±0.036 460 ± 30 AUBERT 07U BABR e+ e− ≈ �(4S)�(�0π+)/�total �39/��(�0π+)/�total �39/��(�0π+)/�total �39/��(�0π+)/�total �39/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.29±0.07 OUR FIT1.29±0.07 OUR FIT1.29±0.07 OUR FIT1.29±0.07 OUR FIT Error in
ludes s
ale fa
tor of 1.1.1.27±0.08±0.031.27±0.08±0.031.27±0.08±0.031.27±0.08±0.03 522 ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV�(�0π+)/�(pK−π+) �39/�2�(�0π+)/�(pK−π+) �39/�2�(�0π+)/�(pK−π+) �39/�2�(�0π+)/�(pK−π+) �39/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.203±0.010 OUR FIT0.203±0.010 OUR FIT0.203±0.010 OUR FIT0.203±0.010 OUR FIT Error in
ludes s
ale fa
tor of 1.2.0.20 ±0.04 OUR AVERAGE0.20 ±0.04 OUR AVERAGE0.20 ±0.04 OUR AVERAGE0.20 ±0.04 OUR AVERAGE0.21 ±0.02 ±0.04 196 AVERY 94 CLE2 e+ e− ≈ �(3S),�(4S)0.17 ±0.06 ±0.04 ALBRECHT 92 ARG e+ e− ≈ 10.4 GeV�(�0π+)/�(�π+) �39/�23�(�0π+)/�(�π+) �39/�23�(�0π+)/�(�π+) �39/�23�(�0π+)/�(�π+) �39/�23VALUE EVTS DOCUMENT ID TECN COMMENT0.99 ±0.04 OUR FIT0.99 ±0.04 OUR FIT0.99 ±0.04 OUR FIT0.99 ±0.04 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.98 ±0.05 OUR AVERAGE0.98 ±0.05 OUR AVERAGE0.98 ±0.05 OUR AVERAGE0.98 ±0.05 OUR AVERAGE0.977±0.015±0.051 33k AUBERT 07U BABR e+ e− ≈ �(4S)1.09 ±0.11 ±0.19 750 LINK 05F FOCS γ nu
leus, Eγ ≈ 180 GeV�(�+π0)/�total �40/��(�+π0)/�total �40/��(�+π0)/�total �40/��(�+π0)/�total �40/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.24±0.10 OUR FIT1.24±0.10 OUR FIT1.24±0.10 OUR FIT1.24±0.10 OUR FIT1.18±0.10±0.031.18±0.10±0.031.18±0.10±0.031.18±0.10±0.03 309 ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV�(�+π0)/�(pK−π+) �40/�2�(�+π0)/�(pK−π+) �40/�2�(�+π0)/�(pK−π+) �40/�2�(�+π0)/�(pK−π+) �40/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.196±0.015 OUR FIT0.196±0.015 OUR FIT0.196±0.015 OUR FIT0.196±0.015 OUR FIT0.20 ±0.03 ±0.030.20 ±0.03 ±0.030.20 ±0.03 ±0.030.20 ±0.03 ±0.03 93 KUBOTA 93 CLE2 e+ e− ≈ �(4S)�(�+η

)/�(pK−π+) �41/�2�(�+η
)/�(pK−π+) �41/�2�(�+η
)/�(pK−π+) �41/�2�(�+η
)/�(pK−π+) �41/�2Unseen de
ay modes of the η are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.11±0.03±0.020.11±0.03±0.020.11±0.03±0.020.11±0.03±0.02 26 AMMAR 95 CLE2 e+ e− ≈ �(4S)�(�+π+π−

)/�total �42/��(�+π+π−
)/�total �42/��(�+π+π−
)/�total �42/��(�+π+π−
)/�total �42/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT4.57±0.29 OUR FIT4.57±0.29 OUR FIT4.57±0.29 OUR FIT4.57±0.29 OUR FIT Error in
ludes s
ale fa
tor of 1.2.4.25±0.24±0.204.25±0.24±0.204.25±0.24±0.204.25±0.24±0.20 1156 ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV�(�+π+π−
)/�(pK−π+) �42/�2�(�+π+π−
)/�(pK−π+) �42/�2�(�+π+π−
)/�(pK−π+) �42/�2�(�+π+π−
)/�(pK−π+) �42/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.720±0.029 OUR FIT0.720±0.029 OUR FIT0.720±0.029 OUR FIT0.720±0.029 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.69 ±0.08 OUR AVERAGE0.69 ±0.08 OUR AVERAGE0.69 ±0.08 OUR AVERAGE0.69 ±0.08 OUR AVERAGE0.72 ±0.14 47 ± 9 VAZQUEZ-JA...08 SELX �− nu
leus, 600 GeV0.74 ±0.07 ±0.09 487 KUBOTA 93 CLE2 e+ e− ≈ �(4S)0.54 +0.18

−0.15 11 BARLAG 92 NA32 π−Cu 230 GeV

�(�+ρ0)/�(pK−π+) �43/�2�(�+ρ0)/�(pK−π+) �43/�2�(�+ρ0)/�(pK−π+) �43/�2�(�+ρ0)/�(pK−π+) �43/�2VALUE CL% DOCUMENT ID TECN COMMENT
<0.27<0.27<0.27<0.27 95 KUBOTA 93 CLE2 e+ e− ≈ �(4S)�(�−2π+)/�(pK−π+) �44/�2�(�−2π+)/�(pK−π+) �44/�2�(�−2π+)/�(pK−π+) �44/�2�(�−2π+)/�(pK−π+) �44/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.33 ±0.06 OUR FIT0.33 ±0.06 OUR FIT0.33 ±0.06 OUR FIT0.33 ±0.06 OUR FIT0.314±0.0670.314±0.0670.314±0.0670.314±0.067 30 ± 6 VAZQUEZ-JA...08 SELX �− nu
leus, 600 GeV�(�−2π+)/�(�+π+π−

) �44/�42�(�−2π+)/�(�+π+π−
) �44/�42�(�−2π+)/�(�+π+π−
) �44/�42�(�−2π+)/�(�+π+π−
) �44/�42VALUE EVTS DOCUMENT ID TECN COMMENT0.46±0.08 OUR FIT0.46±0.08 OUR FIT0.46±0.08 OUR FIT0.46±0.08 OUR FIT0.53±0.15±0.070.53±0.15±0.070.53±0.15±0.070.53±0.15±0.07 56 FRABETTI 94E E687 γBe, Eγ 220 GeV�(�0π+π0)/�(pK−π+) �45/�2�(�0π+π0)/�(pK−π+) �45/�2�(�0π+π0)/�(pK−π+) �45/�2�(�0π+π0)/�(pK−π+) �45/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.36±0.09±0.100.36±0.09±0.100.36±0.09±0.100.36±0.09±0.10 117 AVERY 94 CLE2 e+ e− ≈ �(3S),�(4S)�(�0π−2π+)/�(pK−π+) �46/�2�(�0π−2π+)/�(pK−π+) �46/�2�(�0π−2π+)/�(pK−π+) �46/�2�(�0π−2π+)/�(pK−π+) �46/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.18±0.05 OUR FIT0.18±0.05 OUR FIT0.18±0.05 OUR FIT0.18±0.05 OUR FIT0.21±0.05±0.050.21±0.05±0.050.21±0.05±0.050.21±0.05±0.05 90 AVERY 94 CLE2 e+ e− ≈�(3S),�(4S)�(�0π−2π+)/�(�π−2π+) �46/�26�(�0π−2π+)/�(�π−2π+) �46/�26�(�0π−2π+)/�(�π−2π+) �46/�26�(�0π−2π+)/�(�π−2π+) �46/�26VALUE EVTS DOCUMENT ID TECN COMMENT0.30±0.08 OUR FIT0.30±0.08 OUR FIT0.30±0.08 OUR FIT0.30±0.08 OUR FIT0.26±0.06±0.090.26±0.06±0.090.26±0.06±0.090.26±0.06±0.09 480 LINK 05F FOCS γ nu
leus, Eγ ≈ 180 GeV�(�+ω

)/�total �48/��(�+ω
)/�total �48/��(�+ω
)/�total �48/��(�+ω
)/�total �48/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT1.74±0.21 OUR FIT1.74±0.21 OUR FIT1.74±0.21 OUR FIT1.74±0.21 OUR FIT1.56±0.20±0.071.56±0.20±0.071.56±0.20±0.071.56±0.20±0.07 157 ABLIKIM 16 BES3 e+ e− → �
 �
 , 4.599 GeV�(�+ω
)/�(pK−π+) �48/�2�(�+ω
)/�(pK−π+) �48/�2�(�+ω
)/�(pK−π+) �48/�2�(�+ω
)/�(pK−π+) �48/�2Unseen de
ay modes of the ω are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.274±0.032 OUR FIT0.274±0.032 OUR FIT0.274±0.032 OUR FIT0.274±0.032 OUR FIT0.54 ±0.13 ±0.060.54 ±0.13 ±0.060.54 ±0.13 ±0.060.54 ±0.13 ±0.06 107 KUBOTA 93 CLE2 e+ e− ≈ �(4S)�(�+K+K−

)/�(pK−π+) �49/�2�(�+K+K−
)/�(pK−π+) �49/�2�(�+K+K−
)/�(pK−π+) �49/�2�(�+K+K−
)/�(pK−π+) �49/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.056±0.006 OUR FIT0.056±0.006 OUR FIT0.056±0.006 OUR FIT0.056±0.006 OUR FIT0.070±0.011±0.0110.070±0.011±0.0110.070±0.011±0.0110.070±0.011±0.011 59 AVERY 93 CLE2 e+ e− ≈ 10.5 GeV�(�+K+K−
)/�(�+π+π−

) �49/�42�(�+K+K−
)/�(�+π+π−

) �49/�42�(�+K+K−
)/�(�+π+π−

) �49/�42�(�+K+K−
)/�(�+π+π−

) �49/�42VALUE EVTS DOCUMENT ID TECN COMMENT0.078±0.008 OUR FIT0.078±0.008 OUR FIT0.078±0.008 OUR FIT0.078±0.008 OUR FIT0.074±0.009 OUR AVERAGE0.074±0.009 OUR AVERAGE0.074±0.009 OUR AVERAGE0.074±0.009 OUR AVERAGE0.076±0.007±0.009 246 ABE 02C BELL e+ e− ≈ �(4S)0.071±0.011±0.011 103 LINK 02G FOCS γ nu
leus, ≈ 180 GeV�(�+φ
)/�(pK−π+) �50/�2�(�+φ
)/�(pK−π+) �50/�2�(�+φ
)/�(pK−π+) �50/�2�(�+φ
)/�(pK−π+) �50/�2Unseen de
ay modes of the φ are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.063±0.009 OUR FIT0.063±0.009 OUR FIT0.063±0.009 OUR FIT0.063±0.009 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.069±0.023±0.0160.069±0.023±0.0160.069±0.023±0.0160.069±0.023±0.016 26 AVERY 93 CLE2 e+ e− ≈ 10.5 GeV�(�+φ
)/�(�+π+π−

) �50/�42�(�+φ
)/�(�+π+π−

) �50/�42�(�+φ
)/�(�+π+π−

) �50/�42�(�+φ
)/�(�+π+π−

) �50/�42Unseen de
ay modes of the φ are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.087±0.012 OUR FIT0.087±0.012 OUR FIT0.087±0.012 OUR FIT0.087±0.012 OUR FIT0.086±0.012 OUR AVERAGE0.086±0.012 OUR AVERAGE0.086±0.012 OUR AVERAGE0.086±0.012 OUR AVERAGE0.085±0.012±0.012 129 ABE 02C BELL e+ e− ≈ �(4S)0.087±0.016±0.006 57 LINK 02G FOCS γ nu
leus, ≈ 180 GeV�(� (1690)0K+ , � ∗0
→ �+K−

)/�(�+π+π−
) �51/�42�(� (1690)0K+ , � ∗0

→ �+K−
)/�(�+π+π−

) �51/�42�(� (1690)0K+ , � ∗0
→ �+K−

)/�(�+π+π−
) �51/�42�(� (1690)0K+ , � ∗0

→ �+K−
)/�(�+π+π−

) �51/�42VALUE EVTS DOCUMENT ID TECN COMMENT0.023±0.005 OUR AVERAGE0.023±0.005 OUR AVERAGE0.023±0.005 OUR AVERAGE0.023±0.005 OUR AVERAGE0.023±0.005±0.005 75 ABE 02C BELL e+ e− ≈ �(4S)0.022±0.006±0.006 34 LINK 02G FOCS γ nu
leus, ≈ 180 GeV�(�+K+K−nonresonant)/�(�+π+π−
) �52/�42�(�+K+K−nonresonant)/�(�+π+π−
) �52/�42�(�+K+K−nonresonant)/�(�+π+π−
) �52/�42�(�+K+K−nonresonant)/�(�+π+π−
) �52/�42VALUE CL% DOCUMENT ID TECN COMMENT

<0.018<0.018<0.018<0.018 90 ABE 02C BELL e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.028 90 LINK 02G FOCS γ nu
leus, ≈ 180 GeV�(� 0K+)/�(pK−π+) �53/�2�(� 0K+)/�(pK−π+) �53/�2�(� 0K+)/�(pK−π+) �53/�2�(� 0K+)/�(pK−π+) �53/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.078±0.013±0.0130.078±0.013±0.0130.078±0.013±0.0130.078±0.013±0.013 56 AVERY 93 CLE2 e+ e− ≈ 10.5 GeV



1641164116411641See key on page 601 Baryon Parti
le Listings�+
�(�−K+π+)/�(pK−π+) �54/�2�(�−K+π+)/�(pK−π+) �54/�2�(�−K+π+)/�(pK−π+) �54/�2�(�−K+π+)/�(pK−π+) �54/�2VALUE EVTS DOCUMENT ID TECN COMMENT0.098±0.009 OUR FIT0.098±0.009 OUR FIT0.098±0.009 OUR FIT0.098±0.009 OUR FIT Error in
ludes s
ale fa
tor of 1.1.0.098±0.021 OUR AVERAGE0.098±0.021 OUR AVERAGE0.098±0.021 OUR AVERAGE0.098±0.021 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.0.14 ±0.03 ±0.02 34 ALBRECHT 95B ARG e+ e− ≈ 10.4 GeV0.079±0.013±0.014 60 AVERY 93 CLE2 e+ e− ≈ 10.5 GeV0.15 ±0.04 ±0.03 30 AVERY 91 CLEO e+ e− 10.5 GeV
WEIGHTED AVERAGE
0.098±0.021 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

AVERY 91 CLEO 1.1
AVERY 93 CLE2 1.0
ALBRECHT 95B ARG 1.3

χ2

       3.4
(Confidence Level = 0.180)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35�(�−K+π+)/�(pK−π+)�(� (1530)0K+)/�(pK−π+) �55/�2�(� (1530)0K+)/�(pK−π+) �55/�2�(� (1530)0K+)/�(pK−π+) �55/�2�(� (1530)0K+)/�(pK−π+) �55/�2Unseen de
ay modes of the �(1530)0 are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.052±0.014 OUR AVERAGE0.052±0.014 OUR AVERAGE0.052±0.014 OUR AVERAGE0.052±0.014 OUR AVERAGE0.05 ±0.02 ±0.01 11 ALBRECHT 95B ARG e+ e− ≈ 10.4 GeV0.053±0.016±0.010 24 AVERY 93 CLE2 e+ e− ≈ 10.5 GeV�(�−K+π+)/�(�π+) �54/�23�(�−K+π+)/�(�π+) �54/�23�(�−K+π+)/�(�π+) �54/�23�(�−K+π+)/�(�π+) �54/�23VALUE EVTS DOCUMENT ID TECN COMMENT0.48 ±0.04 OUR FIT0.48 ±0.04 OUR FIT0.48 ±0.04 OUR FIT0.48 ±0.04 OUR FIT0.480±0.016±0.0390.480±0.016±0.0390.480±0.016±0.0390.480±0.016±0.039 2665 ± 84 AUBERT 07U BABR e+ e− ≈ �(4S)Hadroni
 modes with a hyperon: S = 0 �nal statesHadroni
 modes with a hyperon: S = 0 �nal statesHadroni
 modes with a hyperon: S = 0 �nal statesHadroni
 modes with a hyperon: S = 0 �nal states�(�K+)/�(�π+) �56/�23�(�K+)/�(�π+) �56/�23�(�K+)/�(�π+) �56/�23�(�K+)/�(�π+) �56/�23VALUE EVTS DOCUMENT ID TECN COMMENT0.047±0.009 OUR AVERAGE0.047±0.009 OUR AVERAGE0.047±0.009 OUR AVERAGE0.047±0.009 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.8.0.044±0.004±0.003 1162± 101 AUBERT 07U BABR e+ e− ≈ �(4S)0.074±0.010±0.012 265 ABE 02C BELL e+ e− ≈ �(4S)�(�K+π+π−
)/�(�π+) �57/�23�(�K+π+π−
)/�(�π+) �57/�23�(�K+π+π−
)/�(�π+) �57/�23�(�K+π+π−
)/�(�π+) �57/�23VALUE CL% DOCUMENT ID TECN COMMENT

<4.1× 10−2<4.1× 10−2<4.1× 10−2<4.1× 10−2 90 AUBERT 07U BABR e+ e− ≈ �(4S)�(�0K+)/�(�0π+) �58/�39�(�0K+)/�(�0π+) �58/�39�(�0K+)/�(�0π+) �58/�39�(�0K+)/�(�0π+) �58/�39VALUE EVTS DOCUMENT ID TECN COMMENT0.040±0.006 OUR AVERAGE0.040±0.006 OUR AVERAGE0.040±0.006 OUR AVERAGE0.040±0.006 OUR AVERAGE0.038±0.005±0.003 366 ± 52 AUBERT 07U BABR e+ e− ≈ �(4S)0.056±0.014±0.008 75 ABE 02C BELL e+ e− ≈ �(4S)�(�0K+π+π−
)/�(�0π+) �59/�39�(�0K+π+π−
)/�(�0π+) �59/�39�(�0K+π+π−
)/�(�0π+) �59/�39�(�0K+π+π−
)/�(�0π+) �59/�39VALUE CL% DOCUMENT ID TECN COMMENT

<2.0× 10−2<2.0× 10−2<2.0× 10−2<2.0× 10−2 90 AUBERT 07U BABR e+ e− ≈ �(4S)�(�+K+π−
)/�(�+π+π−

) �60/�42�(�+K+π−
)/�(�+π+π−

) �60/�42�(�+K+π−
)/�(�+π+π−

) �60/�42�(�+K+π−
)/�(�+π+π−

) �60/�42VALUE EVTS DOCUMENT ID TECN COMMENT0.047±0.011±0.0080.047±0.011±0.0080.047±0.011±0.0080.047±0.011±0.008 105 ABE 02C BELL e+ e− ≈ �(4S)�(�+K∗(892)0)/�(�+π+π−
) �61/�42�(�+K∗(892)0)/�(�+π+π−
) �61/�42�(�+K∗(892)0)/�(�+π+π−
) �61/�42�(�+K∗(892)0)/�(�+π+π−
) �61/�42Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.078±0.018±0.0130.078±0.018±0.0130.078±0.018±0.0130.078±0.018±0.013 49 LINK 02G FOCS γ nu
leus, ≈ 180 GeV�(�−K+π+)/�(�+K∗(892)0) �62/�61�(�−K+π+)/�(�+K∗(892)0) �62/�61�(�−K+π+)/�(�+K∗(892)0) �62/�61�(�−K+π+)/�(�+K∗(892)0) �62/�61VALUE CL% DOCUMENT ID TECN COMMENT

<0.35<0.35<0.35<0.35 90 LINK 02G FOCS γ nu
leus, ≈ 180 GeVDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modes�(pK+π−
)/�(pK−π+) �63/�2�(pK+π−
)/�(pK−π+) �63/�2�(pK+π−
)/�(pK−π+) �63/�2�(pK+π−
)/�(pK−π+) �63/�2VALUE CL% DOCUMENT ID TECN COMMENT

<0.0046<0.0046<0.0046<0.0046 90 LINK 05K FOCS R = (0.05±0.26±0.02)%Semileptoni
 modesSemileptoni
 modesSemileptoni
 modesSemileptoni
 modes

�(�e+ νe)/�total �64/��(�e+ νe)/�total �64/��(�e+ νe)/�total �64/��(�e+ νe)/�total �64/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT3.63±0.38±0.203.63±0.38±0.203.63±0.38±0.203.63±0.38±0.20 104 ABLIKIM 15Y BES3 567 pb−1, 4.599 GeV�(�e+ νe)/�(pK−π+) �64/�2�(�e+ νe)/�(pK−π+) �64/�2�(�e+ νe)/�(pK−π+) �64/�2�(�e+ νe)/�(pK−π+) �64/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.43±0.08 1,2 BERGFELD 94 CLE2 e+ e− ≈ �(4S)0.38±0.14 2,3 ALBRECHT 91G ARG e+ e− ≈ 10.4 GeV1BERGFELD 94 measures σ(e+ e− → �+
 X)·B(�+
 → �e+ νe ) = (4.87 ± 0.28 ±0.69) pb.2To extra
t �(�+
 → �e+ νe )/�(�+
 → pK−π+), we use σ(e+ e− → �+
 X)·B(�
 →pK−π+) = (11.2 ± 1.3) pb, whi
h is the weighted average of measurements fromARGUS (ALBRECHT 96E) and CLEO (AVERY 91).3ALBRECHT 91G measures σ(e+ e− → �+
 X)·B(�+
 → �e+ νe ) = (4.20 ± 1.28 ±0.71) pb.�(�µ+νµ

)/�(pK−π+) �65/�2�(�µ+νµ

)/�(pK−π+) �65/�2�(�µ+νµ

)/�(pK−π+) �65/�2�(�µ+νµ

)/�(pK−π+) �65/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.40±0.09 1,2 BERGFELD 94 CLE2 e+ e− ≈ �(4S)0.35±0.20 2,3 ALBRECHT 91G ARG e+ e− ≈ 10.4 GeV1BERGFELD 94 measures σ(e+ e− → �+
 X)·B(�+
 → �µ+ νµ) = (4.43 ± 0.51 ±0.64) pb.2To extra
t �(�+
 → �µ+ νµ)/�(�+
 → pK−π+), we use σ(e+ e− → �+
 X)·B(�
 →pK−π+) = (11.2 ± 1.3) pb, whi
h is the weighted average of measurements fromARGUS (ALBRECHT 96E) and CLEO (AVERY 91).3ALBRECHT 91G measures σ(e+ e− → �+
 X)·B(�+
 → �µ+ νµ) = (3.91 ± 2.02 ±0.90) pb. In
lusive modesIn
lusive modesIn
lusive modesIn
lusive modes�(e+ anything)/�total �66/��(e+ anything)/�total �66/��(e+ anything)/�total �66/��(e+ anything)/�total �66/�VALUE DOCUMENT ID TECN COMMENT0.045±0.0170.045±0.0170.045±0.0170.045±0.017 VELLA 82 MRK2 e+ e− 4.5{6.8 GeV�(pe+anything)/�total �67/��(pe+anything)/�total �67/��(pe+anything)/�total �67/��(pe+anything)/�total �67/�VALUE DOCUMENT ID TECN COMMENT0.018±0.0090.018±0.0090.018±0.0090.018±0.009 1 VELLA 82 MRK2 e+ e− 4.5{6.8 GeV1VELLA 82 in
ludes protons from � de
ay.�(�e+ anything)/�total �68/��(�e+ anything)/�total �68/��(�e+ anything)/�total �68/��(�e+ anything)/�total �68/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.011±0.008 1 VELLA 82 MRK2 e+ e− 4.5{6.8 GeV1VELLA 82 in
ludes �'s from �0 de
ay.�(p anything)/�total �69/��(p anything)/�total �69/��(p anything)/�total �69/��(p anything)/�total �69/�VALUE DOCUMENT ID TECN COMMENT0.50±0.08±0.140.50±0.08±0.140.50±0.08±0.140.50±0.08±0.14 1 CRAWFORD 92 CLEO e+ e− 10.5 GeV1This CRAWFORD 92 value in
ludes protons from � de
ay. The value is model dependent,but a

ount is taken of this in the systemati
 error.�(p anything (no �))/�total �70/��(p anything (no �))/�total �70/��(p anything (no �))/�total �70/��(p anything (no �))/�total �70/�VALUE DOCUMENT ID TECN COMMENT0.12±0.10±0.160.12±0.10±0.160.12±0.10±0.160.12±0.10±0.16 CRAWFORD 92 CLEO e+ e− 10.5 GeV�(n anything)/�total �72/��(n anything)/�total �72/��(n anything)/�total �72/��(n anything)/�total �72/�VALUE DOCUMENT ID TECN COMMENT0.50±0.08±0.140.50±0.08±0.140.50±0.08±0.140.50±0.08±0.14 1 CRAWFORD 92 CLEO e+ e− 10.5 GeV1This CRAWFORD 92 value in
ludes neutrons from � de
ay. The value is model depen-dent, but a

ount is taken of this in the systemati
 error.�(n anything (no �))/�total �73/��(n anything (no �))/�total �73/��(n anything (no �))/�total �73/��(n anything (no �))/�total �73/�VALUE DOCUMENT ID TECN COMMENT0.29±0.09±0.150.29±0.09±0.150.29±0.09±0.150.29±0.09±0.15 CRAWFORD 92 CLEO e+ e− 10.5 GeV�(p hadrons)/�total �71/��(p hadrons)/�total �71/��(p hadrons)/�total �71/��(p hadrons)/�total �71/�VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.41±0.24 ADAMOVICH 87 EMUL γA 20{70 GeV/
�(� anything)/�total �74/��(� anything)/�total �74/��(� anything)/�total �74/��(� anything)/�total �74/�VALUE EVTS DOCUMENT ID TECN COMMENT0.35±0.11 OUR AVERAGE0.35±0.11 OUR AVERAGE0.35±0.11 OUR AVERAGE0.35±0.11 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4. See the ideogram below.0.59±0.10±0.12 CRAWFORD 92 CLEO e+ e− 10.5 GeV0.49±0.24 ADAMOVICH 87 EMUL γA 20{70 GeV/
0.23±0.10 8 1 ABE 86 HYBR 20 GeV γ p
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1ABE 86 in
ludes �'s from �0 de
ay.
WEIGHTED AVERAGE
0.35±0.11 (Error scaled by 1.4)

ABE 86 HYBR 1.5
ADAMOVICH 87 EMUL 0.3
CRAWFORD 92 CLEO 2.3

χ2

       4.1
(Confidence Level = 0.126)

-0.5 0 0.5 1 1.5 2�(� anything)/�total�(�± anything)/�total �75/��(�± anything)/�total �75/��(�± anything)/�total �75/��(�± anything)/�total �75/�VALUE EVTS DOCUMENT ID TECN COMMENT0.1±0.050.1±0.050.1±0.050.1±0.05 5 ABE 86 HYBR 20 GeV γ p�(3prongs)/�total �76/��(3prongs)/�total �76/��(3prongs)/�total �76/��(3prongs)/�total �76/�VALUE DOCUMENT ID TECN COMMENT0.24±0.07±0.040.24±0.07±0.040.24±0.07±0.040.24±0.07±0.04 KAYIS-TOPAK...03 CHRS νµ emulsion, E=27 GeVRare or forbidden modesRare or forbidden modesRare or forbidden modesRare or forbidden modes�(pe+ e−)/�total �77/��(pe+ e−)/�total �77/��(pe+ e−)/�total �77/��(pe+ e−)/�total �77/�A test for the �C=1 weak neutral 
urrent. Allowed by higher-order ele
troweak inter-a
tions.VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<5.5× 10−6<5.5× 10−6<5.5× 10−6<5.5× 10−6 90 4.0 ± 7.1 LEES 11G BABR e+ e− ≈ �(4S)�(pµ+µ−

)/�total �78/��(pµ+µ−
)/�total �78/��(pµ+µ−
)/�total �78/��(pµ+µ−
)/�total �78/�A test for the �C=1 weak neutral 
urrent. Allowed by higher-order ele
troweak inter-a
tions.VALUE CL% EVTS DOCUMENT ID TECN COMMENT

<44 × 10−6<44 × 10−6<44 × 10−6<44 × 10−6 90 11.1 ± 5.6 LEES 11G BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

< 3.4× 10−4 90 0 KODAMA 95 E653 π− emulsion 600 GeV�(pe+µ−
)/�total �79/��(pe+µ−
)/�total �79/��(pe+µ−
)/�total �79/��(pe+µ−
)/�total �79/�A test of lepton family-number 
onservation.VALUE CL% EVTS DOCUMENT ID TECN COMMENT

<9.9× 10−6<9.9× 10−6<9.9× 10−6<9.9× 10−6 90 −0.7±3.0 LEES 11G BABR e+ e− ≈ �(4S)�(pe−µ+)/�total �80/��(pe−µ+)/�total �80/��(pe−µ+)/�total �80/��(pe−µ+)/�total �80/�A test of lepton family-number 
onservation.VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<19× 10−6<19× 10−6<19× 10−6<19× 10−6 90 6.2 ± 4.9 LEES 11G BABR e+ e− ≈ �(4S)�(p2e+)/�total �81/��(p2e+)/�total �81/��(p2e+)/�total �81/��(p2e+)/�total �81/�A test of lepton- and baryon-number 
onservation.VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<2.7× 10−6<2.7× 10−6<2.7× 10−6<2.7× 10−6 90 −1.5±4.5 LEES 11G BABR e+ e− ≈ �(4S)�(p2µ+)/�total �82/��(p2µ+)/�total �82/��(p2µ+)/�total �82/��(p2µ+)/�total �82/�A test of lepton- and baryon-number 
onservation and of lepton family-number 
on-servation.VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<9.4× 10−6<9.4× 10−6<9.4× 10−6<9.4× 10−6 90 0.0 ± 2.2 LEES 11G BABR e+ e− ≈ �(4S)�(pe+µ+)/�total �83/��(pe+µ+)/�total �83/��(pe+µ+)/�total �83/��(pe+µ+)/�total �83/�A test of lepton- and baryon-number 
onservation and of lepton family-number 
on-servation.VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<16× 10−6<16× 10−6<16× 10−6<16× 10−6 90 10.1± 6.8 LEES 11G BABR e+ e− ≈ �(4S)�(�−µ+µ+)/�total �84/��(�−µ+µ+)/�total �84/��(�−µ+µ+)/�total �84/��(�−µ+µ+)/�total �84/�A test of lepton-number 
onservation.VALUE CL% EVTS DOCUMENT ID TECN COMMENT
<7.0× 10−4<7.0× 10−4<7.0× 10−4<7.0× 10−4 90 0 KODAMA 95 E653 π− emulsion 600 GeV

�+
 DECAY PARAMETERS�+
 DECAY PARAMETERS�+
 DECAY PARAMETERS�+
 DECAY PARAMETERSSee the note on \Baryon De
ay Parameters" in the neutron Listings.
α FOR �+
 → �π+α FOR �+
 → �π+α FOR �+
 → �π+α FOR �+
 → �π+VALUE EVTS DOCUMENT ID TECN COMMENT
−0.91±0.15 OUR AVERAGE−0.91±0.15 OUR AVERAGE−0.91±0.15 OUR AVERAGE−0.91±0.15 OUR AVERAGE
−0.78±0.16±0.19 LINK 06A FOCS γ A, Eγ ≈ 180 GeV
−0.94±0.21±0.12 414 1 BISHAI 95 CLE2 e+ e− ≈ �(4S)
−0.96±0.42 ALBRECHT 92 ARG e+ e− ≈ 10.4 GeV
−1.1 ±0.4 86 AVERY 90B CLEO e+ e− ≈ 10.6 GeV1BISHAI 95 a
tually gives α=−0.94+0.21

−0.06+0.12
−0.06, 
hopping the errors at the physi
allimit −1.0. However, for α ≈ − 1.0, some experiments should get unphysi
al values(α < −1.0), and for averaging with other measurements su
h values (or errors thatextend below −1.0) should not be 
hopped.

α FOR �+
 → �+π0α FOR �+
 → �+π0α FOR �+
 → �+π0α FOR �+
 → �+π0VALUE EVTS DOCUMENT ID TECN COMMENT
−0.45±0.31±0.06−0.45±0.31±0.06−0.45±0.31±0.06−0.45±0.31±0.06 89 BISHAI 95 CLE2 e+ e− ≈ �(4S)
α FOR �+
 → �ℓ+νℓα FOR �+
 → �ℓ+νℓα FOR �+
 → �ℓ+νℓα FOR �+
 → �ℓ+νℓThe experiments don't 
over the 
omplete (or same in
omplete) M(�ℓ+) range, butwe average them together anyway.VALUE EVTS DOCUMENT ID TECN COMMENT
−0.86±0.04 OUR AVERAGE−0.86±0.04 OUR AVERAGE−0.86±0.04 OUR AVERAGE−0.86±0.04 OUR AVERAGE
−0.86±0.03±0.02 3201 1 HINSON 05 CLEO e+ e− ≈ �(4S)
−0.91±0.42±0.25 2 ALBRECHT 94B ARG e+ e− ≈ 10 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−0.82+0.09
−0.06+0.06

−0.03 700 3 CRAWFORD 95 CLE2 See HINSON 05
−0.89+0.17

−0.11+0.09
−0.05 350 4 BERGFELD 94 CLE2 See CRAWFORD 951HINSON 05 measures the form-fa
tor ratio R ≡ f2/f1 for �+
 → �e+ νe events to be

−0.31 ± 0.05 ± 0.04 and the pole mass to be 2.21 ± 0.08 ± 0.14 GeV/
2, and fromthese 
al
ulates α, averaged over q2, where 〈q2〉= 0.67 (GeV/
)2.2ALBRECHT 94B uses �e+ and �µ+ events in the mass range 1.85 <M(�ℓ+)< 2.20GeV.3CRAWFORD 95 measures the form-fa
tor ratio R ≡ f2/f1 for �+
 → �e+ νe events tobe −0.25 ± 0.14 ± 0.08 and from this 
al
ulates α, averaged over q2, to be the above.4BERGFELD 94 uses �e+ events.�+
 , �−
 CP-VIOLATING DECAY ASYMMETRIES�+
 , �−
 CP-VIOLATING DECAY ASYMMETRIES�+
 , �−
 CP-VIOLATING DECAY ASYMMETRIES�+
 , �−
 CP-VIOLATING DECAY ASYMMETRIES(α + α)/(α − α) in �+
 → �π+, �−
 → �π−(α + α)/(α − α) in �+
 → �π+, �−
 → �π−(α + α)/(α − α) in �+
 → �π+, �−
 → �π−(α + α)/(α − α) in �+
 → �π+, �−
 → �π−This is zero if CP is 
onserved.VALUE DOCUMENT ID TECN COMMENT
−0.07±0.19±0.24−0.07±0.19±0.24−0.07±0.19±0.24−0.07±0.19±0.24 LINK 06A FOCS γ A, Eγ ≈ 180 GeV(α + α)/(α − α) in �+
 → �e+νe , �−
 → �e− νe(α + α)/(α − α) in �+
 → �e+νe , �−
 → �e− νe(α + α)/(α − α) in �+
 → �e+νe , �−
 → �e− νe(α + α)/(α − α) in �+
 → �e+νe , �−
 → �e− νeThis is zero if CP is 
onserved.VALUE DOCUMENT ID TECN COMMENT0.00±0.03±0.020.00±0.03±0.020.00±0.03±0.020.00±0.03±0.02 HINSON 05 CLEO e+ e− ≈ �(4S)�+
 REFERENCES�+
 REFERENCES�+
 REFERENCES�+
 REFERENCESWe have omitted some papers that have been superseded by later exper-iments. The omitted papers may be found in our 1992 edition (Physi
alReview D45D45D45D45, 1 June, Part II) or in earlier editions.ABLIKIM 16 PRL 116 052001 M. Ablikim et al. (BES III Collab.)ABLIKIM 15Y PRL 115 221805 M. Ablikim et al. (BES III Collab.)ZUPANC 14 PRL 113 042002 A. Zupan
 et al. (BELLE Collab.)LEES 11G PR D84 072006 J.P. Lees et al. (BABAR Collab.)VAZQUEZ-JA... 08 PL B666 299 E. Vazquez-Jauregui et al. (SELEX Collab.)AUBERT 07U PR D75 052002 B. Aubert et al. (BABAR Collab.)LINK 06A PL B634 165 J.M. Link et al. (FNAL FOCUS Collab.)AUBERT,B 05S PR D72 052006 B. Aubert et al. (BABAR Collab.)HINSON 05 PRL 94 191801 J.W. Hinson et al. (CLEO Collab.)LINK 05F PL B624 22 J.M. Link et al. (FNAL FOCUS Collab.)LINK 05K PL B624 166 J.M. Link et al. (FNAL FOCUS Collab.)CRONIN-HEN... 03 PR D67 012001 D. Cronin-Hennessy et al. (CLEO Collab.)KAYIS-TOPAK...03 PL B555 156 A. Kayis-Topaksu et al. (CERN CHORUS Collab.)ABE 02C PL B524 33 K. Abe et al. (KEK BELLE Collab.)LINK 02C PRL 88 161801 J.M. Link et al. (FNAL FOCUS Collab.)LINK 02G PL B540 25 J.M. Link et al. (FNAL FOCUS Collab.)PDG 02 PR D66 010001 K. Hagiwara et al. (PDG Collab.)KUSHNIR... 01 PRL 86 5243 A. Kushnirenko et al. (FNAL SELEX Collab.)MAHMOOD 01 PRL 86 2232 A.H. Mahmood et al. (CLEO Collab.)AITALA 00 PL B471 449 E.M. Aitala et al. (FNAL E791 Collab.)ALAM 98 PR D57 4467 M.S. Alam et al. (CLEO Collab.)ALBRECHT 96E PRPL 276 223 H. Albre
ht et al. (ARGUS Collab.)ALEXANDER 96C PR D53 R1013 J.P. Alexander et al. (CLEO Collab.)ALBRECHT 95B PL B342 397 H. Albre
ht et al. (ARGUS Collab.)AMMAR 95 PRL 74 3534 R. Ammar et al. (CLEO Collab.)BISHAI 95 PL B350 256 M. Bishai et al. (CLEO Collab.)CRAWFORD 95 PRL 75 624 G. Crawford et al. (CLEO Collab.)KODAMA 95 PL B345 85 K. Kodama et al. (FNAL E653 Collab.)ALBRECHT 94B PL B326 320 H. Albre
ht et al. (ARGUS Collab.)ALEEV 94 PAN 57 1370 A.N. Aleev et al. (Serpukhov BIS-2 Collab.)Translated from YF 57 1443.
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 ,�
(2595)+,�
(2625)+AVERY 94 PL B325 257 P. Avery et al. (CLEO Collab.)BERGFELD 94 PL B323 219 T. Bergfeld et al. (CLEO Collab.)FRABETTI 94E PL B328 193 P.L. Frabetti et al. (FNAL E687 Collab.)AVERY 93 PRL 71 2391 P. Avery et al. (CLEO Collab.)BOZEK 93 PL B312 247 A. Bozek et al. (CERN NA32 Collab.)FRABETTI 93D PRL 70 1755 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 93H PL B314 477 P.L. Frabetti et al. (FNAL E687 Collab.)KUBOTA 93 PRL 71 3255 Y. Kubota et al. (CLEO Collab.)ALBRECHT 92 PL B274 239 H. Albre
ht et al. (ARGUS Collab.)BARLAG 92 PL B283 465 S. Barlag et al. (ACCMOR Collab.)CRAWFORD 92 PR D45 752 G. Crawford et al. (CLEO Collab.)JEZABEK 92 PL B286 175 M. Jezabek, K. Rybi
ki, R. Rylko (CRAC)ALBRECHT 91G PL B269 234 H. Albre
ht et al. (ARGUS Collab.)AVERY 91 PR D43 3599 P. Avery et al. (CLEO Collab.)ALVAREZ 90 ZPHY C47 539 M.P. Alvarez et al. (CERN NA14/2 Collab.)ALVAREZ 90B PL B246 256 M.P. Alvarez et al. (CERN NA14/2 Collab.)ANJOS 90 PR D41 801 J.C. Anjos et al. (FNAL E691 Collab.)AVERY 90B PRL 65 2842 P. Avery et al. (CLEO Collab.)BARLAG 90D ZPHY C48 29 S. Barlag et al. (ACCMOR Collab.)FRABETTI 90 PL B251 639 P.L. Frabetti et al. (FNAL E687 Collab.)BARLAG 89 PL B218 374 S. Barlag et al. (ACCMOR Collab.)AGUILAR-... 88B ZPHY C40 321 M. Aguilar-Benitez et al. (LEBC-EHS Collab.)Also PL B189 254 M. Aguilar-Benitez et al. (LEBC-EHS Collab.)Also PL B199 462 M. Aguilar-Benitez et al. (LEBC-EHS Collab.)Also SJNP 48 833 M. Begalli et al. (LEBC-EHS Collab.)Translated from YAF 48 1310.ALBRECHT 88C PL B207 109 H. Albre
ht et al. (ARGUS Collab.)ANJOS 88B PRL 60 1379 J.C. Anjos et al. (FNAL E691 Collab.)ADAMOVICH 87 EPL 4 887 M.I. Adamovi
h et al. (Photon Emulsion Collab.)Also SJNP 46 447 F. Viaggi et al. (Photon Emulsion Collab.)Translated from YAF 46 799.AMENDOLIA 87 ZPHY C36 513 S.R. Amendolia et al. (CERN NA1 Collab.)JONES 87 ZPHY C36 593 G.T. Jones et al. (CERN WA21 Collab.)ABE 86 PR D33 1 K. Abe et al. (SLAC HF Photon Collab.)BOSETTI 82 PL 109B 234 P.C. Bosetti et al. (AACH3, BONN, CERN+)VELLA 82 PRL 48 1515 E. Vella et al. (SLAC, LBL, UCB)BASILE 81B NC 62A 14 M. Basile et al. (CERN, BGNA, PGIA, FRAS)CALICCHIO 80 PL 93B 521 M. Cali

hio et al. (BARI, BIRM, BRUX+)OTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSMIGLIOZZI 99 PL B462 217 P. Migliozzi et al.DUNIETZ 98 PR D58 094010 I. Dunietz�
(2595)+ I (JP ) = 0(12−) Status: ∗∗∗The �+
 π+π− mode is largely, and perhaps entirely, �
 π, whi
his just at threshold; sin
e the �
 has JP = 1/2+, the JP here isalmost 
ertainly 1/2−. This result is in a

ord with the theoret-i
al expe
tation that this is the 
harm 
ounterpart of the strange�(1405). �
 (2595)+ MASS�
 (2595)+ MASS�
 (2595)+ MASS�
 (2595)+ MASSThe mass is obtained from the �
 (2595)+{�+
 mass-di�eren
e measure-ments below.VALUE (MeV) DOCUMENT ID2592.25±0.28 OUR FIT2592.25±0.28 OUR FIT2592.25±0.28 OUR FIT2592.25±0.28 OUR FIT�
 (2595)+ − �+
 MASS DIFFERENCE�
 (2595)+ − �+
 MASS DIFFERENCE�
 (2595)+ − �+
 MASS DIFFERENCE�
 (2595)+ − �+
 MASS DIFFERENCEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT305.79±0.24 OUR FIT305.79±0.24 OUR FIT305.79±0.24 OUR FIT305.79±0.24 OUR FIT305.79±0.14±0.20305.79±0.14±0.20305.79±0.14±0.20305.79±0.14±0.20 3.5k AALTONEN 11H CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •305.6 ±0.3 1 BLECHMAN 03 Threshold shift309.7 ±0.9 ±0.4 19 ALBRECHT 97 ARG e+ e− ≈ 10 GeV309.2 ±0.7 ±0.3 14 ± 4.5 FRABETTI 96 E687 γBe, Eγ ≈ 220 GeV307.5 ±0.4 ±1.0 112 ± 17 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV1BLECHMAN 03 �nds that a more sophisti
ated treatment than a simple Breit-Wignerfor the proximity of the threshold of the dominant de
ay, �
 (2455)π, lowers the�
 (2595)+ − �+
 mass di�eren
e by 2 or 3 MeV. The analysis of AALTONEN 11Hbears this out. �
 (2595)+ WIDTH�
 (2595)+ WIDTH�
 (2595)+ WIDTH�
 (2595)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2.59±0.30±0.472.59±0.30±0.472.59±0.30±0.472.59±0.30±0.47 3.5k 2 AALTONEN 11H CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2.9 +2.9

−2.1 +1.8
−1.4 19 ALBRECHT 97 ARG e+ e− ≈ 10 GeV3.9 +1.4

−1.2 +2.0
−1.0 112 ± 17 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV2AALTONEN 11H treats the three 
harged modes �
 (2595)+ → �
 (2455)++π−,�
 (2455)+π0, �
 (2455)0π+ separately in terms of a 
ommon 
oupling 
onstant h2and obtains h22 = 0.36 ± 0.08. From this the width is determined.

�
 (2595)+ DECAY MODES�
 (2595)+ DECAY MODES�
 (2595)+ DECAY MODES�
 (2595)+ DECAY MODES�+
 ππ and its submode �
 (2455)π | the latter just barely | are theonly strong de
ays allowed to an ex
ited �+
 having this mass; and thesubmode seems to dominate.Mode Fra
tion (�i /�)�1 �+
 π+π− [a℄ |�2 �
 (2455)++π− 24 ± 7 %�3 �
 (2455)0π+ 24 ± 7 %�4 �+
 π+π−3-body 18 ± 10 %�5 �+
 π0 [b℄ not seen�6 �+
 γ not seen[a℄ See AALTONEN 11H, Fig. 8, for the 
al
ulated ratio of �+
 π0π0 and�+
 π+π− partial widths as a fun
tion of the �
 (2595)+ − �+
 massdi�eren
e. At our value of the mass di�eren
e, the ratio is about 4.[b℄ A test that the isospin is indeed 0, so that the parti
le is indeed a �+
 .�
 (2595)+ BRANCHING RATIOS�
 (2595)+ BRANCHING RATIOS�
 (2595)+ BRANCHING RATIOS�
 (2595)+ BRANCHING RATIOS�(�
 (2455)++π−
)/�(�+
 π+π−

) �2/�1�(�
 (2455)++π−
)/�(�+
 π+π−

) �2/�1�(�
 (2455)++π−
)/�(�+
 π+π−

) �2/�1�(�
 (2455)++π−
)/�(�+
 π+π−

) �2/�1VALUE DOCUMENT ID TECN COMMENT0.36±0.10 OUR AVERAGE0.36±0.10 OUR AVERAGE0.36±0.10 OUR AVERAGE0.36±0.10 OUR AVERAGE0.37±0.12±0.13 ALBRECHT 97 ARG e+ e− ≈ 10 GeV0.36±0.09±0.09 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV�(�
 (2455)0π+)/�(�+
 π+π−
) �3/�1�(�
 (2455)0π+)/�(�+
 π+π−
) �3/�1�(�
 (2455)0π+)/�(�+
 π+π−
) �3/�1�(�
 (2455)0π+)/�(�+
 π+π−
) �3/�1VALUE DOCUMENT ID TECN COMMENT0.37±0.10 OUR AVERAGE0.37±0.10 OUR AVERAGE0.37±0.10 OUR AVERAGE0.37±0.10 OUR AVERAGE0.29±0.10±0.11 ALBRECHT 97 ARG e+ e− ≈ 10 GeV0.42±0.09±0.09 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV

[�(�
 (2455)++π−
)+ �(�
 (2455)0π+)

]/�(�+
 π+π−
) (�2+�3)/�1[�(�
 (2455)++π−

)+ �(�
 (2455)0π+)
]/�(�+
 π+π−

) (�2+�3)/�1[�(�
 (2455)++π−
)+ �(�
 (2455)0π+)

]/�(�+
 π+π−
) (�2+�3)/�1[�(�
 (2455)++π−

)+ �(�
 (2455)0π+)
]/�(�+
 π+π−

) (�2+�3)/�1VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.66+0.13

−0.16±0.07 ALBRECHT 97 ARG e+ e− ≈ 10 GeV
>0.51 90 3 FRABETTI 96 E687 γBe, Eγ ≈ 220 GeV3The results of FRABETTI 96 are 
onsistent with this ratio being 100%.�(�+
 π0)/�(�+
 π+π−

) �5/�1�(�+
 π0)/�(�+
 π+π−
) �5/�1�(�+
 π0)/�(�+
 π+π−
) �5/�1�(�+
 π0)/�(�+
 π+π−
) �5/�1�+
 π0 de
ay is forbidden by isospin 
onservation if this state is in fa
t a �
 .VALUE CL% DOCUMENT ID TECN COMMENT

<3.53<3.53<3.53<3.53 90 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV�(�+
 γ
)/�(�+
 π+π−

) �6/�1�(�+
 γ
)/�(�+
 π+π−

) �6/�1�(�+
 γ
)/�(�+
 π+π−

) �6/�1�(�+
 γ
)/�(�+
 π+π−

) �6/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.98<0.98<0.98<0.98 90 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV�
 (2595)+ REFERENCES�
 (2595)+ REFERENCES�
 (2595)+ REFERENCES�
 (2595)+ REFERENCESAALTONEN 11H PR D84 012003 T. Aaltonen et al. (CDF Collab.)BLECHMAN 03 PR D67 074033 A.E. Ble
hman et al. (JHU, FLOR)ALBRECHT 97 PL B402 207 H. Albre
ht et al. (ARGUS Collab.)FRABETTI 96 PL B365 461 P.L. Frabetti et al. (FNAL E687 Collab.)EDWARDS 95 PRL 74 3331 K.W. Edwards et al. (CLEO Collab.)�
(2625)+ I (JP ) = 0(32−) Status: ∗∗∗The spin-parity has not been measured but is expe
ted to be 3/2−:this is presumably the 
harm 
ounterpart of the strange �(1520).�
 (2625)+ MASS�
 (2625)+ MASS�
 (2625)+ MASS�
 (2625)+ MASSThe mass is obtained from the �
 (2625)+{�+
 mass-di�eren
e measure-ments below.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2628.11±0.19 OUR FIT2628.11±0.19 OUR FIT2628.11±0.19 OUR FIT2628.11±0.19 OUR FIT Error in
ludes s
ale fa
tor of 1.1.
• • • We do not use the following data for averages, �ts, limits, et
. • • •2626.6 ±0.5 ±1.5 42 ± 9 ALBRECHT 93F ARG See ALBRECHT 97



1644164416441644BaryonParti
le Listings�
(2625)+,�
(2765)+,�
(2880)+�
 (2625)+ − �+
 MASS DIFFERENCE�
 (2625)+ − �+
 MASS DIFFERENCE�
 (2625)+ − �+
 MASS DIFFERENCE�
 (2625)+ − �+
 MASS DIFFERENCEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT341.65±0.13 OUR FIT341.65±0.13 OUR FIT341.65±0.13 OUR FIT341.65±0.13 OUR FIT Error in
ludes s
ale fa
tor of 1.1.341.65±0.15 OUR AVERAGE341.65±0.15 OUR AVERAGE341.65±0.15 OUR AVERAGE341.65±0.15 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.341.65±0.04±0.12 6.2k AALTONEN 11H CDF pp at 1.96 TeV342.1 ±0.5 ±0.5 51 ALBRECHT 97 ARG e+ e− ≈ 10 GeV342.2 ±0.2 ±0.5 245 ± 19 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV340.4 ±0.6 ±0.3 40 ± 9 FRABETTI 94 E687 γBe, Eγ = 220 GeV
WEIGHTED AVERAGE
341.65±0.15 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

FRABETTI 94 E687 3.5
EDWARDS 95 CLE2 1.0
ALBRECHT 97 ARG 0.4
AALTONEN 11H CDF 0.0

χ2

       4.9
(Confidence Level = 0.178)

339 340 341 342 343 344 345m�
 (2625)+ − m�+
 �
 (2625)+ WIDTH�
 (2625)+ WIDTH�
 (2625)+ WIDTH�
 (2625)+ WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT
<0.97<0.97<0.97<0.97 90 6.2k AALTONEN 11H CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<1.9 90 245 ± 19 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV
<3.2 90 ALBRECHT 93F ARG e+ e− ≈ �(4S)�
 (2625)+ DECAY MODES�
 (2625)+ DECAY MODES�
 (2625)+ DECAY MODES�
 (2625)+ DECAY MODES�+
 ππ and its submode �(2455)π are the only strong de
ays allowed toan ex
ited �+
 having this mass.Mode Fra
tion (�i /�) Con�den
e level�1 �+
 π+π− [a℄ ≈ 67%�2 �
 (2455)++π− <5 90%�3 �
 (2455)0π+ <5 90%�4 �+
 π+π−3-body large�5 �+
 π0 [b℄ not seen�6 �+
 γ not seen[a℄ See AALTONEN 11H, Fig. 8, for the 
al
ulated ratio of �+
 π0π0 and�+
 π+π− partial widths as a fun
tion of the �
 (2595)+ − �+
 massdi�eren
e. At our value of the mass di�eren
e, the ratio is about 4.[b℄ A test that the isospin is indeed 0, so that the parti
le is indeed a �+
 .�
 (2625)+ BRANCHING RATIOS�
 (2625)+ BRANCHING RATIOS�
 (2625)+ BRANCHING RATIOS�
 (2625)+ BRANCHING RATIOS�(�
 (2455)++π−

)/�(�+
 π+π−
) �2/�1�(�
 (2455)++π−

)/�(�+
 π+π−
) �2/�1�(�
 (2455)++π−

)/�(�+
 π+π−
) �2/�1�(�
 (2455)++π−

)/�(�+
 π+π−
) �2/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.08<0.08<0.08<0.08 90 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV�(�
 (2455)0π+)/�(�+
 π+π−
) �3/�1�(�
 (2455)0π+)/�(�+
 π+π−
) �3/�1�(�
 (2455)0π+)/�(�+
 π+π−
) �3/�1�(�
 (2455)0π+)/�(�+
 π+π−
) �3/�1VALUE CL% DOCUMENT ID TECN COMMENT

<0.07<0.07<0.07<0.07 90 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV
[�(�
 (2455)++π−

)+ �(�
 (2455)0π+)
]/�(�+
 π+π−

) (�2+�3)/�1[�(�
 (2455)++π−
)+ �(�
 (2455)0π+)

]/�(�+
 π+π−
) (�2+�3)/�1[�(�
 (2455)++π−

)+ �(�
 (2455)0π+)
]/�(�+
 π+π−

) (�2+�3)/�1[�(�
 (2455)++π−
)+ �(�
 (2455)0π+)

]/�(�+
 π+π−
) (�2+�3)/�1VALUE CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.36 90 FRABETTI 94 E687 γBe, Eγ = 220 GeV0.46±0.14 21 ALBRECHT 93F ARG e+ e− ≈ �(4S)

�(�+
 π+π−3-body)/�(�+
 π+π−
) �4/�1�(�+
 π+π−3-body)/�(�+
 π+π−
) �4/�1�(�+
 π+π−3-body)/�(�+
 π+π−
) �4/�1�(�+
 π+π−3-body)/�(�+
 π+π−
) �4/�1VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.54±0.14 16 ALBRECHT 93F ARG e+ e− ≈ �(4S)�(�+
 π0)/�(�+
 π+π−
) �5/�1�(�+
 π0)/�(�+
 π+π−
) �5/�1�(�+
 π0)/�(�+
 π+π−
) �5/�1�(�+
 π0)/�(�+
 π+π−
) �5/�1�+
 π0 de
ay is forbidden by isospin 
onservation if this state is in fa
t a �
 .VALUE CL% DOCUMENT ID TECN COMMENT

<0.91<0.91<0.91<0.91 90 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV�(�+
 γ
)/�(�+
 π+π−

) �6/�1�(�+
 γ
)/�(�+
 π+π−

) �6/�1�(�+
 γ
)/�(�+
 π+π−

) �6/�1�(�+
 γ
)/�(�+
 π+π−

) �6/�1VALUE CL% DOCUMENT ID TECN COMMENT
<0.52<0.52<0.52<0.52 90 EDWARDS 95 CLE2 e+ e− ≈ 10.5 GeV�
 (2625)+ REFERENCES�
 (2625)+ REFERENCES�
 (2625)+ REFERENCES�
 (2625)+ REFERENCESAALTONEN 11H PR D84 012003 T. Aaltonen et al. (CDF Collab.)ALBRECHT 97 PL B402 207 H. Albre
ht et al. (ARGUS Collab.)EDWARDS 95 PRL 74 3331 K.W. Edwards et al. (CLEO Collab.)FRABETTI 94 PRL 72 961 P.L. Frabetti et al. (FNAL E687 Collab.)ALBRECHT 93F PL B317 227 H. Albre
ht et al. (ARGUS Collab.)�
(2765)+or �
(2765) I (JP ) = ?(??) Status: ∗OMITTED FROM SUMMARY TABLEA broad, statisti
ally signi�
ant peak (997+141

−129 events) seen in�+
 π+π−. However, nothing at all is known about its quantumnumbers, in
luding whether it is a �+
 or a �
 , or whether thewidth might be due to overlapping states.�
 (2765)+ MASS�
 (2765)+ MASS�
 (2765)+ MASS�
 (2765)+ MASSThe mass is obtained from the �
 (2765)+ − �+
 mass-di�eren
e mea-surement below.VALUE (MeV) DOCUMENT ID2766.6±2.4 OUR FIT2766.6±2.4 OUR FIT2766.6±2.4 OUR FIT2766.6±2.4 OUR FIT�
 (2765)+ − �+
 MASS DIFFERENCE�
 (2765)+ − �+
 MASS DIFFERENCE�
 (2765)+ − �+
 MASS DIFFERENCE�
 (2765)+ − �+
 MASS DIFFERENCEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT480.1±2.4 OUR FIT480.1±2.4 OUR FIT480.1±2.4 OUR FIT480.1±2.4 OUR FIT480.1±2.4480.1±2.4480.1±2.4480.1±2.4 997+141
−129 ARTUSO 01 CLE2 e+ e−≈ �(4S)�
 (2765)+ WIDTH�
 (2765)+ WIDTH�
 (2765)+ WIDTH�
 (2765)+ WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT50505050 ARTUSO 01 CLE2 e+ e−≈ �(4S)�
 (2765)+ DECAY MODES�
 (2765)+ DECAY MODES�
 (2765)+ DECAY MODES�
 (2765)+ DECAY MODESMode Fra
tion (�i /�)�1 �+
 π+π− seen�
 (2765)+ REFERENCES�
 (2765)+ REFERENCES�
 (2765)+ REFERENCES�
 (2765)+ REFERENCESARTUSO 01 PRL 86 4479 M. Artuso et al. (CLEO Collab.)�
(2880)+ I (JP ) = 0(52+) Status: ∗∗∗A narrow peak seen in �+
 π+π− and in pD0. It is not seen inpD+, and therefore it is probably a �+
 and not a �
 . The evi-den
e for spin 5/2 
omes from the �
 (2455)π de
ay angular dis-tribution, and the eviden
e for parity + 
omes from agreement ofthe �
 (2520)/�
 (2455) bran
hing ratio with a predi
tion of heavyquark symmetry (see MIZUK 07).�
 (2880)+ MASS�
 (2880)+ MASS�
 (2880)+ MASS�
 (2880)+ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2881.53±0.35 OUR FIT2881.53±0.35 OUR FIT2881.53±0.35 OUR FIT2881.53±0.35 OUR FIT2881.50±0.35 OUR AVERAGE2881.50±0.35 OUR AVERAGE2881.50±0.35 OUR AVERAGE2881.50±0.35 OUR AVERAGE2881.9 ±0.1 ±0.5 2.8k±190 AUBERT 07 BABR in pD02881.2 ±0.2 ±0.4 690 ± 50 MIZUK 07 BELL in �
 (2455)0,++ π±



1645164516451645See key on page 601 BaryonParti
le Listings�
(2880)+,�
(2940)+,�
(2455)�
 (2880)+ − �+
 MASS DIFFERENCE�
 (2880)+ − �+
 MASS DIFFERENCE�
 (2880)+ − �+
 MASS DIFFERENCE�
 (2880)+ − �+
 MASS DIFFERENCEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT595.1±0.4 OUR FIT595.1±0.4 OUR FIT595.1±0.4 OUR FIT595.1±0.4 OUR FIT596 ±1 ±2596 ±1 ±2596 ±1 ±2596 ±1 ±2 350+57
−55 ARTUSO 01 CLE2 in �+
 π+π−�
 (2880)+ WIDTH�
 (2880)+ WIDTH�
 (2880)+ WIDTH�
 (2880)+ WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT5.8±1.1 OUR AVERAGE5.8±1.1 OUR AVERAGE5.8±1.1 OUR AVERAGE5.8±1.1 OUR AVERAGE5.8±1.5±1.1 2.8k±190 AUBERT 07 BABR in pD05.8±0.7±1.1 690 ± 50 MIZUK 07 BELL in �
 (2455)0,++ π±

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<8 90 ARTUSO 01 CLEO in �+
 π+π−�
 (2880)+ DECAY MODES�
 (2880)+ DECAY MODES�
 (2880)+ DECAY MODES�
 (2880)+ DECAY MODESMode Fra
tion (�i /�)�1 �+
 π+π− seen�2 �
 (2455)0 ,++π± seen�3 �
 (2520)0 ,++π± seen�4 pD0 seen�
 (2880)+ BRANCHING RATIOS�
 (2880)+ BRANCHING RATIOS�
 (2880)+ BRANCHING RATIOS�
 (2880)+ BRANCHING RATIOS�(�
 (2455)0 ,++π±
)/�(�+
 π+π−

) �2/�1�(�
 (2455)0 ,++π±
)/�(�+
 π+π−

) �2/�1�(�
 (2455)0 ,++π±
)/�(�+
 π+π−

) �2/�1�(�
 (2455)0 ,++π±
)/�(�+
 π+π−

) �2/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.392±0.031 OUR AVERAGE0.392±0.031 OUR AVERAGE0.392±0.031 OUR AVERAGE0.392±0.031 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.0.404±0.021±0.014 MIZUK 07 BELL in �
 (2455)0,++ π±0.31 ±0.06 ±0.03 96 ARTUSO 01 CLE2 e+ e−≈ �(4S)�(�
 (2520)0 ,++π±
)/�(�+
 π+π−

) �3/�1�(�
 (2520)0 ,++π±
)/�(�+
 π+π−

) �3/�1�(�
 (2520)0 ,++π±
)/�(�+
 π+π−

) �3/�1�(�
 (2520)0 ,++π±
)/�(�+
 π+π−

) �3/�1VALUE CL% DOCUMENT ID TECN COMMENT0.091±0.025±0.0100.091±0.025±0.0100.091±0.025±0.0100.091±0.025±0.010 MIZUK 07 BELL in �
 (2455)0,++ π±

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.11 90 ARTUSO 01 CLE2 e+ e−≈ �(4S)�(�
 (2520)0 ,++π±
)/�(�
 (2455)0 ,++π±

) �3/�2�(�
 (2520)0 ,++π±
)/�(�
 (2455)0 ,++π±

) �3/�2�(�
 (2520)0 ,++π±
)/�(�
 (2455)0 ,++π±

) �3/�2�(�
 (2520)0 ,++π±
)/�(�
 (2455)0 ,++π±

) �3/�2VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.225±0.062±0.025 1 MIZUK 07 BELL in �
 (2455)0,++ π±1This MIZUK 07 ratio is redundant with MIZUK 07 ratios given above.�
 (2880)+ REFERENCES�
 (2880)+ REFERENCES�
 (2880)+ REFERENCES�
 (2880)+ REFERENCESAUBERT 07 PRL 98 012001 B. Aubert et al. (BABAR Collab.)MIZUK 07 PRL 98 262001 R. Mizuk et al. (BELLE Collab.)ARTUSO 01 PRL 86 4479 M. Artuso et al. (CLEO Collab.)�
(2940)+ I (JP ) = 0(??) Status: ∗∗∗A fairly narrow peak of good statisti
al signi�
an
e �rst seen in thepD0 mass spe
trum. It is not seen in pD+, and thus it is probablya �+
 and not a �
 . It is also seen in �
 (2455)0,++ π±.�
 (2940)+ MASS�
 (2940)+ MASS�
 (2940)+ MASS�
 (2940)+ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2939.3+1.4

−1.5 OUR AVERAGE2939.3+1.4
−1.5 OUR AVERAGE2939.3+1.4
−1.5 OUR AVERAGE2939.3+1.4
−1.5 OUR AVERAGE2939.8±1.3±1.0 2280± 310 AUBERT 07 BABR in pD02938.0±1.3+2.0

−4.0 220+80
−60 MIZUK 07 BELL in �
 (2455)0,++ π±�
 (2940)+ WIDTH�
 (2940)+ WIDTH�
 (2940)+ WIDTH�
 (2940)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT17 +8

−6 OUR AVERAGE17 +8
−6 OUR AVERAGE17 +8
−6 OUR AVERAGE17 +8
−6 OUR AVERAGE17.5±5.2± 5.9 2280± 310 AUBERT 07 BABR in pD013 +8
−5 +27

− 7 220+80
−60 MIZUK 07 BELL in �
 (2455)0,++ π±�
 (2940)+ DECAY MODES�
 (2940)+ DECAY MODES�
 (2940)+ DECAY MODES�
 (2940)+ DECAY MODESMode Fra
tion (�i /�)�1 pD0 seen�2 �
 (2455)0 ,++π± seen

�
 (2940)+ REFERENCES�
 (2940)+ REFERENCES�
 (2940)+ REFERENCES�
 (2940)+ REFERENCESAUBERT 07 PRL 98 012001 B. Aubert et al. (BABAR Collab.)MIZUK 07 PRL 98 262001 R. Mizuk et al. (BELLE Collab.)�
(2455) I (JP ) = 1(12+) Status: ∗∗∗∗The angular distribution of B− → �
 (2455)0 p favors J = 1/2 (asthe quark model predi
ts). J = 3/2 is ex
luded by more than four
σ see AUBERT 08BN. �
 (2455) MASSES�
 (2455) MASSES�
 (2455) MASSES�
 (2455) MASSESThe masses are obtained from the mass-di�eren
e measurements that fol-low.�
 (2455)++ MASS�
 (2455)++ MASS�
 (2455)++ MASS�
 (2455)++ MASSVALUE (MeV) DOCUMENT ID2453.97±0.14 OUR FIT2453.97±0.14 OUR FIT2453.97±0.14 OUR FIT2453.97±0.14 OUR FIT�
 (2455)+ MASS�
 (2455)+ MASS�
 (2455)+ MASS�
 (2455)+ MASSVALUE (MeV) DOCUMENT ID2452.9±0.4 OUR FIT2452.9±0.4 OUR FIT2452.9±0.4 OUR FIT2452.9±0.4 OUR FIT�
 (2455)0 MASS�
 (2455)0 MASS�
 (2455)0 MASS�
 (2455)0 MASSVALUE (MeV) DOCUMENT ID2453.75±0.14 OUR FIT2453.75±0.14 OUR FIT2453.75±0.14 OUR FIT2453.75±0.14 OUR FIT�
 (2455) − �+
 MASS DIFFERENCES�
 (2455) − �+
 MASS DIFFERENCES�
 (2455) − �+
 MASS DIFFERENCES�
 (2455) − �+
 MASS DIFFERENCESm�++
 − m�+
m�++
 − m�+
m�++
 − m�+
m�++
 − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT167.510± 0.017 OUR FIT167.510± 0.017 OUR FIT167.510± 0.017 OUR FIT167.510± 0.017 OUR FIT167.510± 0.022 OUR AVERAGE167.510± 0.022 OUR AVERAGE167.510± 0.022 OUR AVERAGE167.510± 0.022 OUR AVERAGE167.51 ± 0.01 ±0.02 36k LEE 14 BELL e+ e− at �(4S)167.44 ± 0.04 ±0.12 13.8k AALTONEN 11H CDF pp at 1.96 TeV167.4 ± 0.1 ±0.2 2k ARTUSO 02 CLE2 e+ e− ≈ �(4S)167.35 ± 0.19 ±0.12 461 LINK 00C FOCS γ A, Eγ 180 GeV167.76 ± 0.29 ±0.15 122 AITALA 96B E791 π−N, 500 GeV167.6 ± 0.6 ±0.6 56 FRABETTI 96 E687 γBe, Eγ ≈ 220 GeV168.2 ± 0.3 ±0.2 126 CRAWFORD 93 CLE2 e+ e− ≈ �(4S)167.8 ± 0.4 ±0.3 54 BOWCOCK 89 CLEO e+ e− 10 GeV168.2 ± 0.5 ±1.6 92 ALBRECHT 88D ARG e+ e− 10 GeV167.4 ± 0.5 ±2.0 46 DIESBURG 87 SPEC nA ∼ 600 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •167 ± 1 2 JONES 87 HBC ν p in BEBC166 ± 1 1 BOSETTI 82 HBC See JONES 87168 ± 3 6 BALTAY 79 HLBC ν Ne-H in 15-ft166 ±15 1 CAZZOLI 75 HBC ν p in BNL 7-ftm�+
 − m�+
m�+
 − m�+
m�+
 − m�+
m�+
 − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT166.4±0.4 OUR FIT166.4±0.4 OUR FIT166.4±0.4 OUR FIT166.4±0.4 OUR FIT166.4±0.2±0.3166.4±0.2±0.3166.4±0.2±0.3166.4±0.2±0.3 661 AMMAR 01 CLE2 e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •168.5±0.4±0.2 111 CRAWFORD 93 CLE2 See AMMAR 01168 ±3 1 CALICCHIO 80 HBC ν p in BEBC-TSTm�0
 − m�+
m�0
 − m�+
m�0
 − m�+
m�0
 − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT167.290±0.017 OUR FIT167.290±0.017 OUR FIT167.290±0.017 OUR FIT167.290±0.017 OUR FIT167.290±0.022 OUR AVERAGE167.290±0.022 OUR AVERAGE167.290±0.022 OUR AVERAGE167.290±0.022 OUR AVERAGE167.29 ±0.01 ±0.02 32k LEE 14 BELL e+ e− at �(4S)167.28 ±0.03 ±0.12 15.9k AALTONEN 11H CDF pp at 1.96 TeV167.2 ±0.1 ±0.2 2k ARTUSO 02 CLE2 e+ e− ≈ �(4S)167.38 ±0.21 ±0.13 362 LINK 00C FOCS γ A, Eγ 180 GeV167.38 ±0.29 ±0.15 143 AITALA 96B E791 π−N, 500 GeV167.8 ±0.6 ±0.2 ALEEV 96 SPEC n nu
leus, 50 GeV/
166.6 ±0.5 ±0.6 69 FRABETTI 96 E687 γBe, Eγ ≈ 220 GeV167.1 ±0.3 ±0.2 124 CRAWFORD 93 CLE2 e+ e− ≈ �(4S)168.4 ±1.0 ±0.3 14 ANJOS 89D E691 γBe 90{260 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •167.9 ±0.5 ±0.3 48 1 BOWCOCK 89 CLEO e+ e− 10 GeV167.0 ±0.5 ±1.6 70 1 ALBRECHT 88D ARG e+ e− 10 GeV178.2 ±0.4 ±2.0 85 2 DIESBURG 87 SPEC nA ∼ 600 GeV163 ±2 1 AMMAR 86 EMUL νA1This result enters the �t through m�++
 − m�0
 given below.2 See the note on DIESBURG 87 in the m�++
 − m�0
 se
tion below.



1646164616461646BaryonParti
le Listings�
(2455),�
(2520)�
 (2455) MASS DIFFERENCES�
 (2455) MASS DIFFERENCES�
 (2455) MASS DIFFERENCES�
 (2455) MASS DIFFERENCESm�++
 − m�0
m�++
 − m�0
m�++
 − m�0
m�++
 − m�0
VALUE (MeV) DOCUMENT ID TECN COMMENT0.220±0.013 OUR FIT0.220±0.013 OUR FIT0.220±0.013 OUR FIT0.220±0.013 OUR FIT0.221±0.014 OUR AVERAGE0.221±0.014 OUR AVERAGE0.221±0.014 OUR AVERAGE0.221±0.014 OUR AVERAGE0.22 ±0.01 ±0.01 LEE 14 BELL e+ e− at �(4S)0.2 ±0.1 ±0.1 ARTUSO 02 CLE2 e+ e− ≈ �(4S)
− 0.03 ±0.28 ±0.11 LINK 00C FOCS γ A, Eγ 180 GeV0.38 ±0.40 ±0.15 AITALA 96B E791 π−N, 500 GeV1.1 ±0.4 ±0.1 CRAWFORD 93 CLE2 e+ e− ≈ �(4S)
− 0.1 ±0.6 ±0.1 BOWCOCK 89 CLEO e+ e− 10 GeV1.2 ±0.7 ±0.3 ALBRECHT 88D ARG e+ e− ∼ 10 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

−10.8 ±2.9 3 DIESBURG 87 SPEC nA ∼ 600 GeV3DIESBURG 87 is 
ompletely in
ompatible with the other experiments, whi
h is surprisingsin
e it agrees with them about m�
(2455)++ − m�+
 . We go with the majority here.m�+
 − m�0
m�+
 − m�0
m�+
 − m�0
m�+
 − m�0
VALUE (MeV) DOCUMENT ID TECN COMMENT
−0.9±0.4 OUR FIT−0.9±0.4 OUR FIT−0.9±0.4 OUR FIT−0.9±0.4 OUR FIT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.4±0.5±0.3 CRAWFORD 93 CLE2 See AMMAR 01�
 (2455) WIDTHS�
 (2455) WIDTHS�
 (2455) WIDTHS�
 (2455) WIDTHS�
 (2455)++ WIDTH�
 (2455)++ WIDTH�
 (2455)++ WIDTH�
 (2455)++ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1.89+0.09

−0.18 OUR AVERAGE1.89+0.09
−0.18 OUR AVERAGE1.89+0.09
−0.18 OUR AVERAGE1.89+0.09
−0.18 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1.84±0.04+0.07

−0.20 36k LEE 14 BELL e+ e− at �(4S)2.34±0.13±0.45 13.8k AALTONEN 11H CDF pp at 1.96 TeV2.3 ±0.2 ±0.3 2k ARTUSO 02 CLE2 e+ e− ≈ �(4S)2.05+0.41
−0.38±0.38 1110 LINK 02 FOCS γ A, Eγ ≈ 180 GeV�
 (2455)+ WIDTH�
 (2455)+ WIDTH�
 (2455)+ WIDTH�
 (2455)+ WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT

<4.6<4.6<4.6<4.6 90 661 AMMAR 01 CLE2 e+ e− ≈ �(4S)�
 (2455)0 WIDTH�
 (2455)0 WIDTH�
 (2455)0 WIDTH�
 (2455)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1.83+0.11
−0.19 OUR AVERAGE1.83+0.11
−0.19 OUR AVERAGE1.83+0.11
−0.19 OUR AVERAGE1.83+0.11
−0.19 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.1.76±0.04+0.09

−0.21 32k LEE 14 BELL e+ e− at �(4S)1.65±0.11±0.49 15.9k AALTONEN 11H CDF pp at 1.96 TeV2.6 ±0.5 ±0.3 AUBERT 08BN BABR B− → p�+
 π−2.5 ±0.2 ±0.3 2k ARTUSO 02 CLE2 e+ e− ≈ �(4S)1.55+0.41
−0.37±0.38 913 LINK 02 FOCS γ A, Eγ ≈ 180 GeV�
 (2455) DECAY MODES�
 (2455) DECAY MODES�
 (2455) DECAY MODES�
 (2455) DECAY MODES�+
 π is the only strong de
ay allowed to a �
 having this mass.Mode Fra
tion (�i /�)�1 �+
 π ≈ 100 %�
 (2455) REFERENCES�
 (2455) REFERENCES�
 (2455) REFERENCES�
 (2455) REFERENCESLEE 14 PR D89 091102 S.-H. Lee et al. (BELLE Collab.)AALTONEN 11H PR D84 012003 T. Aaltonen et al. (CDF Collab.)AUBERT 08BN PR D78 112003 B. Aubert et al. (BABAR Collab.)ARTUSO 02 PR D65 071101 M. Artuso et al. (CLEO Collab.)LINK 02 PL B525 205 J.M. Link et al. (FNAL FOCUS Collab.)AMMAR 01 PRL 86 1167 R. Ammar et al. (CLEO Collab.)LINK 00C PL B488 218 J.M. Link et al. (FNAL FOCUS Collab.)AITALA 96B PL B379 292 E.M. Aitala et al. (FNAL E791 Collab.)ALEEV 96 JINRRC 3-77 31 A.N. Aleev et al. (Serpukhov EXCHARM Collab.)FRABETTI 96 PL B365 461 P.L. Frabetti et al. (FNAL E687 Collab.)CRAWFORD 93 PRL 71 3259 G. Crawford et al. (CLEO Collab.)ANJOS 89D PRL 62 1721 J.C. Anjos et al. (FNAL E691 Collab.)BOWCOCK 89 PRL 62 1240 T.J.V. Bow
o
k et al. (CLEO Collab.)ALBRECHT 88D PL B211 489 H. Albre
ht et al. (ARGUS Collab.)DIESBURG 87 PRL 59 2711 M. Diesburg et al. (FNAL E400 Collab.)JONES 87 ZPHY C36 593 G.T. Jones et al. (CERN WA21 Collab.)AMMAR 86 JETPL 43 515 R. Ammar et al. (ITEP)Translated from ZETFP 43 401.BOSETTI 82 PL 109B 234 P.C. Bosetti et al. (AACH3, BONN, CERN+)CALICCHIO 80 PL 93B 521 M. Cali

hio et al. (BARI, BIRM, BRUX+)BALTAY 79 PRL 42 1721 C. Baltay et al. (COLU, BNL) ICAZZOLI 75 PRL 34 1125 E.G. Cazzoli et al. (BNL)

�
(2520) I (JP ) = 1(32+) Status: ∗∗∗Seen in the �+
 π± mass spe
trum. The natural assignment is thatthis is the JP = 3/2+ ex
itation of the �
 (2455), the 
harm 
oun-terpart of the �(1385), but neither J nor P has been measured.�
 (2520) MASSES�
 (2520) MASSES�
 (2520) MASSES�
 (2520) MASSESThe masses are obtained from the mass-di�eren
e measurements that fol-low.�
 (2520)++ MASS�
 (2520)++ MASS�
 (2520)++ MASS�
 (2520)++ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2518.41+0.21
−0.19 OUR FIT2518.41+0.21
−0.19 OUR FIT2518.41+0.21
−0.19 OUR FIT2518.41+0.21
−0.19 OUR FIT Error in
ludes s
ale fa
tor of 1.1.

• • • We do not use the following data for averages, �ts, limits, et
. • • •2530 ±5 ±5 6 1 AMMOSOV 93 HLBC ν p → µ−�
 (2530)++1AMMOSOV 93 sees a 
luster of 6 events and estimates the ba
kground to be 1 event.�
 (2520)+ MASS�
 (2520)+ MASS�
 (2520)+ MASS�
 (2520)+ MASSVALUE (MeV) DOCUMENT ID2517.5±2.3 OUR FIT2517.5±2.3 OUR FIT2517.5±2.3 OUR FIT2517.5±2.3 OUR FIT�
 (2520)0 MASS�
 (2520)0 MASS�
 (2520)0 MASS�
 (2520)0 MASSVALUE (MeV) DOCUMENT ID2518.48±0.20 OUR FIT2518.48±0.20 OUR FIT2518.48±0.20 OUR FIT2518.48±0.20 OUR FIT Error in
ludes s
ale fa
tor of 1.1.�
 (2520) MASS DIFFERENCES�
 (2520) MASS DIFFERENCES�
 (2520) MASS DIFFERENCES�
 (2520) MASS DIFFERENCESm�
(2520)++ − m�+
m�
(2520)++ − m�+
m�
(2520)++ − m�+
m�
(2520)++ − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT231.95+0.17
−0.12 OUR FIT231.95+0.17
−0.12 OUR FIT231.95+0.17
−0.12 OUR FIT231.95+0.17
−0.12 OUR FIT Error in
ludes s
ale fa
tor of 1.3.231.95±0.16 OUR AVERAGE231.95±0.16 OUR AVERAGE231.95±0.16 OUR AVERAGE231.95±0.16 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.231.99±0.10±0.02 44k LEE 14 BELL e+ e− at �(4S)230.73±0.56±0.16 8.8k AALTONEN 11H CDF pp at 1.96 TeV231.5 ±0.4 ±0.3 1.3k ATHAR 05 CLEO e+ e−, 9.4{11.5 GeV234.5 ±1.1 ±0.8 677 BRANDENB... 97 CLE2 e+ e− ≈ �(4S)

WEIGHTED AVERAGE
231.95±0.16 (Error scaled by 1.6)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BRANDENB... 97 CLE2
ATHAR 05 CLEO 0.8
AALTONEN 11H CDF 4.4
LEE 14 BELL 0.2

χ2

       5.3
(Confidence Level = 0.069)

229 230 231 232 233 234 235m�
 (2520)++ − m�+
 (MeV)m�
(2520)+ − m�+
m�
(2520)+ − m�+
m�
(2520)+ − m�+
m�
(2520)+ − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT231.0±2.3 OUR FIT231.0±2.3 OUR FIT231.0±2.3 OUR FIT231.0±2.3 OUR FIT231.0±1.1±2.0231.0±1.1±2.0231.0±1.1±2.0231.0±1.1±2.0 327 AMMAR 01 CLE2 e+ e− ≈ �(4S)m�
(2520)0 − m�+
m�
(2520)0 − m�+
m�
(2520)0 − m�+
m�
(2520)0 − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT232.02+0.15
−0.14 OUR FIT232.02+0.15
−0.14 OUR FIT232.02+0.15
−0.14 OUR FIT232.02+0.15
−0.14 OUR FIT Error in
ludes s
ale fa
tor of 1.3.232.02±0.17 OUR AVERAGE232.02±0.17 OUR AVERAGE232.02±0.17 OUR AVERAGE232.02±0.17 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.231.98±0.11±0.04 41k LEE 14 BELL e+ e− at �(4S)232.88±0.43±0.16 9.0k AALTONEN 11H CDF pp at 1.96 TeV231.4 ±0.5 ±0.3 1.3k ATHAR 05 CLEO e+ e−, 9.4{11.5 GeV232.6 ±1.0 ±0.8 504 BRANDENB... 97 CLE2 e+ e− ≈ �(4S)



1647164716471647See key on page 601 BaryonParti
le Listings�
(2520),�
(2800)
WEIGHTED AVERAGE
232.02±0.17 (Error scaled by 1.5)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BRANDENB... 97 CLE2
ATHAR 05 CLEO 1.1
AALTONEN 11H CDF 3.5
LEE 14 BELL 0.1

χ2

       4.8
(Confidence Level = 0.093)

230 231 232 233 234 235m�
 (2520)0 − m�+
 (MeV)m�
(2520)++ − m�
(2520)0m�
(2520)++ − m�
(2520)0m�
(2520)++ − m�
(2520)0m�
(2520)++ − m�
(2520)0VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT0.01±0.15±0.030.01±0.15±0.030.01±0.15±0.030.01±0.15±0.03 44/41k LEE 14 BELL e+ e− at �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.1 ±0.8 ±0.3 2 ATHAR 05 CLEO e+ e−, 9.4{11.5 GeV1.9 ±1.4 ±1.0 3 BRANDENB... 97 CLE2 e+ e− ≈ �(4S)2This ATHAR 05 result is redundant with measurements in earlier entries.3This BRANDENBURG 97 result is redundant with measurements in earlier entries.�
 (2520) WIDTHS�
 (2520) WIDTHS�
 (2520) WIDTHS�
 (2520) WIDTHS�
 (2520)++ WIDTH�
 (2520)++ WIDTH�
 (2520)++ WIDTH�
 (2520)++ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT14.78+0.30

−0.40 OUR AVERAGE14.78+0.30
−0.40 OUR AVERAGE14.78+0.30
−0.40 OUR AVERAGE14.78+0.30
−0.40 OUR AVERAGE14.77±0.25+0.18

−0.30 44k LEE 14 BELL e+ e− at �(4S)15.03±2.12±1.36 8.8k AALTONEN 11H CDF pp at 1.96 TeV14.4 +1.6
−1.5 ±1.4 1.3k ATHAR 05 CLEO e+ e−, 9.4{11.5 GeV17.9 +3.8
−3.2 ±4.0 677 BRANDENB... 97 CLE2 e+ e− ≈ �(4S)�
 (2520)+ WIDTH�
 (2520)+ WIDTH�
 (2520)+ WIDTH�
 (2520)+ WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT

<17<17<17<17 90 327 AMMAR 01 CLE2 e+ e− ≈ �(4S)�
 (2520)0 WIDTH�
 (2520)0 WIDTH�
 (2520)0 WIDTH�
 (2520)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT15.3 +0.4
−0.5 OUR AVERAGE15.3 +0.4
−0.5 OUR AVERAGE15.3 +0.4
−0.5 OUR AVERAGE15.3 +0.4
−0.5 OUR AVERAGE15.41±0.41+0.20

−0.32 41k LEE 14 BELL e+ e− at �(4S)12.51±1.82±1.37 9.0k AALTONEN 11H CDF pp at 1.96 TeV16.6 +1.9
−1.7 ±1.4 1.3k ATHAR 05 CLEO e+ e−, 9.4{11.5 GeV13.0 +3.7
−3.0 ±4.0 504 BRANDENB... 97 CLE2 e+ e− ≈ �(4S)�
 (2520) DECAY MODES�
 (2520) DECAY MODES�
 (2520) DECAY MODES�
 (2520) DECAY MODES�+
 π is the only strong de
ay allowed to a �
 having this mass.Mode Fra
tion (�i /�)�1 �+
 π ≈ 100 %�
 (2520) REFERENCES�
 (2520) REFERENCES�
 (2520) REFERENCES�
 (2520) REFERENCESLEE 14 PR D89 091102 S.-H. Lee et al. (BELLE Collab.)AALTONEN 11H PR D84 012003 T. Aaltonen et al. (CDF Collab.)ATHAR 05 PR D71 051101 S.B. Athar et al. (CLEO Collab.)AMMAR 01 PRL 86 1167 R. Ammar et al. (CLEO Collab.)BRANDENB... 97 PRL 78 2304 G. Brandenburg et al. (CLEO Collab.)AMMOSOV 93 JETPL 58 247 V.V. Ammosov et al. (SERP)Translated from ZETFP 58 241.

�
(2800) I (JP ) = 1(??) Status: ∗∗∗Seen in the �+
 π+, �+
 π0, and �+
 π− mass spe
tra.�
 (2800) MASSES�
 (2800) MASSES�
 (2800) MASSES�
 (2800) MASSESThe 
harged ++ and + masses are obtained from the mass-di�eren
emeasurements that follow. The neutral mass is dominated by the mass-di�eren
e measurement, but is pulled up somewhat by the less well-determined but 
onsiderably higher dire
t-mass measurement. It is possi-ble, in fa
t, that AUBERT 08BN is seeing a di�erent �
 .�
 (2800)++ MASS�
 (2800)++ MASS�
 (2800)++ MASS�
 (2800)++ MASSVALUE (MeV) DOCUMENT ID2801+4
−6 OUR FIT2801+4
−6 OUR FIT2801+4
−6 OUR FIT2801+4
−6 OUR FIT�
 (2800)+ MASS�
 (2800)+ MASS�
 (2800)+ MASS�
 (2800)+ MASSVALUE (MeV) DOCUMENT ID2792+14
− 5 OUR FIT2792+14
− 5 OUR FIT2792+14
− 5 OUR FIT2792+14
− 5 OUR FIT�
 (2800)0 MASS�
 (2800)0 MASS�
 (2800)0 MASS�
 (2800)0 MASSVALUE (MeV) DOCUMENT ID TECN COMMENT2806+5
−7 OUR FIT2806+5
−7 OUR FIT2806+5
−7 OUR FIT2806+5
−7 OUR FIT Error in
ludes s
ale fa
tor of 1.3.2846±8±102846±8±102846±8±102846±8±10 AUBERT 08BN BABR B− → p�+
 π−�
 (2800) MASS DIFFERENCES�
 (2800) MASS DIFFERENCES�
 (2800) MASS DIFFERENCES�
 (2800) MASS DIFFERENCESm�
(2800)++ − m�+
m�
(2800)++ − m�+
m�
(2800)++ − m�+
m�
(2800)++ − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT514 +4
−6 OUR FIT514 +4
−6 OUR FIT514 +4
−6 OUR FIT514 +4
−6 OUR FIT514.5+3.4
−3.1+2.8

−4.9514.5+3.4
−3.1+2.8

−4.9514.5+3.4
−3.1+2.8

−4.9514.5+3.4
−3.1+2.8

−4.9 2810+1090
− 775 MIZUK 05 BELL e+ e− ≈ �(4S)m�
(2800)+ − m�+
m�
(2800)+ − m�+
m�
(2800)+ − m�+
m�
(2800)+ − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT505 +14

− 5 OUR FIT505 +14
− 5 OUR FIT505 +14
− 5 OUR FIT505 +14
− 5 OUR FIT505.4+ 5.8
− 4.6+12.4

− 2.0505.4+ 5.8
− 4.6+12.4

− 2.0505.4+ 5.8
− 4.6+12.4

− 2.0505.4+ 5.8
− 4.6+12.4

− 2.0 1540+1750
−1050 MIZUK 05 BELL e+ e− ≈ �(4S)m�
(2800)0 − m�+
m�
(2800)0 − m�+
m�
(2800)0 − m�+
m�
(2800)0 − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT519 +5

−7 OUR FIT519 +5
−7 OUR FIT519 +5
−7 OUR FIT519 +5
−7 OUR FIT Error in
ludes s
ale fa
tor of 1.3.515.4+3.2
−3.1+2.1

−6.0515.4+3.2
−3.1+2.1

−6.0515.4+3.2
−3.1+2.1

−6.0515.4+3.2
−3.1+2.1

−6.0 2240+1300
− 740 MIZUK 05 BELL e+ e− ≈ �(4S)�
 (2800) WIDTHS�
 (2800) WIDTHS�
 (2800) WIDTHS�
 (2800) WIDTHS�
 (2800)++ WIDTH�
 (2800)++ WIDTH�
 (2800)++ WIDTH�
 (2800)++ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT75+18

−13+12
−1175+18

−13+12
−1175+18

−13+12
−1175+18

−13+12
−11 2810+1090

− 775 MIZUK 05 BELL e+ e− ≈ �(4S)�
 (2800)+ WIDTH�
 (2800)+ WIDTH�
 (2800)+ WIDTH�
 (2800)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT62+37
−23+52

−3862+37
−23+52

−3862+37
−23+52

−3862+37
−23+52

−38 1540+1750
−1050 MIZUK 05 BELL e+ e− ≈ �(4S)�
 (2800)0 WIDTH�
 (2800)0 WIDTH�
 (2800)0 WIDTH�
 (2800)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT72+22

−15 OUR AVERAGE72+22
−15 OUR AVERAGE72+22
−15 OUR AVERAGE72+22
−15 OUR AVERAGE86+33
−22±12 AUBERT 08BN BABR B− → p�+
 π−61+18
−13+22

−13 2240+1300
− 740 MIZUK 05 BELL e+ e− ≈ �(4S)�
 (2800) DECAY MODES�
 (2800) DECAY MODES�
 (2800) DECAY MODES�
 (2800) DECAY MODESMode Fra
tion (�i /�)�1 �+
 π seen�
 (2800) REFERENCES�
 (2800) REFERENCES�
 (2800) REFERENCES�
 (2800) REFERENCESAUBERT 08BN PR D78 112003 B. Aubert et al. (BABAR Collab.)MIZUK 05 PRL 94 122002 R. Mizuk et al. (BELLE Collab.)



1648164816481648Baryon Parti
le Listings�+
�+
 I (JP ) = 12 (12+) Status: ∗∗∗A

ording to the quark model, the �+
 (quark 
ontent us
) and�0
 form an isospin doublet, and the spin-parity ought to be JP =1/2+. None of I , J, or P has a
tually been measured.�+
 MASS�+
 MASS�+
 MASS�+
 MASSThe �t uses the �+
 and �0
 mass and mass-di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2467.93+ 0.28
− 0.40 OUR FIT2467.93+ 0.28
− 0.40 OUR FIT2467.93+ 0.28
− 0.40 OUR FIT2467.93+ 0.28
− 0.40 OUR FIT2467.89+ 0.34
− 0.50 OUR AVERAGE2467.89+ 0.34
− 0.50 OUR AVERAGE2467.89+ 0.34
− 0.50 OUR AVERAGE2467.89+ 0.34
− 0.50 OUR AVERAGE2468.00± 0.18± 0.51 5.1k AALTONEN 14B CDF pp at 1.96 TeV2468.1 ± 0.4 + 0.2

− 1.4 4.9k 1 LESIAK 05 BELL e+ e−, �(4S)2465.8 ± 1.9 ± 2.5 90 FRABETTI 98 E687 γ Be, Eγ= 220 GeV2467.0 ± 1.6 ± 2.0 147 EDWARDS 96 CLE2 e+ e− ≈ �(4S)2465.1 ± 3.6 ± 1.9 30 ALBRECHT 90F ARG e+ e− at �(4S)2467 ± 3 ± 4 23 ALAM 89 CLEO e+ e− 10.6 GeV2466.5 ± 2.7 ± 1.2 5 BARLAG 89C ACCM π− Cu 230 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2464.4 ± 2.0 ± 1.4 30 FRABETTI 93B E687 See FRABETTI 982459 ± 5 ±30 56 2 COTEUS 87 SPEC nA ≃ 600 GeV2460 ±25 82 BIAGI 83 SPEC �−Be 135 GeV1The systemati
 error was (wrongly) given the other way round in LESIAK 05; see theerratum.2Although COTEUS 87 
laims to agree well with BIAGI 83 on the mass and width, thereappears to be a dis
repan
y between the two experiments. BIAGI 83 sees a single peak(stated signi�
an
e about 6 standard deviations) in the �K−π+π+ mass spe
trum.COTEUS 87 sees two peaks in the same spe
trum, one at the �+
 mass, the other 75MeV lower. The latter is attributed to �+
 → �0K−π+π+ → (�γ)K−π+π+,with the γ unseen. The 
ombined signi�
an
e of the double peak is stated to be 5.5standard deviations. But the absen
e of any tra
e of a lower peak in BIAGI 83 seems tous to throw into question the interpretation of the lower peak of COTEUS 87.�+
 MEAN LIFE�+
 MEAN LIFE�+
 MEAN LIFE�+
 MEAN LIFEVALUE (10−15 s) EVTS DOCUMENT ID TECN COMMENT442± 26 OUR AVERAGE442± 26 OUR AVERAGE442± 26 OUR AVERAGE442± 26 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogram below.503± 47± 18 250 MAHMOOD 02 CLE2 e+ e− ≈ �(4S)439± 22± 9 532 LINK 01D FOCS γ nu
leus, Eγ ≈ 180 GeV340+ 70

− 50± 20 56 FRABETTI 98 E687 γ Be, Eγ= 220 GeV400+180
−120±100 102 COTEUS 87 SPEC nA ≃ 600 GeV480+210
−150+200

−100 53 BIAGI 85C SPEC �−Be 135 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •410+110

− 80± 20 30 FRABETTI 93B E687 See FRABETTI 98200+110
− 60 6 BARLAG 89C ACCM π− (K−) Cu 230 GeV

WEIGHTED AVERAGE
442±26 (Error scaled by 1.3)

BIAGI 85C SPEC
COTEUS 87 SPEC
FRABETTI 98 E687 2.0
LINK 01D FOCS 0.0
MAHMOOD 02 CLE2 1.5

χ2

       3.4
(Confidence Level = 0.178)

0 200 400 600 800 1000�+
 mean life �+
 DECAY MODES�+
 DECAY MODES�+
 DECAY MODES�+
 DECAY MODESMode Fra
tion (�i /�) Con�den
e level

No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.The following are bran
hing ratios relative to �−2π+.The following are bran
hing ratios relative to �−2π+.The following are bran
hing ratios relative to �−2π+.The following are bran
hing ratios relative to �−2π+.Cabibbo-favored (S = −2) de
ays | relative to �−2π+Cabibbo-favored (S = −2) de
ays | relative to �−2π+Cabibbo-favored (S = −2) de
ays | relative to �−2π+Cabibbo-favored (S = −2) de
ays | relative to �−2π+�1 p2K0S 0.087±0.021�2 �K0π+ |�3 � (1385)+K0 [a℄ 1.0 ±0.5�4 �K−2π+ 0.323±0.033�5 �K∗(892)0π+ [a℄ <0.16 90%�6 � (1385)+K−π+ [a℄ <0.23 90%�7 �+K−π+ 0.94 ±0.10�8 �+K∗(892)0 [a℄ 0.81 ±0.15�9 �0K−2π+ 0.27 ±0.12�10 � 0π+ 0.55 ±0.16�11 �−2π+ DEFINED AS 1DEFINED AS 1DEFINED AS 1DEFINED AS 1�12 � (1530)0π+ [a℄ <0.10 90%�13 � 0π+π0 2.3 ±0.7�14 � 0π−2π+ 1.7 ±0.5�15 � 0 e+νe 2.3 +0.7
−0.8�16 
−K+π+ 0.07 ±0.04Cabibbo-suppressed de
ays | relative to �− 2π+Cabibbo-suppressed de
ays | relative to �− 2π+Cabibbo-suppressed de
ays | relative to �− 2π+Cabibbo-suppressed de
ays | relative to �− 2π+�17 pK−π+ 0.21 ±0.04�18 pK∗(892)0 [a℄ 0.116±0.030�19 �+π+π− 0.48 ±0.20�20 �−2π+ 0.18 ±0.09�21 �+K+K− 0.15 ±0.06�22 �+φ [a℄ <0.11 90%�23 � (1690)0K+ , � 0

→ �+K− <0.05 90%[a℄ This bran
hing fra
tion in
ludes all the de
ay modes of the �nal-stateresonan
e. �+
 BRANCHING RATIOS�+
 BRANCHING RATIOS�+
 BRANCHING RATIOS�+
 BRANCHING RATIOSCabibbo-favored (S = −2) de
aysCabibbo-favored (S = −2) de
aysCabibbo-favored (S = −2) de
aysCabibbo-favored (S = −2) de
ays�(p2K0S)/�(�−2π+) �1/�11�(p2K0S)/�(�−2π+) �1/�11�(p2K0S)/�(�−2π+) �1/�11�(p2K0S)/�(�−2π+) �1/�11VALUE EVTS DOCUMENT ID TECN COMMENT0.087±0.016±0.0140.087±0.016±0.0140.087±0.016±0.0140.087±0.016±0.014 168 ± 27 LESIAK 05 BELL e+ e−, �(4S)�(� (1385)+K0)/�(�−2π+) �3/�11�(� (1385)+K0)/�(�−2π+) �3/�11�(� (1385)+K0)/�(�−2π+) �3/�11�(� (1385)+K0)/�(�−2π+) �3/�11Unseen de
ay modes of the �(1385)+ are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT1.00±0.49±0.241.00±0.49±0.241.00±0.49±0.241.00±0.49±0.24 20 LINK 03E FOCS < 1.72, 90% CL�(�K−2π+)/�(�− 2π+) �4/�11�(�K−2π+)/�(�− 2π+) �4/�11�(�K−2π+)/�(�− 2π+) �4/�11�(�K−2π+)/�(�− 2π+) �4/�11VALUE EVTS DOCUMENT ID TECN COMMENT0.323±0.033 OUR AVERAGE0.323±0.033 OUR AVERAGE0.323±0.033 OUR AVERAGE0.323±0.033 OUR AVERAGE0.32 ±0.03 ±0.02 1177 ± 55 LESIAK 05 BELL e+ e−, �(4S)0.28 ±0.06 ±0.06 58 LINK 03E FOCS γ nu
leus, Eγ ≈ 180 GeV0.58 ±0.16 ±0.07 61 BERGFELD 96 CLE2 e+ e−≈ �(4S)�(�K∗(892)0π+)/�(�K−2π+) �5/�4�(�K∗(892)0π+)/�(�K−2π+) �5/�4�(�K∗(892)0π+)/�(�K−2π+) �5/�4�(�K∗(892)0π+)/�(�K−2π+) �5/�4Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<0.5<0.5<0.5<0.5 90 BERGFELD 96 CLE2 e+ e−≈ �(4S)�(� (1385)+K−π+)/�(�K−2π+) �6/�4�(� (1385)+K−π+)/�(�K−2π+) �6/�4�(� (1385)+K−π+)/�(�K−2π+) �6/�4�(� (1385)+K−π+)/�(�K−2π+) �6/�4Unseen de
ay modes of the �(1385)+ are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<0.7<0.7<0.7<0.7 90 BERGFELD 96 CLE2 e+ e−≈ �(4S)�(�+K−π+)/�(�−2π+) �7/�11�(�+K−π+)/�(�−2π+) �7/�11�(�+K−π+)/�(�−2π+) �7/�11�(�+K−π+)/�(�−2π+) �7/�11VALUE EVTS DOCUMENT ID TECN COMMENT0.94±0.10 OUR AVERAGE0.94±0.10 OUR AVERAGE0.94±0.10 OUR AVERAGE0.94±0.10 OUR AVERAGE0.91±0.11±0.04 251 LINK 03E FOCS γ nu
leus, Eγ ≈ 180 GeV0.92±0.20±0.07 3 JUN 00 SELX �− nu
leus, 600 GeV1.18±0.26±0.17 119 BERGFELD 96 CLE2 e+ e−≈ �(4S)3This JUN 00 result is redundant with other results given below.�(�+K∗(892)0)/�(�− 2π+) �8/�11�(�+K∗(892)0)/�(�− 2π+) �8/�11�(�+K∗(892)0)/�(�− 2π+) �8/�11�(�+K∗(892)0)/�(�− 2π+) �8/�11Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE EVTS DOCUMENT ID TECN COMMENT0.81±0.15 OUR AVERAGE0.81±0.15 OUR AVERAGE0.81±0.15 OUR AVERAGE0.81±0.15 OUR AVERAGE0.78±0.16±0.06 119 LINK 03E FOCS γ nu
leus, Eγ ≈ 180 GeV0.92±0.27±0.14 61 BERGFELD 96 CLE2 e+ e−≈ �(4S)
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�(�0K−2π+)/�(�K−2π+) �9/�4�(�0K−2π+)/�(�K−2π+) �9/�4�(�0K−2π+)/�(�K−2π+) �9/�4�(�0K−2π+)/�(�K−2π+) �9/�4VALUE EVTS DOCUMENT ID TECN COMMENT0.84±0.360.84±0.360.84±0.360.84±0.36 47 4 COTEUS 87 SPEC nA ≃ 600 GeV4See, however, the note on the COTEUS 87 �+
 mass measurement.�(� 0π+)/�(�−2π+) �10/�11�(� 0π+)/�(�−2π+) �10/�11�(� 0π+)/�(�−2π+) �10/�11�(� 0π+)/�(�−2π+) �10/�11VALUE EVTS DOCUMENT ID TECN COMMENT0.55±0.13±0.090.55±0.13±0.090.55±0.13±0.090.55±0.13±0.09 39 EDWARDS 96 CLE2 e+ e− ≈ �(4S)�(�−2π+)/�total �11/��(�−2π+)/�total �11/��(�−2π+)/�total �11/��(�−2π+)/�total �11/�VALUE EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 131 BERGFELD 96 CLE2 e+ e−≈ �(4S)seen 160 AVERY 95 CLE2 e+ e−≈ �(4S)seen 30 FRABETTI 93B E687 γBe, Eγ= 220 GeVseen 30 ALBRECHT 90F ARG e+ e− at �(4S)seen 23 ALAM 89 CLEO e+ e− 10.6 GeV�(� (1530)0π+)/�(�− 2π+) �12/�11�(� (1530)0π+)/�(�− 2π+) �12/�11�(� (1530)0π+)/�(�− 2π+) �12/�11�(� (1530)0π+)/�(�− 2π+) �12/�11Unseen de
ay modes of the �(1530)0 are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT
<0.1<0.1<0.1<0.1 90 LINK 03E FOCS γ nu
leus, Eγ ≈ 180 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.2 90 BERGFELD 96 CLE2 e+ e−≈ �(4S)�(� 0π+π0)/�(�−2π+) �13/�11�(� 0π+π0)/�(�−2π+) �13/�11�(� 0π+π0)/�(�−2π+) �13/�11�(� 0π+π0)/�(�−2π+) �13/�11VALUE EVTS DOCUMENT ID TECN COMMENT2.34±0.57±0.372.34±0.57±0.372.34±0.57±0.372.34±0.57±0.37 81 EDWARDS 96 CLE2 e+ e− ≈ �(4S)�(� (1530)0π+)/�(� 0π+π0) �12/�13�(� (1530)0π+)/�(� 0π+π0) �12/�13�(� (1530)0π+)/�(� 0π+π0) �12/�13�(� (1530)0π+)/�(� 0π+π0) �12/�13VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.3 90 EDWARDS 96 CLE2 e+ e− ≈ �(4S)�(� 0π−2π+)/�(�−2π+) �14/�11�(� 0π−2π+)/�(�−2π+) �14/�11�(� 0π−2π+)/�(�−2π+) �14/�11�(� 0π−2π+)/�(�−2π+) �14/�11VALUE EVTS DOCUMENT ID TECN COMMENT1.74±0.42±0.271.74±0.42±0.271.74±0.42±0.271.74±0.42±0.27 57 EDWARDS 96 CLE2 e+ e− ≈ �(4S)�(� 0 e+νe)/�(�−2π+) �15/�11�(� 0 e+νe)/�(�−2π+) �15/�11�(� 0 e+νe)/�(�−2π+) �15/�11�(� 0 e+νe)/�(�−2π+) �15/�11VALUE EVTS DOCUMENT ID TECN COMMENT2.3±0.6+0.3
−0.62.3±0.6+0.3
−0.62.3±0.6+0.3
−0.62.3±0.6+0.3
−0.6 41 ALEXANDER 95B CLE2 e+ e−≈ �(4S)�(
−K+π+)/�(�−2π+) �16/�11�(
−K+π+)/�(�−2π+) �16/�11�(
−K+π+)/�(�−2π+) �16/�11�(
−K+π+)/�(�−2π+) �16/�11VALUE EVTS DOCUMENT ID TECN COMMENT0.07±0.03±0.030.07±0.03±0.030.07±0.03±0.030.07±0.03±0.03 14 LINK 03E FOCS < 0.12, 90% CLCabibbo-suppressed de
aysCabibbo-suppressed de
aysCabibbo-suppressed de
aysCabibbo-suppressed de
ays�(pK−π+)/�(�−2π+) �17/�11�(pK−π+)/�(�−2π+) �17/�11�(pK−π+)/�(�−2π+) �17/�11�(pK−π+)/�(�−2π+) �17/�11VALUE EVTS DOCUMENT ID TECN COMMENT0.21 ±0.04 OUR AVERAGE0.21 ±0.04 OUR AVERAGE0.21 ±0.04 OUR AVERAGE0.21 ±0.04 OUR AVERAGE0.194±0.054 47 ± 11 VAZQUEZ-JA...08 SELX �− nu
leus, 600 GeV0.234±0.047±0.022 202 LINK 01B FOCS γ nu
leus

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.20 ±0.04 ±0.02 76 JUN 00 SELX See VAZQUEZ-JAUREGUI 08�(pK∗(892)0)/�(pK−π+) �18/�17�(pK∗(892)0)/�(pK−π+) �18/�17�(pK∗(892)0)/�(pK−π+) �18/�17�(pK∗(892)0)/�(pK−π+) �18/�17Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE DOCUMENT ID TECN COMMENT0.54±0.09±0.050.54±0.09±0.050.54±0.09±0.050.54±0.09±0.05 LINK 01B FOCS γ nu
leus�(�+π+π−
)/�(�−2π+) �19/�11�(�+π+π−
)/�(�−2π+) �19/�11�(�+π+π−
)/�(�−2π+) �19/�11�(�+π+π−
)/�(�−2π+) �19/�11VALUE EVTS DOCUMENT ID TECN COMMENT0.48±0.200.48±0.200.48±0.200.48±0.20 21 ± 8 VAZQUEZ-JA...08 SELX �− nu
leus, 600 GeV�(�−2π+)/�(�−2π+) �20/�11�(�−2π+)/�(�−2π+) �20/�11�(�−2π+)/�(�−2π+) �20/�11�(�−2π+)/�(�−2π+) �20/�11VALUE EVTS DOCUMENT ID TECN COMMENT0.18±0.090.18±0.090.18±0.090.18±0.09 10 ± 4 VAZQUEZ-JA...08 SELX �− nu
leus, 600 GeV�(�+K+K−
)/�(�+K−π+) �21/�7�(�+K+K−
)/�(�+K−π+) �21/�7�(�+K+K−
)/�(�+K−π+) �21/�7�(�+K+K−
)/�(�+K−π+) �21/�7VALUE EVTS DOCUMENT ID TECN COMMENT0.16±0.06±0.010.16±0.06±0.010.16±0.06±0.010.16±0.06±0.01 17 LINK 03E FOCS γ nu
leus, Eγ ≈ 180 GeV�(�+φ

)/�(�+K−π+) �22/�7�(�+φ
)/�(�+K−π+) �22/�7�(�+φ
)/�(�+K−π+) �22/�7�(�+φ
)/�(�+K−π+) �22/�7Unseen de
ay modes of the φ are in
luded.VALUE CL% DOCUMENT ID TECN COMMENT

<0.12<0.12<0.12<0.12 90 LINK 03E FOCS γ nu
leus, Eγ ≈ 180 GeV�(� (1690)0K+
×B(� (1690)0 → �+K−))/�(�+K−π+) �23/�7�(� (1690)0K+
×B(� (1690)0 → �+K−))/�(�+K−π+) �23/�7�(� (1690)0K+
×B(� (1690)0 → �+K−))/�(�+K−π+) �23/�7�(� (1690)0K+
×B(� (1690)0 → �+K−))/�(�+K−π+) �23/�7VALUE CL% DOCUMENT ID TECN COMMENT

<0.05<0.05<0.05<0.05 90 LINK 03E FOCS γ nu
leus, Eγ ≈ 180 GeV

�+
 REFERENCES�+
 REFERENCES�+
 REFERENCES�+
 REFERENCESAALTONEN 14B PR D89 072014 T. Aaltonen et al. (CDF Collab.)VAZQUEZ-JA... 08 PL B666 299 E. Vazquez-Jauregui et al. (SELEX Collab.)LESIAK 05 PL B605 237 T. Lesiak et al. (BELLE Collab.)Also PL B617 198 (errat.) T. Lesiak et al. (BELLE Collab.)LINK 03E PL B571 139 J.M. Link et al. (FNAL FOCUS Collab.)MAHMOOD 02 PR D65 031102 A.H. Mahmood et al. (CLEO Collab.)LINK 01B PL B512 277 J.M. Link et al. (FNAL FOCUS Collab.)LINK 01D PL B523 53 J.M. Link et al. (FNAL FOCUS Collab.)JUN 00 PRL 84 1857 S.Y. Jun et al. (FNAL SELEX Collab.)FRABETTI 98 PL B427 211 P.L. Frabetti et al. (FNAL E687 Collab.)BERGFELD 96 PL B365 431 T. Bergfeld et al. (CLEO Collab.)EDWARDS 96 PL B373 261 K.W. Edwards et al. (CLEO Collab.)ALEXANDER 95B PRL 74 3113 J. Alexander et al. (CLEO Collab.)Also PRL 75 4155 (erratum) J. Alexander et al. (CLEO Collab.)AVERY 95 PRL 75 4364 P. Avery et al. (CLEO Collab.)FRABETTI 93B PRL 70 1381 P.L. Frabetti et al. (FNAL E687 Collab.)ALBRECHT 90F PL B247 121 H. Albre
ht et al. (ARGUS Collab.)ALAM 89 PL B226 401 M.S. Alam et al. (CLEO Collab.)BARLAG 89C PL B233 522 S. Barlag et al. (ACCMOR Collab.)COTEUS 87 PRL 59 1530 P. Coteus et al. (FNAL E400 Collab.)BIAGI 85C PL 150B 230 S.F. Biagi et al. (CERN WA62 Collab.)BIAGI 83 PL 122B 455 S.F. Biagi et al. (CERN WA62 Collab.)� 0
 I (JP ) = 12 (12+) Status: ∗∗∗A

ording to the quark model, the �0
 (quark 
ontent ds
) and �+
form an isospin doublet, and the spin-parity ought to be JP = 1/2+.None of I , J, or P has a
tually been measured.� 0
 MASS� 0
 MASS� 0
 MASS� 0
 MASSThe �t uses the �0
 and �+
 mass and mass-di�eren
e measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2470.85+0.28
−0.40 OUR FIT2470.85+0.28
−0.40 OUR FIT2470.85+0.28
−0.40 OUR FIT2470.85+0.28
−0.40 OUR FIT2470.99+0.30
−0.50 OUR AVERAGE2470.99+0.30
−0.50 OUR AVERAGE2470.99+0.30
−0.50 OUR AVERAGE2470.99+0.30
−0.50 OUR AVERAGE2470.85±0.24±0.55 3.4k AALTONEN 14B CDF pp at 1.96 TeV2471.0 ±0.3 +0.2

−1.4 8.6k 1 LESIAK 05 BELL e+ e−, �(4S)2470.0 ±2.8 ±2.6 85 FRABETTI 98B E687 γ Be, Eγ = 220 GeV2469 ±2 ±3 9 HENDERSON 92B CLEO 
−K+2472.1 ±2.7 ±1.6 54 ALBRECHT 90F ARG e+ e− at �(4S)2473.3 ±1.9 ±1.2 4 BARLAG 90 ACCM π− (K−) Cu 230 GeV2472 ±3 ±4 19 ALAM 89 CLEO e+ e− 10.6 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2462.1 ±3.1 ±1.4 42 2 FRABETTI 93C E687 See FRABETTI 98B2471 ±3 ±4 14 AVERY 89 CLEO See ALAM 891The systemati
 error was (wrongly) given the other way round in LESIAK 05.2The FRABETTI 93C mass is well below the other measurements.� 0
 − �+
 MASS DIFFERENCE� 0
 − �+
 MASS DIFFERENCE� 0
 − �+
 MASS DIFFERENCE� 0
 − �+
 MASS DIFFERENCEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2.93±0.24 OUR FIT2.93±0.24 OUR FIT2.93±0.24 OUR FIT2.93±0.24 OUR FIT2.91±0.26 OUR AVERAGE2.91±0.26 OUR AVERAGE2.91±0.26 OUR AVERAGE2.91±0.26 OUR AVERAGE2.85±0.30±0.04 5.1/3.4k AALTONEN 14B CDF pp at 1.96 TeV2.9 ±0.5 LESIAK 05 BELL e+ e−, �(4S)7.0 ±4.5 ±2.2 ALBRECHT 90F ARG e+ e− at �(4S)6.8 ±3.3 ±0.5 BARLAG 90 ACCM π− (K−) Cu 230 GeV5 ±4 ±1 ALAM 89 CLEO �0
 → �−π+, �+
 →�−π+π+� 0
 MEAN LIFE� 0
 MEAN LIFE� 0
 MEAN LIFE� 0
 MEAN LIFEVALUE (10−15 s) EVTS DOCUMENT ID TECN COMMENT112+13

−10 OUR AVERAGE112+13
−10 OUR AVERAGE112+13
−10 OUR AVERAGE112+13
−10 OUR AVERAGE118+14
−12±5 110 LINK 02H FOCS γ nu
leus, ≈ 180 GeV101+25
−17±5 42 FRABETTI 93C E687 γBe, Eγ= 220 GeV82+59
−30 4 BARLAG 90 ACCM π− (K−) Cu 230 GeV� 0
 DECAY MODES� 0
 DECAY MODES� 0
 DECAY MODES� 0
 DECAY MODESNo absolute bran
hing fra
tions have been measured. Several measure-ments of ratios of fra
tions may be found in the Listings that follow.Mode Fra
tion (�i /�)
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No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.No absolute bran
hing fra
tions have been measured.The following are bran
hing ratios relative to �−π+.The following are bran
hing ratios relative to �−π+.The following are bran
hing ratios relative to �−π+.The following are bran
hing ratios relative to �−π+.Cabibbo-favored (S = −2) de
ays | relative to �−π+Cabibbo-favored (S = −2) de
ays | relative to �−π+Cabibbo-favored (S = −2) de
ays | relative to �−π+Cabibbo-favored (S = −2) de
ays | relative to �−π+�1 pK−K−π+ 0.34 ±0.04�2 pK−K∗(892)0 0.21 ±0.05�3 pK−K−π+ (no K∗0) 0.21 ±0.04�4 �K0S 0.210±0.028�5 �K−π+ 1.07 ±0.14�6 �K0π+π− seen�7 �K−π+π+π− seen�8 �−π+ DEFINED AS 1DEFINED AS 1DEFINED AS 1DEFINED AS 1�9 �−π+π+π− 3.3 ±1.4�10 
−K+ 0.297±0.024�11 �− e+ νe 3.1 ±1.1�12 �− ℓ+ anything 1.0 ±0.5Cabibbo-suppressed de
ays | relative to �−π+Cabibbo-suppressed de
ays | relative to �−π+Cabibbo-suppressed de
ays | relative to �−π+Cabibbo-suppressed de
ays | relative to �−π+�13 �−K+ 0.028±0.006�14 �K+K− (no φ) 0.029±0.007�15 �φ 0.034±0.007� 0
 BRANCHING RATIOS� 0
 BRANCHING RATIOS� 0
 BRANCHING RATIOS� 0
 BRANCHING RATIOSCabibbo-favored (S = −2) de
aysCabibbo-favored (S = −2) de
aysCabibbo-favored (S = −2) de
aysCabibbo-favored (S = −2) de
ays�(pK−K−π+)/�(�−π+) �1/�8�(pK−K−π+)/�(�−π+) �1/�8�(pK−K−π+)/�(�−π+) �1/�8�(pK−K−π+)/�(�−π+) �1/�8VALUE EVTS DOCUMENT ID TECN COMMENT0.34±0.04 OUR AVERAGE0.34±0.04 OUR AVERAGE0.34±0.04 OUR AVERAGE0.34±0.04 OUR AVERAGE0.33±0.03±0.03 1908 ± 62 LESIAK 05 BELL e+ e−, �(4S)0.35±0.06±0.03 148 ± 18 DANKO 04 CLEO e+ e−�(pK−K∗(892)0)/�(�−π+) �2/�8�(pK−K∗(892)0)/�(�−π+) �2/�8�(pK−K∗(892)0)/�(�−π+) �2/�8�(pK−K∗(892)0)/�(�−π+) �2/�8Unseen de
ay modes of the K∗(892)0 are in
luded.VALUE DOCUMENT ID TECN COMMENT0.210±0.045±0.0150.210±0.045±0.0150.210±0.045±0.0150.210±0.045±0.015 DANKO 04 CLEO e+ e−
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen BARLAG 90 ACCM π− (K−) Cu 230 GeV�(pK−K−π+ (noK∗0) )/�(�−π+) �3/�8�(pK−K−π+ (noK∗0) )/�(�−π+) �3/�8�(pK−K−π+ (noK∗0) )/�(�−π+) �3/�8�(pK−K−π+ (noK∗0) )/�(�−π+) �3/�8VALUE DOCUMENT ID TECN COMMENT0.21±0.04±0.020.21±0.04±0.020.21±0.04±0.020.21±0.04±0.02 DANKO 04 CLEO e+ e−�(�K0S)/�(�−π+) �4/�8�(�K0S)/�(�−π+) �4/�8�(�K0S)/�(�−π+) �4/�8�(�K0S)/�(�−π+) �4/�8VALUE EVTS DOCUMENT ID TECN COMMENT0.21±0.02±0.020.21±0.02±0.020.21±0.02±0.020.21±0.02±0.02 465 ± 37 LESIAK 05 BELL e+ e−, �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 7 ALBRECHT 95B ARG e+ e− ≈ 10.4 GeV�(�K−π+)/�(�−π+) �5/�8�(�K−π+)/�(�−π+) �5/�8�(�K−π+)/�(�−π+) �5/�8�(�K−π+)/�(�−π+) �5/�8VALUE EVTS DOCUMENT ID TECN COMMENT1.07±0.12±0.071.07±0.12±0.071.07±0.12±0.071.07±0.12±0.07 2979 ± 211 LESIAK 05 BELL e+ e−, �(4S)�(�K0π+π−

)/�total �6/��(�K0π+π−
)/�total �6/��(�K0π+π−
)/�total �6/��(�K0π+π−
)/�total �6/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen FRABETTI 98B E687 γ Be, Eγ = 220 GeV�(�K−π+π+π−

)/�total �7/��(�K−π+π+π−
)/�total �7/��(�K−π+π+π−
)/�total �7/��(�K−π+π+π−
)/�total �7/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen FRABETTI 98B E687 γ Be, Eγ = 220 GeV�(�−π+)/�(�−π+π+π−

) �8/�9�(�−π+)/�(�−π+π+π−
) �8/�9�(�−π+)/�(�−π+π+π−
) �8/�9�(�−π+)/�(�−π+π+π−
) �8/�9VALUE DOCUMENT ID TECN COMMENT0.30±0.12±0.050.30±0.12±0.050.30±0.12±0.050.30±0.12±0.05 ALBRECHT 90F ARG e+ e− at �(4S)�(
−K+)/�(�−π+) �10/�8�(
−K+)/�(�−π+) �10/�8�(
−K+)/�(�−π+) �10/�8�(
−K+)/�(�−π+) �10/�8VALUE EVTS DOCUMENT ID TECN COMMENT0.297±0.024 OUR AVERAGE0.297±0.024 OUR AVERAGE0.297±0.024 OUR AVERAGE0.297±0.024 OUR AVERAGE0.294±0.018±0.016 650 AUBERT,B 05M BABR e+ e− ≈ �(4S)0.50 ±0.21 ±0.05 9 HENDERSON 92B CLEO e+ e− ≈ 10.6 GeV�(�− e+ νe)/�(�−π+) �11/�8�(�− e+ νe)/�(�−π+) �11/�8�(�− e+ νe)/�(�−π+) �11/�8�(�− e+ νe)/�(�−π+) �11/�8VALUE EVTS DOCUMENT ID TECN COMMENT3.1±1.0+0.3

−0.53.1±1.0+0.3
−0.53.1±1.0+0.3
−0.53.1±1.0+0.3
−0.5 54 ALEXANDER 95B CLE2 e+ e−≈ �(4S)�(�− ℓ+anything)/�(�−π+) �12/�8�(�− ℓ+anything)/�(�−π+) �12/�8�(�− ℓ+anything)/�(�−π+) �12/�8�(�− ℓ+anything)/�(�−π+) �12/�8The ratio is for the average (not the sum) of the �− e+anything and �−µ+anythingmodes.VALUE EVTS DOCUMENT ID TECN COMMENT0.96±0.43±0.180.96±0.43±0.180.96±0.43±0.180.96±0.43±0.18 18 ALBRECHT 93B ARG e+ e− ≈ 10.4 GeV

�(�− ℓ+anything)/�(�−π+π+π−
) �12/�9�(�− ℓ+anything)/�(�−π+π+π−
) �12/�9�(�− ℓ+anything)/�(�−π+π+π−
) �12/�9�(�− ℓ+anything)/�(�−π+π+π−
) �12/�9The ratio is for the average (not the sum) of the �− e+anything and �−µ+anythingmodes.VALUE EVTS DOCUMENT ID TECN COMMENT0.29±0.12±0.040.29±0.12±0.040.29±0.12±0.040.29±0.12±0.04 18 ALBRECHT 93B ARG e+ e− ≈ 10.4 GeVCabibbo-suppressed de
aysCabibbo-suppressed de
aysCabibbo-suppressed de
aysCabibbo-suppressed de
ays�(�−K+)/�(�−π+) �13/�8�(�−K+)/�(�−π+) �13/�8�(�−K+)/�(�−π+) �13/�8�(�−K+)/�(�−π+) �13/�8VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.75±0.51±0.252.75±0.51±0.252.75±0.51±0.252.75±0.51±0.25 314 ± 58 CHISTOV 13 BELL e+ e− ≈ �(4S)�(�K+K− (no φ) )/�(�−π+) �14/�8�(�K+K− (no φ) )/�(�−π+) �14/�8�(�K+K− (no φ) )/�(�−π+) �14/�8�(�K+K− (no φ) )/�(�−π+) �14/�8VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT2.86±0.61±0.372.86±0.61±0.372.86±0.61±0.372.86±0.61±0.37 510± 110 CHISTOV 13 BELL e+ e− ≈ �(4S)�(�φ

)/�(�−π+) �15/�8�(�φ
)/�(�−π+) �15/�8�(�φ
)/�(�−π+) �15/�8�(�φ
)/�(�−π+) �15/�8VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.43±0.58±0.323.43±0.58±0.323.43±0.58±0.323.43±0.58±0.32 316 ± 54 CHISTOV 13 BELL e+ e− ≈ �(4S)� 0
 DECAY PARAMETERS� 0
 DECAY PARAMETERS� 0
 DECAY PARAMETERS� 0
 DECAY PARAMETERSSee the note on \Baryon De
ay Parameters" in the neutron Listings.

α FOR � 0
 → �−π+α FOR � 0
 → �−π+α FOR � 0
 → �−π+α FOR � 0
 → �−π+VALUE EVTS DOCUMENT ID TECN COMMENT
−0.56±0.39+0.10

−0.09−0.56±0.39+0.10
−0.09−0.56±0.39+0.10
−0.09−0.56±0.39+0.10
−0.09 138 CHAN 01 CLE2 e+ e−≈ �(4S)� 0
 REFERENCES� 0
 REFERENCES� 0
 REFERENCES� 0
 REFERENCESAALTONEN 14B PR D89 072014 T. Aaltonen et al. (CDF Collab.)CHISTOV 13 PR D88 071103 R. Chistov et al. (BELLE Collab.)AUBERT,B 05M PRL 95 142003 B. Aubert et al. (BABAR Collab.)LESIAK 05 PL B605 237 T. Lesiak et al. (BELLE Collab.)Also PL B617 198 (errat.) T. Lesiak et al. (BELLE Collab.)DANKO 04 PR D69 052004 I. Danko et al. (CLEO Collab.)LINK 02H PL B541 211 J.M. Link et al. (FNAL FOCUS Collab.)CHAN 01 PR D63 111102 S. Chan et al. (CLEO Collab.)FRABETTI 98B PL B426 403 P.L. Frabetti et al. (FNAL E687 Collab.)ALBRECHT 95B PL B342 397 H. Albre
ht et al. (ARGUS Collab.)ALEXANDER 95B PRL 74 3113 J. Alexander et al. (CLEO Collab.)Also PRL 75 4155 (erratum) J. Alexander et al. (CLEO Collab.)ALBRECHT 93B PL B303 368 H. Albre
ht et al. (ARGUS Collab.)FRABETTI 93C PRL 70 2058 P.L. Frabetti et al. (FNAL E687 Collab.)HENDERSON 92B PL B283 161 S. Henderson et al. (CLEO Collab.)ALBRECHT 90F PL B247 121 H. Albre
ht et al. (ARGUS Collab.)BARLAG 90 PL B236 495 S. Barlag et al. (ACCMOR Collab.)ALAM 89 PL B226 401 M.S. Alam et al. (CLEO Collab.)AVERY 89 PRL 62 863 P. Avery et al. (CLEO Collab.)� ′+
 I (JP ) = 12 (12+) Status: ∗∗∗The � ′+
 and � ′0
 presumably 
omplete the SU(3) sextet whoseother members are the �++
 , �+
 , �0
 , and 
0
 : see Fig. 3 in thenote on Charmed Baryons just before the �+
 Listings. The quantumnumbers given above 
ome from this presumption but have not beenmeasured. � ′+
 MASS� ′+
 MASS� ′+
 MASS� ′+
 MASSThe mass is obtained from the mass-di�eren
e measurement that follows.VALUE (MeV) DOCUMENT ID2575.7±3.0 OUR FIT2575.7±3.0 OUR FIT2575.7±3.0 OUR FIT2575.7±3.0 OUR FIT � ′+
 − �+
 MASS DIFFERENCE� ′+
 − �+
 MASS DIFFERENCE� ′+
 − �+
 MASS DIFFERENCE� ′+
 − �+
 MASS DIFFERENCEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT107.8±3.0 OUR FIT107.8±3.0 OUR FIT107.8±3.0 OUR FIT107.8±3.0 OUR FIT107.8±1.7±2.5107.8±1.7±2.5107.8±1.7±2.5107.8±1.7±2.5 25 JESSOP 99 CLE2 e+ e−≈ �(4S)� ′+
 DECAY MODES� ′+
 DECAY MODES� ′+
 DECAY MODES� ′+
 DECAY MODESThe � ′+
 {�+
 mass di�eren
e is too small for any strong de
ay to o

ur.Mode Fra
tion (�i /�)�1 �+
 γ seen� ′+
 REFERENCES� ′+
 REFERENCES� ′+
 REFERENCES� ′+
 REFERENCESJESSOP 99 PRL 82 492 C.P. Jessop et al. (CLEO Collab.)



1651165116511651See key on page 601 BaryonParti
le Listings� ′0
 ,�
(2645),�
(2790),�
(2815)� ′0
 I (JP ) = 12 (12+) Status: ∗∗∗See the note in the Listing for the � ′+
 , above.� ′0
 MASS� ′0
 MASS� ′0
 MASS� ′0
 MASSThe mass is obtained from the mass-di�eren
e measurement that follows.VALUE (MeV) DOCUMENT ID2577.9±2.9 OUR FIT2577.9±2.9 OUR FIT2577.9±2.9 OUR FIT2577.9±2.9 OUR FIT � ′0
 − � 0
 MASS DIFFERENCE� ′0
 − � 0
 MASS DIFFERENCE� ′0
 − � 0
 MASS DIFFERENCE� ′0
 − � 0
 MASS DIFFERENCEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT107.0±2.9 OUR FIT107.0±2.9 OUR FIT107.0±2.9 OUR FIT107.0±2.9 OUR FIT107.0±1.4±2.5107.0±1.4±2.5107.0±1.4±2.5107.0±1.4±2.5 28 JESSOP 99 CLE2 e+ e−≈ �(4S)� ′0
 DECAY MODES� ′0
 DECAY MODES� ′0
 DECAY MODES� ′0
 DECAY MODESThe � ′0
 − �0
 mass di�eren
e is too small for any strong de
ay to o

ur.Mode Fra
tion (�i /�)�1 � 0
 γ seen� ′0
 REFERENCES� ′0
 REFERENCES� ′0
 REFERENCES� ′0
 REFERENCESJESSOP 99 PRL 82 492 C.P. Jessop et al. (CLEO Collab.)�
(2645) I (JP ) = 12 (32+) Status: ∗∗∗The natural assignment is that this is the JP = 3/2+ ex
itationof the �
 in the same SU(4) multiplet as the �(1232), but thequantum numbers have not been measured.�
 (2645) MASSES�
 (2645) MASSES�
 (2645) MASSES�
 (2645) MASSESThe masses are obtained from the mass-di�eren
e measurements that fol-low.�
 (2645)+ MASS�
 (2645)+ MASS�
 (2645)+ MASS�
 (2645)+ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2645.9±0.5 OUR FIT2645.9±0.5 OUR FIT2645.9±0.5 OUR FIT2645.9±0.5 OUR FIT Error in
ludes s
ale fa
tor of 1.1.2645.6±0.2+0.6
−0.82645.6±0.2+0.6
−0.82645.6±0.2+0.6
−0.82645.6±0.2+0.6
−0.8 578 ± 32 LESIAK 08 BELL e+ e− ≈ �(4S)�
 (2645)0 MASS�
 (2645)0 MASS�
 (2645)0 MASS�
 (2645)0 MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2645.9±0.5 OUR FIT2645.9±0.5 OUR FIT2645.9±0.5 OUR FIT2645.9±0.5 OUR FIT2645.7±0.2+0.6
−0.72645.7±0.2+0.6
−0.72645.7±0.2+0.6
−0.72645.7±0.2+0.6
−0.7 611 ± 32 LESIAK 08 BELL e+ e− ≈ �(4S)�
 (2645) − �
 MASS DIFFERENCES�
 (2645) − �
 MASS DIFFERENCES�
 (2645) − �
 MASS DIFFERENCES�
 (2645) − �
 MASS DIFFERENCESm�
(2645)+ − m�0
m�
(2645)+ − m�0
m�
(2645)+ − m�0
m�
(2645)+ − m�0
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT175.0±0.6 OUR FIT175.0±0.6 OUR FIT175.0±0.6 OUR FIT175.0±0.6 OUR FIT Error in
ludes s
ale fa
tor of 1.1.175.6±1.4 OUR AVERAGE175.6±1.4 OUR AVERAGE175.6±1.4 OUR AVERAGE175.6±1.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.7.177.1±0.5±1.1 47 FRABETTI 98B E687 γ Be, Eγ = 220 GeV174.3±0.5±1.0 34 GIBBONS 96 CLE2 e+ e− ≈ �(4S)m�
(2645)0 − m�+
m�
(2645)0 − m�+
m�
(2645)0 − m�+
m�
(2645)0 − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT178.0±0.6 OUR FIT178.0±0.6 OUR FIT178.0±0.6 OUR FIT178.0±0.6 OUR FIT178.2±0.5±1.0178.2±0.5±1.0178.2±0.5±1.0178.2±0.5±1.0 55 AVERY 95 CLE2 e+ e− ≈ �(4S)�
 (2645)+ − �
 (2645)0 MASS DIFFERENCE�
 (2645)+ − �
 (2645)0 MASS DIFFERENCE�
 (2645)+ − �
 (2645)0 MASS DIFFERENCE�
 (2645)+ − �
 (2645)0 MASS DIFFERENCEm�
(2645)+ − m�
(2645)0m�
(2645)+ − m�
(2645)0m�
(2645)+ − m�
(2645)0m�
(2645)+ − m�
(2645)0VALUE (MeV) DOCUMENT ID TECN COMMENT0.0±0.5 OUR FIT0.0±0.5 OUR FIT0.0±0.5 OUR FIT0.0±0.5 OUR FIT

−0.1±0.3±0.6−0.1±0.3±0.6−0.1±0.3±0.6−0.1±0.3±0.6 LESIAK 08 BELL ≈ 600 evts ea
h�
 (2645) WIDTHS�
 (2645) WIDTHS�
 (2645) WIDTHS�
 (2645) WIDTHS�
 (2645)+ WIDTH�
 (2645)+ WIDTH�
 (2645)+ WIDTH�
 (2645)+ WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT2.6±0.2±0.42.6±0.2±0.42.6±0.2±0.42.6±0.2±0.4 3.7k KATO 14 BELL e+ e− �(1S) to �(5S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<3.1 90 GIBBONS 96 CLE2 e+ e− ≈ �(4S)

�
 (2645)0 WIDTH�
 (2645)0 WIDTH�
 (2645)0 WIDTH�
 (2645)0 WIDTHVALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT
<5.5<5.5<5.5<5.5 90 55 AVERY 95 CLE2 e+ e− ≈ �(4S)�
 (2645) DECAY MODES�
 (2645) DECAY MODES�
 (2645) DECAY MODES�
 (2645) DECAY MODES�
 π is the only strong de
ay allowed to a �
 resonan
e having this mass.Mode Fra
tion (�i /�)�1 � 0
 π+ seen�2 �+
 π− seen�
 (2645) REFERENCES�
 (2645) REFERENCES�
 (2645) REFERENCES�
 (2645) REFERENCESKATO 14 PR D89 052003 Y. Kato et al. (BELLE Collab.)LESIAK 08 PL B665 9 T. Lesiak et al. (BELLE Collab.)FRABETTI 98B PL B426 403 P.L. Frabetti et al. (FNAL E687 Collab.)GIBBONS 96 PRL 77 810 L.K. Gibbons et al. (CLEO Collab.)AVERY 95 PRL 75 4364 P. Avery et al. (CLEO Collab.)�
(2790) I (JP ) = 12 (12−) Status: ∗∗∗A peak seen in the � ′
 π mass spe
trum. The simplest assignment,based on the mass, width, and de
ay mode, is that this belongs inthe same SU(4) multiplet as the �(1405) and the �
 (2595)+, butthe spin and parity have not been measured.�
 (2790) MASSES�
 (2790) MASSES�
 (2790) MASSES�
 (2790) MASSESThe masses are obtained from the mass-di�eren
e measurements that fol-low.�
 (2790)+ MASS�
 (2790)+ MASS�
 (2790)+ MASS�
 (2790)+ MASSVALUE (MeV) DOCUMENT ID2789.1±3.2 OUR FIT2789.1±3.2 OUR FIT2789.1±3.2 OUR FIT2789.1±3.2 OUR FIT�
 (2790)0 MASS�
 (2790)0 MASS�
 (2790)0 MASS�
 (2790)0 MASSVALUE (MeV) DOCUMENT ID2791.9±3.3 OUR FIT2791.9±3.3 OUR FIT2791.9±3.3 OUR FIT2791.9±3.3 OUR FIT�
 (2790) − �
 MASS DIFFERENCES�
 (2790) − �
 MASS DIFFERENCES�
 (2790) − �
 MASS DIFFERENCES�
 (2790) − �
 MASS DIFFERENCESm�
(2790)+ − m�0
m�
(2790)+ − m�0
m�
(2790)+ − m�0
m�
(2790)+ − m�0
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT318.2±3.2 OUR FIT318.2±3.2 OUR FIT318.2±3.2 OUR FIT318.2±3.2 OUR FIT318.2±1.3±2.9318.2±1.3±2.9318.2±1.3±2.9318.2±1.3±2.9 18 CSORNA 01 CLEO e+ e− ≈ �(4S)m�
(2790)0 − m�+
m�
(2790)0 − m�+
m�
(2790)0 − m�+
m�
(2790)0 − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT324.0±3.3 OUR FIT324.0±3.3 OUR FIT324.0±3.3 OUR FIT324.0±3.3 OUR FIT324.0±1.3±3.0324.0±1.3±3.0324.0±1.3±3.0324.0±1.3±3.0 14 CSORNA 01 CLEO e+ e− ≈ �(4S)�
 (2790) WIDTHS�
 (2790) WIDTHS�
 (2790) WIDTHS�
 (2790) WIDTHS�
 (2790)+ WIDTH�
 (2790)+ WIDTH�
 (2790)+ WIDTH�
 (2790)+ WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<15<15<15<15 90 CSORNA 01 CLEO e+ e− ≈ �(4S)�
 (2790)0 WIDTH�
 (2790)0 WIDTH�
 (2790)0 WIDTH�
 (2790)0 WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<12<12<12<12 90 CSORNA 01 CLEO e+ e− ≈ �(4S)�
 (2790) DECAY MODES�
 (2790) DECAY MODES�
 (2790) DECAY MODES�
 (2790) DECAY MODESMode Fra
tion (�i /�)�1 � ′
 π seen�
 (2790) REFERENCES�
 (2790) REFERENCES�
 (2790) REFERENCES�
 (2790) REFERENCESCSORNA 01 PRL 86 4243 S.E. Csorna et al. (CLEO Collab.)�
(2815) I (JP ) = 12 (32−) Status: ∗∗∗A narrow peak seen in the �
 ππ mass spe
trum. The simplestassignment is that this belongs to the same SU(4) multiplet as the�(1520) and the �
 (2625), but the spin and parity have not beenmeasured.



1652165216521652BaryonParti
le Listings�
(2815),�
(2930),�
(2970)�
 (2815) MASSES�
 (2815) MASSES�
 (2815) MASSES�
 (2815) MASSESThe masses are obtained from the mass-di�eren
e measurements that fol-low.�
 (2815)+ MASS�
 (2815)+ MASS�
 (2815)+ MASS�
 (2815)+ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2816.6±0.9 OUR FIT2816.6±0.9 OUR FIT2816.6±0.9 OUR FIT2816.6±0.9 OUR FIT2817.0±1.2+0.7
−0.82817.0±1.2+0.7
−0.82817.0±1.2+0.7
−0.82817.0±1.2+0.7
−0.8 73 ± 10 LESIAK 08 BELL e+ e− ≈ �(4S)�
 (2815)0 MASS�
 (2815)0 MASS�
 (2815)0 MASS�
 (2815)0 MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2819.6±1.2 OUR FIT2819.6±1.2 OUR FIT2819.6±1.2 OUR FIT2819.6±1.2 OUR FIT2820.4±1.4+0.9
−1.02820.4±1.4+0.9
−1.02820.4±1.4+0.9
−1.02820.4±1.4+0.9
−1.0 48 ± 8 LESIAK 08 BELL e+ e− ≈ �(4S)�
 (2815) − �
 MASS DIFFERENCES�
 (2815) − �
 MASS DIFFERENCES�
 (2815) − �
 MASS DIFFERENCES�
 (2815) − �
 MASS DIFFERENCESm�
(2815)+ − m�+
m�
(2815)+ − m�+
m�
(2815)+ − m�+
m�
(2815)+ − m�+
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT348.7±0.9 OUR FIT348.7±0.9 OUR FIT348.7±0.9 OUR FIT348.7±0.9 OUR FIT348.6±0.6±1.0348.6±0.6±1.0348.6±0.6±1.0348.6±0.6±1.0 20 ALEXANDER 99B CLE2 e+ e− ≈ �(4S)m�
(2815)0 − m�0
m�
(2815)0 − m�0
m�
(2815)0 − m�0
m�
(2815)0 − m�0
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT348.8±1.2 OUR FIT348.8±1.2 OUR FIT348.8±1.2 OUR FIT348.8±1.2 OUR FIT347.2±0.7±2.0347.2±0.7±2.0347.2±0.7±2.0347.2±0.7±2.0 9 ALEXANDER 99B CLE2 e+ e− ≈ �(4S)�
 (2815)+ − �
 (2815)0 MASS DIFFERENCE�
 (2815)+ − �
 (2815)0 MASS DIFFERENCE�
 (2815)+ − �
 (2815)0 MASS DIFFERENCE�
 (2815)+ − �
 (2815)0 MASS DIFFERENCEm�
(2815)+ − m�
(2815)0m�
(2815)+ − m�
(2815)0m�
(2815)+ − m�
(2815)0m�
(2815)+ − m�
(2815)0VALUE (MeV) DOCUMENT ID TECN COMMENT

−3.0±1.3 OUR FIT−3.0±1.3 OUR FIT−3.0±1.3 OUR FIT−3.0±1.3 OUR FIT
−3.4±1.9±0.9−3.4±1.9±0.9−3.4±1.9±0.9−3.4±1.9±0.9 LESIAK 08 BELL 73 & 48 events�
 (2815) WIDTHS�
 (2815) WIDTHS�
 (2815) WIDTHS�
 (2815) WIDTHS�
 (2815)+ WIDTH�
 (2815)+ WIDTH�
 (2815)+ WIDTH�
 (2815)+ WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<3.5<3.5<3.5<3.5 90 ALEXANDER 99B CLE2 e+ e− ≈ �(4S)�
 (2815)0 WIDTH�
 (2815)0 WIDTH�
 (2815)0 WIDTH�
 (2815)0 WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<6.5<6.5<6.5<6.5 90 ALEXANDER 99B CLE2 e+ e− ≈ �(4S)�
 (2815) DECAY MODES�
 (2815) DECAY MODES�
 (2815) DECAY MODES�
 (2815) DECAY MODESThe �
 ππ modes are 
onsistent with being entirely via �
 (2645)π.Mode Fra
tion (�i /�)�1 �+
 π+π− seen�2 � 0
 π+π− seen�
 (2815) REFERENCES�
 (2815) REFERENCES�
 (2815) REFERENCES�
 (2815) REFERENCESLESIAK 08 PL B665 9 T. Lesiak et al. (BELLE Collab.)ALEXANDER 99B PRL 83 3390 J.P. Alexander et al. (CLEO Collab.)�
(2930) I (JP ) = ?(??) Status: ∗OMITTED FROM SUMMARY TABLEA peak seen in the �+
 K− mass proje
tion of B− → �+
 �−
 K−events. �
 (2930) MASS�
 (2930) MASS�
 (2930) MASS�
 (2930) MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2931±3±52931±3±52931±3±52931±3±5 ≈ 34 AUBERT 08H BABR �(4S) → BB�
 (2930) WIDTH�
 (2930) WIDTH�
 (2930) WIDTH�
 (2930) WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT36±7±1136±7±1136±7±1136±7±11 ≈ 34 AUBERT 08H BABR �(4S) → BB�
 (2930) REFERENCES�
 (2930) REFERENCES�
 (2930) REFERENCES�
 (2930) REFERENCESAUBERT 08H PR D77 031101 B. Aubert et al. (BABAR Collab.)

�
(2970)was �
(2980) I (JP ) = 12 (??) Status: ∗∗∗�
 (2970) MASSES�
 (2970) MASSES�
 (2970) MASSES�
 (2970) MASSES�
 (2970)+ MASS�
 (2970)+ MASS�
 (2970)+ MASS�
 (2970)+ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2970.7±2.2 OUR AVERAGE2970.7±2.2 OUR AVERAGE2970.7±2.2 OUR AVERAGE2970.7±2.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5. See the ideogram below.2974.9±1.5±2.1 244 ± 39 KATO 14 BELL e+ e− �(1S) to �(5S)2969.3±2.2±1.7 756± 206 AUBERT 08J BABR e+ e− ≈ 10.58 GeV2967.7±2.3+1.1
−1.2 78 ± 13 LESIAK 08 BELL e+ e− ≈ �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •2978.5±2.1±2.0 405 ± 51 CHISTOV 06 BELL See KATO 14
WEIGHTED AVERAGE
2970.7±2.2 (Error scaled by 1.5)

LESIAK 08 BELL 1.4
AUBERT 08J BABR 0.2
KATO 14 BELL 2.7

χ2

       4.3
(Confidence Level = 0.117)

2960 2965 2970 2975 2980 2985 2990�
 (2970)+ MASS (MeV)�
 (2970)0 MASS�
 (2970)0 MASS�
 (2970)0 MASS�
 (2970)0 MASSThe eviden
e is statisti
ally weaker for this 
harge state.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2968.0±2.6 OUR AVERAGE2968.0±2.6 OUR AVERAGE2968.0±2.6 OUR AVERAGE2968.0±2.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.2.2972.9±4.4±1.6 67 ± 44 AUBERT 08J BABR e+ e− ≈ 10.58 GeV2965.7±2.4+1.1
−1.2 57 ± 13 LESIAK 08 BELL e+ e− ≈ �(4S)2977.1±8.8±3.5 42 ± 24 CHISTOV 06 BELL e+ e− ≈ �(4S)�
 (2970) WIDTHS�
 (2970) WIDTHS�
 (2970) WIDTHS�
 (2970) WIDTHS�
 (2970)+ WIDTH�
 (2970)+ WIDTH�
 (2970)+ WIDTH�
 (2970)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT17.9±3.5 OUR AVERAGE17.9±3.5 OUR AVERAGE17.9±3.5 OUR AVERAGE17.9±3.5 OUR AVERAGE14.8±2.5±4.1 244 ± 39 KATO 14 BELL e+ e− �(1S) to �(5S)27 ±8 ±2 756± 206 AUBERT 08J BABR e+ e− ≈ 10.58 GeV18 ±6 ±3 78 ± 13 LESIAK 08 BELL e+ e− ≈ �(4S)

• • • We do not use the following data for averages, �ts, limits, et
. • • •43.5±7.5±7.0 405 ± 51 CHISTOV 06 BELL See KATO 14�
 (2970)0 WIDTH�
 (2970)0 WIDTH�
 (2970)0 WIDTH�
 (2970)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT20±7 OUR AVERAGE20±7 OUR AVERAGE20±7 OUR AVERAGE20±7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.31±7±8 67 ± 44 AUBERT 08J BABR e+ e− ≈ 10.58 GeV15±6±3 57 ± 13 LESIAK 08 BELL e+ e− ≈ �(4S)�
 (2970) DECAY MODES�
 (2970) DECAY MODES�
 (2970) DECAY MODES�
 (2970) DECAY MODESMode Fra
tion (�i /�)�1 �+
 K π seen�2 �
 (2455)K seen�3 �+
 K not seen�4 �
 2π seen�5 �
 (2645)π seen�
 (2970) BRANCHING RATIOS�
 (2970) BRANCHING RATIOS�
 (2970) BRANCHING RATIOS�
 (2970) BRANCHING RATIOS�(�+
 K π
)/�total �1/��(�+
 K π
)/�total �1/��(�+
 K π
)/�total �1/��(�+
 K π
)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AUBERT 08J BABR e+ e− ≈ �(4S)seenseenseenseen CHISTOV 06 BELL e+ e− ≈ �(4S)



1653165316531653See key on page 601 BaryonParti
le Listings�
(2970),�
(3055),�
(3080),�
(3123),
0
�(�
 (2455)K)/�(�+
 K π
) �2/�1�(�
 (2455)K)/�(�+
 K π
) �2/�1�(�
 (2455)K)/�(�+
 K π
) �2/�1�(�
 (2455)K)/�(�+
 K π
) �2/�1VALUE DOCUMENT ID TECN COMMENT0.55±0.07±0.130.55±0.07±0.130.55±0.07±0.130.55±0.07±0.13 AUBERT 08J BABR e+ e− ≈ �(4S)�(�
 (2645)π)/�total �5/��(�
 (2645)π)/�total �5/��(�
 (2645)π)/�total �5/��(�
 (2645)π)/�total �5/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen LESIAK 08 BELL e+ e− ≈ �(4S)�
 (2970) REFERENCES�
 (2970) REFERENCES�
 (2970) REFERENCES�
 (2970) REFERENCESKATO 14 PR D89 052003 Y. Kato et al. (BELLE Collab.)AUBERT 08J PR D77 012002 B. Aubert et al. (BABAR Collab.)LESIAK 08 PL B665 9 T. Lesiak et al. (BELLE Collab.)CHISTOV 06 PRL 97 162001 R. Chistov et al. (BELLE Collab.)�
(3055) I (JP ) = ?(??) Status: ∗∗∗Seen in �
 (2455)++K− → �+
 K−π+ with signi�
an
es of 6.4(BABAR) and 6.6 (BELLE) standard deviations.�
 (3055) MASSES�
 (3055) MASSES�
 (3055) MASSES�
 (3055) MASSES�
 (3055)+ MASS�
 (3055)+ MASS�
 (3055)+ MASS�
 (3055)+ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3055.1±1.7 OUR AVERAGE3055.1±1.7 OUR AVERAGE3055.1±1.7 OUR AVERAGE3055.1±1.7 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.3058.1±1.0±2.1 199 ± 46 KATO 14 BELL e+ e− �(1S) to �(5S)3054.2±1.2±0.5 218 ± 95 AUBERT 08J BABR e+ e− ≈ 10.58 GeV�
 (3055) WIDTHS�
 (3055) WIDTHS�
 (3055) WIDTHS�
 (3055) WIDTHS�
 (3055)+ WIDTH�
 (3055)+ WIDTH�
 (3055)+ WIDTH�
 (3055)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT11 ±4 OUR AVERAGE11 ±4 OUR AVERAGE11 ±4 OUR AVERAGE11 ±4 OUR AVERAGE9.7±3.4± 3.3 199 ± 46 KATO 14 BELL e+ e− �(1S) to �(5S)17 ±6 ±11 218 ± 95 AUBERT 08J BABR e+ e− ≈ 10.58 GeV�
 (3055) REFERENCES�
 (3055) REFERENCES�
 (3055) REFERENCES�
 (3055) REFERENCESKATO 14 PR D89 052003 Y. Kato et al. (BELLE Collab.)AUBERT 08J PR D77 012002 B. Aubert et al. (BABAR Collab.)�
(3080) I (JP ) = 12 (??) Status: ∗∗∗A narrow peak seen in the �+
 K−π+ and �+
 K0S π− mass spe
tra.�
 (3080) MASSES�
 (3080) MASSES�
 (3080) MASSES�
 (3080) MASSES�
 (3080)+ MASS�
 (3080)+ MASS�
 (3080)+ MASS�
 (3080)+ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3076.94±0.28 OUR AVERAGE3076.94±0.28 OUR AVERAGE3076.94±0.28 OUR AVERAGE3076.94±0.28 OUR AVERAGE3076.9 ±0.3 ±0.2 210 ± 30 KATO 14 BELL e+ e− �(1S) to �(5S)3077.0 ±0.4 ±0.2 403 ± 60 AUBERT 08J BABR e+ e− ≈ 10.58 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •3076.7 ±0.9 ±0.5 326 ± 40 CHISTOV 06 BELL See KATO 14�
 (3080)0 MASS�
 (3080)0 MASS�
 (3080)0 MASS�
 (3080)0 MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3079.9±1.4 OUR AVERAGE3079.9±1.4 OUR AVERAGE3079.9±1.4 OUR AVERAGE3079.9±1.4 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.3079.3±1.1±0.2 90 ± 27 AUBERT 08J BABR e+ e− ≈ 10.58 GeV3082.8±1.8±1.5 67 ± 20 CHISTOV 06 BELL e+ e− ≈ �(4S)�
 (3080) WIDTHS�
 (3080) WIDTHS�
 (3080) WIDTHS�
 (3080) WIDTHS�
 (3080)+ WIDTH�
 (3080)+ WIDTH�
 (3080)+ WIDTH�
 (3080)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT4.3±1.5 OUR AVERAGE4.3±1.5 OUR AVERAGE4.3±1.5 OUR AVERAGE4.3±1.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3.2.4±0.9±1.6 210 ± 30 KATO 14 BELL e+ e− �(1S) to �(5S)5.5±1.3±0.6 403 ± 60 AUBERT 08J BABR e+ e− ≈ 10.58 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •6.2±1.2±0.8 326 ± 40 CHISTOV 06 BELL See KATO 14�
 (3080)0 WIDTH�
 (3080)0 WIDTH�
 (3080)0 WIDTH�
 (3080)0 WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT5.6±2.2 OUR AVERAGE5.6±2.2 OUR AVERAGE5.6±2.2 OUR AVERAGE5.6±2.2 OUR AVERAGE5.9±2.3±1.5 90 ± 27 AUBERT 08J BABR e+ e− ≈ 10.58 GeV5.2±3.1±1.8 67 ± 20 CHISTOV 06 BELL e+ e− ≈ �(4S)

�
 (3080) DECAY MODES�
 (3080) DECAY MODES�
 (3080) DECAY MODES�
 (3080) DECAY MODESMode Fra
tion (�i /�)�1 �+
 K π seen�2 �
 (2455)K seen�3 �
 (2455)K + �
 (2520)K seen�4 �+
 K not seen�5 �+
 K π+π− not seen�
 (3080) BRANCHING RATIOS�
 (3080) BRANCHING RATIOS�
 (3080) BRANCHING RATIOS�
 (3080) BRANCHING RATIOS�(�
 (2455)K)/�(�+
 K π
) �2/�1�(�
 (2455)K)/�(�+
 K π
) �2/�1�(�
 (2455)K)/�(�+
 K π
) �2/�1�(�
 (2455)K)/�(�+
 K π
) �2/�1VALUE DOCUMENT ID TECN COMMENT0.45±0.06 OUR AVERAGE0.45±0.06 OUR AVERAGE0.45±0.06 OUR AVERAGE0.45±0.06 OUR AVERAGE0.45±0.05±0.05 AUBERT 08J BABR in �+
 K−π+0.44±0.12±0.07 AUBERT 08J BABR in �+
 K0S π−

[�(�
 (2455)K)+�(�
 (2520)K)
]/�(�+
 K π

) �3/�1[�(�
 (2455)K)+�(�
 (2520)K)
]/�(�+
 K π

) �3/�1[�(�
 (2455)K)+�(�
 (2520)K)
]/�(�+
 K π

) �3/�1[�(�
 (2455)K)+�(�
 (2520)K)
]/�(�+
 K π

) �3/�1VALUE DOCUMENT ID TECN COMMENT0.89±0.12 OUR AVERAGE0.89±0.12 OUR AVERAGE0.89±0.12 OUR AVERAGE0.89±0.12 OUR AVERAGE0.95±0.14±0.06 AUBERT 08J BABR in �+
 K−π+0.78±0.21±0.05 AUBERT 08J BABR in �+
 K0S π−�
 (3080) REFERENCES�
 (3080) REFERENCES�
 (3080) REFERENCES�
 (3080) REFERENCESKATO 14 PR D89 052003 Y. Kato et al. (BELLE Collab.)AUBERT 08J PR D77 012002 B. Aubert et al. (BABAR Collab.)CHISTOV 06 PRL 97 162001 R. Chistov et al. (BELLE Collab.)�
(3123) I (JP ) = ?(??) Status: ∗OMITTED FROM SUMMARY TABLEA peak in the �
 (2520)++K− → �+
 K−π+ mass spe
trum witha signi�
an
e of 3.6 standard deviations. KATO 14 �nds no eviden
efor this state. �
 (3123) MASSES�
 (3123) MASSES�
 (3123) MASSES�
 (3123) MASSES�
 (3123)+ MASS�
 (3123)+ MASS�
 (3123)+ MASS�
 (3123)+ MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3122.9±1.3±0.33122.9±1.3±0.33122.9±1.3±0.33122.9±1.3±0.3 101 ± 35 AUBERT 08J BABR e+ e− ≈ 10.58 GeV�
 (3123) WIDTHS�
 (3123) WIDTHS�
 (3123) WIDTHS�
 (3123) WIDTHS�
 (3123)+ WIDTH�
 (3123)+ WIDTH�
 (3123)+ WIDTH�
 (3123)+ WIDTHVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT4.4±3.4±1.74.4±3.4±1.74.4±3.4±1.74.4±3.4±1.7 101 ± 35 AUBERT 08J BABR e+ e− ≈ 10.58 GeV�
 (3123) REFERENCES�
 (3123) REFERENCES�
 (3123) REFERENCES�
 (3123) REFERENCESKATO 14 PR D89 052003 Y. Kato et al. (BELLE Collab.)AUBERT 08J PR D77 012002 B. Aubert et al. (BABAR Collab.)
0
 I (JP ) = 0(12+) Status: ∗∗∗The quantum numbers have not been measured, but are simplyassigned in a

ord with the quark model, in whi
h the 
0
 is thess
 ground state. 
0
 MASS
0
 MASS
0
 MASS
0
 MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT2695.2± 1.7 OUR FIT2695.2± 1.7 OUR FIT2695.2± 1.7 OUR FIT2695.2± 1.7 OUR FIT Error in
ludes s
ale fa
tor of 1.3.2695.2+ 1.8
− 1.6 OUR AVERAGE2695.2+ 1.8
− 1.6 OUR AVERAGE2695.2+ 1.8
− 1.6 OUR AVERAGE2695.2+ 1.8
− 1.6 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.3. See the ideogrambelow.2693.6± 0.3+1.8

−1.5 725 ± 45 SOLOVIEVA 09 BELL 
−π+ in e+ e− → �(4S)2694.6± 2.6±1.9 40 1 CRONIN-HEN...01 CLE2 e+ e− ≈ 10.6 GeV2699.9± 1.5±2.5 42 2 FRABETTI 94H E687 γBe, Eγ= 221 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •2705.9± 3.3±2.0 10 3 FRABETTI 93 E687 γBe, Eγ= 221 GeV2719.0± 7.0±2.5 11 4 ALBRECHT 92H ARG e+ e− ≈ 10.6 GeV2740 ±20 3 BIAGI 85B SPEC �−Be 135 GeV/
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le Listings
0
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(2770)01CRONIN-HENNESSY 01 sees 40.4 ± 9.0 events in a sum over �ve 
hannels.2 FRABETTI 94H 
laims a signal of 42.5 ± 8.8 �+K−K−π+ events. The ba
kgroundis about 24 events.3 FRABETTI 93 
laims a signal of 10.3 ± 3.9 
−π+ events above a ba
kground of 5.8events.4ALBRECHT 92H 
laims a signal of 11.5 ± 4.3 �−K−π+π+ events. The ba
kgroundis about 5 events.
WEIGHTED AVERAGE
2695.2+1.8-1.6 (Error scaled by 1.3)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

FRABETTI 94H E687 2.6
CRONIN-HEN...01 CLE2 0.0
SOLOVIEVA 09 BELL 0.8

χ2

       3.4
(Confidence Level = 0.181)

2685 2690 2695 2700 2705 2710 2715
0
 mass (MeV) 
0
 MEAN LIFE
0
 MEAN LIFE
0
 MEAN LIFE
0
 MEAN LIFEVALUE (10−15 s) EVTS DOCUMENT ID TECN COMMENT69±12 OUR AVERAGE69±12 OUR AVERAGE69±12 OUR AVERAGE69±12 OUR AVERAGE72±11±11 64 LINK 03C FOCS 
−π+, �−K−π+π+55+13
−11+18

−23 86 ADAMOVICH 95B WA89 
−π−π+π+, �−K−π+π+86+27
−20±28 25 FRABETTI 95D E687 �+K−K−π+
0
 DECAY MODES
0
 DECAY MODES
0
 DECAY MODES
0
 DECAY MODESNo absolute bran
hing fra
tions have been measured.Mode Fra
tion (�i /�)�1 �+K−K−π+ seen�2 � 0K−π+ seen�3 �−K−π+π+ seen�4 
− e+ νe seen�5 
−π+ seen�6 
−π+π0 seen�7 
−π−π+π+ seen
0
 BRANCHING RATIOS
0
 BRANCHING RATIOS
0
 BRANCHING RATIOS
0
 BRANCHING RATIOS�(�+K−K−π+)/�total �1/��(�+K−K−π+)/�total �1/��(�+K−K−π+)/�total �1/��(�+K−K−π+)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 42 FRABETTI 94H E687 γBe, Eγ= 221 GeV�(�+K−K−π+)/�(
−π+) �1/�5�(�+K−K−π+)/�(
−π+) �1/�5�(�+K−K−π+)/�(
−π+) �1/�5�(�+K−K−π+)/�(
−π+) �1/�5VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<4.8 90 CRONIN-HEN...01 CLE2 e+ e− ≈ 10.6 GeV�(� 0K−π+)/�(
−π+) �2/�5�(� 0K−π+)/�(
−π+) �2/�5�(� 0K−π+)/�(
−π+) �2/�5�(� 0K−π+)/�(
−π+) �2/�5VALUE EVTS DOCUMENT ID TECN COMMENT4.0±2.5±0.44.0±2.5±0.44.0±2.5±0.44.0±2.5±0.4 9 CRONIN-HEN...01 CLE2 e+ e− ≈ 10.6 GeV�(�−K−π+π+)/�total �3/��(�−K−π+π+)/�total �3/��(�−K−π+π+)/�total �3/��(�−K−π+π+)/�total �3/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 11 ALBRECHT 92H ARG e+ e−≈ 10.6 GeVseenseenseenseen 3 BIAGI 85B SPEC �−Be 135 GeV/
�(�−K−π+π+)/�(
−π+) �3/�5�(�−K−π+π+)/�(
−π+) �3/�5�(�−K−π+π+)/�(
−π+) �3/�5�(�−K−π+π+)/�(
−π+) �3/�5VALUE CL% EVTS DOCUMENT ID TECN COMMENT0.46±0.13±0.030.46±0.13±0.030.46±0.13±0.030.46±0.13±0.03 45 ± 12 AUBERT 07AH BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.6 ±1.1 ±0.4 7 CRONIN-HEN...01 CLE2 e+ e− ≈ 10.6 GeV
<2.8 90 FRABETTI 93 E687 γBe, Eγ= 221 GeV

�(
−π+)/�(
− e+ νe) �5/�4�(
−π+)/�(
− e+ νe) �5/�4�(
−π+)/�(
− e+ νe) �5/�4�(
−π+)/�(
− e+ νe) �5/�4VALUE EVTS DOCUMENT ID TECN COMMENT0.41±0.19±0.040.41±0.19±0.040.41±0.19±0.040.41±0.19±0.04 11 AMMAR 02 CLE2 e+ e− ≈ �(4S)�(
−π+π0)/�(
−π+) �6/�5�(
−π+π0)/�(
−π+) �6/�5�(
−π+π0)/�(
−π+) �6/�5�(
−π+π0)/�(
−π+) �6/�5VALUE EVTS DOCUMENT ID TECN COMMENT1.27±0.31±0.111.27±0.31±0.111.27±0.31±0.111.27±0.31±0.11 64 ± 15 AUBERT 07AH BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.2 ±2.2 ±0.9 12 CRONIN-HEN...01 CLE2 e+ e− ≈ 10.6 GeV�(
−π−π+π+)/�(
−π+) �7/�5�(
−π−π+π+)/�(
−π+) �7/�5�(
−π−π+π+)/�(
−π+) �7/�5�(
−π−π+π+)/�(
−π+) �7/�5VALUE CL% EVTS DOCUMENT ID TECN COMMENT0.28±0.09±0.010.28±0.09±0.010.28±0.09±0.010.28±0.09±0.01 25 ± 8 AUBERT 07AH BABR e+ e− ≈ �(4S)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

<0.56 90 CRONIN-HEN...01 CLE2 e+ e− ≈ 10.6 GeVseen ADAMOVICH 95B WA89 �− 340 GeV
<1.6 90 FRABETTI 93 E687 γBe, Eγ= 221 GeV
0
 REFERENCES
0
 REFERENCES
0
 REFERENCES
0
 REFERENCESSOLOVIEVA 09 PL B672 1 E. Solovieva et al. (BELLE Collab.)AUBERT 07AH PRL 99 062001 B. Aubert et al. (BABAR Collab.)LINK 03C PL B561 41 J.M. Link et al. (FNAL FOCUS Collab.)AMMAR 02 PRL 89 171803 R. Ammar et al. (CLEO Collab.)CRONIN-HEN... 01 PRL 86 3730 D. Cronin-Hennessy et al. (CLEO Collab.)ADAMOVICH 95B PL B358 151 M.I. Adamovi
h et al. (CERN WA89 Collab.)FRABETTI 95D PL B357 678 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 94H PL B338 106 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 93 PL B300 190 P.L. Frabetti et al. (FNAL E687 Collab.)ALBRECHT 92H PL B288 367 H. Albre
ht et al. (ARGUS Collab.)BIAGI 85B ZPHY C28 175 S.F. Biagi et al. (CERN WA62 Collab.)

(2770)0 I (JP ) = 0(32+) Status: ∗∗∗The natural assignment is that this goes with the �
 (2520) and�
 (2645) to 
omplete the lowest mass JP = 32+ SU(3) sextet,part of the SU(4) 20-plet that in
ludes the �(1232). But J and Phave not been measured.

 (2770)0 MASS

 (2770)0 MASS

 (2770)0 MASS

 (2770)0 MASSThe mass is obtained from the mass-di�eren
e measurement that follows.VALUE (MeV) DOCUMENT ID2765.9±2.0 OUR FIT2765.9±2.0 OUR FIT2765.9±2.0 OUR FIT2765.9±2.0 OUR FIT Error in
ludes s
ale fa
tor of 1.2.

 (2770)0 − 
0
 MASS DIFFERENCE

 (2770)0 − 
0
 MASS DIFFERENCE

 (2770)0 − 
0
 MASS DIFFERENCE

 (2770)0 − 
0
 MASS DIFFERENCEVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT70.7+0.8

−0.9 OUR FIT70.7+0.8
−0.9 OUR FIT70.7+0.8
−0.9 OUR FIT70.7+0.8
−0.9 OUR FIT70.7+0.8
−1.0 OUR AVERAGE70.7+0.8
−1.0 OUR AVERAGE70.7+0.8
−1.0 OUR AVERAGE70.7+0.8
−1.0 OUR AVERAGE70.7±0.9+0.1

−0.9 54 ± 9 SOLOVIEVA 09 BELL 
0
 γ in e+ e− → �(4S)70.8±1.0±1.1 105 ± 22 AUBERT,BE 06I BABR e+ e− ≈ �(4S)

 (2770)0 DECAY MODES

 (2770)0 DECAY MODES

 (2770)0 DECAY MODES

 (2770)0 DECAY MODESThe 

 (2770)0{
0
 mass di�eren
e is too small for any strong de
ay too

ur.Mode Fra
tion (�i /�)�1 
0
 γ presumably 100%

 (2770)0 REFERENCES

 (2770)0 REFERENCES

 (2770)0 REFERENCES

 (2770)0 REFERENCESSOLOVIEVA 09 PL B672 1 E. Solovieva et al. (BELLE Collab.)AUBERT,BE 06I PRL 97 232001 B. Aubert et al. (BABAR Collab.)



1655165516551655See key on page 601 BaryonParti
le Listings�+
ccDOUBLY CHARMED BARYONSDOUBLY CHARMED BARYONSDOUBLY CHARMED BARYONSDOUBLY CHARMED BARYONS(C = +2)(C = +2)(C = +2)(C = +2)�++

cc
= u
 
 , �+

cc
= d 
 
 , 
+

cc
= s 
 
�+

cc

I (JP ) = ?(??) Status: ∗OMITTED FROM SUMMARY TABLEThis would presumably be an isospin-1/2 parti
le, a 

u �++
cc

and a

d �+
cc
. However, opposed to the eviden
e 
ited below, the BABARexperiment has found no eviden
e for a �+

cc
in a sear
h in �+
 K−

π
+and �0
 π

+ modes, and no eviden
e of a �++
cc

in �+
 K−
π
+

π
+ and�0
 π

+
π
+ modes (AUBERT,B 06D). Nor have the BELLE (CHIS-TOV 06, KATO 14) or LHCb (AAIJ 13CD) experiments found anyeviden
e for this state. �+

cc
MASS�+

cc
MASS�+

cc
MASS�+

cc
MASSVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT3518.9±0.9 OUR AVERAGE3518.9±0.9 OUR AVERAGE3518.9±0.9 OUR AVERAGE3518.9±0.9 OUR AVERAGE3518 ±3 6 1 OCHERASHVI...05 SELX �− nu
leus ≈ 600 GeV3519 ±1 16 2 MATTSON 02 SELX �− nu
leus ≈ 600 GeV1OCHERASHVILI 05 
laims \an ex
ess of 5.62 events over ... 1.38 ± 0.13 events" for asigni�
an
e of 4.8 σ in pD+K− events.2MATTSON 02 
laims \an ex
ess of 15.9 events over an expe
ted ba
kground of 6.1± 0.5events, a statisti
al signi�
an
e of 6.3 σ" in the �+
 K−

π
+ invariant-mass spe
trum.The probability that the peak is a 
u
tuation in
reases from 1.0× 10−6 to 1.1× 10−4when the number of bins sear
hed is 
onsidered.

�+
cc
MEAN LIFE�+

cc
MEAN LIFE�+

cc
MEAN LIFE�+

cc
MEAN LIFEVALUE (10−15 s) CL% DOCUMENT ID TECN COMMENT

<33<33<33<33 90 MATTSON 02 SELX �− nu
leus, ≈ 600 GeV�+
cc

DECAY MODES�+
cc

DECAY MODES�+
cc

DECAY MODES�+
cc

DECAY MODESMode�1 �+
 K−
π
+�2 pD+K−�(pD+K−

)/�(�+
 K−
π
+) �2/�1�(pD+K−

)/�(�+
 K−
π
+) �2/�1�(pD+K−

)/�(�+
 K−
π
+) �2/�1�(pD+K−

)/�(�+
 K−
π
+) �2/�1VALUE EVTS DOCUMENT ID TECN COMMENT0.36±0.210.36±0.210.36±0.210.36±0.21 6 OCHERASHVI...05 SELX �−

≈ 600 GeV�+
cc

REFERENCES�+
cc

REFERENCES�+
cc

REFERENCES�+
cc

REFERENCESKATO 14 PR D89 052003 Y. Kato et al. (BELLE Collab.)AAIJ 13CD JHEP 1312 090 R. Aaij et al. (LHCb Collab.)AUBERT,B 06D PR D74 011103 B. Aubert et al. (BABAR Collab.)CHISTOV 06 PRL 97 162001 R. Chistov et al. (BELLE Collab.)OCHERASHVI...05 PL B628 18 A. O
herashvili et al. (FNAL SELEX Collab.)MATTSON 02 PRL 89 112001 M. Mattson et al. (FNAL SELEX Collab.)



1656165616561656Baryon Parti
le Listings�0b BOTTOM BARYONSBOTTOM BARYONSBOTTOM BARYONSBOTTOM BARYONS(B = −1)(B = −1)(B = −1)(B = −1)�0b = ud b, � 0b = u s b, �−b = d s b, 
−b = s s b�0b I (JP ) = 0(12+) Status: ∗∗∗In the quark model, a �0b is an isospin-0 ud b state. The lowest �0bought to have JP = 1/2+. None of I, J, or P have a
tually beenmeasured. �0b MASS�0b MASS�0b MASS�0b MASSm�0bm�0bm�0bm�0bVALUE (MeV) EVTS DOCUMENT ID TECN COMMENT5619.51± 0.23 OUR AVERAGE5619.51± 0.23 OUR AVERAGE5619.51± 0.23 OUR AVERAGE5619.51± 0.23 OUR AVERAGE5619.30± 0.34 1 AAIJ 14AA LHCB pp at 7 TeV5620.15± 0.31± 0.47 2 AALTONEN 14B CDF pp at 1.96 TeV5619.7 ± 0.7 ± 1.1 2 AAD 13U ATLS pp at 7 TeV5619.44± 0.13± 0.38 2 AAIJ 13AV LHCB pp at 7 TeV5621 ± 4 ± 3 3 ABE 97B CDF pp at 1.8 TeV5668 ± 16 ± 8 4 4 ABREU 96N DLPH e+ e− → Z5614 ± 21 ± 4 4 4 BUSKULIC 96L ALEP e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •5619.19± 0.70± 0.30 2 AAIJ 12E LHCB Repl. by AAIJ 13AV5619.7 ± 1.2 ± 1.2 5 ACOSTA 06 CDF Repl. by AALTO-NEN 14Bnot seen 6 ABE 93B CDF Repl. by ABE 97B5640 ± 50 ±30 16 7 ALBAJAR 91E UA1 pp 630 GeV5640 +100

−210 52 BARI 91 SFM �0b → pD0π−5650 +150
−200 90 BARI 91 SFM �0b → �+
 π+π−π−1Uses ex
lusively re
onstru
ted �nal states �0b → �+
 D−s , �+
 D− and B0 → D+D−sde
ays. The un
ertainty in
ludes both statisti
al and systemati
 
ontributions.2Uses �0b → J/ψ� fully re
onstru
ted de
ays.3ABE 97B observed 38 events with a ba
kground of 18 ± 1.6 events in the mass range5.60{5.65 GeV/
2, a signi�
an
e of > 3.4 standard deviations.4Uses 4 fully re
onstru
ted �b events.5Uses ex
lusively re
onstru
ted �nal states 
ontaining a J/ψ → µ+µ− de
ays.6ABE 93B states that, based on the signal 
laimed by ALBAJAR 91E, CDF should havefound 30 ± 23 �0b → J/ψ(1S)� events. Instead, CDF found not more than 2 events.7ALBAJAR 91E 
laims 16 ± 5 events above a ba
kground of 9 ± 1 events, a signi�
an
eof about 5 standard deviations.m�0b − mB0m�0b − mB0m�0b − mB0m�0b − mB0VALUE (MeV) DOCUMENT ID TECN COMMENT339.2±1.4±0.1339.2±1.4±0.1339.2±1.4±0.1339.2±1.4±0.1 1 ACOSTA 06 CDF pp at 1.96 TeV1Uses ex
lusively re
onstru
ted �nal states 
ontaining J/ψ → µ+µ− de
ays.m�0b − mB+m�0b − mB+m�0b − mB+m�0b − mB+VALUE (MeV) DOCUMENT ID TECN COMMENT339.72±0.28 OUR AVERAGE339.72±0.28 OUR AVERAGE339.72±0.28 OUR AVERAGE339.72±0.28 OUR AVERAGE339.72±0.24±0.18 1 AAIJ 14AA LHCB pp at 7 TeV339.71±0.71±0.09 2 AAIJ 12E LHCB pp at 7 TeV1Uses ex
lusively re
onstru
ted �nal states �0b → �+
 D−s , �+
 D− and B0 → D+D−sde
ays.2Uses ex
lusively re
onstru
ted �nal states 
ontaining J/ψ → µ+µ− de
ays.�0b MEAN LIFE�0b MEAN LIFE�0b MEAN LIFE�0b MEAN LIFESee b-baryon Admixture se
tion for data on b-baryon mean life averageover spe
ies of b-baryon parti
les.\OUR EVALUATION" is an average using res
aled values of thedata listed below. The average and res
aling were performed bythe Heavy Flavor Averaging Group (HFAG) and are des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/. The averaging/res
aling pro-
edure takes into a

ount 
orrelations between the measurements andasymmetri
 lifetime errors.VALUE (10−12 s) EVTS DOCUMENT ID TECN COMMENT1.466±0.010 OUR EVALUATION1.466±0.010 OUR EVALUATION1.466±0.010 OUR EVALUATION1.466±0.010 OUR EVALUATION1.415±0.027±0.006 1 AAIJ 14E LHCB pp at 7 TeV1.479±0.009±0.010 2 AAIJ 14U LHCB pp at 7, 8 TeV1.565±0.035±0.020 1 AALTONEN 14B CDF pp at 1.96 TeV1.449±0.036±0.017 1 AAD 13U ATLS pp at 7 TeV1.503±0.052±0.031 1 CHATRCHYAN13AC CMS pp at 7 TeV1.303±0.075±0.035 1 ABAZOV 12U D0 pp at 1.96 TeV1.401±0.046±0.035 3 AALTONEN 10B CDF pp at 1.96 TeV1.290+0.119

−0.110+0.087
−0.091 4 ABAZOV 07U D0 pp at 1.96 TeV1.11 +0.19

−0.18 ±0.05 5 ABREU 99W DLPH e+ e− → Z1.29 +0.24
−0.22 ±0.06 5 ACKERSTAFF 98G OPAL e+ e− → Z1.21 ±0.11 5 BARATE 98D ALEP e+ e− → Z1.32 ±0.15 ±0.07 6 ABE 96M CDF pp at 1.8 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.482±0.018±0.012 7 AAIJ 13BB LHCB Repl. by AAIJ 14U1.537±0.045±0.014 1 AALTONEN 11 CDF Repl. by AALTONEN 14B1.218+0.130
−0.115±0.042 1 ABAZOV 07S D0 Repl. by ABAZOV 12U1.593+0.083
−0.078±0.033 1 ABULENCIA 07A CDF Repl. by AALTONEN 111.22 +0.22
−0.18 ±0.04 1 ABAZOV 05C D0 Repl. by ABAZOV 07S1.19 +0.21
−0.18 +0.07

−0.08 ABREU 96D DLPH Repl. by ABREU 99W1.14 +0.22
−0.19 ±0.07 69 AKERS 95K OPAL Repl. by ACKERSTAFF 98G1.02 +0.23
−0.18 ±0.06 44 BUSKULIC 95L ALEP Repl. by BARATE 98D1Measured mean life using fully re
onstru
ted �0b → J/ψ� de
ays.2Used �0b → J/ψpK− de
ays.3Measured mean life using fully re
onstru
ted �0b → �+
 π− de
ays.4Measured using semileptoni
 de
ays �0b → �+
 µνX and �+
 → K0S p.5Measured using �
 ℓ− and �ℓ+ ℓ−.6 Ex
ess �
 ℓ−, de
ay lengths.7Measured the lifetime ratio of de
ays �0b → J/ψpK− to B0 → J/ψπ+K− to be0.976 ± 0.012 ± 0.006 with τB0 = 1.519 ± 0.007 ps.

τ �0b/τ �0bτ �0b/τ �0bτ �0b/τ �0bτ �0b/τ �0bVALUE DOCUMENT ID TECN COMMENT0.940±0.035±0.0060.940±0.035±0.0060.940±0.035±0.0060.940±0.035±0.006 1 AAIJ 14E LHCB pp at 7 TeV1Measured using �0b → J/ψ� de
ays.
τ �0b/τB0 MEAN LIFE RATIOτ �0b/τB0 MEAN LIFE RATIOτ �0b/τB0 MEAN LIFE RATIOτ �0b/τB0 MEAN LIFE RATIO

τ �0b/τB0 (dire
t measurements)τ �0b/τB0 (dire
t measurements)τ �0b/τB0 (dire
t measurements)τ �0b/τB0 (dire
t measurements)\OUR EVALUATION" has been obtained by the Heavy Flavor Averaging Group(HFAG) by in
luding both B0 and B+ de
ays.VALUE DOCUMENT ID TECN COMMENT0.964±0.007 OUR EVALUATION0.964±0.007 OUR EVALUATION0.964±0.007 OUR EVALUATION0.964±0.007 OUR EVALUATION0.969±0.010 OUR AVERAGE0.969±0.010 OUR AVERAGE0.969±0.010 OUR AVERAGE0.969±0.010 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.6. See the ideogram below.0.929±0.018±0.004 1 AAIJ 14E LHCB pp at 7 TeV0.974±0.006±0.004 2 AAIJ 14U LHCB pp at 7, 8 TeV0.960±0.025±0.016 3 AAD 13U ATLS pp at 7 TeV0.864±0.052±0.033 4,5 ABAZOV 12U D0 pp at 1.96 TeV1.020±0.030±0.008 4 AALTONEN 11 CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.976±0.012±0.006 6 AAIJ 13BB LHCB Repl. by AAIJ 14U0.811+0.096

−0.087±0.034 4,5 ABAZOV 07S D0 Repl. by ABAZOV 12U1.041±0.057 7 ABULENCIA 07A CDF Repl. by AALTONEN 110.87 +0.17
−0.14 ±0.03 7 ABAZOV 05C D0 Repl. by ABAZOV 07S1Measured using �0b → J/ψ� and B0 → J/ψK∗0 de
ays.2Used �0b → J/ψpK− and B0 → J/ψK∗(892)0 de
ays.3Measured with �0b → J/ψ(µ+ µ−) �0(pπ−) de
ays.4Uses fully re
onstru
ted �b → J/ψ� de
ays.5Uses B0 → J/ψK0S de
ays for denominator.6Measures 1/τ�0b − 1/τB0 and uses τB0 = 1.519 ± 0.007 ps to extra
t lifetime ratio.7Measured mean life ratio using fully re
onstru
ted de
ays.

WEIGHTED AVERAGE
0.969±0.010 (Error scaled by 1.6)

AALTONEN 11 CDF 2.7
ABAZOV 12U D0
AAD 13U ATLS 0.1
AAIJ 14U LHCB 0.5
AAIJ 14E LHCB 4.6

χ2

       8.0
(Confidence Level = 0.046)

0.8 0.9 1 1.1 1.2

τ�0b/τB0 (dire
t measurements)



1657165716571657See key on page 601 BaryonParti
le Listings�0b�0b DECAY MODES�0b DECAY MODES�0b DECAY MODES�0b DECAY MODESThe bran
hing fra
tions B(b -baryon → �ℓ− νℓ anything) and B(�0b →�+
 ℓ− νℓ anything) are not pure measurements be
ause the underlyingmeasured produ
ts of these with B(b → b -baryon) were used to determineB(b → b -baryon), as des
ribed in the note \Produ
tion and De
ay ofb-Flavored Hadrons."For in
lusive bran
hing fra
tions, e.g., �b → �
 anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one. S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 J/ψ(1S)�× B(b → �0b) ( 5.8 ±0.8 ) × 10−5�2 J/ψ(1S)��3 ψ(2S)��4 pD0π− ( 6.4 ±0.7 ) × 10−4�5 pD0K− ( 4.7 ±0.8 ) × 10−5�6 pJ/ψπ− ( 2.6 +0.5
−0.4 )× 10−5�7 pJ/ψK− ( 3.2 +0.6
−0.5 )× 10−4�8 P
 (4380)+K−, P
 → pJ/ψ [a℄ ( 2.7 ±1.4 ) × 10−5�9 P
 (4450)+K−, P
 → pJ/ψ [a℄ ( 1.3 ±0.4 ) × 10−5�10 pK0π− ( 1.3 ±0.4 ) × 10−5�11 pK0K− < 3.5 × 10−6 CL=90%�12 �+
 π− ( 4.9 ±0.4 ) × 10−3 S=1.2�13 �+
 K− ( 3.59±0.30) × 10−4 S=1.2�14 �+
 a1(1260)− seen�15 �+
 D− ( 4.6 ±0.6 ) × 10−4�16 �+
 D−s ( 1.10±0.10) %�17 �+
 π+π−π− ( 7.7 ±1.1 ) × 10−3 S=1.1�18 �
 (2595)+π− , �
 (2595)+ →�+
 π+π−

( 3.4 ±1.5 ) × 10−4�19 �
 (2625)+π− , �
 (2625)+ →�+
 π+π−

( 3.3 ±1.3 ) × 10−4�20 �
 (2455)0π+π− , �0
 →�+
 π−

( 5.7 ±2.2 ) × 10−4�21 �
 (2455)++π−π− , �++
 →�+
 π+ ( 3.2 ±1.6 ) × 10−4�22 �K02π+ 2π−�23 �+
 ℓ−νℓ anything [b℄ (10.3 ±2.2 ) %�24 �+
 ℓ−νℓ ( 6.2 +1.4
−1.3 ) %�25 �+
 π+π− ℓ−νℓ ( 5.6 ±3.1 ) %�26 �
 (2595)+ ℓ−νℓ ( 7.9 +4.0
−3.5 )× 10−3�27 �
 (2625)+ ℓ−νℓ ( 1.3 +0.6
−0.5 ) %�28 �
 (2455)0π+ ℓ−νℓ�29 �
 (2455)++π− ℓ−νℓ�30 ph− [
℄ < 2.3 × 10−5 CL=90%�31 pπ− ( 4.2 ±0.8 ) × 10−6�32 pK− ( 5.1 ±1.0 ) × 10−6�33 pD−s < 4.8 × 10−4 CL=90%�34 pµ−νµ ( 4.1 ±1.0 ) × 10−4�35 �µ+µ− ( 1.08±0.28) × 10−6�36 �γ < 1.3 × 10−3 CL=90%�37 �0η ( 9 +7
−5 )× 10−6�38 �0η′(958) < 3.1 × 10−6 CL=90%[a℄ P+
 is a pentaquark-
harmonium state.[b℄ Not a pure measurement. See note at head of �0b De
ay Modes.[
 ℄ Here h− means π− or K−.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 10 bran
hing ratios uses 12 measurements andone 
onstraint to determine 7 parameters. The overall �t has a

χ2 = 10.7 for 6 degrees of freedom.The following o�-diagonal array elements are the 
orrelation 
oeÆ
ients
〈

δxiδxj〉/(δxi·δxj), in per
ent, from the �t to the bran
hing fra
tions, xi ≡�i/�total. The �t 
onstrains the xi whose labels appear in this array to sum toone.

x13 94x17 50 47x24 14 14 7x31 0 0 0 0x32 0 0 0 0 83x12 x13 x17 x24 x31�0b BRANCHING RATIOS�0b BRANCHING RATIOS�0b BRANCHING RATIOS�0b BRANCHING RATIOS�(J/ψ(1S)�×B(b→ �0b) )/�total �1/��(J/ψ(1S)�×B(b→ �0b) )/�total �1/��(J/ψ(1S)�×B(b→ �0b) )/�total �1/��(J/ψ(1S)�×B(b→ �0b) )/�total �1/�VALUE (units 10−5) EVTS DOCUMENT ID TECN COMMENT5.8 ± 0.8 OUR AVERAGE5.8 ± 0.8 OUR AVERAGE5.8 ± 0.8 OUR AVERAGE5.8 ± 0.8 OUR AVERAGE6.01± 0.60± 0.58±0.28 1 ABAZOV 11O D0 pp at 1.96 TeV4.7 ± 2.3 ± 0.2 2 ABE 97B CDF pp at 1.8 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •180 ±60 ±90 16 ALBAJAR 91E UA1 pp at 630 GeV1ABAZOV 11O uses B(B0 → J/ψK0S ) × B(b → B0) = (1.74 ± 0.08) × 10−4 toobtain the result. The (±0.08) × 10−4 un
ertainty of this produ
t is listed as the lastun
ertainty of the measurement, (±0.28)× 10−5.2ABE 97B reports [B(�0b → J/ψ�) × B(b → �0b)℄ / [B(B0 → J/ψK0S ) × B(b →B0)℄ = 0.27 ± 0.12± 0.05. We multiply by our best value B(B0 → J/ψK0S ) × B(b →B0) = (1.74 ± 0.08) × 10−4. Our �rst error is their experiment error and our se
onderror is the systemati
 error from using our best value.�(ψ(2S)�)/�(J/ψ(1S)�) �3/�2�(ψ(2S)�)/�(J/ψ(1S)�) �3/�2�(ψ(2S)�)/�(J/ψ(1S)�) �3/�2�(ψ(2S)�)/�(J/ψ(1S)�) �3/�2VALUE DOCUMENT ID TECN COMMENT0.50±0.03±0.020.50±0.03±0.020.50±0.03±0.020.50±0.03±0.02 1 AAD 15CH ATLS pp at 8 TeV1AAD 15CH uses B(J/ψ → µ+µ−) = (5.961 ± 0.033) × 10−2 (PDG 14). AndB(ψ(2S) → µ+µ−) = (7.89 ± 0.17) × 10−3 (PDG 14) is used assuming leptonuniversality.�(pD0π−

)/�total �4/��(pD0π−
)/�total �4/��(pD0π−
)/�total �4/��(pD0π−
)/�total �4/�VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 52 BARI 91 SFM D0
→ K−π+seen BASILE 81 SFM D0 → K−π+�(pD0K−

)/�(pD0π−
) �5/�4�(pD0K−

)/�(pD0π−
) �5/�4�(pD0K−

)/�(pD0π−
) �5/�4�(pD0K−

)/�(pD0π−
) �5/�4VALUE (units 10−2) DOCUMENT ID TECN COMMENT7.3±0.8+0.5

−0.67.3±0.8+0.5
−0.67.3±0.8+0.5
−0.67.3±0.8+0.5
−0.6 AAIJ 14H LHCB pp at 7 TeV�(pJ/ψπ−

)/�(pJ/ψK−
) �6/�7�(pJ/ψπ−

)/�(pJ/ψK−
) �6/�7�(pJ/ψπ−

)/�(pJ/ψK−
) �6/�7�(pJ/ψπ−

)/�(pJ/ψK−
) �6/�7VALUE (units 10−2) DOCUMENT ID TECN COMMENT8.24±0.25±0.428.24±0.25±0.428.24±0.25±0.428.24±0.25±0.42 AAIJ 14K LHCB pp at 7, 8 TeV�(pJ/ψK−

)/�total �7/��(pJ/ψK−
)/�total �7/��(pJ/ψK−
)/�total �7/��(pJ/ψK−
)/�total �7/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.17±0.04+0.57

−0.453.17±0.04+0.57
−0.453.17±0.04+0.57
−0.453.17±0.04+0.57
−0.45 1 AAIJ 16A LHCB pp at 7, 8 TeV1AAIJ 16A reported the measurement of (3.17 ± 0.04 ± 0.07 ± 0.34+0.45

−0.28) × 10−4where the �rst un
ertainty is statisti
al, the se
ond is systemati
, the third is due to thebran
hing fra
tion of B0 → J/ψK∗(892)0, and the fourth is due to the knowledge off�b/fd. We 
ombined in quadrature se
ond to fourth un
ertainties to a total systemati
un
ertainty.�(P
 (4380)+K−, P
 → pJ/ψ
)/�total �8/��(P
 (4380)+K−, P
 → pJ/ψ
)/�total �8/��(P
 (4380)+K−, P
 → pJ/ψ
)/�total �8/��(P
 (4380)+K−, P
 → pJ/ψ
)/�total �8/�P+
 is a pentaquark-
harmonium state.VALUE (units 10−5) DOCUMENT ID TECN COMMENT2.66±0.22+1.41

−1.382.66±0.22+1.41
−1.382.66±0.22+1.41
−1.382.66±0.22+1.41
−1.38 1 AAIJ 16A LHCB pp at 7, 8 TeV1AAIJ 16 total systemati
 in
ludes the un
ertainties on f(P+
 ) and B(�b → pJ/ψK−).�(P
 (4450)+K−, P
 → pJ/ψ

)/�total �9/��(P
 (4450)+K−, P
 → pJ/ψ
)/�total �9/��(P
 (4450)+K−, P
 → pJ/ψ
)/�total �9/��(P
 (4450)+K−, P
 → pJ/ψ
)/�total �9/�P+
 is a pentaquark-
harmonium state.VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.30±0.16+0.42

−0.391.30±0.16+0.42
−0.391.30±0.16+0.42
−0.391.30±0.16+0.42
−0.39 1 AAIJ 16A LHCB pp at 7, 8 TeV1AAIJ 16 total systemati
 in
ludes the un
ertainties on f(P+
 ) and B(�b → pJ/ψK−).�(pK0π−
)/�total �10/��(pK0π−
)/�total �10/��(pK0π−
)/�total �10/��(pK0π−
)/�total �10/�VALUE (units 10−5) DOCUMENT ID TECN COMMENT1.26±0.19±0.361.26±0.19±0.361.26±0.19±0.361.26±0.19±0.36 1 AAIJ 14Q LHCB pp at 7 TeV1Used the normalizing mode bran
hing fra
tion value of B(B0 → K0π+π−) = (4.96 ±0.20) × 10−5.�(pK0K−
)/�total �11/��(pK0K−
)/�total �11/��(pK0K−
)/�total �11/��(pK0K−
)/�total �11/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.5× 10−6<3.5× 10−6<3.5× 10−6<3.5× 10−6 90 AAIJ 14Q LHCB pp at 7 TeV



1658165816581658BaryonParti
le Listings�0b�(�+
 π−
)/�total �12/��(�+
 π−
)/�total �12/��(�+
 π−
)/�total �12/��(�+
 π−
)/�total �12/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT4.9 ±0.4 OUR FIT4.9 ±0.4 OUR FIT4.9 ±0.4 OUR FIT4.9 ±0.4 OUR FIT Error in
ludes s
ale fa
tor of 1.2.4.9 ±0.5 OUR AVERAGE4.9 ±0.5 OUR AVERAGE4.9 ±0.5 OUR AVERAGE4.9 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.5.4.57+0.31

−0.30±0.23 1 AAIJ 14I LHCB pp at 7 TeV5.97±0.28±0.81 2 AAIJ 14Q LHCB pp at 7 TeV8.8 ±2.8 ±1.5 3 ABULENCIA 07B CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 3 ABREU 96N DLPH �+
 → pK−π+seen 4 BUSKULIC 96L ALEP �+
 → pK−π+,pK0, �π+π+π−1AAIJ 14I reports (4.30 ± 0.03+0.12

−0.11 ± 0.26 ± 0.21) × 10−3 from a measurement of[�(�0b → �+
 π−
)/�total℄× [B(B0 → D−π+)℄ assuming B(B0 → D−π+) = (2.68±0.13)× 10−3, whi
h we res
ale to our best value B(B0 → D−π+) = (2.52 ± 0.13)×10−3. Our �rst error is their experiment's error and our se
ond error is the systemati
error from using our best value. Uses information on fbaryon/fd from measurement insemileptoni
 de
ays by the same authors.2Obtained using the bran
hing fra
tion of �+
 → pK−π+ de
ay.3The result is obtained from (fbaryon/fd) (B(�0b → �+
 π−)/B(B0 → D+π−)) =0.82 ± 0.08 ± 0.11 ± 0.22, assuming fbaryon/fd = 0.25 ± 0.04 and B(B0 → D+π−)= (2.68 ± 0.13) × 10−3.�(pD0π−

)/�(�+
 π−
) �4/�12�(pD0π−

)/�(�+
 π−
) �4/�12�(pD0π−

)/�(�+
 π−
) �4/�12�(pD0π−

)/�(�+
 π−
) �4/�12VALUE DOCUMENT ID TECN COMMENT0.130±0.007±0.0070.130±0.007±0.0070.130±0.007±0.0070.130±0.007±0.007 1 AAIJ 14H LHCB pp at 7 TeV1AAIJ 14H reports [�(�0b → pD0π−

)/�(�0b → �+
 π−
)℄ × [B(D0 → K−π+)℄ /[B(�+
 → pK−π+)℄ = (8.06 ± 0.23 ± 0.35) × 10−2 whi
h we multiply or divide byour best values B(D0 → K−π+) = (3.93 ± 0.04) × 10−2, B(�+
 → pK−π+) =(6.35 ± 0.33)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best values.�(�+
 K−

)/�total �13/��(�+
 K−
)/�total �13/��(�+
 K−
)/�total �13/��(�+
 K−
)/�total �13/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.59±0.30 OUR FIT3.59±0.30 OUR FIT3.59±0.30 OUR FIT3.59±0.30 OUR FIT Error in
ludes s
ale fa
tor of 1.2.3.55±0.44±0.503.55±0.44±0.503.55±0.44±0.503.55±0.44±0.50 1 AAIJ 14Q LHCB pp at 7 TeV1Obtained using the bran
hing fra
tion of �+
 → pK−π+ de
ay.�(�+
 K−
)/�(�+
 π−

) �13/�12�(�+
 K−
)/�(�+
 π−

) �13/�12�(�+
 K−
)/�(�+
 π−

) �13/�12�(�+
 K−
)/�(�+
 π−

) �13/�12VALUE (units 10−2) DOCUMENT ID TECN COMMENT7.31±0.22 OUR FIT7.31±0.22 OUR FIT7.31±0.22 OUR FIT7.31±0.22 OUR FIT7.31±0.16±0.167.31±0.16±0.167.31±0.16±0.167.31±0.16±0.16 AAIJ 14H LHCB pp at 7 TeV�(�+
 a1(1260)−)/�total �14/��(�+
 a1(1260)−)/�total �14/��(�+
 a1(1260)−)/�total �14/��(�+
 a1(1260)−)/�total �14/�VALUE EVTS DOCUMENT ID TECN COMMENTseenseenseenseen 1 ABREU 96N DLPH �+
 → pK−π+, a−1 →

ρ0π− → π+π−π−�(�+
 D−s )/�total �16/��(�+
 D−s )/�total �16/��(�+
 D−s )/�total �16/��(�+
 D−s )/�total �16/�VALUE (units 10−2) DOCUMENT ID TECN COMMENT1.1±0.11.1±0.11.1±0.11.1±0.1 1 AAIJ 14AA LHCB pp at 7 TeV1Uses B(B0 → D+D−s ) = (7.2 ± 0.8) × 10−3 and their measured B(�0b →�+
 π−))/B(B0 → D+π−) values.�(�+
 D−
)/�(�+
 D−s ) �15/�16�(�+
 D−
)/�(�+
 D−s ) �15/�16�(�+
 D−
)/�(�+
 D−s ) �15/�16�(�+
 D−
)/�(�+
 D−s ) �15/�16VALUE DOCUMENT ID TECN COMMENT0.042±0.003±0.0030.042±0.003±0.0030.042±0.003±0.0030.042±0.003±0.003 AAIJ 14AA LHCB pp at 7 TeV�(�+
 π+π−π−

)/�total �17/��(�+
 π+π−π−
)/�total �17/��(�+
 π+π−π−
)/�total �17/��(�+
 π+π−π−
)/�total �17/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT7.7±1.1 OUR FIT7.7±1.1 OUR FIT7.7±1.1 OUR FIT7.7±1.1 OUR FIT Error in
ludes s
ale fa
tor of 1.1.14.9+3.8

−3.2±1.214.9+3.8
−3.2±1.214.9+3.8
−3.2±1.214.9+3.8
−3.2±1.2 1 AALTONEN 12A CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 90 BARI 91 SFM �+
 → pK−π+1AALTONEN 12A reports [�(�0b → �+
 π+π−π−
)/�total℄ / [B(�0b → �+
 π−)℄ =3.04 ± 0.33+0.70

−0.55 whi
h we multiply by our best value B(�0b → �+
 π−) = (4.9 ±0.4) × 10−3. Our �rst error is their experiment's error and our se
ond error is thesystemati
 error from using our best value.�(�+
 π+π−π−
)/�(�+
 π−

) �17/�12�(�+
 π+π−π−
)/�(�+
 π−

) �17/�12�(�+
 π+π−π−
)/�(�+
 π−

) �17/�12�(�+
 π+π−π−
)/�(�+
 π−

) �17/�12VALUE DOCUMENT ID TECN COMMENT1.56±0.21 OUR FIT1.56±0.21 OUR FIT1.56±0.21 OUR FIT1.56±0.21 OUR FIT1.43±0.16±0.131.43±0.16±0.131.43±0.16±0.131.43±0.16±0.13 AAIJ 11E LHCB pp at 7 TeV�(�
 (2595)+π− , �
 (2595)+ → �+
 π+π−
)/�(�+
 π+π−π−

) �18/�17�(�
 (2595)+π− , �
 (2595)+ → �+
 π+π−
)/�(�+
 π+π−π−

) �18/�17�(�
 (2595)+π− , �
 (2595)+ → �+
 π+π−
)/�(�+
 π+π−π−

) �18/�17�(�
 (2595)+π− , �
 (2595)+ → �+
 π+π−
)/�(�+
 π+π−π−

) �18/�17VALUE (units 10−2) DOCUMENT ID TECN COMMENT4.4±1.7+0.6
−0.44.4±1.7+0.6
−0.44.4±1.7+0.6
−0.44.4±1.7+0.6
−0.4 AAIJ 11E LHCB pp at 7 TeV

�(�
 (2625)+π− , �
 (2625)+ → �+
 π+π−
)/�(�+
 π+π−π−

) �19/�17�(�
 (2625)+π− , �
 (2625)+ → �+
 π+π−
)/�(�+
 π+π−π−

) �19/�17�(�
 (2625)+π− , �
 (2625)+ → �+
 π+π−
)/�(�+
 π+π−π−

) �19/�17�(�
 (2625)+π− , �
 (2625)+ → �+
 π+π−
)/�(�+
 π+π−π−

) �19/�17VALUE (units 10−2) DOCUMENT ID TECN COMMENT4.3±1.5±0.44.3±1.5±0.44.3±1.5±0.44.3±1.5±0.4 AAIJ 11E LHCB pp at 7 TeV�(�
 (2455)0π+π− ,�0
 → �+
 π−
)/�(�+
 π+π−π−

) �20/�17�(�
 (2455)0π+π− ,�0
 → �+
 π−
)/�(�+
 π+π−π−

) �20/�17�(�
 (2455)0π+π− ,�0
 → �+
 π−
)/�(�+
 π+π−π−

) �20/�17�(�
 (2455)0π+π− ,�0
 → �+
 π−
)/�(�+
 π+π−π−

) �20/�17VALUE (units 10−2) DOCUMENT ID TECN COMMENT7.4±2.4±1.27.4±2.4±1.27.4±2.4±1.27.4±2.4±1.2 AAIJ 11E LHCB pp at 7 TeV�(�
 (2455)++π−π− ,�++
 → �+
 π+)/�(�+
 π+π−π−
) �21/�17�(�
 (2455)++π−π− ,�++
 → �+
 π+)/�(�+
 π+π−π−
) �21/�17�(�
 (2455)++π−π− ,�++
 → �+
 π+)/�(�+
 π+π−π−
) �21/�17�(�
 (2455)++π−π− ,�++
 → �+
 π+)/�(�+
 π+π−π−
) �21/�17VALUE (units 10−2) DOCUMENT ID TECN COMMENT4.2±1.8±0.74.2±1.8±0.74.2±1.8±0.74.2±1.8±0.7 AAIJ 11E LHCB pp at 7 TeV�(�K02π+ 2π−

)/�total �22/��(�K02π+ 2π−
)/�total �22/��(�K02π+ 2π−
)/�total �22/��(�K02π+ 2π−
)/�total �22/�VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 4 1 ARENTON 86 FMPS �K0S 2π+2π−1See the footnote to the ARENTON 86 mass value.�(�+
 ℓ−νℓ anything)/�total �23/��(�+
 ℓ−νℓ anything)/�total �23/��(�+
 ℓ−νℓ anything)/�total �23/��(�+
 ℓ−νℓ anything)/�total �23/�The values and averages in this se
tion serve only to show what values result if oneassumes our B(b → b -baryon). They 
annot be thought of as measurements sin
e theunderlying produ
t bran
hing fra
tions were also used to determine B(b → b -baryon)as des
ribed in the note on \Produ
tion and De
ay of b-Flavored Hadrons."VALUE EVTS DOCUMENT ID TECN COMMENT0.103±0.022 OUR AVERAGE0.103±0.022 OUR AVERAGE0.103±0.022 OUR AVERAGE0.103±0.022 OUR AVERAGE0.097±0.018±0.014 1 BARATE 98D ALEP e+ e− → Z0.13 +0.05
−0.04 ±0.02 29 2 ABREU 95S DLPH e+ e− → Z

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.085±0.021±0.012 55 3 BUSKULIC 95L ALEP Repl. by BARATE 98D0.17 ±0.06 ±0.02 21 4 BUSKULIC 92E ALEP �+
 → pK−π+1BARATE 98D reports [�(�0b → �+
 ℓ− νℓ anything)/�total℄ × [B(b → b -baryon)℄ =0.0086 ± 0.0007 ± 0.0014 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value. Measured using �
 ℓ− and �ℓ+ ℓ−.2ABREU 95S reports [�(�0b → �+
 ℓ− νℓ anything)/�total℄ × [B(b → b -baryon)℄ =0.0118 ± 0.0026+0.0031
−0.0021 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value.3BUSKULIC 95L reports [�(�0b → �+
 ℓ− νℓ anything)/�total℄ × [B(b → b -baryon)℄= 0.00755 ± 0.0014 ± 0.0012 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.4BUSKULIC 92E reports [�(�0b → �+
 ℓ− νℓ anything)/�total℄ × [B(b → b -baryon)℄= 0.015 ± 0.0035 ± 0.0045 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value. Superseded by BUSKULIC 95L.�(�+
 ℓ−νℓ

)/�total �24/��(�+
 ℓ−νℓ

)/�total �24/��(�+
 ℓ−νℓ

)/�total �24/��(�+
 ℓ−νℓ

)/�total �24/�VALUE DOCUMENT ID TECN COMMENT0.062+0.014
−0.013 OUR FIT0.062+0.014
−0.013 OUR FIT0.062+0.014
−0.013 OUR FIT0.062+0.014
−0.013 OUR FIT0.050+0.011
−0.008+0.016

−0.0120.050+0.011
−0.008+0.016

−0.0120.050+0.011
−0.008+0.016

−0.0120.050+0.011
−0.008+0.016

−0.012 1 ABDALLAH 04A DLPH e+ e− → Z01Derived from a 
ombined likelihood and event rate �t to the distribution of the Isgur-Wise variable and using HQET. The slope of the form fa
tor is measured to be ρ2 =2.03 ± 0.46+0.72
−1.00.�(�+
 ℓ−νℓ

)/�(�+
 π−
) �24/�12�(�+
 ℓ−νℓ

)/�(�+
 π−
) �24/�12�(�+
 ℓ−νℓ

)/�(�+
 π−
) �24/�12�(�+
 ℓ−νℓ

)/�(�+
 π−
) �24/�12VALUE DOCUMENT ID TECN COMMENT12.7+3.1

−2.7 OUR FIT12.7+3.1
−2.7 OUR FIT12.7+3.1
−2.7 OUR FIT12.7+3.1
−2.7 OUR FIT16.6±3.0+2.8

−3.616.6±3.0+2.8
−3.616.6±3.0+2.8
−3.616.6±3.0+2.8
−3.6 AALTONEN 09E CDF pp at 1.96 TeV�(�+
 π+π− ℓ−νℓ

)/�total �25/��(�+
 π+π− ℓ−νℓ

)/�total �25/��(�+
 π+π− ℓ−νℓ

)/�total �25/��(�+
 π+π− ℓ−νℓ

)/�total �25/�VALUE DOCUMENT ID TECN COMMENT0.056+0.031
−0.0300.056+0.031
−0.0300.056+0.031
−0.0300.056+0.031
−0.030 1 ABDALLAH 04A DLPH e+ e− → Z01Derived from the fra
tion of �(�0b → �+
 ℓ− νℓ) / ( �(�0b → �+
 ℓ− νℓ) + �(�0b →�+
 π+π− ℓ− νℓ) ) = 0.47+0.10

−0.08+0.07
−0.06.�(�+
 ℓ−νℓ

)/[�(�+
 ℓ−νℓ

) +�(�+
 π+π− ℓ−νℓ

)
] �24/(�24+�25)�(�+
 ℓ−νℓ

)/[�(�+
 ℓ−νℓ

) +�(�+
 π+π− ℓ−νℓ

)
] �24/(�24+�25)�(�+
 ℓ−νℓ

)/[�(�+
 ℓ−νℓ

) +�(�+
 π+π− ℓ−νℓ

)
] �24/(�24+�25)�(�+
 ℓ−νℓ

)/[�(�+
 ℓ−νℓ

) +�(�+
 π+π− ℓ−νℓ

)
] �24/(�24+�25)VALUE DOCUMENT ID TECN COMMENT0.47+0.10

−0.08+0.07
−0.060.47+0.10

−0.08+0.07
−0.060.47+0.10

−0.08+0.07
−0.060.47+0.10

−0.08+0.07
−0.06 ABDALLAH 04A DLPH e+ e− → Z0�(�
 (2595)+ ℓ−νℓ

)/�(�+
 ℓ−νℓ

) �26/�24�(�
 (2595)+ ℓ−νℓ

)/�(�+
 ℓ−νℓ

) �26/�24�(�
 (2595)+ ℓ−νℓ

)/�(�+
 ℓ−νℓ

) �26/�24�(�
 (2595)+ ℓ−νℓ

)/�(�+
 ℓ−νℓ

) �26/�24VALUE DOCUMENT ID TECN COMMENT0.126±0.033+0.047
−0.0380.126±0.033+0.047
−0.0380.126±0.033+0.047
−0.0380.126±0.033+0.047
−0.038 AALTONEN 09E CDF pp at 1.96 TeV



1659165916591659See key on page 601 BaryonParti
le Listings�0b�(�
 (2625)+ ℓ−νℓ

)/�(�+
 ℓ−νℓ

) �27/�24�(�
 (2625)+ ℓ−νℓ

)/�(�+
 ℓ−νℓ

) �27/�24�(�
 (2625)+ ℓ−νℓ

)/�(�+
 ℓ−νℓ

) �27/�24�(�
 (2625)+ ℓ−νℓ

)/�(�+
 ℓ−νℓ

) �27/�24VALUE DOCUMENT ID TECN COMMENT0.210±0.042+0.071
−0.0500.210±0.042+0.071
−0.0500.210±0.042+0.071
−0.0500.210±0.042+0.071
−0.050 AALTONEN 09E CDF pp at 1.96 TeV

[12�(�
 (2455)0π+ ℓ−νℓ

)+ 12�(�
 (2455)++π− ℓ−νℓ

)
]/�(�+
 ℓ−νℓ

)(12�28+12�29)/�24[12�(�
 (2455)0π+ ℓ−νℓ

)+ 12�(�
 (2455)++π− ℓ−νℓ

)
]/�(�+
 ℓ−νℓ

)(12�28+12�29)/�24[12�(�
 (2455)0π+ ℓ−νℓ

)+ 12�(�
 (2455)++π− ℓ−νℓ

)
]/�(�+
 ℓ−νℓ

)(12�28+12�29)/�24[12�(�
 (2455)0π+ ℓ−νℓ

)+ 12�(�
 (2455)++π− ℓ−νℓ

)
]/�(�+
 ℓ−νℓ

)(12�28+12�29)/�24VALUE DOCUMENT ID TECN COMMENT0.054±0.022+0.021
−0.0180.054±0.022+0.021
−0.0180.054±0.022+0.021
−0.0180.054±0.022+0.021
−0.018 AALTONEN 09E CDF pp at 1.96 TeV�(ph−)/�total �30/��(ph−)/�total �30/��(ph−)/�total �30/��(ph−)/�total �30/�VALUE CL% DOCUMENT ID TECN COMMENT

<2.3× 10−5<2.3× 10−5<2.3× 10−5<2.3× 10−5 90 1 ACOSTA 05O CDF pp at 1.96 TeV1Assumes f� / fd = 0.25, and equal momentum distribution for �b and B mesons.�(pπ−
)/�total �31/��(pπ−
)/�total �31/��(pπ−
)/�total �31/��(pπ−
)/�total �31/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT4.2±0.8 OUR FIT4.2±0.8 OUR FIT4.2±0.8 OUR FIT4.2±0.8 OUR FIT3.7±0.8±0.63.7±0.8±0.63.7±0.8±0.63.7±0.8±0.6 1 AALTONEN 09C CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<50 90 2 BUSKULIC 96V ALEP e+ e− → Z1AALTONEN 09C reports [�(�0b → pπ−
)/�total℄ / [B(B0 → K+π−)℄ × [B(b →b -baryon)℄ / [B(b → B0)℄ = 0.042 ± 0.007 ± 0.006 whi
h we multiply or divideby our best values B(B0 → K+π−) = (1.96 ± 0.05) × 10−5, B(b → b -baryon)= (8.9 ± 1.3) × 10−2, B(b → B0) = (40.4 ± 0.6) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best values.2BUSKULIC 96V assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons.�(pK−

)/�total �32/��(pK−
)/�total �32/��(pK−
)/�total �32/��(pK−
)/�total �32/�VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT5.1±1.0 OUR FIT5.1±1.0 OUR FIT5.1±1.0 OUR FIT5.1±1.0 OUR FIT5.9±1.1±0.95.9±1.1±0.95.9±1.1±0.95.9±1.1±0.9 1 AALTONEN 09C CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •

<360 90 2 ADAM 96D DLPH e+ e− → Z
< 50 90 3 BUSKULIC 96V ALEP e+ e− → Z1AALTONEN 09C reports [�(�0b → pK−

)/�total℄ / [B(B0 → K+π−)℄ × [B(b →b -baryon)℄ / [B(b → B0)℄ = 0.066 ± 0.009 ± 0.008 whi
h we multiply or divideby our best values B(B0 → K+π−) = (1.96 ± 0.05) × 10−5, B(b → b -baryon)= (8.9 ± 1.3) × 10−2, B(b → B0) = (40.4 ± 0.6) × 10−2. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best values.2ADAM 96D assumes fB0 = fB−
= 0.39 and fBs = 0.12.3BUSKULIC 96V assumes PDG 96 produ
tion fra
tions for B0, B+, Bs , b baryons.�(pπ−

)/�(pK−
) �31/�32�(pπ−

)/�(pK−
) �31/�32�(pπ−

)/�(pK−
) �31/�32�(pπ−

)/�(pK−
) �31/�32VALUE DOCUMENT ID TECN COMMENT0.84±0.09 OUR FIT0.84±0.09 OUR FIT0.84±0.09 OUR FIT0.84±0.09 OUR FIT0.86±0.08±0.050.86±0.08±0.050.86±0.08±0.050.86±0.08±0.05 AAIJ 12AR LHCB pp at 7 TeV�(pD−s )/�total �33/��(pD−s )/�total �33/��(pD−s )/�total �33/��(pD−s )/�total �33/�VALUE CL% DOCUMENT ID TECN COMMENT

<4.8× 10−4<4.8× 10−4<4.8× 10−4<4.8× 10−4 90 AAIJ 14Q LHCB pp at 7 TeV�(pµ−νµ

)/�total �34/��(pµ−νµ

)/�total �34/��(pµ−νµ

)/�total �34/��(pµ−νµ

)/�total �34/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT4.1±1.04.1±1.04.1±1.04.1±1.0 1 AAIJ 15BG LHCB pp at 8 TeV1The ratio of B(�0b → pµ− νµ) to B(�0b → �+
 µ− νµ) is measured within a restri
tedq2 region. Combined with theoreti
al 
al
ulations of the form fa
tors and the previouslymeasured value of ∣

∣V
b ∣

∣, the �rst ∣

∣Vub ∣

∣ = (3.27 ± 0.15 ± 0.16 ± 0.06) × 10−3 mea-surement from the �b de
ay is obtained, 
onsistent with the ex
lusively measured worldaverages.�(pµ−νµ

)/�(�+
 ℓ−νℓ

) �34/�24�(pµ−νµ

)/�(�+
 ℓ−νℓ

) �34/�24�(pµ−νµ

)/�(�+
 ℓ−νℓ

) �34/�24�(pµ−νµ

)/�(�+
 ℓ−νℓ

) �34/�24VALUE (units 10−2) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.0±0.04±0.08 1 AAIJ 15BG LHCB pp at 8 TeV1This measurement is a ratio of �(�0b → pµ− νµ)[q2 > 15 GeV/
2℄ to �(�0b →�+
 µ− νµ)[q2 > 7 GeV/
2℄ within a restri
ted q2 region. Combined with theoreti
al
al
ulations of the form fa
tors and the previously measured value of ∣

∣V
b ∣

∣, the �rst
∣

∣Vub ∣

∣ = (3.27 ± 0.15 ± 0.16 ± 0.06) × 10−3 measurement from the �b de
ay isobtained, 
onsistent with the ex
lusively measured world averages.�(�µ+µ−
)/�total �35/��(�µ+µ−
)/�total �35/��(�µ+µ−
)/�total �35/��(�µ+µ−
)/�total �35/�VALUE (units 10−7) DOCUMENT ID TECN COMMENT10.8±2.8 OUR AVERAGE10.8±2.8 OUR AVERAGE10.8±2.8 OUR AVERAGE10.8±2.8 OUR AVERAGE9.6±1.6±2.5 1 AAIJ 13AJ LHCB pp at 7 TeV17.3±4.2±5.5 AALTONEN 11AI CDF pp at 1.96 TeV1Uses B(�0b → J/ψ�) = (6.2 ± 1.4) × 10−4. This measurement 
omes from the sumof the di�erential rates in q2 regions ex
luding those 
orresponding to J/ψ and ψ(2S)([8.68,10.09℄ and [12.86, 14.18℄ GeV2/
4).

�(�γ
)/�total �36/��(�γ
)/�total �36/��(�γ
)/�total �36/��(�γ
)/�total �36/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.3× 10−3<1.3× 10−3<1.3× 10−3<1.3× 10−3 90 ACOSTA 02G CDF pp at 1.8 TeV�(�0 η
)/�total �37/��(�0 η
)/�total �37/��(�0 η
)/�total �37/��(�0 η
)/�total �37/�VALUE (units 10−6) DOCUMENT ID TECN COMMENT9+7

−5±19+7
−5±19+7
−5±19+7
−5±1 1 AAIJ 15AH LHCB pp at 7, 8 TeV1AAIJ 15AH reports [�(�0b → �0 η

)/�total℄ / [B(B0 → η′K0)℄ = 0.142+0.11
−0.08 whi
hwe multiply by our best value B(B0 → η′K0) = (6.6 ± 0.4) × 10−5. Our �rst erroris their experiment's error and our se
ond error is the systemati
 error from using ourbest value. The single un
ertainty quoted with the original measurement 
ombines inquadrature statisti
al and systemati
 un
ertainties.�(�0 η′(958))/�total �38/��(�0 η′(958))/�total �38/��(�0 η′(958))/�total �38/��(�0 η′(958))/�total �38/�VALUE CL% DOCUMENT ID TECN COMMENT

<3.1× 10−6<3.1× 10−6<3.1× 10−6<3.1× 10−6 90 1 AAIJ 15AH LHCB pp at 7, 8 TeV1AAIJ 15AH reports [�(�0b → �0 η′(958))/�total℄ / [B(B0 → η′K0)℄ < 0.047 whi
hwe multiply by our best value B(B0 → η′K0) = 6.6× 10−5.PARTIAL BRANCHING FRACTIONS IN �b → �µ+µ−PARTIAL BRANCHING FRACTIONS IN �b → �µ+µ−PARTIAL BRANCHING FRACTIONS IN �b → �µ+µ−PARTIAL BRANCHING FRACTIONS IN �b → �µ+µ−B(�b → �µ+µ−) (q2 < 2.0 GeV2/
4)B(�b → �µ+µ−) (q2 < 2.0 GeV2/
4)B(�b → �µ+µ−) (q2 < 2.0 GeV2/
4)B(�b → �µ+µ−) (q2 < 2.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.71±0.27 OUR AVERAGE0.71±0.27 OUR AVERAGE0.71±0.27 OUR AVERAGE0.71±0.27 OUR AVERAGE0.72+0.24
−0.22±0.14 1 AAIJ 15AE LHCB pp at 7, 8 TeV0.15±2.01±0.05 AALTONEN 11AI CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.56±0.76±0.80 2 AAIJ 13AJ LHCB Repl. by AAIJ 15AE1AAIJ 15AE measurement 
overs 0.1 < q2 < 2.0 GeV2/
4.2Uses B(�0b → J/ψ�) = (6.2 ± 1.4)× 10−4.B(�b → �µ+µ−) (2.0 < q2 < 4.3 GeV2/
4)B(�b → �µ+µ−) (2.0 < q2 < 4.3 GeV2/
4)B(�b → �µ+µ−) (2.0 < q2 < 4.3 GeV2/
4)B(�b → �µ+µ−) (2.0 < q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.28 +0.28
−0.21 OUR AVERAGE0.28 +0.28
−0.21 OUR AVERAGE0.28 +0.28
−0.21 OUR AVERAGE0.28 +0.28
−0.21 OUR AVERAGE0.253+0.276
−0.207±0.046 1 AAIJ 15AE LHCB pp at 7, 8 TeV1.8 ±1.7 ±0.6 AALTONEN 11AI CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •0.71 ±0.60 ±0.23 2 AAIJ 13AJ LHCB Repl. by AAIJ 15AE1AAIJ 15AE measurement 
overs 2.0 < q2 < 4.0 GeV2/
4.2Uses B(�0b → J/ψ�) = (6.2 ± 1.4)× 10−4.B(�b → �µ+µ−) (q2 < 4.3 GeV2/
4)B(�b → �µ+µ−) (q2 < 4.3 GeV2/
4)B(�b → �µ+µ−) (q2 < 4.3 GeV2/
4)B(�b → �µ+µ−) (q2 < 4.3 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT2.7±2.5±0.92.7±2.5±0.92.7±2.5±0.92.7±2.5±0.9 AALTONEN 11AI CDF pp at 1.96 TeVB(�b → �µ+µ−) (4.0 < q2 < 6.0 GeV2/
4)B(�b → �µ+µ−) (4.0 < q2 < 6.0 GeV2/
4)B(�b → �µ+µ−) (4.0 < q2 < 6.0 GeV2/
4)B(�b → �µ+µ−) (4.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.04+0.18
−0.00±0.020.04+0.18
−0.00±0.020.04+0.18
−0.00±0.020.04+0.18
−0.00±0.02 AAIJ 15AE LHCB pp at 7, 8 TeVB(�b → �µ+µ−) (1.0 < q2 < 6.0 GeV2/
4)B(�b → �µ+µ−) (1.0 < q2 < 6.0 GeV2/
4)B(�b → �µ+µ−) (1.0 < q2 < 6.0 GeV2/
4)B(�b → �µ+µ−) (1.0 < q2 < 6.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.47+0.31
−0.27 OUR AVERAGE0.47+0.31
−0.27 OUR AVERAGE0.47+0.31
−0.27 OUR AVERAGE0.47+0.31
−0.27 OUR AVERAGE0.45+0.30
−0.25±0.10 1 AAIJ 15AE LHCB pp at 7 and 8 TeV1.3 ±2.1 ±0.4 AALTONEN 11AI CDF pp at 1.96 TeV1AAIJ 15AE measurement 
overs 1.1 < q2 < 6.0 GeV2/
4.B(�b → �µ+µ−) (6.0 < q2 < 8.0 GeV2/
4)B(�b → �µ+µ−) (6.0 < q2 < 8.0 GeV2/
4)B(�b → �µ+µ−) (6.0 < q2 < 8.0 GeV2/
4)B(�b → �µ+µ−) (6.0 < q2 < 8.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.50+0.24
−0.22±0.100.50+0.24
−0.22±0.100.50+0.24
−0.22±0.100.50+0.24
−0.22±0.10 AAIJ 15AE LHCB pp at 7, 8 TeVB(�b → �µ+µ−) (4.3 < q2 < 8.68 GeV2/
4)B(�b → �µ+µ−) (4.3 < q2 < 8.68 GeV2/
4)B(�b → �µ+µ−) (4.3 < q2 < 8.68 GeV2/
4)B(�b → �µ+µ−) (4.3 < q2 < 8.68 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT0.5 ±0.7 OUR AVERAGE0.5 ±0.7 OUR AVERAGE0.5 ±0.7 OUR AVERAGE0.5 ±0.7 OUR AVERAGE0.66±0.74±0.18 1 AAIJ 13AJ LHCB pp at 7 TeV

−0.2 ±1.6 ±0.1 AALTONEN 11AI CDF pp at 1.96 TeV1Uses B(�0b → J/ψ�) = (6.2 ± 1.4)× 10−4.B(�b → �µ+µ−) (10.09 < q2 < 12.86 GeV2/
4)B(�b → �µ+µ−) (10.09 < q2 < 12.86 GeV2/
4)B(�b → �µ+µ−) (10.09 < q2 < 12.86 GeV2/
4)B(�b → �µ+µ−) (10.09 < q2 < 12.86 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT2.2 ±0.6 OUR AVERAGE2.2 ±0.6 OUR AVERAGE2.2 ±0.6 OUR AVERAGE2.2 ±0.6 OUR AVERAGE2.08+0.42
−0.39±0.42 1 AAIJ 15AE LHCB pp at 7, 8 TeV3.0 ±1.5 ±1.0 AALTONEN 11AI CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.55±0.58±0.55 2 AAIJ 13AJ LHCB Repl. by AAIJ 15AE1AAIJ 15AE measurement 
overs 11.0 < q2 < 12.5 GeV2/
4.2Uses B(�0b → J/ψ�) = (6.2 ± 1.4)× 10−4.



1660166016601660BaryonParti
le Listings�0b,�b(5912)0B(�b → �µ+µ−) (14.18 < q2 < 16.0 GeV2/
4)B(�b → �µ+µ−) (14.18 < q2 < 16.0 GeV2/
4)B(�b → �µ+µ−) (14.18 < q2 < 16.0 GeV2/
4)B(�b → �µ+µ−) (14.18 < q2 < 16.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT1.7 ±0.5 OUR AVERAGE1.7 ±0.5 OUR AVERAGE1.7 ±0.5 OUR AVERAGE1.7 ±0.5 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.2.04+0.35
−0.33±0.42 1 AAIJ 15AE LHCB pp at 7, 8 TeV1.0 ±0.7 ±0.3 AALTONEN 11AI CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.44±0.44±0.42 2 AAIJ 13AJ LHCB Repl. by AAIJ 15AE1AAIJ 15AE measurement 
overs 15.0 < q2 < 16.0 GeV2/
4.2Uses B(�0b → J/ψ�) = (6.2 ± 1.4)× 10−4.B(�b → �µ+µ−) (16.0 < q2 GeV2/
4)B(�b → �µ+µ−) (16.0 < q2 GeV2/
4)B(�b → �µ+µ−) (16.0 < q2 GeV2/
4)B(�b → �µ+µ−) (16.0 < q2 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT7.0 ±1.9 ±2.27.0 ±1.9 ±2.27.0 ±1.9 ±2.27.0 ±1.9 ±2.2 AALTONEN 11AI CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •4.73±0.77±1.25 1,2 AAIJ 13AJ LHCB Repl. by AAIJ 15AE1Uses B(�0b → J/ψ�) = (6.2 ± 1.4)× 10−4.2Requires 16.00 < q2 < 20.30 GeV2/
4.B(�b → �µ+µ−) (18.0 < q2 < 20.0 GeV2/
4)B(�b → �µ+µ−) (18.0 < q2 < 20.0 GeV2/
4)B(�b → �µ+µ−) (18.0 < q2 < 20.0 GeV2/
4)B(�b → �µ+µ−) (18.0 < q2 < 20.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT2.44±0.28±0.502.44±0.28±0.502.44±0.28±0.502.44±0.28±0.50 AAIJ 15AE LHCB pp at 7, 8 TeVB(�b → �µ+µ−) (15.0 < q2 < 20.0 GeV2/
4)B(�b → �µ+µ−) (15.0 < q2 < 20.0 GeV2/
4)B(�b → �µ+µ−) (15.0 < q2 < 20.0 GeV2/
4)B(�b → �µ+µ−) (15.0 < q2 < 20.0 GeV2/
4)VALUE (units 10−7) DOCUMENT ID TECN COMMENT6.00±0.45±1.256.00±0.45±1.256.00±0.45±1.256.00±0.45±1.25 AAIJ 15AE LHCB pp at 7, 8 TeVCP VIOLATIONCP VIOLATIONCP VIOLATIONCP VIOLATIONACP is de�ned as ACP = B(�0b →f )−B(�0b →f )

B(�0b →f )+B(�0b →f ) ,the CP-violation asymmetry of ex
lusive �0b and �0b de
ay.ACP (�b → pπ−)ACP (�b → pπ−)ACP (�b → pπ−)ACP (�b → pπ−)VALUE DOCUMENT ID TECN COMMENT0.06±0.07 OUR AVERAGE0.06±0.07 OUR AVERAGE0.06±0.07 OUR AVERAGE0.06±0.07 OUR AVERAGE0.06±0.07±0.03 AALTONEN 14P CDF pp at 1.96 TeV0.03±0.17±0.05 AALTONEN 11N CDF pp at 1.96 TeVACP (�b → pK−)ACP (�b → pK−)ACP (�b → pK−)ACP (�b → pK−)VALUE DOCUMENT ID TECN COMMENT0.00±0.19 OUR AVERAGE0.00±0.19 OUR AVERAGE0.00±0.19 OUR AVERAGE0.00±0.19 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.4.
−0.10±0.08±0.04 AALTONEN 14P CDF pp at 1.96 TeV0.37±0.17±0.03 AALTONEN 11N CDF pp at 1.96 TeVACP (�b → pK0π−)ACP (�b → pK0π−)ACP (�b → pK0π−)ACP (�b → pK0π−)VALUE DOCUMENT ID TECN COMMENT0.22±0.13±0.030.22±0.13±0.030.22±0.13±0.030.22±0.13±0.03 AAIJ 14Q LHCB pp at 7 TeV�ACP (J/ψpπ− /K−) ≡ ACP (J/ψpπ−) − ACP (J/ψpK−)�ACP (J/ψpπ− /K−) ≡ ACP (J/ψpπ−) − ACP (J/ψpK−)�ACP (J/ψpπ− /K−) ≡ ACP (J/ψpπ−) − ACP (J/ψpK−)�ACP (J/ψpπ− /K−) ≡ ACP (J/ψpπ−) − ACP (J/ψpK−)VALUE (units 10−2) DOCUMENT ID TECN COMMENT5.7±2.4±1.25.7±2.4±1.25.7±2.4±1.25.7±2.4±1.2 AAIJ 14K LHCB pp at 7, 8 TeV�0b DECAY PARAMETERS�0b DECAY PARAMETERS�0b DECAY PARAMETERS�0b DECAY PARAMETERSSee the note on \Baryon De
ay Parameters" in the neutron Listings.
α de
ay parameter for �b → J/ψ�α de
ay parameter for �b → J/ψ�α de
ay parameter for �b → J/ψ�α de
ay parameter for �b → J/ψ�VALUE DOCUMENT ID TECN COMMENT0.18±0.13 OUR AVERAGE0.18±0.13 OUR AVERAGE0.18±0.13 OUR AVERAGE0.18±0.13 OUR AVERAGE0.30±0.16±0.06 1 AAD 14L ATLS pp at 7 TeV0.05±0.17±0.07 2 AAIJ 13AG LHCB pp at 7 TeV1An angular analysis of �b → J/ψ� de
ay is performed and magnitudes of all heli
ityamplitudes are also reported.2An angular analysis of �b → J/ψ� de
ay is performed and a �b transverse produ
tionpolarization of 0.06 ± 0.07 ± 0.02 is also reported.Aℓ

FB(µµ) in �b → �µ+µ−Aℓ
FB(µµ) in �b → �µ+µ−Aℓ
FB(µµ) in �b → �µ+µ−Aℓ
FB(µµ) in �b → �µ+µ−VALUE DOCUMENT ID TECN COMMENT

−0.05±0.09±0.03−0.05±0.09±0.03−0.05±0.09±0.03−0.05±0.09±0.03 1 AAIJ 15AE LHCB pp at 7, 8 TeV1AAIJ 15AE measurement 
overs 15.0 < q2 < 20.0 GeV2/
4.Ah
FB(pπ) in �b → �(pπ)µ+µ−Ah
FB(pπ) in �b → �(pπ)µ+µ−Ah
FB(pπ) in �b → �(pπ)µ+µ−Ah
FB(pπ) in �b → �(pπ)µ+µ−VALUE DOCUMENT ID TECN COMMENT

−0.29±0.07±0.03−0.29±0.07±0.03−0.29±0.07±0.03−0.29±0.07±0.03 1 AAIJ 15AE LHCB pp at 7, 8 TeV1AAIJ 15AE measurement 
overs 15.0 < q2 < 20.0 GeV2/
4.

fL(µµ) longitudinal polarization fra
tion in �b → �µ+µ−fL(µµ) longitudinal polarization fra
tion in �b → �µ+µ−fL(µµ) longitudinal polarization fra
tion in �b → �µ+µ−fL(µµ) longitudinal polarization fra
tion in �b → �µ+µ−VALUE DOCUMENT ID TECN COMMENT0.61+0.11
−0.14±0.030.61+0.11
−0.14±0.030.61+0.11
−0.14±0.030.61+0.11
−0.14±0.03 1 AAIJ 15AE LHCB pp at 7, 8 TeV1AAIJ 15AE measurement 
overs 15.0 < q2 < 20.0 GeV2/
4.FORWARD-BACKWARD ASYMMETRIESFORWARD-BACKWARD ASYMMETRIESFORWARD-BACKWARD ASYMMETRIESFORWARD-BACKWARD ASYMMETRIESThe forward-ba
kward assymmetry is de�ned as AFB(�0b) = [ N(F) −N(B)℄ / [N(F) + N(B) ℄, where the forward (F) dire
tion 
orresponds toa parti
le (�0b or �−b ) sharing valen
e quark 
avors with a beam parti
lewith the same sign of rapidity.AFB(�0b → J/ψ�)AFB(�0b → J/ψ�)AFB(�0b → J/ψ�)AFB(�0b → J/ψ�)VALUE DOCUMENT ID TECN COMMENT0.04±0.07±0.020.04±0.07±0.020.04±0.07±0.020.04±0.07±0.02 1 ABAZOV 15I D0 pp at 1.96 TeV1The measured asymmetry integrated over rapidity y in the range of 0.1 <

∣
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hyan et al. (CMS Collab.)AAIJ 12AR JHEP 1210 037 R. Aaij et al. (LHCb Collab.)AAIJ 12E PL B708 241 R. Aaij et al. (LHCb Collab.)AALTONEN 12A PR D85 032003 T. Aaltonen et al. (CDF Collab.)ABAZOV 12U PR D85 112003 V.M. Abazov et al. (D0 Collab.)AAIJ 11E PR D84 092001 R. Aaij et al. (LHCb Collab.)Also PR D85 039904 (errat.) R. Aaij et al. (LHCb Collab.)AALTONEN 11 PRL 106 121804 T. Aaltonen et al. (CDF Collab.)AALTONEN 11AI PRL 107 201802 T. Aaltonen et al. (CDF Collab.)AALTONEN 11N PRL 106 181802 T. Aaltonen et al. (CDF Collab.)ABAZOV 11O PR D84 031102 V.M. Abazov et al. (D0 Collab.)AALTONEN 10B PRL 104 102002 T. Aaltonen et al. (CDF Collab.)AALTONEN 09C PRL 103 031801 T. Aaltonen et al. (CDF Collab.)AALTONEN 09E PR D79 032001 T. Aaltonen et al. (CDF Collab.)ABAZOV 07S PRL 99 142001 V.M. Abazov et al. (D0 Collab.)ABAZOV 07U PRL 99 182001 V.M. Abazov et al. (D0 Collab.)ABULENCIA 07A PRL 98 122001 A. Abulen
ia et al. (FNAL CDF Collab.)ABULENCIA 07B PRL 98 122002 A. Abulen
ia et al. (FNAL CDF Collab.)ACOSTA 06 PRL 96 202001 D. A
osta et al. (CDF Collab.)ABAZOV 05C PRL 94 102001 V.M. Abazov et al. (D0 Collab.)ACOSTA 05O PR D72 051104 D. A
osta et al. (CDF Collab.)ABDALLAH 04A PL B585 63 J. Abdallah et al. (DELPHI Collab.)ACOSTA 02G PR D66 112002 D. A
osta et al. (CDF Collab.)ABREU 99W EPJ C10 185 P. Abreu et al. (DELPHI Collab.)ACKERSTAFF 98G PL B426 161 K. A
kersta� et al. (OPAL Collab.)BARATE 98D EPJ C2 197 R. Barate et al. (ALEPH Collab.)ABE 97B PR D55 1142 F. Abe et al. (CDF Collab.)ABE 96M PRL 77 1439 F. Abe et al. (CDF Collab.)ABREU 96D ZPHY C71 199 P. Abreu et al. (DELPHI Collab.)ABREU 96N PL B374 351 P. Abreu et al. (DELPHI Collab.)ADAM 96D ZPHY C72 207 W. Adam et al. (DELPHI Collab.)BUSKULIC 96L PL B380 442 D. Buskuli
 et al. (ALEPH Collab.)BUSKULIC 96V PL B384 471 D. Buskuli
 et al. (ALEPH Collab.)PDG 96 PR D54 1 R. M. Barnett et al. (PDG Collab.)ABREU 95S ZPHY C68 375 P. Abreu et al. (DELPHI Collab.)AKERS 95K PL B353 402 R. Akers et al. (OPAL Collab.)BUSKULIC 95L PL B357 685 D. Buskuli
 et al. (ALEPH Collab.)ABE 93B PR D47 R2639 F. Abe et al. (CDF Collab.)BUSKULIC 92E PL B294 145 D. Buskuli
 et al. (ALEPH Collab.)ALBAJAR 91E PL B273 540 C. Albajar et al. (UA1 Collab.)BARI 91 NC 104A 1787 G. Bari et al. (CERN R422 Collab.)ARENTON 86 NP B274 707 M.W. Arenton et al. (ARIZ, NDAM, VAND)BASILE 81 LNC 31 97 M. Basile et al. (CERN R415 Collab.)�b(5912)0 JP = 12− Status: ∗∗∗Quantum numbers are based on quark model expe
tations.�b(5912)0 MASS�b(5912)0 MASS�b(5912)0 MASS�b(5912)0 MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5912.11±0.13±0.235912.11±0.13±0.235912.11±0.13±0.235912.11±0.13±0.23 1,2 AAIJ 12AL LHCB pp at 7 TeV1Observed in �b(5912)0 → �0b π+π− de
ays with 17.6 ± 4.8 
andidates with a signi�-
an
e of 5.2 sigma.2AAIJ 12AL measures m(�b(5912)0) − m(�0b) = 292.60 ± 0.12 ± 0.04 MeV. We haveadjusted the measurement to our best value of m(�0b) = 5619.51 ± 0.23 MeV. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best values.



1661166116611661See key on page 601 Baryon Parti
le Listings�b(5912)0, �b(5920)0, �b, � ∗b�b(5912)0 WIDTH�b(5912)0 WIDTH�b(5912)0 WIDTH�b(5912)0 WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<0.66<0.66<0.66<0.66 90 AAIJ 12AL LHCB pp at 7 TeV�b(5912)0 DECAY MODES�b(5912)0 DECAY MODES�b(5912)0 DECAY MODES�b(5912)0 DECAY MODESMode Fra
tion (�i /�)�1 �0b π+π− seen�b(5912)0 BRANCHING RATIOS�b(5912)0 BRANCHING RATIOS�b(5912)0 BRANCHING RATIOS�b(5912)0 BRANCHING RATIOS�(�0b π+π−

)/�total �1/��(�0b π+π−
)/�total �1/��(�0b π+π−
)/�total �1/��(�0b π+π−
)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AAIJ 12AL LHCB pp at 7 TeV�b(5912)0 REFERENCES�b(5912)0 REFERENCES�b(5912)0 REFERENCES�b(5912)0 REFERENCESAAIJ 12AL PRL 109 172003 R. Aaij et al. (LHCb Collab.)�b(5920)0 JP = 32− Status: ∗∗∗Quantum numbers are based on quark model expe
tations.�b(5920)0 MASS�b(5920)0 MASS�b(5920)0 MASS�b(5920)0 MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5919.81±0.23 OUR AVERAGE5919.81±0.23 OUR AVERAGE5919.81±0.23 OUR AVERAGE5919.81±0.23 OUR AVERAGE5919.3 ±0.5 ±0.2 1,2 AALTONEN 13V CDF pp at 1.96 TeV5919.91±0.09±0.23 3,4 AAIJ 12AL LHCB pp at 7 TeV1Measured in �b(5920)0 → �0b π+π− de
ays with 17.3+5.3

−4.6 events, with a signi�
an
eof 3.5 sigma.2AALTONEN 13V measures m(�b(5920)0)−m(�0b)−2m(π) = 20.68± 0.35± 0.30 MeV.We have adjusted the measurement to our best values of m(�0b) = 5619.51 ± 0.23 MeVand m(π) = 139.57018 ± 0.00035 MeV. Our �rst error is their experiment's error andour se
ond error is the systemati
 error from using our best values.3Observed in �b(5920)0 → �0b π+π− de
ays with 52.5 ± 8.1 
andidates with a signi�-
an
e of 10.2 sigma.4AAIJ 12AL measures m(�b(5920)0) − m(�0b) = 300.40 ± 0.08 ± 0.04 MeV. We haveadjusted the measurement to our best value of m(�0b) = 5619.51 ± 0.23 MeV. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best values. �b(5920)0 WIDTH�b(5920)0 WIDTH�b(5920)0 WIDTH�b(5920)0 WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT
<0.63<0.63<0.63<0.63 90 AAIJ 12AL LHCB pp at 7 TeV�b(5920)0 DECAY MODES�b(5920)0 DECAY MODES�b(5920)0 DECAY MODES�b(5920)0 DECAY MODESMode Fra
tion (�i /�)�1 �0b π+π− seen�b(5920)0 BRANCHING RATIOS�b(5920)0 BRANCHING RATIOS�b(5920)0 BRANCHING RATIOS�b(5920)0 BRANCHING RATIOS�(�0b π+π−

)/�total �1/��(�0b π+π−
)/�total �1/��(�0b π+π−
)/�total �1/��(�0b π+π−
)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen AAIJ 12AL LHCB pp at 7 TeV�b(5920)0 REFERENCES�b(5920)0 REFERENCES�b(5920)0 REFERENCES�b(5920)0 REFERENCESAALTONEN 13V PR D88 071101 T. Aaltonen et al. (CDF Collab.)AAIJ 12AL PRL 109 172003 R. Aaij et al. (LHCb Collab.)�b I (JP ) = 1(12+)I, J, P need 
on�rmation.Status: ∗∗∗In the quark model �+b , �0b , �−b are an isotriplet (uub, udb, ddb)state. The lowest �b ought to have JP = 1/2+. None of I, J, orP have a
tually been measured.�b MASS�b MASS�b MASS�b MASS�+b MASS�+b MASS�+b MASS�+b MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5811.3+0.9

−0.8±1.75811.3+0.9
−0.8±1.75811.3+0.9
−0.8±1.75811.3+0.9
−0.8±1.7 1 AALTONEN 12F CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •5807.8+2.0
−2.2±1.7 2 AALTONEN 07K CDF Repl. by AALTONEN 12F

�−b MASS�−b MASS�−b MASS�−b MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5815.5+0.6
−0.5±1.75815.5+0.6
−0.5±1.75815.5+0.6
−0.5±1.75815.5+0.6
−0.5±1.7 1 AALTONEN 12F CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •5815.2±1.0±1.7 2 AALTONEN 07K CDF Repl. by AALTONEN 12Fm�+b − m�−bm�+b − m�−bm�+b − m�−bm�+b − m�−bVALUE (MeV) DOCUMENT ID TECN COMMENT
−4.2+1.1

−1.0±0.1−4.2+1.1
−1.0±0.1−4.2+1.1
−1.0±0.1−4.2+1.1
−1.0±0.1 1 AALTONEN 12F CDF pp at 1.96 TeV1Measured using the fully re
onstru
ted �0b → �+
 π− and �+
 → K−π+ de
ays.2Observed four �0b π± resonan
es in the fully re
onstru
ted de
ay mode �0b → �+
 π−,where �+
 → pK−π+. �b WIDTH�b WIDTH�b WIDTH�b WIDTH�+b WIDTH�+b WIDTH�+b WIDTH�+b WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT9.7+3.8

−2.8+1.2
−1.19.7+3.8

−2.8+1.2
−1.19.7+3.8

−2.8+1.2
−1.19.7+3.8

−2.8+1.2
−1.1 3 AALTONEN 12F CDF pp at 1.96 TeV�−b WIDTH�−b WIDTH�−b WIDTH�−b WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT4.9+3.1

−2.1±1.14.9+3.1
−2.1±1.14.9+3.1
−2.1±1.14.9+3.1
−2.1±1.1 3 AALTONEN 12F CDF pp at 1.96 TeV3Measured using the fully re
onstru
ted �0b → �+
 π− and �+
 → K−π+ de
ays.�b DECAY MODES�b DECAY MODES�b DECAY MODES�b DECAY MODESMode Fra
tion (�i /�)�1 �0b π dominant�b BRANCHING RATIOS�b BRANCHING RATIOS�b BRANCHING RATIOS�b BRANCHING RATIOS�(�0b π

)/�total �1/��(�0b π
)/�total �1/��(�0b π
)/�total �1/��(�0b π
)/�total �1/�VALUE DOCUMENT ID TECN COMMENTdominantdominantdominantdominant AALTONEN 07K CDF pp at 1.96 TeV�b REFERENCES�b REFERENCES�b REFERENCES�b REFERENCESAALTONEN 12F PR D85 092011 T. Aaltonen et al. (CDF Collab.)AALTONEN 07K PRL 99 202001 T. Aaltonen et al. (CDF Collab.)� ∗b I (JP ) = 1(32+)I, J, P need 
on�rmation.Status: ∗∗∗I, J, P need 
on�rmation. Quantum numbers shown are quark-modelpredi
tions. �∗b MASS�∗b MASS�∗b MASS�∗b MASS�∗+b MASS�∗+b MASS�∗+b MASS�∗+b MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5832.1±0.7+1.7

−1.85832.1±0.7+1.7
−1.85832.1±0.7+1.7
−1.85832.1±0.7+1.7
−1.8 1 AALTONEN 12F CDF pp at 1.96 TeV�∗−b MASS�∗−b MASS�∗−b MASS�∗−b MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5835.1±0.6+1.7
−1.85835.1±0.6+1.7
−1.85835.1±0.6+1.7
−1.85835.1±0.6+1.7
−1.8 1 AALTONEN 12F CDF pp at 1.96 TeVm�∗+b − m�∗−bm�∗+b − m�∗−bm�∗+b − m�∗−bm�∗+b − m�∗−bVALUE (MeV) DOCUMENT ID TECN COMMENT

−3.0+1.0
−0.9±0.1−3.0+1.0
−0.9±0.1−3.0+1.0
−0.9±0.1−3.0+1.0
−0.9±0.1 1 AALTONEN 12F CDF pp at 1.96 TeV1Measured using the fully re
onstru
ted �0b → �+
 π− and �+
 → K−π+ de
ays.�∗b WIDTH�∗b WIDTH�∗b WIDTH�∗b WIDTH�∗+b WIDTH�∗+b WIDTH�∗+b WIDTH�∗+b WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT11.5+2.7
−2.2+1.0

−1.511.5+2.7
−2.2+1.0

−1.511.5+2.7
−2.2+1.0

−1.511.5+2.7
−2.2+1.0

−1.5 2 AALTONEN 12F CDF pp at 1.96 TeV�∗−b WIDTH�∗−b WIDTH�∗−b WIDTH�∗−b WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT7.5+2.2
−1.8+0.9

−1.47.5+2.2
−1.8+0.9

−1.47.5+2.2
−1.8+0.9

−1.47.5+2.2
−1.8+0.9

−1.4 2 AALTONEN 12F CDF pp at 1.96 TeV



1662166216621662BaryonParti
le Listings� ∗b,� 0b,�−b2Measured using the fully re
onstru
ted �0b → �+
 π− and �+
 → K−π+ de
ays.m�∗b − m�bm�∗b − m�bm�∗b − m�bm�∗b − m�bVALUE (MeV) DOCUMENT ID TECN COMMENT21.2+2.0
−1.9+0.4

−0.321.2+2.0
−1.9+0.4

−0.321.2+2.0
−1.9+0.4

−0.321.2+2.0
−1.9+0.4

−0.3 3 AALTONEN 07K CDF pp at 1.96 TeV3Observed four �0b π± resonan
es in the fully re
onstru
ted de
ay mode �0b → �+
 π−,where �+
 → pK−π+. Assumes m�∗+b − m�+b = m�∗−b − m�−b�∗b DECAY MODES�∗b DECAY MODES�∗b DECAY MODES�∗b DECAY MODESMode Fra
tion (�i /�)�1 �0b π dominant�∗b BRANCHING RATIOS�∗b BRANCHING RATIOS�∗b BRANCHING RATIOS�∗b BRANCHING RATIOS�(�0b π
)/�total �1/��(�0b π
)/�total �1/��(�0b π
)/�total �1/��(�0b π
)/�total �1/�VALUE DOCUMENT ID TECN COMMENTdominantdominantdominantdominant AALTONEN 07K CDF pp at 1.96 TeV�∗b REFERENCES�∗b REFERENCES�∗b REFERENCES�∗b REFERENCESAALTONEN 12F PR D85 092011 T. Aaltonen et al. (CDF Collab.)AALTONEN 07K PRL 99 202001 T. Aaltonen et al. (CDF Collab.)� 0b, �−b I (JP ) = 12 (12+)I, J, P need 
on�rmation.Status: ∗∗∗In the quark model, �0b and �−b are an isodoublet (usb, dsb) state;the lowest �0b and �−b ought to have JP = 1/2+. None of I , J, orP have a
tually been measured.�b MASSES�b MASSES�b MASSES�b MASSES�−b MASS�−b MASS�−b MASS�−b MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5794.5 ± 1.4 OUR AVERAGE5794.5 ± 1.4 OUR AVERAGE5794.5 ± 1.4 OUR AVERAGE5794.5 ± 1.4 OUR AVERAGE In
ludes data from the datablo
k that follows this one.Error in
ludes s
ale fa
tor of 4.0. See the ideogram below.5797.72± 0.46± 0.31 1 AAIJ 14BJ LHCB pp at 7, 8 TeV5793.4 ± 1.8 ± 0.7 2 AALTONEN 14B CDF pp at 1.96 TeV5795.8 ± 0.9 ± 0.4 3 AAIJ 13AV LHCB pp at 7 TeV5774 ±11 ±15 4 ABAZOV 07K D0 pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •5796.7 ± 5.1 ± 1.4 5 AALTONEN 11X CDF Repl. by AALTONEN 14B5790.9 ± 2.6 ± 0.8 6 AALTONEN 09AP CDF Repl. by AALTONEN 14B5792.9 ± 2.5 ± 1.7 7 AALTONEN 07A CDF Repl. by AALTONEN 09AP1Re
onstru
ted in �−b → �0
 π−, �0
 → pK−K−π+ de
ays. Referen
e �0b mass5619.30 ± 0.34 MeV from AAIJ 14AA.2Uses �−b → J/ψ�− and �0
 π− de
ays.3Measured in �−b → J/ψ�− de
ays.4Observed in �−b → J/ψ�− de
ays with 15.2 ± 4.4+1.9
−0.4 
andidates, a signi�
an
e of5.5 sigma.5Measured in �−b → �0
 π− with 25.8+5.5

−5.2 
andidates.6Measured in �−b → J/ψ�− de
ays with 66+14
− 9 
andidates.7Observed in �−b → J/ψ�− de
ays with 17.5 ± 4.3 
andidates, a signi�
an
e of 7.7sigma.

WEIGHTED AVERAGE
5794.5±1.4 (Error scaled by 4.0)

AALTONEN 14B CDF
AAIJ 14Z LHCB 30.0
AAIJ 14H LHCB 0.0
ABAZOV 07K D0
AAIJ 13AV LHCB 1.7
AALTONEN 14B CDF 0.3
AAIJ 14BJ LHCB 33.1

χ2

      65.1
(Confidence Level < 0.0001)

5785 5790 5795 5800 5805�−b MASS (MeV)

� 0b MASS� 0b MASS� 0b MASS� 0b MASSVALUE (MeV) DOCUMENT ID TECN COMMENTThe data in this blo
k is in
luded in the average printed for a previous datablo
k.5791.9 ±0.5 OUR AVERAGE5791.9 ±0.5 OUR AVERAGE5791.9 ±0.5 OUR AVERAGE5791.9 ±0.5 OUR AVERAGE5794.3 ±2.4 ±0.7 AAIJ 14H LHCB pp at 7 TeV5791.80±0.39±0.31 1 AAIJ 14Z LHCB pp at 7, 8 TeV5788.7 ±4.3 ±1.4 2 AALTONEN 14B CDF pp at 1.96 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •5787.8 ±5.0 ±1.3 3 AALTONEN 11X CDF Repl. by AALTONEN 14B1Uses �0b → �+
 π− and �+
 → pK−π+ de
ays. The measurement 
omes from themass di�eren
e of �0b and �0b .2Uses �0b → �+
 π− de
ays.3Measured in �0b → �+
 π− with 25.3+5.6

−5.4 
andidates.m�−b − m�0bm�−b − m�0bm�−b − m�0bm�−b − m�0bVALUE (MeV) DOCUMENT ID TECN COMMENT177.9 ±0.9 OUR AVERAGE177.9 ±0.9 OUR AVERAGE177.9 ±0.9 OUR AVERAGE177.9 ±0.9 OUR AVERAGE Error in
ludes s
ale fa
tor of 2.1.178.36±0.46±0.16 1 AAIJ 14BJ LHCB pp at 7, 8 TeV176.2 ±0.9 ±0.1 2 AAIJ 13AV LHCB pp at 7 TeV1Re
onstru
ted in �−b → �0
 π−, �0
 → pK−K−π+ de
ays. Referen
e �0b → �+
 π−.2Re
onstru
ted in �−b → J/ψ�− de
ays.m�0b − m�0bm�0b − m�0bm�0b − m�0bm�0b − m�0bVALUE (MeV) DOCUMENT ID TECN COMMENT172.5 ±0.4 OUR AVERAGE172.5 ±0.4 OUR AVERAGE172.5 ±0.4 OUR AVERAGE172.5 ±0.4 OUR AVERAGE174.8 ±2.4 ±0.5 AAIJ 14H LHCB pp at 7 TeV172.44±0.39±0.17 1 AAIJ 14Z LHCB pp at 7, 8 TeV1Uses �0b → �+
 π− and �+
 → pK−π+ de
ays.m�−b − m�0bm�−b − m�0bm�−b − m�0bm�−b − m�0bVALUE (MeV) DOCUMENT ID TECN COMMENT5.9 ±0.6 OUR AVERAGE5.9 ±0.6 OUR AVERAGE5.9 ±0.6 OUR AVERAGE5.9 ±0.6 OUR AVERAGE5.92±0.60±0.23 1 AAIJ 14BJ LHCB pp at 7, 8 TeV3.1 ±5.6 ±1.3 2 AALTONEN 11X CDF pp at 1.96 TeV1Re
onstru
ted in �−b → �0
 π−, �0
 → pK−K−π+ de
ays. Uses m(�0b) − m(�0b)= 172.44 ± 0.39 ± 0.17 MeV from AAIJ 14Z.2Derived from measurements in �0b → �+
 π− and �−b → J/ψ�− from AALTO-NEN 09AP taking 
orrelated systemati
 un
ertainties into a

ount.�b MEAN LIFE�b MEAN LIFE�b MEAN LIFE�b MEAN LIFE\OUR EVALUATION" is an average using res
aled values of thedata listed below. The average and res
aling were performed bythe Heavy Flavor Averaging Group (HFAG) and are des
ribed athttp://www.sla
.stanford.edu/xorg/hfag/. The averaging/res
aling pro-
edure takes into a

ount 
orrelations between the measurements andasymmetri
 lifetime errors.�−b MEAN LIFE�−b MEAN LIFE�−b MEAN LIFE�−b MEAN LIFEVALUE (10−12 s) DOCUMENT ID TECN COMMENT1.560±0.040 OUR EVALUATION1.560±0.040 OUR EVALUATION1.560±0.040 OUR EVALUATION1.560±0.040 OUR EVALUATION1.57 ±0.04 OUR AVERAGE1.57 ±0.04 OUR AVERAGE1.57 ±0.04 OUR AVERAGE1.57 ±0.04 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.1.1.599±0.041±0.022 1 AAIJ 14BJ LHCB pp at 7, 8 TeV1.55 +0.10
−0.09 ±0.03 2 AAIJ 14T LHCB pp at 7, 8 TeV1.36 ±0.15 ±0.02 AALTONEN 14B CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.56 +0.27
−0.25 ±0.02 3 AALTONEN 09AP CDF Repl. by AALTO-NEN 14B1Re
onstru
ted in �−b → �0
 π−, �0
 → pK−K−π+ de
ays. Referen
e �0b lifetime1.479 ± 0.009 ± 0.010 ps from AAIJ 14U.2Measured in �−b → J/ψ�− de
ays.3Measured in �−b → J/ψ�− de
ays with 66+14

− 9 
andidates.� 0b MEAN LIFE� 0b MEAN LIFE� 0b MEAN LIFE� 0b MEAN LIFEVALUE (10−12 s) DOCUMENT ID TECN COMMENT1.464±0.031 OUR EVALUATION1.464±0.031 OUR EVALUATION1.464±0.031 OUR EVALUATION1.464±0.031 OUR EVALUATION1.477±0.026±0.0191.477±0.026±0.0191.477±0.026±0.0191.477±0.026±0.019 1 AAIJ 14Z LHCB pp at 7, 8 TeV1Uses �0b → �+
 π− and �+
 → pK−π+ de
ays. The measurement 
omes from thevalue of relative lifetime of �0b to �0b .�b MEAN LIFE�b MEAN LIFE�b MEAN LIFE�b MEAN LIFEVALUE (10−12 s) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.48+0.40

−0.31±0.12 1 ABDALLAH 05C DLPH e+ e− → Z01.35+0.37
−0.28+0.15

−0.17 2 BUSKULIC 96T ALEP e+ e− → Z1.5 +0.7
−0.4 ±0.3 3 ABREU 95V DLPH Repl. by ABDALLAH 05C



1663166316631663See key on page 601 BaryonParti
le Listings� 0b,�−b ,� ′b(5935)−,�b(5945)01Used the de
ay length of �− a

ompanied by a lepton of the same sign.2 Ex
ess �− ℓ−, impa
t parameters.3 Ex
ess �− ℓ−, de
ay lengths.MEAN LIFE RATIOSMEAN LIFE RATIOSMEAN LIFE RATIOSMEAN LIFE RATIOS
τ�−b / τ �0b mean life ratioτ�−b / τ �0b mean life ratioτ�−b / τ �0b mean life ratioτ�−b / τ �0b mean life ratioVALUE DOCUMENT ID TECN COMMENT1.089±0.026±0.0111.089±0.026±0.0111.089±0.026±0.0111.089±0.026±0.011 1 AAIJ 14BJ LHCB pp at 7, 8 TeV1Re
onstru
ted in �−b → �0
 π−, �0
 → pK−K−π+ de
ays. Referen
e �0b → �+
 π−.
τ�−b / τ�0b mean life ratioτ�−b / τ�0b mean life ratioτ�−b / τ�0b mean life ratioτ�−b / τ�0b mean life ratioVALUE DOCUMENT ID TECN COMMENT1.083±0.032±0.0161.083±0.032±0.0161.083±0.032±0.0161.083±0.032±0.016 1 AAIJ 14BJ LHCB pp at 7, 8 TeV1Re
onstru
ted in �−b → �0
 π−, �0
 → pK−K−π+ de
ays. Uses �0b measurementsfrom AAIJ 14Z. �b DECAY MODES�b DECAY MODES�b DECAY MODES�b DECAY MODES S
ale fa
tor/Mode Fra
tion (�i /�) Con�den
e level�1 �b → �− ℓ−νℓX × B(b → �b) (3.9 ±1.2 )× 10−4 S=1.4�2 �−b → J/ψ�−

× B(b → �−b ) (1.02+0.26
−0.21)× 10−5�3 � 0b → pD0K−

× B(b → �b) (1.7 ±0.6 )× 10−6�4 � 0b → pK0π−
× B(b →�b)/B(b → B0) < 1.6 × 10−6 CL=90%�5 � 0b → pK0K−
× B(b →�b)/B(b → B0) < 1.1 × 10−6 CL=90%�6 � 0b → �+
 K−

× B(b → �b) (6 ±4 )× 10−7�7 �−b → �0b π−
× B(b →�−b )/B(b → �0b) (5.7 ±2.0 )× 10−4�b BRANCHING RATIOS�b BRANCHING RATIOS�b BRANCHING RATIOS�b BRANCHING RATIOS�(�− ℓ−νℓX ×B(b→ �b) )/�total �1/��(�− ℓ−νℓX ×B(b→ �b) )/�total �1/��(�− ℓ−νℓX ×B(b→ �b) )/�total �1/��(�− ℓ−νℓX ×B(b→ �b) )/�total �1/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT3.9±1.2 OUR AVERAGE3.9±1.2 OUR AVERAGE3.9±1.2 OUR AVERAGE3.9±1.2 OUR AVERAGE Error in
ludes s
ale fa
tor of 1.4.3.0±1.0±0.3 ABDALLAH 05C DLPH e+ e− → Z05.4±1.1±0.8 BUSKULIC 96T ALEP Ex
ess �− ℓ− over �− ℓ+

• • • We do not use the following data for averages, �ts, limits, et
. • • •5.9±2.1±1.0 ABREU 95V DLPH Repl. by ABDALLAH 05C�(J/ψ�−
×B(b→ �−b ) )/�total �2/��(J/ψ�−
×B(b→ �−b ) )/�total �2/��(J/ψ�−
×B(b→ �−b ) )/�total �2/��(J/ψ�−
×B(b→ �−b ) )/�total �2/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.102+0.026

−0.021 OUR AVERAGE0.102+0.026
−0.021 OUR AVERAGE0.102+0.026
−0.021 OUR AVERAGE0.102+0.026
−0.021 OUR AVERAGE0.098+0.023
−0.016±0.014 1 AALTONEN 09AP CDF pp at 1.96 TeV0.16 ±0.07 ±0.02 2 ABAZOV 07K D0 pp at 1.96 TeV1AALTONEN 09AP reports [�(�−b → J/ψ�−

× B(b → �−b ) )/�total℄ / [B(�0b →J/ψ(1S)�× B(b → �0b) )℄ = 0.167+0.037
−0.025 ± 0.012 whi
h we multiply by our bestvalue B(�0b → J/ψ(1S)�× B(b → �0b) ) = (5.8 ± 0.8) × 10−5. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.2ABAZOV 07K reports [�(�−b → J/ψ�−

× B(b → �−b ) )/�total℄ / [B(�0b →J/ψ(1S)�× B(b → �0b) )℄ = 0.28 ± 0.09+0.09
−0.08 whi
h we multiply by our best valueB(�0b → J/ψ(1S)�× B(b → �0b) ) = (5.8 ± 0.8) × 10−5. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.�(pD0K−

×B(b→ �b) )/�total �3/��(pD0K−
×B(b→ �b) )/�total �3/��(pD0K−
×B(b→ �b) )/�total �3/��(pD0K−
×B(b→ �b) )/�total �3/�VALUE DOCUMENT ID TECN COMMENT(1.8±0.4±0.4)× 10−6(1.8±0.4±0.4)× 10−6(1.8±0.4±0.4)× 10−6(1.8±0.4±0.4)× 10−6 1 AAIJ 14H LHCB pp at 7 TeV1AAIJ 14H reports [�(�0b → pD0K−× B(b → �b) )/�total℄ / [B(b → b -baryon)℄ /[B(�0b → pD0K−)℄ = 0.44± 0.09± 0.06 whi
h we multiply by our best values B(b →b -baryon) = (8.9 ± 1.3)× 10−2, B(�0b → pD0K−) = (4.7 ± 0.8)× 10−5. Our �rsterror is their experiment's error and our se
ond error is the systemati
 error from usingour best values.�(pK0π−
×B(b→ �b)/B(b→ B0))/�total �4/��(pK0π−
×B(b→ �b)/B(b→ B0))/�total �4/��(pK0π−
×B(b→ �b)/B(b→ B0))/�total �4/��(pK0π−
×B(b→ �b)/B(b→ B0))/�total �4/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.6× 10−6<1.6× 10−6<1.6× 10−6<1.6× 10−6 90 AAIJ 14Q LHCB pp at 7 TeV�(pK0K−
×B(b→ �b)/B(b→ B0))/�total �5/��(pK0K−
×B(b→ �b)/B(b→ B0))/�total �5/��(pK0K−
×B(b→ �b)/B(b→ B0))/�total �5/��(pK0K−
×B(b→ �b)/B(b→ B0))/�total �5/�VALUE CL% DOCUMENT ID TECN COMMENT

<1.1× 10−6<1.1× 10−6<1.1× 10−6<1.1× 10−6 90 AAIJ 14Q LHCB pp at 7 TeV

�(�+
 K−
×B(b→ �b) )/�(pD0K−

×B(b→ �b) ) �6/�3�(�+
 K−
×B(b→ �b) )/�(pD0K−

×B(b→ �b) ) �6/�3�(�+
 K−
×B(b→ �b) )/�(pD0K−

×B(b→ �b) ) �6/�3�(�+
 K−
×B(b→ �b) )/�(pD0K−

×B(b→ �b) ) �6/�3VALUE DOCUMENT ID TECN COMMENT0.35±0.19±0.020.35±0.19±0.020.35±0.19±0.020.35±0.19±0.02 1 AAIJ 14H LHCB pp at 7 TeV1AAIJ 14H reports [�(�0b → �+
 K−
× B(b → �b) )/�(�0b → pD0K−

× B(b →�b) )℄ × [B(�+
 → pK−π+)℄ / [B(D0 → K−π+)℄ = 0.57 ± 0.22 ± 0.21 whi
hwe multiply or divide by our best values B(�+
 → pK−π+) = (6.35 ± 0.33)× 10−2,B(D0 → K−π+) = (3.93 ± 0.04) × 10−2. Our �rst error is their experiment's errorand our se
ond error is the systemati
 error from using our best values.�(�0b π−
×B(b→ �−b )/B(b→ �0b))/�total �7/��(�0b π−
×B(b→ �−b )/B(b→ �0b))/�total �7/��(�0b π−
×B(b→ �−b )/B(b→ �0b))/�total �7/��(�0b π−
×B(b→ �−b )/B(b→ �0b))/�total �7/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT5.7±1.8+0.8

−0.95.7±1.8+0.8
−0.95.7±1.8+0.8
−0.95.7±1.8+0.8
−0.9 1 AAIJ 15BA LHCB pp at 7, 8 TeV1A signal is reported with a signi�
an
e of 3.2 standard deviations in the de
ay 
hain of�−b → �0b π−, �0b → �+
 π−, and �+
 → pK−π+.�b REFERENCES�b REFERENCES�b REFERENCES�b REFERENCESAAIJ 15BA PRL 115 241801 R. Aaij et al. (LHCb Collab.)AAIJ 14AA PRL 112 202001 R. Aaij et al. (LHCb Collab.)AAIJ 14BJ PRL 113 242002 R. Aaij et al. (LHCb Collab.)AAIJ 14H PR D89 032001 R. Aaij et al. (LHCb Collab.)AAIJ 14Q JHEP 1404 087 R. Aaij et al. (LHCb Collab.)AAIJ 14T PL B736 154 R. Aaij et al. (LHCb Collab.)AAIJ 14U PL B734 122 R. Aaij et al. (LHCb Collab.)AAIJ 14Z PRL 113 032001 R. Aaij et al. (LHCb Collab.)AALTONEN 14B PR D89 072014 T. Aaltonen et al. (CDF Collab.)AAIJ 13AV PRL 110 182001 R. Aaij et al. (LHCb Collab.)AALTONEN 11X PRL 107 102001 T. Aaltonen et al. (CDF Collab.)AALTONEN 09AP PR D80 072003 T. Aaltonen et al. (CDF Collab.)AALTONEN 07A PRL 99 052002 T. Aaltonen et al. (CDF Collab.)ABAZOV 07K PRL 99 052001 V.M. Abazov et al. (D0 Collab.)ABDALLAH 05C EPJ C44 299 J. Abdallah et al. (DELPHI Collab.)BUSKULIC 96T PL B384 449 D. Buskuli
 et al. (ALEPH Collab.)ABREU 95V ZPHY C68 541 P. Abreu et al. (DELPHI Collab.)� ′b(5935)− JP = 12+ Status: ∗∗∗� ′b(5935)− MASS� ′b(5935)− MASS� ′b(5935)− MASS� ′b(5935)− MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5935.02±0.02±0.055935.02±0.02±0.055935.02±0.02±0.055935.02±0.02±0.05 1 AAIJ 15H LHCB pp at 7, 8 TeV1Not independent of the mass di�eren
e measurement below. Observed in �0b π− 
hannelwith �0b → �+
 π− and �+
 → pK−π+.m� ′b(5935)− − m�0b − mπ−

m� ′b(5935)− − m�0b − mπ−m� ′b(5935)− − m�0b − mπ−
m� ′b(5935)− − m�0b − mπ−VALUE (MeV) DOCUMENT ID TECN COMMENT3.653±0.018±0.0063.653±0.018±0.0063.653±0.018±0.0063.653±0.018±0.006 2 AAIJ 15H LHCB pp at 7, 8 TeV2Observed in �0b π− 
hannel with �0b → �+
 π− and �+
 → pK−π+.� ′b(5935)− WIDTH� ′b(5935)− WIDTH� ′b(5935)− WIDTH� ′b(5935)− WIDTHVALUE (MeV) CL% DOCUMENT ID TECN COMMENT

<0.08<0.08<0.08<0.08 95 3 AAIJ 15H LHCB pp at 7, 8 TeV3Observed in �0b π− 
hannel with �0b → �+
 π− and �+
 → pK−π+.� ′b(5935)− DECAY MODES� ′b(5935)− DECAY MODES� ′b(5935)− DECAY MODES� ′b(5935)− DECAY MODESMode Fra
tion (�i /�)�1 � 0b π−
× B(b →� ′b(5935)−)/B(b → � 0b) (11.8±1.8) %� ′b(5935)− BRANCHING RATIOS� ′b(5935)− BRANCHING RATIOS� ′b(5935)− BRANCHING RATIOS� ′b(5935)− BRANCHING RATIOS�(� 0b π−

×B(b→ � ′b(5935)−)/B(b→ � 0b))/�total �1/��(� 0b π−
×B(b→ � ′b(5935)−)/B(b→ � 0b))/�total �1/��(� 0b π−
×B(b→ � ′b(5935)−)/B(b→ � 0b))/�total �1/��(� 0b π−
×B(b→ � ′b(5935)−)/B(b→ � 0b))/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.118±0.017±0.0070.118±0.017±0.0070.118±0.017±0.0070.118±0.017±0.007 4 AAIJ 15H LHCB pp at 7, 8 TeV4Observed in �0b π− 
hannel with �0b → �+
 π− and �+
 → pK−π+.� ′b(5935)− REFERENCES� ′b(5935)− REFERENCES� ′b(5935)− REFERENCES� ′b(5935)− REFERENCESAAIJ 15H PRL 114 062004 R. Aaij et al. (LHCb Collab.)�b(5945)0 JP = 32+ Status: ∗∗∗Quantum numbers are based on quark model expe
tations.



1664166416641664Baryon Parti
le Listings�b(5945)0, � ∗b(5955)−, 
−b�b(5945)0 MASS�b(5945)0 MASS�b(5945)0 MASS�b(5945)0 MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5948.9±0.8±1.45948.9±0.8±1.45948.9±0.8±1.45948.9±0.8±1.4 1 CHATRCHYAN12S CMS pp at 7 TeV, 5.3 fb−11CHATRCHYAN 12S measures m(�b(5945)0) − m(�−b ) − m(π+) = 14.84 ± 0.74 ±0.28 MeV. We have adjusted the measurement to our best values of m(�−b ) = 5794.5 ±1.4 MeV, m(π+) = 139.57018 ± 0.00035 MeV. Our �rst error is their experiment's errorand our se
ond error is the systemati
 error from using our best values.�b(5945)0 WIDTH�b(5945)0 WIDTH�b(5945)0 WIDTH�b(5945)0 WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT2.1±1.72.1±1.72.1±1.72.1±1.7 2 CHATRCHYAN12S CMS pp at 7 TeV, 5.3 fb−12Systemati
 un
ertainty not evaluated.�b(5945)0 DECAY MODES�b(5945)0 DECAY MODES�b(5945)0 DECAY MODES�b(5945)0 DECAY MODESMode Fra
tion (�i /�)�1 �−b π+ seen�b(5945)0 BRANCHING RATIOS�b(5945)0 BRANCHING RATIOS�b(5945)0 BRANCHING RATIOS�b(5945)0 BRANCHING RATIOS�(�−b π+)/�total �1/��(�−b π+)/�total �1/��(�−b π+)/�total �1/��(�−b π+)/�total �1/�VALUE DOCUMENT ID TECN COMMENTseenseenseenseen CHATRCHYAN12S CMS pp at 7 TeV, 5.3 fb−1�b(5945)0 REFERENCES�b(5945)0 REFERENCES�b(5945)0 REFERENCES�b(5945)0 REFERENCESCHATRCHYAN 12S PRL 108 252002 S. Chatr
hyan et al. (CMS Collab.)� ∗b(5955)− JP = 32+ Status: ∗∗∗� ∗b(5955)− MASS� ∗b(5955)− MASS� ∗b(5955)− MASS� ∗b(5955)− MASSVALUE (MeV) DOCUMENT ID TECN COMMENT5955.33±0.12±0.055955.33±0.12±0.055955.33±0.12±0.055955.33±0.12±0.05 1 AAIJ 15H LHCB pp at 7, 8 TeV1Not independent of the mass di�eren
e measurement below. Observed in �0b π− 
hannelwith �0b → �+
 π− and �+
 → pK−π+.m�∗b(5955)− − m�0b − mπ−m�∗b(5955)− − m�0b − mπ−m�∗b(5955)− − m�0b − mπ−m�∗b(5955)− − m�0b − mπ−VALUE (MeV) DOCUMENT ID TECN COMMENT23.96±0.12±0.0623.96±0.12±0.0623.96±0.12±0.0623.96±0.12±0.06 2 AAIJ 15H LHCB pp at 7, 8 TeV2Observed in �0b π− 
hannel with �0b → �+
 π− and �+
 → pK−π+.� ∗b(5955)− WIDTH� ∗b(5955)− WIDTH� ∗b(5955)− WIDTH� ∗b(5955)− WIDTHVALUE (MeV) DOCUMENT ID TECN COMMENT1.65±0.31±0.101.65±0.31±0.101.65±0.31±0.101.65±0.31±0.10 3 AAIJ 15H LHCB pp at 7, 8 TeV3Observed in �0b π− 
hannel with �0b → �+
 π− and �+
 → pK−π+.� ∗b(5955)− DECAY MODES� ∗b(5955)− DECAY MODES� ∗b(5955)− DECAY MODES� ∗b(5955)− DECAY MODESMode Fra
tion (�i /�)�1 � 0b π−
× B(b →� ∗b(5955)−)/B(b → � 0b) (20.7±3.5) %� ∗b(5955)− BRANCHING RATIOS� ∗b(5955)− BRANCHING RATIOS� ∗b(5955)− BRANCHING RATIOS� ∗b(5955)− BRANCHING RATIOS�(� 0b π−

×B(b→ � ∗b(5955)−)/B(b→ � 0b))/�total �1/��(� 0b π−
×B(b→ � ∗b(5955)−)/B(b→ � 0b))/�total �1/��(� 0b π−
×B(b→ � ∗b(5955)−)/B(b→ � 0b))/�total �1/��(� 0b π−
×B(b→ � ∗b(5955)−)/B(b→ � 0b))/�total �1/�VALUE DOCUMENT ID TECN COMMENT0.207±0.032±0.0150.207±0.032±0.0150.207±0.032±0.0150.207±0.032±0.015 4 AAIJ 15H LHCB pp at 7, 8 TeV4Observed in �0b π− 
hannel with �0b → �+
 π− and �+
 → pK−π+.

� ∗b(5955)− REFERENCES� ∗b(5955)− REFERENCES� ∗b(5955)− REFERENCES� ∗b(5955)− REFERENCESAAIJ 15H PRL 114 062004 R. Aaij et al. (LHCb Collab.)
−b I (JP ) = 0(12+)I, J, P need 
on�rmation.Status: ∗∗∗In the quark model 
−b is ssb ground state. None of its quantumnumbers has been measured.
−b MASS
−b MASS
−b MASS
−b MASSVALUE (MeV) DOCUMENT ID TECN COMMENT6046.4± 1.9 OUR AVERAGE6046.4± 1.9 OUR AVERAGE6046.4± 1.9 OUR AVERAGE6046.4± 1.9 OUR AVERAGE6047.5± 3.8± 0.6 1 AALTONEN 14B CDF pp at 1.96 TeV6046.0± 2.2± 0.5 2 AAIJ 13AV LHCB pp at 7 TeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •6054.4± 6.8± 0.9 3 AALTONEN 09AP CDF Repl. by AALTONEN 14B6165 ±10 ±13 4 ABAZOV 08AL D0 pp at 1.96 TeV1Uses 
−b → J/ψ
− and 
0
 π− de
ays, with the �rst eviden
e for 
−b → 
0
 π− at3.3 σ signi�
an
e.2Measured in 
−b → J/ψ
− with 19 ± 5 events.3Observed in 
−b → J/ψ
− de
ays with 16+6

−4 
andidates, a signi�
an
e of 5.5 sigmafrom a 
ombined mass-lifetime �t.4Observed in 
−b → J/ψ
− de
ays with 17.8 ± 4.9 ± 0.8 
andidates, a signi�
an
e of5.4 sigma.m
−b − m�0bm
−b − m�0bm
−b − m�0bm
−b − m�0bVALUE (MeV) DOCUMENT ID TECN COMMENT426.4±2.2±0.4426.4±2.2±0.4426.4±2.2±0.4426.4±2.2±0.4 AAIJ 13AV LHCB pp at 7 TeV
b MEAN LIFE
b MEAN LIFE
b MEAN LIFE
b MEAN LIFEVALUE (10−12 s) DOCUMENT ID TECN COMMENT1.57+0.23
−0.20 OUR EVALUATION1.57+0.23
−0.20 OUR EVALUATION1.57+0.23
−0.20 OUR EVALUATION1.57+0.23
−0.20 OUR EVALUATION1.57+0.24
−0.19 OUR AVERAGE1.57+0.24
−0.19 OUR AVERAGE1.57+0.24
−0.19 OUR AVERAGE1.57+0.24
−0.19 OUR AVERAGE1.54+0.26
−0.21±0.05 1 AAIJ 14T LHCB pp at 7, 8 TeV1.66+0.53
−0.40±0.02 1 AALTONEN 14B CDF pp at 1.96 TeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •1.13+0.53
−0.40±0.02 2 AALTONEN 09AP CDF Repl. by AALTONEN 14B1Measured in 
−b → J/ψ
− de
ays.2Observed in 
−b → J/ψ
− de
ays with 16+6

−4 
andidates, a signi�
an
e of 5.5 sigmafrom a 
ombined mass-lifetime �t.
−b DECAY MODES
−b DECAY MODES
−b DECAY MODES
−b DECAY MODESMode Fra
tion (�i /�)�1 J/ψ
−
×B(b → 
b) (2.9+1.1

−0.8)× 10−6
−b BRANCHING RATIOS
−b BRANCHING RATIOS
−b BRANCHING RATIOS
−b BRANCHING RATIOS�(J/ψ
−
×B(b→ 
b) )/�total �1/��(J/ψ
−
×B(b→ 
b) )/�total �1/��(J/ψ
−
×B(b→ 
b) )/�total �1/��(J/ψ
−
×B(b→ 
b) )/�total �1/�VALUE (units 10−4) DOCUMENT ID TECN COMMENT0.029+0.011

−0.008 OUR AVERAGE0.029+0.011
−0.008 OUR AVERAGE0.029+0.011
−0.008 OUR AVERAGE0.029+0.011
−0.008 OUR AVERAGE0.026+0.010
−0.007±0.004 1 AALTONEN 09AP CDF pp at 1.96 TeV0.08 ±0.04 ±0.02 2 ABAZOV 08AL D0 pp at 1.96 TeV1AALTONEN 09AP reports [�(
−b → J/ψ
−

×B(b → 
b) )/�total℄ / [B(�0b →J/ψ(1S)�× B(b → �0b) )℄ = 0.045+0.017
−0.012 ± 0.004 whi
h we multiply by our bestvalue B(�0b → J/ψ(1S)�× B(b → �0b) ) = (5.8 ± 0.8) × 10−5. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.2ABAZOV 08AL reports [�(
−b → J/ψ
−×B(b → 
b) )/�total℄ / [B(�−b →J/ψ�−

× B(b → �−b ) )℄ = 0.80 ± 0.32+0.14
−0.22 whi
h we multiply by our best valueB(�−b → J/ψ�−× B(b → �−b ) ) = (1.02+0.26

−0.21) × 10−5. Our �rst error is theirexperiment's error and our se
ond error is the systemati
 error from using our best value.
−b REFERENCES
−b REFERENCES
−b REFERENCES
−b REFERENCESAAIJ 14T PL B736 154 R. Aaij et al. (LHCb Collab.)AALTONEN 14B PR D89 072014 T. Aaltonen et al. (CDF Collab.)AAIJ 13AV PRL 110 182001 R. Aaij et al. (LHCb Collab.)AALTONEN 09AP PR D80 072003 T. Aaltonen et al. (CDF Collab.)ABAZOV 08AL PRL 101 232002 V.M. Abazov et al. (D0 Collab.)



1665166516651665See key on page 601 Baryon Parti
le Listingsb-baryon ADMIXTURE (�b, �b, �b, 
b)b-baryon ADMIXTURE (�b, �b, �b, 
b)b-baryon ADMIXTURE MEAN LIFEb-baryon ADMIXTURE MEAN LIFEb-baryon ADMIXTURE MEAN LIFEb-baryon ADMIXTURE MEAN LIFEEa
h measurement of the b-baryon mean life is an average over an ad-mixture of various b baryons whi
h de
ay weakly. Di�erent te
hniquesemphasize di�erent admixtures of produ
ed parti
les, whi
h 
ould resultin a di�erent b-baryon mean life. More b-baryon 
avor spe
i�
 
hannelsare not in
luded in the measurement.VALUE (10−12 s) EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1.218+0.130

−0.115±0.042 1 ABAZOV 07S D0 Repl. by ABAZOV 12U1.22 +0.22
−0.18 ±0.04 1 ABAZOV 05C D0 Repl. by ABAZOV 07S1.16 ±0.20 ±0.08 2 ABREU 99W DLPH e+ e− → Z1.19 ±0.14 ±0.07 3 ABREU 99W DLPH e+ e− → Z1.14 ±0.08 ±0.04 4 ABREU 99W DLPH e+ e− → Z1.11 +0.19
−0.18 ±0.05 5 ABREU 99W DLPH e+ e− → Z1.29 +0.24
−0.22 ±0.06 5 ACKERSTAFF 98G OPAL e+ e− → Z1.20 ±0.08 ±0.06 6 BARATE 98D ALEP e+ e− → Z1.21 ±0.11 5 BARATE 98D ALEP e+ e− → Z1.32 ±0.15 ±0.07 7 ABE 96M CDF pp at 1.8 TeV1.46 +0.22
−0.21 +0.07

−0.09 ABREU 96D DLPH Repl. by ABREU 99W1.10 +0.19
−0.17 ±0.09 5 ABREU 96D DLPH e+ e− → Z1.16 ±0.11 ±0.06 5 AKERS 96 OPAL e+ e− → Z1.27 +0.35
−0.29 ±0.09 ABREU 95S DLPH Repl. by ABREU 99W1.05 +0.12
−0.11 ±0.09 290 BUSKULIC 95L ALEP Repl. by BARATE 98D1.04 +0.48
−0.38 ±0.10 11 8 ABREU 93F DLPH Ex
ess �µ−, de
aylengths1.05 +0.23
−0.20 ±0.08 157 9 AKERS 93 OPAL Ex
ess �ℓ−, de
aylengths1.12 +0.32
−0.29 ±0.16 101 10 BUSKULIC 92I ALEP Ex
ess �ℓ−, impa
tparameters1Measured mean life using fully re
onstru
ted �0b → J/ψ� de
ays.2Measured using �ℓ− de
ay length.3Measured using p ℓ− de
ay length.4This ABREU 99W result is the 
ombined result of the �ℓ−, p ℓ−, and ex
ess �µ−impa
t parameter measurements.5Measured using �
 ℓ− and �ℓ+ ℓ−.6Measured using the ex
ess of �ℓ−, lepton impa
t parameter.7Measured using �
 ℓ−.8ABREU 93F superseded by ABREU 96D.9AKERS 93 superseded by AKERS 96.10BUSKULIC 92I superseded by BUSKULIC 95L.b-baryon ADMIXTURE DECAY MODESb-baryon ADMIXTURE DECAY MODESb-baryon ADMIXTURE DECAY MODESb-baryon ADMIXTURE DECAY MODES(�b ,�b ,�b ,
b)(�b ,�b ,�b ,
b)(�b ,�b ,�b ,
b)(�b ,�b ,�b ,
b)These bran
hing fra
tions are a
tually an average over weakly de
aying b-baryons weighted by their produ
tion rates at the LHC, LEP, and Tevatron,bran
hing ratios, and dete
tion eÆ
ien
ies. They s
ale with the b-baryonprodu
tion fra
tion B(b → b -baryon).The bran
hing fra
tions B(b -baryon → �ℓ− νℓ anything) and B(�0b →�+
 ℓ− νℓ anything) are not pure measurements be
ause the underlyingmeasured produ
ts of these with B(b → b -baryon) were used to determineB(b → b -baryon), as des
ribed in the note \Produ
tion and De
ay ofb-Flavored Hadrons."For in
lusive bran
hing fra
tions, e.g., B → D± anything, the valuesusually are multipli
ities, not bran
hing fra
tions. They 
an be greaterthan one.Mode Fra
tion (�i /�)�1 pµ−ν anything ( 5.5+ 2.2

− 1.9) %�2 p ℓνℓ anything ( 5.3± 1.2) %�3 panything (66 ±21 ) %�4 �ℓ−νℓ anything ( 3.6± 0.6) %�5 �ℓ+νℓ anything ( 3.0± 0.8) %�6 �anything (37 ± 7 ) %�7 �− ℓ−νℓ anything ( 6.2± 1.6)× 10−3

b-baryon ADMIXTURE (�b , �b , �b , 
b) BRANCHING RATIOSb-baryon ADMIXTURE (�b , �b , �b , 
b) BRANCHING RATIOSb-baryon ADMIXTURE (�b , �b , �b , 
b) BRANCHING RATIOSb-baryon ADMIXTURE (�b , �b , �b , 
b) BRANCHING RATIOS�(pµ−ν anything)/�total �1/��(pµ−ν anything)/�total �1/��(pµ−ν anything)/�total �1/��(pµ−ν anything)/�total �1/�VALUE EVTS DOCUMENT ID TECN COMMENT0.055+0.021
−0.017±0.0080.055+0.021
−0.017±0.0080.055+0.021
−0.017±0.0080.055+0.021
−0.017±0.008 125 11 ABREU 95S DLPH e+ e− → Z11ABREU 95S reports [�(b -baryon → pµ− ν anything)/�total℄ × [B(b → b -baryon)℄= 0.0049 ± 0.0011+0.0015

−0.0011 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(p ℓνℓ anything)/�total �2/��(p ℓνℓ anything)/�total �2/��(p ℓνℓ anything)/�total �2/��(p ℓνℓ anything)/�total �2/�VALUE DOCUMENT ID TECN COMMENT0.053±0.009±0.0080.053±0.009±0.0080.053±0.009±0.0080.053±0.009±0.008 12 BARATE 98V ALEP e+ e− → Z12BARATE 98V reports [�(b -baryon → p ℓνℓ anything)/�total℄ × [B(b → b -baryon)℄= (4.72 ± 0.66 ± 0.44) × 10−3 whi
h we divide by our best value B(b → b -baryon)= (8.9 ± 1.3)× 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(p ℓνℓ anything)/�(panything) �2/�3�(p ℓνℓ anything)/�(panything) �2/�3�(p ℓνℓ anything)/�(panything) �2/�3�(p ℓνℓ anything)/�(panything) �2/�3VALUE DOCUMENT ID TECN COMMENT0.080±0.012±0.0140.080±0.012±0.0140.080±0.012±0.0140.080±0.012±0.014 BARATE 98V ALEP e+ e− → Z�(�ℓ−νℓ anything)/�total �4/��(�ℓ−νℓ anything)/�total �4/��(�ℓ−νℓ anything)/�total �4/��(�ℓ−νℓ anything)/�total �4/�The values and averages in this se
tion serve only to show what values result if oneassumes our B(b → b -baryon). They 
annot be thought of as measurements sin
e theunderlying produ
t bran
hing fra
tions were also used to determine B(b → b -baryon)as des
ribed in the note on \Produ
tion and De
ay of b-Flavored Hadrons."VALUE EVTS DOCUMENT ID TECN COMMENT0.036±0.006 OUR AVERAGE0.036±0.006 OUR AVERAGE0.036±0.006 OUR AVERAGE0.036±0.006 OUR AVERAGE0.037±0.005±0.005 13 BARATE 98D ALEP e+ e− → Z0.033±0.004±0.005 14 AKERS 96 OPAL Ex
ess of �ℓ− over�ℓ+0.034±0.008±0.005 262 15 ABREU 95S DLPH Ex
ess of �ℓ− over�ℓ+0.069±0.013±0.010 290 16 BUSKULIC 95L ALEP Ex
ess of �ℓ− over�ℓ+
• • • We do not use the following data for averages, �ts, limits, et
. • • •seen 157 17 AKERS 93 OPAL Ex
ess of �ℓ− over�ℓ+0.079±0.023±0.011 101 18 BUSKULIC 92I ALEP Ex
ess of �ℓ− over�ℓ+13BARATE 98D reports [�(b -baryon → �ℓ− νℓ anything)/�total℄ × [B(b → b -baryon)℄= 0.00326 ± 0.00016 ± 0.00039 whi
h we divide by our best value B(b → b -baryon)= (8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond erroris the systemati
 error from using our best value. Measured using the ex
ess of �ℓ−,lepton impa
t parameter.14AKERS 96 reports [�(b -baryon → �ℓ− νℓ anything)/�total℄ × [B(b → b -baryon)℄ =0.00291 ± 0.00023 ± 0.00025 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.15ABREU 95S reports [�(b -baryon → �ℓ− νℓ anything)/�total℄ × [B(b → b -baryon)℄= 0.0030 ± 0.0006 ± 0.0004 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.16BUSKULIC 95L reports [�(b -baryon → �ℓ− νℓ anything)/�total℄× [B(b → b -baryon)℄= 0.0061 ± 0.0006 ± 0.0010 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.17AKERS 93 superseded by AKERS 96.18BUSKULIC 92I reports [�(b -baryon → �ℓ− νℓ anything)/�total℄ × [B(b → b -baryon)℄= 0.0070 ± 0.0010 ± 0.0018 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value. Superseded by BUSKULIC 95L.�(�ℓ+νℓ anything)/�(�anything) �5/�6�(�ℓ+νℓ anything)/�(�anything) �5/�6�(�ℓ+νℓ anything)/�(�anything) �5/�6�(�ℓ+νℓ anything)/�(�anything) �5/�6VALUE DOCUMENT ID TECN COMMENT0.080±0.012±0.0080.080±0.012±0.0080.080±0.012±0.0080.080±0.012±0.008 ABBIENDI 99L OPAL e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.070±0.012±0.007 ACKERSTAFF 97N OPAL Repl. by ABBI-ENDI 99L�(�anything)/�total �6/��(�anything)/�total �6/��(�anything)/�total �6/��(�anything)/�total �6/�VALUE DOCUMENT ID TECN COMMENT0.37±0.07 OUR AVERAGE0.37±0.07 OUR AVERAGE0.37±0.07 OUR AVERAGE0.37±0.07 OUR AVERAGE0.39±0.05±0.06 19 ABBIENDI 99L OPAL e+ e− → Z0.25+0.14

−0.09±0.04 20 ABREU 95C DLPH e+ e− → Z
• • • We do not use the following data for averages, �ts, limits, et
. • • •0.44±0.07±0.06 21 ACKERSTAFF 97N OPAL Repl. by ABBI-ENDI 99L



1666166616661666BaryonParti
le Listingsb-baryon ADMIXTURE (�b,�b,�b,
b)19ABBIENDI 99L reports [�(b -baryon → �anything)/�total℄ × [B(b → b -baryon)℄= 0.035 ± 0.0032 ± 0.0035 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.20ABREU 95C reports 0.28+0.17
−0.12 from a measurement of [�(b -baryon → �anything)/�total℄ × [B(b → b -baryon)℄ assuming B(b → b -baryon) = 0.08 ± 0.02, whi
h weres
ale to our best value B(b → b -baryon) = (8.9 ± 1.3) × 10−2. Our �rst error istheir experiment's error and our se
ond error is the systemati
 error from using our bestvalue.21ACKERSTAFF 97N reports [�(b -baryon → �anything)/�total℄ × [B(b → b -baryon)℄= 0.0393 ± 0.0046 ± 0.0037 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.�(�− ℓ−νℓ anything)/�total �7/��(�− ℓ−νℓ anything)/�total �7/��(�− ℓ−νℓ anything)/�total �7/��(�− ℓ−νℓ anything)/�total �7/�VALUE DOCUMENT ID TECN COMMENT0.0062±0.0016 OUR AVERAGE0.0062±0.0016 OUR AVERAGE0.0062±0.0016 OUR AVERAGE0.0062±0.0016 OUR AVERAGE0.0061±0.0015±0.0009 22 BUSKULIC 96T ALEP Ex
ess �− ℓ− over�− ℓ+0.0066±0.0026±0.0010 23 ABREU 95V DLPH Ex
ess �− ℓ− over�− ℓ+22BUSKULIC 96T reports [�(b -baryon → �− ℓ− νℓ anything)/�total℄ × [B(b → b -baryon)℄ = 0.00054 ± 0.00011 ± 0.00008 whi
h we divide by our best value B(b →b -baryon) = (8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and ourse
ond error is the systemati
 error from using our best value.23ABREU 95V reports [�(b -baryon → �− ℓ− νℓ anything)/�total℄ × [B(b → b -baryon)℄= 0.00059 ± 0.00021 ± 0.0001 whi
h we divide by our best value B(b → b -baryon) =(8.9 ± 1.3) × 10−2. Our �rst error is their experiment's error and our se
ond error isthe systemati
 error from using our best value.

b-baryon ADMIXTURE (�b , �b , �b , 
b) REFERENCESb-baryon ADMIXTURE (�b , �b , �b , 
b) REFERENCESb-baryon ADMIXTURE (�b , �b , �b , 
b) REFERENCESb-baryon ADMIXTURE (�b , �b , �b , 
b) REFERENCESABAZOV 12U PR D85 112003 V.M. Abazov et al. (D0 Collab.)ABAZOV 07S PRL 99 142001 V.M. Abazov et al. (D0 Collab.)ABAZOV 05C PRL 94 102001 V.M. Abazov et al. (D0 Collab.)ABBIENDI 99L EPJ C9 1 G. Abbiendi et al. (OPAL Collab.)ABREU 99W EPJ C10 185 P. Abreu et al. (DELPHI Collab.)ACKERSTAFF 98G PL B426 161 K. A
kersta� et al. (OPAL Collab.)BARATE 98D EPJ C2 197 R. Barate et al. (ALEPH Collab.)BARATE 98V EPJ C5 205 R. Barate et al. (ALEPH Collab.)ACKERSTAFF 97N ZPHY C74 423 K. A
kersta� et al. (OPAL Collab.)ABE 96M PRL 77 1439 F. Abe et al. (CDF Collab.)ABREU 96D ZPHY C71 199 P. Abreu et al. (DELPHI Collab.)AKERS 96 ZPHY C69 195 R. Akers et al. (OPAL Collab.)BUSKULIC 96T PL B384 449 D. Buskuli
 et al. (ALEPH Collab.)ABREU 95C PL B347 447 P. Abreu et al. (DELPHI Collab.)ABREU 95S ZPHY C68 375 P. Abreu et al. (DELPHI Collab.)ABREU 95V ZPHY C68 541 P. Abreu et al. (DELPHI Collab.)BUSKULIC 95L PL B357 685 D. Buskuli
 et al. (ALEPH Collab.)ABREU 93F PL B311 379 P. Abreu et al. (DELPHI Collab.)AKERS 93 PL B316 435 R. Akers et al. (OPAL Collab.)BUSKULIC 92I PL B297 449 D. Buskuli
 et al. (ALEPH Collab.)
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PENTAQUARKS

Written March 2016 by M. Karliner (Tel Aviv U.), T. Skwarnicki
(Syracuse U.)

Experimental searches for pentaquark hadrons comprised

of light flavors have a long and vivid history. No undisputed

candidates have been found in 50 years. The first wave of

observations of pentaquark candidates containing a strange an-

tiquark occurred in the early seventies, see e.g. a review in

the 1976 edition of Particle Data Group listings for Z0(1780),

Z0(1865) and Z1(1900) [1]. The last mention of these can-

didates can be found in the 1992 edition [2] with the perhaps

prophetic comment “the results permit no definite conclusion

- the same story for 20 years. [...] The skepticism about

baryons not made of three quarks, and lack of any experimental

activity in this area, make it likely that another 20 years will

pass before the issue is decided.” A decade later, a second

wave of observations occurred, possibly motivated by specific

theoretical predictions for their existence [3–5]. The evidence

for pentaquarks was based on observations of peaks in the in-

variant mass distributions of their decay products. More data,

or more sensitive experiments did not confirm these claims [6].

In the last mention of the best known candidate from that

period, Θ(1540)+, the 2006 Particle Data Group listing [7]

included a statement: “The conclusion that pentaquarks in

general, and that Θ+, in particular, do not exist, appears

compelling.” which well reflected the prevailing mood in the

particle physics community until a study of Λ0
b → JψpK−

(Jψ → µ+µ−) decays by LHCb [8]( charge conjugate modes

are implied). In addition to many excitations of the Λ baryon

(hereafter denoted as Λ∗ resonances) decaying to K−p, these

data contain a narrow peak in the Jψp mass distribution, which

is evident as a horizontal band in the Dalitz plot (Fig. 1).

Figure 1: Dalitz plot distributions for Λ0
b →

JψpK− decays as observed by LHCb.

An amplitude analysis was performed to clarify the nature

of this band that followed in the footsteps of a similar analysis of

B̄0
→ ψ(2S)π+K− (ψ(2S) → µ+µ−) performed by the LHCb

a year earlier in which the Z(4430)+ tetraquark candidate [9]

was confirmed and the resonant character of its amplitude was

demonstrated by an Argand diagram [10]. The final states

are very similar, with π+ being replaced by p. The signal

statistics, 26 000 ± 166, and the background level, 5.4%, are

also very comparable. The quasi-two-body amplitude model

was constructed based on an isobar approximation (i.e. sum-

ming up Breit-Wigner amplitudes) and helicity formalism to

parameterize dynamics of contributing decay processes. The

amplitude fit spanned a kinematically complete, six-dimensional

space of independent kinematic variables. All six dimensions

of Λb decay kinematics were used in the amplitude fit, includ-

ing invariant masses of K−p (mKp) and Jψp, (mJψp) helicity

angles (θ) of Λb, Jψ, Λ∗ or pentaquark candidate P+
c → Jψp,

and angles between decay planes of the particles. Fourteen

reasonably well established Λ∗ resonances were considered with

masses and widths fixed to the values listed in 2014 PDG edi-

tion [11], and varied within their uncertainties when evaluating

systematic errors. Their helicity couplings (1-6 complex num-

bers per resonance) were determined from the fit to the data.

It was found that the Λ∗ contributions alone failed to describe

the data and it was necessary to add two exotic P+
c → Jψp

contributions to the matrix element (10 free parameters per

resonance), before the narrow structure seen in mJψp could be

reasonably well reproduced, as illustrated in Fig. 2.

The lower mass state, Pc(4380)+, has a fitted mass of

4380± 8± 29 MeV, width of 205± 18± 86 MeV, fit fraction of

8.4± 0.7± 4.2 % and significance of 9σ. The higher mass state,

Pc(4450)+, has a fitted mass of 4449.8±1.7±2.5 MeV, narrower

width of 39 ± 5 ± 19 MeV, a fit fraction of 4.1 ± 0.5 ± 1.1 %

and significance of 12σ. The need for a second P+
c state

becomes visually apparent in the mJψp distribution for events

with high values of mKp, where Λ∗ contributions are the

smallest (in the inset of Fig. 2). Even though contributions

from the two P+
c states are most visible in this region, they

interfere destructively in this part of the Dalitz plane. The

constructive P+
c interference makes their combined contribution

the largest at the other end of their band on the Dalitz plane,

corresponding to the opposite end of the cos θP+
c

distribution

(see Fig. 8b in Ref. 8). This pattern requires them to be of

opposite parity. A similar interference pattern is observed in the

cos θΛ∗ distribution (Fig. 7 in Ref. 8), which is a consequence

of parity-doublets in the Λ∗ spectrum. Unfortunately, spins of

the two P+
c states were not uniquely determined. Within the

statistical and systematic ambiguities, (3/2, 5/2) and (5/2, 3/2)

combinations with either (−, +) or (+,−) parities, were not well

resolved. The other combinations were disfavored. The Argand

diagrams for the two P+
c states are shown in Fig. 3. They

were obtained by replacing the Breit-Wigner amplitude for one

of the P+
c states at a time by a combination of independent

complex amplitudes at six equidistant points in the ±Γ0 range
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Figure 2: Projections of the amplitude fits
with Pc(4380)+ and Pc(4450)+ states to the
Λ0

b → JψpK− data onto the invariant mass
distributions of mKp (left) and mJψp (right).

(interpolated in mass for continuity) which were fit to the data

simultaneously with the other parameters of the full matrix

element model. While the narrower Pc(4450)+ state shows the

expected resonant behavior, the diagram for Pc(4380)+ deviates

somewhat from the expectation. The statistical errors are large,

especially for the broader Pc(4380)+ state. Higher statistics

data might make these diagrams more conclusive. The addition

of further Λ states beyond the well-established ones, of Σ

excitations (expected to be suppressed) and of non-resonant

contributions with a constant amplitude, did not remove the

need for two pentaquark states in the model to describe the

data. Yet Λ∗ spectroscopy is a complex problem, from both

experimental and theoretical points of view. This is illustrated

by the recent reanalysis of K̄N scattering data [12] in which

the Λ(1800) state, which was previously considered to be “well

established”, is not seen, and where evidence for a few previously

unidentified states is included. In fact, all theoretical models of

Λ∗ baryons [13–18] predict a much larger number of higher mass

excitations than is established experimentally. Because of the

high density of predicted states, presumably with large widths,

these may be difficult to identify experimentally. Non-resonant

contributions with a non-trivial K−p mass dependence may

also be present. Therefore, LHCb also inspected their data with

an approach that is nearly model-independent with respect to

K−p contributions [19].

Figure 3: Fitted values of the real and
imaginary parts of the amplitudes of the
Pc(4450)+ (left) and Pc(4380)+ (right) states
for Λ0

b → JψpK− shown in the Argand dia-
grams as connected points with the error bars
(masses increase counterclockwise). The solid
red curves are the predictions from the Breit-
Wigner formula, with resonance masses and
widths set to the nominal fit results, scaled to
the displayed points.

A representation of the Dalitz plane distribution was con-

structed using the observed mKp distribution and Legendre

polynomial moments of the cosine of the Λ∗ helicity angle de-

termined from the data as a function of mKp. The maximal

rank of the moments generated by the K−p contributions alone

cannot be higher than twice the largest total angular momen-

tum. Since high-spin Λ∗ states cannot significantly contribute

at low mKp values, high rank moments were excluded from the

representation (see Fig. 1 and 3 in Ref. 19). When projected

onto mJψp axis of the Dalitz plane, this representation cannot

describe the data as shown in Fig. 4. The disagreement was

quantified to be at least 9σ, thus the hypothesis that only K−p

contributions can generate the observed mJψp mass structure

could be rejected with very high confidence without any as-

sumptions about number of K−p contributions, their resonant

or non-resonant character, their mass shapes or their inter-

ference patterns. This proved a need for contributions from

exotic hadrons or from rescattering effects of conventional ones.

However, this approach is not suitable for their characterization.

Many theoretical groups interpreted the P+
c states in terms

of diquarks and triquarks as building blocks of a compact

pentaquark [20–26]. The pair of states of opposite parity

with the 3/2 spin assignment to Pc(4380)+ and 5/2 to Pc(4450)+
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Figure 4: The efficiency-corrected and back-
ground-subtracted distribution of mJψp for the
data (black points with error bars), with the
reflection of K−p mass distribution and of the
moments of the K−p helicity angle, which can
be accommodated by any plausible K−p con-
tribution (solid blue line) superimposed. The
data and the reflection are inconsistent at > 9σ
level.

can be achieved by increasing the angular momentum between

the constituents by one unit, which can also make the heavier

state narrower. However, their mass splitting is too small to

be only due to this mechanism [20] and requires fine-tuning of

such models. It is also not clear if centrifugal barrier factor

provides enough width suppression via spatial separation of c

and c̄ quarks to explain the width ratio between the two P+
c

states and the narrowness of Pc(4450)+ in absolute units as the

phase space for J/ψp decay is very large (more than 400 MeV).

More effective width suppression mechanism is offered by

a loosely bound charmed baryon-anticharmed meson molecular

model, in which c and c̄ can be separated to much larger

distances resulting in a smaller probability of them getting close

to each other in order to make a J/ψ. Since molecular binding

energy cannot be large, masses of such molecules must be near

the sum of the baryon and meson masses. The narrowness of

Pc(4450)+ and its proximity to appropriate baryon-meson mass

threshold make the molecular model attractive in spite of its

inability to account for other features of the LHCb results (see

below).

In order to view the narrow pentaquark in a wider per-

spective, it is useful to consider it together with several anal-

ogous exotic states with hidden charm and bottom in the

meson sector. This provides additional significant motivation

for the molecular model. At least five exotic mesons are close

to thresholds of two heavy-light mesons: X(3872) [27–30],

Zb(10610) and Zb(10650) in the bottomonium sector [31–35]

and Zc(3900) [36–40] and Zc(4020/4025) [41–43] in the char-

monium sector (see Table II if Ref. 44). They share several

important features: a) their masses are near thresholds and

their spin and parity correspond to S-wave combination of the

two mesons; b) they are very narrow, despite very large phase

space for decay into quarkonium + pion(s); c) the branching

fractions for “fall apart” mode into two mesons are much larger

than branching fractions for decay into quarkonium and pion(s);

d) there are no states at two pseudoscalar thresholds (D̄D and

B̄B), where there can be no binding through pseudoscalar

exchange.

The above provide a strong hint that these states are

deuteron-like loosely bound states of two heavy mesons [45–53].

It is then natural to conjecture that similar bound states might

exist of two heavy baryons [54,55], or a meson and a baryon or

a baryon and an antibaryon, leading to a rather accurate pre-

diction of the Pc(4450)+ mass as 3/2− ΣcD̄
∗ molecule: 4462.4

MeV [56,44]. It is essential that the two hadrons be heavy, in

order to minimize the repulsive kinetic energy [54–57].

One may also consider a wider framework of doubly heavy

baryon-meson hadronic molecules, which might include mix-

tures of various two-hadron states [58,59]. In this context it

is important to keep in mind that the molecule’s width cannot

be smaller than the sum of its constituents’ widths [60–62].

Following the LHCb discovery, several groups carried out a

detailed analysis of the P+
c states as hadronic molecules [63–71].

The molecular picture has also been extended to a hadronic

molecule built from a colored “baryon” and ”meson” [72].

When trying to interpret both Pc(4380)+ and Pc(4380)+

as hadronic molecules, it is essential to remember that these

two states have opposite parities. Thus one cannot construct

both of them as S-wave bound states of a meson and a

baryon with natural parities. Therefore, the interpretation of

the P+
c states as hadronic molecules has been by no means

unanimous. Moreover, the molecular model is not consistent

with one of the P+
c states having a spin of 5/2, since S-wave

combinations of baryon-meson combination that can produce

such spin have thresholds which are too high in mass to

be plausible. Therefore, the confirmation or disproval of the

presence of this high-spin structure is a critical test of the

molecular model. The large Pc(4380)+ width is also difficult

to accommodate in the molecular bound state model, but could

have its origin in baryon-meson rescattering effects discussed

below.

Shortly after the experimental discovery it has been con-

jectured that the observed resonances could be kinematic ef-

fects due to vicinity of thresholds and so-called triangle sin-

gularity [73–76]. While these effects might explain the large

Pc(4380)+ width, since such models involve S-wave rescattering

of virtual baryon-meson pairs, they also cannot be reconciled

with one of the P+
c peaks having effective spin of 5/2.

In addition to the molecular and diquark approach, the

P+
c pentaquarks have also been analysed within the soliton



1670167016701670Baryon Parti
le ListingsPentaquarks
picture of baryons, as a bound state of a soliton and an an-

ticharmed meson [77]. Quite recently an interesting attempt

has been made to explain the narrow width of tetraquarks and

pentaquarks by extending to these states the string junction

picture of baryons in QCD [78].

More extensive reviews of the theoretical issues can be

found in Refs. 79,80.

So far the P+
c states have been observed by only one

experiment in only one channel. It is essential to explore

other possible experimental channels. Proposals have been

made for searching for heavy pentaquarks in photoproduction

[81–83], (c.f. also related work on computation of J/ψ(ηc)N

and Υ(ηb)N cross sections [84]) , in heavy ion collisions at

LHC [85], in pA collisions [86], and in pion-induced processes

[87,88].
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MAGNETIC MONOPOLES

Updated August 2015 by D. Milstead (Stockholm Univ.) and
E.J. Weinberg (Columbia Univ.).

The symmetry between electric and magnetic fields in the

sourcefree Maxwell’s equations naturally suggests that electric

charges might have magnetic counterparts, known as magnetic

monopoles. Although the greatest interest has been in the

supermassive monopoles that are a firm prediction of all grand

unified theories, one cannot exclude the possibility of lighter

monopoles, even though there is at present no strong theoretical

motivation for these.

In either case, the magnetic charge is constrained by a

quantization condition first found by Dirac [1]. Consider a

monopole with magnetic charge QM and a Coulomb magnetic

field

B =
QM

4π

r̂

r2
. (1)

Any vector potential A whose curl is equal to B must be singular

along some line running from the origin to spatial infinity. This

Dirac string singularity could potentially be detected through

the extra phase that the wavefunction of a particle with electric

charge QE would acquire if it moved along a loop encircling

the string. For the string to be unobservable, this phase must

be a multiple of 2π. Requiring that this be the case for any

pair of electric and magnetic charges gives the condition that

all charges be integer multiples of minimum charges Qmin
E and

Qmin
M obeying

Qmin
E Qmin

M = 2π . (2)

(For monopoles which also carry an electric charge, called

dyons, the quantization conditions on their electric charges can

be modified. However, the constraints on magnetic charges, as

well as those on all purely electric particles, will be unchanged.)

Another way to understand this result is to note that the

conserved orbital angular momentum of a point electric charge

moving in the field of a magnetic monopole has an additional

component, with

L = mr × v − 4πQEQM r̂ (3)

Requiring the radial component of L to be quantized in half-

integer units yields Eq. (2).

If there are unbroken gauge symmetries in addition to

the U(1) of electromagnetism, the above analysis must be

modified [2,3]. For example, a monopole could have both a

U(1) magnetic charge and a color magnetic charge. The latter

could combine with the color charge of a quark to give an

additional contribution to the phase factor associated with a

loop around the Dirac string, so that the U(1) charge could

be the Dirac charge QD
M ≡ 2π/e, the result that would be

obtained by substituting the electron charge into Eq. (2). On

the other hand, for monopoles without color-magnetic charge,

one would simply insert the quark electric charges into Eq. (2)

and conclude that QM must be a multiple of 6π/e.

The prediction of GUT monopoles arises from the work

of ’t Hooft [4] and Polyakov [5], who showed that certain

spontaneously broken gauge theories have nonsingular classical

solutions that lead to magnetic monopoles in the quantum

theory. The simplest example occurs in a theory where the

vacuum expectation value of a triplet Higgs field φ breaks an

SU(2) gauge symmetry down to the U(1) of electromagnetism

and gives a mass MV to two of the gauge bosons. In order to

have finite energy, φ must approach a vacuum value at infinity.

However, there is a continuous family of possible vacua, since

the scalar field potential determines only the magnitude v of

〈φ〉, but not its orientation in the internal SU(2) space. In

the monopole solution, the direction of φ in internal space is

correlated with the position in physical space; i.e., φa ∼ vr̂a.

The stability of the solution follows from the fact that this

twisting Higgs field cannot be smoothly deformed to a spatially

uniform vacuum configuration. Reducing the energetic cost of

the spatial variation of φ requires a nonzero gauge potential,

which turns out to yield the magnetic field corresponding to

a charge QM = 4π/e. Numerical solution of the classical field

equations shows that the mass of this monopole is

Mmon ∼ 4πMV

e2
. (4)

The essential ingredient here was the fact that the Higgs

fields at spatial infinity could be arranged in a topologically

nontrivial configuration. A discussion of the general conditions

under which this is possible is beyond the scope of this review,

so we restrict ourselves to the two phenomenologically most

important cases.

The first is the electroweak theory, with SU(2)×U(1) broken

to U(1). There are no topologically nontrivial configurations

of the Higgs field, and hence no topologically stable monopole

solutions.

The second is when any simple Lie group is broken to

a subgroup with a U(1) factor, a case that includes all grand

unified theories. The monopole mass is determined by the mass

scale of the symmetry breaking that allows nontrivial topology.

For example, an SU(5) model with

SU(5)
MX−→ SU(3) × SU(2) × U(1)

MW−→ SU(3) × U(1) (5)

has a monopole [6] with QM = 2π/e and mass

Mmon ∼ 4πMX

g2
, (6)



1676167616761676Sear
hes Parti
le ListingsMagneti
 Monopole Sear
hes
where g is the SU(5) gauge coupling. For a unification scale of

1016 GeV, these monopoles would have a mass Mmon ∼ 1017 –

1018 GeV.

In theories with several stages of symmetry breaking, mono-

poles of different mass scales can arise. In an SO(10) theory

with

SO(10)
M1−→ SU(4) × SU(2) × SU(2)

M2−→ SU(3) × SU(2) × U(1)

(7)

there is monopole with QM = 2π/e and mass ∼ 4πM1/g2

and a much lighter monopole with QM = 4π/e and mass

∼ 4πM2/g2 [7].

The central core of a GUT monopole contains the fields

of the superheavy gauge bosons that mediate baryon number

violation, so one might expect that baryon number conservation

could be violated in baryon–monopole scattering. The surpris-

ing feature, pointed out by Callan [8] and Rubakov [9], is that

these processes are not suppressed by powers of the gauge boson

mass. Instead, the cross-sections for catalysis processes such as

p + monopole → e+ + π0 + monopole are essentially geometric;

i.e., σ∆Bβ ∼ 10−27 cm2, where β = v/c. Note, however, that

intermediate mass monopoles arising at later stages of symme-

try breakings, such as the doubly charged monopoles of the

SO(10) theory, do not catalyze baryon number violation.

Production and Annihilation: GUT monopoles are far too

massive to be produced in any foreseeable accelerator. How-

ever, they could have been produced in the early universe as

topological defects arising via the Kibble mechanism [10] in

a symmetry-breaking phase transition. Estimates of the ini-

tial monopole abundance, and of the degree to which it can

be reduced by monopole-antimonopole annihilation, predict a

present-day monopole abundance that exceeds by many orders

of magnitude the astrophysical and experimental bounds de-

scribed below [11]. Cosmological inflation and other proposed

solutions to this primordial monopole problem generically lead

to present-day abundances exponentially smaller than could be

plausibly detected, although potentially observable abundances

can be obtained in scenarios with carefully tuned parameters.

If monopoles light enough to be produced at colliders exist,

one would expect that these could be produced by analogs of

the electromagnetic processes that produce pairs of electrically

charged particles. Because of the large size of the magnetic

charge, this is a strong coupling problem for which perturbation

theory cannot be trusted. Indeed, the problem of obtaining

reliable quantitative estimates of the production cross-sections

remains an open one, on which there is no clear consensus.

Astrophysical and Cosmological Bounds: If there were

no galactic magnetic field, one would expect monopoles in

the galaxy to have typical velocities of the order of 10−3c,

comparable to the virial velocity in the galaxy (relevant if the

monopoles cluster with the galaxy) and the peculiar velocity

of the galaxy with respect to the CMB rest frame (relevant if

the monopoles are not bound to the galaxy). This situation is

modified by the existence of a galactic magnetic field B ∼ 3µG.

A monopole with the Dirac charge and mass M would be

accelerated by this field to a velocity

vmag ∼
{

c, M . 1011GeV ,

10−3c
(

1017 GeV
M

)1/2

, M & 1011GeV .
(8)

Accelerating these monopoles drains energy from the mag-

netic field. Parker [12] obtained an upper bound on the flux

of monopoles in the galaxy by requiring that the rate of this

energy loss be small compared to the time scale on which

the galactic field can be regenerated. With reasonable choices

for the astrophysical parameters (see Ref. 13 for details), this

Parker bound is

F <

{
10−15 cm−2 sr−1 sec−1 , M . 1017 GeV ,

10−15
(

M

1017 GeV

)
cm−2 sr−1 sec−1 , M & 1017 GeV .

(9)

Applying similar arguments to an earlier seed field that was

the progenitor of the current galactic field leads to a tighter

bound [14],

F <

[
M

1017GeV
+ (3 × 10−6)

]
10−16 cm−2sr−1sec−1. (10)

Considering magnetic fields in galactic clusters gives a

bound [15] which, although less secure, is about three orders of

magnitude lower than the Parker bound.

A flux bound can also be inferred from the total mass of

monopoles in the universe. If the monopole mass density is a

fraction ΩM of the critical density, and the monopoles were

uniformly distributed throughout the universe, there would be

a monopole flux

Funiform = 1.3×10−16ΩM

(
1017 GeV

M

) ( v

10−3c

)
cm−2sr−1sec−1.

(11)

If we assume that ΩM ∼ 0.1, this gives a stronger constraint

than the Parker bound for M ∼ 1015 GeV. However, monopoles

with masses ∼ 1017 GeV are not ejected by the galactic field

and can be gravitationally bound to the galaxy. In this case

their flux within the galaxy is increased by about five orders of

magnitude for a given value of ΩM , and the mass density bound

only becomes stronger than the Parker bound for M ∼ 1018

GeV.

A much more stringent flux bound applies to GUT mono-

poles that catalyze baryon number violation. The essential idea

is that compact astrophysical objects would capture monopoles

at a rate proportional to the galactic flux. These monopoles

would then catalyze proton decay, with the energy released

in the decay leading to an observable increase in the lumi-

nosity of the object. A variety of bounds, based on neutron

stars [16–20], white dwarfs [21], and Jovian planets [22]

have been obtained. These depend in the obvious manner

on the catalysis cross section, but also on the details of the

astrophysical scenarios; e.g., on how much the accumulated

density is reduced by monopole-antimonopole annihilation, and
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on whether monopoles accumulated in the progenitor star sur-

vive its collapse to a white dwarf or neutron star. The bounds

obtained in this manner lie in the range

F
( σ∆Bβ

10−27cm2

)
∼ (10−18 − 10−29)cm−2sr−1sec−1. (12)

It is important to remember that not all GUT monopoles

catalyze baryon number nonconservation. In particular, the

intermediate mass monopoles that arise in some GUTs at later

stages of symmetry-breaking are examples of theoretically mo-

tivated monopoles that are exempt from the bound of Eq. (12).

Searches for Magnetic Monopoles: To date there have

been no confirmed observations of exotic particles possessing

magnetic charge. Precision measurements of the properties of

known particles have led to tight limits on the values of mag-

netic charge they may possess. Using the induction method

(see below), the electron’s magnetic charge has been found to

be Qm
e < 10−24QD

M [23](where QD
M is the Dirac charge). Fur-

thermore, measurements of the anomalous magnetic moment of

the muon have been used to place a model dependent lower

limit of 120 GeV on the monopole mass 1 [24]. Neverthe-

less, guided mainly by Dirac’s argument and the predicted

existence of monopoles from spontaneous symmetry breaking

mechanisms, searches have been routinely made for monopoles

produced at accelerators, in cosmic rays, and bound in mat-

ter [25]. Although the resultant limits from such searches are

usually made under the assumption of a particle possessing

only magnetic charge, most of the searches are also sensitive to

dyons.

Search Techniques: Search strategies are determined by the

expected interactions of monopoles as they pass through mat-

ter. These would give rise to a number of striking characteristic

signatures. Since a complete description of monopole search

techniques falls outside of the scope of this minireview, only

the most common methods are described below. More com-

prehensive descriptions of search techniques can be found in

Refs. [26,27].

The induction method exploits the long-ranged electromag-

netic interaction of the monopole with the quantum state of a

superconducting ring which would lead to a monopole which

passes through such a ring inducing a permanent current. The

induction technique typically uses Superconducting Quantum

Interference Devices (SQUID) technology for detection and is

employed for searches for monopoles in cosmic rays and mat-

ter. Another approach is to exploit the electromagnetic energy

loss of monopoles. Monopoles with Dirac charge would typ-

ically lose energy at a rate which is several thousand times

larger than that expected from particles possessing the elemen-

tary electric charge. Consequently, scintillators, gas chambers

and nuclear track detectors (NTDs) have been used in cosmic

ray and collider experiments. A further approach, which has

1 Where no ambiguity is likely to arise, a reference to a mono-

pole implies a particle possessing Dirac charge.

been used at colliders, is to search for particles describing a

non-helical path in a uniform magnetic field.

Searches for Monopoles Bound in Matter: Monopoles

have been sought in a range of bulk materials which it is assumed

would have absorbed incident cosmic ray monopoles over a long

exposure time of order million years. Materials which have been

studied include moon rock, meteorites, manganese modules, and

sea water [28]. A stringent upper limit on the monopoles per

nucleon ratio of ∼10−29 has been obtained [28].

Searches in Cosmic Rays: Direct searches for monopoles

in cosmic rays refer to those experiments in which the passage

of the monopole is measured by an active detector. Catalysis

processes in which GUT monopoles could induce nucleon decay

are discussed in the next section. To interpret the results of the

non-catalysis searches, the cross section for the catalysis process

is typically either set to zero [29] or assigned a modest value

(1mb) [30]. Searches which explicitly exploit the expected

catalysed decays are discussed in the next section.

Although early cosmic ray searches using the induction tech-

nique [31] and NTDs [32] observed monopole candidates, none

of these apparent observations have been confirmed. Recent

experiments have typically employed large scale detectors. The

MACRO experiment at the Gran Sasso underground laboratory

comprised three different types of detector: liquid scintillator,

limited stream tubes, and NTDs, which provided a total ac-

ceptance of ∼ 10000m2 for an isotropic flux. As shown in

Fig. 1, this experiment has so far provided the most exten-

sive β-dependent flux limits for GUT monopoles with Dirac

charge [30]. Also shown are limits from an experiment at the

OHYA mine in Japan [29], which used a 2000m2 array of

NTDs.

In Fig. 1, upper flux limits are also shown as a function

of mass for monopole speed β > 0.05. In addition to MACRO

and OYHA flux limits, results from the SLIM [33] high-altitude

experiment are shown. The SLIM experiment provided a good

sensitivity to intermediate mass monopoles (105 .M . 1012

GeV). In addition to the results shown in Fig. 1, limits as

low as ∼ 3 × 10−18 cm−2s−1sr−1 and ∼ 10−17 cm−2s−1sr−1

were obtained for monopoles with β > 0.8 and β > 0.625 by

the IceCube [34] and Antares [35] experiments, respectively.

The most stringent constraints on the flux of ultra-relativistic

monopoles have been obtained by the RICE [36] and ANITA-II

experiments [37] at the South Pole which were sensitive to

monopoles with γ values of 107 . γ . 1012 and 109 . γ . 1013,

respectively, and which produced flux limits as low as 10−19

cm−2s−1sr−1.

Searches via the Catalysis of Nucleon-Decay: Searches

have been performed for evidence of the catalysed decay of a nu-

cleon by a monopole, as predicted by the Callan-Rubakov mech-

anism. The searches are thus sensitive to the assumed value

of the catalysis decay cross section. Searches have been made

with the Soudan [38] and Macro [39] experiments, using tracking

detectors. Searches at IMB [40], the underwater Lake Baikal
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Figure 1: Upper flux limits for (a) GUT
monopoles as a function of β (b) Monopoles as
a function of mass for β > 0.05.

experiment [41] and the The IceCube experiment [42] which ex-

ploit the Cerenkov effect have also been made. The resulting β-

dependent flux limits from these experiments typically vary be-

tween ∼ 10−18 and ∼ 10−14cm−2sr−1s−1 [25]. A recent search

for low energy neutrinos (assumed to be produced from induced

proton decay in the sun) was made at Super-Kamiokande [43].

A β-dependent of limit of 6.3 × 10−24(
β

10−3
)2cm−2sr−1s−1 was

obtained.

Searches at Colliders: Searches have been performed at

hadron-hadron, electron-positron and lepton-hadron experi-

ments. Collider searches can be broadly classed as being direct

or indirect. In a direct search, evidence of the passage of a

monopole through material, such as a charged particle track,

is sought. In indirect searches, virtual monopole processes are

assumed to influence the production rates of certain final states.

Direct Searches at Colliders: Collider experiments typi-

cally express their results in terms of upper limits on a produc-

tion cross section and/or monopole mass. To calculate these

limits, ansatzes are used to model the kinematics of monopole-

antimonopole pair production processes since perturbative field

theory cannot be used to calculate the rate and kinematic

properties of produced monopoles. Limits therefore suffer from

a degree of model-dependence, implying that a comparison be-

tween the results of different experiments can be problematic,

in particular when this concerns excluded mass regions. A con-

servative approach with as little model-dependence as possible

is thus to present the upper cross-section limits as a function of

one half the centre-of-mass energy of the collisions, as shown in

Fig. 2 for recent results from high energy colliders.

Searches for monopoles produced at the highest available

energies in hadron-hadron collisions were made in pp collisions

at the LHC by the ATLAS experiment [44]. In this search,

highly ionising particles leaving characteristic energy deposition

profiles were sought. Tevatron searches have also been carried

out by the CDF [45] and E882 [46] experiments. The CDF

experiment used a dedicated time-of-flight system whereas the

E882 experiment employed the induction technique to search

for stopped monopoles in discarded detector material which had

been part of the CDF and D0 detectors using periods of lumi-

nosity. Earlier searches at the Tevatron, such as [47], used

10
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Figure 2: Upper limits on the produc-
tion cross sections of monopoles from various
collider-based experiments.

NTDs and were based on comparatively modest amounts of in-

tegrated luminosity. Lower energy hadron-hadron experiments

have employed a variety of search techniques including plastic

track detectors [48] and searches for trapped monopoles [49].

The only LEP-2 search was made by OPAL [50] which

quoted cross section limits for the production of monopoles

possessing masses up to around 103 GeV. At LEP-1, searches

were made with NTDs deployed around an interaction region.

This allowed a range of charges to be sought for masses up

to ∼ 45 GeV. The L6-MODAL experiment [51] gave limits for

monopoles with charges in the range 0.9QD
M and 3.6QD

M , whilst

an earlier search by the MODAL experiment was sensitive to

monopoles with charges as low as 0.1QD
M [52]. The deploy-

ment of NTDs around the beam interaction point was also used

at earlier e+e− colliders such as KEK [53] and PETRA [54].

Searches at e+e− facilities have also been made for particles

following non-helical trajectories [55,56].

There has so far been one search for monopole produc-

tion in lepton-hadron scattering. Using the induction method,

monopoles were sought which could have stopped in the alu-

minium beampipe which had been used by the H1 experiment

at HERA [57]. Cross section limits were set for monopoles with

charges in the range QD
M − 6QD

M for masses up to around 140

GeV.

Indirect Searches at Colliders: It has been proposed that

virtual monopoles can mediate processes which give rise to

multi-photon final-states [58,59]. Photon-based searches were

made by the D0 [60] and L3 [61] experiments. The D0 work led

to spin-dependent lower mass limits of between 610 and 1580

GeV, while L3 reported a lower mass limit of 510 GeV. However,



1679167916791679See key on page 601 Sear
hesParti
le ListingsMagneti
Monopole Sear
hes
it should be stressed that uncertainties on the theoretical

calculations which were used to derive these limits are difficult

to estimate.
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hesX-SECT MASS CHG ENERGY(
m2) (GeV) (g) (GeV) BEAM DOCUMENT ID TECN

<1.6E−38 200{1200 1 7000 pp 1 AAD 12CS ATLS
<5E−38 45{102 1 206 e+ e− 2 ABBIENDI 08 OPAL
<0.2E−36 200{700 1 1960 pp 3 ABULENCIA 06K CNTR
< 2.E−36 1 300 e+ p 4,5 AKTAS 05A INDU
< 0.2 E−36 2 300 e+ p 4,5 AKTAS 05A INDU
< 0.09E−36 3 300 e+ p 4,5 AKTAS 05A INDU
< 0.05E−36 ≥ 6 300 e+ p 4,5 AKTAS 05A INDU
< 2.E−36 1 300 e+ p 4,6 AKTAS 05A INDU
< 0.2E−36 2 300 e+ p 4,6 AKTAS 05A INDU
< 0.07E−36 3 300 e+ p 4,6 AKTAS 05A INDU
< 0.06E−36 ≥ 6 300 e+ p 4,6 AKTAS 05A INDU
< 0.6E−36 >265 1 1800 pp 7 KALBFLEISCH 04 INDU
< 0.2E−36 >355 2 1800 pp 7 KALBFLEISCH 04 INDU
< 0.07E−36 >410 3 1800 pp 7 KALBFLEISCH 04 INDU
< 0.2E−36 >375 6 1800 pp 7 KALBFLEISCH 04 INDU
< 0.7E−36 >295 1 1800 pp 8,9 KALBFLEISCH 00 INDU
< 7.8E−36 >260 2 1800 pp 8,9 KALBFLEISCH 00 INDU
< 2.3E−36 >325 3 1800 pp 8,10 KALBFLEISCH 00 INDU
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< 0.11E−36 >420 6 1800 pp 8,10 KALBFLEISCH 00 INDU
<0.65E−33 <3.3 ≥ 2 11A 197Au 11 HE 97
<1.90E−33 <8.1 ≥ 2 160A 208Pb 11 HE 97
<3.E−37 <45.0 1.0 88{94 e+ e− PINFOLD 93 PLAS
<3.E−37 <41.6 2.0 88{94 e+ e− PINFOLD 93 PLAS
<7.E−35 <44.9 0.2{1.0 89{93 e+ e− KINOSHITA 92 PLAS
<2.E−34 <850 ≥ 0.5 1800 pp BERTANI 90 PLAS
<1.2E−33 <800 ≥ 1 1800 pp PRICE 90 PLAS
<1.E−37 <29 1 50{61 e+ e− KINOSHITA 89 PLAS
<1.E−37 <18 2 50{61 e+ e− KINOSHITA 89 PLAS
<1.E−38 <17 <1 35 e+ e− BRAUNSCH... 88B CNTR
<8.E−37 <24 1 50{52 e+ e− KINOSHITA 88 PLAS
<1.3E−35 <22 2 50{52 e+ e− KINOSHITA 88 PLAS
<9.E−37 <4 <0.15 10.6 e+ e− GENTILE 87 CLEO
<3.E−32 <800 ≥ 1 1800 pp PRICE 87 PLAS
<3.E−38 <3 29 e+ e− FRYBERGER 84 PLAS
<1.E−31 1,3 540 pp AUBERT 83B PLAS
<4.E−38 <10 <6 34 e+ e− MUSSET 83 PLAS
<8.E−36 <20 52 pp 12 DELL 82 CNTR
<9.E−37 <30 <3 29 e+ e− KINOSHITA 82 PLAS
<1.E−37 <20 <24 63 pp CARRIGAN 78 CNTR
<1.E−37 <30 <3 56 pp HOFFMANN 78 PLAS62 pp 12 DELL 76 SPRK
<4.E−33 300 p 12 STEVENS 76B SPRK
<1.E−40 <5 <2 70 p 13 ZRELOV 76 CNTR
<2.E−30 300 n 12 BURKE 75 OSPK
<1.E−38 8 ν 14 CARRIGAN 75 HLBC
<5.E−43 <12 <10 400 p EBERHARD 75B INDU
<2.E−36 <30 <3 60 pp GIACOMELLI 75 PLAS
<5.E−42 <13 <24 400 p CARRIGAN 74 CNTR
<6.E−42 <12 <24 300 p CARRIGAN 73 CNTR
<2.E−36 1 0.001 γ 13 BARTLETT 72 CNTR
<1.E−41 <5 70 p GUREVICH 72 EMUL
<1.E−40 <3 <2 28 p AMALDI 63 EMUL
<2.E−40 <3 <2 30 p PURCELL 63 CNTR
<1.E−35 <3 <4 28 p FIDECARO 61 CNTR
<2.E−35 <1 1 6 p BRADNER 59 EMUL1AAD 12CS sear
hed for monopoles as highly ionising obje
ts. The 
ross se
tion limitsare based on an assumed Drell Yan-like produ
tion pro
ess for spin 1/2 monopoles. Thelimits are mass- and s
enario-dependent.2ABBIENDI 08 assume produ
tion of spin 1/2 monopoles with e�e
tive 
harge gβ (n=1),via e+ e− → γ∗ → MM, so that the 
ross se
tion is proportional to (1 + 
os2θ).There is no z information for su
h highly saturated tra
ks, so a paraboli
 tra
k in the jet
hamber is proje
ted onto the xy plane. Charge per hit in the 
hamber produ
es a 
leanseparation of signal and ba
kground.3ABULENCIA 06K sear
hes for high-ionizing signals in CDF 
entral outer tra
ker andtime-of-
ight dete
tor. For Drell-Yan MM produ
tion, the 
ross se
tion limit impliesM > 360 GeV at 95% CL.4AKTAS 05A model-dependent limits as a fun
tion of monopole mass shown for arbitrarymass of 60 GeV. Based on sear
h for stopped monopoles in the H1 Al beam pipe.5AKTAS 05A limits with assumed elasti
 spin 0 monopole pair produ
tion.6AKTAS 05A limits with assumed inelasti
 spin 1/2 monopole pair produ
tion.7KALBFLEISCH 04 reports sear
hes for stopped magneti
 monopoles in Be, Al, and Pbsamples obtained from dis
arded material from the upgrading of D� and CDF. A large-aperture warm-bore 
ryogeni
 dete
tor was used. The approa
h was an extension ofthe methods of KALBFLEISCH 00. Cross se
tion results moderately model dependent;interpretation as a mass lower limit depends on possibly invalid perturbation expansion.8KALBFLEISCH 00 used an indu
tion method to sear
h for stopped monopoles in pie
esof the D� (FNAL) beryllium beam pipe and in extensions to the drift 
hamber aluminumsupport 
ylinder. Results are model dependent.9KALBFLEISCH 00 result is for aluminum.10KALBFLEISCH 00 result is for beryllium.11HE 97 used a lead target and barium phosphate glass dete
tors. Cross-se
tion limits arewell below those predi
ted via the Drell-Yan me
hanism.12Multiphoton events.13Cherenkov radiation polarization.14Re-examines CERN neutrino experiments.Monopole Produ
tion | Other A

elerator Sear
hesMonopole Produ
tion | Other A

elerator Sear
hesMonopole Produ
tion | Other A

elerator Sear
hesMonopole Produ
tion | Other A

elerator Sear
hesMASS CHG ENERGY(GeV) (g) SPIN (GeV) BEAM DOCUMENT ID TECN

> 610 ≥ 1 0 1800 pp 1 ABBOTT 98K D0
> 870 ≥ 1 1/2 1800 pp 1 ABBOTT 98K D0
>1580 ≥ 1 1 1800 pp 1 ABBOTT 98K D0
> 510 88{94 e+ e− 2 ACCIARRI 95C L31ABBOTT 98K sear
h for heavy pointlike Dira
 monopoles via 
entral produ
tion of apair of photons with high transverse energies.2ACCIARRI 95C �nds a limit B(Z → γ γ γ) < 0.8 × 10−5 (whi
h is possible via amonopole loop) at 95% CL and sets the mass limit via a 
ross se
tion model.Monopole Flux | Cosmi
 Ray Sear
hesMonopole Flux | Cosmi
 Ray Sear
hesMonopole Flux | Cosmi
 Ray Sear
hesMonopole Flux | Cosmi
 Ray Sear
hes\Caty" in the 
harge 
olumn indi
ates a sear
h for monopole-
atalyzed nu
leon de
ay.

FLUX MASS CHG COMMENTS(
m−2sr−1s−1)(GeV) (g) (β = v/
) EVTS DOCUMENT ID TECN
<1E-17 Caty 1E-3< β <1E-2 0 1 AARTSEN 14 ICCB
<3E-18 1 β >0.8 0 2 ABBASI 13 ICCB
<1.3E-17 1 β >0.625 0 3 ADRIAN-MAR...12A ANTR
<6E-28 <1E17 Caty 1E-5< β <0.04 0 4 UENO 12 SKAM
<1E-19<1E-19<1E-19<1E-19 1111 γ >1E10γ >1E10γ >1E10γ >1E10 0 5 DETRIXHE 11 ANIT
<3.8E-17 1 β >0.76 0 2 ABBASI 10A ICCB
<1.3E−15 1E4<M<5E13 1 β >0.05 0 6 BALESTRA 08 PLAS
<0.65E−15 >5E13 1 β >0.05 0 6 BALESTRA 08 PLAS
<1E−18<1E−18<1E−18<1E−18 1111 γ >1 E8γ >1 E8γ >1 E8γ >1 E8 0 5 HOGAN 08 RICE
<1.4E−16<1.4E−16<1.4E−16<1.4E−16 1111 1.1E−4 < β <11.1E−4 < β <11.1E−4 < β <11.1E−4 < β <1 0 7 AMBROSIO 02B MCRO
<3E−16 Caty 1.1E−4 < β <5E−3 0 8 AMBROSIO 02C MCRO
<1.5E−15 1 5E−3 < β < 0.99 0 9 AMBROSIO 02D MCRO
<1E−15 1 1.1× 10−4{0.1 0 10 AMBROSIO 97 MCRO
<5.6E−15 1 (0.18{3.0)E−3 0 11 AHLEN 94 MCRO
<2.7E−15 Caty β ∼ 1× 10−3 0 12 BECKER-SZ... 94 IMB
<8.7E−15 1 >2.E−3 0 THRON 92 SOUD
<4.4E−12 1 all β 0 GARDNER 91 INDU
<7.2E−13 1 all β 0 HUBER 91 INDU
<3.7E−15 >E12 1 β=1.E−4 0 13 ORITO 91 PLAS
<3.2E−16 >E10 1 β > 0.05 0 13 ORITO 91 PLAS
<3.2E−16 >E10{E12 2, 3 0 13 ORITO 91 PLAS
<3.8E−13 1 all β 0 BERMON 90 INDU
<5.E−16 Caty β <1.E−3 0 12 BEZRUKOV 90 CHER
<1.8E−14 1 β >1.1E−4 0 14 BUCKLAND 90 HEPT
<1E−18 3.E−4 < β <1.5E−3 0 15 GHOSH 90 MICA
<7.2E−13 1 all β 0 HUBER 90 INDU
<5.E−12 >E7 1 3.E−4 < β <5.E−3 0 BARISH 87 CNTR
<1.E−13 Caty 1.E−5 < β <1 0 12 BARTELT 87 SOUD
<1.E−10 1 all β 0 EBISU 87 INDU
<2.E−13 1.E−4 < β <6.E−4 0 MASEK 87 HEPT
<2.E−14 4.E−5 < β <2.E−4 0 NAKAMURA 87 PLAS
<2.E−14 1.E−3 < β <1 0 NAKAMURA 87 PLAS
<5.E−14 9.E−4 < β <1.E−2 0 SHEPKO 87 CNTR
<2.E−13 4.E−4 < β <1 0 TSUKAMOTO 87 CNTR
<5.E−14 1 all β 1 16 CAPLIN 86 INDU
<5.E−12 1 0 CROMAR 86 INDU
<1.E−13 1 7.E−4 < β 0 HARA 86 CNTR
<7.E−11 1 all β 0 INCANDELA 86 INDU
<1.E−18 4.E−4 < β <1.E−3 0 15 PRICE 86 MICA
<5.E−12 1 0 BERMON 85 INDU
<6.E−12 1 0 CAPLIN 85 INDU
<6.E−10 1 0 EBISU 85 INDU
<3.E−15 Caty 5.E−5 ≤ β ≤ 1.E−3 0 12 KAJITA 85 KAMI
<2.E−21 Caty β <1.E−3 0 12,17 KAJITA 85 KAMI
<3.E−15 Caty 1.E−3 < β <1.E−1 0 12 PARK 85B CNTR
<5.E−12 1 1.E−4 < β <1 0 BATTISTONI 84 NUSX
<7.E−12 1 0 INCANDELA 84 INDU
<7.E−13 1 3.E−4 < β 0 14 KAJINO 84 CNTR
<2.E−12 1 3.E−4 < β <1.E−1 0 KAJINO 84B CNTR
<6.E−13 1 5.E−4 < β <1 0 KAWAGOE 84 CNTR
<2.E−14 1.E−3 < β 0 12 KRISHNA... 84 CNTR
<4.E−13 1 6.E−4 < β <2.E−3 0 LISS 84 CNTR
<1.E−16 3.E−4 < β <1.E−3 0 15 PRICE 84 MICA
<1.E−13 1 1.E−4 < β 0 PRICE 84B PLAS
<4.E−13 1 6.E−4 < β <2.E−3 0 TARLE 84 CNTR7 18 ANDERSON 83 EMUL
<4.E−13 1 1.E−2 < β <1.E−3 0 BARTELT 83B CNTR
<1.E−12 1 7.E−3 < β <1 0 BARWICK 83 PLAS
<3.E−13 1 1.E−3 < β <4.E−1 0 BONARELLI 83 CNTR
<3.E−12 Caty 5.E−4 < β <5.E−2 0 12 BOSETTI 83 CNTR
<4.E−11 1 0 CABRERA 83 INDU
<5.E−15 1 1.E−2 < β <1 0 DOKE 83 PLAS
<8.E−15 Caty 1.E−4 < β <1.E−1 0 12 ERREDE 83 IMB
<5.E−12 1 1.E−4 < β <3.E−2 0 GROOM 83 CNTR
<2.E−12 6.E−4 < β <1 0 MASHIMO 83 CNTR
<1.E−13 1 β=3.E−3 0 ALEXEYEV 82 CNTR
<2.E−12 1 7.E−3 < β <6.E−1 0 BONARELLI 82 CNTR6.E−10 1 all β 1 19 CABRERA 82 INDU
<2.E−11 1.E−2 < β <1.E−1 0 MASHIMO 82 CNTR
<2.E−15 
on
entrator 0 BARTLETT 81 PLAS
<1.E−13 >1 1.E−3 < β 0 KINOSHITA 81B PLAS
<5.E−11 <E17 3.E−4 < β <1.E−3 0 ULLMAN 81 CNTR
<2.E−11 
on
entrator 0 BARTLETT 78 PLAS1.E−1 >200 2 1 20 PRICE 75 PLAS
<2.E−13 >2 0 FLEISCHER 71 PLAS
<1.E−19 >2 obsidian, mi
a 0 FLEISCHER 69C PLAS
<5.E−15 <15 <3 
on
entrator 0 CARITHERS 66 ELEC
<2.E−11 <1{3 
on
entrator 0 MALKUS 51 EMUL1Beyond the monopole speed, the limits of AARTSEN 14 depend on the 
atalysis 
rossse
tion (σ) whi
h 
orresponds to the monopole radiating l̂ times the light per tra
k length
ompared to the Cherenkov light from a single ele
tri
ally 
harged, relativisti
 parti
le.The values quoted here 
orrespond to σ = 1 barn or l̂ =30.2ABBASI 13 and ABBASI 10A were based on a Cherenkov signature in an array of opti
almodules whi
h were sunk in the Antar
ti
 i
e 
ap. Limits are speed-dependent.3ADRIAN-MARTINEZ 12A measurements were based on a Cherenkov signature in anunderwater teles
ope in the Western Mediterranean Sea. Limits are speed-dependent.



1681168116811681See key on page 601 Sear
hes Parti
le ListingsMagneti
Monopole Sear
hes4The limits from UENO 12 depend on the monopole speed and are also sensitive toassumed values of monopole mass and the 
atalysis 
ross se
tion.5HOGAN 08 and DETRIXHE 11 limits on relativisti
 monopoles are based on nonobser-vation of radio Cherenkov signals at the South Pole. Limits are speed-dependent.6BALESTRA 08 exposed of nu
lear tra
k dete
tor modules totaling 400 m2 for 4 years atthe Cha
altaya Laboratory (5230 m) in sear
h for intermediate-mass monopoles with β >0.05. The analysis is mainly based on three CR39 modules. For M > 5×1013 GeV there
an be upward-going monopoles as well, hen
e the 
ux limit is half that obtained for lessmassive monopoles. Previous experiments (e.g. MACRO and OHYA (ORITO 91)) hadset limits only for M > 1× 109 GeV.7AMBROSIO 02B dire
t sear
h �nal result for m ≥ 1017 GeV, based upon 4.2 to 9.5years of running, depending upon the subsystem. Limit with CR39 tra
k-et
h dete
torextends the limit from β=4 × 10−5 (3.1 × 10−16 
m−2 sr−1 s−1) to β= 1 × 10−4(2.1 × 10−16 
m−2 sr−1 s−1). Limit 
urve in paper is pie
ewise 
ontinuous due todi�erent dete
tion te
hniques for di�erent β ranges.8AMBROSIO 02C limit for 
atalysis of nu
leon de
ay with 
atalysis 
ross se
tion of
≈ 1 mb. The 
ux limit in
reases by ∼ 3 at the higher β limit, and in
reases to1×10−14 
m−2 sr−1 s−1 if the 
atalysis 
ross se
tion is 0.01 mb. Based upon 71193 hrof data with the streamer dete
tor, with an a

eptan
e of 4250 m2 sr.9AMBROSIO 02D result for \more than two years of data." Ionization sear
h using severalsubsystems. Limit 
urve as a fun
tion of β not given. In
luded in AMBROSIO 02B.10AMBROSIO 97 global MACRO 90%CL is 0.78×10−15 at β=1.1×10−4, goes througha minimum at 0.61 × 10−15 near β=(1.1{2.7) × 10−3, then rises to 0.84 × 10−15at β=0.1. The global limit in this region is below the Parker bound at 10−15. Lessstringent limits are established for 4 × 10−5 < β < 1 × 10−4. Limits set by varioustriggers and di�erent subdete
tors are given in the paper. All limits assume a 
atalysis
ross se
tion smaller than a few mb.11AHLEN 94 limit for dyons extends down to β=0.9E−4 and a limit of 1.3E−14 extendsto β = 0.8E−4. Also see 
omment by PRICE 94 and reply of BARISH 94. One loopholein the AHLEN 94 result is that in the 
ase of monopoles 
atalyzing nu
leon de
ay,relativisti
 parti
les 
ould veto the events. See AMBROSIO 97 for additional results.12Catalysis of nu
leon de
ay; sensitive to assumed 
atalysis 
ross se
tion.13ORITO 91 limits are fun
tions of velo
ity. Lowest limits are given here.14Used DKMPR me
hanism and Penning e�e
t.15Assumes monopole atta
hes fermion nu
leus.16 Limit from 
ombining data of CAPLIN 86, BERMON 85, INCANDELA 84, and CABR-ERA 83. For a dis
ussion of 
ontroversy about CAPLIN 86 observed event, see GUY 87.Also see SCHOUTEN 87.17Based on la
k of high- energy solar neutrinos from 
atalysis in the sun.18Anomalous long-range α (4He) tra
ks.19CABRERA 82 
andidate event has single Dira
 
harge within ±5%.20ALVAREZ 75, FLEISCHER 75, and FRIEDLANDER 75 explain as fragmenting nu
leus.EBERHARD 75 and ROSS 76 dis
uss 
on
i
t with other experiments. HAGSTROM 77reinterprets as antinu
leus. PRICE 78 reassesses.Monopole Flux | Astrophysi
sMonopole Flux | Astrophysi
sMonopole Flux | Astrophysi
sMonopole Flux | Astrophysi
sFLUX MASS CHG COMMENTS(
m−2sr−1s−1) (GeV) (g) (β = v/
) DOCUMENT ID TECN

<1.3E−20 faint white dwarf 1 FREESE 99 ASTR
<1.E−16 E17 1 gala
ti
 �eld 2 ADAMS 93 COSM
<1.E−23 Jovian planets 1 ARAFUNE 85 ASTR
<1.E−16 E15 solar trapping BRACCI 85B ASTR
<1.E−18 1 1 HARVEY 84 COSM
<3.E−23 neutron stars KOLB 84 ASTR
<7.E−22 pulsars 1 FREESE 83B ASTR
<1.E−18 <E18 1 intergala
ti
 �eld 1 REPHAELI 83 COSM
<1.E−23 neutron stars 1 DIMOPOUL... 82 COSM
<5.E−22 neutron stars 1 KOLB 82 COSM
<5.E−15 >E21 gala
ti
 halo SALPETER 82 COSM
<1.E−12 E19 1 β=3.E−3 3 TURNER 82 COSM
<1.E−16 1 gala
ti
 �eld PARKER 70 COSM1Catalysis of nu
leon de
ay.2ADAMS 93 limit based on \survival and growth of a small gala
ti
 seed �eld" is10−16 (m/1017 GeV) 
m−2 s−1 sr−1. Above 1017 GeV, limit 10−16 (1017 GeV/m)
m−2 s−1 sr−1 (from requirement that monopole density does not over
lose the uni-verse) is more stringent.3Re-evaluates PARKER 70 limit for GUT monopoles.Monopole Density | Matter Sear
hesMonopole Density | Matter Sear
hesMonopole Density | Matter Sear
hesMonopole Density | Matter Sear
hesCHGDENSITY (g) MATERIAL DOCUMENT ID TECN
<9.8E−5/gram ≥ 1 Polar ro
k BENDTZ 13 INDU
<6.9E−6/gram >1/3 Meteorites and other JEON 95 INDU
<2.E−7/gram >0.6 Fe ore 1 EBISU 87 INDU
<4.6E−6/gram > 0.5 deep s
hist KOVALIK 86 INDU
<1.6E−6/gram > 0.5 manganese nodules 2 KOVALIK 86 INDU
<1.3E−6/gram > 0.5 seawater KOVALIK 86 INDU
>1.E+14/gram >1/3 iron aerosols MIKHAILOV 83 SPEC
<6.E−4/gram air, seawater CARRIGAN 76 CNTR
<5.E−1/gram >0.04 11 materials CABRERA 75 INDU
<2.E−4/gram >0.05 moon ro
k ROSS 73 INDU
<6.E−7/gram <140 seawater KOLM 71 CNTR
<1.E−2/gram <120 manganese nodules FLEISCHER 69 PLAS
<1.E−4/gram >0 manganese FLEISCHER 69B PLAS
<2.E−3/gram <1{3 magnetite, meteor GOTO 63 EMUL
<2.E−2/gram meteorite PETUKHOV 63 CNTR

1Mass 1× 1014{1× 1017 GeV.2KOVALIK 86 examined 498 kg of s
hist from two sites whi
h exhibited 
lear mineralogi
aleviden
e of having been buried at least 20 km deep and held below the Curie temperature.Monopole Density | Astrophysi
sMonopole Density | Astrophysi
sMonopole Density | Astrophysi
sMonopole Density | Astrophysi
sCHGDENSITY (g) MATERIAL DOCUMENT ID TECN
<1.E−9/gram 1 sun, 
atalysis 1 ARAFUNE 83 COSM
<6.E−33/nu
l 1 moon wake SCHATTEN 83 ELEC
<2.E−28/nu
l earth heat CARRIGAN 80 COSM
<2.E−4/prot 42
m absorption BRODERICK 79 COSM
<2.E−13/m3 moon wake SCHATTEN 70 ELEC1Catalysis of nu
leon de
ay.REFERENCES FOR Magneti
 Monopole Sear
hesREFERENCES FOR Magneti
 Monopole Sear
hesREFERENCES FOR Magneti
 Monopole Sear
hesREFERENCES FOR Magneti
 Monopole Sear
hesAARTSEN 14 EPJ C74 2938 M.G. Aartsen et al. (I
eCube Collab.)ABBASI 13 PR D87 022001 R. Abbasi et al. (I
eCube Collab.)BENDTZ 13 PRL 110 121803 K. Bendtz et al.AAD 12CS PRL 109 261803 G. Aad et al. (ATLAS Collab.)ADRIAN-MAR...12A ASP 35 634 S. Adrian-Martinez et al. (ANTARES Collab.)UENO 12 ASP 36 131 K. Ueno et al. (Super-Kamiokande Collab.)DETRIXHE 11 PR D83 023513 M. Detrixhe et al. (ANITA Collab.)ABBASI 10A EPJ C69 361 R. Abbasi et al. (I
eCube Collab.)ABBIENDI 08 PL B663 37 G. Abbiendi et al. (OPAL Collab.)BALESTRA 08 EPJ C55 57 S. Balestra et al. (SLIM Collab.)HOGAN 08 PR D78 075031 D.P. Hogan et al. (KANS, NEBR, DELA)ABULENCIA 06K PRL 96 201801 A. Abulen
ia et al. (CDF Collab.)AKTAS 05A EPJ C41 133 A. Aktas et al. (H1 Collab.)KALBFLEISCH 04 PR D69 052002 G.R. Kalb
eis
h et al. (OKLA)AMBROSIO 02B EPJ C25 511 M. Ambrosio et al. (MACRO Collab.)AMBROSIO 02C EPJ C26 163 M. Ambrosio et al. (MACRO Collab.)AMBROSIO 02D ASP 18 27 M. Ambrosio et al. (MACRO Collab.)KALBFLEISCH 00 PRL 85 5292 G.R. Kalb
eis
h et al.FREESE 99 PR D59 063007 K. Freese, E. KrastevaABBOTT 98K PRL 81 524 B. Abbott et al. (D0 Collab.)AMBROSIO 97 PL B406 249 M. Ambrosio et al. (MACRO Collab.)HE 97 PRL 79 3134 Y.D. He (UCB)ACCIARRI 95C PL B345 609 M. A

iarri et al. (L3 Collab.)JEON 95 PRL 75 1443 H. Jeon, M.J. Longo (MICH)Also PRL 76 159 (erratum) H. Jeon, M.J. LongoAHLEN 94 PRL 72 608 S.P. Ahlen et al. (MACRO Collab.)BARISH 94 PRL 73 1306 B.C. Barish, G. Gia
omelli, J.T. Hong (CIT+)BECKER-SZ... 94 PR D49 2169 R.A. Be
ker-Szendy et al. (IMB Collab.)PRICE 94 PRL 73 1305 P.B. Pri
e (UCB)ADAMS 93 PRL 70 2511 F.C. Adams et al. (MICH, FNAL)PINFOLD 93 PL B316 407 J.L. Pinfold et al. (ALBE, HARV, MONT+)KINOSHITA 92 PR D46 R881 K. Kinoshita et al. (HARV, BGNA, REHO)THRON 92 PR D46 4846 J.L. Thron et al. (SOUDAN-2 Collab.)GARDNER 91 PR D44 622 R.D. Gardner et al. (STAN)HUBER 91 PR D44 636 M.E. Huber et al. (STAN)ORITO 91 PRL 66 1951 S. Orito et al. (ICEPP, WASCR, NIHO, ICRR)BERMON 90 PRL 64 839 S. Bermon et al. (IBM, BNL)BERTANI 90 EPL 12 613 M. Bertani et al. (BGNA, INFN)BEZRUKOV 90 SJNP 52 54 L.B. Bezrukov et al. (INRM)Translated from YAF 52 86.BUCKLAND 90 PR D41 2726 K.N. Bu
kland et al. (UCSD)GHOSH 90 EPL 12 25 D.C. Ghosh, S. Chatterjea (JADA)HUBER 90 PRL 64 835 M.E. Huber et al. (STAN)PRICE 90 PRL 65 149 P.B. Pri
e, J. Guiru, K. Kinoshita (UCB, HARV)KINOSHITA 89 PL B228 543 K. Kinoshita et al. (HARV, TISA, KEK+)BRAUNSCH... 88B ZPHY C38 543 R. Brauns
hweig et al. (TASSO Collab.)KINOSHITA 88 PRL 60 1610 K. Kinoshita et al. (HARV, TISA, KEK+)BARISH 87 PR D36 2641 B.C. Barish, G. Liu, C. Lane (CIT)BARTELT 87 PR D36 1990 J.E. Bartelt et al. (Soudan Collab.)Also PR D40 1701 (erratum) J.E. Bartelt et al. (Soudan Collab.)EBISU 87 PR D36 3359 T. Ebisu, T. Watanabe (KOBE)Also JP G11 883 T. Ebisu, T. Watanabe (KOBE)GENTILE 87 PR D35 1081 T. Gentile et al. (CLEO Collab.)GUY 87 NAT 325 463 J. Guy (LOIC)MASEK 87 PR D35 2758 G.E. Masek et al. (UCSD)NAKAMURA 87 PL B183 395 S. Nakamura et al. (INUS, WASCR, NIHO)PRICE 87 PRL 59 2523 P.B. Pri
e, R. Guoxiao, K. Kinoshita (UCB, HARV)SCHOUTEN 87 JP E20 850 J.C. S
houten et al. (LOIC)SHEPKO 87 PR D35 2917 M.J. Shepko et al. (TAMU)TSUKAMOTO 87 EPL 3 39 T. Tsukamoto et al. (ICRR)CAPLIN 86 NAT 321 402 A.D. Caplin et al. (LOIC)Also JP E20 850 J.C. S
houten et al. (LOIC)Also NAT 325 463 J. Guy (LOIC)CROMAR 86 PRL 56 2561 M.W. Cromar, A.F. Clark, F.R. Fi
kett (NBSB)HARA 86 PRL 56 553 T. Hara et al. (ICRR, KYOT, KEK, KOBE+)INCANDELA 86 PR D34 2637 J. In
andela et al. (CHIC, FNAL, MICH)KOVALIK 86 PR A33 1183 J.M. Kovalik, J.L. Kirs
hvink (CIT)PRICE 86 PRL 56 1226 P.B. Pri
e, M.H. Salamon (UCB)ARAFUNE 85 PR D32 2586 J. Arafune, M. Fukugita, S. Yanagita (ICRR, KYOTU+)BERMON 85 PRL 55 1850 S. Bermon et al. (IBM)BRACCI 85B NP B258 726 L. Bra

i, G. Fiorentini, G. Mezzorani (PISA+)Also LNC 42 123 L. Bra

i, G. Fiorentini (PISA)CAPLIN 85 NAT 317 234 A.D. Caplin et al. (LOIC)EBISU 85 JP G11 883 T. Ebisu, T. Watanabe (KOBE)KAJITA 85 JPSJ 54 4065 T. Kajita et al. (ICRR, KEK, NIIG)PARK 85B NP B252 261 H.S. Park et al. (IMB Collab.)BATTISTONI 84 PL 133B 454 G. Battistoni et al. (NUSEX Collab.)FRYBERGER 84 PR D29 1524 D. Fryberger et al. (SLAC, UCB)HARVEY 84 NP B236 255 J.A. Harvey (PRIN)INCANDELA 84 PRL 53 2067 J. In
andela et al. (CHIC, FNAL, MICH)KAJINO 84 PRL 52 1373 F. Kajino et al. (ICRR)KAJINO 84B JP G10 447 F. Kajino et al. (ICRR)KAWAGOE 84 LNC 41 315 K. Kawagoe et al. (TOKY)KOLB 84 APJ 286 702 E.W. Kolb, M.S. Turner (FNAL, CHIC)KRISHNA... 84 PL 142B 99 M.R. Krishnaswamy et al. (TATA, OSKC+)LISS 84 PR D30 884 T.M. Liss, S.P. Ahlen, G. Tarle (UCB, IND+)PRICE 84 PRL 52 1265 P.B. Pri
e et al. (ROMA, UCB, IND+)PRICE 84B PL 140B 112 P.B. Pri
e (CERN)TARLE 84 PRL 52 90 G. Tarle, S.P. Ahlen, T.M. Liss (UCB, MICH+)ANDERSON 83 PR D28 2308 S.N. Anderson et al. (WASH)ARAFUNE 83 PL 133B 380 J. Arafune, M. Fukugita (ICRR, KYOTU)AUBERT 83B PL 120B 465 B. Aubert et al. (CERN, LAPP)BARTELT 83B PRL 50 655 J.E. Bartelt et al. (MINN, ANL)BARWICK 83 PR D28 2338 S.W. Barwi
k, K. Kinoshita, P.B. Pri
e (UCB)BONARELLI 83 PL 126B 137 R. Bonarelli, P. Capiluppi, I. d'Antone (BGNA)BOSETTI 83 PL 133B 265 P.C. Bosetti et al. (AACH3, HAWA, TOKY)CABRERA 83 PRL 51 1933 B. Cabrera et al. (STAN)DOKE 83 PL 129B 370 T. Doke et al. (WASU, RIKK, TTAM, RIKEN)
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hesERREDE 83 PRL 51 245 S.M. Errede et al. (IMB Collab.)FREESE 83B PRL 51 1625 K. Freese, M.S. Turner, D.N. S
hramm (CHIC)GROOM 83 PRL 50 573 D.E. Groom et al. (UTAH, STAN)MASHIMO 83 PL 128B 327 T. Mashimo et al. (ICEPP)MIKHAILOV 83 PL 130B 331 V.F. Mikhailov (KAZA)MUSSET 83 PL 128B 333 P. Musset, M. Pri
e, E. Lohrmann (CERN, HAMB)REPHAELI 83 PL 121B 115 Y. Rephaeli, M.S. Turner (CHIC)SCHATTEN 83 PR D27 1525 K.H. S
hatten (NASA)ALEXEYEV 82 LNC 35 413 E.N. Alekseev et al. (INRM)BONARELLI 82 PL 112B 100 R. Bonarelli et al. (BGNA)CABRERA 82 PRL 48 1378 B. Cabrera (STAN)DELL 82 NP B209 45 G.F. Dell et al. (BNL, ADEL, ROMA)DIMOPOUL... 82 PL 119B 320 S. Dimopoulos, J. Preskill, F. Wil
zek (HARV+)KINOSHITA 82 PRL 48 77 K. Kinoshita, P.B. Pri
e, D. Fryberger (UCB+)KOLB 82 PRL 49 1373 E.W. Kolb, S.A. Colgate, J.A. Harvey (LASL, PRIN)MASHIMO 82 JPSJ 51 3067 T. Mashimo, K. Kawagoe, M. Koshiba (INUS)SALPETER 82 PRL 49 1114 E.E. Salpeter, S.L. Shapiro, I. Wasserman (CORN)TURNER 82 PR D26 1296 M.S. Turner, E.N. Parker, T.J. Bogdan (CHIC)BARTLETT 81 PR D24 612 D.F. Bartlett et al. (COLO, GESC)KINOSHITA 81B PR D24 1707 K. Kinoshita, P.B. Pri
e (UCB)ULLMAN 81 PRL 47 289 J.D. Ullman (LEHM, BNL)CARRIGAN 80 NAT 288 348 R.A. Carrigan (FNAL)BRODERICK 79 PR D19 1046 J.J. Broderi
k et al. (VPI)BARTLETT 78 PR D18 2253 D.F. Bartlett, D. Soo, M.G. White (COLO, PRIN)CARRIGAN 78 PR D17 1754 R.A. Carrigan, B.P. Strauss, G. Gia
omelli (FNAL+)HOFFMANN 78 LNC 23 357 H. Ho�mann et al. (CERN, ROMA)PRICE 78 PR D18 1382 P.B. Pri
e et al. (UCB, HOUS)HAGSTROM 77 PRL 38 729 R. Hagstrom (LBL)CARRIGAN 76 PR D13 1823 R.A. Carrigan, F.A. Nezri
k, B.P. Strauss (FNAL)DELL 76 LNC 15 269 G.F. Dell et al. (CERN, BNL, ROMA, ADEL)ROSS 76 LBL-4665 R.R. Ross (LBL)STEVENS 76B PR D14 2207 D.M. Stevens et al. (VPI, BNL)ZRELOV 76 CZJP B26 1306 V.P. Zrelov et al. (JINR)ALVAREZ 75 LBL-4260 L.W. Alvarez (LBL)BURKE 75 PL 60B 113 D.L. Burke et al. (MICH)CABRERA 75 Thesis B. Cabrera (STAN)CARRIGAN 75 NP B91 279 R.A. Carrigan, F.A. Nezri
k (FNAL)Also PR D3 56 R.A. Carrigan, F.A. Nezri
k (FNAL)EBERHARD 75 PR D11 3099 P.H. Eberhard et al. (LBL, MPIM)EBERHARD 75B LBL-4289 P.H. Eberhard (LBL)FLEISCHER 75 PRL 35 1412 R.L. Fleis
her, R.N.F. Walker (GESC, WUSL)FRIEDLANDER 75 PRL 35 1167 M.W. Friedlander (WUSL)GIACOMELLI 75 NC 28A 21 G. Gia
omelli et al. (BGNA, CERN, SACL+)PRICE 75 PRL 35 487 P.B. Pri
e et al. (UCB, HOUS)CARRIGAN 74 PR D10 3867 R.A. Carrigan, F.A. Nezri
k, B.P. Strauss (FNAL)CARRIGAN 73 PR D8 3717 R.A. Carrigan, F.A. Nezri
k, B.P. Strauss (FNAL)ROSS 73 PR D8 698 R.R. Ross et al. (LBL, SLAC)Also PR D4 3260 P.H. Eberhard et al. (LBL, SLAC)Also SCI 167 701 L.W. Alvarez et al. (LBL, SLAC)BARTLETT 72 PR D6 1817 D.F. Bartlett, M.D. Lahana (COLO)GUREVICH 72 PL 38B 549 I.I. Gurevi
h et al. (KIAE, NOVO, SERP)Also JETP 34 917 L.M. Barkov, I.I. Gurevi
h, M.S. Zolotorev (KIAE+)Translated from ZETF 61 1721.Also PL 31B 394 I.I. Gurevi
h et al. (KIAE, NOVO, SERP)FLEISCHER 71 PR D4 24 R.L. Fleis
her et al. (GESC)KOLM 71 PR D4 1285 H.H. Kolm, F. Villa, A. Odian (MIT, SLAC)PARKER 70 APJ 160 383 E.N. Parker (CHIC)SCHATTEN 70 PR D1 2245 K.H. S
hatten (NASA)FLEISCHER 69 PR 177 2029 R.L. Fleis
her et al. (GESC, FSU)FLEISCHER 69B PR 184 1393 R.L. Fleis
her et al. (GESC, UNCS, GSCO)FLEISCHER 69C PR 184 1398 R.L. Fleis
her, P.B. Pri
e, R.T. Woods (GESC)Also JAP 41 958 R.L. Fleis
her et al. (GESC)CARITHERS 66 PR 149 1070 W.C.J. Carithers, R.J. Stefanski, R.K. AdairAMALDI 63 NC 28 773 E. Amaldi et al. (ROMA, UCSD, CERN)GOTO 63 PR 132 387 E. Goto, H.H. Kolm, K.W. Ford (TOKY, MIT, BRAN)PETUKHOV 63 NP 49 87 V.A. Petukhov, M.N. Yakimenko (LEBD)PURCELL 63 PR 129 2326 E.M. Pur
ell et al. (HARV, BNL)FIDECARO 61 NC 22 657 M. Fide
aro, G. Fino

hiaro, G. Gia
omelli (CERN)BRADNER 59 PR 114 603 H. Bradner, W.M. Isbell (LBL)MALKUS 51 PR 83 899 W.V.R. Malkus (CHIC)OTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSGROOM 86 PRPL 140 323 D.E. Groom (UTAH)ReviewSupersymmetri
 Parti
le Sear
hes
SUPERSYMMETRY, PART I (THEORY)

Revised September 2015 by Howard E. Haber (UC Santa Cruz).

I.1. Introduction

I.2. Structure of the MSSM

I.2.1. R-parity and the lightest supersymmetric particle

I.2.2. The goldstino and gravitino

I.2.3. Hidden sectors and the structure of supersymmetry-

breaking

I.2.4. Supersymmetry and extra dimensions

I.2.5. Split-supersymmetry

I.3. Parameters of the MSSM

I.3.1. The supersymmetry-conserving parameters

I.3.2. The supersymmetry-breaking parameters

I.3.3. MSSM-124

I.4. The supersymmetric-particle spectrum

I.4.1. The charginos and neutralinos

I.4.2. The squarks, sleptons and sneutrinos

I.5. The supersymmetric Higgs sector

I.5.1. The tree-level Higgs sector

I.5.2. The radiatively-corrected Higgs sector

I.6. Restricting the MSSM parameter freedom

I.6.1. Gaugino mass relations

I.6.2. The constrained MSSM: mSUGRA, CMSSM, . . .

I.6.3. Gauge-mediated supersymmetry breaking

I.6.4. The phenomenological MSSM

I.6.5. Simplified Models

I.7. Experimental data confronts the MSSM

I.7.1. Naturalness constraints and the little hierarchy

I.7.2. Constraints from virtual exchange of SUSY particles

I.8. Massive neutrinos in weak-scale supersymmetry

I.8.1. The supersymmetric seesaw

I.8.2. R-parity-violating supersymmetry

I.9. Extensions beyond the MSSM

I.1. Introduction: Supersymmetry (SUSY) is a generaliza-

tion of the space-time symmetries of quantum field theory which

transforms fermions into bosons and vice versa [1]. The exis-

tence of such a non-trivial extension of the Poincaré symmetry

of ordinary quantum field theory was initially surprising, and

its form is highly constrained by theoretical principles [2].

Supersymmetry also provides a framework for the unification

of particle physics and gravity [3–6] at the Planck energy

scale, MP ≈ 1019 GeV, where the gravitational interactions

become comparable in magnitude to the gauge interactions.

Moreover, supersymmetry can provide an explanation of the

large hierarchy between the energy scale that characterizes elec-

troweak symmetry breaking (of order 100 GeV) and the Planck

scale [7–10]. The stability of this large gauge hierarchy with

respect to radiative quantum corrections is not possible to main-

tain in the Standard Model without an unnatural fine-tuning of

the parameters of the fundamental theory at the Planck scale.

In contrast, in a supersymmetric extension of the Standard

Model, it is possible to maintain the gauge hierarchy while

providing a natural framework for elementary scalar fields.

If supersymmetry were an exact symmetry of nature, then

particles and their superpartners, which differ in spin by half a

unit, would be degenerate in mass. Since superpartners have

not (yet) been observed, supersymmetry must be a broken sym-

metry. Nevertheless, the stability of the gauge hierarchy can

still be maintained if the supersymmetry breaking is soft [11,12],

and the corresponding supersymmetry-breaking mass parame-

ters are no larger than a few TeV. Whether this is still plausible

in light of recent supersymmetry searches at the LHC [13] will

be discussed in Section I.7.

In particular, soft-supersymmetry-breaking terms of the La-

grangian involve combinations of fields with total mass dimen-

sion of three or less, with some restrictions on the dimension-

three terms as elucidated in Ref. 11. The impact of the soft

terms becomes negligible at energy scales much larger than the
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size of the supersymmetry-breaking masses. Thus, a theory of

weak-scale supersymmetry, where the effective scale of super-

symmetry breaking is tied to the scale of electroweak symmetry

breaking, provides a natural framework for the origin and the

stability of the gauge hierarchy [7–10].

At present, there is no unambiguous experimental evidence

for the breakdown of the Standard Model at or below the

TeV scale. The expectations for new TeV-scale physics beyond

the Standard Model are based primarily on three theoretical

arguments. First, in a theory with an elementary scalar field

of mass m and interaction strength λ (e.g., a quartic scalar

self-coupling, the square of a gauge coupling or the square

of a Yukawa coupling), the stability with respect to quantum

corrections requires the existence of an energy cutoff roughly of

order (16π2/λ)1/2m, beyond which new physics must enter [14].

A significantly larger energy cutoff would require an unnatural

fine-tuning of parameters that govern the low-energy theory.

Applying this argument to the Standard Model leads to an

expectation of new physics at the TeV scale [10].

Second, the unification of the three Standard Model gauge

couplings at a very high energy close to the Planck scale is pos-

sible if new physics beyond the Standard Model (which modifies

the running of the gauge couplings above the electroweak scale)

is present. The minimal supersymmetric extension of the Stan-

dard Model (MSSM), where superpartner masses lie below a

few TeV, provides an example of successful gauge coupling

unification [15].

Third, the existence of dark matter, which makes up ap-

proximately one quarter of the energy density of the universe,

cannot be explained within the Standard Model of particle

physics [16]. Remarkably, a stable weakly-interacting mas-

sive particle (WIMP) whose mass and interaction rate are

governed by new physics associated with the TeV-scale can be

consistent with the observed density of dark matter (this is the

so-called WIMP miracle, which is reviewed in Ref. 17). The

lightest supersymmetric particle, if stable, is a promising (al-

though not the unique) candidate for the dark matter [18–22].

Further aspects of dark matter can be found in Ref. 23.

Another phenomenon not explained by the Standard Model

is the origin of the matter–antimatter asymmetry of the uni-

verse [24,25]. Models of baryogenesis must satisfy the three

Sakharov conditions [26]: C and CP violation, baryon num-

ber violation and a departure from thermal equilibrium. For

example, the matter–antimatter asymmetry in the early uni-

verse can be generated at the electroweak phase transition if

the transition is sufficiently first-order [27]. These conditions

are not satisfied in the Standard Model, since the CP vio-

lation is too small and the phase transition is not strongly

first-order [24,27]. In contrast, it is possible to satisfy these

conditions in supersymmetric extensions of the Standard Model,

where new sources of CP-violation exist and supersymmetric

loops provide corrections to the temperature-dependent effective

potential that can render the transition sufficiently first-order.

The MSSM parameter space in which electroweak baryogenesis

occurs is strongly constrained by LHC data [28]. However,

extended supersymmetric models provide new opportunities for

successful electroweak baryogenesis [29]. Alternative mecha-

nisms for baryogenesis in supersymmetric models, including the

Affleck-Dine mechanism [30,24] (where a baryon asymmetry is

generated through coherent scalar fields) and leptogenesis [31]

(where the lepton asymmetry is converted into a baryon asym-

metry at the electroweak phase transition) have also been

considered in the literature.

I.2. Structure of the MSSM: The minimal supersymmetric

extension of the Standard Model consists of the fields of the

two-Higgs-doublet extension of the Standard Model and the

corresponding superpartners [32,33]. A particle and its su-

perpartner together form a supermultiplet. The corresponding

field content of the supermultiplets of the MSSM and their gauge

quantum numbers are shown in Table 1. The electric charge

Q = T3 + 1
2Y is determined in terms of the third component of

the weak isospin (T3) and the U(1) weak hypercharge (Y ).

Table 1: The fields of the MSSM and their
SU(3)×SU(2)×U(1) quantum numbers are listed.
For simplicity, only one generation of quarks
and leptons is exhibited. For each lepton,
quark, and Higgs super-multiplet, there is a
corresponding anti-particle multiplet of charge-
conjugated fermions and their associated scalar
partners [34].

Field Content of the MSSM

Super- Super- Bosonic Fermionic

multiplets field fields partners SU(3) SU(2) U(1)

gluon/gluino V̂8 g g̃ 8 1 0

gauge/ V̂ W± , W 0 W̃± , W̃ 0 1 3 0

gaugino V̂ ′ B B̃ 1 1 0

slepton/ L̂ (ν̃L, ẽ−L ) (ν, e−)L 1 2 −1

lepton Êc ẽ+

R ec
L 1 1 2

squark/ Q̂ (ũL, d̃L) (u, d)L 3 2 1/3

quark Û c ũ∗R uc
L 3̄ 1 −4/3

D̂c d̃∗R dc
L 3̄ 1 2/3

Higgs/ Ĥd (H0
d , H−

d ) (H̃0
d , H̃−

d ) 1 2 −1

higgsino Ĥu (H+
u , H0

u) (H̃+
u , H̃0

u) 1 2 1

The gauge supermultiplets consist of the gluons and their

gluino fermionic superpartners and the SU(2)×U(1) gauge

bosons and their gaugino fermionic superpartners. The mat-

ter supermultiplets consist of three generations of left-handed

quarks and leptons and their scalar superpartners (squarks and

sleptons, collectively referred to as sfermions), and the cor-

responding antiparticles. The Higgs supermultiplets consist of

two complex Higgs doublets, their higgsino fermionic superpart-

ners, and the corresponding antiparticles. The enlarged Higgs

sector of the MSSM constitutes the minimal structure needed to

guarantee the cancellation of anomalies from the introduction of

the higgsino superpartners. Moreover, without a second Higgs

doublet, one cannot generate mass for both “up”-type and



1684168416841684Sear
hes Parti
le ListingsSupersymmetri
 Parti
le Sear
hes
“down”-type quarks (and charged leptons) in a way consistent

with the underlying supersymmetry [35–37].

In the most elegant treatment of supersymmetry, spacetime

is extended to superspace which consists of the spacetime

coordinates and new anticommuting fermionic coordinates θ

and θ† [38]. Each supermultiplet is represented by a superfield

that is a function of the superspace coordinates. The fields of

a given supermultiplet (which are functions of the spacetime

coordinates) are components of the corresponding superfield.

Vector superfields contain the gauge boson fields and their

gaugino partners. Chiral superfields contain the spin-0 and

spin-1/2 fields of the matter or Higgs supermultiplets. A gen-

eral supersymmetric Lagrangian is determined by three func-

tions of the chiral superfields [5]: the superpotential, the

Kähler potential, and the gauge kinetic function (which can

be appropriately generalized to accommodate higher deriva-

tive terms [39]). Minimal forms for the Kähler potential and

gauge kinetic function, which generate canonical kinetic energy

terms for all the fields, are required for renormalizable glob-

ally supersymmetric theories. A renormalizable superpotential,

which is at most cubic in the chiral superfields, yields super-

symmetric Yukawa couplings and mass terms. A combination

of gauge invariance and supersymmetry produces couplings of

gaugino fields to matter (or Higgs) fields and their correspond-

ing superpartners. The (renormalizable) MSSM Lagrangian

is then constructed by including all possible supersymmet-

ric interaction terms (of dimension four or less) that satisfy

SU(3)×SU(2)×U(1) gauge invariance and B−L conservation

(where B = baryon number and L = lepton number). Finally,

the most general soft-supersymmetry-breaking terms consistent

with these symmetries are added [11,12,40].

Although the MSSM is the focus of much of this review,

there is some motivation for considering non-minimal super-

symmetric extensions of the Standard Model. For example,

extra structure is needed to generate non-zero neutrino masses

as discussed in Section I.8. In addition, in order to address

some theoretical issues and tensions associated with the MSSM,

it has been fruitful to introduce one additional singlet Higgs

superfield. The resulting next-to-minimal supersymmetric ex-

tension of the Standard Model (NMSSM) [41] is considered

further in Sections I.4–I.7 and I.9. Finally, one is always free

to add additional fields to the Standard Model along with the

corresponding superpartners. However, only certain choices for

the new fields (e.g., the addition of complete SU(5) multiplets)

will preserve the successful gauge coupling unification. Some

examples will be briefly mentioned in Section I.9.

I.2.1. R-parity and the lightest supersymmetric parti-

cle: As a consequence of B−L invariance, the MSSM possesses

a multiplicative R-parity invariance, where R = (−1)3(B−L)+2S

for a particle of spin S [42]. This implies that all the particles

of the Standard Model have even R-parity, whereas the corre-

sponding superpartners have odd R-parity. The conservation

of R-parity in scattering and decay processes has a critical

impact on supersymmetric phenomenology. For example, any

initial state in a scattering experiment will involve ordinary (R-

even) particles. Consequently, it follows that supersymmetric

particles must be produced in pairs. In general, these particles

are highly unstable and decay into lighter states. Moreover,

R-parity invariance also implies that the lightest supersymmet-

ric particle (LSP) is absolutely stable, and must eventually be

produced at the end of a decay chain initiated by the decay of

a heavy unstable supersymmetric particle.

In order to be consistent with cosmological constraints, a

stable LSP is almost certainly electrically and color neutral [20].

Consequently, the LSP in an R-parity-conserving theory is

weakly interacting with ordinary matter, i.e., it behaves like

a stable heavy neutrino and will escape collider detectors

without being directly observed. Thus, the canonical signature

for conventional R-parity-conserving supersymmetric theories

is missing (transverse) energy, due to the escape of the LSP.

Moreover, as noted in Section I.1 and reviewed in Refs. [21,22],

the stability of the LSP in R-parity-conserving supersymmetry

makes it a promising candidate for dark matter.

I.2.2. The goldstino and gravitino: In the MSSM, su-

persymmetry breaking is accomplished by including the most

general renormalizable soft-supersymmetry-breaking terms con-

sistent with the SU(3)×SU(2)×U(1) gauge symmetry and R-

parity invariance. These terms parameterize our ignorance of

the fundamental mechanism of supersymmetry breaking. If

supersymmetry breaking occurs spontaneously, then a massless

Goldstone fermion called the goldstino (G̃1/2) must exist. The

goldstino would then be the LSP, and could play an important

role in supersymmetric phenomenology [43].

However, the goldstino degrees of freedom are physical

only in models of spontaneously-broken global supersymmetry.

If supersymmetry is a local symmetry, then the theory must

incorporate gravity; the resulting theory is called supergrav-

ity [44]. In models of spontaneously-broken supergravity, the

goldstino is “absorbed” by the gravitino (G̃) [often called g̃3/2 in

the older literature], the spin-3/2 superpartner of the graviton,

via the super-Higgs mechanism [45]. Consequently, the gold-

stino is removed from the physical spectrum and the gravitino

acquires a mass (denoted by m3/2). If m3/2 is smaller than

the mass of the lightest superpartner of the Standard Model

particles, then the gravitino will be the LSP.

In processes with center-of-mass energy E ≫ m3/2, the

goldstino–gravitino equivalence theorem [46] states that the

interactions of the helicity ±1
2 gravitino (whose properties

approximate those of the goldstino) dominate those of the

helicity ±3
2 gravitino. The interactions of gravitinos with other

light fields can be described by a low-energy effective Lagrangian

that is determined by fundamental principles [47].

Theories in which supersymmetry breaking is independently

generated by a multiplicity of sources will yield multiple gold-

stino states, collectively called goldstini [48]. One linear com-

bination of the goldstini is identified with the exactly massless

goldstino G̃1/2 of global supersymmetry, which is absorbed by

the gravitino in local supersymmetry as described above. The
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linear combinations of goldstini orthogonal to G̃1/2, sometimes

called pseudo-goldstinos in the literature, acquire radiatively

generated masses. Theoretical and phenomenological implica-

tions of the pseudo-goldstinos are discussed further in Ref. 48.

I.2.3. Hidden sectors and the structure of supersym-

metry breaking: It is very difficult (perhaps impossible) to

construct a realistic model of spontaneously-broken weak-scale

supersymmetry where the supersymmetry breaking arises solely

as a consequence of the interactions of the particles of the

MSSM. An alternative scheme posits a theory consisting of

at least two distinct sectors: a visible sector consisting of the

particles of the MSSM [40] and a so-called hidden sector where

supersymmetry breaking is generated. It is often (but not al-

ways) assumed that particles of the hidden sector are neutral

with respect to the Standard Model gauge group. The effects of

the hidden sector supersymmetry breaking are then transmitted

to the MSSM by some mechanism (often involving the media-

tion by particles that comprise an additional messenger sector).

Two theoretical scenarios that exhibit this structure are gravity-

mediated and gauge-mediated supersymmetry breaking.

Supergravity models provide a natural mechanism for trans-

mitting the supersymmetry breaking of the hidden sector to the

particle spectrum of the MSSM. In models of gravity-mediated

supersymmetry breaking, gravity is the messenger of super-

symmetry breaking [49–53]. More precisely, supersymmetry

breaking is mediated by effects of gravitational strength (sup-

pressed by inverse powers of the Planck mass). The soft-

supersymmetry-breaking parameters arise as model-dependent

multiples of the gravitino mass m3/2. In this scenario, m3/2

is of order the electroweak-symmetry-breaking scale, while the

gravitino couplings are roughly gravitational in strength [3,54].

However, such a gravitino typically plays no direct role in

supersymmetric phenomenology at colliders (except perhaps

indirectly in the case where the gravitino is the LSP [55]).

Under certain theoretical assumptions on the structure of

the Kähler potential (the so-called sequestered form introduced

in Ref. 56), supersymmetry breaking is due entirely to the

super-conformal (super-Weyl) anomaly, which is common to

all supergravity models [56]. In particular, gaugino masses

are radiatively generated at one-loop, and squark and slep-

ton squared-mass matrices are flavor-diagonal. In sequestered

scenarios, sfermion squared-masses arise at two-loops, which

implies that gluino and sfermion masses are of the same order

or magnitude. This approach is called anomaly-mediated su-

persymmetry breaking (AMSB). Indeed, anomaly mediation is

more generic than originally conceived, and provides a ubiqui-

tous source of supersymmetry breaking [57]. However in the

simplest formulation of AMSB as applied to the MSSM, the

squared-masses of the sleptons are negative (known as the so-

called tachyonic slepton problem). It may be possible to cure

this fatal flaw in non-minimal extensions of the MSSM [58].

Alternatively, one can assert that anomaly mediation is not the

sole source of supersymmetry breaking in the sfermion sectors.

In non-sequestered scenarios, sfermion squared-masses can arise

at tree-level, in which case squark masses would be parametri-

cally larger than the loop-suppressed gaugino masses [59].

In gauge-mediated supersymmetry breaking (GMSB), gauge

forces transmit the supersymmetry breaking to the MSSM. A

typical structure of such models involves a hidden sector where

supersymmetry is broken, a messenger sector consisting of parti-

cles (messengers) with nontrivial SU(3)×SU(2)×U(1) quantum

numbers, and the visible sector consisting of the fields of the

MSSM [60–62]. The direct coupling of the messengers to the

hidden sector generates a supersymmetry-breaking spectrum in

the messenger sector. Supersymmetry breaking is then trans-

mitted to the MSSM via the virtual exchange of the messenger

fields. In models of direct gauge mediation, there is no separate

hidden sector. In particular, the sector in which the supersym-

metry breaking originates includes fields that carry nontrivial

Standard Model quantum numbers, which allows for the direct

transmission of supersymmetry breaking to the MSSM [63].

In models of gauge-mediated supersymmetry breaking, the

gravitino is the LSP [18], as its mass can range from a few eV

(in the case of low supersymmetry breaking scales) up to a few

GeV (in the case of high supersymmetry breaking scales). In

particular, the gravitino is a potential dark matter candidate

(for a review and guide to the literature, see Ref. 22). Big bang

nucleosynthesis also provides some interesting constraints on

the gravitino and the properties of the next-to-lightest super-

symmetric particle that decays into the gravitino LSP [64]. The

couplings of the helicity ±1
2 components of G̃ to the particles

of the MSSM (which approximate those of the goldstino as

previously noted in Section I.2.2) are significantly stronger than

gravitational strength and amenable to experimental collider

analyses.

The concept of a hidden sector is more general than su-

persymmetry. Hidden valley models [65] posit the existence

of a hidden sector of new particles and interactions that are

very weakly coupled to particles of the Standard Model. The

impact of a hidden valley on supersymmetric phenomenology

at colliders can be significant if the LSP lies in the hidden

sector [66].

I.2.4. Supersymmetry and extra dimensions:

Approaches to supersymmetry breaking have also been devel-

oped in the context of theories in which the number of space

dimensions is greater than three. In particular, a number of

supersymmetry-breaking mechanisms have been proposed that

are inherently extra-dimensional [67]. The size of the extra

dimensions can be significantly larger than M−1
P ; in some cases

of order (TeV)−1 or even larger [68,69].

For example, in one approach the fields of the MSSM

live on some brane (a lower-dimensional manifold embedded

in a higher-dimensional spacetime), while the sector of the

theory that breaks supersymmetry lives on a second spatially-

separated brane. Two examples of this approach are anomaly-

mediated supersymmetry breaking [56] and gaugino-mediated

supersymmetry breaking [70]. In both cases, supersymmetry

breaking is transmitted through fields that live in the bulk (the
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higher-dimensional space between the two branes). This setup

has some features in common with both gravity-mediated and

gauge-mediated supersymmetry breaking (e.g., a hidden and

visible sector and messengers).

Alternatively, one can consider a higher-dimensional theory

that is compactified to four spacetime dimensions. In this

approach, supersymmetry is broken by boundary conditions on

the compactified space that distinguish between fermions and

bosons. This is the so-called Scherk-Schwarz mechanism [71].

The phenomenology of such models can be strikingly different

from that of the usual MSSM [72].

I.2.5. Split-supersymmetry: If supersymmetry is not con-

nected with the origin of the electroweak scale, it may still

be possible that some remnant of the superparticle spectrum

survives down to the TeV-scale or below. This is the idea of

split-supersymmetry [73,74], in which scalar superpartners of

the quarks and leptons are significantly heavier (perhaps by

many orders of magnitude) than 1 TeV, whereas the fermionic

superpartners of the gauge and Higgs bosons have masses on

the order of 1 TeV or below. With the exception of a single

light neutral scalar whose properties are practically indistin-

guishable from those of the Standard Model Higgs boson, all

other Higgs bosons are also assumed to be very heavy. Among

the supersymmetric particles, only the fermionic superpartners

may be kinematically accessible at the LHC.

In models of split supersymmetry, the top squark masses

cannot be arbitrarily heavy, as these parameters enter in the

radiative corrections to the observed Higgs mass. In the MSSM,

a Higgs boson mass of 125 GeV [75] implies an upper bound on

the mass scale that characterizes the top squarks in the range of

10 to 107 TeV [76,77,78], depending on the value of the ratio of

the two neutral Higgs field vacuum expectation values (although

the range of upper bounds can be relaxed by further varying

other relevant MSSM parameters [78]) . In some approaches,

gaugino masses are one-loop suppressed relative to the sfermion

masses, corresponding to the so-called mini-split supersymmetry

spectrum [77,79]. The higgsino mass scale may or may not be

likewise suppressed depending on the details of the model [80].

The supersymmetry breaking required to produce such

a split-supersymmetry spectrum would destabilize the gauge

hierarchy, and thus would not yield an explanation for the scale

of electroweak symmetry breaking. Nevertheless, models of

split-supersymmetry can account for the dark matter (which is

assumed to be the LSP gaugino or higgsino) and gauge coupling

unification, thereby preserving two of the good features of weak-

scale supersymmetry. Finally, as a consequence of the very

large squark and slepton masses, the severity of the flavor and

CP-violation problems alluded to at the beginning of Section

I.6 are sufficiently reduced to be consistent with experimental

observations.

I.3. Parameters of the MSSM: The parameters of the

MSSM are conveniently described by considering separately the

supersymmetry-conserving and the supersymmetry-breaking

sectors. A careful discussion of the conventions used here

in defining the tree-level MSSM parameters can be found in

Ref. 81. For simplicity, consider first the case of one generation

of quarks, leptons, and their scalar superpartners.

I.3.1. The supersymmetry-conserving parameters:

The parameters of the supersymmetry-conserving sector consist

of: (i) gauge couplings, gs, g, and g′, corresponding to the

Standard Model gauge group SU(3)×SU(2)×U(1) respectively;

(ii) a supersymmetry-conserving higgsino mass parameter µ;

and (iii) Higgs-fermion Yukawa coupling constants, λu, λd, and

λe, corresponding to the coupling of one generation of left- and

right-handed quarks and leptons, and their superpartners to the

Higgs bosons and higgsinos. Because there is no right-handed

neutrino (and its superpartner) in the MSSM as defined here, a

Yukawa coupling λν is not included. The complex µ parameter

and Yukawa couplings enter via the most general renormalizable

R-parity-conserving superpotential,

W = λdĤdQ̂D̂c − λuĤuQ̂Û c + λeĤdL̂Êc + µĤuĤd , (1)

where the superfields are defined in Table 1 and the gauge

group indices are suppressed. The reader is warned that in the

literature, µ is sometimes defined with the opposite sign to the

one given in Eq. (1).

I.3.2. The supersymmetry-breaking parameters:

The supersymmetry-breaking sector contains the following sets

of parameters: (i) three complex gaugino Majorana mass pa-

rameters, M3, M2, and M1, associated with the SU(3), SU(2),

and U(1) subgroups of the Standard Model; (ii) five diagonal

sfermion squared-mass parameters, M2

Q̃
, M2

Ũ
, M2

D̃
, M2

L̃
, and

M2

Ẽ
, corresponding to the five electroweak gauge multiplets,

i.e., superpartners of the left-handed fields (u, d)L, uc
L, dc

L,

(ν, e−)L, and ec
L, where the superscript c indicates a charge-

conjugated fermion field [34]; and (iii) three Higgs-squark-

squark and Higgs-slepton-slepton trilinear interaction terms,

with complex coefficients λuAU , λdAD, and λeAE (which define

the so-called “A-parameters”). The inclusion of the factors of

the Yukawa couplings in the definition of the A-parameters is

conventional (originally motivated by a simple class of gravity-

mediated supersymmetry-breaking models [3,6]). Thus, if the

A-parameters as defined above are parametrically of the same

order (or smaller) relative to other supersymmetry-breaking

mass parameters, then only the third generation A-parameters

are phenomenologically relevant. The reader is warned that

the convention for the overall sign of the A-parameters varies

in the literature.

Finally, we have (iv) three scalar squared-mass parameters:

two of which (m2
1 and m2

2) are real parameters that contribute

to the diagonal Higgs squared-masses, given by m2
1 + |µ|2 and

m2
2 + |µ|2, and a third that contributes to the off-diagonal

Higgs squared-mass term, m2
12 ≡ µB (which defines the com-

plex “B-parameter”). The breaking of the electroweak symme-

try SU(2)×U(1) to U(1)EM is only possible after introducing

the supersymmetry-breaking Higgs squared-mass parameters.



1687168716871687See key on page 601 Sear
hes Parti
le ListingsSupersymmetri
 Parti
le Sear
hes
Minimizing the resulting tree-level Higgs scalar potential, these

three squared-mass parameters can be re-expressed in terms

of the two Higgs vacuum expectation values, 〈H0
d〉 ≡ vd/

√
2

and 〈H0
u〉 ≡ vu/

√
2 (also called v1 and v2, respectively, in the

literature), and the CP-odd Higgs mass mA [cf. Eqs. (3) and

(4) below].

Note that v2
d + v2

u = 4m2
W /g2 ≃ (246 GeV)2 is fixed by the

W mass and the SU(2) gauge coupling, whereas the ratio

tan β = vu/vd (2)

is a free parameter. It is convenient to choose the phases of

the Higgs fields such that m2
12 is real and non-negative. In

this case, we can adopt a convention where 0 ≤ β ≤ π/2. The

tree-level conditions for the scalar potential minimum relate

the diagonal and off-diagonal Higgs squared-masses in terms of

m2
Z = 1

4(g2 + g′ 2)(v2
d + v2

u), the angle β and the CP-odd Higgs

mass mA:

sin 2β =
2m2

12

m2
1 + m2

2 + 2|µ|2 =
2m2

12

m2
A

, (3)

1
2m2

Z = −|µ|2 +
m2

1 − m2
2 tan2 β

tan2 β − 1
. (4)

One must also guard against the existence of charge and/or

color breaking global minima due to non-zero vacuum expec-

tation values for the squark and charged slepton fields. This

possibility can be avoided if the A-parameters are not unduly

large [50,82].

Note that supersymmetry-breaking mass terms for the

fermionic superpartners of scalar fields and non-holomorphic

trilinear scalar interactions (i.e., interactions that mix scalar

fields and their complex conjugates) have not been included

above in the soft-supersymmetry-breaking sector. These terms

can potentially destabilize the gauge hierarchy [11] in models

with gauge-singlet superfields. The latter are not present in the

MSSM; hence as noted in Ref. 12, these so-called non-standard

soft-supersymmetry-breaking terms are benign. However, the

coefficients of these terms (which have dimensions of mass) are

expected to be significantly suppressed compared to the TeV-

scale in a fundamental theory of supersymmetry-breaking [83].

Consequently, we follow the usual approach and omit these

terms from further consideration.

I.3.3. MSSM-124: The total number of independent phys-

ical parameters that define the MSSM (in its most general

form) is quite large, primarily due to the soft-supersymmetry-

breaking sector. In particular, in the case of three generations

of quarks, leptons, and their superpartners, M2

Q̃
, M2

Ũ
, M2

D̃
, M2

L̃
,

and M2

Ẽ
are hermitian 3× 3 matrices, and AU , AD, and AE are

complex 3 × 3 matrices. In addition, M1, M2, M3, B, and µ

are in general complex parameters. Finally, as in the Standard

Model, the Higgs-fermion Yukawa couplings, λf (f =u, d, and

e), are complex 3 × 3 matrices that are related to the quark

and lepton mass matrices via: Mf = λfvf/
√

2, where ve ≡ vd

[with vu and vd as defined above Eq. (2)].

However, not all these parameters are physical. Some of

the MSSM parameters can be eliminated by expressing inter-

action eigenstates in terms of the mass eigenstates, with an

appropriate redefinition of the MSSM fields to remove unphys-

ical degrees of freedom. The analysis of Ref. 84 shows that

the MSSM possesses 124 independent parameters. Of these,

18 correspond to Standard Model parameters (including the

QCD vacuum angle θQCD), one corresponds to a Higgs sector

parameter (the analogue of the Standard Model Higgs mass),

and 105 are genuinely new parameters of the model. The latter

include: five real parameters and three CP -violating phases in

the gaugino/higgsino sector, 21 squark and slepton (sfermion)

masses, 36 real mixing angles to define the sfermion mass eigen-

states, and 40 CP -violating phases that can appear in sfermion

interactions. The most general R-parity-conserving minimal

supersymmetric extension of the Standard Model (without ad-

ditional theoretical assumptions) will be denoted henceforth as

MSSM-124 [85].

I.4. The supersymmetric-particle spectrum: The super-

symmetric particles (sparticles) differ in spin by half a unit from

their Standard Model partners. The superpartners of the gauge

and Higgs bosons are fermions, whose names are obtained by

appending “ino” to the end of the corresponding Standard

Model particle name. The gluino is the color-octet Majorana

fermion partner of the gluon with mass M
g̃

= |M3|. The su-

perpartners of the electroweak gauge and Higgs bosons (the

gauginos and higgsinos) can mix due to SU(2)×U(1) break-

ing effects. As a result, the physical states of definite mass are

model-dependent linear combinations of the charged and neutral

gauginos and higgsinos, called charginos and neutralinos, re-

spectively (sometimes collectively called electroweakinos). The

neutralinos are Majorana fermions, which can generate some

distinctive phenomenological signatures [86,87]. The super-

partners of the quarks and leptons are spin-zero bosons: the

squarks, charged sleptons, and sneutrinos, respectively. A com-

plete set of Feynman rules for the sparticles of the MSSM can

be found in Ref. 88. The MSSM Feynman rules also are implic-

itly contained in a number of Feynman diagram and amplitude

generation software packages (see e.g., Refs. [89–91]).

It should be noted that all mass formulae quoted below

in this section are tree-level results. Radiative loop corrections

will modify these results and must be included in any precision

study of supersymmetric phenomenology [92]. Beyond tree

level, the definition of the supersymmetric parameters becomes

convention-dependent. For example, one can define physical

couplings or running couplings, which differ beyond the tree

level. This provides a challenge to any effort that attempts

to extract supersymmetric parameters from data. The Super-

symmetry Les Houches Accord (SLHA) [93] has been adopted,

which establishes a set of conventions for specifying generic file

structures for supersymmetric model specifications and input

parameters, supersymmetric mass and coupling spectra, and
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decay tables. These provide a universal interface between spec-

trum calculation programs, decay packages, and high energy

physics event generators.

I.4.1. The charginos and neutralinos: The mixing of

the charged gauginos (W̃±) and charged higgsinos (H+
u and

H−
d ) is described (at tree-level) by a 2 × 2 complex mass

matrix [94–96]:

MC ≡
(

M2
1√
2
gvu

1√
2
gvd µ

)
. (5)

To determine the physical chargino states and their masses,

one must perform a singular value decomposition [97,98] of the

complex matrix MC :

U∗MCV −1 = diag(Mχ̃+

1

, Mχ̃+

2

) , (6)

where U and V are unitary matrices, and the right-hand side of

Eq. (6) is the diagonal matrix of (non-negative) chargino masses.

The physical chargino states are denoted by χ̃±
1 and χ̃±

2 . These

are linear combinations of the charged gaugino and higgsino

states determined by the matrix elements of U and V [94–96].

The chargino masses correspond to the singular values [97] of

MC , i.e., the positive square roots of the eigenvalues of M †
CMC :

M2
χ̃+

1
,χ̃+

2

= 1
2

{
|µ|2 + |M2|2 + 2m2

W

∓
√(

|µ|2 + |M2|2 + 2m2
W

)2 − 4|µM2 − m2
W sin 2β|2

}
, (7)

where the states are ordered such that Mχ̃+

1

≤ Mχ̃+

2

. The rela-

tive phase of µ and M2 is physical and potentially observable.

The mixing of the neutral gauginos (B̃ and W̃ 0) and neutral

higgsinos (H̃0
d and H̃0

u) is described (at tree-level) by a 4 × 4

complex symmetric mass matrix [94,95,99,100]:

MN ≡




M1 0 −1
2g′vd

1
2g′vu

0 M2
1
2gvd −1

2gvu

−1
2g′vd

1
2gvd 0 −µ

1
2g′vu −1

2gvu −µ 0




. (8)

To determine the physical neutralino states and their masses,

one must perform a Takagi-diagonalization [97,98,101,102] of

the complex symmetric matrix MN :

W T MNW = diag(M
χ̃0

1

, M
χ̃0

2

, M
χ̃0

3

, M
χ̃0

4

) , (9)

where W is a unitary matrix and the right-hand side of Eq. (9)

is the diagonal matrix of (non-negative) neutralino masses. The

physical neutralino states are denoted by χ̃0
i (i = 1, . . .4), where

the states are ordered such that M
χ̃0

1

≤ M
χ̃0

2

≤ M
χ̃0

3

≤ M
χ̃0

4

.

The χ̃0
i are the linear combinations of the neutral gaugino

and higgsino states determined by the matrix elements of W

(which is denoted by N−1 in Ref. 94). The neutralino masses

correspond to the singular values of MN , i.e., the positive

square roots of the eigenvalues of M †
NMN . Exact formulae

for these masses can be found in Refs. [99] and [103]. A

numerical algorithm for determining the mixing matrix W has

been given in Ref. 104.

If a chargino or neutralino state approximates a particular

gaugino or higgsino state, it is convenient to employ the corre-

sponding nomenclature. Specifically, if |M1| and |M2| are small

compared to mZ and |µ|, then the lightest neutralino χ̃0
1 would

be nearly a pure photino, γ̃, the superpartner of the photon.

If |M1| and mZ are small compared to |M2| and |µ|, then the

lightest neutralino would be nearly a pure bino, B̃, the super-

partner of the weak hypercharge gauge boson. If |M2| and mZ

are small compared to |M1| and |µ|, then the lightest chargino

pair and neutralino would constitute a triplet of roughly mass-

degenerate pure winos, W̃±, and W̃ 0
3 , the superpartners of the

weak SU(2) gauge bosons. Finally, if |µ| and mZ are small

compared to |M1| and |M2|, then the lightest chargino pair and

neutralino would be nearly pure higgsino states, the superpart-

ners of the Higgs bosons. Each of the above cases leads to a

strikingly different phenomenology.

In the NMSSM, an additional Higgs singlet superfield is

added to the MSSM. This superfield comprises two real Higgs

scalar degrees of freedom and an associated neutral higgsino

degree of freedom. Consequently, there are five neutralino mass

eigenstates that are obtained by a Takagi-diagonalization of the

5×5 neutralino mass matrix. In many cases, the fifth neutralino

state is dominated by its SU(2)×U(1) singlet component, and

thus is very weakly coupled to the Standard Model particles

and their superpartners.

I.4.2. The squarks, sleptons and sneutrinos: For a

given fermion f , there are two superpartners, f̃L and f̃R,

where the L and R subscripts simply identify the scalar part-

ners that are related by supersymmetry to the left-handed and

right-handed fermions, fL,R ≡ 1
2(1∓ γ5)f , respectively. (There

is no ν̃R in the MSSM.) However, in general f̃L–f̃R mixing is

possible, in which case f̃L and f̃R are not mass eigenstates. For

three generations of squarks, one must diagonalize 6 × 6 matri-

ces corresponding to the basis (q̃iL, q̃iR), where i = 1, 2, 3 are

the generation labels. For simplicity, only the one-generation

case is illustrated in detail below. (The effects of second and

third generation squark mixing can be significant and is treated

in Ref. 105.)

Using the notation of the third family, the one-generation

tree-level squark squared-mass matrix is given by [106]

M2 =

(
M2

Q̃
+ m2

q + Lq mqX
∗
q

mqXq M2

R̃
+ m2

q + Rq

)
, (10)

where

Xq ≡ Aq − µ∗(cotβ)2T3q , (11)

and T3q = 1
2 [−1

2 ] for q = t [b]. The diagonal squared-masses

are governed by soft-supersymmetry-breaking squared-masses

M2

Q̃
and M2

R̃
≡ M2

Ũ
[M2

D̃
] for q = t [b], the corresponding quark

masses mt [mb], and electroweak correction terms:

Lq ≡ (T3q − eq sin2 θW )m2
Z cos 2β , Rq ≡ eq sin2 θW m2

Z cos 2β ,

(12)
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where eq = 2

3 [−1
3 ] for q = t [b]. The off-diagonal squark

squared-masses are proportional to the corresponding quark

masses and depend on tan β, the soft-supersymmetry-breaking

A-parameters and the higgsino mass parameter µ. Assuming

that the A-parameters are parametrically of the same order

(or smaller) relative to other supersymmetry-breaking mass

parameters, it then follows that q̃L–q̃R mixing effects are small,

with the possible exception of the third generation, where

mixing can be enhanced by factors of mt and mb tan β.

In the case of third generation q̃L–q̃R mixing, the mass

eigenstates (usually denoted by q̃1 and q̃2, with mq̃1 < mq̃2)

are determined by diagonalizing the 2 × 2 matrix M2 given by

Eq. (10). The corresponding squared-masses and mixing angle

are given by [106]:

m2
q̃1,2

=
1

2

[
TrM2 ∓

√
(TrM2)2 − 4 detM2

]
,

sin 2θq̃ =
2mq|Xq|

m2
q̃2
− m2

q̃1

. (13)

The one-generation results above also apply to the charged

sleptons, with the obvious substitutions: q → ℓ with T3ℓ = −1
2

and eℓ = −1, and the replacement of the supersymmetry-

breaking parameters: M2

Q̃
→ M2

L̃
, M2

D̃
→ M2

Ẽ
, and Aq → Aτ .

For the neutral sleptons, ν̃R does not exist in the MSSM, so ν̃L

is a mass eigenstate.

In the case of three generations, the supersymmetry-

breaking scalar-squared masses [M2

Q̃
, M2

Ũ
, M2

D̃
, M2

L̃
, and M2

Ẽ
]

and the A-parameters [AU , AD, and AE] are now 3×3 matrices

as noted in Section I.3.3. The diagonalization of the 6 × 6

squark mass matrices yields f̃iL–f̃jR mixing (for i 6= j). In

practice, since the f̃L–f̃R mixing is appreciable only for the

third generation, this additional complication can often be ne-

glected (although see Ref. 105 for examples in which the mixing

between the second and third generation squarks is relevant).

I.5. The supersymmetric Higgs sector: Consider first

the MSSM Higgs sector [36,37,107]. Despite the large num-

ber of potential CP -violating phases among the MSSM-124

parameters, the tree-level MSSM Higgs sector is automatically

CP -conserving. This follows from the fact that the only poten-

tially complex parameter (m2
12) of the MSSM Higgs potential

can be chosen real and positive by rephasing the Higgs fields,

in which case tanβ is a real positive parameter. Consequently,

the physical neutral Higgs scalars are CP -eigenstates. The

MSSM Higgs sector contains five physical spin-zero particles:

a charged Higgs boson pair (H±), two CP -even neutral Higgs

bosons (denoted by h0 and H0 where mh < mH), and one

CP -odd neutral Higgs boson (A0). The discovery of a Stan-

dard Model-like Higgs boson at the LHC with a mass of 125

GeV [75] strongly suggests that this state should be identified

with h0, although the possibility that the 125 GeV state should

be identified with H0 cannot be completely ruled out [108].

In the NMSSM [41], the scalar component of the singlet

Higgs superfield adds two additional neutral states to the Higgs

sector. In this model, the tree-level Higgs sector can exhibit

explicit CP-violation. If CP is conserved, then the two extra

neutral scalar states are CP -even and CP -odd, respectively.

These states can potentially mix with the neutral Higgs states

of the MSSM. If scalar states exist that are dominantly singlet,

then they are weakly coupled to Standard Model gauge bosons

and fermions through their small mixing with the MSSM Higgs

scalars. Consequently, it is possible that one (or both) of the

singlet-dominated states is considerably lighter than the Higgs

boson that was observed at the LHC.

I.5.1 The Tree-level Higgs sector: The properties of the

Higgs sector are determined by the Higgs potential, which is

made up of quadratic terms [whose squared-mass coefficients

were specified above Eq. (2)] and quartic interaction terms

governed by dimensionless couplings. The quartic interaction

terms are manifestly supersymmetric at tree level (although

these are modified by supersymmetry-breaking effects at the

loop level). In general, the quartic couplings arise from two

sources: (i) the supersymmetric generalization of the scalar

potential (the so-called “F -terms”), and (ii) interaction terms

related by supersymmetry to the coupling of the scalar fields

and the gauge fields, whose coefficients are proportional to the

corresponding gauge couplings (the so-called “D-terms”).

In the MSSM, F -term contributions to the quartic Higgs

self-couplings are absent. As a result, the strengths of the

MSSM quartic Higgs interactions are fixed in terms of the

gauge couplings. Due to the resulting constraint on the form of

the two-Higgs-doublet scalar potential, all the tree-level MSSM

Higgs-sector parameters depend only on two quantities: tanβ

[defined in Eq. (2)] and one Higgs mass usually taken to be

mA. From these two quantities, one can predict the values of

the remaining Higgs boson masses, an angle α (which measures

the mixture of the original Y = ±1 Higgs doublet states in

the physical CP -even neutral scalars), and the Higgs boson

self-couplings. Moreover, the tree-level mass of the lighter CP -

even Higgs boson is bounded, mh ≤ mZ | cos 2β| ≤ mZ [36,37].

This bound can be substantially modified when radiative cor-

rections are included, as discussed in Section I.5.2.

In the NMSSM, the superpotential contains a trilinear term

that couples the two Y = ±1 Higgs doublet superfields and the

singlet Higgs superfield. The coefficient of this term is denoted

by λ. Consequently, the tree-level bound for the mass of the

lightest CP -even MSSM Higgs boson is modified [109],

m2
h ≤ m2

Z cos2 2β + 1
2λ2v2 sin2 2β , (14)

where v ≡ (v2
u + v2

d)
1/2 = 246 GeV. If one demands that λ

should stay finite after renormalization-group evolution up to

the Planck scale, then λ is constrained to lie below about 0.7 at

the electroweak scale. However, in light of the observed Higgs

mass of 125 GeV, there is some phenomenological motivation

for considering larger values of λ [110].

The tree-level Higgs-quark and Higgs-lepton interactions of

the MSSM are governed by the Yukawa couplings that were

defined by the superpotential given in Eq. (1). In particular,
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the Higgs sector of the MSSM is a Type-II two-Higgs dou-

blet model [111], in which one Higgs doublet (Hd) couples

exclusively to the right-handed down-type quark (or lepton)

fields and the second Higgs doublet (Hu) couples exclusively

to the right-handed up-type quark fields. Consequently, the

diagonalization of the fermion mass matrices simultaneously

diagonalizes the matrix Yukawa couplings, resulting in flavor-

diagonal couplings of the neutral Higgs bosons h0, H0 and A0

to quark and lepton pairs.

I.5.2 The radiatively-corrected Higgs sector: When ra-

diative corrections are incorporated, additional parameters of

the supersymmetric model enter via virtual supersymmetric

particles that can appear in loops. The impact of these cor-

rections can be significant [112]. The qualitative behavior of

these radiative corrections can be most easily seen in the large

top-squark mass limit, where in addition, both the splitting of

the two diagonal entries and the off-diagonal entries of the top-

squark squared-mass matrix [Eq. (10)] are small in comparison

to the geometric mean of the two top-squark squared-masses,

M2
S ≡ M

t̃1
M

t̃2
. In this case (assuming mA > mZ), the pre-

dicted upper bound for mh is approximately given by

m2
h .m2

Z cos2 2β +
3g2m4

t

8π2m2
W

[
ln

(
M2

S

m2
t

)
+

X2
t

M2
S

(
1 − X2

t

12M2
S

)]
,

(15)

where Xt ≡ At −µ cot β [cf. Eq. (11)] is proportional to the off-

diagonal entry of the top-squark squared-mass matrix (where

for simplicity, At and µ are taken to be real). The Higgs mass

upper limit is saturated when tanβ is large (i.e., cos2 2β ∼ 1)

and Xt =
√

6 MS, which defines the so-called maximal mixing

scenario.

A more complete treatment of the radiative corrections [113]

shows that Eq. (15) somewhat overestimates the true upper

bound of mh. These more refined computations, which in-

corporate renormalization group improvement and the leading

two-loop contributions, yield mh . 135 GeV in the large tanβ

regime (with an accuracy of a few GeV) for mt = 175 GeV and

MS . 2 TeV [113].

In addition, one-loop radiative corrections can introduce

CP -violating effects in the Higgs sector, which depend on some

of the CP -violating phases among the MSSM-124 parame-

ters [114]. This phenomenon is most easily understood in a

scenario where mA ≪ MS (i.e., all five physical Higgs states are

significantly lighter than the supersymmetry breaking scale).

In this case, one can integrate out the heavy superpartners

to obtain a low-energy effective theory with two Higgs dou-

blets. The resulting effective two-Higgs doublet model will

now contain all possible Higgs self-interaction terms (both CP-

conserving and CP-violating) and Higgs-fermion interactions

(beyond those of Type-II) that are consistent with electroweak

gauge invariance [115].

In the NMSSM, the dominant radiative correction to

Eq. (14) is the same as the one given in Eq. (15). How-

ever, in contrast to the MSSM, one does not need as large a

boost from the radiative corrections to achieve a Higgs mass

of 125 GeV in certain regimes of the NMSSM parameter space

(e.g., tan β ∼ 2 and λ ∼ 0.7).

I.6. Restricting the MSSM parameter freedom: In Sec-

tions I.4 and I.5, we surveyed the parameters that comprise

the MSSM-124. However, without additional restrictions on

the choice of parameters, a generic parameter set within the

MSSM-124 framework is not phenomenologically viable. In

particular, a generic point of the MSSM-124 parameter space

exhibits: (i) no conservation of the separate lepton numbers

Le, Lµ, and Lτ ; (ii) unsuppressed flavor-changing neutral cur-

rents (FCNCs); and (iii) new sources of CP violation that are

inconsistent with the experimental bounds.

For example, the MSSM contains many new sources of CP

violation [116]. Indeed, some combinations of the complex

phases of the gaugino-mass parameters, the A-parameters, and

µ must be less than on the order of 10−2–10−3 to avoid

generating electric dipole moments for the neutron, electron,

and atoms in conflict with observed data [117–119]. The

non-observation of FCNCs [120–122] places additional strong

constraints on the off-diagonal matrix elements of the squark

and slepton soft-supersymmetry-breaking squared-masses and

A-parameters (see Section I.3.3).

The MSSM-124 is also theoretically incomplete as it pro-

vides no explanation for the fundamental origin of the super-

symmetry-breaking parameters. The successful unification of

the Standard Model gauge couplings at very high energies close

to the Planck scale [8,74,123,124] suggests that the high-energy

structure of the theory may be considerably simpler than its

low-energy realization. In a top-down approach, the dynamics

that governs the more fundamental theory at high energies is

used to derive the effective broken-supersymmetric theory at

the TeV scale. A suitable choice for the high energy dynamics

is one that yields a TeV-scale theory that satisfies all relevant

phenomenological constraints.

In this Section, we examine a number of theoretical frame-

works that potentially yield phenomenologically viable regions

of the MSSM-124 parameter space. The resulting supersym-

metric particle spectrum is then a function of a relatively small

number of input parameters. This is accomplished by imposing

a simple structure on the soft-supersymmetry-breaking terms

at a common high-energy scale MX (typically chosen to be

the Planck scale, MP, the grand unification scale, MGUT, or

the messenger scale, Mmess). Using the renormalization group

equations, one can then derive the low-energy MSSM parame-

ters relevant for collider physics. The initial conditions (at the

appropriate high-energy scale) for the renormalization group

equations depend on the mechanism by which supersymmetry

breaking is communicated to the effective low energy theory.

Examples of this scenario are provided by models of gravity-

mediated, anomaly mediated and gauge-mediated supersymme-

try breaking, to be discussed in more detail below. In some

of these approaches, one of the diagonal Higgs squared-mass

parameters is driven negative by renormalization group evolu-

tion [125]. In such models, electroweak symmetry breaking is
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generated radiatively, and the resulting electroweak symmetry-

breaking scale is intimately tied to the scale of low-energy

supersymmetry breaking.

I.6.1. Gaugino mass relations

One prediction that arises in many grand unified supergrav-

ity models is the unification of the (tree-level) gaugino mass

parameters at some high-energy scale MX = MGUT or MPL:

M1(MX) = M2(MX) = M3(MX) = m1/2 . (16)

Due to renormalization group running, in the one-loop approx-

imation the effective low-energy gaugino mass parameters (at

the electroweak scale) are related:

M3 = (g2
s/g2)M2 ≃ 3.5M2 , M1 = (5g′ 2/3g2)M2 ≃ 0.5M2.

(17)

Eq. (17) can also arise more generally in gauge-mediated

supersymmetry-breaking models where the gaugino masses gen-

erated at the messenger scale Mmess (which typically lies sig-

nificantly below the unification scale where the gauge couplings

unify) are proportional to the corresponding squared gauge

couplings at that scale.

When Eq. (17) is satisfied, the chargino and neutralino

masses and mixing angles depend only on three unknown

parameters: the gluino mass, µ, and tan β. It then follows

that the lightest neutralino must be heavier than 46 GeV due

to the non-observation of charginos at LEP [126]. If in addition

|µ| ≫ |M1|&mZ , then the lightest neutralino is nearly a pure

bino, an assumption often made in supersymmetric particle

searches at colliders. Although Eq. (17) is often assumed in

many phenomenological studies, a truly model-independent

approach would take the gaugino mass parameters, Mi, to

be independent parameters to be determined by experiment.

Indeed, an approximately massless neutralino cannot be ruled

out at present by a model-independent analysis [127].

It is possible that the tree-level masses for the gauginos

are zero. In this case, the gaugino mass parameters arise

at one-loop and do not satisfy Eq. (17). For example, the

gaugino masses in AMSB models arise entirely from a model-

independent contribution derived from the super-conformal

anomaly [56,128]. In this case, Eq. (17) is replaced (in the

one-loop approximation) by:

Mi ≃
big

2
i

16π2
m3/2 , (18)

where m3/2 is the gravitino mass and the bi are the co-

efficients of the MSSM gauge beta-functions corresponding

to the corresponding U(1), SU(2), and SU(3) gauge groups,

(b1, b2, b3) = (33
5 , 1,−3). Eq. (18) yields M1 ≃ 2.8M2 and

M3 ≃ −8.3M2, which implies that the lightest chargino pair

and neutralino comprise a nearly mass-degenerate triplet of

winos, W̃±, W̃ 0 (cf. Table 1), over most of the MSSM param-

eter space. For example, if |µ| ≫ mZ , then Eq. (18) implies

that Mχ̃±

1

≃ Mχ̃0
1

≃ M2 [129]. The corresponding supersym-

metric phenomenology differs significantly from the standard

phenomenology based on Eq. (17) [130,131].

Finally, it should be noted that the unification of gaugino

masses (and scalar masses) can be accidental. In particular, the

energy scale where unification takes place may not be directly

related to any physical scale. One version of this phenomenon

has been called mirage unification and can occur in certain

theories of fundamental supersymmetry breaking [132].

I.6.2. The constrained MSSM: mSUGRA, CMSSM,

. . . In the minimal supergravity (mSUGRA) frame-

work [3–6,49–51], a form of the Kähler potential is em-

ployed that yields minimal kinetic energy terms for the MSSM

fields [53]. As a result, the soft-supersymmetry-breaking pa-

rameters at the high-energy scale MX take a particularly simple

form in which the scalar squared-masses and the A-parameters

are flavor-diagonal and universal [51]:

M2

Q̃
(MX) = M2

Ũ
(MX) = M2

D̃
(MX) = m2

01 ,

M2

L̃
(MX) = M2

Ẽ
(MX) = m2

01 ,

m2
1(MX) = m2

2(MX) = m2
0 ,

AU (MX) = AD(MX) = AE(MX) = A01 , (19)

where 1 is a 3 × 3 identity matrix in generation space. As

in the Standard Model, this approach exhibits minimal flavor

violation [133,134], whose unique source is the nontrivial flavor

structure of the Higgs-fermion Yukawa couplings. The gaugino

masses are also unified according to Eq. (16).

Renormalization group evolution is then used to derive the

values of the supersymmetric parameters at the low-energy

(electroweak) scale. For example, to compute squark masses,

one must use the low-energy values for M2

Q̃
, M2

Ũ
, and M2

D̃

in Eq. (10). Through the renormalization group running with

boundary conditions specified in Eqs. (17) and (19), one can

show that the low-energy values of M2

Q̃
, M2

Ũ
, and M2

D̃
depend

primarily on m2
0 and m2

1/2. A number of useful approximate

analytic expressions for superpartner masses in terms of the

mSUGRA parameters can be found in Ref. 135.

In the mSUGRA approach, four flavors of squarks (with

two squark eigenstates per flavor) are nearly mass-degenerate.

If tan β is not very large, b̃R is also approximately degenerate

in mass with the first two generations of squarks. The b̃L mass

and the diagonal t̃L and t̃R masses are typically reduced relative

to the common squark mass of the first two generations. In

addition, there are six flavors of nearly mass-degenerate sleptons

(with two slepton eigenstates per flavor for the charged sleptons

and one per flavor for the sneutrinos); the sleptons are expected

to be somewhat lighter than the mass-degenerate squarks. As

noted below Eq. (10), third-generation squark masses and tau-

slepton masses are sensitive to the strength of the respective

f̃L–f̃R mixing. The LSP is typically the lightest neutralino,

χ̃0
1, which is dominated by its bino component. Regions of

the mSUGRA parameter space in which the LSP is electrically

charged do exist but are not phenomenologically viable [20].

One can count the number of independent parameters in

the mSUGRA framework. In addition to 18 Standard Model
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parameters (excluding the Higgs mass), one must specify m0,

m1/2, A0, the Planck-scale values for µ and B-parameters

(denoted by µ0 and B0), and the gravitino mass m3/2. Without

additional model assumptions, m3/2 is independent of the

parameters that govern the mass spectrum of the superpartners

of the Standard Model [51]. In principle, A0, B0, µ0, and

m3/2 can be complex, although in the mSUGRA approach,

these parameters are taken (arbitrarily) to be real.

As previously noted, renormalization group evolution is used

to compute the low-energy values of the mSUGRA parameters,

which then fixes all the parameters of the low-energy MSSM.

In particular, the two Higgs vacuum expectation values (or

equivalently, mZ and tan β) can be expressed as a function of the

Planck-scale supergravity parameters. The simplest procedure

is to remove µ0 and B0 in favor of mZ and tan β [the sign

of µ0, denoted sgn(µ0) below, is not fixed in this process]. In

this case, the MSSM spectrum and its interaction strengths are

determined by five parameters:

m0 , A0 , m1/2 , tanβ , and sgn(µ0) , (20)

and an independent gravitino mass m3/2 (in addition to the 18

parameters of the Standard Model). In Ref. 136, this frame-

work was dubbed the constrained minimal supersymmetric ex-

tension of the Standard Model (CMSSM).

In the early literature, additional conditions were obtained

by assuming a simplified form for the hidden sector that pro-

vides the fundamental source of supersymmetry breaking. Two

additional relations emerged among the mSUGRA parame-

ters [49,53]: B0 = A0 − m0 and m3/2 = m0. These relations

characterize a theory that was called minimal supergravity when

first proposed. In the subsequent literature, it has been more

common to omit these extra conditions in defining the mSUGRA

model (in which case the mSUGRA model and the CMSSM are

synonymous). The authors of Ref. 137 advocate restoring the

original nomenclature in which the mSUGRA model is defined

with the extra conditions as originally proposed. Additional

mSUGRA variations can be considered where different relations

among the CMSSM parameters are imposed.

One can also relax the universality of scalar masses by

decoupling the squared-masses of the Higgs bosons and the

squarks/sleptons. This leads to the non-universal Higgs mass

models (NUHMs), thereby adding one or two new parameters

to the CMSSM depending on whether the diagonal Higgs scalar

squared-mass parameters (m2
1 and m2

2) are set equal (NUHM1)

or taken to be independent (NUHM2) at the high energy scale

M2
X . Clearly, this modification preserves the minimal flavor vi-

olation of the mSUGRA approach. Nevertheless, the mSUGRA

approach and its NUHM generalizations are probably too sim-

plistic. Theoretical considerations suggest that the universality

of Planck-scale soft-supersymmetry-breaking parameters is not

generic [138]. In particular, effective operators at the Planck

scale exist that do not respect flavor universality, and it is

difficult to find a theoretical principle that would forbid them.

In the framework of supergravity, if anomaly mediation is

the sole source of supersymmetry breaking, then the gaugino

mass parameters, diagonal scalar squared-mass parameters, and

the supersymmetry-breaking trilinear scalar interaction terms

(proportional to λfAF ) are determined in terms of the beta

functions of the gauge and Yukawa couplings and the anoma-

lous dimensions of the squark and slepton fields [56,128,131].

As noted in Section I.2.3, this approach yields tachyonic slep-

tons in the MSSM unless additional sources of supersymmetry

breaking are present. In the minimal AMSB (mAMSB) sce-

nario, a universal squared-mass parameter, m2
0, is added to the

AMSB expressions for the diagonal scalar squared-masses [131].

Thus, the mAMSB spectrum and its interaction strengths are

determined by four parameters, m2
0, m3/2, tanβ and sgn(µ0).

The mAMSB scenario appears to be ruled out based on

the observed value of the Higgs boson mass, assuming an

upper limit on MS of a few TeV, since the mAMSB constraint

on AF implies that the maximal mixing scenario cannot be

achieved [cf. Eq. (15)]. Indeed, under the stated assumptions,

the mAMSB Higgs mass upper bound lies below the observed

Higgs mass value [139]. Thus within the AMSB scenario,

either an additional supersymmetry-breaking contribution to

λfAF and/or new ingredients beyond the MSSM are required.

I.6.3. Gauge-mediated supersymmetry breaking: In

contrast to models of gravity-mediated supersymmetry break-

ing, the universality of the fundamental soft-supersymmetry-

breaking squark and slepton squared-mass parameters is guar-

anteed in gauge-mediated supersymmetry breaking (GMSB) be-

cause the supersymmetry breaking is communicated to the sec-

tor of MSSM fields via gauge interactions [61,62]. In GMSB

models, the mass scale of the messenger sector (or its equivalent)

is sufficiently below the Planck scale such that the additional

supersymmetry-breaking effects mediated by supergravity can

be neglected.

In the minimal GMSB approach, there is one effective

mass scale, Λ, that determines all low-energy scalar and gaug-

ino mass parameters through loop effects, while the resulting

A-parameters are suppressed. In order that the resulting su-

perpartner masses be of order 1 TeV or less, one must have

Λ ∼ 100 TeV. The origin of the µ and B-parameters is quite

model-dependent, and lies somewhat outside the ansatz of

gauge-mediated supersymmetry breaking.

The simplest GMSB models appear to be ruled out based

on the observed value of the Higgs boson mass. Due to sup-

pressed A parameters, it is difficult to boost the contributions

of the radiative corrections in Eq. (15) to obtain a Higgs mass

as large as 125 GeV. However, this conflict can be alleviated

in more complicated GMSB models [140]. To analyze these

generalized GMSB models, it has been especially fruitful to de-

velop model-independent techniques that encompass all known

GMSB models [141]. These techniques are well-suited for a

comprehensive analysis [142] of the phenomenological profile of

gauge-mediated supersymmetry breaking.
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The gravitino is the LSP in GMSB models, as noted in

Section I.2.3. As a result, the next-to-lightest supersymmetric

particle (NLSP) now plays a crucial role in the phenomenology

of supersymmetric particle production and decays. Note that

unlike the LSP, the NLSP can be charged. In GMSB models,

the most likely candidates for the NLSP are χ̃0
1 and τ̃±

R . The

NLSP will decay into its superpartner plus a gravitino (e.g.,

χ̃0
1 → γG̃, χ̃0

1 → ZG̃, χ̃0
1 → h0G̃ or τ̃±

R → τ±G̃), with lifetimes

and branching ratios that depend on the model parameters.

There are also GMSB scenarios in which there are several nearly

degenerate co-NLSP’s, any one of which can be produced at the

penultimate step of a supersymmetric decay chain [143]. For

example, in the slepton co-NLSP case, all three right-handed

sleptons are close enough in mass and thus can each play the

role of the NLSP.

Different choices for the identity of the NLSP and its

decay rate lead to a variety of distinctive supersymmetric

phenomenologies [62,144]. For example, a long-lived χ̃0
1-NLSP

that decays outside collider detectors leads to supersymmetric

decay chains with missing energy in association with leptons

and/or hadronic jets (this case is indistinguishable from the

standard phenomenology of the χ̃0
1-LSP). On the other hand, if

χ̃0
1 → γG̃ is the dominant decay mode, and the decay occurs

inside the detector, then nearly all supersymmetric particle

decay chains would contain a photon. In contrast, in the case

of a τ̃±
R -NLSP, the τ̃±

R would either be long-lived or would decay

inside the detector into a τ -lepton plus missing energy.

In GMSB models based on the MSSM, the fundamental

origins of the µ and B-parameters are not explicitly given, as

previously noted. An alternative approach is to consider GMSB

models based on the NMSSM [145]. The vacuum expectation

value of the additional singlet Higgs superfield can be used

to generate effective µ and B-parameters [146]. Such models

provide an alternative GMSB framework for achieving a Higgs

mass of 125 GeV, while still being consistent with LHC bounds

on supersymmetric particle masses [147].

I.6.4. The phenomenological MSSM: Of course, any of

the theoretical assumptions described in this Section must

be tested experimentally and could turn out to be wrong.

To facilitate the exploration of MSSM phenomena in a more

model-independent way while respecting the constraints noted

at the beginning of this Section, the phenomenological MSSM

(pMSSM) has been introduced [148].

The pMSSM is governed by 19 independent real supersym-

metric parameters: the three gaugino mass parameters M1, M2

and M3, the Higgs sector parameters mA and tanβ, the Hig-

gsino mass parameter µ, five sfermion squared-mass parameters

for the degenerate first and second generations (M2

Q̃
, M2

Ũ
, M2

D̃
,

M2

L̃
and M2

Ẽ
), the five corresponding sfermion squared-mass

parameters for the third generation, and three third-generation

A-parameters (At, Ab and Aτ ). As previously noted, the first

and second generation A-parameters can be neglected as their

phenomenological consequences are negligible.

A comprehensive study of the 19-parameter pMSSM is

computationally expensive. This is somewhat ameliorated in

Ref. 149, where the number of pMSSM parameters is reduced

to ten by assuming one common squark squared-mass param-

eter for the first two generations, a second common squark

squared-mass parameter for the third generation, a common

slepton squared-mass parameter and a common third gener-

ation A parameter. Applications of the pMSSM approach to

supersymmetric particle searches, and a discussion of the im-

plications for past and future LHC studies can be found in

Refs. [149] and [150].

I.6.5. Simplified models:

It is possible to focus on a small subset of the supersymmet-

ric particle spectrum and study its phenomenology with minimal

theoretical bias. In this simplified model approach [151], one

considers the production of a pair of specific superpartners and

follows their decay chains under the assumption that a limited

number of decay modes dominate. Simplified models depend

only on a few relevant quantities (cross sections, branching

ratios and masses), and thus provide a framework for studies

of supersymmetric phenomena, independently of the precise de-

tails of the theory that govern the supersymmetric parameters.

Applications of the simplified models approach to super-

symmetric particle searches and a discussion of their limitations

can be found in Ref. 13.

I.7. Experimental data confronts the MSSM:

At present, there is no evidence for weak-scale supersymme-

try from the data analyzed by the LHC experiments. Recent

LHC data has been especially effective in ruling out the exis-

tence of colored supersymmetric particles (primarily the gluino

and the first generation of squarks) with masses below about

1 TeV [13,152]. The precise mass limits are model dependent.

For example, higher mass colored superpartners have been ruled

out in the context of the CMSSM. In less constrained frame-

works of the MSSM, regions of parameter space can be identified

in which lighter squarks and gluinos below 1 TeV cannot be

definitely ruled out [13]. Additional constraints arise from

limits on the contributions of virtual supersymmetric particle

exchange to a variety of Standard Model processes [120–122].

In light of these negative results, one must confront the

tension that exists between the theoretical expectations for the

magnitude of the supersymmetry-breaking parameters and the

non-observation of supersymmetric phenomena.

I.7.1 Naturalness constraints and the little hierarchy:

In Section I, weak-scale supersymmetry was motivated as a

natural solution to the hierarchy problem, which could provide

an understanding of the origin of the electroweak symmetry-

breaking scale without a significant fine-tuning of the funda-

mental parameters that govern the MSSM. In this context, the

soft-supersymmetry-breaking masses must be generally of the

order of 1 TeV or below [153]. This requirement is most easily

seen in the determination of mZ by the scalar potential mini-

mum condition. In light of Eq. (4), to avoid the fine-tuning of
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MSSM parameters, the soft-supersymmetry-breaking squared-

masses m2
1 and m2

2 and the higgsino squared-mass |µ|2 should

all be roughly of O(m2
Z). Many authors have proposed quanti-

tative measures of fine-tuning [153–155]. One of the simplest

measures is the one given by Barbieri and Giudice [153],

∆i ≡
∣∣∣∣
∂ ln m2

Z

∂ ln pi

∣∣∣∣ , ∆ ≡ max ∆i , (21)

where the pi are the MSSM parameters at the high-energy scale

MX , which are set by the fundamental supersymmetry-breaking

dynamics. The theory is more fine-tuned as ∆ becomes larger.

One can apply the fine-tuning measure to any explicit model

of supersymmetry breaking. For example, in the approaches

discussed in Section I.6, the pi are parameters of the model at

the energy scale MX where the soft-supersymmetry-breaking

operators are generated by the dynamics of supersymmetry

breaking. Renormalization group evolution then determines the

values of the parameters appearing in Eq. (4) at the electroweak

scale. In this way, ∆ is sensitive to all the supersymmetry-

breaking parameters of the model (see e.g. Ref. 156).

As anticipated, there is a tension between the present exper-

imental lower limits on the masses of colored supersymmetric

particles [157,158] and the expectation that supersymmetry-

breaking is associated with the electroweak symmetry-breaking

scale. Moreover, this tension is exacerbated by the observed

value of the Higgs mass (mh ≃ 125 GeV), which is not far

from the MSSM upper bound (mh . 135 GeV) [which depends

on the top-squark mass and mixing as noted in Section I.5.2].

If MSUSY characterizes the scale of supersymmetric particle

masses, then one would crudely expect ∆ ∼ M2
SUSY/m2

Z . For

example, if MSUSY ∼ 1 TeV then there must be at least a

∆−1 ∼ 1% fine-tuning of the MSSM parameters to achieve

the observed value of mZ . This separation of the electroweak

symmetry-breaking and supersymmetry-breaking scales is an

example of the little hierarchy problem [159,160].

However, one must be very cautious when drawing conclu-

sions about the viability of weak-scale supersymmetry to explain

the origin of electroweak symmetry breaking [161]. First, one

must decide the largest tolerable value of ∆ within the frame-

work of weak-scale supersymmetry (should it be ∆ ∼ 10? 100?

1000?). Second, the fine-tuning parameter ∆ depends quite

sensitively on the structure of the supersymmetry-breaking

dynamics, such as the value of MX and relations among

supersymmetry-breaking parameters in the fundamental high

energy theory [162]. For example, in so-called focus point su-

persymmetry models [163], all squark masses can be as heavy

as 5 TeV without significant fine-tuning. This can be attributed

to a focusing behavior of the renormalization group evolution

where certain relations hold among the high-energy values of

the scalar squared-mass supersymmetry-breaking parameters.

Among the colored superpartners, the third generation

squarks generically have the most significant impact on the

naturalness constraints [164], while their masses are the least

constrained by the LHC data. Hence, in the absence of any

relation between third generation squarks and those of the

first two generations, the naturalness constraints due to present

LHC data can be considerably weaker than those obtained in

the CMSSM. Indeed, models with first and second generation

squark masses in the multi-TeV range do not generically require

significant fine tuning. Such models have the added benefit

that undesirable FCNCs mediated by squark exchange are

naturally suppressed [165]. Other MSSM mass spectra that

are compatible with moderate fine tuning have been considered

in Refs. [152,162,166].

The lower bounds on squark and gluino masses may not

be as large as suggested by the experimental analyses based on

the CMSSM or simplified models. For example, mass bounds

for the gluino and the first and second generation squarks

based on the CMSSM can often be evaded in alternative or

extended MSSM models, e.g., compressed supersymmetry [167]

and stealth supersymmetry [168]. Moreover, experimental

limits on the masses for the third generation squarks (which

enter the fine-tuning considerations more directly) are less

constrained than the masses of other colored supersymmetric

states.

Among the uncolored superpartners, the higgsinos are the

most impacted by the naturalness constraints. In light of

Eq. (4), the masses of the two neutral higgsinos and charged

higgsino pair (which are governed by |µ|) should not be sig-

nificantly larger than mZ to avoid an unnatural fine-tuning of

the supersymmetric parameters. The experimental limits on

the masses of such light higgsinos are not well constrained, as

they are difficult to detect directly at the LHC due to their soft

decay products.

Finally, one can also consider extensions of the MSSM in

which the degree of fine-tuning is relaxed. For example, it has

already been noted in Section I.5.2 that it is possible to accom-

modate the observed Higgs mass more easily in the NMSSM due

to contributions to m2
h proportional to the parameter λ. This

means that we do not have to rely on a large contribution from

the radiative corrections to boost the Higgs mass sufficiently

above its tree-level bound. This allows for smaller top squark

masses, which are more consistent with the demands of nat-

uralness. The reduction of the fine-tuning in various NMSSM

models was initially advocated in Ref. 169, and more recently

has been exhibited in Refs. [110,170]. Naturalness can also

be relaxed in extended supersymmetric models with vector-like

quarks [171] and in gauge extensions of the MSSM [172].

Thus, it is premature to conclude that weak-scale supersym-

metry is on the verge of exclusion. Nevertheless, it is possible

to sharpen the upper bounds on superpartner masses based on

naturalness arguments, which ultimately will either confirm or

refute the weak scale supersymmetry hypothesis [173].

I.7.2 Constraints from virtual exchange of supersym-

metric particles

There are a number of low-energy measurements that are

sensitive to the effects of new physics through indirect searches
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via supersymmetric loop effects. For example, the virtual ex-

change of supersymmetric particles can contribute to the muon

anomalous magnetic moment, aµ ≡ 1
2(g − 2)µ, as reviewed in

Ref. 174. The Standard Model prediction for aµ exhibits a de-

viation at the level of 3—4σ from the experimentally observed

value [175]. This discrepancy is difficult to accommodate in

the constrained supersymmetry models of Section I.6.2 and I.6.3

given the present sparticle mass bounds [158]. Nevertheless,

there are regions of the more general pMSSM parameter space

that are consistent with the observed value of aµ [176].

The rare inclusive decay b → sγ also provides a sensitive

probe to the virtual effects of new physics beyond the Standard

Model. Recent experimental measurements of B → Xs+γ [177]

are in very good agreement with the theoretical Standard Model

predictions of Ref. 178. Since supersymmetric loop corrections

can contribute an observable shift from the Standard Model

predictions, the absence of any significant deviations places

useful constraints on the MSSM parameter space [179].

The rare decay Bs → µ+µ− is especially sensitive to su-

persymmetric loop effects, with some loop contributions scaling

as tan6 β when tanβ ≫ 1 [180]. The observation of this rare

decay mode along with the first observation of Bd → µ+µ−

are compatible with the predicted Standard Model rates at the

1.2σ and 2.2σ level, respectively [181].

The decays B± → τ±ντ and B → D(∗)τ−ντ are noteworthy,

since in models with extended Higgs sectors such as the MSSM,

these processes possess tree-level charged Higgs exchange con-

tributions that can compete with the dominant W -exchange.

Experimental measurements of B± → τ±ντ [182] initially sug-

gested an enhanced rate with respect to the Standard Model,

although the latest results of the Belle Collaboration are con-

sistent with Standard Model expectations. The BaBar Col-

laboration measured values of the rates for B → Dτ−ντ and

B → D∗τ−ντ [183] that showed a combined 3.4σ discrepancy

from the Standard Model predictions, which was also not com-

patible with the Type-II Higgs Yukawa couplings employed by

the MSSM. Although subsequent measurements of the Belle

and LHCb Collaborations [184] are consistent with the BaBar

measurements, the most recent Belle measurements are also

compatible (at the 2σ level) with either the Standard Model or

a Type-II two-Higgs doublet model.

In summary, there are a few hints of possible deviations

from the Standard Model in rare B decays, although none of

the discrepancies are significant enough to definitively rule out

the Standard Model. The absence of a significant deviation in

these B-physics observables from their Standard Model predic-

tions also places useful constraints on the MSSM parameter

space [122,157,185].

Finally, we note that the constraints from precision elec-

troweak observables [186] are easily accommodated in models of

weak-scale supersymmetry [187]. Thus, robust regions of the

MSSM parameter space, compatible with the results of direct

and indirect searches for supersymmetry, remain unconstrained.

I.8. Massive neutrinos in weak-scale supersymmetry:

In the minimal Standard Model and its supersymmetric ex-

tension, there are no right-handed neutrinos, and Majorana

mass terms for the left-handed neutrinos are absent. How-

ever, given the overwhelming evidence for neutrino masses and

mixing [188,189], any viable model of fundamental particles

must provide a mechanism for generating neutrino masses [190].

In extended supersymmetric models, various mechanisms exist

for producing massive neutrinos [191]. Although one can de-

vise models for generating massive Dirac neutrinos [192], the

most common approaches for incorporating neutrino masses are

based on L-violating supersymmetric extensions of the MSSM,

which generate massive Majorana neutrinos. Two classes of

L-violating supersymmetric models will now be considered.

I.8.1. The supersymmetric seesaw: Neutrino masses can

be incorporated into the Standard Model by introducing

SU(3)×SU(2)×U(1) singlet right-handed neutrinos (νR) and

super-heavy Majorana masses (typically near the grand unifi-

cation mass scale) for νR. In addition, one must also include

a standard Yukawa couplings between the lepton doublets, the

Higgs doublet, and νR. The Higgs vacuum expectation value

then induces an off-diagonal νL–νR mass on the order of the

electroweak scale. Diagonalizing the neutrino mass matrix (in

the three-generation model) yields three superheavy neutrino

states, and three very light neutrino states that are identified

with the light neutrinos observed in nature. This is the seesaw

mechanism [193].

It is straightforward to construct a supersymmetric gen-

eralization of the seesaw model of neutrino masses [194,195]

by promoting the right-handed neutrino field to a superfield

N̂ c = (ν̃R ; νR). Integrating out the heavy right-handed neu-

trino supermultiplet yields a new term in the superpotential

[cf. Eq. (1)] of the form

Wseesaw =
f

MR
(ĤU L̂)(ĤU L̂) , (22)

where MR is the mass scale of the right-handed neutrino sector

and f is a dimensionless constant. Note that lepton number is

broken by two units, which implies that R-parity is conserved.

The supersymmetric analogue of the Majorana neutrino mass

term in the sneutrino sector leads to sneutrino–antisneutrino

mixing phenomena [195,196].

I.8.2. R-parity-violating supersymmetry: In order to in-

corporate massive neutrinos in renormalizable supersymmetric

models while retaining the minimal particle content of the

MSSM, one must relax the assumption of R-parity invari-

ance. The most general R-parity-violating (RPV) model in-

volving the MSSM spectrum introduces many new parameters

to both the supersymmetry-conserving and the supersymmetry-

breaking sectors [197]. Each new interaction term violates

either B or L conservation. For example, starting from the

MSSM superpotential given in Eq. (1) [suitably generalized to
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three generations of quarks, leptons and their superpartners],

consider the effect of adding the following new terms:

WRPV = (λL)pmnL̂pL̂mÊc
n + (λ′

L)pmnL̂pQ̂mD̂c
n

+ (λB)pmnÛ c
pD̂c

mD̂c
n + (µL)pĤuL̂p , (23)

where p, m, and n are generation indices, and gauge group

indices are suppressed. Eq. (23) yields new scalar-fermion

Yukawa couplings consisting of all possible combinations involv-

ing two Standard Model fermions and one scalar superpartner.

Note that the term in Eq. (23) proportional to λB violates

B, while the other three terms violate L. The L-violating term

in Eq. (23) proportional to µL is the RPV generalization of

the µĤuĤd term of the MSSM superpotential, in which the

Y = −1 Higgs/higgsino supermultiplet Ĥd is replaced by the

slepton/lepton supermultiplet L̂p.

Phenomenological constraints derived from data on various

low-energy B- and L-violating processes can be used to estab-

lish limits on each of the coefficients (λL)pmn, (λ′
L)pmn, and

(λB)pmn taken one at a time [197,198]. If more than one coef-

ficient is simultaneously non-zero, then the limits are in general

more complicated [199]. All possible RPV terms cannot be

simultaneously present and unsuppressed; otherwise the proton

decay rate would be many orders of magnitude larger than the

present experimental bound. One way to avoid proton decay

is to impose B or L invariance (either one alone would suffice).

Otherwise, one must accept the requirement that certain RPV

coefficients must be extremely suppressed.

One particularly interesting class of RPV models is one

in which B is conserved, but L is violated. It is possible to

enforce baryon number conservation (and the stability of the

proton), while allowing for lepton-number-violating interactions

by imposing a discrete Z3 baryon triality symmetry on the low-

energy theory [200], in place of the standard Z2 R-parity. Since

the distinction between the Higgs and matter supermultiplets is

lost in RPV models where L is violated, the mixing of sleptons

and Higgs bosons, the mixing of neutrinos and neutralinos, and

the mixing of charged leptons and charginos are now possible,

leading to more complicated mass matrices and mass eigenstates

than in the MSSM. Incorporating neutrino masses and mixing

in this framework can be found, e.g., in Ref. 201.

Alternatively, one can consider imposing a lepton parity

such that all lepton superfields are odd [202,203]. In this

case, only the B-violating term in Eq. (23) survives, and L

is conserved. Models of this type have been considered in

Ref. 204. Since L is conserved in these models, the mixing of

the lepton and Higgs superfields is forbidden. However, one

expects that lepton parity cannot be exact due to quantum

gravity effects. Remarkably, the standard Z2 R-parity and the

Z3 baryon triality are stable with respect to quantum gravity

effects, as they can be identified as residual discrete symmetries

that arise from broken non-anomalous gauge symmetries [202].

The supersymmetric phenomenology of the RPV models

exhibits features that are distinct from that of the MSSM [197].

The LSP is no longer stable, which implies that not all su-

persymmetric decay chains must yield missing-energy events

at colliders. Indeed, the sparticle mass bounds obtained in

searches for R-parity-conserving supersymmetry can be consid-

erably relaxed in certain RPV models due to the absence of

large missing transverse energy signatures [205]. This can al-

leviate some of the tension with naturalness discussed in Section

I.7.1.

Nevertheless, the loss of the missing-energy signature is

often compensated by other striking signals (which depend

on which R-parity-violating parameters are dominant). For

example, supersymmetric particles in RPV models can be

singly produced (in contrast to R-parity-conserving models

where supersymmetric particles must be produced in pairs).

The phenomenology of pair-produced supersymmetric particles

is also modified in RPV models due to new decay chains not

present in R-parity-conserving supersymmetry models [197].

In RPV models with lepton number violation (these include

weak-scale supersymmetry models with baryon triality men-

tioned above), both ∆L=1 and ∆L=2 phenomena are allowed,

leading to neutrino masses and mixing [206], neutrinoless

double-beta decay [207], sneutrino-antisneutrino mixing [208],

and resonant s-channel production of sneutrinos in e+e− colli-

sions [209] and charged sleptons in pp̄ and pp collisions [210].

I.9. Extensions beyond the MSSM: Extensions of the

MSSM have been proposed to solve a variety of theoretical

problems. One such problem involves the µ parameter of the

MSSM. Although µ is a supersymmetry-preserving parameter,

it must be of order the effective supersymmetry-breaking scale

of the MSSM to yield a consistent supersymmetric phenomenol-

ogy [211]. Any natural solution to the so-called µ-problem

must incorporate a symmetry that enforces µ = 0 and a small

symmetry-breaking parameter that generates a value of µ that

is not parametrically larger than the effective supersymmetry-

breaking scale [212]. A number of proposed mechanisms in

the literature (e.g., see Refs. [211–214]) provide concrete

examples of a natural solution to the µ-problem of the MSSM.

In extensions of the MSSM, new compelling solutions to the

µ-problem are possible. For example, one can replace µ by the

vacuum expectation value of a new SU(3)×SU(2)×U(1) singlet

scalar field. This is the NMSSM, which yields phenomena

that were briefly discussed in Sections I.4–I.7. The NMSSM

superpotential consists only of trilinear terms whose coefficients

are dimensionless. There are some advantages to extending the

NMSSM further to the USSM [102] by adding a new broken

U(1) gauge symmetry [215], under which the singlet field is

charged.

Alternatively, one can consider a generalized version of the

NMSSM (called the GNMSSM in Ref. 170), where all possible

renormalizable terms in the superpotential are allowed, which

yields new supersymmetric mass terms (analogous to the µ

term of the MSSM). Although the GNMSSM does not solve the

µ-problem, it does exhibit regions of parameter space in which

the degree of fine-tuning is relaxed, as discussed in Section I.7.1.
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The generation of the µ term may be connected with the

solution to the strong CP problem [216]. Models of this type,

which include new gauge singlet fields that are charged under

the Peccei-Quinn (PQ) symmetry [217], were first proposed in

Ref. 211. The breaking of the PQ symmetry is thus intimately

tied to supersymmetry breaking, while naturally yielding a

value of µ that is of order the electroweak symmetry breaking

scale [218].

It is also possible to add higher dimensional Higgs mul-

tiplets, such as Higgs triplet superfields [219], provided a

custodial-symmetric model (in which the ρ-parameter of preci-

sion electroweak physics is close to 1 [186]) can be formulated.

Such models can provide a rich phenomenology of new signals

for future LHC studies.

All supersymmetric models discussed in this review possess

self-conjugate fermions—the Majorana gluinos and neutralinos.

However, it is possible to add additional chiral superfields

in the adjoint representation. The spin-1/2 components of

these new superfields can pair up with the gauginos to form

Dirac gauginos [220,221]. Such states appear in models of

so-called supersoft supersymmetry breaking [222], in some

generalized GMSB models [223] and in R-symmetric super-

symmetry [29,224]. Such approaches often lead to improved

naturalness and/or significantly relaxed flavor constraints. The

implications of models of Dirac gauginos on the observed Higgs

boson mass and its properties is addressed in Ref. 225.

For completeness, we briefly note other MSSM extensions

considered in the literature. These include an enlarged elec-

troweak gauge group beyond SU(2)×U(1) [226]; and/or the

addition of new (possibly exotic) matter supermultiplets such

as vector-like fermions and their superpartners [171,227].
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II.1. Introduction

Supersymmetry (SUSY), a transformation relating fermions

to bosons and vice versa [1–9], is one of the most compelling

possible extensions of the Standard Model of particle physics

(SM) that could be discovered at high-energy colliders such as

the Large Hadron Collider (LHC) at CERN.

On theoretical grounds SUSY is motivated as a general-

ization of space-time symmetries. A low-energy realization of

SUSY, i.e., SUSY at the TeV scale, is, however, not a neces-

sary consequence. Instead, low-energy SUSY is motivated by

the possible cancellation of quadratic divergences in radiative

corrections to the Higgs boson mass [10–15]. Furthermore, it

is intriguing that a weakly interacting, (meta)stable supersym-

metric particle might make up some or all of the dark matter in

the universe [16–18]. In addition, SUSY predicts that gauge

couplings, as measured experimentally at the electroweak scale,

unify at an energy scale O(1016)GeV (“GUT scale”) near the

Planck scale [19–25].

In the minimal supersymmetric extension to the Standard

Model, the so called MSSM [11,26,27], a supersymmetry

transformation relates every fermion and gauge boson in the

SM to a supersymmetric partner with half a unit of spin

difference, but otherwise with the same properties and quantum

numbers. These are the “sfermions”: squarks (q̃) and sleptons

(ℓ̃, ν̃), and the “gauginos”. The MSSM Higgs sector contains

two doublets, for up-type quarks and for down-type quarks

and charged leptons respectively. After electroweak symmetry

breaking, five Higgs bosons arise, of which two are charged.

The supersymmetric partners of the Higgs doublets are known

as “higgsinos.” The charged weak gauginos and higgsinos mix

to “charginos” (χ̃±), and the neutral ones mix to “neutralinos”

(χ̃0). The SUSY partners of the gluons are known as “gluinos”

(g̃). The fact that such particles are not yet observed leads to

the conclusion that, if supersymmetry is realized, it is a broken

symmetry. A description of SUSY in the form of an effective

Lagrangian with only “soft” SUSY breaking terms and SUSY

masses at the TeV scale maintains cancellation of quadratic

divergences in particle physics models.

The phenomenology of SUSY is to a large extent determined

by the SUSY breaking mechanism and the SUSY breaking

scale. This determines the SUSY particle masses, the mass

hierarchy, the field contents of physical particles, and their

decay modes. In addition, phenomenology crucially depends

on whether the multiplicative quantum number of R-parity

[27], R = (−1)3(B−L)+2S , where B and L are baryon and

lepton numbers and S is the spin, is conserved or violated. If

R-parity is conserved, SUSY particles (sparticles), which have

odd R-parity, are produced in pairs and the decays of each

SUSY particle must involve an odd number of lighter SUSY

particles. The lightest SUSY particle (LSP) is then stable

and often assumed to be a weakly interacting massive particle

(WIMP). If R-parity is violated, new terms λijk, λ′
ijk and

λ′′
ijk appear in the superpotential, where ijk are generation

indices; λ-type couplings appear between lepton superfields
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only, λ′′-type are between quark superfields only, and λ′-

type couplings connect the two. R-parity violation implies

lepton and/or baryon number violation. More details of the

theoretical framework of SUSY are discussed elsewhere in this

volume [28].

Today low-energy data from flavor physics experiments,

high-precision electroweak observables as well as astrophysical

data impose strong constraints on the allowed SUSY parameter

space. Recent examples of such data include measurements

of the rare B-meson decay Bs → µ+µ− [29] and accurate

determinations of the cosmological dark matter relic density

constraint [30,31].

These indirect constraints are often more sensitive to higher

SUSY mass scales than experiments searching for direct spar-

ticle production at colliders, but the interpretation of these

results is often strongly model dependent. In contrast, direct

searches for sparticle production at collider experiments are less

subject to interpretation ambiguities and therefore they play a

crucial role in the search for SUSY.

The discovery of a new scalar boson with a mass around

125 GeV compatible with a Higgs boson imposes constraints on

SUSY, which are discussed elsewhere [28,32].

In this review we limit ourselves to direct searches, covering

data analyses at LEP, HERA, the Tevatron and the LHC, with

emphasis on the latter. For more details on LEP and Tevatron

constraints, see earlier PDG reviews [33].

II.2. Experimental search program

The electron-positron collider LEP was operational at

CERN between 1989 and 2000. In the initial phase, center-

of-mass energies around the Z-peak were probed, but after

1995 the LEP experiments collected a significant amount of

luminosity at higher center-of-mass energies, some 235 pb−1 per

experiment at
√

s ≥ 204 GeV, with a maximum
√

s of 209 GeV.

Searches for new physics at e+e− colliders benefit from the

clean experimental environment and the fact that momentum

balance can be measured not only in the plane transverse to the

beam, but also in the direction along the beam (up to the beam

pipe holes), defined as the longitudinal direction. Searches at

LEP are dominated by the data samples taken at the highest

center-of-mass energies.

Significant constraints on SUSY have been set by the

CDF and D0 experiments at the Tevatron, a proton-antiproton

collider at a center-of-mass energy of up to 1.96 TeV. CDF and

D0 have collected integrated luminosities between 10 and 11

fb−1 each up to the end of collider operations in 2011.

The electron-proton collider HERA provided collisions to

the H1 and ZEUS experiments between 1992 and 2007, at

a center-of-mass energy up to 318 GeV. A total integrated

luminosity of approximately 0.5 fb−1 has been collected by

each experiment. Since in ep collisions no annihilation process

takes place, SUSY searches at HERA typically look for R-parity

violating production of single SUSY particles.

The LHC has started proton-proton operation at a center-

of-mass energy of 7 TeV in 2010. By the end of 2011 the

experiments ATLAS and CMS had collected about 5 fb−1

of integrated luminosity each, and the LHCb experiment had

collected approximately 1 fb−1. In 2012, the LHC operated at a

center-of-mass energy of 8 TeV, and ATLAS and CMS collected

approximately 20 fb−1 each, whereas LHCb collected 2 fb−1.

In 2015, the LHC has started Run 2, with center-of-mass energy

of 13 TeV.

Proton-(anti)proton colliders produce interactions at higher

center-of-mass energies than those available at LEP, and cross

sections of QCD-mediated processes are larger, which is re-

flected in the higher sensitivity for SUSY particles carrying color

charge: squarks and gluinos. Large background contributions

from Standard Model processes, however, pose challenges to

trigger and analysis. Such backgrounds are dominated by mul-

tijet production processes, including, particularly at the LHC,

those of top quark production, as well as jet production in as-

sociation with vector bosons. The proton momentum is shared

between its parton constituents, and in each collision only a

fraction of the total center-of-mass energy is available in the

hard parton-parton scattering. Since the parton momenta in

the longitudinal direction are not known on an event-by-event

basis, use of momentum conservation constraints in an analysis

is restricted to the transverse plane, leading to the definition of

transverse variables, such as the missing transverse momentum,

and the transverse mass. Proton-proton collisions at the LHC

differ from proton-antiproton collisions at the Tevatron in the

sense that there are no valence anti-quarks in the proton, and

that gluon-initiated processes play a more dominant role. The

increased center-of-mass energy of the LHC compared to the

Tevatron significantly extends the kinematic reach for SUSY

searches. This is reflected foremost in the sensitivity for squarks

and gluinos, but also for other SUSY particles.

The main production mechanisms of massive colored spar-

ticles at hadron colliders are squark-squark, squark-gluino and

gluino-gluino production; when “squark” is used “antisquark”

is also implied. The typical SUSY search signature at hadron

colliders contains high-pT jets, which are produced in the decay

chains of heavy squarks and gluinos, and significant missing mo-

mentum originating from the two LSPs produced at the end of

the decay chain. Assuming R-parity conservation, the LSPs are

neutral and weakly interacting massive particles which escape

detection. Standard Model backgrounds with missing trans-

verse momentum include leptonic W/Z-boson decays, heavy-

flavor decays to neutrinos, and multijet events that may be

affected by instrumental effects such as jet mismeasurement.

Selection variables designed to separate the SUSY signal

from the Standard Model backgrounds include HT, Emiss
T , and

meff . The quantities HT and Emiss
T refer to the measured

transverse energy and missing transverse momentum in the

event, respectively. They are usually defined as the scalar

(HT) and negative vector sum (Emiss
T ) of the transverse jet

energies or transverse calorimeter clusters energies measured in
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the event. The quantity meff is referred to as the effective mass

of the event and is defined as meff = HT + |Emiss
T |. The peak

of the meff distribution for SUSY signal events correlates with

the SUSY mass scale, in particular with the mass difference

between the primary produced SUSY particle and the LSP [34],

whereas the Standard Model backgrounds dominate at low meff .

Additional reduction of multijet backgrounds can be achieved

by demanding isolated leptons or photons in the final states; in

such events the lepton or photon transverse momentum may be

added to HT or meff for further signal-background separation.

In the past few years alternative approaches have been

developed to increase the sensitivity to pair production of

heavy sparticles with masses around 1 TeV focusing on the

kinematics of their decays, and to further suppress the back-

ground from multijet production. Prominent examples of these

new approaches are searches using the αT [35–39], razor [40],

stransverse mass (mT2) [41], and contransverse mass (mCT) [42]

variables.

II.3. Interpretation of results

Since the mechanism by which SUSY is broken is unknown,

a general approach to SUSY via the most general soft SUSY

breaking Lagrangian adds a significant number of new free

parameters. For the minimal supersymmetric standard model,

MSSM, i.e., the model with the minimal particle content, these

comprise 105 new parameters. A phenomenological analysis of

SUSY searches leaving all these parameters free is not feasible.

For the practical interpretation of SUSY searches at colliders

several approaches are taken to reduce the number of free

parameters.

One approach is to assume a SUSY breaking mechanism

and lower the number of free parameters through the as-

sumption of additional constraints. In particular in past years,

interpretations of experimental results were predominately per-

formed in constrained models of gravity mediated [43,44], gauge

mediated [45,46], and anomaly mediated [47,48] SUSY break-

ing. Before the start of the LHC and even during its first

year of operation, the most popular model for interpretation

of collider based SUSY searches was the constrained MSSM

(CMSSM) [43,49,50], which in the literature is also referred

to as minimal supergravity, or MSUGRA. The CMSSM is de-

scribed by five parameters: the common sfermion mass m0, the

common gaugino mass m1/2, and the common trilinear coupling

parameter A0, all defined at the GUT scale, the ratio of the

vacuum expectation values of the Higgs fields for up-type and

down-type fermions tanβ, and the sign of the higgsino mass pa-

rameter µ, defined at the electroweak scale. In gauge mediation

models, the paradigm of general gauge mediation (GGM) [51] is

slowly replacing minimal gauge mediation, denoted traditionally

as GMSB (gauge mediated SUSY breaking).

These constrained SUSY models are theoretically well mo-

tivated and provide a rich spectrum of experimental signatures.

Therefore, they represent a useful framework to benchmark

performance, compare limits or reaches and assess the expected

sensitivity of different search strategies. However, with univer-

sality relations imposed on the soft SUSY breaking parameters,

they do not cover all possible kinematic signatures and mass

relations of SUSY. In such scenarios the squarks are often nearly

degenerate in mass, in particular for the first and second gener-

ation. The exclusion of parameter space in the CMSSM and in

CMSSM-inspired models is mainly driven by first and second

generation squark production together with gluino production.
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Figure 1: Cross sections for pair production
of different sparticles as a function of their
mass at the LHC for a center-of-mass energy
of 8 TeV [52]. Typically the production cross
section of colored squarks and gluinos is several
orders of magnitude larger than the one for
leptons or charginos. Except for the explicitly
shown pair production of stops, production cross
sections for squarks assumes mass degeneracy of
left- and right-handed u, d, s, c and b squarks.

As shown in Fig. 1 [52] these processes possess the largest

production cross sections in proton-proton collisions, and thus

the LHC searches typically provide the tightest mass limits

on these colored sparticles. This, however, implies that the

allowed parameter space of constrained SUSY models today

has been restrained significantly by searches from ATLAS and

CMS. Furthermore, confronting the remaining allowed param-

eter space with other collider and non-collider measurements,

which are directly or indirectly sensitive to contributions from

SUSY, the overall compatibility of these models with all data

is significantly worse than in the pre-LHC era (see section II.7

for further discussion), indicating that very constrained models

like the CMSSM might no longer be good benchmark scenarios

to solely characterize the results of SUSY searches at the LHC.

For these reasons, an effort has been made in the past years

to complement the traditional constrained models with more

flexible approaches.

One answer to study a broader and more comprehensive

subset of the MSSM is via the phenomenological-MSSM, or
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pMSSM [53–55]. It is derived from the MSSM, using experi-

mental data to eliminate parameters that are free in principle

but have already been highly constrained by measurements of

e.g., flavor mixing and CP-violation. This effective approach

reduces the number of free parameters in the MSSM to typically

19, making it a practical compromise between the full MSSM

and highly constrained models such as the CMSSM.

Even less dependent on fundamental assumptions are in-

terpretations in terms of so-called simplified models [56–59].

Such models assume a limited set of SUSY particle production

and decay modes and leave open the possibility to vary masses

and other parameters freely. Therefore, simplified models en-

able comprehensive studies of individual SUSY topologies, and

are useful for optimization of the experimental searches over a

wide parameter space. As a consequence, since 2011 ATLAS

and CMS have adopted simplified models as the primary frame-

work to provide interpretations of their searches. Today, almost

every individual search provides interpretations of their results

in one or even several simplified models that are characteristic

of SUSY topologies probed by the analysis.

However, while these models are very convenient for the

interpretation of individual SUSY production and decay topolo-

gies, care must be taken when applying these limits to more

complex SUSY spectra. Therefore, in practise, simplified model

limits are often used as an approximation of the constraints

that can be placed on sparticle masses in more complex SUSY

spectra. Yet, depending on the assumed SUSY spectrum, the

sparticle of interest, and the considered simplified model limit,

this approximation can lead to a significant mistake, typically

an overestimation, in the assumed constraint on the sparticle

mass (see for example [60]) . Only on a case-by-case basis

can it be determined whether the limit of a given simplified

model represents a good approximation of the true underlying

constraint that can be applied on a sparticle mass in a complex

SUSY spectrum. In the following, we will always point out

explicitly the assumptions that have entered the limits when

quoting interpretations from simplified models.

This review covers results up to September 2015 and since

none of the searches performed so far have shown significant

excess above the SM background prediction, the interpretation

of the presented results are exclusion limits on SUSY parameter

space.

II.4. Exclusion limits on gluino and squark masses

Gluinos and squarks are the SUSY partners of gluons and

quarks, and thus carry color charge. Limits on squark masses of

the order 100 GeV have been set by the LEP experiments [61].

However, due to the colored production of these particles at

hadron colliders (see e.g. Fig. 1), hadron collider experiments

are able to set much tighter mass limits.

Pair production of these massive colored sparticles at hadron

colliders generally involve both s-channel and t-channel parton-

parton interactions. Since there is a negligible amount of bot-

tom and top quark content in the proton, top- and bottom

squark production proceeds through s-channel diagrams only

with smaller cross sections. In the past, experimental analyses

of squark and/or gluino production typically assumed the first

and second generation squarks to be approximately degenerate

in mass. However, in order to have even less model dependent

interpretations of the searches, the experiments have started to

also provide simplified model limits on individual first or second

generation squarks.

Assuming R-parity conservation and assuming gluinos to

be heavier than squarks, squarks will predominantly decay to

a quark and a neutralino or chargino, if kinematically allowed.

The decay may involve the lightest neutralino (typically the

LSP) or chargino, but, depending on the masses of the gaug-

inos, may involve heavier neutralinos or charginos. For pair

production of first and second generation squarks, the simplest

decay modes involve two jets and missing momentum, with

potential extra jets stemming from initial state or final state

radiation (ISR/FSR) or from decay modes with longer cascades.

Similarly, gluino pair production leads to four jets and missing

momentum, and possibly additional jets from ISR/FSR or cas-

cades. Associated production of a gluino and a (anti-)squark is

also possible, in particular if squarks and gluinos have similar

masses, typically leading to three or more jets in the final state.

In cascades, isolated photons or leptons may appear from the

decays of sparticles such as neutralinos or charginos. Final

states are thus characterized by significant missing transverse

momentum, and at least two, and possibly many more high pT

jets, which can be accompanied by one or more isolated objects

like photons or leptons, including τ leptons, in the final state.

Table 1 shows a schematic overview of characteristic final state

signatures of gluino and squark production for different mass

hierarchy hypotheses and assuming decays involving the lightest

neutralino.

The main reference for ATLAS results in this section is

the ATLAS Run 1 summary paper on squark and gluino

production [62], while for CMS individual results are cited.

Table 1: Typical search signatures at hadron
colliders for direct gluino and first- and second-
generation squark production assuming different
mass hierarchies.

Mass Main Dominant Typical

HierarchyProduction Decay Signature

mq̃ ≪ mg̃ q̃q̃, q̃¯̃q q̃ → qχ̃0
1 ≥ 2 jets + Emiss

T + X

mq̃ ≈ mg̃ q̃g̃, ¯̃qg̃ q̃ → qχ̃0
1 ≥ 3 jets + Emiss

T + X

g̃ → qq̄χ̃0
1

mq̃ ≫ mg̃ g̃g̃ g̃ → qq̄χ̃0
1 ≥ 4 jets + Emiss

T + X

II.4.1 Exclusion limits on the gluino mass

Limits set by the Tevatron experiments on the gluino mass

assume the framework of the CMSSM, with tan β = 5 (CDF) or

tan β = 3 (D0), A0 = 0 and µ < 0, and amount to lower limits
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of about 310 GeV for all squark masses, or 390 GeV for the case

mq̃ = mg̃ [63,64]. During the first year of physics operation

of the LHC in 2010, these limits have been superseded by those

provided by ATLAS and CMS.

Today, limits on the gluino mass have been set using up

to approximately 20 fb−1 of data recorded at a center-of-mass

energy of 8 TeV. As shown in Fig. 2, the ATLAS collaboration

places limits for several searches in the framework of the

CMSSM, assuming tanβ = 30, A0 = −2m0, and µ > 0 [62];

these parameter values are chosen since they lead to a mass for

the lightest Higgs boson compatible with 125 GeV in a large

part of the m0−m1/2 plane. For low m0 the combination of the

0+1 lepton plus jets and missing momentum analyses provides

the best sensitivity, while for values of m0 above ≈ 1800 GeV

a more dedicated search requiring zero or one isolated lepton

accompanied with at least three jets identified to originate from

bottom quarks (b-jets) takes over. The limits at low m0 are

mainly driven by squark-gluino and squark-squark production

and at high m0 gluino pair production dominates. As also

indicated in Fig. 1, all other particle production modes do

not play a significant role for limits in the CMSSM. In this

constrained model gluino masses below around 1300 GeV are

excluded by the ATLAS collaboration for all squark masses,

while for equal squark and gluino masses, the limit is about

1700 GeV. Further details about the searches that are displayed

in Fig. 2 can be obtained from the ATLAS summary paper on

squark and gluino production [62].
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Limits on the gluino mass have also been established in

the framework of simplified models. Assuming only gluino

pair production, in particular three primary decay chains of

the gluino have been considered by the LHC experiments for

interpretations of their search results. The first decay chain
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Figure 3: Upper mass limits, at 95% C.L.,
on gluino pair production for the decay chains
g̃ → qq̄χ̃0

1 (upper left) [65], g̃ → bb̄χ̃0
1 (up-

per right) [66], and g̃ → tt̄χ̃0
1 (lower mid-

dle) [62,157]. The limits are defined in the
framework of simplified models assuming a sin-
gle decay chain, (i.e. 100% branching fraction).
The upper plots show limits from the CMS
collaboration, while the displayed limits for
g̃ → tt̄χ̃0

1 are obtained from ATLAS searches. It
should be note that the ATLAS results include
both on-shell as well as off-shell production of
gluino induced stop production (see text for
details).

g̃ → qq̄χ̃0
1 assumes gluino mediated production of first and

second generation squarks which leads to four light flavor quarks

in the final state. Therefore, inclusive all-hadronic analyses

searching for multijet plus Emiss
T final states are utilized to put

limits on this simplified model. These limits are derived as a

function of the gluino and neutralino (LSP) mass. As shown in

Fig. 3 (upper left), using the cross section from next-to-leading

order QCD corrections and the resummation of soft gluon

emission at next-to-leading-logarithmic accuracy as reference,

the CMS collaboration [65] excludes in this simplified model

gluino masses below approximately 1300 GeV (see also [66–68])

, for a massless neutralino. In scenarios where neutralinos are

not very light, the efficiency of the analyses is reduced by

the fact that jets are less energetic, and there is less missing

transverse momentum in the event. This leads to weaker limits

when the mass difference ∆m = mg̃ − mχ̃0
1

is reduced. For

example, for neutralino masses above about 550 GeV no limit

on the gluino mass can be set for this decay chain. Therefore,

limits on gluino masses are strongly affected by the assumption

of the neutralino mass. Similar results for this simplified model

have been obtained by ATLAS [62].
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The second important decay chain of the gluino considered

for interpretation in a simplified model is g̃ → bb̄χ̃0
1. Here

the decay is mediated via bottom squarks and thus leads to

four jets from b quarks and Emiss
T in the final state. Also for

this topology inclusive all-hadronic searches provide the highest

sensitivity. However, with four b quarks in the final state, the

use of secondary vertex reconstruction for the identification of

jets originating from b quarks provides a powerful handle on the

SM background. Therefore, in addition to a multijet plus Emiss
T

signature these searches also require several jets to be tagged

as b-jets. As shown in Fig. 3 (upper right), for this simplified

model CMS [66] excludes gluino masses below ≈ 1350 GeV

for a massless neutralino, while for neutralino masses above

≈ 750 GeV no limit on the gluino mass can be set. Comparable

limits for this simplified model are provided by searches from

ATLAS [62].

Not only first and second generation squarks or bottom

squarks may be the product of gluino decays but also, if

kinematically allowed, top squarks via the decay g̃ → t̃t. This

leads to a “four tops” final state ttttχ̃0
1χ̃

0
1 and defines the

third important simplified model, g̃ → tt̄χ̃0
1, characterizing

gluino pair production. The topology of this decay is very

rich in different experimental signatures: as many as four

isolated leptons, four b-jets, several light flavor quark jets, and

significant missing momentum from the neutrinos in the W

decay and from the two neutralinos. Therefore, in contrast to

the other two simplified models, dedicated searches optimized

for this particular final state provide the best mass limit on

the gluino for this simplified model. As shown in Fig. 3 (lower

middle) [62,157], the ATLAS search requiring significant Emiss
T ,

zero or one isolated lepton, and at least three jets identified as

b-jets [69] provides the strongest limit on the gluino mass in

the on-shell region (mg̃ > 2mt + mχ̃0
1
). At 95% C.L. it rules

out a gluino mass below ≈ 1400 GeV for mχ̃0
1

< 300 GeV. For

neutralino masses above ≈ 700 GeV, no limit can be placed on

the gluino mass for this simplified model. A CMS search [70]

also especially optimized for this decay topology by requiring

one isolated lepton and high jet multiplicity obtains similar

limits.

The ATLAS collaboration also provides limits for the off-

shell region ( mg̃ < 2mt +mχ̃0
1

) of this decay. In the regions of

parameter space where the mass difference between the gluino

and the lightest neutralino is small, additional sensitivity is

obtained from the same-sign search requiring 3 leptons in the

final state. To place limits in this off-shell region only four-

body (g̃ → tWbχ̃0
1 and five-body g̃ → WbWbχ̃0

1 are considered

as for higher multiplicities the gluinos do not decay promptly

anymore and thus lead to a different signature topology. With

this approach additional parameter space for gluino masses

below about 950 GeV can excluded in the mg̃ < 2mt + mχ̃0
1

region.

When comparing the limits in Fig. 3 for the three different

simplified models it becomes apparent that more parameter

space can be excluded when the gluino decay chain is mediated

via third generation squarks. The reason for this is the better

control of the SM background by means of identification of

b-jets as well as dedicated topology requirements like high

jet multiplicity or isolated leptons for these special signatures.

However, this variation in sensitivity of the searches for different

gluino decay chains is also a clear indication that care must be

taken when limits from these simplified models are applied to

SUSY models possessing more complex underlying spectra.

If the gluino decay is suppressed, for example if squark

masses are high, gluinos may live longer than typical hadroniza-

tion times. It is expected that such gluinos will hadronize to

semi-stable strongly interacting particles known as R-hadrons.

Searches for R-hadrons exploit the typical signature of stable

charged massive particles in the detector. As shown in Fig. 4,

the CMS experiment excludes semi-stable gluino R-hadrons

with masses below approximately 1.3 TeV [71]. The limits

depend on the probability for gluinos to form bound states

known as gluinoballs, as these are neutral and not observed

in the tracking detectors. Similar limits are obtained by the

ATLAS experiment [72]. Limits of about 1 TeV are set in the

scenario of R-hadron decays inside the detector, for cτ ranging

from 1 to 1000 mm [73].

Alternatively, since such R-hadrons are strongly interacting,

they may be stopped in the calorimeter or in other material, and

decay later into energetic jets. These decays are searched for

by identifying the jets outside the time window associated with

bunch-bunch collisions [74–76]. The latest ATLAS analysis [75]

based on the full 2011 and 2012 data set combined (28 fb−1)

places limits at 95% C.L. on gluino production over almost 16

orders of magnitude in gluino lifetime. For mχ̃0
1

> 100 GeV,

assuming a 100% branching fraction for gluino decay to gluon

(or qq̄) + neutralino, gluinos with lifetimes from 10 µs to 1000

s and mg̃ < 832 GeV are excluded. When SUSY spectra are

compressed, this limit weakens to an exclusion of mg̃ < 545 GeV

for mg̃ − mχ̃0
1

< 100 GeV.

In summary, for interpretations in the CMSSM, simplified

models, and semi-stable R-hadrons, the best limits on the gluino

mass range from around 1200 GeV to about 1400 GeV, while for

interpretations in the context of stopped R-hadrons the limit on

mg̃ is around 850 GeV. All these limits weaken significantly for

compressed SUSY spectra when the mass difference mg̃ − mχ̃0
1

is reduced.

R-parity violating gluino decays are searched for in a number

of final states. Searches in multilepton final states set lower

mass limits of 1 to 1.4 TeV, depending on neutralino mass and

lepton flavor, on decays mediated by λ and λ′ couplings [77,78],

assuming prompt decays. Searches for displaced vertices are

sensitive to non-prompt decays [73]. Multijet final states have

been used to search for fully hadronic gluino decays involving

λ′′, by CDF [79], ATLAS [80] and CMS [81]. Lower mass limits

range between 800 and 1000 GeV depending on neutralino mass

and flavor content of the final state.
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Figure 4: Observed 95% C.L. upper limits on
the cross section for (semi-)stable top squarks or
gluinos [71]. For gluinos, different fractions of
gluinoball states produced after hadronization
scenarios are indicated. The observed limits
are compared with the predicted theoretical
cross sections where the bands represent the
theoretical uncertainties on the cross section
values.

II.4.2. Exclusion limits on first and second generation

squark masses

Limits on first and second generation squark masses set

by the Tevatron experiments assume the CMSSM model, and

amount to lower limits of about 380 GeV for all gluino masses,

or 390 GeV for the case mq̃ = mg̃ [63,64].

At the LHC, limits on squark masses have been set using

up to approximately 20 fb−1 of data at 8 TeV. As shown in

Fig. 2, the ATLAS collaboration [62] excludes in the framework

of the CMSSM squark masses below ≈ 1600 GeV for all gluino

masses. For equal squark and gluino masses, the limit is about

1700 GeV.

Interpretations in simplified models are typically charac-

terizing squark pair production with only one decay chain

of q̃ → qχ̃0
1. Here it is assumed that the left and right-handed

ũ, d̃, s̃ and c̃ squarks are degenerate in mass. Furthermore,

it is assumed that the mass of the gluino is very high and

thus contributions of the corresponding t-channel diagrams to

squark pair production are negligible. Therefore, the total pro-

duction cross section for this simplified model is eight times

the production cross section of an individual squark (e.g. ũL).

The CMS collaboration provides interpretations using different

all-hadronic searches for this simplified model. As displayed in

Fig. 5, best observed exclusion is obtained from the analysis

using the mT2 variable [65], which excludes squark masses

just below 925 GeV for a light neutralino. The effects of heavy

neutralinos on squark limits are similar to those discussed in the

gluino case (see section II.4.1) and only for neutralino masses

below ≈ 350 GeV squark masses can be excluded. Results

from the ATLAS collaboration [62] for this simplified model are

similar.

For the same analysis ATLAS also provides an interpreta-

tion of their search result in a simplified model assuming strong

production of first and second generation squarks in association

with gluinos. This interpretation excludes squark masses below

≈ 1400 GeV for all gluino masses as well as gluino masses below

≈ 1400 GeV for all squark masses. For equal squark and gluino

masses, the limit is about 1700 GeV and therefore very similar

to limits provided in the CMSSM.

If the assumption of mass degenerate first and second

generation squarks is dropped and only the production of a

single light squark is assumed, the limits weaken significantly.

This is shown as the much smaller exclusion region in Fig. 5,

which represents the 95% C.L. upper limit of pair production

of a single light squark, with the gluino and all other squarks

decoupled to very high masses. With a best observed squark

mass limit of only ≈ 575 GeV for a massless neutralino and a

neutralino mass of ≈ 120 GeV above which no squark mass limit

can be placed, the exclusion reach of the LHC experiments for

single light squark is rather weak. It should be noted that this

limit is not a result of a simple scaling of the above mentioned

mass limits assuming eightfold mass degeneracy but it also

takes into account that for an eight times lower production

cross section the analyses must probe kinematic regions of

phase space that are closer to the ones of SM background

production. Since signal acceptance and the ratio of expected

signal to SM background events of the analyses are typically

worse in this region of phase space not only the 1/8 reduction

in production cross section but also a worse analysis sensitivity

are responsible for the much weaker limit on single squark pair

production.

For single light squarks ATLAS also reports results of

a dedicated search for pair production of scalar partners of

charm quarks [82]. Assuming that the scalar-charm state

exclusively decays into a charm quark and a neutralino, scalar-

charm masses up to 490 GeV are excluded for neutralino masses

below 200 GeV.

R-parity violating production of single squarks via a λ′-type

coupling has been studied at HERA. In such models, a lower

limit on the squark mass of the order of 275 GeV has been set

for electromagnetic-strength-like couplings λ′ = 0.3 [83]. At

the LHC, both prompt [77,78] and non-prompt [73,84] R-parity
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Figure 5: 95% C.L. exclusion contours in
the squark-neutralino mass plane defined in the
framework of simplified models assuming a sin-
gle decay chain of q̃ → qχ̃0

1 [65]. Two as-
sumptions for the squark pair production cross
sections are displayed; a) eightfold degeneracy
for the masses of the first and second generation
squarks and b) only one light flavor squark.

violating squark decays have been searched for, but no signal

was found. Squark mass limits are very model-dependent.

II.4.3. Exclusion limits on third generation squark

masses

SUSY at the TeV-scale is often motivated by naturalness

arguments, most notably as a solution to stabilize quadratic

divergences in radiative corrections to the Higgs boson mass.

In this context, the most relevant terms for SUSY phenomenol-

ogy arise from the interplay between the masses of the third

generation squarks and the Yukawa coupling of the top quark to

the Higgs boson. This motivates a potential constraint on the

masses of the top squarks and the left-handed bottom squark.

Due to the large top quark mass, significant mixing between

t̃L and t̃R is expected, leading to a lighter mass state t̃1 and a

heavier mass state t̃2. In the MSSM, the lightest top squark

(t̃1) can be the lightest squark.

The discovery of a Higgs boson at a mass around 125 GeV

has consequences for third generation squarks in the MSSM,

which are discussed elsewhere [28]. As a result, and in the

absence of a SUSY discovery so far, searches for third genera-

tion squark production have become a major focus of the SUSY

search program at the LHC. For this reason direct and gluino

mediated top and/or bottom squark production processes, lead-

ing to experimental signatures that are rich in jets originating

from bottom quarks, are either subject of re-interpretation of

inclusive analyses or targets for dedicated searches. The latter

ones have become especially important for searches of direct

top squark production.

Direct production of top and bottom squark pairs at hadron

colliders is suppressed with respect to first generation squarks,

due to the absence of t and b quarks in the proton (see e.g.

the example of direct top squark production in Fig. 1). At

the LHC, assuming eightfold mass degeneracy for light flavor

squarks as reference, this suppression is at the level of two

orders of magnitude for top and bottom squark masses of

around 600 GeV. Moreover, at the LHC, there is a very large

background of top quark pair production, making especially the

experimental analysis of top squark pair production a challenge.

The main reference for ATLAS results in this section is the

summary paper for Run1 searches for direct pair production

of third-generation squarks [85], while for CMS individual

references are cited.

Bottom squarks are expected to decay predominantly to bχ̃0

giving rise to the characteristic multi b-jet and Emiss
T signature.

Direct production of bottom squark pairs has been studied at

the Tevatron and at the LHC. Limits from the Tevatron are

mb̃ > 247 GeV for a massless neutralino [86,87]. Using the

2011 data the LHC experiments were able to surpass these

limits and based on the full 2012 data set, as shown in Fig. 6,

using an all-hadronic search requiring significant Emiss
T and two

jets reconstructed as b-jets in combination with a dedicated

mono-jet analysis, ATLAS has set a limit of mb̃ >≈ 650 GeV

for the same scenario. For mχ̃0
1
≈ 280 GeV or higher no limit

can be placed on direct bottom squark pair production in this

simplified model [85]. The addition of the mono-jet topology

increases the sensitivity for compressed spectra allowing for an

exclusion of up to mb̃ ≈ 280 GeV along the diagonal. The latest

CMS results for this simplified model are featured in [65–68,88]

and exhibit a similar reach.

Further bottom squark decay modes have also been studied

by ATLAS and CMS. For example, in a simplified model for

the b̃ → tχ̃± decay mode, bottom squark quark masses below

approximately 450 GeV are excluded [85,88,89].

The top squark decay modes depend on the SUSY mass

spectrum, and on the t̃L-t̃R mixture of the top squark mass

eigenstate. If kinematically allowed, the two-body decays t̃ →
tχ̃0 (which requires mt̃ − mχ̃0 > mt) and t̃ → bχ̃± (which

requires mt̃−mχ̃± > mb) are expected to dominate. If not, the

top squark decay may proceed either via the two-body decay

t̃ → cχ̃0 or through t̃ → bf f̄ ′χ̃0 (where f and f̄ ′ denote a

fermion-antifermion pair with appropriate quantum numbers).

For mt̃ − mχ̃0 > mb the latter decay chain represents a four-

body decay with a W boson, charged Higgs H , slepton ℓ̃, or

light flavor squark q̃, exchange. If the exchanged W boson

and/or sleptons are kinematically allowed to be on-shell (
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Figure 6: 95% C.L. exclusion contours in
the sbottom-neutralino mass plane defined in
the framework of a simplified model assuming a
single decay chain of b̃ → bχ̃0

1 [85].

mt̃ − mχ̃± > mb + mW and/or mt̃ − mℓ̃ > mb), the three-

body decays t̃ → Wbχ̃0 and/or t̃ → blℓ̃ will become dominant.

For further discussion on top squark decays see for example

Ref. [90].

Limits from LEP on the t̃1 mass are mt̃ > 96 GeV in the

charm plus neutralino final state, and > 93 GeV in the lepton,

b-quark and sneutrino final state [61].

The Tevatron experiments have performed a number of

searches for top squarks, often assuming direct pair production.

In the bℓν̃ decay channel, and assuming a 100% branching

fraction, limits are set as mt̃ > 210 GeV for mν̃ < 110 GeV and

mt̃−mν̃ > 30 GeV, or mt̃ > 235 GeV for mν̃ < 50 GeV [91,92].

In the t̃ → cχ̃0 decay mode, a top squark with a mass below

180 GeV is excluded for a neutralino lighter than 95 GeV [93,94].

In both analyses, no limits on the top squark can be set for

heavy sneutrinos or neutralinos. In the t̃ → bχ̃±
1 decay channel,

searches for a relatively light top squark have been performed

in the dilepton final state [95,96]. The CDF experiment sets

limits in the t̃ − χ̃0
1 mass plane for various branching fractions

of the chargino decay to leptons and for two value of mχ̃±

1

. For

mχ̃±

1

= 105.8 GeV and mχ̃0
1

= 47.6 GeV, top squarks between

128 and 135 GeV are excluded for W -like leptonic branching

fractions of the chargino.

The LHC experiments have improved these limits substan-

tially. As shown in the left plot of Fig. 7, limits on the top

squark mass assuming a simplified model with a single decay

chain of t̃ → tχ̃0
1 reach up to about 700 GeV for light neutrali-

nos, while for mχ̃0
1

>270 GeV no limits can be provided. The

most important searches for this top squark decay topology are

dedicated searches requiring zero or one isolated lepton, modest

Emiss
T , and four or more jets out of which at least one jet must

be reconstructed as b-jet [97,98]. To increase the sensitivity to

this decay topology different signal regions are considered in

these ATLAS analyses. Searches from the CMS collaboration

requiring one isolated lepton and using a boosted decision tree

for a dedicated optimization in the mt̃ − mχ̃0
1

plane [99] or

all-hadronic searches [65–68,88] provide comparable limits for

this simplified model.
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Figure 7: 95% C.L. exclusion contours in the
mt̃ − mχ̃0

1
plane for different top squark decay

chains and different searches from the ATLAS
collaboration [85]. The left plot shows simpli-
fied model limits for three different decay chains;
t̃ → cχ̃0

1 (W and t forbidden), t̃ → Wbχ̃0
1 (t

forbidden), and t̃ → tχ̃0
1 (t allowed), which rep-

resent three different kinematic regions of the
top squark decay. The right plot shows sim-
plified model limits for the top decay chain
via a chargino: t̃ → bχ̃±

1 , χ̃±
1 → W±(∗)χ̃0

1 for
different mχ̃±

1

− mχ̃0
1
.

Assuming that the top squark decay exclusively proceeds

via the chargino mediated decay chain t̃ → bχ̃±
1 , χ̃±

1 → W±(∗)χ̃0
1

yields stop mass exclusion limits that vary strongly with the

assumptions made on the t̃− χ̃±
1 −χ̃0

1 mass hierarchy. As shown

in the right plot of Fig. 7, above the universal chargino mass

limit of mχ̃±

1

> 103.5 GeV from LEP (see section II.5.1) the

strongest limits are placed for nearly mass degenerate chargino

and neutralinos. For mχ̃±

1

− mχ̃0
1

>5 GeV, a stop mass of

≈ 650 GeV for a light χ̃0
1 is excluded, while no limit can

be placed for mχ̃0
1

> 280 GeV [85]. These limits, however,

can weaken significantly when other assumptions about the

mass hierarchy are imposed. For example, if the chargino

becomes nearly mass degenerate with the top squark the key

experimental signature turns from an all-hadronic final state

with b-jets and Emiss
T into a multi-lepton and Emiss

T topology

yielding significantly weaker limits for this top squark decay.

As for the decay with top quarks in the final state, CMS [88,99]

also provides comparable limits for this decay chain.

If the decays t̃ → tχ̃0
1 and t̃ → bχ̃±

1 , χ̃±
1 → W±(∗)χ̃0

1

are kinematically forbidden, the decay chains t̃ → Wbχ̃0 and

t̃ → cχ̃0 can become important. As shown in the left plot of

Fig. 7,the one-lepton ATLAS search provides for the kinematic

region mt̃−mχ̃± > mb+mW upper limits on top squark mass of

≈ 300 GeV for a neutralino lighter than ≈ 170 GeV [85], while

the boosted decision tree based CMS analysis pushes this limit

to about 320 GeV for neutralino masses below ≈ 200 GeV [99].

For the kinematic region in which even the production of
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real W bosons is not allowed, ATLAS and CMS improves

the Tevatron limit on t̃ → cχ̃0 substantially. Based on a

combination of a monojet analysis and a dedicated charm quark

identification algorithm, away from the kinematic boundary a

top squark with a mass below 260 GeV is excluded by the

ATLAS analysis for a neutralino lighter than 230 GeV [85].

Along the kinematic boundary for the t̃ → cχ̃0 decay the

ATLAS monojet results even excludes top squark masses below

mχ̃0
1
≈ 260 GeV. The corresponding CMS results [88] exhibit

similar exclusions. The other decay chain relevant in this phase

region is t̃ → bf f̄ ′χ̃0. Here the ATLAS one-lepton search [85]

excludes up to mt̃ ≈ 250 GeV for mχ̃0
1

below 180 GeV, while

the mono-jet excludes at the kinematic boundary top squarks

below mχ̃± below 260 GeV. Also for this decay chain CMS [88]

provides similar results.

In general, the variety of top squark decay chains in the

phase space region where t̃ → tχ̃0
1 is kinematically forbidden

represents a challenge for the experimental search program.

As, for example, shown in the inlay of the left plot of Fig. 7

there are still regions in phase space for which the searches do

not yet possess enough sensitivity to probe them. Additional

data and more refined analyses will be required to also close

these gaps.

R-parity violating production of single top squarks has

been searched for at LEP, HERA, and the Tevatron. For

example, an analysis from the ZEUS collaboration [100] makes

an interpretation of its search result assuming top squarks to

be produced via a λ′ coupling and decay either to bχ̃±
1 or

R-parity-violating to a lepton and a jet. Limits are set on λ′
131

as a function of the top squark mass in an MSSM framework

with gaugino mass unification at the GUT scale. The search for

top squark pair production in the context of R-parity violating

supersymmetry has now also become a focus point for searches

at the LHC. Recently the CMS collaboration has performed

a search for top squarks using a variety of multilepton final

states [101]. It provides lower limits on the top squark mass

in models with non-zero leptonic R-parity violating couplings

λ122 and λ233. For a bino mass of 200 GeV, these limits

are 1020 GeV and 820 GeV, respectively. The analysis also

provides limits in a model with the semileptonic R-parity

violating coupling λ′
233. The λ′-mediated top squark decay

t̃ → bℓ has been studied by ATLAS for prompt decays [102],

and by CMS for non-prompt decays [103]. The fully hadronic

R-parity violating top squark decay t̃ → bs, involving λ′′, has

been searched for by ATLAS [104], and a lower top squark

mass limit of 310 GeV was set in this decay mode. CMS [105]

have searched for a top squark decay to a bottom quark and

a light-flavor quark, and excludes top squarks with masses

between 200 and 385 GeV in this decay mode.

Top squarks can also be long-lived and hadronize to a

R-hadron, for example in the scenario where the top squark

is the next-to-lightest SUSY particle (NLSP), with a small

mass difference to the LSP. Searches for massive stable charged

particles are sensitive to such top squarks. As shown in Fig. 4,

the CMS analysis [71] sets limits mt̃ > 800 GeV in such

scenarios, while ATLAS [72] reports limits of mt̃ > 900 GeV.

Limits from the Tevatron are about mt̃ > 300 GeV [106,107].

It should be noted that limits discussed in this section

belong to different top and bottom squark decay channels, dif-

ferent sparticle mass hierarchies, and different simplified decay

scenarios. Therefore, care must be taken when interpreting

these limits in the context of more complete SUSY models.

II.4.4. Summary of exclusion limits on squarks and

gluinos assuming R-Parity conservation

A summary of the most important squark and gluino mass

limits for different interpretation approaches assuming R-parity

conservation is shown in Table 2.

For gluino masses rather similar limits, ranging from 1.2 TeV

to 1.4 TeV, are obtained from different model assumptions

indicating that the LHC is indeed probing for a large region

in SUSY parameter space direct gluino production at the

1 TeV scale and beyond. However, for neutralino masses above

approximately 700 GeV in the best case, ATLAS and CMS

searches cannot place any limits on the gluino mass.

Limits on direct squark production, on the other hand,

depend strongly on the chosen model. Especially for direct

production of top squarks there are still large regions in pa-

rameter space where masses below 0.5 TeV cannot be excluded.

This is also true for first and second generation squarks when

only one single squark is considered. Furthermore, for neu-

tralino masses above ≈ 300 GeV no limit on any direct squark

production scenario can be placed by the LHC.

II.5. Exclusion limits on the masses of charginos and

neutralinos

Charginos and neutralinos result from mixing of the charged

wino and higgsino states, and the neutral bino, wino and

higgsino states, respectively. The mixing is determined by a

limited number of parameters. For charginos these are the wino

mass parameter M2, the higgsino mass parameter µ, and tanβ,

and for neutralinos these are the same parameters plus the bino

mass parameter M1. The mass states are four charginos χ̃+
1 ,

χ̃−
1 , χ̃+

2 and χ̃−
2 , and four neutralinos χ̃0

1, χ̃0
2, χ̃0

3 and χ̃0
4, ordered

in increasing mass. The mass states are superpositions of the

bino, wino and higgsino states. If any of the parameters M1,

M2 or µ happened to be substantially smaller than the others,

the chargino and neutralino composition would be dominated by

specific states, which are referred to as bino-like (M1 ≪ M2, µ),

wino-like (M2 ≪ M1, µ), or higgsino-like (µ ≪ M1, M2). If

gaugino mass unification at the GUT scale is assumed, a

relation between M1 and M2 at the electroweak scale follows:

M1 = 5/3 tan2 θW M2 ≈ 0.5M2, with θW the weak mixing angle.

Charginos and neutralinos carry no color charge, and only have

electroweak couplings (neglecting gravity).

II.5.1. Exclusion limits on chargino masses

If kinematically allowed, two body decay modes such as

χ̃± → f̃ f̄ ′ (including ℓν̃ and ℓ̃ν) are dominant. If not, three
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Table 2: Summary of squark mass and
gluino mass limits using different interpreta-
tion approaches assuming R-parity conservation.
Masses in this table are provided in GeV. Fur-
ther details about assumption and analyses from
which these limits are obtained are discussed in
the corresponding sections of the text.

Model Assumption mq̃ mg̃

mq̃ ≈ mg̃ ≈ 1700 ≈ 1700

CMSSM all mq̃ - ≈ 1300

all mg̃ ≈ 1600 -

Simplified model mχ̃0
1
= 0, mq̃ ≈ mg̃ ≈ 1700 ≈ 1700

g̃q̃, g̃¯̃q mχ̃0
1
= 0, all mq̃ - ≈ 1400

mχ̃0
1
= 0, all mg̃ ≈ 1400 -

Simplified models g̃g̃

g̃ → qq̄χ̃0
1 mχ̃0

1
=0 - ≈ 1300

mχ̃0
1

>≈ 550 - no limit

g̃ → bb̄χ̃0
1 mχ̃0

1
=0 - ≈ 1350

mχ̃0
1

>≈ 750 - no limit

g̃ → tt̄χ̃0
1 mχ̃0

1
=0 - ≈ 1400

mχ̃0
1

>≈ 700 - no limit

Simplified models q̃q̃

q̃ → qχ̃0
1 mχ̃0

1
=0 ≈ 925 -

mχ̃0
1

>≈ 350 no limit -

ũL → qχ̃0
1 mχ̃0

1
=0 ≈ 575 -

mχ̃0
1

>≈ 120 no limit -

b̃ → bχ̃0
1 mχ̃0

1
=0 ≈ 650 -

mχ̃0
1

>≈ 280 no limit -

t̃ → tχ̃0
1 mχ̃0

1
=0 ≈ 700 -

mχ̃0
1

>≈ 270 no limit -

t̃ → bχ̃±
1 mχ̃0

1
=0 ≈ 650 -

mχ̃0
1

>≈ 280 no limit -

t̃ → Wbχ̃0
1 mχ̃0

1
<≈ 200 ≈ 320 -

t̃ → cχ̃0
1 mχ̃0

1
<≈ 230 ≈ 260 -

mt̃ ≈ mχ̃0
1

≈ 260 -

t̃ → bff ′χ̃0
1 mχ̃0

1
<≈ 180 ≈ 250 -

mt̃ ≈ mχ̃0
1

≈ 260 -

body decay χ̃± → f f̄ ′χ̃0 are mediated through virtual W

bosons or sfermions. If sfermions are heavy, the W mediation

dominates, and f f̄ ′ are distributed with branching fractions

similar to W decay products (barring phase space effects for

small mass gaps between χ̃± and χ̃0). If, on the other hand,

sleptons are light enough to play a significant role in the decay

mediation, leptonic final states will be enhanced.

At LEP, charginos have been searched for in fully-hadronic,

semi-leptonic and fully leptonic decay modes [108,109]. A

general lower limit on the lightest chargino mass of 103.5 GeV

is derived, except in corners of phase space with low elec-

tron sneutrino mass, where destructive interference in chargino

production, or two-body decay modes, play a role. The limit

is also affected if the mass difference between χ̃±
1 and χ̃0

1 is

small; dedicated searches for such scenarios set a lower limit of

92 GeV.

At the Tevatron, charginos have been searched for via asso-

ciated production of χ̃±
1 χ̃0

2 [110,111]. Decay modes involving

multilepton final states provide the best discrimination against

the large multijet background. Analyses have looked for at

least three charged isolated leptons, for two leptons with miss-

ing transverse momentum, or for two leptons with the same

charge. Depending on the (χ̃±
1 − χ̃0

1) and/or (χ̃0
2 − χ̃0

1) mass

differences, leptons may be soft.

At the LHC, the search strategy is similar to that at

the Tevatron. As shown in Fig. 1, the cross section of pair

production of chargino and neutralinos at the LHC, for masses

of several hundreds of GeV, is at least two orders of magnitude

smaller than for colored SUSY particles (e.g. top squark pair

production). For this reason a high statistics data sample

is required to improve the sensitivity of LEP and Tevatron

searches for direct chargino/neutralino production. With the

full LHC Run 1 data, ATLAS and CMS have started to surpass

the limits from LEP and Tevatron in regions of SUSY parameter

space.

Chargino pair production is searched for in the dilepton

plus missing momentum final state. In the simplified model

interpretation of the results, assuming mediation of the chargino

decay by light sleptons, ATLAS [112] and CMS [113] set limits

on the chargino mass up to 540 GeV for massless LSPs, but

no limits on the chargino mass can be set for χ̃0
1 heavier

than 180 GeV. Limits are fairly robust against variation of the

slepton mass, unless the mass gap between chargino and slepton

becomes small. First limits are also set on charginos decaying

via a W boson [114]: chargino masses below 180 GeV are

excluded for massless LSPs, but no limits are set for LSPs

heavier than 25 GeV. The trilepton plus missing momentum

final state is used to set limits on χ̃±
1 χ̃0

2 production, assuming

wino-like χ̃± and χ̃0
2, bino-like χ̃0

1, and mχ̃± = mχ̃0
2
, leaving

mχ̃± and mχ̃0
1

free. Again, the branching fraction of leptonic

final states is determined by the slepton masses. If the decay

is predominantly mediated by a light ℓ̃L, i.e. ℓ̃R is assumed

to be heavy, the three lepton flavors will be produced in

equal amounts. It is assumed that ℓ̃L and sneutrino masses

are equal, and diagrams with sneutrinos are included. In this

scenario, ATLAS [112] and CMS [113] exclude chargino masses

below 730 GeV for massless LSPs; no limits are set for LSP

masses above 400 GeV. If the decay is dominated by a light

ℓ̃R, the chargino cannot be a pure wino but needs to have a

large higgsino component, preferring the decays to tau leptons.

Limits are set in various scenarios. If, like for ℓ̃L, a flavor-

democratic scenario is assumed, CMS sets limits of 620 GeV on

the chargino mass for massless LSPs, but under the assumption

that both χ̃± and χ̃0
2 decay leads to tau leptons in the final
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state, the chargino mass limit deteriorates to 350 GeV for

massless LSPs [113]. ATLAS assumes a simplified model in

which staus are significantly lighter than the other sleptons in

order to search for a similar multi-tau final state, and sets a

similar limit on the chargino mass [112].

neutralino mass = chargino mass [GeV]
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Figure 8: A summary of limits on chargino
and neutralino masses in simplified models as
obtained by CMS [158].

If sleptons are heavy, the chargino is assumed to decay to

a W boson plus LSP, and the χ̃0
2 into Z plus LSP or H plus

LSP. In the WZ channel, ATLAS [112] and CMS [113] limits

on the chargino mass reach 420 GeV for massless LSPs, but

no limits are set for LSPs heavier than 150 GeV. In the WH

channel, for mH = 125 GeV and using Higgs decays to bb̄, γγ

and WW (ATLAS [115]) , or Higgs decays to bb̄, γγ, WW ,

ZZ and τ+τ− (CMS [113,116]) , assuming a SM-like branching

fraction in these final states, chargino mass limits extend up to

250 GeV for massless LSPs, but vanish for LSPs above 40 GeV.

The CMS results on electroweak gaugino searches inter-

preted in simplified models are summarized in Fig. 8, the

ATLAS results are similar.

In both the wino region (a characteristic of anomaly-

mediated SUSY breaking models) and the higgsino region of the

MSSM, the mass splitting between χ̃±
1 and χ̃0

1 is small. The

chargino decay products are very soft and may escape detec-

tion. These compressed spectra are very hard to find, and have

triggered dedicated search strategies, which, however, still have

limited sensitivity. Photons or jets from initial state radiation

may be used to tag such decays. An alternative production

mode of electroweak gauginos is provided by vector-boson-

fusion, where two additional jets with a large rapidity gap can

be used to select events and suppress backgrounds [112,117].

In scenarios with compressed spectra, charginos may be

long-lived. Charginos decaying in the detectors away from the

primary vertex could lead to signatures such as kinked-tracks,

or apparently disappearing tracks, since, for example, the pion

in χ̃±
1 → π±χ̃0

1 might be too soft to be reconstructed. At

the LHC, searches have been performed for such disappearing

tracks, and interpreted within anomaly-mediated SUSY break-

ing models [118,119]. Charginos with lifetimes between 0.1

and 10 ns are excluded for chargino masses up to 500 GeV.

Within AMSB models, a lower limit on the chargino mass of

270 GeV is set, for a mass difference with the LSP of 160 MeV

and a lifetime of 0.2 ns.

Charginos with a lifetime longer than the time needed

to pass through the detector appear as charged stable mas-

sive particles. Limits have been derived by the LEP exper-

iments [120], by D0 at the Tevatron [107], and by the

LHC experiments [72,121,122]. For lifetimes above 100 ns,

charginos below some 800 GeV are excluded.

II.5.2. Exclusion limits on neutralino masses

In a considerable part of the MSSM parameter space, and

in particular when demanding that the LSP carries no electric

or color charge, the lightest neutralino χ̃0
1 is the LSP. If R-

parity is conserved, such a χ̃0
1 is stable. Since it is weakly

interacting, it will typically escape detectors unseen. Limits

on the invisible width of the Z boson apply to neutralinos

with a mass below 45.5 GeV, but depend on the Z-neutralino

coupling. Such a coupling could be small or even absent; in

such a scenario there is no general lower limit on the mass of

the lightest neutralino [123]. In models with gaugino mass

unification and sfermion mass unification at the GUT scale,

a lower limit on the neutralino mass is derived from limits

from direct searches, notably for charginos and sleptons, and

amounts to 47 GeV [124]. Assuming a constraining model like

the CMSSM, this limit increases to 50 GeV at LEP; however the

strong constraints now set by the LHC increase such CMSSM-

derived χ̃0
1 mass limits to well above 200 GeV [125].

In gauge-mediated models, the LSP is typically a gravitino,

and the phenomenology is determined by the nature of the next-

to-lightest supersymmetric particle (NLSP). A NLSP neutralino

will decay to a gravitino and a SM particle whose nature is

determined by the neutralino composition. Final states with

two high pT photons and missing momentum are searched

for, and interpreted in gauge mediation models with bino-like

neutralinos [126–130].

Assuming the production of at least two neutralinos per

event, neutralinos with large non-bino components can also

be searched for by their decay in final states with miss-

ing momentum plus any two bosons out of the collection

γ, Z, H. A number of searches at the LHC have tried to

cover the rich phenomenology of the various Z and H decay

modes [113,116,129–131].
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In gauge mediation models, NLSP neutralino decays need

not be prompt, and experiments have searched for late decays

with photons in the final state. CDF have searched for delayed

χ̃0
1 → γG̃ decays using the timing of photon signals in the

calorimeter [132]. CMS has used the same technique at the

LHC [133]. Results are given as upper limits on the neutralino

production cross section as a function of neutralino mass and

lifetime. D0 has looked at the direction of showers in the elec-

tromagnetic calorimeter with a similar goal [134], and ATLAS

has searched for photon candidates that do not point back to

the primary vertex, as well as for delayed photons [135].

Heavier neutralinos, in particular χ̃0
2, have been searched

for in their decays to the lightest neutralino plus a γ, a Z

boson or a Higgs boson. Limits on electroweak production of

χ̃0
2 plus χ̃±

1 from trilepton analyses have been discussed in

the section on charginos; the assumption of equal mass of χ̃0
2

and χ̃±
1 make the limits on chargino masses apply to χ̃0

2 as

well. Multilepton analyses have also been used to set limits

on χ̃0
2χ̃

0
3 production; assuming equal mass limits are set up to

680 GeV for massless LSPs [112]. Again, compressed spectra

with small mass differences between the heavier neutralinos and

the LSP form the most challenging region.

In χ̃0
2 decays to χ̃0

1 and a lepton pair, the lepton pair

invariant mass distribution may show a structure that can

be used to measure the χ̃0
2 − χ̃0

1 mass difference in case of

a signal [34]. This structure, however, can also be used in

the search strategy itself, as demonstrated by CMS [136] and

ATLAS [131].

In model with R-parity violation, the lightest neutralino

can decay even if it is the lightest supersymmetric particle. If

the decay involves a non-zero λ coupling, the final state will

be a multi-lepton one. Searches for events with four or more

isolated charged leptons by ATLAS [77,137] and CMS [78] are

interpreted in such models. With very small coupling values,

the neutralino would be long-lived, leading to lepton pairs with

a displaced vertex, which have also been searched for [73,84].

Searches for events with a displaced hadronic vertex, with or

without a matched lepton, are interpreted in a model with

R-parity violating neutralino decay involving a non-zero λ′

coupling [73,138]. Neutralino decays involving non-zero λ′′

lead to fully hadronic final states, and searches for jet-pair

resonances are used to set limits, typically on the production of

colored particles like top squarks or gluinos, which are assumed

to be the primary produced sparticles in these interpretations,

as discussed earlier.

Interpretations of the search results outside simplified mod-

els, such as in the phenomenological MSSM [139–141], show

that the simplified model limits must be interpreted with care.

Electroweak gauginos in models that are compatible with the

relic density of dark matter in the universe, for example, have

particularly tuned mixing parameters and mass spectra, which

are not always captured by the simplified models used.

Table 3: Summary of weak gaugino mass
limits in simplified models, assuming R-parity
conservation. Masses in the table are provided
in GeV. Further details about assumptions and
analyses from which these limits are obtained
are discussed in the text.

Assumption mχ

χ̃±
1 , all ∆m(χ̃±

1 , χ̃0
1) > 92

χ̃±
1 ∆m > 5, mν̃ > 300 > 103.5

χ̃±
1 , m(ℓ̃,ν̃) = (mχ̃±

1

+ mχ̃0
1
)/2

mχ̃0
1
≈ 0 > 540

χ̃±
1 , mχ̃0

1
> 180 no LHC limit

χ̃±
1 , mℓ̃ > mχ̃±

1

mχ̃0
1
≈ 0 > 180

χ̃±
1 , mχ̃0

1
> 25 no LHC limit

mχ̃±

1

= mχ̃0
2
, mℓ̃L

= (mχ̃±

1

+ mχ̃0
1
)/2

mχ̃0
1
≈ 0 > 730

mχ̃0
1

> 400 no LHC limit

mχ̃±

1

= mχ̃0
2
, mℓ̃R

= (mχ̃±

1

+ mχ̃0
1
)/2 flavor-democratic

mχ̃0
1
≈ 0 > 620

mχ̃0
1

> 220 no LHC limit

mχ̃±

1

= mχ̃0
2
, mτ̃ = (mχ̃±

1

+ mχ̃0
1
)/2 τ̃ -dominated

mχ̃0
1
≈ 0 > 350

mχ̃0
1

> 120 no LHC limit

mχ̃±

1

= mχ̃0
2
, mℓ̃ > mχ̃±

1

, BF(WZ) = 1

mχ̃0
1
≈ 0 > 420

mχ̃0
1

> 150 no LHC limit

mχ̃±

1

= mχ̃0
2
, mℓ̃ > mχ̃±

1

, BF(WH) = 1

mχ̃0
1
≈ 0 > 250

mχ̃0
1

> 40 no LHC limit

II.6. Exclusion limits on slepton masses

In models with slepton and gaugino mass unification at

the GUT scale, the right-handed slepton, ℓ̃R, is expected to

be lighter than the left-handed slepton, ℓ̃L. For tau sleptons

there may be considerable mixing between the L and R states,

leading to a significant mass difference between the lighter τ̃1

and the heavier τ̃2.

II.6.1. Exclusion limits on the masses of charged slep-

tons

The most model-independent searches for selectrons,

smuons and staus originate from the LEP experiments [142].

Smuon production only takes place via s-channel γ∗/Z ex-

change. Search results are often quoted for µ̃R, since it is

typically lighter than µ̃L and has a weaker coupling to the Z

boson; limits are therefore conservative. Decays are expected

to be dominated by µ̃R → µχ̃0
1, leading to two non-back-to-

back muons and missing momentum. Slepton mass limits are

calculated in the MSSM under the assumption of gaugino mass

unification at the GUT scale, and depend on the mass difference
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between the smuon and χ̃0

1. A µ̃R with a mass below 94 GeV

is excluded for mµ̃R
− mχ̃0

1
> 10 GeV. The selectron case is

similar to the smuon case, except that an additional production

mechanism is provided by t-channel neutralino exchange. The

ẽR lower mass limit is 100 GeV for mχ̃0
1

< 85 GeV. Due to the

t-channel neutralino exchange, ẽRẽL pair production was possi-

ble at LEP, and a lower limit of 73 GeV was set on the selectron

mass regardless of the neutralino mass by scanning over MSSM

parameter space [143]. The potentially large mixing between

τ̃L and τ̃R not only makes the τ̃1 light, but can also make its

coupling to the Z boson small. LEP lower limits on the τ̃ mass

range between 87 and 93 GeV depending on the χ̃0
1 mass, for

mτ̃ − mχ̃0
1

> 7 GeV [142].

As shown in Fig. 1, at the LHC pair production of sleptons

is not only heavily suppressed with respect to pair production of

colored SUSY particles but the cross section is also almost two

orders of magnitude smaller than the one of pair production of

chargino and neutralinos. Only with the full Run 1 LHC data

set, ATLAS and CMS have started to surpass the sensitivity of

the LEP analyses under certain assumptions.

ATLAS and CMS have searched for direct production of

selectron pairs and smuon pairs at the LHC, with each slepton

decaying to its corresponding SM partner lepton and the χ̃0
1

LSP. ATLAS [114] and CMS [113] set limits in this model of

240 GeV for ℓ̃R, and 290 GeV for ℓ̃L, for a massless χ̃0
1 and

assuming equal selectron and smuon masses, as shown in Fig. 9.

The limits deteriorate with increasing χ̃0
1 mass due to decreasing

missing momentum and lepton momentum. As a consequence,

there is a gap between LEP and LHC limits for χ̃0
1 masses above

20 GeV, and no limits are set for χ̃0
1 masses above 90 GeV (ℓ̃R)

or above 150 GeV (ℓ̃L).
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Figure 9: Exclusion limits on ℓ̃R masses
(left) and ℓ̃L masses (right), assuming equal
selectron and smuon masses in both scenarios,
and assuming a 100% branching fraction for
ℓ̃ → ℓχ̃0

1 [114].

In gauge-mediated SUSY breaking models, sleptons can be

(co-)NLSPs, i.e., the next-to-lightest SUSY particles and almost

degenerate in mass, decaying to a lepton and a gravitino. This

decay can either be prompt, or the slepton can have a non-

zero lifetime. Combining several analyses, lower mass limits

on µ̃R of 96.3 GeV and on ẽR of 66 GeV are set for all

slepton lifetimes at LEP [144]. In a considerable part of

parameter space in these models, the τ̃ is the NLSP. The

LEP experiments have set lower limits on the mass of such

a τ̃ between 87 and 97 GeV, depending on the τ̃ lifetime.

ATLAS has searched for final states with τs, jets and missing

transverse momentum, and has interpreted the results in GMSB

models setting limits on the model parameters [145]. CMS

has interpreted a multilepton analysis in terms of limits on

gauge mediation models with slepton (co-)NLSP [146]. CDF

has put limits on gauge mediation models at high tanβ and

slepton (co-)NLSP using an analysis searching for like-charge

light leptons and taus [147].

Limits also exist on sleptons in R-parity violating models,

both from LEP and the Tevatron experiments. From LEP,

lower limits on µ̃R and ẽR masses in such models are 97 GeV,

and the limits on the stau mass are very close: 96 GeV [148].

Charged slepton decays may be kinematically suppressed,

for example in the scenario of a NLSP slepton with a very

small mass difference to the LSP. Such a slepton may appear to

be a stable charged massive particle. Interpretation of searches

at LEP for such signatures within GMSB models with stau

NLSP or slepton co-NLSP exclude masses up to 99 GeV [120].

Searches of stable charged particles at the Tevatron [106,107]

and at the LHC [71,72] are also interpreted in terms of limits

on stable charged sleptons. The limits obtained at the LHC

exclude stable staus with masses below 339 GeV when produced

directly in pairs, and below 500 GeV when staus are produced

both directly and indirectly in the decay of other particles in a

GMSB model.

Table 4: Summary of slepton mass limits
from LEP and LHC, assuming R-parity conser-
vation and 100% branching fraction for ℓ̃ → ℓχ̃0

1.
Masses in this table are provided in GeV.

Assumption mℓ̃

µ̃R, ∆m(µ̃R, χ̃0
1) > 10 > 94

ẽR, ∆m(ẽR, χ̃0
1) > 10 > 94

ẽR, any ∆m > 73

τ̃R, ∆m((τ̃R, χ̃0
1) > 7 > 87

ν̃e, ∆m(ẽR, χ̃0
1) > 10 > 94

mẽR
= mµ̃R

, mχ̃0
1
≈ 0 > 240

mχ̃0
1

>≈ 90 no LHC limit

mẽL
= mµ̃L

, mχ̃0
1
≈ 0 > 290

mχ̃0
1

>≈ 150 no LHC limit

II.6.2. Exclusion limits on sneutrino masses

The invisible width of the Z boson puts a lower limit on

the sneutrino mass of about 45 GeV. Tighter limits are derived

from other searches, notably for gauginos and sleptons, under

the assumption of gaugino and sfermion mass universality at

the GUT scale, and amount to approximately 94 GeV in the

MSSM [149]. It is possible that the lightest sneutrino is the
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LSP; however, a left-handed sneutrino LSP is ruled out as a

cold dark matter candidate [150,151].

Production of pairs of sneutrinos in R-parity violating

models has been searched for at LEP [148]. Assuming fully

leptonic decays via λ-type couplings, lower mass limits between

85 and 100 GeV are set. At the Tevatron [152,153] and at

the LHC [154,155], searches have focused on scenarios with

resonant production of a sneutrino, decaying to eµ, µτ and

eτ final states. No signal has been seen, and limits have been

set on sneutrino masses as a function of the value of relevant

RPV couplings. As an example, the LHC experiments exclude

a resonant tau sneutrino with a mass below 1500 GeV for

λ312 > 0.07 and λ′
311 > 0.01.

Figure 10. Overview of the current landscape of SUSY searches at the LHC. The plot shows exclusion mass
limits of ATLAS for different searches and interpretation assumptions [157]. The corresponding results of CMS
are comparable.

II.7. Global interpretations

Apart from the interpretation of direct searches for sparticle

production at colliders in terms of limits on masses of individ-

ual SUSY particles, model-dependent interpretations of allowed

SUSY parameter space are derived from global SUSY fits. Typ-

ically these fits combine the results from collider experiments

with indirect constraints on SUSY as obtained from low-energy

experiments, flavor physics, high-precision electroweak results,

and astrophysical data.

In the pre-LHC era these fits were mainly dominated by

indirect constraints. Even for very constrained models like the

CMSSM, the allowed parameter space, in terms of squark and

gluino masses, ranged from several hundreds of GeV to a

few TeV. Furthermore, these global fits indicated that squarks

and gluino masses in the range of 500 to 1000 GeV were the

preferred region of parameter space, although values as high as

few TeV were allowed with lower probabilities [156].

With ATLAS and CMS now probing mass scales around

1 TeV and even beyond, the importance of the direct searches for

global analyses of allowed SUSY parameter space has strongly

increased. For example, imposing the new experimental limits

on constrained supergravity models pushes the most likely

values of first generation squark and gluino masses significantly

beyond 1 TeV, typically resulting in overall values of fit quality

much worse than those in the pre-LHC era [125]. Although

these constrained models are not yet ruled out, the extended



1718171817181718Sear
hes Parti
le ListingsSupersymmetri
 Parti
le Sear
hes
experimental limits impose tight constraints on the allowed

parameter space.

For this reason, the emphasis of global SUSY fits has shifted

towards less-constrained SUSY models. Especially interpreta-

tions in the pMSSM [121,139–141] but also in simplified models

have been useful to generalize SUSY searches, for example to

redesign experimental analyses in order to increase their sen-

sitivity for compressed spectra, where the mass of the LSP is

much closer to squark and gluino masses than predicted, for

example, by the CMSSM. As shown in Table 2, for neutralino

masses above a few hundred GeV the current set of ATLAS

and CMS searches cannot exclude the existence of light squarks

and also gluinos above approximately 1 TeV are not yet fully

excluded.

Furthermore, the discovery of a Higgs boson with a mass

around 125 GeV has triggered many studies regarding the

compatibility of SUSY parameter space with this new particle.

Much of it is still work in progress and it will be interesting

to see how the interplay between the results from direct SUSY

searches and more precise measurements of the properties of the

Higgs boson will unfold in the forthcoming era of high-energy

running of the LHC.

II.8. Summary and Outlook

Direct searches for SUSY, combined with limits from high-

precision experiments that look for new physics in loops, put

SUSY under considerable scrutiny. In particular the absence of

any observation of new phenomena at the first run of the LHC,

at
√

s = 7 and 8 TeV, place significant constraints on SUSY

parameter space. Today, inclusive searches probe production of

gluinos in the rage of 1.0− 1.4 TeV, first and second generation

squarks to about 1.0 TeV , third generation squarks at scales

around 600 GeV, electroweak gauginos at scales around 300 −
500 GeV, and sleptons around 200 GeV. However, depending

on the assumptions made of the underlying SUSY spectrum

these limits can also weaken considerably. An overview of

the current landscape of SUSY searches and corresponding

exclusion limits at the LHC is shown in Fig. 10from the

ATLAS experiment [157]. The corresponding results of the

CMS experiment are similar [158].

The interpretation of results at the LHC has moved away

from constrained models like the CMSSM towards a large set of

simplified models, or the pMSSM. On the one hand this move

is because the LHC limits have put constrained models like the

CMSSM under severe pressure, while on the other hand simpli-

fied models leave more freedom to vary parameters and form a

better representation of the underlying sensitivity of analyses.

However, these interpretations in simplified models do not come

without a price: the decomposition of a potentially compli-

cated reality in a limited set of individual decay chains can be

significantly incomplete. Therefore, quoted limits in simplified

models are only valid under the explicit assumptions made in

these models, assumptions that are usually stated on the plots,

and in the relevant LHC papers. Interpretations of simplified

models in generic cases, ignoring the assumptions made, can

lead to overestimation of limits on SUSY parameter space. The

recent addition of more comprehensive interpretations in the

pMSSM is expected to overcome some of the limitations arising

from the characterisation of searches in simplified model and

thus will enable an even more refined understanding of the

probed SUSY parameter space. In this context, the limit range

of 1.0 − 1.4 TeV on generic colored SUSY particles only holds

for light neutralinos, in the R-parity conserving MSSM. Limits

on third generation squarks and electroweak gauginos also only

hold for light neutralinos, and under specific assumptions for

decay modes and slepton masses. In general, SUSY below the

1 TeV scale is not yet ruled out.

The new LHC run at
√

s = 13 TeV, with significantly larger

integrated luminosities, will present again a great opportunity

for SUSY searches. The operation at higher energy will increase

the production cross section for SUSY particles, shown in Fig. 1,

substantially. While typically for masses around 500 GeV the

increase is about 3 to 5 times the production cross section

at 8 TeV, this becomes an increase of almost two orders of

magnitude for a SUSY mass scale of 1.5 to 2 TeV. Apart from

pushing the sensitivity of LHC searches to higher mass scales,

further LHC data will also help to reduce holes and gaps that

are left behind in today’s SUSY limits. These could be, for

example, due to compressed particle spectra, stealth SUSY, or

the violation of R-parity.
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http://cms-results.web.cern.ch/cms-results/

public-results/publications/SUS/index.html.SUPERSYMMETRIC MODEL ASSUMPTIONSSUPERSYMMETRIC MODEL ASSUMPTIONSSUPERSYMMETRIC MODEL ASSUMPTIONSSUPERSYMMETRIC MODEL ASSUMPTIONSThe ex
lusion of parti
le masses within a mass range (m1, m2) will bedenoted with the notation \none m1−m2" in the VALUE 
olumn of thefollowing Listings. The latest unpublished results are des
ribed in the\Supersymmetry: Experiment" review.
Most of the results shown below, unless stated otherwise,

are based on the Minimal Supersymmetric Standard Model

(MSSM), as described in the Note on Supersymmetry. Unless

otherwise indicated, this includes the assumption of common

gaugino and scalar masses at the scale of Grand Unification

(GUT), and use of the resulting relations in the spectrum and

decay branching ratios. It is also assumed that R-parity (R) is

conserved. Unless otherwise indicated, the results also assume

that:

1) The χ̃0
1 is the lighest supersymmetric particle (LSP)

2) m
f̃L

= m
f̃R

, where f̃L,R refer to the scalar partners of left-

and right-handed fermions.

Limits involving different assumptions are identified in the

Comments or in the Footnotes. We summarize here the nota-

tions used in this Chapter to characterize some of the most

common deviations from the MSSM (for further details, see the

Note on Supersymmetry).

Theories with R-parity violation (6R) are characterized

by a superpotential of the form: λijkLiLje
c
k + λ′

ijkLiQjd
c
k +

λ′′
ijku

c
id

c
jd

c
k, where i, j, k are generation indices. The presence

of any of these couplings is often identified in the following

by the symbols LLE, LQD, and UDD. Mass limits in the

presence of 6R will often refer to “direct” and “indirect” de-

cays. Direct refers to 6R decays of the particle in consideration.

Indirect refers to cases where 6R appears in the decays of the

LSP.

In several models, most notably in theories with so-called

Gauge Mediated Supersymmetry Breaking (GMSB), the grav-

itino (G̃) is the LSP. It is usually much lighter than any other

massive particle in the spectrum, and m
G̃

is then neglected

in all decay processes involving gravitinos. In these scenarios,

particles other than the neutralino are sometimes considered

as the next-to-lighest supersymmetric particle (NLSP), and are

assumed to decay to their even-R partner plus G̃. If the lifetime

is short enough for the decay to take place within the detector,

G̃ is assumed to be undetected and to give rise to missing

energy (6E) or missing transverse energy (6ET ) signatures.

When needed, specific assumptions on the eigenstate con-

tent of χ̃0 and χ̃± states are indicated, using the notation γ̃

(photino), H̃ (higgsino), W̃ (wino), and Z̃ (zino) to signal that

the limit of pure states was used. The terms gaugino is also

used, to generically indicate wino-like charginos and zino-like

neutralinos.CONTENTS:CONTENTS:CONTENTS:CONTENTS:
χ̃01 (Lightest Neutralino) Mass Limit

− A

elerator limits for stable χ̃01
− Bounds on χ̃01 from dark matter sear
hes

− χ̃01-p elasti
 
ross se
tionSpin-dependent intera
tionsSpin-independent intera
tions
− Other bounds on χ̃01 from astrophysi
s and 
osmology
− Unstable χ̃01 (Lightest Neutralino) Mass Limit

χ̃02, χ̃03, χ̃04 (Neutralinos) Mass Limits
χ̃±1 , χ̃±2 (Charginos) Mass LimitsLong-lived χ̃± (Chargino) Mass Limits
ν̃ (Sneutrino) Mass LimitCharged Sleptons

− ẽ (Sele
tron) Mass Limit
− µ̃ (Smuon) Mass Limit
− τ̃ (Stau) Mass Limit
− Degenerate Charged Sleptons
− ℓ̃ (Slepton) Mass Limitq̃ (Squark) Mass LimitLong-lived q̃ (Squark) Mass Limitb̃ (Sbottom) Mass Limitt̃ (Stop) Mass LimitHeavy g̃ (Gluino) Mass LimitLong-lived/light g̃ (Gluino) Mass LimitLight G̃ (Gravitino) Mass Limits from Collider ExperimentsSupersymmetry Mis
ellaneous Results

χ̃01 (Lightest Neutralino) MASS LIMITχ̃01 (Lightest Neutralino) MASS LIMITχ̃01 (Lightest Neutralino) MASS LIMITχ̃01 (Lightest Neutralino) MASS LIMIT
χ̃01 is often assumed to be the lightest supersymmetri
 parti
le (LSP). Seealso the χ̃02, χ̃03, χ̃04 se
tion below.We have divided the χ̃01 listings below into �ve se
tions:1) A

elerator limits for stable χ̃01,2) Bounds on χ̃01 from dark matter sear
hes,3) χ̃01 − p elasti
 
ross se
tion (spin-dependent, spin-independent intera
-tions),4) Other bounds on χ̃01 from astrophysi
s and 
osmology, and5) Unstable χ̃01 (Lightest Neutralino) mass limit.A

elerator limits for stable χ̃01A

elerator limits for stable χ̃01A

elerator limits for stable χ̃01A

elerator limits for stable χ̃01Unless otherwise stated, results in this se
tion assume spe
tra, produ
tionrates, de
ay modes, and bran
hing ratios as evaluated in the MSSM, withgaugino and sfermion mass uni�
ation at the GUT s
ale. These papersgenerally study produ
tion of χ̃0i χ̃0j (i ≥ 1, j ≥ 2), χ̃+1 χ̃−1 , and (in the
ase of hadroni
 
ollisions) χ̃+1 χ̃02 pairs. The mass limits on χ̃01 are eitherdire
t, or follow indire
tly from the 
onstraints set by the non-observationof χ̃±1 and χ̃02 states on the gaugino and higgsino MSSM parameters M2and µ. In some 
ases, information is used from the nonobservation ofslepton de
ays.Obsolete limits obtained from e+ e− 
ollisions up to √s=184 GeV havebeen removed from this 
ompilation and 
an be found in the 2000 Edi-tion (The European Physi
al Journal C15C15C15C15 1 (2000)) of this Review.�m=m

χ̃02 − m
χ̃01 .VALUE (GeV) CL% DOCUMENT ID TECN COMMENT1 DREINER 09 THEO

>40 95 2 ABBIENDI 04H OPAL all tanβ, �m >5 GeV,m0 >500 GeV, A0 = 0
>42.4 95 3 HEISTER 04 ALEP all tanβ, all �m, all m0
>39.2 95 4 ABDALLAH 03M DLPH all tanβ, mν̃ >500 GeV
>46>46>46>46 95 5 ABDALLAH 03M DLPH all tanβ, all �m, all m0
>32.5 95 6 ACCIARRI 00D L3 tanβ > 0.7, �m > 3 GeV, all m0
• • • We do not use the following data for averages, �ts, limits, et
. • • •7 AAD 14K ATLS1DREINER 09 show that in the general MSSM with non-universal gaugino masses thereexists no model-independent laboratory bound on the mass of the lightest neutralino. Anessentially massless χ01 is allowed by the experimental and observational data, imposingsome 
onstraints on other MSSM parameters, in
luding M2, µ and the slepton andsquark masses.2ABBIENDI 04H sear
h for 
harginos and neutralinos in events with a
oplanar leptons+jetsand multi-jet �nal states in the 192{209 GeV data, 
ombined with the results on leptoni
�nal states from ABBIENDI 04. The results hold for a s
an over the parameter spa
e
overing the region 0 < M2 <5000 GeV, −1000 < µ <1000 GeV and tanβ from 1 to40. This limit supersedes ABBIENDI 00H.3HEISTER 04 data 
olle
ted up to 209 GeV. Updates earlier analysis of sele
trons fromHEISTER 02E, in
ludes a new analysis of 
harginos and neutralinos de
aying into stauand uses results on 
harginos with initial state radiation from HEISTER 02J. The limitis based on the dire
t sear
h for 
harginos and neutralinos, the 
onstraints from theslepton sear
h and the Higgs mass limits from HEISTER 02 using a top mass of 175 GeV,interpreted in a framework with universal gaugino and sfermion masses. Assuming themixing in the stau se
tor to be negligible, the limit improves to 43.1 GeV. Under theassumption of MSUGRA with uni�
ation of the Higgs and sfermion masses, the limitimproves to 50 GeV, and rea
hes 53 GeV for A0 = 0. These limits in
lude and updatethe results of BARATE 01.
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hes4ABDALLAH 03M uses data from√
s = 192{208 GeV. A limit on the mass of χ̃01 is derivedfrom dire
t sear
hes for neutralinos 
ombined with the 
hargino sear
h. Neutralinos aresear
hed in the produ
tion of χ̃01χ̃02, χ̃01χ̃03, as well as χ̃02χ̃03 and χ̃02χ̃04 giving rise to
as
ade de
ays, and χ̃01χ̃02 and χ̃01χ̃02, followed by the de
ay χ̃02 → τ̃ τ . The resultshold for the parameter spa
e de�ned by values of M2 < 1 TeV, ∣∣µ

∣∣ ≤ 2 TeV with the
χ̃01 as LSP. The limit is obtained for tanβ = 1 and large m0, where χ̃02χ̃04 and 
harginopair produ
tion are important. If the 
onstraint from Higgs sear
hes is also imposed,the limit improves to 49.0 GeV in the mmax

h s
enario with mt=174.3 GeV. These limitsupdate the results of ABREU 00J.5ABDALLAH 03M uses data from √
s = 192{208 GeV. An indire
t limit on the massof χ̃01 is derived by 
onstraining the MSSM parameter spa
e by the results from dire
tsear
hes for neutralinos (in
luding 
as
ade de
ays and τ̃ τ �nal states), for 
harginos (forall �m+) and for sleptons, stop and sbottom. The results hold for the full parameterspa
e de�ned by values of M2 < 1 TeV, ∣∣µ

∣∣ ≤ 2 TeV with the χ̃01 as LSP. Constraintsfrom the Higgs sear
h in the mmax
h s
enario assuming mt=174.3 GeV are in
luded. Thelimit is obtained for tanβ ≥ 5 when stau mixing leads to mass degenera
y between τ̃1and χ̃01 and the limit is based on χ̃02 produ
tion followed by its de
ay to τ̃1τ . In thepathologi
al s
enario where m0 and ∣∣µ

∣∣ are large, so that the χ̃02 produ
tion 
ross se
tionis negligible, and where there is mixing in the stau se
tor but not in stop nor sbottom,the limit is based on 
harginos with soft de
ay produ
ts and an ISR photon. The limitthen degrades to 39 GeV. See Figs. 40{42 for the dependen
e of the limit on tanβ andmν̃ . These limits update the results of ABREU 00W.6ACCIARRI 00D data 
olle
ted at √s=189 GeV. The results hold over the full parameterspa
e de�ned by 0.7 ≤ tanβ ≤ 60, 0 ≤ M2 ≤ 2 TeV, m0 ≤ 500 GeV, ∣∣µ
∣∣ ≤ 2 TeVThe minimum mass limit is rea
hed for tanβ=1 and large m0. The results of sleptonsear
hes from ACCIARRI 99W are used to help set 
onstraints in the region of small m0.The limit improves to 48 GeV for m0& 200 GeV and tanβ & 10. See their Figs. 6{8 forthe tanβ and m0 dependen
e of the limits. Updates ACCIARRI 98F.7AAD 14K sets limits on the χ-nu
leon spin-dependent and spin-independent 
ross se
tionsout to mχ = 10 TeV.Bounds on χ̃01 from dark matter sear
hesBounds on χ̃01 from dark matter sear
hesBounds on χ̃01 from dark matter sear
hesBounds on χ̃01 from dark matter sear
hesThese papers generally ex
lude regions in the M2 { µ parameter planeassuming that χ̃01 is the dominant form of dark matter in the gala
ti
 halo.These limits are based on the la
k of dete
tion in laboratory experiments,teles
opes, or by the absen
e of a signal in underground neutrino dete
tors.The latter signal is expe
ted if χ̃01 a

umulates in the Sun or the Earthand annihilates into high-energy ν's.VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AARTSEN 15C ICCB2 AARTSEN 15E ICCB3 ABRAMOWSKI15 HESS4 ACKERMANN 15 FLAT5 ACKERMANN 15A FLAT6 ACKERMANN 15B FLAT7 ADRIAN-MAR...15 ANTR8 BUCKLEY 15 THEO9 CHOI 15 SKAM10 ALEKSIC 14 MGIC11 AVRORIN 14 BAIK12 AARTSEN 13 ICCB13 AARTSEN 13C ICCB14 ABRAMOWSKI13 HESS15 ADRIAN-MAR...13 ANTR16 BERGSTROM 13 COSM17 BOLIEV 13 BAKS16 JIN 13 ASTR16 KOPP 13 COSM18 ABBASI 12 ICCB19 ABRAMOWSKI11 HESS20 ABDO 10 FLAT21 ACKERMANN 10 FLAT22 ABBASI 09B ICCB23 ACHTERBERG 06 AMND24 ACKERMANN 06 AMND25 DEBOER 06 RVUE26 DESAI 04 SKAM26 AMBROSIO 99 MCRO27 LOSECCO 95 RVUE28 MORI 93 KAMI29 BOTTINO 92 COSM30 BOTTINO 91 RVUE31 GELMINI 91 COSM32 KAMIONKOW...91 RVUE33 MORI 91B KAMInone 4{15 GeV 34 OLIVE 88 COSM1AARTSEN 15C is based on 316 live days of running with the I
eCube dete
tor. They seta limit of 1.9× 10−23 
m3s−1 on the annihilation 
ross se
tion to ν ν for dark matterwith masses between 700{1000 GeV annihilating in the Gala
ti
 halo.2AARTSEN 15E is based on 319.7 live days of running with the I
eCube 79-string dete
tor.They set a limit of 4× 10−24 
m3s−1 on the annihilation 
ross se
tion to ν ν for darkmatter with masses between 30{10000 GeV annihilating in the Gala
ti
 
enter assumingan NFW pro�le.

3ABRAMOWSKI 15 pla
es 
onstraints on the dark matter annihilation 
ross se
tion forannihilations in the Gala
ti
 
enter for masses between 300 GeV to 10 TeV.4ACKERMANN 15 is based on 5.8 years of data with Fermi-LAT and sear
h for mono
hro-mati
 gamma-rays in the energy range of 0.2{500 GeV from dark matter annihilations.This updates ACKERMANN 13A.5ACKERMANN 15A is based on 50 months of data with Fermi-LAT and sear
h for darkmatter annihilation signals in the isotropi
 gamma-ray ba
kground as well as gala
ti
subhalos in the energy range of a few GeV to a few tens of TeV.6ACKERMANN 15B is based on 6 years of data with Fermi-LAT observations of MilkyWay dwarf spheroidal galaxies. Set limits on the annihilation 
ross se
tion from mχ =2 GeV to 10 TeV. This updates ACKERMANN 14.7ADRIAN-MARTINEZ 15 is based on data from the ANTARES neutrino teles
ope. Theylooked for intera
tions of νµ's from neutralino annihilations in the gala
ti
 
enter over aba
kground of atmospheri
 neutrinos and set 90% CL limits on the muon neutrino 
ux.They also set limits on the annihilation 
ross se
tion for wimp masses of 25{10000 GeV.8BUCKLEY 15 is based on 5 years of Fermi-LAT data sear
hing for dark matter annihi-lation signals from Large Magellani
 Cloud.9CHOI 15 is based on 3903 days of SuperKamiokande data sear
hing for neutrinos pro-du
ed from dark matter annihilations in the sun. They pla
e 
onstraints on the darkmatter-nu
leon s
attering 
ross se
tion for dark matter masses between 4{200 GeV.10ALEKSIC 14 is based on almost 160 hours of observations of Segue 1 satellite dwarf galaxyusing the MAGIC teles
opes between 2011 and 2013. Sets limits on the annihilation 
rossse
tion out to mχ = 10 TeV.11AVRORIN 14 is based on almost 2.76 years with Lake Baikal neutrino teles
ope. Theyderive 90% upper limits on the 
uxes of muons and muon neutrinos from dark matterannihilations in the Sun.12AARTSEN 13 is based on data 
olle
ted during 317 e�e
tive days with the I
eCube 79-string dete
tor in
luding the DeepCore sub-array. They looked for intera
tions of νµ'sfrom neutralino annihilations in the Sun over a ba
kground of atmospheri
 neutrinos andset 90% CL limits on the muon 
ux. They also obtain limits on the spin dependentand spin independent neutralino-proton 
ross se
tion for neutralino masses in the range20{5000 GeV.13AARTSEN 13C is based on data 
olle
ted during 339.8 e�e
tive days with the I
eCube59-string dete
tor. They looked for intera
tions of νµ's from neutralino annihilations innearby galaxies and galaxy 
lusters. They obtain limits on the neutralino annihilation
ross se
tion for neutralino masses in the range 30{100, 000 GeV.14ABRAMOWSKI 13 pla
e upper limits on the annihilation 
ross se
tion with γ γ �nalstates in the energy range of 0.5{25 TeV.15ADRIAN-MARTINEZ 13 is based on data from the ANTARES neutrino teles
ope. Theylooked for intera
tions of νµ's from neutralino annihilations in the Sun over a ba
kgroundof atmospheri
 neutrinos and set 90% CL limits on the muon 
ux. They also obtain limitson the spin dependent and spin independent neutralino-proton 
ross se
tion for neutralinomasses in the range 50{10, 000 GeV.16BERGSTROM 13, JIN 13, and KOPP 13 derive limits on the mass and annihilation 
rossse
tion using AMS-02 data. JIN 13 also sets a limit on the lifetime of the dark matterparti
le.17BOLIEV 13 is based on data 
olle
ted during 24.12 years of live time with the BaksonUnderground S
intillator Teles
ope. They looked for intera
tions of νµ's from neutralinoannihilations in the Sun over a ba
kground of atmospheri
 neutrinos and set 90% CL lim-its on the muon 
ux. They also obtain limits on the spin dependent and spin independentneutralino-proton 
ross se
tion for neutralino masses in the range 10{1000 GeV.18ABBASI 12 is based on data 
olle
ted during 812 e�e
tive days with AMANDA II and149 days of the I
eCube 40-string dete
tor 
ombined with the data of ABBASI 09B.They looked for intera
tions of νµ's from neutralino annihilations in the Sun over aba
kground of atmospheri
 neutrinos and set 90% CL limits on the muon 
ux. Noex
ess is observed. They also obtain limits on the spin dependent neutralino-proton
ross se
tion for neutralino masses in the range 50{5000 GeV.19ABRAMOWSKI 11 pla
e upper limits on the annihilation 
ross se
tion with γ γ �nalstates.20ABDO 10 pla
e upper limits on the annihilation 
ross se
tion with γ γ or µ+µ− �nalstates.21ACKERMANN 10 pla
e upper limits on the annihilation 
ross se
tion with bb or µ+µ−�nal states.22ABBASI 09B is based on data 
olle
ted during 104.3 e�e
tive days with the I
eCube22-string dete
tor. They looked for intera
tions of νµ's from neutralino annihilations inthe Sun over a ba
kground of atmospheri
 neutrinos and set 90% CL limits on the muon
ux. They also obtain limits on the spin dependent neutralino{proton 
ross se
tion forneutralino masses in the range 250{5000 GeV.23ACHTERBERG 06 is based on data 
olle
ted during 421.9 e�e
tive days with theAMANDA dete
tor. They looked for intera
tions of νµs from the 
entre of the Earthover a ba
kground of atmospheri
 neutrinos and set 90 % CL limits on the muon 
ux.Their limit is 
ompared with the muon 
ux expe
ted from neutralino annihilations intoW+W− and bb at the 
entre of the Earth for MSSM parameters 
ompatible with thereli
 dark matter density, see their Fig. 7.24ACKERMANN 06 is based on data 
olle
ted during 143.7 days with the AMANDA-II dete
tor. They looked for intera
tions of νµs from the Sun over a ba
kground ofatmospheri
 neutrinos and set 90 % CL limits on the muon 
ux. Their limit is 
omparedwith the muon 
ux expe
ted from neutralino annihilations into W+W− in the Sun forSUSY model parameters 
ompatible with the reli
 dark matter density, see their Fig. 3.25DEBOER 06 interpret an ex
ess of di�use Gala
ti
 gamma rays observed with the EGRETsatellite as originating from π0 de
ays from the annihilation of neutralinos into quarkjets. They analyze the 
orresponding parameter spa
e in a supergravity inspired MSSMmodel with radiative ele
troweak symmetry breaking, see their Fig. 3 for the preferredregion in the (m0, m1/2) plane of a s
enario with large tanβ.26AMBROSIO 99 and DESAI 04 set new neutrino 
ux limits whi
h 
an be used to limitthe parameter spa
e in supersymmetri
 models based on neutralino annihilation in theSun and the Earth.27 LOSECCO 95 reanalyzed the IMB data and pla
es lower limit on m
χ̃01 of 18 GeV ifthe LSP is a photino and 10 GeV if the LSP is a higgsino based on LSP annihilation inthe sun produ
ing high-energy neutrinos and the limits on neutrino 
uxes from the IMBdete
tor.28MORI 93 ex
ludes some region in M2{µ parameter spa
e depending on tanβ and lightests
alar Higgs mass for neutralino dark matter m

χ̃0 >mW , using limits on upgoing muonsprodu
ed by energeti
 neutrinos from neutralino annihilation in the Sun and the Earth.
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hes29BOTTINO 92 ex
ludes some region M2-µ parameter spa
e assuming that the lightestneutralino is the dark matter, using upgoing muons at Kamiokande, dire
t sear
hes byGe dete
tors, and by LEP experiments. The analysis in
ludes top radiative 
orre
tionson Higgs parameters and employs two di�erent hypotheses for nu
leon-Higgs 
oupling.E�e
ts of res
aling in the lo
al neutralino density a

ording to the neutralino reli
 abun-dan
e are taken into a

ount.30BOTTINO 91 ex
luded a region in M2−µ plane using upgoing muon data from Kamiokaexperiment, assuming that the dark matter surrounding us is 
omposed of neutralinosand that the Higgs boson is not too heavy.31GELMINI 91 ex
lude a region in M2 − µ plane using dark matter sear
hes.32KAMIONKOWSKI 91 ex
ludes a region in the M2{µ plane using IMB limit on upgoingmuons originated by energeti
 neutrinos from neutralino annihilation in the sun, assumingthat the dark matter is 
omposed of neutralinos and that mH01 . 50 GeV. See Fig. 8in the paper.33MORI 91B ex
lude a part of the region in the M2{µ plane with m
χ̃01 . 80 GeV usinga limit on upgoing muons originated by energeti
 neutrinos from neutralino annihilationin the earth, assuming that the dark matter surrounding us is 
omposed of neutralinosand that mH01 . 80 GeV.34OLIVE 88 result assumes that photinos make up the dark matter in the gala
ti
 halo.Limit is based on annihilations in the sun and is due to an absen
e of high energyneutrinos dete
ted in underground experiments. The limit is model dependent.

χ̃01-p elasti
 
ross se
tionχ̃01-p elasti
 
ross se
tionχ̃01-p elasti
 
ross se
tionχ̃01-p elasti
 
ross se
tionExperimental results on the χ̃01-p elasti
 
ross se
tion are evaluated atm
χ̃01=100 GeV. The experimental results on the 
ross se
tion are oftenmass dependent. Therefore, the mass and 
ross se
tion results are alsogiven where the limit is strongest, when appropriate. Results are quotedseparately for spin-dependent intera
tions (based on an e�e
tive 4-FermiLagrangian of the form χγµγ5χqγµγ5q) and spin-independent intera
-tions (χχq q). For 
al
ulational details see GRIEST 88B, ELLIS 88D, BAR-BIERI 89C, DREES 93B, ARNOWITT 96, BERGSTROM 96, and BAER 97in addition to the theory papers listed in the Tables. For a des
ription ofthe theoreti
al assumptions and experimental te
hniques underlying mostof the listed papers, see the review on \Dark matter" in this \Review ofParti
le Physi
s," and referen
es therein. Most of the following papers usegala
ti
 halo and nu
lear intera
tion assumptions from (LEWIN 96).Spin-dependent intera
tionsSpin-dependent intera
tionsSpin-dependent intera
tionsSpin-dependent intera
tionsVALUE (pb) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.4 × 10−3 90 1 AMOLE 15 PICO C3F8
< 6.3 × 10−3 90 2 FELIZARDO 14 SMPL C2ClF5
< 0.01 90 3 APRILE 13 X100 Xe
< 0.01 90 4 AKIMOV 12 ZEP3 Xe
< 0.07 90 5 ARCHAMBAU...12 PICA F
< 7 × 10−3 6 BEHNKE 12 COUP CF3I
< 1.8 90 7 DAW 12 DRFT CS2; CF4
< 8.5 × 10−3 8 FELIZARDO 12 SMPL C2ClF5
< 0.016 90 9 KIM 12 KIMS CsI5× 10−10 to 10−5 95 10 BUCHMUEL... 11B THEO
< 1 90 11 ANGLE 08A XE10 Xe
< 0.055 12 BEDNYAKOV 08 HDMS Ge
< 0.33 90 13 BEHNKE 08 COUP CF3I
< 5 14 AKERIB 06 CDMS Ge
< 2 15 SHIMIZU 06A CNTR CaF2
< 0.4 16 ALNER 05 NAIA NaI Spin Dep.
< 2 17 BARNABE-HE...05 PICA C2× 10−11 to 1× 10−4 18 ELLIS 04 THEO µ > 0
< 0.8 19 AHMED 03 NAIA NaI Spin Dep.
< 40 20 TAKEDA 03 BOLO NaF Spin Dep.
< 10 21 ANGLOHER 02 CRES Saphire8× 10−7 to 2× 10−5 22 ELLIS 01C THEO tanβ ≤ 10
< 3.8 23 BERNABEI 00D DAMA Xe
< 0.8 SPOONER 00 UKDM NaI
< 4.8 24 BELLI 99C DAMA F
<100 25 OOTANI 99 BOLO LiF
< 0.6 BERNABEI 98C DAMA Xe
< 5 24 BERNABEI 97 DAMA F1The strongest limit is 0.001 pb and o

urs at mχ = 40 GeV.2The strongest limit is 0.0043 pb and o

urs at mχ = 35 GeV. FELIZARDO 14 alsopresents limits for the s
attering on neutrons. At mχ = 100 GeV, the upper limit is 0.13pb and the strongest limit is 0.066 pb at mχ = 35 GeV.3The strongest limit is 0.006 pb and o

urs at mχ = 60 GeV. APRILE 13 also presentslimits for the s
attering on neutrons. At 100 GeV, the upper limit is 4 × 10−4 pb andthe strongest limit is 3.5× 10−4 pb at 45 GeV.4This result updates LEBEDENKO 09A. The strongest limit is 8× 10−3 pb at mχ = 50GeV. Limit applies to the neutralino neutron elasti
 
ross se
tion.5This result updates ARCHAMBAULT 09. The strongest limit is 0.032 pb at mχ = 20GeV.6The strongest limit is 6× 10−3 at mχ = 60 GeV.7The strongest limit is 1.8 pb and o

urs at mχ = 100 GeV.8The strongest limit is 5.7× 10−3 at mχ = 35 GeV.9This result updates LEE 07A. The strongest limit is at mχ = 80 GeV.

10Predi
tions for the spin-dependent elasti
 
ross se
tion based on a frequentist approa
hto ele
troweak observables in the framework of N = 1 supergravity models with radiativebreaking of the ele
troweak gauge symmetry.11The strongest limit is 0.6 pb and o

urs at mχ= 30 GeV. The limit for s
attering onneutrons is 0.01 pb at mχ= 100 GeV, and the strongest limit is 0.0045 pb at mχ=30 GeV.12 Limit applies to neutron elasti
 
ross se
tion.13The strongest upper limit is 0.25 pb and o

urs at mχ ≃ 40 GeV.14The strongest upper limit is 4 pb and o

urs at mχ ≃ 60 GeV. The limit on theneutron spin-dependent elasti
 
ross se
tion is 0.07 pb. This latter limit is improved inAHMED 09, where a limit of 0.02 pb is obtained at mχ = 100 GeV. The strongest limitin AHMED 09 is 0.018 pb and o

urs at mχ = 60 GeV.15The strongest upper limit is 1.2 pb and o

urs at mχ ≃ 40 GeV. The limit on theneutron spin-dependent 
ross se
tion is 35 pb.16The strongest upper limit is 0.35 pb and o

urs at mχ ≃ 60 GeV.17The strongest upper limit is 1.2 pb and o

urs mχ ≃ 30 GeV.18ELLIS 04 
al
ulates the χp elasti
 s
attering 
ross se
tion in the framework of N=1supergravity models with radiative breaking of the ele
troweak gauge symmetry, butwithout universal s
alar masses. In the 
ase of universal squark and slepton masses, butnon-universal Higgs masses, the limit be
omes 2× 10−4, see ELLIS 03E.19The strongest upper limit is 0.75 pb and o

urs at mχ ≈ 70 GeV.20The strongest upper limit is 30 pb and o

urs at mχ ≈ 20 GeV.21The strongest upper limit is 8 pb and o

urs at mχ ≃ 30 GeV.22ELLIS 01C 
al
ulates the χ-p elasti
 s
attering 
ross se
tion in the framework of N=1supergravity models with radiative breaking of the ele
troweak gauge symmetry. Inmodels with nonuniversal Higgs masses, the upper limit to the 
ross se
tion is 6×10−4.23The strongest upper limit is 3 pb and o

urs at mχ ≃ 60 GeV. The limits are for inelasti
s
attering X0 + 129Xe → X0 + 129Xe∗ (39.58 keV).24The strongest upper limit is 4.4 pb and o

urs at mχ ≃ 60 GeV.25The strongest upper limit is about 35 pb and o

urs at mχ ≃ 15 GeV.Spin-independent intera
tionsSpin-independent intera
tionsSpin-independent intera
tionsSpin-independent intera
tionsVALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 6.1× 10−8 90 AGNES 15 DSID Ar90 1 AGNESE 15A CDMS Ge
< 2.2× 10−8 90 2 AGNESE 15B CDMS Ge3 AMOLE 15 PICO C3F8
< 1.5× 10−8 90 4 XIAO 15 PANX Xe5 AGNESE 14 CDMS Ge
< 1.5× 10−9 90 6 AKERIB 14 LUX Xe10−11{10−7 95 7 BUCHMUEL... 14A THEO
< 4.6× 10−6 90 8 FELIZARDO 14 SMPL C2ClF510−11{10−8 95 9 ROSZKOWSKI 14 THEO10 AALSETH 13 CGNT Ge
< 2.2× 10−6 90 11 AGNESE 13 CDMS Si12 LI 13B TEXO Ge
< 5 × 10−8 90 13 AKIMOV 12 ZEP3 Xe1.6× 10−6; 3.7× 10−5 14 ANGLOHER 12 CRES CaWO4
< 2.6× 10−9 90 15 APRILE 12 X100 Xe90 16 ARCHAMBAU...12 PICA C4F103× 10−12 to 3× 10−9 95 17 BECHTLE 12 THEO
< 1.6× 10−7 18 BEHNKE 12 COUP CF3I
< 6.5× 10−6 19 FELIZARDO 12 SMPL C2ClF5
< 2.3× 10−7 90 20 KIM 12 KIMS CsI
< 3.3× 10−8 90 21 AHMED 11A Ge
< 4.4× 10−8 90 22 ARMENGAUD 11 EDE2 Ge
< 7 × 10−7 90 23 ANGLOHER 09 CRES CaWO4
< 1 × 10−7 90 24 ANGLE 08 XE10 Xe
< 1 × 10−6 90 BENETTI 08 WARP Ar
< 7.5× 10−7 90 25 ALNER 07A ZEP2 Xe
< 2 × 10−7 26 AKERIB 06A CDMS Ge
<90 × 10−7 ALNER 05 NAIA NaI Spin Indep.
<12 × 10−7 27 ALNER 05A ZEPL
<20 × 10−7 28 ANGLOHER 05 CRES CaWO4
<14 × 10−7 SANGLARD 05 EDEL Ge
< 4 × 10−7 29 AKERIB 04 CDMS Ge2× 10−11 to 1.5× 10−7 95 30 BALTZ 04 THEO2× 10−11 to 8× 10−6 31,32 ELLIS 04 THEO µ > 0
< 5 × 10−8 33 PIERCE 04A THEO
< 2 × 10−5 34 AHMED 03 NAIA NaI Spin Indep.
< 3 × 10−6 35 AKERIB 03 CDMS Ge2× 10−13 to 2× 10−7 36 BAER 03A THEO
< 1.4× 10−5 37 KLAPDOR-K... 03 HDMS Ge
< 6 × 10−6 38 ABRAMS 02 CDMS Ge
< 1.4× 10−6 39 BENOIT 02 EDEL Ge1× 10−12 to 7× 10−6 31 KIM 02B THEO
< 3 × 10−5 40 MORALES 02B CSME Ge
< 1 × 10−5 41 MORALES 02C IGEX Ge
< 1 × 10−6 BALTZ 01 THEO
< 3 × 10−5 42 BAUDIS 01 HDMS Ge
< 4.5× 10−6 BENOIT 01 EDEL Ge
< 7 × 10−6 43 BOTTINO 01 THEO
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< 1 × 10−8 44 CORSETTI 01 THEO tanβ ≤ 255× 10−10 to 1.5× 10−8 45 ELLIS 01C THEO tanβ ≤ 10
< 4 × 10−6 44 GOMEZ 01 THEO2× 10−10 to 1× 10−7 44 LAHANAS 01 THEO
< 3 × 10−6 ABUSAIDI 00 CDMS Ge, Si
< 6 × 10−7 46 ACCOMANDO 00 THEO47 BERNABEI 00 DAMA NaI2.5× 10−9 to 3.5× 10−8 48 FENG 00 THEO tanβ=10
< 1.5× 10−5 MORALES 00 IGEX Ge
< 4 × 10−5 SPOONER 00 UKDM NaI
< 7 × 10−6 BAUDIS 99 HDMO 76Ge
< 7 × 10−6 BERNABEI 98C DAMA Xe1AGNESE 15A presents 90% CL limits on the elasti
 
ross se
tion for masses in the range5{20 GeV, from a likelihood analysis of CDMS II data. The limit at 10 GeV is 2.5×10−6pb.2AGNESE 15B result updates AHMED 10 and AHMED 09. The strongest limit is 1.8×10−8 pb and o

urs at mχ = 60 GeV.3AMOLE 15 presents 90% CL limits on the elasti
 
ross se
tion for masses in the range3{25 GeV. The strongest limit is 2× 10−6 pb and o

urs at mχ = 25 GeV.4XIAO 15 presents 90% CL limits on the elasti
 
ross se
tion for masses in the range3{100 GeV. The strongest limit is 1× 10−8 pb and o

urs at mχ = 45 GeV, using thePANDA 54 kg liquid Xenon dete
tor over 80.1 days.5AGNESE 14 presents 90% CL limits on the elasti
 
ross se
tion for masses in the range3{30 GeV from 577 kg days at SuperCDMS. The strongest limit is 1 × 10−7 pb ando

urs at mχ = 20 GeV.6The strongest upper limit is 7.6× 10−10 at mχ = 33 GeV.7Predi
tions for the spin-independent elasti
 
ross se
tion based on a frequentist approa
hto ele
troweak observables in the framework of N = 1 supergravity models with radiativebreaking of the ele
troweak gauge symmetry using the 20 fb−1 8 TeV and the 5 fb−17 TeV LHC data and the LUX data.8The strongest limit is 3.6× 10−6 pb and o

urs at mχ = 35 GeV.9Predi
tions for the spin-independent elasti
 
ross se
tion based on a Bayesian approa
hto ele
troweak observables in the framework of N = 1 supergravity models with radiativebreaking of the ele
troweak gauge symmetry using the 20 fb−1 LHC data and LUX.10AALSETH 13 presents 90% CL limits on the elasti
 
ross se
tion for masses in the range4{25 GeV in addition to a region of interest at about 8 GeV. The strongest upper limitis 2× 10−5 pb at mχ = 14 GeV.11AGNESE 13 presents 90% CL limits on the elasti
 
ross se
tion for masses in the range7{100 GeV using the Si based dete
tor. The strongest upper limit is 1.8× 10−6 pb atmχ = 50 GeV. This limit is improved to 7× 10−7 pb in AGNESE 13A.12 LI 13B presents 90% CL limits on the elasti
 
ross se
tion for masses in the range 4{40GeV. The strongest upper limit is 4× 10−5 pb at mχ = 14 GeV.13This result updates LEBEDENKO 09. The strongest limit is 3.9 × 10−8 pb at mχ =52 GeV.14ANGLOHER 12 presents results of 730 kg days from the CRESST-II dark matter dete
tor.They �nd two maxima in the likelihood fun
tion 
orresponding to best �t WIMP massesof 25.3 and 11.6 GeV with elasti
 
ross se
tions of 1.6 × 10−6 and 3.7 × 10−5 pbrespe
tively, see their Table 4. The statisti
al signi�
an
e is more than 4σ.15APRILE 12 updates the result of APRILE 11B. The strongest upper limit is < 2.0×10−9pb and o

urs at mχ ≃ 50 GeV.16The strongest limit is 6.1× 10−5 pb at mχ = 20 GeV.17Predi
tions for the spin-independent elasti
 
ross se
tion based on a frequentist approa
hto ele
troweak observables in the framework of N = 1 supergravity models with radiativebreaking of the ele
troweak gauge symmetry using the 5 fb−1 LHC data and XENON100.18The strongest limit is 1.4× 10−7 at mχ = 60 GeV.19The strongest limit is 4.7× 10−6 at mχ = 35 GeV.20This result updates LEE 07A. The strongest limit is 2.1× 10−7 at mχ = 70 GeV.21AHMED 11A gives 
ombined results from CDMS and EDELWEISS. The strongest limitis at mχ = 90 GeV.22ARMENGAUD 11 updates result of ARMENGAUD 10. Strongest limit at mχ = 85 GeV.23The strongest upper limit is 4.8× 10−7 pb and o

urs at mχ = 50 GeV.24The strongest upper limit is 5.1 × 10−8 pb and o

urs at mχ ≃ 30 GeV. The valuesquoted here are based on the analysis performed in ANGLE 08 with the update fromSORENSEN 09.25The strongest upper limit is 6.6× 10−7 pb and o

urs at mχ ≃ 65 GeV.26AKERIB 06A updates the results of AKERIB 05. The strongest upper limit is 1.6 ×10−7 pb and o

urs at mχ ≈ 60 GeV.27The strongest upper limit is also 
lose to 1.0× 10−6 pb and o

urs at mχ ≃ 70 GeV.BENOIT 06 
laim that the dis
rimination power of ZEPLIN-I measurement (ALNER 05A)is not reliable enough to obtain a limit better than 1 × 10−3 pb. However, SMITH 06do not agree with the 
riti
isms of BENOIT 06.28The strongest upper limit is also 
lose to 1.4× 10−6 pb and o

urs at mχ ≃ 70 GeV.29AKERIB 04 is in
ompatible with BERNABEI 00 most likely value, under the assumptionof standard WIMP-halo intera
tions. The strongest upper limit is 4 × 10−7 pb ando

urs at mχ ≃ 60 GeV.30Predi
tions for the spin-independent elasti
 
ross se
tion in the framework of N = 1supergravity models with radiative breaking of the ele
troweak gauge symmetry.31KIM 02 and ELLIS 04 
al
ulate the χp elasti
 s
attering 
ross se
tion in the frameworkof N=1 supergravity models with radiative breaking of the ele
troweak gauge symmetry,but without universal s
alar masses.32 In the 
ase of universal squark and slepton masses, but non-universal Higgs masses, thelimit be
omes 2× 10−6 (2× 10−11 when 
onstraint from the BNL g−2 experiment arein
luded), see ELLIS 03E. ELLIS 05 display the sensitivity of the elasti
 s
attering 
rossse
tion to the π-Nu
leon � term.

33PIERCE 04A 
al
ulates the χp elasti
 s
attering 
ross se
tion in the framework of modelswith very heavy s
alar masses. See Fig. 2 of the paper.34The strongest upper limit is 1.8× 10−5 pb and o

urs at mχ ≈ 80 GeV.35Under the assumption of standard WIMP-halo intera
tions, Akerib 03 is in
ompatiblewith BERNABEI 00 most likely value at the 99.98% CL. See Fig. 4.36BAER 03A 
al
ulates the χp elasti
 s
attering 
ross se
tion in several models in
ludingthe framework of N=1 supergravity models with radiative breaking of the ele
troweakgauge symmetry.37The strongest upper limit is 7× 10−6 pb and o

urs at mχ ≃ 30 GeV.38ABRAMS 02 is in
ompatible with the DAMA most likely value at the 99.9% CL. Thestrongest upper limit is 3× 10−6 pb and o

urs at mχ ≃ 30 GeV.39BENOIT 02 ex
ludes the 
entral result of DAMA at the 99.8%CL.40The strongest upper limit is 2× 10−5 pb and o

urs at mχ ≃ 40 GeV.41The strongest upper limit is 7× 10−6 pb and o

urs at mχ ≃ 46 GeV.42The strongest upper limit is 1.8× 10−5 pb and o

urs at mχ ≃ 32 GeV43BOTTINO 01 
al
ulates the χ-p elasti
 s
attering 
ross se
tion in the framework of thefollowing supersymmetri
 models: N=1 supergravity with the radiative breaking of theele
troweak gauge symmetry, N=1 supergravity with nonuniversal s
alar masses and ane�e
tive MSSM model at the ele
troweak s
ale.44Cal
ulates the χ-p elasti
 s
attering 
ross se
tion in the framework of N=1 supergravitymodels with radiative breaking of the ele
troweak gauge symmetry.45ELLIS 01C 
al
ulates the χ-p elasti
 s
attering 
ross se
tion in the framework of N=1supergravity models with radiative breaking of the ele
troweak gauge symmetry. EL-LIS 02B �nd a range 2 × 10−8{1.5 × 10−7 at tanβ=50. In models with nonuniversalHiggs masses, the upper limit to the 
ross se
tion is 4× 10−7.46ACCOMANDO 00 
al
ulate the χ-p elasti
 s
attering 
ross se
tion in the frameworkof minimal N=1 supergravity models with radiative breaking of the ele
troweak gaugesymmetry. The limit is relaxed by at least an order of magnitude when models withnonuniversal s
alar masses are 
onsidered. A subset of the authors in ARNOWITT 02updated the limit to < 9× 10−8 (tanβ < 55).47BERNABEI 00 sear
h for annual modulation of the WIMP signal. The data favor thehypothesis of annual modulation at 4σ and are 
onsistent, for a parti
ular model frame-work quoted there, with mX 0=44+12
− 9 GeV and a spin-independent X0-proton 
rossse
tion of (5.4 ± 1.0) × 10−6 pb. See also BERNABEI 01 and BERNABEI 00C.48 FENG 00 
al
ulate the χ-p elasti
 s
attering 
ross se
tion in the framework of N=1supergravity models with radiative breaking of the ele
troweak gauge symmetry with aparti
ular emphasis on fo
us point models. At tanβ=50, the range is 8×10−8{4×10−7.Other bounds on χ̃01 from astrophysi
s and 
osmologyOther bounds on χ̃01 from astrophysi
s and 
osmologyOther bounds on χ̃01 from astrophysi
s and 
osmologyOther bounds on χ̃01 from astrophysi
s and 
osmologyMost of these papers generally ex
lude regions in the M2 { µ parameterplane by requiring that the χ̃01 
ontribution to the overall 
osmologi
aldensity is less than some maximal value to avoid over
losure of the Uni-verse. Those not based on the 
osmologi
al density are indi
ated. Manyof these papers also in
lude LEP and/or other bounds.VALUE DOCUMENT ID TECN COMMENT

>46 GeV>46 GeV>46 GeV>46 GeV 1 ELLIS 00 RVUE
• • • We do not use the following data for averages, �ts, limits, et
. • • •2 BUCHMUEL... 14 COSM3 BUCHMUEL... 14A COSM4 ROSZKOWSKI 14 COSM5 CABRERA 13 COSM6 ELLIS 13B COSM5 STREGE 13 COSM2 AKULA 12 COSM2 ARBEY 12A COSM2 BAER 12 COSM7 BALAZS 12 COSM8 BECHTLE 12 COSM9 BESKIDT 12 COSM
> 18 GeV 10 BOTTINO 12 COSM2 BUCHMUEL... 12 COSM2 CAO 12A COSM2 ELLIS 12B COSM11 FENG 12B COSM2 KADASTIK 12 COSM7 STREGE 12 COSM12 BUCHMUEL... 11 COSM13 ROSZKOWSKI 11 COSM14 ELLIS 10 COSM15 BUCHMUEL... 09 COSM16 DREINER 09 THEO17 BUCHMUEL... 08 COSM13 ELLIS 08 COSM18 CALIBBI 07 COSM19 ELLIS 07 COSM20 ALLANACH 06 COSM21 DE-AUSTRI 06 COSM13 BAER 05 COSM22 BALTZ 04 COSM
> 6 GeV 10,23 BELANGER 04 THEO24 ELLIS 04B COSM25 PIERCE 04A COSM26 BAER 03 COSM
> 6 GeV 10 BOTTINO 03 COSM26 CHATTOPAD...03 COSM



1725172517251725See key on page 601 Sear
hesParti
le ListingsSupersymmetri
 Parti
le Sear
hes27 ELLIS 03 COSM13 ELLIS 03B COSM26 ELLIS 03C COSM26 LAHANAS 03 COSM28 LAHANAS 02 COSM29 BARGER 01C COSM30 ELLIS 01B COSM27 BOEHM 00B COSM31 FENG 00 COSM
< 600 GeV 32 ELLIS 98B COSM33 EDSJO 97 COSM Co-annihilation34 BAER 96 COSM13 BEREZINSKY 95 COSM35 FALK 95 COSM CP-violating phases36 DREES 93 COSM Minimal supergravity37 FALK 93 COSM Sfermion mixing36 KELLEY 93 COSM Minimal supergravity38 MIZUTA 93 COSM Co-annihilation39 LOPEZ 92 COSM Minimal supergravity,m0=A=040 MCDONALD 92 COSM41 GRIEST 91 COSM42 NOJIRI 91 COSM Minimal supergravity43 OLIVE 91 COSM44 ROSZKOWSKI 91 COSM45 GRIEST 90 COSM43 OLIVE 89 COSMnone 100 eV { 15 GeV SREDNICKI 88 COSM γ̃; mf̃ =100 GeVnone 100 eV{5 GeV ELLIS 84 COSM γ̃; for mf̃ =100 GeVGOLDBERG 83 COSM γ̃46 KRAUSS 83 COSM γ̃VYSOTSKII 83 COSM γ̃1ELLIS 00 updates ELLIS 98. Uses LEP e+ e− data at √s=202 and 204 GeV to improvebound on neutralino mass to 51 GeV when s
alar mass universality is assumed and 46 GeVwhen Higgs mass universality is relaxed. Limits on tanβ improve to > 2.7 (µ > 0), > 2.2(µ < 0) when s
alar mass universality is assumed and > 1.9 (both signs of µ) whenHiggs mass universality is relaxed.2 Impli
ations of the LHC result on the Higgs mass and on the SUSY parameter spa
e inthe framework of N = 1 supergravity models with radiative breaking of the ele
troweakgauge symmetry.3BUCHMUELLER 14A pla
es 
onstraints on the SUSY parameter spa
e in the frameworkof N = 1 supergravity models with radiative breaking of the ele
troweak gauge symmetryusing indire
t experimental sear
hes using the 20 fb−1 8 TeV and the 5 fb−1 7 TeVLHC and the LUX data.4ROSZKOWSKI 14 pla
es 
onstraints on the SUSY parameter spa
e in the framework ofN = 1 supergravity models with radiative breaking of the ele
troweak gauge symmetryusing Bayesian statisti
s and indire
t experimental sear
hes using the 20 fb−1 LHC andthe LUX data.5CABRERA 13 and STREGE 13 pla
e 
onstraints on the SUSY parameter spa
e in theframework of N = 1 supergravity models with radiative breaking of the ele
troweak gaugesymmetry with and without non-universal Higgs masses using the 5.8 fb−1, √s = 7 TeVATLAS supersymmetry sear
hes and XENON100 results.6 ELLIS 13B pla
e 
onstraints on the SUSY parameter spa
e in the framework of N = 1supergravity models with radiative breaking of the ele
troweak gauge symmetry with andwithout Higgs mass universality. Models with universality below the GUT s
ale are also
onsidered.7BALAZS 12 and STREGE 12 pla
e 
onstraints on the SUSY parameter spa
e in theframework of N = 1 supergravity models with radiative breaking of the ele
troweakgauge symmetry using the 1 fb−1 LHC supersymmetry sear
hes, the 5 fb−1 Higgs mass
onstraints, both with √

s = 7 TeV, and XENON100 results.8BECHTLE 12 pla
es 
onstraints on the SUSY parameter spa
e in the framework of N =1 supergravity models with radiative breaking of the ele
troweak gauge symmetry usingindire
t experimental sear
hes, using the 5 fb−1 LHC and XENON100 data.9BESKIDT 12 pla
es 
onstraints on the SUSY parameter spa
e in the framework of N =1 supergravity models with radiative breaking of the ele
troweak gauge symmetry usingindire
t experimental sear
hes, the 5 fb−1 LHC and the XENON100 data.10BELANGER 04 and BOTTINO 12 (see also BOTTINO 03, BOTTINO 03A and BOT-TINO 04) do not assume gaugino or s
alar mass uni�
ation.11 FENG 12B pla
es 
onstraints on the SUSY parameter spa
e in the framework of N =1 supergravity models with radiative breaking of the ele
troweak gauge symmetry andlarge sfermion masses using the 1 fb−1 LHC supersymmetry sear
hes, the 5 fb−1 LHCHiggs mass 
onstraints both with √
s = 7 TeV, and XENON100 results.12BUCHMUELLER 11 pla
es 
onstraints on the SUSY parameter spa
e in the frameworkof N = 1 supergravity models with radiative breaking of the ele
troweak gauge symme-try using indire
t experimental sear
hes and in
luding supersymmetry breaking relationsbetween A and B parameters.13Pla
es 
onstraints on the SUSY parameter spa
e in the framework of N=1 supergravitymodels with radiative breaking of the ele
troweak gauge symmetry but non-UniversalHiggs masses.14ELLIS 10 pla
es 
onstraints on the SUSY parameter spa
e in the framework of N =1 supergravity models with radiative breaking of the ele
troweak gauge symmetry withuniversality above the GUT s
ale.15BUCHMUELLER 09 pla
es 
onstraints on the SUSY parameter spa
e in the frameworkof N = 1 supergravity models with radiative breaking of the ele
troweak gauge symmetryusing indire
t experimental sear
hes.16DREINER 09 show that in the general MSSM with non-universal gaugino masses thereexists no model-independent laboratory bound on the mass of the lightest neutralino. Anessentially massless χ01 is allowed by the experimental and observational data, imposingsome 
onstraints on other MSSM parameters, in
luding M2, µ and the slepton andsquark masses.

17BUCHMUELLER 08 pla
es 
onstraints on the SUSY parameter spa
e in the frameworkof N = 1 supergravity models with radiative breaking of the ele
troweak gauge symmetryusing indire
t experimental sear
hes.18CALIBBI 07 pla
es 
onstraints on the SUSY parameter spa
e in the framework of N =1 supergravity models with radiative breaking of the ele
troweak gauge symmetry withuniversality above the GUT s
ale in
luding the e�e
ts of right-handed neutrinos.19ELLIS 07 pla
es 
onstraints on the SUSY parameter spa
e in the framework of N =1 supergravity models with radiative breaking of the ele
troweak gauge symmetry withuniversality below the GUT s
ale.20ALLANACH 06 pla
es 
onstraints on the SUSY parameter spa
e in the framework of N= 1 supergravity models with radiative breaking of the ele
troweak gauge symmetry.21DE-AUSTRI 06 pla
es 
onstraints on the SUSY parameter spa
e in the framework of N= 1 supergravity models with radiative breaking of the ele
troweak gauge symmetry.22BALTZ 04 pla
es 
onstraints on the SUSY parameter spa
e in the framework of N = 1supergravity models with radiative breaking of the ele
troweak gauge symmetry.23 Limit assumes a pseudo s
alar mass < 200 GeV. For larger pseudo s
alar masses, mχ >18(29) GeV for tanβ = 50(10). Bounds from WMAP, (g − 2)µ, b → s γ, LEP.24ELLIS 04B pla
es 
onstraints on the SUSY parameter spa
e in the framework of N=1supergravity models with radiative breaking of the ele
troweak gauge symmetry in
ludingsupersymmetry breaking relations between A and B parameters. See also ELLIS 03D.25PIERCE 04A pla
es 
onstraints on the SUSY parameter spa
e in the framework of modelswith very heavy s
alar masses.26BAER 03, CHATTOPADHYAY 03, ELLIS 03C and LAHANAS 03 pla
e 
onstraints onthe SUSY parameter spa
e in the framework of N=1 supergravity models with radiativebreaking of the ele
troweak gauge symmetry based on WMAP results for the 
old darkmatter density.27BOEHM 00B and ELLIS 03 pla
e 
onstraints on the SUSY parameter spa
e in theframework of minimalN=1 supergravity models with radiative breaking of the ele
troweakgauge symmetry. In
ludes the e�e
t of χ-t̃ 
o-annihilations.28 LAHANAS 02 pla
es 
onstraints on the SUSY parameter spa
e in the framework of mini-mal N=1 supergravity models with radiative breaking of the ele
troweak gauge symmetry.Fo
uses on the role of pseudo-s
alar Higgs ex
hange.29BARGER 01C use the 
osmi
 reli
 density inferred from re
ent CMB measurements to
onstrain the parameter spa
e in the framework of minimal N=1 supergravity modelswith radiative breaking of the ele
troweak gauge symmetry.30ELLIS 01B pla
es 
onstraints on the SUSY parameter spa
e in the framework of minimalN=1 supergravity models with radiative breaking of the ele
troweak gauge symmetry.Fo
uses on models with large tanβ.31 FENG 00 explores 
osmologi
ally allowed regions of MSSM parameter spa
e with multi-TeV masses.32ELLIS 98B assumes a universal s
alar mass and radiative supersymmetry breaking withuniversal gaugino masses. The upper limit to the LSP mass is in
reased due to thein
lusion of χ − τ̃R 
oannihilations.33EDSJO 97 in
luded all 
oannihilation pro
esses between neutralinos and 
harginos forany neutralino mass and 
omposition.34Notes the lo
ation of the neutralino Z resonan
e and h resonan
e annihilation 
orridorsin minimal supergravity models with radiative ele
troweak breaking.35Mass of the bino (=LSP) is limited to mB̃ . 350 GeV for mt = 174 GeV.36DREES 93, KELLEY 93 
ompute the 
osmi
 reli
 density of the LSP in the frameworkof minimal N=1 supergravity models with radiative breaking of the ele
troweak gaugesymmetry.37 FALK 93 relax the upper limit to the LSP mass by 
onsidering sfermion mixing in theMSSM.38MIZUTA 93 in
lude 
oannihilations to 
ompute the reli
 density of Higgsino dark matter.39 LOPEZ 92 
al
ulate the reli
 LSP density in a minimal SUSY GUT model.40MCDONALD 92 
al
ulate the reli
 LSP density in the MSSM in
luding exa
t tree-levelannihilation 
ross se
tions for all two-body �nal states.41GRIEST 91 improve reli
 density 
al
ulations to a

ount for 
oannihilations, pole e�e
ts,and threshold e�e
ts.42NOJIRI 91 uses minimal supergravity mass relations between squarks and sleptons tonarrow 
osmologi
ally allowed parameter spa
e.43Mass of the bino (=LSP) is limited to mB̃ . 350 GeV for mt ≤ 200 GeV. Mass ofthe higgsino (=LSP) is limited to mH̃ . 1 TeV for mt ≤ 200 GeV.44ROSZKOWSKI 91 
al
ulates LSP reli
 density in mixed gaugino/higgsino region.45Mass of the bino (=LSP) is limited to mB̃ . 550 GeV. Mass of the higgsino (=LSP)is limited to mH̃ . 3.2 TeV.46KRAUSS 83 �nds mγ̃ not 30 eV to 2.5 GeV. KRAUSS 83 takes into a

ount the gravitinode
ay. Find that limits depend strongly on reheated temperature. For example a newallowed region mγ̃ = 4{20 MeV exists if mgravitino <40 TeV. See �gure 2.Unstable χ̃01 (Lightest Neutralino) MASS LIMITUnstable χ̃01 (Lightest Neutralino) MASS LIMITUnstable χ̃01 (Lightest Neutralino) MASS LIMITUnstable χ̃01 (Lightest Neutralino) MASS LIMITUnless otherwise stated, results in this se
tion assume spe
tra and pro-du
tion rates as evaluated in the MSSM. Unless otherwise stated, thegoldstino or gravitino mass mG̃ is assumed to be negligible relative to allother masses. In the following, G̃ is assumed to be undete
ted and to giverise to a missing energy (6E) signature.Some earlier papers are now obsolete and have been omitted. They werelast listed in our PDG 14 edition: K. Olive, et al. (Parti
le Data Group),Chinese Physi
s C 38383838 070001 (2014) (http://pdg.lbl.gov).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>380 95 1 KHACHATRY...14L CMS χ̃01 → Z G̃ simpli�ed models,GMSB
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• • • We do not use the following data for averages, �ts, limits, et
. • • •2 AAD 14BH ATLS 2γ + 6ET , GMSB, SPS83 AAD 13AP ATLS 2γ + 6ET , GMSB, SPS8none 220{380 95 4 AAD 13Q ATLS γ + b + 6ET , higgsino-like neu-tralino, GMSB5 AAD 13R ATLS χ̃01 → µ j j, 6R, λ′211 6= 06 AALTONEN 13I CDF χ̃01 → γ G̃ , 6ET , GMSB
>220 95 7 CHATRCHYAN13AH CMS χ̃01 → γ G̃ , GMSB, SPS8, 
τ <500 mm8 AAD 12CP ATLS 2γ + 6ET , GMSB9 AAD 12CT ATLS ≥ 4ℓ±, 6R10 AAD 12R ATLS χ̃01 → µ j j, 6R, λ′211 6= 011 ABAZOV 12ADD0 χ̃01 χ̃01 → γZ G̃ G̃ , GMSB12 CHATRCHYAN12BK CMS 2γ + 6ET , GMSB13 CHATRCHYAN11B CMS W̃0 → γ G̃ , W̃± → ℓ± G̃ , GMSB
>149 95 14 AALTONEN 10 CDF pp → χ̃ χ̃, χ̃=χ̃02, χ̃±1 , χ̃01 →

γ G̃ , GMSB
>175 95 15 ABAZOV 10P D0 χ̃01 → γ G̃ , GMSB
>125 95 16 ABAZOV 08F D0 pp → χ̃ χ̃, χ̃=χ̃02, χ̃±1 , χ̃01 →

γ G̃ , GMSB17 ABULENCIA 07H CDF 6R, LLE
> 96.8 95 18 ABBIENDI 06B OPAL e+ e− → B̃ B̃, (B̃ → G̃ γ)19 ABDALLAH 05B DLPH e+ e− → G̃ χ̃01, (χ̃01 → G̃ γ)
> 96 95 20 ABDALLAH 05B DLPH e+ e− → B̃ B̃, (B̃ → G̃ γ)1KHACHATRYAN 14L sear
hed in 19.5 fb−1 of pp 
ollisions at √s = 8 TeV for eviden
eof dire
t pair produ
tion of neutralinos with Higgs or Z -bosons in the de
ay 
hain, leadingto HH, HZ and Z Z �nal states with missing transverse energy. The de
ays of 16{20.a Higgs boson to a b-quark pair, to a photon pair, and to �nal states with leptonsare 
onsidered in 
onjun
tion with hadroni
 and leptoni
 de
ay modes of the Z and Wbosons. No signi�
ant ex
esses over the expe
ted SM ba
kgrounds are observed. Theresults are interpreted in the 
ontext of GMSB simpli�ed models where the de
ays χ̃01 →H G̃ or χ̃01 → Z G̃ take pla
e either 100% or 50% of the time, see Figs. 16{20.2AAD 14BH sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for events 
ontainingnon-pointing photons in a diphoton plus missing transverse energy �nal state. No ex
ess isobserved above the ba
kground expe
ted from Standard Model pro
esses. The results areused to set 95% C.L. ex
lusion limits in the 
onta
t of gauge-mediated supersymmetri
breaking models, with the lightest neutralino being the next-to-lightest supersymmetri
parti
le and de
aying with a lifetime in the range from 0.25 ns to about 100 ns into aphoton and a gravitino. For limits on the NLSP lifetime versus � plane, for the SPS8model, see their Fig. 7.3AAD 13AP sear
hed in 4.8 fb−1 of pp 
ollisions at √s = 7 TeV for events 
ontaining non-pointing photons in a diphoton plus missing transverse energy �nal state. No ex
ess isobserved above the ba
kground expe
ted from Standard Model pro
esses. The results areused to set 95% C.L. ex
lusion limits in the 
ontext of gauge-mediated supersymmetri
breaking models, with the lightest neutralino being the next-to-lightest supersymmetri
parti
le and de
aying with a lifetime in ex
ess of 0.25 ns into a photon and a gravitino.For limits in the NLSP lifetime versus � plane, for the SPS8 model, see their Fig. 8.4AAD 13Q sear
hed in 4.7 fb−1 of pp 
ollisions at √

s = 7 TeV for events 
ontaininga high-pT isolated photon, at least one jet identi�ed as originating from a bottomquark, and high missing transverse momentum. Su
h signatures may originate fromsupersymmetri
 models with gauge-mediated supersymmetry breaking in events in whi
hone of a pair of higgsino-like neutralinos de
ays into a photon and a gravitino while theother de
ays into a Higgs boson and a gravitino. No signi�
ant ex
ess above the expe
tedba
kground was found and limits were set on the neutralino mass in a generalized GMSBmodel (GGM) with a higgsino-like neutralino NLSP, see their Fig. 4. Intermediateneutralino masses between 220 and 380 GeV are ex
luded at 95% C.L, regardless of thesquark and gluino masses, purely on the basis of the expe
ted weak produ
tion.5AAD 13R looked in 4.4 fb−1 of pp 
ollisions at √s = 7 TeV for events 
ontaining new,heavy parti
les that de
ay at a signi�
ant distan
e from their produ
tion point into a�nal state 
ontaining a high-momentum muon and 
harged hadrons. No ex
ess over theexpe
ted ba
kground is observed and limits are pla
ed on the produ
tion 
ross-se
tionof neutralinos via squarks for various mq̃ , mχ̃01 in an R-parity violating s
enario with
λ′211 6= 0, as a fun
tion of the neutralino lifetime, see their Fig. 6.6AALTONEN 13I sear
hed in 6.3 fb−1 of pp 
ollisions at √

s = 1.96 TeV for events
ontaining 6ET and a delayed photon that arrives late in the dete
tor relative to thetime expe
ted from prompt produ
tion. No eviden
e of delayed photon produ
tion isobserved.7CHATRCHYAN 13AH sear
hed in 4.9 fb−1 of pp 
ollisions at √
s = 7 TeV for events
ontaining 6ET and a delayed photon that arrives late in the dete
tor relative to the timeexpe
ted from prompt produ
tion. No signi�
ant ex
ess above the expe
ted ba
kgroundwas found and limits were set on the pair produ
tion of χ̃01 depending on the neutralinoproper de
ay length, see Fig. 8. Supersedes CHATRCHYAN 12BK.8AAD 12CP sear
hed in 4.8 fb−1 of pp 
ollisions at √

s = 7 TeV for events with twophotons and large 6ET due to χ̃01 → γ G̃ de
ays in a GMSB framework. No signi�
antex
ess above the expe
ted ba
kground was found and limits were set on the neutralinomass in a generalized GMSB model (GGM) with a bino-like neutralino NLSP, see Figs.6 and 7. The other sparti
le masses were de
oupled, tanβ = 2 and 
τNLSP < 0.1mm. Also, in the framework of the SPS8 model, limits are presented in Fig. 8.9AAD 12CT sear
hed in 4.7 fb−1 of pp 
ollisions at √s = 7 TeV for events 
ontaining fouror more leptons (ele
trons or muons) and either moderate values of missing transversemomentum or large e�e
tive mass. No signi�
ant ex
ess is found in the data. Limits arepresented in a simpli�ed model of R-parity violating supersymmetry in whi
h 
harginosare pair-produ
ed and then de
ay into aW -boson and a χ̃01, whi
h in turn de
ays throughan RPV 
oupling into two 
harged leptons (e± e∓ or µ±µ∓) and a neutrino. In thismodel, limits are set on the neutralino mass as a fun
tion of the 
hargino mass, see Fig.3a. Limits are also set in an R-parity violating mSUGRA model, see Fig. 3b.10AAD 12R looked in 33 pb−1 of pp 
ollisions at √s = 7 TeV for events 
ontaining new,heavy parti
les that de
ay at a signi�
ant distan
e from their produ
tion point into a�nal state 
ontaining a high-momentum muon and 
harged hadrons. No ex
ess over theexpe
ted ba
kground is observed and limits are pla
ed on the produ
tion 
ross-se
tion

of neutralinos via squarks for various (mq̃ , mχ̃01) in an R-parity violating s
enario with
λ
′211 6= 0, as a fun
tion of the neutralino lifetime, see their Fig. 8. Superseded byAAD 13R.11ABAZOV 12AD looked in 6.2 fb−1 of pp 
ollisions at √

s = 1.96 TeV for events witha photon, a Z -boson, and large 6ET in the �nal state. This topology 
orresponds toa GMSB model where pairs of neutralino NLSPs are either pair produ
ed promptly orfrom de
ays of other supersymmetri
 parti
les and then de
ay to either Z G̃ or γ G̃ . Nosigni�
ant ex
ess over the SM expe
tation is observed and a limit at 95% C.L. on the
ross se
tion is derived as a fun
tion of the e�e
tive SUSY breaking s
ale �, see Fig.3. Assuming Nmes = 2, Mmes = 3 �, tanβ = 3, µ = 0.75 M1, and Cgrav = 1, themodel is ex
luded at 95% C.L. for values of � < 87 TeV.12CHATRCHYAN 12BK sear
hed in 2.23 fb−1 of pp 
ollisions at √s = 7 TeV for eventswith two photons and large 6ET due to χ̃01 → γ G̃ de
ays in a GMSB framework. Nosigni�
ant ex
ess above the expe
ted ba
kground was found and limits were set on thepair produ
tion of χ̃01 depending on the neutralino lifetime, see Fig. 6.13CHATRCHYAN 11B looked in 35 pb−1 of pp 
ollisions at √
s=7 TeV for events withan isolated lepton (e or µ), a photon and 6ET whi
h may arise in a generalized gaugemediated model from the de
ay of Wino-like NLSPs. No eviden
e for an ex
ess over theexpe
ted ba
kground is observed. Limits are derived in the plane of squark/gluino massversus Wino mass (see Fig. 4). Mass degenera
y of the produ
ed squarks and gluinos isassumed.14AALTONEN 10 sear
hed in 2.6 fb−1 of pp 
ollisions at √

s = 1.96 TeV for diphotonevents with large 6ET . They may originate from the produ
tion of χ̃± in pairs or as-so
iated to a χ̃02, de
aying into χ̃01 whi
h itself de
ays in GMSB to γ G̃ . There is noex
ess of events beyond expe
tation. An upper limit on the 
ross se
tion is 
al
ulatedin the GMSB model as a fun
tion of the χ̃01 mass and lifetime, see their Fig. 2. A limitis derived on the χ̃01 mass of 149 GeV for τ
χ̃01 ≪ 1 ns, whi
h improves the results ofprevious sear
hes.15ABAZOV 10P looked in 6.3 fb−1 of pp 
ollisions at √

s = 1.96 TeV for events withat least two isolated γs and large 6ET . These 
ould be the signature of χ̃02 and χ̃±1produ
tion, de
aying to χ̃01 and �nally χ̃01 → γ G̃ in a GMSB framework. No signi�
antex
ess over the SM expe
tation is observed, and a limit at 95% C.L. on the 
ross se
tionis derived for Nmes = 1, tanβ = 15 and µ > 0, see their Fig. 2. This allows them toset a limit on the e�e
tive SUSY breaking s
ale � > 124 TeV, from whi
h the ex
luded
χ̃01 mass range is obtained.16ABAZOV 08F looked in 1.1 fb−1 of pp 
ollisions at √s = 1.96 TeV for diphoton eventswith large 6ET . They may originate from the produ
tion of χ̃± in pairs or asso
iatedto a χ̃02, de
aying to a χ̃01 whi
h itself de
ays promptly in GMSB to χ̃01 → γ G̃ . Nosigni�
ant ex
ess was found 
ompared to the ba
kground expe
tation. A limit is derivedon the masses of SUSY parti
les in the GMSB framework for M = 2�, N = 1, tanβ =15 and µ > 0, see Figure 2. It also ex
ludes � < 91.5 TeV. Supersedes the results ofABAZOV 05A. Superseded by ABAZOV 10P.17ABULENCIA 07H sear
hed in 346 pb−1 of pp 
ollisions at √

s = 1.96 TeV for eventswith at least three leptons (e or µ) from the de
ay of χ̃01 via LLE 
ouplings. The resultsare 
onsistent with the hypothesis of no signal. Upper limits on the 
ross-se
tion areextra
ted and a limit is derived in the framework of mSUGRA on the masses of χ̃01 and
χ̃±1 , see e.g. their Fig. 3 and Tab. II.18ABBIENDI 06B use 600 pb−1 of data from√

s = 189{209 GeV. They look for events withdiphotons + 6E �nal states originating from prompt de
ays of pair-produ
ed neutralinos ina GMSB s
enario with χ̃01 NLSP. Limits on the 
ross-se
tion are 
omputed as a fun
tionof m(χ̃01), see their Fig. 14. The limit on the χ̃01 mass is for a pure Bino state assuminga prompt de
ay, with lifetimes up to 10−9s. Supersedes the results of ABBIENDI 04N.19ABDALLAH 05B use data from √
s = 180{209 GeV. They look for events with singlephotons + 6E �nal states. Limits are 
omputed in the plane (m(G̃) , m(χ̃01)), shown intheir Fig. 9b for a pure Bino state in the GMSB framework and in Fig. 9
 for a no-s
alesupergravity model. Supersedes the results of ABREU 00Z.20ABDALLAH 05B use data from √

s = 130{209 GeV. They look for events with diphotons+ 6E �nal states and single photons not pointing to the vertex, expe
ted in GMSB whenthe χ̃01 is the NLSP. Limits are 
omputed in the plane (m(G̃), m(χ̃01)), see their Fig. 10.The lower limit is derived on the χ̃01 mass for a pure Bino state assuming a prompt de
ayand mẽR = mẽL = 2 m
χ̃01 . It improves to 100 GeV for mẽR = mẽL = 1.1 m

χ̃01 . andthe limit in the plane (m(χ̃01), m(ẽR )) is shown in Fig. 10b. For long-lived neutralinos,
ross-se
tion limits are displayed in their Fig 11. Supersedes the results of ABREU 00Z.
χ̃02, χ̃03, χ̃04 (Neutralinos) MASS LIMITSχ̃02, χ̃03, χ̃04 (Neutralinos) MASS LIMITSχ̃02, χ̃03, χ̃04 (Neutralinos) MASS LIMITSχ̃02, χ̃03, χ̃04 (Neutralinos) MASS LIMITSNeutralinos are unknown mixtures of photinos, z-inos, and neutral higgsinos (the su-persymmetri
 partners of photons and of Z and Higgs bosons). The limits here applyonly to χ̃02, χ̃03, and χ̃04. χ̃01 is the lightest supersymmetri
 parti
le (LSP); see χ̃01Mass Limits. It is not possible to quote rigorous mass limits be
ause they are ex-tremely model dependent; i.e. they depend on bran
hing ratios of various χ̃0 de
aymodes, on the masses of de
ay produ
ts (ẽ, γ̃, q̃, g̃), and on the ẽ mass ex
hangedin e+ e− → χ̃0i χ̃0j . Limits arise either from dire
t sear
hes, or from the MSSM 
on-straints set on the gaugino and higgsino mass parameters M2 and µ through sear
hesfor lighter 
harginos and neutralinos. Often limits are given as 
ontour plots in them

χ̃0 − mẽ plane vs other parameters. When spe
i�
 assumptions are made, e.g, theneutralino is a pure photino (γ̃), pure z-ino (Z̃), or pure neutral higgsino (H̃0), theneutralinos will be labelled as su
h.Limits obtained from e+ e− 
ollisions at energies up to 136 GeV, as well as otherlimits from di�erent te
hniques, are now superseded and have not been in
luded inthis 
ompilation. They 
an be found in the 1998 Edition (The European Physi
alJournal C3C3C3C3 1 (1998)) of this Review. Some later papers are now obsolete and havebeen omitted. They were last listed in our PDG 14 edition: K. Olive, et al. (Parti
leData Group), Chinese Physi
s C 38383838 070001 (2014) (http://pdg.lbl.gov).
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>250 95 1 AAD 15BA ATLS m

χ̃±1 = m
χ̃02 , mχ̃01 = 0 GeV

>380 95 2 AAD 14H ATLS χ̃±1 χ̃02 → τ± ν χ̃01 τ± τ∓ χ̃01, sim-pli�ed model, m
χ̃±1 = m

χ̃02 ,m
χ̃01 = 0 GeV

>700 95 2 AAD 14H ATLS χ̃±1 χ̃02 → ℓ± ν χ̃01 ℓ± ℓ∓ χ̃01, sim-pli�ed model, m
χ̃±1 = m

χ̃02 ,m
χ̃01 = 0 GeV

>345>345>345>345 95 2 AAD 14H ATLS χ̃±1 χ̃02 → W χ̃01Z χ̃01, simpli�edmodel, m
χ̃±1 = m

χ̃02 , mχ̃01 = 0GeV
>148 95 2 AAD 14H ATLS χ̃±1 χ̃02 → W χ̃01H χ̃01, simpli�edmodel, m

χ̃±1 = m
χ̃02 , mχ̃01 = 0GeV

>620 95 3 AAD 14X ATLS ≥ 4ℓ±, χ̃02,3 → ℓ± ℓ∓ χ̃01, mχ̃01= 0 GeV4 AAD 13 ATLS 3ℓ± + 6ET , pMSSM, SMS5 CHATRCHYAN12BJ CMS ≥ 2 ℓ, jets + 6ET , pp → χ̃±1 χ̃02
• • • We do not use the following data for averages, �ts, limits, et
. • • •none180{355 95 6 AAD 14G ATLS χ̃±1 χ̃02 → W χ̃01Z χ̃01, simpli�edmodel, m

χ̃±1 = m
χ̃02 , mχ̃01 = 0GeV7 KHACHATRY...14I CMS χ̃02 → (Z , H) χ̃01 ℓ̃ ℓ, simpli�edmodel8 AAD 12AS ATLS 3ℓ± + 6ET , pMSSM9 AAD 12T ATLS ℓ± ℓ± + 6ET , pp → χ̃±1 χ̃021AAD 15BA sear
hed in 20.3 fb−1 of pp 
ollisions at √

s = 8 TeV for ele
troweakprodu
tion of 
harginos and neutralinos de
aying to a �nal state 
ontaining a W bosonand a 125 GeV Higgs boson, plus missing transverse momentum. No ex
ess beyondthe Standard Model expe
tation is observed. Ex
lusion limits are derived in simpli�edmodels of dire
t 
hargino and next-to-lightest neutralino produ
tion, with the de
ays
χ̃±1 → W± χ̃01 and χ̃02 → H χ̃01 having 100% bran
hing fra
tion, see Fig. 8. A
ombination of the multiple �nal states for the Higgs de
ay yields the best limits (Fig.8d).2AAD 14H sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for ele
troweak produ
-tion of 
harginos and neutralinos de
aying to a �nal sate with three leptons and missingtransverse momentum. No ex
ess beyond the Standard Model expe
tation is observed.Ex
lusion limits are derived in simpli�ed models of dire
t 
hargino and next-to-lightestneutralino produ
tion, with de
ays to the lightest neutralino via either all three genera-tions of leptons, staus only, gauge bosons, or Higgs bosons, see Fig. 7. An interpretationin the pMSSM is also given, see Fig. 8.3AAD 14X sear
hed in 20.3 fb−1 of pp 
ollisions at √

s = 8 TeV for events with atleast four leptons (ele
trons, muons, taus) in the �nal state. No signi�
ant ex
ess abovethe Standard Model expe
tations is observed. Limits are set on the 
hargino mass inan R-parity 
onserving simpli�ed model where the de
ay χ̃02,3 → ℓ± ℓ∓ χ̃01 takes pla
ewith a bran
hing ratio of 100%, see Fig. 10.4AAD 13 sear
hed in 4.7 fb−1 of pp 
ollisions at√s = 7 TeV for 
harginos and neutralinosde
aying to a �nal state with three leptons (e and µ) and missing transverse energy. Noex
ess beyond the Standard Model expe
tation is observed. Ex
lusion limits are derivedin the phenomenologi
al MSSM, see Fig. 2 and 3, and in simpli�ed models, see Fig.4. For the simpli�ed models with intermediate slepton de
ays, degenerate χ̃±1 and χ̃02masses up to 500 GeV are ex
luded at 95% C.L. for very large mass di�eren
es with the
χ̃01. Supersedes AAD 12AS.5 CHATRCHYAN 12BJ sear
hed in 4.98 fb−1 of pp 
ollisions at √

s = 7 TeV for dire
tele
troweak produ
tion of 
harginos and neutralinos in events with at least two leptons,jets and missing transverse momentum. No signi�
ant ex
esses over the expe
ted SMba
kgrounds are observed and 95% C.L. limits on the produ
tion 
ross se
tion of χ̃±1 χ̃02pair produ
tion were set in a number of simpli�ed models, see Figs. 7 to 12. Most limitsare for exa
tly 3 jets.6AAD 14G sear
hed in 20.3 fb−1 of pp 
ollisions at√s = 8 TeV for ele
troweak produ
tionof 
hargino-neutralino pairs, de
aying to a �nal sate with two leptons (e and µ) andmissing transverse momentum. No ex
ess beyond the Standard Model expe
tation isobserved. Ex
lusion limits are derived in simpli�ed models of 
hargino and next-to-lightest neutralino produ
tion, with de
ays to the lightest neutralino via gauge bosons,see Fig. 7. An interpretation in the pMSSM is also given, see Fig. 10.7KHACHATRYAN 14I sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for ele
-troweak produ
tion of 
harginos and neutralinos de
aying to a �nal state with three lep-tons (e or µ) and missing transverse momentum, or with a Z -boson, dijets and missingtransverse momentum. No ex
ess beyond the Standard Model expe
tation is observed.Ex
lusion limits are derived in simpli�ed models, see Figs. 12{16.8AAD 12AS sear
hed in 2.06 fb−1 of pp 
ollisions at √

s = 7 TeV for 
harginos andneutralinos de
aying to a �nal state with three leptons (e and µ) and missing transverseenergy. No ex
ess beyond the Standard Model expe
tation is observed. Ex
lusion limitsare derived in the phenomenologi
al MSSM, see Fig. 2 (top), and in simpli�ed models,see Fig. 2 (bottom).9AAD 12T looked in 1 fb−1 of pp 
ollisions at √
s = 7 TeV for the produ
tion ofsupersymmetri
 parti
les de
aying into �nal states with missing transverse momentumand exa
tly two isolated leptons (e or µ). Same-sign dilepton events were separatelystudied. Additionally, in opposite-sign events, a sear
h was made for an ex
ess of same-
avor over di�erent-
avor lepton pairs. No ex
ess over the expe
ted ba
kground isobserved and limits are pla
ed on the e�e
tive produ
tion 
ross se
tion of opposite-signdilepton events with 6ET > 250 GeV and on same-sign dilepton events with 6ET >100 GeV. The latter limit is interpreted in a simpli�ed ele
troweak gaugino produ
tionmodel.

χ̃±1 , χ̃±2 (Charginos) MASS LIMITSχ̃±1 , χ̃±2 (Charginos) MASS LIMITSχ̃±1 , χ̃±2 (Charginos) MASS LIMITSχ̃±1 , χ̃±2 (Charginos) MASS LIMITSCharginos are unknown mixtures of w-inos and 
harged higgsinos (the supersymmetri
partners ofW and Higgs bosons). A lower mass limit for the lightest 
hargino (χ̃±1 ) ofapproximately 45 GeV, independent of the �eld 
omposition and of the de
ay mode,has been obtained by the LEP experiments from the analysis of the Z width andde
ays. These results, as well as other now superseded limits from e+ e− 
ollisionsat energies below 136 GeV, and from hadroni
 
ollisions, 
an be found in the 1998Edition (The European Physi
al Journal C3C3C3C3 1 (1998)) of this Review.Unless otherwise stated, results in this se
tion assume spe
tra, produ
tion rates, de
aymodes and bran
hing ratios as evaluated in the MSSM, with gaugino and sfermionmass uni�
ation at the GUT s
ale. These papers generally study produ
tion of χ̃01 χ̃02,
χ̃+1 χ̃−1 and (in the 
ase of hadroni
 
ollisions) χ̃+1 χ̃02 pairs, in
luding the e�e
ts of
as
ade de
ays. The mass limits on χ̃±1 are either dire
t, or follow indire
tly fromthe 
onstraints set by the non-observation of χ̃02 states on the gaugino and higgsinoMSSM parameters M2 and µ. For generi
 values of the MSSM parameters, limits fromhigh-energy e+ e− 
ollisions 
oin
ide with the highest value of the mass allowed byphase-spa
e, namelym

χ̃±1 .
√

s/2. The still unpublished 
ombination of the results ofthe four LEP 
ollaborations from the 2000 run of LEP2 at √s up to ≃ 209 GeV yieldsa lower mass limit of 103.5 GeV valid for general MSSM models. The limits be
omehowever weaker in 
ertain regions of the MSSM parameter spa
e where the dete
tioneÆ
ien
ies or produ
tion 
ross se
tions are suppressed. For example, this may happenwhen: (i) the mass di�eren
es �m+= m
χ̃±1 − m

χ̃01 or �mν= m
χ̃±1 − mν̃ are verysmall, and the dete
tion eÆ
ien
y is redu
ed; (ii) the ele
tron sneutrino mass is small,and the χ̃±1 produ
tion rate is suppressed due to a destru
tive interferen
e between sand t 
hannel ex
hange diagrams. The regions of MSSM parameter spa
e where thefollowing limits are valid are indi
ated in the 
omment lines or in the footnotes.Some earlier papers are now obsolete and have been omitted. They were last listedin our PDG 14 edition: K. Olive, et al. (Parti
le Data Group), Chinese Physi
s C 38383838070001 (2014) (http://pdg.lbl.gov).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>250 95 1 AAD 15BA ATLS m
χ̃±1 = m

χ̃02 , mχ̃01 = 0 GeV
>590 95 2 AAD 15CA ATLS ≥ 2 γ + 6ET , GGM, bino-likeNLSP, any NLSP massnone124{361 95 2 AAD 15CA ATLS ≥ 1 γ + e,µ + 6ET , GGM, wino-like NLSP
>700 95 3 AAD 14H ATLS χ̃±1 χ̃02 → ℓ± ν χ̃01 ℓ± ℓ∓ χ̃01, sim-pli�ed model, m

χ̃±1 = m
χ̃02 ,m

χ̃01 = 0 GeV
>345>345>345>345 95 3 AAD 14H ATLS χ̃±1 χ̃02 → W χ̃01Z χ̃01, simpli�edmodel, m

χ̃±1 = m
χ̃02 , mχ̃01 = 0GeV

>148 95 3 AAD 14H ATLS χ̃±1 χ̃02 → W χ̃01H χ̃01, simpli�edmodel, m
χ̃±1 = m

χ̃02 , mχ̃01 = 0GeV
>380 95 3 AAD 14H ATLS χ̃±1 χ̃02 → τ± ν χ̃01 τ± τ∓ χ̃01, sim-pli�ed model, m

χ̃±1 = m
χ̃02 ,m

χ̃01 = 0 GeV
>750 95 4 AAD 14X ATLS ≥ 4ℓ±, χ̃±1 → W (∗)± χ̃01, χ̃01 →

ℓ± ℓ∓ ν, 6R
>210 95 5 KHACHATRY...14L CMS χ̃02 → H χ̃01 and χ̃±1 → W± χ̃01simpli�ed models, m

χ̃02 = m
χ̃±1 ,m

χ̃01 = 0 GeV6 AAD 13 ATLS 3ℓ± + 6ET , pMSSM, SMS7 AAD 13B ATLS 2ℓ± + 6ET , pMSSM, SMS
>540 95 8 AAD 12CT ATLS ≥ 4ℓ±, 6R, m

χ̃01 > 300 GeV9 CHATRCHYAN12BJ CMS ≥ 2 ℓ, jets + 6ET , pp → χ̃±1 χ̃02
> 94> 94> 94> 94 95 10 ABDALLAH 03M DLPH χ̃±1 , tanβ ≤ 40, �m+ >3 GeV,allm0
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>410 95 11 AAD 14AV ATLS ≥ 2 τ + 6ET , dire
t χ̃±1 χ̃02,
χ̃±1 χ̃∓1 produ
tion, m

χ̃02 =m
χ̃±1 , mχ̃01 = 0 GeV

>345 95 12 AAD 14AV ATLS ≥ 2 τ + 6ET , dire
t χ̃±1 χ̃∓1 pro-du
tion, m
χ̃01 = 0 GeVnone100{105,120{135,145{160 95 13 AAD 14G ATLS χ̃±1 χ̃∓1 → W+ χ̃01W− χ̃01, simpli-�ed model, m

χ̃01 = 0 GeVnone140{465 95 13 AAD 14G ATLS χ̃±1 χ̃∓1 → ℓ+ ν χ̃01 ℓ− ν χ̃01, simpli-�ed model, m
χ̃01 = 0 GeVnone180{355 95 13 AAD 14G ATLS χ̃±1 χ̃02 → W χ̃01Z χ̃01, simpli�edmodel, m

χ̃±1 = m
χ̃02 , mχ̃01 = 0GeV

>168 95 14 AALTONEN 14 CDF 3ℓ±+ 6ET , χ̃±1 → ℓν χ̃01,mSUGRA with m0=60 GeV
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hes15 KHACHATRY...14I CMS χ̃±1 → W χ̃01, ℓ ν̃, ℓ̃ν, simpli�edmodel16 AALTONEN 13Q CDF χ̃±1 → τ X , simpli�ed gravity- andgauge-mediated models17 AAD 12AS ATLS 3ℓ± + 6ET , pMSSM18 AAD 12T ATLS ℓ± ℓ∓ + 6ET , ℓ± ℓ± + 6ET , pp →
χ̃±1 χ̃0219 CHATRCHYAN11B CMS W̃0 → γ G̃ ,W̃± → ℓ± G̃ ,GMSB

>163 95 20 CHATRCHYAN11V CMS tanβ=3, m0=60 GeV, A0=0,
µ >01AAD 15BA sear
hed in 20.3 fb−1 of pp 
ollisions at √

s = 8 TeV for ele
troweakprodu
tion of 
harginos and neutralinos de
aying to a �nal state 
ontaining a W bosonand a 125 GeV Higgs boson, plus missing transverse momentum. No ex
ess beyondthe Standard Model expe
tation is observed. Ex
lusion limits are derived in simpli�edmodels of dire
t 
hargino and next-to-lightest neutralino produ
tion, with the de
ays
χ̃±1 → W± χ̃01 and χ̃02 → H χ̃01 having 100% bran
hing fra
tion, see Fig. 8. A
ombination of the multiple �nal states for the Higgs de
ay yields the best limits (Fig.8d).2AAD 15CA sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for events with one ormore photons and 6ET , with or without leptons (e, µ). No signi�
ant ex
ess above theStandard Model expe
tations is observed. Limits are set on wino masses in the generalgauge-mediated SUSY breaking model (GGM), for wino-like NLSP, see Fig. 9, 123AAD 14H sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for ele
troweak produ
-tion of 
harginos and neutralinos de
aying to a �nal sate with three leptons and missingtransverse momentum. No ex
ess beyond the Standard Model expe
tation is observed.Ex
lusion limits are derived in simpli�ed models of dire
t 
hargino and next-to-lightestneutralino produ
tion, with de
ays to the lightest neutralino via either all three genera-tions of leptons, staus only, gauge bosons, or Higgs bosons, see Fig. 7. An interpretationin the pMSSM is also given, see Fig. 8.4AAD 14X sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for events with at leastfour leptons (ele
trons, muons, taus) in the �nal state. No signi�
ant ex
ess above theStandard Model expe
tations is observed. Limits are set on the wino-like 
hargino massin an R-parity violating simpli�ed model where the de
ay χ̃±1 → W (∗)± χ̃01, with χ̃01 →
ℓ± ℓ∓ ν, takes pla
e with a bran
hing ratio of 100%, see Fig. 8.5KHACHATRYAN 14L sear
hed in 19.5 fb−1 of pp 
ollisions at √s = 8 TeV for eviden
eof 
hargino-neutralino χ̃±1 χ̃02 pair produ
tion with Higgs orW -bosons in the de
ay 
hain,leading to HW �nal states with missing transverse energy. The de
ays of a Higgs bosonto a photon pair are 
onsidered in 
onjun
tion with hadroni
 and leptoni
 de
ay modes ofthe W bosons. No signi�
ant ex
esses over the expe
ted SM ba
kgrounds are observed.The results are interpreted in the 
ontext of simpli�ed models where the de
ays χ̃02 →H χ̃01 and χ̃±1 → W± χ̃01 take pla
e 100% of the time, see Figs. 22{23.6AAD 13 sear
hed in 4.7 fb−1 of pp 
ollisions at√s = 7 TeV for 
harginos and neutralinosde
aying to a �nal state with three leptons (e and µ) and missing transverse energy. Noex
ess beyond the Standard Model expe
tation is observed. Ex
lusion limits are derivedin the phenomenologi
al MSSM, see Fig. 2 and 3, and in simpli�ed models, see Fig.4. For the simpli�ed models with intermediate slepton de
ays, degenerate χ̃±1 and χ̃02masses up to 500 GeV are ex
luded at 95% C.L. for very large mass di�eren
es with the
χ̃01. Supersedes AAD 12AS.7AAD 13B sear
hed in 4.7 fb−1 of pp 
ollisions at √s = 7 TeV for gauginos de
aying toa �nal state with two leptons (e and µ) and missing transverse energy. No ex
ess beyondthe Standard Model expe
tation is observed. Limits are derived in a simpli�ed modelof wino-like 
hargino pair produ
tion, where the 
hargino always de
ays to the lightestneutralino via an intermediate on-shell 
harged slepton, see Fig. 2(b). Chargino massesbetween 110 and 340 GeV are ex
luded at 95% C.L. for m

χ̃01 = 10 GeV. Ex
lusion limitsare also derived in the phenomenologi
al MSSM, see Fig. 3.8AAD 12CT sear
hed in 4.7 fb−1 of pp 
ollisions at √s = 7 TeV for events 
ontaining fouror more leptons (ele
trons or muons) and either moderate values of missing transversemomentum or large e�e
tive mass. No signi�
ant ex
ess is found in the data. Limits arepresented in a simpli�ed model of R-parity violating supersymmetry in whi
h 
harginosare pair-produ
ed and then de
ay into aW -boson and a χ̃01, whi
h in turn de
ays throughan RPV 
oupling into two 
harged leptons (e± e∓ or e±µ∓) and a neutrino. In thismodel, 
hargino masses up to 540 GeV are ex
luded at 95% C.L. for m
χ̃01 above 300GeV, see Fig. 3a. The limit deteriorates for lighter χ̃01. Limits are also set in an R-parityviolating mSUGRA model, see Fig. 3b.9CHATRCHYAN 12BJ sear
hed in 4.98 fb−1 of pp 
ollisions at √

s = 7 TeV for dire
tele
troweak produ
tion of 
harginos and neutralinos in events with at least two leptons,jets and missing transverse momentum. No signi�
ant ex
esses over the expe
ted SMba
kgrounds are observed and 95% C.L. limits on the produ
tion 
ross se
tion of χ̃±1 χ̃02pair produ
tion were set in a number of simpli�ed models, see Figs. 7 to 12.10ABDALLAH 03M uses data from √
s = 192{208 GeV to obtain limits in the frameworkof the MSSM with gaugino and sfermion mass universality at the GUT s
ale. An indire
tlimit on the mass of 
harginos is derived by 
onstraining the MSSM parameter spa
e bythe results from dire
t sear
hes for neutralinos (in
luding 
as
ade de
ays), for 
harginosand for sleptons. These limits are valid for values of M2 < 1 TeV, ∣∣µ

∣∣ ≤ 2 TeV withthe χ̃01 as LSP. Constraints from the Higgs sear
h in the mmax
h s
enario assuming mt=174.3 GeV are in
luded. The quoted limit applies if there is no mixing in the third familyor when mτ̃1−mχ̃01 > 6 GeV. If mixing is in
luded the limit degrades to 90 GeV. SeeFig. 43 for the mass limits as a fun
tion of tanβ. These limits update the results ofABREU 00W.

11AAD 14AV sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for the dire
t produ
tionof 
harginos, neutralinos and staus in events 
ontaining at last two hadroni
ally de
aying
τ -leptons, large missing transverse momentum and low jet a
tivity. The quoted limitwas derived for dire
t χ̃±1 χ̃02 and χ̃±1 χ̃∓1 produ
tion with χ̃02 → τ̃ τ → τ τ χ̃01 and
χ̃±1 → τ̃ ν (ν̃τ τ) → τ ν χ̃01, mχ̃02 = m

χ̃±1 , mτ̃ = 0.5 (m
χ̃±1 + m

χ̃01), mχ̃01 = 0 GeV.No ex
ess over the expe
ted SM ba
kground is observed. Ex
lusion limits are set insimpli�ed models of χ̃±1 χ̃∓1 and χ̃±1 χ̃02 pair produ
tion, see their Figure 7. Upper limitson the 
ross se
tion and signal strength for dire
t di-stau produ
tion are derived, seeFigures 8 and 9. Also, limits are derived in a pMSSM model where the only light sleptonis the τ̃R , see Figure 10.12AAD 14AV sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for the dire
t produ
tionof 
harginos, neutralinos and staus in events 
ontaining at last two hadroni
ally de
aying
τ -leptons, large missing transverse momentum and low jet a
tivity. The quoted limitwas derived for dire
t χ̃±1 χ̃∓1 produ
tion with χ̃±1 → τ̃ ν (ν̃τ τ) → τ ν χ̃01, mτ̃ = 0.5(m

χ̃±1 + m
χ̃01), mχ̃01 = 0 GeV. No ex
ess over the expe
ted SM ba
kground is observed.Ex
lusion limits are set in simpli�ed models of χ̃±1 χ̃∓1 and χ̃±1 χ̃02 pair produ
tion, seetheir Figure 7. Upper limits on the 
ross se
tion and signal strength for dire
t di-stauprodu
tion are derived, see Figures 8 and 9. Also, limits are derived in a pMSSM modelwhere the only light slepton is the τ̃R , see Figure 10.13AAD 14G sear
hed in 20.3 fb−1 of pp 
ollisions at√s = 8 TeV for ele
troweak produ
tionof 
hargino pairs, or 
hargino-neutralino pairs, de
aying to a �nal sate with two leptons(e and µ) and missing transverse momentum. No ex
ess beyond the Standard Modelexpe
tation is observed. Ex
lusion limits are derived in simpli�ed models of 
hargino pairprodu
tion, with 
hargino de
ays to the lightest neutralino via either sleptons or gaugebosons, see Fig 5.; or in simpli�ed models of 
hargino and next-to-lightest neutralinoprodu
tion, with de
ays to the lightest neutralino via gauge bosons, see Fig. 7. Aninterpretation in the pMSSM is also given, see Fig. 10.14AALTONEN 14 sear
hed in 5.8 fb−1 of pp 
ollisions at √s = 1.96 TeV for eviden
e of
hargino and next-to-lightest neutralino asso
iated produ
tion in �nal states 
onsistingof three leptons (ele
trons, muons or taus) and large missing transverse momentum. Theresults are 
onsistent with the Standard Model predi
tions within 1.85 σ. Limits on the
hargino mass are derived in an mSUGRA model with m0 = 60 GeV, tanβ = 3, A0 =0 and µ >0, see their Fig. 2.15KHACHATRYAN 14I sear
hed in 19.5 fb−1 of pp 
ollisions at √

s = 8 TeV for ele
-troweak produ
tion of 
hargino pairs de
aying to a �nal state with opposite-sign leptonpairs (e or µ) and missing transverse momentum. No ex
ess beyond the Standard Modelexpe
tation is observed. Ex
lusion limits are derived in simpli�ed models, see Fig. 18.16AALTONEN 13Q sear
hed in 6.0 fb−1 of pp 
ollisions at √s = 1.96 TeV for eviden
e of
hargino-neutralino asso
iated produ
tion in like-sign dilepton �nal states. One lepton isidenti�ed as the hadroni
 de
ay of a tau lepton, while the other is an ele
tron or muon.Good agreement with the Standard Model predi
tions is observed and limits are set onthe 
hargino-neutralino 
ross se
tion for simpli�ed gravity- and gauge-mediated models,see their Figs. 2 and 3.17AAD 12AS sear
hed in 2.06 fb−1 of pp 
ollisions at √
s = 7 TeV for 
harginos andneutralinos de
aying to a �nal state with three leptons (e and µ) and missing transverseenergy. No ex
ess beyond the Standard Model expe
tation is observed. Ex
lusion limitsare derived in the phenomenologi
al MSSM, see Fig. 2 (top), and in simpli�ed models,see Fig. 2 (bottom).18AAD 12T looked in 1 fb−1 of pp 
ollisions at √

s = 7 TeV for the produ
tion ofsupersymmetri
 parti
les de
aying into �nal states with missing transverse momentumand exa
tly two isolated leptons (e or µ). Opposite-sign and same-sign dilepton eventswere separately studied. Additionally, in opposite-sign events, a sear
h was made foran ex
ess of same-
avor over di�erent-
avor lepton pairs. No ex
ess over the expe
tedba
kground is observed and limits are pla
ed on the e�e
tive produ
tion 
ross se
tionof opposite-sign dilepton events with 6ET > 250 GeV and on same-sign dilepton eventswith 6ET > 100 GeV. The latter limit is interpreted in a simpli�ed ele
troweak gauginoprodu
tion model as a lower 
hargino mass limit.19CHATRCHYAN 11B looked in 35 pb−1 of pp 
ollisions at √
s=7 TeV for events withan isolated lepton (e or µ), a photon and 6ET whi
h may arise in a generalized gaugemediated model from the de
ay of Wino-like NLSPs. No eviden
e for an ex
ess over theexpe
ted ba
kground is observed. Limits are derived in the plane of squark/gluino massversus Wino mass (see Fig. 4). Mass degenera
y of the produ
ed squarks and gluinos isassumed.20CHATRCHYAN 11V looked in 35 pb−1 of pp 
ollisions at √s = 7 TeV for events with

≥ 3 isolated leptons (e, µ or τ), with or without jets and 6ET . No eviden
e for anex
ess over the expe
ted ba
kground is observed. Limits are derived in the CMSSM(m0, m1/2) plane for tanβ = 3 (see Fig. 5).Long-lived χ̃± (Chargino) MASS LIMITSLong-lived χ̃± (Chargino) MASS LIMITSLong-lived χ̃± (Chargino) MASS LIMITSLong-lived χ̃± (Chargino) MASS LIMITSLimits on 
harginos whi
h leave the dete
tor before de
aying.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>620 95 1 AAD 15AE ATLS stable χ̃±
>534 95 2 AAD 15BMATLS stable χ̃±
>239 95 2 AAD 15BMATLS χ̃± → χ̃01π±, lifetime 1 ns,m

χ̃± − m
χ̃01 = 0.14 GeV

>482 95 2 AAD 15BMATLS χ̃± → χ̃01π±, lifetime 15 ns,m
χ̃± − m

χ̃01 = 0.14 GeV
>103 95 3 AAD 13H ATLS long-lived χ̃± → χ̃01π±,mAMSB, �m

χ̃01 = 160 MeV
> 92 95 4 AAD 12BJ ATLS long-lived χ̃± → π± χ̃01, mAMSB
>171 95 5 ABAZOV 09M D0 H̃
>102 95 6 ABBIENDI 03L OPAL mν̃ >500 GeVnone 2{93.0 95 7 ABREU 00T DLPH H̃± or mν̃ >m

χ̃±
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>260 95 8 KHACHATRY...15AB CMS χ̃±1 → χ̃01π±,τ
χ̃±1 =0.2ns, AMSB

>800 95 9 KHACHATRY...15AO CMS long-lived χ̃±1 , mAMSB, τ >100ns
>100 95 9 KHACHATRY...15AO CMS long-lived χ̃±1 , mAMSB, τ > 3 ns95 10 KHACHATRY...15W CMS long-lived χ̃0, q̃ → q χ̃0, χ̃0 →

ℓ+ ℓ− ν, 6R
>270 95 11 AAD 13BD ATLS disappearing-tra
k signature,AMSB
>278 95 12 ABAZOV 13B D0 long-lived χ̃±, gaugino-like
>244 95 12 ABAZOV 13B D0 long-lived χ̃±, higgsino-like1AAD 15AE sear
hed in 19.1 fb−1 of pp 
ollisions at √

s = 8 TeV for heavy long-lived
harged parti
les, measured through their spe
i�
 ionization energy loss in the ATLASpixel dete
tor or their time-of-
ight in the ALTAS muon system. In the absen
e of anex
ess of events above the expe
ted ba
kgrounds, limits are set on stable 
harginos, seeFig. 10.2AAD 15BM sear
hed in 18.4 fb−1 of pp 
ollisions at √
s = 8 TeV for stable andmetastable non-relativisti
 
harged parti
les through their anomalous spe
i�
 ionizationenergy loss in the ATLAS pixel dete
tor. In absen
e of an ex
ess of events above theexpe
ted ba
kgrounds, limits are set on stable 
harginos (see Table 5) and on metastable
harginos de
aying to χ̃01π±, see Fig. 11.3AAD 13H sear
hed in 4.7 fb−1 of pp 
ollisions at √

s = 7 TeV for dire
t ele
troweakprodu
tion of long-lived 
harginos in the 
ontext of AMSB s
enarios. The sear
h isbased on the signature of a high-momentum isolated tra
k with few asso
iated hits inthe outer part of the tra
king system, arising from a 
hargino de
ay into a neutralinoand a low-momentum pion. The pT spe
trum of the tra
ks was found to be 
onsistentwith the SM expe
tations. Constraints on the lifetime and the produ
tion 
ross se
tionwere obtained, see Fig. 6. In the minimal AMSB framework with tanβ = 5, and µ > 0,a 
hargino having a mass below 103 (85) GeV for a 
hargino-neutralino mass splitting�m
χ̃01 of 160 (170) MeV is ex
luded at the 95% C.L. See Fig. 7 for more pre
ise bounds.4AAD 12BJ looked in 1.02 fb−1 of pp 
ollisions at √s = 7 TeV for signatures of de
aying
harginos resulting in isolated tra
ks with few asso
iated hits in the outer region of thetra
king system. The pT spe
trum of the tra
ks was found to be 
onsistent with the SMexpe
tations. Constraints on the lifetime and the produ
tion 
ross se
tion were obtained.In the minimal AMSB framework with m3/2 < 32 TeV, m0 < 1.5 TeV, tanβ = 5, and

µ > 0, a 
hargino having a mass below 92 GeV and a lifetime between 0.5 ns and 2 nsis ex
luded at the 95% C.L. See their Fig. 8 for more pre
ise bounds.5ABAZOV 09M sear
hed in 1.1 fb−1 of pp 
ollisions at √s = 1.96 TeV for events withdire
t produ
tion of a pair of 
harged massive stable parti
les identi�ed by their TOF.The number of the observed events is 
onsistent with the predi
ted ba
kground. Thedata are used to 
onstrain the produ
tion 
ross se
tion as a fun
tion of the χ̃±1 mass,see their Fig. 2. The quoted limit improves to 206 GeV for gaugino-like 
harginos.6ABBIENDI 03L used e+ e− data at √s = 130{209 GeV to sele
t events with two highmomentum tra
ks with anomalous dE/dx. The ex
luded 
ross se
tion is 
ompared tothe theoreti
al expe
tation as a fun
tion of the heavy parti
le mass in their Fig. 3. Thebounds are valid for 
olorless fermions with lifetime longer than 10−6 s. Supersedes theresults from ACKERSTAFF 98P.7ABREU 00T sear
hes for the produ
tion of heavy stable 
harged parti
les, identi�ed bytheir ionization or Cherenkov radiation, using data from √s= 130 to 189 GeV. Theselimits in
lude and update the results of ABREU 98P.8KHACHATRYAN 15AB sear
hed in 19.5 fb−1 of pp 
ollisions at √s = 8 TeV for events
ontaining tra
ks with little or no asso
iated 
alorimeter energy deposits and with missinghits in the outer layers of the tra
king system (disappearing-tra
k signature). Su
hdisappearing tra
ks 
an result from the de
ay of 
harginos that are nearly mass degeneratewith the lightest neutralino. The number of observed events is in agreement with theba
kground expe
tation. Limits are set on the 
ross se
tion of ele
troweak 
harginoprodu
tion in terms of the 
hargino mass and mean proper lifetime, see Fig. 4. In theminimal AMSB model, a 
hargino mass below 260 GeV is ex
luded at 95% C.L., seetheir Fig. 5.9KHACHATRYAN 15O sear
hed in 18.8 fb−1 of pp 
ollisions at √s = 8 TeV for eviden
eof long-lived 
harginos in the 
ontext of AMSB and pMSSM s
enarios. The results arebased on a previously published sear
h for heavy stable 
harged parti
les at 7 and 8 TeV.In the minimal AMSB framework with tanβ = 5 and µ ≥ 0, 
onstraints on the 
harginomass and lifetime were pla
ed, see Fig. 5. Charginos with a mass below 800 (100) GeVare ex
luded at the 95% C.L. for lifetimes above 100 ns (3 ns). Constraints are alsopla
ed on the pMSSM parameter spa
e, see Fig. 3.10KHACHATRYAN 15W sear
hed in up to 20.5 fb−1 of pp 
ollisions at √s = 8 TeV foreviden
e of long-lived neutralinos produ
ed through q̃-pair produ
tion, with q̃ → q χ̃0and χ̃0 → ℓ+ ℓ−ν (6R: λ121, λ122 6= 0). 95% C.L. ex
lusion limits on 
ross se
tiontimes bran
hing ratio are set as a fun
tion of mean proper de
ay length of the neutralino,see Figs. 6 and 9.11AAD 13BD sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for events 
ontainingtra
ks with no asso
iated hits in the outer region of the tra
king system resulting from thede
ay of 
harginos that are nearly mass degenerate with the lightest neutralino, as is oftenthe 
ase in AMSB s
enarios. No signi�
ant ex
ess above the ba
kground expe
tation isobserved for 
andidate tra
ks with large transverse momentum. Constraints on 
harginoproperties are obtained and in the minimal AMSB model, a 
hargino mass below 270 GeVis ex
luded at 95% C.L., see their Fig. 7.12ABAZOV 13B looked in 6.3 fb−1 of pp 
ollisions at √s = 1.96 TeV for 
harged massivelong-lived parti
les in events with muon-like parti
les that have both speed and ionizationenergy loss in
onsistent with muons produ
ed in beam 
ollisions. In the absen
e of anex
ess, limits are set at 95% C.L. on gaugino- and higgsino-like 
harginos, see their Table20 and Fig. 23.
ν̃ (Sneutrino) MASS LIMITν̃ (Sneutrino) MASS LIMITν̃ (Sneutrino) MASS LIMITν̃ (Sneutrino) MASS LIMITThe limits may depend on the number, N(ν̃), of sneutrinos assumed to be degeneratein mass. Only ν̃L (not ν̃R ) is assumed to exist. It is possible that ν̃ 
ould be thelightest supersymmetri
 parti
le (LSP).We report here, but do not in
lude in the Listings, the limits obtained from the �t of the�nal results obtained by the LEP Collaborations on the invisible width of the Z boson(��inv. < 2.0 MeV, LEP-SLC 06): mν̃ > 43.7 GeV (N(ν̃)=1) and mν̃ > 44.7 GeV(N(ν̃)=3) .

Some earlier papers are now obsolete and have been omitted. They were last listedin our PDG 14 edition: K. Olive, et al. (Parti
le Data Group), Chinese Physi
s C 38383838070001 (2014) (http://pdg.lbl.gov).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
> 400 95 1 AAD 14X ATLS ≥ 4ℓ±, ν̃ → ν χ̃01, χ̃01 →

ℓ± ℓ∓ ν, 6R2 AAD 11Z ATLS ν̃τ → e µ , 6R
> 94> 94> 94> 94 95 3 ABDALLAH 03M DLPH 1 ≤ tanβ ≤ 40,mẽR−m

χ̃01 >10 GeV
> 84 95 4 HEISTER 02N ALEP ν̃e , any �m
> 41 95 5 DECAMP 92 ALEP �(Z → invisible); N(ν̃)=3
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>2000 95 6 AAD 15O ATLS ν̃τ , 6R (e µ), λ
′311 = 0.11, λi3k =0.07

>1700 95 6 AAD 15O ATLS ν̃τ , 6R (τ µ, e τ), λ
′311 = 0.11,

λi3k = 0.077 AAD 13AI ATLS ν̃τ → e µ, e τ , µτ , 6R8 AAD 11H ATLS ν̃τ → e µ, 6R9 AALTONEN 10Z CDF ν̃τ → e µ, e τ , µτ , 6R10 ABAZOV 10M D0 ν̃τ → e µ, 6R
> 95 95 11 ABDALLAH 04H DLPH AMSB, µ > 0
> 37.1 95 12 ADRIANI 93M L3 �(Z → invisible); N(ν̃)=1
> 36 95 ABREU 91F DLPH �(Z → invisible); N(ν̃)=1
> 31.2 95 13 ALEXANDER 91F OPAL �(Z → invisible); N(ν̃)=11AAD 14X sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for events with at leastfour leptons (ele
trons, muons, taus) in the �nal state. No signi�
ant ex
ess above theStandard Model expe
tations is observed. Limits are set on the sneutrino mass in anR-parity violating simpli�ed model where the de
ay ν̃ → ν χ̃01, with χ̃01 → ℓ± ℓ∓ ν,takes pla
e with a bran
hing ratio of 100%, see Fig. 9.2AAD 11Z looked in 1.07 fb−1 of pp 
ollisions at √s = 7 TeV for events with one ele
tronand one muon of opposite 
harge from the produ
tion of ν̃τ via an 6R λ′311 
oupling andfollowed by a de
ay via λ312 into e + µ. No eviden
e for an (e, µ) resonan
e over theSM expe
tation is observed, and a limit is derived in the plane of λ′311 versus mν̃ forthree values of λ312, see their Fig. 2. Masses mν̃ < 1.32 (1.45) TeV are ex
luded for

λ′311 = 0.10 and λ312 = 0.05 (λ′311 = 0.11 and λ312 = 0.07).3ABDALLAH 03M uses data from √
s = 192{208 GeV to obtain limits in the frameworkof the MSSM with gaugino and sfermion mass universality at the GUT s
ale. An indire
tlimit on the mass is derived by 
onstraining the MSSM parameter spa
e by the resultsfrom dire
t sear
hes for neutralinos (in
luding 
as
ade de
ays) and for sleptons. Theselimits are valid for values of M2 < 1 TeV, ∣∣µ

∣∣ ≤ 1 TeV with the χ̃01 as LSP. The quotedlimit is obtained when there is no mixing in the third family. See Fig. 43 for the masslimits as a fun
tion of tanβ. These limits update the results of ABREU 00W.4HEISTER 02N derives a bound on mν̃e by exploiting the mass relation between the
ν̃e and ẽ, based on the assumption of universal GUT s
ale gaugino and s
alar massesm1/2 and m0 and the sear
h des
ribed in the ẽ se
tion. In the MSUGRA framework withradiative ele
troweak symmetry breaking, the limit improves to mν̃e >130 GeV, assuminga trilinear 
oupling A0=0 at the GUT s
ale. See Figs. 5 and 7 for the dependen
e of thelimits on tanβ.5DECAMP 92 limit is from �(invisible)/�(ℓℓ) = 5.91 ± 0.15 (Nν = 2.97 ± 0.07).6AAD 15O sear
hed in 20.3 fb−1 of pp 
ollisions at √

s = 8 TeV for eviden
e of heavyparti
les de
aying into e µ, e τ or µτ �nal states. No signi�
ant ex
ess above the StandardModel expe
tation is observed, and 95% C.L. ex
lusions are pla
ed on the 
ross se
tiontimes bran
hing ratio for the produ
tion of an R-parity-violating supersymmetri
 tausneutrino, appli
able to any sneutrino 
avour, see their Fig. 2.7AAD 13AI sear
hed in 4.6 fb−1 of pp 
ollisions at √
s = 7 TeV for eviden
e of heavyparti
les de
aying into e µ, e τ or µτ �nal states. No signi�
ant ex
ess above the StandardModel expe
tation is observed, and 95% C.L. ex
lusions are pla
ed on the 
ross se
tiontimes bran
hing ratio for the produ
tion of an R-parity-violating supersymmetri
 tausneutrino, see their Fig. 2. For 
ouplings λ′311 = 0.10 and λi3k = 0.05, the lower limitson the ν̃τ mass are 1610, 1110, 1100 GeV in the eµ, e τ , and µτ 
hannels, respe
tively.8AAD 11H looked in 35 pb−1 of pp 
ollisions at √s = 7 TeV for events with one ele
tronand one muon of opposite 
harge from the produ
tion of ν̃τ via an 6R λ′311 
ouplingand followed by a de
ay via λ312 into e + µ. No eviden
e for an ex
ess over the SMexpe
tation is observed, and a limit is derived in the plane of λ′311 versus mν̃ for severalvalues of λ312, see their Fig. 2. Superseded by AAD 11Z.9AALTONEN 10Z sear
hed in 1 fb−1 of pp 
ollisions at √s = 1.96 TeV for events fromthe produ
tion d d → ν̃τ with the subsequent de
ays ν̃τ → e µ, µτ , e τ in the MSSMframework with 6R. Two isolated leptons of di�erent 
avor and opposite 
harges arerequired, with τs identi�ed by their hadroni
 de
ay. No statisti
ally signi�
ant ex
essesare observed over the SM ba
kground. Upper limits on λ′2311 times the bran
hing ratioare listed in their Table III for various ν̃τ masses. Limits on the 
ross se
tion timesbran
hing ratio for λ′311 = 0.10 and λi3k = 0.05, displayed in Fig. 2, are used to setlimits on the ν̃τ mass of 558 GeV for the e µ, 441 GeV for the µτ and 442 GeV for thee τ 
hannels.10ABAZOV 10M looked in 5.3 fb−1 of pp 
ollisions at √

s = 1.96 TeV for events withexa
tly one pair of high pT isolated e µ and a veto against hard jets. No eviden
e for anex
ess over the SM expe
tation is observed, and a limit at 95% C.L. on the 
ross se
tiontimes bran
hing ratio is derived, see their Fig. 3. These limits are translated into limitson 
ouplings as a fun
tion of mν̃τ
as shown on their Fig. 4. As an example, for mν̃τ

=100 GeV and λ312 ≤ 0.07, 
ouplings λ′311 > 7.7× 10−4 are ex
luded.11ABDALLAH 04H use data from LEP 1 and √
s = 192{208 GeV. They re-use resultsor re-analyze the data from ABDALLAH 03M to put limits on the parameter spa
eof anomaly-mediated supersymmetry breaking (AMSB), whi
h is s
anned in the region1< m3/2 <50 TeV, 0< m0 <1000 GeV, 1.5<tanβ <35, both signs of µ. The 
onstraintsare obtained from the sear
hes for mass degenerate 
hargino and neutralino, for SM-likeand invisible Higgs, for leptoni
ally de
aying 
harginos and from the limit on non-SM Z
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hes Parti
le ListingsSupersymmetri
 Parti
le Sear
heswidth of 3.2 MeV. The limit is for mt = 174.3 GeV (see Table 2 for other mt values).The limit improves to 114 GeV for µ < 0.12ADRIANI 93M limit from ��(Z)(invisible)< 16.2 MeV.13ALEXANDER 91F limit is for one spe
ies of ν̃ and is derived from �(invisible, new)/�(ℓℓ)
< 0.38. CHARGED SLEPTONSCHARGED SLEPTONSCHARGED SLEPTONSCHARGED SLEPTONSThis se
tion 
ontains limits on 
harged s
alar leptons (ℓ̃, with ℓ=e,µ,τ).Studies of width and de
ays of the Z boson (use is made here of��inv < 2.0 MeV, LEP 00) 
on
lusively rule out m

ℓ̃R < 40 GeV (41GeV for ℓ̃L) , independently of de
ay modes, for ea
h individual slepton.The limits improve to 43 GeV (43.5 GeV for ℓ̃L) assuming all 3 
avors to bedegenerate. Limits on higher mass sleptons depend on model assumptionsand on the mass splitting �m= m
ℓ̃
− m

χ̃01 . The mass and 
ompositionof χ̃01 may a�e
t the sele
tron produ
tion rate in e+ e− 
ollisions throught-
hannel ex
hange diagrams. Produ
tion rates are also a�e
ted by thepotentially large mixing angle of the lightest mass eigenstate ℓ̃1=ℓ̃R sinθℓ+ ℓ̃L 
osθℓ. It is generally assumed that only τ̃ may have signi�
ant mix-ing. The 
oupling to the Z vanishes for θℓ=0.82. In the high-energy limitof e+ e− 
ollisions the interferen
e between γ and Z ex
hange leads to aminimal 
ross se
tion for θℓ=0.91, a value whi
h is sometimes used in thefollowing entries relative to data taken at LEP2. When limits on m
ℓ̃R arequoted, it is understood that limits on m

ℓ̃L are usually at least as strong.Possibly open de
ays involving gauginos other than χ̃01 will a�e
t the de-te
tion eÆ
ien
ies. Unless otherwise stated, the limits presented here re-sult from the study of ℓ̃+ ℓ̃− produ
tion, with produ
tion rates and de
ayproperties derived from the MSSM. Limits made obsolete by the re
entanalyses of e+ e− 
ollisions at high energies 
an be found in previousEditions of this Review.For de
ays with �nal state gravitinos (G̃ ), mG̃ is assumed to be negligiblerelative to all other masses.ẽ (Sele
tron) MASS LIMITẽ (Sele
tron) MASS LIMITẽ (Sele
tron) MASS LIMITẽ (Sele
tron) MASS LIMITSome earlier papers are now obsolete and have been omitted. They were last listedin our PDG 14 edition: K. Olive, et al. (Parti
le Data Group), Chinese Physi
s C 38383838070001 (2014) (http://pdg.lbl.gov).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>410 95 1 AAD 14X ATLS ≥ 4ℓ±, ℓ̃ → l χ̃01, χ̃01 →

ℓ± ℓ∓ ν, 6R2 CHATRCHYAN14R CMS ≥ 3ℓ±, ℓ̃ → ℓ± τ∓ τ∓ G̃ sim-pli�ed model, GMSB, stau(N)NLSP s
enario3 AAD 13B ATLS 2ℓ± + 6ET , SMS, pMSSM
> 97.5> 97.5> 97.5> 97.5 4 ABBIENDI 04 OPAL ẽR ,�m > 11 GeV, ∣∣µ

∣∣ >100 GeV,tanβ=1.5
> 94.4 5 ACHARD 04 L3 ẽR ,�m > 10 GeV, ∣∣µ

∣∣ >200 GeV,tanβ ≥ 2
> 71.3 5 ACHARD 04 L3 ẽR , all �mnone 30{94 95 6 ABDALLAH 03M DLPH �m >15 GeV, ẽ+R ẽ−R
> 94 95 7 ABDALLAH 03M DLPH ẽR ,1 ≤ tanβ ≤ 40, �m >10 GeV
> 95 95 8 HEISTER 02E ALEP �m > 15 GeV, ẽ+R ẽ−R
> 73 95 9 HEISTER 02N ALEP ẽR , any �m
>107>107>107>107 95 9 HEISTER 02N ALEP ẽL, any �m
• • • We do not use the following data for averages, �ts, limits, et
. • • •none 90{325 95 10 AAD 14G ATLS ℓ̃ ℓ̃ → ℓ+ χ̃01 ℓ− χ̃01, simpli�edmodel, m

ℓ̃L = m
ℓ̃R , mχ̃01 = 0GeV11 KHACHATRY...14I CMS ℓ̃ → ℓχ̃01, simpli�ed model

> 89 95 12 ABBIENDI 04F OPAL 6R, ẽL
> 92 95 13 ABDALLAH 04M DLPH 6R, ẽR , indire
t, �m >5 GeV1AAD 14X sear
hed in 20.3 fb−1 of pp 
ollisions at √

s = 8 TeV for events with atleast four leptons (ele
trons, muons, taus) in the �nal state. No signi�
ant ex
ess abovethe Standard Model expe
tations is observed. Limits are set on the slepton mass in anR-parity violating simpli�ed model where the de
ay ℓ̃ → ℓχ̃01, with χ̃01 → ℓ± ℓ∓ ν,takes pla
e with a bran
hing ratio of 100%, see Fig. 9.2CHATRCHYAN 14R sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for eventswith at least three leptons (ele
trons, muons, taus) in the �nal state. No signi�
antex
ess above the Standard Model expe
tations is observed. Limits are set on the sleptonmass in a stau (N)NLSP simpli�ed model (GMSB) where the de
ay ℓ̃ → ℓ± τ± τ∓ G̃takes pla
e with a bran
hing ratio of 100%, see Fig. 8.3AAD 13B sear
hed in 4.7 fb−1 of pp 
ollisions at √s = 7 TeV for sleptons de
aying to a�nal state with two leptons (e and µ) and missing transverse energy. No ex
ess beyondthe Standard Model expe
tation is observed. Limits are derived in a simpli�ed model ofdire
t left-handed slepton pair produ
tion, where left-handed slepton masses between 85and 195 GeV are ex
luded at 95% C.L. for m

χ̃01 = 20 GeV. See also Fig. 2(a). Ex
lusionlimits are also derived in the phenomenologi
al MSSM, see Fig. 3.4ABBIENDI 04 sear
h for ẽR ẽR produ
tion in a
oplanar di-ele
tron �nal states in the183{208 GeV data. See Fig. 13 for the dependen
e of the limits on m
χ̃01 and for thelimit at tanβ=35 This limit supersedes ABBIENDI 00G.5ACHARD 04 sear
h for ẽR ẽL and ẽR ẽR produ
tion in single- and a
oplanar di-ele
tron�nal states in the 192{209 GeV data. Absolute limits on mẽR are derived from a s
anover the MSSM parameter spa
e with universal GUT s
ale gaugino and s
alar masses

m1/2 and m0, 1 ≤ tanβ ≤ 60 and −2 ≤ µ ≤ 2 TeV. See Fig. 4 for the dependen
e ofthe limits on m
χ̃01 . This limit supersedes ACCIARRI 99W.6ABDALLAH 03M looked for a
oplanar diele
tron + 6E �nal states at √s = 189{208 GeV.The limit assumes µ=−200 GeV and tanβ=1.5 in the 
al
ulation of the produ
tion 
rossse
tion and B(ẽ → e χ̃01). See Fig. 15 for limits in the (mẽR , mχ̃01) plane. These limitsin
lude and update the results of ABREU 017ABDALLAH 03M uses data from √

s = 192{208 GeV to obtain limits in the frameworkof the MSSM with gaugino and sfermion mass universality at the GUT s
ale. An indire
tlimit on the mass is derived by 
onstraining the MSSM parameter spa
e by the resultsfrom dire
t sear
hes for neutralinos (in
luding 
as
ade de
ays) and for sleptons. Theselimits are valid for values of M2 <1 TeV, ∣∣µ
∣∣ ≤ 1 TeV with the χ̃01 as LSP. The quotedlimit is obtained when there is no mixing in the third family. See Fig. 43 for the masslimits as a fun
tion of tanβ. These limits update the results of ABREU 00W.8HEISTER 02E looked for a
oplanar diele
tron + 6ET �nal states from e+ e− intera
tionsbetween 183 and 209 GeV. The mass limit assumes µ < −200 GeV and tanβ=2 for theprodu
tion 
ross se
tion and B(ẽ → e χ̃01)=1. See their Fig. 4 for the dependen
e ofthe limit on �m. These limits in
lude and update the results of BARATE 01.9HEISTER 02N sear
h for ẽR ẽL and ẽR ẽR produ
tion in single- and a
oplanar di-ele
tron�nal states in the 183{208 GeV data. Absolute limits on mẽR are derived from a s
anover the MSSM parameter spa
e with universal GUT s
ale gaugino and s
alar massesm1/2 and m0, 1 ≤ tanβ ≤ 50 and −10 ≤ µ ≤ 10 TeV. The region of small ∣∣µ

∣∣,where 
as
ade de
ays are important, is 
overed by a sear
h for χ̃01 χ̃03 in �nal states withleptons and possibly photons. Limits on mẽL are derived by exploiting the mass relationbetween the ẽL and ẽR , based on universal m0 and m1/2. When the 
onstraint fromthe mass limit of the lightest Higgs from HEISTER 02 is in
luded, the bounds improveto mẽR >77(75) GeV and mẽL >115(115) GeV for a top mass of 175(180) GeV. In theMSUGRA framework with radiative ele
troweak symmetry breaking, the limits improvefurther to mẽR >95 GeV and mẽL >152 GeV, assuming a trilinear 
oupling A0=0 atthe GUT s
ale. See Figs. 4, 5, 7 for the dependen
e of the limits on tanβ.10AAD 14G sear
hed in 20.3 fb−1 of pp 
ollisions at √
s = 8 TeV for ele
troweak pro-du
tion of slepton pairs, de
aying to a �nal sate with two leptons (e and µ) and missingtransverse momentum. No ex
ess beyond the Standard Model expe
tation is observed.Ex
lusion limits are derived in simpli�ed models of slepton pair produ
tion, see Fig. 8.An interpretation in the pMSSM is also given, see Fig. 10.11KHACHATRYAN 14I sear
hed in 19.5 fb−1 of pp 
ollisions at √

s = 8 TeV for ele
-troweak produ
tion of slepton pairs de
aying to a �nal state with opposite-sign leptonpairs (e or µ) and missing transverse momentum. No ex
ess beyond the Standard Modelexpe
tation is observed. Ex
lusion limits are derived in simpli�ed models, see Fig. 18.12ABBIENDI 04F use data from √
s = 189{209 GeV. They derive limits on sparti
le massesunder the assumption of 6R with LLE or LQD 
ouplings. The results are valid for tanβ =1.5, µ = −200 GeV, with, in addition, �m > 5 GeV for indire
t de
ays via LQD. Thelimit quoted applies to dire
t de
ays via LLE or LQD 
ouplings. For indire
t de
ays,the limits on the ẽR mass are respe
tively 99 and 92 GeV for LLE and LQD 
ouplingsand m

χ̃0 = 10 GeV and degrade slightly for larger χ̃01 mass. Supersedes the results ofABBIENDI 00.13ABDALLAH 04M use data from √
s = 192{208 GeV to derive limits on sparti
le massesunder the assumption of 6R with LLE or UDD 
ouplings. The results are valid for µ =

−200 GeV, tanβ = 1.5, �m > 5 GeV and assuming a BR of 1 for the given de
ay. Thelimit quoted is for indire
t UDD de
ays using the neutralino 
onstraint of 39.5 GeV forLLE and of 38.0 GeV for UDD 
ouplings, also derived in ABDALLAH 04M. For indire
tde
ays via LLE the limit improves to 95 GeV if the 
onstraint from the neutralinois used and to 94 GeV if it is not used. For indire
t de
ays via UDD 
ouplings itremains un
hanged when the neutralino 
onstraint is not used. Supersedes the result ofABREU 00U.
µ̃ (Smuon) MASS LIMITµ̃ (Smuon) MASS LIMITµ̃ (Smuon) MASS LIMITµ̃ (Smuon) MASS LIMITVALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>410 95 1 AAD 14X ATLS ≥ 4ℓ±, ℓ̃ → ℓχ̃01, χ̃01 →

ℓ± ℓ∓ ν, 6R2 CHATRCHYAN14R CMS ≥ 3ℓ±, ℓ̃ → ℓ± τ∓ τ∓ G̃ sim-pli�ed model, GMSB, stau(N)NLSP s
enario3 AAD 13B ATLS 2ℓ± + 6ET , SMS, pMSSM
> 91.0 4 ABBIENDI 04 OPAL �m >3 GeV, µ̃+R µ̃−R ,∣∣µ

∣∣ >100 GeV, tanβ=1.5
> 86.7 5 ACHARD 04 L3 �m >10 GeV, µ̃+R µ̃−R ,∣∣µ

∣∣ >200 GeV, tanβ ≥ 2none 30{88 95 6 ABDALLAH 03M DLPH �m >5 GeV, µ̃+R µ̃−R
> 94> 94> 94> 94 95 7 ABDALLAH 03M DLPH µ̃R ,1 ≤ tanβ ≤ 40,�m >10 GeV
> 88 95 8 HEISTER 02E ALEP �m > 15 GeV, µ̃+R µ̃−R
• • • We do not use the following data for averages, �ts, limits, et
. • • •none 90{325 95 9 AAD 14G ATLS ℓ̃ ℓ̃ → ℓ+ χ̃01 ℓ− χ̃01, simpli�edmodel, m

ℓ̃L = m
ℓ̃R , mχ̃01 = 0GeV10 KHACHATRY...14I CMS ℓ̃ → ℓχ̃01, simpli�ed model

> 87 95 11 ABDALLAH 04M DLPH 6R, µ̃R , indire
t, �m >5 GeV
> 81 95 12 HEISTER 03G ALEP µ̃L, 6R de
ays
> 80 95 13 ABREU 00V DLPH µ̃R µ̃R (µ̃R → µG̃ ), mG̃ >8 eV1AAD 14X sear
hed in 20.3 fb−1 of pp 
ollisions at √

s = 8 TeV for events with atleast four leptons (ele
trons, muons, taus) in the �nal state. No signi�
ant ex
ess abovethe Standard Model expe
tations is observed. Limits are set on the slepton mass in anR-parity violating simpli�ed model where the de
ay ℓ̃ → ℓχ̃01, with χ̃01 → ℓ± ℓ∓ ν,takes pla
e with a bran
hing ratio of 100%, see Fig. 9.
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hes Parti
le ListingsSupersymmetri
 Parti
le Sear
hes2CHATRCHYAN 14R sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for eventswith at least three leptons (ele
trons, muons, taus) in the �nal state. No signi�
antex
ess above the Standard Model expe
tations is observed. Limits are set on the sleptonmass in a stau (N)NLSP simpli�ed model (GMSB) where the de
ay ℓ̃ → ℓ± τ± τ∓ G̃takes pla
e with a bran
hing ratio of 100%, see Fig. 8.3AAD 13B sear
hed in 4.7 fb−1 of pp 
ollisions at √s = 7 TeV for sleptons de
aying to a�nal state with two leptons (e and µ) and missing transverse energy. No ex
ess beyondthe Standard Model expe
tation is observed. Limits are derived in a simpli�ed model ofdire
t left-handed slepton pair produ
tion, where left-handed slepton masses between 85and 195 GeV are ex
luded at 95% C.L. for m

χ̃01 = 20 GeV. See also Fig. 2(a). Ex
lusionlimits are also derived in the phenomenologi
al MSSM, see Fig. 3.4ABBIENDI 04 sear
h for µ̃R µ̃R produ
tion in a
oplanar di-muon �nal states in the183{208 GeV data. See Fig. 14 for the dependen
e of the limits on m
χ̃01 and for thelimit at tanβ=35. Under the assumption of 100% bran
hing ratio for µ̃R → µ χ̃01, thelimit improves to 94.0 GeV for �m > 4 GeV. See Fig. 11 for the dependen
e of the limitson m

χ̃01 at several values of the bran
hing ratio. This limit supersedes ABBIENDI 00G.5ACHARD 04 sear
h for µ̃R µ̃R produ
tion in a
oplanar di-muon �nal states in the192{209 GeV data. Limits on mµ̃R are derived from a s
an over the MSSM param-eter spa
e with universal GUT s
ale gaugino and s
alar masses m1/2 and m0, 1 ≤tanβ ≤ 60 and −2 ≤ µ ≤ 2 TeV. See Fig. 4 for the dependen
e of the limits on m
χ̃01 .This limit supersedes ACCIARRI 99W.6ABDALLAH 03M looked for a
oplanar dimuon + 6E �nal states at √

s = 189{208 GeV.The limit assumes B(µ̃ → µχ̃01) = 100%. See Fig. 16 for limits on the (mµ̃R , mχ̃01)plane. These limits in
lude and update the results of ABREU 01.7ABDALLAH 03M uses data from √
s = 192{208 GeV to obtain limits in the frameworkof the MSSM with gaugino and sfermion mass universality at the GUT s
ale. An indire
tlimit on the mass is derived by 
onstraining the MSSM parameter spa
e by the resultsfrom dire
t sear
hes for neutralinos (in
luding 
as
ade de
ays) and for sleptons. Theselimits are valid for values of M2 < 1 TeV, ∣∣µ

∣∣ ≤ 1 TeV with the χ̃01 as LSP. The quotedlimit is obtained when there is no mixing in the third family. See Fig. 43 for the masslimits as a fun
tion of tanβ. These limits update the results of ABREU 00W.8HEISTER 02E looked for a
oplanar dimuon + 6ET �nal states from e+ e− intera
tionsbetween 183 and 209 GeV. The mass limit assumes B(µ̃ → µχ̃01)=1. See their Fig. 4for the dependen
e of the limit on �m. These limits in
lude and update the results ofBARATE 01.9AAD 14G sear
hed in 20.3 fb−1 of pp 
ollisions at √
s = 8 TeV for ele
troweak pro-du
tion of slepton pairs, de
aying to a �nal sate with two leptons (e and µ) and missingtransverse momentum. No ex
ess beyond the Standard Model expe
tation is observed.Ex
lusion limits are derived in simpli�ed models of slepton pair produ
tion, see Fig. 8.An interpretation in the pMSSM is also given, see Fig. 10.10KHACHATRYAN 14I sear
hed in 19.5 fb−1 of pp 
ollisions at √

s = 8 TeV for ele
-troweak produ
tion of slepton pairs de
aying to a �nal state with opposite-sign leptonpairs (e or µ) and missing transverse momentum. No ex
ess beyond the Standard Modelexpe
tation is observed. Ex
lusion limits are derived in simpli�ed models, see Fig. 18.11ABDALLAH 04M use data from √
s = 192{208 GeV to derive limits on sparti
le massesunder the assumption of 6R with LLE or UDD 
ouplings. The results are valid for µ =

−200 GeV, tanβ = 1.5, �m > 5 GeV and assuming a BR of 1 for the given de
ay. Thelimit quoted is for indire
t UDD de
ays using the neutralino 
onstraint of 39.5 GeV forLLE and of 38.0 GeV for UDD 
ouplings, also derived in ABDALLAH 04M. For indire
tde
ays via LLE the limit improves to 90 GeV if the 
onstraint from the neutralino isused and remains at 87 GeV if it is not used. For indire
t de
ays via UDD 
ouplings itdegrades to 85 GeV when the neutralino 
onstraint is not used. Supersedes the result ofABREU 00U.12HEISTER 03G sear
hes for the produ
tion of smuons in the 
ase of 6R prompt de
ays withLLE , LQD or UDD 
ouplings at √s = 189{209 GeV. The sear
h is performed for dire
tand indire
t de
ays, assuming one 
oupling at a time to be non-zero. The limit holds fordire
t de
ays mediated by 6R LQD 
ouplings and improves to 90 GeV for indire
t de
ays(for �m > 10 GeV). Limits are also given for LLE dire
t (mµ̃R > 87 GeV) and indire
tde
ays (mµ̃R > 96 GeV for m(χ̃01) > 23 GeV from BARATE 98S) and for UDD indire
tde
ays (mµ̃R > 85 GeV for �m > 10 GeV). Supersedes the results from BARATE 01B.13ABREU 00V use data from √s= 130{189 GeV to sear
h for tra
ks with large impa
t pa-rameter or visible de
ay verti
es. Limits are obtained as fun
tion of mG̃ , after 
ombiningthese results with the sear
h for slepton pair produ
tion in the SUGRA framework fromABREU 01 to 
over prompt de
ays and on stable parti
le sear
hes from ABREU 00Q.For limits at di�erent mG̃ , see their Fig. 12.
τ̃ (Stau) MASS LIMITτ̃ (Stau) MASS LIMITτ̃ (Stau) MASS LIMITτ̃ (Stau) MASS LIMITSome earlier papers are now obsolete and have been omitted. They were last listedin our PDG 14 edition: K. Olive, et al. (Parti
le Data Group), Chinese Physi
s C 38383838070001 (2014) (http://pdg.lbl.gov).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>85.2 1 ABBIENDI 04 OPAL �m > 6 GeV, θτ=π/2, ∣∣µ

∣∣ >100 GeV, tanβ=1.5
>78.3 2 ACHARD 04 L3 �m > 15 GeV, θτ=π/2,∣∣µ

∣∣ >200 GeV,tanβ ≥ 2
>81.9>81.9>81.9>81.9 95 3 ABDALLAH 03M DLPH �m >15 GeV, all θτ
>79 95 4 HEISTER 02E ALEP �m > 15 GeV, θτ=π/2
>76 95 4 HEISTER 02E ALEP �m > 15 GeV, θτ=0.91
• • • We do not use the following data for averages, �ts, limits, et
. • • •5 AAD 12AF ATLS 2τ + jets + 6ET , GMSB6 AAD 12AG ATLS ≥ 1τh + jets + 6ET , GMSB7 AAD 12CMATLS ≥ 1τ + jets + 6ET , GMSB
>87.4 95 8 ABBIENDI 06B OPAL τ̃R → τ G̃ , all τ(τ̃R )
>74 95 9 ABBIENDI 04F OPAL 6R, τ̃L
>68 95 10 ABDALLAH 04H DLPH AMSB, µ > 0
>90 95 11 ABDALLAH 04M DLPH 6R, τ̃R , indire
t, �m >5 GeVnone mτ− 26.3 95 3 ABDALLAH 03M DLPH �m >mτ , all θτ

1ABBIENDI 04 sear
h for τ̃ τ̃ produ
tion in a
oplanar di-tau �nal states in the183{208 GeV data. See Fig. 15 for the dependen
e of the limits on m
χ̃01 and for the limitat tanβ=35. Under the assumption of 100% bran
hing ratio for τ̃R → τ χ̃01, the limitimproves to 89.8 GeV for �m > 8 GeV. See Fig. 12 for the dependen
e of the limits onm

χ̃01 at several values of the bran
hing ratio and for their dependen
e on θτ . This limitsupersedes ABBIENDI 00G.2ACHARD 04 sear
h for τ̃ τ̃ produ
tion in a
oplanar di-tau �nal states in the 192{209GeV data. Limits on mτ̃R are derived from a s
an over the MSSM parameter spa
e withuniversal GUT s
ale gaugino and s
alar masses m1/2 and m0, 1 ≤ tanβ ≤ 60 and
−2 ≤ µ ≤ 2 TeV. See Fig. 4 for the dependen
e of the limits on m

χ̃01 .3ABDALLAH 03M looked for a
oplanar ditaus + 6E �nal states at √s = 130{208 GeV. Adedi
ated sear
h was made for low mass τ̃s de
oupling from the Z0. The limit assumesB(τ̃ → τ χ̃01) = 100%. See Fig. 20 for limits on the (mτ̃ ,mχ̃01) plane and as fun
tionof the χ̃01 mass and of the bran
hing ratio. The limit in the low-mass region improves to29.6 and 31.1 GeV for τ̃R and τ̃L, respe
tively, at �m > mτ . The limit in the high-massregion improves to 84.7 GeV for τ̃R and �m > 15 GeV. These limits in
lude and updatethe results of ABREU 01.4HEISTER 02E looked for a
oplanar ditau + 6ET �nal states from e+ e− intera
tionsbetween 183 and 209 GeV. The mass limit assumes B(τ̃ → τ χ̃01)=1. See their Fig. 4for the dependen
e of the limit on �m. These limits in
lude and update the results ofBARATE 01.5AAD 12AF sear
hed in 2 fb−1 of pp 
ollisions at √
s = 7 TeV for events with twotau leptons, jets and large 6ET in a GMSB framework. No signi�
ant ex
ess above theexpe
ted ba
kground was found and an upper limit on the visible 
ross se
tion for newphenomena is set. A 95% C.L. lower limit of 32 TeV on the mGMSB breaking s
ale � isset for Mmess = 250 TeV, NS = 3, µ > 0 and Cgrav = 1, independent of tanβ.6AAD 12AG sear
hed in 2.05 fb−1 of pp 
ollisions at √

s = 7 TeV for events with atleast one hadroni
ally de
aying tau lepton, jets, and large 6ET in a GMSB framework.No signi�
ant ex
ess above the expe
ted ba
kground was found and an upper limit onthe visible 
ross se
tion for new phenomena is set. A 95% C.L. lower limit of 30 TeV onthe mGMSB breaking s
ale � is set for Mmess = 250 TeV, NS = 3, µ > 0 and Cgrav= 1, independent of tanβ. For large values of tanβ, the limit on � in
reases to 43 TeV.7AAD 12CM sear
hed in 4.7 fb−1 of pp 
ollisions at √s=7 TeV for events with at leastone tau lepton, zero or one additional light lepton (e/µ) jets, and large 6ET in a GMSBframework. No signi�
ant ex
ess above the expe
ted ba
kground was found and anupper limit on the visible 
ross se
tion for new phenomena is set. A 95% C. L. lowerlimit of 54 TeV on the mGMSB breaking s
ale � is set for Mmess = 250 TeV, NS = 3,
µ > 0 and Cgrav = 1, for tanβ > 20. Here the τ̃1 is the NLSP.8ABBIENDI 06B use 600 pb−1 of data from √

s = 189{209 GeV. They look for eventsfrom pair-produ
ed staus in a GMSB s
enario with τ̃ NLSP in
luding prompt τ̃ de
aysto ditaus + 6E �nal states, large impa
t parameters, kinked tra
ks and heavy stable
harged parti
les. Limits on the 
ross-se
tion are 
omputed as a fun
tion of m(τ̃) andthe lifetime, see their Fig. 7. The limit is 
ompared to the σ ·BR2 from a s
an over theGMSB parameter spa
e.9ABBIENDI 04F use data from √
s = 189{209 GeV. They derive limits on sparti
le massesunder the assumption of 6R with LLE or LQD 
ouplings. The results are valid for tanβ= 1.5, µ = −200 GeV, with, in addition, �m > 5 GeV for indire
t de
ays via LQD.The limit quoted applies to dire
t de
ays with LLE 
ouplings and improves to 75 GeVfor LQD 
ouplings. The limit on the τ̃R mass for indire
t de
ays is 92 GeV for LLE
ouplings at m

χ̃0 = 10 GeV and no ex
lusion is obtained for LQD 
ouplings. Supersedesthe results of ABBIENDI 00.10ABDALLAH 04H use data from LEP 1 and √
s = 192{208 GeV. They re-use resultsor re-analyze the data from ABDALLAH 03M to put limits on the parameter spa
eof anomaly-mediated supersymmetry breaking (AMSB), whi
h is s
anned in the region1< m3/2 <50 TeV, 0< m0 <1000 GeV, 1.5<tanβ <35, both signs of µ. The 
onstraintsare obtained from the sear
hes for mass degenerate 
hargino and neutralino, for SM-likeand invisible Higgs, for leptoni
ally de
aying 
harginos and from the limit on non-SM Zwidth of 3.2 MeV. The limit is for mt = 174.3 GeV (see Table 2 for other mt values).The limit improves to 75 GeV for µ < 0.11ABDALLAH 04M use data from √

s = 192{208 GeV to derive limits on sparti
le massesunder the assumption of 6R with LLE 
ouplings. The results are valid for µ = −200 GeV,tanβ = 1.5, �m > 5 GeV and assuming a BR of 1 for the given de
ay. The limitquoted is for indire
t de
ays using the neutralino 
onstraint of 39.5 GeV, also derivedin ABDALLAH 04M. For indire
t de
ays via LLE the limit de
reases to 86 GeV if the
onstraint from the neutralino is not used. Supersedes the result of ABREU 00U.Degenerate Charged SleptonsDegenerate Charged SleptonsDegenerate Charged SleptonsDegenerate Charged SleptonsUnless stated otherwise in the 
omment lines or in the footnotes, the following limitsassume 3 families of degenerate 
harged sleptons.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>93 95 1 BARATE 01 ALEP �m > 10 GeV, ℓ̃+R ℓ̃−R
>70 95 1 BARATE 01 ALEP all �m, ℓ̃+R ℓ̃−R
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>91.9 95 2 ABBIENDI 06B OPAL ℓ̃R → ℓ G̃ , all ℓ(ℓ̃R )
>88 3 ABDALLAH 03D DLPH ℓ̃R → ℓ G̃ , all ℓ(ℓ̃R )
>82.7 95 4 ACHARD 02 L3 ℓ̃R , 6R de
ays,MSUGRA
>83 95 5 ABBIENDI 01 OPAL e+ e− → ℓ̃1 ℓ̃1,GMSB, tanβ=26 ABREU 01 DLPH ℓ̃ → ℓχ̃02, χ̃02 → γ χ̃01,

ℓ=e,µ
>68.8 95 7 ACCIARRI 01 L3 ℓ̃R , 6R, 0.7 ≤ tanβ ≤ 40
>84 95 8 ABREU 00V DLPH ℓ̃R ℓ̃R (ℓ̃R → ℓ G̃),mG̃ >9 eV



1732173217321732Sear
hesParti
le ListingsSupersymmetri
 Parti
le Sear
hes1BARATE 01 looked for a
oplanar dilepton + 6ET and single ele
tron (for ẽR ẽL) �nalstates at 189 to 202 GeV. The limit assumes µ=−200 GeV and tanβ=2 for the produ
tion
ross se
tion and de
ay bran
hing ratios, evaluated within the MSSM, and zero eÆ
ien
yfor de
ays other than ℓ̃ → ℓχ̃01. The slepton masses are determined from the GUTrelations without stau mixing. See their Fig. 1 for the dependen
e of the limit on �m.2ABBIENDI 06B use 600 pb−1 of data from √
s = 189{209 GeV. They look for eventsfrom pair-produ
ed staus in a GMSB s
enario with ℓ̃ 
o-NLSP in
luding prompt ℓ̃ de
aysto dileptons + 6E �nal states, large impa
t parameters, kinked tra
ks and heavy stable
harged parti
les. Limits on the 
ross-se
tion are 
omputed as a fun
tion of m(ℓ̃) andthe lifetime, see their Fig. 7. The limit is 
ompared to the σ · BR2 from a s
an overthe GMSB parameter spa
e. The highest mass limit is rea
hed for µ̃R , from whi
h thequoted mass limit is derived by subtra
ting mτ .3ABDALLAH 03D use data from √

s = 130{208 GeV to sear
h for tra
ks with largeimpa
t parameter or visible de
ay verti
es and for heavy 
harged stable parti
les. Limitsare obtained as fun
tion of m(G̃), after 
ombining these results with the sear
h for sleptonpair produ
tion in the SUGRA framework from ABDALLAH 03M to 
over prompt de
aysThe above limit is rea
hed for prompt de
ays and assumes the degenera
y of the sleptons.For limits at di�erent m(G̃), see their Fig. 9. Supersedes the results of ABREU 01G.4ACHARD 02 sear
hes for the produ
tion of sparti
les in the 
ase of 6R prompt de
ays withLLE or UDD 
ouplings at √s=189{208 GeV. The sear
h is performed for dire
t andindire
t de
ays, assuming one 
oupling at the time to be nonzero. The MSUGRA limitresults from a s
an over the MSSM parameter spa
e with the assumption of gaugino ands
alar mass uni�
ation at the GUT s
ale and no mixing in the slepton se
tor, imposingsimultaneously the ex
lusions from neutralino, 
hargino, sleptons, and squarks analyses.The limit holds for LLE 
ouplings and in
reases to 88.7 GeV for UDD 
ouplings. ForL3 limits from LQD 
ouplings, see ACCIARRI 01.5ABBIENDI 01 looked for �nal states with γ γ 6E, ℓℓ 6E, with possibly additional a
tivityand four leptons + 6E to sear
h for prompt de
ays of χ̃01 or ℓ̃1 in GMSB. They derivelimits in the plane (m
χ̃01 ,mτ̃1), see Fig. 6, allowing either the χ̃01 or a ℓ̃1 to be the NLSP.Two s
enarios are 
onsidered: tanβ=2 with the 3 sleptons degenerate in mass andtanβ=20 where the τ̃1 is lighter than the other sleptons. Data taken at √s=189 GeV.For tanβ=20, the obtained limits are mτ̃1 > 69 GeV and mẽ1,µ̃1 > 88 GeV.6ABREU 01 looked for a
oplanar dilepton + diphoton + 6E �nal states from ℓ̃ 
as
adede
ays at √s=130{189 GeV. See Fig. 9 for limits on the (µ,M2) plane for mℓ̃

=80 GeV,tanβ=1.0, and assuming degenera
y of µ̃ and ẽ.7ACCIARRI 01 sear
hes for multi-lepton and/or multi-jet �nal states from 6R promptde
ays with LLE , LQD, or UDD 
ouplings at √s=189 GeV. The sear
h is performed fordire
t and indire
t de
ays of neutralinos, 
harginos, and s
alar leptons, with the χ̃01 or a
ℓ̃ as LSP and assuming one 
oupling to be nonzero at a time. Mass limits are derivedusing simultaneously the 
onstraints from the neutralino, 
hargino, and slepton analyses;and the Z0 width measurements from ACCIARRI 00C in a s
an of the parameter spa
eassuming MSUGRA with gaugino and s
alar mass universality. Updates and supersedesthe results from ACCIARRI 99I.8ABREU 00V use data from √s= 130{189 GeV to sear
h for tra
ks with large impa
t pa-rameter or visible de
ay verti
es. Limits are obtained as fun
tion of mG̃ , after 
ombiningthese results with the sear
h for slepton pair produ
tion in the SUGRA framework fromABREU 01 to 
over prompt de
ays and on stable parti
le sear
hes from ABREU 00Q.For limits at di�erent mG̃ , see their Fig. 12. The above limit assumes the degenera
y ofstau and smuon.Long-lived ℓ̃ (Slepton) MASS LIMITLong-lived ℓ̃ (Slepton) MASS LIMITLong-lived ℓ̃ (Slepton) MASS LIMITLong-lived ℓ̃ (Slepton) MASS LIMITLimits on s
alar leptons whi
h leave dete
tor before de
aying. Limits from Z de
aysare independent of lepton 
avor. Limits from 
ontinuum e+ e− annihilation are alsoindependent of 
avor for smuons and staus. Sele
tron limits from e+ e− 
ollisionsin the 
ontinuum depend on MSSM parameters be
ause of the additional neutralinoex
hange 
ontribution.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>440 95 1 AAD 15AE ATLS mGMSB, Mmess = 250 TeV, N5= 3, µ > 0, Cgrav = 5000,tanβ = 10
>385 95 1 AAD 15AE ATLS mGMSB, Mmess = 250 TeV, N5= 3, µ > 0, Cgrav = 5000,tanβ = 50
>286 95 1 AAD 15AE ATLS dire
t τ̃ produ
tionnone 124{309 95 2 AAIJ 15BD LHCB long-lived τ̃ , mGMSB, SPS7
> 98 95 3 ABBIENDI 03L OPAL µ̃R , τ̃Rnone 2{87.5none 2{87.5none 2{87.5none 2{87.5 95 4 ABREU 00Q DLPH µ̃R , τ̃R
> 81.2 95 5 ACCIARRI 99H L3 µ̃R , τ̃R
> 81 95 6 BARATE 98K ALEP µ̃R , τ̃R
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>300 95 7 AAD 13AA ATLS long-lived τ̃ , GMSB, tanβ = 5{208 ABAZOV 13B D0 long-lived τ̃ , 100 <mτ̃ <300 GeV
>339 95 9,10 CHATRCHYAN13AB CMS long-lived τ̃ , dire
t τ̃1 pair prod.,minimal GMSB, SPS line 7
>500 95 9,11 CHATRCHYAN13AB CMS long-lived τ̃ , τ̃1 from dire
t pairprod. and from de
ay of heav-ier SUSY parti
les, minimalGMSB, SPS line 7
>314 95 12 CHATRCHYAN12L CMS long-lived τ̃ , τ̃1 from de
ay ofheavier SUSY parti
les, mini-mal GMSB, SPS line 7
>136 95 13 AAD 11P ATLS stable τ̃ , GMSB s
enario, tanβ=51AAD 15AE sear
hed in 19.1 fb−1 of pp 
ollisions at √

s = 8 TeV for heavy long-lived
harged parti
les, measured through their spe
i�
 ionization energy loss in the ATLASpixel dete
tor or their time-of-
ight in the ALTAS muon system. In the absen
e of anex
ess of events above the expe
ted ba
kgrounds, limits are set on stable τ̃ sleptons invarious s
enarios, see Figs. 5-7.2AAIJ 15BD sear
hed in 3.0 fb−1 of pp 
ollisions at √
s = 7 and 8 TeV for eviden
eof Drell-Yan pair produ
tion of long-lived τ̃ parti
les. No eviden
e for su
h parti
les isobserved and 95% C.L. upper limits on the 
ross se
tion of τ̃ pair produ
tion are derived,see Fig. 7. In the mGMSB, assuming the SPS7 ben
hmark s
enario τ̃ masses between124 and 309 GeV are ex
luded at 95% C.L.

3ABBIENDI 03L used e+ e− data at √s = 130{209 GeV to sele
t events with two highmomentum tra
ks with anomalous dE/dx. The ex
luded 
ross se
tion is 
ompared to thetheoreti
al expe
tation as a fun
tion of the heavy parti
le mass in their Fig. 3. The limitimproves to 98.5 GeV for µ̃L and τ̃L. The bounds are valid for 
olorless spin 0 parti
leswith lifetimes longer than 10−6 s. Supersedes the results from ACKERSTAFF 98P.4ABREU 00Q sear
hes for the produ
tion of pairs of heavy, 
harged stable parti
les ine+ e− annihilation at √s= 130{189 GeV. The upper bound improves to 88 GeV for µ̃L,
τ̃L. These limits in
lude and update the results of ABREU 98P.5ACCIARRI 99H sear
hed for produ
tion of pairs of ba
k-to-ba
k heavy 
harged parti
lesat √s=130{183 GeV. The upper bound improves to 82.2 GeV for µ̃L, τ̃L.6The BARATE 98K mass limit improves to 82 GeV for µ̃L,τ̃L. Data 
olle
ted at√s=161{184 GeV.7AAD 13AA sear
hed in 4.7 fb−1 of pp 
ollisions at √

s = 7 TeV for events 
ontaininglong-lived massive parti
les in a GMSB framework. No signi�
ant ex
ess above theexpe
ted ba
kground was found. A 95% C.L. lower limit of 300 GeV is pla
ed on long-lived τ̃ 's in the GMSB model with Mmess = 250 TeV, NS = 3, µ > 0, for tanβ = 5{20.The lower limit on the GMSB breaking s
ale � was found to be 99{110 TeV, for tanβvalues between 5 and 40, see Fig. 4 (top). Also, dire
tly produ
ed long-lived sleptons,or sleptons de
aying to long-lived ones, are ex
luded at 95% C.L. up to a τ̃ mass of 278GeV for models with slepton splittings smaller than 50 GeV.8ABAZOV 13B looked in 6.3 fb−1 of pp 
ollisions at √s = 1.96 TeV for 
harged massivelong-lived parti
les in events with muon-like parti
les that have both speed and ionizationenergy loss in
onsistent with muons produ
ed in beam 
ollisions. In the absen
e of anex
ess, limits are set at 95% C.L. on the produ
tion 
ross se
tion of stau leptons in themass range 100{300 GeV, see their Table 20 and Fig. 23.9CHATRCHYAN 13AB looked in 5.0 fb−1 of pp 
ollisions at √
s = 7 TeV and in 18.8fb−1 of pp 
ollisions at √

s = 8 TeV for events with heavy stable parti
les, identi�edby their anomalous dE/dx in the tra
ker or additionally requiring that it be identi�ed asmuon in the muon 
hambers, from pair produ
tion of τ̃1's. No eviden
e for an ex
essover the expe
ted ba
kground is observed. Supersedes CHATRCHYAN 12L.10CHATRCHYAN 13AB limits are derived for pair produ
tion of τ̃1 as a fun
tion of mass inminimal GMSB s
enarios along the Snowmass Points and Slopes (SPS) line 7 (see Fig.8 and Table 7). The limit given here is valid for dire
t pair τ̃1 produ
tion.11CHATRCHYAN 13AB limits are derived for the produ
tion of τ̃1 as a fun
tion of mass inminimal GMSB s
enarios along the Snowmass Points and Slopes (SPS) line 7 (see Fig.8 and Table 7). The limit given here is valid for the produ
tion of τ̃1 from both dire
tpair produ
tion and from the de
ay of heavier supersymmetri
 parti
les.12CHATRCHYAN 12L looked in 5.0 fb−1 of pp 
ollisions at √s = 7 TeV for events withheavy stable parti
les, identi�ed by their anomalous dE/dx in the tra
ker or additionallyrequiring that it be identi�ed as muon in the muon 
hambers, from pair produ
tion of
τ̃1's. No eviden
e for an ex
ess over the expe
ted ba
kground is observed. Limits arederived for the produ
tion of τ̃1 as a fun
tion of mass in minimal GMSB s
enarios alongthe Snowmass Points and Slopes (SPS) line 7 (see Fig. 3). The limit given here is validfor the produ
tion of τ̃1 in the de
ay of heavier supersymmetri
 parti
les.13AAD 11P looked in 37 pb−1 of pp 
ollisions at √s = 7 TeV for events with two heavystable parti
les, re
onstru
ted in the Inner tra
ker and the Muon System and identi�edby their time of 
ight in the Muon System. No eviden
e for an ex
ess over the SMexpe
tation is observed. Limits on the mass are derived, see Fig. 3, for τ̃ in a GMSBs
enario and for sleptons produ
ed by ele
troweak pro
esses only, in whi
h 
ase the limitdegrades to 110 GeV.q̃ (Squark) MASS LIMITq̃ (Squark) MASS LIMITq̃ (Squark) MASS LIMITq̃ (Squark) MASS LIMITFor mq̃ > 60{70 GeV, it is expe
ted that squarks would undergo a 
as
ade de
ayvia a number of neutralinos and/or 
harginos rather than undergo a dire
t de
ay tophotinos as assumed by some papers. Limits obtained when dire
t de
ay is assumedare usually higher than limits when 
as
ade de
ays are in
luded.Limits from e+ e− 
ollisions depend on the mixing angle of the lightest mass eigenstateq̃1=q̃R sinθq+q̃L
osθq . It is usually assumed that only the sbottom and stop squarkshave non-trivial mixing angles (see the stop and sbottom se
tions). Here, unlessotherwise noted, squarks are always taken to be either left/right degenerate, or purelyof left or right type. Data from Z de
ays have set squark mass limits above 40 GeV,in the 
ase of q̃ → q χ̃1 de
ays if �m=mq̃ − m

χ̃01 & 5 GeV. For smaller values of�m, 
urrent 
onstraints on the invisible width of the Z (��inv < 2.0 MeV, LEP 00)ex
lude mũL,R
<44 GeV, md̃R <33 GeV, md̃L <44 GeV and, assuming all squarksdegenerate, mq̃ <45 GeV.Some earlier papers are now obsolete and have been omitted. They were last listedin our PDG 14 edition: K. Olive, et al. (Parti
le Data Group), Chinese Physi
s C 38383838070001 (2014) (http://pdg.lbl.gov).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>1450 (CL = 95%) OUR EVALUATION>1450 (CL = 95%) OUR EVALUATION>1450 (CL = 95%) OUR EVALUATION>1450 (CL = 95%) OUR EVALUATION
> 850 95 1 AAD 15BV ATLS jets + 6ET , q̃ → q χ̃01, mχ̃01 =100 GeV
> 250 95 2 AAD 15CS ATLS photon + 6ET , pp → q̃ q̃∗γ,q̃ → q χ̃01, mq̃ − m

χ̃01 = m

> 490 95 3 AAD 15K ATLS 
̃ → 
 χ̃01, mχ̃01 < 200 GeV
> 875 95 4 KHACHATRY...15AF CMS g̃ → q χ̃01, simpli�ed model, 8degenerate light q̃, m

χ̃01 = 0
> 520> 520> 520> 520 95 4 KHACHATRY...15AF CMS q̃ → q χ̃01, simpli�ed model, sin-gle light squark, m

χ̃01 = 0
>1450>1450>1450>1450 95 4 KHACHATRY...15AF CMS CMSSM, tanβ = 30, A0 =

−2max(m0, m1/2), µ > 0
> 850> 850> 850> 850 95 5 AAD 14AE ATLS jets + 6ET , q̃ → q χ̃01 simpli�edmodel, mass degenerate �rstand se
ond generation squarks,m

χ̃01 = 0 GeV
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> 440 95 5 AAD 14AE ATLS jets + 6ET , q̃ → q χ̃01 simpli-�ed model, single light-
avoursquark, m

χ̃01 = 0 GeV
>1700 95 5 AAD 14AE ATLS jets + 6ET , mSUGRA/CMSSM,mq̃ = mg̃
> 800 95 6 CHATRCHYAN14AH CMS jets + 6ET , q̃ → q χ̃01 simpli�edmodel, m

χ̃01 = 50 GeV
> 780 95 7 CHATRCHYAN14I CMS multijets + 6ET , q̃ → q χ̃01 sim-pli�ed model, m

χ̃01 < 200GeV
>1360 95 8 AAD 13L ATLS jets + 6ET , CMSSM, mg̃ = mq̃
>1200 95 9 AAD 13Q ATLS γ+b+6ET ,higgsino-like neutralino,m

χ̃01 > 220 GeV, GMSB10 CHATRCHYAN13 CMS ℓ± ℓ∓ + jets + 6ET , CMSSM
>1250 95 11 CHATRCHYAN13G CMS 0,1,2, ≥ 3 b-jets + 6ET , CMSSM,mq̃ = mg̃
>1430 95 12 CHATRCHYAN13H CMS 2γ + ≥ 4 jets + low 6ET , stealthSUSY model
> 750 95 13 CHATRCHYAN13T CMS jets + 6ET , q̃ → q χ̃01 simpli�edmodel, m

χ̃01= 0 GeV
> 820 95 14 AAD 12AX ATLS ℓ +jets + 6ET , CMSSM, mq̃=mg̃
>1200 95 15 AAD 12CJ ATLS ℓ±+jets+ 6ET , CMSSM, mq̃=mg̃
> 870 95 16 AAD 12CP ATLS 2γ + 6ET , GMSB, bino NLSP,m

χ̃01 > 50 GeV
> 950 95 17 AAD 12W ATLS jets + 6ET , CMSSM, mq̃ = mg̃18 CHATRCHYAN12 CMS e, µ, jets, razor, CMSSM
> 760 95 19 CHATRCHYAN12AE CMS jets + 6ET , q̃ → q χ̃01, mχ̃01 <200 GeV20 CHATRCHYAN12AL CMS ≥ 3ℓ±, 6R
>1110 95 21 CHATRCHYAN12AT CMS jets + 6ET , CMSSM
>1180 95 21 CHATRCHYAN12AT CMS jets + 6ET , CMSSM, mq̃=mg̃
• • • We do not use the following data for averages, �ts, limits, et
. • • •95 22 AAD 15AI ATLS ℓ± + jets + 6ET
>1650 95 1 AAD 15BV ATLS jets + 6ET , mg̃ = mq̃ , mχ̃01 = 1GeV
> 790 95 1 AAD 15BV ATLS jets + 6ET , q̃ → qW χ̃01, mχ̃01 =100 GeV
> 820 95 1 AAD 15BV ATLS 2 or 3 leptons + jets, q̃ de
aysvia sleptons, m

χ̃01 = 100 GeV
> 850 95 1 AAD 15BV ATLS τ , q̃ de
ays via staus, m

χ̃01 = 50GeV
>1000 95 23 AAD 15CB ATLS jets, q̃ → q χ̃01, χ̃01 → ℓqq,RPV, m

χ̃01 = 108 GeV and2.5 < 
τ
χ̃01 < 200 mm

> 700 95 24 KHACHATRY...15AR CMS q̃ → q χ̃01, χ̃01 → S̃ g , S̃ →S G̃ , S → g g , mS̃ = 100GeV, mS = 90 GeV
> 550 95 24 KHACHATRY...15AR CMS ℓ±, q̃ → q χ̃±1 , χ̃±1 → S̃ W±,S̃ → S G̃ , S → g g , mS̃ =100 GeV, mS = 90 GeV
>1500 95 25 KHACHATRY...15AZ CMS ≥ 2 γ, ≥ 1 jet, (Razor), bino-like NLSP, m

χ̃01 = 375 GeV
>1000 95 25 KHACHATRY...15AZ CMS ≥ 1 γ, ≥ 2 jet, wino-like NLSP,m

χ̃01 = 375 GeV
> 670 95 26 AAD 14E ATLS ℓ± ℓ± (ℓ∓) + jets, q̃ → q′ χ̃±1 ,

χ̃±1 → W (∗)± χ̃02, χ̃02 →Z(∗) χ̃01 simpli�ed model,m
χ̃01 < 300 GeV

> 780 95 26 AAD 14E ATLS ℓ± ℓ± (ℓ∓) + jets, q̃ →q′ χ̃±1 /χ̃02, χ̃±1 → ℓ± ν χ̃01,
χ̃02 → ℓ± ℓ∓ (ν ν) χ̃01 simpli-�ed model

> 700 95 27 CHATRCHYAN13AO CMS ℓ±ℓ∓ + jets + 6ET , CMSSM,m0 < 700 GeV
>1350 95 28 CHATRCHYAN13AV CMS jets (+ leptons) + 6ET , CMSSM,mg̃ = mq̃
> 800 95 29 CHATRCHYAN13W CMS ≥ 1 photons + jets + 6ET ,GGM, wino-like NLSP, m

χ̃01= 375 GeV
>1000 95 29 CHATRCHYAN13W CMS ≥ 2 photons + jets + 6ET ,GGM, bino-like NLSP, m

χ̃01= 375 GeV
> 340 95 30 DREINER 12A THEO mq̃ ∼ m

χ̃01
> 650 95 31 DREINER 12A THEO mq̃ = mg̃ ∼ m

χ̃01

1AAD 15BV summarized and extended ATLAS sear
hes for gluinos and �rst- and se
ond-generation squarks in �nal states 
ontaining jets and missing transverse momentum,with or without leptons or b-jets in the √
s = 8 TeV data set 
olle
ted in 2012. Thepaper reports the results of new interpretations and statisti
al 
ombinations of previouslypublished analyses, as well as new analyses. Ex
lusion limits at 95% C.L. are set on thesquark mass in several R-parity 
onserving models. See their Figs. 9, 11, 18, 22, 24, 27,28.2AAD 15CS sear
hed in 20.3 fb−1 of pp 
ollisions at √

s = 8 TeV for eviden
e of pairprodu
tion of squarks, de
aying into a quark and a neutralino, where a photon wasradiated either from an initial-state quark, from an intermediate squark, or from a �nal-state quark. No eviden
e was found for an ex
ess above the expe
ted level of StandardModel ba
kground and a 95% C.L. ex
lusion limit was set on the squark mass as afun
tion of the squark-neutralino mass di�eren
e, see Fig. 19.3AAD 15K sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for events 
ontaining atleast two jets, where the two leading jets are ea
h identi�ed as originating from 
-quarks,and large missing transverse momentum. No ex
ess of events above the expe
ted levelof Standard Model ba
kground was found. Ex
lusion limits at 95% C.L. are set on themass of superpartners of 
harm quarks (
̃). Assuming that the de
ay 
̃ → 
 χ̃01 takespla
e 100% of the time, a s
alar 
harm mass below 490 GeV is ex
luded for m
χ̃01 < 200GeV. For more details, see their Fig. 2.4KHACHATRYAN 15AF sear
hed in 19.5 fb−1 of pp 
ollisions at √s = 8 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the transverse mass variableMT2 to dis
riminate between signal and ba
kground pro
esses. No signi�
ant ex
essabove the Standard Model expe
tations is observed. Limits are set on the squark massin simpli�ed models where the de
ay q̃ → q χ̃01 takes pla
e with a bran
hing ratio of100%, both for the 
ase of a single light squark or 8 degenerate squarks, see Fig. 12.See also Table 5. Ex
lusions in the CMSSM, assuming tanβ = 30, A0 = −2 max(m0,m1/2) and µ > 0, are also presented, see Fig. 15.5AAD 14AE sear
hed in 20.3 fb−1 of pp 
ollisions at √

s = 8 TeV for strongly pro-du
ed supersymmetri
 parti
les in events 
ontaining jets and large missing transversemomentum, and no ele
trons or muons. No ex
ess over the expe
ted SM ba
kground isobserved. Ex
lusion limits are derived in simpli�ed models 
ontaining squarks that de
ayvia q̃ → q χ̃01, where either a single light state or two degenerate generations of squarksare assumed, see Fig. 10.6CHATRCHYAN 14AH sear
hed in 4.7 fb−1 of pp 
ollisions at √
s = 7 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the razor variables (MR andR2) to dis
riminate between signal and ba
kground pro
esses. No signi�
ant ex
essabove the Standard Model expe
tations is observed. Limits are set on sbottom massesin simpli�ed models where the de
ay q̃ → q χ̃01 takes pla
e with a bran
hing ratio of100%, see Fig. 28. Ex
lusions in the CMSSM, assuming tanβ = 10, A0 = 0 and µ >0,are also presented, see Fig. 26.7CHATRCHYAN 14I sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for events
ontaining multijets and large 6ET . No ex
ess over the expe
ted SM ba
kground isobserved. Ex
lusion limits are derived in simpli�ed models 
ontaining squarks that de
ayvia q̃ → q χ̃01, where either a single light state or two degenerate generations of squarksare assumed, see Fig. 7a.8AAD 13L sear
hed in 4.7 fb−1 of pp 
ollisions at √

s = 7 TeV for the produ
tion ofsquarks and gluinos in events 
ontaining jets, missing transverse momentum and no high-pT ele
trons or muons. No ex
ess over the expe
ted SM ba
kground is observed. InmSUGRA/CMSSM models with tanβ = 10, A0 = 0 and µ > 0, squarks and gluinosof equal mass are ex
luded for masses below 1360 GeV at 95% C.L. In a simpli�edmodel 
ontaining only squarks of the �rst two generations, a gluino o
tet and a masslessneutralino, squark masses below 1320 GeV are ex
luded at 95% C.L. for gluino massesbelow 2 TeV. See Figures 10{15 for more pre
ise bounds.9AAD 13Q sear
hed in 4.7 fb−1 of pp 
ollisions at √
s = 7 TeV for events 
ontaininga high-pT isolated photon, at least one jet identi�ed as originating from a bottomquark, and high missing transverse momentum. Su
h signatures may originate fromsupersymmetri
 models with gauge-mediated supersymmetry breaking in events in whi
hone of a pair of higgsino-like neutralinos de
ays into a photon and a gravitino whilethe other de
ays into a Higgs boson and a gravitino. No signi�
ant ex
ess above theexpe
ted ba
kground was found and limits were set on the squark mass as a fun
tion ofthe neutralino mass in a generalized GMSB model (GGM) with a higgsino-like neutralinoNLSP, see their Fig. 4. For neutralino masses greater than 220 GeV, squark massesbelow 1020 GeV are ex
luded at 95% C.L.10CHATRCHYAN 13 looked in 4.98 fb−1 of pp 
ollisions at √

s = 7 TeV for eventswith two opposite-sign leptons (e, µ, τ), jets and missing transverse energy. No ex
essbeyond the Standard Model expe
tation is observed. Ex
lusion limits are derived in themSUGRA/CMSSM model with tanβ = 10, A0 = 0 and µ > 0, see Fig. 6.11CHATRCHYAN 13G sear
hed in 4.98 fb−1 of pp 
ollisions at √s = 7 TeV for the pro-du
tion of squarks and gluinos in events 
ontaining 0,1,2, ≥ 3 b-jets, missing transversemomentum and no ele
trons or muons. No ex
ess over the expe
ted SM ba
kgroundis observed. In mSUGRA/CMSSM models with tanβ = 10, A0 = 0, and µ > 0,squarks and gluinos of equal mass are ex
luded for masses below 1250 GeV at 95% C.L.Ex
lusions are also derived in various simpli�ed models, see Fig. 7.12CHATRCHYAN 13H sear
hed in 4.96 fb−1 of pp 
ollisions at √
s = 7 TeV for eventswith two photons, ≥ 4 jets and low 6ET due to q̃ → γ χ̃01 de
ays in a stealth SUSYframework, where the χ̃01 de
ays through a singlino (S̃) intermediate state to γS G̃ ,with the singlet state S de
aying to two jets. No signi�
ant ex
ess above the expe
tedba
kground was found and limits were set in a parti
ular R-parity 
onserving stealthSUSY model. The model assumes m

χ̃01 = 0.5 mq̃ , mS̃ = 100 GeV and mS = 90 GeV.Under these assumptions, squark masses less than 1430 GeV were ex
luded at the 95%C.L.13CHATRCHYAN 13T sear
hed in 11.7 fb−1 of pp 
ollisions at √
s = 8 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the αT variable to dis
riminatebetween pro
esses with genuine and misre
onstru
ted 6ET . No signi�
ant ex
ess abovethe Standard Model expe
tations is observed. Limits are set on squark masses in sim-pli�ed models where the de
ay q̃ → q χ̃01 takes pla
e with a bran
hing ratio of 100%,assuming an eightfold degenera
y of the masses of the �rst two generation squarks, seeFig. 8 and Table 9. Also limits in the 
ase of a single light squark are given.14AAD 12AX sear
hed in 1.04 fb−1 of pp 
ollisions at √

s = 7 TeV for supersymmetryin events 
ontaining jets, missing transverse momentum and one isolated ele
tron ormuon. No ex
ess over the expe
ted SM ba
kground is observed and model-independentlimits are set on the 
ross se
tion of new physi
s 
ontributions to the signal regions. InmSUGRA/CMSSM models with tanβ = 10, A0 = 0 and µ > 0, squarks and gluinos of
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luded for masses below 820 GeV at 95% C.L. Limits are also set onsimpli�ed models for squark produ
tion and de
ay via an intermediate 
hargino and onsupersymmetri
 models with bilinear R-parity violation. Supersedes AAD 11G.15AAD 12CJ sear
hed in 4.7 fb−1 of pp 
ollisions at √
s = 7 TeV for events 
ontainingone or more isolated leptons (ele
trons or muons), jets and 6ET . The observations are ingood agreement with the SM expe
tations and ex
lusion limits have been set in numberof SUSY models. In the mSUGRA/CMSSM model with tanβ = 10, A0 = 0, and µ > 0,95% C.L. ex
lusion limits have been derived for mq̃ < 1200 GeV, assuming equal squarkand gluino masses. In minimal GMSB, values of the e�e
tive SUSY breaking s
ale � <50 TeV are ex
luded at 95% C.L. for tanβ < 45. Also ex
lusion limits in a number ofsimpli�ed models have been presented, see Figs. 10 and 12.16AAD 12CP sear
hed in 4.8 fb−1 of pp 
ollisions at √
s = 7 TeV for events with twophotons and large 6ET due to χ̃01 → γ G̃ de
ays in a GMSB framework. No signi�
antex
ess above the expe
ted ba
kground was found and limits were set on the squark massas a fun
tion of the neutralino mass in a generalized GMSB model (GGM) with a bino-likeneutralino NLSP. The other sparti
le masses were de
oupled, tanβ = 2 and 
τNLSP

< 0.1 mm. Also, in the framework of the SPS8 model, a 95% C.L. lower limit was seton the breaking s
ale � of 196 TeV.17AAD 12W sear
hed in 1.04 fb−1 of pp 
ollisions at √
s = 7 TeV for the produ
tionof squarks and gluinos in events 
ontaining jets, missing transverse momentum andno ele
trons or muons. No ex
ess over the expe
ted SM ba
kground is observed. InmSUGRA/CMSSM models with tanβ = 10, A0 = 0 and µ > 0, squarks and gluinosof equal mass are ex
luded for masses below 950 GeV at 95% C.L. In a simpli�edmodel 
ontaining only squarks of the �rst two generations, a gluino o
tet and a masslessneutralino, squark masses below 875 GeV are ex
luded at 95% C.L.18CHATRCHYAN 12 looked in 35 pb−1 of pp 
ollisions at √

s = 7 TeV for events withe and/or µ and/or jets, a large total transverse energy, and 6ET . The event sele
tion isbased on the dimensionless razor variable R, related to the 6ET and MR , an indi
ator ofthe heavy parti
le mass s
ale. No eviden
e for an ex
ess over the expe
ted ba
kgroundis observed. Limits are derived in the CMSSM (m0, m1/2) plane for tanβ = 3, 10 and50 (see Fig. 7 and 8). Limits are also obtained for Simpli�ed Model Spe
tra.19CHATRCHYAN 12AE sear
hed in 4.98 fb−1 of pp 
ollisions at √s = 7 TeV for eventswith at least three jets and large missing transverse momentum. No signi�
ant ex
essesover the expe
ted SM ba
kgrounds are observed and 95% C.L. limits on the produ
tion
ross se
tion of squarks in a s
enario where q̃ → q χ̃01 with a 100% bran
hing ratio, seeFig. 3. For m
χ̃01 < 200 GeV, values of mq̃ below 760 GeV are ex
luded at 95% C.L.Also limits in the CMSSM are presented, see Fig. 2.20CHATRCHYAN 12AL looked in 4.98 fb−1 of pp 
ollisions at √s = 7 TeV for anomalousprodu
tion of events with three or more isolated leptons. Limits on squark and gluinomasses are set in 6R SUSY models with leptoni
 LLE
ouplings, λ123 > 0.05, andhadroni
 UDD 
ouplings, λ

′′112 > 0.05 , see their Fig. 5. In the UDD 
ase the leptonsarise from supersymmetri
 
as
ade de
ays. A very spe
i�
 supersymmetri
 spe
trum isassumed. All de
ays are prompt.21CHATRCHYAN 12AT sear
hed in 4.73 fb−1 of pp 
ollisions at √
s = 7 TeV for theprodu
tion of squarks and gluinos in events 
ontaining jets, missing transverse momentumand no ele
trons or muons. No ex
ess over the expe
ted SM ba
kground is observed. InmSUGRA/CMSSM models with tanβ = 10, A0 = 0 and µ > 0, squarks with massesbelow 1110 GeV are ex
luded at 95% C.L. Squarks and gluinos of equal mass are ex
ludedfor masses below 1180 GeV at 95% C.L. Ex
lusions are also derived in various simpli�edmodels, see Fig. 6.22AAD 15AI sear
hed in 20 fb−1 of pp 
ollisions at √

s = 8 TeV for events 
ontain-ing at least one isolated lepton (ele
tron or muon), jets, and large missing transversemomentum. No ex
ess of events above the expe
ted level of Standard Model ba
k-ground was found. Ex
lusion limits at 95% C.L. are set on the squark masses in theCMSSM/mSUGRA, see Fig. 15, in the NUHMG, see Fig. 16, and in various simpli�edmodels, see Figs. 19{21.23AAD 15CB sear
hed for events 
ontaining at least one long-lived parti
le that de
ays ata signi�
ant distan
e from its produ
tion point (displa
ed vertex, DV) into two leptonsor into �ve or more 
harged parti
les in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV. Thedilepton signature is 
hara
terised by DV formed from at least two lepton 
andidates.Four di�erent �nal states were 
onsidered for the multitra
k signature, in whi
h the DVmust be a

ompanied by a high-transverse momentum muon or ele
tron 
andidate thatoriginates from the DV, jets or missing transverse momentum. No events were observedin any of the signal regions. Results were interpreted in SUSY s
enarios involving R-parityviolation, split supersymmetry, and gauge mediation. See their Fig. 14{20.24KHACHATRYAN 15AR sear
hed in 19.7 of fb−1 of pp 
ollisions at √
s = 8 TeV forevents 
ontaining jets, either a 
harged lepton or a photon, and low missing transversemomentum. No signi�
ant ex
ess above the Standard Model expe
tations is observed.Limits are set on the squark mass in a stealth SUSY model where the de
ays q̃ → q χ̃±1 ,

χ̃±1 → S̃ W±, S̃ → S G̃ and S → g g , with mS̃ = 100 GeV and mS = 90 GeV, takepla
e with a bran
hing ratio of 100%. See Fig. 6 for γ or Fig. 7 for ℓ± analyses.25KHACHATRYAN 15AZ sear
hed in 19.7 fb−1 of pp 
ollisions at √s = 8 TeV for eventswith either at least one photon, hadroni
 jets and 6ET (single photon 
hannel) or withat least two photons and at least one jet and using the razor variables. No signi�
antex
ess above the Standard Model expe
tations is observed. Limits are set on gluinomasses in the general gauge-mediated SUSY breaking model (GGM), for both a bino-likeand wino-like neutralino NLSP s
enario, see Fig. 8 and 9.26AAD 14E sear
hed in 20.3 fb−1 of pp 
ollisions at √
s = 8 TeV for strongly produ
edsupersymmetri
 parti
les in events 
ontaining jets and two same-sign leptons or threeleptons. The sear
h also utilises jets originating from b-quarks, missing transverse mo-mentum and other variables. No ex
ess over the expe
ted SM ba
kground is observed.Ex
lusion limits are derived in simpli�ed models 
ontaining gluinos and squarks, see Fig-ures 5 and 6. In the q̃ → q′ χ̃±1 , χ̃±1 → W (∗)± χ̃02, χ̃02 → Z(∗) χ̃01 simpli�ed model,the following assumptions have been made: m

χ̃±1 = 0.5 m
χ̃01 + mg̃ , mχ̃02 = 0.5 ( m

χ̃01+ m
χ̃±1 ). In the q̃ → q′ χ̃±1 or q̃ → q′ χ̃02, χ̃±1 → ℓ± ν χ̃01 or χ̃02 → ℓ± ℓ∓ (ν ν) χ̃01simpli�ed model, the following assumptions have been made: m

χ̃±1 = m
χ̃02 = 0.5 ( m

χ̃01+ mq̃ ), m
χ̃01 < 460 GeV. Limits are also derived in the mSUGRA/CMSSM, bRPV andGMSB models, see their Fig. 8.27CHATRCHYAN 2013AO sear
hed in 4.98 fb−1 of pp 
ollisions at √

s = 7 TeV forevents with two opposite-sign isolated leptons a

ompanied by hadroni
 jets and 6ET .No signi�
ant ex
esses over the expe
ted SM ba
kgrounds are observed and 95% C.L.

ex
lusion limits are derived in the mSUGRA/CMSSM model with tanβ = 10, A0 = 0and µ > 0, see Fig. 8.28CHATRCHYAN 13AV sear
hed in 4.7 fb−1 of pp 
ollisions at √
s = 7 TeV for newheavy parti
le pairs de
aying into jets (possibly b-tagged), leptons and 6ET using theRazor variables. No signi�
ant ex
esses over the expe
ted SM ba
kgrounds are observedand 95% C.L. ex
lusion limits are derived in the mSUGRA/CMSSM model with tanβ =10, A0 = 0 and µ > 0, see Fig. 3. The results are also interpreted in various simpli�edmodels, see Fig. 4.29CHATRCHYAN 13W sear
hed in 4.93 fb−1 of pp 
ollisions at√s = 7 TeV for events withone or more photons, hadroni
 jets and 6ET . No signi�
ant ex
ess above the StandardModel expe
tations is observed. Limits are set on squark masses in the general gauge-mediated SUSY breaking model (GGM), for both a wino-like and bino-like neutralinoNLSP s
enario, see Fig. 5.30DREINER 12A reassesses 
onstraints from CMS (at 7 TeV, ∼ 4.4 fb−1) under theassumption that the �st and se
ond generation squarks and the lightest SUSY parti
leare quasi-degenerate in mass (
ompressed spe
trum).31DREINER 12A reassesses 
onstraints from CMS (at 7 TeV, ∼ 4.4 fb−1) under theassumption that the �rst and se
ond generation squarks, the gluino, and the lightestSUSY parti
le are quasi-degenerate in mass (
ompressed spe
trum).Long-lived q̃ (Squark) MASS LIMITLong-lived q̃ (Squark) MASS LIMITLong-lived q̃ (Squark) MASS LIMITLong-lived q̃ (Squark) MASS LIMITThe following are bounds on long-lived s
alar quarks, assumed to hadronise intohadrons with lifetime long enough to es
ape the dete
tor prior to a possible de
ay.Limits may depend on the mixing angle of mass eigenstates: q̃1=q̃L
osθq + q̃R sinθq .The 
oupling to the Z0 boson vanishes for up-type squarks when θu=0.98, and fordown type squarks when θd=1.17.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

> 845 95 1 AAD 15AE ATLS b̃ R-hadron, stable, Regge model
> 900 95 1 AAD 15AE ATLS t̃ R-hadron, stable, Regge model
>1500 95 1 AAD 15AE ATLS g̃ de
aying to 300 GeV stablesleptons, LeptoSUSY model
> 751 95 2 AAD 15BMATLS b̃ R-hadron, stable, Regge model
> 766 95 2 AAD 15BMATLS t̃ R-hadron, stable, Regge model
> 525 95 3 KHACHATRY...15AK CMS g̃ R-hadrons, 10 µs< τ <1000 s
> 470 95 3 KHACHATRY...15AK CMS g̃ R-hadrons, 1 µs< τ <1000 s
• • • We do not use the following data for averages, �ts, limits, et
. • • •
> 683 95 4 AAD 13AA ATLS t̃ , R-hadrons, generi
 intera
tionmodel
> 612 95 5 AAD 13AA ATLS b̃, R-hadrons, generi
 intera
tionmodel
> 344 95 6 AAD 13BC ATLS R-hadrons, t̃ → b χ̃01, Reggemodel, lifetime between 10−5and 103 s, m

χ̃01 = 100 GeV
> 379 95 7 AAD 13BC ATLS R-hadrons, t̃ → t χ̃01, Reggemodel, lifetime between 10−5and 103 s, m

χ̃01 = 100 GeV
> 935 95 8 CHATRCHYAN13AB CMS long-lived t̃ forming R-hadrons,
loud intera
tion model1AAD 15AE sear
hed in 19.1 fb−1 of pp 
ollisions at √

s = 8 TeV for heavy long-lived
harged parti
les, measured through their spe
i�
 ionization energy loss in the ATLASpixel dete
tor or their time-of-
ight in the ALTAS muon system. In the absen
e of anex
ess of events above the expe
ted ba
kgrounds, limits are set R-hadrons in variouss
enarios, see Fig. 11. Limits are also set in LeptoSUSY models where the gluino de
aysto stable 300 GeV leptons, see Fig. 9.2AAD 15BM sear
hed in 18.4 fb−1 of pp 
ollisions at √
s = 8 TeV for stable andmetastable non-relativisti
 
harged parti
les through their anomalous spe
i�
 ionizationenergy loss in the ATLAS pixel dete
tor. In absen
e of an ex
ess of events above theexpe
ted ba
kgrounds, limits are set on stable bottom and top squark R-hadrons, seeTable 5.3KHACHATRYAN 15AK looked in a data set 
orresponding to fb−1 of pp 
ollisions at√

s = 8 TeV, and a sear
h interval 
orresponding to 281 h of trigger lifetime, for long-lived parti
les that have stopped in the CMS dete
tor. No eviden
e for an ex
ess overthe expe
ted ba
kground in a 
loud intera
tion model is observed. Assuming the de
ayt̃ → t χ̃01 and lifetimes between 1 µs and 1000 s, limits are derived on t̃ produ
tion asa fun
tion of m
χ̃01 , see Figs. 4 and 7. The ex
lusions require that m

χ̃01 is kinemati
ally
onsistent with the minimum values of the jet energy thresholds used.4AAD 13AA sear
hed in 4.7 fb−1 of pp 
ollisions at √
s = 7 TeV for events 
ontaining
olored long-lived parti
les that hadronize forming R-hadrons. No signi�
ant ex
essabove the expe
ted ba
kground was found. Long-lived R-hadrons 
ontaining a t̃ areex
luded for masses up to 683 GeV at 95% C.L in a general intera
tion model. Also,limits independent of the fra
tion of R-hadrons that arrive 
harged in the muon systemwere derived, see Fig. 6.5AAD 13AA sear
hed in 4.7 fb−1 of pp 
ollisions at √
s = 7 TeV for events 
ontaining
olored long-lived parti
les that hadronize forming R-hadrons. No signi�
ant ex
essabove the expe
ted ba
kground was found. Long-lived R-hadrons 
ontaining a b̃ areex
luded for masses up to 612 GeV at 95% C.L in a general intera
tion model. Also,limits independent of the fra
tion of R-hadrons that arrive 
harged in the muon systemwere derived, see Fig. 6.6AAD 13BC sear
hed in 5.0 fb−1 of pp 
ollisions at √
s = 7 TeV and in 22.9 fb−1 ofpp 
ollisions at √s = 8 TeV for bottom squark R-hadrons that have 
ome to rest withinthe ATLAS 
alorimeter and de
ay at some later time to hadroni
 jets and a neutralino.In absen
e of an ex
ess of events above the expe
ted ba
kgrounds, limits are set onsbottom masses for the de
ay b̃ → b χ̃01, for di�erent lifetimes, and for a neutralinomass of 100 GeV, see their Table 6 and Fig 10.7AAD 13BC sear
hed in 5.0 fb−1 of pp 
ollisions at √s = 7 TeV and in 22.9 fb−1 of pp
ollisions at √s = 8 TeV for bottom squark R-hadrons that have 
ome to rest within theATLAS 
alorimeter and de
ay at some later time to hadroni
 jets and a neutralino. Inabsen
e of an ex
ess of events above the expe
ted ba
kgrounds, limits are set on stopmasses for the de
ay t̃ → t χ̃01, for di�erent lifetimes, and for a neutralino mass of 100GeV, see their Table 6 and Fig 10.



1735173517351735See key on page 601 Sear
hes Parti
le ListingsSupersymmetri
 Parti
le Sear
hes8CHATRCHYAN 13AB looked in 5.0 fb−1 of pp 
ollisions at √
s = 7 TeV and in 18.8fb−1 of pp 
ollisions at √

s = 8 TeV for events with heavy stable parti
les, identi�edby their anomalous dE/dx in the tra
ker or additionally requiring that it be identi�ed asmuon in the muon 
hambers, from pair produ
tion of t̃1's. No eviden
e for an ex
essover the expe
ted ba
kground is observed. Limits are derived for pair produ
tion of stopsas a fun
tion of mass in the 
loud intera
tion model (see Fig. 8 and Table 6). In the
harge-suppressed model, the limit de
reases to 818 GeV.b̃ (Sbottom) MASS LIMITb̃ (Sbottom) MASS LIMITb̃ (Sbottom) MASS LIMITb̃ (Sbottom) MASS LIMITLimits in e+ e− depend on the mixing angle of the mass eigenstate b̃1 = b̃L
osθb +b̃R sinθb . Coupling to the Z vanishes for θb ∼ 1.17. As a 
onsequen
e, no absolute
onstraint in the mass region . 40 GeV is available in the literature at this time frome+ e− 
ollisions. In the Listings below, we use �m = mb̃1 − m
χ̃01 .Some earlier papers are now obsolete and have been omitted. They were last listedin our PDG 14 edition: K. Olive, et al. (Parti
le Data Group), Chinese Physi
s C 38383838070001 (2014) (http://pdg.lbl.gov).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>600>600>600>600 95 1 AAD 15CJ ATLS b̃ → b χ̃01, mχ̃01 < 250 GeV
>440 95 1 AAD 15CJ ATLS b̃ → t χ̃±1 , χ̃±1 → W (∗) χ̃01, mχ̃01= 60 GeV, mb̃ − m

χ̃±1 < mtnone 300{650 95 1 AAD 15CJ ATLS b̃ → b̃ b χ̃02, χ̃02 → h χ̃01, mχ̃01 =60 GeV, m
χ̃02 > 250 GeV

>640 95 2 KHACHATRY...15AF CMS b̃ → b χ̃01, mχ̃01 = 0
>650>650>650>650 95 3 KHACHATRY...15AH CMS b̃ → b χ̃01, mχ̃01 = 0
>250 95 3 KHACHATRY...15AH CMS b̃ → b χ̃01, mb̃ − m

χ̃01 < 10 GeV
>570 95 4 KHACHATRY...15I CMS b̃ → t χ̃±1 , χ̃±1 → W± χ̃01, mχ̃01=50 GeV, 150<m

χ̃±1 <300 GeV
>255 95 5 AAD 14T ATLS b̃1 → b χ̃01, mb̃1− m

χ̃01 ≈ mb
>400 95 6 CHATRCHYAN14AH CMS jets + 6ET , b̃ → b χ̃01 simpli�edmodel, m

χ̃01 = 50 GeV7 CHATRCHYAN14R CMS ≥ 3ℓ±, b̃ → t χ̃±1 , χ̃±1 →W± χ̃01 simpli�ed model, m
χ̃01= 50 GeV

• • • We do not use the following data for averages, �ts, limits, et
. • • •8 KHACHATRY...15AD CMS ℓ± ℓ∓ + jets + 6ET , b̃ →b ℓ± ℓ∓ χ̃01none 340{600 95 9 AAD 14AX ATLS ≥ 3 b-jets + 6ET , b̃ → b χ̃02 sim-pli�ed model with χ̃02 → h χ̃01,m
χ̃01=60 GeV, m

χ̃02=300 GeV
>440 95 10 AAD 14E ATLS ℓ± ℓ± (ℓ∓) + jets, b̃1 → t χ̃±1with χ̃±1 → W (∗)± χ̃01 sim-pli�ed model, m

χ̃±1 = 2 m
χ̃01

>500 95 11 CHATRCHYAN14H CMS same-sign ℓ± ℓ±, b̃ → t χ̃±1 ,
χ̃±1 → W± χ̃01 simpli�edmodel, m

χ̃±1 = 2 GeV, m
χ̃01 =100 GeV

>620 95 12 AAD 13AU ATLS 2 b-jets + 6ET , b̃1 → b χ̃01, mχ̃01 <120 GeV
>550 95 13 CHATRCHYAN13AT CMS jets + 6ET , b̃ → b χ̃01 simpli�edmodel, m

χ̃01= 50 GeV
>600 95 14 CHATRCHYAN13T CMS jets + 6ET , b̃ → b χ̃01 simpli�edmodel, m

χ̃01= 0 GeV
>450 95 15 CHATRCHYAN13V CMS same-sign ℓ± ℓ± + ≥ 2 b-jets,b̃ → t χ̃±1 , χ̃±1 → W± χ̃01 sim-pli�ed model, m

χ̃01 = 50 GeV
>390 16 AAD 12AN ATLS b̃1 → b χ̃01, simpli�ed model,m

χ̃01 < 60 GeV17 CHATRCHYAN12AI CMS ℓ± ℓ± + b-jets + 6ET
>410 95 18 CHATRCHYAN12BO CMS b̃1 → b χ̃01, simpli�ed model, m

χ̃01= 50 GeV
>294 95 19 AAD 11K ATLS stable b̃20 AAD 11O ATLS g̃ → b̃1 b, b̃1 → b χ̃01, mχ̃01=60GeV21 CHATRCHYAN11D CMS b̃,t̃ → b
>230 95 22 AALTONEN 10R CDF b̃1 → b χ̃01, mχ̃01 < 70 GeV
>247 95 23 ABAZOV 10L D0 b̃1 → b χ̃01, mχ̃01 = 0 GeV

1AAD 15CJ sear
hed in 20 fb−1 of pp 
ollisions at √
s = 8 TeV for eviden
e of thirdgeneration squarks by 
ombining a large number of sear
hes 
overing various �nal states.Limits on the sbottom mass are shown, either assuming the b̃ → b χ̃01 de
ay, see Fig.11, or assuming the b̃ → t χ̃±1 de
ay, with χ̃±1 → W (∗) χ̃01, see Fig. 12a, or assumingthe b̃ → b χ̃02 de
ay, with χ̃02 → h χ̃01, see Fig. 12b. Interpretations in the pMSSM arealso dis
ussed, see Figures 13{15.2KHACHATRYAN 15AF sear
hed in 19.5 fb−1 of pp 
ollisions at √s = 8 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the transverse mass variableMT2 to dis
riminate between signal and ba
kground pro
esses. No signi�
ant ex
essabove the Standard Model expe
tations is observed. Limits are set on the sbottom massin simpli�ed models where the de
ay b̃ → b χ̃01 takes pla
e with a bran
hing ratio of100%, see Fig. 12. See also Table 5. Ex
lusions in the CMSSM, assuming tanβ = 30,A0 = −2 max(m0, m1/2) and µ > 0, are also presented, see Fig. 15.3KHACHATRYAN 15AH sear
hed in 19.4 or 19.7 fb−1 of pp 
ollisions at √

s = 8 TeVfor events 
ontaining either a fully re
onstru
ted top quark, or events 
ontaining dijetsrequiring one or both jets to originate from b-quarks, or events 
ontaining a mono-jet.No signi�
ant ex
ess above the Standard Model expe
tations is observed. Limits are seton the sbottom mass in simpli�ed models where the de
ay b̃ → b χ̃01 takes pla
e witha bran
hing ratio of 100%, see Fig. 12. Limits are also set in a simpli�ed model wherethe de
ay b̃ → 
 χ̃01 takes pla
e with a bran
hing ratio of 100%, see Fig. 12.4KHACHATRYAN 15I sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for eventsin whi
h b-jets and four W -bosons are produ
ed. Five individual sear
h 
hannels are
ombined (fully hadroni
, single lepton, same-sign dilepton, opposite-sign dilepton, mul-tilepton). No signi�
ant ex
ess above the Standard Model expe
tations is observed.Limits are set on the sbottom mass in a simpli�ed model where the de
ay b̃ → t χ̃±1 ,with χ̃±1 → W± χ̃01, takes pla
e with a bran
hing ratio of 100%, see Fig. 7.5AAD 14T sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for monojet-like events.No ex
ess of events above the expe
ted level of Standard Model ba
kground was found.Ex
lusion limits at 95% C.L. are set on the masses of third-generation squarks in simpli�edmodels whi
h assume that the de
ay b̃1 → b χ̃01 takes pla
e 100% of the time, see Fig.12.6CHATRCHYAN 14AH sear
hed in 4.7 fb−1 of pp 
ollisions at √
s = 7 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the razor variables (MR andR2) to dis
riminate between signal and ba
kground pro
esses. A se
ond analysis requiresat least one of the jets to be originating from a b-quark. No signi�
ant ex
ess above theStandard Model expe
tations is observed. Limits are set on sbottom masses in simpli�edmodels where the de
ay b̃ → b χ̃01 takes pla
e with a bran
hing ratio of 100%, see Figs.28 and 29. Ex
lusions in the CMSSM, assuming tanβ = 10, A0 = 0 and µ >0, are alsopresented, see Fig. 26.7CHATRCHYAN 14R sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for eventswith at least three leptons (ele
trons, muons, taus) in the �nal state. No signi�
antex
ess above the Standard Model expe
tations is observed. Limits are set on the gluinomass in a simpli�ed model where the de
ay b̃ → t χ̃±1 , with χ̃±1 → W± χ̃01, takes pla
ewith a bran
hing ratio of 100%, see Fig. 11.8KHACHATRYAN 15AD sear
hed in 19.4 fb−1 of pp 
ollisions at √s = 8 TeV for eventswith two opposite-sign same 
avor isolated leptons featuring either a kinemati
 edge,or a peak at the Z -boson mass, in the invariant mass spe
trum. No eviden
e for astatisti
ally signi�
ant ex
ess over the expe
ted SM ba
kgrounds is observed and 95%C.L. ex
lusion limits are derived in a simpli�ed model of sbottom pair produ
tion wherethe sbottom de
ays into a b-quark, two opposite-sign dileptons and a neutralino LSP,through an intermediate state 
ontaining either an o�-shell Z -boson or a slepton, seeFig. 8.9AAD 14AX sear
hed in 20.1 fb−1 of pp 
ollisions at√s = 8 TeV for the strong produ
tionof supersymmetri
 parti
les in events 
ontaining either zero or at last one high high-pTlepton, large missing transverse momentum, high jet multipli
ity and at least three jetsidenti�ed as originating from b-quarks. No ex
ess over the expe
ted SM ba
kgroundis observed. Limits are derived in mSUGRA/CMSSM models with tanβ = 30, A0 =

−2 m0 and µ > 0, see their Fig. 14. Also, ex
lusion limits are set in simpli�ed models
ontaining s
alar bottom quarks, where the de
ay b̃ → b χ̃02 and χ̃02 → h χ̃01 takes pla
ewith a bran
hing ratio of 100%, see their Figures 11.10AAD 14E sear
hed in 20.3 fb−1 of pp 
ollisions at √
s = 8 TeV for strongly produ
edsupersymmetri
 parti
les in events 
ontaining jets and two same-sign leptons or threeleptons. The sear
h also utilises jets originating from b-quarks, missing transverse mo-mentum and other variables. No ex
ess over the expe
ted SM ba
kground is observed.Ex
lusion limits are derived in simpli�ed models 
ontaining bottom, see Fig. 7. Limitsare also derived in the mSUGRA/CMSSM, bRPV and GMSB models, see their Fig. 8.11CHATRCHYAN 14H sear
hed in 19.5 fb−1 of pp 
ollisions at √

s = 8 TeV for eventswith two isolated same-sign dileptons and jets in the �nal state. No signi�
ant ex
essabove the Standard Model expe
tations is observed. Limits are set on the sbottom massin a simpli�ed models where the de
ay b̃ → t χ̃±1 , χ̃±1 → W± χ̃01 takes pla
e with abran
hing ratio of 100%, with varying mass of the χ̃±1 , for m
χ̃01 = 50 GeV, see Fig. 6.12AAD 13AU sear
hed in 20.1 fb−1 of pp 
ollisions at √s = 8 TeV for events 
ontainingtwo jets identi�ed as originating from b-quarks and large missing transverse momentum.No ex
ess of events above the expe
ted level of Standard Model ba
kground was found.Ex
lusion limits at 95% C.L. are set on the masses of third-generation squarks. Assumingthat the de
ay b̃1 → b χ̃01 takes pla
e 100% of the time, a b̃1 mass below 620 GeV isex
luded for m

χ̃01 < 120 GeV. For more details, see their Fig. 5.13CHATRCHYAN 13AT provides interpretations of various sear
hes for supersymmetry bythe CMS experiment based on 4.73{4.98 fb−1 of pp 
ollisions at √
s = 7 TeV in theframework of simpli�ed models. Limits are set on the sbottom mass in a simpli�edmodels where sbottom quarks are pair-produ
ed and the de
ay b̃ → b χ̃01 takes pla
ewith a bran
hing ratio of 100%, see Fig. 4.14CHATRCHYAN 13T sear
hed in 11.7 fb−1 of pp 
ollisions at √

s = 8 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the αT variable to dis
riminatebetween pro
esses with genuine and misre
onstru
ted 6ET . No signi�
ant ex
ess abovethe Standard Model expe
tations is observed. Limits are set on sbottom masses insimpli�ed models where the de
ay b̃ → b χ̃01 takes pla
e with a bran
hing ratio of100%, see Fig. 8 and Table 9.
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hes15CHATRCHYAN 13V sear
hed in 10.5 fb−1 of pp 
ollisions at√s = 8 TeV for events withtwo isolated same-sign dileptons and at least two b-jets in the �nal state. No signi�
antex
ess above the Standard Model expe
tations is observed. Limits are set on the bottommass in a simpli�ed models where the de
ay b̃ → t χ̃±1 , χ̃±1 → W± χ̃01 takes pla
ewith a bran
hing ratio of 100%, with varying mass of the χ̃±1 , for m
χ̃01 = 50 GeV, seeFig. 4.16AAD 12AN sear
hed in 2.05 fb−1 of pp 
ollisions at√s = 7 TeV for s
alar bottom quarksin events with large missing transverse momentum and two b-jets in the �nal state. Thedata are found to be 
onsistent with the Standard Model expe
tations. Limits are setin an R-parity 
onserving minimal supersymmetri
 s
enario, assuming B(b̃1 → b χ̃01) =100%, see their Fig. 2.17CHATRCHYAN 12AI looked in 4.98 fb−1 of pp 
ollisions at √

s = 7 TeV for eventswith two same-sign leptons (e, µ), but not ne
essarily same 
avor, at least 2 b-jetsand missing transverse energy. No ex
ess beyond the Standard Model expe
tation isobserved. Ex
lusion limits are derived in a simpli�ed model for sbottom pair produ
tion,where the sbottom de
ays through b̃1 → t χ̃1W , see Fig. 8.18CHATRCHYAN 12BO sear
hed in 4.7 fb−1 of pp 
ollisions at √
s = 7 TeV for s
alarbottom quarks in events with large missing transverse momentum and two b-jets in the�nal state. The data are found to be 
onsistent with the Standard Model expe
tations.Limits are set in an R-parity 
onserving minimal supersymmetri
 s
enario, assumingB(b̃1 → b χ̃01) = 100%, see their Fig. 2.19AAD 11K looked in 34 pb−1 of pp 
ollisions at √

s = 7 TeV for events with heavystable parti
les, identi�ed by their anomalous dE/dx in the tra
ker or time of 
ight inthe tile 
alorimeter, from pair produ
tion of b̃. No eviden
e for an ex
ess over the SMexpe
tation is observed and limits on the mass are derived for pair produ
tion of sbottom,see Fig. 4.20AAD 11O looked in 35 pb−1 of pp 
ollisions at √
s = 7 TeV for events with jets, ofwhi
h at least one is a b-jet, and 6ET . No ex
ess above the Standard Model was found.Limits are derived in the (mg̃ , mb̃1) plane (see Fig. 2) under the assumption of 100%bran
hing ratios and b̃1 being the lightest squark. The quoted limit is valid for mb̃1 <500 GeV. A similar approa
h for t̃1 as the lightest squark with g̃ → t̃1 t and t̃1 → b χ̃±1with 100% bran
hing ratios leads to a gluino mass limit of 520 GeV for 130 < mt̃1 <300 GeV. Limits are also derived in the CMSSM (m0, m1/2) plane for tanβ = 40, seeFig. 4, and in s
enarios based on the gauge group SO(10).21CHATRCHYAN 11D looked in 35 pb−1 of pp 
ollisions at √s = 7 TeV for events with

≥ 2 jets, at least one of whi
h is b-tagged, and 6ET , where the b-jets are de
ay produ
tsof t̃ or b̃. No eviden
e for an ex
ess over the expe
ted ba
kground is observed. Limitsare derived in the CMSSM (m0, m1/2) plane for tanβ = 50 (see Fig. 2).22AALTONEN 10R sear
hed in 2.65 fb−1 of pp 
ollisions at √s = 1.96 TeV for events with
6ET and exa
tly two jets, at least one of whi
h is b-tagged. The results are in agreementwith the SM predi
tion, and a limit on the 
ross se
tion of 0.1 pb is obtained for therange of masses 80 < mb̃1 < 280 GeV assuming that the sbottom de
ays ex
lusively tob χ̃01. The ex
luded mass region in the framework of 
onserved Rp is shown in a planeof (mb̃1 , mχ̃01), see their Fig.2.23ABAZOV 10L looked in 5.2 fb−1 of pp 
ollisions at √

s = 1.96 TeV for events withat least 2 b-jets and 6ET from the produ
tion of b̃1 b̃1. No eviden
e for an ex
ess overthe SM expe
tation is observed, and a limit on the 
ross se
tion is derived under theassumption of 100% bran
hing ratio. The ex
luded mass region in the framework of
onserved Rp is shown in a plane of (mb̃1 ,mχ̃01), see their Fig. 3b. The ex
lusion alsoextends to m
χ̃01 = 110 GeV for 160< mb̃1 < 200 GeV.t̃ (Stop) MASS LIMITt̃ (Stop) MASS LIMITt̃ (Stop) MASS LIMITt̃ (Stop) MASS LIMITLimits depend on the de
ay mode. In e+ e− 
ollisions they also depend on the mixingangle of the mass eigenstate t̃1 = t̃L
osθt + t̃R sinθt . The 
oupling to the Z vanisheswhen θt = 0.98. In the Listings below, we use �m ≡ mt̃1 − m

χ̃01 or �m ≡mt̃1 − mν̃ , depending on relevant de
ay mode. See also bounds in \q̃ (Squark)MASS LIMIT."Some earlier papers are now obsolete and have been omitted. They were last listedin our PDG 14 edition: K. Olive, et al. (Parti
le Data Group), Chinese Physi
s C 38383838070001 (2014) (http://pdg.lbl.gov).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>250 95 1 AAD 15CJ ATLS B(t̃ → 
 χ̃01)+B(t̃ → b f f ′ χ̃01)= 1, mt̃−mχ̃01 = 10 GeV
>270 95 1 AAD 15CJ ATLS t̃ → 
 χ̃01, mt̃ − m

χ̃01=80 GeVnone, 200{700 95 1 AAD 15CJ ATLS t̃ → t χ̃01, mχ̃01 = 0
>500 95 1 AAD 15CJ ATLS B(t̃ → t χ̃01) + B(t̃ → b χ̃±1 )= 1, χ̃±1 → W (∗) χ̃01, mχ̃±1= 2m

χ̃01 , mχ̃01 < 160 GeV
>600 95 1 AAD 15CJ ATLS t̃2 → Z t̃1, mt̃1 − m

χ̃01 = 180GeV, m
χ̃01 = 0

>600 95 1 AAD 15CJ ATLS t̃2 → h t̃1, mt̃1 − m
χ̃01 = 180GeV, m

χ̃01 = 0none, 172.5{191 95 2 AAD 15J ATLS t̃ → t χ̃01, mχ̃01 = 1 GeV
>450 95 3 KHACHATRY...15AF CMS t̃ → t χ̃01, mχ̃01 = 0, mt̃ > mt+ m

χ̃01

>560 95 4 KHACHATRY...15AH CMS t̃ → t χ̃01, mχ̃01 = 0, mt̃ > mt+ m
χ̃01

>250 95 5 KHACHATRY...15AH CMS t̃ → 
 χ̃01, mt̃−mχ̃01 <10 GeVnone, 200{350 95 6 KHACHATRY...15L CMS t̃ → qq, 6R, λ
′′312 6= 0none, 200{385 95 6 KHACHATRY...15L CMS t̃ → qb, 6R, λ
′′323 6= 0

>730>730>730>730 95 7 KHACHATRY...15X CMS t̃ → t χ̃01, mχ̃01 = 100 GeV,mt̃ > mt + m
χ̃01none 400{645 95 7 KHACHATRY...15X CMS t̃ → t χ̃01 or t̃ → b χ̃±1 , m

χ̃01= 100 GeV, m
χ̃±1 − m

χ̃01 =5 GeVnone 270{645 95 8 AAD 14AJ ATLS ≥ 4 jets + 6ET , t̃1 → t χ̃01,m
χ̃01 < 30 GeVnone 250{550 95 8 AAD 14AJ ATLS ≥ 4 jets + 6ET , B(t̃1 → b χ̃±1 )= 50 %, m

χ̃±1 = 2 m
χ̃01 ,m

χ̃01 < 60 GeVnone 210{640 95 9 AAD 14BD ATLS ℓ± + jets + 6ET , t̃1 → t χ̃01,m
χ̃01 = 0 GeV

>500>500>500>500 95 9 AAD 14BD ATLS ℓ± + jets + 6ET , t̃1 → b χ̃±1 ,m
χ̃±1 = 2 m

χ̃01 , 100 GeV <m
χ̃01 < 150 GeVnone 150{445 95 10 AAD 14F ATLS ℓ± ℓ∓ �nal state, t̃1 → b χ̃±1 ,mt̃1 − m

χ̃±1 = 10 GeV, m
χ̃01= 1 GeVnone 215{530 95 10 AAD 14F ATLS ℓ± ℓ∓ �nal state, t̃1 → t χ̃01,m

χ̃01 = 1 GeV
>270 95 11 AAD 14T ATLS t̃1 → 
 χ̃01, mχ̃01 = 200 GeV
>240>240>240>240 95 11 AAD 14T ATLS t̃1 → 
 χ̃01,mt̃1−mχ̃01 <85 GeV
>255 95 11 AAD 14T ATLS t̃1 → b f f ′ χ̃01, mt̃1− m

χ̃01 ≈mb
>400 95 12 CHATRCHYAN14AH CMS jets + 6ET , t̃ → t χ̃01 simpli�edmodel, m

χ̃01 = 50 GeV13 CHATRCHYAN14R CMS ≥ 3ℓ±, t̃ → (b χ̃±1 /t χ̃01),
χ̃±1 → (qq′ /ℓν) χ̃01, χ̃01 →(H /Z)G̃ , GMSB, naturalhiggsino NLSP s
enario

>740 95 14 KHACHATRY...14T CMS τ + b-jets, 6R, LQD, λ′333 6= 0,t̃ → τ b simpli�ed model
>580 95 14 KHACHATRY...14T CMS τ + b-jets, 6R, LQD, λ′3jk 6= 0(j 6= =3), t̃ → χ̃± b, χ̃± →qq τ± simpli�ed model
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>790 95 15 KHACHATRY...15E CMS t̃1 → b ℓ, RPV, 
τ = 2 
m
>230 ROLBIECKI 15 THEO WW xse
tion, t̃1 → bW χ̃01,mt̃1 ≃ mb + mW + m

χ̃01
>600 95 16 AAD 14B ATLS Z+b 6ET , t̃2 → Z t̃1, t̃1 →t χ̃01, mχ̃01 < 200 GeV
>540 95 16 AAD 14B ATLS Z+b 6ET , t̃1 → t χ̃01, χ̃01 →Z G̃ , natural GMSB, 100 GeV

< m
χ̃01 < mt̃1−10 GeV

>360 95 17 CHATRCHYAN14U CMS t̃1 → b χ̃±1 r, χ̃±1 → f f ′ χ̃01,
χ̃01 → H G̃ simpli�ed model,m

χ̃±1 − m
χ̃01 = 5 GeV,GMSB

>215 95 CZAKON 14 t̃ → tχ01, mχ01 < 10 GeV18 KHACHATRY...14C CMS t̃2 → H t̃1 or t̃2 → Z t̃1 sim-pli�ed model1AAD 15CJ sear
hed in 20 fb−1 of pp 
ollisions at √
s = 8 TeV for eviden
e of thirdgeneration squarks by 
ombining a large number of sear
hes 
overing various �nal states.Stop de
ays with and without 
harginos in the de
ay 
hain are 
onsidered and summariesof all ATLAS Run 1 sear
hes for dire
t stop produ
tion 
an be found in Fig. 4 (nointermediate 
harginos) and Fig. 7 (intermediate 
harginos). Limits are set on stopmasses in 
ompressed mass regions regions, with B(t̃ → 
 χ̃01) + B(t̃ → b f f ′ χ̃01) =1, see Fig. 5. Limits are also set on stop masses assuming that both the de
ay t̃ →t χ̃01 and t̃ → b χ̃±1 are possible, with both their bran
hing rations summing up to 1,assuming χ̃±1 → W (∗) χ̃01 and m

χ̃±1 = 2 m
χ̃01 , see Fig. 6. Limits on the mass of thenext-to-lightest stop t̃2, de
aying either to Z t̃1, h t̃1 or t χ̃01, are also presented, see Figs.9 and 10.Interpretations in the pMSSM are also dis
ussed, see Figs 13{15.2AAD 15J interpreted the measurement of spin 
orrelations in t t produ
tion using 20.3fb−1 of pp 
ollisions at √s = 8 TeV in ex
lusion limits on the pair produ
tion of light t̃1squarks with masses similar to the top quark mass. The t̃1 is assumed to de
ay throught̃1 → t χ̃01 with predominantly right-handed top and a 100% bran
hing ratio. The dataare found to be 
onsistent with the Standard Model expe
tations and masses betweenthe top quark mass and 191 GeV are ex
luded, see their Fig. 2
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hes3KHACHATRYAN 15AF sear
hed in 19.5 fb−1 of pp 
ollisions at √s = 8 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the transverse mass variableMT2 to dis
riminate between signal and ba
kground pro
esses. No signi�
ant ex
essabove the Standard Model expe
tations is observed. Limits are set on the stop mass insimpli�ed models where the de
ay t̃ → t χ̃01 takes pla
e with a bran
hing ratio of 100%,see Fig. 12. See also Table 5. Ex
lusions in the CMSSM, assuming tanβ = 30, A0 =
−2 max(m0, m1/2) and µ > 0, are also presented, see Fig. 15.4KHACHATRYAN 15AH sear
hed in 19.4 or 19.7 fb−1 of pp 
ollisions at √

s = 8 TeVfor events 
ontaining either a fully re
onstru
ted top quark, or events 
ontaining dijetsrequiring one or both jets to originate from b-quarks, or events 
ontaining a mono-jet.No signi�
ant ex
ess above the Standard Model expe
tations is observed. Limits are seton the stop mass in simpli�ed models where the de
ay t̃ → t χ̃01 takes pla
e with abran
hing ratio of 100%, see Fig. 9. Limits are also set in simpli�ed models where thede
ays t̃ → t χ̃01 and t̃ → b χ̃±1 , with m
χ̃±1 - m

χ̃01 = 5 GeV, ea
h take pla
e with abran
hing ratio of 50%, see Fig. 10, or with other fra
tions, see Fig. 11. Finally, limitsare set in a simpli�ed model where the de
ay t̃ → 
 χ̃01 takes pla
e with a bran
hingratio of 100%, see Figs. 9, 10 and 11.5KHACHATRYAN 15AH sear
hed in 19.4 or 19.7 fb−1 of pp 
ollisions at √
s = 8 TeVfor events 
ontaining either a fully re
onstru
ted top quark, or events 
ontaining dijetsrequiring one or both jets to originate from b-quarks, or events 
ontaining a mono-jet.No signi�
ant ex
ess above the Standard Model expe
tations is observed. Limits are seton the stop mass in simpli�ed models where the de
ay t̃ → t χ̃01 takes pla
e with abran
hing ratio of 100%, see Fig. 9. Limits are also set in simpli�ed models where thede
ays t̃ → t χ̃01 and t̃ → b χ̃±1 , with m

χ̃±1 − m
χ̃01 = 5 GeV, ea
h take pla
e with abran
hing ratio of 50%, see Fig. 10, or with other fra
tions, see Fig. 11. Finally, limitsare set in a simpli�ed model where the de
ay t̃ → 
 χ̃01 takes pla
e with a bran
hingratio of 100%, see Figs. 9, 10, and 11.6KHACHATRYAN 15L sear
hed in 19.4 fb−1 of pp 
ollisions at √

s = 8 TeV for pairprodu
tion of heavy resonan
es de
aying to pairs of jets in four jet events. No signi�
antex
ess above the Standard Model expe
tations is observed. Limits are set on the stopmass in R-parity-violating supersymmetry models where t̃ → qq (λ′′312 6= 0), see Fig.6 (top) and t̃ → qb (λ′′323 6= 0), see Fig. 6 (bottom).7KHACHATRYAN 15X sear
hed in 19.3 fb−1 of pp 
ollisions at √s = 8 TeV for eventswith at least two energeti
 jets, at least one of whi
h is required to originate from a bquark, possibly a lepton, and signi�
ant 6ET , using the razor variables (MR and R2) todis
riminate between signal and ba
kground pro
esses. No signi�
ant ex
ess above theStandard Model expe
tations is observed. Limits are set on the stop mass in simpli�edmodels where the de
ay t̃ → t χ̃01 and the de
ay t̃ → b χ̃±1 , with m
χ̃±1 − m

χ̃01 = 5GeV, take pla
e with bran
hing ratios varying between 0 and 100%, see Figs. 15, 16 and17.8AAD 14AJ sear
hed in 20.1 fb−1 of pp 
ollisions at √s = 8 TeV for events 
ontainingfour or more jets and large missing transverse momentum. No ex
ess of events abovethe expe
ted level of Standard Model ba
kground was found. Ex
lusion limits at 95%C.L. are set on the masses of third-generation squarks in simpli�ed models whi
h eitherassume that the de
ay t̃1 → t χ̃01 takes pla
e 100% of the time, see Fig. 8, or that thisde
ay takes pla
e 50% of the time, while the de
ay t̃1 → b χ̃±1 takes pla
e the other50% of the time, see Fig. 9.9AAD 14BD sear
hed in 20 fb−1 of pp 
ollisions at √
s = 8 TeV for events 
ontainingone isolated lepton, jets and large missing transverse momentum. No ex
ess of eventsabove the expe
ted level of Standard Model ba
kground was found. Ex
lusion limits at95% C.L. are set on the masses of third-generation squarks in simpli�ed models whi
heither assume that the de
ay t̃1 → t χ̃01 takes pla
e 100% of the time, see Fig. 15, orthe de
ay t̃1 → b χ̃±1 takes pla
e 100% of the time, see Fig. 16{22. For the mixedde
ay s
enario, see Fig. 23.10AAD 14F sear
hed in 20.3 fb−1 of pp 
ollisions at √
s = 8 TeV for events 
ontainingtwo leptons (e or µ), and possibly jets and missing transverse momentum. No ex
essof events above the expe
ted level of Standard Model ba
kground was found. Ex
lusionlimits at 95% C.L. are set on the masses of third-generation squarks in simpli�ed modelswhi
h either assume that the de
ay t̃1 → b χ̃±1 takes pla
e 100% of the time, see Figs.14{17 and 20, or that the de
ay t̃1 → t χ̃01 takes pla
e 100% of the time, see Figs. 18and 19.11AAD 14T sear
hed in 20.3 fb−1 of pp 
ollisions at √
s = 8 TeV for monojet-like and
-tagged events. No ex
ess of events above the expe
ted level of Standard Model ba
k-ground was found. Ex
lusion limits at 95% C.L. are set on the masses of third-generationsquarks in simpli�ed models whi
h assume that the de
ay t̃1 → 
 χ̃01 takes pla
e 100% ofthe time, see Fig. 9 and 10. The results of the monojet-like analysis are also interpretedin terms of stop pair produ
tion in the four-body de
ay t̃1 → b f f ′ χ̃01, see Fig. 11.12CHATRCHYAN 14AH sear
hed in 4.7 fb−1 of pp 
ollisions at √

s = 7 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the razor variables (MR andR2) to dis
riminate between signal and ba
kground pro
esses. A se
ond analysis requiresat least one of the jets to be originating from a b-quark. No signi�
ant ex
ess above theStandard Model expe
tations is observed. Limits are set on sbottom masses in simpli�edmodels where the de
ay t̃ → t χ̃01 takes pla
e with a bran
hing ratio of 100%, see Figs.28 and 29. Ex
lusions in the CMSSM, assuming tanβ = 10, A0 = 0 and µ >0, are alsopresented, see Fig. 26.13CHATRCHYAN 14R sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for eventswith at least three leptons (ele
trons, muons, taus) in the �nal state. No signi�
antex
ess above the Standard Model expe
tations is observed. Limits are set on the stopmass in a natural higgsino NLSP simpli�ed model (GMSB) where the de
ay t̃ → b χ̃±1 ,with χ̃±1 → (qq′ /ℓν)H, Z G̃ , takes pla
e with a bran
hing ratio of 100% (the parti
lesbetween bra
kets have a soft pT spe
trum), see Figs. 4{6.

14KHACHATRYAN 14T sear
hed in 19.7 fb−1 of pp 
ollisions at √s = 8 TeV for eventswith τ -leptons and b-quark jets, possibly with extra light-
avour jets. No ex
ess abovethe Standard Model expe
tations is observed. Limits are set on stop masses in 6R SUSYmodels with LQD 
ouplings, in two simpli�ed models. In the �rst model, the de
ay t̃ →
τ b is 
onsidered, with λ′333 6= 0, see Fig. 3. In the se
ond model, the de
ay t̃ → χ̃± b,with the subsequent de
ay χ̃± → qq τ± is 
onsidered, with λ′3jk 6= 0 and the masssplitting between the top squark and the 
harging 
hosen to be 100 GeV, see Fig. 4.15KHACHATRYAN 15E sear
hed for long-lived parti
les de
aying to leptons in 19.7 fb−1of pp 
ollisions at √

s = 8 TeV. Events were sele
ted with an ele
tron and muon withopposite 
harges and ea
h with transverse impa
t parameter values between 0.02 and2 
m. Limits are set on SUSY ben
hmark models with pair produ
tion of top squarksde
aying into an eµ �nal state via RPV intera
tions. See their Fig. 216AAD 14B sear
hed in 20.3 fb−1 of pp 
ollisions at √
s = 8 TeV for events 
ontaininga Z boson, with or without additional leptons, plus jets originating from b-quarks andsigni�
ant missing transverse momentum. No ex
ess over the expe
ted SM ba
kgroundis observed. Limits are derived in simpli�ed models featuring t̃2 produ
tion, with t̃2 →Z t̃1, t̃1 → t χ̃01 with a 100% bran
hing ratio, see Fig. 4, and in the framework ofnatural GMSB, see Fig. 6.17CHATRCHYAN 14U sear
hed in 19.7 fb−1 of pp 
ollisions at √s = 8 TeV for eviden
e ofdire
t pair produ
tion of top squarks, with Higgs bosons in the de
ay 
hain. The sear
his performed using a sele
tion of events 
ontaining two Higgs bosons, ea
h de
ayingto a photon pair, missing transverse energy and possibly b-quark jets. No signi�
antex
esses over the expe
ted SM ba
kgrounds are observed. The results are interpreted inthe 
ontext of a \natural SUSY" simpli�ed model where the de
ays t̃1 → b χ̃±1 , with

χ̃±1 → f f ′ χ̃01, and χ̃01 → H G̃ , all happen with 100% bran
hing ratio, see Fig. 4.18KHACHATRYAN 14C sear
hed in 19.5 fb−1 of pp 
ollisions at √s = 8 TeV for eviden
eof dire
t pair produ
tion of top squarks, with Higgs or Z -bosons in the de
ay 
hain. Thesear
h is performed using a sele
tion of events 
ontaining leptons and b-quark jets. Nosigni�
ant ex
esses over the expe
ted SM ba
kgrounds are observed. The results areinterpreted in the 
ontext of a simpli�ed model with pair produ
tion of a heavier top-squark mass eigenstate t̃2 de
aying to a lighter top-squark eigenstate t̃1 via either t̃2 →H t̃1 or t̃2 → Z t̃1, followed in both 
ases by t̃1 → t χ̃01. The interpretation is performedin the region where the mass di�eren
e between the t̃1 and χ̃01 is approximately equalto the top-quark mass, whi
h is not probed by sear
hes for dire
t t̃1 pair produ
tion,see Figs. 5 and 6. The analysis ex
ludes top squarks with masses mt̃2 < 575 GeV andmt̃1 < 400 GeV at 95% C.L.Heavy g̃ (Gluino) MASS LIMITHeavy g̃ (Gluino) MASS LIMITHeavy g̃ (Gluino) MASS LIMITHeavy g̃ (Gluino) MASS LIMITFor mg̃ > 60{70 GeV, it is expe
ted that gluinos would undergo a 
as
ade de
ayvia a number of neutralinos and/or 
harginos rather than undergo a dire
t de
ay tophotinos as assumed by some papers. Limits obtained when dire
t de
ay is assumedare usually higher than limits when 
as
ade de
ays are in
luded.Some earlier papers are now obsolete and have been omitted. They were last listedin our PDG 14 edition: K. Olive, et al. (Parti
le Data Group), Chinese Physi
s C 38383838070001 (2014) (http://pdg.lbl.gov).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
> 820 95 1 AAD 15BG ATLS GGM, g̃ → q q̃ Z G̃ , tanβ = 30,

µ > 600 GeV
> 850 95 1 AAD 15BG ATLS GGM, g̃ → q q̃ Z G̃ , tanβ = 1.5,

µ > 450 GeV
>1150>1150>1150>1150 95 2 AAD 15BV ATLS general RPC g̃ de
ays, m

χ̃01 <100 GeV
> 700 95 3 AAD 15BX ATLS g̃ → X χ̃01, independent of mχ̃01
>1290 95 4 AAD 15CA ATLS ≥ 2 γ + 6ET , GGM, bino-likeNLSP, any NLSP mass
>1260 95 4 AAD 15CA ATLS ≥ 1 γ + b-jets + 6ET , GGM,higgsino-bino admix. NLSPand µ <0, m(NLSP)>450 GeV
>1140 95 4 AAD 15CA ATLS ≥ 1 γ + jets + 6ET , GGM,higgsino-bino admixture NLSP,all µ >0
>1225>1225>1225>1225 95 5 KHACHATRY...15AF CMS g̃ → qq χ̃01, mχ̃01 = 0
>1300 95 5 KHACHATRY...15AF CMS g̃ → bb χ̃01, mχ̃01 = 0
>1225 95 5 KHACHATRY...15AF CMS g̃ → t t χ̃01, mχ̃01 = 0
>1550 95 5 KHACHATRY...15AF CMS CMSSM, tanβ=30, mg̃=mq̃,A0=−2max(m0,m1/2), µ >0
>1150>1150>1150>1150 95 5 KHACHATRY...15AF CMS CMSSM, tanβ=30,A0=−2max(m0,m1/2), µ >0
>1280 95 6 KHACHATRY...15I CMS g̃ → t t̃ χ̃01, mχ̃01 = 0
>1310 95 7 KHACHATRY...15X CMS g̃ → bb χ̃01, mχ̃01 = 100 GeV
>1175 95 7 KHACHATRY...15X CMS g̃ → t t χ̃01, mχ̃01 = 100 GeV
>1330 95 8 AAD 14AE ATLS jets + 6ET , g̃ → qq χ̃01 simpli�edmodel, m

χ̃01 = 0 GeV
>1700 95 8 AAD 14AE ATLS jets + 6ET , mSUGRA/CMSSM,mq̃ = mg̃
>1090 95 9 AAD 14AG ATLS τ + jets + 6ET , natural GaugeMediation
>1600 95 9 AAD 14AG ATLS τ + jets + 6ET , mGMSB, Mmess= 250 GeV, N5 = 3, µ > 0,Cgrav = 1
>1350 95 10 AAD 14X ATLS ≥ 4ℓ±, g̃ → qq χ̃01, χ̃01 →

ℓ± ℓ∓ ν, 6R



1738173817381738Sear
hes Parti
le ListingsSupersymmetri
 Parti
le Sear
hes
> 640 95 11 AAD 14X ATLS ≥ 4ℓ±, g̃ → qq χ̃01, χ̃01 →

ℓ± ℓ∓ G̃ , tanβ = 30, GGM
>1000 95 12 CHATRCHYAN14AH CMS jets + 6ET , g̃ → qq χ̃01 simpli�edmodel, m

χ̃01 = 50 GeV
>1350 95 12 CHATRCHYAN14AH CMS jets + 6ET , CMSSM, mg̃ = mq̃
>1000 95 13 CHATRCHYAN14AH CMS jets + 6ET , g̃ → bb χ̃01 simpli�edmodel, m

χ̃01 = 50 GeV
>1000 95 14 CHATRCHYAN14AH CMS jets + 6ET , g̃ → t t χ̃01 simpli�edmodel, m

χ̃01 = 50 GeV
>1160 95 15 CHATRCHYAN14I CMS ets + 6ET , g̃ → qq χ̃01 simpli�edmodel, m

χ̃01 < 100 GeV
>1130 95 15 CHATRCHYAN14I CMS multijets + 6ET , g̃ → t t χ̃01 sim-pli�ed model, m

χ̃01 < 100GeV
>1210 95 15 CHATRCHYAN14I CMS multijets + 6ET , g̃ →qqW /Z χ̃01 simpli�ed model,m

χ̃01 < 100 GeV
>1260 95 16 CHATRCHYAN14N CMS 1ℓ±+ jets + ≥ 2b-jets, g̃ →t tχ01 simpli�ed model,m

χ01=0 GeV, mt̃ > mg̃
> 650 95 17 CHATRCHYAN14P CMS g̃ → j j j, 6Rnone 200{835 95 17 CHATRCHYAN14P CMS g̃ → b j j, 6R18 CHATRCHYAN14R CMS ≥ 3ℓ±, (g̃ / q̃) → q ℓ± ℓ∓ G̃simpli�ed model, GMSB, slep-ton 
o-NLSP s
enario19 CHATRCHYAN14R CMS ≥ 3ℓ±, g̃ → t t χ̃01 simpli�edmodel
• • • We do not use the following data for averages, �ts, limits, et
. • • •95 20 AAD 15AB ATLS g̃ → S̃ g , 
τ = 1 m, S̃ → S G̃and S → g g , BR = 100%95 21 AAD 15AI ATLS ℓ± + jets + 6ET
>1600 95 2 AAD 15BV ATLS pMSSM, M1 = 60 GeV, mq̃ <1500 GeV
>1280 95 2 AAD 15BV ATLS mSUGRA, m0 > 2 TeV
>1100 95 2 AAD 15BV ATLS via τ̃ , natural GMSB, all mτ̃
>1330 95 2 AAD 15BV ATLS jets + 6ET , g̃ → qq χ̃01, mχ̃01 =1 GeV
>1500 95 2 AAD 15BV ATLS jets + 6ET , g̃ → q̃ q, q̃ → q χ̃01,m

χ̃01 = 1 GeV
>1650 95 2 AAD 15BV ATLS jets + 6ET , mg̃ = mq̃ , mχ̃01 = 1GeV
> 850 95 2 AAD 15BV ATLS jets + 6ET , g̃ → g χ̃01, mχ̃01 <550 GeV
>1270 95 2 AAD 15BV ATLS jets + 6ET , g̃ → qqW χ̃01, mχ̃01= 100 GeV
>1150 95 2 AAD 15BV ATLS jets + ℓ± ℓ±, g̃ → qqW Z χ̃01,m

χ̃01 = 100 GeV
>1320 95 2 AAD 15BV ATLS jets + ℓ± ℓ±, g̃ de
ays via slep-tons, m

χ̃01 = 100 GeV
>1220 95 2 AAD 15BV ATLS τ , q̃ de
ays via staus, m

χ̃01 = 100GeV
>1310 95 2 AAD 15BV ATLS b-jets, g̃ → t t χ̃01, mχ̃01 < 400GeV
>1220 95 2 AAD 15BV ATLS b-jets, g̃ → t̃1 t and t̃1 → t χ̃01,mT1 < 1000 GeV
>1180 95 2 AAD 15BV ATLS b-jets, g̃ → t̃1 t and t̃1 →b χ̃±1 , mT1 < 1000 GeV,m

χ̃01 = 60 GeV
>1260 95 2 AAD 15BV ATLS b-jets, g̃ → t̃1 t and g̃ → 
 χ̃01
> 880 95 2 AAD 15BV ATLS jets, g̃ → t̃1 t and t̃1 → s b,RPV, 400 < mt̃1 < 1000 GeV
>1200 95 2 AAD 15BV ATLS b-jets, g̃ → b̃1 b and b̃1 →b χ̃01, mb̃1 < 1000 GeV
>1250 95 2 AAD 15BV ATLS b-jets, g̃ → bb χ̃01, mχ̃01 < 400GeVnone,750{1250 95 2 AAD 15BV ATLS b-jets, g̃ de
ay via o�shell t̃1 andb̃1, mχ̃01 < 500 GeV22 AAD 15CB ATLS ℓ, g̃ → (e /µ)qq, RPV, ben
h-mark gluino, neutralino masses
> 600 95 22 AAD 15CB ATLS ℓℓ/Z , g̃ → (e e /µµ/e µ)qq,RPV, m

χ̃01 = 400 GeV and 0.7
< 
τ

χ̃01 < 3× 105 mm
>1100 95 22 AAD 15CB ATLS jets, g̃ → qq χ̃01, χ̃01 → Z G̃ ,GGM, m

χ̃01 = 400 GeV and 3
< 
τ

χ̃01 < 500 mm

>1400 95 22 AAD 15CB ATLS jets or 6ET , g̃ → qq χ̃01, SplitSUSY, m
χ̃01 = 100 GeV and15 < 
τ < 300 mm

>1500 95 22 AAD 15CB ATLS 6ET , g̃ → qq χ̃01, Split SUSY,m
χ̃01 = 100 GeV and 20 <
τ < 250 mm

>1000 95 23 AAD 15X ATLS ≥ 10 jets, g̃ → qq χ̃01, χ̃01 →qqq (RPV), m
χ̃01=500 GeV

> 917 95 23 AAD 15X ATLS ≥ 6,7 jets, g̃ → qqq, (light-quark, λ
′′ 
ouplings, RPV)

> 929 95 23 AAD 15X ATLS ≥ 6,7 jets, g̃ → qqq, (b-quark,
λ
′′ 
ouplings, RPV)24 KHACHATRY...15AD CMS ℓ±ℓ∓ + jets + 6ET , GMSB, g̃ →qq Z G̃

>1300 95 25 KHACHATRY...15AZ CMS ≥ 2 γ, ≥ 1 jet, (Razor), bino-like NLSP, m
χ̃01 = 375 GeV

> 800 95 25 KHACHATRY...15AZ CMS ≥ 1 γ, ≥ 2 jet, wino-like NLSP,m
χ̃01 = 375 GeV

>1280 95 26 AAD 14AX ATLS ≥ 3 b-jets + 6ET , CMSSM
>1250 95 26 AAD 14AX ATLS ≥ 3 b-jets + 6ET , g̃ → b̃1 b χ̃01simpli�ed model, b̃1 → b χ̃01,m

χ̃01 = 60 GeV, mb̃1 < 900GeV
>1190 95 26 AAD 14AX ATLS ≥ 3 b-jets + 6ET , g̃ → t̃1 t χ̃01simpli�ed model, t̃1 → t χ̃01,m

χ̃01 = 60 GeV, mt̃1 < 1000GeV
>1180 95 26 AAD 14AX ATLS ≥ 3 b-jets + 6ET , g̃ → t̃1 t χ̃01simpli�ed model, t̃1 → b χ̃±1 ,m

χ̃±1 =2mχ̃01 , mχ̃01=60 GeV,mt̃1 <1000 GeV
>1250 95 26 AAD 14AX ATLS ≥ 3 b-jets + 6ET , g̃ → bb χ̃01simpli�ed model, m

χ̃01 < 400GeV
>1340 95 26 AAD 14AX ATLS ≥ 3 b-jets + 6ET , g̃ → t t χ̃01simpli�ed model, m

χ̃01 < 400GeV
>1300 95 26 AAD 14AX ATLS ≥ 3 b-jets + 6ET , g̃ → t b χ̃±1simpli�ed model, χ̃±1 →f f ′ χ̃01, mχ̃±1 −m

χ̃01 = 2 GeV,m
χ̃01 < 300 GeV

> 950 95 27 AAD 14E ATLS ℓ± ℓ± (ℓ∓) + jets, g̃ → t t χ̃01simpli�ed model
>1000 95 27 AAD 14E ATLS ℓ± ℓ± (ℓ∓) + jets, g̃ → t t̃1with t̃1 → b χ̃±1 simpli�edmodel, mt̃1 < 200 GeV, m

χ̃±1= 118 GeV, m
χ̃01 = 60 GeV

> 640 95 27 AAD 14E ATLS ℓ± ℓ± (ℓ∓) + jets, g̃ → t t̃1with t̃1 → 
 χ̃01 simpli�edmodel, mt̃1 = m
χ̃01 + 20 GeV

> 850 95 27 AAD 14E ATLS ℓ± ℓ± (ℓ∓) + jets, g̃ → t t̃1with t̃1 → b s simpli�edmodel, 6R
> 860 95 27 AAD 14E ATLS ℓ± ℓ± (ℓ∓) + jets, g̃ → qq′ χ̃±1 ,

χ̃±1 → W (∗)± χ̃01 simpli-�ed model, m
χ̃±1 = 2 m

χ̃01 ,m
χ̃01 < 400 GeV

>1040 95 27 AAD 14E ATLS ℓ± ℓ± (ℓ∓) + jets, g̃ → qq′ χ̃±1 ,
χ̃±1 → W (∗)± χ̃02, χ̃02 →Z(∗) χ̃01 simpli�ed model,m

χ̃01 < 520 GeV
>1200 95 27 AAD 14E ATLS ℓ± ℓ± (ℓ∓) + jets, g̃ →qq′ χ̃±1 /χ̃02, χ̃±1 → ℓ± ν χ̃01,

χ̃02 → ℓ± ℓ∓ (ν ν) χ̃01 simpli-�ed model
>1050 95 28 CHATRCHYAN14H CMS same-sign ℓ± ℓ±, g̃ → t t χ̃01simpli�ed model, massless χ̃01
> 900 95 29 CHATRCHYAN14H CMS same-sign ℓ± ℓ±, g̃ → qq′ χ̃±1 ,

χ̃±1 → W± χ̃01 simpli�edmodel, m
χ̃±1 = 0.5 mg̃ , mass-less χ̃01
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>1050 95 30 CHATRCHYAN14H CMS same-sign ℓ± ℓ±, g̃ → b t χ̃±1 ,

χ̃±1 → W± χ̃01 simpli�edmodel, m
χ̃±1 = 300 GeV, m

χ̃01= 50 GeV
> 900 95 31 CHATRCHYAN14H same-sign ℓ± ℓ±, g̃ → t b s sim-pli�ed model, 6R1AAD 15BG sear
hed in 20.3 fb−1 of pp 
ollisions at √

s = 8 TeV for events withjets, missing ET , and two opposite-sign same 
avor isolated leptons featuring eithera kinemati
 edge, or a peak at the Z -boson mass, in the invariant mass spe
trum.No eviden
e for a statisti
ally signi�
ant ex
ess over the expe
ted SM ba
kgroundsare observed and 95% C.L. ex
lusion limits are derived in a GGM simpli�ed model ofgluino pair produ
tion where the gluino de
ays into quarks, a Z -boson, and a masslessgravitino LSP, see Fig. 12. Also, limits are set in simpli�ed models with slepton/sneutrinointermediate states, see Fig. 13.2AAD 15BV summarized and extended ATLAS sear
hes for gluinos and �rst- and se
ond-generation squarks in �nal states 
ontaining jets and missing transverse momentum,with or without leptons or b-jets in the √
s =8 TeV data set 
olle
ted in 2012. Thepaper reports the results of new interpretations and statisti
al 
ombinations of previouslypublished analyses, as well as new analyses. Ex
lusion limits at 95% C.L. are set on thegluino mass in several R-parity 
onserving models, leading to a generalized 
onstrainton gluino masses ex
eeding 1150 GeV for lightest supersymmetri
 parti
le masses below100 GeV. See their Figs. 10, 19, 20, 21, 23, 25, 26, 29{37.3AAD 15BX interpreted the results of a wide range of ATLAS dire
t sear
hes for super-symmetry, during the �rst run of the LHC using the √

s =7 TeV and √
s = 8 TeVdata set 
olle
ted in 2012, within the wider framework of the phenomenologi
al MSSM(pMSSM). The integrated luminosity was up to 20.3 fb−1. From an initial random sam-pling of 500 million pMSSM points, generated from the 19-parameter pMSSM, a totalof 310,327 model points with χ̃01 LSP were sele
ted ea
h of whi
h satis�es 
onstraintsfrom previous 
ollider sear
hes, pre
ision measurements, 
old dark matter energy den-sity measurements and dire
t dark matter sear
hes. The impa
t of the ATLAS Run 1sear
hes on this spa
e was presented, 
onsidering the fra
tion of model points surviving,after proje
tion into two-dimensional spa
es of sparti
le masses. Good 
omplementarityis observed between di�erent ATLAS analyses, with almost all showing regions of uniquesensitivity. ATLAS sear
hes have good sensitivity at LSP mass below 800 GeV.4AAD 15CA sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for events with one ormore photons, hadroni
 jets or b-jets and 6ET . No signi�
ant ex
ess above the StandardModel expe
tations is observed. Limits are set on gluino masses in the general gauge-mediated SUSY breaking model (GGM), for bino-like or higgsino-bino admixtures NLSP,see Fig. 8, 10, 115KHACHATRYAN 15AF sear
hed in 19.5 fb−1 of pp 
ollisions at √s = 8 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the transverse mass variableMT2 to dis
riminate between signal and ba
kground pro
esses. No signi�
ant ex
essabove the Standard Model expe
tations is observed. Limits are set on the gluino massin simpli�ed models where the de
ay g̃ → qq χ̃01 takes pla
e with a bran
hing ratio of100%, see Fig. 13(a), or where the de
ay g̃ → bb χ̃01 takes pla
e with a bran
hing ratioof 100%, see Fig. 13(b), or where the de
ay g̃ → t t χ̃01 takes pla
e with a bran
hingratio of 100%, see Fig. 13(
). See also Table 5. Ex
lusions in the CMSSM, assumingtanβ = 30, A0 = −2 max(m0, m1/2) and µ > 0, are also presented, see Fig. 15.6KHACHATRYAN 15I sear
hed in 19.5 fb−1 of pp 
ollisions at √

s = 8 TeV for eventsin whi
h b-jets and four W -bosons are produ
ed. Five individual sear
h 
hannels are
ombined (fully hadroni
, single lepton, same-sign dilepton, opposite-sign dilepton, mul-tilepton). No signi�
ant ex
ess above the Standard Model expe
tations is observed.Limits are set on the gluino mass in a simpli�ed model where the de
ay g̃ → t t χ̃01 takespla
e with a bran
hing ratio of 100%, see Fig. 5. Also a simpli�ed model with gluinosde
aying into on-shell top squarks is 
onsidered, see Fig. 6.7KHACHATRYAN 15X sear
hed in 19.3fb−1 of pp 
ollisions at √
s = 8 TeV for eventswith at least two energeti
 jets, at least one of whi
h is required to originate from ab quark, and signi�
ant 6ET , using the razor variables (MR) and R2) to dis
riminatebetween signal and ba
kground pro
esses. No signi�
ant ex
ess above the StandardModel expe
tations is observed. Limits are set on the gluino mass in simpli�ed modelswhere the de
ay g̃ → bb χ̃01 and the de
ay g̃ → t t χ̃01 take pla
e with bran
hing ratiosvarying between 0, 50 and 100%, see Figs. 13 and 14.8AAD 14AE sear
hed in 20.3 fb−1 of pp 
ollisions at √

s = 8 TeV for strongly pro-du
ed supersymmetri
 parti
les in events 
ontaining jets and large missing transversemomentum, and no ele
trons or muons. No ex
ess over the expe
ted SM ba
kgroundis observed. Ex
lusion limits are derived in simpli�ed models 
ontaining gluinos andsquarks, see Figures 5, 6 and 7. Limits are also derived in the mSUGRA/CMSSM withparameters tanβ = 30, A0 = −2 m0 and µ > 0, see their Fig. 8.9AAD 14AG sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for events 
ontainingone hadroni
ally de
aying τ -lepton, zero or one additional light leptons (ele
trons ormuons), jets and large missing transverse momentum. No ex
ess of events above theexpe
ted level of Standard Model ba
kground was found. Ex
lusion limits at 95% C.L.are set in several SUSY s
enarios. For an interpretation in the minimal GMSB model,see their Fig. 8. For an interpretation in the mSUGRA/CMSSM with parameters tanβ= 30, A0 = −2 m0 and µ > 0, see their Fig. 9. For an interpretation in the frameworkof natural Gauge Mediation, see Fig. 10. For an interpretation in the bRPV s
enario,see their Fig. 11.10AAD 14X sear
hed in 20.3 fb−1 of pp 
ollisions at √
s = 8 TeV for events with atleast four leptons (ele
trons, muons, taus) in the �nal state. No signi�
ant ex
ess abovethe Standard Model expe
tations is observed. Limits are set on the gluino mass in anR-parity violating simpli�ed model where the de
ay g̃ → qq χ̃01, with χ̃01 → ℓ± ℓ∓ ν,takes pla
e with a bran
hing ratio of 100%, see Fig. 8.11AAD 14X sear
hed in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV for events with at leastfour leptons (ele
trons, muons, taus) in the �nal state. No signi�
ant ex
ess above theStandard Model expe
tations is observed. Limits are set on the gluino mass in a generalgauge-mediation model (GGM) where the de
ay g̃ → qq χ̃01, with χ̃01 → ℓ± ℓ∓ G̃ ,takes pla
e with a bran
hing ratio of 100%, for two 
hoi
es of tanβ = 1.5 and 30, seeFig. 11. Also some 
onstraints on the higgsino mass parameter µ are dis
ussed.

12CHATRCHYAN 14AH sear
hed in 4.7 fb−1 of pp 
ollisions at √
s = 7 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the razor variables (MR andR2) to dis
riminate between signal and ba
kground pro
esses. No signi�
ant ex
essabove the Standard Model expe
tations is observed. Limits are set on sbottom massesin simpli�ed models where the de
ay g̃ → qq χ̃01 takes pla
e with a bran
hing ratio of100%, see Fig. 28. Ex
lusions in the CMSSM, assuming tanβ = 10, A0 = 0 and µ >0, are also presented, see Fig. 26.13CHATRCHYAN 14AH sear
hed in 4.7 fb−1 of pp 
ollisions at √
s = 7 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the razor variables (MR andR2) to dis
riminate between signal and ba
kground pro
esses. A se
ond analysis requiresat least one of the jets to be originating from a b-quark. No signi�
ant ex
ess above theStandard Model expe
tations is observed. Limits are set on sbottom masses in simpli�edmodels where the de
ay g̃ → bb χ̃01 takes pla
e with a bran
hing ratio of 100%, seeFigs. 28 and 29. Ex
lusions in the CMSSM, assuming tanβ = 10, A0 = 0 and µ > 0,are also presented, see Fig. 26.14CHATRCHYAN 14AH sear
hed in 4.7 fb−1 of pp 
ollisions at √
s = 7 TeV for eventswith at least two energeti
 jets and signi�
ant 6ET , using the razor variables (MR andR2) to dis
riminate between signal and ba
kground pro
esses. A se
ond analysis requiresat least one of the jets to be originating from a b-quark. No signi�
ant ex
ess above theStandard Model expe
tations is observed. Limits are set on sbottom masses in simpli�edmodels where the de
ay g̃ → t t χ̃01 takes pla
e with a bran
hing ratio of 100%, seeFigs. 28 and 29. Ex
lusions in the CMSSM, assuming tanβ = 10, A0 = 0 and µ >0,are also presented, see Fig. 26.15CHATRCHYAN 14I sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for events
ontaining multijets and large 6ET . No ex
ess over the expe
ted SM ba
kground isobserved. Ex
lusion limits are derived in simpli�ed models 
ontaining gluinos that de
ayvia g̃ → qq χ̃01 with a 100% bran
hing ratio, see Fig. 7b, or via g̃ → t t χ̃01 with a100% bran
hing ratio, see Fig. 7
, or via g̃ → qqW /Z χ̃01, see Fig. 7d.16CHATRCHYAN 14N sear
hed in 19.3 fb−1 of pp 
ollisions at √
s = 8 TeV for events
ontaining a single isolated ele
tron or muon and multiple jets, at least two of whi
hare identi�ed as originating from a b-quark. No signi�
ant ex
esses over the expe
tedSM ba
kgrounds are observed. The results are interpreted in three simpli�ed models ofgluino pair produ
tion with subsequent de
ay into virtual or on-shell top squarks, whereea
h of the top squarks de
ays in turn into a top quark and a χ̃01, see Fig. 4. The modelsdi�er in whi
h masses are allowed to vary.17CHATRCHYAN 14P sear
hed in 19.4 fb−1 of pp 
ollisions at √
s = 8 TeV for three-jet resonan
es produ
ed in the de
ay of a gluino in R-parity violating supersymmetri
models. No ex
ess over the expe
ted SM ba
kground is observed. Assuming a 100%bran
hing ratio for the gluino de
ay into three light-
avour jets, limits are set on the
ross se
tion of gluino pair produ
tion, see Fig. 7, and gluino masses below 650 GeV areex
luded at 95% C.L. Assuming a 100% bran
hing ratio for the gluino de
aying to oneb-quark jet and two light-
avour jets, gluino masses between 200 GeV and 835 GeV areex
luded at 95% C L.18CHATRCHYAN 14R sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for eventswith at least three leptons (ele
trons, muons, taus) in the �nal state. No signi�
antex
ess above the Standard Model expe
tations is observed. Limits are set on the gluinomass in a slepton 
o-NLSP simpli�ed model (GMSB) where the de
ay g̃ → q ℓ± ℓ∓ G̃takes pla
e with a bran
hing ratio of 100%, see Fig. 8.19CHATRCHYAN 14R sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for eventswith at least three leptons (ele
trons, muons, taus) in the �nal state. No signi�
antex
ess above the Standard Model expe
tations is observed. Limits are set on the gluinomass in a simpli�ed model where the de
ay g̃ → t t χ̃01 takes pla
e with a bran
hingratio of 100%, see Fig. 11.20AAD 15AB sear
hed for the de
ay of neutral, weakly intera
ting, long-lived parti
les in20.3 fb−1 of pp 
ollisions at √s = 8 TeV. Signal events require at least two re
onstru
tedverti
es possibly originating from long-lived parti
les de
aying to jets in the inner tra
kingdete
tor and muon spe
trometer. No signi�
ant ex
ess of events over the expe
tedba
kground was found. Results were interpreted in Stealth SUSY ben
hmark modelswhere a pair of gluinos de
ay to long-lived singlinos, S̃, whi
h in turn ea
h de
ay to alow-mass gravitino and a pair of jets. The 95% 
on�den
e-level limits are set on the
ross se
tion × bran
hing ratio for the de
ay g̃ → S̃ g , as a fun
tion of the singlinoproper lifetime (
τ). See their Fig. 10(f)21AAD 15AI sear
hed in 20 fb−1 of pp 
ollisions at √s = 8 TeV for events 
ontaining atleast one isolated lepton (ele
tron or muon), jets, and large missing transverse momen-tum. No ex
ess of events above the expe
ted level of Standard Model ba
kground wasfound. Ex
lusion limits at 95% C.L. are set on the gluino mass in the CMSSM/mSUGRA,see Fig. 15, in the NUHMG, see Fig. 16, and in various simpli�ed models, see Figs.18{22.22AAD 15CB sear
hed for events 
ontaining at least one long-lived parti
le that de
ays ata signi�
ant distan
e from its produ
tion point (displa
ed vertex, DV) into two leptonsor into �ve or more 
harged parti
les in 20.3 fb−1 of pp 
ollisions at √s = 8 TeV. Thedilepton signature is 
hara
terised by DV formed from at least two lepton 
andidates.Four di�erent �nal states were 
onsidered for the multitrak signature, in whi
h the DVmust be a

ompanied by a high-transverse momentum muon or ele
tron 
andidate thatoriginates from the DV, jets or missing transverse momentum. No events were observedin any of the signal regions. Results were interpreted in SUSY s
enarios involving R-parityviolation, split supersymmetry, and gauge mediation. See their Fig. 12{20.23AAD 15X sear
hed in 20.3 fb−1 of pp 
ollisions at √

s = 8 TeV for events 
ontaininglarge number of jets, no requirements on missing transverse momentum and no isolatedele
trons or muons. The sensitivity of the sear
h is enhan
ed by 
onsidering the numberof b-tagged jets and the s
alar sum of masses of large-radius jets in an event. Noeviden
e was found for ex
esses above the expe
ted level of Standard Model ba
kground.Ex
lusion limits at 95% C.L. are set on the gluino mass assuming the gluino de
ays tovarious quark 
avors, and for various neutralino masses. See their Fig. 11{16.24KHACHATRYAN 15AD sear
hed in 19.4 fb−1 of pp 
ollisions at √s = 8 TeV for eventswith two opposite-sign same 
avor isolated leptons featuring either a kinemati
 edge,or a peak at the Z -boson mass, in the invariant mass spe
trum. No eviden
e for astatisti
ally signi�
ant ex
ess over the expe
ted SM ba
kgrounds is observed and 95%C.L. ex
lusion limits are derived in a simpli�ed model of gluino pair produ
tion wherethe gluino de
ays into quarks, a Z -boson, and a massless gravitino LSP, see Fig. 9.
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hes25KHACHATRYAN 15AZ sear
hed in 19.7 fb−1 of pp 
ollisions at √s = 8 TeV for eventswith either at least one photon, hadroni
 jets and 6ET (single photon 
hannel) or withat least two photons and at least one jet and using the razor variables. No signi�
antex
ess above the Standard Model expe
tations is observed. Limits are set on gluinomasses in the general gauge-mediated SUSY breaking model (GGM), for both a bino-likeand wino-like neutralino NLSP s
enario, see Fig. 8 and 9.26AAD 14AX sear
hed in 20.1 fb−1 of pp 
ollisions at√s = 8 TeV for the strong produ
tionof supersymmetri
 parti
les in events 
ontaining either zero or at last one high high-pTlepton, large missing transverse momentum, high jet multipli
ity and at least three jetsidenti�ed as originating from b-quarks. No ex
ess over the expe
ted SM ba
kground isobserved. Limits are derived in mSUGRA/CMSSM models with tanβ = 30, A0 = −2m0and µ > 0, see their Fig. 14. Also, ex
lusion limits in simpli�ed models 
ontaining gluinosand s
alar top and bottom quarks are set, see their Figures 12, 13.27AAD 14E sear
hed in 20.3 fb−1 of pp 
ollisions at √
s = 8 TeV for strongly produ
edsupersymmetri
 parti
les in events 
ontaining jets and two same-sign leptons or threeleptons. The sear
h also utilises jets originating from b-quarks, missing transverse mo-mentum and other variables. No ex
ess over the expe
ted SM ba
kground is observed.Ex
lusion limits are derived in simpli�ed models 
ontaining gluinos and squarks, see Fig-ures 5 and 6. In the g̃ → qq′ χ̃±1 , χ̃±1 → W (∗)± χ̃02, χ̃02 → Z(∗) χ̃01 simpli�edmodel, the following assumptions have been made: m
χ̃±1 = 0.5 m

χ̃01 + mg̃ , mχ̃02 =0.5 (m
χ̃01 + m

χ̃±1 ), mχ̃01 < 520 GeV. In the g̃ → qq′ χ̃±1 , χ̃±1 → ℓ± ν χ̃01 or g̃ →qq′ χ̃02, χ̃02 → ℓ± ℓ∓ (ν ν) χ̃01 simpli�ed model, the following assumptions have beenmade: m
χ̃±1 = m

χ̃02 = 0.5 (m
χ̃01 + mg̃ ), mχ̃01 < 660 GeV. Limits are also derived inthe mSUGRA/CMSSM, bRPV and GMSB models, see their Fig. 8.28CHATRCHYAN 14H sear
hed in 19.5 fb−1 of pp 
ollisions at √

s = 8 TeV for eventswith two isolated same-sign dileptons and jets in the �nal state. No signi�
ant ex
essabove the Standard Model expe
tations is observed. Limits are set on the gluino massin simpli�ed models where the de
ay g̃ → t t χ̃01 takes pla
e with a bran
hing ratio of100%, or where the de
ay g̃ → t̃ t, t̃ → t χ̃01 takes pla
e with a bran
hing ratio of100%, with varying mass of the χ̃01, or where the de
ay g̃ → b̃ b, b̃ → t χ̃±1 , χ̃±1 →W± χ̃01 takes pla
e with a bran
hing ratio of 100%, with varying mass of the χ̃±1 , seeFig. 5.29CHATRCHYAN 14H sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for eventswith two isolated same-sign dileptons and jets in the �nal state. No signi�
ant ex
essabove the Standard Model expe
tations is observed. Limits are set on the gluino massin simpli�ed models where the de
ay g̃ → qq′ χ̃±1 , χ̃±1 → W± χ̃01 takes pla
e with abran
hing ratio of 100%, with varying mass of the χ̃±1 and χ̃01, see Fig. 7.30CHATRCHYAN 14H sear
hed in 19.5 fb−1 of pp 
ollisions at √
s = 8 TeV for eventswith two isolated same-sign dileptons and jets in the �nal state. No signi�
ant ex
essabove the Standard Model expe
tations is observed. Limits are set on the gluino massin simpli�ed models where the de
ay g̃ → b t χ̃±1 , χ̃±1 → W± χ̃01 takes pla
e with abran
hing ratio of 100%, for two 
hoi
es of m

χ̃±1 and �xed m
χ̃01 , see Fig. 6.31CHATRCHYAN 14H sear
hed in 19.5 fb−1 of pp 
ollisions at √

s = 8 TeV for eventswith two isolated same-sign dileptons and jets in the �nal state. No signi�
ant ex
essabove the Standard Model expe
tations is observed. Limits are set on the gluino massin simpli�ed models where the R-parity violating de
ay g̃ → t b s takes pla
e with abran
hing ratio of 100%, see Fig. 8.Long-lived/light g̃ (Gluino) MASS LIMITLong-lived/light g̃ (Gluino) MASS LIMITLong-lived/light g̃ (Gluino) MASS LIMITLong-lived/light g̃ (Gluino) MASS LIMITLimits on light gluinos (mg̃ < 5 GeV), or gluinos whi
h leave the dete
tor beforede
aying.Some earlier papers are now obsolete and have been omitted. They were last listedin our PDG 14 edition: K. Olive, et al. (Parti
le Data Group), Chinese Physi
s C 38383838070001 (2014) (http://pdg.lbl.gov).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>1270 95 1 AAD 15AE ATLS g̃ R-hadron, generi
 R-hadronmodel
>1360 95 1 AAD 15AE ATLS g̃ de
aying to 300 GeV stablesleptons, LeptoSUSY model
>1115 95 2 AAD 15BMATLS g̃ R-hadron, stable
>1185 95 2 AAD 15BMATLS g̃ → (g /qq) χ̃01, lifetime 10ns, m

χ̃01 = 100 GeV
>1099 95 2 AAD 15BMATLS g̃ → (g /qq) χ̃01, lifetime 10ns, mg̃ − m

χ̃01 = 100 GeV
>1182 95 2 AAD 15BMATLS g̃ → t t χ̃01, lifetime 10 ns,m

χ̃01 = 100 GeV
>1157 95 2 AAD 15BMATLS g̃ → t t χ̃01, lifetime 10 ns,mg̃ − m

χ̃01 = 480 GeV
> 869 95 2 AAD 15BMATLS g̃ → (g /qq) χ̃01, lifetime 1ns, m

χ̃01 = 100 GeV
> 821 95 2 AAD 15BMATLS g̃ → (g /qq) χ̃01, lifetime1 ns, mg̃ − m

χ̃01 = 100GeV
> 836 95 2 AAD 15BMATLS g̃ → t t χ̃01, lifetime 1 ns,m

χ̃01 = 100 GeV
> 836 95 2 AAD 15BMATLS g̃ → t t χ̃01, lifetime 10 ns,mg̃ − m

χ̃01 = 480 GeV
>1000 95 3 KHACHATRY...15AK CMS g̃ R-hadrons, 10 µs< τ <1000s
> 880 95 3 KHACHATRY...15AK CMS g̃ R-hadrons, 1 µs< τ <1000 s

• • • We do not use the following data for averages, �ts, limits, et
. • • •
> 985 95 4 AAD 13AA ATLS g̃ , R-hadrons, generi
 intera
-tion model
> 832 95 5 AAD 13BC ATLS R-hadrons, g̃ → g /qq χ̃01,generi
 R-hadron model,lifetime between 10−5 and103 s, m

χ̃01 = 100 GeV
>1322 95 6 CHATRCHYAN13AB CMS long-lived g̃ forming R-hadrons, f = 0.1, 
loudintera
tion modelnone 200{341 95 7 AAD 12P ATLS long-lived g̃ → g χ̃01, mχ̃01 =100 GeV
> 640 95 8 CHATRCHYAN12AN CMS long-lived g̃ → g χ̃01
>1098 95 9 CHATRCHYAN12L CMS long-lived g̃ forming R-hadrons, f = 0.1
> 586 95 10 AAD 11K ATLS stable g̃
> 544 95 11 AAD 11P ATLS stable g̃ , GMSB s
enario,tanβ=5
> 370 95 12 KHACHATRY...11 CMS long lived g̃
> 398 95 13 KHACHATRY...11C CMS stable g̃1AAD 15AE sear
hed in 19.1 fb−1 of pp 
ollisions at √

s = 8 TeV for heavy long-lived
harged parti
les, measured through their spe
i�
 ionization energy loss in the ATLASpixel dete
tor or their time-of-
ight in the ALTAS muon system. In the absen
e of anex
ess of events above the expe
ted ba
kgrounds, limits are set R-hadrons in variouss
enarios, see Fig. 11. Limits are also set in LeptoSUSY models where the gluino de
aysto stable 300 GeV leptons, see Fig. 9.2AAD 15BM sear
hed in 18.4 fb−1 of pp 
ollisions at √
s = 8 TeV for stable andmetastable non-relativisti
 
harged parti
les through their anomalous spe
i�
 ionizationenergy loss in the ATLAS pixel dete
tor. In absen
e of an ex
ess of events above theexpe
ted ba
kgrounds, limits are set within a generi
 R-hadron model, on stable gluinoR-hadrons (see Table 5) and on metastable gluino R-hadrons de
aying to (g /qq) plusa light χ̃01 (see Fig. 7) and de
aying to t t plus a light χ̃01 (see Fig. 9).3KHACHATRYAN 15AK looked in a data set 
orresponding to 18.6 fb−1 of pp 
ollisionsat √s = 8 TeV, and a sear
h interval 
orresponding to 281 h of trigger lifetime, for long-lived parti
les that have stopped in the CMS dete
tor. No eviden
e for an ex
ess overthe expe
ted ba
kground in a 
loud intera
tion model is observed. Assuming the de
ayg̃ → g χ̃01 and lifetimes between 1 µs and 1000 s, limits are derived on g̃ produ
tion asa fun
tion of m

χ̃01 , see Figs. 4 and 6. The ex
lusions require that m
χ̃01 is kinemati
ally
onsistent with the minimum values of the jet energy thresholds used.4AAD 13AA sear
hed in 4.7 fb−1 of pp 
ollisions at √

s = 7 TeV for events 
ontaining
olored long-lived parti
les that hadronize forming R-hadrons. No signi�
ant ex
essabove the expe
ted ba
kground was found. Long-lived R-hadrons 
ontaining a g̃ areex
luded for masses up to 985 GeV at 95% C.L in a general intera
tion model. Also,limits independent of the fra
tion of R-hadrons that arrive 
harged in the muon systemwere derived, see Fig. 6.5AAD 13BC sear
hed in 5.0 fb−1 of pp 
ollisions at √s = 7 TeV and in 22.9 fb−1 of pp
ollisions at √s = 8 TeV for bottom squark R-hadrons that have 
ome to rest within theATLAS 
alorimeter and de
ay at some later time to hadroni
 jets and a neutralino. Inabsen
e of an ex
ess of events above the expe
ted ba
kgrounds, limits are set on gluinomasses for di�erent de
ays, lifetimes, and neutralino masses, see their Table 6 and Fig.10.6CHATRCHYAN 13AB looked in 5.0 fb−1 of pp 
ollisions at √
s = 7 TeV and in 18.8fb−1 of pp 
ollisions at √

s = 8 TeV for events with heavy stable parti
les, identi�edby their anomalous dE/dx in the tra
ker or additionally requiring that it be identi�ed asmuon in the muon 
hambers, from pair produ
tion of g̃ 's. No eviden
e for an ex
ess overthe expe
ted ba
kground is observed. Limits are derived for pair produ
tion of gluinos asa fun
tion of mass (see Fig. 8 and Table 5), depending on the fra
tion, f, of formation ofg̃−g (R-gluonball) states. The quoted limit is for f = 0.1, while for f = 0.5 it degradesto 1276 GeV. In the 
onservative s
enario where every hadroni
 intera
tion 
auses it tobe
ome neutral, the limit de
reases to 928 GeV for f = 0.1.7AAD 12P looked in 31 pb−1 of pp 
ollisions at √
s = 7 TeV for events with pairprodu
tion of long-lived gluinos. The hadronization of the gluinos leads to R-hadronswhi
h may stop inside the dete
tor and later de
ay via g̃ → g χ̃01 during gaps between theproton bun
hes. No signi�
ant ex
ess over the expe
ted ba
kground is observed. Froma 
ounting experiment, a limit at 95% C.L. on the 
ross se
tion as a fun
tion of mg̃ isderived for m

χ̃01 = 100 GeV, see Fig. 4. The limit is valid for lifetimes between 10−5and 103 se
onds and assumes the Generi
 matter intera
tion model for the produ
tion
ross se
tion.8CHATRCHYAN 12AN looked in 4.0 fb−1 of pp 
ollisions at √
s = 7 TeV for eventswith pair produ
tion of long-lived gluinos. The hadronization of the gluinos leads toR-hadrons whi
h may stop inside the dete
tor and later de
ay via g̃ → g χ̃01 duringgaps between the proton bun
hes. No signi�
ant ex
ess over the expe
ted ba
kgroundis observed. From a 
ounting experiment, a limit at 95% C.L. on the 
ross se
tion as afun
tion of mg̃ is derived, see Fig. 3. The mass limit is valid for lifetimes between 10−5and 103 se
onds, for what they 
all "the daughter gluon energy Eg >" 100 GeV andassuming the 
loud intera
tion model for R-hadrons. Supersedes KHACHATRYAN 11.9CHATRCHYAN 12L looked in 5.0 fb−1 of pp 
ollisions at √s = 7 TeV for events withheavy stable parti
les, identi�ed by their anomalous dE/dx in the tra
ker or additionallyrequiring that it be identi�ed as muon in the muon 
hambers, from pair produ
tion ofg̃ 's. No eviden
e for an ex
ess over the expe
ted ba
kground is observed. Limits arederived for pair produ
tion of gluinos as a fun
tion of mass (see Fig. 3), dependingon the fra
tion, f, of formation of g̃−g (R-glueball) states. The quoted limit is for f= 0.1, while for f = 0.5 it degrades to 1046 GeV. In the 
onservative s
enario whereevery hadroni
 intera
tion 
auses it to be
ome neutral, the limit de
reases to 928 GeVfor f=0.1. Supersedes KHACHATRYAN 11C.10AAD 11K looked in 34 pb−1 of pp 
ollisions at √

s = 7 TeV for events with heavystable parti
les, identi�ed by their anomalous dE/dx in the tra
ker or time of 
ight inthe tile 
alorimeter, from pair produ
tion of g̃ . No eviden
e for an ex
ess over the SMexpe
tation is observed. Limits are derived for pair produ
tion of gluinos as a fun
tionof mass (see Fig. 4), for a fra
tion, f = 10%, of formation of g̃ − g (R-gluonball). Ifinstead of a phase spa
e driven approa
h for the hadroni
 s
attering of the R-hadrons,
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hesa triple-Regge model or a bag-model is used, the limit degrades to 566 and 562 GeV,respe
tively.11AAD 11P looked in 37 pb−1 of pp 
ollisions at √
s = 7 TeV for events with heavystable parti
les, re
onstru
ted and identi�ed by their time of 
ight in the Muon System.There is no requirement on their observation in the tra
ker to in
rease the sensitivity to
ases where gluinos have a large fra
tion, f, of formation of neutral g̃ − g (R-gluonball).No eviden
e for an ex
ess over the SM expe
tation is observed. Limits are derived as afun
tion of mass (see Fig. 4), for f=0.1. For fra
tions f = 0.5 and 1.0 the limit degradesto 537 and 530 GeV, respe
tively.12KHACHATRYAN 11 looked in 10 pb−1 of pp 
ollisions at √s = 7 TeV for events withpair produ
tion of long-lived gluinos. The hadronization of the gluinos leads to R-hadronswhi
h may stop inside the dete
tor and later de
ay via g̃ → g χ̃01 during gaps betweenthe proton bun
hes. No signi�
ant ex
ess over the expe
ted ba
kground is observed.From a 
ounting experiment, a limit at 95% C.L. on the 
ross se
tion times bran
hingratio is derived for mg̃−mχ̃01 > 100 GeV, see their Fig. 2. Assuming 100% bran
hingratio, lifetimes between 75 ns and 3 × 105 s are ex
luded for mg̃ = 300 GeV. The g̃mass ex
lusion is obtained with the same assumptions for lifetimes between 10 µs and1000 s, but shows some dependen
e on the model for R-hadron intera
tions with matter,illustrated in Fig. 3. From a time-pro�le analysis, the mass ex
lusion is 382 GeV for alifetime of 10 µs under the same assumptions as above.13KHACHATRYAN 11C looked in 3.1 pb−1 of pp 
ollisions at √s = 7 TeV for events withheavy stable parti
les, identi�ed by their anomalous dE/dx in the tra
ker or additionallyrequiring that it be identi�ed as muon in the muon 
hambers, from pair produ
tion ofg̃ . No eviden
e for an ex
ess over the expe
ted ba
kground is observed. Limits arederived for pair produ
tion of gluinos as a fun
tion of mass (see Fig. 3), depending onthe fra
tion, f, of formation of g̃ − g (R-gluonball). The quoted limit is for f=0.1, whilefor f=0.5 it degrades to 357 GeV. In the 
onservative s
enario where every hadroni
intera
tion 
auses it to be
ome neutral, the limit de
reases to 311 GeV for f=0.1.LIGHT G̃ (Gravitino) MASS LIMITS FROM COLLIDER EXPERIMENTSLIGHT G̃ (Gravitino) MASS LIMITS FROM COLLIDER EXPERIMENTSLIGHT G̃ (Gravitino) MASS LIMITS FROM COLLIDER EXPERIMENTSLIGHT G̃ (Gravitino) MASS LIMITS FROM COLLIDER EXPERIMENTSThe following are bounds on light ( ≪ 1 eV) gravitino indire
tly inferred from its
oupling to matter suppressed by the gravitino de
ay 
onstant.Unless otherwise stated, all limits assume that other supersymmetri
 parti
les besidesthe gravitino are too heavy to be produ
ed. The gravitino is assumed to be undete
tedand to give rise to a missing energy (6E) signature.Some earlier papers are now obsolete and have been omitted. They were last listedin our PDG 14 edition: K. Olive, et al. (Parti
le Data Group), Chinese Physi
s C 38383838070001 (2014) (http://pdg.lbl.gov).VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
> 3.5 × 10−4 95 1 AAD 15BH ATLS jet + 6ET , pp → (q̃ / g̃ )G̃ ,mq̃ = mg̃ = 500 GeV
> 3 × 10−4 95 1 AAD 15BH ATLS jet + 6ET , pp → (q̃ / g̃ )G̃ ,mq̃ = mg̃ = 1000 GeV
> 2 × 10−4 95 1 AAD 15BH ATLS jet + 6ET , pp → (q̃ / g̃ )G̃ ,mq̃ = mg̃ = 1500 GeV
> 1.09× 10−5 95 2 ABDALLAH 05B DLPH e+ e− → G̃ G̃ γ

> 1.35× 10−5 95 3 ACHARD 04E L3 e+ e− → G̃ G̃ γ

> 1.3 × 10−5 4 HEISTER 03C ALEP e+ e− → G̃ G̃ γ

>11.7 × 10−6 95 5 ACOSTA 02H CDF pp → G̃ G̃ γ

> 8.7 × 10−6 95 6 ABBIENDI,G 00D OPAL e+ e− → G̃ G̃ γ1AAD 15BH sear
hed in 20.3 fb−1 of pp 
ollisions at√s = 8 TeV for asso
iated produ
tionof a light gravitino and a squark or gluino. The squark (gluino) is assumed to de
ayex
lusively to a quark (gluon) and a gravitino. No eviden
e was found for an ex
essabove the expe
ted level of Standard Model ba
kground and 95% C.L. lower limits wereset on the gravitino mass as a fun
tion of the squark/gluino mass, both in the 
ase ofdegenerate and non-degenerate squark/gluino masses, see Figs. 14 and 15.2ABDALLAH 05B use data from √
s = 180{208 GeV. They look for events with a singlephoton + 6E �nal states from whi
h a 
ross se
tion limit of σ < 0.18 pb at 208 GeV isobtained, allowing a limit on the mass to be set. Supersedes the results of ABREU 00Z.3ACHARD 04E use data from √

s = 189{209 GeV. They look for events with a singlephoton + 6E �nal states from whi
h a limit on the Gravitino mass is set 
orrespondingto √
F > 238 GeV. Supersedes the results of ACCIARRI 99R.4HEISTER 03C use the data from √

s = 189{209 GeV to sear
h for γ 6ET �nal states.5ACOSTA 02H looked in 87 pb−1 of pp 
ollisions at √
s=1.8 TeV for events with ahigh-ET photon and 6ET . They 
ompared the data with a GMSB model where the �nalstate 
ould arise from qq → G̃ G̃ γ. Sin
e the 
ross se
tion for this pro
ess s
ales as1/∣∣F∣∣4, a limit at 95% CL is derived on ∣∣F∣∣1/2 > 221 GeV. A model independent limitfor the above topology is also given in the paper.6ABBIENDI,G 00D sear
hes for γ 6E �nal states from √s=189 GeV.Supersymmetry Mis
ellaneous ResultsSupersymmetry Mis
ellaneous ResultsSupersymmetry Mis
ellaneous ResultsSupersymmetry Mis
ellaneous ResultsResults that do not appear under other headings or that make nonminimal assumptions.Some earlier papers are now obsolete and have been omitted. They were last listedin our PDG 14 edition: K. Olive, et al. (Parti
le Data Group), Chinese Physi
s C 38383838070001 (2014) (http://pdg.lbl.gov).VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAD 13P ATLS dark γ, hidden valley2 AALTONEN 12AB CDF hidden-valley Higgsnone 100{185 95 3 AAD 11AA ATLS s
alar gluons4 CHATRCHYAN11E CMS µµ resonan
es5 ABAZOV 10N D0 γD , hidden valley

1AAD 13P sear
hed in 5 fb−1 of pp 
ollisions at √s = 7 TeV for single lepton-jets withat least four muons; pairs of lepton-jets, ea
h with two or more muons; and pairs oflepton-jets with two or more ele
trons. All of these 
ould be signatures of Hidden Valleysupersymmetri
 models. No statisti
ally signi�
ant deviations from the Standard Modelexpe
tations are found. 95% C.L. limits are pla
ed on the produ
tion 
ross se
tion timesbran
hing ratio of dark photons for several parameter sets of a Hidden Valley model.2AALTONEN 12AB looked in 5.1 fb−1 of pp 
ollisions at √s = 1.96 TeV for anomalousprodu
tion of multiple low-energy leptons in asso
iation with a W or Z boson. Su
hevents may o

ur in hidden valley models in whi
h a supersymmetri
 Higgs boson isprodu
ed in asso
iation with a W or Z boson, with H → χ̃01 χ̃01 pair and with the χ̃01further de
aying into a dark photon (γD ) and the unobservable lightest SUSY parti
leof the hidden se
tor. As the γD is expe
ted to be light, it may de
ay into a lepton pair.No signi�
ant ex
ess over the SM expe
tation is observed and a limit at 95% C.L. isset on the 
ross se
tion for a ben
hmark model of supersymmetri
 hidden-valley Higgsprodu
tion.3AAD 11AA looked in 34 pb−1 of pp 
ollisions at √
s = 7 TeV for events with ≥ 4jets originating from pair produ
tion of s
alar gluons, ea
h de
aying to two gluons. Notwo-jet resonan
es are observed over the SM ba
kground. Limits are derived on the 
rossse
tion times bran
hing ratio (see Fig. 3). Assuming 100% bran
hing ratio for the de
ayto two gluons, the quoted ex
lusion range is obtained, ex
ept for a 5 GeV mass windowaround 140 GeV.4CHATRCHYAN 11E looked in 35 pb−1 of pp 
ollisions at √s = 7 TeV for events with
ollimated µ pairs (leptoni
 jets) from the de
ay of hidden se
tor states. No eviden
e fornew resonan
e produ
tion is found. Limits are derived and 
ompared to various SUSYmodels (see Fig. 4) where the LSP, either the χ̃01 or a q̃, de
ays to dark se
tor parti
les.5ABAZOV 10N looked in 5.8 fb−1 of pp 
ollisions at √

s = 1.96 TeV for events fromhidden valley models in whi
h a χ̃01 de
ays into a dark photon, γD , and the unobservablelightest SUSY parti
le of the hidden se
tor. As the γD is expe
ted to be light, it mayde
ay into a tightly 
ollimated lepton pair, 
alled lepton jet. They sear
hed for eventswith 6ET and two isolated lepton jets observable by an opposite 
harged lepton pair e e,e µ or µµ. No signi�
ant ex
ess over the SM expe
tation is observed, and a limit at 95%C.L. on the 
ross se
tion times bran
hing ratio is derived, see their Table I. They alsoexamined the invariant mass of the lepton jets for a narrow resonan
e, see their Fig. 4,but found no eviden
e for a signal.REFERENCES FOR Supersymmetri
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BREAKING: IMPLICATIONS OF THE H0

Updated October 2015 by R.S. Chivukula (Michigan State
University), M. Narain (Brown University), and J. Womersley
(STFC, Rutherford Appleton Laboratory).

1. Introduction and Phenomenology

In theories of dynamical electroweak symmetry breaking,

the electroweak interactions are broken to electromagnetism by

the vacuum expectation value of a composite operator, typically

a fermion bilinear. In these theories, the longitudinal compo-

nents of the massive weak bosons are identified with composite

Nambu-Goldstone bosons arising from dynamical symmetry

breaking in a strongly-coupled extension of the standard model.

Viable theories of dynamical electroweak symmetry breaking

must also explain (or at least accommodate) the presence of an

additional composite scalar state to be identified with the H0

scalar boson [1,2] – a state unlike any other observed to date.

Theories of dynamical electroweak symmetry breaking can

be classified by the nature of the composite singlet state to

be associated with the H0, and the corresponding dimensional

scales f , the analog of the pion decay-constant in QCD, and Λ,

the scale of the underlying strong dynamics.1 Of particular im-

portance is the ratio v/f , where v2 = 1/(
√

2GF ) ≈ (246 GeV)2,

since this ratio measures the expected size of the deviations of

the couplings of a composite Higgs boson from those expected in

the standard model. The basic possibilities, and the additional

states that they predict, are described below.

1.1 Technicolor, v/f ≃ 1, Λ ≃ 1 TeV:

Technicolor models [8–10] incorporate a new asymptoti-

cally free gauge theory (“technnicolor”) and additional massless

fermions (“technifermions” transforming under a vectorial rep-

resentation of the gauge group). The global chiral symmetry

of the fermions is spontaneously broken by the formation of a

technifermion condensate, just as the approximate chiral sym-

metry in QCD is broken down to isospin by the formation

of a quark condensate. The SU(2)W × U(1)Y interactions are

embedded in the global technifermion chiral symmetries in such

a way that the only unbroken gauge symmetry after chiral

symmetry breaking is U(1)em.2 These theories naturally pro-

vide the Nambu-Goldstone bosons “eaten” by the W and Z

boson. There would also typically be additional heavy states

(e.g. vector mesons, analogous to the ρ and ω mesons in QCD)

with TeV masses [14,15], and the WW and ZZ scattering

amplitudes would be expected to be strong at energies of order

1 TeV.

1 In a strongly interacting theory “Naive Dimensional Analy-

sis” [3,4] implies that, in the absence of fine-tuning, Λ ≃ g∗f

where g∗ ≃ 4π is the typical size of a strong coupling in the low-

energy theory [5,6]. This estimate is modified in the presence

of multiple flavors or colors [7].
2 For a review of technicolor models, see [11–13].
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There are various possibilities for the scalar H0 in tech-

nicolor models, as described below.3 In all of these cases,

however, to the extent that the H0 has couplings consistent

with those of the standard model, these theories are very highly

constrained.

a) H0 as a singlet scalar resonance: The strongly-interac-

ting fermions which make up the Nambu-Goldstone bosons

eaten by the weak bosons would naturally be expected to

also form an isoscalar neutral bound state, analogous to

the σ particle expected in pion-scattering in QCD [16].

However, in this case, there is no symmetry protecting the

mass of such a particle – which would therefore generically

be of order the energy scale of the underlying strong

dynamics Λ. In the simplest theories of this kind – those

with a global SU(2)L × SU(2)R chiral symmetry which is

spontaneously broken to SU(2)V – the natural dynamical

scale Λ would be of order a TeV, resulting in a particle too

heavy and broad to be identified with the H0. The scale

of the underlying interactions could naturally be smaller

than 1 TeV if the global symmetries of the theory are

larger than SU(2)L × SU(2)R, but in this case there would

be additional (pseudo-)Nambu-Goldstone bosons (more on

this below). A theory of this kind would only be viable,

therefore, if some choice of the parameters of the high energy

theory could give rise to sufficiently light state without the

appearance of additional particles that should have already

been observed. Furthermore, while a particle with these

quantum numbers could have Higgs-like couplings to any

electrically neutral spin-zero state made of quarks, leptons,

or gauge-bosons, there is no symmetry insuring that the

coupling strengths of such a composite singlet scalar state

would be precisely the same as those of the standard model

Higgs [17].

b) H0 as a dilaton: It is possible that the underlying strong

dynamics is approximately scale-invariant, as inspired by

theories of “walking technicolor” [18–22], and that both the

scale and electroweak symmetries are spontaneously broken

at the TeV energy scale [23]. In this case, due to the

spontaneous breaking of approximate scale invariance, one

might expect a corresponding (pseudo-) Nambu-Goldstone

boson [19] with a mass less than a TeV, the dilaton.4

A dilaton couples to the trace of the energy momentum

tensor, which leads to a similar pattern of two-body cou-

plings as the couplings of the standard model Higgs bo-

son [28–30]. Scale-invariance is a space-time symmetry,

however, and is unrelated to the global symmetries that

we can identify with the electroweak group. Therefore the

3 In these models, the self-coupling of the H0 scalar is not

related to its mass, as it is in the SM – though there are currently

no experimental constraints on this coupling.
4 Even in this case, however, a dilaton associated with elec-

troweak symmetry breaking will likely not generically be as light

as the H0 [24–27].

decay-constants associated with the breaking of the scale

and electroweak symmetries will not, in general, be the

same.5 In other words, if there are no large anomalous di-

mensions associated with the W - and Z-bosons or the top-

or bottom-quarks, the ratios of the couplings of the dilaton

to these particles would be the same as the ratios of the

same couplings for the standard model Higgs boson, but the

overall strength of the dilaton couplings would be expected

to be different [31,32]. Furthermore, the couplings of the

dilaton to gluon- and photon-pairs can be related to the

beta functions of the corresponding gauge interactions in

the underlying high-energy theory, and will not in general

yield couplings with the exactly the same strengths as the

standard model [33,34].

c) H0 as a singlet Pseudo-Nambu-Goldstone Boson: If

the global symmetries of the technicolor theory are larger

than SU(2)L×SU(2)R, there can be extra singlet (pseudo-)

Nambu-Goldstone bosons which could be identified with

the H0. In this case, however, the coupling strength of the

singlet state to WW and ZZ pairs would be comparable to

the couplings to gluon and photon pairs, and these would all

arise from loop-level couplings in the underlying technicolor

theory [35]. This pattern of couplings is not supported

by the data.

1.2 The Higgs doublet as a pseudo-Nambu-Goldstone

Boson, v/f < 1, Λ > 1 TeV:

In technicolor models, the symmetry-breaking properties

of the underlying strong dynamics necessarily breaks the elec-

troweak gauge symmetries. An alternative possibility is that

the underlying strong dynamics itself does not break the elec-

troweak interactions, and that the entire quartet of bosons in

the Higgs doublet (including the state associated with the H0)

are composite (pseudo-) Nambu-Goldstone particles [36,37],

In this case, the underlying dynamics can occur at energies

larger than 1 TeV and additional interactions with the top-

quark mass generating sector (and possibly with additional

weakly-coupled gauge bosons) cause the vacuum energy to be

minimized when the composite Higgs doublet gains a vacuum

expectation value [38,39]. In these theories, the couplings of

the remaining singlet scalar state would naturally be equal to

that of the standard model Higgs boson up to corrections of

order (v/f)2 and, therefore, constraints on the size of deviations

of the H0 couplings from that of the standard model Higgs give

rise to lower bounds on the scales f and Λ.6

5 If both the electroweak symmetry and the approximate scale

symmetry are broken only by electroweak doublet condensate(s),

then the decay-constants for scale and electroweak symmetry

breaking may be approximately equal – differing only by terms

formally proportional to the amount of explicit scale-symmetry

breaking.
6 In these models v/f is an adjustable parameter, and in the

limit v/f → 1 they reduce, essentially, to the technicolor models

discussed in the previous subsection. Our discussion here is
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The electroweak gauge interactions, as well as the inter-

actions responsible for the top-quark mass, explicitly break

the chiral symmetries of the composite Higgs model, and lead

generically to sizable corrections to the mass-squared of the

Higgs-doublet – the so-called “Little Hierarchy Problem” [40].

“Little Higgs” theories [41–44] are examples of composite Higgs

models in which the (collective) symmetry-breaking structure

is selected so as to suppress these contributions to the Higgs

mass-squared.

Composite Higgs models typically require a larger global

symmetry of the underlying theory, and hence additional rela-

tively light (compared to Λ) scalar particles, extra electroweak

vector bosons (e.g. an additional SU(2) × U(1) gauge group),

and vector-like partners of the top-quark of charge +2/3 and

possibly also +5/3 [45]. Finally, in addition to these states,

one would expect the underlying dynamics to yield additional

scalar and vector resonances with masses of order Λ. If the

theory respects a custodial symmetry [46], the couplings of

these additional states to the electroweak and Higgs boson will

be related – and, for example, one might expect a charged vec-

tor resonance to have similar branching ratios to WZ and WH .

Different composite Higgs models utilize different mechanisms

for arranging for the hierarchy of scales v < f and arranging

for a scalar Higgs self-coupling small enough to produce an H0

of mass of order 125 GeV, for a review see [48].

1.3 Top-Condensate, Top-Color, Top-Seesaw and related

theories, v/f < 1, Λ > 1 TeV:

A final alternative is to consider a strongly interacting the-

ory with a high (compared to a TeV) underlying dynamical

scale that would naturally break the electroweak interactions,

but whose strength is adjusted (“fine-tuned”) to produce elec-

troweak symmetry breaking at 1 TeV. This alternative is possi-

ble if the electroweak (quantum) phase transition is continuous

(second order) in the strength of the strong dynamics [47].

If the fine tuning can be achieved, the underlying strong in-

teractions will produce a light composite Higgs bound state

with couplings equal to that of the standard model Higgs bo-

son up to corrections of order (1 TeV/Λ)2. As in theories in

which electroweak symmetry breaking occurs through vacuum

alignment, therefore, constraints on the size of deviations of

the H0 couplings from that of the standard model Higgs give

rise to lower bounds on the scale Λ. Formally, in the limit

Λ → ∞ (a limit which requires arbitrarily fine adjustment of

the strength of the high-energy interactions), these theories are

equivalent to a theory with a fundamental Higgs boson – and

the fine adjustment of the coupling strength is a manifestation

of the hierarchy problem of theories with a fundamental scalar

particle.

In many of these theories the top-quark itself interacts

strongly (at high energies), potentially through an extended

consistent with that given there, since we expect corrections to

the SM Higgs couplings to be large for v/f ≃ 1.

color gauge sector [49–53]. In these theories, top-quark con-

densation (or the condensation of an admixture of the top with

additional vector-like quarks) is responsible for electroweak

symmetry breaking, and the H0 is identified with a bound state

involving the third generation of quarks. These theories typi-

cally include an extra set of massive color-octet vector bosons

(top-gluons), and an extra U(1) interaction (giving rise to a

top-color Z′) which couple preferentially to the third generation

and whose masses define the scale Λ of the underlying physics.

1.4 Flavor

In addition to the electroweak symmetry breaking dynamics

described above, which gives rise to the masses of the W and

Z particles, additional interactions must be introduced to pro-

duce the masses of the standard model fermions. Two general

avenues have been suggested for these new interactions. In one

case, e.g. “extended technicolor” (ETC) theories [54,55], the

gauge interactions in the underlying strongly interacting the-

ory are extended to incorporate flavor. This extended gauge

symmetry is broken down (possibly sequentially, at several

different mass scales) to the residual strongly-interacting in-

teraction responsible for electroweak symmetry breaking. The

massive gauge-bosons corresponding to the broken symme-

tries then mediate interactions between mass operators for the

quarks/leptons and the corresponding bilinears of the strongly-

interacting fermions, giving rise to the masses of the ordinary

fermions after electroweak symmetry breaking. An an alter-

native proposal, “partial compositeness” [56], the additional

interactions giving rise to mixing between the ordinary quarks

and leptons and massive composite fermions in the strongly-

interacting underlying theory. Theories incorporating partial

compositeness include additional vector-like partners of the or-

dinary quarks and leptons, typically with masses of order a TeV

or less.

In both cases, the effects of these flavor interactions on

the electroweak properties of the ordinary quarks and leptons

are likely to be most pronounced in the third generation of

fermions.7 The additional particles present, especially the ad-

ditional scalars, often couple more strongly to heavier fermions.

Moreover, since the flavor interactions must give rise to

quark mixing, we expect that a generic theory of this kind

could give rise to large flavor-changing neutral-currents [55].

In ETC theories, these constraints are typically somewhat

relaxed if the theory incorporates approximate generational

flavor symmetries [57], the theory “walks” [18–22], or if

Λ > 1 TeV [58]. In theories of partial compositeness, the masses

of the ordinary fermions depend on the scaling-dimension of the

operators corresponding to the composite fermions with which

they mix. This leads to a new mechanism for generating the

7 Indeed, from this point of view, the vector-like partners

of the top-quark in top-seesaw and little Higgs models can be

viewed as incorporating partial compositeness to explain the ori-

gin of the top quark’s large mass.
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mass-hierarchy of the observed quarks and leptons that, poten-

tially, ameliorates flavor-changing neutral current problems and

can provide new contributions to the composite Higgs potential

which allows for v/f < 1 [59–63].

Alternatively, one can assume that the underlying fla-

vor dynamics respects flavor symmetries (“minimal” [64,65] or

“next-to-minimal” [66] flavor violation) which suppress flavor-

changing neutral currents in the two light generations. Addi-

tional considerations apply when extending these considerations

to potential explanation of neutrino masses (see, for example,

[67,68]) .

Since the underlying high-energy dynamics in these theories

are strongly coupled, there are no reliable calculation techniques

that can be applied to analyze their properties. Instead, most

phenomenological studies depend on the construction of a “low-

energy” effective theory describing additional scalar, fermion,

or vector boson degrees of freedom, which incorporates the

relevant symmetries and, when available, dynamical principles.

In some cases, motivated by the AdS/CFT correspondence [69],

the strongly-interacting theories described above have been

investigated by analyzing a dual compactified five-dimensional

gauge theory. In these cases, the AdS/CFT “dictionary” is

used to map the features of the underlying strongly coupled

high-energy dynamics onto the low-energy weakly coupled dual

theory [70].

More recently, progress has been made in investigating

strongly-coupled models using lattice gauge theory [71–73].

These calculations offer the prospect of establishing which

strongly coupled theories of electroweak symmetry breaking

have a particle with properties consistent with those observed

for the H0 – and for establishing concrete predictions for these

theories at the LHC [74].

2. Experimental Searches

As discussed above, the extent to which the couplings

of the H0 conform to the expectations for a standard model

Higgs boson constrains the viability of each of these models.

Measurements of the H0 couplings, and their interpretation in

terms of effective field theory, are summarized in the H0 review

in this volume. In what follows, we will focus on searches for

the additional particles that might be expected to accompany

the singlet scalar: extra scalars, fermions, and vector bosons.

In some cases, detailed model-specific searches have been made

for the particles described above (though generally not yet

taking account of the demonstrated existence of the H0 boson).

In most cases, however, generic searches (e.g. for extra

W ′ or Z ′ particles, extra scalars in the context of multi-Higgs

models, or for fourth-generation quarks) are quoted that can be

used – when appropriately translated – to derive bounds on a

specific model of interest.

The mass scale of the new particles implied by the inter-

pretations of the low mass of H0 discussed above, and existing

studies from the Tevatron and lower-energy colliders, suggests

that only the Large Hadron Collider has any real sensitivity.

A number of analyses already carried out by ATLAS and CMS

use relevant final states and might have been expected to ob-

serve a deviation from standard model expectations – in no

case so far has any such deviation been reported. The detailed

implications of these searches in various model frameworks are

described below.

Except where otherwise noted, all limits in this section

are quoted at a confidence level of 95%. The ATLAS searches

have analyzed 20.3 fb−1 of data recorded at the LHC with√
s=8 TeV, and the CMS analyses are based on the data

collected at
√

s = 8 TeV in 2012 with an integrated luminosity

of 19.7 fb−1.

2.1 Searches for Z ′ or W ′ Bosons

Massive vector bosons or particles with similar decay chan-

nels would be expected to arise in Little Higgs theories, in

theories of Technicolor, or models involving a dilaton, adjusted

to produce a light Higgs boson, consistent with the observed H0.

These particles would be expected to decay to pairs of vector

bosons, to third generation quarks, or to leptons. The generic

searches for W ′ and Z ′ vector bosons listed below can, there-

fore, be used to constrain models incorporating a composite

Higgs-like boson.

Z ′ → ℓℓ:

ATLAS [76] and CMS [77] have both searched for Z ′ pro-

duction with Z ′ → ee or µµ. The main backgrounds to these

analyses arise from Drell-Yan, tt̄, and diboson production and

are estimated using Monte Carlo simulation, with the cross

sections scaled by next-to-next-to-leading-order k-factors. In-

strumental backgrounds from QCD multijet and W+jet events

are estimated using control data samples. No deviation from

the standard model prediction is seen in the dielectron and

dimuon invariant mass spectra, by either the ATLAS or the

CMS analysis, and lower limits on possible Z ′ boson masses

are set. The dielectron channel has higher sensitivity due to

the superior mass resolution compared to the dimuon channel.

A Z ′
SSM with couplings equal to the standard model Z (a

“sequential standard model” Z ′) and a mass below 2.79 TeV

is excluded by ATLAS, while CMS sets a lower mass limit of

2.90 TeV. The ATLAS analysis rules out various E6-motivated

bosons (Z ′
ψ, Z ′

χ) and Z∗ with masses lower than 2.51, 2.62 and

2.85 TeV, while a Z ′
ψ with a mass below 2.57 TeV is excluded

by CMS. The experiments also place limits on the parameters

of extra dimension models and in the case of ATLAS on the

parameters of a minimal walking technicolor model [18–22],

consistent with a 125 GeV Higgs boson.

In addition, both experiments have also searched for Z ′ de-

caying to a ditau final state [78,79]. While less sensitive than

dielectron or dimuon final states, an excess in τ+τ− could have

interesting implications for models in which lepton universality

is not a necessary requirement and enhanced couplings to the

third generation are allowed. This analysis leads to lower limits

on the mass of a Z ′
SSM of 2.0 and 1.3 TeV from ATLAS and

CMS respectively.
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Z ′ → qq:

The ability to relatively cleanly select tt pairs at the LHC

together with the existence of enhanced couplings to the third

generation in many models makes it worthwhile to search for

new particles decaying in this channel. Both ATLAS [80] and

CMS [81] have carried out searches for new particles decaying

into tt. ATLAS focuses on the lepton plus jets final state, where

the top quark pair decays as tt → WbWb with one W boson

decaying leptonically and the other hadronically; CMS uses

final states where both, one or neither W decays leptonically

and then combines the results. The tt̄ invariant mass spectrum

is analyzed for any excess, and no evidence for any resonance

is seen. ATLAS excludes a narrow (Γ/m = 1.2%) leptophobic

top-color Z ′ boson with a mass below 1.8 TeV; upper limits are

set on the cross section times branching ratio for a broad color

octet resonance with Γ/m = 15% decaying to tt which range

from 4.8 pb for m = 0.4 TeV to 0.09 pb for m = 3.0 TeV. CMS

sets limits on a narrow (Γ/m = 1.2%) Z ′ boson decaying to tt

of 2.4 TeV and on a wide resonance (10% width) of 2.8 TeV. In

the Randall-Sundrum model, KK gravitons (gKK) with masses

below 2.2 TeV are excluded by ATLAS and (for a different set

of model parameters) below 2.7 TeV by CMS.

Both ATLAS [82] and CMS [83] have also searched for reso-

nances decaying into qq, qg or gg using the dijet invariant mass

spectrum. Model-independent upper limits on cross sections

are set; ATLAS excludes color-octet scalars below 2.72 TeV, W ′

bosons below 2.45 TeV and chiral W ∗ bosons below 1.75 TeV.

CMS is able to exclude W’ bosons below 1.9 TeV or between

2.0 and 2.2 TeV; Z’ bosons below 1.7 TeV; and gKK gravitons

below 1.6 TeV. Searches are also carried out for wide reso-

nances, assuming Γ/m up to 30%, and exclude axigluons and

colorons with mass below 3.6 TeV, and color-octet scalars with

mass below 2.5 TeV.

W ′ → ℓν:

Both LHC experiments have also searched for massive

charged vector bosons. ATLAS [85] searched for a heavy W ′

decaying to eν or µν and find no excess over the standard

model expectation. A sequential standard model W ′ (assuming

zero branching ratio to WZ) with mass less than 3.24 TeV

is excluded, and excited chiral bosons W ∗ excluded up to

3.21 TeV.

CMS [86] has carried out a complementary search in the

τν final state. As noted above, such searches place interesting

limits on models with enhanced couplings to the third genera-

tion. No excess is observed and limits between 2.0 and 2.7 TeV

are set on the mass of a W ′ decaying preferentially to the

third generation; a W ′ with universal fermion couplings is also

excluded for masses less than 2.7 TeV.

W ′ → tb:

Heavy new gauge bosons can couple to left-handed fermions

like the W boson or to right-handed fermions. W ′ bosons that

couple only to right-handed fermions may not have leptonic

decay modes, depending on the mass of the right-handed

neutrino. For these W ′ bosons, the tb decay mode is especially

important because it is the hadronic decay mode with the best

signal-to-background.

ATLAS has searched for W ′ bosons in the tb final state

both for leptonic [87] and hadronic [88] decays of the top. No

significant deviations from the standard model are seen in either

analysis and limits are set on the W ′ → tb cross section times

branching ratio and on the W ′ effective couplings. W ′ bosons

with purely left-handed (right-handed) couplings to fermions

are excluded for masses below 1.70 (1.92) TeV.

2.2 Searches for Resonances decaying to Vector Bosons

and/or Higgs Bosons

X → WW, WZ, ZZ:

Both experiments have used the data collected at
√

s =

8 TeV to search for resonances decaying to pairs of bosons.

ATLAS [89] and CMS [90] have both looked for a resonant

state (such as a W ′) decaying to WZ in the fully-leptonic

channel, ℓνℓ′ℓ′ (where ℓ, ℓ′ = e, µ). The WZ invariant mass

distribution reconstructed from the observed lepton momenta

missing transverse energy. The backgrounds arise mainly from

standard model WZ, ZZ and tt + W/Z production. No signif-

icant deviation from the standard model prediction is observed

by either experiment. A W ′ with mass less than 1.55 (1.52) TeV

is excluded by CMS (ATLAS); ATLAS also sets limits on the

production cross section for heavy vector triplet particles, and

CMS sets limits on the production of low-scale technimesons

ρTC from the reconstructed WZ mass spectrum and cross

section.

ATLAS [91,92] and CMS [93] have also searched for narrow

resonances decaying to WW , WZ or ZZ in ℓνjj and ℓℓjj final

states (where one boson decays leptonically and the other to

jets). No deviation from the standard model is seen by either

experiment; resonance masses below 1.59 TeV for an extended

gauge model W ′ are excluded by ATLAS. CMS interprets their

results in terms of Randall-Sundrum gKK production but also

presents model-independent cross section limits that can be

used to constrain other models.

Searches have also been conducted in fully hadronic final

states. ATLAS [94] and CMS [95] have searched for massive

resonance in dijet systems with one or both jets identified as

a W or a Z boson using jet-substructure techniques. ATLAS

observes a small excess (less than three standard deviations)

around 2 TeV in the WZ channel but otherwise no deviations

from the standard model are seen. Limits are set by both ex-

periments on the production cross section times branching ratio

for new heavy W ′ decaying to WZ and for gKK gravitons de-

caying to WW or ZZ. CMS also sets limits on the production

of particles decaying to qW and qZ.

X → W/Z + H0 and X → H0H0:

With the existence and decay properties of the Higgs boson

established, and the significant datasets now available, it is
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possible to use searches for anomalous production of the Higgs

as a potential signature for new physics. ATLAS [96] and

CMS [97,98] have both searched in the data collected at
√

s =

8 TeV for new particles decaying to a vector boson plus

a Higgs boson, where the vector boson decays leptonically

(ATLAS) or hadronically (CMS) and the Higgs boson to bb

(both experiments), WW or τ+τ− (CMS). No deviation from

the standard model is seen in any of these final states and limits

can be placed on the allowed production cross section times

branching ratio for resonances between 0.8 and 2.5 TeV, on the

parameters of a Minimal Walking Technicolor Model and on a

heavy vector triplet model.

Both experiments [99,100] have also searched for resonant

production of Higgs boson pairs X → H0H0 with H0 → bb.

No signal is observed and limits are placed on the possible

production cross section for any new resonance.

Y → W/Z + X with X → jj:

ATLAS has searched for a dijet resonance [101] with an

invariant mass in the range 130− 300 GeV, produced in associ-

ation with a W or a Z boson. The analysis used 20.3 fb−1 of

data recorded at
√

s = 8 TeV. The W or Z boson is required

to decay leptonically (ℓ = e, µ). No significant deviation from

the standard model prediction is observed and limits are set

on the production cross section times branching ratio for a

hypothetical technipion produced in association with a W or Z

boson from the decay of a technirho particle in the context of

Low Scale Technicolor models.

2.3 Vector-like third generation quarks

Vector-like quarks (VLQ) have non-chiral couplings to W

bosons, i.e. their left- and right-handed components couple

in the same way. They therefore have vectorial couplings to

W bosons. Vector-like quarks arise in Little Higgs theories,

top-coloron-models, and theories of a composite Higgs boson

with partial compositeness. At the LHC, VLQs can be pair

produced, via the dominant gluon-gluon fusion. VLQs can also

be produced singly by their electroweak effective couplings to

a weak boson and a standrad model quark. In the following

the notation T quark refers to a vector-like quark with charge

2/3 and the notation B quark refers to a vector-like quark

with charge −1/3. T quarks can decay to bW , tZ, or tH0.

Weak isospin singlets are expected to decay to all three final

states with (asymptotic) branching fractions of 50%, 25%,

25%, respectively. Weak isospin doublets are expected to decay

exclusively to tZ and to tH0 [102]. Analogously, B quarks

can decay to tW , bZ, or bH0.

Searches for T quarks that decay to W , Z and H0 bosons

T → bW :

CMS has searched for pair production of heavy T quarks

that decay exclusively to bW [103]. The analysis selects

events with exactly one charged lepton, assuming that the W

boson from the second T quark decays hadronically. Under

this hypothesis, a 2-constraint kinematic fit can be performed

to reconstruct the mass of the T quark. The two-dimensional

distribution of reconstructed mass vs ST is used to test for

the signal. ST is the scalar sum of the missing pT and the

transverse momenta of the lepton and the leading four jets. At

times the hadronically-decaying W boson is produced with a

large Lorentz boost, leading to the W decay products merged

into a wide single jet also known as a fat jet. Algorithms such

as jet pruning [104] are used to resolve the substructure of the

fat jets from the decays of the heavy particles. If the mass of

the boosted jet is compatible with the W-boson mass, then this

W boson candidate jet used in the kinematic reconstruction of

the T quark. No excess over standard model backgrounds is

observed. This analysis, when combined with the search in the

fully hadronic final state [105] excludes new quarks that decay

100% to bW for masses below 890 GeV [106].

An analogous search has been carried out by ATLAS [109].

It uses the lepton+jets final state with an isolated electron or

muon and at least four jets, at least one of which must be tagged

as a b-jet. The selection is optimized for T quark masses above

about 400 GeV and requires reconstruction of hadronically

decaying W boson, including those with a high boost leading to

merged decay products, and large angular separation between

the W bosons and the b-jets originating from the decay of

the heavy T quark. The analysis focuses on the reconstructed

heavy T quark mass from the hadronic W candidate and a

b-jet. No significant excess of events above standard model

expectation is observed. For BR(T → bW ) = 1, T quark

masses lower than 765 GeV are excluded.

T → tH0:

ATLAS has performed a search for TT production with

T → tH0 [109]. Given the dominant decay mode H0 → bb,

these events are characterized by a large number of jets, many of

which are b-jets. Thus the event selection requires one isolated

electron or muon and at least five jets, two of which must be

tagged as b-jets. The data are classified according to their jet-

multiplicity (five and six-or-more), b-jet multiplicity (2, 3, and

≥4) and the invariant mass of the two b-tagged jets with lowest

∆R between the two b-tagged jets (for ≥ six jet events). The

distribution of HT , the scalar sum of the lepton and jet pT s and

the missing ET , for each category is used as the discriminant

for the final signal and background separation. No excess of

events is found. Weak isospin doublet T quarks are excluded

below 855 GeV for BR(T → tH0) = 1. The CMS search for

TT production, with T → tH0 decays have been performed

in both lepton+jets, multilepton and all hadronic final states.

The lepton+jets analysis [110] emphasizes the presence of large

number of b-tagged jets, and combines with other kinematic

variables in a Boosted Decision Tree (BDT) for enhancing signal

to background discrimination. The multilepton analysis [110]

optimized for the presence of b-jets and the large hadronic

activity. For BR(T → Wb) = 1, the combined lepton+jets

and multilepton analyses lead to a lower limit on T quark
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masses of 706 GeV. A search for T → tH0 in all hadronic

decays [111], optimized for a high mass T quark, and based

on identifying boosted top quark jets has been carried out by

CMS. This search aims to resolve sub-jets within the fat jet

arising from boosted top quark decays, including b-tagging of

the sub-jets. A likelihood discriminator is defined based on

the distributions of HT , and the invariant mass of the two

b-jets in the events for signal and background. No excess above

background expectations is observed. Assuming 100% BR for

T → tH0, this analysis leads to a lower limit of 745 GeV on the

mass of the T quark.

A CMS search for T → tH0 with H0 → γγ decays has been

performed [112]. To identify the Higgs boson produced in

the decay of the heavy T quark, and the subsequent H0 → γγ

decay, the analysis focuses on identification of two photons in

events with one or more high pT lepton+jets or events with no

leptons and large hadronic activity. A search for a resonance

in the invariant mass distribution of the two photons in events

with large hadronic activity defined by the HT variable shows

no excess above the prediction from standard model processes.

The analysis results in exclusion of T quark masses below

540 GeV.

T → tZ:

A targeted search by CMS for T quarks that decay exclu-

sively to tZ based on an integrated luminosity of 1.1 fb−1 from

pp collisions at
√

s = 7 TeV [107]. Selected events must have

three isolated charged leptons, two of which must be consis-

tent with a leptonic Z-boson decay. No significant excess was

observed. T quark masses below 485 GeV are excluded. The

CMS analysis [110] with combined searches in lepton+jets,

dilepton and multilepton final states yields a lower limit on the

mass of the T of 782 GeV. A complementary search has been

carried out by ATLAS for new heavy quarks decaying into a

Z boson and a third generation quark [113], with T → tZ.

Selected events contain a high transverse momentum Z boson

that decays leptonically, together with two b-jets, which is

modified to require at least on b-tagged jet, for events with

additional leptons. No significant excess of events above the

standard model expectation is observed. For the weak-isospin

singlet scenario, a T quark with mass lower than 655 GeV is

excluded, while for a particular weak-isospin doublet scenario,

a T quark with mass lower than 735 GeV is excluded.

The ATLAS experiment has studied the electroweak pro-

duction of single T quarks, which is accompanied by a b-jet and

a light jet [113]. The initial event selection for this search is

very similar to that of TT production with T → tZ decays,

and for both the dilepton and trilepton signatures, it requires

the presence of an additional energetic jet in the forward region

(2.5 < |η| < 4.5), a characteristic signature of single heavy

quark production. An upper limit of 190 fb is obtained for the

process σ(pp → Tbq)×B(T → tZ) with a heavy T quark mass

at 700 GeV. For a specific composite Higgs model [114], the

WTb vertex is parameterized by λT , which is associated with

the Yukawa coupling in the composite sector and the degree

of compositeness of the quarks in the 3rd generation. With

the current dataset unfortunately the search is not sensitive to

λT < 1.5 nor to any values of VTb < 1.

Same-Sign dilepton analyses:

Pair-production of T or B quarks with their antiparticles

can result in events with like-sign leptons, for example if

the decay T → tH → bWW+W− is present, followed by

leptonic decays of two same-sign W bosons. ATLAS and CMS

have searched for this final state. The ATLAS search [121]

requires two leptons with the same electric charge, at least

two jets of which at least one must be tagged as a b-jet,

and missing pT . ATLAS quotes exclusions of some possible

branching fraction combinations depending on the mass of

the new quarks. T quarks that are electroweak singlets are

excluded below 590 GeV (assuming branching fractions to the

W , Z, and H0 decay modes arising from a singlet model). For

the same-sign lepton signature, the sensitivity is largest for T

quarks that decay exclusively to tH0.

Combination T → bW/tZ/tH0:

The limits set by ATLAS searches in lepton+jets, dileptons

with same-sign charge, and final states with Z boson have been

combined and the results obtained for various combinations

of branching fractions for T quark decays to bW , tH0 and

tZ are shown in Fig. 1. The combined analysis excludes T

quarks that exclusively decay to bW/tH0 with masses below

765/950 GeV [109], and sets lower T quarks mass limits

that range from 715 to 950 GeV for all possible values of the

branching fractions to the three decay modes.

An inclusive search by CMS targeted at heavy T quarks

decaying to any combination of bW , tZ, or tH0 is described

in Ref. [110]. Selected events have at least one isolated

charged lepton. Events are categorized according to number

and flavour of the leptons, the number of jets, and the pres-

ence of hadronic vector boson and top quark decays that are

merged into a single jet. The use of jet substructure to identify

hadronic decays significantly increases the acceptance for high

T quark masses. No excess above standard model backgrounds

is observed. Limits on the pair production cross section of the

new quarks are set, combining all event categories, for all com-

binations of branching fractions into the three final states. For

T quarks that exclusively decay to bW/tZ/tH0, masses below

700/782/706 GeV are excluded. Electroweak singlet vector-like

T quarks which decay 50% to bW , 25% to tZ, and 25% to tH0

are excluded for masses below 696 GeV ( Fig. 2 top panel).

This analysis was the first from CMS to obtain limits on the

mass of the T quark for all possible values of the branching frac-

tions into the three different final states bW, tZ and tH [110].

A combination [106] of the leptonic inclusive analysis with

the targeted T → tH0 decays to all-hadronic final state, and

T → Wb decays with all-hadronic and single-lepton final states

with emphasis on bW mass reconstruction, leads to a combined

exclusion of T quarks between 790 and 890 GeV and is shown
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Figure 1: Observed limits on the mass of the
T quark in the plane of BR(T → tH0) versus
BR(T → bW ) from all ATLAS searches for
TT production [109]. Top panel: summary
of the most restrictive observed limit on the
mass. Contour lines are provided to guide the
eye. Bottom panel: Exclusion limits are drawn
sequentially for each of the analyses and overlaid
(rather than combined). The circle and star
symbols denote the default branching ratios for
the weak-isospin singlet and doublet cases.

in Fig. 2 (bottom panel). From the combination analyses, any

T quark that exclusively decays to bW/tZ/tH is required to

have masses above 890/830/840 GeV [106].

Searches B quarks that decay to W , Z and H0 bosons

ATLAS and CMS have performed searches for pair produc-

tion of heavy B quarks which subsequently decay to Wt, bZ or

bH0. The searches have been carried out in final states with

single leptons, di-leptons (with same charge or opposite charge),

multileptons, as well as in fully hadronic final states.

B → WtX :

Search for B → tW has been performed by the ATLAS

experiment [116] using lepton+jets events. This analysis relies

on a discriminant obtained via the BDT technique. The BDT

uses kinematic and topological variables such as the jet and b-jet

multiplicity, HT , the angular separation between the lepton and

the leading b-tagged jet or between lepton and hadronic W/Z
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Figure 2: Top panel: upper limit on the
T quark production cross section for branching
fractions into bW , tH0, tZ of 50%, 25%, 25% ob-
tained from the leptonic inclusive analysis [110].
Bottom panel: Branching fraction triangle with
observed limits for the T quark mass from the
CMS combination analysis [106].

candidates, the transverse mass of the leptonically decaying W

boson candidate, pT of various objects including the leptonically

decaying W boson, the number of hadronic W/Z candidates,

etc. For BR(B → tW ) = 1, the lower limit on the mass of

the B quark is obtained to be 810 GeV. For the weak-isospin

singlet scenario, a B quark with mass lower than 640 GeV is

excluded. A similar search by CMS [117] selects events with

one lepton and four or more jets, with at least one b-tagged jet,

significant missing pT , and further categorizes them based on

the number of jets tagged as arising from the decay of boosted

W , Z or H0 bosons. The ST distributions of the events in

different categories show no excess of events above the expected
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background and yield a lower limit on the B quark mass of

732 GeV for BR(B → Wt) = 1.

B → bZX :

A search by CMS [115] for the pair-production of a heavy

B quark and its antiparticle, one of which decays to bZ selects

events with a Z-boson decay to e+e− or µ+µ− and a jet iden-

tified as originating from a b quark. The signal from B → bZ

decays would appear as a local enhancement in the bZ mass

distribution. No such enhancement is found and B quarks that

decay 100% into bZ are excluded below 700 GeV. This analysis

also sets upper limits on the branching fraction for B → bZ

decays of 30-100% in the B quark mass range 450-700 GeV.

A complementary search has been carried out by ATLAS for

new heavy quarks decaying into a Z boson and a b-quark [113].

Selected dilepton events contain a high transverse momentum

Z boson that decays leptonically, together with two b-jets. If

the dilepton events have an extra lepton in addition to those

from the Z boson, then only one b-jet is required. No signifi-

cant excess of events above the standard model expectation is

observed, and mass limits are set depending on the assumed

branching ratios, see Fig. 3. In a weak-isospin singlet scenario,

a B quark with mass lower than 645 GeV is excluded, while

for a particular weak-isospin doublet scenario, a B quark with

mass lower than 725 GeV is excluded.

ATLAS has searched for the electroweak production of single

B quarks, which is accompanied by a b-jet and a light jet [113].

The dilepton selection for double B production is modified for

the single B production study by requesting the presence of an

additional energetic jet in the forward region. An upper limit

of 200 fb is obtained for the process σ(pp → Bbq)×B(B → Zb)

with a heavy B quark mass at 700 GeV. This search indicates

that the electroweak mixing parameter XBb below 0.5 is neither

expected or observed to be excluded for any values of B quark

mass.

Combination B → tW/bZ/bH0:

The ATLAS experiment has combined the various analyses

targeted for specific decay modes to obtain the most sensitive

limits on the pair production of B quarks [109]. The analyses

using single lepton events, same sign charge dilepton events,

events with opposite sign dilepton events, and multilepton

events are combined to obtain lower limits on the mass of the

B quark in the plane of BR(B → Wt) vs BR(B → bH). The

searches are optimized for 100% branching fractions and hence

are most sensitive at large BR(B → Wt), and also at large

BR(B → bH0). For all possible values of branching ratios in

the three decay modes tW , bZ, or bH0, the lower limits on the

B quark mass is found to be between 575 GeV and 813 GeV

and as shown in Fig. 3.

A similar combination of CMS analyses [115] in the final

states with single leptons, di-leptons (with same charge or

opposite charge), multileptons, as well as fully hadronic decays
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Figure 3: Observed limits on the mass of the
T quark in the plane of BR(B → bH0) versus
BR(B → tW ) from all ATLAS searches for
BB production [109]. Top panel: summary
of the most restrictive observed limit on the
mass. Contour lines are provided to guide the
eye. Bottom panel: Exclusion limits are drawn
sequentially for each of the analyses and overlaid
(rather than combined).

lead to results shown in Fig. 4. The discriminating variables

used in these analyses are ST , HT and the invariant mass

of the dileptons and the b-jets. As different topologies target

multiple decay modes, with various degree of sensitivity to the

B quark mass, the best results for the Wt decays is obtained

from the combination of lepton+jets, same-sign dilepton and

multilepton events, while for the bZ mode a combination of

opposite-sign dilepton and multilepton events leads to the best

sensitivity for the mass limits. For the bH0 decays, the all-

hadronic events give the dominant contribution to the mass

limit. For B quarks that decay exclusively into tW masses

below 880 GeV are excluded, while for 100% decay branching

fraction of B to bH0, B quarks up to 900 GeV are excluded.

The exclusion limits for all combinations of branching fractions

lie between 740 GeV to 900 GeV, and are shown in Fig. 4,

together with the cross section limit plotted for B quark decays

to the bH0 mode.
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2.4 A charge +5/3 top-partner quark

In models of dynamical electroweak symmetry breaking, the

same interactions which give rise to the mass of the top-quark

can give unacceptably large corrections to the branching ratio of

the Z boson to bb̄ [75]. These corrections can be substantially

reduced, however, in theories with an extended “custodial

symmetry” [45]. This symmetry requires the existence of a

charge +5/3 vector-like partner of the top quark.

Both experiments have performed a search for a heavy

top vector-like quark T5/3, with exotic charge 5/3, such as

that proposed in Refs. [118,119]. The analyses assume pair-

production of T5/3 with T5/3 decaying with 100% branching

fraction to to tW . The analysis is based on searching for

same-sign leptons, from the two W bosons from one of the

T5/3. Requiring same-sign leptons eliminates most of the stan-

dard model background processes, leaving those with smaller

cross sections: tt, W, ttZ, WWW , and same-sign WW . In

addition backgrounds from instrumental effects due to charge

misidentification are considered. The CMS search also utilizes

jet substructure techniques to identify boosted T5/3 topolo-

gies. These searches restrict the T5/3 mass to be higher than

800 GeV [120]. The pair-production limits obtained by ATLAS

correspond to a lower mass limit on T5/3 of 840 GeV [116]

The single T5/3 production cross section depends on the

coupling constant λ of the tWT5/3 vertex. ATLAS has per-

formed an analysis of same-sign dileptons which includes both

the single and pair production. This analysis leads to a lower

limit on the mass of the T5/3 of 750 GeV for both values of

λ = 0.5 and 1.0 [121].

2.5 Colorons and Colored Scalars

These particles are associated with top-condensate and top-

seesaw models, which involve an enlarged color gauge group.

The new particles decay to dijets, tt̄, and bb̄.

Direct searches for colorons, color-octect scalars and other

heavy objects decaying to qq, qg, qq, or gg has been performed

using LHC data from pp collisions at
√

s =7 and 8 TeV. Based

on the analysis of dijet events from a data sample corresponding

to a luminosity of 19.6 fb−1, the CMS experiment excludes pair

production of colorons with mass between 1.20 − 3.60 and

3.90−4.08 TeV at 95% C.L. as shown in Fig. 5 [83]. A search

for pair-produced colorons based on an integrated luminosity of

5.0 fb−1 at
√

s = 7 TeV by CMS excludes colorons with masses

between 250 GeV and 740 GeV, assuming colorons decay 100%

into qq [122]. This analysis is based on events with at least

four jets and two dijet combinations with similar dijet mass.

Color-octet scalars (s8) with masses between 1.20 − 2.79 TeV

are excluded by CMS (Fig. 5 [83]) , and below 2.7 TeV by

ATLAS [82].

These studies have now been extended to take advantage

of the increased center-of-mass energy during Run 2 of the

LHC. Using the 40pb−1 of data collected at
√

s =13 TeV,

searches for narrow resonances have been performed by CMS.

An analysis of the dijet invariant mass spectrum formed using

wide jets [123], separated by ∆ηjj ≤ 1.3, leads to limits on

new particles decaying to parton pairs (qq, qg, gg). Specific

exclusions on the masses of colorons and color-octet scalars are

obtained and shown in Fig. 5.

3. Conclusions

As the above analyses have demonstrated, there is already

substantial sensitivity to possible new particles predicted to

accompany the H0 in dynamical frameworks of electroweak

symmetry breaking. No hints of any deviations from the stan-

dard model have been observed, and limits typically at the scale

of a few hundred GeV to 1 TeV are set.

Given the need to better understand the H0 and to deter-

mine in detail how it behaves, we expect that such analyses will

be a major theme of Run 2 the LHC, and we look forward to
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increased sensitivity as a result of the higher luminosity at the

increased centre of mass energy of collisions.
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al Ele
troweak Symmetry Breakingin Models of Dynami
al Ele
troweak Symmetry BreakingVALUE (GeV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>2400 95 1 KHACHATRY...16E CMS top-
olor Z ′2 AAD 15AB ATLS h → πv πv
>1800 95 3 AAD 15AO ATLS top-
olor Z ′4 AAD 15BB ATLS pp → ρT /a1T → W hor Z h5 AAD 15Q ATLS h → πv πv6 AAIJ 15AN LHCB h → πv πv
>1140 95 7 KHACHATRY...15C CMS ρT → W Z8 KHACHATRY...15W CMS H → πv πvnone 200{700,750{890 95 9 AAD 14AT ATLS pp → ωT → Z γnone 275{960 95 9 AAD 14AT ATLS pp → aT → W γ10 AAD 14V ATLS 
olor singlet te
hni-ve
tor
> 703 11 AAD 13AN ATLS pp → aT → W γ

> 494 12 AAD 13AN ATLS pp → ωT → Z γnone 500{1740 95 13 AAD 13AQ ATLS top-
olor Z ′
>1300 95 14 CHATRCHYAN13AP CMS top-
olor Z ′
>2100 95 13 CHATRCHYAN13BMCMS top-
olor Z ′15 BAAK 12 RVUE QCD-like te
hni
olornone 167{687 95 16 CHATRCHYAN12AF CMS ρT → W Z
> 805 95 13 AALTONEN 11AD CDF top-
olor Z ′
> 805 95 13 AALTONEN 11AE CDF top-
olor Z ′17 CHIVUKULA 11 RVUE top-Higgs18 CHIVUKULA 11A RVUE te
hini-π19 AALTONEN 10I CDF pp → ρT /ωT → W πTnone 208{408 95 20 ABAZOV 10A D0 ρT → W Z21 ABAZOV 07I D0 pp → ρT /ωT → W πT
> 280 95 22 ABULENCIA 05A CDF ρT → e+ e−, µ+µ−23 CHEKANOV 02B ZEUS 
olor o
tet te
hni-π
> 207 95 24 ABAZOV 01B D0 ρT → e+ e−none 90{206.7 95 25 ABDALLAH 01 DLPH e+ e− → ρT26 AFFOLDER 00F CDF 
olor-singlet te
hni-ρ,

ρT → W πT , 2πT
> 600 95 27 AFFOLDER 00K CDF 
olor-o
tet te
hni-ρ,

ρT8 → 2πLQnone 350{440 95 28 ABE 99F CDF 
olor-o
tet te
hni-ρ,
ρT8 → bb29 ABE 99N CDF te
hni-ω, ωT → γ bbnone 260{480 95 30 ABE 97G CDF 
olor-o
tet te
hni-ρ,
ρT8 → 2jets1KHACHATRYAN 16E sear
h for top-
olor Z ′ de
aying to t t . The quoted limit is for�Z ′/mZ ′ = 0.012. Also ex
lude mZ ′ < 2.9 TeV for wider top
olor Z ′ with �Z ′/mZ ′= 0.1.2AAD 15AB sear
h for long-lived hidden valley πv parti
les whi
h are produ
ed in pairsby the de
ay of a s
alar boson. πv is assumed to de
ay into dijets. See their Fig. 10 forthe limit on σB.3AAD 15AO sear
h for top-
olor Z ′ de
aying to t t . The quoted limit is for �Z ′/mZ ′ =0.012.4AAD 15BB sear
h for minimal walking te
hni
olor (MWT) isotriplet ve
tor and axial-ve
tor resonan
es de
aying to W h or Z h. See their Fig. 3 for the ex
lusion limit in theMWT parameter spa
e.5AAD 15Q sear
h for long-lived hidden valley πv parti
les whi
h are produ
ed in pairs bythe de
ay of s
alar boson. πv is assumed to de
ay into dijets. See their Fig. 5 and Fig.6 for the limit on σB.6AAIJ 15AN sear
h for long-lived hidden valley πv parti
les whi
h are produ
ed in pairsby the de
ay of s
alar boson with a mass of 120GeV. πv is assumed to de
ay into dijets.See their Fig. 4 for the limit on σB.7KHACHATRYAN 15C sear
h for a ve
tor te
hni-resonan
e de
aying to W Z . The limitassumes MπT = (3/4) MρT − 25 GeV. See their Fig.3 for the limit in MπT −MρTplane of the low s
ale te
hni
olor model.8KHACHATRYAN 15W sear
h for long-lived hidden valley πv parti
les whi
h are produ
edin pairs in the de
ay of heavy higgs boson H. πv is assumed to de
ay into ℓ+ ℓ−. Seetheir Fig. 7 and Fig. 8 for the limits on σB.9AAD 14AT sear
h for te
hni-ω and te
hni-a resonan
es de
aying to V γ with V = W (→

ℓν) or Z(→ ℓ+ ℓ−).10AAD 14V sear
h for ve
tor te
hni-resonan
es de
aying into ele
tron or muon pairs in pp
ollisions at √s = 8 TeV. See their table IX for ex
lusion limits with various assumptions.11AAD 13AN sear
h for ve
tor te
hni-resonan
e aT de
aying into W γ.12AAD 13AN sear
h for ve
tor te
hni-resonan
e ωT de
aying into Z γ.13 Sear
h for top-
olor Z ′ de
aying to t t . The quoted limit is for �Z ′/mZ ′ = 0.012.14CHATRCHYAN 13AP sear
h for top-
olor leptophobi
 Z ′ de
aying to t t . The quotedlimit is for �Z ′/mZ ′ = 0.012.15BAAK 12 give ele
troweak oblique parameter 
onstraints on the QCD-like te
hni
olormodels. See their Fig. 28.16CHATRCHYAN 12AF sear
h for a ve
tor te
hni-resonan
e de
aying to W Z . The limitassumes MπT= (3/4) MρT− 25 GeV. See their Fig. 3 for the limit in MπT−M ρTplane of the low s
ale te
hni
olor model.

17Using the LHC limit on the Higgs boson produ
tion 
ross se
tion, CHIVUKULA 11 obtaina limit on the top-Higgs mass > 300 GeV at 95% CL assuming 150 GeV top-pion mass.18Using the LHC limit on the Higgs boson produ
tion 
ross se
tion, CHIVUKULA 11Aobtain a limit on the te
hinipion mass ruling out the region 110 GeV < mP < 2mt .Existen
e of 
olor te
hni-fermions, top-
olor me
hanism, and NTC ≥ 3 are assumed.19AALTONEN 10I sear
h for the ve
tor te
hni-resonan
es (ρT , ωT ) de
aying into W πTwith W → ℓν and πT → bb, b
 , or bu. See their Fig. 3 for the ex
lusion plot inMπT −MρT plane.20ABAZOV 10A sear
h for a ve
tor te
hni-resonan
e de
aying intoW Z . The limit assumesMρT < MπT + MW .21ABAZOV 07I sear
h for the ve
tor te
hni-resonan
es (ρT , ωT ) de
aying intoW πT withW → e ν and πT → bb or b
 . See their Fig. 2 for the ex
lusion plot in MπT −MρTplane.22ABULENCIA 05A sear
h for resonan
es de
aying to ele
tron or muon pairs in pp 
olli-sions. at √s = 1.96 TeV. The limit assumes Te
hni
olor-s
ale mass parameters MV =MA = 500 GeV.23CHEKANOV 02B sear
h for 
olor o
tet te
hni-π P de
aying into dijets in e p 
ollisions.See their Fig. 5 for the limit on σ(e p → e PX )·B(P → 2j).24ABAZOV 01B sear
hes for ve
tor te
hni-resonan
es (ρT ,ωT ) de
aying to e+ e−. Thelimit assumes MρT
= MωT

<MπT
+MW .25The limit is independent of the πT mass. See their Fig. 9 and Fig. 10 for the ex
lusion plotin the MρT

{MπT
plane. ABDALLAH 01 limit on the te
hni-pion mass is MπT

> 79.8GeV for ND=2, assuming its point-like 
oupling to gauge bosons.26AFFOLDER 00F sear
h for ρT de
aying into W πT or πT πT with W → ℓν and πT →bb, b
. See Fig. 1 in the above Note on \Dynami
al Ele
troweak Symmetry Breaking"for the ex
lusion plot in the MρT
−MπT

plane.27AFFOLDER 00K sear
h for the ρT8 de
aying into πLQπLQ with πLQ → bν. For
πLQ → 
 ν, the limit is MρT 8 >510 GeV. See their Fig. 2 and Fig. 3 for the ex
lusionplot in the MρT 8−MπLQ

plane.28ABE 99F sear
h for a new parti
le X de
aying into bb in pp 
ollisions at E
m= 1.8 TeV.See Fig. 7 in the above Note on \Dynami
al Ele
troweak Symmetry Breaking" for theupper limit on σ(pp → X )×B(X → bb). ABE 99F also ex
lude top gluons of width�=0.3M in the mass interval 280 <M< 670 GeV, of width �=0.5M in the mass interval340 <M< 640 GeV, and of width �=0.7M in the mass interval 375 <M< 560 GeV.29ABE 99N sear
h for the te
hni-ω de
aying into γπT . The te
hnipion is assumed tode
ay πT → bb. See Fig. 2 in the above Note on \Dynami
al Ele
troweak SymmetryBreaking" for the ex
lusion plot in the MωT
−MπT

plane.30ABE 97G sear
h for a new parti
le X de
aying into dijets in pp 
ollisions at E
m= 1.8TeV. See Fig. 5 in the above Note on \Dynami
al Ele
troweak Symmetry Breaking" forthe upper limit on σ(pp → X )×B(X → 2j).REFERENCES FOR Te
hni
olorREFERENCES FOR Te
hni
olorREFERENCES FOR Te
hni
olorREFERENCES FOR Te
hni
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Limits on contact interactions

If quarks and leptons are made of constituents, then at

the scale of constituent binding energies there should appear

new interactions among them. At energies much below the

compositeness scale (Λ), these interactions are suppressed by

inverse powers of Λ. The dominant effect of the compositeness of

fermion ψ should come from the lowest dimensional interactions

with four fermions (contact terms), whose most general flavor-

diagonal color-singlet chirally invariant form reads [1,2]

L =
g2
contact

2Λ2

∑

i,j

[
ηij
LL(ψ̄i

Lγµψi
L)(ψ̄j

Lγµψj
L)

+ηij
RR(ψ̄i

Rγµψi
R)(ψ̄j

Rγµψj
R) + ηij

LR(ψ̄i
Lγµψi

L)(ψ̄j
Rγµψj

R)

+ηij
RL(ψ̄i

Rγµψi
R)(ψ̄j

Lγµψj
L)

]
, (1)

with i, j being the indices of fermion species. Color and other

indices are suppressed in Eq. (1). Chiral invariance provides a

natural explanation why quark and lepton masses are much

smaller than their inverse size Λ. Note ηij
αβ = ηji

βα, therefore,

in order to specify the contact interaction among the same

fermion species i = j, it is enough to use ηLL, ηRR and ηLR.

We will suppress the indices of fermion species hereafter. We

may determine the scale Λ unambiguously by using the above

form of the effective interactions; the conventional method [1]

is to fix its scale by setting g2
contact/4π = g2

contact(Λ)/4π = 1 for

the new strong interaction coupling and by setting the largest

magnitude of the coefficients ηαβ to be unity. In the following,

we denote

Λ = Λ±
LL for (η

LL
, η

RR
, η

LR
) = (±1, 0, 0) ,

Λ = Λ±
RR for (η

LL
, η

RR
, η

LR
) = (0, ±1, 0) ,

Λ = Λ±
V V for (η

LL
, η

RR
, η

LR
) = (±1, ±1, ±1) ,

Λ = Λ±
AA for (η

LL
, η

RR
, η

LR
) = (±1, ±1, ∓1) ,

Λ = Λ±
V −A for (η

LL
, η

RR
, η

LR
) = (0, 0, ±1) . (2)

Such interactions can arise by interchanging constituents (when

the fermions have common constituents), and/or by exchang-

ing the binding quanta (whenever binding quanta couple to

constituents of both particles).

Fermion scattering amplitude induced from the contact in-

teraction in Eq. (1) interferes with the Standard Model (SM)

amplitude destructively or constructively. The sign of interfer-

ence depends on the sign of ηαβ . For instance, in the parton

level qq → qq scattering cross section in the Λ±
LL model, the

contact interaction amplitude and the SM gluon exchange am-

plitude interfere destructively for ηLL = +1, while they interfere

constructively for ηLL = −1. In models of quark compositeness,

the quark scattering cross sections induced from the contact

interactions receive sizable QCD radiative corrections. Ref. 3

provides the exact next-to-leading order (NLO) QCD correc-

tions to the contact interaction induced quark scattering cross

sections.

Over the last three decades experiments at the CERN

Spp̄S [4,5], the Fermilab Tevatron [6,7], and the CERN

LHC [8–12] have searched for quark contact interactions, char-

acterized by the four-fermion effective Lagrangian in Eq. (1),

using jet final states. These searches have been performed pri-

marily by studying the angular distribution of the two highest

transverse momentum, pT, jets (dijets), and the inclusive jet

pT spectrum. The variable χ = exp(|(y1 − y2)|) is used to mea-

sure the dijet angular distribution, where y1 and y2 are the

rapidities of the two jets with the highest transverse momenta.

For collinear massless parton scattering, χ is related to the

polar scattering angle θ∗ in the partonic center-of-mass frame

by χ = (1+ | cos θ∗|)/(1−| cos θ∗|). The choice of χ is motivated

by the fact that the angular distribution for Rutherford scat-

tering, which is proportional to 1/(1 − cos θ∗)2, is independent

of χ. In perturbative QCD the χ distributions are relatively

flat and only mildly modified by higher-order QCD or elec-

troweak corrections. Signatures of quark contact interactions

exhibit more isotropic angular distribution than QCD and they

can be identified as an excess at low values of χ. In the inclusive

jet cross section measurement, quark contact interaction effects

are searched as deviations from the predictions of perturbative

QCD in the tails of the high-pT jet spectrum.

Recent results from the LHC, using data collected at proton-

proton center-of-mass energies of
√

s = 7 and 8 TeV, extend

previous Tevatron limits on quark contact interactions. Figure 1

shows the normalized dijet angular distributions for several di-

jet mass ranges measured in ATLAS [9] at
√

s = 8 TeV. The

data distributions are compared with SM predictions, esti-

mated using PYTHIA8 [13] with GEANT4-based [14] ATLAS

detector simulation and corrected to NLO QCD calculation

provided by NLO Jet++ [15] including electroweak correc-

tions [16], and with predictions including a contact interaction

term in which only left-handed quarks participate at compos-

iteness scale Λ+
LL = 8 TeV (Λ−

LL = 12 TeV) with destructive

(constructive) interference. Over a wide range of χ and dijet

mass the data are well described by the SM predictions. Using

the dijet angular distributions measured at high dijet masses

and
√

s = 8 TeV, the ATLAS [9] and CMS [12] Collaborations

have set 95% confidence level (C.L.) lower limits on the contact

interaction scale Λ, ranging from 8.1 to 15.2 TeV for different

quark contact interaction models that correspond to various

combinations of (ηLL, ηRR, ηLR), as summarized in Figure 2.
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Theoretical uncert. SM, no EW correction
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LL

η = 8 TeV,  ΛCI, 
= -1

LL
η = 12 TeV,  ΛCI, 

ATLAS-1 = 8 TeV, 17.3 fbs

Figure 1: Normalized dijet angular distribu-
tions in several dijet mass (mjj) ranges. The
data distributions are compared to the SM pre-
dictions (solid line) and with the predictions
including a contact interaction (CI) term in
which only left-handed quarks participate of
compositeness scale Λ+

LL = 8 TeV (dashed line)

and Λ−
LL = 12 TeV (dotted line). The SM pre-

diction without the electroweak (EW) correc-
tions is also shown (blue dashed dotted line).
The error bars on the data points represent
statistical and experimental uncertainties com-
bined in quadrature. The ticks on the error bars
represent experimental uncertainties only. The
shaded band displayed around the SM predic-
tion shows the theoretical uncertainties. Figure
adopted from Ref. 9.

The contact interaction scale limits extracted using the dijet

angular distributions include the exact NLO QCD corrections

to dijet production induced by contact interactions [3]. In

proton-proton collisions, the Λ±
LL and Λ±

RR contact interaction

models result in identical tree-level cross sections and NLO

QCD corrections and yield the same exclusion limits. For Λ±
V V

and Λ±
AA, the contact interaction predictions are identical at

tree level, but exhibit different NLO QCD corrections and yield

different exclusion limits. Figure 2 also shows lower limits for

two benchmark contact interaction models in which only left-

handed quarks participate with destructive (ηLL = +1) and

constructive (ηLL = −1) interference, using the inclusive jet pT

spectrum measured in CMS at
√

s = 7 TeV [11].

If leptons (l) and quarks (q) are composite with common

constituents, the interaction of these constituents will manifest

itself in the form of a llqq-type four-fermion contact interac-

tion Lagrangian at energies below the compositeness scale Λ.

The llqq terms in the contact interaction Lagrangian can be

expressed as

Contact Interaction Scale Limit [TeV]
6 8 10 12 14 16

LL
−Λ
LL
+Λ

Inclusive Jets
(V-A)
−Λ
(V-A)
+Λ
AA
−Λ
AA
+Λ
VV
−Λ
VV
+Λ
LL/RR
−Λ
LL/RR
+Λ

Dijets

Observed
Expected

ATLAS
CMS

Figure 2: Observed (solid lines) and expected
(dashed lines) 95% C.L. lower limits on the
contact interaction scale Λ for different con-
tact interaction models from ATLAS [9] and
CMS [11,12] using the dijet angular distribu-
tions and the inclusive jet pT spectrum. The
contact interaction models used for the dijet an-
gular distributions include the exact NLO QCD
corrections to dijet production. All limits are
extracted using the CLs technique [17,18].

L =
g2
contact

Λ2

[
ηLL(q̄LγµqL)(l̄LγµlL) + ηRR(q̄RγµqR)(l̄RγµlR)

+ηLR(q̄LγµqL)(l̄RγµlR) + ηRL(q̄RγµqR)(l̄LγµlL)
]
. (3)

Searches on quark-lepton compositeness have been reported

from experiments at LEP [19–23], HERA [24,25], the Teva-

tron [26–30], and recently from the ATLAS [31–34] and

CMS [35] experiments at the LHC. The most stringent searches

for llqq contact interactions are performed by the LHC experi-

ments using high-mass oppositely-charged lepton pairs produced

through the qq → l+l− Drell-Yan process. The contact inter-

action amplitude of the uū → l+l− process interferes with

the corresponding SM amplitude constructively (destructively)

for ηαβ = −1 (ηαβ = +1). The ATLAS Collaboration has ex-

tracted limits on the llqq contact interaction for the right-right

(ηRR = ±1, ηLL = ηLR = ηRL = 0), left-left (ηLL = ±1,

ηRR = ηLR = ηRL = 0), and left-right (ηLR = ηRL = ±1,

ηRR = ηLL = 0) models [34]. With the ATLAS full dataset

at
√

s = 8 TeV and combining the dielectron and dimuon

channels, the 95% C.L. lower limits on the llqq contact in-

teraction scale Λ are 21.1 TeV (17.5 TeV) for the right-right

model, 21.6 TeV (17.2 TeV) for the left-left model, and 26.3
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TeV (19.0 TeV) for the left-right model, each with constructive

(destructive) interference [34]. The limits are extracted using a

Bayesian approach with a prior probability flat in 1/Λ2. Using

the dimuon channel from the 7-TeV run, the CMS Collabora-

tion, using the CLs technique, has set a 95% C.L. lower limit

on the scale Λ of 13.1 TeV (9.5 TeV) for the benchmark left-left

llqq contact interaction model with constructive (destructive)

interference [35].

Note that the contact interactions arising from the compos-

iteness of quarks and leptons Eq. (1) can also be regarded as a

part of more general dimension six operators in the context of

low energy standard model effective theory. For a complete list

of these dimension six operators see Refs. 36,37.

Interactions of hypothetical dark matter candidate particles

with SM can also be described as contact interactions at low

energy. See “Searches for WIMPs and Other Particles” in this

volume for limits on the interactions involving dark matter

candidate particles.

Limits on excited fermions

Another typical consequence of compositeness is the appear-

ance of excited leptons and quarks (l∗ and q∗). Phenomenolog-

ically, an excited lepton is defined to be a heavy lepton which

shares a leptonic quantum number with one of the existing

leptons (an excited quark is defined similarly). For example,

an excited electron e∗ is characterized by a nonzero transition-

magnetic coupling with electrons. Smallness of the lepton mass

and the success of QED prediction for g − 2 suggest chiral-

ity conservation, i.e., an excited lepton should not couple to

both left- and right-handed components of the corresponding

lepton [38–40].

Excited leptons may be classified by SU(2)×U(1) quantum

numbers. Typical examples are:

1. Sequential type(
ν∗

l∗

)

L

, [ν∗
R], l∗R.

ν∗
R is necessary unless ν∗ has a Majorana mass.

2. Mirror type

[ν∗
L], l∗L,

(
ν∗

l∗

)

R

.

3. Homodoublet type(
ν∗

l∗

)

L

,

(
ν∗

l∗

)

R

.

Similar classification can be made for excited quarks.

Excited fermions can be pair produced via their minimal

gauge couplings. The couplings of excited leptons with Z are

given by

e

2 sin θW cos θW
(−1 + 2 sin2 θW )l̄∗γµl∗Zµ

+
e

2 sin θW cos θW
ν̄∗γµν∗Zµ

in the homodoublet model. The corresponding couplings of

excited quarks can be easily obtained. Although form factor

effects can be present for the gauge couplings at q2 6= 0, they

are usually neglected.

Excited fermions may also be produced via the contact

interactions with ordinary quarks and leptons [41]

L =
g2
contact

Λ2

[
η′LL(ψ̄LγµψL)(ψ̄∗

Lγµψ∗
L)

+(η′′LL(ψ̄LγµψL)(ψ̄∗
LγµψL) + h.c.) + · · ·

]
. (4)

Again, the coefficient is conventionally taken g2
contact = 4π. It

is widely assumed η′LL = η′′LL = 1, η′LR = η′′LR = η′RL = η′′RL =

η′RR = η′′RR = 0 in experimental analyses for simplicity.

In addition, transition-magnetic type couplings with a gauge

boson are expected. These couplings can be generally parame-

terized as follows:

L =
λ

(ψ∗)
γ e

2mψ∗

ψ̄∗σµν(ηL
1 − γ5

2
+ ηR

1 + γ5

2
)ψFµν

+
λ

(ψ∗)
Z e

2mψ∗

ψ̄∗σµν(ηL
1 − γ5

2
+ ηR

1 + γ5

2
)ψZµν

+
λ

(l∗)
W g

2ml∗
l̄∗σµν 1 − γ5

2
νWµν

+
λ

(ν∗)
W g

2mν∗

ν̄∗σµν(ηL
1 − γ5

2
+ ηR

1 + γ5

2
)lW †

µν

+ h.c., (5)

where g = e/ sin θW , ψ = ν or l, Fµν = ∂µAν −∂νAµ is the pho-

ton field strength, Zµν = ∂µZν − ∂νZµ, etc.. The normalization

of the coupling is chosen such that

max(|ηL|, |ηR|) = 1.

Chirality conservation requires

ηLηR = 0. (6)

These couplings in Eq. (5) can arise from SU(2) × U(1)-

invariant higher-dimensional interactions. A well-studied model

is the interaction of homodoublet type l∗ with the Lagrangian

(see Refs. 42,43)

L =
1

2Λ
L̄∗σµν(gf

τa

2
W a

µν + g′f ′Y Bµν)
1 − γ5

2
L + h.c., (7)

where L denotes the lepton doublet (ν, l), Λ is the compositeness

scale, g, g′ are SU(2) and U(1)Y gauge couplings, and W a
µν and

Bµν are the field strengths for SU(2) and U(1)Y gauge fields.

These couplings satisfy the relation

λW = −
√

2 sin2 θW (λZ cot θW + λγ) , (8)

with λW,Z,γ being defined in Eq. (5) with λW,Z,γ = λ
(ℓ∗)
W,Z,γ or

λW,Z,γ = λ
(ν∗)
W,Z,γ . Here (ηL, ηR) = (1, 0) is assumed. It should

be noted that the electromagnetic radiative decay of l∗ (ν∗) is

forbidden if f = −f ′ (f = f ′).

Additional coupling with gluons is possible for excited

quarks:

L =
1

2Λ
Q̄∗σµν

(
gsfs

λa

2
Ga

µν + gf
τa

2
W a

µν + g′f ′Y Bµν

)

× 1 − γ5

2
Q + h.c. , (9)
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where Q denotes a quark doublet, gs is the QCD gauge

coupling, and Ga
µν the gluon field strength.

If leptons are made of color triplet and antitriplet con-

stituents, we may expect their color-octet partners. Transitions

between the octet leptons (l8) and the ordinary lepton (l) may

take place via the dimension-five interactions

L =
1

2Λ

∑

l

{
l̄α8 gSFα

µνσ
µν(ηLlL + ηRlR) + h.c.

}
(10)

where the summation is over charged leptons and neutrinos.

The leptonic chiral invariance implies ηLηR = 0 as before.

Searches for excited quarks and leptons have been performed

over the last decades in experiments at the LEP [44–52],

HERA [53–56], Tevatron [57–62], and LHC [63–80]. Most

stringent constraints from these experiments described below

are all given at 95% confidence level.

The signature of excited quarks q∗ at hadron colliders is

characterized by a narrow resonant peak in the reconstructed

invariant mass distribution of q∗ decay products. The decays via

the transition-magnetic type operator in Eq. (9) are considered

for excited quarks in LHC searches, and the final states to search

for are dijet (qg) [63–65, 71–74] or a jet in association with a

photon (qγ) [66,67,75] or a weak gauge boson (qW , qZ) [76–78].

All analyses consider only spin-1/2 excited states of first gen-

eration quarks (u∗, d∗) with degenerate masses, expected to

be predominantly produced in proton-proton collisions, except

for Ref. 74 where excited b quarks are also considered. Only

the minimal gauge interactions and the transition-magnetic

couplings with the form given in Eq. (9) are considered in

the production process, and hence the contact interactions in

Eq. (4) are not considered. The compositeness scale Λ is taken

to be the same as the excited quark mass mq∗ . The transition-

magnetic coupling coefficients fs, f and f ′ are assumed to be

equal (denoted by f) and around order 1.

With the full proton-proton collision data recorded at
√

s =

8 TeV at LHC, the excited quark masses are excluded in dijet

resonance searches up to 4.06 TeV in ATLAS [65] and 3.5 TeV in

CMS [74]. Figure 3 shows the dijet mass distribution measured

in CMS by using the two highest pT jets reconstructed with the

anti-kT algorithm [81] of a distance parameter of 0.5, and by

combining nearby jets within ∆R =
√

∆η2 + ∆φ2 < 1.1 around

the leading two jets. The measured dijet mass spectrum is

compared to a fit with smoothly falling background shape (solid

curve) to look for a narrow resonance (3.6 TeV excited quark

signal shown as one of two benchmark signals) and predictions

from multi-jet events (dashed curve labeled as QCD MC)

generated using PYTHIA 6.426 [82] with GEANT4-based [14]

CMS detector simulation. The photon + jet resonance searches

have excluded excited quarks with mass up to 3.5 TeV in

both ATLAS [67] and CMS [75]. All these mass exclusions

are obtained for f = 1. The W/Z boson + jet final states

are examined to look for q∗ → q + W and q + Z signal in

CMS [78], exploiting jet substructure technique designed to

provide sensitivity for highly-boosted hadronically decaying W
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Figure 3: Dijet mass distribution measured
by CMS using wide jets reconstructed from two
highest transverse momentum jets by adding
nearby jets within ∆R =

√
∆η2 + ∆φ2 < 1.1.

The data distribution is compared to a fit rep-
resenting a smooth background spectrum (solid
curve) and to the normalized prediction of multi-
jet background simulated by PYTHIA (labeled
as QCD MC). Excited quark signal with mass of
3.6 TeV is also shown for comparison. Shown at
the bottom panel is the bin-by-bin fit residuals
normalized by the statistical uncertainty of the
data. Figure adopted from Ref. 74.

and Z bosons. The q∗ mass exclusion of 3.2 (2.9) TeV is

obtained from the W + jet (Z + jet) search.

Searches for excited leptons l∗ are also performed at the

LHC using proton-proton collision data recorded at
√

s = 7

and 8 TeV [68–70,79,80]. Considering the single l∗ production

Eq. (4) and electromagnetic radiative decay to a SM lepton

(l) and a photon (γ), both the excited electron and excited

muon masses below 2.2 TeV are excluded for Λ = ml∗ at√
s = 8 TeV in ATLAS [69]. With the full data at

√
s = 8 TeV,

the inclusive search on multi-lepton signatures with 3 or more

charged leptons in ATLAS [70] further constrains the excited

charged leptons and neutrinos. Considering both the transition-

magnetic Eq. (7) and contact interaction Eq. (4) processes, the

lower mass limits for the e∗, µ∗, τ∗ and ν∗ (for every excited

neutrino flavor) are obtained to be 3.0, 3.0, 2.5 and 1.6 TeV,

respectively, for Λ = me∗, mµ∗ , mτ∗ and mν∗. The rate of pair-

produced excited leptons is independent of Λ for the minimal

gauge interaction processes, and it allows to improve the search

sensitivity with multi-lepton signatures at high Λ, especially for

excited neutrinos because the predominant ν∗
l → l + W decays
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Figure 4: 95% C.L. lower mass limits for
the excited quarks and leptons at AT-
LAS [65,67,69,70] and CMS [74,75,78,80] ex-
periments. Shown are the most stringent lim-
its for each excited fermion from both ex-
periments. Only first generation quarks (u, d)
with transition-magnetic type interactions with
fs = f = f ′ = 1 are considered for excited
quarks, and the limits are shown for different
final states denoted in parentheses. Excited lep-
ton limits are given for contact interactions with
Λ = ml∗ . The observed limit from q∗ → q + γ
is 3.5 TeV for both ATLAS and CMS. For the
exicted leptons the observed and expected limits
are same in both ATLAS and CMS.

result in a higher acceptance for ≥ 3 charged lepton final states.

A similar search for excited leptons with l∗ → l + γ decays

(l = e, µ) produced in contact interactions is performed by the

CMS Collaboration at
√

s = 7 TeV [80], resulting in a mass

exclusion of 1.9 TeV for Λ = ml∗ . Figure 4 summarizes the most

stringent 95% C.L. lower mass limits for the excited quarks and

leptons obtained from the LHC experiments.

References

1. E.J. Eichten, K.D. Lane, and M.E. Peskin, Phys. Rev.
Lett. 50, 811 (1983).

2. E.J. Eichten et al., Rev. Mod. Phys. 56, 579 (1984);
Erratum ibid. 58, 1065 (1986).

3. J. Gao et al., Phys. Rev. Lett. 106, 142001 (2011).

4. G. Arnison et al. [UA1 Collab.], Phys. Lett. B177, 244
(1986).

5. J.A. Appel et al. [UA2 Collab.], Phys. Lett. B160, 349
(1985).

6. F. Abe et al. [CDF Collab.], Phys. Rev. Lett. 62, 613
(1989);
F. Abe et al. [CDF Collab.], Phys. Rev. Lett. 69, 2896
(1992);
F. Abe et al. [CDF Collab.], Phys. Rev. Lett. 77, 5336
(1996);
F. Abe et al. [CDF Collab.], Erratum Phys. Rev. Lett. 78,
4307 (1997).

7. B. Abbott et al. [DØ Collab.], Phys. Rev. Lett. 80, 666
(1998);
B. Abbott et al. [DØ Collab.], Phys. Rev. Lett. 82, 2457
(1999);
B. Abbott et al. [DØ Collab.], Phys. Rev. D62, 031101
(2000);
B. Abbott et al. [DØ Collab.], Phys. Rev. D64, 032003
(2001);
B. Abbott et al. [DØ Collab.], Phys. Rev. Lett. 103,
191803 (2009).

8. G. Aad et al. [ATLAS Collab.], Phys. Rev. B694, 327
(2011);
G. Aad et al. [ATLAS Collab.], New J. Phys. 13, 053044
(2011);
G. Aad et al. [ATLAS Collab.], JHEP 1301, 029 (2013).

9. G. Aad et al. [ATLAS Collab.], Phys. Rev. Lett. 114,
221802 (2015).

10. V. Khachatryan et al. [CMS Collab.], Phys. Rev. Lett.
105, 262001 (2010);
V. Khachatryan et al. [CMS Collab.], Phys. Rev. Lett.
106, 201804 (2011);
S. Chatrchyan et al. [CMS Collab.], JHEP 1205, 055
(2012).

11. S. Chatrchyan et al. [CMS Collab.], Phys. Rev. D87,
052017 (2013).

12. V. Khachatryan et al. [CMS Collab.], Phys. Lett. B746,
79 (2015).
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tion
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ited e (e∗) from Single Produ
tion
− Limits for Ex
ited e (e∗) from e+ e− → γ γ

− Indire
t Limits for Ex
ited e (e∗)Mass Limits for Ex
ited µ (µ∗)
− Limits for Ex
ited µ (µ∗) from Pair Produ
tion
− Limits for Ex
ited µ (µ∗) from Single Produ
tion
− Indire
t Limits for Ex
ited µ (µ∗)Mass Limits for Ex
ited τ (τ∗)
− Limits for Ex
ited τ (τ∗) from Pair Produ
tion
− Limits for Ex
ited τ (τ∗) from Single Produ
tionMass Limits for Ex
ited Neutrino (ν∗)
− Limits for Ex
ited ν (ν∗) from Pair Produ
tion
− Limits for Ex
ited ν (ν∗) from Single Produ
tionMass Limits for Ex
ited q (q∗)
− Limits for Ex
ited q (q∗) from Pair Produ
tion
− Limits for Ex
ited q (q∗) from Single Produ
tionMass Limits for Color Sextet Quarks (q6)Mass Limits for Color O
tet Charged Leptons (ℓ8)Mass Limits for Color O
tet Neutrinos (ν8)Mass Limits for W8 (Color O
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1762176217621762Sear
hesParti
le ListingsQuark and LeptonCompositenessSCALE LIMITS for Conta
t Intera
tions: �(e e e e)SCALE LIMITS for Conta
t Intera
tions: �(e e e e)SCALE LIMITS for Conta
t Intera
tions: �(e e e e)SCALE LIMITS for Conta
t Intera
tions: �(e e e e)Limits are for �±LL only. For other 
ases, see ea
h referen
e.�+
LL
(TeV) �−

LL
(TeV) CL% DOCUMENT ID TECN COMMENT

>8.3>8.3>8.3>8.3 >10.3>10.3>10.3>10.3 95 1 BOURILKOV 01 RVUE E
m= 192{208 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>4.5 >7.0 95 2 SCHAEL 07A ALEP E
m= 189{209 GeV
>5.3 >6.8 95 ABDALLAH 06C DLPH E
m= 130{207 GeV
>4.7 >6.1 95 3 ABBIENDI 04G OPAL E
m= 130{207 GeV
>4.3 >4.9 95 ACCIARRI 00P L3 E
m= 130{189 GeV1A 
ombined analysis of the data from ALEPH, DELPHI, L3, and OPAL.2 SCHAEL 07A limits are from Rc, Qdepl

FB
, and hadroni
 
ross se
tion measurements.3ABBIENDI 04G limits are from e+ e− → e+ e− 
ross se
tion at √s = 130{207 GeV.SCALE LIMITS for Conta
t Intera
tions: �(e eµµ)SCALE LIMITS for Conta
t Intera
tions: �(e eµµ)SCALE LIMITS for Conta
t Intera
tions: �(e eµµ)SCALE LIMITS for Conta
t Intera
tions: �(e eµµ)Limits are for �±LL only. For other 
ases, see ea
h referen
e.�+

LL
(TeV) �−

LL
(TeV) CL% DOCUMENT ID TECN COMMENT

>6.6 >9.5>9.5>9.5>9.5 95 1 SCHAEL 07A ALEP E
m= 189{209 GeV
> 8.5> 8.5> 8.5> 8.5 >3.8 95 ACCIARRI 00P L3 E
m= 130{189 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>7.3 >7.6 95 ABDALLAH 06C DLPH E
m= 130{207 GeV
>8.1 >7.3 95 2 ABBIENDI 04G OPAL E
m= 130{207 GeV1SCHAEL 07A limits are from Rc, Qdepl

FB
, and hadroni
 
ross se
tion measurements.2ABBIENDI 04G limits are from e+ e− → µµ 
ross se
tion at √s = 130{207 GeV.SCALE LIMITS for Conta
t Intera
tions: �(e e τ τ)SCALE LIMITS for Conta
t Intera
tions: �(e e τ τ)SCALE LIMITS for Conta
t Intera
tions: �(e e τ τ)SCALE LIMITS for Conta
t Intera
tions: �(e e τ τ)Limits are for �±LL only. For other 
ases, see ea
h referen
e.�+

LL
(TeV) �−

LL
(TeV) CL% DOCUMENT ID TECN COMMENT

>7.9>7.9>7.9>7.9 >5.8 95 1 SCHAEL 07A ALEP E
m= 189{209 GeV
>7.9>7.9>7.9>7.9 >4.6 95 ABDALLAH 06C DLPH E
m= 130{207 GeV
>4.9 >7.2>7.2>7.2>7.2 95 2 ABBIENDI 04G OPAL E
m= 130{207 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>5.4 >4.7 95 ACCIARRI 00P L3 E
m= 130{189 GeV1SCHAEL 07A limits are from Rc, Qdepl

FB
, and hadroni
 
ross se
tion measurements.2ABBIENDI 04G limits are from e+ e− → τ τ 
ross se
tion at √s = 130{207 GeV.SCALE LIMITS for Conta
t Intera
tions: �(ℓℓℓℓ)SCALE LIMITS for Conta
t Intera
tions: �(ℓℓℓℓ)SCALE LIMITS for Conta
t Intera
tions: �(ℓℓℓℓ)SCALE LIMITS for Conta
t Intera
tions: �(ℓℓℓℓ)Lepton universality assumed. Limits are for �±LL only. For other 
ases, see ea
hreferen
e.�+

LL
(TeV) �−

LL
(TeV) CL% DOCUMENT ID TECN COMMENT

>7.9 > 10.3> 10.3> 10.3> 10.3 95 1 SCHAEL 07A ALEP E
m= 189{209 GeV
>9.1>9.1>9.1>9.1 >8.2 95 ABDALLAH 06C DLPH E
m= 130{207 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>7.7 >9.5 95 2 ABBIENDI 04G OPAL E
m= 130{207 GeV3 BABICH 03 RVUE
>9.0 >5.2 95 ACCIARRI 00P L3 E
m= 130{189 GeV1SCHAEL 07A limits are from Rc, Qdepl

FB
, and hadroni
 
ross se
tion measurements.2ABBIENDI 04G limits are from e+ e− → ℓ+ ℓ− 
ross se
tion at √s = 130{207 GeV.3BABICH 03 obtain a bound −0.175 TeV−2 <1/�2LL < 0.095 TeV−2 (95%CL) in amodel independent analysis allowing all of �LL, �LR , �RL, �RR to 
oexist.SCALE LIMITS for Conta
t Intera
tions: �(e e qq)SCALE LIMITS for Conta
t Intera
tions: �(e e qq)SCALE LIMITS for Conta
t Intera
tions: �(e e qq)SCALE LIMITS for Conta
t Intera
tions: �(e e qq)Limits are for �±LL only. For other 
ases, see ea
h referen
e.�+

LL
(TeV) �−

LL
(TeV) CL% DOCUMENT ID TECN COMMENT

>16.4>16.4>16.4>16.4 >20.7>20.7>20.7>20.7 95 1 AAD 14BE ATLS (e e qq)
> 8.4 >10.2>10.2>10.2>10.2 95 2 ABDALLAH 09 DLPH (e e bb)
> 9.4> 9.4> 9.4> 9.4 >5.6>5.6>5.6>5.6 95 3 SCHAEL 07A ALEP (e e 
 
)
> 9.4> 9.4> 9.4> 9.4 >4.9 95 2 SCHAEL 07A ALEP (e e bb)
>23.3>23.3>23.3>23.3 >12.5>12.5>12.5>12.5 95 4 CHEUNG 01B RVUE (e e uu)
>11.1>11.1>11.1>11.1 >26.4>26.4>26.4>26.4 95 4 CHEUNG 01B RVUE (e e d d)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>13.5 >18.3 95 5 KHACHATRY...15AE CMS (e e qq)
> 9.5 >12.1 95 6 AAD 13E ATLS (e e qq)
>10.1 >9.4 95 7 AAD 12AB ATLS (e e qq)
> 4.2 >4.0 95 8 AARON 11C H1 (e e qq)
> 3.8 >3.8 95 9 ABDALLAH 11 DLPH (e e t 
)
>12.9 >7.2 95 10 SCHAEL 07A ALEP (e e qq)
> 3.7 >5.9 95 11 ABULENCIA 06L CDF (e e qq)

1AAD 14BE limits are from pp 
ollisions at √s = 8 TeV. The quoted limit uses a uniformpositive prior in 1/�2.2ABDALLAH 09 and SCHAEL 07A limits are from Rb, Ab
FB .3 SCHAEL 07A limits are from Rc, Qdepl

FB
, and hadroni
 
ross se
tion measurements.4CHEUNG 01B is an update of BARGER 98E.5KHACHATRYAN 15AE limit is from e+ e− mass distribution in pp 
ollisions at E
m =8 TeV.6AAD 13E limis are from e+ e− mass distribution in pp 
ollisions at E
m = 7 TeV.7AAD 12AB limis are from e+ e− mass distribution in pp 
ollisions at E
m = 7 TeV.8AARON 11C limits are from Q2 spe
trum measurements of e± p → e±X .9ABDALLAH 11 limit is from e+ e− → t 
 
ross se
tion. �LL = �LR = �RL = �RRis assumed.10 SCHAEL 07A limit assumes quark 
avor universality of the 
onta
t intera
tions.11ABULENCIA 06L limits are from pp 
ollisions at √s = 1.96 TeV.SCALE LIMITS for Conta
t Intera
tions: �(µµqq)SCALE LIMITS for Conta
t Intera
tions: �(µµqq)SCALE LIMITS for Conta
t Intera
tions: �(µµqq)SCALE LIMITS for Conta
t Intera
tions: �(µµqq)�+

LL
(TeV) �−

LL
(TeV) CL% DOCUMENT ID TECN COMMENT

>12.5>12.5>12.5>12.5 >16.7>16.7>16.7>16.7 95 1 AAD 14BE ATLS (µµqq)
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>12.0 >15.2 95 2 KHACHATRY...15AE CMS (µµqq)
> 9.6 >12.9 95 3 AAD 13E ATLS (µµqq) (isosinglet)
> 9.5 >13.1 95 4 CHATRCHYAN13K CMS (µµqq) (isosinglet)
> 8.0 >7.0 95 5 AAD 12AB ATLS (µµqq) (isosinglet)1AAD 14BE limits are from pp 
ollisions at √s = 8 TeV. The quoted limit uses a uniformpositive prior in 1/�2.2KHACHATRYAN 15AE limit is from µ+µ− mass distribution in pp 
ollisions at E
m =8 TeV.3AAD 13E limis are from µ+µ− mass distribution in pp 
ollisions at E
m = 7 TeV.4CHATRCHYAN 13K limis are from µ+µ− mass distribution in pp 
ollisions at E
m =7 TeV.5AAD 12AB limis are from µ+µ− mass distribution in pp 
ollisions at E
m = 7 TeV.SCALE LIMITS for Conta
t Intera
tions: �(ℓν ℓν)SCALE LIMITS for Conta
t Intera
tions: �(ℓν ℓν)SCALE LIMITS for Conta
t Intera
tions: �(ℓν ℓν)SCALE LIMITS for Conta
t Intera
tions: �(ℓν ℓν)VALUE (TeV) CL% DOCUMENT ID TECN COMMENT
>3.10>3.10>3.10>3.10 90 1 JODIDIO 86 SPEC �±LR (νµ νe µe)
• • • We do not use the following data for averages, �ts, limits, et
. • • •

>3.8 2 DIAZCRUZ 94 RVUE �+LL(τ ντ e νe )
>8.1 2 DIAZCRUZ 94 RVUE �−LL(τ ντ e νe )
>4.1 3 DIAZCRUZ 94 RVUE �+LL(τ ντ µνµ)
>6.5 3 DIAZCRUZ 94 RVUE �−LL(τ ντ µνµ)1 JODIDIO 86 limit is from µ+ → νµ e+ νe . Chirality invariant intera
tions L = (g2/�2)

[
ηLL (νµLγαµL) (eLγανe L) + ηLR (νµLγανe L (eRγαµR )] with g2/4π = 1 and(ηLL,ηLR ) = (0,±1) are taken. No limits are given for �±LL with (ηLL,ηLR ) = (±1,0).For more general 
onstraints with right-handed neutrinos and 
hirality non
onserving
onta
t intera
tions, see their text.2DIAZCRUZ 94 limits are from �(τ → e ν ν) and assume 
avor-dependent 
onta
t in-tera
tions with �(τ ντ e νe ) ≪ �(µνµ e νe ).3DIAZCRUZ 94 limits are from �(τ → µν ν) and assume 
avor-dependent 
onta
tintera
tions with �(τ ντ µνµ) ≪ �(µνµ e νe ).SCALE LIMITS for Conta
t Intera
tions: �(e ν qq)SCALE LIMITS for Conta
t Intera
tions: �(e ν qq)SCALE LIMITS for Conta
t Intera
tions: �(e ν qq)SCALE LIMITS for Conta
t Intera
tions: �(e ν qq)VALUE (TeV) CL% DOCUMENT ID TECN

>2.81>2.81>2.81>2.81 95 1 AFFOLDER 01I CDF1AFFOLDER 00I bound is for a s
alar intera
tion qR qL ν eL.SCALE LIMITS for Conta
t Intera
tions: �(qqqq)SCALE LIMITS for Conta
t Intera
tions: �(qqqq)SCALE LIMITS for Conta
t Intera
tions: �(qqqq)SCALE LIMITS for Conta
t Intera
tions: �(qqqq)VALUE (TeV) CL% DOCUMENT ID TECN COMMENT
>8.1 95 1 AAD 15L ATLS pp dijet angl. �+

LL
>9.0>9.0>9.0>9.0 95 2 KHACHATRY...15J CMS pp dijet angl. �+

LL
• • • We do not use the following data for averages, �ts, limits, et
. • • •3 AAD 15BY ATLS pp → t t t t
>5 95 4 FABBRICHESI 14 RVUE qq t t
>7.6 95 5 AAD 13D ATLS pp → dijet angl.
>9.9 95 6 CHATRCHYAN13AN CMS pp → dijet.; �+

LL
>7.5 95 7 CHATRCHYAN12Z CMS pp → dijet angl.; �+

LL1AAD 15L limit is from dijet angular distribution in pp 
ollisions at E
m = 8 TeV. u, d,and s quarks are assumed to be 
omposite. They also obtain �−
LL

> 12.0 TeV.2KHACHATRYAN 15J limit is from dijet angular distribution in pp 
ollisions at E
m =8 TeV. u, d, s , 
, and b quarks are assumed to be 
omposite. They also obtain �−
LL

>11.7 TeV.3AAD 15BY obtain limit on the tR 
ompositeness 2π�2RR < 15.1 TeV−2 at 95% CLfrom the t t t t produ
tion in the pp 
ollisions at E
m = 8 TeV.4 FABBRICHESI 14 obtain bounds on 
hromoele
tri
 and 
hromomagneti
 form fa
torsof the top-quark using pp → t t and pp → t t 
ross se
tions. The quoted limit on theqq t t 
onta
t intera
tion is derived from their bound on the 
hromoele
tri
 form fa
tor.



1763176317631763See key on page 601 Sear
hes Parti
le ListingsQuark and Lepton Compositeness5AAD 13D limit is from dijet angular distribution in pp 
ollisions at E
m = 7 TeV. The
onstant prior in 1/�4 is applied.6CHATRCHYAN 13AN limit is from in
lusive jet pT spe
trum in pp 
ollisions at E
m =7 TeV. They also obtain �−LL > 14.3 TeV.7CHATRCHYAN 12Z limit is from dijet angular distribution in pp 
ollisions at E
m = 7TeV. They also obtain �−LL > 10.5 TeV.SCALE LIMITS for Conta
t Intera
tions: �(ν ν qq)SCALE LIMITS for Conta
t Intera
tions: �(ν ν qq)SCALE LIMITS for Conta
t Intera
tions: �(ν ν qq)SCALE LIMITS for Conta
t Intera
tions: �(ν ν qq)Limits are for �±LL only. For other 
ases, see ea
h referen
e.�+
LL
(TeV) �−

LL
(TeV) CL% DOCUMENT ID TECN COMMENT

>5.0>5.0>5.0>5.0 >5.4>5.4>5.4>5.4 95 1 MCFARLAND 98 CCFR νN s
attering1MCFARLAND 98 assumed a 
avor universal intera
tion. Neutrinos were mostly of muontype. MASS LIMITS for Ex
ited e (e∗)MASS LIMITS for Ex
ited e (e∗)MASS LIMITS for Ex
ited e (e∗)MASS LIMITS for Ex
ited e (e∗)Most e+ e− experiments assume one-photon or Z ex
hange. The limitsfrom some e+ e− experiments whi
h depend on λ have assumed transition
ouplings whi
h are 
hirality violating (ηL = ηR ). However they 
an beinterpreted as limits for 
hirality-
onserving intera
tions after multiplyingthe 
oupling value λ by √2; see Note.Ex
ited leptons have the same quantum numbers as other ortholeptons.See also the sear
hes for ortholeptons in the \Sear
hes for Heavy Leptons"se
tion.Limits for Ex
ited e (e∗) from Pair Produ
tionLimits for Ex
ited e (e∗) from Pair Produ
tionLimits for Ex
ited e (e∗) from Pair Produ
tionLimits for Ex
ited e (e∗) from Pair Produ
tionThese limits are obtained from e+ e− → e∗+ e∗− and thus rely only on the (ele
-troweak) 
harge of e∗. Form fa
tor e�e
ts are ignored unless noted. For the 
aseof limits from Z de
ay, the e∗ 
oupling is assumed to be of sequential type. Possi-ble t 
hannel 
ontribution from transition magneti
 
oupling is negle
ted. All limitsassume a dominant e∗ → e γ de
ay ex
ept the limits from �(Z).For limits prior to 1987, see our 1992 edition (Physi
al Review D45D45D45D45 S1 (1992)).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>103.2>103.2>103.2>103.2 95 1 ABBIENDI 02G OPAL e+ e− → e∗ e∗ Homodoublet type
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>102.8 95 2 ACHARD 03B L3 e+ e− → e∗ e∗ Homodoublet type1From e+ e− 
ollisions at √s = 183{209 GeV. f = f ′ is assumed.2 From e+ e− 
ollisions at √s = 189{209 GeV. f = f ′ is assumed. ACHARD 03B alsoobtain limit for f = −f ′: me∗ > 96.6 GeV.Limits for Ex
ited e (e∗) from Single Produ
tionLimits for Ex
ited e (e∗) from Single Produ
tionLimits for Ex
ited e (e∗) from Single Produ
tionLimits for Ex
ited e (e∗) from Single Produ
tionThese limits are from e+ e− → e∗ e, W → e∗ ν, or e p → e∗X and depend ontransition magneti
 
oupling between e and e∗. All limits assume e∗ → e γ de
ayex
ept as noted. Limits from LEP, UA2, and H1 are for 
hiral 
oupling, whereas allother limits are for non
hiral 
oupling, ηL = ηR = 1. In most papers, the limit isexpressed in the form of an ex
luded region in the λ−me∗ plane. See the originalpapers.For limits prior to 1987, see our 1992 edition (Physi
al Review D45D45D45D45 S1 (1992)).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>3000>3000>3000>3000 95 1 AAD 15AP ATLS pp → e(∗) e∗X
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>2200 95 2 AAD 13BB ATLS pp → e e∗X
>1900 95 3 CHATRCHYAN13AE CMS pp → e e∗X
>1870 95 4 AAD 12AZ ATLS pp → e(∗) e∗X
>1070 95 5 CHATRCHYAN11X CMS pp → e e∗X1AAD 15AP sear
h for e∗ produ
tion in evens with three or more 
harged leptons in pp
ollisions at √s = 8 TeV. The quoted limit assumes � = me∗ , f = f ′ = 1. The 
onta
tintera
tion is in
luded in the e∗ produ
tion and de
ay amplitudes.2AAD 13BB sear
h for single e∗ produ
tion in pp 
ollisions with e∗ → e γ de
ay. f =f ′ = 1, and e∗ produ
tion via 
onta
t intera
tion with � = me∗ are assumed.3CHATRCHYAN 13AE sear
h for single e∗ produ
tion in pp 
ollisions with e∗ → e γde
ay. f = f ′ = 1, and e∗ produ
tion via 
onta
t intera
tion with � = me∗ are assumed.4AAD 12AZ sear
h for e∗ produ
tion via four-fermion 
onta
t intera
tion in pp 
ollisionswith e∗ → e γ de
ay. The quoted limit assumes � = me∗ . See their Fig. 8 for theex
lusion plot in the mass-
oupling plane.5CHATRCHYAN 11X sear
h for single e∗ produ
tion in pp 
ollisions with the de
ay e∗ →e γ. f = f ′ =�/me∗ is assumed. See their Fig. 2 for the ex
lusion plot in the mass-
oupling plane.

Limits for Ex
ited e (e∗) from e+ e− → γ γLimits for Ex
ited e (e∗) from e+ e− → γ γLimits for Ex
ited e (e∗) from e+ e− → γ γLimits for Ex
ited e (e∗) from e+ e− → γ γThese limits are derived from indire
t e�e
ts due to e∗ ex
hange in the t 
hannel anddepend on transition magneti
 
oupling between e and e∗. All limits are for λγ = 1.All limits ex
ept ABE 89J and ACHARD 02D are for non
hiral 
oupling with ηL = ηR= 1. We 
hoose the 
hiral 
oupling limit as the best limit and list it in the SummaryTable.For limits prior to 1987, see our 1992 edition (Physi
al Review D45D45D45D45 S1 (1992)).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>356>356>356>356 95 1 ABDALLAH 04N DLPH √

s= 161{208 GeV
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>310 95 ACHARD 02D L3 √s= 192{209 GeV1ABDALLAH 04N also obtain a limit on the ex
ited ele
tron mass with e e∗ 
hiral 
oupling,me∗ > 295 GeV at 95% CL.Indire
t Limits for Ex
ited e (e∗)Indire
t Limits for Ex
ited e (e∗)Indire
t Limits for Ex
ited e (e∗)Indire
t Limits for Ex
ited e (e∗)These limits make use of loop e�e
ts involving e∗ and are therefore subje
t to theo-reti
al un
ertainty.VALUE (GeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 DORENBOS... 89 CHRM νµ e → νµ e, νµ e → νµ e2 GRIFOLS 86 THEO νµ e → νµ e3 RENARD 82 THEO g−2 of ele
tron1DORENBOSCH 89 obtain the limit λ2γ�2
ut/m2e∗ < 2.6 (95% CL), where �
ut is the
uto� s
ale, based on the one-loop 
al
ulation by GRIFOLS 86. If one assumes that �
ut= 1 TeV and λγ = 1, one obtains me∗ > 620 GeV. However, one generally expe
ts

λγ ≈ me∗/�
ut in 
omposite models.2GRIFOLS 86 uses νµ e → νµ e and νµ e → νµ e data from CHARM Collaboration toderive mass limits whi
h depend on the s
ale of 
ompositeness.3RENARD 82 derived from g−2 data limits on mass and 
ouplings of e∗ and µ∗. See�gures 2 and 3 of the paper.MASS LIMITS for Ex
ited µ (µ∗)MASS LIMITS for Ex
ited µ (µ∗)MASS LIMITS for Ex
ited µ (µ∗)MASS LIMITS for Ex
ited µ (µ∗)Limits for Ex
ited µ (µ∗) from Pair Produ
tionLimits for Ex
ited µ (µ∗) from Pair Produ
tionLimits for Ex
ited µ (µ∗) from Pair Produ
tionLimits for Ex
ited µ (µ∗) from Pair Produ
tionThese limits are obtained from e+ e− → µ∗+µ∗− and thus rely only on the (ele
-troweak) 
harge of µ∗. Form fa
tor e�e
ts are ignored unless noted. For the 
ase oflimits from Z de
ay, the µ∗ 
oupling is assumed to be of sequential type. All limitsassume a dominant µ∗ → µγ de
ay ex
ept the limits from �(Z).For limits prior to 1987, see our 1992 edition (Physi
al Review D45D45D45D45 S1 (1992)).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>103.2>103.2>103.2>103.2 95 1 ABBIENDI 02G OPAL e+ e− → µ∗µ∗ Homodoublet type
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>102.8 95 2 ACHARD 03B L3 e+ e− → µ∗µ∗ Homodoublet type1From e+ e− 
ollisions at √s = 183{209 GeV. f = f ′ is assumed.2 From e+ e− 
ollisions at √s = 189{209 GeV. f = f ′ is assumed. ACHARD 03B alsoobtain limit for f = −f ′: m

µ∗ > 96.6 GeV.Limits for Ex
ited µ (µ∗) from Single Produ
tionLimits for Ex
ited µ (µ∗) from Single Produ
tionLimits for Ex
ited µ (µ∗) from Single Produ
tionLimits for Ex
ited µ (µ∗) from Single Produ
tionThese limits are from e+ e− → µ∗µ and depend on transition magneti
 
ouplingbetween µ and µ∗. All limits assume µ∗ → µγ de
ay. Limits from LEP are for 
hiral
oupling, whereas all other limits are for non
hiral 
oupling, ηL = ηR = 1. In mostpapers, the limit is expressed in the form of an ex
luded region in the λ−m
µ∗ plane.See the original papers.For limits prior to 1987, see our 1992 edition (Physi
al Review D45D45D45D45 S1 (1992)).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>3000>3000>3000>3000 95 1 AAD 15AP ATLS pp → µ(∗)µ∗X
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>2200 95 2 AAD 13BB ATLS pp → µµ∗X
>1900 95 3 CHATRCHYAN13AE CMS pp → µµ∗X
>1750 95 4 AAD 12AZ ATLS pp → µ(∗)µ∗X
>1090 95 5 CHATRCHYAN11X CMS pp → µµ∗X1AAD 15AP sear
h for µ∗ produ
tion in evens with three or more 
harged leptons in pp
ollisions at √s = 8 TeV. The quoted limit assumes � = m

µ∗ , f = f ′ = 1. The 
onta
tintera
tion is in
luded in the µ∗ produ
tion and de
ay amplitudes.2AAD 13BB sear
h for single µ∗ produ
tion in pp 
ollisions with µ∗ → µγ de
ay. f =f ′ = 1, and µ∗ produ
tion via 
onta
t intera
tion with � = m
µ∗ are assumed.3CHATRCHYAN 13AE sear
h for single µ∗ produ
tion in pp 
ollisions with µ∗ → µγde
ay. f = f ′ = 1, and µ∗ produ
tion via 
onta
t intera
tion with � =m

µ∗ are assumed.4AAD 12AZ sear
h for µ∗ produ
tion via four-fermion 
onta
t intera
tion in pp 
ollisionswith µ∗ → µγ de
ay. The quoted limit assumes � = m
µ∗ . See their Fig. 8 for theex
lusion plot in the mass-
oupling plane.5CHATRCHYAN 11X sear
h for single µ∗ produ
tion in pp 
ollisions with the de
ay

µ∗ → µγ. f = f ′ =�/m
µ∗ is assumed. See their Fig. 2 for the ex
lusion plot in themass-
oupling plane.



1764176417641764Sear
hesParti
le ListingsQuark and LeptonCompositenessIndire
t Limits for Ex
ited µ (µ∗)Indire
t Limits for Ex
ited µ (µ∗)Indire
t Limits for Ex
ited µ (µ∗)Indire
t Limits for Ex
ited µ (µ∗)These limits make use of loop e�e
ts involving µ∗ and are therefore subje
t to theo-reti
al un
ertainty.VALUE (GeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 RENARD 82 THEO g−2 of muon1RENARD 82 derived from g−2 data limits on mass and 
ouplings of e∗ and µ∗. See�gures 2 and 3 of the paper.MASS LIMITS for Ex
ited τ (τ∗)MASS LIMITS for Ex
ited τ (τ∗)MASS LIMITS for Ex
ited τ (τ∗)MASS LIMITS for Ex
ited τ (τ∗)Limits for Ex
ited τ (τ∗) from Pair Produ
tionLimits for Ex
ited τ (τ∗) from Pair Produ
tionLimits for Ex
ited τ (τ∗) from Pair Produ
tionLimits for Ex
ited τ (τ∗) from Pair Produ
tionThese limits are obtained from e+ e− → τ∗+ τ∗− and thus rely only on the (ele
-troweak) 
harge of τ∗. Form fa
tor e�e
ts are ignored unless noted. For the 
ase oflimits from Z de
ay, the τ∗ 
oupling is assumed to be of sequential type. All limitsassume a dominant τ∗ → τ γ de
ay ex
ept the limits from �(Z).For limits prior to 1987, see our 1992 edition (Physi
al Review D45D45D45D45 S1 (1992)).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>103.2>103.2>103.2>103.2 95 1 ABBIENDI 02G OPAL e+ e− → τ∗ τ∗ Homodoublet type
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>102.8 95 2 ACHARD 03B L3 e+ e− → τ∗ τ∗ Homodoublet type1From e+ e− 
ollisions at √s = 183{209 GeV. f = f ′ is assumed.2 From e+ e− 
ollisions at √s = 189{209 GeV. f = f ′ is assumed. ACHARD 03B alsoobtain limit for f = −f ′: m

τ∗ > 96.6 GeV.Limits for Ex
ited τ (τ∗) from Single Produ
tionLimits for Ex
ited τ (τ∗) from Single Produ
tionLimits for Ex
ited τ (τ∗) from Single Produ
tionLimits for Ex
ited τ (τ∗) from Single Produ
tionThese limits are from e+ e− → τ∗ τ and depend on transition magneti
 
ouplingbetween τ and τ∗. All limits assume τ∗ → τ γ de
ay. Limits from LEP are for 
hiral
oupling, whereas all other limits are for non
hiral 
oupling, ηL = ηR = 1. In mostpapers, the limit is expressed in the form of an ex
luded region in the λ−m
τ∗ plane.See the original papers.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT

>2500>2500>2500>2500 95 1 AAD 15AP ATLS pp → τ(∗) τ∗X
• • • We do not use the following data for averages, �ts, limits, et
. • • •
> 180 95 2 ACHARD 03B L3 e+ e− → τ τ∗
> 185 95 3 ABBIENDI 02G OPAL e+ e− → τ τ∗1AAD 15AP sear
h for τ∗ produ
tion in events with three or more 
harged leptons in pp
ollisions at √s = 8 TeV. The quoted limit assumes � = m

τ∗ , f = f ′ = 1. The 
onta
tintera
tion is in
luded in the τ∗ produ
tion and de
ay amplitudes.2ACHARD 03B result is from e+ e− 
ollisions at √s = 189{209 GeV. f = f ′ = �/m
τ∗is assumed. See their Fig. 4 for the ex
lusion plot in the mass-
oupling plane.3ABBIENDI 02G result is from e+ e− 
ollisions at √s = 183{209 GeV. f = f ′ = �/m
τ∗is assumed for τ∗ 
oupling. See their Fig. 4
 for the ex
lusion limit in the mass-
ouplingplane. MASS LIMITS for Ex
ited Neutrino (ν∗)MASS LIMITS for Ex
ited Neutrino (ν∗)MASS LIMITS for Ex
ited Neutrino (ν∗)MASS LIMITS for Ex
ited Neutrino (ν∗)Limits for Ex
ited ν (ν∗) from Pair Produ
tionLimits for Ex
ited ν (ν∗) from Pair Produ
tionLimits for Ex
ited ν (ν∗) from Pair Produ
tionLimits for Ex
ited ν (ν∗) from Pair Produ
tionThese limits are obtained from e+ e− → ν∗ ν∗ and thus rely only on the (ele
troweak)
harge of ν∗. Form fa
tor e�e
ts are ignored unless noted. The ν∗ 
oupling is assumedto be of sequential type unless otherwise noted. All limits assume a dominant ν∗ →

ν γ de
ay ex
ept the limits from �(Z).VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>1600>1600>1600>1600 95 1 AAD 15AP ATLS pp → ν∗ ν∗X
• • • We do not use the following data for averages, �ts, limits, et
. • • •2 ABBIENDI 04N OPAL
> 102.6 95 3 ACHARD 03B L3 e+ e− → ν∗ ν∗ Homodoublet type1AAD 15AP sear
h for ν∗ pair produ
tion in evens with three or more 
harged leptons inpp 
ollisions at √

s = 8 TeV. The quoted limit assumes � = m
ν∗ , f = f ′ = 1. The
onta
t intera
tion is in
luded in the ν∗ produ
tion and de
ay amplitudes.2 From e+ e− 
ollisions at √

s = 192{209 GeV, ABBIENDI 04N obtain limit on
σ(e+ e− → ν∗ ν∗) B2(ν∗ → ν γ). See their Fig.2. The limit ranges from 20 to45 fb for m

ν∗ > 45 GeV.3 From e+ e− 
ollisions at √s = 189{209 GeV. f = − f ′ is assumed. ACHARD 03B alsoobtain limit for f = f ′: m
ν∗e > 101.7 GeV, m

ν∗
µ

> 101.8 GeV, and m
ν∗

τ

> 92.9 GeV.See their Fig. 4 for the ex
lusion plot in the mass-
oupling plane.Limits for Ex
ited ν (ν∗) from Single Produ
tionLimits for Ex
ited ν (ν∗) from Single Produ
tionLimits for Ex
ited ν (ν∗) from Single Produ
tionLimits for Ex
ited ν (ν∗) from Single Produ
tionThese limits are from e+ e− → ν ν∗, Z → ν ν∗, or e p → ν∗X and depend ontransition magneti
 
oupling between ν/e and ν∗. Assumptions about ν∗ de
ay modeare given in footnotes.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>213>213>213>213 95 1 AARON 08 H1 e p → ν∗X
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>190 95 2 ACHARD 03B L3 e+ e− → ν ν∗none 50{150 95 3 ADLOFF 02 H1 e p → ν∗X
>158 95 4 CHEKANOV 02D ZEUS e p → ν∗X

1AARON 08 sear
h for single ν∗ produ
tion in e p 
ollisions with the de
ays ν∗ → ν γ,
νZ , eW . The quoted limit assumes f = −f ′ = �/m

ν∗ . See their Fig. 3 and Fig. 4 forthe ex
lusion plots in the mass-
oupling plane.2ACHARD 03B result is from e+ e− 
ollisions at √s = 189{209 GeV. The quoted limitis for ν∗e . f = − f ′ = �/m
ν∗ is assumed. See their Fig. 4 for the ex
lusion plot in themass-
oupling plane.3ADLOFF 02 sear
h for single ν∗ produ
tion in e p 
ollisions with the de
ays ν∗ → ν γ,

νZ , eW . The quoted limit assumes f = −f ′ = �/m
ν∗ . See their Fig. 1 for the ex
lusionplots in the mass-
oupling plane.4CHEKANOV 02D sear
h for single ν∗ produ
tion in e p 
ollisions with the de
ays ν∗ →

ν γ, νZ , eW . f = −f ′ = �/m
ν∗ is assumed for the e∗ 
oupling. CHEKANOV 02Dalso obtain limit for f = f ′ = �/m

ν∗ : mν∗ >135 GeV. See their Fig. 5
 and Fig. 5d forthe ex
lusion plot in the mass-
oupling plane.MASS LIMITS for Ex
ited q (q∗)MASS LIMITS for Ex
ited q (q∗)MASS LIMITS for Ex
ited q (q∗)MASS LIMITS for Ex
ited q (q∗)Limits for Ex
ited q (q∗) from Pair Produ
tionLimits for Ex
ited q (q∗) from Pair Produ
tionLimits for Ex
ited q (q∗) from Pair Produ
tionLimits for Ex
ited q (q∗) from Pair Produ
tionThese limits are mostly obtained from e+ e− → q∗ q∗ and thus rely only on the (ele
-troweak) 
harge of the q∗. Form fa
tor e�e
ts are ignored unless noted. Assumptionsabout the q∗ de
ay are given in the 
omments and footnotes.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>338>338>338>338 95 1 AALTONEN 10H CDF q∗ → tW−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>655 95 2 AAD 14AZ ATLS T → t Z3 BARATE 98U ALEP Z → q∗ q∗
> 45.6 95 4 ADRIANI 93M L3 u or d type, Z → q∗ q∗
> 41.7 95 5 BARDADIN-... 92 RVUE u-type, �(Z)
> 44.7 95 5 BARDADIN-... 92 RVUE d-type, �(Z)
> 40.6 95 6 DECAMP 92 ALEP u-type, �(Z)
> 44.2 95 6 DECAMP 92 ALEP d-type, �(Z)
> 45 95 7 DECAMP 92 ALEP u or d type, Z → q∗ q∗
> 45 95 6 ABREU 91F DLPH u-type, �(Z)
> 45 95 6 ABREU 91F DLPH d-type, �(Z)1AALTONEN 10H obtain limits on the q∗ q∗ produ
tion 
ross se
tion in pp 
ollisions.See their Fig. 3.2AAD 14AZ quoted limit is for heavy SU(2) singlet quark T .3BARATE 98U obtain limits on the form fa
tor. See their Fig. 16 for limits in mass-formfa
tor plane.4ADRIANI 93M limit is valid for B(q∗ → qg)> 0.25 (0.17) for up (down) type.5BARDADIN-OTWINOWSKA 92 limit based on ��(Z)<36 MeV.6These limits are independent of de
ay modes.7 Limit is for B(q∗ → qg)+B(q∗ → qγ)=1.Limits for Ex
ited q (q∗) from Single Produ
tionLimits for Ex
ited q (q∗) from Single Produ
tionLimits for Ex
ited q (q∗) from Single Produ
tionLimits for Ex
ited q (q∗) from Single Produ
tionThese limits are from e+ e− → q∗ q, pp → q∗X, or pp → q∗X and depend ontransition magneti
 
ouplings between q and q∗. Assumptions about q∗ de
ay modeare given in the footnotes and 
omments.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>4060>4060>4060>4060 95 1 AAD 15V ATLS pp → q∗X , q∗ → qg
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>1390 95 2 KHACHATRY...16I CMS pp → b∗X , b∗ → tW
>3500 95 3 KHACHATRY...15V CMS pp → q∗X , q∗ → qg
>3500 95 4 AAD 14A ATLS pp → q∗X , q∗ → qγ

>3200 95 5 KHACHATRY...14 CMS pp → q∗X , q∗ → qW
>2900 95 6 KHACHATRY...14 CMS pp → q∗X , q∗ → qZnone 700{3500 95 7 KHACHATRY...14J CMS pp → q∗X , q∗ → qγ

> 870 95 8 AAD 13AF ATLS pp → b∗X , b∗ → tW
>1940 95 9 CHATRCHYAN13AI CMS pp → q∗X , q∗ → qZ ,qW
>2380 95 10 CHATRCHYAN13AJ CMS pp → q∗X , q∗ → qW
>2150 95 11 CHATRCHYAN13AJ CMS pp → q∗X , q∗ → qZ12 ABAZOV 11F D0 pp → q∗X , q∗ → qZ ,qW1AAD 15V assume � = mq∗ , fs = f = f ′ = 1. The 
onta
t intera
tions are not in
ludedin q∗ produ
tion and de
ay amplitudes.2KHACHATRYAN 16I sear
h for b∗ de
aying to tW in pp 
ollisions at √s = 8 TeV. κbL= gL = 1, κbR = gR = 0 are assumed. See their Fig. 8 for limits on σ·B.3KHACHATRYAN 15V assume � = mq∗ , fs = f = f ′ = 1. The 
onta
t intera
tions arenot in
luded in q∗ produ
tion and de
ay amplitudes.4AAD 14A assume � = mq∗ , fs = f = f ′ = 1.5KHACHATRYAN 14 use the hadroni
 de
ay of W , assuming � = mq∗ , fs=f=f ′ = 1.6KHACHATRYAN 14 use the hadroni
 de
ay of Z , assuming � = mq∗ , fs=f=f ′ = 1.7KHACHATRYAN 14J assume fs = f = f ′ = � / mq∗ .8AAD 13AF sear
h for b∗ de
aying to tW in pp 
ollisions at √s = 7 TeV. κbL=gL = 1,

κbR = gR = 0 are assumed. See their Fig.6 for limits on σ · B.9 CHATRCHYAN 13AI assume q∗ produ
tion via qg fusion and � = mq∗ , fs=f=f ′ = 1.For q∗ produ
tion via qg fusion and via 
onta
t intera
tions, the limit be
omes mq∗ >2220 GeV.10CHATRCHYAN 13AJ use the hadroni
 de
ay of W .11CHATRCHYAN 13AJ use the hadroni
 de
ay of Z .12ABAZOV 11F sear
h for ve
torlike quarks de
aying to W+jet and Z+jet in pp 
ollisions.See their Fig. 3 and Fig. 4 for the limits on σ · B.



1765176517651765See key on page 601 Sear
hes Parti
le ListingsQuark and Lepton Compositeness, Extra DimensionsMASS LIMITS for Color Sextet Quarks (q6)MASS LIMITS for Color Sextet Quarks (q6)MASS LIMITS for Color Sextet Quarks (q6)MASS LIMITS for Color Sextet Quarks (q6)VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>84>84>84>84 95 1 ABE 89D CDF pp → q6 q61ABE 89D look for pair produ
tion of unit-
harged parti
les whi
h leave the dete
torbefore de
aying. In the above limit the 
olor sextet quark is assumed to fragment into aunit-
harged or neutral hadron with equal probability and to have long enough lifetimenot to de
ay within the dete
tor. A limit of 121 GeV is obtained for a 
olor de
uplet.MASS LIMITS for Color O
tet Charged Leptons (ℓ8)MASS LIMITS for Color O
tet Charged Leptons (ℓ8)MASS LIMITS for Color O
tet Charged Leptons (ℓ8)MASS LIMITS for Color O
tet Charged Leptons (ℓ8)

λ ≡ mℓ8/�VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>86>86>86>86 95 1 ABE 89D CDF Stable ℓ8: pp → ℓ8 ℓ8
• • • We do not use the following data for averages, �ts, limits, et
. • • •2 ABT 93 H1 e8: e p → e8X1ABE 89D look for pair produ
tion of unit-
harged parti
les whi
h leave the dete
torbefore de
aying. In the above limit the 
olor o
tet lepton is assumed to fragment into aunit-
harged or neutral hadron with equal probability and to have long enough lifetimenot to de
ay within the dete
tor. The limit improves to 99 GeV if it always fragmentsinto a unit-
harged hadron.2ABT 93 sear
h for e8 produ
tion via e-gluon fusion in e p 
ollisions with e8 → e g . Seetheir Fig. 3 for ex
lusion plot in the me8{� plane for me8 = 35{220 GeV.MASS LIMITS for Color O
tet Neutrinos (ν8)MASS LIMITS for Color O
tet Neutrinos (ν8)MASS LIMITS for Color O
tet Neutrinos (ν8)MASS LIMITS for Color O
tet Neutrinos (ν8)

λ ≡ mℓ8/�VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
>110>110>110>110 90 1 BARGER 89 RVUE ν8: pp → ν8 ν8
• • • We do not use the following data for averages, �ts, limits, et
. • • •none 3.8{29.8 95 2 KIM 90 AMY ν8: e+ e− → a
oplanar jetsnone 9{21.9 95 3 BARTEL 87B JADE ν8: e+ e− → a
oplanar jets1BARGER 89 used ABE 89B limit for events with large missing transverse momentum.Two-body de
ay ν8 → ν g is assumed.2KIM 90 is at E
m = 50{60.8 GeV. The same assumptions as in BARTEL 87B are used.3BARTEL 87B is at E
m = 46.3{46.78 GeV. The limit assumes the ν8 pair produ
tion
ross se
tion to be eight times larger than that of the 
orresponding heavy neutrino pairprodu
tion. This assumption is not valid in general for the weak 
ouplings, and the limit
an be sensitive to its SU(2)L×U(1)Y quantum numbers.MASS LIMITS for W8 (Color O
tet W Boson)MASS LIMITS for W8 (Color O
tet W Boson)MASS LIMITS for W8 (Color O
tet W Boson)MASS LIMITS for W8 (Color O
tet W Boson)VALUE (GeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 ALBAJAR 89 UA1 pp → W8X, W8 → W g1ALBAJAR 89 give σ(W8 → W + jet)/σ(W ) < 0.019 (90% CL) for mW8 > 220 GeV.REFERENCES FOR Sear
hes for QuarkREFERENCES FOR Sear
hes for QuarkREFERENCES FOR Sear
hes for QuarkREFERENCES FOR Sear
hes for Quarkand Lepton Compositenessand Lepton Compositenessand Lepton Compositenessand Lepton CompositenessKHACHATRY... 16I JHEP 1601 166 V. Kha
hatryan et al. (CMS Collab.)AAD 15AP JHEP 1508 138 G. Aad et al. (ATLAS Collab.)AAD 15BY JHEP 1510 150 G. Aad et al. (ATLAS Collab.)AAD 15L PRL 114 221802 G. Aad et al. (ATLAS Collab.)AAD 15V PR D91 052007 G. Aad et al. (ATLAS Collab.)KHACHATRY... 15AE JHEP 1504 025 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15J PL B746 79 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15V PR D91 052009 V. Kha
hatryan et al. (CMS Collab.)AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.)AAD 14AZ JHEP 1411 104 G. Aad et al. (ATLAS Collab.)AAD 14BE EPJ C74 3134 G. Aad et al. (ATLAS Collab.)FABBRICHESI 14 PR D89 074028 M. Fabbri
hesi, M. Pinamonti, A. ToneroKHACHATRY... 14 JHEP 1408 173 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 14J PL B738 274 V. Kha
hatryan et al. (CMS Collab.)AAD 13AF PL B721 171 G. Aad et al. (ATLAS Collab.)AAD 13BB NJP 15 093011 G. Aad et al. (ATLAS Collab.)AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.)AAD 13E PR D87 015010 G. Aad et al. (ATLAS Collab.)CHATRCHYAN 13AE PL B720 309 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 13AI PL B722 28 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 13AJ PL B723 280 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 13AN PR D87 052017 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 13K PR D87 032001 S. Chatr
hyan et al. (CMS Collab.)AAD 12AB PL B712 40 G. Aad et al. (ATLAS Collab.)AAD 12AZ PR D85 072003 G. Aad et al. (ATLAS Collab.)CHATRCHYAN 12Z JHEP 1205 055 S. Chatr
hyan et al. (CMS Collab.)AARON 11C PL B705 52 F. D. Aaron et al. (H1 Collab.)ABAZOV 11F PRL 106 081801 V.M. Abazov et al. (D0 Collab.)ABDALLAH 11 EPJ C71 1555 J. Abdallah et al. (DELPHI Collab.)CHATRCHYAN 11X PL B704 143 S. Chatr
hyan et al. (CMS Collab.)AALTONEN 10H PRL 104 091801 T. Aaltonen et al. (CDF Collab.)ABDALLAH 09 EPJ C60 1 J. Abdallah et al. (DELPHI Collab.)AARON 08 PL B663 382 F.D. Aaron et al. (H1 Collab.)SCHAEL 07A EPJ C49 411 S. S
hael et al. (ALEPH Collab.)ABDALLAH 06C EPJ C45 589 J. Abdallah et al. (DELPHI Collab.)ABULENCIA 06L PRL 96 211801 A. Abulen
ia et al. (CDF Collab.)ABBIENDI 04G EPJ C33 173 G. Abbiendi et al. (OPAL Collab.)ABBIENDI 04N PL B602 167 G. Abbiendi et al. (OPAL Collab.)ABDALLAH 04N EPJ C37 405 J. Abdallah et al. (DELPHI Collab.)ACHARD 03B PL B568 23 P. A
hard et al. (L3 Collab.)BABICH 03 EPJ C29 103 A.A. Babi
h et al.ABBIENDI 02G PL B544 57 G. Abbiendi et al. (OPAL Collab.)ACHARD 02D PL B531 28 P. A
hard et al. (L3 Collab.)ADLOFF 02 PL B525 9 C. Adlo� et al. (H1 Collab.)CHEKANOV 02D PL B549 32 S. Chekanov et al. (ZEUS Collab.)AFFOLDER 01I PRL 87 231803 T. A�older et al. (CDF Collab.)BOURILKOV 01 PR D64 071701 D. Bourilkov

CHEUNG 01B PL B517 167 K. CheungACCIARRI 00P PL B489 81 M. A

iarri et al. (L3 Collab.)AFFOLDER 00I PR D62 012004 T. A�older et al. (CDF Collab.)BARATE 98U EPJ C4 571 R. Barate et al. (ALEPH Collab.)BARGER 98E PR D57 391 V. Barger et al.MCFARLAND 98 EPJ C1 509 K.S. M
Farland et al. (CCFR/NuTeV Collab.)DIAZCRUZ 94 PR D49 R2149 J.L. Diaz Cruz, O.A. Sampayo (CINV)ABT 93 NP B396 3 I. Abt et al. (H1 Collab.)ADRIANI 93M PRPL 236 1 O. Adriani et al. (L3 Collab.)BARDADIN-... 92 ZPHY C55 163 M. Bardadin-Otwinowska (CLER)DECAMP 92 PRPL 216 253 D. De
amp et al. (ALEPH Collab.)PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+)ABREU 91F NP B367 511 P. Abreu et al. (DELPHI Collab.)KIM 90 PL B240 243 G.N. Kim et al. (AMY Collab.)ABE 89B PRL 62 1825 F. Abe et al. (CDF Collab.)ABE 89D PRL 63 1447 F. Abe et al. (CDF Collab.)ABE 89J ZPHY C45 175 K. Abe et al. (VENUS Collab.)ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.)BARGER 89 PL B220 464 V. Barger et al. (WISC, KEK)DORENBOS... 89 ZPHY C41 567 J. Dorenbos
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EXTRA DIMENSIONS

Updated September 2015 by John Parsons (Columbia Univer-
sity) and Alex Pomarol (Universitat Autònoma de Barcelona)

I Introduction

Proposals for a spacetime with more than three spatial

dimensions date back to the 1920’s, mainly through the work

of Kaluza and Klein, in an attempt to unify the forces of

nature [1]. Although their initial idea failed, the formalism

that they and others developed is still useful nowadays. Around

1980, string theory proposed again to enlarge the number of

space dimensions, this time as a requirement for describing

a consistent theory of quantum gravity. The extra dimensions

were supposed to be compactified at a scale close to the Planck

scale, and thus not testable experimentally in the near future.

A different approach was given by Arkani-Hamed, Di-

mopoulos and Dvali (ADD) in their seminal paper in 1998 [2],

where they showed that the weakness of gravity could be ex-

plained by postulating two or more extra dimensions in which

only gravity could propagate. The size of these extra dimen-

sions should range between roughly a millimeter and ∼1/TeV,

leading to possible observable consequences in current and fu-

ture experiments. A year later, Randall and Sundrum (RS) [3]

found a new possibility using a warped geometry, postulating

a five-dimensional Anti-de Sitter (AdS) spacetime with a com-

pactification scale of order TeV. The origin of the smallness of

the electroweak scale versus the Planck scale was explained by

the gravitational redshift factor present in the warped AdS met-

ric. As in the ADD model, originally only gravity was assumed

to propagate in the extra dimensions, although it was soon

clear that this was not necessary in warped extra-dimensions

and also the SM gauge fields [4] and SM fermions [5,6] could

propagate in the five-dimensional space.
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The physics of warped extra-dimensional models has an

alternative interpretation by means of the AdS/CFT correspon-

dence [7]. Models with warped extra dimensions are related

to four-dimensional strongly-interacting theories, allowing an

understanding of the properties of five-dimensional fields as

those of four-dimensional composite states [8]. This approach

has opened new directions for tackling outstanding questions

in particle physics, such as the flavor problem, grand unifi-

cation, and the origin of electroweak symmetry breaking or

supersymmetry breaking.

Experimental

Constraints: Constraints on extra-dimensional models arise

from astrophysical and cosmological considerations. In addi-

tion, as we will show below, tabletop experiments exploring

gravity at sub-mm distances restrict certain models. Collider

limits on extra-dimensional models are dominated by Run 1

LHC results. This review includes the most recent limits, most

of which are published results based on LHC data collected in

2012 at a center-of-mass energy of 8 TeV. In addition, there

are a few preliminary 8 TeV results, which can be found on

the WWW pages of public ATLAS [9] and CMS [10]. Unless

otherwise stated, all LHC results use the full ∼20 fb−1 samples

of 8 TeV collisions recorded in 2012. Run 2 LHC results, with

operations at 13 TeV, will greatly extend the sensitivity of the

collider searches for evidence of extra dimensions, particularly

once comparable integrated luminosities (and eventually much

more) have been accumulated. For some models, much smaller

data samples already suffice; indeed a few preliminary 13 TeV

analyses focusing on strong gravity signatures have been pre-

sented at the LHCP Conference in early September 2015, and

are included here since they already surpass the sensitivity of

the 8 TeV results, despite using very early Run 2 data samples

of less than 0.1 fb−1.

Kaluza-Klein Theories: Field theories with compact extra

dimensions can be written as theories in ordinary four dimen-

sions (4D) by performing a Kaluza-Klein (KK) reduction. As

an illustration, consider a simple example, namely a field theory

of a complex scalar in flat five-dimensional (5D) spacetime. The

action will be given by †

S5 = −
∫

d4x dy M5

[
|∂µφ|2 + |∂yφ|2 + λ5|φ|4

]
, (1)

where y refers to the extra (fifth) dimension. A universal scale

M5 has been extracted in front of the action in order to keep the

5D field with the same mass-dimension as in 4D. This theory is

perturbative for energies E <∼ ℓ5M5/λ5 where ℓ5 = 24π3 [11].

Let us now consider that the fifth dimension is compact

with the topology of a circle S1 of radius R, which corresponds

to the identification of y with y + 2πR. In such a case, the 5D

complex scalar field can be expanded in a Fourier series:

φ(x, y) =
1√

2πRM5

∞∑

n=−∞
einy/Rφ(n)(x) ,

† Our convention for the metric is ηMN = Diag(−1, 1, 1, 1, 1).

that, inserted in Eq. (1) and integrating over y, gives

S5 = S
(0)
4 + S

(n)
4 ,

where

S
(0)
4 = −

∫
d4x

[
|∂µφ(0)|2 + λ4|φ(0)|4

]
, and (2)

S
(n)
4 = −

∫
d4x

∑

n6=0

[
|∂µφ(n)|2 +

( n

R

)2
|φ(n)|2

]
+ quartic int.

The n = 0 mode self-coupling is given by

λ4 =
λ5

2πRM5
. (3)

The above action corresponds to a 4D theory with a massless

scalar φ(0), referred to as the zero-mode, and an infinite tower

of massive modes φ(n), known as KK modes. The KK reduction

thus allows a treatment of 5D theories as 4D field theories with

an infinite number of fields. At energies smaller than 1/R, the

KK modes can be neglected, leaving the zero-mode action of

Eq. (2). The strength of the interaction of the zero-mode, given

by Eq. (3), decreases as R increases. Thus, for a large extra

dimension R ≫ 1/M5, the massless scalar is weakly coupled.

II Large Extra Dimensions for Gravity

II.1 The ADD Scenario

The ADD scenario [2,12,13] assumes a D = 4 + δ dimen-

sional spacetime, with δ compactified spatial dimensions. The

weakness of gravity arises since it propagates in the higher-

dimensional space. The SM is assumed to be localized in a 4D

subspace, a 3-brane, as can be found in certain string construc-

tions [14]. Gravity is described by the Einstein-Hilbert action

in D = 4 + δ spacetime dimensions

SD = −M̄2+δ
D

2

∫
d4xdδy

√
−gR +

∫
d4x

√
−gind LSM , (4)

where x labels the ordinary four coordinates, y the δ extra

coordinates, g refers to the determinant of the D-dimensional

metric whose Ricci scalar is defined by R, and M̄D is the reduced

Planck scale of the D-dimensional theory. In the second term of

Eq. (4), which gives the gravitational interactions of SM fields,

the D-dimensional metric reduces to the induced metric on the

3-brane where the SM fields propagate. The extra dimensions

are assumed to be flat and compactified in a volume Vδ. As an

example, consider a toroidal compactification of equal radii R

and volume Vδ = (2πR)δ. After a KK reduction, one finds that

the fields that couple to the SM are the spin-2 gravitational

field Gµν(x, y) and a tower of spin-1 KK graviscalars [15]. The

graviscalars, however, only couple to SM fields through the trace

of the energy-momentum tensor, resulting in weaker couplings

to the SM fields. The Fourier expansion of the spin-2 field is

given by

Gµν(x, y) = G
(0)
µν (x) +

1√
Vδ

∑

~n6=0

ei~n·~y/RG
(~n)
µν (x) , (5)
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where ~y = (y1, y2, ..., yδ) are the extra-dimensional coordinates

and ~n = (n1, n2, ..., nδ). Eq. (5) contains a massless state, the

4D graviton, and its KK tower with masses m2
~n = |~n|2/R2. At

energies below 1/R the action is that of the zero-mode

S
(0)
4 = −M̄2+δ

D

2

∫
d4x Vδ

√
−g(0)R(0) +

∫
d4x

√
−g

(0)
ind LSM ,

where we can identify the 4D reduced Planck mass, MP ≡
GN/

√
8π ≃ 2.4× 1018 GeV, as a function of the D-dimensional

parameters:

M2
P = V δM̄2+δ

D ≡ RδM2+δ
D . (6)

Fixing MD at around the electroweak scale MD ∼ TeV to avoid

introducing a new mass-scale in the model, Eq. (6) gives a

prediction for R:

δ = 1, 2, ..., 6 → R ∼ 109 km , 0.5 mm , ... , 0.1 MeV−1 . (7)

The option δ = 1 is clearly ruled out, as it leads to modifications

of Newton’s law at solar system distances. However this is not

the case for δ ≥ 2, and possible observable consequences can be

sought in present and future experiments.

Consistency of the model requires a stabilization mechanism

for the radii of the extra dimensions, to the values shown in

Eq. (7). The fact that we need R ≫ 1/MD leads to a new

hierarchy problem, the solution of which might require imposing

supersymmetry in the extra-dimensional bulk [16].

II.2 Tests of the Gravitational Force Law at Sub-mm

Distances

The KK modes of the graviton give rise to deviations from

Newton’s law of gravitation for distances .R. Such deviations

are usually parametrized by a modified Newtonian potential of

the form

V (r) = −GN
m1m2

r

[
1 + α e−r/λ

]
. (8)

For a 2-torus compactification, α = 16/3 and λ = R. Searches

for deviations from Newton’s law of gravitation have been

performed in several experiments. Ref. [17] gives the present

constraints: R < 37µm at 95% CL for δ = 2, corresponding to

MD > 3.6 TeV.

II.3 Astrophysical and Cosmological Constraints

The light KK gravitons could be copiously produced in stars,

carrying away energy. Ensuring that the graviton luminosity

is low enough to preserve the agreement of stellar models

with observations provides powerful bounds on the scale MD.

The most stringent arises from supernova SN1987A, giving

MD > 27 (2.4) TeV for δ = 2 (3) [18]. After a supernova

explosion, most of the KK gravitons stay gravitationally trapped

in the remnant neutron star. The requirement that neutron

stars are not excessively heated by KK decays into photons

leads to MD > 1700 (76) TeV for δ = 2 (3) [19].

Cosmological constraints are also quite stringent [20]. To

avoid overclosure of the universe by relic gravitons one needs

MD > 7 TeV for δ = 2. Relic KK gravitons decaying into

photons contribute to the cosmic diffuse gamma radiation, from

which one can derive the bound MD > 100 TeV for δ = 2.

We must mention however that bounds coming from the

decays of KK gravitons into photons can be reduced if we

assume that KK gravitons decay mainly into other non-SM

states. This could happen, for example, if there were other

3-branes with hidden sectors residing on them [12].

II.4 Collider Signals

II.4a Graviton and Other Particle Production

Although each KK graviton has a purely gravitational

coupling, suppressed by 1/MP , inclusive processes in which

one sums over the almost continuous spectrum of available

gravitons have cross sections suppressed only by powers of MD.

Processes involving gravitons are therefore detectable in collider

experiments if MD ∼ TeV. A number of experimental searches

for evidence of large extra dimensions have been performed at

colliders, and interpreted in the context of the ADD model.

One signature arises from direct graviton emission. By mak-

ing a derivative expansion of Einstein gravity, one can construct

an effective theory, valid for energies much lower than MD,

and use it to make predictions for graviton-emission processes

at colliders [15,21,22]. Gravitons produced in the final state

would escape detection, giving rise to missing transverse energy

( 6ET ). The results quoted below are 95% CL lower limits on MD

for a range of values of δ between 2 and 6, with more stringent

limits corresponding to lower δ values.

At hadron colliders, experimentally sensitive channels in-

clude the jet (j) + 6ET and γ + 6ET final states. The CMS

analysis of the j + 6ET final state assumes k-factors varying

between 1.4 for δ = 2, 3 and down to 1.2 for δ = 6 to account for

next-to-leading order (NLO) contributions to the signal cross

sections, and sets limits of MD > 3.53− 6.09 TeV [23]. ATLAS

j + 6ET results provide limits of MD > 3.06 − 5.25 TeV [24],

assuming leading order (LO) cross sections. For these analyses,

the LHC experiments handle somewhat differently the issue

that the effective theory is only valid for energies much less

than MD: the ATLAS results are quoted for the full space,

and include the information that suppressing the graviton cross

section by a factor M4
D/ŝ2 for

√
ŝ > MD, where

√
ŝ is the

parton-level center-of-mass energy of the hard collision, weak-

ens the limits on MD by a negligible amount (∼3%) for δ = 2

(δ = 6). CMS considers the impact of simply truncating the

differential cross section to remove the contribution from events

where
√

ŝ > MD, and shows that the effect of the truncation

changes the cross section by a maximum of 11%. Less stringent

limits are obtained by both ATLAS [25] and CMS [26] from

analyses of the γ + 6ET final state.

In models in which the ADD scenario is embedded in a

string theory at the TeV scale [14], we expect the string scale

Ms to be smaller than MD, and therefore expect production of

string resonances at the LHC [27]. A preliminary CMS Run 2

result from analysing the dijet invariant mass distribution for

42 pb−1 of 13 TeV data excludes string resonances that decay

predominantly to q+g with masses below 5.1 TeV [28], already

slightly extending their lower limit [29] of 5.0 TeV obtained
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using their complete 20 fb−1 sample of 8 TeV collisions. ATLAS

dijet analyses include a published result using their full 8 TeV

dataset [30] and a preliminary Run 2 result using 80 pb−1 of

13 TeV data [31], and provide their results in the context of

model-independent limits on the cross section times acceptance

for generic resonances of a variety of possible widths.

II.4b Virtual graviton effects

One can also search for virtual graviton effects, the cal-

culation of which however depends on the ultraviolet cut-off

of the theory and is therefore very model dependent. In the

literature, several different formulations exist [15,22,32] for the

dimension-eight operator for gravity exchange at tree level:

L8 = ± 4

M4
TT

(
TµνT

µν − 1

δ + 2
Tµ

µ T ν
ν

)
, (9)

where Tµν is the energy-momentum tensor and MTT is related

to MD by some model-dependent coefficient [33]. The relations

with the parametrizations of Refs. [32] and [15] are, respectively,

MTT = MS and MTT = (2/π)1/4ΛT . The experimental results

below are given as 95% CL lower limits on MTT , including in

some cases the possibility of both constructive or destructive

interference, depending on the sign chosen in Eq. (9).

The most stringent limits arise from LHC analyses of

the dijet angular distribution. Using their full 8 TeV dataset,

CMS [34] obtains results that correspond to an approximate

limit of MTT > 6.3 TeV. An ATLAS analysis [35] of 17 fb−1

of 8 TeV collisions would provide similar sensitivity, but quotes

the results only in the context of limits on contact interactions.

The next most restrictive results are obtained by LHC analyses

combining the dielectron and dimuon final states, with both

experiments providing similar limits of approximately MTT >

3.7 TeV. The ATLAS [36]( CMS [37]) dilepton results assume

LO (NLO) signal cross section values.

At the one-loop level, gravitons can also generate dimension-

six operators with coefficients that are also model dependent.

Experimental bounds on these operators can also give stringent

constraints on MD [33].

II.4c Black Hole Production

The physics at energies
√

s ∼ MD is sensitive to the details

of the unknown quantum theory of gravity. Nevertheless, in

the transplanckian regime,
√

s ≫ MD, one can rely on a

semiclassical description of gravity to obtain predictions. An

interesting feature of transplanckian physics is the creation of

black holes [38]. A black hole is expected to be formed in a

collision in which the impact parameter is smaller than the

Schwarzschild radius [39]:

RS =
1

MD

[
2δπ(δ−3)/2

δ + 2
Γ

(
δ + 3

2

)
MBH

MD

]1/(δ+1)

, (10)

where MBH is the mass of the black hole, which would roughly

correspond to the total energy in the collision. The cross section

for black hole production can be estimated to be of the same

order as the geometric area σ ∼ πR2
S. For MD ∼ TeV, this gives

a production of ∼ 107 black holes at the
√

s = 14 TeV LHC with

an integrated luminosity of 30 fb−1 [38]. A black hole would

provide a striking experimental signature since it is expected

to thermally radiate with a Hawking temperature TH = (δ +

1)/(4πRS), and therefore would evaporate democratically into

all SM states. Nevertheless, given the present constraints on

MD, the LHC will not be able to reach energies much above

MD. This implies that predictions based on the semiclassical

approximation could receive sizable modifications from model-

dependent quantum-gravity effects.

The most stringent limits on microscopic black holes arise

from LHC searches which observed no excesses above the SM

background in high-multiplicity final states. The results are

usually quoted as model-independent limits on the cross section

for new physics in the final state and kinematic region analyzed.

These results can then be used to provide constraints of mod-

els of low-scale gravity and weakly-coupled string theory. In

addition, limits are sometimes quoted on particular implemen-

tations of models, which are used as benchmarks to illustrate

the sensitivity. A preliminary Run 2 ATLAS search [40] for

an excess of events with multiple high transverse momentum

objects, including charged leptons and jets, using 80 pb−1 of

13 TeV data, excludes semiclassical black holes below masses of

∼ 7.3 TeV for MD = 2 TeV and δ = 6, extending by almost

1.5 TeV the limit of the corresponding analysis [41] applied to

the full 20 fb−1 8 TeV dataset. Another preliminary Run 2 AT-

LAS analysis [42], again using 80 pb−1 of 13 TeV data, looks at

very high transverse energy multijet events and excludes black

hole masses in the range 7.5 − 8.5 TeV, depending on MD, for

δ = 6, again extending the limits of the corresponding 8 TeV

analysis [43] by 0.5-1.5 TeV. The 8 TeV ATLAS analysis [44]

of the track multiplicity in same-sign dimuon events provides

lower mass limits of 5.1 - 5.7 TeV for MD = 1.5 TeV, with the

range of limits depending on depending on details of the model

and also the number of extra dimensions. A CMS analysis [45]

of multi-object final states using 12 fb−1 of 8 TeV data provides

similar limits, extending out to values of MD ∼ 5 TeV.

For black hole masses near MD, the semi-classical ap-

proximation is not valid, and one instead expects quantum

black holes (QBH) that decay primarily into two-body final

states [46]. LHC Run 1 results at 8 TeV provide lower limits

on quantum black hole masses of order 4.6 - 6.3 TeV, depending

on the details of the model. Searches that consider interpreta-

tions in terms of QBH limits include the CMS multi-object [45]

analysis, as well as their dijet analysis [29]. ATLAS results

include, in addition to their dijet analysis [30], searches in the

photon+jet [47] and lepton+jet [48] final states. The prelimi-

nary Run 2 ATLAS dijet analysis [31] using 80 pb−1 of 13 TeV

collisions extends the exclusions to 6.5− 6.8 TeV, depending on

the model details.

In weakly-coupled string models the semiclassical descrip-

tion of gravity fails in the energy range between Ms and Ms/g2
s

where stringy effects are important. In this regime one expects,

instead of black holes, the formation of string balls, made of
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highly excited long strings, that could be copiously produced at

the LHC for Ms ∼ TeV [49], and would evaporate thermally

at the Hagedorn temperature giving rise to high-multiplicity

events. The same analyses used to search for black holes can

be interpreted in the context of string balls. For example, for

the case of δ = 6 and with model parameters fixed to values of

gs = 0.4, MD = 1.5 TeV, and Ms = MD/1.26 = 1.2 TeV, the

ATLAS same-sign dimuon [44]( multiple high transverse mo-

mentum object [41]) analysis excludes string balls with minimal

masses below 5.3 (5.7) TeV. The CMS multi-object [45] analysis

excludes the production of string balls with a minimum mass

below ∼ 5.5 TeV for gs = 0.4, MD in the range of 1.4−2.1 TeV,

and Ms = MD/1.25.

III TeV-Scale Extra Dimensions

III.1 Warped Extra Dimensions

The RS model [3] is the most attractive setup of warped ex-

tra dimensions at the TeV scale, since it provides an alternative

solution to the hierarchy problem. The RS model is based on a

5D theory with the extra dimension compactified in an orbifold,

S1/Z2, a circle S1 with the extra identification of y with −y.

This corresponds to the segment y ∈ [0, πR], a manifold with

boundaries at y = 0 and y = πR. Let us now assume that this

5D theory has a cosmological constant in the bulk Λ, and on

the two boundaries Λ0 and ΛπR:

S5 = −
∫

d4x dy
{√

−g

[
1

2
M3

5R + Λ

]

+
√−g0δ(y)Λ0 +

√−gπRδ(y − πR)ΛπR

}
,

(11)

where g0 and gπR are the values of the determinant of the

induced metric on the two respective boundaries. Einstein’s

equations can be solved, giving in this case the metric

ds2 = a(y)2dxµdxνηµν + dy2 , a(y) = e−ky , (12)

where k =
√
−Λ/6M3

5 . Consistency of the solution requires

Λ0 = −ΛπR = −Λ/k. The metric in Eq. (12) corresponds to a

5D AdS space. The factor a(y) is called the “warp” factor and

determines how 4D scales change as a function of the position

in the extra dimension. In particular, this implies that energy

scales for 4D fields localized at the boundary at y = πR are

red-shifted by a factor e−kπR with respect to those localized at

y = 0. For this reason, the boundaries at y = 0 and y = πR

are usually referred to as the ultraviolet (UV) and infrared (IR)

boundaries, respectively.

As in the ADD case, we can perform a KK reduction

and obtain the low-energy effective theory of the 4D massless

graviton. In this case we obtain

M2
P =

∫ πR

0
dy e−2kyM3

5 =
M3

5

2k

(
1 − e−2kπR

)
. (13)

Taking M5 ∼ k ∼ MP , we can generate an IR-boundary scale of

order ke−kπR ∼ TeV for an extra dimension of radius R ≃ 11/k.

Mechanisms to stabilize R to this value have been proposed [50]

that, contrary to the ADD case, do not require introducing

any new small or large parameter. Therefore a natural solution

to the hierarchy problem can be achieved in this framework

if the Higgs field, whose vacuum expectation value (VEV) is

responsible for electroweak symmetry breaking, is localized at

the IR-boundary where the effective mass scales are of order

TeV. The radion field is generically heavy in models with a

stabilized R. Nevertheless, it has been recently discussed that

under some conditions a naturally light radion can arise [51].

In these cases the radion is identified with the dilaton, the

Goldstone boson associated to the spontaneous breaking of

scale invariance, and its mass can be naturally below ke−kπR ∼
TeV.

In the RS model [3], all the SM fields were assumed to be

localized on the IR-boundary. Nevertheless, for the hierarchy

problem, only the Higgs field has to be localized there. SM gauge

bosons and fermions can propagate in the 5D bulk [4,5,6,52].

By performing a KK reduction from the 5D action of a gauge

boson, we find [4]

1

g2
4

=

∫ πR

0
dy

1

g2
5

=
πR

g2
5

,

where gD (D = 4, 5) is the gauge coupling in D-dimensions.

Therefore the 4D gauge couplings can be of order one, as is the

case of the SM, if one demands g2
5 ∼ πR. Using kR ∼ 10 and

g4 ∼ 0.5, one obtains the 5D gauge coupling

g5 ∼ 4/
√

k . (14)

Boundary kinetic terms for the gauge bosons can modify this

relation, allowing for larger values of g5

√
k.

Fermions propagating in a warped extra dimension have

4D massless zero-modes with wavefunctions which vary as

f0 ∼ exp[(1/2 − cf )ky], where cfk is their 5D mass [53,6].

Depending on the free parameter cfk, fermions can be localized

either towards the UV-boundary (cf > 1/2) or IR-boundary

(cf < 1/2). Since the Higgs boson is localized on the IR-

boundary, one can generate exponentially suppressed Yukawa

couplings by having the fermion zero-modes localized towards

the UV-boundary, generating naturally the light SM fermion

spectrum [6]. A large overlap with the wavefunction of the

Higgs is needed for the top quark, in order to generate its

large mass, thus requiring it to be localized towards the IR-

boundary. In conclusion, the large mass hierarchies present in

the SM fermion spectrum can be easily obtained in warped

models via suitable choices of the order-one parameters cf [54].

In these scenarios, deviations in flavor physics from the SM

predictions are expected to arise from flavor-changing KK gluon

couplings [55], putting certain constraints on the parameters

of the models and predicting new physics effects to be observed

in B-physics processes [56].

The masses of the KK states can also be calculated. One

finds [6]

mn ≃
(

n +
α

2
− 1

4

)
πke−πkR , (15)
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where n = 1, 2, ... and α = {|cf − 1/2|, 0, 1} for KK fermions,

KK gauge bosons and KK gravitons, respectively. Their masses

are of order ke−πkR ∼ TeV; the first KK state of the gauge

bosons would be the lightest, while gravitons are expected to

be the heaviest.

III.1a Models of Electroweak Symmetry Breaking

Theories in warped extra dimensions can be used to im-

plement symmetry breaking at low energies by boundary con-

ditions [57]. For example, for a U(1) gauge symmetry in the

5D bulk, this can be easily achieved by imposing a Dirichlet

boundary condition on the IR-boundary for the gauge-boson

field, Aµ|y=πR = 0. This makes the zero-mode gauge boson

get a mass, given by mA = g4

√
2k/g2

5e
−πkR. A very different

situation occurs if the Dirichlet boundary condition is imposed

on the UV-boundary, Aµ|y=0 = 0. In this case the zero-mode

gauge boson disappears from the spectrum. Finally, if a Dirich-

let boundary condition is imposed on the two boundaries, one

obtains a massless 4D scalar corresponding to the fifth compo-

nent of the 5D gauge boson, A5. Thus, different scenarios can

be implemented by appropriately choosing the 5D bulk gauge

symmetry, G5, and the symmetries to which it reduces on the

UV and IR-boundary, HUV and HIR, respectively. In all cases

the KK spectrum comes in representations of the group G5.

The recent discovery of a light Higgs boson with mH ∼
125 GeV [58] rules out Higgsless 5D models for electroweak

symmetry breaking [59]. This discovery, however, is consistent

with 5D composite Higgs models where a light Higgs boson is

present in the spectrum.

Composite Higgs models: Warped extra dimensions can give

rise to scenarios, often called gauge-Higgs unified models, where

the Higgs boson appears as the fifth component of a 5D gauge

boson, A5. The Higgs mass is protected by the 5D gauge

invariance and can only get a nonzero value from non-local one-

loop effects [60]. To guarantee the relation M2
W ≃ M2

Z cos2 θW ,

a custodial SU(2)V symmetry is needed in the bulk and IR-

boundary [61]. The simplest realization [62] has

G5 = SU(3)c × SO(5) × U(1)X ,

HIR = SU(3)c × SO(4) × U(1)X ,

HUV = GSM .

The Higgs boson gets a potential at the one-loop level that

triggers a VEV, breaking the electroweak symmetry. In these

models there is a light Higgs boson whose mass can be around

125 GeV, as required by the recently discovered Higgs bo-

son [58]. This state, as will be explained in Sec. III.2, behaves

as a composite pseudo-Goldstone boson with couplings that

deviate from the SM Higgs [63]. The present experimental

determination of the Higgs couplings at the LHC, that agrees

with the SM predictions, put important constraints on these

scenarios [58]. The lightest KK modes of the model are color

fermions with charges Q = −1/3, 2/3 and 5/3 [64].

III.1b Constraints from Electroweak Precision Tests

Models in which the SM gauge bosons propagate in 1/TeV-

sized extra dimensions give generically large corrections to

electroweak observables. When the SM fermions are confined

on a boundary these corrections are universal and can be

parametrized by four quantities: Ŝ, T̂ , W and Y , as defined

in Ref. [65]. For warped models, where the 5D gauge coupling

of Eq. (14) is large, the most relevant parameter is T̂ , which

gives the bound mKK
>∼ 10 TeV [52]. When a custodial

symmetry is imposed [61], the main constraint comes from

the Ŝ parameter, requiring mKK
>∼ 3 TeV, independent of the

value of g5. Corrections to the ZbLb̄L coupling can also be

important [52], especially in warped models for electroweak

symmetry breaking as the ones described above.

III.1c Kaluza-Klein Searches

The main prediction of 1/TeV-sized extra dimensions is the

presence of a discretized KK spectrum, with masses around the

TeV scale, associated with the SM fields that propagate in the

extra dimension.

In the RS model [3], only gravity propagates in the

5D bulk. Experimental searches have been performed for the

lightest KK graviton through its decay to a variety of SM

particle-antiparticle pairs. The results are usually interpreted

in the plane of the dimensionless coupling k/MP versus m1,

where MP is the reduced Planck mass defined previously and m1

is the mass of the lightest KK excitation of the graviton. Since

the AdS curvature ∼ k cannot exceed the cut-off scale of the

model, which is estimated to be ℓ
1/3
5 M5 [33], one must demand

k ≪
√

2ℓ5MP . The results quoted below are 95% CL lower

limits on the KK graviton mass for a coupling k/MP = 0.1.

The most stringent limits currently arise from LHC searches

for resonances in the dilepton and diphoton final states, using

the full samples of 8 TeV collisions. The CMS [66] and AT-

LAS [67] dilepton analyses, combining results from the ee and

µµ channels, exclude gravitons with masses below 2.73 TeV

and 2.68 TeV, respectively. Similar results are obtained in the

γγ final state, which is quite powerful since it has a branching

fraction twice that of any individual lepton flavor. The ATLAS

γγ analysis [68] provides a lower limit on the graviton mass of

2.66 TeV, while a preliminary CMS result [69] excludes gravi-

tons below 2.78 TeV. Less stringent limits on the KK graviton

mass come from 8 TeV analyses of the dijet [29], HH [70]

and V V [71] final states, where V can represent either a W or

Z boson. Experimental searches for the radion [70], through

its production via gluon fusion and decaying to HH , exclude

masses from 300 to 1100 GeV for a decay constant of 1 TeV.

In warped extra-dimensional models in which the SM fields

propagate in the 5D bulk, the couplings of the KK graviton

to ee/µµ/γγ are suppressed [72], and the above bounds do

not apply. Furthermore, the KK graviton is the heaviest KK

state (see Eq. (15)), and therefore experimental searches for

KK gauge bosons and fermions are more appropriate discovery

channels in these scenarios. For the scenarios discussed above

in which only the Higgs boson and the top quark are localized
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close to the IR-boundary, the KK gauge bosons mainly decay

into top quarks, longitudinal W/Z bosons, and Higgs bosons.

Couplings to light SM fermions are suppressed by a factor

g/
√

g2
5k ∼ 0.2 [6] for the value of Eq. (14) that is considered

from now on. Searches have been made for evidence of the

lightest KK excitation of the gluon, through its decay to tt

pairs. The searches take into account the natural KK gluon

width, which is typically ∼ 15% of its mass. The decay of a

heavy particle to tt would tend to produce highly boosted top

(anti-)quarks in the final state. Products of the subsequent top

decays would therefore tend to be close to each other in the

detector. In the case of t → Wb → jjb decays, the three jets

could overlap one another and not be individually reconstructed

with the standard jet algorithms, while t → Wb → ℓνb decays

could result in the lepton failing standard isolation requirements

due to its proximity to the b-jet; in both cases, the efficiency for

properly reconstructing the final state would fall as the mass of

the original particle increases. To avoid the loss in sensitivity

which would result, a number of techniques, known generally

as “top quark tagging”, have been developed to reconstruct

and identify highly boosted top quarks, for example by using a

single “wide” jet to contain all the decay products of a hadronic

top decay. The large backgrounds from QCD jets can then be

reduced by requiring the “jet mass” be consistent with that of a

top quark, and also by examining the substructure of the wide

jet for indication that it resulted from the hadronic decay of a

top quark. These techniques are key to extending to very high

masses the range of accessible resonances decaying to tt pairs.

The CMS analysis [73] combines results from the dilepton,

lepton-plus-jets and fully hadronic final states and excludes KK

gluons with masses below 2.8 TeV. An ATLAS analysis [74] of

the lepton-plus-jets final state excludes KK gluon masses below

2.2 TeV. The results are not directly comparable between the

two LHC experiments, since they employ in their respective

analyses different implementations of the theoretical model.

A gauge boson KK excitation could be also sought through

its decay to longitudinal W/Z bosons. While searches for WZ

resonances have been used to set limits on sequential SM W ′

bosons [75] or other models, as yet no WZ experimental results

have been interpreted in the context of warped extra dimensions.

The decay to a pair of intermediate vector bosons has, however,

been exploited to search for KK gravitons in models in which

the SM fields propagate in the 5D bulk. The analyses typically

reconstruct hadronic W/Z decays using variants of the boosted

techniques mentioned previously. A combination of ATLAS

analyses [76] searching in the dilepton, single-lepton-plus-jets,

and fully hadronic final states for G∗ → V V , where V can

represent either a W or Z boson, exclude gravitons with

masses below 0.81 TeV, for a value of k/MP = 1. CMS V V

analyses with one boson decaying leptonically and the other

hadronically [77] or both decaying hadronically [71] also provide

cross section limits in the context of bulk gravitons; however, a

maximum value of k/MP = 0.5 is presented, for which no mass

exclusion is possible using the full 8 TeV sample. Less restrictive

limits in these models result from searching for G∗ → HH [78].

The lightest KK states are, in certain models, the partners of

the top quark. For example, in 5D composite Higgs models these

are colored states with charges Q = −1/3, 2/3 and 5/3, and

masses expected to be below the TeV [64]. They can be either

singly or pair-produced, and mainly decay into a combination

of W/Z with top/bottom quarks [79]. Of particular note, the

Q = 5/3 state decays mainly into W+t → W+W+b, giving

a pair of same-sign leptons in the final state. An analysis by

ATLAS [81] searching in the lepton-plus-jets final state for

evidence of pair production of the Q = 5/3 state provides

a lower mass limit of 840 GeV. Their analysis requiring in

addition to a pair of same-sign leptons at least one b-tagged

jet in the event [82] provides less stringent limits from pair

production, and also from single production, the cross section

for which is model-dependent [80]. A CMS same-sign dilepton

analysis [83] searching for pair production of the Q = 5/3 state

excludes masses below 800 GeV. Both LHC experiments have

searched for pair production of vector-like quarks T and B of

charges Q = 2/3 and −1/3 respectively, assuming the allowable

decays are T → Wb/Zt/Ht and B → Wt/Zb/Hb. In each case,

it is assumed the branching fractions of the three decay modes

sum to unity, but the individual branching fractions, which are

model-dependent, are allowed to vary within this constraint.

Depending on the values of the individual branching fractions,

CMS obtains lower limits on the mass of the T [84]( B [85])

vector-like quark in the range of 720−920 GeV (740−900 GeV),

while a summary [86] of the ATLAS searches provides lower

limits on the T (B) mass in the range of 715 − 950 GeV

(575 − 813 GeV).

III.2 Connection with Strongly-Coupled Models via the

AdS/CFT Correspondence

The AdS/CFT correspondence [7] provides a connection

between warped extra-dimensional models and strongly-coupled

theories in ordinary 4D. Although the exact connection is

only known for certain cases, the AdS/CFT techniques have

been very useful to obtain, at the qualitative level, a 4D

holographic description of the various phenomena in warped

extra-dimensional models [8].

The connection goes as follows. The physics of the bulk

AdS5 models can be interpreted as that of a 4D conformal field

theory (CFT) which is strongly coupled. The extra-dimensional

coordinate y plays the role of the renormalization scale µ of the

CFT by means of the identification µ ≡ ke−ky. Therefore the

UV-boundary corresponds in the CFT to a UV cut-off scale at

ΛUV = k ∼ MP , breaking explicitly conformal invariance, while

the IR-boundary can be interpreted as a spontaneous breaking

of the conformal symmetry at energies ke−kπR ∼ TeV. Fields

localized on the UV-boundary are elementary fields external

to the CFT, while fields localized on the IR-boundary and

KK states corresponds to composite resonances of the CFT.

Furthermore, local gauge symmetries in the 5D models, G5,
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correspond to global symmetries of the CFT, while the UV-

boundary symmetry can be interpreted as a gauging of the

subgroup HUV of G5 in the CFT. Breaking gauge symmetries

by IR-boundary conditions corresponds to the spontaneous

breaking G5 → HIR in the CFT at energies ∼ ke−kπR. Using

this correspondence one can easily derive the 4D massless

spectrum of the compactified AdS5 models. One also has the

identification k3/M3
5 ≈ 16π2/N2 and g2

5k ≈ 16π2/N r (r = 1 or

2 for CFT fields in the fundamental or adjoint representation

of the gauge group), where N plays the role of the number of

colors of the CFT. Therefore the weak-coupling limit in AdS5

corresponds to a large-N expansion in the CFT.

Following the above AdS/CFT dictionary one can under-

stand the RS solution to the hierarchy problem from a 4D

viewpoint. The equivalent 4D model is a CFT with a TeV

mass-gap and a Higgs emerging as a composite state. In the

particular case where the Higgs is the fifth-component of the

gauge-boson, A5 [87], this corresponds to models, similar to

those proposed in Ref. [88], where the Higgs is a composite

pseudo-Goldstone boson arising from the spontaneous breaking

G5 → HIR in the CFT. The AdS/CFT dictionary tells us that

KK states must behave as composite resonances. For example,

if the SM gauge bosons propagate in the 5D bulk, the lowest

KK SU(2)L-gauge boson must have properties similar to those

of the Techni-rho ρT [89] with a coupling to longitudinal W/Z

bosons given by g5

√
k ≈ gρT

, while the coupling to elementary

fermions is g2/
√

g2
5k ≈ g2FρT

/MρT
.

Fermions in compactified AdS5 also have a simple 4D

holographic interpretation. The 4D massless mode described

in Sec. III.1 corresponds to an external fermion ψi linearly

coupled to a fermionic CFT operator Oi: Lint = λiψ̄iOi + h.c..

The dimension of the operator Oi is related to the 5D fermion

mass according to Dim[Oi] = |cf + 1/2| − 1. Therefore, by

varying cf one varies Dim[Oi], making the coupling λi irrelevant

(cf > 1/2), marginal (cf = 1/2) or relevant (cf < 1/2). When

irrelevant, the coupling is exponentially suppressed at low

energies, and then the coupling of ψi to the CFT (and eventually

to the composite Higgs) is very small. When relevant, the

coupling grows in the IR and become as large as g5 (in units

of k), meaning that the fermion is as strongly coupled as the

CFT states [62]. In this latter case ψi behaves as a composite

fermion.

III.3 Flat Extra Dimensions

Models with quantum-gravity at the TeV scale, as in the

ADD scenario, can have extra (flat) dimensions of 1/TeV size, as

happens in string scenarios [90]. All SM fields may propagate

in these extra dimensions, leading to the possibility of observing

their corresponding KK states.

A simple example is to assume that the SM gauge bosons

propagate in a flat five-dimensional orbifold S1/Z2 of radius

R, with the fermions localized on a 4D boundary. The KK

gauge bosons behave as sequential SM gauge bosons with

a coupling to fermions enhanced by a factor
√

2 [90]. The

experimental limits on such sequential gauge bosons could

therefore be recast as limits on KK gauge bosons. Such an

interpretation of the ATLAS 7 TeV dilepton analysis [91]

yielded the bound 1/R > 4.16 TeV, while a CMS 8 TeV

search with a lepton and missing transverse energy in the final

state [92] give 1/R > 3.4 TeV. Indirect bounds from LEP2

require however 1/R >∼ 6 TeV [93,65].

An alternative scenario, known as Universal Extra Di-

mensions (UED) [94], assumes that all SM fields propagate

universally in a flat orbifold S1/Z2 with an extra Z2 parity,

called KK-parity, that interchanges the two boundaries. In this

case, the lowest KK state is stable and is a Dark Matter candi-

date. At colliders, the KK particles would have to be created in

pairs, and would then cascade decay to the lightest KK particle

(LKP), which would be stable and escape detection. Experi-

mental signatures, such as jets or leptons and 6ET , would be

similar to those of typical R-parity conserving SUSY searches.

Theoretical studies of the trilepton final state [95] suggest a po-

tential bound from the LHC at 8 TeV with 20 fb−1 of 1/R >∼ 1.3

TeV for ΛR = 10, where Λ is the cut-off scale of the model.

The experimental searches have not yet been interpreted in

the general UED scenario; for example, the ATLAS trilepton

analysis [96] of their full 8 TeV dataset provides upper limits on

the visible cross section for new physics that could be utilized

to determine UED limits.

Experimental limits have been provided on two specific

UED models which include KK parity violation. In one case,

KK parity is violated by gravitational interactions [97], and

the LKP can decay via γ∗ → γ + G. Beginning with strong

production of a pair of KK quarks and/or gluons [98,99], the

final state would be γγ + 6ET +X . Using their full 7 TeV

datasets, ATLAS [100] and CMS [101] each determine a limit of

1/R >∼ 1.4 TeV for ΛR = 20. In a second model, that involves

two UEDs, the breaking of the KK parity allows the decay

of the KK photon to tt̄ [102]. The ATLAS vector-like quark

search [86]( same-sign dilepton plus b-jet analysis [82]) , applied

to search for a tt̄tt̄ final state for evidence of pair-produced KK

photons, excludes KK masses below 1.12 TeV (0.96 TeV) in

this model.

Finally, realistic models of electroweak symmetry breaking

can also be constructed with flat extra spatial dimensions,

similarly to those in the warped case, requiring, however, the

presence of sizeable boundary kinetic terms [103]. There is

also the possibility of breaking supersymmetry by boundary

conditions [104]. Models of this type could explain naturally

the presence of a Higgs boson lighter than MD ∼ TeV [105].
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e LawLimits on R from Deviations in Gravitational For
e LawLimits on R from Deviations in Gravitational For
e LawThis se
tion in
ludes limits on the size of extra dimensions from deviations in the New-tonian (1/r2) gravitational for
e law at short distan
es. Deviations are parametrizedby a gravitational potential of the form V=−(G m m'/r) [1 + α exp(−r/R)℄. For δtoroidal extra dimensions of equal size, α = 8δ/3. Quoted bounds are for δ = 2 unlessotherwise noted.VALUE (µm) CL% DOCUMENT ID COMMENT

< 30< 30< 30< 30 95 1 KAPNER 07 Torsion pendulum
• • • We do not use the following data for averages, �ts, limits, et
. • • •2 XU 13 Nu
lei properties3 BEZERRA 11 Torsion os
illator4 SUSHKOV 11 Torsion pendulum5 BEZERRA 10 Mi
ro
antilever6 MASUDA 09 Torsion pendulum7 GERACI 08 Mi
ro
antilever8 TRENKEL 08 Newton's 
onstant9 DECCA 07A Torsion os
illator

< 47 95 10 TU 07 Torsion pendulum11 SMULLIN 05 Mi
ro
antilever
<130 95 12 HOYLE 04 Torsion pendulum13 CHIAVERINI 03 Mi
ro
antilever
. 200 95 14 LONG 03 Mi
ro
antilever
<190 95 15 HOYLE 01 Torsion pendulum16 HOSKINS 85 Torsion pendulum1KAPNER 07 sear
h for new for
es, probing a range of α ≃ 10−3{105 and lengths
ales R ≃ 10{1000 µm. For δ = 1 the bound on R is 44 µm. For δ = 2, the bound isexpressed in terms of M∗, here translated to a bound on the radius. See their Fig. 6 fordetails on the bound.2XU 13 obtain 
onstraints on non-Newtonian for
es with strengths ∣∣α

∣∣ ≃ 1034{1036 andlength s
ales R ≃ 1{10 fm. See their Fig. 4 for more details. These 
onstraints do notpla
e limits on the size of extra 
at dimensions.3BEZERRA 11 obtain 
onstraints on non-Newtonian for
es with strengths 1011.
∣∣α

∣∣.1018 and length s
ales R = 30{1260 nm. See their Fig. 2 for more details. These
onstraints do not pla
e limits on the size of extra 
at dimensions.4 SUSHKOV 11 obtain improved limits on non-Newtonian for
es with strengths 107.∣∣α
∣∣ . 1011 and length s
ales 0.4 µm < R < 4 µm (95% CL). See their Fig. 2.These bounds do not pla
e limits on the size of extra 
at dimensions. However, a modeldependent bound of M∗ > 70 TeV is obtained assuming gauge bosons that 
ouple tobaryon number also propagate in (4 + δ) dimensions.5BEZERRA 10 obtain improved 
onstraints on non-Newtonian for
es with strengths1019.

∣∣α
∣∣. 1029 and length s
ales R = 1.6{14 nm (95% CL). See their Fig. 1.This bound does not pla
e limits on the size of extra 
at dimensions.6MASUDA 09 obtain improved 
onstraints on non-Newtonian for
es with strengths 109.∣∣α

∣∣. 1011 and length s
ales R = 1.0{2.9 µm (95% CL). See their Fig. 3. This bounddoes not pla
e limits on the size of extra 
at dimensions.7GERACI 08 obtain improved 
onstraints on non-Newtonian for
es with strengths ∣∣α
∣∣ >14,000 and length s
ales R = 5{15 µm. See their Fig. 9. This bound does not pla
elimits on the size of extra 
at dimensions.8TRENKEL 08 uses two independent measurements of Newton's 
onstant G to 
onstrainnew for
es with strength ∣∣α

∣∣ ≃ 10−4 and length s
ales R = 0.02{1 m. See their Fig. 1.This bound does not pla
e limits on the size of extra 
at dimensions.9DECCA 07A sear
h for new for
es and obtain bounds in the region with strengths ∣∣α
∣∣ ≃1013{1018 and length s
ales R = 20{86 nm. See their Fig. 6. This bound does notpla
e limits on the size of extra 
at dimensions.10TU 07 sear
h for new for
es probing a range of ∣∣α

∣∣ ≃ 10−1{105 and length s
ales R
≃ 20{1000 µm. For δ = 1 the bound on R is 53 µm. See their Fig. 3 for details on thebound.11 SMULLIN 05 sear
h for new for
es, and obtain bounds in the region with strengths
α ≃ 103{108 and length s
ales R = 6{20 µm. See their Figs. 1 and 16 for details onthe bound. This work does not pla
e limits on the size of extra 
at dimensions.12HOYLE 04 sear
h for new for
es, probing α down to 10−2 and distan
es down to 10µm.Quoted bound on R is for δ = 2. For δ = 1, bound goes to 160 µm. See their Fig. 34for details on the bound.13CHIAVERINI 03 sear
h for new for
es, probing α above 104 and λ down to 3µm, �ndingno signal. See their Fig. 4 for details on the bound. This bound does not pla
e limits onthe size of extra 
at dimensions.14 LONG 03 sear
h for new for
es, probing α down to 3, and distan
es down to about10µm. See their Fig. 4 for details on the bound.15HOYLE 01 sear
h for new for
es, probing α down to 10−2 and distan
es down to 20µm.See their Fig. 4 for details on the bound. The quoted bound is for α ≥ 3.16HOSKINS 85 sear
h for new for
es, probing distan
es down to 4 mm. See their Fig. 13for details on the bound. This bound does not pla
e limits on the size of extra 
atdimensions.Limits on R from On-Shell Produ
tion of Gravitons: δ = 2Limits on R from On-Shell Produ
tion of Gravitons: δ = 2Limits on R from On-Shell Produ
tion of Gravitons: δ = 2Limits on R from On-Shell Produ
tion of Gravitons: δ = 2This se
tion in
ludes limits on on-shell produ
tion of gravitons in 
ollider and astro-physi
al pro
esses. Bounds quoted are on R, the assumed 
ommon radius of the 
atextra dimensions, for δ = 2 extra dimensions. Studies often quote bounds in terms ofderived parameter; experiments are a
tually sensitive to the masses of the KK gravi-tons: m~n = ∣∣~n

∣∣/R. See the Review on \Extra Dimensions" for details. Bounds aregiven in µm for δ = 2.VALUE (µm) CL% DOCUMENT ID TECN COMMENT
< 15< 15< 15< 15 95 1 KHACHATRY...15AL CMS pp → j G
< 0.00016< 0.00016< 0.00016< 0.00016 95 2 HANNESTAD 03 Neutron star heating
• • • We do not use the following data for averages, �ts, limits, et
. • • •95 3 AAD 15CS ATLS pp → γG
< 25 95 4 AAD 13AD ATLS pp → j G
< 127 95 5 AAD 13C ATLS pp → γG
< 34.4 95 6 AAD 13D ATLS pp → j j
< 0.0087 95 7 AJELLO 12 FLAT Neutron star γ sour
es
< 23 95 8 CHATRCHYAN12AP CMS pp → j G
< 92 95 9 AAD 11S ATLS pp → j G
< 72 95 10 CHATRCHYAN11U CMS pp → j G
< 245 95 11 AALTONEN 08AC CDF pp → γG , j G
< 615 95 12 ABAZOV 08S D0 pp → γG
< 0.916 95 13 DAS 08 Supernova 
ooling
< 350 95 14 ABULENCIA,A 06 CDF pp → j G
< 270 95 15 ABDALLAH 05B DLPH e+ e− → γG
< 210 95 16 ACHARD 04E L3 e+ e− → γG
< 480 95 17 ACOSTA 04C CDF pp → j G
< 0.00038 95 18 CASSE 04 Neutron star γ sour
es
< 610 95 19 ABAZOV 03 D0 pp → j G
< 0.96 95 20 HANNESTAD 03 Supernova 
ooling
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hes Parti
le ListingsExtra Dimensions
< 0.096 95 21 HANNESTAD 03 Di�use γ ba
kground
< 0.051 95 22 HANNESTAD 03 Neutron star γ sour
es
< 300 95 23 HEISTER 03C ALEP e+ e− → γG24 FAIRBAIRN 01 Cosmology
< 0.66 95 25 HANHART 01 Supernova 
ooling26 CASSISI 00 Red giants
<1300 95 27 ACCIARRI 99S L3 e+ e− → Z G1KHACHATRYAN 15AL sear
h for pp → j G , using 19.7 fb−1 of data at √

s = 8 TeVto pla
e bounds on MD for two to six extra dimensions, from whi
h this bound on R isderived. See their Table 7 for bounds on all δ ≤ 6.2HANNESTAD 03 obtain a limit on R from the heating of old neutron stars by thesurrounding 
loud of trapped KK gravitons. Limits for all δ ≤ 7 are given in theirTables V and VI. These limits supersede those in HANNESTAD 02.3AAD 15CS sear
h for pp → γG , using 20.3 fb−1 of data at √s = 8 TeV to pla
e lowerlimits on MD for two to six extra dimensions (see their Fig. 18).4AAD 13AD sear
h for pp → j G , using 4.7 fb−1 of data at √s = 7 TeV to pla
e boundson MD for two to six extra dimensions, from whi
h this bound on R is derived. See theirTable 8 for bounds on all δ ≤ 6.5AAD 13C sear
h for pp → γG , using 4.6 fb−1 of data at √s = 7 TeV to pla
e boundson MD for two to six extra dimensions, from whi
h this bound on R is derived.6AAD 13D sear
h for the dijet de
ay of quantum bla
k holes in 4.8 fb−1 of data produ
edin pp 
ollisions at √s = 7 TeV to pla
e bounds onMD for two to seven extra dimensions,from whi
h these bounds on R are derived. Limits on MD for all δ ≤ 7 are given intheir Table 3.7AJELLO 12 obtain a limit on R from the gamma-ray emission of point γ sour
es thatarise from the photon de
ay of KK gravitons whi
h are gravitationally bound aroundneutron stars. Limits for all δ ≤ 7 are given in their Table 7.8CHATRCHYAN 12AP sear
h for pp → j G , using 5.0 fb−1 of data at √s = 7 TeV topla
e bounds on MD for two to six extra dimensions, from whi
h this bound on R isderived. See their Table 7 for bounds on all δ ≤ 6.9AAD 11S sear
h for pp → j G , using 33 pb−1 of data at √s = 7 TeV, to pla
e boundson MD for two to four extra dimensions, from whi
h these bounds on R are derived. Seetheir Table 3 for bounds on all δ ≤ 4.10CHATRCHYAN 11U sear
h for pp → j G , using 36 pb−1 of data at √
s = 7 TeV, topla
e bounds on MD for two to six extra dimensions, from whi
h these bounds on R arederived. See their Table 3 for bounds on all δ ≤ 6.11AALTONEN 08AC sear
h for pp → γG and pp → j G at √

s = 1.96 TeV with 2.0fb−1 and 1.1 fb−1 respe
tively, in order to pla
e bounds on the fundamental s
ale andsize of the extra dimensions. See their Table III for limits on all δ ≤ 6.12ABAZOV 08S sear
h for pp → γG , using 1 fb−1 of data at √
s = 1.96 TeV to pla
ebounds on MD for two to eight extra dimensions, from whi
h these bounds on R arederived. See their paper for intermediate values of δ.13DAS 08 obtain a limit on R from Kaluza-Klein graviton 
ooling of SN1987A due toplasmon-plasmon annihilation.14ABULENCIA,A 06 sear
h for pp → j G using 368 pb−1 of data at √s = 1.96 TeV. Seetheir Table II for bounds for all δ ≤ 6.15ABDALLAH 05B sear
h for e+ e− → γG at √s = 180{209 GeV to pla
e bounds onthe size of extra dimensions and the fundamental s
ale. Limits for all δ ≤ 6 are givenin their Table 6. These limits supersede those in ABREU 00Z.16ACHARD 04E sear
h for e+ e− → γG at √s = 189{209 GeV to pla
e bounds on thesize of extra dimensions and the fundamental s
ale. See their Table 8 for limits with

δ ≤ 8. These limits supersede those in ACCIARRI 99R.17ACOSTA 04C sear
h for pp → j G at √
s = 1.8 TeV to pla
e bounds on the size ofextra dimensions and the fundamental s
ale. See their paper for bounds on δ = 4, 6.18CASSE 04 obtain a limit on R from the gamma-ray emission of point γ sour
es thatarises from the photon de
ay of gravitons around newly born neutron stars, applying thete
hnique of HANNESTAD 03 to neutron stars in the gala
ti
 bulge. Limits for all δ ≤7 are given in their Table I.19ABAZOV 03 sear
h for pp → j G at √s=1.8 TeV to pla
e bounds on MD for 2 to 7extra dimensions, from whi
h these bounds on R are derived. See their paper for boundson intermediate values of δ. We quote results without the approximate NLO s
alingintrodu
ed in the paper.20HANNESTAD 03 obtain a limit on R from graviton 
ooling of supernova SN1987a.Limits for all δ ≤ 7 are given in their Tables V and VI.21HANNESTAD 03 obtain a limit on R from gravitons emitted in supernovae and whi
hsubsequently de
ay, 
ontaminating the di�use 
osmi
 γ ba
kground. Limits for all δ ≤ 7are given in their Tables V and VI. These limits supersede those in HANNESTAD 02.22HANNESTAD 03 obtain a limit on R from gravitons emitted in two re
ent supernovaeand whi
h subsequently de
ay, 
reating point γ sour
es. Limits for all δ ≤ 7 are given intheir Tables V and VI. These limits are 
orre
ted in the published erratum.23HEISTER 03C use the pro
ess e+ e− → γG at √s = 189{209 GeV to pla
e boundson the size of extra dimensions and the s
ale of gravity. See their Table 4 for limits with

δ ≤ 6 for derived limits on MD .24 FAIRBAIRN 01 obtains bounds on R from over produ
tion of KK gravitons in the earlyuniverse. Bounds are quoted in paper in terms of fundamental s
ale of gravity. Boundsdepend strongly on temperature of QCD phase transition and range from R< 0.13 µmto 0.001 µm for δ=2; bounds for δ=3,4 
an be derived from Table 1 in the paper.25HANHART 01 obtain bounds on R from limits on graviton 
ooling of supernova SN 1987ausing numeri
al simulations of proto-neutron star neutrino emission.26CASSISI 00 obtain rough bounds on MD (and thus R) from red giant 
ooling for δ=2,3.See their paper for details.27ACCIARRI 99S sear
h for e+ e− → Z G at √s=189 GeV. Limits on the gravity s
aleare found in their Table 2, for δ ≤ 4.Mass Limits on MTTMass Limits on MTTMass Limits on MTTMass Limits on MTTThis se
tion in
ludes limits on the 
ut-o� mass s
ale, MTT , of dimension-8 operatorsfrom KK graviton ex
hange in models of large extra dimensions. Ambiguities in theUV-divergent summation are absorbed into the parameter λ, whi
h is taken to be λ =
±1 in the following analyses. Bounds for λ = −1 are shown in parenthesis after thebound for λ = +1, if appropriate. Di�erent papers use slightly di�erent de�nitions ofthe mass s
ale. The de�nition used here is related to another popular 
onvention byM4

TT
= (2/π) �4

T
, as dis
ussed in the above Review on \Extra Dimensions."VALUE (TeV) CL% DOCUMENT ID TECN COMMENT

> 6.3> 6.3> 6.3> 6.3 95 1 KHACHATRY...15J CMS pp → dijet, ang. distrib.
>20.6>20.6>20.6>20.6 (> 15.7)(> 15.7)(> 15.7)(> 15.7) 95 2 GIUDICE 03 RVUE Dim-6 operators

• • • We do not use the following data for averages, �ts, limits, et
. • • •
> 3.7 95 3 KHACHATRY...15AE CMS pp → e+ e−, µ+µ−
> 3.8 95 4 AAD 14BE ATLS pp → e+ e−, µ+µ−
> 2.94 (>2.52) 95 5 AAD 13AS ATLS pp → γ γ

> 3.2 95 6 AAD 13E ATLS pp → e+ e−,µ+µ−,γ γ

> 2.66 (>2.27) 95 7 AAD 12Y ATLS pp → γ γ8 BAAK 12 RVUE Ele
troweak
> 2.86 95 9 CHATRCHYAN12J CMS pp → e+ e−, µ+µ−
> 2.84 (>2.41) 95 10 CHATRCHYAN12R CMS pp → γ γ

> 0.90 (>0.92) 95 11 AARON 11C H1 e± p → e±X
> 1.74 (>1.71) 95 12 CHATRCHYAN11A CMS pp → γ γ

> 1.48 95 13 ABAZOV 09AE D0 pp → dijet, ang. distrib.
> 1.45 95 14 ABAZOV 09D D0 pp → e+ e−, γ γ

> 1.1 (> 1.0) 95 15 SCHAEL 07A ALEP e+ e− → e+ e−
> 0.898 (> 0.998) 95 16 ABDALLAH 06C DLPH e+ e− → ℓ+ ℓ−
> 0.853 (> 0.939) 95 17 GERDES 06 pp → e+ e−, γ γ

> 0.96 (> 0.93) 95 18 ABAZOV 05V D0 pp → µ+µ−
> 0.78 (> 0.79) 95 19 CHEKANOV 04B ZEUS e± p → e±X
> 0.805 (> 0.956) 95 20 ABBIENDI 03D OPAL e+ e− → γ γ

> 0.7 (> 0.7) 95 21 ACHARD 03D L3 e+ e− → Z Z
> 0.82 (> 0.78) 95 22 ADLOFF 03 H1 e± p → e±X
> 1.28 (> 1.25) 95 23 GIUDICE 03 RVUE
> 0.80 (> 0.85) 95 24 HEISTER 03C ALEP e+ e− → γ γ

> 0.84 (> 0.99) 95 25 ACHARD 02D L3 e+ e− → γ γ

> 1.2 (> 1.1) 95 26 ABBOTT 01 D0 pp → e+ e−, γ γ

> 0.60 (> 0.63) 95 27 ABBIENDI 00R OPAL e+ e− → µ+µ−
> 0.63 (> 0.50) 95 27 ABBIENDI 00R OPAL e+ e− → τ+ τ−
> 0.68 (> 0.61) 95 27 ABBIENDI 00R OPAL e+ e− → µ+µ−,τ+ τ−28 ABREU 00A DLPH e+ e− → γ γ

> 0.680 (> 0.542) 95 29 ABREU 00S DLPH e+ e− → µ+µ−,τ+ τ−
> 15{28 99.7 30 CHANG 00B RVUE Ele
troweak
> 0.98 95 31 CHEUNG 00 RVUE e+ e− → γ γ

> 0.29{0.38 95 32 GRAESSER 00 RVUE (g−2)µ
> 0.50{1.1 95 33 HAN 00 RVUE Ele
troweak
> 2.0 (> 2.0) 95 34 MATHEWS 00 RVUE p p → j j
> 1.0 (> 1.1) 95 35 MELE 00 RVUE e+ e− → V V36 ABBIENDI 99P OPAL37 ACCIARRI 99M L338 ACCIARRI 99S L3
> 1.412 (> 1.077) 95 39 BOURILKOV 99 e+ e− → e+ e−1KHACHATRYAN 15J use dijet angular distributions in 19.7 fb−1 of data from pp 
olli-sions at √s = 8 TeV to pla
e a lower bound on �T , here 
onverted to MTT .2GIUDICE 03 pla
e bounds on �6, the 
oeÆ
ient of the gravitationally-indu
ed dimension-6 operator (2πλ/�26)(∑ f γµγ5f)(∑ f γµγ5f), using data from a variety of experiments.Results are quoted for λ=±1 and are independent of δ.3KHACHATRYAN 15AE use 20.6 (19.7) fb−1 of data from pp 
ollisions at √s = 8 TeV inthe dimuon (diele
tron) 
hannel to pla
e a lower limit on �T , here 
onverted to MTT .4AAD 14BE use 20 fb−1 of data from pp 
ollisions at √s = 8 TeV in the dilepton 
hannelto pla
e lower limits on MTT (equivalent to their MS ).5AAD 13AS use 4.9 fb−1 of data from pp 
ollisions at √s = 7 TeV to pla
e lower limitson MTT (equivalent to their MS ).6AAD 13E use 4.9 and 5.0 fb−1 of data from pp 
ollisions at √

s = 7 TeV in thediele
tron and dimuon 
hannels, respe
tively, to pla
e lower limits on MTT (equivalentto their MS ). The diele
tron and dimuon 
hannels are 
ombined with previous results inthe diphoton 
hannel to set the best limit. Bounds on individual 
hannels and di�erentpriors 
an be found in their Table VIII.7AAD 12Y use 2.12 fb−1 of data from pp 
ollisions at √s = 7 TeV to pla
e lower limitson MTT (equivalent to their MS ).8BAAK 12 use ele
troweak pre
ision observables to pla
e bounds on the ratio �T /MDas a fun
tion of MD . See their Fig. 22 for 
onstraints with a Higgs mass of 120 GeV.9CHATRCHYAN 12J use approximately 2 fb−1 of data from pp 
ollisions at √s = 7 TeVin the diele
tron and dimuon 
hannels to pla
e lower limits on �T , here 
onverted toMTT .10CHATRCHYAN 12R use 2.2 fb−1 of data from pp 
ollisions at √
s = 7 TeV to pla
elower limits on MTT (equivalent to their MS ).11AARON 11C sear
h for deviations in the di�erential 
ross se
tion of e± p → e±X in446 pb−1 of data taken at √s = 301 and 319 GeV to pla
e a bound on MTT .12CHATRCHYAN 11A use 36 pb−1 of data from pp 
ollisions at √
s = 7 TeV to pla
elower limits on �T , here 
onverted to MTT .13ABAZOV 09AE use dijet angular distributions in 0.7 fb−1 of data from pp 
ollisions at√

s = 1.96 TeV to pla
e lower bounds on �T (equivalent to their MS), here 
onvertedto MTT .14ABAZOV 09D use 1.05 fb−1 of data from pp 
ollisions at √s = 1.96 TeV to pla
e lowerbounds on �T (equivalent to their Ms ), here 
onverted to MTT .15 SCHAEL 07A use e+ e− 
ollisions at √s = 189{209 GeV to pla
e lower limits on �T ,here 
onverted to limits on MTT .16ABDALLAH 06C use e+ e− 
ollisions at √
s ∼ 130{207 GeV to pla
e lower limits onMTT , whi
h is equivalent to their de�nition of Ms . Bound shown in
ludes all possible�nal state leptons, ℓ = e, µ, τ . Bounds on individual leptoni
 �nal states 
an be foundin their Table 31.17GERDES 06 use 100 to 110 pb−1 of data from pp 
ollisions at √

s = 1.8 TeV, asre
orded by the CDF Collaboration during Run I of the Tevatron. Bound shown in
ludesa K -fa
tor of 1.3. Bounds on individual e+ e− and γ γ �nal states are found in theirTable I.18ABAZOV 05V use 246 pb−1 of data from pp 
ollisions at √s = 1.96 TeV to sear
h fordeviations in the di�erential 
ross se
tion to µ+µ− from graviton ex
hange.
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le ListingsExtra Dimensions19CHEKANOV 04B sear
h for deviations in the di�erential 
ross se
tion of e± p → e±Xwith 130 pb−1 of 
ombined data and Q2 values up to 40,000 GeV2 to pla
e a boundon MTT .20ABBIENDI 03D use e+ e− 
ollisions at √s=181{209 GeV to pla
e bounds on the ul-traviolet s
ale MTT , whi
h is equivalent to their de�nition of Ms .21ACHARD 03D look for deviations in the 
ross se
tion for e+ e− → Z Z from √s =200{209 GeV to pla
e a bound on MTT .22ADLOFF 03 sear
h for deviations in the di�erential 
ross se
tion of e± p → e±X at√s=301 and 319 GeV to pla
e bounds on MTT .23GIUDICE 03 review existing experimental bounds on MTT and derive a 
ombined limit.24HEISTER 03C use e+ e− 
ollisions at √s= 189{209 GeV to pla
e bounds on the s
aleof dim-8 gravitational intera
tions. Their M±s is equivalent to our MTT with λ=±1.25ACHARD 02 sear
h for s-
hannel graviton ex
hange e�e
ts in e+ e− → γ γ at E
m =192{209 GeV.26ABBOTT 01 sear
h for variations in di�erential 
ross se
tions to e+ e− and γ γ �nalstates at the Tevatron.27ABBIENDI 00R uses e+ e− 
ollisions at √s= 189 GeV.28ABREU 00A sear
h for s-
hannel graviton ex
hange e�e
ts in e+ e− → γ γ at E
m=189{202 GeV.29ABREU 00S uses e+ e− 
ollisions at√s=183 and 189 GeV. Bounds on µ and τ individual�nal states given in paper.30CHANG 00B derive 3σ limit on MTT of (28,19,15) TeV for δ=(2,4,6) respe
tivelyassuming the presen
e of a torsional 
oupling in the gravitational a
tion. Highly modeldependent.31CHEUNG 00 obtains limits from anomalous diphoton produ
tion at OPAL due to gravitonex
hange. Original limit for δ=4. However, unknown UV theory renders δ dependen
eunreliable. Original paper works in HLZ 
onvention.32GRAESSER 00 obtains a bound from graviton 
ontributions to g−2 of the muon throughloops of 0.29 TeV for δ=2 and 0.38 TeV for δ=4,6. Limits s
ale as λ1/2. However
al
ulational s
heme not well-de�ned without spe
i�
ation of high-s
ale theory. See the\Extra Dimensions Review."33HAN 00 
al
ulates 
orre
tions to gauge boson self-energies from KK graviton loops and
onstrain them using S and T. Bounds on MTT range from 0.5 TeV (δ=6) to 1.1 TeV(δ=2); see text. Limits have strong dependen
e, λδ+2, on unknown λ 
oeÆ
ient.34MATHEWS 00 sear
h for eviden
e of graviton ex
hange in CDF and D� dijet produ
tiondata. See their Table 2 for slightly stronger δ-dependent bounds. Limits expressed interms of M̃4S = M4TT /8.35MELE 00 obtains bound from KK graviton 
ontributions to e+ e− → V V (V=γ,W ,Z)at LEP. Authors use Hewett 
onventions.36ABBIENDI 99P sear
h for s-
hannel graviton ex
hange e�e
ts in e+ e− → γ γ atE
m=189 GeV. The limits G+ > 660 GeV and G− > 634 GeV are obtained from
ombined E
m=183 and 189 GeV data, where G± is a s
ale related to the fundamentalgravity s
ale.37ACCIARRI 99M sear
h for the rea
tion e+ e− → γG and s-
hannel graviton ex
hangee�e
ts in e+ e− → γ γ, W+W−, Z Z , e+ e−, µ+µ−, τ+ τ−, qq at E
m=183 GeV.Limits on the gravity s
ale are listed in their Tables 1 and 2.38ACCIARRI 99S sear
h for the rea
tion e+ e− → Z G and s-
hannel graviton ex
hangee�e
ts in e+ e− → γ γ, W+W−, Z Z , e+ e−, µ+µ−, τ+ τ−, qq at E
m=189 GeV.Limits on the gravity s
ale are listed in their Tables 1 and 2.39BOURILKOV 99 performs global analysis of LEP data on e+ e− 
ollisions at √s=183and 189 GeV. Bound is on �T .Limits on 1/R = M
Limits on 1/R = M
Limits on 1/R = M
Limits on 1/R = M
This se
tion in
ludes limits on 1/R = M
 , the 
ompa
ti�
ation s
ale in models withone TeV-sized extra dimension, due to ex
hange of Standard Model KK ex
itations.Bounds assume fermions are not in the bulk, unless stated otherwise. See the \ExtraDimensions" review for dis
ussion of model dependen
e.VALUE (TeV) CL% DOCUMENT ID TECN COMMENT
>4.16>4.16>4.16>4.16 95 1 AAD 12CC ATLS pp → ℓℓ

>6.1>6.1>6.1>6.1 2 BARBIERI 04 RVUE Ele
troweak
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>3.8 95 3 ACCOMANDO 15 RVUE Ele
troweak
>3.40 95 4 KHACHATRY...15T CMS pp → ℓX95 5 CHATRCHYAN13AQ CMS pp → ℓX
>1.38 95 6 CHATRCHYAN13W CMS pp → γ γ, δ=6, MD=5 TeV
>0.715 95 7 EDELHAUSER 13 RVUE pp → ℓℓ + X
>1.40 95 8 AAD 12CP ATLS pp → γ γ, δ=6, MD=5 TeV
>1.23 95 9 AAD 12X ATLS pp → γ γ, δ=6, MD=5 TeV
>0.26 95 10 ABAZOV 12M D0 pp → µµ

>0.75 95 11 BAAK 12 RVUE Ele
troweak12 FLACKE 12 RVUE Ele
troweak
>0.43 95 13 NISHIWAKI 12 RVUE H → WW , γ γ

>0.729 95 14 AAD 11F ATLS pp → γ γ, δ=6, MD=5 TeV
>0.961 95 15 AAD 11X ATLS pp → γ γ, δ=6, MD=5 TeV
>0.477 95 16 ABAZOV 10P D0 pp → γ γ, δ=6, MD=5 TeV
>1.59 95 17 ABAZOV 09AE D0 pp → dijet, angular dist.
>0.6 95 18 HAISCH 07 RVUE B → Xs γ

>0.6 90 19 GOGOLADZE 06 RVUE Ele
troweak
>3.3 95 20 CORNET 00 RVUE Ele
troweak
> 3.3{3.8 95 21 RIZZO 00 RVUE Ele
troweak

1AAD 12CC use 4.9 and 5.0 fb−1 of data from pp 
ollisions at √
s = 7 TeV in thediele
tron and dimuon 
hannels, respe
tively, to pla
e a lower bound on the mass of thelightest KK Z/γ boson (equivalent to 1/R = M
 ). The limit quoted here assumes a 
atprior 
orresponding to when the pure Z/γ KK 
ross se
tion term dominates. See theirSe
tion 15 for more details.2BARBIERI 04 use ele
troweak pre
ision observables to pla
e a lower bound on the 
om-pa
ti�
ation s
ale 1/R. Both the gauge bosons and the Higgs boson are assumed topropagate in the bulk.3ACCOMANDO 15 use ele
troweak pre
ision observables to pla
e a lower bound on the
ompa
ti�
ation s
ale 1/R. See their Fig. 2 for the bound as a fun
tion of sinβ, whi
hparametrizes the VEV 
ontribution from brane and bulk Higgs �elds. The quoted valueis for the minimum bound whi
h o

urs at sinβ = 0.45.4KHACHATRYAN 15T use 19.7 fb−1 of data from pp 
ollisions at √s = 8 TeV to pla
ea lower bound on the 
ompa
ti�
ation s
ale 1/R.5 CHATRCHYAN 13AQ use 5.0 fb−1 of data from pp 
ollisions at √
s = 7 TeV and afurther 3.7 fb−1 of data at √s = 8 TeV to pla
e a lower bound on the 
ompa
ti�
ations
ale 1/R, in models with universal extra dimensions and Standard Model �elds propa-gating in the bulk. See their Fig. 5 for the bound as a fun
tion of the universal bulkfermion mass parameter µ.6 CHATRCHYAN 13W use diphoton events with large missing transverse momentum in4.93 fb−1 of data produ
ed from pp 
ollisions at √s = 7 TeV to pla
e a lower boundon the 
ompa
ti�
ation s
ale in a universal extra dimension model with gravitationalde
ays. The bound assumes that the 
uto� s
ale �, for the radiative 
orre
tions to theKaluza-Klein masses, satis�es �/M
 = 20. The model parameters are 
hosen su
h thatthe de
ay γ∗ → G γ o

urs with an appre
iable bran
hing fra
tion.7 EDELHAUSER 13 use 19.6 and 20.6 fb−1 of data from pp 
ollisions at √

s = 8 TeVanalyzed by the CMS Collaboration in the diele
tron and dimuon 
hannels, respe
tively,to pla
e a lower bound on the mass of the se
ond lightest Kaluza-Klein Z/γ boson (
on-verted to a limit on 1/R = M
 ). The bound assumes Standard Model �elds propagatingin the bulk and that the 
uto� s
ale �, for the radiative 
orre
tions to the Kaluza-Kleinmasses, satis�es �/M
 = 20.8AAD 12CP use diphoton events with large missing transverse momentum in 4.8 fb−1of data produ
ed from pp 
ollisions at √
s = 7 TeV to pla
e a lower bound on the
ompa
ti�
ation s
ale in a universal extra dimension model with gravitational de
ays.The bound assumes that the 
uto� s
ale �, for the radiative 
orre
tions to the Kaluza-Klein masses, satis�es �/M
 = 20. The model parameters are 
hosen su
h that thede
ay γ∗ → G γ o

urs with an appre
iable bran
hing fra
tion.9AAD 12X use diphoton events with large missing transverse momentum in 1.07 fb−1of data produ
ed from pp 
ollisions at √
s = 7 TeV to pla
e a lower bound on the
ompa
ti�
ation s
ale in a universal extra dimension model with gravitational de
ays.The bound assumes that the 
uto� s
ale �, for the radiative 
orre
tions to the Kaluza-Klein masses, satis�es �/M
 = 20. The model parameters are 
hosen su
h that thede
ay γ∗ → G γ o

urs with an appre
iable bran
hing fra
tion.10ABAZOV 12M use same-sign dimuon events in 7.3 fb−1 of data from pp 
ollisions at√

s = 1.96 TeV to pla
e a lower bound on the 
ompa
ti�
ation s
ale 1/R, in modelswith universal extra dimensions where all Standard Model �elds propagate in the bulk.11BAAK 12 use ele
troweak pre
ision observables to pla
e a lower bound on the 
ompa
t-i�
ation s
ale 1/R, in models with universal extra dimensions and Standard Model �eldspropagating in the bulk. Bound assumes a 125 GeV Higgs mass. See their Fig. 25 forthe bound as a fun
tion of the Higgs mass.12 FLACKE 12 use ele
troweak pre
ision observables to pla
e a lower bound on the 
om-pa
ti�
ation s
ale 1/R, in models with universal extra dimensions and Standard Model�elds propagating in the bulk. See their Fig. 1 for the bound as a fun
tion of theuniversal bulk fermion mass parameter µ.13NISHIWAKI 12 use up to 2 fb−1 of data from the ATLAS and CMS experiments that
onstrains the produ
tion 
ross se
tion of a Higgs-like parti
le to pla
e a lower bound onthe 
ompa
ti�
ation s
ale 1/R in universal extra dimension models. The quoted boundassumes Standard Model �elds propagating in the bulk and a 125 GeV Higgs mass. Seetheir Fig. 1 for the bound as a fun
tion of the Higgs mass.14AAD 11F use diphoton events with large missing transverse energy in 3.1 pb−1 of dataprodu
ed from pp 
ollisions at √s = 7 TeV to pla
e a lower bound on the 
ompa
ti�-
ation s
ale in a universal extra dimension model with gravitational de
ays. The boundassumes that the 
uto� s
ale �, for the radiative 
orre
tions to the Kaluza-Klein masses,satis�es �/Mc = 20. The model parameters are 
hosen su
h that the de
ay γ∗ → G γo

urs with an appre
iable bran
hing fra
tion.15AAD 11X use diphoton events with large missing transverse energy in 36 pb−1 of dataprodu
ed from pp 
ollisions at √s = 7 TeV to pla
e a lower bound on the 
ompa
ti�-
ation s
ale in a universal extra dimension model with gravitational de
ays. The boundassumes that the 
uto� s
ale �, for the radiative 
orre
tions to the Kaluza-Klein masses,satis�es �/M
 = 20. The model parameters are 
hosen su
h that the de
ay γ∗ → G γo

urs with an appre
iable bran
hing fra
tion.16ABAZOV 10P use diphoton events with large missing transverse energy in 6.3 fb−1 ofdata produ
ed from pp 
ollisions at √
s = 1.96 TeV to pla
e a lower bound on the
ompa
ti�
ation s
ale in a universal extra dimension model with gravitational de
ays.The bound assumes that the 
uto� s
ale �, for the radiative 
orre
tions to the Kaluza-Klein masses, satis�es �/Mc=20. The model parameters are 
hosen su
h that the de
ay

γ∗ → G γ o

urs with an appre
iable bran
hing fra
tion.17ABAZOV 09AE use dijet angular distributions in 0.7 fb−1 of data from pp 
ollisions at√
s = 1.96 TeV to pla
e a lower bound on the 
ompa
ti�
ation s
ale.18HAISCH 07 use in
lusive B-meson de
ays to pla
e a Higgs mass independent bound onthe 
ompa
ti�
ation s
ale 1/R in the minimal universal extra dimension model.19GOGOLADZE 06 use ele
troweak pre
ision observables to pla
e a lower bound on the
ompa
ti�
ation s
ale in models with universal extra dimensions. Bound assumes a 115GeV Higgs mass. See their Fig. 3 for the bound as a fun
tion of the Higgs mass.20CORNET 00 translates a bound on the 
oeÆ
ient of the 4-fermion operator(ℓγµ τa ℓ)(ℓγµ τa ℓ) derived by Hagiwara and Matsumoto into a limit on the mass s
aleof KK W bosons.21RIZZO 00 obtains limits from global ele
troweak �ts in models with a Higgs in the bulk(3.8 TeV) or on the standard brane (3.3 TeV).Limits on Kaluza-Klein Gravitons in Warped Extra DimensionsLimits on Kaluza-Klein Gravitons in Warped Extra DimensionsLimits on Kaluza-Klein Gravitons in Warped Extra DimensionsLimits on Kaluza-Klein Gravitons in Warped Extra DimensionsThis se
tions pla
es limits on the mass of the �rst Kaluza-Klein (KK) ex
itation of thegraviton in the warped extra dimension model of Randall and Sundrum. Bounds inparenthesis assume Standard Model �elds propagate in the bulk. Experimental bounds



1777177717771777See key on page 601 Sear
hes Parti
le ListingsExtra Dimensionsdepend strongly on the warp parameter, k. See the \Extra Dimensions" review for afull dis
ussion.Here we list limits for the value of the warp parameter k/MP = 0.1.VALUE (TeV) CL% DOCUMENT ID TECN COMMENT
>2.73>2.73>2.73>2.73 95 1 KHACHATRY...15AE CMS pp → e+ e−, µ+µ−
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>2.66 95 2 AAD 15AD ATLS pp → G → γ γ95 3 AAD 15BK ATLS pp → G → hh95 4 KHACHATRY...15R CMS pp → G → hh
>2.68 95 5 AAD 14V ATLS pp → G → e+ e−, µ+µ−6 KHACHATRY...14A CMS pp → G → WW ,Z Z ,W Z
>1.23 (> 0.84) 95 7 AAD 13A ATLS pp → G → WW
>2.23 95 8 AAD 13AS ATLS pp → γ γ, e+ e−, µ+µ−
>2.39 95 9 CHATRCHYAN13AF CMS pp → e+ e−, µ+µ−10 CHATRCHYAN13U CMS pp → G → Z Z
>0.845 95 11 AAD 12AD ATLS pp → G → Z Z
>2.16 95 12 AAD 12CC ATLS pp → G → ℓℓ

>1.95 95 13 AAD 12Y ATLS pp → γ γ, e+ e−, µ+µ−14 AALTONEN 12V CDF pp → G → Z Z15 BAAK 12 RVUE Ele
troweak
>1.84 95 16 CHATRCHYAN12R CMS pp → G → γ γ

>1.63 95 17 AAD 11AD ATLS pp → G → ℓℓ18 AALTONEN 11G CDF pp → G → Z Z
>1.058 95 19 AALTONEN 11R CDF pp → G → e+ e−, γ γ

>0.754 95 20 ABAZOV 11H D0 pp → G → WW
>1.079 95 21 CHATRCHYAN11 CMS pp → G → ℓℓ

>0.607 22 AALTONEN 10N CDF pp → G → WW
>1.05 23 ABAZOV 10F D0 pp → G → e+ e−, γ γ24 AALTONEN 08S CDF pp → G → Z Z
>0.90 25 ABAZOV 08J D0 pp → G → e+ e−, γ γ26 AALTONEN 07G CDF pp → G → γ γ

>0.889 27 AALTONEN 07H CDF pp → G → e e
>0.785 28 ABAZOV 05N D0 pp → G → ℓℓ, γ γ

>0.71 29 ABULENCIA 05A CDF pp → G → ℓℓ1KHACHATRYAN 15AE use 20.6 (19.7) fb−1 of data from pp 
ollisions at √s = 8 TeVin the dimuon (diele
tron) 
hannel to pla
e a lower bound on the mass of the lightestKK graviton.2AAD 15AD use 20.3 fb−1 of data from pp 
ollisions at √
s = 8 TeV in the diphoton
hannel to pla
e a lower limit on the mass of the lightest KK graviton. See their TableIV for limits with warp parameter values k/MP between 0.01 and 0.1.3AAD 15BK use 19.5 fb−1 of data from pp 
ollisions at √s = 8 TeV to sear
h for Higgsboson pair produ
tion in the bbbb �nal state, and ex
lude masses of the lightest KKgraviton. See their Table 9 for the ex
luded mass ranges with warp parameter valuesk/MP = 1.0, 1.5, and 2.0.4KHACHATRYAN 15R use 17.9 fb−1 of data from pp 
ollisions at √s = 8 TeV to sear
hfor Higgs boson pair produ
tion in the bbbb �nal state, and ex
lude a KK graviton withmass from 380 to 830 GeV.5AAD 14V use 20 fb−1 of data from pp 
ollisions at √s = 8 TeV in the diele
tron anddimuon 
hannels to pla
e a lower bound on the mass of the lightest KK graviton.6KHACHATRYAN 14A use 19.7 fb−1 of data from pp 
ollisions at √s = 8 TeV to sear
hfor KK gravitons in a warped extra dimension de
aying to dibosons. See their Figure 9for limits on the 
ross se
tion times bran
hing fra
tion as a fun
tion of the KK gravitonmass.7AAD 13A use 4.7 fb−1 of data from pp 
ollisions at √s = 7 TeV to pla
e a lower boundon the mass of the lightest KK graviton.8AAD 13AS use 4.9 fb−1 of data from pp 
ollisions at √
s = 7 TeV in the diphoton
hannel to pla
e lower limits on the mass of the lightest KK graviton. The diphoton
hannel is 
ombined with previous results in the diele
tron and dimuon 
hannels to setthe best limit. See their Table 2 for warp parameter values k/MP between 0.01 and 0.1.9CHATRCHYAN 13AF use 5.3 and 4.1 fb−1 of data from pp 
ollisions at √

s = 7 TeVand 8 TeV, respe
tively, in the diele
tron and dimuon 
hannels, to pla
e a lower boundon the mass of the lightest KK graviton.10CHATRCHYAN 13U use 5 fb−1 of data from pp 
ollisions at √s = 7 TeV to sear
h forKK gravitons in a warped extra dimension de
aying to Z Z dibosons. See their Figure 5for limits on the lightest KK graviton mass as a fun
tion of k/MP .11AAD 12AD use 1.02 fb−1 of data from pp 
ollisions at √s = 7 TeV to sear
h for KKgravitons in a warped extra dimension de
aying to Z Z dibosons in the l l j j and l l l l
hannels (ℓ=e, µ). The limit is quoted for the 
ombined l l j j + l l l l 
hannels. See theirFigure 5 for limits on the 
ross se
tion σ(G → Z Z) as a fun
tion of the graviton mass.12AAD 12CC use 4.9 and 5.0 fb−1 of data from pp 
ollisions at √
s = 7 TeV in thediele
tron and dimuon 
hannels, respe
tively, to pla
e a lower bound on the mass of thelightest KK graviton. See their Figure 5 for limits on the lightest KK graviton mass asa fun
tion of k/MP .13AAD 12Y use 2.12 fb−1 of data from pp 
ollisions at √

s = 7 TeV in the diphoton
hannel to pla
e lower limits on the mass of the lightest KK graviton. The diphoton
hannel is 
ombined with previous results in the diele
tron and dimuon 
hannels to setthe best limit. See their Table 3 for warp parameter values k/MP between 0.01 and 0.1.14AALTONEN 12V use 6 fb−1 of data from pp 
ollisions at √
s = 1.96 TeV to sear
hfor KK gravitons in a warped extra dimension de
aying to Z Z dibosons in the l l j jand l l l l 
hannels (ℓ=e, µ). It provides improved limits over the previous analysis inAALTONEN 11G. See their Figure 16 for limits from all 
hannels 
ombined on the 
rossse
tion times bran
hing ratio σ(pp → G∗ → Z Z) as a fun
tion of the graviton mass.15BAAK 12 use ele
troweak pre
ision observables to pla
e a lower bound on the 
ompa
t-i�
ation s
ale k e−πk R , assuming Standard Model �elds propagate in the bulk and theHiggs is 
on�ned to the IR brane. See their Fig. 27 for more details.16CHATRCHYAN 12R use 2.2 fb−1 of data from pp 
ollisions at √

s = 7 TeV in thediphoton 
hannel to pla
e lower limits on the mass of the lightest KK graviton. See theirTable III for warp parameter values k/MP between 0.01 and 0.1.

17AAD 11AD use 1.08 and 1.21 fb−1 of data from pp 
ollisions at √
s = 7 TeV in thediele
tron and dimuon 
hannels, respe
tively, to pla
e a lower bound on the mass of thelightest graviton. For warp parameter values k/MP between 0.01 to 0.1 the lower limiton the mass of the lightest graviton is between 0.71 and 1.63 TeV. See their Table IVfor more details.18AALTONEN 11G use 2.5{2.9 fb−1 of data from pp 
ollisions at √
s = 1.96 TeV tosear
h for KK gravitons in a warped extra dimension de
aying to Z Z dibosons via thee e e e, e e µµ, µµµµ, e e j j, and µµ j j 
hannels. See their Fig. 20 for limits on the 
rossse
tion σ(G → Z Z) as a fun
tion of the graviton mass.19AALTONEN 11R uses 5.7 fb−1 of data from pp 
ollisions at √

s = 1.96 TeV in thediele
tron 
hannel to pla
e a lower bound on the mass of the lightest graviton. Itprovides 
ombined limits with the diphoton 
hannel analysis of AALTONEN 11U. Forwarp parameter values k/MP between 0.01 to 0.1 the lower limit on the mass of thelightest graviton is between 612 and 1058 GeV. See their Table I for more details.20ABAZOV 11H use 5.4 fb−1 of data from pp 
ollisions at √
s = 1.96 TeV to pla
e alower bound on the mass of the lightest graviton. Their 95% C.L. ex
lusion limit doesnot in
lude masses less than 300 GeV.21CHATRCHYAN 11 use 35 and 40 pb−1 of data from pp 
ollisions at √

s = 7 TeV inthe diele
tron and dimuon 
hannels, respe
tively, to pla
e a lower bound on the mass ofthe lightest graviton. For a warp parameter value k/MP = 0.05, the lower limit on themass of the lightest graviton is 0.855 TeV.22AALTONEN 10N use 2.9 fb−1 of data from pp 
ollisions at √s = 1.96 TeV to pla
e alower bound on the mass of the lightest graviton.23ABAZOV 10F use 5.4 fb−1 of data from pp 
ollisions at √
s = 1.96 TeV to pla
e alower bound on the mass of the lightest graviton. For warp parameter values of k/MPbetween 0.01 and 0.1 the lower limit on the mass of the lightest graviton is between 560and 1050 GeV. See their Fig. 3 for more details.24AALTONEN 08S use pp 
ollisions at √

s = 1.96 TeV to sear
h for KK gravitons inwarped extra dimensions. They sear
h for graviton resonan
es de
aying to four ele
tronsvia two Z bosons using 1.1 fb−1 of data. See their Fig. 8 for limits on σ ·B(G → Z Z)versus the graviton mass.25ABAZOV 08J use pp 
ollisions at √s = 1.96 TeV to sear
h for KK gravitons in warpedextra dimensions. They sear
h for graviton resonan
es de
aying to ele
trons and photonsusing 1 fb−1 of data. For warp parameter values of k/MP between 0.01 and 0.1 thelower limit on the mass of the lightest ex
itation is between 300 and 900 GeV. See theirFig. 4 for more details.26AALTONEN 07G use pp 
ollisions at √
s = 1.96 TeV to sear
h for KK gravitons inwarped extra dimensions. They sear
h for graviton resonan
es de
aying to photons using1.2 fb−1 of data. For warp parameter values of k/MP = 0.1, 0.05, and 0.01 the boundson the graviton mass are 850, 694, and 230 GeV, respe
tively. See their Fig. 3 for moredetails. See also AALTONEN 07H.27AALTONEN 07H use pp 
ollisions at √
s = 1.96 TeV to sear
h for KK gravitons inwarped extra dimensions. They sear
h for graviton resonan
es de
aying to ele
tronsusing 1.3 fb−1 of data. For a warp parameter value of k/MP = 0.1 the bound on thegraviton mass is 807 GeV. See their Fig. 4 for more details. A 
ombined analysis withthe diphoton data of AALTONEN 07G yields for k/MP = 0.1 a graviton mass lowerbound of 889 GeV.28ABAZOV 05N use pp 
ollisions at √s = 1.96 TeV to sear
h for KK gravitons in warpedextra dimensions. They sear
h for graviton resonan
es de
aying to muons, ele
trons orphotons, using 260 pb−1 of data. For warp parameter values of k/MP = 0.1, 0.05, and0.01, the bounds on the graviton mass are 785, 650 and 250 GeV respe
tively. See theirFig. 3 for more details.29ABULENCIA 05A use pp 
ollisions at √
s = 1.96 TeV to sear
h for KK gravitons inwarped extra dimensions. They sear
h for graviton resonan
es de
aying to muons orele
trons, using 200 pb−1 of data. For warp parameter values of k/MP = 0.1, 0.05,and 0.01, the bounds on the graviton mass are 710, 510 and 170 GeV respe
tively.Limits on Kaluza-Klein Gluons in Warped Extra DimensionsLimits on Kaluza-Klein Gluons in Warped Extra DimensionsLimits on Kaluza-Klein Gluons in Warped Extra DimensionsLimits on Kaluza-Klein Gluons in Warped Extra DimensionsThis se
tion pla
es limits on the mass of the �rst Kaluza-Klein (KK) ex
itation of thegluon in warped extra dimension models with Standard Model �elds propagating inthe bulk. Bounds are given for a spe
i�
 ben
hmark model with �/m = 15.3% where� is the width and m the mass of the KK gluon. See the\Extra Dimensions" reviewfor more dis
ussion.VALUE (TeV) CL% DOCUMENT ID TECN COMMENT

>2.5>2.5>2.5>2.5 95 1 CHATRCHYAN13BMCMS gKK → t t
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>2.07 95 2 AAD 13AQ ATLS gKK → t t → ℓ j3 CHEN 13A B → Xs γ

>1.5 95 4 AAD 12BV ATLS gKK → t t → ℓ j1CHATRCHYAN 13BM use 19.7 fb−1 of data from pp 
ollisions at √s = 8 TeV. Boundis for a width of approximately 15{20% of the KK gluon mass.2AAD 13AQ use 4.7 fb−1 of data from pp 
ollisions at √s = 7 TeV.3CHEN 13A pla
e limits on the KK mass s
ale for a spe
i�
 warped model with 
ustodialsymmetry and bulk fermions. See their Figures 4 and 5.4AAD 12BV use 2.05 fb−1 of data from pp 
ollisions at √s = 7 TeV.REFERENCES FOR Extra DimensionsREFERENCES FOR Extra DimensionsREFERENCES FOR Extra DimensionsREFERENCES FOR Extra DimensionsAAD 15AD PR D92 032004 G. Aad et al. (ATLAS Collab.)AAD 15BK EPJ C75 412 G. Aad et al. (ATLAS Collab.)AAD 15CS PR D91 012008 G. Aad et al. (ATLAS Collab.)Also PR D92 059903 (errat.) G. Aad et al. (ATLAS Collab.)ACCOMANDO 15 MPL A30 1540010 E. A

omando (SHMP)KHACHATRY... 15AE JHEP 1504 025 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15AL EPJ C75 235 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15J PL B746 79 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15R PL B749 560 V. Kha
hatryan et al. (CMS Collab.)KHACHATRY... 15T PR D91 092005 V. Kha
hatryan et al. (CMS Collab.)AAD 14BE EPJ C74 3134 G. Aad et al. (ATLAS Collab.)AAD 14V PR D90 052005 G. Aad et al. (ATLAS Collab.)KHACHATRY... 14A JHEP 1408 174 V. Kha
hatryan et al. (CMS Collab.)AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.)AAD 13AD JHEP 1304 075 G. Aad et al. (ATLAS Collab.)AAD 13AQ PR D88 012004 G. Aad et al. (ATLAS Collab.)AAD 13AS NJP 15 043007 G. Aad et al. (ATLAS Collab.)AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.)AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.)AAD 13E PR D87 015010 G. Aad et al. (ATLAS Collab.)



1778177817781778Sear
hesParti
le ListingsExtraDimensions,WIMPs andOther Parti
le Sear
hesCHATRCHYAN 13AF PL B720 63 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 13AQ PR D87 072005 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 13BM PRL 111 211804 S. Chatr
hyan et al. (CMS Collab.)Also PRL 112 119903 (errat.) S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 13U JHEP 1302 036 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 13W JHEP 1303 111 S. Chatr
hyan et al. (CMS Collab.)CHEN 13A CPC 37 063102 J-B. Chen et al. (DALI)EDELHAUSER 13 JHEP 1308 091 L. Edelhauser, T. Fla
ke, M. Kramer (AACH, KAIST)XU 13 JP G40 035107 J. Xu et al.AAD 12AD PL B712 331 G. Aad et al. (ATLAS Collab.)AAD 12BV JHEP 1209 041 G. Aad et al. (ATLAS Collab.)AAD 12CC JHEP 1211 138 G. Aad et al. (ATLAS Collab.)AAD 12CP PL B718 411 G. Aad et al. (ATLAS Collab.)AAD 12X PL B710 519 G. Aad et al. (ATLAS Collab.)AAD 12Y PL B710 538 G. Aad et al. (ATLAS Collab.)AALTONEN 12V PR D85 012008 T. Aaltonen et al. (CDF Collab.)ABAZOV 12M PRL 108 131802 V.M. Abazov et al. (D0 Collab.)AJELLO 12 JCAP 1202 012 M. Ajello et al. (Fermi-LAT Collab.)BAAK 12 EPJ C72 2003 M. Baak et al. (G�tter Group)CHATRCHYAN 12AP JHEP 1209 094 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 12J PL B711 15 S. Chatr
hyan et al. (CMS Collab.)CHATRCHYAN 12R PRL 108 111801 S. Chatr
hyan et al. (CMS Collab.)FLACKE 12 PR D85 126007 T. Fla
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We collect here those searches which do not appear in any

of the above search categories. These are listed in the following

order:

1. Galactic WIMP (weakly-interacting massive particle)

searches

2. Concentration of stable particles in matter

3. General new physics searches

4. Limits on jet-jet resonance in hadron collisions

5. Limits on neutral particle production at accelerators

6. Limits on charged particles in e+e− collisions

7. Limits on charged particles in hadron reactions

8. Limits on charged particles in cosmic rays

9. Searches for quantum black hole production

Note that searches appear in separate sections elsewhere for

Higgs bosons (and technipions), other heavy bosons (including

WR, W ′, Z ′, leptoquarks, axigluons), axions (including pseudo-

Goldstone bosons, Majorons, familons), heavy leptons, heavy

neutrinos, free quarks, monopoles, supersymmetric particles,

and compositeness. We include specific WIMP searches in the

appropriate sections when they yield limits on hypothetical

particles such as supersymmetric particles, axions, massive

neutrinos, monopoles, etc.

We omit papers on CHAMP’s, millicharged particles, and

other exotic particles. We no longer list for limits on tachyons

and centauros. See our 1994 edition for these limits.GALACTIC WIMP SEARCHESGALACTIC WIMP SEARCHESGALACTIC WIMP SEARCHESGALACTIC WIMP SEARCHESThese limits are for weakly-intera
ting stable parti
les that may 
onstitutethe invisible mass in the galaxy. Unless otherwise noted, a lo
al massdensity of 0.3 GeV/
m3 is assumed; see ea
h paper for velo
ity distributionassumptions. In the papers the limit is given as a fun
tion of the X0 mass.Here we list limits only for typi
al mass values of 20 GeV, 100 GeV, and 1TeV. Spe
i�
 limits on supersymmetri
 dark matter parti
les may be foundin the Supersymmetry se
tion.Limits for Spin-Independent Cross Se
tionLimits for Spin-Independent Cross Se
tionLimits for Spin-Independent Cross Se
tionLimits for Spin-Independent Cross Se
tionof Dark Matter Parti
le (X 0) on Nu
leonof Dark Matter Parti
le (X 0) on Nu
leonof Dark Matter Parti
le (X 0) on Nu
leonof Dark Matter Parti
le (X 0) on Nu
leonIsos
alar 
oupling is assumed to extra
t the limits from those on X0{nu
lei
ross se
tion.For mX 0 = 20 GeVFor mX 0 = 20 GeVFor mX 0 = 20 GeVFor mX 0 = 20 GeVFor limits from X0 annihilation in the Sun, the assumed annihilation �nal state isshown in parenthesis in the 
omment.VALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<7.3 × 10−7 90 AGNES 16 DS50 Ar
<1 × 10−5 90 AGNES 15 DSID Ar
<1.5 × 10−6 90 1 AGNESE 15A CDM2 Ge
<1.5 × 10−7 90 2 AGNESE 15B CDM2 Ge
<2 × 10−6 90 3 AMOLE 15 PICO C3F8
<1.2 × 10−5 90 CHOI 15 SKAM H, solar ν (bb)
<1.19× 10−6 90 CHOI 15 SKAM H, solar ν (τ+ τ−)
<2 × 10−8 90 4 XIAO 15 PANX Xe
<2.0 × 10−7 90 5 AGNESE 14 SCDM Ge
<3.7 × 10−5 90 6 AGNESE 14A SCDM Ge
<1 × 10−9 90 7 AKERIB 14 LUX Xe
<2 × 10−6 90 8 ANGLOHER 14 CRES CaWO4
<5 × 10−6 90 FELIZARDO 14 SMPL C2ClF5
<8 × 10−6 90 9 LEE 14A KIMS CsI
<2 × 10−4 90 10 LIU 14A CDEX Ge
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<1 × 10−5 90 11 YUE 14 CDEX Ge
<1.08× 10−4 90 12 AARTSEN 13 ICCB H, solar ν (τ+ τ−)
<1.5 × 10−5 90 13 ABE 13B XMAS Xe
<3.1 × 10−6 90 14 AGNESE 13 CDM2 Si
<3.4 × 10−6 90 15 AGNESE 13A CDM2 Si
<2.2 × 10−6 90 16 AGNESE 13A CDM2 Si
<5 × 10−5 90 17 LI 13B TEXO Ge18 ZHAO 13 CDEX Ge
<1.2 × 10−7 90 AKIMOV 12 ZEP3 Xe19 ANGLOHER 12 CRES CaWO4
<8 × 10−6 90 20 ANGLOHER 12 CRES CaWO4
<7 × 10−9 90 21 APRILE 12 X100 Xe22 ARCHAMBAU...12 PICA F (C4F10)
<7 × 10−7 90 23 ARMENGAUD 12 EDE2 Ge24 BARRETO 12 DMIC CCD
<2 × 10−6 90 BEHNKE 12 COUP CF3I
<7 × 10−6 25 FELIZARDO 12 SMPL C2ClF5
<1.5 × 10−6 90 KIM 12 KIMS CsI
<5 × 10−5 90 26 AALSETH 11 CGNT Ge27 AALSETH 11A CGNT Ge
<5 × 10−7 90 28 AHMED 11 CDM2 Ge, inelasti

<2.7 × 10−7 90 29 AHMED 11A RVUE Ge30 AHMED 11B CDM2 Ge, low threshold
<3 × 10−6 90 31 ANGLE 11 XE10 Xe
<7 × 10−8 90 32 APRILE 11 X100 Xe33 APRILE 11A X100 Xe, inelasti

<2 × 10−8 90 21 APRILE 11B X100 Xe34 HORN 11 ZEP3 Xe
<2 × 10−7 90 AHMED 10 CDM2 Ge
<1 × 10−5 90 35 AKERIB 10 CDM2 Si, Ge, low threshold
<1 × 10−7 90 APRILE 10 X100 Xe
<2 × 10−6 90 ARMENGAUD 10 EDE2 Ge
<4 × 10−5 90 FELIZARDO 10 SMPL C2ClF3
<1.5 × 10−7 90 36 AHMED 09 CDM2 Ge
<2 × 10−4 90 37 LIN 09 TEXO Ge38 AALSETH 08 CGNT Ge1AGNESE 15A reanalyse AHMED 11B low threshold data. See their Fig. 12 (left) forimproved limits extending down to 5 GeV.2AGNESE 15B reanalyse AHMED 10 data.3 See their Fig. 7 for limits extending down to 4 GeV.4 See their Fig. 13 for limits extending down to 5 GeV.5This limit value is provided by the authors. See their Fig. 4 for limits extending down tomX 0 = 3.5 GeV.6This limit value is provided by the authors. AGNESE 14A result is from CDMSlitemode operation with enhan
ed sensitivity to low mass mX 0. See their Fig. 3 for limitsextending down to mX 0 = 3.5 GeV (see also Fig. 4 in AGNESE 14).7 See their Fig. 5 for limits extending down to mX 0 = 5.5 GeV.8 See their Fig. 5 for limits extending down to mX 0 = 1 GeV.9 See their Fig. 5 for limits extending down to mX 0 = 5 GeV.10 LIU 14A result is based on prototype CDEX-0 dete
tor. See their Fig. 13 for limitsextending down to mX 0 = 2 GeV.11 See their Fig. 4 for limits extending down to mX 0 = 4.5 GeV.12AARTSEN 13 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the sun in data taken between June 2010 and May 2011.13 See their Fig. 8 for limits extending down to mX 0 = 7 GeV.14This limit value is provided by the authors. AGNESE 13 use data taken between O
t.2006 and July 2007. See their Fig. 4 for limits extending down to mX 0 = 7 GeV.15This limit value is provided by the authors. AGNESE 13A use data taken between July2007 and Sep. 2008. Three 
andidate events are seen. Assuming these events are real,the best �t parameters are mX 0 = 8.6 GeV and σ = 1.9× 10−5 pb.16This limit value is provided by the authors. Limit from 
ombined data of AGNESE 13and AGNESE 13A. See their Fig. 4 for limits extending down to mX 0 = 5.5 GeV.17 See their Fig. 4 for limits extending down to mX 0 = 4 GeV.18 See their Fig. 5 for limits for mX 0 = 4{12 GeV.19ANGLOHER 12 observe ex
ess events above the expe
ted ba
kground whi
h are 
onsis-tent with X0 with mass ∼ 25 GeV (or 12 GeV) and spin-independent X0-nu
leon 
rossse
tion of 2× 10−6 pb (or 4× 10−5 pb).20Reanalysis of ANGLOHER 09 data with all three nu
lides. See also BROWN 12.21 See also APRILE 14A.22 See their Fig. 7 for 
ross se
tion limits for mX 0 between 4 and 12 GeV.23 See their Fig. 4 for limits extending down to mX 0 = 7 GeV.24 See their Fig. 13 for 
ross se
tion limits for mX 0 between 1.2 and 10 GeV.25 See also DAHL 12 for a 
riti
ism.26 See their Fig. 4 for limits extending to mX 0 = 3.5 GeV.27AALSETH 11A �nd indi
ations of annual modulation of the data, the energy spe
trumbeing 
ompatible with X0 mass around 8 GeV. See also AALSETH 13.28AHMED 11 sear
h for X0 inelasti
 s
attering. See their Fig. 8{10 for limits. The inelasti

ross se
tion redu
es to the elasti
 
ross se
tion at the limit of zero mass splitting (Fig.8, left).29AHMED 11A 
ombine CDMS II and EDELWEISS data.30AHMED 11B give limits on spin-independent X0-nu
leon 
ross se
tion for mX 0 = 4{12GeV in the range 10−3{10−5 pb. See their Fig. 3.31 See their Fig. 3 for limits down to mX 0 = 4 GeV.

32APRILE 11 reanalyze APRILE 10 data.33APRILE 11A sear
h for X0 inelasti
 s
attering. See their Fig. 2 and 3 for limits. Seealso APRILE 14A.34HORN 11 perform dete
tor 
alibration by neutrons. Earlier results are only marginallya�e
ted.35 See their Fig. 10 and 12 for limits extending to X0 mass of 1 GeV.36 Superseded by AHMED 10.37 See their Fig. 6(a) for 
ross se
tion limits for mX 0 extending down to 2 GeV.38 See their Fig. 2 for 
ross se
tion limits for mX 0 between 4 and 10 GeV.For mX 0 = 100 GeVFor mX 0 = 100 GeVFor mX 0 = 100 GeVFor mX 0 = 100 GeVFor limits from X0 annihilation in the Sun, the assumed annihilation �nal state isshown in parenthesis in the 
omment.VALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.0 × 10−8 90 AGNES 16 DS50 Ar
<6 × 10−8 90 AGNES 15 DSID Ar
<4 × 10−8 90 1 AGNESE 15B CDM2 Ge
<7.13× 10−6 90 CHOI 15 SKAM H, solar ν (bb)
<6.26× 10−7 90 CHOI 15 SKAM H, solar ν (W+W−)
<2.76× 10−7 90 CHOI 15 SKAM H, solar ν (τ+ τ−)
<1.5 × 10−8 90 XIAO 15 PANX Xe
<1 × 10−9 90 AKERIB 14 LUX Xe
<4.0 × 10−6 90 2 AVRORIN 14 BAIK H, solar ν (W+W−)
<1.0 × 10−4 90 2 AVRORIN 14 BAIK H, solar ν (bb)
<1.6 × 10−6 90 2 AVRORIN 14 BAIK H, solar ν (τ+ τ−)
<5 × 10−6 90 FELIZARDO 14 SMPL C2ClF5
<6.01× 10−7 90 3 AARTSEN 13 ICCB H, solar ν (W+W−)
<3.30× 10−5 90 3 AARTSEN 13 ICCB H, solar ν (bb)
<1.9 × 10−6 90 4 ADRIAN-MAR...13 ANTR H, solar ν (W+W−)
<1.2 × 10−4 90 4 ADRIAN-MAR...13 ANTR H, solar ν (bb)
<7.6 × 10−7 90 4 ADRIAN-MAR...13 ANTR H, solar ν (τ+ τ−)
<2 × 10−6 90 5 AGNESE 13 CDM2 Si
<1.6 × 10−6 90 6 BOLIEV 13 BAKS H, solar ν (W+W−)
<1.9 × 10−5 90 6 BOLIEV 13 BAKS H, solar ν (bb)
<7.1 × 10−7 90 6 BOLIEV 13 BAKS H, solar ν (τ+ τ−)
<1.67× 10−6 90 7 ABBASI 12 ICCB H, solar ν (W+W−)
<1.07× 10−4 90 7 ABBASI 12 ICCB H, solar ν (bb)
<4 × 10−8 90 AKIMOV 12 ZEP3 Xe
<1.4 × 10−6 90 8 ANGLOHER 12 CRES CaWO4
<3 × 10−9 90 9 APRILE 12 X100 Xe
<3 × 10−7 90 BEHNKE 12 COUP CF3I
<7 × 10−6 FELIZARDO 12 SMPL C2ClF5
<2.5 × 10−7 90 10 KIM 12 KIMS CsI
<2 × 10−4 90 AALSETH 11 CGNT Ge11 AHMED 11 CDM2 Ge, inelasti

<3.3 × 10−8 90 12 AHMED 11A RVUE Ge13 AJELLO 11 FLAT
<3 × 10−8 90 14 APRILE 11 X100 Xe15 APRILE 11A X100 Xe, inelasti

<1 × 10−8 90 9 APRILE 11B X100 Xe
<5 × 10−8 90 16 ARMENGAUD 11 EDE2 Ge17 HORN 11 ZEP3 Xe
<4 × 10−8 90 AHMED 10 CDM2 Ge
<9 × 10−6 90 AKERIB 10 CDM2 Si, Ge, low threshold18 AKIMOV 10 ZEP3 Xe, inelasti

<5 × 10−8 90 APRILE 10 X100 Xe
<1 × 10−7 90 ARMENGAUD 10 EDE2 Ge
<3 × 10−5 90 FELIZARDO 10 SMPL C2ClF3
<5 × 10−8 90 19 AHMED 09 CDM2 Ge20 ANGLE 09 XE10 Xe, inelasti

<3 × 10−4 90 LIN 09 TEXO Ge21 GIULIANI 05 RVUE1AGNESE 15B reanalyse AHMED 10 data.2AVRORIN 14 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limitsassuming annihilation into neutrino pairs.3AARTSEN 13 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the sun in data taken between June 2010 and May 2011.4ADRIAN-MARTINEZ 13 sear
h for neutrinos from the Sun arising from the pair annihi-lation of X0 trapped by the sun in data taken between Jan. 2007 and De
. 2008.5AGNESE 13 use data taken between O
t. 2006 and July 2007.6BOLIEV 13 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for anolder analysis of the same data.7ABBASI 12 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the Sun. The amount of X0 depends on the X0-proton 
ross se
tion.8Reanalysis of ANGLOHER 09 data with all three nu
lides. See also BROWN 12.9 See also APRILE 14A.10 See their Fig. 6 for a limit on inelasti
ally s
attering X0 for mX 0 = 70 GeV.11AHMED 11 sear
h for X0 inelasti
 s
attering. See their Fig. 8{10 for limits.12AHMED 11A 
ombine CDMS and EDELWEISS data.13AJELLO 11 sear
h for e± 
ux from X0 annihilations in the Sun. Models in whi
h X0annihilates into an intermediate long-lived weakly intera
ting parti
les or X0 s
attersinelasti
ally are 
onstrained. See their Fig. 6{8 for limits.14APRILE 11 reanalyze APRILE 10 data.
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h for X0 inelasti
 s
attering. See their Fig. 2 and 3 for limits. Seealso APRILE 14A.16 Supersedes ARMENGAUD 10. A limit on inelasti
 
ross se
tion is also given.17HORN 11 perform dete
tor 
alibration by neutrons. Earlier results are only marginallya�e
ted.18AKIMOV 10 give 
ross se
tion limits for inelasti
ally s
attering dark matter. See theirFig. 4.19 Superseded by AHMED 10.20ANGLE 09 sear
h for X0 inelasti
 s
attering. See their Fig. 4 for limits.21GIULIANI 05 analyzes the spin-independent X0-nu
leon 
ross se
tion limits with bothisos
alar and isove
tor 
ouplings. See their Fig. 3 and 4 for limits on the 
ouplings.For mX 0 = 1 TeVFor mX 0 = 1 TeVFor mX 0 = 1 TeVFor mX 0 = 1 TeVFor limits from X0 annihilation in the Sun, the assumed annihilation �nal state isshown in parenthesis in the 
omment.VALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<8.6 × 10−8 90 AGNES 16 DS50 Ar
<2 × 10−7 90 AGNES 15 DSID Ar
<2 × 10−7 90 1 AGNESE 15B CDM2 Ge
<1 × 10−8 90 AKERIB 14 LUX Xe
<2.2 × 10−6 90 2 AVRORIN 14 BAIK H, solar ν (W+W−)
<5.5 × 10−5 90 2 AVRORIN 14 BAIK H, solar ν (bb)
<6.8 × 10−7 90 2 AVRORIN 14 BAIK H, solar ν (τ+ τ−)
<3.46× 10−7 90 3 AARTSEN 13 ICCB H, solar ν (W+W−)
<7.75× 10−6 90 3 AARTSEN 13 ICCB H, solar ν (bb)
<6.9 × 10−7 90 4 ADRIAN-MAR...13 ANTR H, solar ν (W+W−)
<1.5 × 10−5 90 4 ADRIAN-MAR...13 ANTR H, solar ν (bb)
<1.8 × 10−7 90 4 ADRIAN-MAR...13 ANTR H, solar ν (τ+ τ−)
<4.3 × 10−6 90 5 BOLIEV 13 BAKS H, solar ν (W+W−)
<3.4 × 10−5 90 5 BOLIEV 13 BAKS H, solar ν (bb)
<1.2 × 10−6 90 5 BOLIEV 13 BAKS H, solar ν (τ+ τ−)
<2.12× 10−7 90 6 ABBASI 12 ICCB H, solar ν (W+W−)
<6.56× 10−6 90 6 ABBASI 12 ICCB H, solar ν (bb)
<4 × 10−7 90 AKIMOV 12 ZEP3 Xe
<1.1 × 10−5 90 7 ANGLOHER 12 CRES CaWO4
<2 × 10−8 90 8 APRILE 12 X100 Xe
<2 × 10−6 90 BEHNKE 12 COUP CF3I
<4 × 10−6 FELIZARDO 12 SMPL C2ClF5
<1.5 × 10−6 90 KIM 12 KIMS CsI9 AHMED 11 CDM2 Ge, inelasti

<1.5 × 10−7 90 10 AHMED 11A RVUE Ge
<2 × 10−7 90 11 APRILE 11 X100 Xe
<8 × 10−8 90 8 APRILE 11B X100 Xe
<2 × 10−7 90 12 ARMENGAUD 11 EDE2 Ge13 HORN 11 ZEP3 Xe
<2 × 10−7 90 AHMED 10 CDM2 Ge
<4 × 10−7 90 APRILE 10 X100 Xe
<6 × 10−7 90 ARMENGAUD 10 EDE2 Ge
<3.5 × 10−7 90 14 AHMED 09 CDM2 Ge1AGNESE 15B reanalyse AHMED 10 data.2AVRORIN 14 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limitsassuming annihilation into neutrino pairs.3AARTSEN 13 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the sun in data taken between June 2010 and May 2011.4ADRIAN-MARTINEZ 13 sear
h for neutrinos from the Sun arising from the pair annihi-lation of X0 trapped by the sun in data taken between Jan. 2007 and De
. 2008.5BOLIEV 13 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for anolder analysis of the same data.6ABBASI 12 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the Sun. The amount of X0 depends on the X0-proton 
ross se
tion.7Reanalysis of ANGLOHER 09 data with all three nu
lides. See also BROWN 12.8 See also APRILE 14A.9AHMED 11 sear
h for X0 inelasti
 s
attering. See their Fig. 8{10 for limits.10AHMED 11A 
ombine CDMS and EDELWEISS data.11APRILE 11 reanalyze APRILE 10 data.12 Supersedes ARMENGAUD 10. A limit on inelasti
 
ross se
tion is also given.13HORN 11 perform dete
tor 
alibration by neutrons. Earlier results are only marginallya�e
ted.14 Superseded by AHMED 10.Limits for Spin-Dependent Cross Se
tionLimits for Spin-Dependent Cross Se
tionLimits for Spin-Dependent Cross Se
tionLimits for Spin-Dependent Cross Se
tionof Dark Matter Parti
le (X 0) on Protonof Dark Matter Parti
le (X 0) on Protonof Dark Matter Parti
le (X 0) on Protonof Dark Matter Parti
le (X 0) on ProtonFor mX 0 = 20 GeVFor mX 0 = 20 GeVFor mX 0 = 20 GeVFor mX 0 = 20 GeVFor limits from X0 annihilation in the Sun, the assumed annihilation �nal state isshown in parenthesis in the 
omment.VALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.2 × 10−3 90 AMOLE 15 PICO C3F8
< 1.43× 10−3 90 CHOI 15 SKAM H, solar ν (bb)
< 1.42× 10−4 90 CHOI 15 SKAM H, solar ν (τ+ τ−)
< 5 × 10−3 90 FELIZARDO 14 SMPL C2ClF5
< 1.29× 10−2 90 1 AARTSEN 13 ICCB H, solar ν (τ+ τ−)
< 3.17× 10−2 90 2 APRILE 13 X100 Xe
< 3 × 10−2 90 ARCHAMBAU...12 PICA F (C4F10)

< 6 × 10−2 90 BEHNKE 12 COUP CF3I
< 20 90 DAW 12 DRFT F (CF4)
< 7 × 10−3 FELIZARDO 12 SMPL C2ClF5
< 0.15 90 KIM 12 KIMS CsI
< 1 × 105 90 3 AHLEN 11 DMTP F (CF4)
< 0.1 90 3 BEHNKE 11 COUP CF3I
< 1.5 × 10−2 90 4 TANAKA 11 SKAM H, solar ν (bb)
< 0.2 90 ARCHAMBAU...09 PICA F
< 4 90 LEBEDENKO 09A ZEP3 Xe
< 0.6 90 ANGLE 08A XE10 Xe
<100 90 ALNER 07 ZEP2 Xe
< 1 90 LEE 07A KIMS CsI
< 20 90 5 AKERIB 06 CDMS 73Ge, 29Si
< 2 90 SHIMIZU 06A CNTR F (CaF2)
< 0.5 90 ALNER 05 NAIA NaI
< 1.5 90 BARNABE-HE...05 PICA F (C4F10)
< 1.5 90 GIRARD 05 SMPL F (C2ClF5)
< 35 90 MIUCHI 03 BOLO LiF
< 30 90 TAKEDA 03 BOLO NaF1AARTSEN 13 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the sun in data taken between June 2010 and May 2011.2The value has been provided by the authors. APRILE 13 note that the proton limits onXe are highly sensitive to the theoreti
al model used. See also APRILE 14A.3Use a dire
tion-sensitive dete
tor.4TANAKA 11 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the Sun. The amount of X0 depends on the X0-proton 
ross se
tion.5 See also AKERIB 05.For mX 0 = 100 GeVFor mX 0 = 100 GeVFor mX 0 = 100 GeVFor mX 0 = 100 GeVFor limits from X0 annihilation in the Sun, the assumed annihilation �nal state isshown in parenthesis in the 
omment.VALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1.5 × 10−3 90 AMOLE 15 PICO C3F8
< 3.19× 10−3 90 CHOI 15 SKAM H, solar ν (bb)
< 2.80× 10−4 90 CHOI 15 SKAM H, solar ν (W+W−)
< 1.24× 10−4 90 CHOI 15 SKAM H, solar ν (τ+ τ−)
< 8 × 102 90 1 NAKAMURA 15 NAGE CF4
< 1.7 × 10−3 90 2 AVRORIN 14 BAIK H, solar ν (W+W−)
< 4.5 × 10−2 90 2 AVRORIN 14 BAIK H, solar ν (bb)
< 7.1 × 10−4 90 2 AVRORIN 14 BAIK H, solar ν (τ+ τ−)
< 6 × 10−3 90 FELIZARDO 14 SMPL C2ClF5
< 2.68× 10−4 90 3 AARTSEN 13 ICCB H, solar ν (W+W−)
< 1.47× 10−2 90 3 AARTSEN 13 ICCB H, solar ν (bb)
< 8.5 × 10−4 90 4 ADRIAN-MAR...13 ANTR H, solar ν (W+W−)
< 5.5 × 10−2 90 4 ADRIAN-MAR...13 ANTR H, solar ν (bb)
< 3.4 × 10−4 90 4 ADRIAN-MAR...13 ANTR H, solar ν (τ+ τ−)
< 1.00× 10−2 90 5 APRILE 13 X100 Xe
< 7.1 × 10−4 90 6 BOLIEV 13 BAKS H, solar ν (W+W−)
< 8.4 × 10−3 90 6 BOLIEV 13 BAKS H, solar ν (bb)
< 3.1 × 10−4 90 6 BOLIEV 13 BAKS H, solar ν (τ+ τ−)
< 7.07× 10−4 90 7 ABBASI 12 ICCB H, solar ν (W+W−)
< 4.53× 10−2 90 7 ABBASI 12 ICCB H, solar ν (bb)
< 7 × 10−2 90 ARCHAMBAU...12 PICA F (C4F10)
< 1 × 10−2 90 BEHNKE 12 COUP CF3I
< 1.8 90 DAW 12 DRFT F (CF4)
< 9 × 10−3 FELIZARDO 12 SMPL C2ClF5
< 2 × 10−2 90 KIM 12 KIMS CsI
< 2 × 103 90 1 AHLEN 11 DMTP F (CF4)
< 7 × 10−2 90 BEHNKE 11 COUP CF3I
< 2.7 × 10−4 90 8 TANAKA 11 SKAM H, solar ν (W+W−)
< 4.5 × 10−3 90 8 TANAKA 11 SKAM H, solar ν (bb)9 FELIZARDO 10 SMPL C2ClF3
< 6 × 103 90 1 MIUCHI 10 NAGE CF4
< 0.4 90 ARCHAMBAU...09 PICA F
< 0.8 90 LEBEDENKO 09A ZEP3 Xe
< 1.0 90 ANGLE 08A XE10 Xe
< 15 90 ALNER 07 ZEP2 Xe
< 0.2 90 LEE 07A KIMS CsI
< 1 × 104 90 1 MIUCHI 07 NAGE F (CF4)
< 5 90 10 AKERIB 06 CDMS 73Ge, 29Si
< 2 90 SHIMIZU 06A CNTR F (CaF2)
< 0.3 90 ALNER 05 NAIA NaI
< 2 90 BARNABE-HE...05 PICA F (C4F10)
<100 90 BENOIT 05 EDEL 73Ge
< 1.5 90 GIRARD 05 SMPL F (C2ClF5)
< 0.7 11 GIULIANI 05A RVUE12 GIULIANI 04 RVUE13 GIULIANI 04A RVUE
< 35 90 MIUCHI 03 BOLO LiF
< 40 90 TAKEDA 03 BOLO NaF



1781178117811781See key on page 601 Sear
hesParti
le ListingsWIMPs andOther Parti
le Sear
hes1Use a dire
tion-sensitive dete
tor.2AVRORIN 14 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limitsassuming annihilation into neutrino pairs.3AARTSEN 13 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the sun in data taken between June 2010 and May 2011.4ADRIAN-MARTINEZ 13 sear
h for neutrinos from the Sun arising from the pair annihi-lation of X0 trapped by the sun in data taken between Jan. 2007 and De
. 2008.5The value has been provided by the authors. APRILE 13 note that the proton limits onXe are highly sensitive to the theoreti
al model used. See also APRILE 14A.6BOLIEV 13 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for anolder analysis of the same data.7ABBASI 12 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the Sun. The amount of X0 depends on the X0-proton 
ross se
tion.8TANAKA 11 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the Sun. The amount of X0 depends on the X0-proton 
ross se
tion.9 See their Fig. 3 for limits on spin-dependent proton 
ouplings for X0 mass of 50 GeV.10 See also AKERIB 05.11GIULIANI 05A analyze available data and give 
ombined limits.12GIULIANI 04 reanalyze COLLAR 00 data and give limits for spin-dependent X0-proton
oupling.13GIULIANI 04A give limits for spin-dependent X0-proton 
ouplings from existing data.For mX 0 = 1 TeVFor mX 0 = 1 TeVFor mX 0 = 1 TeVFor mX 0 = 1 TeVFor limits from X0 annihilation in the Sun, the assumed annihilation �nal state isshown in parenthesis in the 
omment.VALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1 × 10−2 90 AMOLE 15 PICO C3F8
< 1.5 × 103 90 NAKAMURA 15 NAGE CF4
< 2.7 × 10−3 90 1 AVRORIN 14 BAIK H, solar ν (W+W−)
< 6.9 × 10−2 90 1 AVRORIN 14 BAIK H, solar ν (bb)
< 8.4 × 10−4 90 1 AVRORIN 14 BAIK H, solar ν (τ+ τ−)
< 4.48× 10−4 90 2 AARTSEN 13 ICCB H, solar ν (W+W−)
< 1.00× 10−2 90 2 AARTSEN 13 ICCB H, solar ν (bb)
< 8.9 × 10−4 90 3 ADRIAN-MAR...13 ANTR H, solar ν (W+W−)
< 2.0 × 10−2 90 3 ADRIAN-MAR...13 ANTR H, solar ν (bb)
< 2.3 × 10−4 90 3 ADRIAN-MAR...13 ANTR H, solar ν (τ+ τ−)
< 7.57× 10−2 90 4 APRILE 13 X100 Xe
< 5.4 × 10−3 90 5 BOLIEV 13 BAKS H, solar ν (W+W−)
< 4.2 × 10−2 90 5 BOLIEV 13 BAKS H, solar ν (bb)
< 1.5 × 10−3 90 5 BOLIEV 13 BAKS H, solar ν (τ+ τ−)
< 2.50× 10−4 90 6 ABBASI 12 ICCB H, solar ν (W+W−)
< 7.86× 10−3 90 6 ABBASI 12 ICCB H, solar ν (bb)
< 8 × 10−2 90 BEHNKE 12 COUP CF3I
< 8 90 DAW 12 DRFT F (CF4)
< 6 × 10−2 FELIZARDO 12 SMPL C2ClF5
< 8 × 10−2 90 KIM 12 KIMS CsI
< 8 × 103 90 7 AHLEN 11 DMTP F (CF4)
< 0.4 90 BEHNKE 11 COUP CF3I
< 2 × 10−3 90 8 TANAKA 11 SKAM H, solar ν (bb)
< 2 × 10−2 90 8 TANAKA 11 SKAM H, solar ν (W+W−)
< 1 × 10−3 90 9 ABBASI 10 ICCB KK dark matter
< 2 × 104 90 7 MIUCHI 10 NAGE CF4
< 8.7 × 10−4 90 ABBASI 09B ICCB H, solar ν (W+W−)
< 2.2 × 10−2 90 ABBASI 09B ICCB H, solar ν (bb)
< 3 90 ARCHAMBAU...09 PICA F
< 6 90 LEBEDENKO 09A ZEP3 Xe
< 9 90 ANGLE 08A XE10 Xe
<100 90 ALNER 07 ZEP2 Xe
< 0.8 90 LEE 07A KIMS CsI
< 4 × 104 90 7 MIUCHI 07 NAGE F (CF4)
< 30 90 10 AKERIB 06 CDMS 73Ge, 29Si
< 1.5 90 ALNER 05 NAIA NaI
< 15 90 BARNABE-HE...05 PICA F (C4F10)
<600 90 BENOIT 05 EDEL 73Ge
< 10 90 GIRARD 05 SMPL F (C2ClF5)
<260 90 MIUCHI 03 BOLO LiF
<150 90 TAKEDA 03 BOLO NaF1AVRORIN 14 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limitsassuming annihilation into neutrino pairs.2AARTSEN 13 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the sun in data taken between June 2010 and May 2011.3ADRIAN-MARTINEZ 13 sear
h for neutrinos from the Sun arising from the pair annihi-lation of X0 trapped by the sun in data taken between Jan. 2007 and De
. 2008.4The value has been provided by the authors. APRILE 13 note that the proton limits onXe are highly sensitive to the theoreti
al model used. See also APRILE 14A.5BOLIEV 13 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for anolder analysis of the same data.6ABBASI 12 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the Sun. The amount of X0 depends on the X0-proton 
ross se
tion.7Use a dire
tion-sensitive dete
tor.8TANAKA 11 sear
h for neutrinos from the Sun arising from the pair annihilation of X0trapped by the Sun. The amount of X0 depends on the X0-proton 
ross se
tion.9ABBASI 10 sear
h for νµ from annihilations of Kaluza-Klein photon dark matter in theSun.10 See also AKERIB 05.

Limits for Spin-Dependent Cross Se
tionLimits for Spin-Dependent Cross Se
tionLimits for Spin-Dependent Cross Se
tionLimits for Spin-Dependent Cross Se
tionof Dark Matter Parti
le (X 0) on Neutronof Dark Matter Parti
le (X 0) on Neutronof Dark Matter Parti
le (X 0) on Neutronof Dark Matter Parti
le (X 0) on NeutronFor mX 0 = 20 GeVFor mX 0 = 20 GeVFor mX 0 = 20 GeVFor mX 0 = 20 GeVVALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.09 90 FELIZARDO 14 SMPL C2ClF5
< 8 90 1 UCHIDA 14 XMAS 129Xe, inelasti

< 1.13× 10−3 90 2 APRILE 13 X100 Xe
< 0.02 90 AKIMOV 12 ZEP3 Xe3 AHMED 11B CDM2 Ge, low threshold
< 0.06 90 AHMED 09 CDM2 Ge
< 0.04 90 LEBEDENKO 09A ZEP3 Xe
< 50 4 LIN 09 TEXO Ge
< 6 × 10−3 90 ANGLE 08A XE10 Xe
< 0.5 90 ALNER 07 ZEP2 Xe
< 25 90 LEE 07A KIMS CsI
< 0.3 90 5 AKERIB 06 CDMS 73Ge, 29Si
< 30 90 SHIMIZU 06A CNTR F (CaF2)
< 60 90 ALNER 05 NAIA NaI
< 20 90 BARNABE-HE...05 PICA F (C4F10)
< 10 90 BENOIT 05 EDEL 73Ge
< 4 90 KLAPDOR-K... 05 HDMS 73Ge (enri
hed)
<600 90 TAKEDA 03 BOLO NaF1Derived limit from sear
h for inelasti
 s
attering X0 + 129Xe → X0 + 129Xe∗(39.58keV).2The value has been provided by the authors. See also APRILE 14A.3AHMED 11B give limits on spin-dependent X0-neutron 
ross se
tion for mX 0 = 4{12GeV in the range 10−3{10 pb. See their Fig. 3.4 See their Fig. 6(b) for 
ross se
tion limits for mX 0 extending down to 2 GeV.5 See also AKERIB 05.For mX 0 = 100 GeVFor mX 0 = 100 GeVFor mX 0 = 100 GeVFor mX 0 = 100 GeVVALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.1 90 FELIZARDO 14 SMPL C2ClF5
< 0.05 90 1 UCHIDA 14 XMAS 129Xe, inelasti

< 4.68× 10−4 90 2 APRILE 13 X100 Xe
< 0.01 90 AKIMOV 12 ZEP3 Xe3 FELIZARDO 10 SMPL C2ClF3
< 0.02 90 AHMED 09 CDM2 Ge
< 0.01 90 LEBEDENKO 09A ZEP3 Xe
<100 90 LIN 09 TEXO Ge
< 0.01 90 ANGLE 08A XE10 Xe
< 0.05 90 4 BEDNYAKOV 08 RVUE Ge
< 0.08 90 ALNER 07 ZEP2 Xe
< 6 90 LEE 07A KIMS CsI
< 0.07 90 5 AKERIB 06 CDMS 73Ge, 29Si
< 30 90 SHIMIZU 06A CNTR F (CaF2)
< 10 90 ALNER 05 NAIA NaI
< 30 90 BARNABE-HE...05 PICA F (C4F10)
< 0.7 90 BENOIT 05 EDEL 73Ge
< 0.2 6 GIULIANI 05A RVUE
< 1.5 90 KLAPDOR-K... 05 HDMS 73Ge (enri
hed)7 GIULIANI 04 RVUE8 GIULIANI 04A RVUE9 MIUCHI 03 BOLO LiF
<800 90 TAKEDA 03 BOLO NaF1Derived limit from sear
h for inelasti
 s
attering X0 + 129Xe∗ → X0 + 129Xe∗(39.58keV).2The value has been provided by the authors. See also APRILE 14A.3 See their Fig. 3 for limits on spin-dependent neutron 
ouplings for X0 mass of 50 GeV.4BEDNYAKOV 08 reanalyze KLAPDOR-KLEINGROTHAUS 05 and BAUDIS 01 data.5 See also AKERIB 05.6GIULIANI 05A analyze available data and give 
ombined limits.7GIULIANI 04 reanalyze COLLAR 00 data and give limits for spin-dependent X0-neutron
oupling.8GIULIANI 04A give limits for spin-dependent X0-neutron 
ouplings from existing data.9MIUCHI 03 give model-independent limit for spin-dependent X0-proton and neutron
ross se
tions. See their Fig. 5.For mX 0 = 1 TeVFor mX 0 = 1 TeVFor mX 0 = 1 TeVFor mX 0 = 1 TeVVALUE (pb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.07 90 FELIZARDO 14 SMPL C2ClF5
< 0.2 90 1 UCHIDA 14 XMAS 129Xe, inelasti

< 3.64× 10−3 90 2 APRILE 13 X100 Xe
< 0.08 90 AKIMOV 12 ZEP3 Xe
< 0.2 90 AHMED 09 CDM2 Ge
< 0.1 90 LEBEDENKO 09A ZEP3 Xe
< 0.1 90 ANGLE 08A XE10 Xe
< 0.25 90 3 BEDNYAKOV 08 RVUE Ge
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< 0.6 90 ALNER 07 ZEP2 Xe
< 30 90 LEE 07A KIMS CsI
< 0.5 90 4 AKERIB 06 CDMS 73Ge, 29Si
< 40 90 ALNER 05 NAIA NaI
<200 90 BARNABE-HE...05 PICA F (C4F10)
< 4 90 BENOIT 05 EDEL 73Ge
< 10 90 KLAPDOR-K... 05 HDMS 73Ge (enri
hed)
< 4 × 103 90 TAKEDA 03 BOLO NaF1Derived limit from sear
h for inelasti
 s
attering X0 + 129Xe∗ → X0 + 129Xe∗(39.58keV).2The value has been provided by the authors. See also APRILE 14A.3BEDNYAKOV 08 reanalyze KLAPDOR-KLEINGROTHAUS 05 and BAUDIS 01 data.4 See also AKERIB 05.Cross-Se
tion Limits for Dark Matter Parti
les (X 0) on Nu
leiCross-Se
tion Limits for Dark Matter Parti
les (X 0) on Nu
leiCross-Se
tion Limits for Dark Matter Parti
les (X 0) on Nu
leiCross-Se
tion Limits for Dark Matter Parti
les (X 0) on Nu
leiFor mX 0 = 20 GeVFor mX 0 = 20 GeVFor mX 0 = 20 GeVFor mX 0 = 20 GeVVALUE (nb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.03 90 1 UCHIDA 14 XMAS 129Xe, inelasti

< 0.08 90 2 ANGLOHER 02 CRES Al3 BENOIT 00 EDEL Ge
< 0.04 95 4 KLIMENKO 98 CNTR 73Ge, inel.
< 0.8 ALESSAND... 96 CNTR O
< 6 ALESSAND... 96 CNTR Te
< 0.02 90 5 BELLI 96 CNTR 129Xe, inel.6 BELLI 96C CNTR 129Xe
< 4 × 10−3 90 7 BERNABEI 96 CNTR Na
< 0.3 90 7 BERNABEI 96 CNTR I
< 0.2 95 8 SARSA 96 CNTR Na
< 0.015 90 9 SMITH 96 CNTR Na
< 0.05 95 10 GARCIA 95 CNTR Natural Ge
< 0.1 95 QUENBY 95 CNTR Na
<90 90 11 SNOWDEN-... 95 MICA 16O
< 4 × 103 90 11 SNOWDEN-... 95 MICA 39K
< 0.7 90 BACCI 92 CNTR Na
< 0.12 90 12 REUSSER 91 CNTR Natural Ge
< 0.06 95 CALDWELL 88 CNTR Natural Ge1UCHIDA 14 limit is for inelasti
 s
attering X0 + 129Xe∗ → X0 + 129Xe∗ (39.58keV).2ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum 
ross se
tion.3BENOIT 00 �nd four event 
ategories in Ge dete
tors and suggest that low-energysurfa
e nu
lear re
oils 
an explain anomalous events reported by UKDMC and Sa
layNaI experiments.4KLIMENKO 98 limit is for inelasti
 s
attering X0 73Ge → X0 73Ge∗ (13.26 keV).5BELLI 96 limit for inelasti
 s
attering X0 129Xe → X0 129Xe∗(39.58 keV).6BELLI 96C use ba
kground subtra
tion and obtain σ < 150 pb (< 1.5 fb) (90% CL) forspin-dependent (independent) X0-proton 
ross se
tion. The 
on�den
e level is from R.Bernabei, private 
ommuni
ation, May 20, 1999.7BERNABEI 96 use pulse shape dis
rimination to enhan
e the possible signal. The limithere is from R. Bernabei, private 
ommuni
ation, September 19, 1997.8 SARSA 96 sear
h for annual modulation of WIMP signal. See SARSA 97 for details ofthe analysis. The limit here is from M.L. Sarsa, private 
ommuni
ation, May 26, 1997.9 SMITH 96 use pulse shape dis
rimination to enhan
e the possible signal. A dark matterdensity of 0.4 GeV 
m−3 is assumed.10GARCIA 95 limit is from the event rate. A weaker limit is obtained from sear
hes fordiurnal and annual modulation.11 SNOWDEN-IFFT 95 look for re
oil tra
ks in an an
ient mi
a 
rystal. Similar limits arealso given for 27Al and 28Si. See COLLAR 96 and SNOWDEN-IFFT 96 for dis
ussionon potential ba
kgrounds.12REUSSER 91 limit here is 
hanged from published (0.04) after reanalysis by authors.J.L. Vuilleumier, private 
ommuni
ation, Mar
h 29, 1996.For mX 0 = 100 GeVFor mX 0 = 100 GeVFor mX 0 = 100 GeVFor mX 0 = 100 GeVVALUE (nb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 3 × 10−3 90 1 UCHIDA 14 XMAS 129Xe, inelasti

< 0.3 90 2 ANGLOHER 02 CRES Al3 BELLI 02 RVUE4 BERNABEI 02C DAMA5 GREEN 02 RVUE6 ULLIO 01 RVUE7 BENOIT 00 EDEL Ge
< 4 × 10−3 90 8 BERNABEI 00D 129Xe, inel.9 AMBROSIO 99 MCRO10 BRHLIK 99 RVUE
< 8 × 10−3 95 11 KLIMENKO 98 CNTR 73Ge, inel.
< 0.08 95 12 KLIMENKO 98 CNTR 73Ge, inel.
< 4 ALESSAND... 96 CNTR O
<25 ALESSAND... 96 CNTR Te
< 6 × 10−3 90 13 BELLI 96 CNTR 129Xe, inel.14 BELLI 96C CNTR 129Xe
< 1 × 10−3 90 15 BERNABEI 96 CNTR Na
< 0.3 90 15 BERNABEI 96 CNTR I

< 0.7 95 16 SARSA 96 CNTR Na
< 0.03 90 17 SMITH 96 CNTR Na
< 0.8 90 17 SMITH 96 CNTR I
< 0.35 95 18 GARCIA 95 CNTR Natural Ge
< 0.6 95 QUENBY 95 CNTR Na
< 3 95 QUENBY 95 CNTR I
< 1.5 × 102 90 19 SNOWDEN-... 95 MICA 16O
< 4 × 102 90 19 SNOWDEN-... 95 MICA 39K
< 0.08 90 20 BECK 94 CNTR 76Ge
< 2.5 90 BACCI 92 CNTR Na
< 3 90 BACCI 92 CNTR I
< 0.9 90 21 REUSSER 91 CNTR Natural Ge
< 0.7 95 CALDWELL 88 CNTR Natural Ge1UCHIDA 14 limit is for inelasti
 s
attering X0 + 129Xe∗ → X0 + 129Xe∗(39.58keV).2ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum 
ross se
tion.3BELLI 02 dis
uss dependen
e of the extra
ted WIMP 
ross se
tion on the assumptionsof the gala
ti
 halo stru
ture.4BERNABEI 02C analyze the DAMA data in the s
enario in whi
h X0 s
atters into aslightly heavier state as dis
ussed by SMITH 01.5GREEN 02 dis
usses dependen
e of extra
ted WIMP 
ross se
tion limits on the assump-tions of the gala
ti
 halo stru
ture.6ULLIO 01 disfavor the possibility that the BERNABEI 99 signal is due to spin-dependentWIMP 
oupling.7BENOIT 00 �nd four event 
ategories in Ge dete
tors and suggest that low-energysurfa
e nu
lear re
oils 
an explain anomalous events reported by UKDMC and Sa
layNaI experiments.8BERNABEI 00D limit is for inelasti
 s
attering X0 129Xe → X0 129Xe (39.58 keV).9AMBROSIO 99 sear
h for upgoing muon events indu
ed by neutrinos originating fromWIMP annihilations in the Sun and Earth.10BRHLIK 99 dis
uss the e�e
t of astrophysi
al un
ertainties on the WIMP interpretationof the BERNABEI 99 signal.11KLIMENKO 98 limit is for inelasti
 s
attering X0 73Ge → X0 73Ge∗ (13.26 keV).12KLIMENKO 98 limit is for inelasti
 s
attering X0 73Ge → X0 73Ge∗ (66.73 keV).13BELLI 96 limit for inelasti
 s
attering X0 129Xe → X0 129Xe∗(39.58 keV).14BELLI 96C use ba
kground subtra
tion and obtain σ < 0.35 pb (< 0.15 fb) (90% CL)for spin-dependent (independent) X0-proton 
ross se
tion. The 
on�den
e level is fromR. Bernabei, private 
ommuni
ation, May 20, 1999.15BERNABEI 96 use pulse shape dis
rimination to enhan
e the possible signal. The limithere is from R. Bernabei, private 
ommuni
ation, September 19, 1997.16 SARSA 96 sear
h for annual modulation of WIMP signal. See SARSA 97 for details ofthe analysis. The limit here is from M.L. Sarsa, private 
ommuni
ation, May 26, 1997.17 SMITH 96 use pulse shape dis
rimination to enhan
e the possible signal. A dark matterdensity of 0.4 GeV 
m−3 is assumed.18GARCIA 95 limit is from the event rate. A weaker limit is obtained from sear
hes fordiurnal and annual modulation.19 SNOWDEN-IFFT 95 look for re
oil tra
ks in an an
ient mi
a 
rystal. Similar limits arealso given for 27Al and 28Si. See COLLAR 96 and SNOWDEN-IFFT 96 for dis
ussionon potential ba
kgrounds.20BECK 94 uses enri
hed 76Ge (86% purity).21REUSSER 91 limit here is 
hanged from published (0.3) after reanalysis by authors.J.L. Vuilleumier, private 
ommuni
ation, Mar
h 29, 1996.For mX 0 = 1 TeVFor mX 0 = 1 TeVFor mX 0 = 1 TeVFor mX 0 = 1 TeVVALUE (nb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 0.03 90 1 UCHIDA 14 XMAS 129Xe, inelasti

< 3 90 2 ANGLOHER 02 CRES Al3 BENOIT 00 EDEL Ge4 BERNABEI 99D CNTR SIMP5 DERBIN 99 CNTR SIMP
< 0.06 95 6 KLIMENKO 98 CNTR 73Ge, inel.
< 0.4 95 7 KLIMENKO 98 CNTR 73Ge, inel.
< 40 ALESSAND... 96 CNTR O
<700 ALESSAND... 96 CNTR Te
< 0.05 90 8 BELLI 96 CNTR 129Xe, inel.
< 1.5 90 9 BELLI 96 CNTR 129Xe, inel.10 BELLI 96C CNTR 129Xe
< 0.01 90 11 BERNABEI 96 CNTR Na
< 9 90 11 BERNABEI 96 CNTR I
< 7 95 12 SARSA 96 CNTR Na
< 0.3 90 13 SMITH 96 CNTR Na
< 6 90 13 SMITH 96 CNTR I
< 6 95 14 GARCIA 95 CNTR Natural Ge
< 8 95 QUENBY 95 CNTR Na
< 50 95 QUENBY 95 CNTR I
<700 90 15 SNOWDEN-... 95 MICA 16O
< 1 × 103 90 15 SNOWDEN-... 95 MICA 39K
< 0.8 90 16 BECK 94 CNTR 76Ge
< 30 90 BACCI 92 CNTR Na
< 30 90 BACCI 92 CNTR I
< 15 90 17 REUSSER 91 CNTR Natural Ge
< 6 95 CALDWELL 88 CNTR Natural Ge



1783178317831783See key on page 601 Sear
hes Parti
le ListingsWIMPs and Other Parti
le Sear
hes1UCHIDA 14 limit is for inelasti
 s
attering X0 + 129Xe∗ → X0 + 129Xe∗ (39.58keV).2ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum 
ross se
tion.3BENOIT 00 �nd four event 
ategories in Ge dete
tors and suggest that low-energysurfa
e nu
lear re
oils 
an explain anomalous events reported by UKDMC and Sa
layNaI experiments.4BERNABEI 99D sear
h for SIMPs (Strongly Intera
ting Massive Parti
les) in the massrange 103{1016 GeV. See their Fig. 3 for 
ross-se
tion limits.5DERBIN 99 sear
h for SIMPs (Strongly Intera
ting Massive Parti
les) in the mass range102{1014 GeV. See their Fig. 3 for 
ross-se
tion limits.6KLIMENKO 98 limit is for inelasti
 s
attering X0 73Ge → X0 73Ge∗ (13.26 keV).7KLIMENKO 98 limit is for inelasti
 s
attering X0 73Ge → X0 73Ge∗ (66.73 keV).8BELLI 96 limit for inelasti
 s
attering X0 129Xe → X0 129Xe∗(39.58 keV).9BELLI 96 limit for inelasti
 s
attering X0 129Xe → X0 129Xe∗(236.14 keV).10BELLI 96C use ba
kground subtra
tion and obtain σ < 0.7 pb (< 0.7 fb) (90% CL) forspin-dependent (independent) X0-proton 
ross se
tion. The 
on�den
e level is from R.Bernabei, private 
ommuni
ation, May 20, 1999.11BERNABEI 96 use pulse shape dis
rimination to enhan
e the possible signal. The limithere is from R. Bernabei, private 
ommuni
ation, September 19, 1997.12 SARSA 96 sear
h for annual modulation of WIMP signal. See SARSA 97 for details ofthe analysis. The limit here is from M.L. Sarsa, private 
ommuni
ation, May 26, 1997.13 SMITH 96 use pulse shape dis
rimination to enhan
e the possible signal. A dark matterdensity of 0.4 GeV 
m−3 is assumed.14GARCIA 95 limit is from the event rate. A weaker limit is obtained from sear
hes fordiurnal and annual modulation.15 SNOWDEN-IFFT 95 look for re
oil tra
ks in an an
ient mi
a 
rystal. Similar limits arealso given for 27Al and 28Si. See COLLAR 96 and SNOWDEN-IFFT 96 for dis
ussionon potential ba
kgrounds.16BECK 94 uses enri
hed 76Ge (86% purity).17REUSSER 91 limit here is 
hanged from published (5) after reanalysis by authors.J.L. Vuilleumier, private 
ommuni
ation, Mar
h 29, 1996.Mis
ellaneous Results from Underground Dark Matter Sear
hesMis
ellaneous Results from Underground Dark Matter Sear
hesMis
ellaneous Results from Underground Dark Matter Sear
hesMis
ellaneous Results from Underground Dark Matter Sear
hesVALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 APRILE 15 X100 Event rate modulation2 APRILE 15A X100 Ele
tron s
attering1APRILE 15 sear
h for periodi
 variation of ele
troni
 re
oil event rate in the data betweenFeb. 2011 and Mar. 2012. No signi�
ant modulation is found for periods up to 500days.2APRILE 15A sear
h for X0 s
attering o� ele
trons. See their Fig. 4 for limits on 
rossse
tion through axial-ve
tor 
oupling for mX 0 between 0.6 GeV and 1 TeV. For mX 0 =2 GeV, σ < 60 pb (90%CL) is obtained.X 0 Annihilation Cross Se
tionX 0 Annihilation Cross Se
tionX 0 Annihilation Cross Se
tionX 0 Annihilation Cross Se
tionLimits are on σv for X0 pair annihilation at threshold.VALUE (
m3s−1) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AARTSEN 15C ICCB ν, Gala
ti
 halo2 AARTSEN 15E ICCB ν, Gala
ti
 
enter3 ABRAMOWSKI15 HESS Gala
ti
 
enter4 ACKERMANN 15 FLAT mono
hromati
 γ5 ACKERMANN 15A FLAT isotropi
 γ ba
kground6 ACKERMANN 15B FLAT Satellite galaxy7 ADRIAN-MAR...15 ANTR ν, Gala
ti
 
enter
<2.90× 10−26 95 8,9 ACKERMANN 14 FLAT Satellite galaxy, m = 10 GeV
<1.84× 10−25 95 8,10 ACKERMANN 14 FLAT Satellite galaxy, m = 100 GeV
<1.75× 10−24 95 8,10 ACKERMANN 14 FLAT Satellite galaxy, m = 1 TeV
<4.52× 10−24 95 11 ALEKSIC 14 MGIC Segue 1, m = 1.35 TeV12 AARTSEN 13C ICCB Galaxies13 ABRAMOWSKI13 HESS Central Gala
ti
 Halo14 ACKERMANN 13A FLAT Galaxy15 ABRAMOWSKI12 HESS Fornax Cluster16 ACKERMANN 12 FLAT Galaxy17 ACKERMANN 12 FLAT Galaxy18 ALIU 12 VRTS Segue 1
<1 × 10−22 90 19 ABBASI 11C ICCB Gala
ti
 halo, m=1 TeV
<3 × 10−25 95 20 ABRAMOWSKI11 HESS Near Gala
ti
 
enter, m=1 TeV
<1 × 10−26 95 21 ACKERMANN 11 FLAT Satellite galaxy, m=10 GeV
<1 × 10−25 95 21 ACKERMANN 11 FLAT Satellite galaxy, m=100 GeV
<1 × 10−24 95 21 ACKERMANN 11 FLAT Satellite galaxy, m=1 TeV1AARTSEN 15C sear
h for neutrinos from X0 annihilation in the Gala
ti
 halo. See theirFigs. 16 and 17, and Table 5 for limits on σ · v for X0 mass between 100 GeV and 100TeV.2AARTSEN 15E sear
h for neutrinos from X0 annihilation in the Gala
ti
 
enter. Seetheir Figs. 7 and 9, and Table 3 for limits on σ · v for X0 mass between 30 GeV and 10TeV.3ABRAMOWSKI 15 sear
h for γ from X0 annihilation in the Gala
ti
 
enter. See theirFig. 4 for limits on σ · v for X0 mass between 250 GeV and 10 TeV.4ACKERMANN 15 sear
h for mono
hromati
 γ from X0 annihlation in the Gala
ti
 halo.See their Fig. 8 and Tables 2{4 for limits on σ · v for X0 mass between 0.2 GeV and 500GeV.5ACKERMANN 15A sear
h for γ from X0 annihilation (both Gala
ti
 and extragala
ti
)in the isotropi
 γ ba
kground. See their Fig. 7 for limits on σ · v for X0 mass between10 GeV and 30 TeV.6ACKERMANN 15B sear
h for γ from X0 annihilation in 15 dwarf spheroidal satellitegalaxies of the Milky Way. See their Figs. 1 and 2 for limits on σ · v for X0 massbetween 2 GeV and 10 TeV.

7ADRIAN-MARTINEZ 15 sear
h for neutrinos from X0 annihilation in the Gala
ti
 
enter.See their Figs. 10 and 11 and Tables 1 and 2 for limits on σ · v for X0 mass between 25GeV and 10 TeV.8ACKERMANN 14 sear
h for γ from X0 annihilation in 25 dwarf spheroidal satellitegalaxies of the Milky Way. See their Tables II{VII for limits assuming annihilation intoe+ e−, µ+µ−, τ+ τ−, uu, bb, and W+W−, for X0 mass ranging from 2 GeV to 10TeV.9 Limit assuming X0 pair annihilation into bb.10 Limit assuming X0 pair annihilation into W+W−.11ALEKSIC 14 sear
h for γ from X0 annihilation in the dwarf spheroidal galaxy Segue 1.The listed limit assumes annihilation into W+W−. See their Figs. 6, 7, and 16 forlimits on σ · v for annihilation 
hannels µ+µ−, τ+ τ−, bb, t t , γ γ, γZ , W+W−, Z Zfor X0 mass between 102 and 104 GeV.12AARTSEN 13C sear
h for neutrinos from X0 annihilation in nearby galaxies and galaxy
lusters. See their Figs. 5{7 for limits on σ · v for X0X0 → ν ν, µ+µ−, τ+ τ−, andW+W− for X0 mass between 300 GeV and 100 TeV.13ABRAMOWSKI 13 sear
h for mono
hromati
 γ from X0 annihilation in the Milky Wayhalo in the 
entral region. Limit on σ ·v between 10−28 and 10−25 
m3 s−1 (95% CL)is obtained for X0 mass between 500 GeV and 20 TeV for X0X0 → γ γ. X0 densitydistribution in the Galaxy by Einasto is assumed. See their Fig. 4.14ACKERMANN 13A sear
h for mono
hromati
 γ from X0 annihilation in the Milky Way.Limit on σ · v for the pro
ess X0X0 → γ γ in the range 10−29{10−27 
m3 s−1 (95%CL) is obtained for X0 mass between 5 and 300 GeV. The limit depends slightly onthe assumed density pro�le of X0 in the Galaxy. See their Tables VII−X and Fig.10.Supersedes ACKERMANN 12.15ABRAMOWSKI 12 sear
h for γ's from X0 annihilation in the Fornax galaxy 
luster. Seetheir Fig. 7 for limits on σ · v for X0 mass between 0.1 and 100 TeV for the annihilation
hannels τ+ τ−, bb, and W+W−.16ACKERMANN 12 sear
h for mono
hromati
 γ from X0 annihilation in the Milky Way.Limit on σ · v in the range 10−28{10−26 
m3s−1 (95% CL) is obtained for X0 massbetween 7 and 200 GeV if X0 annihilates into γ γ. The limit depends slightly on theassumed density pro�le of X0 in the Galaxy. See their Table III and Fig. 15.17ACKERMANN 12 sear
h for γ from X0 annihilation in the Milky Way in the di�use γba
kground. Limit on σ · v of 10−24 
m3s−1 or larger is obtained for X0 mass between5 GeV and 10 TeV for various annihilation 
hannels in
luding W+W−, bb, g g , e+ e−,
µ+µ−, τ+ τ−. The limit depends slightly on the assumed density pro�le of X0 in theGalaxy. See their Figs. 17{20.18ALIU 12 sear
h for γ's from X0 annihilation in the dwarf spheroidal galaxy Segue 1.Limit on σ · v in the range 10−24{10−20 
m3s−1 (95% CL) is obtained for X0 massbetween 10 GeV and 2 TeV for annihilation 
hannels e+ e−, µ+µ−, τ+ τ−, bb, andW+W−. See their Fig. 3.19ABBASI 11C sear
h for νµ from X0 annihilation in the outer halo of the Milky Way. Thelimit assumes annihilation into ν ν. See their Fig. 9 for limits with other annihilation
hannels.20ABRAMOWSKI 11 sear
h for γ from X0 annihilation near the Gala
ti
 
enter. The limitassumes Einasto DM density pro�le.21ACKERMANN 11 sear
h for γ from X0 annihilation in ten dwarf spheroidal satellitegalaxies of the Milky Way. The limit for m = 10 GeV assumes annihilation into bb, theothers W+W−. See their Fig. 2 for limits with other �nal states. See also GERINGER-SAMETH 11 for a di�erent analysis of the same data.Dark Matter Parti
le (X 0) Produ
tion in Hadron CollisionsDark Matter Parti
le (X 0) Produ
tion in Hadron CollisionsDark Matter Parti
le (X 0) Produ
tion in Hadron CollisionsDark Matter Parti
le (X 0) Produ
tion in Hadron CollisionsSear
hes for X0 produ
tion in aso
iation with observable parti
les (γ,jets, . . .) in high energy hadron 
ollisions. If a spe
i�
 form of e�e
tiveintera
tion Lagrangian is assumed, the limits may be translated into limitson X0-nu
leon s
attering 
ross se
tion.VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAD 15AS ATLS b (b) + 6ET , t t + 6ET2 AAD 15BH ATLS jet + 6ET3 AAD 15CF ATLS H0 + 6ET4 AAD 15CS ATLS γ + 6ET5 KHACHATRY...15AG CMS t t + 6ET6 KHACHATRY...15AL CMS jet + 6ET7 KHACHATRY...15T CMS ℓ + 6ET8 AAD 14AI ATLS W + 6ET9 AAD 14K ATLS Z + 6ET10 AAD 14O ATLS Z + 6ET11 AAD 13AD ATLS jet + 6ET12 AAD 13C ATLS γ + 6ET13 AALTONEN 12K CDF t + 6ET14 AALTONEN 12M CDF jet + 6ET15 CHATRCHYAN12AP CMS jet + 6ET16 CHATRCHYAN12T CMS γ + 6ET1AAD 15AS sear
h for events with one or more bottom quark and missing ET , and alsoevents with a top quark pair and missing ET in pp 
ollisions at E
m = 8 TeV with L= 20.3 fb−1. See their Figs. 5 and 6 for translated limits on X0-nu
leon 
ross se
tionfor m = 1{700 GeV.2AAD 15BH sear
h for events with a jet and missing ET in pp 
ollisions at E
m = 8 TeVwith L = 20.3 fb−1. See their Fig. 12 for translated limits on X0-nu
leon 
ross se
tionfor m = 1{1200 GeV.3AAD 15CF sear
h for events with a H0 (→ γ γ) and missing ET in pp 
ollisions atE
m = 8 TeV with L = 20.3 fb−1. See paper for limits on the strength of some 
onta
tintera
tions 
ontaining X0 and the Higgs �elds.4AAD 15CS sear
h for events with a photon and missing ET in pp 
ollisions at E
m =8 TeV with L = 20.3 fb−1. See their Fig. 13 (see also erratum) for translated limits onX0-nu
leon 
ross se
tion for m = 1{1000 GeV.



1784178417841784Sear
hesParti
le ListingsWIMPs andOther Parti
le Sear
hes5KHACHATRYAN 15AG sear
h for events with a top quark pair and missing ET in pp
ollisions at E
m = 8 TeV with L = 19.7 fb−1. See their Fig. 8 for translated limits onX0-nu
leon 
ross se
tion for m = 1{200 GeV.6KHACHATRYAN 15AL sear
h for events with a jet and missing ET in pp 
ollisions atE
m = 8 TeV with L = 19.7 fb−1. See their Fig. 5 and Tables 4{6 for translated limitson X0-nu
leon 
ross se
tion for m = 1{1000 GeV.7KHACHATRYAN 15T sear
h for events with a lepton and missing ET in pp 
ollisions atE
m = 8 TeV with L = 19.7 fb−1. See their Fig. 17 for translated limits on X0-proton
ross se
tion for m = 1{1000 GeV.8AAD 14AI sear
h for events with a W and missing ET in pp 
ollisions at E
m = 8 TeVwith L = 20.3 fb−1. See their Fig. 4 for translated limits on X0{nu
leon 
ross se
tionfor m = 1{1500 GeV.9AAD 14K sear
h for events with a Z and missing ET in pp 
ollisions at E
m = 8 TeVwith L = 20.3 fb−1. See their Fig. 5 and 6 for translated limits on X0{nu
leon 
rossse
tion for m = 1{103 GeV.10AAD 14O sear
h for Z H0 produ
tion with H0 de
aying to invisible �nal states. Seetheir Fig. 4 for translated limits on X0{nu
leon 
ross se
tion for m = 1{60 GeV inHiggs-portal X0 s
enario.11AAD 13AD sear
h for events with a jet and missing ET in pp 
ollisions at E
m = 7 TeVwith L = 4.7 fb−1. See their Figs. 5 and 6 for translated limits on X0-nu
leon 
rossse
tion for m = 1{1300 GeV.12AAD 13C sear
h for events with a photon and missing ET in pp 
ollisions at E
m =7 TeV with L = 4.6 fb−1. See their Fig. 3 for translated limits on X0-nu
leon 
rossse
tion for m = 1{1000 GeV.13AALTONEN 12K sear
h for events with a top quark and missing ET in pp 
ollisions atE
m = 1.96 TeV with L = 7.7 fb−1. Upper limits on σ(t X0) in the range 0.4{2 pb(95% CL) is given for mX 0 = 0{150 GeV.14AALTONEN 12M sear
h for events with a jet and missing ET in pp 
ollisions at E
m= 1.96 TeV with L = 6.7 fb−1. Upper limits on the 
ross se
tion in the range 2{10 pb(90% CL) is given for mX 0 = 1{300 GeV. See their Fig. 2 for translated limits onX0-nu
leon 
ross se
tion.15CHATRCHYAN 12AP sear
h for events with a jet and missing ET in pp 
ollisions atE
m = 7 TeV with L = 5.0 fb−1. See their Fig. 4 for translated limits on X0-nu
leon
ross se
tion for mX 0 = 0.1{1000 GeV.16CHATRCHYAN 12T sear
h for events with a photon and missing ET in pp 
ollisionsat E
m = 7 TeV with L = 5.0 fb−1. Upper limits on the 
ross se
tion in the range13{15 fb (90% CL) is given for mX 0 = 1{1000 GeV. See their Fig. 2 for translated limitson X0-nu
leon 
ross se
tion.CONCENTRATION OF STABLE PARTICLES IN MATTERCONCENTRATION OF STABLE PARTICLES IN MATTERCONCENTRATION OF STABLE PARTICLES IN MATTERCONCENTRATION OF STABLE PARTICLES IN MATTERCon
entration of Heavy (Charge +1) Stable Parti
les in MatterCon
entration of Heavy (Charge +1) Stable Parti
les in MatterCon
entration of Heavy (Charge +1) Stable Parti
les in MatterCon
entration of Heavy (Charge +1) Stable Parti
les in MatterVALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<4× 10−17 95 1 YAMAGATA 93 SPEC Deep sea water,M=5{1600mp
<6× 10−15 95 2 VERKERK 92 SPEC Water, M= 105 to 3 ×107 GeV
<7× 10−15 95 2 VERKERK 92 SPEC Water, M= 104, 6 ×107 GeV
<9× 10−15 95 2 VERKERK 92 SPEC Water, M= 108 GeV
<3× 10−23 90 3 HEMMICK 90 SPEC Water, M = 1000mp
<2× 10−21 90 3 HEMMICK 90 SPEC Water, M = 5000mp
<3× 10−20 90 3 HEMMICK 90 SPEC Water, M = 10000mp
<1. × 10−29 SMITH 82B SPEC Water, M=30{400mp
<2. × 10−28 SMITH 82B SPEC Water, M=12{1000mp
<1. × 10−14 SMITH 82B SPEC Water, M >1000 mp
<(0.2{1.)× 10−21 SMITH 79 SPEC Water, M=6{350 mp1YAMAGATA 93 used deep sea water at 4000 m sin
e the 
on
entration is enhan
ed indeep sea due to gravity.2VERKERK 92 looked for heavy isotopes in sea water and put a bound on 
on
entrationof stable 
harged massive parti
le in sea water. The above bound 
an be translated intointo a bound on 
harged dark matter parti
le (5× 106 GeV), assuming the lo
al density,

ρ=0.3 GeV/
m3, and the mean velo
ity 〈v〉=300 km/s.3 See HEMMICK 90 Fig. 7 for other masses 100{10000mp.Con
entration of Heavy Stable Parti
les Bound to Nu
leiCon
entration of Heavy Stable Parti
les Bound to Nu
leiCon
entration of Heavy Stable Parti
les Bound to Nu
leiCon
entration of Heavy Stable Parti
les Bound to Nu
leiVALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<1.2× 10−11 95 1 JAVORSEK 01 SPEC Au, M= 3 GeV
<6.9× 10−10 95 1 JAVORSEK 01 SPEC Au, M= 144 GeV
<1 × 10−11 95 2 JAVORSEK 01B SPEC Au, M= 188 GeV
<1 × 10−8 95 2 JAVORSEK 01B SPEC Au, M= 1669GeV
<6 × 10−9 95 2 JAVORSEK 01B SPEC Fe, M= 188 GeV
<1 × 10−8 95 2 JAVORSEK 01B SPEC Fe, M= 647 GeV
<4 × 10−20 90 3 HEMMICK 90 SPEC C, M = 100mp
<8 × 10−20 90 3 HEMMICK 90 SPEC C, M = 1000mp
<2 × 10−16 90 3 HEMMICK 90 SPEC C, M = 10000mp
<6 × 10−13 90 3 HEMMICK 90 SPEC Li, M = 1000mp
<1 × 10−11 90 3 HEMMICK 90 SPEC Be, M = 1000mp
<6 × 10−14 90 3 HEMMICK 90 SPEC B, M = 1000mp

<4 × 10−17 90 3 HEMMICK 90 SPEC O, M = 1000mp
<4 × 10−15 90 3 HEMMICK 90 SPEC F, M = 1000mp
< 1.5× 10−13/nu
leon 68 4 NORMAN 89 SPEC 206PbX−
< 1.2× 10−12/nu
leon 68 4 NORMAN 87 SPEC 56,58FeX−1 JAVORSEK 01 sear
h for (neutral) SIMPs (strongly intera
ting massive parti
les) boundto Au nu
lei. Here M is the e�e
tive SIMP mass.2 JAVORSEK 01B sear
h for (neutral) SIMPs (strongly intera
ting massive parti
les) boundto Au and Fe nu
lei from various origins with exposures on the earth's surfa
e, in asatellite, heavy ion 
ollisions, et
. Here M is the mass of the anomalous nu
leus. Seealso JAVORSEK 02.3 See HEMMICK 90 Fig. 7 for other masses 100{10000mp.4Bound valid up to mX− ∼ 100 TeV.GENERAL NEW PHYSICS SEARCHESGENERAL NEW PHYSICS SEARCHESGENERAL NEW PHYSICS SEARCHESGENERAL NEW PHYSICS SEARCHESThis subse
tion lists some of the sear
h experiments whi
h look for generalsignatures 
hara
teristi
 of new physi
s, independent of the framework ofa spe
i�
 model.The observed events are 
ompatible with Standard Model expe
tation,unless noted otherwise.VALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAD 15AT ATLS t + 6ET2 KHACHATRY...15F CMS t + 6ET3 AALTONEN 14J CDF W + 2 jets4 AAD 13A ATLS WW → ℓν ℓ′ ν5 AAD 13C ATLS γ + 6ET6 AALTONEN 13I CDF Delayed γ + 6ET7 CHATRCHYAN13 CMS ℓ+ ℓ− + jets + 6ET8 AAD 12C ATLS t t + 6ET9 AALTONEN 12M CDF jet + 6ET10 CHATRCHYAN12AP CMS jet + 6ET11 CHATRCHYAN12Q CMS Z + jets + 6ET12 CHATRCHYAN12T CMS γ + 6ET13 AAD 11S ATLS jet + 6ET14 AALTONEN 11AF CDF ℓ± ℓ±15 CHATRCHYAN11C CMS ℓ+ ℓ− + jets + 6ET16 CHATRCHYAN11U CMS jet + 6ET17 AALTONEN 10AF CDF γ γ + ℓ, 6ET18 AALTONEN 09AF CDF ℓγ b 6ET19 AALTONEN 09G CDF ℓℓℓ 6ET1AAD 15AT sear
h for events with a top quark and mssing ET in pp 
ollisions at E
m= 8 TeV with L = 20.3 fb−1.2KHACHATRYAN 15F sear
h for events with a top quark and mssing ET in pp 
ollisionsat E
m = 8 TeV with L = 19.7 fb−1.3AALTONEN 14J examine events with a W and two jets in pp 
ollisions at E
m = 1.96TeV with L = 8.9 fb−1. Invariant mass distributions of the two jets are 
onsistent withthe Standard Model expe
tation.4AAD 13A sear
h for resonant WW produ
tion in pp 
ollisions at E
m = 7 TeV with L= 4.7 fb−1.5AAD 13C sear
h for events with a photon and missing 6ET in pp 
ollisions at E
m = 7TeV with L = 4.6 fb−1.6AALTONEN 13I sear
h for events with a photon and missing ET , where the photon isdete
ted after the expe
ted timing, in pp 
ollisions at E
m = 1.96 TeV with L = 6.3fb−1. The data are 
onsistent with the Standard Model expe
tation.7CHATRCHYAN 13 sear
h for events with an opposite-sign lepton pair, jets, and missingET in pp 
ollisions at E
m = 7 TeV with L = 4.98 fb−1.8AAD 12C sear
h for events with a t t pair and missing 6ET in pp 
ollisions at E
m = 7TeV with L = 1.04 fb−1.9AALTONEN 12M sear
h for events with a jet and missing ET in pp 
ollisions at E
m= 1.96 TeV with L = 6.7 fb−1.10CHATRCHYAN 12AP sear
h for events with a jet and missing ET in pp 
ollisions atE
m = 7 TeV with L = 5.0 fb−1.11CHATRCHYAN 12Q sear
h for events with a Z , jets, and missing 6ET in pp 
ollisions atE
m = 7 TeV with L = 4.98 fb−1.12CHATRCHYAN 12T sear
h for events with a photon and missing 6ET in pp 
ollisions atE
m = 7 TeV with L = 5.0 fb−1.13AAD 11S sear
h for events with one jet and missing ET in pp 
ollisions at E
m = 7TeV with L = 33 pb−1.14AALTONEN 11AF sear
h for high-pT like-sign dileptons in pp 
ollisions at E
m =1.96 TeV with L = 6.1 fb−1.15CHATRCHYAN 11C sear
h for events with an opposite-sign lepton pair, jets, and missingET in pp 
ollisions at E
m = 7 TeV with L = 34 pb−1.16CHATRCHYAN 11U sear
h for events with one jet and missing ET in pp 
ollisions atE
m = 7 TeV with L = 36 pb−1.17AALTONEN 10AF sear
h for γ γ events with e, µ, τ , or missing ET in pp 
ollisions atE
m = 1.96 TeV with L = 1.1{2.0 fb−1.18AALTONEN 09AF sear
h for ℓγ b events with missing ET in pp 
ollisions at E
m =1.96 TeV with L = 1.9 fb−1. The observed events are 
ompatible with Standard Modelexpe
tation in
luding t t γ produ
tion.19AALTONEN 09G sear
h for µµµ and µµe events with missing ET in pp 
ollisions atE
m = 1.96 TeV with L = 976 pb−1.



1785178517851785See key on page 601 Sear
hesParti
le ListingsWIMPs andOther Parti
le Sear
hesLIMITS ON JET-JET RESONANCESLIMITS ON JET-JET RESONANCESLIMITS ON JET-JET RESONANCESLIMITS ON JET-JET RESONANCESHeavy Parti
le Produ
tion Cross Se
tionHeavy Parti
le Produ
tion Cross Se
tionHeavy Parti
le Produ
tion Cross Se
tionHeavy Parti
le Produ
tion Cross Se
tionLimits are for a parti
le de
aying to two hadroni
 jets.Units(pb) CL% Mass(GeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAD 13D ATLS 7 TeV pp → 2 jets2 AALTONEN 13R CDF 1.96 TeV pp → 4 jets3 CHATRCHYAN13A CMS 7 TeV pp → 2 jets4 CHATRCHYAN13A CMS 7 TeV pp → bbX5 AAD 12S ATLS 7 TeV pp → 2 jets6 CHATRCHYAN12BL CMS 7 TeV pp → t t X7 AAD 11AG ATLS 7 TeV pp → 2 jets8 AALTONEN 11M CDF 1.96 TeV pp → W+ 2 jets9 ABAZOV 11I D0 1.96 TeV pp → W+ 2 jets10 AAD 10 ATLS 7 TeV pp → 2 jets11 KHACHATRY...10 CMS 7 TeV pp → 2 jets12 ABE 99F CDF 1.8 TeV pp → bb+ anything13 ABE 97G CDF 1.8 TeV pp → 2 jets
<2603 95 200 14 ABE 93G CDF 1.8 TeV pp → 2 jets
< 44 95 400 14 ABE 93G CDF 1.8 TeV pp → 2 jets
< 7 95 600 14 ABE 93G CDF 1.8 TeV pp → 2 jets1AAD 13D sear
h for dijet resonan
es in pp 
ollisions at E
m = 7 TeV with L = 4.8fb−1. The observed events are 
ompatible with Standard Model expe
tation. See theirFig. 6 and Table 2 for limits on resonan
e 
ross se
tion in the range m = 1.0{4.0 TeV.2AALTONEN 13R sear
h for produ
tion of a pair of jet-jet resonan
es in pp 
ollisions atE
m = 1.96 TeV with L = 6.6 fb−1. See their Fig. 5 and Tables I, II for 
ross se
tionlimits.3CHATRCHYAN 13A sear
h for qq, qg , and g g resonan
es in pp 
ollisions at E
m =7 TeV with L = 4.8 fb−1. See their Fig. 3 and Table 1 for limits on resonan
e 
rossse
tion in the range m = 1.0{4.3 TeV.4CHATRCHYAN 13A sear
h for bb resonan
es in pp 
ollisions at E
m = 7 TeV with L= 4.8 fb−1. See their Fig. 8 and Table 4 for limits on resonan
e 
ross se
tion in therange m = 1.0{4.0 TeV.5AAD 12S sear
h for dijet resonan
es in pp 
ollisions at E
m = 7 TeV with L = 1.0fb−1. See their Fig. 3 and Table 2 for limits on resonan
e 
ross se
tion in the range m= 0.9{4.0 TeV.6CHATRCHYAN 12BL sear
h for t t resonan
es in pp 
ollisions at E
m = 7 TeV with L= 4.4 fb−1. See their Fig. 4 for limits on resonan
e 
ross se
tion in the range m =0.5{3.0 TeV.7AAD 11AG sear
h for dijet resonan
es in pp 
ollisions at E
m = 7 TeV with L = 36 pb−1.Limits on number of events for m = 0.6{4 TeV are given in their Table 3.8AALTONEN 11M �nd a peak in two jet invariant mass distribution around 140 GeV inW + 2 jet events in pp 
ollisions at E
m = 1.96 TeV with L = 4.3 fb−1.9ABAZOV 11I sear
h for two-jet resonan
es in W + 2 jet events in pp 
ollisions at E
m= 1.96 TeV with L = 4.3 fb−1 and give limits σ < (2.6{1.3) pb (95% CL) for m =110{170 GeV. The result is in
ompatible with AALTONEN 11M.10AAD 10 sear
h for narrow dijet resonan
es in pp 
ollisions at E
m = 7 TeV with L= 315 nb−1. Limits on the 
ross se
tion in the range 10{103 pb is given for m =0.3{1.7 TeV.11KHACHATRYAN 10 sear
h for narrow dijet resonan
es in pp 
ollisions at E
m = 7 TeVwith L = 2.9 pb−1. Limits on the 
ross se
tion in the range 1{300 pb is given for m =0.5{2.6 TeV separately in the �nal states qq, qg , and g g .12ABE 99F sear
h for narrow bb resonan
es in pp 
ollisions at E
m=1.8 TeV. Limits on

σ(pp → X+ anything)×B(X → bb) in the range 3{103 pb (95%CL) are given formX=200{750 GeV. See their Table I.13ABE 97G sear
h for narrow dijet resonan
es in pp 
ollisions with 106 pb−1 of data atE
m = 1.8 TeV. Limits on σ(pp → X+ anything)·B(X → j j) in the range 104{10−1 pb(95%CL) are given for dijet mass m=200{1150 GeV with both jets having ∣∣η
∣∣ < 2.0 andthe dijet system having ∣∣
osθ∗∣∣ < 0.67. See their Table I for the list of limits. SupersedesABE 93G.14ABE 93G give 
ross se
tion times bran
hing ratio into light (d, u, s , 
, b) quarks for �= 0.02M. Their Table II gives limits for M = 200{900 GeV and � = (0.02{0.2)M.LIMITS ON NEUTRAL PARTICLE PRODUCTIONLIMITS ON NEUTRAL PARTICLE PRODUCTIONLIMITS ON NEUTRAL PARTICLE PRODUCTIONLIMITS ON NEUTRAL PARTICLE PRODUCTIONProdu
tion Cross Se
tion of Radiatively-De
aying Neutral Parti
leProdu
tion Cross Se
tion of Radiatively-De
aying Neutral Parti
leProdu
tion Cross Se
tion of Radiatively-De
aying Neutral Parti
leProdu
tion Cross Se
tion of Radiatively-De
aying Neutral Parti
leVALUE (pb) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, �ts, limits, et
. • • •
<(0.043{0.17) 95 1 ABBIENDI 00D OPAL e+ e− → X0Y 0,X0 → Y 0 γ
<(0.05{0.8) 95 2 ABBIENDI 00D OPAL e+ e− → X0X0,X0 → Y 0 γ
<(2.5{0.5) 95 3 ACKERSTAFF 97B OPAL e+ e− → X0Y 0,X0 → Y 0 γ
<(1.6{0.9) 95 4 ACKERSTAFF 97B OPAL e+ e− → X0X0,X0 → Y 0 γ1ABBIENDI 00D asso
iated produ
tion limit is for mX 0= 90{188 GeV, mY 0=0 atE
m=189 GeV. See also their Fig. 9.2ABBIENDI 00D pair produ
tion limit is for mX 0 = 45{94 GeV, mY 0=0 at E
m=189GeV. See also their Fig. 12.3ACKERSTAFF 97B asso
iated produ
tion limit is for mX 0 = 80{160 GeV, mY 0=0 from10.0 pb−1 at E
m = 161 GeV. See their Fig. 3(a).4ACKERSTAFF 97B pair produ
tion limit is for mX 0 = 40{80 GeV, mY 0=0 from10.0 pb−1 at E
m = 161 GeV. See their Fig. 3(b).

Heavy Parti
le Produ
tion Cross Se
tionHeavy Parti
le Produ
tion Cross Se
tionHeavy Parti
le Produ
tion Cross Se
tionHeavy Parti
le Produ
tion Cross Se
tionVALUE (
m2/N) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 LEES 15E BABR e+ e− 
ollisions2 ADAMS 97B KTEV m= 1.2{5 GeV
< 10−36{10−33 90 3 GALLAS 95 TOF m= 0.5{20 GeV
<(4{0.3)× 10−31 95 4 AKESSON 91 CNTR m = 0{5 GeV
<2 × 10−36 90 5 BADIER 86 BDMP τ = (0.05{1.)× 10−8s
<2.5× 10−35 6 GUSTAFSON 76 CNTR τ > 10−7 s1 LEES 15E sear
h for long-lived neutral parti
les produ
ed in e+ e− 
ollisions in theUpsilon region, whi
h de
ays into e+ e−, µ+µ−, e±µ∓, π+π−, K+K−, or π±K∓.See their Fig. 2 for 
ross se
tion limits.2ADAMS 97B sear
h for a hadron-like neutral parti
le produ
ed in pN intera
tions, whi
hde
ays into a ρ0 and a weakly intera
ting massive parti
le. Upper limits are given for theratio to KL produ
tion for the mass range 1.2{5 GeV and lifetime 10−9{10−4 s. Seealso our Light Gluino Se
tion.3GALLAS 95 limit is for a weakly intera
ting neutral parti
le produ
ed in 800 GeV/
 pNintera
tions de
aying with a lifetime of 10−4{10−8 s. See their Figs. 8 and 9. Similarlimits are obtained for a stable parti
le with intera
tion 
ross se
tion 10−29{10−33 
m2.See Fig. 10.4AKESSON 91 limit is from weakly intera
ting neutral long-lived parti
les produ
ed inpN rea
tion at 450 GeV/
 performed at CERN SPS. Bourquin-Gaillard formula is usedas the produ
tion model. The above limit is for τ > 10−7 s. For τ > 10−9 s,

σ < 10−30 
m−2/nu
leon is obtained.5BADIER 86 looked for long-lived parti
les at 300 GeV π− beam dump. The limitapplies for nonstrongly intera
ting neutral or 
harged parti
les with mass >2 GeV. Thelimit applies for parti
le modes, µ+π−, µ+µ−, π+π−X, π+π−π± et
. See their�gure 5 for the 
ontours of limits in the mass-τ plane for ea
h mode.6GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) long-lived neutral hadrons in the M4 neutral beam. The above typi
al value is for m = 3GeV and assumes an intera
tion 
ross se
tion of 1 mb. Values as a fun
tion of mass andintera
tion 
ross se
tion are given in �gure 2.Produ
tion of New Penetrating Non-ν Like States in Beam DumpProdu
tion of New Penetrating Non-ν Like States in Beam DumpProdu
tion of New Penetrating Non-ν Like States in Beam DumpProdu
tion of New Penetrating Non-ν Like States in Beam DumpVALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 LOSECCO 81 CALO 28 GeV protons1No ex
ess neutral-
urrent events leads to σ(produ
tion) × σ(intera
tion)×a

eptan
e

< 2.26× 10−71 
m4/nu
leon2 (CL = 90%) for light neutrals. A

eptan
e depends onmodels (0.1 to 4. × 10−4).LIMITS ON CHARGED PARTICLES IN e+ e−LIMITS ON CHARGED PARTICLES IN e+ e−LIMITS ON CHARGED PARTICLES IN e+ e−LIMITS ON CHARGED PARTICLES IN e+ e−Heavy Parti
le Produ
tion Cross Se
tion in e+ e−Heavy Parti
le Produ
tion Cross Se
tion in e+ e−Heavy Parti
le Produ
tion Cross Se
tion in e+ e−Heavy Parti
le Produ
tion Cross Se
tion in e+ e−Ratio to σ(e+ e− → µ+µ−) unless noted. See also entries in Free Quark Sear
hand Magneti
 Monopole Sear
hes.VALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 ACKERSTAFF 98P OPAL Q=1,2/3, m=45{89.5 GeV2 ABREU 97D DLPH Q=1,2/3, m=45{84 GeV3 BARATE 97K ALEP Q=1, m=45{85 GeV
<2 × 10−5 95 4 AKERS 95R OPAL Q=1, m= 5{45 GeV
<1 × 10−5 95 4 AKERS 95R OPAL Q=2, m= 5{45 GeV
<2 × 10−3 90 5 BUSKULIC 93C ALEP Q=1, m=32{72 GeV
<(10−2{1) 95 6 ADACHI 90C TOPZ Q=1, m=1{16, 18{27 GeV
<7 × 10−2 90 7 ADACHI 90E TOPZ Q = 1, m = 5{25 GeV
<1.6× 10−2 95 8 KINOSHITA 82 PLAS Q=3{180, m <14.5 GeV
<5.0× 10−2 90 9 BARTEL 80 JADE Q=(3,4,5)/3 2{12 GeV1ACKERSTAFF 98P sear
h for pair produ
tion of long-lived 
harged parti
les at E
mbetween 130 and 183 GeV and give limits σ <(0.05{0.2) pb (95%CL) for spin-0 andspin-1/2 parti
les with m=45{89.5 GeV, 
harge 1 and 2/3. The limit is translated to the
ross se
tion at E
m=183 GeV with the s dependen
e des
ribed in the paper. See theirFigs. 2{4.2ABREU 97D sear
h for pair produ
tion of long-lived parti
les and give limits

σ <(0.4{2.3) pb (95%CL) for various 
enter-of-mass energies E
m=130{136, 161, and172 GeV, assuming an almost 
at produ
tion distribution in 
osθ.3BARATE 97K sear
h for pair produ
tion of long-lived 
harged parti
les at E
m = 130,136, 161, and 172 GeV and give limits σ <(0.2{0.4) pb (95%CL) for spin-0 and spin-1/2parti
les with m=45{85 GeV. The limit is translated to the 
ross se
tion at E
m=172GeV with the E
m dependen
e des
ribed in the paper. See their Figs. 2 and 3 for limitson J = 1/2 and J = 0 
ases.4AKERS 95R is a CERN-LEP experiment with W
m ∼ mZ . The limit is for theprodu
tion of a stable parti
le in multihadron events normalized to σ(e+ e− → hadrons).Constant phase spa
e distribution is assumed. See their Fig. 3 for bounds for Q = ±2/3,
±4/3.5BUSKULIC 93C is a CERN-LEP experiment with W
m = mZ . The limit is for a pair orsingle produ
tion of heavy parti
les with unusual ionization loss in TPC. See their Fig. 5and Table 1.6ADACHI 90C is a KEK-TRISTAN experiment with W
m = 52{60 GeV. The limit is forpair produ
tion of a s
alar or spin-1/2 parti
le. See Figs. 3 and 4.7ADACHI 90E is KEK-TRISTAN experiment with W
m = 52{61.4 GeV. The above limitis for in
lusive produ
tion 
ross se
tion normalized to σ(e+ e− → µ+µ−)·β(3 { β2)/2,where β = (1 − 4m2/W2
m)1/2. See the paper for the assumption about the produ
tionme
hanism.8KINOSHITA 82 is SLAC PEP experiment at W
m = 29 GeV using lexan and 39Cr plasti
sheets sensitive to highly ionizing parti
les.9BARTEL 80 is DESY-PETRA experiment with W
m = 27{35 GeV. Above limit is forin
lusive pair produ
tion and ranges between 1. × 10−1 and 1. × 10−2 depending onmass and produ
tion momentum distributions. (See their �gures 9, 10, 11).



1786178617861786Sear
hesParti
le ListingsWIMPs andOther Parti
le Sear
hesBran
hing Fra
tion of Z0 to a Pair of Stable Charged Heavy FermionsBran
hing Fra
tion of Z0 to a Pair of Stable Charged Heavy FermionsBran
hing Fra
tion of Z0 to a Pair of Stable Charged Heavy FermionsBran
hing Fra
tion of Z0 to a Pair of Stable Charged Heavy FermionsVALUE CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<5× 10−6 95 1 AKERS 95R OPAL m= 40.4{45.6 GeV
<1× 10−3 95 AKRAWY 90O OPAL m = 29{40 GeV1AKERS 95R give the 95% CL limit σ(X X)/σ(µµ) < 1.8×10−4 for the pair produ
tion ofsingly- or doubly-
harged stable parti
les. The limit applies for the mass range 40.4{45.6GeV for X± and < 45.6 GeV for X±±. See the paper for bounds for Q = ±2/3, ±4/3.LIMITS ON CHARGED PARTICLES IN HADRONIC REACTIONSLIMITS ON CHARGED PARTICLES IN HADRONIC REACTIONSLIMITS ON CHARGED PARTICLES IN HADRONIC REACTIONSLIMITS ON CHARGED PARTICLES IN HADRONIC REACTIONSMASS LIMITS for Long-Lived Charged Heavy FermionsMASS LIMITS for Long-Lived Charged Heavy FermionsMASS LIMITS for Long-Lived Charged Heavy FermionsMASS LIMITS for Long-Lived Charged Heavy FermionsLimits are for spin 1/2 parti
les with no 
olor and SU(2)L 
harge. The ele
tri
 
hargeQ of the parti
le (in the unit of e) is therefore equal to its weak hyper
harge. Pairprodu
tion by Drell-Yan like γ and Z ex
hange is assumed to derive the limits.VALUE (GeV) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
>660 95 1 AAD 15BJ ATLS ∣∣Q∣∣ = 2
>200 95 2 CHATRCHYAN13AB CMS ∣∣Q∣∣ = 1/3
>480 95 2 CHATRCHYAN13AB CMS ∣∣Q∣∣ = 2/3
>574 95 2 CHATRCHYAN13AB CMS ∣∣Q∣∣ = 1
>685 95 2 CHATRCHYAN13AB CMS ∣∣Q∣∣ = 2
>140 95 3 CHATRCHYAN13AR CMS ∣∣Q∣∣ = 1/3
>310 95 3 CHATRCHYAN13AR CMS ∣∣Q∣∣ = 2/31AAD 15BJ use 20.3 fb−1 of pp 
ollisions at E
m = 8 TeV. See paper for limits for ∣∣Q∣∣= 3, 4, 5, 6.2CHATRCHYAN 13AB use 5.0 fb−1 of pp 
ollisions at E
m = 7 TeV and 18.8 fb−1 atE
m = 8 TeV. See paper for limits for ∣∣Q∣∣ = 3, 4,. . ., 8.3CHATRCHYAN 13AR use 5.0 fb−1 of pp 
ollisions at E
m = 7 TeV.Heavy Parti
le Produ
tion Cross Se
tionHeavy Parti
le Produ
tion Cross Se
tionHeavy Parti
le Produ
tion Cross Se
tionHeavy Parti
le Produ
tion Cross Se
tionVALUE (nb) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAIJ 15BD LHCB m=124{309 GeV2 AAD 13AH ATLS ∣∣q∣∣=(2{6)e, m=50{600 GeV
<1.2 × 10−3 95 3 AAD 11I ATLS ∣∣q∣∣=10e, m=0.2{1 TeV
<1.0 × 10−5 95 4,5 AALTONEN 09Z CDF m>100 GeV, non
olored
<4.8 × 10−5 95 4,6 AALTONEN 09Z CDF m>100 GeV, 
olored
< 0.31{0.04× 10−3 95 7 ABAZOV 09M D0 pair produ
tion
<0.19 95 8 AKTAS 04C H1 m=3{10 GeV
<0.05 95 9 ABE 92J CDF m=50{200 GeV
<30{130 10 CARROLL 78 SPEC m=2{2.5 GeV
<100 11 LEIPUNER 73 CNTR m=3{11 GeV1AAIJ 15BD sear
h for produ
tion of long-lived parti
les in pp 
ollisions at E
m = 7 and8 TeV. See their Table 6 for 
ross se
tion limits.2AAD 13AH sear
h for produ
tion of long-lived parti
les with ∣∣q∣∣=(2{6)e in pp 
ollisionsat E
m = 7 TeV with 4.4 fb−1. See their Fig. 8 for 
ross se
tion limits.3AAD 11I sear
h for produ
tion of highly ionizing massive parti
les in pp 
ollisions atE
m = 7 TeV with L = 3.1 pb−1. See their Table 5 for similar limits for ∣∣q∣∣ = 6e and17e, Table 6 for limits on pair produ
tion 
ross se
tion.4AALTONEN 09Z sear
h for long-lived 
harged parti
les in pp 
ollisions at E
m = 1.96TeV with L = 1.0 fb−1. The limits are on produ
tion 
ross se
tion for a parti
le of massabove 100 GeV in the region ∣∣η

∣∣ . 0.7, pT > 40 GeV, and 0.4 < β < 1.0.5 Limit for weakly intera
ting 
harge-1 parti
le.6 Limit for up-quark like parti
le.7ABAZOV 09M sear
h for pair produ
tion of long-lived 
harged parti
les in pp 
ollisionsat E
m = 1.96 TeV with L = 1.1 fb−1. Limit on the 
ross se
tion of (0.31{0.04) pb(95% CL) is given for the mass range of 60{300 GeV, assuming the kinemati
s of staupair produ
tion.8AKTAS 04C look for 
harged parti
le photoprodu
tion at HERA with mean 
.m. energyof 200 GeV.9ABE 92J look for pair produ
tion of unit-
harged parti
les whi
h leave dete
tor beforede
aying. Limit shown here is for m=50 GeV. See their Fig. 5 for di�erent 
harges andstronger limits for higher mass.10CARROLL 78 look for neutral, S = −2 dihyperon resonan
e in pp → 2K+X. Crossse
tion varies within above limits over mass range and plab = 5.1{5.9 GeV/
.11 LEIPUNER 73 is an NAL 300 GeV p experiment. Would have dete
ted parti
les withlifetime greater than 200 ns.Heavy Parti
le Produ
tion Di�erential Cross Se
tionHeavy Parti
le Produ
tion Di�erential Cross Se
tionHeavy Parti
le Produ
tion Di�erential Cross Se
tionHeavy Parti
le Produ
tion Di�erential Cross Se
tionVALUE(
m2sr−1GeV−1) CL% DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2.6× 10−36 90 1 BALDIN 76 CNTR − Q= 1, m=2.1{9.4 GeV
<2.2× 10−33 90 2 ALBROW 75 SPEC ± Q= ±1, m=4{15 GeV
<1.1× 10−33 90 2 ALBROW 75 SPEC ± Q= ±2, m=6{27 GeV
<8. × 10−35 90 3 JOVANOV... 75 CNTR ± m=15{26 GeV
<1.5× 10−34 90 3 JOVANOV... 75 CNTR ± Q= ±2, m=3{10 GeV
<6. × 10−35 90 3 JOVANOV... 75 CNTR ± Q= ±2, m=10{26 GeV
<1. × 10−31 90 4 APPEL 74 CNTR ± m=3.2{7.2 GeV
<5.8× 10−34 90 5 ALPER 73 SPEC ± m=1.5{24 GeV
<1.2× 10−35 90 6 ANTIPOV 71B CNTR − Q=−, m=2.2{2.8
<2.4× 10−35 90 7 ANTIPOV 71C CNTR − Q=−, m=1.2{1.7,2.1{4
<2.4× 10−35 90 BINON 69 CNTR − Q=−, m=1{1.8 GeV
<1.5× 10−36 8 DORFAN 65 CNTR Be target m=3{7 GeV
<3.0× 10−36 8 DORFAN 65 CNTR Fe target m=3{7 GeV

1BALDIN 76 is a 70 GeV Serpukhov experiment. Value is per Al nu
leus at θ = 0. Forother 
harges in range −0.5 to −3.0, CL = 90% limit is (2.6 × 10−36)/∣∣(
harge)∣∣ formass range (2.1{9.4 GeV)× ∣∣(
harge)∣∣. Assumes stable parti
le intera
ting with matteras do antiprotons.2ALBROW 75 is a CERN ISR experiment with E
m = 53 GeV. θ = 40 mr. See �gure 5for mass ranges up to 35 GeV.3 JOVANOVICH 75 is a CERN ISR 26+26 and 15+15 GeV pp experiment. Figure 4
overs ranges Q = 1/3 to 2 and m = 3 to 26 GeV. Value is per GeV momentum.4APPEL 74 is NAL 300 GeV pW experiment. Studies forward produ
tion of heavy (upto 24 GeV) 
harged parti
les with momenta 24{200 GeV (−
harge) and 40{150 GeV(+
harge). Above typi
al value is for 75 GeV and is per GeV momentum per nu
leon.5ALPER 73 is CERN ISR 26+26 GeV pp experiment. p >0.9 GeV, 0.2 < β <0.65.6ANTIPOV 71B is from same 70 GeV p experiment as ANTIPOV 71C and BINON 69.7ANTIPOV 71C limit inferred from 
ux ratio. 70 GeV p experiment.8DORFAN 65 is a 30 GeV/
 p experiment at BNL. Units are per GeV momentum pernu
leus.Long-Lived Heavy Parti
le Invariant Cross Se
tionLong-Lived Heavy Parti
le Invariant Cross Se
tionLong-Lived Heavy Parti
le Invariant Cross Se
tionLong-Lived Heavy Parti
le Invariant Cross Se
tionVALUE(
m2/GeV2/N) CL% DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 5{700 × 10−35 90 1 BERNSTEIN 88 CNTR
< 5{700 × 10−37 90 1 BERNSTEIN 88 CNTR
<2.5× 10−36 90 2 THRON 85 CNTR − Q= 1, m=4{12 GeV
<1. × 10−35 90 2 THRON 85 CNTR + Q= 1, m=4{12 GeV
<6. × 10−33 90 3 ARMITAGE 79 SPEC m=1.87 GeV
<1.5× 10−33 90 3 ARMITAGE 79 SPEC m=1.5{3.0 GeV4 BOZZOLI 79 CNTR ± Q = (2/3, 1, 4/3, 2)
<1.1× 10−37 90 5 CUTTS 78 CNTR m=4{10 GeV
<3.0× 10−37 90 6 VIDAL 78 CNTR m=4.5{6 GeV1BERNSTEIN 88 limits apply at x = 0.2 and pT = 0. Mass and lifetime dependen
eof limits are shown in the regions: m = 1.5{7.5 GeV and τ = 10−8{2 × 10−6 s. Firstnumber is for hadrons; se
ond is for weakly intera
ting parti
les.2THRON 85 is FNAL 400 GeV proton experiment. Mass determined from measuredvelo
ity and momentum. Limits are for τ > 3× 10−9 s.3ARMITAGE 79 is CERN-ISR experiment at E
m = 53 GeV. Value is for x = 0.1 andpT = 0.15. Observed parti
les at m = 1.87 GeV are found all 
onsistent with beingantideuterons.4BOZZOLI 79 is CERN-SPS 200 GeV pN experiment. Looks for parti
le with τ largerthan 10−8 s. See their �gure 11{18 for produ
tion 
ross-se
tion upper limits vs mass.5CUTTS 78 is pBe experiment at FNAL sensitive to parti
les of τ > 5× 10−8 s. Valueis for −0.3 <x <0 and pT = 0.175.6VIDAL 78 is FNAL 400 GeV proton experiment. Value is for x = 0 and pT = 0. Putslifetime limit of < 5× 10−8 s on parti
le in this mass range.Long-Lived Heavy Parti
le Produ
tionLong-Lived Heavy Parti
le Produ
tionLong-Lived Heavy Parti
le Produ
tionLong-Lived Heavy Parti
le Produ
tion(σ(Heavy Parti
le) / σ(π))(σ(Heavy Parti
le) / σ(π))(σ(Heavy Parti
le) / σ(π))(σ(Heavy Parti
le) / σ(π))VALUE EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<10−8 1 NAKAMURA 89 SPEC ± Q= (−5/3,±2)0 2 BUSSIERE 80 CNTR ± Q= (2/3,1,4/3,2)1NAKAMURA 89 is KEK experiment with 12 GeV protons on Pt target. The limit appliesfor mass . 1.6 GeV and lifetime & 10−7 s.2BUSSIERE 80 is CERN-SPS experiment with 200{240 GeV protons on Be and Al target.See their �gures 6 and 7 for 
ross-se
tion ratio vs mass.Produ
tion and Capture of Long-Lived Massive Parti
lesProdu
tion and Capture of Long-Lived Massive Parti
lesProdu
tion and Capture of Long-Lived Massive Parti
lesProdu
tion and Capture of Long-Lived Massive Parti
lesVALUE (10−36 
m2) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<20 to 800 1 ALEKSEEV 76 ELEC τ=5 ms to 1 day
<200 to 2000 1 ALEKSEEV 76B ELEC τ=100 ms to 1 day
<1.4 to 9 2 FRANKEL 75 CNTR τ=50 ms to 10 hours
<0.1 to 9 3 FRANKEL 74 CNTR τ=1 to 1000 hours1ALEKSEEV 76 and ALEKSEEV 76B are 61{70 GeV p Serpukhov experiment. Crossse
tion is per Pb nu
leus.2 FRANKEL 75 is extension of FRANKEL 74.3 FRANKEL 74 looks for parti
les produ
ed in thi
k Al targets by 300{400 GeV/
 protons.Long-Lived Parti
le Sear
h at Hadron CollisionsLong-Lived Parti
le Sear
h at Hadron CollisionsLong-Lived Parti
le Sear
h at Hadron CollisionsLong-Lived Parti
le Sear
h at Hadron CollisionsLimits are for 
ross se
tion times bran
hing ratio.VALUE(pb/nu
leon) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<2 90 1 BADIER 86 BDMP τ = (0.05{1.)× 10−8s1BADIER 86 looked for long-lived parti
les at 300 GeV π− beam dump. The limitapplies for nonstrongly intera
ting neutral or 
harged parti
les with mass >2 GeV. Thelimit applies for parti
le modes, µ+π−, µ+µ−, π+π−X, π+π−π± et
. See their�gure 5 for the 
ontours of limits in the mass-τ plane for ea
h mode.Long-Lived Heavy Parti
le Cross Se
tionLong-Lived Heavy Parti
le Cross Se
tionLong-Lived Heavy Parti
le Cross Se
tionLong-Lived Heavy Parti
le Cross Se
tionVALUE (pb/sr) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<34 95 1 RAM 94 SPEC 1015<mX++ <1085 MeV
<75 95 1 RAM 94 SPEC 920<mX++ <1025 MeV1RAM 94 sear
h for a long-lived doubly-
harged fermion X++ with mass between mNand mN+mπ and baryon number +1 in the rea
tion pp → X++ n. No 
andidate isfound. The limit is for the 
ross se
tion at 15◦ s
attering angle at 460 MeV in
identenergy and applies for τ(X++) ≫ 0.1 µs.



1787178717871787See key on page 601 Sear
hes Parti
le ListingsWIMPs and Other Parti
le Sear
hesLIMITS ON CHARGED PARTICLES IN COSMIC RAYSLIMITS ON CHARGED PARTICLES IN COSMIC RAYSLIMITS ON CHARGED PARTICLES IN COSMIC RAYSLIMITS ON CHARGED PARTICLES IN COSMIC RAYSHeavy Parti
le Flux in Cosmi
 RaysHeavy Parti
le Flux in Cosmi
 RaysHeavy Parti
le Flux in Cosmi
 RaysHeavy Parti
le Flux in Cosmi
 RaysVALUE(
m−2sr−1s−1) CL% EVTS DOCUMENT ID TECN CHG COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
< 1 × 10−8 90 0 1 AGNESE 15 CDM2 Q = 1/6
∼ 6 × 10−9 2 2 SAITO 90 Q ≃ 14, m

≃ 370mp
< 1.4 × 10−12 90 0 3 MINCER 85 CALO m ≥ 1 TeV4 SAKUYAMA 83B PLAS m ∼ 1 TeV
< 1.7 × 10−11 99 0 5 BHAT 82 CC
< 1. × 10−9 90 0 6 MARINI 82 CNTR ± Q= 1, m ∼4.5mp2. × 10−9 3 7 YOCK 81 SPRK ± Q= 1, m ∼4.5mp3 7 YOCK 81 SPRK Fra
tionally
harged3.0 × 10−9 3 8 YOCK 80 SPRK m ∼ 4.5 mp(4 ±1)× 10−11 3 GOODMAN 79 ELEC m ≥ 5 GeV
< 1.3 × 10−9 90 9 BHAT 78 CNTR ± m >1 GeV
< 1.0 × 10−9 0 BRIATORE 76 ELEC
< 7. × 10−10 90 0 YOCK 75 ELEC ± Q >7e or

< −7e
> 6. × 10−9 5 10 YOCK 74 CNTR m >6 GeV
< 3.0 × 10−8 0 DARDO 72 CNTR
< 1.5 × 10−9 0 TONWAR 72 CNTR m >10 GeV
< 3.0 × 10−10 0 BJORNBOE 68 CNTR m >5 GeV
< 5.0 × 10−11 90 0 JONES 67 ELEC m=5{15 GeV1See AGNESE 15 Fig. 6 for limits extending down to Q = 1/200.2 SAITO 90 
andidates 
arry about 450 MeV/nu
leon. Cannot be a

ounted for by 
on-ventional ba
kgrounds. Consistent with strange quark matter hypothesis.3MINCER 85 is high statisti
s study of 
alorimeter signals delayed by 20{200 ns. Cali-bration with AGS beam shows they 
an be a

ounted for by rare 
u
tuations in signalsfrom low-energy hadrons in the shower. Claim that previous delayed signals in
ludingBJORNBOE 68, DARDO 72, BHAT 82, SAKUYAMA 83B below may be due to this fakee�e
t.4 SAKUYAMA 83B analyzed 6000 extended air shower events. In
rease of delayed parti
lesand 
hange of lateral distribution above 1017 eV may indi
ate produ
tion of very heavyparent at top of atmosphere.5BHAT 82 observed 12 events with delay > 2.×10−8 s and with more than 40 parti
les. 1eV has good hadron shower. However all events are delayed in only one of two dete
torsin 
loud 
hamber, and 
ould not be due to strongly intera
ting massive parti
le.6MARINI 82 applied PEP-
ounter for TOF. Above limit is for velo
ity = 0.54 of light.Limit is in
onsistent with YOCK 80 YOCK 81 events if isotropi
 dependen
e on zenithangle is assumed.7YOCK 81 saw another 3 events with Q = ±1 and m about 4.5mp as well as 2 eventswith m >5.3mp, Q = ±0.75 ± 0.05 and m >2.8mp , Q = ±0.70 ± 0.05 and 1 eventwith m = (9.3 ± 3.)mp , Q = ±0.89 ± 0.06 as possible heavy 
andidates.8YOCK 80 events are with 
harge exa
tly or approximately equal to unity.9BHAT 78 is at Kolar gold �elds. Limit is for τ > 10−6 s.10YOCK 74 events 
ould be tritons.Superheavy Parti
le (Quark Matter) Flux in Cosmi
 RaysSuperheavy Parti
le (Quark Matter) Flux in Cosmi
 RaysSuperheavy Parti
le (Quark Matter) Flux in Cosmi
 RaysSuperheavy Parti
le (Quark Matter) Flux in Cosmi
 RaysVALUE(
m−2sr−1s−1) CL% DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 ADRIANI 15 PMLA 4 < m < 1.2× 105 mp
<5 × 10−16 90 2 AMBROSIO 00B MCRO m> 5× 1014 GeV
<1.8× 10−12 90 3 ASTONE 93 CNTR m ≥ 1.5× 10−13gram
<1.1× 10−14 90 4 AHLEN 92 MCRO 10−10 <m< 0.1 gram
<2.2× 10−14 90 5 NAKAMURA 91 PLAS m> 1011 GeV
<6.4× 10−16 90 6 ORITO 91 PLAS m> 1012 GeV
<2.0× 10−11 90 7 LIU 88 BOLO m> 1.5× 10−13 gram
<4.7× 10−12 90 8 BARISH 87 CNTR 1.4× 108 <m< 1012 GeV
<3.2× 10−11 90 9 NAKAMURA 85 CNTR m > 1.5× 10−13gram
<3.5× 10−11 90 10 ULLMAN 81 CNTR Plan
k-mass 1019GeV
<7. × 10−11 90 10 ULLMAN 81 CNTR m ≤ 1016 GeV1ADRIANI 15 sear
h for relatively light quark matter with 
harge Z = 1{8. See their Figs.2 and 3 for 
ux upper limits.2AMBROSIO 00B sear
hed for quark matter (\nu
learites") in the velo
ity range(10−5{1) 
. The listed limit is for 2× 10−3 
.3ASTONE 93 sear
hed for quark matter (\nu
learites") in the velo
ity range (10−3{1) 
.Their Table 1 gives a 
ompilation of sear
hes for nu
learites.4AHLEN 92 sear
hed for quark matter (\nu
learites"). The bound applies to velo
ity

< 2.5× 10−3 
. See their Fig. 3 for other velo
ity/
 and heavier mass range.5NAKAMURA 91 sear
hed for quark matter in the velo
ity range (4× 10−5{1) 
.6ORITO 91 sear
hed for quark matter. The limit is for the velo
ity range (10−4{10−3) 
.7 LIU 88 sear
hed for quark matter (\nu
learites") in the velo
ity range (2.5× 10−3{1)
.A less stringent limit of 5.8× 10−11 applies for (1{2.5)× 10−3
.8BARISH 87 sear
hed for quark matter (\nu
learites") in the velo
ity range (2.7 ×10−4{5× 10−3)
.9NAKAMURA 85 at KEK sear
hed for quark-matter. These might be lumps of strangequark matter with roughly equal numbers of u, d, s quarks. These lumps or nu
leariteswere assumed to have velo
ity of (10−4{10−3) 
.10ULLMAN 81 is sensitive for heavy slow singly 
harge parti
le rea
hing earth with verti
alvelo
ity 100{350 km/s.

Highly Ionizing Parti
le FluxHighly Ionizing Parti
le FluxHighly Ionizing Parti
le FluxHighly Ionizing Parti
le FluxVALUE(m−2yr−1) CL% EVTS DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •
<0.4 95 0 KINOSHITA 81B PLAS Z/β 30{100SEARCHES FOR BLACK HOLE PRODUCTIONSEARCHES FOR BLACK HOLE PRODUCTIONSEARCHES FOR BLACK HOLE PRODUCTIONSEARCHES FOR BLACK HOLE PRODUCTIONVALUE DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, �ts, limits, et
. • • •1 AAD 15AN ATLS 8 TeV pp → multijets2 AAD 14A ATLS 8 TeV pp → γ + jet3 AAD 14AL ATLS 8 TeV pp → ℓ + jet4 AAD 14C ATLS 8 TeV pp → ℓ + (ℓ or jets)5 AAD 13D ATLS 7 TeV pp → 2 jets6 CHATRCHYAN13A CMS 7 TeV pp → 2 jets7 CHATRCHYAN13AD CMS 8 TeV pp → multijets8 AAD 12AK ATLS 7 TeV pp → ℓ + (ℓ or jets)9 CHATRCHYAN12W CMS 7 TeV pp → multijets10 AAD 11AG ATLS 7 TeV pp → 2 jets1AAD 15AN sear
h for bla
k hole or string ball formation followed by its de
ay to multijet�nal states, in pp 
ollisions at E
m = 8 TeV with L = 20.3 fb−1. See their Figs. 6{8for limits.2AAD 14A sear
h for quantum bla
k hole formation followed by its de
ay to a γ and a jet,in pp 
ollisions at E
m = 8 TeV with L = 20 fb−1. See their Fig. 3 for limits.3AAD 14AL sear
h for quantum bla
k hole formation followed by its de
ay to a lepton anda jet, in pp 
ollisions at E
m = 8 TeV with L = 20.3 fb−1. See their Fig. 2 for limits.4AAD 14C sear
h for mi
ros
opi
 (semi
lassi
al) bla
k hole formation followed by its de
ayto �nal states with a lepton and ≥ 2 (leptons or jets), in pp 
ollisions at E
m = 8 TeVwith L = 20.3 fb−1. See their Figures 8{11, Tables 7, 8 for limits.5AAD 13D sear
h for quantum bla
k hole formation followed by its de
ay to two jets, inpp 
ollisions at E
m = 7 TeV with L = 4.8 fb−1. See their Fig. 8 and Table 3 forlimits.6CHATRCHYAN 13A sear
h for quantum bla
k hole formation followed by its de
ay totwo jets, in pp 
ollisions at E
m = 7 TeV with L = 5 fb−1. See their Figs. 5 and 6 forlimits.7CHATRCHYAN 13AD sear
h for mi
ros
opi
 (semi
lassi
al) bla
k hole formation followedby its evapolation to multiparti
le �nal states, in multijet (in
luding γ, ℓ) events in pp
ollisions at E
m = 8 TeV with L = 12 fb−1. See their Figs. 5{7 for limits.8AAD 12AK sear
h for mi
ros
opi
 (semi
lassi
al) bla
k hole formation followed by itsde
ay to �nal states with a lepton and ≥ 2 (leptons or jets), in pp 
ollisions at E
m= 7 TeV with L = 1.04 fb−1. See their Fig. 4 and 5 for limits.9CHATRCHYAN 12W sear
h for mi
ros
opi
 (semi
lassi
al) bla
k hole formation followedby its evapolation to multiparti
le �nal states, in multijet (in
luding γ, ℓ) events in pp
ollisions at E
m = 7 TeV with L = 4.7 fb−1. See their Figs. 5{8 for limits.10AAD 11AG sear
h for quantum bla
k hole formation followed by its de
ay to two jets, inpp 
ollisions at E
m = 7 TeV with L = 36 pb−1. See their Fig. 11 and Table 4 forlimits.REFERENCES FOR Sear
hes for WIMPs and Other Parti
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